licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
3722
#---G4Box-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(box::G4Box, facets=6) x, y, z = GetXHalfLength(box), GetYHalfLength(box), GetZHalfLength(box) return Point3{Float64}[(-x,-y,-z), (-x,-y, z), (-x, y, z), (-x, y,-z), (-x,-y,-z), ( x,-y,-z), ( x,-y, z), (-x,-y, z), (-x,-y,-z), (-x, y,-z), ( x, y,-z), ( x,-y,-z), ( x, y, z), (-x, y, z), (-x,-y, z), ( x,-y, z), ( x, y, z), ( x,-y, z), ( x,-y,-z), ( x, y,-z), ( x, y, z), ( x, y,-z), (-x, y,-z), (-x, y, z)] end function GeometryBasics.faces(::G4Box, facets=6) return QuadFace{Int}[(1,2,3,4), (5,6,7,8), (9,10,11,12), (13,14,15,16), (17,18,19,20), (21,22,23,24)] end #---G4Trd-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(trd::G4Trd, facets=6) x1 = GetXHalfLength1(trd) x2 = GetXHalfLength2(trd) y1 = GetYHalfLength1(trd) y2 = GetYHalfLength2(trd) z = GetZHalfLength(trd) Point3{Float64}[(-x1,-y1,-z), ( x1,-y1,-z), (-x1, y1,-z), ( x1, y1,-z), (-x2,-y2, z), ( x2,-y2, z), (-x2, y2, z), ( x2, y2, z)] end function GeometryBasics.faces(::G4Trd, facets=6) iface = (( 1,5,6,2),(3,4,8,7),( 1,3,7,5),(2,6,8,4),( 1,2,4,3),(5,6,8,7)) [QuadFace{Int64}(f...) for f in iface] end #---G4Para-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(par::G4Para, facets=6) x = GetXHalfLength(par) y = GetYHalfLength(par) z = GetZHalfLength(par) α = GetAlpha(par) θ = GetTheta(par) ϕ = GetPhi(par) ztθcϕ = z * tan(θ) * cos(ϕ) ztθsϕ = z * tan(θ) * sin(ϕ) ytα = y * tan(α) Point3{Float64}[(-ztθcϕ - ytα - x, -ztθsϕ - y, -z), (-ztθcϕ - ytα + x, -ztθsϕ - y, -z), (-ztθcϕ + ytα - x, -ztθsϕ + y, -z), (-ztθcϕ + ytα + x, -ztθsϕ + y, -z), ( ztθcϕ - ytα - x, ztθsϕ - y, z), ( ztθcϕ - ytα + x, ztθsϕ - y, z), ( ztθcϕ + ytα - x, ztθsϕ + y, z), ( ztθcϕ + ytα + x, ztθsϕ + y, z)] end function GeometryBasics.faces(::G4Para, facets=6) iface = (( 1,5,6,2),(3,4,8,7),( 1,3,7,5),(2,6,8,4),( 1,2,4,3),(5,6,8,7)) [QuadFace{Int64}(f...) for f in iface] end #---G4Trap-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(par::G4Trap, facets=6) x₁ = GetXHalfLength1(par) x₂ = GetXHalfLength2(par) x₃ = GetXHalfLength3(par) x₄ = GetXHalfLength4(par) y₁ = GetYHalfLength1(par) y₂ = GetYHalfLength2(par) z = GetZHalfLength(par) α₁ = GetAlpha1(par) α₂ = GetAlpha2(par) θ = GetTheta(par) ϕ = GetPhi(par) ztθcϕ = z * tan(θ) * cos(ϕ) ztθsϕ = z * tan(θ) * sin(ϕ) Point3{Float64}[(-ztθcϕ - y₁*tan(α₁) - x₁, -ztθsϕ - y₁, -z), (-ztθcϕ - y₁*tan(α₁) + x₁, -ztθsϕ - y₁, -z), (-ztθcϕ + y₁*tan(α₁) - x₂, -ztθsϕ + y₁, -z), (-ztθcϕ + y₁*tan(α₁) + x₂, -ztθsϕ + y₁, -z), ( ztθcϕ - y₂*tan(α₂) - x₃, ztθsϕ - y₂, z), ( ztθcϕ - y₂*tan(α₂) + x₃, ztθsϕ - y₂, z), ( ztθcϕ + y₂*tan(α₂) - x₄, ztθsϕ + y₂, z), ( ztθcϕ + y₂*tan(α₂) + x₄, ztθsϕ + y₂, z)] end function GeometryBasics.faces(::G4Trap, facets=6) iface = (( 1,5,6,2),(3,4,8,7),( 1,3,7,5),(2,6,8,4),( 1,2,4,3),(5,6,8,7)) [QuadFace{Int64}(f...) for f in iface] end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
6949
#---G4Tubs-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(tub::G4Tubs, facets=36) rmin = GetInnerRadius(tub) rmax = GetOuterRadius(tub) z = GetZHalfLength(tub) ϕ₀ = GetStartPhiAngle(tub) Δϕ = GetDeltaPhiAngle(tub) issector = Δϕ < 2π ishollow = rmin > 0 issector ? facets = round(Int64, (facets/2π) * Δϕ) : nothing isodd(facets) ? facets = 2 * div(facets, 2) : nothing facets < 8 ? facets = 8 : nothing facets = Int(facets / 2) # Number of faces nbv = issector ? facets + 1 : facets # Number of vertices nbc = ishollow ? nbv : 1 # Number of centers z = z range = 1:(2*nbv + 2*nbc) function inner(i) return if i <= 2*nbv ϕ = ϕ₀ + (Δϕ * (((i + 1) ÷ 2) - 1)) / facets up = ifelse(isodd(i), z, -z) Point(rmax * cos(ϕ), rmax * sin(ϕ), up) elseif ishollow ϕ = ϕ₀ + (Δϕ * (((i - 2 * nbv + 1) ÷ 2) - 1)) / facets up = ifelse(isodd(i), z, -z) Point(rmin * cos(ϕ), rmin * sin(ϕ), up) elseif i == length(range) Point(0., 0., -z) elseif i == length(range) - 1 Point(0., 0., z) end end return (inner(i) for i in range) end function GeometryBasics.faces(tub::G4Tubs, facets=36) rmin = GetInnerRadius(tub) Δϕ = GetDeltaPhiAngle(tub) issector = Δϕ < 2π ishollow = rmin > 0 issector ? facets = round(Int64, (facets/2π) * Δϕ) : nothing isodd(facets) ? facets = 2 * div(facets, 2) : nothing facets < 8 ? facets = 8 : nothing facets = Int(facets / 2) # Number of faces nbv = issector ? facets + 1 : facets # Number of vertices nbc = ishollow ? nbv : 1 # Number of centers indexes = Vector{QuadFace{Int64}}() for j in 1:facets a,b = 2j-1, 2j c,d = !issector && j == facets ? (1, 2) : (2j+1, 2j+2) push!(indexes, (a,b,d,c)) if ishollow a′,b′ = 2j-1+2nbv, 2j+2nbv c′,d′ = !issector && j == facets ? (2nbv+1, 2nbv+2) : (2j+1+2nbv, 2j+2+2nbv) # inner wall push!(indexes, (a′,b′,d′,c′)) # top push!(indexes, (c, c′, a′, a)) # bottom push!(indexes, (b, b′, d′, d)) else a′,b′ = 2nbv+1, 2nbv+2 # top push!(indexes, (a′,a, c, c)) # bottom push!(indexes, (b′,d, b, b)) end end if issector # wedge walls a, b, c, d = ( 1, 2, 2nbv-1, 2nbv) a′,b′,c′,d′ = ishollow ? (2nbv+1, 2nbv+2, 4nbv-1, 4nbv ) : (2nbv+1, 2nbv+2, 2nbv+1, 2nbv+2) push!(indexes, (a, b, b′, a′)) push!(indexes, (c′, d′, d, c )) end return indexes end function GeometryBasics.normals(tub::G4Tubs, facets=36) rmin = GetInnerRadius(tub) Δϕ = GetDeltaPhiAngle(tub) issector = Δϕ < 2π ishollow = rmin > 0 issector ? facets = round(Int64, (facets/2π) * Δϕ) : nothing isodd(facets) ? facets = 2 * div(facets, 2) : nothing facets < 8 ? facets = 8 : nothing facets = Int(facets / 2) # Number of faces nbv = issector ? facets + 1 : facets # Number of vertices nbc = ishollow ? nbv : 1 # Number of centers range = 1:(2*nbv + 2*nbc) function inner(i) return if i <= 2*nbv ϕ = ϕ₀ + (Δϕ * (((i + 1) ÷ 2) - 1)) / facets up = ifelse(isodd(i), 1/√2, -1/√2) Vector3(cos(ϕ)/√2, sin(ϕ)/√2, up) elseif ishollow ϕ = ϕ₀ + (Δϕ * (((i + 1) ÷ 2) - 1)) / facets up = ifelse(isodd(i), 1/√2, -1/√2) Vector3(-cos(ϕ)/√2, -sin(ϕ)/√2, up) elseif i == length(range) Vector3(0., 0., -1.) elseif i == length(range) - 1 Vector3(0., 0., 1.) end end return (inner(i) for i in range) end #---CutTubs---------------------------------------------------------------------------------------- function zLimit(tub::G4CutTubs, dz, r, ϕ) lownorm = GetLowNorm(tub) highnorm = GetHighNorm(tub) if dz < 0 newz = dz - r*(cos(ϕ) * x(lownorm) + sin(ϕ) * y(lownorm))/z(lownorm) else newz = dz - r*(cos(ϕ) * x(highnorm) + sin(ϕ) * y(highnorm))/z(highnorm) end end function GeometryBasics.coordinates(tub::G4CutTubs, facets=36) rmin = GetInnerRadius(tub) rmax = GetOuterRadius(tub) z = GetZHalfLength(tub) ϕ₀ = GetStartPhiAngle(tub) Δϕ = GetDeltaPhiAngle(tub) issector = Δϕ < 2π ishollow = rmin > 0 issector ? facets = round(Int64, (facets/2π) * Δϕ) : nothing isodd(facets) ? facets = 2 * div(facets, 2) : nothing facets < 8 ? facets = 8 : nothing facets = Int(facets / 2) # Number of faces nbv = issector ? facets + 1 : facets # Number of vertices nbc = ishollow ? nbv : 1 # Number of centers range = 1:(2*nbv + 2*nbc) function inner(i) return if i <= 2*nbv ϕ = ϕ₀ + (Δϕ * (((i + 1) ÷ 2) - 1)) / facets Point(rmax * cos(ϕ), rmax * sin(ϕ), zLimit(tub, z*(-1)^(i%2+1), rmax, ϕ)) elseif ishollow ϕ = ϕ₀ + (Δϕ * (((i - 2 * nbv + 1) ÷ 2) - 1)) / facets Point(rmin * cos(ϕ), rmin * sin(ϕ), zLimit(tub, z*(-1)^(i%2+1), rmin, ϕ)) elseif i == length(range) Point(0., 0., -z) elseif i == length(range) - 1 Point(0., 0., z) end end return [inner(i) for i in range] end function GeometryBasics.faces(tub::G4CutTubs, facets=36) rmin = GetInnerRadius(tub) rmax = GetOuterRadius(tub) z = GetZHalfLength(tub) ϕ₀ = GetStartPhiAngle(tub) Δϕ = GetDeltaPhiAngle(tub) GeometryBasics.faces(G4Tubs("",rmin, rmax, z, ϕ₀, Δϕ ), facets) end #---G4EllipticalTube-------------------------------------------------------------------------------------- function GeometryBasics.coordinates(tub::G4EllipticalTube, facets=36) dx = GetDx(tub) dy = GetDy(tub) dz = GetDz(tub) range = 1:(2*facets + 2) function inner(i) return if i <= 2*facets ϕ = (2π * (((i + 1) ÷ 2) - 1)) / facets up = ifelse(isodd(i), dz, -dz) Point(dx * cos(ϕ), dy * sin(ϕ), up) elseif i == length(range) Point(0., 0., -dz) elseif i == length(range) - 1 Point(0., 0., dz) end end return (inner(i) for i in range) end function GeometryBasics.faces(tub::G4EllipticalTube, facets=36) indexes = Vector{QuadFace{Int64}}() for j in 1:facets a,b = 2j-1, 2j c,d = j == facets ? (1, 2) : (2j+1, 2j+2) push!(indexes, (a,b,d,c)) a′,b′ = 2facets+1, 2facets+2 # top push!(indexes, (a′,a, c, c)) # bottom push!(indexes, (b′,d, b, b)) end return indexes end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
779
#----Visualization Settings------------------------------------------------------------------------ # the format is a nested Julia NamedTuple (parsed directly from the program) # Note that with a single element in the tuple the user needs to append a "," #-------------------------------------------------------------------------------------------------- ( display = ( backgroundcolor = :black, # Display background color resolution = (1280, 720), # Display resolution show_axis = true, # Whether to show or not the axis ), trajectories = ( color = :yellow, # Color of the trajectories ), detector = ( show_detector = true, # Whether to draw the detector or not ), )
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
999
using CxxWrap using Geant4_jll using Expat_jll using Xerces_jll #---Build the wrapper library---------------------------------------------------------------------- builddir = joinpath(@__DIR__, "build") sourcedir = @__DIR__ cd(@__DIR__) mkpath(builddir) cd(builddir) if Sys.isapple() ENV["SDKROOT"]=readchomp(`xcrun --sdk macosx --show-sdk-path`) end cxxwrap_prefix = CxxWrap.prefix_path() geant4_prefix = Geant4_jll.artifact_dir xerces_prefix = Xerces_jll.artifact_dir #-DXercesC_LIBRARY_RELEASE=$(Xerces_jll.libxerces) run(`cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_STANDARD=std++17 -DEXPAT_INCLUDE_DIR=$(Expat_jll.artifact_dir)/include -DEXPAT_LIBRARY=$(Expat_jll.libexpat) -DXercesC_INCLUDE_DIR=$(Xerces_jll.artifact_dir)/include -DCxxWrap_VERSION=$(pkgversion(CxxWrap)) -DCMAKE_PREFIX_PATH=$cxxwrap_prefix\;$geant4_prefix\;$xerces_prefix $sourcedir`) run(`cmake --build . --config Release --parallel 8`)
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
2886
#----Callback structures--------------------------------------------------------------------------- mutable struct CallBackData{CONTEXT} context::CONTEXT callback::Function # (i::Int32, ctx::T)::Int32 end struct CallBack{CONTEXT} cfunction::CxxWrap.CxxWrapCore.SafeCFunction cbdata::CallBackData{CONTEXT} end #----Global vector (GC) --------------------------------------------------------------------------- callbacks = Vector{CallBack}() #----Function to create a callback avoiding the use of closures (ARM is not supporting closures) # We need to project with a lock the make_callback since it can be called from concurrent threads const spinlock = Base.Threads.SpinLock() function make_callback(ctx, fun, rt, args) lock(spinlock) try i_callback = Symbol(:_internal_callback_, Symbol(typeof(ctx))) narg = length(args) CONTEXT = typeof(ctx) #---create the internal callback function------------------------------------------------------ if narg == 0 eval( quote function $i_callback(data::Ptr{Cvoid})::$rt cb_data = unsafe_pointer_to_objref(data)::CallBackData{$CONTEXT} cb_data.callback(cb_data.context) end end ) elseif narg == 1 eval( quote function $i_callback(a1::$(args[1]), data::Ptr{Cvoid})::$rt cb_data = unsafe_pointer_to_objref(data)::CallBackData{$CONTEXT} cb_data.callback(a1[], cb_data.context) end end ) elseif narg == 2 eval( quote function $i_callback(a1::$(args[1]), a2::$(args[2]), data::Ptr{Cvoid})::$rt cb_data = unsafe_pointer_to_objref(data)::CallBackData{$CONTEXT} cb_data.callback(a1[], a2[], cb_data.context) end end ) else error("callbacks with more than 2 arguments not yet supported") end #---Instantiate the callback------------------------------------------------------------------- cb = eval( quote CallBack{$CONTEXT}( @safe_cfunction($i_callback, $rt, ($(args...), Ptr{Cvoid})), CallBackData{$CONTEXT}($ctx, $fun)) end ) push!(callbacks, cb) unlock(spinlock) return cb catch unlock(spinlock) rethrow() end end function closure(cb::CallBack) return (cb.cfunction, pointer_from_objref(cb.cbdata)) end function null_closure(rt, args) return (CxxWrap.CxxWrapCore.SafeCFunction(C_NULL, rt, [ args... ; Ptr{Cvoid}]), C_NULL) end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
28603
#---Exports from this section---------------------------------------------------------------------- export G4JLDetector, G4JLSimulationData, G4JLApplication, G4JLDetectorGDML, G4JLSDData, G4JLSensitiveDetector, configure, initialize, reinitialize, beamOn, getSDdata, getSIMdata, getConstructor, getInitializer, G4JLUniformMagField, G4JLMagneticField, G4JLFieldData, G4JLDisplay #---Geometry usability functions------------------------------------------------------------------- G4PVPlacement(r::Union{Nothing, G4RotationMatrix}, d::G4ThreeVector, l::Union{Nothing,G4LogicalVolume}, s::String, p::Union{Nothing, G4LogicalVolume}, b1::Bool, n::Int, b2::Bool=false) = G4PVPlacement(isnothing(r) ? CxxPtr{G4RotationMatrix}(C_NULL) : move!(r), d, isnothing(l) ? CxxPtr{G4LogicalVolume}(C_NULL) : CxxPtr(l), s, isnothing(p) ? CxxPtr{G4LogicalVolume}(C_NULL) : CxxPtr(p), b1, n, b2) G4PVPlacement(t::G4Transform3D, l::Union{Nothing,G4LogicalVolume}, s::String, p::Union{Nothing, G4LogicalVolume}, b1::Bool, n::Int, b2::Bool=false) = G4PVPlacement(t, isnothing(l) ? CxxPtr{G4LogicalVolume}(C_NULL) : CxxPtr(l), s, isnothing(p) ? CxxPtr{G4LogicalVolume}(C_NULL) : CxxPtr(p), b1, n, b2) G4PVReplica(s::String, l::G4LogicalVolume, m::G4LogicalVolume, a::EAxis, n::Int64, t::Float64) = G4PVReplica(s, CxxPtr(l), CxxPtr(m), a, n, t) function G4JLDetectorConstruction(f::Function) sf = make_callback(nothing, f, CxxPtr{G4VPhysicalVolume}, ()) |> closure G4JLDetectorConstruction(sf...) end function G4JLActionInitialization(f::Function) sf = make_callback(nothing, f, Nothing, (ConstCxxPtr{G4JLActionInitialization},)) |> closure G4JLActionInitialization(sf..., sf...) # call the construction end function G4LogicalVolume(solid::G4VSolid, mat::CxxPtr{G4Material}, name::String, fldmgr=CxxPtr{G4FieldManager}(C_NULL), sd=CxxPtr{G4VSensitiveDetector}(C_NULL), ulimits=CxxPtr{G4UserLimits}(C_NULL), opt=true) G4LogicalVolume(move!(solid), mat, name, fldmgr isa G4FieldManagerAllocated ? move!(fldmgr) : fldmgr, sd isa CxxPtr ? sd : move!(sd), ulimits isa G4UserLimitsAllocated ? move!(ulimits) : ulimits, opt) end SetUserLimits(lv::G4LogicalVolume, l::G4UserLimitsAllocated) = SetUserLimits(lv, move!(l)) #---Material friendly functions (keyword arguments)------------------------------------------------ using .SystemOfUnits:kelvin, atmosphere G4Material(name::String; z::Float64=0., a::Float64=0., density::Float64, ncomponents::Integer=0, state::G4State=kStateUndefined, temperature::Float64=293.15*kelvin, pressure::Float64=1*atmosphere) = ncomponents == 0 ? G4Material(name, z, a, density, state, temperature, pressure) : G4Material(name, density, ncomponents) AddElement(mat::G4Material, elem::CxxPtr{G4Element}; fractionmass::Float64=0., natoms::Integer=0) = fractionmass != 0. ? AddElementByMassFraction(mat, elem, fractionmass) : AddElementByNumberOfAtoms(mat, elem, natoms) AddMaterial(mat::G4Material, mat2::CxxPtr{G4Material}; fractionmass=1.0) = AddMaterial(mat, mat2, fractionmass) AddMaterial(mat::G4Material, mat2::G4Material; fractionmass=1.0) = AddMaterial(mat, CxxPtr(mat2), fractionmass) G4Isotope(name::String; z::Integer, n::Integer, a::Float64=0., mlevel::Integer=0) = G4Isotope(name, z, n, a, mlevel) #---Better HL interface (more Julia friendly)------------------------------------------------------ abstract type G4JLAbstrcatApp end abstract type G4JLDetector end abstract type G4JLSimulationData end abstract type G4JLSDData end abstract type G4JLFieldData end abstract type G4JLDisplay end getConstructor(d::G4JLDetector) = error("You need to define the function Geant4.getConstructor($(typeof(d))) returning the actual contruct method") getInitializer(::G4VUserPrimaryGeneratorAction) = nothing #---G4JLDetectorGDML----(GDML reader)-------------------------------------------------------------- struct G4JLDetectorGDML <: G4JLDetector fPhysicalWorld::CxxPtr{G4VPhysicalVolume} end getConstructor(::G4JLDetectorGDML) = (det::G4JLDetectorGDML) -> det.fPhysicalWorld """ G4JLDetectorGDML(gdmlfile::String; check_overlap::Bool, validate_schema::Bool, init_method::Union{Function,Nothing}) Initialize a G4JLDetector from a GDML file. The GDML file is parsed at this moment. """ function G4JLDetectorGDML(gdmlfile::String; check_overlap::Bool=false, validate_schema::Bool=true, init_method::Union{Function,Nothing}=nothing) parser = G4GDMLParser() !isfile(gdmlfile) && error("GDML File $gdmlfile does not exists") SetOverlapCheck(parser, check_overlap) Read(parser, gdmlfile, validate_schema) world = GetWorldVolume(parser) if !isnothing(init_method) init_method(world) end G4JLDetectorGDML(world) end #---Custom Magnetic Field-------------------------------------------------------------------------- """ Custom Magnetic Field """ mutable struct G4JLMagneticField{UD<:G4JLFieldData} const name::String const data::UD const getfield::Function # signature (result::G4ThreeVector, position::G4ThreeVector, ::SD) base::Vector{G4JLMagField} end """ getfield(pos::G4ThreeVector, bfield::G4JLMagneticField) Function to exercise a custom magnetic field """ function getfield(pos::G4ThreeVector, bfield::G4JLMagneticField) B = G4ThreeVector() bfield.getfield(B, pos, bfield.data) return B end """ G4JLMagneticField(name::String, data::DATA; <keyword arguments>) where DATA<:G4JLGeneratorData Create a G4JLMagneticField with its name and associated DATA structure # Arguments """ function G4JLMagneticField(name::String, data::T; getfield_method=nothing) where T<:G4JLFieldData isnothing(getfield_method) && error("get field method not defined") G4JLMagneticField{T}(name, data, getfield_method, G4JLMagField[]) end #---Implementation (user friendly) Uniform Magnetic Field------------------------------------------ mutable struct G4JLUniformMagFieldData <: G4JLFieldData field::G4ThreeVector end function G4JLMagneticField{G4JLUniformMagFieldData}(field::G4ThreeVector) data = G4JLUniformMagFieldData(field) function getfield!(field::G4ThreeVector, pos::G4ThreeVector, data::G4JLUniformMagFieldData)::Nothing assign(field, data.field) return end G4JLMagneticField("UnifiormB", data; getfield_method=getfield!) end const G4JLUniformMagField = G4JLMagneticField{G4JLUniformMagFieldData} #---SentitiveDetectors----------------------------------------------------------------------------- struct G4JLSensitiveDetector{UD<:G4JLSDData} base::G4JLSensDet data::UD end struct G4JLProtoSD{UD<:G4JLSDData} name::String data::UD processhits::Union{Function, Nothing} initialize::Union{Function, Nothing} endofevent::Union{Function, Nothing} end """ G4JLSensitiveDetector(name::String, data::DATA; <keyword arguments>) where DATA<:G4JLSDData Initialize a G4JLSensitiveDetector with its name and associated DATA structure. # Arguments - `name::String`: Sensitive detector name - `data::DATA`: Data structure associted to the sensitive detector - `processhits_method=nothing`: processHit function with signature: `(data::DATA, step::G4Step, ::G4TouchableHistory)::Bool` - `initialize_method=nothing`: intialize function with signature: `(data::DATA, ::G4HCofThisEvent)::Nothing` - `endofevent_method=nothing`: endOfEvent function with signature: `(data::DATA, ::G4HCofThisEvent)::Nothing` """ function G4JLSensitiveDetector(name::String, data::T; processhits_method=nothing, initialize_method=nothing, endofevent_method=nothing) where T<:G4JLSDData isnothing(processhits_method) && error("processHits method for ($T,G4Step,G4TouchableHistory) not defined") G4JLProtoSD{T}(name, data, processhits_method, initialize_method, endofevent_method) end function G4JLSensitiveDetector(sd::G4JLProtoSD) (;name, data, processhits, initialize, endofevent) = sd tls_data = deepcopy(data) cb = make_callback(tls_data, processhits, CxxBool, (CxxPtr{G4Step}, CxxPtr{G4TouchableHistory})) |> closure base = G4JLSensDet(name, cb...) if !isnothing(initialize) cb = make_callback(tls_data, initialize, Nothing, (CxxPtr{G4HCofThisEvent},)) |> closure SetInitialize(base, cb...) end if !isnothing(endofevent) cb = make_callback(tls_data, endofevent, Nothing, (CxxPtr{G4HCofThisEvent},)) |> closure SetEndOfEvent(base, cb...) end G4JLSensitiveDetector{typeof(data)}(base, tls_data) end struct G4JLNoData <: G4JLSimulationData end #--Empty Detector---------------------------------------------------------------------------------- struct G4JLEmptyDetector <: G4JLDetector end using Geant4.PhysicalConstants: universe_mean_density using Geant4.SystemOfUnits: g, mole, kelvin, pascal, parsec, m function _construct(::G4JLEmptyDetector) vacuum = G4Material("Vacuum", z=1., a=1.01g/mole, density=universe_mean_density, state=kStateGas, temperature=2.73*kelvin, pressure=3.e-18*pascal) G4PVPlacement(nothing, G4ThreeVector(), G4LogicalVolume(G4Orb("World", 1m), move!(vacuum), "World"), "World", nothing, false, 0, false) end Geant4.getConstructor(::G4JLEmptyDetector) = _construct #---Geant4 Application----------------------------------------------------------------------------- mutable struct G4JLApplication{DET<:G4JLDetector,DAT<:G4JLSimulationData} <: G4JLAbstrcatApp const runmanager::Any detector::DET simdata::Vector{DAT} # Each worker thread has its own data generator::G4JLPrimaryGenerator field::Union{Nothing, G4Field, G4JLMagneticField} evtdisplay::Union{Nothing, G4JLDisplay} const nthreads::Int32 const verbose::Int32 # Types const runmanager_type::Type{<:G4RunManager} const builder_type::Type{<:G4VUserDetectorConstruction} const physics_type::Type{<:G4VUserPhysicsList} const runaction_type::Type{<:G4UserRunAction} const eventaction_type::Type{<:G4UserEventAction} #stackaction_type::Type{<:G4UserStakingAction} const trackaction_type::Type{<:G4UserTrackingAction} const stepaction_type::Type{<:G4UserSteppingAction} # Methods const stepaction_method::Union{Nothing,Function} const pretrackaction_method::Union{Nothing,Function} const posttrackaction_method::Union{Nothing,Function} const beginrunaction_method::Union{Nothing,Function} const endrunaction_method::Union{Nothing,Function} const begineventaction_method::Union{Nothing,Function} const endeventaction_method::Union{Nothing,Function} const stackaction_method::Union{Nothing,Function} const statechange_method::Union{Nothing, Function} # Sensitive Detectors protoSDs::Dict{String,G4JLProtoSD} sdetectors::Dict{String,Vector{G4JLSensitiveDetector}} # single and MT # Scoring Meshes scorers::Vector{G4JLScoringMesh} # Instances detbuilder::Any physics::Any end """ G4JLApplication(<keyword arguments>) Initialize a G4JLApplication with its associated tyopes and methods. # Arguments - `detector::G4JLDetector`: detector description object - `simdata=G4JLNoData()`: simulation data object - `generator=G4JLParticleGun()`: primary particle generator - `field=nothing`: magnetic field - `evtdisplay=nothing`: event display (visualization) - `nthreads=0`: number of Geant4 worker threads ( >0 implies MT) - `verbose=0` : default verbority level (physics, ...) - `runmanager_type=G4RunManager`: run manager type - `builder_type=G4JLDetectorConstruction`: detector builder type (the default should be fine most cases) - `physics_type=FTFP_BERT`: physics list type - `stepaction_type=G4JLSteppingAction`: stepping action type (the default should be fine most cases) - `trackaction_type=G4JLTrackingAction`: rtacking action type (the default should be fine most cases) - `runaction_type=G4JLRunAction`: run action type (the default should be fine most cases) - `eventaction_type=G4JLEventAction`: event action type (the default should be fine most cases) - `stepaction_method=nothing`: stepping action method with signature `(::G4Step, ::G4JLApplication)::Nothing` - `pretrackaction_method=nothing`: pre-tracking action method with signature `(::G4Track, ::G4JLApplication)::Nothing` - `posttrackaction_method=nothing`: post-tracking action method with signature `(::G4Track, ::G4JLApplication)::Nothing` - `beginrunaction_method=nothing`: begin run action method with signature `(::G4Run, ::G4JLApplication)::Nothing` - `endrunaction_method=nothing`: end run action method with signature `(::G4Run, ::G4JLApplication)::Nothing` - `begineventaction_method=nothing`: begin event action method with signature `(::G4Event, ::G4JLApplication)::Nothing` - `endeventaction_method=nothing`: end event action method with signature `(::G4Event, ::G4JLApplication)::Nothing` - `stackaction_method=nothing`: stacking classification of new track with signature `(::G4Track, ::G4JLApplication)::G4ClassificationOfNewTrack` - `statechange_method=nothing`: state change notifycation method with signature `(from::G4ApplicationState, to::G4ApplicationState, ::G4JLApplication)::Bool` - `sdetectors::Vector{}=[]`: vector of pairs `lv::String => sd::G4JLSensitiveDetector` to associate logical volumes to sensitive detector - `scorers::Vector{}=[]`: vector of [`G4JLScoringMesh`](@ref)s """ function G4JLApplication(; detector::G4JLDetector = G4JLEmptyDetector(), simdata = G4JLNoData(), generator = G4JLGunGenerator(), field=nothing, evtdisplay=nothing, nthreads=0, verbose=0, runmanager_type=G4RunManager, builder_type=G4JLDetectorConstruction, physics_type=FTFP_BERT, stepaction_type=G4JLSteppingAction, trackaction_type=G4JLTrackingAction, runaction_type=G4JLRunAction, eventaction_type=G4JLEventAction, stepaction_method=nothing, pretrackaction_method=nothing, posttrackaction_method=nothing, beginrunaction_method=nothing, endrunaction_method=nothing, begineventaction_method=nothing, endeventaction_method=nothing, stackaction_method=nothing, statechange_method=nothing, sdetectors=[], scorers=[], ) # if nthreads > 0 force G4MTRunManager runmanager_type = nthreads > 0 ? G4MTRunManager : runmanager_type # check whether the RunMamager is already constructed runmgr = G4RunManager!GetRunManager() if runmgr == C_NULL runmgr = runmanager_type() physics = nothing else statemgr = G4StateManager!GetStateManager() SetNewState(statemgr, G4State_PreInit) physics = isempty(physicslists) ? nothing : last(physicslists) end # instantiate G4JLApplication this = G4JLApplication{typeof(detector), typeof(simdata)}( runmgr, detector, [deepcopy(simdata) for i in 1:nthreads+1], generator, field, evtdisplay, nthreads, verbose, nthreads > 0 ? G4MTRunManager : G4RunManager, builder_type, physics_type, runaction_type, eventaction_type, trackaction_type, stepaction_type, stepaction_method, pretrackaction_method, posttrackaction_method, beginrunaction_method, endrunaction_method, begineventaction_method, endeventaction_method, stackaction_method, statechange_method, Dict(sdetectors), Dict{String,Vector{G4JLSensitiveDetector}}(), scorers, nothing, physics) # register state change dependent if !isnothing(statechange_method) sf = make_callback(this, statechange_method, CxxBool, (G4ApplicationState, G4ApplicationState)) |> closure G4JLStateDependent(sf...) end if !isnothing(evtdisplay) sf = make_callback(this, evtdisplay.stateChange, CxxBool, (G4ApplicationState, G4ApplicationState)) |> closure G4JLStateDependent(sf...) end return this end physicslists = Vector{Any}() """ configure(app::G4JLApplication) Configure the Geant4 application. It sets the declared user actions, event generator, and physcis list. """ function configure(app::G4JLApplication) runmgr = app.runmanager #---Set the number of threads and declare G4UserWorkerInitialization--------------------------- if app.nthreads > 0 SetNumberOfThreads(runmgr, app.nthreads) SetUserInitialization(runmgr, move!(G4JLWorkerInitialization())) end #---Prepare SentitiveDetectors----------------------------------------------------------------- for (lv,sd) in app.protoSDs app.sdetectors[sd.name] = Vector{G4JLSensitiveDetector}(undef, app.nthreads + 1) end #---Prepare Primary Generators----------------------------------------------------------------- app.generator.base = Vector{G4JLGeneratorAction}(undef, app.nthreads + 1) #---Prepare Primary Generators----------------------------------------------------------------- if app.field isa G4JLMagneticField app.field.base = Vector{G4JLMagField}(undef, app.nthreads + 1) end #---Detector construction---------------------------------------------------------------------- function sdandf(app::G4JLApplication)::Nothing # called by the worker thread during init------ #---Add the Sensitive Detectors now that the geometry is constructed----------------------- tid = G4Threading!G4GetThreadId() tid < 0 && (tid = -1) # master thread (-2 for without multi-threading support) for (lv,protosd) in app.protoSDs sd = G4JLSensitiveDetector(protosd) app.sdetectors[protosd.name][tid+2] = sd if lv[end] == '+' lv = lv[1:end-1] multi = true else multi = false end SetSensitiveDetector(app.detbuilder, lv, CxxPtr(sd.base), multi) end #---Add Magnetic field if needed----------------------------------------------------------- fieldMgr = G4TransportationManager!GetTransportationManager() |> GetFieldManager if app.field isa G4Field B = Clone(app.field) SetDetectorField(fieldMgr, B) CreateChordFinder(fieldMgr, CxxPtr{G4MagneticField}(B)) elseif app.field isa G4JLMagneticField sf = make_callback(app.field.data, app.field.getfield, Nothing, (CxxRef{G4ThreeVector}, ConstCxxRef{G4ThreeVector})) |> closure B = G4JLMagField(sf...) app.field.base[tid+2] = B SetDetectorField(fieldMgr, CxxPtr(B)) CreateChordFinder(fieldMgr, CxxPtr(B)) end nothing end det = app.detector cb1 = make_callback(det, getConstructor(det), CxxPtr{G4VPhysicalVolume}, ()) |> closure cb2 = make_callback(app, sdandf, Nothing, ()) |> closure app.detbuilder = app.builder_type(cb1..., cb2...) SetUserInitialization(runmgr, CxxPtr(app.detbuilder)) #---Physics List--------------------------------------------------------------------------- if isnothing(app.physics) # we need to construct the physics list only once physics = app.physics_type(app.verbose) app.physics = CxxPtr(physics) push!(physicslists, app.physics) SetUserInitialization(runmgr, move!(physics)) end #---Actions-------------------------------------------------------------------------------- function build(uai::G4JLActionInitialization, app::G4JLApplication)::Nothing if !isnothing(app.stepaction_method) cb = make_callback(app, app.stepaction_method, Nothing, (ConstCxxPtr{G4Step},)) SetUserAction(uai, move!(app.stepaction_type(closure(cb)...))) end #---Tracking Action--------------------------------------------------------------------------- if !isnothing(app.pretrackaction_method) t1 = make_callback(app, app.pretrackaction_method, Nothing, (ConstCxxPtr{G4Track},)) |> closure else t1 = null_closure(Nothing, (ConstCxxPtr{G4Track},)) end if !isnothing(app.posttrackaction_method) t2 = make_callback(app, app.posttrackaction_method, Nothing, (ConstCxxPtr{G4Track},)) |> closure else t2 = null_closure(Nothing, (ConstCxxPtr{G4Track},)) end if !isnothing(app.pretrackaction_method) || !isnothing(app.posttrackaction_method) SetUserAction(uai, move!(app.trackaction_type(t1..., t2...))) end #---Run Action--------------------------------------------------------------------------- if !isnothing(app.beginrunaction_method) r1 = make_callback(app, app.beginrunaction_method, Nothing, (ConstCxxPtr{G4Run},)) |> closure else r1 = null_closure(Nothing, (ConstCxxPtr{G4Run},)) end if !isnothing(app.endrunaction_method) r2 = make_callback(app, app.endrunaction_method, Nothing, (ConstCxxPtr{G4Run},)) |> closure else r2 = null_closure(Nothing, (ConstCxxPtr{G4Run},)) end if !isnothing(app.beginrunaction_method) || !isnothing(app.endrunaction_method) SetUserAction(uai, move!(app.runaction_type(r1..., r2...))) end #---Event Action--------------------------------------------------------------------------- if !isnothing(app.begineventaction_method) e1 = make_callback(app, app.begineventaction_method, Nothing, (ConstCxxPtr{G4Event},)) |> closure else e1 = null_closure(Nothing, (ConstCxxPtr{G4Event},)) end if !isnothing(app.endeventaction_method) e2 = make_callback(app, app.endeventaction_method, Nothing, (ConstCxxPtr{G4Event},)) |> closure else e2 = null_closure(Nothing, (ConstCxxPtr{G4Event},)) end if !isnothing(app.begineventaction_method) || !isnothing(app.endeventaction_method) SetUserAction(uai, move!(app.eventaction_type(e1..., e2...))) end #---Staking acrion------------------------------------------------------------------------ if !isnothing(app.stackaction_method) cd = make_callback(app, app.stackaction_method, G4ClassificationOfNewTrack, (ConstCxxPtr{G4Track},)) |> closure SetUserAction(uai, move!(G4JLStackingAction(cd...))) end #---Primary particles generator---------(per thread)-------------------------------------- gen = app.generator tid = G4Threading!G4GetThreadId() tid < 0 && (tid = -1) # master thread (-2 for without multi-threading support) g1 = make_callback(gen.data, gen.gen_method, Nothing, (CxxPtr{G4Event},)) |> closure gen.base[tid+2] = G4JLGeneratorAction(g1...) init_method = gen.init_method !isnothing(init_method) && init_method(gen.data, app) SetUserAction(uai, CxxPtr(gen.base[tid+2])) end function master_build(uai::G4JLActionInitialization, app::G4JLApplication)::Nothing #---Run Action--------------------------------------------------------------------------- if !isnothing(app.beginrunaction_method) r1 = make_callback(app, app.beginrunaction_method, Nothing, (ConstCxxPtr{G4Run},)) |> closure else r1 = null_closure(Nothing, (ConstCxxPtr{G4Run},)) end if !isnothing(app.endrunaction_method) r2 = make_callback(app, app.endrunaction_method, Nothing, (ConstCxxPtr{G4Run},)) |> closure else r2 = null_closure(Nothing, (ConstCxxPtr{G4Run},)) end if !isnothing(app.beginrunaction_method) || !isnothing(app.endrunaction_method) SetUserAction(uai, move!(app.runaction_type(r1..., r2...))) end end #---User Actions Initialization------------------------------------------------------------ cb1 = make_callback(app, build, Nothing, (ConstCxxPtr{G4JLActionInitialization},)) |> closure cb2 = make_callback(app, master_build, Nothing, (ConstCxxPtr{G4JLActionInitialization},)) |> closure ai = G4JLActionInitialization(cb1..., cb2...) SetUserInitialization(runmgr, move!(ai)) #---Setup Scoring-------------------------------------------------------------------------- if !isempty(app.scorers) G4ScoringManager!GetScoringManager() end end """ initialize(app::G4JLApplication) Initialize the Geant4 application. It initializes the RunManager, which constructs the detector geometry, and sets the declared sensitive detectors. """ function initialize(app::G4JLApplication) Initialize(app.runmanager) #---Process scorers------------------------------------------------------------------------ for sc in app.scorers uicmd = toUIstring(sc) uimgr = G4UImanager!GetUIpointer() for s = eachsplit(uicmd,'\n') ApplyCommand(uimgr, String(s)) == 0 || error("Got an error processing UI command '$s'") end ApplyCommand(uimgr, "/score/close") ApplyCommand(uimgr, "/score/list") end #---Initialize Event Display--------------------------------------------------------------- if ! isnothing(app.evtdisplay) app.evtdisplay.initDisplay(app.evtdisplay) end end """ reinitialize(app::G4JLApplication, det::G4JLDetector) Re-initialize the Geant4 application with a new detector defintion. """ function reinitialize(app::G4JLApplication, det::G4JLDetector) app.detector = det runmgr = app.runmanager cb1 = make_callback(det, getConstructor(det), CxxPtr{G4VPhysicalVolume}, ()) |> closure SetUserInitialization(runmgr, move!(app.builder_type(cb1...))) ReinitializeGeometry(runmgr) Initialize(runmgr) #---Initialize Event Display--------------------------------------------------------------- if ! isnothing(app.evtdisplay) app.evtdisplay.initDisplay(app.evtdisplay) end end """ beamOn(app::G4JLApplication, nevents::Int) Start a new run with `nevents` events. """ function beamOn(app::G4JLApplication, nevents::Int) statemgr = G4StateManager!GetStateManager() in_state = GetCurrentState(statemgr)[] try if app.nthreads > 0 # before starting the run (creation of worker threads) we need to enter GC safe state not # to block any garbage collection. state = ccall(:jl_gc_safe_enter,Cint,()) BeamOn(app.runmanager, nevents) ccall(:jl_gc_safe_leave,Cint,(Cint,), state) else BeamOn(app.runmanager, nevents) end catch SetNewState(statemgr, in_state) rethrow() end return end """ getSDdata(app::G4JLApplication, name::String) Get the data associated to the Sentitive Detector with a given name taking into account the current worker thread ID """ function getSDdata(app, name) tid = G4Threading!G4GetThreadId() tid < 0 && (tid = -1) # master thread (-2 for without multi-threading support) app.sdetectors[name][tid+2].data end """ getSIMdata(app::G4JLApplication) Get the Simulation Data taking into account the current worker thread ID """ function getSIMdata(app) tid = G4Threading!G4GetThreadId() tid < 0 && (tid = -1) # master thread (-2 for without multi-threading support) app.simdata[tid+2] end """ GetWorldVolume() Get the world volume of the currently instantiated detector geometry. """ GetWorldVolume() = GetWorldVolume(GetNavigatorForTracking(G4TransportationManager!GetTransportationManager()))[] """ GetVolume(name::String) Get the the G4LogicalVolume with this name. """ GetVolume(name::String) = GetVolume(G4LogicalVolumeStore!GetInstance(), name)
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
14253
#---Exports from this section---------------------------------------------------------------------- export G4JLGunGenerator, G4JLGeneralParticleSource, G4JLPrimaryGenerator, G4JLGeneratorData #---Abstract Generator Data (Parameters)------------------------------------------------------------ abstract type G4JLGeneratorData end #---Primary Particle Generator---------------------------------------------------------------------- mutable struct G4JLPrimaryGenerator{UD<:G4JLGeneratorData} const name::String const data::UD const init_method::Function # (::UD, ::G4JLApplication)::Nothing const gen_method::Function # (::CxxPtr{G4Event}, ::UD)::Nothing base::Vector{G4JLGeneratorAction} end """ G4JLPrimaryGenerator(name::String, data::DATA; <keyword arguments>) where DATA<:G4JLGeneratorData Creatre a G4JLPrimaryGenerator with its name and associated DATA structure # Arguments """ function G4JLPrimaryGenerator(name::String, data::T; init_method=nothing, generate_method=nothing) where T<:G4JLGeneratorData isnothing(generate_method) && error("primary particle generator method not defined") G4JLPrimaryGenerator{T}(name, data, init_method, generate_method, G4JLGeneratorAction[]) end #-------------------------------------------------------------------------------------------------- #---Implementation (user friendly) Particle Gun---------------------------------------------------- #-------------------------------------------------------------------------------------------------- mutable struct G4JLParticleGunData <: G4JLGeneratorData gun::Union{Nothing, CxxPtr{G4ParticleGun}} particle::String direction::G4ThreeVector position::G4ThreeVector energy::Float64 end function G4JLPrimaryGenerator{G4JLParticleGunData}(;particle="e-", energy=10., direction=G4ThreeVector(), position=G4ThreeVector()) data = G4JLParticleGunData(nothing, particle, direction, position, energy) function init(data::G4JLParticleGunData, ::Any) pg = data.gun = move!(G4ParticleGun()) SetParticleByName(pg, data.particle) SetParticleEnergy(pg, data.energy) SetParticleMomentumDirection(pg, data.direction) SetParticlePosition(pg, data.position) end function gen(evt::G4Event, data::G4JLParticleGunData)::Nothing GeneratePrimaryVertex(data.gun, CxxPtr(evt)) end G4JLPrimaryGenerator("ParticleGun", data; init_method=init, generate_method=gen) end const G4JLGunGenerator = G4JLPrimaryGenerator{G4JLParticleGunData} function SetParticleByName(gen::G4JLGunGenerator, particle::String) gen.data.particle=particle SetParticleByName(gen.data.gun, particle) end function SetParticleEnergy(gen::G4JLGunGenerator, energy::Float64) gen.data.energy=energy SetParticleEnergy(gen.data.gun, energy) end function SetParticleMomentumDirection(gen::G4JLGunGenerator, direction::G4ThreeVector) gen.data.direction=direction SetParticleMomentumDirection(gen.data.gun, direction) end function SetParticlePosition(gen::G4JLGunGenerator, position::G4ThreeVector) gen.data.direction=position SetParticlePosition(gen.data.gun, position) end #-------------------------------------------------------------------------------------------------- #---Implementation (user friendly) General Particle Source----------------------------------------- #-------------------------------------------------------------------------------------------------- mutable struct G4JLGPSData <: G4JLGeneratorData gps::Union{Nothing, CxxPtr{G4GeneralParticleSource}} sources::Vector{<:NamedTuple} multiplevertex::Bool flatsampling::Bool end function G4JLPrimaryGenerator{G4JLGPSData}(;kwargs...) if haskey(kwargs, :sources) data = G4JLGPSData(nothing, kwargs.sources, haskey(kwargs,:multiplevertex) ? kwargs.multiplevertex : false, haskey(kwargs,:flatsampling) ? kwargs.flatsampling : false) else data = G4JLGPSData(nothing, [NamedTuple(kwargs)], false, false) end function gen(evt::G4Event, data::G4JLGPSData)::Nothing GeneratePrimaryVertex(data.gps, CxxPtr(evt)) end G4JLPrimaryGenerator("GPS", data; init_method=initGPS, generate_method=gen) end const G4JLGeneralParticleSource = G4JLPrimaryGenerator{G4JLGPSData} function initGPS(data::G4JLGPSData, ::Any) gps = data.gps = move!(G4GeneralParticleSource()) for (idx, source) in enumerate(data.sources) if idx != 1 AddaSource(gps, 1.) end current = gps |> GetCurrentSource #---First level (:intensity, :position, :particle, :direction, :energy) for attr in fieldnames(typeof(source)) if attr == :intensity SetCurrentSourceIntensity(gps, source.intensity) elseif attr == :position pos = current |> GetPosDist SetPosDisType(pos, "Point") SetCentreCoords(pos, source.position) elseif attr == :direction ang = current |> GetAngDist SetAngDistType(ang, "planar") SetParticleMomentumDirection(ang, source.direction) elseif attr == :energy ene = current |> GetEneDist SetMonoEnergy(ene, source.energy) elseif attr == :particle SetParticleDefinition(current, source.particle |> FindParticle) elseif attr == :pos pos = current |> GetPosDist for sattr in fieldnames(typeof(source.pos)) if sattr == :type SetPosDisType(pos, source.pos.type) elseif sattr == :shape SetPosDisShape(pos, source.pos.shape) elseif sattr == :centre SetCentreCoords(pos, source.pos.centre) elseif sattr == :rot1 SetPosRot1(pos, source.pos.rot1) elseif sattr == :rot2 SetPosRot2(pos, source.pos.rot2) elseif sattr == :halfx SetHalfX(pos, source.pos.halfx) elseif sattr == :halfy SetHalfY(pos, source.pos.halfy) elseif sattr == :halfz SetHalfZ(pos, source.pos.halfz) elseif sattr == :radius SetRadius(pos, source.pos.radius) elseif sattr == :inner_radius SetRadius0(pos, source.pos.inner_radius) elseif sattr == :sigma_r SetBeamSigmaInR(pos, source.pos.sigma_r) elseif sattr == :sigma_x SetBeamSigmaInX(pos, source.pos.sigma_x) elseif sattr == :sigma_y SetBeamSigmaInY(pos, source.pos.sigma_y) elseif sattr == :paralp SetParAlpha(pos, source.pos.paralp) elseif sattr == :parthe SetParTheta(pos, source.pos.parthe) elseif sattr == :parphi SetParPhi(pos, source.pos.parphi) elseif sattr == :confine ConfineSourceToVolume(pos, source.pos.confine) else error("$sattr is not an attribute of particle position distribution") end end elseif attr == :ang ang = current |> GetAngDist for sattr in fieldnames(typeof(source.ang)) if sattr == :type SetAngDistType(ang, source.ang.type) elseif sattr == :rot1 DefineAngRefAxes(ang, "angref1", source.ang.rot1) elseif sattr == :rot2 DefineAngRefAxes(ang, "angref2", source.ang.rot2) elseif sattr == :mintheta SetMinTheta(ang, source.ang.mintheta) elseif sattr == :maxtheta SetMaxTheta(ang, source.ang.maxtheta) elseif sattr == :minphi SetMinPhi(ang, source.ang.minphi) elseif sattr == :maxphi SetMaxPhi(ang, source.ang.maxphi) elseif sattr == :sigma_r SetBeamSigmaInAngR(ang, source.ang.sigma_r) elseif sattr == :sigma_x SetBeamSigmaInAngX(ang, source.ang.sigma_x) elseif sattr == :sigma_y SetBeamSigmaInAngY(ang, source.ang.sigma_y) elseif sattr == :focuspoint SetFocusPoint(ang, source.ang.focuspoint) elseif sattr == :user_coor SetUseUserAngAxis(ang, source.ang.user_coor) elseif sattr == :surfnorm SetUserWRTSurface(ang, source.ang.surfnorm) else error("$sattr is not an attribute of particle angular distribution") end end elseif attr == :ene ene = current |> GetEneDist for sattr in fieldnames(typeof(source.ene)) if sattr == :type SetEnergyDisType(ene, source.ene.type) elseif sattr == :min SetEmin(ene, source.ene.min) elseif sattr == :max SetEmax(ene, source.ene.max) elseif sattr == :mono SetMonoEnergy(ene, source.ene.mono) elseif sattr == :sigma SetBeamSigmaInE(ene, source.ene.sigma) elseif sattr == :alpha SetAlpha(ene, source.ene.alpha) elseif sattr == :temp SetTemp(ene, source.ene.temp) elseif sattr == :ezero SetEzero(ene, source.ene.ezero) elseif sattr == :gradient SetGradient(ene, source.ene.gradient) elseif sattr == :intercept SetInterCept(ene, source.ene.intercept) elseif sattr == :biasAlpha SetBiasAlpha(ene, source.ene.biasAlpha) elseif sattr == :calculate Calculate(ene) elseif sattr == :emspec InputEnergySpectra(ene, source.ene.emspec) elseif sattr == :diffspec InputDifferentialSpectra(ene, source.ene.diffspec) elseif sattr == :applyEneWeight ApplyEnergyWeight(ene, source.ene.applyEneWeight) else error("$sattr is not an attribute of particle energy distribution") end end else error("$attr is not an attribute of single particle source") end end end end function reinitialize(gen::G4JLGeneralParticleSource; kwargs...) isnothing(gen.data.gps) && error("GeneralParticleSource has not been instantiated") data = gen.data if haskey(kwargs, :sources) data.sources = kwargs[:sources] haskey(kwargs,:multiplevertex) && (data.multiplevertex = kwargs[:multiplevertex]) haskey(kwargs,:flatsampling) && (data.flatsampling = kwargs[:flatsampling]) else data.sources = [ NamedTuple(kwargs) ] end initGPS(data, nothing) end #= /gps/pos type * Sets source distribution type. shape * Sets source shape for Plan, Surface or Volume type source. centre * Set centre coordinates of source. rot1 * Set the 1st vector defining the rotation matrix'. rot2 * Set the 2nd vector defining the rotation matrix'. halfx * Set x half length of source. halfy * Set y half length of source. halfz * Set z half length of source. radius * Set radius of source. inner_radius * Set inner radius of source when required. sigma_r * Set standard deviation in radial of the beam positional profile sigma_x * Set standard deviation of beam positional profile in x-dir sigma_y * Set standard deviation of beam positional profile in y-dir paralp * Angle from y-axis of y' in Para parthe * Polar angle through centres of z faces parphi * Azimuth angle through centres of z faces confine * Confine source to volume (NULL to unset). /gps/ang type * Sets angular source distribution type rot1 * Sets the 1st vector for angular distribution rotation matrix rot2 * Sets the 2nd vector for angular distribution rotation matrix mintheta * Set minimum theta maxtheta * Set maximum theta minphi * Set minimum phi maxphi * Set maximum phi sigma_r * Set standard deviation in direction for 1D beam. sigma_x * Set standard deviation in direction in x-direc. for 2D beam sigma_y * Set standard deviation in direction in y-direc. for 2D beam focuspoint * Set the focusing point for the beam user_coor * True for using user defined angular co-ordinates surfnorm * Makes a user-defined distribution with respect to surface normals rather than x,y,z axes. /gps/ene type * Sets energy distribution type min * Sets minimum energy max * Sets maximum energy mono * Sets a monocromatic energy (same as gps/energy) sigma * Sets the standard deviation for Gaussian energy dist. alpha * Sets Alpha (index) for power-law energy dist. temp * Sets the temperature for Brem and BBody distributions (in Kelvin) ezero * Sets E_0 for exponential distribution (in MeV) gradient * Sets the gradient for Lin distribution (in 1/MeV) intercept * Sets the intercept for Lin distributions (in MeV) biasAlpha * Sets the power-law index for the energy sampling distri. ) calculate * Calculates the distributions for Cdg and BBody emspec * True for energy and false for momentum spectra diffspec * True for differential and flase for integral spectra applyEneWeight * Apply energy weight. =#
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
4403
#---Exports from this section---------------------------------------------------------------------- export G4JLScoringMesh, BoxMesh, CylinderMesh, energyDeposit, doseDeposit, nOfStep, ParticleFilter using CSV #---Scoring structures----------------------------------------------------------------------------- abstract type AbstractMesh end abstract type AbstractFilter end struct ParticleFilter <: AbstractFilter name::String pname::String end toUIstring(f::ParticleFilter) = "/score/filter/particle $(f.name) $(f.pname)" struct ScoringQuantity name::String qtype::Symbol # :energyDeposit, :cellCharge, :passageCellFlux, :doseDeposit, :nOfStep, :nOfSecondary, .... qunit::Symbol # unit filters::Vector{AbstractFilter} end energyDeposit(name, qunit="MeV"; filters = AbstractFilter[]) = ScoringQuantity(name, :energyDeposit, Symbol(qunit), filters) doseDeposit(name, qunit="Gy"; filters = AbstractFilter[]) = ScoringQuantity(name, :doseDeposit, Symbol(qunit), filters) nOfStep(name; filters = AbstractFilter[]) = ScoringQuantity(name, :nOfStep, Symbol(""), filters) toUIstring(q::ScoringQuantity) = *("/score/quantity/$(q.qtype) $(q.name) $(q.qunit)", ["\n"*toUIstring(f) for f in q.filters]...) struct BoxMesh <: AbstractMesh dx::Float64 dy::Float64 dz::Float64 unit::Symbol BoxMesh(dx, dy, dz, un=:mm) = new(dx, dy, dz, un) end toMstring(::BoxMesh) = "boxMesh" toUIstring(m::BoxMesh) = "/score/mesh/boxSize $(m.dx) $(m.dy) $(m.dz) $(m.unit)" struct CylinderMesh <: AbstractMesh r::Float64 dz::Float64 unit::Symbol end toMstring(::CylinderMesh) = "cylinderMesh" toUIstring(m::CylinderMesh) = "/score/mesh/cylinderSize $(m.r) $(m.dz) $(m.init)" struct G4JLScoringMesh{M<:AbstractMesh} name::String mesh::M # :box, :cylinder, :probe bins::Tuple{Int, Int, Int} # nX, nY, nZ translation::Union{Nothing, Tuple{Float64, Float64, Float64}} rotation::Union{Nothing, Tuple{Float64, Float64, Float64}} quantities::Vector{ScoringQuantity} end """ G4JLScoringMesh(name, mesh; <keyword arguments>) Create a scoring mesh to be added to the Geant4 application. # Arguments - `name::String`: scoring mech name - `mesh::AbstractMesh`: mesh instance. Either a `BoxMesh` or `CylinderMesh` - `bins::Tuple`: tuple with number on bins in x, y, z (default 30, 30, 30) - `translation::Tuple`: position (x,y,z) with respect the mesh respect to the world volume. Default is (0,0,0). - `rotation::Tuple`: rotation of the mesh with respect the world volume. Default (0,0,0) - `quantities::Vector`: vector of quanties to be scored (e.g. `energyDeposit`, `doseDeposit`, `nOfStep`) """ function G4JLScoringMesh(name::String, mesh::M; bins = (30,30,30), translation = nothing, rotation = nothing, quantities = ScoringQuantity[]) where M <: AbstractMesh G4JLScoringMesh{M}(name, mesh, bins, translation, rotation, quantities) end function toUIstring(sm::G4JLScoringMesh) r = "/score/create/$(toMstring(sm.mesh)) $(sm.name)\n" * toUIstring(sm.mesh) * "\n/score/mesh/nBin $(sm.bins[1]) $(sm.bins[2]) $(sm.bins[3])" if !isnothing(sm.translation) dx, dy, dz = sm.translation r *= "\n/score/mesh/translate/xyz $dx $dy $dz mm" end if !isnothing(sm.rotation) rx, ry, rz = sm.rotation r *= "\n/score/mesh/rotate/rotateX $rx" r *= "\n/score/mesh/rotate/rotateY $ry" r *= "\n/score/mesh/rotate/rotateZ $ry" end for q in sm.quantities r *= "\n" * toUIstring(q) end return r end function getScoringValues(name::String, quantity::String, bins::Tuple{Int, Int, Int}) fname = tempname() sc = ApplyCommand(G4UImanager!GetUIpointer(), "/score/dumpQuantityToFile $name $quantity $fname") sc != 0 && return csv = CSV.File(fname; comment="#", header=["iX", "iY", "iZ", "total", "total2", "entry"]) (permutedims(reshape(csv[c], bins[3], bins[2], bins[1]),(3,2,1)) for c in (:total, :total2, :entry)) end function Base.getproperty(sm::G4JLScoringMesh{T}, f::Symbol) where T qname = String(f) if any(q.name == qname for q in Base.getfield(sm, :quantities)) getScoringValues(Base.getfield(sm, :name), qname, Base.getfield(sm, :bins)) else Base.getfield(sm, f) end end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
