licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2269 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
AbsoluteUnits()
AbsoluteUnits(:)
Converts the units of all columns in the table to absolute units.
AbsoluteUnits(col₁, col₂, ..., colₙ)
AbsoluteUnits([col₁, col₂, ..., colₙ])
AbsoluteUnits((col₁, col₂, ..., colₙ))
Converts the units of selected columns `col₁`, `col₂`, ..., `colₙ` to absolute units.
AbsoluteUnits(regex)
Converts the units of columns that match with `regex` to absolute units.
# Examples
```julia
AbsoluteUnits()
AbsoluteUnits([2, 3, 5])
AbsoluteUnits([:b, :c, :e])
AbsoluteUnits(("b", "c", "e"))
AbsoluteUnits(r"[bce]")
```
"""
struct AbsoluteUnits{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
end
AbsoluteUnits() = AbsoluteUnits(AllSelector())
AbsoluteUnits(cols) = AbsoluteUnits(selector(cols))
AbsoluteUnits(cols::C...) where {C<:Column} = AbsoluteUnits(selector(cols))
isrevertible(::Type{<:AbsoluteUnits}) = true
_absunit(x) = _absunit(x, nonmissingtype(eltype(x)))
_absunit(x, ::Type) = (x, NoUnits)
_absunit(x, ::Type{Q}) where {Q<:AbstractQuantity} = (x, unit(Q))
function _absunit(x, ::Type{Q}) where {Q<:AffineQuantity}
u = unit(Q)
a = absoluteunit(u)
y = map(v -> uconvert(a, v), x)
(y, u)
end
function applyfeat(transform::AbsoluteUnits, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
tuples = map(names) do name
x = Tables.getcolumn(cols, name)
name ∈ snames ? _absunit(x) : (x, NoUnits)
end
columns = first.(tuples)
units = last.(tuples)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (snames, units)
end
_revunit(x, ::Units) = x
_revunit(x, u::AffineUnits) = map(v -> uconvert(u, v), x)
function revertfeat(::AbsoluteUnits, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
snames, units = fcache
columns = map(names, units) do name, unit
x = Tables.getcolumn(cols, name)
name ∈ snames ? _revunit(x, unit) : x
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1931 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Assert(; cond, msg="")
Asserts all columns of the table by throwing a `AssertionError(msg)`
if `cond(column)` returns `false`, otherwise returns the input table.
The `msg` argument can be a string, or a function that receives
the column name and returns a string, e.g.: `nm -> "error in column \$nm"`.
Assert(col₁, col₂, ..., colₙ; cond, msg="")
Assert([col₁, col₂, ..., colₙ]; cond, msg="")
Assert((col₁, col₂, ..., colₙ); cond, msg="")
Asserts the selected columns `col₁`, `col₂`, ..., `colₙ`.
Assert(regex; cond, msg="")
Asserts the columns that match with `regex`.
# Examples
```julia
Assert(cond=allunique, msg="assertion error")
Assert([2, 3, 5], cond=x -> sum(x) > 100)
Assert([:b, :c, :e], cond=x -> eltype(x) <: Integer)
Assert(("b", "c", "e"), cond=allunique, msg=nm -> "error in column \$nm")
Assert(r"[bce]", cond=x -> sum(x) > 100)
```
"""
struct Assert{S<:ColumnSelector,C,M} <: StatelessFeatureTransform
selector::S
cond::C
msg::M
end
Assert(selector::ColumnSelector; cond, msg="") = Assert(selector, cond, msg)
Assert(; kwargs...) = Assert(AllSelector(); kwargs...)
Assert(cols; kwargs...) = Assert(selector(cols); kwargs...)
Assert(cols::C...; kwargs...) where {C<:Column} = Assert(selector(cols); kwargs...)
isrevertible(::Type{<:Assert}) = true
function applyfeat(transform::Assert, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
cond = transform.cond
msg = transform.msg
msgfun = msg isa AbstractString ? _ -> msg : msg
for name in snames
x = Tables.getcolumn(cols, name)
_assert(cond(x), msgfun(name))
end
feat, nothing
end
revertfeat(::Assert, newfeat, fcache) = newfeat
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1170 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Center()
Applies the center transform to all columns of the table.
The center transform of the column `x`, with mean `μ`,
is defined by `x .- μ`.
Center(col₁, col₂, ..., colₙ)
Center([col₁, col₂, ..., colₙ])
Center((col₁, col₂, ..., colₙ))
Applies the Center transform on columns `col₁`, `col₂`, ..., `colₙ`.
Center(regex)
Applies the Center transform on columns that match with `regex`.
# Examples
```julia
Center(1, 3, 5)
Center([:a, :c, :e])
Center(("a", "c", "e"))
Center(r"[ace]")
```
"""
struct Center{S<:ColumnSelector} <: ColwiseFeatureTransform
selector::S
end
Center() = Center(AllSelector())
Center(cols) = Center(selector(cols))
Center(cols::C...) where {C<:Column} = Center(selector(cols))
assertions(transform::Center) = [scitypeassert(Continuous, transform.selector)]
isrevertible(::Type{<:Center}) = true
colcache(::Center, x) = mean(x)
colapply(::Center, x, μ) = @. x - μ
colrevert(::Center, y, μ) = @. y + μ
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1305 |
# ------------------------------------------------------------------
# Licensed under the MIT License. See LICENCE in the project root.
# ------------------------------------------------------------------
"""
Closure()
The transform that applies the closure operation (i.e. `x ./ sum(x)`),
to all rows of the input table. The rows of the output table sum to one.
See also [`Remainder`](@ref).
"""
struct Closure <: StatelessFeatureTransform end
isrevertible(::Type{Closure}) = true
assertions(::Closure) = [scitypeassert(Continuous)]
function applyfeat(::Closure, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
# table as matrix and get the sum acros dims 2
X = Tables.matrix(feat)
S = sum(X, dims=2)
# divides each row by its sum (closure operation)
Z = X ./ S
# table with the old columns and the new values
𝒯 = (; zip(names, eachcol(Z))...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, S
end
function revertfeat(::Closure, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
# table as matrix
Z = Tables.matrix(newfeat)
# retrieve cache
S = fcache
# undo operation
X = Z .* S
# table with original columns
𝒯 = (; zip(names, eachcol(X))...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1381 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Coalesce(; value)
Replaces all `missing` values from the table with `value`.
Coalesce(col₁, col₂, ..., colₙ; value)
Coalesce([col₁, col₂, ..., colₙ]; value)
Coalesce((col₁, col₂, ..., colₙ); value)
Replaces all missing values from the columns
`col₁`, `col₂`, ..., `colₙ` with `value`.
Coalesce(regex; value)
Replaces all missing values from the columns
that match with `regex` with `value`.
# Examples
```julia
Coalesce(value=0)
Coalesce(1, 3, 5, value=1)
Coalesce([:a, :c, :e], value=2)
Coalesce(("a", "c", "e"), value=3)
Coalesce(r"[ace]", value=4)
```
## Notes
* The transform can alter the element type of columns from `Union{Missing,T}` to `T`.
"""
struct Coalesce{S<:ColumnSelector,T} <: ColwiseFeatureTransform
selector::S
value::T
end
Coalesce(; value) = Coalesce(AllSelector(), value)
Coalesce(cols; value) = Coalesce(selector(cols), value)
Coalesce(cols::C...; value) where {C<:Column} = Coalesce(selector(cols), value)
parameters(transform::Coalesce) = (; value=transform.value)
isrevertible(::Type{<:Coalesce}) = false
colcache(::Coalesce, x) = nothing
colapply(transform::Coalesce, x, c) = coalesce.(x, transform.value)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2074 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Coerce(col₁ => S₁, col₂ => S₂, ..., colₙ => Sₙ)
Return a copy of the table, ensuring that the scientific types of the columns match the new specification.
Coerce(S)
Coerce all columns of the table with scientific type `S`.
This transform uses the `DataScienceTraits.coerce` function. Please see their docstring for more details.
# Examples
```julia
import DataScienceTraits as DST
Coerce(1 => DST.Continuous, 2 => DST.Continuous)
Coerce(:a => DST.Continuous, :b => DST.Continuous)
Coerce("a" => DST.Continuous, "b" => DST.Continuous)
```
"""
struct Coerce{S<:ColumnSelector,T} <: StatelessFeatureTransform
selector::S
scitypes::T
end
Coerce() = throw(ArgumentError("cannot create Coerce transform without arguments"))
Coerce(scitype::Type{<:SciType}) = Coerce(AllSelector(), scitype)
Coerce(pairs::Pair{C,DataType}...) where {C<:Column} = Coerce(selector(first.(pairs)), collect(last.(pairs)))
isrevertible(::Type{<:Coerce}) = true
_typedict(scitype::Type{<:SciType}, snames) = Dict(nm => scitype for nm in snames)
_typedict(scitypes::AbstractVector, snames) = Dict(zip(snames, scitypes))
function applyfeat(transform::Coerce, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
types = Tables.schema(feat).types
snames = transform.selector(names)
typedict = _typedict(transform.scitypes, snames)
columns = map(names) do name
x = Tables.getcolumn(cols, name)
name ∈ snames ? coerce(typedict[name], x) : x
end
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, types
end
function revertfeat(::Coerce, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
columns = map(fcache, names) do T, n
x = Tables.getcolumn(cols, n)
collect(T, x)
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 520 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ColTable()
The transform that applies the function `Tables.columntable` to to the input table.
"""
struct ColTable <: StatelessFeatureTransform end
isrevertible(::Type{ColTable}) = true
applyfeat(::ColTable, feat, prep) = Tables.columntable(feat), feat
revertfeat(::ColTable, newfeat, fcache) = fcache
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1869 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Compose(; as=:CODA)
Converts all columns of the table into parts of a composition
in a new column named `as`, using the `CoDa.compose` function.
Compose(col₁, col₂, ..., colₙ; as=:CODA)
Compose([col₁, col₂, ..., colₙ]; as=:CODA)
Compose((col₁, col₂, ..., colₙ); as=:CODA)
Converts the selected columns `col₁`, `col₂`, ..., `colₙ` into parts of a composition.
Compose(regex; as=:CODA)
Converts the columns that match with `regex` into parts of a composition.
# Examples
```julia
Compose(as=:comp)
Compose([2, 3, 5])
Compose([:b, :c, :e])
Compose(("b", "c", "e"))
Compose(r"[bce]", as="COMP")
```
"""
struct Compose{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
as::Symbol
end
Compose(selector::ColumnSelector; as=:CODA) = Compose(selector, Symbol(as))
Compose(; kwargs...) = Compose(AllSelector(); kwargs...)
Compose(cols; kwargs...) = Compose(selector(cols); kwargs...)
Compose(cols::C...; kwargs...) where {C<:Column} = Compose(selector(cols); kwargs...)
isrevertible(::Type{<:Compose}) = true
function applyfeat(transform::Compose, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
as = transform.as
newfeat = compose(feat, snames; as)
newfeat, (names, snames, as)
end
function revertfeat(::Compose, newfeat, fcache)
cols = Tables.columns(newfeat)
names, snames, as = fcache
coda = Tables.getcolumn(cols, as)
columns = map(names) do name
if name ∈ snames
Tables.getcolumn(coda, name)
else
Tables.getcolumn(cols, name)
end
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1419 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
DropConstant()
Drops the constant columns using the `allequal` function.
"""
struct DropConstant <: StatelessFeatureTransform end
isrevertible(::Type{DropConstant}) = true
function applyfeat(::DropConstant, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols) |> collect
# constant columns
cnames = filter(names) do name
x = Tables.getcolumn(cols, name)
allequal(x)
end
cinds = indexin(cnames, names)
cvalues = [first(Tables.getcolumn(cols, nm)) for nm in cnames]
# selected columns
snames = setdiff(names, cnames)
columns = [Tables.getcolumn(cols, nm) for nm in snames]
𝒯 = (; zip(snames, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (cinds, cnames, cvalues)
end
function revertfeat(::DropConstant, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols) |> collect
columns = Any[Tables.getcolumn(cols, name) for name in names]
cinds, cnames, cvalues = fcache
nrows = _nrows(newfeat)
for (i, cind) in enumerate(cinds)
insert!(names, cind, cnames[i])
insert!(columns, cind, fill(cvalues[i], nrows))
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2528 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
DropExtrema(; low=0.25, high=0.75)
Drops rows where any of the values in all columns
are outside the interval (`[quantile(col, low), quantile(col, high)]`).
DropExtrema(col₁, col₂, ..., colₙ; low=0.25, high=0.75)
DropExtrema([col₁, col₂, ..., colₙ]; low=0.25, high=0.75)
DropExtrema((col₁, col₂, ..., colₙ); low=0.25, high=0.75)
Drops rows where any of the values in columns `col₁`, `col₂`, ..., `colₙ`
are outside the interval.
DropExtrema(regex; low=0.25, high=0.75)
Drops rows where any of the values in columns that match with `regex`
are outside the interval.
# Examples
```julia
DropExtrema(low=0.3, high=0.7)
DropExtrema(1, low=0.3, high=0.7)
DropExtrema(:a, low=0.2, high=0.8)
DropExtrema("a", low=0.3, high=0.7)
DropExtrema(1, 3, 5, low=0, high=1)
DropExtrema([:a, :c, :e], low=0.3, high=0.7)
DropExtrema(("a", "c", "e"), low=0.25, high=0.75)
DropExtrema(r"[ace]", low=0.3, high=0.7)
```
"""
struct DropExtrema{S<:ColumnSelector,T} <: StatelessFeatureTransform
selector::S
low::T
high::T
function DropExtrema(selector::S, low::T, high::T) where {S<:ColumnSelector,T}
_assert(0 ≤ low ≤ high ≤ 1, "invalid quantiles")
new{S,T}(selector, low, high)
end
end
DropExtrema(selector::ColumnSelector, low, high) = DropExtrema(selector, promote(low, high)...)
DropExtrema(; low=0.25, high=0.75) = DropExtrema(AllSelector(), low, high)
DropExtrema(cols; low=0.25, high=0.75) = DropExtrema(selector(cols), low, high)
DropExtrema(cols::C...; low=0.25, high=0.75) where {C<:Column} = DropExtrema(selector(cols), low, high)
parameters(transform::DropExtrema) = (low=transform.low, high=transform.high)
isrevertible(::Type{<:DropExtrema}) = false
function preprocess(transform::DropExtrema, feat)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
limits = map(snames) do name
x = Tables.getcolumn(cols, name)
low = convert(eltype(x), transform.low)
high = convert(eltype(x), transform.high)
name => quantile(x, (low, high))
end
ftrans = Filter(row -> all(xl ≤ row[nm] ≤ xh for (nm, (xl, xh)) in limits))
fprep = preprocess(ftrans, feat)
ftrans, fprep
end
function applyfeat(::DropExtrema, feat, prep)
ftrans, fprep = prep
newfeat, _ = applyfeat(ftrans, feat, fprep)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2163 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
DropMissing()
DropMissing(:)
Drop all rows with missing values in table.
DropMissing(col₁, col₂, ..., colₙ)
DropMissing([col₁, col₂, ..., colₙ])
DropMissing((col₁, col₂, ..., colₙ))
Drop all rows with missing values in selected columns `col₁`, `col₂`, ..., `colₙ`.
DropMissing(regex)
Drop all rows with missing values in columns that match with `regex`.
# Examples
```julia
DropMissing()
DropMissing("b", "c", "e")
DropMissing([2, 3, 5])
DropMissing((:b, :c, :e))
DropMissing(r"[bce]")
```
## Notes
* The transform can alter the element type of columns from `Union{Missing,T}` to `T`.
* If the transformed column has only `missing` values, it will be converted to an empty column of type `Any`.
"""
struct DropMissing{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
end
DropMissing() = DropMissing(AllSelector())
DropMissing(cols) = DropMissing(selector(cols))
DropMissing(cols::C...) where {C<:Column} = DropMissing(selector(cols))
isrevertible(::Type{<:DropMissing}) = false
function preprocess(transform::DropMissing, feat)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
ftrans = Filter(row -> all(!ismissing(row[nm]) for nm in snames))
fprep = preprocess(ftrans, feat)
ftrans, fprep, snames
end
_nonmissing(x) = _nonmissing(eltype(x), x)
_nonmissing(::Type{T}, x) where {T} = x
_nonmissing(::Type{Missing}, x) = []
_nonmissing(::Type{Union{Missing,T}}, x) where {T} = collect(T, x)
function applyfeat(::DropMissing, feat, prep)
# apply filter transform
ftrans, fprep, snames = prep
newfeat, _ = applyfeat(ftrans, feat, fprep)
# drop Missing type
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
columns = map(names) do name
x = Tables.getcolumn(cols, name)
name ∈ snames ? _nonmissing(x) : x
end
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1351 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
DropNaN()
DropNaN(:)
Drop all rows with NaN values in table.
DropNaN(col₁, col₂, ..., colₙ)
DropNaN([col₁, col₂, ..., colₙ])
DropNaN((col₁, col₂, ..., colₙ))
Drop all rows with NaN values in selected columns `col₁`, `col₂`, ..., `colₙ`.
DropNaN(regex)
Drop all rows with NaN values in columns that match with `regex`.
# Examples
```julia
DropNaN(2, 3, 4)
DropNaN([:b, :c, :d])
DropNaN(("b", "c", "d"))
DropNaN(r"[bcd]")
```
"""
struct DropNaN{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
end
DropNaN() = DropNaN(AllSelector())
DropNaN(cols) = DropNaN(selector(cols))
DropNaN(cols::C...) where {C<:Column} = DropNaN(selector(cols))
isrevertible(::Type{<:DropNaN}) = false
_isnan(_) = false
_isnan(x::Number) = isnan(x)
function preprocess(transform::DropNaN, feat)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
ftrans = Filter(row -> all(!_isnan(row[nm]) for nm in snames))
fprep = preprocess(ftrans, feat)
ftrans, fprep
end
function applyfeat(::DropNaN, feat, prep)
ftrans, fprep = prep
applyfeat(ftrans, feat, fprep)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1985 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
DropUnits()
DropUnits(:)
Drop units from all columns in the table.
DropUnits(col₁, col₂, ..., colₙ)
DropUnits([col₁, col₂, ..., colₙ])
DropUnits((col₁, col₂, ..., colₙ))
Drop units from selected columns `col₁`, `col₂`, ..., `colₙ`.
DropUnits(regex)
Drop units from columns that match with `regex`.
# Examples
```julia
DropUnits()
DropUnits([2, 3, 5])
DropUnits([:b, :c, :e])
DropUnits(("b", "c", "e"))
DropUnits(r"[bce]")
```
"""
struct DropUnits{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
end
DropUnits() = DropUnits(AllSelector())
DropUnits(cols) = DropUnits(selector(cols))
DropUnits(cols::C...) where {C<:Column} = DropUnits(selector(cols))
isrevertible(::Type{<:DropUnits}) = true
_dropunit(x) = _dropunit(x, nonmissingtype(eltype(x)))
_dropunit(x, ::Type{Q}) where {Q<:AbstractQuantity} = (map(ustrip, x), unit(Q))
_dropunit(x, ::Type) = (x, NoUnits)
function applyfeat(transform::DropUnits, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
tuples = map(names) do name
x = Tables.getcolumn(cols, name)
name ∈ snames ? _dropunit(x) : (x, NoUnits)
end
columns = first.(tuples)
units = last.(tuples)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (snames, units)
end
_addunit(x, ::typeof(NoUnits)) = x
_addunit(x, u::Units) = map(v -> v * u, x)
function revertfeat(::DropUnits, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
snames, units = fcache
columns = map(names, units) do name, unit
x = Tables.getcolumn(cols, name)
name ∈ snames ? _addunit(x, unit) : x
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 5202 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
EigenAnalysis(proj; [maxdim], [pratio])
The eigenanalysis of the covariance with a given projection `proj`.
Optionally specify the maximum number of dimensions in the output
`maxdim` and the percentage of variance to retain `pratio`.
## Projections
* `:V` - Uncorrelated variables (PCA transform)
* `:VD` - Uncorrelated variables and variance one (DRS transform)
* `:VDV` - Uncorrelated variables and variance one (SDS transformation)
The `:V` projection used in the PCA transform projects the data on the eigenvectors
V of the covariance matrix.
The `:VD` projection used in the DRS transform. Similar to the `:V` projection,
but the eigenvectors are multiplied by the squared inverse of the eigenvalues D.
The `:VDV` projection used in the SDS transform. Similar to the `:VD` transform,
but the data is projected back to the basis of the original variables using the Vᵀ matrix.
See [https://geostatisticslessons.com/lessons/sphereingmaf](https://geostatisticslessons.com/lessons/sphereingmaf)
for more details about these three variants of eigenanalysis.
# Examples
```julia
EigenAnalysis(:V)
EigenAnalysis(:VD)
EigenAnalysis(:VDV)
EigenAnalysis(:V, maxdim=3)
EigenAnalysis(:VD, pratio=0.99)
EigenAnalysis(:VDV, maxdim=3, pratio=0.99)
```
"""
struct EigenAnalysis <: FeatureTransform
proj::Symbol
maxdim::Union{Int,Nothing}
pratio::Float64
function EigenAnalysis(proj, maxdim, pratio)
_assert(proj ∈ (:V, :VD, :VDV), "invalid projection")
_assert(0 ≤ pratio ≤ 1, "invalid pratio")
new(proj, maxdim, pratio)
end
end
EigenAnalysis(proj; maxdim=nothing, pratio=1.0) = EigenAnalysis(proj, maxdim, pratio)
assertions(::EigenAnalysis) = [scitypeassert(Continuous)]
parameters(transform::EigenAnalysis) = (proj=transform.proj, maxdim=transform.maxdim, pratio=transform.pratio)
isrevertible(::Type{EigenAnalysis}) = true
function applyfeat(transform::EigenAnalysis, feat, prep)
# original columns names
cols = Tables.columns(feat)
onames = Tables.columnnames(cols)
# table as matrix
X = Tables.matrix(feat)
# center the data
μ = mean(X, dims=1)
Y = X .- μ
# eigenanalysis of covariance
S, S⁻¹ = eigenmatrices(transform, Y)
# project the data
Z = Y * S
# column names
names = Symbol.(:PC, 1:size(Z, 2))
# table with transformed columns
𝒯 = (; zip(names, eachcol(Z))...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (μ, S, S⁻¹, onames)
end
function revertfeat(::EigenAnalysis, newfeat, fcache)
# table as matrix
Z = Tables.matrix(newfeat)
# retrieve cache
μ, S, S⁻¹, onames = fcache
# undo projection
Y = Z * S⁻¹
# undo centering
X = Y .+ μ
# table with original columns
𝒯 = (; zip(onames, eachcol(X))...)
𝒯 |> Tables.materializer(newfeat)
end
function reapplyfeat(transform::EigenAnalysis, feat, fcache)
# table as matrix
X = Tables.matrix(feat)
# retrieve cache
μ, S, S⁻¹, onames = fcache
# center the data
Y = X .- μ
# project the data
Z = Y * S
# column names
names = Symbol.(:PC, 1:size(Z, 2))
# table with transformed columns
𝒯 = (; zip(names, eachcol(Z))...)
𝒯 |> Tables.materializer(feat)
end
_maxdim(maxdim::Int, Y) = maxdim
_maxdim(::Nothing, Y) = size(Y, 2)
function outdim(transform, Y, λ)
pratio = transform.pratio
csums = cumsum(λ)
ratios = csums ./ last(csums)
mdim = _maxdim(transform.maxdim, Y)
pdim = findfirst(≥(pratio), ratios)
min(mdim, pdim)
end
function eigenmatrices(transform, Y)
proj = transform.proj
Σ = cov(Y)
λ, V = eigen(Σ, sortby=λ -> -real(λ))
if proj == :V
S = V
S⁻¹ = transpose(V)
elseif proj == :VD
Λ = Diagonal(sqrt.(λ))
S = V * inv(Λ)
S⁻¹ = Λ * transpose(V)
elseif proj == :VDV
Λ = Diagonal(sqrt.(λ))
S = V * inv(Λ) * transpose(V)
S⁻¹ = V * Λ * transpose(V)
end
d = outdim(transform, Y, λ)
S[:, 1:d], S⁻¹[1:d, :]
end
"""
PCA([options])
Principal component analysis.
See [`EigenAnalysis`](@ref) for detailed
description of the available options.
# Examples
```julia
PCA(maxdim=2)
PCA(pratio=0.86)
PCA(maxdim=2, pratio=0.86)
```
## Notes
* `PCA()` is shortcut for `ZScore() → EigenAnalysis(:V)`.
"""
PCA(; maxdim=nothing, pratio=1.0) = ZScore() → EigenAnalysis(:V, maxdim, pratio)
"""
DRS([options])
Dimension reduction sphering.
See [`EigenAnalysis`](@ref) for detailed
description of the available options.
# Examples
```julia
DRS(maxdim=3)
DRS(pratio=0.87)
DRS(maxdim=3, pratio=0.87)
```
## Notes
* `DRS()` is shortcut for `ZScore() → EigenAnalysis(:VD)`.
"""
DRS(; maxdim=nothing, pratio=1.0) = ZScore() → EigenAnalysis(:VD, maxdim, pratio)
"""
SDS([options])
Standardized data sphering.
See [`EigenAnalysis`](@ref) for detailed
description of the available options.
# Examples
```julia
SDS()
SDS(maxdim=4)
SDS(pratio=0.88)
SDS(maxdim=4, pratio=0.88)
```
## Notes
* `SDS()` is shortcut for `ZScore() → EigenAnalysis(:VDV)`.
"""
SDS(; maxdim=nothing, pratio=1.0) = ZScore() → EigenAnalysis(:VDV, maxdim, pratio)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1217 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Filter(pred)
Filters the table returning only the rows where
the predicate `pred` is `true`.
# Examples
```julia
Filter(row -> sum(row) > 10)
Filter(row -> row.a == true && row.b < 30)
Filter(row -> row."a" == true && row."b" < 30)
Filter(row -> row[1] == true && row[2] < 30)
Filter(row -> row[:a] == true && row[:b] < 30)
Filter(row -> row["a"] == true && row["b"] < 30)
```
## Notes
* The schema of the table is preserved by the transform.
"""
struct Filter{F} <: StatelessFeatureTransform
pred::F
end
isrevertible(::Type{<:Filter}) = false
function preprocess(transform::Filter, feat)
# lazy row iterator
rows = tablerows(feat)
# selected indices
sinds = Int[]
for (i, row) in enumerate(rows)
transform.pred(row) && push!(sinds, i)
end
sinds
end
function applyfeat(::Filter, feat, prep)
# preprocessed indices
sinds = prep
# selected rows
srows = Tables.subset(feat, sinds, viewhint=true)
newfeat = srows |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2119 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Functional(fun)
The transform that applies a `fun` elementwise.
Functional(col₁ => fun₁, col₂ => fun₂, ..., colₙ => funₙ)
Apply the corresponding `funᵢ` function to each `colᵢ` column.
# Examples
```julia
Functional(exp)
Functional(log)
Functional(1 => exp, 2 => log)
Functional(:a => exp, :b => log)
Functional("a" => exp, "b" => log)
```
"""
struct Functional{S<:ColumnSelector,F} <: StatelessFeatureTransform
selector::S
fun::F
end
Functional(fun) = Functional(AllSelector(), fun)
Functional(pairs::Pair{C}...) where {C<:Column} = Functional(selector(first.(pairs)), last.(pairs))
Functional() = throw(ArgumentError("cannot create Functional transform without arguments"))
isrevertible(transform::Functional) = isinvertible(transform)
_hasinverse(f) = !(invfun(f) isa NoInverse)
isinvertible(transform::Functional{AllSelector}) = _hasinverse(transform.fun)
isinvertible(transform::Functional) = all(_hasinverse, transform.fun)
inverse(transform::Functional{AllSelector}) = Functional(transform.selector, invfun(transform.fun))
inverse(transform::Functional) = Functional(transform.selector, invfun.(transform.fun))
_fundict(transform::Functional{AllSelector}, names) = Dict(nm => transform.fun for nm in names)
_fundict(transform::Functional, names) = Dict(zip(names, transform.fun))
function applyfeat(transform::Functional, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
fundict = _fundict(transform, snames)
columns = map(names) do name
x = Tables.getcolumn(cols, name)
if name ∈ snames
fun = fundict[name]
map(fun, x)
else
x
end
end
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, nothing
end
function revertfeat(transform::Functional, newfeat, fcache)
ofeat, _ = applyfeat(inverse(transform), newfeat, nothing)
ofeat
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3122 | const SCALES = [:quantile, :linear]
"""
Indicator(col; k=10, scale=:quantile, categ=false)
Transforms continuous variable into `k` indicator variables defined by
half-intervals of `col` values in a given `scale`. Optionally, specify the `categ`
option to return binary categorical values as opposed to raw 1s and 0s.
Given a sequence of increasing threshold values `t1 < t2 < ... < tk`, the indicator
transform converts a continuous variable `Z` into a sequence of `k` variables
`Z_1 = Z <= t1`, `Z_2 = Z <= t2`, ..., `Z_k = Z <= tk`.
## Scales:
* `:quantile` - threshold values are calculated using the `quantile(Z, p)` function
with a linear range of probabilities.
* `:linear` - threshold values are calculated using a linear range.
