licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | code | 16028 | # This file is a part of Julia. License is MIT: https://julialang.org/license
function getgivens(a,b)
nm = hypot(a, b)
iszero(nm) && return 1, 0
return a / nm , b / nm
end
#Eliminate the zero eigenvalue if odd size.
#Proposed in Ward, R.C., Gray L.,J., Eigensystem computation for skew-symmetric matrices and a class of symmetric matrices, 1975.
@views function reducetozero(ev::AbstractVector{T}, G::AbstractVector{T}, n::Integer) where T
n == 0 && return
bulge = zero(T)
if n > 2
#Kill last row
α = ev[n-2]
β = ev[n-1]
γ = ev[n]
c, s = getgivens(-β, γ)
G[n-1] = c ; G[n] = -s;
ev[n-2] *= c
ev[n-1] = c * β - s * γ
ev[n] = 0
bulge = -s * α
#Chase the bulge
for i = n-2:-2:4
α = ev[i-2]
β = ev[i-1]
c, s = getgivens(-β, bulge)
G[i-1] = c; G[i] = -s
ev[i-2] *= c
ev[i-1] = c * β - s * bulge
bulge = - s * α
end
end
#Make the bulge disappear
β = (n == 2 ? ev[2] : bulge)
α = ev[1]
c, s = getgivens(-α, β)
G[1] = c; G[2] = -s
ev[1] = c * α -s * β
if n == 2
ev[2] = s * α + β * c
end
end
@views function getoddvectors(Qodd::AbstractMatrix{T}, G::AbstractVector{T}, n::Integer) where T
nn = div(n, 2) + 1
@inbounds( for i = 1:2:n-1
c = G[i]
s = G[i+1]
ii = div(i+1,2)
for j = 1:nn
σ = Qodd[ii, j]
ω = Qodd[nn, j]
Qodd[ii, j] = c * σ + s * ω
Qodd[nn, j] = - s * σ + c * ω
end
end)
end
@views function eigofblock(k::Number, val::AbstractVector)
val[1] = complex(0, k)
val[2] = complex(0, -k)
end
function getshift(ev::AbstractVector{T}) where T
return ev[2]^2
end
@views function implicitstep_novec(ev::AbstractVector{T} , n::Integer, start::Integer) where T
bulge = zero(T)
shift = getshift(ev[n-1:n])
tol = T(1) * eps(T)
@inbounds(for i = start:n-1
α = (i > start ? ev[i-1] : zero(ev[i]))
β = ev[i]
γ = ev[i+1]
x1 = - α * α - β * β + shift
x2 = - α * bulge + β * γ
c, s = (i > start ? getgivens(α, bulge) : getgivens(x1, x2))
if i > 1
ev[i-1] = c * α + s * bulge
end
ev[i] = c * β - s * γ
ev[i+1] = s * β + c * γ
if i < n-1
ζ = ev[i+2]
ev[i+2] *= c
bulge = s * ζ
if abs(bulge) < tol && abs(ev[i]) < tol
start = i + 1
return start
end
end
end)
return start
end
@views function skewtrieigvals!(A::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(A, 1)
values = complex(zeros(T, n))
ev = A.ev
if isodd(n)
n -= 1
Ginit = similar(A, T, n)
reducetozero(ev, Ginit, n)
end
tol = eps(T) * T(10)
max_iter = 30 * n
iter = 0 ;
mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
start = implicitstep_novec(ev, n - 1, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
end
while n > 2 && abs(ev[n - 2]) <= tol * abs(ev[n - 1])
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end
if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
values[1:n] .= complex.(0, skewtrieigvals_backup!(SkewHermTridiagonal(ev[1:n-1])))
return values
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end
if n == 2
eigofblock(ev[1], values[1:2])
return values
elseif n == 1
values[1] = 0
return values
elseif n == 0
return values
else
error("Maximum number of iterations reached, the algorithm didn't converge")
end
end
@views function implicitstep_vec!(ev::AbstractVector{T}, Qeven::AbstractMatrix{T}, Qodd::AbstractMatrix{T}, n::Integer, N::Integer, start::Integer) where T
bulge = zero(T)
shift = getshift(ev[n-1:n])
tol = 10 * eps(T)
@inbounds(for i = start:n-1
α = (i > start ? ev[i-1] : zero(ev[i]))
β = ev[i]
γ = ev[i+1]
x1 = - α * α - β * β + shift
x2 = - α * bulge + β * γ
c, s = (i > start ? getgivens(α,bulge) : getgivens(x1, x2))
if i > 1
ev[i-1] = c * α + s * bulge
end
ev[i] = c * β - s * γ
ev[i+1] = s * β + c * γ
if i < n-1
ζ = ev[i+2]
ev[i+2] *= c
bulge = s * ζ
if abs(bulge) < tol && abs(ev[i]) < tol
start = i + 1
end
end
Q = (isodd(i) ? Qodd : Qeven)
k = div(i+1, 2)
for j = 1:N
σ = Q[j, k]
ω = Q[j, k+1]
Q[j, k] = c*σ + s*ω
Q[j, k+1] = -s*σ + c*ω
end
end)
return start
end
@views function skewtrieigen_merged!(A::SkewHermTridiagonal{T}) where {T<:Real}
Backup = copy(A)
n = size(A, 1)
values = complex(zeros(T, n))
vectors = similar(A, Complex{T}, n, n)
Qodd = diagm(ones(T, div(n+1,2)))
Qeven = diagm(ones(T, div(n,2)))
ev = A.ev
N = n
if isodd(n)
n -= 1
Ginit = similar(A, T, n)
reducetozero(ev, Ginit, n)
end
tol = eps(T) * T(10)
max_iter = 30 * n
iter = 0 ;
halfN = div(n, 2)
mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
start = implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
end
while n > 2 && abs(ev[n - 2]) <= tol * abs(ev[n - 1])
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end
if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
values, Q = skewtrieigen_backup!(Backup)
return Eigen(values, Q)
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end
if n > 0
if n == 2
eigofblock(ev[1], values[1:2])
else
values[1] = 0
end
if isodd(N)
getoddvectors(Qodd, Ginit, N - 1)
end
s2 = T(1/sqrt(2))
zero = T(0)
i = 1
countzeros = 0
@inbounds(while i <= N
ii = div(i+1,2)
if iszero(values[i])
if iseven(countzeros)
for j = 1:2:N-1
jj = div(j+1, 2)
vectors[j, i] = complex(Qodd[jj, ii], zero)
end
if isodd(N)
vectors[N, i] = complex(Qodd[halfN+1, ii],zero)
end
else
for j = 1:2:N-1
jj = div(j+1, 2)
vectors[j+1, i] = complex(Qeven[jj, ii], zero)
end
end
countzeros +=1
i += 1
else
if isodd(countzeros)
for j = 1:2:N-1
jj = div(j+1, 2)
vectors[j, i] = complex(zero, -s2 * Qodd[jj, ii+1])
vectors[j+1, i] = complex(s2 * Qeven[jj, ii], zero)
vectors[j, i+1] = complex(-s2 * Qodd[jj, ii+1], zero)
vectors[j+1, i+1] = complex(zero, s2 * Qeven[jj,ii])
end
if isodd(N)
vectors[N, i] = complex(zero, -s2 * Qodd[halfN+1, ii+1])
vectors[N, i+1] = complex(-s2 * Qodd[halfN+1, ii+1], zero)
end
else
for j = 1:2:N-1
jj = div(j+1, 2)
vectors[j, i] = complex(s2 * Qodd[jj, ii], zero)
vectors[j+1, i] = complex(zero, - s2 * Qeven[jj, ii])
vectors[j, i+1] = complex(zero,s2 * Qodd[jj, ii])
vectors[j+1, i+1] = complex(- s2 * Qeven[jj,ii], zero)
end
if isodd(N)
vectors[N, i] = complex(s2 * Qodd[halfN+1, ii],zero)
vectors[N, i+1] = complex(zero, s2 * Qodd[halfN+1, ii])
end
end
i+=2
end
end)
if isodd(N)
@inbounds(for j = 1: 2: N
jj = div(j+1,2)
vectors[j, N] = complex(Qodd[jj, halfN+1], zero)
end)
end
return Eigen(values, vectors)
elseif n == 0
return Eigen(values, complex.(Qodd))
else
error("Maximum number of iterations reached, the algorithm didn't converge")
end
end
@views function skewtrieigen_divided!(A::SkewHermTridiagonal{T}) where {T<:Real}
Backup = copy(A)
n = size(A, 1)
values = complex(zeros(T, n))
vectorsreal = similar(A, n, n)
vectorsim = similar(A, n, n)
Qodd = diagm(ones(T, div(n+1,2)))
Qeven = diagm(ones(T, div(n,2)))
ev = A.ev
N = n
if isodd(n)
n -= 1
Ginit = similar(A, T, n)
reducetozero(ev, Ginit, n)
end
tol = eps(T)*T(10)
max_iter = 30 * n
iter = 0 ;
halfN = div(n, 2)
mem = T(1); count_static = 0 #mem and count_static allow to detect the failure of Wilkinson shifts.
start = 1 #start remembers if a zero eigenvalue appeared in the middle of ev.
while n > 2 && iter < max_iter
start = implicitstep_vec!(ev, Qeven, Qodd, n - 1, halfN, start)
while n > 2 && abs(ev[n-1]) <= tol
values[n] = 0
n -= 1
end
while n > 2 && abs(ev[n - 2]) <= tol * abs(ev[n - 1])
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if n > 2 && abs(ev[n-1]-mem) < tol
eigofblock(ev[n - 1], values[n-1:n] )
n -= 2
end
if start > n-2
start = 1
end
if n>1 && abs(mem - ev[n-1]) < T(0.0001) * abs(ev[n-1])
count_static += 1
if count_static > 4
#Wilkinson shifts have failed, change strategy using LAPACK tridiagonal symmetric solver.
Q = complex.(vectorsreal, vectorsim)
values, Q = skewtrieigen_backup!(Backup)
vectorsreal .= real.(Q)
vectorsim .= imag.(Q)
return values, vectorsreal, vectorsim
end
else
count_static = 0
end
mem = (n>1 ? ev[n-1] : T(0))
iter += 1
end
if n > 0
if n == 2
eigofblock(ev[1], values[1:2])
else
values[1] = 0
end
if isodd(N)
getoddvectors(Qodd, Ginit, N - 1)
end
s2 = T(1/sqrt(2))
NN = div(N+1, 2)
i = 1
countzeros = 0
@inbounds(while i <= N
ii = div(i+1,2)
if iszero(values[i])
if iseven(countzeros)
for j = 1:2:N-1
jj = div(j+1, 2)
vectorsreal[j, i] = Qodd[jj, ii]
end
if isodd(N)
vectorsreal[N, i] = Qodd[halfN+1, ii]
end
else
for j = 1:2:N-1
jj = div(j+1, 2)
vectorsreal[j+1, i] = Qeven[jj, ii]
end
end
countzeros +=1
i += 1
else
if isodd(countzeros)
for j = 1:2:N-1
jj = div(j+1, 2)
vectorsim[j, i] = -s2 * Qodd[jj, ii+1]
vectorsreal[j+1, i] = s2 * Qeven[jj, ii]
vectorsreal[j, i+1] = -s2 * Qodd[jj, ii+1]
vectorsim[j+1, i+1] = s2 * Qeven[jj,ii]
end
if isodd(N)
vectorsreal[N, i] = -s2 * Qodd[halfN+1, ii+1]
vectorsim[N, i+1] = -s2 * Qodd[halfN+1, ii+1]
end
else
for j = 1:2:N-1
jj = div(j+1, 2)
vectorsreal[j, i] = s2 * Qodd[jj, ii]
vectorsim[j+1, i] = - s2 * Qeven[jj, ii]
vectorsim[j, i+1] = s2 * Qodd[jj, ii]
vectorsreal[j+1, i+1] = - s2 * Qeven[jj,ii]
end
if isodd(N)
vectorsreal[N, i] = s2 * Qodd[halfN+1, ii]
vectorsim[N, i+1] = s2 * Qodd[halfN+1, ii]
end
end
i+=2
end
end)
if isodd(N)
@inbounds(for j = 1:2:N
jj = div(j+1,2)
vectorsreal[j,N] = Qodd[jj, halfN+1]
end)
end
return values, vectorsreal, vectorsim
elseif n == 0
return values, vectorsreal, vectorsim
else
error("Maximum number of iterations reached, the algorithm didn't converge")
end
end
#The Wilkinson shifts have some pathological cases.
#In these cases, the skew-symmetric eigenvalue problem is solved as detailed in
#C. Penke, A. Marek, C. Vorwerk, C. Draxl, P. Benner, High Performance Solution of Skew-symmetric Eigenvalue Problems with Applications in Solving the Bethe-Salpeter Eigenvalue Problem, Parallel Computing, Volume 96, 2020.
@views function skewtrieigvals_backup!(S::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(S,1)
H = SymTridiagonal(zeros(eltype(S.ev), n), copy(S.ev))
vals = eigvals!(H)
return vals .= .-vals
end
@views function skewtrieigen_backup!(S::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(S, 1)
H = SymTridiagonal(zeros(T, n), S.ev)
trisol = eigen!(H)
vals = complex.(0, -trisol.values)
Qdiag = complex(zeros(T,n,n))
c = 1
@inbounds for j=1:n
c = 1
@simd for i=1:2:n-1
Qdiag[i,j] = trisol.vectors[i,j] * c
Qdiag[i+1,j] = complex(0, trisol.vectors[i+1,j] * c)
c *= (-1)
end
end
if n % 2 == 1
Qdiag[n,:] = trisol.vectors[n,:] * c
end
return vals, Qdiag
end | SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | code | 9549 | # This file is a part of Julia. License is MIT: https://julialang.org/license
struct SkewHermitian{T<:Number,S<:AbstractMatrix{<:T}} <: AbstractMatrix{T}
data::S
function SkewHermitian{T,S}(data) where {T,S<:AbstractMatrix{<:T}}
LA.require_one_based_indexing(data)
new{T,S}(data)
end
end
"""
SkewHermitian(A) <: AbstractMatrix
Construct a `SkewHermitian` view of the skew-Hermitian matrix `A` (`A == -A'`),
which allows one to exploit efficient operations for eigenvalues, exponentiation,
and more.
Takes "ownership" of the matrix `A`. See also [`skewhermitian`](@ref), which takes the
skew-hermitian part of `A`, and [`skewhermitian!`](@ref), which does this in-place,
along with [`isskewhermitian`](@ref) which checks whether `A == -A'`.
"""
function SkewHermitian(A::AbstractMatrix)
isskewhermitian(A) || throw(ArgumentError("matrix `A` must be skew-Hermitian (equal `-A')"))
return SkewHermitian{eltype(A),typeof(A)}(A)
end
SkewHermitian(A::SkewHermitian) = A
"""
skewhermitian(A)
Returns the skew-Hermitian part of A, i.e. `(A-A')/2`. See also
[`skewhermitian!`](@ref), which does this in-place.
"""
skewhermitian(A::AbstractMatrix) = skewhermitian!(copyto!(similar(A, typeof(zero(eltype(A))/2)), A))
skewhermitian(a::Number) = imag(a)
Base.@propagate_inbounds Base.getindex(A::SkewHermitian, i::Integer, j::Integer) = A.data[i,j]
Base.@propagate_inbounds function Base.setindex!(A::SkewHermitian, v, i::Integer, j::Integer)
if i == j
real(v) == 0 || throw(ArgumentError("diagonal elements must be zero"))
else
A.data[i,j] = v
A.data[j,i] = -v'
end
return v
end
Base.similar(A::SkewHermitian, ::Type{T}) where {T} = SkewHermitian(similar(parent(A), T) .= 0)
Base.similar(A::SkewHermitian) = SkewHermitian(similar(parent(A)) .= 0)
# see https://github.com/JuliaLang/julia/pull/24163:
Base.similar(A::SkewHermitian, ::Type{T}, dims::Dims{N}) where {T,N} = similar(parent(A), T, dims)
# Conversion
Base.Matrix(A::SkewHermitian) = Matrix(A.data)
Base.Array(A::SkewHermitian) = Matrix(A)
Base.parent(A::SkewHermitian) = A.data
SkewHermitian{T,S}(A::SkewHermitian{T,S}) where {T,S} = A
SkewHermitian{T,S}(A::SkewHermitian) where {T,S<:AbstractMatrix{T}} = SkewHermitian{T,S}(S(A.data))
Base.AbstractMatrix{T}(A::SkewHermitian) where {T} = SkewHermitian(AbstractMatrix{T}(A.data))
Base.copy(A::SkewHermitian) = SkewHermitian(copy(A.data))
function Base.copyto!(dest::SkewHermitian, src::SkewHermitian)
copyto!(dest.data, src.data)
return dest
end
function Base.copyto!(dest::SkewHermitian, src::AbstractMatrix)
isskewhermitian(src) || throw(ArgumentError("can only copy skew-Hermitian data to SkewHermitian"))
copyto!(dest.data, src)
return dest
end
Base.copyto!(dest::AbstractMatrix, src::SkewHermitian) = copyto!(dest, src.data)
Base.size(A::SkewHermitian,n) = size(A.data,n)
Base.size(A::SkewHermitian) = size(A.data)
"""
isskewhermitian(A)
Returns whether `A` is skew-Hermitian, i.e. whether `A == -A'`.
"""
function isskewhermitian(A::AbstractMatrix{<:Number})
axes(A,1) == axes(A,2) || throw(ArgumentError("axes $(axes(A,1)) and $(axes(A,2)) do not match"))
@inbounds for i in axes(A,1)
for j = firstindex(A, 1):i
A[i,j] == -A[j,i]' || return false
end
end
return true
end
isskewhermitian(A::SkewHermitian) = true
isskewhermitian(a::Number) = a == -a'
"""
isskewsymmetric(A)
Returns whether `A` is skew-symmetric, i.e. whether `A == -transpose(A)`.
"""
function isskewsymmetric(A::AbstractMatrix{<:Number})
axes(A,1) == axes(A,2) || throw(ArgumentError("axes $(axes(A,1)) and $(axes(A,2)) do not match"))
@inbounds for i in axes(A,1)
for j = firstindex(A, 1):i
A[i,j] == -A[j,i] || return false
end
end
return true
end
isskewsymmetric(A::SkewHermitian{<:Real}) = true
isskewsymmetric(a::Number) = iszero(a)
"""
skewhermitian!(A)
Transforms `A` in-place to its skew-Hermitian part `(A-A')/2`,
and returns a [`SkewHermitian`](@ref) view.
"""
function skewhermitian!(A::AbstractMatrix{T}) where {T<:Number}
LA.require_one_based_indexing(A)
n = LA.checksquare(A)
two = T(2)
@inbounds for i in 1:n
A[i,i] = T isa Real ? zero(T) : complex(zero(real(T)),imag(A[i,i]))
for j = 1:i-1
a = (A[i,j] - A[j,i]')/two
A[i,j] = a
A[j,i] = -a'
end
end
return SkewHermitian(A)
end
LA.Tridiagonal(A::SkewHermitian) = Tridiagonal(A.data)
Base.isreal(A::SkewHermitian) = isreal(A.data)
Base.transpose(A::SkewHermitian) = SkewHermitian(transpose(A.data))
Base.adjoint(A::SkewHermitian) = SkewHermitian(A.data')
Base.real(A::SkewHermitian{<:Real}) = A
Base.real(A::SkewHermitian) = SkewHermitian(real(A.data))
Base.imag(A::SkewHermitian) = LA.Hermitian(imag(A.data))
Base.conj(A::SkewHermitian) = SkewHermitian(conj(A.data))
Base.conj!(A::SkewHermitian) = SkewHermitian(conj!(A.data))
LA.tr(A::SkewHermitian{<:Real}) = zero(eltype(A))
LA.tr(A::SkewHermitian) = tr(A.data)
LA.tril!(A::SkewHermitian) = tril!(A.data)
LA.tril(A::SkewHermitian) = tril!(copy(A))
LA.triu!(A::SkewHermitian) = triu!(A.data)
LA.triu(A::SkewHermitian) = triu!(copy(A))
LA.tril!(A::SkewHermitian,k::Integer) = tril!(A.data,k)
LA.tril(A::SkewHermitian,k::Integer) = tril!(copy(A),k)
LA.triu!(A::SkewHermitian,k::Integer) = triu!(A.data,k)
LA.triu(A::SkewHermitian,k::Integer) = triu!(copy(A),k)
function LA.dot(A::SkewHermitian, B::SkewHermitian)
n = size(A, 2)
T = eltype(A)
two = T(2)
if n != size(B, 2)
throw(DimensionMismatch("A has size $(size(A)) but B has size $(size(B))"))
end
dotprod = zero(dot(first(A), first(B)))
@inbounds for j = 1:n
for i = 1:j-1
dotprod += two * dot(A.data[i, j], B.data[i, j])
end
dotprod += dot(A.data[j, j], B.data[j, j])
end
return dotprod
end
Base.:-(A::SkewHermitian) = SkewHermitian(-A.data)
for f in (:+, :-)
@eval begin
Base.$f(A::SkewHermitian, B::SkewHermitian) = SkewHermitian($f(A.data, B.data))
end
end
## Matvec
LA.mul!(y::StridedVecOrMat, A::SkewHermitian, x::StridedVecOrMat, α::Number, β::Number) =
LA.mul!(y, A.data, x, α, β)
LA.mul!(y::StridedVecOrMat, A::SkewHermitian, x::StridedVecOrMat) =
LA.mul!(y, A.data, x)
LA.mul!(y::StridedVecOrMat, A::SkewHermitian, B::SkewHermitian, α::Number, β::Number) =
LA.mul!(y, A.data, B.data, α, β)
LA.mul!(y::StridedVecOrMat, A::SkewHermitian, B::SkewHermitian) =
LA.mul!(y, A.data, B.data)
LA.mul!(y::StridedVecOrMat, A::StridedMatrix, B::SkewHermitian, α::Number, β::Number) =
LA.mul!(y, A, B.data, α, β)
LA.mul!(y::StridedVecOrMat, A::StridedMatrix, B::SkewHermitian) =
LA.mul!(y, A, B.data)
function LA.dot(x::AbstractVector, A::SkewHermitian, y::AbstractVector)
LA.require_one_based_indexing(x, y)
(length(x) == length(y) == size(A, 1)) || throw(DimensionMismatch())
r = zero(eltype(x)) * zero(eltype(A)) * zero(eltype(y))
@inbounds for j = 1:length(y)
r += dot(x[j], A.data[j,j], y[j]) # zero if A is real
@simd for i = 1:j-1
Aij = A.data[i,j]
r += dot(x[i], Aij, y[j]) + dot(x[j], -Aij', y[i])
end
end
return r
end
# Scaling:
for op in (:*, :/, :\)
if op in (:*, :/)
@eval Base.$op(A::SkewHermitian, x::Number) = $op(A.data, x)
@eval Base.$op(A::SkewHermitian, x::Real) = SkewHermitian($op(A.data, x))
end
if op in (:*, :\)
@eval Base.$op(x::Number, A::SkewHermitian) = $op(x, A.data)
@eval Base.$op(x::Real, A::SkewHermitian) = SkewHermitian($op(x, A.data))
end
end
function checkreal(x::Number)
isreal(x) || throw(ArgumentError("in-place scaling of SkewHermitian requires a real scalar"))
return real(x)
end
LA.rdiv!(A::SkewHermitian, b::Number) = rdiv!(A.data, checkreal(b))
LA.ldiv!(b::Number, A::SkewHermitian) = ldiv!(checkreal(b), A.data)
LA.rmul!(A::SkewHermitian, b::Number) = rmul!(A.data, checkreal(b))
LA.lmul!(b::Number, A::SkewHermitian) = lmul!(checkreal(b), A.data)
for f in (:det, :logdet, :lu, :lu!, :lq, :lq!, :qr, :qr!)
@eval LA.$f(A::SkewHermitian) = LA.$f(A.data)
end
@eval LA.inv(A::SkewHermitian) = skewhermitian!(LA.inv(A.data))
LA.kron(A::SkewHermitian,B::StridedMatrix) = kron(A.data,B)
LA.kron(A::StridedMatrix,B::SkewHermitian) = kron(A,B.data)
@views function LA.schur!(A::SkewHermitian{<:Real})
F = eigen!(A)
return Schur(typeof(F.vectors)(Diagonal(F.values)), F.vectors, F.values)
end
LA.schur(A::SkewHermitian{<:Real})= LA.schur!(copyeigtype(A))
# special Diagonal rules, similar to those for HermOrSym in LinearAlgebra's diagonal.jl,
# since we can't assume diagonal * skewhermitian is skewhermitian (unless it is real diagonal)
Base.:*(A::SkewHermitian, D::Diagonal) =
mul!(similar(A, Base.promote_op(*, eltype(A), eltype(D.diag)), size(A)), A, D)
Base.:*(D::Diagonal, A::SkewHermitian) =
mul!(similar(A, Base.promote_op(*, eltype(A), eltype(D.diag)), size(A)), D, A)
if isdefined(LinearAlgebra, :_rdiv!) # JuliaLang/julia#42343 (julia ≈ 1.9)
Base.:/(A::SkewHermitian, D::Diagonal) =
LinearAlgebra._rdiv!(similar(A, Base.promote_op(/, eltype(A), eltype(D.diag)), size(A)), A, D)
else
Base.:/(A::SkewHermitian, D::Diagonal) =
rdiv!(copyto!(similar(A, Base.promote_op(/, eltype(A), eltype(D.diag)), size(A)), A), D)
end
Base.:\(D::Diagonal, B::SkewHermitian) =
ldiv!(similar(B, Base.promote_op(\, eltype(D.diag), eltype(B)), size(B)), D, B)
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | code | 21604 | # This file is a part of Julia. License is MIT: https://julialang.org/license
#### Specialized matrix types ####
struct SkewHermTridiagonal{T, V<:AbstractVector{T}, Vim<:Union{AbstractVector{<:Real},Nothing}} <: AbstractMatrix{T}
ev::V # subdiagonal
dvim::Vim # diagonal imaginary parts (may be nothing if T is real)
function SkewHermTridiagonal{T, V, Vim}(ev, dvim) where {T, V<:AbstractVector{T}, Vim}
LA.require_one_based_indexing(ev)
if Vim !== Nothing
LA.require_one_based_indexing(dvim)
eltype(dvim) === real(T) || throw(ArgumentError("mismatch between $(real(T)) and $(eltype(dvim))"))
end
new{T, V, Vim}(ev, dvim)
end
end
"""
SkewHermTridiagonal(ev::V, dvim::Vim) where {V <: AbstractVector, Vim <: AbstractVector{<:Real}}
Construct a skewhermitian tridiagonal matrix from the subdiagonal (`ev`)
and the imaginary part of the main diagonal (`dvim`). The result is of type `SkewHermTridiagonal`
and provides efficient specialized eigensolvers, but may be converted into a
regular matrix with `convert(Array, _)` (or `Array(_)` for short).
# Examples
```jldoctest
julia> ev = complex.([7, 8, 9] , [7, 8, 9])
3-element Vector{Complex{Int64}}:
7 + 7im
8 + 8im
9 + 9im
julia> dvim = [1, 2, 3, 4]
4-element Vector{Int64}:
1
2
3
4
julia> SkewHermTridiagonal(ev, dvim)
4×4 SkewHermTridiagonal{Complex{Int64}, Vector{Complex{Int64}}, Vector{Int64}}:
0+1im -7+7im 0+0im 0+0im
7-7im 0+2im -8+8im 0+0im
0+0im -8+8im 0+3im -9+9im
0+0im 0+0im 9+9im 0+4im
```
"""
SkewHermTridiagonal(ev::AbstractVector{T}, dvim::Nothing=nothing) where {T<:Real} = SkewHermTridiagonal{T, typeof(ev), Nothing}(ev, nothing)
SkewHermTridiagonal{T}(ev::AbstractVector, dvim::Nothing=nothing) where {T<:Real} =
SkewHermTridiagonal(convert(AbstractVector{T}, ev)::AbstractVector{T})
# complex skew-hermitian case
SkewHermTridiagonal(ev::AbstractVector{Complex{T}}, dvim::Nothing=nothing) where T = SkewHermTridiagonal{Complex{T}, typeof(ev), Nothing}(ev, nothing)
SkewHermTridiagonal(ev::AbstractVector{Complex{T}}, dvim::AbstractVector{T}) where T = SkewHermTridiagonal{Complex{T}, typeof(ev), typeof(dvim)}(ev, dvim)
SkewHermTridiagonal{Complex{T}}(ev::AbstractVector, dvim::AbstractVector) where T =
SkewHermTridiagonal(convert(AbstractVector{Complex{T}}, ev)::AbstractVector{Complex{T}}, convert(AbstractVector{T}, dvim)::AbstractVector{T})
"""
SkewHermTridiagonal(A::AbstractMatrix)
Construct a skewhermitian tridiagonal matrix from first subdiagonal and main diagonal
of the skewhermitian matrix `A`.