3365
#---Exports from this section---------------------------------------------------------------------- export G4ThreeVector, G4RotationMatrix, G4Transform3D export G4Random, G4Random!getTheSeed, G4Random!setTheSeed, G4Random!getTheEngine, G4Random!setTheEngine export G4RandFlat, G4RandBit, G4RandGamma, G4RandGauss, G4RandExponential, G4RandGeneral export CxxPtr, ConstCxxPtr, CxxRef, ConstCxxRef, move!, preserve, @ui_cmd, StdVector #---Useful Geant4 Typedefs------------------------------------------------------------------------- typedef(t, n) = isdefined(Geant4, t) && eval(:(const $n = $t)) typedef(:CLHEP!HepRotation, :G4RotationMatrix) typedef(:CLHEP!Hep3Vector, :G4ThreeVector) typedef(:CLHEP!HepRandom, :G4Random) typedef(:HepGeom!Transform3D, :G4Transform3D) typedef(:CLHEP!RandFlat, :G4RandFlat) typedef(:CLHEP!RandBit, :G4RandBit) typedef(:CLHEP!RandGamma, :G4RandGamma) typedef(:CLHEP!RandGaussQ, :G4RandGaussQ) typedef(:CLHEP!RandExponential, :G4RandExponential) typedef(:CLHEP!RandGeneral, :G4RandGeneral) typedef(:CLHEP!HepRandom!getTheSeed, :G4Random!getTheSeed) typedef(:CLHEP!HepRandom!setTheSeed, :G4Random!setTheSeed) typedef(:CLHEP!HepRandom!getTheEngine, :G4Random!getTheEngine) typedef(:CLHEP!HepRandom!setTheEngine, :G4Random!setTheEngine) Base.show(io::IO, p::G4ThreeVector) = print(io, "G4ThreeVector($(x(p)),$(y(p)),$(z(p)))") """ move!(o) Move ownerhip of C++ object to receiver. The object cannot not be used anymore after this call. """ function move!(a) r = CxxPtr(a) a.cpp_object = C_NULL return r end #---Keep a reference to SafeCFuntion(s) to avoid GC to remove them--------------------------------- _cfuncs = Vector{CxxWrap.SafeCFunction}() function preserve(f::CxxWrap.SafeCFunction) global _cfuncs push!(_cfuncs, f) return f end #---Cast operations------------------------------------------------------------------------------- Base.convert(::Type{CxxPtr{G4VPhysicalVolume}}, o::G4PVPlacement) = CxxPtr{G4VPhysicalVolume}(CxxPtr(o)) Base.convert(::Type{CxxPtr{G4VPhysicalVolume}}, o::G4PVReplica) = CxxPtr{G4VPhysicalVolume}(CxxPtr(o)) Base.convert(::Type{G4String}, s::String) = make_G4String(s) #---UI commands processing------------------------------------------------------------------------ macro ui_cmd(str) ex = Expr(:block) ex.args = [:(ApplyCommand(G4UImanager!GetUIpointer(), String($s))) for s = eachsplit(str,'\n')] ex end #---Iteration G4ProcessVector function Base.iterate(iter::G4ProcessVector) Geant4.entries(iter) == 0 && return nothing return (iter[0], 0) end function Base.iterate(iter::G4ProcessVector, i::Int) i = i + 1 i >= Geant4.entries(iter) && return nothing return (iter[i], i) end #---Iteration G4LogicalVolumeStore function Base.iterate(iter::CxxPtr{G4LogicalVolumeStore}) Geant4.size(iter) == 0 && return nothing return (GetVolume(iter, 0), 0) end function Base.iterate(iter::CxxPtr{G4LogicalVolumeStore}, i::Int) i = i + 1 i >= Geant4.size(iter) && return nothing return (GetVolume(iter, i), i) end #---Iteration G4TrajectoryContainer function Base.iterate(iter::G4TrajectoryContainer) Geant4.size(iter) == 0 && return nothing return (iter[0], 0) end function Base.iterate(iter::G4TrajectoryContainer, i::Int) i = i + 1 i >= Geant4.size(iter) && return nothing return (iter[i], i) end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
1917
module Geant4 using CxxWrap using Geant4_jll using Libdl # Check whether the wrappers have been build locally otherwise use the binary package Geant4_julia_jll gendir = normpath(joinpath(@__DIR__, "../gen")) if isdir(joinpath(gendir, "build/lib")) include(joinpath(gendir, "jl/Geant4-export.jl")) @wrapmodule(()->joinpath(gendir, "build/lib", "libGeant4Wrap.$(Libdl.dlext)")) else using Geant4_julia_jll include(Geant4_julia_jll.Geant4_exports) @wrapmodule(()->Geant4_julia_jll.libGeant4Wrap) end function __init__() @initcxx #---Call Wrapper init-------------------------------------------------- G4JL_init() #---Setup [data] environment------------------------------------------- GEANT4_DATA_DIR = Base.get(ENV, "GEANT4_DATA_DIR", Geant4_jll.data_dir) for line in readlines(joinpath(Geant4_jll.artifact_dir, "bin/geant4.sh")) m = match(r"export[ ]+(G4.*)=.*/(.*)$", line) if !isnothing(m) G4JL_setenv(String(m[1]), joinpath(GEANT4_DATA_DIR, m[2])) end end end include("SystemOfUnits.jl") include("PhysicalConstants.jl") include("G4Utils.jl") include("G4Scoring.jl") include("G4CallBacks.jl") include("G4ParticleGenerators.jl") include("G4JLInterface.jl") #---G4Vis-------------------------------------------------------------------------------------- export draw, draw!, drawDistanceToOut, G4JLEventDisplay drawDistanceToOut() = "Not implemented" draw() = "Not implemented" draw!() = "Not implemented" G4JLEventDisplay(::Int64) = "Not implemented" #---G4Hist------------------------------------------------------------------------------------- export H1D, H2D H1D() = "Not implemented" # Constructors H2D() = "Not implemented" # Constructors end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
3035
# From the file provided by Geant4 (simulation toolkit for HEP). # # The basic units are : # millimeter # nanosecond # Mega electron Volt # positon charge # degree Kelvin # amount of substance (mole) # luminous intensity (candela) # radian # steradian module PhysicalConstants using Geant4.SystemOfUnits using Geant4.SystemOfUnits: parsec const Avogadro = 6.02214076e+23/mole # c = 299.792458 mm/ns # c^2 = 898.7404 (mm/ns)^2 const c_light = 2.99792458e+8 * m/s const c_squared = c_light * c_light # h = 4.13566e-12 MeV*ns # hbar = 6.58212e-13 MeV*ns # hbarc = 197.32705e-12 MeV*mm const h_Planck = 6.62607015e-34 * joule*s const hbar_Planck = h_Planck/2pi const hbarc = hbar_Planck * c_light const hbarc_squared = hbarc * hbarc const electron_charge = - eplus # see SystemOfUnits.h const e_squared = eplus * eplus # amu_c2 - atomic equivalent mass unit # - AKA, unified atomic mass unit (u) # amu - atomic mass unit const electron_mass_c2 = 0.510998910 * MeV const proton_mass_c2 = 938.272013 * MeV const neutron_mass_c2 = 939.56536 * MeV const amu_c2 = 931.494028 * MeV const amu = amu_c2/c_squared # permeability of free space mu0 = 2.01334e-16 Mev*(ns*eplus)^2/mm # permittivity of free space epsil0 = 5.52636e+10 eplus^2/(MeV*mm) const mu0 = 4*pi*1.e-7 * henry/m const epsilon0 = 1.0/(c_squared*mu0) # electromagnetic coupling = 1.43996e-12 MeV*mm/(eplus^2) const elm_coupling = e_squared/(4*pi*epsilon0) const fine_structure_const = elm_coupling/hbarc const classic_electr_radius = elm_coupling/electron_mass_c2 const electron_Compton_length = hbarc/electron_mass_c2 const Bohr_radius = electron_Compton_length/fine_structure_const const alpha_rcl2 = fine_structure_const*classic_electr_radius*classic_electr_radius const twopi_mc2_rcl2 = 2pi*electron_mass_c2*classic_electr_radius*classic_electr_radius const Bohr_magneton = (eplus*hbarc*c_light)/(2*electron_mass_c2) const nuclear_magneton = (eplus*hbarc*c_light)/(2*proton_mass_c2) const k_Boltzmann = 8.617333e-11 * MeV/kelvin const STP_Temperature = 273.15*kelvin const STP_Pressure = 1.0*atmosphere const kGasThreshold = 10.0*mg/cm3 const universe_mean_density = 1.e-25*g/cm3 const universe_radius = 14.240e9 * parsec #---Export the ones exported by Geant4 export alpha_rcl2, amu, amu_c2, Avogadro, Bohr_radius, c_light, c_squared, classic_electr_radius, e_squared export electron_charge, electron_Compton_length, electron_mass_c2, elm_coupling, epsilon0, fine_structure_const export h_Planck, hbar_Planck, hbarc, hbarc_squared, k_Boltzmann, kGasThreshold, mu0 export neutron_mass_c2, proton_mass_c2, STP_Pressure, STP_Temperature, twopi_mc2_rcl2 export Bohr_magneton, nuclear_magneton, universe_mean_density, universe_radius end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
6606
#---HEP coherent system of Units, taken from CLHEP # The basic units are : # millimeter (millimeter) # nanosecond (nanosecond) # Mega electron Volt (MeV) # positron charge (eplus) # degree Kelvin (kelvin) # the amount of substance (mole) # luminous intensity (candela) # radian (radian) # steradian (steradian) module SystemOfUnits const nounit = 1. # Length [L] const millimeter = 1. const millimeter2 = millimeter*millimeter const millimeter3 = millimeter*millimeter*millimeter const centimeter = 10*millimeter const centimeter2 = centimeter*centimeter const centimeter3 = centimeter*centimeter*centimeter const meter = 1000*millimeter const meter2 = meter*meter const meter3 = meter*meter*meter const kilometer = 1000*meter const kilometer2 = kilometer*kilometer const kilometer3 = kilometer*kilometer*kilometer const parsec = 3.0856775807e+16*meter const micrometer = 1.e-6 *meter const nanometer = 1.e-9 *meter const angstrom = 1.e-10*meter const fermi = 1.e-15*meter const barn = 1.e-28*meter2 const millibarn = 1.e-3 *barn const microbarn = 1.e-6 *barn const nanobarn = 1.e-9 *barn const picobarn = 1.e-12*barn # symbols const nm = nanometer const μm = micrometer const mm = millimeter const mm2 = millimeter2 const mm3 = millimeter3 const cm = centimeter const cm2 = centimeter2 const cm3 = centimeter3 const liter = 1.e+3*cm3 const L = liter const dL = 1.e-1*liter const cL = 1.e-2*liter const mL = 1.e-3*liter const m = meter const m2 = meter2 const m3 = meter3 const km = kilometer const km2 = kilometer2 const km3 = kilometer3 const pc = parsec # Angle const radian = 1. const milliradian = 1.e-3*radian const degree = (pi/180.0)*radian const steradian = 1. # symbols const rad = radian const mrad = milliradian const sr = steradian const deg = degree # Time [T] const nanosecond = 1. const second = 1.e+9 *nanosecond const millisecond = 1.e-3 *second const microsecond = 1.e-6 *second const picosecond = 1.e-12*second const minute = 60*second const hour = 60*minute const day = 24*hour const year = 365*day const hertz = 1. / second const kilohertz = 1.e+3*hertz const megahertz = 1.e+6*hertz # symbols const ns = nanosecond const s = second const ms = millisecond const μs = microsecond const ps = picosecond # Electric charge [Q] const eplus = 1. # positron charge const e_SI = 1.602176634e-19 # positron charge in coulomb const coulomb = eplus/e_SI # coulomb = 6.24150 e+18 * eplus # Energy [E] const megaelectronvolt = 1. const electronvolt = 1.e-6*megaelectronvolt const kiloelectronvolt = 1.e-3*megaelectronvolt const gigaelectronvolt = 1.e+3*megaelectronvolt const teraelectronvolt = 1.e+6*megaelectronvolt const petaelectronvolt = 1.e+9*megaelectronvolt const millielectronvolt = 1.e-9*megaelectronvolt const joule = electronvolt/e_SI # joule = 6.24150 e+12 * MeV # symbols const MeV = megaelectronvolt const eV = electronvolt const keV = kiloelectronvolt const GeV = gigaelectronvolt const TeV = teraelectronvolt const PeV = petaelectronvolt # Mass [E][T^2][L^-2] const kilogram = joule*second*second/(meter*meter) const gram = 1.e-3*kilogram const milligram = 1.e-3*gram # symbols const kg = kilogram const g = gram const mg = milligram # Power [E][T^-1] const watt = joule/second # watt = 6.24150 e+3 * MeV/ns # Force [E][L^-1] const newton = joule/meter# newton = 6.24150 e+9 * MeV/mm # Pressure [E][L^-3] const pascal = newton/m2 # pascal = 6.24150 e+3 * MeV/mm3 const bar = 100000*pascal # bar = 6.24150 e+8 * MeV/mm3 const atmosphere = 101325*pascal # atm = 6.32420 e+8 * MeV/mm3 # Electric current [Q][T^-1] const ampere = coulomb/second # ampere = 6.24150 e+9 * eplus/ns const milliampere = 1.e-3*ampere const microampere = 1.e-6*ampere const nanoampere = 1.e-9*ampere # Electric potential [E][Q^-1] const megavolt = megaelectronvolt/eplus const kilovolt = 1.e-3*megavolt const volt = 1.e-6*megavolt # Electric resistance [E][T][Q^-2] const ohm = volt/ampere# ohm = 1.60217e-16*(MeV/eplus)/(eplus/ns) # Electric capacitance [Q^2][E^-1] const farad = coulomb/volt# farad = 6.24150e+24 * eplus/Megavolt const millifarad = 1.e-3*farad const microfarad = 1.e-6*farad const nanofarad = 1.e-9*farad const picofarad = 1.e-12*farad # Magnetic Flux [T][E][Q^-1] const weber = volt*second# weber = 1000*megavolt*ns # Magnetic Field [T][E][Q^-1][L^-2] const tesla = volt*second/meter2# tesla =0.001*megavolt*ns/mm2 const gauss = 1.e-4*tesla const kilogauss = 1.e-1*tesla # Inductance [T^2][E][Q^-2] const henry = weber/ampere# henry = 1.60217e-7*MeV*(ns/eplus)**2 # Temperature const kelvin = 1. # Amount of substance const mole = 1. # Activity [T^-1] const becquerel = 1. / second const curie = 3.7e+10 * becquerel const kilobecquerel = 1.e+3*becquerel const megabecquerel = 1.e+6*becquerel const gigabecquerel = 1.e+9*becquerel const millicurie = 1.e-3*curie const microcurie = 1.e-6*curie const Bq = becquerel const kBq = kilobecquerel const MBq = megabecquerel const GBq = gigabecquerel const Ci = curie const mCi = millicurie const μCi = microcurie # Absorbed dose [L^2][T^-2] const gray = joule/kilogram const kilogray = 1.e+3*gray const milligray = 1.e-3*gray const microgray = 1.e-6*gray const picogray = 1.e-12*gray const Gy = gray const kGy = kilogray const mGy = milligray const μGy = microgray const pGy = picogray # Luminous intensity [I] const candela = 1. # Luminous flux [I] const lumen = candela*steradian # Illuminance [I][L^-2] const lux = lumen/meter2 # Miscellaneous const perCent = 0.01 const perThousand = 0.001 const perMillion = 0.000001 #---Export only the 'symbols' export nm, μm, mm, cm, cm2, cm3, L, dL, cL, mL, m, km, rad, mrad, er, deg, ns, s, ms, μs, ps, kg, g, mg export MeV, GeV, keV, eV export mole, joule, eplus, henry, atmosphere, kelvin, pascal, tesla end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
194
using Test using Geant4 using Geant4.SystemOfUnits @testset "Geant4 tests" verbose = true begin include("testGeometry.jl") include("testRandom.jl") include("testExamples.jl") end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
1586
function instantiate(env) cmd = `julia --project=$env -e ' using Pkg Pkg.develop(PackageSpec(path=pwd())) Pkg.instantiate()'` run(cmd) end @testset "G4Examples" begin #---change the working directory cd(dirname(dirname(pathof(Geant4)))) # All examples should be used for testing to ensure that the release is working correctly instantiate("examples") @test run(`julia --project=examples examples/basic/B1/B1.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/basic/B1/B1vis.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/basic/B2/B2a.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/basic/B2/B2aVis.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/basic/B3/B3a.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/extended/RE03/RE03.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/extended/GPS/GPS.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/extended/TestEm3/TestEm3.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/extended/TestEm3/TestEm3Vis.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/advanced/Scintillation/Scintillation.jl`, devnull, devnull).exitcode == 0 @test run(`julia --project=examples examples/advanced/HBC30/HBC30.jl`, devnull, devnull).exitcode == 0 end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
1819
include(joinpath(@__DIR__, "../examples/basic/B1/DetectorB1.jl")) @testset "G4Geometry" begin # Vectors m1 = G4ThreeVector(1, 2, 3) m2 = G4ThreeVector(10, 20, 30) @test x(m1) == 1. @test y(m1) == 2. @test z(m1) == 3. @test m1 + m2 == G4ThreeVector(11,22,33) @test mag(m1) == √14 @test dot(m2, m2) == mag2(m2) # Transformations r1 = G4RotationMatrix(0,0,0) # unit rotation @test r1 * m1 == m1 rotateX(r1, π/3) rotateY(r1, π/4) rotateZ(r1, π/6) p0 = G4ThreeVector(1,1,1) v0 = G4ThreeVector(1,1,1) t1 = G4Transform3D(r1, m1) @test getRotation(t1) * p0 + getTranslation(t1) == r1 * p0 + m1 #---Solids------------------------------------------------------------------------------------- #---Geometries--------------------------------------------------------------------------------- world = constructB1Detector(nothing) @test world isa CxxPtr{G4VPhysicalVolume} lworld = world |> GetLogicalVolume @test lworld |> GetName |> String == "World" # Basic hirarchy navigation @test lworld |> GetNoDaughters == 1 daughter = GetDaughter(lworld, 0) @test daughter |> GetName |> String == "Envelope" @test daughter isa CxxPtr{G4VPhysicalVolume} # GetVolume by its name envelope = GetVolume("Envelope") @test envelope == daughter |> GetLogicalVolume @test envelope |> GetName |> String == "Envelope" @test envelope |> GetNoDaughters == 2 # Get Solid and up-cast solid = envelope |> GetSolid @test solid isa CxxPtr{G4VSolid} @test solid |> GetEntityType |> String == "G4Box" box = CxxRef{getproperty(Main,Symbol(GetEntityType(solid)))}(solid) # upcasting to the concrete G4VSolid @test box isa CxxRef{G4Box} @test GetXHalfLength(box) == 100. end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
code
314
@testset "G4Random" begin rdm = G4Random() eng = G4Random!getTheEngine() @test eng |> getSeed == 1 @test eng |> flat ≈ 0.4083998396197835 G4Random!setTheSeed(123) @test G4Random!getTheSeed() == 123 @test eng |> getSeed == 123 @test eng |> flat ≈ 0.3489624013615084 end
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
docs
6938
![Geant4](docs/src/assets/logo.png) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https:///juliahep.github.io/Geant4.jl/dev/) [![Build Status](https://github.com/JuliaHEP/Geant4.jl/workflows/CI/badge.svg)](https://github.com/JuliaHEP/Geant4.jl/actions) [![Codecov](https://codecov.io/gh/JuliaHEP/Geant4.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaHEP/Geant4.jl) Julia bindings for the [Geant4](https://geant4.web.cern.ch) particle transportation toolkit. It is using [CxxWrap.jl](https://github.com/JuliaInterop/CxxWrap.jl) package to wrap C++ types and functions to Julia. Since the Geant4 toolkit is rather large and complex, writing the wrapper code by hand is not really an option. For this, we use the package [WrapIt](https://github.com/grasph/wrapit) that automates the generation of the wrapper code making use of the clang library. ## Installation The Geant4.jl package does no require any special installation. Stable releases are registered into the Julia general registry, and therefore can be deployed with the standard `Pkg` Julia package manager. ```julia julia> using Pkg julia> Pkg.add("Geant4") ``` Examples are located in a separate repository [G4Examples](https://github.com/JuliaHEP/G4Examples.jl) to minimize dependencies since they use additional functionality such as graphics, plotting, analysis tools, etc. To use and play with the examples, the user can clone the examples repository and setup a complete Julia environment with: ```bash $ git clone https://github.com/JuliaHEP/G4Examples.jl.git $ julia --project=G4Examples.jl -e 'import Pkg; Pkg.instantiate()' ``` ## Getting started Import the `Geant4` module. All the wrapped Geant4 classes are exported since they are prefixed by `G4` minimizing the chances of a name clash with other Julia symbols. ```julia julia> using Geant4 julia> runManager = G4RunManager() ************************************************************** Geant4 version Name: geant4-11-01-patch-01 [MT] (10-February-2023) Copyright : Geant4 Collaboration References : NIM A 506 (2003), 250-303 : IEEE-TNS 53 (2006), 270-278 : NIM A 835 (2016), 186-225 WWW : http://geant4.org/ ************************************************************** Geant4.G4RunManagerAllocated(Ptr{Nothing} @0x00007f9fcb6f9c50) julia> methodswith(G4RunManager, supertypes=true) [1] convert(t::Type{G4RunManager}, x::T) where T<:G4RunManager in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:676 [2] AbortEvent(arg1::Union{CxxWrap.CxxWrapCore.CxxRef{<:G4RunManager}, Union{CxxWrap.CxxWrapCore.SmartPointer{T2}, T2} where T2<:G4RunManager}) in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:618 ... [94] rndmSaveThisRun(arg1::Union{CxxWrap.CxxWrapCore.CxxRef{<:G4RunManager}, Union{CxxWrap.CxxWrapCore.SmartPointer{T2}, T2} where T2<:G4RunManager}) in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:618 julia> v = GetVersionString(runManager) ConstCxxRef{G4String}(Ptr{G4String} @0x00007ffed34df2d8) julia> String(v) " Geant4 version Name: geant4-11-01-patch-01 [MT] (10-February-2023)" ``` Note that class methods are called with the object instance as first argument. In C++ the `GetVersionString` method would be called as `runManager->GetVersionString()` while in Julia it is called as `GetVersionString(runManager)`. Thanks to the Julia multi-dispatch we do not need to prefix the methods with the module name `Geant4.GetVersionString(runManager)`, even for very common function names such as `mag`. ```julia julia> v = G4ThreeVector(1,2,3) Geant4.CLHEP!Hep3VectorAllocated(Ptr{Nothing} @0x00007f9fcaf2a710) julia> mag(v) 3.7416573867739413 ``` The Geant4 system of units and physical constants are in separate sub-modules. You can import it with ``` using Geant4.SystemOfUnits using using Geant4.PhysicalConstants ``` Only some basic [units](https://github.com/JuliaHEP/Geant4.jl/blob/32f2f0bf9b556ce4cc7a171b1336916da1d648c9/src/SystemOfUnits.jl#L231) are always exported. If you need additional ones, you can do for example: ``` import Geant4.SystemOfUnits:tesla, candela ``` ## Running the tests To run the tests execute `julia --project=. test/runtests.jl` ## Running the examples For the time being there are only some basic examples plus some more to illustrate some of the features. Place yourself in the checkout `G4Examples.jl` directory. ### basic/B1 This is most basic example using a more Geant4 native interface. To run it, execute `julia --project=. basic/B1/B1.j` or execute the notebook `B1.ipynb` ### basic/B2a Basic example using a sensitive detector to collect 'hits'. To run it, execute `julia --project=. basic/B2/B2a.jl` ### extended/RE03 Example using the Geant4 built-in scoring mechanism. To run it, execute `julia --project=. basic/B2/B2a.jl` ### TestEm3 This example comes from *extended/electromagnetic/TestEm3* example. Since it requires additional packages such as FHist and Plots it has its own Julia environment in the folder `examples/TestEm3`. It is based on user actions. To run it, execute `julia --project=. -i extended/TestEm3/TestEm3.jl` ### WaterPhantom Example in a notebook format similar to RE03 but with different primary particle generator (MedicalBeam) and using the scoring mechanism. Plots are produced after each run. ### HBC30 Example script and in a notebook format of a bubble chamber in which we display the particle tracks for an event that passes the trigger. To run it, execute `julia --project=. advanced/HBC30/HBC30.jl`` ## Building the wrapper code We use the Geant4 libraries and data from the binary package [Geant4_jll](https://github.com/JuliaBinaryWrappers/Geant4_jll.jl), which has been produced with the `BinaryBuilder` [recipe](https://github.com/JuliaPackaging/Yggdrasil/tree/master/G/Geant4). The wrapper library is downloaded from the binary package [Geant4_julia_jll](https://github.com/JuliaBinaryWrappers/Geant4_julia_jll.jl). In order to re-generate locally new C++ wrapper code we need to have `wrapit` installed, which itself requires `libclang` to be installed. Use the following command to generate and build the wrappers locally. ``` julia --project=Geant4.jl Geant4.jl/gen/build.jl ``` The C++ classes that get wrapped is controlled by the file `gen/Geant4.wit`. See the documentation of WrapIt for more details. If the wrappers library (libGeant4Wrap.so) is found locally, it uses it at loading of the Geant4.jl module in preference to the registered module `Geant4_julia_jll`. This is a convenient way to test new wrapped classes. Once the wrapper code is stabilized we can move the generated code to the repository [Geant4_cxxwrap](https://github.com/peremato/Geant4_cxxwrap) to regenerate the binary package `Geant4_julia_jll` using the `BinaryBuilder`.
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
docs
381
# Public API Documentation for `Geant4.jl` public interface. ## Index - Types ```@index Pages = ["api.md"] Modules = [Geant4] Order = [:type] ``` ## Index - Functions ```@index Pages = ["api.md"] Modules = [Geant4] Order = [:function] ``` ## Types ```@autodocs Modules = [Geant4] Order = [:type] ``` ## Functions ```@autodocs Modules = [Geant4] Order = [:function] ```
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
docs
29401
# Geant4.jl Julia bindings for the [Geant4](https://geant4.web.cern.ch) particle transportation toolkit. It is using [CxxWrap.jl](https://github.com/JuliaInterop/CxxWrap.jl) package to wrap C++ types and functions to Julia. Since the Geant4 toolkit is rather large and complex, writing the wrapper code by hand is not really an option. For this we use the package [WrapIt](https://github.com/grasph/wrapit) that automates the generation of the wrapper code making use of the clang library. Documentation of the concepts and how to write applications with the Geant4 toolkit can be found with the [Application Developer Guide](https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html) or the [Classes and Members reference guide](https://geant4.kek.jp/Reference/v11.1.1/index.html) for a detailed description of each C++ class. In this document we will only highlight the differences between the Julia and the C++ API. We will document the additional types that have been added on top of the C++ classes to make the user interface more Julia friendly. To distinguish these new types from the types coming directly from C++ via the CxxWrap wrappers, these types are prefixed with `G4JL`. ## Installation The Geant4.jl package does no require any special installation. Stable releases are registered into the Julia general registry, and therefore can be deployed with the standard `Pkg` Julia package manager. ```julia julia> using Pkg julia> Pkg.add("Geant4") ``` Examples are located in a separate repository [G4Examples](https://github.com/JuliaHEP/G4Examples.jl) to minimize dependencies since they use additional functionality such as graphics, plotting, analysis tools, etc. To use and play with the examples, the user can clone the examples repository and setup a complete Julia environment with: ```sh $ git clone https://github.com/JuliaHEP/G4Examples.jl.git $ julia --project=G4Examples.jl -e 'import Pkg; Pkg.instantiate()' ``` ## Getting started Import the `Geant4` module. All the wrapped Geant4 classes are exported since they are prefixed by `G4` minimizing the chances of a name clash with other Julia symbols. ```julia-repl julia> using Geant4 julia> runManager = G4RunManager() ************************************************************** Geant4 version Name: geant4-11-01-patch-01 [MT] (10-February-2023) Copyright : Geant4 Collaboration References : NIM A 506 (2003), 250-303 : IEEE-TNS 53 (2006), 270-278 : NIM A 835 (2016), 186-225 WWW : http://geant4.org/ ************************************************************** Geant4.G4RunManagerAllocated(Ptr{Nothing} @0x00007f9fcb6f9c50) julia> methodswith(G4RunManager, supertypes=true) [1] convert(t::Type{G4RunManager}, x::T) where T<:G4RunManager in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:676 [2] AbortEvent(arg1::Union{CxxWrap.CxxWrapCore.CxxRef{<:G4RunManager}, Union{CxxWrap.CxxWrapCore.SmartPointer{T2}, T2} where T2<:G4RunManager}) in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:618 ... [94] rndmSaveThisRun(arg1::Union{CxxWrap.CxxWrapCore.CxxRef{<:G4RunManager}, Union{CxxWrap.CxxWrapCore.SmartPointer{T2}, T2} where T2<:G4RunManager}) in Geant4 at /Users/mato/.julia/packages/CxxWrap/IdOJa/src/CxxWrap.jl:618 julia> v = GetVersionString(runManager) ConstCxxRef{G4String}(Ptr{G4String} @0x00007ffed34df2d8) julia> String(v) " Geant4 version Name: geant4-11-01-patch-01 [MT] (10-February-2023)" ``` Note that class methods are called with the object instance as first argument. In C++ the `GetVersionString` method would be called as `runManager->GetVersionString()` while in Julia it is called as `GetVersionString(runManager)`. Thanks to the Julia multi-dispatch we do not need to prefix the methods with the module name `Geant4.GetVersionString(runManager)`, even for very common function names such as `mag`. ```julia-repl julia> v = G4ThreeVector(1,2,3) Geant4.CLHEP!Hep3VectorAllocated(Ptr{Nothing} @0x00007f9fcaf2a710) julia> mag(v) 3.7416573867739413 ``` ## Geant4 Julia interface The main goal for defining a Geant4 application in the Julia interface is to create an instance of the [`G4JLApplication`](@ref) type, where all the needed elements for running a Geant4 application are declared, such as the detector geometry, the physics list, the primary particle generator, the type of run manager, the user actions, etc. ![Figure](./assets/interfaces.png) These are the needed elements: - **detector**. An instance of a detector structure inheriting from the abstract type `G4JLDetector`, in which all the detector parameters are defined. The user should also provide a method specialization of `Geant4.getConstructor(::G4JLDetector)::Function` to return the Julia function that toolkit needs to call in order to construct the geometry and return the pointer of the 'world' physical volume. There is no default. - **field**. An instance of the magnetic field class. The ` G4JLUniformMagField(...)` function provides a uniform magnetic field. See later how to define a custom one. - **simdata**. An instance of the simulation data structure that the program will need to collect during the simulation execution. This mutable structure needs to inherit from the abstract type `G4JLSimulationData` and is completely user defined with counters, data structures to collect the hits or doses, histograms, etc. The default is an instance of type `G4JLNoData`. - **nthreads**. Number of worker threads to be used. The default is 0, which means serial mode. Any number > 0 will use the MT functionality of Geant4, and therefore the user would need to pay attention to the user actions that are run concurrently to avoid data races (see [Julia doc on multi-threading](https://docs.julialang.org/en/v1/manual/multi-threading/#Data-race-freedom)) - **verbose**. Verbosity level (for physics list). The default is 0. - **physics_type**. The physics list predefined type. Default is `FTFP_BERT`. - **generator_type**. The primary generator generator type. The default is `G4JLParticleGun`, which encapsulates a `G4ParticleGun`. The underlying `G4ParticleGun` can be obtained by calling `GetGun()`. - **user actions**. Julia methods defining the different possible user actions (e.g. stepping action, tracking action, run action, event action). The default is no action. - **sdetectors**. List of sensitive detectors. This is given as a `Vector` of pairs `lv::String => sd::G4JLSensitiveDetector` to associate logical volumes by name to sensitive detector instances (see next section). - **scorers**. List of scoring meshes defined with the function [`G4JLScoringMesh`](@ref). Once the `G4JLApplication` is instantiated (and implicitly an instance of the `G4RunManager` created), the user can control the application with the following commands: - `configure(::G4JLApplication)`. It associates the physics list, generator and user actions to the selected `G4RunManager` instance. - `initialize(::G4JLApplication)`. It basically calls the `Initialize()` method of the run manager and associate the declared sensitive detectors. - `reinitialize(::G4JLApplication, ::G4JLDetector)`. It re-defines the declared detector geometry with a new instance of `G4JLDetector`. - ` beamOn(::G4JLApplication, ::Int)`. Starts a run with a given number of events. ### Constructing the detector Parameters of the detector are collected in a user defined mutable data structure inheriting from `G4JLDetector`. The user also needs to provide a Julia method for constructing the geometry. This method needs to have the signature ```julia <User_Det_Constructor_Function>(::G4JLDetector)::CxxPtr{G4VPhysicalVolume} ``` The only argument of the function gives access to the user defined structure with all the detector parameters. !!! note The type `CxxPtr{G4VPhysicalVolume}` denotes a C++ pointer to the `G4VPhysicalVolume` type. The user can use the native G4 classes for constructing the geometry such as the different type of solids (e.g. G4Box, G4Tubs, etc.), `G4LogicalVolume`, `G4PVPlacement`, `G4PVReplica`, etc. Alternatively can the type [`G4JLDetectorGDML`](@ref) to construct a detector from a GDML file. !!! note Note that by default constructed C++ objects from Julia would get automatically deleted by the Julia garbage collector (GC) since a `finalizer` gets installed to the wrapper classes. This is particularly a problem when constructing the geometry. Currently for the following classes have the `finalizer` disabled in the wrapper: `G4PVPlacement`, `G4LogicalVolume`, `G4PVReplica`, `G4Material`, `G4Isotope`, `G4Element`. This means that instances of them will not be deleted by Julia to avoid double deletion (often a crash) when the geometry gets deleted at the finalization of the application from the C++ side. A pointer to any of the `G4Solid` needs to be passed to the `G4LogicalVolume` using [`move!(objref)`](@ref) function to transfer the ownership of the referenced object to the C++ side. See the following example: ```julia trackerS = G4Tubs("tracker", 0, trackerSize, trackerSize, 0, 360deg) trackerLV = G4LogicalVolume(move!(trackerS), m_air, "Tracker") G4PVPlacement(nothing, # no rotation G4ThreeVector(0,0,0), # at (0,0,0) trackerLV, # its logical volume "Tracker", # its name worldLV, # its mother volume false, # no boolean operations 0, # copy number checkOverlaps) # checking overlaps ``` ### Physics List The user can provide one of the pre-defined physics lists, such as `QGS_BIC`, `QBBC` or `FTFP_BERT`. Alternatively, the user can define a Julia `struct`` as a subtype of `G4VUserPhysicsList` and modify some of the physcis in the constructor. For example: ```julia struct ScintPhysicsList <: G4VUserPhysicsList function ScintPhysicsList(verbose) pl = FTFP_BERT(verbose) # replace G4EmStandardPhysics ReplacePhysics(pl, move!(G4EmStandardPhysics_option4(verbose))) # register G4OpticalPhysics RegisterPhysics(pl, move!(G4OpticalPhysics(verbose))) # activate scintillation optpar = G4OpticalParameters!Instance() SetProcessActivation(optpar, "Scintillation", true) # activate cherenkov radiation SetProcessActivation(optpar, "Cerenkov", true) return pl end end ``` ### Magnetic field The user can define either an uniform magnetic field or a custom one. To define an custom one: - define first a user structure for the parameters that inherits from the abstract type `G4JLFieldData` - then, define a function with the signature `(result::G4ThreeVector, position::G4ThreeVector, params::G4JLFieldData)::Nothing` - and finally, with all this, instantiate the magnetic field calling the function ``` G4JLMagneticField(<name>, <data>; getfield_method=<function>) ``` ### Primary Particle Generator The user can define either a custom primary particle generator or use one of the two defined ones: - **G4JLGunGenerator**. Uses the `G4ParticleGun` class of Geant4 that generates a single particle type with a fix kinetic energy, position and direction. ```julia G4JLGunGenerator(particle = "proton", energy = 3GeV, direction = G4ThreeVector(0,0,1), position = G4ThreeVector(0,0,-2940.0)) ``` - **G4JLGeneralParticleSource**. Uses the `G4GeneralParticleSource` class of Geant4 to generate one of more sources of primary particles with predefined distributions for energy, position and direction. An example can be: ```julia src1 = (particle="e+", intensity=0.5, ene=(type="Exp", min=2MeV, max=10MeV, ezero=2.), pos=(type="Plane", shape="Circle", centre=G4ThreeVector(1cm,2cm,0cm), radius=3cm), ang=(type="cos", mintheta=0deg, maxtheta=180deg)) src2 = (particle="gamma", intensity=0.5, ene=(type="Brem", min=2MeV, max=10MeV, temp=2e12), pos=(type="Plane", shape="Ellipse", centre=G4ThreeVector(3cm,1cm,0cm), halfx=1cm, halfy=2cm), ang=(type="iso", mintheta=0deg, maxtheta=180deg)) gps = G4JLGeneralParticleSource(sources = [ src1, src2 ]) ``` the standard particle gun parameters works as well: ```julia G4JLGeneralParticleSource(particle = "proton", energy = 3GeV, direction = G4ThreeVector(0,0,1), position = G4ThreeVector(0,0,0)) ``` - **Custom Generator**. It is fairly simple to write a custom generator. It is needed to define a structure for the parameters to configure the generator, and a two functions to initialize and generate the primary particles called for each event. Here is an example: ```julia # define the data structure with the generator parameters mutable struct PlaneSourceData <: G4JLGeneratorData particleName::String particlePtr::CxxPtr{G4ParticleDefinition} energy::Float64 halfx::Float64 halfy::Float64 position::G4ThreeVector direction::G4ThreeVector end # define the constructor with the default parameters function PlaneSource(;particle="gamma", energy=0.07MeV, halfx=7cm, halfy=7cm, position=G4ThreeVector(0,0,-14.9cm), direction=G4ThreeVector(0,0,1)) data = PlaneSourceData(particle, CxxPtr{G4ParticleDefinition}(C_NULL), energy, halfx, halfy, position, direction) function init(data:: PlaneSourceData, app::G4JLApplication) data.particlePtr = FindParticle(data.particleName) end function generate( evt::G4Event, data:: PlaneSourceData)::Nothing mass = data.particlePtr |> GetPDGMass momentum = √((mass + data.energy)^2 - mass^2) pvec = momentum * data.direction pos = data.position + G4ThreeVector( data.halfx * (rand() - 0.5), data.halfy * (rand() - 0.5), 0) primary = G4PrimaryParticle(data.particlePtr, pvec |> x, pvec |> y, pvec |> z ) vertex = G4PrimaryVertex(pos, 0ns) SetPrimary(vertex, move!(primary)) # note that we give up ownership of the objects just created AddPrimaryVertex(evt, move!(vertex)) # note that we give up ownership of the objects just created end G4JLPrimaryGenerator("PlaneSource", data; init_method=init, generate_method=generate) end ``` ### User Actions User actions are native Julia functions that are callbacks of the Geant4 toolkit. They are declared in the constructor of `G4JLApplication`, so they do not need to be associated to a specific function name. All user actions receive a reference to the `G4JLApplication` from which the user can obtain details of the actual application, such as the current detector, the physics, the generator, or the running simulation data. There are the available attributes of the application instance: ```julia runmanager::G4RunManager # The C++ G4RunManager instance detector::DET # User defined detector structure with all parameters simdata::Vector{DAT} # User defined simulation data structs (each worker has its own) physics::G4VUserPhysicsList # Physics List generator::G4JLPrimaryGenerator # Primary particle generator field::Union{G4Field, G4JLMagneticField} # Magnetic field instance evtdisplay::G4JLDisplay # Event display instance nthreads::Int32 # number of worker threads verbose::Int32 # verbosity level for physics lists sdetectors::Dict{String,Vector{G4JLSensitiveDetector}} # dictionary of sensitive detectors scorers::Vector{G4JLScoringMesh} # vector of scoring meshes ``` The following are the currently defined possible user actions: - **stepping action**. Called on each simulation step. The signature is `(::G4Step, ::G4JLApplication)::Nothing`. Consult the [G4Step](https://geant4.kek.jp/Reference/v11.1.1/classG4Step.html) reference manual to see what you can get from it. - **pre-tracking action**. Called at the creation of a new participle being tracked. The signature is `(::G4Track, ::G4JLApplication)::Nothing`. Consult the [G4Step](https://geant4.kek.jp/Reference/v11.1.1/classG4Track.html) reference manual to see what you can get from it. - **post-tracking action**. Called at the end of the particle being tracked. The signature is `(::G4Track, ::G4JLApplication)::Nothing`. Consult the [G4Track](https://geant4.kek.jp/Reference/v11.1.1/classG4Track.html) reference manual to see what you can get from it. - **begin-event action**. Called at the beginning of each event. The signature is `(::G4Event, ::G4JLApplication)::Nothing`. Consult the [G4Event](https://geant4.kek.jp/Reference/v11.1.1/classG4Event.html) reference manual to see what you can get from it. - **end-event action**. Called at the end of each event. The signature is `(::G4Event, ::G4JLApplication)::Nothing`. Consult the [G4Event](https://geant4.kek.jp/Reference/v11.1.1/classG4Event.html) reference manual to see what you can get from it. - **begin-run action**. Called at the beginning of a run. The signature is `(::G4Run, ::G4JLApplication)::Nothing`. Consult the [G4Run](https://geant4.kek.jp/Reference/v11.1.1/classG4Run.html) reference manual to see what you can get from it. - **end-run action**. Called at the end of a run. The signature is `(::G4Run, ::G4JLApplication)::Nothing`. Consult the [G4Run](https://geant4.kek.jp/Reference/v11.1.1/classG4Run.html) reference manual to see what you can get from it. ### Sensitive Detectors The user can define sensitive detectors by defining a data structure and 3 callback functions, which will initialize, fill and dispose the defined data structure. Later, the instantiated sensitive detector would be associated to one or more logical volumes of the detector setup. Instantiating a `G4JLSensitiveDetector` will require the following arguments: - **name**. A string to identify the sensitive detector. No default. - **sd data**. A instance of a user defined `G4JLSDData` mutable data structure that will passed to each callback invocation. - **initialize method**. User method that is called at the beginning of each event. The signature is `(::B2aSDData, ::G4HCofThisEvent)::Nothing`. - **endOfEvent method**. User method that is called at the end of each event. The signature is `(::B2aSDData, ::G4HCofThisEvent)::Nothing`. - **processHits method**. User method that is called at simulation step that ends at the associated logical volume. The signature is `(::B2aSDData, ::G4Step, ::G4TouchableHistory)::Bool`. Consult the [G4Step](https://geant4.kek.jp/Reference/v11.1.1/classG4Step.html) reference manual to see what you can get from the G4Step. It returns true if a true hit is generated. The following is a example on how to define a sensitive detector ```julia #-------------------------------------------------------------------------------------------------- #---Define Crystal Sensitive Detector-------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- #---SD collected data------------------------------------------------------------------------------ struct CrystalSDData <: G4JLSDData hitcollection::Vector{Hit} # define a hit collection CrystalSDData() = new(Hit[]) end #---Initialize method------------------------------------------------------------------------------ function crystal_initialize(::G4HCofThisEvent, data::CrystalSDData)::Nothing empty!(data.hitcollection) # empty the hit collection at every event return end #---Process Hit method----------------------------------------------------------------------------- function crystal_processHits(step::G4Step, ::G4TouchableHistory, data::CrystalSDData)::Bool part = step |> GetTrack |> GetParticleDefinition part == G4OpticalPhoton && return false edep = step |> GetTotalEnergyDeposit edep < 0. && return false pos = step |> GetPostStepPoint |> GetPosition push!(data.hitcollection, Hit(0., pos, edep, ScintCryst)) # fill the collection with a new Hit return true end #---Create SD instance----------------------------------------------------------------------------- G4JLSensitiveDetector("Crystal_SD", CrystalSDData(); # name an associated data are mandatory processhits_method=crystal_processHits, # process hist method (also mandatory) initialize_method=crystal_initialize) # intialize method ``` ### Scoring meshes The user can also specify scoring meshes to obtain quantities on the defined grid. In Geant4 this is achieved using a set of UI commands. In this Julia interface this functionality has been encapsulated in a number of data structures. The function to create a scoring mesh is [`G4JLScoringMesh`](@ref) and receive as arguments the the type and dimensions of the mesh, the position, the rotation, the number of bins in each dimension, and the quantities to accumulate with eventually some filter conditions. See for example the scoring mesh from RE03: ```julia sc1 = G4JLScoringMesh("boxMesh_1", BoxMesh(1m,1m,1m), bins = (30, 30, 30), quantities = [ energyDeposit("eDep") nOfStep("nOfStepGamma", filters=[ParticleFilter("gammafilter", "gamma")]) nOfStep("nOfStepEMinus", filters=[ParticleFilter("eMinusFilter", "e-")]) nOfStep("nOfStepEPlus", filters=[ParticleFilter("ePlusFilter", "e+")]) ] ) ``` The scoring mesh is added into the 'scorers` argument when constructing a [`G4JLApplication`](@ref). After a run hs been executed, the user can obtain the quantity values (sum, sum2,entries) on the 3D grid just calling by accessing the quantity as an attribute of the scoring mesh. The returned 3D Julia array is shaped to the declared bins. ```julia-repl julia> beamOn(app,10000) julia> sum, sum2, entries = sc1.eDep julia> typeof(sum) Array{Float64, 3} julia> typeof(entries) Array{Int64, 3} julia> size(sum) (30, 30, 30) ``` ### Detector and Event Display For visualization applications, the user can create an instance of `G4JLEventDisplay([settings file])` and give it to the constructor of `G4JLApplication` in the `evtdisplay` attribute. The constructor accepts a visualization settings file that will overwrite the default settings in the file [Geant4.jl/ext/G4Vis/settings.jl](https://github.com/JuliaHEP/Geant4.jl/blob/master/ext/G4Vis/settings.jl). The format of the settings is Julia `NamedTuple`. Here is an example: ```julia ( display = ( show_axis = false, ), trajectories = ( color = :yellow, ), ) ``` ## Examples ### basic/B1 This is most basic example. For this example we have kept the interface closer to the native C++ interface. The only difference with respect the C++, is that that we need to instantiate a `G4JLDetectorConstruction` with the Julia function that will be callback to construct the detector geometry as argument. This is because we cannot inherit from Julia the C++ class `G4VUserDetectorConstruction`, which is the way foreseen in the native Geant4 toolkit to provide the specific user detector geometry. Similarly, for the user actions and primary particle generator we need to instantiate a `G4JLActionInitialization`. The interaction with the application is done with the `G4UImanager`. To run it execute ``` julia --project=examples examples/basic/B1/B1.j ``` or execute the notebook `examples/basic/B1/B1.ipynb` ### basic/B2a This example fills a vector of `TrackerHit` that is stored in the `B2aSDData` simulation data structure for each event. This is achieved with a sensitive detector associated to the `Chamber` logical volume. The example is using the high-level Julia interface with the instantiation of a `G4JLApplication` declaring all the elements of the application (geometry, physics, simulation data, user actions, etc.) To run it execute ``` julia --project=examples examples/basic/B2/B2a.jl ``` ### extended/RE03 This example makes use of the built-in scoring capability of Geant4 with a new Julia API interface creating an instance of [`G4JLScoringMesh`](@ref), instead of using the native Geant4 UI. The user defines a scoring mesh, and quantities to be collect and gets the results after the run. To run it execute ``` julia --project=examples examples/extended/RE03/RE03.jl ``` ### WaterPhantom This example is similar to RE03 but it defines a custom primary particle generator (`MedicalBeam`) instead of using the predefined particle gun generator (`G4JLGunGenerator`). It is a notebook and produces plots after each run. To run it execute ``` jupyter notebook examples/WaterPhantom/WaterPhantom.ipynb ``` See the [rendered notebook](https://juliahep.github.io/Geant4.jl/dev/notebooks/WaterPhantom). ### TestEm3 This example comes from *extended/electromagnetic/TestEm3* example. Since it requires additional packages such as `FHist` for histograms and `Plots` for their visualization, it has its own Julia environment in the folder `examples/TestEm3`. It uses the Julia high-level interface with the instantiation of a `G4JLApplication` declaring all the elements of the application. To run it, execute ``` julia --project=examples -i examples/TestEm3/TestEm3.jl ``` ### Scintillator Example with optical photons and customized physics list, as well as with a couple of sensitive detectors (for the crystal and silicon) and some simple analysis of the results. To run it, execute ```bash julia --project=examples -i examples/Scintillator/Scintillator.jl ``` ## Visualization examples The Geant4.jl project includes additional functionality for visualization under the extension directory `ext/G4Vis/examples`. This is done in a different directory to separate and minimise the dependencies. The julia `ext/G4Vis/examples/Project.toml` file has the complete list of dependencies needed for running these examples. In order to load all the required dependencies the user can execute the first time: ``` `julia --project=Geant4.jl/ext/G4Vis/examples -e 'import Pkg; Pkg.instantiate()'` ``` !!! note Note that depending on the actual platform and the desired interactivity, the user may need to choose a different `Makie.jl` backend among the existing ones (`GLMakie`, `CairoMakie`, `WGLMakie`,...). ### B1vis.jl This example uses the `GLMakie` backend (OpenGL) of Makie. The use may change to other backends depending on his/her setup. To visualize the B1 detector do: ``` julia --project=ext/G4Vis/examples -i ext/G4Vis/examples/B1vis.jl ``` !!! note Note the option `-i` to keep the interactive session open ### B2aVis.jl This example to visualize the detector and (a very simplistic) visualization of one event. ``` julia --project=ext/G4Vis/examples -i ext/G4Vis/examples/B2avis.jl ``` ### Solids.ipynb This notebook shows all the possible solids in Geant4. This is work in progress and some solids do not have graphical representation yet. ``` jupyter notebook ext/G4Vis/examples/Solids.ipynb ``` See the [rendered notebook](https://juliahep.github.io/Geant4.jl/dev/notebooks/Solids/) ### HBC30 This example mimics the CERN 30cm liquid hydrogen bubble chamber. It demonstrates the use of a uniform magnetic field (`G4JLUniformMagField`). It is useful for displaying the detector and the produced particles in a customizable manner. To run it, execute ``` julia --project=ext/G4Vis/examples -i ext/G4Vis/examples/HBC30/HBC30.jl ``` It also exists in a [notebook](https://juliahep.github.io/Geant4.jl/dev/notebooks/HBC30/) format. ## Building the wrapper code We use the Geant4 native binary libraries and data from the binary package [Geant4\_jll](https://github.com/JuliaBinaryWrappers/Geant4_jll.jl), which has been produced with the `BinaryBuilder` [recipe](https://github.com/JuliaPackaging/Yggdrasil/tree/master/G/Geant4). The wrapper library is downloaded from the binary package [Geant4\_julia\_jll](https://github.com/JuliaBinaryWrappers/Geant4_julia_jll.jl). We have the possibility during the development of this package to re-generate locally new C++ wrapper code. For this we need to have `wrapit` installed, which itself requires `libclang` to be installed. If the executable is not found (not in the PATH), we can use the wrapper code that is already pre-generated and distributed with this package. - what C++ classes get wrapped is controlled by the file `gen/Geant4.wit.in`. See the documentation of WrapIt for the details. - run the `gen/build.jl` script generate the wrapper code (if wrapit found) and build the wrapper library. !!! note Please note that compiling the single generated wrapper file takes very long. This is due to the current implementation of WrapIt that places all wrapped types in a single file. This may change in the future. Once the wrapper code is stabilized we move the generated code to the repository [Geant4\_cxxwrap](https://github.com/peremato/Geant4_cxxwrap) to regenerate the binary package `Geant4_julia_jll` using the `BinaryBuilder`.