# Examples
```julia
Indicator(1, k=3)
Indicator(:a, k=6, scale=:linear)
Indicator("a", k=9, scale=:linear, categ=true)
```
"""
struct Indicator{S<:SingleColumnSelector} <: StatelessFeatureTransform
selector::S
k::Int
scale::Symbol
categ::Bool
function Indicator(selector::S, k, scale, categ) where {S<:SingleColumnSelector}
if k < 1
throw(ArgumentError("`k` must be greater than or equal to 1"))
end
if scale ∉ SCALES
throw(ArgumentError("invalid `scale` option, use `:quantile` or `:linear`"))
end
new{S}(selector, k, scale, categ)
end
end
Indicator(col::Column; k=10, scale=:quantile, categ=false) = Indicator(selector(col), k, scale, categ)
assertions(transform::Indicator) = [scitypeassert(Continuous, transform.selector)]
parameters(transform::Indicator) = (k=transform.k, scale=transform.scale)
isrevertible(::Type{<:Indicator}) = true
function _intervals(transform::Indicator, x)
k = transform.k
ts = if transform.scale === :quantile
quantile(x, range(0, 1, k + 1))
else
range(extrema(x)..., k + 1)
end
ts[(begin + 1):end]
end
function applyfeat(transform::Indicator, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols) |> collect
columns = Any[Tables.getcolumn(cols, nm) for nm in names]
name = selectsingle(transform.selector, names)
ind = findfirst(==(name), names)
x = columns[ind]
k = transform.k
ts = _intervals(transform, x)
tuples = map(1:k) do i
nm = Symbol("$(name)_$i")
while nm ∈ names
nm = Symbol("$(nm)_")
end
(nm, x .≤ ts[i])
end
newnames = first.(tuples)
newcolumns = last.(tuples)
# convert to categorical arrays if necessary
newcolumns = transform.categ ? categorical.(newcolumns, levels=[false, true]) : newcolumns
splice!(names, ind, newnames)
splice!(columns, ind, newcolumns)
inds = ind:(ind + length(newnames) - 1)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (name, x, inds)
end
function revertfeat(::Indicator, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols) |> collect
columns = Any[Tables.getcolumn(cols, nm) for nm in names]
oname, ocolumn, inds = fcache
splice!(names, inds, [oname])
splice!(columns, inds, [ocolumn])
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2226 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Levels(col₁ => levels₁, col₂ => levels₂, ..., colₙ => levelsₙ; ordered=nothing)
Convert columns `col₁`, `col₂`, ..., `colₙ` to categorical arrays with given levels `levels₁`, `levels₂`, ..., `levelsₙ`.
Optionally, specify which columns are `ordered`.
# Examples
```julia
Levels(1 => 1:3, 2 => ["a", "b"], ordered=r"a")
Levels(:a => 1:3, :b => ["a", "b"], ordered=[:a])
Levels("a" => 1:3, "b" => ["a", "b"], ordered=["b"])
```
"""
struct Levels{S<:ColumnSelector,O<:ColumnSelector,L} <: StatelessFeatureTransform
selector::S
ordered::O
levels::L
end
Levels(pairs::Pair{C}...; ordered=nothing) where {C<:Column} =
Levels(selector(first.(pairs)), selector(ordered), last.(pairs))
Levels(; kwargs...) = throw(ArgumentError("cannot create Levels transform without arguments"))
assertions(transform::Levels) = [scitypeassert(Categorical, transform.selector)]
isrevertible(::Type{<:Levels}) = true
_revfun(x) = y -> Array(y)
function _revfun(x::CategoricalArray)
l, o = levels(x), isordered(x)
y -> categorical(y, levels=l, ordered=o)
end
function applyfeat(transform::Levels, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
ordered = transform.ordered(snames)
leveldict = Dict(zip(snames, transform.levels))
results = map(names) do name
x = Tables.getcolumn(cols, name)
if name ∈ snames
o = name ∈ ordered
l = leveldict[name]
y = categorical(x, levels=l, ordered=o)
revfun = _revfun(x)
y, revfun
else
x, identity
end
end
columns, fcache = first.(results), last.(results)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, fcache
end
function revertfeat(::Levels, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
columns = map(names, fcache) do name, revfun
y = Tables.getcolumn(cols, name)
revfun(y)
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1982 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
LogRatio
Parent type of all log-ratio transforms.
See also [`ALR`](@ref), [`CLR`](@ref), [`ILR`](@ref).
"""
abstract type LogRatio <: StatelessFeatureTransform end
# log-ratio transform interface
function refvar end
function newvars end
function applymatrix end
function revertmatrix end
isrevertible(::Type{<:LogRatio}) = true
assertions(::LogRatio) = [scitypeassert(Continuous)]
function applyfeat(transform::LogRatio, feat, prep)
cols = Tables.columns(feat)
onames = Tables.columnnames(cols)
varnames = collect(onames)
# reference variable
rvar = refvar(transform, varnames)
_assert(rvar ∈ varnames, "invalid reference variable")
rind = findfirst(==(rvar), varnames)
# permute columns if necessary
perm = rind ≠ lastindex(varnames)
pfeat = if perm
popat!(varnames, rind)
push!(varnames, rvar)
feat |> Select(varnames)
else
feat
end
# apply transform
X = Tables.matrix(pfeat)
Y = applymatrix(transform, X)
# new variable names
newnames = newvars(transform, varnames)
# return same table type
𝒯 = (; zip(newnames, eachcol(Y))...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (rind, perm, onames)
end
function revertfeat(transform::LogRatio, newfeat, fcache)
# revert transform
Y = Tables.matrix(newfeat)
X = revertmatrix(transform, Y)
# retrieve cache
rind, perm, onames = fcache
# revert the permutation if necessary
if perm
n = length(onames)
inds = collect(1:(n - 1))
insert!(inds, rind, n)
X = X[:, inds]
end
# return same table type
𝒯 = (; zip(onames, eachcol(X))...)
𝒯 |> Tables.materializer(newfeat)
end
# ----------------
# IMPLEMENTATIONS
# ----------------
include("logratio/alr.jl")
include("logratio/clr.jl")
include("logratio/ilr.jl")
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3471 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
LowHigh(; low=0.25, high=0.75)
Applies the LowHigh transform to all columns of the table.
The LowHigh transform of the column `x` is defined by `(x .- xl) ./ (xh - xl)`,
where `xl = quantile(x, low)` and `xh = quantile(x, high)`.
LowHigh(col₁, col₂, ..., colₙ; low=0.25, high=0.75)
LowHigh([col₁, col₂, ..., colₙ]; low=0.25, high=0.75)
LowHigh((col₁, col₂, ..., colₙ); low=0.25, high=0.75)
Applies the LowHigh transform on columns `col₁`, `col₂`, ..., `colₙ`.
LowHigh(regex; low=0.25, high=0.75)
Applies the LowHigh transform on columns that match with `regex`.
# Examples
```julia
LowHigh()
LowHigh(low=0, high=1)
LowHigh(low=0.3, high=0.7)
LowHigh(1, 3, 5, low=0, high=1)
LowHigh([:a, :c, :e], low=0.3, high=0.7)
LowHigh(("a", "c", "e"), low=0.25, high=0.75)
LowHigh(r"[ace]", low=0.3, high=0.7)
```
"""
struct LowHigh{S<:ColumnSelector,T} <: ColwiseFeatureTransform
selector::S
low::T
high::T
function LowHigh(selector::S, low::T, high::T) where {S<:ColumnSelector,T}
_assert(0 ≤ low ≤ high ≤ 1, "invalid quantiles")
new{S,T}(selector, low, high)
end
end
LowHigh(selector::ColumnSelector, low, high) = LowHigh(selector, promote(low, high)...)
LowHigh(; low=0.25, high=0.75) = LowHigh(AllSelector(), low, high)
LowHigh(cols; low=0.25, high=0.75) = LowHigh(selector(cols), low, high)
LowHigh(cols::C...; low=0.25, high=0.75) where {C<:Column} = LowHigh(selector(cols), low, high)
assertions(transform::LowHigh) = [scitypeassert(Continuous, transform.selector)]
parameters(transform::LowHigh) = (low=transform.low, high=transform.high)
isrevertible(::Type{<:LowHigh}) = true
function colcache(transform::LowHigh, x)
low = convert(eltype(x), transform.low)
high = convert(eltype(x), transform.high)
xl, xh = quantile(x, (low, high))
xl == xh && ((xl, xh) = (zero(xl), one(xh)))
(; xl, xh)
end
colapply(::LowHigh, x, c) = @. (x - c.xl) / (c.xh - c.xl)
colrevert(::LowHigh, y, c) = @. (c.xh - c.xl) * y + c.xl
"""
MinMax()
Applies the MinMax transform to all columns of the table.
The MinMax transform is equivalent to `LowHigh(low=0, high=1)`.
MinMax(col₁, col₂, ..., colₙ)
MinMax([col₁, col₂, ..., colₙ])
MinMax((col₁, col₂, ..., colₙ))
Applies the MinMax transform on columns `col₁`, `col₂`, ..., `colₙ`.
MinMax(regex)
Applies the MinMax transform on columns that match with `regex`.
# Examples
```julia
MinMax(1, 3, 5)
MinMax([:a, :c, :e])
MinMax(("a", "c", "e"))
MinMax(r"[ace]")
```
See also [`LowHigh`](@ref).
"""
MinMax(args...) = LowHigh(args...; low=0, high=1)
"""
Interquartile()
Applies the Interquartile transform to all columns of the table.
The Interquartile transform is equivalent to `LowHigh(low=0.25, high=0.75)`.
Interquartile(col₁, col₂, ..., colₙ)
Interquartile([col₁, col₂, ..., colₙ])
Interquartile((col₁, col₂, ..., colₙ))
Applies the Interquartile transform on columns `col₁`, `col₂`, ..., `colₙ`.
Interquartile(regex)
Applies the Interquartile transform on columns that match with `regex`.
# Examples
```julia
Interquartile(1, 3, 5)
Interquartile([:a, :c, :e])
Interquartile(("a", "c", "e"))
Interquartile(r"[ace]")
```
See also [`LowHigh`](@ref).
"""
Interquartile(args...) = LowHigh(args...; low=0.25, high=0.75)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3664 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Map(cols₁ => fun₁ => target₁, cols₂ => fun₂, ..., colsₙ => funₙ => targetₙ)
Applies the `funᵢ` function to the columns selected by `colsᵢ` using
the `map` function and saves the result in a new column named `targetᵢ`.
The column selection can be a single column identifier (index or name),
a collection of identifiers or a regular expression (regex).
Passing a target column name is optional and when omitted a new name
is generated by joining the function name with the selected column names.
If the target column already exists in the table, the original
column will be replaced.
# Examples
```julia
Map(1 => sin)
Map(:a => sin, "b" => cos => :cos_b)
Map([2, 3] => ((b, c) -> 2b + c))
Map([:a, :c] => ((a, c) -> 2a * 3c) => :col1)
Map(["c", "a"] => ((c, a) -> 3c / a) => :col1, "c" => tan)
Map(r"[abc]" => ((a, b, c) -> a^2 - 2b + c) => "col1")
```
## Notes
* Anonymous functions must be passed with parentheses as in the examples above;
* Some function names are treated in a special way, they are:
* Anonymous functions: `#1` -> `f1`;
* Composed functions: `outer ∘ inner` -> `outer_inner`;
* `Base.Fix1` functions: `Base.Fix1(f, x)` -> `fix1_f`;
* `Base.Fix2` functions: `Base.Fix2(f, x)` -> `fix2_f`;
"""
struct Map <: StatelessFeatureTransform
selectors::Vector{ColumnSelector}
funs::Vector{Function}
targets::Vector{Union{Nothing,Symbol}}
end
Map() = throw(ArgumentError("cannot create Map transform without arguments"))
# utility types
const TargetName = Union{Symbol,AbstractString}
const PairWithTarget = Pair{<:Any,<:Pair{<:Function,<:TargetName}}
const PairWithoutTarget = Pair{<:Any,<:Function}
const MapPair = Union{PairWithTarget,PairWithoutTarget}
# utility functions
_extract(p::PairWithTarget) = selector(first(p)), first(last(p)), Symbol(last(last(p)))
_extract(p::PairWithoutTarget) = selector(first(p)), last(p), nothing
function Map(pairs::MapPair...)
tuples = map(_extract, pairs)
selectors = [t[1] for t in tuples]
funs = [t[2] for t in tuples]
targets = [t[3] for t in tuples]
Map(selectors, funs, targets)
end
isrevertible(::Type{Map}) = false
_funname(fun::Base.Fix1) = "fix1_" * _funname(fun.f)
_funname(fun::Base.Fix2) = "fix2_" * _funname(fun.f)
_funname(fun::ComposedFunction) = _funname(fun.outer) * "_" * _funname(fun.inner)
_funname(fun) = string(fun)
function _makename(snames, fun)
funname = _funname(fun)
if contains(funname, "#") # anonymous functions
funname = replace(funname, "#" => "f")
end
Symbol(funname, :_, join(snames, "_"))
end
function applyfeat(transform::Map, feat, prep)
cols = Tables.columns(feat)
onames = Tables.columnnames(cols)
selectors = transform.selectors
funs = transform.funs
targets = transform.targets
# new names and columns
names = collect(onames)
columns = Any[Tables.getcolumn(cols, nm) for nm in onames]
# mapped columns
mapped = map(selectors, funs, targets) do selector, fun, target
snames = selector(names)
newname = isnothing(target) ? _makename(snames, fun) : target
scolumns = (Tables.getcolumn(cols, nm) for nm in snames)
newcolumn = map(fun, scolumns...)
newname => newcolumn
end
for (name, column) in mapped
if name ∈ onames
i = findfirst(==(name), onames)
columns[i] = column
else
push!(names, name)
push!(columns, column)
end
end
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2405 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
OneHot(col; categ=false)
Transforms categorical column `col` into one-hot columns of levels
returned by the `levels` function of CategoricalArrays.jl.
The `categ` option can be used to convert resulting
columns to categorical arrays as opposed to boolean vectors.
# Examples
```julia
OneHot(1)
OneHot(:a)
OneHot("a")
OneHot("a", categ=true)
```
"""
struct OneHot{S<:SingleColumnSelector} <: StatelessFeatureTransform
selector::S
categ::Bool
end
OneHot(col::Column; categ=false) = OneHot(selector(col), categ)
assertions(transform::OneHot) = [scitypeassert(Categorical, transform.selector)]
isrevertible(::Type{<:OneHot}) = true
_categ(x) = categorical(x), identity
function _categ(x::CategoricalArray)
l, o = levels(x), isordered(x)
revfun = y -> categorical(y, levels=l, ordered=o)
x, revfun
end
function applyfeat(transform::OneHot, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols) |> collect
columns = Any[Tables.getcolumn(cols, nm) for nm in names]
name = selectsingle(transform.selector, names)
ind = findfirst(==(name), names)
x, revfun = _categ(columns[ind])
xlevels = levels(x)
onehot = map(xlevels) do l
nm = Symbol("$(name)_$l")
while nm ∈ names
nm = Symbol("$(nm)_")
end
nm, x .== l
end
newnames = first.(onehot)
newcolumns = last.(onehot)
# convert to categorical arrays if necessary
newcolumns = transform.categ ? categorical.(newcolumns, levels=[false, true]) : newcolumns
splice!(names, ind, newnames)
splice!(columns, ind, newcolumns)
inds = ind:(ind + length(newnames) - 1)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (name, inds, xlevels, revfun)
end
function revertfeat(::OneHot, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols) |> collect
columns = Any[Tables.getcolumn(cols, nm) for nm in names]
oname, inds, levels, revfun = fcache
y = map(zip(columns[inds]...)) do row
levels[findfirst(==(true), row)]
end
ocolumn = revfun(y)
splice!(names, inds, [oname])
splice!(columns, inds, [ocolumn])
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 4917 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ParallelTableTransform(transforms)
A transform where `transforms` are applied in parallel.
It [`isrevertible`](@ref) if any of the constituent
`transforms` is revertible. In this case, the
[`revert`](@ref) is performed with the first
revertible transform in the list.
# Examples
```julia
LowHigh(low=0.3, high=0.6) ⊔ EigenAnalysis(:VDV)
ZScore() ⊔ EigenAnalysis(:V)
```
## Notes
* Metadata is transformed with the first revertible transform in the list of `transforms`.
"""
struct ParallelTableTransform <: TableTransform
transforms::Vector{Transform}
end
# AbstractTrees interface
AbstractTrees.nodevalue(::ParallelTableTransform) = ParallelTableTransform
AbstractTrees.children(p::ParallelTableTransform) = p.transforms
Base.show(io::IO, p::ParallelTableTransform) = print(io, join(p.transforms, " ⊔ "))
function Base.show(io::IO, ::MIME"text/plain", p::ParallelTableTransform)
tree = repr_tree(p, context=io)
print(io, tree[begin:(end - 1)]) # remove \n at end
end
isrevertible(p::ParallelTableTransform) = any(isrevertible, p.transforms)
function apply(p::ParallelTableTransform, table)
# apply transforms in parallel
pool = CachingPool(workers())
vals = pmap(t -> apply(t, table), pool, p.transforms)
# retrieve tables and caches
tables = first.(vals)
caches = last.(vals)
# features and metadata
splits = divide.(tables)
feats = first.(splits)
metas = last.(splits)
# check the number of rows of generated tables
_assert(allequal(_nrows(f) for f in feats), "parallel branches must produce the same number of rows")
# table with concatenated features
newfeat = tablehcat(feats)
# propagate metadata
newmeta = first(metas)
# attach new features and metatada
newtable = attach(newfeat, newmeta)
# find first revertible transform
ind = findfirst(isrevertible, p.transforms)
# save info to revert transform
rinfo = if isnothing(ind)
nothing
else
fcols = Tables.columns.(feats)
fnames = Tables.columnnames.(fcols)
ncols = length.(fnames)
nrcols = ncols[ind]
start = sum(ncols[1:(ind - 1)]) + 1
finish = start + nrcols - 1
range = start:finish
(ind, range)
end
newtable, (caches, rinfo)
end
function revert(p::ParallelTableTransform, newtable, cache)
# retrieve cache
caches = cache[1]
rinfo = cache[2]
_assert(!isnothing(rinfo), "transform is not revertible")
# features and metadata
newfeat, newmeta = divide(newtable)
# retrieve info to revert transform
ind = rinfo[1]
range = rinfo[2]
rtrans = p.transforms[ind]
rcache = caches[ind]
# columns of transformed table
fcols = Tables.columns(newfeat)
names = Tables.columnnames(fcols)
# subset of features to revert
rnames = names[range]
rcols = [Tables.getcolumn(fcols, j) for j in range]
rfeat = (; zip(rnames, rcols)...) |> Tables.materializer(newfeat)
# propagate metadata
rtable = attach(rfeat, newmeta)
# revert transform
revert(rtrans, rtable, rcache)
end
function reapply(p::ParallelTableTransform, table, cache)
# retrieve caches
caches = cache[1]
# reapply transforms in parallel
pool = CachingPool(workers())
tables = pmap((t, c) -> reapply(t, table, c), pool, p.transforms, caches)
# features and metadata
splits = divide.(tables)
feats = first.(splits)
metas = last.(splits)
# check the number of rows of generated tables
_assert(allequal(_nrows(f) for f in feats), "parallel branches must produce the same number of rows")
# table with concatenated features
newfeat = tablehcat(feats)
# metadata of the first table
newmeta = first(metas)
# attach new features and metatada
attach(newfeat, newmeta)
end
function tablehcat(tables)
# concatenate columns
allnames = Symbol[]
allcolumns = []
for table in tables
cols = Tables.columns(table)
names = Tables.columnnames(cols)
for name in names
column = Tables.getcolumn(cols, name)
while name ∈ allnames
name = Symbol(name, :_)
end
push!(allnames, name)
push!(allcolumns, column)
end
end
# table with concatenated columns
𝒯 = (; zip(allnames, allcolumns)...)
𝒯 |> Tables.materializer(first(tables))
end
"""
transform₁ ⊔ transform₂ ⊔ ⋯ ⊔ transformₙ
Create a [`ParallelTableTransform`](@ref) transform with
`[transform₁, transform₂, …, transformₙ]`.
"""
⊔(t1::Transform, t2::Transform) = ParallelTableTransform([t1, t2])
⊔(t1::Transform, t2::ParallelTableTransform) = ParallelTableTransform([t1; t2.transforms])
⊔(t1::ParallelTableTransform, t2::Transform) = ParallelTableTransform([t1.transforms; t2])
⊔(t1::ParallelTableTransform, t2::ParallelTableTransform) = ParallelTableTransform([t1.transforms; t2.transforms])
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 5922 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ProjectionPursuit(; tol=1e-6, maxiter=100, deg=5, perc=0.9, n=100, rng=Random.default_rng())
The projection pursuit multivariate transform converts any multivariate distribution into
the standard multivariate Gaussian distribution.
This iterative algorithm repeatedly finds a direction of projection `α` that maximizes a score of
non-Gaussianity known as the projection index `I(α)`. The samples projected along `α` are then
transformed with the [`Quantile`](@ref) transform to remove the non-Gaussian structure. The
other coordinates in the rotated orthonormal basis `Q = [α ...]` are left untouched.
The non-singularity of `Q` is controlled by assuring that `norm(det(Q)) ≥ tol`. The iterative
process terminates whenever the transformed samples are "more Gaussian" than `perc`% of `n`
randomly generated samples from the standard multivariate Gaussian distribution, or when the
number of iterations reaches a maximum `maxiter`.
# Examples
```julia
ProjectionPursuit()
ProjectionPursuit(deg=10)
ProjectionPursuit(perc=0.85, n=50)
ProjectionPursuit(tol=1e-4, maxiter=250, deg=5, perc=0.95, n=100)
# with rng
using Random
rng = MersenneTwister(2)
ProjectionPursuit(perc=0.85, n=50, rng=rng)
```
See [https://doi.org/10.2307/2289161](https://doi.org/10.2307/2289161) for
further details.
"""
struct ProjectionPursuit{T,RNG} <: StatelessFeatureTransform
tol::T
maxiter::Int
deg::Int
perc::T
n::Int
rng::RNG
end
ProjectionPursuit(; tol=1e-6, maxiter=100, deg=5, perc=0.9, n=100, rng=Random.default_rng()) =
ProjectionPursuit{typeof(tol),typeof(rng)}(tol, maxiter, deg, perc, n, rng)
assertions(::ProjectionPursuit) = [scitypeassert(Continuous)]
parameters(transform::ProjectionPursuit) = (tol=transform.tol, deg=transform.deg, perc=transform.perc, n=transform.n)
isrevertible(::Type{<:ProjectionPursuit}) = true
# transforms a row of random variables into a convex combination
# of random variables with values in [-1,1] and standard normal distribution
rscore(Z, α) = 2 .* cdf.(Normal(), Z * α) .- 1
# projection index of sample along a given direction
function pindex(transform, Z, α)
d = transform.deg
r = rscore(Z, α)
I = (3 / 2) * mean(r)^2
if d > 1
Pⱼ₋₂, Pⱼ₋₁ = ones(length(r)), r
for j in 2:d
Pⱼ₋₂, Pⱼ₋₁ = Pⱼ₋₁, (1 / j) * ((2j - 1) * r .* Pⱼ₋₁ - (j - 1) * Pⱼ₋₂)
I += ((2j + 1) / 2) * (mean(Pⱼ₋₁))^2
end
end
I
end
# j-th element of the canonical basis in ℝᵈ
basis(d, j) = float(1:d .== j)
# index for all vectors in the canonical basis
function pbasis(transform, Z)
q = size(Z, 2)
[pindex(transform, Z, basis(q, j)) for j in 1:q]
end
# projection index of the standard multivariate Gaussian
function gaussquantiles(transform, N, q)
n = transform.n
p = 1.0 - transform.perc
rng = transform.rng
Is = [pbasis(transform, randn(rng, N, q)) for i in 1:n]
I = reduce(hcat, Is)
quantile.(eachrow(I), p)
end
function alphaguess(transform, Z)
q = size(Z, 2)
# objective function
func(α) = pindex(transform, Z, α)
# evaluate objective along axes
j = argmax(j -> func(basis(q, j)), 1:q)
α = basis(q, j)
I = func(α)
# evaluate objective along diagonals
diag(α, s, e) = (1 / √(2 + 2s * α ⋅ e)) * (α + s * e)
for eᵢ in basis.(q, 1:q)
d₊ = diag(α, +1, eᵢ)
d₋ = diag(α, -1, eᵢ)
f₊ = func(d₊)
f₋ = α ⋅ eᵢ != 1.0 ? func(d₋) : 0.0
f, d = f₊ > f₋ ? (f₊, d₊) : (f₋, d₋)
if f > I
α = d
I = f
end
end
α
end
function neldermead(transform, Z, α₀)
f(α) = -pindex(transform, Z, α ./ norm(α))
optimise(f, α₀, 1 / 2, xtol_rel=10eps()) |> first
end
function alphamax(transform, Z)
α = alphaguess(transform, Z)
neldermead(transform, Z, α)
end
function orthobasis(transform, α)
tol = transform.tol
rng = transform.rng
q = length(α)
Q, R = qr([α rand(rng, q, q - 1)])
while norm(diag(R)) < tol
Q, R = qr([α rand(rng, q, q - 1)])
end
Q
end
function rmstructure(transform, Z, α)
# find orthonormal basis for rotation
Q = orthobasis(transform, α)
# remove structure of first rotated axis
newtable, qcache = apply(Quantile(1), Tables.table(Z * Q))
# undo rotation, i.e recover original axis-aligned features
Z₊ = Tables.matrix(newtable) * Q'
Z₊, (Q, qcache)
end
sphering() = Quantile() → EigenAnalysis(:VDV)
function applyfeat(transform::ProjectionPursuit, feat, prep)
# original columns names
cols = Tables.columns(feat)
onames = Tables.columnnames(cols)
# preprocess the data to approximately spherical shape
ptable, pcache = apply(sphering(), feat)
# initialize scores and Gaussian quantiles
Z = Tables.matrix(ptable)
I = pbasis(transform, Z)
g = gaussquantiles(transform, size(Z)...)
iter = 0
caches = []
while any(I .> g) && iter ≤ transform.maxiter
# choose direction with maximum projection index
α = alphamax(transform, Z)
# remove non-Gaussian structure
Z, cache = rmstructure(transform, Z, α)
# update the scores along original axes
I = pbasis(transform, Z)
# store cache and continue
push!(caches, cache)
iter += 1
end
# new column names
names = Symbol.(:PP, 1:size(Z, 2))
𝒯 = (; zip(names, eachcol(Z))...)
newtable = 𝒯 |> Tables.materializer(feat)
newtable, (pcache, caches, onames)
end
function revertfeat(::ProjectionPursuit, newfeat, fcache)
# caches to retrieve transform steps
pcache, caches, onames = fcache
Z = Tables.matrix(newfeat)
for (Q, qcache) in reverse(caches)
table = revert(Quantile(1), Tables.table(Z * Q), qcache)
Z = Tables.matrix(table) * Q'
end
table = revert(sphering(), Tables.table(Z), pcache)
Z = Tables.matrix(table)
𝒯 = (; zip(onames, eachcol(Z))...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2791 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Quantile(; dist=Normal())
The quantile transform to a given `distribution`.
Quantile(col₁, col₂, ..., colₙ; dist=Normal())
Quantile([col₁, col₂, ..., colₙ]; dist=Normal())
Quantile((col₁, col₂, ..., colₙ); dist=Normal())
Applies the Quantile transform on columns `col₁`, `col₂`, ..., `colₙ`.
Quantile(regex; dist=Normal())
Applies the Quantile transform on columns that match with `regex`.
# Examples
```julia
using Distributions
Quantile()
Quantile(dist=Normal())
Quantile(1, 3, 5, dist=Beta())
Quantile([:a, :c, :e], dist=Gamma())
Quantile(("a", "c", "e"), dist=Beta())
Quantile(r"[ace]", dist=Normal())
```
"""
struct Quantile{S<:ColumnSelector,D} <: ColwiseFeatureTransform
selector::S
dist::D
end
Quantile(; dist=Normal()) = Quantile(AllSelector(), dist)
Quantile(cols; dist=Normal()) = Quantile(selector(cols), dist)
Quantile(cols::C...; dist=Normal()) where {C<:Column} = Quantile(selector(cols), dist)
assertions(transform::Quantile) = [scitypeassert(Continuous, transform.selector)]
parameters(transform::Quantile) = (; dist=transform.dist)
isrevertible(::Type{<:Quantile}) = true
function colcache(::Quantile, x)
s = qsmooth(x)
d = EmpiricalDistribution(s)
d, s
end
function colapply(transform::Quantile, x, c)
d, s = c
origin, target = d, transform.dist
qtransform(s, origin, target)
end
function colrevert(transform::Quantile, y, c)
d, _ = c
origin, target = transform.dist, d
qtransform(y, origin, target)
end
# transform samples from original to target distribution
function qtransform(samples, origin, target)
# avoid evaluating the quantile at 0 or 1
pmin = 0.0 + 1e-3
pmax = 1.0 - 1e-3
map(samples) do sample
prob = cdf(origin, sample)
quantile(target, clamp(prob, pmin, pmax))
end
end
# helper function that replaces repated values
# by an increasing sequence of values between
# the previous and the next non-repated value
function qsmooth(values)
permut = sortperm(values)
sorted = float.(values[permut])
bounds = findall(>(zero(eltype(sorted))), diff(sorted))
if !isempty(bounds)
i = 1
j = first(bounds)
qlinear!(sorted, i, j, sorted[j], sorted[j + 1])
for k in 1:(length(bounds) - 1)
i = bounds[k] + 1
j = bounds[k + 1]
qlinear!(sorted, i, j, sorted[i - 1], sorted[j])
end
i = last(bounds) + 1
j = length(sorted)
qlinear!(sorted, i, j, sorted[i - 1], sorted[j])
end
sorted[sortperm(permut)]
end
function qlinear!(x, i, j, l, u)
if i < j
for k in i:j
x[k] = (u - l) * (k - i) / (j - i) + l
end
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2025 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENCE in the project root.
