licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
2320
module TestFundamentals using AlphaVantage using Test TEST_SLEEP_TIME = parse(Float64, get(ENV, "TEST_SLEEP_TIME", "15")) MAX_TESTS = parse(Int64, get(ENV, "MAX_TESTS", "1")) @testset "Fundamentals" begin symbol = "IBM" @testset "Overview" begin data = company_overview(symbol, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 59 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Income Statement" begin data = income_statement(symbol, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 3 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Balance Sheet" begin data = balance_sheet(symbol, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 3 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Cash Flow" begin data = cash_flow(symbol, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 3 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Earnings" begin data = earnings(symbol, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 3 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Listing Status" begin @testset "Default" begin data = listing_status() @test length(data) == 2 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "Delisted and Date" begin data = listing_status(state = "delisted", date = "2020-12-17") @test length(data) == 2 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end @testset "Earnings Calendar" begin data = earnings_calendar(3) @test length(data) == 2 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end @testset "IPO Calendar" begin data = ipo_calendar() @test length(data) == 2 sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end end # module
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
378
module AlphaVantageResponseTest using AlphaVantage using Test @testset "Response" begin names = Matrix{AbstractString}(["a" "b"]) data = Matrix{Any}(rand(2, 2)) response = AlphaVantageResponse(data, names) @test isa(response, AlphaVantageResponse) response = AlphaVantageResponse(tuple(data, names)) @test isa(response, AlphaVantageResponse) end end
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
576
using AlphaVantage using Test using JSON3 TEST_SLEEP_TIME = parse(Float64, get(ENV, "TEST_SLEEP_TIME", "20")) MAX_TESTS = parse(Int64, get(ENV, "MAX_TESTS", "1")) @test haskey(ENV, "ALPHA_VANTAGE_API_KEY") @testset "AlphaVantage" begin include("client_test.jl") include("stock_time_series_test.jl") include("foreign_exchange_curency_test.jl") include("sector_performance_test.jl") include("digital_currency_test.jl") include("technical_indicators_test.jl") include("fundamentals_test.jl") include("fundamental_values_test.jl") include("economic_indicators_test.jl") end
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
377
module TestSectorPerformance using AlphaVantage using Test TEST_SLEEP_TIME = parse(Float64, get(ENV, "TEST_SLEEP_TIME", "15")) MAX_TESTS = parse(Int64, get(ENV, "MAX_TESTS", "1")) @testset "Sector Performance" begin data = sector_performance() @test isa(data, AlphaVantageResponse) sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end # module
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
2136
module TestStockTimeSeries using AlphaVantage using Test using JSON3 TEST_SLEEP_TIME = parse(Float64, get(ENV, "TEST_SLEEP_TIME", "15")) MAX_TESTS = parse(Int64, get(ENV, "MAX_TESTS", "1")) stock_time_series_functions = [:time_series_daily, :time_series_daily_adjusted, :time_series_weekly, :time_series_weekly_adjusted, :time_series_monthly, :time_series_monthly_adjusted] stock_time_series_functions_test = vcat(:time_series_intraday, stock_time_series_functions[1:MAX_TESTS]) @testset "Stock Time Series" begin for f in stock_time_series_functions_test @eval begin testname = string($f) @testset "$testname" begin @testset "AlphaVantageResponse" begin data = $f("MSFT") @test isa(data, AlphaVantageResponse) end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "JSON" begin data = $f("MSFT", datatype="json") @test typeof(data) === Dict{String,Any} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "CSV" begin data = $f("MSFT", datatype="csv") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "JSON3" begin data = $f("MSFT", datatype="json", parser = x -> JSON3.read(x.body)) @test typeof(data) === JSON3.Object{Vector{UInt8}, Vector{UInt64}} @test length(data) === 2 end end end sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end f = :time_series_intraday_extended @eval begin testname = string($f) @testset "$testname" begin data = $f("MSFT") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end end end end # module
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
4481
module TestTechnicalIndicators using AlphaVantage using Test TEST_SLEEP_TIME = parse(Float64, get(ENV, "TEST_SLEEP_TIME", "15")) MAX_TESTS = parse(Int64, get(ENV, "MAX_TESTS", "1")) @testset "Technical Indicators" begin @testset "Interval, Time Period, Series Type" begin for ti in Symbol.(AlphaVantage.interval_timeperiod_seriestype_indicators[1:MAX_TESTS]) @eval begin tiname = string($ti) @testset "technical_indicator: $tiname" begin @testset "JSON" begin data = $ti("MSFT", "weekly", 10, "open", datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "CSV" begin data = $ti("MSFT", "weekly", 10, "open", datatype="csv") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end end end sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end @testset "Interval, Time Period" begin for ti in Symbol.(AlphaVantage.interval_timeperiod_indicators[1:MAX_TESTS]) @eval begin tiname = string($ti) @testset "technical_indicator: $tiname" begin @testset "JSON" begin data = $ti("MSFT", "weekly", 10, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "CSV" begin data = $ti("MSFT", "weekly", 10, datatype="csv") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end end end sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end @testset "Interval, Series Type" begin for ti in Symbol.(AlphaVantage.interval_seriestype_indicators[1:MAX_TESTS]) @eval begin tiname = string($ti) @testset "technical_indicator: $tiname" begin @testset "JSON" begin data = $ti("MSFT", "weekly", "open", datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "CSV" begin data = $ti("MSFT", "weekly", "open", datatype="csv") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end end end sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end @testset "Interval" begin for ti in Symbol.(AlphaVantage.interval_indicators[1:MAX_TESTS]) @eval begin tiname = string($ti) @testset "technical_indicator: $tiname" begin @testset "JSON" begin data = $ti("MSFT", "15min", datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 2 end sleep(TEST_SLEEP_TIME + 2*rand()) @testset "CSV" begin data = $ti("MSFT", "15min", datatype="csv") @test typeof(data) === Tuple{Array{Any, 2}, Array{AbstractString, 2}} @test length(data) === 2 end end end sleep(TEST_SLEEP_TIME + 2*rand()) #as to not overload the API end end @testset "Optional Arguments" begin data = MACD("MSFT", "5min", "high", fastperiod = 13, slowperiod = 25, datatype="json") @test typeof(data) === Dict{String, Any} @test length(data) === 2 @test data["Meta Data"]["5.2: Slow Period"] == 25 @test data["Meta Data"]["5.1: Fast Period"] == 13 end end end # module
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
code
332
module UtilsTest using AlphaVantage using HTTP using Test @testset "Utils" begin resp = HTTP.Messages.Response( 200, [ Pair("Content-Type", "application/json") ]; body="""{"Note": "API limit exceeded"}""" ) @test_throws Exception AlphaVantage._check_api_limit(resp) end end
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
docs
1403
# Contributing AlphaVantage.jl is an **Open Source** project and there are different ways to contribute. Please, use [GitHub issues](https://github.com/ellisvalentiner/AlphaVantage.jl/issues) to **report errors/bugs** or to **ask for new features**. Contributions are welcome in the form of **pull requests**. Please follow these guidelines: - Follow the Alpha Vantage API documentation (e.g. preserves the response contents). - Write code against the master branch but pull request against the dev branch. - By making a pull request, you're agreeing to license your code under a [MIT license](https://github.com/ellisvalentiner/AlphaVantage.jl/blob/dev/LICENSE.md). - Types and functions should be documented using Julia's docstrings. - All significant code should be tested. ## Style - Type names are camel case, with the first letter capitalized. - Function names, apart from constructors, are all lowercase. Include underscores between words only if the name would be hard to read without. - Names of private (unexported) functions begin with underscore. - Separate logical blocks of code with blank lines. - Generally try to keep lines below 92-columns, unless splitting a long line onto multiple lines makes it harder to read. - Use 4 spaces for indentation. - Remove trailing whitespace. ## Conduct We adhere to the [Julia community standards](http://julialang.org/community/standards/).
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
docs
2192
# AlphaVantage [![Build Status](https://travis-ci.org/ellisvalentiner/AlphaVantage.jl.svg?branch=master)](https://travis-ci.org/ellisvalentiner/AlphaVantage.jl) [![codecov.io](http://codecov.io/github/ellisvalentiner/AlphaVantage.jl/coverage.svg?branch=master)](http://codecov.io/github/ellisvalentiner/AlphaVantage.jl?branch=master) [![Coverage Status](https://coveralls.io/repos/github/ellisvalentiner/AlphaVantage.jl/badge.svg?branch=master)](https://coveralls.io/github/ellisvalentiner/AlphaVantage.jl?branch=master) A Julia wrapper for the Alpha Vantage API. ## Overview This package is a Julia wrapper for the Alpha Vantage API. Alpha Vantage provides free realtime and historical data for equities, physical currencies, digital currencies (i.e. cryptocurrencies), and more than 50 technical indicators (e.g. SMA, EMA, WMA, etc.). The Alpha Vantage API requires a [free API key](https://www.alphavantage.co/support/#api-key). ## Installation ```julia Pkg.add("AlphaVantage") ``` and once you have obtained your API key pass it to the client as follows:. ```julia using AlphaVantage client = AlphaVantage.GLOBAL[] client.key = "YOURKEY" ``` or set it as an environment variable ```bash export ALPHA_VANTAGE_API_KEY=YOURKEY ``` and check that it is set using: ```julia using AlphaVantage AlphaVantage.GLOBAL[] ``` If you encounter a clear bug, please file a minimal reproducible example on GitHub. ## Features * Intraday prices for stocks, currencies and cryptocurrencies. * Daily, weekly and monthly prices for stocks, currencies and cryptocurrencies. * Technical indicators for stock prices. * Crypto currency health index from Flipside Crypto. * Fundamental data for stocks. * Economic Indicators ## Usage ```julia using AlphaVantage using DataFrames, StatsPlots, Dates gr(size=(800,470)) # Get daily S&P 500 data spy = time_series_daily("SPY"); # Convert to a DataFrame data = DataFrame(spy); # Convert timestamp column to Date type data[!, :timestamp] = Dates.Date.(data[!, :timestamp]); data[!, :open] = Float64.(data[!, :open]) # Plot the timeseries plot(data[!, :timestamp], data[!, :open], label=["Open"]) savefig("sp500.png") ``` ![](docs/src/static/spy.png)
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.4.1
893a38118dc5a7554a52bbbc58d6de591e58f7b6
docs
1634
# AlphaVantage.jl Documentation *A Julia wrapper for the Alpha Vantage API.* ## Overview This package is a Julia wrapper for the Alpha Vantage API. Alpha Vantage provides free realtime and historical data for equities, digital currencies (i.e. cryptocurrencies), and more than 50 technical indicators (e.g. SMA, EMA, WMA, etc.). The Alpha Vantage API requires a [free API key](https://www.alphavantage.co/support/#api-key). ## Installation ``` # AlphaVantage.jl is not currently registered as an official package # Please install the development version from GitHub: Pkg.clone("git://GitHub.com/ellisvalentiner/AlphaVantage.jl") ``` If you encounter a clear bug, please file a minimal reproducible example on GitHub. ## Functions ### Stock Time Series ``` time_series_intraday() time_series_daily() time_series_daily_adjusted() time_series_weekly() time_series_weekly_adjusted() time_series_monthly() time_series_monthly_adjusted() ``` ### Digital Currencies ``` digital_currencies_daily() digital_currencies_weekly() digital_currencies_monthly() ``` ## Usage ``` using AlphaVantage using DataFrames using Plots gr(size=(800,470)) # Get daily S&P 500 data gspc = time_series_daily("^GSPC", apikey=ENV["ALPHA_VANTAGE_API_KEY"]); # Convert to a DataFrame data = DataFrame(gspc[2:end, :]); # Add column names names!(data, convert.(Symbol, gspc[1,:])); # Convert timestamp column to Date type data[:timestamp] = Dates.Date.(data[:timestamp]); # Plot the timeseries @df data plot(:timestamp, [:low :high :close], label=["Low" "High" "Close"], colour=[:red :green :blue], w=2) savefig("sp500.png") ``` ![](static/sp500.png)
AlphaVantage
https://github.com/ellisvalentiner/AlphaVantage.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
578
using Documenter using DocStringExtensions using GeneralAstrodynamics using DifferentialEquations using Plots makedocs( format=Documenter.HTML(), sitename="GeneralAstrodynamics.jl", authors = "Joey Carpinelli", pages=[ "Quick Start" => [ "Getting Started" => "index.md", "Docstrings" => "docstrings.md" ] ] ) deploydocs( target = "build", repo="github.com/cadojo/GeneralAstrodynamics.jl.git", branch = "gh-pages", devbranch = "main", versions = ["stable" => "v^", "manual", "v#.#", "v#.#.#"], )
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1126
""" A superpackage for handling common astrodynamics problems. See the __Extended Help__ section for more information! # Extended Help ## License $(LICENSE) ## Imports $(IMPORTS) ## Exports $(EXPORTS) """ module GeneralAstrodynamics using Reexport, Requires using DocStringExtensions @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) $(METHODLIST) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ include(joinpath("Calculations", "Calculations.jl")) include(joinpath("CoordinateFrames", "CoordinateFrames.jl")) include(joinpath("States", "States.jl")) @reexport using .Calculations @reexport using .CoordinateFrames @reexport using .States function __init__() @require DifferentialEquations="0c46a032-eb83-5123-abaf-570d42b7fbaa" begin include(joinpath("Propagation", "Propagation.jl")) @reexport using .Propagation end @require Plots="91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin include(joinpath("Visualizations", "Visualizations.jl")) @reexport using .Visualizations end end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1545
""" A module which provides common astrodynamics calculations. # Extended help **Exports** $(EXPORTS) **Imports** $(IMPORTS) """ module Calculations export Circular, Elliptical, Parabolic, Hyperbolic export conic, keplerian, cartesian export perifocal, semimajor_axis export kepler, lambert, lambert_universal, lambert_lancaster_blanchard export specific_angular_momentum_vector, specific_angular_momentum export specific_energy, C3, v_infinity, specific_potential_energy export eccentricity_vector, eccentricity, semi_parameter export distance, speed, periapsis_radius, apoapsis_radius, period export true_anomoly, mean_motion, time_since_periapsis export hohmann, SOI, SOA, normalize, redimension, analyticalhalo export jacobi_constant, zerovelocity_curves using DocStringExtensions using Unitful using Requires using Contour using StaticArrays using AstroTime using LinearAlgebra import Dates import Roots: find_zero @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ Unitful.@derived_dimension MassParameter Unitful.𝐋^3/Unitful.𝐓^2 @doc """ A unit dimension alias for length^3 / time^2. This is a common dimension used in astrodynamics calculations. """ MassParameter include(joinpath("R2BP", "Conics.jl")) include(joinpath("R2BP", "R2BPCalculations.jl")) include(joinpath("R2BP", "Kepler.jl")) include(joinpath("R2BP", "Lambert.jl")) include(joinpath("CR3BP", "CR3BPCalculations.jl")) end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
8821
# # Calculations for the Circular Restricted Three Body Problem. # """ Normalizes a CR3BP orbit in the rotating reference frame. """ function LinearAlgebra.normalize(r::AbstractVector{<:Number}, v::AbstractVector{<:Number}, t::Number, a::Number, ΞΌs::Tuple{<:Number, <:Number}; lengthunit=u"km", timeunit=u"s") rβ‚™ = r ./ a Tβ‚› = period(a, sum(ΞΌs)) vβ‚™ = v ./ (a / Tβ‚›) tβ‚™ = t / Tβ‚› ΞΌβ‚™ = min(ΞΌs[1], ΞΌs[2]) / (ΞΌs[1]+ΞΌs[2]) DU = a isa Unitful.Length ? a : a * lengthunit DT = Tβ‚› isa Unitful.Time ? Tβ‚› : Tβ‚› * timeunit return rβ‚™, vβ‚™, tβ‚™, ΞΌβ‚™, DU, DT end """ Redimensionalizes a CR3BP orbit in the rotating reference frame. """ function redimension(rβ‚™::AbstractVector{<:Real}, vβ‚™::AbstractVector{<:Real}, tβ‚™::Real, ΞΌβ‚™::Real, DU::Number, TU::Number) r = rβ‚™ .* DU v = vβ‚™ .* DU ./ TU t = tβ‚™ * TU sum_ΞΌs = DU^3 / ((TU / 2Ο€)^2) ΞΌβ‚‚ = ΞΌβ‚™ * sum_ΞΌs μ₁ = sum_ΞΌ - ΞΌβ‚‚ return r, v, t, DU, (μ₁,ΞΌβ‚‚) end """ Returns the spacecraft's nondimensional position w.r.t. body 1 (or 2). """ nondimensional_radius(r, xα΅’) = √( (r[1]-xα΅’)^2 + r[2]^2 + r[3]^2 ) """ Returns synodic distance to primary body. """ distance_to_primary(r, ΞΌ) = norm(r .- SVector(-ΞΌ, 0, 0)) """ Returns synodic distance to secondary body. """ distnace_to_secondary(r, ΞΌ) = norm(r .- SVector(one(ΞΌ)-ΞΌ, 0, 0)) """ Returns the potential energy `U` in the Synodic frame with Normalized units. """ potential_energy(r, ΞΌ) = (r[1]^2 + r[2]^2)/2 + ((1-ΞΌ)/nondimensional_radius(r,-ΞΌ)) + (ΞΌ/nondimensional_radius(r,1-ΞΌ)) """ Returns the Jacobi Constant, `C` in the Synodic frame with Normalized units. """ jacobi_constant(r, v, ΞΌ) = 2*potential_energy(r, ΞΌ) - (vβ‹…v) """ Given the Synodic frame vector, returns the vector in the barycenteric-inertial reference frame. """ function inertial(vecβ‚›::AbstractVector, t, Ο‰::Unitful.AbstractQuantity=1.0u"rad"/unit(t)) ΞΈ = Ο‰*t α΄΅Tβ‚› = @SMatrix [ cos(ΞΈ) sin(ΞΈ) 0 -sin(ΞΈ) cos(ΞΈ) 0 0 0 1 ] return α΄΅Tβ‚› * vecβ‚› end """ Given an `InertialCartesianState`, returns the state in the synodic (rotating) reference frame. """ function synodic(state::AbstractVector, t) ΞΈ = Ο‰*t Λ’Tα΅’ = inv(SMatrix{3,3}([ cos(ΞΈ) sin(ΞΈ) 0 -sin(ΞΈ) cos(ΞΈ) 0 0 0 1 ])) return Λ’Tα΅’ * state end """ Position of primary body. """ function primary_position(ΞΌ) SVector{3}( -ΞΌ, zero(ΞΌ), zero(ΞΌ) ) end """ Position of primary body. """ function secondary_position(ΞΌ) SVector{3}( one(ΞΌ)-ΞΌ, zero(ΞΌ), zero(ΞΌ) ) end """ Returns the lagrange points for a CR3BP system. __Arguments:__ - `ΞΌ`: Non-dimensional mass parameter for the CR3BP system. - `L`: Langrange points requested, must be in range [1,5] __Outputs:__ - Tuple of Lagrange points - Throws `ArgumentError` if L is out of range [1,5] __References:__ - [Rund, 2018](https://digitalcommons.calpoly.edu/theses/1853/) """ function lagrange(ΞΌ::Real, L=1:5) if !all(L[i] ∈ (1,2,3,4,5) for i ∈ 1:length(L)) throw(ArgumentError("Requested lagrange points must be in range [1,5]")) end expressions = @SVector [ x -> x - (1-ΞΌ)/(x+ΞΌ)^2 + ΞΌ/(x+ΞΌ-1)^2, x -> x - (1-ΞΌ)/(x+ΞΌ)^2 - ΞΌ/(x+ΞΌ-1)^2, x -> x + (1-ΞΌ)/(x+ΞΌ)^2 + ΞΌ/(x+ΞΌ+1)^2 ] return (map(f->[find_zero(f, (-3,3)), 0, 0], expressions)..., [(1/2) - ΞΌ, √(3)/2, 0], [(1/2) - ΞΌ, -√(3)/2, 0])[L] end """ Returns an analytical solution for a Halo orbit about `L`. __Arguments:__ - `ΞΌ`: Non-dimensional mass parameter for the CR3BP system. - `Az`: Desired non-dimensional Z-amplitude for Halo orbit. - `Ο•`: Desired Halo orbit phase. - `steps`: Number of non-dimensional timepoints in returned state. - `L`: Lagrange point to orbit (L1 or L2). - `hemisphere`: Specifies northern or southern Halo orbit. __Outputs:__ - Synodic position vector `r::Array{<:AbstractFloat}` - Synodic velocity vector `v::Array{<:Abstractfloat}`. - Halo orbit period `Ξ€`. - Throws `ArgumentError` if L is not `1` or `2`. __References:__ - [Rund, 2018](https://digitalcommons.calpoly.edu/theses/1853/). """ function analyticalhalo(ΞΌ; Az=0.00, Ο•=0.0, steps=1, L=1, hemisphere=:northern) if L == 1 point = first(lagrange(ΞΌ, 1)) Ξ³ = abs(one(ΞΌ) - ΞΌ - point) n = collect(1:4) .* one(ΞΌ) c = @. (ΞΌ + (-one(1))^n * (one(ΞΌ)-ΞΌ)Ξ³^(n+1)) / (Ξ³^3 * (one(ΞΌ) - Ξ³^(n+1))) elseif L == 2 point = first(lagrange(ΞΌ, 2)) Ξ³ = abs(point - one(ΞΌ) + ΞΌ) n = collect(1:4) .* one(ΞΌ) c = @. ((-one(ΞΌ))^n * ΞΌ + (-one(ΞΌ))^n * (one(ΞΌ)-ΞΌ)Ξ³^(n+1)) / (Ξ³^3 * (one(ΞΌ) + Ξ³^(n+1))) else throw(ArgumentError("Only Halo orbits about L1 or L2 are supported.")) end Ο‰β‚š = √((2 - c[2] + √((9c[2]^2 - 8c[2])))/2) k = (Ο‰β‚š^2 + 1 + 2c[2]) / (2Ο‰β‚š) d₁ = (3Ο‰β‚š^2 / k) * (k*(6Ο‰β‚š^2 - 1) - 2Ο‰β‚š) dβ‚‚ = (8Ο‰β‚š^2 / k) * (k*(11Ο‰β‚š^2 - 1) - 2Ο‰β‚š) a₂₁ = (3c[3] * (k^2 - 2)) / (4(1 + 2c[2])) aβ‚‚β‚‚ = (3c[3]) / (4(1 + 2c[2])) a₂₃ = (-3c[3]Ο‰β‚š / (4k*d₁)) * (3k^3 * Ο‰β‚š - 6k*(k-Ο‰β‚š) + 4) aβ‚‚β‚„ = (-3c[3]Ο‰β‚š / (4k*d₁)) * (2 + 3k*Ο‰β‚š) b₂₁ = (-3c[3]Ο‰β‚š / (2d₁)) * (3k*Ο‰β‚š - 4) bβ‚‚β‚‚ = -3c[3]*Ο‰β‚š / d₁ d₂₁ = -c[3] / (2Ο‰β‚š^2) a₃₁ = (-9Ο‰β‚š / (4dβ‚‚)) * (4c[3] * (k*a₂₃-b₂₁) + k*c[4]*(4+k^2)) + ((9Ο‰β‚š^2 + 1 - c[2]) / (2dβ‚‚)) * (3c[3]*(2a₂₃-k*b₂₁) + c[4]*(2+3k^2)) a₃₂ = (-9Ο‰β‚š / (4dβ‚‚)) * (4c[3] * (3k*aβ‚‚β‚„-bβ‚‚β‚‚) + k*c[4]) - (3 / (2dβ‚‚)) * (9Ο‰β‚š^2 + 1 - c[2]) * (c[3]*(k*bβ‚‚β‚‚+d₂₁-2aβ‚‚β‚„) - c[4]) b₃₁ = (3 / (8dβ‚‚)) * 8Ο‰β‚š * (3c[3] * (k*b₂₁ - 2a₂₃) - c[4]*(2+3k^2)) + (3/(8dβ‚‚)) * (9Ο‰β‚š^2 + 1 + 2c[2]) * (4c[3]*(k*a₂₃-b₂₁) + k*c[4]*(4+k^2)) b₃₂ = (9Ο‰β‚š/dβ‚‚)*(c[3]*(k*bβ‚‚β‚‚+d₂₁-2aβ‚‚β‚„)-c[4]) + (3(9Ο‰β‚š^2 + 1 + 2c[2]) / (8dβ‚‚) * (4c[3]*(k*aβ‚‚β‚„-bβ‚‚β‚‚)+k*c[4])) d₃₁ = (3 / (64Ο‰β‚š^2)) * (4c[3]*aβ‚‚β‚„ + c[4]) d₃₂ = (3 / (64 + Ο‰β‚š^2)) * (4c[3]*(a₂₃ - d₂₁) + c[4]*(4+k^2)) s₁ = (1 / (2Ο‰β‚š*(Ο‰β‚š*(1+k^2) - 2k))) * (3c[3]/2 * (2a₂₁*(k^2 - 2) - a₂₃*(k^2 + 2) - 2k*b₂₁) - (3c[4]/8) * (3k^4 - 8k^2 + 8)) sβ‚‚ = (1 / (2Ο‰β‚š*(Ο‰β‚š*(1+k^2) - 2k))) * (3c[3]/2 * (2aβ‚‚β‚‚*(k^2-2) + aβ‚‚β‚„*(k^2 + 2) + 2k*bβ‚‚β‚‚ + 5d₂₁) + (3c[4]/8) * (12 - k^2)) l₁ = (-3c[3] / 2) * (2a₂₁ + a₂₃ + 5d₂₁) - (3c[4]/8)*(12 - k^2) + 2Ο‰β‚š^2 * s₁ lβ‚‚ = (3c[3]/2) * (aβ‚‚β‚„ - 2aβ‚‚β‚‚) + (9c[4]/8) + 2Ο‰β‚š^2 * sβ‚‚ Ξ” = Ο‰β‚š^2 - c[2] Aα΅§ = Az / Ξ³ Aβ‚“ = √((-lβ‚‚*Aα΅§^2 - Ξ”) / l₁) Ξ½ = 1 + s₁*Aβ‚“^2 + sβ‚‚*Aα΅§^2 Ξ€ = 2Ο€ / (Ο‰β‚š*Ξ½) Ο„ = Ξ½ .* (steps > 1 ? range(0, stop=Ξ€, length=steps) : range(0, stop=Ξ€, length=1000)) if hemisphere == :northern m = 1.0 elseif hemisphere == :southern m = 3.0 else throw(ArgumentError("`hemisphere` must be `:northern` or `:southern`.")) end Ξ΄β‚˜ = 2 - m τ₁ = @. Ο‰β‚š*Ο„ + Ο• x = @. Ξ³ * (a₂₁*Aβ‚“^2 + aβ‚‚β‚‚*Aα΅§^2 - Aβ‚“*cos(τ₁) + (a₂₃*Aβ‚“^2 - aβ‚‚β‚„*Aα΅§^2)*cos(2τ₁) + (a₃₁*Aβ‚“^3 - a₃₂*Aβ‚“*Aα΅§^2)*cos(3τ₁)) + 1 - ΞΌ - (L == 1 ? Ξ³ : -Ξ³) y = @. Ξ³ * (k*Aβ‚“*sin(τ₁) + (b₂₁*Aβ‚“^2 - bβ‚‚β‚‚*Aα΅§^2)*sin(2τ₁) + (b₃₁*Aβ‚“^3 - b₃₂*Aβ‚“*Aα΅§^2)*sin(3τ₁)) z = @. Ξ³ * (Ξ΄β‚˜*Aα΅§*cos(τ₁) + Ξ΄β‚˜*d₂₁*Aβ‚“*Aα΅§*(cos(2τ₁)-3) + Ξ΄β‚˜*(d₃₂*Aα΅§*Aβ‚“^2 - d₃₁*Aα΅§^3)*cos(3τ₁)) xΜ‡ = @. Ξ³ * (Ο‰β‚š*Ξ½*Aβ‚“*sin(τ₁) - 2Ο‰β‚š*Ξ½*(a₂₃*Aβ‚“^2 - aβ‚‚β‚„*Aα΅§^2)*sin(2τ₁) - 3Ο‰β‚š*Ξ½*(a₃₁*Aβ‚“^3 - a₃₂*Aβ‚“*Aα΅§^2)*sin(3τ₁)) yΜ‡ = @. Ξ³ * (Ο‰β‚š*Ξ½*k*Aβ‚“*cos(τ₁) + 2Ο‰β‚š*Ξ½*(b₂₁*Aβ‚“^2 - bβ‚‚β‚‚*Aα΅§^2)*cos(2τ₁) + 3Ο‰β‚š*Ξ½*(b₃₁*Aβ‚“^3 - b₃₂*Aβ‚“*Aα΅§^2)*cos(3τ₁)) zΜ‡ = @. Ξ³ * (-Ο‰β‚š*Ξ½*Ξ΄β‚˜*Aα΅§*sin(τ₁) - 2Ο‰β‚š*Ξ½*Ξ΄β‚˜*d₂₁*Aβ‚“*Aα΅§*sin(2τ₁) - 3Ο‰β‚š*Ξ½*Ξ΄β‚˜*(d₃₂*Aα΅§*Aβ‚“^2 - d₃₁*Aα΅§^2)*sin(3τ₁)) return hcat(x, y, z)[1:steps, :], hcat(xΜ‡, yΜ‡, zΜ‡)[1:steps, :], Ξ€ end """ Returns a `Vector` of `Matrix` values. Each `Matrix` contains a 3-column nondimensional position trajectory in the Synodic frame which represents a Zero Velocity Curve. """ function zerovelocity_curves(r::AbstractVector, v::AbstractVector, ΞΌ::Real; nondimensional_range = range(-2; stop=2, length=1000)) x = nondimensional_range y = nondimensional_range z = [ 2 * potential_energy([xs, ys, 0.0], ΞΌ) - jacobi_constant(r, v, ΞΌ) for xs ∈ x, ys ∈ y ] zvc_contour = contours(x,y,z,[0.0]) curves = Vector{Matrix{Float64}}() for zvc_level ∈ Contour.levels(zvc_contour) x = Float64[] y = Float64[] for zvc_line ∈ Contour.lines(zvc_level) xs, ys = coordinates(zvc_line) if length(x) == length(y) == 0 x = xs y = ys else x = vcat(x, xs) y = vcat(y, ys) end end if length(curves) == 0 curves = [hcat(x,y)] else curves = vcat(curves, [hcat(x, y)]) end end return curves end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
597
# # Definitions for conic sections within # R2BP dynamics. # """ An abstract type for all conic sections. """ abstract type ConicSection end """ An abstract type representing the Circular conic section. """ abstract type Circular <: ConicSection end """ An abstract type representing the Elliptical conic section. """ abstract type Elliptical <: ConicSection end """ An abstract type representing the Parabolic conic section. """ abstract type Parabolic <: ConicSection end """ An abstract type representing the Hyperbolic conic section. """ abstract type Hyperbolic <: ConicSection end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
2007
# # Kepler.jl # # Solves Kepler's problem for TwoBody orbits. # """ Solves Kepler's Problem for `orbit` and `Ξ”tα΅’`. """ function kepler(r::AbstractVector, v::AbstractVector, ΞΌ::Number, Ξ”t::Number = period(semimajor_axis(r,v,ΞΌ), ΞΌ); tol=1e-6, max_iter=100) e, a, i, Ξ©, Ο‰, Ξ½ = keplerian(r, v, ΞΌ) T = period(a, ΞΌ) conic_section = conic(e) # Guess Ο‡β‚€ if conic_section == Hyperbolic Ο‡β‚€ = sign(Ξ”t) * √(-a) * log(β„―, (-2 * ΞΌ / a * Ξ”t) / (r β‹… v + (sign(Ξ”t) * √(-ΞΌ * a) * (1 - norm(r) / a)))) elseif conic_section == Parabolic Ο‡β‚€ = √(a) * tan(Ξ½ / 2) else Ξ”t = mod(Ξ”t, T) Ο‡β‚€ = √(ΞΌ) * Ξ”t / a end # Iteratively solve for Ο‡ # TODO: Compare loop vs. recursion performance here. # There shouldn't be too large of a difference, since this tends # to converge with only a few iterations. Ο‡β‚™, rβ‚™, ψ, Cβ‚‚, C₃ = Ο‡β‚–(Ο‡β‚€, Ξ”t, r, v, a, ΞΌ, tol=tol, max_iter=max_iter) # Convert to a Orbit f = 1 - Ο‡β‚™^2 / norm(r) * Cβ‚‚ fΜ‡ = √(ΞΌ) / (norm(r) * rβ‚™) * Ο‡β‚™ * (ψ * C₃ - 1) g = Ξ”t - (Ο‡β‚™^3 / √(ΞΌ)) * C₃ gΜ‡ = 1 - (Ο‡β‚™^2 / rβ‚™) * Cβ‚‚ return ((f * r) .+ (g * v), (fΜ‡ * r) .+ (gΜ‡ * v)) end function Ο‡β‚–(Ο‡β‚™, Ξ”t, rα΅’β‚€, vα΅’β‚€, a, ΞΌ; iter=1, tol=1e-14, max_iter=100) rβ‚€ = norm(rα΅’β‚€) ψ = upreferred(Ο‡β‚™^2 / a) if ψ > tol Cβ‚‚ = (1 - cos(√(ψ))) / ψ C₃ = (√(ψ) - sin(√(ψ))) / √(ψ^3) elseif ψ < -tol Cβ‚‚ = (1 - cosh(√(-ψ))) / ψ C₃ = (sinh(√(-ψ)) - √(-ψ)) / √((-ψ)^3) else Cβ‚‚ = 1.0 / 2.0 C₃ = 1.0 / 6.0 end r = Ο‡β‚™^2 * Cβ‚‚ + (rα΅’β‚€ β‹… vα΅’β‚€) * Ο‡β‚™ / √(ΞΌ) * (1 - ψ*C₃) + rβ‚€ * (1 - ψ * Cβ‚‚) Ο‡β‚™β‚Šβ‚ = Ο‡β‚™ + ((√(ΞΌ) * Ξ”t - Ο‡β‚™^3 * C₃ - (rα΅’β‚€ β‹… vα΅’β‚€) / √(ΞΌ) * Ο‡β‚™^2 * Cβ‚‚ - rβ‚€ * Ο‡β‚™ * (1 - ψ * C₃)) / r) if iter > max_iter @error "Failed to converge!" return Ο‡β‚™, r, ψ, Cβ‚‚, C₃ elseif abs(Ο‡β‚™β‚Šβ‚ - Ο‡β‚™) < oneunit(Ο‡β‚™) * tol return Ο‡β‚™, r, ψ, Cβ‚‚, C₃ else return Ο‡β‚–(Ο‡β‚™β‚Šβ‚, Ξ”t, rα΅’β‚€, vα΅’β‚€, a, ΞΌ; iter=iter+1, tol=tol, max_iter=max_iter) end end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
34251
# # Solver for Lambert's problem # # References: # [1] David, A. "Vallado. Fundamentals of Astrodynamics and Applications." (2013). # """ Solves Lambert's problem through the use of univeral variables. """ function lambert_universal(r̅₁::AbstractVector, rΜ…β‚‚::AbstractVector, ΞΌ::Number, Ξ”t::Number; trajectory=:short, tolerance=1e-12, max_iter=25) # Specify short way, or long way trajectory if trajectory == :short tβ‚˜ = 1 elseif trajectory == :long tβ‚˜ = -1 else throw(ArgumentError("`trajectory` must be set to `:short` or `:long`")) end r₁ = norm(r̅₁) rβ‚‚ = norm(rΜ…β‚‚) cosΔν = (r̅₁⋅rΜ…β‚‚) / (r₁*rβ‚‚) Δν = asin(u"rad", tβ‚˜ * √(1 - (cosΔν)^2)) A = upreferred(tβ‚˜ * √(rβ‚‚*r₁ * (1 + cosΔν))) if A β‰ˆ 0 throw(ErrorException("Can't calculate the orbit.")) end Οˆβ‚™ = 0.0 Cβ‚‚ = 1/2 C₃ = 1/6 Οˆβ‚Š = 4Ο€^2 Οˆβ‚‹ = -4Ο€ yβ‚™ = r₁ + rβ‚‚ + (A * (Οˆβ‚™*C₃ - 1) / √(Cβ‚‚)) Ξ”tβ‚™ = Ξ”t + 1u"s" iter = 0 while (iter < max_iter) && (abs(Ξ”tβ‚™ - Ξ”t) > (tolerance * oneunit(Ξ”t))) || (A > 0 *oneunit(A) && yβ‚™ < 0 * oneunit(yβ‚™)) yβ‚™ = r₁ + rβ‚‚ + (A * (Οˆβ‚™*C₃ - 1) / √(Cβ‚‚)) Ο‡β‚™ = √(yβ‚™ / Cβ‚‚) Ξ”tβ‚™ = (Ο‡β‚™^3 * C₃ + A*√(yβ‚™)) / √(ΞΌ) if Ξ”tβ‚™ < Ξ”t Οˆβ‚‹ = Οˆβ‚™ else Οˆβ‚Š = Οˆβ‚™ end Οˆβ‚™ = (Οˆβ‚Š + Οˆβ‚‹) / 2 if Οˆβ‚™ > tolerance Cβ‚‚ = (1 - cos(√(Οˆβ‚™))) / Οˆβ‚™ C₃ = (√(Οˆβ‚™) - sin(√(Οˆβ‚™))) / √(Οˆβ‚™^3) elseif Οˆβ‚™ < -tolerance Cβ‚‚ = (1 - cosh(√(-Οˆβ‚™))) / Οˆβ‚™ C₃ = (sinh(√(-Οˆβ‚™)) - √(-Οˆβ‚™)) / √((-Οˆβ‚™)^3) else Cβ‚‚ = 1.0 / 2.0 C₃ = 1.0 / 6.0 end iter += 1 end f = 1 - yβ‚™/r₁ gΜ‡ = 1 - yβ‚™/rβ‚‚ g = A * √(yβ‚™/ΞΌ) v̅₁ = upreferred.((rΜ…β‚‚ .- (f .* r̅₁)) ./ g) vΜ…β‚‚ = upreferred.(((gΜ‡ .* rΜ…β‚‚) .- r̅₁) ./ g) return v̅₁, vΜ…β‚‚ end """ The following code was converted to Julia, from a [GitHub repository](https://github.com/rodyo/FEX-Lambert) that hosts a MATLAB implementation. At the time of writing, this respository has a BSD license. I'm providing the copyright notice here, as instructed by the license text. ``` Copyright (c) 2018, Rody Oldenhuis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of this project. ``` """ function Οƒmax(y) an = [ 4.000000000000000e-001, 2.142857142857143e-001, 4.629629629629630e-002, 6.628787878787879e-003, 7.211538461538461e-004, 6.365740740740740e-005, 4.741479925303455e-006, 3.059406328320802e-007, 1.742836409255060e-008, 8.892477331109578e-010, 4.110111531986532e-011, 1.736709384841458e-012, 6.759767240041426e-014, 2.439123386614026e-015, 8.203411614538007e-017, 2.583771576869575e-018, 7.652331327976716e-020, 2.138860629743989e-021, 5.659959451165552e-023, 1.422104833817366e-024, 3.401398483272306e-026, 7.762544304774155e-028, 1.693916882090479e-029, 3.541295006766860e-031, 7.105336187804402e-033 ] powers = y.^(1:25) Οƒ = 4/3 * powers β‹… an βˆ‚Οƒ_βˆ‚x = ((1:25) .* vcat(1, powers[1:24])) β‹… an βˆ‚Β²Οƒ_βˆ‚xΒ² = ((1:25) .* (0:24) .* vcat(1/y, 1, powers[1:23])) β‹… an βˆ‚Β³Οƒ_βˆ‚xΒ³ = ((1:25) .* (0:24) .* (-1:23) .* vcat(1/y/y, 1/y, 1, powers[1:22])) β‹… an return Οƒ, βˆ‚Οƒ_βˆ‚x, βˆ‚Β²Οƒ_βˆ‚xΒ², βˆ‚Β³Οƒ_βˆ‚xΒ³ end; """ The following code was converted to Julia, from a [GitHub repository](https://github.com/rodyo/FEX-Lambert) that hosts the MATLAB implementation. At the time of writing, the respository has a BSD license. I'm providing the copyright notice here, as instructed by the license text. ``` Copyright (c) 2018, Rody Oldenhuis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of this project. ``` """ function LancasterBlanchard(x, q, m) # Validate input if x < -one(x) @warn "`x` provided implies negative eccentricity. Correcting..." x = abs(x) - 2 * one(x) elseif x == -one(x) @warn "`x` provided is invalid. Setting `x` to the next float..." x = nextfloat(x) end # Parameter E E = x*x - one(x) if x == 1 # parabolic input ⟹ analytical solution T = 4/3 * (1 - q^3) βˆ‚T = 4/5 * (q^5 - 1) βˆ‚Β²T = βˆ‚T + 120/70 * (1 - q^7) βˆ‚Β³T = 3 * (βˆ‚Β²T - βˆ‚T) + 2400 / 1080 * (q^9 - 1) elseif abs(x - one(x)) < 1e-2 # almost parabolic ⟹ use series # Series expansion for T & associated partials σ₁, βˆ‚Οƒ_βˆ‚x₁, βˆ‚Β²Οƒ_βˆ‚x₂₁, βˆ‚Β³Οƒ_βˆ‚x₃₁ = Οƒmax(-E) Οƒβ‚‚, βˆ‚Οƒ_βˆ‚xβ‚‚, βˆ‚Β²Οƒ_βˆ‚xβ‚‚β‚‚, βˆ‚Β³Οƒ_βˆ‚x₃₂ = Οƒmax(-E * q * q) T = σ₁ - q^3 * Οƒβ‚‚ βˆ‚T = 2 * x * (q^5 * βˆ‚Οƒ_βˆ‚xβ‚‚ - βˆ‚Οƒ_βˆ‚x₁) βˆ‚Β²T = βˆ‚T/x + 4 * x^2 * (βˆ‚Β²Οƒ_βˆ‚x₂₁ - q^7 * βˆ‚Β²Οƒ_βˆ‚xβ‚‚β‚‚) βˆ‚Β³T = 3 * (βˆ‚Β²T - βˆ‚T/x) / x + 8 * x * x * (q^9 * βˆ‚Β³Οƒ_βˆ‚x₃₂ - βˆ‚Β³Οƒ_βˆ‚x₃₁) else y = √(abs(E)) z = √(1 + q^2 * E) f = y * (z - q * x) g = x * z - q * E if E < zero(E) Ξ΄ = atan(f, g) + m*Ο€ elseif E == zero(E) Ξ΄ = zero(E) else Ξ΄ = log(β„―, max(0, f+g)) end T = 2 * (x - q * z - Ξ΄ / y) / E βˆ‚T = (4 - 4 * q^3 * x/z - 3 * x * T) / E βˆ‚Β²T = (-4 * q^3/z * (1 - q^2 * x^2 / z^2) - 3*T - 3 * x * βˆ‚T) / E βˆ‚Β³T = (4 * q^3 / z^2 * ((1 - q^2 * x^2 / z^2) + 2 * q^2 * x/z^2 * (z - x)) - 8*βˆ‚T - 7*x*βˆ‚Β²T) / E end return T, βˆ‚T, βˆ‚Β²T, βˆ‚Β³T end """ The following code was converted to Julia, from a [GitHub repository](https://github.com/rodyo/FEX-Lambert) that hosts a MATLAB implementation. At the time of writing, this respository has a BSD license. I'm providing the copyright notice here, as instructed by the license text. ``` Copyright (c) 2018, Rody Oldenhuis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of this project. ``` """ function minmax_distances(r̲₁, rΜ²β‚‚, r₁, rβ‚‚, Ξ΄β‚œ, a, v̲₁, vΜ²β‚‚, m, ΞΌ) min_distance = min(r₁, rβ‚‚) max_distance = max(r₁, rβ‚‚) longway = abs(Ξ΄β‚œ) > Ο€ # check if longway trajectory was selected # Find eccentricity vector using triple product identity eΜ² = ((v̲₁⋅v̲₁) * r̲₁ - (v̲₁ β‹… r̲₁) * v̲₁) / ΞΌ - r̲₁ / r₁ # Scalar eccentricity e = norm(eΜ²) # Pericenter / apocenter pericenter = a * (1 - e) apocenter = Inf # For parabolic / hyperbolic case if e < one(e) apocenter = a * (1 + e) # elliptical case end # We have the eccentricity vector, so we know exactly # where the pericenter is. Given Ξ΄β‚œ and that fact # to cross-check if the trajectory goes past it if m > zero(m) # always elliptical, both apses traversed min_distance = pericenter max_distance = apocenter else # more complicated pm1 = sign(r₁ * r₁ * (eΜ²β‹…v̲₁) - (r̲₁⋅eΜ²) * (r̲₁⋅v̲₁)) pm2 = sign(rβ‚‚ * rβ‚‚ * (eΜ²β‹…vΜ²β‚‚) - (rΜ²β‚‚β‹…eΜ²) * (rΜ²β‚‚β‹…vΜ²β‚‚)) # Make sure θ₁, ΞΈβ‚‚ ∈ (-1, 1) θ₁ = pm1 * acos(max(-1, min(1, (r̲₁./r₁) β‹… (eΜ²./e)))) ΞΈβ‚‚ = pm2 * acos(max(-1, min(1, (rΜ²β‚‚./rβ‚‚) β‹… (eΜ²./e)))) if θ₁+ΞΈβ‚‚ < zero(θ₁) if abs(θ₁) + abs(θ₁) == Ξ΄β‚œ # pericenter was passed min_distance = pericenter else min_distance = apocenter # apocenter was passed end elseif longway min_distance = pericenter if e < one(e) max_distance = apocenter end end end return min_distance, max_distance end """ The following code was converted to Julia, from a [GitHub repository](https://github.com/rodyo/FEX-Lambert) that hosts a MATLAB implementation. At the time of writing, this respository has a BSD license. I'm providing the copyright notice here, as instructed by the license text. ``` Copyright (c) 2018, Rody Oldenhuis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of this project. ``` """ function lambert_lancaster_blanchard( r̲₁::AbstractVector, rΜ²β‚‚::AbstractVector, ΞΌ::Number, Ξ”t::Number; revolutions = 0, branch=:left, trajectory=:short, tolerance=1e-12, max_iter=25, output_extrema=Val{false}) m = revolutions if output_extrema == Val{true} error_output = [NaN, NaN, NaN] * u"km/s", [NaN, NaN, NaN] * u"km/s", (NaN * u"km", NaN * u"km") elseif output_extrema == Val{false} error_output = [NaN, NaN, NaN] * u"km/s", [NaN, NaN, NaN] * u"km/s" else throw(ArgumentError("Keyword argument `output_extrema` must be set to Val{true} or Val{false}.")) end if trajectory βˆ‰ (:short, :long) throw(ArgumentError("Must specify :long or :short for trajectory kwarg.")) end if Ξ”t < zero(Ξ”t) throw(ArgumentError(string( "Time of flight must be non-negative!", "Use the `trajectory` kwarg to specify", "longway or shortway trajectories."))) end if m < zero(m) throw(ArgumentError(string( "Number of revolutions must be non-negative!", "Use the `branch` kwarg to specify", "left or righht branch solutions."))) end # Collect unit vectors and magnitudes # of provided position vectors r₁ = norm(r̲₁) rβ‚‚ = norm(rΜ²β‚‚) r̂₁ = normalize(r̲₁) rΜ‚β‚‚ = normalize(rΜ²β‚‚) # Unit position vector orthogonal to # position vectors rΜ‚β‚’ = normalize(r̲₁ Γ— rΜ²β‚‚) # Tangential-direction unit vectors t̂₁ = rΜ‚β‚’ Γ— r̂₁ tΜ‚β‚‚ = rΜ‚β‚’ Γ— rΜ‚β‚‚ # Turn angle Ξ΄β‚œ = acos(max(-1, min(1, (r̲₁⋅rΜ²β‚‚)/r₁/rβ‚‚))) # If longway, account for final velocity # direction by flipping Ξ΄β‚œ sign if trajectory == :long Ξ΄β‚œ -= 2Ο€ end # Constants c = √(r₁^2 + rβ‚‚^2 - 2*r₁*rβ‚‚*cos(Ξ΄β‚œ)) s = (r₁ + rβ‚‚ + c) / 2 T = √(8ΞΌ / s^3) * Ξ”t q = √(r₁ * rβ‚‚) / s * cos(Ξ΄β‚œ/2) # Initial values Tβ‚€ = first(LancasterBlanchard(0, q, m)) Ξ΄T = Tβ‚€ - T phr = mod(2 * atan(1 - q^2, 2 * q), 2Ο€) # Assume failure v₁ = [NaN, NaN, NaN] vβ‚‚ = v₁ rβ‚‘ = (NaN, NaN) if m == zero(m) # single revolution x₀₁ = Tβ‚€ * Ξ΄T / 4/ T if Ξ΄T > zero(Ξ”t) xβ‚€ = x₀₁ else x₀₁ = Ξ΄T / (4 - Ξ΄T) xβ‚€β‚‚ = -√(-Ξ΄T / (T + Tβ‚€/2)) # TODO potential bug, see https://github.com/rodyo/FEX-Lambert/issues/1 W = x₀₁ + 1.7 * √(2 - phr/Ο€) # one of these is right! (1) # W = x₀₁ + 1.7 * √(2 - Ξ΄β‚œ/Ο€) # is it this one? (2) if W β‰₯ zero(W) x₀₃ = x₀₁ else x₀₃ = x₀₁ + ((-W)^(1/16) * (xβ‚€β‚‚ - x₀₁)) # one of these is right! (1) # x₀₃ = x₀₁ + (-W^(1/16) * (xβ‚€β‚‚ - x₀₁)) # is it this one? (2) end Ξ» = 1 + x₀₃ * (1 + x₀₁)/2 - 0.03 * x₀₃^2 * √(1 + x₀₁) xβ‚€ = Ξ» * x₀₃ end # Check if solution can't be found if xβ‚€ < -one(xβ‚€) @error "Unable to find solution." return error_output end else # Minumum βˆ‚T(x) xMΟ€ = 4 / (3Ο€ * (2m + 1)) if phr < Ο€ xMβ‚€ = xMΟ€ * (phr / Ο€)^(1/8) elseif phr > Ο€ xMβ‚€ = xMΟ€ * (2 - (2 - phr/Ο€)^(1/8)) else xMβ‚€ = zero(xMΟ€) end # Halley's method xM = xMβ‚€ βˆ‚T = Inf iter = 0 while abs(βˆ‚T) > tolerance iter += 1 _, βˆ‚T, βˆ‚Β²T, βˆ‚Β³T = LancasterBlanchard(xM, q, m) xMp = xM xM = xM - 2 * βˆ‚T .* βˆ‚Β²T ./ (2 * βˆ‚Β²T.^2 - βˆ‚T .* βˆ‚Β³T) if mod(iter, 7) != 0 xM = (xMp + xM)/2 end if iter > max_iter @error "Unable to find solution." return error_output end end # xM should be elliptic: xM ∈ (-1, 1) if xM < -one(xM) || xM > one(xM) @error "Unable to find solution." return error_output end # Corresponding time TM = first(LancasterBlanchard(xM, q, m)) # Check that T > minimum if TM > T @error "Unable to find solution." return error_output end # Move onto initial values for second solution! # Initial values TmTM = T - TM T0mTM = Tβ‚€ - TM _, βˆ‚T, βˆ‚Β²T, __ = LancasterBlanchard(xM, q, m) # First estimate if m > 0 if branch == :left x = √(TmTM / (βˆ‚Β²T/2 + TmTM / (1 - xM)^2)) W = xM + x W = 4 * W / (4 + TmTM) + (1 - W)^2 xβ‚€ = x * (1 - (1 + m + (Ξ΄β‚œ - 1/2)) / (1 + 0.15m) * x * (W/2 + 0.03x * √W)) + xM if xβ‚€ > one(xβ‚€) @error "Unable to find solution." return error_output end else # Second estimate if m > 0 if Ξ΄T > zero(Ξ΄T) xβ‚€ = xM - √(TM / (βˆ‚Β²T/2 - TmTM * (βˆ‚Β²T/2/T0mTM - 1/xM^2))) else xβ‚€β‚€ = Ξ΄T / (4 - Ξ΄T) W = xβ‚€β‚€ + 1.7 * √Complex(2 * (1 - phr)) if real(W) β‰₯ zero(real(W)) x₀₃ = xβ‚€β‚€ else x₀₃ = xβ‚€β‚€ - √((-W)^(1/8)) * (xβ‚€β‚€ + √(-Ξ΄T / (1.5*Tβ‚€ - Ξ΄T))) end W = 4 / (4 - Ξ΄T) Ξ» = (1 + (1 + m + 0.24*(Ξ΄β‚œ - 1/2)) / (1 + 0.15m) * x₀₃ * (W/2 - 0.03x₀₃ * √(W))) xβ‚€ = x₀₃ * Ξ» end if real(xβ‚€) < -one(real(xβ‚€)) @error "Unable to find solution." return error_output end end end # Finally, find root of Lancaster & Blancard's function # Halley's method x = xβ‚€ Tβ‚“ = Inf iter = 0 while abs(Tβ‚“) > tolerance iter += 1 Tβ‚“, βˆ‚T, βˆ‚Β²T, _ = LancasterBlanchard(x, q, m) # Find the root of the difference between Tβ‚“ and # required time T Tβ‚“ = Tβ‚“ - T # New value of x xβ‚š = x x = x - 2 * Tβ‚“ * βˆ‚T ./ (2 * βˆ‚T^2 - Tβ‚“ * βˆ‚Β²T) if mod(iter, 7) != 0 x = (xβ‚š + x) / 2 end if iter > max_iter @error "Unable to find solution." return error_output end end # Calculate terminal velocities # Constants Ξ³ = √(ΞΌ * s/2) if c == zero(c) Οƒ = one(x) ρ = zero(x) z = abs(x) else Οƒ = 2 * √(r₁*rβ‚‚ / c^2) * sin(Ξ΄β‚œ/2) ρ = (r₁ - rβ‚‚) / c z = √(1 + q^2 * (x^2 - 1)) end # Radial component vᡣ₁ = Ξ³ * ((q * z - x) - ρ * (q * z + x)) / r₁ vα΅£β‚‚ = -Ξ³ * ((q * z - x) + ρ * (q * z + x)) / rβ‚‚ v̲ᡣ₁ = vᡣ₁ * r̂₁ vΜ²α΅£β‚‚ = vα΅£β‚‚ * rΜ‚β‚‚ # Tangential component vβ‚œβ‚ = Οƒ * Ξ³ * (z + q*x) / r₁ vβ‚œβ‚‚ = Οƒ * Ξ³ * (z + q*x) / rβ‚‚ vΜ²β‚œβ‚ = vβ‚œβ‚ * t̂₁ vΜ²β‚œβ‚‚ = vβ‚œβ‚‚ * tΜ‚β‚‚ # Cartesian velocity v̲₁ = vΜ²β‚œβ‚ .+ v̲ᡣ₁ vΜ²β‚‚ = vΜ²β‚œβ‚‚ .+ vΜ²α΅£β‚‚ if output_extrema == Val{true} # Find min / max distances a = s/2 / (1 - x^2) rβ‚˜ = minmax_distances(r̲₁, rΜ²β‚‚, r₁, rβ‚‚, Ξ΄β‚œ, a, v̲₁, vΜ²β‚‚, m, ΞΌ) return v̲₁, vΜ²β‚‚, rβ‚˜ else return v̲₁, vΜ²β‚‚ end end """ The following code was converted to Julia, from a [GitHub repository](https://github.com/rodyo/FEX-Lambert) that hosts a MATLAB implementation. At the time of writing, this respository has a BSD license. I'm providing the copyright notice here, as instructed by the license text. ``` Copyright (c) 2018, Rody Oldenhuis All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of this project. ``` """ function lambert(r1vec, r2vec, tf, m, muC) # original documentation: #= This routine implements a new algorithm that solves Lambert's problem. The algorithm has two major characteristics that makes it favorable to other existing ones. 1) It describes the generic orbit solution of the boundary condition problem through the variable X=log(1+cos(alpha/2)). By doing so the graph of the time of flight become defined in the entire real axis and resembles a straight line. Convergence is granted within few iterations for all the possible geometries (except, of course, when the transfer angle is zero). When multiple revolutions are considered the variable is X=tan(cos(alpha/2)*pi/2). 