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "Apache-2.0" ]
0.1.17
6936b20a42124581c88a5b0d9cc8b5c234eec682
docs
4010
## Release Notes ### 0.1.17 - New Features - Added wrapper for G4StepLimiterPhysics ### 0.1.15 - Fixes: - Returned threadid is -2 for non-multithreaded builds of Geant4 ### 0.1.14 - New Features: - Added function getfield(pos::G4ThreeVector, bfield::G4JLMagneticField) - Added G4JLEmptyDetector as default detector (for testing and tutorials) - build some protection to re-use physics lists in case re-creating an `G4JLApplication` ### 0.1.13 - New Features: - Added wrappers for PhysicsLists classes: `G4DecayPhysics`, `G4EmStandardPhysics`, `G4RadioactiveDecayPhysics` - Implemented user stacking action - Added examples basic/B3a ### 0.1.12 - Moved the examples to new repository https://github.com/JuliaHEP/G4Examples.jl - Fixes: - Veto CLHEP::HepRandomEngine::get to avoid clash with Base.get - Disable finalizer for class G4JLStateDependent. Fixes event display. ### 0.1.11 - Migrated to Julia 1.10 - Using the latest version of WrapIt to generate the CxxWrap wrappers - New features - Added `G4JLGeneralParticleSource`, which makes use of the Geant4 `G4GeneralParticleSource` class for generation of primary particles for simulations. See documentation. - Added a new extension module `G4Hist` that defines convenient histogram types (H1D and H2D) on top of FHist.jl. See documentation. ### 0.1.10 - New features - Provide an EventDisplay as a building block of the application. New `evtdisplay` argument in the constructor. - Added new wrapped classes to support event displays: G4EventManager, G4TrajectoryContainer, G4VTrajectory, G4VTrajectoryPoint, G4StateManager, G4VStateDependent G4ApplicationState ### 0.1.9 - Changes needed for running ATLTileCalTB example ### 0.1.8 - New features: - Added all example scripts as tests, so that the CI will systematically execute them. - Added new wrapped classes: G4LogicalVolumeStore, G4MaterialPropertiesTable, G4OpticalParameters, G4OpticalSurface, G4LogicalBorderSurface, G4LogicalSkinSurface, G4VProcess, G4ProcessType, G4Random, G4EmStandardPhysics_option4, G4OpticalPhysics, G4OpBoundaryProcess, G4ProcessManager, G4ProcessVector - Added `Geant4.PhysicalConstants` sub-module - Added testRandom to the test suite - Added `Scintillation` example with scintillating crystals and optical photons - Fixes: - Fixed broken [visualization] examples - Improve HBC30 example to visualize trajectories in a more smooth manner. Moved it under `ext/G4Vis/examples` ### 0.1.7 - New features: - Support for ARM64 (MacOS M1). Implemented workaround for `closures` in `@safe_cfunction`, which were for supported in this platform. - Added support for magnetic field. Additional keyword argument in the `G4JLApplication`. Added example HBC30 for a simulation of a liquid hydrogen bubble chamber. - Added drawing capabilities for `G4Polyhedra`, `G4EllipticalTube`, `G4Ellipsoid` - Fixes: - Fix example WaterPhantom to added to new callback closures ### 0.1.6 - New features: - Restructured G4Vis as an extension of Geant4.jl. It is automatically loaded when all the required weak dependencies are satisfied (e.g. "Makie", "Colors", "StaticArrays", "Rotations", "LinearAlgebra") - Added missing basic solids including the `BooleanSolid` - Using the `IGLWrap_jll` binary wrapper to `libigl` C++ library to draw boolean solids. - Added notebook `ext/G4Vis/Solids.ipynb` to exercise and draw all possible solids (some are still missing) ### 0.1.5 - New features: - Support for Multi-threading. New parameter in `G4JLApplication` to set the number of threads. Default is serial, `nthreads = 0` - Added verbosity level with the argument `verbose` in [`G4JLApplication`](@ref) - Fixes: - Fix continuous pre-compilation after moving to Julia 1.9 - Fix for embedded figures in notebooks ### 0.1.4 - Added support for scoring with `G4JLScoringMesh` function - Added generation of documentation including running the jupyter notebooks
Geant4
https://github.com/JuliaHEP/Geant4.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
106
module Baselet include("specialized.jl") include("utils.jl") include("implementations.jl") end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
9713
# Vendoring `Base.afoldl` afoldl(op,a) = a afoldl(op,a,b) = op(a,b) afoldl(op,a,b,c...) = afoldl(op, op(a,b), c...) function afoldl(op,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,qs...) y = op(op(op(op(op(op(op(op(op(op(op(op(op(op(op(a,b),c),d),e),f),g),h),i),j),k),l),m),n),o),p) for x in qs; y = op(y,x); end y end @inline getindex(x, inds...) = Base.getindex(x, inds...) @def getindex(xs::Tuple, ind::UnitRange) = ntuple(i -> xs[ind[i]], length(ind)) @inline filter(f, xs) = Base.filter(f, xs) @def filter(f::F, xs::Tuple) where {F} = afoldl((ys, x) -> f(x) ? (ys..., x) : ys, (), xs...) zip(x, xs...) = Base.zip(x, xs...) # Not using `zip(tuples::NTuple{N,Any}...)` to avoid having unbound # type parameter. @def function zip(x::NTuple{N,Any}, xs::NTuple{N,Any}...) where {N} tuples = (x, xs...) return ntuple(i -> map(t -> t[i], tuples), N) end @inline flatten(itr) = Iterators.flatten(itr) @def flatten(xs::Tuple) = _flatten(xs...) @inline _flatten() = () @inline _flatten(x::Tuple, xs::Tuple...) = (x..., _flatten(xs...)...) @inline enumerate(itr) = Base.enumerate(itr) @def enumerate(xs::Tuple) = Specialized.zip(ntuple(identity, length(xs)), xs) struct _InitialValue end struct BottomRF{T} rf::T end @inline (op::BottomRF)(::_InitialValue, x) = Base.reduce_first(op.rf, x) @inline (op::BottomRF)(acc, x) = op.rf(acc, x) @inline accumulate(args...; kw...) = Base.accumulate(args...; kw...) @def function accumulate(op::F, xs::Tuple; init = _InitialValue()) where {F} rf = BottomRF(op) ys, = afoldl(((), init), xs...) do (ys, acc), x acc = rf(acc, x) (ys..., acc), acc end return ys end @inline cumsum(args...; kw...) = Base.cumsum(args...; kw...) @def cumsum(xs::Tuple) = Specialized.accumulate(Base.add_sum, xs) @inline cumprod(args...; kw...) = Base.cumprod(args...; kw...) @def cumprod(xs::Tuple) = Specialized.accumulate(Base.mul_prod, xs) @inline foreach(f, xs, rest...) = Base.foreach(f, xs, rest...) # Not using `@def` so that `Specialized.foreach` is always defined via `foldl`. @inline foreach(f, xs::Tuple, rest::Tuple...) = Specialized.foreach(f, xs, rest...) @inline Specialized.foreach(f, xs) = afoldl((_, x) -> (f(x); nothing), nothing, xs...) @inline Specialized.foreach(f, xs, rest...) = afoldl((_, args) -> (f(args...); nothing), nothing, zip(xs, rest...)...) # https://github.com/JuliaLang/julia/pull/31901 @inline any(f, itr) = Base.any(f, itr) @inline any(itr) = Base.any(itr) @def any(xs::Tuple) = _any(identity, xs...) @def any(f::F, xs::Tuple) where {F} = _any(f, xs...) @inline _any(f) = false @inline function _any(f::F, x, xs...) where {F} y = f(x) y === true && return true return y | _any(f, xs...) end @inline all(f, itr) = Base.all(f, itr) @inline all(itr) = Base.all(itr) @def all(xs::Tuple) = _all(identity, xs...) @def all(f::F, xs::Tuple) where {F} = _all(f, xs...) @inline _all(f) = true @inline function _all(f::F, x, xs...) where {F} y = f(x) y === false && return false return y & _all(f, xs...) end @inline findfirst(xs) = Base.findfirst(xs) @inline findfirst(f, xs) = Base.findfirst(f, xs) @def findfirst(xs::Tuple{Vararg{Bool}}) = _findfirst(identity, 1, xs...) @def findfirst(f::F, xs::Tuple) where {F} = _findfirst(f, 1, xs...) @inline _findfirst(f, n) = nothing @inline _findfirst(f::F, n, x, xs...) where {F} = f(x) ? n : _findfirst(f, n + 1, xs...) @inline findlast(xs) = Base.findlast(xs) @inline findlast(f, xs) = Base.findlast(f, xs) @def findlast(xs::Tuple{Vararg{Bool}}) = _findlast(identity, 1, xs...) @def findlast(f::F, xs::Tuple) where {F} = _findlast(f, 1, xs...) @inline _findlast(f, n) = nothing @inline function _findlast(f::F, n, x, xs...) where {F} i = _findlast(f, n + 1, xs...) i === nothing || return i return f(x) ? n : nothing end @inline findall(xs) = Base.findall(xs) @inline findall(f, xs) = Base.findall(f, xs) @def findall(xs::Tuple{Vararg{Bool}}) = _findall(identity, 1, xs...) @def findall(f::F, xs::Tuple) where {F} = _findall(f, 1, xs...) @inline _findall(f, n) = () @inline _findall(f, n, x, xs...) = ((f(x) ? (n,) : ())..., _findall(f, n + 1, xs...)...) @inline findmax(args...; kw...) = Base.findmax(args...; kw...) @def findmax(xs::Tuple{}) = throw(ArgumentError("collection must be non-empty")) @def findmax(xs::Tuple) = _findmax(zip(xs, ntuple(identity, length(xs)))...) @inline _findmax(ans) = ans @inline function _findmax((x, i), (y, j), rest...) x != x && return (x, i) return _findmax(y != y || isless(x, y) ? (y, j) : (x, i), rest...) end @inline findmin(args...; kw...) = Base.findmin(args...; kw...) @def findmin(xs::Tuple{}) = throw(ArgumentError("collection must be non-empty")) @def findmin(xs::Tuple) = _findmin(zip(xs, ntuple(identity, length(xs)))...) @inline _findmin(ans) = ans @inline function _findmin((x, i), (y, j), rest...) x != x && return (x, i) return _findmin(y != y || isless(y, x) ? (y, j) : (x, i), rest...) end @inline argmax(args...; kw...) = Base.argmax(args...; kw...) @def argmax(xs::Tuple) = Specialized.findmax(xs)[2] @inline argmin(args...; kw...) = Base.argmin(args...; kw...) @def argmin(xs::Tuple) = Specialized.findmin(xs)[2] @inline maximum(args...; kw...) = Base.maximum(args...; kw...) @def maximum(xs::Tuple) = Specialized.findmax(xs)[1] @inline minimum(args...; kw...) = Base.minimum(args...; kw...) @def minimum(xs::Tuple) = Specialized.findmin(xs)[1] @inline extrema(args...; kw...) = Base.extrema(args...; kw...) @def extrema(xs::Tuple{}) = throw(ArgumentError("collection must be non-empty")) @def extrema(xs::Tuple) = Specialized.extrema(identity, xs) @def extrema(f, xs::Tuple{}) = throw(ArgumentError("collection must be non-empty")) @def function extrema(f::F, xs::Tuple) where {F} x = xs[1] x != x && return (x, x) return _extrema(f, (x, x), Base.tail(xs)...) end @inline _extrema(f, ans) = ans @inline function _extrema(f::F, (l, g), x, xs...) where {F} x != x && return (x, x) return _extrema(f, (isless(x, l) ? x : l, isless(g, x) ? x : g), xs...) end @inline in(x, xs) = Base.in(x, xs) @inline in(x) = Base.Fix2(in, x) @inline Specialized.in(x) = Base.Fix2(Specialized.in, x) @def in(x, xs::Tuple) = _any(==(x), xs...) @inline unique(f, itr) = Base.unique(f, itr) @inline unique(itr) = Base.unique(itr) @def unique(xs::Tuple{}) = () @def unique(xs::Tuple) = afoldl((), xs...) do xs′, x x in xs′ ? xs′ : (xs′..., x) end @def unique(f, xs::Tuple{}) = () @def function unique(f::F, xs::Tuple) where {F} ys = map(f, xs) xs′, = afoldl(((), ()), zip(xs, ys)...) do (xs, ys), (x, y) y in ys ? (xs, ys) : ((ys..., y), (xs..., x)) end return xs′ end @inline union(args...) = Base.union(args...) @def union(a::Tuple) = Specialized.unique(a) @def union(a::Tuple, b::Tuple) = unique((a..., b...)) @def union(a::Tuple, bs::Tuple...) = afoldl(union, a, bs...) @inline intersect(s, itrs...) = Base.intersect(s, itrs...) @def intersect(a::Tuple) = a @def intersect(a::Tuple{}, b::Tuple{}) = () @def intersect(a::Tuple, b::Tuple{}) = () @def intersect(a::Tuple{}, b::Tuple) = () @def intersect(a::Tuple, b::Tuple) = unique(filter(x -> x in b, a)) @def intersect(a::Tuple, b::Tuple, cs::Tuple...) = foldl(Specialized.intersect, cs, init = Specialized.intersect(a, b)) @inline setdiff(args...) = Base.setdiff(args...) @def setdiff(a::Tuple, b::Tuple{}) = a @def setdiff(a::Tuple, b::Tuple) = setdiff(_exclude(a, b[1]), Base.tail(b)) @inline _exclude(a, b) = Base.foldl((ys, x) -> x == b ? ys : (ys..., x), a; init = ()) @def setdiff(a::Tuple, b::Tuple, cs::Tuple...) = Base.foldl(Specialized.setdiff, cs, init = Specialized.setdiff(a, b)) @def symdiff(a::Tuple, b::Tuple) = foldl(b; init = a) do a, x i = findfirst(==(x), a) i == nothing ? (a..., x) : _deleteat(a, i) end @def symdiff(a::Tuple, b::Tuple, cs::Tuple...) = foldl(Specialized.symdiff, cs, init = Specialized.symdiff(a, b)) _deleteat(a, i::Int) = foldl(a; init = ((), 1)) do (ys, j), x ((i == j ? ys : (ys..., x)), j + 1) end @inline issubset(a, b) = Base.issubset(a, b) @def issubset(a::Tuple, b::Tuple) = Specialized.all(x -> x in b, a) if VERSION >= v"1.5" @inline isdisjoint(a, b) = Base.isdisjoint(a, b) else @inline isdisjoint(a, b) = isempty(intersect(a, b)) end @def isdisjoint(a::Tuple, b::Tuple) = !Specialized.any(x -> x in b, a) sort(v; kw...) = Base.sort(v; kw...) @def sort( v::Tuple; lt = isless, by = identity, rev::Union{Bool,Nothing} = nothing, order = Base.Forward, ) = _sort(Base.ord(lt, by, rev, order), v) @inline _sort(order, ::Tuple{}) = () @inline _sort(order, x::Tuple{Any}) = x @inline _sort(order, (x, y)::Tuple{Any,Any}) = Base.lt(order, y, x) ? (y, x) : (x, y) @inline function _sort(order, v) left, right = _halve(v) return _mergesorted(order, _sort(order, left), _sort(order, right)) end @inline _mergesorted(order, ::Tuple{}, ::Tuple{}) = () @inline _mergesorted(order, ::Tuple{}, right) = right @inline _mergesorted(order, left, ::Tuple{}) = left @inline function _mergesorted(order, left, right) a = left[1] b = right[1] if Base.lt(order, b, a) return (b, _mergesorted(order, left, Base.tail(right))...) else return (a, _mergesorted(order, Base.tail(left), right)...) end end @inline function _halve(v::NTuple{N,Any}) where {N} m = N ÷ 2 return (getindex(v, 1:m), getindex(v, m+1:N)) end # Compilation takes too long (> 10 sec) for `length(v::Tuple) > 13`. const Any14{N} = Tuple{Any,Any,Any,Any,Any,Any,Any,Any,Any,Any,Any,Any,Any,Any,Vararg{Any,N}} @nospecialize sort(v::Any14; kw...) = Tuple(Base.sort!(collect(v); kw...)) @specialize
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
724
""" Baselet.Specialized Functions that are specialized in Baselet.jl. """ baremodule Specialized function getindex end function filter end function zip end function enumerate end function accumulate end function cumsum end function cumprod end function flatten end function foreach end function any end function all end function findfirst end function findlast end function findall end function findmax end function findmin end function argmax end function argmin end function maximum end function minimum end function extrema end function in end function unique end function union end function intersect end function setdiff end function symdiff end function issubset end function isdisjoint end function sort end end
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
1653
module Utils using Base.Meta: isexpr using ..Specialized function spec_lhs_rhs(ex) if isexpr(ex, :where) lhs, rhs = spec_lhs_rhs(ex.args[1]) return Expr(:where, lhs, ex.args[2:end]...), rhs elseif isexpr(ex, :call) f = ex.args[1] @assert f isa Symbol spec = Expr(:call, :($Specialized.$f), ex.args[2:end]...) @debug "@def -> spec_lhs_rhs" ex spec rhs = strip_typeassert(spec) if isexpr(get(rhs.args, 2, nothing), :parameters) rhs.args[2].args .= map(rhs.args[2].args) do x if isexpr(x, :kw) Expr(:kw, x.args[1], x.args[1]) else x end end end return (spec, rhs) else error("Cannot handle expression: ", ex) end end function strip_typeassert(ex) if isexpr(ex, :(::)) length(ex.args) == 2 || error("argument name is required for `@def`. Got:\n", ex) return ex.args[1] elseif ex isa Expr return Expr(ex.head, map(strip_typeassert, ex.args)...) else return ex end end """ @def f(...) = ... @def function f(...) ... end Expand function definition for function `f` to: ```julia @inline \$f(...) = Specialized.\$f(...) @inline Specialized.\$f(...) = ... ``` """ macro def(ex) @assert ex.head in [:function, :(=)] @assert length(ex.args) == 2 lhs, rhs = spec_lhs_rhs(ex.args[1]) block = Expr(:block, __source__, rhs) quote @inline $(ex.args[1]) = $block @inline $lhs = $(ex.args[2]) end |> esc end end # module using .Utils: @def
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
595
module TestBaselet using Test @testset "$file" for file in sort([ file for file in readdir(@__DIR__) if match(r"^test_.*\.jl$", file) !== nothing ]) # Skip inference test on Julia 1.0. It may work in 1.1 or 1.2 but # they are note tested. if VERSION < v"1.3-" && file == "test_inference.jl" @info "Skip $file for Julia $VERSION" continue elseif ( lowercase(get(ENV, "JULIA_PKGEVAL", "false")) == "true" && file == "test_inference.jl" ) @info "Skip $file on PkgEval." continue end include(file) end end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
197
module TestAqua import Aqua import Baselet using Test Aqua.test_all(Baselet) @testset "Compare Project.toml and test/Project.toml" begin Aqua.test_project_extras(Baselet) end end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
1342
module TestInference using Baselet using Test valof(::Val{x}) where {x} = x macro test_inferred(ex) quote f() = $(esc(ex)) Test.@test Test.@inferred(f()) isa Any end end @testset "getindex" begin @test_inferred Baselet.getindex((Val(1), Val(2), Val(3), Val(4)), 2:3) end @testset "zip" begin @test_inferred Baselet.zip((Val(1), Val(2), Val(3), Val(4))) @test_inferred Baselet.zip( (Val(1), Val(2), Val(3), Val(4)), (Val(5), Val(6), Val(7), Val(8)), ) end @testset "flatten" begin @test_inferred Baselet.flatten(((Val(1), Val(2)), (Val(3), Val(4), Val(5)))) end @testset "enumerate" begin if VERSION >= v"1.6-" @info "Skip inference test for `enumerate` on Julia $VERSION" else @test_inferred Val(Baselet.enumerate((Val(1), Val(2), Val(3), Val(4)))) end end @testset "any" begin @test_inferred Val(Baselet.any(valof, (Val(false), Val(false), Val(false)))) @test_inferred Val(Baselet.any(valof, (Val(false), Val(false), Val(true)))) end @testset "all" begin @test_inferred Val(Baselet.all(valof, (Val(true), Val(true), Val(true)))) @test_inferred Val(Baselet.all(valof, (Val(true), Val(true), Val(false)))) end @testset "sort" begin @test_inferred Baselet.sort((Val(3), Val(1), Val(2), Val(0)), by = valof) end end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
482
module TestSort using Baselet.Specialized: sort using Random: shuffle using Test @testset for n in 1:10 one_to_n = ntuple(identity, n) @test sort(one_to_n) == one_to_n @test sort(one_to_n; by = first) == one_to_n @test sort(one_to_n; by = _ -> 1) == one_to_n # stable sort @test sort(Tuple(shuffle(1:n))) == one_to_n @test sort(one_to_n; by = inv) == reverse(one_to_n) @test sort(Tuple(shuffle(1:n)); by = inv) == reverse(one_to_n) end end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
code
4761
module TestWithBase using Base.Iterators: flatten using Baselet using Test args_and_kwargs(args...; kwargs...) = args, (; kwargs...) ==ᶜ(x, y) = collect(x) == collect(y) # Dummy implementations accumulate(op, xs::Tuple; kw...) = Tuple(Base.accumulate(op, collect(xs); kw...)) cumsum(xs::Tuple) = Tuple(Base.cumsum(collect(xs))) cumprod(xs::Tuple) = Tuple(Base.cumprod(collect(xs))) raw_testdata_pure = """ getindex((100, 200, 300, 400), 2:3) == zip((11, 22, 33)) ==ᶜ zip((11, 22, 33), (111, 222, 333)) ==ᶜ accumulate(+, (11, 22, 33)) === accumulate(+, (11, 22, 33); init=100) === cumsum((11, 22, 33)) === cumprod((11, 22, 33)) === enumerate((11, 22, 33)) ==ᶜ flatten(((11, 22), (33, 44, 55))) ==ᶜ any((false, false, false)) === any((false, true, false)) === any((false, true, false, missing)) === any((false, false, false, missing)) === any(==(0), (10, 11, 12)) === any(==(10), (10, 11, 12)) === any(==(0), (10, 11, 12, missing)) === any(==(10), (10, 11, 12, missing)) === all((true, true, true)) === all((true, false, true)) === all((true, true, true, missing)) === all((true, false, true, missing)) === all(==(0), (10, 10, 10)) === all(==(10), (10, 10, 10)) === all(==(0), (10, 10, 10, missing)) === all(==(10), (10, 10, 10, missing)) === findfirst(()) == findfirst((false, true)) == findfirst((false, false)) == findfirst(==(10), ()) == findfirst(==(10), (11, 10, 10)) == findfirst(==(10), (11, 11, 11)) == findlast(()) == findlast((false, true)) == findlast((false, false)) == findlast(==(10), ()) == findlast(==(10), (11, 10, 10)) == findlast(==(10), (11, 11, 11)) == findall(()) ==ᶜ findall((false, true)) ==ᶜ findall((false, false)) ==ᶜ findall(==(10), ()) ==ᶜ findall(==(10), (11, 10, 10)) ==ᶜ findall(==(10), (11, 11, 11)) ==ᶜ findmax((1, 2, 3, 2, 3, 1)) === findmax((1, NaN, 2, 3, NaN, 2)) === findmin((1, 2, 3, 2, 3, 1)) === findmin((1, NaN, 2, 3, NaN, 2)) === argmax((1, 2, 3, 2, 3, 1)) === argmax((1, NaN, 2, 3, NaN, 2)) === argmin((1, 2, 3, 2, 3, 1)) === argmin((1, NaN, 2, 3, NaN, 2)) === maximum((1, 2, 3, 2, 3, 1)) === maximum((1, NaN, 2, 3, NaN, 2)) === minimum((1, 2, 3, 2, 3, 1)) === minimum((1, NaN, 2, 3, NaN, 2)) === extrema((1, 2, 3, 2, 3, 1)) === extrema((1, NaN, 2, 3, NaN, 2)) === in(1, (1, 2, 3)) === in(0, (1, 2, 3)) === in(0, (1, 2, 3, missing)) === in(1, (1, 2, 3, missing)) === in(missing, (missing,)) === in(NaN, (NaN,)) === in(0.0, (-0.0,)) === unique((11, 12, 13)) ==ᶜ unique((11, 11, 11)) ==ᶜ unique(abs, (11, -12, 13, 12)) ==ᶜ unique(abs, (11, -11, 11)) ==ᶜ union((11, 12, 13)) ==ᶜ union((11, 12, 13), (12, 13)) ==ᶜ union((11, 12, 13), (12, 13, 14), (15, 13, 12)) ==ᶜ intersect((11, 12, 13)) ==ᶜ intersect((11, 12, 13), (12, 13)) ==ᶜ intersect((11, 12, 13), (12, 13, 14), (15, 13, 12)) ==ᶜ setdiff((11, 12, 13), ()) ==ᶜ setdiff((), (11, 12, 13)) ==ᶜ setdiff((11, 12, 13), (12, 13)) ==ᶜ setdiff((11, 12, 13), (12, 13, 14), (15, 13, 12)) ==ᶜ """ # An array of `(label, (f, args, kwargs, comparison))` testdata_pure = map(split(raw_testdata_pure, "\n", keepempty = false)) do x f, rest = split(x, "(", limit = 2) input, comparison = rsplit(rest, ")", limit = 2) comparison = strip(comparison) ex = Meta.parse("DUMMY($input)") ex.args[1] = args_and_kwargs @eval ($x, ($(Symbol(f)), $ex..., $(Symbol(comparison)))) end @testset "$label" for (label, (f, args, kwargs, ==′)) in testdata_pure Baselet_f = getproperty(Baselet, nameof(f)) Specialized_f = getproperty(Baselet.Specialized, nameof(f)) @test Baselet_f(args...; kwargs...) ==′ f(args...; kwargs...) @test Specialized_f(args...; kwargs...) ==′ f(args...; kwargs...) @test typeof(Baselet_f(args...; kwargs...)) == typeof(Specialized_f(args...; kwargs...)) end function test_all_implementations(test) @testset for m in [Base, Baselet, Baselet.Specialized] test(m) end end @testset "foreach(x -> push!(xs, x), 1:5)" begin test_all_implementations() do m xs = Int[] m.foreach(1:5) do x push!(xs, x) end @test xs == 1:5 end end @testset "foreach(x -> push!(xs, x), (1, 2, 3))" begin test_all_implementations() do m xs = Int[] m.foreach((1, 2, 3)) do x push!(xs, x) end @test xs == 1:3 end end @testset "foreach((a, b) -> push!(xs, a + b), 1:5, 6:10)" begin test_all_implementations() do m xs = Int[] m.foreach(1:5, 6:10) do a, b push!(xs, a + b) end @test xs == 7:2:15 end end @testset "foreach((a, b) -> push!(xs, a + b), (1, 2, 3), (6, 7, 8))" begin test_all_implementations() do m xs = Int[] m.foreach((1, 2, 3), (6, 7, 8)) do a, b push!(xs, a + b) end @test xs == 7:2:11 end end end # module
Baselet
https://github.com/tkf/Baselet.jl.git
[ "MIT" ]
0.1.1
aebf55e6d7795e02ca500a689d326ac979aaf89e
docs
1328
# Baselet: `Base` API optimized for tuples [![GitHub Actions](https://github.com/tkf/Baselet.jl/workflows/Run%20tests/badge.svg)](https://github.com/tkf/Baselet.jl/actions?query=workflow%3A%22Run+tests%22) [![Aqua QA](https://img.shields.io/badge/Aqua.jl-%F0%9F%8C%A2-aqua.svg)](https://github.com/tkf/Aqua.jl) ## API * `Baselet.$f` provides a possibly-optimized version of `$f` exported from `Base` (e.g., `Baselet.sort(::Tuple)`). * `Baselet.Specialized.$f` provides a function `$f` with a subset of API from `Base.$f` that is _guaranteed_ to have optimized specializations (e.g., `Baselet.Specialized.sort(::Tuple)`). * `Baselet.$f` fallbacks to `Base.$f` if associated `Baselet.Specialized.$f` is not found. For example, `Baselet.sort(::Vector)` just calls `Base.sort(::Vector)`. The list of supported functions can be found by typing `Baselet.Specialized.` + <kbd>TAB</kbd> in the REPL: ```julia julia> using Baselet julia> Baselet.Specialized. accumulate cumprod findall flatten isdisjoint sort all cumsum findfirst foreach issubset symdiff any enumerate findlast getindex maximum union argmax extrema findmax in minimum unique argmin filter findmin intersect setdiff zip ```
Baselet
https://github.com/tkf/Baselet.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2671
using Revise using Random using CSV using DataFrames using StatsBase using Statistics: mean, std using CUDA using EvoTrees using Solage: Connectors using AWS: AWSCredentials, AWSConfig, @service @service S3 aws_creds = AWSCredentials(ENV["AWS_ACCESS_KEY_ID_JDB"], ENV["AWS_SECRET_ACCESS_KEY_JDB"]) aws_config = AWSConfig(; creds=aws_creds, region="ca-central-1") bucket = "jeremiedb" path = "share/data/higgs/HIGGS.arrow" df_tot = Connectors.read_arrow_aws(path; bucket="jeremiedb", aws_config) rename!(df_tot, "Column1" => "y") feature_names = setdiff(names(df_tot), ["y"]) target_name = "y" function percent_rank(x::AbstractVector{T}) where {T} return tiedrank(x) / (length(x) + 1) end transform!(df_tot, feature_names .=> percent_rank .=> feature_names) dtrain = df_tot[1:end-500_000, :]; deval = df_tot[end-500_000+1:end, :]; dtest = df_tot[end-500_000+1:end, :]; config = EvoTreeRegressor( loss=:logloss, nrounds=5000, eta=0.2, nbins=224, max_depth=11, L2=1, lambda=0.0, gamma=0.0, rowsample=0.8, colsample=0.8, min_weight=1, rng=123, ) device = "cpu" metric = "logloss" @time m_evo = fit_evotree(config, dtrain; target_name, fnames=feature_names, deval, metric, device, early_stopping_rounds=200, print_every_n=100); p_test = m_evo(dtest); logloss_test = mean(-dtest.y .* log.(p_test) .+ (dtest.y .- 1) .* log.(1 .- p_test)) @info "LogLoss - dtest" logloss_test error_test = 1 - mean(round.(Int, p_test) .== dtest.y) @info "ERROR - dtest" error_test # ┌ Info: LogLoss - dtest # └ logloss_test = 0.4716574579097044 # ┌ Info: ERROR - dtest # └ error_test = 0.229522 @info "XGBoost" @info "train" using XGBoost params_xgb = Dict( :num_round => 2000, :max_depth => 10, :eta => 0.15, :objective => "reg:logistic", :print_every_n => 5, :gamma => 0, :lambda => 1, :subsample => 0.8, :colsample_bytree => 0.8, :tree_method => "gpu_hist", # hist/gpu_hist :max_bin => 128, ) dtrain_xgb = DMatrix(select(dtrain, feature_names), dtrain.y) watchlist = Dict("eval" => DMatrix(select(deval, feature_names), deval.y)); @time m_xgb = xgboost(dtrain_xgb; watchlist, nthread=Threads.nthreads(), verbosity=0, eval_metric="logloss", params_xgb...); pred_xgb = XGBoost.predict(m_xgb, DMatrix(select(deval, feature_names))); logloss_test = mean(-dtest.y .* log.(pred_xgb) .+ (dtest.y .- 1) .* log.(1 .- pred_xgb)) @info "LogLoss - dtest" logloss_test error_test = 1 - mean(round.(Int, pred_xgb) .== dtest.y) @info "ERROR - xgb test" error_test # ┌ Info: LogLoss - dtest # └ logloss_test = 0.4710665675338929 # ┌ Info: ERROR - xgb test # └ error_test = 0.22987999999999997
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2710
using Revise using Statistics using StatsBase: sample # using XGBoost using EvoTrees using BenchmarkTools using Random: seed! import CUDA nobs = Int(1e6) num_feat = Int(100) nrounds = 200 T = Float64 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $num_feat features. nthread: $nthread" seed!(123) x_train = rand(T, nobs, num_feat) y_train = rand(T, size(x_train, 1)) @info "Gaussian MLE" params_evo = EvoTreeMLE( loss=:gaussian, nrounds=200, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=100.0, rowsample=0.5, colsample=0.5, nbins=64, ) @info "evotrees train CPU:" device = "cpu" @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:gaussian, device, print_every_n=100); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:gaussian, device, print_every_n=100); # @btime fit_evotree($params_evo; x_train=$x_train, y_train=$y_train, x_eval=$x_train, y_eval=$y_train, metric=:gaussian); @info "evotrees predict CPU:" @time pred_evo = m_evo(x_train); @btime m_evo($x_train); CUDA.allowscalar(true) @info "evotrees train GPU:" device = "gpu" # @time m_evo = fit_evotree(params_evo; x_train, y_train); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:gaussian, device, print_every_n=100); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:gaussian, device, print_every_n=100); # @btime fit_evotree($params_evo; x_train=$x_train, y_train=$y_train, x_eval=$x_train, y_eval=$y_train, metric=:gaussian); @info "evotrees predict GPU:" @time pred_evo = m_evo(x_train; device); @btime m_evo($x_train; device); ################################ # Logistic ################################ @info "Logistic MLE" params_evo = EvoTreeMLE( loss=:logistic, nrounds=nrounds, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=100.0, rowsample=0.5, colsample=0.5, nbins=64, ) @info "testing with: $nobs observations | $num_feat features." x_train = rand(nobs, num_feat) y_train = rand(size(x_train, 1)) @info "evotrees train CPU:" device = "cpu" @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:logistic_mle, print_every_n=100); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=:logistic_mle, print_every_n=100); # @btime fit_evotree($params_evo; x_train=$x_train, y_train=$y_train, x_eval=$x_train, y_eval=$y_train, metric=:logistic_mle); @info "evotrees predict CPU:" @time pred_evo = m_evo(x_train); @btime m_evo($x_train);
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2112
using Revise using CSV using DataFrames using EvoTrees using StatsBase: sample, tiedrank using Statistics using Random: seed! using AWS: AWSCredentials, AWSConfig, @service @service S3 aws_creds = AWSCredentials(ENV["AWS_ACCESS_KEY_ID_JDB"], ENV["AWS_SECRET_ACCESS_KEY_JDB"]) aws_config = AWSConfig(; creds = aws_creds, region = "ca-central-1") path = "share/data/year/year.csv" raw = S3.get_object( "jeremiedb", path, Dict("response-content-type" => "application/octet-stream"); aws_config, ) df = DataFrame(CSV.File(raw, header = false)) path = "share/data/year/year-train-idx.txt" raw = S3.get_object( "jeremiedb", path, Dict("response-content-type" => "application/octet-stream"); aws_config, ) train_idx = DataFrame(CSV.File(raw, header = false))[:, 1] .+ 1 path = "share/data/year/year-eval-idx.txt" raw = S3.get_object( "jeremiedb", path, Dict("response-content-type" => "application/octet-stream"); aws_config, ) eval_idx = DataFrame(CSV.File(raw, header = false))[:, 1] .+ 1 X = df[:, 2:end] Y_raw = Float64.(df[:, 1]) Y = (Y_raw .- mean(Y_raw)) ./ std(Y_raw) function percent_rank(x::AbstractVector{T}) where {T} return tiedrank(x) / (length(x) + 1) end transform!(X, names(X) .=> percent_rank .=> names(X)) X = collect(Matrix{Float32}(X)) Y = Float32.(Y) x_tot, y_tot = X[1:(end-51630), :], Y[1:(end-51630)] x_test, y_test = X[(end-51630+1):end, :], Y[(end-51630+1):end] x_train, x_eval = x_tot[train_idx, :], x_tot[eval_idx, :] y_train, y_eval = y_tot[train_idx], y_tot[eval_idx] config = EvoTreeRegressor( T = Float32, nrounds = 1200, loss = :linear, eta = 0.1, nbins = 128, min_weight = 4, max_depth = 7, lambda = 0, gamma = 0, rowsample = 0.8, colsample=0.8, ) # @time m = fit_evotree(config; x_train, y_train, print_every_n=25); @time m, logger = fit_evotree( config; x_train, y_train, x_eval, y_eval, early_stopping_rounds = 100, print_every_n = 10, metric = :mse, return_logger = true, ); p_evo = m(x_test); mean((p_evo .- y_test) .^ 2) * std(Y_raw)^2
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
6736
using Revise using CSV using DataFrames using EvoTrees using StatsBase: sample, tiedrank using Statistics using Random: seed! using ReadLIBSVM # using GLMakie # data is C14 - Yahoo! Learning to Rank Challenge # data can be obtained though a request to https://webscope.sandbox.yahoo.com/ using AWS: AWSCredentials, AWSConfig, @service @service S3 aws_creds = AWSCredentials(ENV["AWS_ACCESS_KEY_ID_JDB"], ENV["AWS_SECRET_ACCESS_KEY_JDB"]) aws_config = AWSConfig(; creds=aws_creds, region="ca-central-1") function read_libsvm_aws(file::String; has_query=false, aws_config=AWSConfig()) raw = S3.get_object("jeremiedb", file, Dict("response-content-type" => "application/octet-stream"); aws_config) return read_libsvm(raw; has_query) end function ndcg(p, y, k=10) k = min(k, length(p)) p_order = partialsortperm(p, 1:k, rev=true) y_order = partialsortperm(y, 1:k, rev=true) _y = y[p_order] gains = 2 .^ _y .- 1 discounts = log2.((1:k) .+ 1) ndcg = sum(gains ./ discounts) y_order = partialsortperm(y, 1:k, rev=true) _y = y[y_order] gains = 2 .^ _y .- 1 discounts = log2.((1:k) .+ 1) idcg = sum(gains ./ discounts) return idcg == 0 ? 1.0 : ndcg / idcg end p = [6, 5, 4, 3, 2, 1, 0, -1] .+ 100 y = [3, 2, 3, 0, 1, 2, 3, 2] ndcg(p, y, 6) @time dtrain = read_libsvm_aws("share/data/yahoo-ltrc/set1.train.txt"; has_query=true, aws_config) @time deval = read_libsvm_aws("share/data/yahoo-ltrc/set1.valid.txt"; has_query=true, aws_config) @time dtest = read_libsvm_aws("share/data/yahoo-ltrc/set1.test.txt"; has_query=true, aws_config) colsums_train = map(sum, eachcol(dtrain[:x])) # colsums_eval = map(sum, eachcol(deval[:x])) colsums_test = map(sum, eachcol(deval[:x])) sum(colsums_train .== 0) sum(colsums_test .== 0) @assert all((colsums_train .== 0) .== (colsums_test .== 0)) drop_cols = colsums_train .== 0 x_train = dtrain[:x][:, .!drop_cols] x_eval = deval[:x][:, .!drop_cols] x_test = dtest[:x][:, .!drop_cols] # x_train_miss = x_train .== 0 # x_eval_miss = x_eval .== 0 # x_test_miss = x_test .== 0 # x_train[x_train.==0] .= 0.5 # x_eval[x_eval.==0] .= 0.5 # x_test[x_test.==0] .= 0.5 # x_train = hcat(x_train, x_train_miss) # x_eval = hcat(x_eval, x_eval_miss) # x_test = hcat(x_test, x_test_miss) q_train = dtrain[:q] q_eval = deval[:q] q_test = dtest[:q] y_train = dtrain[:y]; y_eval = deval[:y]; y_test = dtest[:y]; ##################################### # mse regression ##################################### y_train = dtrain[:y] y_eval = deval[:y] y_test = dtest[:y] config = EvoTreeRegressor( nrounds=6000, loss=:mse, eta=0.02, nbins=64, max_depth=11, rowsample=0.9, colsample=0.9, ) # @time m = fit_evotree(config; x_train, y_train, print_every_n=25); @time m_mse, logger_mse = fit_evotree( config; x_train=x_train, y_train=y_train, x_eval=x_eval, y_eval=y_eval, early_stopping_rounds=200, print_every_n=50, metric=:mse, return_logger=true ); p_test = m_mse(x_test); test_df = DataFrame(p=p_test, y=y_test, q=q_test) test_df_agg = combine(groupby(test_df, "q"), ["p", "y"] => ndcg => "ndcg") ndcg_test = round(mean(test_df_agg.ndcg), sigdigits=5) @info "MSE - test data - MSE model" mean((p_test .- y_test) .^ 2) @info "NDCG - test data - MSE model" ndcg_test ##################################### # logistic regression ##################################### max_rank = 4 y_train = dtrain[:y] ./ max_rank y_eval = deval[:y] ./ max_rank y_test = dtest[:y] ./ max_rank config = EvoTreeRegressor( nrounds=6000, loss=:logloss, eta=0.01, nbins=64, max_depth=11, rowsample=0.9, colsample=0.9, ) @time m_logloss, logger_logloss = fit_evotree( config; x_train=x_train, y_train=y_train, x_eval=x_eval, y_eval=y_eval, early_stopping_rounds=200, print_every_n=50, metric=:logloss, return_logger=true ); # use the original y since NDCG is scale sensitive y_train = dtrain[:y] y_eval = deval[:y] y_test = dtest[:y] # p_eval = m(x_eval); # eval_df = DataFrame(p = p_eval, y = y_eval, q = q_eval) # eval_df_agg = combine(groupby(eval_df, "q"), ["p", "y"] => ndcg => "ndcg") # ndcg_eval = mean(eval_df_agg.ndcg) p_test = m_logloss(x_test); test_df = DataFrame(p=p_test, y=y_test, q=q_test) test_df_agg = combine(groupby(test_df, "q"), ["p", "y"] => ndcg => "ndcg") ndcg_test = round(mean(test_df_agg.ndcg), sigdigits=5) @info "NDCG - test data - LogLoss model" ndcg_test ##################################### # logistic regression on DataFrame ##################################### target_name = "y" df_train = DataFrame(x_train, :auto) df_train.y = dtrain[:y] ./ 4 df_train.q = dtrain[:q] df_eval = DataFrame(x_eval, :auto) df_eval.y = deval[:y] ./ 4 df_eval.q = deval[:q] df_test = DataFrame(x_test, :auto) df_test.y = dtest[:y] ./ 4 df_test.q = dtest[:q] function rank_target_norm(y::AbstractVector) out = similar(y) if minimum(y) == maximum(y) out .= 0.5 else out .= (y .- minimum(y)) ./ (maximum(y) - minimum(y)) end return out end function percent_rank(x::AbstractVector{T}) where {T} return tiedrank(x) / (length(x) + 1) end feature_names_raw = setdiff(names(df_train), ["y", "q"]) feature_names_rel = feature_names_raw .* "_rel" transform!(df_train, feature_names_raw .=> percent_rank .=> feature_names_rel) transform!(df_eval, feature_names_raw .=> percent_rank .=> feature_names_rel) transform!(df_test, feature_names_raw .=> percent_rank .=> feature_names_rel) feature_names = setdiff(names(df_train), ["y", "q"]) # df_train = transform!( # groupby(df_train, "q"), # "y" => rank_target_norm => "y") # df_eval = transform!( # groupby(df_eval, "q"), # "y" => rank_target_norm => "y") # df_test = transform!( # groupby(df_test, "q"), # "y" => rank_target_norm => "y") minimum(df_eval.y) maximum(df_eval.y) config = EvoTreeRegressor( nrounds=6000, loss=:logloss, eta=0.01, nbins=64, max_depth=11, rowsample=0.9, colsample=0.9, ) @time m_logloss_df, logger_logloss_df = fit_evotree( config, df_train; target_name, fnames=feature_names_raw, deval=df_eval, early_stopping_rounds=200, print_every_n=50, metric=:logloss, return_logger=true ); m_logloss_df.info p_test_df = m_logloss_df(df_test); # p_test_mat = m_logloss_df(x_test); EvoTrees.importance(m_logloss_df) p_test = m_logloss_df(df_test); test_df = DataFrame(p=p_test, y=dtest[:y], q=dtest[:q]) test_df_agg = combine(groupby(test_df, "q"), ["p", "y"] => ndcg => "ndcg") ndcg_test = mean(test_df_agg.ndcg) # ndcg_test = 0.8022558972243291 # ndcg_test = 0.8020754563069513 @info "NDCG - test data - LogLoss DF model" ndcg_test
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2662
using CSV using DataFrames using EvoTrees using XGBoost using StatsBase: sample using AWS: AWSCredentials, AWSConfig, @service @service S3 aws_creds = AWSCredentials(ENV["AWS_ACCESS_KEY_ID_JDB"], ENV["AWS_SECRET_ACCESS_KEY_JDB"]) aws_config = AWSConfig(; creds=aws_creds, region="ca-central-1") path = "share/data/insurance-aicrowd.csv" raw = S3.get_object("jeremiedb", path, Dict("response-content-type" => "application/octet-stream"); aws_config) df = DataFrame(CSV.File(raw)) transform!(df, "claim_amount" => ByRow(x -> x > 0 ? 1.0f0 : 0.0f0) => "event") target = "event" feats = ["vh_age", "vh_value", "vh_speed", "vh_weight", "drv_age1", "pol_no_claims_discount", "pol_coverage", "pol_duration", "pol_sit_duration"] pol_cov_dict = Dict{String,Float64}( "Min" => 1, "Med1" => 2, "Med2" => 3, "Max" => 4) pol_cov_map(x) = get(pol_cov_dict, x, 4) transform!(df, "pol_coverage" => ByRow(pol_cov_map) => "pol_coverage") setdiff(feats, names(df)) nobs = nrow(df) id_train = sample(1:nobs, Int(round(0.8 * nobs)), replace=false) df_train = dropmissing(df[id_train, [feats..., target]]) df_eval = dropmissing(df[Not(id_train), [feats..., target]]) x_train = Matrix{Float32}(df_train[:, feats]) x_eval = Matrix{Float32}(df_eval[:, feats]) y_train = Vector{Float32}(df_train[:, target]) y_eval = Vector{Float32}(df_eval[:, target]) config = EvoTreeRegressor(T=Float32, loss=:logistic, lambda=0.02, gamma=0, nbins=32, max_depth=5, rowsample=0.5, colsample=0.8, nrounds=400, tree_type="oblivious", eta=0.05) # @time m = fit_evotree(config; x_train, y_train, print_every_n=25); @time m = fit_evotree(config; x_train, y_train, x_eval, y_eval, early_stopping_rounds=50, print_every_n=25, metric=:logloss); pred_eval_evo = m(x_eval) |> vec; params_xgb = [ "objective" => "reg:logistic", "booster" => "gbtree", "eta" => 0.05, "max_depth" => 4, "lambda" => 10.0, "gamma" => 0.0, "subsample" => 0.5, "colsample_bytree" => 0.8, "tree_method" => "hist", "max_bin" => 32, "print_every_n" => 5] nthread = Threads.nthreads() nthread = 8 nrounds = 400 metrics = ["logloss"] @info "xgboost train:" @time m_xgb = xgboost(x_train, nrounds, label=y_train, param=params_xgb, metrics=metrics, nthread=nthread, silent=1); pred_eval_xgb = XGBoost.predict(m_xgb, x_eval) function logloss(p::Vector{T}, y::Vector{T}) where {T<:AbstractFloat} eval = zero(T) @inbounds for i in eachindex(y) eval -= (y[i] * log(p[i]) + (1 - y[i]) * log(1 - p[i])) end eval /= length(p) return eval end logloss(pred_eval_evo, y_eval) logloss(pred_eval_xgb, y_eval)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2258
using Statistics using StatsBase:sample using Revise using EvoTrees using MemoryConstrainedTreeBoosting nrounds = 100 # EvoTrees params params_evo = EvoTreeRegressor(T=Float32, loss=:logistic, metric=:logloss, nrounds=nrounds, lambda=0.5, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=1.0, colsample=0.5, nbins=64) # MemoryConstrainedTreeBoosting params params_mctb = ( weights = nothing, bin_count = 128, iteration_count = nrounds, min_data_weight_in_leaf = 1.0, l2_regularization = 0.0, max_leaves = 64, max_depth = 6, max_delta_score = 1.0e10, # Before shrinkage. learning_rate = 0.05, feature_fraction = 0.5, # Per tree. bagging_temperature = 0.1, ) nobs = Int(1e6) num_feat = Int(100) @info "testing with: $nobs observations | $num_feat features." X = rand(Float32, nobs, num_feat) Y = Float32.(rand(Bool, size(X, 1))) @info "evotrees train CPU:" params_evo.device = "cpu" @time m, cache = EvoTrees.init_evotree(params_evo, X, Y); @time EvoTrees.grow_evotree!(m, cache); @time m, cache = EvoTrees.init_evotree(params_evo, X, Y); @time EvoTrees.grow_evotree!(m, cache); @time m_evo = fit_evotree(params_evo, X, Y); @time fit_evotree(params_evo, X, Y); @info "evotrees predict CPU:" @time pred_evo = EvoTrees.predict(m_evo, X); @time EvoTrees.predict(m_evo, X); @info "evotrees train GPU:" params_evo.device = "gpu" @time m_evo = fit_evotree(params_evo, X, Y); @time fit_evotree(params_evo, X, Y); @info "evotrees predict GPU:" @time pred_evo = EvoTrees.predict(m_evo, X); @time EvoTrees.predict(m_evo, X); @info "MemoryConstrainedTreeBoosting train CPU:" @time bin_splits, trees = MemoryConstrainedTreeBoosting.train(X, Y; params_mctb...); @time MemoryConstrainedTreeBoosting.train(X, Y; params_mctb...); @info "MemoryConstrainedTreeBoosting predict CPU, JITed:" save_path = tempname() MemoryConstrainedTreeBoosting.save(save_path, bin_splits, trees) unbinned_predict = MemoryConstrainedTreeBoosting.load_unbinned_predictor(save_path) @time pred_mctb = unbinned_predict(X) @time unbinned_predict(X)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3309
using Revise using Statistics using StatsBase: sample using XGBoost using EvoTrees using DataFrames using BenchmarkTools using Random: seed! # import CUDA nobs = Int(1e6) num_feat = Int(100) nrounds = 200 T = Float64 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $num_feat features. nthread: $nthread" seed!(123) x_train = rand(T, nobs, num_feat) y_train = rand(T, size(x_train, 1)) @info nthread loss = "mse" if loss == "mse" loss_xgb = "reg:squarederror" metric_xgb = "mae" loss_evo = :mse metric_evo = :mae elseif loss == "logloss" loss_xgb = "reg:logistic" metric_xgb = "logloss" loss_evo = :logloss metric_evo = :logloss end @info "XGBoost" params_xgb = Dict( :num_round => nrounds, :max_depth => 5, :eta => 0.05, :objective => loss_xgb, :print_every_n => 5, :subsample => 0.5, :colsample_bytree => 0.5, :tree_method => "hist", :max_bin => 64, ) dtrain = DMatrix(x_train, y_train) watchlist = Dict("train" => DMatrix(x_train, y_train)) @time m_xgb = xgboost(dtrain; watchlist, nthread=nthread, verbosity=0, eval_metric=metric_xgb, params_xgb...); # @btime m_xgb = xgboost($dtrain; watchlist, nthread=nthread, verbosity=0, eval_metric=metric_xgb, params_xgb...); @info "xgboost predict:" @time pred_xgb = XGBoost.predict(m_xgb, x_train); # @btime XGBoost.predict($m_xgb, $x_train); @info "EvoTrees" dtrain = DataFrame(x_train, :auto) dtrain.y .= y_train target_name = "y" verbosity = 0 params_evo = EvoTreeRegressor( loss=loss_evo, nrounds=nrounds, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, rng=123, ) @info "EvoTrees CPU" device = "cpu" @info "init" @time m_df, cache_df = EvoTrees.init(params_evo, dtrain; target_name); @time m_df, cache_df = EvoTrees.init(params_evo, dtrain; target_name); # @info "train - no eval" # @time m_evo_df = fit_evotree(params_evo, dtrain; target_name, device, verbosity, print_every_n=100); # @time m_evo_df = fit_evotree(params_evo, dtrain; target_name, device, verbosity, print_every_n=100); @info "train - eval" @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); # @time m_evo = fit_evotree(params_evo, dtrain; target_name, device); # @btime fit_evotree($params_evo, $dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @info "predict" @time pred_evo = m_evo(dtrain); @btime m_evo($dtrain); @info "EvoTrees GPU" device = "gpu" @info "train" @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); # @btime m_evo = fit_evotree($params_evo, $dtrain; target_name, device); # @btime fit_evotree($params_evo, $dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @info "predict" @time pred_evo = m_evo(dtrain; device); @btime m_evo($dtrain; device);
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3131
using Revise using Statistics using StatsBase: sample using EvoTrees using DataFrames using BenchmarkTools using Random: seed! import CUDA using MLJ nobs = Int(2e6) num_feat = Int(100) nrounds = 200 T = Float64 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $num_feat features. nthread: $nthread" seed!(123) x_train = rand(T, nobs, num_feat) y_train = rand(T, size(x_train, 1)) @info nthread loss = "mse" if loss == "mse" loss_evo = :mse metric_evo = :mae elseif loss == "logloss" loss_evo = :logloss metric_evo = :logloss end @info "EvoTrees" dtrain = DataFrame(x_train, :auto) # dtrain.y .= y_train # target_name = "y" verbosity = 0 params_evo = EvoTreeRegressor( loss=loss_evo, nrounds=nrounds, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, rng=123, ) @info "EvoTrees CPU" device = "cpu" iterated_model = IteratedModel( model=params_evo, resampling=Holdout(; fraction_train=0.5), measures=rmse, controls=[Step(5), Patience(200), NumberLimit(40)], retrain=false) mach = machine(iterated_model, dtrain, y_train) @time fit!(mach); @info "init" @time m_df, cache_df = EvoTrees.init(params_evo, dtrain; target_name); # @info "train - no eval" # @time m_evo_df = fit_evotree(params_evo, dtrain; target_name, device, verbosity, print_every_n=100); # @time m_evo_df = fit_evotree(params_evo, dtrain; target_name, device, verbosity, print_every_n=100); @info "train - eval" @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); # @time m_evo = fit_evotree(params_evo, dtrain; target_name, device); # @btime fit_evotree($params_evo, $dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @info "predict" @time pred_evo = m_evo(dtrain); @btime m_evo($dtrain); @info "EvoTrees GPU" device = "gpu" @info "train" @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @time m_evo = fit_evotree(params_evo, dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); # @btime m_evo = fit_evotree($params_evo, $dtrain; target_name, device); # @btime fit_evotree($params_evo, $dtrain; target_name, deval=dtrain, metric=metric_evo, device, verbosity, print_every_n=100); @info "predict" @time pred_evo = m_evo(dtrain; device); @btime m_evo($dtrain; device); using MLJBase using MLJModels using Tables EvoTreeBooster = @load EvoTreeRegressor booster = EvoTreeBooster() X, y = make_regression(1000, 5) # this works: mach = machine(booster, X, y) |> fit! # this doesn't X, y = make_regression(1_000_000, 100); @time X = DataFrame(X); @time X = Tables.rowtable(X); @time X = Tables.columntable(X); mach = machine(booster, X, y) |> fit! schema = Tables.schema(dtrain) schema.names
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5045
using CUDA using DataFrames using CSV using Statistics using StatsBase: sample using XGBoost using EvoTrees using BenchmarkTools using Random: seed! ### v.0.15.1 # desktop | 1e6 | depth 11 | cpu: 37.2s # desktop | 10e6 | depth 11 | cpu ### v0.16.5 # desktop | 1e6 | depth 11 | cpu: 31s gpu: 50 sec | xgboost cpu: 26s # desktop | 10e6 | depth 11 | cpu 200s gpu: 80 sec | xgboost cpu: 267s ### gpu-hist # desktop | 1e6 | depth 11 | cpu: Xs gpu: Xs | xgboost cpu: Xs # desktop | 10e6 | depth 11 | cpu Xs gpu: Xs | xgboost cpu: Xs run_evo = true run_xgb = true max_nrounds = 200 tree_type = "binary" T = Float64 nthreads = Base.Threads.nthreads() device_list = ["cpu", "gpu"] # device_list = ["gpu"] nobs_list = Int.([1e5, 1e6, 1e7]) # nobs_list = Int.([1e4, 1e5]) nfeats_list = [10, 100] # nfeats_list = [10] max_depth_list = [6, 11] # max_depth_list = [6] for device in device_list df = DataFrame() for nobs in nobs_list for nfeats in nfeats_list for max_depth in max_depth_list _df = DataFrame( :device => device, :nobs => nobs, :nfeats => nfeats, :max_depth => max_depth) @info "device: $device | nobs: $nobs | nfeats: $nfeats | max_depth : $max_depth | nthreads: $nthreads | tree_type : $tree_type" seed!(123) x_train = rand(T, nobs, nfeats) y_train = rand(T, size(x_train, 1)) loss = "mse" if loss == "mse" loss_xgb = "reg:squarederror" metric_xgb = "mae" loss_evo = :mse metric_evo = :mae elseif loss == "logloss" loss_xgb = "reg:logistic" metric_xgb = "logloss" loss_evo = :logloss metric_evo = :logloss end tree_method = device == "gpu" ? "gpu_hist" : "hist" if run_evo @info "EvoTrees" verbosity = 1 params_evo = EvoTreeRegressor(; loss=loss_evo, nrounds=max_nrounds, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=max_depth, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, tree_type, rng=123 ) @info "train - eval" @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, verbosity, print_every_n=100) t_train_evo = @elapsed m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, verbosity, print_every_n=100) @info "predict" @time pred_evo = m_evo(x_train; device) t_infer_evo = @elapsed pred_evo = m_evo(x_train; device) _df = hcat(_df, DataFrame( :train_evo => t_train_evo, :infer_evo => t_infer_evo) ) end if run_xgb @info "XGBoost" params_xgb = Dict( :num_round => max_nrounds, :max_depth => max_depth - 1, :eta => 0.05, :objective => loss_xgb, :print_every_n => 5, :subsample => 0.5, :colsample_bytree => 0.5, :tree_method => tree_method, # hist/gpu_hist :max_bin => 64, ) @info "train" dtrain = DMatrix(x_train, y_train) watchlist = Dict("train" => DMatrix(x_train, y_train)) m_xgb = xgboost(dtrain; watchlist, nthread=nthreads, verbosity=0, eval_metric=metric_xgb, params_xgb...) t_train_xgb = @elapsed m_xgb = xgboost(dtrain; watchlist, nthread=nthreads, verbosity=0, eval_metric=metric_xgb, params_xgb...) @info "predict" pred_xgb = XGBoost.predict(m_xgb, x_train) t_infer_xgb = @elapsed pred_xgb = XGBoost.predict(m_xgb, x_train) _df = hcat(_df, DataFrame( :train_xgb => t_train_xgb, :infer_xgb => t_infer_xgb) ) end append!(df, _df) end end end select!(df, Cols(:device, :nobs, :nfeats, :max_depth, r"train_", r"infer_")) path = joinpath(@__DIR__, "results", "regressor-$device.csv") CSV.write(path, df) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2752
using Revise using Statistics using StatsBase: sample using XGBoost using EvoTrees using BenchmarkTools import CUDA nobs = Int(1e6) num_feat = Int(100) nrounds = 200 num_class = 5 verbosity = 1 T = Float64 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $num_feat features. nthread: $nthread" x_train = rand(T, nobs, num_feat) y_train = rand(1:num_class, size(x_train, 1)) loss_xgb = "multi:softmax" metric_xgb = "mlogloss" metric_evo = :mlogloss # xgboost aprams params_xgb = Dict( :num_round => nrounds, :max_depth => 5, :eta => 0.05, :objective => loss_xgb, :print_every_n => 5, :subsample => 0.5, :colsample_bytree => 0.5, :tree_method => "hist", :max_bin => 64, :num_class => num_class, ) @info "xgboost train:" metrics = [metric_xgb] dtrain = DMatrix(x_train, y_train .- 1); watchlist = Dict("train" => DMatrix(x_train, y_train .- 1)) @time m_xgb = xgboost(dtrain; watchlist, nthread=nthread, verbosity=0, params_xgb...); @info "xgboost predict:" @time pred_xgb = XGBoost.predict(m_xgb, x_train); # @btime XGBoost.predict($m_xgb, $x_train); # EvoTrees params params_evo = EvoTreeClassifier(; nrounds=200, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64) @info "EvoTrees CPU" device = "cpu" # @info "train - no eval" # @time m_evo = fit_evotree(params_evo; x_train, y_train, device, verbosity, print_every_n=100); # @time m_evo = fit_evotree(params_evo; x_train, y_train, device, verbosity, print_every_n=100); @info "train - eval" @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, print_every_n=100); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, print_every_n=100); @info "evotrees predict CPU:" @time pred_evo = m_evo(x_train); @btime m_evo($x_train); @info "evotrees train GPU:" device = "gpu" # @info "train - no eval" # @time m_evo = fit_evotree(params_evo; x_train, y_train, device, verbosity, print_every_n=100); # @time m_evo = fit_evotree(params_evo; x_train, y_train, device, verbosity, print_every_n=100); @info "train - eval" @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, print_every_n=100); @time m_evo = fit_evotree(params_evo; x_train, y_train, x_eval=x_train, y_eval=y_train, metric=metric_evo, device, print_every_n=100); # @btime fit_evotree($params_evo; x_train=$x_train, y_train=$y_train, x_eval=$x_train, y_eval=$y_train, metric=metric_evo); @info "evotrees predict GPU:" @time pred_evo = m_evo(x_train; device); @btime m_evo($x_train; device);
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
946
using Statistics using StatsBase: sample using XGBoost using EvoTrees using BenchmarkTools # prepare a dataset X = rand(Int(2.e6), 100) Y = rand(size(X, 1)) ####################### # EvoTrees ####################### config = EvoTreeRegressor( loss=:linear, metric=:none, nrounds=100, λ = 0.0, γ=0.0, η=0.05, max_depth = 6, min_weight = 1.0, rowsample=0.5, colsample=0.5, nbins=32) @time model = fit_evotree(config, X, Y); @time pred = EvoTrees.predict(model, X) ####################### # xgboost ####################### num_round = 100 param = ["max_depth" => 5, "eta" => 0.05, "objective" => "reg:linear", "print_every_n" => 5, "subsample" => 0.5, "colsample_bytree" => 0.5, "tree_method" => "hist", "max_bin" => 32] metrics = ["rmse"] @time model_xgb = xgboost(X, num_round, label = Y, param = param, silent=1); @time pred = XGBoost.predict(model_xgb, X)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
13767
