licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2147 | #=
Modia library with 1D heat transfer component models (inspired from Modelica Standard Library).
Developer: Martin Otter, DLR-SR
Copyright 2021, DLR Institute of System Dynamics and Control
License: MIT (expat)
=#
using ModiaLang
HeatPort = Model( T = potential, # Absolute temperature
Q_flow = flow ) # Heat flow into the component
FixedTemperature = Model(
T = 293.15u"K",
port = HeatPort,
equations = :[port.T = T]
)
FixedHeatFlow = Model(
Q_flow = 0.0u"W", # Fixed heat flow into the connected component
port = HeatPort,
equations = :[port.Q_flow = -Q_flow]
)
HeatCapacitor = Model(
C = 1.0u"J/K",
port = HeatPort,
T = Var(init = 293.15u"K"),
equations = :[T = port.T,
der(T) = port.Q_flow/C]
)
ThermalConductor = Model(
G = 1.0u"W/K",
port_a = HeatPort,
port_b = HeatPort,
equations = :[dT = port_a.T - port_b.T
0 = port_a.Q_flow + port_b.Q_flow
port_a.Q_flow = G*dT]
)
# Fully insulated rod with 1D heat transfer and port_a/port_b on left/right side
T_grad1(T,Ta,dx,i) = i == 1 ? (Ta - T[1])/(dx/2) : (T[i-1] - T[i] )/dx
T_grad2(T,Tb,dx,i) = i == length(T) ? (T[i] - Tb)/(dx/2) : (T[i] - T[i+1])/dx
InsulatedRod = Model(
L = 1.0u"m", # Length of rod
A = 0.0004u"m^2", # Rod area
rho = 7500.0u"kg/m^3", # Density of rod material
lambda = 74.0u"W/(m*K)", # Thermal conductivity of rod material
c = 450.0u"J/(kg*K)", # Specific heat capacity of rod material
port_a = HeatPort, # Heat port on left side
port_b = HeatPort, # Heat port on right side
T = Var(init = fill(293.15u"K", 1)), # Temperatures at the internal nodes
equations = :[
n = length(T)
dx = L/n
Ce = c*rho*A*dx
k = lambda*A/Ce
der(T) = k*[T_grad1(T,port_a.T,dx,i) - T_grad2(T,port_b.T,dx,i) for i in eachindex(T)]
port_a.Q_flow = lambda*A*(port_a.T - T[1])/(dx/2)
port_b.Q_flow = lambda*A*(port_b.T - T[n])/(dx/2)
]
)
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 5367 | """
Modia module with rotational component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB, Martin Otter, DLR
* Copyright (c) 2016-2021: Hilding Elmqvist, Martin Otter
* License: MIT (expat)
"""
#module Rotational
#export Flange, Inertia, Spring, SpringDamper, EMF, IdealGear, Torque, CurrentSensor, Fixed, Damper, IdealGear_withSupport, SpeedSensor
using ModiaLang
# Connector for 1D rotational systems
Flange = Model(
phi = potential,
tau = flow
)
# Flange fixed in housing at a given angle
#=
Fixed = Model(
flange = Flange,
phi0 = 0.0u"rad",
equations = :[
flange.phi = 0.0u"rad"]
)
=#
Fixed = Model(
flange = Flange,
equations = :[
flange.phi = 0.0]
)
# 1D-rotational component with inertia
Inertia = Model(
flange_a = Flange, # (info = "Left flange of shaft")
flange_b = Flange, # (info = "Right flange of shaft")
J = 1.0u"kg*m^2", # (0, min=0, info = "Moment of inertia") #, T = u"kg*m^2")
phi = Var(init=0.0u"rad"),
w = Var(init=0.0u"rad/s"),
equations = :[
phi = flange_a.phi
phi = flange_b.phi
w = der(phi)
a = der(w)
J * a = flange_a.tau + flange_b.tau ]
)
# Partial model for the compliant connection of two rotational 1-dim. shaft flanges
PartialCompliant = Model(
flange_a = Flange,
flange_b = Flange,
equations = :[
phi_rel = flange_b.phi - flange_a.phi
flange_b.tau = tau
flange_a.tau = -tau ]
)
# Linear 1D rotational spring
Spring = PartialCompliant | Model(
c = 1.0u"N*m/rad", # (min = 0, info = "Spring constant")
phi_rel0 = 0u"rad", # (info = "Unstretched spring angle")
equations = :[
tau = c * (phi_rel - phi_rel0) ]
)
# Linear 1D rotational spring with damper
SpringDamper = PartialCompliant | Model(
c = 1.0*u"N*m/rad", # (min = 0, info = "Spring constant")
d = 0.0u"N*m*s/rad", # (info = "Damping constant")
phi_rel0 = 0u"rad", # (info = "Unstretched spring angle")
equations = :[
tau = c * (phi_rel - phi_rel0) + d * der(phi_rel) ]
)
# Electromotoric force (electric/mechanic) transformer
EMF = Model(
k = 1.0u"N*m/A", # (info = "Transformation coefficient")
p = Pin,
n = Pin,
flange = Flange,
equations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i
phi = flange.phi
w = der(phi)
k * w = v
flange.tau = -k * i ]
)
# Ideal gear
IdealGear = Model(
flange_a = Flange, # "Left flange of shaft"
flange_b = Flange, # "Right flange of shaft"
ratio = 1.0, # "Transmission ratio (flange_a.phi/flange_b.phi)"
equations = :[
phi_a = flange_a.phi
phi_b = flange_b.phi
phi_a = ratio * phi_b
0 = ratio * flange_a.tau + flange_b.tau ]
)
# Ideal gear with support
IdealGear_withSupport = Model(
flange_a = Flange, # "Left flange of shaft"
flange_b = Flange, # "Right flange of shaft"
support = Flange, # "Support flange"
ratio = 1.0, # "Transmission ratio"
equations = :[
phi_a = flange_a.phi - support.phi
phi_b = flange_b.phi - support.phi
phi_a = ratio * phi_b
0 = ratio * flange_a.tau + flange_b.tau
0 = flange_a.tau + flange_b.tau + support.tau ]
)
# Partial input signal acting as external torque on a flange
PartialTorque = Model(
tau = input,
flange = Flange
)
# Input signal acting as external torque on a flange
Torque = PartialTorque | Model(equations = :[flange.tau = -tau])
UnitlessTorque = PartialTorque | Model(equations = :[flange.tau = -tau*u"N*m"])
#=
# Partial model for the compliant connection of two rotational 1-dim. shaft flanges where the relative angle and speed are used as preferred states
PartialCompliantWithRelativeStates = Model(
flange_a = Flange,
flange_b = Flange,
init = Map(phi_rel=0.0u"rad", w_rel=0.0u"rad/s"),
equations = :[
phi_rel = flange_b.phi - flange_a.phi
w_rel = der(phi_rel)
a_rel = der(w_rel)
flange_b.tau = tau
flange_a.tau = -tau ]
)
# Linear 1D rotational damper
Damper = PartialCompliantWithRelativeStates | Model(
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
equations = :[
tau = d * w_rel ]
)
=#
# Linear 1D rotational damper
Damper = Model(
flange_a = Flange,
flange_b = Flange,
phi_rel = Var(start=0.0u"rad"),
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
equations = :[
phi_rel = flange_b.phi - flange_a.phi
w_rel = der(phi_rel)
flange_b.tau = tau
flange_a.tau = -tau
tau = d * w_rel ]
)
# Partial model to measure a single absolute flange variable
PartialAbsoluteSensor = Model(
flange = Flange,
equations = :[flange.tau = 0]
)
# Ideal sensor to measure the absolute flange angular velocity
AngleSensor = PartialAbsoluteSensor | Model(phi = output, equations = :[phi = flange.phi])
UnitlessAngleSensor = PartialAbsoluteSensor | Model(phi = output, equations = :[phi = flange.phi*u"1/rad"])
SpeedSensor = PartialAbsoluteSensor | Model(w = output, equations = :[w = der(flange.phi)])
UnitlessSpeedSensor = PartialAbsoluteSensor | Model(w = output, equations = :[w = der(flange.phi)*u"s/rad"])
#end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2493 | """
Modia module with translational component models (inspired from Modelica Standard Library).
* Developer: Hilding Elmqvist, Mogram AB, Martin Otter, DLR
* Copyright (c) 2021: Hilding Elmqvist, Martin Otter
* License: MIT (expat)
"""
#module Rotational
#export Flange, Inertia, Spring, SpringDamper, EMF, IdealGear, Torque, CurrentSensor, Fixed, Damper, IdealGear_withSupport, SpeedSensor
using ModiaLang
# Connector for 1D translational systems
TranslationalFlange = Model(
s = potential, # Absolute position of flange
f = flow # Cut force directed into the flange
)
# Flange fixed in housing at a given position
FixedPosition = Model(
flange = TranslationalFlange,
equations = :[
flange.s = 0.0]
)
# Rigid connection of two translational 1D flanges
PartialRigid = Model(
flange_a = TranslationalFlange,
flange_b = TranslationalFlange,
L = 0.0u"m", # Length of component, from left flange to right flange
equations = :[
flange_a.s = s - L/2
flange_b.s = s + L/2]
)
# 1D-translational mass
TranslationalMass = PartialRigid | Model(
flange_a = TranslationalFlange, # (info = "Left flange of mass")
flange_b = TranslationalFlange, # (info = "Right flange of mass")
m = 1.0u"kg", # Mass of sliding mass
s = Var(init = 0.0u"m"), # Absolute position of center of component
v = Var(init = 0.0u"m/s"),
equations = :[
v = der(s)
m*der(v) = flange_a.f + flange_b.f]
)
# Partial input signal acting as external force on a flange
PartialForce = Model(
f = input,
flange = TranslationalFlange
)
# Input signal acting as external torque on a flange
Force = PartialForce | Model(equations = :[flange.f = -f])
UnitlessForce = PartialForce | Model(equations = :[flange.f = -f*u"N"])
# Partial model to measure a single absolute flange variable
PartialAbsoluteSensor = Model(
flange = TranslationalFlange,
equations = :[flange.f = 0]
)
# Ideal sensor to measure the absolute flange position and velocity
VelocitySensor = PartialAbsoluteSensor | Model(v = output, equations = :[v = der(flange.s)])
UnitlessVelocitySensor = PartialAbsoluteSensor | Model(v = output, equations = :[v = der(flange.s)*u"m/s"])
PositionSensor = PartialAbsoluteSensor | Model(s = output, equations = :[s = flange.s])
UnitlessPositionSensor = PartialAbsoluteSensor | Model(s = output, equations = :[s = flange.s*u"m"])
#end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 62776 | # License for this file: MIT (expat)
# Copyright 2020-2021, DLR Institute of System Dynamics and Control
using OrderedCollections: OrderedDict, OrderedSet
using DataFrames
#=
fieldnames(typeof(integrator)) = (:sol, :u, :du, :k, :t, :dt, :f, :p, :uprev, :uprev2, :duprev, :tprev, :alg,
:dtcache, :dtchangeable, :dtpropose, :tdir, :eigen_est, :EEst, :qold, :q11,
:erracc, :dtacc, :success_iter, :iter, :saveiter, :saveiter_dense, :cache,
:callback_cache, :kshortsize, :force_stepfail, :last_stepfail, :just_hit_tstop,
:do_error_check, :event_last_time, :vector_event_last_time, :last_event_error,
:accept_step, :isout, :reeval_fsal, :u_modified, :reinitialize, :isdae, :opts,
:destats, :initializealg, :fsalfirst, :fsallast)
=#
"""
baseType(T)
Return the base type of a type T.
# Examples
```
baseType(Float32) # Float32
baseType(Measurement{Float64}) # Float64
```
"""
baseType(::Type{T}) where {T} = T
baseType(::Type{Measurements.Measurement{T}}) where {T<:AbstractFloat} = T
baseType(::Type{MonteCarloMeasurements.Particles{T,N}}) where {T<:AbstractFloat,N} = T
baseType(::Type{MonteCarloMeasurements.StaticParticles{T,N}}) where {T<:AbstractFloat,N} = T
Base.floatmax(::Type{MonteCarloMeasurements.Particles{T,N}}) where {T<:AbstractFloat,N} = Base.floatmax(T)
Base.floatmax(::Type{MonteCarloMeasurements.StaticParticles{T,N}}) where {T<:AbstractFloat,N} = Base.floatmax(T)
"""
str = measurementToString(v)
Return variable `v::Measurements.Measurement{FloatType}` or a vector of such variables
in form of a string will the full number of significant digits.
"""
measurementToString(v::Measurements.Measurement{FloatType}) where {FloatType} =
string(Measurements.value(v)) * " ± " * string(Measurements.uncertainty(v))
function measurementToString(v::Vector{Measurements.Measurement{FloatType}}) where {FloatType}
str = string(typeof(v[1])) * "["
for (i,vi) in enumerate(v)
if i > 1
str = str * ", "
end
str = str * measurementToString(vi)
end
str = str * "]"
return str
end
#= No longer needed
function get_x_start!(FloatType, equationInfo, parameters)
x_start = []
startIndex = 1
for xe_info in equationInfo.x_info
xe_info.startIndex = startIndex
# Determine init/start value in m.parameters
xe_value = get_value(parameters, xe_info.x_name)
if ismissing(xe_value)
error("Missing start/init value ", xe_info.x_name)
end
if hasParticles(xe_value)
len = 1
push!(x_start, xe_value)
else
len = length(xe_value)
push!(x_start, xe_value...)
end
if len != xe_info.length
printstyled("Model error: ", bold=true, color=:red)
printstyled("Length of ", xe_info.x_name, " shall be changed from ",
xe_info.length, " to $len\n",
"This is currently not support in ModiaLang.", bold=true, color=:red)
return false
end
startIndex += xe_info.length
end
equationInfo.nx = startIndex - 1
# Temporarily remove units from x_start
# (TODO: should first transform to the var_unit units and then remove)
converted_x_start = convert(Vector{FloatType}, [stripUnit(v) for v in x_start]) # stripUnit.(x_start) does not work for MonteCarloMeasurements
x_start2 = deepcopy(converted_x_start)
return x_start2
end
=#
const BasicSimulationKeywordArguments = OrderedSet{Symbol}(
[:merge, :tolerance, :startTime, :stopTime, :interval, :interp_points, :dtmax, :adaptive, :nlinearMinForDAE,
:log, :logStates, :logEvents, :logProgress, :logTiming, :logParameters, :logEvaluatedParameters,
:requiredFinalStates, :requiredFinalStates_rtol, :requiredFinalStates_atol, :useRecursiveFactorizationUptoSize])
const RegisteredExtraSimulateKeywordArguments = OrderedSet{Symbol}()
function registerExtraSimulateKeywordArguments(keys)::Nothing
for key in keys
if key in BasicSimulationKeywordArguments
@error "registerExtraSimulateKeywordArguments:\nKeyword $key is ignored, since standard keyword of simulate!(..) (use another keyword)\n\n"
end
push!(RegisteredExtraSimulateKeywordArguments, key)
end
return nothing
end
"""
convertTimeVariable(TimeType, t)
If `t` has a unit, it is transformed to u"s", the unit is stripped off,
converted to `TimeType` and returned. Otherwise `t` is converted to `TimeType` and returned.
# Example
```julia
convertTimeVariable(Float32, 2.0u"hr") # = 7200.0f0
```
"""
convertTimeVariable(TimeType, t) = typeof(t) <: Unitful.AbstractQuantity ? convert(TimeType, stripUnit(t)) : convert(TimeType, t)
struct SimulationOptions{FloatType,TimeType}
merge::OrderedDict{Symbol,Any}
tolerance::Float64
startTime::TimeType # u"s"
stopTime::TimeType # u"s"
interval::TimeType # u"s"
desiredResultTimeUnit
interp_points::Int
dtmax::Float64
adaptive::Bool
nlinearMinForDAE::Int
log::Bool
logStates::Bool
logEvents::Bool
logProgress::Bool
logTiming::Bool
logParameters::Bool
logEvaluatedParameters::Bool
requiredFinalStates::Union{Missing, Vector{FloatType}}
requiredFinalStates_rtol::Float64
requiredFinalStates_atol::Float64
useRecursiveFactorizationUptoSize::Int
extra_kwargs::OrderedDict{Symbol,Any}
function SimulationOptions{FloatType,TimeType}(merge, errorMessagePrefix=""; _dummy=false, kwargs...) where {FloatType,TimeType}
success = true
adaptive = get(kwargs, :adaptive, true)
tolerance = _dummy ? Inf : get(kwargs, :tolerance, 1e-6)
if tolerance <= 0.0
printstyled(errorMessagePrefix, "tolerance (= $(tolerance)) must be > 0\n\n", bold=true, color=:red)
success = false
elseif tolerance < 100*eps(FloatType) && adaptive
newTolerance = max(tolerance, 100*eps(FloatType))
printstyled("Warning from ModiaLang.simulate!(..):\n"*
"tolerance (= $(tolerance)) is too small for FloatType = $FloatType (eps(FloatType) = $(eps(FloatType))).\n" *
"tolerance changed to $newTolerance.\n\n", bold=true, color=:red)
tolerance = newTolerance
end
startTime = convertTimeVariable(TimeType, get(kwargs, :startTime, 0.0) )
rawStopTime = get(kwargs, :stopTime, startTime)
stopTime = convertTimeVariable(TimeType, rawStopTime)
interval = convertTimeVariable(TimeType, get(kwargs, :interval , (stopTime - startTime)/500.0) )
dtmax = convert(Float64, get(kwargs, :dtmax, 100*getValue(interval)))
desiredResultTimeUnit = unit(rawStopTime)
interp_points = get(kwargs, :interp_points, 0)
if interp_points < 0
printstyled(errorMessagePrefix, "interp_points (= $(interp_points)) must be > 0\n\n", bold=true, color=:red)
success = false
elseif interp_points == 1
# DifferentialEquations.jl crashes
interp_points = 2
end
nlinearMinForDAE = max(1, get(kwargs, :nlinearMinForDAE, 10)) # >= 10
adaptive = get(kwargs, :adaptive , true)
log = get(kwargs, :log , false)
logStates = get(kwargs, :logStates , false)
logEvents = get(kwargs, :logEvents , false)
logProgress = get(kwargs, :logProgress , false)
logTiming = get(kwargs, :logTiming , false)
logParameters = get(kwargs, :logParameters, false)
logEvaluatedParameters = get(kwargs, :logEvaluatedParameters , false)
requiredFinalStates = get(kwargs, :requiredFinalStates , missing)
if isnothing(requiredFinalStates)
requiredFinalStates = missing
end
requiredFinalStates_rtol = get(kwargs, :requiredFinalStates_rtol, 1e-3)
requiredFinalStates_atol = get(kwargs, :requiredFinalStates_atol, 0.0)
useRecursiveFactorizationUptoSize = get(kwargs, :useRecursiveFactorizationUptoSize, 0)
extra_kwargs = OrderedDict{Symbol,Any}()
for option in kwargs
key = option.first
if key in BasicSimulationKeywordArguments
nothing;
elseif key in RegisteredExtraSimulateKeywordArguments
extra_kwargs[key] = option.second
else
printstyled(errorMessagePrefix, "simulate!(..., $key=$(option.second)): $key is unknown.\n\n", bold=true, color=:red)
success = false
end
end
# obj = new(isnothing(merge) ? NamedTuple() : merge, tolerance, startTime, stopTime, interval, desiredResultTimeUnit, interp_points,
obj = new(ismissing(merge) || isnothing(merge) ? OrderedDict{Symbol,Any}() : merge, tolerance, startTime, stopTime, interval, desiredResultTimeUnit, interp_points,
dtmax, adaptive, nlinearMinForDAE, log, logStates, logEvents, logProgress, logTiming, logParameters, logEvaluatedParameters,
requiredFinalStates, requiredFinalStates_rtol, requiredFinalStates_atol, useRecursiveFactorizationUptoSize, extra_kwargs)
return success ? obj : nothing
end
SimulationOptions{FloatType,TimeType}() where {FloatType,TimeType} =
SimulationOptions{FloatType,TimeType}(OrderedDict{Symbol,Any}(); _dummy=true)
end
"""
@enum ResultStore RESULT_VARS RESULT_X RESULT_DER_X RESULT_ZERO
SimulationModel field name where result is stored:
- RESULT_VARS : stored in `result_vars`
- RESULT_X : stored in `result_x` (return argument of DifferentialEquations.solve(...))
- RESULT_DER_X: stored in `result_der_x`
- RESULT_ZERO : value is zero
"""
@enum ResultStore RESULT_VARS RESULT_X RESULT_DER_X RESULT_ZERO
struct ResultInfo
store::ResultStore # Location where variable is stored
index::Int # Index, depending on store-type
# store = RESULT_VARS : result_vars[ti][index]
# = RESULT_X : result_x[ti][ibeg:iend]
# ibeg = equationInfo.x_info[index].startIndex
# iend = ibeg + equationInfo.x_info[index].length-1
# = RESULT_DER_X: result_der_x[ti][ibeg:iend]
# ibeg = equationInfo.x_info[index].startIndex
# iend = ibeg + equationInfo.x_info[index].length-1
# = RESULT_ZERO : not stored (value is zero; index = 0)
negate::Bool # = true, if result must be negated
ResultInfo(store, index=0, negate=false) = new(store, index, negate)
end
struct LinearEquationsCopyInfoForDAEMode
ileq::Int # Index of LinearEquations()
index::Vector{Int} # Copy: leq.x[i] = dae_der_x[index[i]]
# dae_residuals[index[i]] = leq.residuals[i]
LinearEquationsCopyInfoForDAEMode(ileq) = new(ileq, Int[])
end
"""
simulationModel = SimulationModel{FloatType,TimeType}(
modelModule, modelName, getDerivatives!, equationInfo, x_startValues,
parameters, variableNames;
vSolvedWithInitValuesAndUnit::OrderedDict{String,Any}(),
vEliminated::Vector{Int}=Int[],
vProperty::Vector{Int}=Int[],
var_name::Function = v->nothing)
# Arguments
- `modelModule`: Module in which `@instantiateModel` is invoked (it is used for `Core.eval(modelModule, ...)`),
that is evaluation of expressions in the environment of the user.
- `modelName::String`: Name of the model
- `getDerivatives::Function`: Function that is used to evaluate the model equations,
typically generated with [`ModiaLang.generate_getDerivatives!`].
- `equationInfo::ModiaBase.EquationInfo`: Information about the states and the equations.
- `x_startValues`:: Deprecated (is no longer used).
- `parameters`: A hierarchical NamedTuple of (key, value) pairs defining the parameter and init/start values.
- variableNames: A vector of variable names. A name can be a Symbol or a String.
"""
mutable struct SimulationModel{FloatType,TimeType}
modelModule::Module
modelName::String
buildDict::OrderedDict{String,Any}
timer::TimerOutputs.TimerOutput
cpuFirst::UInt64 # cpu time of start of simulation
cpuLast::UInt64 # Last time from time_ns()
options::SimulationOptions{FloatType,TimeType}
getDerivatives!::Function
equationInfo::ModiaBase.EquationInfo
linearEquations::Vector{ModiaBase.LinearEquations{FloatType}}
eventHandler::EventHandler{FloatType,TimeType}
vSolvedWithInitValuesAndUnit::OrderedDict{String,Any} # Dictionary of (names, init values with units) for all explicitly solved variables with init-values defined
parameters::OrderedDict{Symbol,Any}
evaluatedParameters::OrderedDict{Symbol,Any}
previous::AbstractVector # previous[i] is the value of previous(...., i)
nextPrevious::AbstractVector # nextPrevious[i] is the current value of the variable identified by previous(...., i)
previous_names::Vector{String} # previous_names[i] is the name of previous-variable i
previous_dict::OrderedDict{String,Int} # previous_dict[name] is the index of previous-variable name
pre::AbstractVector
nextPre::AbstractVector
pre_names::Vector{String}
pre_dict::OrderedDict{String,Int}
hold::AbstractVector
nextHold::AbstractVector
hold_names::Vector{String}
hold_dict::OrderedDict{String,Int}
isInitial::Bool
solve_leq::Bool # = true, if linear equations 0 = A*x-b shall be solved
# = false, if leq.x is provided by DAE solver and leq.residuals is used by the DAE solver.
odeMode::Bool # = false: copy der(x) into linear equation systems that have leq.odeMode=false and do not solve these equation systems
storeResult::Bool
time::TimeType
nGetDerivatives::Int # Number of getDerivatives! calls
nf::Int # Number of getDerivatives! calls from integrator (without zero-crossing calls)
x_vec::Vector{Vector{FloatType}} # x_vec[i] holds the actual values of state vector element equationInfo.x_info[equationInfo.nxFixedLength+i]
x_start::Vector{FloatType} # States x before first event iteration (before initialization)
x_init::Vector{FloatType} # States x after initialization (and before integrator is started)
der_x::Vector{FloatType} # Derivatives of states x or x_init
odeIntegrator::Bool # = true , if ODE integrator used
# = false, if DAE integrator used
daeCopyInfo::Vector{LinearEquationsCopyInfoForDAEMode} # Info to efficiently copy between DAE and linear equation systems
algorithmName::Union{String,Missing} # Name of integration algorithm as string (used in default-heading of plot)
addEventPointsDueToDEBug::Bool # = true, if event points are explicitly stored for Sundials integrators, due to bug in DifferentialEquations
# (https://github.com/SciML/Sundials.jl/issues/309)
result_info::OrderedDict{String,ResultInfo} # key : Full path name of result variables
# value: Storage location and index into the storage.
result_vars::AbstractVector # result_vars[ti][j] is result of variable with index j at time instant ti
result_x::Union{Any,Missing} # Return value of DifferentialEquations.solve(..) (is a struct)
result_der_x::Vector{Vector{FloatType}} # result_der_x[ti][j] is der_x[j] at time instant ti
success::Bool # = true, if after first outputs!(..) call and no error was triggered
# = false, either before first outputs!(..) call or at first outputs!(..) after init!(..) and
# an error was triggered and simulate!(..) should be returned with nothing.
unitless::Bool # = true, if simulation is performed without units.
function SimulationModel{FloatType,TimeType}(modelModule, modelName, buildDict, getDerivatives!, equationInfo, x_startValues,
previousVars, preVars, holdVars,
parameterDefinition, variableNames;
unitless=true,
nz::Int = 0,
nAfter::Int = 0,
vSolvedWithInitValuesAndUnit::AbstractDict = OrderedDict{String,Any}(),
vEliminated::Vector{Int} = Int[],
vProperty::Vector{Int} = Int[],
var_name::Function = v -> nothing) where {FloatType,TimeType}
# Construct result dictionary
result_info = OrderedDict{String, ResultInfo}()
vSolvedWithInitValuesAndUnit2 = OrderedDict{String,Any}( [(string(key),vSolvedWithInitValuesAndUnit[key]) for key in keys(vSolvedWithInitValuesAndUnit)] )
# Store x and der_x
for (xe_index, xe_info) in enumerate(equationInfo.x_info)
result_info[xe_info.x_name] = ResultInfo(RESULT_X , xe_index)
result_info[xe_info.der_x_name] = ResultInfo(RESULT_DER_X, xe_index)
end
# Store variables
for (i, name) in enumerate(variableNames)
str_name = string(name)
if !haskey(result_info, str_name)
result_info[str_name] = ResultInfo(RESULT_VARS, i)
end
end
# Store eliminated variables
for v in vEliminated
name = var_name(v)
if ModiaBase.isZero(vProperty, v)
result_info[name] = ResultInfo(RESULT_ZERO)
elseif ModiaBase.isAlias(vProperty, v)
name2 = var_name( ModiaBase.alias(vProperty, v) )
result_info[name] = result_info[name2]
else # negated alias
name2 = var_name( ModiaBase.negAlias(vProperty, v) )
info2 = result_info[name2]
result_info[name] = ResultInfo(info2.store, info2.index, true)
end
end
# Build previous-arrays
previous = Vector{Any}(missing, length(previousVars))
previous_names = string.(previousVars)
previous_dict = OrderedDict{String,Int}(zip(previous_names, 1:length(previousVars)))
# Build pre-arrays
pre = Vector{Any}(missing, length(preVars))
pre_names = string.(preVars)
pre_dict = OrderedDict{String,Int}(zip(pre_names, 1:length(preVars)))
# Build hold-arrays
hold = Vector{Any}(missing, length(holdVars))
hold_names = string.(holdVars)
hold_dict = OrderedDict{String,Int}(zip(hold_names, 1:length(holdVars)))
# Construct parameter values that are copied into the code
#parameterValues = [eval(p) for p in values(parameters)]
#@show typeof(parameterValues)
#@show parameterValues
parameters = deepcopy(parameterDefinition)
# Determine x_start and previous values
evaluatedParameters = propagateEvaluateAndInstantiate!(FloatType, unitless, modelModule, parameters, equationInfo, previous_dict, previous, pre_dict, pre, hold_dict, hold)
if isnothing(evaluatedParameters)
return nothing
end
x_start = initialStateVector(equationInfo, FloatType)
nx = length(x_start)
nextPrevious = deepcopy(previous)
nextPre = deepcopy(pre)
nextHold = deepcopy(hold)
# Provide storage for x_vec
x_vec = [zeros(FloatType, equationInfo.x_info[i].length) for i in equationInfo.nxFixedLength+1:length(equationInfo.x_info)]
# Construct data structure for linear equations
linearEquations = ModiaBase.LinearEquations{FloatType}[]
for leq in equationInfo.linearEquations
push!(linearEquations, ModiaBase.LinearEquations{FloatType}(leq...))
end
# Initialize execution flags
eventHandler = EventHandler{FloatType,TimeType}(nz=nz, nAfter=nAfter)
eventHandler.initial = true
isInitial = true
storeResult = false
solve_leq = true
nGetDerivatives = 0
nf = 0
new(modelModule, modelName, buildDict, TimerOutputs.TimerOutput(), UInt64(0), UInt64(0), SimulationOptions{FloatType,TimeType}(), getDerivatives!,
equationInfo, linearEquations, eventHandler,
vSolvedWithInitValuesAndUnit2, parameters, evaluatedParameters,
previous, nextPrevious, previous_names, previous_dict,
pre, nextPre, pre_names, pre_dict,
hold, nextHold, hold_names, hold_dict,
isInitial, solve_leq, true, storeResult, convert(TimeType, 0), nGetDerivatives, nf,
x_vec, x_start, zeros(FloatType,nx), zeros(FloatType,nx), true, LinearEquationsCopyInfoForDAEMode[],
missing, false, result_info, Tuple[], missing, Vector{FloatType}[], false, unitless)
end
function SimulationModel{FloatType,TimeType}(m::SimulationModel) where {FloatType,TimeType}
# Construct data structure for linear equations
linearEquations = ModiaBase.LinearEquations{FloatType}[]
for leq in m.equationInfo.linearEquations
push!(linearEquations, ModiaBase.LinearEquations{FloatType}(leq...))
end
# Initialize execution flags
eventHandler = EventHandler{FloatType,TimeType}()
eventHandler.initial = true
isInitial = true
storeResult = false
solve_leq = true
nGetDerivatives = 0
nf = 0
nx = m.equationInfo.nx
new(m.modelModule, m.modelName, deepcopy(m.buildDict), TimerOutputs.TimerOutput(), UInt64(0), UInt64(0), m.options, m.getDerivatives!, m.equationInfo, linearEquations,
eventHandler,
m.vSolvedWithInitValuesAndUnit, deepcopy(m.parameters), deepcopy(m.evaluatedParameters),
deepcopy(m.previous), deepcopy(m.nextPrevious), m.previous_names, m.previous_dict,
deepcopy(m.pre), deepcopy(m.nextPre), m.pre_names, m.pre_dict,
deepcopy(m.hold), deepcopy(m.nextHold), m.hold_names, m.hold_dict,
isInitial, solve_leq, true, storeResult, convert(TimeType, 0), nGetDerivatives, nf, deepcopy(m.x_vec),
convert(Vector{FloatType}, m.x_start), zeros(FloatType,nx), zeros(FloatType,nx), true, LinearEquationsCopyInfoForDAEMode[],
missing, false, m.result_info, Tuple[], missing, Vector{FloatType}[], false, m.unitless)
end
end
# Default constructors
SimulationModel{FloatType}(args...; kwargs...) where {FloatType} = SimulationModel{FloatType,FloatType}(args...; kwargs...)
SimulationModel{Measurements.Measurement{T},}(args...; kwargs...) where {T} = SimulationModel{Measurements.Measurement{T},T}(args...; kwargs...)
SimulationModel{MonteCarloMeasurements.Particles{T,N}}(args...; kwargs...) where {T,N,} = SimulationModel{MonteCarloMeasurements.Particles{T,N},T}(args...; kwargs...)
SimulationModel{MonteCarloMeasurements.StaticParticles{T,N}}(args...; kwargs...) where {T,N} = SimulationModel{MonteCarloMeasurements.StaticParticles{T,N},T}(args...; kwargs...)
timeType(m::SimulationModel{FloatType,TimeType}) where {FloatType,TimeType} = TimeType
positive(m::SimulationModel, args...; kwargs...) = ModiaLang.positive!(m.eventHandler, args...; kwargs...)
negative(m::SimulationModel, args...; kwargs...) = ModiaLang.negative!(m.eventHandler, args...; kwargs...)
change( m::SimulationModel, args...; kwargs...) = ModiaLang.change!( m.eventHandler, args...; kwargs...)
edge( m::SimulationModel, args...; kwargs...) = ModiaLang.edge!( m.eventHandler, args...; kwargs...)
after( m::SimulationModel, args...; kwargs...) = ModiaLang.after!( m.eventHandler, args...; kwargs...)
pre( m::SimulationModel, i) = m.pre[i]
function emptyResult!(m::SimulationModel)::Nothing
empty!(m.result_vars)
empty!(m.result_der_x)
m.result_x = missing
return nothing
end
function get_xinfo(m::SimulationModel, x_index::Int)::Tuple{Int, Int, String}
xinfo = m.equationInfo.x_info[x_index]
ibeg = xinfo.startIndex
iend = ibeg + xinfo.length-1
return (ibeg, iend, xinfo.unit)
end
"""
v_zero = reinit(instantiatedModel, _x, j, v_new, _leqMode; v_threshold=0.01)
Re-initialize state j with v_new, that is set x[i] = v_new, with i = instantiatedModel.equationInfo.x_info[j].startIndex.
If v_new <= v_threshold, set x[i] to the floating point number that is closest to zero, so that x[i] > 0 and return
v_zero = true. Otherwise return v_zero = false.
An error is triggered if the function is not called during an event phase
or if leqMode >= 0 (which means that reinit is called inside the for-loop
to solve a linear equation system - this is not yet supported).
# Implementation notes
At the beginning of getDerivatives!(..), assignments of _x to appropriate variables are performed.
Therefore, setting _x[i] afterwards via reinit, has no immediate effect on this model evaluation.
With reinit, instantiatedModel.eventHandler.newEventIteration = true is set, to force a new
event iteration. At the next event iteration, the new value v_new is copied from _x and therefore
has then an effect.
"""
function reinit(m::SimulationModel, x, j, v_new, leqMode; v_threshold=0.01)
if leqMode >= 0
error("reinit(..) of model ", m.modelName, " is called when solving a linear equation system (this is not supported)")
elseif !isEvent(m)
error("reinit(..) of model ", m.modelName, " is called outside of an event phase (this is not allowed)")
end
eh = m.eventHandler
eh.restart = max(eh.restart, Restart)
eh.newEventIteration = true
i = m.equationInfo.x_info[j].startIndex
if v_new <= v_threshold
x[i] = nextfloat(convert(typeof(v_new), 0))
if eh.logEvents
println(" State ", m.equationInfo.x_info[j].x_name, " reinitialized to ", x[i], " (reinit returns true)")
end
return true
else
x[i] = v_new
if eh.logEvents
println(" State ", m.equationInfo.x_info[j].x_name, " reinitialized to ", v_new, " (reinit returns false)")
end
return false
end
end
"""
floatType = getFloatType(simulationModel::SimulationModel)
Return the floating point type with which `simulationModel` is parameterized
(for example returns: `Float64, Float32, DoubleFloat, Measurements.Measurement{Float64}`).
"""
getFloatType(m::SimulationModel{FloatType,TimeType}) where {FloatType,TimeType} = FloatType
"""
hasParticles(value)
Return true, if `value` is of type `MonteCarloMeasurements.StaticParticles` or
`MonteCarloMeasurements.Particles`.
"""
hasParticles(value) = typeof(value) <: MonteCarloMeasurements.StaticParticles ||
typeof(value) <: MonteCarloMeasurements.Particles
"""
get_value(obj, name::String)
Return the value identified by `name` from the potentially hierarchically
dictionary `obj`. If `name` is not in `obj`, the function returns `missing`.
# Examples
```julia
s1 = Map(a = 1, b = 2, c = 3)
s2 = Map(v1 = s1, v2 = (d = 4, e = 5))
s3 = Map(v3 = s2, v4 = s1)
@show get_value(s3, "v3.v1.b") # returns 2
@show get_value(s3, "v3.v2.e") # returns 5
@show get_value(s3, "v3.v1.e") # returns missing
```
"""
function get_value(obj::OrderedDict, name::String)
if length(name) == 0 || length(obj) == 0
return missing
end
j = findnext('.', name, 1)
if isnothing(j)
key = Symbol(name)
return haskey(obj,key) ? obj[key] : missing
elseif j == 1
return missing
else
key = Symbol(name[1:j-1])
if haskey(obj,key) && typeof(obj[key]) <: OrderedDict && length(name) > j
get_value(obj[key], name[j+1:end])
else
return missing
end
end
end
"""
appendName(path::String, name::Symbol)
Return `path` appended with `.` and `string(name)`.
"""
appendName(path, key) = path == "" ? string(key) : path * "." * string(key)
"""
get_names(obj)
Return `Vector{String}` containing all the names present in `obj`
# Examples
```julia
s1 = Map(a = 1, b = 2, c = 3)
s2 = Map(v1 = s1, v2 = (d = 4, e = 5))
s3 = Map(v3 = s2, v4 = s1)
@show get_names(s3)
```
"""
function get_names(obj) # ::NamedTuple)
names = String[]
get_names!(obj, names, "")
return names
end
function get_names!(obj #= ::NamedTuple =# , names::Vector{String}, path::String)::Nothing
for (key,value) in obj # zip(keys(obj), obj)
if key != :_class
name = appendName(path, key)
if typeof(value) <: OrderedDict
get_names!(value, names, name)
else
push!(names, name)
end
end
end
return nothing
end
"""
get_lastValue(model::SimulationModel, name::String; unit=true)
Return the last stored value of variable `name` from `model`.
If `unit=true` return the value with its unit, otherwise with stripped unit.
If `name` is not known or no result values yet available, an info message is printed
and the function returns `nothing`.
"""
function get_lastValue(m::SimulationModel{FloatType,TimeType}, name::String; unit::Bool=true) where {FloatType,TimeType}
if haskey(m.result_info, name)
# Time varying variable stored in m.result_xxx
resInfo = m.result_info[name]
if ismissing(m.result_x) || length(m.result_x.t) == 0
@info "get_lastValue(model,\"$name\"): No results yet available."
return nothing
end
if resInfo.store == RESULT_VARS
value = m.result_vars[end][resInfo.index]
if !unit
value = stripUnit(value)
end
elseif resInfo.store == RESULT_X
(ibeg,iend,xunit) = get_xinfo(m, resInfo.index)
if ibeg==iend
value = m.result_x[end][ibeg]
else
value = m.result_x[end][ibeg:iend]
end
if unit && !m.unitless && xunit != ""
value = value*uparse(xunit)
end
elseif resInfo.store == RESULT_DER_X
(ibeg,iend,xunit) = get_x_indices(m, resInfo.index)
if ibeg==iend
value = m.result_der_x[end][ibeg]
else
value = m.result_der_x[end][ibeg:iend]
end
if unit && !m.unitless
if xunit == ""
value = value/u"s"
else
value = value*(uparse(xunit)/u"s")
end
end
elseif resInfo.store == RESULT_ZERO
# Type, size and unit is not known (needs to be fixed)
value = convert(FloatType, 0)
else
error("Bug in get_lastValue(...), name = $name, resInfo.store = $resInfo.store.")
end
if resInfo.negate
value = -value
end
else
# Parameter stored in m.evaluatedParameters
value = get_value(m.evaluatedParameters, name)
if ismissing(value)
@info "get_lastValue: $name is not known and is ignored."
return nothing;
end
end
return value
end
"""
get_extraSimulateKeywordArgumentsDict(instantiateModel)
Return the dictionary, in which extra keyword arguments of the last
`simulate!(instantiatedModel,...)` call are stored.
"""
get_extraSimulateKeywordArgumentsDict(m::SimulationModel) = m.options.extra_kwargs
"""
terminateEventIteration!(instantiatedModel)
Return true, if event iteration shall be terminated and simulation started.
Return false, if event iteration shall be continued. Reasons for continuing are:
1. pre != nextPre
2. positive(..), negative(..), change(..), edge(..) trigger a new iteration.
3. triggerEventAfterInitial = true
Note
- isInitial:
When simulation shall be started, isInitial = true. When neither (1) nor (2) hold, isInitial = false
and isInitial remains false for the rest of the simulation.
- firstInitialOfAllSegments:
When simulation shall be started, firstInitialOfAllSegments = true. After the first iteration,
this flag is set to false. This flag can be used to initialize devices (e.g. renderer), that should be
initialized once and not several times.
- firstEventIteration:
This flag is true during the first iteration at an event.
- firstEventIterationDirectlyAfterInitial:
This flag is true during the first iteration directly at the time event after initialization
(at simulation startTime).
"""
function terminateEventIteration!(m::SimulationModel)::Bool
h = m.eventHandler
h.firstInitialOfAllSegments = false
h.firstEventIteration = false
h.firstEventIterationDirectlyAfterInitial = false
# pre-iteration
pre_iteration = false
for i = 1:length(m.pre)
if m.pre[i] != m.nextPre[i]
if m.options.logEvents
println(" ", m.pre_names[i], " changed from ", m.pre[i], " to ", m.nextPre[i])
end
m.pre[i] = m.nextPre[i]
pre_iteration = true
end
end
if pre_iteration || h.newEventIteration
h.newEventIteration = false
return false # continue event iteration
end
if h.restart == Terminate || h.restart == FullRestart
h.initial = false
return true
elseif h.triggerEventDirectlyAfterInitial
h.triggerEventDirectlyAfterInitial = false
if h.initial
h.firstEventIterationDirectlyAfterInitial = true
end
h.initial = false
return false # continue event iteration
end
h.initial = false
return true
end
function eventIteration!(m::SimulationModel, x, t_event)::Nothing
eh = m.eventHandler
# Initialize event iteration
initEventIteration!(eh, t_event)
# Perform event iteration
iter_max = 20
iter = 0
success = false
eh.event = true
while !success && iter <= iter_max
iter += 1
#Base.invokelatest(m.getDerivatives!, m.der_x, x, m, t_event)
invokelatest_getDerivatives_without_der_x!(x, m, t_event)
eh.firstInitialOfAllSegments = false
success = terminateEventIteration!(m)
if eh.firstEventIterationDirectlyAfterInitial
iter = 0 # reset iteration counter, since new event
if m.options.logEvents
println("\n Time event at time = ", eh.time, " s")
end
eh.nTimeEvents += 1
eh.nextEventTime = m.options.stopTime
end
end
eh.event = false
if !success
error("Maximum number of event iterations (= $iter_max) reached")
end
return nothing
end
"""
get_xNames(instantiatedModel)
Return the names of the elements of the x-vector in a Vector{String}.
"""
get_xNames(m::SimulationModel) = ModiaBase.get_xNames(m.equationInfo)
"""
isInitial(instantiatedModel)
Return true, if **initialization phase** of simulation.
"""
isInitial(m::SimulationModel) = m.eventHandler.initial
initial( m::SimulationModel) = m.eventHandler.initial
"""
isTerminal(instantiatedModel)
Return true, if **terminal phase** of simulation.
"""
isTerminal(m::SimulationModel) = m.eventHandler.terminal
terminal( m::SimulationModel) = m.eventHandler.terminal
"""
isEvent(instantiatedModel)
Return true, if **event phase** of simulation (including initialization).
"""
isEvent(m::SimulationModel) = m.eventHandler.event
"""
isFirstEventIteration(instantiatedModel)
Return true, if **event phase** of simulation (including initialization) and
during the first iteration of the event iteration.
"""
isFirstEventIteration(m::SimulationModel) = m.eventHandler.firstEventIteration
"""
isFirstEventIterationDirectlyAfterInitial(instantiatedModel)
Return true, if first iteration directly after initialization where initial=true
(so at the startTime of the simulation).
"""
isFirstEventIterationDirectlyAfterInitial(m::SimulationModel) = m.eventHandler.firstEventIterationDirectlyAfterInitial
"""
isAfterSimulationStart(instantiatedModel)
Return true, if **after start of simulation** (returns false during initialization).
"""
isAfterSimulationStart(m::SimulationModel) = m.eventHandler.afterSimulationStart
"""
isZeroCrossing(instantiatedModel)
Return true, if **event indicators (zero crossings) shall be computed**.
"""
isZeroCrossing(m::SimulationModel) = m.eventHandler.crossing
"""
storeResults(instantiatedModel)
Return true, if **results shall be stored**.
"""
storeResults(m::SimulationModel) = m.storeResult
isFirstInitialOfAllSegments(m::SimulationModel) = m.eventHandler.firstInitialOfAllSegments
isTerminalOfAllSegments(m::SimulationModel) = m.eventHandler.isTerminalOfAllSegments
"""
setNextEvent!(instantiatedModel, nextEventTime)
At an event instant, set the next time event to `nextEventTime`.
"""
setNextEvent!(m::SimulationModel{FloatType,TimeType}, nextEventTime) where {FloatType,TimeType} =
setNextEvent!(m.eventHandler, convert(TimeType,nextEventTime))
"""
tCurrent = getTime(instantiatedModel)
Return current simulation time.
"""
getTime(m::SimulationModel) = m.time
"""
zStartIndex = addZeroCrossings(instantiatedModel, nz)
Add nz new zero crossing functions and return the start index with respect to
instantiatedModel.eventHandler.z.
"""
function addZeroCrossings(m::SimulationModel, nz::Int)::Int
eh = m.eventHandler
zStartIndex = eh.nz + 1
eh.nz += nz
resize!(eh.z, eh.nz)
resize!(eh.zPositive, eh.nz)
return zStartIndex
end
get_xe(x, xe_info) = xe_info.length == 1 ? x[xe_info.startIndex] : x[xe_info.startIndex:xe_info.startIndex + xe_info.length-1]
#function set_xe!(x, xe_info, value)::Nothing
# if xe_info.length == 1
# x[xe_info.startIndex] = value
# else
# x[xe_info.startIndex:xe_info.startIndex + xe_info.length-1] = value
# end
# return nothing
#end
import Printf
invokelatest_getDerivatives_without_der_x!(x, m, t) = TimerOutputs.@timeit m.timer "ModiaLang getDerivatives!" begin
if m.options.logProgress && m.cpuLast != UInt64(0)
cpuNew = time_ns()
if (cpuNew - m.cpuLast) * 1e-9 > 5.0
m.cpuLast = cpuNew
Printf.@printf(" progress: integrated up to time = %.3g s (in cpu-time = %.3g s)\n", t, (cpuNew-m.cpuFirst)*1e-9)
end
end
if length(m.x_vec) > 0
# copy vector-valued x-elements from x to m.x_vec
eqInfo = m.equationInfo
x_vec = m.x_vec
j = 0
for i in eqInfo.nxFixedLength+1:length(eqInfo.x_info)
j += 1
xe = eqInfo.x_info[i]
x_vec[j] .= x[xe.startIndex:(xe.startIndex+xe.length-1)]
end
end
empty!(m.der_x)
Base.invokelatest(m.getDerivatives!, x, m, t)
@assert(length(m.der_x) == m.equationInfo.nx)
end
invokelatest_getDerivatives!(der_x, x, m, t) = begin
invokelatest_getDerivatives_without_der_x!(x, m, t)
der_x .= m.der_x
end
"""
success = init!(simulationModel)
Initialize `simulationModel::SimulationModel` at `startTime`. In particular:
- Empty result data structure.
- Merge parameter and init/start values into simulationModel.
- Construct x_start.
- Call simulationModel.getDerivatives! once with isInitial(simulationModel) = true to
compute and store all variables in the result data structure at `startTime`
and initialize simulationModel.linearEquations.
- Check whether explicitly solved variables that have init-values defined,
have the required value after initialization (-> otherwise error).
If initialization is successful return true, otherwise false.
"""
function init!(m::SimulationModel{FloatType,TimeType})::Bool where {FloatType,TimeType}
emptyResult!(m)
eh = m.eventHandler
reinitEventHandler(eh, m.options.stopTime, m.options.logEvents)
eh.firstInitialOfAllSegments = true
# Apply updates from merge Map and propagate/instantiate/evaluate the resulting evaluatedParameters
if length(m.options.merge) > 0
m.parameters = mergeModels(m.parameters, m.options.merge)
m.evaluatedParameters = propagateEvaluateAndInstantiate!(FloatType, m.unitless, m.modelModule, m.parameters, m.equationInfo, m.previous_dict, m.previous, m.pre_dict, m.pre, m.hold_dict, m.hold)
if isnothing(m.evaluatedParameters)
return false
end
# Resize linear equation systems if dimensions of vector valued tearing variables changed
resizeLinearEquations!(m, m.options.log)
# Resize state vector memory
m.x_start = updateEquationInfo!(m.equationInfo, FloatType)
nx = length(m.x_start)
resize!(m.x_init, nx)
resize!(m.der_x, nx)
eqInfo = m.equationInfo
m.x_vec = [zeros(FloatType, eqInfo.x_info[i].length) for i in eqInfo.nxFixedLength+1:length(eqInfo.x_info)]
end
# Initialize auxiliary arrays for event iteration
m.x_init .= 0
m.der_x .= 0
# Log parameters
if m.options.logParameters
parameters = m.parameters
@showModel parameters
end
if m.options.logEvaluatedParameters
evaluatedParameters = m.evaluatedParameters
@showModel evaluatedParameters
end
if m.options.logStates
# List init/start values
x_table = DataFrames.DataFrame(state=String[], init=Any[], unit=String[], nominal=Float64[])
for xe_info in m.equationInfo.x_info
xe_init = get_xe(m.x_start, xe_info)
if hasParticles(xe_init)
xe_init = string(minimum(xe_init)) * " .. " * string(maximum(xe_init))
end
push!(x_table, (xe_info.x_name, xe_init, xe_info.unit, xe_info.nominal))
end
show(stdout, x_table; allrows=true, allcols=true, rowlabel = Symbol("#"), summary=false, eltypes=false)
println("\n")
end
# Initialize model, linearEquations and compute and store all variables at the initial time
if m.options.log
println(" Initialization at time = ", m.options.startTime, " s")
end
# Perform initial event iteration
m.nGetDerivatives = 0
m.nf = 0
m.isInitial = true
eh.initial = true
# m.storeResult = true
# m.getDerivatives!(m.der_x, m.x_start, m, startTime)
# Base.invokelatest(m.getDerivatives!, m.der_x, m.x_start, m, startTime)
for i in eachindex(m.x_init)
m.x_init[i] = deepcopy(m.x_start[i])
end
eventIteration!(m, m.x_init, m.options.startTime)
m.success = false # is set to true at the first outputs! call.
eh.initial = false
m.isInitial = false
m.storeResult = false
eh.afterSimulationStart = true
return true
end
"""
success = check_vSolvedWithInitValuesAndUnit(m::SimulationModel)
Check that m.vSolvedWithInitValuesAndUnit is consistent to calculated values.
If this is not the case, print an error message and return false.
"""
function check_vSolvedWithInitValuesAndUnit(m::SimulationModel)::Bool
# Check vSolvedWithInitValuesAndUnit
if length(m.vSolvedWithInitValuesAndUnit) > 0
names = String[]
valuesBeforeInit = Any[]
valuesAfterInit = Any[]
tolerance = m.options.tolerance
for (name, valueBefore) in m.vSolvedWithInitValuesAndUnit
valueAfterInit = get_lastValue(m, name, unit=false)
valueBeforeInit = stripUnit.(valueBefore)
if !isnothing(valueAfterInit) && abs(valueBeforeInit - valueAfterInit) >= max(abs(valueBeforeInit),abs(valueAfterInit),0.01*tolerance)*tolerance
push!(names, name)
push!(valuesBeforeInit, valueBeforeInit)
push!(valuesAfterInit , valueAfterInit)
end
end
if length(names) > 0
v_table = DataFrames.DataFrame(name=names, beforeInit=valuesBeforeInit, afterInit=valuesAfterInit)
#show(stderr, v_table; allrows=true, allcols=true, summary=false, eltypes=false)
#print("\n\n")
ioTemp = IOBuffer();
show(ioTemp, v_table; allrows=true, allcols=true, rowlabel = Symbol("#"), summary=false, eltypes=false)
str = String(take!(ioTemp))
close(ioTemp)
printstyled("Model error: ", bold=true, color=:red)
printstyled("The following variables are explicitly solved for, have init-values defined\n",
"and after initialization the init-values are not respected\n",
"(remove the init-values in the model or change them to start-values):\n",
str, bold=true, color=:red)
println("\n")
return false
end
end
return true
end
"""
terminate!(m::SimulationModel, x, time)
Terminate model.
"""
function terminate!(m::SimulationModel, x, t)::Nothing
#println("... terminate! called at time = $t")
eh = m.eventHandler
eh.terminal = true
invokelatest_getDerivatives_without_der_x!(x, m, t)
eh.terminal = false
return nothing
end
approxTime(t1,t2) = eps(typeof(t1))
"""
outputs!(x, t, integrator)
DifferentialEquations FunctionCallingCallback function for `SimulationModel`
that is used to store results at communication points.