2) Once the orbit has been determined in the plane, this routine evaluates the velocity vectors at the two points in a way that is not singular for the transfer angle approaching to pi (Lagrange coefficient based methods are numerically not well suited for this purpose). As a result Lambert's problem is solved (with multiple revolutions being accounted for) with the same computational effort for all possible geometries. The case of near 180 transfers is also solved efficiently. We note here that even when the transfer angle is exactly equal to pi the algorithm does solve the problem in the plane (it finds X), but it is not able to evaluate the plane in which the orbit lies. A solution to this would be to provide the direction of the plane containing the transfer orbit from outside. This has not been implemented in this routine since such a direction would depend on which application the transfer is going to be used in. please report bugs to [email protected] =# # adjusted documentation: #= By default, the short-way solution is computed. The long way solution may be requested by giving a negative value to the corresponding time-of-flight [tf]. For problems with |m| > 0, there are generally two solutions. By default, the right branch solution will be returned. The left branch may be requested by giving a negative value to the corresponding number of complete revolutions [m]. =# # Authors # .-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-.-`-. # Name : Dr. Dario Izzo # E-mail : [email protected] # Affiliation: ESA / Advanced Concepts Team (ACT) # Made more readible and optimized for speed by Rody P.S. Oldenhuis # Code available in MGA.M on http://www.esa.int/gsp/ACT/inf/op/globopt.htm # last edited 12/Dec/2009 # ADJUSTED FOR EML-COMPILATION 24/Dec/2009 # initial values tol = 1e-14; bad = false; days = 86400; # work with non-dimensional units r1 = sqrt(dot(r1vec, r1vec)); r1vec = r1vec/r1; V = sqrt(muC/r1); r2vec = r2vec/r1; T = r1/V; tf = tf*days/T; # also transform to seconds # relevant geometry parameters (non dimensional) mr2vec = sqrt(dot(r2vec, r2vec)); # make 100# sure it's in (-1 <= dth <= +1) dth = acos( max(-1, min(1, (dot(r1vec, r2vec))/mr2vec)) ); # decide whether to use the left or right branch (for multi-revolution # problems), and the long- or short way leftbranch = sign(m); longway = sign(tf); m = abs(m); tf = abs(tf); if (longway < 0) dth = 2*pi - dth end # derived quantities c = sqrt(1 + mr2vec^2 - 2*mr2vec*cos(dth)); # non-dimensional chord s = (1 + mr2vec + c)/2; # non-dimensional semi-perimeter a_min = s/2; # minimum energy ellipse semi major axis Lambda = sqrt(mr2vec)*cos(dth/2)/s; # lambda parameter (from BATTIN's book) crossprd = [r1vec[2]*r2vec[3] - r1vec[3]*r2vec[2], r1vec[3]*r2vec[1] - r1vec[1]*r2vec[3], # non-dimensional normal vectors r1vec[1]*r2vec[2] - r1vec[2]*r2vec[1]]; mcr = sqrt(dot(crossprd, crossprd)); # magnitues thereof nrmunit = crossprd/mcr; # unit vector thereof # Initial values # --------------------------------------------------------- # ELMEX requires this variable to be declared OUTSIDE the IF-statement logt = log(tf); # avoid re-computing the same value # single revolution (1 solution) if (m == 0) # initial values inn1 = -0.5233; # first initial guess inn2 = +0.5233; # second initial guess x1 = log(1 + inn1);# transformed first initial guess x2 = log(1 + inn2);# transformed first second guess # multiple revolutions (0, 1 or 2 solutions) # the returned soltuion depends on the sign of [m] else # select initial values if (leftbranch < 0) inn1 = -0.5234; # first initial guess, left branch inn2 = -0.2234; # second initial guess, left branch else inn1 = +0.7234; # first initial guess, right branch inn2 = +0.5234; # second initial guess, right branch end x1 = tan(inn1*pi/2);# transformed first initial guess x2 = tan(inn2*pi/2);# transformed first second guess end # since (inn1, inn2) < 0, initial estimate is always ellipse xx = [inn1, inn2]; aa = a_min ./ (1 .- xx.^2); bbeta = longway * 2*asin.(sqrt.((s-c) / 2 ./ aa)); # make 100.4# sure it's in (-1 <= xx <= +1) aalfa = 2*acos.( max.(-1, min.(1, xx)) ); # evaluate the time of flight via Lagrange expression y12 = @. aa.*sqrt(aa).*((aalfa - sin(aalfa)) - (bbeta-sin(bbeta)) + 2*pi*m); # initial estimates for y if m == 0 y1 = log(y12[1]) - logt; y2 = log(y12[2]) - logt; else y1 = y12[1] - tf; y2 = y12[2] - tf; end # Solve for x # --------------------------------------------------------- # Newton-Raphson iterations # NOTE - the number of iterations will go to infinity in case # m > 0 and there is no solution. Start the other routine in # that case err = Inf; iterations = 0; xnew = 0; while (err > tol) # increment number of iterations iterations = iterations + 1; # new x xnew = (x1*y2 - y1*x2) / (y2-y1); # copy-pasted code (for performance) if m == 0 x = exp(xnew) - 1; else x = atan(xnew)*2/pi; end a = a_min/(1 - x^2); if (x < 1) # ellipse beta = longway * 2*asin(sqrt((s-c)/2/a)); # make 100.4# sure it's in (-1 <= xx <= +1) alfa = 2*acos( max(-1, min(1, x)) ); else # hyperbola alfa = 2*acosh(x); beta = longway * 2*asinh(sqrt((s-c)/(-2*a))); end # evaluate the time of flight via Lagrange expression if (a > 0) tof = a*sqrt(a)*((alfa - sin(alfa)) - (beta-sin(beta)) + 2*pi*m); else tof = -a*sqrt(-a)*((sinh(alfa) - alfa) - (sinh(beta) - beta)); end # new value of y if m ==0 ynew = log(tof) - logt; else ynew = tof - tf; end # save previous and current values for the next iterarion # (prevents getting stuck between two values) x1 = x2; x2 = xnew; y1 = y2; y2 = ynew; # update error err = abs(x1 - xnew); # escape clause if (iterations > 15) bad = true; break; end end # If the Newton-Raphson scheme failed, try to solve the problem # with the other Lambert targeter. if bad # NOTE: use the original, UN-normalized quantities _branch = leftbranch > 0 ? :left : :right _traj = longway > 0 ? :long : :short _m = m V1, V2, extremal_distances = lambert_lancaster_blanchard( r1vec*r1, r2vec*r1, tf*T, muC; revolutions = _m, branch = _branch, trajectory = _traj, output_extrema = Val{true}); return V1, V2, extremal_distances, 1 end # convert converged value of x if m==0 x = exp(xnew) - 1; else x = atan(xnew)*2/pi; end #= The solution has been evaluated in terms of log(x+1) or tan(x*pi/2), we now need the conic. As for transfer angles near to pi the Lagrange- coefficients technique goes singular (dg approaches a zero/zero that is numerically bad) we here use a different technique for those cases. When the transfer angle is exactly equal to pi, then the ih unit vector is not determined. The remaining equations, though, are still valid. =# # Solution for the semi-major axis a = a_min/(1-x^2); # Calculate psi if (x < 1) # ellipse beta = longway * 2*asin(sqrt((s-c)/2/a)); # make 100.4# sure it's in (-1 <= xx <= +1) alfa = 2*acos( max(-1, min(1, x)) ); psi = (alfa-beta)/2; eta2 = 2*a*sin(psi)^2/s; eta = sqrt(eta2); else # hyperbola beta = longway * 2*asinh(sqrt((c-s)/2/a)); alfa = 2*acosh(x); psi = (alfa-beta)/2; eta2 = -2*a*sinh(psi)^2/s; eta = sqrt(eta2); end # unit of the normalized normal vector ih = longway * nrmunit; # unit vector for normalized [r2vec] r2n = r2vec/mr2vec; # cross-products # don't use cross() (emlmex() would try to compile it, and this way it # also does not create any additional overhead) crsprd1 = [ih[2]*r1vec[3]-ih[3]*r1vec[2], ih[3]*r1vec[1]-ih[1]*r1vec[3], ih[1]*r1vec[2]-ih[2]*r1vec[1]]; crsprd2 = [ih[2]*r2n[3]-ih[3]*r2n[2], ih[3]*r2n[1]-ih[1]*r2n[3], ih[1]*r2n[2]-ih[2]*r2n[1]]; # radial and tangential directions for departure velocity Vr1 = 1/eta/sqrt(a_min) * (2*Lambda*a_min - Lambda - x*eta); Vt1 = sqrt(mr2vec/a_min/eta2 * sin(dth/2)^2); # radial and tangential directions for arrival velocity Vt2 = Vt1/mr2vec; Vr2 = (Vt1 - Vt2)/tan(dth/2) - Vr1; # terminal velocities V1 = (Vr1*r1vec + Vt1*crsprd1)*V; V2 = (Vr2*r2n + Vt2*crsprd2)*V; # exitflag exitflag = 1; # (success) # also compute minimum distance to central body # NOTE: use un-transformed vectors again! extremal_distances = minmax_distances(r1vec*r1, r2vec*r1, r1, mr2vec*r1, dth, a*r1, V1, V2, m, muC); return V1, V2, extremal_distances, exitflag end """ Wrapper for Unitful inputs. """ function lambert(r1::AbstractVector{<:Unitful.Length}, r2::AbstractVector{<:Unitful.Length}, tf::Unitful.Time, m::Integer, mu::MassParameter) v1, v2, ex, fl = lambert( ustrip.(u"km", r1), ustrip.(u"km", r2), ustrip.(u"d", tf), m, ustrip.(u"km^3/s^2", mu) ) return v1 .* u"km/s", v2 .* u"km/s", ex .* u"km", fl end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
6472
# # Provides Restricted Two-body Problem equations # """ Returns the conic section, as specified by eccentricity `e`. """ function conic(e::T) where T<:Real !isnan(e) || throw(ArgumentError("Provided eccentricity is not a number (NaN).")) if e β‰ˆ zero(T) return Circular elseif e β‰ˆ one(T) return Parabolic elseif zero(T) < e && e < one(T) return Elliptical elseif e > one(T) return Hyperbolic else throw(ArgumentError("Provided eccentricity, $e, is not valid.")) end end """ Returns a Keplarian representation of a Cartesian orbital state. Algorithm taught in ENAE601. """ function keplerian(rα΅’, vα΅’, ΞΌ) safe_acos(num) = isapprox(num, one(num)) ? acos(one(num)) : isapprox(num, -one(num)) ? acos(-one(num)) : acos(num) iΜ‚ = SVector{3}(1, 0, 0) jΜ‚ = SVector{3}(0, 1, 0) kΜ‚ = SVector{3}(0, 0, 1) hΜ… = specific_angular_momentum_vector(rα΅’, vα΅’) a = semimajor_axis(norm(rα΅’), norm(vα΅’), ΞΌ) nΜ… = kΜ‚ Γ— specific_angular_momentum_vector(rα΅’, vα΅’) eΜ… = eccentricity_vector(rα΅’, vα΅’, ΞΌ) e = norm(eΜ…) i = safe_acos((hΜ… β‹… kΜ‚) / norm(hΜ…)) Ξ© = ustrip(nΜ… β‹… jΜ‚) > 0 ? safe_acos((nΜ… β‹… iΜ‚) / norm(nΜ…)) : 2Ο€ - safe_acos((nΜ… β‹… iΜ‚) / norm(nΜ…)) Ο‰ = ustrip(eΜ… β‹… kΜ‚) > 0 ? safe_acos((nΜ… β‹… eΜ…) / (norm(nΜ…) * e)) : 2Ο€ - safe_acos((nΜ… β‹… eΜ…) / (norm(nΜ…) * e)) Ξ½ = ustrip(rα΅’ β‹… vα΅’) > 0 ? safe_acos((eΜ… β‹… rα΅’) / (e * norm(rα΅’))) : 2Ο€ - safe_acos((eΜ… β‹… rα΅’) / (e * norm(rα΅’))) return upreferred(e), a, i, Ξ©, Ο‰, Ξ½ end """ Returns a Cartesian representation of a Keplerian two-body orbital state in an inertial frame, centered at the center of mass of the central body. Algorithm taught in ENAE601. """ function cartesian(e, a, i, Ξ©, Ο‰, Ξ½, ΞΌ) rα΅’, vα΅’ = spatial(i, Ξ©, Ο‰, perifocal(a, e, Ξ½, ΞΌ)...) return rα΅’, vα΅’ end """ Returns a spatial representation of the provied Perifocal state. """ function spatial(i, Ξ©, Ο‰, rβ‚š, vβ‚š) # Set up Perifocal ⟢ Cartesian conversion R_3Ξ© = SMatrix{3,3}( [cos(Ξ©) -sin(Ξ©) 0.; sin(Ξ©) cos(Ξ©) 0.; 0. 0. 1.]) R_1i = SMatrix{3,3}( [1. 0. 0.; 0. cos(i) -sin(i); 0. sin(i) cos(i)]) R_3Ο‰ = SMatrix{3,3}( [cos(Ο‰) -sin(Ο‰) 0. sin(Ο‰) cos(Ο‰) 0. 0. 0. 1.]) α΄΅Tβ‚š = R_3Ξ© * R_1i * R_3Ο‰ return α΄΅Tβ‚š * rβ‚š, α΄΅Tβ‚š * vβ‚š end """ Returns position and velocity vectors in the Perifocal frame. """ function perifocal(a, e, Ξ½, ΞΌ) p = semi_parameter(a, e) r = distance(p, e, Ξ½) PΜ‚=SVector{3, Float64}(1, 0, 0) QΜ‚=SVector{3, Float64}(0, 1, 0) # WΜ‚=SVector{3, Float64}(0, 0, 1) rβ‚š = (r * cos(Ξ½) .* PΜ‚ .+ r * sin(Ξ½) .* QΜ‚) vβ‚š = √(ΞΌ/p) * ((-sin(Ξ½) * PΜ‚) .+ ((e + cos(Ξ½)) .* QΜ‚)) return rβ‚š, vβ‚š end function perifocal(i, Ξ©, Ο‰, rα΅’, vα΅’) # Set up Cartesian ⟢ Perifocal conversion R_3Ξ© = SMatrix{3,3}( [cos(Ξ©) -sin(Ξ©) 0.; sin(Ξ©) cos(Ξ©) 0.; 0. 0. 1.]) R_1i = SMatrix{3,3}( [1. 0. 0.; 0. cos(i) -sin(i); 0. sin(i) cos(i)]) R_3Ο‰ = SMatrix{3,3}( [cos(Ο‰) -sin(Ο‰) 0. sin(Ο‰) cos(Ο‰) 0. 0. 0. 1.]) α΅–Tα΅’ = inv(R_3Ξ© * R_1i * R_3Ο‰) return α΅–Tα΅’*rα΅’, α΅–Tα΅’*vα΅’ end """ Returns semimajor axis parameter, a. """ semimajor_axis(r, v, ΞΌ) = inv( (2 / r) - (v^2 / ΞΌ) ) """ Returns specific angular momentum vector, hΜ…. """ specific_angular_momentum_vector(rα΅’, vα΅’) = rα΅’ Γ— vα΅’ """ Returns scalar specific angular momentum vector, h. """ specific_angular_momentum(rα΅’, vα΅’) = norm(specific_angular_momentum_vector(rα΅’, vα΅’)) """ Returns specific orbital energy, Ο΅. """ specific_energy(a, ΞΌ) = ( -ΞΌ / (2 * a) ) specific_energy(r, v, ΞΌ) = (v^2 / 2) - (ΞΌ / r) """ Returns C3 value. """ C3(r, v, ΞΌ) = v^2 - 2ΞΌ/r """ Returns v∞. """ v_infinity(r, v, ΞΌ) = √C3(r, v, ΞΌ) """ Returns potential energy for an orbit about a `RestrictedTwoBodySystem`. """ specific_potential_energy(r, ΞΌ) = (ΞΌ/r) specific_potential_energy(r, ΞΌ, R, Jβ‚‚, Ο•) = (ΞΌ/r) * (1 - Jβ‚‚ * (R/r)^2 * ((3/2) * (sin(Ο•))^2 - (1/2))) """ Returns orbital eccentricity vector eΜ…. """ function eccentricity_vector(rα΅’, vα΅’, ΞΌ) return map(x-> abs(x) < eps(typeof(x)) ? zero(x) : x, (1 / ΞΌ) * ((vα΅’ Γ— specific_angular_momentum_vector(rα΅’, vα΅’)) - ΞΌ * rα΅’ / norm(rα΅’))) end """ Returns orbital eccentricity, e. """ eccentricity(rα΅’, vα΅’, ΞΌ) = norm(eccentricity_vector(rα΅’, vα΅’, ΞΌ)) |> upreferred """ Returns semilatus parameter, p. """ semi_parameter(a, e) = a * (1 - e^2) """ Returns distance, r. """ distance(p, e, Ξ½) = upreferred(p / (1 + e * cos(Ξ½))) """ Returns instantaneous velocity, v, for any orbital representation. """ speed(r, a, ΞΌ) = upreferred(√( (2 * ΞΌ / r) - (ΞΌ / a))) """ Returns the instantaneous velocity, `v`, for any orbital representation. """ speed(p, e, Ξ½, a, ΞΌ) = speed(distance(p,e,Ξ½), a, ΞΌ) """ Returns periapsis distance, rβ‚š. """ periapsis_radius(a, e) = a * (1 - e) """ Returns apoapsis distance, rₐ. """ apoapsis_radius(a, e) = a * (1 + e) """ Returns the orbital period. """ period(a, ΞΌ) = 2Ο€ * √(upreferred(a^3 / ΞΌ)) """ Returns true anomoly, Ξ½. """ function true_anomoly(r, h, e, ΞΌ) val = (h^2 - ΞΌ * r) / (ΞΌ * r * e) acos(isapprox(val, one(val)) ? one(val) : val) end """ Returns mean motion, n. """ mean_motion(a, ΞΌ) = √(ΞΌ / a^3) """ Returns time since periapsis, t. """ time_since_periapsis(n, e, E) = (E - e * sin(E)) / (n) """ Sphere of influence. """ SOI(a, m, M) = a * (m / M)^(2/5) """ Sphere of activity. """ SOA(a, m, M) = a * (m / 3M)^(1/3) """ Computes a Hohmann transfer, and returns the departure and arrival velocity vectors. """ function hohmann(r₁, rβ‚‚, ΞΌ) vₐ = √((2ΞΌ/r₁) - (2ΞΌ/(r₁+rβ‚‚))) vβ‚š = √((2ΞΌ/rβ‚‚) - (2ΞΌ/(r₁+rβ‚‚))) return vₐ, vβ‚š end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
848
""" A module which provides types, and transformations for provided and user-provided orbital frames, e.g. Earth-Centered-Inertial, Heliocentric-Inertial, Synodic. # Extended help **Exports** $(EXPORTS) **Imports** $(IMPORTS) """ module CoordinateFrames # Frames export OrbitalFrame, Inertial, Rotating export BodycentricInertial, BarycentricInertial export BodycentricRotating, BarycentricRotating export isinertial, isrotating, isbodycentric, isbarycentric export @frame # Transforms export AstrodynamicsTransform export Transform using Unitful using DocStringExtensions using CoordinateTransformations @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ include("Frames.jl") include("Transforms.jl") end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
2780
# # Provides default frames, and the means for users to create their own. # """ $(TYPEDEF) A `supertype` for all coordinate frames used in space. """ abstract type OrbitalFrame end """ $(TYPEDEF) A `supertype` for all inertial coordinate frames in space. """ abstract type Inertial <: OrbitalFrame end """ $(TYPEDEF) A `supertype` for all bodycentric-inertial coordinate frames in space. """ abstract type BodycentricInertial <: Inertial end """ $(TYPEDEF) A `supertype` for all barycentric-ineretial coordinate frames in space. """ abstract type BarycentricInertial <: Inertial end """ $(TYPEDEF) A `supertype` for all rotating coordinate frames in space. """ abstract type Rotating <: OrbitalFrame end """ $(TYPEDEF) A `supertype` for all bodycentric-rotating coordinate frames in space. """ abstract type BodycentricRotating <: Rotating end """ $(TYPEDEF) A `supertype` for all barycentric-rotating coordinate frames in space. """ abstract type BarycentricRotating <: Rotating end """ $(SIGNATURES) Returns `true` or `false` to indicate whether the provided frame is `Inertial`. """ isinertial(::Type{T}) where T <: OrbitalFrame = T <: Inertial """ $(SIGNATURES) Returns `true` or `false` to indicate whether the provided frame is `Rotating`. """ isrotating(::Type{T}) where T <: OrbitalFrame = T <: Rotating """ $(SIGNATURES) Returns `true` or `false` to indicate whether the provided frame is bodycentric. """ isbodycentric(::Type{T}) where T <: OrbitalFrame = T <: Union{<:BodycentricInertial, BodycentricRotating} """ $(SIGNATURES) Returns `true` or `false` to indicate whether the provided frame is barycentric. """ isbarycentric(::Type{T}) where T <: OrbitalFrame = T <: Union{<:BarycentricInertial, BarycentricRotating} """ $(SIGNATURES) A simple convenience macro for defining new coordinate frames in space. Creates a new `abstract` sub-type of the final argument, `property`. # Extended Help **Usage** `@frame <name>` `@frame <name> is <property>` Here, `<property>` is previously defined `OrbitalFrame`. which must all be subtypes of `OrbitalFrames.OrbitalFrame`. By using the shortened syntax, `@frame <name>`, your new `abstract` type `<name>` will only have `OrbitalFrames.OrbitalFrame` as a `supertype`. **Examples** ```julia @frame AbstractFrame # second argument defaults to the top-level `OrbitalFrame` @frame EarthCenteredInertial is BodycentricInertial @frame SunEarthSynodic is BarycentricInertial ``` """ macro frame(name) quote abstract type $name <: $OrbitalFrame end end end macro frame(name, _is, super) @assert :($_is) == :is "Incorrect Usage! Use `is` as the second argument. For example: `@frame ECI is BodycentricInertialFrame`." quote abstract type $name <: $super end end end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1233
# # Provides default transforms, and the means for users to create their own. # """ $(TYPEDEF) A `supertype` for all astrodynamics coordinate frame transformations. """ abstract type OrbitalFrameTransform end # should this be a subtype of CoordinateTransformations.Transformation? """ $(TYPEDEF) A generic frame transformation between two `OrbitalFrame` types. Converts `F1` to`F2`. $(TYPEDFIELDS) """ struct Transform{F1<:OrbitalFrame, F2<:OrbitalFrame, T1<:CoordinateTransformations.Transformation, T2<:CoordinateTransformations.Transformation} <: OrbitalFrameTransform transform_position::T1 transform_velocity::T2 end """ $(SIGNATURES) An outer constructor for `Transform` instances. Provide position and velocity transformations, and the initial and final reference frames via function arguments. This is an alternate syntax for `Transform{InitialFrame, FinalFrame}(position_transform, velocity_transform)`. """ function Transform(position_transform::CoordinateTransformations.Transformation, velocity_transform::CoordinateTransformations.Transformation, from::F1, to::F2) where {F1 <: OrbitalFrameTransform, F2 <: OrbitalFrameTransform} return Transform{F1, F2}(position_transform, velocity_transform) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
4854
# # Iterative Halo orbit and manifold solvers # """ Returns the Monodromy Matrix for a Halo orbit. """ function monodromy(orbit::CR3BPOrbit, T; verify=true, reltol = 1e-14, abstol = 1e-14) initial = Orbit(CartesianStateWithSTM(state(orbit)), system(orbit), epoch(orbit); frame=frame(orbit)) final = propagate(initial, T; reltol=reltol, abstol=abstol, save_everystep=false)[end] if verify && !(state(initial)[1:6] β‰ˆ final[1:6]) throw(ErrorException("The provided `orbit` is not periodic!")) end SMatrix{6,6}(final[7:end]...) |> Matrix end """ Returns true if a `RestrictedThreeBodySystem` is numerically periodic. """ function isperiodic(orbit::CR3BPOrbit, T; reltol = 1e-14, abstol = 1e-14) final = propagate(orbit, T; reltol=reltol, abstol=abstol, save_everystep=false)[end] return state(orbit)[1:6] β‰ˆ final[1:6] end """ Returns a numerical solution for a Halo orbit about `L`. __Arguments:__ - `ΞΌ`: Non-dimensional mass parameter for the CR3BP system. - `Az`: Desired non-dimensional Z-amplitude for Halo orbit. - `Ο•`: Desired Halo orbit phase. - `L`: Lagrange point to orbit (L1 or L2). - `hemisphere`: Specifies northern or southern Halo orbit. __Outputs:__ - Tuple of initial states: `(r, v)` where `r::Vector{<:AbstractFloat}`, `v::Vector{<:Abstractfloat}`. - Throws `ArgumentError` if L is not `:L1` or `:L2` __References:__ The iterative scheme was pulled from directly from literature and sample code, including Rund 2018, and Dr. Mireles' lecture notes and EarthSunHaloOrbit_NewtonMewhod.m file available on their website. Specifically, the half-period iterative scheme (the `F` matrix in the source code, and corresponding "next guess" computation) was ported __directly__ from Dr. Mireles' public code and notes, which are available online. - [Dr. Mireles Notes](http://cosweb1.fau.edu/~jmirelesjames/hw5Notes.pdf) - [Dr. Mireles Code](http://cosweb1.fau.edu/~jmirelesjames/notes.html) - [Rund, 2018](https://digitalcommons.calpoly.edu/theses/1853/). """ function halo(ΞΌ; Az=0.0, L=1, hemisphere=:northern, tolerance=1e-8, max_iter=100, reltol=1e-14, abstol=1e-14, nan_on_fail = true, disable_warnings = false) rβ‚€, vβ‚€, Ξ€ = analyticalhalo(ΞΌ; Az=Az, Ο•=0.0, L=L, hemisphere=hemisphere) rβ‚€ = rβ‚€[1,:] vβ‚€ = vβ‚€[1,:] Ο„ = Ξ€/2 Ξ΄u = Vector{typeof(Ο„)}(undef, 6) Id = Matrix(I(6)) for i ∈ 1:max_iter problem = ODEProblem( CR3BPFunction(; stm=true), vcat(rβ‚€, vβ‚€, Id...), (0.0, Ο„), (ΞΌ,) ) retcode, rβ‚›, vβ‚›, Ξ¦ = let sols = solve(problem, Vern9(); reltol=reltol, abstol=abstol) final = sols.u[end] sols.retcode, final[1:3], final[4:6], SMatrix{6,6}(final[7:end]...) end CR3BPFunction()(Ξ΄u, vcat(rβ‚›, vβ‚›), (ΞΌ,), NaN) βˆ‚vβ‚› = Ξ΄u[4:6] # All code in this `if, else, end` block is ported from # Dr. Mireles' MATLAB code, which is available on his # website: http://cosweb1.fau.edu/~jmirelesjames/notes.html. # Lecture notes, which describe this algorithm further, # are available for reference as well: # http://cosweb1.fau.edu/~jmirelesjames/hw5Notes.pdf if Az ≉ 0 F = @SMatrix [ Ξ¦[4,1] Ξ¦[4,5] βˆ‚vβ‚›[1]; Ξ¦[6,1] Ξ¦[6,5] βˆ‚vβ‚›[3]; Ξ¦[2,1] Ξ¦[2,5] vβ‚›[2] ] xα΅ͺ = SVector(rβ‚€[1], vβ‚€[2], Ο„) - inv(F) * SVector(vβ‚›[1], vβ‚›[3], rβ‚›[2]) rβ‚€[1] = xα΅ͺ[1] vβ‚€[2] = xα΅ͺ[2] Ο„ = xα΅ͺ[3] else F = @SMatrix [ Ξ¦[4,3] Ξ¦[4,5] βˆ‚vβ‚›[1]; Ξ¦[6,3] Ξ¦[6,5] βˆ‚vβ‚›[3]; Ξ¦[2,3] Ξ¦[2,5] vβ‚›[2] ] xα΅ͺ = SVector(rβ‚€[3], vβ‚€[2], Ο„) - inv(F) * SVector(vβ‚›[1], vβ‚›[3], rβ‚›[2]) rβ‚€[3] = xα΅ͺ[1] vβ‚€[2] = xα΅ͺ[2] Ο„ = xα΅ͺ[3] end if abs(vβ‚›[1]) ≀ tolerance && abs(vβ‚›[3]) ≀ tolerance break; elseif Ο„ > 5 * one(Ο„) error("Unreasonably large halo period, $Ο„, ending iterations.") elseif i == max_iter error("Desired tolerance was not reached, and iterations have hit the maximum number of iterations: $max_iter.") end end return rβ‚€, vβ‚€, 2Ο„ end """ A `halo` wrapper! Returns a `CircularRestrictedThreeBodyOrbit`. Returns a tuple: `halo_orbit, halo_period`. """ function halo(sys::CR3BPParameters, epoch=TAIEpoch(now()); Az=0.0, kwargs...) if Az isa Unitful.Length Az = Az / lengthunit(sys) end r,v,T = halo(massparameter(sys); Az = Az, kwargs...) cart = CartesianState(vcat(r,v); lengthunit=lengthunit(sys), timeunit=timeunit(sys), angularunit=angularunit(sys)) orbit = Orbit(cart, sys) return (; orbit=orbit, period=T) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
11418
# # Invariant manifolds in the CR3BP # """ An alias for some abstract `EnsembleSolution` with `States` state vector and parameter vector types. """ const AbstractOrbitalEnsembleSolution = SciMLBase.AbstractEnsembleSolution{T,N,<:AbstractVector{U}} where {T,N,U<:Trajectory} """ An wrapper for a `SciMLBase.ODESolution` with a `GeneralAstrodynamics.States.AbstractState` state vector type. This represents a `Manifold` in space! """ struct Manifold{FR, S, P, E, O<:AbstractOrbitalEnsembleSolution} solution::O end """ Returns the `solution` for the `Manifold`. Typically, this is a `DifferentialEquations.ODESolution`. """ solution(man::Manifold) = man.solution """ Returns the system associated with the `Manifold`. """ States.system(man::Manifold) = solution(man).u[1].solution.prob.p """ The `length` of a `Manifold`. """ Base.length(man::Manifold) = length(solution(man).u) """ Returns the last index of a `Manifold`. """ Base.lastindex(man::Manifold) = length(man) """ Calls the underlying `solution`'s `getindex` function to return the `CartesianState` of the `Manifold` at time `t` past the `initialepoch`. """ Base.getindex(man::Manifold, args...) = getindex(solution(man), args...) """ The `size` of a `Manifold`. """ Base.size(man::Manifold) = size(solution(man)) """ Returns the `OrbitalFrame` of the `Manifold`. """ Base.@pure States.frame(::Manifold{FR}) where FR = FR """ Returns the length unit for the `Trajectory`. """ States.lengthunit(man::Manifold) = lengthunit(solution(man).u[1]) """ Returns the time unit for the `Trajectory`. """ States.timeunit(man::Manifold) = timeunit(solution(man).u[1]) """ Returns the angular unit for the `Trajectory`. """ States.angularunit(man::Manifold) = angularunit(solution(man).u[1]) """ Returns the velocity unit for the `Trajectory`. """ States.velocityunit(man::Manifold) = velocityunit(solution(man).u[1]) """ Returns the mass unit for the `Manifold`. """ States.massunit(man::Manifold) = massunit(system(man)) """ Returns the mass parameter unit for the `Trajectory`. """ States.massparamunit(man::Manifold) = massparamunit(system(man)) """ Show a `Trajectory`. """ function Base.show(io::IO, man::Manifold) println(io, "Invariant Manifold with $(length(man.solution.u)) trajectories") end """ Calculates the eigenvector associated with the __stable manifold__ of a Monodromy matrix. """ function stable_eigenvector(monodromy::AbstractMatrix; atol=1e-6) evals, evecs = eigen(monodromy) evals = filter(isreal, evals) .|> real evecs = filter(x->!isempty(x), map(vec->filter(x->all(isreal.(vec)), vec), eachcol(evecs))) .|> real imin = findmin(evals)[2] imax = findmax(evals)[2] @assert isapprox((evals[imin] * evals[imax]), one(eltype(evals)), atol=atol) "Min and max eigenvalue should be multiplicative inverses. Invalid Monodromy matrix. Product equals $(evals[imin] * evals[imax]), not $(one(eltype(evals)))." return evecs[imin] end """ Calculates the eigenvector associated with the __unstable manifold__ of a Monodromy matrix. """ function unstable_eigenvector(monodromy::AbstractMatrix; atol=1e-6) evals, evecs = eigen(monodromy) evals = filter(isreal, evals) .|> real evecs = filter(x->!isempty(x), map(vec->filter(x->all(isreal.(vec)), vec), eachcol(evecs))) .|> real imin = findmin(evals)[2] imax = findmax(evals)[2] @assert isapprox((evals[imin] * evals[imax]), one(eltype(evals)), atol=atol) "Min and max eigenvalue should be multiplicative inverses. Invalid Monodromy matrix. Product equals $(evals[imin] * evals[imax]), not $(one(eltype(evals)))." return evecs[imax] end """ Perturbs a `CartesianStateWithSTM` in the direction of an eigenvector `V`. """ function perturb(state::CartesianStateWithSTM, V::AbstractVector; eps = 1e-8) if length(V) != 6 throw(ArgumentError("Perturbation vector `V` must have length 6. Vector provided has length $(length(V))")) end V = normalize(States.get_stm(state) * normalize(V)) r = States.get_r(state) + eps * V[1:3] v = States.get_v(state) + eps * V[4:6] return CartesianState(vcat(r,v); lengthunit=lengthunit(state), timeunit=timeunit(state), angularunit=angularunit(state)) end """ Returns an orbit perturbed in the direction of the local linearization right-multiplied by the provided eigenvector `V`. Only available for `Trajectory` instances with `CartesianStateWithSTM` state types. """ function perturb(traj::Trajectory{FR, S}, t, V::AbstractVector; eps=1e-8) where {FR, S<:CartesianStateWithSTM} cart = perturb(state(traj, t), V; eps=eps) return Orbit(cart, system(traj), epoch(traj,t)) end """ Returns an `EnsembleProblem` which represents perturbations off of a Halo orbit onto a stable or unstable manifold. Use `kwarg` `direction=Val{:stable}` or `direction=Val{:unstable}` to specify whether you want to solve for the stable or unstable invariant manifold about the provided Halo orbit. All `kwargs` arguments are passed directly to `DifferentialEquations` solvers. """ function SciMLBase.EnsembleProblem(halo::Trajectory{FR, <:CartesianStateWithSTM} where FR; duration::Number=(solution(halo).t[end] - solution(halo).t[1]), direction=Val{:unstable}, distributed=Val{false}, Trajectory=Val{false}, trajectories=length(traj), eps=1e-8, kwargs...) if halo[1][1:6] ≉ halo[end][1:6] throw(ArgumentError("The Halo orbit `Trajectory` provided is not periodic!")) end if direction βˆ‰ (Val{:stable}, Val{:unstable}) throw(ArgumentError("Invalid direction provided: $(direction)")) end Tβ‚€ = solution(halo).t[1] T = solution(halo).t[end] dur = duration isa Unitful.Time ? duration / timeunit(halo) : duration if direction == Val{:stable} dur *= -1 end Ξ¦ = monodromy(Orbit(halo, 0), T) V = direction == Val{:stable} ? stable_eigenvector(Ξ¦) : unstable_eigenvector(Ξ¦) start = CartesianState(state(halo, 0)) nominal = ODEProblem(Orbit(start, system(halo), initialepoch(halo)), dur; kwargs...) prob_func = distributed == Val{true} ? DistributedManifoldIteration(halo, V, dur; trajectories=trajectories, eps=eps) : ManifoldIteration(halo, V, dur; trajectories=trajectories, eps=eps) output_func = Trajectory == Val{true} ? ManifoldTrajectoryOutput(halo) : ManifoldSolutionOutput(halo) return EnsembleProblem( nominal; prob_func = prob_func, output_func = output_func, safetycopy = false ) end """ Returns an `EnsembleProblem` which represents perturbations off of a Halo orbit onto a stable or unstable manifold. Use `kwarg` `direction=Val{:stable}` or `direction=Val{:unstable}` to specify whether you want to solve for the stable or unstable invariant manifold about the provided Halo orbit. All `kwargs` arguments are passed directly to `DifferentialEquations` solvers. """ function SciMLBase.EnsembleProblem(orbit::Orbit, period::Number; duration::Number=period, trajectories=nothing, kwargs...) cart = state(orbit) isa CartesianStateWithSTM ? CartesianStateWithSTM(CartesianState(state(orbit))) : CartesianStateWithSTM(state(orbit)) start = Orbit(cart, system(orbit), epoch(orbit); frame=frame(orbit)) T = period isa Unitful.Time ? period / timeunit(orbit) : period traj = isnothing(trajectories) ? propagate(start, T) : propagate(start, T; saveat=T/trajectories) return EnsembleProblem(traj, duration; trajectories=length(traj), kwargs...) end """ Distributed perturbation for `EnsembleProblem` itration. """ function DistributedManifoldIteration(traj::Trajectory, V::AbstractVector, dur::Real; trajectories=nothing, eps=1e-8) Tβ‚€ = solution(traj).t[1] T = solution(traj).t[end] if isnothing(trajectories) return @everywhere @eval function f(prob, i, repeat) t = rand() * T remake(prob, u0 = perturb(state(traj, t), V; eps=eps), tspan = (Tβ‚€+t, Tβ‚€+t+dur)) end else return @everywhere @eval function g(prob, i, repeat) t = traj.solution.t[i] remake(prob, u0 = perturb(traj[i], V; eps=eps), tspan = (Tβ‚€+t, Tβ‚€+t+dur)) end end end """ Non-distributed perturbation for `EnsembleProblem` itration. """ function ManifoldIteration(traj::Trajectory, V::AbstractVector, dur::Real; trajectories=nothing, eps=1e-8) Tβ‚€ = solution(traj).t[1] T = solution(traj).t[end] if isnothing(trajectories) return function f(prob, i, repeat) t = rand() * T remake(prob, u0 = perturb(state(traj, t), V; eps=eps), tspan = (Tβ‚€+t, Tβ‚€+t+dur)) end else return function g(prob, i, repeat) t = traj.solution.t[i] remake(prob, u0 = perturb(traj[i], V; eps=eps), tspan = (Tβ‚€+t, Tβ‚€+t+dur)) end end end """ Maps a solution iteration within an `EnsembleProblem` solver to a `Trajectory`. """ function ManifoldTrajectoryOutput(traj::Trajectory) return function f(sol,i) e = epoch(traj, sol.t[1]) return ( Trajectory{frame(traj), typeof(sol.prob.u0), typeof(sol.prob.p), typeof(e), typeof(sol)}(e, sol), false ) end end """ Maps a solution iteration within an `EnsembleProblem` solver to a `Trajectory`. """ function ManifoldSolutionOutput(traj::Trajectory) return function OutputSolution(sol,i) return (sol, false) end end """ Perturbs a periodic orbit's `Trajectory` in the direction of the stable or unstable eigenvector of its `monodromy` matrix to form a stable or unstable `manifold`. """ function manifold(orbit::Orbit, period::Number; duration::Number=period, trajectories=50, kwargs...) start = Orbit(CartesianStateWithSTM(state(orbit)), system(orbit), epoch(orbit); frame=frame(orbit)) if isnothing(trajectories) traj = propagate(start, period) return manifold(traj; duration=duration, trajectories=trajectories, kwargs...) else traj = propagate(start, period; saveat=period/trajectories) return manifold(traj; duration=duration, trajectories=length(traj), kwargs...) end end """ Perturbs a periodic orbit `traj` in the direction of the stable or unstable eigenvector of its `monodromy` matrix to form a stable or unstable `manifold`. """ function manifold(traj::Trajectory{FR, S, P, E}; duration::Number=(solution(traj).t[end] - solution(traj).t[1]), eps=1e-8, direction=Val{:unstable}, algorithm=nothing, ensemble_algorithm=nothing, trajectories=length(traj), reltol=1e-14, abstol=1e-14, kwargs...) where {FR, S<:CartesianStateWithSTM, P, E} problem = EnsembleProblem(traj; duration=duration, Trajectory=Val{true}, trajectories=trajectories, direction=direction, eps=eps) if isnothing(algorithm) isnothing(ensemble_algorithm) || @warn "Argument `algorithm` is nothing: `ensemble_algorithm` keyword argument will be ignored." solutions = solve(problem; trajectories=trajectories, reltol=reltol, abstol=abstol, kwargs...) else if isnothing(ensemble_algorithm) solutions = solve(problem, algorithm; trajectories=trajectories, reltol=reltol, abstol=abstol, kwargs...) else solutions = solve(problem, algorithm, ensemble_algorithm; trajectories=trajectories, reltol=reltol, abstol=abstol, kwargs...) end end return Manifold{FR, typeof(initialstate(first(solutions.u))), P, E, typeof(solutions)}(solutions) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1494
""" A module which provides wrappers around `DifferentialEquations` solvers and `AstrodynamicalModels` for orbit propagation, iterative Halo orbit solvers, and manifold calculations. # Extended Help **Exports** $(EXPORTS) **Imports** $(IMPORTS) """ module Propagation export Trajectory, ODEProblem, propagate export Manifold, EnsembleProblem export initialstate, initialepoch, solution export isperiodic, halo, monodromy export manifold, perturb export stable_eigenvector, unstable_eigenvector using ..States using ..Calculations using ..CoordinateFrames import Dates: now import LinearAlgebra: I import Roots: find_zero using Unitful using Requires using AstroTime using Distributed using StaticArrays using LinearAlgebra using ModelingToolkit using DocStringExtensions using AstrodynamicalModels using DifferentialEquations @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ include("Trajectories.jl") include("Propagators.jl") include("Halos.jl") include("Manifolds.jl") function __init__() @require DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0" begin DataFrames.DataFrame(traj::Trajectory) = DataFrames.DataFrame(solution(traj)) end end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1830
# # Restricted Two-body problem propagation # """ Create's an ODEProblem for a `R2BP` orbit. """ function SciMLBase.ODEProblem(orbit::R2BPOrbit, Δt::Number) u = state(orbit) Δt = eltype(state(orbit))(Δt) ts = Δt isa Unitful.Time ? (zero(ustrip(timeunit(orbit), Δt)), ustrip(timeunit(orbit), Δt)) : (zero(Δt), Δt) p = system(orbit) return ODEProblem(R2BPFunction(), u, ts, p) model = R2BP() states = @nonamespace [ model.x => x, model.y => y, model.z => z, model.ẋ => ẋ, model.ẏ => ẏ, model.ż => ż, ] parameters = @nonamespace [ model.μ => μ, ] return ODEProblem(model, states, ts, parameters) end """ Create's an ODEProblem for a `R2BP` orbit. """ function SciMLBase.ODEProblem(orbit::CR3BPOrbit, Δt::Real) u = state(orbit) Δt = eltype(state(orbit))(Δt) ts = (zero(Δt), Δt) p = system(orbit) f = u isa CartesianStateWithSTM ? CR3BPFunction(; stm=true) : CR3BPFunction() return ODEProblem(f, u, ts, p) end """ Propagates an orbit forward or backward in time. Use `algorithm` to set the desired numerical integration algorithm, e.g. `algorithm = Tsit5()`. All other `kwargs` are passed directly to `DifferentialEquations.solve`. """ function propagate(orbit::Orbit, Δt::Number; algorithm=nothing, kwargs...) defaults = (; reltol=1e-14, abstol=1e-14) options = merge(defaults, kwargs) problem = ODEProblem(orbit, Δt) if isnothing(algorithm) solution = solve(problem; options...) else solution = solve(problem, algorithm; options...) end return Trajectory{ frame(orbit), typeof(solution.prob.u0), typeof(solution.prob.p), typeof(epoch(orbit)), typeof(solution) }( epoch(orbit), solution ) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
5260