using Statistics using StatsBase: sample, quantile using EvoTrees using EvoTrees: sigmoid, logit using Plots using GraphRecipes using Random: seed! using StaticArrays # prepare a dataset seed!(123) X = rand(1_000, 2) .* 2 Y = sin.(X[:,1] .* π) .+ X[:,2] Y = Y .+ randn(size(Y)) .* 0.1 #logit(Y) # Y = sigmoid(Y) 𝑖 = collect(1:size(X,1)) # make a grid grid_size = 101 range = 2 X_grid = zeros(grid_size^2,2) for j in 1:grid_size for i in 1:grid_size X_grid[grid_size*(j-1) + i,:] .= [(i-1) / (grid_size-1) * range, (j-1) / (grid_size-1) * range] end end Y_grid = sin.(X_grid[:,1] .* π) .+ X_grid[:,2] # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # linear params1 = EvoTreeRegressor(T=Float64, loss=:linear, metric=:mse, nrounds=100, nbins = 16, λ=0.0, γ=0.0, η=0.05, max_depth = 3, min_weight = 1.0, rowsample=0.8, colsample=1.0) edges = EvoTrees.get_edges(X_train, params1.nbins) X_bin = EvoTrees.binarize(X_train, edges) @time model = model = fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 25) # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval) using BSON: @save @save "blog/model_linear.bson" model # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval, print_every_n = 25, metric=:mae) @time pred_train_linear = predict(model, X_train) # @time pred_eval_linear = predict(model, X_eval) # mean(abs.(pred_train_linear .- Y_train)) # sqrt(mean((pred_train_linear .- Y_train) .^ 2)) μ = mean(Y_train) x_perm_1 = sortperm(X_train[:,1]) x_perm_2 = sortperm(X_train[:,2]) p1 = plot(X_train[:,1], Y_train, ms = 3, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var1"), yaxis = ("target"), leg = false, cbar=true) p1_bin = plot(X_bin[:,1], Y_train, ms = 3, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msw=0, background_color = RGB(1, 1, 1), seriestype=:scatter, xaxis = ("var1"), yaxis = ("target"), legend = false, cbar=true, label = "") plot!(fill(μ, params1.nbins), lw=3, color="#66ffcc", background_color = "white", seriestype=:line, label="predict", leg=true) # savefig(p1, "var1.svg") # plot!(X_train[:,1][x_perm_1], pred_train_linear[x_perm_1], color = "red", mswidth=0, msize=3, label = "Linear", st=:scatter, leg=false) p2 = plot(X_train[:,2], Y_train, ms = 3, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("target"), leg = false, cbar=true) p2_bin = plot(X_bin[:,2], Y_train, ms = 3, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("target"), leg = false, cbar=true, label="") plot!(fill(μ, params1.nbins), lw=3, color="#66ffcc", background_color = "white", seriestype=:line, label="predict", leg = true) # savefig(p2, "var2.svg") # plot!(X_train[:,2][x_perm_2], pred_train_linear[x_perm_2], color = "red", mswidth=0, msize=3, st=:scatter, label = "Predict") p = plot(p1,p2, layout=(2,1)) savefig(p, "blog/raw_one_ways.svg") savefig(p, "blog/raw_one_ways.png") p = plot(p1_bin, p2_bin, layout=(2,1)) savefig(p, "blog/bin_one_ways.svg") savefig(p, "blog/bin_one_ways.png") # train iteration # plot left vs right points left_id = X_bin[:,2] .== 1 p = plot(X_bin[left_id,2], Y_train[left_id], ms = 3, color="darkred", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("residual"), leg = true, cbar=true, label="left") plot!(X_bin[.!left_id,2], Y_train[.!left_id], ms = 3, color="#33ccff", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("residual"), leg = true, cbar=true, label="right") plot!(fill(μ, params1.nbins), lw=3, color="#66ffcc", background_color = "white", seriestype=:line, label="predict", leg = true) # residuals residuals = Y_train .- μ left_id = X_bin[:,2] .== 1 p = plot(X_bin[left_id,2], residuals[left_id], ms = 3, color="darkred", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("residual"), leg = true, cbar=true, label="left") plot!(X_bin[.!left_id,2], residuals[.!left_id], ms = 3, color="#33ccff", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("var2"), yaxis = ("residual"), leg = true, cbar=true, label="right") plot!(fill(0, params1.nbins), lw=3, color="#66ffcc", background_color = "white", seriestype=:line, label="", leg = true) savefig(p, "blog/first_split.svg") savefig(p, "blog/first_split.png") left_res = residuals[left_id] function loss(x::Vector, val) sum((x .- val).^2) end eval_pts = -2.1:0.01:0.5 left_loss = loss.(Ref(left_res), eval_pts) p = plot(left_res, left_res .* 0, ms = 5, color="darkred", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("predict"), yaxis = ("loss"), leg = true, cbar=true, label="observation") # plot!(left_res, left_loss, ms = 3, color="#33ccff", msw=0, background_color = "white", seriestype=:scatter, xaxis = ("residual"), yaxis = ("loss"), leg = true, cbar=true, label="") plot!(eval_pts, left_loss, lw=3, color="#66ffcc", background_color = "white", seriestype=:line, label="loss", leg = true) savefig(p, "blog/left_parabole.svg") savefig(p, "blog/left_parabole.png") loss(left_res, 0.0) - loss(left_res, mean(left_res)) # add single pt parabol left_res_1 = sort(left_res)[35] left_loss_1 = loss.(Ref([left_res_1]), eval_pts) plot!(eval_pts, left_loss_1, lw=0.5, color="#33ccff", background_color = "white", seriestype=:line, label="", leg = true) ########################### # raw compute ########################### 𝑖 = collect(1:size(X_train,1)) δ, δ² = zeros(SVector{model.K, Float64}, size(X_train, 1)), zeros(SVector{model.K, Float64}, size(X_train, 1)) 𝑤 = zeros(SVector{1, Float64}, size(X_train, 1)) .+ 1 pred = zeros(SVector{model.K,Float64}, size(X_train,1)) .+= μ EvoTrees.update_grads!(params1.loss, params1.α, pred, Y_train, δ, δ², 𝑤) ∑δ, ∑δ², ∑𝑤 = sum(δ[left_id]), sum(δ²[left_id]), sum(𝑤[left_id]) gain = EvoTrees.get_gain(params1.loss, ∑δ, ∑δ², ∑𝑤, params1.λ) ##################################### # 3D visualisation of data ##################################### # p = plot(X_train[:,1], X_train[:,2], Y_train, zcolor=Y_train, color=cgrad(["red","#3399ff"]), msize=5, markerstrokewidth=0, leg=false, cbar=true, w=1, st=:scatter) p = plot(X_grid[:,1], X_grid[:,2], Y_grid, zcolor=Y_grid, color=cgrad(["#555555", "#eeeeee"]), msize=5, markerstrokewidth=0, leg=false, cbar=true, st=:scatter, xaxis="var1", yaxis="var2") plot!(X_train[:,1], X_train[:,2], Y_train, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msize=4, markerstrokewidth=0, st=:scatter) savefig(p, "blog/data_3D.svg") savefig(p, "blog/data_3D.png") plot(X_train[:,1], X_train[:,2], pred_train_linear, zcolor=Y_train, m=(5, 0.9, :rainbow, Plots.stroke(0)), leg=false, cbar=true, w=1, st=:scatter) plot(X_train[:,1], X_train[:,2], pred_train_linear, zcolor=Y_train, st=[:surface], leg=false, cbar=true, fillcolor=:rainbow, markeralpha=1.0) p_bin = plot(X_bin[:,1], X_bin[:,2], Y_train, zcolor=Y_train, color=cgrad(["darkred", "#33ccff"]), msize=4, markerstrokewidth=0, st=:scatter, leg=false, cbar=true) gr() params1 = EvoTreeRegressor( loss=:linear, metric=:mse, nrounds=100, nbins = 100, λ = 0.0, γ=0.0, η=0.5, max_depth = 2, min_weight = 1.0, rowsample=0.5, colsample=1.0) anim = @animate for i=1:20 params1.nrounds = (i-1)*5+1 model = fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = Inf) pred_train_linear = predict(model, X_train) x_perm = sortperm(X_train[:,1]) plot(X_train, Y_train, ms = 1, mcolor = "gray", mscolor = "lightgray", background_color = RGB(1, 1, 1), seriestype=:scatter, xaxis = ("feature"), yaxis = ("target"), legend = true, label = "") plot!(X_train[:,1][x_perm], pred_train_linear[x_perm], color = "navy", linewidth = 1.5, label = "Linear") end gif(anim, "blog/anim_fps1.gif", fps = 1) # tree vec function treevec(tree) source, target = zeros(Int, max(1, length(tree.nodes)-1)), zeros(Int, max(1, length(tree.nodes)-1)) count_s, count_t = 1, 1 for i in 1:length(tree.nodes) if tree.nodes[i].split source[count_s] = i source[count_s+1] = i target[count_t] = tree.nodes[i].left target[count_t+1] = tree.nodes[i].right count_s += 2 count_t += 2 elseif i ==1 source[i] = i target[i] = i end end return source, target end # plot tree function nodenames(tree) names = [] for i in 1:length(tree.nodes) if tree.nodes[i].split push!(names, "feat: " * string(tree.nodes[i].feat) * "\n< " * string(round(tree.nodes[i].cond, sigdigits=3))) else push!(names, "pred:\n" * string(round(tree.nodes[i].pred[1], sigdigits=3))) end end return names end tree1 = model.trees[2] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) # p1 = graphplot(source, target, method=:tree, names = nodes, linecolor=:brown, nodeshape=:hexagon, fontsize=8, fillcolor="#66ffcc") p1 = graphplot(source, target, method=:buchheim, names = nodes, linecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc") tree1 = model.trees[3] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p2 = graphplot(source, target, method=:buchheim, names = nodes, linecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc") tree1 = model.trees[50] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p3 = graphplot(source, target, method=:buchheim, names = nodes, linecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc") tree1 = model.trees[90] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p4 = graphplot(source, target, method=:buchheim, names = nodes, edgecolor=:black, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc") default(size=(1600, 1600)) seed!(1) fills = sample(["#33ffcc", "#99ccff"], length(source), replace=true) fills = sample(["lightgray", "#33ffcc"], length(source), replace=true) p4 = graphplot(source, target, method=:buchheim, root=:top, names = nodes, edgecolor=:black, nodeshape=:hexagon, fontsize=9, axis_buffer=0.05, nodesize=0.025, nodecolor=fills) p = plot(p1,p2,p3,p4) savefig(p, "blog/tree_group.svg") savefig(p1, "blog/tree_1.svg") savefig(p, "blog/tree_group.png") savefig(p1, "blog/tree_1.png") ################################ # animation on one way plot ################################ # prepare a dataset features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) 𝑖 = collect(1:size(X,1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # linear params1 = EvoTreeRegressor( loss=:linear, metric=:mse, nrounds=10, nbins = 32, λ = 0.0, γ=0.0, η=0.5, max_depth = 3, min_weight = 1.0, rowsample=0.5, colsample=1.0) @time model = fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 25) anim = @animate for i=0:4 params1.nrounds = i # i == 1 ? params1.η = 0.001 : params1.η = 0.5 model = fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = Inf) pred_train_linear = predict(model, X_train) x_perm = sortperm(X_train[:,1]) plot(X_train, Y_train, ms = 1, mcolor = "gray", mscolor = "lightgray", background_color = RGB(1, 1, 1), seriestype=:scatter, xaxis = ("feature"), yaxis = ("target"), legend = true, label = "") plot!(X_train[:,1][x_perm], pred_train_linear[x_perm], color = "navy", linewidth = 1.5, label = "Linear") end gif(anim, "blog/anim_fps1.gif", fps = 1) ps = [p1,p2,p3,p4] anim = @animate for i=0:4 # i == 1 ? params1.η = 0.001 : params1.η = 0.5 # if i == 1 # p = plot(p1) # elseif i ==2 # p = plot(p1,p2) # end if i==0 plot(foreground_color_subplot=:white) else plot(ps[1:i]...) end end gif(anim, "blog/anim_tree.gif", fps = 1) tree1 = model.trees[2] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p1 = graphplot(source, target, method=:tree, names = nodes, edgecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc", nodestrokewidth=0) tree1 = model.trees[3] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p2 = graphplot(source, target, method=:tree, names = nodes, edgecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc", nodestrokewidth=0) tree1 = model.trees[4] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p3 = graphplot(source, target, method=:tree, names = nodes, edgecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc", nodestrokewidth=0) tree1 = model.trees[5] source, target = treevec(tree1) nodes = nodenames(tree1) seed!(1) p4 = graphplot(source, target, method=:tree, names = nodes, edgecolor=:brown, nodeshape=:hexagon, fontsize=8, nodecolor="#66ffcc", nodestrokewidth=0) p = plot(p1,p2,p3,p4) savefig(p, "blog/tree_group.svg") savefig(p1, "blog/tree_1.svg") savefig(p, "blog/tree_group.png") savefig(p1, "blog/tree_1.png")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1008
push!(LOAD_PATH, "../src/") using Documenter using EvoTrees pages = [ "Introduction" => "index.md", "Models" => "models.md", "API" => [ "Public" => "api.md", "Internals" => "internals.md" ], "Tutorials" => [ "Regression - Boston" => "tutorials/regression-boston.md", "Logistic Regression - Titanic" => "tutorials/logistic-regression-titanic.md", "Classification - IRIS" => "tutorials/classification-iris.md", "Ranking - Yahoo! LTRC" => "tutorials/ranking-LTRC.md", "Internal API" => "tutorials/examples-API.md", "MLJ API" => "tutorials/examples-MLJ.md"] ] makedocs( sitename="EvoTrees.jl", authors="Jeremie Desgagne-Bouchard and contributors.", format=Documenter.HTML( sidebar_sitename=false, edit_link="main", assets=["assets/style.css"] ), pages=pages, modules=[EvoTrees], ) deploydocs(repo="github.com/Evovest/EvoTrees.jl.git", target="build", devbranch="main")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
9000
using Revise using Tables using DataFrames using MLJBase using StatsBase: sample, mean, quantile using Statistics using CategoricalArrays using Distributions using EvoTrees using EvoTrees: logit, sigmoid ################################################## ### Regression - small data ################################################## features = rand(10_000) .* 5 .- 2 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) y = Y X = Tables.table(X) X = DataFrame(X) # @load EvoTreeRegressor # linear regression tree_model = EvoTreeRegressor(max_depth = 5, eta = 0.05, nrounds = 5, rowsample = 0.5) # logistic regression # tree_model = EvoTreeRegressor(loss = :logistic, max_depth = 5, eta = 0.05, nrounds = 10) # quantile regression # tree_model = EvoTreeRegressor( # loss = :quantile, # alpha = 0.75, # max_depth = 5, # eta = 0.05, # nrounds = 10, # ) tree = machine(tree_model, X, y) train, test = partition(eachindex(y), 0.7, shuffle = true); # 70:30 split fit!(tree, rows = train, verbosity = 1); tree.model.nrounds += 5 fit!(tree, rows = train, verbosity = 1); # predict on train data pred_train = predict(tree, selectrows(X, train)) println(mean(abs.(pred_train - selectrows(Y, train)))) # predict on test data pred_test = predict(tree, selectrows(X, test)) println(mean(abs.(pred_test - selectrows(Y, test)))) ################################################## ### classif ################################################## X, y_train = @load_crabs x_train = matrix(X) using CUDA CUDA.allowscalar(false) # define hyperparameters config = EvoTreeClassifier( max_depth = 4, eta = 0.05, lambda = 0.0, gamma = 0.0, nbins = 32, nrounds = 200, ) model = fit_evotree(config; x_train, y_train); model = fit_evotree(config; x_train, y_train, x_eval = x_train, y_eval = y_train, metric=:mlogloss, print_every_n=10, early_stopping_rounds=25); pred = model(x_train) pred_cat = pred .> 0.5 sum((y_train .== "B") .== pred_cat[:, 1]) / length(y_train) # @load EvoTreeRegressor mach = machine(config, X, y_train) train, test = partition(eachindex(y_train), 0.7, shuffle = true); # 70:30 split fit!(mach, rows = train, verbosity = 1) rpt = report(mach) MLJBase.feature_importances(config, mach.fitresult, rpt) mach.model.nrounds += 10 fit!(mach, rows = train, verbosity = 1) rpt = report(mach) MLJBase.feature_importances(config, mach.fitresult, rpt) pred_train = EvoTrees.predict(mach, selectrows(X, train)) pred_train_mode = predict_mode(mach, selectrows(X, train)) println(cross_entropy(pred_train, selectrows(y_train, train)) |> mean) println(sum(pred_train_mode .== y_train[train]) / length(train)) pred_test = EvoTrees.predict(mach, selectrows(X, test)) pred_test_mode = predict_mode(mach, selectrows(X, test)) println(cross_entropy(pred_test, selectrows(y_train, test)) |> mean) println(sum(pred_test_mode .== y_train[test]) / length(test)) pred_test_mode = predict_mode(mach, selectrows(X, test)) # using LossFunctions, Plots # evo_model = EvoTreeClassifier(max_depth=6, η=0.05, λ=1.0, γ=0.0, nrounds=10, nbins=64) # evo = machine(evo_model, X, y) # r = range(evo_model, :nrounds, lower=1, upper=500) # @time curve = learning_curve!(evo, range=r, resolution=10, measure=HingeLoss()) # plot(curve.parameter_values, curve.measurements) ################################################## ### regression - Larger data ################################################## features = rand(1_000_000, 100) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeRegressor( loss = :linear, metric = :mae, nrounds = 10, λ = 0.0, γ = 0.0, η = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, ) X = Tables.table(X); X = Tables.rowtable(X); # X = Tables.columntable(X) # X_matrix = MLJBase.matrix(X) # typeof(X) @time tree = machine(tree_model, X, Y); train, test = partition(eachindex(Y), 0.8, shuffle = true); # 70:30 split @time fit!(tree, rows = train, verbosity = 1, force = true) using LossFunctions using MLJ r = range(tree_model, :nrounds, lower = 1, upper = 100) m = rms @time curve = learning_curve!(evo, range = r, resolution = 100, measure = m) tree.model.nrounds += 1 @time update(tree.model, 0, tree.fitresult, tree.cache, X, Y); tree.model.nrounds += 1 @time fit!(tree, rows = train, verbosity = 1) # @time MLJBase.fit!(tree, rows=train, verbosity=1) # yhat = MLJBase.predict(tree.model, tree.fitresult, MLJ.selectrows(X,test)) pred_train = predict(tree, selectrows(X, train)) mean(abs.(pred_train - selectrows(Y, train))) ################################################## ### count - Larger data ################################################## features = rand(100_000, 100) # features = rand(100, 10) X = features Y = rand(UInt8, size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeCount( loss = :poisson, metric = :poisson, nrounds = 10, λ = 0.0, γ = 0.0, η = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, ) X = Tables.table(X) X = Tables.rowtable(X) X = Tables.columntable(X) X_matrix = MLJBase.matrix(X) # typeof(X) @time tree = machine(tree_model, X, Y) train, test = partition(eachindex(Y), 0.8, shuffle = true); # 70:30 split @time fit!(tree, rows = train, verbosity = 1, force = true) tree.model.nrounds += 10 @time MLJBase.update(tree.model, 0, tree.fitresult, tree.cache, X, Y) tree.model.nrounds += 10 @time fit!(tree, rows = train, verbosity = 1) # @time MLJBase.fit!(tree, rows=train, verbosity=1) # yhat = MLJBase.predict(tree.model, tree.fitresult, MLJ.selectrows(X,test)) pred = predict(tree, selectrows(X, train)) pred_mean = predict_mean(tree, selectrows(X, train)) pred_mode = predict_mode(tree, selectrows(X, train)) ################################################## ### Gaussian - Larger data ################################################## features = rand(100_000, 100) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeGaussian( loss = :gaussian, metric = :gaussian, nrounds = 10, λ = 0.0, γ = 0.0, η = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, ) X = Tables.table(X) X_matrix = MLJBase.matrix(X) # typeof(X) @time tree = machine(tree_model, X, Y) train, test = partition(eachindex(Y), 0.8, shuffle = true); # 70:30 split @time fit!(tree, rows = train, verbosity = 1, force = true) tree.model.nrounds += 10 @time MLJBase.update(tree.model, 0, tree.fitresult, tree.cache, X, Y) tree.model.nrounds += 10 @time fit!(tree, rows = train, verbosity = 1) # @time MLJBase.fit!(tree, rows=train, verbosity=1) # yhat = MLJBase.predict(tree.model, tree.fitresult, MLJ.selectrows(X,test)) pred = predict(tree, selectrows(X, train)) pred_mean = predict_mean(tree, selectrows(X, train)) pred_mode = predict_mode(tree, selectrows(X, train)) mean(abs.(pred_mean - selectrows(Y, train))) q_20 = quantile.(pred, 0.20) q_20 = quantile.(pred, 0.80) ######################################### # MLJ2 test ######################################### using EvoTrees using MLJModelInterface using MLJBase using StatsBase: sample, mean, quantile using Tables X = rand(1_000_000, 100); Y = rand(size(X, 1)) # @load EvoTreeRegressor tree_model = EvoTreeRegressor( loss = :linear, metric = :mae, nrounds = 10, λ = 0.0, γ = 0.0, η = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, ) X = Tables.table(X); # X = Tables.rowtable(X); # X = Tables.columntable(X); # X_matrix = MLJBase.matrix(X); # typeof(X) @time tree = machine(tree_model, X, Y); train, test = partition(eachindex(Y), 0.8, shuffle = true); # 70:30 split @time fit!(tree, rows = train, verbosity = 1, force = false) tree.model.nrounds += 1 @time fit!(tree, rows = train, verbosity = 1)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2415
using Revise using EvoTrees using DataFrames using CategoricalArrays: categorical import CUDA using Base.Threads: nthreads, @threads using BenchmarkTools using Random: seed! # using StatsBase # x1 = rand(Bool, 10) # nbins = 2 # edges = sort(unique(quantile(skipmissing(x1), (1:nbins-1) / nbins))) # searchsortedfirst(edges, edges[1]) # searchsortedfirst(edges, 1.0) # searchsortedfirst(edges, edges[9] + 0.01) seed!(123) nrounds = 20 nobs = Int(1e6) nfeats_num = Int(100) T = Float32 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $nfeats_num features." x_train = rand(T, nobs, nfeats_num); y_train = rand(T, nobs); dtrain = DataFrame(x_train, :auto); dtrain[:, :y] = y_train; # dtrain[:, :x_cat_1] = rand(["lvl1", "lvl2", "lvl3"], nobs); # transform!(dtrain, "x_cat_1" => (x -> categorical(x, ordered = false)) => "x_cat_1") # levels(dtrain.x_cat_1) # levelcode.(dtrain.x_cat_1) # isordered(dtrain.x_cat_1) # eltype.(eachcol(dtrain)) # typeof.(eachcol(dtrain)) # @time for col in eachcol(dtrain) # @info typeof(col) # end # @time for name in names(dtrain) # @info typeof(dtrain[:, name]) # end @info nthread loss = "linear" if loss == "linear" loss_evo = :mse metric_evo = :mae elseif loss == "logistic" loss_evo = :logloss metric_evo = :logloss end hyper = EvoTreeRegressor( T=T, loss=loss_evo, nrounds=nrounds, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, rng=123, ) target_name = "y" device = "cpu" @info "init" @time model, cache = EvoTrees.init(hyper, dtrain; target_name); @info "pred" @time pred = model(dtrain); # cache.edges[11] # cache.featbins # cache.feattypes # cache.nodes[1].gains[1] # model.trees[1] @info "grow_evotree!" @time EvoTrees.grow_evotree!(model, cache, hyper, EvoTrees.CPU); # @btime EvoTrees.grow_evotree!(model, cache, hyper); @info "fit_evotree" @time m = fit_evotree(hyper, dtrain; target_name, device, verbosity=false); # @btime fit_evotree(hyper, dtrain; target_name, verbosity = false); @time m = fit_evotree(hyper, dtrain; target_name, deval=dtrain, metric=metric_evo, device, print_every_n=100, verbosity=false); # @btime m = fit_evotree(hyper, dtrain; target_name, deval=dtrain, metric=metric_evo, device, print_every_n=100, verbosity = false); @time pred = m(dtrain); # @btime m($dtrain);
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2096
using Revise using EvoTrees using CSV using DataFrames using CategoricalArrays import CUDA using Base.Iterators: partition using Base.Threads: nthreads, @threads using BenchmarkTools using Random: seed! # using StatsBase # x1 = rand(Bool, 10) # nbins = 2 # edges = sort(unique(quantile(skipmissing(x1), (1:nbins-1) / nbins))) # searchsortedfirst(edges, edges[1]) # searchsortedfirst(edges, 1.0) # searchsortedfirst(edges, edges[9] + 0.01) seed!(123) nrounds = 20 nobs = Int(1e6) nfeats_num = Int(100) T = Float32 nthread = Base.Threads.nthreads() @info "testing with: $nobs observations | $nfeats_num features." x_train = rand(T, nobs, nfeats_num); y_train = rand(T, nobs); dtrain = DataFrame(x_train, :auto); dtrain[:, :y] = y_train; # dtrain[:, :x_cat_1] = rand(["lvl1", "lvl2", "lvl3"], nobs); # transform!(dtrain, "x_cat_1" => (x -> categorical(x, ordered=false)) => "x_cat_1") @info nthread loss = "linear" if loss == "linear" loss_evo = :mse metric_evo = :mae elseif loss == "logistic" loss_evo = :logloss metric_evo = :logloss end hyper = EvoTreeRegressor( T=T, loss=loss_evo, nrounds=nrounds, alpha=0.5, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, rng=123, ) target_name = "y" device = "gpu" CUDA.allowscalar(false) @time model, cache = EvoTrees.init(hyper, dtrain, EvoTrees.GPU; target_name); CUDA.@time model, cache = EvoTrees.init(hyper, dtrain, EvoTrees.GPU; target_name); @time EvoTrees.grow_evotree!(model, cache, hyper, EvoTrees.GPU); @btime EvoTrees.grow_evotree!(model, cache, hyper, EvoTrees.GPU); @time m = fit_evotree(hyper, dtrain; target_name, device, verbosity=false); # @btime fit_evotree(hyper, dtrain; target_name, verbosity = false); @time m = fit_evotree(hyper, dtrain; target_name, deval=dtrain, metric=metric_evo, device, print_every_n=100, verbosity=false); @btime m = fit_evotree(hyper, dtrain; target_name, deval=dtrain, metric=metric_evo, device, print_every_n=100, verbosity=false); @time pred = m(dtrain); @btime m($dtrain);
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2891
using Plots using Statistics using StatsBase: sample using Distributions using Revise using EvoTrees features = rand(Int(1.25e4), 1) # prepare a dataset # features = rand(100, 10) X = features Y = randn(size(X, 1)) .* 0.1 Y[X[:,1] .< 0.2] .*= 2 Y[(X[:,1] .>= 0.4) .& (X[:,1] .< 0.6)] .*= 5 Y[(X[:,1] .>= 0.9)] .*= 5 𝑖 = collect(1:size(X,1)) Y .*= 0.01 # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # train model params1 = EvoTreeGaussian( loss=:gaussian, metric=:gaussian, nrounds=200, λ = 1.0, γ=1.0, η=0.5, max_depth = 4, min_weight = 100.0, rowsample=1.0, colsample=1.0, nbins=64) @time model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n = 10); # @time model = fit_evotree(params1, X_train, Y_train, print_every_n = 10); @time pred_train = EvoTrees.predict(model, X_train) @time pred_train_gauss = EvoTrees.predict(params1, model, X_train) pred_gauss = [Distributions.Normal(pred_train[i,1], pred_train[i,2]) for i in 1:size(pred_train,1)] pred_q90 = quantile.(pred_gauss, 0.9) pred_q10 = quantile.(pred_gauss, 0.1) mean(Y_train .< pred_q90) mean(Y_train .< pred_q10) x_perm = sortperm(X_train[:,1]) plot(X_train[:, 1], Y_train, ms = 1, mcolor = "gray", mscolor = "lightgray", background_color = RGB(1, 1, 1), seriestype=:scatter, xaxis = ("feature"), yaxis = ("target"), legend = true, label = "") plot!(X_train[:,1][x_perm], pred_train[x_perm, 1], color = "navy", linewidth = 1.5, label = "mu") plot!(X_train[:,1][x_perm], pred_train[x_perm, 2], color = "blue", linewidth = 1.5, label = "sigma") plot!(X_train[:,1][x_perm], pred_q10[x_perm, 1], color = "darkred", linewidth = 1.5, label = "q10") plot!(X_train[:,1][x_perm], pred_q90[x_perm, 1], color = "green", linewidth = 1.5, label = "q90") savefig("figures/regression_gaussian_v1.png") # compare with zygote using Zygote pred = [0.0, log(1.0)] target = 0.1 δ1 = (target - pred[1]) / max(1e-8, exp(2*pred[2])) δ2 = (1 - (pred[1] - target)^2 / max(1e-8, exp(2*pred[2]))) δ²1 = 1 / max(1e-8, exp(2*pred[2])) δ²2 = 2 / max(1e-8, exp(2*pred[2])) * (pred[1] - target)^2 lpdf(x,μ,σ) = -log(σ) - log(2π)/2 - 1/2*((x-μ)/σ)^2 lpdf(0, pred[1], pred[2]) lpdf2(x,μ,lσ) = -log(exp(lσ)) - log(2π)/2 - 1/2*((x-μ)/exp(lσ))^2 lpdf2(0, pred[1], pred[2]) n1 = Normal(0, 1) Distributions.logpdf(n1, 0) # gradient(lpdf, target, pred[1], pred[2])[2:end] gradient(lpdf2, target, pred[1], pred[2])[2:end] Zygote.hessian(lpdf2, target, pred[1], pred[2]) gradient_lpdf(x,pred) = gradient(lpdf2, x, pred[1], pred[2])[3] hessian_lpdf(x,pred) = gradient(gradient_lpdf, x, pred)[1] gradient_lpdf(target, pred) hessian_lpdf(target, pred)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
7830
using Revise using EvoTrees # using CUDA using CUDA using BenchmarkTools # using Flux # using GeometricFlux nobs = 500_000 nbins = 64 ncol = 50 h∇ = CUDA.zeros(Float32, 3, nbins, ncol) ∇ = CUDA.rand(Float32, 3, nobs) x_bin = CuArray(rand(UInt32.(1:nbins), nobs, ncol)) 𝑖 = CuArray(UInt32.(1:nobs)) 𝑗 = CuArray(UInt32.(1:ncol)) h∇ .= 0 CUDA.@time EvoTrees.update_hist_gpu!(h∇, ∇, x_bin, 𝑖, 𝑗) @btime EvoTrees.update_hist_gpu!($h∇, $∇, $x_bin, $𝑖, $𝑗) items = Int(1e6) hist = zeros(Float32, nbins, ncol) δ = rand(Float32, items) idx = rand(1:nbins, items, ncol) 𝑖 = collect(1:items) 𝑗 = collect(1:ncol) hist_gpu = CuArray(hist) δ_gpu = CuArray(δ) idx_gpu = CuArray(idx) 𝑖_gpu = CuArray(𝑖) 𝑗_gpu = CuArray(𝑗) # CPU function hist_cpu!(hist, δ, idx, 𝑖, 𝑗) Threads.@threads for j in 𝑗 @inbounds for i in 𝑖 hist[idx[i], j] += δ[i] end end return end function kernel_1!(h::CuDeviceMatrix{T}, x::CuDeviceVector{T}, id, 𝑖, 𝑗) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x j = threadIdx().y + (blockIdx().y - 1) * blockDim().y if i <= length(𝑖) && j <= length(𝑗) @inbounds k = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, k), x[𝑖[i]]) end return end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_1!(h::CuMatrix{T}, x::CuVector{T}, id::CuMatrix{Int}, 𝑖, 𝑗; MAX_THREADS=1024) where {T<:AbstractFloat} thread_j = min(MAX_THREADS, length(𝑗)) thread_i = min(MAX_THREADS ÷ thread_j, length(𝑖)) threads = (thread_i, thread_j) blocks = ceil.(Int, (length(𝑖), length(𝑗)) ./ threads) @cuda blocks=blocks threads=threads kernel_1!(h, x, id, 𝑖, 𝑗) return end @time hist_cpu!(hist, δ, idx) CUDA.@time hist_gpu_1!(hist_gpu, δ_gpu, idx_gpu, 𝑖_gpu, 𝑗_gpu, MAX_THREADS=1024) nbins = 32 ncol = 100 items = Int(2e6) K = 1 hist = zeros(Float32, nbins, 3, ncol) δ = rand(Float32, items, 3) idx = rand(1:nbins, items, ncol) 𝑖 = collect(1:items) 𝑗 = collect(1:ncol) hist_gpu = CuArray(hist) δ_gpu = CuArray(δ) idx_gpu = CuArray(idx) 𝑖_gpu = CuArray(𝑖) 𝑗_gpu = CuArray(𝑗) function kernel_2!(h::CuDeviceArray{T,3}, x::CuDeviceMatrix{T}, id, 𝑖, 𝑗) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x j = threadIdx().y + (blockIdx().y - 1) * blockDim().y if i <= length(𝑖) && j <= length(𝑗) @inbounds k1 = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], 1, 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, k1), x[𝑖[i],1]) @inbounds k2 = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], 2, 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, k2), x[𝑖[i],2]) @inbounds k3 = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], 3, 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, k3), x[𝑖[i],3]) end return end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_2!(h::CuArray{T,3}, x::CuMatrix{T}, id::CuMatrix{Int}, 𝑖, 𝑗; MAX_THREADS=1024) where {T<:AbstractFloat} thread_j = min(MAX_THREADS, length(𝑗)) thread_i = min(MAX_THREADS ÷ thread_j, length(𝑖)) threads = (thread_i, thread_j) blocks = ceil.(Int, (length(𝑖), length(𝑗)) ./ threads) @cuda blocks=blocks threads=threads kernel_2!(h, x, id, 𝑖, 𝑗) return end CUDA.@time hist_gpu_2!(hist_gpu, δ_gpu, idx_gpu, 𝑖_gpu, 𝑗_gpu, MAX_THREADS=1024) hist_gpu_1 = Array(hist_gpu) hist_gpu_2 = Array(hist_gpu) diff1 = hist_gpu_2 - hist_gpu_1 ###################################################################################################### # best approach: loop on K indicators ###################################################################################################### function kernel_3!(h::CuDeviceArray{T,3}, x::CuDeviceMatrix{T}, id, 𝑖, 𝑗, K) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x j = threadIdx().y + (blockIdx().y - 1) * blockDim().y if i <= length(𝑖) && j <= length(𝑗) for k in 1:K @inbounds pt = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], k, 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, pt), x[𝑖[i],k]) end end return end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_3!(h::CuArray{T,3}, x::CuMatrix{T}, id::CuMatrix{Int}, 𝑖, 𝑗, K; MAX_THREADS=1024) where {T<:AbstractFloat} thread_j = min(MAX_THREADS, length(𝑗)) thread_i = min(MAX_THREADS ÷ thread_j, length(𝑖)) threads = (thread_i, thread_j) blocks = ceil.(Int, (length(𝑖), length(𝑗)) ./ threads) @cuda blocks=blocks threads=threads kernel_3!(h, x, id, 𝑖, 𝑗, K) return end hist_gpu_1 = Array(hist_gpu) hist_gpu_2 = Array(hist_gpu) diff2 = hist_gpu_2 - hist_gpu_1 diff2 - diff1 CUDA.@time hist_gpu_3!(hist_gpu, δ_gpu, idx_gpu, 𝑖_gpu, 𝑗_gpu, 3, MAX_THREADS=1024) ###################################################################################################### # 3D kernel - instead of iterating on K - Less efficient than the loop on Ks ###################################################################################################### function kernel_3D!(h::CuDeviceArray{T,3}, x::CuDeviceMatrix{T}, id, 𝑖, 𝑗, K) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x j = threadIdx().y + (blockIdx().y - 1) * blockDim().y k = threadIdx().z + (blockIdx().z - 1) * blockDim().z if i <= length(𝑖) && j <= length(𝑗) @inbounds pt = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], k, 𝑗[j]) @inbounds CUDA.atomic_add!(pointer(h, pt), x[𝑖[i],k]) end return end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_3D!(h::CuArray{T,3}, x::CuMatrix{T}, id::CuMatrix{Int}, 𝑖, 𝑗, K; MAX_THREADS=1024) where {T<:AbstractFloat} thread_k = min(MAX_THREADS, K) thread_j = min(MAX_THREADS ÷ thread_k, length(𝑗)) thread_i = min(MAX_THREADS ÷ (thread_k * thread_j), length(𝑖)) threads = (thread_i, thread_j, thread_k) blocks = ceil.(Int, (length(𝑖), length(𝑗), K) ./ threads) @cuda blocks=blocks threads=threads kernel_3D!(h, x, id, 𝑖, 𝑗, K) return end CUDA.@time hist_gpu_3D!(hist_gpu, δ_gpu, idx_gpu, 𝑖_gpu, 𝑗_gpu, 3, MAX_THREADS=1024) hist_gpu_1 = Array(hist_gpu) hist_gpu_2 = Array(hist_gpu) diff1 = hist_gpu_2 - hist_gpu_1 ###################################################################################################### # 3D kernel - instead of iterating on K - No collision approach - single i thread - bad! ###################################################################################################### function kernel_3D2!(h::CuDeviceArray{T,3}, x::CuDeviceMatrix{T}, id, 𝑖, 𝑗, K) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x j = threadIdx().y + (blockIdx().y - 1) * blockDim().y k = threadIdx().z + (blockIdx().z - 1) * blockDim().z if i <= length(𝑖) && j <= length(𝑗) # @inbounds pt = Base._to_linear_index(h, id[𝑖[i], 𝑗[j]], k, 𝑗[j]) @inbounds h[id[𝑖[i], 𝑗[j]], k, 𝑗[j]] += x[𝑖[i],k] end return end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_3D2!(h::CuArray{T,3}, x::CuMatrix{T}, id::CuMatrix{Int}, 𝑖, 𝑗, K; MAX_THREADS=1024) where {T<:AbstractFloat} thread_k = min(MAX_THREADS, K) thread_j = min(MAX_THREADS ÷ thread_k, length(𝑗)) thread_i = 1 threads = (thread_i, thread_j, thread_k) blocks = ceil.(Int, (length(𝑖), length(𝑗), K) ./ threads) @cuda blocks=blocks threads=threads kernel_3D2!(h, x, id, 𝑖, 𝑗, K) return end CUDA.@time hist_gpu_3D2!(hist_gpu, δ_gpu, idx_gpu, 𝑖_gpu, 𝑗_gpu, 3, MAX_THREADS=1024) hist_gpu_1 = Array(hist_gpu) hist_gpu_2 = Array(hist_gpu) diff1 = hist_gpu_2 - hist_gpu_1
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
878
using Revise using EvoTrees using Base.Threads L = EvoTrees.Logistic T = Float64 nobs = 1_000_000 y = rand(T, nobs) pred = rand(T, 1, nobs) K = 1 δ𝑤 = zeros(T, 2 * K + 1, nobs) w = ones(T, nobs) δ𝑤[end, :] .= w # nthreads: 12 Threads.nthreads() function update_grads_v1!(::Type{EvoTrees.Linear}, δ𝑤::Matrix, p::Matrix, y::Vector; kwargs...) @inbounds for i in eachindex(y) δ𝑤[1, i] = 2 * (p[1, i] - y[i]) * δ𝑤[3, i] δ𝑤[2, i] = 2 * δ𝑤[3, i] end end # 958.670 μs (0 allocations: 0 bytes) @btime update_grads_v1!(L, δ𝑤, pred, y) function update_grads_v2!(::Type{EvoTrees.Linear}, δ𝑤::Matrix, p::Matrix, y::Vector; kwargs...) @threads for i in eachindex(y) @inbounds δ𝑤[1, i] = 2 * (p[1, i] - y[i]) * δ𝑤[3, i] @inbounds δ𝑤[2, i] = 2 * δ𝑤[3, i] end end # 958.670 μs (0 allocations: 0 bytes) @btime update_grads_v2!(L, δ𝑤, pred, y)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2037
using EvoTrees module LearnAPI abstract type Config end abstract type Learner end abstract type Model end function fit(config::Config; kwargs...) return nothing end function fit(config::Config, data; kwargs...) return nothing end function init(config::Config, data; kwargs...) return nothing end # function fit!(learner::Learner) # return nothing # end function predict(model::Model, x) return x end function predict!(p, model::Model, x) return nothing end function isiterative(m) end end #module struct EvoLearner params end # 1 args fit: all needed supplemental info passed through kwargs: risk of having fragmentation of naming convention, hard to follow m = LearnAPI.fit(config::Config; kwargs) m = LearnAPI.fit(config::EvoTrees.EvoTypes; x_train=xt, y_train=yt) m = LearnAPI.fit(config::EvoTrees.EvoTypes; x_train=xt, y_train=yt, x_eval=xe, y_eval=ye) # 2 args fit: forces the notion of input data on which training is performed. May facilitates dispatch/specialisation on various supported data typees m = LearnAPI.fit(config::Config, data; kwargs) m = LearnAPI.fit(config::EvoTrees.EvoTypes, (x_train, y_train)) m = LearnAPI.fit(config::EvoTrees.EvoTypes, (x_train, y_train); x_eval=xe, y_eval=ye) m = LearnAPI.fit(config::EvoTrees.EvoTypes, df::DataFrame) # Iterative models import .LearnAPI: isiterative LearnAPI.isiterative(m::EvoTree) = true # 2 args model initialization # Here a EvoTreeLearner is returned: a comprehensive struct that includes the config, the model, and cache/state m = LearnAPI.init(config::Config, data::DataFrame; kwargs) m = LearnAPI.init(config::EvoTrees.EvoTypes, df::DataFrame; x_eval=xe, y_eval=ye) LearnAPI.fit!(m::EvoTree) LearnAPI.fit!(m::EvoTree, data) # LearnAPI.fit!(m, config::EvoTrees.EvoTypes; kwargs) LearnAPI.predict(m::EvoTrees.EvoTypes, x) config = EvoTreeRegressor() # m, cache = LearnAPI.init() # should be possible to have model that specify feature treatment upfront at the Config level? # Or rather have those passed at the fitted level?
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4836
""" mse(p, y) mse(p, y, w) Mean squared error evaluation metric. # Arguments - `p`: predicted value. - `y`: observed target variable. - `w`: vector of weights. """ function mse(p::Matrix{T}, y::Vector{T}) where {T} metric = zero(eltype(p)) @turbo for i in eachindex(y) metric += (y[i] - p[i])^2 end return metric / length(p) end function mse(p::Matrix{T}, y::Vector{T}, w::Vector{T}) where {T} metric = zero(eltype(p)) @turbo for i in eachindex(y) metric += (y[i] - p[i])^2 * w[i] end return metric / sum(w) end mse(p, y, w::Nothing) = mse(p, y) """ mae(p, y) mae(p, y, w) Mean absolute error evaluation metric. # Arguments - `p`: predicted value. - `y`: observed target variable. - `w`: vector of weights. """ function mae(p, y) metric = zero(eltype(p)) @turbo for i in eachindex(y) metric += abs(y[i] - p[i]) end return metric / length(p) end function mae(p, y, w) metric = zero(eltype(p)) @turbo for i in eachindex(y) metric += abs(y[i] - p[i]) * w[i] end return metric / sum(w) end mae(p, y, w::Nothing) = mae(p, y) """ logloss(p, y) logloss(p, y, w) Logloss evaluation metric. ylog(p) + (1-y)log(1-p) # Arguments - `p`: predicted value. Assumes that p is on a projected basis (ie. in the `[0-1]` range). - `y`: observed target variable. - `w`: vector of weights. """ function logloss(p, y) ϵ = eps(eltype(y)(1e-7)) metric = zero(eltype(p)) _p = sigmoid.(p) @turbo for i in eachindex(y) metric += -(y[i] * log(_p[i] + ϵ) + (1 - y[i]) * log(1 - _p[i] + ϵ)) end return metric / length(p) end function logloss(p, y, w) ϵ = eps(eltype(y)(1e-7)) metric = zero(eltype(p)) _p = sigmoid.(p) @turbo for i in eachindex(y) metric += -(y[i] * log(_p[i] + ϵ) + (1 - y[i]) * log(1 - _p[i] + ϵ)) * w[i] end return metric / sum(w) end logloss(p, y, w::Nothing) = logloss(p, y) """ poisson_deviance(p, y) poisson_deviance(p, y, w) Poisson deviance evaluation metric. `𝐷 = 2 * (y * log(y/p) + p - y)` # Arguments - `p`: predicted value. Assumes that p is on a projected basis (ie. in the `[0-Inf]` range). - `y`: observed target variable. - `w`: vector of weights. """ function poisson_deviance(p, y) ϵ = eps(eltype(p)(1e-7)) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (y[i] * log(y[i] / p[i] + ϵ) + p[i] - y[i]) end return metric / length(p) end function poisson_deviance(p, y, w) ϵ = eps(eltype(p)(1e-7)) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (y[i] * log(y[i] / p[i] + ϵ) + p[i] - y[i]) * w[i] end return metric / sum(w) end poisson_deviance(p, y, w::Nothing) = poisson_deviance(p, y) """ gamma_deviance(p, y) gamma_deviance(p, y, w) Gamma deviance evaluation metric. `𝐷 = 2 * (log(μ/y) + y/μ - 1)` # Arguments - `p`: predicted value. Assumes that p is on a projected basis (ie. in the `[0-Inf]` range). - `y`: observed target variable. - `w`: vector of weights. """ function gamma_deviance(p, y) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (log(p[i] / y[i]) + y[i] / p[i] - 1) end return metric / length(p) end function gamma_deviance(p, y, w) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (log(p[i] / y[i]) + y[i] / p[i] - 1) * w[i] end return metric / sum(w) end gamma_deviance(p, y, w::Nothing) = gamma_deviance(p, y) """ tweedie_deviance(p, y) tweedie_deviance(p, y, w) Tweedie deviance evaluation metric. Fixed rho (ρ) of 1.5. 𝐷 = 2 * (y²⁻ʳʰᵒ/(1-rho)(2-rho) - yμ¹⁻ʳʰᵒ/(1-rho) + μ²⁻ʳʰᵒ/(2-rho)) # Arguments - `p`: predicted value. Assumes that p is on a projected basis (ie. in the `[0-Inf]` range). - `y`: observed target variable. - `w`: vector of weights. """ function tweedie_deviance(p, y) rho = eltype(p)(1.5) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (y[i]^(2 - rho) / (1 - rho) / (2 - rho) - y[i] * p[i]^(1 - rho) / (1 - rho) + p[i]^(2 - rho) / (2 - rho)) end return metric / length(p) end function tweedie_deviance(p, y, w) rho = eltype(p)(1.5) metric = zero(eltype(p)) _p = exp.(p) @turbo for i in eachindex(y) metric += 2 * (y[i]^(2 - rho) / (1 - rho) / (2 - rho) - y[i] * p[i]^(1 - rho) / (1 - rho) + p[i]^(2 - rho) / (2 - rho)) * w[i] end return metric / sum(w) end tweedie_deviance(p, y, w::Nothing) = tweedie_deviance(p, y) const metric_dict = Dict( :mse => mse, :mae => mae, :logloss => logloss, :poisson_deviance => poisson_deviance, :gamma_deviance => gamma_deviance, :tweedie_deviance => tweedie_deviance )
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5449
using Revise using BenchmarkTools using Statistics using StatsBase: sample, quantile using Distributions using Random using Plots using EvoTrees using EvoTrees: sigmoid, logit # using ProfileView # prepare a dataset Random.seed!(12) features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] # linear params1 = EvoTreeRegressor(T=Float64, loss=:linear, metric=:mae, nrounds=20, nbins=64, lambda=0.1, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123) @time model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=5); @time pred_train_linear = predict(model, x_train); mean(abs.(pred_train_linear .- y_train)) # offset @time model_offset = fit_evotree(params1; x_train, y_train, x_eval, y_eval, offset_train=pred_train_linear, print_every_n=25); @time pred_train_linear_offset = pred_train_linear .+ predict(model_offset, x_train); mean(abs.(pred_train_linear_offset .- y_train)) x_perm = sortperm(x_train[:, 1]) plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") plot!(x_train[:, 1][x_perm], pred_train_linear[x_perm], color="navy", linewidth=1.5, label="Linear") plot!(x_train[:, 1][x_perm], pred_train_linear_offset[x_perm], color="lightblue", linewidth=1.5, label="Linear-Offset") ############################### ## gaussian - cpu ############################### params1 = EvoTreeGaussian( loss=:gaussian, metric=:gaussian, nrounds=20, nbins=64, lambda=0.1, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=1.0, colsample=1.0, rng=123) @time model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=5); @time pred_train = EvoTrees.predict(model, x_train); @time pred_eval = EvoTrees.predict(model, x_eval); @time model_res = fit_evotree(params1; x_train, y_train, offset_train=copy(pred_train), x_eval, y_eval, offset_eval=copy(pred_eval), print_every_n=5); @time pred_train_res = EvoTrees.predict(model_res, x_train); pred_train_stack = copy(pred_train) pred_train_stack[:, 2] .= log.(pred_train_stack[:, 2]) pred_train_res_stack = copy(pred_train_res) pred_train_res_stack[:, 2] .= log.(pred_train_res_stack[:, 2]) pred_train_tot = pred_train_stack + pred_train_res_stack pred_train_tot[:, 2] .= exp.(pred_train_tot[:, 2]) x_perm = sortperm(x_train[:, 1]) plot(x_train[:, 1], y_train, ms=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") plot!(x_train[:, 1][x_perm], pred_train[x_perm, 1], color="navy", linewidth=1.5, label="mu") plot!(x_train[:, 1][x_perm], pred_train_res[x_perm, 1], color="blue", linewidth=1.5, label="mu-res") plot!(x_train[:, 1][x_perm], pred_train_tot[x_perm, 1], color="lightblue", linewidth=1.5, label="mu-tot") plot!(x_train[:, 1][x_perm], pred_train[x_perm, 2], color="darkred", linewidth=1.5, label="sigma") plot!(x_train[:, 1][x_perm], pred_train_res[x_perm, 2], color="red", linewidth=1.5, label="sigma-res") plot!(x_train[:, 1][x_perm], pred_train_tot[x_perm, 2], color="pink", linewidth=1.5, label="sigma-tot") ############################### ## gaussian - gpu ############################### params1 = EvoTreeGaussian( loss=:gaussian, metric=:gaussian, nrounds=20, nbins=64, lambda=0.1, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=1.0, colsample=1.0, rng=123, device="gpu") @time model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=5); @time pred_train = EvoTrees.predict(model, x_train); @time pred_eval = EvoTrees.predict(model, x_eval); @time model_res = fit_evotree(params1; x_train, y_train, offset_train=copy(pred_train), x_eval, y_eval, offset_eval=copy(pred_eval), print_every_n=5); @time pred_train_res = EvoTrees.predict(model_res, x_train); pred_train_stack = copy(pred_train) pred_train_stack[:, 2] .= log.(pred_train_stack[:, 2]) pred_train_res_stack = copy(pred_train_res) pred_train_res_stack[:, 2] .= log.(pred_train_res_stack[:, 2]) pred_train_tot = pred_train_stack + pred_train_res_stack pred_train_tot[:, 2] .= exp.(pred_train_tot[:, 2]) x_perm = sortperm(x_train[:, 1]) plot(x_train[:, 1], y_train, ms=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") plot!(x_train[:, 1][x_perm], pred_train[x_perm, 1], color="darkblue", linewidth=1.5, label="mu") plot!(x_train[:, 1][x_perm], pred_train_res[x_perm, 1], color="blue", linewidth=1.5, label="mu-res") plot!(x_train[:, 1][x_perm], pred_train_tot[x_perm, 1], color="lightblue", linewidth=1.5, label="mu-tot") plot!(x_train[:, 1][x_perm], pred_train[x_perm, 2], color="darkred", linewidth=1.5, label="sigma") plot!(x_train[:, 1][x_perm], pred_train_res[x_perm, 2], color="red", linewidth=1.5, label="sigma-res") plot!(x_train[:, 1][x_perm], pred_train_tot[x_perm, 2], color="pink", linewidth=1.5, label="sigma-tot")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2206
using Statistics using StatsBase: sample using EvoTrees using BenchmarkTools using Plots # prepare a dataset features = rand(Int(1.25e5), 100) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] ############################# # CPU - linear ############################# params1 = EvoTreeRegressor( T = Float32, loss = :linear, nrounds = 10, lambda = 1.0, gamma = 0.1, eta = 0.2, max_depth = 5, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, device = "cpu", ) # for 100k 10 rounds: 410.477 ms (44032 allocations: 182.68 MiB) # for 100k 100 rounds: 2.177 s (404031 allocations: 626.45 MiB) # for 1.25e6 no eval: 6.244 s (73955 allocations: 2.18 GiB) # for 1.25e6 mse with eval data: 6.345 s (74009 allocations: 2.18 GiB) @time model = fit_evotree(params1; x_train, y_train); plot(model, 3) params1 = EvoTreeRegressor( T = Float32, loss = :linear, nrounds = 10, lambda = 1.0, gamma = 0.5, eta = 0.2, max_depth = 5, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 32, device = "gpu", ) # for 100k 10 rounds: 410.477 ms (44032 allocations: 182.68 MiB) # for 100k 100 rounds: 2.177 s (404031 allocations: 626.45 MiB) # for 1.25e6 no eval: 6.244 s (73955 allocations: 2.18 GiB) # for 1.25e6 mse with eval data: 6.345 s (74009 allocations: 2.18 GiB) @time model = fit_evotree(params1; x_train, y_train); ############################# # CPU - Gaussian ############################# params1 = EvoTreeGaussian( T = Float64, loss = :gaussian, metric = :none, nrounds = 10, λ = 1.0, γ = 0.1, η = 0.1, max_depth = 5, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 64, device = "gpu", ) @time model = fit_evotree(params1, X_train, Y_train); EvoTrees.save(model, "data/model_gaussian_gpu.bson")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
8208
using Revise using Statistics using StatsBase: sample using EvoTrees using BenchmarkTools # prepare a dataset features = rand(Int(1.25e6), 11) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] ############################# # CPU - linear ############################# params1 = EvoTreeRegressor(T=Float32, loss=:linear, metric=:mse, nrounds=100, lambda=1.0, gamma=0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64) # asus laptopt: for 1.25e6 no eval: 9.650007 seconds (893.53 k allocations: 2.391 GiB, 5.52% gc time) @time model = fit_evotree(params1; x_train, y_train); @time model = fit_evotree(params1; x_train, y_train, metric=:mse, x_eval, y_eval, print_every_n=20, verbosity=1); @btime model = fit_evotree(params1; x_train, y_train); @time pred_train = predict(model, x_train); @btime pred_train = predict(model, x_train); gain = importance(model) @time model, logger = fit_evotree(params1; x_train, y_train, metric=:mse, x_eval, y_eval, early_stopping_rounds=10, print_every_n=10, return_logger=true); plot(logger[:metrics]) @time model, cache = EvoTrees.init_evotree(params1; x_train, y_train); @time EvoTrees.grow_evotree!(model, cache, params1); ############################# # CPU - Logistic ############################# params1 = EvoTreeRegressor(T=Float32, loss=:logistic, metric=:logloss, nrounds=100, lambda=1.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64) @time model = fit_evotree(params1; x_train, y_train); @time pred = predict(model, x_train); # @code_warntype pred = predict(model, x_train) # @code_warntype pred = predict(model, x_train) ############################# # CPU - Gaussian ############################# params1 = EvoTreeGaussian(T=Float32, loss=:gaussian, metric=:gaussian, nrounds=100, lambda=1.0, gamma=0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=32) # Asus laptop: 19.396380 seconds (894.90 k allocations: 3.810 GiB, 3.05% gc time) @time model = fit_evotree(params1; x_train, y_train); # Asus laptop: 1.667185 seconds (2.41 k allocations: 1.658 GiB) @time model, cache = EvoTrees.init_evotree(params1, x_train, y_train); ################################ # GPU - Linear ################################ # train model params1 = EvoTreeRegressor(T=Float32, loss=:linear, metric=:mse, nrounds=100, lambda=1.0, gamma=0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, device="gpu") # Asus laptop: 10.015568 seconds (13.80 M allocations: 1.844 GiB, 4.00% gc time) @time model = EvoTrees.fit_evotree(params1; x_train, y_train); @btime model = EvoTrees.fit_evotree(params1; x_train, y_train); @time model, cache = EvoTrees.init_evotree_gpu(params1; x_train, y_train); @time EvoTrees.grow_evotree!(model, cache); using MLJBase mach1 = machine(EvoTreeRegressor(loss=:linear, device="gpu", max_depth=5, eta=0.01, nrounds=10), x_train, y_train, cache=true) mach2 = machine(EvoTreeRegressor(loss=:linear, device="gpu", max_depth=5, eta=0.01, nrounds=10), x_train, y_train, cache=false) mach3 = machine(EvoTreeRegressor(loss=:linear, device="gpu", max_depth=5, eta=0.01, nrounds=10), x_train, y_train, cache=false) fit!(mach1) # X_train_32 = Float32.(X_train) @time pred_train = EvoTrees.predict(model, X_train); @btime pred_train = EvoTrees.predict(model, X_train); mean(pred_train) ################################ # GPU - Logistic ################################ # train model params1 = EvoTreeRegressor(T=Float32, loss=:logistic, metric=:logloss, nrounds=100, lambda=1.0, gamma=0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64, device="gpu") @time model = fit_evotree(params1, X_train, Y_train); @time pred_train = predict(model, X_train) ################################ # GPU - Gaussian ################################ params1 = EvoTreeGaussian(T=Float32, loss=:gaussian, nrounds=100, lambda=1.0, gamma=0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=32, device="gpu") # Asus laptop: 14.304369 seconds (24.81 M allocations: 2.011 GiB, 1.90% gc time) @time model = EvoTrees.fit_evotree(params1; x_train, y_train); # Auss laptop: 1.888472 seconds (8.40 k allocations: 1.613 GiB, 14.86% gc time) @time model, cache = EvoTrees.init_evotree(params1, X_train, Y_train); ############################ # xgboost ############################ using XGBoost num_round = 100 param = ["max_depth" => 5, "eta" => 0.05, "objective" => "reg:squarederror", "print_every_n" => 5, "subsample" => 0.5, "colsample_bytree" => 0.5, "tree_method" => "hist", "nthread" => 16, "max_bin" => 32] metrics = ["rmse"] @time xgboost(X_train, num_round, label=Y_train, param=param, metrics=metrics, silent=1); @time dtrain = DMatrix(X_train, label=Y_train) @time model_xgb = xgboost(dtrain, num_round, param=param, silent=1); @btime model_xgb = xgboost(dtrain, num_round, param=param, silent=1); @time pred_train = XGBoost.predict(model_xgb, X_train) @time model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n=9999, early_stopping_rounds=9999); @btime model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n=9999, early_stopping_rounds=9999); @time model = fit_evotree(params1, X_train, Y_train, early_stopping_rounds=10); @time model = fit_evotree(params1, X_train, Y_train, print_every_n=2); # @time model = grow_gbtree(X_train, Y_train, params1, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 5); # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval); @time pred_train = predict(model, X_train) @code_warntype predict(model, X_train) @time pred = zeros(SVector{1,Float64}, size(X_train, 1)) @time EvoTrees.predict!(pred, model.trees[2], X_train) @time predict(model, X_train) @btime pred_train = predict($model, $X_train) mean(abs.(pred_train .- Y_train)) # logistic params1 = EvoTreeRegressor( loss=:logistic, metric=:logloss, nrounds=100, λ=0.0f0, γ=0.0f0, η=0.1f0, max_depth=6, min_weight=1.0f0, rowsample=0.5f0, colsample=0.5f0, α=0.5f0, nbins=32) @time model = fit_evotree(params1, X_train, Y_train); @time model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n=10) @time pred_train = predict(model, X_train) # Quantile params1 = EvoTreeRegressor( loss=:quantile, metric=:quantile, α=0.80f0, nrounds=100, λ=0.1f0, γ=0.0f0, η=0.1f0, max_depth=6, min_weight=1.0f0, rowsample=0.5f0, colsample=0.5f0, nbins=32) @time model = fit_evotree(params1, X_train, Y_train); @time model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n=10) @time pred_train = predict(model, X_train) # gaussian params1 = EvoTreeGaussian( loss=:gaussian, metric=:gaussian, nrounds=100, α=0.5f0, λ=0.0f0, γ=0.0f0, η=0.1f0, max_depth=6, min_weight=10.0f0, rowsample=0.5f0, colsample=0.5f0, nbins=32) @time model = fit_evotree(params1, X_train, Y_train); @time model = fit_evotree(params1, X_train, Y_train, X_eval=X_eval, Y_eval=Y_eval, print_every_n=10) @time pred_train = predict(model, X_train) # softmax params1 = EvoTreeClassifier( loss=:softmax, metric=:mlogloss, nrounds=100, α=0.5f0, λ=0.0f0, γ=0.0f0, η=0.1f0, max_depth=6, min_weight=10.0f0, rowsample=0.5f0, colsample=0.5f0, nbins=32) Y_train_int = UInt32.(round.(Y_train * 2) .+ 1) Y_eval_int = UInt32.(round.(Y_eval * 2) .+ 1) Y_train_int = Int.(Y_train_int) @time model = fit_evotree(params1, X_train, Y_train_int, print_every_n=10); @time model = fit_evotree(params1, X_train, Y_train_int, X_eval=X_eval, Y_eval=Y_eval_int, print_every_n=10) @time pred_train = predict(model, X_train)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2590
