licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 393 | const _package_version = Base.VersionNumber(
TOML.parsefile(joinpath(dirname(@__DIR__), "Project.toml"))["version"]
)
function _initialize_download_cache()
folder_name = "downloaded_files-$(_package_version)"
global download_cache = Scratch.get_scratch!(@__MODULE__, folder_name)
return nothing
end
function __init__()
_initialize_download_cache()
return nothing
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 216 | Base.@kwdef struct Class
domain::String
system::String
value::String
end
function DiagnosisClass(; system, value)
domain = "diagnosis"
class = Class(; domain, system, value)
return class
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 286 | function construct_icd10(icd10::AbstractString)
system = "ICD10"
value = icd10_add_dots(icd10)
return DiagnosisClass(; system, value)
end
function construct_ccs10(ccs10::AbstractString)
system = "CCS10"
value = ccs10
return DiagnosisClass(; system, value)
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 276 | function construct_icd9(icd9::AbstractString)
system = "ICD9"
value = icd9_add_dots(icd9)
return DiagnosisClass(; system, value)
end
function construct_ccs9(ccs9::AbstractString)
system = "CCS9"
value = ccs9
return DiagnosisClass(; system, value)
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 1396 | function icd10_add_dots(icd10::AbstractString)
### Input is too short for a dot
r1 = r"^([A-Z][A-Z\d][A-Z\d])$"
m1 = match(r1, icd10)
if m1 !== nothing
return "$(m1[1])"::String
end
### Input contains a dot
r2 = r"^([A-Z][A-Z\d][A-Z\d])\.([A-Z\d][A-Z\d]?[A-Z\d]?[A-Z\d]?)$"
m2 = match(r2, icd10)
if m2 !== nothing
return "$(m2[1]).$(m2[2])"::String
end
### Input does not contain a dot
r3 = r"^([A-Z][A-Z\d][A-Z\d])([A-Z\d][A-Z\d]?[A-Z\d]?[A-Z\d]?)$"
m3 = match(r3, icd10)
if m3 !== nothing
return "$(m3[1]).$(m3[2])"::String
end
msg = "Invalid ICD-10-CM code: $(icd10)"
throw(ErrorException(msg))
end
function icd10_remove_dots(icd10::AbstractString)
### Input is too short for a dot
r1 = r"^([A-Z][A-Z\d][A-Z\d])$"
m1 = match(r1, icd10)
if m1 !== nothing
return "$(m1[1])"::String
end
### Input contains a dot
r2 = r"^([A-Z][A-Z\d][A-Z\d])\.([A-Z\d][A-Z\d]?[A-Z\d]?[A-Z\d]?)$"
m2 = match(r2, icd10)
if m2 !== nothing
return "$(m2[1])$(m2[2])"::String
end
### Input does not contain a dot
r3 = r"^([A-Z][A-Z\d][A-Z\d])([A-Z\d][A-Z\d]?[A-Z\d]?[A-Z\d]?)$"
m3 = match(r3, icd10)
if m3 !== nothing
return "$(m3[1])$(m3[2])"::String
end
msg = "Invalid ICD-10-CM code: $(icd10)"
throw(ErrorException(msg))
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 2238 | function icd9_add_dots(icd9::AbstractString)
### Input is too short for a dot
# Regular codes and V codes
r1 = r"^([\dV]\d\d)$"
m1 = match(r1, icd9)
if m1 !== nothing
return "$(m1[1])"::String
end
# E codes
r2 = r"^(E\d\d\d)$"
m2 = match(r2, icd9)
if m2 !== nothing
return "$(m2[1])"::String
end
### Input contains a dot
# Regular codes and V codes
r3 = r"^([\dV]\d\d)\.(\d\d?\d?)$"
m3 = match(r3, icd9)
if m3 !== nothing
return "$(m3[1]).$(m3[2])"::String
end
# E codes
r4 = r"^(E\d\d\d)\.(\d)$"
m4 = match(r4, icd9)
if m4 !== nothing
return "$(m4[1]).$(m4[2])"::String
end
### Input does not contain a dot
# Regular codes and V codes
r3 = r"^([\dV]\d\d)(\d\d?\d?)$"
m3 = match(r3, icd9)
if m3 !== nothing
return "$(m3[1]).$(m3[2])"::String
end
# E codes
r4 = r"^(E\d\d\d)(\d)$"
m4 = match(r4, icd9)
if m4 !== nothing
return "$(m4[1]).$(m4[2])"::String
end
msg = "Invalid ICD-9-CM code: $(icd9)"
throw(ErrorException(msg))
end
function icd9_remove_dots(icd9::AbstractString)
### Input is too short for a dot
# Regular codes and V codes
r1 = r"^([\dV]\d\d)$"
m1 = match(r1, icd9)
if m1 !== nothing
return "$(m1[1])"::String
end
# E codes
r2 = r"^(E\d\d\d)$"
m2 = match(r2, icd9)
if m2 !== nothing
return "$(m2[1])"::String
end
### Input contains a dot
# Regular codes and V codes
r3 = r"^([\dV]\d\d)\.(\d\d?\d?)$"
m3 = match(r3, icd9)
if m3 !== nothing
return "$(m3[1])$(m3[2])"::String
end
# E codes
r4 = r"^(E\d\d\d)\.(\d)$"
m4 = match(r4, icd9)
if m4 !== nothing
return "$(m4[1])$(m4[2])"::String
end
### Input does not contain a dot
# Regular codes and V codes
r3 = r"^([\dV]\d\d)(\d\d?\d?)$"
m3 = match(r3, icd9)
if m3 !== nothing
return "$(m3[1])$(m3[2])"::String
end
# E codes
r4 = r"^(E\d\d\d)(\d)$"
m4 = match(r4, icd9)
if m4 !== nothing
return "$(m4[1])$(m4[2])"::String
end
msg = "Invalid ICD-9-CM code: $(icd9)"
throw(ErrorException(msg))
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 2144 | @testset "TODO: fix this code" begin
Class = DiagnosisClassification.Class
generate_ccs9_to_icd9 = DiagnosisClassification.generate_ccs9_to_icd9
construct_icd9 = DiagnosisClassification.construct_icd9
construct_ccs9 = DiagnosisClassification.construct_ccs9
generate_ccs10_to_icd10 = DiagnosisClassification.generate_ccs10_to_icd10
construct_icd10 = DiagnosisClassification.construct_icd10
construct_ccs10 = DiagnosisClassification.construct_ccs10
@testset "generate_ccs9_to_icd9" begin
ccs9_to_icd9_struct = generate_ccs9_to_icd9()
ccs9_to_icd9 = ccs9_to_icd9_struct.ccs9_to_icd9
ccs9_to_ccs_description = ccs9_to_icd9_struct.ccs9_to_ccs_description
@test ccs9_to_icd9 isa Dict{Class, Set{Class}};
@test ccs9_to_ccs_description isa Dict{Class, String};
@test !isempty(ccs9_to_icd9);
@test !isempty(ccs9_to_ccs_description);
@test ccs9_to_ccs_description[construct_ccs9("1")] == "Tuberculosis"
@test ccs9_to_ccs_description[construct_ccs9("1")] != "Septicemia"
@test construct_icd9("011.00") in ccs9_to_icd9[construct_ccs9("1")];
@test !(construct_icd9("031.2") in ccs9_to_icd9[construct_ccs9("1")]);
end
@testset "generate_ccs10_to_icd10" begin
ccs10_to_icd10_struct = generate_ccs10_to_icd10()
ccs10_to_icd10 = ccs10_to_icd10_struct.ccs10_to_icd10
ccs10_to_ccs_description = ccs10_to_icd10_struct.ccs10_to_ccs_description
@test ccs10_to_icd10 isa Dict{Class, Set{Class}};
@test ccs10_to_ccs_description isa Dict{Class, String};
@test !isempty(ccs10_to_icd10);
@test !isempty(ccs10_to_ccs_description);
@test ccs10_to_ccs_description[construct_ccs10("INF001")] == "Tuberculosis"
@test ccs10_to_ccs_description[construct_ccs10("INF001")] != "Septicemia"
@test construct_icd10("A15.7") in ccs10_to_icd10[construct_ccs10("INF001")];
@test !(construct_icd10("A31.2") in ccs10_to_icd10[construct_ccs10("INF001")]);
end
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 814 | @testset "dict_utils" begin
setindex_no_overwrite! = DiagnosisClassification.setindex_no_overwrite!
setindex_same_value! = DiagnosisClassification.setindex_same_value!
@testset "setindex_no_overwrite!" begin
dict = Dict{String, String}()
@test setindex_no_overwrite!(dict, "hello", "world") isa Nothing
@test_throws ErrorException setindex_no_overwrite!(dict, "hello", "world2")
end
@testset "setindex_same_value!" begin
dict = Dict{String, String}()
@test setindex_same_value!(dict, "hello", "world") isa Nothing
@test setindex_same_value!(dict, "hello", "world") isa Nothing
@test setindex_same_value!(dict, "hello", "world") isa Nothing
@test_throws ErrorException setindex_same_value!(dict, "hello", "world2")
end
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 792 | @testset "download" begin
ensure_downloaded_files = DiagnosisClassification.ensure_downloaded_files
force_download_files = DiagnosisClassification.force_download_files
@test ensure_downloaded_files() isa String
@test ensure_downloaded_files() isa String
mktempdir() do dir
@test force_download_files(dir) isa Nothing
end
ccs9_filename = joinpath(ensure_downloaded_files(), "ccs9.txt")
ccs10_filename = joinpath(ensure_downloaded_files(), "ccs10.csv")
@test isfile(ccs9_filename)
@test isfile(ccs10_filename)
@test !isempty(strip(read(ccs9_filename, String)));
@test !isempty(strip(read(ccs10_filename, String)));
ccs10_file = CSV.File(ccs10_filename)
@test length(ccs10_file) > 100
@test length(ccs10_file[1]) > 5
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 161 | @testset "init" begin
_initialize_download_cache = DiagnosisClassification._initialize_download_cache
@test _initialize_download_cache() isa Nothing
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 450 | using DiagnosisClassification
using Test
import CSV
@testset "DiagnosisClassification.jl" begin
include("dict_utils.jl")
include("download.jl")
include("init.jl")
include("types.jl")
@testset "convenience" begin
include("convenience/icd9.jl")
include("convenience/icd10.jl")
end
@testset "dots" begin
include("dots/icd9.jl")
include("dots/icd10.jl")
end
include("TODO.jl")
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 324 | @testset "types" begin
Class = DiagnosisClassification.Class
DiagnosisClass = DiagnosisClassification.DiagnosisClass
@testset begin
domain = "diagnosis"
system = "hello"
value = "world"
@test DiagnosisClass(; system, value) == Class(; domain, system, value)
end
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 585 | @testset "icd10" begin
DiagnosisClass = DiagnosisClassification.DiagnosisClass
construct_icd10 = DiagnosisClassification.construct_icd10
construct_ccs10 = DiagnosisClassification.construct_ccs10
@test construct_icd10("W55.29XA") == DiagnosisClass(;
system = "ICD10",
value = "W55.29XA",
)
@test construct_icd10("W5529XA") == DiagnosisClass(;
system = "ICD10",
value = "W55.29XA",
)
@test construct_ccs10("helloworld123") == DiagnosisClass(;
system = "CCS10",
value = "helloworld123",
)
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 537 | @testset "icd9" begin
DiagnosisClass = DiagnosisClassification.DiagnosisClass
construct_icd9 = DiagnosisClassification.construct_icd9
construct_ccs9 = DiagnosisClassification.construct_ccs9
@test construct_icd9("V01.71") == DiagnosisClass(;
system = "ICD9",
value = "V01.71",
)
@test construct_icd9("V0171") == DiagnosisClass(;
system = "ICD9",
value = "V01.71",
)
@test construct_ccs9("123") == DiagnosisClass(;
system = "CCS9",
value = "123",
)
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 3889 | @testset "icd10" begin
icd10_add_dots = DiagnosisClassification.icd10_add_dots
icd10_remove_dots = DiagnosisClassification.icd10_remove_dots
@testset "icd10_add_dots" begin
test_cases = [
# Input is too short for a dot
"W55" => "W55",
"Z67" => "Z67",
# Input contains a dot
"W55.2" => "W55.2",
"W55.29" => "W55.29",
"W55.29X" => "W55.29X",
"W55.29XA" => "W55.29XA",
"Z67.4" => "Z67.4",
"Z67.41" => "Z67.41",
# Input does not contain a dot
"W552" => "W55.2",
"W5529" => "W55.29",
"W5529X" => "W55.29X",
"W5529XA" => "W55.29XA",
"Z674" => "Z67.4",
"Z6741" => "Z67.41",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd10_add_dots(input) == expected_output
end
@test_throws ErrorException icd10_add_dots("")
end
@testset "icd10_remove_dots" begin
test_cases = [
# Input is too short for a dot
"W55" => "W55",
"Z67" => "Z67",
# Input contains a dot
"W55.2" => "W552",
"W55.29" => "W5529",
"W55.29X" => "W5529X",
"W55.29XA" => "W5529XA",
"Z67.4" => "Z674",
"Z67.41" => "Z6741",
# Input does not contain a dot
"W552" => "W552",
"W5529" => "W5529",
"W5529X" => "W5529X",
"W5529XA" => "W5529XA",
"Z674" => "Z674",
"Z6741" => "Z6741",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd10_remove_dots(input) == expected_output
end
@test_throws ErrorException icd10_remove_dots("")
end
@testset "Roundtrip icd10_add_dots" begin
test_cases = [
# Input is too short for a dot
"W55" => "W55",
"Z67" => "Z67",
# Input contains a dot
"W55.2" => "W552",
"W55.29" => "W5529",
"W55.29X" => "W5529X",
"W55.29XA" => "W5529XA",
"Z67.4" => "Z674",
"Z67.41" => "Z6741",
# Input does not contain a dot
"W552" => "W552",
"W5529" => "W5529",
"W5529X" => "W5529X",
"W5529XA" => "W5529XA",
"Z674" => "Z674",
"Z6741" => "Z6741",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd10_remove_dots(icd10_add_dots(input)) == expected_output
end
end
@testset "Roundtrip icd10_remove_dots" begin
test_cases = [
# Input is too short for a dot
"W55" => "W55",
"Z67" => "Z67",
# Input contains a dot
"W55.2" => "W55.2",
"W55.29" => "W55.29",
"W55.29X" => "W55.29X",
"W55.29XA" => "W55.29XA",
"Z67.4" => "Z67.4",
"Z67.41" => "Z67.41",
# Input does not contain a dot
"W552" => "W55.2",
"W5529" => "W55.29",
"W5529X" => "W55.29X",
"W5529XA" => "W55.29XA",
"Z674" => "Z67.4",
"Z6741" => "Z67.41",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd10_add_dots(icd10_remove_dots(input)) == expected_output
end
end
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 3595 | @testset "icd9" begin
icd9_add_dots = DiagnosisClassification.icd9_add_dots
icd9_remove_dots = DiagnosisClassification.icd9_remove_dots
@testset "icd9_add_dots" begin
test_cases = [
# Input is too short for a dot
"003" => "003",
"V01" => "V01",
"E000" => "E000",
# Input contains a dot
"003.2" => "003.2",
"003.20" => "003.20",
"V01.7" => "V01.7",
"V01.71" => "V01.71",
"E000.0" => "E000.0",
# Input does not contain a dot
"0032" => "003.2",
"00320" => "003.20",
"V017" => "V01.7",
"V0171" => "V01.71",
"E0000" => "E000.0",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd9_add_dots(input) == expected_output
end
@test_throws ErrorException icd9_add_dots("")
end
@testset "icd9_remove_dots" begin
test_cases = [
# Input is too short for a dot
"003" => "003",
"V01" => "V01",
"E000" => "E000",
# Input contains a dot
"003.2" => "0032",
"003.20" => "00320",
"V01.7" => "V017",
"V01.71" => "V0171",
"E000.0" => "E0000",
# Input does not contain a dot
"0032" => "0032",
"00320" => "00320",
"V017" => "V017",
"V0171" => "V0171",
"E0000" => "E0000",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd9_remove_dots(input) == expected_output
end
@test_throws ErrorException icd9_remove_dots("")
end
@testset "Roundtrip icd9_add_dots" begin
test_cases = [
# Input is too short for a dot
"003" => "003",
"V01" => "V01",
"E000" => "E000",
# Input contains a dot
"003.2" => "0032",
"003.20" => "00320",
"V01.7" => "V017",
"V01.71" => "V0171",
"E000.0" => "E0000",
# Input does not contain a dot
"0032" => "0032",
"00320" => "00320",
"V017" => "V017",
"V0171" => "V0171",
"E0000" => "E0000",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd9_remove_dots(icd9_add_dots(input)) == expected_output
end
end
@testset "Roundtrip icd9_remove_dots" begin
test_cases = [
# Input is too short for a dot
"003" => "003",
"V01" => "V01",
"E000" => "E000",
# Input contains a dot
"003.2" => "003.2",
"003.20" => "003.20",
"V01.7" => "V01.7",
"V01.71" => "V01.71",
"E000.0" => "E000.0",
# Input does not contain a dot
"0032" => "003.2",
"00320" => "003.20",
"V017" => "V01.7",
"V0171" => "V01.71",
"E0000" => "E000.0",
]
for test_case in test_cases
input = test_case[1]
expected_output = test_case[2]
@test icd9_add_dots(icd9_remove_dots(input)) == expected_output
end
end
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | docs | 668 | # DiagnosisClassification
[](https://JuliaHealth.github.io/DiagnosisClassification.jl/stable)
[](https://JuliaHealth.github.io/DiagnosisClassification.jl/dev)
[](https://github.com/JuliaHealth/DiagnosisClassification.jl/actions/workflows/ci.yml?query=branch%3Amain)
[](https://codecov.io/gh/JuliaHealth/DiagnosisClassification.jl)
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | docs | 254 | ```@meta
CurrentModule = DiagnosisClassification
```
# DiagnosisClassification
Documentation for [DiagnosisClassification](https://github.com/JuliaHealth/DiagnosisClassification.jl).
```@index
```
```@autodocs
Modules = [DiagnosisClassification]
```
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1476 | using Documenter, CanopyOptics
using Literate, UnitfulEquivalences, Distributions, Plots
pyplot()
ENV["PYTHON"]=""
function build()
tutorials = ["bilambertian.jl", "specular.jl"] # ,
tutorials_paths = [joinpath(@__DIR__, "src", "pages", "tutorials", tutorial) for tutorial in tutorials]
for tutorial in tutorials_paths
Literate.markdown(tutorial, joinpath(@__DIR__, "src", "pages", "tutorials"))
end
tutorials_md = [joinpath("pages", "tutorials", tutorial[1:end-3]) * ".md" for tutorial in tutorials]
pages = Any[
"Home" => "index.md",
"Tutorials" => tutorials_md
]
mathengine = MathJax(Dict(
:TeX => Dict(
:equationNumbers => Dict(:autoNumber => "AMS"),
:Macros => Dict(),
),
))
format = Documenter.HTML(
#assets = [
# asset("https://fonts.googleapis.com/css?family=Montserrat|Source+Code+Pro&display=swap", class=:css),
# ],
prettyurls = get(ENV, "CI", nothing) == "true",
mathengine = mathengine,
collapselevel = 1,
)
makedocs(
sitename = "Canopy Optics",
format = format,
clean = false,
modules = [CanopyOptics],
pages = pages)
end
build()
deploydocs(
repo = "github.com/RemoteSensingTools/CanopyOptics.jl.git",
target = "build",
push_preview = true,
)
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1698 | # # Bilambertian Canopy Scattering
# Using packages:
using Plots, Distributions
using CanopyOptics
theme(:ggplot2)
# Compute quadrature points:
μ,w = CanopyOptics.gauleg(20,0.0,1.0)
# Use standard planophile leaf distribution:
LD = CanopyOptics.planophile_leaves2()
# Use a Bilambertian model and specify Reflectance R and Transmission T
BiLambMod = CanopyOptics.BiLambertianCanopyScattering(R=0.4,T=0.2)
# Compute Scattering Matrices 𝐙⁺⁺, 𝐙⁻⁺ for 0th Fourier moment:
𝐙⁺⁺, 𝐙⁻⁺ = CanopyOptics.compute_Z_matrices(BiLambMod, μ, LD, 0)
# Plots matrices (shows single scattering contributions for incoming and outgoing directions)
l = @layout [a b]
p1 = contourf(μ, μ, 𝐙⁻⁺, title="Z⁻⁺ (Reflection)", xlabel="μꜜ", ylabel="μꜛ")
p2 = contourf(μ, μ, 𝐙⁺⁺, title="Z⁺⁺ (Transmission)", xlabel="μꜛ", ylabel="μꜛ")
plot(p1, p2, layout = l, margin=5Plots.mm)
plot!(size=(900,350))
# ### Animation over different Beta leaf distributions
steps = 0.1:0.1:5
α = [collect(steps); 5*ones(length(steps))]
β = [ 5*ones(length(steps)); reverse(collect(steps));]
x = 0:0.01:1
anim = @animate for i ∈ eachindex(α)
LD = CanopyOptics.LeafDistribution(Beta(α[i],β[i]), 2/π)
Z⁺⁺, Z⁻⁺ = CanopyOptics.compute_Z_matrices(BiLambMod, μ, LD, 0)
l = @layout [a b c]
p0 = plot(rad2deg.(π * x/2), pdf.(LD.LD,x), legend=false, ylim=(0,3), title="Leaf angle distribution", xlabel="Θ (degrees)")
p1 = contourf(μ, μ, Z⁻⁺, title="Z⁻⁺ (Reflection)", xlabel="μꜜ", ylabel="μꜛ",clims=(0.5,2))
p2 = contourf(μ, μ, Z⁺⁺, title="Z⁺⁺ (Transmission)", xlabel="μꜛ", ylabel="μꜛ",clims=(0.5,2))
plot(p0, p1, p2, layout = l, margin=5Plots.mm)
plot!(size=(1100,300))
end
gif(anim, "anim_fps10.gif", fps = 10) | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1793 | # # Specular Canopy Scattering
# Using packages:
using Plots, Distributions
using CanopyOptics
pyplot()
# theme(:ggplot2)
# Create a specular model with refractive index and "roughness" κ
specularMod = CanopyOptics.SpecularCanopyScattering(nᵣ=1.5, κ=0.2)
# Use standard planophile leaf distribution:
LD = CanopyOptics.planophile_leaves2()
# Create some discretized angles:
# Azimuth (in radians)
ϕ = range(0.0, 2π, length=200);
# Polar angle as cos(Θ)
μ,w = CanopyOptics.gauleg(180,0.0,1.0);
# Create directional vectors:
dirs = [CanopyOptics.dirVector_μ(a,b) for a in μ, b in ϕ];
# Compute specular reflectance:
R = CanopyOptics.compute_reflection.([specularMod], [dirs[50,1]], dirs, [LD]);
# Polar plot of reflectance
contourf(ϕ, acos.(μ), R,proj=:polar, ylim=(0,π/2), alpha=0.8)
# ### Animation over different Beta leaf distributions
steps = 0.1:0.1:5
α = [collect(steps); 5*ones(length(steps))]
β = [ 5*ones(length(steps)); reverse(collect(steps));]
x = 0:0.01:1
l = @layout [a b; c d; e f]
anim = @animate for i ∈ eachindex(α)
LD = CanopyOptics.LeafDistribution(Beta(α[i],β[i]), 2/π)
R = CanopyOptics.compute_reflection.([specularMod], [dirs[120,1]], dirs, [LD])
pZ = []
for m=0:3
Z⁺⁺, Z⁻⁺ = CanopyOptics.compute_Z_matrices(specularMod, μ, LD, m)
push!(pZ, contourf(μ, μ, Z⁻⁺, title="Z⁻⁺ Fourier moment $m", xlabel="μꜜ", aspect_ratio = :equal, ylabel="μꜛ"))
end
p0 = plot(rad2deg.(π * x/2), pdf.(LD.LD,x), legend=false, ylim=(0,3), title="Leaf angle distribution", xlabel="Θ (degrees)")
p1 = contourf(ϕ, acos.(μ), R, proj=:polar, ylim=(0,π/2), clims=(0,0.02), alpha=0.8,legend = :none, title="Polar plot R")
plot(p0, p1, pZ..., layout = l, margin=5Plots.mm)
plot!(size=(700,700))
end
gif(anim, "anim_fps10.gif", fps = 10)
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 2310 | module CanopyOptics
###### Julia packages to import ############
using Distributions # Distributions for angular distributions of canopy elements
using FastGaussQuadrature # Quadrature points for numerical integration
using Unitful # Units attached to some variable
using UnitfulEquivalences # Spectral conversions
using SpecialFunctions:expint # expint in Prospect
using DelimitedFiles # File IO (Prospect csv File)
using DocStringExtensions # Documentation
using LazyArtifacts # Artifacts
using LinearAlgebra # Well, guess...
using Polynomials # Polynomials for some empirical functions
using YAML # YAML input files
using QuadGK # Numerical Integration
using CUDA
using ForwardDiff
import SpecialFunctions.expint
#"Definition of Stokes vector types:"
#using vSmartMOM.Scattering: Stokes_I, Stokes_IQU, Stokes_IQUV
# Filename for ProspectPro optical properties
const OPTI_2021 = artifact"Prospect" * "/dataSpec_PRO.csv";
# Needs to be more modular later:
FT = Float64
###### Own files to include #################
include("initialization/constants.jl")
include("types/canopy_types.jl")
include("types/angle_types.jl")
include("types/material_types.jl")
include("utils/quadrature.jl")
include("utils/canopy_angles.jl")
include("utils/fresnel.jl")
include("core/prospect.jl")
include("core/leafAngleRoutines.jl")
include("initialization/loadProspect.jl")
include("initialization/default_constructors.jl")
include("forest_prototyping/types.jl")
include("forest_prototyping/parameters_from_yaml.jl")
include("forest_prototyping/probabilities.jl")
include("forest_prototyping/subroutines.jl")
#include("forest_prototyping/output_check.jl")
include("utils/dielectric.jl")
export prospect
export createLeafOpticalStruct, LeafProspectProProperties, LeafOpticalProperties, dirVector, dirVector_μ
export AbstractCanopyScatteringType, BiLambertianCanopyScattering, SpecularCanopyScattering
export PureIce, LiquidPureWater, LiquidSaltWater
export LeafProspectProProperties, LeafOpticalProperties, dielectric
# Functions:
export compute_Z_matrices, prospect, compute_specular_reflection
# MW stuff
export wood_forward, wood_backward, afsal, asal, abs_components
end # module
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 16634 |
"Integrated projection of leaf area for a single leaf inclination of θₗ, assumes azimuthally uniform distribution"
function A(θ::FT, θₗ::FT) where FT<:Real # Suniti: why not use the expressions in Eq 35-36 from Schultis & Myneni (1987)?
a = cos(θ) * cos(θₗ)
#@show θ
# Eq. 14.24 in Bonan et al.
if θₗ ≤ (FT(π/2) - θ)
#@show "<"
#@show θₗ, a
return a
else
#@show ">"
b = sin(θ) * sin(θₗ)
c = sqrt(sin(θₗ)^2 - cos(θ)^2)
# @show θₗ, FT(2/π)*(c + a * asin(a/b))
return FT(2/π)*(c + a * asin(a/b))
end
end
"Integrated projection of leaf area for a single leaf inclination of θₗ, assumes azimuthally uniform distribution"
function Asm(θ::FT, θₗ::FT) where FT<:Real # Suniti: Eq 35-36 from Schultis & Myneni (1987)
a = cos(θ) * cos(θₗ)
# Eq. 14.24 in Bonan et al.
if θₗ ≤ (FT(π/2) - θ)
return a
else
b = sin(θ) * sin(θₗ)
c = sqrt(FT(1)-(a/b)^2)
return FT(2/π)*(a * (acos(-a/b)-π/2) + b * c) # (1/π) * (cosθ.cosθₗ.cos⁻¹(cotθ.cotθₗ) + sinθ.sinθₗ.√(1-cot²θ.cot²θₗ))
end
end
"""
$(FUNCTIONNAME)(μ::Array{FT}, LD::AbstractLeafDistribution; nLeg=20)
Returns the integrated projection of leaf area in the direction of μ, assumes azimuthally uniform distribution and a LD distribution for leaf polar angle θ.
This function is often referred to as the function O(B) (Goudriaan 1977) or G(Ζ) (Ross 1975,1981), see Bonan modeling book, eqs. 14.21-14.26.