# # Types for orbital trajectories # """ An alias for some abstract `ODESolution` with `States` state vector and parameter vector types. """ const AbstractOrbitalODESolution = SciMLBase.AbstractODESolution{T,N,<:AbstractVector{U}} where {T,N,U<:States.AbstractState} """ An wrapper for a `SciMLBase.ODESolution` with a `GeneralAstrodynamics.States.AbstractState` state vector type. This represents an object's `Trajectory` in space! """ struct Trajectory{FR, S, P, E, O<:AbstractOrbitalODESolution} epoch::E solution::O end """ Returns the start `epoch`. Typically, This is a type defined in `AstroTime.Epochs`. """ initialepoch(traj::Trajectory) = traj.epoch """ Returns the `solution` for the `Trajectory`. Typically, this is a `DifferentialEquations.ODESolution`. """ solution(traj::Trajectory) = traj.solution """ A wrapper for (::ODESolution-like)(args...). Returns a state of type `initialstate)` at time `t` past `epoch`. """ (traj::Trajectory)(t::Number; idxs=nothing, continuity=:left) = traj.solution(t, Val{0}; idxs=idxs, continuity=continuity) (traj::Trajectory)(t::AbstractVector{<:Number}; idxs=nothing, continuity=:left) = traj.solution(t, Val{0}; idxs=idxs, continuity=continuity) """ Returns the initial condition associated with the `Trajectory`. """ initialstate(traj::Trajectory) = solution(traj).prob.u0 """ Returns the system associated with the `Trajectory`. """ States.system(traj::Trajectory) = solution(traj).prob.p """ Returns the `eltype` of the `Trajectory`. """ Base.eltype(traj::Trajectory) = eltype(solution(traj)) """ The `length` of a `Trajectory`. """ Base.length(traj::Trajectory) = length(solution(traj)) """ Returns the last index of a `Trajectory`. """ Base.lastindex(traj::Trajectory) = length(traj) """ Calls the underlying `solution`'s `getindex` function to return the `CartesianState` of the `Trajectory` at time `t` past the `initialepoch`. """ Base.getindex(traj::Trajectory, args...) = getindex(solution(traj), args...) """ The `size` of a `Trajectory`. """ Base.size(traj::Trajectory) = size(solution(traj)) """ Returns the `OrbitalFrame` of the `Trajectory`. """ Base.@pure States.frame(::Trajectory{FR}) where FR = FR """ Returns the length unit for the `Trajectory`. """ States.lengthunit(traj::Trajectory) = lengthunit(initialstate(traj)) """ Returns the time unit for the `Trajectory`. """ States.timeunit(traj::Trajectory) = timeunit(initialstate(traj)) """ Returns the angular unit for the `Trajectory`. """ States.angularunit(traj::Trajectory) = angularunit(initialstate(traj)) """ Returns the velocity unit for the `Trajectory`. """ States.velocityunit(traj::Trajectory) = velocityunit(initialstate(traj)) """ Returns the mass unit for the `Trajectory`. """ States.massunit(traj::Trajectory) = massunit(system(traj)) """ Returns the mass parameter unit for the `Trajectory`. """ States.massparamunit(traj::Trajectory) = massparamunit(system(traj)) """ Returns the position of the `Trajectory` at `t` `timeunit`'s from the `initialstate`'s `epoch`. """ Base.position(traj::Trajectory, t) = t isa Unitful.Time ? position(traj, t / timeunit(traj)) : traj(t, Val{0}; idxs=1:3, continuity=:left) * lengthunit(traj) """ Returns the scalar distance of the `Trajectory` at `t` `timeunit`'s from the `initialstate`'s `epoch`. """ States.distance(traj::Trajectory, t) = t isa Unitful.Time ? distance(traj, t / timeunit(traj)) : norm(position(traj, t)) """ Returns the position of the `Trajectory` at `t` `timeunit`'s from the `initialstate`'s `epoch`. """ States.velocity(traj::Trajectory, t) = t isa Unitful.Time ? velocity(traj, t / timeunit(traj)) : traj(t, Val{0}; idxs=4:6, continuity=:left) * velocityunit(traj) """ Returns the scalar distance of the `Trajectory` at `t` `timeunit`'s from the `initialstate`'s `epoch`. """ States.speed(traj::Trajectory, t) = t isa Unitful.Time ? speed(traj, t / timeunit(traj)) : norm(velocity(traj, t)) """ Returns a `state` of type `typeof(initialstate)` at time `t`. """ States.state(traj::Trajectory, t) = t isa Unitful.Time ? state(traj, t / timeunit(traj)) : typeof(initialstate(traj))(solution(traj)(t)) """ Returns an `epoch` at time `t` past `initialepoch`. """ States.epoch(traj::Trajectory, t) = t isa Unitful.Time ? initialepoch(traj) + UnitfulToAstroTime(t) : epoch(traj, t * timeunit(traj)) """ Converts `Unitful` types to `AstroTime` types. Throws an `ArgumentError` if the unit of quantity `t` is not a second, minute, hour, day, or year. """ function UnitfulToAstroTime(t::Unitful.Time) un = Unitful.unit(t) val = ustrip(un, t) if un == u"s" return val * AstroTime.seconds elseif un == u"minute" return val * Astrotime.minutes elseif un == u"hr" return val * AstroTime.hours elseif un == u"d" return val * AstroTime.days elseif un == u"yr" return val * AstroTime.years else throw(ArgumentError("Invalid time unit!")) end end """ Returns an `Orbit` at time `t`. """ States.Orbit(traj::Trajectory, t) = Orbit(state(traj, t), system(traj), epoch(traj, t)) """ Show a `Trajectory`. """ function Base.show(io::IO, traj::Trajectory) println(io, "Trajectory with $(length(traj)) timesteps and eltype $(eltype(solution(traj)))") end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1913
""" A module which provides types for common state representations in astrodynamics, including Cartesian and Keplerian states, and orbital states which include epoch and coordinate frame information. # Extended Help **Exports** $(EXPORTS) **Imports** $(IMPORTS) """ module States export CartesianState, CartesianStateWithSTM, KeplerianState export R2BPParameters, CR3BPParameters export Orbit, state, system, epoch, frame export position, velocity, statevector export R2BPOrbit, KeplerianR2BPOrbit, CartesianR2BPOrbit, CartesianOrbitWithSTM, CR3BPOrbit export lengthunit, timeunit, angularunit, velocityunit, massparamunit, name export Sun, Mercury, Venus, Earth, Moon, Luna, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto export SunVenus, SunEarth, EarthMoon, SunMars, SunJupiter, SunSaturn export model, vectorfield import Dates: now import AstroTime: TAIEpoch import Requires: @require import LinearAlgebra: norm, I using Unitful, UnitfulAstro using StaticArrays using ArrayInterface using LabelledArrays using DocStringExtensions using ..CoordinateFrames using ..Calculations @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ include(joinpath("Common","ParameterizedLabelledArrays.jl")) include(joinpath("States", "StateVectors.jl")) include(joinpath("Systems", "ParameterVectors.jl")) include(joinpath("Orbits", "OrbitDescriptions.jl")) include(joinpath("Systems", "R2BPSystems.jl")) include(joinpath("Systems", "CR3BPSystems.jl")) include("Calculations/Calculations.jl") function __init__() @require AstrodynamicalModels="4282b555-f590-4262-b575-3e516e1493a7" include(joinpath(@__DIR__, "Hooks", "AstrodynamicalModels.jl")) @require SymbolicUtils="d1185830-fcd6-423d-90d6-eec64667417b" include(joinpath(@__DIR__, "Hooks", "SymbolicUtils.jl")) end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
497
# # Defines AstrodynamicalCalculations methods for # OrbitalStates types # export massparameter, massparameters, normalized_massparameter export primary_massparameter, secondary_massparameter export RAAN, argument_of_periapsis, inclination export periapsis_velocity, apoapsis_velocity export mean_motion_vector export distance_to_primary, distance_to_secondary export massparameter, massparameters export primary_massparameter, secondary_massparameter include("States.jl") include("Systems.jl")
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
6375
# # Methods for orbit states and state vectors. # Calculations.keplerian(state::CartesianStateVector, ΞΌ) = keplerian(position(state), velocity(state), ΞΌ) Calculations.keplerian(orbit::CartesianR2BPOrbit) = keplerian(state(orbit), massparameter(system(orbit))) Calculations.keplerian(orbit::KeplerianR2BPOrbit) = orbit Calculations.cartesian(orbit::CartesianR2BPOrbit) = orbit Calculations.cartesian(orbit::KeplerianR2BPOrbit) = cartesian(state(orbit), massparameter(system(orbit))) Calculations.cartesian(state::KeplerianState, ΞΌ) = cartesian( eccentricity(state), semimajor_axis(state), inclination(state), RAAN(state), argument_of_periapsis(state), true_anomoly(state), ΞΌ ) Base.position(state::CartesianStateVector) = States.get_r(state) * lengthunit(state) Base.position(orbit::KeplerianR2BPOrbit) = position(CartesianState(cartesian(state(orbit), massparameter(state(orbit))))) Base.position(orbit::Orbit) = position(state(orbit)) Calculations.distance(state::CartesianStateVector) = norm(position(state)) Calculations.distance(orbit::Orbit) = norm(position(orbit)) velocity(state::CartesianStateVector) = States.get_v(state) * velocityunit(state) velocity(orbit::Orbit) = velocity(state(orbit)) Calculations.speed(state::CartesianStateVector) = norm(velocity(state)) Calculations.speed(orbit::KeplerianR2BPOrbit) = speed(semi_parameter(semimajor_axis(state(orbit)), eccentricity(state(orbit))), semimajor_axis(state(orbit)), massparameter(system(orbit))) Calculations.speed(orbit::Orbit) = norm(velocity(state(orbit))) Calculations.eccentricity(state::KeplerianState) = States.get_e(state) Calculations.eccentricity(orbit::KeplerianR2BPOrbit) = eccentricity(state(orbit)) Calculations.eccentricity(orbit::CartesianR2BPOrbit) = eccentricity(position(state(orbit)), velocity(state(orbit)), massparameter(system(orbit))) Calculations.semimajor_axis(state::KeplerianState) = States.get_a(state) * lengthunit(state) Calculations.semimajor_axis(orbit::CartesianR2BPOrbit) = semimajor_axis(distance(state(orbit)), speed(state(orbit)), massparameter(system(orbit))) Calculations.semimajor_axis(orbit::KeplerianR2BPOrbit) = semimajor_axis(state(orbit)) inclination(state::KeplerianState) = States.get_i(state) * angularunit(state) inclination(orbit::KeplerianR2BPOrbit) = inclination(state(orbit)) RAAN(state::KeplerianState) = States.get_Ξ©(state) * angularunit(state) RAAN(orbit::KeplerianR2BPOrbit) = RAAN(state(orbit)) argument_of_periapsis(state::KeplerianState) = States.get_Ο‰(state) * angularunit(state) argument_of_periapsis(orbit::KeplerianR2BPOrbit) = argument_of_periapsis(state(orbit)) Calculations.true_anomoly(state::KeplerianState) = States.get_Ξ½(state) * angularunit(state) Calculations.true_anomoly(orbit::KeplerianR2BPOrbit) = true_anomoly(state(orbit)) Calculations.true_anomoly(orbit::CartesianR2BPOrbit) = true_anomoly(distance(orbit), specific_angular_momentum(orbit), eccentricity(orbit), massparameter(system(orbit))) Calculations.conic(orbit::R2BPOrbit) = conic(eccentricity(orbit)) Calculations.specific_angular_momentum_vector(orbit::CartesianR2BPOrbit) = specific_angular_momentum_vector(position(state(orbit)), velocity(state(orbit))) Calculations.specific_angular_momentum(orbit::CartesianR2BPOrbit) = specific_angular_momentum(position(state(orbit)), velocity(state(orbit))) Calculations.specific_energy(orbit::CartesianR2BPOrbit) = specific_energy(distance(state(orbit)), speed(state(orbit)), massparameter(system(orbit))) Calculations.specific_energy(orbit::KeplerianR2BPOrbit) = specific_energy(semimajor_axis(orbit), massparameter(system(orbit))) Calculations.C3(orbit::R2BPOrbit) = C3(distance(orbit), speed(orbit), massparameter(system(orbit))) Calculations.v_infinity(orbit::R2BPOrbit) = v_infinity(distance(orbit), speed(orbit), massparameter(system(orbit))) Calculations.eccentricity_vector(orbit::CartesianR2BPOrbit) = eccentricity_vector(position(state(orbit)), velocity(state(orbit)), massparameter(system(orbit))) Calculations.semi_parameter(orbit::R2BPOrbit) = semi_parameter(semimajor_axis(orbit), eccentricity(orbit)) Calculations.periapsis_radius(orbit::R2BPOrbit) = periapsis_radius(semimajor_axis(orbit), eccentricity(orbit)) Calculations.apoapsis_radius(orbit::R2BPOrbit) = apoapsis_radius(semimajor_axis(orbit), eccentricity(orbit)) periapsis_velocity(orbit::R2BPOrbit) = speed(periapsis_radius(orbit), semimajor_axis(orbit), massparameter(system(orbit))) apoapsis_velocity(orbit::R2BPOrbit) = speed(apoapsis_radius(orbit), semimajor_axis(orbit), massparameter(system(orbit))) Calculations.period(orbit::R2BPOrbit) = conic(orbit) ∈ (Circular, Elliptical) ? period(semimajor_axis(orbit), massparameter(system(orbit))) : conic(orbit) == Parabolic ? Inf * timeunit(orbit) : NaN * timeunit(orbit) Calculations.mean_motion(orbit::R2BPOrbit) = mean_motion(semimajor_axis(orbit), massparameter(system(orbit))) function mean_motion_vector(orbit::R2BPOrbit) # iΜ‚ = SVector{3, Float64}([1, 0, 0]) # jΜ‚ = SVector{3, Float64}([0, 1, 0]) kΜ‚ = SVector{3}(0, 0, 1) return kΜ‚ Γ— specific_angular_momentum_vector(orbit) end Calculations.time_since_periapsis(orbit::R2BPOrbit) = time_since_periapsis(mean_motion(orbit), eccentricity(orbit), eccentric_anomoly(orbit)) Calculations.specific_potential_energy(orbit::CartesianR2BPOrbit) = specific_potential_energy(distance(orbit.state), massparameter(system(orbit))) Calculations.jacobi_constant(orbit::CR3BPOrbit) = Calculations.jacobi_constant(States.get_r(state(orbit)), States.get_v(state(orbit)), massparameter(system(orbit))) Calculations.potential_energy(orbit::CR3BPOrbit) = potential_energy(States.get_r(state(orbit)), massparameter(system(orbit))) distance_to_primary(orbit::CR3BPOrbit) = norm(States.get_r(state(orbit)) .- SVector(-massparameter(orbit), 0, 0)) distance_to_secondary(orbit::CR3BPOrbit) = norm(States.get_r(state(orbit)) .- SVector(1-massparameter(orbit), 0, 0)) function Calculations.kepler(orbit::Orbit, Ξ”t = period(orbit); kwargs...) r, v = kepler(position(orbit), velocity(orbit), massparameter(orbit), Ξ”t; kwargs...) cart = CartesianState(r, v) return Orbit(cart, system(orbit)) end function Calculations.zerovelocity_curves(orbit::CR3BPOrbit; kwargs...) return Calculations.zerovelocity_curves(state(orbit).r, state(orbit).v, massparameter(system(orbit)); kwargs...) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1355
# # Methods for orbital systems. # """ Returns the mass parameter of the R2BP system. """ massparameter(system::R2BPParameters) = States.get_ΞΌ(system) * massparamunit(system) massparameter(orbit::R2BPOrbit) = massparameter(system(orbit)) """ Returns the mass parameter of the CR3BP system. """ massparameter(system::CR3BPParameters) = States.get_ΞΌ(system) massparameter(orbit::CR3BPOrbit) = massparameter(system(orbit)) """ Returns the mass parameters of the CR3BP system. """ massparameters(system::CR3BPParameters) = (primary_massparameter(system), secondary_massparameter(system)) massparameters(orbit::CR3BPOrbit) = massparameters(system(orbit)) """ Returns the primary mass parameter of the CR3BP system. """ function primary_massparameter(system::CR3BPParameters) DU = lengthunit(system) TU = timeunit(system) ΞΌ = massparameter(system) βˆ‘ΞΌα΅’ = DU^3 / ((TU / 2Ο€)^2) return βˆ‘ΞΌα΅’ - ΞΌ * βˆ‘ΞΌα΅’ end primary_massparameter(orbit::CR3BPOrbit) = primary_massparameter(system(orbit)) """ Returns the secondary mass parameter of the CR3BP system. """ function secondary_massparameter(system::CR3BPParameters) DU = lengthunit(system) TU = timeunit(system) ΞΌ = massparameter(system) βˆ‘ΞΌα΅’ = DU^3 / ((TU / 2Ο€)^2) return ΞΌ * βˆ‘ΞΌα΅’ end secondary_massparameter(orbit::CR3BPOrbit) = secondary_massparameter(system(orbit))
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
7443
# # Using LabelledArrays source code and types to # "pass through" all properties to an underlying # LArray or SLArray. This allows us to write # a new abstract type that *functions* # like a LabelledArray type! # # All code in this file was copied, and modified # from LabelledArrays.jl source code. Their license is shown below. # All credit goes to LabelledArrays.jl developers. # const __LABELLED_ARRAYS_LICENSE = """ The LabelledArrays.jl package is licensed under the MIT "Expat" License: > Copyright (c) 2017: Christopher Rackauckas. > > > Permission is hereby granted, free of charge, to any person obtaining a copy > > of this software and associated documentation files (the "Software"), to deal > > in the Software without restriction, including without limitation the rights > > to use, copy, modify, merge, publish, distribute, sublicense, and/or sell > > copies of the Software, and to permit persons to whom the Software is > > furnished to do so, subject to the following conditions: > > > > The above copyright notice and this permission notice shall be included in all > > copies or substantial portions of the Software. > > > > THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR > > IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, > > FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE > > AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER > > LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, > > OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE > > SOFTWARE. > > """ const __LABELLED_ARRAYS_CREDITS = """ This source code which provides this functionality was copied directly from LabelledArrays.jl source code. The LabelledArrays.jl license text is provided in Julia's **Extended Help** section (accessible via `@doc`, or `??` in Julia's REPL). # Extended Help __LabelledArrays.jl License__ $__LABELLED_ARRAYS_LICENSE """ """ $(TYPEDEF) A supertype for types that *function* like `LabelledArray.LArray` or `LabelledArray.SLArray` instances, but are under a new type tree. This is used in `GeneralAstrodynamics` for parameterizing astrodynamics state vectors by physical units. !!! note All subtypes __must__ have only one field: a `LabelledArrays.LArray` or `LabelledArrays.SLArray` field called `__rawdata`. All methods on this abstract type require this field to be called `__rawdata`! Nearly all code which acts on this type is copied and / or modified from LabelledArrays.jl source code. All credit goes to LabelledArrays.jl developers. The LabelledArrays.jl LICENSE file is provided in this docstring under Julia's __Extended Help__ docstring section. # Extended help __LabelledArrays.jl License__ $__LABELLED_ARRAYS_LICENSE """ abstract type ParameterizedLabelledArray{F,N,T,L} <: DenseArray{F,N} end """ $(SIGNATURES) Returns dot-accessible property names for a `ParameterizedLabelledArray`. """ Base.propertynames(::ParameterizedLabelledArray{F,N,T}) where {F,N,T} = T isa NamedTuple ? keys(T) : T """ $(SIGNATURES) Overrides `Base.getproperty` for all `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ Base.@propagate_inbounds function Base.getproperty(x::ParameterizedLabelledArray, s::Symbol) if s ∈ propertynames(x) return getproperty(getfield(x, :__rawdata), s) end return getfield(x, s) # will throw an error if s is not :__rawdata! end """ $(SIGNATURES) Sets indices of a `ParameterizedLabelledArray` via label. $__LABELLED_ARRAYS_CREDITS """ Base.@propagate_inbounds function Base.setproperty!(x::ParameterizedLabelledArray, s::Symbol,y) if s ∈ propertynames(x) return setproperty!(getfield(x, :__rawdata), s, y) end setfield!(x, s, y) end """ $(SIGNATURES) Overrides `similar` for `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ function Base.similar(x::ParameterizedLabelledArray) return typeof(x)(similar(Vector(x))) end """ $(SIGNATURES) Overrides `similar` for `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ function Base.similar(x::ParameterizedLabelledArray, ::Int) return similar(x) end """ $(SIGNATURES) Overrides `zero` for `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ function Base.zero(x::ParameterizedLabelledArray) return typeof(x)(zero(x.__rawdata)) end """ $(SIGNATURES) Overrides `one` for `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ function Base.one(x::ParameterizedLabelledArray) return typeof(x)(one(x.__rawdata)) end """ $(SIGNATURES) Overrides `similar` for `ParameterizedLabelledArray` instances. $__LABELLED_ARRAYS_CREDITS """ function Base.similar(x::ParameterizedLabelledArray, dims::NTuple{N,Int}...) where {N} return similar(Vector(x), eltype(x), dims) end """ $(SIGNATURES) Shallow copies a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.copy(x::ParameterizedLabelledArray) = typeof(x)(copy(getfield(x,:__rawdata))) """ $(SIGNATURES) Deep copies a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.deepcopy(x::ParameterizedLabelledArray) = typeof(x)(deepcopy(getfield(x, :__rawdata))) """ $(SIGNATURES) Copies one `ParameterizedLabelledArray` to another. $__LABELLED_ARRAYS_CREDITS """ Base.copyto!(x::C,y::C) where C <: ParameterizedLabelledArray = copyto!(getfield(x,:__rawdata),getfield(y,:__rawdata)) """ $(SIGNATURES) Provides `unsafe_convert` for `ParameterizedLabelledArray` types for use with LAPACK. $__LABELLED_ARRAYS_CREDITS """ Base.unsafe_convert(::Type{Ptr{T}}, a::ParameterizedLabelledArray{F}) where {T, F} = Base.unsafe_convert(Ptr{T}, getfield(a,:__rawdata)) """ $(SIGNATURES) Converts the underlying floating point type for a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.convert(::Type{T}, x) where {T<:ParameterizedLabelledArray} = T(x) """ $(SIGNATURES) Converts the underlying floating point type for a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.convert(::Type{T}, x::T) where {T<:ParameterizedLabelledArray} = x """ $(SIGNATURES) Converts the underlying floating point type for a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.convert(::Type{<:Array},x::ParameterizedLabelledArray) = convert(Array, getfield(x,:__rawdata)) """ $(SIGNATURES) Reshapes a `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ ArrayInterface.restructure(x::ParameterizedLabelledArray{F1}, y::ParameterizedLabelledArray{F2}) where {F1, F2} = reshape(y, size(x)...) """ $(SIGNATURES) Implements `dataids` for a `ParameterizedLabelledArray` instance. $__LABELLED_ARRAYS_CREDITS """ Base.dataids(A::ParameterizedLabelledArray) = Base.dataids(A.__rawdata) """ $(SIGNATURES) Returns the index of the `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.getindex(state::ParameterizedLabelledArray, args...) = Base.getindex(state.__rawdata, args...) """ $(SIGNATURES) Sets the index of the `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.setindex!(state::ParameterizedLabelledArray, args...) = Base.setindex!(state.__rawdata, args...) """ $(SIGNATURES) Returns the memory stride for any `ParameterizedLabelledArray`. $__LABELLED_ARRAYS_CREDITS """ Base.elsize(::ParameterizedLabelledArray{F}) where F = sizeof(F)
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
845
# # Hooks into AstrodynamicalModels.jl # """ $(SIGNATURES) Returns the `ModelingToolkit.ODESystem` associated with `R2BPParameters`, provided by `AstrodynamicalModels`. """ model(::R2BPParameters) = AstrodynamicalModels.R2BP """ $(SIGNATURES) Returns the `ModelingToolkit.ODESystem` associated with `CR3BPParameters`, provided by `AstrodynamicalModels`. """ model(::CR3BPParameters) = AstrodynamicalModels.CR3BP """ $(SIGNATURES) Returns the `DifferentialEquations.ODEFunction` associated with `R2BPParameters`, provided by `AstrodynamicalModels`. """ vectorfield(::R2BPParameters) = AstrodynamicalModels.R2BPVectorField """ $(SIGNATURES) Returns the `DifferentialEquations.ODEFunction` associated with `CR3BPParameters`, provided by `AstrodynamicalModels`. """ vectorfield(::CR3BPParameters) = AstrodynamicalModels.CR3BPVectorField
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
336
using Core: Argument # # Provides `create_array` methods for `StateVector` and `ParameterVector` # instances! # @inline function SymbolicUtils.Code.create_array(A::Type{<:StateVector}, T, nd::Val, d::Val{dims}, elems...) where {dims} data = SymbolicUtils.Code.create_array(SArray, T, nd, d, elems...) return (A)(data.data) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
5228
# # Orbit descriptions. # """ A supertype for all single-point orbit descriptions. Parameterized by coordinate frame, floating point type, mass unit, lenth unit, time unit, epoch type, state type, and parameter type (in order). """ abstract type AbstractOrbit{FR, F, MU, LU, TU, AU, E, S<:AbstractState{F, LU, TU, AU}, P<:ParameterVector{F, MU, LU, TU, AU}} end """ An orbit, described by a `StateVector`, with parameters described by a `ParameterVector`. """ mutable struct Orbit{FR, F, MU, LU, TU, AU, E, S, P} <: AbstractOrbit{FR, F, MU, LU, TU, AU, E, S, P} epoch::E state::S system::P end """ Returns a default frame. """ function defaultframe(system::ParameterVector) if system isa R2BPParameters return CoordinateFrames.BodycentricInertial elseif system isa CR3BPParameters return CoordinateFrames.BarycentricRotating else return Inertial end end """ Outer constructor for `Orbit`s. """ function Orbit(state::AbstractState, system::ParameterVector, epoch=TAIEpoch(now()); frame = defaultframe(system)) S = eval(Base.typename(typeof(state)).name) P = eval(Base.typename(typeof(system)).name) if state isa KeplerianState && !(system isa R2BPParameters) throw(ArgumentError("Orbits with $P must have CartesianState state vectors.")) end FR = frame F = promote_type(eltype(state), eltype(system)) MU = massunit(system) if system isa CR3BPParameters LU = lengthunit(system) TU = timeunit(system) else LU = lengthunit(state) TU = timeunit(state) end AU = angularunit(state) E = typeof(epoch) return Orbit{FR, F, MU, LU, TU, AU, E, S{F, LU, TU, AU}, P{F, MU, LU, TU, AU}}( epoch, convert(S{F, LU, TU, AU}, state), convert(P{F, MU, LU, TU, AU}, system) ) end """ Outer constructor for `Orbit`s. """ function Orbit(r::AbstractVecOrMat, v::AbstractVecOrMat, system::ParameterVector, epoch=TAIEpoch(now()); frame = defaultframe(system)) state = CartesianState(vcat(r..., v...)) return Orbit(state, system, epoch; frame=frame) end """ Shows all `Orbit` instances. """ function Base.show(io::IO, orbit::Orbit) if system(orbit) isa R2BPParameters println(io, conic(orbit), " Restricted Two-body Orbit with eltype $(typeof(orbit).parameters[2])") elseif system(orbit) isa CR3BPParameters println(io, "Circular Restricted Three-body Orbit with eltype $(typeof(orbit).parameters[2])") end println(io, "") Base.show(io, state(orbit); showfloats=false, space=" ") println(io, "") Base.show(io, system(orbit); showfloats=false, space=" ") end Base.show(io::IO, ::MIME"text/plain", orbit::Orbit) = show(io, orbit) """ Returns the epoch (timestamp) for the `Orbit`. """ epoch(orbit::Orbit) = orbit.epoch """ Returns the state vector for the `Orbit`. """ state(orbit::Orbit) = orbit.state """ Returns the parameter vector for the `Orbit`. """ system(orbit::Orbit) = orbit.system """ Returns the `lengthunit` for an `Orbit`. """ Base.@pure lengthunit(::Orbit{FR, F, MU, LU, TU, AU}) where {FR, F, MU, LU, TU, AU} = LU """ Returns the `timeunit` for an `Orbit`. """ Base.@pure timeunit(::Orbit{FR, F, MU, LU, TU, AU}) where {FR, F, MU, LU, TU, AU} = TU """ Returns the `angularunit` for an `Orbit`. """ Base.@pure angularunit(::Orbit{FR, F, MU, LU, TU, AU}) where {FR, F, MU, LU, TU, AU} = AU """ Returns the `massunit` for an `Orbit`. """ Base.@pure massunit(::Orbit{FR, F, MU, LU, TU, AU}) where {FR, F, MU, LU, TU, AU} = MU """ Returns the `velocityunit` for an `Orbit`. """ velocityunit(orbit::Orbit) = lengthunit(orbit) / timeunit(orbit) """ Returns the `massparamunit` for an `Orbit`. """ massparamunit(orbit::Orbit) = lengthunit(orbit)^3 / timeunit(orbit)^2 """ Returns the `OrbitalFrame` for the `Orbit`. """ Base.@pure frame(::Orbit{FR}) where FR = FR """ An alias for `Orbit` instances about `R2BP` systems. """ const R2BPOrbit = Orbit{FR, F, MU, LU, TU, AU, E, S, P} where {FR, F, MU, LU, TU, AU, E, S<:Union{CartesianStateVector, KeplerianState}, P<:R2BPParameters} """ An alias for `Orbit` instances about `R2BP` systems with `KeplerianState` descriptions. """ const KeplerianR2BPOrbit = Orbit{FR, F, MU, LU, TU, AU, E, <:KeplerianState, <:R2BPParameters} where {FR, F, MU, LU, TU, AU, E} """ An alias for `Orbit` instances about `R2BP` systems with `CartesianState` descriptions. """ const CartesianR2BPOrbit = Orbit{FR, F, MU, LU, TU, AU, E, <:CartesianStateVector, <:R2BPParameters} where {FR, F, MU, LU, TU, AU, E} """ An alias for `Orbit` instances about `CR3BP` systems. """ const CR3BPOrbit = Orbit{FR, F, MU, LU, TU, AU, E, <:CartesianStateVector, <:CR3BPParameters} where {FR, F, MU, LU, TU, AU, E} """ An alias for `Orbit` instances about any systems with `CartesianState` descriptions. """ const CartesianOrbit = Orbit{FR, F, MU, LU, TU, AU, E, <:CartesianStateVector, <:ParameterVector} where {FR, F, MU, LU, TU, AU, E} """ An alias for `Orbit` instances about any systems with `CartesianStateWithSTM` descriptions. """ const CartesianOrbitWithSTM = Orbit{FR, F, MU, LU, TU, AU, E, <:CartesianStateWithSTM, <:ParameterVector} where {FR, F, MU, LU, TU, AU, E}
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
12748
# # State vector descriptions. # """ A supertype for all states in astrodynamics. """ abstract type AbstractState{F, LU, TU, AU, T} <: ParameterizedLabelledArray{F, 1, T, LArray{F, 1, MVector{6, F}, T}} end """ A supertype for all state representations in astrodynamics. """ abstract type StateVector{F, LU, TU, AU, T} <: AbstractState{F, LU, TU, AU, T} end """ A supertype for all state representations with local linearizations in astrodynamics. """ abstract type StateVectorWithSTM{F, LU, TU, AU, T} <: AbstractState{F, LU, TU, AU, T} end """ Returns the lengthunit of the state vector. """ Base.@pure lengthunit(::AbstractState{F, LU, TU, AU}) where {F, LU, TU, AU} = LU """ Returns the timeunit of the state vector. """ Base.@pure timeunit(::AbstractState{F, LU, TU, AU}) where {F, LU, TU, AU} = TU """ Returns the angularunit of the state vector. """ Base.@pure angularunit(::AbstractState{F, LU, TU, AU}) where {F, LU, TU, AU} = AU """ Returns the angularunit of the state vector. """ velocityunit(::AbstractState{F, LU, TU, AU}) where {F, LU, TU, AU} = LU/TU """ The length of any `StateVector` is 6! """ Base.@pure Base.length(::StateVector) = 6 """ The size of any `StateVector` is (6,)! """ Base.@pure Base.size(::StateVector) = (6,) """ The length of any `StateVector` is 6! """ Base.@pure Base.length(::StateVectorWithSTM) = 42 """ The size of any `StateVector` is (6,)! """ Base.@pure Base.size(::StateVectorWithSTM) = (42,) """ A Cartesian state vector with length 6. Internally uses `MVector` and `LVector` to store data. Data is accessible via labels, which are `x, y, z, αΊ‹, ẏ, ΕΌ, r, v`, where `r` access `x,y,z` and `v` accesses `αΊ‹, ẏ, ΕΌ`. """ mutable struct CartesianState{F, LU, TU, AU} <: StateVector{F, LU, TU, AU, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6)} __rawdata::LArray{F, 1, MVector{6, F}, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6)} """ $(SIGNATURES) Constructs a `CartesianState` with types specified. """ CartesianState{F, LU, TU, AU}(data) where {F, LU, TU, AU} = new{F,LU,TU,AU}(LArray{F, 1, MVector{6, F}, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6)}(data)) end """ Constructs a `CartesianState` from provided position and velocity vectors. """ function CartesianState(r::AbstractArray, v::AbstractArray; lengthunit=(unit(eltype(r)) isa Unitful.Length ? unit(eltype(r)) : u"km"), timeunit=(unit(eltype(v)) isa Unitful.Velocity ? lengthunit / unit(eltype(v)) : u"s"), angularunit=u"rad") rr = (eltype(r) <: Unitful.Length ? ustrip.(lengthunit, r) : r) vv = (eltype(v) <: Unitful.Velocity ? ustrip.(lengthunit / timeunit, v) : v) F = promote_type(eltype(rr), eltype(vv)) F isa AbstractFloat || (F = Float64) return CartesianState(vcat(rr,vv); lengthunit = lengthunit, timeunit = timeunit, angularunit = angularunit) end """ Constructs a `CartesianState`. """ function CartesianState(statevector; lengthunit=u"km", timeunit=u"s", angularunit=u"rad") F = eltype(statevector) F isa AbstractFloat || (F = Float64) return CartesianState{F, lengthunit, timeunit, angularunit}( LArray{F, 1, MVector{6, F}, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6)}( statevector ) ) end """ A Cartesian state vector with local linearization and length 42. Internally uses `MVector` and `LVector` to store data. Data is accessible via labels, which are `x, y, z, αΊ‹, ẏ, ΕΌ, r, v`, where `r` access `x,y,z` and `v` accesses `αΊ‹, ẏ, ΕΌ`. """ mutable struct CartesianStateWithSTM{F, LU, TU, AU} <: StateVectorWithSTM{F, LU, TU, AU, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6, Ξ¦=(7:42))} __rawdata::LArray{F, 1, MVector{42, F}, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6, Ξ¦=(7:42))} """ $(SIGNATURES) Constructs a `CartesianStateWithSTM` with types specified. """ CartesianStateWithSTM{F, LU, TU, AU}(data) where {F, LU, TU, AU} = new{F,LU,TU,AU}(LArray{F, 1, MVector{42, F}, (x = 1, y = 2, z = 3, αΊ‹ = 4, ẏ = 5, ΕΌ = 6, r = 1:3, v = 4:6, Ξ¦=(7:42))}(data)) end """ Outer constructor for `CartesianStateWithSTM`. """ CartesianStateWithSTM(data; lengthunit=u"km", timeunit=u"s", angularunit=u"rad") = CartesianStateWithSTM{eltype(data), lengthunit, timeunit, angularunit}(data) """ Returns a `CartesianStateWithSTM`, given a `CartesianState`. """ CartesianStateWithSTM(cart::CartesianState, stm=Matrix{eltype(cart)}(I(6))) = CartesianStateWithSTM{eltype(cart), lengthunit(cart), timeunit(cart), angularunit(cart)}(MVector{42}(cart..., stm...)) """ Returns a `CartesianState`, given a `CartesianStateWithSTM`. """ CartesianState(cart::CartesianStateWithSTM) = CartesianState(cart[1:6]; lengthunit=lengthunit(cart), timeunit=timeunit(cart), angularunit=angularunit(cart)) """ All Cartesian state! """ const CartesianStateVector = Union{<:CartesianState, <:CartesianStateWithSTM} """ Returns `x`. """ get_x(state::CartesianStateVector) = state[1] """ Returns `y`. """ get_y(state::CartesianStateVector) = state[2] """ Returns `z`. """ get_z(state::CartesianStateVector) = state[3] """ Returns `xΜ‡`. """ get_xΜ‡(state::CartesianStateVector) = state[4] """ Returns `yΜ‡`. """ get_yΜ‡(state::CartesianStateVector) = state[5] """ Returns `zΜ‡`. """ get_zΜ‡(state::CartesianStateVector) = state[6] """ Returns `r`. """ get_r(state::CartesianStateVector) = state[1:3] """ Returns `v`. """ get_v(state::CartesianStateVector) = state[4:6] """ Returns `Ο•`. """ get_Ο•(state::CartesianStateWithSTM) = state[7:42] """ Returns the state transition matrix. """ get_stm(state::CartesianStateWithSTM) = MMatrix{6,6}(state[7:42]) """ Returns the whole state vector, without units. """ statevector(state::CartesianState) = MVector{6}(get_x(state) * lengthunit(state), get_y(state) * lengthunit(state), get_z(state) * lengthunit(state), get_xΜ‡(state) * velocityunit(state), get_yΜ‡(state) * velocityunit(state), get_zΜ‡(state) * velocityunit(state)) """ Returns the whole state vector, without units. """ statevector(state::CartesianStateWithSTM) = MVector{42}(get_x(state) * lengthunit(state), get_y(state) * lengthunit(state), get_z(state) * lengthunit(state), get_xΜ‡(state) * velocityunit(state), get_yΜ‡(state) * velocityunit(state), get_zΜ‡(state) * velocityunit(state), get_Ο•(state)...) """ Displays a `CartesianState`. """ function Base.show(io::IO, state::CartesianState; showfloats=true, space="") LU = isnormalized(state) ? one(eltype(state)) : lengthunit(state) VU = isnormalized(state) ? one(eltype(state)) : velocityunit(state) println(io, space, "Cartesian State", showfloats ? " with eltype $(eltype(state))" : "", "\n") println(io, space, " ", "x = $(get_x(state) * LU)") println(io, space, " ", "y = $(get_y(state) * LU)") println(io, space, " ", "z = $(get_z(state) * LU)") println(io, space, " ", "xΜ‡ = $(get_xΜ‡(state) * VU)") println(io, space, " ", "yΜ‡ = $(get_yΜ‡(state) * VU)") println(io, space, " ", "zΜ‡ = $(get_zΜ‡(state) * VU)") end Base.show(io::IO, ::MIME"text/plain", state::CartesianState; showfloats=true, space="") = show(io, state; showfloats=showfloats, space=space) """ Displays a `CartesianStateWithSTM`. """ function Base.show(io::IO, state::CartesianStateWithSTM; showfloats=true, space="") LU = isnormalized(state) ? one(eltype(state)) : lengthunit(state) VU = isnormalized(state) ? one(eltype(state)) : velocityunit(state) println(io, space, "Cartesian State with local linearization", showfloats ? " and eltype $(eltype(state))" : "", "\n") println(io, space, " ", "x = $(get_x(state) * LU)") println(io, space, " ", "y = $(get_y(state) * LU)") println(io, space, " ", "z = $(get_z(state) * LU)") println(io, space, " ", "xΜ‡ = $(get_xΜ‡(state) * VU)") println(io, space, " ", "yΜ‡ = $(get_yΜ‡(state) * VU)") println(io, space, " ", "zΜ‡ = $(get_zΜ‡(state) * VU)") end Base.show(io::IO, ::MIME"text/plain", state::CartesianStateWithSTM; showfloats=true, space="") = show(io, state; showfloats=showfloats, space=space) """ A Keplerian state vector with length 6. Internally uses `MVector` and `LVector` to store data. Data is accessible via labels, which are `e, a, i, Ξ©, Ο‰, Ξ½`. """ mutable struct KeplerianState{F, LU, TU, AU} <: StateVector{F, LU, TU, AU, (e=1, a=2, i=3, Ξ©=4, Ο‰=5, Ξ½=6)} __rawdata::LArray{F, 1, MVector{6, F}, (e=1, a=2, i=3, Ξ©=4, Ο‰=5, Ξ½=6)} function KeplerianState(statevector; lengthunit=u"km", timeunit=u"s", angularunit=u"rad") F = eltype(statevector) F isa AbstractFloat || (F = Float64) return new{F, lengthunit, timeunit, angularunit}( statevector ) end end """ Constructs a `KeplerianState` from any `AbstractVector`. """ KeplerianState{F, LU, TU, AU}(statevector::AbstractVector{<:Real}) where {F, LU, TU, AU} = KeplerianState( convert(LArray{F, 1, MVector{6, F}, (e=1, a=2, i=3, Ξ©=4, Ο‰=5, Ξ½=6)}, statevector); lengthunit = LU, timeunit=TU, angularunit=AU ) """ Constructs a `KeplerianState` from provided position and velocity vectors. """ function KeplerianState(e::Real, a, i, Ξ©, Ο‰, Ξ½; lengthunit=(a isa Unitful.Length ? unit(a) : u"km"), timeunit=u"s", angularunit=(i isa DimensionlessQuantity ? unit(i) : u"rad")) aa = (a isa Unitful.Length ? ustrip(lengthunit, a) : a) ii = (i isa Unitful.DimensionlessQuantity ? ustrip(angularunit, i) : i) ΩΩ = (Ξ© isa Unitful.DimensionlessQuantity ? ustrip(angularunit, Ξ©) : Ξ©) ωω = (Ο‰ isa Unitful.DimensionlessQuantity ? ustrip(angularunit, Ο‰) : Ο‰) Ξ½Ξ½ = (Ξ½ isa Unitful.DimensionlessQuantity ? ustrip(angularunit, Ξ½) : Ξ½) F = promote_type(typeof(e), typeof(aa), typeof(ii), typeof(ΩΩ), typeof(ωω), typeof(Ξ½Ξ½)) F <: AbstractFloat || (F = Float64) return KeplerianState{F, lengthunit, timeunit, angularunit}(@LArray(MVector{6,F}(e,aa,ii,ΩΩ,ωω,Ξ½Ξ½),(e=1, a=2, i=3, Ξ©=4, Ο‰=5, Ξ½=6))) end """ Returns `e`. """ get_e(state::KeplerianState) = state[1] """ Returns `a`. """ get_a(state::KeplerianState) = state[2] """ Returns `i`. """ get_i(state::KeplerianState) = state[3] """ Returns `Ξ©`. """ get_Ξ©(state::KeplerianState) = state[4] """ Returns `Ο‰. """ get_Ο‰(state::KeplerianState) = state[5] """ Returns `Ξ½`. """ get_Ξ½(state::KeplerianState) = state[6] """ Returns the whole state vector, without units. """ statevector(state::KeplerianState) = MVector{6}(get_e(state), get_a(state) * lengthunit(state), get_i(state) * angularunit(state), get_Ξ©(state) * angularunit(state), get_Ο‰(state) * angularunit(state), get_Ξ½(state) * angularunit(state)) """ Displays a `KeplerianState`. """ function Base.show(io::IO, state::KeplerianState; showfloats=true, space="") println(io, space, "Keplerian State", showfloats ? " with eltype $(eltype(state))" : "", "\n") println(io, space, " ", "e = $(get_e(state))") println(io, space, " ", "a = $(get_a(state) * lengthunit(state))") println(io, space, " ", "Ξ© = $(get_Ξ©(state) * angularunit(state))") println(io, space, " ", "Ο‰ = $(get_Ο‰(state) * angularunit(state))") println(io, space, " ", "Ξ½ = $(get_Ξ½(state) * angularunit(state))") end Base.show(io::IO, ::MIME"text/plain", state::KeplerianState; showfloats=true, space="") = show(io, state; showfloats=showfloats, space=space) """ Returns `true` if the `AbstractState` has `lengthunit` and `timeunit` parameters of some type `T <: AbstractQuantity`. This is intended to be used for normalizing `CartesianState` vectors. """ isnormalized(state::AbstractState) = lengthunit(state) isa Unitful.AbstractQuantity && timeunit(state) isa Unitful.AbstractQuantity """ Converts types and units for a `CartesianState`. """ function Base.convert(::Type{CartesianState{F, LU, TU, AU}}, state::CartesianState) where {F, LU, TU, AU} r = States.get_r(state) .* lengthunit(state) ./ LU .|> upreferred .|> F v = States.get_v(state) .* velocityunit(state) ./ (LU/TU) .|> upreferred .|> F return CartesianState(vcat(r,v); lengthunit=LU, timeunit=TU, angularunit=AU) end """ Converts types and units for a `CartesianState`. """ function Base.convert(::Type{KeplerianState{F, LU, TU, AU}}, state::KeplerianState) where {F, LU, TU, AU} e = get_e(state) |> F a = ustrip(LU, get_a(state) * lengthunit(state)) |> F i = ustrip(AU, get_i(state) * angularunit(state)) |> F Ξ© = ustrip(AU, get_Ξ©(state) * angularunit(state)) |> F Ο‰ = ustrip(AU, get_Ο‰(state) * angularunit(state)) |> F Ξ½ = ustrip(AU, get_Ξ½(state) * angularunit(state)) |> F return KeplerianState(MVector{6}(e, a, i, Ξ©, Ο‰, Ξ½); lengthunit=LU, timeunit=TU, angularunit=AU) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1167
# # CR3BP systems in our solar system # """ The Sun-Earth CR3BP system. """ const SunVenus = CR3BPParameters(get_ΞΌ(Sun) * massparamunit(Sun), get_ΞΌ(Venus) * massparamunit(Venus), 108.2e6u"km"; primary=:Sun, secondary=:Venus) """ The Sun-Earth CR3BP system. """ const SunEarth = CR3BPParameters(get_ΞΌ(Sun) * massparamunit(Sun), get_ΞΌ(Earth) * massparamunit(Earth), 1.0u"AU"; primary=:Sun, secondary=:Earth) """ The Earth-Moon CR3BP system. """ const EarthMoon = CR3BPParameters(get_ΞΌ(Earth) * massparamunit(Earth), get_ΞΌ(Moon) * massparamunit(Moon), 384400u"km"; primary=:Earth, secondary=:Moon) """ The Sun-Mars CR3BP system. """ const SunMars = CR3BPParameters(get_ΞΌ(Sun) * massparamunit(Sun), get_ΞΌ(Mars) * massparamunit(Mars), 227.9e6u"km"; primary=:Sun, secondary=:Mars) """ The Sun-Jupiter CR3BP system. """ const SunJupiter = CR3BPParameters(get_ΞΌ(Sun) * massparamunit(Sun), get_ΞΌ(Jupiter) * massparamunit(Jupiter), 778.6e6u"km"; primary=:Sun, secondary=:Jupiter) """ The Sun-Saturn CR3BP system. """ const SunSaturn = CR3BPParameters(get_ΞΌ(Sun) * massparamunit(Sun), get_ΞΌ(Saturn) * massparamunit(Saturn), 1433.5e6u"km"; primary=:Sun, secondary=:Saturn)
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
5601