using Revise using BenchmarkTools using Statistics using StatsBase: sample, quantile using Distributions using Random using Plots using EvoTrees using DataFrames using CategoricalArrays using EvoTrees: predict, sigmoid, logit # using ProfileView # prepare a dataset nobs = 10_000 Random.seed!(123) x_num = rand(nobs) .* 5 lvls = ["A", "B", "C"] x_cat = categorical(rand(lvls, nobs), levels=lvls, ordered=false) levels(x_cat) isordered(x_cat) y = sin.(x_num) .* 0.5 .+ 0.5 y = logit(y) .+ 1.0 .* (x_cat .== "B") .- 1.0 .* (x_cat .== "C") + randn(nobs) y = sigmoid(y) is = collect(1:nobs) dtot = DataFrame(x_num=x_num, x_cat=x_cat, y=y) # train-eval split is = sample(is, length(is), replace=false) train_size = 0.8 i_train = is[1:floor(Int, train_size * size(is, 1))] i_eval = is[floor(Int, train_size * size(is, 1))+1:end] dtrain = dtot[i_train, :] deval = dtot[i_eval, :] # linear params1 = EvoTreeRegressor( T=Float32, loss=:linear, nrounds=200, nbins=64, lambda=0.1, gamma=0.05, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) @time model = fit_evotree( params1, dtrain; fnames=["x_cat", "x_num"], target_name="y", deval, metric=:mse, print_every_n=25, early_stopping_rounds=20, verbosity=0 ); pred = model(dtrain); # @btime model = fit_evotree( # params1, # dtrain; # fnames="x_num", # target_name="y", # verbosity=0 # ); # laptop: 51.651 ms (237548 allocations: 23.94 MiB) # plot(logger[:metrics]) # @time pred_train_linear = predict(model, x_train); # @time pred_eval_linear = predict(model, x_eval) # mean((pred_train_linear .- y_train) .^ 2) # mean((pred_eval_linear .- y_eval) .^ 2) plot( dtrain.x_num, dtrain.y, msize=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) dinfer = dtrain[dtrain.x_cat.=="A", :] pred = model(dinfer) x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="lightblue", linewidth=1.5, label="Linear - A", ) dinfer = dtrain[dtrain.x_cat.=="B", :] pred = model(dinfer); x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="blue", linewidth=1.5, label="Linear - B", ) dinfer = dtrain[dtrain.x_cat.=="C", :] pred = model(dinfer); x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="navy", linewidth=1.5, label="Linear - C", )
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2689
using Revise using BenchmarkTools using Statistics using StatsBase: sample, quantile using Distributions using Random using Plots using CUDA using EvoTrees using DataFrames using CategoricalArrays using EvoTrees: predict, sigmoid, logit # using ProfileView device = "gpu" # prepare a dataset nobs = 10_000 Random.seed!(123) x_num = rand(nobs) .* 5 x_cat = categorical(rand(["A", "B", "C"], nobs)) y = sin.(x_num) .* 0.5 .+ 0.5 y = logit(y) .+ 1.0 .* (x_cat .== "B") .- 1.0 .* (x_cat .== "C") + randn(nobs) y = sigmoid(y) is = collect(1:nobs) dtot = DataFrame(x_num=x_num, x_cat=x_cat, y=y) # train-eval split is = sample(is, length(is), replace=false) train_size = 0.8 i_train = is[1:floor(Int, train_size * size(is, 1))] i_eval = is[floor(Int, train_size * size(is, 1))+1:end] dtrain = dtot[i_train, :] deval = dtot[i_eval, :] # linear params1 = EvoTreeRegressor( T=Float32, loss=:linear, nrounds=200, nbins=64, lambda=0.1, gamma=0.05, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) @time model = EvoTrees.fit_evotree( params1, dtrain; fnames=["x_num", "x_cat"], target_name="y", deval, device, metric=:mse, print_every_n=25, early_stopping_rounds=20, verbosity=0 ); @time pred = model(dtrain); @time pred = model(dtrain; device); # @btime model = EvoTrees.fit_evotree_df( # params1; # dtrain, # fnames_num="x_num", # target_name="y", # # print_every_n = 25, # # early_stopping_rounds = 20, # verbosity=0 # ); # laptop: 51.651 ms (237548 allocations: 23.94 MiB) # plot(logger[:metrics]) # @time pred_train_linear = predict(model, x_train); # @time pred_eval_linear = predict(model, x_eval) # mean((pred_train_linear .- y_train) .^ 2) # mean((pred_eval_linear .- y_eval) .^ 2) plot( dtrain.x_num, dtrain.y, msize=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) dinfer = dtrain[dtrain.x_cat.=="A", :] pred = model(dinfer) x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="lightblue", linewidth=1.5, label="Linear - A", ) dinfer = dtrain[dtrain.x_cat.=="B", :] pred = model(dinfer); x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="blue", linewidth=1.5, label="Linear - B", ) dinfer = dtrain[dtrain.x_cat.=="C", :] pred = model(dinfer); x_perm = sortperm(dinfer.x_num) plot!( dinfer.x_num[x_perm], pred[x_perm], color="navy", linewidth=1.5, label="Linear - C", )
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
13022
using Revise using BenchmarkTools using Statistics using StatsBase: sample, quantile using Distributions using Random using Plots using EvoTrees using EvoTrees: predict, sigmoid, logit # using ProfileView tree_type = "binary" # prepare a dataset Random.seed!(123) features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) is = collect(1:size(X, 1)) # train-eval split is = sample(is, length(is), replace=false) train_size = 0.8 i_train = is[1:floor(Int, train_size * size(is, 1))] i_eval = is[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] # linear params1 = EvoTreeRegressor(; loss=:mse, alpha=1, nrounds=200, nbins=64, lambda=0.01, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, rng=122 ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25, early_stopping_rounds=20 ); # plot(model, 2) # laptop: 51.651 ms (237548 allocations: 23.94 MiB) # @btime model = fit_evotree(params1; x_train, y_train, x_eval = x_eval, y_eval = y_eval, metric = :mse, print_every_n = 999, verbosity=0); # Profile.clear() # in case we have any previous profiling data # @profile fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 25) # ProfileView.view() model, logger = fit_evotree( params1; x_train, y_train, metric=:mse, x_eval, y_eval, early_stopping_rounds=20, print_every_n=10, return_logger=true ); # plot(logger[:metrics]) # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval, print_every_n = 25, metric=:mae) @time pred_train_linear = model(x_train); @time pred_eval_linear = model(x_eval) mean((pred_train_linear .- y_train) .^ 2) mean((pred_eval_linear .- y_eval) .^ 2) # linear weighted params1 = EvoTreeRegressor(; T=Float64, loss=:linear, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, rng=123 ) # W_train = ones(eltype(Y_train), size(Y_train)) .* 5 w_train = rand(eltype(y_train), size(y_train)) .+ 0 @time model = fit_evotree( params1; x_train, y_train, w_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:mse ); # 67.159 ms (77252 allocations: 28.06 MiB) # @time model = fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 999); # @btime model = fit_evotree($params1, $X_train, $Y_train, X_eval = $X_eval, Y_eval = $Y_eval); # Profile.clear() # in case we have any previous profiling data # @profile fit_evotree(params1, X_train, Y_train, X_eval = X_eval, Y_eval = Y_eval, print_every_n = 25) # ProfileView.view() # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval, print_every_n = 25, metric=:mae) @time pred_train_linear_w = model(x_train); @time pred_eval_linear_w = model(x_eval) mean(abs.(pred_train_linear_w .- y_train)) sqrt(mean((pred_train_linear_w .- y_train) .^ 2)) # logistic / cross-entropy params1 = EvoTreeRegressor(; loss=:logistic, nrounds=200, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:logloss ); # 218.040 ms (123372 allocations: 34.71 MiB) # @btime model = fit_evotree($params1, $X_train, $Y_train, X_eval = $X_eval, Y_eval = $Y_eval) @time pred_train_logistic = model(x_train); @time pred_eval_logistic = model(x_eval) sqrt(mean((pred_train_logistic .- y_train) .^ 2)) # L1 params1 = EvoTreeRegressor(; loss=:l1, alpha=0.5, nrounds=500, nbins=64, lambda=0.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:mae ); @time pred_train_L1 = model(x_train) @time pred_eval_L1 = model(x_eval) sqrt(mean((pred_train_L1 .- y_train) .^ 2)) x_perm = sortperm(x_train[:, 1]) plot( x_train, y_train, msize=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train_linear[x_perm], color="navy", linewidth=1.5, label="Linear", ) plot!( x_train[:, 1][x_perm], pred_train_linear_w[x_perm], color="lightblue", linewidth=1.5, label="LinearW", ) plot!( x_train[:, 1][x_perm], pred_train_logistic[x_perm], color="darkred", linewidth=1.5, label="Logistic", ) plot!( x_train[:, 1][x_perm], pred_train_L1[x_perm], color="darkgreen", linewidth=1.5, label="L1", ) savefig("figures/regression-sinus-$tree_type.png") # Poisson params1 = EvoTreeCount(; loss=:poisson, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:poisson ); @time pred_train_poisson = model(x_train); sqrt(mean((pred_train_poisson .- y_train) .^ 2)) # Gamma params1 = EvoTreeRegressor(; loss=:gamma, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:gamma ); @time pred_train_gamma = model(x_train); sqrt(mean((pred_train_gamma .- y_train) .^ 2)) # Tweedie params1 = EvoTreeRegressor(; loss=:tweedie, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:tweedie ); @time pred_train_tweedie = model(x_train); sqrt(mean((pred_train_tweedie .- y_train) .^ 2)) x_perm = sortperm(x_train[:, 1]) plot( x_train, y_train, msize=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train_poisson[x_perm], color="navy", linewidth=1.5, label="Poisson", ) plot!( x_train[:, 1][x_perm], pred_train_gamma[x_perm], color="lightblue", linewidth=1.5, label="Gamma", ) plot!( x_train[:, 1][x_perm], pred_train_tweedie[x_perm], color="darkred", linewidth=1.5, label="Tweedie", ) savefig("figures/regression-sinus2-$tree_type.png") ############################### ## Quantiles ############################### # q50 params1 = EvoTreeRegressor(; loss=:quantile, alpha=0.5, nrounds=500, nbins=64, lambda=0.1, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:mae ); # 116.822 ms (74496 allocations: 36.41 MiB) for 100 iterations # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval) @time pred_train_q50 = model(x_train) sum(pred_train_q50 .< y_train) / length(y_train) # q20 params1 = EvoTreeRegressor(; loss=:quantile, alpha=0.2, nrounds=300, nbins=64, lambda=0.1, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25); @time pred_train_q20 = model(x_train) sum(pred_train_q20 .< y_train) / length(y_train) # q80 params1 = EvoTreeRegressor(; loss=:quantile, alpha=0.8, nrounds=300, nbins=64, lambda=0.1, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type, ) @time model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25) @time pred_train_q80 = model(x_train) sum(pred_train_q80 .< y_train) / length(y_train) x_perm = sortperm(x_train[:, 1]) plot( x_train, y_train, ms=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train_q50[x_perm], color="navy", linewidth=1.5, label="Median", ) plot!( x_train[:, 1][x_perm], pred_train_q20[x_perm], color="darkred", linewidth=1.5, label="Q20", ) plot!( x_train[:, 1][x_perm], pred_train_q80[x_perm], color="darkgreen", linewidth=1.5, label="Q80", ) savefig("figures/quantiles-sinus-$tree_type.png") ############################### ## gaussian ############################### params1 = EvoTreeMLE(; T=Float64, loss=:gaussian, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=10, rowsample=0.5, colsample=1.0, rng=123, tree_type, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:gaussian ); # @time model = fit_evotree(params1, X_train, Y_train, print_every_n = 10); @time pred_train = model(x_train); # @btime pred_train = EvoTrees.predict(model, X_train); pred_gauss = [Distributions.Normal(pred_train[i, 1], pred_train[i, 2]) for i in axes(pred_train, 1)] pred_q80 = quantile.(pred_gauss, 0.8) pred_q20 = quantile.(pred_gauss, 0.2) mean(y_train .< pred_q80) mean(y_train .< pred_q20) x_perm = sortperm(x_train[:, 1]) plot( x_train[:, 1], y_train, ms=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train[x_perm, 1], color="navy", linewidth=1.5, label="mu", ) plot!( x_train[:, 1][x_perm], pred_train[x_perm, 2], color="darkred", linewidth=1.5, label="sigma", ) plot!( x_train[:, 1][x_perm], pred_q20[x_perm, 1], color="darkgreen", linewidth=1.5, label="q20", ) plot!( x_train[:, 1][x_perm], pred_q80[x_perm, 1], color="darkgreen", linewidth=1.5, label="q80", ) savefig("figures/gaussian-sinus-$tree_type.png") ############################### ## Logistic ############################### params1 = EvoTrees.EvoTreeMLE(; loss=:logistic, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=10, rowsample=0.5, colsample=1.0, tree_type, rng=123, ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:logistic_mle ); # @time model = fit_evotree(params1, X_train, Y_train, print_every_n = 10); @time pred_train = model(x_train); # @btime pred_train = EvoTrees.predict(model, X_train); pred_logistic = [ Distributions.Logistic(pred_train[i, 1], pred_train[i, 2]) for i in axes(pred_train, 1) ] pred_q80 = quantile.(pred_logistic, 0.8) pred_q20 = quantile.(pred_logistic, 0.2) mean(y_train .< pred_q80) mean(y_train .< pred_q20) x_perm = sortperm(x_train[:, 1]) plot( x_train[:, 1], y_train, ms=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train[x_perm, 1], color="navy", linewidth=1.5, label="mu", ) plot!( x_train[:, 1][x_perm], pred_train[x_perm, 2], color="darkred", linewidth=1.5, label="s", ) plot!( x_train[:, 1][x_perm], pred_q20[x_perm, 1], color="darkgreen", linewidth=1.5, label="q20", ) plot!( x_train[:, 1][x_perm], pred_q80[x_perm, 1], color="darkgreen", linewidth=1.5, label="q80", ) savefig("figures/logistic-sinus-$tree_type.png")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
6525
using BenchmarkTools using Statistics using StatsBase: sample, quantile using Distributions using Random using Plots using Revise using CUDA using EvoTrees using EvoTrees: predict, sigmoid, logit # using ProfileView # prepare a dataset tree_type = "binary" # binary/oblivious device = "gpu" Random.seed!(123) features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) is = collect(1:size(X, 1)) # train-eval split i_sample = sample(is, size(is, 1), replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * size(is, 1))] i_eval = i_sample[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] # linear params1 = EvoTreeRegressor(; loss=:linear, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) # @time model = fit_evotree(params1; x_train, y_train); @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25, early_stopping_rounds=50, device ); # model, logger = fit_evotree(params1; x_train, y_train, metric=:mse, x_eval, y_eval, early_stopping_rounds=20, print_every_n=10, return_logger=true); @time pred_train_linear_cpu = model(x_train) @time pred_train_linear_gpu = model(x_train; device) sum(pred_train_linear_gpu .- pred_train_linear_cpu) # @btime model = grow_gbtree($X_train, $Y_train, $params1, X_eval = $X_eval, Y_eval = $Y_eval, print_every_n = 25, metric=:mae) @time pred_train_linear = predict(model, x_train) mean(abs.(pred_train_linear .- y_train)) sqrt(mean((pred_train_linear .- y_train) .^ 2)) # logistic / cross-entropy params1 = EvoTreeRegressor(; T=Float32, loss=:logistic, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:logloss, print_every_n=25, early_stopping_rounds=50, device ); @time pred_train_logistic = model(x_train; device) sqrt(mean((pred_train_logistic .- y_train) .^ 2)) # poisson params1 = EvoTreeCount(; T=Float32, loss=:poisson, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:poisson, print_every_n=25, early_stopping_rounds=50, device ); @time pred_train_poisson = model(x_train; device) sqrt(mean((pred_train_poisson .- y_train) .^ 2)) # gamma params1 = EvoTreeRegressor(; T=Float32, loss=:gamma, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:gamma, print_every_n=25, early_stopping_rounds=50, device ); @time pred_train_gamma = model(x_train; device) sqrt(mean((pred_train_gamma .- y_train) .^ 2)) # tweedie params1 = EvoTreeRegressor(; loss=:tweedie, nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, tree_type ) @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:tweedie, print_every_n=25, early_stopping_rounds=50, device ); @time pred_train_tweedie = model(x_train; device) sqrt(mean((pred_train_tweedie .- y_train) .^ 2)) x_perm = sortperm(x_train[:, 1]) plot( x_train, y_train, msize=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train_linear[x_perm], color="navy", linewidth=1.5, label="Linear", ) plot!( x_train[:, 1][x_perm], pred_train_logistic[x_perm], color="darkred", linewidth=1.5, label="Logistic", ) plot!( x_train[:, 1][x_perm], pred_train_poisson[x_perm], color="green", linewidth=1.5, label="Poisson", ) plot!( x_train[:, 1][x_perm], pred_train_gamma[x_perm], color="pink", linewidth=1.5, label="Gamma", ) plot!( x_train[:, 1][x_perm], pred_train_tweedie[x_perm], color="orange", linewidth=1.5, label="Tweedie", ) savefig("figures/regression-sinus-$tree_type-gpu.png") ############################### ## gaussian ############################### params1 = EvoTreeGaussian(; nrounds=500, nbins=64, lambda=0.1, gamma=0.1, eta=0.1, max_depth=6, min_weight=10, rowsample=0.5, colsample=1.0, rng=123, tree_type ) @time model = fit_evotree(params1; x_train, y_train); @time model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, print_every_n=25, early_stopping_rounds=50, metric=:gaussian, device ); # @time model = fit_evotree(params1, X_train, Y_train, print_every_n = 10); @time pred_train_gaussian = model(x_train; device) pred_gauss = [ Distributions.Normal(pred_train_gaussian[i, 1], pred_train_gaussian[i, 2]) for i in axes(pred_train_gaussian, 1) ] pred_q80 = quantile.(pred_gauss, 0.8) pred_q20 = quantile.(pred_gauss, 0.2) mean(y_train .< pred_q80) mean(y_train .< pred_q20) x_perm = sortperm(x_train[:, 1]) plot( x_train[:, 1], y_train, ms=0.5, mcolor="darkgray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="", ) plot!( x_train[:, 1][x_perm], pred_train_gaussian[x_perm, 1], color="navy", linewidth=1.5, label="mu", ) plot!( x_train[:, 1][x_perm], pred_train_gaussian[x_perm, 2], color="darkred", linewidth=1.5, label="sigma", ) plot!( x_train[:, 1][x_perm], pred_q20[x_perm, 1], color="green", linewidth=1.5, label="q20", ) plot!( x_train[:, 1][x_perm], pred_q80[x_perm, 1], color="green", linewidth=1.5, label="q80", ) savefig("figures/gaussian-sinus-$tree_type-gpu.png")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
17164
using Revise using Statistics using StatsBase: sample, sample! using EvoTrees using BenchmarkTools using CUDA using Base.Threads: nthreads, threadid, @threads, @spawn using Random: seed!, Xoshiro, MersenneTwister, TaskLocalRNG # prepare a dataset features = rand(Int(1.25e6), 100) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] ########################### # Tree CPU ########################### params_c = EvoTreeRegressor( T = Float32, loss = :linear, nrounds = 100, lambda = 0.1, gamma = 0.0, eta = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 64, ); model_c, cache_c = EvoTrees.init_evotree(params_c; x_train, y_train); # initialize from cache X_size = size(cache_c.x_bin) # 897.800 μs (6 allocations: 736 bytes) @time EvoTrees.update_grads!(cache_c.∇, cache_c.pred, cache_c.y, params_c) # @btime EvoTrees.update_grads!($params_c.loss, $cache_c.δ𝑤, $cache_c.pred_cpu, $cache_c.Y_cpu, $params_c.α) # select random rows and cols cache_c.nodes[1].is = EvoTrees.subsample(cache_c.is, cache_c.mask, params_c.rowsample, cache_c.rngs); length(cache_c.nodes[1].is) sample!(params_c.rng, cache_c.js_, cache_c.js, replace = false, ordered = true); # @btime sample!(params_c.rng, cache_c.𝑖_, cache_c.nodes[1].𝑖, replace=false, ordered=true); is = cache_c.nodes[1].is js = cache_c.js L = EvoTrees.Linear K = 1 T = Float32 ###################################################### # sampling experiements ###################################################### # 7.892 ms (0 allocations: 0 bytes) function get_rand!(rng, mask) @threads for i in eachindex(mask) @inbounds mask[i] = rand(rng, UInt8) end end function get_rand_repro_A!(rngs, mask) @threads for i in eachindex(mask) tid = threadid() @inbounds mask[i] = rand(rngs[tid], UInt8) end end function get_rand_repro_B!(rngs, mask) nblocks = length(rngs) chunk_size = cld(length(mask), nblocks) @threads for bid = 1:nblocks i_start = chunk_size * (bid - 1) + 1 i_stop = min(length(mask), i_start + chunk_size - 1) rng = rngs[bid] @inbounds for i = i_start:i_stop @inbounds mask[i] = rand(rng, UInt8) end end end function get_rand_repro_C!(rngs, mask) nblocks = length(rngs) chunk_size = cld(length(mask), nblocks) @threads for bid = 1:nblocks tx = threadid() i_start = chunk_size * (tx - 1) + 1 i_stop = min(length(mask), i_start + chunk_size - 1) rng = rngs[tx] @inbounds for i = i_start:i_stop mask[i] = rand(rng, UInt8) end end end nobs = 1_000_000 mask_ori = zeros(UInt32, nobs) rng = TaskLocalRNG() seed!(rng, 123) # rng = Xoshiro(123 + 1) # rng = MersenneTwister(123 + 1) get_rand!(rng, mask_ori) @btime get_rand!($rng, $mask_ori) mask_A = zeros(UInt32, nobs) rngs = [Random.MersenneTwister(123 + i) for i = 1:nthreads()] get_rand_repro_A!(rngs, mask_A) @btime get_rand_repro_A!($rngs, $mask_A) mask_B = zeros(UInt32, nobs) rngs = [Xoshiro(123 + i) for i = 1:nthreads()] get_rand_repro_B!(rngs, mask_B) @btime get_rand_repro_B!($rngs, $mask_B) mask_C = zeros(UInt32, nobs) rngs = [Random.MersenneTwister(123 + i) for i = 1:nthreads()] get_rand_repro_C!(rngs, mask_C) @btime get_rand_repro_C!($rngs, $mask_C) rngs = [Random.MersenneTwister(123 + i) for i = 1:nthreads()] rng1 = Random.MersenneTwister(123) rng2 = Random.MersenneTwister(124) rand(rngs[1], UInt32) rand(rng1, UInt32) rand(rng2, UInt32) @btime sample!( $params_c.rng, $cache_c.𝑖_, $cache_c.nodes[1].𝑖, replace = false, ordered = true, ); # 21.684 ms (2 allocations: 7.63 MiB) @btime sample!( $params_c.rng, $cache_c.𝑖_, $cache_c.nodes[1].𝑖, replace = false, ordered = false, ); # 27.441 ms (0 allocations: 0 bytes) @btime sample!( $params_c.rng, $cache_c.𝑖_, $cache_c.nodes[1].𝑖, replace = true, ordered = true, ); src = zeros(Bool, length(cache_c.𝑖_)) target = zeros(Bool, length(cache_c.𝑖_)) # 58.000 μs (3 allocations: 976.69 KiB) @btime rand(Bool, length(src)); # 1.452 ms (3 allocations: 7.63 MiB) @btime rand(Float64, length(src)); # 507.800 μs (3 allocations: 3.81 MiB) @btime rand(Float32, length(src)); @btime rand(Float16, length(src)); # 500.000 μs (3 allocations: 3.81 MiB) @btime rand(UInt32, length(src)); # 244.800 μs (3 allocations: 1.91 MiB) @btime rand(UInt16, length(src)); # 62.000 μs (3 allocations: 976.69 KiB) @btime rand(UInt8, length(src)); function get_rand!(mask) @threads for i in eachindex(mask) @inbounds mask[i] = rand(UInt8) end end mask = zeros(UInt8, length(cache_c.is)) # 126.100 μs (48 allocations: 5.08 KiB) @btime get_rand!($mask) function subsample_kernelA!(mask, cond, out_view) count = 0 @inbounds for i in eachindex(out_view) if mask[i] <= cond count += 1 out_view[count] = i end end return count end function subsampleA(out, mask, rowsample) get_rand!(mask) cond = round(UInt8, 255 * rowsample) nblocks = ceil(Int, min(length(out) / 100_000, Threads.nthreads())) chunk_size = ceil(Int, length(out) / nblocks) counts = zeros(Int, nblocks) @threads for bid in eachindex(counts) i_start = chunk_size * (bid - 1) + 1 i_stop = (bid == nblocks) ? length(out) : i_start + chunk_size - 1 counts[bid] = subsample_kernelA!(mask, cond, view(out, i_start:i_stop)) end count = 0 @inbounds for bid in eachindex(counts) i_start = chunk_size * (bid - 1) + 1 view(out, count+1:(count+counts[bid])) .= view(out, i_start:(i_start+counts[bid]-1)) count += counts[bid] end return view(out, 1:count) end out = zeros(UInt32, 1_000_000) mask = rand(UInt8, length(out)) @time out_view = subsampleA(out, mask, 0.5); Int(minimum(out_view)) Int(maximum(out_view)) @btime subsampleA($out, $mask, 0.5); function subsample(out::AbstractVector, mask::AbstractVector, rowsample::AbstractFloat) get_rand!(mask) cond = round(UInt8, 255 * rowsample) chunk_size = cld(length(out), min(length(out) ÷ 1024, Threads.nthreads())) nblocks = cld(length(out), chunk_size) counts = zeros(Int, nblocks) @threads for bid = 1:nblocks i_start = chunk_size * (bid - 1) + 1 i_stop = bid == nblocks ? length(out) : i_start + chunk_size - 1 count = 0 i = i_start for i = i_start:i_stop if mask[i] <= cond out[i_start+count] = i count += 1 end end counts[bid] = count end counts_cum = cumsum(counts) .- counts for bid = 1:nblocks count_cum = counts_cum[bid] i_start = chunk_size * (bid - 1) @inbounds for i = 1:counts[bid] out[count_cum+i] = out[i_start+i] end end return view(out, 1:sum(counts)) end out = zeros(UInt32, 1_000_000) mask = rand(UInt8, length(out)) @time out_view = subsample(out, mask, 0.5); Int(minimum(out_view)) Int(maximum(out_view)) @btime subsample($out, $mask, 0.5); @code_warntype subsample(out, mask, 0.5); function debug(n) for i = 1:n out = zeros(UInt32, 1_000_000) mask = rand(UInt8, length(out)) out_view = subsample(out, mask, 0.5) min = Int(minimum(out_view)) min_count = sum(out_view .== 0) if min == 0 @info "$min_count 0s at iteration $i" end end end debug(100) function get_rand_kernel!(mask) tix = threadIdx().x bdx = blockDim().x bix = blockIdx().x gdx = gridDim().x i_max = length(mask) niter = cld(i_max, bdx * gdx) for iter = 1:niter i = tix + bdx * (bix - 1) + bdx * gdx * (iter - 1) if i <= i_max mask[i] = rand(UInt8) end end sync_threads() end function get_rand_gpu!(mask) threads = (1024,) blocks = (256,) @cuda threads = threads blocks = blocks get_rand_kernel!(mask) CUDA.synchronize() end function subsample_step_1_kernel(out, mask, cond, counts, chunk_size) bid = blockIdx().x gdim = gridDim().x i_start = chunk_size * (bid - 1) + 1 i_stop = bid == gdim ? length(out) : i_start + chunk_size - 1 count = 0 @inbounds for i = i_start:i_stop @inbounds if mask[i] <= cond out[i_start+count] = i count += 1 end end sync_threads() @inbounds counts[bid] = count sync_threads() end function subsample_step_2_kernel(out, counts, counts_cum, chunk_size) bid = blockIdx().x count_cum = counts_cum[bid] i_start = chunk_size * (bid - 1) @inbounds for i = 1:counts[bid] out[count_cum+i] = out[i_start+i] end sync_threads() end function subsample_gpu(out::CuVector, mask::CuVector, rowsample::AbstractFloat) get_rand_gpu!(mask) cond = round(UInt8, 255 * rowsample) chunk_size = cld(length(out), min(length(out) ÷ 128, 2048)) nblocks = cld(length(out), chunk_size) counts = CUDA.zeros(Int, nblocks) blocks = (nblocks,) threads = (1,) @cuda blocks = nblocks threads = 1 subsample_step_1_kernel( out, mask, cond, counts, chunk_size, ) CUDA.synchronize() counts_cum = cumsum(counts) - counts @cuda blocks = nblocks threads = 1 subsample_step_2_kernel( out, counts, counts_cum, chunk_size, ) CUDA.synchronize() return view(out, 1:sum(counts)) end out = CUDA.zeros(UInt32, 1_000_000) mask = CUDA.zeros(UInt8, length(out)) CUDA.@time get_rand_gpu!(mask) # 39.100 μs (5 allocations: 304 bytes) # @btime get_rand_gpu!(mask) CUDA.@time out_view = subsample_gpu(out, mask, 0.5); Int(minimum(out_view)) Int(maximum(out_view)) @btime subsample_gpu(out, mask, 1.0); ########################################################## # end subsample tests ########################################################## # 12.058 ms (2998 allocations: 284.89 KiB) tree = EvoTrees.Tree{L,K,T}(params_c.max_depth) @time EvoTrees.grow_tree!( tree, cache_c.nodes, params_c, cache_c.δ𝑤, cache_c.edges, cache_c.js, cache_c.left, cache_c.left, cache_c.right, cache_c.x_bin, cache_c.monotone_constraints, ) @code_warntype EvoTrees.grow_tree!( tree, cache_c.nodes, params_c, cache_c.δ𝑤, cache_c.edges, cache_c.js, cache_c.left, cache_c.left, cache_c.right, cache_c.x_bin, cache_c.monotone_constraints, ) @btime EvoTrees.grow_tree!( $EvoTrees.Tree{L,K,T}(params_c.max_depth), $cache_c.nodes, $params_c, $cache_c.δ𝑤, $cache_c.edges, $cache_c.js, $cache_c.left, $cache_c.left, $cache_c.right, $cache_c.x_bin, $cache_c.monotone_constraints, ) # push!(model_c.trees, tree) # 993.447 μs (75 allocations: 7.17 KiB) @btime EvoTrees.predict!(cache_c.pred, tree, cache_c.x) δ𝑤, edges, x_bin, nodes, out, left, right, mask, monotone_constraints = cache_c.δ𝑤, cache_c.edges, cache_c.x_bin, cache_c.nodes, cache_c.out, cache_c.left, cache_c.right, cache_c.mask, cache_c.monotone_constraints; # Float32: 2.984 ms (73 allocations: 6.52 KiB) # Float64: 5.020 ms (73 allocations: 6.52 KiB) 𝑖 = cache_c.nodes[1].𝑖 # mask = rand(Bool, length(𝑖)) @time EvoTrees.update_hist!(L, nodes[1].h, δ𝑤, x_bin, 𝑖, 𝑗) @btime EvoTrees.update_hist!($L, $nodes[1].h, $δ𝑤, $x_bin, $𝑖, $𝑗) @code_warntype EvoTrees.update_hist!(L, nodes[1].h, δ𝑤, x_bin, 𝑖, 𝑗) j = 1 n = 1 nodes[1].∑ .= vec(sum(δ𝑤[:, 𝑖], dims = 2)) @time EvoTrees.update_gains!(nodes[n], 𝑗, params_c, K, monotone_constraints) # 12.160 μs (0 allocations: 0 bytes) @btime EvoTrees.update_gains!($nodes[n], $𝑗, $params_c, $K, $monotone_constraints) nodes[1].gains; # @code_warntype EvoTrees.update_gains!(nodes[n], 𝑗, params_c, K, monotone_constraints) # 5.793 μs (1 allocation: 32 bytes) best = findmax(nodes[n].gains) @btime best = findmax(nodes[n].gains) tree.cond_bin[n] = best[2][1] tree.feat[n] = best[2][2] Int.(tree.cond_bin[n]) # tree.cond_bin[n] = 32 # 204.900 μs (1 allocation: 96 bytes) offset = 0 @time EvoTrees.split_set!(left, right, 𝑖, X_bin, tree.feat[n], tree.cond_bin[n], offset) @btime EvoTrees.split_set!( $left, $right, $𝑖, $X_bin, $tree.feat[n], $tree.cond_bin[n], $offset, ) @code_warntype EvoTrees.split_set!(left, right, 𝑖, X_bin, tree.feat[n], tree.cond_bin[n]) # 186.294 μs (151 allocations: 15.06 KiB) @time _left, _right = EvoTrees.split_set_threads!( out, left, right, 𝑖, x_bin, tree.feat[n], tree.cond_bin[n], offset, ); @btime EvoTrees.split_set_threads!( $out, $left, $right, $𝑖, $x_bin, $tree.feat[n], $tree.cond_bin[n], $offset, ); ################################################### # GPU ################################################### params_g = EvoTreeRegressor( T = Float32, loss = :linear, nrounds = 100, lambda = 1.0, gamma = 0.1, eta = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 0.5, nbins = 64, ); model_g, cache_g = EvoTrees.init_evotree_gpu(params_g; x_train, y_train); x_size = size(cache_g.x_bin); # select random rows and cols 𝑖c = cache_g.𝑖_[sample( params_g.rng, cache_g.𝑖_, ceil(Int, params_g.rowsample * x_size[1]), replace = false, ordered = true, )] 𝑖 = CuVector(𝑖c) 𝑗c = cache_g.𝑗_[sample( params_g.rng, cache_g.𝑗_, ceil(Int, params_g.colsample * x_size[2]), replace = false, ordered = true, )] 𝑗 = CuVector(𝑗c) cache_g.nodes[1].𝑖 = 𝑖 cache_g.𝑗 .= 𝑗c L = EvoTrees.Linear K = 1 T = Float32 # build a new tree # 144.600 μs (23 allocations: 896 bytes) - 5-6 X time faster on GPU @time CUDA.@sync EvoTrees.update_grads_gpu!(cache_g.δ𝑤, cache_g.pred, cache_g.y, params_g) # @btime CUDA.@sync EvoTrees.update_grads_gpu!($params_g.loss, $cache_g.δ𝑤, $cache_g.pred_gpu, $cache_g.Y_gpu) # sum Gradients of each of the K parameters and bring to CPU # 33.447 ms (6813 allocations: 307.27 KiB) tree = EvoTrees.TreeGPU{L,K,T}(params_g.max_depth) sum(cache_g.δ𝑤[:, cache_g.nodes[1].𝑖], dims = 2) CUDA.@time EvoTrees.grow_tree_gpu!( tree, cache_g.nodes, params_g, cache_g.δ𝑤, cache_g.edges, CuVector(cache_g.𝑗), cache_g.out, cache_g.left, cache_g.right, cache_g.x_bin, cache_g.monotone_constraints, ) @btime EvoTrees.grow_tree_gpu!( EvoTrees.TreeGPU{L,K,T}(params_g.max_depth), cache_g.nodes, params_g, $cache_g.δ𝑤, $cache_g.edges, $𝑗, $cache_g.out, $cache_g.left, $cache_g.right, $cache_g.x_bin, $cache_g.monotone_constraints, ); @code_warntype EvoTrees.grow_tree_gpu!( EvoTrees.TreeGPU(params_g.max_depth, model_g.K, params_g.λ), params_g, cache_g.δ, cache_g.hist, cache_g.histL, cache_g.histR, cache_g.gains, cache_g.edges, 𝑖, 𝑗, 𝑛, cache_g.x_bin, ); push!(model_g.trees, tree); # 2.736 ms (93 allocations: 13.98 KiB) @time CUDA.@sync EvoTrees.predict!(cache_g.pred_gpu, tree, cache_g.X_bin) @btime CUDA.@sync EvoTrees.predict!($cache_g.pred_gpu, $tree, $cache_g.X_bin) ########################### # Tree GPU ########################### δ𝑤, edges, x_bin, nodes, out, left, right = cache_g.δ𝑤, cache_g.edges, cache_g.x_bin, cache_g.nodes, cache_g.out, cache_g.left, cache_g.right; # 2.571 ms (1408 allocations: 22.11 KiB) # 𝑗2 = CuArray(sample(UInt32.(1:100), 50, replace=false, ordered=true)) @time EvoTrees.update_hist_gpu!(nodes[1].h, δ𝑤, x_bin, 𝑖, 𝑗) @btime EvoTrees.update_hist_gpu!($nodes[1].h, $δ𝑤, $x_bin, $𝑖, $𝑗) # @code_warntype EvoTrees.update_hist_gpu!(hist, δ, X_bin, 𝑖, 𝑗, 𝑛) # 72.100 μs (186 allocations: 6.00 KiB) n = 1 nodes[1].∑ .= vec(sum(δ𝑤[:, 𝑖], dims = 2)) CUDA.@time EvoTrees.update_gains_gpu!(params_g.loss, nodes[n], 𝑗, params_g, K) @btime EvoTrees.update_gains_gpu!($params_g.loss, $nodes[n], $𝑗, $params_g, $K) tree = EvoTrees.TreeGPU(params_g.max_depth, model_g.K, params_g.λ) best = findmax(nodes[n].gains) if best[2][1] != params_g.nbins && best[1] > nodes[n].gain + params_g.γ tree.gain[n] = best[1] tree.cond_bin[n] = best[2][1] tree.feat[n] = best[2][2] tree.cond_float[n] = edges[tree.feat[n]][tree.cond_bin[n]] end tree.split[n] = tree.cond_bin[n] != 0 tree.feat[n] Int(tree.cond_bin[n]) # 673.900 μs (600 allocations: 29.39 KiB) offset = 0 _left, _right = EvoTrees.split_set_threads_gpu!( out, left, right, 𝑖, X_bin, tree.feat[n], tree.cond_bin[n], offset, ) @time EvoTrees.split_set_threads_gpu!( out, left, right, 𝑖, X_bin, tree.feat[n], tree.cond_bin[n], offset, ) @btime EvoTrees.split_set_threads_gpu!( $out, $left, $right, $𝑖, $X_bin, $tree.feat[n], $tree.cond_bin[n], $offset, )
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5468
using Statistics using StatsBase:sample, sample! using EvoTrees using BenchmarkTools using CUDA # allocations on transfer function gpu_to_cpu(dst, src) copy!(dst, src) end function cpu_to_gpu(dst, src) copy!(dst, src) end x1c = zeros(1000, 1000) x1g = CUDA.rand(1000, 1000) @time gpu_to_cpu(x1c, x1g); CUDA.@time gpu_to_cpu(x1c, x1g); x1c = rand(1000, 1000) x1g = CUDA.zeros(1000, 1000) @time cpu_to_gpu(x1g, x1c); CUDA.@time cpu_to_gpu(x1g, x1c); function reshape_gpu(x) reshape(x, 4, size(x, 1) ÷ 4, size(x,2)) end x2 = CUDA.@time reshape_gpu(x1g); reshape(x1g, 4, 250, 1000) # prepare a dataset features = rand(Int(1.25e6), 100) # features = rand(100, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1)) + 1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] ################################################### # GPU ################################################### params_g = EvoTreeRegressor(T=Float32, loss=:linear, metric=:none, nrounds=100, λ=1.0, γ=0.1, η=0.1, max_depth=2, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=64); model_g, cache_g = EvoTrees.init_evotree_gpu(params_g, X_train, Y_train); params_g = model_g.params; X_size = size(cache_g.X_bin); # select random rows and cols 𝑖c = cache_g.𝑖_[sample(params_g.rng, cache_g.𝑖_, ceil(Int, params_g.rowsample * X_size[1]), replace=false, ordered=true)] 𝑖 = CuVector(𝑖c) 𝑗c = cache_g.𝑗_[sample(params_g.rng, cache_g.𝑗_, ceil(Int, params_g.colsample * X_size[2]), replace=false, ordered=true)] 𝑗 = CuVector(𝑗c) cache_g.nodes[1].𝑖 = 𝑖 cache_g.𝑗 .= 𝑗 # build a new tree # 144.600 μs (23 allocations: 896 bytes) - 5-6 X time faster on GPU @time CUDA.@sync EvoTrees.update_grads_gpu!(params_g.loss, cache_g.δ𝑤, cache_g.pred_gpu, cache_g.Y_gpu) # @btime CUDA.@sync EvoTrees.update_grads_gpu!($params_g.loss, $cache_g.δ𝑤, $cache_g.pred_gpu, $cache_g.Y_gpu) # sum Gradients of each of the K parameters and bring to CPU # 33.447 ms (6813 allocations: 307.27 KiB) tree = EvoTrees.TreeGPU(params_g.max_depth, model_g.K, params_g.λ) CUDA.@time EvoTrees.grow_tree_gpu!(tree, cache_g.nodes, params_g, cache_g.δ𝑤, cache_g.edges, cache_g.𝑗, cache_g.out, cache_g.left, cache_g.right, cache_g.X_bin, cache_g.K) CUDA.@time EvoTrees.grow_tree_gpu!(tree, cache_g.nodes, params_g, cache_g.δ𝑤, cache_g.edges, cache_g.𝑗, cache_g.out, cache_g.left, cache_g.right, cache_g.X_bin, cache_g.K) # CUDA.@time EvoTrees.grow_tree_gpu!(tree, params_g, cache_g.δ, cache_g.hist, cache_g.histL, cache_g.histR, cache_g.gains, cache_g.edges, 𝑖, 𝑗, 𝑛, cache_g.X_bin); # @btime EvoTrees.grow_tree_gpu!(EvoTrees.TreeGPU(UInt32($params_g.max_depth), $model_g.K, $params_g.λ), $params_g, $cache_g.δ, $cache_g.hist, $cache_g.histL, $cache_g.histR, $cache_g.gains, $cache_g.edges, $𝑖, $𝑗, $𝑛, $cache_g.X_bin); # @code_warntype EvoTrees.grow_tree_gpu!(EvoTrees.TreeGPU(params_g.max_depth, model_g.K, params_g.λ), params_g, cache_g.δ, cache_g.hist, cache_g.histL, cache_g.histR, cache_g.gains, cache_g.edges, 𝑖, 𝑗, 𝑛, cache_g.X_bin); # push!(model_g.trees, tree); # # 2.736 ms (93 allocations: 13.98 KiB) # @time CUDA.@sync EvoTrees.predict_gpu!(cache_g.pred_gpu, tree, cache_g.X_bin) # @btime CUDA.@sync EvoTrees.predict_gpu!($cache_g.pred_gpu, $tree, $cache_g.X_bin) ########################### # Tree GPU ########################### δ𝑤, K, edges, X_bin, nodes, out, left, right = cache_g.δ𝑤, cache_g.K, cache_g.edges, cache_g.X_bin, cache_g.nodes, cache_g.out, cache_g.left, cache_g.right; # 9.613 ms (81 allocations: 13.55 KiB) # 𝑗2 = CuArray(sample(UInt32.(1:100), 50, replace=false, ordered=true)) # @time EvoTrees.update_hist_gpu!(params_g.loss, nodes[1].h, δ𝑤, X_bin, 𝑖, 𝑗, K) # println(nodes[1].h) CUDA.@time EvoTrees.update_hist_gpu!(params_g.loss, nodes[1].h, δ𝑤, X_bin, 𝑖, 𝑗, K) CUDA.@time EvoTrees.update_hist_gpu!(params_g.loss, nodes[1].h, δ𝑤, X_bin, 𝑖, 𝑗, K) # @btime EvoTrees.update_hist_gpu!($params_g.loss, $nodes[1].h, $δ𝑤, $X_bin, $𝑖, $𝑗, $K) # @btime EvoTrees.update_hist_gpu!($nodes[1].h, $δ𝑤, $X_bin, $nodes[1].𝑖, $𝑗) # @code_warntype EvoTrees.update_hist_gpu!(hist, δ, X_bin, 𝑖, 𝑗, 𝑛) # depth=1 # nid = 2^(depth - 1):2^(depth) - 1 # # 97.000 μs (159 allocations: 13.09 KiB) # @time CUDA.@sync EvoTrees.update_gains_gpu!(gains::AbstractArray{T,3}, hist::AbstractArray{T,4}, histL::AbstractArray{T,4}, histR::AbstractArray{T,4}, 𝑗::AbstractVector{S}, params_g, nid, depth); # @btime CUDA.@sync EvoTrees.update_gains_gpu!(gains::AbstractArray{T,3}, hist::AbstractArray{T,4}, histL::AbstractArray{T,4}, histR::AbstractArray{T,4}, 𝑗::AbstractVector{S}, params_g, nid, depth); # gains[:,:,1] # tree = EvoTrees.TreeGPU(UInt32(params_g.max_depth), model_g.K, params_g.λ) # n = 1 # best = findmax(view(gains, :,:,n)) # if best[2][1] != params_g.nbins && best[1] > -Inf # tree.gain[n] = best[1] # tree.feat[n] = best[2][2] # tree.cond_bin[n] = best[2][1] # tree.cond_float[n] = edges[tree.feat[n]][tree.cond_bin[n]] # end # tree.split[n] = tree.cond_bin[n] != 0 # # 673.900 μs (600 allocations: 29.39 KiB) # @time CUDA.@sync EvoTrees.update_set_gpu!(𝑛, 𝑖, X_bin, tree.feat, tree.cond_bin, params_g.nbins) # @btime CUDA.@sync EvoTrees.update_set_gpu!($𝑛, $𝑖, $X_bin, $tree.feat, $tree.cond_bin, $params_g.nbins)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1112
using Revise using EvoTrees using MLUtils using CSV using DataFrames using Arrow using CUDA using Base.Iterators: partition using Base.Threads: nthreads, @threads using Tables ######################################## # create regular dataframe ######################################## nobs = Int(1e6) nfeats = Int(100) x_train = rand(nobs, nfeats) y_train = rand(nobs) df = DataFrame(x_train, :auto) df[!, :y] = y_train path = joinpath(@__DIR__, "..", "data", "arrow-df.arrow") Arrow.write(path, df) ######################################## # read streaming data ######################################## path = joinpath(@__DIR__, "..", "data", "arrow-df.arrow") @time dtrain = Arrow.Table(path); @time dtrain = DataFrame(Arrow.Table(path)); @time dtrain = DataFrame(Arrow.Table(path), copycols=false); function load_1() df = DataFrame(Arrow.Table(path), copycols=true) select!(df, [:x1, :x2, :x3, :x4, :x5]) return df end function load_2() df = DataFrame(Arrow.Table(path), copycols=false) select!(df, [:x1, :x2, :x3, :x4, :x5]) return df end @time df = load_1(); @time df = load_2();
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1029
using Revise using CUDA # using StaticArrays using StatsBase: sample using BenchmarkTools using Base.Threads: @threads function hist_cpu!( hist::Vector, ∇::Matrix, x_bin::Matrix, is::AbstractVector, js::AbstractVector, ) @threads for j in js @inbounds @simd for i in is bin = x_bin[i, j] hist[j][1, bin] += ∇[1, i] hist[j][2, bin] += ∇[2, i] hist[j][3, bin] += ∇[3, i] end end return nothing end nbins = 32 nobs = Int(1e6) nfeats = 100 rowsample = 0.5 colsample = 0.5 x_bin = UInt8.(rand(1:nbins, nobs, nfeats)); ∇ = rand(Float32, 3, nobs); h∇ = [zeros(Float64, 3, nbins) for n in 1:nfeats] is = sample(1:nobs, Int(round(rowsample * nobs)), replace=false, ordered=true) js = sample(1:nfeats, Int(round(rowsample * nfeats)), replace=false, ordered=true) # laptop: 6.886 ms (97 allocations: 10.67 KiB) # desktop: 3.451 ms (61 allocations: 6.52 KiB) @time hist_cpu!(h∇, ∇, x_bin, is, js) @btime hist_cpu!($h∇, $∇, $x_bin, $is, $js)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2815
using Revise using CUDA # using StaticArrays using StatsBase: sample using BenchmarkTools ################################################ # TODO: test compact aggregation into log2 bins # iter 5 times to cover 32 bins (8 for 256) # - each block build histogram for many features -> (k, j) # - ################################################ # base kernel function kernel_share_1!(h::CuDeviceArray{T,3}, ∇, x_bin, is) where {T} nbins = size(h, 2) tix, tiy, k = threadIdx().x, threadIdx().y, threadIdx().z bdx, bdy = blockDim().x, blockDim().y bix, biy = blockIdx().x, blockIdx().y gdx, gdy = gridDim().x, gridDim().y j = tiy + (biy - 1) * bdy shared = @cuDynamicSharedMem(T, 3 * nbins) fill!(shared, 0) sync_threads() i_tot = size(x, 1) iter = 0 while iter * id * ig < i_tot i = it + id * (ib - 1) + iter * id * ig if i <= size(xid, 1) && j <= size(xid, 2) # depends on shared to be assigned to a single feature k = 3 * (xid[i, j] - 1) @inbounds CUDA.atomic_add!(pointer(shared, k + 1), x[i, 1]) @inbounds CUDA.atomic_add!(pointer(shared, k + 2), x[i, 2]) @inbounds CUDA.atomic_add!(pointer(shared, k + 3), x[i, 3]) end iter += 1 end sync_threads() # loop to cover cases where nbins > nthreads for iter in 1:(nbins - 1) ÷ id + 1 bin_id = it + id * (iter - 1) if bin_id <= nbins @inbounds k = Base._to_linear_index(h, 1, bin_id, j) @inbounds CUDA.atomic_add!(pointer(h, k), shared[3 * (bin_id - 1) + 1]) @inbounds CUDA.atomic_add!(pointer(h, k + 1), shared[3 * (bin_id - 1) + 2]) @inbounds CUDA.atomic_add!(pointer(h, k + 2), shared[3 * (bin_id - 1) + 3]) end end # sync_threads() return nothing end # base approach - block built along the cols first, the rows (limit collisions) function hist_share_1!(h::AbstractArray{T,3}, x::AbstractMatrix{T}, id::AbstractMatrix{S}; MAX_THREADS=256) where {T,S} thread_i = min(MAX_THREADS, size(id, 1)) thread_j = 1 threads = (thread_i, thread_j) blocks = ceil.(Int, (16, size(id, 2))) fill!(h, 0) @cuda blocks = blocks threads = threads shmem = sizeof(T) * size(h, 2) * 3 kernel_share_1!(h, ∇, x_bin, is) return end nbins = 64 nfeats = 100 nobs = Int(1e6) hist = zeros(Float32, 3, nbins, ncol) ∇ = rand(Float32, nobs, 3) # idx = Int64.(rand(1:nbins, items, ncol)) is = UInt8.(rand(1:nbins, nobs, ncol)) hist_gpu = CuArray(hist) ∇_gpu = CuArray(∇) idx_gpu = CuArray(idx) @time hist_share_1!(hist, ∇, idx) @btime hist_share_1!(hist, ∇, idx) @CUDA.time hist_share_1!(hist_gpu, ∇_gpu, idx_gpu, MAX_THREADS=128) @btime CUDA.@sync hist_share_1!($hist_gpu, $∇_gpu, $idx_gpu, MAX_THREADS=128)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3220
using Revise using CUDA using StatsBase: sample using BenchmarkTools # base kernel function kernel_s4!(h::CuDeviceArray{T,3}, ∇::CuDeviceMatrix{T}, x_bin::CuDeviceMatrix{S}) where {T,S} nbins = size(h, 2) it, jt, kt = threadIdx().x, threadIdx().y, threadIdx().z ib, jb = blockIdx().x, blockIdx().y id, jd = blockDim().x, blockDim().y ig, jg = gridDim().x, gridDim().y j = jt + (jb - 1) * jd shared = @cuDynamicSharedMem(T, 3 * nbins) fill!(shared, 0) sync_threads() i_tot = size(x_bin, 1) iter = 0 while iter * id * ig < i_tot i = it + id * (ib - 1) + iter * id * ig if i <= size(x_bin, 1) && j <= size(x_bin, 2) # depends on shared to be assigned to a single feature k = 3 * (x_bin[i, j] - 1) @inbounds CUDA.atomic_add!(pointer(shared, k + kt), ∇[i, kt]) # @inbounds CUDA.atomic_add!(pointer(shared, k + 1), ∇[i, 1]) # @inbounds CUDA.atomic_add!(pointer(shared, k + 2), ∇[i, 2]) # @inbounds CUDA.atomic_add!(pointer(shared, k + 3), ∇[i, 3]) end iter += 1 end sync_threads() # loop to cover cases where nbins > nthreads for iter in 1:(nbins-1)÷id+1 bin_id = it + id * (iter - 1) if bin_id <= nbins @inbounds k = Base._to_linear_index(h, 1, bin_id, j) - 1 @inbounds CUDA.atomic_add!(pointer(h, k + kt), shared[3*(bin_id-1)+kt]) # @inbounds CUDA.atomic_add!(pointer(h, k), shared[3*(bin_id-1)+1]) # @inbounds CUDA.atomic_add!(pointer(h, k + 1), shared[3*(bin_id-1)+2]) # @inbounds CUDA.atomic_add!(pointer(h, k + 2), shared[3*(bin_id-1)+3]) end end sync_threads() return nothing end # base approach - block built along the cols first, the rows (limit collisions) function hist_gpu_s4!(h::AbstractArray{T,3}, ∇::AbstractMatrix{T}, x_bin::AbstractMatrix{S}; MAX_THREADS=256) where {T,S} thread_i = min(MAX_THREADS, size(x_bin, 1)) thread_j = 1 thread_k = 3 threads = (thread_i, thread_j, thread_k) blocks = ceil.(Int, (16, size(x_bin, 2))) fill!(h, 0) @cuda blocks = blocks threads = threads shmem = sizeof(T) * size(h, 2) * 3 kernel_s4!(h, ∇, x_bin) CUDA.synchronize() return end nbins = 64 nfeats = 100 nobs = Int(1e6) h = [zeros(Float32, 3, nbins) for feat in 1nfeats]; x_bin = UInt8.(rand(1:nbins, nobs, nfeats)); ∇_cpu = rand(Float32, 3, nobs); h∇_cpu = zeros(Float32, 3, nbins, nfeats) rowsample = 0.5 colsample = 0.5 is = sample(1:nobs, Int(round(rowsample * nobs)), replace=false, ordered=true) js = sample(1:nfeats, Int(round(rowsample * nfeats)), replace=false, ordered=true) ∇_gpu = CuArray(∇_cpu) x_bin_gpu = CuArray(x_bin) h∇_gpu = CuArray(h∇_cpu) is_gpu = CuArray(is) js_gpu = CuArray(js) @time hist_gpu_s4!(h∇_gpu, ∇_gpu, x_bin_gpu) CUDA.@time hist_gpu_s4!(h∇_gpu, ∇_gpu, x_bin_gpu) # desktop | 1K: 41.102 μs (24 allocations: 1.66 KiB) # desktop | 10K: 59.142 μs (109 allocations: 9.09 KiB) # desktop | 100K: 251.850 μs (109 allocations: 9.09 KiB) # desktop | 1M: 2.203 ms (23 allocations: 1.33 KiB) # desktop | 10M: 25.557 ms (110 allocations: 9.11 KiB) @btime hist_gpu_s4!(h∇_gpu, ∇_gpu, x_bin_gpu)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1626
using Revise using CUDA using StaticArrays using StatsBase: sample using BenchmarkTools nbins = 10 items = Int32(1e6) hist = zeros(Float32, nbins) x = ones(Float32, items) idx = Int64.(rand(1:nbins, items)) hist_gpu = CuArray(hist) x_gpu = CuArray(x) idx_gpu = CuArray(idx) hist .- Array(hist_gpu) sum(hist) - sum(Array(hist_gpu)) # base kernel function kernel!(h::CuDeviceVector{T}, x::CuDeviceVector{T}, xid::CuDeviceVector{S}) where {T,S} nbins = size(h, 1) it = threadIdx().x ib = blockIdx().x id = blockDim().x shared = @cuDynamicSharedMem(T, nbins) fill!(shared, 0) fill!(h, 0) sync_threads() i_tot = size(x, 1) iter = 0 while iter * id < i_tot i = it + id * iter if i <= size(xid, 1) @inbounds k = Base._to_linear_index(h, xid[i]) @inbounds CUDA.atomic_add!(pointer(shared, k), x[i]) end iter += 1 end sync_threads() # loop to cover cases where nbins > nthreads for i in 1:(nbins - 1) ÷ id + 1 bin_id = it + id * (i - 1) if bin_id <= nbins @inbounds CUDA.atomic_add!(pointer(h, bin_id), shared[bin_id]) end end return nothing end # base approach - block built along the cols first, the rows (limit collisions) function hist!(h::AbstractVector{T}, x::AbstractVector{T}, xid::AbstractVector{S}; MAX_THREADS=256) where {T,S} threads = min(MAX_THREADS, size(xid, 1)) @cuda blocks = 1 threads = threads shmem = sizeof(T) * size(h,1) kernel!(h, x, xid) return end @btime CUDA.@sync hist!($hist_gpu, $x_gpu, $idx_gpu, MAX_THREADS=1024)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2744
using Revise using CUDA using StatsBase: sample using BenchmarkTools """ hist_kernel! """ function hist_kernel!(h∇::CuDeviceArray{T,3}, ∇::CuDeviceMatrix{S}, x_bin, is, js) where {T,S} tix, tiy, k = threadIdx().z, threadIdx().y, threadIdx().x bdx, bdy = blockDim().z, blockDim().y bix, biy = blockIdx().z, blockIdx().y gdx = gridDim().z j = tiy + bdy * (biy - 1) if j <= length(js) jdx = js[j] i_max = length(is) niter = cld(i_max, bdx * gdx) @inbounds for iter = 1:niter i = tix + bdx * (bix - 1) + bdx * gdx * (iter - 1) if i <= i_max @inbounds idx = is[i] @inbounds bin = x_bin[idx, jdx] hid = Base._to_linear_index(h∇, k, bin, jdx) CUDA.atomic_add!(pointer(h∇, hid), T(∇[k, idx])) end end end sync_threads() return nothing end function update_hist_gpu!(h, h∇_cpu, h∇, ∇, x_bin, is, js, jsc) kernel = @cuda launch = false hist_kernel!(h∇, ∇, x_bin, is, js) config = launch_configuration(kernel.fun) max_threads = config.threads max_blocks = config.blocks k = size(h∇, 1) ty = max(1, min(length(js), fld(max_threads, k))) tx = max(1, min(length(is), fld(max_threads, k * ty))) threads = (k, ty, tx) by = cld(length(js), ty) bx = min(cld(max_blocks, by), cld(length(is), tx)) blocks = (1, by, bx) h∇ .= 0 kernel(h∇, ∇, x_bin, is, js; threads, blocks) CUDA.synchronize() copyto!(h∇_cpu, h∇) Threads.@threads for j in jsc nbins = size(h[j], 2) @views h[j] .= h∇_cpu[:, 1:nbins, j] end return nothing end nbins = 64 nfeats = 100 nobs = Int(1e3) h = [zeros(Float32, 3, nbins) for feat in 1:nfeats]; x_bin = UInt8.(rand(1:nbins, nobs, nfeats)); ∇_cpu = rand(Float32, 3, nobs); h∇_cpu = rand(Float32, 3, nbins, nfeats) rowsample = 0.5 colsample = 0.5 is = sample(1:nobs, Int(round(rowsample * nobs)), replace=false, ordered=true) js = sample(1:nfeats, Int(round(rowsample * nfeats)), replace=false, ordered=true) hist_gpu = CuArray(hist) ∇_gpu = CuArray(∇_cpu) x_bin_gpu = CuArray(x_bin) h∇_gpu = CuArray(h∇_cpu) is_gpu = CuArray(is) js_gpu = CuArray(js) @time update_hist_gpu!(h, h∇_cpu, h∇_gpu, ∇_gpu, x_bin_gpu, is_gpu, js_gpu, js) CUDA.@time update_hist_gpu!(h, h∇_cpu, h∇_gpu, ∇_gpu, x_bin_gpu, is_gpu, js_gpu, js) # desktop | 1K: 46.332 μs (109 allocations: 9.09 KiB) # desktop | 10K: 59.142 μs (109 allocations: 9.09 KiB) # desktop | 100K: 251.850 μs (109 allocations: 9.09 KiB) # desktop | 1M: 2.328 ms (110 allocations: 9.11 KiB) # desktop | 10M: 25.557 ms (110 allocations: 9.11 KiB) @btime update_hist_gpu!(h, h∇_cpu, h∇_gpu, ∇_gpu, x_bin_gpu, is_gpu, js_gpu, js)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
501
module EvoTreesCUDAExt using EvoTrees using CUDA # This should be different on CPUs and GPUs EvoTrees.device_ones(::Type{<:EvoTrees.GPU}, ::Type{T}, n::Int) where {T} = CUDA.ones(T, n) EvoTrees.device_array_type(::Type{<:EvoTrees.GPU}) = CuArray function EvoTrees.post_fit_gc(::Type{<:EvoTrees.GPU}) GC.gc(true) CUDA.reclaim() end include("loss.jl") include("eval.jl") include("predict.jl") include("init.jl") include("subsample.jl") include("fit-utils.jl") include("fit.jl") end # module
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
6659
######################## # MSE ######################## function eval_mse_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds eval[i] = w[i] * (p[1, i] - y[i])^2 end return nothing end function EvoTrees.mse(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_mse_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # RMSE ######################## EvoTrees.rmse(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} = sqrt(EvoTrees.rmse(p, y, w; MAX_THREADS, kwargs...)) ######################## # MAE ######################## function eval_mae_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds eval[i] = w[i] * abs(p[1, i] - y[i]) end return nothing end function EvoTrees.mae(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_mae_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # Logloss ######################## function eval_logloss_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds pred = EvoTrees.sigmoid(p[1, i]) @inbounds eval[i] = w[i] * (-y[i] * log(pred) + (y[i] - 1) * log(1 - pred)) end return nothing end function EvoTrees.logloss(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_logloss_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # Gaussian ######################## function eval_gaussian_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds eval[i] = -w[i] * (p[2, i] + (y[i] - p[1, i])^2 / (2 * exp(2 * p[2, i]))) end return nothing end function EvoTrees.gaussian_mle(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_gaussian_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # Poisson Deviance ######################## function eval_poisson_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x ϵ = eps(T(1e-7)) if i <= length(y) @inbounds pred = exp(p[1, i]) @inbounds eval[i] = w[i] * 2 * (y[i] * log(y[i] / pred + ϵ) + pred - y[i]) end return nothing end function EvoTrees.poisson(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_poisson_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # Gamma Deviance ######################## function eval_gamma_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds pred = exp(p[1, i]) @inbounds eval[i] = w[i] * 2 * (log(pred / y[i]) + y[i] / pred - 1) end return nothing end function EvoTrees.gamma(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_gamma_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # Tweedie Deviance ######################## function eval_tweedie_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector{T}, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x rho = T(1.5) if i <= length(y) pred = exp(p[1, i]) @inbounds eval[i] = w[i] * 2 * (y[i]^(2 - rho) / (1 - rho) / (2 - rho) - y[i] * pred^(1 - rho) / (1 - rho) + pred^(2 - rho) / (2 - rho)) end return nothing end function EvoTrees.tweedie(p::CuMatrix{T}, y::CuVector{T}, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_tweedie_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end ######################## # mlogloss ######################## function eval_mlogloss_kernel!(eval::CuDeviceVector{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector, w::CuDeviceVector{T}) where {T<:AbstractFloat} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x K = size(p, 1) if i <= length(y) isum = zero(T) @inbounds for k in 1:K isum += exp(p[k, i]) end @inbounds eval[i] = w[i] * (log(isum) - p[y[i], i]) end return nothing end function EvoTrees.mlogloss(p::CuMatrix{T}, y::CuVector, w::CuVector{T}, eval::CuVector{T}; MAX_THREADS=1024, kwargs...) where {T<:AbstractFloat} threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads eval_mlogloss_kernel!(eval, p, y, w) CUDA.synchronize() return sum(eval) / sum(w) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4623
