licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | docs | 1002 | # ExportPublic.jl: Easily hide your implementation details
This is a fork of [`ExportAll.jl`](https://github.com/JKRT/ExportAll.jl/)
that helps you write modules with public and private symbols.
If something starts with an underscore `_`, it will **not** be exported.
```julia
module SimpleMathExample
using ExportPublic
_secret_pi = 22/7 # Private
my_pi = _secret_pi # Public
function add_squared(a::Int, b::Int) # Public
_squared(a) + _squared(b)
end
function _squared(a::Int) # Private
a ^ 2
end
@exportPublic() # <--- Export our Public symbols
end
```
The "*Public*" symbols are automatically exported:
```julia
julia> include("SimpleMathExample.jl")
julia> using .SimpleMathExample
julia> add_squared(5, 5)
50
julia> my_pi
3.142857142857143
julia> _secret_pi
ERROR: UndefVarError: _secret_pi not defined
julia> _squared(5)
ERROR: UndefVarError: _squared not defined
```
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | docs | 1007 | # ExportPublic.jl
> *Easily hide your implementation details.*
This is a fork of [`ExportAll.jl`](https://github.com/JKRT/ExportAll.jl/)
that helps you write modules with public and private symbols.
If something starts with an underscore `_`, it will **not** be exported.
```julia
module SimpleMathExample
using ExportPublic
_secret_pi = 22/7 # Private
my_pi = _secret_pi # Public
function add_squared(a::Int, b::Int) # Public
_squared(a) + _squared(b)
end
function _squared(a::Int) # Private
a ^ 2
end
@exportPublic() # <--- Export our Public symbols
end
```
The "*Public*" symbols are automatically exported:
```julia
julia> include("SimpleMathExample.jl")
julia> using .SimpleMathExample
julia> add_squared(5, 5)
50
julia> my_pi
3.142857142857143
julia> _secret_pi
ERROR: UndefVarError: _secret_pi not defined
julia> _squared(5)
ERROR: UndefVarError: _squared not defined
```
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 1.0.0 | 42fd9023fef18b9b78c8343a4e2f3813ffbcefcb | code | 210 | module TestItems
export @testitem, @testmodule, @testsnippet
macro testitem(ex...)
return nothing
end
macro testmodule(ex...)
return nothing
end
macro testsnippet(ex...)
return nothing
end
end
| TestItems | https://github.com/julia-vscode/TestItems.jl.git |
|
[
"MIT"
] | 1.0.0 | 42fd9023fef18b9b78c8343a4e2f3813ffbcefcb | code | 377 | using TestItems
using Test
@testset "TestItems" begin
x = @testitem "Name of the test item" begin
println("Hello world")
end
@test x === nothing
y = @testmodule Foo begin
const x = 10
getfloat() = rand()
end
@test y === nothing
z = @testsnippet Bar begin
println("Hello world")
end
@test z ===nothing
end
| TestItems | https://github.com/julia-vscode/TestItems.jl.git |
|
[
"MIT"
] | 1.0.0 | 42fd9023fef18b9b78c8343a4e2f3813ffbcefcb | docs | 644 | # TestItems.jl
[](https://www.repostatus.org/#active)

[](https://codecov.io/gh/julia-vscode/TestItems.jl)
## Overview
This package provides the `@testitem` macro for the test runner feature in VS Code. Please look at https://github.com/julia-vscode/TestItemRunner.jl for the documentation for this package here.
| TestItems | https://github.com/julia-vscode/TestItems.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 605 | using BisectPy
using Documenter
DocMeta.setdocmeta!(BisectPy, :DocTestSetup, :(using BisectPy); recursive=true)
makedocs(;
modules=[BisectPy],
authors="Qi Zhang <[email protected]>",
repo="https://github.com/singularitti/BisectPy.jl/blob/{commit}{path}#{line}",
sitename="BisectPy.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://singularitti.github.io/BisectPy.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/singularitti/BisectPy.jl",
)
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 83 | module BisectPy
include("bisect.jl")
include("insort.jl")
include("find.jl")
end
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 2019 | export bisect_left, bisect_right, bisect
"""
bisect_left(a, x, lo = 1, hi = length(a) + 1)
Return the index where to insert item `x` in array `a`, assuming `a` is in an
non-decreasing order.
The return value `i` is such that all `e` in `a[:(i - 1)]` have `e < x`, and all `e` in
`a[i:]` have `e >= x`. So if `x` already appears in the array, `insert!(a, i, x)` will
insert just before the leftmost `x` already there.
# Arguments
Optional args `lo` (default `1`) and `hi` (default `length(a) + 1`) bound the
slice of `a` to be searched.
# Examples
```jldoctest
julia> bisect_left([1, 2, 3, 4, 5], 3.5)
4
julia> bisect_left([1, 2, 3, 4, 5], 2)
2
julia> bisect_left([1, 2, 3, 3, 3, 5], 3)
3
```
"""
function bisect_left(a, x, lo = 1, hi = nothing)
if lo < 1
throw(BoundsError(a, lo))
end
if hi === nothing
hi = length(a) + 1 # It's not `length(a)`!
end
while lo < hi
mid = (lo + hi) ÷ 2
a[mid] < x ? lo = mid + 1 : hi = mid
end
return lo
end
"""
bisect_right(a, x, lo = 1, hi = length(a) + 1)
Return the index where to insert item `x` in array `a`, assuming `a` is in an
non-decreasing order.
The return value `i` is such that all `e` in `a[:(i - 1)]` have `e <= x`, and all `e` in
`a[i:]` have `e > x`. So if `x` already appears in the array, `insert!(a, i, x)` will
insert just after the rightmost `x` already there.
# Arguments
Optional args `lo` (default `1`) and `hi` (default `length(a) + 1`) bound the
slice of `a` to be searched.
# Examples
```jldoctest
julia> bisect_right([1, 2, 3, 4, 5], 3.5)
4
julia> bisect_right([1, 2, 3, 4, 5], 2)
3
julia> bisect_right([1, 2, 3, 3, 3, 5], 3)
6
```
"""
function bisect_right(a, x, lo = 1, hi = nothing)
if lo < 1
throw(BoundsError(a, lo))
end
if hi === nothing
hi = length(a) + 1 # It's not `length(a)`!
end
while lo < hi
mid = (lo + hi) ÷ 2
x < a[mid] ? hi = mid : lo = mid + 1
end
return lo
end
const bisect = bisect_right
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 879 | """
index(a, x)
Locate the leftmost value exactly equal to `x` in `a`.
"""
function index(a, x)
i = bisect_left(a, x)
return i != length(a) + 1 && a[i] == x ? i : nothing
end
"""
find_lt(a, x)
Find rightmost value less than `x` in `a`.
"""
function find_lt(a, x)
i = bisect_left(a, x)
return i > 1 ? a[i-1] : nothing
end
"""
find_le(a, x)
Find rightmost value less than or equal to `x` in `a`.
"""
function find_le(a, x)
i = bisect_right(a, x)
return i > 1 ? a[i-1] : nothing
end
"""
find_gt(a, x)
Find leftmost value greater than `x` in `a`.
"""
function find_gt(a, x)
i = bisect_right(a, x)
return i != length(a) + 1 ? a[i] : nothing
end
"""
find_ge(a, x)
Find leftmost item greater than or equal to `x` in `a`.
"""
function find_ge(a, x)
i = bisect_left(a, x)
return i != length(a) + 1 ? a[i] : nothing
end
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 909 | export insort_left, insort_right, insort
"""
insort_left(a, x, lo = 1, hi = nothing)
Insert item `x` in array `a`, and keep it sorted assuming `a` is sorted.
If `x` is already in `a`, insert it to the left of the leftmost `x`.
Optional args `lo` (default `1`) and `hi` (default `length(a)`) bound the
slice of `a` to be searched.
"""
function insort_left(a, x, lo = 1, hi = nothing)
lo = bisect_left(a, x, lo, hi)
return insert!(a, lo, x)
end
"""
insort_right(a, x, lo = 1, hi = nothing)
Insert item `x` in array `a`, and keep it sorted assuming `a` is sorted.
If `x` is already in `a`, insert it to the right of the rightmost `x`.
Optional args `lo` (default `1`) and `hi` (default `length(a)`) bound the
slice of `a` to be searched.
"""
function insort_right(a, x, lo = 1, hi = nothing)
lo = bisect_right(a, x, lo, hi)
return insert!(a, lo, x)
end
const insort = insort_right
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | code | 3096 | using BisectPy:
bisect_left,
bisect_right,
index,
find_lt,
find_le,
find_gt,
find_ge,
insort_left,
insort_right
using Test
@testset "BisectPy.jl" begin
@test bisect_left([1, 2, 3, 4, 5], 3.5) == 4
@test bisect_right([1, 2, 3, 4, 5], 3.5) == 4
@testset "Equal tests" begin
@test bisect_left([1, 2, 3, 4, 5], 2) == 2
@test bisect_left([1, 2, 3, 3, 3, 5], 3) == 3
@test bisect_right([1, 2, 3, 4, 5], 2) == 3
@test bisect_right([1, 2, 3, 3, 3, 5], 3) == 6
end
@testset "Boundary tests" begin
@test bisect_left([1, 2, 3, 4, 5], 0) == 1
@test bisect_left([1, 2, 3, 4, 5], 5) == 5
@test bisect_left([1, 2, 3, 4, 5], 6) == 6
@test bisect_right([1, 2, 3.0, 4, 5], 5) == 6
@test bisect_right([1, 2, 3.0, 4, 5], 6) == 6
@test bisect_right([1, 2, 3, 4, 5], 1) == 2
@test bisect_right([1, 2, 3, 4, 5], 0) == 1
end
@testset "`Python example 1`" begin
function grade(score, breakpoints = [60, 70, 80, 90], grades = "FDCBA")
i = bisect_right(breakpoints, score)
return grades[i]
end
@test [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]] == ['F', 'A', 'C', 'C', 'B', 'A', 'A']
end
@testset "`Python example 2`" begin
data = [("red", 5), ("blue", 1), ("yellow", 8), ("black", 0)]
sort!(data)
keys = [r[2] for r in sort(data)]
@test data[bisect_left(keys, 0)] == ("black", 0)
@test data[bisect_left(keys, 1)] == ("blue", 1)
@test data[bisect_left(keys, 5)] == ("red", 5)
@test data[bisect_left(keys, 8)] == ("yellow", 8)
end
@test insort_left([1, 2, 3, 4, 5], 0) == [0, 1, 2, 3, 4, 5]
@test insort_left([1, 2, 3, 4, 5], 6) == [1, 2, 3, 4, 5, 6]
@test insort_right([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5, 5]
@test insort_right([1, 2, 3, 4, 5], 6) == [1, 2, 3, 4, 5, 6]
@test index([1, 2, 3, 4, 5], 3.5) === nothing
@test index([1, 2, 2, 3, 4, 5], 2) == 2
@test index([1, 2, 3, 4, 5], 5) == 5
@test index([1, 2, 3, 4, 5], 6) === nothing
@test find_lt([1, 2, 3, 4, 5], 2) == 1
@test find_lt([1, 2, 2, 3, 4, 4, 5], 3) == 2
@test find_lt([1, 2, 2, 3, 3.5, 4, 4, 5], 3.5) == 3
@test find_lt([1, 2, 3, 4, 5], 0) === nothing
@test find_lt([1, 2, 3, 4, 5], 6) == 5
@test find_le([1, 2, 3, 4, 5], 2) == 2
@test find_le([1, 2, 2, 3, 4, 4, 5], 3) == 3
@test find_le([1, 2, 2, 3, 4, 5, 5], 3.5) == 3
@test find_le([1, 2, 3, 4, 5], 0) === nothing
@test find_le([1, 2, 3, 4, 5], 6) == 5
@test find_gt([1, 2, 3, 4, 5], 2) == 3
@test find_gt([1, 2, 2, 3, 4, 4, 5], 3) == 4
@test find_gt([1, 2, 2, 3, 4, 5, 5], 3.5) == 4
@test find_gt([1, 2, 3, 4, 5], 0) == 1
@test find_gt([1, 2, 3, 4, 5, 5], 6) === nothing
@test find_ge([1, 2, 3, 4, 5], 2) == 2
@test find_ge([1, 2, 2, 3, 4, 4, 5], 3) == 3
@test find_ge([1, 2, 2, 3, 4, 5, 5], 3.5) == 4
@test find_ge([1, 2, 3, 4, 5], 0) == 1
@test find_ge([1, 2, 3, 4, 5, 5], 6) === nothing
end
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | docs | 1744 | # BisectPy: array bisection algorithm
[](https://singularitti.github.io/BisectPy.jl/stable)
[](https://singularitti.github.io/BisectPy.jl/dev)
[](https://github.com/singularitti/BisectPy.jl/actions)
[](https://travis-ci.com/singularitti/BisectPy.jl)
[](https://ci.appveyor.com/project/singularitti/BisectPy-jl)
[](https://cloud.drone.io/singularitti/BisectPy.jl)
[](https://cirrus-ci.com/github/singularitti/BisectPy.jl)
[](https://codecov.io/gh/singularitti/BisectPy.jl)
[](https://coveralls.io/github/singularitti/BisectPy.jl?branch=master)
This is a package that migrates Python's [`bisect` module](https://docs.python.org/3.7/library/bisect.html#module-bisect) to Jula.
Note that since Julia's array index starts from `1` but Python starts from `0`, the returned index of either `bisect_left`
or `bisect_right` is always their Python's correspondence plus `1`!
Also, the behavior of Python's `a[:i]` where `a` is an array is also different from Julia: Julia array includes the `i`th item
but Python does not!
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MIT"
] | 1.0.0 | 36351b6b743f7ee469047e54ad1d4a71e9915e28 | docs | 132 | ```@meta
CurrentModule = BisectPy
```
# BisectPy
## [Index](@id main-index)
```@index
```
```@autodocs
Modules = [BisectPy]
```
| BisectPy | https://github.com/singularitti/BisectPy.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 2854 | module PkgExt
using Pkg
using StyledStrings
using About: About, about, columnlist
using PrecompileTools: @compile_workload
function About.about_pkg(io::IO, pkg::Base.PkgId, mod::Module)
isnothing(pkgversion(mod)) ||
print(io, styled" Version {about_module:$(pkgversion(mod))}")
srcdir = pkgdir(mod)
if isnothing(srcdir)
print(io, styled" (builtin)")
else
srcdir = Base.fixup_stdlib_path(srcdir)
srcdir = something(Base.find_source_file(srcdir), srcdir)
srcdir = contractuser(srcdir)
print(io, styled" loaded from {light,underline:$srcdir}")
end
println(io)
isnothing(srcdir) && return
manifest_file = Pkg.Types.manifestfile_path(pkgdir(mod))
project_file = Pkg.Types.projectfile_path(pkgdir(mod))
thedeps = if !isnothing(manifest_file) && isfile(manifest_file)
Pkg.Types.read_manifest(manifest_file).deps
else
Pkg.dependencies()
end
directdeps = if haskey(thedeps, pkg.uuid)
listdeps(thedeps, pkg.uuid)
elseif !isnothing(project_file) && isfile(project_file)
collect(values(Pkg.Types.read_project(project_file).deps))
else
collect(keys(thedeps))
end
isempty(directdeps) && return
depstrs = map(directdeps) do dep
indirectextras = length(alldeps(thedeps, dep, directdeps))
if indirectextras > 0
styled"$(thedeps[dep].name) {shadow:(+$indirectextras)}"
else
styled"$(thedeps[dep].name)"
end
end
indirect_depcount = length(alldeps(thedeps, pkg.uuid) ∪ directdeps) - length(depstrs)
indirect_info = if indirect_depcount > 0
styled" {shadow:(+$indirect_depcount indirectly)}"
else styled"" end
println(io, styled"\n{bold:Directly depends on {emphasis:$(length(directdeps))} \
package$(ifelse(length(directdeps) == 1, \"\", \"s\"))}$indirect_info:")
columnlist(io, depstrs)
end
function listdeps(deps::Dict{Base.UUID, Pkg.Types.PackageEntry}, pkg::Base.UUID)
if haskey(deps, pkg)
collect(values(deps[pkg].deps))
else
Base.UUID[]
end
end
function listdeps(deps::Dict{Base.UUID, Pkg.API.PackageInfo}, pkg::Base.UUID)
if haskey(deps, pkg)
collect(values(deps[pkg].dependencies))
else
Base.UUID[]
end
end
function alldeps(deps::Dict{Base.UUID, <:Union{Pkg.Types.PackageEntry, Pkg.API.PackageInfo}}, pkg::Base.UUID, ignore::Vector{Base.UUID} = Base.UUID[])
depcheck = listdeps(deps, pkg)
depcollection = Set{Base.UUID}()
while !isempty(depcheck)
id = popfirst!(depcheck)
id in depcollection || id in ignore && continue
append!(depcheck, listdeps(deps, id))
push!(depcollection, id)
end
collect(depcollection)
end
@compile_workload begin
about(devnull, @__MODULE__)
end
end
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 6747 | """
About
Sometimes you want to know more *about* what you're working with, whether it be a
function, type, value, or something else entirely.
This package is a utility to help answer that question, it exports a single
function `about`, which can be applied to any Julia object.
# Extended Help
## Examples
**Applied to a Module**
```julia-repl
julia> about(About)
Module About [69d22d85-9f48-4c46-bbbe-7ad8341ff72a]
Version 0.1.0 loaded from ~/.julia/dev/About
Directly depends on 4 packages (+9 indirectly):
• PrecompileTools (+5) • InteractiveUtils (+3) • StyledStrings • JuliaSyntaxHighlighting (+1)
Exports 2 names:
• About • about
```
**Applied to a singleton value**
```julia-repl
julia> about(ℯ)
Irrational{:ℯ} (<: AbstractIrrational <: Real <: Number <: Any), occupies 0B.
singelton
```
**Applied to a float**
```julia-repl
julia> about(Float64(ℯ))
Float64 (<: AbstractFloat <: Real <: Number <: Any), occupies 8B.
0100000000000101101111110000101010001011000101000101011101101001
╨└────┬────┘└────────────────────────┬─────────────────────────┘
+ 2^1 × 1.359140914229522545
= 2.7182818284590451
```
**Applied to a character**
```julia-repl
julia> about('√')
Char (<: AbstractChar <: Any), occupies 4B.
┌2─┐ ┌2─┐┌──1──┐┌A─┐
11100010 10001000 10011010 00000000
└─0xe2─┘ └─0x88─┘ └─0x9a─┘ └─0x00─┘
= U+221A
Unicode '√', category: Symbol, math (Sm)
```
**Applied to a struct type**
```julia-repl
julia> about(Dict{Symbol, Int})
Concrete DataType defined in Base, 64B
Dict{Symbol, Int64} <: AbstractDict{Symbol, Int64} <: Any
Struct with 8 fields:
• slots *Memory{UInt8}
• keys *Memory{Symbol}
• vals *Memory{Int64}
• ndel Int64
• count Int64
• age UInt64
• idxfloor Int64
• maxprobe Int64
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
* * * 8B 8B 8B 8B 8B
* = Pointer (8B)
```
**Applied to a function**
```julia-repl
julia> about(sum, Set{Int})
sum (generic function with 10 methods)
Defined in Base(8) extended in Base.MPFR(1) and Base.GMP(1).
Matched 1 method :: Int64
sum(a; kw...) @ Base reduce.jl:561
Method effects
✗ consistent might not return or terminate consistently
✔ effect free guaranteed to be free from externally semantically visible side effects
✗ no throw may throw an exception
✗ terminates might not always terminate
✔ no task state guaranteed not to access task state (allowing migration between tasks)
~ inaccessible memory only may access or modify mutable memory iff pointed to by its call arguments
✗ no undefined behaviour may execute undefined behaviour
✔ non-overlayed may call methods from an overlayed method table
```
## Faces
These are the faces that `About` defines, and can be customised to change the
style of the output.
- `about_module` (bright red)
- `about_pointer` (cyan)
- `about_count` (bold)
- `about_bytes` (bold)
- `about_cycle1` (bright blue)
- `about_cycle2` (bright green)
- `about_cycle3` (bright yellow)
- `about_cycle4` (bright magenta)
## Public API
- `about`
- `memorylayout` (extensible)
- `elaboration` (extensible)
"""
module About
using StyledStrings: @styled_str, Face, face!, addface!
using JuliaSyntaxHighlighting: highlight
using InteractiveUtils
@static if VERSION >=v"1.11-alpha"
using Base: AnnotatedString, AnnotatedIOBuffer
else
using StyledStrings: AnnotatedString, AnnotatedIOBuffer
end
using PrecompileTools: @compile_workload
const var"@S_str" = var"@styled_str"
export about
include("utils.jl")
include("functions.jl")
include("types.jl")
include("values.jl")
"""
about([io::IO], thing)
Display information (to `io` if provided) on the particular nature of `thing`,
whatever it may be.
This is implemented for a variety of types and objects, with general
implementations for:
- Functions
- Types
- Values
- Modules
Not sure what to make of this? Just try it out 😉
!!! tip "Tip for package developers"
See the *extended help* for information on how to implement specialised forms for
your own objects. Also consider putting specialised display methods in a package
extension.
# Extended help
While it is possible to extend `about` by implementing specialised `about(::IO,
::MyThing)` methods, it is better to specialise the two main functions called by
the `about` function for values (not a `Function`, `Type`, or `Module`):
- `memorylayout(::IO, ::MyThing)`
- `elaboration(::IO, ::MyThing)`
Either or both of these functions can be specialised to customise the display
from `about(::IO, ::MyThing)`, and are involved in the output like so:
```julia-repl
julia> about(mything)
[name] [type hierachy] [size]
[memorylayout]
[elaboration (when non-compact)]
```
As can be guessed from the names, it is expected that `memorylayout` prints an
informative representation of the memory layout of its argument. See
`src/values.jl` within the `About` package source for some examples (just scroll
past the initial generic implementation).
Unlike `memorylayout`, the `elaboration` function does not print anything by
default, but can be specialised to add extra pieces of useful information that
don't relate to the in-memory representation of the object itself.
"""
function about end
about(x) = about(stderr, x)
function about(xs...)
if first(xs) == stderr
throw(MethodError(about, xs))
else
about(stderr, xs...)
end
end
"""
memorylayout(io::IO, T::DataType)
memorylayout(io::IO, val::T)
Print to `io` the memory layout of the type `T`, or `val` a particular instance
of the type.
Specialised implementations should be implemented freely to enhance the utility
and prettiness of the display.
"""
function memorylayout end
"""
elaboration(::IO, x::Any)
Elaborate on `x` to io, providing extra information that might be of interest
seperately from `about` or `memorylayout`.
Specialised implementations should be implemented freely to enhance the utility
and prettiness of the display.
By convention, this is not invoked when displaying `x` compactly.
"""
elaboration(::IO, ::Any) = nothing
const ABOUT_FACES = [
:about_module => Face(foreground=:bright_red),
:about_pointer => Face(foreground=:cyan),
:about_count => Face(weight=:bold),
:about_bytes => Face(weight=:bold),
:about_cycle1 => Face(inherit=:bright_blue),
:about_cycle2 => Face(inherit=:bright_green),
:about_cycle3 => Face(inherit=:bright_yellow),
:about_cycle4 => Face(inherit=:bright_magenta),
]
__init__() = foreach(addface!, ABOUT_FACES)
@compile_workload begin
about(devnull, FieldInfo)
about(devnull, 1)
about(devnull, 1.0)
about(devnull, nothing)
end
end
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 7862 | function about(io::IO, fn::Function)
source = Main.InteractiveUtils.which(parentmodule(fn), nameof(fn))
methodmodules = getproperty.(methods(fn).ms, :module)
others = setdiff(methodmodules, [source])
fn_smry = split(Base.summary(fn), ' ', limit=2)
fn_name, fn_extra = if length(fn_smry) == 1 (fn_smry[1], "") else fn_smry end
print(io, S"{julia_funcall:$fn_name} $fn_extra\n Defined in {about_module:$source}")
if length(others) > 0
print(io, S"{shadow:({emphasis:$(sum(Ref(source) .=== methodmodules))})} extended in ")
for (i, oth) in enumerate(others)
print(io, S"{about_module:$oth}{shadow:({emphasis:$(sum(Ref(oth) .=== methodmodules))})}")
if length(others) == 2 && i == 1
print(io, " and ")
elseif length(others) > 2 && i < length(others)-1
print(io, ", ")
elseif length(others) > 2 && i == length(others)-1
print(io, ", and ")
end
end
end
print(io, ".\n")
if !get(io, :about_inner, false)
println(io, S"\n {tip:■ Hint:} {grey:to get more information on a particular method try} {light:$(highlight(\"about($fn, argtypes...)\"))}")
end
end
function about(io::IO, @nospecialize(cfn::ComposedFunction))
print(io, S"{bold:Composed function:} ")
fnstack = Function[]
function decompose!(fnstk, c::ComposedFunction)
decompose!(fnstk, c.outer)
decompose!(fnstk, c.inner)
end
decompose!(fnstk, c::Function) = push!(fnstk, c)
decompose!(fnstack, cfn)
join(io, map(f -> S"{julia_funcall:$f}", fnstack), S" {julia_operator:∘} ")
println(io)
for fn in fnstack
print(io, S" {emphasis:•} ")
about(IOContext(io, :about_inner => true), fn)
end
end
function about(io::IO, method::Method)
fn, sig = first(method.sig.types).instance, Tuple{map(Base.unwrap_unionall, method.sig.types[2:end])...}
show(io, method)
println(io)
print_effects(io, fn, sig)
end
function about(io::IO, fn::Function, @nospecialize(argtypes::Type{<:Tuple}))
iio = IOContext(io, :about_inner => true)
about(iio, fn); println(io)
ms = methods(fn, argtypes)
if isempty(ms)
fncall = highlight("$fn($(join(collect(argtypes.types), ", ")))")
println(io, S" {error:!} No methods matched $fncall")
return
end
rinfo = let rtypes = Base.return_types(fn, argtypes) # HACK: this is technically private API
unique!(rtypes)
for i in eachindex(rtypes), j in eachindex(rtypes)
Tᵢ, Tⱼ = rtypes[i], rtypes[j]
if Tᵢ <: Tⱼ
rtypes[i] = Tⱼ
elseif Tⱼ <: Tᵢ
rtypes[j] = Tᵢ
end
end
unique!(rtypes)
sort!(rtypes, by=length ∘ supertypes)
join(map(t -> S"{julia_type:$t}", rtypes), ", ")
end
println(io, S" Matched {emphasis:$(length(ms))} method$(ifelse(length(ms) > 1, \"s\", \"\")) {julia_type:::} $rinfo")
for method in ms
mcall, msrc = split(sprint(show, method), " @ ")
msrcinfo = match(r"^([A-Z][A-Za-z0-9\.]+) (.+)$", msrc)
msrcpretty = if isnothing(msrcinfo)
S"{shadow,underline:$msrc}"
else
mmod, mfile = msrcinfo.captures
S"{about_module:$mmod} {shadow,underline:$mfile}"
end
println(io, S" $(highlight(mcall)) {shadow,bold:@} $msrcpretty")
end
println(io)
about(iio, Base.infer_effects(fn, argtypes))
end
struct CompatibleCoreCompilerConstants end
function Base.getproperty(::CompatibleCoreCompilerConstants, name::Symbol)
if isdefined(Core.Compiler, name)
getglobal(Core.Compiler, name)
end
end
const C4 = CompatibleCoreCompilerConstants()
function about(io::IO, effects::Core.Compiler.Effects)
function effectinfo(io::IO, field::Symbol, name::String, labels::Pair{<:Union{UInt8, Bool, Nothing}, AnnotatedString{String}}...;
prefix::AbstractString = "", suffix::AbstractString = "")
hasproperty(effects, field) || return
value = getproperty(effects, field)
icon, accent = if value === C4.ALWAYS_TRUE || value === true
'✔', :success
elseif value === C4.ALWAYS_FALSE || value === false
'✗', :error
else
'~', :warning
end
msg = S"{bold,italic,grey:???}"
for (id, label) in labels
if id == value
msg = label
break
end
end
name_pad_width = 13
dispwidth = last(displaysize(io))
declr = S" {bold,$accent:$icon $(rpad(name, name_pad_width))} "
get(io, :about_inner, false) === true && print(io, ' ')
print(io, declr)
indent = name_pad_width + 5
desc = S"{grey:$prefix$(ifelse(isempty(prefix), \"\", \" \"))$msg$(ifelse(isempty(suffix), \"\", \" \"))$suffix}"
desclines = wraplines(desc, dispwidth - indent, indent)
for (i, line) in enumerate(desclines)
i > 1 && print(io, ' '^indent)
println(io, line)
end
end
get(io, :about_inner, false) === true && print(io, ' ')
println(io, S"{bold:Method effects}")
effectinfo(io, :consistent, "consistent",
C4.ALWAYS_TRUE => S"guaranteed to",
C4.ALWAYS_FALSE => S"{italic:might} not",
C4.CONSISTENT_IF_NOTRETURNED => S"when the return value {italic:never} involves newly allocated mutable objects, will",
C4.CONSISTENT_IF_INACCESSIBLEMEMONLY => S"when {code:inaccessible memory only} is also proven, will",
suffix = "return or terminate consistently")
effectinfo(io, :effect_free, "effect free",
C4.ALWAYS_TRUE => S"guaranteed to be",
C4.ALWAYS_FALSE => S"{italic:might} not be",
C4.EFFECT_FREE_IF_INACCESSIBLEMEMONLY => S"when {code:inaccessible memory only} is also proven, is",
suffix = "free from externally semantically visible side effects")
effectinfo(io, :nothrow, "no throw",
true => S"guaranteed to {italic:never}",
false => S"{italic:may}",
suffix = "throw an exception")
effectinfo(io, :terminates, "terminates",
true => S"guaranteed to",
false => S"{italic:might} not",
suffix = "always terminate")
effectinfo(io, :notaskstate, "no task state",
true => S"guaranteed not to access task state (allowing migration between tasks)",
false => S"{italic:may} access task state (preventing migration between tasks)")
effectinfo(io, :inaccessiblememonly, "inaccessible memory only",
C4.ALWAYS_TRUE => S"guaranteed to {italic:never} access or modify externally accessible mutable memory",
C4.ALWAYS_FALSE => S"{italic:may} access or modify externally accessible mutable memory",
C4.INACCESSIBLEMEM_OR_ARGMEMONLY => S"{italic:may} access or modify mutable memory {italic:iff} pointed to by its call arguments")
effectinfo(io, :noub, "no undefined behaviour",
C4.ALWAYS_TRUE => S"guaranteed to {italic:never}",
C4.ALWAYS_FALSE => S"{italic:may}",
C4.NOUB_IF_NOINBOUNDS => S"so long as {code,julia_macro:@inbounds} is not used or propagated, will not",
suffix = "execute undefined behaviour")
effectinfo(io, :nonoverlayed, "non-overlayed",
true => S"{italic:never} calls any methods from an overlayed method table",
false => S"{italic:may} call methods from an overlayed method table")
end
about(io::IO, fn::Function, sig::NTuple{N, <:Type}) where {N} = about(io, fn, Tuple{sig...})
about(io::IO, fn::Function, sig::Type...) = about(io, fn, sig)
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 4360 | struct FieldInfo
i::Int
face::Union{Symbol, Face}
offset::Int
size::Int
contentsize::Int
ispointer::Bool
name::Union{Symbol, Int}
type::Type
end
function structinfo(T::Type)
map(1:fieldcount(T)) do i
if hassizeof(T)
offset = fieldoffset(T, i) |> Int
size = Int(if i < fieldcount(T)
fieldoffset(T, i+1)
else
sizeof(T)
end - fieldoffset(T, i))
contentsize = if hassizeof(fieldtype(T, i))
sizeof(fieldtype(T, i))
else
0
end
if contentsize > size # Pointer?
contentsize = 0
end
else
offset = size = contentsize = -1 # Cannot deduce easily
end
FieldInfo(i, FACE_CYCLE[i % length(FACE_CYCLE) + 1],
offset,
size, contentsize,
contentsize == 0, # ispointer
fieldname(T, i), fieldtype(T, i))
end
end
function about(io::IO, type::Type)
if isprimitivetype(type)
print(io, "Primitive ")
elseif isconcretetype(type)
print(io, "Concrete ")
if Base.datatype_haspadding(type)
print(io, S"{shadow:(padded)} ")
end
elseif isabstracttype(type)
print(io, "Abstract ")
end
if Base.issingletontype(type)
print(io, "singleton ")
end
print(io, Base.summary(type))
print(io, S" defined in {about_module:$(parentmodule(type))}, ")
hassizeof(type) && print(io, "$(join(humansize(sizeof(type))))")
print(io, "\n ")
supertypeinfo(io, type)
(!isstructtype(type) || fieldcount(type) == 0) && return
println(io, S"\n\nStruct with {bold:$(fieldcount(type))} fields:")
fieldinfo = AnnotatedString[]
if type isa DataType
sinfo = structinfo(type)
namepad = maximum(fi -> textwidth(string(fi.name)), sinfo) + 1
for (; face, name, type, ispointer) in sinfo
push!(fieldinfo, rpad(S"{$face:$name}", namepad) * S"{about_pointer:$(ifelse(ispointer, \"*\", \" \"))}$type")
end
else
for (; name, type) in structinfo(type)
push!(fieldinfo, S"$name{shadow:::$type}")
end
end
if length(fieldinfo) < 32
columnlist(io, fieldinfo, maxcols=1)
else
columnlist(io, fieldinfo, spacing=3)
end
if type isa DataType
memorylayout(io, type)
end
end
function supertypeinfo(io::IO, type::Type)
typestr(t) = highlight(sprint(show, Base.unwrap_unionall(t)))
join(io, map(typestr, supertypes(type)),
S" {julia_comparator:<:} ")
end
function memorylayout(io::IO, type::DataType)
hassizeof(type) || return
si = structinfo(type)
!isempty(si) || return
memstep = memstep = gcd((getfield.(si, :size), getfield.(si, :contentsize)) |>
Iterators.flatten |> collect)
memscale = max(1, floor(Int, 70/(sizeof(type)/memstep)))
bars = AnnotatedString[]
descs = AnnotatedString[]
for (; i, size, contentsize, ispointer) in si
size <= 0 && continue
color = FACE_CYCLE[i % length(FACE_CYCLE) + 1]
width = max(2, memscale * size÷memstep)
fsize, funits = humansize(size)
desc = if ispointer
cpad(S" {$color,bold:*} ", width)
elseif contentsize < size
csize, cunits = humansize(contentsize)
psize, punits = humansize(size - contentsize)
cpad(S" {$color:$csize$cunits}{shadow:+$psize$punits} ", width, ' ', RoundUp)
else
cpad(S" {$color:$fsize$funits} ", width)
end
push!(descs, desc)
width = textwidth(desc)
contentwidth = round(Int, width * contentsize / size)
bar = S"{$color:$('■'^contentwidth)}"
if contentsize < size
paddwidth = width - contentwidth
if ispointer
bar *= S"{about_pointer,light:$('■'^paddwidth)}"
else
bar *= S"{shadow:$('■'^paddwidth)}"
end
end
push!(bars, bar)
end
println(io)
multirow_wrap(io, permutedims(hcat(bars, descs)))
if any(i -> i.ispointer, si)
println(io, S"\n {about_pointer,bold:*} = {about_pointer:Pointer} {light:(8B)}")
end
end
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 5146 | const FACE_CYCLE = [:about_cycle1, :about_cycle2, :about_cycle3, :about_cycle4]
function humansize(bytes::Integer)
units = ("B", "kB", "MB", "GB")
magnitude = floor(Int, log(1024, 1 + bytes))
if 10 < bytes < 10*1024^magnitude
round(bytes / 1024^magnitude, digits=1)
else
round(Int, bytes / 1024^magnitude)
end, units[1+magnitude]
end
function hassizeof(type::Type)
!isconcretetype(type) && return false
@static if VERSION >= v"1.11-alpha"
type <: GenericMemory && return false
end
type in (Symbol, String, Core.SimpleVector) && return false
true
end
function cpad(s, n::Integer, pad::Union{AbstractString, AbstractChar}=' ', r::RoundingMode = RoundToZero)
rpad(lpad(s, div(n+textwidth(s), 2, r), pad), n, pad)
end
splural(n::Int) = ifelse(n == 1, "", "s")
splural(c::Vector) = splural(length(c))
function struncate(str::AbstractString, maxwidth::Int, joiner::Union{AbstractString, AbstractChar} = '…', mode::Symbol = :center)
textwidth(str) <= maxwidth && return str
left, right = firstindex(str), lastindex(str)
width = textwidth(joiner)
while true
if mode ∈ (:right, :center)
(width += textwidth(str[left])) <= maxwidth || break
left = nextind(str, left)
end
if mode ∈ (:left, :center) && width < maxwidth
(width += textwidth(str[right])) <= maxwidth || break
right = prevind(str, right)
end
end
str[begin:prevind(str, left)] * joiner * str[nextind(str, right):end]
end
function columnlist(io::IO, entries::Vector{<:AbstractString};
maxcols::Int=8, maxwidth::Int=last(displaysize(io)),
prefix::AbstractString = S"{emphasis:•} ", spacing::Int=2)
isempty(entries) && return
thecolumns = Vector{eltype(entries)}[]
thecolwidths = Int[]
for ncols in 1:maxcols
columns = Vector{eltype(entries)}[]
for col in Iterators.partition(entries, div(length(entries), ncols, RoundUp))
push!(columns, collect(col))
end
widths = map.(textwidth, columns)
colwidths = map(maximum, widths)
layoutwidth = sum(colwidths) + ncols * textwidth(prefix) + (ncols - 1) * spacing
if layoutwidth > maxwidth
break
else
thecolumns, thecolwidths = columns, colwidths
end
end
for rnum in 1:length(first(thecolumns))
for cnum in 1:length(thecolumns)
rnum > length(thecolumns[cnum]) && continue
cnum > 1 && print(io, ' '^spacing)
print(io, prefix, rpad(thecolumns[cnum][rnum], thecolwidths[cnum]))
end
println(io)
end
end
function multirow_wrap(io::IO, cells::Matrix{<:AbstractString};
indent::AbstractString = " ", maxwidth::Int=last(displaysize(io)))
widths = map(textwidth, cells)
colwidths = maximum(widths, dims=1)
thiscol = textwidth(indent)
segments = UnitRange{Int}[1:0]
for (i, (col, width)) in enumerate(zip(eachcol(cells), colwidths))
if thiscol + width > maxwidth
push!(segments, last(last(segments))+1:i-1)
thiscol = textwidth(indent) + width
else
thiscol += width
end
end
push!(segments, last(last(segments))+1:size(cells, 2))
filter!(!isempty, segments)
for segment in segments
for row in eachrow(cells[:, segment])
println(io, indent, join(row))
end
end
end
"""
wraplines(content::AnnotatedString, width::Integer = 80, column::Integer = 0)
Wrap `content` into a vector of lines of at most `width` (according to
`textwidth`), with the first line starting at `column`.