# # Provides concrete types under `ParameterizedLabelledArray` # which contain parameters to describe astrodynamic systems. # """ A supertype for parameter representations in astrodynamics. """ abstract type ParameterVector{F, MU, LU, TU, AU, N, T, B} <: ParameterizedLabelledArray{F, 1, T, SLArray{Tuple{N},F,1,N,T}} end """ Returns the mass unit of the parameter vector. """ Base.@pure massunit(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = MU """ Returns the length unit of the parameter vector. """ Base.@pure lengthunit(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = LU """ Returns the time unit of the parameter vector. """ Base.@pure timeunit(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = TU """ Returns the angular unit of the parameter vector. """ Base.@pure angularunit(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = AU """ Returns the velocity unit of the state vector. """ velocityunit(::ParameterVector{F, MU, LU, TU, AU}) where {F, MU, LU, TU, AU} = LU/TU """ Returns the mass-parameter unit of the state vector. """ massparamunit(::ParameterVector{F, MU, LU, TU, AU}) where {F, MU, LU, TU, AU} = LU^3/TU^2 """ Returns the length of the parameter vector. """ Base.@pure Base.length(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = N """ Returns the size of the parameter vector. """ Base.@pure Base.size(::ParameterVector{F, MU, LU, TU, AU, N}) where {F, MU, LU, TU, AU, N} = (N,) """ Returns the name of the parameter vector. """ name(::ParameterVector{F, MU, LU, TU, AU, N, T, B}) where {F, MU, LU, TU, AU, N, T, B} = B """ All parameters required for the Restricted Two-body Problem. """ struct R2BPParameters{F, MU, LU, TU, AU, B} <: ParameterVector{F, MU, LU, TU, AU, 1, (:ΞΌ,), B} __rawdata::SLArray{Tuple{1}, F, 1, 1, (:ΞΌ,)} function R2BPParameters(ΞΌ; massunit=u"kg", lengthunit=u"km", timeunit=u"s", angularunit=u"Β°", name=:Primary) ΞΌΞΌ = (ΞΌ isa Unitful.AbstractQuantity) ? ustrip(lengthunit^3/timeunit^2, ΞΌ) : ΞΌ F = eltype(ΞΌΞΌ) F isa AbstractFloat || (F = Float64) B = Symbol(name) return new{F, massunit, lengthunit, timeunit, angularunit, B}(SLArray{Tuple{1}, F, 1, 1, (:ΞΌ,)}(ΞΌΞΌ)) end end """ Returns the normalized mass parameter, `ΞΌ`. """ get_ΞΌ(sys::R2BPParameters) = sys[1] """ Displays `R2BPParameters`. """ function Base.show(io::IO, state::R2BPParameters; showfloats=true, space="") println(io, space, "R2BP parameters ", name(state) == "Primary" ? "" : "for the $(name(state)) system", showfloats ? " with eltype $(eltype(state))" : "", "\n") println(io, space, " ", "ΞΌ = ", get_ΞΌ(state), " ", massparamunit(state)) end Base.show(io::IO, ::MIME"text/plain", state::R2BPParameters; kwargs...) = Base.show(io, state; kwargs...) """ Converts types and units for a `R2BPParameters`. """ function Base.convert(::Type{R2BPParameters{F, MU, LU, TU, AU}}, system::R2BPParameters) where {F, MU, LU, TU, AU} B = name(system) ΞΌ = ustrip(LU^3/TU^2, get_ΞΌ(system) * massparamunit(system)) |> F return R2BPParameters(ΞΌ; massunit=MU, lengthunit=LU, timeunit=TU, angularunit=AU, name=B) end """ All parameters required for the Circular Restricted Three-body Problem. """ struct CR3BPParameters{F, MU, LU, TU, AU, B} <: ParameterVector{F, MU, LU, TU, AU, 1, (:ΞΌ,), B} __rawdata::SLArray{Tuple{1}, F, 1, 1, (:ΞΌ,)} function CR3BPParameters(ΞΌ::Real; massunit=u"kg", lengthunit=missing, timeunit=missing, angularunit=u"Β°", primary=:Primary, secondary=:Secondary) @assert ΞΌ ≀ 1//2 "Nondimensional mass parameter must be less than 1/2, by definition! Received $ΞΌ." F = typeof(ΞΌ) F isa AbstractFloat || (F = Float64) B = (Symbol(primary), Symbol(secondary)) return new{F, massunit, lengthunit, timeunit, angularunit, B}(SLArray{Tuple{1}, F, 1, 1, (:ΞΌ,)}(ΞΌ)) end function CR3BPParameters(μ₁::Unitful.AbstractQuantity, ΞΌβ‚‚::Unitful.AbstractQuantity, a::Unitful.Length; massunit=u"kg", angularunit=u"Β°", primary=:Primary, secondary=:Secondary) βˆ‘ΞΌα΅’ = μ₁ + ΞΌβ‚‚ ΞΌ = min(μ₁, ΞΌβ‚‚) / βˆ‘ΞΌα΅’ TU = 2Ο€ * upreferred(√(a^3 / βˆ‘ΞΌα΅’)) F = typeof(ΞΌ) F isa AbstractFloat || (F = Float64) B = (Symbol(primary), Symbol(secondary)) return new{F, massunit, a, TU, angularunit, B}(SLArray{Tuple{1}, F, 1, 1, (:ΞΌ)}(F(ΞΌ))) end end """ Returns the normalized mass parameter, `ΞΌ`. """ get_ΞΌ(sys::CR3BPParameters) = sys[1] """ Displays a `CR3BPParameters` instance. """ function Base.show(io::IO, sys::CR3BPParameters; showfloats=true, space="") sysname = all(name(sys) .== (:Primary, :Secondary)) ? "" : begin (n1, n2) = name(sys); string(" for the ", n1, "-", n2, " system") end println(io, space, "CR3BP parameters", sysname, showfloats ? " with eltype $(eltype(sys))" : "", "\n") println(io, space, " ", "ΞΌ = ", get_ΞΌ(sys)) end Base.show(io::IO, ::MIME"text/plain", sys::CR3BPParameters; kwargs...) = Base.show(io::IO, sys::CR3BPParameters; kwargs...) """ Converts types and units for a `CR3BPParameters`. """ function Base.convert(::Type{CR3BPParameters{F, MU, LU, TU, AU}}, system::CR3BPParameters) where {F, MU, LU, TU, AU} B = name(system) ΞΌ = get_ΞΌ(system) μ₁, ΞΌβ‚‚ = let βˆ‘ΞΌα΅’ = TU^3 / (TU / 2Ο€)^2 ΞΌβ‚‚ = ΞΌ * βˆ‘ΞΌα΅’ μ₁ = βˆ‘ΞΌα΅’ - ΞΌβ‚‚ μ₁, ΞΌβ‚‚ end ΞΌβ‚™ = min(μ₁, ΞΌβ‚‚) / (μ₁ + ΞΌβ‚‚) return CR3BPParameters(ΞΌβ‚™; massunit=MU, lengthunit=LU, timeunit=TU, angularunit=AU, primary=name(system)[1], secondary=name(system)[2]) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1487
# # R2BP systems in our solar system # """ Constant `R2BPParameters` for our sun! """ const Sun = R2BPParameters(1.327124400419393e11u"km^3/s^2"; name=:Sun) """ Constant `R2BPParameters` for Mercury. """ const Mercury = R2BPParameters(22031.78000000002u"km^3/s^2"; name=:Mercury) """ Constant `R2BPParameters` for Venus. """ const Venus = R2BPParameters(324858.592u"km^3/s^2"; name=:Venus) """ Constant `R2BPParameters` for your home planet! """ const Earth = R2BPParameters(398600.4354360959u"km^3/s^2"; name=:Earth) """ Constant `R2BPParameters` for our moon. """ const Moon = R2BPParameters(4902.800066163796u"km^3/s^2"; name=:Moon) """ Constant `R2BPParameters` (alias for our mooon). """ const Luna = Moon """ Constant `R2BPParameters` for Mars. """ const Mars = R2BPParameters(42828.37362069909u"km^3/s^2"; name=:Mars) """ Constant `R2BPParameters` for Jupiter. """ const Jupiter = R2BPParameters(1.2668653492180079e8u"km^3/s^2"; name=:Jupiter) """ Constant `R2BPParameters` for Saturn. """ const Saturn = R2BPParameters(3.793120749865224e7u"km^3/s^2", name=:Saturn) """ Constant `R2BPParameters` for Uranus. """ const Uranus = R2BPParameters(5.793951322279009e6u"km^3/s^2"; name=:Uranus) """ Constant `R2BPParameters` for Neptune. """ const Neptune = R2BPParameters(6.835099502439672e6u"km^3/s^2"; name=:Neptune) """ Constant `R2BPParameters` for Pluto. We couldn't leave you out again! """ const Pluto = R2BPParameters(869.6138177608749u"km^3/s^2"; name=:Pluto)
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1537
""" A module which provides visualizations for `Trajectory` and `Manifold` instances, as well as other common astrodynamical visualizations. # Extended Help **Exports** $(EXPORTS) **Imports** $(IMPORTS) """ module Visualizations export zerovelocityplot, zerovelocityplot! using Plots, RecipesBase using DifferentialEquations using ..Calculations using ..CoordinateFrames using ..States, ..Propagation using DocStringExtensions @template (FUNCTIONS, METHODS, MACROS) = """ $(SIGNATURES) $(DOCSTRING) """ @template (TYPES, CONSTANTS) = """ $(TYPEDEF) $(DOCSTRING) """ """ Rather than supply indices, users can use `Symbol` instances to select indices for plotting. # Example traj = propagate(orbit, period) plot(traj; vars=:tx) plot(traj; vars=xyz) plot(traj; vars=xxΜ‡) """ function process_vars(vars::Symbol) @assert 2 ≀ length(string(vars)) ≀ 3 "Keyword argument `vars` has an inproper length $(length(vars)). Choose a length in [2, 3]." @assert sum(c -> count(c, lowercase(string(vars))), ("t", "x", "y", "z", "xΜ‡", "yΜ‡", "zΜ‡")) == length(string(vars)) "Invalid character provided in `vars`." indices = Dict( "t" => 0, "x" => 1, "y" => 2, "z" => 3, "xΜ‡" => 4, "yΜ‡" => 5, "zΜ‡" => 6 ) return [indices[string(char)] for char ∈ lowercase(string(vars))] end include(joinpath("Trajectories", "Trajectories.jl")) include(joinpath("Manifolds", "Manifolds.jl")) include(joinpath("Energy", "Energy.jl")) end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1698
# # Visualizations related to orbital energy # # These are not fully implemented! """ Plot the zero velocity curves for the Synodic, normalized CR3BP system. """ function zerovelocityplot(orbit::CR3BPOrbit; nondimensional_range = range(-2; stop=2, length=1000), kwargs...) curves = zerovelocity_curves(orbit; nondimensional_range = nondimensional_range) default = (; title = "Zero Velocity Curves" * (name(system(orbit)) == (:Primary, :Secondary) ? "" : " for the $(name(system(orbit))[1])-$(name(system(orbit))[2]) System"), xlabel = "X ($(lengthunit(orbit)))", ylabel = "Y ($(lengthunit(orbit)))", labels = :none, formatter = :plain, grid = :on, linewidth = 2, dpi = 150) options = merge(default, kwargs) fig = plot(; options...) for curve ∈ curves plot!(fig, curve[:,1], curve[:,2]; kwargs...) end return fig end """ Plot the zero velocity curves for the Synodic, normalized CR3BP system to the last figure. """ function zerovelocityplot!(fig, orbit::CR3BPOrbit; nondimensional_range = range(-2; stop=2, length=1000), kwargs...) curves = zerovelocity_curves(orbit; nondimensional_range = nondimensional_range) default = (; ) options = merge(default, kwargs) fig = plot!(; options...) for (i,curve) ∈ zip(1:length(curves), curves) plot!(fig, curve[:,1], curve[:,2]; kwargs...) end return fig end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1885
# # Plots for CR3BP manifolds # function Plots.plot(manifold::Manifold; vars=:XYZ, kwargs...) indices = vars isa Tuple ? vars : process_vars(vars) labels = Dict( 0 => "Time" * " ($(timeunit(manifold)))", 1 => "X" * " ($(lengthunit(manifold)))", 2 => "Y" * " ($(lengthunit(manifold)))", 3 => "Z" * " ($(lengthunit(manifold)))", 4 => "XΜ‡" * " ($(velocityunit(manifold)))", 5 => "YΜ‡" * " ($(velocityunit(manifold)))", 6 => "ZΜ‡" * " ($(velocityunit(manifold)))" ) defaults = (; linewidth = 1, linestyle = :dot, title = "Manifold", palette = :blues, dpi = 150, label = :none, xguide = labels[indices[1]], yguide = labels[indices[2]], zguide = length(indices) == 3 ? labels[indices[3]] : :none, ) options = merge(defaults, kwargs) fig = plot(; options...) for trajectory ∈ manifold.solution.u plot!(trajectory; vars=vars, options...) end return fig end function Plots.plot!(manifold::Manifold; vars=:XYZ, kwargs...) defaults = (; linewidth = 1, linestyle = :dot, palette = :blues, dpi = 150, label = :none, ) options = merge(defaults, kwargs) for trajectory ∈ manifold.solution.u[1:end-1] plot!(trajectory; vars=vars, options...) end plot!(manifold.solution.u[end]; vars=vars, options...) end function Plots.plot!(fig, manifold::Manifold; vars=:XYZ, kwargs...) defaults = (; linewidth = 1, linestyle = :dot, palette = :blues, dpi = 150, label = :none, ) options = merge(defaults, kwargs) for trajectory ∈ manifold.solution.u plot!(fig, trajectory; vars=vars, options...) end return fig end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
2026
# # Plot recipes for trajectories! # @recipe function f(trajectory::Trajectory; vars=:XYZ, timerange=range(first(trajectory.solution.t); stop=last(trajectory.solution.t), length=1000)) linewidth --> 1.75 title --> "Trajectory" dpi --> 150 label --> :none indices = vars isa Tuple ? vars : process_vars(vars) labels = Dict( 0 => "Time" * " ($(timeunit(trajectory)))", 1 => "X" * " ($(lengthunit(trajectory)))", 2 => "Y" * " ($(lengthunit(trajectory)))", 3 => "Z" * " ($(lengthunit(trajectory)))", 4 => "Ẋ" * " ($(velocityunit(trajectory)))", 5 => "Ẏ" * " ($(velocityunit(trajectory)))", 6 => "Ż" * " ($(velocityunit(trajectory)))" ) xguide --> labels[indices[1]] yguide --> labels[indices[2]] if length(indices) == 3 zguide --> labels[indices[3]] end getdata(index) = index == 0 ? timerange : map(t -> trajectory(t; idxs=index), timerange) getdata.((indices...,)) end @recipe function f(trajectory::AbstractVector{<:Orbit}; vars=:XYZ) linewidth --> 1.75 title --> "Trajectory" dpi --> 150 label --> :none indices = vars isa Tuple ? vars : process_vars(vars) labels = Dict( 0 => "Time" * " ($(timeunit(first(trajectory))))", 1 => "X" * " ($(lengthunit(first(trajectory))))", 2 => "Y" * " ($(lengthunit(first(trajectory))))", 3 => "Z" * " ($(lengthunit(first(trajectory))))", 4 => "Ẋ" * " ($(velocityunit(first(trajectory))))", 5 => "Ẏ" * " ($(velocityunit(first(trajectory))))", 6 => "Ż" * " ($(velocityunit(first(trajectory))))" ) xguide --> labels[indices[1]] yguide --> labels[indices[2]] if length(indices) == 3 zguide --> labels[indices[3]] end getdata(index) = index == 0 ? map(epoch, trajectory) : map(orbit -> state(orbit)[index], trajectory) getdata.((indices...,)) end
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1166
""" Circular Restricted Three-body Model tests. """ module CR3BPTests using LinearAlgebra, Unitful, UnitfulAstro, GeneralAstrodynamics, Test @testset verbose=false "CR3BP Determination" begin @testset "Unitful" begin r = [1.007988, 0.0, 0.001864]u"AU" v = [0, 0, 0]u"AU/s" orbit = Orbit(CartesianState(r, v), SunEarth) @test all(orbit.state.r .β‰ˆ [1.007988, 0.0, 0.001864]) @test all(orbit.state.v .β‰ˆ zeros(3)) end @testset "No Units" begin r = [1.2, 0, 0] v = [0, -1.049357509830343, 0] ΞΌ = 0.012150585609624 units = (; lengthunit=missing, timeunit=missing, angularunit=missing) @test_broken Orbit( CartesianState(r, v; units...), CR3BPParameters(ΞΌ; massunit=missing, units...) ).state β‰ˆ vcat(r,v) end end @testset verbose=false "CR3BP Calculations" begin r = [1.007988, 0.0, 0.001864]u"AU" v = [0, 0, 0]u"AU/s" orbit = Orbit(CartesianState(r, v), SunEarth) @test jacobi_constant(orbit) β‰ˆ 3.000907212196274 @test_broken synodic(inertial(orbit)) β‰ˆ orbit end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1562
""" Circular Restricted Three-body Model tests. """ module PropagationTests using LinearAlgebra, Unitful, UnitfulAstro, GeneralAstrodynamics, Test using DifferentialEquations @testset verbose = false "R2BP Propagation" begin orbit = let planet = Mars e = 0.4 a = 10_000 i = 0 Ξ© = 0 Ο‰ = 0 Ξ½ = 0 state = KeplerianState(e, a, i, Ξ©, Ο‰, Ξ½) state = CartesianState(cartesian(state, massparameter(planet))...) Orbit(state, planet) end traj = propagate(orbit, period(orbit); save_everystep=false) @test traj[end] β‰ˆ state(orbit) end @testset verbose = false "CR3BP Propagation" begin @test isperiodic(halo(SunEarth; L=2, Az=0.0005)...) @test isperiodic(halo(SunMars; L=1, Az=0.0005)...) @test isperiodic(halo(EarthMoon; L=2, Az=0.0005)...) @test isperiodic(halo(SunJupiter; L=1, Az=0.0005)...) orbit, T = halo(SunJupiter; L=2, Az=0) @test isapprox.( monodromy(orbit, T), [ 1177.6158450389235 -43.31366732210663 0.0 247.08544503455505 227.41064838834146 0.0 -1085.995406851377 40.86470821207657 0.0 -227.41064838735218 -209.97647807144125 0.0 0.0 0.0 0.9966422601737439 0.0 0.0 -0.09182654535515093 3446.1566018075323 -126.52938312132042 0.0 722.7945482654276 666.0424507143235 0.0 -2146.972890519174 79.03452084349573 0.0 -450.8572227441975 -413.95658856183604 0.0 0.0 0.0 0.07300944628976104 0.0 0.0 0.99664226017845 ]; atol=1e-2 ) |> all end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
2554
""" Restricted Two-body Model tests. """ module R2BPTests using LinearAlgebra, Unitful, GeneralAstrodynamics, Test @testset verbose=false "R2BP Determination" begin rα΅’ = [0.0, 11681.0, 0.0] * u"km" vα΅’ = [5.134, 4.226, 2.787] * u"km/s" corbit = Orbit(CartesianState(rα΅’, vα΅’), Earth) @test all( keplerian(corbit) .β‰ˆ ( 0.723452708202361, 24509.265399338536u"km", 151.50460766373865u"Β°", 90.0u"Β°", 270.0034742609256u"Β°", 89.99652573907436u"Β°" ) ) @test CartesianState(cartesian(KeplerianState(keplerian(corbit)...), massparameter(Earth))...) β‰ˆ state(corbit) korbit = Orbit( KeplerianState( 0.723452708202361, 24509.265399338536u"km", 151.50460766373865u"Β°", 90.0u"Β°", 270.0034742609256u"Β°", 89.99652573907436u"Β°" ), Earth ) @test all( upreferred.(statevector(KeplerianState(keplerian(cartesian(korbit)..., massparameter(Earth))...))) .β‰ˆ upreferred.(statevector(KeplerianState(keplerian(corbit)...))) ) end @testset verbose=false "Kepler's Algorithm" begin @testset "Unitful" begin rα΅’ = [0.0, 11681.0, 0.0] * u"km" vα΅’ = [5.134, 4.226, 2.787] * u"km/s" corbit = Orbit(CartesianState(rα΅’, vα΅’), Earth) @test all(upreferred.(statevector(state(kepler(corbit)))) .β‰ˆ upreferred.(statevector(state(corbit)))) end end @testset verbose=true "Lambert Solvers" begin @testset "Universal" begin rα΅’ = [0.0, 11681.0, 0.0]u"km" vα΅’ = [5.134, 4.226, 2.787]u"km/s" initial = Orbit(CartesianState(rα΅’, vα΅’), Earth) Ξ”t = 1000u"s" final = kepler(initial, Ξ”t; tol=1e-12) v₁, vβ‚‚ = lambert_universal(position(initial), position(final), massparameter(Earth), Ξ”t; trajectory=:short, tolerance=1e-6, max_iter=1000) @test all(v₁ .β‰ˆ velocity(initial)) @test all(vβ‚‚ .β‰ˆ velocity(final)) end @testset "Oldenhuis" begin rα΅’ = [0.0, 11681.0, 0.0]u"km" vα΅’ = [5.134, 4.226, 2.787]u"km/s" initial = Orbit(CartesianState(rα΅’, vα΅’), Earth) Ξ”t = 1000u"s" final = kepler(initial, Ξ”t; tol=1e-12) m = 0 v₁, vβ‚‚ = lambert(position(initial), position(final), Ξ”t, m, massparameter(Earth)) @test_skip all(v₁ .β‰ˆ velocity(initial)) @test_skip all(vβ‚‚ .β‰ˆ velocity(final)) end end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
1244
""" Orbit visualization tests. Do plots run without error? """ module VisualizationTests using LinearAlgebra, Unitful, UnitfulAstro, GeneralAstrodynamics, Test using DifferentialEquations using Plots @testset verbose=false "Trajectory Plots" begin # CR3BP trajectory L2Halo = halo(SunEarth; Az = 30_000u"km", L = 2) traj = propagate(L2Halo...) try plot(traj) @test true catch e @test false end # Discrete trajectory traj = map(t -> Orbit(traj, t), solution(traj).t) try plot(traj) @test true catch e @test false end # Close all plots Plots.closeall() end @testset verbose=false "Manifold Plots" begin # CR3BP manifold L2Halo = halo(SunEarth; Az = 30_000u"km", L = 2) @test begin plot(manifold(L2Halo...)) true end # Close all plots Plots.closeall() end @testset verbose=false "Energy Plots" begin # CR3BP trajectory L2Halo = halo(EarthMoon; Az = 15_000u"km", L = 2) # CR3BP zero velocity curves try zerovelocityplot(L2Halo.orbit) @test true catch e @test false end # Close all plots Plots.closeall() end end # module
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
code
139
# # Unit tests for UnitfulAstrodynamics.jl # include("R2BP.jl") include("CR3BP.jl") include("Propagation.jl") include("Visualizations.jl")
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
docs
3353
# Contributor Covenant Code of Conduct ## Our Pledge In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. ## Our Standards Examples of behavior that contributes to creating a positive environment include: * Using welcoming and inclusive language * Being respectful of differing viewpoints and experiences * Gracefully accepting constructive criticism * Focusing on what is best for the community * Showing empathy towards other community members Examples of unacceptable behavior by participants include: * The use of sexualized language or imagery and unwelcome sexual attention or advances * Trolling, insulting/derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or electronic address, without explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Our Responsibilities Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior. Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful. ## Scope This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at [email protected]. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately. Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
docs
3314
[![Tests](https://github.com/cadojo/GeneralAstrodynamics.jl/workflows/Tests/badge.svg)](https://github.com/cadojo/GeneralAstrodynamics.jl/actions?query=workflow%3ATests) [![Docs](https://github.com/cadojo/GeneralAstrodynamics.jl/workflows/Documentation/badge.svg)](https://cadojo.github.io/GeneralAstrodynamics.jl/) # GeneralAstrodynamics.jl _Common astrodynamics calculations, with units!_ ## JuliaCon Talk Check out `GeneralAstrodynamics` in action at JuliaCon 2021! The talk [_Going to Jupiter with Julia_](https://www.youtube.com/watch?v=WnvKaUsGv8w) walks through a simple Jupiter mission design while gently introducing astrodynamics, Julia, and `GeneralAstrodynamics`. ## Features ### Restricted Two-body Problem (R2BP) - Structures for Cartesian and Keplerian states, and R2BP systems - Functions which implement common R2BP equations - Kepler and Lambert solvers - Orbit propagation and plotting ### Circular Restricted Three-body Problem (CR3BP) - Structures for dimensioned and normalized Cartesian states, and dimensioned and normalized CR3BP systems - Functions which implement common CR3BP equations - Analytical and iterative (numerical) Halo orbit solvers - Unstable and stable Halo orbit manifold computation - Orbit propagation and plotting - Zero-velocity curve computation and plotting ### N-body Problem (NBP) - This was implemented in a previous package version, and is currently being refactored ## Usage Some quick examples are below! ```julia # Installation import Pkg Pkg.add("GeneralAstrodynamics") # or julia> ]install GeneralAstrodynamics # Loading using GeneralAstrodynamics, Unitful # Construct a R2BP orbit (massless spacecraft # moving due to the gravity of one planet) orbit = let e = 0.4, a = 10_000, i = Ξ© = Ο‰ = Ξ½ = 0, planet = Earth orbitalstate = KeplerianState(e, a, i, Ξ©, Ο‰, Ξ½) Orbit(orbitalstate, Earth) end # Alternatively, use a `CartesianState` orbit = Orbit( CartesianState(randn(6)), # random state vector, [r..., v...] Earth ) # Construct a CR3BP orbit (massless spacecraft moving # due to the gravity of two planets, both of which # move in a circle about their common center of mass) orbit = Orbit( CartesianState(randn(6)), # random state vector (again!) SunEarth ) # Propagate any orbit in time (after `using DifferentialEquations`) using DifferentialEquations trajectory = propagate(orbit, 10u"d") # unitful times are convenient here! # Constract a periodic orbit within CR3BP dynamics (Halo orbit), # and the orbital period `T` (also requires `DifferentialEquations`) orbit, T = halo(SunEarth; L=1, Az=75_000u"km") # Construct a manifold which converges to (stable), or # diverges from (unstable) the Halo orbit superslide = manifold(orbit, T; duration=2T, eps=-1e8, direction=Val{:stable}) # Plot any `Trajectory` or `Manifold` (after `using Plots`) using Plots plot(trajectory; title="R2BP Trajectory") plot(propagate(orbit, T); vars=:XY, label="Halo Orbit", aspect_ratio=1) plot(superslide; vars=:XY, title="Stable Manifold near Earth") ``` In the coming years, the [Getting Started](https://cadojo.github.io/GeneralAstrodynamics.jl/dev/) page will have code examples, and other documentation for fundamental astrodynamics concepts, and `GeneralAstrodynamics` usage. Stay tuned and/or submit pull requests!
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
docs
664
# Docstrings _Documentation for all types, and functions in `GeneralAstrodynamics`._ ## `CoordinateFrames` ```@autodocs Modules = [ GeneralAstrodynamics.CoordinateFrames ] Order = [:type, :function] ``` ## `Calculations` ```@autodocs Modules = [ GeneralAstrodynamics.Calculations ] Order = [:type, :function] ``` ## `States` ```@autodocs Modules = [ GeneralAstrodynamics.States ] Order = [:type, :function] ``` ## `Propagation` ```@autodocs Modules = [ GeneralAstrodynamics.Propagation ] Order = [:type, :function] ``` ## `Visualizations` ```@autodocs Modules = [ GeneralAstrodynamics.Visualizations ] Order = [:type, :function] ```
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
0.11.0
fa78fedc1f3000cbf10d9ba8e935aa2711444d5f
docs
384
# GeneralAstrodynamics.jl _Common astrodynamics calculations in Julia, with units!_ !!! note This package is fairly new, and documentation is even newer! Thanks for your patience as we get these docs up and running. For now, all we can offer are some humble docstrings. If you check back in September, you'll probably find some more detailed documentation, and examples!
GeneralAstrodynamics
https://github.com/JuliaAstro/GeneralAstrodynamics.jl.git
[ "MIT" ]
1.1.5
8c6bb3edae13e0a3c5479baf23658384ac3576bd
code
230
using Documenter, MixedSubdivisions makedocs( sitename = "MixedSubdivisions.jl", pages = [ "MixedSubdivisions" => "index.md", ] ) deploydocs( repo = "github.com/saschatimme/MixedSubdivisions.jl.git", )
MixedSubdivisions
https://github.com/saschatimme/MixedSubdivisions.jl.git
[ "MIT" ]
1.1.5
8c6bb3edae13e0a3c5479baf23658384ac3576bd
code
56443
module MixedSubdivisions export mixed_volume, MixedCellIterator, MixedCell, mixed_cells, fine_mixed_cells, is_fine, volume, normal, indices, support import LinearAlgebra import MultivariatePolynomials as MP import ProgressMeter import StaticArrays: SVector import Base: checked_add, checked_sub βŠ™(x::Integer, y::Integer) = Base.checked_mul(x, y) βŠ•(x::Integer, y::Integer) = Base.checked_add(x, y) βŠ–(x::Integer, y::Integer) = Base.checked_sub(x, y) """ MuliplicativeInverse(a::Signed) Computes a multiplicative inverse of a signed integer `a`. Currently the only supported function `div`. """ struct MuliplicativeInverse{T<:Signed} a::T # a = p * 2^k p::T p_inv::T # multiplicative inverse of p shift::UInt8 end function MuliplicativeInverse(a) k = convert(UInt8, trailing_zeros(a)) p = a >> k p_inv = multiplicative_inverse_odd(p) MuliplicativeInverse(a, p, p_inv, k) end shift!(x::T, inv::MuliplicativeInverse{T}) where {T} = x >> inv.shift needs_shift(inv::MuliplicativeInverse) = inv.shift != 0 """ multiplicative_inverse_odd(x) Every odd integer has a multiplicative inverse in β„€ / mod 2^M. We can find this by using Newton's method. See this blogpost for more details: https://lemire.me/blog/2017/09/18/computing-the-inverse-of-odd-integers/ """ function multiplicative_inverse_odd(x::Int32) y = xor(Int32(3) * x, Int32(2)) # this gives an accuracy of 5 bits Base.Cartesian.@nexprs 3 _ -> y = newton_step(x, y) end function multiplicative_inverse_odd(x::Int64) y = xor(Int64(3) * x, Int64(2)) # this gives an accuracy of 5 bits Base.Cartesian.@nexprs 4 _ -> y = newton_step(x, y) end function multiplicative_inverse_odd(x::Int128) y = xor(Int128(3) * x, Int128(2)) # this gives an accuracy of 5 bits Base.Cartesian.@nexprs 6 _ -> y = newton_step(x, y) end newton_step(x, y) = y * (oftype(x, 2) - y * x) """ cayley(Aα΅’...) Construct the cayley matrix of the given point configurations. """ cayley(A::AbstractMatrix...) = cayley(A) function cayley(A) n = size(A[1], 1) I = eltype(A[1]) # make sure that all matrices have the same number of rows m = size(A[1], 2) for i = 2:length(A) size(A[i], 1) == n || error("Matrices do not have the same number of rows.") m += size(A[i], 2) end C = zeros(I, 2n, m) j = 1 for (i, Aα΅’) in enumerate(A), k = 1:size(Aα΅’, 2) for l = 1:n C[l, j] = Aα΅’[l, k] end C[n+i, j] = one(I) j += 1 end C end ################ # Term Ordering ################ abstract type TermOrdering end struct LexicographicOrdering <: TermOrdering end """ DotOrdering(w, tiebreaker=LexicographicOrdering()) The term ordering represented by ```math c₁ < cβ‚‚ ⟺ (⟨w,cβ‚βŸ© < ⟨w,cβ‚‚βŸ©) ∨ (⟨w,cβ‚βŸ© = ⟨w,cβ‚‚βŸ© ∧ c₁ β‰Ί cβ‚‚) ``` where ``β‰Ί`` is the term ordering represented by `tiebreaker`. """ struct DotOrdering{T<:Number,Ord<:TermOrdering} <: TermOrdering w::Vector{T} tiebraker::Ord end DotOrdering(w::Vector; tiebraker = LexicographicOrdering()) = DotOrdering(w, tiebraker) ####################### # CayleyIndexing ####################### """ CayleyIndex(i, j, offset) Fields: * `config_index::Int` * `col_index::Int` * `offset::Int` * `cayley_index::Int` """ struct CayleyIndex config_index::Int col_index::Int offset::Int cayley_index::Int end CayleyIndex(i, j, offset) = CayleyIndex(i, j, offset, offset + j) function Base.show(io::IO, CI::CayleyIndex) print(io, "(", CI.config_index, ",", CI.col_index, ")::", CI.cayley_index) end """ CayleyIndexing Utility to match the index of the `j`-th column in the `i`-th configuration to its index in the cayley configuration. Supports indexing with a configuration and column index. """ struct CayleyIndexing configuration_sizes::Vector{Int} ncolumns::Int # = sum(configuration_sizes) nconfigurations::Int offsets::Vector{Int} end function CayleyIndexing(configuration_sizes::Vector{<:Integer}) CayleyIndexing(convert(Vector{Int}, configuration_sizes)) end function CayleyIndexing(configuration_sizes::Vector{Int}) ncolumns = sum(configuration_sizes) nconfigurations = length(configuration_sizes) offsets = [0] for i = 1:(nconfigurations-1) push!(offsets, offsets[i] + configuration_sizes[i]) end CayleyIndexing(configuration_sizes, ncolumns, nconfigurations, offsets) end CayleyIndexing(config_sizes) = CayleyIndexing(collect(config_sizes)) function Base.copy(CI::CayleyIndexing) CayleyIndexing(CI.configuration_sizes, CI.ncolumns, CI.nconfigurations, CI.offsets) end """ offsets(cayley_indexing) Precomputed offsets of the configuration. """ offsets(CI::CayleyIndexing) = CI.offsets """ offset(cayley_indexing, i) Indexing offset of the `i`-th configuration. """ Base.@propagate_inbounds offset(CI::CayleyIndexing, i) = CI.offsets[i] """ nconfigurations(cayley_indexing) The number of point configurations. """ nconfigurations(CI::CayleyIndexing) = CI.nconfigurations """ ncolumns(cayley_indexing) The number of columns of the cayley matrix """ ncolumns(CI::CayleyIndexing) = CI.ncolumns """ ncolumns(cayley_indexing, i) The number of columns of the i-th configuration of the cayley matrix """ Base.@propagate_inbounds ncolumns(CI::CayleyIndexing, i) = CI.configuration_sizes[i] """ configuration(cayley_indexing, i) Returns an range indexing the columns of the cayley matrix corresponding to the `i`-th configuration. """ Base.@propagate_inbounds function configuration(CI::CayleyIndexing, i) off = offset(CI, i) (off+1):(off+CI.configuration_sizes[i]) end Base.@propagate_inbounds Base.getindex(CI::CayleyIndexing, i, j) = CI.offsets[i] + j # iteration protocol Base.length(C::CayleyIndexing) = C.ncolumns Base.eltype(C::Type{CayleyIndexing}) = CayleyIndex function Base.iterate(CI::CayleyIndexing) i = j = 1 @inbounds mα΅’ = CI.configuration_sizes[i] @inbounds offset = CI.offsets[i] CayleyIndex(i, j, offset), (i, j, mα΅’, offset) end function Base.iterate(CI::CayleyIndexing, state) i, j, mα΅’, offset = state if j == mα΅’ i == CI.nconfigurations && return nothing j = 1 i += 1 @inbounds offset = CI.offsets[i] @inbounds mα΅’ = CI.configuration_sizes[i] else j += 1 end CayleyIndex(i, j, offset), (i, j, mα΅’, offset) end mutable struct MixedCellTable # A mixed cell is defined by two vectors our of each configuration. # We assume that each point is in ℀ⁿ and the i-th configuration has mα΅’ points. # Therefore, the Cayley configuration has βˆ‘ mα΅’ =: m columns and 2n rows. # We store the indices of the columns. indices::Vector{NTuple{2,Int}} # The mixed cell cone of a mixed cell is the set of all weight vectors Ο‰ such that # this mixed cell is a mixed cell of the induced subdivision. # The facets of the mixed cell cone can be described by inequalities of the form cβ‹…Ο‰ β‰₯ 0. # The cone is described by m - 2n facets, one for each column of the Cayley matrix # which is not part of the mixed cell. # The `c`s are sparse, they only have 2n+1 non-zero entries. # The entries of the support of the `c`s are the 1-dimensional kernel of the 2n Γ— 2n+1 matrix # obtained by picking the 2n columns from the mixed cell and one additional column. # We can scale the `c`s such that the entry corresponding # to the additional column has the value -volume(mixed cell). # Then the other entries of `c` are also integers. # To compactly store the `c`s we only need to store n entries. # There are two entries associated to each configuration but three entries to the # configuration where we picked the addtional column from. # If we only have two entries, these have the same absolute value and just different signs. # If we have 3 values, then one value (the one corresponding to the additional column) # has as value -volume(mixed cell) and the sum of all three needs to add to 0. # So if we store the volume, we only need to store on other entry. # So as a result it is suffcient to everything in a m Γ— n matrix circuit_table::Matrix{Int32} volume::Int32 indexing::CayleyIndexing # we store these duplicates # overflow checks table_col_bound::Vector{Int32} # caches rotated_column::Vector{Int32} rotated_in_ineq::Vector{Int32} # dot products dot_bound::Int128 dot::Vector{Int64} dot_32::Vector{Int32} dot_128::Vector{Int128} end function MixedCellTable( indices, cayley::Matrix, indexing::CayleyIndexing; fill_circuit_table::Bool = true, ) circuit_table = zeros(Int32, ncolumns(indexing), nconfigurations(indexing)) if fill_circuit_table volume = fill_circuit_table!(circuit_table, indices, cayley, indexing) else volume = zero(Int32) end table_col_bound = vec(maximum(circuit_table, dims = 1)) rotated_column = [zero(Int32) for _ in indexing] rotated_in_ineq = zeros(Int32, size(circuit_table, 2)) dot_bound = zero(Int128) dot = zeros(Int64, size(circuit_table, 1)) dot_32 = similar(dot, Int32) dot_128 = similar(dot, Int128) MixedCellTable( convert(Vector{NTuple{2,Int}}, indices), circuit_table, volume, indexing, table_col_bound, rotated_column, rotated_in_ineq, dot_bound, dot, dot_32, dot_128, ) end function Base.copy(M::MixedCellTable) MixedCellTable( copy(M.indices), copy(M.circuit_table), copy(M.volume), copy(M.indexing), copy(M.table_col_bound), copy(M.rotated_column), copy(M.rotated_in_ineq), M.dot_bound, copy(M.dot), copy(M.dot_32), copy(M.dot_128), ) end function Base.:(==)(M₁::MixedCellTable, Mβ‚‚::MixedCellTable) M₁.volume == Mβ‚‚.volume && M₁.indices == Mβ‚‚.indices && M₁.circuit_table == Mβ‚‚.circuit_table end function fill_circuit_table!( table::Matrix{I}, mixed_cell_indices, cayley::Matrix, indexing::CayleyIndexing, ) where {I} D = mixed_cell_submatrix(cayley, indexing, mixed_cell_indices) n, m = nconfigurations(indexing), ncolumns(indexing) lu = LinearAlgebra.lu(D) volume = round(I, abs(LinearAlgebra.det(lu))) x = zeros(2n) y, b, bΜ‚ = zeros(I, 2n), zeros(I, 2n), zeros(I, 2n) # We need to compute the initial circuits from scratch for ind in indexing # compute a circuit for i = 1:2n b[i] = cayley[i, ind.cayley_index] end LinearAlgebra.ldiv!(x, lu, b) x .*= volume y .= round.(I, x) # verify that we have a correct circuit LinearAlgebra.mul!(bΜ‚, D, y) b .*= volume b == bΜ‚ || error("Cannot construct initial circuit table.") # this should increase precision or similar # we pick every second entry of x for (k, l) in enumerate(1:2:2n) table[ind.cayley_index, k] = y[l] end end volume end function mixed_cell_submatrix(C::Matrix, indexing::CayleyIndexing, mixed_cell_indices) mixed_cell_submatrix!( similar(C, size(C, 1), size(C, 1)), C, indexing, mixed_cell_indices, ) end function mixed_cell_submatrix!(D, C::Matrix, indexing::CayleyIndexing, mixed_cell_indices) j = 1 for i = 1:nconfigurations(indexing) aα΅’, bα΅’ = mixed_cell_indices[i] for k = 1:size(C, 1) D[k, j] = C[k, indexing[i, aα΅’]] D[k, j+1] = C[k, indexing[i, bα΅’]] end j += 2 end D end Base.@propagate_inbounds function is_valid_inquality(M::MixedCellTable, I::CayleyIndex) aα΅’, bα΅’ = M.indices[I.config_index] aα΅’ != I.col_index && bα΅’ != I.col_index end """ circuit_first(cell::MixedCellTable, ineq::CayleyIndex, configuration::Integer) Return the first entry of the circuit corresponding to the given configuration. """ Base.@propagate_inbounds function circuit_first( cell::MixedCellTable, ineq::CayleyIndex, i::Integer, ) cell.circuit_table[ineq.cayley_index, i] end """ circuit_second(cell::MixedCellTable, ineq::CayleyIndex, configuration::Integer) Return the second entry of the circuit corresponding to the given configuration. """ Base.@propagate_inbounds function circuit_second( cell::MixedCellTable, ineq::CayleyIndex, i::Integer, ) if i == ineq.config_index cell.volume - cell.circuit_table[ineq.cayley_index, i] else -cell.circuit_table[ineq.cayley_index, i] end end """ inequality_coordinate(cell::MixedCellTable, ineq::CayleyIndex, coord::CayleyIndex) inequality_coordinate(cell::MixedCellTable, ineq::CayleyIndex, i, j) Get the coordinate given by `coord` of the mixed cell cone inequality given by `ineq`. """ Base.@propagate_inbounds function inequality_coordinate( cell::MixedCellTable, ineq::CayleyIndex, coord::CayleyIndex, ) inequality_coordinate(cell, ineq, coord.config_index, coord.col_index) end Base.@propagate_inbounds function inequality_coordinate( cell::MixedCellTable, ineq::CayleyIndex, i::Integer, j::Integer, ) aα΅’, bα΅’ = cell.indices[i] if i == ineq.config_index && j == ineq.col_index -cell.volume elseif j == aα΅’ circuit_first(cell, ineq, i) elseif j == bα΅’ circuit_second(cell, ineq, i) else zero(cell.volume) end end Base.@propagate_inbounds function inequality_coordinates( cell::MixedCellTable, ineq1, ineq2, coord..., ) inequality_coordinate(cell, ineq1, coord...), inequality_coordinate(cell, ineq2, coord...) end function inequality(cell::MixedCellTable, ineq::CayleyIndex) [inequality_coordinate(cell, ineq, coord.config_index, coord.col_index) for coord in cell.indexing] end """ compute_inequality_dots!(cell::MixedCellTable, Ο„) Compute the dot product of all inequalities with `Ο„` and store in `result`. """ function compute_inequality_dots!(cell::MixedCellTable, Ο„, Ο„_bound = typemax(Int32)) n, m = nconfigurations(cell.indexing), ncolumns(cell.indexing) if cell.dot_bound < typemax(Int32) _compute_dot!(cell.dot_32, cell, Ο„, Int32) @inbounds for k = 1:m cell.dot[k] = cell.dot_32[k] end elseif cell.dot_bound < typemax(Int64) _compute_dot!(cell.dot, cell, Ο„, Int64) else _compute_dot!(cell.dot_128, cell, Ο„, Int64) # Assign final result. Throws an InexactError in case of an overflow max_128 = typemax(Int128) @inbounds for k = 1:m # We can ignore the case that # cell.intermediate_dot[k] > typemax(Int128) # since a positive dot product is irrelevant anyway cell.dot[k] = min(cell.dot_128[k], max_128) end end cell end function _compute_dot!(result, cell, Ο„, ::Type{T}) where {T<:Integer} n, m = nconfigurations(cell.indexing), ncolumns(cell.indexing) # We do the accumulation in a higher precision in order to catch overflows. @inbounds for k = 1:m result[k] = -cell.volume * T(Ο„[k]) end @inbounds for i = 1:n aα΅’, bα΅’ = cell.indices[i] Ο„_aα΅’ = Ο„[cell.indexing[i, aα΅’]] Ο„_bα΅’ = Ο„[cell.indexing[i, bα΅’]] Ο„α΅’ = T(Ο„_aα΅’ - Ο„_bα΅’) if !iszero(Ο„α΅’) for k = 1:m result[k] += cell.circuit_table[k, i] * Ο„α΅’ end end v_Ο„_bα΅’ = cell.volume * T(Ο„_bα΅’) if !iszero(v_Ο„_bα΅’) for k in configuration(cell.indexing, i) result[k] += v_Ο„_bα΅’ end end end # Correct our result for the bad indices @inbounds for i = 1:n aα΅’, bα΅’ = cell.indices[i] result[cell.indexing[i, aα΅’]] = zero(T) result[cell.indexing[i, bα΅’]] = zero(T) end result end """ inequality_dot(cell::MixedCellTable, ineq::CayleyIndex, Ο„) Compute the dot product of the given inequality with `Ο„`. """ function inequality_dot(cell::MixedCellTable, ineq::CayleyIndex, Ο„) if cell.dot_bound < typemax(Int32) _inequality_dot(cell, ineq, Ο„, Int32) elseif cell.dot_bound < typemax(Int64) _inequality_dot(cell, ineq, Ο„, Int64) else _inequality_dot(cell, ineq, Ο„, Int128) end end @inline function _inequality_dot( cell::MixedCellTable, ineq::CayleyIndex, Ο„, ::Type{T}, ) where {T<:Integer} dot = -cell.volume * T(Ο„[ineq.cayley_index]) @inbounds for i = 1:length(cell.indices) aα΅’, bα΅’ = cell.indices[i] Ο„_aα΅’, Ο„_bα΅’ = Ο„[cell.indexing[i, aα΅’]], Ο„[cell.indexing[i, bα΅’]] Ο„α΅’ = T(Ο„_aα΅’ - Ο„_bα΅’) if !iszero(Ο„α΅’) dot += cell.circuit_table[ineq.cayley_index, i] * Ο„α΅’ end if i == ineq.col_index dot += cell.volume * T(Ο„_bα΅’) end end Int64(dot) end """ first_violated_inequality(mixed_cell::MixedCellTable, Ο„::Vector, ord::TermOrdering) Compute the first violated inequality in the given mixed cell with respect to the given term ordering and the target weight vector `Ο„`. """ function first_violated_inequality( mixed_cell::MixedCellTable, Ο„::Vector, ord::TermOrdering, Ο„_bound::Int32, ) empty = true best_index = first(mixed_cell.indexing) best_dot = zero(Int64) compute_inequality_dots!