"""
function outputs!(x, t, integrator)::Nothing
m = integrator.p
m.storeResult = true
#println("... Store result at time = $t")
if m.odeMode
invokelatest_getDerivatives_without_der_x!(x, m, t)
else
if t==m.options.startTime
m.der_x .= integrator.du # Since IDA gives an error for integrator(t, Val{1]}) at the initial time instant
else
integrator(m.der_x, t, Val{1}) # Compute derx
end
# Copy derx to linearEquations
for copyInfo in m.daeCopyInfo
leq = m.linearEquations[ copyInfo.ileq ]
for i in 1:length(copyInfo.index)
leq.x[i] = m.der_x[ copyInfo.index[i] ]
end
end
m.solve_leq = false
invokelatest_getDerivatives_without_der_x!(x, m, t)
m.solve_leq = true
end
m.storeResult = false
if !m.success
m.result_x = integrator.sol
m.success = check_vSolvedWithInitValuesAndUnit(m)
if !m.success
DifferentialEquations.terminate!(integrator)
end
elseif m.eventHandler.restart == Terminate
DifferentialEquations.terminate!(integrator)
end
return nothing
end
#=
"""
affect_outputs!(integrator)
DifferentialEquations PresetTimeCallback function for `SimulationModel`
that is used to store results at communication points.
"""
function affect_outputs!(integrator)::Nothing
m = integrator.p
m.storeResult = true
m.solve_leq = false
getDerivatives!2(m.der_x, integrator.u, m, integrator.t)
m.solve_leq = true
m.storeResult = false
if m.eventHandler.restart == Terminate
DifferentialEquations.terminate!(integrator)
end
return nothing
end
=#
"""
derivatives!(derx, x, m, t)
DifferentialEquations callback function to get the derivatives.
"""
derivatives!(der_x, x, m, t) = begin
m.nf += 1
invokelatest_getDerivatives!(der_x, x, m, t)
end
"""
DAEresidualsForODE!(residuals, derx, x, m, t)
DifferentialEquations callback function for DAE integrator for ODE model
"""
function DAEresidualsForODE!(residuals, derx, x, m, t)::Nothing
m.nf += 1
# Copy derx to linearEquations
for copyInfo in m.daeCopyInfo
leq = m.linearEquations[ copyInfo.ileq ]
for i in 1:length(copyInfo.index)
leq.x[i] = derx[ copyInfo.index[i] ]
end
end
m.solve_leq = false
invokelatest_getDerivatives_without_der_x!(x, m, t)
m.solve_leq = true
residuals .= m.der_x .- derx
# Get residuals from linearEquations
for copyInfo in m.daeCopyInfo
leq = m.linearEquations[ copyInfo.ileq ]
for i in 1:length(copyInfo.index)
residuals[ copyInfo.index[i] ] = leq.residuals[i]
end
end
return nothing
end
"""
affectEvent!(integrator, stateEvent, eventIndex)
Called when a time event (stateEvent=false) or state event (stateEvent=true) is triggered.
In case of stateEvent, eventIndex is the index of the crossing function that triggered the event.
"""
function affectEvent!(integrator, stateEvent::Bool, eventIndex::Int)::Nothing
m = integrator.p
eh = m.eventHandler
time = integrator.t
#println("... begin affect: time = ", time, ", nextEventTime = ", eh.nextEventTime)
if m.addEventPointsDueToDEBug
push!(integrator.sol.t, deepcopy(integrator.t))
push!(integrator.sol.u, deepcopy(integrator.u))
end
# Compute and store outputs before processing the event
sol_t = integrator.sol.t
sol_x = integrator.sol.u
ilast = length(sol_t)
for i = length(m.result_vars)+1:ilast # -1
outputs!(sol_x[i], sol_t[i], integrator)
end
# A better solution is needed.
#if sol_t[ilast] == sol_t[ilast-1]
# # Continuous time instant is present twice because "saveat" and "DiscreteCallback" occur at the same time instant
# # Do not compute the model again
# push!(m.result_vars , m.result_vars[end])
# push!(m.result_der_x, m.result_der_x[end])
#else
# outputs!(sol_x[ilast], sol_t[ilast], integrator)
#end
if stateEvent
# State event
if eh.logEvents
println("\n State event (zero-crossing) at time = ", time, " s (due to z[$eventIndex])")
end
eh.nStateEvents += 1
else
# Time event
if eh.logEvents
println("\n Time event at time = ", time, " s")
end
eh.nTimeEvents += 1
end
# Event iteration
eventIteration!(m, integrator.u, time)
if eh.restart == Restart || eh.restart == FullRestart
eh.nRestartEvents += 1
end
if eh.logEvents
if eh.restart == Restart
println(" restart = ", eh.restart)
else
printstyled(" restart = ", eh.restart, "\n", color=:red)
end
end
# Compute outputs and store them after the event occurred
if m.addEventPointsDueToDEBug
push!(integrator.sol.t, deepcopy(integrator.t))
push!(integrator.sol.u, deepcopy(integrator.u))
end
outputs!(integrator.u, time, integrator)
if eh.restart == Terminate
DifferentialEquations.terminate!(integrator)
return nothing
end
# Adapt step size
if eh.restart != NoRestart && supertype(typeof(integrator.alg)) == DifferentialEquations.OrdinaryDiffEq.OrdinaryDiffEqAdaptiveAlgorithm
DifferentialEquations.auto_dt_reset!(integrator)
DifferentialEquations.set_proposed_dt!(integrator, integrator.dt)
end
# Set next time event
if abs(eh.nextEventTime - m.options.stopTime) < 1e-10
eh.nextEventTime = m.options.stopTime
end
#println("... end affect: time ", time,", nextEventTime = ", eh.nextEventTime)
if eh.nextEventTime <= m.options.stopTime
DifferentialEquations.add_tstop!(integrator, eh.nextEventTime)
end
return nothing
end
"""
zeroCrossings!(z, x, t, integrator)
Called by integrator to compute zero crossings
"""
function zeroCrossings!(z, x, t, integrator)::Nothing
m = integrator.p
eh = m.eventHandler
eh.nZeroCrossings += 1
eh.crossing = true
m.solve_leq = false # has only an effect for DAE integrators
invokelatest_getDerivatives_without_der_x!(x, m, t)
m.solve_leq = true
eh.crossing = false
for i = 1:eh.nz
z[i] = eh.z[i]
end
#println("... t = $t, z = $z")
#println("... time = ", t, ", z = ", z)
return nothing
end
"""
affectStateEvent!(integrator, event_index)
Called by integrator when a state event is triggered
"""
affectStateEvent!(integrator, event_index) = affectEvent!(integrator, true, event_index)
"""
timeEventCondition!(u, t, integrator)
Called by integrator to check if a time event occurred
"""
function timeEventCondition!(u, t, integrator)::Bool
m = integrator.p
eh = m.eventHandler
if t >= eh.nextEventTime
eh.nextEventTime = m.options.stopTime
return true
end
return false
end
"""
affectTimeEvent!(integrator)
Called by integrator when a time event is triggered
"""
affectTimeEvent!(integrator) = affectEvent!(integrator, false, 0)
"""
leq = initLinearEquationsIteration!(m::SimulationModel, leq_index::Int)
Initialize iteration over linear equations system of index `leq_index` and return a reference to it
that can be used in the while-loop to construct and solve the linear equation system.
"""
initLinearEquationsIteration!(m::SimulationModel, leq_index::Int) = begin
leq = m.linearEquations[leq_index]
leq.mode = -3
return leq
end
"""
resizeLinearEquations!(instantiatedModel)
Inspect all linear equations inside the instantiatedModel and resize the
internal storage, of the length of vector-valued elements of the iteration variables
has changed due to changed parameter values.
"""
function resizeLinearEquations!(m::SimulationModel{FloatType}, log::Bool)::Nothing where {FloatType}
for (i,leq) in enumerate(m.linearEquations)
nx_vec = length(leq.x_names) - leq.nx_fixedLength
if nx_vec > 0
j = 0
for i = leq.nx_fixedLength+1:length(leq.x_names)
# Length of element is determined by start or init value
xi_name = leq.x_names[i]
xi_param = get_value(m.evaluatedParameters, xi_name)
if ismissing(xi_param)
@error "resizeLinearEquations!(instantiatedModel,$i): $xi_name is not part of the evaluated parameters."
end
leq.x_lengths[i] = length(xi_param)
j += 1
if length(leq.x_vec[j]) != leq.x_lengths[i]
if log
println(" ModiaLang: Resize linear equations vector $xi_name from ", length(leq.x_vec[j]), " to ", leq.x_lengths[i] )
end
resize!(leq.x_vec[j], leq.x_lengths[i])
end
end
nx = sum(leq.x_lengths)
if length(leq.x) != nx
# Resize internal arrays
resize!(leq.x , nx)
resize!(leq.b , nx)
resize!(leq.pivots , nx)
resize!(leq.residuals, nx)
leq.A = zeros(FloatType,nx,nx)
leq.useRecursiveFactorization = nx <= leq.useRecursiveFactorizationUptoSize
end
end
end
return nothing
end
"""
addToResult!(simulationModel, der_x, variableValues...)
Add `variableValues...` to `simulationModel::SimulationModel`.
It is assumed that the first variable in `variableValues` is `time`.
"""
function addToResult!(m::SimulationModel, variableValues...)::Nothing
push!(m.result_vars , variableValues)
push!(m.result_der_x, deepcopy(m.der_x))
return nothing
end
"""
code = generate_getDerivatives!(AST, equationInfo, parameters, variables, functionName;
hasUnits=false)
Return the code of the `getDerivatives!` function as `Expr` using the
Symbol `functionName` as function name. By `eval(code)` or
`fc = @RuntimeGeneratedFunction(code)` the function is compiled and can afterwards be called.
# Arguments
- `AST::Vector{Expr}`: Abstract Syntax Tree of the equations as vector of `Expr`.
- `equationInfo::ModiaBase.EquationInfo`: Data structure returned by `ModiaBase.getSortedAndSolvedAST
holding information about the states.
- `parameters`: Vector of parameter names (as vector of symbols)
- `variables`: Vector of variable names (as vector of symbols). The first entry is expected to be time, so `variables[1] = :time`.
- `functionName::Function`: The name of the function that shall be generated.
# Optional Arguments
- pre:Vector{Symbol}: pre-variable names
- `hasUnits::Bool`: = true, if variables have units. Note, the units of the state vector are defined in equationinfo.
"""
function generate_getDerivatives!(AST::Vector{Expr}, equationInfo::ModiaBase.EquationInfo,
parameters, variables, previousVars, preVars, holdVars, functionName::Symbol;
pre::Vector{Symbol} = Symbol[], hasUnits=false)
# Generate code to copy x to struct and struct to der_x
x_info = equationInfo.x_info
code_x = Expr[]
code_der_x = Expr[]
#code_p = Expr[]
if length(x_info) == 1 && x_info[1].x_name == "_dummy_x" && x_info[1].der_x_name == "der(_dummy_x)"
# Explicitly solved pure algebraic variables. Introduce dummy equation
push!(code_der_x, :( ModiaBase.appendVariable!(_m.der_x, -_x[1]) ))
else
i1 = 1
for i in 1:equationInfo.nxFixedLength
xe = x_info[i]
x_name = xe.x_name_julia
# x_name = Meta.parse("m."*xe.x_name)
# der_x_name = Meta.parse("m."*replace(xe.der_x_name, r"der\(.*\)" => s"var\"\g<0>\""))
if xe.scalar
# x-element is a scalar
if !hasUnits || xe.unit == ""
push!(code_x, :( $x_name = _x[$i1] ) )
else
x_unit = xe.unit
push!(code_x, :( $x_name = _x[$i1]*@u_str($x_unit)) )
end
i1 += 1
else
# x-element is a static vector
i2 = i1 + xe.length - 1
v_length = xe.length
if !hasUnits || xe.unit == ""
push!(code_x, :( $x_name::ModiaBase.SVector{$v_length,_FloatType} = ModiaBase.SVector{$v_length,_FloatType}(_x[$i1:$i2])) )
else
x_unit = xe.unit
push!(code_x, :( $x_name = ModiaBase.SVector{$v_length,_FloatType}(_x[$i1:$i2])::ModiaBase.SVector{$v_length,_FloatType}*@u_str($x_unit)) )
end
i1 = i2 + 1
end
end
i1 = 0
for i in equationInfo.nxFixedLength+1:length(equationInfo.x_info)
# x-element is a dynamic vector (length can change before initialization)
xe = x_info[i]
x_name = xe.x_name_julia
i1 += 1
if !hasUnits || xe.unit == ""
push!(code_x, :( $x_name = _m.x_vec[$i1]) )
else
x_unit = xe.unit
push!(code_x, :( $x_name = _m.x_vec[$i1]*@u_str($x_unit)) )
end
end
for xe in equationInfo.x_info
der_x_name = xe.der_x_name_julia
if hasUnits
push!(code_der_x, :( ModiaBase.appendVariable!(_m.der_x, ModiaLang.stripUnit( $der_x_name )) ))
else
push!(code_der_x, :( ModiaBase.appendVariable!(_m.der_x, $der_x_name) ))
end
end
end
#for (i,pi) in enumerate(parameters)
# push!(code_p, :( $pi = _m.p[$i] ) )
#end
timeName = variables[1]
if hasUnits
code_time = :( $timeName = _time*upreferred(u"s") )
else
code_time = :( $timeName = _time )
end
# Code for previous
code_previous = []
if length(previousVars) > 0
code_previous2 = Expr[]
for (i, value) in enumerate(previousVars)
previousName = previousVars[i]
push!(code_previous2, :( _m.nextPrevious[$i] = $previousName ))
end
code_previous3 = quote
if ModiaLang.isFirstEventIteration(_m) && !ModiaLang.isInitial(_m)
$(code_previous2...)
end
end
push!(code_previous, code_previous3)
end
# Code for pre
code_pre = Expr[]
for (i, value) in enumerate(preVars)
preName = preVars[i]
push!(code_pre, :( _m.nextPre[$i] = $preName ))
end
# Code for deepcopy of vectors with pre-allocated memory
code_copy = Expr[]
for leq_tuple in equationInfo.linearEquations
x_vec_julia_names = leq_tuple[2]
for name in x_vec_julia_names
push!(code_copy, :( $name = deepcopy($name) ))
end
end
# Generate code of the function
code = quote
function $functionName(_x, _m::ModiaLang.SimulationModel{_FloatType,_TimeType}, _time)::Nothing where {_FloatType,_TimeType}
_m.time = _TimeType(ModiaLang.getValue(_time))
_m.nGetDerivatives += 1
instantiatedModel = _m
_p = _m.evaluatedParameters
_leq_mode = nothing
$code_time
$(code_x...)
$(AST...)
$(code_der_x...)
$(code_previous...)
$(code_pre...)
if _m.storeResult
ModiaBase.TimerOutputs.@timeit _m.timer "ModiaLang addToResult!" begin
$(code_copy...)
ModiaLang.addToResult!(_m, $(variables...))
end
end
return nothing
end
end
return code
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 13857 | #=
Recursively instantiate dependent objects and propagate value in hierarchical NamedTuples
* Developer: Hilding Elmqvist, Mogram AB (initial version)
* Martin Otter, DLR (instantiation of dependent objects added)
* First version: March 2021
* License: MIT (expat)
=#
using OrderedCollections: OrderedDict
subst(ex, environment, modelModule) = ex
subst(ex::Symbol, environment, modelModule) = if length(environment) == 0; ex elseif ex in keys(environment[end]); environment[end][ex] else subst(ex, environment[1:end-1], modelModule) end
subst(ex::Expr, environment, modelModule) = Expr(ex.head, [subst(a, environment, modelModule) for a in ex.args]...)
subst(ex::Vector{Symbol}, environment, modelModule) = [subst(a, environment, modelModule) for a in ex]
subst(ex::Vector{Expr} , environment, modelModule) = [Core.eval(modelModule, subst(a, environment, modelModule)) for a in ex]
#=
function propagate(model, environment=[])
#println("\n... Propagate: ", model)
current = OrderedDict()
for (k,v) in zip(keys(model), model)
if k in [:_class, :_Type]
current[k] = v
elseif typeof(v) <: NamedTuple
current[k] = propagate(v, vcat(environment, [current]))
else
evalv = v
try
evalv = eval(subst(v, vcat(environment, [current])))
catch e
end
if typeof(evalv) <: NamedTuple
current[k] = v
else
current[k] = evalv
end
end
end
return (; current...)
end
=#
appendKey(path, key) = path == "" ? string(key) : path * "." * string(key)
"""
map = propagateEvaluateAndInstantiate!(FloatType, unitless::Bool, modelModule::Module, parameters,
eqInfo::ModiaBase.EquationInfo; log=false)
Recursively traverse the hierarchical collection `parameters` and perform the following actions:
- Propagate values.
- Evaluate expressions in the context of `modelModule`.
- Instantiate dependent objects.
- Return the evaluated `parameters` if successfully evaluated, and otherwise
return nothing, if an error occurred (an error message was printed).
"""
function propagateEvaluateAndInstantiate!(FloatType, unitless::Bool, modelModule, parameters, eqInfo, previous_dict, previous, pre_dict, pre, hold_dict, hold; log=false)
x_found = fill(false, length(eqInfo.x_info))
map = propagateEvaluateAndInstantiate2!(FloatType, unitless, modelModule, parameters, eqInfo, x_found, previous_dict, previous, pre_dict, pre, hold_dict, hold, [], ""; log=log)
if isnothing(map)
return nothing
end
# Check that all values of x_start are set:
#x_start_missing = []
#for (i, found) in enumerate(x_found)
# if !found
# push!(x_start_missing, eqInfo.x_info[i].x_name)
# end
#end
# Check that all previous values are set:
missingInitValues = false
namesOfMissingValues = ""
first = true
for (name,index) in previous_dict
if ismissing(previous[index])
missingInitValues = true
if first
first = false
namesOfMissingValues *= "\n Variables from previous(..):"
end
namesOfMissingValues *= "\n " * name
end
end
# Check that all pre values are set:
first = true
for (name,index) in pre_dict
if ismissing(pre[index])
missingInitValues = true
if first
first = false
namesOfMissingValues *= "\n Variables from pre(..):"
end
namesOfMissingValues *= "\n " * name
end
end
# Check that all hold values are set:
first = true
for (name,index) in hold_dict
if ismissing(hold[index])
missingInitValues = true
if first
first = false
namesOfMissingValues *= "\n Variables from hold(..):"
end
namesOfMissingValues *= "\n " * name
end
end
if missingInitValues
printstyled("Model error: ", bold=true, color=:red)
printstyled("Missing start/init values for variables: ", namesOfMissingValues,
bold=true, color=:red)
print("\n\n")
return nothing
end
#if length(x_start_missing) > 0
# printstyled("Model error: ", bold=true, color=:red)
# printstyled("Missing start/init values for variables: ", x_start_missing,
# bold=true, color=:red)
# print("\n\n")
# return nothing
#end
return map
end
"""
firstName(ex::Expr)
If ex = :(a.b.c.d) -> firstName(ex) = :a
"""
function firstName(ex::Expr)
if ex.head == :(.)
if typeof(ex.args[1]) == Expr
firstName(ex.args[1])
else
return ex.args[1]
end
end
end
function changeDotToRef(ex)
if ex.head == :(.)
ex.head = :ref
if typeof(ex.args[1]) == Expr
changeDotToRef(ex.args[1])
end
end
return nothing
end
function propagateEvaluateAndInstantiate2!(FloatType, unitless::Bool, modelModule, parameters, eqInfo::ModiaBase.EquationInfo, x_found::Vector{Bool},
previous_dict, previous, pre_dict, pre, hold_dict, hold,
environment, path::String; log=false)
if log
println("\n 1: !!! instantiate objects of $path: ", parameters)
end
current = OrderedDict{Symbol,Any}() # should be Map()
# Determine, whether "parameters" has a ":_constructor" key and handle this specially
constructor = nothing
usePath = false
if haskey(parameters, :_constructor)
# For example: obj = (_class = :Par, _constructor = :(Modia3D.Object3D), _path = true, kwargs...)
# or: rev = (_constructor = (_class = :Par, value = :(Modia3D.ModiaRevolute), _path=true), kwargs...)
v = parameters[:_constructor]
if typeof(v) <: OrderedDict
constructor = v[:value]
if haskey(v, :_path)
usePath = v[:_path]
end
else
constructor = v
if haskey(parameters, :_path)
usePath = parameters[:_path]
end
end
elseif haskey(parameters, :value)
# For example: p1 = (_class = :Var, parameter = true, value = 0.2)
# or: p2 = (_class = :Var, parameter = true, value = :(2*p1))
v = parameters[:value]
veval = Core.eval(modelModule, subst(v, vcat(environment, [current]), modelModule))
return veval
end
for (k,v) in parameters
if log
println(" 2: ... key = $k, value = $v")
end
if k == :_constructor || k == :_path || (k == :_class && !isnothing(constructor))
if log
println(" 3: ... key = $k")
end
nothing
elseif !isnothing(constructor) && (k == :value || k == :init || k == :start)
error("value, init or start keys are not allowed in combination with a _constructor:\n$parameters")
elseif typeof(v) <: OrderedDict
if length(v) > 0
if haskey(v, :_class) && v[:_class] == :Par && haskey(v, :value)
# For example: k = (_class = :Par, value = 2.0) -> k = 2.0
# or: k = (_class = :Par, value = :(2*Lx - 3)) -> k = eval( 2*Lx - 3 )
# or: k = (_class = :Par, value = :(bar.frame0)) -> k = ref(bar.frame0)
if log
println(" 4: v[:value] = ", v[:value], ", typeof(v[:value]) = ", typeof(v[:value]))
println(" vcat(environment, [current]) = ", vcat(environment, [current]))
end
subv = subst(v[:value], vcat(environment, [current]), modelModule)
if log
println(" 5: _class & value: $k = $subv # before eval")
end
if typeof(subv) == Expr && subv.head == :(.)
if typeof(firstName(subv)) <: AbstractDict
changeDotToRef(subv)
if log
println(" 5b: _class & value: $k = $subv # before eval")
end
end
end
current[k] = Core.eval(modelModule, subv)
if log
println(" 6: $k = ", current[k])
end
else
if log
println(" 7: ... key = $k, v = $v")
end
# For example: k = (a = 2.0, b = :(2*Lx))
value = propagateEvaluateAndInstantiate2!(FloatType, unitless, modelModule, v, eqInfo, x_found, previous_dict, previous, pre_dict, pre, hold_dict, hold,
vcat(environment, [current]), appendKey(path, k); log=log)
if log
println(" 8: ... key = $k, value = $value")
end
if isnothing(value)
return nothing
end
current[k] = value
end
end
else
if log
println(" 9: else: typeof(v) = ", typeof(v))
end
subv = subst(v, vcat(environment, [current]), modelModule)
if log
println(" 10: $k = $subv # before eval")
end
if typeof(subv) == Expr && subv.head == :(.)
if typeof(firstName(subv)) <: AbstractDict
changeDotToRef(subv)
if log
println(" 10b: _class & value: $k = $subv # before eval")
end
end
end
subv = Core.eval(modelModule, subv)
if unitless && eltype(subv) <: Number
# Remove unit
subv = stripUnit(subv)
end
current[k] = subv
if log
println(" 11: $k = ", current[k])
end
# Set x_start
full_key = appendKey(path, k)
if haskey(eqInfo.x_dict, full_key)
#if log
# println(" 12: (is stored in x_start)")
#end
j = eqInfo.x_dict[full_key]
xe_info = eqInfo.x_info[j]
x_value = current[k]
len = hasParticles(x_value) ? 1 : length(x_value)
if j <= eqInfo.nxFixedLength && len != xe_info.length
printstyled("Model error: ", bold=true, color=:red)
printstyled("Length of ", xe_info.x_name, " shall be changed from ",
xe_info.length, " to $len\n",
"This is not possible because variable has a fixed length.", bold=true, color=:red)
return nothing
end
x_found[j] = true
xe_info.startOrInit = deepcopy(x_value)
# Strip units from x_start
#if xe_info.length == 1
# x_start[xe_info.startIndex] = deepcopy( convert(FloatType, stripUnit(x_value)) )
#else
# ibeg = xe_info.startIndex - 1
# for i = 1:xe_info.length
# x_start[ibeg+i] = deepcopy( convert(FloatType, stripUnit(x_value[i])) )
# end
#end
elseif haskey(previous_dict, full_key)
previous[ previous_dict[full_key] ] = current[k]
elseif haskey(pre_dict, full_key)
pre[ pre_dict[full_key] ] = current[k]
elseif haskey(hold_dict, full_key)
hold[ hold_dict[full_key] ] = current[k]
end
end
end
if isnothing(constructor)
return current # (; current...)
else
if usePath
obj = Core.eval(modelModule, :(FloatType = $FloatType; $constructor(; path = $path, $current...)))
else
obj = Core.eval(modelModule, :(FloatType = $FloatType; $constructor(; $current...)))
end
if log
println(" 13: +++ Instantiated $path: typeof(obj) = ", typeof(obj), ", obj = ", obj, "\n\n")
end
return obj
end
end
"""
splittedPath = spitPlath(path::Union{Symbol, Expr, Nothing})::Vector{Symbol}
# Examples
```
splitPath(nothing) # = Symbol[]
splitPath(:a) # = Symbol[:a]
splitPath(:(a.b.c.d)) # = Symbol[:a, :b, :c, :d]
```
"""
function splitPath(path::Union{Symbol, Expr, Nothing})::Vector{Symbol}
splittedPath = Symbol[]
if typeof(path) == Symbol
push!(splittedPath, path)
elseif typeof(path) == Expr
while typeof(path.args[1]) == Expr
pushfirst!(splittedPath, path.args[2].value)
path = path.args[1]
end
pushfirst!(splittedPath, path.args[2].value)
pushfirst!(splittedPath, path.args[1])
end
return splittedPath
end
"""
modelOfPath = getModelFromSplittedPath(model, splittedPath::Vector{Symbol})
Return reference to the sub-model characterized by `splittedPath`.
# Examples
```
mymodel = Model(a = Model(b = Model(c = Model)))
model_b = getModelFromSplittedPath(mymodel, Symbol["a", "b"]) # = mymodel[:a][:b]
```
"""
function getModelFromSplittedPath(model, splittedPath::Vector{Symbol})
for name in splittedPath
model = model[name]
end
return model
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 16069 | # License for this file: MIT (expat)
# Copyright 2017-2021, DLR Institute of System Dynamics and Control
# Provide functions to handle time and state events
"""
@enum EventRestart NoRestart Restart FullRestart Terminate
Define how to continue or restart integration after an event. Usually, `Restart`
should be used. Only in special cases, the other flags are useful.
- `NoRestart`, continue integration without restarting the integrator
- `Restart`, restart integrator
- `FullRestart`, restart integrator and simulation state (so dimensions may change)
- `Terminate`, terminate integration
"""
@enum EventRestart NoRestart Restart FullRestart Terminate
using ForwardDiff
getValue(v) = v
getValue(v::ForwardDiff.Dual) = v.value
getValue(v::Measurements.Measurement) = Measurements.value(v)
const nClock = 100
const nSample = 100
const nAfterDefault = 100
mutable struct EventHandler{FloatType,TimeType}
stopTime::TimeType # stopTime of simulation
# Logging
logEvents::Bool # = true, if events shall be logged
nZeroCrossings::Int # Number of zero crossing calls
nRestartEvents::Int # Number of Restart events
nStateEvents::Int # Number of state events
nTimeEvents::Int # Number of time events
# Input values for the event functions
time::TimeType # Current simulation time
initial::Bool # = true, if model is called at initialization
# (if initial, event=true)
terminal::Bool # = true, if model is called for termination (close files, streams, visualization, ...)
event::Bool # = true, if model is called at an event
afterSimulationStart::Bool # = true, if model is called after simulation start
crossing::Bool # = true, if model is called to compute crossing function
firstEventIterationDirectlyAfterInitial::Bool # = true, at the first event iteration directly after initial at model.options.startTime.
triggerEventDirectlyAfterInitial::Bool # = true, if time event shall be triggered directly after initial at model.options.startTime
# Values especially for simulations with several segments
firstInitialOfAllSegments::Bool # = true, if model is called at initialization of the first simulation segment.
terminalOfAllSegments::Bool # = true, if model is called for termination at the last simulation segment.
# Computed by the event functions
# For time events:
maxTime::TimeType # Integrate at most up to maxTime
# (if integrateToEvent == true, maxTime = nextEventTime,
# otherwise maxTime > nextEventTime)
nextEventTime::TimeType # Next time event instant (= realmax(Time) if no event)
integrateToEvent::Bool # = true, if integrator shall integrate to nextEventTime
# = false, if integrator can integrate beyond nextEventTime
restart::EventRestart # Type of integrator restart at current event
newEventIteration::Bool # = true, if another event iteration; = false, if no event iteration anymore
firstEventIteration::Bool # = true, if first iteration at an event.
# For state events:
zEps::FloatType # Epsilon for zero-crossing hysteresis
nz::Int # Number of event indicators
z::Vector{FloatType} # Vector of event indicators (zero crossings). If one of z[i] passes
# zero, that is beforeEvent(z[i])*z[i] < 0, an event is triggered
# (allocated during instanciation according to nz).
zPositive::Vector{Bool} # = true if z > 0 at the last event instant, otherwise false
# For after time events:
nafter::Int # Number of after time events
after::Vector{Bool} # after[i] = time >= after(<variable i>)
# For clocks (time events):
clock::Vector{TimeType}
sample::Vector{Any}
function EventHandler{FloatType,TimeType}(; nz::Int=0, nAfter::Int=0, logEvents::Bool=false) where {FloatType,TimeType}
@assert(nz >= 0)
@assert(nAfter >= 0)
nAfter = nAfter > 0 ? nAfter : nAfterDefault
zEps = FloatType(1e-10)
new(floatmax(TimeType), logEvents, 0, 0, 0, 0, convert(TimeType,0),
false, false, false, false, false, false, false, false, false, floatmax(TimeType), floatmax(TimeType),
true, NoRestart, false, false, zEps, nz, ones(FloatType,nz), fill(false, nz), nAfter, fill(false,nAfter),
fill(convert(TimeType,0),nClock), Vector{Any}(undef, nSample))
end
end
# Default constructors
#EventHandler( ; kwargs...) = EventHandler{Float64 ,Float64}(; kwargs...)
#EventHandler{FloatType}(; kwargs...) where {FloatType} = EventHandler{FloatType,Float64}(; kwargs...)
function reinitEventHandler(eh::EventHandler{FloatType,TimeType}, stopTime::TimeType, logEvents::Bool)::Nothing where {FloatType,TimeType}
eh.logEvents = logEvents
eh.nZeroCrossings = 0
eh.nRestartEvents = 0
eh.nStateEvents = 0
eh.nTimeEvents = 0
eh.time = convert(TimeType, 0)
eh.initial = false
eh.terminal = false
eh.event = false
eh.crossing = false
eh.firstEventIterationDirectlyAfterInitial = false
eh.triggerEventDirectlyAfterInitial = false
eh.afterSimulationStart = false
eh.firstInitialOfAllSegments = false
eh.terminalOfAllSegments = false
eh.stopTime = stopTime
eh.maxTime = floatmax(TimeType)
eh.nextEventTime = floatmax(TimeType)
eh.integrateToEvent = false
eh.restart = Restart
eh.newEventIteration = false
eh.firstEventIteration = true
eh.z .= convert(FloatType, 0)
eh.after .= false
return nothing
end
positiveCrossingAsString(positive::Bool) = positive ? " became > 0" : " became <= 0"
negativeCrossingAsString(negative::Bool) = negative ? " became < 0" : " became >= 0"
function initEventIteration!(h::EventHandler{FloatType,TimeType}, t::TimeType)::Nothing where {FloatType,TimeType}
h.time = t
h.restart = NoRestart
h.maxTime = floatmax(TimeType)
h.nextEventTime = floatmax(TimeType)
h.newEventIteration = false
h.firstEventIteration = true
return nothing
end
function setNextEvent!(h::EventHandler{FloatType,TimeType}, nextEventTime::TimeType;
triggerEventDirectlyAfterInitial=false,
integrateToEvent::Bool=true,
restart::EventRestart=Restart)::Nothing where {FloatType,TimeType}
#println("... setNextEvent!: time = ", h.time, ", nextEventTime = ", nextEventTime, ", restart = ", restart)
if (h.event && nextEventTime > h.time) || (h.initial && nextEventTime >= h.time)
if h.initial && triggerEventDirectlyAfterInitial && nextEventTime == h.time
h.triggerEventDirectlyAfterInitial = true
if nextEventTime < h.nextEventTime
h.nextEventTime = nextEventTime
if h.logEvents
println(" nextEventTime = ", round(nextEventTime, sigdigits=6), " s")
end
end
else
if integrateToEvent
h.maxTime = min(h.maxTime, nextEventTime)
end
if nextEventTime < h.nextEventTime
h.nextEventTime = nextEventTime
h.integrateToEvent = integrateToEvent
if h.logEvents
println(" nextEventTime = ", round(nextEventTime, sigdigits=6),
" s, integrateToEvent = ", integrateToEvent ? "true" : "false")
end
end
end
h.restart = max(h.restart, restart)
end
return nothing
end
function after!(h::EventHandler{FloatType,TimeType}, nr::Int, t::Number, tAsString::String,
leq::Union{Nothing,ModiaBase.LinearEquations{FloatType}};
restart::EventRestart=Restart)::Bool where {FloatType,TimeType}
# time >= t (it is required that t is a discrete-time expression, but this cannot be checked)
t2 = convert(TimeType,t)
if h.initial
h.after[nr] = h.time >= t2
if h.logEvents
println(" after(", tAsString, " (= ", t2, ")) became ", h.after[nr] ? "true" : "false")
end
if t2 > h.time
setNextEvent!(h, t2, restart = restart)
end
elseif h.event
if abs(h.time - t2) < 1E-10
if h.logEvents && !h.after[nr]
println(" after(", tAsString, " (= ", t2, ")) became true")
end
h.after[nr] = true
elseif t2 > h.time
setNextEvent!(h, t2, restart = restart)
h.after[nr] = false
else
if h.logEvents && !h.after[nr]
println(" after(", tAsString, " (= ", t2, ")) became true")
end
h.after[nr] = true
end
end
return h.after[nr]
end
#positive!(h, nr, crossing, crossingAsString, leq_mode; restart=Restart) = positive!(h, nr, getValue(crossing), crossingAsString, leq_mode; restart=restart)
function positive!(h::EventHandler{FloatType,TimeType}, nr::Int, crossing, crossingAsString::String,
leq::Union{Nothing,ModiaBase.LinearEquations{FloatType}};
restart::EventRestart=Restart)::Bool where {FloatType,TimeType}
crossing = getValue(crossing)
if h.initial
if !isnothing(leq) && leq.mode >= 0
# crossing has no meaningful value (called in algebraic loop with zero or unit vectors of unknowns).
h.zPositive[nr] = false # set to an arbitrary value
h.z[nr] = -h.zEps # set to an arbitrary value that is consistent to zPositive
return h.zPositive[nr]
end
h.zPositive[nr] = crossing > convert(FloatType,0)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ")", positiveCrossingAsString(h.zPositive[nr]))
end
elseif h.event
if !isnothing(leq) && leq.mode >= 0
# crossing has no meaningful value (called in algebraic loop with zero or unit vectors of unknowns).
return h.zPositive[nr]
end
new_zPositive = crossing > convert(FloatType,0)
change = (h.zPositive[nr] && !new_zPositive) || (!h.zPositive[nr] && new_zPositive)
h.zPositive[nr] = new_zPositive
if change
h.restart = max(h.restart, restart)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ")", positiveCrossingAsString(h.zPositive[nr]))
end
if !isnothing(leq) && leq.mode == -1
# Solution of mixed linear equation system is not consistent to positve(..)
leq.success = false
if leq.niter > leq.niter_max
push!(leq.inconsistentPositive, crossingAsString)
end
end
end
end
h.z[nr] = crossing + (h.zPositive[nr] ? h.zEps : -h.zEps)
return h.zPositive[nr]
end
function negative!(h::EventHandler{FloatType,TimeType}, nr::Int, crossing, crossingAsString::String,
leq::Union{Nothing,ModiaBase.LinearEquations{FloatType}};
restart::EventRestart=Restart)::Bool where {FloatType,TimeType}
crossing = getValue(crossing)
if h.initial
if !isnothing(leq) && leq.mode >= 0
# crossing has no meaningful value (called in algebraic loop with zero or unit vectors of unknowns).
h.zPositive[nr] = true # set to an arbitrary value
h.z[nr] = h.zEps # set to an arbitrary value that is consistent to zPositive
return !h.zPositive[nr]
end
h.zPositive[nr] = !(crossing < convert(FloatType,0))
if h.logEvents
println(" ", crossingAsStringg, " (= ", crossing, ")", negativeCrossingAsString(!h.zPositive[nr]))
end
elseif h.event
if !isnothing(leq) && leq.mode >= 0
# crossing has no meaningful value (called in algebraic loop with zero or unit vectors of unknowns).
return !h.zPositive[nr]
end
new_zPositive = !(crossing < convert(FloatType,0))
change = (h.zPositive[nr] && !new_zPositive) || (!h.zPositive[nr] && new_zPositive)
h.zPositive[nr] = new_zPositive
if change
h.restart = max(h.restart, restart)
if h.logEvents
println(" ", crossingAsStringg, " (= ", crossing, ")", negativeCrossingAsString(!h.zPositive[nr]))
end
if !isnothing(leq) && leq.mode == -1
# Solution of mixed linear equation system is not consistent to negative(..)
leq.success = false
if leq.niter > leq.niter_max
push!(leq.inconsistentNegative, crossingAsString)
end
end
end
end
h.z[nr] = crossing + (h.zPositive[nr] ? h.zEps : -h.zEps)
return !h.zPositive[nr]
end
#=
function change!(h::EventHandler{FloatType,TimeType}, nr::Int, crossing::FloatType, crossingAsString::String,
leq::Union{Nothing,ModiaBase.LinearEquations{FloatType}};
restart::EventRestart=Restart)::Bool where {FloatType,TimeType}
if leq_mode >= 0
return crossing > convert(FloatType,0)
end
h.z[nr] = crossing
if h.initial
h.zPositive[nr] = crossing > convert(FloatType,0)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ")", positiveCrossingAsString(h.zPositive[nr]))
end
return false
elseif h.event
new_zPositive = crossing > convert(FloatType,0)
change = (h.zPositive[nr] && !new_zPositive) || (!h.zPositive[nr] && new_zPositive)
h.zPositive[nr] = new_zPositive
if change
h.restart = max(h.restart, restart)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ")", positiveCrossingAsString(h.zPositive[nr]))
end
h.newEventIteration = true
return true
end
end
return false
end
=#
function edge!(h::EventHandler{FloatType,TimeType}, nr::Int, crossing, crossingAsString::String,
leq::Union{Nothing,ModiaBase.LinearEquations{FloatType}};
restart::EventRestart=Restart)::Bool where {FloatType,TimeType}
if !isnothing(leq)
@error "edge(" * crossingAsString * ") is called in a linear system of equations with\n" *
"iteration variables $(leq.vTear_names). This is not supported."
end
crossing = getValue(crossing)
if h.initial
h.zPositive[nr] = crossing > convert(FloatType,0)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ")", positiveCrossingAsString(h.zPositive[nr]))
end
elseif h.event
new_zPositive = crossing > convert(FloatType,0)
edge = !h.zPositive[nr] && new_zPositive
downEdge = h.zPositive[nr] && !new_zPositive
h.zPositive[nr] = new_zPositive
if edge
h.restart = max(h.restart, restart)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ") became > 0")
end
h.newEventIteration = true
h.z[nr] = crossing + (h.zPositive[nr] ? h.zEps : -h.zEps)
return true
elseif downEdge
h.restart = max(h.restart, NoRestart)
if h.logEvents
println(" ", crossingAsString, " (= ", crossing, ") became <= 0")
end
end
end
h.z[nr] = crossing + (h.zPositive[nr] ? h.zEps : -h.zEps)
return false
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 8812 | """
Module to produce incidence plots
* Developer: Hilding Elmqvist, Mogram AB
* First version: December 2020
* License: MIT (expat)
"""
module IncidencePlot
using GLMakie
using AbstractPlotting
using GeometryBasics
using Colors
# include("...ModiaBase/src/Tearing.jl")
# using .Tearing
export showIncidence
removeBlock(ex) = ex
function removeBlock(ex::Expr)
if ex.head in [:block]
ex.args[1]
else
Expr(ex.head, [removeBlock(arg) for arg in ex.args]...)
end
end
AbstractPlotting.inline!(false)
"""
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks; sortVariables=false)
Shows the incidence matrix using the plotting package Makie. If `assigned` is not [], the assigned variable is marked. `blocks` is a vector of vectors
enabling showing of BLT-blocks. After each incidence matrix is output, the user is promted for a RETURN, not to immediately overwriting the plot.
"""
function showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks; sortVariables=false)
scene = Scene(camera = campixel!, show_axis = false, resolution = (1000, 800))
margin = 20
size = 600
nVar = length(unknowns)
if sortVariables
sortedVariables = fill(0, nVar)
varCount = 0
for b in blocks
for e in b
varCount += 1
sortedVariables[varCount] = assignedVar[e]
end
end
for i in 1:length(vActive)
if ! vActive[i]
varCount += 1
sortedVariables[varCount] = i
end
end
else
sortedVariables = 1:nVar
end
n=length(equations)
m=length(unknowns)
width = min(div(size, n), 20)
height = min(div(size, m), 20)
function drawText(s, row, column; align=:left, vertical=false)
rot = if ! vertical; 0.0 else pi/2 end
text!(scene, s, position = Vec(margin + column*width + width/2, margin + (n+1-row)*height + height/2),
color = :green, textsize = 15, align = (align, :center), rotation = rot, show_axis = false)
end
# -----------------------------------------------------------------------------
# Draw matrix grid
for i in 1:n+1
poly!([Point2f0(margin + width, margin + i*height), Point2f0(margin + (m+1)*width, margin + i*height)], strokecolor = :black)
end
for j in 1:m+1
poly!([Point2f0(margin + j*width, margin + height), Point2f0(margin + j*width, margin + (n+1)*height)], strokecolor = :black)
end
for j in 1:length(unknowns)
# Draw variable number under matrix
drawText(string(sortedVariables[j]), n+1, j, align=:right, vertical=true)
# Draw variable names above matrix
v = unknowns[sortedVariables[j]]
var = string(v)
if v in keys(substitutions)
subs = replace(replace(replace(string(substitutions[v]), "(" => ""), ")" => ""), "--" => "")
var *= " = " * subs
end
drawText(var, 0, j, vertical=true)
end
row = 0
for b in blocks
for e in b
row += 1
# Draw equation number to the left
drawText(string(e), row, 0, align=:right)
# Draw equation to the right
equ = equations[e]
Base.remove_linenums!(equ)
equ = removeBlock(equ)
equ = string(equ)
equ = replace(equ, "\n" => ";")
if equ != :(0 = 0)
drawText(equ, row, m+1)
end
end
end
row = 0
for b in blocks
if length(b) > 1
#=
println("\nTearing of BLT block")
@show b
es::Array{Int64,1} = b
vs = assignedVar[b]
td = EquationTearing(G, length(unknowns))
(eSolved, vSolved, eResidue, vTear) = tearEquations!(td, (e,v) -> v in G[e], es, vs)
@show eSolved vSolved eResidue vTear
@show equations[eSolved] unknowns[vSolved] equations[eResidue] unknowns[vTear]
b = vcat(eSolved, eResidue)
@show b
blocksVars = vcat(vSolved, vTear)
=#
color = :lightgrey
poly!(Rect(Vec(margin + (row+1)*width, margin + (n+1-row)*height-length(b)*height),
Vec(length(b)*width, length(b)*height)), color = color, strokecolor = :black, transperancy=true)
end
for e in b
row += 1
incidence = fill(false, nVar)
for v in G[e]
if sortedVariables[v] > 0
incidence[sortedVariables[v]] = true
end
end
col = 0
for v in sortedVariables
col += 1
ins = if v == 0 || ! vActive[v]; 0 elseif sortedVariables[v] > 0 && ! incidence[sortedVariables[v]]; 0 elseif v > 0 && v<= length(assigned) && assigned[v] == e; 1 else 2 end
if ins > 0
color = if ins == 1; :red else :blue end
poly!(Rect(Vec(margin + col*width, margin + (n+1-row)*height), Vec(width, height)), color = color, strokecolor = :black)
end
end
end
end
display(scene)
println("Continue?")
readline()
end
function testShowIncidence()
# RCRL circuit
equations = Expr[:(ground.p.v = V.n.v), :(V.p.v = Ri.n.v), :(Ri.p.v = R.p.v), :(R.n.v = C.p.v), :(C.n.v = ground.p.v), :(ground.p.i + V.n.i + C.n.i = 0), :(V.p.i + Ri.n.i = 0), :(Ri.p.i + R.p.i = 0), :(R.n.i + C.p.i = 0), :(Ri.v = Ri.p.v - Ri.n.v), :(0 = Ri.p.i + Ri.n.i), :(Ri.i = Ri.p.i), :(Ri.R * Ri.i = Ri.v), :(R.v = R.p.v - R.n.v), :(0 = R.p.i + R.n.i), :(R.i = R.p.i), :(R.R * R.i = R.v), :(C.v = C.p.v - C.n.v), :(0 = C.p.i + C.n.i), :(C.i = C.p.i), :(C.C * der(C.v) = C.i), :(V.v = V.p.v - V.n.v), :(0 = V.p.i + V.n.i), :(V.i = V.p.i), :(V.v = 10), :(ground.p.v = 0)]
unknowns = Any[:(Ri.v), :(Ri.i), :(Ri.p.i), :(Ri.p.v), :(Ri.n.i), :(Ri.n.v), :(R.v), :(R.i), :(R.p.i), :(R.p.v), :(R.n.i), :(R.n.v), :(C.v), :(der(C.v)), :(C.i), :(C.p.i), :(C.p.v), :(C.n.i), :(C.n.v), :(V.v), :(V.i), :(V.p.i), :(V.p.v), :(V.n.i), :(V.n.v), :(ground.p.i), :(ground.p.v)]
G = [[27, 25], [23, 6], [4, 10], [12, 17], [19, 27], [26, 24, 18], [22, 5], [3, 9], [11, 16], [1, 4, 6], [3, 5], [2, 3], [2, 1], [7, 10, 12], [9, 11], [8, 9], [8, 7], [13, 17, 19], [16, 18], [15, 16], [14, 15], [20, 23, 25], [22, 24], [21, 22], [20], [27]]
vActive = Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
substitutions = Dict{Any,Any}()
assigned = Any[]
assignedVar = Any[]
blocks = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26]]
sortVariables = false
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks, sortVariables=sortVariables)
# RCRL
equations = Expr[:(ground.p.v = V.n.v), :(V.p.v = Ri.n.v), :(Ri.p.v = R.p.v), :(R.n.v = C.p.v), :(C.n.v = ground.p.v), :(ground.p.i + V.n.i + C.n.i = 0), :(V.p.i + Ri.n.i = 0), :(Ri.p.i + R.p.i = 0), :(R.n.i + C.p.i = 0), :(Ri.v = Ri.p.v - Ri.n.v), :(0 = Ri.p.i + Ri.n.i), :(Ri.i = Ri.p.i), :(Ri.R * Ri.i = Ri.v), :(R.v = R.p.v - R.n.v), :(0 = R.p.i + R.n.i), :(R.i = R.p.i), :(R.R * R.i = R.v), :(C.v = C.p.v - C.n.v), :(0 = C.p.i + C.n.i), :(C.i = C.p.i), :(C.C * der(C.v) = C.i), :(V.v = V.p.v - V.n.v), :(0 = V.p.i + V.n.i), :(V.i = V.p.i), :(V.v = 10), :(ground.p.v = 0)]
unknowns = Any[:(Ri.v), :(Ri.i), :(Ri.p.i), :(Ri.p.v), :(Ri.n.i), :(Ri.n.v), :(R.v), :(R.i), :(R.p.i), :(R.p.v), :(R.n.i), :(R.n.v), :(C.v), :(der(C.v)), :(C.i), :(C.p.i), :(C.p.v), :(C.n.i), :(C.n.v), :(V.v), :(V.i), :(V.p.i), :(V.p.v), :(V.n.i), :(V.n.v), :(ground.p.i), :(ground.p.v)]
G = [[27, 25], [23, 6], [4, 10], [12, 17], [19, 27], [26, 24, 18], [22, 5], [3, 9], [11, 16], [1, 4, 6], [3, 5], [2, 3], [2, 1], [7, 10, 12], [9, 11], [8, 9], [8, 7], [13, 17, 19], [16, 18], [15, 16], [14, 15], [20, 23, 25], [22, 24], [21, 22], [20], [27]]
vActive = Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
substitutions = Dict{Any,Any}()
assigned = [10, 13, 12, 3, 11, 2, 17, 16, 8, 14, 15, 4, 0, 21, 20, 9, 18, 19, 5, 25, 24, 7, 22, 23, 1, 6, 26]
assignedVar = [25, 6, 4, 12, 19, 26, 22, 9, 16, 1, 5, 3, 2, 10, 11, 8, 7, 17, 18, 15, 14, 23, 24, 21, 20, 27, 0]
blocks = [[26], [1], [25], [22], [2], [5], [18], [4], [10, 13, 12, 8, 16, 17, 14, 3], [11], [7], [23], [15], [9], [19], [6], [20], [21], [24]]
sortVariables = true
showIncidence(equations, unknowns, G, vActive, substitutions, assigned, assignedVar, blocks, sortVariables=sortVariables)
end
# testShowIncidence()
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 5797 | """
Encoding and decoding Modia models as JSON.
* Developer: Hilding Elmqvist, Mogram AB
* First version: August 2021
* License: MIT (expat)
"""
module JSONModel
export modelToJSON, JSONToModel, cloneModel
import JSON
using ModiaLang
using Unitful
using OrderedCollections
using ModiaBase.Symbolic: removeBlock
using Measurements
import MonteCarloMeasurements
"""
jModel = encodeModel(model, expressionsAsStrings=true)
Encodes a model suitable to convert to a JSON string.
* `model`: model (declarations and equations)
* `expressionsAsStrings`: Julia expressions stored as strings or ast (Expr struct, etc) stored as dictionary
* `return transformed model`
"""
function encodeModel(model, expressionsAsStrings=true)
Base.remove_linenums!(model)
model = removeBlock(model)
if typeof(model) <: Quantity
return Dict(:_value => ustrip.(model), :_unit=>string(unit(model)))
elseif expressionsAsStrings && typeof(model) == Expr
return Dict(:_Expr=>string(model))
elseif typeof(model) == Expr
return Dict("head"=>model.head, "args"=>[encodeModel(a, expressionsAsStrings) for a in model.args])
elseif typeof(model) == Symbol
return Dict(:_Symbol=>string(model))
elseif typeof(model) <: AbstractDict
jModel = OrderedDict()
for (n,v) in model
jModel[n] = encodeModel(v, expressionsAsStrings)
end
return jModel
elseif typeof(model) <: QuoteNode || typeof(model) <: Measurement || typeof(model) <: MonteCarloMeasurements.StaticParticles || typeof(model) <: MonteCarloMeasurements.Particles
return Dict(:_type=>"$(typeof(model))", :_value => string(model))
elseif typeof(model) <: AbstractArray
return [encodeModel(m, expressionsAsStrings) for m in model]
else
return model
end
end
"""
json = modelToJSON(model; expressionsAsStrings=true)
Encodes a model as JSON. Expressions can be stored as strings or as ASTs.
* `model`: model (declarations and equations)
* `expressionsAsStrings`: Julia expressions stored as strings or Expr struct stored as dictionary
* `return JSON string for the model`
"""
function modelToJSON(model; expressionsAsStrings=true)
jModel = encodeModel(model, expressionsAsStrings)
return JSON.json(jModel, 2)
end
"""
model = decodeModel(jModel)
Encodes a model suitable to convert to a JSON string.
* `jmodel`: encoded model
* `return model`
"""
function decodeModel(jModel)
if typeof(jModel) <: AbstractDict && length(keys(jModel)) == 2 && "_value" in keys(jModel) && "_unit" in keys(jModel)
unit = jModel["_unit"]
unit = replace(unit, ' ' => '*') # Workaround for https://github.com/PainterQubits/Unitful.jl/issues/391
return jModel["_value"]*uparse(unit)
elseif typeof(jModel) <: AbstractDict && length(keys(jModel)) == 1 && "_Expr" in keys(jModel)
return Meta.parse(jModel["_Expr"])
elseif typeof(jModel) <: AbstractDict && length(keys(jModel)) == 1 && "_Symbol" in keys(jModel)
return Symbol(jModel["_Symbol"])
elseif typeof(jModel) <: AbstractDict && length(keys(jModel)) == 2 && "head" in keys(jModel) && "args" in keys(jModel)
ast = Expr(Symbol(jModel["head"]), decodeModel.(jModel["args"])...)
return ast
elseif typeof(jModel) <: AbstractDict && length(keys(jModel)) == 2 && "_type" in keys(jModel) && "_value" in keys(jModel)
if jModel["_type"] == "QuoteNode"
return QuoteNode(eval(Meta.parse(jModel["_value"])))
else
return eval(Meta.parse(jModel["_value"]))
end
elseif typeof(jModel) <: AbstractDict
model = OrderedDict()
for (n,v) in jModel
model[Symbol(n)] = decodeModel(v)
end
return model
elseif typeof(jModel) <: AbstractArray
return [decodeModel(m) for m in jModel]
else
return jModel
end
end
"""
jModel = JSONToModel(json)
Decodes JSON string as model.
* `json`: JSON string for the model
* `return model`
"""
function JSONToModel(json)
jModel = JSON.parse(json, dicttype=OrderedDict)
model = decodeModel(jModel)
end
"""
modelClone = cloneModel(model; expressionsAsStrings=true)
Clones a model by encoding/decoding as JSON.