# Examples
```jldoctest
julia> A = [1 2 3; 2 4 5; 3 5 6]
3×3 Matrix{Int64}:
1 2 3
2 4 5
3 5 6
julia> SkewHermTridiagonal(A)
3×3 SkewHermTridiagonal{Int64, Vector{Int64}}:
0 -2 0
2 0 -5
0 5 0
```
"""
function SkewHermTridiagonal(A::AbstractMatrix)
if iszero(real(diag(A))) && !iszero(imag(diag(A)))
if diag(A, 1) == - adjoint.(diag(A, -1))
SkewHermTridiagonal(diag(A, -1),imag(diag(A)))
else
throw(ArgumentError("matrix is not skew-hermitian; cannot convert to SkewHermTridiagonal"))
end
else
if diag(A, 1) == - adjoint.(diag(A, -1))
SkewHermTridiagonal(diag(A, -1))
else
throw(ArgumentError("matrix is not skew-hermitian; cannot convert to SkewHermTridiagonal"))
end
end
end
SkewHermTridiagonal{T,V,Vim}(S::SkewHermTridiagonal{T,V,Vim}) where {T,V<:AbstractVector{T}, Vim<:Union{AbstractVector{<:Real},Nothing}} = S
SkewHermTridiagonal{T,V,Vim}(S::SkewHermTridiagonal) where {T,V<:AbstractVector{T}, Vim<:Union{AbstractVector{<:Real},Nothing}} =
SkewHermTridiagonal(convert(V, S.ev)::V,convert(Vim, S.dvim)::Vim)
SkewHermTridiagonal{T}(S::SkewHermTridiagonal{T}) where {T} = S
SkewHermTridiagonal{T}(S::SkewHermTridiagonal) where {T} =
SkewHermTridiagonal(convert(AbstractVector{T}, S.ev)::AbstractVector{T},convert(AbstractVector{<:Real}, S.dvim)::AbstractVector{<:Real})
SkewHermTridiagonal(S::SkewHermTridiagonal) = S
function SkewHermTridiagonal(A::SkewHermitian{T}) where T
n = size(A, 1)
sub = similar(A, n - 1)
if T<:Real
for i=1:n-1
sub[i] = A.data[i+1,i]
end
return SkewHermTridiagonal(sub)
else
d = similar(A, real(T), n)
for i=1:n-1
d[i] = imag(A[i,i])
sub[i] = A[i+1,i]
end
d[n] = imag(A[n,n])
if iszero(d)
return SkewHermTridiagonal(sub)
else
return SkewHermTridiagonal(sub, d)
end
end
end
function Base.AbstractMatrix{T}(S::SkewHermTridiagonal) where {T}
if S.dvim !== nothing
SkewHermTridiagonal(convert(AbstractVector{T}, S.ev)::AbstractVector{T},convert(AbstractVector{<:real(T)}, S.dvim)::AbstractVector{<:real(T)})
else
SkewHermTridiagonal(convert(AbstractVector{T}, S.ev)::AbstractVector{T})
end
end
function Base.Matrix{T}(M::SkewHermTridiagonal) where T
n = size(M, 1)
Mf = zeros(T, n, n)
n == 0 && return Mf
if M.dvim !== nothing
@inbounds for i = 1:n-1
Mf[i,i] = complex(0, M.dvim[i])
Mf[i+1,i] = M.ev[i]
Mf[i,i+1] = -M.ev[i]'
end
Mf[n,n] = complex(0, M.dvim[n])
else
@inbounds for i = 1:n-1
Mf[i+1,i] = M.ev[i]
Mf[i,i+1] = -M.ev[i]'
end
end
return Mf
end
Base.Matrix(M::SkewHermTridiagonal{T}) where {T} = Matrix{promote_type(T, typeof(zero(T)))}(M)
Base.Array(M::SkewHermTridiagonal) = Matrix(M)
Base.size(A::SkewHermTridiagonal) = (length(A.ev) + 1,length(A.ev) + 1)
function Base.size(A::SkewHermTridiagonal, d::Integer)
if d < 1
throw(ArgumentError("dimension must be ≥ 1, got $d"))
elseif d<=2
return length(A.ev) + 1
else
return 1
end
end
function Base.similar(S::SkewHermTridiagonal{<:Complex{T}}, ::Type{Complex{T}}) where {T}
if S.dvim !== nothing
return SkewHermTridiagonal(similar(S.ev, Complex{T}), similar(S.dvim,T))
else
return SkewHermTridiagonal(similar(S.ev, Complex{T}))
end
end
Base.similar(S::SkewHermTridiagonal{<:Real}, ::Type{T}) where {T<:Real} = SkewHermTridiagonal(similar(S.ev, T))
Base.similar(S::SkewHermTridiagonal, ::Type{T}, dims::Union{Dims{1},Dims{2}}) where {T} = zeros(T, dims...)
function Base.copyto!(dest::SkewHermTridiagonal, src::SkewHermTridiagonal)
(copyto!(dest.ev, src.ev);dest)
if src.dvim !== nothing
(copyto!(dest.dvim, src.dvim) ; dest)
end
end
function LA.Tridiagonal(A::SkewHermTridiagonal)
if A.dvim !== nothing
return Tridiagonal(A.ev,complex.(0, A.dvim),.-conj.(A.ev))
else
return Tridiagonal(A.ev,zeros(eltype(A.ev), length(A.ev) + 1),.-conj.(A.ev))
end
end
#Elementary operations
Base.conj(M::SkewHermTridiagonal{<:Real}) = SkewHermTridiagonal(conj.(M.ev))
Base.conj(M::SkewHermTridiagonal{<:Complex}) = SkewHermTridiagonal(conj.(M.ev),(M.dvim !==nothing ? -M.dvim : nothing))
Base.copy(M::SkewHermTridiagonal{<:Real}) = SkewHermTridiagonal(copy(M.ev))
Base.copy(M::SkewHermTridiagonal{<:Complex}) = SkewHermTridiagonal(copy(M.ev), (M.dvim !==nothing ? copy(M.dvim) : nothing))
function Base.imag(M::SkewHermTridiagonal{T}) where T
if M.dvim !== nothing
LA.SymTridiagonal(M.dvim, imag.(M.ev))
else
n=size(M,1)
LA.SymTridiagonal(zeros(real(T), n), imag.(M.ev))
end
end
Base.real(M::SkewHermTridiagonal) = SkewHermTridiagonal(real.(M.ev))
Base.transpose(S::SkewHermTridiagonal) = -S
Base.adjoint(S::SkewHermTridiagonal{<:Real}) = -S
Base.adjoint(S::SkewHermTridiagonal) = -S
function LA.tr(S::SkewHermTridiagonal{T}) where T
if T<:Real || S.dvim === nothing
return zero(eltype(S.ev))
else
return complex(zero(eltype(S.dvim)), sum(S.dvim))
end
end
Base.copy(S::LA.Adjoint{<:Any,<:SkewHermTridiagonal}) = SkewHermTridiagonal(map(x -> copy.(adjoint.(x)), (S.parent.ev,S.parent.dvim))...)
isskewhermitian(S::SkewHermTridiagonal) = true
@views function LA.rdiv!(A::SkewHermTridiagonal, b::Number)
rdiv!(A.ev, checkreal(b))
if A.dvim !== nothing
rdiv!(A.dvim, checkreal(b))
end
return A
end
@views function LA.ldiv!(b::Number,A::SkewHermTridiagonal)
ldiv!(checkreal(b), A.ev)
if A.dvim !== nothing
ldiv!(checkreal(b), A.dvim)
end
return A
end
@views function LA.rmul!(A::SkewHermTridiagonal, b::Number)
rmul!(A.ev, checkreal(b))
if A.dvim !== nothing
rmul!(A.dvim, checkreal(b))
end
return A
end
@views function LA.lmul!(b::Number,A::SkewHermTridiagonal)
lmul!(checkreal(b), A.ev)
if A.dvim !== nothing
lmul!(checkreal(b), A.dvim)
end
return A
end
@views function LA.rdiv!(A::SkewHermTridiagonal, B::AbstractMatrix)
return Tridiagonal(A) / B
end
@views function LA.ldiv!(B::AbstractVecOrMat,A::SkewHermTridiagonal)
return B / Tridiagonal(A)
end
@views function LA.rmul!(A::SkewHermTridiagonal, b::StridedVecOrMat)
y = similar(A, size(A,1), size(b,2))
return mul!(y,Tridiagonal(A),b)
end
@views function LA.lmul!(b::StridedVecOrMat,A::SkewHermTridiagonal)
y = similar(A, size(b,1), size(A,2))
return mul!(y, b, Tridiagonal(A))
end
Base.:*(A::SkewHermTridiagonal, B::Number) = rmul!(copy(A), B)
Base.:*(B::Number,A::SkewHermTridiagonal) = lmul!(B, copy(A))
Base.:/(A::SkewHermTridiagonal, B::Number) = rdiv!(copy(A), B)
Base.:\(B::Number, A::SkewHermTridiagonal) = ldiv!(B, copy(A))
Base.:*(A::SkewHermTridiagonal, B::StridedVecOrMat) = rmul!(A, B)
Base.:*(B::StridedVecOrMat, A::SkewHermTridiagonal) = lmul!(B, A)
Base.:/(A::SkewHermTridiagonal, B::StridedMatrix) = rdiv!(A, B)
Base.:/(B::AbstractVecOrMat, A::SkewHermTridiagonal) = B / Tridiagonal(A)
Base.:\(B::StridedVecOrMat, A::SkewHermTridiagonal) = ldiv!(B, A)
Base.:\(A::SkewHermTridiagonal, B::AbstractVecOrMat) = Tridiagonal(A) \ B
function Base.:*(A::SkewHermTridiagonal, B::T) where {T<:Complex}
if A.dvim !== nothing
return Tridiagonal(A.ev * B, complex.(0, A.dvim)* B, .-conj.(A.ev) .* B)
else
return Tridiagonal(A.ev * B, zeros(eltype(A.ev), size(A, 1)), .-conj.(A.ev) .* B)
end
end
function Base.:*(B::T,A::SkewHermTridiagonal) where {T<:Complex}
if A.dvim !== nothing
return Tridiagonal(B * A.ev, B * complex.(0, A.dvim) , .-B .* conj.(A.ev))
else
return Tridiagonal(B * A.ev, zeros(eltype(A.ev), size(A, 1)), .-B .* conj.(A.ev))
end
end
function Base.:/(A::SkewHermTridiagonal, B::T) where {T<:Complex}
if A.dvim !== nothing
return Tridiagonal(A.ev / B, complex.(0, A.dvim)/ B, .-conj.(A.ev) ./ B)
else
return Tridiagonal(A.ev / B, zeros(eltype(A.ev), size(A, 1)), .-conj.(A.ev) ./ B)
end
end
function Base.:\(B::T,A::SkewHermTridiagonal) where {T<:Complex}
if A.dvim !== nothing
return Tridiagonal(B \ A.ev, B \ complex.(0, A.dvim), .-B .\ conj.(A.ev))
else
return Tridiagonal(B \ A.ev, zeros(eltype(A.ev), size(A, 1)), .-B .\ conj.(A.ev))
end
end
function Base. ==(A::SkewHermTridiagonal, B::SkewHermTridiagonal)
if A.dvim !== nothing && B.dvim!== nothing
return (A.ev==B.ev) &&(A.dvim==B.dvim)
elseif A.dvim === nothing && B.dvim === nothing
return (A.ev==B.ev)
else
return false
end
end
function Base.:+(A::SkewHermTridiagonal, B::SkewHermTridiagonal)
if A.dvim !== nothing && B.dvim !== nothing
return SkewHermTridiagonal(A.ev + B.ev, A.dvim + B.dvim)
elseif A.dvim === nothing && B.dvim !== nothing
return SkewHermTridiagonal(A.ev + B.ev, B.dvim)
elseif B.dvim === nothing && A.dvim !== nothing
return SkewHermTridiagonal(A.ev + B.ev, A.dvim)
else
return SkewHermTridiagonal(A.ev + B.ev)
end
end
function Base.:-(A::SkewHermTridiagonal, B::SkewHermTridiagonal)
if A.dvim !== nothing && B.dvim !== nothing
return SkewHermTridiagonal(A.ev - B.ev, A.dvim - B.dvim)
elseif A.dvim === nothing && B.dvim !== nothing
return SkewHermTridiagonal(A.ev - B.ev, -B.dvim)
elseif B.dvim === nothing && A.dvim !== nothing
return SkewHermTridiagonal(A.ev - B.ev,A.dvim)
else
return SkewHermTridiagonal(A.ev - B.ev)
end
end
function Base.:-(A::SkewHermTridiagonal)
if A.dvim !== nothing
return SkewHermTridiagonal(-A.ev, -A.dvim)
else
return SkewHermTridiagonal(-A.ev)
end
end
@inline LA.mul!(A::StridedVecOrMat, B::SkewHermTridiagonal, C::StridedVecOrMat,
alpha::Number, beta::Number) =
_mul!(A, B, C, LA.MulAddMul(alpha, beta))
@inline function _mul!(C::StridedVecOrMat, S::SkewHermTridiagonal, B::StridedVecOrMat,
_add::LA.MulAddMul)
m, n = size(B, 1), size(B, 2)
if !(m == size(S, 1) == size(C, 1))
throw(DimensionMismatch("A has first dimension $(size(S,1)), B has $(size(B,1)), C has $(size(C,1)) but all must match"))
end
if n != size(C, 2)
throw(DimensionMismatch("second dimension of B, $n, doesn't match second dimension of C, $(size(C,2))"))
end
if m == 0
return C
elseif iszero(_add.alpha)
return LA._rmul_or_fill!(C, _add.beta)
end
α = S.dvim
β = S.ev
if α === nothing
@inbounds begin
for j = 1:n
x₊ = B[1, j]
x₀ = zero(x₊)
# If m == 1 then β[1] is out of bounds
β₀ = m > 1 ? zero(β[1]) : zero(eltype(β))
for i = 1:m - 1
x₋, x₀, x₊ = x₀, x₊, B[i + 1, j]
β₋, β₀ = β₀, β[i]
LA._modify!(_add, β₋*x₋ - adjoint(β₀) * x₊, C, (i, j))
end
LA._modify!(_add, β₀ * x₀ , C, (m, j))
end
end
else
@inbounds begin
for j = 1:n
x₊ = B[1, j]
x₀ = zero(x₊)
# If m == 1 then β[1] is out of bounds
β₀ = m > 1 ? zero(β[1]) : zero(eltype(β))
for i = 1:m - 1
x₋, x₀, x₊ = x₀, x₊, B[i + 1, j]
β₋, β₀ = β₀, β[i]
LA._modify!(_add, β₋*x₋ +α[i]*x₀*1im -adjoint(β₀)*x₊, C, (i, j))
end
LA._modify!(_add, β₀*x₀+α[m]*x₊*1im , C, (m, j))
end
end
end
return C
end
function LA.dot(x::AbstractVector, S::SkewHermTridiagonal, y::AbstractVector)
LA.require_one_based_indexing(x, y)
nx, ny = length(x), length(y)
(nx == size(S, 1) == ny) || throw(DimensionMismatch())
if iszero(nx)
return dot(zero(eltype(x)), zero(eltype(S)), zero(eltype(y)))
end
dv = S.dvim
ev = S.ev
x₀ = x[1]
x₊ = (nx > 1 ? x[2] : zero(x[1]))
sub = (nx > 1 ? ev[1] : zero(x[1]))
if dv !== nothing
r = dot( adjoint(sub)*x₊+complex(zero(dv[1]),-dv[1])*x₀, y[1])
@inbounds for j in 2:nx-1
x₋, x₀, x₊ = x₀, x₊, x[j+1]
sup, sub = -adjoint(sub), ev[j]
r += dot(adjoint(sup)*x₋+complex(zero(dv[j]),-dv[j])*x₀ + adjoint(sub)*x₊, y[j])
end
r += dot(-sub*x₀+complex(zero(dv[nx]),-dv[nx])*x₊, y[nx])
else
r = dot( adjoint(sub)*x₊, y[1])
@inbounds for j in 2 : nx-1
x₋, x₀, x₊ = x₀, x₊, x[j+1]
sup, sub = -adjoint(sub), ev[j]
r += dot(adjoint(sup)*x₋ + adjoint(sub)*x₊, y[j])
end
r += dot(adjoint(-adjoint(sub))*x₀, y[nx])
end
return r
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, sortby::Union{Function,Nothing}=nothing) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
vals = imag.(skewtrieigvals!(A))
!isnothing(sortby) && sort!(vals, by=sortby)
return complex.(0, vals)
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, irange::UnitRange) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
vals = skewtrieigvals!(A,irange)
return complex.(0, vals)
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, vl::Real,vh::Real) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
vals = skewtrieigvals!(A,-vh,-vl)
return complex.(0, vals)
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, sortby::Union{Function,Nothing}=nothing) where {T<:Complex,V<:AbstractVector{T},Vim<:Union{AbstractVector{<:Real},Nothing}}
S = to_symtridiagonal(A)[1]
vals = eigvals!(S)
!isnothing(sortby) && sort!(vals, by=sortby)
reverse!(vals)
return complex.(0, -vals)
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, irange::UnitRange) where {T<:Complex,V<:AbstractVector{T},Vim<:Union{AbstractVector{<:Real},Nothing}}
n = size(A,1)
S = to_symtridiagonal(A)[1]
irange2 = .-(irange.- n)
vals = eigvals!(S, irange2)
return complex.(0, -vals)
end
@views function LA.eigvals!(A::SkewHermTridiagonal{T,V,Vim}, vl::Real,vh::Real) where {T<:Complex,V<:AbstractVector{T},Vim<:Union{AbstractVector{<:Real},Nothing}}
S = to_symtridiagonal(A)[1]
vals = eigvals!(S, -vh , -vl)
return complex.(0, vals)
end
LA.eigvals(A::SkewHermTridiagonal{T,V,Vim}, sortby::Union{Function,Nothing}=nothing) where {T,V,Vim} =
LA.eigvals!(copyeigtype(A),sortby)
LA.eigvals(A::SkewHermTridiagonal{T,V,Vim}, irange::UnitRange) where {T,V,Vim} =
LA.eigvals!(copyeigtype(A), irange)
LA.eigvals(A::SkewHermTridiagonal{T,V,Vim}, vl::Real,vh::Real) where {T,V,Vim}=
LA.eigvals!(copyeigtype(A), vl,vh)
@views function skewtrieigvals!(S::SkewHermTridiagonal{T,V,Vim},irange::UnitRange) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(S,1)
H = SymTridiagonal(zeros(eltype(S.ev), n), S.ev)
vals = eigvals!(H, irange)
return vals .= .-vals
end
@views function skewtrieigvals!(S::SkewHermTridiagonal{T,V,Vim},vl::Real,vh::Real) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}
n = size(S, 1)
H = SymTridiagonal(zeros(eltype(S.ev), n), S.ev)
vals = eigvals!(H,vl,vh)
return vals .= .-vals
end
LA.eigen!(A::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}= skewtrieigen_merged!(A)
@views function LA.eigen!(A::SkewHermTridiagonal{T,V,Vim}) where {T<:Complex,V<:AbstractVector{T},Vim<:Union{AbstractVector{<:Real},Nothing}}
n = size(A, 1)
S, Q = to_symtridiagonal(A)
Eig = eigen!(S)
Vec = similar(A.ev, n, n)
mul!(Vec, Q, Eig.vectors)
return Eigen(Eig.values.*(-1im),Vec)
end
function copyeigtype(A::SkewHermTridiagonal)
B = similar(A , LA.eigtype( eltype(A.ev) ))
copyto!(B, A)
return B
end
LA.eigen(A::SkewHermTridiagonal) = LA.eigen!(copyeigtype(A))
LA.eigvecs(A::SkewHermTridiagonal) = eigen(A).vectors
@views function LA.svdvals!(A::SkewHermTridiagonal)
vals = imag.(eigvals!(A))
vals .= abs.(vals)
return sort!(real(vals); rev=true)
end
LA.svdvals(A::SkewHermTridiagonal{T,V,Vim}) where {T<:Real,V<:AbstractVector{T},Vim<:Nothing}=svdvals!(copyeigtype(A))
@views function LA.svd!(A::SkewHermTridiagonal)
n = size(A, 1)
E = eigen!(A)
U = E.vectors
vals = imag.(E.values)
I = sortperm(vals; by = abs, rev = true)
permute!(vals, I)
Base.permutecols!!(U, I)
V2 = U .* -1im
@inbounds for i=1:n
if vals[i] < 0
vals[i] = -vals[i]
@simd for j=1:n
V2[j,i] = -V2[j,i]
end
end
end
return LA.SVD(U, vals, adjoint(V2))
end
LA.svd(A::SkewHermTridiagonal) = svd!(copyeigtype(A))
@views function to_symtridiagonal(A::SkewHermTridiagonal{T}) where {T<:Complex}
n = size(A, 1)
V = similar(A.ev, n - 1)
Q = similar(A.ev, n)
Q[1] = 1
V .= A.ev
V.*= 1im
for i=1:n-2
nm = abs(V[i])
Q[i+1] = V[i] / nm
V[i] = nm
V[i+1] *= Q[i+1]
end
if n > 1
nm = abs(V[n-1])
Q[n] = V[n-1] / nm
V[n-1] = nm
end
if A.dvim !== nothing
SymTri = SymTridiagonal(-A.dvim, real(V))
else
SymTri = SymTridiagonal(zeros(real(T), n), real(V))
end
return SymTri, Diagonal(Q)
end
###################
# Generic methods #
###################
# det with optional diagonal shift for use with shifted Hessenberg factorizations
#det(A::SkewHermTridiagonal; shift::Number=false) = det_usmani(A.ev, A.dv, A.ev, shift)
#logabsdet(A::SkewHermTridiagonal; shift::Number=false) = logabsdet(ldlt(A; shift=shift))
# show a "⋅" for structural zeros when printing
function Base.replace_in_print_matrix(A::SkewHermTridiagonal, i::Integer, j::Integer, s::AbstractString)
i==j-1 || i==j+1 || (A.dvim !== nothing && i==j) ? s : Base.replace_with_centered_mark(s)
end
Base.@propagate_inbounds function Base.getindex(A::SkewHermTridiagonal{T}, i::Integer, j::Integer) where T
@boundscheck checkbounds(A, i, j)
if i == j + 1
return @inbounds A.ev[j]
elseif i + 1 == j
return @inbounds -A.ev[i]'
elseif T <: Complex && i == j && A.dvim!==nothing
return complex(zero(real(T)), A.dvim[i])
else
return zero(T)
end
end
@inline function Base.setindex!(A::SkewHermTridiagonal, x, i::Integer, j::Integer)
@boundscheck checkbounds(A, i, j)
if i == j+1
@inbounds A.ev[j] = x
elseif i == j-1
@inbounds A.ev[i] = -x'
elseif T <: Complex && i == j && isreal(x)
@inbounds A.dvim[i]== x
elseif T <: Complex && i == j && imag(x)!=0
@inbounds A.dvim[i]== imag(x)
else
throw(ArgumentError("cannot set off-diagonal entry ($i, $j)"))
end
return x
end
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | code | 25366 | using LinearAlgebra, Random, SparseArrays
using SkewLinearAlgebra
using Test
Random.seed!(314159) # use same pseudorandom stream for every test
isapproxskewhermitian(A) = A ≈ -A'
@testset "README.md" begin # test from the README examples
A = [0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]
@test isskewhermitian(A)
A = SkewHermitian(A)
@test tr(A) == 0
@test det(A) ≈ 81
@test isskewhermitian(inv(A))
@test inv(A) ≈ [0 1 -3 -8; -1 0 4 7; 3 -4 0 2; 8 -7 -2 0]/9
@test A \ [1,2,3,4] ≈ [-13,13,1,-4]/3
v = [8.306623862918073, 8.53382018538718, -1.083472677771923]
@test hessenberg(A).H ≈ Tridiagonal(v,[0,0,0,0.],-v)
iλ₁,iλ₂ = 11.93445871397423, 0.7541188264752862
l = imag.(eigvals(A))
sort!(l)
@test l ≈ sort!([iλ₁,iλ₂,-iλ₂,-iλ₁])
@test Matrix(hessenberg(A).Q) ≈ [1.0 0.0 0.0 0.0; 0.0 -0.2407717061715382 -0.9592700375676934 -0.14774972261267352; 0.0 0.8427009716003843 -0.2821382463434394 0.4585336219014009; 0.0 -0.48154341234307674 -0.014106912317171805 0.8763086996337883]
@test eigvals(A, 0,15) ≈ [iλ₁,iλ₂]*im
@test eigvals(A, 1:3) ≈ [iλ₁,iλ₂,-iλ₂]*im
@test svdvals(A) ≈ [iλ₁,iλ₁,iλ₂,iλ₂]
C = skewchol(A)
@test transpose(C.R)*C.J*C.R≈A[C.p,C.p]
end
@testset "SkewLinearAlgebra.jl" begin
for T in (Int32,Float32,Float64,ComplexF32), n in [1, 2, 10, 11]
if T<:Integer
A = skewhermitian!(rand(convert(Array{T},-10:10), n, n) * T(2))
else
A = skewhermitian!(randn(T, n, n))
end
@test eltype(A) === T
@test isskewhermitian(A)
@test isskewhermitian(A.data)
B = T(2) * Matrix(A)
@test isskewhermitian(B)
s = rand(T)
@test skewhermitian(s) == imag(s)
@test parent(A) == A.data
@test similar(A) == SkewHermitian(zeros(T, n, n))
@test similar(A,ComplexF64) == SkewHermitian(zeros(ComplexF64, n, n))
@test A == copy(A)::SkewHermitian
@test A === SkewHermitian(A) # issue #126
@test copyto!(copy(4 * A), A) == A
@test size(A) == size(A.data)
@test size(A, 1) == size(A.data, 1)
@test size(A, 2) == size(A.data, 2)
@test Array(A) == A.data
@test tr(A) == tr(A.data)
@test tril(A) == tril(A.data)
@test tril(A, 1) == tril(A.data, 1)
@test triu(A) == triu(A.data)
@test triu(A,1) == triu(A.data, 1)
@test (-A).data == -(A.data)
A2 = A.data * A.data
@test A * A == A2 ≈ Hermitian(A2)
@test A * B == A.data * B
@test B * A == B * A.data
if iseven(n) # for odd n, a skew-Hermitian matrix is singular
@test inv(A)::SkewHermitian ≈ inv(A.data)
end
@test (A * 2).data == A.data * T(2)
@test (2 * A).data == T(2) * A.data
@test (A / 2).data == A.data / T(2)
C = A + A
@test C.data == A.data + A.data
B = SkewHermitian(B)
C = A - B
@test C.data == -A.data
B = triu(A)
@test B ≈ triu(A.data)
B = tril(A, n - 2)
@test B ≈ tril(A.data, n - 2)
k = dot(A, A)
@test k ≈ dot(A.data, A.data)
if n > 1
@test A[2,1] == A.data[2,1]
A[n, n-1] = 3
@test A[n, n-1] === T(3)
@test A[n-1, n] === T(-3)
end
x = rand(T, n)
y = zeros(T, n)
mul!(y, A, x, T(2), T(0))
@test y == T(2) * A.data * x
mul!(y, A, x)
@test y == A * x
k = dot(y, A, x)
@test k ≈ adjoint(y) * A.data * x
k = copy(y)
mul!(y, A, x, T(2), T(3))
@test y ≈ T(2) * A * x + T(3) * k
B = copy(A)
copyto!(B, A)
@test B == A
B = Matrix(A)
@test B == A.data
C = similar(B, n, n)
mul!(C, A, B, T(2), T(0))
@test C == T(2) * A.data * B
mul!(C, B, A, T(2), T(0))
@test C == T(2) * B * A.data
B = SkewHermitian(B)
mul!(C, B, A, T(2), T(0))
@test C == T(2) * B.data * A.data
B = Matrix(A)
@test kron(A, B) ≈ kron(A.data, B)
A.data[n,n] = T(4)
@test isskewhermitian(A.data) == false
A.data[n,n] = T(0)
A.data[n,1] = T(4)
@test isskewhermitian(A.data) == false
LU = lu(A)
@test LU.L * LU.U ≈ A.data[LU.p,:]
if !(T<:Integer)
LQ = lq(A)
@test LQ.L * LQ.Q ≈ A.data
end
QR = qr(A)
@test QR.Q * QR.R ≈ A.data
if T<:Integer
A = skewhermitian(rand(T,n,n) * 2)
else
A = skewhermitian(randn(T,n,n))
end
if eltype(A)<:Real
F = schur(A)
@test A.data ≈ F.vectors * F.Schur * F.vectors'
end
for f in (real, imag)
@test f(A) == f(Matrix(A))
end
end
# issue #98
@test skewhermitian([1 2; 3 4]) == [0.0 -0.5; 0.5 0.0]
# issue #126
let D = Diagonal([1.0+0im]), S = SkewHermitian(fill(0+1.234im, 1,1))
@test D * S == S * D == D \ S == S / D
end
end
@testset "hessenberg.jl" begin
for T in (Int32,Float32,Float64,ComplexF32), n in [1, 2, 10, 11]
if T<:Integer
A = skewhermitian(rand(T(-10):T(10), n, n) * T(2))
else
A = skewhermitian(randn(T, n, n))
end
B = Matrix(A)
HA = hessenberg(A)
HB = hessenberg(B)
@test Matrix(HA.H) ≈ Matrix(HB.H)
@test Matrix(HA.Q) ≈ Matrix(HB.Q)
end
for T in (Int32,Float64,ComplexF32)
A = zeros(T, 4, 4)
A[2:4,1] = ones(T,3)
A[1,2:4] = -ones(T,3)
A = SkewHermitian(A)
B = Matrix(A)
HA = hessenberg(A)
HB = hessenberg(B)
@test Matrix(HA.H) ≈ Matrix(HB.H)
end
end
@testset "eigen.jl" begin
for T in (Int32,Float32,Float64,ComplexF32), n in [1, 2, 10, 11]
if T<:Integer
A = skewhermitian(rand(convert(Array{T},-10:10),n,n)* T(2))
else
A = skewhermitian(randn(T, n, n))
end
B = Matrix(A)
valA = imag(eigvals(A))
valB = imag(eigvals(B))
sort!(valA)
sort!(valB)
@test valA ≈ valB
Eig = eigen(A)
valA = Eig.values
Q2 = Eig.vectors
valB,Q = eigen(B)
@test Q2*diagm(valA)*adjoint(Q2) ≈ A.data
valA = imag(valA)
valB = imag(valB)
sort!(valA)
sort!(valB)
@test valA ≈ valB