"""
function wraplines(content::Union{Annot, SubString{<:Annot}}, width::Integer = 80, column::Integer = 0) where { Annot <: AnnotatedString}
s, lines = String(content), SubString{Annot}[]
i, lastwrap, slen = firstindex(s), 0, ncodeunits(s)
most_recent_break_opportunity = 1
while i < slen
if isspace(s[i]) && s[i] != '\n'
most_recent_break_opportunity = i
elseif s[i] == '\n'
push!(lines, content[nextind(s, lastwrap):prevind(s, i)])
lastwrap = i
column = 0
elseif column >= width && most_recent_break_opportunity > 1
if lastwrap == most_recent_break_opportunity
nextbreak = findfirst(isspace, @view s[nextind(s, lastwrap):end])
if isnothing(nextbreak)
break
else
most_recent_break_opportunity = lastwrap + nextbreak
end
i = most_recent_break_opportunity
else
i = nextind(s, most_recent_break_opportunity)
end
push!(lines, content[nextind(s, lastwrap):prevind(s, most_recent_break_opportunity)])
lastwrap = most_recent_break_opportunity
column = 0
end
column += textwidth(s[i])
i = nextind(s, i)
end
if lastwrap < slen
push!(lines, content[nextind(s, lastwrap):end])
end
lines
end
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MPL-2.0"
] | 1.0.0 | 3a94c01a1d7678f1c29b7d97216f5046f1ed1768 | code | 27519 | # ------------------
# Structs, in general
# ------------------
function about(io::IO, value::T) where {T}
# Type information
iotype = AnnotatedIOBuffer()
print(iotype, Base.summary(value))
ismutable(value) && print(iotype, " (mutable)")
print(iotype, S" ({julia_comparator:<:} ")
supertypeinfo(iotype, supertype(T))
print(iotype, ")")
infotype = read(seekstart(iotype), AnnotatedString)
# Size information
typesize = try sizeof(T) catch _ sizeof(value) end
datasize = sizeof(value)
netsize = Base.summarysize(value)
infosize = if typesize == datasize == netsize
S"{about_bytes:$(join(humansize(typesize)))}."
elseif typesize == datasize <= netsize
S"{about_bytes:$(join(humansize(typesize)))} directly \
(referencing {about_bytes:$(join(humansize(netsize)))} in total)"
elseif typesize == datasize > netsize
S"{about_bytes:$(join(humansize(typesize)))} directly \
({warning:!} referencing {about_bytes:$(join(humansize(netsize)))} in total, \
{warning:strangely less than the direct, \
{underline,link={https://github.com/tecosaur/About.jl}:\
please open an issue on About.jl with this example}})"
else # all different
S"{about_bytes:$(join(humansize(typesize)))} directly \
(referencing {about_bytes:$(join(humansize(netsize)))} in total, \
holding {about_bytes:$(join(humansize(datasize)))} of data)"
end
print(io, infotype)
if textwidth(infotype) < last(displaysize(io)) &&
textwidth(infotype) + textwidth(infosize) + 12 >= last(displaysize(io))
print(io, "\n Memory footprint: ")
else
print(io, ", occupies ")
end
println(io, infosize)
# Layout + elaboration
memorylayout(io, value)
if get(io, :compact, false) != true
elaboration(io, value)
end
end
function memorylayout(io::IO, value::T) where {T}
if isprimitivetype(T)
get(io, :compact, false) || print(io, "\n ")
print(io, bitstring(value))
return
end
if get(io, :compact, false) == true
print(io, "«struct»")
return
end
if Base.issingletontype(T)
println(io, S"{italic:singelton}")
return
end
sinfo = structinfo(T)
isempty(sinfo) && return
ffaces = Union{Face, Symbol}[]
fnames = String[]
ftypes = String[]
fsizes = String[]
freprs = AnnotatedString[]
fshows = AnnotatedString[]
for (; face, name, type, size, ispointer) in sinfo
size <= 0 && continue
push!(ffaces, face)
push!(fnames, string(name))
push!(ftypes, string(type))
push!(fsizes, join(humansize(size)))
aio = AnnotatedIOBuffer()
fvalue = getfield(value, name)
if Base.issingletontype(typeof(fvalue))
push!(freprs, S"{shadow:singleton}")
elseif size == 0
push!(freprs, S"{error:??}")
elseif ispointer
try
pt = pointer(fvalue)
push!(freprs, S"{about_pointer:@ $(sprint(show, UInt64(pt)))}")
catch
push!(freprs, S"{about_pointer:Ptr?}")
end
else
memorylayout(IOContext(aio, :compact => true), fvalue)
push!(freprs, read(seekstart(aio), AnnotatedString))
end
truncate(aio, 0)
show(IOContext(aio, :compact => true), fvalue)
push!(fshows, read(seekstart(aio), AnnotatedString))
end
width = last(displaysize(io)) - 2
namewidth = maximum(textwidth, fnames, init=0)
typewidth = min(maximum(textwidth, ftypes, init=0), width ÷ 4)
sizewidth = maximum(textwidth, fsizes, init=0)
width -= 1 + namewidth + 1 + typewidth + 2 + sizewidth
reprwidth = min((2 * width) ÷ 3, maximum(textwidth, freprs, init=0))
showwidth = width - reprwidth
for (face, name, type, size, brepr, shown) in zip(ffaces, fnames, ftypes, fsizes, freprs, fshows)
println(io, ' ',
S"{$face:$(lpad(name, namewidth)){shadow:::}$(rpad(struncate(type, typewidth, \"…\", :right), typewidth)) $(lpad(size, sizewidth))}",
' ', rpad(struncate(brepr, reprwidth, S" {shadow:…} "), reprwidth),
' ', face!(struncate(shown, showwidth, S" {shadow:…} "), face))
end
memorylayout(io, T)
end
# ------------------
# Modules
# ------------------
function about(io::IO, mod::Module)
pkg = nothing
for (bpkg, m) in Base.loaded_modules
if m == mod
pkg = bpkg
break
end
end
!isnothing(pkg) && !applicable(about_pkg, io, pkg, mod) &&
Base.require(Base.PkgId(Base.UUID("44cfe95a-1eb2-52ea-b672-e2afdf69b78f"), "Pkg"))
print(io, S"{bold:Module {about_module:$mod}}")
if !isnothing(pkg)
println(io, S" {shadow:[$(something(pkg.uuid, \"no uuid\"))]}")
Base.invokelatest(about_pkg, io, pkg, mod)
else
println(io)
end
function classify(m::Module, name::Symbol)
val = getglobal(mod, name)
order, kind, face, parent = if val isa Module
0, :module, :about_module, val
elseif val isa Function && first(String(name)) == '@'
1, :macro, :julia_macro, parentmodule(val)
elseif val isa Function
2, :function, :julia_funcall, parentmodule(val)
elseif val isa Type
3, :type, :julia_type, if val isa UnionAll || val isa Union
m else parentmodule(val) end
else
4, :value, :julia_identifier, if Base.issingletontype(typeof(val))
parentmodule(typeof(m))
else
m
end
end
while parentmodule(parent) ∉ (parent, Main)
parent = parentmodule(parent)
end
(; name, str = S"{code,$face:$name}", kind, parent, order)
end
classify(m::Module, names::Vector{Symbol}) =
sort(map(Base.Fix1(classify, m), names), by=x->x.order)
allnames = classify(mod, names(mod))
exports = similar(allnames, 0)
reexports = similar(allnames, 0)
publics = similar(allnames, 0)
for exp in allnames
if exp.parent === mod && Base.isexported(mod, exp.name)
push!(exports, exp)
elseif exp.parent === mod && Base.ispublic(mod, exp.name)
push!(publics, exp)
elseif exp.parent !== mod
push!(reexports, exp)
end
end
if !isempty(exports)
println(io, S"\n{bold:Exports {emphasis:$(length(exports))} name$(splural(exports)):}")
columnlist(io, map(x->x.str, exports))
end
if !isempty(reexports)
parents = join(sort(map(p->S"{about_module:$p}", unique(map(x->x.parent, reexports)))), ", ")
println(io, S"\n{bold:Re-exports {emphasis:$(length(reexports))} name$(splural(reexports))} (from $parents){bold::}")
columnlist(io, map(x->x.str, reexports))
end
if !isempty(publics)
println(io, S"\n{bold:Public API ({emphasis:$(length(publics))} name$(splural(publics))):}")
columnlist(io, map(x->x.str, publics))
end
end
function about_pkg end # Implemented in `../ext/PkgExt.jl`
# ------------------
# Numeric types
# ------------------
const NUMBER_BIT_FACES = (
sign = :bright_blue,
exponent = :bright_green,
mantissa = :bright_red
)
function memorylayout(io::IO, value::Bool)
bits = AnnotatedString(bitstring(value))
face!(bits[1:end-1], :shadow)
face!(bits[end:end], NUMBER_BIT_FACES.sign)
if get(io, :compact, false) == true
print(io, bits)
else
println(io, "\n ", bits, S" {bold:=} $value")
end
end
function memorylayout(io::IO, value::Union{UInt8, UInt16, UInt32, UInt64, UInt128})
bits = AnnotatedString(bitstring(value))
for (; match) in eachmatch(r"0+", bits)
face!(match, :shadow)
end
if get(io, :compact, false) == true
print(io, bits)
else
println(io, "\n ", bits, ifelse(sizeof(value) > 4, "\n", ""),
S" {bold:=} $value")
end
end
function memorylayout(io::IO, value::Union{Int8, Int16, Int32, Int64, Int128})
bits = AnnotatedString(bitstring(value))
face!(bits[1:1], NUMBER_BIT_FACES.sign)
for (; match) in eachmatch(r"0+", bits)
if match.offset == 0
match = bits[2:match.ncodeunits]
end
face!(match, :shadow)
end
if get(io, :compact, false) == true
print(io, bits)
else
signstr = ifelse(value < 0, '-', '+')
println(io, "\n ", bits, ifelse(sizeof(value) > 4, "\n", ""),
S" {bold:=} {$(NUMBER_BIT_FACES.sign):$signstr}$(abs(value))")
end
end
memorylayout(io::IO, float::Float64) = floatlayout(io, float, 11)
memorylayout(io::IO, float::Float32) = floatlayout(io, float, 8)
memorylayout(io::IO, float::Float16) = floatlayout(io, float, 5)
@static if VERSION >=v"1.11-alpha"
memorylayout(io::IO, float::Core.BFloat16) = floatlayout(io, float, 8)
end
function floatlayout(io::IO, float::AbstractFloat, expbits::Int)
fsign, fexp, fmant = NUMBER_BIT_FACES.sign, NUMBER_BIT_FACES.exponent, NUMBER_BIT_FACES.mantissa
bitstr = bitstring(float)
hl_bits = S"{$fsign:$(bitstr[1])}{$fexp:$(bitstr[2:expbits+1])}{$fmant:$(bitstr[expbits+2:end])}"
if get(io, :compact, false) == true
print(io, hl_bits)
else
fracbits = 8 * sizeof(float) - expbits - 1
fracdp = round(Int, log10(2 ^ (fracbits + 1)))
maxexp = 2^(expbits - 1) - 1
sign = ifelse(bitstr[1] == '1', '-', '+')
bits = reinterpret(UInt64, Float64(float))
exponent = Int((bits >> 52) & Base.Ryu.EXP_MASK) - 1023
fraction = reinterpret(Float64, bits & Base.Ryu.MANTISSA_MASK | 0x3ff0000000000000)
expstr = cpad(if exponent == 1024
"Inf"
else "2^$exponent" end,
expbits - 1, ' ', RoundUp)
fracstr = cpad(if exponent == 1024
ifelse(fraction == 1.0, "1", "NaN")
else
Base.Ryu.writefixed(fraction, fracdp + 2)
end, fracbits, ' ', RoundUp)
hl_info = let eleft = (expbits - 3) ÷ 2
eright = (expbits - 3) - eleft
fleft = (fracbits - 3) ÷ 2
fright = (fracbits - 3) - fleft
S"{$fsign:╨}{$fexp:└$('─'^eleft)┬$('─'^eright)┘}{$fmant:└$('─'^fleft)┬$('─'^fright)┘}"
end
hl_vals = S"{$fsign,bold:$sign}{$fexp:$expstr}{bold:×}{$fmant:$fracstr}"
hl_more = S" {$fexp:exponent}$(' '^17){$fmant:mantissa / fraction}"
println(io, "\n ", hl_bits, " \n ", hl_info, "\n ", hl_vals,
S"\n {bold:=} ", if -8 < exponent < 8
Base.Ryu.writefixed(float, fracdp)
else Base.Ryu.writeexp(float, fracdp) end)
end
end
# ------------------
# Vector/Memory
# ------------------
function vecbytes(io::IO, items::DenseVector{T};
elshowfn::Function = show,
eltext = "item",
topbar::NamedTuple = (lcap='┌', lbar='╴', bar='─', rbar='╶', rcap='┐', trunc='⋯'),
itemfaces::Vector{Symbol} = FACE_CYCLE,
byteface::Symbol = :light,
bitcolour::Bool = false,
bytevals::Bool = T != UInt8) where {T}
nitems = length(items)
bytes = reinterpret(UInt8, items)
nbytes = length(bytes)
if nbytes == 1
println(io, "\n ", bitstring(first(bytes)), "\n ", "└──────┘")
return
end
itemoverbar = '┌' * '─'^(8 * sizeof(T) - 2) * '┐'
margintextwidth = 4 + textwidth(eltext) + ndigits(nbytes)
showbytes = if last(displaysize(io)) - 2 - margintextwidth >=8 * nbytes
nbytes
else
(last(displaysize(io)) - 2 - ndigits(nbytes) - textwidth("⋯(×)⋯") - margintextwidth) ÷ 8
end
lbytes, rbytes = showbytes ÷ 2, showbytes - showbytes ÷ 2
litems, ritems = lbytes ÷ sizeof(T), rbytes ÷ sizeof(T)
print(io, "\n ")
function fmtitem(val, idx)
truncval = struncate(sprint(elshowfn, val), 8 * sizeof(T) - 4, topbar.trunc)
padval = cpad(topbar.lbar * truncval * topbar.rbar, 8 * sizeof(T) - 2, topbar.bar)
tbar = topbar.lcap * padval * topbar.rcap
face = itemfaces[mod1(idx, length(itemfaces))]
S"{$face:$tbar}"
end
for litem in 1:litems
print(io, fmtitem(items[litem], litem))
end
if showbytes < nbytes
lbar = 8 * (lbytes - litems * sizeof(T)) - 1
facel = itemfaces[mod1(litems + 1, length(itemfaces))]
lbar > 0 && print(io, S"{$facel:$(topbar.rcap)$(topbar.bar^lbar)}")
print(io, S" {shadow:⋯(×$(lpad(nitems-litems-ritems, ndigits(nbytes-showbytes))))⋯} ")
rbar = 8 * (rbytes - ritems * sizeof(T)) - 1
facer = itemfaces[mod1(nitems - ritems, length(itemfaces))]
rbar > 0 && print(io, S"{$facer:$(topbar.bar^rbar)$(topbar.rcap)}")
elseif litems + ritems < nitems
face = itemfaces[mod1(litems + 1, length(itemfaces))]
print(io, fmtitem(items[litems + 1], litems + 1))
end
for ritem in nitems-ritems+1:nitems
face = FACE_CYCLE[mod1(ritem, length(FACE_CYCLE))]
print(io, fmtitem(items[ritem], ritem))
end
print(io, S" {emphasis:$(lpad(nitems, ndigits(nbytes)))} $eltext$(splural(nitems))")
lbstring = AnnotatedString(join(map(bitstring, bytes[1:lbytes])))
rbstring = AnnotatedString(join(map(bitstring, bytes[end-rbytes+1:end])))
if bitcolour
for b in 1:lbytes
face!(lbstring[8*(b-1)+1:8*b], itemfaces[mod1(b, length(itemfaces))])
end
for b in 1:rbytes
face!(rbstring[8*(b-1)+1:8*b], itemfaces[mod1(b + nbytes - rbytes, length(itemfaces))])
end
end
for bstr in (lbstring, rbstring), (; match) in eachmatch(r"0+", bstr)
face!(match, :shadow)
end
print(io, "\n ", lbstring, if showbytes < nbytes ' '^(7 + ndigits(nbytes-showbytes)) else "" end, rbstring)
if bytevals
print(io, ' '^ndigits(nbytes), S" {shadow:in}\n ")
function fmtbyte(b, _itemidx)
S"{$byteface:└─0x$(lpad(string(b, base=16), 2, '0'))─┘}"
end
for b in 1:lbytes
print(io, fmtbyte(bytes[b], fld1(b, sizeof(T))))
end
showbytes < nbytes && print(io, S" {shadow:⋯(×$(nbytes-showbytes))⋯} ")
for b in nbytes-rbytes+1:nbytes
print(io, fmtbyte(bytes[b], fld1(b, sizeof(T))))
end
print(io, S" {emphasis:$nbytes} byte$(splural(nbytes))")
end
println(io)
end
@static if VERSION >= v"1.11-alpha"
function memorylayout(io::IO, mem::GenericMemory{kind, T, addrspace}) where {kind, T, addrspace}
if mem.length == 0
println(io, S" {shadow:(empty)} {about_pointer:@ $(sprint(show, UInt64(mem.ptr)))}")
return
end
println(io, "\n ",
if kind === :atomic "Atomic memory block" else "Memory block" end,
if addrspace !== Core.CPU
addressor = (((::Core.AddrSpace{T}) where {T}) -> T)(addrspace) |> nameof |> String
S" ({emphasis:$addressor}-addressed)"
else S" ({emphasis:CPU}-addressed)" end,
S" from {about_pointer:$(sprint(show, UInt64(mem.ptr)))} to {about_pointer:$(sprint(show, UInt64(mem.ptr + mem.length * sizeof(T))))}.")
vecbytes(io, mem)
end
end
# ------------------
# Char/String
# ------------------
function memorylayout(io::IO, char::Char)
chunks = reinterpret(NTuple{4, UInt8}, reinterpret(UInt32, char) |> hton)
get(io, :compact, false) || print(io, "\n ")
nchunks = something(findlast(!iszero, chunks), 1)
byte0leading = [1, 3, 4, 5][nchunks]
ucodepoint = if Base.isoverlong(char)
Base.decode_overlong(char)
else
codepoint(char)
end
bit_spreads =
[[3, 4],
[3, 4, 4],
[4, 4, 4, 4],
[1, 4, 4, 4, 4, 4]
][nchunks]
ubytes = collect(uppercase(string(
ucodepoint, base=16, pad = length(bit_spreads))))
overlong_bytes = if Base.isoverlong(char)
1:min(something(findfirst(==('1'), ubytes), length(ubytes)) - 1,
length(ubytes) - 2)
else 1:0 end
chunk_coloring = [Pair{UnitRange{Int}, Symbol}[] for _ in 1:length(chunks)]
ustr = S"{bold:U+$(lpad(join(ubytes), 4, '0'))}"
for (i, b, color) in zip(1:length(ubytes),
collect(eachindex(ustr))[end-length(ubytes)+1:end],
Iterators.cycle(Iterators.reverse(FACE_CYCLE)))
if i in overlong_bytes
color = :error # overlong
end
face!(ustr[b:b], color)
end
if get(io, :compact, false) == true
print(io, ustr, ' ')
else let
current_bit = byte0leading
print(io, ' '^byte0leading)
for (i, ubyte, nbits, color) in zip(1:length(ubytes), ubytes, bit_spreads,
Iterators.cycle(Iterators.reverse(FACE_CYCLE)))
if i in overlong_bytes
color = :error # overlong
end
does_byte_jump = current_bit ÷ 8 < (current_bit + nbits) ÷ 8
clean_jump = does_byte_jump && (current_bit + nbits) % 8 == 0
next_bit = current_bit + nbits + does_byte_jump * 2
width = nbits + 3 * (does_byte_jump && !clean_jump)
byte_brace = if width <= 2
lpad(ubyte, width)
else
'┌' * cpad(ubyte, width-2, '─') * '┐'
end
print(io, S"{$color:$byte_brace}")
clean_jump && print(io, " ")
if does_byte_jump && !clean_jump
push!(chunk_coloring[1 + current_bit ÷ 8], (1 + current_bit % 8):8 => color)
push!(chunk_coloring[1 + next_bit ÷ 8], 3:mod1(next_bit, 8) => color)
else
push!(chunk_coloring[1 + current_bit ÷ 8],
(1 + current_bit % 8):mod1(current_bit + nbits, 8) => color)
end
current_bit = next_bit
end
print(io, "\n ")
end end
for (i, (chunk, coloring)) in enumerate(zip(chunks, chunk_coloring))
cbits = bitstring(chunk)
cstr = if i > nchunks
S"{shadow:$cbits}"
else
leadingbits = if i == 1; byte0leading else 2 end
leading = cbits[1:leadingbits]
rest = AnnotatedString(cbits[leadingbits+1:end])
for (; match) in eachmatch(r"1+", rest)
face!(match, :underline)
end
cstr = S"{shadow:$leading}$rest"
for (range, color) in coloring
face!(cstr, range, color)
end
cstr
end
print(io, cstr, ' ')
end
if get(io, :compact, false) != true
println(io)
for chunk in chunks
byte = lpad(string(chunk, base=16), 2, '0')
print(io, S" {shadow:└─0x$(byte)─┘}")
end
print(io, "\n = ", ustr)
Base.isoverlong(char) && print(io, S" {error:[overlong]}")
println(io)
end
end
const CONTROL_CHARACTERS =
('\x00' => ("NULL", "Null character", "Originally the code of blank paper tape and used as padding to slow transmission. Now often used to indicate the end of a string in C-like languages."),
'\x01' => ("SOH", "Start of Heading", ""),
'\x02' => ("SOT", "Start of Text", ""),
'\x03' => ("ETX", "End of Text", ""),
'\x04' => ("EOT", "End of Transmission", ""),
'\x05' => ("ENQ", "Enquiry", "Trigger a response at the receiving end, to see if it is still present."),
'\x06' => ("ACK", "Acknowledge", "Indication of successful receipt of a message."),
'\x07' => ("BEL", "Bell", "Call for attention from an operator."),
'\x08' => ("HBS", "Backspace", "Move one position leftwards. Next character may overprint or replace the character that was there."),
'\x09' => ("HT", "Horizontal Tab", "Move right to the next tab stop."),
'\x0a' => ("LF", "Line Feed", "Move down to the same position on the next line (some devices also moved to the left column)."),
'\x0b' => ("VT", "Vertical Tab", "Move down to the next vertical tab stop. "),
'\x0c' => ("FF", "Form Feed", "Move down to the top of the next page. "),
'\x0d' => ("CR", "Carriage Return", "Move to column zero while staying on the same line."),
'\x0e' => ("SO", "Shift Out", "Switch to an alternative character set."),
'\x0f' => ("SI", "Shift In", "Return to regular character set after SO."),
'\x10' => ("DLE", "Data Link Escape", "Cause a limited number of contiguously following characters to be interpreted in some different way."),
'\x11' => ("DC1", "Device Control One (XON)", "Used by teletype devices for the paper tape reader and tape punch. Became the de-facto standard for software flow control, now obsolete."),
'\x12' => ("DC2", "Device Control Two", "Used by teletype devices for the paper tape reader and tape punch. Became the de-facto standard for software flow control, now obsolete."),
'\x13' => ("DC3", "Device Control Three (XOFF)", "Used by teletype devices for the paper tape reader and tape punch. Became the de-facto standard for software flow control, now obsolete."),
'\x14' => ("DC4", "Device Control Four", "Used by teletype devices for the paper tape reader and tape punch. Became the de-facto standard for software flow control, now obsolete."),
'\x15' => ("NAK", "Negative Acknowledge", "Negative response to a sender, such as a detected error. "),
'\x16' => ("SYN", "Synchronous Idle", "A transmission control character used by a synchronous transmission system in the absence of any other character (idle condition) to provide a signal from which synchronism may be achieved or retained between data terminal equipment."),
'\x17' => ("ETB", "End of Transmission Block", "End of a transmission block of data when data are divided into such blocks for transmission purposes."),
'\x18' => ("CAN", "Cancel", "A character, or the first character of a sequence, indicating that the data preceding it is in error. As a result, this data is to be ignored. The specific meaning of this character must be defined for each application and/or between sender and recipient."),
'\x19' => ("EM", "End of Medium", "Indicates on paper or magnetic tapes that the end of the usable portion of the tape had been reached."),
'\x1a' => ("SUB", "Substitute/Control-Z", "A control character used in the place of a character that has been found to be invalid or in error. SUB is intended to be introduced by automatic means."),
'\x1b' => ("ESC", "Escape", "A control character which is used to provide additional control functions. It alters the meaning of a limited number of contiguously following bit combinations. The use of this character is specified in ISO-2022."),
'\x1c' => ("FS", "File Separator", "Used to separate and qualify data logically; its specific meaning has to be specified for each application. If this character is used in hierarchical order, it delimits a data item called a file. "),
'\x1d' => ("GS", "Group Separator", "Used to separate and qualify data logically; its specific meaning has to be specified for each application. If this character is used in hierarchical order, it delimits a data item called a group."),
'\x1e' => ("RG", "Record Separator", "Used to separate and qualify data logically; its specific meaning has to be specified for each application. If this character is used in hierarchical order, it delimits a data item called a record."),
'\x1f' => ("US", "Unit Separator", "Used to separate and qualify data logically; its specific meaning has to be specified for each application. If this character is used in hierarchical order, it delimits a data item called a unit."),
'\x7f' => ("DEL", "Delete", "Originally used to delete characters on punched tape by punching out all the holes."))
function elaboration(io::IO, char::Char)
c0index = findfirst(c -> first(c) == char, CONTROL_CHARACTERS)
stychr = S"{julia_char:$(sprint(show, char))}"
if !isnothing(c0index)
cshort, cname, cinfo = last(CONTROL_CHARACTERS[c0index])
println(io, "\n Control character ", stychr, ": ", cname, " ($cshort)",
ifelse(isempty(cinfo), "", "\n "), cinfo)
elseif isascii(char)
kind = if char in 'a':'z'
"lowercase letter"
elseif char in 'A':'Z'
"uppercase letter"
elseif char in '0':'9'
"numeral"
elseif char == ' '
"space"
elseif char in ('(', ')', '[', ']', '{', '}', '«', '»')
"parenthesis"
elseif char in ('!':'/'..., ':':'@'..., '\\', '^', '_', '`', '|', '~')
"punctuation"
end
println(io, "\n ASCII $kind ", stychr)
elseif char in ('Ç':'ø'..., 'Ø', 'á':'Ñ'..., 'Á':'À', 'ã', 'Ã', 'ð':'Ï'..., 'Ó':'Ý')
println(io, "\n Extended ASCII accented letter ", stychr,
S" ({julia_number:0x$(string(UInt8(char), base=16))})")
elseif Base.isoverlong(char)
elseif codepoint(char) in 128:255
println(io, "\n Extended ASCII symbol ", stychr,
S" ({shadow:0x$(string(Int(char), base=16))})")
else
catstr = Base.Unicode.category_string(char)
catabr = Base.Unicode.category_abbrev(char)
println(io, S"\n Unicode $stychr, category: $catstr ($catabr)")
end
end
function elaboration(io::IO, str::String)
charfreq = Dict{Char, Int}()
for char in str
charfreq[char] = get(charfreq, char, 0) + 1
end
charset_index =
maximum(c -> if Int(c) < 127; 2
elseif Int(c) < 255; 3
else 4 end,
keys(charfreq),
init = 1)
charset = ["None", "ASCII", "Extended ASCII", "Unicode"][charset_index]
println(io, S" {emphasis:•} Character set: {emphasis:$charset}")
control_character_counts = map(
c -> get(charfreq, first(c), 0), CONTROL_CHARACTERS)
if !all(iszero, control_character_counts)
println(io, S" {emphasis:•} Contains \
{about_count:$(sum(control_character_counts))} \
instances of {about_count:$(sum(>(0), control_character_counts))} \
control characters:")
for ((char, info), count) in zip(CONTROL_CHARACTERS, control_character_counts)
count > 0 &&
println(io, S" {emphasis:∗} {julia_char:$(sprint(show, char))} ({about_count:$count}): $(join(info, ' '))")
end
end
if startswith(str, '\ufeff')
println(io, S" {emphasis:•} Prefixed by BOM (byte-order mark)")
end
vecbytes(io, codeunits(str),
eltext = "codepoint", elshowfn = (io, c) -> show(io, Char(c)),
bitcolour = true, bytevals = false)
end
# TODO struct
| About | https://github.com/tecosaur/About.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 1236 | ### This is a validation test
### the objective is to show that KPLS can easily fit any curve using the same matrix
### If not, the regressor could be wrong
### Example extracted from a python KPLS implementation: https://github.com/jhumphry/regressions/blob/master/examples/kpls_example.py
using PLSRegressor
using Gadfly
import Random
Random.seed!(1)
z(x) = 4.26 * (exp.(-x) - 4 * exp.(-2.0*x) + 3 * exp.(-3.0*x))
x_values = range(0.0,step=3.5,length=100)
z_pure = z(x_values)
noise = randn(100)
z_noisy = z_pure + noise
X = collect(x_values)[:,:]
Y = z_noisy[:,:] #z_pure
global min_mae = 10
global best_pred
global best_w = 10
global best_g = 10
for g in [1,2], w in range(0.01,step=3,length=10)
print(".")
model = PLSRegressor.fit(X,Y,centralize=true,nfactors=g,kernel="rbf",width=w)
Y_pred = PLSRegressor.predict(model,X)
mae = mean(abs.(Y .- Y_pred))
if mae < min_mae
min_mae = mae
best_pred = Y_pred[:]
best_g = g
best_w = w
end
end
print("[KPLS] min mae error : $(min_mae)")
print("[KPLS] best factor : $(best_g)")
print("[KPLS] best width : $(best_w)")
plot([Y,best_pred ], x=Row.index, y=Col.value, color=Col.index, Geom.line)
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 1522 | using MultivariateStats
using PLSRegressor
const defdir = PLSRegressor.dir("datasets")
function gethousingdata(dir, filename)
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data"
mkpath(dir)
path = download(url, "$(defdir)/$filename")
end
function loaddata(test=0.1)
filename = "housing.data"
file = "$(defdir)/$filename"
isfile("$(defdir)/$filename") || gethousingdata(defdir, filename)
data = readdlm(file)
nfeatures = size(data)[2] - 1
target_idx = size(data)[2]
x = data[:, 1:nfeatures]
y = data[:, target_idx:target_idx]
if test == 0
xtrn = xtst = x
ytrn = ytst = y
else
r = randperm(size(x,1)) # trn/tst split
n = round(Int, (1-test) * size(x,1))
xtrn=x[r[1:n], :]
ytrn=y[r[1:n], :]
xtst=x[r[n+1:end], :]
ytst=y[r[n+1:end], :]
end
(xtrn, [ytrn...], xtst, [ytst...])
end
(xtrn, ytrn, xtst, ytst) = loaddata()
model = PLSRegressor.fit(xtrn, ytrn, nfactors = 3)
pred = PLSRegressor.predict(model, xtst)
println("[PLS] mae error :", mean(abs.(ytst .- pred)))
# linear least squares from MultiVariateStats
sol = llsq(xtrn, ytrn)
a, b = sol[1:end-1], sol[end]
yp = xtst * a + b
println("[LLS] mae error :",mean(abs.(ytst .- yp)))
### if you want to save or load model use this
#PLSRegressor.save(model,filename="/tmp/pls_model.jld",modelname="pls_model")
#model = PLSRegressor.load(filename="/tmp/pls_model.jld",modelname="pls_model")
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 272 | # Partial Least Squares (PLS1 and PLS2 NIPALS version)
module PLSRegressor
using JLD
include("utils.jl")
include("types.jl")
include("pls1.jl")
include("pls2.jl")
include("kpls.jl")
include("method.jl")
dir(path...) = joinpath(dirname(dirname(@__FILE__)),path...)