(mixed_cell, Ο„, Ο„_bound) @inbounds for I in mixed_cell.indexing dot_I = mixed_cell.dot[I.cayley_index] if dot_I < 0 # && is_valid_inquality(mixed_cell, I) # TODO: Can we avoid this check sometimes? Yes if we have lex order if empty || circuit_less(mixed_cell, best_index, dot_I, I, best_dot, ord) empty = false best_index = I best_dot = dot_I end end end empty && return nothing return best_index end """ circuit_less(cell::MixedCellTable, ind₁::CayleyIndex, λ₁, indβ‚‚::CayleyIndex, Ξ»β‚‚, ord::DotOrdering) Decicdes whether `λ₁c[ind₁] β‰Ί Ξ»β‚‚c[indβ‚‚]` where β‰Ί is the ordering given by `ord`. """ @inline function circuit_less( cell::MixedCellTable, ind₁::CayleyIndex, λ₁::Int64, indβ‚‚::CayleyIndex, Ξ»β‚‚::Int64, ord::DotOrdering, ) a = λ₁ * inequality_dot(cell, ind₁, ord.w) b = Ξ»β‚‚ * inequality_dot(cell, indβ‚‚, ord.w) a == b ? circuit_less(cell, ind₁, λ₁, indβ‚‚, Ξ»β‚‚, ord.tiebraker) : a < b end @inline function circuit_less( cell::MixedCellTable, ind₁::CayleyIndex, λ₁::Int64, indβ‚‚::CayleyIndex, Ξ»β‚‚::Int64, ord::LexicographicOrdering, ) @inbounds for i = 1:length(cell.indices) aα΅’, bα΅’ = cell.indices[i] # Optimize for the common case if i β‰  ind₁.config_index && i β‰  indβ‚‚.config_index c₁_aα΅’ = Int64(cell.circuit_table[ind₁.cayley_index, i]) cβ‚‚_aα΅’ = Int64(cell.circuit_table[indβ‚‚.cayley_index, i]) Ξ»c₁, Ξ»cβ‚‚ = λ₁ βŠ™ c₁_aα΅’, Ξ»β‚‚ βŠ™ cβ‚‚_aα΅’ if Ξ»c₁ β‰  Ξ»cβ‚‚ # we have c₁_aα΅’=-c₁_bα΅’ and cβ‚‚_aα΅’ =-cβ‚‚_bα΅’ if aα΅’ < bα΅’ return Ξ»c₁ < Ξ»cβ‚‚ else return Ξ»c₁ > Ξ»cβ‚‚ end else continue end end sorted, n = begin if ind₁.config_index == indβ‚‚.config_index == i swapsort4(aα΅’, bα΅’, ind₁.col_index, indβ‚‚.col_index), 4 elseif ind₁.config_index == i swapsort4(aα΅’, bα΅’, ind₁.col_index), 3 elseif indβ‚‚.config_index == i swapsort4(aα΅’, bα΅’, indβ‚‚.col_index), 3 else # Don't remove this branch there is a compiler # bug which would result in a wrong behaviour swapsort4(aα΅’, bα΅’), 2 end end for k = 1:n j = sorted[k] c₁, cβ‚‚ = inequality_coordinates(cell, ind₁, indβ‚‚, i, j) Ξ»c₁, Ξ»cβ‚‚ = λ₁ βŠ™ Int64(c₁), Ξ»β‚‚ βŠ™ Int64(cβ‚‚) if Ξ»c₁ < Ξ»cβ‚‚ return true elseif Ξ»c₁ > Ξ»cβ‚‚ return false end end end return false end """ swapsort4(a, b) swapsort4(a, b, c) swapsort4(a, b, c, d) Sorting networks to sort 2, 3, and 4 elements. Always returns a tuple with 4 elements, where if necessary the tuple is padded with zeros. """ @inline function swapsort4(a, b) a, b = minmax(a, b) SVector(a, b, zero(a), zero(a)) end @inline function swapsort4(a, b, c) b, c = minmax(b, c) a, c = minmax(a, c) a, b = minmax(a, b) SVector(a, b, c, zero(a)) end @inline function swapsort4(a, b, c, d) a, b = minmax(a, b) c, d = minmax(c, d) a, c = minmax(a, c) b, d = minmax(b, d) b, c = minmax(b, c) SVector(a, b, c, d) end @enum Exchange begin exchange_first exchange_second end """ exchange_column!(cell::MixedCellTable, exchange::Exchange, ineq::CayleyIndex, Ο„_bound::Integer) Exchange either the first or second column (depending on `exchange`) in the configuration defined by `ineq` with the column defined in `ineq`. """ function exchange_column!( cell::MixedCellTable, exchange::Exchange, ineq::CayleyIndex, Ο„_bound, ) rotated_column, rotated_in_ineq = cell.rotated_column, cell.rotated_in_ineq table, table_col_bound = cell.circuit_table, cell.table_col_bound i = ineq.config_index n, m = nconfigurations(cell.indexing), ncolumns(cell.indexing) @inbounds begin d = circuit(cell, exchange, ineq, i) # Read out the inequality associated to the column we want to rotate in for k = 1:n rotated_in_ineq[k] = flipsign(cell.circuit_table[ineq.cayley_index, k], d) end if exchange == exchange_first rotated_in_ineq[i] = rotated_in_ineq[i] βŠ– flipsign(cell.volume, d) end if exchange == exchange_first # equivalent to # for ind in cell.indexing # rotated_column[ind.cayley_index] = -circuit_first(ind, i) # end for k = 1:m rotated_column[k] = -cell.circuit_table[k, i] end else # exchange == exchange_second # equivalent to # for ind in cell.indexing # rotated_column[ind.cayley_index] = -circuit_second(ind, i) # end for k = 1:m rotated_column[k] = cell.circuit_table[k, i] end for k in configuration(cell.indexing, i) rotated_column[k] = rotated_column[k] βŠ– cell.volume end end table_update!(cell, d, i) # the violated ineq is now an ineq at the old index if exchange == exchange_first rotated_out = CayleyIndex(i, first(cell.indices[i]), ineq.offset) else rotated_out = CayleyIndex(i, last(cell.indices[i]), ineq.offset) end for k = 1:n table[rotated_out.cayley_index, k] = -flipsign(rotated_in_ineq[k], d) table_col_bound[k] = max(table_col_bound[k], abs(rotated_in_ineq[k])) end if exchange == exchange_first v = table[rotated_out.cayley_index, i] βŠ• d table[rotated_out.cayley_index, i] = v table_col_bound[i] = max(table_col_bound[i], abs(v)) end cell.volume = abs(d) cell.indices[i] = begin if exchange == exchange_first (ineq.col_index, last(cell.indices[i])) else # exchange == exchange_second (first(cell.indices[i]), ineq.col_index) end end end # end inbounds # update dot bound since table_col_bound changed compute_dot_bound!(cell, Ο„_bound) cell end function exchange_column( cell::MixedCellTable, exchange::Exchange, ineq::CayleyIndex, Ο„_bound, ) exchange_column!(copy(cell), exchange, ineq, Ο„_bound) end function reverse_index(ineq::CayleyIndex, cell::MixedCellTable, exchange::Exchange) if exchange == exchange_first j = first(cell.indices[ineq.config_index]) else # exchange == exchange_second j = last(cell.indices[ineq.config_index]) end CayleyIndex(ineq.config_index, j, ineq.offset) end Base.@propagate_inbounds function circuit( cell::MixedCellTable, exchange::Exchange, ineq::CayleyIndex, i, ) if exchange == exchange_first circuit_first(cell, ineq, i) else # exchange == exchange_second circuit_second(cell, ineq, i) end end @inline function table_update!(cell::MixedCellTable, d, rc_index::Integer) rotated_column, rotated_in_ineq = cell.rotated_column, cell.rotated_in_ineq table, table_col_bound = cell.circuit_table, cell.table_col_bound d_bound = UInt64(abs(d)) rc_bound = UInt64(table_col_bound[rc_index]) m, n = size(table) vol⁻¹ = MuliplicativeInverse(flipsign(cell.volume, d)) @inbounds for i in Base.OneTo(n) rα΅’ = rotated_in_ineq[i] # we need to manual hoist this out of the loop # computation in UInt64 -> no overflow possible upper_bound = d_bound * table_col_bound[i] + abs(rα΅’) * rc_bound # Can compute everything in Int32 since we divide early if upper_bound < typemax(Int32) * UInt64(vol⁻¹.p) min_el = max_el = zero(Int32) rΜ‚α΅’ = rα΅’ * vol⁻¹.p_inv dΜ‚ = d * vol⁻¹.p_inv # avoid shift if needs_shift(vol⁻¹) for k in Base.OneTo(m) v = shift!(dΜ‚ * table[k, i] + rΜ‚α΅’ * rotated_column[k], vol⁻¹) table[k, i] = v min_el, max_el = min(min_el, v), max(max_el, v) end else for k in Base.OneTo(m) v = (dΜ‚ * table[k, i] + rΜ‚α΅’ * rotated_column[k]) table[k, i] = v min_el, max_el = min(min_el, v), max(max_el, v) end end table_col_bound[i] = max(-min_el, max_el) else min_el_64 = max_el_64 = zero(Int64) vol⁻¹_64 = MuliplicativeInverse(Int64(flipsign(cell.volume, d))) rΜ‚α΅’_64 = Int64(rα΅’) * vol⁻¹_64.p_inv dΜ‚_64 = Int64(d) * vol⁻¹_64.p_inv # avoid shift if needs_shift(vol⁻¹) for k in Base.OneTo(m) v = shift!( dΜ‚_64 * Int64(table[k, i]) + rΜ‚α΅’_64 * Int64(rotated_column[k]), vol⁻¹_64, ) table[k, i] = Base.unsafe_trunc(Int32, v) # unsafe version to not loose vectorization min_el_64, max_el_64 = min(min_el_64, v), max(max_el_64, v) end else for k in Base.OneTo(m) v = (dΜ‚_64 * Int64(table[k, i]) + rΜ‚α΅’_64 * Int64(rotated_column[k])) table[k, i] = Base.unsafe_trunc(Int32, v) # unsafe version to not loose vectorization min_el_64, max_el_64 = min(min_el_64, v), max(max_el_64, v) end end # this throws if an overflow happened table_col_bound[i] = Int32(max(-min_el_64, max_el_64)) end end table end ############## # TRAVERSERS # ############## abstract type AbstractTraverser end ####################### # Mixed Cell Table Traverser ####################### @enum MixedCellTableUpdates begin update_first update_second update_first_and_second no_update end """ cell_updates(cell::MixedCellTable, violated_ineq::CayleyIndex) Compute the updates to the given mixed cell for the first violated inequality. This doesn't update anything yet but gives a plan what needs to be changed. This follows the reverse search rule outlined in section 6.2. """ function cell_updates(cell::MixedCellTable, index::CayleyIndex) i = index.config_index @inbounds aα΅’, bα΅’ = cell.indices[i] Ξ³α΅’ = index.col_index @inbounds c_aα΅’ = inequality_coordinate(cell, index, index.config_index, aα΅’) @inbounds c_bα΅’ = inequality_coordinate(cell, index, index.config_index, bα΅’) @inbounds c_Ξ³α΅’ = inequality_coordinate(cell, index, index.config_index, Ξ³α΅’) if c_aα΅’ > 0 && c_bα΅’ > 0 update_first_and_second elseif c_aα΅’ > 0 && c_bα΅’ == 0 update_first elseif c_aα΅’ == 0 && c_bα΅’ > 0 update_second elseif c_aα΅’ > 0 && c_bα΅’ < 0 && bα΅’ < Ξ³α΅’ update_first elseif c_aα΅’ < 0 && c_bα΅’ > 0 && aα΅’ < Ξ³α΅’ update_second else no_update end end struct SearchTreeVertex index::CayleyIndex reverse_index::CayleyIndex exchange::Exchange update::MixedCellTableUpdates back::Bool end function SearchTreeVertex( cell::MixedCellTable, index::CayleyIndex, exchange::Exchange, update, back = false, ) SearchTreeVertex(index, reverse_index(index, cell, exchange), exchange, update, back) end function Base.show(io::IO, v::SearchTreeVertex) print( io, "SearchTreeVertex(index=$(v.index), reverse_index=$(v.reverse_index), $(v.exchange), $(v.update), back=$(v.back))", ) end function back(v::SearchTreeVertex) SearchTreeVertex(v.index, v.reverse_index, v.exchange, v.update, true) end function exchange_column!(cell::MixedCellTable, v::SearchTreeVertex, Ο„_bound) exchange_column!(cell, v.exchange, v.index, Ο„_bound) end function reverse_exchange_column!(cell::MixedCellTable, v::SearchTreeVertex, Ο„_bound) exchange_column!(cell, v.exchange, v.reverse_index, Ο„_bound) end mutable struct MixedCellTableTraverser{Ord<:TermOrdering} <: AbstractTraverser mixed_cell::MixedCellTable cayley::Matrix{Int32} target::Vector{Int32} target_bound::Int32 ord::Ord search_tree::Vector{SearchTreeVertex} started::Bool end function MixedCellTableTraverser( mixed_cell::MixedCellTable, cayley::Matrix, target, ord = LexicographicOrdering(), ) Ο„ = convert(Vector{Int32}, target) Ο„_bound = abs(maximum(abs, Ο„)) A = convert(Matrix{Int32}, cayley) MixedCellTableTraverser(mixed_cell, A, Ο„, Ο„_bound, ord, SearchTreeVertex[], false) end function add_vertex!(search_tree, cell, ineq) updates = cell_updates(cell, ineq) if updates == update_first_and_second push!(search_tree, SearchTreeVertex(cell, ineq, exchange_first, updates)) elseif updates == update_first push!(search_tree, SearchTreeVertex(cell, ineq, exchange_first, updates)) elseif updates == update_second push!(search_tree, SearchTreeVertex(cell, ineq, exchange_second, updates)) else # no_update return false end true end function next_cell!(traverser::MixedCellTableTraverser) cell, search_tree = traverser.mixed_cell, traverser.search_tree Ο„, Ο„_bound, ord = traverser.target, traverser.target_bound, traverser.ord if !traverser.started traverser.started = true ineq = first_violated_inequality(cell, Ο„, ord, Ο„_bound) # Handle case that we have nothing to do if ineq === nothing return false else add_vertex!(search_tree, cell, ineq) end end while !isempty(search_tree) v = search_tree[end] if v.back reverse_exchange_column!(cell, pop!(search_tree), Ο„_bound) if v.update == update_first_and_second && v.exchange == exchange_first push!( search_tree, SearchTreeVertex(cell, v.index, exchange_second, v.update), ) elseif !isempty(search_tree) search_tree[end] = back(search_tree[end]) end else exchange_column!(cell, v, Ο„_bound) ineq = first_violated_inequality(cell, Ο„, ord, Ο„_bound) if ineq === nothing search_tree[end] = back(search_tree[end]) return false else vertex_added = add_vertex!(search_tree, cell, ineq) if !vertex_added search_tree[end] = back(search_tree[end]) end end end end traverser.started = false true end mixed_cell(T::MixedCellTableTraverser) = T.mixed_cell ######################### # Total Degree Homotopy # ######################### struct TotalDegreeTraverser <: AbstractTraverser traverser::MixedCellTableTraverser{LexicographicOrdering} end function TotalDegreeTraverser(As::Vector{Matrix{Int32}}) n = size(As[1], 1) L = [zeros(eltype(As[1]), n) LinearAlgebra.I] # construct padded cayley matrix A = cayley(map(Aα΅’ -> [degree(Aα΅’) * L Aα΅’], As)) # Ο„ is the vector with an entry of each column in A having entries # indexed by one of the additional columns equal to -1 and 0 otherwise Ο„ = zeros(eltype(A), size(A, 2)) j = 1 for (i, Aα΅’) in enumerate(As) Ο„[j:j+n] .= -one(eltype(A)) j += n + size(Aα΅’, 2) + 1 end # We start with only one mixed cell # In the paper it's stated to use [(i, i+1) for i in 1:n] # But this seems to be wrong. # Instead if I use the same starting mixed cell as for the regeneration homotopy, # [(i, i+1) for i in 1:n] # things seem to work. cell_indices = [(i, i + 1) for i = 1:n] indexing = CayleyIndexing(size.(As, 2) .+ (n + 1)) mixed_cell = MixedCellTable(cell_indices, A, indexing) compute_bounds!(mixed_cell, 1) traverser = MixedCellTableTraverser(mixed_cell, A, Ο„, LexicographicOrdering()) TotalDegreeTraverser(traverser) end function next_cell!(T::TotalDegreeTraverser) complete = next_cell!(T.traverser) cell = mixed_cell(T.traverser) n = length(cell.indices) while !complete # ignore all cells where one of the artifical columns is part valid_cell = true for (aα΅’, bα΅’) in cell.indices if (aα΅’ ≀ n + 1 || bα΅’ ≀ n + 1) valid_cell = false break end end if !valid_cell complete = next_cell!(T.traverser) continue end return false end true end function degree(A::Matrix) d = zero(eltype(A)) for j = 1:size(A, 2) c = A[1, j] for i = 2:size(A, 1) c += A[i, j] end d = max(d, c) end d end mixed_cell(T::TotalDegreeTraverser) = mixed_cell(T.traverser) ########################## # Regeneration Traverser # ########################## mutable struct RegenerationTraverser <: AbstractTraverser traversers::Vector{MixedCellTableTraverser{LexicographicOrdering}} stage::Int end function RegenerationTraverser(As) n = size(As[1], 1) L = [zeros(eltype(As[1]), n) LinearAlgebra.I] traversers = map(1:n) do k # construct padded cayley matrix systems = As[1:(k-1)] push!(systems, [degree(As[k]) * L As[k]]) for i = k+1:n push!(systems, L) end A = cayley(systems) # Ο„ is the vector with an entry of each column in A having entries # indexed by one of the additional columns equal to -1 and 0 otherwise Ο„ = zeros(eltype(A), size(A, 2)) j = 1 for (i, Aα΅’) in enumerate(As) if i == k Ο„[j:j+n] .= -one(eltype(A)) break else# i < k j += size(Aα΅’, 2) end end # this is only a valid mixed cell of the first mixed cell cell_indices = [(i, i + 1) for i = 1:n] indexing = CayleyIndexing(size.(systems, 2)) mixed_cell = MixedCellTable( cell_indices, A, indexing; # only need to fill circuit table for first fill_circuit_table = (k == 1), ) if k == 1 compute_bounds!(mixed_cell, 1) end MixedCellTableTraverser(mixed_cell, A, Ο„) end RegenerationTraverser(traversers, 1) end function next_cell!(T::RegenerationTraverser) @inbounds while T.stage > 0 complete = next_cell!(T.traversers[T.stage]) if complete T.stage -= 1 continue end cell = mixed_cell(T.traversers[T.stage]) n = length(cell.indices) aα΅’, bα΅’ = cell.indices[T.stage] (aα΅’ > n + 1 && bα΅’ > n + 1) || continue # If last stage then we emit the cell if T.stage == n return false end # Move to the next stage regeneration_stage_carry_over!( T.traversers[T.stage+1], T.traversers[T.stage], T.stage, ) T.stage += 1 end # reset stage T.stage = 1 true end function regeneration_stage_carry_over!( T_B::MixedCellTableTraverser, T_A::MixedCellTableTraverser, stage::Integer, ) A = T_A.mixed_cell B = T_B.mixed_cell # A is a mixed cell at stage i # B will be the mixed cell at stage i + 1 # A has a linear polynomial (L), i.e., n + 1 columns in the current configuration # B has the scaled simplex (d * L) + config matrix n = nconfigurations(A.indexing) @inbounds d = T_B.cayley[1, offset(B.indexing, stage + 1)+2] B.indices .= A.indices shift_indices!(B.indices, n + 1, stage) B.volume = A.volume βŠ™ d # The circuit tables are nearly identical, A just has for each configuration n+1 rows too much. @inbounds for config = 1:n B_off = offset(B.indexing, config) A_off = offset(A.indexing, config) config_cols = ncolumns(B.indexing, config) if config == stage + 1 # We need to compute the circuits for the new config matrix part # We can compute them as a weighted sum of old circuits # We can carry over the scaled circuits for the first part for k = 1:n if k == config # we have to multiply by d since we scale the volume for j = 1:n+1 B.circuit_table[B_off+j, k] = A.circuit_table[A_off+j, k] end else # we have to multiply by d since we scale the volume for j = 1:n+1 B.circuit_table[B_off+j, k] = A.circuit_table[A_off+j, k] βŠ™ d end end end # Now we need to compute the new circuits # We can compute them by using hte fact that the first n+1 columns # are an affine basis of R^n. aα΅’, bα΅’ = B.indices[stage] for j = n+2:config_cols for k = 1:n c_0k = Int64(B.circuit_table[B_off+1, k]) # rest will we computed in Int64 b_jk = d * c_0k for i = 1:n b_jk += T_B.cayley[i, B_off+j] * (B.circuit_table[B_off + i + 1, k] - c_0k) end B.circuit_table[B_off+j, k] = b_jk # converts back to Int32 end end for k = 1:n for j = 1:n+1 # we have to multiply by d sine we change the system from L to (d * L) B.circuit_table[B_off+j, k] = B.circuit_table[B_off+j, k] * d end end else # We can simply carry over things if config == stage A_off += n + 1 end for k = 1:n if k == stage + 1 for j = 1:config_cols B.circuit_table[B_off+j, k] = A.circuit_table[A_off+j, k] end elseif A.table_col_bound[k] * Int64(d) < typemax(Int32) # no overflow for j = 1:config_cols B.circuit_table[B_off+j, k] = A.circuit_table[A_off+j, k] * d end else # possible overflow for j = 1:config_cols B.circuit_table[B_off+j, k] = A.circuit_table[A_off+j, k] βŠ™ d end end end end end compute_bounds!(B, T_B.target_bound) nothing end function compute_table_col_bound!(M::MixedCellTable) m, n = size(M.circuit_table) @inbounds for j = 1:n max_el = min_el = zero(eltype(M.circuit_table)) for i = 1:m v = M.circuit_table[i, j] max_el = max(max_el, v) min_el = max(min_el, v) end M.table_col_bound[j] = max(-min_el, max_el) end M end function compute_dot_bound!(M::MixedCellTable, target_bound) n = Int128(nconfigurations(M.indexing)) M.dot_bound = Int128(target_bound) * (abs(M.volume) + n * maximum(M.table_col_bound)) M end function compute_bounds!(M::MixedCellTable, target_bound) compute_table_col_bound!(M) compute_dot_bound!(M, target_bound) end mixed_cell(T::RegenerationTraverser) = mixed_cell(T.traversers[end]) ################ # Mixed Volume # ################ mutable struct MixedVolumeCounter{T} volume::T end MixedVolumeCounter() = MixedVolumeCounter(0) function (MVC::MixedVolumeCounter)(cell) MVC.volume += cell.volume end Base.show(io::IO, MVC::MixedVolumeCounter) = print(io, "MixedVolume: $(MVC.volume)") traverser(Aα΅’::Matrix...; kwargs...) = traverser(Aα΅’; kwargs...) function traverser(As::Vector{<:Matrix}; algorithm = :regeneration) length(As) == size( As[1], 1, ) || throw(ArgumentError("Number of supports and number of variables doesn't match.")) if algorithm == :regeneration RegenerationTraverser(As) elseif algorithm == :total_degree TotalDegreeTraverser(As) else throw(ArgumentError("Unknown `algorithm=$algorithm`. Possible choices are `:regeneration` and `:total_degree`.")) end end traverser(f::MP.AbstractPolynomialLike...; kwargs...) = traverser(f; kwargs...) function traverser(F::Vector{<:MP.AbstractPolynomialLike}; kwargs...) traverser(support(F); kwargs...) end """ support(F::Vector{<:MP.AbstractPolynomialLike}, vars=MP.variables(F), T::Type{<:Integer}=Int32) Compute the support of the polynomial system `F` with the given variables `vars`. The returned matrices have element type `T`. """ function support( F::Vector{<:MP.AbstractPolynomialLike}, vars = MP.variables(F), T::Type{<:Integer} = Int32, ) map(f -> [convert(T, MP.degree(t, v)) for v in vars, t in MP.terms(f)], F) end """ mixed_volume(F::Vector{<:MP.AbstractPolynomialLike}; show_progress=true, algorithm=:regeneration) mixed_volume(𝑨::Vector{<:Matrix}; show_progress=true, algorithm=:regeneration) Compute the mixed volume of the given polynomial system `F` resp. represented by the support `𝑨`. There are two possible values for `algorithm`: * `:total_degree`: Use the total degree homotopy algorithm described in Section 7.1 * `:regeneration`: Use the tropical regeneration algorithm described in Section 7.2 """ function mixed_volume(args...; show_progress = true, kwargs...) try T = traverser(args...; kwargs...) mv = 0 complete = next_cell!(T) if show_progress p = ProgressMeter.ProgressUnknown(desc="Mixed volume: ") end while !complete mv += mixed_cell(T).volume show_progress && ProgressMeter.update!(p, mv) complete = next_cell!(T) end show_progress && ProgressMeter.finish!(p) mv catch e if isa(e, InexactError) throw(OverflowError("Mixed volume cannot since an integer overflow occured.")) else rethrow(e) end end end """ MixedCell Data structure representing a (fine) mixed cell. ## Fields * `indices::Vector{NTuple{2, Int}}`: The columns of the support creating the mixed cell. * `normal::Vector{Float64}`: The inner normal vector of the lifted mixed cell. * `Ξ²::Vector{Float64}`: The vector ``(\\min_{a \\in A_i} ⟨a,γ⟩)_i`` where ``Ξ³`` is `normal`. * `volume::Int`: The volume of the mixed cell. """ mutable struct MixedCell indices::Vector{NTuple{2,Int}} normal::Vector{Float64} Ξ²::Vector{Float64} is_fine::Bool volume::Int end function MixedCell(n::Int, ::Type{T} = Int32) where {T} indices = [(1, 1) for _ = 1:n] normal = zeros(Float64, n) Ξ² = zeros(Float64, n) is_fine = false MixedCell(indices, normal, Ξ², is_fine, 0) end Base.copy(C::MixedCell) = MixedCell(copy(C.indices), copy(C.normal), copy(C.Ξ²), copy(C.is_fine), C.volume) function Base.show(io::IO, C::MixedCell) println(io, "MixedCell:") println(io, " β€’ volume β†’ ", C.volume) println(io, " β€’ indices β†’ ", C.indices) println(io, " β€’ normal β†’ ", C.normal) println(io, " β€’ is_fine β†’ ", C.is_fine) print(io, " β€’ Ξ² β†’ ", C.Ξ²) end Base.show(io::IO, ::MIME"application/prs.juno.inline", C::MixedCell) = C """ volume(C::MixedCell) Returns the volume of the mixed cell `C`. """ volume(C::MixedCell) = C.volume """ indices(C::MixedCell) Returns the indices of the support creating the mixed cell. """ indices(C::MixedCell) = C.indices """ normal(C::MixedCell) The inner normal vector of the lifted mixed cell. """ normal(C::MixedCell) = C.normal """ is_fine(cell::MixedCell) Checks whether for a given mixed cell `cell` whether this is a fine mixed cell. """ is_fine(cell::MixedCell) = cell.is_fine @deprecate(is_fully_mixed_cell(cell::MixedCell, support, lifting), is_fine(cell)) """ MixedCellIterator(support:Vector{<:Matrix}, lifting::Vector{<:Vector{<:Integer}}) Returns an iterator over all (fine) mixed cells of the given `support` induced by the given `lifting`. If the lifting is not sufficiently generic the mixed cells induced by a sligtly perturbated lifting are computed. The iterator returns in each iteration a [`MixedCell`](@ref). Note that due to efficiency reason the same object is returned in each iteration, i.e., if you want to store the computed cells you need to make a `copy`. Alternatively you can also use [`mixed_cells`](@ref) to compute all mixed cells. """ struct MixedCellIterator{T<:AbstractTraverser} start_traverser::T target_traverser::MixedCellTableTraverser{LexicographicOrdering} support::Vector{Matrix{Int32}} lifting::Vector{Vector{Int32}} # cache to not allocate during return cell::MixedCell # cache for cell computation D::Matrix{Float64} b::Vector{Float64} end function MixedCellIterator( support::Vector{<:Matrix{<:Integer}}, lifting::Vector{<:Vector{<:Integer}}; kwargs..., ) MixedCellIterator( convert(Vector{Matrix{Int32}}, support), convert(Vector{Vector{Int32}}, lifting); kwargs..., ) end function MixedCellIterator( support::Vector{Matrix{Int32}}, lifting::Vector{Vector{Int32}}; kwargs..., ) # We need to chain two traversers # 1) We compute a mixed subdivision w.r.t to the lexicographic ordering # 2) Each cell we then track to the mixed cells wrt to the given lifting start_traverser = traverser(support; kwargs...) # intialize target mixed cell with some dummy data indices = map(_ -> (1, 2), support) indexing = CayleyIndexing(size.(support, 2)) A = cayley(support) target_cell = MixedCellTable(indices, A, indexing; fill_circuit_table = false) target_lifting = copy(lifting[1]) for i = 2:length(lifting) append!(target_lifting, lifting[i]) end # set traverser to -target lifting since we compute internally in the MAX setting # but expect input in MIN setting target_traverser = MixedCellTableTraverser(target_cell, A, -target_lifting) # initial dummy cell cell = MixedCell(length(support)) # cache n = length(support) D = zeros(n, n) b = zeros(n) MixedCellIterator(start_traverser, target_traverser, support, lifting, cell, D, b) end function Base.show(io::IO, iter::MixedCellIterator) print(io, typeof(iter), "") end Base.show(io::IO, ::MIME"application/prs.juno.inline", x::MixedCellIterator) = x Base.IteratorSize(::Type{<:MixedCellIterator}) = Base.SizeUnknown() Base.IteratorEltype(::Type{<:MixedCellIterator}) = Base.HasEltype() Base.eltype(::MixedCellIterator) = Cell @inline function Base.iterate(iter::MixedCellIterator, using_start_traverser = true) if using_start_traverser complete = next_cell!(iter.start_traverser) else complete = next_cell!(iter.target_traverser) end while true if complete && using_start_traverser break elseif complete using_start_traverser = true complete = next_cell!(iter.start_traverser) continue end if !using_start_traverser fill_cell!(iter, mixed_cell(iter.target_traverser)) return iter.cell, false end # Move to the target traverser carry_over!( mixed_cell(iter.target_traverser), mixed_cell(iter.start_traverser), iter.start_traverser, iter.target_traverser.target_bound, ) using_start_traverser = false complete = next_cell!(iter.target_traverser) end nothing end """ carry_over!(target_cell::MixedCellTable, start_cell::MixedCellTable, T::AbstractTraverser) We carry over the state (including circuit table) of a start cell to the cell corresponding to the final homotopy. This assumes that the """ function carry_over!(B::MixedCellTable, A::MixedCellTable, ::TotalDegreeTraverser, Ο„_bound) n = nconfigurations(B.indexing) B.indices .= A.indices shift_indices!(indices, n + 1) B.volume = A.volume # The circuit tables are nearly identical, # A just has for each configuration n+1 rows too much. @inbounds for i = 1:n off = offset(B.indexing, i) A_off = offset(A.indexing, i) + n + 1 for j = 1:ncolumns(B.indexing, i), k = 1:n B.circuit_table[off+j, k] = A.circuit_table[A_off+j, k] end end compute_bounds!(B, Ο„_bound) B end function carry_over!(B::MixedCellTable, A::MixedCellTable, ::RegenerationTraverser, Ο„_bound) n = nconfigurations(B.indexing) B.indices .= A.indices shift_indices!(B.indices, n + 1, n) B.volume = A.volume # The circuit tables are nearly identical, # A just has for the last configuration n+1 rows too much. for i = 1:n off = offset(B.indexing, i) A_off = offset(A.indexing, i) if i == n A_off += n + 1 end for j = 1:ncolumns(B.indexing, i), k = 1:n B.circuit_table[off+j, k] = A.circuit_table[A_off+j, k] end end compute_bounds!(B, Ο„_bound) B end function fill_cell!(iter::MixedCellIterator, mixed_cell_table::MixedCellTable) cell = iter.cell n = length(mixed_cell_table.indices) for i = 1:n (aα΅’, bα΅’) = mixed_cell_table.indices[i] iter.cell.indices[i] = (Int(aα΅’), Int(bα΅’)) end cell.volume = mixed_cell_table.volume compute_normal!(cell, iter) # compute smallest dot product of the normal and the lifted support Ξ³ = cell.normal for (i, Aα΅’) in enumerate(iter.support) aα΅’ = first(mixed_cell_table.indices[i]) Ξ²α΅’ = Float64(iter.lifting[i][aα΅’]) for j = 1:n Ξ²α΅’ += Ξ³[j] * Aα΅’[j, aα΅’] end iter.cell.Ξ²[i] = Ξ²α΅’ end cell.is_fine = is_fine(cell, iter.support, iter.lifting) iter.cell end function compute_normal!(cell::MixedCell, iter::MixedCellIterator) n = length(iter.support) for i = 1:n aα΅’, bα΅’ = cell.indices[i] for j = 1:n iter.D[i, j] = iter.support[i][j, aα΅’] - iter.support[i][j, bα΅’] end iter.b[i] = (iter.lifting[i][bα΅’] - iter.lifting[i][aα΅’]) end LinearAlgebra.ldiv!(LinearAlgebra.generic_lufact!(iter.D), iter.b) cell.normal .= iter.b end function is_fine(cell::MixedCell, support, lifting) n = length(support) for i = 1:n Aα΅’ = support[i] wα΅’ = lifting[i] for j = 1:length(wα΅’) Ξ²β±Ό = Float64(wα΅’[j]) for k = 1:n Ξ²β±Ό += Aα΅’[k, j] * cell.normal[k] end Ξ” = abs(cell.Ξ²[i] - Ξ²β±Ό) if (Ξ” < 1e-12 || isapprox(cell.Ξ²[i], Ξ²β±Ό; rtol = 1e-7)) && !(j == cell.indices[i][1] || j == cell.indices[i][2]) return false end end end true end """ mixed_cells(support::Vector{<:Matrix}, lifting::Vector{<:Vector}) Compute all (fine) mixed cells of the given `support` induced by the given `lifting`. If the lifting is not sufficiently generic the mixed cells induced by a sligtly perturbated lifting are computed. The mixed cells are stored as a [`MixedCell`](@ref). """ function mixed_cells(support::Vector{<:Matrix}, lifting::Vector{<:Vector}) try return [copy(c) for c in MixedCellIterator(support, lifting)] catch e if isa(e, InexactError) throw(OverflowError("Mixed cells cannot be computed for this lift since an integer overflow occured.")) else rethrow(e) end end end @inline function shift_indices!(ind::Vector{<:NTuple{2,<:Integer}}, m) for i = 1:n shift_indices!(ind, m, i) end end @inline function shift_indices!(ind::Vector{<:NTuple{2,<:Integer}}, m, i) @inbounds aα΅’, bα΅’ = ind[i] @inbounds ind[i] = (aα΅’ - m, bα΅’ - m) ind end """ fine_mixed_cells(f::Vector{<:MP.AbstractPolynomialLike}; show_progress=true, max_tries = 10) fine_mixed_cells(support::Vector{<:Matrix}; show_progress=true, max_tries = 10) Compute all (fine) mixed cells of the given `support` induced by a generic lifting. This guarantees that all induced initial forms are binomials. If the chosen lifting is not generic, then the algorithm is restarted. This happens at most `max_tries` times many. Returns a `Vector` of all mixed cells and the corresponding lifting or `nothing` if the algorithm wasn't able to compute fine mixed cells. This can happen due to some current technical limitations. """ function fine_mixed_cells( f::Vector{<:MP.AbstractPolynomialLike}, lifting_sampler = uniform_lifting_sampler; kwargs... ) fine_mixed_cells(support(f), lifting_sampler; kwargs...) end function fine_mixed_cells( support::Vector{<:Matrix}, lifting_sampler = uniform_lifting_sampler; show_progress = true, max_tries = 10 ) if show_progress p = ProgressMeter.ProgressUnknown(dt=0.25, desc="Computing mixed cells...") else p = nothing end try ntries = 0 lifting = nothing while ntries < max_tries ntries += 1 # Try two versions to make a non-breaking api change try lifting = map(A -> lifting_sampler(size(A, 2), ntries)::Vector{Int32}, support) catch # deprecated lifting = map(A -> lifting_sampler(size(A, 2))::Vector{Int32}, support) end iter = MixedCellIterator(support, lifting) all_valid = true cells = MixedCell[] ncells = 0 mv = 0 for (k, cell) in enumerate(iter) if !is_fine(cell) all_valid = false break end ncells += 1 mv += cell.volume push!(cells, copy(cell)) if p !== nothing ProgressMeter.update!(p, ncells; showvalues = ((:mixed_volume, mv),)) end end if all_valid p !== nothing && ProgressMeter.finish!( p; showvalues = ((:mixed_volume, mv),), ) return cells, lifting end end return nothing catch e if isa(e, InexactError) || isa(e, LinearAlgebra.SingularException) return nothing else rethrow(e) end end end uniform_lifting_sampler(nterms, attempt = 1) = rand(Int32(-2^(10+attempt)):Int32(2^(10+attempt)), nterms) function gaussian_lifting_sampler(nterms, attempt = 1) round.(Int32, randn(nterms) * 2^(11+attempt)) end end # module
MixedSubdivisions
https://github.com/saschatimme/MixedSubdivisions.jl.git
[ "MIT" ]
1.1.5
8c6bb3edae13e0a3c5479baf23658384ac3576bd
code
6120
using MixedSubdivisions const MS = MixedSubdivisions import MultivariatePolynomials const MP = MultivariatePolynomials import PolynomialTestSystems: equations, cyclic, ipp2, cyclooctane using Test @testset "MixedSubdivisions" begin @testset "Basic" begin A₁ = [0 0 1 1; 0 2 0 1] Aβ‚‚ = [0 0 1 2; 0 1 1 0] A = MS.cayley(A₁, Aβ‚‚) @test A == [ 0 0 1 1 0 0 1 2 0 2 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 ] @test_throws ErrorException MS.cayley([1 0; 0 1], [1 0; 0 0; 0 2]) w₁ = [0, 0, 0, -2] wβ‚‚ = [0, -3, -4, -8] w = [w₁; wβ‚‚] v₁ = [0, 0, 0, -1] vβ‚‚ = copy(wβ‚‚) v = [v₁; vβ‚‚] mixed_cell_indices = [(2, 3), (1, 3)] indexing = MS.CayleyIndexing(size.((A₁, Aβ‚‚), 2)) ord = MS.DotOrdering(Int32.(w)) cell = MS.MixedCellTable(mixed_cell_indices, A, indexing) @test cell.volume == 3 @test cell.circuit_table == [1 2; 3 0; 0 0; 1 -1; 0 3; 1 2; 0 0; -2 -1] ineq = MS.first_violated_inequality(cell, v, ord, typemax(Int32)) @test ineq.config_index == 1 @test ineq.col_index == 4 @test MS.exchange_column(cell, MS.exchange_first, ineq, 8) == MS.MixedCellTable( [(4, 3), (1, 3)], A, indexing ) @test MS.exchange_column(cell, MS.exchange_second, ineq, 8) == MS.MixedCellTable( [(2, 4), (1, 3)], A, indexing, ) ind_back = MS.reverse_index(ineq, cell, MS.exchange_second) cell2 = MS.exchange_column(cell, MS.exchange_second, ineq, 8) @test cell2.volume == 2 @test cell == MS.exchange_column(cell2, MS.exchange_second, ind_back, 8) ind_back = MS.reverse_index(ineq, cell, MS.exchange_first) cell2 = MS.exchange_column(cell, MS.exchange_first, ineq, 8) @test cell2.volume == 1 @test cell == MS.exchange_column(cell2, MS.exchange_first, ind_back, 8) end @testset "Mixed Volume" begin @test mixed_volume(equations(cyclic(5))) == 70 @test mixed_volume(equations(cyclic(7))) == 924 @test mixed_volume(equations(cyclic(10))) == 35940 @test mixed_volume(equations(cyclic(11))) == 184756 @test mixed_volume(equations(ipp2())) == 288 @test mixed_volume(equations(cyclic(5)), algorithm = :total_degree) == 70 @test mixed_volume(equations(ipp2()), algorithm = :total_degree) == 288 end @testset "Mixed Cells" begin A₁ = [0 0 1 1; 0 2 0 1] Aβ‚‚ = [0 0 1 2; 0 1 1 0] A = [A₁, Aβ‚‚] w₁ = [0, 0, 0, 2] wβ‚‚ = [0, 3, 4, 8] w = [w₁, wβ‚‚] v₁ = [0, 0, 0, 1] vβ‚‚ = copy(wβ‚‚) v = [v₁, vβ‚‚] cells_v = mixed_cells(A, v) @test length(cells_v) == 3 @test sum(volume, cells_v) == 4 @test sort(volume.(cells_v)) == [1, 1, 2] @test all(cells_v) do c all(sort.(map(A_i -> A_i' * normal(c), A) .+ v)) do r isapprox(r[1], r[2], atol = 1e-12) end end cells_w = mixed_cells(A, w) @test length(cells_w) == 2 @test sum(volume, cells_w) == 4 @test sort(volume.(cells_w)) == [1, 3] @test all(cells_w) do c all(sort.(map(A_i -> A_i' * normal(c), A) .+ w)) do r isapprox(r[1], r[2], atol = 1e-12) end end end @testset "Fine mixed cells" begin f = equations(cyclic(7)) cells, lift = fine_mixed_cells(f) @test sum(c -> c.volume, cells) == 924 @test lift isa Vector{Vector{Int32}} @test isnothing(fine_mixed_cells(f, max_tries = 0)) end @testset "Overflow error messages" begin f = equations(cyclooctane()) @test_throws ArgumentError MS.mixed_volume(f) F = [f; randn(2, 18) * [MP.variables(f); 1]] A = support(F) lifting = map(Ai -> rand(-Int32(2^20):Int32(2^20), size(Ai, 2)), A) cells = mixed_cells(A, lifting) @test_deprecated is_fully_mixed_cell(first(cells), A, lifting) @test all(is_fine, cells) @test sum(volume, cells) == 32768 @test sum(volume, first(fine_mixed_cells(F))) == 32768 end @testset "Bugfix#1" begin lift = Array{Int32,1}[ [-312, 347, 823, 901], [-1021, -296, -421, -491, -9, 168, -905, -79, -610, -898], [489, 385, -540, 612, 792, -986, 697, 695, 842, -731], [-126, 677, -699, 96, -270, 186, 263, 75, -765, 68], [-230, 173, 142, 531, 218, 668, -305, 177, -710, -94], [283, -967, 530, 226, -452, -557, 501, -828], [-656, -75, -709, -588], [407, 920, 330, 265], [157, 2, 524, 417, -449, -897, -19, -603, -209, 257], [-683, 763, 1023, 983, -863, -727, 211, -466, 998, -644], [-916, 661, 401, 808, 979, -793, -815, 155, -1018, -409], [1015, -274, -71, 955, 100, 433, 249, -552], [-523, -225, 997, -784, -884], [457, -579, 749], [624, -74, -563, 861, 86], [ -428, 75, 274, 283, 691, -782, 513, -915, -189, 279, 793, 624, -741, -698, -94, 945, -58, -164, ], [ 533, -156, -488, 539, 718, 724, -32, -845, 441, -273, 137, 511, -1005, -856, -788, 824, 279, -12, ], ] f = equations(cyclooctane()) F = [f; randn(2, 18) * [MP.variables(f); 1]] A = support(F) cells = mixed_cells(A, lift) @test !isempty(cells) sum(volume, cells) == 32768 end end
MixedSubdivisions
https://github.com/saschatimme/MixedSubdivisions.jl.git
[ "MIT" ]
1.1.5
8c6bb3edae13e0a3c5479baf23658384ac3576bd
docs
1793
# MixedSubdivisions.jl | **Documentation** | **Build Status** | |:-----------------:|:----------------:| | [![][docs-stable-img]][docs-stable-url] | ![Run tests](https://github.com/saschatimme/MixedSubdivisions.jl/workflows/Run%20tests/badge.svg) | | [![][docs-latest-img]][docs-latest-url] | [![Codecov branch][codecov-img]][codecov-url] | A Julia package for computing a (fine) mixed subdivision and the [mixed volume](https://en.wikipedia.org/wiki/Mixed_volume) of lattice polytopes. The mixed volume of lattice polytopes arising as Newton polytopes of a polynomial system gives an upper bound of the number of solutions of the system. This is the celebrated [BKK-Theorem](https://en.wikipedia.org/wiki/Bernstein–Kushnirenko_theorem). A (fine) mixed subdivision can be used to efficiently solve sparse polynomial systems as first described in [A Polyhedral Method for Solving Sparse Polynomial Systems](https://www.jstor.org/stable/2153370) by Huber and Sturmfels. There are many algorithms for computing mixed volumes and mixed subdivisions. This implementation is based on the tropical homotopy continuation algorithm by Anders Jensen described in [arXiv:1601.02818](https://arxiv.org/abs/1601.02818). ## Installation The package can be installed via the Julia package manager ```julia pkg> add MixedSubdivisions ``` [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-stable-url]: https://saschatimme.github.io/MixedSubdivisions.jl/stable [docs-latest-url]: https://saschatimme.github.io/MixedSubdivisions.jl/latest [codecov-img]: https://codecov.io/gh/saschatimme/MixedSubdivisions.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/saschatimme/MixedSubdivisions.jl
MixedSubdivisions
https://github.com/saschatimme/MixedSubdivisions.jl.git
[ "MIT" ]
1.1.5
8c6bb3edae13e0a3c5479baf23658384ac3576bd
docs
3849
# Introduction [MixedSubdivisions.jl](https://github.com/saschatimme/MixedSubdivisions.jl) is package for computing a (fine) mixed subdivision and the [mixed volume](https://en.wikipedia.org/wiki/Mixed_volume) of lattice polytopes. The mixed volume of lattice polytopes arising as Newton polytopes of a polynomial system gives an upper bound of the number of solutions of the system. This is the celebrated [BKK-Theorem](https://en.wikipedia.org/wiki/Bernstein–Kushnirenko_theorem). A (fine) mixed subdivision can be used to efficiently solve sparse polynomial systems as first described in [A Polyhedral Method for Solving Sparse Polynomial Systems](https://www.jstor.org/stable/2153370) by Huber and Sturmfels. There are many algorithms for computing mixed volumes and mixed subdivisions. This implementation is based on the tropical homotopy continuation algorithm by Anders Jensen described in [arXiv:1601.02818](https://arxiv.org/abs/1601.02818). ## Installation The package can be installed via the Julia package manager ```julia pkg> add MixedSubdivisions ``` ## Short introduction We support polynomial input through the [DynamicPolynomials](https://github.com/JuliaAlgebra/DynamicPolynomials.jl) package. ```julia @polyvar x y; # create two polynomials f = y^2 + x * y + x + 1; g = x^2 + x * y + y + 1; # mixed volume mixed_volume([f, g]) ``` ``` 4 ``` Alternatively we could also give directly the supports to `mixed_volume`. ```julia A = support([f, g]) ``` ``` 2-element Array{Array{Int32,2},1}: [1 0 1 0; 1 2 0 0] [2 1 0 0; 0 1 1 0] ``` ```julia mixed_volume(A) ``` ``` 4 ``` Now let's compute the mixed cells with respect to a given lift. ```julia w₁ = [2, 0, 0, 0]; wβ‚‚ = [8, 4, 3, 0]; mixed_cells(A, [w₁, wβ‚‚]) ``` ``` 2-element Array{MixedCell,1}: MixedCell: β€’ volume β†’ 3 β€’ indices β†’ Tuple{Int64,Int64}[(2, 3), (4, 2)] β€’ normal β†’ [-2.66667, -1.33333] β€’ is_fine β†’ true MixedCell: β€’ volume β†’ 1 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (1, 2)] β€’ normal β†’ [-6.0, -2.0] β€’ is_fine β†’ true ``` Now let's compare that to another lift. ```julia v₁ = [1, 0, 0, 0]; vβ‚‚ = [8, 4, 3, 0]; mixed_cells(A, [v₁, vβ‚‚]) ``` ``` 3-element Array{MixedCell,1}: MixedCell: β€’ volume β†’ 2 β€’ indices β†’ Tuple{Int64,Int64}[(2, 1), (4, 2)] β€’ normal β†’ [-2.5, -1.5] β€’ is_fine β†’ true MixedCell: β€’ volume β†’ 1 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (2, 4)] β€’ normal β†’ [-3.0, -1.0] β€’ is_fine β†’ true MixedCell: β€’ volume β†’ 1 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (1, 2)] β€’ normal β†’ [-5.0, -1.0] β€’ is_fine β†’ true ``` If you don't want to wait until all mixed cells got computed you can also use the `MixedCellIterator` ``` for cell in MixedCellIterator(A, [v₁, vβ‚‚]) println(cell) end ``` ``` MixedCell: β€’ volume β†’ 2 β€’ indices β†’ Tuple{Int64,Int64}[(2, 1), (4, 2)] β€’ normal β†’ [-2.5, -1.5] β€’ is_fine β†’ true MixedCell: β€’ volume β†’ 1 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (2, 4)] β€’ normal β†’ [-3.0, -1.0] β€’ is_fine β†’ true MixedCell: β€’ volume β†’ 1 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (1, 2)] β€’ normal β†’ [-5.0, -1.0] β€’ is_fine β†’ true ``` Also if you just want to generate a random lift such that a fine mixed subdivision is obtained you can use the [`fine_mixed_cells`](@ref) function. ```julia cells, lift = fine_mixed_cells(A); cells ``` ``` 2-element Array{MixedCell,1}: MixedCell: β€’ volume β†’ 2 β€’ indices β†’ Tuple{Int64,Int64}[(2, 1), (4, 1)] β€’ normal β†’ [-1762.5, -894.5] β€’ is_fine β†’ true β€’ Ξ² β†’ [-3674.0, -1517.0] MixedCell: β€’ volume β†’ 2 β€’ indices β†’ Tuple{Int64,Int64}[(3, 1), (1, 4)] β€’ normal β†’ [-1762.5, 568.0] β€’ is_fine β†’ true β€’ Ξ² β†’ [-2211.5, -1517.0] ``` ```julia lift ``` ``` 2-element Array{Array{Int32,1},1}: [-1017, -1885, -449, -1914] [2008, 1735, 538, -1517] ``` ## API ```@docs mixed_volume mixed_cells fine_mixed_cells MixedCell volume normal indices is_fine MixedCellIterator support ```
MixedSubdivisions