Svd = svd(A)
@test Svd.U * Diagonal(Svd.S) * Svd.Vt ≈ A.data
@test svdvals(A) ≈ svdvals(B)
end
end
@testset "exp.jl" begin
for T in (Int32,Float32,Float64,ComplexF32), n in [1, 2, 10, 11]
if T<:Integer
A = skewhermitian(rand(convert(Array{T},-10:10), n, n)*T(2))
else
A = skewhermitian(randn(T, n, n))
end
B = Matrix(A)
@test exp(B) ≈ exp(A)
@test cis(A) ≈ Hermitian(exp(B*1im))
@test Hermitian(cos(B)) ≈ cos(A)
@test skewhermitian!(sin(B)) ≈ sin(A)
sc = sincos(A)
@test sc[1]≈ skewhermitian!(sin(B))
@test sc[2]≈ Hermitian(cos(B))
@test skewhermitian!(sinh(B)) ≈ sinh(A)
@test Hermitian(cosh(B)) ≈ cosh(A)
if T<:Complex || iseven(n)
@test exp(log(A)) ≈ A
end
if issuccess(lu(cos(B), check = false)) && issuccess(lu(det(exp(2A)+I), check = false))
if isapproxskewhermitian(tan(B)) && isapproxskewhermitian(tanh(B))
@test tan(B) ≈ tan(A)
@test tanh(B) ≈ tanh(A)
end
end
if issuccess(lu(sin(B), check = false)) && issuccess(lu(det(exp(2A)-I), check = false))
try
if isapproxskewhermitian(cot(B)) && isapproxskewhermitian(coth(B))
@test cot(B) ≈ cot(A)
@test coth(B) ≈ coth(A)
end
catch
end
end
end
for T in (Int32 ,Float32,Float64,ComplexF32), n in [2, 10, 11]
if T<:Integer
A = SkewHermTridiagonal(rand(convert(Array{T},-20:20), n - 1) * T(2))
else
if T<:Complex
A = SkewHermTridiagonal(rand(T, n - 1), rand(real(T), n))
else
A = SkewHermTridiagonal(rand(T, n - 1))
end
end
B = Matrix(A)
@test exp(B) ≈ exp(A)
@test cis(A) ≈ Hermitian(exp(B*1im))
@test Hermitian(cos(B)) ≈ cos(A)
@test skewhermitian!(sin(B)) ≈ sin(A)
sc = sincos(A)
@test sc[1]≈ skewhermitian!(sin(B))
@test sc[2]≈ Hermitian(cos(B))
@test skewhermitian!(sinh(B)) ≈ sinh(A)
@test Hermitian(cosh(B)) ≈ cosh(A)
if T<:Complex || iseven(n)
@test exp(log(A)) ≈ A
end
if issuccess(lu(cos(B), check = false)) && issuccess(lu(det(exp(2A)+I), check = false))
if isapproxskewhermitian(tan(B)) && isapproxskewhermitian(tanh(B))
@test tan(B) ≈ tan(A)
@test tanh(B) ≈ tanh(A)
end
end
if issuccess(lu(sin(B), check = false)) && issuccess(lu(det(exp(2A)-I), check = false))
try
if isapproxskewhermitian(cot(B)) && isapproxskewhermitian(coth(B))
@test cot(B) ≈ cot(A)
@test coth(B) ≈ coth(A)
end
catch
end
end
end
end
@testset "tridiag.jl" begin
for T in (Int32,Float32,Float64,ComplexF32), n in [1, 2, 10, 11]
if T<:Integer
C = skewhermitian(rand(convert(Array{T},-20:20), n, n) * T(2))
else
C = skewhermitian(randn(T,n,n))
end
A = SkewHermTridiagonal(C)
@test isskewhermitian(A) == true
@test Tridiagonal(A) ≈ Tridiagonal(C)
if T<:Integer
A = SkewHermTridiagonal(rand(convert(Array{T},-20:20), n - 1) * T(2))
C = rand(convert(Array{T},-10:10), n, n)
D1 = rand(convert(Array{T},-10:10), n, n)
x = rand(convert(Array{T},-10:10), n)
y = rand(convert(Array{T},-10:10), n)
else
if T<:Complex
A = SkewHermTridiagonal(rand(T, n - 1), rand(real(T), n))
else
A = SkewHermTridiagonal(rand(T, n - 1))
end
C = randn(T, n, n)
D1 = randn(T, n, n)
x = randn(T, n)
y = randn(T, n)
end
D2 = copy(D1)
B = Matrix(A)
mul!(D1, A, C, T(2), T(1))
@test D1 ≈ D2 + T(2) * Matrix(A) * C
mul!(D1, A, C, T(2), T(0))
@test size(A) == (n, n)
@test size(A,1) == n
if A.dvim !== nothing
@test conj(A) == SkewHermTridiagonal(conj.(A.ev),-A.dvim)
@test copy(A) == SkewHermTridiagonal(copy(A.ev),copy(A.dvim))
else
@test conj(A) == SkewHermTridiagonal(conj.(A.ev))
@test copy(A) ==SkewHermTridiagonal(copy(A.ev))
end
@test real(A) == SkewHermTridiagonal(real.(A.ev))
@test transpose(A) == -A
@test Matrix(adjoint(A)) == adjoint(Matrix(A))
@test Array(A) == Matrix(A)
@test D1 ≈ T(2) * Matrix(A) * C
@test Matrix(A + A) == Matrix( 2 * A)
@test Matrix(A)/2 == Matrix(A / 2)
@test Matrix(A + A) == Matrix(A * 2)
@test Matrix(A- 2 * A) == Matrix(-A)
if n>1
@test dot(x, A, y) ≈ dot(x, Matrix(A), y)
end
if T<:Complex
z = rand(T)
@test A * z ≈ Tridiagonal(A) * z
@test z * A ≈ z * Tridiagonal(A)
@test A / z ≈ Tridiagonal(A) / z
@test z \ A ≈ z \ Tridiagonal(A)
end
B = Matrix(A)
@test tr(A) ≈ tr(B)
@test B == copy(A) == A
yb = rand(T, 1, n)
if !iszero(det(Tridiagonal(A)))
@test A \ x ≈ B \ x
@test yb / A ≈ yb / B
#@test A / B ≈ B / A ≈ I
end
@test A * x ≈ B * x
@test yb * A ≈ yb * B
@test B * A ≈ A * B ≈ B * B
@test size(A,1) == n
EA = eigen(A)
EB = eigen(B)
Q = EA.vectors
@test eigvecs(A) ≈ Q
@test Q * diagm(EA.values) * adjoint(Q) ≈ B
valA = imag(EA.values)
valB = imag(EB.values)
sort!(valA)
sort!(valB)
@test valA ≈ valB
Svd = svd(A)
@test Svd.U * Diagonal(Svd.S) * Svd.Vt ≈ B
@test svdvals(A) ≈ svdvals(B)
for f in (real, imag)
@test Matrix(f(A)) == f(B)
end
if n > 1
A[2,1] = 2
@test A[2,1] === T(2) === -A[1,2]'
end
end
B = SkewHermTridiagonal([3,4,5])
@test B == [0 -3 0 0; 3 0 -4 0; 0 4 0 -5; 0 0 5 0]
@test repr("text/plain", B) == "4×4 SkewHermTridiagonal{$Int, Vector{$Int}, Nothing}:\n ⋅ -3 ⋅ ⋅\n 3 ⋅ -4 ⋅\n ⋅ 4 ⋅ -5\n ⋅ ⋅ 5 ⋅"
C = SkewHermTridiagonal(complex.([3,4,5]), [6,7,8,9])
@test C == [6im -3 0 0; 3 7im -4 0; 0 4 8im -5; 0 0 5 9im]
@test repr("text/plain", C) == "4×4 SkewHermTridiagonal{Complex{$Int}, Vector{Complex{$Int}}, Vector{$Int}}:\n 0+6im -3+0im ⋅ ⋅ \n 3+0im 0+7im -4+0im ⋅ \n ⋅ 4+0im 0+8im -5+0im\n ⋅ ⋅ 5+0im 0+9im"
end
@testset "pfaffian.jl" begin
# real skew-hermitian matrices
for n in [1, 2, 3, 10, 11]
A = skewhermitian(rand(-10:10,n,n) * 2)
Abig = BigInt.(A.data)
@test pfaffian(A) ≈ pfaffian(Abig) == pfaffian(SkewHermitian(Abig))
if VERSION ≥ v"1.7" # for exact det of BigInt matrices
@test pfaffian(Abig)^2 == det(Abig)
end
@test Float64(pfaffian(Abig)^2) ≈ (iseven(n) ? det(Float64.(A)) : 0.0)
logpf, sign = logabspfaffian(A)
@test pfaffian(A) ≈ sign * exp(logpf)
S = SkewHermTridiagonal(A)
logpf, sign = logabspfaffian(S)
@test pfaffian(S) ≈ sign * exp(logpf) ≈ sign * sqrt(det(Matrix(S)))
end
# complex skew-symmetric matrices
# n=11 is a bit jinxed because of https://github.com/JuliaLang/julia/issues/54287
for n in [1, 2, 3, 10, 20]
A = rand((-10:10) .+ 1im * (-10:10)', n, n)
A = (A .- transpose(A)) ./ 2
Abig = Complex{Rational{BigInt}}.(A)
@test pfaffian(A) ≈ SkewLinearAlgebra.exactpfaffian(Abig)
@test pfaffian(A)^2 ≈ det(A) atol=√eps(Float64) * max(1, abs(det(A)))
if VERSION ≥ v"1.7" # for exact det of BigInt matrices
@test SkewLinearAlgebra.exactpfaffian(Abig)^2 == det(Abig)
end
logpf, sign = logabspfaffian(A)
@test pfaffian(A) ≈ sign * exp(logpf)
end
# issue #49
@test pfaffian(big.([0 14 7 -10 0 10 0 -11; -14 0 -10 7 13 -9 -12 -13; -7 10 0 -4 6 -17 -1 18; 10 -7 4 0 -2 -4 0 11; 0 -13 -6 2 0 -8 -18 17; -10 9 17 4 8 0 -8 12; 0 12 1 0 18 8 0 0; 11 13 -18 -11 -17 -12 0 0])) == -119000
# test a few 4x4 Pfaffians against the analytical formula
for i = 1:10
a,b,c,d,e,f = rand(-10:10,6)
A = [0 a b c; -a 0 d e; -b -d 0 f; -c -e -f 0]
@test SkewLinearAlgebra.exactpfaffian(A) == c*d - b*e + a*f ≈ pfaffian(A)
end
# issue #121
@test pfaffian([0 1 0 0; -1 0 0 0; 0 0 0 1; 0 0 -1 0]) == 1
end
@testset "cholesky.jl" begin
for T in (Int32, Float32, Float64), n in [1, 2, 10, 11]
if T<:Integer
A = skewhermitian(rand(convert(Array{T},-10:10), n, n)*T(2))
else
A = skewhermitian(randn(T, n, n))
end
C = skewchol(A)
@test transpose(C.R) * C.J *C.R ≈ A.data[C.p, C.p]
B = Matrix(A)
C = skewchol(B)
@test transpose(C.R)* C.J *C.R ≈ B[C.p, C.p]
end
end
@testset "jmatrix.jl" begin
for T in (Int32, Float32, Float64), n in [1, 2, 10, 11], sgn in (+1,-1)
A = rand(T, n, n)
J = JMatrix{T,sgn}(n)
vec = zeros(T, n - 1)
vec[1:2:n-1] .= -sgn
Jtest = SkewHermTridiagonal(vec)
@test size(J) == (n, n)
@test size(J, 1) == n
@test J == Matrix(J) == Matrix(Jtest) == SkewHermTridiagonal(J)
@test A*Jtest ≈ A*J
@test Jtest*A ≈ J*A
Jtest2 = Matrix(J)
@test -J == -Jtest2
@test transpose(J) == -Jtest2 == J'
if iseven(n)
@test inv(J) == -Jtest2
@test J \ A ≈ Matrix(J) \ A
@test A / J ≈ A / Matrix(J)
end
for k in [-4:4; n; n+1]
@test diag(J, k) == diag(Jtest2, k)
end
@test iszero(tr(J))
@test iseven(n) == det(J) ≈ det(Jtest2)
end
@test repr("text/plain", JMatrix(4)) == "4×4 JMatrix{Int8, 1}:\n ⋅ 1 ⋅ ⋅\n -1 ⋅ ⋅ ⋅\n ⋅ ⋅ ⋅ 1\n ⋅ ⋅ -1 ⋅"
end
@testset "issue#116" begin
for ev in ([0,0,0], [1,2,3,2,1], [0,1,0], [1,0,0], [1,0,1], [1,1,0], [0,1,1], [0,0,1], [1,1,1],[1,1,0,1,1],[0,0,0,0,1,1,1],[0,1,0,1,0,1,1,1,0,0,0,1])
A = SkewHermTridiagonal(float.(ev))
a = sort(eigvals(A), by = imag)
b = sort(eigvals(im * Matrix(A)) / im, by = imag)
@test a ≈ b
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors'≈A
end
for ev in ([1,1,0,1],[0,1,0,1,1,1,1,1])
A = SkewHermTridiagonal(float.(ev))
a = sort(eigvals(A), by = imag)
b = sort(eigvals(im * Matrix(A)) / im, by = imag)
@test a ≈ b
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors'≈A
end
end
@testset "issue#118 and issue#130" begin
#issue #130
sp = sparse([2, 7, 1, 3, 6, 8, 2, 4, 7, 9, 3, 5, 8, 10, 4, 9, 2, 7, 1, 3, 6, 8, 2, 4, 7, 9, 3, 5, 8, 10, 4, 9], [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10], [-0.8414709848, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, -0.8414709848, 0.4596976941, 1.5403023059, 0.8414709848, 0.4596976941, -0.4596976941, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.4596976941, -0.8414709848, 0.8414709848, -1.5403023059, -0.8414709848], 10, 10)
A = SkewHermitian(Matrix(sp))
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
sp = sparse([26, 50, 51, 52, 27, 51, 52, 53, 28, 52, 53, 54, 29, 53, 54, 55, 30, 54, 55, 56, 31, 55, 56, 32, 33, 57, 58, 32, 33, 34, 57, 58, 59, 33, 34, 35, 58, 59, 60, 34, 35, 36, 59, 60, 61, 35, 36, 37, 60, 61, 62, 36, 37, 38, 61, 62, 63, 37, 38, 39, 62, 63, 64, 38, 39, 40, 63, 64, 65, 39, 40, 41, 64, 65, 66, 40, 41, 42, 65, 66, 41, 42, 43, 66, 42, 43, 44, 43, 44, 45, 44, 45, 46, 45, 46, 47, 46, 47, 48, 47, 48, 49, 48, 49, 50, 49, 50, 51, 1, 50, 51, 52, 2, 51, 52, 53, 3, 52, 53, 54, 4, 53, 54, 55, 5, 54, 55, 56, 6, 55, 56, 7, 8, 7, 8, 9, 58, 8, 9, 10, 59, 9, 10, 11, 60, 10, 11, 12, 61, 11, 12, 13, 62, 12, 13, 14, 63, 13, 14, 15, 64, 14, 15, 16, 65, 15, 16, 17, 66, 16, 17, 18, 17, 18, 19, 18, 19, 20, 19, 20, 21, 20, 21, 22, 21, 22, 23, 22, 23, 24, 23, 24, 25, 1, 24, 25, 26, 1, 2, 25, 26, 27, 1, 2, 3, 26, 27, 28, 2, 3, 4, 27, 28, 29, 3, 4, 5, 28, 29, 30, 4, 5, 6, 29, 30, 31, 5, 6, 30, 31, 7, 8, 7, 8, 9, 33, 8, 9, 10, 34, 9, 10, 11, 35, 10, 11, 12, 36, 11, 12, 13, 37, 12, 13, 14, 38, 13, 14, 15, 39, 14, 15, 16, 40, 15, 16, 17, 41], [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 55, 55, 55, 55, 56, 56, 56, 56, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 65, 65, 65, 65, 66, 66, 66, 66], [-1.176e-13, -0.0980580675690928, 0.987744983947536, -0.0980580675690911, -4.9e-14, -0.0980580675690911, 0.987744983947536, -0.0980580675690927, 1.96e-14, -0.0980580675690927, 0.987744983947536, -0.098058067569091, -1.96e-13, -0.098058067569091, 0.987744983947536, -0.0980580675690928, -1.274e-13, -0.0980580675690928, 0.987744983947536, -0.0980580675690928, -5.88e-14, -0.0980580675690928, 0.987744983947536, -10.0, -0.4902903378454601, -100.97143868952186, -0.098058067569092, 0.4902903378454601, -10.0, -0.4902903378454601, -0.098058067569092, -100.97143868952186, -0.098058067569092, 0.4902903378454601, -10.0, -0.4902903378454601, -0.098058067569092, -100.97143868952186, -0.0980580675690921, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690921, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.49029033784546, -0.0980580675690919, -100.97143868952186, -0.0980580675690923, 0.49029033784546, -10.0, -0.4902903378454601, -0.0980580675690923, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, -100.97143868952186, 0.4902903378454601, -10.0, -0.4902903378454601, -0.0980580675690919, 0.4902903378454601, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454603, 0.4902903378454603, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454602, 0.4902903378454603, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454599, 0.4902903378454599, -10.0, -0.4902903378454603, 0.4902903378454603, -10.0, -0.4902903378454599, 1.176e-13, 0.4902903378454599, -10.0, -0.4902903378454602, 4.9e-14, 0.4902903378454602, -10.0, -0.4902903378454599, -1.96e-14, 0.4902903378454599, -10.0, -0.4902903378454603, 1.96e-13, 0.4902903378454603, -10.0, -0.4902903378454599, 1.274e-13, 0.4902903378454599, -10.0, -0.4902903378454599, 5.88e-14, 0.4902903378454599, -10.0, 10.0, -0.4902903378454601, 0.4902903378454601, 10.0, -0.4902903378454601, 2.4e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 4.9e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 7.3e-15, 0.4902903378454601, 10.0, -0.4902903378454601, 9.8e-15, 0.4902903378454601, 10.0, -0.49029033784546, 1.22e-14, 0.49029033784546, 10.0, -0.4902903378454601, 1.47e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 1.71e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 1.96e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 2.2e-14, 0.4902903378454601, 10.0, -0.4902903378454601, 0.4902903378454601, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.4902903378454603, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.4902903378454602, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454599, 0.4902903378454599, 10.0, -0.4902903378454603, 0.0980580675690928, 0.4902903378454603, 10.0, -0.4902903378454599, -0.987744983947536, 0.0980580675690911, 0.4902903378454599, 10.0, -0.4902903378454602, 0.0980580675690911, -0.987744983947536, 0.0980580675690927, 0.4902903378454602, 10.0, -0.4902903378454599, 0.0980580675690927, -0.987744983947536, 0.098058067569091, 0.4902903378454599, 10.0, -0.4902903378454603, 0.098058067569091, -0.987744983947536, 0.0980580675690928, 0.4902903378454603, 10.0, -0.4902903378454599, 0.0980580675690928, -0.987744983947536, 0.0980580675690928, 0.4902903378454599, 10.0, -0.4902903378454599, 0.0980580675690928, -0.987744983947536, 0.4902903378454599, 10.0, 100.97143868952186, 0.098058067569092, 0.098058067569092, 100.97143868952186, 0.098058067569092, -2.4e-15, 0.098058067569092, 100.97143868952186, 0.0980580675690921, -4.9e-15, 0.0980580675690921, 100.97143868952186, 0.0980580675690919, -7.3e-15, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -9.8e-15, 0.0980580675690919, 100.97143868952186, 0.0980580675690923, -1.22e-14, 0.0980580675690923, 100.97143868952186, 0.0980580675690919, -1.47e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -1.71e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -1.96e-14, 0.0980580675690919, 100.97143868952186, 0.0980580675690919, -2.2e-14], 66, 66)
A = SkewHermitian(Matrix(sp))
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
#issue #118
for v ∈ ([1.0, 0.001, 1.0, 0.0001, 1.0], [2.0, 1e-11, 2.0, 1e-11, 2.0])
A = SkewHermTridiagonal(v)
E = eigen(A)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ A
B = SkewHermitian(Matrix(A))
E = eigen(B)
@test E.vectors*Diagonal(E.values)*E.vectors' ≈ B
end
end
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 1540 |
[](https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl/blob/main/LICENSE)
[](https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl/actions)
[](http://codecov.io/github/JuliaLinearAlgebra/SkewLinearAlgebra.jl?branch=main)
[](https://julialinearalgebra.github.io/SkewLinearAlgebra.jl/dev/)
# SkewLinearAlgebra
The `SkewLinearAlgebra` package provides specialized matrix types, optimized methods of `LinearAlgebra` functions, and a few entirely new functions for dealing with linear algebra on [skew-Hermitian matrices](https://en.wikipedia.org/wiki/Skew-Hermitian_matrix), especially for the case of [real skew-symmetric matrices](https://en.wikipedia.org/wiki/Skew-symmetric_matrix).
In particular, it defines new `SkewHermitian` and `SkewHermTridiagonal` matrix types supporting optimized eigenvalue/eigenvector,
Hessenberg factorization, and matrix exponential/trigonometric functions. It also provides functions to compute the
[Pfaffian](https://en.wikipedia.org/wiki/Pfaffian) of skew-symmetric matrices, along with a Cholesky-like factorization for real skew-symmetric matrices.
See the [Documentation](https://julialinearalgebra.github.io/SkewLinearAlgebra.jl/dev/) for details.
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 7276 | ## Skew-Hermitian eigenproblems
A skew-Hermitian matrix ``A = -A^*`` is very special with respect to its eigenvalues/vectors and related properties:
* It has **purely imaginary** eigenvalues. (If ``A`` is real, these come in **± pairs** or are zero.)
* We can always find [orthonormal](https://en.wikipedia.org/wiki/Orthonormality) eigenvectors (``A`` is [normal](https://en.wikipedia.org/wiki/Normal_matrix)).
By wrapping a matrix in the [`SkewHermitian`](@ref) or [`SkewHermTridiagonal`](@ref) types, you can exploit optimized methods
for eigenvalue calculations (extending the functions defined in Julia's `LinearAlgebra` standard library). Especially for *real*
skew-symmetric ``A=-A^T``, these optimized methods are generally *much faster* than the alternative of forming the complex-Hermitian
matrix ``iA``, computing its diagonalization, and multiplying the eigenvalues by ``-i``.
In particular, optimized methods are provided for [`eigen`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigen) (returning a factorization object storing both eigenvalues and eigenvectors), [`eigvals`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvals) (just eigenvalues), [`eigvecs`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigvecs) (just eigenvectors), and their in-place variants [`eigen!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.eigen!)/[`eigvals!`] (which overwrite the matrix data).
Since the [SVD](https://en.wikipedia.org/wiki/Singular_value_decomposition) and [Schur](https://en.wikipedia.org/wiki/Schur_decomposition) factorizations can be trivially computed from the eigenvectors/eigenvalues for any normal matrix, we also provide optimized methods for [`svd`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.svd), [`svdvals`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.svdvals), [`schur`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.schur), and their in-place variants [`svd!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.svd!)/[`svdvals!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.svdvals!)/[`schur!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.schur!).
A key intermediate step in solving eigenproblems is computing the Hessenberg tridiagonal reduction of the matrix, and we expose this functionality by providing optimized [`hessenberg`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.hessenberg) and [`hessenberg!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.hessenberg!) methods for `SkewHermitian` matrices as described below. (The Hessenberg tridiagonalization is sometimes useful in its own right for matrix computations.)
### Eigenvalues and eigenvectors
The package also provides eigensolvers for `SkewHermitian` and `SkewHermTridiagonal` matrices. A fast and sparse specialized QR algorithm is implemented for `SkewHermTridiagonal` matrices and also for `SkewHermitian` matrices using the `hessenberg` reduction.
The function `eigen` returns a `Eigen`structure as the LinearAlgebra standard library:
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = SkewHermitian([0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]);
julia> E = eigen(A)
Eigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}}
values:
4-element Vector{ComplexF64}:
0.0 + 11.934458713974193im
0.0 + 0.7541188264752741im
-0.0 - 0.7541188264752989im
-0.0 - 11.934458713974236im
vectors:
4×4 Matrix{ComplexF64}:
-0.49111+0.0im -0.508735+0.0im 0.508735+0.0im 0.49111+0.0im
-0.488014-0.176712im 0.471107+0.0931315im -0.471107+0.0931315im 0.488014-0.176712im
-0.143534+0.615785im 0.138561-0.284619im -0.138561-0.284619im 0.143534+0.615785im
-0.00717668-0.299303im 0.00692804-0.640561im -0.00692804-0.640561im 0.00717668-0.299303im
```
The function `eigvals` provides the eigenvalues of ``A``. The eigenvalues can be sorted and found partially with imaginary part in some given real range or by order.
```jl
julia> eigvals(A)
4-element Vector{ComplexF64}:
0.0 + 11.93445871397423im
0.0 + 0.7541188264752853im
-0.0 - 0.7541188264752877im
-0.0 - 11.934458713974225im
julia> eigvals(A,0,15)
2-element Vector{ComplexF64}:
0.0 + 11.93445871397414im
0.0 + 0.7541188264752858im
julia> eigvals(A,1:3)
3-element Vector{ComplexF64}:
0.0 + 11.93445871397423im
0.0 + 0.7541188264752989im
-0.0 - 0.7541188264752758im
```
### SVD
A specialized SVD using the eigenvalue decomposition is implemented for `SkewHermitian` and `SkewHermTridiagonal` type.
These functions can be called using the `LinearAlgebra` syntax.
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = SkewHermitian([0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]);
julia> svd(A)
SVD{ComplexF64, Float64, Matrix{ComplexF64}}
U factor:
4×4 Matrix{ComplexF64}:
0.49111+0.0im -0.49111+0.0im 0.508735+0.0im -0.508735+0.0im
0.488014-0.176712im -0.488014-0.176712im -0.471107+0.0931315im 0.471107+0.0931315im
0.143534+0.615785im -0.143534+0.615785im -0.138561-0.284619im 0.138561-0.284619im
0.00717668-0.299303im -0.00717668-0.299303im -0.00692804-0.640561im 0.00692804-0.640561im
singular values:
4-element Vector{Float64}:
11.93445871397423
11.934458713974193
0.7541188264752989
0.7541188264752758
Vt factor:
4×4 Matrix{ComplexF64}:
0.0-0.49111im 0.176712-0.488014im -0.615785-0.143534im 0.299303-0.00717668im
0.0-0.49111im -0.176712-0.488014im 0.615785-0.143534im -0.299303-0.00717668im
0.0-0.508735im -0.0931315+0.471107im 0.284619+0.138561im 0.640561+0.00692804im
0.0-0.508735im 0.0931315+0.471107im -0.284619+0.138561im -0.640561+0.00692804im
julia> svdvals(A)
4-element Vector{Float64}:
11.93445871397423
11.934458713974225
0.7541188264752877
0.7541188264752853
```
### Hessenberg tridiagonalization
The Hessenberg reduction performs a reduction ``A=QHQ^T`` where ``Q=\prod_i I-\tau_i v_iv_i^T`` is an orthonormal matrix.