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 3833 | using LinearAlgebra
# A gaussian kernel function
@inline function Φ(x::Vector{T},
y::Vector{T},
r::T=1.0) where T<:AbstractFloat
n = 1.0 / sqrt(2π*r)
s = 1.0 / (2r^2)
return n*exp(-s*sum((x.-y).^2))
end
# A kernel matrix
function ΦΦ(X::AbstractArray{T},
r::T=1.0) where T<:AbstractFloat
n = size(X,1)
K = zeros(n,n)
for i=1:n
for j=1:i
K[i, j] = Φ(X[i, :], X[j, :],r)
K[j, i] = K[i, j]
end
K[i, i] = Φ(X[i, :], X[i, :],r)
end
K
end
# A kernel matrix for test data
function ΦΦ(X::AbstractArray{T},
Z::AbstractArray{T},
r::T=1.0) where T<:AbstractFloat
(nx,mx) = size(X)
(nz,mz) = size(Z)
K = zeros(T,nz, nx)
for i=1:nz
for j=1:nx
K[i, j] = Φ(Z[i, :], X[j, :],r)
end
end
K
end
## the learning algorithm: KPLS2 - multiple targets
function trainer(model::KPLSModel{T},
X::AbstractArray{T},
Y::AbstractArray{T};
ignore_failures = true,
tol = 1e-6,
max_iterations = 250
) where T<:AbstractFloat
kernel,width = model.kernel,model.width
Y = Y[:,:]
model.ntargetcols = size(Y,2)
nfactors = model.nfactors
n = size(X,1)
Tj = zeros(T,n, nfactors)
Q = zeros(T,model.ntargetcols, nfactors)
U = zeros(T,n, nfactors)
P = zeros(T,n, nfactors)
K = ΦΦ(X,width)
# centralize kernel
c = Matrix{Float64}(I, n, n) - ones(Float64,n,n).*1.0/n
K = c * K * c
K_j = K[:,:]
for j=1:nfactors
u = Y[:,1]
iteration_count = 0
iteration_change = tol * 10.0
local w,t,q,old_u
while iteration_count < max_iterations && iteration_change > tol
w = K * u
t = w / norm(w, 2)
q = Y' * t
old_u = u
u = Y * q
u /= norm(u, 2)
iteration_change = norm(u - old_u)
iteration_count += 1
end
if iteration_count >= max_iterations
if ignore_failures
nfactors = j
warn("KPLS: Found with less factors. Overall factors = $(nfactors)")
break
else
error("KPLS: failed to converge for component: $(nfactors+1)")
end
end
Tj[:, j] = t
Q[:, j] = q
U[:, j] = u
P[:, j] = (K_j' * w) / (w'w)
deflator = Matrix{Float64}(I, n, n) .- t'*t
K_j = deflator * K_j * deflator
Y = Y - t * q'
end
# If iteration stopped early because of failed convergence, only
# the actual components will be copied
Tj = Tj[:, 1:nfactors]
Q = Q[:, 1:nfactors]
U = U[:, 1:nfactors]
#P = P[:, 1:nfactors]
model.nfactors = nfactors
model.X = X # unfortunately it is necessary on the prediction phase
model.K = K # unfortunately it is necessary on the prediction phase
try
model.B = U * inv(Tj' * K * U) * Q'
catch
error("KPLS: Not able to compute inverse.
Maybe nfactors is greater than ncols of input data (X) or
this matrix is not invertible.
")
end
return model
end
function predictor(model::KPLSModel{T},
Z::AbstractArray{T}) where T<:AbstractFloat
X,K,B,w = model.X,model.K,model.B,model.width
(nx,mx) = size(X)
(nz,mz) = size(Z)
Kt = ΦΦ(X,Z,w) # kernel matrix
# centralize
c = (1.0 / nx) .* ones(T,nz,nx)
Kt = (Kt - c * K) * (Matrix{T}(I, nx, nx) - (1.0 / nx) .* ones(T,nx,nx))
Y = Kt * B
return Y
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 2413 | ## constants
const NFACT = 10 # default number of factors if it is not informed by the user
"""
fit(X::Matrix{:<AbstractFloat},Y::Vector{:<AbstractFloat}; nfactors::Int=10,copydata::Bool=true,centralize::Bool=true,kernel="",width=1.0)
A Partial Least Squares learning algorithm.
# Arguments
- `nfactors::Int = 10`: The number of latent variables to explain the data.
- `copydata::Bool = true`: If you want to use the same input matrix or a copy.
- `centralize::Bool = true`: If you want to z-score columns. Recommended if not z-scored yet.
- `kernel::AbstractString = "gaussian"`: If you want to apply a nonlinear PLS with gaussian Kernel.
- `width::AbstractFloat = 1.0`: Gaussian Kernel width (Only if kernel="gaussian").
"""
function fit(X::AbstractArray{T},
Y::AbstractArray{T};
nfactors::Int = NFACT,
copydata::Bool = true,
centralize::Bool = true,
kernel = "linear",
width = 1.0) where T<:AbstractFloat
X = X[:,:]
check_constant_cols(X)
check_constant_cols(Y)
check_params(nfactors, size(X,2),kernel)
check_data(X, Y)
Xi = (copydata ? deepcopy(X) : X)
Yi = (copydata ? deepcopy(Y) : Y)
if kernel == "rbf"
model = Model(Xi,Yi,
nfactors,
centralize,
kernel,
width)
else
model = Model(Xi,Yi,
nfactors,
centralize)
end
Xi = (centralize ? centralize_data(Xi,model.mx,model.sx) : Xi)
Yi = (centralize ? centralize_data(Yi,model.my,model.sy) : Yi)
model.centralize = (centralize ? true : false)
trainer(model,Xi,Yi)
return model
end
"""
transform(model::PLSRegressor.Model; X::Matrix{:<AbstractFloat}; copydata::Bool=true)
A Partial Least Squares predictor.
# Arguments
- `copydata::Bool = true`: If you want to use the same input matrix or a copy.
"""
function predict(model::PLSModel{T},
X::AbstractArray{T};
copydata::Bool=true) where T<:AbstractFloat
X = X[:,:]
check_data(X,model.nfeatures)
Xi = (copydata ? deepcopy(X) : X)
Xi = (model.centralize ? centralize_data(Xi,model.mx,model.sx) : Xi)
Yi = predictor(model,Xi)
Yi = decentralize_data(Yi,model.my,model.sy)
return Yi
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 1092 | using LinearAlgebra
## the learning algorithm: PLS1 - single target
function trainer(model::PLS1Model{T},
X::AbstractArray{T}, Y::Vector{T}) where T<:AbstractFloat
W,b,P = model.W,model.b,model.P
nfactors = model.nfactors
for i = 1:nfactors
W[:,i] = X'Y
W[:,i] /= norm(W[:,i])#sqrt.(W[:,i]'*W[:,i])
R = X*W[:,i]
Rn = R'/(R'R) # change to use function...
P[:,i] = Rn*X
b[i] = Rn * Y
if abs(b[i]) <= 1e-3
print("PLS1 converged. No need learning with more than $(i) factors")
model.nfactors = i
break
end
X = X - R * P[:,i]'
Y = Y - R * b[i]
end
return model
end
function predictor(model::PLS1Model{T},
X::AbstractArray{T}) where T<:AbstractFloat
W,b,P = model.W,model.b,model.P
nfactors = model.nfactors
nrows = size(X,1)
Y = zeros(T,nrows)
for i = 1:nfactors
R = X*W[:,i]
Y = Y + R*b[i]
X = X - R*P[:,i]'
end
return Y
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 1635 | using LinearAlgebra
## the learning algorithm: PLS2 - multiple targets
function trainer(model::PLS2Model{T},
X::AbstractArray{T}, Y::Matrix{T}) where T<:AbstractFloat
W,b,P,Q = model.W,model.b,model.P,model.Q
model.ntargetcols = size(Y,2)
nfactors = model.nfactors
for i = 1:nfactors
b[:,i] = Y[:,1] #u: arbitrary col. Thus, I set to the first.
Rold = b[:,i]
local R::Vector{T}
while true
W[:,i] = X'b[:,i]
W[:,i] /= norm(W[:,i])#sqrt.(W[:,i]'*W[:,i])
R = X*W[:,i]
Rold = R
Q[:,i] = Y'R
Q[:,i] /= norm(Q[:,i])
b[:,i] = Y*Q[:,i]
if all(abs.(R - Rold) .<= 1.0e-3)
break
end
end
Rn = R'/(R'R) # change to use function...
P[:,i] = Rn*X
X = X - R * P[:,i]'
c = Rn'b[:,i:i]'./(R'R)
Yp = c*R*Q[:,i]'
Y = Y - Yp
if all(abs.(Y - Yp) .<= 1.0e-3)
print("PLS2 converged. No need learning with more than $(i) factors")
model.nfactors = i
return model
end
end
return model
end
function predictor(model::PLS2Model{T},
X::AbstractArray{T}) where T<:AbstractFloat
W,Q,P = model.W,model.Q,model.P
nfactors = model.nfactors
Y = zeros(T,size(X,1),model.ntargetcols)
#println("nfactors: ",nfactors)
for i = 1:nfactors
R = X*W[:,i]
X = X - R * P[:,i]'
Y = Y + R * Q[:,i]'
end
return Y
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 5823 | #### Libs
using Statistics
#### Constants
const MODEL_FILENAME = "pls_model.jld" # jld filename for storing the model
const MODEL_ID = "pls_model" # if od the model in the filesystem jld data
#### An abstract pls model
abstract type PLSModel{T} end
#### PLS1 type
mutable struct PLS1Model{T<:AbstractFloat} <:PLSModel{T}
W::Matrix{T} # a set of vectors representing correlation weights of input data (X) with the target (Y)
b::Matrix{T} # a set of scalar values representing a latent value for dependent variables or target (Y)
P::Matrix{T} # a set of latent vetors for the input data (X)
nfactors::Int # a scalar value representing the number of latent variables
mx::Matrix{T} # mean stat after for z-scoring input data (X)
my::T # mean stat after for z-scoring target data (Y)
sx::Matrix{T} # standard deviation stat after z-scoring input data (X)
sy::T # standard deviation stat after z-scoring target data (X)
nfeatures::Int # number of input (X) features columns
centralize::Bool # store information of centralization of data. if true, tehn it is passed to transform function
end
## PLS1: constructor
function Model(X::Matrix{T},
Y::Vector{T},
nfactors::Int,
centralize::Bool) where T<:AbstractFloat
(nrows,ncols) = size(X)
## Allocation
return PLS1Model(zeros(T,ncols,nfactors), ## W
zeros(T,1,nfactors), ## b
zeros(T,ncols,nfactors), ## P
nfactors,
mean(X,dims=1),
mean(Y),
std(X,dims=1),
std(Y),
ncols,
centralize)
end
########################################################################################
#### PLS2 type
mutable struct PLS2Model{T<:AbstractFloat} <:PLSModel{T}
W::Matrix{T} # a set of vectors representing correlation weights of input data (X) with the target (Y)
Q::Matrix{T} #
b::Matrix{T} # a set of scalar values representing a latent value for dependent variables or target (Y)
P::Matrix{T} # a set of latent vetors for the input data (X)
nfactors::Int # a scalar value representing the number of latent variables
mx::Matrix{T} # mean stat after for z-scoring input data (X)
my::Matrix{T} # mean stat after for z-scoring target data (Y)
sx::Matrix{T} # standard deviation stat after z-scoring input data (X)
sy::Matrix{T} # standard deviation stat after z-scoring target data (X)
nfeatures::Int # number of input (X) features columns
ntargetcols::Int # number of target (Y) columns
centralize::Bool # store information of centralization of data. if true, tehn it is passed to transform function
end
## PLS2: constructor
function Model(X::Matrix{T},
Y::Matrix{T}, # this is the diference from PLS1 param constructor!
nfactors::Int,
centralize::Bool) where T<:AbstractFloat
(nrows,ncols) = size(X)
(n,m) = size(Y)
## Allocation
return PLS2Model(zeros(T,ncols,nfactors), ## W
zeros(T,m,nfactors), ## Q
zeros(T,n,nfactors), ## b
zeros(T,ncols,nfactors), ## P
nfactors,
mean(X,dims=1),
mean(Y,dims=1),
std(X,dims=1),
std(Y,dims=1),
ncols,
m,
centralize)
end
################################################################################
#### KPLS type
mutable struct KPLSModel{T<:AbstractFloat} <:PLSModel{T}
X::Matrix{T} # Training set
K::Matrix{T} # Kernel matrix
B::Matrix{T} # Regression matrix
nfactors::Int # a scalar value representing the number of latent variables
mx::Matrix{T} # mean stat after for z-scoring input data (X)
my::AbstractArray{T} # mean stat after for z-scoring target data (Y)
sx::Matrix{T} # standard deviation stat after z-scoring input data (X)
sy::AbstractArray{T} # standard deviation stat after z-scoring target data (X)
nfeatures::Int # number of input (X) features columns
ntargetcols::Int # number of target (Y) columns
centralize::Bool # store information of centralization of data. if true, tehn it is passed to transform function
kernel::AbstractString
width::Float64
end
## KPLS: constructor
function Model(X::Matrix{T},
Y::AbstractArray{T}, # this is the diference from PLS1 param constructor!
nfactors::Int,
centralize::Bool,
kernel::String,
width::Float64) where T<:AbstractFloat
(nrows,ncols) = size(X)
(n,m) = size(Y[:,:])
## Allocation
return KPLSModel(zeros(T,nrows,ncols), ## X
zeros(T,nrows,nrows), ## K
zeros(T,ncols,m), ## B
nfactors,
mean(X,dims=1),
mean(Y,dims=1),
std(X,dims=1),
std(Y,dims=1),
ncols,
m,
centralize,
kernel,
width)
end
######################################################################################################
## Load and Store models (good for production)
function load(; filename::AbstractString = MODEL_FILENAME, modelname::AbstractString = MODEL_ID)
local M
jldopen(filename, "r") do file
M = read(file, modelname)
end
M
end
function save(M::PLSModel; filename::AbstractString = MODEL_FILENAME, modelname::AbstractString = MODEL_ID)
jldopen(filename, "w") do file
write(file, modelname, M)
end
end
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 2113 |
## Auxiliary functions
## checks PLS input data and params
## checks PLS input data and params
function check_data(X::Matrix{T},Y::Union{Vector{T},Matrix{T}}) where T<:AbstractFloat
!isempty(X) ||
throw(DimensionMismatch("Empty input data (X)."))
!isempty(Y) ||
throw(DimensionMismatch("Empty target data (Y)."))
size(X, 1) == size(Y, 1) ||
throw(DimensionMismatch("Incompatible number of rows of input data (X) and target data (Y)."))
end
function check_data(X::Matrix{T},nfeatures::Int) where T<:AbstractFloat
!isempty(X) ||
throw(DimensionMismatch("Empty input data (X)."))
size(X, 2) == nfeatures ||
throw(DimensionMismatch("Incompatible number of columns of input data (X) and original training X columns."))
end
function check_params(nfactors::Int, ncols::Int, kernel::AbstractString)
nfactors >= 1 || error("nfactors must be a positive integer.")
nfactors <= ncols || warn("nfactors greater than ncols of input data (X) must generate numerical problems. However, can improve results if ok.")
kernel == "rbf" || kernel == "linear" || error("kernel must be kernel='linear' or 'kernel=rbf'")
end
## checks constant columns
check_constant_cols(X::Matrix{T}) where {T<:AbstractFloat} = size(X,1)>1 && !any(all(X .== X[1,:]',dims=1)) || error("You must remove constant columns of input data (X) before train")
check_constant_cols(Y::Vector{T}) where {T<:AbstractFloat} = length(Y)>1 && length(unique(Y)) > 1 || error("Your target values are constant. All values are equal to $(Y[1])")
## Preprocessing data using z-score statistics. this is due to the fact that if X and Y are z-scored, than X'Y returns for W vector a pearson correlation for each element! :)
centralize_data(D::Matrix{T}, m::Matrix{T}, s::Matrix{T}) where {T<:AbstractFloat} = (D .-m)./s
centralize_data(D::Vector{T}, m::T, s::T) where {T<:AbstractFloat} = (D .-m)./s
decentralize_data(D::Matrix{T}, m::Matrix{T}, s::Matrix{T}) where {T<:AbstractFloat} = D .*s .+m
decentralize_data(D::Vector{T}, m::T, s::T) where {T<:AbstractFloat} = D .*s .+m
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 2895 | using Statistics
using LinearAlgebra
import Random
@testset "KPLS Pediction Tests (in sample)" begin
@testset "Test KPLS Single Non Linear Target" begin
Random.seed!(1)
z(x) = 4.26 * (exp.(-x) - 4 * exp.(-2.0*x) + 3 * exp.(-3.0*x))
x_values = Array(range(0.0,step=3.5,length=100))
z_pure = z(x_values)
noise = Random.randn(100)
z_noisy = z_pure + noise
X = collect(x_values)[:,:]
Y = z_noisy[:,:] #z_pure
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-2
end
@testset "Test KPLS Single Target (Linear Target)" begin
X = [1 2; 2 4; 4.0 6][:,:]
Y = [-2; -4; -6.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
X = [1 2; 2 4; 4.0 6][:,:]
Y = [2; 4; 6.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
end
@testset "Test KPLS Multiple Target (Linear Target)" begin
X = [1; 2; 3.0][:,:]
Y = [1 1; 2 2; 3 3.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
X = [1; 2; 3.0][:,:]
Y = [1 -1; 2 -2; 3 -3.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
@testset "Linear Prediction Tests " begin
X = [1 2; 2 4; 4 6.0][:,:]
Y = [4 2;6 4;8 6.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
X = [1 -2; 2 -4; 4 -6.0][:,:]
Y = [-4 -2;-6 -4;-8 -6.0][:,:]
model = PLSRegressor.fit(X,Y,nfactors=1,kernel="rbf",width=0.01)
Y_pred = PLSRegressor.predict(model,X)
@test mean(abs.(Y .- Y_pred)) < 1e-6
end
end
end;
### not saving yeat.
@testset "Test Saving and Loading KPLS Models" begin
Xtr = [1 -2; 2 -4; 4.0 -6]
Ytr = [-2; -4; -6.0][:,:]
Xt = [6 -8; 8 -10; 10.0 -12]
model1 = PLSRegressor.fit(Xtr,Ytr,nfactors=1,kernel="rbf",width=0.01)
pred1 = PLSRegressor.predict(model1,Xt)
PLSRegressor.save(model1)
model2 = PLSRegressor.load()
pred2 = PLSRegressor.predict(model2,Xt)
rm(PLSRegressor.MODEL_FILENAME)
@test all(pred1 .== pred2)
end;
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 3115 | @testset "Test Saving and Loading PLS1 Models" begin
Xtr = [1 -2; 2 -4; 4.0 -6]
Ytr = [-2; -4; -6.0]
Xt = [6 -8; 8 -10; 10.0 -12]
model1 = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred1 = PLSRegressor.predict(model1,Xt)
PLSRegressor.save(model1)
model2 = PLSRegressor.load()
pred2 = PLSRegressor.predict(model2,Xt)
rm(PLSRegressor.MODEL_FILENAME)
@test all(pred1 .== pred2)
end
@testset "PLS1 Pediction Tests (in sample)" begin
@testset "Single Column Prediction Test" begin
X = [1; 2; 3.0][:,:]
Y = [1; 2; 3.0]
model = PLSRegressor.fit(X,Y,nfactors=1)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[1; 2; 3.0])
end
@testset "Constant Values Prediction Tests (Ax + b) | A=0, b=1 " begin
X = [1 3;2 1;3 2.0]
Y = [1; 1; 1.0]
try
PLSRegressor.fit(X,Y,nfactors=2)
catch
@test true
end
end
@testset "Linear Prediction Tests " begin
X = [1 2; 2 4; 4.0 6]
Y = [2; 4; 6.0]
model = PLSRegressor.fit(X,Y,nfactors=2)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[2; 4; 6.0])
X = [1 -2; 2 -4; 4.0 -6]
Y = [-2; -4; -6.0]
model = PLSRegressor.fit(X,Y,nfactors=2)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[-2; -4; -6.0])
end
@testset "Linear Prediction Tests (Ax + b)" begin
Xtr = [1 2; 2 4; 4.0 6]
Ytr = [2; 4; 6.0]
Xt = [6 8; 8 10; 10.0 12] # same sample
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8; 10; 12.0])
Xtr = [1 2; 2 4.0; 4.0 6; 6 8]
Ytr = [2; 4; 6.0; 8]
Xt = [1 2; 2 4.0] # a subsample
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2,centralize=true)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[2; 4])
end
end;
@testset "PLS1 Pediction Tests (out of sample)" begin
@testset "Linear Prediction Tests (Ax + b) | A>0" begin
Xtr = [1 2; 2 4; 4.0 6]
Ytr = [2; 4; 6.0]
Xt = [6 8; 8 10; 10.0 12]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8; 10; 12.0])
Xtr = [1 2; 2 4; 4.0 6]
Ytr = [4; 6; 8.0]
Xt = [6 8; 8 10; 10.0 12]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[10; 12; 14.0])
end
@testset "Linear Prediction Tests (Ax + b) | A<0" begin
Xtr = [1 -2; 2 -4; 4.0 -6]
Ytr = [-2; -4; -6.0]
Xt = [6 -8; 8 -10; 10.0 -12]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[-8; -10; -12.0])
Xtr = [1 -2; 2 -4; 4.0 -6]
Ytr = [-4; -6; -8.0]
Xt = [6 -8; 8 -10; 10.0 -12]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[-10; -12; -14.0])
end
end;
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 2658 |
@testset "Test Saving and Loading PLS2 Models" begin
Xtr = [1 2;2 4;3 6;6 12;7 14.0]
Ytr = [2 2;4 4;6 6;12 12;14 14.0]
Xt = [4 8;5 10.0]
model1 = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred1 = PLSRegressor.predict(model1,Xt)
PLSRegressor.save(model1)
model2 = PLSRegressor.load()
pred2 = PLSRegressor.predict(model2,Xt)
rm(PLSRegressor.MODEL_FILENAME)
@test all(pred1 .== pred2)
end
@testset "PLS2 Prediction Tests (in sample)" begin
@testset "Single Column Prediction Test" begin
X = [1; 2; 3.0]
Y = [1 1; 2 2; 3 3.0]
model = PLSRegressor.fit(X,Y,nfactors=1)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[1 1; 2 2; 3 3.0])
end
@testset "Constant Values Prediction Tests (Ax + b) | A=0, b=1 " begin
X = [1 3;2 1;3 2.0]
Y = [1 1; 1 1; 1 1.0]
try
PLSRegressor.fit(X,Y,nfactors=2)
catch
@test true
end
end
@testset "Linear Prediction Tests " begin
X = [1 2; 2 4; 4 6.0]
Y = [4 2;6 4;8 6.0]
model = PLSRegressor.fit(X,Y,nfactors=2)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[4 2;6 4;8 6.0])
X = [1 -2; 2 -4; 4 -6.0]
Y = [-4 -2;-6 -4;-8 -6.0]
model = PLSRegressor.fit(X,Y,nfactors=2)
pred = PLSRegressor.predict(model,X)
@test isequal(round.(pred),[-4 -2;-6 -4;-8 -6.0])
end
end
@testset "PLS2 Pediction Tests (out of sample)" begin
@testset "Linear Prediction Tests (Ax + b) | A>0" begin
Xtr = [1 2;2 4;3 6;6 12;7 14.0]
Ytr = [2 2;4 4;6 6;12 12;14 14.0]
Xt = [4 8;5 10.0]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8 8;10 10.0])
Xtr = [1 2;2 4;3 6;6 12;7 14.0]
Ytr = [2 4;4 6;6 8;12 14;14 16.0]
Xt = [4 8;5 10.0]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8 10;10 12.0])
end
@testset "Linear Prediction Tests (Ax + b) | A<0" begin
Xtr = [1 -2;2 -4;3 -6;6 -12;7 -14.0]
Ytr = [2 -2;4 -4;6 -6;12 -12;14 -14.0]
Xt = [4 -8;5 -10.0]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8 -8;10 -10.0])
Xtr = [1 -2;2 -4;3 -6;6 -12;7 -14.0]
Ytr = [2 -4;4 -6;6 -8;12 -14;14 -16.0]
Xt = [4 -8;5 -10.0]
model = PLSRegressor.fit(Xtr,Ytr,nfactors=2)
pred = PLSRegressor.predict(model,Xt)
@test isequal(round.(pred),[8 -10;10 -12.0])
end
end;
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 136 | using PLSRegressor
using Test
include("./pls1_test.jl")
include("./pls2_test.jl")
include("./utils_test.jl")
include("./kpls_test.jl")
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | code | 1542 | using Statistics
@testset "Auxiliary Functions Test" begin
@testset "check constant columns" begin
try
PLSRegressor.check_constant_cols([1.0 1;1 2;1 3])
catch
@test true
end
try
PLSRegressor.check_constant_cols([1.0;1;1][:,:])
catch
@test true
end
try
PLSRegressor.check_constant_cols([1.0 2 3])
catch
@test true
end
try
PLSRegressor.check_constant_cols([1.0; 1; 1][:,:])
catch
@test true
end
@test PLSRegressor.check_constant_cols([1.0 1;2 2;3 3])
@test PLSRegressor.check_constant_cols([1.0;2;3][:,:])
end
@testset "centralize" begin
X = [1; 2; 3.0][:,:]
X = PLSRegressor.centralize_data(X,mean(X,dims=1),std(X,dims=1))
@test all(X .== [-1;0;1.0])
end
@testset "decentralize" begin
Xo = [1; 2; 3.0][:,:]
Xn = [-1;0;1.0][:,:]
Xn = PLSRegressor.decentralize_data(Xn,mean(Xo,dims=1),std(Xo,dims=1))
@test all(Xn .== [1; 2; 3.0])
end
@testset "checkdata" begin
try
PLSRegressor.check_params(2,1,"linear")
catch
@test true
end
try
PLSRegressor.check_params(-1,2,"linear")
catch
@test true
end
try
PLSRegressor.check_params(1,2,"x")
catch
@test true
end
@test PLSRegressor.check_params(1,2,"linear")
end
@testset "checkparams" begin
try
PLSRegressor.check_data(zeros(0,0), 0)
catch
@test true
end
try
PLSRegressor.check_data(zeros(1,1), 10)
catch
@test true
end
@test PLSRegressor.check_data(zeros(1,1), 1)
end
end;
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.1.1 | 7560cbf6518c2891fcaa82d082a974701529d101 | docs | 4939 | PLSRegressor.jl
======
A Partial Least Squares Regressor package. Contains PLS1, PLS2 and Kernel PLS2 NIPALS algorithms.
Can be used mainly for regression. However, for classification task, binarizing targets and then obtaining multiple targets, you can apply KPLS.
| **PackageEvaluator** | **Build Status** |
|:-------------------------------:|:-----------------------------------------:|
| [![][pkg-0.6-img]][pkg-0.6-url] | [![][travis-img]][travis-url] [![][codecov-img]][codecov-url] |
[travis-img]: https://travis-ci.org/lalvim/PLSRegressor.jl.svg?branch=master
[travis-url]: https://travis-ci.org/lalvim/PLSRegressor.jl
[codecov-img]: http://codecov.io/github/lalvim/PLSRegressor.jl/coverage.svg?branch=master
[codecov-url]: http://codecov.io/github/lalvim/PLSRegressor.jl?branch=master
[issues-url]: https://github.com/lalvim/PLSRegressor.jl/issues
[pkg-0.6-img]: http://pkg.julialang.org/badges/PLSRegressor_0.6.svg
[pkg-0.6-url]: http://pkg.julialang.org/?pkg=PLSRegressor&ver=0.6
[pkg-0.7-img]: http://pkg.julialang.org/badges/PLSRegressor_0.7.svg
[pkg-0.7-url]: http://pkg.julialang.org/?pkg=PLSRegressor&ver=0.7
Install
=======
Pkg.add("PLSRegressor")
Using
=====
using PLSRegressor
Examples
========
using PLSRegressor
# learning a single target
X_train = [1 2; 2 4; 4 6.0]
Y_train = [4; 6; 8.0]
X_test = [6 8; 8 10; 10 12.0]
Y_test = [10; 12; 14.0]
model = PLSRegressor.fit(X_train,Y_train,nfactors=2)
Y_pred = PLSRegressor.predict(model,X_test)
print("[PLS1] mae error : $(mean(abs.(Y_test .- Y_pred)))")
# learning multiple targets
X_train = [1 2; 2 4; 4 6.0]
Y_train = [2 4;4 6;6 8.0]
X_test = [6 8; 8 10; 10 12.0]
Y_test = [8 10; 10 12; 12 14.0]
model = PLSRegressor.fit(X_train,Y_train,nfactors=2)
Y_pred = PLSRegressor.predict(model,X_test)
print("[PLS2] mae error : $(mean(abs.(Y_test .- Y_pred)))")
# nonlinear learning with multiple targets
model = PLSRegressor.fit(X_train,Y_train,nfactors=2,kernel="rbf",width=0.1)
Y_pred = PLSRegressor.predict(model,X_test)
print("[KPLS] mae error : $(mean(abs.(Y_test .- Y_pred)))")
# if you want to save your model
PLSRegressor.save(model,filename=joinpath(homedir(),"pls_model.jld"))
# if you want to load back your model
model = PLSRegressor.load(filename=joinpath(homedir(),"pls_model.jld"))
What is Implemented
======
* A fast linear algorithm for single targets (PLS1 - NIPALS)
* A linear algorithm for multiple targets (PLS2 - NIPALS)
* A non linear algorithm for multiple targets (Kernel PLS2 - NIPALS)
What is Upcoming
=======
* Bagging for Kernel PLS
* An automatic validation inside fit function
Method Description
=======
* PLSRegressor.fit - learns from input data and its related single target
* X::Matrix{:<AbstractFloat} - A matrix that columns are the features and rows are the samples
* Y::Vector{:<AbstractFloat} - A vector with float values.
* nfactors::Int = 10 - The number of latent variables to explain the data.
* copydata::Bool = true - If you want to use the same input matrix or a copy.
* centralize::Bool = true - If you want to z-score columns. Recommended if not z-scored yet.
* kernel::AbstractString = "rbf" - use a non linear kernel.
* width::AbstractFloat = 1.0 - If you want to z-score columns. Recommended if not z-scored yet.
* PLSRegressor.transform - predicts using the learnt model extracted from fit.
* model::PLSRegressor.Model - A PLS model learnt from fit.
* X::Matrix{:<AbstractFloat} - A matrix that columns are the features and rows are the samples.
* copydata::Bool = true - If you want to use the same input matrix or a copy.
References
=======
* PLS1 and PLS2 based on
* Bob Collins Slides, LPAC Group. http://vision.cse.psu.edu/seminars/talks/PLSpresentation.pdf
* A Kernel PLS2 based on
* Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space" by Roman Rosipal and Leonard J Trejo. Journal of Machine Learning Research 2 (2001) 97-123 http://www.jmlr.org/papers/volume2/rosipal01a/rosipal01a.pdf
* NIPALS: Nonlinear Iterative Partial Least Squares
* Wold, H. (1966). Estimation of principal components and related models
by iterative least squares. In P.R. Krishnaiaah (Ed.). Multivariate Analysis.
(pp.391-420) New York: Academic Press.
* SIMPLS: more efficient, optimal result
* Supports multivariate Y
* De Jong, S., 1993. SIMPLS: an alternative approach to partial least squares
regression. Chemometrics and Intelligent Laboratory Systems, 18: 251–
263
License
=======
The PLSRegressor.jl is free software: you can redistribute it and/or modify it under the terms of the MIT "Expat"
License. A copy of this license is provided in ``LICENSE.md``
| PLSRegressor | https://github.com/lalvim/PLSRegressor.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 2031 | include("bissection.jl")
include("interp1.jl")
@doc raw"""
`r=refmin(y,X,q)`
`refmin` computes the minimum value of the reflux ratio
of a distillation column
using the McCabe-Thiele method given
a function y = y(x) that relates the liquid fraction x and the vapor fraction y, or
a x-y matrix of the liquid and the vapor fractions,
the vector of the fractions of the distillate and the feed, and
the feed quality.
If feed is a saturated liquid, feed quality q = 1,
feed quality is reset to q = 1 - 1e-10.
See also: `stages`, `qR2S`.
Examples
==========
Compute the minimum value of the reflux ratio
of a distillation column given
a matrix that relates the liquid fraction and the vapor fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %:
```
data=[0. 0.;
0.1 0.212;
0.2 0.384;
0.3 0.529;
0.4 0.651;
0.5 0.752;
0.6 0.833;
0.7 0.895;
0.8 0.942;
0.9 0.974;
1. 1.];
x=[0.88 0.46];
q=0.56;
r=refmin(data,x,q)
```
Compute the minimum value of the reflux ratio
of a distillation column given
the function that compute the vapor fraction given the liquid fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the feed is saturated liquid:
```
y(x)=x.^0.9 .* (1-x).^1.2 + x;
x=[0.88 0.46];
q=1;
r=refmin(y,x,q)
```
"""
function refmin(data, X, q)
xD = X[1]
xF = X[2]
if xD < xF
error("Inconsistent feed and/or products compositions.")
end
if q == 1
q = 1 - 1e-10
end
if isa(data, Matrix)
f(x) = interp1(data[:, 1], data[:, 2], x)
else
f = data
end
foo(x) = f(x) - (q / (q - 1) * x - xF / (q - 1))
xi = bissection(foo, 0.0, 1.0)
yi = q / (q - 1) * xi - xF / (q - 1)
alpha = (xD - yi) / (xD - xi)
alpha / (1 - alpha)
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 704 | @doc raw"""
`McCabeThiele` provides a set of functions to compute
the number of theoretical stages of a distillation column
using the McCabe-Thiele method.
Author: Alexandre Umpierre `[email protected]`
Maintainer's repository: `https://github.com/aumpierre-unb/McCabe-Thiele.jl`
Citation (any version): `DOI 10.5281/zenodo.7126164`
See also: `stages`, `refmin`, `qR2S`, `qS2R`, `RS2q`.
"""
module McCabeThiele
using Plots
using Test
export stages, refmin, qR2S, qS2R, RS2q
include("stages.jl")
include("stages_updown.jl")
include("stages_downup.jl")
include("refmin.jl")
include("qR2S.jl")
include("doplots.jl")
include("bissection.jl")
include("interp1.jl")
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 1248 | @doc raw"""
`RS2q(z::Vector{Float64}, R::Number, S::Number)`
`RS2q` computes the feed quality
of a distillation column
using the McCabe-Thiele method given
the compositions of the products and the feed,
the reflux ratio at the bottom of the column and
the reflux ratio at the top of the column.
If feed is a saturated liquid, feed quality q = 1,
feed quality is reset to q = 1 - 1e-10.
`RS2q` is a main function of
the `McCabeThiele` toolbox for Julia.
See also: `stages`, `refmin`, `qR2S`, `qS2R`.
Examples
==========
Compute the the feed quality given
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the reflux ratio at the top of the column is 2 and
reflux ratio at the bottom of the column is 2.5:
```
x=[0.88;0.46;0.11];
R=2;
S=2.5;
q=RS2q(x,R,S)
```
"""
function RS2q(z::Vector{Float64}, R::Number, S::Number)
xD, xF, xB = z
if xD < xF || xB > xF
error("Inconsistent feed and/or products compositions.")
end
xi = (xB / S + xD / (R + 1)) / ((S + 1) / S - R / (R + 1))
yi = R / (R + 1) * xi + xD / (R + 1)
a = (yi - xF) / (xi - xF)
q = a / (a - 1)
if q == 1
q = 1 - 1e-10
else
q
end
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 438 | @doc raw"""
`bissection` computes computes the root of
a function using the method of bissection
given it is found between the guess values.
`bissection` is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function bissection(f, x1, x2)
while abs(f(x2)) > 1e-4
x = (x1 + x2) / 2
if f(x) * f(x1) > 0
x1 = x
else
x2 = x
end
end
x2
end
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 2093 | using Plots
@doc raw"""
`doplot` produces a x-y diagram with
a representation of the theoretical stages of equilibrium
computed for a distillation column using the
McCabe-Thiele method.
`doplot` is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function doplot(dots, updown, f, x, y, data, X, q, R)
xD, xF, xB, xi, yi = X
plot(xlabel="x",
ylabel="y",
xlims=(0, 1),
ylims=(0, 1),
legend=false,
framestyle=:box,
grid=:true,
minorgrid=:true,
size=(750, 600))
if dots
X = data[:, 1]
Y = data[:, 2]
plot!(X, Y,
seriestype=:line,
color=:black,
markershape=:circle,
markersize=3)
else
X = collect(range(0, 1, length=101))
Y = f.(X)
plot!(X, Y,
seriestype=:line,
color=:black)
end
X = [0; 1]
Y = X
plot!(X, Y,
seriestype=:line,
color=:black,
linestyle=:dash)
Y = R / (1 + R) .* X .+ xD / (1 + R)
plot!(X, Y,
seriestype=:line,
color=:blue,
linestyle=:dashdot)
plot!([xD],
seriestype=:vline,
color=:blue,
linestyle=:dash)
Y = (xB - yi) / (xB - xi) .* (X .- xi) .+ yi
plot!(X, Y,
seriestype=:line,
color=:red,
linestyle=:dashdot)
plot!([xB],
seriestype=:vline,
color=:red,
linestyle=:dash)
if q != 1 - 1e-10
Y = q / (q - 1) .* X .- xF / (q - 1)
plot!(X, Y,
seriestype=:line,
color=:magenta,
linestyle=:dashdot)
end
plot!([xF],
seriestype=:vline,
color=:magenta,
linestyle=:dash)
if updown
plot!(x, y,
seriestype=:steppost,
color=:cyan,
linestyle=:solid)
else
plot!(x, y,
seriestype=:steppre,
color=:cyan,
linestyle=:solid)
end
display(plot!())
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 335 | @doc raw"""
`interp1` computes the interpolation of a number.