# Arguments
- `μ` an array of cos(θ) (directions [0,1])
- `LD` an [`AbstractLeafDistribution`](@ref) type struct, includes a leaf distribution function
- `nLeg` an optional parameter for the number of legendre polynomials to integrate over the leaf distribution (default=20)
# Examples
```julia-repl
julia> μ,w = CanopyOptics.gauleg(10,0.0,1.0); # Create 10 quadrature points in μ
julia> LD = CanopyOptics.spherical_leaves() # Create a default spherical leaf distribution
julia> G = CanopyOptics.G(μ, LD) # Compute G(μ)
10-element Vector{Float64}:
0.5002522783000879
0.5002715115149204
0.5003537989277846
0.5004432798701134
0.5005134448870893
0.5003026448466977
0.4999186257540982
0.4994511190721635
0.49907252201082375
0.49936166823681594
```
"""
function G(μ::AbstractArray{FT}, LD::AbstractLeafDistribution; nLeg=40) where FT
θₗ,w = gauleg(nLeg,FT(0),FT(π/2))
b = range(FT(0),FT(π/2), length=nLeg)
θₗ = (b[1:end-1] + b[2:end])/2
#@show length(θₗ )
w = π / 2 / (nLeg-1)
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling #.* sin.(θₗ) * π/2
#Fᵢ = 2/π * (1.0 .+ cos.(2θₗ))
# renormalize (needed if quadrature doesn't work)
#@show sum(w' * Fᵢ)
Fᵢ = Fᵢ / sum(w * Fᵢ)
θ = acos.(μ)
#@show size(A.(θ',θₗ))
#@show size(w * Fᵢ)
G = (w * Fᵢ)' * A.(θ',θₗ)
return G'
end
function G2(μ::AbstractArray{FT}, LD::AbstractLeafDistribution; nLeg=40) where FT
μl,w = gauleg(nLeg,FT(0),FT(1))
θₗ = acos.(μl)
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling * π/2
Fᵢ = Fᵢ ./ (w'*Fᵢ)
θ = acos.(μ)
G = (w .* Fᵢ)' * A.(θ',θₗ)
return G'
end
"Brute Force G calculation (for testing"
function bfG(μ::Array{FT}, LD::AbstractLeafDistribution; nLeg=20) where FT
nQuad = 100
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
# Reference angles to integrate over in both ϕ and μ
μ_l, w = gauleg(180,0.0,1.0);
Ω_l = [dirVector_μ(a,b) for a in μ_l, b in ϕ];
θₗ = acos.(μ_l)
# Have to divide by sin(θ) again to get ∂θ/∂μ for integration (weights won't work)
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling * π/2#./ abs.(sin.(θₗ))
@show Fᵢ' * w
Fᵢ = Fᵢ ./ (Fᵢ' * w)
#@show Fᵢ' * w
res = similar(μ);
for i in eachindex(μ)
Ω = dirVector_μ(μ[i],0.0);
#res[i] = sum(w .* Fᵢ .* A.(θ[i],θₗ))
# Double integration here:
res[i] = ((Fᵢ .* abs.(dot.((Ω,),Ω_l)))' * w)' * w_azi /(2π)
end
return res
end
"""
$(FUNCTIONNAME)(μ::Array{FT,1},μꜛ::Array{FT,1}, r,t, LD::AbstractLeafDistribution; nLeg = 20)
Computes the azimuthally-averaged area scattering transfer function following Shultis and Myneni (https://doi.org/10.1016/0022-4073(88)90079-9), Eq 43:
``Γ(μ' -> μ) = \\int_0^1 dμ_L g_L(μ_L)[t_L Ψ⁺(μ, μ', μ_L) + r_L Ψ⁻(μ, μ', μ_L)]``
assuming an azimuthally uniform leaf angle distribution.
# Arguments
- `μ::Array{FT,1}` : Quadrature points incoming direction (cos(θ))
- `μꜛ::Array{FT,1}`: Quadrature points outgoing direction (cos(θ))
- `r` : Leaf lambertian reflectance
- `t` : Leaf lambertian transmittance
- `LD` a [`AbstractLeafDistribution`](@ref) struct that describes the leaf angular distribution function.
- `nLeg = 20`: number of quadrature points used for integration over all leaf angles (default is 20).
"""
function compute_lambertian_Γ(μ::Array{FT,1},μꜛ::Array{FT,1}, r,t, LD::AbstractLeafDistribution; nLeg = 20) where FT
Γ = zeros(length(μ), length(μ))
θₗ,w = gauleg(nLeg,FT(0),FT(π/2))
for i in eachindex(θₗ)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,μꜛ, cos(θₗ[i]));
Γ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (t * Ψ⁺ + r * Ψ⁻)
end
return Γ
end
"""
$(FUNCTIONNAME)(mod::BiLambertianCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int)
Computes the single scattering Z matrices (𝐙⁺⁺ for same incoming and outgoing sign of μ, 𝐙⁻⁺ for a change in direction). Internally computes the azimuthally-averaged area scattering transfer function following Shultis and Myneni (https://doi.org/10.1016/0022-4073(88)90079-9), Eq 43::
``Γ(μ' -> μ) = \\int_0^1 dμ_L g_L(μ_L)[t_L Ψ⁺(μ, μ', μ_L) + r_L Ψ⁻(μ, μ', μ_L)]``
assuming an azimuthally uniform leaf angle distribution. Normalized Γ as 𝐙 = 4Γ/(ϖ⋅G(μ)).
Returns 𝐙⁺⁺, 𝐙⁻⁺
# Arguments
- `mod` : A bilambertian canopy scattering model [`BiLambertianCanopyScattering`](@ref), uses R,T,nQuad from that model.
- `μ::Array{FT,1}`: Quadrature points ∈ [0,1]
- `LD` a [`AbstractLeafDistribution`](@ref) struct that describes the leaf angular distribution function.
- `m`: Fourier moment (for azimuthally uniform leave distributions such as here, only m=0 returns non-zero matrices)
"""
function compute_Z_matrices(mod::BiLambertianCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;R,T,nQuad) = mod
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# skip everything beyond m=0
if m>0
return 𝐙⁺⁺, 𝐙⁻⁺
end
# Ross kernel
G = CanopyOptics.G(μ, LD)
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
θₗ,w = gauleg(nQuad,FT(0),FT(π/2));
for i in eachindex(θₗ)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,μ, cos(θₗ[i]));
𝐙⁺⁺ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (T * Ψ⁺ + R * Ψ⁻)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,-μ, cos(θₗ[i]));
𝐙⁻⁺ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (T * Ψ⁺ + R * Ψ⁻)
end
return 4𝐙⁺⁺ ./(G'*ϖ), 4𝐙⁻⁺ ./(G'*ϖ)
end
# Page 20, top of Knyazikhin and Marshak
# Example
# ϕ = range(0.0, 2π, length=200)
# θ = range(0.0, π/2, length=150)
# dirs = [dirVector(a,b) for a in θ, b in ϕ];
# R = CanopyOptics.compute_specular_reflection.([dirs[10,1]],dirs, [1.5], [0.3], [LD])
function compute_reflection(mod::SpecularCanopyScattering, Ωⁱⁿ::dirVector{FT}, Ωᵒᵘᵗ::dirVector{FT}, LD) where FT
(;nᵣ,κ) = mod
Ωstar = getSpecularΩ(Ωⁱⁿ, Ωᵒᵘᵗ)
#θstar = min(abs(Ωstar.θ), (π-abs(Ωstar.θ))) # min(abs(Ωstar.θ), abs(π+Ωstar.θ))
θstar = Ωstar.θ;
#if Ωⁱⁿ.θ ≈ Ωᵒᵘᵗ.θ && Ωⁱⁿ.ϕ ≈ Ωᵒᵘᵗ.ϕ
# θstar = Ωⁱⁿ.θ
#end
# Still needs to be implemented!
# incident angle on leaf surface (half of in and out angle):
sa = Ωⁱⁿ ⋅ Ωᵒᵘᵗ
sa > 1 ? sa = FT(1) : nothing
αstar = acos(abs(sa))/2
#@show Ωstar.ϕ, Ωstar.θ
#a = (Ωⁱⁿ ⋅ Ωstar) * (Ωᵒᵘᵗ ⋅ Ωstar)
return FT(1/8) * pdf(LD.LD,2θstar/π) * LD.scaling * K(κ, αstar) * Fᵣ(nᵣ,αstar)
end
function compute_Γ(mod::BiLambertianCanopyScattering, Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}, LD::AbstractLeafDistribution) where FT
(;R,T, nQuad) = mod
#nQuad = 80
#μ_l, w = gauleg(nQuad,0.0,1.0);
θₗ, w = gauleg(nQuad,FT(0),FT(π/2));
μ_l = cos.(θₗ)
# Quadrature points in the azimuth (this has to go over 2π):
ϕ, w_azi = gauleg(nQuad+1,FT(0),FT(2π));
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling
# Create leaf angles in μ and ϕ
Ω_l = [dirVector_μ(a,b) for a in μ_l, b in ϕ];
# Compute the angles (in, leaf angles, out, leaf)
integrand = ((Ωⁱⁿ,) .⋅ Ω_l) .* ((Ωᵒᵘᵗ,) .⋅ Ω_l)
# Integrate over positive and negatives separately
iPos = (integrand+abs.(integrand))./2
iNeg = (integrand-abs.(integrand))./2
# Eq 39 in Shultis and Myneni, double integration here
Γ⁻ = -1/2π * (Fᵢ .* w)' * (iNeg * w_azi)
Γ⁺ = 1/2π * (Fᵢ .* w)' * (iPos * w_azi)
@show
# Eq 38 in Shultis and Myneni
return R * Γ⁻ + T * Γ⁺
end
function compute_reflection(mod::SpecularCanopyScattering,Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}, LD::AbstractLeafDistribution) where FT
(;nᵣ,κ) = mod
Ωstar, αstar = getSpecularΩ(Ωⁱⁿ, Ωᵒᵘᵗ)
# Can change this later as well do have the pdf in μ, not theta!
θstar = acos(abs(Ωstar.μ));
# Eq. 2.39 in "Discrete Ordinates Method for Photon Transport in Leaf Canopies", page 59
return FT(1/8) * pdf(LD.LD,2θstar/π) * LD.scaling * K(κ, αstar) * Fᵣ(nᵣ,αstar)
end
function compute_Z_matrices(mod::SpecularCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;nᵣ, κ, nQuad) = mod
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
# Fourier weights (cosine decomposition)
f_weights = cos.(m*ϕ)
for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
# Compute over μ and μ_azi:
Zup = compute_reflection.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown = compute_reflection.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
# integrate over the azimuth:
𝐙⁻⁺[i,:] = Zup * (w_azi .* f_weights)
𝐙⁺⁺[i,:] = Zdown * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function compute_Z_matrices_aniso(mod::BiLambertianCanopyScattering, μ::AbstractArray{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;R,T, nQuad) = mod
# Ross kernel
G = CanopyOptics.G(Array(μ), LD)
@show G
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# Quadrature points in the azimuth:
# Y. Knyazikhin and A. Marshak, eq. A.9a
ϕ, w_azi = gauleg(nQuad,FT(0),FT(π));
w_azi *= 2/FT(π)
ff = m==0 ? FT(2) : FT(4)
#if m>0
# w_azi /= 2
#end
# Fourier weights (cosine decomposition)
f_weights = cos.(m*ϕ)
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in μ, b in ϕ];
for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Compute over μ and μ_azi:
Zup = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
#Zup = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜛ);
#Zdown = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜜ);
# integrate over the azimuth:
𝐙⁻⁺[:,i] = ff * Zup / ϖ * (w_azi .* f_weights)
𝐙⁺⁺[:,i] = ff * Zdown / ϖ * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function compute_Γ_isotropic(mod::BiLambertianCanopyScattering, Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}) where FT
(;R,T, nQuad) = mod
β = acos( Ωᵒᵘᵗ ⋅ Ωⁱⁿ)
ω = R + T
# Eq 40 in Shultis and Myneni
Γ = (ω/3π) * (sin(β) - β * cos(β)) + T/3*cos(β)
return Γ
end
function compute_Z_matrices_aniso(mod::BiLambertianCanopyScattering,μ::AbstractArray{FT,1},LD::AbstractLeafDistribution, Zup, Zdown, m::Int) where FT
(;R,T, nQuad) = mod
# Ross kernel
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
# Transmission (same direction)
𝐙⁺⁺ = similar(μ,(length(μ), length(μ)))
# Reflection (change direction)
𝐙⁻⁺ = similar(μ,(length(μ), length(μ)))
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(π));
w_azi *= 2/FT(π)
w_azi = typeof(μ)(w_azi)
ff = m==0 ? FT(2) : FT(4)
# Fourier weights (cosine decomposition)
f_weights = typeof(μ)(cos.(m*ϕ))
for i in eachindex(μ)
# integrate over the azimuth:
@views 𝐙⁻⁺[i,:] = ff * Zup[i,:,:] /ϖ * (w_azi .* f_weights)
@views 𝐙⁺⁺[i,:] = ff * Zdown[i,:,:] /ϖ * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function precompute_Zazi(mod::BiLambertianCanopyScattering, μ::AbstractArray{FT,1}, LD::AbstractLeafDistribution) where FT
(;R,T, nQuad) = mod
nQuad = nQuad
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(π));
# Fourier weights (cosine decomposition)
# Transmission (same direction)
Zup = zeros(length(μ),length(μ), nQuad)
# Reflection (change direction)
Zdown = zeros(length(μ),length(μ), nQuad)
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in μ, b in ϕ];
Threads.@threads for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Compute over μ and μ_azi:
Zup[i,:,:] = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown[i,:,:] = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
#Zup[:,:,i] = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜛ);
#Zdown[:,:,i] = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜜ);
end
return Zup, Zdown
end
function precompute_Zazi_(mod::BiLambertianCanopyScattering, μ::AbstractArray{FT,1}, LD::AbstractLeafDistribution) where FT
(;R,T, nQuad) = mod
# Quadrature points in μ
n_μ = length(μ);
arr_type = typeof(μ);
#μ,w = CanopyOptics.gauleg(n_μ, FT(0), FT(1.0));
dϕ, w_azi = CanopyOptics.gauleg(nQuad, FT(0), FT(π));
dϕᴸ, w_aziᴸ = CanopyOptics.gauleg(nQuad+1, FT(0), FT(2π));
θᴸ,wᴸ = CanopyOptics.gauleg(nQuad, FT(0),FT(π/2));
μᴸ = cos.(θᴸ)
Fᵢ = pdf.(LD.LD,2θᴸ/π) * LD.scaling
@show sum(wᴸ .* Fᵢ)
# Reshape stuff:
μⁱⁿ = reshape(arr_type(μ), n_μ, 1, 1, 1, 1 );
μᵒᵘᵗ = reshape(arr_type(deepcopy(μ)), 1, n_μ, 1, 1, 1 );
_dϕ = reshape(arr_type(dϕ), 1, 1, nQuad, 1, 1 );
_μᴸ = reshape(arr_type(μᴸ), 1, 1, 1, nQuad, 1 );
_dϕᴸ = reshape(arr_type(dϕᴸ),1, 1, 1, 1, nQuad+1 );
# Quadrature points
wᴸ = wᴸ .* Fᵢ
#_w_azi = reshape(arr_type(w_azi), 1, 1, nQuad, 1, 1 );
_wᴸ = reshape(arr_type(wᴸ), 1, 1, 1, nQuad, 1 );
_w_aziᴸ = reshape(arr_type(w_aziᴸ), 1, 1, 1, 1, nQuad+1);
integrand = CanopyOptics.leaf_dot_products.(μⁱⁿ, -μᵒᵘᵗ, _dϕ,_μᴸ, _dϕᴸ);
iPos = (integrand+abs.(integrand))./2;
iNeg = (integrand-abs.(integrand))./2;
Γ⁻ = -1/2π * sum(sum(iNeg.*_w_aziᴸ, dims=5).*_wᴸ,dims=4);
Γ⁺ = 1/2π * sum(sum(iPos.*_w_aziᴸ, dims=5).*_wᴸ,dims=4);
Γ = R .* Γ⁻ .+ T .* Γ⁺;
Γup = reshape(Γ, n_μ,n_μ, nQuad);
integrand = CanopyOptics.leaf_dot_products.(μⁱⁿ, μᵒᵘᵗ, _dϕ,_μᴸ, _dϕᴸ);
iPos = (integrand+abs.(integrand))./2;
iNeg = (integrand-abs.(integrand))./2;
Γ⁻ = -1/2π * sum(sum(iNeg.*_w_aziᴸ, dims=5).*_wᴸ,dims=4);
Γ⁺ = 1/2π * sum(sum(iPos.*_w_aziᴸ, dims=5).*_wᴸ,dims=4);
Γ = R .* Γ⁻ .+ T .* Γ⁺;
Γdown = reshape(Γ, n_μ,n_μ, nQuad);
return Γup,Γdown
end
"The reduction factor proposed by Nilson and Kuusk, κ ≈ 0.1-0.3, returns exp(-κ * tan(abs(α))"
function K(κ::FT, α::FT) where FT
exp(-κ * tan(abs(α)));
end
function leaf_dot_products(μⁱⁿ::FT, μᵒᵘᵗ::FT, dϕᵒᵘᵗ::FT, μᴸ::FT, dϕᴸ::FT) where FT
(μⁱⁿ * μᴸ + sqrt(1-μⁱⁿ^2) * sqrt(1-μᴸ^2) * cos(dϕᴸ)) *
(μᵒᵘᵗ * μᴸ + sqrt(1-μᵒᵘᵗ^2) * sqrt(1-μᴸ^2) * cos(dϕᴸ - dϕᵒᵘᵗ))
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 13544 |
"Integrated projection of leaf area for a single leaf inclination of θₗ, assumes azimuthally uniform distribution"
function A(θ::FT, θₗ::FT) where FT<:Real # Suniti: why not use the expressions in Eq 35-36 from Schultis & Myneni (1987)?
a = cos(θ) * cos(θₗ)
# Eq. 14.24 in Bonan et al.
if θₗ ≤ FT(π/2) - θ
return a
else
b = sin(θ) * sin(θₗ)
c = sqrt(sin(θₗ)^2 - cos(θ)^2)
return FT(2/π)*(c + a * asin(a/b))
end
end
"Integrated projection of leaf area for a single leaf inclination of θₗ, assumes azimuthally uniform distribution"
function Asm(θ::FT, θₗ::FT) where FT<:Real # Suniti: Eq 35-36 from Schultis & Myneni (1987)
a = cos(θ) * cos(θₗ)
# Eq. 14.24 in Bonan et al.
if θₗ ≤ FT(π/2) - θ
return a
else
b = sin(θ) * sin(θₗ)
c = sqrt(FT(1)-(a/b)^2)
return FT(2/π)*(a * (acos(-a/b)-π/2) + b * c) # (1/π) * (cosθ.cosθₗ.cos⁻¹(cotθ.cotθₗ) + sinθ.sinθₗ.√(1-cot²θ.cot²θₗ))
end
end
"""
$(FUNCTIONNAME)(μ::Array{FT}, LD::AbstractLeafDistribution; nLeg=20)
Returns the integrated projection of leaf area in the direction of μ, assumes azimuthally uniform distribution and a LD distribution for leaf polar angle θ.
This function is often referred to as the function O(B) (Goudriaan 1977) or G(Ζ) (Ross 1975,1981), see Bonan modeling book, eqs. 14.21-14.26.
# Arguments
- `μ` an array of cos(θ) (directions [0,1])
- `LD` an [`AbstractLeafDistribution`](@ref) type struct, includes a leaf distribution function
- `nLeg` an optional parameter for the number of legendre polynomials to integrate over the leaf distribution (default=20)
# Examples
```julia-repl
julia> μ,w = CanopyOptics.gauleg(10,0.0,1.0); # Create 10 quadrature points in μ
julia> LD = CanopyOptics.spherical_leaves() # Create a default spherical leaf distribution
julia> G = CanopyOptics.G(μ, LD) # Compute G(μ)
10-element Vector{Float64}:
0.5002522783000879
0.5002715115149204
0.5003537989277846
0.5004432798701134
0.5005134448870893
0.5003026448466977
0.4999186257540982
0.4994511190721635
0.49907252201082375
0.49936166823681594
```
"""
function G(μ::AbstractArray{FT}, LD::AbstractLeafDistribution; nLeg=20) where FT
θₗ,w = gauleg(nLeg,FT(0),FT(π/2))
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling
θ = acos.(μ)
G = (w .* Fᵢ)' * A.(θ',θₗ)
return G'
end
"Brute Force G calculation (for testing"
function bfG(μ::Array{FT}, LD::AbstractLeafDistribution; nLeg=20) where FT
nQuad = 580
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
# Reference angles to integrate over in both ϕ and μ
μ_l, w = gauleg(180,0.0,1.0);
Ω_l = [dirVector_μ(a,b) for a in μ_l, b in ϕ];
θₗ = acos.(μ_l)
# Have to divide by sin(θ) again to get ∂θ/∂μ for integration (weights won't work)
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling ./ abs.(sin.(θₗ))
#@show Fᵢ' * w
#Fᵢ = Fᵢ ./ (Fᵢ' * w)
#@show Fᵢ' * w
res = similar(μ);
for i in eachindex(μ)
Ω = dirVector_μ(μ[i],0.0);
#res[i] = sum(w .* Fᵢ .* A.(θ[i],θₗ))
# Double integration here:
res[i] = ((Fᵢ .* abs.(dot.((Ω,),Ω_l)))' * w)' * w_azi /(2π)
end
return res
end
"""
$(FUNCTIONNAME)(μ::Array{FT,1},μꜛ::Array{FT,1}, r,t, LD::AbstractLeafDistribution; nLeg = 20)
Computes the azimuthally-averaged area scattering transfer function following Shultis and Myneni (https://doi.org/10.1016/0022-4073(88)90079-9), Eq 43:
``Γ(μ' -> μ) = \\int_0^1 dμ_L g_L(μ_L)[t_L Ψ⁺(μ, μ', μ_L) + r_L Ψ⁻(μ, μ', μ_L)]``
assuming an azimuthally uniform leaf angle distribution.
# Arguments
- `μ::Array{FT,1}` : Quadrature points incoming direction (cos(θ))
- `μꜛ::Array{FT,1}`: Quadrature points outgoing direction (cos(θ))
- `r` : Leaf lambertian reflectance
- `t` : Leaf lambertian transmittance
- `LD` a [`AbstractLeafDistribution`](@ref) struct that describes the leaf angular distribution function.
- `nLeg = 20`: number of quadrature points used for integration over all leaf angles (default is 20).
"""
function compute_lambertian_Γ(μ::Array{FT,1},μꜛ::Array{FT,1}, r,t, LD::AbstractLeafDistribution; nLeg = 20) where FT
Γ = zeros(length(μ), length(μ))
θₗ,w = gauleg(nLeg,FT(0),FT(π/2))
for i in eachindex(θₗ)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,μꜛ, cos(θₗ[i]));
Γ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (t * Ψ⁺ + r * Ψ⁻)
end
return Γ
end
"""
$(FUNCTIONNAME)(mod::BiLambertianCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int)
Computes the single scattering Z matrices (𝐙⁺⁺ for same incoming and outgoing sign of μ, 𝐙⁻⁺ for a change in direction). Internally computes the azimuthally-averaged area scattering transfer function following Shultis and Myneni (https://doi.org/10.1016/0022-4073(88)90079-9), Eq 43::
``Γ(μ' -> μ) = \\int_0^1 dμ_L g_L(μ_L)[t_L Ψ⁺(μ, μ', μ_L) + r_L Ψ⁻(μ, μ', μ_L)]``
assuming an azimuthally uniform leaf angle distribution. Normalized Γ as 𝐙 = 4Γ/(ϖ⋅G(μ)).
Returns 𝐙⁺⁺, 𝐙⁻⁺
# Arguments
- `mod` : A bilambertian canopy scattering model [`BiLambertianCanopyScattering`](@ref), uses R,T,nQuad from that model.
- `μ::Array{FT,1}`: Quadrature points ∈ [0,1]
- `LD` a [`AbstractLeafDistribution`](@ref) struct that describes the leaf angular distribution function.
- `m`: Fourier moment (for azimuthally uniform leave distributions such as here, only m=0 returns non-zero matrices)
"""
function compute_Z_matrices(mod::BiLambertianCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;R,T,nQuad) = mod
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# skip everything beyond m=0
if m>0
return 𝐙⁺⁺, 𝐙⁻⁺
end
# Ross kernel
G = CanopyOptics.G(μ, LD)
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
θₗ,w = gauleg(nQuad,FT(0),FT(π/2));
ww = abs.(sin.(θₗ))
for i in eachindex(θₗ)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,μ, cos(θₗ[i]));
𝐙⁺⁺ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (T * Ψ⁺ + R * Ψ⁻)
Ψ⁺, Ψ⁻ = compute_Ψ(μ,-μ, cos(θₗ[i]));
𝐙⁻⁺ += pdf.(LD.LD,2θₗ[i]/π) * LD.scaling * w[i] * (T * Ψ⁺ + R * Ψ⁻)
end
return 4𝐙⁺⁺ ./(G'*ϖ), 4𝐙⁻⁺ ./(G'*ϖ)
end
# Page 20, top of Knyazikhin and Marshak
# Example
# ϕ = range(0.0, 2π, length=200)
# θ = range(0.0, π/2, length=150)
# dirs = [dirVector(a,b) for a in θ, b in ϕ];
# R = CanopyOptics.compute_specular_reflection.([dirs[10,1]],dirs, [1.5], [0.3], [LD])
function compute_reflection(mod::SpecularCanopyScattering, Ωⁱⁿ::dirVector{FT}, Ωᵒᵘᵗ::dirVector{FT}, LD) where FT
(;nᵣ,κ) = mod
Ωstar = getSpecularΩ(Ωⁱⁿ, Ωᵒᵘᵗ)
#θstar = min(abs(Ωstar.θ), (π-abs(Ωstar.θ))) # min(abs(Ωstar.θ), abs(π+Ωstar.θ))
θstar = Ωstar.θ;
#if Ωⁱⁿ.θ ≈ Ωᵒᵘᵗ.θ && Ωⁱⁿ.ϕ ≈ Ωᵒᵘᵗ.ϕ
# θstar = Ωⁱⁿ.θ
#end
# Still needs to be implemented!
# incident angle on leaf surface (half of in and out angle):
sa = Ωⁱⁿ ⋅ Ωᵒᵘᵗ
sa > 1 ? sa = FT(1) : nothing
αstar = acos(abs(sa))/2
#@show Ωstar.ϕ, Ωstar.θ
#a = (Ωⁱⁿ ⋅ Ωstar) * (Ωᵒᵘᵗ ⋅ Ωstar)
return FT(1/8) * pdf(LD.LD,2θstar/π) * LD.scaling * K(κ, αstar) * Fᵣ(nᵣ,αstar)
end
function compute_Γ(mod::BiLambertianCanopyScattering, Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}, LD::AbstractLeafDistribution) where FT
(;R,T, nQuad) = mod
#μ_l, w = gauleg(nQuad,0.0,1.0);
θₗ, w = gauleg(nQuad,FT(0),FT(π/2));
#μ_l = cos.(θₗ)
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
μ_l = cos.(θₗ )
# Have to divide by sin(θ) again to get ∂θ/∂μ for integration (weights won't work)
Fᵢ = pdf.(LD.LD,2θₗ/π) * LD.scaling #.* abs.(sin.(θₗ))
Ω_l = [dirVector_μ(a,b) for a in μ_l, b in ϕ];
# Double integration here over μ and ϕ
integrand = ((Ωⁱⁿ,) .⋅ Ω_l) .* ((Ωᵒᵘᵗ,) .⋅ Ω_l)
iPos = (integrand+abs.(integrand))./2
iNeg = (integrand-abs.(integrand))./2
# Eq 39 in Shultis and Myneni
Γ⁻ = -1/2π * (Fᵢ .* w)' * (iNeg * w_azi)
Γ⁺ = 1/2π * (Fᵢ .* w)' * (iPos * w_azi)
# Eq 38 in Shultis and Myneni
return R * Γ⁻ + T * Γ⁺
end
function compute_Γ_isotropic(mod::BiLambertianCanopyScattering, Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}) where FT
(;R,T, nQuad) = mod
β = acos( Ωᵒᵘᵗ ⋅ Ωⁱⁿ)
ω = R + T
# Eq 40 in Shultis and Myneni
Γ = (ω/3π) * (sin(β) - β * cos(β)) + T/3*cos(β)
return Γ
end
function compute_reflection(mod::SpecularCanopyScattering,Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}, LD::AbstractLeafDistribution) where FT
(;nᵣ,κ) = mod
Ωstar, αstar = getSpecularΩ(Ωⁱⁿ, Ωᵒᵘᵗ)