The `hessenberg` function computes the Hessenberg decomposition of `A` and returns a `Hessenberg` object. If `F` is the
factorization object, the unitary matrix can be accessed with `F.Q` (of type `LinearAlgebra.HessenbergQ`)
and the Hessenberg matrix with `F.H` (of type `SkewHermTridiagonal`), either of
which may be converted to a regular matrix with `Matrix(F.H)` or `Matrix(F.Q)`.
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = SkewHermitian([0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]);
julia> hessenberg(A)
Hessenberg{Float64, Tridiagonal{Float64, Vector{Float64}}, Matrix{Float64}, Vector{Float64}, Bool}
Q factor:
4×4 LinearAlgebra.HessenbergQ{Float64, Matrix{Float64}, Vector{Float64}, true}:
1.0 0.0 0.0 0.0
0.0 -0.240772 -0.95927 -0.14775
0.0 0.842701 -0.282138 0.458534
0.0 -0.481543 -0.0141069 0.876309
H factor:
4×4 SkewHermTridiagonal{Float64, Vector{Float64}, Nothing}:
0.0 -8.30662 0.0 0.0
8.30662 0.0 -8.53382 0.0
0.0 8.53382 0.0 1.08347
0.0 0.0 -1.08347 0.0
```
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 4084 | # SkewLinearAlgebra
The `SkewLinearAlgebra` package provides specialized matrix types, optimized methods of `LinearAlgebra` functions, and a few entirely new functions for dealing with linear algebra on [skew-Hermitian matrices](https://en.wikipedia.org/wiki/Skew-Hermitian_matrix), especially for the case of [real skew-symmetric matrices](https://en.wikipedia.org/wiki/Skew-symmetric_matrix).
## Introduction
A skew-Hermitian matrix ``A`` is a square matrix that equals the negative of its conjugate-transpose: ``A=-\overline{A^{T}}=-A^{*}``, equivalent to `A == -A'` in Julia. (In the real skew-symmetric case, this is simply ``A=-A^T``.) Such matrices have special computational properties: orthogonal eigenvectors and purely imaginary eigenvalues, "skew-Cholesky" factorizations, and a relative of the determinant called the [Pfaffian](https://en.wikipedia.org/wiki/Pfaffian).
Although any skew-Hermitian matrix ``A`` can be transformed into a Hermitian matrix ``H=iA``, this transformation converts real matrices ``A`` into complex-Hermitian matrices ``H``, which entails at least a factor of two loss in performance and memory usage compared to the real case. (And certain operations, like the Pfaffian, are *only* defined for the skew-symmetric case.) `SkewLinearAlgebra` gives you access to the greater performance and functionality that are possible for purely real skew-symmetric matrices.
To achieve this `SkewLinearAlgebra` defines a new matrix type, [`SkewHermitian`](@ref SkewLinearAlgebra.SkewHermitian) (analogous to the [`LinearAlgebra.Hermitian`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.Hermitian) type in the Julia standard library) that gives you access to optimized methods and specialized functionality for skew-Hermitian matrices, especially in the real case. It also provides a more specialized [`SkewHermTridiagonal`](@ref SkewLinearAlgebra.SkewHermTridiagonal) for skew-Hermitian tridiagonal matrices (analogous to the [`LinearAlgebra.SymTridiagonal`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.SymTridiagonal) type in the Julia standard library) .
## Contents
The `SkewLinearAlgebra` documentation is divided into the following sections:
* [Skew-Hermitian matrices](@ref): the `SkewHermitian` type, constructors, and basic operations
* [Skew-Hermitian tridiagonal matrices](@ref): the `SkewHermTridiagonal` type, constructors, and basic operations
* [Skew-Hermitian eigenproblems](@ref): optimized eigenvalues/eigenvectors (& Schur/SVD), and Hessenberg factorization
* [Trigonometric functions](@ref): optimized matrix exponentials and related functions (`exp`, `sin`, `cos`, etcetera)
* [Pfaffian calculations](@ref): computation of the Pfaffian and log-Pfaffian
* [Skew-Cholesky factorization](@ref): a skew-Hermitian analogue of Cholesky factorization
## Quick start
Here is a simple example demonstrating some of the features of the `SkewLinearAlgebra` package. See the manual chapters outlines above for the complete details and explanations:
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = SkewHermitian([0 1 2
-1 0 3
-2 -3 0])
3×3 SkewHermitian{Int64, Matrix{Int64}}:
0 1 2
-1 0 3
-2 -3 0
julia> eigvals(A) # optimized eigenvalue calculation (purely imaginary)
3-element Vector{ComplexF64}:
0.0 - 3.7416573867739404im
0.0 + 3.7416573867739404im
0.0 + 0.0im
julia> Q = exp(A) # optimized matrix exponential
3×3 Matrix{Float64}:
0.348107 -0.933192 0.0892929
-0.63135 -0.303785 -0.713521
0.692978 0.192007 -0.694921
julia> Q'Q ≈ I # the exponential of a skew-Hermitian matrix is unitary
true
julia> pfaffian(A) # the Pfaffian (always zero for odd-size skew matrices)
0.0
```
## Acknowledgements
The `SkewLinearAlgebra` package was initially created by [Simon Mataigne](https://github.com/smataigne) and [Steven G. Johnson](https://math.mit.edu/~stevenj/), with support from [UCLouvain](https://uclouvain.be/) and the [MIT–Belgium program](https://misti.mit.edu/mit-belgium).
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 3699 | # Pfaffian calculations
A skew-symmetrix matrix ``A = -A^T`` has a special property: its determinant is the square of a polynomial function of the
matrix entries, called the [Pfaffian](https://en.wikipedia.org/wiki/Pfaffian). That is, ``\mathrm{det}(A) = \mathrm{Pf}(A)^2``, but
knowing the Pfaffian itself (and its sign, which is lost in the determinant) is useful for a number of applications.
We provide a function `pfaffian(A)` to compute the Pfaffian of a skew-symmetric matrix `A`.
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = [0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]
4×4 Matrix{Int64}:
0 2 -7 4
-2 0 -8 3
7 8 0 1
-4 -3 -1 0
julia> pfaffian(A)
-9.000000000000002
julia> det(A) # exact determinant is (-9)^2
80.99999999999999
```
By default, this computation is performed approximately using floating-point calculations, similar to Julia's [`det`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.det) algorithm for the determinant. However, for a [`BigInt` matrix](https://docs.julialang.org/en/v1/base/numbers/#BigFloats-and-BigInts), `pfaffian(A)` is computed exactly using an algorithm by
[Galbiati and Maffioli (1994)](https://doi.org/10.1016/0166-218X(92)00034-J):
```jl
julia> pfaffian(BigInt.(A))
-9
julia> det(big.(A)) # also exact for BigInt
81
```
Note that you need not (but may) pass a `SkewHermitian` matrix type to `pfaffian`. However, because the Pfaffian is only
defined for skew-symmetric matrices, it will give an error if you pass it a non-skewsymmetric matrix:
```jl
julia> pfaffian([1 2 3; 4 5 6; 7 8 9])
ERROR: ArgumentError: Pfaffian requires a skew-Hermitian matrix
```
We also provide a function `pfaffian!(A)` that overwrites `A` in-place (with undocumented values), rather than making a copy of
the matrix for intermediate calculations:
```jl
julia> pfaffian!(BigInt[0 2 -7; -2 0 -8; 7 8 0])
0
```
(Note that the Pfaffian is *always zero* for any *odd* size skew-symmetric matrix.)
Since the computation of the pfaffian can easily overflow/underflow the maximum/minimum representable floating-point value, we also provide a function `logabspfaffian` (along with an in-place variant `logabspfaffian!`) that returns a tuple `(logpf, sign)` such
that the Pfaffian is `sign * exp(logpf)`. (This is similar to the [`logabsdet`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.logabsdet) function in Julia's `LinearAlgebra` library to compute the log of the determinant.)
```jl
julia> logpf, sign = logabspfaffian(A)
(2.1972245773362196, -1.0)
julia> sign * exp(logpf) # matches pfaffian(A), up to floating-point rounding errors
-9.000000000000002
julia> B = triu(rand(-9:9, 500,500)); B = B - B'; # 500×500 skew-symmetric matrix
julia> pfaffian(B) # overflows double-precision floating point
Inf
julia> pf = pfaffian(big.(B)) # exact answer in BigInt precision (slow)
-149678583522522720601879230931167588166888361287738234955688347466367975777696295859892310371985561723944757337655733584612691078889626269612647408920674699424393216780756729980039853434268507566870340916969614567968786613166601938742927283707974123631646016992038329261449437213872613766410239159659548127386325836018158542150965421313640795710036050440344289340146687857870477701301808699453999823930142237829465931054145755710674564378910415127367945223991977718726
julia> Float64(log(abs(pf))) # exactly rounded log(abs(pfaffian(B)))
1075.7105584607807
julia> logabspfaffian(B) # matches log and sign!
(1075.71055846078, -1.0)
```
### Pfaffian Reference
```@docs
SkewLinearAlgebra.pfaffian
SkewLinearAlgebra.pfaffian!
SkewLinearAlgebra.logabspfaffian
SkewLinearAlgebra.logabspfaffian!
```
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 1620 | ## Skew-Cholesky factorization
The package provides a Cholesky-like factorization for real skew-symmetric matrices as presented in P. Benner et al, "[Cholesky-like factorizations of skew-symmetric matrices](https://etna.ricam.oeaw.ac.at/vol.11.2000/pp85-93.dir/pp85-93.pdf)"(2000).
Every real skew-symmetric matrix ``A`` can be factorized as ``A=P^TR^TJRP`` where ``P`` is a permutation matrix, ``R`` is an `UpperTriangular` matrix and J is of a special type called `JMatrix` that is a tridiagonal skew-symmetric matrix composed of diagonal blocks of the form ``B=[0, 1; -1, 0]``. The `JMatrix` type implements efficient operations related to the shape of the matrix as matrix-matrix/vector multiplication and inversion.
The function `skewchol` implements this factorization and returns a `SkewCholesky` structure composed of the matrices `Rm` and `Jm` of type `UpperTriangular` and `JMatrix` respectively. The permutation matrix ``P`` is encoded as a permutation vector `Pv`.
```jl
julia> R = skewchol(A)
julia> R.Rm
4×4 LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}:
2.82843 0.0 0.707107 -1.06066
⋅ 2.82843 2.47487 0.353553
⋅ ⋅ 1.06066 0.0
⋅ ⋅ ⋅ 1.06066
julia> R.Jm
4×4 JMatrix{Float64, 1}:
⋅ 1.0 ⋅ ⋅
-1.0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 1.0
⋅ ⋅ -1.0 ⋅
julia> R.Pv
4-element Vector{Int64}:
3
2
1
4
julia> transpose(R.Rm) * R.Jm * R.Rm ≈ A[R.Pv,R.Pv]
true
```
### Skew-Cholesky Reference
```@docs
SkewLinearAlgebra.skewchol
SkewLinearAlgebra.skewchol!
SkewLinearAlgebra.SkewCholesky
SkewLinearAlgebra.JMatrix
``` | SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 1729 | ## Trigonometric functions
The package implements special methods of trigonometric matrix functions using our optimized eigenvalue decomposition for `SkewHermitian` and `SkewHermTridiagonal` matrices: `exp`, `cis`, `cos`, `sin`, `sincos`, `sinh`, and `cosh`.
For example:
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = SkewHermitian([0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]);
julia> Q = exp(A)
4×4 Matrix{Float64}:
-0.317791 -0.816528 -0.268647 0.400149
-0.697298 0.140338 0.677464 0.187414
0.578289 -0.00844255 0.40033 0.710807
0.279941 -0.559925 0.555524 -0.547275
```
Note that the exponential of a skew-Hermitian matrix is very special: it is unitary. That is, if ``A^* = -A``, then ``(e^A)^* = (e^A)^{-1}``:
```jl
julia> Q' ≈ Q^-1
true
```
Several of the other matrix trigonometric functions also have special return types, in addition to being
optimized for performance.
```jl
julia> cis(A)
4×4 Hermitian{ComplexF64, Matrix{ComplexF64}}:
36765.0+0.0im 36532.0+13228.5im … 537.235+22406.2im
36532.0-13228.5im 41062.9+0.0im 8595.76+22070.7im
10744.7+46097.2im -5909.58+49673.4im -27936.2+7221.87im
537.235-22406.2im 8595.76-22070.7im 13663.9+0.0im
julia> cos(A)
4×4 Symmetric{Float64, Matrix{Float64}}:
36765.0 36532.0 10744.7 537.235
36532.0 41062.9 -5909.58 8595.76
10744.7 -5909.58 60940.6 -27936.2
537.235 8595.76 -27936.2 13663.9
julia> cosh(A)
4×4 Hermitian{Float64, Matrix{Float64}}:
0.766512 0.0374 0.011 0.000550001
0.0374 0.770912 -0.00605001 0.00880001
0.011 -0.00605001 0.791262 -0.0286
0.000550001 0.00880001 -0.0286 0.742862
```
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 1.0.0 | 5d44a4f56f7902c4414c0a477b021f17cf088cb3 | docs | 6488 | ## Skew-Hermitian matrices
[`SkewHermitian(A)`](@ref) wraps an existing matrix `A`, which *must* already be skew-Hermitian,
in the `SkewHermitian` type (a subtype of `AbstractMatrix`), which supports fast specialized operations noted below. You
can use the function [`isskewhermitian(A)`](@ref) to check whether `A` is skew-Hermitian (`A == -A'`).
`SkewHermitian(A)` *requires* that `A == -A'` and throws an error if it is not.
Alternatively, you can use the funcition [`skewhermitian(A)`](@ref) to take the skew-Hermitian *part*
of `A`, defined by `(A - A')/2`, and wrap it in a `SkewHermitian` view. The
function [`skewhermitian!(A)`](@ref) does the same operation in-place on `A` (overwriting `A` with its
skew-Hermitian part).
Here is a basic example to initialize a `SkewHermitian` matrix:
```jl
julia> using SkewLinearAlgebra, LinearAlgebra
julia> A = [0 2 -7 4; -2 0 -8 3; 7 8 0 1;-4 -3 -1 0]
3×3 Matrix{Int64}:
0 2 -7 4
-2 0 -8 3
7 8 0 1
-4 -3 -1 0
julia> isskewhermitian(A)
true
julia> A = SkewHermitian(A)
4×4 SkewHermitian{Int64, Matrix{Int64}}:
0 2 -7 4
-2 0 -8 3
7 8 0 1
-4 -3 -1 0
```
Basic linear-algebra operations are supported:
```jl
julia> tr(A)
0
julia> det(A)
81.0
julia> inv(A)
4×4 SkewHermitian{Float64, Matrix{Float64}}:
0.0 0.111111 -0.333333 -0.888889
-0.111111 0.0 0.444444 0.777778
0.333333 -0.444444 0.0 0.222222
0.888889 -0.777778 -0.222222 0.0
julia> x=[1;2;3;4]
4-element Vector{Int64}:
1
2
3
4
julia> A\x
4-element Vector{Float64}:
-4.333333333333334
4.333333333333334
0.3333333333333336
-1.3333333333333333
```
A `SkewHermitian` matrix `A` is simply a wrapper around an underlying matrix (in which both the upper and lower triangles are stored, despite the redundancy, to support fast matrix operations). You can extract this underlying matrix with the Julia [`parent(A)`](https://docs.julialang.org/en/v1/base/arrays/#Base.parent) function (this does *not* copy the data:
mutating the parent will modify `A`). Alternatively, you can *copy* the data to an ordinary `Matrix` ([2d `Array`](https://docs.julialang.org/en/v1/manual/arrays/)) with `Matrix(A)`.
### Operations on `SkewHermitian`
The `SkewHermitian` type supports the basic operations for any Julia `AbstractMatrix` (indexing, iteration, multiplication, addition, scaling, and so on). Matrix–matrix and matrix–vector multiplications are performed using the underlying
parent matrix, so they are fast.
We try to preserve the `SkewHermitian` wrapper, if possible. For example, adding two `SkewHermitian` matrices or scaling by a real number yields another `SkewHermitian` matrix. Similarly for `real(A)`, `conj(A)`, `inv(A)`, or `-A`.
The package provides several optimized methods for `SkewHermitian` matrices,
based on the functions defined by the Julia `LinearAlgebra` package:
- Tridiagonal reduction: `hessenberg`
- Eigensolvers: `eigen`, `eigvals` (also `schur`, `svd`, `svdvals`)
- Trigonometric functions:`exp`, `cis`,`cos`,`sin`,`sinh`,`cosh`,`sincos`
We also define the following *new* functions for real skew-symmetric matrices only:
- Cholesky-like factorization: [`skewchol`](@ref)
- Pfaffian: [`pfaffian`](@ref), [`logabspfaffian`](@ref)
## Skew-Hermitian tridiagonal matrices
In the special case of a [tridiagonal](https://en.wikipedia.org/wiki/Tridiagonal_matrix) skew-Hermitian matrix,
many calculations can be performed very quickly, typically with ``O(n)`` operations for an ``n\times n`` matrix.
Such optimizations are supported by the `SkewLinearAlgebra` package using the `SkewHermTridiagonal` matrix type.
A complex tridiagonal skew-Hermitian matrix is of the form:
```math
A=\left(\begin{array}{ccccc}
id_{1} & -e_{1}^{*}\\
e_{1} & id_{2} & -e_{2}^{*}\\
& e_{2} & id_{3} & \ddots\\
& & \ddots & \ddots & -e_{n-1}^{*}\\
& & & e_{n-1} & id_{n}
\end{array}\right)=-A^{*}
```
with purely imaginary diagonal entries ``id_k``. This is represented in the `SkewLinearAlgebra` package by calling the `SkewHermTridiagonal(ev,dvim)` constructor, where `ev` is the (complex) vector of ``n-1`` subdiagonal entries ``e_k``
and `dvim` is the (real) vector of ``n`` diagonal imaginary parts ``d_k``:
```jl
julia> SkewHermTridiagonal([1+2im,3+4im],[5,6,7])
3×3 SkewHermTridiagonal{Complex{Int64}, Vector{Complex{Int64}}, Vector{Int64}}:
0+5im -1+2im ⋅
1+2im 0+6im -3+4im
⋅ 3+4im 0+7im
```
In the case of a *real* matrix, the diagonal entries are zero, and the matrix takes the form:
```math
\text{real }A=\left(\begin{array}{ccccc}
0 & -e_{1}\\
e_{1} & 0 & -e_{2}\\
& e_{2} & 0 & \ddots\\
& & \ddots & \ddots & -e_{n-1}\\
& & & e_{n-1} & 0
\end{array}\right)=-A^{T}
```
In this case, you need not store the zero diagonal entries, and can simply call `SkewHermTridiagonal(ev)`
with the *real* vector `ev` of the ``n-1`` subdiagonal entries:
```jl
julia> A = SkewHermTridiagonal([1,2,3])
4×4 SkewHermTridiagonal{Int64, Vector{Int64}, Nothing}:
⋅ -1 ⋅ ⋅
1 ⋅ -2 ⋅
⋅ 2 ⋅ -3
⋅ ⋅ 3 ⋅
```
(Notice that zero values that are not stored (“structural zeros”) are shown as a `⋅`.)
A `SkewHermTridiagonal` matrix can also be converted to the [`LinearAlgebra.Tridiagonal`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.SymTridiagonal) type in the Julia standard library:
```jl
julia> Tridiagonal(A)
4×4 Tridiagonal{Int64, Vector{Int64}}:
0 -1 ⋅ ⋅
1 0 -2 ⋅
⋅ 2 0 -3
⋅ ⋅ 3 0
```
which may support a wider range of linear-algebra functions, but does not optimized for the skew-Hermitian structure.
### Operations on `SkewHermTridiagonal`
The `SkewHermTridiagonal` type is modeled on the [`LinearAlgebra.SymTridiagonal`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.SymTridiagonal) type in the Julia standard library) and supports typical matrix operations
(indexing, iteration, scaling, and so on).
The package provides several optimized methods for `SkewHermTridiagonal` matrices,
based on the functions defined by the Julia `LinearAlgebra` package:
- Matrix-vector `A*x` and `dot(x,A,y)` products; also solves `A\x` (via conversion to `Tridiagonal`)
- Eigensolvers: `eigen`, `eigvals` (also `svd`, `svdvals`)
- Trigonometric functions:`exp`, `cis`,`cos`,`sin`,`sinh`,`cosh`,`sincos`
## Types Reference
```@docs
SkewLinearAlgebra.SkewHermitian
SkewLinearAlgebra.skewhermitian
SkewLinearAlgebra.skewhermitian!
SkewLinearAlgebra.SkewHermTridiagonal
```
| SkewLinearAlgebra | https://github.com/JuliaLinearAlgebra/SkewLinearAlgebra.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 404 | #=
Multi-processing case.
Requires Distributed to be installed.
- Uncomment below, specifying number of desired processes (default is number of system cores)
- Prefix all code below with `@everywhere`
=#
#= using Distributed
addprocs(length(Sys.cpu_info()))
@everywhere =#
import Pkg
Pkg.pkg"activate ."
# using .MyPkg
include("src/MyPkg.jl")
Settings = MyPkg.Settings
MyPkg.main(ARGS)
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 155 | using Dance.Router
function hello(headers::Dict{String, String}) :: String
return "Hello World"
end
route("/", hello; method=GET, endpoint=EP_HTML)
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 291 | module Conf
"""
Overwrite default config, 1 item per line
See docs or `src/Configuration.jl.Settings` dict
Format: param{Symbol}=value{Any}
e.g: :dev = false
"""
:dev = false
# Overwrite above values by reading from other file, depending on environment
# E.g: include("dev.jl")
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1098 | module MyPkg
PROJECT_ROOT = abspath(".")
Settings = []
import Dance
#=
STEP 1
If apart from `static_dir` as defined in `routes.jl` there are dirs to ignore adding to LOAD_PATH
=> add to `ignore_dirs`
By default all other sub-dirs of project structure will be added
=#
ignore_dirs = [""]
if Dance.populate_settings(PROJECT_ROOT)
global Settings
Settings = Dance.Configuration.Settings
for item in Dance.populate_load_path(PROJECT_ROOT; ignore_dirs=ignore_dirs)
push!(LOAD_PATH, item)
end
end
#=
STEP 2
Import modules here below, not above
(STEP 1 populated `LOAD_PATH`)
=#
function main(args)
if Dance.populate_router(PROJECT_ROOT)
include(Settings[:routes_filename]*".jl")
## STEP 3: Add custom scripts here that need be run before launching Dance ##
##############################################
start_server::Bool = true
if length(args)>0
if args[1]=="repl"
start_server = false
end
end
Dance.launch(start_server)
end
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 3812 | module Configuration
Settings = Dict(
:api_access_control_allow_origin => "*",
:dev => false,
:html_base_filename => "html/base",
:html_favicon_name => "html/favicon",
:log_filename => "log/dancejl",
:routes_filename => "routes",
:server_host => "",
:server_port => ""
)
"""
is_prod(file_path)
Check if is Production environment
"""
function is_prod() :: Bool
global Settings
return !parse(Bool, Settings[:dev])
end
"""
populate(file_path)
- Read settings/Global.jl from project
- Populate/update Settings dict accordingly
"""
function populate(file_path) :: Bool
is_success:Bool = false
### Parse project settings ###
function parse() :: Nothing
function _parse_file(path) :: Nothing
open(path) do file
for line in eachline(file)
if length(line) > 0
# Trim left space
line = lstrip(line)
if startswith(line, "include(")
_parse_file(joinpath(
file_path, "settings",
replace(replace(line, "include(\"" => ""), "\")" => "")
))
elseif line[1]==':'
line_split::Array{String} = split(line, "=")
key::String = lstrip(rstrip(line_split[1]), ':')
value::Union{Float64, Int64, String, SubString{String}} = lstrip(line_split[2])
# Remove trailing comment
if occursin(" #", value)
value = rstrip(split(value, " #")[1])
end
# Remove enclosing quotation marks if is String value
if value[1]=='"'
value = lstrip(rstrip(value, '"'), '"')
end
# Convert SubString{String} from to String
value = string(value)
# Convert to Float/Int if possible
if tryparse(Float64, value) isa Number
if tryparse(Int64, value) !== nothing
value = tryparse(Int64, value)
else
value = parse(Float64, value)
end
end
# Populate/update Settings dict
if haskey(Settings, Symbol(key))
global Settings
Settings[Symbol(key)] = value
else
global Settings
push!(Settings, Symbol(key) => value)
end
end
end
end
end
end
return _parse_file(joinpath(file_path, "settings/Global.jl"))
end
parse()
is_success = true
### Set default server values for Dev environment ###
if !is_prod()
if Settings[:server_host]==""
global Settings
Settings[:server_host] = "127.0.0.1"
end
if Settings[:server_port] ==""
global Settings
Settings[:server_port] = 8000
end
end
### Server values cannot be blank for Prod environment, as no default ###
for key in [:server_host, :server_port]
if Settings[key] == ""
@error "Please set valid $key value, cannot be blank"
is_success = false
end
end
return is_success
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 6776 | module Dance
import Pkg
import REPL
include("Configuration.jl")
include("Logger.jl")
include("utils/URIUtils.jl")
include("Router.jl")
include("utils/PayloadUtils.jl")
include("renderers/HTMLRenderer.jl")
include("renderers/JSONRenderer.jl")
include("renderers/StaticRenderer.jl")
include("renderers/CoreRenderer.jl")
include("engines/CoreEngine.jl")
export start_project
"""
launch(start_server::Bool)
Launch either (depending on `start_server` param):
- Web server via selected engine
- REPL
"""
function launch(start_server::Bool) :: Union{REPL.REPLBackend, Nothing}
if start_server
server_host::String = Configuration.Settings[:server_host]
server_port::Int64 = Configuration.Settings[:server_port]
@info "Web server started at $server_host:$server_port"
CoreEngine.start_server(server_host, server_port)
else
# https://github.com/JuliaLang/julia/blob/master/stdlib/REPL/src/REPL.jl
terminal = REPL.Terminals.TTYTerminal("", stdin, stdout, stderr)
repl = REPL.LineEditREPL(terminal, true)
REPL.run_repl(repl)
end
end
"""
populate_load_path(file_path::String; ignore_dirs::Array{String, 1})
- Read Settings dict for routes filepath
- Get static dir by parsing routes.jl
- Optional: array of other paths to ignore
"""
function populate_load_path(file_path::String; ignore_dirs::Array{String, 1}) :: Array{String, 1}
dirs_ignore_array::Array{String, 1} = [".git", ".hg", "node_modules"]
load_path_array::Array{String, 1} = [abspath(file_path)]
function _get_static_dir() :: String
static_dir::String = ""
for line in readlines(joinpath(file_path, Configuration.Settings[:routes_filename]*".jl"))
if occursin("static_dir(", line)
static_dir = replace(
strip(
split(
split(
split(line, ",")[2],
")"
)[1],
"/"
)[1]
),
"\"" => ""
)
end
end
return static_dir
end
function _populate_load_path() :: Nothing
for item in readdir(file_path)
if isdir(item) && !(item in filter(x -> !occursin("/", x), dirs_ignore_array))
for (root, dirs, files) in walkdir(item)
push!(load_path_array, abspath(root))
for dir in dirs
if size(split(root, "/"))[1]==1
for ignore_dir in dirs_ignore_array
if !occursin(abspath(ignore_dir), abspath(joinpath(root)))
if !(abspath(root) in load_path_array)
push!(load_path_array, abspath(root))
end
end
end
end
ignore_dirs_contains_dir_counter::Int8 = 0
for ignore_dir in dirs_ignore_array
if occursin(abspath(ignore_dir), abspath(joinpath(root, dir)))
ignore_dirs_contains_dir_counter = 1
break
end
end
if ignore_dirs_contains_dir_counter==0
if !(abspath(joinpath(root, dir)) in load_path_array)
push!(load_path_array, abspath(joinpath(root, dir)))
end
end
end
end
end
end
nothing
end
if _get_static_dir()!=""
push!(dirs_ignore_array, _get_static_dir())
end
dirs_ignore_array = vcat(dirs_ignore_array, ignore_dirs)
_populate_load_path()
return load_path_array
end
"""
populate_router(file_path::String)
Populate Router.ROUTES OrderedDict (when including/compiling Julia files)
"""
function populate_router(file_path::String) :: Bool
return Router.populate(file_path)
end
"""
populate_settings(file_path::String)
Populate Configuration.Settings dict
"""
function populate_settings(file_path::String) :: Bool
return Configuration.populate(file_path)
end
"""
start_project(project_name::String, path::String=".")