* `model`: model
* `expressionsAsStrings`: Julia expressions stored as strings or Expr struct stored as dictionary
* `return modelClone`
"""
function cloneModel(model; expressionsAsStrings=true)
# @showModel(model)
jsonModel = modelToJSON(model, expressionsAsStrings=expressionsAsStrings)
# @show jsonModel
modelClone = JSONToModel(jsonModel)
# @showModel(modelClone)
return modelClone
end
# --------------------------------------------------------------------
#=
function test()
model = Model(
p = 3u"m/s",
q = 4.5,
r = :(p+q),
v = Var(min=0),
s = "asdf qwerty",
t = 1 ± 0.1,
# u = 1 ∓ 0.1,
equations = :[
2*der(x) = -p*x
y = 2*x
]
)
model2 = Model(
# t = 1 ± 0.1,
# u = 1 ∓ 0.1,
)
println("Original model:")
@showModel(model)
println()
@instantiateModel(model, log=true)
json = modelToJSON(model)
println("JSON for model:")
println(json)
println()
modelClone = JSONToModel(json)
@show modelClone
println("Cloned model:")
@showModel(modelClone)
@instantiateModel(modelClone, log=true)
println()
json = modelToJSON(modelClone)
println("JSON for cloned model:")
println(json)
# ------------------------
Pin = Model( v = potential, i = flow )
Ground = Model( p = Pin, equations = :[ p.v = 0.0u"V" ] )
Gro = cloneModel(Ground)
@showModel(Gro)
@instantiateModel(Gro)
end
test()
=#
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 21712 | #=
Handles models and variables defined as dictionaries.
* Developer: Hilding Elmqvist, Mogram AB
* First version: June 2021
* License: MIT (expat)
=#
export mergeModels, recursiveMerge, redeclare, outer, showModel, @showModel, drawModel, Model, Map, Par, Var, setLogMerge,
constant, parameter, input, output, potential, flow, interval, @info_str, Boolean, Integ, @define, stringifyDefinition
using Base.Meta: isexpr
using OrderedCollections: OrderedDict
using Unitful
using ModiaBase.Symbolic: removeBlock, prepend
#using Profile
global logMerge = false
function setLogMerge(val)
global logMerge
logMerge = val
end
function stringifyDefinition(v)
if typeof(v) in [Symbol, Expr]
v = removeBlock(v)
v = ":(" * string(v) * ")"
end
return v
end
"Quote an expression; don't quote if the meaning in the AST is the same anyway."
selquote(x) = x
selquote(sym::Symbol) = Meta.quot(sym)
function selquote(ex::Expr)
if isexpr(ex, :kw) || isexpr(ex, :call)
Expr(ex.head, [ex.args[1], [selquote(e) for e in ex.args[2:end]]...]...)
else
Expr(ex.head, [selquote(e) for e in ex.args]...)
end
end
macro define(modelDef)
modelName = modelDef.args[1]
println(modelName)
model = modelDef.args[2]
model = selquote(model)
dump(model)
res = :($modelName = Meta.quot($model))
return esc(res)
end
isCollection(v) = (typeof(v) <: AbstractDict) && :_class in keys(v)
showModel(m, level=0) = println(m)
function showModel(m::OrderedDict, level=0)
# @show m typeof(m)
level += 1
if isCollection(m)
print(m[:_class])
else
print("OrderedDict")
end
println("(")
for (k, v) in m
if isCollection(v)
print(" "^level, k, " = ")
showModel(v, level)
elseif k == :equations
println(" "^level, "equations = :[")
for e in v.args
println(" "^(level+1), e)
end
println(" "^level, "]")
elseif typeof(v) <: AbstractArray
println(" "^level, k, " = [")
for e in v
print(" "^(level+1))
showModel(e, level+1)
end
println(" "^level, "]")
elseif k != :_class
println(" "^level, k, " = ", stringifyDefinition(v), ",")
end
end
println(" "^(level-1), "),")
end
macro showModel(model)
modelName = string(model)
mod = :( print($modelName, " = "); showModel($model); println() )
return esc(mod)
end
id = 1
function drawModel(name, m, level=0)
this = Dict()
children = []
ports = []
edges = []
level += 1
global id
if typeof(m) <: AbstractDict && haskey(m, :_class)
# print(m._class)
end
for (k, v) in zip(keys(m), m)
if typeof(v) <: AbstractDict && level <= 1
child = drawModel(k, v, level)
push!(children, child)
elseif k in [:_class, :equations, :input, :output, :potential, :flow, :info]
elseif k == :connect
for conn in v.args
conn = conn.args
source = conn[1]
target = conn[2:end]
id += 1
edge = (; id, sources = [string(source)], targets=[string(target[1])])
push!(edges, edge)
end
elseif level <= 2
port = (; id=string(name) * "." * string(k), height=10, width=10)
push!(ports, port)
end
end
if length(children) > 0 && length(ports) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], ports, children, edges)
elseif length(children) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], children, edges)
elseif length(ports) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], ports)
else
this = (;id=name, height=100, width=100, labels=[(;text=name)])
end
return this
end
# ---------------------------------------------------------
function mergeModels(m1::AbstractDict, m2::AbstractDict, env=Symbol())
# println("mergeModels")
# @show m1 m2
result = deepcopy(m1)
for (k,v) in m2
if k == :_class
elseif typeof(v) <: AbstractDict
if k in keys(result) && ! (:_redeclare in keys(v))
if logMerge; print("In $k: ") end
# @show result[k] v k
if typeof(result[k]) <: AbstractDict
m = mergeModels(result[k], v, k)
result[k] = m
else
# result[k] = v
end
elseif :_redeclare in keys(v)
if logMerge; println("Redeclaring: $k = $v") end
result[k] = v
elseif nothing in values(v) # TODO: Refine
else
if !(:_redeclare in keys(result))
if logMerge; print("Adding: $k = "); showModel(v, 2) end
end
result[k] = v
end
elseif v === nothing
if logMerge; println("Deleting: $k") end
delete!(result, k)
elseif k in keys(result) && k == :equations
equa = copy(result[k])
push!(equa.args, v.args...)
result[k] = equa
if logMerge
println("Adding equations: ", v)
end
else
if logMerge
if k in keys(result)
if result[k] != v
println("Changing: $k = $(stringifyDefinition(result[k])) to $k = $(stringifyDefinition(v))")
end
elseif !(:_redeclare in keys(result))
println("Adding: $k = $(stringifyDefinition(v))")
end
end
result[k] = v
end
end
# delete!(result, :_class)
return result
end
function newCollection(kwargs, kind)
m = OrderedDict{Symbol, Any}(kwargs)
m[:_class] = kind
m
end
Model(; kwargs...) = newCollection(kwargs, :Model)
Map(; kwargs...) = newCollection(kwargs, :Map)
Par(; kwargs...) = newCollection(kwargs, :Par)
Var(;kwargs...) = newCollection(kwargs, :Var)
function Var(values...; kwargs...)
res = newCollection(kwargs, :Var)
for v in values
res = res | v
end
res
end
function Par(value; kwargs...)
res = newCollection(kwargs, :Par)
res[:value] = value
res
end
Integ(;kwargs...) = Var(kwargs)
Boolean(;kwargs...) = Var(kwargs)
redeclare = Model( _redeclare = true)
outer = Var( _outer = true)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
interval(min, max) = Var(min=min, max=max)
macro info_str(text)
Var(info=text)
end
Base.:|(m::AbstractDict, n::AbstractDict) = mergeModels(m, n)
Base.:|(m::Symbol, n::AbstractDict) = mergeModels(eval(m), n)
Base.:|(m, n) = if !(typeof(n) <: AbstractDict); mergeModels(m, Var(value=n)) else mergeModels(n, Var(value=m)) end
#mergeModels(x, ::Nothing) = x
#mergeModels(x, y) = y
#recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
#mergeModels(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
# -------------------------------------------------------------------------------
# Handling of connections
"""
Unpacks a path to a sequence.
Example: :(a.b.c) => [:a, :b, :c]
"""
function unpackPath(path, sequence)
if typeof(path) == Symbol
push!(sequence, path)
elseif isexpr(path, :.)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2].value)
elseif isexpr(path, :ref)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2:end]...)
end
end
isVar(v, kind) = isCollection(v) && v[:_class] == :Var && kind in keys(v) && v[kind]
"""
Collects potentials, flows, inputs and outputs from a Model.
"""
function collectConnector(name, model)
potentials = []
flows = []
inputs = OrderedDict{Any,Any}()
outputs = OrderedDict{Any,Any}()
potentialPotentials = []
for (k,v) in model
if isVar(v, :potential)
push!(potentials, k)
elseif isVar(v, :flow)
push!(flows, k)
push!(potentials, potentialPotentials...)
elseif isVar(v, :input)
inputs[prepend(k, name)] = v
elseif isVar(v, :output)
outputs[prepend(k, name)] = v
elseif isCollection(v) && v[:_class] == :Var
# println("Non potential or flow variable: $k = $v")
push!(potentialPotentials, k)
elseif isCollection(v) && v[:_class] == :Model
subPotentials, subFlows = collectConnector(k, v)
push!(potentials, [prepend(p, k) for p in subPotentials]...)
push!(flows, [prepend(f, k) for f in subFlows]...)
end
end
return potentials, flows, inputs, outputs
end
"""
Merge connections referencing the same connector into the same tuple (similar as Modelica semantics of connections).
For examples, see below.
"""
function mergeConnections!(connections)
for i in 1:length(connections)
for j in 1:i-1
con1 = connections[i]
con2 = connections[j]
if length(con1.args) > 0 && length(con2.args) > 0 && length(intersect(Set(con1.args), Set(con2.args))) > 0
connections[i] = Expr(:tuple, union(Set(con1.args), Set(con2.args))...)
connections[j] = Expr(:tuple) # Empty tuple
end
end
end
end
function testMergeConnections()
connections = [
:((a, b))
:((b, c))
:((m1.b, m2.a))
:((m1.b, m3.a))
:((r,s,t))
:((s,t,u))
]
mergeConnections!(connections)
@assert connections == Expr[:(()), :((a, b, c)), :(()), :((m1.b, m3.a, m2.a)), :(()), :((s, u, t, r))]
end
"""
Convert connections to equations
"""
function convertConnections!(connections, model, modelName, logging=false)
# println("\nconvertConnections")
# showModel(model)
mergeConnections!(connections)
connectEquations = []
alreadyConnected = []
for i in 1:length(connections)
c = connections[i]
if c.head == :tuple
connected = c.args
inflows = []
outflows = []
first = true
signalFlow1 = nothing
connectedOutput = nothing
potentials1 = nothing
fullPotentials1 = []
flows1 = []
for con in connected
if con in alreadyConnected
error("Already connected: $con, found in connection: $connected")
end
push!(alreadyConnected, con)
# @show connected con
sequence = []
unpackPath(con, sequence)
mod = model
for s in sequence[1:end-1]
if s in keys(mod)
mod = mod[s]
else
error("Invalid path $con: $s not found in $(keys(mod))")
end
end
if sequence[end] in keys(mod)
mod = mod[sequence[end]]
if :input in keys(mod) && mod[:input] || :output in keys(mod) && mod[:output] || :_class in keys(mod) && mod[:_class] == :Var
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
if :output in keys(mod) && mod[:output]
if connectedOutput != nothing # TODO: refine logic concerning inner and outer inputs and outputs
# error("It is not allowed to connect two outputs: ", connectedOutput, ", ", con)
end
connectedOutput = con
end
elseif :_class in keys(mod) && mod[:_class] == :Var
if length(fullPotentials1) > 0
push!(connectEquations, :($(fullPotentials1[1]) = $con))
end
push!(fullPotentials1, con)
else
potentials, flows = collectConnector("", mod)
# Deprecated
if :potentials in keys(mod)
potentials = vcat(potentials, mod.potentials.args)
end
if :flows in keys(mod)
flows = vcat(flows, mod.flows.args)
end
if potentials1 != nothing && potentials != potentials1
error("Not compatible potential variables: $potentials1 != $potentials, found in connection: $connected")
end
fullPotentials = []
for i in 1:length(potentials)
p = potentials[i]
potential = prepend(p, con)
push!(fullPotentials, potential)
if potentials1 != nothing
push!(connectEquations, :($(fullPotentials1[i]) = $potential))
end
end
potentials1 = potentials
fullPotentials1 = fullPotentials
if first
for i in 1:length(flows)
push!(inflows, 0)
push!(outflows, 0)
end
first = false
end
if length(flows1) > 0 && flows != flows1
error("Not compatible flow variables: $flows1 != $flows, found in connection: $connected")
end
for i in 1:length(flows)
f = flows[i]
flowVar = prepend(f, con)
if length(sequence) == 1
if inflows[i] == 0
inflows[i] = flowVar
else
inflows[i] = :($(inflows[i]) + $flowVar)
end
else
if outflows[i] == 0
outflows[i] = flowVar
else
outflows[i] = :($(outflows[i]) + $flowVar)
end
end
end
flows1 = flows
end
else
# Deprecated
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
end
end
for i in 1:length(inflows)
if inflows[i] != 0 || outflows[i] != 0
push!(connectEquations, :($(inflows[i]) = $(outflows[i])))
end
end
end
end
if length(connectEquations) > 0 && logging
# testMergeConnections()
println("Connect equations in $modelName:")
for e in connectEquations
println(" ", e)
end
end
return connectEquations
end
# ----------------------------------------------------------------------------
# Flattening
function flattenModelTuple!(model, modelStructure, modelName, to; unitless = false, log=false)
# @show model
connections = []
extendedModel = deepcopy(model)
for (k,v) in model
if typeof(modelName) == String
subMod = k
else
subMod = :($modelName.$k)
end
if k in [:_class, :_redeclare]
# skip them
elseif typeof(v) <: Number || typeof(v) <: Unitful.Quantity ||
typeof(v) in [Array{Int64,1}, Array{Int64,2}, Array{Float64,1}, Array{Float64,2}] ||
isCollection(v) && v[:_class] == :Par
# typeof(v) <: AbstractDict && :parameter in keys(v) && v.parameter
# p = 5.0
if unitless && !isCollection(v)
v = ustrip.(v)
end
modelStructure.parameters[subMod] = v
modelStructure.mappedParameters[k] = v
elseif (isCollection(v) && v[:_class] in [:Par, :Var] ||
isCollection(v) && :parameter in keys(v) && v[:parameter]) &&
:value in keys(v)
v = v[:value]
if typeof(v) in [Expr, Symbol]
push!(modelStructure.equations, removeBlock(:($k = $v)))
else
modelStructure.parameters[subMod] = v
modelStructure.mappedParameters[k] = v
end
elseif isCollection(v) && v[:_class] in [:Var] ||
typeof(v) <: AbstractDict && :variable in keys(v) && v[:variable]
if :init in keys(v)
x0 = v[:init]
if unitless && typeof(x0) != Expr
x0 = ustrip.(x0)
end
modelStructure.init[subMod] = x0
modelStructure.mappedParameters[k] = x0
end
if :start in keys(v)
s0 = v[:start]
if unitless && typeof(s0) != Expr
s0 = ustrip.(s0)
end
modelStructure.start[subMod] = s0
modelStructure.mappedParameters[k] = s0
end
if :input in keys(v) && v[:input]
modelStructure.inputs[subMod] = v
end
if :output in keys(v) && v[:output]
modelStructure.outputs[subMod] = v
end
if :_outer in keys(v) && v[:_outer]
push!(modelStructure.equations, :($k = $(prepend(k, :up))))
end
if :hideResult in keys(v)
push!(modelStructure.hideResults, subMod)
end
elseif isCollection(v) # || typeof(v) == Symbol # instantiate
if typeof(v) == Symbol
v = eval(eval(v))
end
subModelStructure = ModelStructure()
m = :($modelName.$k)
if typeof(modelName) == String
m = k
end
flattenModelTuple!(v, subModelStructure, m, to; unitless, log)
#=
println("subModelStructure")
@show subModelStructure
printModelStructure(subModelStructure, label=k)
=#
@timeit to "merge model structures" mergeModelStructures(modelStructure, subModelStructure, k)
elseif typeof(v) <:Array && length(v) > 0 && (typeof(v[1]) <: AbstractDict || typeof(v[1]) <: AbstractDict) # array of instances
i = 0
for a in v
i += 1
subModelStructure = ModelStructure()
name = Symbol(string(k)*"_"*string(i))
flattenModelTuple!(a, subModelStructure, name, to; unitless, log)
@timeit to "merge model structures" mergeModelStructures(modelStructure, subModelStructure, name )
end
elseif isexpr(v, :vect) || isexpr(v, :vcat) || isexpr(v, :hcat)
arrayEquation = false
for e in v.args
if k == :equations && isexpr(e, :(=)) # Allow expressions without result
if unitless
e = removeUnits(e)
end
push!(modelStructure.equations, removeBlock(e))
elseif isexpr(e, :tuple)
push!(connections, e)
elseif isexpr(e, :call) && e.args[1] == :connect
con = Expr(:tuple, e.args[2:end]... )
push!(connections, con)
else
arrayEquation = true
end
end
if arrayEquation
push!(modelStructure.equations, removeBlock(:($k = $(prepend(v, :up))))) # Needed for TestStateSpace.SecondOrder1
# push!(modelStructure.equations, removeBlock(:($k = $v))) # To handle assert
end
elseif isexpr(v, :(=)) # Single equation
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, removeBlock(v))
elseif v !== nothing # Binding expression
# println("Binding expression")
# @show k v typeof(v)
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, :($k = $(prepend(v, :up))))
# push!(modelStructure.equations, :($k = $v)) # To fix Modelica_Electrical_Analog_Interfaces_ConditionalHeatPort
# @show modelStructure.equations
end
end
@timeit to "convert connections" connectEquations = convertConnections!(connections, extendedModel, modelName, log)
push!(modelStructure.equations, connectEquations...)
printModelStructure(modelStructure, "flattened", log=false)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 47508 | """
Main module of ModiaLang.
* Developer: Hilding Elmqvist, Mogram AB
* First version: December 2020
* License: MIT (expat)
"""
module ModiaLang
# Defalut switch settings
logStatistics = false
logExecution = false
logCalculations = false
useNewCodeGeneration = false
experimentalTranslation = false
using Reexport
@reexport using Unitful # export Unitful symbols
@reexport using DifferentialEquations # export DifferentialEquations symbols
export ModiaBase
export CVODE_BDF, IDA
export ModiaBase
export instantiateModel, @instantiateModel, assert, stringifyDefinition
export stripUnit
export simulate!, linearize!, get_result
export @usingModiaPlot, usePlotPackage, usePreviousPlotPackage, currentPlotPackage
export resultInfo, printResultInfo, rawSignal, getPlotSignal, defaultHeading
export signalNames, timeSignalName, hasOneTimeSignal, hasSignal
export SimulationModel, measurementToString, get_lastValue
export positive, negative, previous, edge, after, reinit, pre
export initial, terminal, isInitial, isTerminal, initLinearEquationsIteration!
export get_xNames
export registerExtraSimulateKeywordArguments
export get_extraSimulateKeywordArgumentsDict
import Sundials
const CVODE_BDF = Sundials.CVODE_BDF
const IDA = Sundials.IDA
using Base.Meta: isexpr
using OrderedCollections: OrderedDict
using ModiaBase.Symbolic
using ModiaBase.Simplify
using ModiaBase.BLTandPantelidesUtilities
using ModiaBase.BLTandPantelides
using ModiaBase.Differentiate
using ModiaBase
import ModiaResult
import ModiaResult: usePlotPackage, usePreviousPlotPackage, currentPlotPackage
import ModiaResult: resultInfo, printResultInfo, rawSignal, getPlotSignal, defaultHeading
import ModiaResult: signalNames, timeSignalName, hasOneTimeSignal, hasSignal
import StaticArrays # Make StaticArrays available for the tests
using Measurements
import MonteCarloMeasurements
using JSON
#using Profile
using TimerOutputs
using InteractiveUtils
global to = TimerOutput()
Unitful.unit( v::MonteCarloMeasurements.AbstractParticles{T,N}) where {T,N} = unit(T)
Unitful.upreferred(v::MonteCarloMeasurements.AbstractParticles{T,N}) where {T,N} = uconvert(upreferred(unit(v)), v)
"""
stripUnit(v)
Convert the unit of `v` to the preferred units (default are the SI units),
and then strip the unit. For details see `upreferred` and `preferunits` in
[Unitful](https://painterqubits.github.io/Unitful.jl/stable/conversion/)
The function is defined as: `stripUnit(v) = ustrip.(upreferred.(v))`.
"""
stripUnit(v) = ustrip.(upreferred.(v))
include("ModelCollections.jl")
include("EvaluateParameters.jl")
include("EventHandler.jl")
include("CodeGeneration.jl")
# include("GenerateGetDerivatives.jl")
include("Synchronous.jl")
include("SimulateAndPlot.jl")
include("ReverseDiffInterface.jl")
include("PathPlanning.jl")
include("JSONModel.jl")
# include("IncidencePlot.jl")
# using .IncidencePlot
# Base.Experimental.@optlevel 0
const drawIncidence = false
const path = dirname(dirname(@__FILE__)) # Absolute path of package directory
const Version = "0.11.3"
const Date = "2022-02-28"
#println(" \n\nWelcome to Modia - Dynamic MODeling and Simulation in julIA")
#=
print(" \n\nWelcome to ")
printstyled("Tiny", color=:light_black)
print("Mod")
printstyled("ia", bold=true, color=:red)
print(" - ")
printstyled("Dynamic ", color=:light_black)
print("Mod")
printstyled("eling and Simulation with Jul", color=:light_black)
printstyled("ia", bold=true, color=:red)
println()
println("Version $Version ($Date)")
=#
# ----------------------------------------------------------------------------------------------
function assert(condition, message)
if ! condition
println("ASSERTION: ", message)
end
end
function printArray(array, heading; order=1:length(array), log=false, number=true, indent=false, spacing=" ")
if length(array) > 0 && log
println(heading)
n = 0
for v in array
n += 1
if number
print(lpad(order[n], 4), ": ")
end
if indent
print(("|"*spacing)^(n-1))
end
println(replace(replace(string(v), "\n" => " "), " " => " "))
end
end
end
function performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log=false)
nUnknowns = length(unknowns) - length(states)
nEquations = length(equations)
if nEquations > 0 && nUnknowns != nEquations
printstyled("The number of unknowns ($nUnknowns) and equations ($nEquations) is not equal!\n", bold=true, color=:red)
printArray(parameters, "Parameters:", log=true)
printArray(states, "Potential states:", log=true)
printArray(setdiff(unknowns,states), "Unknowns:", log=true)
printArray(equations, "Equations:", log=true)
end
ok = nUnknowns == nEquations
# Check consistency
EG::Array{Array{Int,1},1} = [G; buildExtendedSystem(Avar)]
assignEG = matching(EG, length(Avar))
# @assert all(assignEG .> 0) " The DAE is structurally singular\n $assignEG."
assigned = [a > 0 for a in assignEG]
if ! (all(assigned)) || ! ok
if nUnknowns > nEquations
missingEquations = nUnknowns - nEquations
printstyled("\nThe DAE has no unique solution, because $missingEquations equation(s) missing!\n", bold=true, color=:red)
elseif nEquations > nUnknowns
tooManyEquations = nEquations - nUnknowns
printstyled("\nThe DAE has no unique solution, because $tooManyEquations equation(s) too many\n", bold=true, color=:red)
else
printstyled("\nThe DAE has no unique solution, because it is structurally inconsistent\n" *
" (the number of equations is identical to the number of unknowns)\n", bold=true, color=:red)
end
singular = true
hequ = []
# Create dummy equations for printing: integrate(x, der(x)) = 0
for i in 1:length(Avar)
a = Avar[i]
if a > 0
n = unknowns[i]
der = unknowns[a]
push!(hequ, "integrate($n, $der) = 0")
end
end
equationsEG = vcat(equations, hequ)
println("\nAssigned equations after consistency check:")
printAssignedEquations(equationsEG, unknowns, 1:length(EG), assignEG, Avar, fill(0, length(EG)))
unassigned = []
for i in eachindex(assignEG)
if assignEG[i] == 0
push!(unassigned, unknowns[i])
end
end
printArray(unassigned, "Not assigned variables after consistency check:", log=true)
if nUnknowns > nEquations
missingEquations = nUnknowns - nEquations
error("Aborting, because $missingEquations equation(s) missing!")
elseif nEquations > nUnknowns
tooManyEquations = nEquations - nUnknowns
error("Aborting, because $tooManyEquations equation(s) too many!")
else
error("Aborting, because DAE is structurally inconsistent")
end
elseif log
println(" The DAE is structurally nonsingular.")
end
end
function assignAndBLT(model, modelName, modelModule, equations, unknowns, modelStructure, Avar, G, states, logDetails, log=false, logTiming=false)
parameters = modelStructure.parameters
vActive = [a == 0 for a in Avar]
if drawIncidence
showIncidence(equations, unknowns, G, vActive, [], [], [], [[e] for e in 1:length(G)])
end
if false # logAssignmentBeforePantelides
@show G length(Avar) vActive
assign = matching(G, length(Avar), vActive)
@show assign
println("\nAssigned equations:")
Bequ = fill(0, length(G))
printAssignedEquations(equations, unknowns, 1:length(G), assign, Avar, Bequ)
printUnassigned(equations, unknowns, assign, Avar, Bequ, vActive)
end
if logTiming
println("\nCheck consistency of equations by matching extended equation set")
@timeit to "performConsistencyCheck" performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log)
else
performConsistencyCheck(G, Avar, vActive, parameters, unknowns, states, equations, log)
end
if logTiming
println("\nIndex reduction (Pantelides)")
@timeit to "pantelides!" assign, Avar, Bequ = pantelides!(G, length(Avar), Avar)
else
assign, Avar, Bequ = pantelides!(G, length(Avar), Avar)
end
if logDetails
@show assign Avar Bequ
end
moreVariables = length(Avar) > length(unknowns)
unknowns = vcat(unknowns, fill(:x, length(Avar) - length(unknowns)))
for i in 1:length(Avar)
if Avar[i] > 0
unknowns[Avar[i]] = derivative(unknowns[i], keys(parameters))
end
end
vActive = [a == 0 for a in Avar]
moreEquations = length(Bequ) > length(equations)
equations = vcat(equations, fill(:(a=b), length(Bequ) - length(equations)))
for i in 1:length(Bequ)
if Bequ[i] > 0
if log
println("Differentiating: ", equations[i])
end
equations[Bequ[i]] = simplify(derivative(equations[i], keys(parameters)))
if log
println(" Differentiated equation: ", equations[Bequ[i]])
end
end
end
if moreVariables && log
printArray(unknowns, "Unknowns after index reduction:", log=logDetails)
end
if moreEquations && log
printArray(equations, "Equations after index reduction:", log=logDetails)
end
HG = Array{Array{Int64,1},1}()
originalEquationIndex = []
highestDerivativeEquations = []
for i in 1:length(G)
if Bequ[i] == 0
push!(HG, G[i])
push!(highestDerivativeEquations, equations[i])
push!(originalEquationIndex, i)
end
end
if logTiming
println("Assign")
@timeit to "matching" assign = matching(HG, length(Avar), vActive)
else
assign = matching(HG, length(Avar), vActive)
end
if logTiming
println("BLT")
@timeit to "BLT" bltComponents = BLT(HG, assign)
else
bltComponents = BLT(HG, assign)
end
if logDetails
@show HG
@show bltComponents
end
if log
println("\nSorted highest derivative equations:")
printSortedEquations(highestDerivativeEquations, unknowns, bltComponents, assign, Avar, Bequ)
end
if experimentalTranslation
return specialTranslation(model, modelName, modelModule, highestDerivativeEquations, unknowns, modelStructure, states, bltComponents, assign, Avar, Bequ)
end
if drawIncidence
assignedVar, unAssigned = invertAssign(assign)
showIncidence(equations, unknowns, HG, vActive, [], assign, assignedVar, bltComponents, sortVariables=true)
end
blt = Vector{Int}[] # TODO: Change type
for c in bltComponents
push!(blt, originalEquationIndex[c])
end
for i in eachindex(assign)
if assign[i] != 0
assign[i] = originalEquationIndex[assign[i]]
end
end
return (unknowns, equations, G, Avar, Bequ, assign, blt, parameters)
end
function setAvar(unknowns)
variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
Avar = fill(0, length(unknowns))
states = []
derivatives = []
for i in 1:length(unknowns)
v = unknowns[i]
if isexpr(v, :call)
push!(derivatives, v)
x = v.args[2]
ix = variablesIndices[x]
Avar[ix] = i
push!(states, unknowns[ix])
end
end
return Avar, states, derivatives
end
mutable struct ModelStructure
parameters::OrderedDict{Any,Any}
mappedParameters::OrderedDict{Symbol,Any}
init::OrderedDict{Any,Any}
start::OrderedDict{Any,Any}
variables::OrderedDict{Any,Any}
flows::OrderedDict{Any,Any}
inputs::OrderedDict{Any,Any}
outputs::OrderedDict{Any,Any}
# components
# extends
equations::Array{Expr,1}
hideResults::OrderedSet{Any} # Do not store these variables in the result data structure
end
ModelStructure() = ModelStructure(OrderedDict(), OrderedDict{Symbol,Any}(), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), OrderedDict(), Expr[], OrderedSet())
function printDict(label, d)
if length(d) > 0
print(label)
for (k,v) in d
print(k)
if v != nothing
print(" => ", v)
end
print(", ")
end
println()
end
end
function printModelStructure(m, label=""; log=false)
if log
println("ModelStructure ", label)
printDict(" parameters: ", m.parameters)
printDict(" mappedParameters: ", m.mappedParameters)
printDict(" init: ", m.init)
printDict(" start: ", m.start)
printDict(" variables: ", m.variables)
printDict(" flows: ", m.flows)
printDict(" inputs: ", m.inputs)
printDict(" outputs: ", m.outputs)
println(" equations: ")
for e in m.equations
println(" ", e)
end
end
end
prependDict(dict, prefix) = OrderedDict([prepend(k, prefix) => prepend(v, prefix) for (k,v) in dict])
function mergeModelStructures(parent::ModelStructure, child::ModelStructure, prefix)
merge!(parent.parameters, child.parameters)
parent.mappedParameters[prefix] = child.mappedParameters
merge!(parent.init, child.init)
parent.mappedParameters[prefix] = child.mappedParameters
merge!(parent.start, child.start)
parent.mappedParameters[prefix] = child.mappedParameters
merge!(parent.variables, child.variables)
merge!(parent.flows, child.flows)
union!(parent.hideResults, child.hideResults)
push!(parent.equations, prepend(child.equations, prefix)...)
end
function replaceLinearIntegerEquations(Gint, eInt, GcInt, unknowns, equations)
for i = 1:length(Gint)
e = Gint[i]
if length(e) > 0
# Construct equation
rhs = 0
for j = 1:length(e)
v = e[j]
vc = GcInt[i][j]
rhs = add(rhs, mult(vc, unknowns[v]))
end
equ = :(0 = $rhs)
equations[eInt[i]] = equ
else
equations[eInt[i]] = :(0 = 0)
end
end
end
function performAliasReduction(unknowns, equations, Avar, logDetails, log)
@timeit to "enumerate(unknowns)" variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
linearVariables = []
nonlinearVariables = []
linearEquations = Vector{Int}()
nonlinearEquations = []
G = Vector{Int}[] # Array{Array{Int64,1},1}()
Gint = Array{Array{Int64,1},1}()
GcInt = Array{Array{Int64,1},1}()
@timeit to "build graph information" for i in 1:length(equations)
e = equations[i]
nameIncidence, coefficients, rest, linear = getCoefficients(e)
incidence = [variablesIndices[n] for n in nameIncidence if n in keys(variablesIndices)]
unique!(incidence)
push!(G, incidence)
if linear && all([c == 1 || c == -1 for c in coefficients]) && rest == 0 && all(n in keys(variablesIndices) for n in nameIncidence)
push!(linearVariables, nameIncidence...)
push!(linearEquations, i)
push!(Gint, incidence)
push!(GcInt, coefficients)
else
push!(nonlinearVariables, nameIncidence...)
push!(nonlinearEquations, e)
end
end
if logDetails
@show G
@show Avar
end
@timeit to "unique!(linearVariables)" unique!(linearVariables)
@timeit to "unique!(nonlinearVariables)" unique!(nonlinearVariables)
@timeit to "setdiff" vSolveInLinearEquations = setdiff(linearVariables, nonlinearVariables)
if logDetails
printArray(linearVariables, "linearVariables:", number=false)
printArray(equations[linearEquations], "linearEquations:", number=false)
# printArray(nonlinearVariables, "nonlinearVariables:", number=false)
# printArray(nonlinearEquations, "nonlinearEquations:", number=false)
@show linearEquations vSolveInLinearEquations Gint GcInt
end
GCopy = deepcopy(G)
AvarCopy = deepcopy(Avar)
@timeit to "simplifyLinearIntegerEquations!" (vEliminated, vProperty, nvArbitrary, redundantEquations) = simplifyLinearIntegerEquations!(GCopy, linearEquations, GcInt, AvarCopy)
if logDetails
@show vEliminated vProperty nvArbitrary redundantEquations
end
if log
printSimplifiedLinearIntegerEquations(GCopy, linearEquations, GcInt, vEliminated, vProperty, nvArbitrary, redundantEquations, v->string(unknowns[v]), printTest=false)
end
substitutions = OrderedDict()
@timeit to "build substitutions" if length(vEliminated) - nvArbitrary > 0
for v in vEliminated[nvArbitrary+1:end]
if isZero(vProperty, v)
substitutions[unknowns[v]] = 0.0
elseif isAlias(vProperty, v)
substitutions[unknowns[v]] = unknowns[alias(vProperty,v)]
else
substitutions[unknowns[v]] = :(- $(unknowns[negAlias(vProperty,v)]))
end
end
end
@timeit to "replaceLinearIntegerEquations" replaceLinearIntegerEquations(GCopy[linearEquations], linearEquations, GcInt, unknowns, equations)
# printArray(equations, "new equations:", log=log)
reducedEquations = []
@timeit to "substitute" for ei in 1:length(equations)
e = equations[ei]
if e != :(0 = 0)
push!(reducedEquations, substitute(substitutions, e))
end
end
reducedUnknowns = []
for vi in 1:length(unknowns)
if isNotEliminated(vProperty, vi)
push!(reducedUnknowns, unknowns[vi])
end
end
reducedVariablesIndices = OrderedDict(key => k for (k, key) in enumerate(reducedUnknowns))
reducedG = Vector{Int}[] # Array{Array{Int64,1},1}()
@timeit to "build reducedG" for i in 1:length(reducedEquations)
e = reducedEquations[i]
nameIncidence = Incidence[]
findIncidence!(e, nameIncidence)
incidence = [reducedVariablesIndices[n] for n in nameIncidence if n in keys(reducedVariablesIndices)]
unique!(incidence)
push!(reducedG, incidence)
end
reducedAvar, reducedStates, reducedDerivatives = setAvar(reducedUnknowns)
return reducedEquations, reducedUnknowns, reducedAvar, reducedG, reducedStates, vEliminated, vProperty
end
function stateSelectionAndCodeGeneration(modStructure, Gexplicit, name, modelModule, buildDict, FloatType, TimeType, init, start, inputs, outputs, vEliminated, vProperty, unknownsWithEliminated, mappedParameters, hideResults;
unitless=false, logStateSelection=false, logCode=false, logExecution=false, logCalculations=false, logTiming=false, evaluateParameters=false)
(unknowns, equations, G, Avar, Bequ, assign, blt, parameters) = modStructure
Goriginal = deepcopy(G)
function getSolvedEquationAST(e, v)
(solution, solved) = solveEquation(equations[e], unknowns[v])
unknown = solution.args[1]
expr = solution.args[2]
### solution = :(_variables[$(v+1)] = $unknown = $expr)
equ = string(equations[e])
@assert solved "Equation not solved for $(unknowns[v]): $(equations[e])"
# sol = string(solution)
# solution = prepend(makeDerivativeVar(solution, components), :m)
solution = substituteForEvents(solution)
if false
# solution = :(begin println("Executing: ", $sol); $solution end)
if sol != equ
solution = :(try $solution; catch e; println("\n\nFailure executing: ", $sol); println("Original equation: ", $equ, "\n\n"); rethrow(e) end)
else
solution = :(try $solution; catch e; println("\n\nFailure executing: ", $sol, "\n\n"); rethrow(e) end)
end
# solution = :(try $solution; catch e; println("Failure executing: ", $sol); println(sprint(showerror,e)); rethrow(e) end)
# solution = :(try $solution; catch e; println("Failure executing: ", $sol); printstyled(stderr,"ERROR: ", bold=true, color=:red);
# printstyled(stderr,sprint(showerror,e), color=:light_red); println(stderr); end)
end
solution = makeDerVar(solution, parameters, inputs, evaluateParameters)
if logCalculations
var = string(unknowns[v])
solutionString = string(solution)
return :(println("Calculating: ", $solutionString); $solution; println(" Result: ", $var, " = ", upreferred.($(solution.args[1]))))
else
return solution
end
end
function getResidualEquationAST(e, residualName)
eq = equations[e] # prepend(makeDerivativeVar(equations[e], components), :m)
lhs = eq.args[1]
rhs = eq.args[2]
if isexpr(rhs, :call) && rhs.args[1] == :_DUPLICATEEQUATION
return nothing
end
if isexpr(lhs, :tuple) && all(a == 0 for a in lhs.args) || lhs == :(0)
eq_rhs = makeDerVar(:($rhs), parameters, inputs, evaluateParameters)
if unitless
eqs = eq_rhs
else
eqs = :(ModiaLang.Unitful.ustrip.($eq_rhs))
end
#elseif isexpr(lhs, :tuple) && isexpr(rhs, :call) && unitless
# eq_rhs = makeDerVar(:($rhs), parameters, inputs, evaluateParameters)
# eq_lhs = makeDerVar(:($lhs), parameters, inputs, evaluateParameters)
# eqs = :( ($eq_rhs .-= $eq_lhs) )
else
eq_rhs = makeDerVar(:($rhs), parameters, inputs, evaluateParameters)
eq_lhs = makeDerVar(:($lhs), parameters, inputs, evaluateParameters)
if unitless
eqs = :( $eq_rhs .- $eq_lhs )
else
eqs = :( ModiaLang.Unitful.ustrip.($eq_rhs) .- ModiaLang.Unitful.ustrip.($eq_lhs))
end
end
residual = :(ModiaBase.appendVariable!(_leq_mode.residuals, $eqs))
residString = string(eqs)
if logCalculations
return :(println("Calculating residual: ", $residString); $residualName = $eqs; println(" Residual: ", $residualName) )
# return makeDerVar(:(dump($(makeDerVar(eq.args[2]))); dump($(makeDerVar(eq.args[1]))); $residual; println($residualName, " = ", upreferred.(($(eq.args[2]) - $(eq.args[1]))))))
else
return residual
end
end
function isLinearEquation(e_original, v_original)
equ = equations[e_original]
var = unknowns[v_original]
return isLinear(equ, var)
end
function isSolvableEquation(e_original, v_original)
equ = equations[e_original]
var = unknowns[v_original]
#(solution, solved) = solveEquation(equ, var)
#return solved
(rest, factor, linear) = ModiaBase.linearFactor(equ, var)
return linear && (typeof(factor) <: Number && factor != 0)
end
hasParticles(value) = typeof(value) <: MonteCarloMeasurements.StaticParticles ||
typeof(value) <: MonteCarloMeasurements.Particles
invAvar = ModiaBase.revertAssociation(Avar)
function var_unit(v)
int_v = invAvar[v]
if int_v > 0
# v is a derivative variable
var = unknowns[int_v]
else
# v is a non-differentiated variable
var = unknowns[v]
end
if var in keys(init)
value = eval(init[var])
elseif var in keys(start)
value = eval(start[var])
else
value = 0.0
end
if int_v > 0
value = value / u"s"
end
# if length(value) == 1
if ! (typeof(value) <: AbstractArray)
un = unit(value)
else
un = unit.(value)
@assert all([un[i] == un[1] for i in 2:length(un)]) "The unit of all elements of state vector must be equal: $var::$(value)"
un = un[1]
end
return replace(string(un), " " => "*") # Fix since Unitful removes * in unit strings
end
function var_startInitFixed(v_original)
v = unknowns[v_original]
value::Any = nothing
fixed::Bool = false
if v in keys(init)
value = eval(init[v])
fixed = true
elseif v in keys(start)
value = eval(start[v])
end
return (value, fixed)
end
function eq_equation(e)
return replace(replace(string(equations[e]), "\n" => " "), " " => " ")
end
# ----------------------------------------------------------------------------
solvedAST = []
Gsolvable = copy(G)
juliaVariables = [Symbol(u) for u in unknowns]
stringVariables = [String(Symbol(v)) for v in unknowns]
allEquations = equations
# @show stringVariables equations G blt assign Avar Bequ Gsolvable
stateSelectionFunctions = StateSelectionFunctions(
var_name = v -> stringVariables[v],
var_julia_name = v -> juliaVariables[v],
var_unit = var_unit,
var_startInitFixed = var_startInitFixed,
var_nominal = v_original -> NaN,
var_unbounded = v_original -> false,
equation = eq_equation,
isSolvableEquation = isSolvableEquation,
isLinearEquation = isLinearEquation,
getSolvedEquationAST = getSolvedEquationAST,
getResidualEquationAST = getResidualEquationAST,
showMessage = (message;severity=0,from="???",details="",variables=Int[],equations=Int[]) ->
ModiaBase.showMessage(message, severity, from, details,
stringVariables[variables],
string.(allEquations[equations]))
)
if length(equations) == 0
return nothing
end
if logTiming
println("Get sorted and solved AST")
@timeit to "getSortedAndSolvedAST" (success,AST,equationInfo) = getSortedAndSolvedAST(
Goriginal, Gexplicit, Array{Array{Int64,1},1}(blt), assign, Avar, Bequ, stateSelectionFunctions;
unitless, log = logStateSelection, modelName = name)
else
(success,AST,equationInfo) = getSortedAndSolvedAST(
Goriginal, Gexplicit, Array{Array{Int64,1},1}(blt), assign, Avar, Bequ, stateSelectionFunctions;
unitless, log = logStateSelection, modelName = name)
end
if ! success
error("Aborting")
end
if useNewCodeGeneration
AST, newFunctions = prepareGenerateGetDerivatives(AST, modelModule, functionSize, juliaVariables)
else
newFunctions = Vector{Expr}()
end
# @show AST
# @show equationInfo
#=
selectedStates = [v.x_name_julia for v in equationInfo.x_info]
startValues = []
for v in selectedStates
v = Meta.parse(string(v))
if v in keys(init)
value = eval(init[v])
# value = [0.0 0.0] # TODO: Fix
# @show value
if hasParticles(value)
push!(startValues, value)
else
push!(startValues, value...)
end
elseif v in keys(start)
value = eval(start[v])
if hasParticles(value)
push!(startValues, value)
else
push!(startValues, value...)
end
else
push!(startValues, 0.0)
end
end
if logCode
println("startValues = ", startValues)
end
=#
vSolvedWithInit = equationInfo.vSolvedWithFixedTrue
vSolvedWithInitValuesAndUnit = OrderedDict{String,Any}()
for name in vSolvedWithInit
nameAsExpr = Meta.parse(name)
if haskey(init, nameAsExpr)
vSolvedWithInitValuesAndUnit[name] = eval( init[nameAsExpr] )
else
@warn "Internal issue of ModiaLang: $name is assumed to have an init-value, but it is not found."
end
end
# Generate code
nCrossingFunctions, nAfter, nClocks, nSamples, previousVars, preVars, holdVars = getEventCounters()
previousVars = Symbol.(previousVars)
preVars = Symbol.(preVars)
holdVars = Symbol.(holdVars)
# Variables added to result
extraResults = vcat(:time, setdiff([Symbol(u) for u in unknowns],
[Symbol(h) for h in hideResults],
Symbol[Symbol(xi_info.x_name_julia) for xi_info in equationInfo.x_info],
Symbol[Symbol(xi_info.der_x_name_julia) for xi_info in equationInfo.x_info]))
if true # logTiming
# println("Generate code")
if useNewCodeGeneration
@timeit to "generate_getDerivativesNew!" code = generate_getDerivativesNew!(AST, newFunctions, modelModule, equationInfo, [:(_p)], vcat(:time, [Symbol(u) for u in unknowns]), previousVars, preVars, holdVars, :getDerivatives, hasUnits = !unitless)
else
@timeit to "generate_getDerivatives!" code = generate_getDerivatives!(AST, equationInfo, [:(_p)], extraResults, previousVars, preVars, holdVars, :getDerivatives, hasUnits = !unitless)
end
else
# code = generate_getDerivatives!(AST, equationInfo, Symbol.(keys(parameters)), extraResults, :getDerivatives, hasUnits = !unitless)
code = generate_getDerivativesNew!(AST, newFunctions, modelModule, equationInfo, [:(_p)], extraResults, previousVars, preVars, holdVars, :getDerivatives, hasUnits = !unitless)
end
if logCode
#@show mappedParameters
showCodeWithoutComments(code)
end
# Compile code
# generatedFunction = @RuntimeGeneratedFunction(modelModule, code)
#getDerivatives = Core.eval(modelModule, code)
if logTiming
println("eval code")
@time @timeit to "eval(code)" Core.eval(modelModule, code)
else
Core.eval(modelModule, code)
end
getDerivatives = modelModule.getDerivatives
# If generatedFunction is not packed inside a function, DifferentialEquations.jl crashes
# getDerivatives(derx,x,m,time) = generatedFunction(derx, x, m, time)
# convertedStartValues = convert(Vector{FloatType}, [ustrip(v) for v in startValues]) # ustrip.(value) does not work for MonteCarloMeasurements
# @show mappedParameters
x_startValues = initialStateVector(equationInfo, FloatType)
# println("Build SimulationModel")
model = @timeit to "build SimulationModel" SimulationModel{FloatType,TimeType}(modelModule, name, buildDict, getDerivatives, equationInfo, x_startValues, previousVars, preVars, holdVars,
mappedParameters, extraResults;
vSolvedWithInitValuesAndUnit, vEliminated, vProperty,
var_name = (v)->string(unknownsWithEliminated[v]),
nz=nCrossingFunctions, nAfter=nAfter, unitless=unitless)
# Execute code
if logExecution
println("\nExecute getDerivatives")
# @show startValues
#derx = deepcopy(x_startValues) # deepcopy(convertedStartValues) # To get the same type as for x (deepcopy is needed for MonteCarloMeasurements)
println("First executions of getDerivatives")
@timeit to "execute getDerivatives" try
#@time Base.invokelatest(getDerivatives, derx, x_startValues, model, convert(TimeType, 0.0))
#@time Base.invokelatest(getDerivatives, derx, x_startValues, model, convert(TimeType, 0.0))
@time init!(model) # getDerivatives is called
#@time invokelatest_getDerivatives_without_der_x!(x_startValues, model, convert(TimeType, 0.0))
#@time invokelatest_getDerivatives_without_der_x!(x_startValues, model, convert(TimeType, 0.0))
# @show derx
catch e
error("Failed: ", e)
return nothing
end
end
return model
end
function duplicateMultiReturningEquations!(equations)
duplicatedEquations = []
for e in equations
if isexpr(e, :(=)) && isexpr(e.args[1], :tuple) || typeof(e.args[1]) <: NTuple
lhs = e.args[1]
if typeof(lhs) <: NTuple
nargs = length(lhs)
else
nargs = length(lhs.args)
end
if e.args[2].args[1] != :implicitDependency
func = :_DUPLICATEEQUATION
else
func = :_DUPLICATIMPLICITDEPENDENCY
end
nameIncidence = Incidence[]
findIncidence!(e, nameIncidence, false)
bandWidth = length(nameIncidence)-nargs+2
#@show length(nameIncidence) bandWidth
for i in 1:(nargs-1)
if false
rhs = Expr(:call, :_DUPLICATEEQUATION, nameIncidence...)
else
indices =[]
for j in 1:bandWidth
push!(indices, mod(j+i-1,length(nameIncidence))+1)
end
rhs = Expr(:call, :_DUPLICATEEQUATION, nameIncidence[indices]...)
end
newE = :(0 = $rhs)
push!(duplicatedEquations, newE)
end
end
end
append!(equations, duplicatedEquations)
end
appendSymbol(path::Nothing, name::Symbol) = name
appendSymbol(path , name::Symbol) = :( $path.$name )
"""
modifiedModel = buildSubModels!(model, modelModule, FloatType, TimeType, buildDict::OrderedDict)
Traverse `model` and for every `<subModel>` that is a `Model(..)` and has a key-value pair
`:_buildFunction = <buildFunction>` and optionally `:_buildOption=<buildOption>`, call
```
buildCode = <buildFunction>(<subModel>, modelModule, FloatType::Type, TimeType::Type,
buildDict::OrderedDict{String,Any},
modelPath::Union{Expr,Symbol,Nothing},
buildOption = <buildOption>)
```
The`buildCode` is merged to the corresponding `<subModel>` in the calling environment.
The arguments of `<buildFunction>`are:
- `subModel`: The returned `buildCode` is merged to `submodel`
- `FloatType`, `TimeType`: Types used when instantiating `SimulationModel{FloatType,TimeType}`
- `modelPath`: Path upto `<subModel>`, such as: `:( a.b.c )`.
- `buildDict`: Dictionary, that will be stored in the corresponding SimulationModel instance and
that allows to store information about the build-process,
typically with key `string(modelPath)` (if modelPath==Nothing, key="" is used).
- `buildOption`: Option used for the generation of `buildCode`.
Note, keys `_buildFunction` and `_buildOption` are deleted from the corresponding `<subModel>`.
"""
function buildSubModels!(model::AbstractDict, modelModule, FloatType::Type, TimeType::Type,
buildDict::OrderedDict{String,Any}; path::Union{Expr,Symbol,Nothing}=nothing)
if haskey(model, :_buildFunction)
buildFunction = model[:_buildFunction]
delete!(model, :_buildFunction)
quotedPath = Meta.quot(path)
if haskey(model, :_buildOption)
buildOption = model[:_buildOption]
delete!(model, :_buildOption)
buildCode = Core.eval(modelModule, :($buildFunction($model, $FloatType, $TimeType, $buildDict, $quotedPath, buildOption=$buildOption)) )
else
buildCode = Core.eval(modelModule, :($buildFunction($model, $FloatType, $TimeType, $buildDict, $quotedPath)))
end
return model | buildCode
end
for (key,value) in model
if typeof(value) <: OrderedDict && haskey(value, :_class) && value[:_class] == :Model
model[key] = buildSubModels!(value, modelModule, FloatType, TimeType, buildDict; path=appendSymbol(path,key))
end
end
return model
end
"""
modelInstance = @instantiateModel(model; FloatType = Float64, aliasReduction=true, unitless=false,
evaluateParameters=false, log=false, logModel=false, logDetails=false, logStateSelection=false,
logCode=false,logExecution=logExecution, logCalculations=logCalculations, logTiming=false)
Instantiates a model, i.e. performs structural and symbolic transformations and generates a function for calculation of derivatives suitable for simulation.
* `model`: model (declarations and equations)
* `FloatType`: Variable type for floating point numbers, for example: Float64, Measurements{Float64}, StaticParticles{Float64,100}, Particles{Float64,2000}
* `aliasReduction`: Perform alias elimination and remove singularities
* `unitless`: Remove units (useful while debugging models and needed for MonteCarloMeasurements)
* `evaluateParameters`: Use evaluated parameters in the generated code.