# Can change this later as well do have the pdf in μ, not theta!
θstar = acos(abs(Ωstar.μ));
# Eq. 2.39 in "Discrete Ordinates Method for Photon Transport in Leaf Canopies", page 59
return FT(1/8) * pdf(LD.LD,2θstar/π) * LD.scaling * K(κ, αstar) * Fᵣ(nᵣ,αstar)
end
function compute_Z_matrices(mod::SpecularCanopyScattering, μ::Array{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;nᵣ, κ, nQuad) = mod
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
# Fourier weights (cosine decomposition)
f_weights = cos.(m*ϕ)
for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
# Compute over μ and μ_azi:
Zup = compute_reflection.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown = compute_reflection.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
# integrate over the azimuth:
𝐙⁻⁺[:,i] = Zup * (w_azi .* f_weights)
𝐙⁺⁺[:,i] = Zdown * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function compute_Z_matrices_aniso(mod::BiLambertianCanopyScattering, μ::AbstractArray{FT,1}, LD::AbstractLeafDistribution, m::Int) where FT
(;R,T, nQuad) = mod
# Ross kernel
G = CanopyOptics.G(Array(μ), LD)
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
w_azi /= FT(2π)
# Fourier weights (cosine decomposition)
f_weights = cos.(m*ϕ)
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Compute over μ and μ_azi:
Zup = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
#Zup = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜛ);
#Zdown = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜜ);
# integrate over the azimuth:
𝐙⁻⁺[:,i] = 4Zdown./(G'*ϖ) * (w_azi .* f_weights)
𝐙⁺⁺[:,i] = 4Zup ./(G'*ϖ) * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function compute_Z_matrices_aniso(mod::BiLambertianCanopyScattering,μ::AbstractArray{FT,1},LD::AbstractLeafDistribution, Zup, Zdown, m::Int) where FT
(;R,T, nQuad) = mod
# Ross kernel
G = CanopyOptics.G(Array(μ), LD)
# Single Scattering Albedo (should make this a vector too)
ϖ = R+T
nQuad = size(Zup,2)
# Transmission (same direction)
𝐙⁺⁺ = zeros(length(μ), length(μ))
# Reflection (change direction)
𝐙⁻⁺ = zeros(length(μ), length(μ))
# Quadrature points in the azimuth (has to be consistent with pre-computation):
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
w_azi /= FT(2π)
# Fourier weights (cosine decomposition)
f_weights = cos.(m*ϕ)
for i in eachindex(μ)
# integrate over the azimuth:
@views 𝐙⁻⁺[:,i] = 4Zdown[:,:,i]./(G*ϖ) * (w_azi .* f_weights)
@views 𝐙⁺⁺[:,i] = 4Zup[:,:,i]./(G*ϖ) * (w_azi .* f_weights)
end
return 𝐙⁺⁺, 𝐙⁻⁺
end
function precompute_Zazi(mod::BiLambertianCanopyScattering, μ::AbstractArray{FT,1}, LD::AbstractLeafDistribution) where FT
(;R,T, nQuad) = mod
nQuad = 40
# Quadrature points in the azimuth:
ϕ, w_azi = gauleg(nQuad,FT(0),FT(2π));
# Fourier weights (cosine decomposition)
# Transmission (same direction)
Zup = zeros(length(μ), nQuad,length(μ))
# Reflection (change direction)
Zdown = zeros(length(μ), nQuad,length(μ))
# Create outgoing vectors in θ and ϕ
dirOutꜛ = [dirVector_μ(a,b) for a in μ, b in ϕ];
dirOutꜜ = [dirVector_μ(a,b) for a in -μ, b in ϕ];
#Threads.@threads
for i in eachindex(μ)
# Incoming beam at ϕ = 0
Ωⁱⁿ = dirVector_μ(μ[i], FT(0));
# Compute over μ and μ_azi:
#Zup[:,:,i] = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜛ);
#Zdown[:,:,i] = compute_Γ_isotropic.((mod,),(Ωⁱⁿ,),dirOutꜜ);
Zup[:,:,i] = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜛ, (LD,));
Zdown[:,:,i] = compute_Γ.((mod,),(Ωⁱⁿ,),dirOutꜜ, (LD,));
end
return Zup, Zdown
end
"The reduction factor proposed by Nilson and Kuusk, κ ≈ 0.1-0.3, returns exp(-κ * tan(abs(α))"
function K(κ::FT, α::FT) where FT
exp(-κ * tan(abs(α)));
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 5538 | """
$(FUNCTIONNAME)(leaf::LeafProspectProProperties{FT},
optis) where {FT<:AbstractFloat}
Computes leaf optical properties (reflectance and transittance) based on PROSPECT-PRO
# Arguments
- `leaf` [`LeafProspectProProperties`](@ref) type struct which provides leaf composition
- `optis` [`LeafOpticalProperties`](@ref) type struct, which provides absorption cross sections and spectral grid
# Examples
```julia-repl
julia> opti = createLeafOpticalStruct((400.0:5:2400)*u"nm");
julia> leaf = LeafProspectProProperties{Float64}(Ccab=30.0);
julia> T,R = prospect(leaf,opti);
```
"""
function prospect(
leaf::LeafProspectProProperties{FT},
optis
) where {FT}
# ***********************************************************************
# Jacquemoud S., Baret F. (1990), PROSPECT: a model of leaf optical
# properties spectra; Remote Sens. Environ.; 34:75-91.
# Reference:
# Féret, Gitelson, Noble & Jacquemoud [2017]. PROSPECT-D: Towards modeling
# leaf optical properties through a complete lifecycle
# Remote Sensing of Environment; 193:204215
# DOI: http://doi.org/10.1016/j.rse.2017.03.004
# The specific absorption coefficient corresponding to brown pigment is()
# provided by Frederic Baret [EMMAH, INRA Avignon, [email protected]]
# & used with his autorization.
# ***********************************************************************
(;N, Ccab, Ccar, Cbrown, Canth, Cw, Cm, Cprot, Ccbc) = leaf;
(;Kcab, Kant, Kb, Kcar, Km, Kw, nᵣ, Kp, Kcbc) = optis;
# This can go into a separate multiple dispatch function as the rest remains constant across versions!
Kall=(Ccab*Kcab + Ccar*Kcar + Canth*Kant + Cbrown*Kb + Cw*Kw + Cm*Km + Cprot*Kp +Ccbc * Kcbc) / N;
# Adding eps() here to keep it stable and NOT set to 1 manually when Kall=0 (ForwardDiff won't work otherwise)
tau = (FT(1) .-Kall).*exp.(-Kall) .+ Kall.^2 .*real.(expint.(Kall.+eps(FT)))
# ***********************************************************************
# reflectance & transmittance of one layer
# ***********************************************************************
# Allen W.A., Gausman H.W., Richardson A.J., Thomas J.R. (1969)
# Interaction of isotropic ligth with a compact plant leaf; J. Opt.
# Soc. Am., 59[10]:1376-1379.
# ***********************************************************************
# reflectivity & transmissivity at the interface
#-------------------------------------------------
# From Prospect-D, uses 40 here instead of 59 from CVT)
#talf = calctav.(59.,nr)
talf = calctav.(FT(40),nᵣ)
ralf = FT(1) .-talf
t12 = calctav.(FT(90), nᵣ)
r12 = FT(1) .-t12
t21 = t12./(nᵣ.^2)
r21 = FT(1) .-t21
# top surface side
denom = FT(1) .-r21.*r21.*tau.^2
Ta = talf.*tau.*t21./denom
Ra = ralf.+r21.*tau.*Ta
# bottom surface side
t = t12.*tau.*t21./denom
r = r12+r21.*tau.*t
# ***********************************************************************
# reflectance & transmittance of N layers
# Stokes equations to compute properties of next N-1 layers [N real]
# Normal case()
# ***********************************************************************
# Stokes G.G. (1862), On the intensity of the light reflected from
# | transmitted through a pile of plates; Proc. Roy. Soc. Lond.
# 11:545-556.
# ***********************************************************************
D = sqrt.(((FT(1) .+r.+t).*(FT(1) .+r.-t).*(FT(1) .-r.+t).*(FT(1) .-r.-t)).+5eps(FT))
#println(typeof(D), typeof(r), typeof(t))
rq = r.^2
tq = t.^2
a = (FT(1) .+rq.-tq.+D)./(2r)
b = (FT(1) .-rq.+tq.+D)./(2t)
bNm1 = b.^(N-1); #
bN2 = bNm1.^2
a2 = a.^2
denom = a2.*bN2.-1
Rsub = a.*(bN2.-1)./denom
Tsub = bNm1.*(a2.-1)./denom
# Case of zero absorption
j = findall(r.+t .>= 1)
Tsub[j] = t[j]./(t[j]+(1 .-t[j])*(leaf.N-1))
Rsub[j] = 1 .-Tsub[j]
# Reflectance & transmittance of the leaf: combine top layer with next N-1 layers
denom = FT(1) .-Rsub.*r
# lambertian Tranmsission
T = Ta.*Tsub./denom
# lambertian Reflectance
R = Ra.+Ta.*Rsub.*t./denom
return T,R
end
"""
calctav(α::FT, nr::FT) where {FT<:AbstractFloat}
Computes transmission of isotropic radiation across a dielectric surface
(Stern F., 1964; Allen W.A.,Appl. Opt., 3(1):111-113 1973)).
From calctav.m in PROSPECT-D
# Arguments
- `α` angle of incidence [degrees]
- `nr` Index of refraction
"""
function calctav(α::FT, nr::FT2) where {FT,FT2}
a = ((nr+1) ^ 2) / 2;
a3 = a ^ 3;
n2 = nr ^ 2;
n4 = nr ^ 4;
n6 = nr ^ 6;
np = n2 + 1;
np2 = np ^ 2;
np3 = np ^ 3;
nm2 = (n2 - 1) ^2;
k = ((n2-1) ^ 2) / -4;
k2 = k ^ 2;
sa2 = sind(α) ^ 2;
_b1 = (α==90 ? 0 : sqrt( (sa2 - np/2)^2 + k ));
_b2 = sa2 - np/2;
b = _b1 - _b2;
b3 = b ^ 3;
ts = ( k2 / (6*b3) + k/b - b/2 ) - ( k2 / (6*a3) + k/a - a/2 );
tp1 = -2 * n2 * (b-a) / (np2);
tp2 = -2 * n2 * np * log(b/a) / (nm2);
tp3 = n2 * (1/b - 1/a) / 2;
tp4 = 16 * n4 * (n4+1) * log((2*np*b - nm2) / (2*np*a - nm2)) / (np3*nm2);
tp5 = 16 * n6 * (1 / (2*np*b-nm2) - 1 / (2*np*a-nm2)) / (np3);
tp = tp1 + tp2 + tp3 + tp4 + tp5;
tav = (ts + tp) / (2 * sa2);
return tav
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 8910 | # calculate scattering coefficient for forest based on distorted born approximation
using YAML
using SpecialFunctions
using QuadGK
using Parameters
using Test
using BenchmarkTools
# using LinearAlgebra Import later if needed
include("types.jl")
include("parameters_from_yaml.jl")
include("probabilities.jl")
include("subroutines.jl")
include("output_check.jl")
##
## Load input parameters
##
const INPUT_FILE = "deccheckin.yaml"
const input_params = parameters_from_yaml(INPUT_FILE)
(;bfrghz, leaf, branch_1, branch_2, trunk,
d_c, d_t, ϵ_g, l, sig) = input_params
# Conversion to standard metric
const c = 3e8 # Speed of light m/s
const bfr = bfrghz*1e9 # GHz to Hz
const lm = l*1e-2 # cm to m
const s = sig*1e-2 # cm to m (surface rms height)
const k₀ = 2π*bfr/c # Free space wave number (2π/λ)
const n_ϕ = 41 # No. of ϕ
const n_θ = 37 # No. of θ
const ej = 0.0 + 1.0im # Complex unit vector
# Loop over angle of incidence θ_i (not currently looped)
const ip = 1
const θ_iᵈ = 40
const θ_iʳ = deg2rad(θ_iᵈ)
const ϕ_iᵈ = 0
const ϕ_iʳ = deg2rad(ϕ_iᵈ)
const δθ = π/n_θ
const δϕ = 2π/n_ϕ
const Δϕ = 1/n_ϕ
const Δθ = 1/n_θ
# Roughness factor for ground scattering in direct-reflected term
# r_g defined right above 3.1.9
const r_g = exp(-4*(k₀*s*cos(θ_iʳ))^2)
# dim1 = polarization [h, v]
# dim2 = layer [crown, trunk]
at = zeros(2, 2, 20)
# Compute scattering amplitudes from leaves (forward and backward)
afhhl, afvvl = afsal(θ_iʳ, leaf, k₀)
σ_l = asal(θ_iʳ, leaf, k₀)
# Forward scattering of all wood types
# Each output is a 2x2 matrix (hh hv ; vh vv)
afb1, afb2, aft = wood_forward.([branch_1, branch_2, trunk])
# Backward scattering of all wood types
# Each output is a WoodBackscatter type, with 3 fields: d, dr, vh
# Each of these fields is an array
# (d: [hh, vh, vv], dr: [hh, vv], vh: [vh1, vh3])
σ_b1, σ_b2, σ_t = wood_backward.([branch_1, branch_2, trunk])
############################
# CALCULATION OF PROPAGATION CONSTANT IN TOP AND BOTTOM LAYERS
# 3.1.8???
K_hc = k₀*cos(θ_iʳ)+(2π*(leaf.ρ*afhhl + branch_1.ρ*abs_components(afb1[1,1]) + branch_2.ρ*abs_components(afb2[1,1])))/(k₀*cos(θ_iʳ))
K_vc = k₀*cos(θ_iʳ)+(2π*(leaf.ρ*afvvl + branch_1.ρ*abs_components(afb1[2,2]) + branch_2.ρ*abs_components(afb2[2,2])))/(k₀*cos(θ_iʳ))
K_ht = k₀*cos(θ_iʳ)+(2π*trunk.ρ*aft[1,1])/(k₀*cos(θ_iʳ))
K_vt = k₀*cos(θ_iʳ)+(2π*trunk.ρ*aft[2,2])/(k₀*cos(θ_iʳ))
ath1, atv1, ath2, atv2 = abs.(imag.([K_hc, K_vc, K_ht, K_vt]))
K_hc, K_vc, K_ht, K_vt = abs_imag_only.([K_hc, K_vc, K_ht, K_vt])
K_hcⁱ, K_vcⁱ, K_htⁱ, K_vtⁱ = imag.((K_hc, K_vc, K_ht, K_vt))
atv1 = (atv1 <= 1.0E-20 ? 0.0001 : atv1)
skdh1= 1/ath1
skdv1= 1/atv1
at[:,:,ip] = [atv1 abs(imag(K_vc+K_vt)) ; ath1 abs(imag(K_hc+K_ht))]
############################
# Calculation of reflection coefficient from ground
rgh = (cos(θ_iʳ)-sqrt(ϵ_g-sin(θ_iʳ)^2))/(cos(θ_iʳ)+sqrt(ϵ_g-sin(θ_iʳ)^2))
rgv = (ϵ_g*cos(θ_iʳ)-sqrt(ϵ_g-sin(θ_iʳ)^2))/(ϵ_g*cos(θ_iʳ)+sqrt(ϵ_g-sin(θ_iʳ)^2))
reflhh = rgh*exp(ej*(K_hc+K_hc)*d_c+ej*(K_ht+K_ht)*d_t)
reflhc = conj(reflhh)
reflvv = rgv*exp(ej*(K_vc+K_vc)*d_c+ej*(K_vt+K_vt)*d_t)
reflha = abs(reflhh)
reflva = abs(reflvv)
dattenh1 = exp(-2*(K_hcⁱ+K_hcⁱ)*d_c)
dattenh2 = exp(-2*(K_htⁱ+K_htⁱ)*d_t)
dattenv1 = exp(-2*(K_vcⁱ+K_vcⁱ)*d_c)
dattenv2 = exp(-2*(K_vtⁱ+K_vtⁱ)*d_t)
dattenvh1 = exp(-2*(K_vcⁱ+K_hcⁱ)*d_c)
dattenvh2 = exp(-2*(K_vtⁱ+K_htⁱ)*d_t)
a1 = (ej)*(K_vc-K_hc)
e1 = (ej)*(conj(K_vc)-conj(K_hc))
a2 = (ej)*(K_vt-K_ht)
e2 = (ej)*(conj(K_vt)-conj(K_ht))
############################
# Row is polarization [hh, vh, vv]
# Column is layer [branch+leaf (d1), trunk (d2), leaf (d3)]
σ_d = zeros(3,3)
# Perform 3.1.2 over all polarizations, using computed subexpressions (term_c, term_t)
term_c = map((x,y) -> funcm(2*x, 2*y, d_c), [K_hcⁱ, K_vcⁱ, K_vcⁱ], [K_hcⁱ, K_hcⁱ, K_vcⁱ])
term_t = map((x,y) -> funcm(2*x, 2*y, d_t), [K_htⁱ, K_vtⁱ, K_vtⁱ], [K_htⁱ, K_htⁱ, K_vtⁱ])
σ_d[:,1] = (branch_1.ρ*σ_b1.d + branch_2.ρ*σ_b2.d + leaf.ρ*σ_l.d) .* term_c
σ_d[:,2] = trunk.ρ*σ_t.d .* term_t .* [dattenh1, dattenvh1, dattenv1]
σ_d[:,3] = leaf.ρ*σ_l.d .* term_c
############################
# Row is polarization [hh, vv]
# Column is layer [branch+leaf (d1), trunk (d2), leaf (d3)]
σ_dr = zeros(2,3)
σ_dr[:,1] = 4*d_c*(branch_1.ρ*σ_b1.dr + branch_2.ρ*σ_b2.dr + leaf.ρ*σ_l.dr)*r_g
σ_dr[:,2] = 4*d_t*trunk.ρ*σ_t.dr*r_g
σ_dr[:,3] = 4*d_c*leaf.ρ*σ_l.dr*r_g
σ_dr[1,:] *= reflha^2
σ_dr[2,:] *= reflva^2
############################
# Row is
# Columns is
σ_vh = zeros(3,3)
sg_d = σ_d[:,1]+σ_d[:,2]
sg_r = zeros(2)
sg_dr = σ_dr[:,1]+σ_dr[:,2]
sg_dri = (σ_dr[:,1]+σ_dr[:,2])/2
sghh = sg_d[1]+sg_r[1]+sg_dr[1]
sghhi = sg_d[1]+sg_r[1]+sg_dri[1]
sgvv = sg_d[3]+sg_r[2]+sg_dr[2]
sgvvi = sg_d[3]+sg_r[2]+sg_dri[2]
############################
# Backscat. cross section, vh pol.
factvh1 = exp(-2*(K_hcⁱ-K_vcⁱ)*d_c)
factvh2 = exp(-2*(K_vcⁱ-K_hcⁱ)*d_c)
factvh3 = exp((-a1-e1)*d_c)
# vh1
σ_vh[1,1] = (branch_1.ρ*σ_b1.vh[1]+branch_2.ρ*σ_b2.vh[1]+leaf.ρ*σ_l.vh[1])*(reflha)^2*funcm(2*K_vcⁱ,-2*K_hcⁱ,d_c)*r_g
σ_vh[2,1] = (branch_1.ρ*σ_b1.vh[1]+branch_2.ρ*σ_b2.vh[1]+leaf.ρ*σ_l.vh[1])*(reflva)^2*funcp(2*K_vcⁱ,-2*K_hcⁱ,d_c)*r_g
σ_vh[3,1] = abs(2*real((branch_1.ρ*σ_b1.vh[2] + branch_2.ρ*σ_b2.vh[2] +leaf.ρ*σ_l.vh[2])*reflvv*reflhc*cfun(a1,e1,d_c)*r_g))
# vh2
σ_vh[1,3] = (leaf.ρ*σ_l.vh[1])*(reflha)^2*funcm(2*K_vcⁱ,-2*K_hcⁱ,d_c)*r_g
σ_vh[2,3] = (leaf.ρ*σ_l.vh[1])*(reflva)^2*funcp(2*K_vcⁱ,-2*K_hcⁱ,d_c)*r_g
σ_vh[3,3] = abs(2*real((leaf.ρ*σ_l.vh[2])*reflvv*reflhc*cfun(a1,e1,d_c)*r_g))
# vh3
σ_vh[1,2] = factvh1*(trunk.ρ*σ_t.vh[1])*(reflha)^2*funcm(2*K_vtⁱ,-2*K_htⁱ,d_t)*r_g
σ_vh[2,2] = factvh2*(trunk.ρ*σ_t.vh[1])*(reflva)^2*funcp(2*K_vtⁱ,-2*K_htⁱ,d_t)*r_g
σ_vh[3,2] = abs(2*real(factvh3*(trunk.ρ*σ_t.vh[2])*reflvv*reflhc*cfun(a2,e2,d_t)*r_g))
sgvhdr1=σ_vh[1,1]+σ_vh[2,1]+σ_vh[3,1]
sgvh1 = σ_d[2,1]+σ_vh[1,1]+σ_vh[2,1]+σ_vh[3,1]
sgvhi1 = σ_d[2,1]+σ_vh[1,1]+σ_vh[2,1]
sgvhidr1=σ_vh[1,1]+σ_vh[2,1]
sgvhdr3=σ_vh[1,3]+σ_vh[2,3]+σ_vh[3,3]
sgvh3 = σ_d[2,3]+σ_vh[1,3]+σ_vh[2,3]+σ_vh[3,3]
sgvhi3=σ_d[2,3]+σ_vh[1,3]+σ_vh[2,3]
sgvhidr3=σ_vh[1,3]+σ_vh[2,3]
sgvhdr2=σ_vh[1,2]+σ_vh[2,2]+σ_vh[3,2]
sgvh2 = σ_d[2,2]+σ_vh[1,2]+σ_vh[2,2]+σ_vh[3,2]
sgvhi2=σ_d[2,2]+σ_vh[1,2]+σ_vh[2,2]
sgvhidr2=σ_vh[1,2]+σ_vh[2,2]
sgvh = sgvh1+sgvh2
sgvhi = sgvhi1+sgvhi2
sgvhidr=sgvhidr1+sgvhidr2
###
σ = [sghh sgvh sgvv]
σ_i = [sghhi sgvhi sgvvi]
σ_o = 10.0*log10.(abs.(σ))
σ_i_o = 10.0*log10.(abs.(σ_i))
############################
# Calculation of backscat cross sections in db
svhi = zeros(20)
svhi1 = zeros(20)
svhi2 = zeros(20)
svhi3 = zeros(20)
sgvhr = 0
σ_d_db = 10 * log10.(σ_d)
σ_dr_db = 10 * log10.(σ_dr)
svhi[ip] = 10.0*log10(sgvhidr)
svhi1[ip] = 10.0*log10(sgvhidr1)
svhi2[ip] = 10.0*log10(sgvhidr2)
svhi3[ip] = 10.0*log10(sgvhidr3)
s_dd = 10.0*log10.(sg_d)
shhdrd = 10.0*log10(sg_dr[1])
shhdri = 10.0*log10(sg_dri[1])
shhrd = 10.0*log10(sg_r[1])
svhdd = 10.0*log10(abs(sg_d[2]))
sgvhdr = sgvhdr1+sgvhdr2+sgvhdr3
svhdrd = 10.0*log10(abs(sgvhdr))
svhdrd1 = 10.0*log10(abs(sgvhdr1))
svhdrd2 = 10.0*log10(abs(sgvhdr2))
svhdrd3 = 10.0*log10(abs(sgvhdr3))
sgvho = 10.0*log10(sg_d[2]+sgvhdr+sgvhr)
svhrd = 10.0*log10(abs(sgvhr))
svvdrd = 10.0*log10(sg_dr[2])
svvdri = 10.0*log10(sg_dri[2])
svvrd = 10.0*log10(sg_r[2])
################################
# Add the effect of rough ground
ksig=k₀*s
σ_g, gd = grdoh(ksig)
σ_t = σ + σ_g
σ_t_i = σ_i + σ_g
###############################
output = Forest_Scattering_Output(θ_iᵈ, σ_d_db[1,1], σ_d_db[1,2], σ_d_db[1,3],
σ_dr_db[1,1], σ_dr_db[1,2], σ_dr_db[1,3],
10.0*log10(σ_t[1]), s_dd[1], shhdrd,
σ_d_db[3,1], σ_d_db[3,2], σ_d_db[3,3],
σ_dr_db[2,1], σ_dr_db[2,2], σ_dr_db[2,3],
10.0*log10(σ_t[3]), s_dd[3], svvdrd,
σ_d_db[2,1], σ_d_db[2,2], σ_d_db[2,3],
svhdrd1, svhdrd2, svhdrd3,
10.0*log10(σ_t[2]), svhdd, svhdrd,
10.0*log10(σ_g[1]), 10.0*log10(σ_g[2]), 10.0*log10(σ_g[3]),
σ_i_o[1], σ_i_o[2], σ_i_o[3],
10.0*log10(sgvhidr1), 10.0*log10(sgvhidr2), 10.0*log10(sgvhidr3),
σ_t[1]/σ_t_i[1], σ_t[2]/σ_t_i[2], σ_t[3]/σ_t_i[3],
ath1, atv1, imag(K_hc+K_ht), imag(K_vc+K_vt))
check_output_matches_fortran(output) | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 2205 | function check_output_matches_fortran(x::Forest_Scattering_Output)
@test x.theti == 40
# hh
@test round(x.sighhd1, digits=2) == -16.24
@test round(x.sighhd2, digits=2) == -51.46
@test round(x.sighhd3, digits=2) == -37.27
@test round(x.sighhdr1, digits=3) == -8.708
@test round(x.sighhdr2, digits=3) == 8.987
@test round(x.sighhdr3, digits=2) == -34.94
@test round(x.sighht, digits=3) == 9.073
@test round(x.sighhd, digits=2) == -16.24
@test round(x.sighhdr, digits=3) == 9.060
# vv
@test round(x.sigvvd1, digits=2) == -10.08
@test round(x.sigvvd2, digits=2) == -54.54
@test round(x.sigvvd3, digits=2) == -40.02
@test round(x.sigvvdr1, digits=3) == -6.647
@test round(x.sigvvdr2, digits=3) == 6.000
@test round(x.sigvvdr3, digits=2) == -45.73
@test round(x.sigvvt, digits=3) == 6.332
@test round(x.sigvvd, digits=2) == -10.08
@test round(x.sigvvdr, digits=3) == 6.230
# vh
@test round(x.sigvhd1, digits=2) == -17.32
# @test round(x.sigvhd2, digits=4) ≈ 0.0
@test round(x.sigvhd3, digits=2) == -52.41
@test round(x.sigvhdr1, digits=2) == -12.37
# @test round(x.sigvhdr2, digits=4) ≈ 0.0
@test round(x.sigvhdr3, digits=2) == -52.01
@test round(x.sigvht, digits=2) == -11.16
@test round(x.sigvhd, digits=2) == -17.32
@test round(x.sigvhdr, digits=2) == -12.37
# total coherent
@test round(x.ghhd, digits=2) == -30.77
@test round(x.gvhd, digits=2) == -45.78
@test round(x.gvvd, digits=2) == -27.99
# total incoherent
@test round(x.sighhi, digits=3) == 6.075
@test round(x.sigvhi, digits=2) == -12.43
@test round(x.sigvvi, digits=3) == 3.418
@test round(x.sigvhi1, digits=2) == -14.13
# @test round(x.sigvhi2, digits=2) ≈ 0
@test round(x.sigvhi3, digits=2) == -53.43
@test round(x.cofhh, digits=3) == 1.994
@test round(x.cofvh, digits=3) == 1.338
@test round(x.cofvv, digits=3) == 1.955
@test round(x.athc, digits=6) == 0.008110
@test round(x.atvc, digits=5) == 0.01734
@test round(x.atht, digits=6) == 0.008231
@test round(x.atvt, digits=5) == 0.01987
println("All checks match ✅")
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 5459 |
function parameters_from_yaml(filepath)
input_params = YAML.load_file(filepath)
# Frequency
bfrghz = input_params["frequency"]
# Leaf Parameters and Conversions to Metric
a_maj_cm = input_params["leaf_parameters"]["major_axis"]
b_min_cm = input_params["leaf_parameters"]["minor_axis"]
tmm = input_params["leaf_parameters"]["thickness"]
ρ_l = input_params["leaf_parameters"]["density"]
ϵ_l = eval(Meta.parse(input_params["leaf_parameters"]["dielectric_constant"]))
pdf_num_l = input_params["leaf_parameters"]["leaf_inclination_pdf_type"]
pdf_param_l = input_params["leaf_parameters"]["pdf_parameter"]
a_maj = a_maj_cm * 1e-2 # cm to m
b_min = b_min_cm * 1e-2 # cm to m
t = tmm * 1e-3 # mm to m
leaf = Leaf(ϵ_l, a_maj, b_min, t, ρ_l, pdf_num_l, pdf_param_l)
# Primary Branch Parameters
r_b1_cm = input_params["primary_branch_parameters"]["diameter"]
l_b1 = input_params["primary_branch_parameters"]["length"]
ρ_b1 = input_params["primary_branch_parameters"]["density"]
ϵ_b1 = eval(Meta.parse(input_params["primary_branch_parameters"]["dielectric_constant"]))
pdf_num_b1 = input_params["primary_branch_parameters"]["branch_inclination_pdf_type"]
pdf_param_b1 = input_params["primary_branch_parameters"]["pdf_parameter"]
r_b1 = 0.5*r_b1_cm*1e-2 # diameter to radius, cm to m
branch_1 = Wood(ϵ_b1, r_b1, l_b1, ρ_b1, pdf_num_b1, pdf_param_b1)
# Secondary Branch Parameters
r_b2_cm = input_params["secondary_branch_parameters"]["diameter"]
l_b2 = input_params["secondary_branch_parameters"]["length"]
ρ_b2 = input_params["secondary_branch_parameters"]["density"]
ϵ_b2 = eval(Meta.parse(input_params["secondary_branch_parameters"]["dielectric_constant"]))
pdf_num_b2 = input_params["secondary_branch_parameters"]["branch_inclination_pdf_type"]
pdf_param_b2 = input_params["secondary_branch_parameters"]["pdf_parameter"]
r_b2 = 0.5*r_b2_cm*1e-2 # diameter to radius, cm to m
branch_2 = Wood(ϵ_b2, r_b2, l_b2, ρ_b2, pdf_num_b2, pdf_param_b2)
# Trunk Parameters
r_t_cm = input_params["trunk_parameters"]["diameter"]
l_t = input_params["trunk_parameters"]["length"]
ρ_t = input_params["trunk_parameters"]["density"]
ϵ_t = eval(Meta.parse(input_params["trunk_parameters"]["dielectric_constant"]))
pdf_num_t = input_params["trunk_parameters"]["branch_inclination_pdf_type"]
pdf_param_t = input_params["trunk_parameters"]["pdf_parameter"]
r_t = 0.5*r_t_cm*1e-2 # diameter to radius, cm to m
trunk = Wood(ϵ_t, r_t, l_t, ρ_t, pdf_num_t, pdf_param_t)
d_c = input_params["trunk_parameters"]["crown_height"]
d_t = input_params["trunk_parameters"]["trunk_height"]
ϵ_g = eval(Meta.parse(input_params["trunk_parameters"]["soil_dielectric"] ))
l = input_params["trunk_parameters"]["corr_length"]
sig = input_params["trunk_parameters"]["rms_height"]
return Forest_Scattering_Parameters(bfrghz, leaf, branch_1, branch_2, trunk,
d_c, d_t, ϵ_g, l, sig)
end
function Base.show(io::IO, x::Forest_Scattering_Parameters)
println(io, "Frequency: $(x.bfrghz)")
println(io, "------------------------------")
println(io, "Leaf Parameters")
println(io, "------------------------------")
println(io, "a_maj: $(x.leaf.a_maj * 1e2) cm")
println(io, "b_min: $(x.leaf.b_min * 1e2) cm")
println(io, "t: $(x.leaf.t * 1e3) mm")
println(io, "ρ: $(x.leaf.ρ) m3")
println(io, "ϵ: $(x.leaf.ϵ)")
println(io, "pdf_num: $(x.leaf.pdf_num)")
println(io, "pdf_param: $(x.leaf.pdf_param)")
println(io, "------------------------------")
println(io, "Primary Branch Parameters")
println(io, "------------------------------")
println(io, "r: $(x.branch_1.r * 1e2) cm")
println(io, "l: $(x.branch_1.l) m")
println(io, "ρ: $(x.branch_1.ρ) m3")
println(io, "ϵ: $(x.branch_1.ϵ)")
println(io, "pdf_num: $(x.branch_1.pdf_num)")
println(io, "pdf_param: $(x.branch_1.pdf_param)")
println(io, "------------------------------")
println(io, "Secondary Branch Parameters")
println(io, "------------------------------")
println(io, "r_b2: $(x.branch_2.r * 1e2) cm")
println(io, "l_b2: $(x.branch_2.l) m")
println(io, "ρ_b2: $(x.branch_2.ρ) m3")
println(io, "ϵ_b2: $(x.branch_2.ϵ)")
println(io, "pdf_num: $(x.branch_2.pdf_num)")
println(io, "pdf_param: $(x.branch_2.pdf_param)")
println(io, "------------------------------")
println(io, "Trunk Parameters")
println(io, "------------------------------")
println(io, "r_t: $(x.trunk.r * 1e2) cm")
println(io, "l_t: $(x.trunk.l) m")
println(io, "ρ_t: $(x.trunk.ρ) m3")
println(io, "ϵ_t: $(x.trunk.ϵ)")
println(io, "pdf_num: $(x.trunk.pdf_num)")
println(io, "pdf_param: $(x.trunk.pdf_param)")
println(io, "------------------------------")
println(io, "Other")
println(io, "------------------------------")
println(io, "d_c: $(x.d_c)")
println(io, "d_t: $(x.d_t)")
println(io, "ϵ_g: $(x.ϵ_g)")
println(io, "l: $(x.l)")
println(io, "sig: $(x.sig)")
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 2407 | # θ: input value
# ntype: distribution type
# param: distribution parameter
function prob(θ, ntype::Integer, param=0.0, nth=37)
@assert 0 <= θ <= π "θ must be between 0 and π"
θ_d = θ*180.0/pi
if ntype == 1
return (0 < θ < π/2 ? 0.5*sin(θ) : 0.0)
elseif ntype == 2
return (0 < θ < π/2 ? 8/(3π) * sin(θ)^4 : 0.0)
# Unfinished (3)
elseif ntype == 3
th0r = param*pi/180.