- Specify new project name
- Copy `files` dir to root of new project
"""
function start_project(project_name::String, path::String=".") :: Nothing
project_directory::String = joinpath(abspath(path), project_name)
Pkg.generate(project_name)
rm(joinpath(project_directory, "src"); recursive=true)
for (root, dirs, files) in walkdir(joinpath(@__DIR__, "../files"))
for file in files
cp(joinpath(root, file), joinpath(project_directory, file); force=true)
end
for dir in dirs
mkdir(joinpath(project_directory, dir))
for (root2, dirs2, files2) in walkdir(joinpath(root, dir))
for file in files2
cp(joinpath(root, dir, file), joinpath(project_directory, dir, file); force=true)
end
end
end
end
project_name = titlecase(project_name)
mv(
joinpath(project_directory, "src/MyPkg.jl"),
joinpath(project_directory, "src/$project_name.jl")
)
for file_name in [
joinpath(project_directory, "src/$project_name.jl"),
joinpath(project_directory, "dance.jl"),
]
lines = readlines(file_name)
open(file_name, "w") do io
for line in lines
if match(r"MyPkg", line) !== nothing
line = replace(line, "MyPkg" => project_name)
end
println(io, line)
end
end
end
if Sys.iswindows()
run(`icacls.exe $project_name /reset /T /Q`)
run(`icacls "$project_name" /reset /T /Q`)
username::String = read(run(`whoami`), String)
run(`icacls.exe $project_name /grant $username:F /T /Q`)
run(`icacls "$project_name" /grant "$username:(OI)(CI)(IO)F" /T /Q`)
run(`icacls "$project_name" /grant "$username:F" /Q`)
#= TODO: fix Windows PowerShell escape issue
See: https://discourse.julialang.org/t/how-to-quote-special-characters-in-run-function/21359/4 =#
@info "Please run REPL command `run(`attrib –r \"$project_name\\*.*\" /s`)` to finish (due to Julia <-> Windows PowerShell issue)"
else
run(`chmod -R 755 $project_directory`)
end
@info "Project files created for $project_name"
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 728 | module Logger
import Dates
import Dance.Configuration
"""
log(error)
Logging of timestamp & error message
- If Prod: Write to log file
- Else: Output te REPL
"""
function log(error::String) :: Nothing
error::String = string(Dates.now(Dates.UTC), ": ", error)
if Configuration.is_prod()
log_filepath::String = Configuration.Settings[:log_filename]*".log"
# Create logfile dir if not found
if !isfile(log_filepath)
paths::Array{String} = split(log_filepath, '/')
mkpath(replace(log_filepath, paths[end] => ""))
end
open(log_filepath, "a+") do file
write(file, error * "\n")
end
else
@error error
end
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 9669 | module Router
import OrderedCollections
import Dance.Configuration
import Dance.Logger
import Dance.URIUtils
include("mime_types.jl")
const GET= "GET"
const OPTIONS = "OPTIONS"
const POST= "POST"
const METHODS = [GET, OPTIONS, POST]
const EP_HTML = "HTML"
const EP_JSON = "JSON"
const EP_STATIC = "STATIC"
const ENDPOINTS = [EP_HTML, EP_JSON, EP_STATIC]
STATIC_DIR = ""
STATIC_ROUTE_PREFIX = ""
export GET, POST, EP_HTML, EP_JSON, EP_STATIC, output_file_as_string, route, route_group, static_dir
mutable struct Route
endpoint::String
method::String
path::String
has_regex::Bool
action::Function
html_file::String
"""
Route(;endpoint::String, method::String, path::String, has_regex::Bool, action::Function, html_file::String)
Create new Route object, by validating supplied Route parameters
"""
function Route(;endpoint::String, method::String, path::String, has_regex::Bool, action::Function, html_file::String) :: Route
error::String = ""
if !(endpoint in ENDPOINTS)
error = "Invalid endpoint. Must be \"EP_HTML\" or \"EP_JSON\" or \"EP_STATIC\""
elseif !(method in METHODS)
error = "Invalid method. Must be \"GET\" or \"POST\""
elseif path_already_exists(path)
error = "Path already exists"
else
try
for item in split(path, "/")
isa("r\"" * path * "\"", Regex)
end
catch e
error = "Invalid route regex format"
end
try
methods(action)
catch e
error = "Action function not defined"
end
end
if length(error)==0
return new(endpoint, method, path, has_regex, action, html_file)
else
Logger.log("Route construction for `$path`: $error")
end
end
end
const ROUTES = OrderedCollections.OrderedDict{String, Route}()
"""
delete_routes!()
Empty ROUTES ordered dict
Only called from tests as of now
"""
function delete_routes!() :: OrderedCollections.OrderedDict{String, Route}
empty!(ROUTES)
end
"""
get_route(route_path::String)
Search ROUTES ordered dict for route component from specified path
"""
function get_route(route_path::String) :: Union{Route, Nothing}
found_route::Union{Route, Nothing} = nothing
# Remove trailing slash (if not index url)
route_path = remove_trailing_slash(route_path)
for (path, route) in ROUTES
if !route.has_regex
if path==route_path
found_route = route
end
else
request_path_number_of_segments::Int8 = length(URIUtils.get_path_segments(route_path))[1]
route_number_of_params::Int8 = length(collect(eachmatch(URIUtils.ROUTE_REGEX_BASIC_STRUCTURE, path)))
if route.has_regex && request_path_number_of_segments==route_number_of_params
try
m::Union{RegexMatch, Nothing} = match(Regex(path), route_path)
if isa(m, RegexMatch) && length(m.match)==length(route_path)
found_route = route
end
catch e
nothing
end
end
end
end
if isnothing(found_route)
Logger.log("Getting Route: route with path `$route_path` not defined")
end
return found_route
end
"""
output_file_as_string(file_path::String)
Read file_path as string and obtain corresponding mime-type based on file extension
First try searching in STATIC_DIR then try in project root, each time relative to route_path
`favicon.ico` is special exception case
"""
function output_file_as_string(file_path::String) :: Tuple{String, Dict}
filename::String = ""
file_output_as_string::String = ""
headers::Dict{String, String} = Dict("Content-Type" => "")
file_type::String = split(file_path, '.')[end]
if file_type in keys(mime_types)
headers["Content-Type"] = mime_types[file_type]
else
Logger.log("HTTP mime-type not yet supported for file: `$file_path`\nPlease file Github issue at: https://github.com/DanceJL/Dance.jl/issues")
end
if file_path=="/favicon.ico"
filename = Configuration.Settings[:html_favicon_name] * ".ico"
else
try
filename = STATIC_DIR * split(file_path, STATIC_ROUTE_PREFIX)[2]
catch e
filename = strip(file_path, '/')
end
end
file_output_as_string = read(filename, String)
headers["Content-Length"] = string(filesize(filename))
return file_output_as_string, headers
end
"""
path_already_exists(path::String)
Verify if ROUTES ordered dict already has existing entry for specified path
"""
function path_already_exists(path::String) :: Bool
path_exists = false
for route_path in keys(ROUTES)
if route_path == path
path_exists = true
break
end
end
return path_exists
end
"""
populate(file_path)
Register Routes from `Configuration.Settings[:routes_filename]` file
"""
function populate(file_path::String) :: Bool
is_success::Bool = false
routes_filepath::String = joinpath(file_path, Configuration.Settings[:routes_filename]*".jl")
if isfile(routes_filepath)
is_success = true
else
@error "Populating Routes: file not found at $routes_filepath"
end
# Add favicon.ico
route("/favicon.ico", output_file_as_string; method=GET, endpoint=EP_STATIC)
return is_success
end
"""
remove_trailing_slash(path::String)
Remove eventual trailing slash, if not index url
"""
function remove_trailing_slash(path::String) :: String
if length(path)>1 && path[end]=='/'
path = chop(path)
end
return path
end
"""
route(path::Union{Regex, String}, action::Function; method::String=POST, endpoint=EP_JSON, html_file::String=Configuration.Settings[:html_base_filename]*".html")
Create new Route and add to ROUTES ordered dict
- If path is Regex, convert to String for storage (Route has `has_regex` field)
- Remove trailing slash
"""
function route(path::Union{Regex, String}, action::Function; method::String=POST, endpoint::String=EP_JSON, html_file::String=Configuration.Settings[:html_base_filename]*".html") :: OrderedCollections.OrderedDict{String, Route}
has_regex::Bool = isa(path, Regex)
if has_regex
path::String = replace(rstrip(string(path), '"'), "r\""=>"")
end
path = remove_trailing_slash(path)
# Prevent route paths contaning dots at start (static files relative path)
if startswith(path, "/..")
@error "Route paths cannot go higher than project route in directory structure"
end
# Route path must have leading slash
if !startswith(path, "/")
@error "Route must start with leading slash"
end
push!(ROUTES, path => Route(endpoint=endpoint, method=method, path=path, has_regex=has_regex, action=action, html_file=html_file))
end
"""
route_group(routes::Array; route_prefix::String="", method::String="", endpoint::String="", html_file::String=Configuration.Settings[:html_base_filename]*".html")
Loop through array of named tuple routes, calling `route` function
- automatically prepend route_prefix to route path (if supplied)
- if other parameters supplied as function kwargs, set route parameters accordingly
"""
function route_group(routes::Array; route_prefix::String="", method::String="", endpoint::String="", html_file::String=Configuration.Settings[:html_base_filename]*".html") :: Union{Nothing, OrderedCollections.OrderedDict{String, Route}}
for item in routes
if isa(item, NamedTuple)
path::Union{Regex, String} = ""
for idx in [:path, :action]
if !(idx in keys(item))
@error "Please make sure $item contains at least `path` and `action` keys"
end
end
if length(route_prefix)>0 && route_prefix!="/"
if isa(item.path, Regex)
path = Regex(route_prefix * string(item.path)[3:end-1])
else
path = route_prefix * item.path
end
else
path = item.path
route_prefix = ""
end
if :method in keys(item)
method = item.method
end
if :endpoint in keys(item)
endpoint = item.endpoint
end
if :html_file in keys(item)
html_file = item.html_file
end
route(path, item.action; method=method, endpoint=endpoint, html_file=html_file)
else
@error "Please supply route $item as NamedTuple"
end
end
end
"""
static_dir(route_prefix::String, dir_path::String)
Parse supplied directory path and create routes for each item
"""
function static_dir(route_prefix::String, dir_path::String) :: Nothing
global STATIC_DIR = dir_path
global STATIC_ROUTE_PREFIX = route_prefix
for (root, dirs, files) in walkdir(dir_path)
for file in files
if !occursin(".DS_Store", file)
path::String = STATIC_ROUTE_PREFIX * split(joinpath(root, file), STATIC_DIR)[2]
# Windows path issue (replace backslash by forward slash)
if Sys.iswindows()
path = replace(path, "\\" => "/")
end
route(path, output_file_as_string; method=GET, endpoint=EP_STATIC)
end
end
end
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 302 | mime_types = Dict(
"css" => "text/css",
"gif" => "image/gif",
"ico" => "image/x-icon",
"jpe" => "image/jpeg",
"jpeg" => "image/jpeg",
"jpg" => "image/jpeg",
"js" => "text/javascript",
"pdf" => "application/pdf",
"svg" => "image/svg+xml",
"txt" => "text/plain"
)
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 10892 | module CoreEngine
import DataFrames
import JSON3
import Dance.Configuration
import Dance.CoreRenderer
import Dance.Logger
import Dance.Router
import Dance.PayloadUtils
import Dance.URIUtils
include("FlamencoEngine.jl")
const OUTPUT_DATA_FORMATS = Union{DataFrames.DataFrame, Dict, String}
const ROUTE_PARAMS_FORMATS = Union{Float64, Int64, String}
"""
build_route_params_dict(;request_route_segments::Array{String, 1}, route_path::String) :: Dict
Build dict of route params and corresponding values, by:
- Parsing route.path for only segment sections
- Looking-up request route segments at corresponding index
"""
function build_route_params_dict(;request_route_segments::Array{String, 1}, route_path::String) :: Dict
route_params_dict::Dict{Symbol, ROUTE_PARAMS_FORMATS} = Dict()
for (idx, item) in enumerate(collect(eachmatch(URIUtils.ROUTE_REGEX_PARAM_ONLY, route_path)))
index::String = lstrip(split(item.match, ">")[1], '<')
value::ROUTE_PARAMS_FORMATS = request_route_segments[idx]
if tryparse(Float64, value) isa Number
if tryparse(Int64, value) !== nothing
value = parse(Int64, value)
else
value = parse(Float64, value)
end
end
route_params_dict[Symbol(index)] = value
end
return route_params_dict
end
"""
map_route_function_output()
Output from route.action can contain optional HTTP Headers params dict
"""
function map_route_function_output(output::Union{Tuple, OUTPUT_DATA_FORMATS})
data::OUTPUT_DATA_FORMATS = ""
headers::Dict{String, String} = Dict()
if isa(output, Tuple)
data = output[1]
headers = output[2]
else
data = output
end
return headers, data
end
"""
process_backend_function(;route::Router.Route, route_segments::Array{String, 1}, payload::String, headers::Dict{String, String}) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
2 main cases
- JSON POST request with payload
- GET request
If error during process, render 500 response
Render 400 if badly supplied payload data
"""
function process_backend_function(;route::Router.Route, route_segments::Array{String, 1}, payload::String, headers::Dict{String, String}) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
data::OUTPUT_DATA_FORMATS = ""
output_headers::Dict{String, String} = Dict()
output::Union{Tuple, OUTPUT_DATA_FORMATS} = ""
received_data::Union{DataFrames.DataFrame, Union{Array{Any,1}, Dict}} = Dict()
rendered_dict::Dict{Symbol, Union{Dict{String, String}, Int16, String}} = Dict()
route_params_dict::Dict{Symbol, ROUTE_PARAMS_FORMATS} = Dict()
if route.endpoint==Router.EP_JSON && length(payload)>0
can_proceed::Bool = false
try
json_decoded_data::Union{JSON3.Array, JSON3.Object} = JSON3.read(payload)
if isa(json_decoded_data, JSON3.Array)
received_data = PayloadUtils.convert_array_to_dataframe(json_decoded_data)
else
received_data = Dict(json_decoded_data)
end
can_proceed = true
catch e
rendered_dict = render_400(;endpoint=route.endpoint)
end
if can_proceed
try
if route.has_regex
route_params_dict = build_route_params_dict(;request_route_segments=route_segments, route_path=route.path)
output = route.action(route_params_dict, received_data, headers)
else
output = route.action(received_data, headers)
end
output_headers, data = map_route_function_output(output)
rendered_dict = render_200(;headers=output_headers, endpoint=route.endpoint, data=data, html_file=route.html_file)
catch e
rendered_dict = render_500(;endpoint=route.endpoint, data=e, html_file=route.html_file, request_path=route.path)
end
end
elseif route.endpoint==Router.EP_JSON || route.endpoint==Router.EP_HTML
try
if route.has_regex
route_params_dict = build_route_params_dict(;request_route_segments=route_segments, route_path=route.path)
output = route.action(route_params_dict, headers)
else
output = route.action(headers)
end
output_headers, data = map_route_function_output(output)
rendered_dict = render_200(;headers=output_headers, endpoint=route.endpoint, data=data, html_file=route.html_file)
catch e
rendered_dict = render_500(;endpoint=route.endpoint, data=e, html_file=route.html_file, request_path=route.path)
end
# Static case (no headers param passed)
else
try
output = route.action(route.path)
output_headers, data = map_route_function_output(output)
rendered_dict = render_200(;headers=output_headers, endpoint=route.endpoint, data=data, html_file=route.html_file)
catch e
rendered_dict = render_500(;endpoint=route.endpoint, data=e, html_file=route.html_file, request_path=route.path)
end
end
return rendered_dict
end
"""
render_200(;headers::Dict{String, String}, endpoint::String, data::OUTPUT_DATA_FORMATS, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Render HTTP 200 response
"""
function render_200(;headers::Dict{String, String}, endpoint::String, data::OUTPUT_DATA_FORMATS, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
return CoreRenderer.render(;headers=headers, status_code=Int16(200), endpoint=endpoint, data=data, html_file=html_file)
end
"""
render_400(;endpoint::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Render HTTP 400 response
No HTML output file required here, as limited to JSON request
"""
function render_400(;endpoint::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
return CoreRenderer.render(;status_code=Int16(400), endpoint=endpoint, data="Bad Request", html_file="")
end
"""
render_404(;endpoint::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Render HTTP 404 response
"""
function render_404(;endpoint::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
return CoreRenderer.render(;status_code=Int16(404), endpoint=endpoint, data="Not Found", html_file=Configuration.Settings[:html_base_filename]*".html")
end
"""
render_405(;endpoint::String, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Render HTTP 405 response
"""
function render_405(;endpoint::String, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
return CoreRenderer.render(;status_code=Int16(405), endpoint=endpoint, data="Method Not Allowed", html_file=html_file)
end
"""
render_500(;endpoint::String, data::String, html_file::String, request_path::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Render HTTP 500 response
Only if NOT Prod: output error details to page
"""
function render_500(;endpoint::String, data::String, html_file::String, request_path::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Logger.log("500 Internal Server Error when rendering url: $request_path")
## Only output error details if NOT Prod ##
if Configuration.is_prod()
data = "Internal Server Error"
else
data = "Internal Server Error: " * data
end
return CoreRenderer.render(;status_code=Int16(500), endpoint=endpoint, data=data, html_file=html_file)
end
"""
render(;request_headers::Array, request_method::String, request_path::String, request_payload::String) :: String
Main entry point of HTTP Rendering
- Invalid method will render 405 response
- If error during process, render 500 response
Check Headers if was JSON request, to return 404 as JSON output
"""
function render(;request_headers::Dict{String, String}, request_method::String, request_path::String, request_payload::String) ::String
rendered_dict::Dict{Symbol, Union{Dict{String, String}, Int16, String}} = Dict()
request_route_segments::Array{String, 1} = []
function _render_404_from_content_type(request_headers::Dict{String, String}) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
## Check Headers if was JSON request, to return 404 in JSON format ##
content_type::String = ""
endpoint::String = Router.EP_HTML
try
if haskey(request_headers, "Content-Type")
content_type = request_headers["Content-Type"]
end
if content_type=="application/json"
endpoint = Router.EP_JSON
end
catch e
nothing
end
return render_404(;endpoint=endpoint)
end
route::Union{Router.Route, Nothing} = Router.get_route(request_path)
if isa(route, Router.Route)
try
## Check if method allowed ##
if request_method == Router.OPTIONS
headers_dict::Dict{String, String} = Dict(
"Allow" => route.method,
"Access-Control-Allow-Methods" => route.method,
"Access-Control-Allow-Headers" => "X-PINGOTHER, Content-Type"
)
rendered_dict = render_200(;headers=headers_dict, endpoint=route.endpoint, data=Dict(), html_file="")
else
if request_method==route.method
if route.has_regex
request_route_segments = URIUtils.get_path_param_segments(;request_path=request_path, route_path=route.path)
end
rendered_dict = process_backend_function(;route=route, route_segments=request_route_segments, payload=request_payload, headers=request_headers)
else
rendered_dict = render_405(;endpoint=route.endpoint, html_file=route.html_file)
end
end
catch e
rendered_dict = render_500(;endpoint=route.endpoint, data=string(e), html_file=route.html_file, request_path=route.path)
end
else
rendered_dict = _render_404_from_content_type(request_headers)
end
# Remove empty pair from Header dict (CoreRenderer default)
if haskey(rendered_dict[:headers], "")
delete!(rendered_dict[:headers], "")
end
## Automaticlly set `Content-Type` Header ##
rendered_dict[:headers]["Content-Type"] = rendered_dict[:content_type]
rendered_dict[:headers]["Content-Length"] = string(sizeof(rendered_dict[:body]))
return respond(;
headers=rendered_dict[:headers], status_code=rendered_dict[:status_code], body=rendered_dict[:body]
)
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 876 | import Flamenco
"""
close_server()
Stop Flamenco server
"""
function close_server()
Flamenco.close_server()
end
"""
respond(; headers::Dict{String, String}, status_code::Int16, body::String) :: String
Return response for specified parameters
"""
respond(; headers::Dict{String, String}, status_code::Int16, body::String) = Flamenco.write_response(status_code, headers; body=body)
"""
start_server(server_host::String, server_port::Int64) :: Nothing
Start Flamenco server and listen for incoming requests and return HTML or JSON body
"""
function start_server(server_host::String, server_port::Int64) :: Nothing
Flamenco.start_server(server_host, server_port) do request::Flamenco.Server.Request
render(; request_headers=request.headers, request_method=request.method, request_path=request.target, request_payload=request.body)
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1244 | module CoreRenderer
import DataFrames
import Dance.HTMLRenderer
import Dance.JSONRenderer
import Dance.StaticRenderer
import Dance.Router
"""
render(;headers::Dict{String, String}=Dict("" => ""), status_code::Int16, endpoint::String, data::Union{DataFrames.DataFrame, Dict, String}, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Generic web output rendering function
Depending on `endpoint` field, render JSON or HTML string
Cannot set `headers type to `Dict{String, String} here, as can be blank (status_code !=200)
"""
function render(;headers::Dict{String, String}=Dict("" => ""), status_code::Int16, endpoint::String, data::Union{DataFrames.DataFrame, Dict, String}, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
if endpoint==Router.EP_HTML
HTMLRenderer.render(;headers=headers, status_code=status_code, data=data, html_file=html_file)
elseif endpoint==Router.EP_JSON
if isa(data, String)
data::Dict = Dict(:error => data)
end
JSONRenderer.render(;headers=headers, status_code=status_code, data=data)
else
StaticRenderer.render(;headers=headers, status_code=status_code, data=data)
end
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1644 | module HTMLRenderer
import DataFrames
import JSON3
import Dance.Configuration
import Dance.Logger
import Dance.PayloadUtils
"""
populate(;html_file::String="", data::Union{DataFrames.DataFrame, Dict, String})
Populate supplied HTML with data, by replacing `@data` param
"""
function populate(;html_file::String="", data::Union{DataFrames.DataFrame, Dict, String}) :: String
output_data::String = ""
if isa(data, DataFrames.DataFrame)
output_data = JSON3.write(PayloadUtils.convert_dataframe_to_array(data))
elseif isa(data, Dict)
output_data = JSON3.write(data)
else
output_data = data
end
html_output::String = read(html_file, String)
html_output = replace(html_output, "@data" => output_data)
return html_output
end
"""
render(;headers::Dict{String, String}, status_code::Int16, data::Union{DataFrames.DataFrame, Dict, String}, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
HTML renderer
`status code` is pre-supplied
Cannot set `headers type to `Dict{String, String} here, as can be blank (status_code !=200)
"""
function render(;headers::Dict{String, String}, status_code::Int16, data::Union{DataFrames.DataFrame, Dict, String}, html_file::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
if status_code==500
Logger.log("500 Internal Server Error when rendering page with $data")
end
return Dict(
:headers => headers,
:status_code => status_code,
:content_type => "text/html; charset=UTF-8",
:body => populate(;html_file=html_file, data=data)
)
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 2282 | module JSONRenderer
import DataFrames
import JSON3
import Dance.Configuration
import Dance.Logger
import Dance.PayloadUtils
const HTTP_STATUS_UNAUTHORIZED = "Unauthorized"
const HTTP_STATUS_PAYMENT_REQUIRED = "Payment Required"
const HTTP_STATUS_FORBIDDEN = "Forbidden"
const HTTP_STATUS_REQUEST_TIMEOUT = "Request Timeout"
const HTTP_STATUS_ERROR_CODES = Dict{String, Int16}(
HTTP_STATUS_UNAUTHORIZED => 401,
HTTP_STATUS_PAYMENT_REQUIRED => 402,
HTTP_STATUS_FORBIDDEN => 403,
HTTP_STATUS_REQUEST_TIMEOUT => 408
)
"""
render(;headers::Dict{String, String}, status_code::Int16, data::Union{DataFrames.DataFrame, Dict}) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Output JSON renderer
Though `status code` is pre-supplied, can become 500
Cannot set `headers type to `Dict{String, String} here, as can be blank (status_code !=200)
"""
function render(;headers::Dict{String, String}, status_code::Int16, data::Union{DataFrames.DataFrame, Dict}) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
body::Union{Array{Any,1}, Dict} = Dict()
# One of HTTP_STATUS_ERROR_CODES is supplied as data{Dict}
if status_code==200 && isa(data, Dict)
if length(data)==1 && :error in keys(data)
try
status_code = HTTP_STATUS_ERROR_CODES[data[:error]]
body = Dict(
:error => string(status_code, ": ", data[:error])
)
catch e
status_code = 500
body = Dict(
:error => "500: Internal Server Error"
)
data_string::String = string(data)
Logger.log("500 Internal Server Error when rendering page with $data_string: $e")
end
else
body = data
end
else
if isa(data, DataFrames.DataFrame)
body = PayloadUtils.convert_dataframe_to_array(data)
else
body = data
end
end
headers["Access-Control-Allow-Origin"] = Configuration.Settings[:api_access_control_allow_origin]
return Dict(
:headers => headers,
:status_code => status_code,
:content_type => "application/json",
:body => JSON3.write(body)
)
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 615 | module StaticRenderer
"""
render(;headers::Dict{String, String}, status_code::Int16, data::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
Renderer to output static file as string
Cannot set `headers type to `Dict{String, String} here, as can be blank (status_code !=200)
"""
function render(;headers::Dict{String, String}, status_code::Int16, data::String) :: Dict{Symbol, Union{Dict{String, String}, Int16, String}}
return Dict(
:headers => headers,
:status_code => status_code,
:content_type => headers["Content-Type"],
:body => data
)
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 858 | module PayloadUtils
import DataFrames
import JSON3
"""
convert_array_to_dataframe(array::Array{Any,1})
Convert Array{Any,1} to DataFrame
"""
function convert_array_to_dataframe(array::JSON3.Array) :: DataFrames.DataFrame
df::DataFrames.DataFrame = DataFrames.DataFrame()
namelist::Array = Symbol.(array[1])
for (i, name) in enumerate(namelist)
df[!, name] = [array[j][i] for j in 2:length(array)]
end
return df
end
"""
convert_dataframe_to_array(df::DataFrames.DataFrame)
Convert DataFrame to Dict{Array}, including column names via first line of array
"""
function convert_dataframe_to_array(df::DataFrames.DataFrame) :: Array{Any,1}
array::Array{Any, 1} = []
push!(array, names(df))
for row in eachrow(df)
push!(array, [row[name] for name in names(df)])
end
return array
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1068 | module URIUtils
const ROUTE_REGEX_BASIC_STRUCTURE = r"\/(\(\?<)?[^\/\>\)]+(\>)?([^\/]+(\\\/)?[^\/]+)"
const ROUTE_REGEX_PARAM_ONLY = r"(<[^\/(?)]+)+"
"""
get_path_segments(path::String)
Array from breaking path at slashes
"""
function get_path_segments(path::String) :: Array{String, 1}
path_segments::Array{String, 1} = split(path, "/")
return filter!(e->e≠"", path_segments)
end
"""
get_path_param_segments(;request_path::String, route_path::String)
Parse route.path and match param sections with corresponding request path segments
"""
function get_path_param_segments(;request_path::String, route_path::String) :: Array{String, 1}
request_path_param_segments::Array{String, 1} = []
request_path_segments::Array{String, 1} = get_path_segments(request_path)
for (idx, item) in enumerate(collect(eachmatch(ROUTE_REGEX_BASIC_STRUCTURE, route_path)))
if endswith(item.match, ")")
push!(request_path_param_segments, request_path_segments[idx])
end
end
return request_path_param_segments
end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1040 | import Dance
include("./utils/main.jl")
Dance.start_project("demo")
project_settings()
routes("html")
## Test all routes with pending slash, to ensure is removed ##
@testset "HTTP.listen" begin
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(1)
make_and_test_request_get("/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, false, "Hello World")
# Test decimal url param
make_and_test_request_get("/dict/12.3/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 216, true, Dict("a" => 12.3))
# Test int and string url params
make_and_test_request_get("/dict/abc/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("abc" => 123))
make_and_test_request_get(
"/dataframe/",
200,
Dict("Content-Type" => "text/html; charset=UTF-8"),
249,
true,
[
["A", "B"],
[1, "M"],
[2, "F"],
[3, "F"],
[4, "M"]
]
)
end
delete_project()
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1540 | import Dance
include("./utils/main.jl")
Dance.start_project("demo")
project_settings()
routes("json")
## Test all routes with pending slash, to ensure is removed ##
@testset "HTTP.listen" begin
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(1)
make_and_test_request_get("/dict/", 200, Dict("Content-Type" => "application/json"), 9, true, Dict("a" => 123))
make_and_test_request_get(
"/dataframe/",
200,
Dict("Content-Type" => "application/json"),
43,
true,
[
["A", "B"],
[1, "M"],
[2, "F"],
[3, "F"],
[4, "M"]
]
)
# Test int url param
# Test using OPTIONS method before POST (see https://github.com/axios/axios/issues/475)
make_and_test_request_options("/post/dict/12")
make_and_test_request_post("/post/dict/12", Dict("b" => "abc"), 200, Dict("Content-Type" => "application/json"), 8, true, Dict("b" => 12))
# Test setting Header value in backend
# Test accented character, for correct UTF-8 length
make_and_test_request_post(
"/post/dataframe/",
[
["A", "B"],
[1, "M"],
[2, "F"],
[3, "G"],
[4, "ñ"]
],
200,
Dict("Content-Type" => "application/json", "foo" => "bar"),
44,
true,
[
["A", "B"],
[1, "M"],
[2, "F"],
[3, "G"],
[4, "ñ"]
]
)
end
delete_project()
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1387 | import Dance
include("./utils/main.jl")
Dance.start_project("demo")
project_settings()
routes("regex")
## Test all routes with pending slash, to ensure is removed ##
@testset "HTTP.listen" begin
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(1)
# Test hyphen
make_and_test_request_get("/dict/ab-/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("ab-" => 123))
# Test underscore
make_and_test_request_get("/dict/ab_/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("ab_" => 123))
# Test comma
make_and_test_request_get("/dict/ab,/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("ab," => 123))
# Test dot
make_and_test_request_get("/dict/ab./123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("ab." => 123))
# Test plus symbol
make_and_test_request_get("/dict/ab+/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, true, Dict("ab+" => 123))
# Test accent
make_and_test_request_get("/dict/abç/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 218, true, Dict("abç" => 123))
# Test escaped
make_and_test_request_get("/dict/ab%2F/123/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 219, true, Dict("ab%2F" => 123))
end
delete_project() | Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 1980 | import Dance
include("./utils/main.jl")
Dance.start_project("demo")
project_settings()
routes("static")
# Create file for static file route
mkdir("files")
cp("../sample/static/shipping_containers.jpg", "files/image.jpg")
# Ensure route paths cannot go higher than project route in directory structure
@test_logs (:error, "Route paths cannot go higher than project route in directory structure") include(joinpath(abspath(pwd()), "routes.jl"))
lines_array = []
open("routes.jl", "r") do io
global lines_array = readlines(io)
for (idx, line) in enumerate(lines_array)
if line=="route(\"/../files/image.jpg\", output_file_as_string; method=GET, endpoint=STATIC)"
global lines_array
deleteat!(lines_array, idx)
end
end
end
lines_string = ""
for line in lines_array
global lines_string
lines_string = lines_string * line * "\n"
end
open("routes.jl", "w") do io
write(io, lines_string)
end
Dance.Router.delete_routes!()
## Test all routes with pending slash, to ensure is removed ##
@testset "HTTP.listen" begin
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(1)
# Favicon
make_and_test_request_get("/favicon.ico/", 200, Dict("Content-Type" => "image/x-icon"), 15406, false, read("../../files/html/favicon.ico"))
# Single static file
make_and_test_request_get("/files/image.jpg/", 200, Dict("Content-Type" => "image/jpeg"), 84668, false, read("files/image.jpg"))
# Static dir
for item in [
["shipping_containers.jpg", 84668],
["office/coffee_and_laptop.jpg", 2126200],
["outdoors/scenary/hills_in_mist.jpg", 3181705],
["outdoors/wildlife/goat_and_sheep.jpg", 3175701]
]
path::String = item[1]
content_length::Int64 = item[2]
make_and_test_request_get("/static/$path/", 200, Dict("Content-Type" => "image/jpeg"), content_length, false, read(joinpath("../sample/static", path)))
end
end
delete_project()
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 447 | #!/usr/bin/env julia
using Test, SafeTestsets
@time begin
@time @safetestset "New project settings" begin include("settings_test.jl") end
@time @safetestset "Routes HTML" begin include("routes_html_test.jl") end
@time @safetestset "Routes JSON" begin include("routes_json_test.jl") end
@time @safetestset "Routes Regex" begin include("routes_regex_test.jl") end
@time @safetestset "Routes Static" begin include("routes_static_test.jl") end
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 2314 | import Dance
include("./utils/main.jl")
function _build_path(sub_dir::String="") :: String
path::String = abspath(pwd())
if length(sub_dir) > 0
path = joinpath(abspath(pwd()), sub_dir)
end
if Sys.iswindows()
path = replace(path, "/" => "\\")
end
return path
end
# Test project settings check
@testset "Settings - Project Settings Check" begin
# Default Prod env does not have :server_host & :server_port defined
Dance.start_project("demo")
@test_logs (:error, "Please set valid server_host value, cannot be blank") (:error, "Please set valid server_port value, cannot be blank") Dance.populate_settings(joinpath(abspath(@__DIR__), "demo"))
project_settings()
Dance.populate_settings(joinpath(abspath(@__DIR__), "demo"))
@test haskey(Dance.Configuration.Settings, :foo)
@test Dance.Configuration.Settings[:foo]=="bar"
delete_project(false)
end
# Test LOAD_PATH: single-dir project case
@testset "Settings - LOAD_PATH single-dir" begin
Dance.start_project("demo")
project_settings()
dirs_add_single()
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(5)
@test abspath(pwd()) * "/" in LOAD_PATH
@test _build_path("html") in LOAD_PATH
@test _build_path("settings") in LOAD_PATH
@test _build_path("code") in LOAD_PATH
delete_project(false)
end
# Test LOAD_PATH: multiple sub-dirs case
@testset "Settings - LOAD_PATH multiple sub-dirs" begin
Dance.start_project("demo")
project_settings()
dirs_add_multiple()
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(2)
@test abspath(pwd()) * "/" in LOAD_PATH
@test _build_path("html") in LOAD_PATH
@test _build_path("settings") in LOAD_PATH
@test _build_path("code") in LOAD_PATH
@test _build_path("code/sub-dir1") in LOAD_PATH
@test _build_path("code/sub-dir1/sub-dir2") in LOAD_PATH
delete_project(false)
end
# Test `files/routes.jl` default contents
@testset "Settings - default routes contents" begin
Dance.start_project("demo")
project_settings()
@async include(joinpath(abspath(pwd()), "dance.jl"))
sleep(1)
make_and_test_request_get("/", 200, Dict("Content-Type" => "text/html; charset=UTF-8"), 217, false, "Hello World")
delete_project()
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 924 | import DataFrames
using Dance.Router
function df(headers::Dict{String, String}) :: DataFrames.DataFrame
return DataFrames.DataFrame(A = 1:4, B = ["M", "F", "F", "M"])
end
function dict_1(params_dict::Dict{Symbol, Union{Float64, Int64, String}}, headers::Dict{String, String}) :: Dict{Symbol, Float64}
return Dict(:a => params_dict[:value])
end
function dict_2(params_dict::Dict{Symbol, Union{Float64, Int64, String}}, headers::Dict{String, String}) :: Dict{Symbol, Int64}
return Dict(Symbol(params_dict[:key]) => params_dict[:value])
end
function hello(headers::Dict{String, String}) :: String
return "Hello World"
end
route("/", hello; method=GET, endpoint=EP_HTML)
route_group(route_prefix="/dict", method=GET, endpoint=EP_HTML, [
(path=r"/(?<value>\d*\.\d*)", action=dict_1)
(path=r"/(?<key>\w+)/(?<value>\d{3})", action=dict_2)
])
route("/dataframe", df; method=GET, endpoint=EP_HTML)
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 915 | import DataFrames
using Dance.Router
function get_df(headers::Dict{String, String}) :: DataFrames.DataFrame
return DataFrames.DataFrame(A = 1:4, B = ["M", "F", "F", "M"])
end
function get_dict(headers::Dict{String, String}) :: Dict{Symbol, Int64}
return Dict(:a => 123)
end
function post_df(df::DataFrames.DataFrame, headers::Dict{String, String}) :: Tuple{DataFrames.DataFrame, Dict{String, String}}
return df, Dict("foo" => "bar")
end
function post_dict(params_dict::Dict{Symbol, Union{Float64, Int64, String}}, dict::Dict, headers::Dict{String, String}) :: Dict{String, Int64}
dict_new::Dict{String, Int64} = Dict()
for key in keys(dict)
dict_new[string(key)] = params_dict[:value]
end
return dict_new
end
route("/dict", get_dict; method=GET)
route("/dataframe", get_df; method=GET)
route(r"/post/dict/(?<value>\d{2})", post_dict)
route("/post/dataframe", post_df)
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 344 | using Dance.Router
function dict(params_dict::Dict{Symbol, Union{Float64, Int64, String}}, headers::Dict{String, String}) :: Dict{String, Int64}
return Dict(params_dict[:key] => params_dict[:value])
end
route_group(route_prefix="/dict", method=GET, endpoint=EP_HTML, [
(path=r"/(?<key>([^\/(?)]+))/(?<value>\d{3})", action=dict)
])
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 228 | using Dance.Router
route("/../files/image.jpg", output_file_as_string; method=GET, endpoint=EP_STATIC)
route("/files/image.jpg", output_file_as_string; method=GET, endpoint=EP_STATIC)
static_dir("/static", "../sample/static")
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 2457 | import HTTP
import JSON
include("./request.jl")
function delete_project(server::Bool=true) :: Nothing
cd("..")