* `log`: Log the different phases of translation
* `logModel`: Log the variables and equations of the model
* `logDetails`: Log internal data during the different phases of translation
* `logStateSelection`: Log details during state selection
* `logCode`: Log the generated code
* `logExecution`: Log the execution of the generated code (useful for timing compilation)
* `logCalculations`: Log the calculations of the generated code (useful for finding unit bugs)
* `logTiming`: Log timing of different phases
* `return modelInstance prepared for simulation`
"""
macro instantiateModel(model, kwargs...)
modelName = string(model)
source = string(__source__.file)*":"*string(__source__.line)
code = :( instantiateModel($model; modelName=$modelName, modelModule=@__MODULE__, source=$source, $(kwargs...) ) )
return esc(code)
end
"""
See documentation of macro [`@instantiateModel`]
"""
function instantiateModel(model; modelName="", modelModule=nothing, source=nothing, FloatType = Float64, aliasReduction=true, unitless=false,
log=false, logModel=false, logDetails=false, logStateSelection=false, logCode=false,
logExecution=logExecution, logCalculations=logCalculations, logTiming=false, evaluateParameters=false)
#try
# model = JSONModel.cloneModel(model, expressionsAsStrings=false)
println("\nInstantiating model $modelName\n in module: $modelModule\n in file: $source")
resetEventCounters()
global to = TimerOutput()
modelStructure = ModelStructure()
if isexpr(model, :quote)
model = eval(model) # model defined with macro
end
if typeof(model) <: NamedTuple || typeof(model) <: Dict || typeof(model) <: OrderedDict
# Traverse model and execute functions _buildFunction(..), to include code into sub-models
buildDict = OrderedDict{String,Any}()
TimeType = if FloatType <: Measurements.Measurement ||
FloatType <: MonteCarloMeasurements.AbstractParticles;
baseType(FloatType) else FloatType end # baseType(..) is defined in CodeGeneration.jl
model = buildSubModels!(model, modelModule, FloatType, TimeType, buildDict)
if logModel
@showModel(model)
end
if false
println("drawModel")
jsonDiagram = drawModel(modelName, model)
println()
# println("jsonModel")
# JSON.print(jsonDiagram, 2)
end
if logTiming
println("Flatten")
@timeit to "flatten" flattenModelTuple!(model, modelStructure, modelName, to; unitless, log)
else
flattenModelTuple!(model, modelStructure, modelName, to; unitless, log)
end
if experimentalTranslation
interface = buildInterface(model, modelStructure)
end
pars = OrderedDict{Symbol, Any}([(Symbol(k),v) for (k,v) in modelStructure.parameters])
if length(modelStructure.equations) > 0
flatModel = Model() | pars | Model(equations = [removeBlock(e) for e in modelStructure.equations])
else
flatModel = Model() | pars
end
printModelStructure(modelStructure, log=false)
name = modelName
else
@show model
error("Invalid model format")
end
duplicateMultiReturningEquations!(modelStructure.equations)
allVariables = Incidence[]
if logTiming
println("Find incidence")
@timeit to "findIncidence!" findIncidence!(modelStructure.equations, allVariables)
else
findIncidence!(modelStructure.equations, allVariables)
end
unique!(allVariables)
if ! experimentalTranslation
unknowns = setdiff(allVariables, keys(modelStructure.parameters), keys(modelStructure.inputs), [:time, :instantiatedModel, :_leq_mode, :_x])
else
unknowns = setdiff(allVariables, keys(modelStructure.parameters), [:time, :instantiatedModel, :_leq_mode, :_x])
end
Avar, states, derivatives = setAvar(unknowns)
vActive = [a == 0 for a in Avar]
if logStatistics || log
println("Number of states: ", length(states))
if length(unknowns)-length(states) != length(modelStructure.equations)
println("Number of unknowns: ", length(unknowns)-length(states))
end
println("Number of equations: ", length(modelStructure.equations))
end
printArray(modelStructure.parameters, "Parameters:", log=log)
printArray(modelStructure.inputs, "Inputs:", log=log)
printArray(modelStructure.outputs, "Outputs:", log=log)
printArray(states, "Potential states:", log=log)
printArray(setdiff(unknowns, states), "Unknowns:", log=log)
printArray(modelStructure.equations, "Equations:", log=log)
if logDetails
@show modelStructure.parameters modelStructure.mappedParameters modelStructure.init modelStructure.start modelStructure.variables modelStructure.flows modelStructure.inputs modelStructure.outputs
end
unknownsWithEliminated = unknowns
if aliasReduction
if log || logTiming
println("Perform alias elimination and remove singularities")
end
# @show unknowns
# @show keys(modelStructure.inputs) keys(modelStructure.outputs)
### nonInputAndOutputs = setdiff(unknowns, keys(modelStructure.inputs), keys(modelStructure.outputs))
if logTiming
@timeit to "performAliasReduction" equations, unknowns, Avar, G, states, vEliminated, vProperty = performAliasReduction(unknowns, modelStructure.equations, Avar, logDetails, log)
println("Number of reduced unknowns: ", length(unknowns)-length(states))
println("Number of reduced equations: ", length(equations))
else
equations, unknowns, Avar, G, states, vEliminated, vProperty = performAliasReduction(unknowns, modelStructure.equations, Avar, logDetails, log)
end
printArray(states, "States:", log=log)
printArray(setdiff(unknowns, states), "Unknowns after alias reduction:", log=log)
printArray(equations, "Equations after alias reduction:", log=log)
else
equations = modelStructure.equations
G = Vector{Int}[] # Array{Array{Int64,1},1}()
variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
println("Build incidence matrix")
unknownsSet = Set(unknowns)
@timeit to "build incidence matrix" for i in 1:length(equations)
e = equations[i]
nameIncidence, coefficients, rest, linear = getCoefficients(e)
incidence = [] # [variablesIndices[n] for n in nameIncidence if n in unknownsSet]
for n in nameIncidence
if n in keys(variablesIndices)
push!(incidence, variablesIndices[n])
end
end
unique!(incidence)
push!(G, incidence)
end
vEliminated = Int[]
vProperty = Int[]
end
modStructure = assignAndBLT(model, modelName, modelModule, equations, unknowns, modelStructure, Avar, G, states, logDetails, log, logTiming)
(unknowns, equations, G, Avar, Bequ, assign, blt, parameters) = modStructure
Gexplicit = Vector{Int}[]
variablesIndices = OrderedDict(key => k for (k, key) in enumerate(unknowns))
@timeit to "build explicit incidence matrix" for i in 1:length(equations)
e = equations[i]
if isexpr(e.args[2], :call) && e.args[2].args[1] in [:implicitDependency, :_DUPLICATIMPLICITDEPENDENCY]
if e.args[2].args[1] == :_DUPLICATIMPLICITDEPENDENCY
e.args[2] = e.args[2].args[2]
e.args[2].args[1] = :_DUPLICATEEQUATION
else
e.args[2] = e.args[2].args[2]
end
nameIncidence = Incidence[]
findIncidence!(e, nameIncidence)
incidence = [] # [variablesIndices[n] for n in nameIncidence if n in unknownsSet]
for n in nameIncidence
if n in keys(variablesIndices)
push!(incidence, variablesIndices[n])
end
end
unique!(incidence)
push!(Gexplicit, incidence)
equations[i] = e
else
push!(Gexplicit, G[i])
end
end
if false
println("Explicit equations:")
for e in equations
println(e)
end
@show G Gexplicit
end
if ! experimentalTranslation
inst = stateSelectionAndCodeGeneration(modStructure, Gexplicit, name, modelModule, buildDict, FloatType, TimeType, modelStructure.init, modelStructure.start, modelStructure.inputs, modelStructure.outputs,
vEliminated, vProperty, unknownsWithEliminated, modelStructure.mappedParameters, modelStructure.hideResults;
unitless, logStateSelection, logCode, logExecution, logCalculations, logTiming, evaluateParameters)
else
interface[:equations] = modStructure[:equations]
return interface
end
if logTiming
show(to, compact=true)
println()
end
inst #, flatModel
#=
catch e
if isa(e, ErrorException)
println()
printstyled("Model error: ", bold=true, color=:red)
printstyled(e.msg, "\n", bold=true, color=:red)
printstyled("Aborting @instantiateModel($modelName,...) in $modelModule.\n", bold=true, color=:red)
println()
# Base.rethrow()
else
Base.rethrow()
end
if logTiming
show(to, compact=true)
println()
end
end
=#
end
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 20574 | #=
Handles models defined as named tuples.
* Developer: Hilding Elmqvist, Mogram AB
* First version: January 2021
* License: MIT (expat)
=#
export mergeModels, recursiveMerge, Redeclare, showModel, @showModel, drawModel, Model, Map, Par, Var, setLogMerge,
constant, parameter, input, output, potential, flow, interval, @info_str, Boolean, Integ, @define
using Base.Meta: isexpr
using OrderedCollections: OrderedDict
using Unitful
using ModiaBase.Symbolic: removeBlock, prepend
function stringifyDefinition(v)
if typeof(v) in [Symbol, Expr]
v = removeBlock(v)
v = ":(" * string(v) * ")"
end
return v
end
"Quote an expression; don't quote if the meaning in the AST is the same anyway."
selquote(x) = x
selquote(sym::Symbol) = Meta.quot(sym)
function selquote(ex::Expr)
if isexpr(ex, :kw) || isexpr(ex, :call)
Expr(ex.head, [ex.args[1], [selquote(e) for e in ex.args[2:end]]...]...)
else
Expr(ex.head, [selquote(e) for e in ex.args]...)
end
end
macro define(modelDef)
modelName = modelDef.args[1]
println(modelName)
model = modelDef.args[2]
model = selquote(model)
dump(model)
res = :($modelName = Meta.quot($model))
return esc(res)
end
function showModel(m, level=0)
level += 1
# print(" "^(level-1))
if typeof(m) <: NamedTuple && haskey(m, :class)
print(m.class)
end
println("(")
for (k, v) in zip(keys(m), m)
if typeof(v) <: NamedTuple
print(" "^level, k, " = ")
showModel(v, level)
elseif k != :class
println(" "^level, k, " = ", stringifyDefinition(v), ",")
end
end
println(" "^(level-1), "),")
end
macro showModel(model)
modelName = string(model)
mod = :( print($modelName, " = "); showModel($model); println() )
return esc(mod)
end
global logMerge = false
function setLogMerge(val)
global logMerge
logMerge = val
end
id = 1
function drawModel(name, m, level=0)
this = Dict()
children = []
ports = []
edges = []
level += 1
global id
if typeof(m) <: NamedTuple && haskey(m, :class)
# print(m.class)
end
for (k, v) in zip(keys(m), m)
if typeof(v) <: NamedTuple && level <= 1
child = drawModel(k, v, level)
push!(children, child)
elseif k in [:class, :equations, :input, :output, :potential, :flow, :info]
elseif k == :connect
for conn in v.args
conn = conn.args
source = conn[1]
target = conn[2:end]
id += 1
edge = (; id, sources = [string(source)], targets=[string(target[1])])
push!(edges, edge)
end
elseif level <= 2
port = (; id=string(name) * "." * string(k), height=10, width=10)
push!(ports, port)
end
end
if length(children) > 0 && length(ports) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], ports, children, edges)
elseif length(children) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], children, edges)
elseif length(ports) > 0
this = (;id=name, height=100, width=100, labels=[(;text=name)], ports)
else
this = (;id=name, height=100, width=100, labels=[(;text=name)])
end
return this
end
function mergeModels(m1::NamedTuple, m2::NamedTuple, env=Symbol())
# println("mergedModels")
mergedModels = OrderedDict{Symbol,Any}(pairs(m1))
for (k,v) in collect(pairs(m2))
if typeof(v) <: NamedTuple
if k in keys(mergedModels) && ! (:_redeclare in keys(v))
if logMerge; print("In $k: ") end
m = mergeModels(mergedModels[k], v, k)
mergedModels[k] = m
elseif :_redeclare in keys(v)
if logMerge; println("Redeclaring: $k = $v") end
mergedModels[k] = v
elseif nothing in values(v) # TODO: Refine
else
if !(:_redeclare in keys(mergedModels))
if logMerge; print("Adding: $k = "); showModel(v, 2) end
end
mergedModels[k] = v
end
elseif v === nothing
if logMerge; println("Deleting: $k") end
delete!(mergedModels, k)
elseif k in keys(mergedModels) && k == :equations
equa = copy(mergedModels[k])
push!(equa.args, v.args...)
mergedModels[k] = equa
if logMerge
println("Adding equations: ", v)
end
else
if logMerge
if k in keys(mergedModels)
if mergedModels[k] != v
println("Changing: $k = $(stringifyDefinition(mergedModels[k])) to $k = $(stringifyDefinition(v))")
end
elseif !(:_redeclare in keys(mergedModels))
println("Adding: $k = $(stringifyDefinition(v))")
end
end
mergedModels[k] = v
end
end
# delete!(mergedModels, :class)
return (; mergedModels...) # Transform OrderedDict to named tuple
end
Model(; kwargs...) = (; class = :Model, kwargs...)
#Map(; kwargs...) = (; class = :Map, kwargs...)
Map(; kwargs...) = (; kwargs...)
Par(; kwargs...) = Map(; class = :Par, kwargs...)
#Var(;kwargs...) = (; class = :Var, kwargs...)
function Var(values...; kwargs...)
res = (; class = :Var, kwargs...)
for v in values
res = res | v
end
res
end
Integ(;kwargs...) = (; class = :Var, kwargs...)
Boolean(;kwargs...) = (; class = :Var, kwargs...)
Redeclare = ( _redeclare = true, )
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
interval(min, max) = Var(min=min, max=max)
macro info_str(text)
Var(info=text)
end
Base.:|(m::NamedTuple, n::NamedTuple) = mergeModels(m, n) # TODO: Chane to updated recursiveMerge
Base.:|(m, n) = begin if !(typeof(n) <: NamedTuple); recursiveMerge(m, (; value=n)) else recursiveMerge(n, (value=m,)) end end
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
#recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
#=
Base.:|(x::Symbol, y::NamedTuple) = begin
:(eval($x) | $y)
end
=#
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
# println("recursiveMerge")
# @show nt1 nt2
all_keys = union(keys(nt1), keys(nt2))
# all_keys = setdiff(all_keys, [:class])
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
# @show gen
return (; gen...)
end
function unpackPath(path, sequence)
if typeof(path) == Symbol
push!(sequence, path)
elseif isexpr(path, :.)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2].value)
elseif isexpr(path, :ref)
unpackPath(path.args[1], sequence)
push!(sequence, path.args[2:end]...)
end
end
function collectConnector(model)
potentials = []
flows = []
for (k,v) in zip(keys(model), model)
if typeof(v) <: NamedTuple && :class in keys(v) && v.class == :Var ||
typeof(v) <: NamedTuple && :variable in keys(v) && v.variable
if :potential in keys(v) && v.potential
push!(potentials, k)
elseif :flow in keys(v) && v.flow
push!(flows, k)
else
push!(potentials, k)
end
end
end
return potentials, flows
end
function mergeConnections!(connections)
for i in 1:length(connections)
for j in 1:i-1
con1 = connections[i]
con2 = connections[j]
if length(con1.args) > 0 && length(con2.args) > 0 && length(intersect(Set(con1.args), Set(con2.args))) > 0
connections[i] = Expr(:tuple, union(Set(con1.args), Set(con2.args))...)
connections[j] = Expr(:tuple) # Empty tuple
# if :(OpI.n2) in con1.args || :(OpI.n2) in con2.args # For bug testing
# @show i j con1.args con2.args
# @show connections[i] connections[j]
# end
end
end
end
end
function convertConnections!(connections, model, modelName, logging=false)
# println("\nconvertConnections")
# showModel(model)
mergeConnections!(connections)
connectEquations = []
alreadyConnected = []
for i in 1:length(connections)
c = connections[i]
if c.head == :tuple
connected = c.args
inflow = 0
outflow = 0
signalFlow1 = nothing
connectedOutput = nothing
potentials1 = nothing
fullPotentials1 = []
flows1 = []
for con in connected
if con in alreadyConnected
error("Already connected: $con, found in connection: $connected")
end
push!(alreadyConnected, con)
# @show connected con
sequence = []
unpackPath(con, sequence)
mod = model
for s in sequence[1:end-1]
if s in keys(mod)
mod = mod[s]
else
error("Invalid path $con: $s not found in $(keys(mod))")
end
end
if sequence[end] in keys(mod)
mod = mod[sequence[end]]
# @show mod[:class]
if :input in keys(mod) && mod.input || :output in keys(mod) && mod.output || :class in keys(mod) && mod[:class] == :Var
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
if :output in keys(mod) && mod.output
if connectedOutput != nothing # TODO: refine logic concerning inner and outer inputs and outputs
# error("It is not allowed to connect two outputs: ", connectedOutput, ", ", con)
end
connectedOutput = con
end
elseif mod[:class] == :Var
# println("\nConnect vars: ", connected)
# dump(connected)
if length(fullPotentials1) > 0
push!(connectEquations, :($(fullPotentials1[1]) = $con))
# println(:($(fullPotentials1[1]) = $con))
end
push!(fullPotentials1, con)
else
# @show mod typeof(mod)
potentials, flows = collectConnector(mod)
# Deprecated
if :potentials in keys(mod)
potentials = vcat(potentials, mod.potentials.args)
end
if :flows in keys(mod)
flows = vcat(flows, mod.flows.args)
end
if potentials1 != nothing && potentials != potentials1
error("Not compatible potential variables: $potentials1 != $potentials, found in connection: $connected")
end
fullPotentials = []
for i in 1:length(potentials)
p = potentials[i]
potential = append(con, p)
push!(fullPotentials, potential)
if potentials1 != nothing
push!(connectEquations, :($(fullPotentials1[i]) = $potential))
end
end
potentials1 = potentials
fullPotentials1 = fullPotentials
if length(flows1) > 0 && flows != flows1
error("Not compatible flow variables: $flows1 != $flows, found in connection: $connected")
end
for f in flows
flowVar = append(con, f)
if length(sequence) == 1
if inflow == 0
inflow = flowVar
else
inflow = :($inflow + $flowVar)
end
else
if outflow == 0
outflow = flowVar
else
outflow = :($outflow + $flowVar)
end
end
end
flows1 = flows
end
else
# Deprecated
signalFlow = con
if signalFlow1 !== nothing
push!(connectEquations, :($signalFlow1 = $signalFlow))
end
signalFlow1 = signalFlow
end
end
if inflow != 0 || outflow != 0
push!(connectEquations, :($inflow = $outflow))
end
end
end
if length(connectEquations) > 0 && logging
println("Connect equations in $modelName:")
for e in connectEquations
println(" ", e)
end
end
return connectEquations
end
function flattenModelTuple!(model, modelStructure, modelName; unitless = false, log=false)
# @show model
connections = []
extendedModel = merge(model, NamedTuple())
for (k,v) in zip(keys(model), model)
# @show k v typeof(v)
# Deprecated
if k in [:inputs, :outputs, :potentials, :flows, :class]
if k in [:inputs, :outputs, :potentials, :flows]
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = $(string(k)[1:end-1]) ...")
end
elseif k == :init
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = Var(init=...) ...")
for (x,x0) in zip(keys(v), v)
if x != :class
if unitless && typeof(x0) != Expr
x0 = ustrip.(x0)
end
modelStructure.init[x] = x0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., x => x0)
end
end
elseif k == :start
printstyled(" Deprecated construct in model $modelName: ", color=:yellow)
println("$k = $v\n Use: ... = Var(start=...) ...")
for (s,s0) in zip(keys(v), v)
if s != :class
if unitless
s0 = ustrip.(s0)
end
modelStructure.start[s] = s0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., s => s0)
end
end
elseif typeof(v) in [Int64, Float64] || typeof(v) <: Unitful.Quantity ||
typeof(v) in [Array{Int64,1}, Array{Int64,2}, Array{Float64,1}, Array{Float64,2}] ||
typeof(v) <: NamedTuple && :class in keys(v) && v.class == :Par ||
typeof(v) <: NamedTuple && :parameter in keys(v) && v.parameter
if unitless && !(typeof(v) <: NamedTuple)
v = ustrip.(v)
end
modelStructure.parameters[k] = v
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => v)
elseif (typeof(v) <: NamedTuple && :class in keys(v) && v.class in [:Par, :Var] ||
typeof(v) <: NamedTuple && :parameter in keys(v) && v.parameter) &&
:value in keys(v)
v = v.value
if typeof(v) in [Expr, Symbol]
push!(modelStructure.equations, removeBlock(:($k = $v)))
else
modelStructure.parameters[k] = v
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => v)
end
elseif typeof(v) <: NamedTuple && :class in keys(v) && v.class in [:Var] ||
typeof(v) <: NamedTuple && :variable in keys(v) && v.variable
if :init in keys(v)
x0 = v.init
if unitless && typeof(x0) != Expr
x0 = ustrip.(x0)
end
modelStructure.init[k] = x0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => x0)
end
if :start in keys(v)
s0 = v.start
if unitless && typeof(s0) != Expr
s0 = ustrip.(s0)
end
modelStructure.start[k] = s0
modelStructure.mappedParameters = (;modelStructure.mappedParameters..., k => s0)
end
if :input in keys(v) && v[:input]
modelStructure.inputs[k] = v
end
if :output in keys(v) && v[:output]
modelStructure.outputs[k] = v
end
elseif typeof(v) <: NamedTuple # || typeof(v) == Symbol # instantiate
if typeof(v) == Symbol
v = eval(eval(v))
end
subModelStructure = ModelStructure()
flattenModelTuple!(v, subModelStructure, k; unitless, log)
#=
println("subModelStructure")
@show subModelStructure
printModelStructure(subModelStructure, label=k)
=#
mergeModelStructures(modelStructure, subModelStructure, k)
elseif typeof(v) <:Array && length(v) > 0 && typeof(v[1]) <: NamedTuple # array of instances
i = 0
for a in v
i += 1
subModelStructure = ModelStructure()
flattenModelTuple!(a, subModelStructure, k; unitless, log)
mergeModelStructures(modelStructure, subModelStructure, Symbol(string(k)*"_"*string(i)) )
end
elseif isexpr(v, :vect) || isexpr(v, :vcat) || isexpr(v, :hcat)
arrayEquation = false
for e in v.args
if isexpr(e, :(=))
if unitless
e = removeUnits(e)
end
push!(modelStructure.equations, removeBlock(e))
elseif isexpr(e, :tuple)
push!(connections, e)
elseif isexpr(e, :call) && e.args[1] == :connect
con = :( ( $(e.args[2]), $(e.args[3]) ) )
push!(connections, con)
else
arrayEquation = true
end
end
if arrayEquation
push!(modelStructure.equations, removeBlock(:($k = $(prepend(v, :up)))))
# push!(modelStructure.equations, removeBlock(:($k = $v)))
end
elseif isexpr(v, :(=)) # Single equation
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, removeBlock(v))
elseif v !== nothing # Binding expression
# println("Binding expression")
# @show k v typeof(v)
if unitless
v = removeUnits(v)
end
push!(modelStructure.equations, :($k = $(prepend(v, :up))))
# push!(modelStructure.equations, :($k = $v)) # To fix Modelica_Electrical_Analog_Interfaces_ConditionalHeatPort
# @show modelStructure.equations
end
end
# printModelStructure(modelStructure, "flattened")
connectEquations = convertConnections!(connections, extendedModel, modelName, log)
push!(modelStructure.equations, connectEquations...)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 17685 | # License for this file: MIT (expat)
# Copyright 2017-2021, DLR Institute of System Dynamics and Control
export PTP_path, pathEndTime, getPosition!, getPosition, getIndex, getPath, plotPath
using OrderedCollections
using Unitful
"""
path = PTP_path(names; positions, v_max, a_max, startTime=0.0)
Generate a new path object to move as fast as possible from
positions[i,:] to positions[i+1,:]. The `positions[i,:]` can be a set of translational
positions in [m], that is absolute distances, and/or rotational positions in
[rad] that is angles. In robotics such a movement is called PTP (Point-To-Point).
The signals are constructed in such a way that it is not possible
to move faster, given the maximally allowed velocity `v_max[j]` and
the maximally allowed acceleration `a_max[j]` for signal `names[j]`
and have a velocity of zero at the given `positions`.
If there are two or more signals (that is length(names) > 1) then
the path is constructed such that all signals
are in the same periods in the acceleration, constant velocity
and deceleration phase. This means that only one of the signals
is at its limits whereas the others are synchronized in such a way
that the end point is reached at the same time instant.
For example, this means that the signals have a velocity of zero at positions[1,:],
one of the signals is accelerated with its maximally allowed acceleration until
one of the signals reaches its maximally allowed velocity. At a proper time instant,
one of the signals is decelerated with the negative value of its maximally allowed
acceleration, so that all signals reach positions[2,:] with velocity zero.
This element is useful to generate a reference signal for a controller
which controls, e.g., a drive train, or to drive
a flange according to a given acceleration.
# Example
```julia
using ModiaLang
@usingModiaPlot
const ptp_path = PTP_path(["angle1", "angle2", "angle3"],
positions = [0.0 2.0 3.0; # angle1=0.0, angle2=2.0, angle3=3.0
0.5 3.0 4.0;
0.8 1.5 0.3;
0.2 1.5 0.8],
startTime = 0.1,
v_max = 2*ones(3),
a_max = 3*ones(3))
angles = zeros(3)
getPosition!(ptp_path, 0.5, angles) # angles = [0.12, 2.24, 3.24]
path = getPath(ptp_path)
plot(path, ["angle1", "angle2", "angle3"])
```
"""
mutable struct PTP_path{FloatType}
names::Vector{AbstractString}
startTime::FloatType
v_max::Vector{FloatType}
a_max::Vector{FloatType}
positions::Matrix{FloatType}
delta::Matrix{FloatType}
hasPath::Vector{Bool}
sd_max::Vector{FloatType}
sdd_max::Vector{FloatType}
Ta1::Vector{FloatType}
Ta2::Vector{FloatType}
noWphase::Vector{Bool}
Tv::Vector{FloatType}
Te::Vector{FloatType}
Ta1s::Vector{FloatType}
Ta2s::Vector{FloatType}
Tvs::Vector{FloatType}
Tes::Vector{FloatType}
sd_max2::Vector{FloatType}
s1::Vector{FloatType}
s2::Vector{FloatType}
s3::Vector{FloatType}
Tend::FloatType
posTemp::Vector{FloatType} # Temporary storage that can be used by the functions operation on PTP_path
function PTP_path{FloatType}(
names::AbstractVector;
positions::Matrix{FloatType},
v_max::Vector{FloatType},
a_max::Vector{FloatType},
startTime =0.0) where {FloatType}
startTime = convertTimeVariable(FloatType, startTime)
#@assert(size(positions,1) > 1)
#@assert(size(positions,2) == Base.length(names))
#@assert(Base.length(v_max) == Base.length(names))
#@assert(Base.length(a_max) == Base.length(names))
np = Base.length(names)
npath = size(positions,1) - 1 # number of path points
for i in eachindex(v_max)
@assert(v_max[i] > convert(FloatType,0))
@assert(a_max[i] > convert(FloatType,0))
end
delta = zeros(FloatType, npath, np)
hasPath = fill(false,npath)
sd_max = zeros(FloatType,npath)
sdd_max = zeros(FloatType,npath)
Ta1 = zeros(FloatType,npath)
Ta2 = zeros(FloatType,npath)
noWphase = fill(false,npath)
Tv = zeros(FloatType,npath)
Te = zeros(FloatType,npath)
Ta1s = zeros(FloatType,npath)
Ta2s = zeros(FloatType,npath)
Tvs = zeros(FloatType,npath)
Tes = zeros(FloatType,npath)
sd_max2 = zeros(FloatType,npath)
s1 = zeros(FloatType,npath)
s2 = zeros(FloatType,npath)
s3 = zeros(FloatType,npath)
aux1 = zeros(FloatType,np)
aux2 = zeros(FloatType,np)
small = 1000*eps(FloatType)
for i in 1:npath
delta[i,:] = positions[i+1,:] - positions[i,:]
for j in 1:np
aux1[j] = delta[i,j]/v_max[j]
aux2[j] = delta[i,j]/a_max[j]
end
sd_max_inv = maximum(abs.(aux1))
sdd_max_inv = maximum(abs.(aux2))
if sd_max_inv <= small || sdd_max_inv <= small
hasPath[i] = false
else
hasPath[i] = true
sd_max[i] = 1/sd_max_inv
sdd_max[i] = 1/sdd_max_inv
Ta1[i] = sqrt(1/sdd_max[i])
Ta2[i] = sd_max[i]/sdd_max[i]
noWphase[i] = Ta2[i] >= Ta1[i]
Tv[i] = noWphase[i] ? Ta1[i] : 1/sd_max[i]
Te[i] = noWphase[i] ? Ta1[i] + Ta1[i] : Tv[i] + Ta2[i]
Tbegin = i==1 ? startTime : Tes[i-1]
Ta1s[i] = Ta1[i] + Tbegin
Ta2s[i] = Ta2[i] + Tbegin
Tvs[i] = Tv[i] + Tbegin
Tes[i] = Te[i] + Tbegin
sd_max2[i] = sdd_max[i]*Ta1[i]
s1[i] = sdd_max[i]*(noWphase[i] ? Ta1[i]*Ta1[i] : Ta2[i]*Ta2[i])/2
s2[i] = s1[i] + (noWphase[i] ? sd_max2[i]*(Te[i] - Ta1[i]) - (sdd_max[i]/2)*(Te[i] - Ta1[i])^2 : sd_max[i]*(Tv[i] - Ta2[i]))
s3[i] = s2[i] + sd_max[i]*(Te[i] - Tv[i]) - (sdd_max[i]/2)*(Te[i] - Tv[i])^2
end
end
Tend = Tes[end]
new(names, startTime, v_max, a_max, positions, delta,
hasPath, sd_max, sdd_max, Ta1, Ta2, noWphase, Tv, Te, Ta1s, Ta2s, Tvs, Tes, sd_max2, s1, s2, s3, Tend, zeros(FloatType,np))
end
end
PTP_path(args...; kwargs...) = PTP_path{Float64}(args...; kwargs...)
"""
Tend = pathEndTime(path)
Given a `path::PTP_path` return the end time `Tend` of the path.
"""
pathEndTime(path::PTP_path) = path.Tend
"""
getPosition!(path, time, position)
Given a `path::PTP_path` and a time instant `time`, return the actual
position at time `time` in vector `position`.
"""
function getPosition!(path::PTP_path{FloatType}, time, position::Vector{FloatType}) where {FloatType}
time = convertTimeVariable(FloatType, time)
@assert(length(position) == size(path.positions,2))
npath = length(path.hasPath)
np = length(position)
# Search correct time interval
i = 0
if time <= path.startTime
i = 1
s = 0
else
while i < npath
i = i+1
if time <= path.Tes[i]
break
end
end
if time >= path.Tes[end]
i = npath
s = path.noWphase[i] ? path.s2[end] : path.s3[end]
#println("... time=$time i=$i s=$s qbegin=", path.positions[i,1], ", qdelta = ", path.delta[i,1])
else
Tbegin = i==1 ? path.startTime : path.Tes[i-1]
if path.noWphase[i]
if time < path.Ta1s[i]
s = (path.sdd_max[i]/2)*(time - Tbegin)^2
elseif time < path.Tes[i]
s = path.s1[i] + path.sd_max2[i]*(time - path.Ta1s[i]) - (path.sdd_max[i]/2)*(time - path.Ta1s[i])^2
else
s = path.s2[i]
end
elseif time < path.Ta2s[i]
s = (path.sdd_max[i]/2)*(time - Tbegin)^2
elseif time < path.Tvs[i]
s = path.s1[i] + path.sd_max[i]*(time - path.Ta2s[i])
elseif time < path.Tes[i]
s = path.s2[i] + path.sd_max[i]*(time - path.Tvs[i]) - (path.sdd_max[i]/2)*(time - path.Tvs[i])*(time - path.Tvs[i])
else
s = path.s3[i]
end
end
end
for j in 1:np
# println("... i = $i, j= $j, np = $np, s=$s, positions[i,1]=",path.positions[i,1])
position[j]= path.positions[i,j] + path.delta[i,j]*s
end
end
"""
getPosition!(path, time, position, velocity, acceleration)
Given a `path::PTP_path` and a time instant `time`, return the actual
position, velocity and acceleration at time `time` in vectors
`position, velocity, acceleration`.
"""
function getPosition!(path::PTP_path{FloatType}, time,
position::Vector{FloatType},
velocity::Vector{FloatType},
acceleration::Vector{FloatType})::Nothing where {FloatType}
time = convertTimeVariable(FloatType, time)
@assert(length(position) == size(path.positions,2))
@assert(length(velocity) == length(position))
@assert(length(acceleration) == length(acceleration))
npath = length(path.hasPath)
np = length(position)
s = convert(FloatType, 0)
sd = convert(FloatType, 0)
sdd = convert(FloatType, 0)
# Search correct time interval
i = 0
if time <= path.startTime
i = 1
s = convert(FloatType, 0)
sd = convert(FloatType, 0)
sdd = convert(FloatType, 0)
else
while i < npath
i = i+1
if time <= path.Tes[i]
break
end
end
if time >= path.Tes[end]
i = npath
s = path.noWphase[i] ? path.s2[end] : path.s3[end]
sd = convert(FloatType, 0)
sdd = convert(FloatType, 0)
#println("... time=$time i=$i s=$s qbegin=", path.positions[i,1], ", qdelta = ", path.delta[i,1])
else
Tbegin = i==1 ? path.startTime : path.Tes[i-1]
if path.noWphase[i]
if time < path.Ta1s[i]
s = (path.sdd_max[i]/2)*(time - Tbegin)^2
sd = path.sdd_max[i]*(time - Tbegin)
sdd = path.sdd_max[i]
elseif time < path.Tes[i]
s = path.s1[i] + path.sd_max2[i]*(time - path.Ta1s[i]) - (path.sdd_max[i]/2)*(time - path.Ta1s[i])^2
sd = path.sd_max2[i] - path.sdd_max[i]*(time - path.Ta1s[i])
sdd = -path.sdd_max[i]
else
s = path.s2[i]
sd = convert(FloatType, 0)
sdd = convert(FloatType, 0)
end
elseif time < path.Ta2s[i]
s = (path.sdd_max[i]/2)*(time - Tbegin)^2
sd = path.sdd_max[i]*(time - Tbegin)
sdd = path.sdd_max[i]
elseif time < path.Tvs[i]
s = path.s1[i] + path.sd_max[i]*(time - path.Ta2s[i])
sd = path.sd_max[i]
sdd = convert(FloatType, 0)
elseif time < path.Tes[i]
s = path.s2[i] + path.sd_max[i]*(time - path.Tvs[i]) - (path.sdd_max[i]/2)*(time - path.Tvs[i])^2
sd = path.sd_max[i] - path.sdd_max[i]*(time - path.Tvs[i])
sdd = -path.sdd_max[i]
else
s = path.s3[i]
sd = convert(FloatType, 0)
sdd = convert(FloatType, 0)
end
end
end
for j in 1:np
# println("... i = $i, j= $j, np = $np, s=$s, positions[i,1]=",path.positions[i,1])
position[j] = path.positions[i,j] + path.delta[i,j]*s
velocity[j] = path.delta[i,j]*sd
acceleration[j] = path.delta[i,j]*sdd
end
return nothing
end
"""
pos = getPosition(path, index, time)
Given a `path::PTP_path`, the `index` of a signal, and a time instant `time`, return the actual
position at time `time`.
"""
function getPosition(path::PTP_path, index, time)
getPosition!(path, time, path.posTemp)
return path.posTemp[index]
end
"""
index = getIndex(path, name)
Return the index of `name` in `path` or trigger an error, if not present.
"""
function getIndex(path, name)
index = findfirst(x -> x==name, path.names)
if typeof(index) == Nothing
error("getIndex(path,name): \"", name, "\" not in path")
end
return index
end
"""
getPath(path;
names=path.names, tend=1.1*path.Tend, ntime=101)
Given a `path::PTP_path`, return a dictionary with the time series
of the path over `time` up to `tend` for all `ntime` time points.
"""
function getPath(path::PTP_path{FloatType}; names=path.names,
ntime=101, tend = 1.1*path.Tend, onlyPositions=false) where {FloatType}
tend = convertTimeVariable(FloatType, tend)
time = range(convert(FloatType,0)u"s",(tend)u"s",length=ntime)
indices = indexin(names, path.names)
names2 = deepcopy(names)
for i in eachindex(indices)
if typeof(i) == Nothing
@warn "getPath(path, ...): \""*names[i]*"\" is ignored, because not in path"
deleteat!(indices,i)
deleteat!(names2,i)
end
end
np = length(indices)
q = zeros(FloatType,length(time), np)
qt = zeros(FloatType,length(path.names))
series = OrderedDict{AbstractString,Any}()
series["time"] = time
if onlyPositions
for i in eachindex(time)
getPosition!(path, time[i], qt)
q[i,:] = qt[indices]
end
for i in eachindex(names2)
series[names2[i]] = q[:,i]
end
else
der_names2 = "der(" .* names2 .* ")"
der2_names2 = "der2(" .* names2 .* ")"
qd = zeros(FloatType,length(time), np)
qdd = zeros(FloatType,length(time), np)
qtd = zeros(FloatType,length(path.names))
qtdd = zeros(FloatType,length(path.names))
for i in eachindex(time)
getPosition!(path, stripUnit(time[i]), qt, qtd, qtdd)
q[i,:] = qt[indices]
qd[i,:] = qtd[indices]
qdd[i,:] = qtdd[indices]
end
for i in eachindex(names2)
series[names2[i]] = q[:,i]
series[der_names2[i]] = qd[:,i]
series[der2_names2[i]] = qdd[:,i]
end
end
return series
end
"""
plotPath(path, plot::Function;
names=path.names, heading="PTP plots",
tend=1.1*path.Tend, figure=1, ntime=101, onlyPositions=true)
Given a `path::PTP_path`, plot the path over `time` up to `tend` for all points
identified by the vector or tuple `names` to figure `figure`
using `ntime` time points.
# Example
```julia
using ModiaLang
@usingModiaPlot
const ptp_path = PTP_path(["angle1", "angle2", "angle3"],
positions = [0.0 2.0 3.0; # angle1=0.0, angle2=2.0, angle3=3.0
0.5 3.0 4.0;
0.8 1.5 0.3;
0.2 1.5 0.8],
startTime = 0.1,
v_max = 2*ones(3),
a_max = 3*ones(3))
angles = zeros(3)
getPosition!(ptp_path, 0.5, angles) # angles = [0.12, 2.24, 3.24]
plotPath(ptp_path, plot) # use plot(..) defined with @usingModiaPlot
```
"""
function plotPath(path::PTP_path{FloatType}, plot::Function; names=path.names, heading="PTP plots", figure=1,
ntime=101, tend = 1.1*path.Tend, onlyPositions=true)::Nothing where {FloatType}
time = range(0u"s",(tend)u"s",length=ntime)
indices = indexin(names, path.names)
names2 = deepcopy(names)
for i in eachindex(indices)
if isnothing(i)
@warn "plotPath(path, ...): \""*names[i]*"\" is ignored, because not in path"
deleteat!(indices,i)
deleteat!(names2,i)
end
end
np = length(indices)
q = zeros(FloatType, length(time), np)
qt = zeros(FloatType, length(path.names))
series = Dict{AbstractString,Any}()
series["time"] = time
if onlyPositions
for i in eachindex(time)
getPosition!(path, time[i], qt)
q[i,:] = qt[indices]
end
for i in eachindex(names2)
series[names2[i]] = q[:,i]
end
plot(series, Tuple(names2), heading=heading, figure=figure)
else
der_names2 = "der(" .* names2 .* ")"
der2_names2 = "der2(" .* names2 .* ")"
qd = zeros(FloatType, length(time), np)
qdd = zeros(FloatType, length(time), np)
qtd = zeros(FloatType, length(path.names))
qtdd = zeros(FloatType, length(path.names))
for i in eachindex(time)
getPosition!(path, time[i], qt, qtd, qtdd)
q[i,:] = qt[indices]
qd[i,:] = qtd[indices]
qdd[i,:] = qtdd[indices]
end
for i in eachindex(names2)
series[names2[i]] = q[:,i]
series[der_names2[i]] = qd[:,i]
series[der2_names2[i]] = qdd[:,i]
end
plot(series, [Tuple(names2), Tuple(der_names2), Tuple(der2_names2)],
heading=heading, figure=figure)
end
return nothing
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 4399 | export ModiaProblem, ModiaSolve
function ModiaProblem(m1::ModiaLang.SimulationModel{FloatType1,FloatType1},
m2::ModiaLang.SimulationModel{FloatType2,FloatType2};
p, merge=nothing, kwargs...) where {FloatType1,FloatType2}
TimeType1 = FloatType1
TimeType2 = FloatType2
merge2 = Map(p = parameter | convert(Vector{FloatType2}, p))
if !isnothing(merge)
merge2 = merge | merge2
end
# Store states x of m1 at communication points in the DifferentialEquations result data structure solution
m1.save_x_in_solution = true
m2.save_x_in_solution = true
# Save kwargs of ModiaProblem in simulation models
empty!(m1.result)
empty!(m2.result)
options1 = SimulationOptions{FloatType1,TimeType1}(merge ; kwargs...)
options2 = SimulationOptions{FloatType2,TimeType2}(merge2; kwargs...)
if isnothing(options1) || isnothing(options2)
return nothing
end
m1.options = options1
m2.options = options2
tspan = (options1.startTime, options1.stopTime)
tspan_outputs = options1.startTime:options1.interval:options1.stopTime
# Initialize/re-initialize SimulationModel
if options1.log || options1.logParameters || options1.logEvaluatedParameters || options1.logStates
println("... Construct simulation problem of DifferentialEquations.jl for ", m.modelName)
end
success1 = ModiaLang.init!(m1)
if !success1|| m1.eventHandler.restart == ModiaLang.Terminate
return nothing
end
success2 = ModiaLang.init!(m2)
if !success2|| m2.eventHandler.restart == ModiaLang.Terminate
return nothing
end
function p_derivatives!(der_x, x, p, t::FloatType1)::Nothing
m1.evaluatedParameters.p .= p
Base.invokelatest(m1.getDerivatives!, der_x, x, m1, t)
return nothing
end
function p_derivatives!(der_x, x, p, t::FloatType2)::Nothing
m2.evaluatedParameters.p .= p
Base.invokelatest(m2.getDerivatives!, der_x, x, m2, t)
return nothing
end
#= This call back gives an error:
# type TrackedAffect has no field funciter
function outputs!(x, t, integrator)::Nothing
if eltype(integrator.p) == FloatType1
m1.storeResult = true
p_derivatives!(m1.der_x, x, integrator.p, t)
m1.storeResult = false
end
return nothing
end
callback = DifferentialEquations.FunctionCallingCallback(outputs!, funcat=tspan_outputs)
=#
function affect_outputs!(integrator)::Nothing
if eltype(integrator.p) == FloatType1
m1.storeResult = true
p_derivatives!(m1.der_x, integrator.u, integrator.p, integrator.t)
m1.storeResult = false
end
return nothing
end
callback = DifferentialEquations.PresetTimeCallback(tspan_outputs, affect_outputs!)
# Define problem and callbacks based on algorithm and model type
abstol = 0.1*options1.tolerance
return DifferentialEquations.ODEProblem(p_derivatives!, m1.x_init, tspan, p; # x_init
reltol=options1.tolerance, abstol=abstol, callback = callback,
modia_interval = options1.interval,
modia_instantiatedModel = m1)
end
function ModiaSolve(problem, algorithm=missing; p, adaptive::Bool = true)
startTime = problem.tspan[1]
stopTime = problem.tspan[2]
interval = problem.kwargs.data[:modia_interval]
m = problem.kwargs.data[:modia_instantiatedModel]
m.algorithmType = typeof(algorithm)
# Define problem and callbacks based on algorithm and model type
if abs(interval) < abs(stopTime-startTime)
tspan = startTime:interval:stopTime
else
tspan = [startTime, stopTime]
end
# Initial step size (the default of DifferentialEquations is too large) + step-size of fixed-step algorithm
dt = adaptive ? interval/10 : interval # initial step-size
# Compute solution
solution = ismissing(algorithm) ? DifferentialEquations.solve(problem, p=p,
saveat = tspan, adaptive=adaptive, dt=dt) :
DifferentialEquations.solve(problem, algorithm, p=p,
saveat = tspan, adaptive=adaptive, dt=dt)
m.solution = solution
return solution
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 40932 | using Test
import DataFrames
import ForwardDiff
import FiniteDiff
macro usingModiaPlot()
if haskey(ENV, "MODIA_PLOT")
ModiaPlotPackage = ENV["MODIA_PLOT"]
if !(ModiaPlotPackage in ModiaResult.AvailableModiaPlotPackages)
@warn "ENV[\"MODIA_PLOT\"] = \"$ModiaPlotPackage\" is not supported!. Using \"NoPlot\"."
@goto USE_NO_PLOT
elseif ModiaPlotPackage == "NoPlot"
@goto USE_NO_PLOT
elseif ModiaPlotPackage == "SilentNoPlot"
expr = :( import ModiaLang.ModiaResult.SilentNoPlot: plot, showFigure, saveFigure, closeFigure, closeAllFigures )
return esc( expr )
else
ModiaPlotPackage = Symbol("ModiaPlot_" * ModiaPlotPackage)
expr = :(using $ModiaPlotPackage)
println("$expr")
return esc( :(using $ModiaPlotPackage) )
end
else
@warn "No plot package activated. Using \"NoPlot\"."
@goto USE_NO_PLOT
end
@label USE_NO_PLOT
expr = :( import ModiaLang.ModiaResult.NoPlot: plot, showFigure, saveFigure, closeFigure, closeAllFigures )
println("$expr")
return esc( expr )
end
#---------------------------------------------------------------------
# Simulation
#---------------------------------------------------------------------
function getAlgorithmName(algorithm)::String
algorithmType = typeof(algorithm)
if algorithmType == Missing
return "???"
end
name = string(algorithmType)
if algorithmType <: DifferentialEquations.OrdinaryDiffEq.QNDF
if algorithm.kappa == tuple(0//1,0//1,0//1,0//1,0//1)
name = replace(name, "QNDF" => "QBDF")
end
elseif algorithmType <: DifferentialEquations.OrdinaryDiffEq.QNDF1 ||
algorithmType <: DifferentialEquations.OrdinaryDiffEq.QNDF2
if algorithm.kappa == 0
name = replace(name, "QNDF" => "QBDF")
end
end
return name
end
"""
solution = simulate!(instantiatedModel [, algorithm];
merge = missing, # change parameter/init/start values
tolerance = 1e-6, # relative tolerance
startTime = 0.0,
stopTime = 0.0, # stopTime >= startTime required
interval = missing, # = (stopTime-startTime)/500
interp_points = 0,
dtmax = missing, # = 100*interval
adaptive = true,
nlinearMinForDAE = 10,
log = false,
logStates = false,
logEvents = false,
logProgress = false,
logTiming = false,
logParameters = false,
logEvaluatedParameters = false,
requiredFinalStates = missing
requiredFinalStates_rtol = 1e-3,
requiredFinalStates_atol = 0.0,
useRecursiveFactorizationUptoSize = 0)
Simulate `instantiatedModel::SimulationModel` with `algorithm`
(= `alg` of [ODE Solvers of DifferentialEquations.jl](https://diffeq.sciml.ai/stable/solvers/ode_solve/)
or [DAE Solvers of DifferentialEquations.jl](https://diffeq.sciml.ai/stable/solvers/dae_solve/)).
If the `algorithm` argument is missing, `algorithm=Sundials.CVODE_BDF()` is used, provided
instantiatedModel has `FloatType = Float64`. Otherwise, a default algorithm will be chosen from DifferentialEquations
(for details see [https://arxiv.org/pdf/1807.06430](https://arxiv.org/pdf/1807.06430), Figure 3).
The symbols `CVODE_BDF` and `IDA` are exported from ModiaLang, so that `simulate!(instantiatedModel, CVODE_BDF(), ...)`
and `simulate!(instantiatedModel, IDA(), ...)`
can be used (instead of `import Sundials; simulate!(instantiatedModel, Sundials.xxx(), ...)`).
The simulation results are stored in `instantiatedModel` and can be plotted with
`plot(instantiatedModel, ...)` and the result values
can be retrieved with `rawSignal(..)` or `getPlotSignal(..)`. `printResultInfo(instantiatedModel)`
prints information about the signals in the result file.
For more details, see chapter [Results and Plotting](@ref)).
The (optional) return argument `solution` is the return argument from `DifferentialEquations.solve(..)` and
therefore all post-processing functionality from `DifferentialEqautions.jl` can be used. Especially,
- solution.t[i] # time-instant at storage point i (solution.t[end] = stopTime)
- solution.u[i] # states at storage point i
A simulation run can be aborted with `<CTRL> C` (SIGINT).
# Optional Arguments
- `merge`: Define parameters and init/start values that shall be merged with the previous values
stored in `model`, before simulation is started. If, say, an init value `phi = Var(init=1.0)`
is defined in the model, a different init value can be provided with
`merge = Map(phi=2.0)`.
- `tolerance`: Relative tolerance.
- `startTime`: Start time. If value is without unit, it is assumed to have unit [s].
- `stopTime`: Stop time. If value is without unit, it is assumed to have unit [s].
- `interval`: Interval to store result. If `interval=missing`, it is internally selected as
(stopTime-startTime)/500.
If value is without unit, it is assumed to have unit [s].
- `interp_points`: If crossing functions defined, number of additional interpolation points
in one step.
- `dtmax`: Maximum step size. If `dtmax==missing`, it is internally set to `100*interval`.
- `adaptive`: = true, if the `algorithm` should use step-size control (if available).
= false, if the `algorithm` should use a fixed step-size of `interval` (if available).
- `nlinearMinForDAE`: If `algorithm` is a DAE integrator (e.g. `IDA()`) and the size of a linear equation system
is `>= nlinearMinForDAE` and the iteration variables of this equation system are a subset of the
DAE state derivatives, then during continuous integration (but not at events, including
initialization) this equation system is not locally solved but is solved via the DAE integrator.
Typically, for large linear equation systems, simulation efficiency is considerably improved
in such a case.f
- `log`: = true, to log the simulation.
- `logStates`: = true, to log the states, its init/start values and its units.
- `logEvents`: = true, to log events.
- `logProgress` = true, to printout current simulation time every 5s.
- `logTiming`: = true, to log the timing with `instantiatedModel.timer` which is an instance
of [TimerOutputs](https://github.com/KristofferC/TimerOutputs.jl).TimerOutput.
A user function can include its timing via\\
`TimerOutputs.@timeit instantiatedModel.timer "My Timing" <statement>`.
- `logParameters`: = true, to log parameters and init/start values defined in model.
- `logEvaluatedParameters`: = true, to log the evaluated parameter and init/start values that
are used for initialization and during simulation.
- `requiredFinalStates`: is not `missing`: Test with `@test` whether the ODE state vector at the
final time instant is in agreement to vector `requiredFinalStates` with respect
to some relative tolerance `requiredFinalStates_rtol`. If this is not the case, print the
final state vector (so that it can be included with copy-and-paste in the simulate!(..) call).
- `requiredFinalStates_rtol`: Relative tolerance used for `requiredFinalStates`.
- `requiredFinalStates_atol`: Absolute tolerance used for `requiredFinalStates` (see atol in `?isapprox`)
- `useRecursiveFactorizationUptoSize`: = 0: Linear equation systems A*v=b are solved with
`RecursiveFactorization.jl` instead of the default `lu!(..)` and `ldiv!(..)`, if
`length(v) <= useRecursiveFactorizationUptoSize`.
According to `RecursiveFactorization.jl` docu, it is faster as `lu!(..)` with OpenBLAS,
for `length(v) <= 500` (typically, more as a factor of two).
Since there had been some cases where `lu!(..)!` was successful,
but `RecursiveFactorization.jl` failed due to a singular system, the default is to use `lu!(..)!`.
# Examples
```julia
using Modia
@usingModiaPlot
# Define model
inputSignal(t) = sin(t)
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
# Modify parameters and initial values of model
FirstOrder2 = FirstOrder | Map(T = 0.4, x = Var(init=0.6))
# Instantiate model
firstOrder = @instantiateModel(FirstOrder2, logCode=true)
# Simulate with automatically selected algorithm (Sundials.CVODE_BDF())
# and modified parameter and initial values
simulate!(firstOrder, stopTime = 1.0, merge = Map(T = 0.6, x = 0.9), logEvaluatedParameters=true)
# Plot variables "x", "u" in diagram 1, "der(x)" in diagram 2, both diagrams in figure 3
plot(firstOrder, [("x","u"), "der(x)"], figure=3)
# Retrieve "time" and "u" values:
usig = getPlotSignal(firstOrder, "x")
# usig.xsig : time vector
# usig.xsigLegend: legend for time vector
# usig.ysig : "x" vector
# usig.ysigLegend: legend for "x" vector
# usig.ysigType : ModiaResult.Continuous or ModiaResult.Clocked
# Simulate with Runge-Kutta 5/4 with step-size control
simulate!(firstOrder, Tsit5(), stopTime = 1.0)
# Simulate with Runge-Kutta 4 with fixed step size
simulate!(firstOrder, RK4(), stopTime = 1.0, adaptive=false)
# Simulate with algorithm that switches between
# Verners Runge-Kutta 6/5 algorithm if non-stiff region and
# Rosenbrock 4 (= A-stable method) if stiff region with step-size control
simulate!(firstOrder, AutoVern6(Rodas4()), stopTime = 1.0)
```
"""
function simulate!(m::Nothing, args...; kwargs...)
@info "The call of simulate!(..) is ignored, since the first argument is nothing."