# ------------------------------------------------------------------
"""
Remainder([total])
The transform that takes a table with columns `x₁, x₂, …, xₙ`
and returns a new table with an additional column containing the
remainder value `xₙ₊₁ = total .- (x₁ + x₂ + ⋯ + xₙ)` If the `total`
value is not specified, then default to the maximum sum across rows.
See also [`Closure`](@ref).
"""
struct Remainder{T<:Union{Number,Nothing}} <: FeatureTransform
total::T
end
Remainder() = Remainder(nothing)
isrevertible(::Type{<:Remainder}) = true
assertions(::Remainder) = [scitypeassert(Continuous)]
parameters(transform::Remainder) = (; total=transform.total)
function applyfeat(transform::Remainder, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols) |> collect
# design matrix
X = Tables.matrix(feat)
# sum of each row
S = sum(X, dims=2)
# retrieve the total
total = if isnothing(transform.total)
maximum(S)
else
t = convert(eltype(X), transform.total)
# make sure that the total is valid
_assert(all(≤(t), S), "the sum for each row must be less than total")
t
end
# create a column with the remainder
Z = [X (total .- S)]
# create new column name
rname = :remainder
while rname ∈ names
rname = Symbol(rname, :_)
end
push!(names, rname)
# table with new column
𝒯 = (; zip(names, eachcol(Z))...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, (total, rname)
end
function revertfeat(::Remainder, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
_, rname = fcache
onames = setdiff(names, [rname])
𝒯 = (; (nm => Tables.getcolumn(cols, nm) for nm in onames)...)
𝒯 |> Tables.materializer(newfeat)
end
function reapplyfeat(::Remainder, feat, fcache)
total, _ = fcache
newfeat, _ = applyfeat(Remainder(total), feat, nothing)
newfeat
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2710 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Rename(:col₁ => :newcol₁, :col₂ => :newcol₂, ..., :colₙ => :newcolₙ)
Rename([:col₁ => :newcol₁, :col₂ => :newcol₂, ..., :colₙ => :newcolₙ])
Renames the columns `col₁`, `col₂`, ..., `colₙ` to `newcol₁`, `newcol₂`, ..., `newcolₙ`.
Rename(fun)
Renames the table columns using the modification function `fun` that takes a
string as input and returns another string with the new name.
# Examples
```julia
Rename(1 => :x, 3 => :y)
Rename(:a => :x, :c => :y)
Rename("a" => "x", "c" => "y")
Rename([1 => "x", 3 => "y"])
Rename([:a => "x", :c => "y"])
Rename(["a", "c"] .=> [:x, :y])
Rename(nm -> nm * "_suffix")
```
"""
struct Rename{S<:ColumnSelector,N} <: StatelessFeatureTransform
selector::S
newnames::N
function Rename(selector::S, newnames::N) where {S<:ColumnSelector,N}
if newnames isa AbstractVector
_assert(allunique(newnames), "new names must be unique")
end
new{S,N}(selector, newnames)
end
end
Rename() = throw(ArgumentError("cannot create Rename transform without arguments"))
Rename(fun) = Rename(AllSelector(), fun)
Rename(pairs::Pair{C,Symbol}...) where {C<:Column} = Rename(selector(first.(pairs)), collect(last.(pairs)))
Rename(pairs::Pair{C,S}...) where {C<:Column,S<:AbstractString} =
Rename(selector(first.(pairs)), collect(Symbol.(last.(pairs))))
Rename(pairs::AbstractVector{Pair{C,Symbol}}) where {C<:Column} = Rename(selector(first.(pairs)), last.(pairs))
Rename(pairs::AbstractVector{Pair{C,S}}) where {C<:Column,S<:AbstractString} =
Rename(selector(first.(pairs)), Symbol.(last.(pairs)))
isrevertible(::Type{<:Rename}) = true
_newnames(newnames::AbstractVector{Symbol}, snames) = newnames
_newnames(fun, snames) = [Symbol(fun(string(name))) for name in snames]
function applyfeat(transform::Rename, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
tnames = _newnames(transform.newnames, snames)
_assert(tnames ⊈ setdiff(names, snames), "duplicate names")
mapnames = Dict(zip(snames, tnames))
newnames = [get(mapnames, nm, nm) for nm in names]
columns = [Tables.getcolumn(cols, nm) for nm in names]
𝒯 = (; zip(newnames, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, names
end
function revertfeat(::Rename, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
columns = [Tables.getcolumn(cols, nm) for nm in names]
𝒯 = (; zip(fcache, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3072 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Replace(cols₁ => pred₁ => new₁, pred₂ => new₂, ..., colsₙ => predₙ => newₙ)
Replaces all values where `predᵢ` predicate returns `true` with `newᵢ` value
in the the columns selected by `colsᵢ`.
Passing a column selection is optional and when omitted all columns in the table
will be selected. The column selection can be a single column identifier (index or name),
a collection of identifiers, or a regular expression (regex).
The predicate can be a function that accepts a single argument
and returns a boolean, or a value. If the predicate is a value,
it will be transformed into the following function: `x -> x === value`.
# Examples
```julia
Replace(1 => -1, 5 => -5)
Replace(2 => 0.0 => 1.5, 5.0 => 5.5)
Replace(:b => 0.0 => 1.5, 5.0 => 5.5)
Replace("b" => 0.0 => 1.5, 5.0 => 5.5)
Replace([1, 3] => >(5) => 5)
Replace([:a, :c] => isequal(2) => -2)
Replace(["a", "c"] => (x -> 4 < x < 6) => 0)
Replace(r"[abc]" => (x -> isodd(x) && x > 10) => 2)
```
## Notes
* Anonymous functions must be passed with parentheses as in the examples above.
* Replacements are applied in the sequence in which they are defined, therefore,
if there is more than one replacement for the same column, the first valid one will be applied.
"""
struct Replace <: StatelessFeatureTransform
selectors::Vector{ColumnSelector}
preds::Vector{Function}
news::Vector{Any}
end
Replace() = throw(ArgumentError("cannot create Replace transform without arguments"))
# utility functions
_extract(p::Pair) = AllSelector(), _pred(first(p)), last(p)
_extract(p::Pair{<:Any,<:Pair}) = selector(first(p)), _pred(first(last(p))), last(last(p))
_pred(f::Function) = f
_pred(v) = Base.Fix2(===, v)
function Replace(pairs::Pair...)
tuples = map(_extract, pairs)
selectors = [t[1] for t in tuples]
preds = [t[2] for t in tuples]
news = Any[t[3] for t in tuples]
Replace(selectors, preds, news)
end
isrevertible(::Type{<:Replace}) = false
function applyfeat(transform::Replace, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
selectors = transform.selectors
preds = transform.preds
news = transform.news
# preprocess all replacements
prepreps = map(selectors, preds, news) do selector, pred, new
snames = selector(names)
snames => pred => new
end
# join replacements of each column
colreps = map(names) do name
pairs = filter(p -> name ∈ first(p), prepreps)
reps = isempty(pairs) ? nothing : map(last, pairs)
name => reps
end
columns = map(colreps) do (name, reps)
x = Tables.getcolumn(cols, name)
if isnothing(reps)
x
else
map(x) do v
for (pred, new) in reps
if pred(v)
return new
end
end
v
end
end
end
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 514 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
RowTable()
The transform that applies the function `Tables.rowtable` to to the input table.
"""
struct RowTable <: StatelessFeatureTransform end
isrevertible(::Type{RowTable}) = true
applyfeat(::RowTable, feat, prep) = Tables.rowtable(feat), feat
revertfeat(::RowTable, newfeat, fcache) = fcache
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1884 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Sample(size, [weights]; replace=true, ordered=false, rng=default_rng())
Sample `size` rows of table using `weights` with or without replacement depending
on the option `replace`. The option `ordered` can be used to return samples in
the same order of the original table.
# Examples
```julia
Sample(1000)
Sample(1000, replace=false)
Sample(1000, replace=false, ordered=true)
# with rng
using Random
rng = MersenneTwister(2)
Sample(1000, rng=rng)
# with weights
Sample(10, rand(100))
```
"""
struct Sample{W,RNG} <: StatelessFeatureTransform
size::Int
weights::W
replace::Bool
ordered::Bool
rng::RNG
end
Sample(size::Int; replace=false, ordered=false, rng=Random.default_rng()) = Sample(size, nothing, replace, ordered, rng)
Sample(size::Int, weights::AbstractWeights; replace=false, ordered=false, rng=Random.default_rng()) =
Sample(size, weights, replace, ordered, rng)
Sample(size::Int, weights; kwargs...) = Sample(size, Weights(collect(weights)); kwargs...)
isrevertible(::Type{<:Sample}) = false
function preprocess(transform::Sample, feat)
# retrieve valid indices
inds = 1:_nrows(feat)
size = transform.size
weights = transform.weights
replace = transform.replace
ordered = transform.ordered
rng = transform.rng
# sample a subset of indices
sinds = if isnothing(weights)
sample(rng, inds, size; replace, ordered)
else
sample(rng, inds, weights, size; replace, ordered)
end
sinds
end
function applyfeat(::Sample, feat, prep)
# preprocessed indices
sinds = prep
# selected rows
srows = Tables.subset(feat, sinds, viewhint=true)
newfeat = srows |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1256 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Satisfies(pred)
Selects the columns where `pred(column)` returns `true`.
# Examples
```julia
Satisfies(allunique)
Satisfies(x -> sum(x) > 100)
Satisfies(x -> eltype(x) <: Integer)
```
"""
struct Satisfies{F} <: StatelessFeatureTransform
pred::F
end
isrevertible(::Type{<:Satisfies}) = false
function applyfeat(transform::Satisfies, feat, prep)
pred = transform.pred
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = filter(names) do name
x = Tables.getcolumn(cols, name)
pred(x)
end
strans = Select(snames)
newfeat, _ = applyfeat(strans, feat, prep)
newfeat, nothing
end
"""
Only(S)
Selects the columns that have scientific type `S`.
# Examples
```julia
using DataScienceTraits
Only(Continuous)
```
"""
Only(S::Type{<:SciType}) = Satisfies(x -> elscitype(x) <: S)
"""
Except(S)
Selects the columns that don't have scientific type `S`.
# Examples
```julia
using DataScienceTraits
Except(Categorical)
```
"""
Except(S::Type{<:SciType}) = Satisfies(x -> !(elscitype(x) <: S))
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2821 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Select(col₁, col₂, ..., colₙ)
Select([col₁, col₂, ..., colₙ])
Select((col₁, col₂, ..., colₙ))
The transform that selects columns `col₁`, `col₂`, ..., `colₙ`.
Select(col₁ => newcol₁, col₂ => newcol₂, ..., colₙ => newcolₙ)
Selects the columns `col₁`, `col₂`, ..., `colₙ`
and rename them to `newcol₁`, `newcol₂`, ..., `newcolₙ`.
Select(regex)
Selects the columns that match with `regex`.
# Examples
```julia
Select(1, 3, 5)
Select([:a, :c, :e])
Select(("a", "c", "e"))
Select(1 => :x, 3 => :y)
Select(:a => :x, :b => :y)
Select("a" => "x", "b" => "y")
Select(r"[ace]")
```
"""
struct Select{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
newnames::Union{Vector{Symbol},Nothing}
end
Select(spec) = Select(selector(spec), nothing)
Select(cols::C...) where {C<:Column} = Select(cols)
Select(pairs::Pair{C,Symbol}...) where {C<:Column} = Select(selector(first.(pairs)), collect(last.(pairs)))
Select(pairs::Pair{C,S}...) where {C<:Column,S<:AbstractString} =
Select(selector(first.(pairs)), collect(Symbol.(last.(pairs))))
Select() = throw(ArgumentError("cannot create Select transform without arguments"))
isrevertible(::Type{<:Select}) = false
# utils
_newnames(::Nothing, select) = select
_newnames(names::Vector{Symbol}, select) = names
function applyfeat(transform::Select, feat, prep)
cols = Tables.columns(feat)
names = collect(Tables.columnnames(cols))
select = transform.selector(names)
newnames = _newnames(transform.newnames, select)
newfeat = TableSelection(feat, newnames, select)
newfeat, nothing
end
"""
Reject(col₁, col₂, ..., colₙ)
Reject([col₁, col₂, ..., colₙ])
Reject((col₁, col₂, ..., colₙ))
The transform that discards columns `col₁`, `col₂`, ..., `colₙ`.
Reject(regex)
Discards the columns that match with `regex`.
# Examples
```julia
Reject(:b, :d, :f)
Reject(["b", "d", "f"])
Reject((2, 4, 6))
Reject(r"[bdf]")
```
"""
struct Reject{S<:ColumnSelector} <: StatelessFeatureTransform
selector::S
end
Reject(cols) = Reject(selector(cols))
Reject(cols::C...) where {C<:Column} = Reject(selector(cols))
# argument errors
Reject() = throw(ArgumentError("cannot create Reject transform without arguments"))
Reject(::AllSelector) = throw(ArgumentError("cannot reject all columns"))
isrevertible(::Type{<:Reject}) = false
function applyfeat(transform::Reject, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
reject = transform.selector(names)
select = setdiff(names, reject)
strans = Select(select)
newfeat, _ = applyfeat(strans, feat, prep)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1610 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Sort(col₁, col₂, ..., colₙ; kwargs...)
Sort([col₁, col₂, ..., colₙ]; kwargs...)
Sort((col₁, col₂, ..., colₙ); kwargs...)
Sort the rows of selected columns `col₁`, `col₂`, ..., `colₙ` by forwarding
the `kwargs` to the `sortperm` function.
Sort(regex; kwargs...)
Sort the rows of columns that match with `regex`.
# Examples
```julia
Sort(:a)
Sort(:a, :c, rev=true)
Sort([1, 3, 5], by=row -> abs.(row))
Sort(("a", "c", "e"))
Sort(r"[ace]")
```
"""
struct Sort{S<:ColumnSelector,T} <: StatelessFeatureTransform
selector::S
kwargs::T
end
Sort(cols; kwargs...) = Sort(selector(cols), values(kwargs))
Sort(cols::C...; kwargs...) where {C<:Column} = Sort(selector(cols), values(kwargs))
Sort(; kwargs...) = throw(ArgumentError("cannot create Sort transform without arguments"))
isrevertible(::Type{<:Sort}) = false
function preprocess(transform::Sort, feat)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
snames = transform.selector(names)
# use selected columns to calculate new indices
scols = Tables.getcolumn.(Ref(cols), snames)
stups = collect(zip(scols...))
sortperm(stups; transform.kwargs...)
end
function applyfeat(::Sort, feat, prep)
# collect all rows
rows = Tables.rowtable(feat)
# sorting indices
sinds = prep
# sorted rows
srows = view(rows, sinds)
newfeat = srows |> Tables.materializer(feat)
newfeat, nothing
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1390 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
StdFeats()
Standardizes the columns of the table based on scientific types:
* `Continuous`: `ZScore`
* `Categorical`: `Identity`
* `Unknown`: `Identity`
"""
struct StdFeats <: StatelessFeatureTransform end
isrevertible(::Type{StdFeats}) = true
_stdfun(x) = _stdfun(elscitype(x), x)
_stdfun(::Type, x) = identity, identity
function _stdfun(::Type{Continuous}, x)
μ = mean(x)
σ = std(x, mean=μ)
stdfun = x -> zscore(x, μ, σ)
revfun = y -> revzscore(y, μ, σ)
stdfun, revfun
end
function applyfeat(::StdFeats, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
tuples = map(names) do name
x = Tables.getcolumn(cols, name)
stdfun, revfun = _stdfun(x)
stdfun(x), revfun
end
columns = first.(tuples)
fcache = last.(tuples)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, fcache
end
function revertfeat(::StdFeats, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
columns = map(names, fcache) do name, revfun
y = Tables.getcolumn(cols, name)
revfun(y)
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3173 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
const SPECS = [:uppersnake, :uppercamel, :upperflat, :snake, :camel, :flat]
"""
StdNames(spec = :uppersnake)
Standardizes column names according to given `spec`.
Default to `:uppersnake` case specification.
# Specs
* `:uppersnake` - Upper Snake Case, e.g. COLUMN_NAME
* `:uppercamel` - Upper Camel Case, e.g. ColumnName
* `:upperflat` - Upper Flat Case, e.g. COLUMNNAME
* `:snake` - Snake Case, e.g. column_name
* `:camel` - Camel Case, e.g. columnName
* `:flat` - Flat Case, e.g. columnname
"""
struct StdNames <: StatelessFeatureTransform
spec::Symbol
function StdNames(spec=:uppersnake)
if spec ∉ SPECS
throw(ArgumentError("invalid specification, use one of these: $SPECS"))
end
new(spec)
end
end
isrevertible(::Type{StdNames}) = true
function applyfeat(transform::StdNames, feat, prep)
# retrieve spec
spec = transform.spec
# retrieve column names
cols = Tables.columns(feat)
oldnames = Tables.columnnames(cols)
# clean column names
names = map(nm -> _clean(string(nm)), oldnames)
# apply spec
spec === :uppersnake && (names = _uppersnake.(names))
spec === :uppercamel && (names = _uppercamel.(names))
spec === :upperflat && (names = _upperflat.(names))
spec === :snake && (names = _snake.(names))
spec === :camel && (names = _camel.(names))
spec === :flat && (names = _flat.(names))
# make names unique
newnames = _makeunique(names)
# rename transform
rtrans = Rename(selector(oldnames), Symbol.(newnames))
newfeat, rfcache = applyfeat(rtrans, feat, prep)
newfeat, (rtrans, rfcache)
end
function revertfeat(::StdNames, newfeat, fcache)
rtrans, rfcache = fcache
revertfeat(rtrans, newfeat, rfcache)
end
const DELIMS = [' ', '\t', '-', '_']
function _clean(name)
nm = strip(name, DELIMS)
filter(c -> isdigit(c) || isletter(c) || c ∈ DELIMS, nm)
end
function _makeunique(names)
newnames = String[]
for name in names
while name ∈ newnames
name = name * "_"
end
push!(newnames, name)
end
newnames
end
_uppersnake(name) = _isuppersnake(name) ? name : join(uppercase.(split(name, DELIMS)), '_')
_uppercamel(name) = _isuppercamel(name) ? name : join(titlecase.(split(name, DELIMS)))
_upperflat(name) = _isupperflat(name) ? name : replace(uppercase(name), DELIMS => "")
_snake(name) = _issnake(name) ? name : join(lowercase.(split(name, DELIMS)), '_')
function _camel(name)
_iscamel(name) && return name
first, others... = split(name, DELIMS)
join([lowercase(first); titlecase.(others)])
end
_flat(name) = _isflat(name) ? name : replace(lowercase(name), DELIMS => "")
_isuppersnake(name) = occursin(r"^[A-Z0-9]+(_[A-Z0-9]+)+$", name)
_isuppercamel(name) = occursin(r"^[A-Z][a-z0-9]*([A-Z][a-z0-9]*)+$", name)
_isupperflat(name) = occursin(r"^[A-Z0-9]+$", name)
_issnake(name) = occursin(r"^[a-z0-9]+(_[a-z0-9]+)+$", name)
_iscamel(name) = occursin(r"^[a-z][a-z0-9]*([A-Z][a-z0-9]*)+$", name)
_isflat(name) = occursin(r"^[a-z0-9]+$", name)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2315 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Unit(unit)
Converts the units of all columns in the table to `unit`.
Unit(cols₁ => unit₁, cols₂ => unit₂, ..., colsₙ => unitₙ)
Converts the units of selected columns `cols₁`, `cols₂`, ..., `colsₙ`
to `unit₁`, `unit₂`, ... `unitₙ`.
The column selection can be a single column identifier (index or name),
a collection of identifiers or a regular expression (regex).
# Examples
```julia
Unit(u"m")
Unit(1 => u"km", :b => u"K", "c" => u"s")
Unit([2, 3] => u"cm")
Unit([:a, :c] => u"cm")
Unit(["a", "c"] => u"cm")
Unit(r"[abc]" => u"km")
```
"""
struct Unit <: StatelessFeatureTransform
selectors::Vector{ColumnSelector}
units::Vector{Units}
end
Unit() = throw(ArgumentError("cannot create Unit transform without arguments"))
Unit(unit::Units) = Unit([AllSelector()], [unit])
Unit(pairs::Pair...) = Unit(collect(selector.(first.(pairs))), collect(last.(pairs)))
isrevertible(::Type{<:Unit}) = true
_uconvert(u, x) = _uconvert(nonmissingtype(eltype(x)), u, x)
_uconvert(::Type, _, x) = (x, nothing)
_uconvert(::Type{Q}, u, x) where {Q<:AbstractQuantity} = (map(v -> uconvert(u, v), x), unit(Q))
function applyfeat(transform::Unit, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
selectors = transform.selectors
units = transform.units
pairs = mapreduce(vcat, selectors, units) do selector, u
snames = selector(names)
snames .=> u
end
unitdict = Dict(pairs)
tuples = map(names) do name
x = Tables.getcolumn(cols, name)
if haskey(unitdict, name)
u = unitdict[name]
_uconvert(u, x)
else
(x, nothing)
end
end
columns = first.(tuples)
ounits = last.(tuples)
𝒯 = (; zip(names, columns)...)
newfeat = 𝒯 |> Tables.materializer(feat)
newfeat, ounits
end
function revertfeat(::Unit, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
ounits = fcache
columns = map(names, ounits) do name, u
x = Tables.getcolumn(cols, name)
isnothing(u) ? x : map(v -> uconvert(u, v), x)
end
𝒯 = (; zip(names, columns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1677 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
Unitify()
Add units to columns of the table using bracket syntax.
A column named `col [unit]` will be renamed to a unitful
column `col` with a valid `unit` from Unitful.jl.
In the case that the `unit` is not recognized by Unitful.jl,
no units are added. Empty brackets are also allowed to represent
columns without units, e.g. `col []`.
"""
struct Unitify <: StatelessFeatureTransform end
isrevertible(::Type{Unitify}) = true
function _unitify(name)
m = match(r"(.*)\[(.*)\]", string(name))
if !isnothing(m)
namestr, unitstr = m.captures
newname = Symbol(strip(namestr))
unit = if !isempty(unitstr)
try
uparse(unitstr)
catch
@warn "The unit \"$unitstr\" is not valid"
NoUnits
end
else
NoUnits
end
newname, unit
else
name, NoUnits
end
end
function applyfeat(::Unitify, feat, prep)
cols = Tables.columns(feat)
names = Tables.columnnames(cols)
pairs = map(names) do name
x = Tables.getcolumn(cols, name)
newname, unit = _unitify(name)
newname => _addunit(x, unit)
end
newfeat = (; pairs...) |> Tables.materializer(feat)
newfeat, names
end
function revertfeat(::Unitify, newfeat, fcache)
cols = Tables.columns(newfeat)
names = Tables.columnnames(cols)
onames = fcache
ocolumns = map(names) do name
x = Tables.getcolumn(cols, name)
first(_dropunit(x))
end
𝒯 = (; zip(onames, ocolumns)...)
𝒯 |> Tables.materializer(newfeat)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 526 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
zscore(x, μ, σ) = @. (x - μ) / σ
revzscore(y, μ, σ) = @. σ * y + μ
_assert(cond, msg) = cond || throw(AssertionError(msg))
function scitypeassert(S, selector=AllSelector())
Assert(
selector,
cond=x -> elscitype(x) <: S,
msg=nm -> "the elements of the column '$nm' are not of scientific type $S"
)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1305 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ZScore()
Applies the z-score transform (a.k.a. normal score) to all columns of the table.
The z-score transform of the column `x`, with mean `μ` and standard deviation `σ`,
is defined by `(x .- μ) ./ σ`.
ZScore(col₁, col₂, ..., colₙ)
ZScore([col₁, col₂, ..., colₙ])
ZScore((col₁, col₂, ..., colₙ))
Applies the ZScore transform on columns `col₁`, `col₂`, ..., `colₙ`.
ZScore(regex)
Applies the ZScore transform on columns that match with `regex`.
# Examples
```julia
ZScore(1, 3, 5)
ZScore([:a, :c, :e])
ZScore(("a", "c", "e"))
ZScore(r"[ace]")
```
"""
struct ZScore{S<:ColumnSelector} <: ColwiseFeatureTransform
selector::S
end
ZScore() = ZScore(AllSelector())
ZScore(cols) = ZScore(selector(cols))
ZScore(cols::C...) where {C<:Column} = ZScore(selector(cols))
assertions(transform::ZScore) = [scitypeassert(Continuous, transform.selector)]
isrevertible(::Type{<:ZScore}) = true
function colcache(::ZScore, x)
μ = mean(x)
σ = std(x, mean=μ)
(μ=μ, σ=σ)
end
colapply(::ZScore, x, c) = zscore(x, c.μ, c.σ)
colrevert(::ZScore, y, c) = revzscore(y, c.μ, c.σ)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 760 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ALR([refvar])
Additive log-ratio transform.
Optionally, specify the reference variable `refvar` for the ratios.
Default to the last column of the input table.
"""
struct ALR{T<:Union{Symbol,Nothing}} <: LogRatio
refvar::T
end
ALR() = ALR(nothing)
refvar(transform::ALR, names) = isnothing(transform.refvar) ? last(names) : transform.refvar
newvars(::ALR, names) = Symbol.(:ARL, 1:(length(names) - 1))
applymatrix(::ALR, X) = mapslices(alr ∘ Composition, X, dims=2)
revertmatrix(::ALR, Y) = mapslices(CoDa.components ∘ alrinv, Y, dims=2)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 512 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
CLR()
Centered log-ratio transform.
"""
struct CLR <: LogRatio end
refvar(::CLR, names) = last(names)
newvars(::CLR, names) = Symbol.(:CLR, 1:length(names))
applymatrix(::CLR, X) = mapslices(clr ∘ Composition, X, dims=2)
revertmatrix(::CLR, Y) = mapslices(CoDa.components ∘ clrinv, Y, dims=2)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 761 | # ------------------------------------------------------------------
# Licensed under the MIT License. See LICENSE in the project root.
# ------------------------------------------------------------------
"""
ILR([refvar])
Isometric log-ratio transform.
Optionally, specify the reference variable `refvar` for the ratios.
Default to the last column of the input table.