https://github.com/saschatimme/MixedSubdivisions.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
code
1865
#= Copyright (c) 2016 Saurav Sachidanand Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# module CBOR using Printf, Serialization, Base64 num2hex(n) = string(n, base = 16, pad = sizeof(n) * 2) num2hex(n::AbstractFloat) = num2hex(reinterpret(Unsigned, n)) hex2num(s) = reinterpret(Float64, parse(UInt64, s, base = 16)) hex(n) = string(n, base = 16) struct Tag{T} id::Int data::T end Base.:(==)(a::Tag, b::Tag) = a.id == b.id && a.data == b.data Tag(id::Integer, data) = Tag(Int(id), data) include("constants.jl") include("encode.jl") include("decode.jl") export encode export decode, decode_with_iana export Simple, Null, Undefined function decode(data::Array{UInt8, 1}) return decode_internal(IOBuffer(data)) end function decode(data::IO) return decode(read(data)) end function encode(data) io = IOBuffer() encode(io, data) return take!(io) end end
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
code
1508
const TYPE_0 = zero(UInt8) const TYPE_1 = one(UInt8) << 5 const TYPE_2 = UInt8(2) << 5 const TYPE_3 = UInt8(3) << 5 const TYPE_4 = UInt8(4) << 5 const TYPE_5 = UInt8(5) << 5 const TYPE_6 = UInt8(6) << 5 const TYPE_7 = UInt8(7) << 5 const BITS_PER_BYTE = UInt8(8) const HEX_BASE = Int(16) const LOWEST_ORDER_BYTE_MASK = 0xFF const TYPE_BITS_MASK = UInt8(0b1110_0000) const ADDNTL_INFO_MASK = UInt8(0b0001_1111) const ADDNTL_INFO_UINT8 = UInt8(24) const ADDNTL_INFO_UINT16 = UInt8(25) const ADDNTL_INFO_UINT32 = UInt8(26) const ADDNTL_INFO_UINT64 = UInt8(27) const SINGLE_BYTE_SIMPLE_PLUS_ONE = UInt8(24) const SIMPLE_FALSE = UInt8(20) const SIMPLE_TRUE = UInt8(21) const SIMPLE_NULL = UInt8(22) const SIMPLE_UNDEF = UInt8(23) const ADDNTL_INFO_FLOAT16 = UInt8(25) const ADDNTL_INFO_FLOAT32 = UInt8(26) const ADDNTL_INFO_FLOAT64 = UInt8(27) const ADDNTL_INFO_INDEF = UInt8(31) const BREAK_INDEF = TYPE_7 | UInt8(31) const SINGLE_BYTE_UINT_PLUS_ONE = 24 const UINT8_MAX_PLUS_ONE = 0x100 const UINT16_MAX_PLUS_ONE = 0x10000 const UINT32_MAX_PLUS_ONE = 0x100000000 const UINT64_MAX_PLUS_ONE = 0x10000000000000000 const SIZE_OF_FLOAT64 = sizeof(Float64) const SIZE_OF_FLOAT32 = sizeof(Float32) const SIZE_OF_FLOAT16 = sizeof(Float16) const POS_BIG_INT_TAG = UInt8(2) const NEG_BIG_INT_TAG = UInt8(3) const CBOR_FALSE_BYTE = UInt8(TYPE_7 | 20) const CBOR_TRUE_BYTE = UInt8(TYPE_7 | 21) const CBOR_NULL_BYTE = UInt8(TYPE_7 | 22) const CBOR_UNDEF_BYTE = UInt8(TYPE_7 | 23) const CUSTOM_LANGUAGE_TYPE = 27
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
code
6175
#= Copyright (c) 2016 Saurav Sachidanand Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# function type_from_fields(::Type{T}, fields) where T ccall(:jl_new_structv, Any, (Any, Ptr{Cvoid}, UInt32), T, fields, length(fields)) end function peekbyte(io::IO) mark(io) byte = read(io, UInt8) reset(io) return byte end struct UndefIter{IO, F} f::F io::IO end Base.IteratorSize(::Type{<: UndefIter}) = Base.SizeUnknown() function Base.iterate(x::UndefIter, state = nothing) peekbyte(x.io) == BREAK_INDEF && return nothing return x.f(x.io), nothing end function decode_ntimes(f, io::IO) first_byte = peekbyte(io) if (first_byte & ADDNTL_INFO_MASK) == ADDNTL_INFO_INDEF skip(io, 1) # skip first byte return UndefIter(f, io) else return (f(io) for i in 1:decode_unsigned(io)) end end function decode_unsigned(io::IO) addntl_info = read(io, UInt8) & ADDNTL_INFO_MASK if addntl_info < SINGLE_BYTE_UINT_PLUS_ONE return addntl_info elseif addntl_info == ADDNTL_INFO_UINT8 return bswap(read(io, UInt8)) elseif addntl_info == ADDNTL_INFO_UINT16 return bswap(read(io, UInt16)) elseif addntl_info == ADDNTL_INFO_UINT32 return bswap(read(io, UInt32)) elseif addntl_info == ADDNTL_INFO_UINT64 return bswap(read(io, UInt64)) else error("Unknown Int type") end end decode_internal(io::IO, ::Val{TYPE_0}) = decode_unsigned(io) function decode_internal(io::IO, ::Val{TYPE_1}) data = signed(decode_unsigned(io)) if (i = Int128(data) + one(data)) > typemax(Int64) return -i else return -(data + one(data)) end end """ Decode Byte Array """ function decode_internal(io::IO, ::Val{TYPE_2}) if (peekbyte(io) & ADDNTL_INFO_MASK) == ADDNTL_INFO_INDEF skip(io, 1) result = IOBuffer() while peekbyte(io) !== BREAK_INDEF write(result, decode_internal(io)) end return take!(result) else return read(io, decode_unsigned(io)) end end """ Decode String """ function decode_internal(io::IO, ::Val{TYPE_3}) if (peekbyte(io) & ADDNTL_INFO_MASK) == ADDNTL_INFO_INDEF skip(io, 1) result = IOBuffer() while peekbyte(io) !== BREAK_INDEF write(result, decode_internal(io)) end return String(take!(result)) else return String(read(io, decode_unsigned(io))) end end """ Decode Vector of arbitrary elements """ function decode_internal(io::IO, ::Val{TYPE_4}) return map(identity, decode_ntimes(decode_internal, io)) end """ Decode Dict """ function decode_internal(io::IO, ::Val{TYPE_5}) return Dict(decode_ntimes(io) do io decode_internal(io) => decode_internal(io) end) end """ Decode Tagged type """ function decode_internal(io::IO, ::Val{TYPE_6}) tag = decode_unsigned(io) data = decode_internal(io) if tag in (POS_BIG_INT_TAG, NEG_BIG_INT_TAG) big_int = parse( BigInt, bytes2hex(data), base = HEX_BASE ) if tag == NEG_BIG_INT_TAG big_int = -(big_int + 1) end return big_int end if tag == CUSTOM_LANGUAGE_TYPE # Type Tag name = data[1] object_serialized = data[2] if startswith(name, "Julia/") # Julia Type return deserialize(IOBuffer(object_serialized)) end end # TODO implement other common tags! return Tag(tag, data) end function decode_internal(io::IO, ::Val{TYPE_7}) first_byte = read(io, UInt8) addntl_info = first_byte & ADDNTL_INFO_MASK if addntl_info < SINGLE_BYTE_SIMPLE_PLUS_ONE + 1 simple_val = if addntl_info < SINGLE_BYTE_SIMPLE_PLUS_ONE addntl_info else read(io, UInt8) end if simple_val == SIMPLE_FALSE return false elseif simple_val == SIMPLE_TRUE return true elseif simple_val == SIMPLE_NULL return nothing elseif simple_val == SIMPLE_UNDEF return Undefined() else return Simple(simple_val) end else if addntl_info == ADDNTL_INFO_FLOAT64 return reinterpret(Float64, ntoh(read(io, UInt64))) elseif addntl_info == ADDNTL_INFO_FLOAT32 return reinterpret(Float32, ntoh(read(io, UInt32))) elseif addntl_info == ADDNTL_INFO_FLOAT16 return reinterpret(Float16, ntoh(read(io, UInt16))) else error("Unsupported Float Type!") end end end function decode_internal(io::IO) # leave startbyte in io first_byte = peekbyte(io) typ = first_byte & TYPE_BITS_MASK typ == TYPE_0 && return decode_internal(io, Val(TYPE_0)) typ == TYPE_1 && return decode_internal(io, Val(TYPE_1)) typ == TYPE_2 && return decode_internal(io, Val(TYPE_2)) typ == TYPE_3 && return decode_internal(io, Val(TYPE_3)) typ == TYPE_4 && return decode_internal(io, Val(TYPE_4)) typ == TYPE_5 && return decode_internal(io, Val(TYPE_5)) typ == TYPE_6 && return decode_internal(io, Val(TYPE_6)) typ == TYPE_7 && return decode_internal(io, Val(TYPE_7)) end
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
code
7027
#= Copyright (c) 2016 Saurav Sachidanand Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# cbor_tag(::UInt8) = ADDNTL_INFO_UINT8 cbor_tag(::UInt16) = ADDNTL_INFO_UINT16 cbor_tag(::UInt32) = ADDNTL_INFO_UINT32 cbor_tag(::UInt64) = ADDNTL_INFO_UINT64 cbor_tag(::Float64) = ADDNTL_INFO_FLOAT64 cbor_tag(::Float32) = ADDNTL_INFO_FLOAT32 cbor_tag(::Float16) = ADDNTL_INFO_FLOAT16 function encode_unsigned_with_type( io::IO, typ::UInt8, num::Unsigned ) write(io, typ | cbor_tag(num)) write(io, bswap(num)) end function encode_length(io::IO, typ::UInt8, x) encode_smallest_int(io, typ, x isa String ? sizeof(x) : length(x)) end """ Array lengths and other integers (e.g. tags) in CBOR are encoded with smallest integer type, which we do with this method! """ function encode_smallest_int(io::IO, typ::UInt8, num::Integer) @assert num >= 0 "array lengths must be greater 0. Found: $num" if num < SINGLE_BYTE_UINT_PLUS_ONE write(io, typ | UInt8(num)) # smaller 24 gets directly stored in type tag elseif num < UINT8_MAX_PLUS_ONE encode_unsigned_with_type(io, typ, UInt8(num)) elseif num < UINT16_MAX_PLUS_ONE encode_unsigned_with_type(io, typ, UInt16(num)) elseif num < UINT32_MAX_PLUS_ONE encode_unsigned_with_type(io, typ, UInt32(num)) elseif num < UINT64_MAX_PLUS_ONE encode_unsigned_with_type(io, typ, UInt64(num)) else error("128-bits ints can't be encoded in the CBOR format.") end end function encode(io::IO, float::Union{Float64, Float32, Float16}) write(io, TYPE_7 | cbor_tag(float)) # hton only works for 32 + 64, while bswap works for all write(io, Base.bswap_int(float)) end # ------- straightforward encoding for a few Julia types function encode(io::IO, bool::Bool) write(io, CBOR_FALSE_BYTE + bool) end function encode(io::IO, num::Unsigned) encode_unsigned_with_type(io, TYPE_0, num) end function encode(io::IO, num::T) where T <: Signed encode_unsigned_with_type(io, TYPE_1, unsigned(-num - one(T))) end function encode(io::IO, byte_string::Vector{UInt8}) encode_length(io, TYPE_2, byte_string) write(io, byte_string) end function encode(io::IO, string::String) encode_length(io, TYPE_3, string) write(io, string) end function encode(io::IO, list::Vector) encode_length(io, TYPE_4, list) for e in list encode(io, e) end end function encode(io::IO, map::Dict) encode_length(io, TYPE_5, map) for (key, value) in map encode(io, key) encode(io, value) end end function encode(io::IO, big_int::BigInt) tag = if big_int < 0 big_int = -big_int - 1 NEG_BIG_INT_TAG else POS_BIG_INT_TAG end hex_str = hex(big_int) if isodd(length(hex_str)) hex_str = "0" * hex_str end encode(io, Tag(tag, hex2bytes(hex_str))) end function encode(io::IO, tag::Tag) tag.id >= 0 || error("Tag needs to be a positive integer") encode_with_tag(io, Unsigned(tag.id), tag.data) end """ Wrapper for collections with undefined length, that will then get encoded in the cbor format. Underlying is just """ struct UndefLength{ET, A} iter::A end function UndefLength(iter::T) where T UndefLength{eltype(iter), T}(iter) end function UndefLength{T}(iter::A) where {T, A} UndefLength{T, A}(iter) end Base.iterate(x::UndefLength) = iterate(x.iter) Base.iterate(x::UndefLength, state) = iterate(x.iter, state) # ------- encoding for indefinite length collections function encode( io::IO, iter::UndefLength{ET} ) where ET if ET in (Vector{UInt8}, String) typ = ET == Vector{UInt8} ? TYPE_2 : TYPE_3 write(io, typ | ADDNTL_INFO_INDEF) foreach(x-> encode(io, x), iter) else typ = ET <: Pair ? TYPE_5 : TYPE_4 # Dict or any array write(io, typ | ADDNTL_INFO_INDEF) for e in iter if e isa Pair encode(io, e[1]) encode(io, e[2]) else encode(io, e) end end end write(io, BREAK_INDEF) end # ------- encoding with tags function encode_with_tag(io::IO, tag::Unsigned, data) encode_smallest_int(io, TYPE_6, tag) encode(io, data) end struct Undefined end function encode(io::IO, null::Nothing) write(io, CBOR_NULL_BYTE) end function encode(io::IO, undef::Undefined) write(io, CBOR_UNDEF_BYTE) end struct SmallInteger{T} num::T end Base.convert(::Type{<: SmallInteger}, x) = SmallInteger(x) Base.convert(::Type{<: SmallInteger}, x::SmallInteger) = x Base.:(==)(a::SmallInteger, b::SmallInteger) = a.num == b.num Base.:(==)(a::Number, b::SmallInteger) = a == b.num Base.:(==)(a::SmallInteger, b::Number) = a.num == b function encode(io::IO, small::SmallInteger{<: Unsigned}) encode_smallest_int(io, TYPE_0, small.num) end function encode(io::IO, small::SmallInteger{<: Signed}) if small.num >= 0 encode_smallest_int(io, TYPE_0, unsigned(small.num)) else encode_smallest_int(io, TYPE_1, unsigned(-small.num - one(small.num))) end end function fields2array(typ::T) where T fnames = fieldnames(T) getfield.((typ,), [fnames...]) end """ Any Julia type get's serialized as Tag 27 Tag 27 Data Item array [typename, constructargs...] Semantics Serialised language-independent object with type name and constructor arguments Reference http://cbor.schmorp.de/generic-object Contact Marc A. Lehmann <[email protected]> """ function encode(io::IO, struct_type::T) where T # TODO don't use Serialization for the whole struct! # It almost works to deserialize from just the fields and type, # but that ends up being problematic for # anonymous functions (the type changes between serialization & deserialization) tio = IOBuffer(); serialize(tio, struct_type) encode( io, Tag( CUSTOM_LANGUAGE_TYPE, [string("Julia/", T), take!(tio), fields2array(struct_type)] ) ) end
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
code
7920
using Test using CBOR using DataStructures import CBOR: Tag, decode, encode, SmallInteger, UndefLength # Taken (and modified) from Appendix A of RFC 7049 two_way_test_vectors = [ SmallInteger(0) => hex2bytes("00"), SmallInteger(1) => hex2bytes("01"), SmallInteger(10) => hex2bytes("0a"), SmallInteger(23) => hex2bytes("17"), SmallInteger(24) => hex2bytes("1818"), SmallInteger(25) => hex2bytes("1819"), UInt8(100) => hex2bytes("1864"), UInt16(1000) => hex2bytes("1903e8"), UInt32(1000000) => hex2bytes("1a000f4240"), UInt64(1000000000000) => hex2bytes("1b000000e8d4a51000"), # UInt128(18446744073709551615) => hex2bytes("1bffffffffffffffff"), # Int128(-18446744073709551616) => hex2bytes("3bffffffffffffffff"), SmallInteger(-1) => hex2bytes("20"), SmallInteger(-10) => hex2bytes("29"), Int8(-100) => hex2bytes("3863"), Int16(-1000) => hex2bytes("3903e7"), 0.0f0 => hex2bytes("fa00000000"), -0.0f0 => hex2bytes("fa80000000"), 1.0f0 => hex2bytes("fa3f800000"), 1.1 => hex2bytes("fb3ff199999999999a"), 1.5f0 => hex2bytes("fa3fc00000"), 65504f0 => hex2bytes("fa477fe000"), 100000f0 => hex2bytes("fa47c35000"), Float32(3.4028234663852886e+38) => hex2bytes("fa7f7fffff"), 1.0e+300 => hex2bytes("fb7e37e43c8800759c"), Float32(5.960464477539063e-8) => hex2bytes("fa33800000"), Float32(0.00006103515625) => hex2bytes("fa38800000"), -4f0 => hex2bytes("fac0800000"), -4.1 => hex2bytes("fbc010666666666666"), false => hex2bytes("f4"), true => hex2bytes("f5"), nothing => hex2bytes("f6"), Undefined() => hex2bytes("f7"), Tag(0, "2013-03-21T20:04:00Z") => hex2bytes("c074323031332d30332d32315432303a30343a30305a"), Tag(1, SmallInteger(1363896240)) => hex2bytes("c11a514b67b0"), Tag(1, 1363896240.5) => hex2bytes("c1fb41d452d9ec200000"), Tag(23, hex2bytes("01020304")) => hex2bytes("d74401020304"), Tag(24, hex2bytes("6449455446")) => hex2bytes("d818456449455446"), Tag(32, "http://www.example.com") => hex2bytes("d82076687474703a2f2f7777772e6578616d706c652e636f6d"), UInt8[] => hex2bytes("40"), hex2bytes("01020304") => hex2bytes("4401020304"), "" => hex2bytes("60"), "a" => hex2bytes("6161"), "IETF" => hex2bytes("6449455446"), "\"\\" => hex2bytes("62225c"), "\u00fc" => hex2bytes("62c3bc"), "\u6c34" => hex2bytes("63e6b0b4"), [] => hex2bytes("80"), SmallInteger[1, 2, 3] => hex2bytes("83010203"), [SmallInteger(1), SmallInteger[2, 3], SmallInteger[4, 5]] => hex2bytes("8301820203820405"), SmallInteger[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] => hex2bytes("98190102030405060708090a0b0c0d0e0f101112131415161718181819"), Dict() => hex2bytes("a0"), OrderedDict(SmallInteger(1)=>SmallInteger(2), SmallInteger(3)=>SmallInteger(4)) => hex2bytes("a201020304"), OrderedDict("a"=>SmallInteger(1), "b"=>SmallInteger[2, 3]) => hex2bytes("a26161016162820203"), OrderedDict("a"=>"A", "b"=>"B", "c"=>"C", "d"=>"D", "e"=>"E") => hex2bytes("a56161614161626142616361436164614461656145"), ["a", Dict("b"=>"c")] => hex2bytes("826161a161626163") ] # Some annoying problems with Small integers and indefinite lenght arrays # for round tripping cbor_equal(a, b) = a == b cbor_equal(a::Vector{String}, b::String) = join(a, "") == b cbor_equal(a::Vector{Vector{UInt8}}, b::Vector{UInt8}) = vcat(a...) == b function cbor_equal(a::AbstractDict, b::AbstractDict) for (ka, kb) in zip(keys(a), keys(b)) ka == kb || return false end for (ka, kb) in zip(values(a), values(b)) ka == kb || return false end return true end #= The problem is, we want to preserver Julia types for non Base types that directly map to basic CBOR protocol types. So we can't define encode(io::IO, x::AbstractDict) since that would mean we can't preserver the type of any custom dict type. But, since the CBOR protocol is expecting ordered dicts, Julia's default dict type is unordered. I think it still makes more sense to use Julia's dict type instead of taking the dependencies on DataStructures. But to pass the byte test, we need an ordered dict type, so we overload it just here! =# function CBOR.encode(io::IO, x::OrderedDict) CBOR.encode_length(io::IO, CBOR.TYPE_5, x) for (key, value) in x encode(io, key) encode(io, value) end end function CBOR.decode_internal(io::IO, ::Val{CBOR.TYPE_5}) return OrderedDict(CBOR.decode_ntimes(io) do io CBOR.decode_internal(io) => CBOR.decode_internal(io) end...) end @testset "two way" begin for (data, bytes) in two_way_test_vectors @test cbor_equal(data, decode(encode(data))) @test isequal(bytes, encode(data)) @test cbor_equal(data, decode(bytes)) end end bytes_to_data_test_vectors = [ hex2bytes("fa7fc00000") => NaN32, hex2bytes("fa7f800000") => Inf32, hex2bytes("faff800000") => -Inf32, hex2bytes("fb7ff8000000000000") => NaN, hex2bytes("fb7ff0000000000000") => Inf, hex2bytes("fbfff0000000000000") => -Inf ] @testset "bytes to data" begin for (bytes, data) in bytes_to_data_test_vectors @test isequal(data, decode(bytes)) end end iana_test_vector = [ BigInt(18446744073709551616) => hex2bytes("c249010000000000000000"), BigInt(-18446744073709551617) => hex2bytes("c349010000000000000000") ] @testset "BigInt iana" begin for (data, bytes) in iana_test_vector @test isequal(bytes, encode(data)) @test isequal(data, decode(bytes)) end end indef_length_coll_test_vectors = [ ["Hello", " ", "world"] => hex2bytes("7f6548656c6c6f612065776f726c64ff"), Vector{UInt8}.(["Hello", " ", "world"]) => hex2bytes("5f4548656c6c6f412045776f726c64ff"), [SmallInteger(1), 2.3, "Twiddle"] => hex2bytes("9f01fb40026666666666666754776964646c65ff"), OrderedDict(SmallInteger(1)=>SmallInteger(2), 3.2=>"3.2") => hex2bytes("bf0102fb400999999999999a63332e32ff") ] @testset "ifndef length collections" begin @testset "basic types" begin @test UInt8[1] == decode(encode(UndefLength(UInt8[1]))) @test "hi" == decode(encode("hi")) @test [1, "2", UInt8[1]] == decode(encode([1, "2", UInt8[1]])) @test Dict("a" => 2) == decode(encode(Dict("a" => 2))) end for (data, bytes) in indef_length_coll_test_vectors @test isequal(bytes, encode(UndefLength(data))) @test cbor_equal(data, decode(bytes)) end end #= From the docs about undef length byte strings 5F -- Start indefinite-length byte string 44 -- Byte string of length 4 aabbccdd -- Bytes content 43 -- Byte string of length 3 eeff99 -- Bytes content FF -- "break" After decoding, this results in a single byte string with seven bytes: 0xaabbccddeeff99. =# @testset "undef length bytestring" begin @test decode(hex2bytes("5f44aabbccdd43eeff99FF")) == hex2bytes("aabbccddeeff99") end # tests from the readme function producer(ch::Channel) for i in 1:10 put!(ch,i*i) end end @testset "indefinite length readme" begin iter = Channel(producer) @test ((1:10) .* (1:10)) == decode(encode(UndefLength(iter))) end function cubes(ch::Channel) for i in 1:10 put!(ch,i) # key put!(ch,i*i*i) # value end end @testset "indefinite length readme Dict" begin bytes = encode(UndefLength{Pair}(Channel(cubes))) @test Dict(zip(1:10, (1:10) .^ 3)) == decode(bytes) end function producer(ch::Channel) for c in ["F", "ire", " ", "and", " ", "Blo", "od"] put!(ch, c) end end @testset "indefinite length readme String" begin bytes = encode(UndefLength{String}(Channel(producer))) @test decode(bytes) == "Fire and Blood" end
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.1.1
d5e2ca382ea949d7d97c9acafbc54a8751349877
docs
7996
# CBOR.jl [![Build Status](https://travis-ci.org/saurvs/CBOR.jl.svg?branch=master)](https://travis-ci.org/saurvs/CBOR.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/mudb34qrxjh9hud2?svg=true)](https://ci.appveyor.com/project/saurvs/cbor-jl) [![](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/saurvs/jl/blob/master/LICENSE.md) **CBOR.jl** is a Julia package for working with the **CBOR** data format, providing straightforward encoding and decoding for Julia types. ## About CBOR The **Concise Binary Object Representation** is a data format that's based upon an extension of the JSON data model, whose stated design goals include: small code size, small message size, and extensibility without the need for version negotiation. The format is formally defined in [RFC 7049](https://tools.ietf.org/html/rfc7049). ## Usage Add the package ```julia Pkg.add("CBOR") ``` and add the module ```julia using CBOR ``` ### Encoding and Decoding Encoding and decoding follow the simple pattern ```julia bytes = encode(data) data = decode(bytes) ``` where `bytes` is of type `Array{UInt8, 1}`, and `data` returned from `decode()` is *usually* of the same type that was passed into `encode()` but always contains the original data. #### Primitive Integers All `Signed` and `Unsigned` types, *except* `Int128` and `UInt128`, are encoded as CBOR `Type 0` or `Type 1` ```julia > encode(21) 1-element Array{UInt8,1}: 0x15 > encode(-135713) 5-element Array{UInt8,1}: 0x3a 0x00 0x02 0x12 0x20 > bytes = encode(typemax(UInt64)) 9-element Array{UInt8,1}: 0x1b 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff > decode(bytes) 18446744073709551615 ``` #### Byte Strings An `AbstractVector{UInt8}` is encoded as CBOR `Type 2` ```julia > encode(UInt8[x*x for x in 1:10]) 11-element Array{UInt8, 1}: 0x4a 0x01 0x04 0x09 0x10 0x19 0x24 0x31 0x40 0x51 0x64 ``` #### Strings `String` are encoded as CBOR `Type 3` ```julia > encode("Valar morghulis") 16-element Array{UInt8,1}: 0x4f 0x56 0x61 0x6c 0x61 ... 0x68 0x75 0x6c 0x69 0x73 > bytes = encode("אΧͺΧ” Χ™Χ›Χ•Χœ ΧœΧ§Χ—Χͺ אΧͺ Χ‘Χ•Χ‘ אל Χ”ΧžΧ™Χ, ΧΧ‘Χœ אΧͺΧ” לא Χ™Χ›Χ•Χœ ΧœΧ”Χ•Χ›Χ™Χ— שום Χ“Χ‘Χ¨ ΧΧžΧ™ΧͺΧ™") 119-element Array{UInt8,1}: 0x78 0x75 0xd7 0x90 0xd7 ... 0x99 0xd7 0xaa 0xd7 0x99 > decode(bytes) "אΧͺΧ” Χ™Χ›Χ•Χœ ΧœΧ§Χ—Χͺ אΧͺ Χ‘Χ•Χ‘ אל Χ”ΧžΧ™Χ, ΧΧ‘Χœ אΧͺΧ” לא Χ™Χ›Χ•Χœ ΧœΧ”Χ•Χ›Χ™Χ— שום Χ“Χ‘Χ¨ ΧΧžΧ™ΧͺΧ™" ``` #### Floats `Float64`, `Float32` and `Float16` are encoded as CBOR `Type 7` ```julia > encode(1.23456789e-300) 9-element Array{UInt8, 1}: 0xfb 0x01 0xaa 0x74 0xfe 0x1c 0x13 0x2c 0x0e > bytes = encode(Float32(pi)) 5-element Array{UInt8, 1}: 0xfa 0x40 0x49 0x0f 0xdb > decode(bytes) 3.1415927f0 ``` #### Arrays `AbstractVector` and `Tuple` types, except of course `AbstractVector{UInt8}`, are encoded as CBOR `Type 4` ```julia > bytes = encode((-7, -8, -9)) 4-element Array{UInt8, 1}: 0x83 0x26 0x27 0x28 > decode(bytes) 3-element Array{Any, 1}: -7 -8 -9 > bytes = encode(["Open", 1, 4, 9.0, "the pod bay doors hal"]) 39-element Array{UInt8, 1}: 0x85 0x44 0x4f 0x70 0x65 ... 0x73 0x20 0x68 0x61 0x6c > decode(bytes) 5-element Array{Any, 1}: "Open" 1 4 9.0 "the pod bay doors hal" > bytes = encode([log2(x) for x in 1:10]) 91-element Array{UInt8, 1}: 0x8a 0xfb 0x00 0x00 0x00 ... 0x4f 0x09 0x79 0xa3 0x71 > decode(bytes) 10-element Array{Any, 1}: 0.0 1.0 1.58496 2.0 2.32193 2.58496 2.80735 3.0 3.16993 3.32193 ``` #### Maps An `AbstractDict` type is encoded as CBOR `Type 5` ```julia > d = Dict() > d["GNU's"] = "not UNIX" > d[Float64(e)] = [2, "+", 0.718281828459045] > bytes = encode(d) 38-element Array{UInt8, 1}: 0xa2 0x65 0x47 0x4e 0x55 ... 0x28 0x6f 0x8a 0xd2 0x56 > decode(bytes) Dict{Any,Any} with 2 entries: "GNU's" => "not UNIX" 2.718281828459045 => Any[0x02, "+", 0.718281828459045] ``` #### Tagging To *tag* one of the above types, encode a `Tag` with `first` being an **non-negative** integer, and `second` being the data you want to tag. ```julia > bytes = encode(Tag(80, "web servers")) > data = decode(bytes) 0x50=>"HTTP Web Server" ``` There exists an [IANA registery](http://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml) which assigns certain meanings to tags; for example, a string tagged with a value of `32` is to be interpreted as a [Uniform Resource Locater](https://tools.ietf.org/html/rfc3986). To decode a tagged CBOR data item, and then to automatically interpret the meaning of the tag, use `decode_with_iana`. For example, a Julia `BigInt` type is encoded as an `Array{UInt8, 1}` containing the bytes of it's hexadecimal representation, and tagged with a value of `2` or `3` ```julia > b = BigInt(factorial(20)) 2432902008176640000 > bytes = encode(b * b * -b) 34-element Array{UInt8,1}: 0xc3 0x58 0x1f 0x13 0xd4 ... 0xff 0xff 0xff 0xff 0xff ``` To decode `bytes` *without* interpreting the meaning of the tag, use `decode` ```julia > decode(bytes) 0x03 => UInt8[0x96, 0x58, 0xd1, 0x85, 0xdb .. 0xff 0xff 0xff 0xff 0xff] ``` To decode `bytes` and to interpret the meaning of the tag, use `decode_with_iana` ```julia > decode_with_iana(bytes) -14400376622525549608547603031202889616850944000000000000 ``` Currently, only `BigInt` is supported for automatically tagged encoding and decoding; more Julia types will be added in the future. #### Composite Types A generic `DataType` that isn't one of the above types is encoded through `encode` using reflection. This is supported only if all of the fields of the type belong to one of the above types. For example, say you have a user-defined type `Point` ```julia mutable struct Point x::Int64 y::Float64 space::String end point = Point(1, 3.4, "Euclidean") ``` When `point` is passed into `encode`, it is first converted to a `Dict` containing the symbolic names of it's fields as keys associated to their respective values and a `"type"` key associated to the type's symbolic name, like so ```julia Dict{Any, Any} with 3 entries: "x" => 0x01 "type" => "Point" "y" => 3.4 "space" => "Euclidean" ``` The `Dict` is then encoded as CBOR `Type 5`. #### Indefinite length collections To encode collections of *indefinite* length, you can just wrap any iterator in the `CBOR.UndefLength` type. Make sure that your Iterator knows their eltype to e.g. create a bytestring / string / Dict *indefinite* length encoding. The eltype mapping is: ```julia Vector{UInt8} -> bytestring String -> bytestring Pair -> Dict Any -> List ``` If the eltype is unknown, but you still want to enforce it, use this constructor: ```Julia CBOR.UndefLength{String}(iter) ``` First create some julia iterator with unknown length ```julia function producer(ch::Channel) for i in 1:10 put!(ch,i*i) end end iter = Channel(producer) ``` encode it with UndefLength ```julia > encode(UndefLength(iter)) 18-element Array{UInt8, 1}: 0x9f 0x01 0x04 0x09 0x10 ... 0x18 0x51 0x18 0x64 0xff > decode(bytes) [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] ``` While encoding an indefinite length `Map`, produce first the key and then the value for each key-value pair, or produce pairs! ```julia function cubes(ch::Channel) for i in 1:10 put!(ch, i) # key put!(ch, i*i*i) # value end end > bytes = encode(UndefLength{Pair}(Channel(cubes))) 34-element Array{UInt8, 1}: 0xbf 0x01 0x01 0x02 0x08 ... 0x0a 0x19 0x03 0xe8 0xff > decode(bytes) Dict(7=>343,4=>64,9=>729,10=>1000,2=>8,3=>27,5=>125,8=>512,6=>216,1=>1) ``` Note that when an indefinite length CBOR `Type 2` or `Type 3` is decoded, the result is a *concatenation* of the individual elements. ```julia function producer(ch::Channel) for c in ["F", "ire", " ", "and", " ", "Blo", "od"] put!(ch,c) end end > bytes = encode(UndefLength{String}(Channel(producer))) 23-element Array{UInt8, 1}: 0x7f 0x61 0x46 0x63 0x69 ... 0x6f 0x62 0x6f 0x64 0xff > decode(bytes) "Fire and Blood" ``` ### Caveats Encoding a `UInt128` and an `Int128` isn't supported; use a `BigInt` instead. Decoding CBOR data that isn't well-formed is unpredictable.
CBOR
https://github.com/JuliaIO/CBOR.jl.git
[ "MIT" ]
0.3.2
cbdf14d1e8c7c8aacbe8b19862e0179fd08321c2
code
3947
module FFTViews using Base: tail, unsafe_length, @propagate_inbounds using FFTW # A custom rangetype that will be used for indices and never throws a # boundserror because the domain is actually periodic. using CustomUnitRanges include(CustomUnitRanges.filename_for_urange) @static if isdefined(Base, :IdentityUnitRange) const indextypes = (URange, Base.IdentityUnitRange{<:URange}) const FFTVRange{T} = Union{URange{T}, Base.Slice{URange{T}}, Base.IdentityUnitRange{URange{T}}} indrange(i) = Base.IdentityUnitRange(URange(first(i)-1, last(i)-1)) else const indextypes = (URange, Base.Slice{<:URange}) const FFTVRange{T} = Union{URange{T}, Base.Slice{URange{T}}} indrange(i) = Base.Slice(URange(first(i)-1, last(i)-1)) end for T in indextypes @eval begin Base.checkindex(::Type{Bool}, ::$T, ::Base.Slice) = true Base.checkindex(::Type{Bool}, ::$T, ::Base.LogicalIndex) = true Base.checkindex(::Type{Bool}, ::$T, ::Real) = true Base.checkindex(::Type{Bool}, ::$T, ::AbstractRange) = true Base.checkindex(::Type{Bool}, ::$T, ::AbstractVector{Bool}) = true Base.checkindex(::Type{Bool}, ::$T, ::AbstractArray{Bool}) = true Base.checkindex(::Type{Bool}, ::$T, ::AbstractArray) = true end if isdefined(Base, :IdentityUnitRange) @eval Base.checkindex(::Type{Bool}, ::$T, ::Base.IdentityUnitRange) = true end end export FFTView abstract type AbstractFFTView{T,N} <: AbstractArray{T,N} end struct FFTView{T,N,A<:AbstractArray} <: AbstractFFTView{T,N} parent::A function FFTView{T,N,A}(parent::A) where {T,N,A} new{T,N,A}(parent) end end FFTView(parent::AbstractArray{T,N}) where {T,N} = FFTView{T,N,typeof(parent)}(parent) FFTView{T,N}(dims::Dims{N}) where {T,N} = FFTView(Array{T,N}(undef, dims)) FFTView{T}(dims::Dims{N}) where {T,N} = FFTView(Array{T,N}(undef, dims)) # Note: there are no bounds checks because it's all periodic @inline @propagate_inbounds function Base.getindex(F::FFTView{T,N}, I::Vararg{Int,N}) where {T,N} P = parent(F) @inbounds ret = P[reindex(FFTView, axes(P), I)...] ret end @inline @propagate_inbounds function Base.setindex!(F::FFTView{T,N}, val, I::Vararg{Int,N}) where {T,N} P = parent(F) @inbounds P[reindex(FFTView, axes(P), I)...] = val end Base.parent(F::AbstractFFTView) = F.parent Base.axes(F::AbstractFFTView) = map(indrange, axes(parent(F))) Base.size(F::AbstractFFTView) = size(parent(F)) function Base.similar(A::AbstractArray, T::Type, shape::Tuple{FFTVRange,Vararg{FFTVRange}}) all(x->first(x)==0, shape) || throw(BoundsError("cannot allocate FFTView with the first element of the range non-zero")) FFTView(similar(A, T, map(length, shape))) end function Base.similar(f::Union{Function,Type}, shape::Tuple{FFTVRange,Vararg{FFTVRange}}) all(x->first(x)==0, shape) || throw(BoundsError("cannot allocate FFTView with the first element of the range non-zero")) FFTView(similar(f, map(length, shape))) end Base.reshape(F::FFTView{_,N}, ::Type{Val{N}}) where {_,N} = F Base.reshape(F::FFTView{_,M}, ::Type{Val{N}}) where {_,M,N} = FFTView(reshape(parent(F), Val(N))) FFTW.fft(F::FFTView; kwargs...) = fft(parent(F); kwargs...) FFTW.rfft(F::FFTView; kwargs...) = rfft(parent(F); kwargs...) FFTW.fft(F::FFTView, dims; kwargs...) = fft(parent(F), dims; kwargs...) FFTW.rfft(F::FFTView, dims; kwargs...) = rfft(parent(F), dims; kwargs...) @inline reindex(::Type{V}, inds, I) where {V} = (_reindex(V, inds[1], I[1]), reindex(V, tail(inds), tail(I))...) reindex(::Type{V}, ::Tuple{}, ::Tuple{}) where {V} = () _reindex(::Type{FFTView}, ind, i) = modrange(i+1, ind) if VERSION >= v"1.7.0-beta4" # https://github.com/JuliaLang/julia/pull/40382 modrange(i, rng::AbstractUnitRange) = mod(i-first(rng), length(rng))+first(rng) else modrange(i, rng::AbstractUnitRange) = mod(i-first(rng), unsafe_length(rng))+first(rng) end end # module
FFTViews
https://github.com/JuliaArrays/FFTViews.jl.git
[ "MIT" ]
0.3.2
cbdf14d1e8c7c8aacbe8b19862e0179fd08321c2
code
4144
using FFTViews using FFTW using Test if VERSION < v"1.1" # https://github.com/JuliaLang/julia/pull/29442 _oneunit(::CartesianIndex{N}) where {N} = _oneunit(CartesianIndex{N}) _oneunit(::Type{CartesianIndex{N}}) where {N} = CartesianIndex(ntuple(x -> 1, Val(N))) else const _oneunit = Base.oneunit end function test_approx_eq_periodic(a::FFTView, b) for I in CartesianIndices(axes(b)) @test a[I-_oneunit(I)] β‰ˆ b[I] end nothing end function test_approx_eq_periodic(a::FFTView, b::FFTView) for I in CartesianIndices(axes(b)) @test a[I] β‰ˆ b[I] end nothing end @testset "basics" begin a = FFTView{Float64,2}((5,7)) @test axes(a) == (0:4, 0:6) @test eltype(a) == Float64 a = FFTView{Float64}((5,7)) @test axes(a) == (0:4, 0:6) @test eltype(a) == Float64 @test_throws MethodError FFTView{Float64,3}((5,7)) for i = 1:35 a[i] = i end @test a[3,1] == 9 @test a[:,0] == FFTView(collect(1:5)) @test a[0,:] == FFTView(collect(1:5:35)) @test a[1,0:7] == [2:5:35;2] @test a[2,[0,1,0,-1]] == [3,8,3,33] @test a[3,trues(9)] == [9,14,19,24,29,34,4,9,14] @test a[3,FFTView(trues(9))] == [4,9,14,19,24,29,34,4,9] b = similar(Array{Int}, axes(a)) @test isa(b, FFTView) @test axes(b) == axes(a) @test eltype(b) == Int @test reshape(a, Val{2}) === a @test reshape(a, Val{1}) == FFTView(convert(Vector{Float64}, collect(1:35))) @test axes(reshape(a, Val{3})) == (0:4,0:6,0:0) end @testset "convolution-shift" begin for l in (8,9) a = zeros(l) v = FFTView(a) @test axes(v,1) == 0:l-1 v[0] = 1 p = rand(l) pfilt = ifft(fft(p).*fft(v)) @test real(pfilt) β‰ˆ p v[0] = 0 v[-1] = 1 pfilt = ifft(fft(p).*fft(v)) @test real(pfilt) β‰ˆ circshift(p, -1) v[-1] = 0 v[+1] = 1 pfilt = ifft(fft(p).*fft(v)) @test real(pfilt) β‰ˆ circshift(p, +1) end for l2 in (8,9), l1 in (8,9) a = zeros(l1,l2) v = FFTView(a) @test axes(v) == (0:l1-1, 0:l2-1) p = rand(l1,l2) for offset in ((0,0), (-1,0), (0,-1), (-1,-1), (1,0), (0,1), (1,1), (1,-1), (-1,1), (3,-5), (281,-14)) fill!(a, 0) v[offset...] = 1 pfilt = ifft(fft(p).*fft(v)) @test real(pfilt) β‰ˆ circshift(p, offset) end end end using OffsetArrays @testset "convolution-offset" begin for l2 in (8,9), l1 in (8,9) a = OffsetArray(zeros(l1,l2), (-2,-3)) v = FFTView(a) @test axes(v) == (-2:l1-3, -3:l2-4) p = rand(l1,l2) po = OffsetArray(copy(p), (5,-1)) for offset in ((0,0), (-1,0), (0,-1), (-1,-1), (1,0), (0,1), (1,1), (1,-1), (-1,1), (3,-5), (281,-14)) fill!(a, 0) v[offset...] = 1 pfilt = ifft(fft(p).*fft(v)) @test real(pfilt) β‰ˆ circshift(p, offset) pofilt = ifft(fft(po).*fft(v)) test_approx_eq_periodic(FFTView(real(pofilt)), circshift(po, offset)) pfilt = irfft(rfft(p).*rfft(v), length(axes(v,1))) @test real(pfilt) β‰ˆ circshift(p, offset) pofilt = irfft(rfft(po).*rfft(v), length(axes(v,1))) test_approx_eq_periodic(FFTView(real(pofilt)), circshift(po, offset)) dims = (1,2) pfilt = ifft(fft(p, dims).*fft(v, dims), dims) @test real(pfilt) β‰ˆ circshift(p, offset) pofilt = ifft(fft(po, dims).*fft(v, dims), dims) test_approx_eq_periodic(FFTView(real(pofilt)), circshift(po, offset)) pfilt = irfft(rfft(p, dims).*rfft(v, dims), length(axes(v,1)), dims) @test real(pfilt) β‰ˆ circshift(p, offset) pofilt = irfft(rfft(po, dims).*rfft(v, dims), length(axes(v,1)), dims) test_approx_eq_periodic(FFTView(real(pofilt)), circshift(po, offset)) end end end @testset "vector indexing" begin v = FFTView(1:10) @test v[-10:15] == [1:10;1:10;1:6] end nothing
FFTViews
https://github.com/JuliaArrays/FFTViews.jl.git
[ "MIT" ]
0.3.2
cbdf14d1e8c7c8aacbe8b19862e0179fd08321c2
docs
4140
# FFTViews [![Build Status](https://travis-ci.org/JuliaArrays/FFTViews.jl.svg?branch=master)](https://travis-ci.org/JuliaArrays/FFTViews.jl) [![codecov.io](http://codecov.io/github/JuliaArrays/FFTViews.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaArrays/FFTViews.jl?branch=master) A package for simplifying operations that involve Fourier transforms. An FFTView of an array uses periodic boundary conditions for indexing, and shifts all indices of the array downward by 1. # Usage Let's create a random signal: ```julia julia> using FFTViews julia> a = rand(8) 8-element Array{Float64,1}: 0.720657 0.42337 0.207867 0.959567 0.371366 0.907781 0.852526 0.689934 ``` Now let's take its Fourier transform, and wrap the result as an `FFTView`: ```julia julia> afft = fft(a) 8-element Array{Complex{Float64},1}: 5.13307+0.0im -0.183898+0.796529im 0.03163+0.31835im 0.88248-0.492787im -0.828236+0.0im 0.88248+0.492787im 0.03163-0.31835im -0.183898-0.796529im julia> v = FFTView(afft) FFTViews.FFTView{Complex{Float64},1,Array{Complex{Float64},1}} with indices FFTViews.URange(0,7): 5.13307+0.0im -0.183898+0.796529im 0.03163+0.31835im 0.88248-0.492787im -0.828236+0.0im 0.88248+0.492787im 0.03163-0.31835im -0.183898-0.796529im ``` Now we can easily look at the zero-frequency bin: ```julia julia> v[0] 5.133068739504999 + 0.0im julia> sum(a) 5.133068739504998 ``` or negative as well as positive frequencies: ```julia julia> v[-4:3] 8-element Array{Complex{Float64},1}: -0.828236+0.0im 0.88248+0.492787im 0.03163-0.31835im -0.183898-0.796529im 5.13307+0.0im -0.183898+0.796529im 0.03163+0.31835im 0.88248-0.492787im ``` Perhaps even more interestingly, one can also simplify the process of convolution. Let's create a "delta-function" signal: ```julia julia> b = zeros(8); b[3] = 1; b # the signal 8-element Array{Float64,1}: 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ``` and then create the kernel using an `FFTView`: ```julia julia> kernel = FFTView(zeros(8)) FFTViews.FFTView{Float64,1,Array{Float64,1}} with indices FFTViews.URange(0,7): 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 julia> kernel[-1:1] = rand(3) 3-element Array{Float64,1}: 0.16202 0.446872 0.649135 julia> kernel FFTViews.FFTView{Float64,1,Array{Float64,1}} with indices FFTViews.URange(0,7): 0.446872 0.649135 0.0 0.0 0.0 0.0 0.0 0.16202 ``` Now compute the convolution via the FFT: ```julia julia> real(ifft(fft(b).*fft(kernel))) 8-element Array{Float64,1}: 0.0 0.16202 0.446872 0.649135 0.0 -5.55112e-17 0.0 -6.93889e-17 ``` or alternatively ```julia julia> irfft(rfft(b).*rfft(kernel),8) 8-element Array{Float64,1}: 0.0 0.16202 0.446872 0.649135 0.0 -2.77556e-17 0.0 -5.55112e-17 ``` This simplifies the process of remembering how to pack your kernel. ## Caution: FFTViews are not composable In Julia, almost all other view types are composable: you can make a `ReshapedArray` of a `SubArray` of a `StaticArray` of a .... In contrast, `FFTViews` are *not safe* when placed inside other containers. The reason is that the `*fft` methods are specialized for `FFTViews`, and strip off the outer container; this does not happen if you wrap an `FFTView` inside of some other array type. If you do wrap `FFTViews`, you might see strange off-by-1 bugs due to the FFTView translating the indices. Another way of saying the same thing is the following: for a general vector `x`, its FFT is defined as ![eq1](docs/eq1.png) Here `x[n]` is defined with periodic boundary conditions, so that if the indices of `x` are not naturally from 1 to N, this formula still holds. However, if `y = FFTView(x)`, then in terms of `y` we have ![eq1](docs/eq2.png) which is shifted by 1. Since `FFTView`s use a different definition of the FFT compared to all other array types, they need to be used with caution. It's recommended that the FFTView wrapper be applied only for the process of setting up or analyzing the result of the transform; for all other operations, pass the `parent` array (obtainable from `parent(y)` or just by reference to `x` itself).