@test false
return nothing
end
function simulate!(m::SimulationModel{FloatType,TimeType}, algorithm=missing; merge=nothing, kwargs...) where {FloatType,TimeType}
options = SimulationOptions{FloatType,TimeType}(merge; kwargs...)
if isnothing(options)
@test false
return nothing
end
m.options = options
solution = nothing
#try
if ismissing(algorithm) && FloatType == Float64
algorithm = Sundials.CVODE_BDF()
end
m.algorithmName = getAlgorithmName(algorithm)
# Initialize/re-initialize SimulationModel
if m.options.log || m.options.logEvaluatedParameters || m.options.logStates
println("... Simulate model ", m.modelName)
end
useRecursiveFactorizationUptoSize = m.options.useRecursiveFactorizationUptoSize
for leq in m.linearEquations
leq.useRecursiveFactorization = length(leq.x) <= useRecursiveFactorizationUptoSize && length(leq.x) > 1
end
#TimerOutputs.@timeit m.timer "ModiaLang.init!" success = init!(m)
if m.options.log || m.options.logTiming
@time (success = init!(m); if m.options.log || m.options.logTiming; print(" Initialization finished within") end)
else
success = init!(m)
end
if !success
@test false
return nothing
end
enable_timer!(m.timer)
reset_timer!(m.timer)
TimerOutputs.@timeit m.timer "ModiaLang.simulate!" begin
sizesOfLinearEquationSystems = Int[length(leq.b) for leq in m.linearEquations]
# Define problem and callbacks based on algorithm and model type
interval = m.options.interval
if abs(m.options.stopTime - m.options.startTime) <= 0
interval = 1.0
tspan2 = [m.options.startTime]
elseif abs(m.options.interval) < abs(m.options.stopTime-m.options.startTime)
tspan2 = m.options.startTime:m.options.interval:m.options.stopTime
else
tspan2 = [m.options.startTime, m.options.stopTime]
end
tspan = (m.options.startTime, m.options.stopTime)
eh = m.eventHandler
m.odeMode = true
m.solve_leq = true
if typeof(algorithm) <: DifferentialEquations.DiffEqBase.AbstractDAEAlgorithm
# DAE integrator
m.odeIntegrator = false
nx = length(m.x_init)
differential_vars = eh.nz > 0 ? fill(true, nx) : nothing # due to DifferentialEquations issue #549
TimerOutputs.@timeit m.timer "DifferentialEquations.DAEProblem" problem = DifferentialEquations.DAEProblem{true}(DAEresidualsForODE!, m.der_x, m.x_init, tspan, m, differential_vars = differential_vars)
empty!(m.daeCopyInfo)
if length(sizesOfLinearEquationSystems) > 0 && maximum(sizesOfLinearEquationSystems) >= options.nlinearMinForDAE
# Prepare data structure to efficiently perform copy operations for DAE integrator
x_info = m.equationInfo.x_info
der_x_dict = m.equationInfo.der_x_dict
der_x_names = keys(der_x_dict)
for (ileq,leq) in enumerate(m.linearEquations)
if sizesOfLinearEquationSystems[ileq] >= options.nlinearMinForDAE &&
length(intersect(leq.x_names,der_x_names)) == length(leq.x_names)
# Linear equation shall be solved by DAE and all unknowns of the linear equation system are DAE derivatives
leq.odeMode = false
m.odeMode = false
leq_copy = LinearEquationsCopyInfoForDAEMode(ileq)
for ix in 1:length(leq.x_names)
x_name = leq.x_names[ix]
x_length = leq.x_lengths[ix]
x_info_i = x_info[ der_x_dict[x_name] ]
@assert(x_length == x_info_i.length)
startIndex = x_info_i.startIndex
endIndex = startIndex + x_length - 1
append!(leq_copy.index, startIndex:endIndex)
end
push!(m.daeCopyInfo, leq_copy)
else
leq.odeMode = true
end
end
end
else
# ODE integrator
m.odeIntegrator = true
TimerOutputs.@timeit m.timer "DifferentialEquations.ODEProblem" problem = DifferentialEquations.ODEProblem{true}(derivatives!, m.x_init, tspan, m)
end
callback2 = DifferentialEquations.DiscreteCallback(timeEventCondition!, affectTimeEvent!)
if eh.nz > 0
#println("\n!!! Callback set with crossing functions")
# Due to DifferentialEquations bug https://github.com/SciML/DifferentialEquations.jl/issues/686
# FunctionalCallingCallback(outputs!, ...) is not correctly called when zero crossings are present.
# The fix is to call outputs!(..) from the previous to the current event, when an event occurs.
# (alternativey: callback4 = DifferentialEquations.PresetTimeCallback(tspan2, affect_outputs!) )
callback1 = DifferentialEquations.FunctionCallingCallback(outputs!, funcat=[m.options.startTime]) # call outputs!(..) at startTime
callback3 = DifferentialEquations.VectorContinuousCallback(zeroCrossings!,
affectStateEvent!, eh.nz, interp_points=m.options.interp_points, rootfind=DifferentialEquations.SciMLBase.RightRootFind)
#callback4 = DifferentialEquations.PresetTimeCallback(tspan2, affect_outputs!)
callbacks = DifferentialEquations.CallbackSet(callback1, callback2, callback3) #, callback4)
else
#println("\n!!! Callback set without crossing functions")
callback1 = DifferentialEquations.FunctionCallingCallback(outputs!, funcat=tspan2)
callbacks = DifferentialEquations.CallbackSet(callback1, callback2)
end
# Initial step size (the default of DifferentialEquations is too large) + step-size of fixed-step algorithm
if !ismissing(algorithm) && (typeof(algorithm) <: Sundials.SundialsODEAlgorithm ||
typeof(algorithm) <: Sundials.SundialsDAEAlgorithm)
sundials = true
else
sundials = false
dt = m.options.adaptive ? m.options.interval/10 : m.options.interval # initial step-size
end
m.addEventPointsDueToDEBug = sundials
# Compute solution
abstol = 0.1*m.options.tolerance
tstops = (m.eventHandler.nextEventTime,)
m.cpuLast = time_ns()
m.cpuFirst = m.cpuLast
if ismissing(algorithm)
TimerOutputs.@timeit m.timer "DifferentialEquations.solve" solution = DifferentialEquations.solve(problem, reltol=m.options.tolerance, abstol=abstol, save_everystep=false,
callback=callbacks, adaptive=m.options.adaptive, saveat=tspan2, dt=dt, dtmax=m.options.dtmax, tstops = tstops,
initializealg = DifferentialEquations.NoInit())
elseif sundials
TimerOutputs.@timeit m.timer "DifferentialEquations.solve" solution = DifferentialEquations.solve(problem, algorithm, reltol=m.options.tolerance, abstol=abstol, save_everystep=false,
callback=callbacks, adaptive=m.options.adaptive, saveat=tspan2, dtmax=m.options.dtmax, tstops = tstops,
initializealg = DifferentialEquations.NoInit())
else
TimerOutputs.@timeit m.timer "DifferentialEquations.solve" solution = DifferentialEquations.solve(problem, algorithm, reltol=m.options.tolerance, abstol=abstol, save_everystep=false,
callback=callbacks, adaptive=m.options.adaptive, saveat=tspan2, dt=dt, dtmax=m.options.dtmax, tstops = tstops,
initializealg = DifferentialEquations.NoInit())
end
# Compute and store outputs from last event until final time
sol_t = solution.t
sol_x = solution.u
m.storeResult = true
for i = length(m.result_vars)+1:length(sol_t)
invokelatest_getDerivatives_without_der_x!(sol_x[i], m, sol_t[i])
end
m.storeResult = false
# Final update of instantiatedModel
m.result_x = solution
if ismissing(algorithm)
m.algorithmName = getAlgorithmName(solution.alg)
end
# Terminate simulation
finalStates = solution.u[end]
finalTime = solution.t[end]
terminate!(m, finalStates, finalTime)
# Raise an error, if simulation was not successful
if !(solution.retcode == :Default || solution.retcode == :Success || solution.retcode == :Terminated)
error("\nsolution = simulate!(", m.modelName, ", ...) failed with solution.retcode = :$(solution.retcode) at time = $finalTime.\n")
end
end
disable_timer!(m.timer)
if !m.success
return nothing
end
if m.options.log
useRecursiveFactorization = Bool[leq.useRecursiveFactorization for leq in m.linearEquations]
println(" Termination of ", m.modelName, " at time = ", finalTime, " s")
println(" cpuTime (without init.) = ", round(TimerOutputs.time(m.timer["ModiaLang.simulate!"])*1e-9, sigdigits=3), " s")
println(" allocated (without init.) = ", round(TimerOutputs.allocated(m.timer["ModiaLang.simulate!"])/1048576.0, sigdigits=3), " MiB")
println(" algorithm = ", get_algorithmName_for_heading(m))
println(" FloatType = ", FloatType)
println(" interval = ", m.options.interval, " s")
println(" tolerance = ", m.options.tolerance, " (relative tolerance)")
println(" nStates = ", length(m.x_start))
println(" linearSystemSizes = ", sizesOfLinearEquationSystems)
println(" useRecursiveFactorization = ", useRecursiveFactorization)
println(" odeModeLinearSystems = ", Bool[leq.odeMode for leq in m.linearEquations])
println(" nResults = ", length(m.result_x.t))
println(" nGetDerivatives = ", m.nGetDerivatives, " (total number of getDerivatives! calls)")
println(" nf = ", m.nf, " (number of getDerivatives! calls from integrator)") # solution.destats.nf
println(" nZeroCrossings = ", eh.nZeroCrossings, " (number of getDerivatives! calls for zero crossing detection)")
if sundials && (eh.nTimeEvents > 0 || eh.nStateEvents > 0)
# statistics is wrong, due to a bug in the Sundials.jl interface
println(" nJac = ??? (number of Jacobian computations)")
println(" nAcceptedSteps = ???")
println(" nRejectedSteps = ???")
println(" nErrTestFails = ???")
else
println(" nJac = ", solution.destats.njacs, " (number of Jacobian computations)")
println(" nAcceptedSteps = ", solution.destats.naccept)
println(" nRejectedSteps = ", solution.destats.nreject)
println(" nErrTestFails = ", solution.destats.nreject)
end
println(" nTimeEvents = ", eh.nTimeEvents)
println(" nStateEvents = ", eh.nStateEvents)
println(" nRestartEvents = ", eh.nRestartEvents)
end
if m.options.logTiming
println("\n... Timings for simulation of ", m.modelName," (without initialization):")
TimerOutputs.print_timer(TimerOutputs.flatten(m.timer), compact=true)
end
requiredFinalStates = m.options.requiredFinalStates
if !ismissing(requiredFinalStates)
rtol = m.options.requiredFinalStates_rtol
atol = m.options.requiredFinalStates_atol
if length(finalStates) != length(requiredFinalStates)
success = false
else
success = isapprox(finalStates, requiredFinalStates, rtol=rtol, atol=atol)
end
if success
@test success
else
println("\nrequiredFinalStates_rtol = $rtol")
println("requiredFinalStates_atol = $atol")
if length(requiredFinalStates) > 0 && typeof(requiredFinalStates[1]) <: Measurements.Measurement
println( "\nrequiredFinalStates = ", measurementToString(requiredFinalStates))
printstyled("finalStates = ", measurementToString(finalStates), "\n\n", bold=true, color=:red)
printstyled("difference = ", measurementToString(requiredFinalStates-finalStates), "\n\n", bold=true, color=:red)
else
println( "\nrequiredFinalStates = ", requiredFinalStates)
printstyled("finalStates = ", finalStates, "\n\n", bold=true, color=:red)
printstyled("difference = ", requiredFinalStates-finalStates, "\n\n", bold=true, color=:red)
end
@test isapprox(finalStates, requiredFinalStates, rtol=rtol, atol=atol)
end
end
#=
catch e
if isa(e, ErrorException)
println()
printstyled("Error during simulation at time = $(m.time) s:\n\n", bold=true, color=:red)
printstyled(e.msg, "\n", bold=true, color=:red)
printstyled("\nAborting simulate!(..) for model $(m.modelName) instantiated in file\n$(m.modelFile).\n", bold=true, color=:red)
println()
m.lastMessage = deepcopy(e.msg)
#@test false
elseif isa(e, InterruptException)
println()
m.lastMessage = "<ctrl> C interrupt during simulation at time = $(m.time) s.\n"
printstyled(m.lastMessage, bold=true, color=:red)
printstyled("\nAborting simulate!(..) for model $(m.modelName) instantiated in file\n$(m.modelFile).", bold=true, color=:red)
println()
else
println("... in else branch")
Base.rethrow()
end
end
=#
return solution
end
#get_x_startIndexAndLength(m::SimulationModel, name) = ModiaBase.get_x_startIndexAndLength(m.equationInfo, name)
#---------------------------------------------------------------------
# Linearization
#---------------------------------------------------------------------
"""
(A, finalStates) = linearize!(instantiatedModel [, algorithm];
stopTime = 0.0,
analytic = false,
<all other keyword arguments of simulate!>)
Simulate until `stopTime` and linearize `instantiatedModel` at `finalStates`.
The names of the state vector can be inquired by `get_xNames(instantiatedModel)`.
By default, linearization is performed numerically with a central finite difference
approximation using package [FiniteDiff](https://github.com/JuliaDiff/FiniteDiff.jl).
When setting `analytic = true`, linearization is preformed analytically with package
[ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl),
so is computed by symbolically differentiating the model.
`ForwardDiff` might not be compatible with some floating point types, such as
`Measurements` and Julia triggers an error that some overloaded
operations are ambiguous. So `analytic=true` will not work in such cases.
Analytic linearization returns matrix `A` in full precision whereas numeric linearization
returns `A` in reduced precision (if FloatType = Float64, analytic linearization results in about
15 correct digits and numeric linearization in about 10 correct digits in the result).
You can improve this situation, by using a larger
`FloatType` for `instantiatedModel`, in case this is critical (see example below).
# Output arguments
- `A::Matrix`: Matrix A of the linear ODE: ``\\Delta \\dot{x} = A*\\Delta x``.
- `finalStates::Vector`: Linearization point.
# Example
```julia
using ModiaLang
using DoubleFloats
using Measurements
FirstOrder = Model(
T = 0.4 ± 0.04,
x = Var(init = 0.9 ± 0.09),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u]
)
firstOrder1 = @instantiateModel(FirstOrder, FloatType = Measurement{Float64})
# Standard precision
(A1, finalStates1) = linearize!(firstOrder1)
# Higher precision
firstOrder2 = SimulationModel{Measurement{Double64}}(firstOrder1)
(A2, finalStates2) = linearize!(firstOrder2)
# Show results with 15 digits (default print with Measurements shows 3 digits)
println(IOContext(stdout, :error_digits=>15), "A1 = ", A1)
println(IOContext(stdout, :error_digits=>15), "A2 = ", A2)
```
"""
function linearize!(m::Nothing, args...; kwargs...)
@info "The call of linearize!(..) is ignored, since the first argument is nothing."
return nothing
end
function linearize!(m::SimulationModel{FloatType,TimeType}, algorithm=missing;
merge = nothing, stopTime = 0.0, analytic = false, kwargs...) where {FloatType,TimeType}
if analytic
@info "linearize!(.., analytic=true) of model $(m.modelName) \nis modified to analytic=false, because analytic=true is currently not supported!"
analytic = false
end
solution = simulate!(m, algorithm; merge=merge, stopTime=stopTime, kwargs...)
finalStates = solution[:,end]
# Function that shall be linearized
function modelToLinearize!(der_x, x)
invokelatest_getDerivatives!(der_x, x, m, m.options.startTime)
return nothing
end
# Linearize
if analytic
der_x = zeros(FloatType, length(finalStates))
A = ForwardDiff.jacobian(modelToLinearize!, der_x, finalStates)
else
A = zeros(FloatType, length(finalStates), length(finalStates))
FiniteDiff.finite_difference_jacobian!(A, modelToLinearize!, finalStates)
end
return (A, finalStates)
end
#------------------------------------------------------------------------------------------------
# Provide the overloaded ModiaResult Abstract Interface for the results of SimulationModel
#------------------------------------------------------------------------------------------------
ModiaResult.timeSignalName( m::SimulationModel) = "time"
ModiaResult.hasOneTimeSignal(m::SimulationModel) = true
"""
hasSignal(instantiatedModel, name::AbstractString)
Return true if parameter or time-varying variable `name` (for example `name = "a.b.c"`)
is defined in the instantiateModel that can be accessed and can be used for plotting.
"""
ModiaResult.hasSignal(m::SimulationModel, name::AbstractString) = begin
# m.save_x_in_solution ? name == "time" || haskey(m.equationInfo.x_dict, name) :
if isnothing(m) || ismissing(m) || ismissing(m.result_x) || ismissing(m.result_vars) || ismissing(m.result_der_x)
return false
end
haskey(m.result_info, name) || !ismissing(get_value(m.evaluatedParameters, name))
end
"""
signalNames(instantiatedModel)
Return the variable names (parameters, time-varying variables) of an
[`@instantiateModel`](@ref) that can be accessed and can be used for plotting.
"""
function ModiaResult.signalNames(m::SimulationModel)
#if m.save_x_in_solution
# names = ["time"]
# append!(names, collect( keys(m.equationInfo.x_dict) ))
#else
all_names = get_names(m.evaluatedParameters)
append!(all_names, setdiff(collect( keys(m.result_info) ), all_names) )
#end
sort!(all_names)
return all_names
end
#=
import ChainRules
function ChainRules.rrule(::typeof(ResultView), v, i)
y = ResultView(v,i)
function ResultView_pullback(ȳ)
return ChainRules.NO_FIELDS, collect(y)...
end
return y, ResultView_pullback
end
=#
function ModiaResult.rawSignal(m::SimulationModel, name::AbstractString)
tsig = m.result_x.t
if !m.unitless
tsig = tsig*u"s"
if !(m.options.desiredResultTimeUnit == NoUnits ||
m.options.desiredResultTimeUnit == u"s")
tsig = uconvert.(m.options.desiredResultTimeUnit, tsig)
end
end
if name == "time"
return ([tsig], [tsig], ModiaResult.Independent)
end
if haskey(m.result_info, name)
resInfo = m.result_info[name]
if resInfo.store == RESULT_X
(ibeg,iend,xunit) = get_xinfo(m, resInfo.index)
if ibeg == iend
xSig = [v[ibeg] for v in m.result_x.u]
else
xSig = [v[ibeg:iend] for v in m.result_x.u]
end
if resInfo.negate
xSig *= -1
end
if !m.unitless && xunit != ""
xSig = xSig*uparse(xunit)
end
return ([tsig], [xSig], ModiaResult.Continuous)
elseif resInfo.store == RESULT_DER_X
(ibeg,iend,xunit) = get_xinfo(m, resInfo.index)
if ibeg == iend
derxSig = [v[ibeg] for v in m.result_der_x]
else
derxSig = [v[ibeg:iend] for v in m.result_der_x]
end
if resInfo.negate
derxSig *= -1
end
if !m.unitless
if xunit == ""
derxSig = derxSig/u"s"
else
derxSig = derxSig*(uparse(xunit)/u"s")
end
end
return ([tsig], [derxSig], ModiaResult.Continuous)
elseif resInfo.store == RESULT_VARS
signal = ModiaResult.SignalView(m.result_vars, resInfo.index, resInfo.negate)
if length(signal) != length(tsig)
lens = length(signal)
lent = length(tsig)
error("Bug in SimulateAndPlot.jl (rawSignal(..)): name=\"$name\",\nlength(signal) = $lens, length(tsig) = $lent")
end
return ([tsig], [signal], ModiaResult.Continuous)
elseif resInfo.store == RESULT_ZERO
signal = ModiaResult.OneValueVector(0.0, length(tsig))
return ([tsig], [signal], ModiaResult.Continuous)
else
error("Bug in SimulateAndPlot.jl (rawSignal(..)): name=\"$name\", resInfo=$resInfo")
end
else
value = get_value(m.evaluatedParameters, name)
if ismissing(value)
error("rawSignal: \"$name\" not in result of model $(m.modelName))")
end
signal = ModiaResult.OneValueVector(value, length(tsig))
return ([tsig], [signal], ModiaResult.Continuous)
end
end
"""
leaveName = get_leaveName(pathName::String)
Return the `leaveName` of `pathName`.
"""
get_leaveName(pathName::String) =
begin
j = findlast('.', pathName);
typeof(j) == Nothing || j >= length(pathName) ? pathName : pathName[j+1:end]
end
function get_algorithmName_for_heading(m::SimulationModel)::String
if ismissing(m.algorithmName)
algorithmName = "???"
else
algorithmName = m.algorithmName
i1 = findfirst("CompositeAlgorithm", algorithmName)
if !isnothing(i1)
i2 = findfirst("Vern" , algorithmName)
i3 = findfirst("Rodas", algorithmName)
success = false
if !isnothing(i2) && !isnothing(i3)
i2b = findnext(',', algorithmName, i2[1])
i3b = findnext('{', algorithmName, i3[1])
if !isnothing(i2b) && !isnothing(i3b)
algorithmName = algorithmName[i2[1]:i2b[1]-1] * "(" * algorithmName[i3[1]:i3b[1]-1] * "())"
success = true
end
end
if !success
algorithmName = "CompositeAlgorithm"
end
else
i1 = findfirst('{', algorithmName)
if !isnothing(i1)
algorithmName = algorithmName[1:i1-1]
end
i1 = findlast('.', algorithmName)
if !isnothing(i1)
algorithmName = algorithmName[i1+1:end]
end
end
end
return algorithmName
end
function ModiaResult.defaultHeading(m::SimulationModel)
FloatType = get_leaveName( string( typeof( m.x_start[1] ) ) )
algorithmName = get_algorithmName_for_heading(m)
if FloatType == "Float64"
heading = m.modelName * " (" * algorithmName * ")"
else
heading = m.modelName * " (" * algorithmName * ", " * FloatType * ")"
end
return heading
end
# For backwards compatibility
"""
signal = get_result(instantiatedModel, name; unit=true)
dataFrame = get_result(instantiatedModel; onlyStates=false, extraNames=missing)
- First form: After a successful simulation of `instantiatedModel`, return
the result for the signal `name::String` as vector of points
together with its unit. The time vector has path name `"time"`.
If `unit=false`, the signal is returned, **without unit**.
- Second form: Return the **complete result** in form of a DataFrame object.
Therefore, the whole functionality of package [DataFrames](https://dataframes.juliadata.org/stable/)
can be used, including storing the result on file in different formats.
Furthermore, also plot can be used on dataFrame.
Parameters and zero-value variables are stored as ModiaResult.OneValueVector inside dataFrame
(are treated as vectors, but actually only the value and the number
of time points is stored). If `onlyStates=true`, then only the states and the signals
identified with `extraNames::Vector{String}` are stored in `dataFrame`.
If `onlyStates=false` and `extraNames` given, then only the signals
identified with `extraNames` are stored in `dataFrame`.
These keyword arguments are useful, if `dataFrame` shall be
utilized as reference result used in compareResults(..).
In both cases, a **view** on the internal result memory is provided
(so result data is not copied).
# Example
```julia
using ModiaLang
@usingModiaPlot
using Unitful
include("\$(ModiaBase.path)/demos/models/Model_Pendulum.jl")
using .Model_Pendulum
pendulum = simulationModel(Pendulum)
simulate!(pendulum, stopTime=7.0)
# Get one signal from the result and plot with the desired plot package
time = get_result(pendulum, "time") # vector with unit u"s"
phi = get_result(pendulum, "phi") # vector with unit u"rad"
import PyPlot
PyPlot.figure(4) # Change to figure 4 (or create it, if it does not exist)
PyPlot.clf() # Clear current figure
PyPlot.plot(stripUnit(time), stripUnit(phi), "b--", label="phi in " * string(unit(phi[1])))
PyPlot.xlabel("time in " * string(unit(time[1])))
PyPlot.legend()
# Get complete result and plot one signal
result = get_result(pendulum)
plot(result, "phi")
# Get only states to be used as reference and compare result with reference
reference = get_result(pendulum, onlyStates=true)
(success, diff, diff_names, max_error, within_tolerance) =
ModiaResult.compareResults(result, reference, tolerance=0.01)
println("Check results: success = $success")
```
"""
function get_result(m::SimulationModel, name::AbstractString; unit=true)
#(xsig, xsigLegend, ysig, ysigLegend, yIsConstant) = ModiaResult.getPlotSignal(m, "time", name)
#resIndex = m.variables[name]
#ysig = ResultView(m.result, abs(resIndex), resIndex < 0)
(tsig2, ysig2, ysigType) = ModiaResult.rawSignal(m, name)
ysig = ysig2[1]
ysig = unit ? ysig : stripUnit.(ysig)
#=
if yIsConstant
if ndims(ysig) == 1
ysig = fill(ysig[1], length(xsig))
else
ysig = fill(ysig[1,:], length(xsig))
end
end
=#
return ysig
end
function setEvaluatedParametersInDataFrame!(obj::OrderedDict{Symbol,Any}, result_info, dataFrame::DataFrames.DataFrame, path::String, nResult::Int)::Nothing
for (key,value) in zip(keys(obj), obj)
name = appendName(path, key)
if typeof(value) <: OrderedDict{Symbol,Any}
setEvaluatedParametersInDataFrame!(value, result_info, dataFrame, name, nResult)
elseif !haskey(result_info, name)
dataFrame[!,name] = ModiaResult.OneValueVector(value,nResult)
end
end
return nothing
end
function get_result(m::SimulationModel; onlyStates=false, extraNames=missing)
dataFrame = DataFrames.DataFrame()
(timeSignal, signal, signalType) = ModiaResult.rawSignal(m, "time")
dataFrame[!,"time"] = timeSignal[1]
if onlyStates || !ismissing(extraNames)
if onlyStates
for name in keys(m.equationInfo.x_dict)
(timeSignal, signal, signalType) = ModiaResult.rawSignal(m, name)
dataFrame[!,name] = signal[1]
end
end
if !ismissing(extraNames)
for name in extraNames
(timeSignal, signal, signalType) = ModiaResult.rawSignal(m, name)
dataFrame[!,name] = signal[1]
end
end
else
for name in keys(m.result_info)
if name != "time"
(timeSignal, signal, signalType) = ModiaResult.rawSignal(m, name)
dataFrame[!,name] = signal[1]
end
end
setEvaluatedParametersInDataFrame!(m.evaluatedParameters, m.result_info, dataFrame, "", length(timeSignal[1]))
end
return dataFrame
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 3059 |
#= Synchronous Modelica primitives
Clock()
Clock(intervalCounter::Int, resolution::Int=1) # Add version with rational number
Clock(interval::Float64)
Clock(condition::Bool, startInterval::Float64=0.0)
Clock(c::Clock, solverMethod)
previous(x)
sample(u, c::Clock)
sample(u)
hold(u) = u
subSample(u, factor::Int)
superSample(u, factor::Int)
shiftSample(u, shiftCounter::Int, resolution::Int=1) # Add version with rational number
backSample(u, backCounter::Int, resolution::Int=1) # Add version with rational number
noClock()
interval(u)
=#
export Clock, sample, hold, previous
Clock(interval, m::SimulationModel, nr::Int) = Clock(m.options.startTime, interval, m, nr)
function Clock(startTime, interval, m::SimulationModel{FloatType,TimeType}, nr::Int)::Bool where {FloatType,TimeType}
# Clock ticks at startTime, startTime + interval, startTime + 2*interval, ...
# This is independent of the starTime of the simulation. Example:
# if startTime = -3, interval = 1.5, m.options.startTime = 1.0 then
# the clock ticks at 1.5, 3.0, 4.5, ...
eh = m.eventHandler
if isEvent(m)
if isInitial(m)
startTime2 = convert(TimeType, startTime)
interval2 = convert(TimeType, interval)
tFirst = startTime2 >= eh.time ? startTime2 : startTime2 + div(eh.time - startTime2, interval2, RoundUp)*interval2
if abs(eh.time - tFirst) < 1e-10
eh.clock[nr] = eh.time
setNextEvent!(eh, eh.clock[nr], triggerEventDirectlyAfterInitial=true)
else
eh.clock[nr] = tFirst
setNextEvent!(eh, eh.clock[nr])
end
elseif isFirstEventIterationDirectlyAfterInitial(m)
eh.clock[nr] = eh.time + convert(TimeType,interval)
setNextEvent!(eh, eh.clock[nr])
return true
elseif isFirstEventIteration(m) && isAfterSimulationStart(m)
tick = abs(eh.time - eh.clock[nr]) < 1E-10
if tick
eh.clock[nr] = eh.time + convert(TimeType,interval)
setNextEvent!(eh, eh.clock[nr])
return true
end
setNextEvent!(eh, eh.clock[nr])
end
end
return false
end
@inline function sample(v, clock::Bool, m::SimulationModel{FloatType,TimeType}, nr::Int) where {FloatType,TimeType}
eh = m.eventHandler
if isInitial(m) || clock
eh.sample[nr] = v
end
return eh.sample[nr]
end
@inline function previous(clock::Bool, m::SimulationModel, nr::Int)
# m.previous[nr] is initialized with the start/init value of v before the first model evaluation
if clock
m.previous[nr] = m.nextPrevious[nr]
end
return m.previous[nr]
end
hold(v) = v
@inline function hold(v, clock::Bool, m::SimulationModel, nr::Int)
# m.hold[nr] is initialized with the start/init value of v before the first model evaluation
if clock
m.hold[nr] = v
end
return m.hold[nr]
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1402 | module TestArrays
using ModiaLang
using ModiaLang.StaticArrays
@usingModiaPlot
LinearODE = Model(
A = parameter | [-1.0 0.0;
0.0 -2.0],
x = Var(init=[1.0, 2.0]),
equations = :[der(x) = A*x]
)
linearODE = @instantiateModel(LinearODE, logCode=true)
simulate!(linearODE, stopTime = 2, log=false, logStates=false, requiredFinalStates=[0.13533533463680386, 0.036632273646086545])
plot(linearODE, ["x", "der(x)"], figure=1, heading="LinearODE with length(x)=2")
simulate!(linearODE, stopTime = 2, log=false, logStates=false, requiredFinalStates=[0.14886882881582736, 0.038462894626776434, 0.00768439894426358],
merge = Map(A = [-1.0 0.0 0.0;
0.0 -2.0 0.0;
0.0 0.0 -3.0], x=[1.1, 2.1, 3.1]))
plot(linearODE, ["x", "der(x)"], figure=2, heading="LinearODE with length(x)=3")
LinearODE2 = Model(
A = parameter | SMatrix{2,2}([-1.0 0.0;
0.0 -2.0]),
x = Var(init = SVector{2}(1.0, 2.0)),
equations = :[der(x) = A*x]
)
linearODE2 = @instantiateModel(LinearODE2, logCode=true)
simulate!(linearODE2, stopTime = 2, log=false, logStates=false, requiredFinalStates=[0.13533533463680386, 0.036632273646086545])
@show typeof(linearODE2.evaluatedParameters[:A])
plot(linearODE2, ["x", "der(x)"], figure=3, heading="LinearODE2 with static arrays.")
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2159 | module TestAsynchronous
#println("\nAsynchronousExamples: Demonstrating the ability to simulate models with asynchronous semantics")
using ModiaLang
@usingModiaPlot
BooleanPulse1 = Model(
startTime = parameter,
width = parameter,
equations = :[
y = after(startTime) && ! after(startTime + width)
]
)
TestBooleanPulse1 = Model(
pulse = BooleanPulse1 | Map(startTime=2u"s", width=2u"s"),
)
model = @instantiateModel(TestBooleanPulse1, log=true, logCode=true)
simulate!(model, Tsit5(), stopTime=10, log=true, logEvents=true)
plot(model, [("pulse.y")], heading="TestBooleanPulse1", figure=1)
BooleanPulse = Model(
width = parameter | Map(value=50, min=0, max=100) | info"Width of pulse in % of period",
period = parameter | Map(min=0) | info"Time for one period",
startTime = parameter | info"Time instant of first pulse",
pulseStart = Var(start=:(startTime)) | info"Start time of pulse",
y = output,
equations = :[
Twidth = period*width/100
clock1 = Clock(startTime, period)
pulseStart = sample(if initial(); startTime else time end, clock1)
y = after(pulseStart) && ! after(pulseStart + Twidth)
]
)
TestBooleanPulse = Model(
pulse = BooleanPulse | Map(startTime=2u"s", period=2u"s"),
)
model = @instantiateModel(TestBooleanPulse, log=true, logCode=true)
simulate!(model, Tsit5(), stopTime=10, log=true, logEvents=true)
plot(model, [("pulse.y"), ("pulse.pulseStart")], heading="TestBooleanPulse", figure=2)
# References:
# http://osp.mans.edu.eg/cs212/Seq_circuits_Summary_FF-types.htm
# https://www.kth.se/social/files/56124acff27654028dfc0f80/F12asyFSM1_eng.pdf
SRFlipFlop = Model(
Q = Var(init=false),
equations = :[
Q = S || ! R && pre(Q)
]
)
TestSRFlipFlop = Model(
set = BooleanPulse | Map(startTime=2u"s", period=4u"s"),
reset = BooleanPulse | Map(startTime=5u"s", period=4u"s"),
sr = SRFlipFlop,
equations = :[
connect(set.y, sr.S)
connect(reset.y, sr.R)
]
)
model = @instantiateModel(TestSRFlipFlop, log=true, logCode=true)
simulate!(model, Tsit5(), stopTime=15, log=true, logEvents=true)
plot(model, [("sr.S"), ("sr.R"), ("sr.Q")], heading="TestSRFlipFlop", figure=3)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1102 | module TestBouncingBall
using ModiaLang
@usingModiaPlot
# Does not work: edge(..) appears in a linear equation system
BouncingBall = Model(
e = 0.7,
g = 9.81,
h = Var(init = 1.0),
v = Var(init = 0.0),
flying = Var(start = true), # due to pre(flying) -> SimulationModel(....; pre_startValues = [true], ....)
equations = :[
# desired:
# flying = edge(-h) ? reinit(v, -e*v) : pre(flying)
flying = edge(instantiatedModel, 1, -h, "-h", _leq_mode) ?
!reinit(instantiatedModel, _x, 2, -e*v, _leq_mode) : pre(flying),
der(h) = v,
der(v) = flying ? -g : 0.0
]
)
model = @instantiateModel(BouncingBall, logCode=true)
@show model.equationInfo.x_info
# Temporary code, until edge, reinit and pre are supported in the Modia language
eh = model.eventHandler
eh.nz = 1
eh.z = ones(eh.nz)
eh.zPositive = fill(false, eh.nz)
model.pre = [true]
simulate!(model, Tsit5(), stopTime = 3.0, log=true, logEvents=true) # requiredFinalStates = [-0.3617373025974107]
plot(model, ["h", "v", "flying"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 4760 | module TestDeclarations
using ModiaLang
struct Var
var::NamedTuple
Var(; kwargs...) = new((;kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((;kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((;kwargs...) )
end
Pin = Model( v = Var(potential=true, nominal=10), i = Var(;flow=true) )
@show Pin
Input(; kwargs...) = Var(;input=true, kwargs...)
Output(; kwargs...) = Var(;output=true, kwargs...)
Potential(; kwargs...) = Var(;potential=true, kwargs...)
Flow(; kwargs...) = Var(;flow=true, kwargs...)
using Base.Meta: isexpr
using ModiaLang.OrderedCollections: OrderedDict
using ModiaBase.Symbolic: removeBlock
function showModel(m, level=0)
println("(")
level += 1
for (k, v) in zip(keys(m), m)
if typeof(v) <: NamedTuple
print(" "^level, k, " = ")
showModel(v, level)
else
println(" "^level, k, " = ", removeBlock(v), ",")
end
end
println(" "^(level-1), "),")
end
macro showModel(model)
modelName = string(model)
mod = :( print($modelName, " = Model"); showModel($model); println() )
return esc(mod)
end
global logMerge = true
function setLogMerge(val)
global logMerge
logMerge = val
end
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return (; gen...)
end
function mergeModels(m1::NamedTuple, m2::NamedTuple, env=Symbol())
mergedModels = OrderedDict{Symbol,Any}(pairs(m1))
for (k,v) in collect(pairs(m2))
if typeof(v) <: NamedTuple
if k in keys(mergedModels) && ! (:_redeclare in keys(v))
if logMerge; print("In $k: ") end
m = mergeModels(mergedModels[k], v, k)
mergedModels[k] = m
elseif :_redeclare in keys(v)
if logMerge; println("Redeclaring: $k = $v") end
mergedModels[k] = v
elseif nothing in values(v) # TODO: Refine
else
if !(:_redeclare in keys(mergedModels))
if logMerge; println("Adding: $k = $v") end
end
mergedModels[k] = v
end
elseif v === nothing
if logMerge; println("Deleting: $k") end
delete!(mergedModels, k)
else
if logMerge
if k in keys(mergedModels)
println("Changing: $k = $(mergedModels[k]) to $k = $v")
elseif !(:_redeclare in keys(mergedModels))
println("Adding: $k = $v")
end
end
mergedModels[k] = v
end
end
return (; mergedModels...) # Transform OrderedDict to named tuple
end
mergeModels(m1::Model, m2::Model, env=Symbol()) = recursiveMerge(m1.model, m2.model)
mergeModels(m1::Model, m2::Map, env=Symbol()) = recursiveMerge(m1.model, m2.map)
#Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
#Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
#Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
Base.:|(m, n::Map) = (:MergeMap, m, n.map)
Redeclare = ( _redeclare = true, )
Replace(i, e) = (:replace, i, e)
Final(x) = x
# ----------------------------------------------------------
@time Pin = Model( v = Potential(), i = Flow() )
OnePort = Model( p = Pin, n = Pin, equations = :[
v = p.v - n.v
0 = p.i + n.i
i = p.i ]
)
@showModel(OnePort.model)
@time Resistor = OnePort | Model( R = Final(1.0u"Ω"), equations = Replace(1, :( R*i = v ) ))
@showModel(Resistor)
Capacitor = OnePort | Model( C = 1.0u"F", v = Map(init=0.0u"V"), equations = :[ C*der(v) = i ] )
Inductor = OnePort | Model( L = 1.0u"H", i = Map(init=0.0u"A"), equations = :[ L*der(i) = v ] )
ConstantVoltage = OnePort | Model( V = 1.0u"V", equations = :[ v = V ] )
Ground = Model( p = Pin, equations = :[ p.v = 0.0u"V" ] )
@time Filter = Model(
R = Resistor | Map(R=0.5u"Ω"),
C = Capacitor | Map(C=2.0u"F", v=Map(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
@showModel(Filter.model)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1054 | module TestExtraSimulateKeywordArguments
using ModiaLang
@usingModiaPlot
# Register extra simulate! keyword arguments
registerExtraSimulateKeywordArguments([:dummy1, :dummy2, :dummy3])
function inputSignal(instantiatedModel, t)
if isInitial(instantiatedModel)
dict = get_extraSimulateKeywordArgumentsDict(instantiatedModel)
dummy1 = get(dict, :dummy1, 1.0)
dummy2 = get(dict, :dummy2, true)
dummy3 = get(dict, :dummy3, "this is dummy3")
println("\nExtra simulate! keyword arguments: dummy1 = $dummy1, dummy2 = $dummy2, dummy3 = \"$dummy3\"\n")
end
sin(t)
end
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(instantiatedModel, time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder, logCode=false)
simulate!(firstOrder, Tsit5(), stopTime = 10, log=false, dummy1 = 2.0, dummy3 = "value changed",
requiredFinalStates = [-0.3617373025974107])
plot(firstOrder, ["u", "y"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2686 | module TestFilterCircuit
using ModiaLang
@usingModiaPlot
using Test
setLogMerge(false)
include("../models/Electric.jl")
FilterCircuit = Model(
R = Resistor | Map(R=0.5u"Ω"),
C = Capacitor | Map(C=2.0u"F", v=Var(init=0.1u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit = @instantiateModel(FilterCircuit)
simulate!(filterCircuit, Tsit5(), stopTime = 10, merge = Map(R = Map(R = 5u"Ω"), C = Map(v = 3.0u"V")),
logParameters = true, logStates = true, requiredFinalStates = [7.424843902110655])
# Test access functions
@testset "Test variable access functions (TestFilterCircuit.jl)" begin
currentNames = signalNames(filterCircuit)
requiredNames = String["C.C", "C.i", "C.n.i", "C.n.v", "C.p.i", "C.p.v", "C.v", "R.R", "R.i", "R.n.i", "R.n.v", "R.p.i", "R.p.v", "R.v", "V.V", "V.i", "V.n.i", "V.n.v", "V.p.i", "V.p.v", "V.v", "der(C.v)", "ground.p.i", "ground.p.v", "time"]
@test sort!(currentNames) == sort!(requiredNames)
@test hasSignal(filterCircuit, "R.v")
@test hasSignal(filterCircuit, "C.n.v")
@test hasSignal(filterCircuit, "R.R")
@test hasSignal(filterCircuit, "ground.p.i")
@test hasSignal(filterCircuit, "R.p.vv") == false
@test isapprox(get_lastValue(filterCircuit, "R.v") , 2.5751560978893453u"V" )
@test isapprox(get_lastValue(filterCircuit, "C.n.v"), 0.0u"V")
@test isapprox(get_lastValue(filterCircuit, "R.R") , 5.0u"Ω")
@test isapprox(get_lastValue(filterCircuit, "ground.p.i"), 0.0)
end
# Test plotting of variables, zero variables, parameters
plot(filterCircuit, [("R.v", "C.v"), ("R.R", "ground.p.i")], figure=1)
# Simulate with lower precision
filterCircuitLow = @instantiateModel(FilterCircuit, unitless=true, FloatType = Float32) # unitless=true required, since Float32 not yet supported, if units are present
simulate!(filterCircuitLow, RK4(), adaptive=false, stopTime=10.0, interval=0.01,
merge = Map(R = Map(R = 5.0), C = Map(v = 3.0)), # merge = Map(R = Map(R = 5u"Ω"), C = Map(v = 3.0u"V")),
requiredFinalStates = Float32[7.4248414])
plot(filterCircuitLow, [("R.v", "C.v"), ("R.R", "ground.p.i")], figure=2)
# Simulate with DAE integrator
println("\n... Simulate with DAE integrator")
filterCircuit2 = @instantiateModel(FilterCircuit) # Without a new @instantiateModel, this fails with a type error (will be fixed at a later time instant)
simulate!(filterCircuit2, IDA(), stopTime = 10, merge = Map(R = Map(R = 5u"Ω"), C = Map(v = 3.0u"V")), requiredFinalStates = [7.424843902110655])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 689 | module TestFilterCircuit2
using ModiaLang
@usingModiaPlot
setLogMerge(false)
include("../models/Electric.jl")
FilterCircuit2 = Model(
R = Resistor | Map(R=100u"Ω"),
Ri = Resistor | Map(R=10u"Ω"),
C = Capacitor | Map(C=2.5e-3u"F", v=Var(init=0.0u"V")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, Ri.n)
(Ri.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit2 = @instantiateModel(FilterCircuit2, unitless=true, logCode=true)
simulate!(filterCircuit2, Tsit5(), stopTime = 1.0, requiredFinalStates =[9.736520087687524])
plot(filterCircuit2, ("V.v", "Ri.v", "R.v", "C.v"), figure=1)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 461 | module TestFirstOrder
using ModiaLang
@usingModiaPlot
inputSignal(t) = sin(t)
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder, logCode=false)
simulate!(firstOrder, Tsit5(), stopTime = 10, log=false, requiredFinalStates = [-0.3617373025974107])
plot(firstOrder, ["u", "x", "der(x)", "y"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2074 | module TestFirstOrder2
using ModiaLang
@usingModiaPlot
using Test
# using RuntimeGeneratedFunctions
# RuntimeGeneratedFunctions.init(@__MODULE__)
inputSignal(t) = sin(t)
FirstOrder1 = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
FirstOrder2 = FirstOrder1 | Map(T = 0.3, x = Var(init=0.6))
firstOrder = @instantiateModel(FirstOrder2, logCode=false)
simulate!(firstOrder, Tsit5(), stopTime = 10, merge = Map(T = 0.4, x = 0.9),
log=false, logParameters=true, logStates=true,
requiredFinalStates = [-0.17964872595554535])
# Test get_result(instantiatedModel)
println()
result1 = get_result(firstOrder)
@show(result1[1:10,:])
println()
@show(result1[1:10, ["time", "u", "y"]])
println()
result2 = get_result(firstOrder, onlyStates=true, extraNames=["y"])
@show(result2[1:10,:])
println()
result3 = get_result(firstOrder, extraNames=["y"])
@show(result3[1:10,:])
# Linearize
println("\n... Linearize at stopTime = 0 and 10:")
(A_0 , x_0) = linearize!(firstOrder, analytic = true)
(A_10, x_10) = linearize!(firstOrder, stopTime=10, analytic = true)
(A_10_numeric, x_10_numeric) = linearize!(firstOrder, stopTime=10, analytic=false)
xNames = get_xNames(firstOrder)
@show xNames
@show A_0 , x_0
@show A_10, x_10
@show A_10_numeric, x_10_numeric
@test isapprox(A_0,[-1/0.4])
@test isapprox(A_0, A_10)
plot(result1, [("u", "x"), "der(x)", "y"])
FirstOrder3 = Model(
T = 2u"hr",
x = Var(init=1.0),
equations = :[u = if after(1.5u"hr"); 1.0 else 0.0 end,
T * der(x) + x = u]
)
firstOrder3 = @instantiateModel(FirstOrder3, logCode=false)
simulate!(firstOrder3, Tsit5(), stopTime = 10u"hr")
plot(firstOrder3, [("u", "x"), "der(x)"], figure=2)
# Test all options
firstOrder3b = @instantiateModel(FirstOrder3, evaluateParameters=true, log=true, logModel=true, logDetails=true, logStateSelection=true,
logCode=true, logExecution=true, logCalculations=true, logTiming=true)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1139 | module TestHeatTransfer
using ModiaLang
@usingModiaPlot
using Test
include("$(ModiaLang.path)/models/HeatTransfer.jl")
SimpleRod = Model(
fixedT = FixedTemperature | Map(T = 393.15u"K"),
C = HeatCapacitor | Map(C = 200u"J/K"),
G = ThermalConductor | Map(G = 100u"W/K"),
connect = :[
(fixedT.port, G.port_a),
(G.port_b , C.port)
]
)
simpleRod = @instantiateModel(SimpleRod)
simulate!(simpleRod, Tsit5(), stopTime = 15, requiredFinalStates = [393.09468783194814])
plot(simpleRod, ("fixedT.port.T", "C.T"), figure=1)
HeatedRod = Model(
fixedT = FixedTemperature | Map(T = 493.15u"K"),
fixedQflow = FixedHeatFlow,
rod = InsulatedRod | Map(T = Var(init = fill(293.15,5)u"K")),
connect = :[
(fixedT.port, rod.port_a),
(rod.port_b , fixedQflow.port)
]
)
heatedRod = @instantiateModel(HeatedRod)
simulate!(heatedRod, stopTime = 1e5, log=true,
requiredFinalStates = [492.9629728925529, 492.607421697723, 492.30480548105595, 492.0850627579106, 491.9694736486912])
plot(heatedRod, [("fixedT.port.T", "rod.T"), "der(rod.T)"], figure=2)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 410 | module TestInputOutput
using ModiaLang
@usingModiaPlot
FirstOrder = Model(
T = 0.2,
u = input | Map(start=0),
y = output,
x = Var(init=0.3),
equations = :[
T * der(x) + x = u,
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder)
simulate!(firstOrder, Tsit5(), stopTime = 2, requiredFinalStates = [1.362130067500907e-5])
plot(firstOrder, ["u", "x", "der(x)", "y"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 496 | module TestJSON
using ModiaLang
import ModiaLang.JSON
mutable struct S
a
b
end
mutable struct T
a
b
end
s = S(1,T(10, 25))
println("JSON.print(s):")
JSON.print(s)
println()
n = (a=1, b=(a=10, b=25))
println("JSON.print(n):")
JSON.print(n)
println()
println("JSON.print(s) == JSON.print(n):")
println(JSON.print(s) == JSON.print(n))
e = :(x = sin(time)*(a+1))
println()
JSON.print(e)
println()
println()
ej = JSON.json(e)
@show ej
println()
ee = JSON.parse(ej)
@show eval(ee)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 3649 | module TestLinearEquationSystemWithUnitsAndMonteCarlo
using ModiaLang
using ModiaLang.MonteCarloMeasurements
@usingModiaPlot
include("../models/Electric.jl")
### With units
FilterCircuit = Model(
R1 = Resistor | Map(R=100.0u"Ω"),
R2 = Resistor | Map(R=200.0u"Ω", i=Var(start=0.0u"A")),
Ri = Resistor | Map(R=10.0u"Ω"),
C = Capacitor | Map(C=2.5e-3u"F", v=Var(init=0.0u"V"), i=Var(start=0.0u"A")),
V = ConstantVoltage | Map(V=10.0u"V"),
ground = Ground,
connect = :[
(V.p, Ri.n)
(Ri.p, R1.p)
(Ri.p, R2.p)
(R1.n, R2.n, C.p)
(C.n, V.n, ground.p)
]
)
plotVariables = ("V.v", "Ri.v", "R1.v", "C.v")
logCode = false
# Units defined (and unitless=false and true)
filterCircuit1 = @instantiateModel(FilterCircuit, unitless=true, logCode=logCode)
simulate!(filterCircuit1, QBDF(autodiff=false), stopTime = 1.0, log=true)
plot(filterCircuit1, plotVariables, figure=1)
filterCircuit2 = @instantiateModel(FilterCircuit, unitless=false, logCode=logCode)
simulate!(filterCircuit2, QBDF(autodiff=false), stopTime = 1.0, log=true)
plot(filterCircuit2, plotVariables, figure=2)
# Units and StaticParticles defined (and unitless=false and true)
FilterCircuitStaticParticles = FilterCircuit | Map(R1=Map(R=(100.0∓10.0)u"Ω"),
R2=Map(R=(200.0∓20.0)u"Ω"),
C =Map(C=(2.5e-3∓1e-4)u"F")
)
filterCircuit3 = @instantiateModel(FilterCircuitStaticParticles, unitless=true, FloatType=StaticParticles{Float64,100}, logCode=logCode)
simulate!(filterCircuit3, QBDF(autodiff=false), stopTime = 1.0, log=true,
merge = Map(R1=Map(R=(110.0∓10.0)u"Ω"),
R2=Map(R=(220.0∓20.0)u"Ω"),
C =Map(C=(2.6e-3∓1e-4)u"F")
)
)
plot(filterCircuit3, plotVariables, figure=3)
filterCircuit4 = @instantiateModel(FilterCircuitStaticParticles, unitless=false, FloatType=StaticParticles{Float64,100}, logCode=logCode)
simulate!(filterCircuit4, QBDF(autodiff=false), stopTime = 1.0, log=true,
merge = Map(R1=Map(R=(110.0∓10.0)u"Ω"),
R2=Map(R=(220.0∓20.0)u"Ω"),
C =Map(C=(2.6e-3∓1e-4)u"F")
)
)
plot(filterCircuit4, plotVariables, figure=4)
# Units and Particles defined (and unitless=false and true)
FilterCircuitParticles = FilterCircuit | Map(R1=Map(R=(100.0±0.0)u"Ω"),
R2=Map(R=(200.0±20.0)u"Ω"),
C =Map(C=(2.5e-3±1e-4)u"F")
)
filterCircuit5 = @instantiateModel(FilterCircuitParticles, unitless=true, FloatType=Particles{Float64,2000}, logCode=logCode)
simulate!(filterCircuit5, QBDF(autodiff=false), stopTime = 1.0, log=true,
merge = Map(R1=Map(R=(110.0±10.0)u"Ω"),
R2=Map(R=(220.0±20.0)u"Ω"),
C =Map(C=(2.6e-3±1e-4)u"F")
)
)
plot(filterCircuit5, plotVariables, figure=5, MonteCarloAsArea=true)
filterCircuit6 = @instantiateModel(FilterCircuitParticles, unitless=false, FloatType=Particles{Float64,2000}, logCode=logCode)
simulate!(filterCircuit6, QBDF(autodiff=false), stopTime = 1.0, log=true,
merge = Map(R1=Map(R=(110.0±10.0)u"Ω"),
R2=Map(R=(220.0±20.0)u"Ω"),
C =Map(C=(2.6e-3±1e-4)u"F")
)
)
plot(filterCircuit6, plotVariables, figure=6, MonteCarloAsArea=true)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2039 | module TestMechanics
println("TestMechanics: Tests how 3D mechanics could be combined with ModiaLang.")
using ModiaLang
@usingModiaPlot
# ModiaLang models
include("$(ModiaLang.path)/models/Blocks.jl")
include("$(ModiaLang.path)/models/Electric.jl")
include("$(ModiaLang.path)/models/Rotational.jl")
# Generic ModiaLang3D model stubs (always available)
RevoluteStub = Model(
flange = Flange,
equations = :[phi = flange.phi
w = der(phi)
der_w = der(w)
tau = flange.tau]
)
# Generic Modia3D definitions (always available)
mutable struct SimulationModel3D
# Internal memory of 3D model
initial::Bool
SimulationModel3D() = new(true)
end
# Function ..._f1 for 3D mechanics
# function Pendulum_f1(_m::SimulationModel3D, phi::Float64, w::Float64, tau::Float64,
# m::Float64, L::Float64, g::Float64)
function Pendulum_f1(_m::TestMechanics.SimulationModel3D, phi, w, tau, m, L, g)
#function Pendulum_f1(phi, w, tau, m, L, g)
#=
if _m.initial
println("... SimplePendulum_f1 called during initialization")
_m.initial = false
end
=#
der_w = (tau - m*g*L*cos(phi))/m*L*L
return der_w
end
# ModiaLang model for the system
Pendulum = Model(
model3D = SimulationModel3D(),
# Parameters
m = 1.0u"kg",
L = 0.5u"m",
g = 9.81u"m/s^2",
# 3D model stubs
rev = RevoluteStub | Map(init = Map(phi=1.5u"rad", w=2u"rad/s")),
# Standard ModiaLang models
damper = Damper | Map(d=0.4u"N*m*s/rad"),
support = Fixed,
connect = :[
(rev.flange , damper.flange_b),
(damper.flange_a, support.flange)],
equations = :(rev.der_w = Pendulum_f1(model3D, rev.phi, rev.w, rev.tau, m, L, g))
# equations = :(rev.der_w = Pendulum_f1(rev.phi, rev.w, rev.tau, m, L, g))
)
pendulum = @instantiateModel(Pendulum, logCode=true, logExecution=false, unitless=true)
simulate!(pendulum, Tsit5(), stopTime=20.0, log=true)
plot(pendulum, ["rev.phi", "rev.w"])
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1976 | module TestMultiReturningFunction
using ModiaLang
@usingModiaPlot
include("$(ModiaLang.path)/models/Blocks.jl")
include("$(ModiaLang.path)/models/Electric.jl")
include("$(ModiaLang.path)/models/Rotational.jl")
function twoCoupledInertias(J1,J2,derw1,derw2,tau0,tau1,tau2)::Array{Float64,1}
r1 = J1*derw1 - tau0 + tau1
r2 = J2*derw2 - tau1 + tau2
return [r1,r2]
end
ThreeCoupledInertias = Model(
J1 = 1.1,
J2 = 1.2,
J3 = 1.3,
phi1 = Var(init=0.0),
phi2 = Var(init=0.0),
phi3 = Var(init=0.0),
w1 = Var(init=0.0),
w2 = Var(init=0.0),
w3 = Var(init=0.0),
tau1 = Var(start=0.0),
tau2 = Var(start=0.0),
# Same model with components from the Rotational.jl library
inertia1 = Inertia | Map(J=:J1),
inertia2 = Inertia | Map(J=:J2),
inertia3 = Inertia | Map(J=:J3),
connect = :[
(inertia1.flange_b, inertia2.flange_a)
(inertia2.flange_b, inertia3.flange_a)
],
equations = :[
tau0 = sin(time/u"s")
w1 = der(phi1)
w2 = der(phi2)
w3 = der(phi3)
phi2 = phi1
phi3 = phi2
(0,0) = twoCoupledInertias(J1,J2,der(w1),der(w2),tau0,tau1,tau2)
J3*der(w3) = tau2
inertia1.flange_a.tau = tau0
inertia3.flange_b.tau = 0.0
]
)
threeCoupledInertias = @instantiateModel(ThreeCoupledInertias, unitless=true, log=false, logDetails=false, logCode=true, logStateSelection=false)
simulate!(threeCoupledInertias, stopTime = 2.0, log=true,
requiredFinalStates=[0.3029735305821086, 0.3933746028781303, 0.39337460287813036, 0.3029735305821086])
plot(threeCoupledInertias, [("phi1", "phi2", "phi3", "inertia1.phi"),
("w1","w2","w3", "inertia1.w"),
("tau0"),
("tau1", "inertia2.flange_a.tau"),
("tau2", "inertia3.flange_a.tau")])
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 3355 | module TestMultiReturningFunction10
using ModiaLang.StaticArrays
using ModiaLang
@usingModiaPlot
mutable struct MbsData
phi1::Float64
w1::Float64
derw1::Float64
u1::Float64
phi2::Vector{Float64}
w2::Vector{Float64}
derw2::Vector{Float64}
residuals2::Vector{Float64}
function MbsData(; path = "", phi1=0.0, w1=0.0, phi2, equationInfo = missing, evaluatedParameters=missing)
println(" TestMultiReturningFunction10: init Mbs with phi2=$phi2")
ndof = length(phi2)
obj = new(phi1, w1, 0.0, 0.0, phi2, zeros(ndof), zeros(ndof), zeros(ndof))
# get_sizes(evaluatedParameters, ...)
# add_states(obj,equationInfo, copy_from_x, copy_to_der_x)
return obj
end
end
function myBuildFunction(model::AbstractDict, FloatType::Type, TimeType::Type, buildDict::AbstractDict,
modelPath::Union{Expr,Symbol,Nothing}; buildOption = "Default")
modelPathAsString = if isnothing(modelPath); "" else string(modelPath) end
println(" TestMultiReturningFunction10: Test output from function myBuildFunction at modelPath = \"$modelPathAsString\":\n Code could be constructed here and merged to the model with buildOption=$buildOption")
return nothing
end
MyModelWithBuild(; kwargs...) = Model(; _buildFunction = :myBuildFunction, kwargs...)