function hist_kernel!(h∇::CuDeviceArray{T,3}, ∇::CuDeviceMatrix{S}, x_bin, is, js) where {T,S} tix, tiy, k = threadIdx().z, threadIdx().y, threadIdx().x bdx, bdy = blockDim().z, blockDim().y bix, biy = blockIdx().z, blockIdx().y gdx = gridDim().z j = tiy + bdy * (biy - 1) if j <= length(js) jdx = js[j] i_max = length(is) niter = cld(i_max, bdx * gdx) @inbounds for iter = 1:niter i = tix + bdx * (bix - 1) + bdx * gdx * (iter - 1) if i <= i_max @inbounds idx = is[i] @inbounds bin = x_bin[idx, jdx] hid = Base._to_linear_index(h∇, k, bin, jdx) CUDA.atomic_add!(pointer(h∇, hid), T(∇[k, idx])) end end end sync_threads() return nothing end function update_hist_gpu!(h, h∇_cpu, h∇, ∇, x_bin, is, js, jsc) kernel = @cuda launch = false hist_kernel!(h∇, ∇, x_bin, is, js) config = launch_configuration(kernel.fun) max_threads = config.threads max_blocks = config.blocks k = size(h∇, 1) ty = max(1, min(length(js), fld(max_threads, k))) tx = min(64, max(1, min(length(is), fld(max_threads, k * ty)))) threads = (k, ty, tx) max_blocks = min(65535, max_blocks * fld(max_threads, prod(threads))) by = cld(length(js), ty) bx = min(cld(max_blocks, by), cld(length(is), tx)) blocks = (1, by, bx) h∇ .= 0 kernel(h∇, ∇, x_bin, is, js; threads, blocks) CUDA.synchronize() copyto!(h∇_cpu, h∇) Threads.@threads for j in jsc nbins = size(h[j], 2) @views h[j] .= h∇_cpu[:, 1:nbins, j] end return nothing end # Multi-threads split_set! # Take a view into left and right placeholders. Right ids are assigned at the end of the length of the current node set. function split_chunk_kernel!( left::CuDeviceVector{S}, right::CuDeviceVector{S}, is::CuDeviceVector{S}, x_bin, feat, cond_bin, feattype, offset, chunk_size, lefts, rights, ) where {S} it = threadIdx().x bid = blockIdx().x gdim = gridDim().x left_count = 0 right_count = 0 i = chunk_size * (bid - 1) + 1 bid == gdim ? bsize = length(is) - chunk_size * (bid - 1) : bsize = chunk_size i_max = i + bsize - 1 @inbounds while i <= i_max cond = feattype ? x_bin[is[i], feat] <= cond_bin : x_bin[is[i], feat] == cond_bin if cond left_count += 1 left[offset+chunk_size*(bid-1)+left_count] = is[i] else right_count += 1 right[offset+chunk_size*(bid-1)+right_count] = is[i] end i += 1 end lefts[bid] = left_count rights[bid] = right_count sync_threads() return nothing end function EvoTrees.split_views_kernel!( out::CuDeviceVector{S}, left::CuDeviceVector{S}, right::CuDeviceVector{S}, offset, chunk_size, lefts, rights, sum_lefts, cumsum_lefts, cumsum_rights, ) where {S} bid = blockIdx().x bid == 1 ? cumsum_left = 0 : cumsum_left = cumsum_lefts[bid-1] bid == 1 ? cumsum_right = 0 : cumsum_right = cumsum_rights[bid-1] iter = 1 i_max = lefts[bid] @inbounds while iter <= i_max out[offset+cumsum_left+iter] = left[offset+chunk_size*(bid-1)+iter] iter += 1 end iter = 1 i_max = rights[bid] @inbounds while iter <= i_max out[offset+sum_lefts+cumsum_right+iter] = right[offset+chunk_size*(bid-1)+iter] iter += 1 end sync_threads() return nothing end function split_set_threads_gpu!(out, left, right, is, x_bin, feat, cond_bin, feattype, offset) chunk_size = cld(length(is), min(cld(length(is), 128), 2048)) nblocks = cld(length(is), chunk_size) lefts = CUDA.zeros(Int, nblocks) rights = CUDA.zeros(Int, nblocks) # threads = 1 @cuda blocks = nblocks threads = 1 split_chunk_kernel!( left, right, is, x_bin, feat, cond_bin, feattype, offset, chunk_size, lefts, rights, ) CUDA.synchronize() sum_lefts = sum(lefts) cumsum_lefts = cumsum(lefts) cumsum_rights = cumsum(rights) @cuda blocks = nblocks threads = 1 EvoTrees.split_views_kernel!( out, left, right, offset, chunk_size, lefts, rights, sum_lefts, cumsum_lefts, cumsum_rights, ) CUDA.synchronize() return ( view(out, offset+1:offset+sum_lefts), view(out, offset+sum_lefts+1:offset+length(is)), ) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
10470
function EvoTrees.grow_evotree!(evotree::EvoTree{L,K}, cache, params::EvoTrees.EvoTypes{L}, ::Type{<:EvoTrees.GPU}) where {L,K} # compute gradients EvoTrees.update_grads!(cache.∇, cache.pred, cache.y, params) # subsample rows cache.nodes[1].is = EvoTrees.subsample(cache.is_in, cache.is_out, cache.mask, params.rowsample, params.rng) # subsample cols EvoTrees.sample!(params.rng, cache.js_, cache.js, replace=false, ordered=true) # assign a root and grow tree tree = EvoTrees.Tree{L,K}(params.max_depth) grow! = params.tree_type == "oblivious" ? grow_otree! : grow_tree! grow!( tree, cache.nodes, params, cache.∇, cache.edges, cache.js, cache.out, cache.left, cache.right, cache.h∇_cpu, cache.h∇, cache.x_bin, cache.feattypes, cache.monotone_constraints, ) push!(evotree.trees, tree) EvoTrees.predict!(cache.pred, tree, cache.x_bin, cache.feattypes_gpu) cache[:info][:nrounds] += 1 return nothing end # grow a single binary tree - grow through all depth function grow_tree!( tree::EvoTrees.Tree{L,K}, nodes::Vector{N}, params::EvoTrees.EvoTypes{L}, ∇::CuMatrix, edges, js, out, left, right, h∇_cpu::Array{Float64,3}, h∇::CuArray{Float64,3}, x_bin::CuMatrix, feattypes::Vector{Bool}, monotone_constraints, ) where {L,K,N} jsg = CuVector(js) # reset nodes for n in nodes n.∑ .= 0 n.gain = 0.0 @inbounds for i in eachindex(n.h) n.h[i] .= 0 n.gains[i] .= 0 end end # initialize n_current = [1] depth = 1 # initialize summary stats nodes[1].∑ .= Vector(vec(sum(∇[:, nodes[1].is], dims=2))) nodes[1].gain = EvoTrees.get_gain(params, nodes[1].∑) # should use a GPU version? # grow while there are remaining active nodes while length(n_current) > 0 && depth <= params.max_depth offset = 0 # identifies breakpoint for each node set within a depth n_next = Int[] if depth < params.max_depth for n_id in eachindex(n_current) n = n_current[n_id] if n_id % 2 == 0 if n % 2 == 0 @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n+1].h[j] end else @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n-1].h[j] end end else update_hist_gpu!(nodes[n].h, h∇_cpu, h∇, ∇, x_bin, nodes[n].is, jsg, js) end end Threads.@threads for n ∈ sort(n_current) EvoTrees.update_gains!(nodes[n], js, params, feattypes, monotone_constraints) end end for n ∈ sort(n_current) if depth == params.max_depth || nodes[n].∑[end] <= params.min_weight EvoTrees.pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) else best = findmax(findmax.(nodes[n].gains)) best_gain = best[1][1] best_bin = best[1][2] best_feat = best[2] if best_gain > nodes[n].gain + params.gamma tree.gain[n] = best_gain - nodes[n].gain tree.cond_bin[n] = best_bin tree.feat[n] = best_feat tree.cond_float[n] = edges[tree.feat[n]][tree.cond_bin[n]] tree.split[n] = best_bin != 0 _left, _right = split_set_threads_gpu!( out, left, right, nodes[n].is, x_bin, tree.feat[n], tree.cond_bin[n], feattypes[best_feat], offset, ) offset += length(nodes[n].is) nodes[n<<1].is, nodes[n<<1+1].is = _left, _right nodes[n<<1].∑ .= nodes[n].hL[best_feat][:, best_bin] nodes[n<<1+1].∑ .= nodes[n].hR[best_feat][:, best_bin] nodes[n<<1].gain = EvoTrees.get_gain(params, nodes[n<<1].∑) nodes[n<<1+1].gain = EvoTrees.get_gain(params, nodes[n<<1+1].∑) if length(_right) >= length(_left) push!(n_next, n << 1) push!(n_next, n << 1 + 1) else push!(n_next, n << 1 + 1) push!(n_next, n << 1) end else EvoTrees.pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end end end n_current = copy(n_next) depth += 1 end # end of loop over active ids for a given depth return nothing end # grow a single oblivious tree - grow through all depth function grow_otree!( tree::EvoTrees.Tree{L,K}, nodes::Vector{N}, params::EvoTrees.EvoTypes{L}, ∇::CuMatrix, edges, js, out, left, right, h∇_cpu::Array{Float64,3}, h∇::CuArray{Float64,3}, x_bin::CuMatrix, feattypes::Vector{Bool}, monotone_constraints, ) where {L,K,N} jsg = CuVector(js) # reset nodes for n in nodes n.∑ .= 0 n.gain = 0.0 @inbounds for i in eachindex(n.h) n.h[i] .= 0 n.gains[i] .= 0 end end # initialize n_current = [1] depth = 1 # initialize summary stats nodes[1].∑ .= Vector(vec(sum(∇[:, nodes[1].is], dims=2))) nodes[1].gain = EvoTrees.get_gain(params, nodes[1].∑) # should use a GPU version? # grow while there are remaining active nodes while length(n_current) > 0 && depth <= params.max_depth offset = 0 # identifies breakpoint for each node set within a depth n_next = Int[] min_weight_flag = false for n in n_current nodes[n].∑[end] <= params.min_weight ? min_weight_flag = true : nothing end if depth == params.max_depth || min_weight_flag for n in n_current # @info "length(nodes[n].is)" length(nodes[n].is) depth n EvoTrees.pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end else # update histograms for n_id in eachindex(n_current) n = n_current[n_id] if n_id % 2 == 0 if n % 2 == 0 @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n+1].h[j] end else @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n-1].h[j] end end else update_hist_gpu!(nodes[n].h, h∇_cpu, h∇, ∇, x_bin, nodes[n].is, jsg, js) end end Threads.@threads for n ∈ n_current EvoTrees.update_gains!(nodes[n], js, params, feattypes, monotone_constraints) end # initialize gains for node 1 in which all gains of a given depth will be accumulated if depth > 1 @inbounds for j in js nodes[1].gains[j] .= 0 end end gain = 0 # update gains based on the aggregation of all nodes of a given depth. One gains matrix per depth (vs one per node in binary trees). for n ∈ sort(n_current) if n > 1 # accumulate gains in node 1 for j in js nodes[1].gains[j] .+= nodes[n].gains[j] end end gain += nodes[n].gain end for n ∈ sort(n_current) if n > 1 for j in js nodes[1].gains[j] .*= nodes[n].gains[j] .> 0 #mask ignore gains if any node isn't eligible (too small per leaf weight) end end end # find best split best = findmax(findmax.(nodes[1].gains)) best_gain = best[1][1] best_bin = best[1][2] best_feat = best[2] if best_gain > gain + params.gamma for n in sort(n_current) tree.gain[n] = best_gain - nodes[n].gain tree.cond_bin[n] = best_bin tree.feat[n] = best_feat tree.cond_float[n] = edges[best_feat][best_bin] tree.split[n] = best_bin != 0 _left, _right = split_set_threads_gpu!( out, left, right, nodes[n].is, x_bin, tree.feat[n], tree.cond_bin[n], feattypes[best_feat], offset, ) offset += length(nodes[n].is) nodes[n<<1].is, nodes[n<<1+1].is = _left, _right nodes[n<<1].∑ .= nodes[n].hL[best_feat][:, best_bin] nodes[n<<1+1].∑ .= nodes[n].hR[best_feat][:, best_bin] nodes[n<<1].gain = EvoTrees.get_gain(params, nodes[n<<1].∑) nodes[n<<1+1].gain = EvoTrees.get_gain(params, nodes[n<<1+1].∑) if length(_right) >= length(_left) push!(n_next, n << 1) push!(n_next, n << 1 + 1) else push!(n_next, n << 1 + 1) push!(n_next, n << 1) end end else for n in n_current EvoTrees.pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end end end n_current = copy(n_next) depth += 1 end # end of loop over current nodes for a given depth return nothing end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4551
function EvoTrees.init_core(params::EvoTrees.EvoTypes{L}, ::Type{<:EvoTrees.GPU}, data, fnames, y_train, w, offset) where {L} # binarize data into quantiles edges, featbins, feattypes = EvoTrees.get_edges(data; fnames, nbins=params.nbins, rng=params.rng) x_bin = CuArray(EvoTrees.binarize(data; fnames, edges)) nobs, nfeats = size(x_bin) T = Float32 target_levels = nothing target_isordered = false if L == EvoTrees.Logistic @assert eltype(y_train) <: Real && minimum(y_train) >= 0 && maximum(y_train) <= 1 K = 1 y = T.(y_train) μ = [EvoTrees.logit(EvoTrees.mean(y))] !isnothing(offset) && (offset .= EvoTrees.logit.(offset)) elseif L in [EvoTrees.Poisson, EvoTrees.Gamma, EvoTrees.Tweedie] @assert eltype(y_train) <: Real K = 1 y = T.(y_train) μ = fill(log(EvoTrees.mean(y)), 1) !isnothing(offset) && (offset .= log.(offset)) elseif L == EvoTrees.MLogLoss if eltype(y_train) <: EvoTrees.CategoricalValue target_levels = EvoTrees.CategoricalArrays.levels(y_train) target_isordered = isordered(y_train) y = UInt32.(EvoTrees.CategoricalArrays.levelcode.(y_train)) elseif eltype(y_train) <: Integer || eltype(y_train) <: Bool || eltype(y_train) <: String || eltype(y_train) <: Char target_levels = sort(unique(y_train)) yc = EvoTrees.CategoricalVector(y_train, levels=target_levels) y = UInt32.(EvoTrees.CategoricalArrays.levelcode.(yc)) else @error "Invalid target eltype: $(eltype(y_train))" end K = length(target_levels) μ = T.(log.(EvoTrees.proportions(y, UInt32(1):UInt32(K)))) μ .-= maximum(μ) !isnothing(offset) && (offset .= log.(offset)) elseif L == EvoTrees.GaussianMLE @assert eltype(y_train) <: Real K = 2 y = T.(y_train) μ = [EvoTrees.mean(y), log(EvoTrees.std(y))] !isnothing(offset) && (offset[:, 2] .= log.(offset[:, 2])) elseif L == EvoTrees.LogisticMLE @assert eltype(y_train) <: Real K = 2 y = T.(y_train) μ = [EvoTrees.mean(y), log(EvoTrees.std(y) * sqrt(3) / π)] !isnothing(offset) && (offset[:, 2] .= log.(offset[:, 2])) else @assert eltype(y_train) <: Real K = 1 y = T.(y_train) μ = [EvoTrees.mean(y)] end y = CuArray(y) μ = T.(μ) # force a neutral/zero bias/initial tree when offset is specified !isnothing(offset) && (μ .= 0) # initialize preds pred = CUDA.zeros(T, K, nobs) pred .= CuArray(μ) !isnothing(offset) && (pred .+= CuArray(offset')) # initialize gradients h∇_cpu = zeros(Float64, 2 * K + 1, maximum(featbins), length(featbins)) h∇ = CuArray(h∇_cpu) ∇ = CUDA.zeros(T, 2 * K + 1, nobs) @assert (length(y) == length(w) && minimum(w) > 0) ∇[end, :] .= w # initialize indexes is_in = CUDA.zeros(UInt32, nobs) is_out = CUDA.zeros(UInt32, nobs) mask = CUDA.zeros(UInt8, nobs) js_ = UInt32.(collect(1:nfeats)) js = zeros(eltype(js_), ceil(Int, params.colsample * nfeats)) out = CUDA.zeros(UInt32, nobs) left = CUDA.zeros(UInt32, nobs) right = CUDA.zeros(UInt32, nobs) # assign monotone contraints in constraints vector monotone_constraints = zeros(Int32, nfeats) hasproperty(params, :monotone_constraints) && for (k, v) in params.monotone_constraints monotone_constraints[k] = v end # model info info = Dict( :fnames => fnames, :target_levels => target_levels, :target_isordered => target_isordered, :edges => edges, :featbins => featbins, :feattypes => feattypes, ) # initialize model nodes = [EvoTrees.TrainNode(featbins, K, view(is_in, 1:0)) for n = 1:2^params.max_depth-1] bias = [EvoTrees.Tree{L,K}(μ)] m = EvoTree{L,K}(bias, info) # build cache cache = ( info=Dict(:nrounds => 0), x_bin=x_bin, y=y, w=w, K=K, nodes=nodes, pred=pred, is_in=is_in, is_out=is_out, mask=mask, js_=js_, js=js, out=out, left=left, right=right, ∇=∇, h∇=h∇, h∇_cpu=h∇_cpu, fnames=fnames, edges=edges, featbins=featbins, feattypes=feattypes, feattypes_gpu=CuArray(feattypes), monotone_constraints=monotone_constraints, ) return m, cache end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5870
##################### # MSE ##################### function kernel_mse_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds ∇[1, i] = 2 * (p[i] - y[i]) * ∇[3, i] @inbounds ∇[2, i] = 2 * ∇[3, i] end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeRegressor{<:EvoTrees.MSE}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_mse_∇!(∇, p, y) CUDA.synchronize() return end ##################### # Logistic ##################### function kernel_logloss_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds pred = EvoTrees.sigmoid(p[1, i]) @inbounds ∇[1, i] = (pred - y[i]) * ∇[3, i] @inbounds ∇[2, i] = pred * (1 - pred) * ∇[3, i] end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeRegressor{<:EvoTrees.LogLoss}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_logloss_∇!(∇, p, y) CUDA.synchronize() return end ##################### # Poisson ##################### function kernel_poisson_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) @inbounds pred = exp(p[1, i]) @inbounds ∇[1, i] = (pred - y[i]) * ∇[3, i] @inbounds ∇[2, i] = pred * ∇[3, i] end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeCount{<:EvoTrees.Poisson}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_poisson_∇!(∇, p, y) CUDA.synchronize() return end ##################### # Gamma ##################### function kernel_gamma_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x if i <= length(y) pred = exp(p[1, i]) @inbounds ∇[1, i] = 2 * (1 - y[i] / pred) * ∇[3, i] @inbounds ∇[2, i] = 2 * y[i] / pred * ∇[3, i] end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeRegressor{<:EvoTrees.Gamma}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_gamma_∇!(∇, p, y) CUDA.synchronize() return end ##################### # Tweedie ##################### function kernel_tweedie_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x rho = eltype(p)(1.5) if i <= length(y) @inbounds pred = exp(p[1, i]) @inbounds ∇[1, i] = 2 * (pred^(2 - rho) - y[i] * pred^(1 - rho)) * ∇[3, i] @inbounds ∇[2, i] = 2 * ((2 - rho) * pred^(2 - rho) - (1 - rho) * y[i] * pred^(1 - rho)) * ∇[3, i] end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeRegressor{<:EvoTrees.Tweedie}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_tweedie_∇!(∇, p, y) CUDA.synchronize() return end ##################### # Softmax ##################### function kernel_mlogloss_∇!(∇::CuDeviceMatrix{T}, p::CuDeviceMatrix{T}, y::CuDeviceVector) where {T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x K = size(p, 1) if i <= length(y) isum = zero(T) @inbounds for k in 1:K isum += exp(p[k, i]) end @inbounds for k in 1:K iexp = exp(p[k, i]) if k == y[i] ∇[k, i] = (iexp / isum - 1) * ∇[end, i] else ∇[k, i] = iexp / isum * ∇[end, i] end ∇[k+K, i] = 1 / isum * (1 - iexp / isum) * ∇[end, i] end end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::EvoTreeClassifier{<:EvoTrees.MLogLoss}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_mlogloss_∇!(∇, p, y) CUDA.synchronize() return end ################################################################################ # Gaussian - http://jrmeyer.github.io/machinelearning/2017/08/18/mle.html # pred[i][1] = μ # pred[i][2] = log(σ) ################################################################################ function kernel_gauss_∇!(∇::CuDeviceMatrix, p::CuDeviceMatrix, y::CuDeviceVector) i = threadIdx().x + (blockIdx().x - 1) * blockDim().x @inbounds if i <= length(y) # first order gradients ∇[1, i] = (p[1, i] - y[i]) / exp(2 * p[2, i]) * ∇[5, i] ∇[2, i] = (1 - (p[1, i] - y[i])^2 / exp(2 * p[2, i])) * ∇[5, i] # # second order gradients ∇[3, i] = ∇[5, i] / exp(2 * p[2, i]) ∇[4, i] = 2 * ∇[5, i] / exp(2 * p[2, i]) * (p[1, i] - y[i])^2 end return end function EvoTrees.update_grads!( ∇::CuMatrix, p::CuMatrix, y::CuVector, ::Union{EvoTreeGaussian{<:EvoTrees.GaussianMLE},EvoTreeMLE{<:EvoTrees.GaussianMLE}}; MAX_THREADS=1024 ) threads = min(MAX_THREADS, length(y)) blocks = cld(length(y), threads) @cuda blocks = blocks threads = threads kernel_gauss_∇!(∇, p, y) CUDA.synchronize() return end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5472
function predict_kernel!( ::Type{L}, pred::CuDeviceMatrix{T}, split, feats, cond_bins, leaf_pred, x_bin, feattypes, ) where {L,T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x nid = 1 K = size(pred, 1) @inbounds if i <= size(pred, 2) @inbounds while split[nid] feat = feats[nid] cond = feattypes[feat] ? x_bin[i, feat] <= cond_bins[nid] : x_bin[i, feat] == cond_bins[nid] nid = nid << 1 + !cond end @inbounds for k = 1:K pred[k, i] += leaf_pred[k, nid] end end sync_threads() return nothing end # GradientRegression function predict_kernel!( ::Type{<:EvoTrees.GradientRegression}, pred::CuDeviceMatrix{T}, split, feats, cond_bins, leaf_pred, x_bin, feattypes, ) where {T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x nid = 1 @inbounds if i <= size(pred, 2) @inbounds while split[nid] feat = feats[nid] cond = feattypes[feat] ? x_bin[i, feat] <= cond_bins[nid] : x_bin[i, feat] == cond_bins[nid] nid = nid << 1 + !cond end pred[1, i] += leaf_pred[1, nid] end sync_threads() return nothing end # Logistic function predict_kernel!( ::Type{<:EvoTrees.LogLoss}, pred::CuDeviceMatrix{T}, split, feats, cond_bins, leaf_pred, x_bin, feattypes, ) where {T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x nid = 1 @inbounds if i <= size(pred, 2) @inbounds while split[nid] feat = feats[nid] cond = feattypes[feat] ? x_bin[i, feat] <= cond_bins[nid] : x_bin[i, feat] == cond_bins[nid] nid = nid << 1 + !cond end pred[1, i] = min(T(15), max(T(-15), pred[1, i] + leaf_pred[1, nid])) end sync_threads() return nothing end # MLE2P function predict_kernel!( ::Type{<:EvoTrees.MLE2P}, pred::CuDeviceMatrix{T}, split, feats, cond_bins, leaf_pred, x_bin, feattypes, ) where {T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x nid = 1 @inbounds if i <= size(pred, 2) @inbounds while split[nid] feat = feats[nid] cond = feattypes[feat] ? x_bin[i, feat] <= cond_bins[nid] : x_bin[i, feat] == cond_bins[nid] nid = nid << 1 + !cond end pred[1, i] += leaf_pred[1, nid] pred[2, i] = max(T(-15), pred[2, i] + leaf_pred[2, nid]) end sync_threads() return nothing end # prediction from single tree - assign each observation to its final leaf function EvoTrees.predict!( pred::CuMatrix{T}, tree::EvoTrees.Tree{L,K}, x_bin::CuMatrix, feattypes::CuVector{Bool}; MAX_THREADS=1024 ) where {L,K,T} n = size(pred, 2) threads = min(MAX_THREADS, n) blocks = cld(n, threads) @cuda blocks = blocks threads = threads predict_kernel!( L, pred, CuArray(tree.split), CuArray(tree.feat), CuArray(tree.cond_bin), CuArray(tree.pred), x_bin, feattypes, ) CUDA.synchronize() end function EvoTrees.predict!( pred::CuMatrix{T}, tree::EvoTrees.Tree{L,K}, x_bin::CuMatrix, feattypes::CuVector{Bool}; MAX_THREADS=1024 ) where {L<:EvoTrees.MLogLoss,K,T} n = size(pred, 2) threads = min(MAX_THREADS, n) blocks = cld(n, threads) @cuda blocks = blocks threads = threads predict_kernel!( L, pred, CuArray(tree.split), CuArray(tree.feat), CuArray(tree.cond_bin), CuArray(tree.pred), x_bin, feattypes, ) CUDA.synchronize() pred .= max.(T(-15), pred .- maximum(pred, dims=1)) end # prediction for EvoTree model function predict( m::EvoTree{L,K}, data, ::Type{<:EvoTrees.GPU}; ntree_limit=length(m.trees)) where {L,K} Tables.istable(data) ? data = Tables.columntable(data) : nothing ntrees = length(m.trees) ntree_limit > ntrees && error("ntree_limit is larger than number of trees $ntrees.") x_bin = CuArray(EvoTrees.binarize(data; fnames=m.info[:fnames], edges=m.info[:edges])) nobs = size(x_bin, 1) pred = CUDA.zeros(K, nobs) feattypes = CuArray(m.info[:feattypes]) for i = 1:ntree_limit EvoTrees.predict!(pred, m.trees[i], x_bin, feattypes) end if L == EvoTrees.LogLoss pred .= EvoTrees.sigmoid.(pred) elseif L ∈ [EvoTrees.Poisson, EvoTrees.Gamma, EvoTrees.Tweedie] pred .= exp.(pred) elseif L in [EvoTrees.GaussianMLE, EvoTrees.LogisticMLE] pred[2, :] .= exp.(pred[2, :]) elseif L == EvoTrees.MLogLoss EvoTrees.softmax!(pred) end pred = K == 1 ? vec(Array(pred')) : Array(pred') return pred end function softmax_kernel!(p::CuDeviceMatrix{T}) where {T} i = threadIdx().x + (blockIdx().x - 1) * blockDim().x K, nobs = size(p) if i <= nobs isum = zero(T) @inbounds for k in 1:K p[k, i] = exp(p[k, i]) isum += exp(p[k, i]) end @inbounds for k in 1:K p[k, i] /= isum end end return nothing end function EvoTrees.softmax!(p::CuMatrix{T}; MAX_THREADS=1024) where {T} K, nobs = size(p) threads = min(MAX_THREADS, nobs) blocks = cld(nobs, threads) @cuda blocks = blocks threads = threads softmax_kernel!(p) CUDA.synchronize() return nothing end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2244
function get_rand_kernel!(mask) tix = threadIdx().x bdx = blockDim().x bix = blockIdx().x gdx = gridDim().x i_max = length(mask) niter = cld(i_max, bdx * gdx) for iter = 1:niter i = tix + bdx * (bix - 1) + bdx * gdx * (iter - 1) if i <= i_max mask[i] = rand(UInt8) end end sync_threads() end function get_rand_gpu!(mask) threads = (1024,) blocks = (256,) @cuda threads = threads blocks = blocks get_rand_kernel!(mask) CUDA.synchronize() end function subsample_step_1_kernel(is_in, mask, cond, counts, chunk_size) bid = blockIdx().x gdim = gridDim().x i_start = chunk_size * (bid - 1) + 1 i_stop = bid == gdim ? length(is_in) : i_start + chunk_size - 1 count = 0 @inbounds for i = i_start:i_stop @inbounds if mask[i] <= cond is_in[i_start+count] = i count += 1 end end sync_threads() @inbounds counts[bid] = count sync_threads() end function subsample_step_2_kernel(is_in, is_out, counts, counts_cum, chunk_size) bid = blockIdx().x count_cum = counts_cum[bid] i_start = chunk_size * (bid - 1) @inbounds for i = 1:counts[bid] is_out[count_cum+i] = is_in[i_start+i] end sync_threads() end function EvoTrees.subsample(is_in::CuVector, is_out::CuVector, mask::CuVector, rowsample::AbstractFloat, rng) get_rand_gpu!(mask) cond = round(UInt8, 255 * rowsample) chunk_size = cld(length(is_in), min(cld(length(is_in), 128), 2048)) nblocks = cld(length(is_in), chunk_size) counts = CUDA.zeros(Int, nblocks) blocks = (nblocks,) threads = (1,) @cuda blocks = nblocks threads = 1 subsample_step_1_kernel( is_in, mask, cond, counts, chunk_size, ) CUDA.synchronize() counts_cum = cumsum(counts) - counts @cuda blocks = nblocks threads = 1 subsample_step_2_kernel( is_in, is_out, counts, counts_cum, chunk_size, ) CUDA.synchronize() counts_sum = sum(counts) if counts_cum == 0 @error "no subsample observation - choose larger rowsample" else return view(is_out, 1:counts_sum) end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1148
module EvoTrees export fit_evotree export EvoTreeRegressor, EvoTreeCount, EvoTreeClassifier, EvoTreeMLE, EvoTreeGaussian, EvoTree, Random using Base.Threads: @threads, @spawn, nthreads, threadid using Statistics using StatsBase: sample, sample!, quantile, proportions using Random using Random: seed!, AbstractRNG using Distributions using Tables using CategoricalArrays using Tables using BSON using NetworkLayout using RecipesBase using MLJModelInterface import MLJModelInterface as MMI import MLJModelInterface: fit, update, predict, schema import Base: convert include("models.jl") include("structs.jl") include("loss.jl") include("eval.jl") include("predict.jl") include("init.jl") include("subsample.jl") include("fit-utils.jl") include("fit.jl") if !isdefined(Base, :get_extension) include("../ext/EvoTreesCUDAExt/EvoTreesCUDAExt.jl") end include("callback.jl") include("importance.jl") include("plot.jl") include("MLJ.jl") function save(model::EvoTree, path) BSON.bson(path, Dict(:model => model)) end function load(path) m = BSON.load(path, @__MODULE__) return m[:model] end end # module
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
33537
function MMI.fit(model::EvoTypes, verbosity::Int, A, y, w=nothing) A = isa(A, AbstractMatrix) ? Tables.columntable(Tables.table(A)) : Tables.columntable(A) nobs = Tables.DataAPI.nrow(A) fnames = Tables.schema(A).names w = isnothing(w) ? device_ones(CPU, Float32, nobs) : Vector{Float32}(w) fitresult, cache = init_core(model, CPU, A, fnames, y, w, nothing) while cache[:info][:nrounds] < model.nrounds grow_evotree!(fitresult, cache, model) end report = (features=cache[:fnames],) return fitresult, cache, report end function okay_to_continue(model, fitresult, cache) return model.nrounds - cache[:info][:nrounds] >= 0 && all(_get_struct_loss(model) .== _get_struct_loss(fitresult)) end # For EarlyStopping.jl support MMI.iteration_parameter(::Type{<:EvoTypes}) = :nrounds function MMI.update( model::EvoTypes, verbosity::Integer, fitresult, cache, A, y, w=nothing, ) if okay_to_continue(model, fitresult, cache) while cache[:info][:nrounds] < model.nrounds grow_evotree!(fitresult, cache, model) end report = (features=cache[:fnames],) else fitresult, cache, report = fit(model, verbosity, A, y, w) end return fitresult, cache, report end function predict(::EvoTreeRegressor, fitresult, A) pred = predict(fitresult, A) return pred end function predict(::EvoTreeClassifier, fitresult, A) pred = predict(fitresult, A) return MMI.UnivariateFinite(fitresult.info[:target_levels], pred, pool=missing, ordered=fitresult.info[:target_isordered]) end function predict(::EvoTreeCount, fitresult, A) λs = predict(fitresult, A) return [Distributions.Poisson(λ) for λ ∈ λs] end function predict(::EvoTreeGaussian, fitresult, A) pred = predict(fitresult, A) return [Distributions.Normal(pred[i, 1], pred[i, 2]) for i in axes(pred, 1)] end function predict(::EvoTreeMLE{L}, fitresult, A) where {L<:GaussianMLE} pred = predict(fitresult, A) return [Distributions.Normal(pred[i, 1], pred[i, 2]) for i in axes(pred, 1)] end function predict(::EvoTreeMLE{L}, fitresult, A) where {L<:LogisticMLE} pred = predict(fitresult, A) return [Distributions.Logistic(pred[i, 1], pred[i, 2]) for i in axes(pred, 1)] end # Feature Importances MMI.reports_feature_importances(::Type{<:EvoTypes}) = true MMI.supports_weights(::Type{<:EvoTypes}) = true function MMI.feature_importances(m::EvoTypes, fitresult, report) fi_pairs = importance(fitresult, fnames=report[:features]) return fi_pairs end # Metadata MMI.metadata_pkg.( (EvoTreeRegressor, EvoTreeClassifier, EvoTreeCount, EvoTreeGaussian, EvoTreeMLE), name="EvoTrees", uuid="f6006082-12f8-11e9-0c9c-0d5d367ab1e5", url="https://github.com/Evovest/EvoTrees.jl", julia=true, license="Apache", is_wrapper=false, ) MMI.metadata_model( EvoTreeRegressor, input_scitype=Union{ MMI.Table(MMI.Continuous, MMI.Count, MMI.OrderedFactor, MMI.Multiclass), AbstractMatrix{MMI.Continuous}, }, target_scitype=AbstractVector{<:MMI.Continuous}, weights=true, path="EvoTrees.EvoTreeRegressor", ) MMI.metadata_model( EvoTreeClassifier, input_scitype=Union{ MMI.Table(MMI.Continuous, MMI.Count, MMI.OrderedFactor, MMI.Multiclass), AbstractMatrix{MMI.Continuous}, }, target_scitype=AbstractVector{<:MMI.Finite}, weights=true, path="EvoTrees.EvoTreeClassifier", ) MMI.metadata_model( EvoTreeCount, input_scitype=Union{ MMI.Table(MMI.Continuous, MMI.Count, MMI.OrderedFactor, MMI.Multiclass), AbstractMatrix{MMI.Continuous}, }, target_scitype=AbstractVector{<:MMI.Count}, weights=true, path="EvoTrees.EvoTreeCount", ) MMI.metadata_model( EvoTreeGaussian, input_scitype=Union{ MMI.Table(MMI.Continuous, MMI.Count, MMI.OrderedFactor, MMI.Multiclass), AbstractMatrix{MMI.Continuous}, }, target_scitype=AbstractVector{<:MMI.Continuous}, weights=true, path="EvoTrees.EvoTreeGaussian", ) MMI.metadata_model( EvoTreeMLE, input_scitype=Union{ MMI.Table(MMI.Continuous, MMI.Count, MMI.OrderedFactor, MMI.Multiclass), AbstractMatrix{MMI.Continuous}, }, target_scitype=AbstractVector{<:MMI.Continuous}, weights=true, path="EvoTrees.EvoTreeMLE", ) """ EvoTreeRegressor(;kwargs...) A model type for constructing a EvoTreeRegressor, based on [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl), and implementing both an internal API and the MLJ model interface. # Hyper-parameters - `loss=:mse`: Loss to be be minimized during training. One of: - `:mse` - `:logloss` - `:gamma` - `:tweedie` - `:quantile` - `:l1` - `nrounds=100`: Number of rounds. It corresponds to the number of trees that will be sequentially stacked. Must be >= 1. - `eta=0.1`: Learning rate. Each tree raw predictions are scaled by `eta` prior to be added to the stack of predictions. Must be > 0. A lower `eta` results in slower learning, requiring a higher `nrounds` but typically improves model performance. - `L2::T=0.0`: L2 regularization factor on aggregate gain. Must be >= 0. Higher L2 can result in a more robust model. - `lambda::T=0.0`: L2 regularization factor on individual gain. Must be >= 0. Higher lambda can result in a more robust model. - `gamma::T=0.0`: Minimum gain improvement needed to perform a node split. Higher gamma can result in a more robust model. Must be >= 0. - `alpha::T=0.5`: Loss specific parameter in the [0, 1] range: - `:quantile`: target quantile for the regression. - `:l1`: weighting parameters to positive vs negative residuals. - Positive residual weights = `alpha` - Negative residual weights = `(1 - alpha)` - `max_depth=6`: Maximum depth of a tree. Must be >= 1. A tree of depth 1 is made of a single prediction leaf. A complete tree of depth N contains `2^(N - 1)` terminal leaves and `2^(N - 1) - 1` split nodes. Compute cost is proportional to `2^max_depth`. Typical optimal values are in the 3 to 9 range. - `min_weight=1.0`: Minimum weight needed in a node to perform a split. Matches the number of observations by default or the sum of weights as provided by the `weights` vector. Must be > 0. - `rowsample=1.0`: Proportion of rows that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `colsample=1.0`: Proportion of columns / features that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `nbins=64`: Number of bins into which each feature is quantized. Buckets are defined based on quantiles, hence resulting in equal weight bins. Should be between 2 and 255. - `monotone_constraints=Dict{Int, Int}()`: Specify monotonic constraints using a dict where the key is the feature index and the value the applicable constraint (-1=decreasing, 0=none, 1=increasing). Only `:linear`, `:logistic`, `:gamma` and `tweedie` losses are supported at the moment. - `tree_type="binary"` Tree structure to be used. One of: - `binary`: Each node of a tree is grown independently. Tree are built depthwise until max depth is reach or if min weight or gain (see `gamma`) stops further node splits. - `oblivious`: A common splitting condition is imposed to all nodes of a given depth. - `rng=123`: Either an integer used as a seed to the random number generator or an actual random number generator (`::Random.AbstractRNG`). # Internal API Do `config = EvoTreeRegressor()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in EvoTreeRegressor(loss=...). ## Training model A model is built using [`fit_evotree`](@ref): ```julia model = fit_evotree(config; x_train, y_train, kwargs...) ``` ## Inference Predictions are obtained using [`predict`](@ref) which returns a `Vector` of length `nobs`: ```julia EvoTrees.predict(model, X) ``` Alternatively, models act as a functor, returning predictions when called as a function with features as argument: ```julia model(X) ``` # MLJ Interface From MLJ, the type can be imported using: ```julia EvoTreeRegressor = @load EvoTreeRegressor pkg=EvoTrees ``` Do `model = EvoTreeRegressor()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in `EvoTreeRegressor(loss=...)`. ## Training model In MLJ or MLJBase, bind an instance `model` to data with `mach = machine(model, X, y)` where - `X`: any table of input features (eg, a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:Continuous`; check the scitype with `scitype(y)` Train the machine using `fit!(mach, rows=...)`. ## Operations - `predict(mach, Xnew)`: return predictions of the target given features `Xnew` having the same scitype as `X` above. Predictions are deterministic. ## Fitted parameters The fields of `fitted_params(mach)` are: - `:fitresult`: The `GBTree` object returned by EvoTrees.jl fitting algorithm. ## Report The fields of `report(mach)` are: - `:features`: The names of the features encountered in training. # Examples ``` # Internal API using EvoTrees config = EvoTreeRegressor(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 x_train, y_train = randn(nobs, nfeats), rand(nobs) model = fit_evotree(config; x_train, y_train) preds = EvoTrees.predict(model, x_train) ``` ``` # MLJ Interface using MLJ EvoTreeRegressor = @load EvoTreeRegressor pkg=EvoTrees model = EvoTreeRegressor(max_depth=5, nbins=32, nrounds=100) X, y = @load_boston mach = machine(model, X, y) |> fit! preds = predict(mach, X) ``` """ EvoTreeRegressor """ EvoTreeClassifier(;kwargs...) A model type for constructing a EvoTreeClassifier, based on [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl), and implementing both an internal API and the MLJ model interface. EvoTreeClassifier is used to perform multi-class classification, using cross-entropy loss. # Hyper-parameters - `nrounds=100`: Number of rounds. It corresponds to the number of trees that will be sequentially stacked. Must be >= 1. - `eta=0.1`: Learning rate. Each tree raw predictions are scaled by `eta` prior to be added to the stack of predictions. Must be > 0. A lower `eta` results in slower learning, requiring a higher `nrounds` but typically improves model performance. - `L2::T=0.0`: L2 regularization factor on aggregate gain. Must be >= 0. Higher L2 can result in a more robust model. - `lambda::T=0.0`: L2 regularization factor on individual gain. Must be >= 0. Higher lambda can result in a more robust model. - `gamma::T=0.0`: Minimum gain improvement needed to perform a node split. Higher gamma can result in a more robust model. Must be >= 0. - `max_depth=6`: Maximum depth of a tree. Must be >= 1. A tree of depth 1 is made of a single prediction leaf. A complete tree of depth N contains `2^(N - 1)` terminal leaves and `2^(N - 1) - 1` split nodes. Compute cost is proportional to `2^max_depth`. Typical optimal values are in the 3 to 9 range. - `min_weight=1.0`: Minimum weight needed in a node to perform a split. Matches the number of observations by default or the sum of weights as provided by the `weights` vector. Must be > 0. - `rowsample=1.0`: Proportion of rows that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `colsample=1.0`: Proportion of columns / features that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `nbins=64`: Number of bins into which each feature is quantized. Buckets are defined based on quantiles, hence resulting in equal weight bins. Should be between 2 and 255. - `tree_type="binary"` Tree structure to be used. One of: - `binary`: Each node of a tree is grown independently. Tree are built depthwise until max depth is reach or if min weight or gain (see `gamma`) stops further node splits. - `oblivious`: A common splitting condition is imposed to all nodes of a given depth. - `rng=123`: Either an integer used as a seed to the random number generator or an actual random number generator (`::Random.AbstractRNG`). # Internal API Do `config = EvoTreeClassifier()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in EvoTreeClassifier(max_depth=...). ## Training model A model is built using [`fit_evotree`](@ref): ```julia model = fit_evotree(config; x_train, y_train, kwargs...) ``` ## Inference Predictions are obtained using [`predict`](@ref) which returns a `Matrix` of size `[nobs, K]` where `K` is the number of classes: ```julia EvoTrees.predict(model, X) ``` Alternatively, models act as a functor, returning predictions when called as a function with features as argument: ```julia model(X) ``` # MLJ From MLJ, the type can be imported using: ```julia EvoTreeClassifier = @load EvoTreeClassifier pkg=EvoTrees ``` Do `model = EvoTreeClassifier()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in `EvoTreeClassifier(loss=...)`. ## Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) where - `X`: any table of input features (eg, a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:Multiclas` or `<:OrderedFactor`; check the scitype with `scitype(y)` Train the machine using `fit!(mach, rows=...)`. ## Operations - `predict(mach, Xnew)`: return predictions of the target given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic. - `predict_mode(mach, Xnew)`: returns the mode of each of the prediction above. ## Fitted parameters The fields of `fitted_params(mach)` are: - `:fitresult`: The `GBTree` object returned by EvoTrees.jl fitting algorithm. ## Report The fields of `report(mach)` are: - `:features`: The names of the features encountered in training. # Examples ``` # Internal API using EvoTrees config = EvoTreeClassifier(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 x_train, y_train = randn(nobs, nfeats), rand(1:3, nobs) model = fit_evotree(config; x_train, y_train) preds = EvoTrees.predict(model, x_train) ``` ``` # MLJ Interface using MLJ EvoTreeClassifier = @load EvoTreeClassifier pkg=EvoTrees model = EvoTreeClassifier(max_depth=5, nbins=32, nrounds=100) X, y = @load_iris mach = machine(model, X, y) |> fit! preds = predict(mach, X) preds = predict_mode(mach, X) ``` See also [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl). """ EvoTreeClassifier """ EvoTreeCount(;kwargs...) A model type for constructing a EvoTreeCount, based on [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl), and implementing both an internal API the MLJ model interface. EvoTreeCount is used to perform Poisson probabilistic regression on count target. # Hyper-parameters - `nrounds=100`: Number of rounds. It corresponds to the number of trees that will be sequentially stacked. Must be >= 1. - `eta=0.1`: Learning rate. Each tree raw predictions are scaled by `eta` prior to be added to the stack of predictions. Must be > 0. A lower `eta` results in slower learning, requiring a higher `nrounds` but typically improves model performance. - `L2::T=0.0`: L2 regularization factor on aggregate gain. Must be >= 0. Higher L2 can result in a more robust model. - `lambda::T=0.0`: L2 regularization factor on individual gain. Must be >= 0. Higher lambda can result in a more robust model. - `gamma::T=0.0`: Minimum gain imprvement needed to perform a node split. Higher gamma can result in a more robust model. - `max_depth=6`: Maximum depth of a tree. Must be >= 1. A tree of depth 1 is made of a single prediction leaf. A complete tree of depth N contains `2^(N - 1)` terminal leaves and `2^(N - 1) - 1` split nodes. Compute cost is proportional to 2^max_depth. Typical optimal values are in the 3 to 9 range. - `min_weight=1.0`: Minimum weight needed in a node to perform a split. Matches the number of observations by default or the sum of weights as provided by the `weights` vector. Must be > 0. - `rowsample=1.0`: Proportion of rows that are sampled at each iteration to build the tree. Should be `]0, 1]`. - `colsample=1.0`: Proportion of columns / features that are sampled at each iteration to build the tree. Should be `]0, 1]`. - `nbins=64`: Number of bins into which each feature is quantized. Buckets are defined based on quantiles, hence resulting in equal weight bins. Should be between 2 and 255. - `monotone_constraints=Dict{Int, Int}()`: Specify monotonic constraints using a dict where the key is the feature index and the value the applicable constraint (-1=decreasing, 0=none, 1=increasing). - `tree_type="binary"` Tree structure to be used. One of: - `binary`: Each node of a tree is grown independently. Tree are built depthwise until max depth is reach or if min weight or gain (see `gamma`) stops further node splits. - `oblivious`: A common splitting condition is imposed to all nodes of a given depth. - `rng=123`: Either an integer used as a seed to the random number generator or an actual random number generator (`::Random.AbstractRNG`). # Internal API Do `config = EvoTreeCount()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in EvoTreeCount(max_depth=...). ## Training model A model is built using [`fit_evotree`](@ref): ```julia model = fit_evotree(config; x_train, y_train, kwargs...) ``` ## Inference Predictions are obtained using [`predict`](@ref) which returns a `Vector` of length `nobs`: ```julia EvoTrees.predict(model, X) ``` Alternatively, models act as a functor, returning predictions when called as a function with features as argument: ```julia model(X) ``` # MLJ From MLJ, the type can be imported using: ```julia EvoTreeCount = @load EvoTreeCount pkg=EvoTrees ``` Do `model = EvoTreeCount()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in `EvoTreeCount(loss=...)`. ## Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) where - `X`: any table of input features (eg, a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:Count`; check the scitype with `scitype(y)` Train the machine using `fit!(mach, rows=...)`. # Operations - `predict(mach, Xnew)`: returns a vector of Poisson distributions given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic. Specific metrics can also be predicted using: - `predict_mean(mach, Xnew)` - `predict_mode(mach, Xnew)` - `predict_median(mach, Xnew)` ## Fitted parameters The fields of `fitted_params(mach)` are: - `:fitresult`: The `GBTree` object returned by EvoTrees.jl fitting algorithm. ## Report The fields of `report(mach)` are: - `:features`: The names of the features encountered in training. # Examples ``` # Internal API using EvoTrees config = EvoTreeCount(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 x_train, y_train = randn(nobs, nfeats), rand(0:2, nobs) model = fit_evotree(config; x_train, y_train) preds = EvoTrees.predict(model, x_train) ``` ``` using MLJ EvoTreeCount = @load EvoTreeCount pkg=EvoTrees model = EvoTreeCount(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 X, y = randn(nobs, nfeats), rand(0:2, nobs) mach = machine(model, X, y) |> fit! preds = predict(mach, X) preds = predict_mean(mach, X) preds = predict_mode(mach, X) preds = predict_median(mach, X) ``` See also [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl). """ EvoTreeCount """ EvoTreeGaussian(;kwargs...) A model type for constructing a EvoTreeGaussian, based on [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl), and implementing both an internal API the MLJ model interface. EvoTreeGaussian is used to perform Gaussian probabilistic regression, fitting μ and σ parameters to maximize likelihood. # Hyper-parameters - `nrounds=100`: Number of rounds. It corresponds to the number of trees that will be sequentially stacked. Must be >= 1. - `eta=0.1`: Learning rate. Each tree raw predictions are scaled by `eta` prior to be added to the stack of predictions. Must be > 0. A lower `eta` results in slower learning, requiring a higher `nrounds` but typically improves model performance. - `L2::T=0.0`: L2 regularization factor on aggregate gain. Must be >= 0. Higher L2 can result in a more robust model. - `lambda::T=0.0`: L2 regularization factor on individual gain. Must be >= 0. Higher lambda can result in a more robust model. - `gamma::T=0.0`: Minimum gain imprvement needed to perform a node split. Higher gamma can result in a more robust model. Must be >= 0. - `max_depth=6`: Maximum depth of a tree. Must be >= 1. A tree of depth 1 is made of a single prediction leaf. A complete tree of depth N contains `2^(N - 1)` terminal leaves and `2^(N - 1) - 1` split nodes. Compute cost is proportional to 2^max_depth. Typical optimal values are in the 3 to 9 range. - `min_weight=8.0`: Minimum weight needed in a node to perform a split. Matches the number of observations by default or the sum of weights as provided by the `weights` vector. Must be > 0. - `rowsample=1.0`: Proportion of rows that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `colsample=1.0`: Proportion of columns / features that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `nbins=64`: Number of bins into which each feature is quantized. Buckets are defined based on quantiles, hence resulting in equal weight bins. Should be between 2 and 255. - `monotone_constraints=Dict{Int, Int}()`: Specify monotonic constraints using a dict where the key is the feature index and the value the applicable constraint (-1=decreasing, 0=none, 1=increasing). !Experimental feature: note that for Gaussian regression, constraints may not be enforce systematically. - `tree_type="binary"` Tree structure to be used. One of: - `binary`: Each node of a tree is grown independently. Tree are built depthwise until max depth is reach or if min weight or gain (see `gamma`) stops further node splits. - `oblivious`: A common splitting condition is imposed to all nodes of a given depth. - `rng=123`: Either an integer used as a seed to the random number generator or an actual random number generator (`::Random.AbstractRNG`). # Internal API Do `config = EvoTreeGaussian()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in EvoTreeGaussian(max_depth=...). ## Training model A model is built using [`fit_evotree`](@ref): ```julia model = fit_evotree(config; x_train, y_train, kwargs...) ``` ## Inference Predictions are obtained using [`predict`](@ref) which returns a `Matrix` of size `[nobs, 2]` where the second dimensions refer to `μ` and `σ` respectively: ```julia EvoTrees.predict(model, X) ``` Alternatively, models act as a functor, returning predictions when called as a function with features as argument: ```julia model(X) ``` # MLJ From MLJ, the type can be imported using: ```julia EvoTreeGaussian = @load EvoTreeGaussian pkg=EvoTrees ``` Do `model = EvoTreeGaussian()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in `EvoTreeGaussian(loss=...)`. ## Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) where - `X`: any table of input features (eg, a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:Continuous`; check the scitype with `scitype(y)` Train the machine using `fit!(mach, rows=...)`. ## Operations - `predict(mach, Xnew)`: returns a vector of Gaussian distributions given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic. Specific metrics can also be predicted using: - `predict_mean(mach, Xnew)` - `predict_mode(mach, Xnew)` - `predict_median(mach, Xnew)` ## Fitted parameters The fields of `fitted_params(mach)` are: - `:fitresult`: The `GBTree` object returned by EvoTrees.jl fitting algorithm. ## Report The fields of `report(mach)` are: - `:features`: The names of the features encountered in training. # Examples ``` # Internal API using EvoTrees params = EvoTreeGaussian(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 x_train, y_train = randn(nobs, nfeats), rand(nobs) model = fit_evotree(params; x_train, y_train) preds = EvoTrees.predict(model, x_train) ``` ``` # MLJ Interface using MLJ EvoTreeGaussian = @load EvoTreeGaussian pkg=EvoTrees model = EvoTreeGaussian(max_depth=5, nbins=32, nrounds=100) X, y = @load_boston mach = machine(model, X, y) |> fit! preds = predict(mach, X) preds = predict_mean(mach, X) preds = predict_mode(mach, X) preds = predict_median(mach, X) ``` """ EvoTreeGaussian """ EvoTreeMLE(;kwargs...) A model type for constructing a EvoTreeMLE, based on [EvoTrees.jl](https://github.com/Evovest/EvoTrees.jl), and implementing both an internal API the MLJ model interface. EvoTreeMLE performs maximum likelihood estimation. Assumed distribution is specified through `loss` kwargs. Both Gaussian and Logistic distributions are supported. # Hyper-parameters `loss=:gaussian`: Loss to be be minimized during training. One of: - `:gaussian` / `:gaussian_mle` - `:logistic` / `:logistic_mle` - `nrounds=100`: Number of rounds. It corresponds to the number of trees that will be sequentially stacked. Must be >= 1. - `eta=0.1`: Learning rate. Each tree raw predictions are scaled by `eta` prior to be added to the stack of predictions. Must be > 0. A lower `eta` results in slower learning, requiring a higher `nrounds` but typically improves model performance. - `L2::T=0.0`: L2 regularization factor on aggregate gain. Must be >= 0. Higher L2 can result in a more robust model. - `lambda::T=0.0`: L2 regularization factor on individual gain. Must be >= 0. Higher lambda can result in a more robust model. - `gamma::T=0.0`: Minimum gain imprvement needed to perform a node split. Higher gamma can result in a more robust model. Must be >= 0. - `max_depth=6`: Maximum depth of a tree. Must be >= 1. A tree of depth 1 is made of a single prediction leaf. A complete tree of depth N contains `2^(N - 1)` terminal leaves and `2^(N - 1) - 1` split nodes. Compute cost is proportional to 2^max_depth. Typical optimal values are in the 3 to 9 range. - `min_weight=8.0`: Minimum weight needed in a node to perform a split. Matches the number of observations by default or the sum of weights as provided by the `weights` vector. Must be > 0. - `rowsample=1.0`: Proportion of rows that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `colsample=1.0`: Proportion of columns / features that are sampled at each iteration to build the tree. Should be in `]0, 1]`. - `nbins=64`: Number of bins into which each feature is quantized. Buckets are defined based on quantiles, hence resulting in equal weight bins. Should be between 2 and 255. - `monotone_constraints=Dict{Int, Int}()`: Specify monotonic constraints using a dict where the key is the feature index and the value the applicable constraint (-1=decreasing, 0=none, 1=increasing). !Experimental feature: note that for MLE regression, constraints may not be enforced systematically. - `tree_type="binary"` Tree structure to be used. One of: - `binary`: Each node of a tree is grown independently. Tree are built depthwise until max depth is reach or if min weight or gain (see `gamma`) stops further node splits. - `oblivious`: A common splitting condition is imposed to all nodes of a given depth. - `rng=123`: Either an integer used as a seed to the random number generator or an actual random number generator (`::Random.AbstractRNG`). # Internal API Do `config = EvoTreeMLE()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in EvoTreeMLE(max_depth=...). ## Training model A model is built using [`fit_evotree`](@ref): ```julia model = fit_evotree(config; x_train, y_train, kwargs...) ``` ## Inference Predictions are obtained using [`predict`](@ref) which returns a `Matrix` of size `[nobs, nparams]` where the second dimensions refer to `μ` & `σ` for Normal/Gaussian and `μ` & `s` for Logistic. ```julia EvoTrees.predict(model, X) ``` Alternatively, models act as a functor, returning predictions when called as a function with features as argument: ```julia model(X) ``` # MLJ From MLJ, the type can be imported using: ```julia EvoTreeMLE = @load EvoTreeMLE pkg=EvoTrees ``` Do `model = EvoTreeMLE()` to construct an instance with default hyper-parameters. Provide keyword arguments to override hyper-parameter defaults, as in `EvoTreeMLE(loss=...)`. ## Training data In MLJ or MLJBase, bind an instance `model` to data with mach = machine(model, X, y) where - `X`: any table of input features (eg, a `DataFrame`) whose columns each have one of the following element scitypes: `Continuous`, `Count`, or `<:OrderedFactor`; check column scitypes with `schema(X)` - `y`: is the target, which can be any `AbstractVector` whose element scitype is `<:Continuous`; check the scitype with `scitype(y)` Train the machine using `fit!(mach, rows=...)`. ## Operations - `predict(mach, Xnew)`: returns a vector of Gaussian or Logistic distributions (according to provided `loss`) given features `Xnew` having the same scitype as `X` above. Predictions are probabilistic. Specific metrics can also be predicted using: - `predict_mean(mach, Xnew)` - `predict_mode(mach, Xnew)` - `predict_median(mach, Xnew)` ## Fitted parameters The fields of `fitted_params(mach)` are: - `:fitresult`: The `GBTree` object returned by EvoTrees.jl fitting algorithm. ## Report The fields of `report(mach)` are: - `:features`: The names of the features encountered in training. # Examples ``` # Internal API using EvoTrees config = EvoTreeMLE(max_depth=5, nbins=32, nrounds=100) nobs, nfeats = 1_000, 5 x_train, y_train = randn(nobs, nfeats), rand(nobs) model = fit_evotree(config; x_train, y_train) preds = EvoTrees.predict(model, x_train) ``` ``` # MLJ Interface using MLJ EvoTreeMLE = @load EvoTreeMLE pkg=EvoTrees model = EvoTreeMLE(max_depth=5, nbins=32, nrounds=100) X, y = @load_boston mach = machine(model, X, y) |> fit! preds = predict(mach, X) preds = predict_mean(mach, X) preds = predict_mode(mach, X) preds = predict_median(mach, X) ``` """ EvoTreeMLE # function MLJ.clean!(model::EvoTreeRegressor) # warning = "" # if model.nrounds < 1 # warning *= "Need nrounds ≥ 1. Resetting nrounds=1. " # model.nrounds = 1 # end # if model.lambda < 0 # warning *= "Need lambda ≥ 0. Resetting lambda=0. " # model.lambda = 0.0 # end # if model.gamma < 0 # warning *= "Need gamma ≥ 0. Resetting gamma=0. " # model.gamma = 0.0 # end # if model.η <= 0 # warning *= "Need η > 0. Resetting η=0.001. " # model.η = 0.001 # end # if model.max_depth < 1 # warning *= "Need max_depth ≥ 0. Resetting max_depth=0. " # model.max_depth = 1 # end # if model.min_weight < 0 # warning *= "Need min_weight ≥ 0. Resetting min_weight=0. " # model.min_weight = 0.0 # end # if model.rowsample < 0 # warning *= "Need rowsample ≥ 0. Resetting rowsample=0. " # model.rowsample = 0.0 # end # if model.rowsample > 1 # warning *= "Need rowsample <= 1. Resetting rowsample=1. " # model.rowsample = 1.0 # end # if model.colsample < 0 # warning *= "Need colsample ≥ 0. Resetting colsample=0. " # model.colsample = 0.0 # end # if model.colsample > 1 # warning *= "Need colsample <= 1. Resetting colsample=1. " # model.colsample = 1.0 # end # if model.nbins > 250 # warning *= "Need nbins <= 250. Resetting nbins=250. " # model.nbins = 250 # end # return warning # end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4534