"""
struct ILR{T<:Union{Symbol,Nothing}} <: LogRatio
refvar::T
end
ILR() = ILR(nothing)
refvar(transform::ILR, names) = isnothing(transform.refvar) ? last(names) : transform.refvar
newvars(::ILR, names) = Symbol.(:ILR, 1:(length(names) - 1))
applymatrix(::ILR, X) = mapslices(ilr ∘ Composition, X, dims=2)
revertmatrix(::ILR, Y) = mapslices(CoDa.components ∘ ilrinv, Y, dims=2)
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 193 | @testset "Distributions" begin
values = randn(1000)
d = TT.EmpiricalDistribution(values)
@test 0.0 ≤ cdf(d, rand()) ≤ 1.0
@test minimum(values) ≤ quantile(d, 0.5) ≤ maximum(values)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2570 | @testset "Metadata" begin
@testset "ConstMeta" begin
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
t = Table(; a, b, c, d)
m = ConstMeta(fill(1, 10))
mt = MetaTable(t, m)
T = Select(1, 3)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == m
@test mn.table == tn
T = Rename(:a => :x, :c => :y)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == m
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ == mt
T = Functional(exp)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == m
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ.meta == mt.meta
@test Tables.matrix(mtₒ.table) ≈ Tables.matrix(mt.table)
T = (Functional(exp) → MinMax()) ⊔ Center()
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == m
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ.meta == mt.meta
@test Tables.matrix(mtₒ.table) ≈ Tables.matrix(mt.table)
end
@testset "VarMeta" begin
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
t = Table(; a, b, c, d)
m = VarMeta(fill(1, 10))
mt = MetaTable(t, m)
T = Reject(1, 3)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == VarMeta(m.data .+ 2)
@test mn.table == tn
T = Rename(:b => :x, :d => :y)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == VarMeta(m.data .+ 2)
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ == mt
T = Functional(exp)
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == VarMeta(m.data .+ 2)
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ.meta == mt.meta
@test Tables.matrix(mtₒ.table) ≈ Tables.matrix(mt.table)
# first revertible branch has two transforms,
# so metadata is increased by 2 + 2 = 4
T = (Functional(exp) → MinMax()) ⊔ Center()
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == VarMeta(m.data .+ 4)
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ.meta == mt.meta
@test Tables.matrix(mtₒ.table) ≈ Tables.matrix(mt.table)
# first revertible branch has one transform,
# so metadata is increased by 2
T = Center() ⊔ (Functional(exp) → MinMax())
mn, mc = apply(T, mt)
tn, tc = apply(T, t)
@test mn.meta == VarMeta(m.data .+ 2)
@test mn.table == tn
mtₒ = revert(T, mn, mc)
@test mtₒ.meta == mt.meta
@test Tables.matrix(mtₒ.table) ≈ Tables.matrix(mt.table)
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 829 | # meta tables
abstract type Metadata end
struct VarMeta <: Metadata
data::Vector{Int}
end
struct ConstMeta <: Metadata
data::Vector{Int}
end
Base.:(==)(a::Metadata, b::Metadata) = a.data == b.data
struct MetaTable{T,M<:Metadata}
table::T
meta::M
end
Base.:(==)(a::MetaTable, b::MetaTable) = a.table == b.table && a.meta == b.meta
TT.divide(metatable::MetaTable) = metatable.table, metatable.meta
TT.attach(feat, meta::Metadata) = MetaTable(feat, meta)
function TT.applymeta(::TT.FeatureTransform, meta::VarMeta, prep)
VarMeta(meta.data .+ 2), nothing
end
function TT.revertmeta(::TT.FeatureTransform, newmeta::VarMeta, mcache)
VarMeta(newmeta.data .- 2)
end
TT.applymeta(::TT.FeatureTransform, meta::ConstMeta, prep) = meta, nothing
TT.revertmeta(::TT.FeatureTransform, newmeta::ConstMeta, mcache) = newmeta
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1230 | using TableTransforms
using CoDa
using Tables
using Unitful
using TypedTables
using CategoricalArrays
using LinearAlgebra
using Distributions
using StatsBase
using Statistics
using DelimitedFiles
using ReferenceTests
using PairPlots
using ImageIO
using Random
using Test
import CairoMakie as Mke
import ColumnSelectors as CS
import DataScienceTraits as DST
const TT = TableTransforms
# set default configurations for plots
Mke.activate!(type="png")
# environment settings
isCI = "CI" ∈ keys(ENV)
islinux = Sys.islinux()
visualtests = !isCI || (isCI && islinux)
datadir = joinpath(@__DIR__, "data")
# using MersenneTwister for backward
# compatibility with old Julia versions
rng = MersenneTwister(42)
# for functor tests in Functional testset
struct Polynomial{T<:Real}
coeffs::Vector{T}
end
Polynomial(args::T...) where {T<:Real} = Polynomial(collect(args))
(p::Polynomial)(x) = sum(a * x^(i - 1) for (i, a) in enumerate(p.coeffs))
include("metatable.jl")
# list of tests
testfiles = ["distributions.jl", "tableselection.jl", "tablerows.jl", "transforms.jl", "metadata.jl", "shows.jl"]
@testset "TableTransforms.jl" begin
for testfile in testfiles
println("Testing $testfile...")
include(testfile)
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 14528 | @testset "Shows" begin
@testset "Assert" begin
T = Assert(:a, :b, :c, cond=allunique)
# compact mode
iostr = sprint(show, T)
@test iostr == "Assert(selector: [:a, :b, :c], cond: allunique, msg: \"\")"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Assert transform
├─ selector: [:a, :b, :c]
├─ cond: allunique
└─ msg: \"\""""
end
@testset "Select" begin
T = Select(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "Select(selector: [:a, :b, :c], newnames: nothing)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Select transform
├─ selector: [:a, :b, :c]
└─ newnames: nothing"""
# selection with renaming
T = Select(:a => :x, :b => :y)
# compact mode
iostr = sprint(show, T)
@test iostr == "Select(selector: [:a, :b], newnames: [:x, :y])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Select transform
├─ selector: [:a, :b]
└─ newnames: [:x, :y]"""
end
@testset "Reject" begin
T = Reject(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "Reject(selector: [:a, :b, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Reject transform
└─ selector: [:a, :b, :c]"""
end
@testset "Satisfies" begin
T = Satisfies(allunique)
# compact mode
iostr = sprint(show, T)
@test iostr == "Satisfies(pred: allunique)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Satisfies transform
└─ pred: allunique"""
end
@testset "Rename" begin
T = Rename(:a => :x, :c => :y)
# compact mode
iostr = sprint(show, T)
@test iostr == "Rename(selector: [:a, :c], newnames: [:x, :y])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Rename transform
├─ selector: [:a, :c]
└─ newnames: [:x, :y]"""
end
@testset "StdNames" begin
T = StdNames(:upperflat)
# compact mode
iostr = sprint(show, T)
@test iostr == "StdNames(spec: :upperflat)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
StdNames transform
└─ spec: :upperflat"""
end
@testset "StdFeats" begin
T = StdFeats()
# compact mode
iostr = sprint(show, T)
@test iostr == "StdFeats()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "StdFeats transform"
end
@testset "Sort" begin
T = Sort([:a, :c], rev=true)
# compact mode
iostr = sprint(show, T)
@test iostr == "Sort(selector: [:a, :c], kwargs: (rev = true,))"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Sort transform
├─ selector: [:a, :c]
└─ kwargs: (rev = true,)"""
end
@testset "Sample" begin
T = Sample(30, replace=false, ordered=true)
# compact mode
iostr = sprint(show, T)
@test iostr == "Sample(size: 30, weights: nothing, replace: false, ordered: true, rng: TaskLocalRNG())"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Sample transform
├─ size: 30
├─ weights: nothing
├─ replace: false
├─ ordered: true
└─ rng: TaskLocalRNG()"""
end
@testset "Filter" begin
pred = row -> row.c ≥ 2 && row.e > 4
T = Filter(pred)
# compact mode
iostr = sprint(show, T)
@test iostr == "Filter(pred: $(nameof(pred)))"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Filter transform
└─ pred: $(typeof(pred))()"""
end
@testset "DropMissing" begin
T = DropMissing(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "DropMissing(selector: [:a, :b, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
DropMissing transform
└─ selector: [:a, :b, :c]"""
end
@testset "DropNaN" begin
T = DropNaN(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "DropNaN(selector: [:a, :b, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
DropNaN transform
└─ selector: [:a, :b, :c]"""
end
@testset "DropExtrema" begin
T = DropExtrema("a", low=0.25, high=0.75)
# compact mode
iostr = sprint(show, T)
@test iostr == "DropExtrema(selector: [:a], low: 0.25, high: 0.75)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
DropExtrema transform
├─ selector: [:a]
├─ low: 0.25
└─ high: 0.75"""
end
@testset "DropUnits" begin
T = DropUnits(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "DropUnits(selector: [:a, :b, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
DropUnits transform
└─ selector: [:a, :b, :c]"""
end
@testset "DropConstant" begin
T = DropConstant()
# compact mode
iostr = sprint(show, T)
@test iostr == "DropConstant()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "DropConstant transform"
end
@testset "AbsoluteUnits" begin
T = AbsoluteUnits(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "AbsoluteUnits(selector: [:a, :b, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
AbsoluteUnits transform
└─ selector: [:a, :b, :c]"""
end
@testset "Unitify" begin
T = Unitify()
# compact mode
iostr = sprint(show, T)
@test iostr == "Unitify()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "Unitify transform"
end
@testset "Unit" begin
T = Unit(:a => u"m", [:b, :c] => u"s")
# compact mode
iostr = sprint(show, T)
@test iostr == "Unit(selectors: ColumnSelector[:a, [:b, :c]], units: Units[m, s])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Unit transform
├─ selectors: ColumnSelectors.ColumnSelector[:a, [:b, :c]]
└─ units: Unitful.Units[m, s]"""
end
@testset "Map" begin
fun = (a, b) -> 2a + b
T = Map(:a => sin, [:a, :b] => fun => :c)
# compact mode
iostr = sprint(show, T)
@test iostr ==
"Map(selectors: ColumnSelector[:a, [:a, :b]], funs: Function[sin, $(nameof(fun))], targets: Union{Nothing, Symbol}[nothing, :c])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Map transform
├─ selectors: ColumnSelectors.ColumnSelector[:a, [:a, :b]]
├─ funs: Function[sin, $(typeof(fun))()]
└─ targets: Union{Nothing, Symbol}[nothing, :c]"""
end
@testset "Replace" begin
T = Replace(1 => -1, 5 => -5)
# compact mode
iostr = sprint(show, T)
@test iostr ==
"Replace(selectors: ColumnSelector[all, all], preds: Function[Fix2{typeof(===), Int64}(===, 1), Fix2{typeof(===), Int64}(===, 5)], news: Any[-1, -5])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Replace transform
├─ selectors: ColumnSelectors.ColumnSelector[all, all]
├─ preds: Function[Base.Fix2{typeof(===), Int64}(===, 1), Base.Fix2{typeof(===), Int64}(===, 5)]
└─ news: Any[-1, -5]"""
end
@testset "Coalesce" begin
T = Coalesce(value=0)
# compact mode
iostr = sprint(show, T)
@test iostr == "Coalesce(selector: all, value: 0)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Coalesce transform
├─ selector: all
└─ value: 0"""
end
@testset "Coerce" begin
T = Coerce(:a => DST.Continuous, :b => DST.Categorical)
# compact mode
iostr = sprint(show, T)
@test iostr == "Coerce(selector: [:a, :b], scitypes: DataType[Continuous, Categorical])"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Coerce transform
├─ selector: [:a, :b]
└─ scitypes: DataType[DataScienceTraits.Continuous, DataScienceTraits.Categorical]"""
end
@testset "Levels" begin
T = Levels(:a => ["n", "y"], :b => 1:3, ordered=r"[ab]")
# compact mode
iostr = sprint(show, T)
@test iostr == "Levels(selector: [:a, :b], ordered: r\"[ab]\", levels: ([\"n\", \"y\"], 1:3))"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Levels transform
├─ selector: [:a, :b]
├─ ordered: r"[ab]"
└─ levels: (["n", "y"], 1:3)"""
end
@testset "OneHot" begin
T = OneHot(:a)
# compact mode
iostr = sprint(show, T)
@test iostr == "OneHot(selector: :a, categ: false)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
OneHot transform
├─ selector: :a
└─ categ: false"""
end
@testset "Identity" begin
T = Identity()
# compact mode
iostr = sprint(show, T)
@test iostr == "Identity()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "Identity transform"
end
@testset "Center" begin
T = Center()
# compact mode
iostr = sprint(show, T)
@test iostr == "Center(selector: all)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Center transform
└─ selector: all"""
end
@testset "LowHigh" begin
T = LowHigh()
# compact mode
iostr = sprint(show, T)
@test iostr == "LowHigh(selector: all, low: 0.25, high: 0.75)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
LowHigh transform
├─ selector: all
├─ low: 0.25
└─ high: 0.75"""
end
@testset "ZScore" begin
T = ZScore()
# compact mode
iostr = sprint(show, T)
@test iostr == "ZScore(selector: all)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
ZScore transform
└─ selector: all"""
end
@testset "Quantile" begin
T = Quantile()
# compact mode
iostr = sprint(show, T)
@test iostr == "Quantile(selector: all, dist: Normal{Float64}(μ=0.0, σ=1.0))"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Quantile transform
├─ selector: all
└─ dist: Normal{Float64}(μ=0.0, σ=1.0)"""
end
@testset "Functional" begin
T = Functional(log)
# compact mode
iostr = sprint(show, T)
@test iostr == "Functional(selector: all, fun: log)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Functional transform
├─ selector: all
└─ fun: log"""
end
@testset "EigenAnalysis" begin
T = EigenAnalysis(:VDV)
# compact mode
iostr = sprint(show, T)
@test iostr == "EigenAnalysis(proj: :VDV, maxdim: nothing, pratio: 1.0)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
EigenAnalysis transform
├─ proj: :VDV
├─ maxdim: nothing
└─ pratio: 1.0"""
end
@testset "Closure" begin
T = Closure()
# compact mode
iostr = sprint(show, T)
@test iostr == "Closure()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "Closure transform"
end
@testset "Remainder" begin
T = Remainder()
# compact mode
iostr = sprint(show, T)
@test iostr == "Remainder(total: nothing)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Remainder transform
└─ total: nothing"""
end
@testset "Compose" begin
T = Compose(:a, :b, :c)
# compact mode
iostr = sprint(show, T)
@test iostr == "Compose(selector: [:a, :b, :c], as: :CODA)"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == """
Compose transform
├─ selector: [:a, :b, :c]
└─ as: :CODA"""
end
@testset "RowTable" begin
T = RowTable()
# compact mode
iostr = sprint(show, T)
@test iostr == "RowTable()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "RowTable transform"
end
@testset "ColTable" begin
T = ColTable()
# compact mode
iostr = sprint(show, T)
@test iostr == "ColTable()"
# full mode
iostr = sprint(show, MIME("text/plain"), T)
@test iostr == "ColTable transform"
end
@testset "SequentialTransform" begin
t1 = Select(:x, :z)
t2 = ZScore()
t3 = LowHigh(low=0, high=1)
pipeline = t1 → t2 → t3
# compact mode
iostr = sprint(show, pipeline)
@test iostr ==
"Select(selector: [:x, :z], newnames: nothing) → ZScore(selector: all) → LowHigh(selector: all, low: 0, high: 1)"
# full mode
iostr = sprint(show, MIME("text/plain"), pipeline)
@test iostr == """
SequentialTransform
├─ Select(selector: [:x, :z], newnames: nothing)
├─ ZScore(selector: all)
└─ LowHigh(selector: all, low: 0, high: 1)"""
end
@testset "ParallelTableTransform" begin
t1 = LowHigh(low=0.3, high=0.6)
t2 = EigenAnalysis(:VDV)
t3 = Functional(exp)
pipeline = t1 ⊔ t2 ⊔ t3
# compact mode
iostr = sprint(show, pipeline)
@test iostr ==
"LowHigh(selector: all, low: 0.3, high: 0.6) ⊔ EigenAnalysis(proj: :VDV, maxdim: nothing, pratio: 1.0) ⊔ Functional(selector: all, fun: exp)"
# full mode
iostr = sprint(show, MIME("text/plain"), pipeline)
@test iostr == """
ParallelTableTransform
├─ LowHigh(selector: all, low: 0.3, high: 0.6)
├─ EigenAnalysis(proj: :VDV, maxdim: nothing, pratio: 1.0)
└─ Functional(selector: all, fun: exp)"""
# parallel and sequential
f1 = ZScore()
f2 = LowHigh()
f3 = Functional(exp)
f4 = Interquartile()
pipeline = (f1 → f2) ⊔ (f3 → f4)
# compact mode
iostr = sprint(show, pipeline)
@test iostr ==
"ZScore(selector: all) → LowHigh(selector: all, low: 0.25, high: 0.75) ⊔ Functional(selector: all, fun: exp) → LowHigh(selector: all, low: 0.25, high: 0.75)"
# full mode
iostr = sprint(show, MIME("text/plain"), pipeline)
@test iostr == """
ParallelTableTransform
├─ SequentialTransform
│ ├─ ZScore(selector: all)
│ └─ LowHigh(selector: all, low: 0.25, high: 0.75)
└─ SequentialTransform
├─ Functional(selector: all, fun: exp)
└─ LowHigh(selector: all, low: 0.25, high: 0.75)"""
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1963 | @testset "tablerows" begin
#--------------
# COLUMN TABLE
#--------------
# table rows
tb = (a=[1, 2, 3], b=[4, 5, 6])
rows = TT.tablerows(tb)
@test rows isa TT.CTableRows
# iterator interface
@test length(rows) == 3
row, state = iterate(rows)
@test row.a == 1
@test row.b == 4
row, state = iterate(rows, state)
@test row.a == 2
@test row.b == 5
row, state = iterate(rows, state)
@test row.a == 3
@test row.b == 6
@test isnothing(iterate(rows, state))
# table row
row = first(rows)
@test row isa TT.CTableRow
# AbstractRow interface
@test Tables.columnnames(row) == (:a, :b)
@test Tables.getcolumn(row, 1) == 1
@test Tables.getcolumn(row, :a) == 1
# column access
@test row."a" == 1
@test row[1] == 1
@test row[:a] == 1
@test row["a"] == 1
# iterator interface
@test length(row) == 2
item, state = iterate(row)
@test item == 1
item, state = iterate(row, state)
@test item == 4
@test isnothing(iterate(row, state))
#-----------
# ROW TABLE
#-----------
# table rows
tb = [(a=1, b=4), (a=2, b=5), (a=3, b=6)]
rows = TT.tablerows(tb)
@test rows isa TT.RTableRows
# iterator interface
@test length(rows) == 3
row, state = iterate(rows)
@test row.a == 1
@test row.b == 4
row, state = iterate(rows, state)
@test row.a == 2
@test row.b == 5
row, state = iterate(rows, state)
@test row.a == 3
@test row.b == 6
@test isnothing(iterate(rows, state))
# table row
row = first(rows)
@test row isa TT.RTableRow
# AbstractRow interface
@test Tables.columnnames(row) == (:a, :b)
@test Tables.getcolumn(row, 2) == 4
@test Tables.getcolumn(row, :b) == 4
# column access
@test row."b" == 4
@test row[2] == 4
@test row[:b] == 4
@test row["b"] == 4
# iterator interface
@test length(row) == 2
item, state = iterate(row)
@test item == 1
item, state = iterate(row, state)
@test item == 4
@test isnothing(iterate(row, state))
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2141 | @testset "TableSelection" begin
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
e = rand(10)
f = rand(10)
t = Table(; a, b, c, d, e, f)
# Tables.jl interface
select = [:a, :b, :e]
newnames = select
s = TT.TableSelection(t, newnames, select)
@test Tables.istable(s) == true
@test Tables.columnaccess(s) == true
@test Tables.rowaccess(s) == false
@test Tables.columns(s) === s
@test Tables.columnnames(s) == [:a, :b, :e]
@test Tables.schema(s).names == (:a, :b, :e)
@test Tables.schema(s).types == (Float64, Float64, Float64)
@test Tables.materializer(s) == Tables.materializer(t)
# getcolumn
cols = Tables.columns(t)
@test Tables.getcolumn(s, :a) == Tables.getcolumn(cols, :a)
@test Tables.getcolumn(s, 1) == Tables.getcolumn(cols, 1)
@test Tables.getcolumn(s, 3) == Tables.getcolumn(cols, :e)
# selectin with renaming
select = [:c, :d, :f]
newnames = [:x, :y, :z]
s = TT.TableSelection(t, newnames, select)
@test Tables.columnnames(s) == [:x, :y, :z]
@test Tables.getcolumn(s, :x) == t.c
@test Tables.getcolumn(s, :y) == t.d
@test Tables.getcolumn(s, :z) == t.f
@test Tables.getcolumn(s, 1) == t.c
@test Tables.getcolumn(s, 2) == t.d
@test Tables.getcolumn(s, 3) == t.f
# row table
select = [:a, :b, :e]
newnames = select
rt = Tables.rowtable(t)
s = TT.TableSelection(rt, newnames, select)
cols = Tables.columns(rt)
@test Tables.getcolumn(s, :a) == Tables.getcolumn(cols, :a)
@test Tables.getcolumn(s, 1) == Tables.getcolumn(cols, 1)
@test Tables.getcolumn(s, 3) == Tables.getcolumn(cols, :e)
# throws
@test_throws AssertionError TT.TableSelection(t, [:a, :b, :z], [:a, :b, :z])
@test_throws AssertionError TT.TableSelection(t, [:x, :y, :z], [:c, :d, :k])
s = TT.TableSelection(t, [:a, :b, :e], [:a, :b, :e])
@test_throws ErrorException Tables.getcolumn(s, :f)
@test_throws ErrorException Tables.getcolumn(s, 4)
s = TT.TableSelection(t, [:x, :y, :z], [:c, :d, :f])
@test_throws ErrorException Tables.getcolumn(s, :c)
@test_throws ErrorException Tables.getcolumn(s, 4)
@test_throws ErrorException Tables.getcolumn(s, -2)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 857 | transformfiles = [
"assert.jl",
"select.jl",
"rename.jl",
"satisfies.jl",
"stdnames.jl",
"stdfeats.jl",
"sort.jl",
"sample.jl",
"filter.jl",
"dropmissing.jl",
"dropnan.jl",
"dropextrema.jl",
"dropunits.jl",
"dropconstant.jl",
"absoluteunits.jl",
"unitify.jl",
"unit.jl",
"map.jl",
"replace.jl",
"coalesce.jl",
"coerce.jl",
"levels.jl",
"indicator.jl",
"onehot.jl",
"identity.jl",
"center.jl",
"lowhigh.jl",
"zscore.jl",
"quantile.jl",
"functional.jl",
"eigenanalysis.jl",
"projectionpursuit.jl",
"closure.jl",
"remainder.jl",
"compose.jl",
"logratio.jl",
"rowtable.jl",
"coltable.jl",
"sequential.jl",
"parallel.jl"
]
@testset "Transforms" begin
for transformfile in transformfiles
println("Testing $transformfile...")
include("transforms/$transformfile")
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 5041 | @testset "AbsoluteUnits" begin
@test isrevertible(AbsoluteUnits())
a = [7, 4, 4, 7, 4, 1, 1, 6, 4, 7] * u"°C"
b = [4, 5, 4, missing, 6, 6, missing, 4, 4, 1] * u"K"
c = [3.9, 3.8, 3.5, 6.5, 7.7, 1.5, 0.6, 5.7, 4.7, 4.8] * u"K"
d = [6.3, 4.7, 7.6, missing, 1.2, missing, 5.9, 0.2, 1.9, 4.2] * u"°C"
e = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
t = Table(; a, b, c, d, e)
T = AbsoluteUnits()
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# args...
# integers
T = AbsoluteUnits(1, 2)
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"°C"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# symbols
T = AbsoluteUnits(:a, :b)
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"°C"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# strings
T = AbsoluteUnits("a", "b")
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"°C"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# vector
# integers
T = AbsoluteUnits([3, 4])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"°C"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# symbols
T = AbsoluteUnits([:c, :d])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"°C"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# strings
T = AbsoluteUnits(["c", "d"])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"°C"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# tuple
# integers
T = AbsoluteUnits((1, 4, 5))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# symbols
T = AbsoluteUnits((:a, :d, :e))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# strings
T = AbsoluteUnits(("a", "d", "e"))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
# regex
T = AbsoluteUnits(r"[ade]")
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"K"
@test unit(nonmissingtype(eltype(n.b))) === u"K"
@test unit(eltype(n.c)) === u"K"
@test unit(nonmissingtype(eltype(n.d))) === u"K"
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test all(isapprox.(skipmissing(t.d), skipmissing(tₒ.d)))
@test t.e == tₒ.e
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1187 | @testset "Assert" begin
@test isrevertible(Assert(cond=allunique))
a = [1, 2, 3, 4, 5, 6]
b = [6, 5, 4, 3, 2, 1]
c = [1, 2, 3, 4, 6, 6]
d = [6, 6, 4, 3, 2, 1]
t = Table(; a, b, c, d)
T = Assert(1, 2, cond=allunique)
n, c = apply(T, t)
@test n == t
tₒ = revert(T, n, c)
@test tₒ == n == t
T = Assert(1, 2, 3, cond=allunique)
@test_throws AssertionError apply(T, t)
T = Assert([:c, :d], cond=x -> sum(x) > 21)
n, c = apply(T, t)
@test n == t
tₒ = revert(T, n, c)
@test tₒ == n == t
T = Assert([:b, :c, :d], cond=x -> sum(x) > 21)
@test_throws AssertionError apply(T, t)
T = Assert(("a", "b"), cond=allunique)
n, c = apply(T, t)
@test n == t
tₒ = revert(T, n, c)
@test tₒ == n == t
T = Assert(("a", "b", "c"), cond=allunique, msg="assertion error")
@test_throws AssertionError apply(T, t)
@test_throws "assertion error" apply(T, t)
T = Assert(r"[cd]", cond=x -> sum(x) > 21)
n, c = apply(T, t)
@test n == t
tₒ = revert(T, n, c)
@test tₒ == n == t
T = Assert(r"[bcd]", cond=x -> sum(x) > 21, msg=nm -> "error in column $nm")
@test_throws AssertionError apply(T, t)
@test_throws "error in column b" apply(T, t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1454 | @testset "Center" begin
x = rand(rng, Normal(2, 1), 4000)
y = rand(rng, Normal(5, 1), 4000)
t = Table(; x, y)
T = Center()
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# row table
rt = Tables.rowtable(t)
T = Center()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
# colspec
z = x + y
t = Table(; x, y, z)
T = Center(1, 2)
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = Center([:x, :y])
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = Center(("x", "y"))
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = Center(r"[xy]")
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 334 | @testset "Closure" begin
@test isrevertible(Closure())
a = [2.0, 66.0, 0.0]
b = [4.0, 22.0, 2.0]
c = [4.0, 12.0, 98.0]
t = Table(; a, b, c)
T = Closure()
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test Tables.matrix(n) ≈ [0.2 0.4 0.4; 0.66 0.22 0.12; 0.00 0.02 0.98]
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2190 | @testset "Coalesce" begin
@test !isrevertible(Coalesce(value=0))
@test TT.parameters(Coalesce(value=0)) == (; value=0)
a = [3, 2, missing, 4, 5, 3]
b = [missing, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, missing]
d = [4, 3, 7, 5, 4, missing]
e = [missing, 5, 2, 6, 5, 2]
f = [4, missing, 3, 4, 5, 2]
t = Table(; a, b, c, d, e, f)
T = Coalesce(value=0)
n, c = apply(T, t)
@test n.a == [3, 2, 0, 4, 5, 3]
@test n.b == [0, 4, 4, 5, 8, 5]
@test n.c == [1, 1, 6, 2, 4, 0]
@test n.d == [4, 3, 7, 5, 4, 0]
@test n.e == [0, 5, 2, 6, 5, 2]
@test n.f == [4, 0, 3, 4, 5, 2]
# table schema after apply
T = Coalesce(value=0)
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test ntypes[1] == Int
@test ntypes[2] == Int
@test ntypes[3] == Int
@test ntypes[4] == Int
@test ntypes[5] == Int
@test ntypes[6] == Int
# row table
rt = Tables.rowtable(t)
T = Coalesce(value=0)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
# colspec
T = Coalesce(1, 3, 5, value=0)
n, c = apply(T, t)
@test n.a == [3, 2, 0, 4, 5, 3]
@test isequal(n.b, [missing, 4, 4, 5, 8, 5])
@test n.c == [1, 1, 6, 2, 4, 0]
@test isequal(n.d, [4, 3, 7, 5, 4, missing])
@test n.e == [0, 5, 2, 6, 5, 2]
@test isequal(n.f, [4, missing, 3, 4, 5, 2])
T = Coalesce([:b, :d, :f], value=0)
n, c = apply(T, t)
@test isequal(n.a, [3, 2, missing, 4, 5, 3])
@test n.b == [0, 4, 4, 5, 8, 5]
@test isequal(n.c, [1, 1, 6, 2, 4, missing])
@test n.d == [4, 3, 7, 5, 4, 0]
@test isequal(n.e, [missing, 5, 2, 6, 5, 2])
@test n.f == [4, 0, 3, 4, 5, 2]
T = Coalesce(("a", "c", "e"), value=0)
n, c = apply(T, t)
@test n.a == [3, 2, 0, 4, 5, 3]
@test isequal(n.b, [missing, 4, 4, 5, 8, 5])
@test n.c == [1, 1, 6, 2, 4, 0]
@test isequal(n.d, [4, 3, 7, 5, 4, missing])
@test n.e == [0, 5, 2, 6, 5, 2]
@test isequal(n.f, [4, missing, 3, 4, 5, 2])
T = Coalesce(r"[bdf]", value=0)
n, c = apply(T, t)
@test isequal(n.a, [3, 2, missing, 4, 5, 3])
@test n.b == [0, 4, 4, 5, 8, 5]
@test isequal(n.c, [1, 1, 6, 2, 4, missing])
@test n.d == [4, 3, 7, 5, 4, 0]
@test isequal(n.e, [missing, 5, 2, 6, 5, 2])
@test n.f == [4, 0, 3, 4, 5, 2]
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1606 | @testset "Coerce" begin
a = [1, 2, 3, 4, 5]
b = [1.0, 2.0, 3.0, 4.0, 5.0]
t = Table(; a, b)
T = Coerce(1 => DST.Continuous, 2 => DST.Categorical)
n, c = apply(T, t)
@test eltype(n.a) <: Float64
@test eltype(n.b) <: Int
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test eltype(tₒ.a) == eltype(t.a)
@test eltype(tₒ.b) == eltype(t.b)
T = Coerce(:a => DST.Continuous, :b => DST.Categorical)
n, c = apply(T, t)
@test eltype(n.a) <: Float64
@test eltype(n.b) <: Int
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test eltype(tₒ.a) == eltype(t.a)
@test eltype(tₒ.b) == eltype(t.b)
T = Coerce("a" => DST.Continuous, "b" => DST.Categorical)
n, c = apply(T, t)
@test eltype(n.a) <: Float64
@test eltype(n.b) <: Int
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test eltype(tₒ.a) == eltype(t.a)
@test eltype(tₒ.b) == eltype(t.b)
T = Coerce(DST.Continuous)
n, c = apply(T, t)
@test eltype(n.a) <: Float64
@test eltype(n.b) <: Float64
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test eltype(tₒ.a) == eltype(t.a)
@test eltype(tₒ.b) == eltype(t.b)
T = Coerce(DST.Categorical)
n, c = apply(T, t)
@test eltype(n.a) <: Int
@test eltype(n.b) <: Int
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test eltype(tₒ.a) == eltype(t.a)
@test eltype(tₒ.b) == eltype(t.b)
# row table
rt = Tables.rowtable(t)
T = Coerce(:a => DST.Continuous, :b => DST.Categorical)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test rt == rtₒ
# error: cannot create Coerce transform without arguments
@test_throws ArgumentError Coerce()
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 280 | @testset "ColTable" begin
a = [3, 2, 1, 4, 5, 3]
b = [1, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, 1]
t = Table(; a, b, c)
T = ColTable()
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test typeof(n) <: NamedTuple
@test Tables.columnaccess(n)
@test typeof(tₒ) <: Table
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1322 | @testset "Compose" begin
@test isrevertible(Compose())
a = rand(10)
b = rand(10)
c = rand(10)
t = Table(; a, b, c)
T = Compose()
n, c = apply(T, t)
@test Tables.schema(n).names == (:CODA,)
@test n.CODA isa CoDaArray
@test n.CODA == CoDaArray(t)
tₒ = revert(T, n, c)
@test tₒ == t
T = Compose(as=:comp)
n, c = apply(T, t)
@test Tables.schema(n).names == (:comp,)
@test n.comp isa CoDaArray
@test n.comp == CoDaArray(t)
tₒ = revert(T, n, c)
@test tₒ == t
T = Compose(1, 2)
n, c = apply(T, t)
@test Tables.schema(n).names == (:c, :CODA)
@test n.CODA isa CoDaArray
@test n.CODA == CoDaArray((a=t.a, b=t.b))
tₒ = revert(T, n, c)
@test tₒ == t
T = Compose([:a, :c])
n, c = apply(T, t)
@test Tables.schema(n).names == (:b, :CODA)
@test n.CODA isa CoDaArray
@test n.CODA == CoDaArray((a=t.a, c=t.c))
tₒ = revert(T, n, c)
@test tₒ == t
T = Compose(("b", "c"))
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :CODA)
@test n.CODA isa CoDaArray
@test n.CODA == CoDaArray((b=t.b, c=t.c))
tₒ = revert(T, n, c)
@test tₒ == t
T = Compose(r"[ab]", as="COMP")
n, c = apply(T, t)
@test Tables.schema(n).names == (:c, :COMP)
@test n.COMP isa CoDaArray
@test n.COMP == CoDaArray((a=t.a, b=t.b))
tₒ = revert(T, n, c)
@test tₒ == t
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 664 | @testset "DropConstant" begin
@test isrevertible(DropUnits())
a = [4, 6, 7, 8, 1, 2]
b = fill(5, 6)
c = [1.9, 7.4, 8.6, 8.9, 2.4, 7.7]
d = fill(5.5, 6)
t = Table(; a, b, c, d)
T = DropConstant()
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :c)
@test Tables.getcolumn(n, :a) == t.a
@test Tables.getcolumn(n, :c) == t.c
tₒ = revert(T, n, c)
@test t == tₒ
# revert with different number of rows
T = DropConstant()
_, c = apply(T, t)
n = Table(; a=[t.a; [3, 4, 7, 2]], c=[t.c; [5.3, 4.9, 3.1, 6.8]])
r = revert(T, n, c)
@test r.a == n.a
@test r.b == fill(5, 10)
@test r.c == n.c
@test r.d == fill(5.5, 10)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2197 | @testset "DropExtrema" begin
@test !isrevertible(DropExtrema(:a))
@test TT.parameters(DropExtrema(:a)) == (low=0.25, high=0.75)
a = [6.9, 9.0, 7.8, 0.0, 5.1, 4.8, 1.1, 8.0, 5.4, 7.9]
b = [7.7, 4.2, 6.3, 1.4, 4.4, 0.5, 3.0, 6.1, 1.9, 1.5]
c = [6.1, 7.7, 5.7, 2.8, 2.8, 6.7, 8.4, 5.0, 8.9, 1.0]
d = [1.0, 2.8, 6.2, 1.9, 8.1, 6.2, 4.0, 6.9, 4.1, 1.4]
e = [1.5, 8.9, 4.1, 1.6, 5.9, 1.3, 4.9, 3.5, 2.4, 6.3]
f = [1.9, 2.1, 9.0, 6.2, 1.3, 8.9, 6.2, 3.8, 5.1, 2.3]
t = Table(; a, b, c, d, e, f)
T = DropExtrema(1)
n, c = apply(T, t)
@test n.a == [6.9, 7.8, 5.1, 5.4]
@test n.b == [7.7, 6.3, 4.4, 1.9]
@test n.c == [6.1, 5.7, 2.8, 8.9]
@test n.d == [1.0, 6.2, 8.1, 4.1]
@test n.e == [1.5, 4.1, 5.9, 2.4]
@test n.f == [1.9, 9.0, 1.3, 5.1]
T = DropExtrema(1, 2)
n, c = apply(T, t)
@test n.a == [5.1, 5.4]
@test n.b == [4.4, 1.9]
@test n.c == [2.8, 8.9]
@test n.d == [8.1, 4.1]
@test n.e == [5.9, 2.4]
@test n.f == [1.3, 5.1]
T = DropExtrema(:c, low=0.3, high=0.7)
n, c = apply(T, t)
@test n.a == [6.9, 7.8, 4.8, 8.0]
@test n.b == [7.7, 6.3, 0.5, 6.1]
@test n.c == [6.1, 5.7, 6.7, 5.0]
@test n.d == [1.0, 6.2, 6.2, 6.9]
@test n.e == [1.5, 4.1, 1.3, 3.5]
@test n.f == [1.9, 9.0, 8.9, 3.8]
T = DropExtrema([:c, :d], low=0.3, high=0.7)
n, c = apply(T, t)
@test n.a == [7.8, 4.8]
@test n.b == [6.3, 0.5]
@test n.c == [5.7, 6.7]
@test n.d == [6.2, 6.2]
@test n.e == [4.1, 1.3]
@test n.f == [9.0, 8.9]
T = DropExtrema("e", low=0.2, high=0.8)
n, c = apply(T, t)
@test n.a == [7.8, 0.0, 5.1, 1.1, 8.0, 5.4]
@test n.b == [6.3, 1.4, 4.4, 3.0, 6.1, 1.9]
@test n.c == [5.7, 2.8, 2.8, 8.4, 5.0, 8.9]
@test n.d == [6.2, 1.9, 8.1, 4.0, 6.9, 4.1]
@test n.e == [4.1, 1.6, 5.9, 4.9, 3.5, 2.4]
@test n.f == [9.0, 6.2, 1.3, 6.2, 3.8, 5.1]
T = DropExtrema(("e", "f"), low=0.2, high=0.8)
n, c = apply(T, t)
@test n.a == [0.0, 1.1, 8.0, 5.4]
@test n.b == [1.4, 3.0, 6.1, 1.9]
@test n.c == [2.8, 8.4, 5.0, 8.9]
@test n.d == [1.9, 4.0, 6.9, 4.1]
@test n.e == [1.6, 4.9, 3.5, 2.4]
@test n.f == [6.2, 6.2, 3.8, 5.1]
# error: invalid quantiles
@test_throws AssertionError DropExtrema(:a, low=0, high=1.4)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 7156 | @testset "DropMissing" begin
@test !isrevertible(DropMissing())
a = [3, 2, missing, 4, 5, 3]
b = [missing, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, missing]
d = [4, 3, 7, 5, 4, missing]
e = [missing, 5, 2, 6, 5, 2]
f = [4, missing, 3, 4, 5, 2]
t = Table(; a, b, c, d, e, f)
T = DropMissing()
n, c = apply(T, t)
@test n.a == [4, 5]
@test n.b == [5, 8]
@test n.c == [2, 4]
@test n.d == [5, 4]
@test n.e == [6, 5]
@test n.f == [4, 5]