dth = π/nth
return (θ <= th0r < θ + dth ? 1.0/dth : 0.0)
elseif ntype == 4
dthplr = param * π/180
return (0 < θ < dthplr ? 1.0/dthplr : 0.0)
elseif ntype == 5
dthpdr = param * π/180
return ((π/2 - dthpdr) < θ < (π/2 + dthpdr) ? 1.0/(2.0*dthpdr) : 0.0)
elseif ntype == 6
return (θ < π/2 ? (16.0/3.0*π)*(sin(2.0*θ))^4 : 0.0)
elseif ntype == 7
return (π/4 < θ < π/2 ? abs(2 * sin(4.0 * θ)) : 0.0)
elseif ntype == 8
return (16.0/(5.0*pi))*(cos(θ))^6
elseif ntype == 9
return param * exp(-param * θ)
elseif ntype == 10
thd = θ*180.0/pi
if (0 <=thd <= 10.0)
return 0.015
elseif (10.0 < thd <= 20.0)
return 0.020
elseif (20.0 < thd <= 30.0)
return 0.015
elseif (30.0 < thd <= 40.0)
return 0.03
elseif (40.0 < thd <= 50.0)
return 0.14
elseif (50.0 < thd <= 60.0)
return 0.25
elseif (60.0 < thd <= 70.0)
return 0.22
elseif (70.0 < thd <= 80.0)
return 0.14
elseif (80.0 < thd <= 90.0)
return 0.17
end
elseif ntype == 11
return 2 * (1 + cos(2*θ))/pi
elseif ntype == 12
return 2 * (1 - cos(2*θ))/pi
elseif ntype == 13
return 2 * (1 - cos(4*θ))/pi
elseif ntype == 14
return 2 * (1 + cos(4*θ))/pi
elseif ntype == 15
return 2/π
elseif ntype == 16
return sin(θ)
elseif ntype == 17
if (0 < θ_d <= 40.0)
return 0.0
elseif (40.0 < θ_d <= 60.0)
return 0.053
elseif (60.0 < θ_d <= 80.0)
return 0.149
elseif (80.0 < θ_d <= 100.0)
return 0.255
elseif (100.0 < θ_d <= 120.0)
return 0.416
elseif (120.0 < θ_d <= 140.0)
return 0.114
elseif (140.0 < θ_d)
return 0.0
end
end
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 13801 | """
Given a complex number, return the complex number with absolute value of both parts
"""
abs_components(x::Complex) = complex(abs(real(x)),abs(imag(x)))
"""
Given a complex number, return the complex number with same real part and absolute value of imaginary part
"""
abs_imag_only(x::Complex) = complex(real(x),abs(imag(x)))
"""
Calculate forward scattering amplitudes
"""
function afsal(Θᵢʳ, leaf::Leaf, k₀)
# Calculate integral of p(θ)*sin(θ)^2 from 0 to pi
# That is, the average integral over inclinations
# prob needs to be replaced with Distributions.jl (which can integrate better anyhow)
f(x) = prob(x, leaf.pdf_num, leaf.pdf_param) * sin(x)^2
ai1 = quadgk(f, 0, π)[1]
# Volume of leaf
vol = π * leaf.a_maj * leaf.b_min * leaf.t / 4
# ν² * vol / 4π
β = k₀^2 * vol / (4π)
xi = leaf.ϵ - 1
xii = xi/(2 * (1 + xi))
afhhl = β * xi * (1 - xii * ai1)
afvvl = β * xi * (1 - xii * (2 * sin(Θᵢʳ)^2 + (cos(Θᵢʳ)^2 - 2 * sin(Θᵢʳ)^2) * ai1))
return (afhhl, afvvl)
end
"""
Calculate scattering coefficients for a thin disk
"""
function asal(Θᵢʳ, leaf::Leaf, k₀)
# Equations 14 and 29, leading term
a2 = abs(k₀^2 * (leaf.ϵ - 1) / sqrt(4π))^2
#
eb = (leaf.ϵ - 1) / leaf.ϵ
b2 = abs(eb)^2
sm = [0.0, 0.0, 0.0]
sidr = [0.0, 0.0]
sivh = [0.0, 0.0]
cnst3 = 2π*leaf.a_maj*leaf.b_min/4
cnti=1.0
cntj=1.0
# Double integral trapezoidal rule?
# Loop over θ
for i = 1:n_θ+1
θ_curr = (i - 1) * δθ
cnti = (i == 1 || i == n_θ+1) ? 0.5 : cnti
pdf = prob(θ_curr,leaf.pdf_num,leaf.pdf_param)
pdf < 1.0e-03 && break
sumx = [0.0, 0.0, 0.0]
sjdr = [0.0, 0.0]
sjvh = [0.0, 0.0]
for j = 1:n_ϕ+1
ϕ_curr=(j-1)*δϕ
cntj = (j == 1 || j == n_ϕ+1) ? 0.5 : cntj
# calculate swig--beam pattern
alphb = (cos(θ_curr)*sin(Θᵢʳ))*sin(ϕ_curr)
alphd = alphb - (sin(θ_curr)*cos(Θᵢʳ))
betad = sin(Θᵢʳ)*cos(ϕ_curr)
nud = sqrt(alphd^2*(leaf.a_maj/2)^2+betad^2*(leaf.b_min/2)^2)* k₀/π
nub = sqrt(alphb^2*(leaf.a_maj/2)^2+betad^2*(leaf.b_min/2)^2)* k₀/π
zetad = 2π*nud
zetab = 2π*nub
swigd = cnst3 * (besselj1(zetad) / zetad)
swigb = cnst3 * (besselj1(zetab) / zetab)
# calculate integrands
sthcp2 = (sin(θ_curr)*cos(ϕ_curr))^2
ss2 = (sin(θ_curr)*cos(Θᵢʳ)*sin(ϕ_curr)-(cos(θ_curr)*sin(Θᵢʳ)))^2
scsph2 = (sin(θ_curr)*cos(Θᵢʳ))^2*sin(ϕ_curr)^2
scs2 = (cos(θ_curr)*sin(Θᵢʳ))^2 - scsph2
scs1 = scsph2+(cos(θ_curr)*sin(Θᵢʳ))^2
sscci = cos(Θᵢʳ)^2-sin(Θᵢʳ)^2
sccs = (cos(θ_curr)*sin(Θᵢʳ))^2-scsph2
cnt = cnti*cntj
sumx[1] += (abs(1.0-eb*sthcp2))^2*cnt*swigd^2
sumx[2] += sthcp2*ss2*cnt*swigd^2
sumx[3] += (abs(1.0-eb*ss2))^2*cnt*swigd^2
sjdr[1] += (abs(1.0-eb*sthcp2))^2*cnt*swigb^2 # hh
sjdr[2] += (abs(sscci+eb*sccs))^2*cnt*swigb^2 # vv
sjvh[1] += sthcp2*scs1*cnt*swigb^2
sjvh[2] += sthcp2*scs2*cnt*swigb^2
cntj=1.0
end
sm += sumx * pdf
sidr += sjdr * pdf
sivh[1]+=sjvh[1]*pdf
sivh[2]+=sjvh[2]*pdf
cnti=1.0
end
sgbd = a2*leaf.t^2 * sm * Δθ * Δϕ
sgbd[2] *= b2
sgbdr = a2*leaf.t^2 * sidr*Δθ*Δϕ
sgbvh = a2*leaf.t^2 * b2 * abs.(sivh)*Δθ*Δϕ
return BackscatterFields(sgbd, sgbdr, sgbvh)
end
"""
Calculation of average forward scattering amplitudes of a finite length cylinder,
exact series solution
"""
function wood_forward(wood::Wood)
# Maximum n for scattering loop
nmax= min(20, Integer(floor(k₀*wood.r+4*(k₀*wood.r)^(1/3)+2)))
# To store total averaged scattering matrix
S = zeros(Float64, 2, 2)
# Loop over θs
for i = 1:n_θ+1
# Current θ
θ_curr = (i-1)*δθ
cnti = (i == 1 || i == n_θ+1) ? 0.5 : 1.0
# Probability of θ
pdf = prob(θ_curr,wood.pdf_num,wood.pdf_param)
(pdf < 1.0e-03) && break
# To store averaged scattering matrix for current θ
S_θ = zeros(Float64, 2, 2)
# Loop over ϕs
for j = 1:n_ϕ+1
# Current ϕ
ϕ_curr = (j-1)*δϕ
cntj = (j == 1 || j == n_ϕ+1) ? 0.5 : 1.0
cnt=cnti*cntj
# Get scattering at current angle
dsi, S_curr = scattering(θ_curr, ϕ_curr, nmax, 1, x -> -x, x->x, x -> π-x, x->x, wood)
S_θ += (cnt*S_curr/dsi) * Δθ * Δϕ
end
# Weight scattering sum by θ pdf
S += S_θ * pdf
end
# Return total S
return S
end
"""
Calculation of average backscatter cross-section of a finite length cylinder, exact series solution
(KARAM, FUNG, AND ANTAR, 1988)
"""
function wood_backward(wood::Wood)
# Maximum n for scattering loop
nmax=min(20, Integer(floor(k₀*wood.r+4.0*(k₀*wood.r)^(1/3)+2.0)))
# To store total averaged scattering matrix
S_d = zeros(3) # hh, vh, vv
S_dr = zeros(2) # hh, vv
S_vh = zeros(2) # smvh[1] is smvh1, smvh[2] is **smvh3**
# Loop over θs
for i = 1:n_θ+1
# Current θ
θ_curr = (i-1) * δθ
cnti = (i == 1 || i == n_θ+1) ? 0.5 : 1.0
# Probability of θ
pdf = prob(θ_curr,wood.pdf_num,wood.pdf_param)
(pdf < 1.0e-03) && break
# To store averaged scattering matrix for current θ
S_d_θ = zeros(3) # hh, vh, vv
S_dr_θ = zeros(2) # hh, vv
S_vh_θ = zeros(2) # smvh[1] is smvh1, smvh[2] is **smvh3**
# Loop over ϕs
for j = 1:n_ϕ+1
# Current ϕ
ϕ_curr= (j-1) * δϕ
cntj = (j == 1 || j == n_ϕ+1) ? 0.5 : 1.0
cnt = cnti*cntj
# Get direct scattering at current angle
dsi, S = scattering(θ_curr, ϕ_curr, nmax, 1, x -> -x, x->-x, x -> x, x->x+π, wood)
S_d_θ += abs.([S[1,1] ; S[1,2] ; S[2,2]] / dsi).^2*cnt
# Get direct-reflected scattering at current angle
dsi, S = scattering(θ_curr, ϕ_curr, nmax, 1, x -> x, x->-x, x -> π-x, x->x+π, wood)
S_dr_θ += abs.([S[1,1] ; S[2,2]] / dsi).^2*cnt
S_vh_θ[1] += abs(S[1,2]/(dsi))^2*cnt
fvhc=conj(S[1,2])
# Get vh scattering at current angle
dsi, S = scattering(θ_curr, ϕ_curr, nmax, -1, x -> -x, x->-x, x -> π-x, x->x+π, wood)
S_vh_θ[2] += abs(S[1,2]*fvhc/(dsi*dsi))*cnt
end
# Weight scattering sum by θ pdf
S_d += S_d_θ * pdf
S_dr += S_dr_θ * pdf
S_vh += S_vh_θ * pdf
end
# Why are we multiplying by 4π here?
S_d = 4π * Δϕ * Δθ * S_d
S_dr = 4π * Δϕ * Δθ * S_dr
S_vh = 4π * Δϕ * Δθ * S_vh
return BackscatterFields(S_d, S_dr, S_vh)
end
"""
Calculate scattering cross-section of a finite length cylinder with specified orientation
"""
function scattering(θ_curr, ϕ_curr, nmax, sign_i, new_tvs, new_ths, new_thetas, new_phys, wood::Wood)
# B.44 from Zyl and Kim book Synthetic Aperture Radar Polarimetry
tvi = -sin(θ_curr)*cos(Θᵢʳ)*cos(ϕ_curr-ϕ_iʳ)-sign_i*cos(θ_curr)*sin(Θᵢʳ)
# B.45 from Zyl and Kim book Synthetic Aperture Radar Polarimetry
thi = sign_i*sin(θ_curr)*sin(ϕ_curr-ϕ_iʳ)
ti = sqrt(tvi^2+thi^2)
ths = new_ths(thi)
tvs = new_tvs(tvi)
ts = sqrt(ths^2+tvs^2)
cthi = sin(θ_curr)*sin(Θᵢʳ)*cos(ϕ_curr-ϕ_iʳ)-sign_i*cos(θ_curr)*cos(Θᵢʳ)
cphi = (sin(Θᵢʳ)*cos(θ_curr)*cos(ϕ_curr-ϕ_iʳ)+sign_i*sin(θ_curr)*cos(Θᵢʳ))/sqrt(1-cthi^2)
cthi,cphi = max.(min.([cthi, cphi], 1.0), -1.0)
thetai, phyi = acos.([cthi, cphi])
thetas = new_thetas(thetai)
phys = new_phys(phyi)
S = scattering_amplitude(nmax, wood, thetai, thetas, phyi, phys)
dsi=ti*ts
# B.35 from Zyl and Kim book Synthetic Aperture Radar Polarimetry
Ts = [tvs ths ; -ths tvs]
Ti = [tvi -thi ; thi tvi]
S_new = Ts * S * Ti
return dsi, S_new
end
"""
Calculate bistatic scattering amplitude in the cylinder coordinate
Equations 26, 27 in
Electromagnetic Wave Scattering from Some Vegetation Samples
(KARAM, FUNG, AND ANTAR, 1988)
http://www2.geog.ucl.ac.uk/~plewis/kuusk/karam.pdf
"""
function scattering_amplitude(nmax, wood_c::Wood, θᵢ, Θₛ, ϕᵢ, ϕₛ)
μᵢ = cos(θᵢ)
μₛ = cos(Θₛ)
sin_θₛ = sqrt(1-μₛ^2)
# [hh hv ; vh vv]
s = zeros(Complex, 2,2)
# Equation 26 (Karam, Fung, Antar)
argum = k₀*(wood_c.l/2)*( μᵢ+μₛ )
μ_si = (argum == 0.0) ? 1.0 : sin(argum)/argum
# Calculate scattering amplitude for n = 0
z₀, A₀, B₀, e_0v, e_0h, ηh_0v, ηh_0h = cylinder(0, wood_c, θᵢ, Θₛ)
s0 = [B₀*ηh_0h 0 ; 0 e_0v*(B₀ * μₛ * μᵢ - sin_θₛ * z₀)]
# Loop over all needed n values
for n = 1:nmax
# Cylindrical scattering coefficients at current n
zₙ,Aₙ,Bₙ,e_nv,e_nh,ηh_nv,ηh_nh = cylinder(n, wood_c, θᵢ, Θₛ)
sphn = 0.0
π_δ = 0.0001
cphn = (π - π_δ < ϕₛ - ϕᵢ < π + π_δ) ? (-1)^n : 1.0
# Inside summation term in each line of Equation 27
s[1,1] += 2*(ηh_nh*Bₙ + ej*e_nh*Aₙ*μᵢ) * cphn
s[1,2] += (ηh_nv*Bₙ + ej*e_nv*Aₙ*μᵢ) * sphn
s[2,1] += ((e_nh* μᵢ *Bₙ - ej*ηh_nh*Aₙ)* μₛ - sin_θₛ * e_nh*zₙ) * sphn
s[2,2] += 2*((e_nv* μᵢ *Bₙ - ej*ηh_nv*Aₙ)* μₛ - sin_θₛ * e_nv*zₙ) * cphn
end
# Added coefficients to finish Equation 27
h = (wood_c.l/2)
F = k₀^2 * h * (wood_c.ϵ-1.0) * μ_si * (s0 + s)
F[1,2] *= 2 * ej
F[2,1] *= 2 * ej
return F
end
"""
Compute the coefficients of the series expansion of cylinder scattering amplitude.
Equation 24 in
Electromagnetic Wave Scattering from Some Vegetation Samples
(KARAM, FUNG, AND ANTAR, 1988)
http://www2.geog.ucl.ac.uk/~plewis/kuusk/karam.pdf
"""
function cylinder(n::Integer, wood_c::Wood, Θᵢ::Real, Θₛ::Real)
# Constants
a = wood_c.r
ϵᵣ = wood_c.ϵ
μᵢ = cos(Θᵢ)
μₛ = cos(Θₛ)
coef1 = sqrt(ϵᵣ-μᵢ^2)
sin_Θᵢ = sqrt( 1-μᵢ^2)
# Last equations in 24
u = k₀ * a * coef1
vᵢ = k₀ * a * sqrt(1-μᵢ^2)
vₛ = k₀ * a * sqrt(1-μₛ^2)
# Bessel functions and derivatives at u, v
Jₙu=besselj(n,u)
Hₙv=besselj(n,vᵢ) - ej*bessely(n,vᵢ)
d_Jₙu=dbessj(n,u)
d_Hₙv=dbessj(n,vᵢ) - ej*dbessy(n,vᵢ)
# Equation 26 (Karam, Fung, Antar)
zₙ, znp1, znm1 = zeta(n, a, u, vₛ)
# Equation 28 (Karam, Fung, Antar)
Aₙ = (znm1-znp1)/(2*coef1)
Bₙ = (znm1+znp1)/(2*coef1)
# Compute Rₙ with sub-expressions
term1 = (d_Hₙv/(vᵢ*Hₙv)-d_Jₙu/(u*Jₙu))
term2 = (d_Hₙv/(vᵢ*Hₙv)-ϵᵣ*d_Jₙu/(u*Jₙu))
term3 = (1/vᵢ^2-1/u^2)*n*μᵢ
Rₙ = (π*vᵢ^2*Hₙv/2) * (term1*term2-term3^2)
# Calculate remaining terms, using above sub-expressions
e_nv = ej*sin_Θᵢ*term1/(Rₙ*Jₙu)
e_nh = -sin_Θᵢ*term3/(Rₙ*Jₙu)
ηh_nv = -e_nh
ηh_nh = ej*sin_Θᵢ*term2/(Rₙ*Jₙu)
return (zₙ, Aₙ, Bₙ, e_nv, e_nh, ηh_nv, ηh_nh)
end
"""
Calculate zeta function using bessel functions
Equation 26 in
Electromagnetic Wave Scattering from Some Vegetation Samples
(KARAM, FUNG, AND ANTAR, 1988)
http://www2.geog.ucl.ac.uk/~plewis/kuusk/karam.pdf
"""
function zeta(n::Integer, a, u, vs)
# Pre-compute bessel function outputs at n-1, n, n+1, n+2
bjnu=besselj(n,u)
bjnv=besselj(n,vs)
bjnp1u=besselj(n+1,u)
bjnp1v=besselj(n+1,vs)
bjnp2v=besselj(n+2,vs)
bjnp2u=besselj(n+2,u)
bjnm1u=besselj(n-1,u)
bjnm1v=besselj(n-1,vs)
# Compute z_n values
znp1 = (a^2 / (u^2-vs^2)) * (u * bjnp1v * bjnp2u - vs * bjnp1u * bjnp2v)
zn = (a^2 / (u^2-vs^2)) * (u * bjnv * bjnp1u - vs * bjnu * bjnp1v)
znm1 = (a^2 / (u^2-vs^2)) * (u * bjnm1v * bjnu - vs * bjnm1u * bjnv)
return zn, znp1, znm1
end
# Bessel function derivatives
dbessj(n, x) = -n/x*besselj(n,x)+besselj(n-1,x)
dbessy(n, x) = -n/x*bessely(n,x)+bessely(n-1,x)
"""
3.1.2 in SAATCHI, MCDONALD
"""
function funcm(x, y, d)
dag = x+y
dagd = dag * d
z = abs(dagd)
# Edge cases
z < 1.0e-03 && return d
z > 1.6e02 && return 1.0/dag
return (1.0 - exp(-(dagd)))/dag
end
function funcp(x, y, d)
dag=x+y
dagd=dag*d
z=abs(dagd)
# Edge cases
z < 1e-3 && return d
z > 1.6e2 && return 1.0/dag
return (exp(dagd)-1.0)/dag
end
function cfun(a, e, d)
dag=a+e
dagd=dag*d
a3=abs(dagd)
# Edge cases
a3 < 1.0e-03 && return d
a3 > 1.6e02 && return 1.0/dag
return (1.0 - exp(-(dagd)))/dag
end
"""
Oh et al, 1992 semi-emprical model for rough surface scattering
Equation 3.1.5 in
Coherent Effects in Microwave Backscattering Models for Forest Canopies
(SAATCHI, MCDONALD)
https://www.researchgate.net/publication/3202927_Semi-empirical_model_of_the_
ensemble-averaged_differential_Mueller_matrix_for_microwave_backscattering_from_bare_soil_surfaces
"""
function grdoh(ksig)
r0 = abs((1-sqrt(ϵ_g))/(1+sqrt(ϵ_g)))^2
g=0.7*(1-exp(-0.65*ksig^1.8))
q=0.23*(1-exp(-ksig))*sqrt(r0)
sp1=(2*Θᵢʳ/π)^(1/(3*r0))
sp=1-sp1*exp(-ksig)
rgh = (cos(Θᵢʳ)-sqrt(ϵ_g-sin(Θᵢʳ)^2))/(cos(Θᵢʳ)+sqrt(ϵ_g-sin(Θᵢʳ)^2))
rgv = (ϵ_g*cos(Θᵢʳ)-sqrt(ϵ_g-sin(Θᵢʳ)^2))/(ϵ_g*cos(Θᵢʳ)+sqrt(ϵ_g-sin(Θᵢʳ)^2))
rh0, rv0 = abs.([rgh rgv]).^2
sighh=g*sp*cos(Θᵢʳ)^3*(rh0+rv0)
sigvv=g*cos(Θᵢʳ)^3*(rh0+rv0)/sp
sigvh=q*sigvv
# 3.1.5
shhg=sighh*exp(-4*imag(K_hc*d_c + K_ht*d_t)) # Factor of 2 pulled out in exp
svvg=sigvv*exp(-4*imag(K_vc*d_c + K_vt*d_t)) # Factor of 2 pulled out in exp
svhg=sigvh*exp(-2*imag((K_hc+K_vc)*d_c + (K_ht+K_vt)*d_t))
sg = [shhg svhg svvg]
gd = 10 * log10.([sighh sigvh sigvv])
return sg, gd
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1447 | """
All leaf-related parameters
"""
struct Leaf
ϵ # Dielectric constant
a_maj # Major axis (m)
b_min # Minor axis (m)
t # Thickness (m)
ρ # Density (m3)
pdf_num # PDF number
pdf_param # PDF parameter
end
"""
All wood-related parameters (branch or trunk)
"""
struct Wood
ϵ # Dielectric constant
r # Radius (m)
l # Length (m)
ρ # Density (m3)
pdf_num # PDF number
pdf_param # PDF parameter
end
mutable struct BackscatterFields
d::Array
dr::Array
vh::Array
end
struct Forest_Scattering_Parameters
# Frequency
bfrghz
# Leaf object
leaf::Leaf
# Two branch objects
branch_1::Wood
branch_2::Wood
# Trunk object
trunk::Wood
d_c
d_t
ϵ_g
l
sig
end
mutable struct Forest_Scattering_Output
theti
sighhd1
sighhd2
sighhd3
sighhdr1
sighhdr2
sighhdr3
sighht
sighhd
sighhdr
sigvvd1
sigvvd2
sigvvd3
sigvvdr1
sigvvdr2
sigvvdr3
sigvvt
sigvvd
sigvvdr
sigvhd1
sigvhd2
sigvhd3
sigvhdr1
sigvhdr2
sigvhdr3
sigvht
sigvhd
sigvhdr
ghhd
gvhd
gvvd
sighhi
sigvhi
sigvvi
sigvhi1
sigvhi2
sigvhi3
cofhh
cofvh
cofvv
athc
atvc
atht
atvt
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 953 | FT = Float64
# Conductivity polynomials (can be defined outside):
const TempPoly = Polynomial(FT.([2.903602, 8.607e-2, 4.738817e-4, -2.991e-6, 4.3041e-9]),:T)
const SalPoly1 = Polynomial(FT.([37.5109, 5.45216, 0.014409]),:S);
const SalPoly2 = Polynomial(FT.([1004.75, 182.283, 1.0]),:S);
const α₀PolNom = Polynomial(FT.([6.9431, 3.2841, -0.099486]),:S);
const α₀PolDenom = Polynomial(FT.([84.85, 69.024, 1.0]),:S);
const α₁ = Polynomial(FT.([49.843, -0.2276, 0.00198]),:S);
const aU = FT.([0.46606917e-2, -0.26087876e-4, -0.63926782e-5,
0.63000075e1, 0.26242021e-2, -0.42984155e-2,
0.34414691e-4, 0.17667420e-3, -0.20491560e-6,
0.58366888e3, 0.12634992e3, 0.69227972e-4,
0.38957681e-6, 0.30742330e3, 0.12634992e3,
0.37245044e1, 0.92609781e-2, -0.26093754e-1]
);
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 2485 | """
$(FUNCTIONNAME)(FT=Float64)
Creates a `LeafDistribution` following a planophile (mostly horizontal) distribution using a Beta distribution
Standard values for θₗ (26.76) and s (18.51) from Bonan https://doi.org/10.1017/9781107339217.003, Table 2.1
"""
function planophile_leaves(FT=Float64)
θ = FT(26.76)
s = FT(18.51)
α, β = βparameters(deg2rad(θ), deg2rad(s));
return LeafDistribution(Beta(FT(α), FT(β)), FT(2/π));
end
function planophile_leaves2(FT=Float64)
return LeafDistribution(Beta(FT(1), FT(2.768)), FT(2/π));
end
"""
$(FUNCTIONNAME)(FT=Float64)
Creates a `LeafDistribution` following a uniform distribution (all angles equally likely)
"""
function uniform_leaves(FT=Float64)
return LeafDistribution(Uniform(FT(0), FT(1)),FT(2/π));
end
"""
$(FUNCTIONNAME)(FT=Float64)
Creates a `LeafDistribution` following a plagiophile (mostly 45degrees) distribution using a Beta distribution
Standard values for θₗ (45.0) and s (16.27) from Bonan https://doi.org/10.1017/9781107339217.003, Table 2.1
"""
function plagiophile_leaves(FT=Float64)
θ = FT(45)
s = FT(16.27)
α, β = βparameters(deg2rad(θ), deg2rad(s));
return LeafDistribution(Beta(FT(α), FT(β)), FT(2/π));
end
"""
$(FUNCTIONNAME)(FT=Float64)
Creates a `LeafDistribution` following a erectophile (mostly vertical) distribution using a Beta distribution
Standard values for θₗ (63.24) and s (18.5) from Bonan https://doi.org/10.1017/9781107339217.003, Table 2.1
"""
function erectophile_leaves(FT=Float64)
θ = FT(63.24)
s = FT(18.5)
α, β = βparameters(deg2rad(θ), deg2rad(s));
return LeafDistribution(Beta(FT(α), FT(β)), FT(2/π));
end
"""
$(FUNCTIONNAME)(FT=Float64)
Creates a `LeafDistribution` following a spherical (distributed as facets on a sphere) distribution using a Beta distribution
Standard values for θₗ (57.3) and s (21.55) from Bonan https://doi.org/10.1017/9781107339217.003, Table 2.1
"""
function spherical_leaves(FT=Float64)
θ = FT(57.3)
s = FT(21.55)
α, β = βparameters(deg2rad(θ), deg2rad(s));
return LeafDistribution(Beta(FT(α), FT(β)), FT(2/π));
end
function flat_leaves(FT=Float64)
θ = FT(57.3)
s = FT(21.55)
α, β = βparameters(deg2rad(θ), deg2rad(s));
return LeafDistribution(Beta(FT(α), FT(β)), FT(2/π));
end
# Beta function as leaf angular distribution (see RAMI, ν=α, μ=β)
function beta_leaves(α::FT,β::FT) where FT
return LeafDistribution(Beta(α, β), FT(2/π));
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 3004 | """
$(FUNCTIONNAME)(λ_bnds)
Loads in the PROSPECT-PRO database of pigments (and other) absorption cross section in leaves, returns a [`LeafOpticalProperties`](@ref) type struct with spectral units attached.