struct CallBack{B,P,Y,C,D} feval::Function x_bin::B p::P y::Y w::C eval::C feattypes::D end function CallBack( ::EvoTypes{L}, m::EvoTree{L,K}, deval, device::Type{<:Device}; target_name, w_name=nothing, offset_name=nothing, metric) where {L,K} T = Float32 _w_name = isnothing(w_name) ? Symbol("") : Symbol(w_name) _offset_name = isnothing(offset_name) ? Symbol("") : Symbol(offset_name) _target_name = Symbol(target_name) feval = metric_dict[metric] x_bin = binarize(deval; fnames=m.info[:fnames], edges=m.info[:edges]) nobs = length(Tables.getcolumn(deval, 1)) p = zeros(T, K, nobs) y_eval = Tables.getcolumn(deval, _target_name) if L == MLogLoss if eltype(y_eval) <: CategoricalValue levels = CategoricalArrays.levels(y_eval) μ = zeros(T, K) y = UInt32.(CategoricalArrays.levelcode.(y_eval)) else levels = sort(unique(y_eval)) yc = CategoricalVector(y_eval, levels=levels) μ = zeros(T, K) y = UInt32.(CategoricalArrays.levelcode.(yc)) end else y = T.(y_eval) end V = device_array_type(device) w = isnothing(w_name) ? device_ones(device, T, length(y)) : V{T}(Tables.getcolumn(deval, _w_name)) offset = !isnothing(offset_name) ? T.(Tables.getcolumn(deval, _offset_name)) : nothing if !isnothing(offset) L == LogLoss && (offset .= logit.(offset)) L in [Poisson, Gamma, Tweedie] && (offset .= log.(offset)) L == MultiClassRegression && (offset .= log.(offset)) L in [GaussianMLE, LogisticMLE] && (offset[:, 2] .= log.(offset[:, 2])) offset = T.(offset) p .+= offset' end return CallBack(feval, convert(V, x_bin), convert(V, p), convert(V, y), w, similar(w), convert(V, m.info[:feattypes])) end function CallBack( ::EvoTypes{L}, m::EvoTree{L,K}, x_eval::AbstractMatrix, y_eval, device::Type{<:Device}; w_eval=nothing, offset_eval=nothing, metric) where {L,K} T = Float32 feval = metric_dict[metric] x_bin = binarize(x_eval; fnames=m.info[:fnames], edges=m.info[:edges]) p = zeros(T, K, size(x_eval, 1)) if L == MLogLoss if eltype(y_eval) <: CategoricalValue levels = CategoricalArrays.levels(y_eval) μ = zeros(T, K) y = UInt32.(CategoricalArrays.levelcode.(y_eval)) else levels = sort(unique(y_eval)) yc = CategoricalVector(y_eval, levels=levels) μ = zeros(T, K) y = UInt32.(CategoricalArrays.levelcode.(yc)) end else y = T.(y_eval) end V = device_array_type(device) w = isnothing(w_eval) ? device_ones(device, T, length(y)) : V{T}(w_eval) offset = !isnothing(offset_eval) ? T.(offset_eval) : nothing if !isnothing(offset) L == LogLoss && (offset .= logit.(offset)) L in [Poisson, Gamma, Tweedie] && (offset .= log.(offset)) L == MLogLoss && (offset .= log.(offset)) L in [GaussianMLE, LogisticMLE] && (offset[:, 2] .= log.(offset[:, 2])) offset = T.(offset) p .+= offset' end return CallBack(feval, convert(V, x_bin), convert(V, p), convert(V, y), w, similar(w), convert(V, m.info[:feattypes])) end function (cb::CallBack)(logger, iter, tree) predict!(cb.p, tree, cb.x_bin, cb.feattypes) metric = cb.feval(cb.p, cb.y, cb.w, cb.eval) update_logger!(logger, iter, metric) return nothing end function init_logger(; metric, maximise, early_stopping_rounds) logger = Dict( :name => String(metric), :maximise => maximise, :early_stopping_rounds => early_stopping_rounds, :nrounds => 0, :iter => Int[], :metrics => Float64[], :iter_since_best => 0, :best_iter => 0, :best_metric => 0.0, ) return logger end function update_logger!(logger, iter, metric) logger[:nrounds] = iter push!(logger[:iter], iter) push!(logger[:metrics], metric) if iter == 0 logger[:best_metric] = metric else if (logger[:maximise] && metric > logger[:best_metric]) || (!logger[:maximise] && metric < logger[:best_metric]) logger[:best_metric] = metric logger[:best_iter] = iter logger[:iter_since_best] = 0 else logger[:iter_since_best] += logger[:iter][end] - logger[:iter][end-1] end end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5070
function mse( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) eval[i] = w[i] * (p[1, i] - y[i])^2 end return sum(eval) / sum(w) end rmse(p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector; kwargs...) where {T} = sqrt(mse(p, y, w)) function mae( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) eval[i] = w[i] * abs(p[1, i] - y[i]) end return sum(eval) / sum(w) end function logloss( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) pred = sigmoid(p[1, i]) eval[i] = w[i] * (-y[i] * log(pred) + (y[i] - 1) * log(1 - pred)) end return sum(eval) / sum(w) end function mlogloss( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} K = size(p, 1) @threads for i in eachindex(y) isum = zero(T) @inbounds for k in 1:K isum += exp(p[k, i]) end @inbounds eval[i] = w[i] * (log(isum) - p[y[i], i]) end return sum(eval) / sum(w) end function poisson( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) pred = exp(p[1, i]) eval[i] = w[i] * 2 * (y[i] * (log(y[i]) - log(pred)) + pred - y[i]) end return sum(eval) / sum(w) end function gamma( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) pred = exp(p[1, i]) eval[i] = w[i] * 2 * (log(pred / y[i]) + y[i] / pred - 1) end return sum(eval) / sum(w) end function tweedie( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} rho = T(1.5) @threads for i in eachindex(y) pred = exp(p[1, i]) eval[i] = w[i] * 2 * ( y[i]^(2 - rho) / (1 - rho) / (2 - rho) - y[i] * pred^(1 - rho) / (1 - rho) + pred^(2 - rho) / (2 - rho) ) end return sum(eval) / sum(w) end function gaussian_mle( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) eval[i] = -w[i] * (p[2, i] + (y[i] - p[1, i])^2 / (2 * exp(2 * p[2, i]))) end return sum(eval) / sum(w) end function logistic_mle( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} @threads for i in eachindex(y) eval[i] = w[i] * (log(1 / 4 * sech(exp(-p[2, i]) * (y[i] - p[1, i]))^2) - p[2, i]) end return sum(eval) / sum(w) end function wmae( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; alpha=0.5, kwargs... ) where {T} @threads for i in eachindex(y) eval[i] = w[i] * ( alpha * max(y[i] - p[1, i], zero(T)) + (1 - alpha) * max(p[1, i] - y[i], zero(T)) ) end return sum(eval) / sum(w) end function gini_raw(p::AbstractVector, y::AbstractVector) _y = y .- minimum(y) if length(_y) < 2 return 0.0 end random = cumsum(ones(length(p)) ./ length(p)^2) y_sort = _y[sortperm(p)] y_cum = cumsum(y_sort) ./ sum(_y) ./ length(p) gini = sum(random .- y_cum) return gini end function gini_norm(p::AbstractVector, y::AbstractVector) if length(y) < 2 return 0.0 end return gini_raw(y, p) / gini_raw(y, y) end function gini( p::AbstractMatrix{T}, y::AbstractVector, w::AbstractVector, eval::AbstractVector; kwargs... ) where {T} return gini_norm(view(p, 1, :), y) end const metric_dict = Dict( :mse => mse, :rmse => rmse, :mae => mae, :logloss => logloss, :mlogloss => mlogloss, :poisson_deviance => poisson, :poisson => poisson, :gamma_deviance => gamma, :gamma => gamma, :tweedie_deviance => tweedie, :tweedie => tweedie, :gaussian_mle => gaussian_mle, :gaussian => gaussian_mle, :logistic_mle => logistic_mle, :wmae => wmae, :quantile => wmae, :gini => gini, ) is_maximise(::typeof(mse)) = false is_maximise(::typeof(rmse)) = false is_maximise(::typeof(mae)) = false is_maximise(::typeof(logloss)) = false is_maximise(::typeof(mlogloss)) = false is_maximise(::typeof(poisson)) = false is_maximise(::typeof(gamma)) = false is_maximise(::typeof(tweedie)) = false is_maximise(::typeof(gaussian_mle)) = true is_maximise(::typeof(logistic_mle)) = true is_maximise(::typeof(wmae)) = false is_maximise(::typeof(gini)) = true
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
9049
""" get_edges(X::AbstractMatrix{T}; fnames, nbins, rng=Random.TaskLocalRNG()) where {T} get_edges(df; fnames, nbins, rng=Random.TaskLocalRNG()) Get the histogram breaking points of the feature data. """ function get_edges(X::AbstractMatrix{T}; fnames, nbins, rng=Random.MersenneTwister()) where {T} @assert T <: Real nobs = min(size(X, 1), 1000 * nbins) idx = sample(rng, 1:size(X, 1), nobs, replace=false, ordered=true) nfeats = size(X, 2) edges = Vector{Vector{T}}(undef, nfeats) featbins = Vector{UInt8}(undef, nfeats) feattypes = Vector{Bool}(undef, nfeats) @threads for j in 1:size(X, 2) edges[j] = quantile(view(X, idx, j), (1:nbins-1) / nbins) if length(edges[j]) == 1 edges[j] = [minimum(view(X, idx, j))] end featbins[j] = length(edges[j]) + 1 feattypes[j] = true end return edges, featbins, feattypes end function get_edges(df; fnames, nbins, rng=Random.MersenneTwister()) _nobs = Tables.DataAPI.nrow(df) nobs = min(_nobs, 1000 * nbins) idx = sample(rng, 1:_nobs, nobs, replace=false, ordered=true) edges = Vector{Any}([Vector{eltype(Tables.getcolumn(df, col))}() for col in fnames]) nfeats = length(fnames) featbins = Vector{UInt8}(undef, nfeats) feattypes = Vector{Bool}(undef, nfeats) @threads for j in eachindex(fnames) col = view(Tables.getcolumn(df, fnames[j]), idx) if eltype(col) <: Bool edges[j] = [false, true] featbins[j] = 2 feattypes[j] = false elseif eltype(col) <: CategoricalValue edges[j] = levels(col) featbins[j] = length(edges[j]) feattypes[j] = isordered(col) ? true : false @assert featbins[j] <= 255 "Max categorical levels currently limited to 255, $(fnames[j]) has $(featbins[j])." elseif eltype(col) <: Real edges[j] = unique(quantile(col, (1:nbins-1) / nbins)) featbins[j] = length(edges[j]) + 1 feattypes[j] = true else @error "Invalid feature eltype: $(fnames[j]) is $(eltype(col))" end if length(edges[j]) == 1 edges[j] = [minimum(col)] end end return edges, featbins, feattypes end """ binarize(X::AbstractMatrix; fnames, edges) binarize(df; fnames, edges) Transform feature data into a UInt8 binarized matrix. """ function binarize(X::AbstractMatrix; fnames, edges) x_bin = zeros(UInt8, size(X)) @threads for j in axes(X, 2) x_bin[:, j] .= searchsortedfirst.(Ref(edges[j]), view(X, :, j)) end return x_bin end function binarize(df; fnames, edges) nobs = length(Tables.getcolumn(df, 1)) x_bin = zeros(UInt8, nobs, length(fnames)) @threads for j in eachindex(fnames) col = Tables.getcolumn(df, fnames[j]) if eltype(col) <: Bool x_bin[:, j] .= col .+ 1 elseif eltype(col) <: CategoricalValue x_bin[:, j] .= levelcode.(col) elseif eltype(col) <: Real x_bin[:, j] .= searchsortedfirst.(Ref(edges[j]), col) else @error "Invalid feature eltype: $(fnames[j]) is $(eltype(col))" end end return x_bin end """ Multi-threaded split_set! Take a view into left and right placeholders. Right ids are assigned at the end of the length of the current node set. """ function split_set_chunk!( left, right, is, bid, nblocks, x_bin, feat, cond_bin, feattype, offset, chunk_size, ) left_count = 0 right_count = 0 i = chunk_size * (bid - 1) + 1 bid == nblocks ? bsize = length(is) - chunk_size * (bid - 1) : bsize = chunk_size i_max = i + bsize - 1 @inbounds while i <= i_max cond = feattype ? x_bin[is[i], feat] <= cond_bin : x_bin[is[i], feat] == cond_bin if cond left_count += 1 left[offset+chunk_size*(bid-1)+left_count] = is[i] else right_count += 1 right[offset+chunk_size*(bid-1)+right_count] = is[i] end i += 1 end return left_count, right_count end function split_views_kernel!( out::Vector{S}, left::Vector{S}, right::Vector{S}, bid, offset, chunk_size, lefts, rights, sum_lefts, cumsum_lefts, cumsum_rights, ) where {S} iter = 1 i_max = lefts[bid] bid == 1 ? cumsum_left = 0 : cumsum_left = cumsum_lefts[bid-1] @inbounds while iter <= i_max out[offset+cumsum_left+iter] = left[offset+chunk_size*(bid-1)+iter] iter += 1 end iter = 1 i_max = rights[bid] bid == 1 ? cumsum_right = 0 : cumsum_right = cumsum_rights[bid-1] @inbounds while iter <= i_max out[offset+sum_lefts+cumsum_right+iter] = right[offset+chunk_size*(bid-1)+iter] iter += 1 end return nothing end function split_set_threads!( out, left, right, is, x_bin::Matrix{S}, feat, cond_bin, feattype, offset, ) where {S} chunk_size = cld(length(is), min(cld(length(is), 16_000), Threads.nthreads())) nblocks = cld(length(is), chunk_size) lefts = zeros(Int, nblocks) rights = zeros(Int, nblocks) @threads for bid = 1:nblocks lefts[bid], rights[bid] = split_set_chunk!( left, right, is, bid, nblocks, x_bin, feat, cond_bin, feattype, offset, chunk_size, ) end sum_lefts = sum(lefts) cumsum_lefts = cumsum(lefts) cumsum_rights = cumsum(rights) @threads for bid = 1:nblocks split_views_kernel!( out, left, right, bid, offset, chunk_size, lefts, rights, sum_lefts, cumsum_lefts, cumsum_rights, ) end return ( view(out, offset+1:offset+sum_lefts), view(out, offset+sum_lefts+1:offset+length(is)), ) end """ update_hist! GradientRegression """ function update_hist!( ::Type{L}, hist::Vector{Matrix{Float64}}, ∇::Matrix{Float32}, x_bin::Matrix, is::AbstractVector, js::AbstractVector, ) where {L<:GradientRegression} @threads for j in js @inbounds @simd for i in is bin = x_bin[i, j] hist[j][1, bin] += ∇[1, i] hist[j][2, bin] += ∇[2, i] hist[j][3, bin] += ∇[3, i] end end return nothing end """ update_hist! MLE2P """ function update_hist!( ::Type{L}, hist::Vector{Matrix{Float64}}, ∇::Matrix{Float32}, x_bin::Matrix, is::AbstractVector, js::AbstractVector, ) where {L<:MLE2P} @threads for j in js @inbounds @simd for i in is bin = x_bin[i, j] hist[j][1, bin] += ∇[1, i] hist[j][2, bin] += ∇[2, i] hist[j][3, bin] += ∇[3, i] hist[j][4, bin] += ∇[4, i] hist[j][5, bin] += ∇[5, i] end end return nothing end """ update_hist! Generic fallback - Softmax """ function update_hist!( ::Type{L}, hist::Vector{Matrix{Float64}}, ∇::Matrix{Float32}, x_bin::Matrix, is::AbstractVector, js::AbstractVector, ) where {L} @threads for j in js @inbounds for i in is bin = x_bin[i, j] @inbounds @simd for k in axes(∇, 1) hist[j][k, bin] += ∇[k, i] end end end return nothing end """ update_gains!( loss::L, node::TrainNode{T}, js::Vector, params::EvoTypes, K, monotone_constraints) where {L,T,S} Generic fallback """ function update_gains!( node::TrainNode, js, params::EvoTypes{L}, feattypes::Vector{Bool}, monotone_constraints, ) where {L} h = node.h hL = node.hL hR = node.hR gains = node.gains ∑ = node.∑ @inbounds for j in js if feattypes[j] cumsum!(hL[j], h[j], dims=2) hR[j] .= ∑ .- hL[j] else hR[j] .= ∑ .- h[j] hL[j] .= h[j] end monotone_constraint = monotone_constraints[j] @inbounds for bin in eachindex(gains[j]) if hL[j][end, bin] > params.min_weight && hR[j][end, bin] > params.min_weight if monotone_constraint != 0 predL = pred_scalar(view(hL[j], :, bin), params) predR = pred_scalar(view(hR[j], :, bin), params) end if (monotone_constraint == 0) || (monotone_constraint == -1 && predL > predR) || (monotone_constraint == 1 && predL < predR) gains[j][bin] = get_gain(params, view(hL[j], :, bin)) + get_gain(params, view(hR[j], :, bin)) end end end end return nothing end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
20348
""" grow_evotree!(evotree::EvoTree{L,K}, cache, params::EvoTypes{L}, ::Type{<:Device}=CPU) where {L,K} Given a instantiate """ function grow_evotree!(m::EvoTree{L,K}, cache, params::EvoTypes{L}, ::Type{<:Device}=CPU) where {L,K} # compute gradients update_grads!(cache.∇, cache.pred, cache.y, params) # subsample rows cache.nodes[1].is = subsample(cache.is_in, cache.is_out, cache.mask, params.rowsample, params.rng) # subsample cols sample!(params.rng, cache.js_, cache.js, replace=false, ordered=true) # instantiate a tree then grow it tree = Tree{L,K}(params.max_depth) grow! = params.tree_type == "oblivious" ? grow_otree! : grow_tree! grow!( tree, cache.nodes, params, cache.∇, cache.edges, cache.js, cache.out, cache.left, cache.right, cache.x_bin, cache.feattypes, cache.monotone_constraints ) push!(m.trees, tree) predict!(cache.pred, tree, cache.x_bin, cache.feattypes) cache[:info][:nrounds] += 1 return nothing end # grow a single tree function grow_tree!( tree::Tree{L,K}, nodes::Vector{N}, params::EvoTypes{L}, ∇::Matrix, edges, js, out, left, right, x_bin, feattypes::Vector{Bool}, monotone_constraints ) where {L,K,N} # reset nodes for n in nodes n.∑ .= 0 n.gain = 0.0 @inbounds for i in eachindex(n.h) n.h[i] .= 0 n.gains[i] .= 0 end end # initialize n_current = [1] depth = 1 # initialize summary stats nodes[1].∑ .= dropdims(sum(Float64, view(∇, :, nodes[1].is), dims=2), dims=2) nodes[1].gain = get_gain(params, nodes[1].∑) # grow while there are remaining active nodes while length(n_current) > 0 && depth <= params.max_depth offset = 0 # identifies breakpoint for each node set within a depth n_next = Int[] if depth < params.max_depth for n_id in eachindex(n_current) n = n_current[n_id] if n_id % 2 == 0 if n % 2 == 0 @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n+1].h[j] end else @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n-1].h[j] end end else update_hist!(L, nodes[n].h, ∇, x_bin, nodes[n].is, js) end end @threads for n ∈ sort(n_current) update_gains!(nodes[n], js, params, feattypes, monotone_constraints) end end for n ∈ sort(n_current) if depth == params.max_depth || nodes[n].∑[end] <= params.min_weight pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) else best = findmax(findmax.(nodes[n].gains)) best_gain = best[1][1] best_bin = best[1][2] best_feat = best[2] if best_gain > nodes[n].gain + params.gamma tree.gain[n] = best_gain - nodes[n].gain tree.cond_bin[n] = best_bin tree.feat[n] = best_feat tree.cond_float[n] = edges[tree.feat[n]][tree.cond_bin[n]] tree.split[n] = best_bin != 0 _left, _right = split_set_threads!( out, left, right, nodes[n].is, x_bin, tree.feat[n], tree.cond_bin[n], feattypes[best_feat], offset, ) offset += length(nodes[n].is) nodes[n<<1].is, nodes[n<<1+1].is = _left, _right nodes[n<<1].∑ .= nodes[n].hL[best_feat][:, best_bin] nodes[n<<1+1].∑ .= nodes[n].hR[best_feat][:, best_bin] nodes[n<<1].gain = get_gain(params, nodes[n<<1].∑) nodes[n<<1+1].gain = get_gain(params, nodes[n<<1+1].∑) if length(_right) >= length(_left) push!(n_next, n << 1) push!(n_next, n << 1 + 1) else push!(n_next, n << 1 + 1) push!(n_next, n << 1) end else pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end end end n_current = copy(n_next) depth += 1 end # end of loop over active ids for a given depth return nothing end # grow a single oblivious tree function grow_otree!( tree::Tree{L,K}, nodes::Vector{N}, params::EvoTypes{L}, ∇::Matrix, edges, js, out, left, right, x_bin, feattypes::Vector{Bool}, monotone_constraints ) where {L,K,N} # reset nodes for n in nodes n.∑ .= 0 n.gain = 0.0 @inbounds for i in eachindex(n.h) n.h[i] .= 0 n.gains[i] .= 0 end end # initialize n_current = [1] depth = 1 # initialize summary stats nodes[1].∑ .= dropdims(sum(Float64, view(∇, :, nodes[1].is), dims=2), dims=2) nodes[1].gain = get_gain(params, nodes[1].∑) # grow while there are remaining active nodes while length(n_current) > 0 && depth <= params.max_depth offset = 0 # identifies breakpoint for each node set within a depth n_next = Int[] min_weight_flag = false for n in n_current nodes[n].∑[end] <= params.min_weight ? min_weight_flag = true : nothing end if depth == params.max_depth || min_weight_flag for n in n_current # @info "length(nodes[n].is)" length(nodes[n].is) depth n pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end else # update histograms for n_id in eachindex(n_current) n = n_current[n_id] if n_id % 2 == 0 if n % 2 == 0 @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n+1].h[j] end else @inbounds for j in js nodes[n].h[j] .= nodes[n>>1].h[j] .- nodes[n-1].h[j] end end else update_hist!(L, nodes[n].h, ∇, x_bin, nodes[n].is, js) end end @threads for n ∈ n_current update_gains!(nodes[n], js, params, feattypes, monotone_constraints) end # initialize gains for node 1 in which all gains of a given depth will be accumulated if depth > 1 @inbounds for j in js nodes[1].gains[j] .= 0 end end gain = 0 # update gains based on the aggregation of all nodes of a given depth. One gains matrix per depth (vs one per node in binary trees). for n ∈ sort(n_current) if n > 1 # accumulate gains in node 1 for j in js nodes[1].gains[j] .+= nodes[n].gains[j] end end gain += nodes[n].gain end for n ∈ sort(n_current) if n > 1 for j in js nodes[1].gains[j] .*= nodes[n].gains[j] .> 0 #mask ignore gains if any node isn't eligible (too small per leaf weight) end end end # find best split best = findmax(findmax.(nodes[1].gains)) best_gain = best[1][1] best_bin = best[1][2] best_feat = best[2] if best_gain > gain + params.gamma for n in sort(n_current) tree.gain[n] = best_gain - nodes[n].gain tree.cond_bin[n] = best_bin tree.feat[n] = best_feat tree.cond_float[n] = edges[best_feat][best_bin] tree.split[n] = best_bin != 0 _left, _right = split_set_threads!( out, left, right, nodes[n].is, x_bin, tree.feat[n], tree.cond_bin[n], feattypes[best_feat], offset, ) offset += length(nodes[n].is) nodes[n<<1].is, nodes[n<<1+1].is = _left, _right nodes[n<<1].∑ .= nodes[n].hL[best_feat][:, best_bin] nodes[n<<1+1].∑ .= nodes[n].hR[best_feat][:, best_bin] nodes[n<<1].gain = get_gain(params, nodes[n<<1].∑) nodes[n<<1+1].gain = get_gain(params, nodes[n<<1+1].∑) if length(_right) >= length(_left) push!(n_next, n << 1) push!(n_next, n << 1 + 1) else push!(n_next, n << 1 + 1) push!(n_next, n << 1) end end else for n in n_current pred_leaf_cpu!(tree.pred, n, nodes[n].∑, params, ∇, nodes[n].is) end end end n_current = copy(n_next) depth += 1 end # end of loop over current nodes for a given depth return nothing end """ fit_evotree( params::EvoTypes{L}, dtrain; target_name, fnames=nothing, w_name=nothing, offset_name=nothing, deval=nothing, metric=nothing, early_stopping_rounds=9999, print_every_n=9999, verbosity=1, return_logger=false, device="cpu") Main training function. Performs model fitting given configuration `params`, `dtrain`, `target_name` and other optional kwargs. # Arguments - `params::EvoTypes`: configuration info providing hyper-paramters. `EvoTypes` can be one of: - [`EvoTreeRegressor`](@ref) - [`EvoTreeClassifier`](@ref) - [`EvoTreeCount`](@ref) - [`EvoTreeMLE`](@ref) - `dtrain`: A Tables compatible training data (named tuples, DataFrame...) containing features and target variables. # Keyword arguments - `target_name`: name of target variable. - `fnames = nothing`: the names of the `x_train` features. If provided, should be a vector of string with `length(fnames) = size(x_train, 2)`. - `w_name = nothing`: name of the variable containing weights. If `nothing`, common weights on one will be used. - `offset_name = nothing`: name of the offset variable. - `deval`: A Tables compatible evaluation data containing features and target variables. - `metric`: The evaluation metric that wil be tracked on `deval`. Supported metrics are: - `:mse`: mean-squared error. Adapted for general regression models. - `:rmse`: root-mean-squared error (CPU only). Adapted for general regression models. - `:mae`: mean absolute error. Adapted for general regression models. - `:logloss`: Adapted for `:logistic` regression models. - `:mlogloss`: Multi-class cross entropy. Adapted to `EvoTreeClassifier` classification models. - `:poisson`: Poisson deviance. Adapted to `EvoTreeCount` count models. - `:gamma`: Gamma deviance. Adapted to regression problem on Gamma like, positively distributed targets. - `:tweedie`: Tweedie deviance. Adapted to regression problem on Tweedie like, positively distributed targets with probability mass at `y == 0`. - `:gaussian_mle`: Gaussian maximum log-likelihood. Adapted to `EvoTreeMLE` models with `loss = :gaussian_mle`. - `:logistic_mle`: Logistic maximum log-likelihood. Adapted to `EvoTreeMLE` models with `loss = :logistic_mle`. - `early_stopping_rounds::Integer`: number of consecutive rounds without metric improvement after which fitting in stopped. - `print_every_n`: sets at which frequency logging info should be printed. - `verbosity`: set to 1 to print logging info during training. - `return_logger::Bool = false`: if set to true (default), `fit_evotree` return a tuple `(m, logger)` where logger is a dict containing various tracking information. - `device="cpu"`: Hardware device to use for computations. Can be either `"cpu"` or `"gpu"`. Following losses are not GPU supported at the moment` :l1`, `:quantile`, `:logistic_mle`. """ function fit_evotree( params::EvoTypes{L}, dtrain; target_name, fnames=nothing, w_name=nothing, offset_name=nothing, deval=nothing, metric=nothing, early_stopping_rounds=9999, print_every_n=9999, verbosity=1, return_logger=false, device="cpu" ) where {L} @assert Tables.istable(dtrain) "fit_evotree(params, dtrain) only accepts Tables compatible input for `dtrain` (ex: named tuples, DataFrames...)" dtrain = Tables.columntable(dtrain) verbosity == 1 && @info params @assert string(device) ∈ ["cpu", "gpu"] _device = string(device) == "cpu" ? CPU : GPU m, cache = init(params, dtrain, _device; target_name, fnames, w_name, offset_name) # initialize callback and logger if tracking eval data metric = isnothing(metric) ? nothing : Symbol(metric) logging_flag = !isnothing(metric) && !isnothing(deval) any_flag = !isnothing(metric) || !isnothing(deval) if !logging_flag && any_flag @warn "To track eval metric in logger, both `metric` and `deval` must be provided." end if logging_flag deval = Tables.columntable(deval) cb = CallBack(params, m, deval, _device; target_name, w_name, offset_name, metric) logger = init_logger(; metric, maximise=is_maximise(cb.feval), early_stopping_rounds) cb(logger, 0, m.trees[end]) (verbosity > 0) && @info "initialization" metric = logger[:metrics][end] else logger, cb = nothing, nothing end for i = 1:params.nrounds grow_evotree!(m, cache, params, _device) if !isnothing(logger) cb(logger, i, m.trees[end]) if i % print_every_n == 0 && verbosity > 0 @info "iter $i" metric = logger[:metrics][end] end (logger[:iter_since_best] >= logger[:early_stopping_rounds]) && break end end post_fit_gc(_device) if return_logger return (m, logger) else return m end end # A no-op on the CPU, but on the GPU we perform garbage collection post_fit_gc(::Type{<:CPU}) = nothing """ fit_evotree( params::EvoTypes{L}; x_train::AbstractMatrix, y_train::AbstractVector, w_train=nothing, offset_train=nothing, x_eval=nothing, y_eval=nothing, w_eval=nothing, offset_eval=nothing, early_stopping_rounds=9999, print_every_n=9999, verbosity=1) Main training function. Performs model fitting given configuration `params`, `x_train`, `y_train` and other optional kwargs. # Arguments - `params::EvoTypes`: configuration info providing hyper-paramters. `EvoTypes` can be one of: - [`EvoTreeRegressor`](@ref) - [`EvoTreeClassifier`](@ref) - [`EvoTreeCount`](@ref) - [`EvoTreeMLE`](@ref) # Keyword arguments - `x_train::Matrix`: training data of size `[#observations, #features]`. - `y_train::Vector`: vector of train targets of length `#observations`. - `w_train::Vector`: vector of train weights of length `#observations`. If `nothing`, a vector of ones is assumed. - `offset_train::VecOrMat`: offset for the training data. Should match the size of the predictions. - `x_eval::Matrix`: evaluation data of size `[#observations, #features]`. - `y_eval::Vector`: vector of evaluation targets of length `#observations`. - `w_eval::Vector`: vector of evaluation weights of length `#observations`. Defaults to `nothing` (assumes a vector of 1s). - `offset_eval::VecOrMat`: evaluation data offset. Should match the size of the predictions. - `metric`: The evaluation metric that wil be tracked on `x_eval`, `y_eval` and optionally `w_eval` / `offset_eval` data. Supported metrics are: - `:mse`: mean-squared error. Adapted for general regression models. - `:rmse`: root-mean-squared error (CPU only). Adapted for general regression models. - `:mae`: mean absolute error. Adapted for general regression models. - `:logloss`: Adapted for `:logistic` regression models. - `:mlogloss`: Multi-class cross entropy. Adapted to `EvoTreeClassifier` classification models. - `:poisson`: Poisson deviance. Adapted to `EvoTreeCount` count models. - `:gamma`: Gamma deviance. Adapted to regression problem on Gamma like, positively distributed targets. - `:tweedie`: Tweedie deviance. Adapted to regression problem on Tweedie like, positively distributed targets with probability mass at `y == 0`. - `:gaussian_mle`: Gaussian maximum log-likelihood. Adapted to `EvoTreeMLE` models with `loss = :gaussian_mle`. - `:logistic_mle`: Logistic maximum log-likelihood. Adapted to `EvoTreeMLE` models with `loss = :logistic_mle`. - `early_stopping_rounds::Integer`: number of consecutive rounds without metric improvement after which fitting in stopped. - `print_every_n`: sets at which frequency logging info should be printed. - `verbosity`: set to 1 to print logging info during training. - `fnames`: the names of the `x_train` features. If provided, should be a vector of string with `length(fnames) = size(x_train, 2)`. - `return_logger::Bool = false`: if set to true (default), `fit_evotree` return a tuple `(m, logger)` where logger is a dict containing various tracking information. - `device="cpu"`: Hardware device to use for computations. Can be either `"cpu"` or `"gpu"`. Following losses are not GPU supported at the moment` :l1`, `:quantile`, `:logistic_mle`. """ function fit_evotree( params::EvoTypes{L}; x_train::AbstractMatrix, y_train::AbstractVector, w_train=nothing, offset_train=nothing, x_eval=nothing, y_eval=nothing, w_eval=nothing, offset_eval=nothing, metric=nothing, early_stopping_rounds=9999, print_every_n=9999, verbosity=1, fnames=nothing, return_logger=false, device="cpu" ) where {L} verbosity == 1 && @info params @assert string(device) ∈ ["cpu", "gpu"] _device = string(device) == "cpu" ? CPU : GPU m, cache = init(params, x_train, y_train, _device; fnames, w_train, offset_train) # initialize callback and logger if tracking eval data metric = isnothing(metric) ? nothing : Symbol(metric) logging_flag = !isnothing(metric) && !isnothing(x_eval) && !isnothing(y_eval) any_flag = !isnothing(metric) || !isnothing(x_eval) || !isnothing(y_eval) if !logging_flag && any_flag @warn "To track eval metric in logger, `metric`, `x_eval` and `y_eval` must all be provided." end if logging_flag cb = CallBack(params, m, x_eval, y_eval, _device; w_eval, offset_eval, metric) logger = init_logger(; metric, maximise=is_maximise(cb.feval), early_stopping_rounds) cb(logger, 0, m.trees[end]) (verbosity > 0) && @info "initialization" metric = logger[:metrics][end] else logger, cb = nothing, nothing end for i = 1:params.nrounds grow_evotree!(m, cache, params, _device) if !isnothing(logger) cb(logger, i, m.trees[end]) if i % print_every_n == 0 && verbosity > 0 @info "iter $i" metric = logger[:metrics][end] end (logger[:iter_since_best] >= logger[:early_stopping_rounds]) && break end end post_fit_gc(_device) if return_logger return (m, logger) else return m end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
807
function importance!(gain::AbstractVector, tree::Tree) @inbounds for n in eachindex(tree.split) if tree.split[n] gain[tree.feat[n]] += tree.gain[n] end end end """ importance(model::EvoTree; fnames=model.info[:fnames]) Sorted normalized feature importance based on loss function gain. Feature names associated to the model are stored in `model.info[:fnames]` as a string `Vector` and can be updated at any time. Eg: `model.info[:fnames] = new_fnames_vec`. """ function importance(model::EvoTree; fnames=model.info[:fnames]) gain = zeros(length(fnames)) for tree in model.trees importance!(gain, tree) end gain .= gain ./ sum(gain) pairs = collect(Dict(zip(string.(fnames), gain))) sort!(pairs, by=x -> -x[2]) return pairs end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
6834
function init_core(params::EvoTypes{L}, ::Type{CPU}, data, fnames, y_train, w, offset) where {L} # binarize data into quantiles edges, featbins, feattypes = get_edges(data; fnames, nbins=params.nbins, rng=params.rng) x_bin = binarize(data; fnames, edges) nobs, nfeats = size(x_bin) T = Float32 target_levels = nothing target_isordered = false if L == Logistic @assert eltype(y_train) <: Real && minimum(y_train) >= 0 && maximum(y_train) <= 1 K = 1 y = T.(y_train) μ = [logit(mean(y))] !isnothing(offset) && (offset .= logit.(offset)) elseif L in [Poisson, Gamma, Tweedie] @assert eltype(y_train) <: Real K = 1 y = T.(y_train) μ = fill(log(mean(y)), 1) !isnothing(offset) && (offset .= log.(offset)) elseif L == MLogLoss if eltype(y_train) <: CategoricalValue target_levels = CategoricalArrays.levels(y_train) target_isordered = isordered(y_train) y = UInt32.(CategoricalArrays.levelcode.(y_train)) elseif eltype(y_train) <: Integer || eltype(y_train) <: Bool || eltype(y_train) <: String || eltype(y_train) <: Char target_levels = sort(unique(y_train)) yc = CategoricalVector(y_train, levels=target_levels) y = UInt32.(CategoricalArrays.levelcode.(yc)) else @error "Invalid target eltype: $(eltype(y_train))" end K = length(target_levels) μ = T.(log.(proportions(y, UInt32(1):UInt32(K)))) μ .-= maximum(μ) !isnothing(offset) && (offset .= log.(offset)) elseif L == GaussianMLE @assert eltype(y_train) <: Real K = 2 y = T.(y_train) μ = [mean(y), log(std(y))] !isnothing(offset) && (offset[:, 2] .= log.(offset[:, 2])) elseif L == LogisticMLE @assert eltype(y_train) <: Real K = 2 y = T.(y_train) μ = [mean(y), log(std(y) * sqrt(3) / π)] !isnothing(offset) && (offset[:, 2] .= log.(offset[:, 2])) else @assert eltype(y_train) <: Real K = 1 y = T.(y_train) μ = [mean(y)] end μ = T.(μ) # force a neutral/zero bias/initial tree when offset is specified !isnothing(offset) && (μ .= 0) @assert (length(y) == length(w) && minimum(w) > 0) # initialize preds pred = zeros(T, K, nobs) pred .= μ !isnothing(offset) && (pred .+= offset') # initialize gradients ∇ = zeros(T, 2 * K + 1, nobs) ∇[end, :] .= w # initialize indexes is_in = zeros(UInt32, nobs) is_out = zeros(UInt32, nobs) mask = zeros(UInt8, nobs) js_ = UInt32.(collect(1:nfeats)) js = zeros(UInt32, ceil(Int, params.colsample * nfeats)) out = zeros(UInt32, nobs) left = zeros(UInt32, nobs) right = zeros(UInt32, nobs) # assign monotone contraints in constraints vector monotone_constraints = zeros(Int32, nfeats) hasproperty(params, :monotone_constraints) && for (k, v) in params.monotone_constraints monotone_constraints[k] = v end # model info info = Dict( :fnames => fnames, :target_levels => target_levels, :target_isordered => target_isordered, :edges => edges, :featbins => featbins, :feattypes => feattypes, ) # initialize model nodes = [TrainNode(featbins, K, view(is_in, 1:0)) for n = 1:2^params.max_depth-1] bias = [Tree{L,K}(μ)] m = EvoTree{L,K}(bias, info) # build cache cache = ( info=Dict(:nrounds => 0), x_bin=x_bin, y=y, w=w, pred=pred, K=K, nodes=nodes, is_in=is_in, is_out=is_out, mask=mask, js_=js_, js=js, out=out, left=left, right=right, ∇=∇, edges=edges, fnames=fnames, featbins=featbins, feattypes=feattypes, monotone_constraints=monotone_constraints, ) return m, cache end """ init( params::EvoTypes, dtrain, device::Type{<:Device}=CPU; target_name, fnames=nothing, w_name=nothing, offset_name=nothing ) Initialise EvoTree """ function init( params::EvoTypes, dtrain, device::Type{<:Device}=CPU; target_name, fnames=nothing, w_name=nothing, offset_name=nothing ) # set fnames schema = Tables.schema(dtrain) _w_name = isnothing(w_name) ? Symbol("") : Symbol(w_name) _offset_name = isnothing(offset_name) ? Symbol("") : Symbol(offset_name) _target_name = Symbol(target_name) if isnothing(fnames) fnames = Symbol[] for i in eachindex(schema.names) if schema.types[i] <: Union{Real,CategoricalValue} push!(fnames, schema.names[i]) end end fnames = setdiff(fnames, union([_target_name], [_w_name], [_offset_name])) else isa(fnames, String) ? fnames = [fnames] : nothing fnames = Symbol.(fnames) @assert isa(fnames, Vector{Symbol}) @assert all(fnames .∈ Ref(schema.names)) for name in fnames @assert schema.types[findfirst(name .== schema.names)] <: Union{Real,CategoricalValue} end end T = Float32 nobs = length(Tables.getcolumn(dtrain, 1)) y_train = Tables.getcolumn(dtrain, _target_name) V = device_array_type(device) w = isnothing(w_name) ? device_ones(device, T, nobs) : V{T}(Tables.getcolumn(dtrain, _w_name)) offset = isnothing(offset_name) ? nothing : V{T}(Tables.getcolumn(dtrain, _offset_name)) m, cache = init_core(params, device, dtrain, fnames, y_train, w, offset) return m, cache end # This should be different on CPUs and GPUs device_ones(::Type{<:CPU}, ::Type{T}, n::Int) where {T} = ones(T, n) device_array_type(::Type{<:CPU}) = Array """ init( params::EvoTypes, x_train::AbstractMatrix, y_train::AbstractVector, device::Type{<:Device}=CPU; fnames=nothing, w_train=nothing, offset_train=nothing ) Initialise EvoTree """ function init( params::EvoTypes, x_train::AbstractMatrix, y_train::AbstractVector, device::Type{<:Device}=CPU; fnames=nothing, w_train=nothing, offset_train=nothing ) # initialize model and cache fnames = isnothing(fnames) ? [Symbol("feat_$i") for i in axes(x_train, 2)] : Symbol.(fnames) @assert length(fnames) == size(x_train, 2) T = Float32 nobs = size(x_train, 1) V = device_array_type(device) w = isnothing(w_train) ? device_ones(device, T, nobs) : V{T}(w_train) offset = isnothing(offset_train) ? nothing : V{T}(offset_train) m, cache = init_core(params, device, x_train, fnames, y_train, w, offset) return m, cache end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
5912
# MSE function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeRegressor{L}) where {L<:MSE} @threads for i in eachindex(y) @inbounds ∇[1, i] = 2 * (p[1, i] - y[i]) * ∇[3, i] @inbounds ∇[2, i] = 2 * ∇[3, i] end end # LogLoss - on linear predictor function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeRegressor{L}) where {L<:LogLoss} @threads for i in eachindex(y) @inbounds pred = sigmoid(p[1, i]) @inbounds ∇[1, i] = (pred - y[i]) * ∇[3, i] @inbounds ∇[2, i] = pred * (1 - pred) * ∇[3, i] end end # Poisson function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeCount{L}) where {L<:Poisson} @threads for i in eachindex(y) @inbounds pred = exp(p[1, i]) @inbounds ∇[1, i] = (pred - y[i]) * ∇[3, i] @inbounds ∇[2, i] = pred * ∇[3, i] end end # Gamma function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeRegressor{L}) where {L<:Gamma} @threads for i in eachindex(y) @inbounds pred = exp(p[1, i]) @inbounds ∇[1, i] = 2 * (1 - y[i] / pred) * ∇[3, i] @inbounds ∇[2, i] = 2 * y[i] / pred * ∇[3, i] end end # Tweedie function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeRegressor{L}) where {L<:Tweedie} rho = eltype(p)(1.5) @threads for i in eachindex(y) @inbounds pred = exp(p[1, i]) @inbounds ∇[1, i] = 2 * (pred^(2 - rho) - y[i] * pred^(1 - rho)) * ∇[3, i] @inbounds ∇[2, i] = 2 * ((2 - rho) * pred^(2 - rho) - (1 - rho) * y[i] * pred^(1 - rho)) * ∇[3, i] end end # L1 function update_grads!(∇::Matrix, p::Matrix, y::Vector, params::EvoTreeRegressor{L}) where {L<:L1} @threads for i in eachindex(y) @inbounds ∇[1, i] = (params.alpha * max(y[i] - p[1, i], 0) - (1 - params.alpha) * max(p[1, i] - y[i], 0)) * ∇[3, i] end end # MLogLoss function update_grads!(∇::Matrix{T}, p::Matrix, y::Vector, ::EvoTreeClassifier{L}) where {L<:MLogLoss,T} K = size(p, 1) @threads for i in eachindex(y) isum = zero(T) @inbounds for k = 1:K isum += exp(p[k, i]) end @inbounds for k = 1:K iexp = exp(p[k, i]) if k == y[i] ∇[k, i] = (iexp / isum - 1) * ∇[end, i] else ∇[k, i] = iexp / isum * ∇[end, i] end ∇[k+K, i] = 1 / isum * (1 - iexp / isum) * ∇[end, i] end end end # Quantile function update_grads!(∇::Matrix, p::Matrix, y::Vector, params::EvoTreeRegressor{L}) where {L<:Quantile} @threads for i in eachindex(y) @inbounds ∇[1, i] = y[i] > p[1, i] ? params.alpha * ∇[3, i] : (params.alpha - 1) * ∇[3, i] @inbounds ∇[2, i] = y[i] - p[1, i] # δ² serves to calculate the quantile value - hence no weighting on δ² end end # Gaussian - http://jrmeyer.github.io/machinelearning/2017/08/18/mle.html # pred[i][1] = μ # pred[i][2] = log(σ) function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::Union{EvoTreeGaussian{L},EvoTreeMLE{L}}) where {L<:GaussianMLE} @threads for i in eachindex(y) # first order @inbounds ∇[1, i] = (p[1, i] - y[i]) / exp(2 * p[2, i]) * ∇[5, i] @inbounds ∇[2, i] = (1 - (p[1, i] - y[i])^2 / exp(2 * p[2, i])) * ∇[5, i] # second order @inbounds ∇[3, i] = ∇[5, i] / exp(2 * p[2, i]) @inbounds ∇[4, i] = ∇[5, i] * 2 / exp(2 * p[2, i]) * (p[1, i] - y[i])^2 end end # LogisticProb - https://en.wikipedia.org/wiki/Logistic_distribution # pdf = # pred[i][1] = μ # pred[i][2] = log(s) function update_grads!(∇::Matrix, p::Matrix, y::Vector, ::EvoTreeMLE{L}) where {L<:LogisticMLE} @threads for i in eachindex(y) # first order @inbounds ∇[1, i] = -tanh((y[i] - p[1, i]) / (2 * exp(p[2, i]))) * exp(-p[2, i]) * ∇[5, i] @inbounds ∇[2, i] = -( exp(-p[2, i]) * (y[i] - p[1, i]) * tanh((y[i] - p[1, i]) / (2 * exp(p[2, i]))) - 1 ) * ∇[5, i] # second order @inbounds ∇[3, i] = sech((y[i] - p[1, i]) / (2 * exp(p[2, i])))^2 / (2 * exp(2 * p[2, i])) * ∇[5, i] @inbounds ∇[4, i] = ( exp(-2 * p[2, i]) * (p[1, i] - y[i]) * (p[1, i] - y[i] + exp(p[2, i]) * sinh(exp(-p[2, i]) * (p[1, i] - y[i]))) ) / (1 + cosh(exp(-p[2, i]) * (p[1, i] - y[i]))) * ∇[5, i] end end # utility functions function logit(x::AbstractArray{T}) where {T<:AbstractFloat} return logit.(x) end @inline function logit(x::T) where {T<:AbstractFloat} @fastmath log(x / (1 - x)) end function sigmoid(x::AbstractArray{T}) where {T<:AbstractFloat} return sigmoid.(x) end @inline function sigmoid(x::T) where {T<:AbstractFloat} @fastmath 1 / (1 + exp(-x)) end ############################## # get the gain metric ############################## # GradientRegression function get_gain(params::EvoTypes{L}, ∑::AbstractVector) where {L<:GradientRegression} ϵ = eps(eltype(∑)) ∑[1]^2 / max(ϵ, (∑[2] + params.lambda * ∑[3] + params.L2)) / 2 end # GaussianRegression function get_gain(params::EvoTypes{L}, ∑::AbstractVector) where {L<:MLE2P} ϵ = eps(eltype(∑)) (∑[1]^2 / max(ϵ, (∑[3] + params.lambda * ∑[5] + params.L2)) + ∑[2]^2 / max(ϵ, (∑[4] + params.lambda * ∑[5] + params.L2))) / 2 end # MultiClassRegression function get_gain(params::EvoTypes{L}, ∑::AbstractVector{T}) where {L<:MLogLoss,T} ϵ = eps(eltype(∑)) gain = zero(T) K = (length(∑) - 1) ÷ 2 @inbounds for k = 1:K gain += ∑[k]^2 / max(ϵ, (∑[k+K] + params.lambda * ∑[end] + params.L2)) / 2 end return gain end # Quantile function get_gain(::EvoTypes{L}, ∑::AbstractVector) where {L<:Quantile} abs(∑[1]) end # L1 function get_gain(::EvoTypes{L}, ∑::AbstractVector) where {L<:L1} abs(∑[1]) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
14245
abstract type ModelType end abstract type GradientRegression <: ModelType end abstract type MLE2P <: ModelType end # 2-parameters max-likelihood abstract type MSE <: GradientRegression end abstract type LogLoss <: GradientRegression end abstract type Poisson <: GradientRegression end abstract type Gamma <: GradientRegression end abstract type Tweedie <: GradientRegression end abstract type MLogLoss <: ModelType end abstract type GaussianMLE <: MLE2P end abstract type LogisticMLE <: MLE2P end abstract type Quantile <: ModelType end abstract type L1 <: ModelType end # Converts MSE -> :mse const _type2loss_dict = Dict( MSE => :mse, LogLoss => :logloss, Poisson => :poisson, Gamma => :gamma, Tweedie => :tweedie, MLogLoss => :mlogloss, GaussianMLE => :gaussian_mle, LogisticMLE => :logistic_mle, Quantile => :quantile, L1 => :l1, ) _type2loss(L::Type) = _type2loss_dict[L] # make a Random Number Generator object mk_rng(rng::AbstractRNG) = rng mk_rng(int::Integer) = Random.MersenneTwister(int) mutable struct EvoTreeRegressor{L<:ModelType} <: MMI.Deterministic nrounds::Int L2::Float64 lambda::Float64 gamma::Float64 eta::Float64 max_depth::Int min_weight::Float64 # real minimum number of observations, different from xgboost (but same for linear) rowsample::Float64 # subsample colsample::Float64 nbins::Int alpha::Float64 monotone_constraints::Any tree_type::String rng::Any end function EvoTreeRegressor(; kwargs...) # defaults arguments args = Dict{Symbol,Any}( :loss => :mse, :nrounds => 100, :L2 => 0.0, :lambda => 0.0, :gamma => 0.0, # min gain to split :eta => 0.1, # learning rate :max_depth => 6, :min_weight => 1.0, # minimal weight, different from xgboost (but same for linear) :rowsample => 1.0, :colsample => 1.0, :nbins => 64, :alpha => 0.5, :monotone_constraints => Dict{Int,Int}(), :tree_type => "binary", :rng => 123, ) args_override = intersect(keys(args), keys(kwargs)) for arg in args_override args[arg] = kwargs[arg] end args[:rng] = mk_rng(args[:rng]) args[:loss] = Symbol(args[:loss]) if args[:loss] == :mse L = MSE elseif args[:loss] == :linear L = MSE elseif args[:loss] == :logloss L = LogLoss elseif args[:loss] == :logistic L = LogLoss elseif args[:loss] == :gamma L = Gamma elseif args[:loss] == :tweedie L = Tweedie elseif args[:loss] == :l1 L = L1 elseif args[:loss] == :quantile L = Quantile else error( "Invalid loss: $(args[:loss]). Only [`:mse`, `:logloss`, `:gamma`, `:tweedie`, `:l1`, `:quantile`] are supported by EvoTreeRegressor.", ) end check_args(args) model = EvoTreeRegressor{L}( args[:nrounds], args[:L2], args[:lambda], args[:gamma], args[:eta], args[:max_depth], args[:min_weight], args[:rowsample], args[:colsample], args[:nbins], args[:alpha], args[:monotone_constraints], args[:tree_type], args[:rng], ) return model end function EvoTreeRegressor{L}(; kwargs...) where {L} EvoTreeRegressor(; loss=_type2loss(L), kwargs...) end mutable struct EvoTreeCount{L<:ModelType} <: MMI.Probabilistic nrounds::Int L2::Float64 lambda::Float64 gamma::Float64 eta::Float64 max_depth::Int min_weight::Float64 # real minimum number of observations, different from xgboost (but same for linear) rowsample::Float64 # subsample colsample::Float64 nbins::Int alpha::Float64 monotone_constraints::Any tree_type::String rng::Any end function EvoTreeCount(; kwargs...) # defaults arguments args = Dict{Symbol,Any}( :nrounds => 100, :L2 => 0.0, :lambda => 0.0, :gamma => 0.0, # min gain to split :eta => 0.1, # learning rate :max_depth => 6, :min_weight => 1.0, # minimal weight, different from xgboost (but same for linear) :rowsample => 1.0, :colsample => 1.0, :nbins => 64, :alpha => 0.5, :monotone_constraints => Dict{Int,Int}(), :tree_type => "binary", :rng => 123, ) args_override = intersect(keys(args), keys(kwargs)) for arg in args_override args[arg] = kwargs[arg] end args[:rng] = mk_rng(args[:rng]) L = Poisson check_args(args) model = EvoTreeCount{L}( args[:nrounds], args[:L2], args[:lambda], args[:gamma], args[:eta], args[:max_depth], args[:min_weight], args[:rowsample], args[:colsample], args[:nbins], args[:alpha], args[:monotone_constraints], args[:tree_type], args[:rng], ) return model end function EvoTreeCount{L}(; kwargs...) where {L} EvoTreeCount(; kwargs...) end mutable struct EvoTreeClassifier{L<:ModelType} <: MMI.Probabilistic nrounds::Int L2::Float64 lambda::Float64 gamma::Float64 eta::Float64 max_depth::Int min_weight::Float64 # real minimum number of observations, different from xgboost (but same for linear) rowsample::Float64 # subsample colsample::Float64 nbins::Int alpha::Float64 tree_type::String rng::Any end function EvoTreeClassifier(; kwargs...) # defaults arguments args = Dict{Symbol,Any}( :nrounds => 100, :L2 => 0.0, :lambda => 0.0, :gamma => 0.0, # min gain to split :eta => 0.1, # learning rate :max_depth => 6, :min_weight => 1.0, # minimal weight, different from xgboost (but same for linear) :rowsample => 1.0, :colsample => 1.0, :nbins => 64, :alpha => 0.5, :tree_type => "binary", :rng => 123, ) args_override = intersect(keys(args), keys(kwargs)) for arg in args_override args[arg] = kwargs[arg] end args[:rng] = mk_rng(args[:rng]) L = MLogLoss check_args(args) model = EvoTreeClassifier{L}( args[:nrounds], args[:L2], args[:lambda], args[:gamma], args[:eta], args[:max_depth], args[:min_weight], args[:rowsample], args[:colsample], args[:nbins], args[:alpha], args[:tree_type], args[:rng], ) return model end function EvoTreeClassifier{L}(; kwargs...) where {L} EvoTreeClassifier(; kwargs...) end mutable struct EvoTreeMLE{L<:ModelType} <: MMI.Probabilistic nrounds::Int L2::Float64 lambda::Float64 gamma::Float64 eta::Float64 max_depth::Int min_weight::Float64 # real minimum number of observations, different from xgboost (but same for linear) rowsample::Float64 # subsample colsample::Float64 nbins::Int alpha::Float64 monotone_constraints::Any tree_type::String rng::Any end function EvoTreeMLE(; kwargs...) # defaults arguments args = Dict{Symbol,Any}( :loss => :gaussian_mle, :nrounds => 100, :L2 => 0.0, :lambda => 0.0, :gamma => 0.0, # min gain to split :eta => 0.1, # learning rate :max_depth => 6, :min_weight => 8.0, # minimal weight, different from xgboost (but same for linear) :rowsample => 1.0, :colsample => 1.0, :nbins => 64, :alpha => 0.5, :monotone_constraints => Dict{Int,Int}(), :tree_type => "binary", :rng => 123, ) args_override = intersect(keys(args), keys(kwargs)) for arg in args_override args[arg] = kwargs[arg] end args[:rng] = mk_rng(args[:rng]) args[:loss] = Symbol(args[:loss]) if args[:loss] in [:gaussian, :gaussian_mle] L = GaussianMLE elseif args[:loss] in [:logistic, :logistic_mle] L = LogisticMLE else error( "Invalid loss: $(args[:loss]). Only `:gaussian_mle` and `:logistic_mle` are supported by EvoTreeMLE.", ) end check_args(args) model = EvoTreeMLE{L}( args[:nrounds], args[:L2], args[:lambda], args[:gamma], args[:eta], args[:max_depth], args[:min_weight], args[:rowsample], args[:colsample], args[:nbins], args[:alpha], args[:monotone_constraints], args[:tree_type], args[:rng], ) return model end function EvoTreeMLE{L}(; kwargs...) where {L} if L == GaussianMLE loss = :gaussian_mle elseif L == LogisticMLE loss = :logistic_mle end EvoTreeMLE(; loss=loss, kwargs...) end mutable struct EvoTreeGaussian{L<:ModelType} <: MMI.Probabilistic nrounds::Int L2::Float64 lambda::Float64 gamma::Float64 eta::Float64 max_depth::Int min_weight::Float64 # real minimum number of observations, different from xgboost (but same for linear) rowsample::Float64 # subsample colsample::Float64 nbins::Int alpha::Float64 monotone_constraints::Any tree_type::String rng::Any end function EvoTreeGaussian(; kwargs...) # defaults arguments args = Dict{Symbol,Any}( :nrounds => 100, :L2 => 0.0, :lambda => 0.0, :gamma => 0.0, # min gain to split :eta => 0.1, # learning rate :max_depth => 6, :min_weight => 8.0, # minimal weight, different from xgboost (but same for linear) :rowsample => 1.0, :colsample => 1.0, :nbins => 64, :alpha => 0.5, :monotone_constraints => Dict{Int,Int}(), :tree_type => "binary", :rng => 123, ) args_override = intersect(keys(args), keys(kwargs)) for arg in args_override args[arg] = kwargs[arg] end args[:rng] = mk_rng(args[:rng]) L = GaussianMLE check_args(args) model = EvoTreeGaussian{L}( args[:nrounds], args[:L2], args[:lambda], args[:gamma], args[:eta], args[:max_depth], args[:min_weight], args[:rowsample], args[:colsample], args[:nbins], args[:alpha], args[:monotone_constraints], args[:tree_type], args[:rng], ) return model end function EvoTreeGaussian{L}(; kwargs...) where {L} EvoTreeGaussian(; kwargs...) end const EvoTypes{L} = Union{ EvoTreeRegressor{L}, EvoTreeCount{L}, EvoTreeClassifier{L}, EvoTreeGaussian{L}, EvoTreeMLE{L}, } _get_struct_loss(::EvoTypes{L}) where {L} = L function Base.show(io::IO, config::EvoTypes) println(io, "$(typeof(config))") for fname in fieldnames(typeof(config)) println(io, " - $fname: $(getfield(config, fname))") end end """ check_parameter(::Type{<:T}, value, min_value::Real, max_value::Real, label::Symbol) where {T<:Number} Check model parameter if it's valid """ function check_parameter(::Type{<:T}, value, min_value::Real, max_value::Real, label::Symbol) where {T<:Number} min_value = max(typemin(T), min_value) max_value = min(typemax(T), max_value) try convert(T, value) @assert min_value <= value <= max_value catch error("Invalid value for parameter `$(string(label))`: $value. `$(string(label))` must be of type $T with value between $min_value and $max_value.") end end """ check_args(args::Dict{Symbol,Any}) Check model arguments if they are valid """ function check_args(args::Dict{Symbol,Any}) # Check integer parameters check_parameter(Int, args[:nrounds], 0, typemax(Int), :nrounds) check_parameter(Int, args[:max_depth], 1, typemax(Int), :max_depth) check_parameter(Int, args[:nbins], 2, 255, :nbins) # check positive float parameters check_parameter(Float64, args[:lambda], zero(Float64), typemax(Float64), :lambda) check_parameter(Float64, args[:gamma], zero(Float64), typemax(Float64), :gamma) check_parameter(Float64, args[:min_weight], zero(Float64), typemax(Float64), :min_weight) # check bounded parameters check_parameter(Float64, args[:alpha], zero(Float64), one(Float64), :alpha) check_parameter(Float64, args[:rowsample], eps(Float64), one(Float64), :rowsample) check_parameter(Float64, args[:colsample], eps(Float64), one(Float64), :colsample) check_parameter(Float64, args[:eta], zero(Float64), typemax(Float64), :eta) try tree_type = string(args[:tree_type]) @assert tree_type ∈ ["binary", "oblivious"] catch error("Invalid input for `tree_type` parameter: `$(args[:tree_type])`. Must be of one of `binary` or `oblivious`") end end """ check_args(model::EvoTypes{L}) where {L} Check model arguments if they are valid (eg, after mutation when tuning hyperparams) Note: does not check consistency of model type and loss selected """ function check_args(model::EvoTypes{L}) where {L} # Check integer parameters check_parameter(Int, model.max_depth, 1, typemax(Int), :max_depth) check_parameter(Int, model.nrounds, 0, typemax(Int), :nrounds) check_parameter(Int, model.nbins, 2, 255, :nbins) # check positive float parameters check_parameter(Float64, model.lambda, zero(Float64), typemax(Float64), :lambda) check_parameter(Float64, model.gamma, zero(Float64), typemax(Float64), :gamma) check_parameter(Float64, model.min_weight, zero(Float64), typemax(Float64), :min_weight) # check bounded parameters check_parameter(Float64, model.alpha, zero(Float64), one(Float64), :alpha) check_parameter(Float64, model.rowsample, eps(Float64), one(Float64), :rowsample) check_parameter(Float64, model.colsample, eps(Float64), one(Float64), :colsample) check_parameter(Float64, model.eta, zero(Float64), typemax(Float64), :eta) try tree_type = string(model.tree_type) @assert tree_type ∈ ["binary", "oblivious"] catch error("Invalid input for `tree_type` parameter: `$(model.tree_type)`. Must be of one of `binary` or `oblivious`") end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4507