# args...
# integers
T = DropMissing(1, 3, 4)
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# symbols
T = DropMissing(:a, :c, :d)
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# strings
T = DropMissing("a", "c", "d")
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# vector
# integers
T = DropMissing([1, 3, 4])
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# symbols
T = DropMissing([:a, :c, :d])
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# strings
T = DropMissing(["a", "c", "d"])
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# tuple
# integers
T = DropMissing((1, 3, 4))
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# symbols
T = DropMissing((:a, :c, :d))
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# strings
T = DropMissing(("a", "c", "d"))
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# regex
T = DropMissing(r"[acd]")
n, c = apply(T, t)
@test isequal(n.a, [3, 2, 4, 5])
@test isequal(n.b, [missing, 4, 5, 8])
@test isequal(n.c, [1, 1, 2, 4])
@test isequal(n.d, [4, 3, 5, 4])
@test isequal(n.e, [missing, 5, 6, 5])
@test isequal(n.f, [4, missing, 4, 5])
# table schema after apply and revert
T = DropMissing()
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test ntypes[1] == Int
@test ntypes[2] == Int
@test ntypes[3] == Int
@test ntypes[4] == Int
@test ntypes[5] == Int
@test ntypes[6] == Int
T = DropMissing([:a, :c, :d])
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test ntypes[1] == Int
@test ntypes[2] == Union{Missing,Int}
@test ntypes[3] == Int
@test ntypes[4] == Int
@test ntypes[5] == Union{Missing,Int}
@test ntypes[6] == Union{Missing,Int}
T = DropMissing([:b, :e, :f])
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test ntypes[1] == Union{Missing,Int}
@test ntypes[2] == Int
@test ntypes[3] == Union{Missing,Int}
@test ntypes[4] == Union{Missing,Int}
@test ntypes[5] == Int
@test ntypes[6] == Int
# reapply test
T = DropMissing()
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# row table
rt = Tables.rowtable(t)
T = DropMissing()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
# missing value columns
a = fill(missing, 6)
b = [missing, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, missing]
d = [4, 3, 7, 5, 4, missing]
e = [missing, 5, 2, 6, 5, 2]
f = fill(missing, 6)
t = Table(; a, b, c, d, e, f)
T = DropMissing()
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test isequal(n.a, [])
@test isequal(n.b, [])
@test isequal(n.c, [])
@test isequal(n.d, [])
@test isequal(n.e, [])
@test isequal(n.f, [])
@test ntypes[1] == Any
@test ntypes[2] == Int
@test ntypes[3] == Int
@test ntypes[4] == Int
@test ntypes[5] == Int
@test ntypes[6] == Any
T = DropMissing(:a)
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test isequal(n.a, [])
@test isequal(n.b, [])
@test isequal(n.c, [])
@test isequal(n.d, [])
@test isequal(n.e, [])
@test isequal(n.f, [])
@test ntypes[1] == Any
@test ntypes[2] == Union{Missing,Int}
@test ntypes[3] == Union{Missing,Int}
@test ntypes[4] == Union{Missing,Int}
@test ntypes[5] == Union{Missing,Int}
@test ntypes[6] == Missing
T = DropMissing(:f)
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test isequal(n.a, [])
@test isequal(n.b, [])
@test isequal(n.c, [])
@test isequal(n.d, [])
@test isequal(n.e, [])
@test isequal(n.f, [])
@test ntypes[1] == Missing
@test ntypes[2] == Union{Missing,Int}
@test ntypes[3] == Union{Missing,Int}
@test ntypes[4] == Union{Missing,Int}
@test ntypes[5] == Union{Missing,Int}
@test ntypes[6] == Any
T = DropMissing(:b, :c, :d, :e)
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test isequal(n.a, fill(missing, 4))
@test isequal(n.b, [4, 4, 5, 8])
@test isequal(n.c, [1, 6, 2, 4])
@test isequal(n.d, [3, 7, 5, 4])
@test isequal(n.e, [5, 2, 6, 5])
@test isequal(n.f, fill(missing, 4))
@test ntypes[1] == Missing
@test ntypes[2] == Int
@test ntypes[3] == Int
@test ntypes[4] == Int
@test ntypes[5] == Int
@test ntypes[6] == Missing
# throws: empty selection
@test_throws ArgumentError DropMissing(())
@test_throws ArgumentError DropMissing(Symbol[])
@test_throws ArgumentError DropMissing(String[])
# throws: regex doesn't match any names in input table
@test_throws AssertionError apply(DropMissing(r"g"), t)
# throws: columns that do not exist in the original table
@test_throws AssertionError apply(DropMissing(:g, :h), t)
@test_throws AssertionError apply(DropMissing([:g, :h]), t)
@test_throws AssertionError apply(DropMissing((:g, :h)), t)
@test_throws AssertionError apply(DropMissing("g", "h"), t)
@test_throws AssertionError apply(DropMissing(["g", "h"]), t)
@test_throws AssertionError apply(DropMissing(("g", "h")), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3526 | @testset "DropNaN" begin
@test !isrevertible(DropNaN())
a = [1.8, 0.5, 1.2, 3.7, 5.0, NaN]
b = [6.0f0, 5.4f0, 5.4f0, NaN32, 5.5f0, 2.6f0]
c = [4.9, 5.1, NaN, 5.1, 8.6, 4.4] * u"m"
d = [NaN32, 1.0f0, 8.8f0, 0.1f0, 1.5f0, 9.5f0] * u"m"
e = ["yes", "no", "no", "yes", "yes", "no"]
t = Table(; a, b, c, d, e)
T = DropNaN()
n, c = apply(T, t)
@test n.a == [0.5, 5.0]
@test n.b == [5.4f0, 5.5f0]
@test n.c == [5.1, 8.6] * u"m"
@test n.d == [1.0f0, 1.5f0] * u"m"
@test n.e == ["no", "yes"]
# args...
# integers
T = DropNaN(1, 3)
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 3.7, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, NaN32, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 0.1f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes", "yes"])
# symbols
T = DropNaN(:a, :c)
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 3.7, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, NaN32, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 0.1f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes", "yes"])
# strings
T = DropNaN("a", "c")
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 3.7, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, NaN32, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 0.1f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes", "yes"])
# vector
# integers
T = DropNaN([2, 4])
n, c = apply(T, t)
@test isequal(n.a, [0.5, 1.2, 5.0, NaN])
@test isequal(n.b, [5.4f0, 5.4f0, 5.5f0, 2.6f0])
@test isequal(n.c, [5.1, NaN, 8.6, 4.4] * u"m")
@test isequal(n.d, [1.0f0, 8.8f0, 1.5f0, 9.5f0] * u"m")
@test isequal(n.e, ["no", "no", "yes", "no"])
# symbols
T = DropNaN([:b, :d])
n, c = apply(T, t)
@test isequal(n.a, [0.5, 1.2, 5.0, NaN])
@test isequal(n.b, [5.4f0, 5.4f0, 5.5f0, 2.6f0])
@test isequal(n.c, [5.1, NaN, 8.6, 4.4] * u"m")
@test isequal(n.d, [1.0f0, 8.8f0, 1.5f0, 9.5f0] * u"m")
@test isequal(n.e, ["no", "no", "yes", "no"])
# strings
T = DropNaN(["b", "d"])
n, c = apply(T, t)
@test isequal(n.a, [0.5, 1.2, 5.0, NaN])
@test isequal(n.b, [5.4f0, 5.4f0, 5.5f0, 2.6f0])
@test isequal(n.c, [5.1, NaN, 8.6, 4.4] * u"m")
@test isequal(n.d, [1.0f0, 8.8f0, 1.5f0, 9.5f0] * u"m")
@test isequal(n.e, ["no", "no", "yes", "no"])
# tuple
# integers
T = DropNaN((1, 2, 3))
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes"])
# symbols
T = DropNaN((:a, :b, :c))
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes"])
# strings
T = DropNaN(("a", "b", "c"))
n, c = apply(T, t)
@test isequal(n.a, [1.8, 0.5, 5.0])
@test isequal(n.b, [6.0f0, 5.4f0, 5.5f0])
@test isequal(n.c, [4.9, 5.1, 8.6] * u"m")
@test isequal(n.d, [NaN32, 1.0f0, 1.5f0] * u"m")
@test isequal(n.e, ["yes", "no", "yes"])
# regex
T = DropNaN(r"[bcd]")
n, c = apply(T, t)
@test isequal(n.a, [0.5, 5.0, NaN])
@test isequal(n.b, [5.4f0, 5.5f0, 2.6f0])
@test isequal(n.c, [5.1, 8.6, 4.4] * u"m")
@test isequal(n.d, [1.0f0, 1.5f0, 9.5f0] * u"m")
@test isequal(n.e, ["no", "yes", "no"])
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 5800 | @testset "DropUnits" begin
@test isrevertible(DropUnits())
a = [7, 4, 4, 7, 4, 1, 1, 6, 4, 7] * u"m/s"
b = [4, 5, 4, missing, 6, 6, missing, 4, 4, 1] * u"m^2"
c = [3.9, 3.8, 3.5, 6.5, 7.7, 1.5, 0.6, 5.7, 4.7, 4.8] * u"km/hr"
d = [6.3, 4.7, 7.6, missing, 1.2, missing, 5.9, 0.2, 1.9, 4.2] * u"km^2"
e = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
t = Table(; a, b, c, d, e)
T = DropUnits()
n, c = apply(T, t)
@test eltype(n.a) === Int
@test unit(eltype(n.a)) === NoUnits
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test eltype(n.c) === Float64
@test unit(eltype(n.c)) === NoUnits
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# args...
# integers
T = DropUnits(1, 2)
n, c = apply(T, t)
@test eltype(n.a) === Int
@test unit(eltype(n.a)) === NoUnits
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test unit(nonmissingtype(eltype(n.d))) === u"km^2"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# symbols
T = DropUnits(:a, :b)
n, c = apply(T, t)
@test eltype(n.a) === Int
@test unit(eltype(n.a)) === NoUnits
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test unit(nonmissingtype(eltype(n.d))) === u"km^2"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# strings
T = DropUnits("a", "b")
n, c = apply(T, t)
@test eltype(n.a) === Int
@test unit(eltype(n.a)) === NoUnits
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test unit(nonmissingtype(eltype(n.d))) === u"km^2"
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# vector
# integers
T = DropUnits([3, 4])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test unit(nonmissingtype(eltype(n.b))) === u"m^2"
@test eltype(n.c) === Float64
@test unit(eltype(n.c)) === NoUnits
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# symbols
T = DropUnits([:c, :d])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test unit(nonmissingtype(eltype(n.b))) === u"m^2"
@test eltype(n.c) === Float64
@test unit(eltype(n.c)) === NoUnits
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# strings
T = DropUnits(["c", "d"])
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test unit(nonmissingtype(eltype(n.b))) === u"m^2"
@test eltype(n.c) === Float64
@test unit(eltype(n.c)) === NoUnits
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# tuple
# integers
T = DropUnits((2, 4, 5))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# symbols
T = DropUnits((:b, :d, :e))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# strings
T = DropUnits(("b", "d", "e"))
n, c = apply(T, t)
@test unit(eltype(n.a)) === u"m/s"
@test nonmissingtype(eltype(n.b)) === Int
@test unit(nonmissingtype(eltype(n.b))) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test nonmissingtype(eltype(n.d)) === Float64
@test unit(nonmissingtype(eltype(n.d))) === NoUnits
@test eltype(n.e) === String
@test n.e == t.e
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
# regex
T = DropUnits(r"[ace]")
n, c = apply(T, t)
@test eltype(n.a) === Int
@test unit(eltype(n.a)) === NoUnits
@test unit(nonmissingtype(eltype(n.b))) === u"m^2"
@test eltype(n.c) === Float64
@test unit(eltype(n.c)) === NoUnits
@test unit(nonmissingtype(eltype(n.d))) === u"km^2"
@test n.e == t.e
@test eltype(n.e) === String
tₒ = revert(T, n, c)
@test t.a == tₒ.a
@test isequal(t.b, tₒ.b)
@test t.c == tₒ.c
@test isequal(t.d, tₒ.d)
@test t.e == tₒ.e
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 4971 | @testset "EigenAnalysis" begin
@test TT.parameters(EigenAnalysis(:V)) == (proj=:V, maxdim=nothing, pratio=1.0)
# PCA test
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
t = Table(; x, y)
T = EigenAnalysis(:V)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Σ[1, 1] > 1
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test Σ[2, 2] > 1
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# DRS test
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
t = Table(; x, y)
T = EigenAnalysis(:VD)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# SDS test
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
t = Table(; x, y)
T = EigenAnalysis(:VDV)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
x = rand(rng, Normal(0, 10), 4000)
y = x + rand(rng, Normal(0, 2), 4000)
t₁ = Table(; x, y)
t₂, c₂ = apply(EigenAnalysis(:V), t₁)
t₃, c₃ = apply(EigenAnalysis(:VD), t₁)
t₄, c₄ = apply(EigenAnalysis(:VDV), t₁)
t₅, c₅ = apply(PCA(), t₁)
t₆, c₆ = apply(DRS(), t₁)
t₇, c₇ = apply(SDS(), t₁)
# visual tests
if visualtests
kwargs = (; bodyaxis=(; aspect=Mke.DataAspect()))
fig = Mke.Figure(size=(1000, 1000))
pairplot(fig[1, 1], t₁; kwargs...)
pairplot(fig[1, 2], t₂; kwargs...)
pairplot(fig[2, 1], t₃; kwargs...)
pairplot(fig[2, 2], t₄; kwargs...)
@test_reference joinpath(datadir, "eigenanalysis-1.png") fig
fig = Mke.Figure(size=(1500, 1000))
pairplot(fig[1, 1], t₂; kwargs...)
pairplot(fig[1, 2], t₃; kwargs...)
pairplot(fig[1, 3], t₄; kwargs...)
pairplot(fig[2, 1], t₅; kwargs...)
pairplot(fig[2, 2], t₆; kwargs...)
pairplot(fig[2, 3], t₇; kwargs...)