# Arguments
- `λ_bnds` an array (with or without a spectral grid unit) that defines the upper and lower limits over which to average the absorption cross sections
# Examples
```julia-repl
julia> using Unitful # Need to include Unitful package
julia> opti = createLeafOpticalStruct((400.0:5:2400)*u"nm"); # in nm
julia> opti = createLeafOpticalStruct((0.4:0.1:2.4)*u"μm"); # in μm
julia> opti = CanopyOptics.createLeafOpticalStruct((10000.0:100:25000.0)u"1/cm"); # in wavenumber (cm⁻¹)
```
"""
function createLeafOpticalStruct(λ_bnds)
FT = eltype(ustrip(λ_bnds[1]))
# Reference input grid converted to nm:
λ_ref = unit2nm(λ_bnds)
KS = readdlm(OPTI_2021, '\t',FT)
N = length(λ_bnds)-1
λ_out, nᵣ, Kcab, Kcar, Kant, Kb, Kw, Km, Kp, Kcbc = [zeros(FT,N) for i = 1:N];
vars = (λ_out, nᵣ, Kcab, Kcar, Kant, Kb, Kw, Km, Kp, Kcbc)
λ = KS[:,1]*u"nm";
@inbounds for i=1:N
start = min(λ_ref[i],λ_ref[i+1])
stop = max(λ_ref[i],λ_ref[i+1])
ind_all = findall((λ .≥ start) .& (λ .< stop) )
isempty(ind_all) ? (@warn "Some λ_bnds bins are empty, better coarsen the input grid $(λ_bnds[i]) -> $(λ_bnds[i+1])" ) : nothing
for j in eachindex(vars)
vars[j][i] = mean(view(KS,ind_all,j));
end
end
# Get output unit:
ou = unit(λ_bnds[1])
(typeof(ou) <: Unitful.FreeUnits{(), NoDims, nothing}) ? out_unit = u"nm" : out_unit = ou
return LeafOpticalProperties(uconvSpectral(λ_out*u"nm",out_unit),
nᵣ,
Kcab,
Kcar,
Kant,
Kb,
Kw,
Km,
Kp,
Kcbc)
end
"""
$(FUNCTIONNAME)()
As in $(FUNCTIONNAME)(λ_bnds) but reads in the in Prospect-PRO database at original resolution (400-2500nm in 1nm steps)
"""
function createLeafOpticalStruct()
λ_bnds = (399.5:2500.5)u"nm"
createLeafOpticalStruct(λ_bnds)
end
"Convert an input array with Spectral units (or none) to a grid in nm"
function unit2nm(λ_bnds)
try
return uconvSpectral(λ_bnds, u"nm");
catch e # Assume without unit is in "nm" already
@warn "Assuming unit of [nm] here for optical struct"
return λ_bnds*u"nm"
end
end
"Avoiding annoying issues with uconvert for Spectra() (can't do nm->nm!)"
# From unit of `in` to `out_unit` (just attaching out_unit if unit is missing)
function uconvSpectral(in,out_unit)
unit(in[1]) == out_unit ? in : uconvert.(out_unit, in, Spectral())
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 900 | """
dirVector{FT}
Struct for spherical coordinate directions in θ (elevation angle) and ϕ (azimuth angle)
# Fields
$(DocStringExtensions.FIELDS)
"""
struct dirVector{FT}
θ::FT
ϕ::FT
end
"""
dirVector_μ{FT}
Struct for spherical coordinate directions in θ (elevation angle) and ϕ (azimuth angle)"
# Fields
$(DocStringExtensions.FIELDS)
"""
struct dirVector_μ{FT}
μ::FT
ϕ::FT
end
# Define dot product for the directional vector in spherical coordinates:
LinearAlgebra.dot(Ω₁::dirVector, Ω₂::dirVector) = cos(Ω₁.θ) * cos(Ω₂.θ) + sin(Ω₁.θ) * sin(Ω₂.θ) * cos(Ω₂.ϕ - Ω₁.ϕ)
# Define dot product for the directional vector in spherical coordinates:
LinearAlgebra.dot(Ω₁::dirVector_μ, Ω₂::dirVector_μ) = Ω₁.μ * Ω₂.μ + sqrt(1-Ω₁.μ^2) * sqrt(1-Ω₂.μ^2) * cos(Ω₂.ϕ - Ω₁.ϕ)
function dot_product(μ₁::FT, μ₂::FT, dϕ::FT) where FT
μ₁ * μ₂ + sqrt(1-μ₁^2) * sqrt(1-μ₂^2) * cos(dϕ)
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 3787 | "Abstract Type for canopy scattering"
abstract type AbstractCanopyScatteringType{FT<:AbstractFloat} end
"Model for bi-lambertian canopy leaf scattering"
Base.@kwdef struct BiLambertianCanopyScattering{FT<:AbstractFloat} <: AbstractCanopyScatteringType{FT}
"Lambertian Reflectance"
R::FT = FT(0.3)
"Lambertian Transmission"
T::FT = FT(0.1)
"Number of quadrature points in inclination angle"
nQuad::Int = 30
end
"Model for specular canopy leaf scattering"
Base.@kwdef struct SpecularCanopyScattering{FT<:AbstractFloat} <: AbstractCanopyScatteringType{FT}
"Refractive index"
nᵣ::FT = FT(1.5)
"Roughness parameter"
κ::FT = FT(0.5)
"Number of quadrature points in azimuth"
nQuad::Int = 20
end
"Abstract Type for leaf distributions"
abstract type AbstractLeafDistribution{FT<:AbstractFloat} end
"""
struct LeafDistribution{FT<:AbstractFloat}
A struct that defines the leaf angular distribution in radians (from 0->π/2; here scaled to [0,1])
# Fields
$(DocStringExtensions.FIELDS)
"""
struct LeafDistribution{FT<:AbstractFloat} <: AbstractLeafDistribution{FT}
"Julia Univariate Distribution from Distributions.js"
LD::UnivariateDistribution
"Scaling factor to normalize distribution (here mostly 2/π as Beta distribution is from [0,1])"
scaling::FT
end
####################################
"Abstract Type for leaf composition"
abstract type AbstractLeafProperties end
"""
struct LeafProperties{FT}
A struct which stores important variables of leaf chemistry and structure
# Fields
$(DocStringExtensions.FIELDS)
"""
Base.@kwdef struct LeafProspectProProperties{FT} <: AbstractLeafProperties
### Prospect related parameters
"Leaf structure parameter [0-3]"
N::FT = FT(1.4 )
"Chlorophyll a+b content `[µg cm⁻²]`"
Ccab::FT = FT(40.0)#u"µg/cm^2"
"Carotenoid content `[µg cm⁻²]`"
Ccar::FT = FT(10.0)#u"µg/cm^2"
"Anthocynanin content `[nmol cm⁻²]`"
Canth::FT = FT(0.5)#u"nmol/cm^2"
"Brown pigments content in arbitrary units"
Cbrown::FT = FT(0.0)
"Equivalent water thickness `[cm]`, typical about 0.002-0.015"
Cw::FT = FT(0.012)#u"cm"
"Dry matter content (dry leaf mass per unit area) `[g cm⁻²]`, typical about 0.003-0.016"
Cm::FT = FT(0.0)#u"g/cm^2"
"protein content `[g/cm]`"
Cprot::FT = FT(0.001)#u"g/cm^2"
"Carbone-based constituents content in `[g/cm⁻²]` (cellulose, lignin, sugars...)"
Ccbc::FT = FT(0.009)#u"g/cm^2"
end
####################################
"Abstract type for Prospect model versions"
abstract type AbstractProspectProperties end
"""
struct PigmentOpticalProperties{FT}
A struct which stores important absorption cross sections of pigments, water, etc
# Fields
$(DocStringExtensions.FIELDS)
"""
struct LeafOpticalProperties{FT,FT2} <: AbstractProspectProperties
"Wavelength `[length]`"
λ::FT2 #typeof(([1.0])u"nm")
### Prospect-PRO related parameters
"Refractive index of leaf material "
nᵣ::Array{FT, 1}
"specific absorption coefficient of chlorophyll (a+b) `[cm² μg⁻¹]`"
Kcab::Array{FT, 1}
"specific absorption coefficient of carotenoids `[cm² μg⁻¹]`"
Kcar::Array{FT, 1}
"specific absorption coefficient of Anthocyanins `[cm² nmol⁻¹]`"
Kant::Array{FT, 1}
"specific absorption coefficient of brown pigments (arbitrary units)"
Kb::Array{FT, 1}
"specific absorption coefficient of water `[cm⁻¹]`"
Kw::Array{FT, 1}
"specific absorption coefficient of dry matter `[cm² g⁻¹]`"
Km::Array{FT, 1}
"specific absorption coefficient of proteins `[cm² g⁻¹]`"
Kp::Array{FT, 1}
"specific absorption coefficient of carbon based constituents `[cm² g⁻¹]`"
Kcbc::Array{FT, 1}
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 797 | "Abstract Material Type (can be all)"
abstract type AbstractMaterial end
"Abstract water type"
abstract type AbstractWater <: AbstractMaterial end
"Abstract soil type"
abstract type AbstractSoil <: AbstractMaterial end
"Pure liquid water"
struct LiquidPureWater <: AbstractWater end
"Salty liquid water"
Base.@kwdef struct LiquidSaltWater{FT} <: AbstractWater
"Salinity in `[PSU]`"
S::FT = FT(10)
end
"Pure Ice"
struct PureIce <: AbstractWater end
"Soil MW properties"
Base.@kwdef struct SoilMW{FT} <: AbstractSoil
"Sand Fraction ∈ [0,1]"
sand_frac::FT = FT(0.2)
"Clay Fraction ∈ [0,1]"
clay_frac::FT = FT(0.1)
"Volumetric water content ∈ [0,1]"
mᵥ::FT = FT(0.35)
"Bulk density, `g/cm³` (typical value is 1.7 gcm³)"
ρ::FT = FT(1.7)
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1659 | # Copy of RadiativeTransfer.Scattering, had problems including it otherwise
"""
type AbstractPolarizationType
Abstract Polarization type
"""
abstract type AbstractPolarizationType end
"""
struct Stokes_IQUV{FT<:AbstractFloat}
A struct which defines full Stokes Vector ([I,Q,U,V]) RT code
# Fields
$(DocStringExtensions.FIELDS)
"""
Base.@kwdef struct Stokes_IQUV{FT<:AbstractFloat} <: AbstractPolarizationType
"Number of Stokes components (int)"
n::Int = 4
"Vector of length `n` for ... (see eq in Sanghavi )"
D::Array{FT} = [1.0, 1.0, -1.0, -1.0]
"Incoming Stokes vector for scalar only"
I₀::Array{FT} = [1.0, 0.0, 0.0, 0.0] #assuming completely unpolarized incident stellar radiation
end
"""
struct Stokes_IQU{FT<:AbstractFloat}
A struct which defines Stokes Vector ([I,Q,U]) RT code
# Fields
$(DocStringExtensions.FIELDS)
"""
Base.@kwdef struct Stokes_IQU{FT<:AbstractFloat} <: AbstractPolarizationType
"Number of Stokes components (int)"
n::Int = 3
"Vector of length `n` for ... (see eq in Sanghavi )"
D::Array{FT} = [1.0, 1.0, -1.0]
"Incoming Stokes vector for scalar only"
I₀::Array{FT} = [1.0, 0.0, 0.0] #assuming linearly unpolarized incident stellar radiation
end
"""
struct Stokes_I{FT<:AbstractFloat}
A struct which define scalar I only RT code
# Fields
$(DocStringExtensions.FIELDS)
"""
Base.@kwdef struct Stokes_I{FT<:AbstractFloat} <: AbstractPolarizationType
"Number of Stokes components (int)"
n::Int = 1
"Vector of length `n` for ... (see eq in Sanghavi )"
D::Array{FT} = [1.0]
"Incoming Stokes vector for scalar only"
I₀::Array{FT} = [1.0]
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 3056 | "Get Beta Distribution parameters using standard tabulated values θₗ,s, Eq. 2.9 and 2.10 in Bonan"
function βparameters(θₗ,s)
α = (1 - (s^2+θₗ^2) / (θₗ*π/2) ) / ( ((s^2+θₗ^2) / θₗ^2) - 1 )
β = ( (π/2)/θₗ -1 ) * α
return α,β
end
"Eq 46 in Shultis and Myneni"
function H(μ::FT,μₗ::FT) where FT
# cot(θ) * cot(θₗ)
r = cot(acos(μ)) * cot(acos(μₗ));
if r > 1
return μ * μₗ
elseif r < -1
return FT(0)
else
# Eq 47
ϕ = acos(-r);
return FT(1/π) * (μ*μₗ*ϕ + sqrt(FT(1)-μ^2) * sqrt(1-μₗ^2) * sin(ϕ))
end
end
"Eq 45 in Shultis and Myneni, fixed grid in μ for both μ and μ' "
function compute_Ψ(μ::AbstractArray{FT,1}, μₗ::FT) where FT
H⁺ = H.(μ,μₗ)
H⁻ = H.(-μ,μₗ)
Ψ⁺ = H⁺ * H⁺' + H⁻ * H⁻'
Ψ⁻ = H⁺ * H⁻' + H⁻ * H⁺'
return Ψ⁺, Ψ⁻
end
"Eq 45 in Shultis and Myneni, fixed grid in μ for both μ and μ' "
function compute_Ψ(μ::AbstractArray{FT,1},μꜛ::AbstractArray{FT,1}, μₗ::FT) where FT
Ψ⁺ = H.(μ,μₗ) * H.(μꜛ,μₗ)' + H.(-μ,μₗ) * H.(-μꜛ,μₗ)'
Ψ⁻ = H.(μ,μₗ) * H.(-μꜛ,μₗ)' + H.(-μ,μₗ) * H.(+μꜛ,μₗ)'
return Ψ⁺, Ψ⁻
end
" Eq 37 in Shultis and Myneni "
function scattering_model_lambertian(Ωⁱⁿ::dirVector, Ωᵒᵘᵗ::dirVector, Ωᴸ::dirVector, r, t)
α = (Ωⁱⁿ ⋅ Ωᴸ) * (Ωᵒᵘᵗ ⋅ Ωᴸ)
if a<0
return r * abs(Ωᵒᵘᵗ ⋅ Ωᴸ) / π
else
return t * abs(Ωᵒᵘᵗ ⋅ Ωᴸ) / π
end
end
#See Eq 18, Canopy RT book
function getSpecularΩ(Ωⁱⁿ::dirVector{FT}, Ωᵒᵘᵗ::dirVector{FT}) where FT
sa = Ωⁱⁿ ⋅ Ωᵒᵘᵗ
sa > 1 ? sa = FT(1) : nothing
α = acos(sa)/2
# Relative azimuth angle:
ϕ = (Ωᵒᵘᵗ.ϕ - Ωⁱⁿ.ϕ)
# Leaf polar angle:
θₗ = acos((cos(Ωⁱⁿ.θ) + cos(Ωᵒᵘᵗ.θ))/2cos(α));
t = (sin(Ωⁱⁿ.θ) + sin(Ωᵒᵘᵗ.θ) * cos(ϕ))/(2cos(α)*sin(θₗ))
if isnan(t)
t = FT(1.0)
end
# Leaf azimuth angle:
ϕₗ = acos(max(FT(-1),min(t,FT(1))))
ϕ > π ? ϕₗ = 2π-ϕₗ-Ωⁱⁿ.ϕ : ϕₗ = ϕₗ+Ωⁱⁿ.ϕ
#θₗ > π/2 ? θₗ = θₗ - π/2 : nothing
out = dirVector(θₗ,ϕₗ)
#ϕ > π ? out = dirVector(θₗ,2π-ϕₗ-Ωⁱⁿ.ϕ) : out = dirVector(θₗ,ϕₗ+Ωⁱⁿ.ϕ)
#@show (Ωⁱⁿ ⋅ out) , (Ωᵒᵘᵗ ⋅ out)
#@show abs(((Ωⁱⁿ ⋅ out) - (Ωᵒᵘᵗ ⋅ out)) / (Ωᵒᵘᵗ ⋅ out)) * 100
#@show θₗ , ϕₗ
@assert abs(((Ωⁱⁿ ⋅ out) - (Ωᵒᵘᵗ ⋅ out)) / (Ωᵒᵘᵗ ⋅ out)) * 100 < 1 "Leaf angle wrong, $Ωⁱⁿ, $Ωᵒᵘᵗ, $out"
return out
end
function getSpecularΩ(Ωⁱⁿ::dirVector_μ{FT}, Ωᵒᵘᵗ::dirVector_μ{FT}) where FT
sa = Ωⁱⁿ ⋅ Ωᵒᵘᵗ
#@show sa
sa > 1 ? sa = FT(1) : nothing
# Scattering angle
α = acos(sa)/FT(2)
# Relative azimuth angle:
ϕ = (Ωᵒᵘᵗ.ϕ - Ωⁱⁿ.ϕ)
# Leaf polar angle:
μₗ = ((Ωⁱⁿ.μ + Ωᵒᵘᵗ.μ)/2cos(α));
t = (sqrt(1-Ωⁱⁿ.μ^2) + sqrt(1-Ωᵒᵘᵗ.μ^2) * cos(ϕ))/(2cos(α)*sqrt(1-μₗ^2))
#@show t, sqrt(1-Ωⁱⁿ.μ^2) + sqrt(1-Ωᵒᵘᵗ.μ)
if isnan(t)
t = FT(1.0)
end
# Leaf azimuth angle:
ϕₗ = acos(max(FT(-1),min(t,FT(1))))
ϕ > π ? ϕₗ = 2π-ϕₗ-Ωⁱⁿ.ϕ : ϕₗ = ϕₗ+Ωⁱⁿ.ϕ
out = dirVector_μ(μₗ,ϕₗ)
@assert Ωⁱⁿ ⋅ out ≈ Ωᵒᵘᵗ ⋅ out "Leaf angle wrong in specular reflection, $Ωⁱⁿ, $Ωᵒᵘᵗ, $out"
return out, α
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 5096 |
"""
$(FUNCTIONNAME)(mod::LiquidSaltWater, T::FT,f::FT)
Computes the complex dieletric of liquid salty walter (Ulaby & Long book)
# Arguments
- `mod` an [`LiquidSaltWater`](@ref) type struct, provide Salinity in PSU
- `T` Temperature in `[⁰K]`
- `f` Frequency in `[GHz]`
- `S` Salinity in `[PSU]` comes from the `mod` [`LiquidSaltWater`](@ref) struct
# Examples
```julia-repl
julia> w = CanopyOptics.LiquidSaltWater(S=10.0) # Create struct for salty seawater
julia> CanopyOptics.dielectric(w,283.0,10.0)
51.79254073931596 + 38.32304044382495im
```
"""
function dielectric(mod::LiquidSaltWater, T::FT,f::FT) where FT<:Real
(;S) = mod
@assert 0 ≤ S ≤ 45 "Salinity should be ∈ [0,45] PSU"
@assert 265 ≤ T ≤ 310 "Temperature should be ∈ [265,310] K"
# Equations were tuned for ⁰C but want K input!
T = T - FT(273)
# Compute σ (Eqs 4.21 - 4.21 in Ulaby and Long)
σ₃₅ = TempPoly(T)
P = S * SalPoly1(S) / SalPoly2(S)
Q = FT(1) + (α₀PolNom(S)/α₀PolDenom(S) * (T - FT(15)))/(T + α₁(T));
σ = σ₃₅ * P * Q
ϵS = FT(87.85306) * exp(FT(-0.00456992)*T - aU[1]*S - aU[2]*S^2 - aU[3]*S*T);
ϵOne = aU[4] * exp(-aU[5]*T - aU[6]*S - aU[7]*S*T);
# Relaxation time constants
τ1 = (aU[8] + aU[9] *S) * exp(aU[10] / (T+aU[11]));
τ2 = (aU[12] + aU[13]*S) * exp(aU[14] / (T+aU[15]));
ϵInf = aU[16] + aU[17]*T + aU[18]*S;
# Complex Permittivity Calculation
ϵ = ((ϵS-ϵOne) / (FT(1) - 1im * 2π * f * τ1)) + ((ϵOne-ϵInf) / (1-1im * 2π * f * τ2)) + (ϵInf) + 1im*((FT(17.9751)*σ) /f);
end
"""
$(FUNCTIONNAME)(mod::LiquidPureWater, T::FT,f::FT)
Computes the complex dieletric of liquid pure walter (Ulaby & Long book)
# Arguments
- `mod` an [`LiquidSaltWater`](@ref) type struct
- `T` Temperature in `[⁰K]`
- `f` Frequency in `[GHz]`
# Examples
```julia-repl
julia> w = CanopyOptics.LiquidPureWater() # Create struct for salty seawater
julia> CanopyOptics.dielectric(w,283.0,10.0)
53.45306674215052 + 38.068642430090044im
```
"""
function dielectric(mod::LiquidPureWater, T::FT,f::FT) where FT<:Real
@assert 265 ≤ T ≤ 310 "Temperature should be ∈ [265,310] K"
# Equations were tuned for ⁰C but want K input!
T = T - FT(273)
ϵS = FT(87.85306) * exp(FT(-0.00456992)*T);
ϵOne = aU[4] * exp(-aU[5]*T);
τ1 = aU[8] * exp(aU[10] / (T+aU[11]));
τ2 = aU[12] * exp(aU[14] / (T+aU[15]));
ϵInf = aU[16] + aU[17]*T;
# Complex Permittivity Calculation
ϵ = ((ϵS-ϵOne) / (FT(1) - 1im * 2π * f * τ1)) + ((ϵOne-ϵInf)./(1-1im * 2π * f * τ2)) + (ϵInf);
end
"""
$(FUNCTIONNAME)(mod::PureIce, T::FT,f::FT)
Computes the complex dieletric of liquid pure walter (Ulaby & Long book)
# Arguments
- `mod` an [`PureIce`](@ref) type struct
- `T` Temperature in `[⁰K]`
- `f` Frequency in `[GHz]`
# Examples
```julia-repl
julia> w = CanopyOptics.PureIce() # Create struct for salty seawater
julia> CanopyOptics.dielectric(w,283.0,10.0)
53.45306674215052 + 38.068642430090044im
```
"""
function dielectric(mod::PureIce, T::FT, f::FT) where FT
@assert 233 ≤ T ≤ 273.15 "Temperature should be ∈ [233,273.15] K"
# Some constants first
θ = (FT(300)/T) - FT(1);
B1 = FT(0.0207);
B2 = FT(1.16e-11);
b = FT(335);
# Eqs 4.22-4.25
α = (FT(0.00504) + FT(0.0062) * θ) * exp(-FT(22.1) * θ);
βₘ = (B1/T) * exp(b/T) / (exp(b/T)-FT(1))^2 + B2 * f^2;
δβ = exp(-FT(9.963) + FT(0.0372) * (T-FT(273.16)));
β = βₘ + δβ;
ϵ = FT(3.1884) + FT(9.1e-4) *(T-FT(273)) + (α/f + β*f)im;
end
"""
$(FUNCTIONNAME)(mod::SoilMW, T::FT,f::FT)
Computes the complex dieletric of soil (Ulaby & Long book)
# Arguments
- `mod` an [`SoilMW`](@ref) type struct (includes sand_frac, clay_frac, water_frac, ρ)
- `T` Temperature in `[⁰K]`
- `f` Frequency in `[GHz]`
# Examples
```julia-repl
julia> w = SoilMW(sand_frac=0.2,clay_frac=0.2, water_frac = 0.3, ρ=1.7 ) # Create struct for salty seawater
julia> dielectric(w,283.0,10.0)
53.45306674215052 + 38.068642430090044im
```
"""
function dielectric(mod::SoilMW{FT}, T::FT,f::FT) where FT
(;sand_frac, clay_frac, mᵥ, ρ) = mod
# T = Tk - FT(273)
f_hz = f * FT(1e9); # transform from GHz to Hz
α = FT(0.65); # eq: 4.68a
β₁ = FT(1.27) - FT(0.519) * sand_frac - FT(0.152) * clay_frac; # eq: 4.68b
β₂ = FT(2.06) - FT(0.928) * sand_frac - FT(0.255) * clay_frac; # eq: 4.68c
ϵ₀ = FT(8.854e-12);
if f > 1.3
σ = FT(-1.645) + FT(1.939) * ρ - FT(2.256) * sand_frac + FT(1.594) * clay_frac; # eq: 4.68d
elseif 0.3 ≤ f ≤ 1.3
σ = FT(0.0467) + FT(0.22) * ρ - FT(0.411) * sand_frac + FT(0.661) * clay_frac; # eq: 4.70
else
σ = FT(0)
end
# Dielectric Constant of Pure Water
ϵw = dielectric(LiquidPureWater(),T,f)
# Add conductivity term to ϵ'' (eq. 4.67b)
ϵw += im*((FT(2.65)-ρ) / FT(2.65 * mᵥ) * σ / (2π * ϵ₀ * f_hz))
# calculating dielectric constant of soil using eq. 4.66a and 4.66b
epsr = (FT(1) + FT(0.66) * ρ + mᵥ^β₁ * real(ϵw).^α - mᵥ)^(1/α);
epsi = mᵥ^β₂ .* imag(ϵw);
epsr + epsi*im
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 512 | "Fresnel reflection, needs pol_type soon too!"