rm("demo", recursive=true)
if server
Dance.CoreEngine.close_server()
end
Dance.Router.delete_routes!()
nothing
end
function dirs_add_multiple() :: Nothing
mkdir("code")
mkdir("node_modules") # test ignores node dir
cd("code") # test dir with file & sub-dir
touch("file1.jl")
mkdir("sub-dir1") # test dir with only sub-dir
cd("sub-dir1")
mkdir("sub-dir2") # test dir with file
cd("sub-dir2")
touch("file2.jl")
cd("../../..")
nothing
end
function dirs_add_single() :: Nothing
mkdir("code")
mkdir("node_modules") # test ignores node dir
cd("code") # test dir with file & sub-dir
touch("file1.jl")
cd("..")
nothing
end
function make_and_test_request_get(path::String, status::Int64, headers::Dict{String, String}, content_length::Int64, is_json_body::Bool, body::Any) :: Nothing
r = HTTP.request("GET", "http://127.0.0.1:8000$path")
parse_and_test_request(r, status, headers, content_length, is_json_body, body)
end
function make_and_test_request_options(path::String) :: Nothing
r = HTTP.request("OPTIONS", "http://127.0.0.1:8000$path")
compare_http_header(r.headers, "Allow", "POST")
compare_http_header(r.headers, "Access-Control-Allow-Methods", "POST")
compare_http_header(r.headers, "Access-Control-Allow-Headers", "X-PINGOTHER, Content-Type")
end
function make_and_test_request_post(path::String, payload::Union{Array, Dict}, status::Int64, headers::Dict{String, String}, content_length::Int64, is_json_body::Bool, body::Any) :: Nothing
r = HTTP.request("POST", "http://127.0.0.1:8000$path", [], JSON.json(payload))
parse_and_test_request(r, status, headers, content_length, is_json_body, body)
end
function project_settings() :: Nothing
## Add `dev.jl` file with 1 overwrite & 1 new entry ##
cd("demo/settings")
touch("dev.jl")
open("dev.jl", "w") do io
write(io, ":dev = true\n")
write(io, ":foo = \"bar\"")
end
open("Global.jl", "a+") do io
write(io, "include(\"dev.jl\")")
end
cd("..")
end
function routes(file_suffix::String) :: Nothing
open("routes.jl", "w") do io_routes
open("../sample/routes/" * file_suffix * ".jl") do io_file
write(io_routes, io_file)
end
end
nothing
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | code | 2319 | import Dates
import JSON
function compare_http_date_header(header_value::String, timestamp_request_completed::Dates.DateTime) :: Nothing
header_value_timestamp::Dates.DateTime = Dates.DateTime(split(header_value, " UTC")[1], "e, d u Y H:M:S")
@test header_value_timestamp <= timestamp_request_completed
nothing
end
function compare_http_header(headers::Array, key::String, value::String) :: Nothing
@test header_get_value(headers::Array, key::String)==value
nothing
end
function header_get_value(headers::Array, key::String) :: String
for item in headers
if item[1]==key
return item[2]
end
end
end
function extract_html_body_content(html_body::Array{UInt8,1}) :: String
return split(
split(String(html_body), "<div id=\"js-dance-json-data\">")[2],
"</div>"
)[1]
end
function extract_json_content(json_body::Array{UInt8,1}) :: String
return String(json_body)
end
function parse_and_test_request(r::HTTP.Messages.Response, status::Int64, headers::Dict{String, String}, content_length::Int64, is_json_body::Bool, body::Any)
timestamp_request_completed::Dates.DateTime = Dates.now(Dates.UTC)
@test r.status==status
for (key, value) in headers
compare_http_header(r.headers, key, value)
end
# TODO: fix Windows HTML file longer due to line final char
if !Sys.iswindows()
compare_http_header(r.headers, "Content-Length", string(content_length))
end
if header_get_value(r.headers, "Content-Type")=="application/json"
compare_http_header(r.headers, "Access-Control-Allow-Origin", Dance.Configuration.Settings[:api_access_control_allow_origin])
end
compare_http_date_header(header_get_value(r.headers, "Date"), timestamp_request_completed)
if is_json_body
if header_get_value(r.headers, "Content-Type")=="text/html; charset=UTF-8"
@test JSON.parse(extract_html_body_content(r.body))==body
else
@test JSON.parse(extract_json_content(r.body))==body
end
else
if header_get_value(r.headers, "Content-Type")=="text/html; charset=UTF-8"
@test extract_html_body_content(r.body)==body
else
# Static file case
@test r.body==body
end
end
nothing
end
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | docs | 7425 | # Dance
| **Build Status** |
|:------------------------------------------------------:|
| [](https://travis-ci.com/DanceJL/Dance.jl) [](https://codecov.io/gh/DanceJL/Dance.jl)|
## 1 - Introduction
Julia is an excellent backend language ([read more](https://cloud4scieng.org/2018/12/13/julia-distributed-computing-in-the-cloud/)), powering numerous Artificial Intelligence and Big Data applications.
However, integrating these results into web output is not the job of a data scientist, nor should it be complicated.
That said, the aim of Dance is to facilitate process by allowing output/reception of:
- Dict {Symbol, Any}
- DataFrame
to/from:
- JSON API
- JavaScript string in HTML page
simply by adding rendering function as a parameter, when building route list.
That way you can take advantage of powerful frontend JavaScript frameworks, through easy collaboration with frontend developers.
Dance can be used as starting base of new project, as well as web layer addition to existing project.
---
## 2 - Installation
Package can be installed with Julia's package manager, either by *pressing* ] to get the Pkg REPL mode and doing:
```
pkg> add Dance
```
or by using Pkg functions:
```julia
julia> using Pkg; Pkg.add("Dance")
```
Compatibility is with Julia 1.1 upward.
## 3 - Setup
Invoke terminal in working directory and:
```julia
using Dance
start_project("project name")
```
This will create a new directory specified by `project name` parameter and copy necessary files over.
Files include:
- `dance.jl`: main entry point of Dance to be always called from terminal
- `routes.jl`: main routes list file
- `settings/Global.jl`: main project settings
- `html/base.html`: for HTML outputs this is default template
- `html/favicon.ico`: favicon for HTML pages
Depending on environment, other files can be included under `settings` directory to overwrite those under `Global.jl`:
- One can add other parameters under these settings files, that will be accessible in project by reading from `Main.Settings` dict.
ENV has been avoided due to potential leakage security issues.
- **Is recommended to use `secrets.jl` file included under `Global.jl` that will not be stored in version control, for sensitive authentication data.**
Can be overwritten/moved:
- `routes.jl`: move/rename and update `Settings[:routes_filename]` accordingly
- `html/base.html`: move/rename and update `Settings[:html_base_filename]` accordingly
- `html/favicon.ico`: move/rename and update `Settings[:html_favicon_name]` accordingly
**=> Is recommended to overwrite `api_access_control_allow_origin` settings parameter, to limit API access to known hosts.**
## 4 - Routes
### 4.1 - General
Routes can be included in main routes file (`routes.jl` by default), as follows:
```julia
route(path::Union{Regex, String}, action::Function; method::String=POST, endpoint=EP_JSON, html_file::String=Configuration.Settings[:html_base_filename]*".html")
```
- Just `path`and `function` are mandatory, *kwargs* can overwrite default values as necessary.
That said, note that:
- `path` can either be fixed string or contain PCRE regex containing parameter names.
- Adding an ending slash (`/`) tp `path` is optional, as incoming requests will have pending slash stripped.
Please see:
- [Common Parameters](docs/routes/common_parameters.md)
- [JSON Endpoints](docs/routes/endoints_json.md)
- [HTML Endpoints](docs/routes/endpoints_html.md)
for all cases.
### 4.2 - Groups For Common Parameter Routes
If some routes share same path prefix or if you want to avoid repeating kwarg parameters, routes can be grouped into route groups as follows:
```julia
route_group(route_prefix="/dict", method=GET, endpoint=EP_HTML, [
(path=r"/(?<value>\d.)", action=dict_1)
(path=r"/(?<key>\w+)/(?<value>\d{3})", action=dict_2, html_file="html/file")
])
```
After specifying the common kwargs for routes in question, routes are passed as array of named tuples.
As for common kwargs, only set named tuple keys that are necessary to overwrite.
### 4.3 - Static Files
Dance can also serve static files.
Recommended method is to specify a static directory whose structure will be parsed when building routes for each of the directory's contents.
For example all contents of `files` directory will be accessible under `static` path:
```julia
static_dir("/static", "files")
```
If you have some other files that you would like to add individually, one can do so by passing path parameter as relative to project's root directory.
For instance if you have `image.jpg` in `files` relative to project root:
```julia
route("/files/image.jpg", output_file_as_string; method=GET, endpoint=EP_STATIC)
```
## 5 - Launching
Calling:
```
julia dance.jl
```
will start Dance as web server.
Press `ctrl` + `C` to stop.
By calling:
```
julia dance.jl repl
```
one can enter the REPL mode after project environment has been loaded.
Press `ctrl` + `d` to exit.
## 6 - Module Loading & Custom Startup Script
Note that when launching, Dance will add the current dir, as well as all sub-directories as module import path.
By `static_dir` as defined in `routes.jl` will be ignored during the procedure, as described under `STEP 1` of `dance.jl` file.
Should you require ignoring other directories for startup performance optimisation, please populate `ignore_dirs` under `STEP 1`.
As outlined under `STEP 3` of `dance.jl` file, any custom scripts can be added, that will be run before Dance launches server/REPL.
## 7 - Security
### 7.1 - Incoming HTTP Headers
**Never blindly trust an incoming HTTP request!**
As all route functions receive incoming HTTP Headers, it is recommend when necessary to at least verify the `Host` and `X-Forwarded-Host` values.
This is not included by default, in order to optimise performance, but here below a sample code, should you like to implement this extra security.
```julia
function valid_host() :: Bool
allowed_hosts::Array{String, 1} = [Main.Settings[:server_host]]
valid_forwarded_host::Bool = false
valid_host::Bool = false
if "127.0.0.1" in allowed_hosts
push!(allowed_hosts, "localhost")
end
if !(Main.Settings[:server_port] in [80, 443])
for (idx, item) in enumerate(allowed_hosts)
allowed_hosts[idx] = item * ":" * string(Main.Settings[:server_port])
end
end
for pair in request_headers
if pair.first=="Host"
valid_host = pair.second in allowed_hosts
end
if pair.first=="X-Forwarded-Host"
valid_forwarded_host = pair.second in allowed_hosts
end
end
return valid_host && valid_forwarded_host
end
```
## 8 - Running Dance Under Multi-processing Environment
Dance can be run in multi-process environment via Julia Distributed package.
This is also particularly useful should you be planning on using cluster of machines in order to implement load balancer.
**That said please only use this feature should your website expect heavy traffic or output functions be resource intensive, as else performance will degrade as spawning and data transfer between processes are expensive operations.**
To do so edit the upper part of `dance.jl` as indicated in the file.
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | docs | 2152 | # Common Parameters
## 1 - Input Parameters
Dance being a web framework, routes can of course contain parameters.
Format must follow PCRE regex containing parameter names.
Example routes can be:
```julia
function dict_1(params_dict::Dict{Symbol, Int64}, headers::Dict{String, String}) :: Dict{Symbol, Int64}
return Dict(:a => params_dict[:value])
end
function dict_2(params_dict::Dict{Symbol, Union{Float64, String}}, headers::Dict{String, String}) :: Dict{Symbol, Float64}
return Dict(Symbol(params_dict[:key]) => params_dict[:value])
end
function post_dict(params_dict::Dict{Symbol, Int64}, dict::Dict, headers::Dict{String, String}) :: Dict{Symbol, Int64}
for key in keys(dict)
dict[key] = params_dict[:value]
end
return dict
end
route(r"/dict/(?<value>\d.)", dict_1; method=GET, endpoint=EP_HTML)
route(r"/dict/(?<key>\w+)/(?<value>\d*\.\d*)", dict_2; method=GET, endpoint=EP_HTML)
route(r"/post/dict/(?<value>\d{3})", post_2)
```
As you can see are supported:
- decimals
- integers
- strings
**Note that**:
- Function routes params dict is **first input parameter, in case of Regex type route.**
If non-Regex, this parameter is not passed.
- If HTTP POST body is supplied (for HTTP GET this parameter is not passed), this will be next parameter.
Format is subset of **Dict{Symbol, Union{Float64, Int64, String}}** or **DataFrames.DataFrame**.
That is depending on whether **JSON dict or array** was sent via request.
- Format of received HTTP Headers is **Dict{String, String}**.
**This last parameter must always be supplied to function**.
## 2 - Optional HTTP Header
One can set additional HTTP headers for both HTML and JSON API endpoints.
To do so simply add the desired headers as second output parameter of the function linked to route in question.
**Format must be `Dict{String, String}`**.
```julia
import DataFrames
using Dance.Router
function post_df(df::DataFrames.DataFrame, headers::Dict{String, String}) :: Tuple{DataFrames.DataFrame, Dict{String, String}}
return df, Dict("foo" => "bar")
end
route("/dataframe", post_df)
```
This will set `foo` HTTP header to value of `bar`.
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | docs | 2684 | # JSON Endpoints
Dance serves as JSON API for both GET and POST requests.
For GET requests, Julia Dicts and DataFrames are converted on the go to JSON Dicts and Lists.
For POST requests reverse conversion occurs.
## 1 - GET Endpoint
For API GET endpoints, covering both Dict and DataFrame output cases, `routes.jl` can be similar to below:
```julia
import DataFrames
using Dance.Router
function get_df(headers::Dict{String, String}) :: DataFrames.DataFrame
return DataFrames.DataFrame(A = 1:4, B = ["A", "B", "C", "D"])
end
function get_dict(headers::Dict{String, String}) :: Dict{Symbol, Int64}
return Dict(:a => 123)
end
route("/dict", get_dict; method=GET)
route("/dataframe", get_df; method=GET)
```
Note that `method=GET` had to be specified, as default is `POST`.
JSON output for both routes, will become:
```json
{"a":123}
```
```json
[
["A","B"],
[1,"A"],
[2,"B"],
[3,"C"],
[4,"D"]
]
```
## 2 - POST Endpoint
For API POST endpoints, covering both Dict and DataFrame output cases, `routes.jl` can be similar to below:
```julia
import DataFrames
using Dance.Router
function post_df(df::DataFrames.DataFrame, headers::Dict{String, String}) :: DataFrames.DataFrame
return df
end
function post_dict(dict::Dict, headers::Dict{String, String}) :: Dict{String, Any}
return dict
end
route("/dict", post_dict)
route("/dataframe", post_df)
```
Above examples will output same data as received.
For following JSON inputs:
```json
[
["A","B"],
[1,"A"],
[2,"B"],
[3,"C"],
[4,"D"]
]
```
```json
{"a":123}
```
Data converted to Julia will be:
```julia
4×2 DataFrames.DataFrame
│ Row │ A │ B │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ A │
│ 2 │ 2 │ B │
│ 3 │ 3 │ C │
│ 4 │ 4 │ D │
```
```julia
Dict{String,Any}("a" => 123)
```
## 3 - Pre-defined HTTP Status Codes
Additionally to facilitate API development, a few standard HTTP response types can easily be integrated.
By importing `JSONRenderer`, a return such as:
```julia
using Dance.Router
import Dance.JSONRenderer
function post_dict(dict::Dict, headers::Dict{String, String}) :: Dict{Symbol, String}
return Dict(:error => JSONRenderer.HTTP_STATUS_UNAUTHORIZED)
end
route("/dict", post_dict)
```
is possible.
This will automatically set HTTP status code to 401.
Currently, possibilities are:
```julia
HTTP_STATUS_UNAUTHORIZED = "Unauthorized"
HTTP_STATUS_PAYMENT_REQUIRED = "Payment Required"
HTTP_STATUS_FORBIDDEN = "Forbidden"
HTTP_STATUS_REQUEST_TIMEOUT = "Request Timeout"
```
**CAREFUL when creating the function return dicts, as `:error` key is reserved for this use case**
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.2.4 | 42a8fe007b4e6cf8c025abc145bf27da7b0928e4 | docs | 2177 | # HTML Endpoints
Dance serves HTML GET request outputs.
For GET requests, Julia Dicts and DataFrames are converted on the go to JSON Dicts, while Lists to JSON objects. Normal HTML strings can also be outputted.
More precisely, `<div id="js-dance-json-data">` HTML tag is where the JSON string/HTML output can be found.
## 1 - Outputs
Covering both String, Dict and DataFrame output cases, `routes.jl` can be similar to below:
```julia
import DataFrames
using Dance.Router
function get_string(headers::Dict{String, String}) :: String
return "Hello World"
end
function get_df(headers::Dict{String, String}) :: DataFrames.DataFrame
return DataFrames.DataFrame(A = 1:4, B = ["A", "B", "C", "D"])
end
function get_dict(headers::Dict{String, String}) :: Dict{Symbol, Int64}
return Dict(:a => 123)
end
route("/", get_string; method=GET, endpoint=EP_HTML)
route("/dict", get_dict; method=GET, endpoint=EP_HTML)
route("/dataframe", get_df; method=GET, endpoint=EP_HTML)
```
- Note that `method=GET` and `endpoint=EP_HTML` have to be specified, as default is `POST` and `JSON` respectively.
- **`html_file` is only should you decide to use different HTML template than default one specified in settings.**
- To parse the JSON string under `<div id="js-dance-json-data">` HTML tag, one has to do so via JavaScript script.
For instance with jQuery, one would use `jQuery.parseJSON()` function.