`interp1` is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function interp1(X, Y, x)
for i = 1:length(X)-1
if X[i] <= x <= X[i+1]
return (Y[i+1] - Y[i]) / (X[i+1] - X[i]) * (x - X[i]) + Y[i]
end
end
end
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 1266 | @doc raw"""
`qR2S(z::Vector{Float64}, q::Number, R::Number)`
`qR2S` computes the reflux ratio at the bottom
of a distillation column
using the McCabe-Thiele method given
the compositions of the products and the feed,
the feed quality and
the reflux ratio at the top of the column.
If feed is a saturated liquid, feed quality q = 1,
feed quality is reset to q = 1 - 1e-10.
`qR2S` is a main function of
the `McCabeThiele` toolbox for Julia.
See also: `stages`, `refmin`, `qS2R`, `RS2q`.
Examples
==========
Compute the reflux ratio at the bottom of the column given
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the feed is saturated liquid and
the reflux ratio at the top of the column is 2:
```
x=[0.88;0.46;0.11];
q=1;
R=2;
S=qR2S(x,q,R)
```
"""
function qR2S(z::Vector{Float64}, q::Number, R::Number)
xD, xF, xB = z
if xD < xF || xB > xF
error("Inconsistent feed and/or products compositions.")
end
if q == 1
q = 1 - 1e-10
end
xi = (xD / (R + 1) + xF / (q - 1)) / (q / (q - 1) - R / (R + 1))
yi = q / (q - 1) * xi - xF / (q - 1)
a = (yi - xB) / (xi - xB)
1 / (a - 1)
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 1218 | @doc raw"""
`qS2R(z::Vector{Float64}, q::Number, S::Number)`
`qS2R` computes the reflux ratio at the top
of a distillation column
using the McCabe-Thiele method given
the compositions of the products and the feed,
the feed quality and
the reflux ratio at the bottom of the column.
If feed is a saturated liquid, feed quality q = 1,
feed quality is reset to q = 1 - 1e-10.
`qS2R` is a main function of
the `McCabeThiele` toolbox for Julia.
See also: `stages`, `refmin`, `qR2S`, `RS2q`.
Examples
==========
Compute the reflux ratio at the top of the column given
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the feed is saturated liquid and
the reflux ratio at the bottom of the column is 2.5:
```
x=[0.88;0.46;0.11];
q=1;
S=2.5;
R=qS2R(x,q,S)
```
"""
function qS2R(z::Vector{Float64}, q::Number, S::Number)
xD, xF, xB = z
if xD < xF || xB > xF
error("Inconsistent feed and/or products compositions.")
end
if q == 1
q = 1 - 1e-10
end
xi = (xB / S - xF / (q - 1)) / ((S + 1) / S - q / (q - 1))
yi = q / (q - 1) * xi - xF / (q - 1)
a = (yi - xD) / (xi - xD)
a / (1 - a)
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 2468 | include("bissection.jl")
include("interp1.jl")
@doc raw"""
`refmin(data::Union{Matrix{Float64},Function}, z::Vector{Float64}; q::Number=1)`
`refmin` computes the minimum reflux ratios
at the top and the bottom of a distillation column
using the McCabe-Thiele method given
a function y = y(x) that relates the liquid fraction x and the vapor fraction y, or
a x-y matrix of the liquid and the vapor fractions,
the vector of the fractions of the distillate and the feed and
the feed quality.
By default, feed is a saturated liquid at the feed stage, q = 1.
If feed is a saturated liquid at the feed stage, q = 1,
feed quality is reset to q = 1 - 1e-10.
`refmin` is a main function of
the `McCabeThiele` toolbox for Julia.
See also: `stages`, `qR2S`, `qS2R`, `RS2q`.
Examples
==========
Compute the minimum value of the reflux ratio
of a distillation column given
a matrix that relates the liquid fraction and the vapor fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 % and
the feed is a liquid-vapor equilibrium
with 44 % vapor at the feed stage:
```
data=[0. 0.;
0.1 0.212;
0.2 0.384;
0.3 0.529;
0.4 0.651;
0.5 0.752;
0.6 0.833;
0.7 0.895;
0.8 0.942;
0.9 0.974;
1. 1.];
x=[0.88;0.46;0.11];
r,s=refmin(data,x,q=1-0.44)
```
Compute the minimum value of the reflux ratio
of a distillation column given
the function that compute the vapor fraction given the liquid fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 % and
the feed is saturated liquid at the feed stage:
```
y(x)=x.^0.9 .* (1-x).^1.2 + x;
x=[0.88;0.46;0.11];
r,s=refmin(y,x,q=1)
```
"""
function refmin(data::Union{Matrix{Float64},Function}, z::Vector{Float64}; q::Number=1)
xD, xF, xB = z
if xD < xF || xB > xF
error("Inconsistent feed and/or products compositions.")
end
if q == 1
q = 1 - 1e-10
end
if isa(data, Matrix)
f(x) = interp1(data[:, 1], data[:, 2], x)
else
f = data
end
foo(x) = f(x) - (q / (q - 1) * x - xF / (q - 1))
xi = bissection(foo, 0.0, 1.0)
yi = q / (q - 1) * xi - xF / (q - 1)
a = (xD - yi) / (xD - xi)
b = (xB - yi) / (xB - xi)
a / (1 - a), 1 / (b - 1)
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 3959 | include("xyRq2N.jl")
include("doplots.jl")
include("refmin.jl")
include("RS2q.jl")
include("qS2R.jl")
@doc raw"""
`stages(data::Union{Matrix{Float64},Function}, z::Vector{Float64}; q::Number=NaN, R::Number=NaN, S::Number=NaN, updown::Bool=true, fig::Bool=true)`
`stages` computes the number of theoretical stages
of a distillation column
using the McCabe-Thiele method given
a function y = y(x) that relates
the liquid fraction x and the vapor fraction y or
a x-y matrix of the liquid and the vapor fractions,
the vector of products and feed compositions and
two parameters among
the feed quality,
the reflux ratio at the top of the column and
the reflux ratio at the bottom of the column.
By default, feed is a saturated liquid at the feed stage, q = 1.
If feed is a saturated liquid at the feed stage, q = 1,
feed quality is reset to q = 1 - 1e-10.
By default, theoretical stages are computed
from the stripping section to the rectifying section, updown = true.
If updown = false is given, theoretical stages are computed
from the rectifying section to the stripping section.
By default, `stages` plots a schematic diagram of the solution, fig = true.
If fig = false is given, no plot is shown.
`stages` is a main function of
the `McCabeThiele` toolbox for Julia.
See also: `refmin`, `qR2S`, `qS2R`, `RS2q`.
Examples
==========
Compute the number of theoretical stages of a distillation column
from the bottom to the top of the column given
a matrix that relates the liquid fraction and the vapor fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the feed is a liquid-vapor equilibrium
with 44 % vapor at the feed stage and
the reflux ratio at the top of the column is 70 % higher
than the minimum reflux ratio:
```
data=[0. 0.;
0.1 0.212;
0.2 0.384;
0.3 0.529;
0.4 0.651;
0.5 0.752;
0.6 0.833;
0.7 0.895;
0.8 0.942;
0.9 0.974;
1. 1.];
x=[0.88;0.46;0.11];
r,s=refmin(data,x,q=1-0.44)
N=stages(data,x,q=1-0.44,R=1.70*r,updown=false,fig=false)
```
Compute the number of theoretical stages of a distillation column
from the top to the bottom of the column given
the function that compute the vapor fraction given the liquid fraction,
the composition of the distillate is 88 %,
the composition of the feed is 46 %,
the composition of the column's bottom product is 11 %,
the feed is saturated liquid at the feed stage and
the reflux ratio at the top of the column is 70 % higher
than the minimum reflux ratio and
plot a schematic diagram of the solution:
```
y(x)=x.^0.9 .* (1-x).^1.2 + x;
x=[0.88;0.46;0.11];
r,s=refmin(y,x,q=1)
N=stages(y,x,q=1,R=1.70*r)
```
"""
function stages(data::Union{Matrix{Float64},Function}, z::Vector{Float64}; q::Number=NaN, R::Number=NaN, S::Number=NaN, updown::Bool=true, fig::Bool=true)
xD, xF, xB = z
if xD < xF || xB > xF
error("Inconsistent feed and/or products compositions.")
end
if q == 1
q = 1 - 1e-10
end
if isa(data, Matrix)
f(x) = interp1(data[:, 1], data[:, 2], x)
dots = true
else
f = data
dots = false
end
a = isnan.([q, R, S]) .!= 1
if sum(a) != 2
error("""stages requires that two parameter among
the feed quality,
the reflux ratio at the top of the column and
the reflux ratio at the bottom of the column
be given alone.""")
end
if a == [1, 0, 1]
R = qS2R(z, q, S)
elseif a == [0, 1, 1]
q = RS2q(z, R, S)
end
r = refmin(data, z, q=q)[1]
if R <= r
error("Minimum reflux ratios exceeded.")
end
N, z, x, y = xyRq2N(f, z, q, R, updown)
if !fig
return N
end
doplot(dots, updown, f, x, y, data, z, q, R)
N
end
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 666 | @doc raw"""
`stages_downup` scomputes the number of
theoretical stages of equilibrium of
a distillation column using the
McCabe-Thiele method, strating from
the bottom to the top of the column.
`stages_downup` is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function stages_downup(f, X, R)
xD, xF, xB, xi, yi = X
y = [xB]
x = [xB]
while x[end] < xD
y = [y; f(x[end])]
if y[end] < yi
x = [x; (y[end] - yi) / ((xB - yi) / (xB - xi)) + xi]
else
x = [x; (y[end] - xD / (R + 1)) * (R + 1) / R]
end
end
length(x) - 1 - 1 + (xD - x[end-1]) / (x[end] - x[end-1]), x, y
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 733 | include("bissection.jl")
@doc raw"""
`stages_updown` scomputes the number of
theoretical stages of equilibrium of
a distillation column using the
McCabe-Thiele method, strating from
the bottom to the top of the column.
`stages_updown` is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function stages_updown(f, X, R)
xD, xF, xB, xi, yi = X
x = [xD]
y = [xD]
while x[end] > xB
foo(x) = (f(x) - y[end])
x = [x; bissection(foo, 0, 1)]
if x[end] > xi
y = [y; R / (R + 1) * x[end] + xD / (R + 1)]
else
y = [y; (xB - yi) / (xB - xi) * (x[end] - xB) + xB]
end
end
length(x) - 1 - 1 + (x[end-1] - xB) / (x[end-1] - x[end]), x, y
end | McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 1255 | include("stages_updown.jl")
include("stages_downup.jl")
@doc raw"""
`N=xyRq2N(data::Matrix{Float64}, X::Vector{Float64}, q::Number, R::Number, updown::Bool=true)`
`xyRq2N` computes the number of theoretical stages
of a distillation column
using the McCabe-Thiele method given
a function y = y(x) that relates
the liquid fraction x and the vapor fraction y or
a x-y matrix of the liquid and the vapor fractions,
the vector of products and feed compositions,
the feed quality, and
the reflux ratio at the top of the column.
If feed is a saturated liquid, feed quality q = 1,
feed quality is reset to q = 1 - 1e-10.
By default, theoretical stages are computed
from the stripping section to the rectifying section, updown = true.
If updown = false is given, theoretical stages are computed
from the rectifying section to the stripping section.
`xyRq2N` is is an internal function of
the `McCabeThiele` toolbox for Julia.
"""
function xyRq2N(f, X, q, R, updown::Bool=true)
xD, xF, xB = X
xi = (xD / (R + 1) + xF / (q - 1)) / (q / (q - 1) - R / (R + 1))
yi = q / (q - 1) * xi - xF / (q - 1)
X = [X; xi; yi]
if updown
N, x, y = stages_updown(f, X, R)
else
N, x, y = stages_downup(f, X, R)
end
N, X, x, y
end
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | code | 282 | using McCabeThiele
using Test
using Plots
@testset "McCabeThiele.jl" begin
# data(x) = x .^ 1.11 .* (1 - x) .^ 1.09 + x
# x = [0.1 0.5 0.9]
# q = 0.54
# R = refmin(data, x, q)
# R = 1.7 * R
# @test 9 > strays(data, x, q, R, true, false) > 8
end
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 1.0.0 | bcde119253c63737005e06f453c4e0c6eab70c61 | docs | 8327 | # McCabeThiele.jl
[](https://doi.org/10.5281/zenodo.7126164)
[](https://opensource.org/licenses/MIT)
[](https://juliahub.com/ui/Packages/McCabeThiele/WauTj)
## Installing and Loading McCabeThiele
McCabeThiele can be installed and loaded either
from the JuliaHub repository (last released version) or from the
[maintainer's repository](https://github.com/aumpierre-unb/McCabeThiele.jl).
### Last Released Version
The last version of McCabeThiele can be installed from JuliaHub repository:
```julia
using Pkg
Pkg.add("McCabeThiele")
using McCabeThiele
```
If McCabeThiele is already installed, it can be updated:
```julia
using Pkg
Pkg.update("McCabeThiele")
using McCabeThiele
```
### Pre-Release (Under Construction) Version
The pre-release (under construction) version of McCabeThiele
can be installed from the [maintainer's repository](https://github.com/aumpierre-unb/McCabeThiele.jl).
```julia
using Pkg
Pkg.add(path="https://github.com/aumpierre-unb/McCabeThiele.jl")
using McCabeThiele
```
## Citation of McCabeThiele
You can cite all versions (both released and pre-released), by using
[10.5281/zenodo.7126164](https://doi.org/10.5281/zenodo.7126164).
This DOI represents all versions, and will always resolve to the latest one.
## The McCabeThiele Module for Julia
McCabeThiele provides the following functions:
- **stages**
- **refmin**
- **qR2S**
- **qS2R**
- **RS2q**
### **stages**
stages computes the number of theoretical stages of a distillation column using the McCabe-Thiele method, given a function or a matrix of the liquid and the vapor fraction, the compositions of the feed and the products, the feed quality, and the reflux ratio at the top of the column.
By default, feed is a saturated liquid at the feed stage, q = 1.
If feed is a saturated liquid at the feed stage, q = 1,
feed quality is reset to q = 1 - 1e-10.
By default, theoretical stages are computed from the stripping section to the rectifying section, updown = true.
If updown = false is given, theoretical stages are computed from the rectifying section to the stripping section.
By default, stages plots a schematic diagram of the solution, fig = true.
If fig = false is given, no plot is shown.
**Syntax:**
```julia
stages(data::Union{Matrix{Float64},Function},z::Vector{Float64};
q::Number=NaN,R::Number=NaN,S::Number=NaN,updown::Bool=true,fig::Bool=true)
```
**Examples:**
Compute the number of theoretical stages of a distillation column from the bottom to the top of the column given a matrix that relates the liquid fraction and the vapor fraction, the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 %, the feed is a liquid-vapor equilibrium with 44 % vapor at the feed stage and the reflux ratio at the top of the column is 70 % higher than the minimum reflux ratio:
```julia
data=[0. 0.;
0.1 0.212;
0.2 0.384;
0.3 0.529;
0.4 0.651;
0.5 0.752;
0.6 0.833;
0.7 0.895;
0.8 0.942;
0.9 0.974;
1. 1.];
x=[0.88;0.46;0.11];
r,s=refmin(data,x,q=1-0.44)
N=stages(data,x,q=1-0.44,R=1.70*r,updown=false,fig=false)
```
Compute the number of theoretical stages of a distillation column from the top to the bottom of the column given the function that compute the vapor fraction given the liquid fraction, the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 %, the feed is saturated liquid at the feed stage and the reflux ratio at the top of the column is 70 % higher than the minimum reflux ratio and plot a schematic diagram of the solution:
```julia
y(x)=x.^0.9 .* (1-x).^1.2 + x;
x=[0.88;0.46;0.11];
r,s=refmin(y,x,q=1)
N=stages(y,x,q=1,R=1.70*r)
```
### **refmin**
refmin computes the minimum value of the reflux ratio of a distillation column using the McCabe-Thiele method, given a function or a matrix of the liquid and the vapor fraction, the compositions of the feed and the distillate, and the feed quality.
By default, feed is a saturated liquid at the feed stage, q = 1.
If feed is a saturated liquid at the feed stage, q = 1,
feed quality is reset to q = 1 - 1e-10.
**Syntax:**
```julia
refmin(data::Union{Matrix{Float64},Function},z::Vector{Float64},q::Number)
```
**Examples:**
Compute the minimum value of the reflux ratio of a distillation column given a matrix that relates the liquid fraction and the vapor fraction, the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 % and the feed is a liquid-vapor equilibrium with 44 % vapor at the feed stage:
```julia
data=[0. 0.;
0.1 0.212;
0.2 0.384;
0.3 0.529;
0.4 0.651;
0.5 0.752;
0.6 0.833;
0.7 0.895;
0.8 0.942;
0.9 0.974;
1. 1.];
x=[0.88;0.46;0.11];
r,s=refmin(data,x,q=1-0.44)
```
Compute the minimum value of the reflux ratio of a distillation column given the function that compute the vapor fraction given the liquid fraction, the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 % and the feed is saturated liquid at the feed stage:
```julia
y(x)=x.^0.9 .* (1-x).^1.2 + x;
x=[0.88;0.46;0.11];
r,s=refmin(y,x,q=1)
```
### **qR2S**
qR2S computes the reflux ratio at the bottom of the column, given the compositions of the feed and the products, the feed quality, and the reflux ratio at the top of the column.
If feed is a saturated liquid, feed quality q = 1, feed quality is reset to q = 1 - 1e-10.
**Syntax:**
```julia
qR2S(z::Vector{Float64},q::Number,R::Number)
```
**Examples:**
Compute the reflux ratio at the bottom of the column given the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 %, the feed is saturated liquid and the reflux ratio at the top of the column is 2:
```julia
x=[0.88;0.46;0.11];
q=1;
R=2;
S=qR2S(x,q,R)
```
### **qS2R**
qS2R computes the reflux ratio at the top of a distillation column using the McCabe-Thiele method given the compositions of the products and the feed, the feed quality and the reflux ratio at the bottom of the column.
If feed is a saturated liquid, feed quality q = 1, feed quality is reset to q = 1 - 1e-10.
**Syntax:**
```julia
qS2R(z::Vector{Float64},q::Number,S::Number)
```
**Examples:**
Compute the reflux ratio at the top of the column given the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 %, the feed is saturated liquid and the reflux ratio at the bottom of the column is 2.5:
```julia
x=[0.88;0.46;0.11];
q=1;
S=2.5;
R=qS2R(x,q,S)
```
### **RS2q**
RS2q computes the feed quality of a distillation column using the McCabe-Thiele method given the compositions of the products and the feed, the reflux ratio at the bottom of the column and the reflux ratio at the top of the column.
If feed is a saturated liquid, feed quality q = 1, feed quality is reset to q = 1 - 1e-10.
**Syntax:**
```julia
RS2q(z::Vector{Float64}, R::Number, S::Number)
```
**Examples:**
Compute the reflux ratio at the top of the column given the composition of the distillate is 88 %, the composition of the feed is 46 %, the composition of the column's bottom product is 11 %, the reflux ratio at the top of the column is 2 and reflux ratio at the bottom of the column is 2.5:
```julia
x=[0.88;0.46;0.11];
R=2;
S=2.5;
q=RS2q(x,R,S)
```
### See Also
[PonchonSavarit.jl](https://github.com/aumpierre-unb/PonchonSavarit.jl),
[Psychrometrics.jl](https://github.com/aumpierre-unb/Psychrometrics.jl),
[InternalFluidFlow.jl](https://github.com/aumpierre-unb/InternalFluidFlow.jl).
Copyright © 2022 2023 Alexandre Umpierre
email: <[email protected]>
| McCabeThiele | https://github.com/aumpierre-unb/McCabeThiele.jl.git |
|
[
"MIT"
] | 0.1.6 | 8a609b85f354d460b65e1e07d90dde8c73b3e297 | code | 148 | module FlexibleFunctors
import ConstructionBase: constructorof
export destructure, ffunctor, fieldmap
include("param_functors.jl")
end # module
| FlexibleFunctors | https://github.com/Metalenz/FlexibleFunctors.jl.git |
|
[
"MIT"
] | 0.1.6 | 8a609b85f354d460b65e1e07d90dde8c73b3e297 | code | 3006 | #=
This code is adapted from Flux.jl/src/functors.jl, credit to Mike Innes, et al.
A reference to the original code can be found here:
https://github.com/FluxML/Flux.jl/blob/v0.10.0/src/functor.jl
=#
"""
isleaf(x)
Return true if `x` has no children according to [`parameters`](@ref).
"""
isleaf(x) = parameters(x) === ()
"""
parameters(x)
Returns a tuple of parameters, as marked by the user during construction
"""
parameters(x) = ()
parameters(x::Tuple) = x
parameters(x::NamedTuple) = x
parameters(x::AbstractArray) = x
parameters(x::AbstractArray{<:Number}) = ()
"""
parammap(f, x)
Maps `f` to each parameter (as specified by [`parameters`](@ref)) to the model `x`. Evaluates
calls to [`ffunctor`](@ref).
"""
function parammap(f, x)
func, re = ffunctor(x)
return re(map(f, func))
end
"""
ffunctor(x::T)
Returns a flexible functor based on the chosen [`parameters`](@ref).
"""
function ffunctor(x::T) where T
params = parameters(x)
re = (y) -> begin
all_args = map(fieldnames(T)) do fn
field = fn in params ? getfield(y, fn) : getfield(x, fn)
return field
end
return constructorof(T)(all_args...)
end
func = (; (p => getfield(x, p) for p in params)...)
return func, re
end
ffunctor(x::AbstractArray) = x, y -> y
ffunctor(x::AbstractArray{<:Number}) = (), _ -> x
"""
destructure(s)
For a struct `s` which has parameters given by [`parameters`](@ref), iterates through all
non-leaf nodes and collects the marked fields into a flat vector. This is particularly
useful for model training or optimization, or use with `ForwardDiff`. A function which
restructures `s` according to a flat vector is returned as the second argument.
NOTE: The flat vector representation is a `Vector{T}`. Julia will promote all entries to a
common type if possible. This means [1, 2.0] == [1.0, 2.0] and both are Vector{Float64}.
"""
function destructure(s)
xs = []
fieldmap(s) do x
x isa AbstractArray && push!(xs, x)
x isa Number && push!(xs, [x])
return x
end
return vcat(vec.(copy(xs))...), p -> restructure(s, p)
end
"""
restructure(s, xs)
Given a struct `s` with parameters given by [`parameters`](@ref), restructures `s` according
to the vector `xs`. In particular, `s == restructure(s, destructure(s)[1])`.
"""
function restructure(s, xs)
i = 0
fieldmap(s) do x
if x isa AbstractArray
x = reshape(xs[i.+(1:length(x))], size(x))
i += length(x)
elseif x isa Number
x = xs[i+1]
i += 1
end
return x
end
end
"""
fieldmap(f, x; exlude = isleaf)
Maps the function `f` over the fields of a `FlexibleFunctor` (equivalently, the parameter
fields of a struct `s` given by [`parameters`](@ref)).
"""
function fieldmap(f, x; exclude = isleaf)
y = exclude(x) ? f(x) : parammap(x -> fieldmap(f, x; exclude = exclude), x)
return y
end
| FlexibleFunctors | https://github.com/Metalenz/FlexibleFunctors.jl.git |
|
[
"MIT"
] | 0.1.6 | 8a609b85f354d460b65e1e07d90dde8c73b3e297 | code | 2028 | using FlexibleFunctors; const FF = FlexibleFunctors
# Standard struct with constant parameters
struct Foo{X,Y,PS<:Tuple}
x::X
y::Y
ps::PS
end
FF.parameters(f::Foo) = f.ps
@testset "Parameters" begin
@test FF.parameters([1, 2]) === ()
A = [Ref(1), Ref(2)]
@test FF.parameters(A) === A
@test FF.parameters((1, 2)) == (1, 2)
@test FF.parameters((a=1, b=2)) == (a=1, b=2)
p0, re = ffunctor([1, 2])
@test p0 === ()
p0, re = ffunctor(A)
@test p0 === A
end
@testset "FlexibleFunctors" begin
# No parameters
mf1 = Foo(1, 2, ())
p0, re = ffunctor(mf1)
@test re(()) == mf1
# One parameters
mf2 = Foo(1.0, 2, (:x, ))
p0, re = ffunctor(mf2)
@test re(p0) == mf2 # Reconstruct self
_, re2 = destructure(mf2)
@test re2([1]) == Foo(1, 2, (:x,)) # Change type on Foo.x from Float64 to Int
# Both fields as parameters
mf3 = Foo(22.0, 3.14, (:x, :y))
p0, re = destructure(mf3)
@test re(p0) == mf3
@test re(reverse(p0)) == Foo(3.14, 22.0, (:x, :y)) # Swap the fields
# Nested parameters
mf4 = Foo(Foo(1, 2, (:y,)), 3, (:x, :y))
p0, re = destructure(mf4)
@test re(p0) == mf4
@test re(["hello", -1]) == Foo(Foo(1, "hello", (:y,)), -1, (:x, :y))
end
@testset "fieldmap" begin
mf1 = Foo(3.0, 2, (:x,))
@test fieldmap((x) -> x^2, mf1) == Foo(9.0, 2, (:x,))
mf2 = Foo(-22.0, 3.14, (:x, :y))
@test fieldmap(abs, mf2) == Foo(22.0, 3.14, (:x, :y))
mf3 = Foo(Foo(1, 2, (:y,)), 3, (:x, :y))
@test fieldmap(sqrt, mf3) == Foo(Foo(1, sqrt(2), (:y,)), sqrt(3), (:x, :y))
end
module MyMod
import FlexibleFunctors
struct Bar{A,B,PS<:Tuple}
a::A
b::B
parameters::PS
end
FlexibleFunctors.parameters(b::Bar) = b.parameters
end
import .MyMod
@testset "Reconstruction of Module-Specific Type" begin
mb = MyMod.Bar(1, 2, (:a,))
p0, re = destructure(mb)
@test re(p0) == mb
@test re([3]) == MyMod.Bar(3, 2, (:a,))
end
| FlexibleFunctors | https://github.com/Metalenz/FlexibleFunctors.jl.git |
|
[
"MIT"
] | 0.1.6 | 8a609b85f354d460b65e1e07d90dde8c73b3e297 | code | 42 | using Test
@time include("ffunctors.jl")
| FlexibleFunctors | https://github.com/Metalenz/FlexibleFunctors.jl.git |
|
[
"MIT"
] | 0.1.6 | 8a609b85f354d460b65e1e07d90dde8c73b3e297 | docs | 3830 | # FlexibleFunctors.jl
`FlexibleFunctors.jl` allows you to convert struct fields to a flat vector representation, and it also provides a function to transform similar vectors back into structs. However, `FlexibleFunctors.jl` also provides a `parameters(x)` function which can be extended to dynamically determine which fields make it into the vector and which fields are fixed.
## Example
```julia
using FlexibleFunctors, Zygote
import FlexibleFunctors: parameters
struct Model
elements
params
end
parameters(m::Model) = m.params
struct Square
w
params
end
parameters(s::Square) = s.params
area(s::Square) = s.w^2
s1 = Square(1.0, (:w,))
s2 = Square(2.0, ())
s3 = Square(3.0, (:w,))
m1 = Model([s1, s2, s3], (:elements,))
m2 = Model([s1, s2, s3], ())
p1, re1 = destructure(m1)
p2, re2 = destructure(m2)
julia> println(p1)
# [1.0, 3.0]
julia> println(p2)
# Any[]
# Replace first and third widths with vector values
julia> mapreduce((s)->area(s), +, re1([3.0, 4.0]).elements)
# 29
# Uses original widths since `m2` has no parameters
julia> mapreduce((s)->area(s), +, re2([3.0, 4.0]).elements)
# 14
# Map vector of parameters to an object for optimization
grad = Zygote.gradient((x) -> mapreduce(area, +, x.elements), re1([3.0, 4.0]));
julia> getfield.(grad[1].elements, :w)
# [6.0, 4.0, 8.0]
```
## Overview
`FlexibleFunctors.jl` adds the ability to specify individual fields of a type as parameters. These parameters indicate fields which can be retrieved to obtain a flat vector representation of the struct parameters through `destructure`. `destructure` also returns a function, `re`, which reconstructs an instance of the original type. `re` operates as a function of the flat vector representation, but the reconstructed values of parameter fields are drawn from this vector while non-parameter fields are left unchanged.
Parameters are determined recursively. If a tagged field contains a struct with parameters of its own, those parameters are also included in the resulting vector and reconstruction.
`ffunctor` takes a struct instance with a `parameters` method and returns a `NamedTuple` representation of the parameters. `ffunctor` also returns a `re` function for reconstructing the `struct` from the `NamedTuple` representation.
In either case, you must provide a `FlexibleFunctors.parameters(::YourType)` method which return the parameters of `YourType` in a `Tuple` of `Symbol`s. This is accomplished by `import`ing `FlexibleFunctors.jl` and adding additional methods directly to `parameters`.
## What's Flexible about FlexibleFunctors?
The functionality provided by `FlexibleFunctors.jl` is similar to `Functors.jl`. Both projects annotate types with special fields to convert in between flat vector representations of structs and a `re`constructed instance. However, `Functors.jl` stores this information at the type-level for all instances of a type, forcing all instances to use identical fields as (what we call) parameters.
`FlexibleFunctors.jl` can store these parameter fields at the instance-level. For example, instead of hard-coding the returned parameters, we could add a `parameters` field to a `struct`, and then specify these `parameters` at run-time as a tuple of `Symbol`s. In this way, we can use the same types but specialize which fields are actually parameterized and liable to be changed during a `re`construction.
If parameter fields are stored within a struct instance, re-parameterizing the type instance is possible. For this, we recommend [Setfield.jl](https://github.com/jw3126/Setfield.jl) and the `@set` macro which can easily update nested fields.
Further, note that `FlexibleFunctors.jl` can reproduce similar behavior to `Functors.jl`. If `parameters(m::M) = (:some, :fixed, :tuple)`, then all instances of `M` will have the same parameters. | FlexibleFunctors | https://github.com/Metalenz/FlexibleFunctors.jl.git |
|
[
"MIT"
] | 0.1.0 | 885ac78c0988377171063296a13558e21dd5d8ba | code | 117 | module NoiseModels
import StatsAPI: fit
export GaussianNoiseModel
export fit
include("gaussian.jl")
end # module
| NoiseModels | https://github.com/org-arl/NoiseModels.jl.git |
|
[
"MIT"
] | 0.1.0 | 885ac78c0988377171063296a13558e21dd5d8ba | code | 2994 | import Optimization: OptimizationFunction, OptimizationProblem, solve, SciMLBase, AutoZygote
import OptimizationOptimJL: BFGS
import Statistics: cov, std
import Random: GLOBAL_RNG, AbstractRNG
import Zygote
"""
Multichannel colored Gaussian noise model.
"""
struct GaussianNoiseModel
s::Vector{Float64} # per-channel scaling factor
α::Array{Float64,3} # noise mixing parameters
end
function Base.show(io::IO, model::GaussianNoiseModel)
print(io, "GaussianNoiseModel($(size(model.α,1)) channel$(size(model.α,1)==1 ? "" : "s"))")
end
"""
fit(GaussianNoiseModel, data::AbstractArray; maxlag=64, maxiters=100)
Fit a multichannel colored Gaussian noise model to `data`. Returns a fitted model
struct. `maxlag` controls the maximum time lag (in samples) to estimate noise
correlation. `maxiters` controls the maximum number of iterations for optimization.
"""
function fit(::Type{GaussianNoiseModel}, data::AbstractMatrix; maxlag=64, maxiters=100, verbose=false)
# estimate scale factor to make the problem numerically stable
s = std(data; dims=1)
s[s .< 1e-6] .= 0
data = data ./ s
# estimate covariance matrix
verbose && @info "Estimating covariance matrix..."
nchannels = size(data, 2)
R̄ = zeros(nchannels, nchannels, maxlag+1)
Threads.@threads for i ∈ 1:nchannels
for j ∈ 1:nchannels
@simd for δ ∈ 0:maxlag
@inbounds R̄[i,j,δ+1] = @views cov(data[1+δ:end,i], data[1:end-δ,j])
end
end
end
# pick a good initial value for noise mixing parameters
α0 = zeros(size(R̄))
for i ∈ 1:nchannels
α0[i,i,1] = 1
end
# estimate noise mixing parameters
verbose && @info "Estimating mixing parameters..."
@info "Initial loss = $(first(_gaussian_loss(vec(α0), R̄)))"
optf = OptimizationFunction(_gaussian_loss, AutoZygote())
prob = OptimizationProblem(optf, vec(α0), R̄)
sol = solve(prob, BFGS(); maxiters)
@info "Final loss = $(first(_gaussian_loss(sol.u, R̄)))"
# create noise model
GaussianNoiseModel(vec(s), reshape(sol.u, size(α0)))
end
function fit(modeltype::Type{GaussianNoiseModel}, data::AbstractVector)
fit(modeltype, Base.ReshapedArray(data, (length(data),1), ()))
end
"""
rand(model::GaussianNoiseModel, n)
rand(rng::AbstractRNG, model::GaussianNoiseModel, n)
Generate `n` time samples of multichannel colored Gaussian noise as per the
`model`.
"""
function Base.rand(rng::AbstractRNG, model::GaussianNoiseModel, n::Integer)
nchannels, _, nlags = size(model.α)
z = randn(nchannels, n + nlags - 1)
x = zeros(n, nchannels)
for i ∈ 1:nchannels, k ∈ 1:n
x[k,i] += sum(model.α[i,:,:] .* z[:,k:k+nlags-1])
end
x .* model.s'
end
Base.rand(model::GaussianNoiseModel, n::Integer) = rand(GLOBAL_RNG, model, n)
### helpers
function _gaussian_loss(u, R̄)
α = reshape(u, size(R̄))
s = 0.0
@inbounds for i ∈ 1:size(R̄,1), j ∈ 1:size(R̄,2), δ ∈ 0:size(R̄,3)-1
R = @views sum(α[i,:,1:end-δ] .* α[j,:,1+δ:end])
s += abs2(R̄[i,j,δ+1] - R)
end
s, nothing
end
| NoiseModels | https://github.com/org-arl/NoiseModels.jl.git |
|
[
"MIT"
] | 0.1.0 | 885ac78c0988377171063296a13558e21dd5d8ba | docs | 747 | # NoiseModels.jl
**Generative noise models**
### Installation
```julia
julia> # press ] for pkg mode
pkg> add NoiseModels
```
### Models
Currently the only model implemented is a `GaussianNoiseModel`. This model generates multichannel colored Gaussian noise given a noise sample or a covariance tensor.