@test_reference joinpath(datadir, "eigenanalysis-2.png") fig
end
# row table
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
t = Table(; x, y)
rt = Tables.rowtable(t)
T = EigenAnalysis(:V)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
# maxdim
x = randn(1000)
y = x + randn(1000)
z = 2x - y + randn(1000)
t = Table(; x, y, z)
# PCA
T = PCA(maxdim=2)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
# DRS
T = DRS(maxdim=2)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
# SDS
T = SDS(maxdim=2)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
# pratio
a = randn(rng, 1000)
b = randn(rng, 1000)
c = a + randn(rng, 1000)
d = b - randn(rng, 1000)
e = 3d + c - randn(rng, 1000)
t = Table(; a, b, c, d, e)
# PCA
T = PCA(pratio=0.90)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2, :PC3)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[1, 3], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[2, 3], 0; atol=1e-6)
@test isapprox(Σ[3, 1], 0; atol=1e-6)
@test isapprox(Σ[3, 2], 0; atol=1e-6)
# DRS
T = DRS(pratio=0.90)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2, :PC3)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[1, 3], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[2, 3], 0; atol=1e-6)
@test isapprox(Σ[3, 1], 0; atol=1e-6)
@test isapprox(Σ[3, 2], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
@test isapprox(Σ[3, 3], 1; atol=1e-6)
# SDS
T = SDS(pratio=0.90)
n, c = apply(T, t)
Σ = cov(Tables.matrix(n))
@test Tables.columnnames(n) == (:PC1, :PC2, :PC3)
@test isapprox(Σ[1, 2], 0; atol=1e-6)
@test isapprox(Σ[1, 3], 0; atol=1e-6)
@test isapprox(Σ[2, 1], 0; atol=1e-6)
@test isapprox(Σ[2, 3], 0; atol=1e-6)
@test isapprox(Σ[3, 1], 0; atol=1e-6)
@test isapprox(Σ[3, 2], 0; atol=1e-6)
@test isapprox(Σ[1, 1], 1; atol=1e-6)
@test isapprox(Σ[2, 2], 1; atol=1e-6)
@test isapprox(Σ[3, 3], 1; atol=1e-6)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2847 | @testset "Filter" begin
@test !isrevertible(Filter(allunique))
a = [3, 2, 1, 4, 5, 3]
b = [2, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, 1]
d = [4, 3, 7, 5, 4, 1]
e = [5, 5, 2, 6, 5, 2]
f = [4, 4, 3, 4, 5, 2]
t = Table(; a, b, c, d, e, f)
T = Filter(row -> all(≤(5), row))
n, c = apply(T, t)
@test n.a == [3, 2, 3]
@test n.b == [2, 4, 5]
@test n.c == [1, 1, 1]
@test n.d == [4, 3, 1]
@test n.e == [5, 5, 2]
@test n.f == [4, 4, 2]
T = Filter(row -> any(>(5), row))
n, c = apply(T, t)
@test n.a == [1, 4, 5]
@test n.b == [4, 5, 8]
@test n.c == [6, 2, 4]
@test n.d == [7, 5, 4]
@test n.e == [2, 6, 5]
@test n.f == [3, 4, 5]
T = Filter(row -> row.a ≥ 3)
n, c = apply(T, t)
@test n.a == [3, 4, 5, 3]
@test n.b == [2, 5, 8, 5]
@test n.c == [1, 2, 4, 1]
@test n.d == [4, 5, 4, 1]
@test n.e == [5, 6, 5, 2]
@test n.f == [4, 4, 5, 2]
T = Filter(row -> row.c ≥ 2 && row.e > 4)
n, c = apply(T, t)
@test n.a == [4, 5]
@test n.b == [5, 8]
@test n.c == [2, 4]
@test n.d == [5, 4]
@test n.e == [6, 5]
@test n.f == [4, 5]
T = Filter(row -> row.b == 4 || row.f == 4)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4]
@test n.b == [2, 4, 4, 5]
@test n.c == [1, 1, 6, 2]
@test n.d == [4, 3, 7, 5]
@test n.e == [5, 5, 2, 6]
@test n.f == [4, 4, 3, 4]
# column access
T = Filter(row -> row."b" == 4 || row."f" == 4)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4]
@test n.b == [2, 4, 4, 5]
@test n.c == [1, 1, 6, 2]
@test n.d == [4, 3, 7, 5]
@test n.e == [5, 5, 2, 6]
@test n.f == [4, 4, 3, 4]
T = Filter(row -> row[2] == 4 || row[6] == 4)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4]
@test n.b == [2, 4, 4, 5]
@test n.c == [1, 1, 6, 2]
@test n.d == [4, 3, 7, 5]
@test n.e == [5, 5, 2, 6]
@test n.f == [4, 4, 3, 4]
T = Filter(row -> row[:b] == 4 || row[:f] == 4)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4]
@test n.b == [2, 4, 4, 5]
@test n.c == [1, 1, 6, 2]
@test n.d == [4, 3, 7, 5]
@test n.e == [5, 5, 2, 6]
@test n.f == [4, 4, 3, 4]
T = Filter(row -> row["b"] == 4 || row["f"] == 4)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4]
@test n.b == [2, 4, 4, 5]
@test n.c == [1, 1, 6, 2]
@test n.d == [4, 3, 7, 5]
@test n.e == [5, 5, 2, 6]
@test n.f == [4, 4, 3, 4]
# reapply test
T = Filter(row -> all(≤(5), row))
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# row table
rt = Tables.rowtable(t)
T = Filter(row -> row.b == 4 || row.f == 4)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
# performance tests
trng = MersenneTwister(2) # test rng
x = rand(trng, 100_000)
y = rand(trng, 100_000)
c = CoDaArray((a=rand(trng, 100_000), b=rand(trng, 100_000), c=rand(trng, 100_000)))
t = (; x, y, c)
T = Filter(row -> row.x > 0.5)
@test @elapsed(apply(T, t)) < 0.5
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2782 | @testset "Functional" begin
x = rand(0:0.001:1, 100)
y = rand(0:0.001:1, 100)
t = Table(; x, y)
T = Functional(exp)
n, c = apply(T, t)
@test all(x -> 1 ≤ x ≤ ℯ, n.x)
@test all(y -> 1 ≤ y ≤ ℯ, n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
x = rand(1:0.001:ℯ, 100)
y = rand(1:0.001:ℯ, 100)
t = Table(; x, y)
T = Functional(log)
n, c = apply(T, t)
@test all(x -> 0 ≤ x ≤ 1, n.x)
@test all(y -> 0 ≤ y ≤ 1, n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
# identity
x = rand(100)
y = x + rand(100)
t = Table(; x, y)
T = Functional(identity)
n, c = apply(T, t)
@test t == n
tₒ = revert(T, n, c)
@test tₒ == t
T = Functional(x -> x)
n, c = apply(T, t)
@test t == n
@test !isrevertible(T)
# functor tests
x = rand(100)
y = rand(100)
t = Table(; x, y)
f = Polynomial(1, 2, 3) # f(x) = 1 + 2x + 3x²
T = Functional(f)
n, c = apply(T, t)
@test f.(x) == n.x
@test f.(y) == n.y
@test all(≥(1), n.x)
@test all(≥(1), n.y)
@test !isrevertible(T)
# apply functions to specific columns
x = rand(0:0.001:1, 100)
y = rand(1:0.001:ℯ, 100)
z = x + y
t = Table(; x, y, z)
T = Functional(1 => exp, 2 => log)
n, c = apply(T, t)
@test all(x -> 1 ≤ x ≤ ℯ, n.x)
@test all(y -> 0 ≤ y ≤ 1, n.y)
@test t.z == n.z
tₒ = revert(T, n, c)
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
T = Functional(:x => exp, :y => log)
n, c = apply(T, t)
@test all(x -> 1 ≤ x ≤ ℯ, n.x)
@test all(y -> 0 ≤ y ≤ 1, n.y)
@test t.z == n.z
tₒ = revert(T, n, c)
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
T = Functional("x" => exp, "y" => log)
n, c = apply(T, t)
@test all(x -> 1 ≤ x ≤ ℯ, n.x)
@test all(y -> 0 ≤ y ≤ 1, n.y)
@test t.z == n.z
tₒ = revert(T, n, c)
@test Tables.matrix(tₒ) ≈ Tables.matrix(t)
T = Functional(1 => log, 2 => exp)
@test isrevertible(T)
T = Functional(:x => log, :y => exp)
@test isrevertible(T)
T = Functional("x" => log, "y" => exp)
@test isrevertible(T)
T = Functional(1 => abs, 2 => log)
@test !isrevertible(T)
T = Functional(:x => abs, :y => log)
@test !isrevertible(T)
T = Functional("x" => abs, "y" => log)
@test !isrevertible(T)
# row table
x = rand(0:0.001:1, 100)
y = rand(0:0.001:1, 100)
t = Table(; x, y)
rt = Tables.rowtable(t)
T = Functional(exp)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rtₒ) ≈ Tables.matrix(rt)
# throws
@test_throws ArgumentError Functional()
t = Table(x=rand(15), y=rand(15))
T = Functional(Polynomial(1, 2, 3))
n, c = apply(T, t)
@test_throws AssertionError revert(T, n, c)
T = Functional(:x => abs, :y => log)
n, c = apply(T, t)
@test_throws AssertionError revert(T, n, c)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 323 | @testset "Identity" begin
x = rand(10)
y = rand(10)
t = Table(; x, y)
T = Identity()
n, c = apply(T, t)
@test t == n
tₒ = revert(T, n, c)
@test t == tₒ
# row table
rt = Tables.rowtable(t)
T = Identity()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test rt == rtₒ
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3785 | @testset "Indicator" begin
@test TT.parameters(Indicator(:a)) == (k=10, scale=:quantile)
a = [5.8, 6.4, 6.4, 9.8, 7.6, 8.2, 4.5, 2.5, 1.7, 2.3]
b = [8.4, 1.4, 7.2, 1.8, 9.4, 1.0, 2.0, 5.2, 9.4, 6.2]
c = [4.1, 5.6, 7.1, 9.1, 5.9, 9.5, 5.7, 9.2, 6.6, 9.9]
d = [7.5, 2.2, 1.6, 2.8, 1.2, 1.5, 3.7, 2.0, 8.3, 8.2]
t = Table(; a, b, c, d)
T = Indicator(:a, k=1, scale=:quantile)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a_1, :b, :c, :d)
@test n.a_1 == Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
@test n.a_1 isa BitVector
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:b, k=2, scale=:quantile)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b_1, :b_2, :c, :d)
@test n.b_1 == Bool[0, 1, 0, 1, 0, 1, 1, 1, 0, 0]
@test n.b_2 == Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
@test n.b_1 isa BitVector
@test n.b_2 isa BitVector
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:c, k=3, scale=:quantile, categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c_1, :c_2, :c_3, :d)
@test n.c_1 == categorical(Bool[1, 1, 0, 0, 1, 0, 1, 0, 0, 0])
@test n.c_2 == categorical(Bool[1, 1, 1, 0, 1, 0, 1, 0, 1, 0])
@test n.c_3 == categorical(Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
@test n.c_1 isa CategoricalVector{Bool}
@test n.c_2 isa CategoricalVector{Bool}
@test n.c_3 isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:d, k=4, scale=:quantile, categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c, :d_1, :d_2, :d_3, :d_4)
@test n.d_1 == categorical(Bool[0, 0, 1, 0, 1, 1, 0, 0, 0, 0])
@test n.d_2 == categorical(Bool[0, 1, 1, 0, 1, 1, 0, 1, 0, 0])
@test n.d_3 == categorical(Bool[0, 1, 1, 1, 1, 1, 1, 1, 0, 0])
@test n.d_4 == categorical(Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
@test n.d_1 isa CategoricalVector{Bool}
@test n.d_2 isa CategoricalVector{Bool}
@test n.d_3 isa CategoricalVector{Bool}
@test n.d_4 isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:a, k=1, scale=:linear)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a_1, :b, :c, :d)
@test n.a_1 == Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
@test n.a_1 isa BitVector
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:b, k=2, scale=:linear)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b_1, :b_2, :c, :d)
@test n.b_1 == Bool[0, 1, 0, 1, 0, 1, 1, 1, 0, 0]
@test n.b_2 == Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
@test n.b_1 isa BitVector
@test n.b_2 isa BitVector
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:c, k=3, scale=:linear, categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c_1, :c_2, :c_3, :d)
@test n.c_1 == categorical(Bool[1, 1, 0, 0, 1, 0, 1, 0, 0, 0])
@test n.c_2 == categorical(Bool[1, 1, 1, 0, 1, 0, 1, 0, 1, 0])
@test n.c_3 == categorical(Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
@test n.c_1 isa CategoricalVector{Bool}
@test n.c_2 isa CategoricalVector{Bool}
@test n.c_3 isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test t == tₒ
T = Indicator(:d, k=4, scale=:linear, categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c, :d_1, :d_2, :d_3, :d_4)
@test n.d_1 == categorical(Bool[0, 1, 1, 1, 1, 1, 0, 1, 0, 0])
@test n.d_2 == categorical(Bool[0, 1, 1, 1, 1, 1, 1, 1, 0, 0])
@test n.d_3 == categorical(Bool[0, 1, 1, 1, 1, 1, 1, 1, 0, 0])
@test n.d_4 == categorical(Bool[1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
@test n.d_1 isa CategoricalVector{Bool}
@test n.d_2 isa CategoricalVector{Bool}
@test n.d_3 isa CategoricalVector{Bool}
@test n.d_4 isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test t == tₒ
@test_throws ArgumentError Indicator(:a, k=0)
@test_throws ArgumentError Indicator(:a, scale=:test)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3818 | @testset "Levels" begin
a = Bool[1, 0, 1, 0, 1, 1]
b = ["n", "y", "n", "y", "y", "y"]
c = [2, 3, 1, 2, 1, 3]
t = Table(; a, b, c)
T = Levels(2 => ["n", "y", "m"])
n, c = apply(T, t)
@test levels(n.b) == ["n", "y", "m"]
@test isordered(n.b) == false
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = Levels(:b => ["n", "y", "m"], :c => 1:4, ordered=[:c])
n, c = apply(T, t)
@test levels(n.b) == ["n", "y", "m"]
@test isordered(n.b) == false
@test levels(n.c) == [1, 2, 3, 4]
@test isordered(n.c) == true
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = Levels("b" => ["n", "y", "m"], "c" => 1:4, ordered=["b"])
n, c = apply(T, t)
@test levels(n.b) == ["n", "y", "m"]
@test isordered(n.b) == true
@test levels(n.c) == [1, 2, 3, 4]
@test isordered(n.c) == false
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
a = categorical(["yes", "no", "no", "no", "yes"])
b = categorical([1, 2, 4, 2, 8], ordered=false)
c = categorical([1, 2, 1, 2, 1])
d = categorical([1, 23, 5, 7, 7])
e = categorical([2, 3, 1, 4, 1])
t = Table(; a, b, c, d, e)
T = Levels(:a => ["yes", "no"], :c => [1, 2, 4], :d => [1, 23, 5, 7], :e => 1:5)
n, c = apply(T, t)
@test levels(n.a) == ["yes", "no"]
@test levels(n.c) == [1, 2, 4]
@test levels(n.d) == [1, 23, 5, 7]
@test levels(n.e) == [1, 2, 3, 4, 5]
tₒ = revert(T, n, c)
@test levels(tₒ.a) == ["no", "yes"]
@test levels(tₒ.c) == [1, 2]
@test levels(tₒ.e) == [1, 2, 3, 4]
T = Levels("a" => ["yes", "no"], "c" => [1, 2, 4])
n, c = apply(T, t)
@test levels(n.a) == ["yes", "no"]
@test levels(n.c) == [1, 2, 4]
tₒ = revert(T, n, c)
@test levels(tₒ.a) == ["no", "yes"]
@test levels(tₒ.c) == [1, 2]
T = Levels(:a => ["yes", "no"], :c => [1, 2, 4], :d => [1, 23, 5, 7])
n, c = apply(T, t)
@test levels(n.a) == ["yes", "no"]
@test levels(n.c) == [1, 2, 4]
@test levels(n.d) == [1, 23, 5, 7]
tₒ = revert(T, n, c)
@test levels(tₒ.a) == ["no", "yes"]
@test levels(tₒ.c) == [1, 2]
T = Levels("a" => ["yes", "no"], "c" => [1, 2, 4], "e" => 5:-1:1, ordered=["e"])
n, c = apply(T, t)
@test levels(n.a) == ["yes", "no"]
@test levels(n.c) == [1, 2, 4]
@test levels(n.e) == [5, 4, 3, 2, 1]
@test isordered(n.a) == false
@test isordered(n.c) == false
@test isordered(n.e) == true
tₒ = revert(T, n, c)
@test levels(tₒ.e) == [1, 2, 3, 4]
@test isordered(tₒ.e) == false
T = Levels(:a => ["yes", "no"], :c => [1, 2, 4], :d => [1, 23, 5, 7], ordered=[:a, :d])
n, c = apply(T, t)
@test levels(n.a) == ["yes", "no"]
@test levels(n.c) == [1, 2, 4]
@test levels(n.d) == [1, 23, 5, 7]
@test isordered(n.a) == true
@test isordered(n.c) == false
@test isordered(n.d) == true
tₒ = revert(T, n, c)
@test isordered(tₒ.a) == false
a = [0.1, 0.1, 0.2, 0.2, 0.1, 0.2]
b = ["n", "y", "n", "y", "y", "y"]
c = [2, 3, 1, 2, 1, 3]
t = Table(; a, b, c)
# throws: Levels without arguments
@test_throws ArgumentError Levels()
# throws: columns that do not exist in the original table
T = Levels(:x => ["n", "y", "m"], :y => 1:4)
@test_throws AssertionError apply(T, t)
T = Levels("x" => ["n", "y", "m"], "y" => 1:4)
@test_throws AssertionError apply(T, t)
# throws: non categorical column
T = Levels(:a => [0.1, 0.2, 0.3], ordered=[:a])
@test_throws AssertionError apply(T, t)
# throws: invalid ordered column selection
T = Levels(:b => ["n", "y", "m"], :c => 1:4, ordered=[:a])
@test_throws AssertionError apply(T, t)
T = Levels("b" => ["n", "y", "m"], "c" => 1:4, ordered=["a"])
@test_throws AssertionError apply(T, t)
T = Levels("b" => ["n", "y", "m"], "c" => 1:4, ordered=r"xy")
@test_throws AssertionError apply(T, t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1096 | @testset "LogRatio" begin
@test isrevertible(ALR())
@test isrevertible(CLR())
@test isrevertible(ILR())
a = [1.0, 0.0, 1.0]
b = [2.0, 2.0, 2.0]
c = [3.0, 3.0, 0.0]
t = Table(; a, b, c)
T = ALR()
n, c = apply(T, t)
@test Tables.schema(n).names == (:ARL1, :ARL2)
@test n == t |> ALR(:c)
talr = revert(T, n, c)
T = CLR()
n, c = apply(T, t)
@test Tables.schema(n).names == (:CLR1, :CLR2, :CLR3)
tclr = revert(T, n, c)
T = ILR()
n, c = apply(T, t)
@test Tables.schema(n).names == (:ILR1, :ILR2)
@test n == t |> ILR(:c)
tilr = revert(T, n, c)
@test Tables.matrix(talr) ≈ Tables.matrix(tclr)
@test Tables.matrix(tclr) ≈ Tables.matrix(tilr)
@test Tables.matrix(talr) ≈ Tables.matrix(tilr)
# permute columns
a = [1.0, 0.0, 1.0]
b = [2.0, 2.0, 2.0]
c = [3.0, 3.0, 0.0]
t1 = Table(; a, c, b)
t2 = Table(; c, a, b)
T = ALR(:c)
n1, c1 = apply(T, t1)
n2, c2 = apply(T, t2)
@test n1 == n2
tₒ = revert(T, n1, c1)
@test Tables.schema(tₒ).names == (:a, :c, :b)
tₒ = revert(T, n2, c2)
@test Tables.schema(tₒ).names == (:c, :a, :b)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2073 | @testset "LowHigh" begin
@test TT.parameters(LowHigh(:a)) == (low=0.25, high=0.75)
# constant column
x = fill(3.0, 10)
y = rand(10)
t = Table(; x, y)
T = MinMax()
n, c = apply(T, t)
@test n.x == x
@test n.y != y
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
x = rand(rng, Normal(4, 3), 4000)
y = rand(rng, Normal(7, 5), 4000)
t = Table(; x, y)
T = LowHigh(low=0, high=1)
n, c = apply(T, t)
@test all(≤(1), n.x)
@test all(≥(0), n.x)
@test all(≤(1), n.y)
@test all(≥(0), n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# row table
rt = Tables.rowtable(t)
T = LowHigh()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
# columntype does not change
for FT in (Float16, Float32)
t = Table(; x=rand(FT, 10))
for T in (MinMax(), Interquartile(), LowHigh(low=0, high=0.5))
n, c = apply(T, t)
@test Tables.columntype(t, :x) == Tables.columntype(n, :x)
tₒ = revert(T, n, c)
@test Tables.columntype(t, :x) == Tables.columntype(tₒ, :x)
end
end
# colspec
z = x + y
t = Table(; x, y, z)
T = LowHigh(1, 2, low=0, high=1)
n, c = apply(T, t)
@test all(≤(1), n.x)
@test all(≥(0), n.x)
@test all(≤(1), n.y)
@test all(≥(0), n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = LowHigh([:x, :y], low=0, high=1)
n, c = apply(T, t)
@test all(≤(1), n.x)
@test all(≥(0), n.x)
@test all(≤(1), n.y)
@test all(≥(0), n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = LowHigh(("x", "y"), low=0, high=1)
n, c = apply(T, t)
@test all(≤(1), n.x)
@test all(≥(0), n.x)
@test all(≤(1), n.y)
@test all(≥(0), n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = LowHigh(r"[xy]", low=0, high=1)
n, c = apply(T, t)
@test all(≤(1), n.x)
@test all(≥(0), n.x)
@test all(≤(1), n.y)
@test all(≥(0), n.y)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2822 | @testset "Map" begin
@test !isrevertible(Map(:a => sin))
a = [4, 7, 8, 5, 8, 1]
b = [1, 9, 1, 7, 9, 4]
c = [2, 8, 6, 3, 2, 2]
d = [7, 5, 9, 5, 3, 4]
t = Table(; a, b, c, d)
T = Map(1 => sin)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :sin_a)
@test n.sin_a == sin.(t.a)
T = Map(:b => cos)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :cos_b)
@test n.cos_b == cos.(t.b)
T = Map("c" => tan)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :tan_c)
@test n.tan_c == tan.(t.c)
T = Map(:a => sin => :a)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d)
@test n.a == sin.(t.a)
T = Map(:a => sin => "a")
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d)
@test n.a == sin.(t.a)
T = Map([2, 3] => ((b, c) -> 2b + c) => :op1)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :op1)
@test n.op1 == @. 2 * t.b + t.c
T = Map([:a, :c] => ((a, c) -> 2a * 3c) => :op1)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :op1)
@test n.op1 == @. 2 * t.a * 3 * t.c
T = Map(["c", "a"] => ((c, a) -> 3c / a) => :op1, "c" => tan)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :op1, :tan_c)
@test n.op1 == @. 3 * t.c / t.a
@test n.tan_c == tan.(t.c)
T = Map(r"[abc]" => ((a, b, c) -> a^2 - 2b + c) => "op1")
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :op1)
@test n.op1 == @. t.a^2 - 2 * t.b + t.c
# generated names
# normal function
T = Map([:c, :d] => hypot)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :hypot_c_d)
@test n.hypot_c_d == hypot.(t.c, t.d)
# anonymous function
f = a -> a^2 + 3
fname = replace(string(f), "#" => "f")
colname = Symbol(fname, :_a)
T = Map(:a => f)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, colname)
@test Tables.getcolumn(n, colname) == f.(t.a)
# composed function
f = sin ∘ cos
T = Map(:b => f)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :sin_cos_b)
@test n.sin_cos_b == f.(t.b)
f = sin ∘ cos ∘ tan
T = Map(:c => sin ∘ cos ∘ tan)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :sin_cos_tan_c)
@test n.sin_cos_tan_c == f.(t.c)
# Base.Fix1
f = Base.Fix1(hypot, 2)
T = Map(:d => f)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :fix1_hypot_d)
@test n.fix1_hypot_d == f.(t.d)
# Base.Fix2
f = Base.Fix2(hypot, 2)
T = Map(:a => f)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :fix2_hypot_a)
@test n.fix2_hypot_a == f.(t.a)
# error: cannot create Map transform without arguments
@test_throws ArgumentError Map()
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3530 | @testset "OneHot" begin
a = Bool[0, 1, 1, 0, 1, 1]
b = ["m", "f", "m", "m", "m", "f"]
c = [3, 2, 2, 1, 1, 3]
d = categorical(a)
e = categorical(b)
f = categorical(c)
t = Table(; a, b, c, d, e, f)
T = OneHot(1; categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a_false, :a_true, :b, :c, :d, :e, :f)
@test n.a_false == categorical(Bool[1, 0, 0, 1, 0, 0])
@test n.a_true == categorical(Bool[0, 1, 1, 0, 1, 1])
@test n.a_false isa CategoricalVector{Bool}
@test n.a_true isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = OneHot(:b; categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b_f, :b_m, :c, :d, :e, :f)
@test n.b_f == categorical(Bool[0, 1, 0, 0, 0, 1])
@test n.b_m == categorical(Bool[1, 0, 1, 1, 1, 0])
@test n.b_f isa CategoricalVector{Bool}
@test n.b_m isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = OneHot("c"; categ=true)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c_1, :c_2, :c_3, :d, :e, :f)
@test n.c_1 == categorical(Bool[0, 0, 0, 1, 1, 0])
@test n.c_2 == categorical(Bool[0, 1, 1, 0, 0, 0])
@test n.c_3 == categorical(Bool[1, 0, 0, 0, 0, 1])
@test n.c_1 isa CategoricalVector{Bool}
@test n.c_2 isa CategoricalVector{Bool}
@test n.c_3 isa CategoricalVector{Bool}
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = OneHot(4; categ=false)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c, :d_false, :d_true, :e, :f)
@test n.d_false == Bool[1, 0, 0, 1, 0, 0]
@test n.d_true == Bool[0, 1, 1, 0, 1, 1]
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = OneHot(:e; categ=false)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c, :d, :e_f, :e_m, :f)
@test n.e_f == Bool[0, 1, 0, 0, 0, 1]
@test n.e_m == Bool[1, 0, 1, 1, 1, 0]
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
T = OneHot("f"; categ=false)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :b, :c, :d, :e, :f_1, :f_2, :f_3)
@test n.f_1 == Bool[0, 0, 0, 1, 1, 0]
@test n.f_2 == Bool[0, 1, 1, 0, 0, 0]
@test n.f_3 == Bool[1, 0, 0, 0, 0, 1]
tₒ = revert(T, n, c)
@test Tables.schema(tₒ) == Tables.schema(t)
@test tₒ == t
# name formatting
b = categorical(["m", "f", "m", "m", "m", "f"])
b_f = rand(6)
b_m = rand(6)
t = Table(; b, b_f, b_m)
T = OneHot(:b; categ=false)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:b_f_, :b_m_, :b_f, :b_m)
@test n.b_f_ == Bool[0, 1, 0, 0, 0, 1]
@test n.b_m_ == Bool[1, 0, 1, 1, 1, 0]
tₒ = revert(T, n, c)
@test t == tₒ
b = categorical(["m", "f", "m", "m", "m", "f"])
b_f = rand(6)
b_m = rand(6)
b_f_ = rand(6)
b_m_ = rand(6)
t = Table(; b, b_f, b_m, b_f_, b_m_)
T = OneHot(:b; categ=false)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:b_f__, :b_m__, :b_f, :b_m, :b_f_, :b_m_)
@test n.b_f__ == Bool[0, 1, 0, 0, 0, 1]
@test n.b_m__ == Bool[1, 0, 1, 1, 1, 0]
tₒ = revert(T, n, c)
@test t == tₒ
# throws
a = Bool[0, 1, 1, 0, 1, 1]
b = rand(6)
t = Table(; a, b)
# non categorical column
@test_throws AssertionError apply(OneHot(:b), t)
@test_throws AssertionError apply(OneHot("b"), t)
# invalid column selection
@test_throws AssertionError apply(OneHot(:c), t)
@test_throws AssertionError apply(OneHot("c"), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1572 | @testset "Parallel" begin
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
z = y + rand(Normal(0, 5), 1500)
t = Table(; x, y, z)
T = LowHigh(low=0.3, high=0.6) ⊔ EigenAnalysis(:VDV)
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# check cardinality of parallel transform
T = ZScore() ⊔ EigenAnalysis(:V)
n = T(t)
@test length(Tables.columnnames(n)) == 6
# distributivity with respect to sequential transform
T₁ = Center()
T₂ = LowHigh(low=0.2, high=0.8)
T₃ = EigenAnalysis(:VD)
P₁ = T₁ → (T₂ ⊔ T₃)
P₂ = (T₁ → T₂) ⊔ (T₁ → T₃)
n₁ = P₁(t)
n₂ = P₂(t)
@test Tables.matrix(n₁) ≈ Tables.matrix(n₂)
# row table
rt = Tables.rowtable(t)
T = LowHigh(low=0.3, high=0.6) ⊔ EigenAnalysis(:VDV)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
# reapply with parallel transform
t = Table(x=rand(100))
T = ZScore() ⊔ Quantile()
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# https://github.com/JuliaML/TableTransforms.jl/issues/80
t = (a=rand(3), b=rand(3))
T = Select(:a) ⊔ Select(:b)
n, c = apply(T, t)
@test t == n
# https://github.com/JuliaML/TableTransforms.jl/issues/223
t = (a=1:4, b=5:8)
left = Select(:a) → Filter(row -> row.a < 4)
right = Select(:b) → Filter(row -> row.b < 7)
T = left ⊔ right
@test_throws AssertionError apply(T, t)
t1 = (a=1:4, b=4:7)
t2 = (a=1:4, b=5:8)
n, c = apply(T, t1)
@test_throws AssertionError reapply(T, t2, c)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1502 | @testset "ProjectionPursuit" begin
@test TT.parameters(ProjectionPursuit()) == (tol=1.0e-6, deg=5, perc=0.9, n=100)
rng = MersenneTwister(42)
N = 10_000
a = [2randn(rng, N ÷ 2) .+ 6; randn(rng, N ÷ 2)]
b = [3randn(rng, N ÷ 2); 2randn(rng, N ÷ 2)]
c = randn(rng, N)
d = c .+ 0.6randn(rng, N)
t = (; a, b, c, d)
T = ProjectionPursuit(rng=MersenneTwister(2))
n, c = apply(T, t)
@test Tables.columnnames(n) == (:PP1, :PP2, :PP3, :PP4)
μ = mean(Tables.matrix(n), dims=1)
Σ = cov(Tables.matrix(n))
@test all(isapprox.(μ, 0, atol=1e-8))
@test all(isapprox.(Σ, I(4), atol=1e-8))
tₒ = revert(T, n, c)
if visualtests
fig = Mke.Figure(size=(800, 800))
pairplot(fig[1, 1], n)
@test_reference joinpath(datadir, "projectionpursuit-1.png") fig
fig = Mke.Figure(size=(1600, 800))
pairplot(fig[1, 1], t)
pairplot(fig[1, 2], tₒ)
@test_reference joinpath(datadir, "projectionpursuit-2.png") fig
end
a = rand(rng, Arcsine(3), 4000)
b = rand(rng, BetaPrime(2), 4000)
t = Table(; a, b)
T = ProjectionPursuit(rng=MersenneTwister(2))
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
Σ = cov(Tables.matrix(n))
@test all(isapprox.(μ, 0, atol=1e-8))
@test all(isapprox.(Σ, I(2), atol=1e-8))
tₒ = revert(T, n, c)
if visualtests
fig = Mke.Figure(size=(1500, 500))
pairplot(fig[1, 1], t)
pairplot(fig[1, 2], n)
pairplot(fig[1, 3], tₒ)
@test_reference joinpath(datadir, "projectionpursuit-3.png") fig
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1676 | @testset "Quantile" begin
@test TT.parameters(Quantile()) == (; dist=Normal())
t = Table(z=rand(100))
T = Quantile()
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test all(-4 .< extrema(n.z) .< 4)
@test all(0 .≤ extrema(tₒ.z) .≤ 1)
# constant column
x = fill(3.0, 10)
y = rand(10)
t = Table(; x, y)
T = Quantile()
n, c = apply(T, t)
@test maximum(abs, n.x - x) < 0.1
@test n.y != y
tₒ = revert(T, n, c)
@test tₒ.x == t.x
# row table
rt = Tables.rowtable(t)
T = Quantile()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
for (row, rowₒ) in zip(rt, rtₒ)
@test row.x == rowₒ.x
end
# colspec
x = fill(3.0, 100)
y = rand(100)
z = rand(100)
t = Table(; x, y, z)