HTML output for above routes, will become:
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title></title>
</head>
<body>
<div id="js-dance-json-data">Hello World</div>
</body>
</html>
```
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title></title>
</head>
<body>
<div id="js-dance-json-data">{"a":123}</div>
</body>
</html>
```
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<title></title>
</head>
<body>
<div id="js-dance-json-data">[["A","B"],[1,"A"],[2,"B"],[3,"C"],[4,"D"]]</div>
</body>
</html>
```
| Dance | https://github.com/DanceJL/Dance.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 1115 | using SparseSensors
using LinearAlgebra
using Gadfly
using DataFrames
#Setup the experiment
r = 11; # Number of basis modes
n = 1000;
x = collect(0.0:1/n:1.0);
vde_basis = VandermondeBasis(x,r);
Ψ = vde_basis.Ψ; #Get the vandermonde basis matrix from the Basis struct
#Make design matrix
X = copy(transpose(Ψ));
n_samples,n_features = size(X);
#Setup QR pivot sensor placement algorithm
qr_pivot = QRPivot(X);
fit(qr_pivot);
pivots = qr_pivot.pivots;
#Select the top 15 sensor locations
f = abs.(x.^2 .- 0.5);
selected_sensors = get_sensors(pivots,15);
x_sensed = x[selected_sensors];
y_sensed = f[selected_sensors];
#Ground truth
df_true = DataFrame();
df_true[!,"x_true"] = x
df_true[!,"y_true"] = f
#Sensed
df = DataFrame()
df[!,"x_sensed"] = x_sensed;
df[!,"y_sensed"] = y_sensed;
#Plot the results
p1 = plot(df,
layer(x=:x_sensed,y=:y_sensed,color=["Optimized Sensors"]),
layer(df_true,x=:x_true,y=:y_true,Geom.line,Geom.point,color=["True Function"]),
Guide.xlabel("x"),Guide.ylabel("y"),
Theme(background_color=colorant"white"))
#Save image
draw(SVG("example.svg",7inch,3.326inch),p1) | SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 503 | module SparseSensors
using LinearAlgebra: Matrix, conj
greet() = print("Hello World!")
using LinearAlgebra
include("qr.jl")
include("ccqr.jl")
include("basis.jl")
include("reconstruct.jl")
export QRPivot,CostQRPivot,fit,VandermondeBasis
export get_sensors
function get_sensors(sampler)
return sampler.pivots
end
function get_sensors(pivots::AbstractArray,n_sensors::Int)
return pivots[1:n_sensors]
end
function get_sensors(sampler,n_sensors)
return sampler.pivots[1:n_sensors]
end
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 666 | struct Basis
Ψ::Matrix
r::Int
end
function VandermondeBasis(x,r::Int;verbose::Bool=false)
"""Makes a vandermonde basis given a range and a number of basis modes"""
Ψ = zeros((length(x),r))
for (j,col) in enumerate(eachcol(Ψ))
ψ = make_vander_column(j,x)
if verbose
println("ψ","_"*string(j)," size: ",size(ψ))
end
Ψ[:,j] = make_vander_column(j,x) #Each col is x^(k-1)
end
if verbose
print("Final Ψ size: ",size(Ψ))
end
return Basis(Ψ,r) #Truncated basis matrix
end
function make_vander_column(k,col_k)
ψ = [x^(k-1) for x in col_k]
return ψ #Column of basis matrix
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 1758 | ###
# Const-constrained QR optimizer for sensor placement.
###
mutable struct CostQRPivot
Ψ::AbstractArray
pivots::AbstractArray
sensor_costs::AbstractArray #Costs/weights associated with each sensor. Postsive is bad, negative good.
end
function CostQRPivot(qrpivot::QRPivot,sensor_costs::Vector{Float64})
return CostQRPivot(qrpivot.Ψ,qrpivot.pivots,sensor_costs)
end
function CostQRPivot(Ψ::AbstractArray,pivots::Vector,sensor_costs::Vector{Float64})
return CostQRPivot(Ψ,pivots,sensor_costs)
end
function fit(cost_qr_pivot::CostQRPivot)
n,m = size(cost_qr_pivot.Ψ)
if cost_qr_pivot.sensor_costs !== n
throw(DomainError(cost_qr_pivot.sensor_costs,"The specified sensor costs are inconsistent with the basis dimensions"))
end
#Initialize helper variables
R,p,k = make_helper_variables(cost_qr_pivot.Ψ)
for j in 1:k
u,i_piv = qr_reflector(R[j:n,j:m],cost_qr_pivot.sensor_costs)
#Track column pivots
i_piv += j
p[[j,i_piv]] = p[[i_piv,j]]
#Switch column
R[:,[j,i_piv]] = R[:,[i_piv,j]]
#Apply reflector
R[j:n,j:m] -= outer(u,dot(u,R[j:n,j:m]))
R[j+1:n,j] = 0
end
cost_qr_pivot.pivots = p
end
function make_helper_variables(Ψ)
"""Constructs the reflector helper variables"""
R = conj(Ψ)
p = [i for i in 1:n]
k = min(m,n)
return R,p,k
end
function qr_reflector(r,costs)
dlens = sqrt(sum(abs(eachrow(r))^2)) #Norm of each column
i_piv = argmax(dlens-costs) # choose pivot
dlen = dlens[i_piv]
if dlen > 0
u = r[:,i_piv]/dlen
u[1] += sign(u[1])+(u[1]==0)
u/=sqrt(abs(u[1]))
else
u = r[:,i_piv]
u[1] = sqrt(2)
end
return u,i_piv
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 867 | ###
# Standard QR Pivot Optimizer
###
mutable struct QRPivot
Ψ::AbstractArray #Basis matrix from SVD, RPCA, etc.
pivots::AbstractArray #Ranked list of sensor locations
end
function QRPivot(Ψ)
n,m = size(Ψ)
pivots = zeros((max(n,m),1))
return QRPivot(Ψ,pivots)
end
function QRPivot(Ψ,n_sensors::Int)
n,m = size(Ψ)
pivots = zeros((n_sensors,1))
return QRPivot(Ψ,pivots)
end
function QRPivot(Ψ,pivots::AbstractArray)
return QRPivot(Ψ,pivots)
end
function fit(qr_pivot::QRPivot;optimizer_kwargs...)
"""
Fits the QRPivot sensor placement.
qrpivot::QRPivot
QRPivot object.
optimizer_kwargs: dictionary
Optional settings for optimizer
"""
qr_pivot.pivots = sensor_placement(qr_pivot.Ψ)
end
function sensor_placement(Ψ)
# --> Compute the QRPivot w/ column pivoting decomposition of Ψ.
_, _, p = qr(conj(Ψ), Val(true))
return p[1:size(Ψ, 2)]
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 940 | using Convex,SCS
mutable struct SSPOR
basis::Basis
selected_sensors::Vector
n_sensors::Int
n_basis_modes::Int
fit_::Function
predict_::Function
optimizer
end
struct Reconstructor
fit::Function
predict::Function
end
# function fit(model::SSPOR;quiet=true)
# if model.fit_ === fit_lsq
# model.fit_()
# end
# end
# function predict(model::SSPOR,x::Vector;quiet=true)
# if model.predict_ === predict_lsq
# model.predict_(model.Ψ,x,model.n_basis_modes)
# end
# end
function fit_lsq(Ψ,x,y,selected_sensors)
y_sensed = y[selected_sensors];
x_sensed = x[selected_sensors];
Ψ_sensed = Ψ[:,selected_sensors]
return Ψ_sensed,x_sensed,y_sensed
end
function predict_lsq(Ψ,x,y,n_basis_modes)
X = Convex.Variable(size(x))
prob = minimize(sumsquares(y-Ψ*X))
solve!(prob,()-> SCS.Optimizer(verbose=false))
prob.status
return prob.optval
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | code | 99 | using SparseSensors
using Test
@testset "SparseSensors.jl" begin
# Write your tests here.
end
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 0.0.1 | 6d3894ef4e4c1e1c740551745b2d6fd749d78903 | docs | 3013 | # SparseSensors.jl
This repository is an implementation of the core sparse sensor placement with QR factorization and cost-constrained QR factorization algorithms from Manohar, _et al.,_ "Data-Driven Sparse Sensor Placcement for Reconstruction", and other papers, in Julia. This is a hobbyist port of the fantastic Python library [pysensors](https://github.com/dynamicslab/pysensors) in Julia.
All collaborations and contributions are welcome.
## Installation
To install, use Pkg. From the Julia REPL, press ] to enter Pkg-mode and run
```julia
pkg> add SparseSensors
```
## Example
```julia
using SparseSensors
using LinearAlgebra
using Gadfly
using DataFrames
#Setup the experiment
r = 11; # Number of basis modes
n = 1000;
x = collect(0.0:1/n:1.0);
vde_basis = VandermondeBasis(x,r);
Ψ = vde_basis.Ψ; #Get the vandermonde basis matrix from the Basis struct
#Make design matrix
X = copy(transpose(Ψ));
n_samples,n_features = size(X);
#Setup QR pivot sensor placement algorithm
qr_pivot = QRPivot(X);
fit(qr_pivot);
pivots = qr_pivot.pivots;
#Select the top 15 sensor locations
f = abs.(x.^2 .- 0.5);
selected_sensors = get_sensors(pivots,15);
x_sensed = x[selected_sensors];
y_sensed = f[selected_sensors];
#Ground truth
df_true = DataFrame();
df_true[!,"x_true"] = x
df_true[!,"y_true"] = f
#Sensed
df = DataFrame()
df[!,"x_sensed"] = x_sensed;
df[!,"y_sensed"] = y_sensed;
#Plot the results
p1 = plot(df,
layer(x=:x_sensed,y=:y_sensed,color=["Optimized Sensors"]),
layer(df_true,x=:x_true,y=:y_true,Geom.line,Geom.point,color=["True Function"]),
Guide.xlabel("x"),Guide.ylabel("y"))
```

## Dependencies
julia >v1.6.
LinearAlgebra, Gadfly and DataFrames for plotting.
## Todo:
- Implement high level SSPOR and SSPOC interfaces
- Implement high level basis representation wrapper for SVD, etc.
- Set up compatibility with JuliaML/MLJ.jl/ScikitLearn.jl
References
------------
- Manohar, Krithika, Bingni W. Brunton, J. Nathan Kutz, and Steven L. Brunton.
"Data-driven sparse sensor placement for reconstruction: Demonstrating the
benefits of exploiting known patterns."
IEEE Control Systems Magazine 38, no. 3 (2018): 63-86.
`[DOI] <https://doi.org/10.1109/MCS.2018.2810460>`
- Clark, Emily, Travis Askham, Steven L. Brunton, and J. Nathan Kutz.
"Greedy sensor placement with cost constraints." IEEE Sensors Journal 19, no. 7
(2018): 2642-2656.
`[DOI] <https://doi.org/10.1109/JSEN.2018.2887044>`
- de Silva, Brian M., Krithika Manohar, Emily Clark, Bingni W. Brunton,
Steven L. Brunton, J. Nathan Kutz.
"PySensors: A Python package for sparse sensor placement."
arXiv preprint arXiv:2102.13476 (2021). `[arXiv] <https://arxiv.org/abs/2102.13476>`
| SparseSensors | https://github.com/samtalki/SparseSensors.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 1814 | #SP500 dataset, lower bound d = 0, upper bound u =3/32=9.375%
# User Guides: https://github.com/PharosAbad/LightenQP.jl/wiki/User-Guides#portfolio-selection-1
using LightenQP
using TranscodingStreams, CodecXz, Serialization, Downloads
function main()
#download the online data
xzFile = joinpath(tempdir(),"sp500.jls.xz") #xzFile = "/tmp/sp500.jls.xz"
if !isfile(xzFile)
Downloads.download("https://github.com/PharosAbad/PharosAbad.github.io/raw/master/files/sp500.jls.xz", xzFile)
end
io = open(xzFile)
io = TranscodingStream(XzDecompressor(), io)
E = deserialize(io)
V = deserialize(io)
close(io)
N = length(E)
u = fill(3 / 32, N)
#= Q = OOQP(V, zeros(N), u)
ts = @elapsed x, status = solveOOQP(Q)
println("--- LightenQP Method @LVEP (Lowest Variance Efficient Portfolio, also called GMVP, Global Minimum Variance Portfolio): ", ts, " seconds")
Q1 = OOQP(V, -E, u)
ts = @elapsed x1, status1 = solveOOQP(Q1)
println("--- LightenQP Method @L=1: ", ts, " seconds") =#
#v1.0.1
Q = OOQP(V, E, u)
ts = @elapsed xH, statusH = fPortfolio(Q, Inf) #HMFP (Highest Mean Frontier Portfolio)
println("HMEP (Highest Mean Efficient Portfolio) --- fPortfolio @ max mu: ", ts, " seconds")
ts = @elapsed xL, statusL = fPortfolio(Q, -Inf) #LMFP (Lowest Mean Frontier Portfolio)
println("LMEP (Lowest Mean Efficient Portfolio) --- fPortfolio @ min mu: ", ts, " seconds")
ts = @elapsed x0, status0 = fPortfolio(Q, 0.0)
println("LMEP (Lowest Mean Efficient Portfolio, also called GMVP, Global Minimum Variance Portfolio) --- fPortfolio @ L=0: ", ts, " seconds")
ts = @elapsed x2, status2 = fPortfolio(Q, 2.0)
println(" --- fPortfolio @ L=2.0: ", ts, " seconds")
end
main()
nothing
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 12068 | #Speed and Accuracy: Quadratic pragramming
#compare: LightenQP, OSQP, Clarabel
using EfficientFrontier, LinearAlgebra
using TranscodingStreams, CodecXz, Serialization, Downloads
using LightenQP: LightenQP #, solveOOQP
import LightenQP: OOQP, fPortfolio
using Statistics
if length(filter((x) -> x == :uOSQP, names(Main, imported=true))) == 0
include("./uOSQP.jl")
using .uOSQP
end
if length(filter((x) -> x == :uClarabel, names(Main, imported=true))) == 0
include("./uClarabel.jl")
using .uClarabel
end
function OOQP(P::Problem{T}) where {T}
#Pack P into OOQP
(; E, V, u, d, G, g, A, b, N, M, J) = P
iu = findall(u .< Inf)
C = [G; -Matrix{T}(I, N, N); Matrix{T}(I, N, N)[iu, :]]
gq = [g; -d; u[iu]]
L = J + N + length(iu)
OOQP{T}(V, A, C, E, b, gq, N, M, L)
end
#=
function fPortfolio(P::Problem{T}, L::T=0.0; settings=LightenQP.Settings{T}()) where {T}
Q = OOQP(P)
fPortfolio(Q, L; settings=settings)
end
function fPortfolio(mu::T, P::Problem{T}; settings=LightenQP.Settings{T}(), check=true) where {T}
Q = OOQP(P)
fPortfolio(mu, Q; settings=settings, check=check)
end
=#
function testData(ds::Symbol)
if ds == :Ungil
E, V = EfficientFrontier.EVdata(:Ungil, false)
A = [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]
b = [1.0; 0.25]
G = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0]
G[1, :] = -G[1, :]
g = [-0.3; 0.6]
d = vec([-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 -0.1 -0.1])
u = vec([0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.3 0.3 0.3 0.3])
P = Problem(E, V, u, d, G, g, A, b)
elseif ds == :SP500
xzFile = joinpath(tempdir(),"sp500.jls.xz") #xzFile = "/tmp/sp500.jls.xz"
if !isfile(xzFile)
Downloads.download("https://github.com/PharosAbad/PharosAbad.github.io/raw/master/files/sp500.jls.xz", xzFile)
end
io = open(xzFile)
io = TranscodingStream(XzDecompressor(), io)
E = deserialize(io)
V = deserialize(io)
close(io)
N = length(E)
u = fill(3 / 32, N)
pd = true
if pd
N = 263
ip = 1:N
V = V[ip, ip]
E = E[ip]
u = fill(3 / 32, N)
end
P = Problem(E, V, u)
else
error("Unknown dataset")
end
return P
end
function SpeedAccuracy(aEF, P, QPsolver, M=16)
V = P.V
N = length(aEF.mu) - 1
T = zeros(N, M) #time used, for speed
A = zeros(N, M) #Accuracy
O = zeros(N, M) #Objective function
S = trues(N, M) #Solution status
check = true
for k in 1:N
for m = 1:M
mu = ((M + 1 - m) * aEF.mu[k] + (m - 1) * aEF.mu[k+1]) / M
z = ePortfolio(mu, aEF)
if QPsolver == :LightenQP
#ts = @elapsed y, status = fPortfolio(mu, P; check=check)
ts = @elapsed y, status = fPortfolio(mu, OOQP(P); check=check)
check = false
st = status > 0
elseif QPsolver == :OSQP
ts = @elapsed y = OpSpQP(P, mu)
st = y.info.status_val == 1
elseif QPsolver == :Clarabel
ts = @elapsed y = ClarabelQP(P, mu)
st = Int(y.status) == 1
else
error("Unknown QP solver")
end
S[k, m] = st
T[k, m] = ts
A[k, m] = norm(y.x - z, Inf)
O[k, m] = sqrt(y.x' * V * y.x) - sqrt(z' * V * z)
end
end
return T, A, O, S
end
function cmpSA(ds::Symbol)
P = testData(ds)
println("--- Starting EfficientFrontier ---")
t0 = time()
ts = @elapsed aCL = EfficientFrontier.ECL(P)
aEF = eFrontier(aCL, P)
t1 = time()
println("1st run, EfficientFrontier: ", t1 - t0, " seconds", "\n aCL: ", ts, " seconds")
t0 = time()
ts = @elapsed aCL = EfficientFrontier.ECL(P)
aEF = eFrontier(aCL, P)
t1 = time()
println("2nd run, EfficientFrontier: ", t1 - t0, " seconds", "\n aCL: ", ts, " seconds")
QPsolver = :LightenQP
Tl, Al, Ol, Sl = SpeedAccuracy(aEF, P, QPsolver)
QPsolver = :OSQP
To, Ao, Oo, So = SpeedAccuracy(aEF, P, QPsolver)
QPsolver = :Clarabel
Tc, Ac, Oc, Sc = SpeedAccuracy(aEF, P, QPsolver)
redirect_stdio(stdout="stdout.txt") do
#status
println("\n------- Solution status ------- LightenQP/OSQP/Clarabel")
show(stdout, "text/plain", Sl)
println("")
show(stdout, "text/plain", So)
println("")
show(stdout, "text/plain", Sc)
println("")
#Accuracy
println("\n------- Accuracy -------LightenQP/OSQP/Clarabel ", round.([norm(Al, Inf), norm(Ao, Inf), norm(Ac, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Al[:], 0.99), quantile(Ao[:], 0.99), quantile(Ac[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Al[:]), median(Ao[:]), median(Ac[:])], sigdigits=3))
show(stdout, "text/plain", round.(Al, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Ao, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Ac, sigdigits=3))
println("")
#Speed
println("\n--- Speed (time span, smaller for faster speed) ---LightenQP/OSQP/Clarabel ", round.([norm(Tl, Inf), norm(To, Inf), norm(Tc, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Tl[:], 0.99), quantile(To[:], 0.99), quantile(Tc[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Tl[:]), median(To[:]), median(Tc[:])], sigdigits=3))
show(stdout, "text/plain", round.(Tl, sigdigits=3))
println("")
show(stdout, "text/plain", round.(To, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Tc, sigdigits=3))
println("")
#Objective function
println("\n--- Objective function value (diff in sd, not variance) ---LightenQP/OSQP/Clarabel ", round.([norm(Ol, Inf), norm(Oo, Inf), norm(Oc, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Ol[:], 0.99), quantile(Oo[:], 0.99), quantile(Oc[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Ol[:]), median(Oo[:]), median(Oc[:])], sigdigits=3))
show(stdout, "text/plain", round.(Ol, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Oo, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Oc, sigdigits=3))
println("")
end
#redirect_stdio()
#return Sl, So, Sc, Al, Ao, Ac, Tl, To, Tc, Ol, Oo, Oc
return nothing
end
function SpeedAccuracyL(aEF, P, aCL, QPsolver, M=16)
V = P.V
N = length(aEF.mu) - 1
T = zeros(N, M) #time used, for speed
A = zeros(N, M) #Accuracy
O = zeros(N, M) #Objective function
S = trues(N, M) #Solution status
for k in 1:N
i = aEF.ic[k]
t = aCL[i]
for m = 1:M
#mu = ((M + 1 - m) * aEF.mu[k] + (m - 1) * aEF.mu[k+1]) / M
L = ((M + 1 - m) * t.L1 + (m - 1) * t.L0) / M
z = ePortfolio(P, L, aCL)
if QPsolver == :LightenQP
ts = @elapsed y, status = fPortfolio(OOQP(P), L) #fPortfolio(P; L) use active-set numerical solver
st = status > 0
elseif QPsolver == :OSQP
#ts = @elapsed y = OpSpQP(P, mu)
ts = @elapsed y = OpSpQP(P; L)
st = y.info.status_val == 1
elseif QPsolver == :Clarabel
#ts = @elapsed y = ClarabelQP(P, mu)
ts = @elapsed y = ClarabelQP(P; L)
st = Int(y.status) == 1
else
error("Unknown QP solver")
end
S[k, m] = st
T[k, m] = ts
A[k, m] = norm(y.x - z, Inf)
O[k, m] = sqrt(y.x' * V * y.x) - sqrt(z' * V * z)
end
end
return T, A, O, S
end
function cmpSA_L(ds::Symbol)
P = testData(ds)
println("--- Starting EfficientFrontier ---")
t0 = time()
ts = @elapsed aCL = EfficientFrontier.ECL(P)
aEF = eFrontier(aCL, P)
t1 = time()
println("1st run, EfficientFrontier: ", t1 - t0, " seconds", "\n aCL: ", ts, " seconds")
t0 = time()
ts = @elapsed aCL = EfficientFrontier.ECL(P)
aEF = eFrontier(aCL, P)
t1 = time()
println("2nd run, EfficientFrontier: ", t1 - t0, " seconds", "\n aCL: ", ts, " seconds")
QPsolver = :LightenQP
Tl, Al, Ol, Sl = SpeedAccuracyL(aEF, P, aCL, QPsolver)
QPsolver = :OSQP
To, Ao, Oo, So = SpeedAccuracyL(aEF, P, aCL, QPsolver)
QPsolver = :Clarabel
Tc, Ac, Oc, Sc = SpeedAccuracyL(aEF, P, aCL, QPsolver)
redirect_stdio(stdout="stdoutL.txt") do
#status
println("\n------- Solution status ------- LightenQP/OSQP/Clarabel")
show(stdout, "text/plain", Sl)
println("")
show(stdout, "text/plain", So)
println("")
show(stdout, "text/plain", Sc)
println("")
#Accuracy
println("\n------- Accuracy -------LightenQP/OSQP/Clarabel ", round.([norm(Al, Inf), norm(Ao, Inf), norm(Ac, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Al[:], 0.99), quantile(Ao[:], 0.99), quantile(Ac[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Al[:]), median(Ao[:]), median(Ac[:])], sigdigits=3))
show(stdout, "text/plain", round.(Al, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Ao, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Ac, sigdigits=3))
println("")
#Speed
println("\n--- Speed (time span, smaller for faster speed) ---LightenQP/OSQP/Clarabel ", round.([norm(Tl, Inf), norm(To, Inf), norm(Tc, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Tl[:], 0.99), quantile(To[:], 0.99), quantile(Tc[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Tl[:]), median(To[:]), median(Tc[:])], sigdigits=3))
show(stdout, "text/plain", round.(Tl, sigdigits=3))
println("")
show(stdout, "text/plain", round.(To, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Tc, sigdigits=3))
println("")
#Objective function
println("\n--- Objective function value (diff in sd, not variance) ---LightenQP/OSQP/Clarabel ", round.([norm(Ol, Inf), norm(Oo, Inf), norm(Oc, Inf)], sigdigits=3))
println("---- quantile 99% ---- ", round.([quantile(Ol[:], 0.99), quantile(Oo[:], 0.99), quantile(Oc[:], 0.99)], sigdigits=3))
println("------- median ------- ", round.([median(Ol[:]), median(Oo[:]), median(Oc[:])], sigdigits=3))
show(stdout, "text/plain", round.(Ol, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Oo, sigdigits=3))
println("")
show(stdout, "text/plain", round.(Oc, sigdigits=3))
println("")
end
#redirect_stdio()
#return Sl, So, Sc, Al, Ao, Ac, Tl, To, Tc, Ol, Oo, Oc
return nothing
end
#FP(mu=mu0), Az=b contains z′E=μ, objective function L=0
#cmpSA(:Ungil)
cmpSA(:SP500)
#FP(L=L0), , Az=b excludes z′E=μ, objective function has -L*z′E
#cmpSA_L(:Ungil)
cmpSA_L(:SP500)
nothing
#=
Remark:
* OSQP is dangerous when mu version is computed, low accuracy, volatile speed (fastest near LMEP, but slowest near HMEP, Highest Mean Efficient Portfolio)
* OSQP is very good, when L is used. Accuracy 1.28e-10 (SP500 and Ungil), very good (deteriorate near LMEP ); speed 0.0751 (Ungil) and 0.0909 (SP500), fastest, no speed down at HMEP;
objective 7.53e-14 (SP500 and Ungil), very good
=# | LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 1041 | #Example: no short-sale with upper bounded for the problem of portfolio selection
#=
min (1/2)z′Vz -z′μ
s.t. z′1=1 , 0≤z≤u
=#
# User Guides: https://github.com/PharosAbad/LightenQP.jl/wiki/User-Guides#portfolio-selection-1
using LightenQP
using LinearAlgebra
function main()
V = [1/100 1/80 1/100
1/80 1/16 1/40
1/100 1/40 1/25]
E = [109 / 100; 23 / 20; 119 / 100]
#Q = OOQP(V, -E)
#x, status = solveOOQP(Q)
u = [0.7; +Inf; 0.7] #Inf means no bounded
Q = OOQP(V, -E, u) #OOQP + bounds 0 <= x <= u
#settings = Settings()
x, status = solveOOQP(Q) #solve by Algorithm MPC (Mehrotra Predictor-Corrector)
#v1.0.1
O = OOQP(V, E, u)
#y, statusy = fPortfolio(O; L=1.0)
y, statusy = fPortfolio(O, 1.0)
display(norm(x.x - y.x, Inf)) #0
end
#=
using EfficientFrontier
P = Problem(E, V, u)
nS = Settings(P)
aCL = EfficientFrontier.ECL(P; numSettings=nS)
aEF = eFrontier(aCL, P)
mu = x.x'*E
z = ePortfolio(mu, aEF)
x.x - z
=#
main()
nothing
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 760 | "The primal-dual interior point algorithms supplied by OOQP"
module LightenQP
#=
#solving convex quadratic programming (QP) problems in the following form (called by OOQP)
min (1/2)x′Vx+q′x
s.t. Ax=b Cx≤g
https://github.com/emgertz/OOQP OOQP in C/C++
https://github.com/oxfordcontrol/qpip/blob/master/qpip.m solver OOQP, but in a pure matlab implementation
=#
using LinearAlgebra
#using SparseArrays
export OOQP #, Settings, Solution
export solveOOQP, mpcQP, mpcLP, fPortfolio
include("./types.jl")
# Algorithm MPC (Mehrotra Predictor-Corrector), Primal-Dual Interior-Point Algorithms
include("./MPC.jl")
#The general quadratic programming formulation recognized by LightenQP, solved by solveOOQP (Algorithm MPC)
include("./mpcQP.jl")
end
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 7185 | #the solver, Algorithm MPC (Mehrotra Predictor-Corrector) from OOQP
"""
solveOOQP(Q::OOQP; settings=Settings())
solveOOQP(V, q, A, b, C, g; settings)
solving convex quadratic programming problems (QP) in the following form define by Q::OOQP
```math
min (1/2)x′Vx+q′x
s.t. Ax=b ∈ R^{M}
Cx≤g ∈ R^{L}
```
Outputs
x::Solution : structure containing the primal solution 'x', dual variables 'y' and 'z' corresponding to the equality
and inequality multipliers respectively, and slack variables 's'
status::Int : > 0 if successful (=iter_count), 0 if infeasibility detected, < 0 if not converged (=-iter_count)
# Example
```
using LightenQP
V = [1/100 1/80 1/100
1/80 1/16 1/40
1/100 1/40 1/25]
E = [109 / 100; 23 / 20; 119 / 100]
u = [0.7; +Inf; 0.7] #Inf means no bounded
Q = OOQP(V, -E, u) #OOQP + bounds 0 <= x <= u
x, status = solveOOQP(Q) #solve by Algorithm MPC (Mehrotra Predictor-Corrector)
```
See [`Documentation for LightenQP.jl`](https://github.com/PharosAbad/LightenQP.jl/wiki)
See also [`OOQP`](@ref), [`Solution`](@ref), [`Settings`](@ref), [`mpcQP`](@ref)
"""
function solveOOQP(V::Matrix{T}, q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T}; settings=Settings{T}()) where {T}
Q = OOQP(V, q; A=A, b=b, C=C, g=g)
return solveOOQP(Q; settings=settings)
end
function solveOOQP(Q::OOQP{T}; settings=Settings{T}()) where {T}
#cook up an initial solution
Soln = Solution(Q)
res = Residuals(Q)
J, idxS = initJacobian(Q)
normD = dataNorm(Q) #data norm initialize
defaultStart!(Soln, res, Q, J, normD)
(; z, s) = Soln
iter = 1
status = 0
while iter <= settings.maxIter
muval = calcMu(Soln) #get the complementarity measure mu
calcResiduals!(res, Q, Soln) ##Update the right hand side residuals
#termination test
status = checkStatus(Q, Soln, res, settings, muval, normD)
if status != 0