### Usage
Given `training_data` as a $T \times N$ matrix of $T$ time samples and $N$ channels,
we train a `GaussianNoiseModel` as follows:
```julia
using NoiseModels
# fit a GaussianNoiseModel to training_data
model = fit(GaussianNoiseModel, training_data)
```
To generate noise samples with the same statistics as the training data:
```julia
# generate 10000 time samples of N channel random noise
generated = rand(model, 10000)
```
| NoiseModels | https://github.com/org-arl/NoiseModels.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 406 | using Documenter
using FlightMechanicsUtils
makedocs(
sitename = "Flight Mechanics Utils Documentation",
modules = [FlightMechanicsUtils],
pages = ["Home" => "index.md", "API" => "api.md"],
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
)
deploydocs(
repo = "github.com:AlexS12/FlightMechanicsUtils.jl.git",
push_preview=true,
devbranch = "main"
)
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 1332 | module FlightMechanicsUtils
using LinearAlgebra
using StaticArrays
export γ_AIR, R_AIR
export gD
export RAD2DEG, DEG2RAD, M2FT, FT2M, KEL2RANK, RANK2KEL, KG2LB, LB2KG, SLUG2KG, KG2SLUG
export PSF2PA, PA2PSF, SLUGFT32KGM3, KGM32SLUGFT3
include("constants.jl")
export atmosphere_isa
include("atmosphere.jl")
export rigid_body_velocity, rigid_body_acceleration
export pqr_2_ψθϕ_dot, pqr_2_quat_dot, ψθϕ_dot_2_pqr
export uvw_to_tasαβ, uvw_dot_to_tasαβ_dot, tasαβ_dot_to_uvw_dot
export rate_of_climb_constrain_no_wind
include("kinematics.jl")
export coordinated_turn_bank, steiner_inertia, translate_forces_moments
include("mechanics.jl")
export euler_angles, quaternions, rotation_matrix_zyx
export body2horizon, body2wind
export wind2body, wind2horizon
export horizon2body, horizon2wind
export horizon2ecef, ecef2horizon
include("rotations.jl")
export Ellipsoid
export Clarke1866, Clarke1880, International, Bessel, Everest, ModifiedEverest,
AustralianNational, SouthAmerican1969, Airy, ModifiedAiry, Hough, Fischer1960SouthAsia,
Fischer1960Mercury, Fischer1968, WGS60, WGS66, WGS72, WGS84
export llh2ecef, ecef2llh
include("ellipsoid.jl")
export qc2cas, qc2eas, qc2tas
export cas2eas, cas2tas
export eas2cas, eas2tas
export tas2cas, tas2eas
export compressible_qinf, incompressible_qinf
include("anemometry.jl")
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 4660 | # Air at sea level conditions h=0 (m)
const ρ0 = 1.225 # Density at sea level (kg/m3)
const p0 = 101325.0 # Pressure at sea level (Pa)
const a0 = 340.293990543 # Sound speed at sea level (m/s)
"""
qc2cas(qc)
Calculate calibrated airspeed from ASI (Air Speed indicator), differential
pressure between impact pressure and static pressure.
``qc = p_t - p_s``
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 13, formula 2.13)
"""
function qc2cas(qc)
cas = sqrt((2*γ_AIR*p0) / ((γ_AIR - 1) * ρ0) * ((qc / p0 + 1) ^ ((γ_AIR - 1) / γ_AIR) - 1))
return cas
end
"""
qc2tas(qc, ρ, p)
Calculate true airspeed from ASI (Air Speed indicator), differential
pressure between impact pressure and static pressure (qc = p_t - p_s), rho
and p.
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 12, based on formula 2.11)
"""
function qc2tas(qc, ρ, p)
tas2 = (2*γ_AIR*p) / ((γ_AIR - 1) * ρ0) * ((qc/p + 1) ^ ((γ_AIR - 1) / γ_AIR) - 1) * ρ0/ρ
tas = sqrt(tas2)
return tas
end
"""
qc2eas(qc, p)
Calculate equivalent airspeed from ASI (Air Speed indicator), differential
pressure between impact pressure and static pressure (qc = p_t - p_s) and p.
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
"""
function qc2eas(qc, p)
eas = sqrt((2*γ_AIR*p) / ((γ_AIR - 1) * ρ0) * ((qc/p + 1) ^ ((γ_AIR - 1) / γ_AIR) - 1))
return eas
end
"""
tas2eas(tas, ρ)
Calculate equivalent airspeed from true airspeed and density at current
altitude (ρ).
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 13, formula 2.15)
"""
function tas2eas(tas, ρ)
eas = tas * sqrt(ρ / ρ0)
return eas
end
"""
eas2tas(qc, ρ)
Calculate true airspeed from equivalent airspeed and density at current
altitude (ρ).
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 13, formula 2.15)
"""
function eas2tas(eas, ρ)
tas = eas / sqrt(ρ / ρ0)
return tas
end
"""
cas2eas(cas, ρ, p)
Calculate equivalent airspeed from calibrated airspeed, density (ρ) and
pressure (p) at the current altitude.
"""
function cas2eas(cas, ρ, p)
tas = cas2tas(cas, ρ, p)
eas = tas2eas(tas, ρ)
return eas
end
"""
eas2cas(eas, ρ, p)
Calculate calibrated airspeed from equivalent airspeed, density (ρ) and
pressure (p) at the current altitude.
"""
function eas2cas(eas, ρ, p)
tas = eas2tas(eas, ρ)
cas = tas2cas(tas, ρ, p)
return cas
end
"""
cas2tas(cas, ρ, p)
Calculate true airspeed from calibrated airspeed, density (ρ) and pressure (p)
at the current altitude.
"""
function cas2tas(cas, ρ, p)
a = sqrt(γ_AIR * p / ρ)
temp = (cas*cas * (γ_AIR - 1.0)/(2.0 * a0*a0) + 1.0) ^ (γ_AIR / (γ_AIR - 1.0))
temp = (temp - 1.0) * (p0 / p)
temp = (temp + 1.0) ^ ((γ_AIR - 1.0) / γ_AIR) - 1.0
tas = sqrt(2.0 * a*a / (γ_AIR - 1.0) * temp)
return tas
end
"""
tas2cas(cas, ρ, p)
Calculate true airspeed from calibrated airspeed, density (ρ) and pressure (p)
at the current altitude.
"""
function tas2cas(tas, ρ, p)
a = sqrt(γ_AIR * p / ρ)
temp = (tas*tas * (γ_AIR - 1.0)/(2.0 * a*a) + 1.0) ^ (γ_AIR / (γ_AIR - 1.0))
temp = (temp - 1.0) * (p / p0)
temp = (temp + 1.0) ^ ((γ_AIR - 1.0) / γ_AIR) - 1.0
cas = sqrt(2.0 * a0*a0 / (γ_AIR - 1) * temp)
return cas
end
"""
incompressible_qinf(tas, ρ)
Calculate incompressible dynamic pressure from true airspeed (tas) and density
(ρ) at current altitude.
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 13, formula 2.14)
"""
function incompressible_qinf(tas, ρ)
return 0.5 * ρ * tas*tas
end
"""
compressible_qinf(tas, p, a)
Calculate compressible dynamic pressure from Mach number and static
pressure (p)
Two different models are used depending on the Mach number:
- Subsonic case: Bernouilli's equation compressible form.
- Supersonic case: to be implemented.
# References
1. Ward, D. T. (1993). Introduction to flight test engineering. Elsevier Science Ltd.
(page 12)
2. Fundamentals of Aerdynamics, 5th edition, J.D.Anderson Jr (page 550)
"""
function compressible_qinf(M, p)
if M < 1
pt = p * (1 + (γ_AIR - 1) / 2 * M*M) ^ (γ_AIR / (γ_AIR - 1))
else # (M >= 1)
pt = p * ((1 - γ_AIR + (2 * γ_AIR * M^2))/(γ_AIR + 1)) * (((γ_AIR + 1)^2 * M^2)/((4 * γ_AIR * M^2) - 2*(γ_AIR - 1)))^(γ_AIR / (γ_AIR - 1))
end
return pt
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 2697 | """
atmosphere_isa(height)
Calculate temperature, pressure, density and sound velocity for the given geopotential
height according to International Standard Atmosphere 1976.
# References
1.U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976
| Layer | h (m) | p (Pa) | T (K) | ``α`` (K/m) |
| ----- | ----- | ------- | ------ | ----------- |
| 0 | 0 | 101325 | 288.15 | -0.0065 |
| 1 | 11000 | 22632.1 | 216.65 | 0 |
| 2 | 20000 | 5474.89 | 216.65 | 0.001 |
| 3 | 32000 | 868.019 | 228.65 | 0.0028 |
| 4 | 47000 | 110.906 | 270.65 | 0 |
| 5 | 51000 | 66.9389 | 270.65 | -0.0028 |
| 6 | 71000 | 3.95642 | 214.65 | -0.002 |
Source: [https://en.wikipedia.org/wiki/U.S._Standard_Atmosphere](https://en.wikipedia.org/wiki/U.S._Standard_Atmosphere)
"""
function atmosphere_isa(height)
if 0 <= height < 11000 # Troposphere
α = -0.0065 # K/m
T0 = 288.15 # K
p0 = 101325.0 # Pa
T = T0 + α * height
p = p0 * (T0 / T) ^ (gD / (R_AIR * α))
elseif 11000 <= height < 20000 # Tropopause
T = 216.65 # K
p0 = 22632.1 # Pa
h0 = 11000 # m
p = p0 * exp(-gD * (height - h0) / (R_AIR * T))
elseif 20000 <= height < 32000 # Stratosphere 1
α = 0.001 # K/m
T0 = 216.65 # K
p0 = 5474.89 # Pa
h0 = 20000 # m
T = T0 + α * (height - h0)
p = p0 * (T0 / T) ^ (gD / (R_AIR * α))
elseif 32000 <= height < 47000 # Stratosphere 2
α = 0.0028 # K/m
T0 = 228.65 # K
p0 = 868.019 # Pa
h0 = 32000 # m
T = T0 + α * (height - h0)
p = p0 * (T0 / T) ^ (gD / (R_AIR * α))
elseif 47000 <= height < 51000 # Stratopause
T = 270.65 # K
p0 = 110.906 # Pa
h0 = 47000 # m
h0 = 47000 # m
p = p0 * exp(-gD * (height - h0) / (R_AIR * T))
elseif 51000 <= height < 71000 # Mesosphere 1
α = -0.0028 # K/m
T0 = 270.65 # K
p0 = 66.9389 # Pa
h0 = 51000 # m
T = T0 + α * (height - h0)
p = p0 * (T0 / T) ^ (gD / (R_AIR * α))
elseif 71000 <= height <= 84500 # Mesosphere 2
α = -0.002 # K/m
T0 = 214.65 # K
p0 = 3.95642 # Pa
h0 = 71000 # m
T = T0 + α * (height - h0)
p = p0 * (T0 / T) ^ (gD / (R_AIR * α))
else
throw(DomainError(height, "height must be between 0 m and 84500 m"))
end
rho = p / (R_AIR * T)
a = sqrt(γ_AIR * R_AIR * T)
return [T, p, rho, a]
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 1372 | # ------------------------ Air ------------------------
"""
γ_AIR = 1.4
Adiabatic index or ratio of specific heats (dry air at 20º C).
"""
const γ_AIR = 1.4
"""
R_AIR = 287.05287 (J/(Kg·K))
Specific gas constant for dry air.
"""
const R_AIR = 287.05287
# ------------------------ Earth ------------------------
"""
gD = 9.80665 (m/s²)
Down component of gravity acceleration at Earth surface at 45º geodetic latitude.
1. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (page 33)
"""
const gD = 9.80665 # m/s²
# ------------------------ UNIT CONVERSION ------------------------
# ANGLES
const RAD2DEG = 57.29578 # Radians (rad) to degrees (deg)
const DEG2RAD = 1 / RAD2DEG
# LENGTH
const FT2M = 0.3048 # Feet (ft) to meter (m)
const M2FT = 1 / FT2M
# TEMPERATURE
const KEL2RANK = 1.8 # Kelvin to Rankine
const RANK2KEL = 1 / KEL2RANK
# MASS
const KG2LB = 2.20462262185 # Kilogram (Kg) to pound (lb)
const LB2KG = 1 / KG2LB
const SLUG2KG = 14.5939029372 # Slug to Kilogram (kg)
const KG2SLUG = 1 / SLUG2KG
# PRESSURE
const PSF2PA = LB2KG * gD / FT2M^2 # Pounds per square foot (PSF) to Pascal (Pa)
const PA2PSF = 1 / PSF2PA
const SLUGFT32KGM3 = SLUG2KG / FT2M^3 # slug/ft³ to Kg/m³
const KGM32SLUGFT3 = 1 / SLUGFT32KGM3
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 6051 | @doc raw"""
Ellipsoid(a, b, f, finv, e2, ϵ2, name)
Ellipsoid(a, finv, name)
Earth ellipsoid model.
# Fields
- `a::Real`: semi-major axis (m).
- `b::Real`: semi-minor axis (m).
- `f::Real`: flattening (``f``).
- `finv::Real`: inverse of flattening (``f^{-1}``).
- `e2::Real`: eccentricity squared.
- `ϵ2::Real`: second eccentricity squared.
- `name::String`: ellipsoid name.
# Notes
``a`` is the semi-major axis, ``b`` is the semi-minor axis. Ellipsoids are normally defined
by ``a`` and ``f^{-1}``. The rest of parameters are derived.
- Flattening:
```math
f = 1 - \frac{b}{a}
```
- Eccentricity (first eccentricity):
```math
e^2 = \frac{a^2 - b^2}{a^2} = f (2 - f)
```
- Second eccentricity:
```math
ϵ^2 = \frac{a^2 - b^2}{b^2} = \frac{f (2 - f)}{(1 - f)^2}
```
# References
1. Stevens, B. L., Lewis, F. L., (1992). Aircraft control and simulation: dynamics, controls
design, and autonomous systems. John Wiley & Sons. Section 1.6 (page 23)
2. Rogers, R. M. (2007). Applied mathematics in integrated navigation systems. American
Institute of Aeronautics and Astronautics. Chapter 4 (Nomenclature differs from 1).
3. Bowring, B. R. (1976). Transformation from spatial to geographical coordinates. Survey
review, 23(181), 323-327.
"""
struct Ellipsoid
"Semi-major axis (m)."
a::Real
"Semi-minor axis (m)."
b::Real
"Flattening ``f = \frac{a-b}{a} = a - \frac{b}{a}``."
f::Real
"Inverse of flattening."
finv::Real
"Eccentricity. ``e^2 = \frac{a^2 - b^2}{a^2} = f (2 - f)``"
e2::Real
"Second eccentricity. ``ϵ^2 = \frac{a^2 - b^2}{b^2} = \frac{f (2 - f)}{(1 - f)^2}``."
ϵ2::Real
"Ellipsoid name."
name::String
end
function Ellipsoid(a, finv, name)
f = 1 / finv
b = a * (1 - f)
e2 = f * (2 - f)
ϵ2 = e2 / (1 - f)^2
return Ellipsoid(a, b, f, finv, e2, ϵ2, name)
end
# Rogers, R. M. (2007). Applied mathematics in integrated navigation systems.
# American Institute of Aeronautics and Astronautics. (Page 76, table 4.1)
const Clarke1866 = Ellipsoid(6378206.4, 294.9786982, "Clarke1866")
const Clarke1880 = Ellipsoid(6378249.145, 294.465, "Clarke1880")
const International = Ellipsoid(6378388.0, 297.0, "International")
const Bessel = Ellipsoid(6377397.155, 299.1528128, "Bessel")
const Everest = Ellipsoid(6377276.345, 300.8017, "Everest")
const ModifiedEverest = Ellipsoid(6377304.063, 300.8017, "ModifiedEverest")
const AustralianNational = Ellipsoid(6378160.0, 298.25, "AustralianNational")
const SouthAmerican1969 = Ellipsoid(6378160.0, 298.25, "SouthAmerican1969")
const Airy = Ellipsoid(6377564.396, 299.3249646, "Airy")
const ModifiedAiry = Ellipsoid(6377340.189, 299.3249646, "ModifiedAiry")
const Hough = Ellipsoid(6378270.0, 297.0, "Hough")
const Fischer1960SouthAsia = Ellipsoid(6378155.0, 298.3, "Fischer1960SouthAsia")
const Fischer1960Mercury = Ellipsoid(6378166.0, 298.3, "Fischer1960Mercury")
const Fischer1968 = Ellipsoid(6378150.0, 298.3, "Fischer1968")
const WGS60 = Ellipsoid(6378165.0, 298.3, "WGS60")
const WGS66 = Ellipsoid(6378145.0, 298.25, "WGS66")
const WGS72 = Ellipsoid(6378135.0, 298.26, "WGS72")
const WGS84 = Ellipsoid(6378137.0, 298.257223563, "WGS84")
"""
llh2ecef(lat, lon, height; ellipsoid=WGS84)
Transform geodetic latitude, longitude (rad) and ellipsoidal height (m) to ECEF for the
given ellipsoid (default ellipsoid is WGS84).
# References
1. Rogers, R. M. (2007). Applied mathematics in integrated navigation systems. American
Institute of Aeronautics and Astronautics. (Page 75, equations 4.20, 4.21, 4.22)
"""
function llh2ecef(lat, lon, height; ellipsoid=WGS84)
f = ellipsoid.f
a = ellipsoid.a
e2 = ellipsoid.e2
var = a / sqrt(1.0 - e2 * sin(lat)*sin(lat))
px = (var + height) * cos(lat)*cos(lon)
py = (var + height) * cos(lat)*sin(lon)
pz = (var * (1.0 - e2) + height)* sin(lat)
return [px, py, pz]
end
"""
ecef2llh(xecef, yecef, zecef; ellipsoid=WGS84)
Transform ECEF coordinates to geodetic latitude, longitude (rad) and ellipsoidal height (m)
for the given ellipsoid (default ellipsoid is WGS84).
# Notes
* The transformation is direct without iterations as [1] introduced the need to iterate for
near Earth positions.
* [2] is an update of increased accuracy of [1]. The former is used in this implementation
although the latter implementation is commented in the code.
* Model becomes unstable if latitude is close to 90º. An alternative equation
can be found in [2] equation (16) but has not been implemented.
# References
1. Bowring, B. R. (1976). Transformation from spatial to geographical coordinates. Survey
review, 23(181), 323-327.
2. Bowring, B. R. (1985). The accuracy of geodetic latitude and height equations. Survey
Review, 28(218), 202-206.
"""
function ecef2llh(xecef, yecef, zecef; ellipsoid=WGS84)
x, y, z = xecef, yecef, zecef
e = sqrt(ellipsoid.e2);
e2 = ellipsoid.e2
ϵ2 = ellipsoid.ϵ2
a = ellipsoid.a
b = ellipsoid.b
p = sqrt(x*x + y*y)
R = sqrt(p*p + z*z)
θ = atan(z, p)
# [1] equation (1) does not change in [2]
lon = atan(y, x)
# u -> geographical latitude
# [1] below equation (4) and [2] equation (6)
# This lead to errors in latitud with maximum value 0.0018"
#u = atan(a/b * z/x)
# [2] equation (17) If the latitude is also required to be very accurate
# for outer-space positions then the value of u for (6) should be obtained
# from:
u = atan(b*z / (a*p) * (1 + ϵ2 * b / R))
# [1] equation (4)
#lat = atan((z + ϵ2 * b * sin(u)^3) / (x - e2 * a * cos(u)^3))
# [2] equation (18)
lat = atan((z + ϵ2 * b * sin(u)^3) / (p - e2 * a * cos(u)^3))
# [2] after equation (1)
v = a / sqrt(1.0 - e2*sin(lat)^2)
# [2] equation (7)
# height = p*cos(lat) + z*sin(lat) - a*a / v
# equivalent to [2] equation (8)
height = R * cos(lat - θ) - a*a / v
# which is insensitive to the error in latitude calculation (The influence
# is of order 2 [2] equation (12))
return [lat, lon, height]
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 7563 | @doc raw"""
rigid_body_velocity(vel_P, ω, r_PQ)
Calculate rigid solid velocity field.
Return velocity of a point Q of a rigid solid given the velocity of a point P (vel_P), the
rotational velocity of the solid (ω) and the relative position of Q with respect to P.
If the reference frame 1 is attached to the solid and the velocity is calculated with
respect to reference frame 0:
``v_{10}^{Q} = v_{10}^{P} + \omega_{10} \times r^{PQ}``
being:
- ``v_{10}^{Q}`` the velocity of point Q, fixed to 1, wrt 0
- ``\omega_{10}`` the angular velocity of the solid 1 wrt 0
- ``r^{PQ}`` the position of Q wrt P (``r^{Q}-r^{P}``)
Every vector needs to be expressed in the same coordinate system.
# References
1. Stevens, B. L., Lewis, F. L., (1992). Aircraft control and simulation: dynamics, controls
design, and autonomous systems. John Wiley & Sons. (Section 1.3, page 26)
"""
function rigid_body_velocity(vel_P, ω, r_PQ)
vel_Q = vel_P + ω × r_PQ
return vel_Q
end
@doc raw"""
rigid_body_acceleration(acc_P, ω, ω_dot, r_PQ)
Calcualte rigid body acceleration field.
Return the acceleration of a point Q of a rigid solid given the acceleration of a point P
(acc_P), the rotational velocity of the solid (ω), the rotational acceleration of the solid
(ω_dot) and the relative position of Q with respect to P.
``a_{10}^{Q} = a_{10}^{P} + \omega_{10} \times (\omega_{10} \times r^{PQ}) + \dot{\omega}_{10} \times r^{PQ}``
being:
- ``a_{10}^{Q}`` the acceleration of point Q, fixed to 1, wrt 0
- ``\omega_{10}`` the angular velocity of the solid 1 wrt 0
- ``\dot{\omega}_{10}`` the angular acceleration of the solid 1 wrt 0
- ``r^{PQ}`` the position of Q wrt P (``r^{Q}-r^{P}``)
# References
1. Stevens, B. L., Lewis, F. L., (1992). Aircraft control and simulation: dynamics, controls
design, and autonomous systems. John Wiley & Sons. (Section 1.3, Formaula 1.3-14c, page 26)
"""
function rigid_body_acceleration(acc_P, ω, ω_dot, r_PQ)
acc_Q = acc_P + ω × (ω × r_PQ) + ω_dot × r_PQ
return acc_Q
end
"""
pqr_2_ψθϕ_dot(p, q, r, ψ, θ, ϕ)
Transform body angular velocity (p, q, r) [rad/s] to Euler angles rates (ψ_dot, θ_dot,
ϕ_dot) [rad/s] given the euler angles (θ, ϕ) [rad] using kinematic angular equations.
# See also
[`ψθϕ_dot_2_pqr`](@ref), [`pqr_2_quat_dot`](@ref)
# References
1. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (1.4-4) (page 20)
"""
function pqr_2_ψθϕ_dot(p, q, r, θ, ϕ)
sθ, cθ = sin(θ), cos(θ)
sϕ, cϕ = sin(ϕ), cos(ϕ)
ψ_dot = (q * sϕ + r * cϕ) / cθ
θ_dot = q * cϕ - r * sϕ
# ϕ_dot = p + (q * sϕ + r * cϕ) * tan(θ)
ϕ_dot = p + ψ_dot * sθ
return [ψ_dot, θ_dot, ϕ_dot]
end
"""
ψθϕ_dot_2_pqr(ψ_dot, θ_dot, ϕ_dot, ψ, θ, ϕ)
Transform Euler angles rates (ψ_dot, θ_dot, ϕ_dot) [rad/s] to body angular velocity (p, q,
r) [rad/s] given the euler angles (θ, ϕ) [rad] using kinematic angular equations.
# See also
[`pqr_2_ψθϕ_dot`](@ref)
# References
1. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (1.4-3) (page 20)
"""
function ψθϕ_dot_2_pqr(ψ_dot, θ_dot, ϕ_dot, θ, ϕ)
sθ, cθ = sin(θ), cos(θ)
sϕ, cϕ = sin(ϕ), cos(ϕ)
p = ϕ_dot - sθ * ψ_dot
q = cϕ * θ_dot + sϕ*cθ * ψ_dot
r = -sϕ * θ_dot + cϕ*cθ * ψ_dot
return [p, q, r]
end
"""
pqr_2_quat_dot(p, q, r, q0, q1, q2, q3)
Transform body angular velocity (p, q, r) [rad/s] to quaternion rates [1/s].
# See also
[`pqr_2_ψθϕ_dot`](@ref)
# References
1. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (1.8-15)
(page 51).
"""
function pqr_2_quat_dot(p, q, r, q0, q1, q2, q3)
Ω = [
0 -p -q -r;
p 0 r -q;
q -r 0 p;
r q -p 0;
]
q = [q0; q1; q2; q3]
q_dot = 0.5 * Ω * q
return q_dot
end
"""
uvw_to_tasαβ(u, v, w)
Calculate true air speed (TAS), angle of attack (α) and angle of side slip (β) from velocity
expressed in body axis.
# Notes
This function assumes that u, v, w are the body components of the aerodynamic speed. This is
not true in genreal (wind speed different from zero), as u, v, w represent velocity with
respect to an inertial reference frame.
# References
1. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (2.3-6b)
(page 78).
"""
function uvw_to_tasαβ(u, v, w)
tas = sqrt(u*u + v*v + w*w)
α = atan(w, u)
β = asin(v / tas)
return [tas, α, β]
end
"""
uvw_dot_to_tasαβ_dot(u, v, w, u_dot, v_dot, w_dot)
Calculate time derivatives of velocity expressed as TAS, AOA, AOS.
# Notes
Note that tas here is not necessarily true air speed. Could also be inertial speed in the
direction of airspeed. It will concide whith TAS for no wind.
# See also
[`tasαβ_dot_to_uvw_dot`](@ref)
# References
1. Morelli, Eugene A., and Vladislav Klein. Aircraft system identification: Theory and
practice. Williamsburg, VA: Sunflyte Enterprises, 2016. Equation 3.33 (page 44).
2. Stevens, B. L., Lewis, F. L., & Johnson, E. N. (2015). Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons. Equation (2.3-10)
(page 81).
"""
function uvw_dot_to_tasαβ_dot(u, v, w, u_dot, v_dot, w_dot)
# [1] 3.31
tas = sqrt(u*u + v*v + w*w)
# [1] 3.33a
tas_dot = (u * u_dot + v * v_dot + w * w_dot) / tas
# [1] 3.33b
β_dot = ((u*u + w*w) * v_dot - v * (u * u_dot + w * w_dot)) / (tas^2 * sqrt(u*u + w*w))
# [2] 2.3.10b
# β_dot = (v_dot * tas - v * tas_dot) / (tas * sqrt(u*u + w*w))
# [1] 3.33c
α_dot = (w_dot * u - w * u_dot) / (u*u + w*w)
return [tas_dot, α_dot, β_dot]
end
"""
tasαβ_dot_to_uvw_dot(tas, α, β, tas_dot, α_dot, β_dot)
Obatain body velocity derivatives given velocity in wind axis and its derivatives.
# See also
[`uvw_dot_to_tasαβ_dot`](@ref)
# References
1. Morelli, Eugene A., and Vladislav Klein. Aircraft system identification: Theory and
practice. Williamsburg, VA: Sunflyte Enterprises, 2016. Derived from equation 3.32
(page 44).
"""
function tasαβ_dot_to_uvw_dot(tas, α, β, tas_dot, α_dot, β_dot)
u_dot = tas_dot * cos(α) * cos(β) - tas * (α_dot * sin(α) * cos(β) + β_dot * cos(α) * sin(β))
v_dot = tas_dot * sin(β) + tas * β_dot * cos(β)
w_dot = tas_dot * sin(α) * cos(β) + tas * (α_dot * cos(α) * cos(β) - β_dot * sin(α) * sin(β))
return [u_dot, v_dot, w_dot]
end
@doc raw"""
rate_of_climb_constrain_no_wind(γ, α, β, ϕ)
Calculate pitch angle (θ rad) to obtain a flight path angle (γ rad) at certain angle of
attack (α rad), angle of sideslip (β rad) and roll (ϕ rad).
Inertial velocity and aerodynamic velocity are equivalent in the absence of wind:
`` v_{cg-e}^e = R_{eb} R_{bw} v_{cg-air}^w ``
# References
1. Stevens, B. L., Lewis, F. L., (1992). Aircraft control and simulation: dynamics, controls
design, and autonomous systems. John Wiley & Sons. (Section 3.6, equation 3.6-3,
page 187)
"""
function rate_of_climb_constrain_no_wind(γ, α, β, ϕ)
a = cos(α) * cos(β)
b = sin(ϕ) * sin(β) + cos(ϕ) * sin(α) * cos(β)
sq = sqrt(a^2 - sin(γ)^2 + b^2)
θ = (a * b + sin(γ) * sq) / (a^2 - sin(γ)^2)
θ = atan(θ)
return θ
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 1840 | @doc raw"""
translate_forces_moments(forces_1, moments_1, p1, p2)
Calculate equivalent moment at point 2 (p2) given the forces (forces_1) and moments
(moments_1) at point 1 (p1).
`` r = p_1 - p_2 ``
``M_{2} = M_{1} + r \times F_{1}``
"""
function translate_forces_moments(forces_1, moments_1, p1, p2)
r21 = p1 - p2
moments_2 = moments_1 + r21 × forces_1
return moments_2
end
@doc raw"""
steiner_inertia(cg, inertia_g, mass, p2)
Calculate the inertia tensor of a rigid solid at point 2 (p2), given the inertia tensor
(inertia_g) at the center of gravity (cg) and the mass of the system.
`` r = p_2 - cg ``
``I_{2} = I_{cg} + m (r^T · r I - r · r^T) ``
"""
function steiner_inertia(cg, inertia1, mass, p2)
r = p2 - cg
inertia2 = inertia1 + mass * ((r' * r) * I - r*r')
return inertia2
end
"""
coordinated_turn_bank(ψ_dot, α, β, tas, γ[, g])
Calculate roll angle (ϕ) [rad] for a given turn rate, angle of attack, angle of sideslip,
tas and flight path angle in the absence of wind for a coordinated turn bank.
Imposes sum of forces along y body axis equal to zero.
# Arguments
- `ψ_dot`: turn rate (rad/s).
- `α`: angle of attack (rad).
- `β`: angle of sideslip (rad).
- `tas`: true air speed (m/s).
- `γ`: flight path angle (rad).
- `g`: gravity (m/s²). Optional. Default value is `gD`.
"""
function coordinated_turn_bank(ψ_dot, α, β, tas, γ, g=gD)
G = ψ_dot * tas / g
if abs(γ) < 1e-8
ϕ = G * cos(β) / (cos(α) - G * sin(α) * sin(β))
ϕ = atan(ϕ)
else
a = 1 - G * tan(α) * sin(β)
b = sin(γ) / cos(β)
c = 1 + G^2 * cos(β)^2
sq = sqrt(c * (1 - b^2) + G^2 * sin(β)^2)
num = (a - b^2) + b * tan(α) * sq
den = a ^ 2 - b^2 * (1 + c * tan(α)^2)
ϕ = atan(G * cos(β) / cos(α) * num / den)
end
return ϕ
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 5236 | """
rotation_matrix_zyx(α1, α2, α3)
Calculate the rotation matrix ``R_{ab}`` that transforms a vector in b frame to a frame
(``v_{a} = R_{ab} v_{b}``) given the rotations (α1, α2, α3) (rad).
Frame b is obtained from frame a performing three intrinsic rotations of magnitude
α1, α2 and α3 in ZYX order.
"""
function rotation_matrix_zyx(α1, α2, α3)
sα1, cα1 = sin(α1), cos(α1)
sα2, cα2 = sin(α2), cos(α2)
sα3, cα3 = sin(α3), cos(α3)
R = @SMatrix [
cα2 * cα1 (sα3 * sα2 * cα1 - cα3 * sα1) (cα3 * sα2 * cα1 + sα3 * sα1)
cα2 * sα1 (sα3 * sα2 * sα1 + cα3 * cα1) (cα3 * sα2 * sα1 - sα3 * cα1)
-sα2 sα3 * cα2 cα3 * cα2
]
return R
end
"""
rotation_matrix_zyx(q0, q1, q2, q3)
Calculate the rotation matrix ``R_{ab}`` that transforms a vector in b frame to a frame
(``v_{a} = R_{ab} v_{b}``) given the quaternions ``q_0, q_1, q_2, q_3``.
"""
function rotation_matrix_zyx(q0, q1, q2, q3)
q02, q12, q22, q32 = q0*q0, q1*q1, q2*q2, q3*q3
R = @SMatrix [
(q02+q12-q22-q32) 2*(q1*q2 - q0*q3) 2*(q1*q3 + q0*q2)
2*(q1*q2 + q0*q3) (q02-q12+q22-q32) 2*(q2*q3 - q0*q1)
2*(q1*q3 - q0*q2) 2*(q2*q3 + q0*q1) (q02-q12-q22+q32)
]
return R
end
"""
quaternions(ψ, θ, ϕ)
Calculate quaternion representation given the Euler angles (ψ, θ, ϕ) (rad).
"""
function quaternions(ψ, θ, ϕ)
s_ψ2, c_ψ2 = sin(ψ/2), cos(ψ/2)
s_θ2, c_θ2 = sin(θ/2), cos(θ/2)
s_ϕ2, c_ϕ2 = sin(ϕ/2), cos(ϕ/2)
q0 = c_ψ2*c_θ2*c_ϕ2 + s_ψ2*s_θ2*s_ϕ2
q1 = c_ψ2*c_θ2*s_ϕ2 - s_ψ2*s_θ2*c_ϕ2
q2 = c_ψ2*s_θ2*c_ϕ2 + s_ψ2*c_θ2*s_ϕ2
q3 = s_ψ2*c_θ2*c_ϕ2 - c_ψ2*s_θ2*s_ϕ2
return @SVector [q0, q1, q2, q3]
end
"""
euler_angles(q0, q1, q2, q3)
Calculate Euler angles (ψ, θ, ϕ) (rad) given the quaternions ``q_0, q_1, q_2, q_3``.
"""
function euler_angles(q0, q1, q2, q3)
ψ = atan(2 * (q1*q2 + q0*q3), q0*q0 + q1*q1 - q2*q2 - q3*q3)
θ = asin(-2 * (q1*q3 - q0*q2))
ϕ = atan(2 * (q2*q3 + q0*q1), q0*q0 - q1*q1 - q2*q2 + q3*q3)
return @SVector [mod2pi(ψ), θ, ϕ]
end
"""
body2horizon(x, y, z, ψ, θ, ϕ)
Transform the vector coordintes (x, y, z) given in body axis to local horizon given the
Euler angles (ψ, θ, ϕ) (rad).
"""
function body2horizon(x, y, z, ψ, θ, ϕ)
v = @SVector [x, y, z]
rv = rotation_matrix_zyx(ψ, θ, ϕ) * v
return rv
end
"""
horizon2body(x, y, z, ψ, θ, ϕ)
Transform the vector coordintes (x, y, z) given in local horizon axis to body given the
Euler angles (ψ, θ, ϕ) (rad).
"""
function horizon2body(x, y, z, ψ, θ, ϕ)
v = @SVector [x, y, z]
rv = transpose(rotation_matrix_zyx(ψ, θ, ϕ)) * v
return rv
end
"""
body2horizon(x, y, z, q0, q1, q2, q3)
Transform the vector coordintes (x, y, z) given in body axis to local horizon given the
quaternions ``q_0, q_1, q_2, q_3``.
"""
function body2horizon(x, y, z, q0, q1, q2, q3)
v = @SVector [x, y, z]
rv = rotation_matrix_zyx(q0, q1, q2, q3) * v
return rv
end
"""
horizon2body(x, y, z, q0, q1, q2, q3)
Transform the vector coordintes (x, y, z) given in local horizon axis to body given the
quaternions ``q_0, q_1, q_2, q_3``.
"""
function horizon2body(x, y, z, q0, q1, q2, q3)
v = @SVector [x, y, z]
rv = transpose(rotation_matrix_zyx(q0, q1, q2, q3)) * v
return rv
end
"""
wind2body(x, y, z, α, β)
Transform the vector coordintes (x, y, z) given in wind axis to body given the angle of
attack (α) and the angle of sideslip (β) (rad).
"""
function wind2body(x, y, z, α, β)
v = @SVector [x, y, z]
rv = transpose(rotation_matrix_zyx(-β, α, 0)) * v
return rv
end
"""
body2wind(x, y, z, α, β)
Transform the vector coordintes (x, y, z) given in body axis to wind given the angle of
attack (α) and the angle of sideslip (β) (rad).
"""
function body2wind(x, y, z, α, β)
v = @SVector [x, y, z]
rv = rotation_matrix_zyx(-β, α, 0) * v
return rv
end
"""
wind2horizon(x, y, z, χ, γ, μ)
Transform the vector coordintes (x, y, z) given in wind axis to local horizon given the
velocity angles (χ, γ, μ) (rad).