FFTViews
https://github.com/JuliaArrays/FFTViews.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
789
using PsychometricsBazaarBase using Documenter format = Documenter.HTML( prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaPsychometricsBazaar.github.io/PsychometricsBazaarBase.jl", ) makedocs(; modules=[PsychometricsBazaarBase], authors="Frankie Robertson", repo="https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl/blob/{commit}{path}#{line}", sitename="PsychometricsBazaarBase.jl", format=format, pages=[ "Home" => "index.md", "Modules" => ["integrators.md", "optimizers.md", "config_tools.md", "integral_coeffs.md", "const_distributions.md"] ], warnonly = [:missing_docs], ) deploydocs(; repo="github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl", devbranch="main", )
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
3222
""" This module contains utilities to implement highly configurible library code where configuration is performed through structs, and smart defaults allow sloppy or flat specification of otherwise deeply nested configuration structs. """ module ConfigTools export @requiresome, @returnsome export find1, find1_instance, find1_type, find1_type_sloppy using MacroTools using DocStringExtensions """ $(SIGNATURES) This macro is passed an assignment like so @requiresome foo = bar() If `bar()` returns `nothing`, then the macro causes the current function to return `nothing`. Otherwise, execution continues. """ macro requiresome(assign) @capture(assign, name_ = expr_) || error("@requiresome must be passed an assignment") quote $(esc(assign)) if $(esc(name)) === nothing return nothing end end end """ $(SIGNATURES) This macro is passed an expression like so @returnsome foo() If `foo()` return any value apart from `nothing`, the macro causes the current function to return that value. Otherwise, execution continues. """ macro returnsome(expr) quote val = $(esc(expr)) if val !== nothing return val end end end """ $(SIGNATURES) This macro is passed an expression and a function like so @returnsome foo() do x bar(x) end If `foo()` return any value apart from `nothing`, the macro executes the function and returns the value as long as it is not `nothing`. In all other cases, execution continues. """ macro returnsome(expr, func) quote val = $(esc(expr)) if val !== nothing res = ($(esc(func)))(val) if res !== nothing return res end end end end """ $(SIGNATURES) Given an iterable `iter` and a predicate `pred`, this function returns a match or else `nothing` if no match. In case there are multiple matches, an error is thrown. """ function find1(pred::F, iter, fail_msg) where {F} res = nothing cnt = 0 for bit in iter if pred(bit) res = bit cnt += 1 end end if cnt > 1 error(fail_msg) end return res end """ $(SIGNATURES) Returns exactly one instance in `iter` of type `type` or else `nothing``. In case there are multiple matches, an error is thrown. """ function find1_instance(type, iter) find1( x -> isa(x, type), iter, "Expected exactly one instance of " * repr(type) ) end """ $(SIGNATURES) Returns exactly one type in `iter` of which is a subtype of `type` or else `nothing``. In case there are multiple matches, an error is thrown. """ function find1_type(type, iter) return find1( x -> (((x isa DataType) || (x isa UnionAll)) && x <: type), iter, "Expected exactly one type " * repr(type) ) end """ $(SIGNATURES) Returns exactly one type in `iter` of which is either a subtype of `type` or an instance of `type` or else `nothing``. In case there are multiple matches, an error is thrown. """ function find1_type_sloppy(type, iter) @returnsome find1_type(type, iter) @returnsome find1_instance(type, iter) inst -> typeof(inst) end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
794
""" This module contains standard distributions for usage as transfer functions for IRT. """ module ConstDistributions using Distributions: Logistic, Normal using Lazy: @forward using DocStringExtensions export normal_scaled_logistic, std_normal """ This scaling facot seems to be the most commonly found exact value in the wild, see e.g. the R package `mirt`` """ const logistic_to_normal_scaling_factor = 1.702 """ The normal scaled logistic distribution is an approximation to the normal distribution based upon the logistic distribution. It has been commonly used in IRT modelling, such as in the `mirt` package for R. """ const normal_scaled_logistic = Logistic(0.0, 1.0 / logistic_to_normal_scaling_factor) """ The standard normal distribution. """ const std_normal = Normal() end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
933
""" These are helpers for weighting integrals of p.d.f.s for calculating basic stats. The main idea of doing it this way is to have a single instance of these to reuse specializations and to use structs so as to be able to control the level of specialization. """ module IntegralCoeffs using Distributions: Distribution, pdf using DocStringExtensions """ $(SIGNATURES) """ @inline function one(x_)::Float64 1.0 end """ $(SIGNATURES) """ @inline function id(x::T)::T where {T} x end """ $(SIGNATURES) """ struct SqDev{CenterT} center::CenterT end @inline function (sq_dev::SqDev{CenterT})(x::CenterT)::CenterT where {CenterT} (x .- sq_dev.center) .^ 2 end struct Prior{Dist <: Distribution} dist::Dist end """ $(SIGNATURES) """ struct PriorApply{Dist, F} prior::Prior{Dist} func::F end @inline function (prior_apply::PriorApply)(x) pdf(prior_apply.prior.dist, x) * prior_apply.func(x) end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
237
module Interpolators using Interpolations function interp(xs, ys) extrapolate( interpolate( xs, ys, SteffenMonotonicInterpolation() ), Interpolations.Flat() ) end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
2743
""" This module provides a common interface to different numerical optimization techniques. """ module Optimizers export Optimizer, OneDimOptimOptimizer, MultiDimOptimOptimizer export # Optimization algorithms ## Zeroth order methods (heuristics) NelderMead, ParticleSwarm, SimulatedAnnealing, ## First order ### Quasi-Newton GradientDescent, BFGS, LBFGS, ### Conjugate gradient ConjugateGradient, ### Acceleration methods AcceleratedGradientDescent, MomentumGradientDescent, ### Nonlinear GMRES NGMRES, OACCEL, ## Second order ### (Quasi-)Newton Newton, ### Trust region NewtonTrustRegion, # Constrained ## Box constraints, x_i in [lb_i, ub_i] ### Specifically Univariate, R -> R GoldenSection, Brent, ### Multivariate, R^N -> R Fminbox, SAMIN, ## Manifold constraints Manifold, Flat, Sphere, Stiefel, ## Non-linear constraints IPNewton using ..ConfigTools using ..Parameters using Optim using DocStringExtensions abstract type Optimizer end function Optimizer(bits...) @returnsome find1_instance(Optimizer, bits) end """ Wraps an Optim.jl optimizer to optimize a single-dimensional domain function. $(SIGNATURES) """ struct OneDimOptimOptimizer{OptimT <: Optim.AbstractOptimizer} <: Optimizer lo::Float64 hi::Float64 initial::Float64 optim::OptimT opts::Optim.Options end function OneDimOptimOptimizer(lo, hi, optim) OneDimOptimOptimizer(lo, hi, lo + (hi - lo) / 2, optim, Optim.Options()) end function(opt::OneDimOptimOptimizer)( f::F; lo=opt.lo, hi=opt.hi, initial=opt.initial, optim=opt.optim, opts=opt.opts ) where {F} Optim.minimizer(optimize( ΞΈ_arr -> -f(first(ΞΈ_arr)), lo, hi, [initial], optim, opts ))[1] end """ Wraps an Optim.jl optimizer to optimize a multi-dimensional domain function. $(SIGNATURES) """ struct MultiDimOptimOptimizer{OptimT <: Optim.AbstractOptimizer} <: Optimizer lo::Vector{Float64} hi::Vector{Float64} initial::Vector{Float64} optim::OptimT opts::Optim.Options end function MultiDimOptimOptimizer(lo, hi, optim) MultiDimOptimOptimizer(lo, hi, lo + (hi - lo) / 2, optim, Optim.Options()) end function(opt::MultiDimOptimOptimizer)( f::F; lo=opt.lo, hi=opt.hi, initial=opt.initial, optim=opt.optim, opts=opt.opts ) where {F} Optim.minimizer(optimize( ΞΈ_arr -> -f(ΞΈ_arr), lo, hi, initial, optim, opts )) end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
288
module PsychometricsBazaarBase using DocStringExtensions include("./vendor/Parameters.jl") include("./ConfigTools.jl") include("./IntegralCoeffs.jl") include("./integrators/Integrators.jl") include("./ConstDistributions.jl") include("./Interpolators.jl") include("./Optimizers.jl") end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
3207
""" This module provides a common interface to different numerical integration techniques. """ module Integrators export Integrator, QuadGKIntegrator, FixedGKIntegrator export CubatureIntegrator, HCubatureIntegrator, MultiDimFixedGKIntegrator export normdenom, intval, interr export CubaVegas, CubaSuave, CubaDivonne, CubaCuhre export IntReturnType, IntValue, IntMeasurement export CubaIntegrator, CubaVegas, CubaSuave, CubaDivonne, CubaCuhre export FixedGridIntegrator, even_grid, quasimontecarlo_grid export BareIntegrationResult, ErrorIntegrationResult using ..ConfigTools using ..IntegralCoeffs: one import Measurements using DocStringExtensions abstract type Integrator end function Integrator(bits...) @returnsome find1_instance(Integrator, bits) end abstract type IntReturnType end struct IntValue <: IntReturnType end struct IntMeasurement <: IntReturnType end struct IntPassthrough <: IntReturnType end function (::IntValue)(res) intval(res) end function (::IntMeasurement)(res) intmes(res) end function (::IntPassthrough)(res) res end function normdenom(integrator::Integrator; options...) normdenom(IntValue(), integrator; options...) end function normdenom(rett::IntReturnType, integrator::Integrator; lo=integrator.lo, hi=integrator.hi, options...) # XXX: Presumably we can just return the analytic value here instead? Is this function even needed? rett(integrator(one; lo=lo, hi=hi, options...)) end struct ScaleUnitDomain{F} f::F lo::Vector{Float64} interval::Vector{Float64} scaler::Float64 function ScaleUnitDomain(f::F, lo, hi) where {F} interval = hi .- lo new{F}( f, lo, interval, prod(interval) ) end end function (sud::ScaleUnitDomain)(x) sud.scaler * sud.f(sud.lo .+ sud.interval .* x) end # Values from fscore() from mirt/mirtCAT function mirtcat_quadpnts(nd) if nd == 1 61 elseif nd == 2 31 elseif nd == 3 15 elseif nd == 4 9 elseif nd == 5 7 else 3 end end """ The result of an integration technique which provides no error value. $(TYPEDFIELDS) """ struct BareIntegrationResult{VecT} vec::VecT end """ The result of an integration technique which provides an error value. Note that error values are not comparible between different integration techniques in general. $(TYPEDFIELDS) """ struct ErrorIntegrationResult{VecT, ErrT} vec::VecT err::ErrT end """ Given any integration result, get the integral value. $(SIGNATURES) """ function intval(res::Union{BareIntegrationResult, ErrorIntegrationResult}) res.vec end """ Given any integration result, get the integral error. In case the integration technique does not supply one, this returns `nothing`. $(SIGNATURES) """ function interr end function interr(::BareIntegrationResult) nothing end function interr(res::ErrorIntegrationResult) res.err end function intmes(res::ErrorIntegrationResult) Measurements.measurement.(intval(res), interr(res)) end include("./quadgk.jl") include("./hcubature.jl") include("./cubature.jl") include("./cuba.jl") include("./fixed.jl") end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
2259
using Cuba abstract type CubaAlgorithm end """ The VEGAS algorithm. $(TYPEDEF) """ struct CubaVegas <: CubaAlgorithm end """ The Sauve algorithm. $(TYPEDEF) """ struct CubaSuave <: CubaAlgorithm end """ The Divonne algorithm. $(TYPEDEF) """ struct CubaDivonne <: CubaAlgorithm end """ The Cuhre algorithm. $(TYPEDEF) """ struct CubaCuhre <: CubaAlgorithm end """ CubaIntegrator is a wrapper around the Cuba.jl integration functions. $(TYPEDEF) $(TYPEDFIELDS) Usage example: ```julia CubaIntegrator([0.0, 0.0], [1.0, 1.0], CubaVegas()) do x x[1] * x[2] end ``` """ struct CubaIntegrator{AlgorithmT <: CubaAlgorithm, KwargsT} <: Integrator lo::Vector{Float64} hi::Vector{Float64} algorithm::AlgorithmT kwargs::KwargsT end function CubaIntegrator(lo, hi, algorithm; kwargs...) CubaIntegrator(lo, hi, algorithm, kwargs) end get_cuba_integration_func(::CubaVegas) = Cuba.vegas get_cuba_integration_func(::CubaSuave) = Cuba.suave get_cuba_integration_func(::CubaDivonne) = Cuba.divonne get_cuba_integration_func(::CubaCuhre) = Cuba.cuhre function get_cuba_integration_func(::CubaIntegrator{T}) where {T} get_cuba_integration_func(T) end struct PreallocatedOutputWrapper{F} inner::F end function assign_output(r, y::Number) r[1] = y end function assign_output(r, y::AbstractArray) for i in 1:length(r) r[i] = y[i] end end function (wrapper::PreallocatedOutputWrapper)(x, r) assign_output(r, wrapper.inner(x)) end """ (integrator::CubaIntegrator)(f[, ncomp, lo, hi; kwargs...]) Perform a Cuba integration. """ function (integrator::CubaIntegrator)( f::F, ncomp=0, lo=integrator.lo, hi=integrator.hi; kwargs... ) where F # TODO: Move ScaleUnitDomain to CubaIntegrator init res = get_cuba_integration_func(integrator.algorithm)( PreallocatedOutputWrapper(ScaleUnitDomain(f, lo, hi)), length(lo), ncomp == 0 ? 1 : ncomp; merge(integrator.kwargs, kwargs)... ) # XXX: Should this be specialised? # TODO: Use OneDimContinuousDomain if ncomp == 0 val = res.integral[1] err = res.error[1] ErrorIntegrationResult(val, err) else ErrorIntegrationResult(res.integral, res.error) end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
729
import Cubature """ Construct a Cubature integrator based on `Cubature.jl` with on a specified interval. $(TYPEDFIELDS) """ struct CubatureIntegrator{KwargsT} <: Integrator lo::Vector{Float64} hi::Vector{Float64} kwargs::KwargsT end function CubatureIntegrator(lo, hi; kwargs...) CubatureIntegrator(lo, hi, kwargs) end """ (integrator::CubatureIntegrator)(f[, ncomp, lo, hi; kwargs...]) Perform a Cubature integration based on `Cubature.jl`. """ function (integrator::CubatureIntegrator)( f::F, ncomp=1, lo=integrator.lo, hi=integrator.hi; kwargs... ) where F ErrorIntegrationResult(Cubature.hcubature( f, lo, hi; merge(integrator.kwargs, kwargs)... )...) end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
3279
using QuasiMonteCarlo struct FixedGridIntegrator{ContainerT <: Union{Vector{Float64}, Vector{Vector{Float64}}}} <: Integrator grid::ContainerT function FixedGridIntegrator(grid) new{Vector{Float64}}(grid) end function FixedGridIntegrator(grid::Vector{Vector{Float64}}) new{Vector{Vector{Float64}}}(grid) end end function even_grid(theta_lo::Number, theta_hi::Number, quadpts) FixedGridIntegrator(range(theta_lo, theta_hi, quadpts)) end function even_grid(theta_lo::AbstractVector, theta_hi::AbstractVector, quadpts_per_dim) prod = Iterators.product(( range(lo, hi, length = quadpts_per_dim) for (lo, hi) in zip(theta_lo, theta_hi) )...) grid = reshape(collect.(prod), :) FixedGridIntegrator(grid) end function quasimontecarlo_grid(theta_lo, theta_hi, quadpts, sampler) grid = QuasiMonteCarlo.sample(quadpts, theta_lo, theta_hi, sampler) FixedGridIntegrator(grid) end function (integrator::FixedGridIntegrator)(args...; kwargs...) preallocate(integrator)(args...; kwargs...) end struct PreallocatedFixedGridIntegrator{ContainerT <: Union{Vector{Float64}, Matrix{Float64}}} <: Integrator inner::FixedGridIntegrator buf::ContainerT function PreallocatedFixedGridIntegrator(inner::FixedGridIntegrator{Vector{Float64}}) quadpts = length(inner.grid) buf = Vector{Float64}(undef, quadpts) new{Vector{Float64}}(inner, buf) end function PreallocatedFixedGridIntegrator(inner::FixedGridIntegrator{Vector{Vector{Float64}}}) quadpts = length(inner.grid) dim = length(inner.grid[1]) buf = Matrix{Float64}(undef, quadpts, dim) new{Matrix{Float64}}(inner, buf) end end function (integrator::PreallocatedFixedGridIntegrator)( f::F, ncomp::Int=0 ) where F if ncomp == 0 integrator.buf .= f.(integrator.inner.grid) BareIntegrationResult(sum(integrator.buf)) else buf_rows = eachrow(integrator.buf) buf_rows .= f.(integrator.inner.grid) BareIntegrationResult(dropdims(sum(integrator.buf, dims=1), dims=1)) end end function (integrator::PreallocatedFixedGridIntegrator)( f::F, init::AbstractVector{Float64}, ncomp::Int=0 ) where F if ncomp == 0 @. integrator.buf = (f.f)(integrator.inner.grid) @. integrator.buf = integrator.buf * init #@. integrator.buf = f(integrator.buf, integrator.inner.grid) BareIntegrationResult(sum(integrator.buf)) else buf_rows = eachrow(integrator.buf) @. buf_rows = (f.f)(integrator.inner.grid) @. buf_rows = buf_rows * init BareIntegrationResult(dropdims(sum(integrator.buf, dims=1), dims=1)) end end function preallocate(integrator::FixedGridIntegrator) PreallocatedFixedGridIntegrator(integrator) end function preallocate(integrator::Integrator) integrator end struct IterativeFixedGridIntegrator <: Integrator grid::Vector{Float64} end function (integrator::IterativeFixedGridIntegrator)( f::F, ncomp=0 ) where F if ncomp != 0 error("IterativeFixedGridIntegrator only supports ncomp == 0") end s = 0.0 for x in integrator.grid s += f(x) end BareIntegrationResult(s) end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
735
import HCubature """ Construct a Cubature integrator based on `HCubature.jl` with on a specified interval. $(TYPEDFIELDS) """ struct HCubatureIntegrator{KwargsT} <: Integrator lo::Vector{Float64} hi::Vector{Float64} kwargs::KwargsT end function HCubatureIntegrator(lo, hi; kwargs...) HCubatureIntegrator(lo, hi, kwargs) end """ (integrator::HCubatureIntegrator)(f[, ncomp, lo, hi; kwargs...]) Perform Cubature integration based on `HCubature.jl`. """ function (integrator::HCubatureIntegrator)( f::F; ncomp=1, lo=integrator.lo, hi=integrator.hi, kwargs... ) where F ErrorIntegrationResult(HCubature.hcubature( f, lo, hi; merge(integrator.kwargs, kwargs)... )...) end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
3580
using QuadGK using QuadGK: cachedrule, evalrule, Segment using LinearAlgebra: norm using FillArrays import Base.Iterators function fixed_gk(f::F, lo, hi, n) where {F} x, w, gw = cachedrule(Float64, n) seg = evalrule(f, lo, hi, x, w, gw, norm) (seg.I, seg.E) end """ Construct a adaptive Gauss-Kronrod integrator based on `QuadGK.jl` with on a specified interval. $(TYPEDFIELDS) """ struct QuadGKIntegrator <: Integrator lo::Float64 hi::Float64 order::Int end # This could be unsafe if quadgk performed i/o. It might be wise to switch to # explicitly passing this through from the caller at some point. # Just preallocate an arbitrary size for now (easiest, would make more sense to use 'order' somehow but we don't have it) # It's 24 * 100 * threads bytes, ~10kb for 4 threads which is unconditionally allocated when this library is used segbufs = [Vector{Segment{Float64, Float64, Float64}}(undef, 100) for _ in Threads.nthreads()] """ (integrator::QuadGKIntegrator)(f[, ncomp, lo, hi; order=..., rtol=...]) Perform an adaptive Gauss-Kronrod integration using `QuadGK.jl`. """ function (integrator::QuadGKIntegrator)( f::F, ncomp=0, lo=integrator.lo, hi=integrator.hi; order=integrator.order, rtol=1e-4 ) where F if ncomp != 0 error("QuadGKIntegrator only supports ncomp == 0") end ErrorIntegrationResult(quadgk(f, lo, hi, rtol=rtol, segbuf=segbufs[Threads.threadid()], order=order)...) end """ Construct a fixed-order Gauss-Kronrod integrator based on `QuadGK.jl` with on a specified interval. $(TYPEDFIELDS) """ struct FixedGKIntegrator <: Integrator lo::Float64 hi::Float64 order::Int end """ (integrator::QuadGKIntegrator)(f[, ncomp, lo, hi; order=...]) Perform a fixed-order Gauss-Kronrod integration based on `QuadGK.jl`. """ function (integrator::FixedGKIntegrator)( f::F, ncomp=0, lo=integrator.lo, hi=integrator.hi; order=integrator.order ) where F if ncomp != 0 error("FixedGKIntegrator only supports ncomp == 0") end ErrorIntegrationResult(fixed_gk(f, lo, hi, order)...) end """ Construct a fixed-order multi-dimensional Gauss-Kronrod integrator based on `QuadGK.jl` with on a specified interval. $(TYPEDFIELDS) """ struct MultiDimFixedGKIntegrator{OrderT <: AbstractVector{Int}} <: Integrator lo::Vector{Float64} hi::Vector{Float64} order::OrderT end function MultiDimFixedGKIntegrator(lo, hi) MultiDimFixedGKIntegrator(lo, hi, mirtcat_quadpnts(length(lo))) end function MultiDimFixedGKIntegrator(lo, hi, order::Int) MultiDimFixedGKIntegrator(lo, hi, Fill(order, length(lo))) end """ (integrator::QuadGKIntegrator)(f[, ncomp, lo, hi; order=...]) Perform a fixed-order multi-dimensional Gauss-Kronrod integrator based on `QuadGK.jl`. """ function (integrator::MultiDimFixedGKIntegrator)( f::F, ncomp=1, lo=integrator.lo, hi=integrator.hi; order=integrator.order ) where F x = Array{Float64}(undef, length(lo)) function inner(idx) function integrate() return fixed_gk(inner(idx + 1), lo[idx + 1], hi[idx + 1], order[idx + 1])[1] end function f1d(x1d) x[idx] = x1d if idx >= length(lo) #@info "Calling f" x return f(x) else return integrate() end end if idx == 0 return integrate() else return f1d end end # TODO: Combine errors somehow BareIntegrationResult(inner(0)) end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
22570
# This module has been vendored from a pull request on # https://github.com/mauro3/Parameters.jl/pull/147 # It can be removed when equivalent functionality is in Parameters.jl or another # package __precompile__() """ This is a package I use to handle numerical-model parameters, thus the name. However, it should be useful otherwise too. It has two main features: - keyword type constructors with default values, and - unpacking and packing of composite types and dicts. The macro `@with_kw` which decorates a type definition to allow default values and a keyword constructor: ``` julia> using PsychometricBazaarBase.Parameters julia> @with_kw struct A a::Int = 6 b::Float64 = -1.1 c::UInt8 end julia> A(c=4) A a: 6 b: -1.1 c: 4 ``` Unpacking is done with `@unpack` (`@pack!` is similar): ``` struct B a b c end @unpack a, c = B(4,5,6) # is equivalent to BB = B(4,5,6) a = BB.a c = BB.c ``` """ module Parameters import Base: @__doc__ import OrderedCollections: OrderedDict using UnPack: @unpack, @pack! export @with_kw, @kw_only, @with_kw_noshow, type2dict, reconstruct, @unpack, @pack!, @consts ## Parser helpers ################# # To iterate over code blocks dropping the line-number bits: struct Lines block::Expr end start(lns::Lines) = 1 function next(lns::Lines, nr) for i=nr:length(lns.block.args) if lns.block.args[i] isa LineNumberNode continue end if ( lns.block.args[i] isa Symbol || lns.block.args[i] isa String # doc-string || !(lns.block.args[i].head==:line)) return lns.block.args[i], i+1 end end return -1 end function done(lns::Lines, nr) if next(lns::Lines, nr)==-1 true else false end end function Base.iterate(lns::Lines, nr=start(lns)) nr = next(lns, nr) return nr == -1 ? nothing : nr end # This is not O(1) but hey... function Base.setindex!(lns::Lines, val, ind) ii = 1 for i=1:length(lns.block.args) if lns.block.args[i] isa LineNumberNode continue end if lns.block.args[i] isa Symbol || !(lns.block.args[i].head==:line) if ind==ii lns.block.args[i] = val return nothing end ii +=1 end end throw(BoundsError("Attempted to set line $ind of $(ii-1) length code-block")) end # Transforms :(a::b) -> :a decolon2(a::Expr) = (@assert a.head==:(::); a.args[1]) decolon2(a::Symbol) = a # Keep the ::T of the args if T ∈ typparas, # leave symbols as is, drop field-doc-strings. function keep_only_typparas(args, typparas) args = copy(args) tokeep = Int[] typparas_ = map(stripsubtypes, typparas) for i=1:length(args) isa(args[i], String) && continue # do not keep field doc-strings push!(tokeep, i) isa(args[i], Symbol) && continue # keep the typepara if ∈ typparas @assert args[i].head==:(::) T = args[i].args[2] if !(symbol_in(typparas_, T)) args[i] = decolon2(args[i]) end end args[tokeep] end # check whether a symbol is contained in an expression symbol_in(s::Symbol, ex::Symbol) = s==ex symbol_in(s::Symbol, ex) = false function symbol_in(s::Symbol, ex::Expr) for a in ex.args symbol_in(s,a) && return true end return false end symbol_in(s::Symbol, ex::Vector) = any(map(e->symbol_in(s, e), ex)) symbol_in(s::Vector, ex) = any(map(ss->symbol_in(ss, ex), s)) # Returns the name of the type as Symbol function typename(typedef::Expr) if typedef.args[2] isa Symbol return typedef.args[2] elseif typedef.args[2].args[1] isa Symbol return typedef.args[2].args[1] elseif typedef.args[2].args[1].args[1] isa Symbol return typedef.args[2].args[1].args[1] else error("Could not parse type-head from: $typedef") end end # Transforms: Expr(:<:, :A, :B) -> :A stripsubtypes(s::Symbol) = s function stripsubtypes(e::Expr) e.args[1] end stripsubtypes(vec::Vector) = [stripsubtypes(v) for v in vec] function check_inner_constructor(l) if l.args[1].head==:where fnhead = l.args[1].args[1] else fnhead = l.args[1] end if length(fnhead.args)==1 error("No inner constructors with zero positional arguments allowed!") elseif (length(fnhead.args)==2 #1<length(fnhead.args)<=3 && fnhead.args[2] isa Expr && fnhead.args[2].head==:parameters) error("No inner constructors with zero positional arguments plus keyword arguments allowed!") end nothing end ## Exported helper functions ##################### """ Transforms a type-instance into a dictionary. ``` julia> struct T a b end julia> type2dict(T(4,5)) Dict{Symbol,Any} with 2 entries: :a => 4 :b => 5 ``` Note that this uses `getproperty`. """ function type2dict(dt) di = Dict{Symbol,Any}() for n in propertynames(dt) di[n] = getproperty(dt, n) end di end """ reconstruct(pp; kws... reconstruct(T::Type, pp; kws...) Make a new instance of a type with the same values as the input type except for the fields given in the keyword args. Works for types, Dicts, and NamedTuples. Can also reconstruct to another type, which is probably mostly useful for parameterised types where the parameter changes on reconstruction. Note: this is not very performant. Check Setfield.jl for a faster & nicer implementation. ``` julia> using PsychometricBazaarBase.Parameters julia> struct A a b end julia> x = A(3,4) A(3, 4) julia> reconstruct(x, b=99) A(3, 99) julia> struct B{T} a::T b end julia> y = B(sin, 1) B{typeof(sin)}(sin, 1) julia> reconstruct(B, y, a=cos) # note reconstruct(y, a=cos) errors! B{typeof(cos)}(cos, 1) ``` """ reconstruct(pp::T, di) where T = reconstruct(T, pp, di) reconstruct(pp; kws...) = reconstruct(pp, kws) reconstruct(T::Type, pp; kws...) = reconstruct(T, pp, kws) function reconstruct(::Type{T}, pp, di) where T di = !isa(di, AbstractDict) ? Dict(di) : copy(di) ns = if T<:AbstractDict if pp isa AbstractDict keys(pp) else fieldnames(typeof(pp)) end else fieldnames(T) end args = [] for (i,n) in enumerate(ns) if pp isa AbstractDict push!(args, pop!(di, n, pp[n])) else push!(args, pop!(di, n, getfield(pp, n))) end end length(di)!=0 && error("Fields $(keys(di)) not in type $T") if T<:AbstractDict return T(zip(ns,args)) elseif T <: NamedTuple return T(Tuple(args)) else return T(args...) end end ########################### # Keyword constructors with @with_kw ########################## # A type with fields (r,a) in variable aa becomes # quote # r = aa.r # a = aa.a # end _unpack(binding, fields) = Expr(:block, [:($f = $binding.$f) for f in fields]...) # Pack fields back into binding using reconstruct: function _pack_mutable(binding, fields) e = Expr(:block, [:($binding.$f = $f) for f in fields]...) push!(e.args, binding) e end function _pack_new(T, fields) Expr(:call, T, fields...) end struct __Private end """ This function is called by the `@with_kw` macro and does the syntax transformation from: ```julia @with_kw struct MM{R} r::R = 1000. a::R end ``` into ```julia struct MM{R} r::R a::R MM{R}(r,a) where {R} = new(r,a) MM{R}(;r=1000., a=error("no default for a")) where {R} = MM{R}(r,a) # inner kw, type-paras are required when calling end MM(r::R,a::R) where {R} = MM{R}(r,a) # default outer positional constructor MM(;r=1000,a=error("no default for a")) = MM(r,a) # outer kw, so no type-paras are needed when calling MM(m::MM; kws...) = reconstruct(mm,kws) MM(m::MM, di::Union{AbstractDict, Tuple{Symbol,Any}}) = reconstruct(mm, di) macro unpack_MM(varname) esc(quote r = varname.r a = varname.a end) end macro pack_MM(varname) esc(quote varname = $Parameters.reconstruct(varname,r=r,a=a) end) end ``` """ function with_kw(typedef, mod::Module, withshow=true, allow_default=true) if typedef.head==:tuple # named-tuple withshow==false && error("`@with_kw_noshow` not supported for named tuples") return with_kw_nt(typedef, mod) elseif typedef.head != :struct error("""Only works on type-defs or named tuples. Make sure to have a space after `@with_kw`, e.g. `@with_kw (a=1,) Also, make sure to use a trailing comma for single-field NamedTuples. """) end err1str = "Field \'" err2str = "\' has no default, supply it with keyword." inner_constructors = Any[] # parse a few things tn = typename(typedef) # the name of the type ismutable = typedef.args[1] # Returns M{...} (removes any supertypes) if typedef.args[2] isa Symbol typparas = Any[] elseif typedef.args[2].head==:<: if typedef.args[2].args[1] isa Symbol typparas = Any[] else typparas = typedef.args[2].args[1].args[2:end] end else typparas = typedef.args[2].args[2:end] end # error on types without fields lns = Lines(typedef.args[3]) if done(lns, start(lns)) error("@with_kw only supported for types which have at least one field.") end # default type @deftype l, i = next(lns, start(lns)) if l isa Expr && l.head == :macrocall && l.args[1] == Symbol("@deftype") has_deftyp = true if length(l.args) != 3 error("Malformed `@deftype` line $l") end deftyp = l.args[3] if done(lns, i) error("@with_kw only supported for types which have at least one field.") end else has_deftyp = false end # Expand all macros (except @assert) in body now (only works at # top-level) # See issue https://github.com/mauro3/Parameters.jl/issues/21 lns2 = Any[] # need new lines as expanded macros may have many lines for (i,l) in enumerate(lns) # loop over body of typedef if i==1 && has_deftyp push!(lns2, l) continue end if l isa Symbol || l isa String push!(lns2, l) continue end if l.head==:macrocall && l.args[1]!=Symbol("@assert") tmp = macroexpand(mod, l) if tmp.head==:block llns = Lines(tmp) for ll in llns push!(lns2, ll) end else push!(lns2,tmp) end else push!(lns2, l) end end lns = lns2 # the vars for the unpack macro unpack_vars = Any[] # the type def fielddefs = quote end # holds r::R etc fielddefs.args = Any[] kws = OrderedDict{Any, Any}() # assertions in the body asserts = Any[] for (i,l) in enumerate(lns) # loop over body of typedef if i==1 && has_deftyp # ignore @deftype line continue end if l isa Symbol # no default value and no type annotation if has_deftyp push!(fielddefs.args, :($l::$deftyp)) else push!(fielddefs.args, l) end sym = l syms = string(sym) kws[sym] = :(error($err1str * $syms * $err2str)) # unwrap-macro push!(unpack_vars, sym) elseif l isa String # doc-string push!(fielddefs.args, l) elseif l.head==:(=) # default value and with or without type annotation if l.args[1] isa Expr && (l.args[1].head==:call || # inner constructor l.args[1].head==:where && l.args[1].args[1].head==:call) # inner constructor with `where` check_inner_constructor(l) push!(inner_constructors, l) else fld = l.args[1] if fld isa Symbol && has_deftyp # no type annotation fld = :($fld::$deftyp) end # add field doc-strings docstring = string("Default: ", l.args[2]) if i > 1 && lns[i-1] isa String # if the last line was a docstring, append the default fielddefs.args[end] *= " " * docstring else # otherwise add a new line push!(fielddefs.args, docstring) end push!(fielddefs.args, fld) kws[decolon2(fld)] = l.args[2] # unwrap-macro push!(unpack_vars, decolon2(fld)) end elseif l.head==:macrocall && l.args[1]==Symbol("@assert") # store all asserts push!(asserts, l) elseif l.head==:function # inner constructor check_inner_constructor(l) push!(inner_constructors, l) elseif l.head==:block error("No nested begin-end allowed in type defintion") else # no default value but with type annotation push!(fielddefs.args, l) sym = decolon2(l.args[1]) syms = string(sym) kws[sym] = :(error($err1str *$syms * $err2str)) # unwrap-macro push!(unpack_vars, l.args[1]) end end # The type definition without inner constructors: typ = Expr(:struct, typedef.args[1:2]..., copy(fielddefs)) # Inner keyword constructor. Note that this calls the positional # constructor under the hood and not `new`. That way a user can # provide a special positional constructor (say enforcing # invariants) which also gets used with the keywords. args = Any[] kwargs = Expr(:parameters) for (k,w) in kws push!(args, k) push!(kwargs.args, Expr(:kw,k,w)) end if allow_default if length(typparas)>0 tps = stripsubtypes(typparas) innerc = :( $tn{$(tps...)}($kwargs) where {$(tps...)} = $tn{$(tps...)}($(args...))) else innerc = :($tn($kwargs) = $tn($(args...)) ) end else if length(typparas)>0 tps = stripsubtypes(typparas) innerc = :( $tn{$(tps...)}($kwargs) where {$(tps...)} = $tn{$(tps...)}(Parameters.__Private(), $(args...))) else innerc = :($tn($kwargs) = $tn(Parameters.__Private(), $(args...)) ) end end push!(typ.args[3].args, innerc) # Inner positional constructor: only make it if no inner # constructors are user-defined. If one or several are defined, # assume that one has the standard positional signature. if length(inner_constructors)==0 || !allow_default if allow_default if length(typparas)>0 tps = stripsubtypes(typparas) innerc2 = :( $tn{$(tps...)}($(args...)) where {$(tps...)} = new{$(tps...)}($(args...)) ) else innerc2 = :($tn($(args...)) = new($(args...))) end else if length(typparas)>0 tps = stripsubtypes(typparas) innerc2 = :( $tn{$(tps...)}(::Parameters.__Private, $(args...)) where {$(tps...)} = new{$(tps...)}($(args...)) ) else innerc2 = :($tn(::Parameters.__Private, $(args...)) = new($(args...))) end end prepend!(innerc2.args[2].args, asserts) push!(typ.args[3].args, innerc2) else if length(asserts)>0 error("Assertions are only allowed in type-definitions with no inner constructors.") end append!(typ.args[3].args, inner_constructors) end # Outer positional constructor which does not need explicit # type-parameters when called. Only make this constructor if # (1) type parameters are used at all # (2) all type parameters are used in the fields (otherwise get a # "method is not callable" warning!) # See also https://github.com/JuliaLang/julia/issues/17186 if typparas!=Any[] # condition (1) # fields definitions stripped of ::Int etc., only keep ::T if T∈typparas : fielddef_strip_contT = keep_only_typparas(fielddefs.args, typparas) if allow_default outer_positional = :( $tn($(fielddef_strip_contT...)) where {$(typparas...)} = $tn{$(stripsubtypes(typparas)...)}($(args...))) else outer_positional = :( $tn(private::Parameters.__Private, $(fielddef_strip_contT...)) where {$(typparas...)} = $tn{$(stripsubtypes(typparas)...)}(private, $(args...))) end # Check condition (2) checks = true for tp in stripsubtypes(typparas) checks = checks && symbol_in(tp, fielddefs.args) end if !checks outer_positional = :() end else outer_positional = :() end # Outer keyword constructor, useful to infer the type parameter # automatically. This calls the outer positional constructor. # only create if type parameters are used. if typparas==Any[] outer_kw=:() else if allow_default outer_kw = :($tn($kwargs) = $tn($(args...)) ) else outer_kw = :($tn($kwargs) = $tn(Parameters.__Private(), $(args...)) ) end end # NOTE: The reason to have both outer and inner keyword # constructors are to allow both calls: # `MT4(r=4, a=5.0)` (outer kwarg-constructor) and # `MT4{Float32, Int}(r=4, a=5.)` (inner kwarg constructor). # # NOTE to above NOTE: this is probably not the case (anymore?), # as Base.@kwdef does not define inner constructors: # julia> Base.@kwdef struct MT4_{R,I} # r::R=5 # a::I # end # # julia> MT4_(r=4, a=5.0) # MT4_{Int64,Float64}(4, 5.0) # # julia> MT4_{Float32, Int}(r=4, a=5.) # MT4_{Float32,Int64}(4.0f0, 5) ## outer copy constructor ### outer_copy = quote $tn(pp::$tn; kws... ) = $Parameters.reconstruct(pp, kws) # $tn(pp::$tn, di::Union(AbstractDict,Vararg{Tuple{Symbol,Any}}) ) = reconstruct(pp, di) # see issue https://github.com/JuliaLang/julia/issues/11537 # $tn(pp::$tn, di::Union(AbstractDict, Tuple{Vararg{Tuple{Symbol, Any}}}) ) = reconstruct(pp, di) # see issue https://github.com/JuliaLang/julia/issues/11537 $tn(pp::$tn, di::$Parameters.AbstractDict) = $Parameters.reconstruct(pp, di) $tn(pp::$tn, di::Vararg{Tuple{Symbol,Any}} ) = $Parameters.reconstruct(pp, di) end # (un)pack macro from https://groups.google.com/d/msg/julia-users/IQS2mT1ITwU/hDtlV7K1elsJ unpack_name = Symbol("unpack_"*string(tn)) pack!_name = Symbol("pack_"*string(tn)*"!") pack_name = Symbol("pack_"*string(tn)) showfn = if withshow :(function Base.show(io::IO, p::$tn) if get(io, :compact, false) || get(io, :typeinfo, nothing)==$tn Base.show_default(IOContext(io, :limit => true), p) else # just dumping seems to give ok output, in particular for big data-sets: dump(IOContext(io, :limit => true), p, maxdepth=1) end end) else :nothing end if ismutable pack_macros = quote macro $pack!_name(ex) esc($Parameters._pack_mutable(ex, $unpack_vars)) end macro $pack_name() esc($Parameters._pack_new($tn, $unpack_vars)) end end else pack_macros = quote macro $pack_name() esc($Parameters._pack_new($tn, $unpack_vars)) end end end # Finish up quote Base.@__doc__ $typ $outer_positional $outer_kw $outer_copy $showfn macro $unpack_name(ex) esc($Parameters._unpack(ex, $unpack_vars)) end $pack_macros $tn end end """ Do the with-kw stuff for named tuples. """ function with_kw_nt(typedef, mod) kwargs = [] args = [] nt = [] for a in typedef.args if a isa Expr a.head != :(=) && error("NameTuple fields need to be of form: `k=val`") sy = a.args[1]::Symbol va = a.args[2] push!(kwargs, Expr(:kw, sy, va)) push!(args, sy) push!(nt, :($sy=$sy)) elseif a isa Symbol # no default value given sy = a push!(args, sy) push!(nt, :($sy=$sy)) push!(kwargs, Expr(:kw, sy, :(error("Supply default value for $($(string(sy)))")))) else error("Cannot parse $(string(a))") end end NT = gensym(:NamedTuple_kw) nt = Expr(:tuple, nt...) quote $NT(; $(kwargs...)) =$nt $NT($(args...)) = $nt $NT end end """ Macro which allows default values for field types and a few other features. Basic usage: ```julia @with_kw struct MM{R} r::R = 1000. a::Int = 4 end ``` For more details see manual. """ macro with_kw(typedef) return esc(with_kw(typedef, __module__, true)) end macro with_kw(args...) error("""Only works on type-defs or named tuples. Did you try to construct a NamedTuple but omitted the space between the macro and the NamedTuple? Do `@with_kw (a=1, b=2)` and not `@with_kw(a=1, b=2)`. """) end """ As `@with_kw` but does not declare a default constructor when no inner constructor is found. """ macro kw_only(typedef) return esc(with_kw(typedef, __module__, true, false)) end """ As `@with_kw` but does not define a `show` method to avoid annoying redefinition warnings. ```julia @with_kw_noshow struct MM{R} r::R = 1000. a::Int = 4 end ``` For more details see manual. """ macro with_kw_noshow(typedef) return esc(with_kw(typedef, __module__, false)) end ########### # @consts macro """ """ macro consts(block) @assert block.head == :block args = block.args for i in eachindex(args) a = args[i] if a isa LineNumberNode continue elseif a.head == :(=) args[i] = Expr(:const, args[i]) else error("Could not parse block") end end return esc(block) end end # module
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
149
using Aqua using PsychometricsBazaarBase Aqua.test_all(PsychometricsBazaarBase, ambiguities=false) Aqua.test_ambiguities([PsychometricsBazaarBase])
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
205
using XUnit @testset runner=ParallelTestRunner() xml_report=true "top" begin @testset "aqua" begin include("./aqua.jl") end @testset "smoke" begin include("./smoke.jl") end end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
code
276
using PsychometricsBazaarBase.Integrators using PsychometricsBazaarBase.Optimizers using Optim const things = [ OneDimOptimOptimizer(-6.0, 6.0, NelderMead()), QuadGKIntegrator(-6, 6, 5), FixedGKIntegrator(-6, 6, 80), ] for thing in things thing(x -> x) end
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
387
## PsychometricsBazaarBase.jl This module provides a base for the libraries in the JuliaPsychometricsBazaar org. It contains abstractions over basic mathematical techniques such as numerical integration, optimization and interpolation. Ideally, the package will be transitional, since functionality may make its way into more specific packages (including existing packages) over time.