function Fᵣ(n::FT,θᵢ::FT) where FT
#@show rad2deg(θᵢ)
# Refractive index of air
nᵢ = FT(1)
# Angle of transmitted light in medium:
θₜ = asin(nᵢ * sin(θᵢ)/n)
#(sin(α - θₛ)^2 / sin(α + θₛ)^2 + tan(α - θₛ)^2 / tan(α + θₛ)^2)/2
r_perpendicular = (nᵢ * cos(θᵢ) - n * cos(θₜ)) / (nᵢ * cos(θᵢ) + n * cos(θₜ))
r_parallel = (nᵢ * cos(θₜ) - n * cos(θᵢ)) / (nᵢ * cos(θₜ) + n * cos(θᵢ))
return (r_perpendicular^2 + r_parallel^2)/2
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 233 | function gauleg(n::Int, xmin::FT, xmax::FT; norm=false) where FT
ξ, w = gausslegendre(n)
ξ = (xmax - xmin) / FT(2) * ξ .+ (xmin + xmax) / FT(2)
norm ? w /= sum(w) : w *= (xmax - xmin) / FT(2)
return FT.(ξ), FT.(w)
end | CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 81 | using CanopyOptics
using ForwardDiff
using Test
include("test_CanopyOptics.jl")
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | code | 1211 | @testset "CanopyOptics" begin
@info "Testing spherical leaf G factor calculation ...";
@testset "G function" begin
for FT in [Float32, Float64]
μ,w = CanopyOptics.gauleg(10,FT(0.0),FT(1.0));
LD = CanopyOptics.spherical_leaves(FT)
G = CanopyOptics.G(μ, LD)
@test eltype(G) == FT;
# Should be about 0.5 for spherical leaves:
@test all(abs.(G .- 0.5) .< 0.001)
end
end
@testset "PROSPECT refl and gradient" begin
function test_prospect(θ::AbstractVector{T}) where {T}
opti = createLeafOpticalStruct((400.0:1.0:2500.0))
leaf = LeafProspectProProperties{T}(Ccab=θ[1], Ccar=θ[2], Canth=θ[3])
_, R = prospect(leaf, opti)
return R
end
refl = test_prospect([40.0, 8.0, 4.0])
@test all(refl .>= 0)
@test all(refl .<= 1)
jac = ForwardDiff.jacobian(test_prospect, [40.0, 8.0, 4.0])
@test all(isfinite.(jac))
# Increasing pigments decreases reflectance in visible
@test all(jac[1:100,:] .<= 0)
# ...but has no effect in the SWIR
@test all(jac[(end-100):end,:] .== 0)
end
end
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | docs | 754 | # CanopyOptics.jl
<p align="center">
<a href="https://RemoteSensingTools.github.io/CanopyOptics.jl/dev/">
<img src="https://img.shields.io/badge/docs-latest-blue.svg"
alt="Docs">
</a>
<a href="https://github.com/RemoteSensingTools/CanopyOptics.jl/blob/master/LICENSE">
<img src="https://img.shields.io/github/license/RemoteSensingTools/CanopyOptics.jl"
alt="License">
</a>
<a href="https://github.com/RemoteSensingTools/vSmartMOM.jl/commits/master">
<img src="https://img.shields.io/github/commit-activity/y/RemoteSensingTools/CanopyOptics.jl"
alt="Github Commit Frequency">
</a>
</p>
Tools for the computation of canopy optical parameters, see docs for details (works in concert with vSmartMOM.jl)
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | docs | 647 | # CanopyOptics.jl
*A package to compute canopy scattering properties*
## Package Features
- Use leaf angle distributions to compute bi-lambertian area scattering matrices
- Compute specular reflection
- Compute leaf reflectance and transmittance based on Prospect-PRO
## Installation
The latest release of CanopyOptics can be installed from the Julia REPL prompt with
```julia
julia> ]add https://github.com/RemoteSensingTools/CanopyOptics.jl
```
## Code docs:
### Types
```@autodocs
Modules = [CanopyOptics]
Private = false
Order = [:type]
```
### Functions
```@autodocs
Modules = [CanopyOptics]
Private = false
Order = [:function]
```
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.1.3 | 336f84c4ca016852f0dd7c6bed1b2c7c58e3a1c8 | docs | 2161 | ```@meta
EditURL = "<unknown>/docs/src/pages/tutorials/bilambertian.jl"
```
````@example bilambertian
push!(LOAD_PATH,"../../../../src/");
nothing #hide
````
# Bilambertian Canopy Scattering
Using packages:
````@example bilambertian
using Plots, Distributions
using CanopyOptics
theme(:ggplot2)
````
Compute quadrature points:
````@example bilambertian
μ,w = CanopyOptics.gauleg(20,0.0,1.0)
````
Use standard planophile leaf distribution:
````@example bilambertian
LD = CanopyOptics.planophile_leaves2()
````
Use a Bilambertian model and specify Reflectance R and Transmission T
````@example bilambertian
BiLambMod = CanopyOptics.BiLambertianCanopyScattering(R=0.4,T=0.2)
````
Compute Scattering Matrices 𝐙⁺⁺, 𝐙⁻⁺ for 0th Fourier moment:
````@example bilambertian
𝐙⁺⁺, 𝐙⁻⁺ = CanopyOptics.compute_Z_matrices(BiLambMod, μ, LD, 0)
````
Plots matrices (shows single scattering contributions for incoming and outgoing directions)
````@example bilambertian
l = @layout [a b]
p1 = contourf(μ, μ, 𝐙⁻⁺, title="Z⁻⁺ (Reflection)", xlabel="μꜜ", ylabel="μꜛ")
p2 = contourf(μ, μ, 𝐙⁺⁺, title="Z⁺⁺ (Transmission)", xlabel="μꜛ", ylabel="μꜛ")
plot(p1, p2, layout = l, margin=5Plots.mm)
plot!(size=(900,350))
````
### Animation over different Beta leaf distributions
````@example bilambertian
steps = 0.1:0.1:5
α = [collect(steps); 5*ones(length(steps))]
β = [ 5*ones(length(steps)); reverse(collect(steps));]
x = 0:0.01:1
anim = @animate for i ∈ eachindex(α)
LD = CanopyOptics.LeafDistribution(Beta(α[i],β[i]), 2/π)
Z⁺⁺, Z⁻⁺ = CanopyOptics.compute_Z_matrices(BiLambMod, μ, LD, 0)
l = @layout [a b c]
p0 = plot(rad2deg.(π * x/2), pdf.(LD.LD,x), legend=false, ylim=(0,3), title="Leaf angle distribution", xlabel="Θ (degrees)")
p1 = contourf(μ, μ, Z⁻⁺, title="Z⁻⁺ (Reflection)", xlabel="μꜜ", ylabel="μꜛ",clims=(0.5,2))
p2 = contourf(μ, μ, Z⁺⁺, title="Z⁺⁺ (Transmission)", xlabel="μꜛ", ylabel="μꜛ",clims=(0.5,2))
plot(p0, p1, p2, layout = l, margin=5Plots.mm)
plot!(size=(1100,300))
end
gif(anim, "anim_fps10.gif", fps = 10)
````
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| CanopyOptics | https://github.com/RemoteSensingTools/CanopyOptics.jl.git |
|
[
"MIT"
] | 0.2.7 | f988004407ccf6c398a87914eafdd8bc9109e533 | code | 11483 |
module SliceMap
export mapcols, MapCols, maprows, slicemap, tmapcols, ThreadMapCols
using JuliennedArrays
using Tracker
using Tracker: TrackedReal, TrackedMatrix, track, @grad, data
using ZygoteRules
using ZygoteRules: pullback, @adjoint
#========== Reverse, Eachslice ==========#
"""
mapcols(f, m) ≈ mapreduce(f, hcat, eachcol(m)) ≈ mapslices(f, m, dims=1)
This is a more efficient version of the functions on the right.
For `f(x::Vector)::Matrix` it reshapes like `mapslices(vec∘f, m, dims=1)`.
For `f(x::Vector)::Number` it skips the reduction, just `reshape(map(f, eachcol(m)),1,:)`.
It provides a gradient for Tracker and Zygote, saving the backward function for each slice.
Any arguments after the matrix are passed to `f` as scalars, i.e.
`mapcols(f, m, args...) = reduce(hcat, f(col, args...) for col in eeachcol(m))`.
They do not get sliced/iterated (unlike `map`), nor are their gradients tracked.
Note that if `f` itself contains parameters, their gradients are also not tracked.
"""
mapcols(f, M, args...) = _mapcols(map, f, M, args...)
tmapcols(f, M, args...) = _mapcols(threadmap, f, M, args...)
function _mapcols(map::Function, f, M::AbstractMatrix, args...)
res = map(col -> _vec(f(col, args...)), eachcol(M))
eltype(res) <: AbstractVector ? reduce(hcat, res) : reshape(res,1,:)
end
_vec(x) = x
_vec(A::AbstractArray) = vec(A) # to allow f vector -> matrix, by reshaping
_mapcols(map::Function, f, M::TrackedMatrix, args...) = track(_mapcols, map, f, M, args...)
@grad _mapcols(map::Function, f, M::AbstractMatrix, args...) =
∇mapcols(map, map(col -> Tracker.forward(x -> _vec(f(x, args...)), col), eachcol(data(M))), args...)
@adjoint _mapcols(map::Function, f, M::AbstractMatrix, args...) =
∇mapcols(map, map(col -> ZygoteRules.pullback(x -> _vec(f(x, args...)), col), eachcol(M)), args)
function ∇mapcols(bigmap, forwards, args...)
res = map(data∘first, forwards)
function back(Δ)
Δcols = eltype(res) <: AbstractVector ? eachcol(data(Δ)) : vec(data(Δ))
cols = bigmap((fwd, Δcol) -> data(last(fwd)(Δcol)[1]), forwards, Δcols)
(nothing, nothing, reduce(hcat, cols), map(_->nothing, args)...)
end
eltype(res) <: AbstractVector ? reduce(hcat, res) : reshape(res,1,:), back
end
"""
maprows(f, M) ≈ mapslices(f, M, dims=2)
Like `mapcols()` but for rows.
"""
function maprows(f::Function, M::AbstractMatrix, args...)
res = map(col -> transpose(_vec(f(col, args...))), eachrow(M))
eltype(res) <: AbstractArray ? reduce(vcat, res) : reshape(res,:,1)
end
maprows(f::Function, M::TrackedMatrix, args...) = track(maprows, f, M, args...)
@grad maprows(f::Function, M::AbstractMatrix, args...) =
∇maprows(map(row -> Tracker.forward(x -> _vec(f(x, args...)), row), eachrow(data(M))), args)
@adjoint maprows(f::Function, M::AbstractMatrix, args...) =
∇maprows(map(row -> ZygoteRules.pullback(x -> _vec(f(x, args...)), row), eachrow(M)), args)
function ∇maprows(forwards, args)
res = map(transpose∘data∘first, forwards)
function back(Δ)
Δrows = eltype(res) <: AbstractArray ? eachrow(data(Δ)) : vec(data(Δ))
rows = map((fwd, Δrow) -> transpose(data(last(fwd)(Δrow)[1])), forwards, Δrows)
(nothing, reduce(vcat, rows), map(_->nothing, args)...)
end
eltype(res) <: AbstractArray ? reduce(vcat, res) : reshape(res,:,1), back
end
"""
slicemap(f, A; dims) ≈ mapslices(f, A; dims)
Like `mapcols()`, but for any slice. The function `f` must preserve shape,
e.g. if `dims=(2,4)` then `f` must map matrices to matrices.
The gradient is for Zygote only.
Parameters within the function `f` (if there are any) should be correctly tracked,
which is not the case for `mapcols()`.
Keyword `rev=true` will apply `f` to `Iterators.reverse(Slices(A,...))`, thus iterating
in the opposite order.
"""
function slicemap(f, A::AbstractArray{T,N}, args...; dims, rev::Bool=false) where {T,N}
code = ntuple(d -> d in dims ? True() : False(), N)
B = JuliennedArrays.Slices(A, code...)
C = if rev==false
[ f(slice, args...) for slice in B ]
else
R = [ f(slice, args...) for slice in iter_reverse(B) ]
iter_reverse(R)
end
JuliennedArrays.Align(C, code...)
end
iter_reverse(x) = collect(Iterators.reverse(x))
@adjoint iter_reverse(x) = iter_reverse(x), dy -> (iter_reverse(dy),)
#========== Forward, Static ==========#
using StaticArrays, ForwardDiff
struct MapCols{d} end
"""
MapCols{d}(f, m::Matrix, args...)
Similar to `mapcols(f, m, args...)`, but slices `m` into `SVector{d}` columns.
Their length `d = size(M,1)` should ideally be provided for type-stability, but is not required.
The gradient for Tracker and Zygote uses `ForwardDiff` on each slice.
"""
MapCols(f::Function, M::AbstractMatrix, args...) =
MapCols{size(M,1)}(f, M, args...)
MapCols{d}(f::Function, M::AbstractMatrix, args...) where {d} =
_MapCols(map, f, M, Val(d), args...)
function _MapCols(map::Function, f::Function, M::Matrix{T}, ::Val{d}, args...) where {T,d}
d == size(M,1) || error("expected M with $d rows")
A = reinterpret(SArray{Tuple{d}, T, 1, d}, vec(M))
B = map(col -> surevec(f(col, args...)), A)
reduce(hcat, B)
end
surevec(A::AbstractArray) = vec(A)
surevec(x::Number) = SVector(x) # simple way to deal with f vector -> scalar
_MapCols(map::Function, f::Function, M::TrackedMatrix, dval, args...) =
track(_MapCols, map, f, M, dval, args...)
@grad _MapCols(map::Function, f::Function, M::TrackedMatrix, dval, args...) =
∇MapCols(map, f, M, dval, args...)
@adjoint _MapCols(map::Function, f::Function, M::Matrix, dval, args...) =
∇MapCols(map, f, M, dval, args...)
function ∇MapCols(bigmap::Function, f::Function, M::AbstractMatrix{T}, dval::Val{d}, args...) where {T,d}
d == size(M,1) || error("expected M with $d rows")
k = size(M,2)
A = reinterpret(SArray{Tuple{d}, T, 1, d}, vec(data(M)))
dualcol = SVector(ntuple(j->ForwardDiff.Dual(0, ntuple(i->i==j ? 1 : 0, dval)...), dval))
C = bigmap(col -> surevec(f(col + dualcol, args...)), A)
Z = reduce(hcat, map(col -> ForwardDiff.value.(col), C))
function back(ΔZ)
S = promote_type(T, eltype(data(ΔZ)))
∇M = zeros(S, size(M))
@inbounds for c=1:k
part = ForwardDiff.partials.(C[c])
for r=1:d
for i=1:size(ΔZ,1)
∇M[r,c] += data(ΔZ)[i,c] * part[i].values[r]
end
end
end
(nothing, nothing, ∇M, nothing, map(_->nothing, args)...)
end
Z, back
end
#========== Gradients for Zygote ==========#
#= JuliennedArrays =#
@adjoint JuliennedArrays.Slices(whole, along...) =
JuliennedArrays.Slices(whole, along...), Δ -> (Align(Δ, along...), map(_->nothing, along)...)
@adjoint JuliennedArrays.Align(whole, along...) =
Align(whole, along...), Δ -> (JuliennedArrays.Slices(Δ, along...), map(_->nothing, along)...)
#= Base =#
@adjoint Base.reduce(::typeof(hcat), V::AbstractVector{<:AbstractVector}) =
reduce(hcat, V), dV -> (nothing, collect(eachcol(dV)),)
#========== Experimenting with gradients for for eachslice / reduce ==========#
export gluecol, collecteachcol
export mapcols2, mapcols4, mapcols5, mapcols6, mapcols7
gluecol(V::AbstractVector{<:AbstractVector}) = reduce(hcat, V)
#=
gluecol(V::AbstractVector{<:TrackedVector}) = track(gluecol, V)
@grad function gluecol(V::AbstractVector)
gluecol(data.(V)), ΔM -> (collect(eachcol(data(ΔM))),) # doesn't work
end
=#
@adjoint gluecol(V::AbstractVector) =
gluecol(V), ΔM -> (collect(eachcol(ΔM)),) # does work!
function mapcols2(f, A)
cols = [A[:,c] for c=1:size(A,2)]
res = f.(cols)
gluecol(res)
end
# Apply that straight to reduce(hcat,...)
function mapcols4(f, A)
cols = [view(A,:,c) for c=1:size(A,2)]
res = map(f, cols)
reduce(hcat, res)
end
# Surprisingly dy for eachcol seems to know the answer?
# typeof(dy) = NamedTuple{(:f, :iter),Tuple{NamedTuple{(:A,),Tuple{Array{Float64,2}}},Array{Nothing,1}}}
# dy = (f = (A = [47.9325 51.3781
# Which means this works... but uses as much memory as gradient of array of views:
#=@adjoint function eachcol(x::AbstractMatrix)
eachcol(x), dy -> (dy.f.A,) #= begin
@show typeof(dy) dy
dx = zero(x) .+ 0.0 # zeros(eltype(dy), size(x))
foreach(copyto!, eachcol(dx), dy)
(dx,)
end =#
end=#
# @adjoint eachcol(x) = eachcol(x), dy -> (dy.f.A,)
function mapcols5(f, A)
cols = collect(eachcol(A))
res = map(f, cols)
reduce(hcat, res)
end
collecteachcol(x) = collect(eachcol(x))
@adjoint function collecteachcol(x)
collecteachcol(x), dy -> begin
dx = _zero(x) # _zero is not in ZygoteRules, TODO
foreach(copyto!, collecteachcol(dx), dy)
(dx,)
end
end
function mapcols6(f, A)
cols = collecteachcol(A)
res = map(f, cols)
reduce(hcat, res)
end
# function mapcols7(f, A)
# cols = eachcol(A) # without collect. Zygote.gradient -> StackOverflowError
# res = map(f, cols)
# reduce(hcat, res)
# end
# Following a suggestion? Doesn't help.
# @adjoint Base.collect(x) = collect(x), Δ -> (Δ,)
#========== Threaded Map ==========#
# What KissThreading does is much more complicated, perhaps worth investigating:
# https://github.com/mohamed82008/KissThreading.jl/blob/master/src/KissThreading.jl
# BTW I do the first one because some diffeq maps infer to ::Any,
# else you could use Core.Compiler.return_type(f, Tuple{eltype(x)})
"""
threadmap(f, A)
threadmap(f, A, B)
Simple version of `map` using a `Threads.@threads` loop,
or `Threads.@spawn` on Julia >= 1.3.
Only for vectors & really at most two of them, of nonzero length,
with all outputs having the same type.
"""
function threadmap(f::Function, vw::AbstractVector...)
length(first(vw))==0 && error("can't map over empty vector, sorry")
length(vw)==2 && (isequal(length.(vw)...) || error("lengths must be equal"))
out1 = f(first.(vw)...)
if length(first(vw)) > 1
_threadmap(out1, f, vw...)
else
[out1]
end
end
# NB function barrier. Plus two versions:
@static if VERSION < v"1.3"
function _threadmap(out1, f, vw...)
out = Vector{typeof(out1)}(undef, length(first(vw)))
out[1] = out1
Threads.@threads for i in 2:length(first(vw))
@inbounds out[i] = f(getindex.(vw, i)...)
end
out
end
else
function _threadmap(out1, f, vw...)
ell = length(first(vw))
out = Vector{typeof(out1)}(undef, ell)
out[1] = out1
Base.@sync for is in Iterators.partition(2:ell, cld(ell-1, Threads.nthreads()))
Threads.@spawn for i in is
@inbounds out[i] = f(getindex.(vw, i)...)
end
end
out
end
end
# Collect generators to allow indexing
threadmap(f::Function, v) = threadmap(f, collect(v))
threadmap(f::Function, v, w) = threadmap(f, collect(v), collect(w))
threadmap(f::Function, v, w::AbstractVector) = threadmap(f, collect(v), w)
threadmap(f::Function, v::AbstractVector, w) = threadmap(f, v, collect(w))
struct ThreadMapCols{d} end
"""
ThreadMapCols{d}(f, m::Matrix, args...)
Like `MapCols` but with multi-threading!
"""
ThreadMapCols(f::Function, M::AbstractMatrix, args...) =
ThreadMapCols{size(M,1)}(f, M, args...)
ThreadMapCols{d}(f::Function, M::AbstractMatrix, args...) where {d} =
_MapCols(threadmap, f, M, Val(d), args...)
end # module
| SliceMap | https://github.com/mcabbott/SliceMap.jl.git |
|
[
"MIT"
] | 0.2.7 | f988004407ccf6c398a87914eafdd8bc9109e533 | code | 6965 |
using SliceMap
using Test
using ForwardDiff, Tracker, Zygote, JuliennedArrays
Zygote.refresh()
@testset "columns" begin
mat = rand(1:9, 3,10)
fun(x) = 2 .+ x.^2
res = mapslices(fun, mat, dims=1)
@test res ≈ mapcols(fun, mat)
@test res ≈ MapCols{3}(fun, mat)
@test res ≈ MapCols(fun, mat)
@test res ≈ tmapcols(fun, mat)
@test res ≈ ThreadMapCols{3}(fun, mat)
@test res ≈ ThreadMapCols(fun, mat)
grad = ForwardDiff.gradient(m -> sum(sin, mapslices(fun, m, dims=1)), mat)
@test grad ≈ Tracker.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, MapCols(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, tmapcols(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, ThreadMapCols{3}(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, ThreadMapCols(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, tmapcols(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, ThreadMapCols{3}(fun, m)), mat)[1]
jcols(f,m) = Align(map(f, JuliennedArrays.Slices(m, True(), False())), True(), False())
@test res ≈ jcols(fun, mat)
@test grad ≈ Zygote.gradient(m -> sum(sin, jcols(fun, m)), mat)[1]
# Case of length 1, was an error for _threadmap
@test res[:,1:1] ≈ mapcols(fun, mat[:, 1:1])
@test res[:,1:1] ≈ tmapcols(fun, mat[:, 1:1])
@test res[:,1:1] ≈ ThreadMapCols(fun, mat[:, 1:1])
end
@testset "columns -> scalar" begin
mat = rand(1:9, 3,10)
fun(x) = sum(x) # different function!
res = mapslices(fun, mat, dims=1)
@test res ≈ mapcols(fun, mat)
@test res ≈ MapCols{3}(fun, mat)
grad = ForwardDiff.gradient(m -> sum(sin, mapslices(fun, m, dims=1)), mat)
@test grad ≈ Tracker.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
end
@testset "columns -> matrix" begin
mat = rand(1:9, 3,10)
fun(x) = x .* x' # different function! vector -> matrix
res = mapslices(vec∘fun, mat, dims=1)
@test res ≈ mapcols(fun, mat)
@test res ≈ MapCols{3}(fun, mat)
grad = ForwardDiff.gradient(m -> sum(sin, mapslices(vec∘fun, m, dims=1)), mat)
@test grad ≈ Tracker.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
end
@testset "columns w args" begin
mat = randn(Float32, 3,10)
fun(x, s) = 1 .+ x .* s
res = mapslices(x -> vec(fun(x,5)), mat, dims=1)
@test res ≈ mapcols(fun, mat, 5)
@test res ≈ MapCols{3}(fun, mat, 5)
grad = ForwardDiff.gradient(m -> sum(sin, mapslices(x -> vec(fun(x,5)), m, dims=1)), mat)
@test grad ≈ Tracker.gradient(m -> sum(sin, mapcols(fun, m, 5)), mat)[1]
@test grad ≈ Tracker.gradient(m -> sum(sin, MapCols{3}(fun, m, 5)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, mapcols(fun, m, 5)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, MapCols{3}(fun, m, 5)), mat)[1]
end
@testset "rows" begin
mat = randn(4,5)
fun(x) = 2 .+ x.^2 ./ sum(x)
res = mapslices(fun, mat, dims=2)
@test res ≈ maprows(fun, mat)
grad = ForwardDiff.gradient(m -> sum(sin, mapslices(fun, m, dims=2)), mat)
@test grad ≈ Tracker.gradient(m -> sum(sin, maprows(fun, m)), mat)[1]
@test grad ≈ Zygote.gradient(m -> sum(sin, maprows(fun, m)), mat)[1]
jrows(f,m) = Align(map(f, JuliennedArrays.Slices(m, False(), True())), False(), True())
@test res ≈ jrows(fun, mat)
@test grad ≈ Zygote.gradient(m -> sum(sin, jrows(fun, m)), mat)[1]
end
@testset "slices of a 4-tensor" begin
ten = randn(3,4,5,2)
fun(x::AbstractVector) = sqrt(3) .+ x.^3 ./ (sum(x)^2)
res = mapslices(fun, ten, dims=3)
@test res ≈ slicemap(fun, ten, dims=3)
grad = ForwardDiff.gradient(x -> sum(sin, slicemap(fun, x, dims=3)), ten)
@test grad ≈ Zygote.gradient(x -> sum(sin, slicemap(fun, x, dims=3)), ten)[1]
jthree(f,m) = Align(map(f,
JuliennedArrays.Slices(m, False(), False(), True(), False())
), False(), False(), True(), False())
@test res ≈ jthree(fun, ten)
@test grad ≈ Zygote.gradient(m -> sum(sin, jthree(fun, m)), ten)[1]
j3(f,m) = Align(map(f, JuliennedArrays.Slices(m, 3)), 3)
@test res ≈ j3(fun, ten)
@test grad ≈ Zygote.gradient(m -> sum(sin, j3(fun, m)), ten)[1]
end
@testset "gradient of the function" begin
struct F W end
(f::F)(x) = f.W * x # toy version of e.g. Flux.Dense
w = rand(3,2)
x = rand(2,5)
gradx = ForwardDiff.gradient(x -> sum(mapslices(F(w), x, dims=1)), x)
gradw = ForwardDiff.gradient(w -> sum(mapslices(F(w), x, dims=1)), w)
wp = Tracker.param(w)
xp = Tracker.param(x)
Tracker.back!(sum(mapcols(F(wp), xp)))
@test Tracker.grad(xp) ≈ gradx
@test Tracker.grad(wp) == 0 .* gradw # bug or a feature?
# fp = F(wp)
# wp.grad .= 0; xp.grad .= 0;
# Tracker.back!(sum(mapcols(fp, xp)))
# @test Tracker.grad(xp) ≈ gradx
# @test_broken Tracker.grad(wp) ≈ gradw # zero
f = F(w)
grad_mapcols = Zygote.gradient(() -> sum(mapcols(f, x)), Zygote.Params([w,x]))
@test grad_mapcols[x] ≈ gradx
@test grad_mapcols[w] == nothing # bug or a feature?
grad_slicemap = Zygote.gradient(() -> sum(slicemap(f, x, dims=1)), Zygote.Params([w,x]))
@test grad_slicemap[x] ≈ gradx
@test grad_slicemap[w] ≈ gradw
@test gradw ≈ Zygote.gradient(w -> sum(slicemap(F(w), x, dims=1)), w)[1]
# Using F(w) with Params() gives wrong answers:
# https://github.com/FluxML/Zygote.jl/issues/522#issuecomment-605935652
end
@testset "slicemap rev=true" begin
rec(store) = x -> (push!(store, first(x)); x)
A = [1,1,1] .* (1:5)'
store = []
slicemap(rec(store), A; dims=1)
@test store == 1:5
store = []
slicemap(rec(store), A; dims=1, rev=true)
@test store == 5:-1:1
# gradient check as above
ten = randn(3,4,5,2)
fun(x::AbstractVector) = sqrt(3) .+ x.^3 ./ (sum(x)^2)
res = mapslices(fun, ten, dims=3)
@test res ≈ slicemap(fun, ten; dims=3, rev=true)
@test res ≈ slicemap(fun, ten; dims=3, rev=false)
grad = ForwardDiff.gradient(x -> sum(sin, mapslices(fun, x, dims=3)), ten)
@test grad ≈ Zygote.gradient(x -> sum(sin, slicemap(fun, x, dims=3, rev=false)), ten)[1]
@test grad ≈ Zygote.gradient(x -> sum(sin, slicemap(fun, x, dims=3, rev=true)), ten)[1]
end
| SliceMap | https://github.com/mcabbott/SliceMap.jl.git |
|
[
"MIT"
] | 0.2.7 | f988004407ccf6c398a87914eafdd8bc9109e533 | docs | 1469 | # SliceMap.jl
[](https://github.com/mcabbott/SliceMap.jl/actions?query=workflow%3ACI)
This package provides some `mapslices`-like functions, with gradients defined for
[Tracker](https://github.com/FluxML/Tracker.jl) and [Zygote](https://github.com/FluxML/Zygote.jl):
```julia
mapcols(f, M) ≈ mapreduce(f, hcat, eachcol(M))
MapCols{d}(f, M) # where d=size(M,1), for SVector slices
ThreadMapCols{d}(f, M) # using Threads.@threads
maprows(f, M) ≈ mapslices(f, M, dims=2)
slicemap(f, A; dims) ≈ mapslices(f, A, dims=dims) # only Zygote
```
The capitalised functions differ both in using [StaticArrays](https://github.com/JuliaArrays/StaticArrays.jl)
slices, and using [ForwardDiff](https://github.com/JuliaDiff/ForwardDiff.jl) for the gradient of each slice,
instead of the same reverse-mode Tracker/Zygote.
For small slices, this will often be much faster, with or without gradients.
The package also defines Zygote gradients for the Slice/Align functions in
[JuliennedArrays](https://github.com/bramtayl/JuliennedArrays.jl),
which is a good way to roll-your-own `mapslices`-like thing (and is exactly
how `slicemap(f, A; dims)` works). Similar gradients are also available in
[TensorCast](https://github.com/mcabbott/TensorCast.jl),
and in [LazyStack](https://github.com/mcabbott/LazyStack.jl).
There are more details & examples at [docs/intro.md](docs/intro.md).
| SliceMap | https://github.com/mcabbott/SliceMap.jl.git |
|
[
"MIT"
] | 0.2.7 | f988004407ccf6c398a87914eafdd8bc9109e533 | docs | 5769 | # SliceMap.jl
Some examples & benchmarks. Times shown were on Julia 1.2 I think,
and some have improved quite a bit since.
## Simple example
```julia
mat = rand(1:9, 3,10)
fun(x) = 2 .+ x.^2
mapslices(fun, mat, dims=1)
using SliceMap
mapcols(fun, mat) # eachcol(m)
MapCols{3}(fun, mat) # reinterpret(SArray,...)
using ForwardDiff, Tracker, Zygote
ForwardDiff.gradient(m -> sum(sin, mapslices(fun, m, dims=1)), mat)
Tracker.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1] # Tracker.forward per slice
Tracker.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1] # ForwardDiff on slices
Zygote.gradient(m -> sum(sin, mapcols(fun, m)), mat)[1] # Zygote.forward per slice
Zygote.gradient(m -> sum(sin, MapCols{3}(fun, m)), mat)[1]
```
These are a bit faster than `mapslices` too. Although storing all the backward functions,
which is what `mapcols` does, has some overhead:
```julia
using BenchmarkTools
mat1k = rand(3,1000);
@btime mapreduce(fun, hcat, eachcol($mat1k)) # 1.522 ms, 11.80 MiB
@btime mapslices(fun, $mat1k, dims=1) # 1.017 ms, 329.92 KiB
@btime mapcols(fun, $mat1k) # 399.016 μs, 219.02 KiB
@btime MapCols{3}(fun, $mat1k) # 15.564 μs, 47.16 KiB
@btime MapCols(fun, $mat1k) # 16.774 μs (without slice size)
@btime ForwardDiff.gradient(m -> sum(mapslices(fun, m, dims=1)), $mat1k); # 329.305 ms
@btime Tracker.gradient(m -> sum(mapcols(fun, m)), $mat1k); # 70.203 ms
@btime Tracker.gradient(m -> sum(MapCols{3}(fun, m)), $mat1k); # 51.129 μs, 282.92 KiB
@btime Zygote.gradient(m -> sum(mapcols(fun, m)), $mat1k); # 20.454 ms, 3.52 MiB
@btime Zygote.gradient(m -> sum(MapCols{3}(fun, m)), $mat1k); # 28.229 μs, 164.63 KiB
```
On recent versions of Julia, `mapcols` has become much faster, 5-10 times.