"""
function wind2horizon(x, y, z, χ, γ, μ)
v = @SVector [x, y, z]
rv = rotation_matrix_zyx(χ, γ, μ) * v
return rv
end
"""
horizon2wind(x, y, z, χ, γ, μ)
Transform the vector coordintes (x, y, z) given in local horizon axis to wind given the
velocity angles (χ, γ, μ) (rad).
"""
function horizon2wind(x, y, z, χ, γ, μ)
v = @SVector [x, y, z]
rv = transpose(rotation_matrix_zyx(χ, γ, μ)) * v
return rv
end
"""
ecef2horizon(x, y, z, lat, lon)
Transform the vector coordintes (x, y, z) given in ECEF (Earth Fixed Earth Centered)
coordinates to local horizon coordinates using geodetic latitude and longitude (rad).
"""
function ecef2horizon(x, y, z, lat, lon)
v = @SVector [x, y, z]
rv = transpose(rotation_matrix_zyx(lon, -lat - π/2, 0)) * v
end
"""
horizon2ecef(x, y, z, lat, lon)
Transform the vector coordintes (x, y, z) given in local horizon axis to ECEF (Earth Fixed
Earth Centered) using geodetic latitude and longitude (rad).
"""
function horizon2ecef(x, y, z, lat, lon)
v = @SVector [x, y, z]
rv = rotation_matrix_zyx(lon, -lat - π/2, 0) * v
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 3220 | using Test
using FlightMechanicsUtils
const KT2MS = 0.514444 # knots (kt) to meters/second (m/s)
# TESTS for TAS CAS EAS based on values from
# http://www.hochwarth.com/misc/AviationCalculator.html
# --- height = 0 m ---
h = 0.0 # m
T, p, rho, a = atmosphere_isa(h)
# From TAS
tas = 100.0 * KT2MS # m/s
expected_eas = 100.0 * KT2MS # m/s
expected_cas = 100.0 * KT2MS # m/s
eas = tas2eas(tas, rho)
cas = tas2cas(tas, rho, p)
@test isapprox(eas, expected_eas)
@test isapprox(cas, expected_cas)
# From CAS
cas = 100.0 * KT2MS # m/s
expected_eas = 100.0 * KT2MS # m/s
expected_tas = 100.0 * KT2MS # m/s
eas = cas2eas(cas, rho, p)
tas = cas2tas(cas, rho, p)
@test isapprox(eas, expected_eas)
@test isapprox(tas, expected_tas)
# From EAS
eas = 100.0 * KT2MS # m/s
expected_cas = 100.0 * KT2MS # m/s
expected_tas = 100.0 * KT2MS # m/s
cas = eas2cas(eas, rho, p)
tas = eas2tas(eas, rho)
@test isapprox(cas, expected_cas)
@test isapprox(tas, expected_tas)
# --- height = 5000 m ---
h = 5000.0 # m
T, p, rho, a = atmosphere_isa(h)
# From TAS
tas = 200.0 * KT2MS # m/s
expected_eas = 155.03684 * KT2MS # m/s
expected_cas = 155.95551 * KT2MS # m/s
eas = tas2eas(tas, rho)
cas = tas2cas(tas, rho, p)
@test isapprox(eas, expected_eas, atol=1e-4)
@test isapprox(cas, expected_cas, atol=1e-4)
# From CAS
cas = 200.0 * KT2MS # m/s
expected_eas = 198.101308 * KT2MS # m/s
expected_tas = 255.553851 * KT2MS # m/s
eas = cas2eas(cas, rho, p)
tas = cas2tas(cas, rho, p)
@test isapprox(eas, expected_eas, atol=1e-4)
@test isapprox(tas, expected_tas, atol=1e-4)
# From EAS
eas = 200.0 * KT2MS # m/s
expected_cas = 201.95290 * KT2MS # m/s
expected_tas = 258.00319 * KT2MS # m/s
cas = eas2cas(eas, rho, p)
tas = eas2tas(eas, rho)
@test isapprox(cas, expected_cas, atol=1e-4)
@test isapprox(tas, expected_tas, atol=1e-4)
# --- Velocities from qc ---
# Values from http://www.aerospaceweb.org/design/scripts/atmosphere/
# geometric altitude = 8010.0807 # m --> geopotential = 8000.0 # m
# velocity = 100 # m/s
h = 8000.0 # m
T, p, rho, a = atmosphere_isa(h)
tas = 100 # m/s
qinf = 38295.5172 # Pa (Total Head)
qc = qinf - p
exp_cas = 66.0304 # m/s
exp_tas = 100 # m/s
exp_eas = 65.4758 # m/s
eas = qc2eas(qc, p)
tas_ = qc2tas(qc, rho, p)
cas = qc2cas(qc)
@test isapprox(cas, exp_cas, atol=1e-3)
@test isapprox(eas, exp_eas, atol=1e-3)
@test isapprox(tas_, exp_tas, atol=1e-3)
# --- Dynamic pressure ---
# Values from http://www.aerospaceweb.org/design/scripts/atmosphere/
# geometric altitude = 8010.0807 # m --> geopotential = 8000.0 # m
# velocity = 100 # m/s
h = 8000.0 # m
T, p, rho, a = atmosphere_isa(h)
tas = 100 # m/s
exp_qinf_inc = 2625.8356 # Pa (True Dynamic Pressure)
qinf_inc = incompressible_qinf(tas, rho)
@test isapprox(qinf_inc, exp_qinf_inc, atol=0.0001)
M = tas / a
exp_qinf_comp = 38295.5172 # Pa (Total Head)
qinf_comp = compressible_qinf(M, p)
@test isapprox(qinf_comp, exp_qinf_comp, atol=0.01)
M = [0.6, 1.3, 3.0] # Ref=> Aerodynamics, Anderson, page 550
p = 1
exp_qinf_comp = [1.276, 2.714, 12.06]
qinf_comp = []
for i = 1:length(exp_qinf_comp)
push!(qinf_comp, compressible_qinf(M[i], p))
end
@test isapprox(qinf_comp, exp_qinf_comp, atol=0.01)
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 3443 | using FlightMechanicsUtils
using Test
@testset "ISA1978" begin
# Test sea level
T, p, rho, a = atmosphere_isa(0.0)
@test isapprox(T, 288.15)
@test isapprox(p, 101325)
@test isapprox(rho, 1.225)
@test isapprox(a, 340.29398, rtol=1e-7)
# Test 0-11 Km
h = [0.0, 50.0, 550.0, 6500.0, 10000.0, 11000.0]
# TODO: have a look again at unzip options
# I would expect a tuple of Arrays, however an Array of tuples is returned.
# https://discourse.julialang.org/t/broadcast-map-return-type-for-a-function-returning-a-tuple/574/6
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [288.150, 287.825, 284.575, 245.900, 223.150, 216.650])
@test isapprox(rho, [1.2250, 1.2191, 1.1616, 0.62384, 0.41271, 0.36392], rtol=1e-4)
@test isapprox(a, [340.29, 340.10, 338.18, 314.36, 299.46, 295.07], rtol=1e-5)
# Test 11-20 Km
h = [12000, 14200, 17500, 20000, ] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [216.650, 216.650, 216.650, 216.650])
@test isapprox(rho, [0.31083, 0.21971, 0.13058, 0.088035], rtol=1e-4)
@test isapprox(a, [295.07, 295.07, 295.07, 295.07], rtol=1e-5)
# Test 20-32 Km
h = [22100, 24000, 28800, 32000] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [218.750, 220.650, 225.450, 228.650])
@test isapprox(rho, [0.062711, 0.046267, 0.021708, 0.013225], rtol=1e-4)
@test isapprox(a, [296.50, 297.78, 301.00, 303.13], rtol=1e-5)
# Test 32-47 Km
h = [32200, 36000, 42000, 47000] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [229.210, 239.850, 256.650, 270.650])
@test isapprox(rho, [0.012805, 0.0070344, 0.0028780, 0.0014275], rtol=1e-4)
@test isapprox(a, [303.50, 310.47, 321.16, 329.80], rtol=1e-5)
# Test 47-51 Km
h = [47200, 49000, 51000] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [270.650, 270.650, 270.650])
@test isapprox(rho, [0.0013919, 0.0011090, 0.00086160], rtol=1e-4)
@test isapprox(a, [329.80, 329.80, 329.80], rtol=1e-5)
# Test 51-71 Km
h = [51500, 60000, 71000] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [269.250, 245.450, 214.650])
@test isapprox(rho, [0.00081298, 2.8832e-4, 6.4211e-5], rtol=1e-4)
@test isapprox(a, [328.94, 314.07, 293.70], rtol=1e-4)
# Test 71-84 Km
h = [52000, 60000, 84500] # m
rv = atmosphere_isa.(h)
rv_arr = reduce(hcat, rv)
T = rv_arr[1, :]
p = rv_arr[2, :]
rho = rv_arr[3, :]
a = rv_arr[4, :]
@test isapprox(T, [267.850, 245.450, 187.650])
@test isapprox(rho, [7.6687e-4, 2.8832e-4, 7.3914e-6], rtol=1e-4)
@test isapprox(a, [328.09, 314.07, 274.61], rtol=1e-5)
@test_throws DomainError atmosphere_isa(84500.1)
@test_throws DomainError atmosphere_isa(-0.1)
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 2668 | using FlightMechanicsUtils
using Test
@testset "Ellipsoid WGS84" begin
# Rogers, R. M. (2007). Applied mathematics in integrated navigation systems.
# American Institute of Aeronautics and Astronautics. (Page 77, table 4.2)
@test isapprox(WGS84.a, 6378137)
@test isapprox(WGS84.b, 6356752.3142)
@test isapprox(WGS84.finv, 298.257223563)
@test isapprox(WGS84.e2, 0.0818191908426^2)
end
@testset "llh <-> ECEF" begin
# llh ECEF (using data from
# - [1] Bowring, B. R. (1976). Transformation from spatial to geographical
# coordinates. Survey review, 23(181), 323-327.)
# From [1] Example 1 (page 325)
x = 4114496.258 # m
y = 0.0 # m
z = 4870157.031 # m
# Ellipsoid does not match any known standard
a_bowring1976 = 6378249.145 # m
b_bowring1976 = 6356514.870 # m
finv_bowring1976 = a_bowring1976 / (a_bowring1976 - b_bowring1976)
Bowring1976 = Ellipsoid(a_bowring1976, finv_bowring1976, "Bowring 1976")
exp_llh = [deg2rad(50.0), 0, 10000.0]
llh = ecef2llh(x, y, z; ellipsoid=Bowring1976)
@test isapprox(llh, exp_llh)
exp_xyz = [4114496.258, 0.0, 4870157.031] # m
xyz = llh2ecef(deg2rad(50.0), 0, 10000.0; ellipsoid=Bowring1976)
@test isapprox(xyz, exp_xyz)
# http://www.sysense.com/products/ecef_lla_converter/index.html
x, y, z = (4114496.258, 0.0, 4870157.031) # m
exp_llh = [deg2rad(49.996908), 0.000000, 9907.31]
llh = ecef2llh(x, y, z)
# Longitude should be exact, latitude max error: 0.0018" according to [1]
# Altitude 0.17 m
# The implemented function must be better, but I don't know which one is using
# this web page. The ellipsoid is assumed to be WGS84
@test isapprox(llh[:2], exp_llh[:2], atol=deg2rad(0.0018/3600.0))
@test isapprox(llh[3], exp_llh[3], atol=0.17)
exp_xyz = [4114291.97, 0.00, 4870449.48] # m
xyz = llh2ecef(deg2rad(50.0), 0, 10000.0)
@test isapprox(xyz, exp_xyz)
# non-zero longitude
x, y, z = (3814496.258, 1514496.258, 4870157.031) # m
exp_llh = [deg2rad(50.068095), deg2rad(21.654910), 3263.97]
llh = ecef2llh(x, y, z)
# Longitude should be exact, latitude max error: 0.0018" according to [1]
# Altitude 0.17 m
# The implemented function must be better, but I don't know which one is using
# this web page. The ellipsoid is assumed to be WGS84
@test isapprox(llh[:2], exp_llh[:2], atol=deg2rad(0.0018/3600.0))
@test isapprox(llh[3], exp_llh[3], atol=0.17)
exp_xyz = [3814496.258, 1514496.258, 4870157.031] # m
xyz = llh2ecef(deg2rad(50.068095), deg2rad(21.654910), 3263.97)
@test isapprox(xyz, exp_xyz)
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 3816 | using FlightMechanicsUtils
using Test
@testset "Rigid body vel and accel fields" begin
# TEST rigid_body_velocity
# Test without angular velocity
vel_P = [10.0, 0.0, 0.0]
ω = [0.0, 0.0, 0.0]
r_PQ = [5.0, 5.0, 5.0]
exp_vel_Q = [10.0, 0.0, 0.0]
vel_Q = rigid_body_velocity(vel_P, ω, r_PQ)
@test isapprox(vel_Q, exp_vel_Q)
# Only angular velocity in Z axis
vel_P = [0.0, 0.0, 0.0]
ω = [0.0, 0.0, 1.0]
r_PQ = [5.0, 5.0, 5.0]
exp_vel_Q = [-sqrt(50) * sin(pi/4), sqrt(50) * cos(pi/4), 0.0]
vel_Q = rigid_body_velocity(vel_P, ω, r_PQ)
@test isapprox(vel_Q, exp_vel_Q)
# X linear velocity and Z angular velocity
vel_P = [10.0, 0.0, 0.0]
ω = [0.0, 0.0, 1.0]
r_PQ = [5.0, 5.0, 5.0]
exp_vel_Q = [-sqrt(50) * sin(pi/4) + 10.0, sqrt(50) * cos(pi/4), 0.0]
vel_Q = rigid_body_velocity(vel_P, ω, r_PQ)
@test isapprox(vel_Q, exp_vel_Q)
# TEST rigid_body_acceleration
# Only X linear acceleration
acc_P = [10.0, 0.0, 0.0]
ω = [0.0, 0.0, 0.0]
ω_dot = [0.0, 0.0, 0.0]
r_PQ = [5.0, 5.0, 5.0]
exp_accel_Q = [10.0, 0.0, 0.0]
accel_Q = rigid_body_acceleration(acc_P, ω, ω_dot, r_PQ)
@test isapprox(accel_Q, exp_accel_Q)
# Only Z angular acceleration
acc_P = [0.0, 0.0, 0.0]
ω = [0.0, 0.0, 0.0]
ω_dot = [0.0, 0.0, 1.0]
r_PQ = [5.0, 5.0, 5.0]
exp_accel_Q = [-sqrt(50) * sin(pi/4), sqrt(50) * cos(pi/4), 0.0]
accel_Q = rigid_body_acceleration(acc_P, ω, ω_dot, r_PQ)
@test isapprox(accel_Q, exp_accel_Q)
# Only Z angular velocity
acc_P = [0.0, 0.0, 0.0]
ω = [0.0, 0.0, 2.0]
ω_dot = [0.0, 0.0, 0.0]
r_PQ = [5.0, 5.0, 5.0]
exp_accel_Q = [-4.0 * sqrt(50) * sin(pi/4), -4.0 * sqrt(50) * cos(pi/4), 0.0]
accel_Q = rigid_body_acceleration(acc_P, ω, ω_dot, r_PQ)
@test isapprox(accel_Q, exp_accel_Q)
end
@testset "Angular kinematic equations" begin
# Null Euler angles
pqr = [0.5, 0.3, 0.7]
euler_angles_rates = pqr_2_ψθϕ_dot(pqr..., 0, 0)
@test isapprox(euler_angles_rates, pqr[end:-1:1])
ψθϕ_dot = [0.5, 0.3, 0.7]
pqr_ = ψθϕ_dot_2_pqr(ψθϕ_dot..., 0, 0)
@test isapprox(pqr_, ψθϕ_dot[end:-1:1])
# Reciprocal relationships
θ = 0.15 # rad
ϕ = 0.6 # rad
pqr = [0.5, 0.3, 0.7]
euler_angles_rates = pqr_2_ψθϕ_dot(pqr..., θ, ϕ)
pqr_ = ψθϕ_dot_2_pqr(euler_angles_rates..., θ, ϕ)
@test isapprox(pqr, pqr_)
# TODO: test body_angular_velocity_to_quaternion_rates
end
@testset "Aero <--> Body velocity" begin
uvw = [30, 3, 5]
tas, α, β = uvw_to_tasαβ(30, 3, 5)
u, v, w = wind2body(tas, 0, 0, α, β)
@test isapprox([u, v, w], uvw)
uvw = [100, 0, 0] # m/s
rv = uvw_to_tasαβ(uvw...)
@test isapprox(rv, [100, 0, 0])
uvw = 10, 0, 10 # m/s
rv = uvw_to_tasαβ(uvw...)
@test isapprox(rv, [sqrt(200), atan(1), 0])
uvw = [10, 10, 0] # m/s
rv = uvw_to_tasαβ(uvw...)
@test isapprox(rv, [sqrt(200), 0, asin(10/sqrt(200))])
uvw_dot = [5, 1, 10]
tasαβ_dot = uvw_dot_to_tasαβ_dot(uvw..., uvw_dot...)
uvw_dot_ = tasαβ_dot_to_uvw_dot(uvw_to_tasαβ(uvw...)..., tasαβ_dot...)
@test isapprox(uvw_dot_, uvw_dot)
end
@testset "Rate of climb constrain" begin
# wings-level, no sideslip: θ = α + γ
θ = rate_of_climb_constrain_no_wind(0.1, 0.05, 0, 0)
@test isapprox(θ, 0.1 + 0.05)
# Check case: Stevens, B. L., Lewis, F. L., (1992).
# Aircraft control and simulation: dynamics, controls design, and autonomous systems.
# John Wiley & Sons. (Section 3.6, figure 3.6-2, page 192)
θ =rate_of_climb_constrain_no_wind(0.0, deg2rad(13.7), deg2rad(0.0292), deg2rad(78.3))
# Take into account that this check case is a full trim not just the kinematic realtionship
@test isapprox(rad2deg(θ), 2.87, rtol=0.01)
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 2782 | using FlightMechanicsUtils
using Test
@testset "Translate forces and moments" begin
# No traslation
m2 = translate_forces_moments([10, 20, 30], [50, 60, 90], [1, 1, 1], [1, 1, 1])
@test isapprox(m2, [50, 60, 90])
# Simple translation 1
m2 = translate_forces_moments([1, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 1])
@test isapprox(m2, [0, -1, 0])
# Simple translation 2
m2 = translate_forces_moments([1, 0, 0], [1, 0, 0], [0, 0, 0], [0, 0, 1])
@test isapprox(m2, [1, -1, 0])
# Simple translation 3
m2 = translate_forces_moments(
[10, 20, 30],
[50, 60, 90],
[1, 1, 1],
[1, 1, 1] + [0, 1, 0],
)
@test isapprox(m2, [50, 60, 90] + [-30, 0, 10])
# Reciprocal
m2 = translate_forces_moments([10, 20, 30], [50, 60, 90], [1, 1, 1], [10, 20, 30])
m1_ = translate_forces_moments([10, 20, 30], m2, [10, 20, 30], [1, 1, 1])
@test isapprox([50, 60, 90], m1_)
end
@testset "Steiner" begin
# No point translation
p1 = [0, 0, 0]
p2 = p1
inertia = [
1 0 0
0 2 0
0 0 3
]
mass = 10
@test isapprox(steiner_inertia(p1, inertia, mass, p2), inertia)
# Point with no inertia
p1 = [0, 0, 0]
p2 = [10, 0, 0]
inertia = zeros(3, 3)
p2 = [10, 0, 0]
inertia = zeros(3, 3)
mass = 10
exp_inertia = [
0 0 0
0 1000 0
0 0 1000
]
@test isapprox(steiner_inertia(p1, inertia, mass, p2), exp_inertia)
# Point with with inertia
p1 = [0, 0, 0]
p2 = [10, 0, 0]
inertia = [
1 0 0
0 2 0
0 0 3
]
mass = 10
exp_inertia = [
0 0 0
0 1000 0
0 0 1000
] + inertia
@test isapprox(steiner_inertia(p1, inertia, mass, p2), exp_inertia)
end
@testset "Coordinated turn bank angle constrain" begin
# Check case: Stevens, B. L., Lewis, F. L., (1992).
# Aircraft control and simulation: dynamics, controls design, and autonomous systems.
# John Wiley & Sons. (Section 3.6, figure 3.6-2, page 192)
ϕ = coordinated_turn_bank(0.3, deg2rad(13.7), deg2rad(0.0292), 502*0.3048, 0.0)
# Take into account that this check case is a full trim not just the kinematic realtionship
@test isapprox(rad2deg(ϕ), 78.3, atol=0.05)
# Opposite turn
ϕ = coordinated_turn_bank(-0.3, deg2rad(13.7), deg2rad(0.0292), 502*0.3048, 0.0)
@test isapprox(rad2deg(ϕ), -78.3, atol=0.05)
# Null turn rate
ϕ = coordinated_turn_bank(0, deg2rad(13.7), deg2rad(0.0292), 502*0.3048, 0.0)
@test isapprox(rad2deg(ϕ), 0)
# For regression testing (no check values found in Stevens)
ϕ = coordinated_turn_bank(0.1, deg2rad(13.7), deg2rad(0.0292), 502*0.3048, 10)
@test isapprox(rad2deg(ϕ), 51.16941949883969)
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 6859 | using FlightMechanicsUtils
using LinearAlgebra
using Test
@testset "quaternion <-> euler" begin
quat = [0.8660254037844387, 0.0, 0.5, 0.0]
euler_exp = [0.0, 1.04719755, 0.0]
euler = euler_angles(quat...)
@test isapprox(euler, euler_exp)
quat_exp = [quat...]
quat = quaternions(euler_exp...)
@test isapprox(quat, quat_exp)
quat = [0.5, 0.5, 0.0, 0.0]
euler_exp = [0.0, 0.0, pi/2.0]
euler = euler_angles(quat...)
@test isapprox(euler, euler_exp)
quat_exp = [quat...]
quat = quaternions(euler_exp...)
@test isapprox(quat, quat_exp / norm(quat_exp))
psi, theta, phi = pi/4.0, pi/6.0, pi/12.0
quat = quaternions(psi, theta, phi)
euler = euler_angles(quat...)
@test isapprox([psi, theta, phi], euler)
quat = [0.5, 0.1, 0.2, 0.7]
quat = quat / norm(quat)
euler = euler_angles(quat...)
quat3 = quaternions(euler...)
@test isapprox(quat, quat3)
end
@testset "body <-> horizon" begin
ones_ = [1.0, 1.0, 1.0]
# body2horizon Euler
# no rotation
@test ones_ ≈ body2horizon(ones_..., 0., 0., 0.)
angles1 = [0., 45*pi/180., 0.]
angles2 = [0., 0., 45*pi/180]
angles3 = [45*pi/180, 0., 0.]
exp_b2h_1 = [2*0.70710678118654757, 1, 0]
exp_b2h_2 = [1, 0, 2*0.70710678118654757]
exp_b2h_3 = [0, 2*0.70710678118654757, 1]
@test exp_b2h_1 ≈ body2horizon(ones_..., angles1...)
@test exp_b2h_2 ≈ body2horizon(ones_..., angles2...)
@test exp_b2h_3 ≈ body2horizon(ones_..., angles3...)
# horizon2body Euler
@test ones_ ≈ horizon2body(ones_..., 0., 0., 0.)
@test ones_ ≈ horizon2body(exp_b2h_1..., angles1...)
@test ones_ ≈ horizon2body(exp_b2h_2..., angles2...)
@test ones_ ≈ horizon2body(exp_b2h_3..., angles3...)
# body2horizon quaternion
@test ones_ ≈ body2horizon(ones_..., 0., 0., 0.)
quat1 = quaternions(angles1...)
quat2 = quaternions(angles2...)
quat3 = quaternions(angles3...)
@test exp_b2h_1 ≈ body2horizon(ones_..., quat1...)
@test exp_b2h_2 ≈ body2horizon(ones_..., quat2...)
@test exp_b2h_3 ≈ body2horizon(ones_..., quat3...)
# horizon2body quaternionr
@test ones_ ≈ horizon2body(ones_..., 0., 0., 0.)
@test ones_ ≈ horizon2body(exp_b2h_1..., quat1...)
@test ones_ ≈ horizon2body(exp_b2h_2..., quat2...)
@test ones_ ≈ horizon2body(exp_b2h_3..., quat3...)
# rotation matrix body to hor (euler)
r_hb1 = rotation_matrix_zyx(angles1...)
@test exp_b2h_1 ≈ r_hb1 * ones_
r_hb2 = rotation_matrix_zyx(angles2...)
@test exp_b2h_2 ≈ r_hb2 * ones_
r_hb3 = rotation_matrix_zyx(angles3...)
@test exp_b2h_3 ≈ r_hb3 * ones_
# rotation matrix body <-> hor (quaternion)
r_hb1q = rotation_matrix_zyx(quat1...)
@test exp_b2h_1 ≈ r_hb1q * ones_
r_hb2q = rotation_matrix_zyx(quat2...)
@test exp_b2h_2 ≈ r_hb2q * ones_
r_hb3q = rotation_matrix_zyx(quat3...)
@test exp_b2h_3 ≈ r_hb3q * ones_
# r_hb equivalent with euler and quaternion
@test isapprox(r_hb1, r_hb1q)
@test isapprox(r_hb2, r_hb2q)
@test isapprox(r_hb3, r_hb3q)
# rotation matrix hor to body (euler)
r_bh1 = transpose(rotation_matrix_zyx(angles1...))
@test ones_ ≈ r_bh1 * exp_b2h_1
r_bh2 = transpose(rotation_matrix_zyx(angles2...))
@test ones_ ≈ r_bh2 * exp_b2h_2
r_bh3 = transpose(rotation_matrix_zyx(angles3...))
@test ones_ ≈ r_bh3 * exp_b2h_3
# rotation matrix horizon2body (quaternion)
r_bh1q = transpose(rotation_matrix_zyx(quat1...))
@test ones_ ≈ r_bh1q * exp_b2h_1
r_bh2q = transpose(rotation_matrix_zyx(quat2...))
@test ones_ ≈ r_bh2q * exp_b2h_2
r_bh3q = transpose(rotation_matrix_zyx(quat3...))
@test ones_ ≈ r_bh3q * exp_b2h_3
# r_bh equivalent with euler and quaternion
@test isapprox(r_bh1, r_bh1q)
@test isapprox(r_bh2, r_bh2q)
@test isapprox(r_bh3, r_bh3q)
# Test that quaternion and euler produce the same transformation
psi, theta, phi = pi/4.0, pi/6.0, pi/12.0
quat = quaternions(psi, theta, phi)
xh, yh, zh = 100.0, 10.0, -1.0
xyz_b_e = horizon2body(xh, yh, zh, psi, theta, phi)
xyz_b_q = horizon2body(xh, yh, zh, quat...)
@test isapprox(xyz_b_e, xyz_b_q)
xyz_h_e = body2horizon(xyz_b_e..., psi, theta, phi)
xyz_h_q = body2horizon(xyz_b_e..., quat...)
@test isapprox(xyz_h_e, xyz_h_q)
end
@testset "wind <-> hor/body" begin
ones_ = [1.0, 1.0, 1.0]
angles1 = [0., 45*pi/180., 0.]
angles2 = [0., 0., 45*pi/180]
angles3 = [45*pi/180, 0., 0.]
exp_b2h_1 = [2*0.70710678118654757, 1, 0]
exp_b2h_2 = [1, 0, 2*0.70710678118654757]
exp_b2h_3 = [0, 2*0.70710678118654757, 1]
#wind2horizon
@test ones_ ≈ wind2horizon(ones_..., 0., 0., 0.)
@test exp_b2h_1 ≈ wind2horizon(ones_..., angles1...)
@test exp_b2h_2 ≈ wind2horizon(ones_..., angles2...)
@test exp_b2h_3 ≈ wind2horizon(ones_..., angles3...)
#horizon2wind
@test ones_ ≈ horizon2wind(ones_..., 0., 0., 0.)
@test ones_ ≈ horizon2wind(exp_b2h_1..., angles1...)
@test ones_ ≈ horizon2wind(exp_b2h_2..., angles2...)
@test ones_ ≈ horizon2wind(exp_b2h_3..., angles3...)
#wind2body
@test ones_ ≈ wind2body(ones_..., 0., 0.)
@test [0, 1, 2*0.70710678118654757] ≈ wind2body(ones_..., 45*pi/180., 0.)
@test exp_b2h_3 ≈ wind2body(ones_..., 0., 45*pi/180.)
#body2wind
@test ones_ ≈ body2wind(ones_..., 0., 0.)
@test ones_ ≈ body2wind(0, 1, 2*0.70710678118654757, 45*pi/180., 0.)
@test ones_ ≈ body2wind(exp_b2h_3..., 0., 45*pi/180.)
end
@testset "hor <-> ECEF" begin
xecef, yecef, zecef = 1.0, 10.0, 100.0
lat, lon = 0.0, 0.0
exp_xyz_hor = [100.0, 10.0 ,-1.0]
xyz_hor = ecef2horizon(xecef, yecef, zecef, lat, lon)
@test isapprox(xyz_hor, exp_xyz_hor)
exp_xyz_ecef = [xecef, yecef, zecef]
xyz_ecef = horizon2ecef(exp_xyz_hor..., lat, lon)
@test isapprox(xyz_ecef, exp_xyz_ecef)
lat, lon = pi/2.0, 0.0
exp_xyz_hor = [-1.0, 10.0 ,-100.0]
xyz_hor = ecef2horizon(xecef, yecef, zecef, lat, lon)
@test isapprox(xyz_hor, exp_xyz_hor)
exp_xyz_ecef = [xecef, yecef, zecef]
xyz_ecef = horizon2ecef(exp_xyz_hor..., lat, lon)
@test isapprox(xyz_ecef, exp_xyz_ecef)
lat, lon = 0.0, pi/2.0
exp_xyz_hor = [100.0, -1.0 ,-10.0]
xyz_hor = ecef2horizon(xecef, yecef, zecef, lat, lon)
@test isapprox(xyz_hor, exp_xyz_hor)
exp_xyz_ecef = [xecef, yecef, zecef]
xyz_ecef = horizon2ecef(exp_xyz_hor..., lat, lon)
@test isapprox(xyz_ecef, exp_xyz_ecef)
lat, lon = pi/2.0, pi/2.0
exp_xyz_hor = [-10.0, -1.0 ,-100.0]
xyz_hor = ecef2horizon(xecef, yecef, zecef, lat, lon)
@test isapprox(xyz_hor, exp_xyz_hor)
exp_xyz_ecef = [xecef, yecef, zecef]
xyz_ecef = horizon2ecef(exp_xyz_hor..., lat, lon)
@test isapprox(xyz_ecef, exp_xyz_ecef)
end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | code | 380 | using SafeTestsets
@safetestset "Rotations" begin include("rotations.jl") end
@safetestset "Ellipsoid" begin include("ellipsoid.jl") end
@safetestset "Atmosphere" begin include("atmosphere.jl") end
@safetestset "Kinematics" begin include("kinematics.jl") end
@safetestset "Mechanics" begin include("mechanics.jl") end
@safetestset "Anemometry" begin include("anemometry.jl") end
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | docs | 1615 | # FlightMechanicsUtils
[](https://github.com/AlexS12/FlightMechanicsUtils.jl/actions)
[](https://alexs12.github.io/FlightMechanicsUtils.jl/dev)
[](https://github.com/AlexS12/FlightMechanicsUtils.jl/blob/main/LICENSE)
This is a suite for Flight Mechanics written in Julia. The purpose of this package is to supply efficient and validated Julia implementations of common Flight Mechanics calculations.
At the moment, it covers:
- International Standard Atmosphere.
- Transformations between common coordinate systems in Flight Mechanics problems (body, horizon, wind, ECEF) supporting Euler angles and quaternions.
- Kinematics & Dynamics:
- Rigid solid velocity and acceleration fields.
- Angular kinematic equations.
- Steiner theorem:to determine the moment of inertia of a rigid body about any axis.
- Trimmer constrains for leveled flight, climbs and turns.
- Anemometric functions (tas, cas, eas, dynamic pressure).
- ECEF (Earth Centered Earth Fixed) <---> LLH (Latitude Longitude Height) conversions.
## Install
Last release:
`pkg> add FlightMechanicsUtils`
Dev version:
`pkg> dev FlightMechanicsUtils`
Run tests:
`pkg> test FlightMechanicsUtils`
## Contributing
If you are using or want to use this package and have any suggestion or found a bug, open an [issue](https://github.com/AlexS12/FlightMechanicsUtils.jl/issues).
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | docs | 2109 | # API
## Constants
### Air
```@docs
γ_AIR
R_AIR
```
### Earth
```@docs
gD
```
## Ellipsoid
Available ellipsoid models:
| Name | a (m) | ``f^{-1}`` |
| :--------------------: | :------------ | :--------------- |
| `Clarke1866` | 6378206.4 | 294.9786982 |
| `Clarke1880` | 6378249.145 | 294.465 |
| `International` | 6378388.0 | 297.0 |
| `Bessel` | 6377397.155 | 299.1528128 |
| `Everest` | 6377276.345 | 300.8017 |
| `ModifiedEverest` | 6377304.063 | 300.8017 |
| `AustralianNational` | 6378160.0 | 298.25 |
| `SouthAmerican1969` | 6378160.0 | 298.25 |
| `Airy` | 6377564.396 | 299.3249646 |
| `ModifiedAiry` | 6377340.189 | 299.3249646 |
| `Hough` | 6378270.0 | 297.0 |
| `Fischer1960SouthAsia` | 6378155.0 | 298.3 |
| `Fischer1960Mercury` | 6378166.0 | 298.3 |
| `Fischer1968` | 6378150.0 | 298.3 |
| `WGS60` | 6378165.0 | 298.3 |
| `WGS66` | 6378145.0 | 298.25 |
| `WGS72` | 6378135.0 | 298.26 |
| `WGS84` | 6378137.0 | 298.257223563 |
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["ellipsoid.jl"]
Private = false
```
## Rotations
### Coordinate systems
- Earth
- Local horizon
- Body
- Wind
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["rotations.jl"]
Private = false
```
## Atmosphere
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["atmosphere.jl"]
Private = false
```
## Kinematics
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["kinematics.jl"]
Private = false
```
## Mechanics
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["mechanics.jl"]
Private = false
```
## Anemometry
- Calibrated
- Equivalent
- True
```@autodocs
Modules = [FlightMechanicsUtils]
Pages = ["anemometry.jl"]
Private = false
```
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.1.2 | de9ce8d885ae995c6309f33cb9b40b59cd187661 | docs | 1709 | # FlightMechanicsUtils.jl
*Flight Mechanics in Julia.*
## Overview
This is a suite for Flight Mechanics written in Julia. The purpose of this package is to supply efficient and validated Julia implementations of common Flight Mechanics calculations.
At the moment, it covers:
- International Standard Atmosphere.
- Transformations between common coordinate systems in Flight Mechanics problems (body, horizon, wind, ECEF) supporting Euler angles and quaternions.
- Kinematics & Dynamics:
- Rigid solid velocity and acceleration fields.
- Angular kinematic equations.
- Steiner theorem:to determine the moment of inertia of a rigid body about any axis.
- Trimmer constrains for leveled flight, climbs and turns.
- Anemometric functions (tas, cas, eas, dynamic pressure).
- ECEF (Earth Centered Earth Fixed) <---> LLH (Latitude Longitude Height) conversions.
## Install
Last release:
`pkg> add FlightMechanicsUtils`
Dev version:
`pkg> dev FlightMechanicsUtils`
Run tests:
`pkg> test FlightMechanicsUtils`
## What's new
### v0.1.2
#### New
- [`Ellipsoid`](@ref) type with some common ellipsoids such as `WGS84`.
- Transformation ([`ecef2llh`](@ref)) from ECEF (Earth Centered Earth Fixed) to LLH (latitude, longitude, height) and viceversa ([`llh2ecef`](@ref)) given the reference ellipsoid.
- Rotation ([`horizon2ecef`](@ref)) from local horizon to ECEF axis and vicecersa ([`ecef2horizon`](@ref)).