function get_adj_list(tree::EvoTrees.Tree) n = 1 map = ones(Int, 1) adj = Vector{Vector{Int}}() if tree.split[1] push!(adj, [n + 1, n + 2]) n += 2 else push!(adj, []) end for i = 2:length(tree.split) if tree.split[i] push!(map, i) push!(adj, [n + 1, n + 2]) n += 2 elseif tree.split[i>>1] push!(map, i) push!(adj, []) end end return (map=map, adj=adj) end function get_shapes(tree_layout) shapes = Vector(undef, length(tree_layout)) for i = eachindex(tree_layout) x, y = tree_layout[i][1], tree_layout[i][2] # center point x_buff = 0.45 y_buff = 0.45 shapes[i] = [ (x - x_buff, y + y_buff), (x + x_buff, y + y_buff), (x + x_buff, y - y_buff), (x - x_buff, y - y_buff), ] end return shapes end function get_annotations(tree_layout, map, tree, var_names) # annotations = Vector{Tuple{Float64, Float64, String, Tuple}}(undef, length(tree_layout)) annotations = [] for i = eachindex(tree_layout) x, y = tree_layout[i][1], tree_layout[i][2] # center point if tree.split[map[i]] feat = isnothing(var_names) ? "feat: " * string(tree.feat[map[i]]) : var_names[tree.feat[map[i]]] txt = "$feat\n" * string(round(tree.cond_float[map[i]], sigdigits=3)) else txt = "pred:\n" * string(round(tree.pred[1, map[i]], sigdigits=3)) end # annotations[i] = (x, y, txt, (9, :white, "helvetica")) push!(annotations, (x, y, txt, 10)) end return annotations end function get_curves(adj, tree_layout, shapes) curves = [] num_curves = sum(length.(adj)) for i = eachindex(adj) for j = eachindex(adj[i]) # curves is a length 2 tuple: (vector Xs, vector Ys) push!( curves, ( [tree_layout[i][1], tree_layout[adj[i][j]][1]], [shapes[i][3][2], shapes[adj[i][j]][1][2]], ), ) end end return curves end @recipe function plot(tree::EvoTrees.Tree, var_names=nothing) map, adj = EvoTrees.get_adj_list(tree) tree_layout = length(adj) == 1 ? [[0.0, 0.0]] : NetworkLayout.buchheim(adj) shapes = EvoTrees.get_shapes(tree_layout) # issue with Shape coming from Plots... to be converted o Shape in Receipe? annotations = EvoTrees.get_annotations(tree_layout, map, tree, var_names) # same with Plots.text curves = EvoTrees.get_curves(adj, tree_layout, shapes) size_base = floor(log2(length(adj))) size = (128 * 2^size_base, 96 * (1 + size_base)) background_color --> :white linecolor --> :black legend --> nothing axis --> nothing framestyle --> :none size --> size annotations --> annotations for i = eachindex(shapes) @series begin fillcolor = length(adj[i]) == 0 ? "#84DCC6" : "#C8D3D5" fillcolor --> fillcolor seriestype --> :shape return shapes[i] end end for i = eachindex(curves) @series begin seriestype --> :curves return curves[i] end end end @recipe function plot(model::EvoTrees.EvoTree, n=1; var_names=model.info[:fnames]) tree = model.trees[n] map, adj = EvoTrees.get_adj_list(tree) tree_layout = length(adj) == 1 ? [[0.0, 0.0]] : NetworkLayout.buchheim(adj) shapes = EvoTrees.get_shapes(tree_layout) # issue with Shape coming from Plots... to be converted o Shape in Receipe? annotations = EvoTrees.get_annotations(tree_layout, map, tree, var_names) # same with Plots.text curves = EvoTrees.get_curves(adj, tree_layout, shapes) size_base = floor(log2(length(adj))) size = (128 * 2^size_base, 96 * (1 + size_base)) background_color --> :white linecolor --> :black legend --> nothing axis --> nothing framestyle --> :none size --> size annotations --> annotations for i = eachindex(shapes) @series begin fillcolor = length(adj[i]) == 0 ? "#84DCC6" : "#C8D3D5" fillcolor --> fillcolor seriestype --> :shape return shapes[i] end end for i = eachindex(curves) @series begin seriestype --> :curves return curves[i] end end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
6020
function predict!(pred::Matrix{T}, tree::Tree{L,K}, x_bin::Matrix{UInt8}, feattypes::Vector{Bool}) where {L<:GradientRegression,K,T} @threads for i in axes(x_bin, 1) nid = 1 @inbounds while tree.split[nid] feat = tree.feat[nid] cond = feattypes[feat] ? x_bin[i, feat] <= tree.cond_bin[nid] : x_bin[i, feat] == tree.cond_bin[nid] nid = nid << 1 + !cond end @inbounds pred[1, i] += tree.pred[1, nid] end return nothing end function predict!(pred::Matrix{T}, tree::Tree{L,K}, x_bin::Matrix{UInt8}, feattypes::Vector{Bool}) where {L<:LogLoss,K,T} @threads for i in axes(x_bin, 1) nid = 1 @inbounds while tree.split[nid] feat = tree.feat[nid] cond = feattypes[feat] ? x_bin[i, feat] <= tree.cond_bin[nid] : x_bin[i, feat] == tree.cond_bin[nid] nid = nid << 1 + !cond end @inbounds pred[1, i] = clamp(pred[1, i] + tree.pred[1, nid], T(-15), T(15)) end return nothing end function predict!(pred::Matrix{T}, tree::Tree{L,K}, x_bin::Matrix{UInt8}, feattypes::Vector{Bool}) where {L<:MLE2P,K,T} @threads for i in axes(x_bin, 1) nid = 1 @inbounds while tree.split[nid] feat = tree.feat[nid] cond = feattypes[feat] ? x_bin[i, feat] <= tree.cond_bin[nid] : x_bin[i, feat] == tree.cond_bin[nid] nid = nid << 1 + !cond end @inbounds pred[1, i] += tree.pred[1, nid] @inbounds pred[2, i] = max(T(-15), pred[2, i] + tree.pred[2, nid]) end return nothing end function predict!(pred::Matrix{T}, tree::Tree{L,K}, x_bin::Matrix{UInt8}, feattypes::Vector{Bool}) where {L<:MLogLoss,K,T} @threads for i in axes(x_bin, 1) nid = 1 @inbounds while tree.split[nid] feat = tree.feat[nid] cond = feattypes[feat] ? x_bin[i, feat] <= tree.cond_bin[nid] : x_bin[i, feat] == tree.cond_bin[nid] nid = nid << 1 + !cond end @inbounds for k = 1:K pred[k, i] += tree.pred[k, nid] end @views pred[:, i] .= max.(T(-15), pred[:, i] .- maximum(pred[:, i])) end return nothing end """ predict!(pred::Matrix, tree::Tree, X) Generic fallback to add predictions of `tree` to existing `pred` matrix. """ function predict!(pred::Matrix{T}, tree::Tree{L,K}, x_bin::Matrix{UInt8}, feattypes::Vector{Bool}) where {L,K,T} @threads for i in axes(x_bin, 1) nid = 1 @inbounds while tree.split[nid] feat = tree.feat[nid] cond = feattypes[feat] ? x_bin[i, feat] <= tree.cond_bin[nid] : x_bin[i, feat] == tree.cond_bin[nid] nid = nid << 1 + !cond end @inbounds for k = 1:K pred[k, i] += tree.pred[k, nid] end end return nothing end """ predict(model::EvoTree, X::AbstractMatrix; ntree_limit = length(model.trees)) Predictions from an EvoTree model - sums the predictions from all trees composing the model. Use `ntree_limit=N` to only predict with the first `N` trees. """ function predict( m::EvoTree{L,K}, data, ::Type{<:Device}=CPU; ntree_limit=length(m.trees)) where {L,K} Tables.istable(data) ? data = Tables.columntable(data) : nothing ntrees = length(m.trees) ntree_limit > ntrees && error("ntree_limit is larger than number of trees $ntrees.") x_bin = binarize(data; fnames=m.info[:fnames], edges=m.info[:edges]) nobs = size(x_bin, 1) pred = zeros(Float32, K, nobs) for i = 1:ntree_limit predict!(pred, m.trees[i], x_bin, m.info[:feattypes]) end if L == LogLoss pred .= sigmoid.(pred) elseif L ∈ [Poisson, Gamma, Tweedie] pred .= exp.(pred) elseif L in [GaussianMLE, LogisticMLE] pred[2, :] .= exp.(pred[2, :]) elseif L == MLogLoss softmax!(pred) end pred = K == 1 ? vec(Array(pred')) : Array(pred') return pred end function softmax!(p::AbstractMatrix) @threads for i in axes(p, 2) _p = view(p, :, i) _p .= exp.(_p) isum = sum(_p) _p ./= isum end return nothing end function pred_leaf_cpu!(p::Matrix, n, ∑::AbstractVector{T}, params::EvoTypes{L}, ∇, is) where {L<:GradientRegression,T} ϵ = eps(T) p[1, n] = -params.eta * ∑[1] / max(ϵ, (∑[2] + params.lambda * ∑[3] + params.L2)) end function pred_scalar(∑::AbstractVector{T}, params::EvoTypes{L}) where {L<:GradientRegression,T} ϵ = eps(T) -params.eta * ∑[1] / max(ϵ, (∑[2] + params.lambda * ∑[3] + params.L2)) end # prediction in Leaf - MLE2P function pred_leaf_cpu!(p::Matrix, n, ∑::AbstractVector{T}, params::EvoTypes{L}, ∇, is) where {L<:MLE2P,T} ϵ = eps(T) p[1, n] = -params.eta * ∑[1] / max(ϵ, (∑[3] + params.lambda * ∑[5] + params.L2)) p[2, n] = -params.eta * ∑[2] / max(ϵ, (∑[4] + params.lambda * ∑[5] + params.L2)) end function pred_scalar(∑::AbstractVector{T}, params::EvoTypes{L}) where {L<:MLE2P,T} ϵ = eps(T) -params.eta * ∑[1] / max(ϵ, (∑[3] + params.lambda * ∑[5] + params.L2)) end # prediction in Leaf - MultiClassRegression function pred_leaf_cpu!(p::Matrix, n, ∑::AbstractVector{T}, params::EvoTypes{L}, ∇, is) where {L<:MLogLoss,T} ϵ = eps(T) K = size(p, 1) @inbounds for k = axes(p, 1) p[k, n] = -params.eta * ∑[k] / max(ϵ, (∑[k+K] + params.lambda * ∑[end] + params.L2)) end end # prediction in Leaf - Quantile function pred_leaf_cpu!(p::Matrix, n, ∑::AbstractVector{T}, params::EvoTypes{L}, ∇, is) where {L<:Quantile,T} p[1, n] = params.eta * quantile(∇[2, is], params.alpha) / (1 + params.lambda + params.L2) end # prediction in Leaf - L1 function pred_leaf_cpu!(p::Matrix, n, ∑::AbstractVector{T}, params::EvoTypes{L}, ∇, is) where {L<:L1,T} ϵ = eps(T) p[1, n] = params.eta * ∑[1] / max(ϵ, (∑[3] * (1 + params.lambda + params.L2))) end function pred_scalar(∑::AbstractVector, params::EvoTypes{L1}) ϵ = eps(T) params.eta * ∑[1] / max(ϵ, (∑[3] * (1 + params.lambda + params.L2))) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2695
abstract type Device end abstract type CPU <: Device end abstract type GPU <: Device end """ TrainNode{S,V,M} Carries training information for a given tree node """ mutable struct TrainNode{S,V,M} gain::Float64 is::S ∑::V h::Vector{M} hL::Vector{M} hR::Vector{M} gains::Vector{V} end function TrainNode(featbins, K, is) node = TrainNode( zero(Float64), is, zeros(2 * K + 1), [zeros(2 * K + 1, nbins) for nbins in featbins], [zeros(2 * K + 1, nbins) for nbins in featbins], [zeros(2 * K + 1, nbins) for nbins in featbins], [zeros(nbins) for nbins in featbins], ) return node end # single tree is made of a vectors of length num nodes struct Tree{L,K} feat::Vector{Int} cond_bin::Vector{UInt8} cond_float::Vector{Any} gain::Vector{Float64} pred::Matrix{Float32} split::Vector{Bool} end function Tree{L,K}(x::Vector) where {L,K} Tree{L,K}( zeros(Int, 1), zeros(UInt8, 1), zeros(Float64, 1), zeros(Float64, 1), reshape(x, :, 1), zeros(Bool, 1), ) end function Tree{L,K}(depth::Int) where {L,K} Tree{L,K}( zeros(Int, 2^depth - 1), zeros(UInt8, 2^depth - 1), zeros(Float64, 2^depth - 1), zeros(Float64, 2^depth - 1), zeros(Float32, K, 2^depth - 1), zeros(Bool, 2^depth - 1), ) end function Base.show(io::IO, tree::Tree) println(io, "$(typeof(tree))") for fname in fieldnames(typeof(tree)) println(io, " - $fname: $(getfield(tree, fname))") end end """ EvoTree{L,K} An `EvoTree` holds the structure of a fitted gradient-boosted tree. # Fields - trees::Vector{Tree{L,K}} - info::Dict `EvoTree` acts as a functor to perform inference on input data: ``` pred = (m::EvoTree; ntree_limit=length(m.trees))(x) ``` """ struct EvoTree{L,K} trees::Vector{Tree{L,K}} info::Dict end # (m::EvoTree)(data, device::Type{D}=CPU; ntree_limit=length(m.trees)) where {D<:Device} = # predict(m, data, device; ntree_limit) function (m::EvoTree)(data; ntree_limit=length(m.trees), device="cpu") @assert string(device) ∈ ["cpu", "gpu"] _device = string(device) == "cpu" ? CPU : GPU return predict(m, data, _device; ntree_limit) end _get_struct_loss(::EvoTree{L,K}) where {L,K} = L function Base.show(io::IO, evotree::EvoTree) println(io, "$(typeof(evotree))") println(io, " - Contains $(length(evotree.trees)) trees in field `trees` (incl. 1 bias tree).") println(io, " - Data input has $(length(evotree.info[:fnames])) features.") println(io, " - $(keys(evotree.info)) info accessible in field `info`") end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1314
""" subsample(out::AbstractVector, mask::AbstractVector, rowsample::AbstractFloat) Returns a view of selected rows ids. """ function subsample(is_in::AbstractVector, is_out::AbstractVector, mask::AbstractVector, rowsample::AbstractFloat, rng) Random.rand!(rng, mask) cond = round(UInt8, 255 * rowsample) chunk_size = cld(length(is_in), min(cld(length(is_in), 1024), Threads.nthreads())) nblocks = cld(length(is_in), chunk_size) counts = zeros(Int, nblocks) @threads for bid = 1:nblocks i_start = chunk_size * (bid - 1) + 1 i_stop = bid == nblocks ? length(is_in) : i_start + chunk_size - 1 count = 0 i = i_start for i = i_start:i_stop if mask[i] <= cond is_in[i_start+count] = i count += 1 end end counts[bid] = count end counts_cum = cumsum(counts) .- counts @threads for bid = 1:nblocks count_cum = counts_cum[bid] i_start = chunk_size * (bid - 1) @inbounds for i = 1:counts[bid] is_out[count_cum+i] = is_in[i_start+i] end end counts_sum = sum(counts) if counts_cum == 0 @error "no subsample observation - choose larger rowsample" else return view(is_out, 1:counts_sum) end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
11063
using StatsBase: sample using EvoTrees: sigmoid, logit using MLJBase using MLJTestInterface @testset "generic interface tests" begin @testset "EvoTreeRegressor, EvoTreeMLE, EvoTreeGaussian" begin failures, summary = MLJTestInterface.test( [EvoTreeRegressor, EvoTreeMLE, EvoTreeGaussian], MLJTestInterface.make_regression()...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false # set to true to debug ) @test isempty(failures) end @testset "EvoTreeCount" begin failures, summary = MLJTestInterface.test( [EvoTreeCount], MLJTestInterface.make_count()...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false # set to true to debug ) @test isempty(failures) end @testset "EvoTreeClassifier" begin for data in [ MLJTestInterface.make_binary(), MLJTestInterface.make_multiclass(), ] failures, summary = MLJTestInterface.test( [EvoTreeClassifier], data...; mod=@__MODULE__, verbosity=0, # bump to debug throw=false # set to true to debug ) @test isempty(failures) end end end ################################################## ### Regression - small data ################################################## features = rand(1_000) .* 5 .- 2 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) y = Y X = MLJBase.table(X) # @load EvoTreeRegressor # linear regression tree_model = EvoTreeRegressor(max_depth=5, eta=0.05, nrounds=10) # logloss - logistic regression tree_model = EvoTreeRegressor(loss=:logloss, max_depth=5, eta=0.05, nrounds=10) # quantile regression # tree_model = EvoTreeRegressor(loss=:quantile, alpha=0.75, max_depth=5, eta=0.05, nrounds=10) mach = machine(tree_model, X, y) train, test = partition(eachindex(y), 0.7, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1) mach.model.nrounds += 10 fit!(mach, rows=train, verbosity=1) # predict on train data pred_train = predict(mach, selectrows(X, train)) mean(abs.(pred_train - selectrows(Y, train))) # predict on test data pred_test = predict(mach, selectrows(X, test)) mean(abs.(pred_test - selectrows(Y, test))) @test MLJBase.iteration_parameter(EvoTreeRegressor) == :nrounds ################################################## ### Regression - GPU ################################################## # tree_model = EvoTreeRegressor(loss = :logloss, max_depth = 5, eta = 0.05, nrounds = 10, device = "gpu") # mach = machine(tree_model, X, y) # train, test = partition(eachindex(y), 0.7, shuffle = true); # 70:30 split # fit!(mach, rows = train, verbosity = 1) # mach.model.nrounds += 10 # fit!(mach, rows = train, verbosity = 1) # # predict on train data # pred_train = predict(mach, selectrows(X, train)) # mean(abs.(pred_train - selectrows(Y, train))) # # predict on test data # pred_test = predict(mach, selectrows(X, test)) # mean(abs.(pred_test - selectrows(Y, test))) # @test MLJBase.iteration_parameter(EvoTreeRegressor) == :nrounds ################################################## ### classif - categorical target ################################################## X, y = @load_crabs tree_model = EvoTreeClassifier( max_depth=4, eta=0.05, lambda=0.0, gamma=0.0, nrounds=10, ) # @load EvoTreeRegressor mach = machine(tree_model, X, y) train, test = partition(eachindex(y), 0.7, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1); mach.model.nrounds += 50 fit!(mach, rows=train, verbosity=1) pred_train = predict(mach, selectrows(X, train)) pred_train_mode = predict_mode(mach, selectrows(X, train)) sum(pred_train_mode .== y[train]) / length(y[train]) pred_test = predict(mach, selectrows(X, test)) pred_test_mode = predict_mode(mach, selectrows(X, test)) sum(pred_test_mode .== y[test]) / length(y[test]) pred_test_mode = predict_mode(mach, selectrows(X, test)) ################################################## ### count ################################################## features = rand(1_000, 10) # features = rand(100, 10) X = features Y = rand(UInt8, size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeCount( loss=:poisson, metric=:poisson, nrounds=10, lambda=0.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=32, ) X = MLJBase.table(X) # typeof(X) mach = machine(tree_model, X, Y) train, test = partition(eachindex(Y), 0.8, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1, force=true) mach.model.nrounds += 10 fit!(mach, rows=train, verbosity=1) pred = predict(mach, selectrows(X, train)) pred_mean = predict_mean(mach, selectrows(X, train)) pred_mode = predict_mode(mach, selectrows(X, train)) # pred_mode = predict_median(mach, selectrows(X,train)) ################################################## ### Gaussian - Larger data ################################################## features = rand(1_000, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] X_train, X_eval = X[𝑖_train, :], X[𝑖_eval, :] Y_train, Y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeGaussian( nrounds=10, lambda=0.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=0.5, nbins=32, ) X = MLJBase.table(X) # typeof(X) mach = machine(tree_model, X, Y) train, test = partition(eachindex(Y), 0.8, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1, force=true) mach.model.nrounds += 10 fit!(mach, rows=train, verbosity=1) pred = predict(mach, selectrows(X, train)) pred_mean = predict_mean(mach, selectrows(X, train)) pred_mode = predict_mode(mach, selectrows(X, train)) # pred_mode = predict_median(mach, selectrows(X,train)) mean(abs.(pred_mean - selectrows(Y, train))) q_20 = quantile.(pred, 0.20) q_20 = quantile.(pred, 0.80) report(mach) ################################################## ### LogLoss - Larger data ################################################## features = rand(1_000, 10) X = features Y = rand(size(X, 1)) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeMLE( loss=:logistic_mle, nrounds=10, lambda=1.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=32.0, rowsample=0.5, colsample=0.5, nbins=32, ) X = MLJBase.table(X) # typeof(X) mach = machine(tree_model, X, Y) train, test = partition(eachindex(Y), 0.8, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1, force=true) mach.model.nrounds += 10 fit!(mach, rows=train, verbosity=1) pred = predict(mach, selectrows(X, train)) pred_mean = predict_mean(mach, selectrows(X, train)) pred_mode = predict_mode(mach, selectrows(X, train)) # pred_mode = predict_median(mach, selectrows(X,train)) mean(abs.(pred_mean - selectrows(Y, train))) q_20 = quantile.(pred, 0.20) q_20 = quantile.(pred, 0.80) report(mach) ############################ # Added in response to #92 # ############################ # tests that `update` handles data correctly in the case of a cold # restatrt: X = MLJBase.table(rand(5, 2)) y = rand(5) model = EvoTreeRegressor() data = MLJBase.reformat(model, X, y); f, c, r = MLJBase.fit(model, 2, data...); model.lambda = 0.1 MLJBase.update(model, 2, f, c, data...); ############################ # Feature Importances ############################ # Test feature importances are defined for model ∈ [ EvoTreeClassifier(), EvoTreeCount(), EvoTreeRegressor(), EvoTreeMLE(), EvoTreeGaussian(), ] @test reports_feature_importances(model) == true end # Test that feature importances work for Classifier X, y = MLJBase.make_blobs(100, 3) model = EvoTreeClassifier() m = machine(model, X, y) fit!(m) rpt = MLJBase.report(m) fi = MLJBase.feature_importances(model, m.fitresult, rpt) @test size(fi, 1) == 3 X, y = MLJBase.make_regression(100, 3) model = EvoTreeRegressor() m = machine(model, X, y) fit!(m) rpt = MLJBase.report(m) fi = MLJBase.feature_importances(model, m.fitresult, rpt) @test size(fi, 1) == 3 ################################################## ### Test with weights ################################################## features = rand(1_000, 10) X = features Y = rand(size(X, 1)) W = rand(size(X, 1)) .+ 0.1 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] w_train, w_eval = W[𝑖_train], W[𝑖_eval] # @load EvoTreeRegressor tree_model = EvoTreeRegressor( loss=:logloss, nrounds=10, lambda=1.0, gamma=0.0, eta=0.1, max_depth=6, min_weight=32.0, rowsample=0.5, colsample=0.5, nbins=32, ) X = MLJBase.table(X) # typeof(X) mach = machine(tree_model, X, Y, W) train, test = partition(eachindex(Y), 0.8, shuffle=true); # 70:30 split fit!(mach, rows=train, verbosity=1, force=true) mach.model.nrounds += 10 fit!(mach, rows=train, verbosity=1) report(mach) @testset "MLJ - rowtables - EvoTreeRegressor" begin X, y = make_regression(1000, 5) X = Tables.rowtable(X) booster = EvoTreeRegressor() # smoke tests: mach = machine(booster, X, y) |> fit! fit!(mach) predict(mach, X) end @testset "MLJ - matrix - EvoTreeRegressor" begin X, y = make_regression(1000, 5) X = Tables.matrix(X) booster = EvoTreeRegressor() # smoke tests: mach = machine(booster, X, y) |> fit! fit!(mach) predict(mach, X) end ################################################## ### issue #267: ordered target ################################################## @testset "MLJ - supported ordered factor predictions" begin X = (; x=rand(10)) y = coerce(rand("ab", 10), OrderedFactor) model = EvoTreeClassifier() mach = machine(model, X, y) |> fit! yhat = predict(mach, X) @assert isordered(yhat) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
13476
using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit using EvoTrees: check_args, check_parameter using Random: seed! # prepare a dataset seed!(123) features = rand(1_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) is = collect(1:size(X, 1)) # train-eval split i_sample = sample(is, size(is, 1), replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * size(is, 1))] i_eval = i_sample[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] @testset "EvoTreeRegressor - MSE" begin # mse params1 = EvoTreeRegressor( loss=:mse, nrounds=100, nbins=16, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeRegressor - logloss" begin params1 = EvoTreeRegressor( loss=:logloss, nrounds=100, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:logloss, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeRegressor - Gamma" begin params1 = EvoTreeRegressor( loss=:gamma, nrounds=100, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:gamma, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeRegressor - Tweedie" begin params1 = EvoTreeRegressor( loss=:tweedie, nrounds=100, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:tweedie, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeRegressor - L1" begin params1 = EvoTreeRegressor( loss=:l1, alpha=0.5, nrounds=100, nbins=16, lambda=0.5, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:mae, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeRegressor - Quantile" begin params1 = EvoTreeRegressor( loss=:quantile, alpha=0.5, nrounds=100, nbins=16, lambda=0.5, gamma=0.0, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:wmae, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeCount - Count" begin params1 = EvoTreeCount( loss=:poisson, nrounds=100, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:poisson_deviance, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeMLE - Gaussian" begin params1 = EvoTreeMLE( loss=:gaussian, nrounds=100, nbins=16, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=10.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval)[:, 1] mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:gaussian, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval)[:, 1] mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeMLE - Logistic" begin params1 = EvoTreeMLE( loss=:logistic, nrounds=100, nbins=16, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=10.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval)[:, 1] mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric=:logistic_mle, print_every_n=25 ) preds = EvoTrees.predict(model, x_eval)[:, 1] mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTreeGaussian - Gaussian" begin params1 = EvoTreeGaussian( nrounds=100, nbins=16, lambda=0.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=10.0, rowsample=0.5, colsample=1.0, rng=123, ) model, cache = EvoTrees.init(params1, x_train, y_train) preds_ini = EvoTrees.predict(model, x_eval)[:, 1] mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( params1; x_train, y_train, x_eval, y_eval, metric="gaussian_mle", print_every_n=25 ) preds = EvoTrees.predict(model, x_eval)[:, 1] mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "EvoTrees - Feature Importance" begin params1 = EvoTreeRegressor( loss=:mse, nrounds=100, nbins=16, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) model = fit_evotree(params1; x_train, y_train) features_gain = EvoTrees.importance(model) end @testset "EvoTreeClassifier" begin x_train = Array([ sin.(1:1000) rand(1000) 100 .* cos.(1:1000) rand(1000).+1 ]) y_train = repeat(1:2; inner=1000) rng = rand(UInt32) params1 = EvoTreeClassifier(; nrounds=100, eta=0.3, rng) model = fit_evotree(params1; x_train, y_train) preds = EvoTrees.predict(model, x_train)[:, 1] @test !any(isnan.(preds)) # Categorical array y_train_cat = CategoricalArray(y_train; levels=1:2) params1 = EvoTreeClassifier(; nrounds=100, eta=0.3, rng) model_cat = fit_evotree(params1; x_train, y_train=y_train_cat) preds_cat = EvoTrees.predict(model_cat, x_train)[:, 1] @test preds_cat ≈ preds # Categorical array with additional levels y_train_cat = CategoricalArray(y_train; levels=1:3) params1 = EvoTreeClassifier(; nrounds=100, eta=0.3, rng) model_cat = fit_evotree(params1; x_train, y_train=y_train_cat) preds_cat = EvoTrees.predict(model_cat, x_train)[:, 1] @test preds_cat ≈ preds # differences due to different stream of random numbers end @testset "Parametric kwarg constructor" begin @testset "_type2loss" begin # utility that converts types into loss symbols for EvoTreeRegressor @test EvoTrees._type2loss(EvoTrees.MSE) == :mse @test EvoTrees._type2loss(EvoTrees.L1) == :l1 @test EvoTrees._type2loss(EvoTrees.LogLoss) == :logloss @test EvoTrees._type2loss(EvoTrees.Gamma) == :gamma @test EvoTrees._type2loss(EvoTrees.Tweedie) == :tweedie @test EvoTrees._type2loss(EvoTrees.Quantile) == :quantile end # check if we retain the parametric information properly for EvoParamType in [ EvoTreeRegressor{EvoTrees.MSE}, EvoTreeRegressor{EvoTrees.L1}, EvoTreeCount{EvoTrees.Poisson}, EvoTreeClassifier{EvoTrees.MLogLoss}, EvoTreeMLE{EvoTrees.LogisticMLE}, EvoTreeGaussian{EvoTrees.GaussianMLE} ] config = EvoParamType(; max_depth=2) @test config isa EvoParamType @test config.max_depth == 2 end end @testset "check_args functionality" begin # check_args should throw an exception if the parameters are invalid @testset "check_parameter" begin # Valid case tests @test check_parameter(Float64, 1.5, 0.0, typemax(Float64), :lambda) == nothing @test check_parameter(Int, 5, 1, typemax(Int), :nrounds) == nothing @test check_parameter(Int, 1, 1, typemax(Int), :nrounds) == nothing @test check_parameter(Int, 1, 1, 1, :nrounds) == nothing # Invalid type tests @test_throws ErrorException check_parameter(Int, 1.5, 0, typemax(Int), :nrounds) @test_throws ErrorException check_parameter(Float64, "1.5", 0.0, typemax(Float64), :lambda) # Out of range tests @test_throws ErrorException check_parameter(Int, -5, 0, typemax(Int), :nrounds) @test_throws ErrorException check_parameter(Float64, -0.1, 0.0, typemax(Float64), :lambda) @test_throws ErrorException check_parameter(Int, typemax(Int64), 0, typemax(Int) - 1, :nrounds) @test_throws ErrorException check_parameter(Float64, typemax(Float64), 0.0, 10^6, :lambda) end # Check the implemented parameters on construction @testset "check_args all for EvoTreeRegressor" begin for (key, vals_to_test) in zip( [:nrounds, :max_depth, :nbins, :lambda, :gamma, :min_weight, :alpha, :rowsample, :colsample, :eta], [[-1, 1.5], [0, 1.5], [1, 256, 100.5], [-eps(Float64)], [-eps(Float64)], [-eps(Float64)], [-0.1, 1.1], [0.0f0, 1.1f0], [0.0, 1.1], [-eps(Float64)]]) for val in vals_to_test @test_throws Exception EvoTreeRegressor(; zip([key], [val])...) end end end # Test all EvoTypes that they have *some* checks in place @testset "check_args EvoTypes" begin for EvoTreeType in [EvoTreeMLE, EvoTreeGaussian, EvoTreeCount, EvoTreeClassifier, EvoTreeRegressor] config = EvoTreeType(nbins=32) # should not throw an exception @test check_args(config) == nothing # invalid nbins config.nbins = 256 @test_throws Exception check_args(config) end end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3239
using CUDA using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit using Random: seed! # prepare a dataset seed!(123) features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) is = collect(1:size(X, 1)) # train-eval split i_sample = sample(is, size(𝑖, 1), replace = false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * size(is, 1))] i_eval = i_sample[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] ################################ # linear ################################ params1 = EvoTreeRegressor( T = Float32, loss = :linear, metric = :none, nrounds = 200, nbins = 64, lambda = 0.5, gamma = 0.1, eta = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 1.0, ) @time model = fit_evotree_gpu(params1; x_train, y_train); @time pred_train_linear = predict_gpu(model, x_train) x_perm = sortperm(X_train[:, 1]) plot( X_train, Y_train, msize = 1, mcolor = "gray", mswidth = 0, background_color = RGB(1, 1, 1), seriestype = :scatter, xaxis = ("feature"), yaxis = ("target"), legend = true, label = "", ) plot!( X_train[:, 1][x_perm], pred_train_linear[x_perm], color = "navy", linewidth = 1.5, label = "Linear", ) # savefig("figures/regression_sinus_gpu.png") params1 = EvoTreeRegressor( T = Float32, loss = :linear, metric = :mse, nrounds = 200, nbins = 64, lambda = 0.5, gamma = 0.1, eta = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 1.0, device = "gpu", ) @time model = fit_evotree_gpu(params1; x_train, y_train, print_every_n = 25); @time model = fit_evotree_gpu(params1; x_train, y_train, x_eval, y_eval, print_every_n = 25); @time pred_train_linear = predict_gpu(model, x_train) ################################ # Logistic ################################ params1 = EvoTreeRegressor( T = Float32, loss = :logistic, metric = :logloss, nrounds = 200, nbins = 64, lambda = 0.5, gamma = 0.1, eta = 0.1, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 1.0, device = "gpu", ) @time model = fit_evotree_gpu(params1; x_train, y_train); @time pred_train_linear = predict_gpu(model, x_train) ################################ # Gaussian ################################ params1 = EvoTreeGaussian( T = Float64, loss = :gaussian, metric = :gaussian, nrounds = 200, nbins = 64, lambda = 1.0, gamma = 0.1, eta = 0.1, max_depth = 5, min_weight = 100.0, rowsample = 0.5, colsample = 1.0, rng = 123, device = "gpu", ) @time model = fit_evotree_gpu(params1; x_train, y_train, print_every_n = 25); @time pred_train_gauss = predict_gpu(model, x_train) pred_gauss = [ Distributions.Normal(pred_train_gauss[i, 1], pred_train_gauss[i, 2]) for i in axes(pred_train_gauss, 1) ] pred_q20 = quantile.(pred_gauss, 0.2) pred_q80 = quantile.(pred_gauss, 0.8) mean(Y_train .< pred_q80) mean(Y_train .< pred_q20)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
331
using JLD2, EvoTrees data = JLD2.load("data/data.jld2") x_train = data["X"] y_train = data["y"] config = EvoTrees.EvoTreeMLE(; nrounds=100, eta=0.05, min_weight=2) model = fit_evotree(config, metric=:gaussian_mle, x_train=x_train, y_train=y_train, x_eval=x_train, y_eval=y_train, print_every_n=1) EvoTrees.predict(model, x_train)
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
2941
using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit using EvoTrees: check_args, check_parameter using CategoricalArrays using DataFrames using Random: seed! # prepare a dataset seed!(123) nobs = 1_000 x_num = rand(nobs) .* 5 lvls = ["a", "b", "c"] x_cat = categorical(rand(lvls, nobs), levels=lvls, ordered=false) x_bool = rand(Bool, nobs) x_num_m1 = Vector{Union{Missing,Float64}}(copy(x_num)) x_num_m2 = Vector{Any}(copy(x_num)) lvls_m1 = ["a", "b", "c", missing] x_cat_m1 = categorical(rand(lvls_m1, nobs), levels=lvls) x_bool_m1 = Vector{Union{Missing,Bool}}(copy(x_bool)) # train-eval split is = collect(1:nobs) i_sample = sample(is, nobs, replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * nobs)] i_eval = i_sample[floor(Int, train_size * nobs)+1:end] # target var y_tot = sin.(x_num) .* 0.5 .+ 0.5 y_tot = logit(y_tot) + randn(nobs) y_tot = sigmoid(y_tot) target_name = "y" y_tot = sigmoid(y_tot) y_tot_m1 = allowmissing(y_tot) y_tot_m1[1] = missing config = EvoTreeRegressor( loss=:linear, nrounds=100, nbins=16, lambda=0.5, gamma=0.1, eta=0.05, max_depth=3, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) @testset "DataFrames - missing features" begin df_tot = DataFrame(x_num=x_num, x_bool=x_bool, x_cat=x_cat, y=y_tot) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] model = fit_evotree( config, dtrain; target_name) @test model.info[:fnames] == [:x_num, :x_bool, :x_cat] # keep only fnames <= Real or Categorical df_tot = DataFrame(x_num=x_num, x_num_m1=x_num_m1, x_num_m2=x_num_m2, x_cat_m1=x_cat_m1, x_bool_m1=x_bool_m1, y=y_tot) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] model = fit_evotree( config, dtrain; target_name, deval) @test model.info[:fnames] == [:x_num] model = fit_evotree( config, dtrain; target_name, fnames=[:x_num]) @test model.info[:fnames] == [:x_num] # specifyin features with missings should error @test_throws AssertionError fit_evotree( config, dtrain; deval, fnames=[:x_num, :x_num_m1, :x_num_m2, :x_cat_m1, :x_bool_m1], target_name) end @testset "DataFrames - missing in target errors" begin df_tot = DataFrame(x_num=x_num, x_bool=x_bool, x_cat=x_cat, y=y_tot_m1) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] @test_throws AssertionError fit_evotree( config, dtrain; target_name) end @testset "Matrix - missing features" begin x_tot = allowmissing(hcat(x_num_m1)) @test_throws AssertionError fit_evotree( config; x_train=x_tot, y_train=y_tot) x_tot = Matrix{Any}(hcat(x_num_m2)) @test_throws AssertionError fit_evotree( config; x_train=x_tot, y_train=y_tot) end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
9511
@testset "Monotonic Constraints" begin using Statistics using StatsBase: sample using EvoTrees using EvoTrees: sigmoid, logit # prepare a dataset features = rand(10_000) .* 2.5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) .* 0.2 Y = sigmoid(Y) is = collect(1:size(X, 1)) seed = 123 # train-eval split i_sample = sample(is, size(is, 1), replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * size(is, 1))] i_eval = i_sample[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] ###################################### ### MSE - CPU ###################################### # benchmark params1 = EvoTreeRegressor( device="cpu", loss=:mse, nrounds=200, nbins=32, lambda=1.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25) preds_ref = EvoTrees.predict(model, x_train); # monotonic constraint params1 = EvoTreeRegressor( device="cpu", loss=:mse, nrounds=200, nbins=32, lambda=1.0, gamma=0.0, eta=0.5, max_depth=6, min_weight=0.0, monotone_constraints=Dict(1 => 1), rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25) preds_mono = EvoTrees.predict(model, x_train); # using Plots # x_perm = sortperm(x_train[:, 1]) # plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(x_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference") # plot!(x_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic") ###################################### ### MSE - GPU ###################################### # benchmark # params1 = EvoTreeRegressor( # device="gpu", # loss=:mse, # nrounds=200, nbins=32, # lambda=1.0, gamma=0.0, eta=0.05, # max_depth=6, min_weight=0.0, # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25); # preds_ref = predict(model, x_train); # # monotonic constraint # params1 = EvoTreeRegressor( # device="gpu", # loss=:mse, # nrounds=200, nbins=32, # lambda=1.0, gamma=0.0, eta=0.5, # max_depth=6, min_weight=0.0, # monotone_constraints=Dict(1 => 1), # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:mse, print_every_n=25); # preds_mono = predict(model, x_train); # using Plots # x_perm = sortperm(x_train[:, 1]) # plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(x_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference - GPU") # plot!(x_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic - GPU") ###################################### ### Logloss - CPU ###################################### # benchmark params1 = EvoTreeRegressor( device="cpu", loss=:logloss, nrounds=200, nbins=32, lambda=0.05, gamma=0.0, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:logloss, print_every_n=25) preds_ref = predict(model, x_train) # monotonic constraint params1 = EvoTreeRegressor( device="cpu", loss=:logloss, nrounds=200, nbins=32, lambda=0.05, gamma=0.0, eta=0.05, max_depth=6, min_weight=0.0, monotone_constraints=Dict(1 => 1), rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:logloss, print_every_n=25) preds_mono = predict(model, x_train) # x_perm = sortperm(x_train[:, 1]) # plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(x_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference") # plot!(x_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic") ###################################### ### LogLoss - GPU ###################################### # benchmark # params1 = EvoTreeRegressor( # device="gpu", # loss=:logloss, metric=:logloss, # nrounds=200, nbins=32, # lambda=0.05, gamma=0.0, eta=0.05, # max_depth=6, min_weight=0.0, # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25); # preds_ref = EvoTrees.predict(model, x_train); # # monotonic constraint # params1 = EvoTreeRegressor( # device="gpu", # loss=:logloss, metric=:logloss, # nrounds=200, nbins=32, # lambda=0.05, gamma=0.0, eta=0.05, # max_depth=6, min_weight=0.0, # monotone_constraints=Dict(1 => 1), # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25); # preds_mono = EvoTrees.predict(model, x_train); # using Plots # using Colors # x_perm = sortperm(X_train[:, 1]) # plot(X_train, Y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(X_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference") # plot!(X_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic") ###################################### ### Gaussian - CPU ###################################### # benchmark params1 = EvoTreeGaussian( device="cpu", metric=:gaussian, nrounds=200, nbins=32, lambda=1.0, gamma=0.0, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:gaussian_mle, print_every_n=25) preds_ref = predict(model, x_train) # monotonic constraint params1 = EvoTreeGaussian( device="cpu", metric=:gaussian, nrounds=200, nbins=32, lambda=1.0, gamma=0.0, eta=0.5, max_depth=6, min_weight=0.0, monotone_constraints=Dict(1 => 1), rowsample=0.5, colsample=1.0, rng=seed, ) model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, metric=:gaussian_mle, print_every_n=25) preds_mono = EvoTrees.predict(model, x_train) # x_perm = sortperm(x_train[:, 1]) # plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(x_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference") # plot!(x_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic") ###################################### ### Gaussian - GPU ###################################### # benchmark # params1 = EvoTreeGaussian( # device="gpu", # metric=:gaussian, # nrounds=200, nbins=32, # lambda=1.0, gamma=0.0, eta=0.05, # max_depth=6, min_weight=0.0, # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25) # preds_ref = EvoTrees.predict(model, x_train) # # monotonic constraint # params1 = EvoTreeGaussian( # device="gpu", # metric=:gaussian, # nrounds=200, nbins=32, # lambda=1.0, gamma=0.0, eta=0.5, # max_depth=6, min_weight=0.0, # monotone_constraints=Dict(1 => 1), # rowsample=0.5, colsample=1.0, rng=seed) # model = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n=25) # preds_mono = EvoTrees.predict(model, x_train) # x_perm = sortperm(x_train[:, 1]) # plot(x_train, y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="GPU Gauss") # plot!(x_train[:, 1][x_perm], preds_ref[x_perm], color="navy", linewidth=1.5, label="Reference") # plot!(x_train[:, 1][x_perm], preds_mono[x_perm], color="red", linewidth=1.5, label="Monotonic") end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3648
using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit using EvoTrees: check_args, check_parameter using Random: seed! # prepare a dataset seed!(123) nobs = 2_000 features = rand(nobs) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) .* 0.1 Y = sigmoid(Y) is = collect(1:size(X, 1)) # train-eval split i_sample = sample(is, size(is, 1), replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * size(is, 1))] i_eval = i_sample[floor(Int, train_size * size(is, 1))+1:end] x_train, x_eval = X[i_train, :], X[i_eval, :] y_train, y_eval = Y[i_train], Y[i_eval] Yc = (Y .> 0.8) .+ 1 y_train_c, y_eval_c = Yc[i_train], Yc[i_eval] @testset "oblivious regressor" begin @testset for loss in [:mse, :logloss, :quantile, :l1, :gamma, :tweedie] metric = loss == :l1 ? :mae : loss config = EvoTreeRegressor( loss=loss, tree_type="oblivious", nrounds=200, nbins=32, rng=123, ) model, cache = EvoTrees.init(config, x_train, y_train) preds_ini = model(x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( config; x_train, y_train, x_eval, y_eval, metric=metric, print_every_n=25 ) preds = model(x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end end @testset "oblivious count" begin config = EvoTreeCount( tree_type="oblivious", nrounds=200, nbins=32, rng=123, ) model, cache = EvoTrees.init(config, x_train, y_train) preds_ini = model(x_eval) mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( config; x_train, y_train, x_eval, y_eval, metric=:poisson, print_every_n=25 ) preds = model(x_eval) mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "oblivious MLE" begin @testset for loss in [:gaussian_mle, :logistic_mle] config = EvoTreeMLE( loss=loss, tree_type="oblivious", nrounds=200, nbins=32, rng=123, ) model, cache = EvoTrees.init(config, x_train, y_train) preds_ini = model(x_eval)[:, 1] mse_error_ini = mean(abs.(preds_ini .- y_eval) .^ 2) model = fit_evotree( config; x_train, y_train, x_eval, y_eval, metric=loss, print_every_n=25 ) preds = model(x_eval)[:, 1] mse_error = mean(abs.(preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct .< 0.75 end end @testset "oblivious classifier" begin config = EvoTreeClassifier( tree_type="oblivious", nrounds=200, nbins=32, rng=123, ) model, cache = EvoTrees.init(config, x_train, y_train_c) preds_ini = model(x_eval) acc_ini = mean(map(argmax, eachrow(preds_ini)) .== y_eval_c) model = fit_evotree( config; x_train, y_train=y_train_c, x_eval, y_eval=y_eval_c, metric=:mlogloss, print_every_n=25 ) preds = model(x_eval) acc = mean(map(argmax, eachrow(preds)) .== y_eval_c) @test acc > 0.9 end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
703
using Random using Plots using Revise using EvoTrees # @load "blog/model_linear.bson" model # @load "data/model_linear_8.bson" model # @load "data/model_gaussian_5.bson" model model = EvoTrees.load("data/model_linear_4.bson"); var_names = ["var_$i" for i = 1:100] plot(model) plot(model, 2) plot(model, 3, var_names) plot(model.trees[2]) plot(model.trees[2], var_names) typeof(tree_layout[1]) BezierCurve(tree_layout[1]) mutable struct BCurve{T<:GeometryBasics.Point} control_points::Vector{T} end function (bc::BCurve)(t::Real) p = zero(P2) n = length(bc.control_points) - 1 for i = 0:n p += bc.control_points[i+1] * binomial(n, i) * (1 - t)^(n - i) * t^i end p end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
402
using Statistics using EvoTrees using EvoTrees: predict using CategoricalArrays using Tables using Random using Test @testset "EvoTrees" begin @testset "Internal API" begin include("core.jl") include("oblivious.jl") include("tables.jl") include("monotonic.jl") include("missings.jl") end @testset "MLJ" begin include("MLJ.jl") end end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
1983
using Statistics using StatsBase: sample, quantile using Distributions using Random using EvoTrees using EvoTrees: sigmoid, logit using Serialization # prepare a dataset Random.seed!(12) features = rand(10_000) .* 5 X = reshape(features, (size(features)[1], 1)) Y = sin.(features) .* 0.5 .+ 0.5 Y = logit(Y) + randn(size(Y)) Y = sigmoid(Y) 𝑖 = collect(1:size(X, 1)) # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace = false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] # linear params1 = EvoTreeRegressor( T = Float64, loss = :linear, metric = :mse, nrounds = 200, nbins = 64, lambda = 0.1, gamma = 0.1, eta = 0.05, max_depth = 6, min_weight = 1.0, rowsample = 0.5, colsample = 1.0, rng = 123, ) m = fit_evotree(params1; x_train, y_train, x_eval, y_eval, print_every_n = 25); p = m(x_eval) # serialize(joinpath(@__DIR__, "..", "data", "save-load-test-m-v182.dat"), m); # serialize(joinpath(@__DIR__, "..", "data", "save-load-test-p-v182.dat"), p); # m_172 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-m-v172.dat")); # p_172 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-p-v172.dat")); # pm_172 = m_172(x_eval) # m_180 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-m-v180.dat")); # p_180 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-p-v180.dat")); # pm_180 = m_180(x_eval) # m_182 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-m-v182.dat")); # p_182 = deserialize(joinpath(@__DIR__, "..", "data", "save-load-test-p-v182.dat")); # pm_182 = m_182(x_eval) # @assert all(p .== p_172) # @assert all(p .== pm_172) # @assert all(p .== p_180) # @assert all(p .== pm_180) # @assert all(p .== p_182) # @assert all(p .== pm_182) # @info "test successful! 🚀"
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
4493
using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit using EvoTrees: check_args, check_parameter using CategoricalArrays using DataFrames using Random: seed! # prepare a dataset seed!(123) nobs = 1_000 x_num = rand(nobs) .* 5 lvls = ["a", "b", "c"] x_cat = categorical(rand(lvls, nobs), levels=lvls, ordered=false) x_bool = rand(Bool, nobs) # train-eval split is = collect(1:nobs) i_sample = sample(is, nobs, replace=false) train_size = 0.8 i_train = i_sample[1:floor(Int, train_size * nobs)] i_eval = i_sample[floor(Int, train_size * nobs)+1:end] # target var y_tot = sin.(x_num) .* 0.5 .+ 0.5 y_tot = logit(y_tot) + randn(nobs) y_tot = sigmoid(y_tot) target_name = "y" config = EvoTreeRegressor( loss=:linear, nrounds=100, nbins=16, lambda=0.5, gamma=0.1, eta=0.05, max_depth=6, min_weight=1.0, rowsample=0.5, colsample=1.0, rng=123, ) @testset "Tables - NTuples" begin dtrain = (x1=x_num[i_train], y=y_tot[i_train]) deval = (x1=x_num[i_eval], y=y_tot[i_eval]) y_train, y_eval = y_tot[i_train], y_tot[i_eval] m, cache = EvoTrees.init(config, dtrain; target_name="y") preds_ini = EvoTrees.predict(m, deval) mse_error_ini = mean((preds_ini .- y_eval) .^ 2) model = fit_evotree( config, dtrain; target_name) preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 model = fit_evotree( config, dtrain; target_name, deval, metric=:mse, print_every_n=25) preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "Tables - DataFrames" begin df_tot = DataFrame(x_num=x_num, y=y_tot) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] y_train, y_eval = y_tot[i_train], y_tot[i_eval] m, cache = EvoTrees.init(config, dtrain; target_name="y") preds_ini = EvoTrees.predict(m, deval) mse_error_ini = mean((preds_ini .- y_eval) .^ 2) model = fit_evotree( config, dtrain; target_name) preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 model = fit_evotree( config, dtrain; target_name, deval, metric=:mse, print_every_n=25) preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "Tables - num/bool/cat" begin y_tot = sin.(x_num) .* 0.5 .+ 0.5 y_tot = logit(y_tot) .+ randn(nobs) .+ 1.0 .* (x_cat .== "b") .- 1.0 .* (x_cat .== "c") .+ 1.0 .* x_bool y_tot = sigmoid(y_tot) y_train, y_eval = y_tot[i_train], y_tot[i_eval] df_tot = DataFrame(x_num=x_num, x_bool=x_bool, x_cat=x_cat, y=y_tot) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] m, cache = EvoTrees.init(config, dtrain; target_name) preds_ini = EvoTrees.predict(m, deval) mse_error_ini = mean((preds_ini .- y_eval) .^ 2) model = fit_evotree( config, dtrain; target_name) @test model.info[:fnames] == [:x_num, :x_bool, :x_cat] preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end @testset "Tables - bool/cat" begin y_tot = sin.(x_num) .* 0.1 .+ 0.5 y_tot = logit(y_tot) .+ randn(nobs) .+ 2.0 .* (x_cat .== "b") .- 3.0 .* (x_cat .== "c") .+ 3.0 .* x_bool y_tot = sigmoid(y_tot) y_train, y_eval = y_tot[i_train], y_tot[i_eval] df_tot = DataFrame(x_num=x_num, x_bool=x_bool, x_cat=x_cat, y=y_tot) dtrain, deval = df_tot[i_train, :], df_tot[i_eval, :] fnames = [:x_bool, :x_cat] m, cache = EvoTrees.init(config, dtrain; target_name, fnames) preds_ini = EvoTrees.predict(m, deval) mse_error_ini = mean((preds_ini .- y_eval) .^ 2) model = fit_evotree( config, dtrain; target_name, fnames) @test model.info[:fnames] == fnames preds = EvoTrees.predict(model, deval) mse_error = mean((preds .- y_eval) .^ 2) mse_gain_pct = mse_error / mse_error_ini - 1 @test mse_gain_pct < -0.75 end
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git
[ "Apache-2.0" ]
0.16.7
92d1f78f95f4794bf29bd972dacfa37ea1fec9f4
code
3119
using Statistics using StatsBase: sample using EvoTrees: sigmoid, logit # prepare a dataset features = rand(10_000) .* 2 X = reshape(features, (size(features)[1], 1)) noise = exp.(randn(length(X))) Y = 2 .+ 3 .* X .+ noise W = noise 𝑖 = collect(1:size(X, 1)) seed = 123 # train-eval split 𝑖_sample = sample(𝑖, size(𝑖, 1), replace=false) train_size = 0.8 𝑖_train = 𝑖_sample[1:floor(Int, train_size * size(𝑖, 1))] 𝑖_eval = 𝑖_sample[floor(Int, train_size * size(𝑖, 1))+1:end] x_train, x_eval = X[𝑖_train, :], X[𝑖_eval, :] y_train, y_eval = Y[𝑖_train], Y[𝑖_eval] w_train = W[𝑖_train] w_eval = W[𝑖_eval] # linear - no weights params1 = EvoTreeRegressor(T=Float32, device="gpu", loss=:linear, metric=:mse, nrounds=100, nbins=100, lambda=0.0, gamma=0.1, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed) model, cache = EvoTrees.init_evotree(params1, X_train, Y_train) model = fit_evotree(params1, x_train, y_train, x_eval, y_eval, print_every_n=25); preds_no_weight = predict(model, X_train) # linear - weighted params1 = EvoTreeRegressor(T=Float32, device="gpu", loss=:linear, metric=:mse, nrounds=100, nbins=100, lambda=0.0, gamma=0.1, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed) model, cache = EvoTrees.init_evotree(params1, X_train, Y_train, W_train) model = fit_evotree(params1; x_train, y_train, w_train, x_eval, y_eval, print_every_n=25); preds_weighted_1 = predict(model, X_train) params1 = EvoTreeRegressor(T=Float32, device="gpu", loss=:linear, metric=:mse, nrounds=100, nbins=100, lambda=0.0, gamma=0.1, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed) model, cache = EvoTrees.init_evotree(params1, X_train, Y_train, W_train) model = fit_evotree(params1, x_train, y_train, w_train, x_eval, y_eval, w_eval, print_every_n=25); preds_weighted_2 = predict(model, X_train) params1 = EvoTreeRegressor(T=Float32, device="gpu", loss=:linear, metric=:mse, nrounds=100, nbins=100, lambda=0.0, gamma=0.1, eta=0.05, max_depth=6, min_weight=0.0, rowsample=0.5, colsample=1.0, rng=seed) w_train_3 = ones(eltype(Y_train), size(Y_train)) .* 5 model, cache = EvoTrees.init_evotree(params1, X_train, Y_train, W_train_3) model = fit_evotree(params1, x_train, y_train, w_train=w_train_3, x_eval, y_eval, print_every_n=25); preds_weighted_3 = predict(model, x_train) sum(abs.(preds_no_weight .- preds_weighted_3)) cor(preds_no_weight, preds_weighted_3) ϵ = vec(abs.(preds_no_weight .- preds_weighted_3)) minimum(ϵ) maximum(ϵ) mean(ϵ) minimum(preds_no_weight) maximum(preds_no_weight) mean(preds_no_weight) # using Plots # # using Colors # x_perm = sortperm(X_train[:,1]) # plot(X_train, Y_train, msize=1, mcolor="gray", mswidth=0, background_color=RGB(1, 1, 1), seriestype=:scatter, xaxis=("feature"), yaxis=("target"), legend=true, label="") # plot!(X_train[:,1][x_perm], preds_no_weight[x_perm], color="navy", linewidth=1.5, label="No weights") # plot!(X_train[:,1][x_perm], preds_weighted[x_perm], color="red", linewidth=1.5, label="Weighted")
EvoTrees
https://github.com/Evovest/EvoTrees.jl.git