T = Quantile(1, 2)
n, c = apply(T, t)
@test maximum(abs, n.x - x) < 0.1
@test n.y != y
tₒ = revert(T, n, c)
@test tₒ.x == t.x
T = Quantile([:z])
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test all(-4 .< extrema(n.z) .< 4)
@test all(0 .≤ extrema(tₒ.z) .≤ 1)
T = Quantile(("x", "y"))
n, c = apply(T, t)
@test maximum(abs, n.x - x) < 0.1
@test n.y != y
tₒ = revert(T, n, c)
@test tₒ.x == t.x
T = Quantile(r"z")
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test all(-4 .< extrema(n.z) .< 4)
@test all(0 .≤ extrema(tₒ.z) .≤ 1)
# smooth repeated values
x = readdlm(joinpath(datadir, "quantile.dat"))
t = (; x=vec(x))
n = t |> Quantile()
if visualtests
# visualize histogram and theoretical pdf
fig = Mke.Figure(size=(800, 800))
Mke.hist(fig[1, 1], n.x, normalization=:pdf)
Mke.plot!(fig[1, 1], Normal())
@test_reference joinpath(datadir, "quantile.png") fig
end
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1014 | @testset "Remainder" begin
@test isrevertible(Remainder())
@test TT.parameters(Remainder()) == (; total=nothing)
a = [2.0, 66.0, 0.0]
b = [4.0, 22.0, 2.0]
c = [4.0, 12.0, 98.0]
t = Table(; a, b, c)
T = Remainder()
n, c = apply(T, t)
total = first(first(c))
tₒ = revert(T, n, c)
Xt = Tables.matrix(t)
Xn = Tables.matrix(n)
@test Xn[:, 1:(end - 1)] == Xt
@test all(x -> 0 ≤ x ≤ total, Xn[:, end])
@test Tables.schema(n).names == (:a, :b, :c, :remainder)
@test Tables.schema(tₒ).names == (:a, :b, :c)
t = Table(a=[1.0, 10.0, 0.0], b=[1.0, 5.0, 0.0], c=[4.0, 2.0, 1.0])
n = reapply(T, t, c)
Xn = Tables.matrix(n)
@test all(x -> 0 ≤ x ≤ total, Xn[:, end])
t = Table(a=[1.0, 10.0, 0.0], b=[1.0, 5.0, 0.0], remainder=[4.0, 2.0, 1.0])
n = t |> Remainder(18.3)
@test Tables.schema(n).names == (:a, :b, :remainder, :remainder_)
n1, c1 = apply(Remainder(), t)
n2 = reapply(Remainder(), t, c1)
@test n1 == n2
@test_throws AssertionError apply(Remainder(8.3), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 3868 | @testset "Rename" begin
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
t = Table(; a, b, c, d)
# integer => symbol
T = Rename(1 => :x, 3 => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(2 => :x, 4 => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# integer => string
T = Rename(1 => "x", 3 => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(2 => "x", 4 => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# symbol = symbol
T = Rename(:a => :x)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :c, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(:a => :x, :c => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(:b => :x, :d => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# symbol => string
T = Rename(:a => "x", :c => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(:b => "x", :d => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# string => symbol
T = Rename("a" => :x)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :c, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename("a" => :x, "c" => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename("b" => :x, "d" => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# string => string
T = Rename("a" => "x", "c" => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename("b" => "x", "d" => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
# row table
rt = Tables.rowtable(t)
T = Rename(:a => :x, :c => :y)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test rt == rtₒ
# reapply test
T = Rename(:b => :x, :d => :y)
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# vector of pairs
T = Rename([1 => :x, 3 => :y])
n, c = apply(T, t)
@test Tables.schema(n).names == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename([2, 4] .=> ["x", "y"])
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename([:a => :x, :c => :y])
n, c = apply(T, t)
@test Tables.schema(n).names == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename([:b, :d] .=> ["x", "y"])
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(["a" => :x, "c" => :y])
n, c = apply(T, t)
@test Tables.schema(n).names == (:x, :b, :y, :d)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(["b", "d"] .=> ["x", "y"])
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :x, :c, :y)
tₒ = revert(T, n, c)
@test t == tₒ
T = Rename(nm -> nm * "_test")
n, c = apply(T, t)
@test Tables.schema(n).names == (:a_test, :b_test, :c_test, :d_test)
tₒ = revert(T, n, c)
@test t == tₒ
# error: cannot create Rename transform without arguments
@test_throws ArgumentError Rename()
# error: new names must be unique
@test_throws AssertionError Rename(:a => :x, :b => :x)
@test_throws AssertionError apply(Rename(:a => :c, :b => :d), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 4080 | @testset "Replace" begin
@test !isrevertible(Replace(1 => -1, 5 => -5))
a = [3, 2, 1, 4, 5, 3]
b = [2, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, 1]
d = [4, 3, 7, 5, 4, 1]
e = [5, 5, 2, 6, 5, 2]
f = [4, 4, 3, 4, 5, 2]
t = Table(; a, b, c, d, e, f)
# replace with a value of the same type
T = Replace(1 => -1, 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, -1, 4, -5, 3]
@test n.b == [2, 4, 4, -5, 8, -5]
@test n.c == [-1, -1, 6, 2, 4, -1]
@test n.d == [4, 3, 7, -5, 4, -1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, -5, 2]
# with colspec
T = Replace(2 => 4 => -4, :c => 1 => -1, "e" => 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, -4, -4, 5, 8, 5]
@test n.c == [-1, -1, 6, 2, 4, -1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
T = Replace([2, 5] => 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, 4, 4, -5, 8, -5]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
T = Replace([:b, :e] => 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, 4, 4, -5, 8, -5]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
T = Replace(["b", "e"] => 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, 4, 4, -5, 8, -5]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
T = Replace(r"[be]" => 5 => -5)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, 4, 4, -5, 8, -5]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [-5, -5, 2, 6, -5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
# with predicates
T = Replace([:b, :d] => >(4) => 0)
n, c = apply(T, t)
@test n.a == [3, 2, 1, 4, 5, 3]
@test n.b == [2, 4, 4, 0, 0, 0]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 0, 0, 4, 1]
@test n.e == [5, 5, 2, 6, 5, 2]
@test n.f == [4, 4, 3, 4, 5, 2]
T = Replace([:a, :f] => (x -> 1 < x < 5) => 0)
n, c = apply(T, t)
@test n.a == [0, 0, 1, 0, 5, 0]
@test n.b == [2, 4, 4, 5, 8, 5]
@test n.c == [1, 1, 6, 2, 4, 1]
@test n.d == [4, 3, 7, 5, 4, 1]
@test n.e == [5, 5, 2, 6, 5, 2]
@test n.f == [0, 0, 0, 0, 5, 0]
# table schema after apply
T = Replace(1 => -1, 5 => -5)
n, c = apply(T, t)
types = Tables.schema(t).types
@test types == Tables.schema(n).types
# replace with a value of another type
T = Replace(1 => 1.5, 5 => 5.5, 4 => true)
n, c = apply(T, t)
@test n.a == Real[3, 2, 1.5, true, 5.5, 3]
@test n.b == Real[2, true, true, 5.5, 8, 5.5]
@test n.c == Real[1.5, 1.5, 6, 2, true, 1.5]
@test n.d == Real[true, 3, 7, 5.5, true, 1.5]
@test n.e == Real[5.5, 5.5, 2, 6, 5.5, 2]
@test n.f == Real[true, true, 3, true, 5.5, 2]
# table schema after apply
T = Replace(1 => 1.5, 5 => 5.5, 4 => true)
n, c = apply(T, t)
ntypes = Tables.schema(n).types
@test ntypes[1] == Real
@test ntypes[2] == Real
@test ntypes[3] == Real
@test ntypes[4] == Real
@test ntypes[5] == Real
@test ntypes[6] == Real
# no occurrences
T = Replace(10 => 11, 20 => 30)
n, c = apply(T, t)
@test t == n
# columns with different types
a = [3, 2, 1, 4, 5, 3]
b = [2.5, 4.5, 4.7, 2.5, 2.5, 5.3]
c = [true, false, false, false, true, false]
d = ['a', 'b', 'c', 'd', 'e', 'a']
t = Table(; a, b, c, d)
T = Replace(3 => -3, 2.5 => 2.0, true => false, 'a' => 'A')
n, c = apply(T, t)
@test n.a == [-3, 2, 1, 4, 5, -3]
@test n.b == [2.0, 4.5, 4.7, 2.0, 2.0, 5.3]
@test n.c == [false, false, false, false, false, false]
@test n.d == ['A', 'b', 'c', 'd', 'e', 'A']
# row table
rt = Tables.rowtable(t)
T = Replace(3 => -3, 2.5 => 2.0)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
# throws
@test_throws ArgumentError Replace()
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 273 | @testset "RowTable" begin
a = [3, 2, 1, 4, 5, 3]
b = [1, 4, 4, 5, 8, 5]
c = [1, 1, 6, 2, 4, 1]
t = Table(; a, b, c)
T = RowTable()
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test typeof(n) <: Vector
@test Tables.rowaccess(n)
@test typeof(tₒ) <: Table
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2295 | @testset "Sample" begin
@test !isrevertible(Sample(30))
a = [3, 6, 2, 7, 8, 3]
b = [8, 5, 1, 2, 3, 4]
c = [1, 8, 5, 2, 9, 4]
t = Table(; a, b, c)
T = Sample(30, replace=true)
n, c = apply(T, t)
@test length(n.a) == 30
T = Sample(6, replace=false)
n, c = apply(T, t)
@test n.a ⊆ t.a
@test n.b ⊆ t.b
@test n.c ⊆ t.c
T = Sample(30, replace=true, ordered=true)
n, c = apply(T, t)
trows = Tables.rowtable(t)
@test unique(Tables.rowtable(n)) == trows
T = Sample(6, replace=false, ordered=true)
n, c = apply(T, t)
@test n.a ⊆ t.a
@test n.b ⊆ t.b
@test n.c ⊆ t.c
@test Tables.rowtable(n) == trows
T = Sample(8, replace=true, rng=MersenneTwister(2))
n, c = apply(T, t)
@test n.a == [3, 7, 8, 2, 2, 6, 2, 6]
@test n.b == [8, 2, 3, 1, 1, 5, 1, 5]
@test n.c == [1, 2, 9, 5, 5, 8, 5, 8]
w = pweights([0.1, 0.25, 0.15, 0.25, 0.1, 0.15])
T = Sample(10_000, w, replace=true, rng=MersenneTwister(2))
n, c = apply(T, t)
nrows = Tables.rowtable(n)
@test isapprox(count(==(trows[1]), nrows) / 10_000, 0.10, atol=0.01)
@test isapprox(count(==(trows[2]), nrows) / 10_000, 0.25, atol=0.01)
@test isapprox(count(==(trows[3]), nrows) / 10_000, 0.15, atol=0.01)
@test isapprox(count(==(trows[4]), nrows) / 10_000, 0.25, atol=0.01)
@test isapprox(count(==(trows[5]), nrows) / 10_000, 0.10, atol=0.01)
@test isapprox(count(==(trows[6]), nrows) / 10_000, 0.15, atol=0.01)
w = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
T = Sample(10_000, w, replace=true, rng=MersenneTwister(2))
n, c = apply(T, t)
nrows = Tables.rowtable(n)
@test isapprox(count(==(trows[1]), nrows) / 10_000, 1 / 21, atol=0.01)
@test isapprox(count(==(trows[2]), nrows) / 10_000, 2 / 21, atol=0.01)
@test isapprox(count(==(trows[3]), nrows) / 10_000, 3 / 21, atol=0.01)
@test isapprox(count(==(trows[4]), nrows) / 10_000, 4 / 21, atol=0.01)
@test isapprox(count(==(trows[5]), nrows) / 10_000, 5 / 21, atol=0.01)
@test isapprox(count(==(trows[6]), nrows) / 10_000, 6 / 21, atol=0.01)
# performance tests
trng = MersenneTwister(2) # test rng
x = rand(trng, 100_000)
y = rand(trng, 100_000)
c = CoDaArray((a=rand(trng, 100_000), b=rand(trng, 100_000), c=rand(trng, 100_000)))
t = (; x, y, c)
T = Sample(10_000)
@test @elapsed(apply(T, t)) < 0.5
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1509 | @testset "Satisfies" begin
@test !isrevertible(Satisfies(allunique))
a = [1, 2, 3, 4, 5, 6]
b = [6, 5, 4, 3, 2, 1]
c = [1, 2, 3, 4, 6, 6]
d = [6, 6, 4, 3, 2, 1]
t = Table(; a, b, c, d)
T = Satisfies(allunique)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b)
@test Tables.getcolumn(n, :a) == t.a
@test Tables.getcolumn(n, :b) == t.b
T = Satisfies(x -> sum(x) > 21)
n, c = apply(T, t)
@test Tables.schema(n).names == (:c, :d)
@test Tables.getcolumn(n, :c) == t.c
@test Tables.getcolumn(n, :d) == t.d
end
@testset "Only" begin
a = rand(10)
b = rand(Float32, 10)
c = rand(1:9, 10)
d = rand('a':'z', 10)
t = Table(; a, b, c, d)
T = Only(DST.Continuous)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b)
@test Tables.getcolumn(n, :a) == t.a
@test Tables.getcolumn(n, :b) == t.b
T = Only(DST.Categorical)
n, c = apply(T, t)
@test Tables.schema(n).names == (:c, :d)
@test Tables.getcolumn(n, :c) == t.c
@test Tables.getcolumn(n, :d) == t.d
end
@testset "Except" begin
a = rand(10)
b = rand(Float32, 10)
c = rand(1:9, 10)
d = rand('a':'z', 10)
t = Table(; a, b, c, d)
T = Except(DST.Categorical)
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b)
@test Tables.getcolumn(n, :a) == t.a
@test Tables.getcolumn(n, :b) == t.b
T = Except(DST.Continuous)
n, c = apply(T, t)
@test Tables.schema(n).names == (:c, :d)
@test Tables.getcolumn(n, :c) == t.c
@test Tables.getcolumn(n, :d) == t.d
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 8609 | @testset "Select" begin
@test !isrevertible(Select(:a, :b, :c))
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
e = rand(10)
f = rand(10)
t = Table(; a, b, c, d, e, f)
T = Select(:f, :d)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:f, :d]
T = Select(:f, :d, :b)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:f, :d, :b]
T = Select(:d, :c, :b)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
T = Select(:e, :c, :b, :a)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:e, :c, :b, :a]
# selection with tuples
T = Select((:e, :c, :b, :a))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:e, :c, :b, :a]
# selection with vectors
T = Select([:e, :c, :b, :a])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:e, :c, :b, :a]
# selection with strings
T = Select("d", "c", "b")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# selection with tuple of strings
T = Select(("d", "c", "b"))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# selection with vector of strings
T = Select(["d", "c", "b"])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# selection with integers
T = Select(4, 3, 2)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# selection with tuple of integers
T = Select((4, 3, 2))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# selection with vector of integers
T = Select([4, 3, 2])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :c, :b]
# reapply test
T = Select(:b, :c, :d)
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# selection with renaming
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
t = Table(; a, b, c, d)
# integer => symbol
T = Select(1 => :x, 3 => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.a
@test Tables.getcolumn(n, :y) == t.c
# integer => string
T = Select(2 => "x", 4 => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.b
@test Tables.getcolumn(n, :y) == t.d
# symbol => symbol
T = Select(:a => :x, :c => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.a
@test Tables.getcolumn(n, :y) == t.c
# symbol => string
T = Select(:b => "x", :d => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.b
@test Tables.getcolumn(n, :y) == t.d
T = Select(:a => :x1, :b => :x2, :c => :x3, :d => :x4)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x1, :x2, :x3, :x4]
@test Tables.getcolumn(n, :x1) == t.a
@test Tables.getcolumn(n, :x2) == t.b
@test Tables.getcolumn(n, :x3) == t.c
@test Tables.getcolumn(n, :x4) == t.d
# string => symbol
T = Select("a" => :x, "c" => :y)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.a
@test Tables.getcolumn(n, :y) == t.c
# string => string
T = Select("b" => "x", "d" => "y")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == t.b
@test Tables.getcolumn(n, :y) == t.d
T = Select("a" => "x1", "b" => "x2", "c" => "x3", "d" => "x4")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x1, :x2, :x3, :x4]
@test Tables.getcolumn(n, :x1) == t.a
@test Tables.getcolumn(n, :x2) == t.b
@test Tables.getcolumn(n, :x3) == t.c
@test Tables.getcolumn(n, :x4) == t.d
# row table
rt = Tables.rowtable(t)
cols = Tables.columns(rt)
T = Select(:a => :x, :c => :y)
n, c = apply(T, rt)
@test Tables.columnnames(n) == [:x, :y]
@test Tables.getcolumn(n, :x) == Tables.getcolumn(cols, :a)
@test Tables.getcolumn(n, :y) == Tables.getcolumn(cols, :c)
# reapply test
T = Select(:b => :x, :d => :y)
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# selection with Regex
T = Select(r"[dcb]")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:b, :c, :d] # the order of columns is preserved
x1 = rand(10)
x2 = rand(10)
y1 = rand(10)
y2 = rand(10)
t = Table(; x1, x2, y1, y2)
# select columns whose names contain the character x
T = Select(r"x")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x1, :x2]
# select columns whose names contain the character y
T = Select(r"y")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:y1, :y2]
# row table
rt = Tables.rowtable(t)
T = Select(r"y")
n, c = apply(T, rt)
@test Tables.columnnames(n) == [:y1, :y2]
# throws: Select without arguments
@test_throws ArgumentError Select()
# throws: empty selection
@test_throws ArgumentError Select(())
@test_throws ArgumentError Select(Symbol[])
@test_throws ArgumentError Select(String[])
# throws: regex doesn't match any names in input table
@test_throws AssertionError apply(Select(r"a"), t)
# throws: columns that do not exist in the original table
@test_throws AssertionError apply(Select(:x3, :y3), t)
@test_throws AssertionError apply(Select([:x3, :y3]), t)
@test_throws AssertionError apply(Select((:x3, :y3)), t)
@test_throws AssertionError apply(Select("x3", "y3"), t)
@test_throws AssertionError apply(Select(["x3", "y3"]), t)
@test_throws AssertionError apply(Select(("x3", "y3")), t)
end
@testset "Reject" begin
@test !isrevertible(Reject(:a, :b, :c))
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
e = rand(10)
f = rand(10)
t = Table(; a, b, c, d, e, f)
T = Reject(:f, :d)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :b, :c, :e]
T = Reject(:f, :d, :b)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :c, :e]
T = Reject(:d, :c, :b)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
T = Reject(:e, :c, :b, :a)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :f]
# rejection with tuples
T = Reject((:e, :c, :b, :a))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :f]
# rejection with vectors
T = Reject([:e, :c, :b, :a])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:d, :f]
# rejection with strings
T = Reject("d", "c", "b")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# rejection with tuple of strings
T = Reject(("d", "c", "b"))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# rejection with vector of strings
T = Reject(["d", "c", "b"])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# rejection with integers
T = Reject(4, 3, 2)
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# rejection with tuple of integers
T = Reject((4, 3, 2))
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# rejection with vector of integers
T = Reject([4, 3, 2])
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f]
# reapply test
T = Reject(:b, :c, :d)
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# rejection with Regex
T = Reject(r"[dcb]")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:a, :e, :f] # the order of columns is preserved
x1 = rand(10)
x2 = rand(10)
y1 = rand(10)
y2 = rand(10)
t = Table(; x1, x2, y1, y2)
# reject columns whose names contain the character x
T = Reject(r"x")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:y1, :y2]
# reject columns whose names contain the character y
T = Reject(r"y")
n, c = apply(T, t)
@test Tables.columnnames(n) == [:x1, :x2]
# row table
rt = Tables.rowtable(t)
T = Reject(r"y")
n, c = apply(T, rt)
@test Tables.columnnames(n) == [:x1, :x2]
# throws: Reject without arguments
@test_throws ArgumentError Reject()
# throws: empty rejection
@test_throws ArgumentError Reject(())
@test_throws ArgumentError Reject(Symbol[])
@test_throws ArgumentError Reject(String[])
# throws: regex doesn't match any names in input table
@test_throws AssertionError apply(Reject(r"a"), t)
# throws: reject all columns
@test_throws ArgumentError apply(Reject(r"[xy]"), t)
@test_throws ArgumentError apply(Reject(:x1, :x2, :y1, :y2), t)
@test_throws ArgumentError apply(Reject([:x1, :x2, :y1, :y2]), t)
@test_throws ArgumentError apply(Reject((:x1, :x2, :y1, :y2)), t)
@test_throws ArgumentError apply(Reject("x1", "x2", "y1", "y2"), t)
@test_throws ArgumentError apply(Reject(["x1", "x2", "y1", "y2"]), t)
@test_throws ArgumentError apply(Reject(["x1", "x2", "y1", "y2"]), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 677 | @testset "Sequential" begin
x = rand(Normal(0, 10), 1500)
y = x + rand(Normal(0, 2), 1500)
z = y + rand(Normal(0, 5), 1500)
t = Table(; x, y, z)
T = LowHigh(low=0.2, high=0.8) → EigenAnalysis(:VDV)
n, c = apply(T, t)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# reapply with Sequential transform
t = Table(x=rand(100))
T = ZScore() → Quantile()
n1, c1 = apply(T, t)
n2 = reapply(T, t, c1)
@test n1 == n2
# row table
rt = Tables.rowtable(t)
T = LowHigh(low=0.2, high=0.8) → EigenAnalysis(:VDV)
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2174 | @testset "Sort" begin
@test !isrevertible(Sort(:a))
a = [5, 3, 1, 2]
b = [2, 4, 8, 5]
c = [3, 2, 1, 4]
d = [4, 3, 7, 5]
t = Table(; a, b, c, d)
T = Sort(:a)
n, c = apply(T, t)
@test Tables.schema(t) == Tables.schema(n)
@test n.a == [1, 2, 3, 5]
@test n.b == [8, 5, 4, 2]
@test n.c == [1, 4, 2, 3]
@test n.d == [7, 5, 3, 4]
# descending order test
T = Sort(:b, rev=true)
n, c = apply(T, t)
@test Tables.schema(t) == Tables.schema(n)
@test n.a == [1, 2, 3, 5]
@test n.b == [8, 5, 4, 2]
@test n.c == [1, 4, 2, 3]
@test n.d == [7, 5, 3, 4]
# random test
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
t = Table(; a, b, c, d)
T = Sort(:c)
n, c = apply(T, t)
@test Tables.schema(t) == Tables.schema(n)
@test issetequal(Tables.rowtable(t), Tables.rowtable(n))
@test issorted(Tables.getcolumn(n, :c))
# sort by multiple columns
a = [-2, -1, -2, 2, 1, -1, 1, 2]
b = [-8, -4, 6, 9, 8, 2, 2, -8]
c = [-3, 6, 5, 4, -8, -7, -1, -10]
t = Table(; a, b, c)
T = Sort(1, 2)
n, c = apply(T, t)
@test n.a == [-2, -2, -1, -1, 1, 1, 2, 2]
@test n.b == [-8, 6, -4, 2, 2, 8, -8, 9]
@test n.c == [-3, 5, 6, -7, -1, -8, -10, 4]
T = Sort([:a, :c], rev=true)
n, c = apply(T, t)
@test n.a == [2, 2, 1, 1, -1, -1, -2, -2]
@test n.b == [9, -8, 2, 8, -4, 2, 6, -8]
@test n.c == [4, -10, -1, -8, 6, -7, 5, -3]
T = Sort(("b", "c"), by=row -> abs.(row))
n, c = apply(T, t)
@test n.a == [1, -1, -1, -2, -2, 1, 2, 2]
@test n.b == [2, 2, -4, 6, -8, 8, -8, 9]
@test n.c == [-1, -7, 6, 5, -3, -8, -10, 4]
# throws: Sort without arguments
@test_throws ArgumentError Sort()
# throws: empty selection
@test_throws ArgumentError Sort(())
@test_throws ArgumentError Sort(Symbol[])
@test_throws ArgumentError Sort(String[])
# throws: regex doesn't match any names in input table
@test_throws AssertionError apply(Sort(r"x"), t)
# throws: columns that do not exist in the original table
@test_throws AssertionError apply(Sort([:d, :e]), t)
@test_throws AssertionError apply(Sort(("d", "e")), t)
# Invalid kwarg
@test_throws MethodError apply(Sort(:a, :b, test=1), t)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 613 | @testset "StdFeats" begin
@test isrevertible(StdFeats())
a = rand(1:10, 100)
b = rand(Normal(7, 10), 100)
c = rand('a':'z', 100)
d = rand(Normal(15, 2), 100)
e = rand(["y", "n"], 100)
t = Table(; a, b, c, d, e)
T = StdFeats()
n, c = apply(T, t)
@test n.a == t.a
@test isapprox(mean(n.b), 0; atol=1e-6)
@test isapprox(std(n.b), 1; atol=1e-6)
@test n.c == t.c
@test isapprox(mean(n.d), 0; atol=1e-6)
@test isapprox(std(n.d), 1; atol=1e-6)
@test n.e == t.e
tₒ = revert(T, n, c)
@test tₒ.a == t.a
@test tₒ.b ≈ t.b
@test tₒ.c == t.c
@test tₒ.d ≈ t.d
@test tₒ.e == t.e
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 4234 | @testset "StdNames" begin
names = Symbol.(["_apple tree_", " banana-fruit ", "-pear\tseed-"])
columns = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
t = Table(; zip(names, columns)...)
T = StdNames(:uppersnake)
n, c = apply(T, t)
@test Tables.schema(n).names == (:APPLE_TREE, :BANANA_FRUIT, :PEAR_SEED)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:uppercamel)
n, c = apply(T, t)
@test Tables.schema(n).names == (:AppleTree, :BananaFruit, :PearSeed)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:upperflat)
n, c = apply(T, t)
@test Tables.schema(n).names == (:APPLETREE, :BANANAFRUIT, :PEARSEED)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:snake)
n, c = apply(T, t)
@test Tables.schema(n).names == (:apple_tree, :banana_fruit, :pear_seed)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:camel)
n, c = apply(T, t)
@test Tables.schema(n).names == (:appleTree, :bananaFruit, :pearSeed)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:flat)
n, c = apply(T, t)
@test Tables.schema(n).names == (:appletree, :bananafruit, :pearseed)
tₒ = revert(T, n, c)
@test t == tₒ
# titlecase
names = Symbol.(["_apPLe trEe_", " baNaNA-fRuIt ", "-peAR\tsEEd-"])
t = Table(; zip(names, columns)...)
T = StdNames(:uppercamel)
n, c = apply(T, t)
@test Tables.schema(n).names == (:AppleTree, :BananaFruit, :PearSeed)
tₒ = revert(T, n, c)
@test t == tₒ
T = StdNames(:camel)
n, c = apply(T, t)
@test Tables.schema(n).names == (:appleTree, :bananaFruit, :pearSeed)
tₒ = revert(T, n, c)
@test t == tₒ
# internal functions
names = ["apple banana", "apple\tbanana", "apple_banana", "apple-banana", "apple_Banana"]
for name in names
@test TT._uppersnake(name) == "APPLE_BANANA"
@test TT._uppercamel(name) == "AppleBanana"
@test TT._upperflat(name) == "APPLEBANANA"
@test TT._snake(name) == "apple_banana"
@test TT._camel(name) == "appleBanana"
@test TT._flat(name) == "applebanana"
end
names = ["a", "A", "_a", "_A", "a ", "A "]
for name in names
@test TT._uppersnake(TT._clean(name)) == "A"
@test TT._uppercamel(TT._clean(name)) == "A"
@test TT._upperflat(TT._clean(name)) == "A"
@test TT._snake(TT._clean(name)) == "a"
@test TT._camel(TT._clean(name)) == "a"
@test TT._flat(TT._clean(name)) == "a"
end
# special characters
name = "a&B"
@test TT._clean(name) == "aB"
name = "apple#"
@test TT._clean(name) == "apple"
name = "apple-tree"
@test TT._clean(name) == "apple-tree"
# invariance test
names = ["APPLE_TREE", "BANANA_FRUIT", "PEAR_SEED"]
for name in names
@test TT._isuppersnake(name)
@test TT._uppersnake(name) == name
end
names = ["AppleTree", "BananaFruit", "PearSeed"]
for name in names
@test TT._isuppercamel(name)
@test TT._uppercamel(name) == name
end
names = ["APPLETREE", "BANANAFRUIT", "PEARSEED"]
for name in names
@test TT._isupperflat(name)
@test TT._upperflat(name) == name
end
names = ["apple_tree", "banana_fruit", "pear_seed"]
for name in names
@test TT._issnake(name)
@test TT._snake(name) == name
end
names = ["appleTree", "bananaFruit", "pearSeed"]
for name in names
@test TT._iscamel(name)
@test TT._camel(name) == name
end
names = ["appletree", "bananafruit", "pearseed"]
for name in names
@test TT._isflat(name)
@test TT._flat(name) == name
end
# uniqueness test
names = (Symbol("AppleTree"), Symbol("apple tree"), Symbol("apple_tree"))
columns = ([1, 2, 3], [4, 5, 6], [7, 8, 9])
t = Table(; zip(names, columns)...)
rt = Tables.rowtable(t)
T = StdNames(:upperflat)
n, c = apply(T, rt)
@test Tables.schema(n).names == (:APPLETREE, :APPLETREE_, :APPLETREE__)
# row table test
names = (:a, Symbol("apple tree"), Symbol("banana tree"))
columns = ([1, 2, 3], [4, 5, 6], [7, 8, 9])
t = Table(; zip(names, columns)...)