#### Enhancements
- [`coordinated_turn_bank(ψ_dot, α, β, tas, γ, g)`](@ref) now accepts gravity as optional argument.
### v.0.1.1
Initial [release](https://github.com/AlexS12/FlightMechanicsUtils.jl/releases/tag/v0.1.1).
## Contents
```@contents
Pages = ["index.md", "api.md"]
```
| FlightMechanicsUtils | https://github.com/AlexS12/FlightMechanicsUtils.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 6766 | using LinearAlgebra
N = 40
N_t = 300
N_f = 150
#s = tf("s");
""" `toeplitz2(vc, N = length(vc))`
Create toeplitxz matrix by stacking vc as columns, to width N, keeping height at length(vc) """
function toeplitz2(vc, N = size(vc,1))
M = vc[:,:]
Ncol = size(vc,2)
Nrow = size(vc,1)
for i = 2:N
M = [M [zeros(i-1, Ncol); vc[1:Nrow-i+1, :]]]
end
return M
end
function toeplitz(vc::AbstractVector{T}, vr) where T
N = length(vc)
@assert N == length(vr)
@assert vc[1] == vr[1]
M = Array{T,2}(undef, N, N)
# Subdiagonal
for i = 1:N # Each column
M[i:N,i] = vc[1:N-i+1]
end
for i = 1:N # Each row
M[i, i:N] = vr[1:N-i+1]
end
return M
end
""" Compute A,b for the eqpression
A*q+b corresponding to S*v=(I-PQ)v """
function Saff_t(TP,v,N)
A = - T_P*toeplitz2(v,N)
b = copy(v)
return A, b
end
""" Compute A,b for the eqpression
A*q+b corresponding to PS*v=P(I-PQ)v """
function PSaff_t(TP,v,N)
AQ,bQ = CSaff_t(TP,v,N)
A = -TP*TP*AQ
b = TP*(v - TP*bQ)
return A, b
end
""" Compute A,b for the eqpression
A*q+b corresponding to CS*v=Qv """
function CSaff_t(TP,v,N)
A = toeplitz2(v,N)
b = zero(v)
return A, b
end
""" Compute A,b for the eqpression
A*q+b corresponding to CS*v=Qv """
function PCSaff_t(TP,v,N)
A = TP*toeplitz2(v,N)
b = zero(v)
return A, b
end
function Saff_fr(P_fr, Qf)
# Q_fr = G_q_fr*b
# S_fr = 1 - P_fr.*Q_fr
A = -P_fr.*Qf
b = ones(eltype(Qf), size(P_fr,1))
return A,b
end
""" T_P = SysP(g)
Given impulse response of system p, generate system (toeplitz) matrix TP """
function SysP(g)
T_P = toeplitz(g, [g[1]; zeros(length(g)-1)]);
end
"""
G_q_fr = Qfreq(Ω, N)
Generate matrix for calculating frequency respose (Q_fr) of Q on grid Ω, such that
Q_fr = G_q_fr*q
where q is the impulse response or order N, and Ω∈(0,π)
"""
function Qfreq(Ω, N)
exp.((-im.*Ω)*(0:N-1)')
end
using ControlSystems
#P = c2d(1/(20*s + 1) * exp(-5*s), 1);
z_d = tf("z", 1)
P_sysd = (1/20)/(z_d-0.95)/z_d^5
P_d(z) = (1/20)/(z-0.95)/z^5
#P(z) = (1/20)/(z-0.95)*z^(-5)
g = impulse(P_sysd, N_t-1)[1][:]
T_P = SysP(g)
Ω = 2*pi*(10 .^range(-3, log10(0.5), length=N_f))
#P_fr = freqresp(P_sysd, Ω)[:]
P_fr = P_d.(exp.(im.*Ω))
G_q_fr = Qfreq(Ω, N)
e1 = [1; zeros(N_t - 1)];
d1 = ones(N_t);
PSA, PSb = PSaff_t(T_P, d1, N)
SA_fr, Sb_fr = Saff_fr(P_fr, G_q_fr)
using Convex
################# Multiple affine and cones in Convex:
b = Variable(N)
y_d = Variable(N_t)
#Q_fr = ComplexVariable(N_f)
S_fr_re = Variable(N_f)
S_fr_im = Variable(N_f)
t1 = Variable()
t2 = Variable()
t3 = Variable(N_f)
t4 = Variable()
#c2 = (Q_fr == G_q_fr*b)
c3_re = (S_fr_re == real(SA_fr)*b + real(Sb_fr)) # Aff
c3_im = (S_fr_im == imag(SA_fr)*b + imag(Sb_fr)) # Aff
c4 = (t2 == t1 - 5^2) # Aff
c5 = sumsquares(b) <= t1; # SOC ∋ (b,t1)
c7 = (t2 <= 0) # NonPos ∋ t2
c8 = (abs2(S_fr_re) + abs2(S_fr_im) <= t3) # Many SOCs ∋ (S_fr,t3)
c9 = (t3 == 1.6^2) # Affine
#cost = sumsquares(y_d)
c1 = (y_d == PSA*b+PSb) # Affine
c10 = (sumsquares(y_d) <= t4) # SOC ∋ (y_d, t4)
c11 = (t4 == 1.1207+0.01) # Affine
prob = minimize(0, c1, c3_re, c3_im, c4, c5, c6, c7, c8, c9, c10, c11)
################# As one affine + cone in convex
Astag1 = toeplitz2([1 0 0; zeros(N_f-1, 3)])
Astag2 = toeplitz2([0 1 0; zeros(N_f-1, 3)])
Astag3 = toeplitz2([0 0 1; zeros(N_f-1, 3)])
A1 = [ zeros(N_f,1) -real(SA_fr) zeros(N_f,1) Astag2 zeros(N_f,1) zeros(N_f, N_t) ]
A2 = [ zeros(N_f,1) -imag(SA_fr) zeros(N_f,1) Astag3 zeros(N_f,1) zeros(N_f, N_t) ]
A3 = [ -1 zeros(1,N) 1 zeros(1,N_f*3) zeros(1, 1) zeros(1, N_t) ]
A4 = [ zeros(N_f,1) zeros(N_f,N) zeros(N_f,1) Astag1 zeros(N_f,1) zeros(N_f, N_t) ]
A5 = [ zeros(N_t,1) -PSA zeros(N_t,1) zeros(N_t,N_f*3) zeros(N_t,1) I ]
A6 = [ 0 zeros(1,N) 0 zeros(1,N_f*3) 1 zeros(1, N_t) ]
x = [t1;b;t2;
vcat(([t3[i];S_fr_re[i];S_fr_im[i];] for i in 1:N_f)...);
t4; y_d]
# For comparison
xc = [sqrt(t1);b;t2;
vcat(([sqrt(t3[i]);S_fr_re[i];S_fr_im[i];] for i in 1:N_f)...);
sqrt(t4); y_d]
Aall = [A1;A2;A3;A4;A5;A6]
ball = [real(Sb_fr); imag(Sb_fr); -5^2; fill(1.6^2, N_f); PSb; 1.1207+0.01]
Aff = (Aall*x == ball)
Cone = [sumsquares(b) <= t1; t2 <= 0;
vcat((abs2(S_fr_re[i]) + abs2(S_fr_im[i]) <= t3[i] for i in 1:N_f)...);
sumsquares(y_d) <= t4]
prob = minimize(0, Aff, Cone...)
using SCS
@time solve!(prob, SCSSolver())
using Plots
plot(evaluate(b))
############ Using ProximalOperators
using ProximalOperators
ball2 = [real(Sb_fr); imag(Sb_fr); -5; fill(1.6, N_f); PSb; sqrt(1.1207+0.01)]
S1 = IndAffine(Aall, ball2)
fs = (IndSOC(), IndNonpositive(),
(IndSOC() for i in 1:N_f)...,
IndSOC())
idxs = (1:(N+1), (N+2):(N+2),
((N+3+i-1):(N+3+i+1) for i in 1:3:(N_f*3))...,
(N+2+3*N_f+1):(N+2+3*N_f+N_t+1))
S2 = SlicedSeparableSum(fs, tuple.(idxs))
y0 = randn(size(Aall,2))
x0 = randn(size(Aall,2))
using FirstOrderSolvers
alg = DR()
problem = FirstOrderSolvers.Feasibility(S1, S2, size(Aall,2))
sol = FirstOrderSolvers.solve!(p, solver, checki=10, eps=1e-9)
using ProximalAlgorithms
solver = ProximalAlgorithms.DouglasRachford(gamma=1.0,maxit=10000,verbose=true)
x0, y0, it = solver(x0, f=S1, g=S2)
@profiler solver(x0, f=S1, g=S2)
tmp1 = similar(x0)
tmp2 = similar(x0)
tmp3 = similar(x0)
@time for i = 1:1000
prox!(x0, S1, y0)
tmp1 .= 2. *x0 .- y0
prox!(tmp2, S2, tmp1)
tmp3 .= 2. *tmp2 .- tmp1
i%100 == 0 && (print("Err: "); println(norm(x0-tmp2)))
i%100 == 0 && (print("Ang: "); println(acos(min(dot(y0-x0, tmp2-tmp1)/norm(x0-y0)/norm(tmp2-tmp1),1))))
# Shadow in tmp2
y0 .= (tmp3 .+ y0)./2
end
bsol = tmp2[2:N+1]
plot(bsol)
using Convex
b = Variable(N)
#T_Q = toeplitz2([b; zeros(N_t-N)])
#y_d = T_P*(Matrix{Float64}(I,N_t,N_t) - T_P*T_Q)*d1
#y_d = T_P*d1 - T_P*T_P*toeplitz2(d1,N)*b
y_d = PSA*b+PSb
Q_fr = G_q_fr*b
cost = sumsquares(y_d)
const1 = abs(SA_fr*b+Sb_fr) <= 1.6
const2 = sumsquares(b) <= 5^2
prob = minimize(cost, const1, const2)
using SCS
solve!(prob, SCSSolver())
using Plots
plot(evaluate(b))
plot(Ω./2 ./pi, abs.(1 .- P_fr.*evaluate(Q_fr)), yscale=:log10, xscale=:log10)
C_fr = vec(evaluate(Q_fr) ./ (1 .- P_fr .*evaluate(Q_fr)))
plot(Ω/2/pi, abs.(C_fr), yscale=:log10, xscale=:log10)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2670 | import MathProgBase.SolverInterface: ConicModel, LinearQuadraticModel,
optimize!, status, getobjval, getsolution, loadproblem!,
numvar, numconstr, supportedcones
ConicModel(s::FOSAlgorithm) = FOSMathProgModel(s; s.options...)
LinearQuadraticModel(s::FOSAlgorithm) = ConicToLPQPBridge(ConicModel(s))
function optimize!(m::FOSMathProgModel)
#TODO fix history
m.history = ValueHistories.MVHistory()
solution = solve!(m) #TODO Code here!
m.solve_stat = solution.status
m.primal_sol = solution.x
m.dual_sol = solution.y
m.slack = solution.s
m.obj_val = dot(m.c, m.primal_sol)# * (m.orig_sense == :Max ? -1 : +1)
end
status(m::FOSMathProgModel) = m.solve_stat
getobjval(m::FOSMathProgModel) = m.obj_val
getsolution(m::FOSMathProgModel) = copy(m.primal_sol)
function loadproblem!(model::FOSMathProgModel, c, A, b, constr_cones, var_cones)
loadproblem!(model, c, sparse(A), b, constr_cones, var_cones)
end
function loadproblem!(model::FOSMathProgModel, c, A::SparseMatrixCSC, b, constr_cones, var_cones)
t1 = time_ns()
model.input_numconstr = size(A,1)
model.input_numvar = size(A,2)
# Verify only good cones
for cone_vars in constr_cones
cone_vars[1] in badcones && @error "Cone type $(cone_vars[1]) not supported"
end
for cone_vars in var_cones
cone_vars[1] in badcones && @error "Cone type $(cone_vars[1]) not supported"
end
conesK1 = tuple([conemap[t[1]] for t in constr_cones]...)
indexK1 = tuple([t[2] for t in constr_cones]...)
model.K1 = ConeProduct(indexK1, conesK1)
conesK2 = tuple([conemap[t[1]] for t in var_cones]...)
indexK2 = tuple([t[2] for t in var_cones]...)
model.K2 = ConeProduct(indexK2, conesK2)
model.A = A
# TODO figure out :Min/:Max
model.b = b
model.c = c
# Calls a specific method based on the type T in model::FOSMathProgModel{T}
data, status_generator = init_algorithm!(model.alg, model)
model.status_generator = status_generator
model.data = data
t2 = time_ns()
model.init_duration = t2-t1
return model
end
numvar(model::FOSMathProgModel) = model.input_numvar
numconstr(model::FOSMathProgModel) = model.input_numconstr
supportedcones(s::FOSAlgorithm) = [:Free, :Zero, :NonNeg, :NonPos, :SOC, :SDP, :ExpPrimal, :ExpDual]
"""
`S1, S2, n, status_generator = get_sets_and_status(alg::FOSAlgorithm, model::FOSMathProgModel)`
Get the sets S1, S2 and their size n
"""
function get_sets_and_status(alg::FOSAlgorithm, model::FOSMathProgModel)
hsde, status_generator = HSDE(model, direct=alg.direct)
return hsde.indAffine, hsde.indCones, hsde.n, status_generator
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 906 | #__precompile__()
module FirstOrderSolvers
using ProximalOperators
using SparseArrays
using Printf
import ValueHistories
using LinearAlgebra
import LinearAlgebra: mul!, Transpose, dot, norm
export Feasibility
include("cones.jl")
include("types.jl")
include("status.jl")
include("utilities/conjugategradients.jl")
include("utilities/affinepluslinear.jl")
include("problemforms/HSDE/HSDEStatus.jl")
include("problemforms/HSDE/HSDE.jl")
include("problemforms/HSDE/HSDEAffine.jl")
include("problemforms/Feasibility/Feasibility.jl")
include("problemforms/Feasibility/FeasibilityStatus.jl")
include("FOSSolverInterface.jl") # MathProgBase interface
include("solverwrapper.jl")
include("wrappers/longstep.jl")
include("wrappers/linesearch.jl")
include("solvers/defaults.jl")
include("solvers/solvers.jl")
#include("lapack.jl")
#include("solvermethods.jl")
#include("line_search_methods.jl")
end # module
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 4294 | import ProximalOperators: ProximableFunction, prox!, IndPSD
# TODO zero cone
const conemap = Dict{Symbol, ProximableFunction}(
:Free => IndFree(),
:Zero => IndZero(),
:NonNeg => IndNonnegative(),
:NonPos => IndNonpositive(),
:SOC => IndSOC(),
:SOCRotated => IndRotatedSOC(),
:SDP => IndPSD(scaling=true),
:ExpPrimal => IndExpPrimal(),
:ExpDual => IndExpDual()
)
const badcones = ProximableFunction[]
# type DualCone{T<:ProximableFunction} <: ProximableFunction
# C::T
# end
# dual{T<:ProximableFunction}(C::T) = DualCone{T}(C)
# dual(C::DualCone) = C.C
# function prox!(cone::DualCone, x, y)
# prox!(cone.C, -x, y)
# for i = 1:length(x)
# y[i] = x[i] + y[i]
# end
# end
mutable struct ConeProduct{N,T} <: ProximableFunction
ranges::NTuple{N, UnitRange{Int64}}
cones::T
end
#
ConeProduct() = ConeProduct{0,Any}((),())
# function ConeProduct(ranges::NTuple{N, UnitRange{Int64}}, cones::T) where {N,T}
# return ConeProduct{N,T}(ranges, cones)
# end
toRanges(rangesIn::NTuple{N, UnitRange{Int64}}) where N = rangesIn
function toRanges(rangesIn::NTuple{N,Array{T,1}}) where {N, T<:Integer}
ranges = Array{UnitRange{Int64},1}(undef, N)
for j in 1:N
range = rangesIn[j]
for (i,el) in enumerate(range[1]:range[end])
if el != range[i]
@error "Invalid range in input"
end
end
ranges[j] = range[1]:range[end]
end
return tuple(ranges...)
end
#Should accept tro tuples with UnitRange{Int64} and ProximableFunction
#Cant enforce types or ambigous with default constructor?
function ConeProduct(rangesIn, cones)
ranges = toRanges(rangesIn)
N = length(cones)
@assert typeof(ranges) == NTuple{N, UnitRange{Int64}}
@assert length(ranges) == N
@assert typeof(cones) <: Tuple
#Verify that ranges covers the whole range
prevRangeEnd = 0
for i = 1:N
@assert ranges[i][1] == prevRangeEnd + 1
prevRangeEnd = ranges[i][end]
@assert typeof(cones[i]) <: ProximableFunction
end
T = typeof(cones)
#println("Dumping cones input")
#dump(cones)
ConeProduct(ranges, cones)
end
#Wrapper for dual prox to avoid double duals
function proxDual!(y::AbstractArray, C::ProximableFunction, x::AbstractArray)
prox!(y, C, -x)
@simd for i = 1:length(x)
y[i] = x[i] + y[i]
end
end
# proxDual!(y, C::DualCone, x) = prox!(y, C.C, x)
function prox!(y::AbstractArray, C::ConeProduct{N,T}, x::AbstractArray) where {N,T}
#TODO Paralell implementation
for i = 1:N
prox!(view(y, C.ranges[i]), C.cones[i], view(x, C.ranges[i]))
end
end
## Some better dual projections
const myIndFree = IndFree()
proxDual!(y::AbstractArray, C::IndZero, x::AbstractArray) = prox!(y, myIndFree, x)
const myIndZero = IndPoint()
proxDual!(y::AbstractArray, C::IndFree, x::AbstractArray) = prox!(y, myIndZero, x)
proxDual!(y::AbstractArray, C::IndNonnegative, x::AbstractArray) = prox!(y, C, x)
proxDual!(y::AbstractArray, C::IndNonpositive, x::AbstractArray) = prox!(y, C, x)
# TODO figure out if self dual PSD
#proxDual!(y::AbstractArray, C::IndPSD, x::AbstractArray) = prox!(y, C, x)
function proxDual!(y::AbstractArray, C::ConeProduct{N,T}, x::AbstractArray) where {N,T}
#TODO Paralell implementation
for i = 1:N
proxDual!(view(y, C.ranges[i]), C.cones[i], view(x, C.ranges[i]))
end
end
""" Indicator of K2×K1*×R+ × K2*×K1×R+ ∈ (R^n,R^m,R)^2"""
mutable struct DualConeProduct{T1<:ConeProduct,T2<:ConeProduct} <: ProximableFunction
K1::T1
K2::T2
m::Int64
n::Int64
end
DualConeProduct(K1::T1,K2::T2) where {T1,T2} = DualConeProduct{T1,T2}(K1, K2, K1.ranges[end][end], K2.ranges[end][end])
function prox!(y::AbstractArray, K::DualConeProduct, x::AbstractArray)
m, n = K.m, K.n
K1, K2 = K.K1, K.K2
nu = n+m+1
xx = view(x, 1:n)
xy = view(x, (n+1):(n+m))
xr = view(x, (nu+1):(nu+n))
xs = view(x, (nu+n+1):(nu+n+m))
yx = view(y, 1:n)
yy = view(y, (n+1):(n+m))
yr = view(y, (nu+1):(nu+n))
ys = view(y, (nu+n+1):(nu+n+m))
prox!( yx, K2, xx)
proxDual!(yy, K1, xy)
y[nu] = max(x[nu], 0)
proxDual!(yr, K2, xr)
prox!( ys, K1, xs)
y[2nu] = max(x[2nu], 0)
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 246 | function plothistory(problem, p = plot())
hist = problem.model.history
h = hist[:p]
nonnan = !isnan.(hist[:p].values)
val = hist[:p].values[nonnan]
iter = hist[:p].iterations[nonnan]
plot!(p, iter, val, yscale=:log10)
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 1389 |
function solve!(model::AbstractFOSModel)
opts = Dict(model.options)
#TODO better kwarg default handling
max_iters = :max_iters ∈ keys(opts) ? opts[:max_iters] : 10000
verbose = :verbose ∈ keys(opts) ? opts[:verbose] : 1
debug = :debug ∈ keys(opts) ? opts[:debug] : 1
eps = :eps ∈ keys(opts) ? opts[:eps] : 1e-5
checki = :checki ∈ keys(opts) ? opts[:checki] : 100
x = getinitialvalue(model, model.alg, model.data)
#TODO general status
status = model.status_generator(model, checki, eps, verbose, debug)
guess = iterate(model.alg, model.data, status, x, max_iters)
sol = populate_solution(model, model.alg, model.data, guess, status)
return sol
end
function iterate(alg::FOSAlgorithm, data::FOSSolverData, status, x, max_iters)
t1 = time()
printstatusheader(status)
for i = 1:max_iters
status.i = i
step(alg, data, x, i, status)
if status.status != :Continue
break
end
end
#TODO Status should maybe be more consistent with guess
guess = getsol(alg, data, x)
if !status.checked #If max_iters reached without check
checkstatus(status, guess, override = true) #Force check independent of iteration count
end
if status.verbose > 0
println("Time for iterations: ")
t2 = time()
println("$(t2-t1) s")
end
return guess
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 128 | import ValueHistories: push!
function checkstatus(::NoStatus, z)
return false
end
printstatusheader(::NoStatus) = nothing
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2129 | using MathProgBase.SolverInterface
#export FOSAlgorithm
abstract type AbstractSolution end
mutable struct Solution <: AbstractSolution
x::Array{Float64, 1}
y::Array{Float64, 1}
s::Array{Float64, 1}
status::Symbol
end
abstract type FOSAlgorithm <: AbstractMathProgSolver end
abstract type FOSSolverData end
struct FOSSolverDataPlaceholder <: FOSSolverData end
abstract type FOSModel end
abstract type AbstractStatus end
mutable struct NoStatus <: AbstractStatus
status::Symbol
end
# Define Solver for interface
# struct FOSSolver <: AbstractMathProgSolver
# options
# end
# FOSSolver(;kwargs...) = FOSSolver(kwargs)
#
mutable struct FOSMathProgModel <: AbstractConicModel
input_numconstr::Int64 # Only needed for interface?
input_numvar::Int64 # Only needed for interface?
K1::ConeProduct
K2::ConeProduct
A::SparseMatrixCSC{Float64,Int} # The A matrix (equalities)
b::Vector{Float64} # RHS
c::Vector{Float64} # The objective coeffs (always min)
alg::FOSAlgorithm #This descides which algorithm to call
data::FOSSolverData # Solver specific data is stored here
# orig_sense::Symbol # Original objective sense
# Post-solve
solve_stat::Symbol
obj_val::Float64
primal_sol::Vector{Float64}
dual_sol::Vector{Float64}
slack::Vector{Float64}
options::Dict{Symbol, Any}
enditr::Int64
status_generator::Function
init_duration::UInt64 # In nano-seconds
history::ValueHistories.MVHistory
end
function FOSMathProgModel(s::FOSAlgorithm; kwargs...)
FOSMathProgModel(0, 0, ConeProduct(), ConeProduct(), spzeros(0, 0),
Float64[], Float64[], s, FOSSolverDataPlaceholder(), :NotSolved,
0.0, Float64[], Float64[], Float64[], Dict{Symbol,Any}(kwargs), -1,
x -> (@error "No status generator defined"),
UInt64(1), ValueHistories.MVHistory())
end
# To handle both custom types and
const AbstractFOSModel = Union{FOSMathProgModel, FOSModel}
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2543 | ## Problem
struct Feasibility{T1<:ProximableFunction,T2<:ProximableFunction}
S1::T1
S2::T2
n::Int64
end
mutable struct FeasibilitySolution <: AbstractSolution
x::Array{Float64, 1}
status::Symbol
end
# Model with all data
mutable struct FeasibilityModel{T1<:ProximableFunction,T2<:ProximableFunction} <: FOSModel
S1::T1
S2::T2
n::Int64
alg::FOSAlgorithm #This descides which algorithm to call
data::FOSSolverData # Solver specific data is stored here
solve_stat::Symbol
obj_val::Float64
options::Dict{Symbol, Any}
enditr::Int64
status_generator::Function
init_duration::UInt64 # In nano-seconds
history::ValueHistories.MVHistory
end
function FeasibilityModel(problem::Feasibility, alg::FOSAlgorithm, kwargs...)
t1 = time_ns()
model = FeasibilityModel(problem.S1, problem.S2, problem.n, alg, FOSSolverDataPlaceholder(), :NotSolved,
0.0, Dict{Symbol,Any}(kwargs), -1,
x -> (@error "No status generator defined"),
UInt64(1), ValueHistories.MVHistory())
data, status_generator = init_algorithm!(model.alg, model)
model.status_generator = status_generator
model.data = data
t2 = time_ns()
model.init_duration = t2-t1
return model
end
function solve!(problem::Feasibility, alg::FOSAlgorithm; kwargs...)
model = FeasibilityModel(problem, alg, kwargs...)
solution = solve!(model)
end
getinitialvalue(model::FeasibilityModel) = zeros(model.n)
getinitialvalue(model::FeasibilityModel, alg, data) = zeros(model.n)
function populate_solution(model::FeasibilityModel, alg, data, x, status)
endstatus = status.status
if endstatus == :Continue
endstatus = :Indeterminate
end
solution = FeasibilitySolution(x, endstatus)
end
"""
`S1, S2, n, status_generator = get_sets_and_status(alg::FOSAlgorithm, model::FOSMathProgModel)`
Get the sets S1, S2 and their size n
"""
function get_sets_and_status(alg::FOSAlgorithm, model::FeasibilityModel)
direct = true # alg.direct # No support in this model for setting flag here
#!alg.direct && @warn "Not possible to set direct/indirect solve in algorithm, use appropriate set from ProximalOperators"
status_generator = (mo, checki, eps, verbose, debug) ->
FeasibilityStatus(mo.n, 0, mo, fill(NaN, mo.n), :Continue, checki, eps, verbose, false, direct, time_ns(), mo.init_duration, debug)
return model.S1, model.S2, model.n, status_generator
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2565 | mutable struct FeasibilityStatus <: AbstractStatus
n::Int64
i::Int64
model::FeasibilityModel
prev::Array{Float64,1} # Previous iterate to check convergence
status::Symbol
checki::Int64
eps::Float64
verbose::Int64
checked::Bool
direct::Bool
init_time::UInt64 #As reported by time_ns()
init_duration::UInt64 #In nano-seconds
debug::Int64
end
""" checkstatus(stat::FeasibilityStatus, x)
Returns `false` if no check was made
If convergence check is done, returns `true` and sets stat.status to one of:
:Continue, :Optimal, :Infeasible
"""
function checkstatus(stat::FeasibilityStatus, z; override = false)
#TODO fix m, n
if stat.i % stat.checki == 0 || override
t = time_ns() - stat.init_time
n, i, model, verbose, debug, ϵ = stat.n, stat.i, stat.model, stat.verbose, stat.debug, stat.eps
prev = stat.prev
# TODO Measure better
err = norm(prev - z)
if debug > 0
savedata(i, err, z, t, model, debug)
end
if verbose > 0
if !stat.direct
cgiter = getcgiter(stat.model.data)
push!(model.history, :cgiter, i, cgiter)
printstatusiter(i, err, cgiter, t)
else
printstatusiter(i, err, t)
end
end
status = :Continue
if err <= ϵ
if verbose > 0
println("Found solution i=$i")
end
status = :Optimal
elseif false # TODO Be able to check better
status = :Infeasible
end
stat.status = status
stat.checked = true
stat.prev .= z
return stat.checked
else
stat.checked = false
stat.prev .= z
return stat.checked
end
end
function printstatusheader(stat::FeasibilityStatus)
if stat.verbose > 0
println("Time to initialize: $(stat.init_duration/1e9)s")
width = 22 + (stat.direct ? 0 : 5)
println("-"^width)
print(" Iter | res")
!stat.direct && print(" | cg ")
println(" | time")
println("-"^width)
end
end
function printstatusiter(i, err, t)
@printf("%6d|% 9.2e % .1es\n",i,err,t/1e9)
end
function printstatusiter(i, err, cgiter, t)
@printf("%6d|% 9.2e % 4d % .1es\n",i,err,cgiter,t/1e9)
end
function savedata(i, err, z, t, model, debug)
history = model.history
push!(history, :err, i, err)
push!(history, :t, i, t)
if debug > 1
push!(history, :z, i, z)
end
return
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2059 | mutable struct HSDE{T1<:ProximableFunction,T2<:DualConeProduct}
indAffine::T1
indCones::T2
n::Int64
end
function HSDE(model::FOSMathProgModel; direct=false)
m,n = size(model.A)
S1 = if direct
# Uses direct solver from ProximalOperators
Q = [spzeros(n,n) model.A' model.c;
-model.A spzeros(m,m) model.b;
-model.c' -model.b' 0 ]
IndAffine([sparse(Q) -I], zeros(size(Q,1)))
else
Q = HSDEMatrixQ(model.A, model.b, model.c)
# Q = [spzeros(n,n) model.A' model.c;
# -model.A spzeros(m,m) model.b;
# -model.c' -model.b' 0 ]
# Using CG on KKT system
AffinePlusLinear(Q, zeros(size(Q,1)), zeros(size(Q,1)), 1, decreasing_accuracy=true)
end
S2 = DualConeProduct(model.K1,model.K2)
m,n = S2.m, S2.n
status_generator = (mo, checki, eps, verbose, debug) ->
HSDEStatus(m, n, 0, mo, :Continue, checki, eps, verbose, false, direct, time_ns(), model.init_duration, debug)
return HSDE(S1, S2, 2*(size(model.A,1)+size(model.A,2)+1)), status_generator
end
# TODO Unclear why this is nessesary/differenet
getinitialvalue(model::FOSMathProgModel) = HSDE_getinitialvalue(model)
getinitialvalue(model::FOSMathProgModel, alg, data) =
HSDE_getinitialvalue(model)
populate_solution(model::FOSMathProgModel, alg, data, x, status) =
HSDE_populatesolution(model, x, status)
function HSDE_getinitialvalue(model::FOSMathProgModel)
m, n = size(model.A)
l = m+n+1
x = zeros(2*l)
x[l] = 1.0
x[2l] = 1.0
return x
end
function HSDE_populatesolution(model::FOSMathProgModel, x, status::HSDEStatus)
m, n = size(model.A)
l = m+n+1
@assert length(x) == 2l
τ = x[l]
κ = x[2l]
#TODO Eveluate status
endstatus = status.status
if endstatus == :Continue
endstatus = :Indeterminate
end
solution = Solution(x[1:n]/τ, x[n+1:n+m]/τ, x[l+n+1:l+n+m]/τ, endstatus)
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 4133 |
struct HSDEMatrixQ{T,M<:AbstractMatrix{T},V<:AbstractVector{T}} <: AbstractMatrix{T}
A::M
b::V
c::V
am::Int64
an::Int64
end
"""
HSDEMatrixQ(A::M, b::V, c::V) where {T,M<:AbstractMatrix{T},V<:AbstractVector{T}}
"""
function HSDEMatrixQ(A::M, b::V, c::V) where {T,M<:AbstractMatrix{T},V<:AbstractVector{T}}
am, an = size(A)
@assert size(b,1) == am
@assert size(c,1) == an
HSDEMatrixQ{T,M,V}(A, b, c, am, an)
end
Base.size(Q::HSDEMatrixQ) = (Q.am+Q.an+1, Q.am+Q.an+1)
# Fallback, to have both defined
Base.show(io::IO, mt::MIME"text/plain", Q::T) where {T<:HSDEMatrixQ} = Base.show(io, Q)
function Base.show(io::IO, Q::T) where {T<:HSDEMatrixQ}
m,n = size(Q)
println(io, "$(m)x$(m) $T:")
println(io, "[0 A' c;\n -A 0 b;\n -c' -b' 0]")
println(io,"where A:")
Base.show(io, Q.A)
println(io,"\nb:")
Base.show(io, Q.b)
println(io,"\nc:")
Base.show(io, Q.c)
end
# Q of size
#(n,n) (n,m) (n,1)
#(m,m) (m,m) (m,1)
#(1,n) (1,m) (1,1)
function mul!(Y::AbstractArray{T,1}, Q::HSDEMatrixQ{T,M,V}, B::AbstractArray{T,1}) where {T,M<:AbstractArray{T,2},V<:AbstractArray{T,1}}
@assert size(Q) == (size(Y,1), size(B,1))
y1 = view(Y, 1:Q.an)
y2 = view(Y, (Q.an+1):(Q.an+Q.am))
b1 = view(B, 1:Q.an)
b2 = view(B, (Q.an+1):(Q.an+Q.am))
b3 = B[Q.am+Q.an+1]
A = Q.A
b = Q.b
c = Q.c
mul!(y1, transpose(A), b2)
mul!( y2, A, b1)
#TODO maybe switch back for readability?
y1 .+= b3.*c # y1 .= y1 .+ c.*b3
y2 .-= b3.*b # y2 .= b.*b3 .- y2
y2 .= .-y2
Y[Q.am+Q.an+1] = - dot(c, b1) - dot(b,b2)
return Y
end
function mul!(Y::AbstractArray{T,1}, Q::Transpose{T, QMat}, B::AbstractArray{T,1}) where {T, M<:AbstractArray{T,2},V<:AbstractArray{T,1}, QMat<:HSDEMatrixQ{T,M,V}}
mul!(Y,Q.parent,B)
Y .= .-Y
return Y
end
struct HSDEMatrix{T,QType<:AbstractMatrix{T}} <: AbstractMatrix{T}
Q::QType
cgdata::CGdata{T}
end
"""
HSDEMatrix(Q::HSDEMatrixQ)
"""
HSDEMatrix(Q::QType) where {T, QType<:AbstractMatrix{T}} = HSDEMatrix{T,QType}(Q, CGdata(2*size(Q)[1]))
"""
HSDEMatrix(A::M, b::V, c::V) where {T,M<:AbstractMatrix{T},V<:AbstractVector{T}}
"""
function HSDEMatrix(A::M, b::V, c::V) where {T,M<:AbstractMatrix{T},V<:AbstractVector{T}}
Q = HSDEMatrixQ(A, b, c)
HSDEMatrix(Q, CGdata(2*size(M.Q)[1]))
end
function Base.size(M::HSDEMatrix)
m, n = size(M.Q)
return (2m,2m)
end
# Try fallback
Base.show(io::IO, mt::MIME"text/plain", M::T) where {T<:HSDEMatrix} = Base.show(io, M)
function Base.show(io::IO, M::T) where {T<:HSDEMatrix}
m,n = size(M)
println(io, "$(m)x$(m) $T:")
println(io, "[I Q';\n Q -I]")
println(io,"where Q:")
Base.show(io, M.Q)
end
"""
solve argmin_y{||x-y||₂}, s.t. Q*u==v, where [u;v] == x
"""
function prox!(y::AbstractVector, A::HSDEMatrix, x::AbstractVector)
tol = size(A,2)*eps()
max_iters = 1000
cgdata = A.cgdata
if cgdata.firstrun.x #Pointer, has this been initialized
cgdata.xinit .= x #Works as guess since Q square
cgdata.firstrun.x = false
end
#Since y is the initial guess, use previous solution
y .= cgdata.xinit
#solve [I Q';Q -I][u^(k+1);μ] = [u^k;v^k]
conjugategradient!(y, A, x, cgdata.r, cgdata.p, cgdata.z,
tol = tol, max_iters = max_iters)
#Save initial guess for next prox!