Mbs(; kwargs...) = Par(; _constructor = :(MbsData), _path = true, kwargs...)
function copy_from_x(mbs::MbsData, x, ibeg, iend)
end
function copy_to_der_x(mbs::MbsData, der_x, ibeg, iend)
end
function setStates(mbs::MbsData, phi1, w1)::MbsData
mbs.phi1 = phi1
mbs.w1 = w1
return mbs
end
function setAccelerations1(mbs::MbsData,derw1)::MbsData
mbs.derw1 = derw1
return mbs
end
function setAccelerations2(mbs::MbsData,derw2)::MbsData
mbs.derw2 = derw2
return mbs
end
function computeForcesAndResiduals(mbs::MbsData,time)
# m*L^2*derw + m*g*l*sin(phi) ) = u
# m=L=g=1
# derw + sin(phi) = 0
mbs.u1 = mbs.derw1 + sin(mbs.phi1)
mbs.residuals2 = (1+time)*mbs.derw2 + sin.(mbs.phi2)
return mbs
end
function getForces(mbs::MbsData)
return mbs.u1
end
function getResiduals(mbs::MbsData)
return mbs.residuals2
end
Pendulum = MyModelWithBuild(_buildOption = "MyBuildOption",
phi1 = Var(init=pi/2),
w1 = Var(init=0.0),
qdd = Var(start=zeros(2)),
mbs = Mbs(phi2=[1.0,2.0]),
mbs1 = Var(hideResult=true),
mbs2 = Var(hideResult=true),
mbs3 = Var(hideResult=true),
mbs4 = Var(hideResult=true),
equations = :[
w1 = der(phi1)
mbs1 = setStates(mbs,phi1,w1)
mbs2 = setAccelerations1(mbs1,der(w1))
mbs3 = setAccelerations2(mbs2,qdd)
mbs4 = computeForcesAndResiduals(mbs3,time)
tau1 = implicitDependency(getForces(mbs4), der(w1))
0 = implicitDependency(getResiduals(mbs4), qdd)
tau1 = -0.1*w1
]
)
pendulum = @instantiateModel(Pendulum , unitless=true, log=false, logDetails=false, logCode=true, logStateSelection=false)
simulate!(pendulum, stopTime = 2.0, log=true)
printResultInfo(pendulum)
plot(pendulum, [("phi1", "w1"), "der(w1)", "qdd"])
simulate!(pendulum, stopTime = 2.0, log=true, merge=Map(mbs = Mbs(phi2=[10.0,20.0,30.0]), qdd = zeros(3)))
plot(pendulum, [("phi1", "w1"), "der(w1)", "qdd"], figure=2)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1288 | module TestMultiReturningFunction4A
using ModiaBase.StaticArrays
using ModiaLang
@usingModiaPlot
mutable struct Mbs
derw1
derw2
end
function twoCoupledInertias(mbs::Mbs,J1,J2,tau0)
tau1 = tau0 - J1*mbs.derw1
tau2 = tau1 - J2*mbs.derw2
return (tau1,tau2)
end
ThreeCoupledInertias = Model(
J1 = 1.1,
J2 = 1.2,
J3 = 1.3,
phi1 = Var(init=0.0),
phi2 = Var(init=0.0),
phi3 = Var(init=0.0),
w1 = Var(init=0.0),
w2 = Var(init=0.0),
w3 = Var(init=0.0),
tau1 = Var(start=0.0),
tau2 = Var(start=0.0),
equations = :[
tau0 = sin(time/u"s")
w1 = der(phi1)
w2 = der(phi2)
w3 = der(phi3)
phi2 = phi1
phi3 = phi2
mbs = Mbs(der(w1), der(w2))
(tau1,tau2) = twoCoupledInertias(mbs,J1,J2,tau0)
J3*der(w3) = tau2
]
)
threeCoupledInertias = @instantiateModel(ThreeCoupledInertias, unitless=true, log=false, logDetails=false, logCode=true, logStateSelection=false)
simulate!(threeCoupledInertias, stopTime = 2.0, log=true, requiredFinalStates=[0.3933746028781301, 0.3029735305821084])
plot(threeCoupledInertias, [("phi1", "phi2", "phi3"),
("w1","w2","w3"),
("tau0", "tau1", "tau2")])
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1018 | module TestMultiReturningFunction5A
using ModiaLang
@usingModiaPlot
mutable struct Mbs
phi
w
derw
end
function setStates(phi, w)
return Mbs(phi,w,0.0)
end
function setAccelerations(mbs::Mbs,derw)::Mbs
mbs.derw = derw
return mbs
end
function getForces(mbs::Mbs)
# m*L^2*derw + m*g*l*sin(phi) ) = u
# m=L=g=1
# derw + sin(phi) = 0
u = mbs.derw + sin(mbs.phi)
return u
end
Pendulum = Model(
d = 1.0, # damping constant
phi = Var(init=pi/2),
w = Var(init=0.0),
equations = :[
w = der(phi)
mbs1 = setStates(phi,w)
mbs2 = setAccelerations(mbs1,der(w))
u = implicitDependency(getForces(mbs2),der(w))
u = -d*w
]
)
pendulum = @instantiateModel(Pendulum , unitless=true, log=false, logDetails=false, logCode=false, logStateSelection=true)
simulate!(pendulum, stopTime = 10.0, log=true, requiredFinalStates= [-0.012169911296941314, 0.0024087599260249094])
plot(pendulum, ("phi", "w"))
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1426 | module TestMultiReturningFunction6
using ModiaBase.StaticArrays
using ModiaLang
@usingModiaPlot
mutable struct Mbs
phi1
w1
phi2
w2
derw1
derw2
Mbs() = new(0,0,0,0,0,0)
end
function setStates(mbs, phi1, w1, phi2, w2)
mbs.phi1 = phi1
mbs.w1 = w1
mbs.phi2 = phi2
mbs.w2 = w2
return mbs
end
function setAccelerations(mbs::Mbs,derw1,derw2)
mbs.derw1 = derw1
mbs.derw2 = derw2
return mbs
end
function getForces(mbs::Mbs)
# m*L^2*derw + m*g*l*sin(phi) ) = u
# m=L=g=1
# derw + sin(phi) = 0
u1 = mbs.derw1 + sin(mbs.phi1)
u2 = mbs.derw2 + sin(mbs.phi2)
return SVector(u1,u2)
end
implicitDependency(x...) = nothing
Pendulum = Model(
phi1 = Var(init=pi/2),
w1 = Var(init=0.0),
phi2 = Var(init=pi/4),
w2 = Var(init=0.0),
mbs = Mbs(),
equations = :[
w1 = der(phi1)
w2 = der(phi2)
mbs1 = setStates(mbs,phi1,w1,phi2,w2)
mbs2 = setAccelerations(mbs1,der(w1),der(w2))
(0,0) = implicitDependency(getForces(mbs2), mbs1,der(w1),der(w2))
]
)
pendulum = @instantiateModel(Pendulum , unitless=true, log=false, logDetails=false, logCode=false, logStateSelection=false)
simulate!(pendulum, stopTime = 10.0, log=true,requiredFinalStates=[-1.0810242374611811, -0.9468374084033309, 0.13969589909383123, -0.7714994595239327])
plot(pendulum, ("phi1", "w1", "phi2", "w2"))
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1340 | module TestMultiReturningFunction7A
using ModiaLang.StaticArrays
using ModiaLang
@usingModiaPlot
mutable struct Mbs
phi1
w1
phi2
w2
derw1
derw2
Mbs() = new(0,0,0,0,0,0)
end
function setStates(mbs, phi1, w1, phi2, w2)
mbs.phi1 = phi1
mbs.w1 = w1
mbs.phi2 = phi2
mbs.w2 = w2
return mbs
end
function setAccelerations(mbs::Mbs,derw1,derw2)
mbs.derw1 = derw1
mbs.derw2 = derw2
return mbs
end
function getForces(mbs::Mbs)
# m*L^2*derw + m*g*l*sin(phi) ) = u
# m=L=g=1
# derw + sin(phi) = 0
u1 = mbs.derw1 + sin(mbs.phi1)
u2 = mbs.derw2 + sin(mbs.phi2)
return SVector(u1,u2)
end
Pendulum = Model(
phi1 = Var(init=pi/2),
w1 = Var(init=0.0),
phi2 = Var(init=pi/4),
w2 = Var(init=0.0),
mbs = Mbs(),
equations = :[
w1 = der(phi1)
w2 = der(phi2)
mbs1 = setStates(mbs,phi1,w1,phi2,w2)
(0,0) = getForces(setAccelerations(mbs1,der(w1),der(w2)))
]
)
pendulum = @instantiateModel(Pendulum , unitless=true, log=false, logDetails=false, logCode=false, logStateSelection=false)
simulate!(pendulum, stopTime = 2.0, log=true,
requiredFinalStates=[-1.399248030722412, -0.20564002545046062, -0.7148846477289476, -0.2742354977425878])
plot(pendulum, ("phi1", "w1", "phi2", "w2"))
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1730 | module TestParameter
using ModiaLang
@usingModiaPlot
using Test
include("$(ModiaLang.path)/models/Blocks.jl")
inputSignal(t) = sin(t)
FirstOrder = Model(
T = parameter | Var(value=0.2),
x = Var(init=0.3),
equations = :[u = inputSignal(time/u"s"),
T * der(x) + x = u,
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder)
simulate!(firstOrder, Tsit5(), stopTime = 10, log=false, logParameters=false, logEvaluatedParameters=false, requiredFinalStates = [-0.3617373025974107])
plot(firstOrder, ["u", "x", "der(x)", "y"], figure=1)
# Second order system:
# w = 1.0
# D = 0.1
# k = 2.0
# der(x1) = x2
# der(x2) = -w^2*x1 - 2*D*w*x2 + w^2*u
# y = k*x1
SecondOrder = Model(
w = 20.0,
D = 0.1,
k = 2.0,
sys = StateSpace | Map(A = parameter | :([ 0 1;
-w^2 -2*D*w]),
B = parameter | :([0; w^2]),
C = parameter | :([k 0]),
D = parameter | :(zeros(1)),
x = Var(init = zeros(2))),
equations = :[sys.u = 1.0]
)
@test_skip begin
secondOrder = @instantiateModel(SecondOrder, unitless=true)
simulate!(secondOrder, merge=Map(D=0.3), logParameters=true, logEvaluatedParameters=true,
requiredFinalStates = [0.9974089572681231, 0.011808652820321723])
plot(secondOrder, [("sys.u", "sys.y"); "sys.x"], figure = 2)
simulate!(secondOrder, merge=Map(w=100.0, D=0.1, k=1.1), logParameters=true, logEvaluatedParameters=true,
requiredFinalStates = [0.9999806306477742, -0.00391695258236727])
plot(secondOrder, [("sys.u", "sys.y"); "sys.x"], figure = 3)
end
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1991 | module TestPath
using ModiaLang
using ModiaLang.Measurements
@usingModiaPlot
const ptp_path = PTP_path(["angle1", "angle2", "angle3"],
positions = [0.0 2.0 3.0; # angle1=0.0, angle2=2.0, angle3=3.0
0.5 3.0 4.0;
0.8 1.5 0.3;
0.2 1.5 0.8],
startTime = (0.1/60)u"minute",
v_max = 2*ones(3),
a_max = 3*ones(3))
angles = zeros(3)
getPosition!(ptp_path, 0.5, angles) # angles = [0.12, 2.24, 3.24]
path = getPath(ptp_path)
printResultInfo(path)
plot(path, [("angle1", "angle2", "angle3"),
("der(angle1)", "der(angle2)", "der(angle3)"),
("der2(angle1)", "der2(angle2)", "der2(angle3)")], figure=1)
plotPath(ptp_path,plot,onlyPositions=false, heading="ptp_path", figure=2)
nom(v) = measurement(v)
err(v) = v ± (0.1*v)
const ptp_path2 = PTP_path{Measurement{Float64}}(
["angle1", "angle2", "angle3"],
positions = [nom(0.0) nom(2.0) nom(3.0); # angle1=0.0, angle2=2.0, angle3=3.0
err(0.5) err(3.0) err(4.0);
err(0.8) err(1.5) err(0.3);
err(0.2) err(1.5) err(0.8)],
startTime = nom(0.1),
v_max = fill(measurement(2.0),3),
a_max = fill(measurement(3.0),3))
angles = zeros(Measurement{Float64}, 3)
getPosition!(ptp_path2, nom(0.5), angles) # angles = [0.12, 2.24, 3.24]
path2 = getPath(ptp_path2)
printResultInfo(path2)
plot(path2, [("angle1", "angle2", "angle3"),
("der(angle1)", "der(angle2)", "der(angle3)"),
("der2(angle1)", "der2(angle2)", "der2(angle3)")], figure=3)
plotPath(ptp_path2,plot,onlyPositions=false, heading="ptp_path2", figure=4)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 609 | module TestSimpleStateEvents
using ModiaLang
@usingModiaPlot
SimpleStateEvents = Model(
fmax = 1.5,
m = 1.0,
k = 1.0,
d = 0.1,
s = Var(init = 2.0),
v = Var(init = 0.0),
equations = :[
sPos = positive(s)
f = if sPos; 0.0 else fmax end # or: f = sPos ? 0.0 : fmax
v = der(s)
m*der(v) + d*v + k*s = f
]
)
model = @instantiateModel(SimpleStateEvents)
simulate!(model, Tsit5(), stopTime = 10, log=false, logEvents=false, requiredFinalStates = [1.1756992201144405, -0.5351307571761175])
plot(model, ["s", "v", "sPos", "f"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 3081 | module TestSingularLRRL
using ModiaLang
@usingModiaPlot
SingularLRRL = Model(
v0 = 10,
L1_L = 0.1,
L2_L = 0.2,
R1_R = 10,
R2_R = 20,
L2_p_i = Var(init = 0.1),
R2_p_i = Var(start = 0.0),
V_n_v = Var(start = 0.0),
equations =:[
# Inductor 1
L1_v = L1_p_v - L1_n_v
0 = L1_p_i + L1_n_i
L1_L*der(L1_p_i) = L1_v
# Inductor 2
L2_v = L2_p_v - L2_n_v
0 = L2_p_i + L2_n_i
L2_L*der(L2_p_i) = L2_v
# Resistor 1
R1_v = R1_p_v - R1_n_v
0 = R1_p_i + R1_n_i
R1_v = R1_R*R1_p_i
# Resistor 2
R2_v = R2_p_v - R2_n_v
0 = R2_p_i + R2_n_i
R2_v = R2_R*R2_p_i
# Voltage source
V_v = V_p_v - V_n_v
0 = V_p_i + V_n_i
# Connect equations
# connect(V.p, L1.p)
# connect(L1.n, R1.p)
# connect(L1.n, R2.p)
# connect(R1.n, L2.p)
# connect(R2.n, L2.p)
# connect(L2.n, V.n)
V_p_v = L1_p_v
0 = V_p_i + L1_p_i
L1_n_v = R1_p_v
L1_n_v = R2_p_v
0 = L1_n_i + R1_p_i + R2_p_i
R1_n_v = L2_p_v
R2_n_v = L2_p_v
0 = R1_n_i + R2_n_i + L2_p_i
L2_n_v = V_n_v
0 = L2_n_i + V_n_i #+ ground_v_i
#V_n_v = 0
V_v = v0 ]
)
singularLRRL = @instantiateModel(SingularLRRL, unitless=true)
simulate!(singularLRRL, Tsit5(), stopTime = 1.0, requiredFinalStates = [1.4999999937318995])
plot(singularLRRL, [("L1_p_i", "L2_p_i", "R1_p_i", "R2_p_i"), ("L1_v", "L2_v", "R1_v", "R2_v")])
include("../models/Electric.jl")
setLogMerge(false)
SingularLRRL2 = Model(
R1 = Resistor | Map(R=10u"Ω"),
R2 = Resistor | Map(R=20u"Ω", start = Map(v=0.0u"V")),
L1 = Inductor | Map(L=0.1u"H", i = Var(init=nothing)),
L2 = Inductor | Map(L=0.2u"H", start = Map(v=0.0u"V")),
V = ConstantVoltage | Map(V=10u"V"),
connections = :[
(V.p, L1.p)
(L1.n, R1.p, R2.p)
(L2.p, R1.n, R2.n)
(L2.n, V.n) ]
)
#=
singularLRRL2 = @instantiateModel(SingularLRRL2, unitless=true, log=true, logCode=true, logExecution=true)
simulate!(singularLRRL2, Tsit5(), stopTime = 1.0)
plot(singularLRRL2, [("L1.p.i", "L2.p.i", "R1.p.i", "R2.p.i"), ("L1.v", "L2.v", "R1.v", "R2.v")])
=#
SingularLRRL3 = Model(
R1 = Resistor | Map(R=1),
R2 = Resistor | Map(R=2),
R3 = Resistor | Map(R=3),
R4 = Resistor | Map(R=4),
L1 = Inductor | Map(L=0.1),
L2 = Inductor | Map(L=0.2, i = Var(init=nothing)),
V = ConstantVoltage | Map(V=10),
# ground = Ground,
connections = :[
(V.p, L1.p)
(L1.n, R1.p, R2.p)
(R1.n, R2.n, R3.p, R4.p)
(L2.p, R3.n, R4.n)
(L2.n, V.n) ] #, ground.p) ]
)
singularLRRL3 = @instantiateModel(SingularLRRL3, unitless=true, log=false, logDetails=false)
simulate!(singularLRRL3, Tsit5(), stopTime = 1.0, requiredFinalStates = [4.198498632779839])
plot(singularLRRL3, [("L1.i", "L2.i", "R1.i", "R2.i", "R3.i", "R4.i"), ("L1.v", "L2.v", "R1.v", "R2.v", "R3.v", "R4.v")])
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 293 | module TestSource
using ModiaLang
@usingModiaPlot
SineSource = Model(
f = 2.0,
equations = :[y = sin(2*3.14*f*time)]
)
sineSource = @instantiateModel(SineSource, unitless=true)
simulate!(sineSource, Tsit5(), stopTime = 1.0, log=false, logStates=false)
plot(sineSource, "y")
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 6983 | module TestStateSelection
using ModiaLang
using Test
function checkStateSelection(model, x_names, linearEquations=[])
# Check names of the states
for (i, state_i) in enumerate(model.equationInfo.x_info)
@test state_i.x_name == x_names[i]
end
# Check linear equation systems
if length(linearEquations) > 0
@test model.equationInfo.linearEquations == linearEquations
end
end
@testset "\nTest ModiaBase/StateSelection.jl" begin
@testset "... Test FirstOrder" begin
FirstOrder = Model(
T = 0.2,
x = Var(init=0.3),
equations = :[
u = 1.0
der(x) = (u - x)/T
y = 2*x]
)
firstOrder = @instantiateModel(FirstOrder)
checkStateSelection(firstOrder, ["x"])
end
@testset "... Test TwoCoupledInertias" begin
TwoCoupledInertias = Model(
J1_J = 1,
J2_J = 1,
J1_phi = Var(start=1.0),
J1_w = Var(start=0.0),
J2_phi = Var(start=0.0),
J2_w = Var(start=0.0),
equations = :[
J1_w = der(J1_phi)
J1_J * der(J1_w) = J1_tau
J2_w = der(J2_phi)
J2_J * der(J2_w) = J2_tau
J2_phi = J1_phi
J2_tau + J1_tau = 0]
)
twoCoupledInertias = @instantiateModel(TwoCoupledInertias)
checkStateSelection(twoCoupledInertias, ["J1_w", "J1_phi"], [(["der(J1_w)"], [], [1], 1, 1)])
end
@testset "... Test ODE with linear equations 1" begin
ODEwithLinearEquations1 = Model(
p1 = 4.0,
p2 = 2,
x6 = Var(start=1.0),
equations = :[
x1 = sin(time)
p2*x2 = p1*x1
2*x3 + 4*x4 = x1
x3 + x5 = 2*x2
4*x4 + 5*x5 = x1 + x2
der(x6) = -x5*x6]
)
oDEwithLinearEquations1 = @instantiateModel(ODEwithLinearEquations1, unitless=true)
checkStateSelection(oDEwithLinearEquations1, ["x6"], [(["x5"], [], [1], 1, 1)])
end
@testset "... Test ODE with linear equations 2" begin
ODEwithLinearEquations2 = Model(
p1=4,
p2=2,
x6 = Var(start=1.0),
equations = :[
x1 = sin(time)
p2*x2 = p1*x1
p2*x3 + p1*x4 + 5*der(x6) = x1
x3 + x5 = 2*x2
4*x4 + 5*x5 = x1 + x2
3*der(x6) = -5*x3 - 2*x4]
)
oDEwithLinearEquations2 = @instantiateModel(ODEwithLinearEquations2, unitless=true)
checkStateSelection(oDEwithLinearEquations2, ["x6"], [(["x5"], [], [1], 1, 1)])
end
@testset "... Test Multi-index DAE" begin
MultiIndexDAE = Model(
x2 = Var(init = 0.0),
x2d = Var(init = 0.0),
equations = :[
u1 = sin(1*time)
u2 = sin(2*time)
u3 = sin(3*time)
u4 = sin(4*time)
u5 = sin(5*time)
u6 = sin(6*time)
u7 = sin(7*time)
0 = u1 + x1 - x2
0 = u2 + x1 + x2 - x3 + der(x6)
0 = u3 + x1 + der(x3) - x4
x1d = der(x1)
x2d = der(x2)
x3d = der(x3)
x6d = der(x6)
x6dd = der(x6d)
0 = u4 + 2*der(x1d) + der(x2d) + der(x3d) + der(x4) + der(x6dd)
0 = u5 + 3*der(x1d) + 2*der(x2d) + x5
0 = u6 + 2*x6 + x7
0 = u7 + 3*x6 + 4*x7]
)
multiIndexDAE = @instantiateModel(MultiIndexDAE, unitless=true)
#@show multiIndexDAE.equationInfo.linearEquations
checkStateSelection(multiIndexDAE, ["x2", "x2d"],
[(["x7"], [], [1], 1, 1),
(["der(x7)"], [], [1], 1, 1),
(["der(der(x7))"], [], [1], 1, 1),
(["der(der(der(x7)))"], [], [1], 1, 1),
(["der(x2d)"], [], [1], 1, 1)])
end
@testset "... Test free flying mass" begin
FreeFlyingMass = Model(
m =1.0,
f=[1.0,2.0,3.0],
r = Var(init=[0.1, 0.2, 0.3]),
v = Var(init=[-0.1, -0.2, -0.3]),
equations = :[
v = der(r)
m*der(v) = f]
)
freeFlyingMass = @instantiateModel(FreeFlyingMass)
checkStateSelection(freeFlyingMass, ["v", "r"], [])
end
#= Does not yet work, because Pantelides does not yet support arrays
@testset "... Test sliding mass" begin
SlidingMass = Model(
m = 1.0,
c = 1e4,
d = 10.0,
g = 9.81,
n = [1.0, 1.0, 1.0],
s = Var(init=1.0),
equations = :[
r = n*s
v = der(r)
m*der(v) = f + m*g*[0,-1,0] + u
0 = n*f
u = -(c*s + d*der(s))*n]
)
slidingMass = @instantiateModel(SlidingMass, logStateSelection=true)
@show slidingMass.equationInfo.linearEquations
#checkStateSelection(slidingMass, ["x6"], [(["x5"], [1], 1, 1)])
end
=#
end
include("../models/AllModels.jl")
#=
Gear = Model(
flange_a = Flange,
flange_b = Flange,
gear = IdealGear_withSupport | Map(ratio = 105.0),
fixed = Fixed,
spring = Spring | Map(c=5.84e5u"N*m/rad"),
damper1 = Damper | Map(d=500.0u"N*m*s/rad"),
damper2 = Damper | Map(d=100.0u"N*m*s/rad"),
connect = :[
(flange_a , gear.flange_a)
(fixed.flange , gear.support, damper2.flange_b)
(gear.flange_b, damper2.flange_a, spring.flange_a, damper1.flange_a)
(flange_b , spring.flange_b, damper1.flange_b)]
)
Drive = Model(
inertia1 = Inertia,
inertia2 = Inertia,
gear = Gear,
equations = :[
inertia1.flange_a.tau = 0u"N*m"
inertia2.flange_b.tau = 0u"N*m"],
connect = :[
(inertia1.flange_b, gear.flange_a),
(gear.flange_b , inertia2.flange_a)
]
)
=#
# Linear 1D rotational damper
AbsoluteDamper = Model(
flange = Flange,
d = 1.0u"N*m*s/rad", # (info = "Damping constant"),
phi = Var(init=0.0u"rad"),
equations = :[
phi = flange.phi
w = der(phi)
flange.tau = d * w ]
)
Drive = Model(
inertia = Inertia,
damper = AbsoluteDamper,
equations = :[
inertia.flange_a.tau = 0u"N*m"],
connect = :[
(inertia.flange_b, damper.flange)]
)
Drive2 = Drive | Map(damper = Map(phi=Var(init=1.0u"rad")))
drive1 = @instantiateModel(Drive)
drive2 = @instantiateModel(Drive2)
simulate!(drive1, Tsit5(), stopTime = 4.0)
println("Next simulate! should result in an error:\n")
simulate!(drive2, Tsit5(), stopTime = 4.0)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1801 | module TestStateSpace
using ModiaLang
@usingModiaPlot
include("$(ModiaLang.path)/models/Blocks.jl")
# Second order system:
# w = 1.0
# D = 0.1
# k = 2.0
# der(x1) = x2
# der(x2) = -w^2*x1 - 2*D*w*x2 + w^2*u
# y = k*x1
SecondOrder1 = Model(
w = 20.0,
D = 0.1,
k = 2.0,
sys = StateSpace | Map(A = :([ 0 1;
-w^2 -2*D*w]),
B = :([0; w^2]),
C = :([k 0]),
D = :(zeros(1)),
x = Var(init = zeros(2)) ),
equations = :[sys.u = 1.0]
)
secondOrder1 = @instantiateModel(SecondOrder1, unitless=true)
simulate!(secondOrder1, stopTime=1.0, merge=Map(D=0.3),
requiredFinalStates = [0.9974089572681231, 0.011808652820321723])
plot(secondOrder1, [("sys.u", "sys.y"); "sys.x"], figure = 1)
SecondOrder2 = Model(
sys = StateSpace | Map( A = [ 0.0 1.0;
-100.0 -12.0],
B = [0; 400.0],
C = [2.0 0],
D = zeros(1,1),
x = Var(init = zeros(2))),
equations = :[sys.u = 1.0]
)
secondOrder2 = @instantiateModel(SecondOrder2, unitless=true)
simulate!(secondOrder2, Tsit5(), stopTime=1.0, merge=Map(sys=Map(A = [0.0 1.0; -400.0 -12.0])),
requiredFinalStates = [0.9974089572681231, 0.011808652820321723])
plot(secondOrder2, [("sys.u", "sys.y"); "sys.x"], figure = 2)
simulate!(secondOrder2, Tsit5(), stopTime=1.0, merge=Map(sys=Map(x=[1.0,1.0])),
logParameters=true, logStates=true,
requiredFinalStates = [1.0000295203337868, 0.0022367686372974493])
plot(secondOrder2, [("sys.u", "sys.y"); "sys.x"], figure = 3)
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2011 | module TestSynchronous
#println("\nSynchronousExamples: Demonstrating the ability to simulate models with synchronous semantics")
using ModiaLang
@usingModiaPlot
MassWithSpringDamper = Model(
m = 1.0,
k = 1.0, # spring constant
d = 0.1, # damping coefficient
x = Var(init=0.0), # Position
v = Var(init=5.0), # Velocity
equations = :[
der(x) = v
m*der(v) = f - k*x - d*v
]
)
SpeedControl = MassWithSpringDamper | Model(
k = 0.0,
K = 5.0, # Gain of speed P controller
vref = 100.0, # Speed ref.
vd = Var(start=0.0),
u = Var(start=0.0),
equations = :[
vd = sample(v, Clock(0.1)) # speed sensor
u = K*(vref-vd) # P controller for speed
f = hold(u, Clock(0.1)) # force actuator
]
)
speedControl = @instantiateModel(SpeedControl)
simulate!(speedControl, Tsit5(), stopTime=1.5, logEvents=false, requiredFinalStates = [133.3845202465569, 98.03694943140056] )
plot(speedControl, [("v", "vd"), ("u","f")], heading="SpeedControl", figure=1)
SpeedControlPI = MassWithSpringDamper | Model(
k = 0.0,
K = 5.0, # Gain of speed P controller
Ti = 2, # Integral time
vref = 100.0, # Speed ref.
dt = 0.1, # sampling interval
vd = Var(start=0.0),
u = Var(start=0.0),
e = Var(start=0.0),
intE = Var(start=10.0), # To check that previous(intE) is corrected initialized
equations = :[
vd = sample(v, Clock(0.1)) # speed sensor
# PI controller for speed
e = vref-vd
previous_intE = previous(intE, Clock(0.1))
intE = previous_intE + e
u = K*(e + intE/Ti)
# force actuator
f = hold(u, Clock(0.1))
]
)
speedControlPI = @instantiateModel(SpeedControlPI)
simulate!(speedControlPI, Tsit5(), stopTime=1.5, logEvents=false, requiredFinalStates = [145.828878491462, 99.95723678839984])
plot(speedControlPI, [("v", "vd"), ("u","f"), ("previous_intE", "intE")], heading="SpeedControlPI", figure=2)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2052 | module TestTwoInertiasAndIdealGear
using ModiaLang
@usingModiaPlot
using Test
TwoInertiasAndIdealGearTooManyInits = Model(
J1 = 0.0025,
J2 = 170,
r = 105,
tau_max = 1,
phi1 = Var(init = 0.0),
w1 = Var(init = 1.0),
phi2 = Var(init = 0.5),
w2 = Var(init = 0.0),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0 elseif time < 3u"s"; -tau_max else 0 end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2]
w2 = der(phi2),
J2*der(w2) = tau2
]
)
TwoInertiasAndIdealGear = TwoInertiasAndIdealGearTooManyInits | Map(phi1 = Var(init=nothing), w1=Var(init=nothing))
twoInertiasAndIdealGearTooManyInits = @instantiateModel(TwoInertiasAndIdealGearTooManyInits, unitless=true)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGear, unitless=true)
println("Next simulate! should result in an error:\n")
simulate!(twoInertiasAndIdealGearTooManyInits, Tsit5(), stopTime = 4.0, log=true)
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0, log=true,
logParameters=true, logStates=true,
requiredFinalStates=[1.5628074713622309, -6.878080753044174e-5])
plot(twoInertiasAndIdealGear, ["phi2", "w2"])
simulate!(twoInertiasAndIdealGear, stopTime = 4.0,
useRecursiveFactorizationUptoSize = 500,
log=true, logParameters=true, logStates=true,
requiredFinalStates=missing)
# Linearize
println("\n... Linearize at stopTime = 0 and 4")
(A_0, x_0) = linearize!(twoInertiasAndIdealGear, stopTime=0, analytic = true)
(A_4, x_4) = linearize!(twoInertiasAndIdealGear, stopTime=4, analytic = true)
(A_4_numeric, x_4_numeric) = linearize!(twoInertiasAndIdealGear, stopTime=4, analytic=false)
xNames = get_xNames(twoInertiasAndIdealGear)
@show xNames
@show A_0, x_0
@show A_4, x_4
@show A_4_numeric, x_4_numeric
@test isapprox(A_0,[0.0 1.0; 0.0 0.0])
@test isapprox(A_0, A_4)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1339 | module TestTwoInertiasAndIdealGearWithMonteCarlo
using ModiaLang
@usingModiaPlot
using ModiaLang.MonteCarloMeasurements
using ModiaLang.MonteCarloMeasurements.Distributions
# The number of particles must be the same as for FloatType
const nparticles = 100
uniform(vmin,vmax) = StaticParticles(nparticles,Distributions.Uniform(vmin,vmax))
TwoInertiasAndIdealGearWithMonteCarlo = Model(
J1 = 0.0025,
J2 = uniform(50, 170),
r = 105,
tau_max = 1,
phi2 = Var(init = uniform(0.5,0.55)),
w2 = Var(init = 0.0),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0 elseif time < 3u"s"; -tau_max else 0 end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGearWithMonteCarlo = @instantiateModel(TwoInertiasAndIdealGearWithMonteCarlo, unitless=true,
FloatType = StaticParticles{Float64,nparticles})
simulate!(twoInertiasAndIdealGearWithMonteCarlo, Tsit5(), stopTime = 4.0,
logParameters=true, logStates=true)
plot(twoInertiasAndIdealGearWithMonteCarlo, ["phi2", "w2"],
MonteCarloAsArea=false)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1458 | module TestTwoInertiasAndIdealGearWithUnits
using ModiaLang
@usingModiaPlot
using Test
TwoInertiasAndIdealGearWithUnits = Model(
J1 = 0.0025u"kg*m^2",
J2 = 170u"kg*m^2",
r = 105.0,
tau_max = 1u"N*m",
phi2 = Var(start = 0.5u"rad"),
w2 = Var(start = 0.0u"rad/s"),
tau2 = Var(start = 0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0u"N*m" elseif time < 3u"s"; -tau_max else 0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGearWithUnits = @instantiateModel(TwoInertiasAndIdealGearWithUnits, logCode=true)
simulate!(twoInertiasAndIdealGearWithUnits, Tsit5(), stopTime = 4.0,
logParameters=true, logStates=true,
requiredFinalStates=[1.5628074713622309, -6.878080753044174e-5])
plot(twoInertiasAndIdealGearWithUnits, ["phi2", "w2", "der(w2)"])
# Linearize
println("\n... Linearize at stopTime = 0 and 4")
(A0, x0) = linearize!(twoInertiasAndIdealGearWithUnits, stopTime=0, analytic = true)
(A1, x1) = linearize!(twoInertiasAndIdealGearWithUnits, stopTime=4, analytic = true)
xNames = get_xNames(twoInertiasAndIdealGearWithUnits)
@show xNames
@show A0, x0
@show A1, x1
@test isapprox(A0,[0.0 1.0; 0.0 0.0])
@test isapprox(A0, A1)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1315 | module TestTwoInertiasAndIdealGearWithUnitsAndMonteCarlo
using ModiaLang
@usingModiaPlot
using ModiaLang.MonteCarloMeasurements
using ModiaLang.MonteCarloMeasurements.Distributions
# The number of particles must be the same as for FloatType
const nparticles = 100
uniform(vmin,vmax) = StaticParticles(nparticles,Distributions.Uniform(vmin,vmax))
TwoInertiasAndIdealGearWithUnitsAndMonteCarlo = Model(
J1 = 0.0025u"kg*m^2",
J2 = uniform(50.0, 170.0)u"kg*m^2",
r = 105.0,
tau_max = 1.0u"N*m",
phi2 = Var(start = 0.5u"rad"),
w2 = Var(start = 0.0u"rad/s"),
tau2 = Var(start = 0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0.0u"N*m" elseif time < 3u"s"; -tau_max else 0.0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGearWithUnitsAndMonteCarlo,
FloatType = StaticParticles{Float64,nparticles}, logCode=true)
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0, logProgress=true)
plot(twoInertiasAndIdealGear, ["phi2", "w2"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1825 | module TestTwoInertiasAndIdealGearWithUnitsAndUncertainties
using ModiaLang
@usingModiaPlot
using ModiaLang.Measurements
TwoInertiasAndIdealGear = Model(
J1 = 0.0025u"kg*m^2",
J2 = (150.0 ± 20.0)u"kg*m^2",
r = 105.0,
tau_max = 1u"N*m",
phi2 = Var(start = (0.5 ± 0.05)u"rad"),
w2 = Var(start = 0.0u"rad/s"),
tau2 = Var(start = 0u"N*m"),
equations = :[
tau = if time < 1u"s"; tau_max elseif time < 2u"s"; 0u"N*m" elseif time < 3u"s"; -tau_max else 0u"N*m" end,
# inertia1
w1 = der(phi1),
J1*der(w1) = tau - tau1,
# gear
phi1 = r*phi2,
r*tau1 = tau2,
# inertia2
w2 = der(phi2),
J2*der(w2) = tau2
]
)
twoInertiasAndIdealGear = @instantiateModel(TwoInertiasAndIdealGear, FloatType = Measurement{Float64})
simulate!(twoInertiasAndIdealGear, Tsit5(), stopTime = 4.0, logParameters=true, logStates=true)
plot(twoInertiasAndIdealGear, ["phi2", "w2", "der(w2)"])
# Linearize
println("\n... Analytic linearization")
(A1, x1) = linearize!(twoInertiasAndIdealGear, stopTime=4, analytic = true)
xNames = get_xNames(twoInertiasAndIdealGear)
@show xNames
println(IOContext(stdout, :error_digits=>15), "A1 = ", A1, ", x1 = ", x1)
println("\n... Numeric linearization with Float64")
(A2, x2) = linearize!(twoInertiasAndIdealGear, stopTime=4, analytic=false)
println(IOContext(stdout, :error_digits=>15), "A2 = ", A2, ", x2 = ", x2)
#= DoubleFloats not defined
using Test
println("\n... Numeric linearization with Double64")
using DoubleFloats
twoInertiasAndIdealGear2 = SimulationModel{Measurement{Double64}}(twoInertiasAndIdealGear)
(A3, x3) = linearize!(twoInertiasAndIdealGear2, stopTime=3, analytic=false)
println(IOContext(stdout, :error_digits=>15), "A3 = ", A3, ", x3 = ", x3)
=#
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1988 | module TestUncertainties
using ModiaLang
@usingModiaPlot
using ModiaLang.Measurements
TestModel = Model(
T = 0.2 ± 0.02, # Cannot convert a particle distribution to a float if not all particles are the same.
u0 = 10 ± 1, # Cannot convert a particle distribution to a float if not all particles are the same.
k = 1 ± 0.1,
x = Var(init = 5 ± 0.5),
v = Var(init = 1 ± 0.1),
m = 10 ± 1,
F = 20 ± 2,
equations = :[
T*der(x) = u0
y = k*x
F = m * a
der(v) = a # Cannot convert a particle distribution to a float if not all particles are the same.
]
)
model = @instantiateModel(TestModel, FloatType = Measurement{Float64})
simulate!(model, stopTime = 1.0, log=false,
requiredFinalStates = Measurements.Measurement{Float64}[54.99999999999998 ± 7.08872343937891, 2.999999999999999 ± 0.3])
plot(model, ["T", "x", "der(x)", "y", "a", "der(v)"], figure=1)
include("../models/Electric.jl")
FilterCircuit = Model(
R = Resistor | Map(R = (100±10)u"Ω"),
C = Capacitor | Map(C = (0.01±0.001)u"F", v=Var(init=(0.0±1.0)u"V")),
V = ConstantVoltage | Map(V = (10.0±1.0)u"V"),
ground = Ground,
connect = :[
(V.p, R.p)
(R.n, C.p)
(C.n, V.n, ground.p)
]
)
filterCircuit = @instantiateModel(FilterCircuit, FloatType=Measurements.Measurement{Float64})
simulate!(filterCircuit, Tsit5(), stopTime = 3.0, logParameters = true, logStates = true)
plot(filterCircuit, ("V.v", "C.v"), figure=2)
Pendulum = Model(
L = (0.8±0.1)u"m",
m = (1.0±0.1)u"kg",
d = (0.5±0.05)u"N*m*s/rad",
g = 9.81u"m/s^2",
phi = Var(init = (pi/2±0.1)*u"rad"),
w = Var(init = 0u"rad/s"),
equations = :[
w = der(phi)
0.0 = m*L^2*der(w) + d*w + m*g*L*sin(phi)
]
)
pendulum = @instantiateModel(Pendulum, FloatType=Measurements.Measurement{Float64})
simulate!(pendulum, Tsit5(), stopTime = 10.0)
plot(pendulum, "phi", figure=4)
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 617 | module TestUnits
using ModiaLang
@usingModiaPlot
UnitTest = Model(
T = 0.2u"s",
u0 = 8.5u"kg",
k = 1u"kg^-1",
m = 10u"kg",
F = 20u"N",
x = Var(init = 5.5u"kg"), # 5500.0u"g"),
v = Var(init = 1u"m/s"),
equations = :[
T*der(x) + x = u0
y = x
z = x*u"kg^-1"
F = m * a
der(v) = a ]
)
model = @instantiateModel(UnitTest)
simulate!(model, Tsit5(), stopTime = 1.0, requiredFinalStates = [8.479786015016273, 2.999999999999999])
#plot(model, ["T", "x", "der(x)", "y", "a", "der(v)"])
plot(model, ["x", "der(x)", "y", "a", "der(v)"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 638 | module TestUnitsAndUncertainites
using ModiaLang
@usingModiaPlot
using ModiaLang.Measurements
TestModel = Model(
T = (0.2 ± 0.02)u"s",
u0 = 8.5u"kg" ± 0.85u"kg",
k = (1 ± 0.1)u"kg^-1",
m = (10 ± 1)u"kg",
F = (20 ± 2)u"N",
x = Var(init = (5.5 ± 0.55)u"kg"),
v = Var(init = (1 ± 0.1)u"m/s"),
r = Var(init = 1u"m/s"),
equations = :[
T*der(x) + x = u0
y = x
z = x*k
F = m * a
der(v) = a
der(r) = v ]
)
model = @instantiateModel(TestModel, FloatType = Measurement{Float64})
simulate!(model, Tsit5(), stopTime = 1.0)
plot(model, ["T", "x", "der(x)", "y", "a", "v", "r"])
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1735 | module TestVar
using ModiaLang.Measurements
using ModiaLang.StaticArrays
Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = (;value=value, kwargs...)
#Var(args...; kwargs...) = begin println("1"); (;args..., kwargs...) end
#Var(value, args...; kwargs...) = typeof(value) <: NamedTuple ? begin println("2", value, args, kwargs); (;value..., args..., kwargs...) end : begin println("3"); (;value = value, args..., kwargs...) end
xar(value, args...; kwargs...) = begin
@show value args kwargs merge(value, args[1], args[2], (;kwargs...))
end
var(value, args...; kwargs...) = typeof(value) <: NamedTuple ?
begin println("2", value, args, kwargs); value end : #merge(value, args, kwargs ) end :
begin println("3"); (;value = value, args..., kwargs...) end
#Var(value, args...; kwargs...) = (;value = value, args..., kwargs...)
#Var(value::Union{Number, String, Expr, AbstractArray}, args...; kwargs...) = (;value = value, args..., kwargs...)
#NotPair = Union{Number, String, Expr, AbstractArray} # ..., ....}
#Var(value::NotPair, args...; kwargs...) = (;value = value, args..., kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v = input | output | flow | Var(min=0, nominal=10)
@show v
v = parameter | Var(5, min=0)
@show v
v = parameter | Var(5, min=0)
@show v
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v2 = Var(2.0)
@show v2
v3 = Var(2.0 ± 0.1)
@show v3
v4 = Var(SVector(1.0,2.0,3.0))
@show v4
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 3295 | module TestVar
using ModiaLang
using ModiaLang.Measurements
using ModiaLang.StaticArrays
struct nnnVar
var::NamedTuple
Var(; kwargs...) = new((; kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((; kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((; kwargs...) )
end
Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = (; value=value, kwargs...)
#Var(args...; kwargs...) = begin println("1"); (;args..., kwargs...) end
#Var(value, args...; kwargs...) = typeof(value) <: NamedTuple ? begin println("2", value, args, kwargs); (;value..., args..., kwargs...) end : begin println("3"); (;value = value, args..., kwargs...) end
xar(value, args...; kwargs...) = begin
@show value args kwargs merge(value, args[1], args[2], (;kwargs...))
end
var(value, args...; kwargs...) = typeof(value) <: NamedTuple ?
begin println("2", value, args, kwargs); value end : #merge(value, args, kwargs ) end :
begin println("3"); (;value = value, args..., kwargs...) end
#Var(value, args...; kwargs...) = (;value = value, args..., kwargs...)
#Var(value::Union{Number, String, Expr, AbstractArray}, args...; kwargs...) = (;value = value, args..., kwargs...)
#NotPair = Union{Number, String, Expr, AbstractArray} # ..., ....}
#Var(value::NotPair, args...; kwargs...) = (;value = value, args..., kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
range(min, max) = Var(min=min, max=max)
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return Var(; gen...)
end
Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m, n) = if !(typeof(n) <: NamedTuple); recursiveMerge(m, (; value=n)) else recursiveMerge(n, (value=m,)) end
#Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
#Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
#Base.:|(m, n::Map) = (:MergeMap, m, n.map)
#Base.:|(m::Var, n::Var) = (:MergeModel, m.var, n.var)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v1 = input | output | flow | Var(min=0, nominal=10)
@show v1
v2 = parameter | 5
@show v2
v3 = 10u"m/s" | parameter
@show v3
v4 = parameter | 5.5 | Var(min=0)
@show v4
v5 = parameter | Var(5, min=0)
@show v5
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v6 = Var(2.0)
@show v6
v7 = Var(2.0 ± 0.1)
@show v7
v8 = Var(SVector(1.0,2.0,3.0))
@show v8
v9 = v4 | Var(parameter=false)
@show v9
v10 = v4 | Var(parameter=nothing)
@show v10
v11 = v4 | range(0,10)
@show v11
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 2331 | module TestVar
using ModiaLang
using ModiaLang.Measurements
using ModiaLang.StaticArrays
struct Var
var::NamedTuple
Var(; kwargs...) = new((; kwargs...) )
end
struct Model
model::NamedTuple
Model(; kwargs...) = new((; kwargs...) )
end
struct Map
map::NamedTuple
Map(; kwargs...) = new((; kwargs...) )
end
#Var(;kwargs...) = (;kwargs...)
Var(value; kwargs...) = Var(;value=value, kwargs...)
Model(; kwargs...) = (; kwargs...)
constant = Var(constant = true)
parameter = Var(parameter = true)
input = Var(input = true)
output = Var(output = true)
potential = Var(potential = true)
flow = Var(flow = true)
recursiveMerge(x, ::Nothing) = x
recursiveMerge(x, y) = y
recursiveMerge(x::Expr, y::Expr) = begin dump(x); dump(y); Expr(x.head, x.args..., y.args...) end
recursiveMerge(x::Expr, y::Tuple) = begin x = copy(x); xargs = x.args; xargs[y[2]] = y[3]; Expr(x.head, xargs...) end
function recursiveMerge(nt1::NamedTuple, nt2::NamedTuple)
all_keys = union(keys(nt1), keys(nt2))
gen = Base.Generator(all_keys) do key
v1 = get(nt1, key, nothing)
v2 = get(nt2, key, nothing)
key => recursiveMerge(v1, v2)
end
return Var(; gen...)
end
Base.:|(m::Model, n::Model) = recursiveMerge(m.model, n.model)
Base.:|(m::Model, n::Map) = recursiveMerge(m.model, n.map)
Base.:|(m, n::Map) = recursiveMerge(m, n.map)
Base.:|(m::Var, n::Var) = Var(recursiveMerge(m.var, n.var))
Base.:|(m, n) = if !(typeof(n) <: Var); recursiveMerge(m, Var(value=n)) else recursiveMerge(n, Var(value=m)) end
#Base.:|(m::Model, n::Model) = (:MergeModel, m.model, n.model)
#Base.:|(m::Model, n::Map) = (:MergeMap, m.model, n.map)
#Base.:|(m, n::Map) = (:MergeMap, m, n.map)
#Base.:|(m::Var, n::Var) = (:MergeModel, m.var, n.var)
# ---------------------------------------------------------------------
#v = Var(potential, nominal=10)
#@show v
v1 = input | output | flow | Var(min=0, nominal=10)
@show v1
v2 = parameter | 5
@show v2
v3 = 10u"m/s" | parameter
@show v3
v4 = parameter | 5.5 | Var(min=0)
@show v4
v5 = parameter | Var(5, min=0)
@show v5
Pin = Model( v = potential | Var(nominal=10), i = flow )
@show Pin
v6 = Var(2.0)
@show v6
v7 = Var(2.0 ± 0.1)
@show v7
v8 = Var(SVector(1.0,2.0,3.0))
@show v8
v9 = v4 | Var(parameter=false)
@show v9
v10 = v4 | Var(parameter=nothing)
@show v10
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1955 | module TestVariables
using ModiaLang
@usingModiaPlot
using ModiaLang.Measurements
using ModiaLang.StaticArrays
using ModiaLang.Test
@testset "... Test variable declarations" begin
v1 = input | output | flow | Var(min=0, nominal=10, init=5)
@test isequal(v1, Var(input = true, output = true, flow = true, min = 0, nominal = 10, init = 5))
v2 = parameter | 5 | Var(info="v2 info")
@test isequal(v2, Var(parameter = true, value = 5, info = "v2 info"))
v3 = "string value" | parameter | info"v3 info"
@test v3 == Var(parameter = true, value = "string value", info = "v3 info")
v4 = parameter | 5.5u"m/s" | Var(min=0)
@test isequal(v4, Var(parameter = true, value = 5.5u"m*s^-1", min = 0))
v5 = parameter | Var(5, min=0)
@test isequal(v5, Var(parameter = true, min = 0, value = 5))
Pin = Model( v = potential | Var(nominal=10), i = flow )
@test isequal(Pin, Model(v = Var(potential = true, nominal = 10), i = Var(flow = true)))
v6 = Var(2.0)
@test isequal(v6, Var(value = 2.0))
v7 = Var(2.0 ± 0.1)
@test isequal(v7, Var(value = 2.0 ± 0.1))
v8 = Var(SVector(1.0, 2.0, 3.0))
@test isequal(v8, Var(value = [1.0, 2.0, 3.0]))
v9 = v4 | Var(parameter=false)
@test isequal(v9, Var(parameter = false, value = 5.5u"m*s^-1", min = 0))
v10 = v4 | Var(parameter=nothing)
@test isequal(v10, Var(value = 5.5u"m*s^-1", min = 0))
v11 = v4 | interval(1,10)
@test isequal(v11, Var(parameter = true, value = 5.5u"m*s^-1", min = 1, max = 10))
TestVar1 = Model(
p = parameter | -1 | info"A parameter",
s = parameter | "string value" | info"A string parameter", # Not used
x = Var(init=0),
y = Var(start=0), # Not used
equations = :[
der(x) = p*x + 1
]
)
# @showModel TestVar1
model = @instantiateModel(TestVar1, logCode=true)
simulate!(model, stopTime= 1, requiredFinalStates = [1-exp(-1)])
plot(model, "x")
simulate!(model, stopTime= 1, merge=Map(p=-2, x=2), requiredFinalStates = [2-1.5*(1-exp(-2))])
plot(model, "x")
end
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 1726 | import ModiaLang
import ModiaLang.Test
Test.@testset "Test basic functionality" begin
include("TestVariables.jl")
include("TestFirstOrder.jl")
include("TestFirstOrder2.jl")
include("TestSource.jl")
include("TestStateSelection.jl")
include("TestFilterCircuit.jl")
include("TestFilterCircuit2.jl")
include("TestArrays.jl")
end
Test.@testset "Test units, uncertainties" begin
include("TestUnits.jl")
include("TestUncertainties.jl")
include("TestUnitsAndUncertainties.jl")
include("TestTwoInertiasAndIdealGear.jl")
include("TestTwoInertiasAndIdealGearWithUnits.jl")
include("TestTwoInertiasAndIdealGearWithUnitsAndUncertainties.jl")
include("TestTwoInertiasAndIdealGearWithMonteCarlo.jl")
include("TestTwoInertiasAndIdealGearWithUnitsAndMonteCarlo.jl")
include("TestLinearEquationSystemWithUnitsAndMonteCarlo.jl")
end
Test.@testset "Test model components" begin
include("TestSingularLRRL.jl")
include("TestStateSpace.jl")
include("TestParameter.jl")
include("TestHeatTransfer.jl")
end
Test.@testset "Test events, etc." begin
include("TestSimpleStateEvents.jl")
include("TestSynchronous.jl")
include("TestInputOutput.jl")
include("TestPathPlanning.jl")
include("TestExtraSimulateKeywordArguments.jl")
#Test.@test_skip include("TestBouncingBall.jl")
end
Test.@testset "Test multi returning functions" begin
include("TestMultiReturningFunction.jl")
include("TestMultiReturningFunction4A.jl")
include("TestMultiReturningFunction5A.jl")
include("TestMultiReturningFunction6.jl")
include("TestMultiReturningFunction7A.jl")
include("TestMultiReturningFunction10.jl")
end
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 374 | module Runtests
# Run all tests with SilentNoPlot (so not plots)
using ModiaLang
using ModiaLang.Test
const test_title = "Test ModiaLang (version=$(ModiaLang.Version) with SilentNoPlot)"
println("\n... $test_title")
@time @testset verbose=true "$test_title" begin
usePlotPackage("SilentNoPlot")
include("include_all.jl")
usePreviousPlotPackage()
end
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | code | 264 | module Runtests_withPlot
using ModiaLang
using ModiaLang.Test
const test_title = "Test ModiaLang (version=$(ModiaLang.Version) with " * currentPlotPackage() * ")"
println("\n... $test_title")
@testset "$test_title" begin
include("include_all.jl")
end
end | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | docs | 1066 | # ModiaLang.jl
[](https://github.com/ModiaSim/ModiaLang.jl/blob/master/LICENSE.md)
ModiaLang is part of [ModiaSim](https://modiasim.github.io/docs/).