FWIW, times on Julia 1.8-dev & and M1 mac, June 2021:
```
@btime mapreduce(fun, hcat, eachcol($mat1k)) # 616.250 μs (2317 allocations: 11.69 MiB)
@btime mapslices(fun, $mat1k, dims=1) # 230.250 μs (7499 allocations: 298.23 KiB)
@btime mapcols(fun, $mat1k) # 26.750 μs (1003 allocations: 140.83 KiB)
@btime MapCols{3}(fun, $mat1k) # 6.067 μs (9 allocations: 47.20 KiB)
@btime MapCols(fun, $mat1k) # 6.217 μs (9 allocations: 47.20 KiB)
@btime ForwardDiff.gradient(m -> sum(mapslices(fun, m, dims=1)), $mat1k); # 70.815 ms (1877210 allocations: 210.64 MiB)
@btime Tracker.gradient(m -> sum(mapcols(fun, m)), $mat1k); # 29.840 ms (598046 allocations: 26.20 MiB)
@btime Tracker.gradient(m -> sum(MapCols{3}(fun, m)), $mat1k); # 25.833 μs (60 allocations: 283.23 KiB)
julia> @btime Zygote.gradient(m -> sum(mapcols(fun, m)), $mat1k); # 93.750 μs (4047 allocations: 392.14 KiB)
julia> @btime Zygote.gradient(m -> sum(MapCols{3}(fun, m)), $mat1k); # 14.834 μs (18 allocations: 164.73 KiB)
```
## Other packages
This package also provides Zygote gradients for the Slice/Align functions in
[JuliennedArrays](https://github.com/bramtayl/JuliennedArrays.jl),
which can be used to write many mapslices-like operations:
```julia
using JuliennedArrays
jumap(f,m) = Align(map(f, Slices(m, True(), False())), True(), False())
jumap1(f,m) = Align(map(f, Slices(m, 1)), 1)
jumap(fun, mat) # same as mapcols
jumap1(fun, mat)
Zygote.gradient(m -> sum(sin, jumap(fun, m)), mat)[1]
@btime jumap(fun, $mat1k); # 44.823 μs
@btime jumap1(fun, $mat1k); # 11.805 μs, really?
@btime Zygote.gradient(m -> sum(jumap(fun, m)), $mat1k); # 26.110 ms
@btime Zygote.gradient(m -> sum(jumap1(fun, m)), $mat1k) # 412.904 μs, really?
```
Similar gradients also moved to [TensorCast](https://github.com/mcabbott/TensorCast.jl):
```julia
using TensorCast
@cast [i,j] := fun(mat[:,j])[i] # same as mapcols
tcm(mat) = @cast out[i,j] := fun(mat[:,j])[i]
Zygote.gradient(m -> sum(sin, tcm(m)), mat)[1]
@btime tcm($mat1k) # 427.907 μs
@btime Zygote.gradient(m -> sum(tcm(m)), $mat1k); # 18.358 ms
```
The original purpose of `MapCols`, with ForwardDiff on slices, was that this works well when
the function being mapped integrates some differential equation.
```julia
using DifferentialEquations, ParameterizedFunctions
ode = @ode_def begin
du = ( - k2 * u )/(k1 + u) # an equation with 2 parameters
end k1 k2
function g(k::AbstractVector{T}, times) where T
u0 = T[ 1.0 ] # NB convert initial values to eltype(k)
prob = ODEProblem(ode, u0, (0.0, 0.0+maximum(times)), k)
Array(solve(prob, saveat=times))::Matrix{T}
end
kay = rand(2,50);
MapCols{2}(g, kay, 1:5) # 5 time steps, for each col of parameters
Tracker.gradient(k -> sum(sin, MapCols{2}(g, k, 1:5)), kay)[1]
```
This is quite efficient, and seems to go well with multi-threading:
```julia
@btime MapCols{2}(g, $kay, 1:5) # 1.394 ms
@btime ThreadMapCols{2}(g, $kay, 1:5) # 697.333 μs
@btime Tracker.gradient(k -> sum(MapCols{2}(g, k, 1:5)), $kay)[1] # 2.561 ms
@btime Tracker.gradient(k -> sum(ThreadMapCols{2}(g, k, 1:5)), $kay)[1] # 1.344 ms
Threads.nthreads() == 4 # on my 2/4-core laptop
```
## Elsewhere
Issues about mapslices:
* https://github.com/FluxML/Zygote.jl/issues/92
* https://github.com/FluxML/Flux.jl/issues/741
* https://github.com/JuliaLang/julia/issues/29146
Differential equations:
* https://arxiv.org/abs/1812.01892 "DSAAD"
* http://docs.juliadiffeq.org/latest/analysis/sensitivity.html
Other packages which define gradients of possible interest:
* https://github.com/GiggleLiu/LinalgBackwards.jl
* https://github.com/mcabbott/ArrayAllez.jl
| SliceMap | https://github.com/mcabbott/SliceMap.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 910 | using DockerSandbox
using Documenter
DocMeta.setdocmeta!(DockerSandbox, :DocTestSetup, :(using DockerSandbox); recursive=true)
makedocs(;
modules=[DockerSandbox],
authors="Keno Fischer, Dilum Aluthge, and contributors",
repo="https://github.com/JuliaContainerization/DockerSandbox.jl/blob/{commit}{path}#{line}",
sitename="DockerSandbox.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://JuliaContainerization.github.io/DockerSandbox.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
"Prerequisites" => "prerequisites.md",
"Examples" => "examples.md",
"Public API" => "public.md",
"Internals (Private)" => "internals.md",
],
strict=true,
)
deploydocs(;
repo="github.com/JuliaContainerization/DockerSandbox.jl",
)
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 236 | module DockerSandbox
import Base: run, success
import Random
export DockerConfig
export run
export success
export with_container
include("types.jl")
include("base.jl")
include("container.jl")
include("convenience.jl")
end # module
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 802 | for f in (:run, :success)
@eval begin
"""
$($f)(container::DockerContainer, config::DockerConfig, user_cmd::Cmd; kwargs...)
"""
function $f(container::DockerContainer,
config::DockerConfig,
cmd::Cmd;
kwargs...)
container_cmd = construct_container_command(
container,
config,
cmd,
)
docker_cmd = pipeline(
container_cmd;
config.stdin,
config.stdout,
config.stderr,
)
if config.verbose
@info("Running sandboxed command", cmd.exec)
end
return $f(docker_cmd; kwargs...)
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 6007 | """
docker_image_label(container::DockerContainer)
"""
function docker_image_label(container::DockerContainer)
return string("org.julialang.docker.jl=", container.label)
end
function _assert_no_nonword_characters(str::String)
isascii(str) || throw(ArgumentError("String is not an ASCII string"))
occursin(r"^[A-Za-z0-9_]*?$", str) || throw(ArgumentError("String contains one or more nonword characters"))
return nothing
end
function _replace_nonword_character(char::Char)
if occursin(r"^\w$", string(char))
return char
else
return '_'
end
end
function _replace_all_nonword_characters(str::String)
isascii(str) || throw(ArgumentError("String is not an ASCII string"))
old_chars = collect(str)
new_chars = _replace_nonword_character.(old_chars)
new_str = join(new_chars)
_assert_no_nonword_characters(new_str)
return new_str
end
"""
docker_image_name(image::String)
"""
function docker_image_name(image::String)
docker_image = string(
"julialang_dockerjl:",
_replace_all_nonword_characters(image),
"_",
string(Base._crc32c(image), base=16),
)
return docker_image
end
"""
cleanup(container::DockerContainer)
"""
function cleanup(container::DockerContainer)
label = docker_image_label(container)
success(`docker system prune --force --filter=label=$(label)`)
return nothing
end
function _generate_dockerfile(config::DockerConfig)
if config.platform === :linux
return """
FROM --platform=linux $(config.base_image)
RUN usermod --lock root
RUN groupadd --system myuser
RUN useradd --create-home --shell /bin/bash --system --gid myuser myuser
USER myuser
"""
else
msg = "Invalid value for config.platform: $(config.platform)"
throw(ArgumentError(msg))
end
end
"""
build_docker_image(config::DockerConfig)
"""
function build_docker_image(config::DockerConfig)
docker_image = docker_image_name(config.base_image)
mktempdir() do tmp_dir
cd(tmp_dir) do
rm("Dockerfile"; force = true, recursive = true)
dockerfile = _generate_dockerfile(config)
open("Dockerfile", "w") do io
println(io, strip(dockerfile))
end
if config.docker_build_stdout === nothing
if config.verbose
docker_build_stdout = Base.stdout
else
docker_build_stdout = Base.devnull
end
else
docker_build_stdout = config.docker_build_stdout
end
if config.docker_build_stderr === nothing
if config.verbose
docker_build_stderr = Base.stderr
else
docker_build_stderr = Base.devnull
end
else
docker_build_stderr = config.docker_build_stderr
end
(docker_build_stdout isa IO) || throw(ArgumentError("docker_build_stdout must be an IO"))
(docker_build_stderr isa IO) || throw(ArgumentError("docker_build_stderr must be an IO"))
run(
pipeline(
`docker build -t $(docker_image) .`;
stdin = Base.devnull,
stdout = docker_build_stdout,
stderr = docker_build_stderr,
)
)
end
end
return docker_image
end
"""
construct_container_command(container::DockerContainer, config::DockerConfig, cmd::Cmd)
"""
function construct_container_command(container::DockerContainer,
config::DockerConfig,
cmd::Cmd)
build_docker_image(config)
container_cmd_string = String["docker", "run"]
append!(container_cmd_string, ["--security-opt=no-new-privileges"]) # disable container processes from gaining new privileges
append!(container_cmd_string, ["--cap-drop=all"]) # drop all capabilities
if config.add_capabilities !== nothing
for cap in config.add_capabilities
append!(container_cmd_string, ["--cap-add=$(cap)"])
end
end
append!(container_cmd_string, ["--interactive"]) # keep STDIN open even if not attached
append!(container_cmd_string, ["--label", docker_image_label(container)]) # set metadata
append!(container_cmd_string, ["--rm=true"]) # automatically remove the container when it exits
# If we're doing a fully-interactive session, tell it to allocate a psuedo-TTY
is_interactive = all(
isa.(
(config.stdin, config.stdout, config.stderr),
Base.TTY,
)
)
is_interactive && append!(container_cmd_string, ["-t"])
# Start in the right directory
append!(container_cmd_string, ["--workdir=/home/myuser"])
# Add in read-only mappings
if config.read_only_maps !== nothing
for (dst, src) in pairs(config.read_only_maps)
if dst == "/"
throw(ArgumentError("Cannot provide a mapping for /"))
else
append!(container_cmd_string, ["-v", "$(src):$(dst):ro"])
end
end
end
# Add in read-write mappings
if config.read_write_maps !== nothing
for (dst, src) in pairs(config.read_write_maps)
if dst == "/"
throw(ArgumentError("Cannot provide a mapping for /"))
else
append!(container_cmd_string, ["-v", "$(src):$(dst)"])
end
end
end
# Apply environment mappings from `config`
if config.env !== nothing
for (k, v) in pairs(config.env)
append!(container_cmd_string, ["-e", "$(k)=$(v)"])
end
end
append!(container_cmd_string, [docker_image_name(config.base_image)])
append!(container_cmd_string, cmd.exec)
container_cmd = Cmd(container_cmd_string)
return container_cmd
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 376 | """
with_container(f::Function, ::Type{<:DockerContainer} = DockerContainer; kwargs...)
"""
function with_container(f::F,
::Type{T} = DockerContainer;
kwargs...) where {F <: Function, T <: DockerContainer}
container = T(; kwargs...)
try
return f(container)
finally
cleanup(container)
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 1337 | """
DockerContainer()
"""
Base.@kwdef struct DockerContainer
label::String = Random.randstring(10)
end
"""
DockerConfig(; kwargs...)
## Required Keyword Arguments:
- `base_image::String`
## Optional Keyword Arguments:
- `verbose::Bool = false`
- `env::Union{Dict{String, String}, Nothing} = nothing`
- `platform::Symbol = :linux`
- `read_only_maps::Union{Dict{String, String}, Nothing} = nothing`
- `read_write_maps::Union{Dict{String, String}, Nothing} = nothing`
- `stdin::IO = Base.devnull`
- `stdout::IO = Base.stdout`
- `stderr::IO = Base.stderr`
- `docker_build_stdout::Union{IO, Nothing} = nothing`
- `docker_build_stderr::Union{IO, Nothing} = nothing`
- `add_capabilities::Union{Vector{String}, Nothing} = nothing`
"""
Base.@kwdef struct DockerConfig
# Required
base_image::String
# Optional
verbose::Bool = false
env::Union{Dict{String, String}, Nothing} = nothing
platform::Symbol = :linux
read_only_maps::Union{Dict{String, String}, Nothing} = nothing
read_write_maps::Union{Dict{String, String}, Nothing} = nothing
stdin::IO = Base.devnull
stdout::IO = Base.stdout
stderr::IO = Base.stderr
docker_build_stdout::Union{IO, Nothing} = nothing
docker_build_stderr::Union{IO, Nothing} = nothing
add_capabilities::Union{Vector{String}, Nothing} = nothing
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 324 | @testset "add capabilities" begin
config = DockerConfig(;
base_image = "julia:latest",
add_capabilities = ["CAP_CHOWN"],
)
with_container() do container
code = """
println("This was a success.")
"""
@test success(container, config, `julia -e $(code)`)
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 89 | @testset "Test that Docker is installed" begin
@test success(`docker --version`)
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 652 | @testset "environment variables" begin
config = DockerConfig(;
base_image = "julia:latest",
env = Dict{String, String}("MY_ENVIRONMENT_VARIABLE" => "hello_world")
)
with_container() do container
code = """
println("This was a success.")
if !haskey(ENV, "MY_ENVIRONMENT_VARIABLE")
throw(ErrorException("environment variable does not exist"))
end
if ENV["MY_ENVIRONMENT_VARIABLE"] != "hello_world"
throw(ErrorException("environment variable has the wrong value"))
end
"""
@test success(container, config, `julia -e $(code)`)
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 862 | @testset "Errors" begin
@testset begin
config = DockerConfig(; base_image = "foo", platform = :foo)
mktempdir() do build_directory
@test_throws ArgumentError DockerSandbox._generate_dockerfile(config)
end
end
@testset begin
configs = [
DockerConfig(;
base_image = "julia:latest",
read_only_maps = Dict("/" => "/foo"),
),
DockerConfig(;
base_image = "julia:latest",
read_write_maps = Dict("/" => "/foo"),
),
]
for config in configs
with_container() do container
code = """
println("123")
"""
@test_throws ArgumentError run(container, config, `julia -e $(code)`)
end
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 757 | @testset "Ensure that there are no non-stdlib dependencies" begin
package_directories = String[
dirname(dirname(pathof(DockerSandbox))),
dirname(@__DIR__),
dirname(dirname(@__FILE__)),
]
for package_directory in package_directories
package_project_filename = joinpath(package_directory, "Project.toml")
predictmd_project = TOML.parsefile(package_project_filename)
predictmd_direct_deps = predictmd_project["deps"]
for (name, uuid) in pairs(predictmd_direct_deps)
is_stdlib = Pkg.Types.is_stdlib(Base.UUID(uuid))
if !is_stdlib
@error("There is a non-stdlib dependency", name, uuid)
end
@test is_stdlib
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 1117 | @testset "read-only maps" begin
mktempdir() do tmpdir_ro
open(joinpath(tmpdir_ro, "myroinputfile"), "w") do io
println(io, "Hello RO world!")
end
x1 = read(joinpath(tmpdir_ro, "myroinputfile"), String)
@test x1 == "Hello RO world!\n"
config = DockerConfig(;
base_image = "julia:latest",
read_only_maps = Dict(
"/home/myuser/workdir_ro" => tmpdir_ro,
),
)
Utils.make_world_readable_recursively(tmpdir_ro)
with_container() do container
code = """
y1 = read("/home/myuser/workdir_ro/myroinputfile", String)
if y1 != "Hello RO world!\n"
throw(ErrorException("File contents did not match"))
end
mktempdir() do tmpdir
open(joinpath(tmpdir, "sometemporaryfile"), "w") do io
println(io, "I wrote this file into a temporary directory.")
end
end
"""
@test success(container, config, `julia -e $(code)`)
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 2909 | @testset "read-write maps" begin
mktempdir() do tmpdir_ro
mktempdir() do tmpdir_rw
open(joinpath(tmpdir_ro, "myroinputfile"), "w") do io
println(io, "Hello RO world!")
end
open(joinpath(tmpdir_rw, "myrwinputfile"), "w") do io
println(io, "Hello RW world!")
end
x1 = read(joinpath(tmpdir_ro, "myroinputfile"), String)
x2 = read(joinpath(tmpdir_rw, "myrwinputfile"), String)
@test x1 == "Hello RO world!\n"
@test x2 == "Hello RW world!\n"
@test !ispath(joinpath(tmpdir_rw, "myrwoutputfile"))
@test !isfile(joinpath(tmpdir_rw, "myrwoutputfile"))
config = DockerConfig(;
base_image = "julia:latest",
read_only_maps = Dict(
"/home/myuser/workdir_ro" => tmpdir_ro,
),
read_write_maps = Dict(
"/home/myuser/workdir_rw" => tmpdir_rw,
),
)
Utils.make_world_readable_recursively(tmpdir_ro)
Utils.make_world_writeable_recursively(tmpdir_rw)
with_container() do container
code = """
y1 = read("/home/myuser/workdir_ro/myroinputfile", String)
y2 = read("/home/myuser/workdir_rw/myrwinputfile", String)
if y1 != "Hello RO world!\n"
throw(ErrorException("File contents did not match"))
end
if y2 != "Hello RW world!\n"
throw(ErrorException("File contents did not match"))
end
if ispath("/home/myuser/workdir_rw/myrwoutputfile")
throw(ErrorException("The file exists, but it should not exist"))
end
if isfile("/home/myuser/workdir_rw/myrwoutputfile")
throw(ErrorException("The file exists, but it should not exist"))
end
open("/home/myuser/workdir_rw/myrwoutputfile", "w") do io
println(io, "I created and wrote this file inside the container.")
end
chmod("/home/myuser/workdir_rw/myrwoutputfile", 0o666)
mktempdir() do tmpdir
open(joinpath(tmpdir, "sometemporaryfile"), "w") do io
println(io, "I wrote this file into a temporary directory.")
end
end
"""
@test success(container, config, `julia -e $(code)`)
end
@test ispath(joinpath(tmpdir_rw, "myrwoutputfile"))
@test isfile(joinpath(tmpdir_rw, "myrwoutputfile"))
z1 = read(joinpath(tmpdir_rw, "myrwoutputfile"), String)
@test z1 == "I created and wrote this file inside the container.\n"
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 320 | using DockerSandbox
using Test
import Pkg
import TOML
include("utils.jl")
include("no_nonstdlib_deps.jl")
include("docker_is_installed.jl")
include("add_capabilities.jl")
include("environment_variables.jl")
include("errors.jl")
include("read_only_maps.jl")
include("read_write_maps.jl")
include("with_container.jl")
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 1214 | module Utils
"""
apply_chmod_recursively(root_dir::String; dir_mode::Integer, file_mode::Integer)
"""
function apply_chmod_recursively(root_dir::String;
dir_mode::Integer,
file_mode::Integer)
chmod(root_dir, dir_mode)
for (root, dirs, files) in walkdir(root_dir)
for dir in dirs
full_dir_path = joinpath(root, dir)
isdir(full_dir_path) || throw(ArgumentError("unexpected error"))
chmod(full_dir_path, dir_mode)
end
for file in files
full_file_path = joinpath(root, file)
isfile(full_file_path) || throw(ArgumentError("unexpected error"))
chmod(full_file_path, file_mode)
end
end
return nothing
end
"""
make_world_readable_recursively(root_dir::String)
"""
function make_world_readable_recursively(root_dir::String)
return apply_chmod_recursively(root_dir; dir_mode=0o555, file_mode=0o444)
end
"""
make_world_writeable_recursively(root_dir::String)
"""
function make_world_writeable_recursively(root_dir::String)
return apply_chmod_recursively(root_dir; dir_mode=0o777, file_mode=0o666)
end
end # module
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | code | 1367 | @testset "with_container()" begin
configs = [
DockerConfig(; base_image = "julia:latest", verbose = true),
DockerConfig(; base_image = "julia:latest", verbose = false),
DockerConfig(;
base_image = "julia:latest",
verbose = true,
docker_build_stdout = Base.devnull,
docker_build_stderr = Base.devnull,
),
]
for config in configs
with_container() do container
code = """
println("This was a success.")
"""
@test success(container, config, `julia -e $(code)`)
end
with_container() do container
code = """
throw(ErrorException("This was a failure."))
"""
@test !success(container, config, `julia -e $(code)`)
end
with_container() do container
code = """
println("This was a success.")
"""
p = run(container, config, `julia -e $(code)`; wait = false)
wait(p)
@test success(p)
end
with_container() do container
code = """
throw(ErrorException("This was a failure."))
"""
p = run(container, config, `julia -e $(code)`; wait = false)
wait(p)
@test !success(p)
end
end
end
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 1104 | # DockerSandbox.jl
[](https://JuliaContainerization.github.io/DockerSandbox.jl/stable)
[](https://JuliaContainerization.github.io/DockerSandbox.jl/dev)
[](https://codecov.io/gh/JuliaContainerization/DockerSandbox.jl)
| Julia | CI |
| ------- | -- |
| v1 | [](https://github.com/JuliaContainerization/DockerSandbox.jl/actions/workflows/ci.yml) |
| nightly | [](https://github.com/JuliaContainerization/DockerSandbox.jl/actions/workflows/ci_julia_nightly.yml) |
DockerSandbox.jl is a package for running Julia `Cmd` objects inside of Docker containers.
Please see the [documentation](https://JuliaContainerization.github.io/DockerSandbox.jl/stable).
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 613 | ```@meta
CurrentModule = DockerSandbox
```
# Examples
## Simple Example
```@example
using DockerSandbox
config = DockerConfig(; base_image = "julia:latest");
with_container() do container
code = """
println("Hello world!")
"""
run(container, config, `julia -e $(code)`)
end
```
## Interactive Example
```julia
julia> using DockerSandbox
julia> config = DockerConfig(;
base_image = "julia:latest",
Base.stdin,
Base.stdout,
Base.stderr,
);
julia> with_container() do container
run(container, config, `/bin/bash`)
end
```
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 462 | ```@meta
CurrentModule = DockerSandbox
```
# [DockerSandbox.jl](https://github.com/JuliaContainerization/DockerSandbox.jl)
DockerSandbox.jl is a package for running Julia `Cmd` objects inside of Docker containers.
The source code for this package is available in the
[GitHub repository](https://github.com/JuliaContainerization/DockerSandbox.jl).
## Related Packages
You may also be interested in:
1. [Sandbox.jl](https://github.com/staticfloat/Sandbox.jl)
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 140 | ```@meta
CurrentModule = DockerSandbox
```
# Internals (Private)
```@autodocs
Modules = [DockerSandbox]
Public = false
Private = true
```
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 110 | ```@meta
CurrentModule = DockerSandbox
```
# Prerequisites
You must have Docker installed on your computer.
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 1.0.0 | 0fa0cbf109b2b9c55a0e998e313092fb355f0231 | docs | 131 | ```@meta
CurrentModule = DockerSandbox
```
# Public API
```@autodocs
Modules = [DockerSandbox]
Public = true
Private = false
```
| DockerSandbox | https://github.com/JuliaContainerization/DockerSandbox.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 610 | using ComplexDiff
using Documenter
DocMeta.setdocmeta!(ComplexDiff, :DocTestSetup, :(using ComplexDiff); recursive=true)
makedocs(;
modules=[ComplexDiff],
authors="Qingyu Qu",
repo="https://github.com/ErikQQY/ComplexDiff.jl/blob/{commit}{path}#{line}",
sitename="ComplexDiff.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://ErikQQY.github.io/ComplexDiff.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/ErikQQY/ComplexDiff.jl",
devbranch="main",
)
| ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 277 | module ComplexDiff
include("unicomplex.jl")
include("bicomplex.jl")
include("tricomplex.jl")
include("quadcomplex.jl")
include("pentacomplex.jl")
export bicomplex, tricomplex, quadcomplex, pentacomplex
export biderivative, triderivative, quadderivative, pentaderivative
end
| ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 3575 | import Base: sin, cos, tan, cot, sec, csc, atan
import Base: sinh, cosh, tanh, coth, sech, csch
import Base: abs, exp, log, zero
import Base: +, -, *, /, ^
## By constructing bicomplex, we can represent multi-complex numbers using recursion
struct bicomplex
i1
i2
end
"""
Using matrix to represent bicomplex.