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
132
# ConfigTools ```@autodocs Modules = [PsychometricsBazaarBase.ConfigTools] ``` ## Index ```@index Pages = ["config_tools.md"] ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
154
# ConstDistributions ```@autodocs Modules = [PsychometricsBazaarBase.ConstDistributions] ``` ## Index ```@index Pages = ["const_distributions.md"] ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
669
# PsychometricsBazaarBase.jl This module provides a base for the libraries in the JuliaPsychometricsBazaar org. It contains abstractions over basic mathematical techniques such as numerical integration, optimization and interpolation. Ideally, the package will be transitional, since functionality may make its way into more specific packages (including existing packages) over time. ```@meta CurrentModule = PsychometricsBazaarBase ``` ```@autodocs Modules = [PsychometricsBazaarBase] ``` ## Contents ```@contents Pages = ["integrators.md", "optimizers.md", "config_tools.md", "integral_coeffs.md", "const_distributions.md"] Depth = 1 ``` ## Index ```@index ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
141
# IntegralCoeffs ```@autodocs Modules = [PsychometricsBazaarBase.IntegralCoeffs] ``` ## Index ```@index Pages = ["integral_coeffs.md"] ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
131
# Integrators ```@autodocs Modules = [PsychometricsBazaarBase.Integrators] ``` ## Index ```@index Pages = ["integrators.md"] ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.7.1
87584893ede30d7fd400a225c58b97bb9e43a00e
docs
128
# Optimizers ```@autodocs Modules = [PsychometricsBazaarBase.Optimizers] ``` ## Index ```@index Pages = ["optimizers.md"] ```
PsychometricsBazaarBase
https://github.com/JuliaPsychometricsBazaar/PsychometricsBazaarBase.jl.git
[ "MIT" ]
0.1.0
1307f039f3837b97d26fdfb1979ea75acb9b057f
code
4834
module DICOMTree import Term.Trees: Tree, TreeCharSet, print_node, print_key, Theme, TERM_THEME, _TREE_PRINTING_TITLE import Term.Style: apply_style using DICOM export Tree function apply_style(text::AbstractString, style::String) text = convert(String, text) apply_style(text, style) end function get_name_from_tag(gelt::Tuple{UInt16,UInt16}) if gelt[1] & 0xff00 == 0x5000 gelt = (0x5000, gelt[2]) elseif gelt[1] & 0xff00 == 0x6000 gelt = (0x6000, gelt[2]) end r = get(DICOM.dcm_dict, gelt, DICOM.empty_vr_lookup) (r[1] == "") ? (return gelt) : (return r[1]) end """ Tree( tree; with_keys::Bool = false, guides::Union{TreeCharSet,Symbol} = :standardtree, theme::Theme = TERM_THEME[], printkeys::Union{Nothing,Bool} = true, print_node_function::Function = print_node, print_key_function::Function = print_key, title::Union{String, Nothing}=nothing, prefix::String = " ", kwargs..., ) Constructor for `Tree` It uses `AbstractTrees.print_tree` to get a string representation of `tree` (any object compatible with the `AbstractTrees` packge). Applies style to the string and creates a renderable `Tree`. Arguments: - `tree`: anything compatible with `AbstractTree` - 'with_keys': if `true` print DICOM keys (e.g. : (0x0010, 0x0020)). If `false`, print DICOM tags( e.g. : PatientID). - `guides`: if a symbol, the name of preset tree guides types. Otherwise an instance of `AbstractTrees.TreeCharSet` - `theme`: `Theme` used to set tree style. - `printkeys`: If `true` print keys. If `false` don't print keys. - `print_node_function`: Function used to print nodes. - `print_key_function`: Function used to print keys. - `title`: Title of the tree. - `prefix`: Prefix to be used in `AbstractTrees.print_tree` For other kwargs look at `AbstractTrees.print_tree` """ function Tree( dicom::DICOM.DICOMData; with_keys::Bool=false, guides::Union{TreeCharSet,Symbol}=:standardtree, theme::Theme=Theme(tree_max_leaf_width=displaysize(stdout)[2]), printkeys::Union{Nothing,Bool}=true, print_node_function::Function=print_node, print_key_function::Function=print_key, title::Union{String,Nothing}="", prefix::String=" ", kwargs... ) _TREE_PRINTING_TITLE[] = title _theme = TERM_THEME[] TERM_THEME[] = theme md = haskey(kwargs, :maxdepth) ? kwargs[:maxdepth] : 2 format(x, md) = x function format(x::AbstractArray, md)::Tree return (Tree(Dict("Size" => string(size(x)), "Type" => typeof(x)), with_keys=with_keys, guides=guides, title="Array", maxdepth=md)) end function format(x::Vector, md)::Tree if length(x) <= 6 return Tree(string(x), with_keys=with_keys, guides=guides) else return Tree(Dict("Length" => length(x), "ElementsType" => eltype(x), "Overview" => string(x[begin:begin+2])[1:end-1] * ", ..., " * string(x[end-3:end-1])[2:end]), guides=guides, title="Vector", maxdepth=md) end end function format(x::DICOM.DICOMData, md)::Tree return Tree(x.meta, with_keys=with_keys, guides=guides, title="", maxdepth=md) end function format(x::Vector{DICOM.DICOMData}, md)::Tree if md >= 2 return Tree(Tree.(x, with_keys=with_keys, guides=guides, title="", maxdepth=md), with_keys=with_keys, guides=guides, title="", maxdepth=md) else return Tree(Dict("Length" => length(keys(x))), with_keys=with_keys, guides=guides, title="Vector of DICOMData", maxdepth=md) end end tree = Dict() if with_keys for symbol in keys(dicom.meta) tree[symbol] = format(dicom[symbol], md - 1) end else for symbol in get_name_from_tag.(keys(dicom.meta)) tree[symbol] = format(dicom[symbol], md - 1) end end if haskey(tree, :PatientID) title = string(tree[:PatientID]) else title = "" end return Tree(tree, with_keys=with_keys, guides=guides, title=title, maxdepth=md - 1) end function Tree( dicom_vector::Vector{DICOM.DICOMData}; with_keys::Bool=false, guides::Union{TreeCharSet,Symbol}=:standardtree, theme::Theme=Theme(tree_max_leaf_width=displaysize(stdout)[2]), printkeys::Union{Nothing,Bool}=true, print_node_function::Function=print_node, print_key_function::Function=print_key, title::Union{String,Nothing}="", prefix::String=" ", kwargs... ) md = haskey(kwargs, :maxdepth) ? kwargs[:maxdepth] : 2 return Tree(Tree.(dicom_vector, with_keys=with_keys, guides=guides, title="", maxdepth=md), with_keys=with_keys, guides=guides, title="", maxdepth=md) end end
DICOMTree
https://github.com/fdekerme/DICOMTree.jl.git
[ "MIT" ]
0.1.0
1307f039f3837b97d26fdfb1979ea75acb9b057f
code
91
using DICOMTree using Test @testset "DICOMTree.jl" begin # Write your tests here. end
DICOMTree
https://github.com/fdekerme/DICOMTree.jl.git
[ "MIT" ]
0.1.0
1307f039f3837b97d26fdfb1979ea75acb9b057f
docs
4633
# DICOMTree A little Julia package for visualizing DICOM file metadata in the form of a tree. The main function is the Tree function, which is simply a dispatch of the eponymous function in the Term.jl package to the DICOMData type in the DICOM.jl package. The package have been tested with CT Scanner, RTDose and RTStruct files. ## Documentation & installation Install with: ``` julia> ] # enters the pkg interface pkg> add DICOMTree ``` ## How to use DICOMTree.jl ? ```julia using DICOM using DICOMTree dcm_file = dcm_parse(dcm_path) Tree(dcm_file, with_keys::Bool=false, maxdepth = 2) ``` Output (with colours in the REPL) : ``` PatientID β”œβ”€ StructureSetName β‡’ ART: Unapproved β”œβ”€ StudyDate β‡’ 20180802 β”œβ”€ StructureSetROISequence β‡’ Vector of DICOMData β”‚ └─ Length β‡’ 46 β”‚ β”œβ”€ SeriesInstanceUID β‡’ 1.2.276 β”œβ”€ MediaStorageSOPClassUID β‡’ 1.2.840 β”œβ”€ SoftwareVersions β‡’ v1.0 β”œβ”€ ImplementationVersionName β‡’ OFFIS_DCMTK_364 β”œβ”€ Modality β‡’ RTSTRUCT β”œβ”€ PatientName β‡’ xxx β”œβ”€ OperatorsName β‡’ xxx β”œβ”€ ApprovalStatus β‡’ UNAPPROVED β”œβ”€ InstitutionName β‡’ Any[] β”‚ β”œβ”€ ReferencedFrameOfReferenceSequence β‡’ Vector of DICOMData β”‚ └─ Length β‡’ 1 β”‚ β”œβ”€ SOPInstanceUID β‡’ 1.2.276 β”œβ”€ SpecificCharacterSet β‡’ ISO_IR 100 β”œβ”€ PatientID β‡’ xxx β”œβ”€ ImplementationClassUID β‡’ 1.2.276 β”œβ”€ StudyTime β‡’ xxx β”œβ”€ StructureSetTime β‡’ 123456 β”œβ”€ StudyDescription β‡’ Brain β”œβ”€ ROIContourSequence β‡’ Vector of DICOMData β”‚ └─ Length β‡’ 46 β”‚ β”œβ”€ ReviewTime β‡’ Any[] β”‚ β”œβ”€ StudyID β‡’ 123456 β”œβ”€ SeriesNumber β‡’ 1 β”œβ”€ SOPClassUID β‡’ 1.2.840 β”œβ”€ StudyInstanceUID β‡’ 1.2.826 β”œβ”€ TransferSyntaxUID β‡’ 1.2.840 β”œβ”€ AccessionNumber β‡’ Any[] β”‚ β”œβ”€ StructureSetDate β‡’ 12345678 β”œβ”€ ManufacturerModelName β‡’ xxx β”œβ”€ PatientSex β‡’ Any[] β”‚ β”œβ”€ InstanceNumber β‡’ 1 β”œβ”€ FileMetaInformationGroupLength β‡’ 202 β”œβ”€ ReferringPhysicianName β‡’ Unspecified β”œβ”€ Manufacturer β‡’ TheraPanacea β”œβ”€ ReviewDate β‡’ Any[] β”‚ β”œβ”€ InstanceCreationTime β‡’ 123456 β”œβ”€ FileMetaInformationVersion β‡’ UInt8[0x00, 0x01] β”‚ β”œβ”€ RTROIObservationsSequence β‡’ Vector of DICOMData β”‚ └─ Length β‡’ 46 β”‚ β”œβ”€ MediaStorageSOPInstanceUID β‡’ 1.2.276 β”œβ”€ StructureSetLabel β‡’ ART: Unapproved β”œβ”€ SeriesDescription β‡’ xxx β”œβ”€ PatientBirthDate β‡’ 12345678 └─ InstanceCreationDate β‡’ 12345678 ``` - `with_keys = true` will replace the name with the associated tag (e.g. : (0x0010, 0x0020) if true and PatientID if false). Default is false. - `maxdepth` defines the depth at which the DICOM tree is explored. Default is 2. Note that a high scan depth may take a few seconds to be displayed. Then, we can focus on a specifi tag : ```Julia Tree(rs.ROIContourSequence, maxdepth = 3) ``` Output (with colours in the REPL) : ``` └─ 1 β‡’ β”œβ”€ ContourSequence β‡’ β”‚ β”œβ”€ 1 β‡’ β”‚ β”‚ β”œβ”€ ContourGeometricType β‡’ CLOSED_PLANAR β”‚ β”‚ β”œβ”€ ContourData β‡’ Vector β”‚ β”‚ β”‚ β”œβ”€ Length β‡’ 3948 β”‚ β”‚ β”‚ β”œβ”€ ElementsType β‡’ Float64 β”‚ β”‚ β”‚ └─ Overview β‡’ [5.12, -245.33, -124.0, ..., -124.0, 4.4, -245.2] β”‚ β”‚ β”‚ β”‚ β”‚ β”œβ”€ ContourNumber β‡’ 0 β”‚ β”‚ β”œβ”€ NumberOfContourPoints β‡’ 1316 β”‚ β”‚ └─ ContourImageSequence β‡’ Vector of DICOMData β”‚ β”‚ └─ Length β‡’ 1 β”‚ β”‚ β”‚ β”‚ β”‚ β”œβ”€ 2 β‡’ β”‚ β”‚ β”œβ”€ ContourGeometricType β‡’ CLOSED_PLANAR β”‚ β”‚ β”œβ”€ ContourData β‡’ Vector β”‚ β”‚ β”‚ β”œβ”€ Length β‡’ 3936 β”‚ β”‚ β”‚ β”œβ”€ ElementsType β‡’ Float64 β”‚ β”‚ β”‚ └─ Overview β‡’ [12.78, -245.33, -122.0, ..., -122.0, 12.06, -245.2] β”‚ β”‚ β”‚ β”‚ β”‚ β”œβ”€ ContourNumber β‡’ 1 β”‚ β”‚ β”œβ”€ NumberOfContourPoints β‡’ 1312 β”‚ β”‚ └─ ContourImageSequence β‡’ Vector of DICOMData β”‚ β”‚ └─ Length β‡’ 1 ... ```
DICOMTree
https://github.com/fdekerme/DICOMTree.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
723
using Documenter, SkewLinearAlgebra, LinearAlgebra using .DocMeta: setdocmeta! setdocmeta!(SkewLinearAlgebra, :DocTestSetup, :(using SkewLinearAlgebra, LinearAlgebra); recursive=true) makedocs( modules = [SkewLinearAlgebra], clean = false, sitename = "SkewLinearAlgebra Documentation", authors = "Simon Mataigne, Steven G. Johnson, and contributors.", pages = [ "Home" => "index.md", "Matrix Types" => "types.md", "Eigenproblems" => "eigen.md", "Exponential/Trigonometric functions" => "trig.md", "Pfaffians" => "pfaffian.md", "Skew-Cholesky" => "skewchol.md", ], ) deploydocs(repo="github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl")
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
785
# This file is a part of Julia. License is MIT: https://julialang.org/license """ This module based on the LinearAlgebra module provides specialized functions and types for skew-symmetricmatrices, i.e A=-A^T """ module SkewLinearAlgebra using LinearAlgebra import LinearAlgebra as LA export #Types SkewHermitian, SkewHermTridiagonal, SkewCholesky, JMatrix, #functions isskewhermitian, isskewsymmetric, skewhermitian, skewhermitian!, pfaffian, pfaffian!, logabspfaffian, logabspfaffian!, skewchol, skewchol! include("skewhermitian.jl") include("tridiag.jl") include("jmatrix.jl") include("hessenberg.jl") include("skeweigen.jl") include("eigen.jl") include("exp.jl") include("cholesky.jl") include("pfaffian.jl") end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
3577
# This file is a part of Julia. License is MIT: https://julialang.org/license struct SkewCholesky{T,R<:UpperTriangular{<:T},J<:JMatrix{<:T},P<:AbstractVector{<:Integer}} R::R #Uppertriangular matrix J::J # Block diagonal skew-symmetric matrix of type JMatrix p::P #Permutation vector function SkewCholesky{T,R,J,P}(Rm,Jm,pv) where {T,R,J,P} LA.require_one_based_indexing(Rm) new{T,R,J,P}(Rm,Jm,pv) end end """ SkewCholesky(R,p) Construct a `SkewCholesky` structure from the `UpperTriangular` matrix `R` and the permutation vector `p`. A matrix `J` of type `JMatrix` is build calling this function. The `SkewCholesky` structure has three arguments: `R`,`J` and `p`. """ function SkewCholesky(R::UpperTriangular{<:T},p::AbstractVector{<:Integer}) where {T<:Real} n = size(R, 1) return SkewCholesky{T,typeof(R),JMatrix{T,+1},typeof(p)}(R, JMatrix{T,+1}(n), p) end function _skewchol!(A::SkewHermitian{<:Real}) @views B = A.data tol = 1e-15 * norm(B) m = size(B,1) m == 1 && return [1] J2 = similar(B,2,2) J2[1,1] = 0; J2[2,1] = -1; J2[1,2] = 1; J2[2,2] = 0 ii = 0; jj = 0; kk = 0 P = Array(1:m) tempM = similar(B,2,m-2) for j = 1:mΓ·2 j2 = 2*j M = findmax(B[j2-1:m,j2-1:m]) ii = M[2][1] + j2 - 2 jj = M[2][2] + j2 - 2 abs(B[ii,jj])<tol && return P kk= (jj == j2-1 ? ii : jj) if ii != j2-1 P[ii],P[j2-1] = P[j2-1],P[ii] for t = 1:m B[t,ii], B[t,j2-1] = B[t,j2-1], B[t,ii] end for t = 1:m B[ii,t], B[j2-1,t] = B[j2-1,t], B[ii,t] end end if kk != j2 P[kk],P[j2] = P[j2],P[kk] for t = 1:m B[t,kk], B[t,j2] = B[t,j2], B[t,kk] end for t = 1:m B[kk,t], B[j2,t] = B[j2,t], B[kk,t] end end l = m-j2 r = sqrt(B[j2-1,j2]) B[j2-1,j2-1] = r B[j2,j2] = r B[j2-1,j2] = 0 @views mul!(tempM[:,1:l], J2, B[j2-1:j2,j2+1:m]) B[j2-1:j2,j2+1:m] .= tempM[:,1:l] B[j2-1:j2,j2+1:m] .*= (-1/r) @views mul!(tempM[:,1:l], J2, B[j2-1:j2,j2+1:m]) @views mul!(B[j2+1:m,j2+1:m], transpose(B[j2-1:j2,j2+1:m]), tempM[:,1:l],-1,1) end return P end copyeigtype(A::AbstractMatrix) = copyto!(similar(A, LA.eigtype(eltype(A))), A) @views function skewchol!(A::SkewHermitian) P = _skewchol!(A) return SkewCholesky(UpperTriangular(A.data), P) end skewchol(A::SkewHermitian) = skewchol!(copyeigtype(A)) """ skewchol!(A) Similar to [`skewchol!`](@ref), but overwrites `A` in-place with intermediate calculations. """ skewchol!(A::AbstractMatrix) = @views skewchol!(SkewHermitian(A)) """ skewchol(A) Computes a Cholesky-like factorization of the real skew-symmetric matrix `A`. The function returns a `SkewCholesky` structure composed of three fields: `R`,`J`,`p`. `R` is `UpperTriangular`, `J` is a `JMatrix`, `p` is an array of integers. Let `S` be the returned structure, then the factorization is such that `S.R'*S.J*S.R = A[S.p,S.p]` This factorization (and the underlying algorithm) is described in from P. Benner et al, "[Cholesky-like factorizations of skew-symmetric matrices](https://etna.ricam.oeaw.ac.at/vol.11.2000/pp85-93.dir/pp85-93.pdf)"(2000). """ function skewchol(A::AbstractMatrix) isskewhermitian(A) || throw(ArgumentError("Pfaffian requires a skew-Hermitian matrix")) return skewchol!(SkewHermitian(copyeigtype(A))) end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
4447
# Based on eigen.jl in Julia. License is MIT: https://julialang.org/license @views function LA.eigvals!(A::SkewHermitian{<:Real}, sortby::Union{Function,Nothing}=nothing) vals = imag.(skeweigvals!(A)) !isnothing(sortby) && sort!(vals, by = sortby) return complex.(0, vals) end @views function LA.eigvals!(A::SkewHermitian{<:Real}, irange::UnitRange) vals = skeweigvals!(A, irange) return complex.(0, vals) end @views function LA.eigvals!(A::SkewHermitian{<:Real}, vl::Real,vh::Real) vals = skeweigvals!(A, -vh, -vl) return complex.(0, vals) end @views function LA.eigvals!(A::SkewHermitian{<:Complex}, sortby::Union{Function,Nothing}=nothing) H = Hermitian(A.data.*1im) if sortby === nothing return complex.(0, - eigvals!(H)) end vals = eigvals!(H, sortby) reverse!(vals) vals.= .-vals return complex.(0, vals) end @views function LA.eigvals!(A::SkewHermitian{<:Complex}, irange::UnitRange) H = Hermitian(A.data.*1im) vals = eigvals!(H,-irange) vals .= .-vals return complex.(0, vals) end @views function LA.eigvals!(A::SkewHermitian{<:Complex}, vl::Real,vh::Real) H = Hermitian(A.data.*1im) vals = eigvals!(H,-vh,-vl) vals .= .-vals return complex.(0, vals) end LA.eigvals(A::SkewHermitian, sortby::Union{Function,Nothing}) = eigvals!(copyeigtype(A), sortby) LA.eigvals(A::SkewHermitian, irange::UnitRange) = eigvals!(copyeigtype(A), irange) LA.eigvals(A::SkewHermitian, vl::Real,vh::Real) = eigvals!(copyeigtype(A), vl,vh) # no need to define LA.eigen(...) since the generic methods should work @views function skeweigvals!(S::SkewHermitian{<:Real}) n = size(S.data, 1) n == 1 && return [S.data[1,1]] E = skewblockedhess!(S)[2] H = SkewHermTridiagonal(E) return skewtrieigvals!(H) end @views function skeweigvals!(S::SkewHermitian{<:Real},irange::UnitRange) n = size(S.data,1) n == 1 && return [S.data[1,1]] E = skewblockedhess!(S)[2] H = SymTridiagonal(zeros(eltype(E), n), E) vals = eigvals!(H,irange) return vals .= .-vals end @views function skeweigvals!(S::SkewHermitian{<:Real},vl::Real,vh::Real) n = size(S.data,1) n == 1 && imag(S.data[1,1]) > vl && imag(S.data[1,1]) < vh && return [S.data[1,1]] E = skewblockedhess!(S)[2] H = SymTridiagonal(zeros(eltype(E), n), E) vals = eigvals!(H,vl,vh) return vals .= .-vals end @views function skeweigen!(S::SkewHermitian{T}) where {T<:Real} n = size(S.data, 1) if n == 1 return [S.data[1,1]], ones(T,1,1), zeros(T,1,1) end tau, E = skewblockedhess!(S) Tr = SkewHermTridiagonal(E) H1 = Hessenberg{typeof(zero(eltype(S.data))),typeof(Tr),typeof(S.data),typeof(tau),typeof(false)}(Tr, 'L', S.data, tau, false) vectorsreal = similar(S, T, n, n) vectorsim = similar(S, T, n, n) Q = Matrix(H1.Q) vals, Qr, Qim = skewtrieigen_divided!(Tr) mul!(vectorsreal, Q, Qr) mul!(vectorsim, Q, Qim) return vals, vectorsreal, vectorsim end @views function LA.eigen!(A::SkewHermitian{<:Real}) vals, Qr, Qim = skeweigen!(A) return Eigen(vals,complex.(Qr, Qim)) end copyeigtype(A::SkewHermitian) = copyto!(similar(A, LA.eigtype(eltype(A))), A) @views function LA.eigen!(A::SkewHermitian{T}) where {T<:Complex} H = Hermitian(A.data.*1im) Eig = eigen!(H) skew_Eig = Eigen(complex.(0,-Eig.values), Eig.vectors) return skew_Eig end LA.eigen(A::SkewHermitian) = LA.eigen!(copyeigtype(A)) @views function LA.svdvals!(A::SkewHermitian{<:Real}) vals = imag.(skeweigvals!(A)) vals .= abs.(vals) return sort!(vals; rev = true) end LA.svdvals!(A::SkewHermitian{<:Complex}) = svdvals!(Hermitian(A.data.*1im)) LA.svdvals(A::SkewHermitian) = svdvals!(copyeigtype(A)) @views function LA.svd!(A::SkewHermitian{<:Real}) n = size(A, 1) E = eigen!(A) U = E.vectors vals = imag.(E.values) I = sortperm(vals; by = abs, rev = true) permute!(vals, I) Base.permutecols!!(U, I) V = U .* -1im @inbounds for i=1:n if vals[i] < 0 vals[i]=-vals[i] @simd for j=1:n V[j,i]=-V[j,i] end end end return LA.SVD(U, vals, adjoint(V)) end @views function LA.svd(A::SkewHermitian{T}) where {T<:Complex} H = Hermitian(A.data.*1im) Svd = svd(H) return SVD(Svd.U , Svd.S, (Svd.Vt).*(-1im)) end LA.svd(A::SkewHermitian{<:Real}) = svd!(copyeigtype(A))
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
8404
# This file is a part of Julia. License is MIT: https://julialang.org/license function skewexp!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A, 1) if typeof(A) <:SkewHermitian vals, Qr, Qim = skeweigen!(A) else E = eigen!(A) vals = E.values Qr = real(E.vectors) Qim = imag(E.vectors) end temp2 = similar(A, n, n) Q1 = similar(A, n, n) Q2 = similar(A, n, n) Cos = similar(A, n) Sin = similar(A, n) @simd for i = 1 : n @inbounds Sin[i], Cos[i] = sincos(imag(vals[i])) end C = Diagonal(Cos) S = Diagonal(Sin) mul!(Q1, Qr, C) mul!(Q2, Qim, S) Q1 .-= Q2 mul!(temp2, Q1, transpose(Qr)) mul!(Q1, Qr, S) mul!(Q2, Qim, C) Q1 .+= Q2 mul!(Q2, Q1, transpose(Qim)) temp2 .+= Q2 return temp2 end @views function skewexp!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A, 1) Eig = eigen!(A) eig = exp.(Eig.values) temp = similar(A, n, n) Exp = similar(A, n, n) mul!(temp, Diagonal(eig), Eig.vectors') mul!(Exp,Eig.vectors,temp) return Exp end Base.exp(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewexp!(copyeigtype(A)) function skewlog!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A, 1) isodd(n) && throw(DomainError("Logarithm of a singular matrix doesn't exist")) if typeof(A) <:SkewHermitian vals, Qr, Qim = skeweigen!(A) else E = eigen!(A) vals = E.values Qr = real(E.vectors) Qim = imag(E.vectors) end temp2 = similar(A, n, n) Q1 = similar(A, n, n) Q2 = similar(A, n, n) r = similar(A, n) ΞΈ = similar(A, n) @simd for i = 1 : n iszero(vals[i]) && throw(DomainError("Logarithm of a singular matrix doesn't exist")) @inbounds r[i], ΞΈ[i] = log(abs(vals[i])), sign(imag(vals[i])) * Ο€ / 2 end R = Diagonal(r) Θ = Diagonal(ΞΈ) mul!(Q1, Qr, R) mul!(Q2, Qim, Θ ) Q1 .-= Q2 mul!(temp2, Q1, transpose(Qr)) mul!(Q1, Qr, Θ) mul!(Q2, Qim, R) Q1 .+= Q2 mul!(Q2, Q1, transpose(Qim)) temp2 .+= Q2 return temp2 end @views function skewlog!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A, 1) Eig = eigen!(A) eig = log.(Eig.values) temp = similar(A, n, n) Exp = similar(A, n, n) mul!(temp, Diagonal(eig), Eig.vectors') mul!(Exp,Eig.vectors,temp) return Exp end Base.log(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewlog!(copyeigtype(A)) @views function skewcis!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A, 1) Eig = eigen!(A) Q = Eig.vectors temp = similar(Q, n, n) temp2 = similar(Q, n, n) eig = @. exp(-imag(Eig.values)) E = Diagonal(eig) mul!(temp, Q, E) mul!(temp2, temp, adjoint(Q)) return Hermitian(temp2) end @views function skewcis!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A,1) Eig = eigen!(A) eig = @. exp(-imag(Eig.values)) Cis = similar(A, n, n) temp = similar(A, n, n) mul!(temp, Eig.vectors, Diagonal(eig)) mul!(Cis, temp, Eig.vectors') return Hermitian(Cis) end @views function skewcos!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A,1) if typeof(A) <:SkewHermitian vals, Qr, Qim = skeweigen!(A) else E = eigen!(A) vals = E.values Qr = real(E.vectors) Qim = imag(E.vectors) end temp2 = similar(A, n, n) Q1 = similar(A, n, n) Q2 = similar(A, n, n) eig = @. exp(-imag(vals)) E = Diagonal(eig) mul!(Q1, Qr, E) mul!(Q2, Qim, E) mul!(temp2, Q1, transpose(Qr)) mul!(Q1, Q2, transpose(Qim)) Q1 .+= temp2 return Hermitian(Q1) end @views function skewcos!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A,1) Eig = eigen!(A) eig1 = @. exp(-imag(Eig.values)) eig2 = @. exp(imag(Eig.values)) Cos = similar(A, n, n) temp = similar(A, n, n) temp2 = similar(A, n, n) mul!(temp, Eig.vectors, Diagonal(eig1)) mul!(temp2, temp, Eig.vectors') mul!(temp, Eig.vectors, Diagonal(eig2)) mul!(Cos, temp, Eig.vectors') Cos .+= temp2 Cos ./= 2 return Hermitian(Cos) end @views function skewsin!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A, 1) if typeof(A) <:SkewHermitian vals, Qr, Qim = skeweigen!(A) else E = eigen!(A) vals = E.values Qr = real(E.vectors) Qim = imag(E.vectors) end temp2 = similar(A, n, n) Q1 = similar(A, n, n) Q2 = similar(A, n, n) eig = @. exp(-imag(vals)) E = Diagonal(eig) mul!(Q1, Qr, E) mul!(Q2, Qim, E) mul!(temp2, Q1, transpose(Qim)) mul!(Q1, Q2, transpose(Qr)) Q1 .-= temp2 return skewhermitian!(Q1) end @views function skewsin!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A,1) Eig = eigen!(A) eig1 = @. exp(-imag(Eig.values)) eig2 = @. exp(imag(Eig.values)) Sin = similar(A,n,n) temp = similar(A,n,n) temp2 = similar(A,n,n) mul!(temp,Eig.vectors,Diagonal(eig1)) mul!(Sin,temp,Eig.vectors') mul!(temp,Eig.vectors,Diagonal(eig2)) mul!(temp2,temp,Eig.vectors') Sin .-= temp2 Sin ./= -2 Sin .*= 1im return skewhermitian!(Sin) end Base.cis(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewcis!(copyeigtype(A)) Base.cos(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewcos!(copyeigtype(A)) Base.sin(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewsin!(copyeigtype(A)) @views function skewsincos!(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} n = size(A,1) if typeof(A) <:SkewHermitian vals, Qr, Qim = skeweigen!(A) else E = eigen!(A) vals = E.values Qr = real(E.vectors) Qim = imag(E.vectors) end temp2 = similar(A, n, n) Cos = similar(A, n, n) Sin = similar(A, n, n) Q2 = similar(A, n, n) eig = @. exp(-imag(vals)) E = Diagonal(eig) mul!(Sin, Qr, E) mul!(Q2, Qim, E) mul!(temp2, Sin, transpose(Qr)) mul!(Cos, Q2, transpose(Qim)) Cos .+= temp2 mul!(temp2, Sin, transpose(Qim)) mul!(Sin, Q2, transpose(Qr)) Sin .-= temp2 return skewhermitian!(Sin), Hermitian(Cos) end @views function skewsincos!(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) n = size(A, 1) Eig = eigen!(A) eig1 = @. exp(-imag(Eig.values)) eig2 = @. exp(imag(Eig.values)) Sin = similar(A, n, n) Cos = similar(A, n, n) temp = similar(A, n, n) temp2 = similar(A, n, n) mul!(temp, Eig.vectors, Diagonal(eig1)) mul!(Sin, temp, Eig.vectors') mul!(temp, Eig.vectors, Diagonal(eig2)) mul!(temp2, temp, Eig.vectors') Cos .= Sin Cos .+= temp2 Cos ./= 2 Sin .-= temp2 Sin .*= -1im/2 return skewhermitian!(Sin), Hermitian(Cos) end Base.sincos(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewsincos!(copyeigtype(A)) Base.sinh(A::Union{SkewHermitian,SkewHermTridiagonal}) = skewhermitian!(exp(A)) Base.cosh(A::Union{SkewHermitian{T},SkewHermTridiagonal{T}}) where {T<:Real} = hermitian!(exp(A)) function Base.cosh(A::Union{SkewHermitian{<:Complex},SkewHermTridiagonal{<:Complex}}) B = hermitian!(exp(A)) return Hermitian(complex.(real(B),-imag(B))) end function Base.tan(A::Union{SkewHermitian,SkewHermTridiagonal}) S, C = sincos(A) return skewhermitian!(C \ S) end function Base.tanh(A::Union{SkewHermitian,SkewHermTridiagonal}) E = exp(2A) return skewhermitian!((E+I)\(E-I)) end function Base.cot(A::Union{SkewHermitian,SkewHermTridiagonal}) S, C = sincos(A) return skewhermitian!(S \ C) end function Base.coth(A::Union{SkewHermitian,SkewHermTridiagonal}) E = exp(2A) return skewhermitian!((E-I) \ (E+I)) end # someday this should be in LinearAlgebra: https://github.com/JuliaLang/julia/pull/31836 function hermitian!(A::AbstractMatrix{<:Number}) LA.require_one_based_indexing(A) n = LA.checksquare(A) @inbounds for i in 1:n A[i,i] = real(A[i,i]) for j = 1:i-1 A[i,j] = A[j,i] = (A[i,j] + A[j,i]')/2 end end return LA.Hermitian(A) end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
5204
# This file is a part of Julia. License is MIT: https://julialang.org/license LA.HessenbergQ(F::Hessenberg{<:Any,<:SkewHermTridiagonal,S,W}) where {S,W} = LA.HessenbergQ{eltype(F.factors),S,W,true}(F.uplo, F.factors, F.Ο„) @views function LA.hessenberg!(A::SkewHermitian{T}) where {T} Ο„, Ξ· = skewblockedhess!(A) if T <: Complex Tr=SkewHermTridiagonal(convert.(T, Ξ·), imag( diag(A.data))) else Tr=SkewHermTridiagonal(Ξ·) end return Hessenberg{typeof(zero(eltype(A.data))),typeof(Tr),typeof(A.data),typeof(Ο„),typeof(false)}(Tr, 'L', A.data, Ο„, false) end LA.hessenberg(A::SkewHermitian)=hessenberg!(copyeigtype(A)) """ householder!(x,n) Takes `x::AbstractVector{T}` and its size `n` as input. Computes the associated householder reflector v overwitten in x. The reflector matrix is H = I-Ο„ * v * v'. Returns Ο„ as first output and Ξ² as second output where Ξ² is the first element of the output vector of H*x. """ @views function householder!(x::AbstractVector{T},n::Integer) where {T} if n == 1 && T <:Real return T(0), real(x[1]) # no final 1x1 reflection for the real case end xnorm = norm(x[2:end]) Ξ± = x[1] if !iszero(xnorm) || (!iszero(Ξ±)) Ξ² = (real(Ξ±) > 0 ? -1 : +1) * hypot(Ξ±,xnorm) Ο„ = 1 - Ξ± / Ξ² Ξ± = 1 / (Ξ± - Ξ²) x[1] = 1 x[2:n] .*= Ξ± else Ο„ = T(0) x .= 0 Ξ² = real(T)(0) end return Ο„, Ξ² end @views function ger2!(Ο„::Number , v::StridedVector{T} , s::StridedVector{T}, A::StridedMatrix{T}) where {T<:LA.BlasFloat} Ο„2 = promote(Ο„, zero(T))[1] if Ο„2 isa Union{Bool,T} return LA.BLAS.ger!(Ο„2, v, s, A) else iszero(Ο„2) && return m = length(v) n = length(s) @inbounds for j = 1:n temp = Ο„2 * s[j]' @simd for i=1:m A[i,j] += v[i] * temp end end end end @views function lefthouseholder!(A::AbstractMatrix,v::AbstractArray,s::AbstractArray,Ο„::Number) mul!(s, adjoint(A), v) ger2!(-Ο„', v, s, A) return end @views function skewhess!(A::AbstractMatrix{T},Ο„::AbstractVector,Ξ·::AbstractVector) where {T} n = size(A, 1) atmp = similar(A, n) @inbounds (for i = 1:n-1 Ο„_s, Ξ± = householder!(A[i+1:end,i], n - i) @views v = A[i+1:end,i] Ξ·[i] = Ξ± lefthouseholder!(A[i+1:end,i+1:end], v, atmp[i+1:end], Ο„_s) s = mul!(atmp[i+1:end], A[i+1:end,i+1:end], v) for j=i+1:n A[j,j] -= Ο„_s * s[j-i] * v[j-i]' for k=j+1:n A[k,j] -= Ο„_s * s[k-i] * v[j-i]' A[j,k] = -A[k,j]' end end Ο„[i] = Ο„_s end) return end @views function skewlatrd!(A::AbstractMatrix{T},Ξ·::AbstractVector,W::AbstractMatrix,Ο„::AbstractVector,tempconj::AbstractVector,n::Number,nb::Number) where {T} @inbounds(for i=1:nb if i>1 if T <: Complex @simd for j = 1:i-1 tempconj[j] = conj(W[i,j]) end mul!(A[i:n,i], A[i:n,1:i-1], tempconj[1:i-1], 1, 1) @simd for j=1:i-1 tempconj[j] = conj(A[i,j]) end mul!(A[i:n,i], W[i:n,1:i-1], tempconj[1:i-1], -1, 1) else mul!(A[i:n,i], A[i:n,1:i-1], W[i,1:i-1], 1, 1) mul!(A[i:n,i], W[i:n,1:i-1], A[i,1:i-1], -1, 1) end end #Generate elementary reflector H(i) to annihilate A(i+2:n,i) Ο„_s,Ξ± = householder!(A[i+1:n,i],n-i) Ξ·[i] = Ξ± mul!(W[i+1:n,i], A[i+1:n,i+1:n], A[i+1:n,i], 1, 0) if i>1 mul!(W[1:i-1,i], adjoint(W[i+1:n,1:i-1]), A[i+1:n,i]) mul!(W[i+1:n,i], A[i+1:n,1:i-1], W[1:i-1,i], 1, 1) mul!(W[1:i-1,i], adjoint(A[i+1:n,1:i-1]),A[i+1:n,i]) mul!(W[i+1:n,i], W[i+1:n,1:i-1], W[1:i-1,i], -1, 1) end W[i+1:n,i] .*= Ο„_s if T<:Complex Ξ± = Ο„_s * dot(W[i+1:n,i],A[i+1:n,i]) / 2 W[i+1:n,i] .+= Ξ±.*A[i+1:n,i] end Ο„[i] = Ο„_s end) return end function setnb(n::Integer) if n<=12 return max(n-4,1) elseif n<=100 return 10 else return 60 end return 1 end @views function skewblockedhess!(S::SkewHermitian{T}) where {T} n = size(S.data,1) nb = setnb(n) A = S.data Ξ· = similar(A, real(T), n - 1) Ο„ = similar(A, n - 1) W = similar(A, n, nb) Ξ© = similar(A, n - nb, n - nb) tempconj = similar(A, nb) oldi = 0 @inbounds(for i = 1:nb:n-nb-1 size = n-i+1 skewlatrd!(A[i:n,i:n], Ξ·[i:i+nb-1], W, Ο„[i:i+nb-1], tempconj,size,nb) mul!(Ξ©[1:n-nb-i+1,1:n-nb-i+1], A[i+nb:n,i:i+nb-1], adjoint(W[nb+1:size,:])) s = i+nb-1 for k = 1:n-s A[s+k,s+k] += Ξ©[k,k] - Ξ©[k,k]' @simd for j = k+1:n-s A[s+j,s+k] += Ξ©[j,k] - Ξ©[k,j]' A[s+k,s+j] = - A[s+j,s+k]' end end oldi = i end) oldi += nb if oldi < n skewhess!(A[oldi:n,oldi:n],Ο„[oldi:end],Ξ·[oldi:end]) end return Ο„, Ξ· end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
3485
""" JMatrix{T, Β±1}(n) Creates an `AbstractMatrix{T}` of size `n x n`, representing a block-diagonal matrix whose diagonal blocks are `Β±[0 1; -1 0]`. If `n` is odd, then the last block is the `1 x 1` zero block. The `Β±1` parameter allows us to transpose and invert the matrix, and corresponds to an overall multiplicative sign factor. """ struct JMatrix{T<:Real, SGN} <: AbstractMatrix{T} n::Int # size of the square matrix function JMatrix{T, SGN}(n::Integer) where {T, SGN} n β‰₯ 0 || throw(ArgumentError("size $n must be β‰₯ 0")) (SGN === +1 || SGN === -1) || throw(ArgumentError("SGN parameter must be Β±1")) new{T, SGN}(n) end end JMatrix(n::Integer) = JMatrix{Int8,+1}(n) # default constructor using narrowest integer type Base.size(J::JMatrix) = (J.n, J.n) Base.size(J::JMatrix, n::Integer) = n in (1,2) ? J.n : 1 function Base.Matrix(J::JMatrix{T, SGN}) where {T, SGN} M = zeros(T, J.n, J.n) for i = 1:2:J.n-1 M[i+1,i] = -SGN M[i,i+1] = SGN end return M end Base.Array(A::JMatrix) = Matrix(A) function SkewHermTridiagonal(J::JMatrix{T, SGN}) where {T, SGN} ev = zeros(T, J.n-1) ev[1:2:end] .= -SGN return SkewHermTridiagonal(ev) end Base.@propagate_inbounds function Base.getindex(J::JMatrix{T, SGN}, i::Integer, j::Integer) where {T, SGN} @boundscheck checkbounds(J, i, j) if i == j + 1 && iseven(i) return T(-SGN) elseif i + 1 == j && iseven(j) return T(SGN) else return zero(T) end end function Base.:*(J::JMatrix{T,SGN}, A::StridedVecOrMat) where {T,SGN} LA.require_one_based_indexing(A) m, k = size(A, 1), size(A, 2) if m != J.n throw(DimensionMismatch("J has second dimension $(size(J,2)), A has first dimension $(size(A,1))")) end B = similar(A, typeof(one(T) * oneunit(eltype(A))), J.n, k) @inbounds for j = 1:k, i = 1:2:J.n-1 B[i,j] = SGN * A[i+1,j] B[i+1,j] = (-SGN) * A[i,j] end if isodd(J.n) B[J.n,:] .= 0 end return B end function Base.:*(A::StridedVecOrMat, J::JMatrix{T,SGN}) where {T,SGN} LA.require_one_based_indexing(A) m, k = size(A, 1), size(A, 2) if k != J.n throw(DimensionMismatch("A has second dimension $(size(A,2)), J has first dimension $(size(J,1))")) end B = similar(A, typeof(one(T) * oneunit(eltype(A))), m, J.n) @inbounds for i = 1:2:J.n-1, j = 1:m B[j,i] = (-SGN) * A[j,i+1] B[j,i+1] = SGN * A[j,i] end if isodd(J.n) B[:,J.n] .= 0 end return B end Base.:\(J::JMatrix, A::StridedVecOrMat) = inv(J) * A Base.:/(A::StridedVecOrMat, J::JMatrix) = A * inv(J) Base.:-(J::JMatrix{T,+1}) where T = JMatrix{T,-1}(J.n) Base.:-(J::JMatrix{T,-1}) where T = JMatrix{T,+1}(J.n) LA.transpose(J::JMatrix) = -J LA.adjoint(J::JMatrix) = -J function LA.inv(J::JMatrix) iseven(J.n) || throw(LA.SingularException(J.n)) return -J end LA.tr(J::JMatrix{T}) where T = zero(T) LA.det(J::JMatrix{T}) where T = T(iseven(J.n)) function LA.diag(J::JMatrix{T,SGN}, k::Integer=0) where {T,SGN} v = zeros(T, max(0, J.n - abs(k))) if k == 1 v[1:2:J.n-1] .= SGN elseif k == -1 v[1:2:J.n-1] .= -SGN end return v end # show a "β‹…" for structural zeros when printing function Base.replace_in_print_matrix(A::JMatrix, i::Integer, j::Integer, s::AbstractString) (i == j+1 && iseven(i)) || (i+1 == j && iseven(j)) ? s : Base.replace_with_centered_mark(s) end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git
[ "MIT" ]
1.0.0
5d44a4f56f7902c4414c0a477b021f17cf088cb3
code
8359
# This file is a part of Julia. License is MIT: https://julialang.org/license #using LinearAlgebra: exactdiv if isdefined(LA,:exactdiv) const exactdiv = LA.exactdiv else exactdiv(a,b) = a / b exactdiv(a::Integer, b::Integer) = div(a, b) end if VERSION β‰₯ v"1.7" argmaxabs(a) = argmax(Iterators.map(abs, a)) else argmaxabs(a) = argmax(abs.(a)) end # in-place O(nΒ³) algorithm to compute the exact Pfaffian of # a skew-symmetric matrix over integers (or potentially any ring supporting exact division). # # G. Galbiati & F. Maffioli, "On the computation of pfaffians," # Discrete Appl. Math. 51, 269–275 (1994). # https://doi.org/10.1016/0166-218X(92)00034-J function _exactpfaffian!(A::AbstractMatrix) n = size(A,1) isodd(n) && return zero(eltype(A)) c = one(eltype(A)) signflip = false n = n Γ· 2 while n > 1 # find last k with A[2n-1,k] β‰  0 k = 2n while k > 0 && iszero(A[2n-1,k]); k -= 1; end iszero(k) && return zero(eltype(A)) # swap rows/cols k and 2n if k != 2n for i = 1:2n A[k,i], A[2n,i] = A[2n,i], A[k,i] # swap rows end for i = 1:2n A[i,k], A[i,2n] = A[i,2n], A[i,k] # swap cols end signflip = !signflip end # update, A, c, n for j = 1:2n-2, i = 1:j-1 Ξ΄ = A[2n-1,2n]*A[i,j] - A[i,2n-1]*A[j,2n] + A[j,2n-1]*A[i,2n] A[j,i] = -(A[i,j] = exactdiv(Ξ΄, c)) # @assert A[i,j] * c == Ξ΄ end c = A[2n-1,2n] n -= 1 end return signflip ? -A[1,2] : A[1,2] end function exactpfaffian!(A::AbstractMatrix) LinearAlgebra.require_one_based_indexing(A) isskewsymmetric(A) || throw(ArgumentError("Pfaffian requires a skew-symmetric matrix")) return _exactpfaffian!(A) end exactpfaffian!(A::SkewHermitian) = _exactpfaffian!(A.data) exactpfaffian(A::AbstractMatrix) = exactpfaffian!(copyto!(similar(A), A)) const ExactRational = Union{BigInt,Rational{BigInt}} pfaffian!(A::AbstractMatrix{<:ExactRational}) = exactpfaffian!(A) pfaffian(A::AbstractMatrix{<:ExactRational}) = pfaffian!(copy(A)) # prevent method ambiguities: pfaffian(A::SkewHermitian{<:ExactRational}) = pfaffian!(copy(A)) pfaffian!(A::SkewHermitian{<:ExactRational}) = exactpfaffian!(A) function _pfaffian!(A::SkewHermitian{<:Real}) n = size(A,1) isodd(n) && return zero(eltype(A)) H = hessenberg!(A) pf = one(eltype(A)) T = H.H for i=1:2:n-1 pf *= -T.ev[i] end return pf * sign(det(H.Q)) end function _pfaffian!(A::SkewHermTridiagonal{<:Real}) n = size(A,1) isodd(n) && return zero(eltype(A.ev)) pf = one(eltype(A.ev)) for i=1:2:n-1 pf *= -A.ev[i] end return pf end # Using the Parley-Reid algorithm from https://arxiv.org/abs/1102.3440 as implented # in https://github.com/KskAdch/TopologicalNumbers.jl/blob/42bda634d47aecb67cfcd495d97e0723b0e73a4f/src/pfaffian.jl#L332 function _pfaffian!(A::AbstractMatrix{<:Complex}) n = size(A, 1) isodd(n) && return zero(eltype(A)) tau = Array{eltype(A)}(undef, n - 2) pf = one(eltype(A)) @inbounds for k in 1:2:n-1 tauk = @view tau[k:end] # Pivot if neccessary @views kp = k + argmaxabs(A[k+1:end, k]) if kp != k + 1 @simd for l in k:n A[k+1,l], A[kp,l] = A[kp,l], A[k+1,l] end @simd for l in k:n A[l,k+1], A[l,kp] = A[l,kp], A[l,k+1] end pf *= -1 end # Apply Gauss transformation and update `pf` if A[k+1,k] != zero(eltype(A)) @views tauk .= A[k,k+2:end] ./ A[k,k+1] pf *= A[k,k+1] if k + 2 <= n for l1 in eachindex(tauk) @simd for l2 in eachindex(tauk) @fastmath A[k+1+l2,k+1+l1] += tauk[l2] * A[k+1+l1,k+1] - tauk[l1] * A[k+1+l2,k+1] end end end else return zero(eltype(A)) # Pfaffian is zero if there is a zero on the super/subdiagonal end end return pf end pfaffian!(A::Union{SkewHermitian{<:Real},SkewHermTridiagonal{<:Real}}) = _pfaffian!(A) """ pfaffian(A) Returns the pfaffian of `A` where a is a skew-symmetric matrix. If `A` is not of type `SkewHermitian{<:Real}`, then `isskewsymmetric(A)` is checked to ensure that `A == -transpose(A)` """ pfaffian(A::AbstractMatrix) = pfaffian!(copyeigtype(A)) """ pfaffian!(A) Similar to [`pfaffian`](@ref), but overwrites `A` in-place with intermediate calculations. """ function pfaffian!(A::AbstractMatrix{<:Real}) isskewhermitian(A) || throw(ArgumentError("Pfaffian requires a skew-symmetric matrix")) return _pfaffian!(SkewHermitian(A)) end function pfaffian!(A::AbstractMatrix{<:Complex}) LinearAlgebra.require_one_based_indexing(A) isskewsymmetric(A) || throw(ArgumentError("Pfaffian requires a skew-symmetric matrix")) return _pfaffian!(A) end function _logabspfaffian!(A::SkewHermitian{<:Real}) n = size(A, 1) isodd(n) && return convert(eltype(A), -Inf), zero(eltype(A)) H = hessenberg!(A) logpf = zero(eltype(H)) T = H.H sgn = one(eltype(H)) for i=1:2:n-1 logpf += log(abs(T.ev[i])) sgn *= sign(-T.ev[i]) end return logpf, sgn*sign(det(H.Q)) end function _logabspfaffian!(A::SkewHermTridiagonal{<:Real}) n = size(A, 1) isodd(n) && return convert(eltype(A.ev), -Inf), zero(eltype(A.ev)) logpf = zero(eltype(A.ev)) sgn = one(eltype(A.ev)) for i=1:2:n-1 logpf += log(abs(A.ev[i])) sgn *= sign(-A.ev[i]) end return logpf, sgn end function _logabspfaffian!(A::AbstractMatrix{<:Complex}) n = size(A, 1) isodd(n) && return convert(real(eltype(A)), -Inf), zero(eltype(A)) tau = Array{eltype(A)}(undef, n - 2) logpf = phase = zero(real(eltype(A))) @inbounds for k in 1:2:n-1 tauk = @view tau[k:end] # Pivot if neccessary @views kp = k + argmaxabs(A[k+1:end, k]) if kp != k + 1 @simd for l in k:n A[k+1,l], A[kp,l] = A[kp,l], A[k+1,l] end @simd for l in k:n A[l,k+1], A[l,kp] = A[l,kp], A[l,k+1] end phase += Ο€ end # Apply Gauss transformation and update `pf` if A[k+1,k] != zero(eltype(A)) @views tauk .= A[k,k+2:end] ./ A[k,k+1] logpf += log(abs(A[k,k+1])) phase += angle(A[k,k+1]) if k + 2 <= n for l1 in eachindex(tauk) @simd for l2 in eachindex(tauk) @fastmath A[k+1+l2,k+1+l1] += tauk[l2] * A[k+1+l1,k+1] - tauk[l1] * A[k+1+l2,k+1] end end end else return convert(real(eltype(A)), -Inf), zero(eltype(A)) end end return logpf, cis(phase) end logabspfaffian!(A::Union{SkewHermitian{<:Real},SkewHermTridiagonal{<:Real}})= _logabspfaffian!(A) logabspfaffian(A::Union{SkewHermitian{<:Real},SkewHermTridiagonal{<:Real}})= logabspfaffian!(copyeigtype(A)) """ logabspfaffian(A) Returns a tuple `(log|pf(A)|, sign)`, with the log of the absolute value of the pfaffian of `A` as first output and the sign of the pfaffian as second output such that `pfaffian(A) β‰ˆ sign * exp(log|pf(A)|)`. `A` must be a skew-symmetric matrix. If `A` is not of type `SkewHermitian{<:Real}`, then `isskewsymmetric(A)` is checked to ensure that `A == -transpose(A)` """ logabspfaffian(A::AbstractMatrix) = logabspfaffian!(copyeigtype(A)) """ logabspfaffian!(A) Similar to [`logabspfaffian`](@ref), but overwrites `A` in-place with intermediate calculations. """ function logabspfaffian!(A::AbstractMatrix{<:Real}) isskewhermitian(A) || throw(ArgumentError("Pfaffian requires a skew-Hermitian matrix")) return _logabspfaffian!(SkewHermitian(A)) end function logabspfaffian!(A::AbstractMatrix{<:Complex}) LinearAlgebra.require_one_based_indexing(A) isskewsymmetric(A) || throw(ArgumentError("Pfaffian requires a skew-symmetric matrix")) return _logabspfaffian!(A) end
SkewLinearAlgebra
https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git