ModiaLang is usually used via [Modia](https://github.com/ModiaSim/Modia.jl).
ModiaLang provides the core equation-based language of Modia, transformation of a model to ODE form dx/dt = f(x,t) and a thin interface to [DifferentialEquations](https://github.com/SciML/DifferentialEquations.jl).
## Installation
Typically, a user installs [Modia](https://github.com/ModiaSim/Modia.jl) and does not need
to install ModiaLang separately.
If needed, ModiaLang is installed with (Julia >= 1.5 is required):
```julia
julia> ]add ModiaLang
```
## Main Developers
- [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/).
- [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/),
[DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en).
License: MIT (expat)
| ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 0.11.3 | 2557b26a61b61ebcd34cbe0c36b160b707bbf5df | docs | 14976 | # ModiaLang Documentation
[ModiaLang](https://github.com/ModiaSim/ModiaLang.jl) is an environment in form of a Julia package to model and simulate physical systems (electrical, mechanical, thermo-dynamical, etc.) described by differential and algebraic equations. A user defines a model on a high level with model components (like a mechanical body, an electrical resistance, or a pipe) that are physically connected together. A model component is constructed by "expression = expression" equations. The defined model is symbolically processed (for example, equations might be analytically differentiated) with algorithms from package [ModiaBase.jl](https://github.com/ModiaSim/ModiaBase.jl). From the transformed model a Julia function is generated that is used to simulate the model with integrators from [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl).
The basic type of the floating point variables is usually `Float64`, but can be set to any
type `FloatType<:AbstractFloat` via `@instantiateModel(..., FloatType = xxx)`, for example
it can be set to `Float32, DoubleFloat, Measurement{Float64}, StaticParticles{Float64,100}`.
## Installation
ModiaLang is included in [Modia](https://github.com/ModiaSim/Modia.jl) and is available, when Modia was installed.
A standalone ModiaLang version is installed with:
```julia
julia> ]add ModiaLang
```
Furthermore, one or more of the following packages should be installed in order
to be able to generate plots:
```julia
julia> ]add ModiaPlot_PyPlot # if plotting with PyPlot desired
add ModiaPlot_GLMakie # if plotting with GLMakie desired
add ModiaPlot_WGLMakie # if plotting with WGLMakie desired
add ModiaPlot_CairoMakie # if plotting with CairoMakie desired
```
## Release Notes
### Version 0.11.3
- @instantiateModel(..): `Var(hideResult=true)` is no longer ignored if present in a sub-component.
- simulate!(..): Unnecessary evaluation of the parameters dictionary is avoided
(if merge = missing, nothing or has no elements).
### Version 0.11.2
- Minor (efficiency) improvement if states are SVectors.
- Require ModiaBase 0.9.2 (to get rid of performance issues in Modia3D).
- Replace ustrip(..) with ustrip.(..) at some places to get rid of warnings.
### Version 0.11.1
- Update of Manifest.toml file
- Require ModiaBase 0.9.1 (with updated Manifest.toml file)
### Version 0.11.0
Non-backwards compatible changes
- Equations can only be defined with key `equations` and no other key.
- Parameter values in the code are now type cast to the type of the parameter value from the
`@instantiatedModel(..)` call. The benefit is that access of parameter values in the code is type stable
and operations with the parameter value are more efficient and at run-time no memory is allocated.
Existing models can no longer be simulated, if parameter values provided via `simulate!(.., merge=xx)` are not
type compatible to their definition. For example, an error is thrown if the @instantedModel(..) uses a Float64 value and the
`simulate!(.., merge=xx)` uses a `Measurement{Float64}` value for the same parameter
Other changes
- Hierarchical names in function calls supported (e.g. `a.b.c.fc(..)`).
- Functions can return multiple values, e.g. `(tau1,tau2) = generalizedForces(derw1, derw2)`.
- Support for StaticArrays variables (the StaticArrays feature is kept in the generated AST).
For an example, see `ModiaLang/test/TestArrays.jl`.
- Support for Array variables (especially of state and tearing variables)
where the dimension can change after `@instantiateModel(..)`.
For examples, see `ModiaLang/test/TestArrays.jl` and `TestMultiReturningFunction10.jl`.
- New keyword `Var(hideResult=true)` removes variable from the result (has no effect on states, derivative of states and parameters).
For an example, see `ModiaLang/test/TestMultiReturningFunction10.jl`
- New feature of @instantiatedModel(..): If a Model(..) has key `:_buildFunction`, call this function to merge additional code to the model.
For details see the docu of function buildSubModels! in ModiaLang.jl.
For examples, see `ModiaLang/test/TestMultiReturningFunction10.jl` and
constructor `Model3D(..)` in `Modia3D/src/ModiaInterface/model3D.jl` and `Modia3D/src/ModiaInterface/buildModia3D.jl`.
- Generalized connection semantics.
- Functions converting model to/from JSON: `modelToJSON(model)`, `JSONtoModel(json_string)`
- `simulate!(..):`
- New option `logProgress=false` in function `simulate!(..)` to print current simulation time every 5s (cpu-time).
- If tolerance is too small, a warning is prented and it is automatically enlarged to a meaningful value
(e.g. tolerance = 1e-8 is not useful if `FloatType=Float32`)
- Logging improved: If log=true or logTiming=true, then timing, memory allocation and compilation time is
reported for initialization (ths includes compilation of the generated getDerivatives(..) function).
The remaining log shows cpu-time and memory allocation **without** initialization
(and without the resources needed to compile getDerivatives(..)).
- Prefix messages of the timers with "ModiaLang" or "DifferentialEquations" to more clearly see
the origin of a message in the timer log.
- Large speedup of symbolic transformation, if function depends on many input (and output) arguments
(includes new operator `implicitDependency(..)`).
- Included DAE-Mode in solution of linear equation system (if DAE integrator is used and all unknowns of a linear
equation system are part of the DAE states, solve the linear equation system during continuous integration
via DAE solver (= usually large simulation speed-up, for larger linear equation systems)
Bug fixes
- If unitless=true, units in instantiatedModel.evaluatedParameters are removed.
- The unit macro is kept in the generated code and is no longer expanded. For example, `u"N"`, is kept in the code that is
displayed with `logCode=true` (previously, this was expanded and the unit was displayed in the code as `N` which is not correct Julia code).
- Function `ModiaLang.firstInitialOfAllSegments(..)` now correctly returns true for the first call of the getDerivatives function during the simulation.
### Version 0.10.2
- Minor (efficiency) improvement if states are SVectors.
- Require ModiaBase 0.9.2 (to get rid of performance issues in Modia3D).
- Replace ustrip(..) with ustrip.(..) at some places to get rid of warnings.
### Version 0.10.1
- Update of Manifest.toml file
- Require ModiaBase 0.9.1 (with updated Manifest.toml file).
### Version 0.10.0
- Require DifferentialEquations.jl version 7.
- Cleanup of using/export
- Cleanup of Project.toml/Manifest.toml.´
- @reexport using Unitful
- @reexport using DifferentialEquations
- Cleanup of test files (besides ModiaLang, no other package needed in the environment to run the tests).
- Change `SimulationModel{FloatType,ParType,EvaluatedParType,TimeType}` to `SimulationModel{FloatType,TimeType}`
### Version 0.9.1
- New function plotPath to plot a PTP_path
- Replace ustrip(..) with ustrip.(..) at some places to get rid of warnings.
- Include time in error message, if simulation failed
### Version 0.9.0
- Require Julia 1.7
- Upgrade Manifest.toml to version 2.0
- Update Project.toml/Manifest.toml
### Version 0.8.7
- Packages used in test models, prefixed with ModiaLang. to avoid missing package errors.
- Deactivating test with DoubleFloats, since not in Project.toml
- Version/date updated
### Version 0.8.6
- Require ModiaResult, version 0.3.9
- Project.toml/Manifest.toml updated
### Version 0.8.5
- simulate!(..):
- Trigger an error, if simulation is not successful (retcode is neither :Default nor :Success nor :Terminate)
- Use RightRootFind for zero crossings (improves state events based on new DifferentialEquations option)
- New keyword argument requiredFinalStates_atol=0.0.
- Improve docu (e.g. add return argument solution).
- Show correct integrator name QBDF in simulation log (instead of QNDF)
- Raise an error, if (relative) tolerance is too small for FloatType
- Use FloatType for zero crossing hysteresis, instead of Float64
- If log=true print info about end of initialization.
- Support of MonteCarloMeasurements with units + new test model TestLinearEquationSystemWithUnitsAndMonteCarlo.jl
- Fixing and activating the deactivated test TestTwoInertiasAndIdealGearWithUnitsAndMonteCarlo.jl.
### Version 0.8.4
- FloatType is included in the name space of Core.eval when evaluating parameters.
- Version and Date updated
- Included Version in printout of runtests.jl and runtests_withPlot.jl
- Print difference of finalStates and requiredFinalStates in case they do not match with the given tolerance.
### Version 0.8.3
- Project.toml, Manifest.toml updated: Require newest version 0.7.7 of ModiaBase (containing a bug fix)
- Minor correction of simulate!(log=true) output
### Version 0.8.2
- Issue with tearing fixed: Variables are only explicitly solved, if linear factor is a non-zero literal number
(previously a division by zero could occur, if the linear factor became zero during simulation).
- Issue with unit of tearing variable fixed, if it is a derivative of a variable
(previously, the generated code for unitless=false was wrong, if the tearing variable was
a derivative, since the unit was not taken into account).
- simulate!(..):
- Support DAE integrators, especially IDA() from Sundials.
- New keyword `useRecursiveFactorizationUptoSize=0`: Linear equation systems A*v=b are solved with
[RecursiveFactorization.jl](https://github.com/YingboMa/RecursiveFactorization.jl) instead of
the default `lu!(..)` and `ldiv!(..)`, if
`length(v) <= useRecursiveFactorizationUptoSize`.
According to `RecursiveFactorization.jl` docu, it is faster as `lu!(..)` with OpenBLAS,
for `length(v) <= 500` (typically, more as a factor of two).
Since there had been some cases where `lu!(..)!` was successful,
but `RecursiveFactorization.jl` failed due to a singular system, the default is to use `lu!(..)!`.
- If log=true, sizes of linear equation systems are listed, as well as whether
RecursiveFactorization.jl is used for the respective system.
- Test for RecursiveFactorization.jl added in TestTwoInertiasAndIdealGear.jl
- Some test models corrected (since leading to errors with the above changes).
- Updated Project.toml and Manifest.toml with newest versions of packages
(including MonteCarloMeasurements, version >= 1)
and improved Project.toml file to reduce issues with package constraints
### Version 0.8.1
- Added a minimal documentation, including release notes.
- No message anymore, when ModiaLang is started.
- Fixed bug that `using ModiaResult` is needed, when calling `@usingModiaPlot`.
### Version 0.8.0
- Improved scalability by using OrderedDicts instead of named tuples for models, variables and parameter modifications.
- Speed improvements for structural and symbolic algorithms.
- Added support for state events, time events and synchronous operators.
- Added support for mixed linear equation systems having Real and Boolean unknowns.
- Added support for user-defined components defined by structs and functions
(multibody modeling with Modia3D is based on this feature).
This makes it possible to utilize algorithms specialized for a component.
- Added support for numerical and analytic linearization.
- Added support for propagation of parameters (e.g. deep in a model, the value of a parameter can be defined as a function of some top level parameter and this parameter is changed before simulation starts).
- New small model libraries Translational.jl and PathPlanning.jl added.
- Result storage changed: `sol = simulate!(...)` calls internally `sol = solve(..)` from DifferentialEquations.jl. `sol` contains time and the states at the communication time grid and
at events. This is now kept in simulate(..), so the return value of simulate!(..) can be exactly used as if `solve(..)` would have been used directly.
- The plot(..) command now supports the following underlying plot packages:
[PyPlot](https://github.com/JuliaPy/PyPlot.jl),
[GLMakie](https://github.com/JuliaPlots/GLMakie.jl),
[WGLMakie](https://github.com/JuliaPlots/WGLMakie.jl), and
[CairoMakie](https://github.com/JuliaPlots/CairoMakie.jl).
It is also possible to select `NoPlot`, to ignore `plot(..)` calls
or `SilenNoPlot` to ignore `plot(..)` calls silently. The latter is useful for `runtests.jl`.
Note, often [PyPlot](https://github.com/JuliaPy/PyPlot.jl) is the best choice.
Changes that are **not backwards compatible** to version 0.7.x:
- Models are OrderedDicts and no longer NamedTuples.
- simulate!(..):
- If FloatType=Float64 and no algorithm is defined, then Sundials.CVODE\_BDF() is used
instead of the default algorithm of DifferentialEquations as in 0.7. The reason is that Modia models
are usually large and expensive to evaluate and have often stiff parts, so that multi-step
methods are often by far the best choice. CVODE_BDF() seems to be a good choice in many applications
(another algorithm should be used, if there are many events, highly oscillatory vibrations, or if all states are non-stiff).
- The default value of `stopTime` is equal to `startTime` (which has a default value of 0.0 s), and is no longer 1.0 s.
- Plotting is defined slightly differently (`@useModiaPlot`, instead of `using ModiaPlot`).
### Version 0.7.3
- Evaluation and propagation of parameter expressions (also in simulate!(..., merge=Map(...))).
Propagation of start/init values of states is not yet supported.
- State events supported.
### Version 0.7.2
- Missing dependency of Test package added.
### Version 0.7.1
- Variable constructor `Var(...)` introduced. For example:
`v = input | Var(init = 1.2u"m")`.
- Functions are called in the scope where macro `@instantiateModel` is called.
- New arguments of function `simulate!`:
- Parameter and init/start values can be changed with argument `merge`.
- A simulation can be checked with argument `requiredFinalStates`.
- Argument `logParameters` lists the parameter and init/start values used for the simulation.
- Argument `logStates` lists the states, init, and nominal values used for the simulation.
- `end` in array ranges is supported, for example `v[2:end]`.
- New (small) model library `Modia/models/HeatTransfer.jl`.
- Modia Tutorial improved.
- Functions docu improved.
### Version 0.7.0
- Initial version, based on code developed for Modia 0.6 and ModiaMath 0.6.
## Main developers
- [Hilding Elmqvist](mailto:[email protected]), [Mogram](http://www.mogram.net/).
- [Martin Otter](https://rmc.dlr.de/sr/en/staff/martin.otter/),
[DLR - Institute of System Dynamics and Control](https://www.dlr.de/sr/en). | ModiaLang | https://github.com/ModiaSim/ModiaLang.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 310 | using Documenter, Dashboards
makedocs(
sitename = "Dashboards",
format = Documenter.HTML(),
modules = [Dashboards],
doctest = false,
pages = [
"index.md",
"API Docs" => "api.md"
]
)
deploydocs(
repo = "github.com/waralex/Dashboards.jl.git",
target = "build"
)
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 434 | import TOML
using OrderedCollections
using Conda
using PyCall
import YAML
using Pkg.Artifacts
import GitHub
import GitHub: gh_get_json, DEFAULT_API
using HTTP
import JSON
using ghr_jll
include("generator/generator.jl")
sources = TOML.parsefile(joinpath(@__DIR__, "Sources.toml"))
build_dir = joinpath(@__DIR__, "build")
artifact_file = joinpath(@__DIR__, "..", "Artifacts.toml")
generate(ARGS, sources, build_dir, artifact_file)
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 5352 | using JSON3
function process_components_meta(metafile)
metadata = JSON3.read(
read(metafile, String)
)
result = []
for (file, props) in metadata
name = split(split(string(file), "/")[end], ".")[1]
push!(result, make_component_meta(name, props))
end
return result
end
function make_component_meta(name, props)
args = filter(filter_arg, props["props"])
regular_args = filter(collect(keys(args))) do name
!endswith(string(name), "-*")
end
wild_args =
filter(collect(keys(args))) do name
endswith(string(name), "-*")
end
return OrderedDict(
:name => Symbol(name),
:args => regular_args,
:wild_args => [Symbol(replace(string(a), "-*"=>"")) for a in wild_args],
:docstr => docstring(name, args, props["description"]),
)
end
const _reserved_words = Set(
["baremodule",
"begin",
"break",
"catch",
"const",
"continue",
"do",
"else",
"elseif",
"end",
"export",
"false",
"finally",
"for",
"function",
"global",
"if",
"import",
"let",
"local",
"macro",
"module",
"quote",
"return",
"struct",
"true",
"try",
"using",
"while"]
)
function is_reserved_world(w)
return w in _reserved_words
end
function filter_arg(argpair)
name, props = argpair
is_reserved_world(name) && return false
if haskey(props, "type")
arg_type = props["type"]["name"]
return !in(arg_type, ["func", "symbol", "instanceOf"])
end
if "flowType" in props
arg_type_name = props["flowType"]["name"]
if arg_type_name == "signature"
# This does the same as the PropTypes filter above, but "func"
# is under "type" if "name" is "signature" vs just in "name"
if !in("type", props["FlowType"]) || props["FlowType"]["type"] != "object"
return false
end
end
return true
end
return false
end
function docstring(name, props, description)
article = lowercase(first(name)) in ['a', 'e', 'i', 'o', 'u'] ? "An " : "A "
result = string(
article, name, " component", "\n",
description, "\n\n"
)
if haskey(props, :children)
result *= arg_docstring("children", props[:children]) * "\n"
end
if haskey(props, :id)
result *= arg_docstring("id", props[:id]) * "\n"
end
other_props = sort(
collect(filter(v->!in(v.first, [:children, :id]), props)),
lt = (a, b) -> a[1] < b[1]
)
result *= join(arg_docstring.(other_props), "\n")
return result
end
_jl_type(::Val{:array}, type_object) = "Array"
_jl_type(::Val{:bool}, type_object) = "Bool"
_jl_type(::Val{:string}, type_object) = "String"
_jl_type(::Val{:object}, type_object) = "Dict"
_jl_type(::Val{:any}, type_object) = "Bool | Real | String | Dict | Array"
_jl_type(::Val{:element}, type_object) = "dash component"
_jl_type(::Val{:node}, type_object) = "a list of or a singular dash component, string or number"
_jl_type(::Val{:enum}, type_object) = join(
string.(
getindex.(type_object["value"], :value)
), ", "
)
function _jl_type(::Val{:union}, type_object)
join(
filter(a->!isempty(a), jl_type.(type_object["value"])),
" | "
)
end
function _jl_type(::Val{:arrayOf}, type_object)
result = "Array"
if type_object["value"] != ""
result *= string(" of ", jl_type(type_object["value"]), "s")
end
return result
end
_jl_type(::Val{:objectOf}, type_object) =
string("Dict with Strings as keys and values of type ", jl_type(type_object["value"]))
function _jl_type(::Val{:shape}, type_object)
child_names = join(string.(keys(type_object["value"])), ", ")
result = "lists containing elements $(child_names)"
result *= join(
[
arg_docstring(name, prop, prop["required"], get(prop, "description", ""), 1)
for (name, prop) in type_object["value"]
]
)
return result
end
_jl_type(::Val{:exact}, type_object) = _jl_type(Val(:shape), type_object)
_jl_type(val, type_object) = ""
jl_type(type_object) = _jl_type(Val(Symbol(type_object["name"])), type_object)
arg_docstring(name_prop::Pair, indent_num = 0) = arg_docstring(name_prop[1], name_prop[2], indent_num)
arg_docstring(name, prop, indent_num = 0) =
arg_docstring(
string(name),
haskey(prop, "type") ? prop["type"] : prop["flowType"],
prop["required"],
prop["description"],
indent_num
)
function arg_docstring(prop_name, type_object, required, description, indent_num)
typename = jl_type(type_object)
indent_spacing = repeat(" ", indent_num)
if occursin("\n", typename)
return string(
indent_spacing, "- `", prop_name, "` ",
"(", required ? "required" : "optional", "):",
description, ". ",
prop_name, " has the following type: ", typename
)
end
return string(
indent_spacing, "- `", prop_name, "` ",
"(",
isempty(typename) ? "" : string(typename, "; "),
required ? "required" : "optional",
")",
isempty(description) ? "" : string(": ", description)
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4921 | """
install_dash(url, tag)
Clone python dash into `dash` folder and install (reinstall) it to current python environment
"""
function install_dash(url, tag)
Conda.pip_interop(true)
Conda.pip("uninstall -y", "dash")
rm("dash", force = true, recursive = true)
mkdir("dash")
repo = clone(url, "dash")
obj = try
LibGit2.GitObject(repo, tag)
catch
LibGit2.GitObject(repo, "origin/$tag")
end
source_hash = LibGit2.string(LibGit2.GitHash(obj))
LibGit2.checkout!(repo, source_hash)
cd("dash") do
Conda.pip("install", "./")
end
dashmodule = pyimport("dash")
println(dashmodule)
return dashmodule.__version__
end
dash_version() = VersionNumber(pyimport("dash").__version__)
dash_module_dir() = dirname(pyimport("dash").__file__)
function convert_deps_part(relative, external)
result = Dict{Symbol, String}[]
for i in eachindex(relative)
d = OrderedDict{Symbol, String}()
d[:relative_package_path] = relative[i]
if !isnothing(external)
d[:external_url] = external[i]
end
push!(result, d)
end
return result
end
function convert_deps(pyresources)
relative_paths = pyresources["relative_package_path"]
external_urls = get(pyresources, "external_url", nothing)
result = OrderedDict{Symbol, Any}()
result[:namespace] = pyresources["namespace"]
if haskey(relative_paths, "prod")
result[:prod] = convert_deps_part(
relative_paths["prod"],
isnothing(external_urls) ? nothing : external_urls["prod"]
)
end
if haskey(relative_paths, "dev")
result[:dev] = convert_deps_part(
relative_paths["dev"],
isnothing(external_urls) ? nothing : external_urls["dev"]
)
end
return result
end
function _process_dist_part!(dict, resource, type)
ns_symbol = Symbol(resource["namespace"])
if !haskey(dict, ns_symbol)
dict[ns_symbol] = OrderedDict(
:namespace => resource["namespace"],
:resources => Dict[]
)
end
data = filter(v->v.first != "namespace", resource)
data[:type] = type
push!(
dict[ns_symbol][:resources], data
)
end
function convert_resources(js_dist, css_dist)
result = OrderedDict{Symbol, Any}()
_process_dist_part!.(Ref(result), js_dist, :js)
_process_dist_part!.(Ref(result), css_dist, :css)
return collect(values(result))
end
function deps_files(pyresources)
relative_paths = pyresources["relative_package_path"]
result = String[]
if haskey(relative_paths, "prod")
append!(result, relative_paths["prod"])
end
if haskey(relative_paths, "dev")
append!(result, relative_paths["dev"])
end
return result
end
function resources_files(pyresources)
result = String[]
for res in pyresources
if haskey(res, "relative_package_path")
push!(result, res["relative_package_path"])
end
if haskey(res, "dev_package_path")
push!(result, res["dev_package_path"])
end
end
return result
end
function copy_files(resource_dir, files, dest_dir)
for f in files
full_path = joinpath(resource_dir, f)
path_dir = dirname(f)
mkpath(joinpath(dest_dir, path_dir))
if isfile(full_path)
cp(full_path, joinpath(dest_dir, f); force = true)
else
@warn "File $f don't exists in $resource_dir, skipped"
end
end
end
function renderer_resources(module_name)
m = pyimport(module_name)
meta = OrderedDict(
:version => m.__version__,
:js_dist_dependencies => convert_deps(m._js_dist_dependencies[1]),
:deps => convert_resources(m._js_dist, hasproperty(m, :_css_dist) ? m._css_dist : [])
)
files = vcat(deps_files(m._js_dist_dependencies[1]), resources_files(m._js_dist))
return (dirname(m.__file__), meta, files)
end
function fill_components_deps!(deps::OrderedDict, files::Vector, module_name)
m = pyimport(module_name)
js_dist = hasproperty(m, :_js_dist) ? m._js_dist : []
css_dist = hasproperty(m, :_css_dist) ? m._css_dist : []
_process_dist_part!.(Ref(deps), js_dist, :js)
_process_dist_part!.(Ref(deps), css_dist, :css)
append!(files, vcat(resources_files(js_dist), resources_files(css_dist)))
end
function components_module_resources(module_name; name, prefix, metadata_file)
m = pyimport(module_name)
moduledir = dirname(m.__file__)
metafile = joinpath(moduledir, metadata_file)
if !isfile(metafile)
error("meta file $(metadata_file) don't exists for module $(name)")
end
components = process_components_meta(metafile)
meta = OrderedDict(
:version => m.__version__,
:name => name,
:prefix => prefix,
:components => components
)
return meta
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 5396 | function init_deploy_repo(deploy_repo, dest_dir)
gh_auth = github_auth(;allow_anonymous=false)
gh_username = gh_get_json(DEFAULT_API, "/user"; auth=gh_auth)["login"]
try
GitHub.repo(deploy_repo; auth=gh_auth)
catch e
error("Resources repo `$(deploy_repo)` don't exists.")
end
#Always do new clone
if isdir(dest_dir)
rm(dest_dir, force = true, recursive = true)
end
@info("Cloning resources repo from https://github.com/$(deploy_repo) into $(dest_dir)")
with_gitcreds(gh_username, gh_auth.token) do creds
LibGit2.clone("https://github.com/$(deploy_repo)", dest_dir; credentials=creds)
end
end
function old_build_info(dest_dir)
default_info = (dash_version = v"0.0.0", build = 0)
meta_path = joinpath(resources_dir(dest_dir), "dash.yaml")
!isfile(meta_path) && return default_info
try
meta = YAML.load_file(meta_path)
v = VersionNumber(meta["version"])
build_n = meta["build"]
(dash_version = v, build = build_n)
catch e
@error "error while loading dash.yaml" e
return default_info
end
end
function make_new_info(dash_version, old_info)
if old_info.dash_version > dash_version
error("You try to generate resources for dash $(dash_version), but $(deploy_repo) alredy contains version $(old_info.dash_version)")
end
build_n = old_info.dash_version == dash_version ? old_info.build + 1 : 0
return (dash_version = dash_version, build = build_n)
end
function cleanup_deploy(deploy_dir)
end
resources_dir(deploy_dir) = joinpath(deploy_dir, "resources")
function fill_deploy_resources(sources, deploy_dir, info)
resources_path = resources_dir(deploy_dir)
#cleanup resources
rm(resources_path, force = true, recursive = true)
mkdir(resources_path)
cd(resources_path) do
@info "creating dash meta..."
dash_meta = OrderedDict(
:version => info.dash_version,
:build => info.build,
:embedded_components => Symbol.(collect(keys(sources["components"])))
)
dash_deps = OrderedDict{Symbol, Any}()
dash_deps_files = Vector{String}()
for (name, props) in sources["components"]
fill_components_deps!(dash_deps, dash_deps_files, props["module"])
end
dash_meta[:deps] = collect(values(dash_deps))
YAML.write_file("dash.yaml", dash_meta)
mkdir("dash_deps")
copy_files(dash_module_dir(), dash_deps_files, "dash_deps")
@info "creating dash-renderer meta..."
module_src, meta, files = renderer_resources(
sources["dash_renderer"]["module"]
)
resources_path = realpath(
joinpath(
module_src,
get(sources["dash_renderer"], "resources_path", ".")
)
)
YAML.write_file("dash_renderer.yaml", meta)
@info "copying dash-renderer resource files..."
mkdir("dash_renderer_deps")
copy_files(resources_path, files, "dash_renderer_deps/")
@info "dash-renderer done"
@info "processing components modules..."
for (name, props) in sources["components"]
@info "processing $name meta..."
meta = components_module_resources(
props["module"];
name = name,
prefix = props["prefix"],
metadata_file = props["metadata_file"],
)
YAML.write_file("$(name).yaml", meta)
end
end
end
deploy_version(info) = VersionNumber(
info.dash_version.major,
info.dash_version.minor,
info.dash_version.patch,
info.dash_version.prerelease,
(info.build,)
)
deploy_tagname(info) = string("v", deploy_version(info))
tarball_name(info) = string(
"DashCoreResources.v", info.dash_version, ".tar.gz"
)
function push_repo(repo_name, deploy_dir, tag)
println("https://github.com/$(repo_name).git")
gh_auth = github_auth(;allow_anonymous=false)
gh_username = gh_get_json(DEFAULT_API, "/user"; auth=gh_auth)["login"]
repo = LibGit2.GitRepo(deploy_dir)
LibGit2.add!(repo, ".")
commit = LibGit2.commit(repo, "dash core resources build $(tag)")
with_gitcreds(gh_username, gh_auth.token) do creds
refspecs = ["refs/heads/master"]
# Fetch the remote repository, to have the relevant refspecs up to date.
LibGit2.fetch(
repo;
refspecs=refspecs,
credentials=creds,
)
LibGit2.branch!(repo, "master", string(LibGit2.GitHash(commit)); track="master")
LibGit2.push(
repo;
refspecs=refspecs,
remoteurl="https://github.com/$(repo_name).git",
credentials=creds,
)
end
end
function upload_to_releases(repo_name, tag, tarball_path; attempts = 3)
gh_auth = github_auth(;allow_anonymous=false)
for attempt in 1:attempts
try
ghr() do ghr_path
run(`$ghr_path -u $(dirname(repo_name)) -r $(basename(repo_name)) -t $(gh_auth.token) $(tag) $(tarball_path)`)
end
return
catch
@info("`ghr` upload step failed, beginning attempt #$(attempt)...")
end
end
error("Unable to upload $(tarball_path) to GitHub repo $(repo_name) on tag $(tag)")
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 2655 | include("gitutils.jl")
include("github.jl")
include("dash.jl")
include("components.jl")
include("deploy.jl")
const HELP = """
Usage: generate.jl [--deploy] [--help]
Options:
--deploy Deploy resources to repo specified in `Sources.toml`
--help Print out this message.
"""
function generate(ARGS, sources, build_dir, artifact_file)
if "--help" in ARGS
println(HELP)
return nothing
end
is_deploy = "--deploy" in ARGS
deploy_dir = joinpath(build_dir, "deploy")
rm(build_dir, force = true, recursive = true)
mkdir(build_dir)
cd(build_dir)
@info "cloning dash..."
v = install_dash(sources["dash"]["url"], sources["dash"]["tag"])
dash_version = VersionNumber(v)
@info "dash succefully installed" dash_version
deploy_repo = sources["deploy"]["repo"]
init_deploy_repo(deploy_repo, deploy_dir)
old_info = old_build_info(deploy_dir)
new_info = make_new_info(dash_version, old_info)
@info "filling resources data..."
fill_deploy_resources(sources, deploy_dir, new_info)
@info "resources data filled"
artifact_hash = create_artifact() do dir
res_dir = resources_dir(deploy_dir)
for name in readdir(res_dir)
cp(
joinpath(res_dir, name),
joinpath(dir, name)
)
end
end
@info "artifact created" artifact_hash
if is_deploy
@info "pushing repo to https://github.com/$(deploy_repo)..."
push_repo(deploy_repo, deploy_dir, deploy_tagname(new_info))
@info "repo pushed"
@info "creating tagball..."
tarball_hash = archive_artifact(artifact_hash, joinpath(build_dir, tarball_name(new_info)))
@info "tagball created" tarball_hash
@info "binding artifact..."
download_info = (
"https://github.com/$(deploy_repo)/releases/download/$(deploy_tagname(new_info))/$(tarball_name(new_info))",
tarball_hash
)
bind_artifact!(artifact_file, "dash_resources", artifact_hash, force = true, download_info = [download_info])
@info "artifact binding succefully to" artifact_file
cd(deploy_dir) do
upload_to_releases(deploy_repo,
deploy_tagname(new_info),
realpath(joinpath(build_dir, tarball_name(new_info)))
)
end
else
unbind_artifact!(artifact_file, "dash_resources")
bind_artifact!(artifact_file, "dash_resources", artifact_hash, force = true, download_info = nothing)
@info "artifact binding succefully to" artifact_file
end
@info "resource generation done!"
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4351 | #= ================ Code copied from BinaryBuilder.jl ============== =#
#=
Since this code is not part of the public BinaryBuilder interface, it is safer to copy it than to use it directly by adding a dependency to BinaryBuider
=#
# This is a global github authentication token that is set the first time
# we authenticate and then reused
const _github_auth = Ref{GitHub.Authorization}()
function github_auth(;allow_anonymous::Bool=true)
if !isassigned(_github_auth) || !allow_anonymous && isa(_github_auth[], GitHub.AnonymousAuth)
# If the user is feeding us a GITHUB_TOKEN token, use it!
if length(get(ENV, "GITHUB_TOKEN", "")) >= 40
_github_auth[] = GitHub.authenticate(ENV["GITHUB_TOKEN"])
else
if allow_anonymous
_github_auth[] = GitHub.AnonymousAuth()
else
# If we're not allowed to return an anonymous authorization,
# then let's create a token.
_github_auth[] = GitHub.authenticate(obtain_token())
end
end
end
return _github_auth[]
end
function obtain_token(; outs=stdout, github_api=GitHub.DEFAULT_API)
println(outs)
printstyled(outs, "Authenticating with GitHub\n", bold=true)
@label retry
headers = Dict{String, String}("User-Agent"=>"BinaryBuilder-jl",
"Accept"=>"application/json")
# Request device authentication flow for BinaryBuilder OAauth APP
resp = HTTP.post("https://github.com/login/device/code", headers,
"client_id=8c496f428c48a1015b9e&scope=public_repo")
if resp.status != 200
GitHub.handle_response_error(resp)
end
reply = JSON.parse(HTTP.payload(resp, String))
println(outs, """
To continue, we need to authenticate you with GitHub. Please navigate to
the following page in your browser and enter the code below:
$(HTTP.URIs.unescapeuri(reply["verification_uri"]))
#############
# $(reply["user_code"]) #
#############
""")
interval = reply["interval"]
device_code = reply["device_code"]
while true
# Poll for completion
sleep(interval)
resp = HTTP.post("https://github.com/login/oauth/access_token", headers,
"client_id=8c496f428c48a1015b9e&grant_type=urn:ietf:params:oauth:grant-type:device_code&device_code=$device_code")
if resp.status != 200
GitHub.handle_response_error(resp)
end
token_reply = JSON.parse(HTTP.payload(resp, String))
if haskey(token_reply, "error")
error_kind = token_reply["error"]
if error_kind == "authorization_pending"
continue
elseif error_kind == "slow_down"
@warn "GitHub Auth rate limit exceeded. Waiting 10s. (This shouldn't happen)"
sleep(10)
elseif error_kind == "expired_token"
@error "Token request expired. Starting over!"
@goto retry
elseif error_kind == "access_denied"
@error "Authentication request canceled by user. Starting over!"
@goto retry
elseif error_kind in ("unsupported_grant_type",
"incorrect_client_credentials", "incorrect_device_code")
error("Received error kind $(error_kind). Please file an issue.")
else
error("Unexpected GitHub login error $(error_kind)")
end
end
token = token_reply["access_token"]
print(outs, """
Successfully obtained GitHub authorization token!
This token will be used for the rest of this BB session.
You will have to re-authenticate for any future session.
However, if you wish to bypass this step, you may create a
personal access token at """)
printstyled("https://github.com/settings/tokens"; bold=true)
println("\n and add the token to the")
printstyled(outs, "~/.julia/config/startup.jl"; bold=true)
println(outs, " file as:")
println(outs)
printstyled(outs, " ENV[\"GITHUB_TOKEN\"] = <token>"; bold=true)
println(outs)
println(outs, "This token is sensitive, so only do this in a computing environment you trust.")
println(outs)
return token
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 2105 | using ProgressMeter
import LibGit2
struct GitTransferProgress
total_objects::Cuint
indexed_objects::Cuint
received_objects::Cuint
local_objects::Cuint
total_deltas::Cuint
indexed_deltas::Cuint
received_bytes::Csize_t
end
function transfer_progress(progress::Ptr{GitTransferProgress}, p::Any)
progress = unsafe_load(progress)
p.n = progress.total_objects
if progress.total_deltas != 0
p.desc = "Resolving Deltas: "
p.n = progress.total_deltas
update!(p, Int(max(1, progress.indexed_deltas)))
else
update!(p, Int(max(1, progress.received_objects)))
end
return Cint(0)
end
"""
clone(url::String, source_path::String)
Clone a git repository hosted at `url` into `source_path`, with a progress bar
displayed to stdout.
"""
function clone(url::String, source_path::String)
# Clone with a progress bar
p = Progress(0, 1, "Cloning: ")
GC.@preserve p begin
callbacks = LibGit2.RemoteCallbacks(
transfer_progress=@cfunction( transfer_progress,
Cint,
(Ptr{GitTransferProgress}, Any)
),
payload = p
)
fetch_opts = LibGit2.FetchOptions(callbacks=callbacks)
clone_opts = LibGit2.CloneOptions(fetch_opts=fetch_opts, bare = Cint(false))
return LibGit2.clone(url, source_path, clone_opts)
end
end
"""
with_gitcreds(f, username::AbstractString, password::AbstractString)
Calls `f` with an `LibGit2.UserPasswordCredential` object as an argument, constructed from
the `username` and `password` values. `with_gitcreds` ensures that the credentials object
gets properly shredded after it's no longer necessary. E.g.:
```julia
with_gitcreds(user, token) do creds
LibGit2.clone("https://github.com/foo/bar.git", "bar"; credentials=creds)
end
````
"""
function with_gitcreds(f, username::AbstractString, password::AbstractString)
creds = LibGit2.UserPasswordCredential(deepcopy(username), deepcopy(password))
try
f(creds)
finally
Base.shred!(creds)
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 768 | function _validate_children(children::Union{Vector, Tuple}, ids::Set{Symbol})
for child in children
_validate(child, ids)
end
end
function _validate_children(children::Component, ids::Set{Symbol})
_validate(children, ids)
end
function _validate_children(children, ids::Set{Symbol}) end
function _validate(comp::Component, ids::Set{Symbol})
if hasproperty(comp, :id) && !isnothing(comp.id)
id = Symbol(comp.id)
id in ids && error("Duplicate component id found in the initial layout: $(id)")
push!(ids, id)
end
hasproperty(comp, :children) && _validate_children(comp.children, ids)
end
function _validate(non_comp, ids::Set{Symbol}) end
function validate(comp::Component)
_validate(comp, Set{Symbol}())
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 3091 | module Dash
using DashBase
import HTTP, JSON3, CodecZlib, MD5
using Sockets
using Pkg.Artifacts
const ROOT_PATH = realpath(joinpath(@__DIR__, ".."))
#const RESOURCE_PATH = realpath(joinpath(ROOT_PATH, "resources"))
include("exceptions.jl")
include("Components.jl")
include("HttpHelpers/HttpHelpers.jl")
using .HttpHelpers
export dash, Component, callback!,
enable_dev_tools!, ClientsideFunction,
run_server, PreventUpdate, no_update, @var_str,
Input, Output, State, make_handler, callback_context,
ALL, MATCH, ALLSMALLER, DashBase
include("Contexts/Contexts.jl")
include("env.jl")
include("utils.jl")
include("app.jl")
include("resources/application.jl")
include("handlers.jl")
include("server.jl")
include("init.jl")
include("components_utils/_components_utils.jl")
@doc """
module Dash
Julia backend for [Plotly Dash](https://github.com/plotly/dash)
# Examples
```julia
using Dash
app = dash(external_stylesheets=["https://codepen.io/chriddyp/pen/bWLwgP.css"]) do
html_div() do
dcc_input(id="graphTitle", value="Let's Dance!", type = "text"),
html_div(id="outputID"),
dcc_graph(id="graph",
figure = (
data = [(x = [1,2,3], y = [3,2,8], type="bar")],
layout = Dict(:title => "Graph")
)
)
end
end
callback!(app, Output("outputID", "children"), Input("graphTitle","value"), State("graphTitle","type")) do value, type
"You've entered: '\$(value)' into a '\$(type)' input control"
end
callback!(app, Output("graph", "figure"), Input("graphTitle", "value")) do value
(
data = [
(x = [1,2,3], y = abs.(randn(3)), type="bar"),
(x = [1,2,3], y = abs.(randn(3)), type="scatter", mode = "lines+markers", line = (width = 4,))
],
layout = (title = value,)
)
end
run_server(app, HTTP.Sockets.localhost, 8050)
```
""" Dash
struct ComponentsInfo
name::String
version::VersionNumber
end
struct BuildInfo
dash_version ::VersionNumber
dash_renderer_version::VersionNumber
embedded_components::Vector{ComponentsInfo}
end
function Base.show(io::IO, ::MIME"text/plain", info::BuildInfo)
println(io, "Based on python `dash` version: ", info.dash_version)
println(io, "\t`dash_renderer` version: ", info.dash_renderer_version)
println(io, "Embedded components:")
for comp in info.embedded_components
println(io, "\t - `", comp.name, "` : ", comp.version)
end
end
function build_info()
dash_meta = load_meta("dash")
renderer_meta = load_meta("dash_renderer")
embedded = Vector{ComponentsInfo}()
for name in dash_meta["embedded_components"]
meta = load_meta(name)
push!(embedded, ComponentsInfo(name, VersionNumber(meta["version"])))
end
return BuildInfo(
VersionNumber(dash_meta["version"]),
VersionNumber(renderer_meta["version"]),
embedded
)
end
@place_embedded_components
const _metadata = load_all_metadata()
function __init__()
setup_renderer_resources()
setup_dash_resources()
end
end # module
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 137 | include("app/devtools.jl")
include("app/supporttypes.jl")
include("app/config.jl")
include("app/dashapp.jl")
include("app/callbacks.jl")
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 843 | const DASH_ENV_PREFIX = "DASH_"
dash_env_key(name::String; prefix = DASH_ENV_PREFIX) = prefix * uppercase(name)
dash_env(name::String, default = nothing; prefix = DASH_ENV_PREFIX) = get(ENV, dash_env_key(name, prefix = prefix), default)
function dash_env(t::Type{T}, name::String, default = nothing; prefix = DASH_ENV_PREFIX) where {T<:Number}
key = dash_env_key(name, prefix = prefix)
!haskey(ENV, key) && return default
return parse(T, lowercase(get(ENV, key, "")))
end
dash_env(t::Type{String}, name::String, default = nothing; prefix = DASH_ENV_PREFIX) = dash_env(name, default, prefix = prefix)
macro env_default!(name, type = String, default = nothing)
name_str = string(name)
return esc(:(
$name = isnothing($name) ?
dash_env($type, $name_str, $default)
:
$name
))
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 198 | struct InvalidCallbackReturnValue <: Exception
msg::String
end
function Base.showerror(io::IO, ex::InvalidCallbackReturnValue)
Base.write(io, "Invalid callback return value: ", ex.msg)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 162 | include("handler/index_page.jl")
include("handler/state.jl")
include("handler/misc.jl")
include("handler/callback_context.jl")
include("handler/make_handler.jl")
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 59 | include("init/resources.jl")
include("init/components.jl")
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 2856 | """
run_server(app::DashApp, host = HTTP.Sockets.localhost, port = 8050; debug::Bool = false)
Run Dash server
#Arguments
- `app` - Dash application
- `host` - host
- `port` - port
- `debug::Bool = false` - Enable/disable all the dev tools
#Examples
```jldoctest
julia> app = dash() do
html_div() do
html_h1("Test Dashboard")
end
end
julia>
julia> run_server(handler, HTTP.Sockets.localhost, 8050)
```
"""
function run_server(app::DashApp,
host = dash_env("HOST", "127.0.0.1", prefix = ""),
port = dash_env(Int64, "PORT", 8050, prefix = "");
debug = nothing,
dev_tools_ui = nothing,
dev_tools_props_check = nothing,
dev_tools_serve_dev_bundles = nothing,
dev_tools_hot_reload = nothing,
dev_tools_hot_reload_interval = nothing,
dev_tools_hot_reload_watch_interval = nothing,
dev_tools_hot_reload_max_retry = nothing,
dev_tools_silence_routes_logging = nothing,
dev_tools_prune_errors = nothing
)
@env_default!(debug, Bool, false)
enable_dev_tools!(app,
debug = debug,
dev_tools_ui = dev_tools_ui,
dev_tools_props_check = dev_tools_props_check,
dev_tools_serve_dev_bundles = dev_tools_serve_dev_bundles,
dev_tools_hot_reload = dev_tools_hot_reload,
dev_tools_hot_reload_interval = dev_tools_hot_reload_interval,
dev_tools_hot_reload_watch_interval = dev_tools_hot_reload_watch_interval,
dev_tools_hot_reload_max_retry = dev_tools_hot_reload_max_retry,
dev_tools_silence_routes_logging = dev_tools_silence_routes_logging,
dev_tools_prune_errors = dev_tools_prune_errors
)
start_server = () -> begin
handler = make_handler(app);
server = Sockets.listen(get_inetaddr(host, port))
task = @async HTTP.serve(handler, host, port; server = server)
return (server, task)
end
if get_devsetting(app, :hot_reload) && !is_hot_restart_available()
@warn "Hot reloading is disabled for interactive sessions. Please run your app using julia from the command line to take advantage of this feature."
end
if get_devsetting(app, :hot_reload) && is_hot_restart_available()
hot_restart(start_server, check_interval = get_devsetting(app, :hot_reload_watch_interval))
else
(server, task) = start_server()
try
wait(task)
catch e
close(server)
if e isa InterruptException
println("finished")
return
else
rethrow(e)
end
end
end
end
get_inetaddr(host::String, port::Integer) = Sockets.InetAddr(parse(IPAddr, host), port)
get_inetaddr(host::IPAddr, port::Integer) = Sockets.InetAddr(host, port)
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 175 | include("utils/misc.jl")
include("utils/paths.jl")
include("utils/fingerprint.jl")
include("utils/parse_includes.jl")
include("utils/poll.jl")
include("utils/hot_restart.jl")
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 1655 | module Contexts
using DataStructures: Stack
export TaskContextStorage, with_context, has_context, get_context
mutable struct ContextItem{T}
value::T
ContextItem(value::T) where {T} = new{T}(value)
end
struct TaskContextStorage
storage::Dict{UInt64, Stack{ContextItem}}
guard::ReentrantLock
TaskContextStorage() = new(Dict{UInt64, Stack{ContextItem}}(), ReentrantLock())
end
#threads are runing as tasks too, so this id also unique for different threads
curr_task_id() = objectid(current_task())
#thread unsafe should be used under locks
get_curr_stack!(context::TaskContextStorage) = get!(context.storage, curr_task_id(), Stack{ContextItem}())
function Base.push!(context::TaskContextStorage, item::ContextItem)
lock(context.guard) do
push!(get_curr_stack!(context), item)
end
end
function Base.pop!(context::TaskContextStorage)
return lock(context.guard) do
return pop!(get_curr_stack!(context))
end
end
function Base.isempty(context::TaskContextStorage)
return lock(context.guard) do
return isempty(get_curr_stack!(context))
end
end
function with_context(f, context::TaskContextStorage, item::ContextItem)
push!(context, item)
result = f()
pop!(context)
return result
end
with_context(f, context::TaskContextStorage, item) = with_context(f, context, ContextItem(item))
has_context(context::TaskContextStorage) = !isempty(context)
function get_context(context::TaskContextStorage)
return lock(context.guard) do
isempty(context) && throw(ArgumentError("context is not set"))
return first(get_curr_stack!(context)).value
end
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 195 | module HttpHelpers
export state_handler, exception_handling_handler, compress_handler, Route, Router, add_route!, handle
import HTTP, CodecZlib
include("handlers.jl")
include("router.jl")
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 3341 | struct RequestHandlerFunction <: HTTP.Handler
func::Function # func(req)
end
(x::RequestHandlerFunction)(args...) = x.func(args...)
function handle(h::RequestHandlerFunction, request::HTTP.Request, args...)
h(request, args...)
end
function handle(handler::Function, request::HTTP.Request, args...)
handler(request, args)
end
function handle(h::RequestHandlerFunction, request::HTTP.Request, state, args...)
h(request, state, args...)
end
function handle(handler::Function, request::HTTP.Request, state, args...)
handler(request, state, args)
end
function state_handler(base_handler, state)
return RequestHandlerFunction(
function(request::HTTP.Request, args...)
response = handle(base_handler, request, state, args...)
if response.status == 200
HTTP.defaultheader!(response, "Content-Type" => HTTP.sniff(response.body))
HTTP.defaultheader!(response, "Content-Length" => string(sizeof(response.body)))
end
return response
end
)
end
state_handler(base_handler::Function, state) = state_handler(RequestHandlerFunction(base_handler), state)
function check_mime(message::HTTP.Message, mime_list)
!HTTP.hasheader(message, "Content-Type") && return false
mime_type = split(HTTP.header(message, "Content-Type", ""), ';')[1]
return mime_type in mime_list
end
const default_compress_mimes = ["text/plain", "text/html", "text/css", "text/xml", "application/json", "application/javascript", "application/css"]
function compress_handler(base_handler; mime_types::Vector{String} = default_compress_mimes, compress_min_size = 500)
return RequestHandlerFunction(
function(request::HTTP.Request, args...)
response = handle(base_handler, request, args...)
if response.status == 200 && sizeof(response.body) >= compress_min_size &&
occursin("gzip", HTTP.header(request, "Accept-Encoding", "")) && check_mime(response, mime_types)
HTTP.setheader(response, "Content-Encoding" => "gzip")
response.body = transcode(CodecZlib.GzipCompressor, response.body)
HTTP.setheader(response, "Content-Length" => string(sizeof(response.body)))
end
return response
end
)
end
function compress_handler(base_handler::Function; mime_types::Vector{String} = default_compress_mimes, compress_min_size = 500)
return compress_handler(RequestHandlerFunction(base_handler), mime_types = mime_types, compress_min_size = compress_min_size)
end
function exception_handling_handler(ex_handling_func, base_handler)
return RequestHandlerFunction(
function(request::HTTP.Request, args...)
try
return handle(base_handler, request, args...)
catch e
return ex_handling_func(e)
end
end
)
end
exception_handling_handler(ex_handling_func, base_handler::Function) =
exception_handling_handler(ex_handling_func, RequestHandlerFunction(base_handler))
function request_logging_handler(base_handler; exclude = Regex[])
return RequestHandlerFunction(
function(request::HTTP.Request, args...)
response = handle(base_handler, request, args...)
return response
end
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4715 | abstract type AbstractRoute end
struct StaticRoute <: AbstractRoute
url ::String
StaticRoute(url) = new(url)
end
struct DynamicRoute{ST,VT} <: AbstractRoute
segments_length ::Int
static_segments ::ST
variables ::VT
tailed::Bool
DynamicRoute(segments_length, static_segments::ST, variables::VT, tailed) where {ST, VT} = new{ST, VT}(segments_length, static_segments, variables, tailed)
end
function DynamicRoute(url::AbstractString)
parts = split(url, '/', keepempty = false)
segments_vector = Tuple{Int, String}[]
variables = Dict{Symbol, Int}()
segments_count = 0
for part in parts
segments_count += 1
if length(part) > 2 && part[1] == '<' && part[end] == '>'
var_name = Symbol(part[2:end-1])
var_name in keys(variables) && ArgumentError("duplicated variable name $(var_name)")
variables[var_name] = segments_count
elseif part != "*"
push!(segments_vector,(segments_count, String(part)))
end
end
#Route is tailed if it url hasn't / at end and the last segment is dynamic
tailed = false
if url[end] != '/' && (isempty(segments_vector) || segments_vector[end][1] != length(parts))
tailed = true
end
return DynamicRoute(
segments_count,
(segments_vector...,),
(;variables...),
tailed
)
end
struct RouteHandler{RT <: AbstractRoute, FT <: Function}
route::RT
handler::FT
RouteHandler(route::RT, handler::FT) where {RT <: AbstractRoute, FT <: Function} = new{RT, FT}(route, handler)
end
function try_handle(route_handler::RouteHandler{StaticRoute, FT}, path::AbstractString, request::HTTP.Request, args...) where {FT}
route_handler.route.url != path && return nothing
return route_handler.handler(request, args...)
end
function args_tuple(route::DynamicRoute{ST, NamedTuple{Names, T}}, parts) where {ST, Names, T}
return NamedTuple{Names}(getindex.(Ref(parts), values(route.variables)))
end
function try_handle(route_handler::RouteHandler{<:DynamicRoute, FT}, path::AbstractString, request::HTTP.Request, args...) where {FT}
route = route_handler.route
parts_length = route.segments_length
limit = route.tailed ? parts_length : 0
parts = split(lstrip(path, '/'), '/', limit = limit, keepempty = false)
length(parts) != parts_length && return nothing
for segment in route.static_segments
parts[segment[1]] != segment[2] && return nothing
end
return route_handler.handler(request, args...;args_tuple(route, parts)...)
end
function _make_route(url::AbstractString)
parts = split(url, '/', keepempty = false)
for part in parts
if part == "*" || (length(part) > 2 && part[1] == '<' && part[end] == '>')
return DynamicRoute(url)
end
end
return StaticRoute(url)
end
struct Route{RH}
method ::Union{Nothing,String}
route_handler ::RH
Route(method, route_handler::RH) where {RH} = new{RH}(method, route_handler)
end
function Route(handler::Function, method, path::AbstractString)
return Route(
method,
RouteHandler(
_make_route(path),
handler
)
)
end
Route(handler::Function, path::AbstractString) = Route(handler, nothing, path)
function try_handle(route::Route, path::AbstractString, request::HTTP.Request, args...)