cgdata.xinit .= y
m, n = size(A.Q)
#Let v=Q*u
u = view(y,1:m)
v = view(y,(m+1):2m)
mul!(v, A.Q, u)
return 0.0
end
function mul!(Y::AbstractArray{T,1}, M::HSDEMatrix{T,QType}, B::AbstractArray{T,1}) where {T,QType<:AbstractMatrix{T}}
m2 = size(M)[1]
mQ = size(M.Q)[1]
@assert (m2,m2) == (size(Y,1), size(B,1))
y1 = view(Y, 1:mQ)
y2 = view(Y, (mQ+1):(2mQ))
b1 = view(B, 1:mQ)
b2 = view(B, (mQ+1):(2mQ))
mul!(y1, transpose(M.Q), b2)
mul!( y2, M.Q, b1)
@inbounds y1 .= y1 .+ b1
@inbounds y2 .= y2 .- b2
return Y
end
mul!(Y::AbstractArray{T,1}, Q::Transpose{T, QMat}, B::AbstractArray{T,1}) where {T, QType<:AbstractMatrix{T}, QMat<:HSDEMatrix{T,QType}} =
mul!(Y, Q.parent, B)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 4479 |
mutable struct HSDEStatus <: AbstractStatus
m::Int64
n::Int64
i::Int64
model::FOSMathProgModel
status::Symbol
checki::Int64
eps::Float64
verbose::Int64
checked::Bool
direct::Bool
init_time::UInt64 #As reported by time_ns()
init_duration::UInt64 #In nano-seconds
debug::Int64
end
""" checkstatus(stat::HSDEStatus, x)
Returns `false` if no check was made
If convergence check is done, returns `true` and sets stat.status to one of:
:Continue, :Optimal, :Unbounded, :Infeasible
"""
function checkstatus(stat::HSDEStatus, z; override = false)
#TODO fix m, n
if stat.i % stat.checki == 0 || override
t = time_ns() - stat.init_time
m, n, i, model, verbose, debug, ϵ = stat.m, stat.n, stat.i, stat.model, stat.verbose, stat.debug, stat.eps
x, y, s, r, τ, κ = getvalues(model, m, n, z, i, verbose, debug)
ϵpri = ϵdual = ϵgap = ϵinfeas = ϵunbound = ϵ
p = norm(model.A*x/τ + s/τ - model.b)/norm(1+norm(model.b))
d = norm(model.A'*y/τ + model.c - r/τ)/norm(1+norm(model.c))
ctx = (model.c'*x)[1]
bty = (model.b'*y)[1]
g = norm(ctx/τ + bty/τ)/(1+abs(ctx/τ)+abs(bty/τ))
if debug > 0
savedata(i, p, d, g, ctx, bty, κ, τ, x, y, s, t, model, debug)
end
# TODO test u^T v
if verbose > 0
if !stat.direct
cgiter = getcgiter(stat.model.data)
push!(model.history, :cgiter, i, cgiter)
printstatusiter(i, p, d, g, ctx, bty, κ/τ, cgiter, t)
else
printstatusiter(i, p, d, g, ctx, bty, κ/τ, t)
end
end
status = :Continue
if p <= ϵpri*(1+norm(model.b)) && d <= ϵdual*(1+norm(model.c)) && g <= ϵgap*(1+norm(ctx/τ)+norm(bty/τ))
if verbose > 0
println("Found solution i=$i")
end
status = :Optimal
elseif norm(model.A*x + s) <= ϵunbound*(-ctx/norm(model.c))
status = :Unbounded
elseif norm(model.A'*y) <= ϵinfeas*(-bty/norm(model.b))
status = :Infeasible
end
stat.status = status
stat.checked = true
return stat.checked
else
stat.checked = false
return stat.checked
end
end
function printstatusheader(stat::HSDEStatus)
if stat.verbose > 0
println("Time to initialize: $(stat.init_duration/1e9)s")
width = 76 + (stat.direct ? 0 : 5)
println("-"^width)
print(" Iter | pri res | dua res | rel gap | pri obj | dua obj | kap/tau")
!stat.direct && print(" | cg ")
println(" | time")
println("-"^width)
end
end
function printstatusiter(i, p, d, g, stx, bty, κτ, t)
@printf("%6d|% 9.2e % 9.2e % 9.2e % 9.2e % 9.2e % 9.2e % .1es\n",i,p,d,g,stx,-bty,κτ,t/1e9)
end
function printstatusiter(i, p, d, g, stx, bty, κτ, cgiter, t)
@printf("%6d|% 9.2e % 9.2e % 9.2e % 9.2e % 9.2e % 9.2e % 4d % .1es\n",i,p,d,g,stx,-bty,κτ,cgiter,t/1e9)
end
function getvalues(model, m, n, z, i, verbose, debug)
nu = n+m+1
x = view(z, 1:n)
y = view(z, (n+1):(n+m))
r = view(z, (nu+1):(nu+n))
s = view(z, (nu+n+1):(nu+n+m))
τ = z[nu]
κ = z[2nu]
x, y, s, r, τ, κ
end
# """
# Checks primal and dual feasibility assuming that x,y,s are satisfying the cone constraints
# """
# function printstatus(model, x, y, s, r, τ, κ, i, verbose, debug)
# p = norm(model.A*x/τ + s/τ - model.b)/norm(1+norm(model.b))
# d = norm(model.A'*y/τ + model.c - r/τ)/norm(1+norm(model.c))
# ctx = (model.c'*x)[1]
# bty = (model.b'*y)[1]
# g = norm(ctx/τ + bty/τ)/(1+abs(ctx/τ)+abs(bty/τ))
# if debug > 0
# savedata(i, p, d, g, ctx, bty, κ, τ, x, y, s, model, debug)
# end
# # TODO test u^T v
# if verbose > 0
# printstatusiter(i, p, d, g, ctx, bty, κ/τ)
# end
# return
# end
@generated function savedata(i, p, d, g, ctx, bty, κ, τ, x, y, s, t, model, debug)
ex = :(history = model.history)
for (v,vs) in [(:p, "p"), (:d, "d"), (:g, "g"),
(:ctx, "ctx"), (:bty, "bty"), (:κ, "κ"),
(:τ, "τ"), (:t, "t")]
ex = :($ex ; push!(history, Symbol($vs), i, $v))
end
ex2 = :()
for (v,vs) in [(:x, "x"), (:y,"y"), (:s,"s")]
ex2 = :($ex2 ; push!(history, Symbol($vs), i, $v))
end
ex = :($ex; if debug > 1; $ex2; end)
ex = :($ex; return)
return ex
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 1069 |
support_longstep(::Any) = false
projections_per_step(::Any) = (0,0)
"""
Line search types:
Val{:False} : No line search available
Val{:True} : Line search available, but at the cost of extra evaluations
Should provide an nonexpansive operator `y=T(x)` as
`T!(y, alg<:FOSAlgorithm, data<:FOSSolverData, x, i, status, longstep)`
so the algorithm becomes
`x^(k+1) = (1-αk)x^k = αk*T(x^k)`
Val{:Fast} : Line search available with low extra cost
Should provide two operators `y=S1(x)`, `z=S2(y)` as
`S1!(y, alg<:FOSAlgorithm, data<:FOSSolverData, x, i, status, longstep)`
`S2!(y, alg<:FOSAlgorithm, data<:FOSSolverData, x, i, status, longstep)`
so the algorithm becomes
`x^(k+1) = (1-αk)x^k = αk*S2(S1(x^k))`
`S1` has to be an affine operator, i.e. S1(x+y)+S1(0)=S1(x)+S2(y).
"""
support_linesearch(::Any) = Val{:False}
#Defaults to that data.S1 counts cg iteration
function getcgiter(data::FOSSolverData)
return getcgiter(data.S1)
end
# Fallback
getcgiter(data) = throw(ArgumentError("CGdata not available for type $(typeof(data))"))
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 1228 |
"""
Dykstra
"""
mutable struct Dykstra <: FOSAlgorithm
direct::Bool
options
end
Dykstra(;direct=false, kwargs...) = Dykstra(direct, kwargs)
struct DykstraData{T1,T2} <: FOSSolverData
p::Array{Float64,1}
q::Array{Float64,1}
y::Array{Float64,1}
S1::T1
S2::T2
end
function init_algorithm!(alg::Dykstra, model::AbstractFOSModel)
S1, S2, n, status_generator = get_sets_and_status(alg, model)
data = DykstraData(zeros(n), zeros(n), Array{Float64,1}(undef, n), S1, S2)
return data, status_generator
end
function Base.step(::Dykstra, data::DykstraData, x, i, status::AbstractStatus, longstep=nothing)
p,q,y,S1,S2 = data.p,data.q,data.y,data.S1,data.S2
prox!(y, S1, x .+ p)
addprojeq(longstep, y, x .+ p)
p .= x .+ p .- y
prox!(x, S2, y .+ q)
checkstatus(status, x)
addprojineq(longstep, x, y .+ q)
q .= y .+ q .- x
return
end
function getsol(::Dykstra, data::DykstraData, x)
y,S1,S2 = data.y,data.S1,data.S2
tmp1 = similar(x) #Ok to allocate here, could overwrite p, q, if safe warmstart?
prox!(tmp1, S1, x)
prox!(y, S2, tmp1)
return y #We reuse y here
end
support_longstep(::Dykstra) = true
projections_per_step(::Dykstra) = (1,1)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 1479 |
"""
FISTA
"""
mutable struct FISTA <: FOSAlgorithm
α::Float64
direct::Bool
options
end
FISTA(α=1.0; direct=false, kwargs...) = FISTA(α, direct, kwargs)
struct FISTAData{T1,T2} <: FOSSolverData
t::Base.RefValue{Float64}
y::Array{Float64,1}
xold::Array{Float64,1}
tmp1::Array{Float64,1}
S1::T1
S2::T2
end
function init_algorithm!(alg::FISTA, model::AbstractFOSModel)
S1, S2, n, status_generator = get_sets_and_status(alg, model)
data = FISTAData(Ref(1.0), zeros(n), zeros(n), Array{Float64,1}(undef, n), S1, S2)
return data, status_generator
end
function Base.step(alg::FISTA, data::FISTAData, x, i, status::AbstractStatus, longstep=nothing)
α,y,xold,tmp1,S1,S2 = alg.α,data.y,data.xold,data.tmp1,data.S1,data.S2
t = data.t #Reference
if i == 1 #TODO this is ugly initializing hack
y .= x
end
# Relaxed projection onto S1
prox!(tmp1, S1, y)
addprojeq(longstep, tmp1, y)
tmp1 .= α.*tmp1 .+ (1-α).*y
# Relaxed projection onto S2
xold .= x
prox!(x, S2, tmp1)
checkstatus(status, x)
addprojineq(longstep, x, tmp1)
told = t.x
t.x = (1+sqrt(1+4*t.x^2))/2
y .= x .+ (told-1)./(t.x).*(x .- xold)
return
end
function getsol(::FISTA, data::FISTAData, x)
tmp1,S1,S2 = data.tmp1,data.S1,data.S2
tmp2 = similar(x)
prox!(tmp1, S1, x)
prox!(tmp2, S2, tmp1)
return tmp2
end
support_longstep(::FISTA) = true
projections_per_step(::FISTA) = (1,1)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2344 |
"""
GAP
"""
mutable struct GAP <: FOSAlgorithm
α::Float64
α1::Float64
α2::Float64
direct::Bool
options
end
GAP(α=0.8, α1=1.8, α2=1.8; direct=false, kwargs...) = GAP(α, α1, α2, direct, kwargs)
struct GAPData{T1,T2} <: FOSSolverData
tmp1::Array{Float64,1}
tmp2::Array{Float64,1}
constinit::Base.RefValue{Bool} # If constant term has been calculated (linesearch feature)
S1::T1
S2::T2
end
function init_algorithm!(alg::GAP, model::AbstractFOSModel)
S1, S2, n, status_generator = get_sets_and_status(alg, model)
data = GAPData(Array{Float64,1}(undef, n), Array{Float64,1}(undef, n),
Ref(false), S1, S2)
return data, status_generator
end
function S1constant!(y, alg::GAP, data::GAPData, mem, i)
if !data.constinit.x
y .= 0.0
#TODO high accuracy?
prox!(mem, S1, y)
mem .= α1.*mem# .+ (1-α1).*0.0
data.constinit.x = true
end
y .= mem
return
end
function S1!(y, alg::GAP, data::GAPData, x, i, status::AbstractStatus, longstep=nothing)
α1, S1 = alg.α1, data.S1
prox!(y, S1, x)
addprojeq(longstep, y, x)
y .= α1.*y .+ (1-α1).*x
end
function S2!(y, alg::GAP, data::GAPData, x, i, status::AbstractStatus, longstep=nothing)
α2, S2 = alg.α2, data.S2
prox!(y, S2, x)
checkstatus(status, y)
addprojineq(longstep, y, x)
y .= α2.*y .+ (1-α2).*x
end
function Base.step(alg::GAP, data::GAPData, x, i, status::AbstractStatus, longstep=nothing)
α = alg.α
tmp1, tmp2 = data.tmp1, data.tmp2
# Relaxed projection onto S1
S1!(tmp1, alg, data, x, i, status, longstep)
# α1, S1 = alg.α1, data.S1
# prox!(tmp1, S1, x)
# addprojeq(longstep, tmp1, x)
# tmp1 .= α1.*tmp1 .+ (1-α1).*x
#Relaxed projection onto S2
S2!(tmp2, alg, data, tmp1, i, status, longstep)
# α2, S2 = alg.α2, data.S2
# prox!(tmp2, S2, tmp1)
# checkstatus(status, tmp2)
# addprojineq(longstep, tmp2, tmp1)
# tmp2 .= α2.*tmp2 .+ (1-α2).*tmp1
# Relaxation
x .= α.*tmp2 .+ (1-α).*x
return
end
function getsol(::GAP, data::GAPData, x)
tmp1,tmp2,S1,S2 = data.tmp1,data.tmp2,data.S1,data.S2
prox!(tmp1, S1, x)
prox!(tmp2, S2, tmp1)
return tmp2
end
support_linesearch(::GAP) = Val{:Fast}
support_longstep(::GAP) = true
projections_per_step(::GAP) = (1,1)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 3403 | """
`GAPA(α=1.0, β=0.0; kwargs...)``
GAP Adaptive
Same as GAP but with adaptive `α1,α2` set to optimal `αopt=2/(1+sinθ)`
according to the estimate of the Friedrischs angle `θ`.
`β` is averaging factor between `αopt` and `2`: `α1=α2= (1-β)*αopt + β*2.0`.
"""
mutable struct GAPA <: FOSAlgorithm
α::Float64
β::Float64
direct::Bool
options
end
GAPA(α=1.0, β=0.0; direct=false, kwargs...) = GAPA(α, β, direct, kwargs)
mutable struct GAPAData{T1,T2} <: FOSSolverData
α12::Float64
tmp1::Array{Float64,1}
tmp2::Array{Float64,1}
constinit::Base.RefValue{Bool} # If constant term has been calculated (linesearch feature)
S1::T1
S2::T2
end
#GAPAData{T1,T2}(α12, tmp1, tmp2, S1::T1, S2::T2) = GAPAData{T1,T2}(α12, tmp1, tmp2, S1, S2)
function init_algorithm!(alg::GAPA, model::AbstractFOSModel)
S1, S2, n, status_generator = get_sets_and_status(alg, model)
data = GAPAData(2.0, Array{Float64,1}(undef, n), Array{Float64,1}(undef, n),
Ref(false), S1, S2)
return data, status_generator
end
""" normedScalar(x1,x2,y1,y2)
Calculate |<x1-x2,y1-y2>|/(||x1-x2||*||y1-y2||)"""
function normedScalar(x1,x2,y1,y2)
sum, norm1, norm2 = 0.0, 0.0, 0.0
#@inbounds @simd
for i in 1:length(x1)
d1 = x1[i] - x2[i]
d2 = y1[i] - y2[i]
sum += d1*d2
norm1 += d1^2
norm2 += d2^2
end
return abs(sum)/sqrt(norm1*norm2)
end
function S1constant!(y, alg::GAPA, data::GAPAData, mem, i)
α12 = data.α12
if !data.constinit.x
y .= 0.0
#TODO high accuracy?
prox!(mem, S1, y)
data.constinit.x = true
end
y .= α12.*mem# .+ (1-α1).*0.0
return
end
function S1!(y, alg::GAPA, data::GAPAData, x, i, status::AbstractStatus, longstep=nothing)
α12, S1 = data.α12, data.S1
prox!(y, S1, x)
addprojeq(longstep, y, x)
y .= α12.*y .+ (1-α12).*x
end
function S2!(y, alg::GAPA, data::GAPAData, x, i, status::AbstractStatus, longstep=nothing)
α12, S2 = data.α12, data.S2
prox!(y, S2, x)
checkstatus(status, y)
addprojineq(longstep, y, x)
y .= α12.*y .+ (1-α12).*x
end
function Base.step(alg::GAPA, data::GAPAData, x, i, status::AbstractStatus, longstep=nothing)
α,β = alg.α,alg.β
α12,tmp1,tmp2,S1,S2 = data.α12,data.tmp1,data.tmp2,data.S1,data.S2
# Relaxed projection onto S1
S1!(tmp1, alg, data, x, i, status, longstep)
# prox!(tmp1, S1, x)
# addprojeq(longstep, tmp1, x)
# tmp1 .= α12.*tmp1 .+ (1-α12).*x
# Relaxed projection onto S2
S2!(tmp2, alg, data, tmp1, i, status, longstep)
# prox!(tmp2, S2, tmp1)
# checkstatus(status, tmp2)
# #println("α12: $α12")
# addprojineq(longstep, tmp2, tmp1)
# tmp2 .= α12.*tmp2 .+ (1-α12).*tmp1
#Calculate θ_F estimate, normedScalar(x1,x2,y1,y2) = |<x1-x2,y1-y2>|/(||x1-x2||*||y1-y2||)
scl = clamp(normedScalar(tmp2,tmp1,tmp1,x), 0.0, 1.0)
s = sqrt(1-scl^2) #Efficient way to sin(acos(scl))
# Update α1, α2
αopt = 2/(1+s) # α1,α2 = 2/(1+sin(Θ_F))
data.α12 = (1-β)*αopt + β*2.0
#Set output
x .= α.*tmp2 .+ (1-α).*x
return
end
function getsol(::GAPA, data::GAPAData, x)
tmp1,tmp2,S1,S2 = data.tmp1,data.tmp2,data.S1,data.S2
prox!(tmp1, S1, x)
prox!(tmp2, S2, tmp1)
return tmp2
end
support_longstep(::GAPA) = true
projections_per_step(::GAPA) = (1,1)
support_linesearch(::GAPA) = Val{:Fast}
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 2273 |
"""
GAPP projected GAP
Defaults to direct solve of the linear system
"""
mutable struct GAPP <: FOSAlgorithm
α::Float64
α1::Float64
α2::Float64
iproj::Int64
direct::Bool
options
end
GAPP(α=0.8, α1=1.8, α2=1.8; direct=true, iproj=100, kwargs...) = GAPP(α, α1, α2, iproj, direct, kwargs)
struct GAPPData{T1,T2} <: FOSSolverData
tmp1::Array{Float64,1}
tmp2::Array{Float64,1}
S1::T1
S2::T2
end
function init_algorithm!(alg::GAPP, model::AbstractFOSModel)
S1, S2, n, status_generator = get_sets_and_status(alg, model)
data = GAPPData(Array{Float64,1}(undef, n), Array{Float64,1}(undef, n), S1, S2)
return data, status_generator
end
function Base.step(alg::GAPP, data::GAPPData, x, i, status::AbstractStatus, longstep=nothing)
α,α1,α2 = alg.α, alg.α1, alg.α2
tmp1,tmp2,S1,S2 = data.tmp1, data.tmp2, data.S1, data.S2
# Relaxed projection onto S1
prox!(tmp1, S1, x)
if i % alg.iproj == 0
tmp3 = similar(tmp1)
tmp4 = similar(tmp1)
res = similar(tmp1)
# Projection onto S2
prox!(tmp2, S2, tmp1)
prox!(res, S1, tmp2)
res .= res - tmp1
#res = Ps1*(Ps2*Ps1-I)x
normbest = Inf
αbest = -1.0
for k = 0:20
αtest = 2.0.^k
tmp3 .= tmp1 .+ αtest.*res
prox!(tmp4, S2, tmp3)
normtest = norm(tmp4 - tmp3)
println("normtest: $normtest")
if normtest < normbest
αbest = αtest
normbest = normtest
end
end
println("αbest: $αbest")
tmp1 .= tmp1 .+ αbest.*res
prox!(tmp2, S2, tmp1)
checkstatus(status, tmp2)
tmp2 .= α2.*tmp2 .+ (1-α2).*tmp1
x .= tmp2
else
tmp1 .= α1.*tmp1 .+ (1-α1).*x
# Relaxed projection onto S2
prox!(tmp2, S2, tmp1)
checkstatus(status, tmp2)
tmp2 .= α2.*tmp2 .+ (1-α2).*tmp1
# Relaxation
x .= α.*tmp2 .+ (1-α).*x
end
return
end
function getsol(::GAPP, data::GAPPData, x)
tmp1,tmp2,S1,S2 = data.tmp1,data.tmp2,data.S1,data.S2
prox!(tmp1, S1, x)
prox!(tmp2, S2, tmp1)
return tmp2
end
support_longstep(alg::GAPP) = false
projections_per_step(alg::GAPP) = (0,0)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 292 | export GAP, GAPA, GAPP, DR, AP, Dykstra, FISTA
include("gap.jl")
include("gapa.jl")
include("gapproj.jl")
include("dykstra.jl")
include("fista.jl")
#Some shortnames for common algorithms
DR(α=0.5; kwargs...) = GAP(α, 2.0, 2.0; kwargs...)
AP(α=1; kwargs...) = GAP(α, 1.0, 1.0; kwargs...)
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 4429 | """
Representation of the matrix [I A'; A -I]
"""
struct KKTMatrix{T, M<:AbstractMatrix{T}} <: AbstractMatrix{T}
A::M
am::Int64
an::Int64
# TODO test and remove if not better
# x1::SubArray{T,1,Array{T,1},Tuple{UnitRange{Int64}},true}
# x2::SubArray{T,1,Array{T,1},Tuple{UnitRange{Int64}},true}
# y1::SubArray{T,1,Array{T,1},Tuple{UnitRange{Int64}},true}
# y2::SubArray{T,1,Array{T,1},Tuple{UnitRange{Int64}},true}
end
KKTMatrix(A::M) where {T, M<:AbstractMatrix{T}} = KKTMatrix{T,M}(A, size(A)...)#,
# view([1.],1:1), view([1.],1:1), view([1.],1:1), view([1.],1:1))
# Alternative implementation with "constant" views
# @inbounds function Base.A_mul_B!(y::AbstractVector{T}, M::KKTMatrix, x::AbstractVector{T}) where {T}
# if M.x1.parent !== x || M.y1.parent !== y
# M.x1 = view(x, 1:M.an )
# M.x2 = view(x, M.an+1:M.an+M.am)
# M.y1 = view(y, 1:M.an )
# M.y2 = view(y, M.an+1:M.an+M.am)
# #println("Update pointers")
# end
#
# # [I A';
# # A -I]
# At_mul_B!(M.y1, M.A, M.x2)
# @blas! M.y1 += M.x1
# A_mul_B!(M.y2, M.A, M.x1)
# @blas! M.y2 -= M.x2
# end
@inbounds function mul!(y::AbstractVector{T}, M::KKTMatrix, x::AbstractVector{T}) where T
x1 = view(x, 1:M.an )
x2 = view(x, M.an+1:M.an+M.am)
y1 = view(y, 1:M.an )
y2 = view(y, M.an+1:M.an+M.am)
# [I A';
# A -I]
mul!(y1, transpose(M.A), x2)
y1 .+= x1
mul!(y2, M.A, x1)
y2 .-= x2
end
#Assuming we don't introduce scaling ρ
mul!(y::AbstractVector{T}, M::Transpose{T, MType}, x::AbstractVector{T}) where {T, MType<:KKTMatrix} = mul!(y, M.parent, x)
"""
Representation of the function `f([x;z]) = q'x+i(Ax-βz==b)`
where `β` is `1` or `-1`.
"""
mutable struct AffinePlusLinear{T,M<:AbstractMatrix{T}} <: ProximalOperators.ProximableFunction
M::KKTMatrix{T,M}
A::M
β::Int64
b::Array{Float64,1}
q::Array{Float64,1}
rhs::Array{Float64,1}
decreasing_accuracy::Bool
i::Int64 #Count for number of calls, descides the tolerance
cgiter::Int64 #How many iterarions CG did last time
cgdata::CGdata{Float64}
end
function AffinePlusLinear(A::M, b, q, β; decreasing_accuracy=false) where {T,M<:AbstractMatrix{T}}
am, an = size(A)
@assert β == 1 || β == -1
#Initiate second half of rhs, maybe without view?
rhs = Array{T}(undef, am+an)
rhs2 = view(rhs, (1+an):(am+an))
rhs2 .= b
return AffinePlusLinear{T,M}(KKTMatrix(A), A, β, b, q, rhs, decreasing_accuracy, 1, 0, CGdata(length(rhs)))
end
getcgiter(S::AffinePlusLinear) = S.cgiter
function prox!(y::AbstractArray, S::AffinePlusLinear, x::AbstractArray)
#x2 = (2π-I)v or similar
#[x;z] ∈ R(n×m)
an = S.M.an
am = S.M.am
rhs1 = view(S.rhs, 1:an)
x1 = view(x, 1:an)
x2 = view(x, (an+1):(an+am))
y2 = view(y, (an+1):(an+am))
#Build rhs, rhs2 already contains b
β = S.β
mul!(rhs1, transpose(S.A), x2)
rhs1 .= β.*rhs1 .+ x1 .- S.q
#Now rhs = [x-q+β*A'z; b]
#Do CG to solve M*[y1;y2] = rhs
#Initial guess:
cgdata = S.cgdata
if cgdata.firstrun.x # has this been initialized? (pointer)
cgdata.xinit .= x #Works as guess since M square
cgdata.firstrun.x = false
end
#Since y is the initial guess, use previous solution
y .= cgdata.xinit
#Now run CG
tol = if S.decreasing_accuracy
max(0.2^sqrt(S.i), size(S.A,2)*eps())
else
size(S.A,2)*eps()
end
#println(tol)
S.i += 1
max_iters = 1000
#TODO Verify that CG can solve this problem correctly
iter = conjugategradient!(y, S.M, S.rhs, cgdata.r, cgdata.p, cgdata.z,
tol = tol, max_iters = max_iters)
iter == max_iters && @warn "CG reached max iterations, result may be inaccurate"
S.cgiter = iter
cgdata.xinit .= y #Save initial guess for next prox!
#Now scale y2 with beta β
y2 .*= β
return 0.0
end
# A = [Ã -b;
# 0 1]
# [A -I][x;xn;z;zn] = 0
#
# [Ã -I][x;z] -b*xn = 0
# [Ã -I][x;z] = b #OK
# xn-zn=0
#
# A' = [ Ã' 0;
# -b' 1]
#
# hn=1?
# x̃n - xn -b'(z̃ - h) + 1(z̃n-hn) = 0
# [1 -b'][x̃n; z̃]=xn-b'h
# b'*x̃ = b'*h #Maybe needed?
#
# #So:
# [I Ã'][x̃;z̃] = [-q+x+Ã'h]
# [b' 0][x̃;z̃] = [b'*h]
# #Complete system:
# [Ã -I ; = [b ;
# [I Ã'; = -q+x+Ã'h;
# [b' 0 ] = b'h ]
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 1589 | struct CGdata{T}
r::Array{T,1}
p::Array{T,1}
z::Array{T,1}
xinit::Array{T,1}#TODO remove this
firstrun::Base.RefValue{Bool}
end
CGdata(r::AbstractArray{T},p::AbstractArray{T},z::AbstractArray{T}) where T = CGdata{T}(r,p,z, T[], Ref(true))
CGdata(size) = CGdata{Float64}(Array{Float64,1}(undef, size), Array{Float64,1}(undef, size), Array{Float64,1}(undef, size), Array{Float64,1}(undef, size), Ref(true))
function conjugategradient!(x,A,b; useasinitial=true)
cgdata = CGdata(similar(b), similar(b), similar(b))
if !useasinitial
x .= 1.0
end
conjugategradient!(x, A, b, cgdata.r, cgdata.p, cgdata.z)
return cgdata
end
"""
`conjugategradient!(x,A,b,r,p,Ap; tol = size(A,2)*eps(), max_iters = 10000)`
Solve `A*x==b` with the conjugate gradient method.
Uses `x` as warm start and stores solution in `x`.
`r`,`p`,`Ap` should be same size as `x` and will be changed.
Implemented as in "Matrix Compuatations" 2nd edition, Golub and Van Loan (1989)
"""
function conjugategradient!(x,A,b,r,p,Ap; tol = size(A,2)*eps(), max_iters = 10000)
mul!(Ap, A, x)
r .= b .- Ap
p .= r
rn = dot(r,r)
iter = 1
while true
mul!(Ap, A, p)
α = rn/dot(Ap,p)
x .+= α.*p
r .-= α.*Ap
if norm(r) <= tol || iter >= max_iters
break
end
rnold = rn
rn = dot(r,r)
β = rn/rnold
#p .= r .+ β.*p
p .*= β
p .+= r
iter += 1
end
iter == max_iters && @warn "CG reached max iterations, result may be inaccurate"
return iter
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 3090 | export LineSearchWrapper
mutable struct LineSearchWrapper{T<:FOSAlgorithm} <: FOSAlgorithm
lsinterval::Int64
alg::T
options
end
mutable struct LineSearchWrapperData{T<:FOSSolverData} <: FOSSolverData
lsinterval::Int64
tmp1::Array{Float64,1}
tmp2::Array{Float64,1}
tmp3::Array{Float64,1}
mem::Array{Float64,1}
res::Array{Float64,1}
algdata::T
end
function LineSearchWrapper(alg::T; lsinterval=100, kwargs...) where T
if support_linesearch(alg) == Val{:False}
@error "Algorithm $T does not support line search"
end
LineSearchWrapper{T}(lsinterval, alg, [kwargs;alg.options])
end
function init_algorithm!(ls::LineSearchWrapper, model::FOSMathProgModel)
alg, lsinterval = ls.alg, ls.lsinterval
algdata, status = init_algorithm!(alg, model)
x = getinitialvalue(model, alg, algdata)
data = LineSearchWrapperData(lsinterval, similar(x), similar(x), similar(x), similar(x), similar(x), algdata)
return data, status
end
#getmn(data::LineSearchWrapperData) = getmn(data.algdata)
function Base.step(wrap::LineSearchWrapper, lsdata::LineSearchWrapperData, x, i, status::AbstractStatus, longstep=nothing)
lsinterval, tmp1, tmp2, tmp3, mem, res =
lsdata.lsinterval, lsdata.tmp1, lsdata.tmp2, lsdata.tmp3, lsdata.mem, lsdata.res
do_linesearch = i % lsinterval == 0
if do_linesearch #Should we do ls?
tmp1 .= x
#step(wrap.alg, lsdata.algdata, x, i, status, nothing)
#S1constant!(f0, wrap.alg, lsdata.algdata, mem, i)
S1!(tmp2, wrap.alg, lsdata.algdata, x, i, status, nothing)
S2!(x, wrap.alg, lsdata.algdata, tmp2, i, status, nothing)
nostatus = NoStatus(:Continue)
res .= x .- tmp1
normres = norm(res)
println("test, $normres")
k = 1
normresbest = Inf
αbest = 1.0
α = 0.1
for k = 0:30
α = α*1.8
x .= tmp1 .+ α.*res
#testres = get_normres!(wrap, lsdata, x, i, nostatus)
S1!(tmp2, wrap.alg, lsdata.algdata, x, i, nostatus, nothing)
S2!(tmp3, wrap.alg, lsdata.algdata, tmp2, i, nostatus, nothing)
testres = normdiff(x,tmp3)
println("α: $α, $testres")
if testres < normresbest
normresbest = testres
αbest = α
end
end
println("α: $αbest")
x .= tmp1 .+ αbest.*res
else
step(wrap.alg, lsdata.algdata, x, i, status, longstep)
end
end
function normdiff(x::T,y::T) where T<:StridedVector
nx, ny = length(x), length(y)
s = 0.0
@assert nx == ny
for j = 1:nx
s += abs2(x[j]-y[j])
end
return sqrt(s)
end
function get_normres!(wrap::LineSearchWrapper, lsdata::LineSearchWrapperData, x, i, status::AbstractStatus)
lsdata.tmp2 .= x
step(wrap.alg, lsdata.algdata, x, i, status, nothing)
#If time to do lsdata
normres = normdiff(x,lsdata.tmp2)
end
function getsol(alg::LineSearchWrapper, data::LineSearchWrapperData, x)
getsol(alg.alg, data.algdata, x)
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
|
[
"MIT"
] | 0.2.0 | b887fff9ad1cadd1e324fd0cf0ad502cd45501c0 | code | 3314 | export LongstepWrapper
include("saveplanes.jl")
mutable struct LongstepWrapper{T<:FOSAlgorithm} <: FOSAlgorithm
longinterval::Int64
nsave::Int64
alg::T
options
end
mutable struct LongstepWrapperData{T<:FOSSolverData} <: FOSSolverData
longinterval::Int64
nsave::Int64
saved::SavedPlanes{Float64}
saveineq::Bool
savepos::Int64
eqi::Int64
uneqi::Int64
tmp::Array{Float64,1}
algdata::T
end
function LongstepWrapper(alg::T; longinterval=100, nsave=10, kwargs...) where T
LongstepWrapper{T}(longinterval, nsave, alg, [kwargs...,alg.options...])
end
function init_algorithm!(long::LongstepWrapper, model::FOSMathProgModel)
alg, longinterval, nsave = long.alg, long.longinterval, long.nsave
!support_longstep(alg) && @error "Algorithm alg does not support longstep"
data, status_generator = init_algorithm!(alg, model)
neq, nineq = projections_per_step(alg)
#TODO x
x = getinitialvalue(model)
saved = SavedPlanes(x, nsave, neq, nineq)
# TODO Fix case with saveineq=false
data = LongstepWrapperData(longinterval, nsave, saved, true, 0, 1, 1, similar(x), data)
return data, status_generator
end
getmn(data::LongstepWrapperData) = getmn(data.algdata)
function Base.step(wrap::LongstepWrapper, longstep::LongstepWrapperData, x, i, status::AbstractStatus)
nsave, longinterval = longstep.nsave, longstep.longinterval
#println("At iteration $i")
savepos = (i-1)%longinterval - longinterval + nsave + 2 # Index of collection to save
#println("savepos: $savepos")
if 0 < savepos #Should we start saving collections?
longstep.savepos = savepos
longstep.eqi, longstep.uneqi = 0, 0
end
step(wrap.alg, longstep.algdata, x, i, status, longstep)
#If time to do longstep
if longstep.savepos == nsave+1
#println("Doing projection!")
fail = projectonnormals!(longstep.saved, x, longstep.tmp)
longstep.savepos = -1
x .= longstep.tmp
end
end
function getsol(alg::LongstepWrapper, data::LongstepWrapperData, x)
getsol(alg.alg, data.algdata, x)
end
getcgiter(data::LongstepWrapperData) = getcgiter(data.algdata)
addprojeq(::Nothing, ::Any, ::Any) = nothing
addprojineq(::Nothing, ::Any, ::Any) = nothing
function addprojeq(long::T, y, x) where T<:LongstepWrapperData
if long.savepos > 0
#println("adding EQ, nsave: $(long.nsave) i:$(long.i) eqi:$(long.eqi) uneqi:$(long.uneqi)")
s = long.saved
i = (long.savepos-1)*(s.neq + s.nineq*long.saveineq) + long.eqi + 1
s.A[i,:] .= x .- y
b = 0.0
for j = 1:length(x)
b += (x[j]-y[j])*y[j]
end
s.b[i] = b
long.eqi += 1
end
return
end
"""Saves inequalities as equality for now"""
function addprojineq(long::T, y, x) where T<:LongstepWrapperData
if long.savepos > 0 && (long.saveineq || long.savepos == long.nsave+1)
#println("adding inEQ, nsave: $(long.nsave) i:$(long.i) eqi:$(long.eqi) uneqi:$(long.uneqi)")
s = long.saved
i = (long.savepos-1)*(s.neq + s.nineq*long.saveineq) + long.eqi + long.uneqi + 1
s.A[i,:] .= x .- y
b = 0.0
for j = 1:length(x)
b += (x[j]-y[j])*y[j]
end
s.b[i] = b
long.uneqi += 1
end
end
| FirstOrderSolvers | https://github.com/mfalt/FirstOrderSolvers.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.