"""
function mat(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
return [i1 -i2; i2 i1]
end
function mat2bicomplex(matrix)
out1, out2 = matrix[1, 1], matrix[2, 1]
return bicomplex(out1, out2)
end
## Basic operators: +, -, *, /, ^
function +(bi1::bicomplex, bi2::bicomplex)
result = mat(bi1)+mat(bi2)
return mat2bicomplex(result)
end
function +(bi::bicomplex, n)
result = n .+mat(bi)
return mat2bicomplex(result)
end
function +(n, bi::bicomplex)
result = n .+mat(bi)
return mat2bicomplex(result)
end
function -(bi1::bicomplex, bi2::bicomplex)
result = mat(bi1)-mat(bi2)
return mat2bicomplex(result)
end
function -(bi::bicomplex, n)
result = mat(bi).-n
return mat2bicomplex(result)
end
function -(bi::bicomplex)
result = -mat(bi)
return mat2bicomplex(result)
end
function *(bi1::bicomplex, bi2::bicomplex)
result = mat(bi1)*mat(bi2)
return mat2bicomplex(result)
end
function *(n, bi::bicomplex)
result = n*mat(bi)
return mat2bicomplex(result)
end
function *(bi::bicomplex, n)
result = n*mat(bi)
return mat2bicomplex(result)
end
function /(bi1::bicomplex, bi2::bicomplex)
result=mat(bi1)/mat(bi2)
return mat2bicomplex(result)
end
function /(n, bi::bicomplex)
result= n*inv(mat(bi))
return mat2bicomplex(result)
end
function /(bi::bicomplex, n)
result=mat(bi)/n
return mat2bicomplex(result)
end
function ^(bi::bicomplex, power)
result = mat(bi)^power
return mat2bicomplex(result)
end
function zero(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
return bicomplex(zero(i1), zero(i2))
end
## Basic functions: abs, exp, log
function abs(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
return sqrt(i1^2+i2^2)
end
function exp(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
out1 = exp(i1)*cos(i2)
out2 = exp(i1)*sin(i2)
return bicomplex(out1, out2)
end
## Basic math functions: sin, cos, tan, cot, sec, csc
function sin(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
out1 = cosh(i2)*sin(i1)
out2 = sinh(i2)*cos(i1)
return bicomplex(out1, out2)
end
function cos(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
out1 = cosh(i2)*cos(i1)
out2 = -sinh(i2)*sin(i1)
return bicomplex(out1, out2)
end
function tan(bi::bicomplex)
return sin(bi)/cos(bi)
end
function cot(bi::bicomplex)
return cos(bi)/sin(bi)
end
function sec(bi::bicomplex)
return 1/cos(bi)
end
function csc(bi::bicomplex)
return 1/sin(bi)
end
## Basic hyperbolic functions: sinh, cosh, tanh, coth, sech, csch
function sinh(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
out1 = cosh(i1)*cos(i2)
out2 = sinh(i1)*sin(i2)
return bicomplex(out1, out2)
end
function cosh(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
out1 = sinh(i1)*cos(i2)
out2 = cosh(i1)*sin(i2)
return bicomplex(out1, out2)
end
function tanh(bi::bicomplex)
return sinh(bi)/cosh(bi)
end
function coth(bi::bicomplex)
return cosh(bi)/sinh(bi)
end
function sech(bi::bicomplex)
return 1/cosh(bi)
end
function csch(bi::bicomplex)
return 1/sinh(bi)
end
function image2(bi::bicomplex)
i1, i2 = bi.i1, bi.i2
return imag(i2)
end
function biderivative(f, point, h)
result = image2(f(bicomplex(point+im*h, h)))/h^2
return result
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 3465 | import Base: sin, cos, tan, cot, sec, csc, atan
import Base: sinh, cosh, tanh, coth, sech, csch
import Base: abs, exp, log
import Base: +, -, *, /, ^
struct pentacomplex
i1
i2
end
function mat(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
return [i1 -i2; i2 i1]
end
function mat2pentacomplex(matrix)
out1, out2 = matrix[1, 1], matrix[2, 1]
return pentacomplex(out1, out2)
end
## Basic operators: +, -, *, /, ^
function +(penta1::pentacomplex, penta2::pentacomplex)
result=mat(penta1)+mat(penta2)
return mat2pentacomplex(result)
end
function +(n, penta::pentacomplex)
result=n .+mat(penta)
return mat2pentacomplex(result)
end
function +(penta::pentacomplex, n)
result=n .+mat(penta)
return mat2pentacomplex(result)
end
function -(penta1::pentacomplex, penta2::pentacomplex)
result=mat(penta1)-mat(penta2)
return mat2pentacomplex(result)
end
function -(n, penta::pentacomplex)
result = n .-mat(penta)
return mat2pentacomplex(result)
end
function -(penta::pentacomplex)
result=-mat(penta)
return mat2pentacomplex(result)
end
function *(penta1::pentacomplex, penta2::pentacomplex)
result=mat(penta1)*mat(penta2)
return mat2pentacomplex(result)
end
function *(n, penta::pentacomplex)
result = n*mat(penta)
return mat2pentacomplex(result)
end
function /(penta1::pentacomplex, penta2::pentacomplex)
result=mat(penta1)/mat(penta2)
return mat2pentacomplex(result)
end
function ^(penta::pentacomplex, power)
result=mat(penta)^power
return mat2pentacomplex(result)
end
## Basic functions: abs, exp, log
function abs(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
return sqrt(i1^2+i2^2)
end
function exp(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
out1 = exp(i1)*cos(i2)
out2 = exp(i1)*sin(i2)
return pentacomplex(out1, out2)
end
## Basic math functions: sin, cos, tan, cot, sec, csc
function sin(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
out1 = cosh(i2)*sin(i1)
out2 = sinh(i2)*cos(i1)
return pentacomplex(out1, out2)
end
function cos(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
out1 = cosh(i2)*cos(i1)
out2 = -sinh(i2)*sin(i1)
return pentacomplex(out1, out2)
end
function tan(penta::pentacomplex)
return sin(penta)/cos(penta)
end
function cot(penta::pentacomplex)
return cos(penta)/sin(penta)
end
function sec(penta::pentacomplex)
return 1/cos(penta)
end
function csc(penta::pentacomplex)
return 1/sin(penta)
end
## Basic hyperbolic functions: sinh, cosh, tanh, coth, sech, csch
function sinh(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
out1 = cosh(i1)*cos(i2)
out2 = sinh(i1)*sin(i2)
return pentacomplex(out1, out2)
end
function cosh(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
out1 = sinh(i1)*cos(i2)
out2 = cosh(i1)*sin(i2)
return pentacomplex(out1, out2)
end
function tanh(penta::pentacomplex)
return sinh(penta)/cosh(penta)
end
function coth(penta::pentacomplex)
return cosh(penta)/sinh(penta)
end
function sech(penta::pentacomplex)
return 1/cosh(penta)
end
function csch(penta::pentacomplex)
return 1/sinh(penta)
end
function image5(penta::pentacomplex)
i1, i2 = penta.i1, penta.i2
return image4(i2)
end
function pentaderivative(f, point, h)
result = image5(f(pentacomplex(quadcomplex(tricomplex(bicomplex(point+im*h, h), h), h), h)))/h^5
return result
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 3732 | import Base: sin, cos, tan, cot, sec, csc, atan
import Base: sinh, cosh, tanh, coth, sech, csch
import Base: abs, exp, log, zero, one
import Base: +, -, *, /, ^
struct quadcomplex
i1
i2
end
function mat(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
return [i1 -i2; i2 i1]
end
function mat2quadcomplex(matrix)
out1, out2 = matrix[1, 1], matrix[2, 1]
return quadcomplex(out1, out2)
end
## Basic operators: +, -, *, /, ^
function +(quad1::quadcomplex, quad2::quadcomplex)
result=mat(quad1)+mat(quad2)
return mat2quadcomplex(result)
end
function +(n, quad::quadcomplex)
result=n .+mat(quad)
return mat2quadcomplex(result)
end
function +(quad::quadcomplex, n)
result=n .+mat(quad)
return mat2quadcomplex(result)
end
function -(quad1::quadcomplex, quad2::quadcomplex)
result=mat(quad1)-mat(quad2)
return mat2quadcomplex(result)
end
function -(n, quad::quadcomplex)
result=n .-mat(quad)
return mat2quadcomplex(result)
end
function -(quad::quadcomplex)
result=-mat(quad)
return mat2quadcomplex(result)
end
function *(quad1::quadcomplex, quad2::quadcomplex)
result=mat(quad1)*mat(quad2)
return mat2quadcomplex(result)
end
function *(n, quad::quadcomplex)
result = n*mat(quad)
return mat2quadcomplex(result)
end
function *(quad::quadcomplex, n)
result = n*mat(quad)
return mat2quadcomplex(result)
end
function /(quad1::quadcomplex, quad2::quadcomplex)
result=mat(quad1)/mat(quad2)
return mat2quadcomplex(result)
end
function /(n, quad::quadcomplex)
result=n*inv(quad)
return result
end
function ^(quad::quadcomplex, power)
result=mat(quad)^power
return mat2quadcomplex(result)
end
function zero(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
return quadcomplex(zero(i1), zero(i2))
end
function one(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
return quadcomplex(one(i1), one(i2))
end
## Basic functions: abs, exp, log
function abs(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
return sqrt(i1^2+i2^2)
end
function exp(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
out1 = exp(i1)*cos(i2)
out2 = exp(i1)*sin(i2)
return quadcomplex(out1, out2)
end
## Basic math functions: sin, cos, tan, cot, sec, csc
function sin(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
out1 = cosh(i2)*sin(i1)
out2 = sinh(i2)*cos(i1)
return quadcomplex(out1, out2)
end
function cos(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
out1 = cosh(i2)*cos(i1)
out2 = -sinh(i2)*sin(i1)
return quadcomplex(out1, out2)
end
function tan(quad::quadcomplex)
return sin(quad)/cos(quad)
end
function cot(quad::quadcomplex)
return cos(quad)/sin(quad)
end
function sec(quad::quadcomplex)
return 1/cos(quad)
end
function csc(quad::quadcomplex)
return 1/sin(quad)
end
## Basic hyperbolic functions: sinh, cosh, tanh, coth, sech, csch
function sinh(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
out1 = cosh(i1)*cos(i2)
out2 = sinh(i1)*sin(i2)
return quadcomplex(out1, out2)
end
function cosh(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
out1 = sinh(i1)*cos(i2)
out2 = cosh(i1)*sin(i2)
return quadcomplex(out1, out2)
end
function tanh(quad::quadcomplex)
return sinh(quad)/cosh(quad)
end
function coth(quad::quadcomplex)
return cosh(quad)/sinh(quad)
end
function sech(quad::quadcomplex)
return 1/cosh(quad)
end
function csch(quad::quadcomplex)
return 1/sinh(quad)
end
function image4(quad::quadcomplex)
i1, i2 = quad.i1, quad.i2
return image3(i2)
end
function quadderivative(f, point, h)
result = image4(f(quadcomplex(tricomplex(bicomplex(point+im*h, h), h), h)))/h^4
return result
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 3502 | import Base: sin, cos, tan, cot, sec, csc, atan
import Base: sinh, cosh, tanh, coth, sech, csch
import Base: abs, exp, log, zero
import Base: +, -, *, /, ^
struct tricomplex
i1#::bicomplex
i2
end
function mat(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
return [i1 -i2; i2 i1]
end
function mat2tricomplex(matrix)
out1, out2 = matrix[1, 1], matrix[2, 1]
return tricomplex(out1, out2)
end
## Basic operators: +, -, *, /, ^
function +(tri1::tricomplex, tri2::tricomplex)
result = mat(tri1)+mat(tri2)
return mat2tricomplex(result)
end
function +(n, tri::tricomplex)
result = n .+mat(tri)
return mat2tricomplex(result)
end
function +(tri::tricomplex, n)
result = n .+mat(tri)
return mat2tricomplex(result)
end
function -(tri1::tricomplex, tri2::tricomplex)
result=mat(tri1)-mat(tri2)
return mat2tricomplex(result)
end
-(tri::tricomplex)=mat2tricomplex(-mat(tri))
function *(tri1::tricomplex, tri2::tricomplex)
result=mat(tri1)*mat(tri2)
return mat2tricomplex(result)
end
function *(n, tri::tricomplex)
result = n*mat(tri)
return mat2tricomplex(result)
end
function *(tri::tricomplex, n)
result = n*mat(tri)
return mat2tricomplex(result)
end
function /(tri1::tricomplex, tri2::tricomplex)
result=mat(tri1)-mat(tri2)
return mat2tricomplex(result)
end
function /(n, tri::tricomplex)
result=n*inv(mat(tri))
return mat2tricomplex(result)
end
function /(tri::tricomplex, n)
result=mat(tri)/n
return mat2tricomplex(result)
end
function ^(tri::tricomplex, power)
result=mat(tri)^power
return mat2tricomplex(result)
end
function zero(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
return tricomplex(zero(i1), zero(i2))
end
function abs(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
return sqrt(i1^2+i2^2)
end
function sin(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
out1 = cosh(i2)*sin(i1)
out2 = sinh(i2)*cos(i1)
return tricomplex(out1, out2)
end
function cos(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
out1 = cosh(i2)*cos(i1)
out2 = -sinh(i2)*sin(i1)
return tricomplex(out1, out2)
end
function tan(tri::tricomplex)
return sin(tri)/cos(tri)
end
function cot(tri::tricomplex)
return cos(tri)/sin(tri)
end
function sec(tri::tricomplex)
return 1/cos(tri)
end
function csc(tri::tricomplex)
return 1/sin(tri)
end
## Basic functions: abs, exp, log
function abs(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
return sqrt(i1^2+i2^2)
end
function exp(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
out1 = exp(i1)*cos(i2)
out2 = exp(i1)*sin(i2)
return tricomplex(out1, out2)
end
## Basic hyperbolic functions: sinh, cosh, tanh, coth, sech, csch
function sinh(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
out1 = cosh(i1)*cos(i2)
out2 = sinh(i1)*sin(i2)
return tricomplex(out1, out2)
end
function cosh(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
out1 = sinh(i1)*cos(i2)
out2 = cosh(i1)*sin(i2)
return tricomplex(out1, out2)
end
function tanh(tri::tricomplex)
return sinh(tri)/cosh(tri)
end
function coth(tri::tricomplex)
return cosh(tri)/sinh(tri)
end
function sech(tri::tricomplex)
return 1/cosh(tri)
end
function csch(tri::tricomplex)
return 1/sinh(tri)
end
function image3(tri::tricomplex)
i1, i2 = tri.i1, tri.i2
return image2(i2)
end
function triderivative(f, point, h)
result = image3(f(tricomplex(bicomplex(point+im*h, h), h)))/h^3
return result
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 69 | function derivative(f, point, h)
return imag(f(point+im*h))/h
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 241 | using ComplexDiff
using Test
@testset "Test Second Order Derivative" begin
@test isapprox(biderivative(x->x^2, 1, 0.00001), 2; atol=1e-5)
@test isapprox(biderivative(x->1/sin(x), 1, 0.000001), 1/2*(3+cos(2))*csc(1)^3; atol=1e-5)
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 151 | using ComplexDiff
using Test
@testset "Test Second Order Derivative" begin
@test isapprox(quadderivative(sin, 1, 0.000001), sin(1); atol=1e-5)
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 165 | using ComplexDiff
using Test
@testset "ComplexDiff.jl" begin
include("bicomplextest.jl")
include("tricomplextest.jl")
include("quadcomplextest.jl")
end
| ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | code | 288 | using ComplexDiff
using Test
@testset "Test Third Order Derivative" begin
@test isapprox(triderivative(sin, 1, 0.00001), -cos(1); atol=1e-5)
@test isapprox(triderivative(x->x^3, 1, 0.00001), 6; atol=1e-5)
@test isapprox(triderivative(x->x^4, 1, 0.0000001), 24; atol=1e-5)
end | ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | docs | 670 | # ComplexDiff
[](https://ErikQQY.github.io/ComplexDiff.jl/stable)
[](https://ErikQQY.github.io/ComplexDiff.jl/dev)
[](https://github.com/ErikQQY/ComplexDiff.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/ErikQQY/ComplexDiff.jl)
ComplexDiff.jl fully utilize the complex step differentiation to compute accurate and high order derivative.
| ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 0.1.0 | f50bb0aaaa1ac0d2473fc37922718a01ed1ff4b1 | docs | 190 | ```@meta
CurrentModule = ComplexDiff
```
# ComplexDiff
Documentation for [ComplexDiff](https://github.com/ErikQQY/ComplexDiff.jl).
```@index
```
```@autodocs
Modules = [ComplexDiff]
```
| ComplexDiff | https://github.com/ErikQQY/ComplexDiff.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 919 | using ImageMethodReverb, Random, WAV, LinearAlgebra
Fs = 16e3 # sampling frequency
T60 = 0.9 # reverberation time
xs = [1, 2, 2] #src pos (in meters)
xr = [2, 1.5, 1] #mic pos
L = Lx, Ly, Lz = 4.,4.,4. # room dimensions in meters
Nt = round(Int,Fs) #time samples 1 sec
h_se, = rim(xs,xr,L,0.93.*ones(6),Nt,Fs; Rd=0) # with sweeping echo
h, = rim(xs,xr,L,0.93.*ones(6),Nt,Fs) # without sweeping echo
wavplay(0.8 .* h_se ./ norm(h,Inf),Fs)
wavplay(0.8 .* h ./ norm(h,Inf),Fs)
using Plots, FFTW
f = rfftfreq(Nt,Fs)
t = range(0; length = Nt, step = 1/Fs )
p1 = plot(t, h_se, xlabel="Time (t)", ylabel="Sound Pressure (Pa)")
plot!(p1, t, h)
p2 = plot(f, 10 .* log10.(abs.(rfft(h_se))),
xlabel="Frequency (Hz)",
ylabel="Sound Pressure (dB)",
xlim=[50;500],
)
plot!(p2, f, 10 .* log10.(abs.(rfft(h))))
plot(p1,p2)
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 124 | __precompile__()
module ImageMethodReverb
using Random, LinearAlgebra
include("rim_solver.jl")
include("utils.jl")
end
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 5063 | export rim
"""
`h, seed = rim(xs, xr, L, T60, Nt, Fs)`
Computes a synthetic acoustic room impulse response (RIR).
#### Arguments:
* `xs` : source position (m)
* `xr` : microphone position (m)
* `L` : room dimensions (m)
* `beta`/`T60` : 6 element containing reflection coefficients of walls/reverberation time
* `Nt` : length of the RIR (samples)
* `Fs` : sampling frequency (Hz)
#### Keyword Arguments:
* `c = 343` : speed of sound (m/s)
* `Rd = 1e-1` : random displacement (m)
* `N = (0,0,0)`: 3 element representing order of reflection when `N == (0,0,0)` full order is computed.
* `Tw = 20` : taps of fractional delay filter (samples)
* `Fc = 0.9` : cut-off frequency of fractional delay filter (samples)
* `T=Float64` : data type
#### Outputs:
* `h`: vector or matrix where each column is an impulse response or the sound pressure if `s` was specified corresponding to the microphone positions `xr`
* `seed`: randomization seed to preserve spatial properties when other RIR at different position are needed
"""
function rim(xs,
xr,
L,
beta,
Nt::Int,
Fs;
c = 343,
Rd = 8e-2,
seed = 1234,
N = (0,0,0),
Tw = 20,
Fc = 0.9,
T = Float64,
)
if length(xs) != 3
throw(ErrorException("length(xs) must be equal to 3"))
end
if length(xr) != 3
throw(ErrorException("length(xr) must be equal to 3"))
end
if length(L) != 3
throw(ErrorException("length(L) must be equal to 3"))
end
if length(N) != 3
throw(ErrorException("length(L) must be equal to 3"))
end
if any( xs .> L ) || any( xs .< 0 )
throw(ErrorException("xs outside of room"))
end
if any( xr .> L ) || any( xr .< 0 )
throw(ErrorException("xr outside of room"))
end
if any(N .< 0 )
throw(ErrorException("N should be positive"))
end
if any( (typeof(n) <: Int) == false for n in N )
throw(ErrorException("N should be integers only"))
end
if length(beta) == 1 # T60
beta = revTime2beta(L, beta, c)
end
if length(beta) != 6
throw(ErrorException("beta must be either of length 1 or 6"))
end
Fsc = T(Fs/c)
L = Array{T}([L.*(Fsc*2)...]) # remove units
xr = Array{T}([xr.*Fsc...])
xs = Array{T}([xs.*Fsc...])
beta = Array{T}([beta...])
N = [N...]
Rd = T(Rd *Fsc)
h = zeros(T,Nt) # initialize output
pos_is = zeros(T,3)
if( all(N .== 0) )
N = floor.(Int, Nt./L).+1 # compute full order
end
Random.seed!(seed)
run_rim!(h, xs, xr, pos_is, L, beta, N, T(Rd), Fc, Tw, Nt)
h .*= Fsc
return h, seed
end
# with fractional delay
function run_rim!(h::V,
xs::V,
xr::V,
pos_is::V,
L::V,
beta::V,
N::VI,
Rd::T,
Fc::T,
Tw::I,
Nt::I,
) where {T <: AbstractFloat,
V <: AbstractArray{T},
I <: Integer,
VI <: AbstractArray{I},
}
beta_pow = zeros(I,6)
for u = 0:1, v = 0:1, w = 0:1
for l = -N[1]:N[1], m = -N[2]:N[2], n = -N[3]:N[3]
if (l ==0 && m == 0 && n == 0 && u == 0 && v == 0 && w == 0)
# we have direct path, so
# no displacement is added
RD = 0.0
else
RD = Rd
end
# compute distance
pos_is[1] = xs[1]-2*u*xs[1]+l*L[1]+RD*randn()
pos_is[2] = xs[2]-2*v*xs[2]+m*L[2]+RD*randn()
pos_is[3] = xs[3]-2*w*xs[3]+n*L[3]+RD*randn()
# position of image source
d = norm( pos_is .-xr )+1 + Rd
id = round(Int64,d)
if (id > Nt || id < 1)
#if index not exceed length h
continue
end
A = get_amplitude!(beta, beta_pow, l,m,n, u,v,w, d)
if Tw == 0
h[id] += A
else
add_sinc_delay!(h, d, A, Tw, Fc, Nt)
end
end
end
return h
end
# fractional delay
function add_sinc_delay!(h::Array{T},
d::T,
A::T,
Tw::I,
Fc::T,
Nt::I) where {T <: AbstractFloat, I <: Integer}
# create time window
indx = max(ceil(I,d.-Tw/2),1):min(floor(I,d.+Tw/2),Nt)
# compute filtered impulse
A2 = A/2
@inbounds @simd for i in indx
h[i] += A2 *( 1.0 + cos(2*π*(i-d)/Tw) )*sinc(Fc*(i-d))
end
return h
end
function get_amplitude!(beta::Array{T},
beta_pow::Array{I},
l::I,m::I,n::I,
u::I,v::I,w::I,
d::T) where {I <: Integer,
T <: AbstractFloat}
beta_pow[1] = abs(l-u)
beta_pow[2] = abs(l)
beta_pow[3] = abs(m-v)
beta_pow[4] = abs(m)
beta_pow[5] = abs(n-w)
beta_pow[6] = abs(n)
A = one(T)
for i in eachindex(beta)
A *= beta[i]^beta_pow[i]
end
A /= (4*π*(d-1))
return A
end
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 1050 | export revTime
"""
`revTime(h::AbstractVector, Fs::Number)`
Returns the T60 of the impulse response `h` with sampling frequency `Fs`.
"""
function revTime(h::AbstractVector,Fs::Number)
cs = cumsum(reverse(h.^2, dims = 1), dims = 1)
edc = 10*log10.(reverse(cs./cs[end], dims = 1)) #energy decay curve
rt = zeros(Float64,size(h,2))
for i = 1:size(h,2)
ind = findfirst(edc[:,i] .<= -60. )
if ind == 0
rt[i] = size(h,1)/Fs
else
rt[i] = ind/Fs
end
end
return rt, edc
end
"""
`revTime2beta( (Lx,Ly,Lz), T60, c = 343)`
Given the reverberation time in T60 in a cuboid room with volume `Lx` x `Ly` x `Lz` returns a 6-long vector containing the reflection coefficients (β) of each wall surface.
"""
function revTime2beta(L, T60, c)
if(T60 < 0) error("T60 should be positive") end
Lx, Ly, Lz = L
S = 2*( Lx*Ly+Lx*Lz+Ly*Lz ) # Total surface area
V = prod([Lx;Ly;Lz])
α = 1-exp(-(24*V*log(10))/(c*T60*S)) # Absorption coefficient
β =-sqrt(abs(1-α)).*ones(6) # Reflection coefficient
return β
end
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 286 | using ImageMethodReverb
using Test
using LinearAlgebra
using DelimitedFiles, Random
@testset "ImageMethodReverb" begin
@testset "Image source method" begin
include("test_ism.jl")
end
@testset "equivalence with MATLAB" begin
include("test_julia_vs_matlab.jl")
end
end
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 2111 | #testing seed is preserved
Fs = 4e4 # Sampling frequency
c = 343 # create new acoustic env with default values
Nt = round(Int64,0.1*Fs) # Number of time samples, 0.25 secs
L = (4., 4., 4.) # Room dimensions
Lx,Ly,Lz = L
xs = (2., 1.5, 1.) # Source position
xr = (1., 2., 2.) # Receiver position
T60 = 0.1 # Reverberation Time
beta = ImageMethodReverb.revTime2beta(L, T60, c)
Tw = 20 # samples of Low pass filter
Fc = 0.9 # cut-off frequency
println("testing β for a given T60 gives correct T60")
h, seed = rim(xs,xr,L,beta,Nt,Fs; N = (4,4,4))
rt, edc = revTime(h, Fs)
@test norm(rt.-T60)/norm(T60)< 0.25 #testing rev time
println("testing seed is preserved")
h2, = rim(xs,xr,L,beta,Nt,Fs; N = (4,4,4), seed = seed)
@test norm(h-h2) < 1e-8
println("testing calls")
# with T60
h2, = rim(xs,xr,L,T60,Nt,Fs; N = (4,4,4), seed = seed)
@test norm(h-h2) < 1e-8
## original image source method
println("test with no fractional delay")
xs = (2., 1.5, 1.) # Source position
xr = (1., 2., 2.) # Receiver position
h2, = rim(xs,xr,L,beta,Nt,Fs; Tw = 0, Fc = 0., N = (4,4,4), seed = seed)
println("test line of sight")
xs = (1., 1., 1.)
for i = 1:10
d = (0.2 .*randn(3)...,) # dandom dispacement
h_rand, = rim(xs, xs .+ d, L, 0.001, Nt,Fs; Rd = 1e-1, N = (0,0,0))
@test argmax(h_rand)*1/Fs - norm(xr .- xs)/343 < 1e-4
end
# testing errors
L, xr, xs = (1,1,1), (0.5,0.5,0.5),(0.7,0.7,0.7)
@test_throws ErrorException rim((0.1,), xr, L, beta, Nt,Fs)
@test_throws ErrorException rim((1.1,0,0), xr, L, beta, Nt,Fs)
@test_throws ErrorException rim(xs,(0.1,), L, beta, Nt,Fs)
@test_throws ErrorException rim(xs,(1.1,0,0), L, beta, Nt,Fs)
@test_throws ErrorException rim(xs,xr,(0,0), beta, Nt,Fs)
@test_throws ErrorException rim(xs,xr,L, beta, Nt,Fs; N=(-1,1,1))
@test_throws ErrorException rim(xs,xr,L, beta, Nt,Fs; N=(1,1))
@test_throws ErrorException rim(xs,xr,L, beta, Nt,Fs; N=(1,1))
@test_throws ErrorException rim(xs,xr,L, beta, Nt,Fs; N=(1.5,1,1))
@test_throws ErrorException rim(xs,xr,L, (1,1), Nt,Fs)
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | code | 709 | # testing output of this implementation with the one
# of Enzo de Sena: http://www.desena.org/sweep/
Fs = 4e4 # Sampling frequency
c = 343 # create new acoustic env with default values
Nt = round(Int64,4E4/4) # Number of time samples
xs = (2.,1.5,1.) # Source position
xr = (1.,2.,2.) # Receiver position
L = (4.,4.,4.) # Room dimensions
beta = 0.93.*(ones(6)...,) # Reflection coefficient
Rd = 0.00 # random displacement
Tw = 40 # samples of Low pass filter
Fc = 0.9 # cut-off frequency
# generate IR with randomization
h, = rim(xs,xr,L,beta,Nt,Fs; Tw = Tw, Fc = Fc, Rd = Rd)
hm = readdlm("h.txt")
@test norm(hm-h)<1e-8
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 1.1.0 | 88866a0ccca8df6cd2414ce0dc0660b56b975ccb | docs | 1654 | # Image Method Reverb
[](https://zenodo.org/badge/latestdoi/31613348)
[](https://github.com/nantonel/ImageMethodReverb.jl/actions?query=workflow%3ACI)
[](http://codecov.io/github/nantonel/ImageMethodReverb.jl?branch=master)
Acoustic Room Impulse Response (RIR) generator using the (Randomized) Image Method for rectangular rooms. Convolving a RIR with an audio file adds reverberation.
## Installation
To install the package, hit `]` from the Julia command line to enter the package manager, then
```julia
pkg> add ImageMethodReverb
```
See the demo folder for some examples.
Type `?rim` for more details. By default the randomized image method from [1] is used. The original image method proposed in [2] can be reproduced as well by turning off the randomization and fractional delays.
## Other languages implementations
A MATLAB implementation of the Randomized Image Method can be found [here](https://github.com/enzodesena/rim).
## References
* [1] [E. De Sena, N. Antonello, M. Moonen, and T. van Waterschoot, "On the Modeling of
Rectangular Geometries in Room Acoustic Simulations", IEEE Transactions of Audio, Speech
Language Processing, vol. 21, no. 4, 2015.](http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7045580)
* [2] Allen, Jont B., and David A. Berkley. "Image method for efficiently simulating small‐room acoustics." The Journal of the Acoustical Society of America vol. 65 no. 4, 1979.
| ImageMethodReverb | https://github.com/nantonel/ImageMethodReverb.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 94 | # Copyright © 2021 Alexander L. Hayes
using Documenter
makedocs(sitename="ExportPublic.jl")
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 2058 | # Copyright © 2021 Alexander L. Hayes
# Copyright © 2019 John Tinnerhom
#=
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
=#
module ExportPublic
macro exportPublic()
inI = []
out = []
res = []
for name in Base.names(__module__, all = true)
push!(out, :(export $(name)))
end
for name in Base.names(__module__, all = false, imported = true)
push!(inI, :(export $(name)))
end
for name in Base.names(Main.Base, all = false, imported = true)
push!(inI, :(export $(name)))
end
for name in Base.names(Main.Core, all = false, imported = true)
push!(inI, :(export $(name)))
end
for e in out
if e in inI || e == :(export include) || '#' in string(e) || "_" == SubString(string(e), 8, 8)
continue
end
push!(res, :($(e)))
end
# Do not export things that we already have
ret = Expr(:block, res...)
return ret
end
@exportPublic()
end
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 237 | module Bar
using ExportPublic
function foo()
1
end
function bar()
2
end
function barBar()
3
end
function fooFoo()
_secret_implementation_detail()
end
function _secret_implementation_detail()
4
end
@exportPublic()
end
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 331 | module DemoModule
using ExportPublic
function add(a, b)
# `add` is exported automatically
return _private_helper(a) + _private_helper(b)
end
function _private_helper(a)
# `_private_helper` should not be exported, so it's marked with a `_`
return a
end
@exportPublic()
end
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 426 | module SimpleMath
using ExportPublic
_secret_pi = 22/7
my_pi = _secret_pi
function add_two(a::Int, b::Int)
_implementation_detail(a) + _implementation_detail(b)
end
function _implementation_detail(a::Int)
a
end
function add_squared(a::Int, b::Int)
_square_it(a) + _square_it(b)
end
function _square_it(a::Int)
a ^ 2
end
@exportPublic()
end
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
|
[
"MIT"
] | 0.1.0 | 32ac213c415abaee7c6a36dd65bacf2c65b8836d | code | 958 | module ExportPublicTest
using Test
include("Bar.jl")
using .Bar
include("SimpleMath.jl")
using .SimpleMath
include("DemoModule.jl")
using .DemoModule
@testset "Bar.jl" begin
@test foo() == 1
@test bar() == 2
@test barBar() == 3
@test fooFoo() == 4
@test_throws UndefVarError _secret_implementation_detail()
end
@testset "SimpleMath.jl" begin
@test add_two(5, 5) == 10
@test add_two(10, 10) == 20
@test_throws UndefVarError _implementation_detail()
@test add_squared(1, 1) == 2
@test add_squared(2, 2) == 8
@test add_squared(4, 4) == 32
@test_throws UndefVarError _square_it()
@test my_pi == 22/7
@test_throws UndefVarError _secret_pi
end
@testset "DemoModule.jl" begin
@test add(5, 5) == 10
@test add(6, 6) == 12
@test_throws UndefVarError _private_helper()
end
end
| ExportPublic | https://github.com/hayesall/ExportPublic.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.