(!isnothing(route.method) && route.method != request.method) && return nothing
return try_handle(route.route_handler, path, request, args...)
end
@inline function _handle(route_tuple::Tuple, path::AbstractString, request::HTTP.Request, args...)
res = try_handle(route_tuple[1], path, request, args...)
return !isnothing(res) ?
res :
_handle(Base.tail(route_tuple), path, request, args...)
end
@inline function _handle(route_tuple::Tuple{}, path::AbstractString, request::HTTP.Request, args...)
return HTTP.Response(404)
end
function handle(route_tuple::Tuple, path::AbstractString, request::HTTP.Request, args...)::HTTP.Response
return _handle(route_tuple, path, request, args...)
end
mutable struct Router
routes::Tuple
Router() = new(())
Router(routes::Tuple{Vararg{Route}}) = new(routes)
end
function add_route!(router::Router, route::Route)
router.routes = (router.routes..., route)
end
add_route!(handler::Function, router::Router, method, url) = add_route!(router, Route(handler, method, url))
add_route!(handler::Function, router::Router, url) = add_route!(handler, router, nothing, url)
function handle(router::Router, request::HTTP.Request, args...)
path = HTTP.URI(request.target).path
return handle(router.routes, path, request, args...)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 5940 | dependency_id_string(id::NamedTuple) = sorted_json(id)
dependency_id_string(id::String) = sorted_json(id)
function dependency_string(dep::Dependency{Trait, String}) where {Trait}
return "$(dep.id).$(dep.property)"
end
function dependency_string(dep::Dependency{Trait, <:NamedTuple}) where {Trait}
id_str = replace(
sorted_json(dep.id),
"."=>"\\."
)
return "$(id_str).$(dep.property)"
end
function output_string(deps::CallbackDeps)
if deps.multi_out
return ".." *
join(dependency_string.(deps.output), "...") *
".."
end
return dependency_string(deps.output[1])
end
"""
function callback!(func::Union{Function, ClientsideFunction, String},
app::DashApp,
output::Union{Vector{Output}, Output},
input::Union{Vector{Input}, Input},
state::Union{Vector{State}, State} = []
)
Create a callback that updates the output by calling function `func`.
# Examples
```julia
app = dash() do
html_div() do
dcc_input(id="graphTitle", value="Let's Dance!", type = "text"),
dcc_input(id="graphTitle2", value="Let's Dance!", type = "text"),
html_div(id="outputID"),
html_div(id="outputID2")
end
end
callback!(app, [Output("outputID2", "children"), Output("outputID", "children")],
Input("graphTitle", "value"),
State("graphTitle", "type")
) do inputValue, stateType
return (stateType * "..." * inputValue, inputValue)
end
```
"""
function callback!(func::Union{Function, ClientsideFunction, String},
app::DashApp,
output::Union{Vector{<:Output}, Output},
input::Union{Vector{<:Input}, Input},
state::Union{Vector{<:State}, State} = State[];
prevent_initial_call = nothing
)
return _callback!(func, app, CallbackDeps(output, input, state), prevent_initial_call = prevent_initial_call)
end
"""
function callback!(func::Union{Function, ClientsideFunction, String},
app::DashApp,
deps...
)
Create a callback that updates the output by calling function `func`.
"Flat" version of `callback!` function, `deps` must be ``Output..., Input...[,State...]``
# Examples
```julia
app = dash() do
html_div() do
dcc_input(id="graphTitle", value="Let's Dance!", type = "text"),
dcc_input(id="graphTitle2", value="Let's Dance!", type = "text"),
html_div(id="outputID"),
html_div(id="outputID2")
end
end
callback!(app,
Output("outputID2", "children"),
Output("outputID", "children"),
Input("graphTitle", "value"),
State("graphTitle", "type")
) do inputValue, stateType
return (stateType * "..." * inputValue, inputValue)
end
```
"""
function callback!(func::Union{Function, ClientsideFunction, String},
app::DashApp,
deps::Dependency...;
prevent_initial_call = nothing
)
output = Output[]
input = Input[]
state = State[]
_process_callback_args(deps, (output, input, state))
return _callback!(func, app, CallbackDeps(output, input, state, length(output) > 1), prevent_initial_call = prevent_initial_call)
end
function _process_callback_args(args::Tuple{T, Vararg}, dest::Tuple{Vector{T}, Vararg}) where {T}
push!(dest[1], args[1])
_process_callback_args(Base.tail(args), dest)
end
function _process_callback_args(args::Tuple{}, dest::Tuple{Vector{T}, Vararg}) where {T}
end
function _process_callback_args(args::Tuple, dest::Tuple{Vector{T}, Vararg}) where {T}
_process_callback_args(args, Base.tail(dest))
end
function _process_callback_args(args::Tuple, dest::Tuple{})
error("The callback method must received first all Outputs, then all Inputs, then all States")
end
function _process_callback_args(args::Tuple{}, dest::Tuple{})
end
function _callback!(func::Union{Function, ClientsideFunction, String}, app::DashApp, deps::CallbackDeps; prevent_initial_call)
check_callback(func, app, deps)
out_symbol = Symbol(output_string(deps))
haskey(app.callbacks, out_symbol) && error("Multiple callbacks can not target the same output. Offending output: $(out_symbol)")
callback_func = make_callback_func!(app, func, deps)
push!(
app.callbacks,
out_symbol => Callback(
callback_func,
deps,
isnothing(prevent_initial_call) ?
get_setting(app, :prevent_initial_callbacks) :
prevent_initial_call
)
)
end
make_callback_func!(app::DashApp, func::Union{Function, ClientsideFunction}, deps::CallbackDeps) = func
function make_callback_func!(app::DashApp, func::String, deps::CallbackDeps)
first_output = first(deps.output)
namespace = replace("_dashprivate_$(first_output.id)", "\""=>"\\\"")
function_name = replace("$(first_output.property)", "\""=>"\\\"")
function_string = """
var clientside = window.dash_clientside = window.dash_clientside || {};
var ns = clientside["$namespace"] = clientside["$namespace"] || {};
ns["$function_name"] = $func;
"""
push!(app.inline_scripts, function_string)
return ClientsideFunction(namespace, function_name)
end
function check_callback(func, app::DashApp, deps::CallbackDeps)
isempty(deps.output) && error("The callback method requires that one or more properly formatted outputs are passed.")
isempty(deps.input) && error("The callback method requires that one or more properly formatted inputs are passed.")
args_count = length(deps.state) + length(deps.input)
check_callback_func(func, args_count)
end
function check_callback_func(func::Function, args_count)
!hasmethod(func, NTuple{args_count, Any}) && error("The arguments of the specified callback function do not align with the currently defined callback; please ensure that the arguments to `func` are properly defined.")
end
function check_callback_func(func, args_count)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 674 | struct DashConfig
external_stylesheets ::Vector{ExternalSrcType}
external_scripts ::Vector{ExternalSrcType}
url_base_pathname ::Union{String, Nothing} #TODO This looks unused
requests_pathname_prefix ::String
routes_pathname_prefix ::String
assets_folder ::String
assets_url_path ::String
assets_ignore ::String
serve_locally ::Bool
suppress_callback_exceptions ::Bool
prevent_initial_callbacks ::Bool
eager_loading ::Bool
meta_tags ::Vector{Dict{String, String}}
assets_external_path ::Union{String, Nothing}
include_assets_files ::Bool
show_undo_redo ::Bool
compress ::Bool
update_title ::String
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 13262 | const default_index = """<!DOCTYPE html>
<html>
<head>
{%metas%}
<title>{%title%}</title>
{%favicon%}
{%css%}
</head>
<body>
{%app_entry%}
<footer>
{%config%}
{%scripts%}
{%renderer%}
</footer>
</body>
</html>"""
"""
struct DashApp <: Any
Dash.jl's internal representation of a Dash application.
This `struct` is not intended to be called directly; developers should create their Dash application using the `dash` function instead.
"""
mutable struct DashApp
root_path ::String
is_interactive ::Bool
config ::DashConfig
index_string ::Union{String, Nothing}
title ::String
layout ::Union{Nothing, Component, Function}
devtools ::DevTools
callbacks ::Dict{Symbol, Callback}
inline_scripts ::Vector{String}
DashApp(root_path, is_interactive, config, index_string, title = "Dash") =
new(root_path, is_interactive, config, index_string, title, nothing, DevTools(dash_env(Bool, "debug", false)), Dict{Symbol, Callback}(), String[])
end
#only name, index_string and layout are available to set
function Base.setproperty!(app::DashApp, property::Symbol, value)
property == :index_string && return set_index_string!(app, value)
property == :layout && return set_layout!(app::DashApp, value)
property == :title && return set_title!(app::DashApp, value)
property in fieldnames(DashApp) && error("The property `$(property)` of `DashApp` is read-only")
error("The property `$(property)` of `DashApp` does not exist.")
end
function set_title!(app::DashApp, title)
setfield!(app, :title, title)
end
function set_layout!(app::DashApp, component::Union{Component,Function})
setfield!(app, :layout, component)
end
get_layout(app::DashApp) = app.layout
function check_index_string(index_string::AbstractString)
validate_index(
"index_string", index_string,
[
"{%app_entry%}"=>r"{%app_entry%}",
"{%config%}"=>r"{%config%}",
"{%scripts%}"=>r"{%scripts%}"
]
)
end
function set_index_string!(app::DashApp, index_string::AbstractString)
check_index_string(index_string)
setfield!(app, :index_string, index_string)
end
get_index_string(app::DashApp) = app.component.index_string
"""
Activate the dev tools, called by `run_server`.
If a parameter can be set by an environment variable, that is listed as:
env: `DASH_****`
Values provided here take precedence over environment variables.
Available dev_tools environment variables:
- `DASH_DEBUG`
- `DASH_UI`
- `DASH_PROPS_CHECK`
- `DASH_SERVE_DEV_BUNDLES`
- `DASH_HOT_RELOAD`
- `DASH_HOT_RELOAD_INTERVAL`
- `DASH_HOT_RELOAD_WATCH_INTERVAL`
- `DASH_HOT_RELOAD_MAX_RETRY`
- `DASH_SILENCE_ROUTES_LOGGING`
- `DASH_PRUNE_ERRORS`
# Arguments
- `debug::Bool` - Enable/disable all the dev tools unless overridden by the
arguments or environment variables. Default is ``true`` when
``enable_dev_tools`` is called directly, and ``false`` when called
via ``run_server``. env: ``DASH_DEBUG``.
- `dev_tools_ui::Bool` - Show the dev tools UI. env: ``DASH_UI``
- `dev_tools_props_check::Bool` - Validate the types and values of Dash
component props. env: ``DASH_PROPS_CHECK``
- `dev_tools_serve_dev_bundles::Bool` - Serve the dev bundles. Production
bundles do not necessarily include all the dev tools code.
env: ``DASH_SERVE_DEV_BUNDLES``
- `dev_tools_hot_reload::Bool` - Activate hot reloading when app, assets,
and component files change. env: ``DASH_HOT_RELOAD``
- `dev_tools_hot_reload_interval::Float64` - Interval in seconds for the
client to request the reload hash. Default 3.
env: ``DASH_HOT_RELOAD_INTERVAL``
- `dev_tools_hot_reload_watch_interval::Float64` - Interval in seconds for the
server to check asset and component folders for changes.
Default 0.5. env: ``DASH_HOT_RELOAD_WATCH_INTERVAL``
- `dev_tools_hot_reload_max_retry::Int` - Maximum number of failed reload
hash requests before failing and displaying a pop up. Default 8.
env: ``DASH_HOT_RELOAD_MAX_RETRY``
"""
function enable_dev_tools!(app::DashApp; debug = nothing,
dev_tools_ui = nothing,
dev_tools_props_check = nothing,
dev_tools_serve_dev_bundles = nothing,
dev_tools_hot_reload = nothing,
dev_tools_hot_reload_interval = nothing,
dev_tools_hot_reload_watch_interval = nothing,
dev_tools_hot_reload_max_retry = nothing,
dev_tools_silence_routes_logging = nothing,
dev_tools_prune_errors = nothing)
@env_default!(debug, Bool, true)
setfield!(app, :devtools, DevTools(
debug;
ui = dev_tools_ui,
props_check = dev_tools_props_check,
serve_dev_bundles = dev_tools_serve_dev_bundles,
hot_reload = dev_tools_hot_reload,
hot_reload_interval = dev_tools_hot_reload_interval,
hot_reload_watch_interval = dev_tools_hot_reload_watch_interval,
hot_reload_max_retry = dev_tools_hot_reload_max_retry,
silence_routes_logging = dev_tools_silence_routes_logging,
prune_errors = dev_tools_prune_errors
))
end
get_devsetting(app::DashApp, name::Symbol) = getproperty(app.devtools, name)
get_setting(app::DashApp, name::Symbol) = getproperty(app.config, name)
get_assets_path(app::DashApp) = joinpath(app.root_path, get_setting(app, :assets_folder))
"""
dash(;
external_stylesheets,
external_scripts,
url_base_pathname,
requests_pathname_prefix,
routes_pathname_prefix,
assets_folder,
assets_url_path,
assets_ignore,
serve_locally,
suppress_callback_exceptions,
eager_loading ,
meta_tags,
index_string,
assets_external_path,
include_assets_files,
show_undo_redo,
compress,
update_title
)
Dash is a framework for building analytical web applications. No JavaScript required.
If a parameter can be set by an environment variable, that is listed as:
env: `DASH_****`
Values provided here take precedence over environment variables.
# Arguments
- `assets_folder::String` - a path, relative to the current working directory,
for extra files to be used in the browser. Default `'assets'`. All .js and .css files will be loaded immediately unless excluded by `assets_ignore`, and other files such as images will be served if requested.
- `assets_url_path::String` - The local urls for assets will be:
``requests_pathname_prefix * assets_url_path * "/" * asset_path``
where ``asset_path`` is the path to a file inside ``assets_folder``.
Default ``'assets'`.
- `assets_ignore::String` - [EXPERIMENTAL] A regex, as a string to pass to ``Regex``, for
assets to omit from immediate loading. Ignored files will still be
served if specifically requested. You cannot use this to prevent access
to sensitive files.
:type assets_ignore: string
- `assets_external_path::String` - [EXPERIMENTAL] an absolute URL from which to load assets.
Use with ``serve_locally=false``. Dash can still find js and css to
automatically load if you also keep local copies in your assets
folder that Dash can index, but external serving can improve
performance and reduce load on the Dash server.
env: `DASH_ASSETS_EXTERNAL_PATH`
- `include_assets_files::Bool` - [EXPERIMENTAL] Default ``true``, set to ``false`` to prevent
immediate loading of any assets. Assets will still be served if
specifically requested. You cannot use this to prevent access
to sensitive files.
env: `DASH_INCLUDE_ASSETS_FILES`
- `url_base_pathname::String`: A local URL prefix to use app-wide.
Default ``nothing``. Both `requests_pathname_prefix` and
`routes_pathname_prefix` default to `url_base_pathname`.
env: `DASH_URL_BASE_PATHNAME`
- `requests_pathname_prefix::String`: A local URL prefix for file requests.
Defaults to `url_base_pathname`, and must end with
`routes_pathname_prefix`
env: `DASH_REQUESTS_PATHNAME_PREFIX`
- `routes_pathname_prefix::String`: A local URL prefix for JSON requests.
Defaults to ``url_base_pathname``, and must start and end
with ``'/'``.
env: `DASH_ROUTES_PATHNAME_PREFIX`
- `serve_locally`: [EXPERIMENTAL] If `true` (default), assets and dependencies (Dash and Component js and css) will be served from local URLs. If `false` Dash will use CDN links where available.
(Dash and Component js and css) will be served from local URLs.
If ``false`` we will use CDN links where available.
- `meta_tags::Vector{Dict{String, String}}`: html <meta> tags to be added to the index page.
Each dict should have the attributes and values for one tag, eg:
``Dict("name"=>"description", "content" => "My App")``
- `index_string::String`: Override the standard Dash index page.
Must contain the correct insertion markers to interpolate various
content into it depending on the app config and components used.
See https://dash.plotly.com/external-resources for details.
- `external_scripts::Vector`: Additional JS files to load with the page.
Each entry can be a String (the URL) or a Dict{String, String} with ``src`` (the URL)
and optionally other ``<script>`` tag attributes such as ``integrity``
and ``crossorigin``.
- `external_stylesheets::Vector`: Additional CSS files to load with the page.
Each entry can be a String (the URL) or a Dict{String, String} with ``href`` (the URL)
and optionally other ``<link>`` tag attributes such as ``rel``,
``integrity`` and ``crossorigin``.
- `suppress_callback_exceptions::Bool`: Default ``false``: check callbacks to
ensure referenced IDs exist and props are valid. Set to ``true``
if your layout is dynamic, to bypass these checks.
env: `DASH_SUPPRESS_CALLBACK_EXCEPTIONS`
- `prevent_initial_callbacks::Bool`: Default ``false``: Sets the default value
of ``prevent_initial_call`` for all callbacks added to the app.
Normally all callbacks are fired when the associated outputs are first
added to the page. You can disable this for individual callbacks by
setting ``prevent_initial_call`` in their definitions, or set it
``true`` here in which case you must explicitly set it ``false`` for
those callbacks you wish to have an initial call. This setting has no
effect on triggering callbacks when their inputs change later on.
- `show_undo_redo::Bool`: Default ``false``, set to ``true`` to enable undo
and redo buttons for stepping through the history of the app state.
- `compress::Bool`: Default ``true``, controls whether gzip is used to compress
files and data served by HTTP.jl when supported by the client. Set to
``false`` to disable compression completely.
- `update_title::String`: Default ``Updating...``. Configures the document.title
(the text that appears in a browser tab) text when a callback is being run.
Set to '' if you don't want the document.title to change or if you
want to control the document.title through a separate component or
clientside callback.
"""
function dash(;
external_stylesheets = ExternalSrcType[],
external_scripts = ExternalSrcType[],
url_base_pathname = dash_env("url_base_pathname"),
requests_pathname_prefix = dash_env("requests_pathname_prefix"),
routes_pathname_prefix = dash_env("routes_pathname_prefix"),
assets_folder = "assets",
assets_url_path = "assets",
assets_ignore = "",
serve_locally = true,
suppress_callback_exceptions = dash_env(Bool, "suppress_callback_exceptions", false),
prevent_initial_callbacks = false,
eager_loading = false,
meta_tags = Dict{Symbol, String}[],
index_string = default_index,
assets_external_path = dash_env("assets_external_path"),
include_assets_files = dash_env(Bool, "include_assets_files", true),
show_undo_redo = false,
compress = true,
update_title = "Updating..."
)
check_index_string(index_string)
config = DashConfig(
external_stylesheets,
external_scripts,
pathname_configs(
url_base_pathname,
requests_pathname_prefix,
routes_pathname_prefix
)...,
assets_folder,
lstrip(assets_url_path, '/'),
assets_ignore,
serve_locally,
suppress_callback_exceptions,
prevent_initial_callbacks,
eager_loading,
meta_tags,
assets_external_path,
include_assets_files,
show_undo_redo,
compress,
update_title
)
result = DashApp(app_root_path(), isinteractive(), config, index_string)
return result
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 1412 | struct DevTools
ui::Bool
props_check::Bool
serve_dev_bundles::Bool
hot_reload::Bool
hot_reload_interval::Float64
hot_reload_watch_interval::Float64
hot_reload_max_retry::Int
silence_routes_logging::Bool
prune_errors::Bool
function DevTools(debug = false; ui = nothing,
props_check = nothing,
serve_dev_bundles = nothing,
hot_reload = nothing,
hot_reload_interval = nothing,
hot_reload_watch_interval = nothing,
hot_reload_max_retry = nothing,
silence_routes_logging = nothing,
prune_errors = nothing)
@env_default!(ui, Bool, debug)
@env_default!(props_check, Bool, debug)
@env_default!(serve_dev_bundles, Bool, debug)
@env_default!(hot_reload, Bool, debug)
@env_default!(silence_routes_logging, Bool, debug)
@env_default!(prune_errors, Bool, debug)
@env_default!(hot_reload_interval, Float64, 3.)
@env_default!(hot_reload_watch_interval, Float64, 0.5)
@env_default!(hot_reload_max_retry, Int, 8)
return new(
ui,
props_check,
serve_dev_bundles,
hot_reload,
hot_reload_interval,
hot_reload_watch_interval,
hot_reload_max_retry,
silence_routes_logging,
prune_errors
)
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4240 | struct Wildcard
type ::Symbol
end
JSON3.StructTypes.StructType(::Type{Wildcard}) = JSON3.RawType()
JSON3.rawbytes(wild::Wildcard) = string("[\"", wild.type, "\"]")
const MATCH = Wildcard(:MATCH)
const ALL = Wildcard(:ALL)
const ALLSMALLER = Wildcard(:ALLSMALLER)
is_wild(a::T) where {T<:Wildcard} = true
is_wild(a) = false
struct TraitInput end
struct TraitOutput end
struct TraitState end
const IdTypes = Union{String,NamedTuple}
struct Dependency{Trait, IdT<:IdTypes}
id ::IdT
property ::String
Dependency{Trait}(id::T, property::String) where {Trait, T} = new{Trait, T}(id, property)
end
dep_id_string(dep::Dependency{Trait, String}) where {Trait} = dep.id
dep_id_string(dep::Dependency{Trait, <:NamedTuple}) where {Trait} = sorted_json(dep.id)
dependency_tuple(dep::Dependency) = (id = dep_id_string(dep), property = dep.property)
const Input = Dependency{TraitInput}
const State = Dependency{TraitState}
const Output = Dependency{TraitOutput}
JSON3.StructTypes.StructType(::Type{<:Dependency}) = JSON3.StructTypes.Struct()
"""
Base.==(a::Dependency, b::Dependency)
We use "==" to denote two deps that refer to the same prop on
the same component. In the case of wildcard deps, this means
the same prop on *at least one* of the same components.
"""
function Base.:(==)(a::Dependency, b::Dependency)
(a.property == b.property) && is_id_matches(a, b)
end
function Base.isequal(a::Dependency, b::Dependency)
return a == b
end
#The regular unique works using Set and will not work correctly, because in our case "equal" dependencies have different hashes
#This implementation is not algorithmically efficient (O(n^2)), but it is quite suitable for checking the uniqueness of outputs
function check_unique(deps::Vector{<:Dependency})
tmp = Dependency[]
for dep in deps
dep in tmp && return false
push!(tmp, dep)
end
return true
end
is_id_matches(a::Dependency{Trait1, String}, b::Dependency{Trait2, String}) where {Trait1, Trait2} = a.id == b.id
is_id_matches(a::Dependency{Trait1, String}, b::Dependency{Trait2, <:NamedTuple}) where {Trait1, Trait2} = false
is_id_matches(a::Dependency{Trait1, <:NamedTuple}, b::Dependency{Trait2, String}) where {Trait1, Trait2} = false
function is_id_matches(a::Dependency{Trait1, <:NamedTuple}, b::Dependency{Trait2, <:NamedTuple}) where {Trait1, Trait2}
(Set(keys(a.id)) != Set(keys(b.id))) && return false
for key in keys(a.id)
a_value = a.id[key]
b_value = b.id[key]
(a_value == b_value) && continue
a_wild = is_wild(a_value)
b_wild = is_wild(b_value)
(!a_wild && !b_wild) && return false #Both not wild
!(a_wild && b_wild) && continue #One wild, one not
((a_value == ALL) || (b_value == ALL)) && continue #at least one is ALL
((a_value == MATCH) || (b_value == MATCH)) && return false #one is MATCH and one is ALLSMALLER
end
return true
end
struct CallbackDeps
output ::Vector{<:Output}
input ::Vector{<:Input}
state ::Vector{<:State}
multi_out::Bool
CallbackDeps(output, input, state, multi_out) = new(output, input, state, multi_out)
CallbackDeps(output::Output, input, state = State[]) = new(output, input, state, false)
CallbackDeps(output::Vector{<:Output}, input, state = State[]) = new(output, input, state, true)
end
Base.convert(::Type{Vector{<:Output}}, v::Output{<:IdTypes}) = [v]
Base.convert(::Type{Vector{<:Input}}, v::Input{<:IdTypes}) = [v]
Base.convert(::Type{Vector{<:State}}, v::State{<:IdTypes}) = [v]
struct ClientsideFunction
namespace ::String
function_name ::String
end
JSON3.StructTypes.StructType(::Type{ClientsideFunction}) = JSON3.StructTypes.Struct()
struct Callback
func ::Union{Function, ClientsideFunction}
dependencies ::CallbackDeps
prevent_initial_call ::Bool
end
is_multi_out(cb::Callback) = cb.dependencies.multi_out == true
get_output(cb::Callback) = cb.dependencies.output
get_output(cb::Callback, i) = cb.dependencies.output[i]
first_output(cb::Callback) = first(cb.dependencies.output)
struct PreventUpdate <: Exception
end
struct NoUpdate
end
no_update() = NoUpdate()
const ExternalSrcType = Union{String, Dict{String, String}}
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 49 | include("express.jl")
include("table_format.jl")
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 3032 | import Base64
export dcc_send_file, dcc_send_string, dcc_send_bytes
"""
dbc_send_file(path::AbstractString, filename = nothing; type = nothing)
Convert a file into the format expected by the Download component.
# Arguments
- `path` - path to the file to be sent
- `filename` - name of the file, if not provided the original filename is used
- `type` - type of the file (optional, passed to Blob in the javascript layer)
"""
function dcc_send_file(path, filename = nothing; type = nothing)
filename = isnothing(filename) ? basename(path) : filename
return dcc_send_bytes(read(path), filename, type = type)
end
"""
dcc_send_bytes(src::AbstractVector{UInt8}, filename; type = nothing)
dcc_send_bytes(writer::Function, data, filename; type = nothing)
Convert vector of bytes into the format expected by the Download component.
`writer` function must have signature `(io::IO, data)`
# Examples
Sending binary content
```julia
file_data = read("path/to/file")
callback!(app, Output("download", "data"), Input("download-btn", "n_clicks"), prevent_initial_call = true) do n_clicks
return dcc_send_bytes(file_data, "filename.fl")
end
```
Sending `DataFrame` in `Arrow` format
```julia
using DataFrames, Arrow
...
df = DataFrame(...)
callback!(app, Output("download", "data"), Input("download-btn", "n_clicks"), prevent_initial_call = true) do n_clicks
return dcc_send_bytes(Arrow.write, df, "df.arr")
end
```
"""
function dcc_send_bytes(src::AbstractVector{UInt8}, filename; type = nothing)
return Dict(
:content => Base64.base64encode(src),
:filename => filename,
:type => type,
:base64 => true
)
end
function dcc_send_bytes(writer::Function, data, filename; type = nothing)
io = IOBuffer()
writer(io, data)
return dcc_send_bytes(take!(io), filename, type = type)
end
"""
dcc_send_data(src::AbstractString, filename; type = nothing)
dcc_send_data(writer::Function, data, filename; type = nothing)
Convert string into the format expected by the Download component.
`writer` function must have signature `(io::IO, data)`
# Examples
Sending string content
```julia
text_data = "this is the test"
callback!(app, Output("download", "data"), Input("download-btn", "n_clicks"), prevent_initial_call = true) do n_clicks
return dcc_send_string(text_data, "text.txt")
end
```
Sending `DataFrame` in `CSV` format
```julia
using DataFrames, CSV
...
df = DataFrame(...)
callback!(app, Output("download", "data"), Input("download-btn", "n_clicks"), prevent_initial_call = true) do n_clicks
return dcc_send_string(CSV.write, df, "df.csv")
end
```
"""
function dcc_send_string(src::AbstractString, filename; type = nothing)
return Dict(
:content => src,
:filename => filename,
:type => type,
:base64 => false
)
end
function dcc_send_string(writer::Function, data, filename; type = nothing)
io = IOBuffer()
writer(io, data)
return dcc_send_string(String(take!(io)), filename, type = type)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 9790 | module TableFormat
using JSON3
export Format, Align, Group, Padding, Prefix, Scheme, Sign, DSymbol, Trim
struct NamedValue{Name, T}
value::T
NamedValue{Name}(value::T) where {Name, T} = new{Name, T}(value)
end
struct TupleWithNamedValues{Name, Keys}
values::NamedTuple
TupleWithNamedValues{Name, Keys}(values) where {Name, Keys} = new{Name, Keys}(values)
end
Base.getproperty(tp::TupleWithNamedValues, prop::Symbol) = getfield(tp, :values)[prop]
function tuple_with_named_values(name::Symbol, t::NamedTuple{Names}) where {Names}
return TupleWithNamedValues{name, Names}((;zip(Names, NamedValue{name}.(values(t)))...))
end
function possible_values(::TupleWithNamedValues{Name, Keys}) where {Name, Keys}
return join(string.(string(Name), ".", string.(Keys)), ", ")
end
const Align = tuple_with_named_values(:Align, (
default = "",
left = "<",
right = ">",
center = "^",
right_sign = "="
))
const Group = tuple_with_named_values(:Group, (
no = "",
yes = ","
))
const Padding = tuple_with_named_values(:Padding, (no = "", yes = 0))
const Prefix = tuple_with_named_values(:Prefix, (
yocto = 10 ^ -24,
zepto = 10 ^ -21,
atto = 10 ^ -18,
femto = 10 ^ -15,
pico = 10 ^ -12,
nano = 10 ^ -9,
micro = 10 ^ -6,
milli = 10 ^ -3,
none = nothing,
kilo = 10 ^ 3,
mega = 10 ^ 6,
giga = 10 ^ 9,
tera = 10 ^ 12,
peta = 10 ^ 15,
exa = 10 ^ 18,
zetta = 10 ^ 21,
yotta = 10 ^ 24
))
const Scheme = tuple_with_named_values(:Scheme, (
default = "",
decimal = "r",
decimal_integer = "d",
decimal_or_exponent = "g",
decimal_si_prefix = "s",
exponent = "e",
fixed = "f",
percentage = "%",
percentage_rounded = "p",
binary = "b",
octal = "o",
lower_case_hex = "x",
upper_case_hex = "X",
unicode = "c",
))
const Sign = tuple_with_named_values(:Sign, (
default = "",
negative = "-",
positive = "+",
parantheses = "(",
space = " "
))
const DSymbol = tuple_with_named_values(:DSymbol, (
no = "",
yes = "\$",
binary = "#b",
octal = "#o",
hex = "#x"
))
const Trim = tuple_with_named_values(:Trim, (
no = "",
yes = "~"
))
mutable struct Format
locale
nully
prefix
specifier
function Format(;
align = Align.default,
fill = nothing,
group = Group.no,
padding = Padding.no,
padding_width = nothing,
precision = nothing,
scheme = Scheme.default,
sign = Sign.default,
symbol = DSymbol.no,
trim = Trim.no,
symbol_prefix = nothing,
symbol_suffix = nothing,
decimal_delimiter = nothing,
group_delimiter = nothing,
groups = nothing,
nully = "",
si_prefix = Prefix.none
)
result = new(
Dict(),
"",
Prefix.none.value,
Dict{Symbol, Any}()
)
align!(result, align)
fill!(result, fill)
group!(result, group)
padding!(result, padding)
padding_width!(result, padding_width)
precision!(result, precision)
scheme!(result, scheme)
sign!(result, sign)
symbol!(result, symbol)
trim!(result, trim)
!isnothing(symbol_prefix) && symbol_prefix!(result, symbol_prefix)
!isnothing(symbol_suffix) && symbol_suffix!(result, symbol_suffix)
!isnothing(decimal_delimiter) && decimal_delimiter!(result, decimal_delimiter)
!isnothing(group_delimiter) && group_delimiter!(result, group_delimiter)
!isnothing(groups) && groups!(result, groups)
!isnothing(nully) && nully!(result, nully)
!isnothing(si_prefix) && si_prefix!(result, si_prefix)
return result
end
end
function check_named_value(t::TupleWithNamedValues{Name, Keys}, v::NamedValue{ValueName}) where {Name, ValueName, Keys}
Name != ValueName && throw(ArgumentError("expected value to be one of $(possible_values(t))"))
return true
end
function check_named_value(t::TupleWithNamedValues{Name, Keys}, v) where {Name, Keys}
throw(ArgumentError("expected value to be one of $(possible_values(t))"))
end
check_char_value(v::Char) = string(v)
function check_char_value(v::String)
length(v) > 1 && throw(ArgumentError("expected char or string of length one"))
return v
end
function check_char_value(v)
throw(ArgumentError("expected char or string of length one"))
end
function check_int_value(v::Integer)
v < 0 && throw(ArgumentError("expected value to be non-negative"))
end
function check_int_value(v)
throw(ArgumentError("expected value to be Integer"))
end
function align!(f::Format, value)
check_named_value(Align, value)
f.specifier[:align] = value.value
end
function fill!(f::Format, value)
if isnothing(value)
f.specifier[:fill] = ""
return
end
v = check_char_value(value)
f.specifier[:fill] = v
end
function group!(f::Format, value)
if value isa Bool
value = value ? Group.yes : Group.no
end
check_named_value(Group, value)
f.specifier[:group] = value.value
end
function padding!(f::Format, value)
if value isa Bool
value = value ? Padding.yes : Padding.no
end
check_named_value(Padding, value)
f.specifier[:padding] = value.value
end
function padding_width!(f::Format, value)
if isnothing(value)
f.specifier[:width] = ""
else
check_int_value(value)
f.specifier[:width] = value
end
end
function precision!(f::Format, value)
if isnothing(value)
f.specifier[:precision] = ""
else
check_int_value(value)
f.specifier[:precision] = ".$value"
end
end
function scheme!(f::Format, value)
check_named_value(Scheme, value)
f.specifier[:type] = value.value
end
function sign!(f::Format, value)
check_named_value(Sign, value)
f.specifier[:sign] = value.value
end
function symbol!(f::Format, value)
check_named_value(DSymbol, value)
f.specifier[:symbol] = value.value
end
function trim!(f::Format, value)
if value isa Bool
value = value ? Trim.yes : Trim.no
end
check_named_value(Trim, value)
f.specifier[:trim] = value.value
end
# Locale
function symbol_prefix!(f::Format, value::AbstractString)
if !haskey(f.locale, :symbol)
f.locale[:symbol] = [value, ""]
else
f.locale[:symbol][1] = value
end
end
function symbol_suffix!(f::Format, value::AbstractString)
if !haskey(f.locale, :symbol)
f.locale[:symbol] = ["", value]
else
f.locale[:symbol][2] = value
end
end
function decimal_delimiter!(f::Format, value)
v = check_char_value(value)
f.locale[:decimal] = v
end
function group_delimiter!(f::Format, value)
v = check_char_value(value)
f.locale[:group] = v
end
function groups!(f::Format, value::Union{Vector{<:Integer}, <:Integer})
groups = value isa Integer ? [value] : value
isempty(groups) && throw(ArgumentError("groups cannot be empty"))
for g in groups
g < 0 && throw(ArgumentError("group entry must be non-negative integer"))
end
f.locale[:grouping] = groups
end
# Nully
function nully!(f::Format, value)
f.nully = value
end
# Prefix
function si_prefix!(f::Format, value)
check_named_value(Prefix, value)
f.prefix = value.value
end
JSON3.StructTypes.StructType(::Type{Format}) = JSON3.RawType()
function JSON3.rawbytes(f::Format)
aligned = f.specifier[:align] != Align.default.value
fill = aligned ? f.specifier[:fill] : ""
spec_io = IOBuffer()
print(spec_io,
aligned ? f.specifier[:fill] : "",
f.specifier[:align],
f.specifier[:sign],
f.specifier[:symbol],
f.specifier[:padding],
f.specifier[:width],
f.specifier[:group],
f.specifier[:precision],
f.specifier[:trim],
f.specifier[:type]
)
return JSON3.write(
(
locale = f.locale,
nully = f.nully,
prefix = f.prefix,
specifier = String(take!(spec_io))
)
)
end
money(decimals, sign = Sign.default) = Format(
group=Group.yes,
precision=decimals,
scheme=Scheme.fixed,
sign=sign,
symbol=Symbol.yes
)
function percentage(decimals, rounded::Bool=false)
scheme = rounded ? Scheme.percentage_rounded : Scheme.percentage
return Format(scheme = scheme, precision = decimals)
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 1835 | using .Contexts
const CallbackContextItems = Union{Nothing, Vector{NamedTuple}}
const TriggeredParam = NamedTuple{(:prop_id, :value)}
mutable struct CallbackContext
response::HTTP.Response
inputs::Dict{String, Any}
states::Dict{String, Any}
outputs_list::Vector{Any}
inputs_list::Vector{Any}
states_list::Vector{Any}
triggered::Vector{TriggeredParam}
function CallbackContext(response, outputs_list, inputs_list, states_list, changed_props)
input_values = inputs_list_to_dict(inputs_list)
state_values = inputs_list_to_dict(states_list)
triggered = TriggeredParam[(prop_id = id, value = input_values[id]) for id in changed_props]
return new(response, input_values, state_values, outputs_list, inputs_list, states_list, triggered)
end
end
const _callback_context_storage = TaskContextStorage()
function with_callback_context(f, context::CallbackContext)
return with_context(f, _callback_context_storage, context)
end
"""
callback_context()::CallbackContext
Get context of current callback, available only inside callback processing function
"""
function callback_context()
!has_context(_callback_context_storage) && error("callback_context() is only available from a callback processing function")
return get_context(_callback_context_storage)
end
function inputs_list_to_dict(list::AbstractVector)
result = Dict{String, Any}()
_item_to_dict!.(Ref(result), list)
return result
end
dep_id_string(id::AbstractDict) = sorted_json(id)
dep_id_string(id::AbstractString) = String(id)
function _item_to_dict!(target::Dict{String, Any}, item)
target["$(dep_id_string(item.id)).$(item.property)"] = get(item, :value, nothing)
end
_item_to_dict!(target::Dict{String, Any}, item::AbstractVector) = _item_to_dict!.(Ref(target), item)
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4762 | function resource_url(app::DashApp, resource::AppRelativeResource)
prefix = get_setting(app, :requests_pathname_prefix)
return string(prefix,
"_dash-component-suites/",
resource.namespace,
"/",
build_fingerprint(resource.relative_path, resource.version, resource.ts)
)
end
#TODO move to somewhere
function asset_path(app::DashApp, path::AbstractString)
return string(
get_setting(app, :requests_pathname_prefix),
lstrip(get_setting(app, :assets_url_path), '/'),
"/",
path
)
end
resource_url(app::DashApp, resource::AppExternalResource) = resource.url
function resource_url(app::DashApp, resource::AppAssetResource)
return string(
asset_path(app, resource.path),
"?m=", resource.ts
)
end
make_css_tag(url::String) = """<link rel="stylesheet" href="$(url)">"""
make_css_tag(app::DashApp, resource::AppCustomResource) = format_tag("link", resource.params, opened = true)
make_css_tag(app::DashApp, resource::AppResource) = make_css_tag(resource_url(app, resource))
make_script_tag(url::String) = """<script src="$(url)"></script>"""
make_script_tag(app::DashApp, resource::AppCustomResource) = format_tag("script", resource.params)
make_script_tag(app::DashApp, resource::AppResource) = make_script_tag(resource_url(app, resource))
make_inline_script_tag(script::String) = """<script>$(script)</script>"""
function metas_html(app::DashApp)
meta_tags = app.config.meta_tags
has_ie_compat = any(meta_tags) do tag
get(tag, "http-equiv", "") == "X-UA-Compatible"
end
has_charset = any(tag -> haskey(tag, "charset"), meta_tags)
result = String[]
!has_ie_compat && push!(result, "<meta http-equiv=\"X-UA-Compatible\" content=\"IE=edge\">")
!has_charset && push!(result, "<meta charset=\"UTF-8\">")
append!(result, format_tag.("meta", meta_tags, opened = true))
return join(result, "\n ")
end
function css_html(app::DashApp, resources::ApplicationResources)
join(
make_css_tag.(Ref(app), resources.css), "\n "
)
end
function scripts_html(app::DashApp, resources::ApplicationResources)
include_string = join(
vcat(
make_script_tag.(Ref(app), resources.js),
make_inline_script_tag.(app.inline_scripts)
),
"\n "
)
end
app_entry_html() = """
<div id="react-entry-point">
<div class="_dash-loading">
Loading...
</div>
</div>
"""
function config_html(app::DashApp)
config = Dict{Symbol, Any}(
:url_base_pathname => get_setting(app, :url_base_pathname),
:requests_pathname_prefix => get_setting(app, :requests_pathname_prefix),
:ui => get_devsetting(app, :ui),
:props_check => get_devsetting(app, :props_check),
:show_undo_redo => get_setting(app, :show_undo_redo),
:suppress_callback_exceptions => get_setting(app, :suppress_callback_exceptions),
:update_title => get_setting(app, :update_title)
)
if get_devsetting(app, :hot_reload)
config[:hot_reload] = (
interval = trunc(Int, get_devsetting(app, :hot_reload_interval) * 1000),
max_retry = get_devsetting(app, :hot_reload_max_retry)
)
end
return """<script id="_dash-config" type="application/json">$(JSON3.write(config))</script>"""
end
renderer_html() = """<script id="_dash-renderer" type="application/javascript">var renderer = new DashRenderer();</script>"""
function favicon_html(app::DashApp, resources::ApplicationResources)
favicon_url = if !isnothing(resources.favicon)
asset_path(app, resources.favicon.path)
else
"$(get_setting(app, :requests_pathname_prefix))_favicon.ico?v=$(_metadata.dash["version"])"
end
return format_tag(
"link",
Dict(
"rel" => "icon",
"type" => "image/x-icon",
"href" => favicon_url
),
opened = true
)
end
function index_page(app::DashApp, resources::ApplicationResources)
result = interpolate_string(app.index_string,
metas = metas_html(app),
title = app.title,
favicon = favicon_html(app, resources),
css = css_html(app, resources),
app_entry = app_entry_html(),
config = config_html(app),
scripts = scripts_html(app, resources),
renderer = renderer_html()
)
validate_index("index", result,
[
"#react-entry-point" => r"id=\"react-entry-point\"",
"#_dash_config" => r"id=\"_dash-config\"",
"dash-renderer" => r"src=\"[^\"]*dash[-_]renderer[^\"]*\"",
"new DashRenderer" => r"id=\"_dash-renderer",
]
)
return result
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 5784 | include("processors/assets.jl")
include("processors/callback.jl")
include("processors/dependecies.jl")
include("processors/index.jl")
include("processors/layout.jl")
include("processors/reload_hash.jl")
include("processors/resource.jl")
include("processors/default_favicon.jl")
function start_reload_poll(state::HandlerState)
folders = Set{String}()
push!(folders, get_assets_path(state.app))
push!(folders, state.registry.dash_renderer.path)
for pkg in values(state.registry.components)
push!(folders, pkg.path)
end
initial_watched = init_watched(folders)
state.reload.task = @async poll_folders(folders, initial_watched; interval = get_devsetting(state.app, :hot_reload_watch_interval)) do file, ts, deleted
state.reload.hard = true
state.reload.hash = generate_hash()
assets_path = get_assets_path(state.app)
if startswith(file, assets_path)
state.cache.need_recache = true
rel_path = lstrip(
replace(relpath(file, assets_path), '\\'=>'/'),
'/'
)
push!(state.reload.changed_assets,
ChangedAsset(
asset_path(state.app, rel_path),
trunc(Int, ts),
endswith(file, "css")
)
)
end
end
end
validate_layout(layout::Component) = validate(layout)
validate_layout(layout::Function) = validate_layout(layout())
validate_layout(layout) = error("The layout must be a component, tree of components, or a function which returns a component.")
function stack_from_callback(full_stack; prune_errors)
!prune_errors && return full_stack
result = Base.StackTraces.StackFrame[]
it = iterate(full_stack)
while !isnothing(it) && it[1].func != :process_callback_call
push!(result, it[1])
it = iterate(full_stack, it[2])
end
return result
end
function exception_handling(ex; prune_errors)
st = stack_from_callback(stacktrace(catch_backtrace()), prune_errors = prune_errors)
@error "error handling request" exception = (ex, st)
return HTTP.Response(500)
end
function debug_exception_handling(ex; prune_errors)
response = HTTP.Response(500, ["Content-Type" => "text/html"])
io = IOBuffer()
write(io,
"<!DOCTYPE HTML><html>",
"<head>",
"<style type=\"text/css\">",
"""
div.debugger { text-align: left; padding: 12px; margin: auto;
background-color: white; }
h1 { font-size: 36px; margin: 0 0 0.3em 0; }
div.detail { cursor: pointer; }
div.detail p { margin: 0 0 8px 13px; font-size: 14px; white-space: pre-wrap;
font-family: monospace; }
div.plain { border: 1px solid #ddd; margin: 0 0 1em 0; padding: 10px; }
div.plain p { margin: 0; }
div.plain textarea,
div.plain pre { margin: 10px 0 0 0; padding: 4px;
background-color: #E8EFF0; border: 1px solid #D3E7E9; }
div.plain textarea { width: 99%; height: 300px; }
""",
"</style>",
"</head>",
"<body style=\"background-color: #fff\">",
"<div class=\"debugger\">",
"<div class=\"detail\">",
"<p class=\"errormsg\">")
showerror(io, ex)
write(io,
"</p>",
"</div>",
"</div>",
"<div class=\"plain\">",
"<textarea cols=\"50\" rows=\"10\" name=\"code\" readonly>"
)
st = stack_from_callback(stacktrace(catch_backtrace()), prune_errors = prune_errors)
showerror(io, ex)
write(io, "\n")
Base.show_backtrace(io, st)
write(io, "</textarea>")
write(io, "</body></html>")
response.body = take!(io)
@error "error handling request" exception = (ex, st)
return response
end
#For test purposes, with the ability to pass a custom registry
function make_handler(app::DashApp, registry::ResourcesRegistry; check_layout = false)
state = HandlerState(app, registry)
prefix = get_setting(app, :routes_pathname_prefix)
assets_url_path = get_setting(app, :assets_url_path)
check_layout && validate_layout(get_layout(app))
router = Router()
add_route!(process_layout, router, "$(prefix)_dash-layout")
add_route!(process_dependencies, router, "$(prefix)_dash-dependencies")
add_route!(process_reload_hash, router, "$(prefix)_reload-hash")
add_route!(process_default_favicon, router, "$(prefix)_favicon.ico")
add_route!(process_resource, router, "$(prefix)_dash-component-suites/<namespace>/<path>")
add_route!(process_assets, router, "$(prefix)$(assets_url_path)/<file_path>")
add_route!(process_callback, router, "POST", "$(prefix)_dash-update-component")
add_route!(process_index, router, "$prefix/*")
add_route!(process_index, router, "$prefix")
handler = state_handler(router, state)
if get_devsetting(app, :ui)
handler = exception_handling_handler(handler) do ex
debug_exception_handling(ex, prune_errors = get_devsetting(app, :prune_errors))
end
else
handler = exception_handling_handler(handler) do ex
exception_handling(ex, prune_errors = get_devsetting(app, :prune_errors))
end
end
get_setting(app, :compress) && (handler = compress_handler(handler))
compile_request = HTTP.Request("GET", prefix)
HTTP.setheader(compile_request, "Accept-Encoding" => "gzip")
handle(handler, compile_request) #For handler precompilation
get_devsetting(app, :hot_reload) && start_reload_poll(state)
return handler
end
function make_handler(app::DashApp)
return make_handler(app, main_registry(), check_layout = true)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 216 | function mime_by_path(path)
endswith(path, ".js") && return "application/javascript"
endswith(path, ".css") && return "text/css"
endswith(path, ".map") && return "application/json"
return nothing
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 2102 | struct ChangedAsset
url ::String
modified ::Int
is_css ::Bool
end
JSON3.StructTypes.StructType(::Type{ChangedAsset}) = JSON3.StructTypes.Struct()
mutable struct StateReload
hash::Union{String, Nothing}
hard::Bool
changed_assets::Vector{ChangedAsset}
task ::Union{Nothing, Task}
StateReload(hash) = new(hash, false, ChangedAsset[], nothing)
end
mutable struct StateCache
resources::ApplicationResources
index_string ::String
dependencies_json ::String
need_recache ::Bool
StateCache(app, registry) = new(_cache_tuple(app, registry)..., false)
end
_dep_clientside_func(func::ClientsideFunction) = func
_dep_clientside_func(func) = nothing
function _dependencies_json(app::DashApp)
result = map(values(app.callbacks)) do callback
(
inputs = dependency_tuple.(callback.dependencies.input),
state = dependency_tuple.(callback.dependencies.state),
output = output_string(callback.dependencies),
clientside_function = _dep_clientside_func(callback.func),
prevent_initial_call = callback.prevent_initial_call
)
end
return JSON3.write(result)
end
function _cache_tuple(app::DashApp, registry::ResourcesRegistry)
app_resources = ApplicationResources(app, registry)
index_string::String = index_page(app, app_resources)
dependencies_json = _dependencies_json(app)
return (app_resources, index_string, dependencies_json)
end
struct HandlerState
app::DashApp
registry::ResourcesRegistry
cache::StateCache
reload::StateReload
HandlerState(app, registry = main_registry()) = new(app, registry, StateCache(app, registry), make_reload_state(app))
end
make_reload_state(app::DashApp) = get_devsetting(app, :hot_reload) ? StateReload(generate_hash()) : StateReload(nothing)
get_cache(state::HandlerState) = state.cache
function rebuild_cache!(state::HandlerState)
cache = get_cache(state)
(cache.resources, cache.index_string, cache.dependencies_json) = _cache_tuple(state.app, state.registry)
cache.need_recache = false
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 497 | function process_assets(request::HTTP.Request, state::HandlerState; file_path::AbstractString)
app = state.app
filename = joinpath(get_assets_path(app), file_path)
try
headers = Pair{String,String}[]
mimetype = mime_by_path(filename)
!isnothing(mimetype) && push!(headers, "Content-Type" => mimetype)
file_contents = read(filename)
return HTTP.Response(200, headers;body = file_contents)
catch
return HTTP.Response(404)
end
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 4346 | function split_single_callback_id(callback_id::AbstractString)
parts = rsplit(callback_id, ".")
return (id = parts[1], property = parts[2])
end
function split_callback_id(callback_id::AbstractString)
if startswith(callback_id, "..")
result = []
push!.(Ref(result), split_single_callback_id.(split(callback_id[3:end-2], "...", keepempty = false)))
return result
end
return split_single_callback_id(callback_id)
end
input_to_arg(input) = get(input, :value, nothing)
input_to_arg(input::AbstractVector) = input_to_arg.(input)
make_args(inputs, state) = vcat(input_to_arg(inputs), input_to_arg(state))
res_to_vector(res) = res
res_to_vector(res::Vector) = res
function _push_to_res!(res, value, out::AbstractVector)
_push_to_res!.(Ref(res), value, out)
end
function _push_to_res!(res, value, out)
if !(value isa NoUpdate)
id = dep_id_string(out.id)
prop = Symbol(out.property)
dashval = DashBase.to_dash(value)
if haskey(res, id)
push!(res[id], prop => dashval)
else
push!(res, id => Dict{Symbol, Any}(prop => dashval))
end
end
end
_single_element_vect(e::T) where {T} = T[e]
function process_callback_call(app, callback_id, outputs, inputs, state)
cb = app.callbacks[callback_id]
res = cb.func(make_args(inputs, state)...)
(res isa NoUpdate) && throw(PreventUpdate())
res_vector = is_multi_out(cb) ? res : _single_element_vect(res)
validate_callback_return(outputs, res_vector, callback_id)
response = Dict{String, Any}()
_push_to_res!(response, res_vector, outputs)
if length(response) == 0
throw(PreventUpdate())
end
return Dict(:response=>response, :multi=>true)
end
outputs_to_vector(out, is_multi) = is_multi ? out : [out]
function process_callback(request::HTTP.Request, state::HandlerState)
app = state.app
response = HTTP.Response(200, ["Content-Type" => "application/json"])
params = JSON3.read(String(request.body))
inputs = get(params, :inputs, [])
state = get(params, :state, [])
output = Symbol(params[:output])
try
is_multi = is_multi_out(app.callbacks[output])
outputs_list = outputs_to_vector(
get(params, :outputs, split_callback_id(params[:output])),
is_multi)
changedProps = get(params, :changedPropIds, [])
context = CallbackContext(response, outputs_list, inputs, state, changedProps)
cb_result = with_callback_context(context) do
process_callback_call(app, output, outputs_list, inputs, state)
end
response.body = Vector{UInt8}(JSON3.write(cb_result))
catch e
if isa(e,PreventUpdate)
return HTTP.Response(204)
else
rethrow(e)
end
end
return response
end
function validate_callback_return(outputs, value, callback_id)
!(isa(value, Vector) || isa(value, Tuple)) &&
throw(InvalidCallbackReturnValue(
"""
The callback $callback_id is a multi-output.
Expected the output type to be a list or tuple but got:
$value
"""
))
(length(value) != length(outputs)) &&
throw(InvalidCallbackReturnValue(
"""
Invalid number of output values for $callback_id.
Expected $(length(outputs)), got $(length(value))
"""
))
validate_return_item.(callback_id, eachindex(outputs), value, outputs)
end
function validate_return_item(callback_id, i, value::Union{<:Vector, <:Tuple}, spec::Vector)
length(value) != length(spec) &&
throw(InvalidCallbackReturnValue(
"""
Invalid number of output values for $callback_id item $i.
Expected $(length(value)), got $(length(spec))
output spec: $spec
output value: $value
"""
))
end
function validate_return_item(callback_id, i, value, spec::Vector)
throw(InvalidCallbackReturnValue(
"""
The callback $callback_id ouput $i is a wildcard multi-output.
Expected the output type to be a list or tuple but got:
$value.
output spec: $spec
"""
))
end
validate_return_item(callback_id, i, value, spec) = nothing
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 283 | function process_default_favicon(request::HTTP.Request, state::HandlerState)
ico_contents = read(
joinpath(ROOT_PATH, "src", "favicon.ico")
)
return HTTP.Response(
200,
["Content-Type" => "image/x-icon"],
body = ico_contents
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 220 | function process_dependencies(request::HTTP.Request, state::HandlerState)
return HTTP.Response(
200,
["Content-Type" => "application/json"],
body = state.cache.dependencies_json
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 260 | function process_index(request::HTTP.Request, state::HandlerState)
get_cache(state).need_recache && rebuild_cache!(state)
return HTTP.Response(
200,
["Content-Type" => "text/html"],
body = state.cache.index_string
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
|
[
"MIT"
] | 1.5.0 | 826c9960644b38dcf0689115a86b57c3f1aa7f1d | code | 304 | layout_data(layout::Component) = layout
layout_data(layout::Function) = layout()
function process_layout(request::HTTP.Request, state::HandlerState)
return HTTP.Response(
200,
["Content-Type" => "application/json"],
body = JSON3.write(layout_data(state.app.layout))
)
end
| Dash | https://github.com/plotly/Dash.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.