rt = Tables.rowtable(t)
T = StdNames()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
@test isrevertible(T)
rtₒ = revert(T, n, c)
@test rt == rtₒ
# reapply test
T = StdNames()
n1, c1 = apply(T, rt)
n2 = reapply(T, n1, c1)
@test n1 == n2
# throws
@test_throws ArgumentError StdNames(:test)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 4977 | @testset "Unit" begin
@test isrevertible(Unit(u"m"))
a = [2.7, 2.9, 2.2, 1.4, 1.8, 3.3] * u"m"
b = [300, 500, missing, 800, missing, 400] * u"cm"
c = [8, 2, 5, 7, 9, 4] * u"km"
d = [0.3, 0.1, 0.9, 0.2, 0.7, 0.4]
e = ["no", "no", "yes", "yes", "no", "yes"]
t = Table(; a, b, c, d, e)
T = Unit(u"m")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"m"
@test unit(eltype(n.c)) == u"m"
@test eltype(n.d) <: Float64
@test eltype(n.e) <: String
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.a)) == u"m"
@test unit(eltype(tₒ.b)) == u"cm"
@test unit(eltype(tₒ.c)) == u"km"
@test all(isapprox.(tₒ.a, t.a))
@test all(isapprox.(skipmissing(tₒ.b), skipmissing(t.b)))
@test all(isapprox.(tₒ.c, t.c))
@test tₒ.d == t.d
@test tₒ.e == t.e
a = [2.7, 2.9, 2.2, 1.4, 1.8, 3.3] * u"m"
b = [300, 500, missing, 800, missing, 400] * u"cm"
c = [8, 2, 5, 7, 9, 4] * u"km"
d = [29.1, missing, 29.2, missing, 28.4, 26.4] * u"°C"
e = [0.9, 0.4, 0.5, 0.1, 0.3, 0.6] * u"kg"
f = 0.5u"ppm" * e
t = Table(; a, b, c, d, e, f)
T = Unit(4 => u"K")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"cm"
@test unit(eltype(n.c)) == u"km"
@test unit(eltype(n.d)) == u"K"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.d)) == u"°C"
@test tₒ.a == t.a
@test isequal(tₒ.b, t.b)
@test tₒ.c == t.c
@test all(isapprox.(skipmissing(tₒ.d), skipmissing(t.d)))
@test tₒ.e == t.e
@test tₒ.f == t.f
T = Unit(:e => u"g")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"cm"
@test unit(eltype(n.c)) == u"km"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"g"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.e)) == u"kg"
@test tₒ.a == t.a
@test isequal(tₒ.b, t.b)
@test tₒ.c == t.c
@test isequal(tₒ.d, t.d)
@test all(isapprox.(tₒ.e, t.e))
@test tₒ.f == t.f
T = Unit("f" => u"kg")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"cm"
@test unit(eltype(n.c)) == u"km"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.f)) == u"kg * ppm"
@test tₒ.a == t.a
@test isequal(tₒ.b, t.b)
@test tₒ.c == t.c
@test isequal(tₒ.d, t.d)
@test tₒ.e == t.e
@test all(isapprox.(tₒ.f, t.f))
T = Unit([1, 2, 3] => u"m")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"m"
@test unit(eltype(n.c)) == u"m"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.a)) == u"m"
@test unit(eltype(tₒ.b)) == u"cm"
@test unit(eltype(tₒ.c)) == u"km"
@test all(isapprox.(tₒ.a, t.a))
@test all(isapprox.(skipmissing(tₒ.b), skipmissing(t.b)))
@test all(isapprox.(tₒ.c, t.c))
@test isequal(tₒ.d, t.d)
@test tₒ.e == t.e
@test tₒ.f == t.f
T = Unit([:a, :b, :c] => u"cm")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"cm"
@test unit(eltype(n.b)) == u"cm"
@test unit(eltype(n.c)) == u"cm"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.a)) == u"m"
@test unit(eltype(tₒ.b)) == u"cm"
@test unit(eltype(tₒ.c)) == u"km"
@test all(isapprox.(tₒ.a, t.a))
@test all(isapprox.(skipmissing(tₒ.b), skipmissing(t.b)))
@test all(isapprox.(tₒ.c, t.c))
@test isequal(tₒ.d, t.d)
@test tₒ.e == t.e
@test tₒ.f == t.f
T = Unit(["a", "b", "c"] => u"km")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"km"
@test unit(eltype(n.b)) == u"km"
@test unit(eltype(n.c)) == u"km"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.a)) == u"m"
@test unit(eltype(tₒ.b)) == u"cm"
@test unit(eltype(tₒ.c)) == u"km"
@test all(isapprox.(tₒ.a, t.a))
@test all(isapprox.(skipmissing(tₒ.b), skipmissing(t.b)))
@test all(isapprox.(tₒ.c, t.c))
@test isequal(tₒ.d, t.d)
@test tₒ.e == t.e
@test tₒ.f == t.f
T = Unit(r"[abc]" => u"m")
n, c = apply(T, t)
@test unit(eltype(n.a)) == u"m"
@test unit(eltype(n.b)) == u"m"
@test unit(eltype(n.c)) == u"m"
@test unit(eltype(n.d)) == u"°C"
@test unit(eltype(n.e)) == u"kg"
@test unit(eltype(n.f)) == u"kg * ppm"
tₒ = revert(T, n, c)
@test unit(eltype(tₒ.a)) == u"m"
@test unit(eltype(tₒ.b)) == u"cm"
@test unit(eltype(tₒ.c)) == u"km"
@test all(isapprox.(tₒ.a, t.a))
@test all(isapprox.(skipmissing(tₒ.b), skipmissing(t.b)))
@test all(isapprox.(tₒ.c, t.c))
@test isequal(tₒ.d, t.d)
@test tₒ.e == t.e
@test tₒ.f == t.f
# error: cannot create Unit transform without arguments
@test_throws ArgumentError Unit()
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 1524 | @testset "Unitify" begin
@test isrevertible(Unitify())
anm = Symbol("a [m]")
bnm = :b
cnm = Symbol("c [km/hr]")
dnm = :d
enm = Symbol("e [°C]")
a = rand(10)
b = rand(10)
c = rand(10)
d = rand(10)
e = rand(10)
t = Table(; anm => a, bnm => b, cnm => c, dnm => d, enm => e)
T = Unitify()
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c, :d, :e)
@test unit(eltype(n.a)) === u"m"
@test unit(eltype(n.b)) === NoUnits
@test unit(eltype(n.c)) === u"km/hr"
@test unit(eltype(n.d)) === NoUnits
@test unit(eltype(n.e)) === u"°C"
tₒ = revert(T, n, c)
@test tₒ == t
# no units
t = Table(; Symbol("a []") => rand(10), Symbol("b [NoUnits]") => rand(10))
T = Unitify()
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b)
@test unit(eltype(n.a)) === NoUnits
@test unit(eltype(n.b)) === NoUnits
tₒ = revert(T, n, c)
@test tₒ == t
# invalid unit name
t = Table(; Symbol("a [test]") => rand(10))
T = Unitify()
n, c = @test_logs (:warn, "The unit \"test\" is not valid") apply(T, t)
@test Tables.schema(n).names == (:a,)
@test unit(eltype(n.a)) === NoUnits
tₒ = revert(T, n, c)
@test tₒ == t
# non-numeric columns
t = Table(; anm => a, :b => rand('a':'z', 10), :c => categorical(rand(["yes", "no"], 10)))
T = Unitify()
n, c = apply(T, t)
@test Tables.schema(n).names == (:a, :b, :c)
@test unit(eltype(n.a)) === u"m"
@test eltype(n.b) <: Char
@test eltype(n.c) <: CategoricalValue
tₒ = revert(T, n, c)
@test tₒ == t
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | code | 2575 | @testset "ZScore" begin
x = rand(rng, Normal(7, 10), 4000)
y = rand(rng, Normal(15, 2), 4000)
t = Table(; x, y)
T = ZScore()
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
σ = std(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(σ[1], 1; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
@test isapprox(σ[2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
# row table
rt = Tables.rowtable(t)
T = ZScore()
n, c = apply(T, rt)
@test Tables.isrowtable(n)
rtₒ = revert(T, n, c)
@test Tables.matrix(rt) ≈ Tables.matrix(rtₒ)
# make sure transform works with single-column tables
t = Table(x=rand(100))
n, c = apply(ZScore(), t)
r = revert(ZScore(), n, c)
@test isapprox(mean(n.x), 0.0, atol=1e-8)
@test isapprox(std(n.x), 1.0, atol=1e-8)
@test isapprox(mean(r.x), mean(t.x), atol=1e-8)
@test isapprox(std(r.x), std(t.x), atol=1e-8)
# colspec
z = x + y
t = Table(; x, y, z)
T = ZScore(1, 2)
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
σ = std(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(σ[1], 1; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
@test isapprox(σ[2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = ZScore([:x, :y])
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
σ = std(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(σ[1], 1; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
@test isapprox(σ[2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = ZScore(("x", "y"))
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
σ = std(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(σ[1], 1; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
@test isapprox(σ[2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
T = ZScore(r"[xy]")
n, c = apply(T, t)
μ = mean(Tables.matrix(n), dims=1)
σ = std(Tables.matrix(n), dims=1)
@test isapprox(μ[1], 0; atol=1e-6)
@test isapprox(σ[1], 1; atol=1e-6)
@test isapprox(μ[2], 0; atol=1e-6)
@test isapprox(σ[2], 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
a = rand(Int, 10)
b = rand(10)
t = Table(; a, b)
T = ZScore(:b)
n, c = apply(T, t)
@test isapprox(mean(n.b), 0; atol=1e-6)
@test isapprox(std(n.b), 1; atol=1e-6)
tₒ = revert(T, n, c)
@test Tables.matrix(t) ≈ Tables.matrix(tₒ)
end
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | docs | 1785 | <p align="center">
<img src="docs/src/assets/logo.png" height="200"><br>
<a href="https://github.com/JuliaML/TableTransforms.jl/actions">
<img src="https://img.shields.io/github/actions/workflow/status/JuliaML/TableTransforms.jl/CI.yml?branch=master&style=flat-square">
</a>
<a href="https://codecov.io/gh/JuliaML/TableTransforms.jl">
<img src="https://img.shields.io/codecov/c/github/JuliaML/TableTransforms.jl?style=flat-square">
</a>
<a href="https://JuliaML.github.io/TableTransforms.jl/stable">
<img src="https://img.shields.io/badge/docs-stable-blue?style=flat-square">
</a>
<a href="https://JuliaML.github.io/TableTransforms.jl/dev">
<img src="https://img.shields.io/badge/docs-latest-blue?style=flat-square">
</a>
<a href="LICENSE">
<img src="https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square">
</a>
</p>
This package provides transforms that are commonly used in statistics
and machine learning. It was developed to address specific needs in
feature engineering and works with general
[Tables.jl](https://github.com/JuliaData/Tables.jl) tables.
## Installation
Get the latest stable release with Julia's package manager:
```
] add TableTransforms
```
## Documentation
- [**STABLE**][docs-stable-url] — **most recently tagged version of the documentation.**
- [**LATEST**][docs-latest-url] — *in-development version of the documentation.*
## Contributing
Contributions are very welcome. Please [open an issue](https://github.com/JuliaML/TableTransforms.jl/issues) if you have questions.
We have open issues with missing transforms that you can contribute.
[docs-stable-url]: https://JuliaML.github.io/TableTransforms.jl/stable
[docs-latest-url]: https://JuliaML.github.io/TableTransforms.jl/dev
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | docs | 6430 | # Developer guide
A short guide for extending the interface as a developer.
## Motivation
TableTransforms.jl currently supports over 25 different transforms that cover a wide variety of
use cases ranging from ordinary table operations to complex statistical transformations, which
can be arbitrarily composed with one another through elegant syntax. It is easy to leverage all
this functionality as a developer of new transforms, and this is the motivation of this guide.
## Basic assumptions
All the transforms in this package implement the transforms interface defined in the
TransformsBase.jl package so this is really the only dependency needed. The interface
assumes the following about new transforms:
* Transforms operate on a single table
* Transforms may be associated with some state that if computed while applying it for
the first time and is then cached can help later reapply the transform on another table
without recomputing the state
* The transform may be revertible, meaning that a transformed table can be brought back to
its original form, and it may need to use the cache for that
* Your transform may be invertible in the mathematical sense
!!! note "Revertible does not imply invertible"
Reversibility assumes that the transform has been applied already and can be undone.
On the other hand, invertibility implies that there is a one-to-one mapping between
the input and output tables so a table can be inverted to a corresponding input even
if it was not transformed a priori.
## Defining a new transform
In the following we shall demonstrate the steps to define a new transform.
### 1. Declare a new type for your transform
The type should subtype `TransformsBase.Transform` and it should have a named field for each
parameter needed to apply the transform besides the input table. For instance, if you want to
call your transform `Standardize` and it takes two boolean inputs `center` and `scale` , then
you should declare:
```julia
struct Standardize <: TransformsBase.Transform
center::Bool
scale::Bool
end
```
You may implement keyword constructors as needed if some of the parameters are optional:
```julia
Standardize(; center::Bool=true, scale::Bool=true) = Standardize(center, scale)
```
### 2. Implement the `apply` method for your transform
The `apply` method takes an instance of your transform type and a table and returns a new table
and cache. Suppose that the `Standardize` transform should zero-mean each column if `center` is
true and scale each column to unit variance if `scale` is true, then the `apply` method should
be implemented as follows:
```julia
using Statistics
function TransformsBase.apply(transform::Standardize, X)
# convert the table to a matrix and get col names
Xm = Tables.matrix(X)
names = Tables.columnnames(X)
# compute the means and stds
μ = transform.center ? mean(Xm, dims=1) : zeros(1, size(Xm, 2))
σ = transform.scale ? std(Xm, dims=1) : ones(1, size(Xm, 2))
# standardize the data
Xm = (Xm .- μ) ./ σ
# convert matrix to column table
Xc = (; zip(names, eachcol(Xm))...)
# convert back to original table type
X = Xc |> Tables.materializer(X)
# return the table and cache that may help reapply or revert later
return X, (μ, σ)
end
```
That's it really! Your transform now behaves like any table transform:
```julia
using TableTransforms
X = (A=[1, 2, 3], B=[4, 5, 6])
Xt = X |> Standardize() |> Identity() |> Select([:A])
```
It holds, however, that in case your transform can be reapplied, is revertible, or is
invertible then you should continue implementing the interface to support such functionality.
### 3. Optionally implement `reapply`
We need this in case of the `Standarize` transform because after computing the mean and std for
some training table we may want to apply the transform directly given a test table. Hence, we
implement `reapply` which has the same signature as apply but it takes an extra argument for
the cache and doesn't return it.
```julia
function TransformsBase.reapply(transform::Standardize, X, cache)
# convert the table to a matrix and get col names
Xm = Tables.matrix(X)
names = Tables.columnnames(X)
# no need to recompute means and stds
μ, σ = cache
# standardize the data
Xm = (Xm .- μ) ./ σ
# convert matrix to column table
Xc = (; zip(names, eachcol(Xm))...)
# convert back to original table type
X = Xc |> Tables.materializer(X)
return X
end
```
If not implemented, `reapply` simply falls back to `apply`.
### 4. Optionally specify that your transform is revertible and implement `revert`
We can specify reversibility for an arbitrary transform `T` by setting `isrevertible(::Type{T})`
to `true`. It's obvious that this should be supported by our transform
so we do
```julia
TransformsBase.isrevertible(::Type{Standardize}) = true
```
By default this falls back to `false` so users of the interface would be aware that revert is not
implemented in that case. Now we follow up by implementing the `revert` method:
```julia
function TransformsBase.revert(transform::Standardize, X, cache)
# convert the table to a matrix and get col names
Xm = Tables.matrix(X)
names = Tables.columnnames(X)
# extract the mean and std
μ, σ = cache
# revert the transform
Xm = Xm .* σ .+ μ
# convert matrix to column table
Xc = (; zip(names, eachcol(Xm))...)
# convert back to original table type
X = Xc |> Tables.materializer(X)
return X
end
```
### 5. Optionally specify that your transform is invertible and implement `Base.inv`
Similar to reversibility, falls back to `false` by default. We can write that explicitly here
since `Standardize` has no inverse if we are given nothing except for the table.
```julia
TransformsBase.isinvertible(::Type{Standardize}) = false
```
If an arbitrary transform `T` is invertible we can rather specify that as `true` and follow up by
implementing `Base.inv(::T)` which would be expected to return an instance of the inverse
transform. For instance, for an identity transform we can do
```julia
# interface struct
struct Identity <: Transform end
# specify that it is invertible
TransformsBase.isinvertible(::Type{Identity}) = true
# implement Base.inv
Base.inv(::Identity) = Identity()
```
which implies that `inv(Identity())` would return an identity transform.
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | docs | 5541 | # TableTransforms.jl
*Transforms and pipelines with tabular data.*
## Overview
This package provides transforms that are commonly used in statistics
and machine learning. It was developed to address specific needs in
feature engineering and works with general
[Tables.jl](https://github.com/JuliaData/Tables.jl) tables.
Past attempts to model transforms in Julia such as
[FeatureTransforms.jl](https://github.com/invenia/FeatureTransforms.jl)
served as inspiration for this package. We are happy to absorb any
missing transform, and contributions are very welcome.
## Features
- Transforms are **revertible** meaning that one can apply a transform
and undo the transformation without having to do all the manual work
keeping constants around.
- Pipelines can be easily constructed with clean syntax
`(f1 → f2 → f3) ⊔ (f4 → f5)`, and they are automatically
revertible when the individual transforms are revertible.
- Branches of a pipeline and colwise transforms are run in parallel
using multiple processes with the Distributed standard library.
- Pipelines can be reapplied to unseen "test" data using the same cache
(e.g. constants) fitted with "training" data. For example, a `ZScore`
relies on "fitting" `μ` and `σ` once at training time.
## Rationale
A common task in statistics and machine learning consists of transforming
the variables of a problem to achieve better convergence or to apply methods
that rely on multivariate Gaussian distributions. This process can be quite
tedious to implement by hand and very error-prone. We provide a consistent
and clean API to combine statistical transforms into pipelines.
*Although most transforms discussed here come from the statistical domain,
our long term vision is more ambitious. We aim to provide a complete
user experience with fully-featured pipelines that include standardization
of column names, imputation of missing data, and more.*
## Usage
Consider the following table and its pairplot:
```@example usage
using TableTransforms
using CairoMakie, PairPlots
using Random; Random.seed!(2) # hide
# example table from PairPlots.jl
N = 100_000
a = [2randn(N÷2) .+ 6; randn(N÷2)]
b = [3randn(N÷2); 2randn(N÷2)]
c = randn(N)
d = c .+ 0.6randn(N)
table = (; a, b, c, d)
# pairplot of original table
table |> pairplot
```
We can convert the columns to PCA scores:
```@example usage
# convert to PCA scores
table |> PCA() |> pairplot
```
or to any marginal distribution:
```@example usage
using Distributions
# convert to any Distributions.jl
table |> Quantile(dist=Normal()) |> pairplot
```
Below is a more sophisticated example with a pipeline that has
two parallel branches. The tables produced by these two branches
are concatenated horizontally in the final table:
```@example usage
# create a transform pipeline
f1 = ZScore()
f2 = LowHigh()
f3 = Quantile()
f4 = Functional(cos)
f5 = Interquartile()
pipeline = (f1 → f2 → f3) ⊔ (f4 → f5)
# feed data into the pipeline
table |> pipeline |> pairplot
```
Each branch is a sequence of transforms constructed with the `→` (`\to<tab>`) operator.
The branches are placed in parallel with the `⊔` (`\sqcup<tab>`) operator.
```@docs
→
TransformsBase.SequentialTransform
⊔
TableTransforms.ParallelTableTransform
```
### Reverting transforms
To revert a pipeline or single transform, use the [`apply`](@ref) and [`revert`](@ref)
functions instead. The function [`isrevertible`](@ref) can be used to check if a transform is revertible.
```@docs
apply
revert
isrevertible
```
To exemplify the use of these functions, let's create a table:
```@example usage
a = [-1.0, 4.0, 1.6, 3.4]
b = [1.6, 3.4, -1.0, 4.0]
c = [3.4, 2.0, 3.6, -1.0]
table = (; a, b, c)
```
Now, let's choose a transform and check that it is revertible:
```@example usage
transform = Center()
isrevertible(transform)
```
We apply the transformation to the table and save the cache in a variable:
```@example usage
newtable, cache = apply(transform, table)
newtable
```
Using the cache we can revert the transform:
```@example usage
original = revert(transform, newtable, cache)
```
### Inverting transforms
Some transforms have an inverse that can be created with the [`inverse`](@ref) function.
The function [`isinvertible`](@ref) can be used to check if a transform is invertible.
```@docs
inverse
isinvertible
```
Let's exemplify this:
```@example usage
a = [5.1, 1.5, 9.4, 2.4]
b = [7.6, 6.2, 5.8, 3.0]
c = [6.3, 7.9, 7.6, 8.4]
table = (; a, b, c)
```
Choose a transform and check that it is invertible:
```@example usage
transform = Functional(exp)
isinvertible(transform)
```
Now, let's test the inverse transform:
```@example usage
invtransform = inverse(transform)
invtransform(transform(table))
```
### Reapplying transforms
Finally, it is sometimes useful to [`reapply`](@ref) a transform that was
"fitted" with training data to unseen test data. In this case, the
cache from a previous [`apply`](@ref) call is used:
```@docs
reapply
```
Consider the following example:
```@example usage
traintable = (a = rand(3), b = rand(3), c = rand(3))
testtable = (a = rand(3), b = rand(3), c = rand(3))
transform = ZScore()
# ZScore transform "fits" μ and σ using training data
newtable, cache = apply(transform, traintable)
# we can reuse the same values of μ and σ with test data
newtable = reapply(transform, testtable, cache)
```
Note that this result is different from the result returned by the [`apply`](@ref) function:
```@example usage
newtable, cache = apply(transform, testtable)
newtable
```
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | docs | 1876 | # Related
- [FeatureTransforms.jl](https://github.com/invenia/FeatureTransforms.jl)
has transforms, but they are not fully revertible. Some of their
transforms such as `MeanStdScaling` are constructed for a specific
table and cannot be inserted in the middle of a pipeline for example.
- [AutoMLPipeline.jl](https://github.com/IBM/AutoMLPipeline.jl) relies on
the Python stack via [PyCall.jl](https://github.com/JuliaPy/PyCall.jl).
They provide pipelines with Julia's pipe `|>` operator and follow a
more "Pythonic" interface. They do not support general
[Tables.jl](https://github.com/JuliaData/Tables.jl).
- [Impute.jl](https://github.com/invenia/Impute.jl),
[Cleaner.jl](https://github.com/TheRoniOne/Cleaner.jl),
[DataConvenience.jl](https://github.com/xiaodaigh/DataConvenience.jl)
all have a small set of transforms related to fixing column names as
well as other basic transforms that we plan to absorb in the long term.
- [DataFramesMeta.jl](https://github.com/jkrumbiegel/Chain.jl) is a package
to manipulate [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl)
tables. It is not intended for statistical transforms such as `PCA`,
`Quantile`, etc, which rely on complex interactions between the rows and
columns of a table. The usage of macros in the package promotes one-shot
scripts as opposed to general pipelines that can be passed around to
different places in the program.
- [Query.jl](https://github.com/queryverse/Query.jl) is a package to query
[IterableTables.jl](https://github.com/queryverse/IterableTables.jl).
Similar to other alternatives above, the package is not intended for
advanced statistical transforms.
- [MLJ.jl](https://alan-turing-institute.github.io/MLJ.jl/dev/) is a
popular machine learning framework in Julia that adopts a different
design for pipelines based on mutability of structs. | TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.33.5 | 9635db5d125f39b6407e60ee895349a028c61aa6 | docs | 1735 | # Transforms
Below is the list of transforms that are are available in this package.
# Assert
```@docs
Assert
```
## Select
```@docs
Select
```
## Reject
```@docs
Reject
```
## Satisfies
```@docs
Satisfies
```
## Only
```@docs
Only
```
## Except
```@docs
Except
```
## Rename
```@docs
Rename
```
## StdNames
```@docs
StdNames
```
## StdFeats
```@docs
StdFeats
```
## Sort
```@docs
Sort
```
## Sample
```@docs
Sample
```
## Filter
```@docs
Filter
```
## DropMissing
```@docs
DropMissing
```
## DropNaN
```@docs
DropNaN
```
## DropExtrema
```@docs
DropExtrema
```
## DropUnits
```@docs
DropUnits
```
## DropConstant
```@docs
DropConstant
```
## AbsoluteUnits
```@docs
AbsoluteUnits
```
## Unitify
```@docs
Unitify
```
## Unit
```@docs
Unit
```
## Map
```@docs
Map
```
## Replace
```@docs
Replace
```
## Coalesce
```@docs
Coalesce
```
## Coerce
```@docs
Coerce
```
## Levels
```@docs
Levels
```
## Indicator
```@docs
Indicator
```
## OneHot
```@docs
OneHot
```
## Identity
```@docs
Identity
```
## Center
```@docs
Center
```
## LowHigh
```@docs
LowHigh
```
## MinMax
```@docs
MinMax
```
## Interquartile
```@docs
Interquartile
```
## ZScore
```@docs
ZScore
```
## Quantile
```@docs
Quantile
```
## Functional
```@docs
Functional
```
## EigenAnalysis
```@docs
EigenAnalysis
```
## PCA
```@docs
PCA
```
## DRS
```@docs
DRS
```
## SDS
```@docs
SDS
```
## ProjectionPursuit
```@docs
ProjectionPursuit
```
## Closure
```@docs
Closure
```
## Remainder
```@docs
Remainder
```
## Compose
```@docs
Compose
```
## ALR
```@docs
ALR
```
## CLR
```@docs
CLR
```
## ILR
```@docs
ILR
```
## RowTable
```@docs
RowTable
```
## ColTable
```@docs
ColTable
```
| TableTransforms | https://github.com/JuliaML/TableTransforms.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 798 | using DiagnosisClassification
using Documenter
DocMeta.setdocmeta!(DiagnosisClassification, :DocTestSetup, :(using DiagnosisClassification); recursive=true)
makedocs(;
modules=[DiagnosisClassification],
authors="Dilum Aluthge, Brown Center for Biomedical Informatics, and contributors",
repo="https://github.com/JuliaHealth/DiagnosisClassification.jl/blob/{commit}{path}#{line}",
sitename="DiagnosisClassification.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://JuliaHealth.github.io/DiagnosisClassification.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
strict=true,
)
deploydocs(;
repo="github.com/JuliaHealth/DiagnosisClassification.jl",
devbranch="main",
)
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 357 | module DiagnosisClassification
import CSV
import Downloads
import Pkg
import ProgressMeter
import Scratch
import TOML
include("types.jl")
include("dict_utils.jl")
include("download.jl")
include("convenience/icd9.jl")
include("convenience/icd10.jl")
include("dots/icd9.jl")
include("dots/icd10.jl")
include("init.jl")
include("TODO.jl")
end # module
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 3456 | function generate_ccs9_to_icd9(download_cache = ensure_downloaded_files())
ccs_filename = joinpath(download_cache, "ccs9.txt")
ccs_filecontents = strip(read(ccs_filename, String)::String)
elements = strip.(split(ccs_filecontents, "\n\n"))
ccs9_to_icd9 = Dict{Class, Set{Class}}()
ccs9_to_ccs_description = Dict{Class, String}()
for element in elements
if startswith(element, "Appendix A - ")
continue
end
if startswith(element, "Revised ")
continue
end
element2 = replace(element, '`' => ''')
r = r"^(\d\d*?)\s\s*?([A-Za-z() :;,\-'\/]*?)\s*?\n([\S\s]*?)$"
m = match(r, element2)
(m === nothing) && @error("Could not parse element", element2)
ccs_value = strip(m[1])
ccs_description = strip(m[2])
ccs_node = construct_ccs9(ccs_value)
icd_values = strip.(split(strip(replace(m[3], '\n' => ' ')), ' '))
filter!(x -> !isempty(x), icd_values)
icd_nodes = construct_icd9.(icd_values)
icd_set = Set{Class}(icd_nodes)
setindex_no_overwrite!(
ccs9_to_icd9,
ccs_node,
icd_set,
)
setindex_no_overwrite!(
ccs9_to_ccs_description,
ccs_node,
ccs_description,
)
end
return (; ccs9_to_icd9, ccs9_to_ccs_description)
end
function generate_ccs10_to_icd10(download_cache = ensure_downloaded_files())
ccs_filename = joinpath(download_cache, "ccs10.csv")
ccs_file = CSV.File(ccs_filename)
all_column_names_str = String.(ccs_file.names)
unique!(all_column_names_str)
sort!(all_column_names_str)
ccs_column_names_str = filter(
x -> startswith(x, "'CCSR CATEGORY ") && !occursin("DESCRIPTION", x),
all_column_names_str,
)
unique!(ccs_column_names_str)
sort!(ccs_column_names_str)
remove_single_quotes = x -> begin
r = r"^'(.*?)'$"
m = match(r, x)
(m === nothing) && @error("Could not parse", x)
return convert(String, m[1])::String
end
ccscolname_to_ccsdesccolname = x -> begin
return "'" * remove_single_quotes(x) * " DESCRIPTION'"
end
(length(ccs_column_names_str) < 1) && throw(ErrorException("Not enough CCS category columns"))
ccs10_to_icd10 = Dict{Class, Set{Class}}()
ccs10_to_ccs_description = Dict{Class, String}()
for row in ccs_file
icd_value = remove_single_quotes(row[Symbol("'ICD-10-CM CODE'")])
icd_node = construct_icd10(icd_value)
for ccscolname in ccs_column_names_str
ccs_value = row[Symbol(ccscolname)] |> remove_single_quotes |> strip
if isempty(ccs_value)
continue
end
ccs_node = construct_ccs10(ccs_value)
if !haskey(ccs10_to_icd10, ccs_node)
ccs10_to_icd10[ccs_node] = Set{Class}()
end
push!(ccs10_to_icd10[ccs_node], icd_node)
ccsdesccolname = ccscolname_to_ccsdesccolname.(ccscolname)
ccs_description = row[Symbol(ccsdesccolname)] |> strip
ccs_description_string = convert(String, ccs_description)::String
setindex_same_value!(
ccs10_to_ccs_description,
ccs_node,
ccs_description_string,
)
end
end
return (; ccs10_to_icd10, ccs10_to_ccs_description)
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 781 | function setindex_no_overwrite!(
dict::AbstractDict{<:K, <:V},
key::K,
new_value,
) where {K, V}
if !haskey(dict, key)
dict[key] = new_value
return nothing
end
old_value = dict[key]
msg = "Duplicate key found"
@error msg key old_value new_value
throw(ErrorException(msg))
end
function setindex_same_value!(
dict::AbstractDict{<:K, <:V},
key::K,
new_value,
) where {K, V}
if !haskey(dict, key)
dict[key] = new_value
return nothing
end
old_value = dict[key]
if old_value !== new_value # we require egality
msg = "Duplicate key found"
@error msg key old_value new_value
throw(ErrorException(msg))
end
return nothing
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
|
[
"MIT"
] | 1.0.0 | e044808e0bffd6932140479d57d2ed7e8b565be2 | code | 1831 | function ensure_downloaded_files()
global download_cache
download_cache::String
if isempty(readdir(download_cache))
force_download_files(download_cache)
end
return download_cache::String
end
function force_download_files(dest_directory::AbstractString)
let url = "https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt"
@info "Downloading files for CCS9"
sleep(3) # Sleep for a bit, so that we can be compliant with any rate limits
src = Downloads.download(url)
dest_filename = "ccs9.txt"
dest = joinpath(
dest_directory,
dest_filename,
)
mv(src, dest; force = true)
end
let url = "https://www.hcup-us.ahrq.gov/toolssoftware/ccsr/DXCCSR_v2022-1.zip"
@info "Downloading files for CCS10"
sleep(3) # Sleep for a bit, so that we can be compliant with any rate limits
downloaded_filename = Downloads.download(url)
dest_filename = "ccs10.csv"
dest = joinpath(
dest_directory,
dest_filename,
)
_extract_zip_file(downloaded_filename) do extraction_output_dir
src = joinpath(extraction_output_dir, "DXCCSR_v2022-1.CSV")
mv(src, dest)
end
end
return nothing
end
function _extract_zip_file(
f::F,
zip_file::AbstractString,
) where {F <: Function}
mktempdir() do extraction_output_dir
cd(extraction_output_dir) do
extraction_cmd = `$(Pkg.PlatformEngines.exe7z())`
push!(extraction_cmd.exec, "x")
push!(extraction_cmd.exec, "$(zip_file)")
push!(extraction_cmd.exec, "-o$(extraction_output_dir)")
run(extraction_cmd)
f(extraction_output_dir)
end
end
return nothing
end
| DiagnosisClassification | https://github.com/JuliaHealth/DiagnosisClassification.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.