break
end
# PREDICTOR STEP find the RHS for this step
J[idxS] = -(s ./ z) #updateJacobian
F = lu(J)
#display((typeof(J),typeof(F)))
stepAff = searchDirection(F, Q, Soln, res)
alphaAff = stepBound(Soln, stepAff) #determine the largest step that preserves consistency of the multiplier constraint
muAff = muStep(Soln, stepAff, alphaAff)
sigma = (muAff / muval)^3
#CENTERING-CORRECTOR STEP
rSfix!(res, stepAff, -sigma * muval)
stepCC = searchDirection(F, Q, Soln, res)
alphaMax = stepBound(Soln, stepCC) #determine the largest step that preserves consistency of the multiplier constraint
stepSize = alphaMax * settings.scaleStep #use a crude step scaling factor
addToSolution!(Soln, stepCC, stepSize) #take the step and update mu
iter += 1
end
iter = (status == 1) ? iter : ((status == 0) ? -iter : 0)
return Soln, iter
end
function addToSolution!(Soln, step, alpha)
#shift the problem variables by a scaled correction term
(; x, y, z, s) = Soln
x .+= alpha * step.x
y .+= alpha * step.y
z .+= alpha * step.z
s .+= alpha * step.s
return nothing
end
function calcMu(Soln)
#calculate complementarity measure
(; z, s) = Soln
L = length(z) # L==0 no inequalities case
mu = L == 0 ? 0.0 : (z' * s) / L
return mu
end
function calcResiduals!(res, Q, Soln)
#Calculates the problem residuals based on the current variables
(; V, A, C, q, b, g) = Q
(; x, y, z, s) = Soln
(; rV, rA, rC, rS) = res
rV .= V * x - A' * y + C' * z + q # V*x + q - A'*y + C'*z
rA .= A * x - b # A*x - b
rC .= C * x + s - g # C*x - g + s
rS .= z .* s # w = SZ1
return nothing
end
function checkStatus(Q, Soln, res, settings, muval, normD)
#test for convergence or infeasibility
gap = abs(dualityGap(Q, Soln))
normR = residualNorm(res)
phi = (normR + gap) ./ normD
minPhi = min(settings.minPhi, phi)
if muval <= settings.tolMu && normR <= settings.tolR * normD
status = 1 #convergence
elseif (phi > 1e-8 && phi > 1e4 * minPhi)
status = -1 #infeasible
else
status = 0 #not converged
end
return status
end
function dataNorm(Q)
(; V, A, C, q, b, g) = Q
vecData = [V[:]; A[:]; C[:]; q[:]; b[:]; g[:]] #vectorize the data, infinite values have been removed
return norm(vecData, Inf)
end
function defaultStart!(Soln, res, Q, J, normD)
(; z, s) = Soln
s0 = sqrt(normD) #find some interior point (large z and s)
z .= s0
s .= s0
calcResiduals!(res, Q, Soln)
F = lu(J)
step = searchDirection(F, Q, Soln, res)
addToSolution!(Soln, step, 1.0) #take the full affine scaling step
z .+= 1e3 #shiftBoundVariables
s .+= 1e3
return nothing
end
function dualityGap(Q, Soln)
#Calculate duality gap = x'Vx + q'x - b'y + g'z
(; V, q, b, g) = Q
(; x, y, z) = Soln
return x' * (V * x) + q' * x - b' * y + g' * z
end
function initJacobian(Q::OOQP{T}) where {T}
(; V, A, C, N, M, L) = Q
#Create the Jacoban matrix with a dummy Sigma
S = -Matrix{T}(I, L, L)
Z1 = zeros(T, M, M)
Z2 = zeros(T, L, M)
#construct the jacobian
J = [V A' C'
A Z1 Z2'
C Z2 S]
#get the indices for the entries of S
idx = (N + M) .+ (1:L)
idxS = Base._sub2ind(size(J), idx, idx)
return J, idxS
end
function muStep(Soln, step, alpha)
#calculate the value of z's/L given a step in the proposed z and s directions
(; z, s) = Soln
dz = step.z * alpha
ds = step.s * alpha
return ((z + dz)' * (s + ds)) / length(s)
end
function residualNorm(res)
(; rV, rA, rC) = res
vec = [rV[:]; rA[:]; rC[:]]
return norm(vec, Inf) #residual vector norms
end
function rSfix!(res, stepAff, shift)
#adds to the rS component of the residuals a term = dZ*dS*1 + shift*1
dz = stepAff.z
ds = stepAff.s
res.rS .+= dz .* ds .+ shift #update the residuals
return nothing
end
function searchDirection(F, Q, Soln, res)
#Solve the Newton system for a given set of residuals, using the current Jacobian factorization
(; z, s) = Soln
(; rV, rA, rC, rS) = res
rC1 = rC - (rS ./ z) #eliminate the rS terms
rhs = [rV; rA; rC1] #put them all together
lhs = F \ rhs #solve it
#parse the solution (including any post-solving) back into a *copy* of the variables
(; N, M, L) = Q
dx = -lhs[1:N]
dy = lhs[(1:M).+N]
dz = -lhs[(1:L).+(N+M)]
#post-solve solve for the ds
ds = -(rS + s .* dz) ./ z
return Solution(dx, dy, dz, ds) #the output should have the same structure as the Soln
end
function stepBound(Soln, step)
#calculate the maximum allowable step in the proposed direction in (0 1]
d = [step.z; step.s] #the proposed z and s directions
t = [Soln.z; Soln.s]
am = 1.0
id = findall(d .< 0) #leave d>=0 alone
if length(id) > 0
a = t[id] ./ d[id]
am = min(1.0, -maximum(a))
end
return am
end
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 10161 | #The general quadratic programming formulation recognized by LightenQP
"""
mpcQP(V, q, A, b, C, g, d, u, h; settings) :OOQP + 'd≤x≤u' + 'h≤Cx'
mpcQP(V, q, A, b, C, g, d, u; settings) :OOQP + 'd≤x≤u'
mpcQP(V, q, C, g, d, u, h; settings) :OOQP + 'd≤x≤u' + 'h≤Cx' - 'Ax=b'
mpcQP(V, q, A, b, C, g; settings) :OOQP
mpcQP(V, q, d, u; settings) :OOQP + 'd≤x≤u' - 'Ax=b, Cx≤g'
mpcQP(O::OOQP; settings) :OOQP
wrapping `solveOOQP` for quadratic programming problems: `mpcQP(V, q, A, b, C, g, d, u, h)` for (OOQP + 'd≤x≤u' + 'h≤Cx')
```math
min (1/2)x′Vx+x′q
s.t. Ax=b∈R^{M}
h≤Cx≤g∈R^{L}
d≤x≤u∈R^{N}
```
`mpcQP(V, q, A, b, C, g, d, u)` for equality and inequality constraints, and lower and upper bounds (OOQP + 'd≤x≤u')
```math
min (1/2)x′Vx+x′q
s.t. Ax=b∈R^{M}
Cx≤g∈R^{L}
d≤x≤u∈R^{N}
```
`mpcQP(V, q, C, g, d, u, h)` for only inequality constraints, and lower and upper bounds (OOQP + 'd≤x≤u' + 'h≤Cx' - 'Ax=b')
```math
min (1/2)x′Vx+x′q
s.t. h≤Cx≤g∈R^{L}
d≤x≤u∈R^{N}
```
`mpcQP(V, q, d, u)` for only lower and upper bounds (OOQP + 'd≤x≤u' - 'Ax=b, Cx≤g')
```math
min (1/2)x′Vx+x′q
s.t. d≤x≤u∈R^{N}
```
See [`Documentation for LightenQP.jl`](https://github.com/PharosAbad/LightenQP.jl/wiki)
See also [`OOQP`](@ref), [`solveOOQP`](@ref), [`Solution`](@ref), [`Settings`](@ref)
"""
function mpcQP(V::Matrix{T}, q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T},
d::Vector{T}, u::Vector{T}, h::Vector{T}; settings=Settings{T}()) where {T}
id = findall(d .> -Inf)
iu = findall(u .< Inf)
ih = findall(h .> -Inf)
ig = findall(g .< Inf)
N = length(q)
N == length(d) || throw(DimensionMismatch("incompatible dimension: d"))
N == length(u) || throw(DimensionMismatch("incompatible dimension: u"))
Cg = [C[ig, :]; -Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]; -C[ih, :]]
gg = [g[ig]; -d[id]; u[iu]; -h[ih]]
O = OOQP(V, q; A=A, b=b, C=Cg, g=gg)
return solveOOQP(O; settings=settings)
end
#OOQP + 'd≤x≤u'
function mpcQP(V::Matrix{T}, q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T},
d::Vector{T}, u::Vector{T}; settings=Settings{T}()) where {T}
id = findall(d .> -Inf)
iu = findall(u .< Inf)
ig = findall(g .< Inf)
N = length(q)
N == length(d) || throw(DimensionMismatch("incompatible dimension: d"))
N == length(u) || throw(DimensionMismatch("incompatible dimension: u"))
Cg = [C[ig, :]; -Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]]
gg = [g[ig]; -d[id]; u[iu]]
O = OOQP(V, q; A=A, b=b, C=Cg, g=gg)
return solveOOQP(O; settings=settings)
end
#OOQP + 'd≤x≤u' + 'h≤Cx' - 'Ax=b'
function mpcQP(V::Matrix{T}, q::Vector{T}, C::Matrix{T}, g::Vector{T},
d::Vector{T}, u::Vector{T}, h::Vector{T}; settings=Settings{T}()) where {T}
id = findall(d .> -Inf)
iu = findall(u .< Inf)
ih = findall(h .> -Inf)
ig = findall(g .< Inf)
N = length(q)
N == length(d) || throw(DimensionMismatch("incompatible dimension: d"))
N == length(u) || throw(DimensionMismatch("incompatible dimension: u"))
Cg = [C[ig, :]; -Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]; -C[ih, :]]
gg = [g[ig]; -d[id]; u[iu]; -h[ih]]
O = OOQP(V, q; A=zeros(T, 0, N), b=zeros(T, 0), C=Cg, g=gg)
return solveOOQP(O; settings=settings)
end
#OOQP
function mpcQP(V::Matrix{T}, q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T}; settings=Settings{T}()) where {T}
#alias for solveOOQP(V, q, A, b, C, g; settings=settings)
O = OOQP(V, q; A=A, b=b, C=C, g=g)
return solveOOQP(O; settings=settings)
end
function mpcQP(O::OOQP{T}; settings=Settings{T}()) where {T}
#alias for solveOOQP(O; settings=settings)
return solveOOQP(O; settings=settings)
end
#OOQP + 'd≤x≤u' - 'Ax=b, Cx≤g'
function mpcQP(V::Matrix{T}, q::Vector{T}, d::Vector{T}, u::Vector{T}; settings=Settings{T}()) where {T}
id = findall(d .> -Inf)
iu = findall(u .< Inf)
N = length(q)
N == length(d) || throw(DimensionMismatch("incompatible dimension: d"))
N == length(u) || throw(DimensionMismatch("incompatible dimension: u"))
C = [-Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]]
g = [-d[id]; u[iu]]
O = OOQP(V, q; A=zeros(T, 0, N), b=zeros(T, 0), C=C, g=g)
return solveOOQP(O; settings=settings)
end
"""
mpcLP(q, A, b, C, g, d, u; settings, min=true)
mpcLP(q, A, b, C, g; settings, min=true)
mpcLP(O::OOQP; settings, min=true)
`mpcLP(O::OOQP; settings)`: wrapping `solveOOQP` for linear programming problems (set `V=0` in `OOQP`). If `min=false`, we maximize the objective function
`mpcLP(q, A, b, C, g, d, u)` for equality and inequality constraints, and lower and upper bounds
```math
min x′q
s.t. Ax=b∈R^{M}
Cx≤g∈R^{L}
d≤x≤u∈R^{N}
```
`mpcLP(q, A, b, C, g)` for equality and inequality constraints
```math
min x′q
s.t. Ax=b∈R^{M}
Cx≤g∈R^{L}
```
See [`Documentation for LightenQP.jl`](https://github.com/PharosAbad/LightenQP.jl/wiki)
See also [`OOQP`](@ref), [`solveOOQP`](@ref), [`Solution`](@ref), [`Settings`](@ref)
"""
function mpcLP(q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T}; settings=Settings{T}(), min=true) where {T}
N = length(q)
sgn = min == true ? 1 : -1
O = OOQP(zeros(T, N, N), sgn * q; A=A, b=b, C=C, g=g)
return solveOOQP(O; settings=settings)
end
function mpcLP(O::OOQP{T}; settings=Settings{T}(), min=true) where {T}
(; A, C, q, b, g, N) = O
sgn = min == true ? 1 : -1
O0 = OOQP(zeros(T, N, N), sgn * q; A=A, b=b, C=C, g=g)
return solveOOQP(O0; settings=settings)
end
#OOQP + 'd≤x≤u'
function mpcLP(q::Vector{T}, A::Matrix{T}, b::Vector{T}, C::Matrix{T}, g::Vector{T},
d::Vector{T}, u::Vector{T}; settings=Settings{T}(), min=true) where {T}
id = findall(d .> -Inf)
iu = findall(u .< Inf)
ig = findall(g .< Inf)
N = length(q)
N == length(d) || throw(DimensionMismatch("incompatible dimension: d"))
N == length(u) || throw(DimensionMismatch("incompatible dimension: u"))
Cg = [C[ig, :]; -Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]]
gg = [g[ig]; -d[id]; u[iu]]
sgn = min == true ? 1 : -1
O = OOQP(zeros(T, N, N), sgn * q; A=A, b=b, C=Cg, g=gg)
return solveOOQP(O; settings=settings)
end
"""
x, status = fPortfolio(O::OOQP, L::T=0.0; settings)
x, status = fPortfolio(mu, O::OOQP; settings, check=true)
find the minimum variance portfolio: See [`Portfolio Selection · LightenQP`](https://github.com/PharosAbad/LightenQP.jl/wiki/User-Guides#portfolio-selection-1)
L=-Inf :FP(L=-Inf), LMFP (Lowest Mean Frontier Portfolio)
L=+Inf :FP(L=+Inf), HMFP (Highest Mean Frontier Portfolio) HVEP (Highest Variance Efficient Portfolio)
L=L0 :FP(L=L0), the frontier (minimum variance) portfolio at L=L0. L=0, LVEP (Lowest Variance Efficient Portfolio, also called GMVP, Global Minimum Variance Portfolio)
mu=-Inf :FP(L=-Inf), LMFP (Lowest Mean Frontier Portfolio)
mu=+Inf :FP(L=+Inf), HMFP (Highest Mean Frontier Portfolio) == HVEP (Highest Variance Efficient Portfolio)
mu=mu0 :FP(mu=mu0), the frontier (minimum variance) portfolio at mu=mu0
if `check=false`, we do not check if mu is feasible or not (between lowest and highest mean)
See also [`OOQP`](@ref), [`solveOOQP`](@ref), [`Solution`](@ref), [`Settings`](@ref)
"""
function fPortfolio(mu::T, O::OOQP{T}; settings=Settings{T}(), check=true) where {T}
#FP(mu=mu)
(; V, A, C, q, b, g, N, M, L) = O
#tol = settings.tol
mu1 = mu
if check
#make sure mu is feasible, otherwise, change mu to be the highest or lowest
#HMFP (Highest Mean Frontier Portfolio)
xH, status = mpcLP(q, A, b, C, g; settings=settings, min=false) #find the Highest mu
if status == 0
error("mu for Highest Mean Frontier Portfolio: infeasible")
elseif status < 0
error("mu for Highest Mean Frontier Portfolio: not converged")
end
muH = xH.x' * q
if mu1 - muH > 0 #tol
mu1 = muH
if isfinite(mu)
@warn "mu is higher than the highest muH, compute at muH" mu muH
end
else
#LMFP (Lowest Mean Frontier Portfolio)
xL, status = mpcLP(q, A, b, C, g; settings=settings) #find the Lowest mu
if status == 0
error("mu for Lowest Mean Frontier Portfolio: infeasible")
elseif status < 0
error("mu for Lowest Mean Frontier Portfolio: not converged")
end
muL = xL.x' * q
if muL - mu1 > 0 #tol
mu1 = muL
if isfinite(mu)
@warn "mu is lower than the lowest muL, compute at muL" mu muL
end
end
end
end
#@ given mu1
qq = zeros(T, N)
Aq = [A; q']
bq = [b; mu1]
M += 1
Q = OOQP{T}(V, Aq, C, qq, bq, g, N, M, L)
return solveOOQP(Q; settings=settings)
end
function fPortfolio(O::OOQP{T}, L::T=0.0; settings=Settings{T}()) where {T}
#FP(L=L)
(; V, A, C, q, b, g, N, M) = O
if isfinite(L) #@ given L
if L == 0.0
qq = zeros(T, N)
else
qq = -L * q
end
Q = OOQP{T}(V, A, C, qq, b, g, N, M, O.L)
return solveOOQP(Q; settings=settings)
end
#L == ±Inf, using LP to find HMEP LMEP
min = L == Inf ? false : true
x, status = mpcLP(q, A, b, C, g; settings=settings, min=min)
if status == 0
error("mu for Highest/Lowest Mean Frontier Portfolio: infeasible")
elseif status < 0
error("mu for Highest/Lowest Mean Frontier Portfolio: not converged")
end
mu = x.x' * q
qq = zeros(T, N)
Aq = [A; q']
bq = [b; mu]
M += 1
Q = OOQP{T}(V, Aq, C, qq, bq, g, N, M, O.L)
return solveOOQP(Q; settings=settings)
end
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 5665 | # Problem-Algorithm-Solver pattern
"""
OOQP(V, A, C, q::Vector{T}, b, g) where T
OOQP(V, q::Vector{T}; A=A, b=b, C=C, g=g) where T
define the following convex quadratic programming problems (called OOQP)
```math
min (1/2)x′Vx+q′x
s.t. Ax=b ∈ R^{M}
Cx≤g ∈ R^{L}
```
default values for OOQP(V, q; kwargs...): A = ones(1,N), b = [1], C = -I, g = zeros(N). Which define a portfolio optimization without short-sale
For portfolio optimization
OOQP(V, q) : for no short-sale
OOQP(V, q, u) : for bounds 0 <= x <= u, and thus A = ones(1,N), b = [1], C = [-I; I], g = [zeros(N); u]
See [`Documentation for LightenQP.jl`](https://github.com/PharosAbad/LightenQP.jl/wiki)
See also [`solveOOQP`](@ref), [`Solution`](@ref), [`mpcQP`](@ref), [`Settings`](@ref)
"""
struct OOQP{T<:AbstractFloat}
V::Matrix{T}
A::Matrix{T}
C::Matrix{T}
q::Vector{T}
b::Vector{T}
g::Vector{T}
N::Int
M::Int
L::Int
end
OOQP(args...) = OOQP{Float64}(args...)
function OOQP(V, q::Vector{T}; N = length(q),
A=ones(1, N),
b=ones(1),
C=-Matrix(I, N, N),
g=zeros(N)) where {T}
#T = typeof(q).parameters[1]
#N = length(q)
(N, N) == size(V) || throw(DimensionMismatch("incompatible dimension: V"))
qq = copy(vec(q)) #make sure vector and a new copy
Vs = convert(Matrix{T}, (V + V') / 2) #make sure symmetric
#remove Inf bounds
g = vec(g)
ik = findall(.!isinf.(g))
gb = g[ik]
Cb = C[ik, :]
M = length(b)
L = length(gb)
(M, N) == size(A) || throw(DimensionMismatch("incompatible dimension: A"))
(L, N) == size(Cb) || throw(DimensionMismatch("incompatible dimension: C"))
OOQP{T}(Vs,
convert(Matrix{T}, copy(A)), #make a copy, just in case it is modified somewhere
convert(Matrix{T}, Cb),
qq,
convert(Vector{T}, copy(vec(b))),
convert(Vector{T}, gb), N, M, L)
end
function OOQP(V, q::Vector{T}, u) where {T}
#T = typeof(q).parameters[1]
N = length(q)
(N, N) == size(V) || throw(DimensionMismatch("incompatible dimension: V"))
A = ones(T, 1, N)
b = ones(T, 1)
iu = findall(u .< Inf)
C = [-Matrix{T}(I, N, N); Matrix{T}(I, N, N)[iu, :]]
g = [zeros(T, N); u[iu]]
OOQP(V, q; A=A, b=b, C=C, g=g)
end
function OOQP(V, A, C, q, b, g)
OOQP(V, q; A=A, b=b, C=C, g=g)
end
#OOQP + bounds d <= x <= u
function OOQP(V, A, C, q::Vector{T}, b, g, d, u) where {T}
#T = typeof(q).parameters[1]
N = length(q)
(N, N) == size(V) || throw(DimensionMismatch("incompatible dimension: V"))
id = findall(d .> -Inf)
iu = findall(u .< Inf)
ig = findall(g .< Inf)
Ce = [C[ig, :]; -Matrix{T}(I, N, N)[id, :]; Matrix{T}(I, N, N)[iu, :]]
ge = [g[ig]; -d[id]; u[iu]]
OOQP(V, q; A=A, b=b, C=Ce, g=ge)
end
"""
Settings(Q::OOQP; kwargs...) The default Settings to given OOQP
Settings(; kwargs...) The default Settings is set by Float64 type
Settings{T<:AbstractFloat}(; kwargs...)
kwargs are from the fields of Settings{T<:AbstractFloat} for Float64 and BigFloat
maxIter::Int64 #777
scaleStep::T #0.99 a crude step scaling factor (using Mehrotra's heuristic maybe better)
tol::T #2^-26 ≈ 1.5e-8 general (not use in OOQP solver)
tolMu::T #2^-52 ≈ 2.2e-16 violation of the complementarity condition
tolR::T #2^-49 ≈ 1.8e-15 norm(resid) <= tolR * norm(OOQP)
minPhi::T #2^23 = 8388608 ≈ 1e7 phi_min_history, not a foolproof test
see [`ooqp-userguide.pdf`](http://www.cs.wisc.edu/~swright/ooqp/ooqp-userguide.pdf) or [`Working with the QP Solver`](https://github.com/emgertz/OOQP/blob/master/doc-src/ooqp-userguide/ooqp4qpsolver.tex)
"""
struct Settings{T<:AbstractFloat}
maxIter::Int64 #777
scaleStep::T # 0.99
tol::T #2^-26
tolMu::T #2^-47
tolR::T #2^-37
minPhi::T #2^23
end
Settings(; kwargs...) = Settings{Float64}(; kwargs...)
function Settings{Float64}(; maxIter=777,
scaleStep=0.99,
tol=2^-26,
tolMu=2^-52,
tolR=2^-49,
minPhi=2^23)
Settings{Float64}(maxIter, scaleStep, tol, tolMu, tolR, minPhi)
end
function Settings{BigFloat}(; maxIter=777,
scaleStep=0.99,
tol=2^-76,
tolMu=2^-87,
tolR=2^-77,
minPhi=2^23)
Settings{BigFloat}(maxIter, scaleStep, tol, tolMu, tolR, minPhi)
end
function Settings(Q::OOQP{T}; kwargs...) where {T}
Settings{T}(; kwargs...)
end
"""
struct Solution
Solution strcture to the following convex quadratic programming problems (called OOQP)
```math
min (1/2)x′Vx+q′x
s.t. Ax=b ∈ R^{M}
Cx≤g ∈ R^{L}
```
x : primal solution
y : equality multipliers, dual variables
z : inequality multipliers, dual variables
s : slack variables
See [`Documentation for LightenQP.jl`](https://github.com/PharosAbad/LightenQP.jl/wiki)
See also [`OOQP`](@ref), [`solveOOQP`](@ref), [`mpcQP`](@ref)
"""
struct Solution{T<:AbstractFloat}
x::Vector{T}
y::Vector{T}
z::Vector{T}
s::Vector{T}
end
function Solution(Q::OOQP{T}) where {T}
(; N, M, L) = Q
x = zeros(T, N)
y = zeros(T, M)
z = ones(T, L)
s = ones(T, L)
Solution(x, y, z, s)
end
struct Residuals{T<:AbstractFloat}
rV::Vector{T}
rA::Vector{T}
rC::Vector{T}
rS::Vector{T}
end
function Residuals(Q::OOQP{T}) where {T}
(; N, M, L) = Q
rV = zeros(T, N)
rA = zeros(T, M)
rC = zeros(T, L)
rS = zeros(T, L)
Residuals(rV, rA, rC, rS)
end
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | code | 249 | using LightenQP
using Test
@testset "LightenQP.jl" begin
V = [1/100 1/80 1/100
1/80 1/16 1/40
1/100 1/40 1/25]
E = [109 / 100; 23 / 20; 119 / 100]
Q = OOQP(V, -E)
x, status = mpcQP(Q)
@test status > 0
@test isapprox(x.x[3], 1)
end
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"MIT"
] | 1.0.9 | b2b81760deb369c3b6056f6a09694f1fde369c43 | docs | 2362 | ___LightenQP.jl___
[](https://github.com/PharosAbad/LightenQP.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://github.com/PharosAbad/LightenQP.jl/wiki)
<h1 align="center" margin=0px>
A pure Julia implementation of OOQP
</h1>
<p align="center">
<a href="#features">Features</a> •
<a href="#installation">Installation</a> •
<a href="#license-">License</a> •
<a href="https://github.com/PharosAbad/LightenQP.jl/wiki">Documentation</a>
</p>
**LightenQP.jl** solves the following convex quadratic programming problems (called `OOQP`):
$$
\begin{array}
[c]{cl}
\min & \frac{1}{2}\mathbf{x}^{\prime}\mathbf{Vx}+\mathbf{x}^{\prime}%
\mathbf{q}\\
s.t. & \mathbf{Ax}=\mathbf{b}\in\mathbb{R}^{M}\\
& \mathbf{Cx}\leq\mathbf{g}\in\mathbb{R}^{L}
\end{array}
$$
with positive semi-definite symmetric matrix $\mathbf{V}\in\mathbb{R}^{N\times N}$. The general quadratic programming formulation solved by `LightenQP` is (`OOQP + d≤x≤u + h≤Cx`)
$$
\begin{array}
[c]{cl}
\min & \frac{1}{2}\mathbf{x}^{\prime}\mathbf{Vx}+\mathbf{x}^{\prime}
\mathbf{q}\\
s.t. & \mathbf{Ax}=\mathbf{b}\in\mathbb{R}^{M}\\
& \mathbf{h}\leq\mathbf{Cx}\leq\mathbf{g}\in\mathbb{R}^{L}\\
& \boldsymbol{d}\leq\mathbf{x}\leq\boldsymbol{u}\in\mathbb{R}^{N}
\end{array}
$$
## Features
* __Light Weight__: 100+ lines Julia code. Which follows closely the the implementation of the C/C++ solver [OOQP](https://github.com/emgertz/OOQP)
* __Fast__: [Speed and Accuracy](https://github.com/PharosAbad/LightenQP.jl/wiki/Speed-and-Accuracy)
* __Versatile__: solving a general quadratic programming problem mentioned above. $\mathbf{V}$ can be positive definite or positive semi-definite
* __Open Source__: Our code is available on [GitHub](https://github.com/PharosAbad/LightenQP.jl) and distributed under the MIT License
* __Arbitrary Precision Arithmetic__: fully support for `BigFloat`
## Installation
__LightenQP.jl__ can be added by
- `import Pkg; Pkg.add("LightenQP")`
- `pkg> add LightenQP`
- `pkg> dev LightenQP` for testing nightly version. To use the registered version again `pkg> free LightenQP`
## License 🔍
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
| LightenQP | https://github.com/PharosAbad/LightenQP.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1199 | using Documenter, MultiscaleGraphSignalTransforms
makedocs(
sitename="MultiscaleGraphSignalTransforms.jl",
format = Documenter.HTML(collapselevel = 1),
authors = "Jeff Irion, Haotian Li, Naoki Saito, Yiqun Shao",
clean = true,
pages = [
"Home" => "index.md",
"Examples" => [
"1D Path" => "examples/P64.md",
"2D Lattice" => "examples/Grid7x3.md",
"Sunflower Graph" => "examples/Sunflower.md",
],
"Functions" => [
"Recursive Graph Partitioning" => "functions/Partition.md",
"Hierarchical Graph Laplacian Eigen Transform" => "functions/HGLET.md",
"Generalized Haar-Walsh Transform" => "functions/GHWT.md",
"extended Generalized Haar-Walsh Transform" => "functions/eGHWT.md",
"Natural Graph Wavelet Dictionaries" => "functions/NGWD.md",
"Utils" => "functions/Utils.md",
],
]
)
# Documenter can also automatically deploy documentation to gh-pages.
# See "Hosting Documentation" and deploydocs() in the Documenter manual
# for more information.
deploydocs(
repo = "github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git"
)
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1323 | module BasisSpecification
using ..GraphSignal, ..GraphPartition, LinearAlgebra
export BasisSpec #, bsfull, bs_haar, bs_level
# BasisSpec data structure and constructors
"""
BS = BasisSpec(dvec, dvec_loc, c2f, description)
is a data structure for a BasisSpec object contaning the following fields:
* `levlist::Vector{Tuple{Int, Int}}`: the integer sequence that specifies a particular basis
* `c2f::Bool`: if true (default), this indicates that the basis comes from the coarse-to-fine dictionary; if false, this indicates that the basis comes from the fine-to-coarse dictionary
* `description::String`: a description of the specified basis
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito) |
Translated to julia and revised by Naoki Saito, Feb. 22, 2017
Modified by Yiqun Shao, May. 20, 2018
"""
mutable struct BasisSpec
levlist::Vector{Tuple{Int, Int}}
c2f::Bool
description::String
# An inner constructor here.
function BasisSpec(levlist::Vector{Tuple{Int, Int}};
c2f::Bool = true,
description::String = "")
new(levlist, c2f, description )
end # of BasisSpec constructor
end # of type BasisSpec
end # of module BasisSpecification
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 39261 | module GHWT
include("utils.jl")
using ..GraphSignal, ..GraphPartition, ..BasisSpecification, LinearAlgebra
include("common.jl")
export ghwt_core!, ghwt_analysis!, fine2coarse!, ghwt_synthesis, ghwt_c2f_bestbasis, ghwt_f2c_bestbasis, ghwt_bestbasis, GHWT_jkl
"""
ghwt_core!(GP::GraphPart)
performs the forward GHWT transform, which computes tag and compinfo of GP, but not the expansion coefficients.
### Input Arguments
* `GP::GraphPart`: a GraphPart object (with or without tag and compinfo data); note that tag and compinfo will be modified after this function is executed
"""
function ghwt_core!(GP::GraphPart)
#
# 0. Preliminaries
#
rs = GP.rs # for simple notation!
(N, jmax) = Base.size(rs)
N = N - 1
# tag -- when expressed in binary, tag indicates the sequence of
# average (0's) and difference (1's) operations used to obtain the given
# basis vector
if isempty(GP.tag)
GP.tag = zeros(Int, N, jmax)
end
tag = GP.tag # for simple notation!
# allocate space for compinfo (used for synthesis from f2c dictionary)
# if tag == 0 && n == 1: compinfo = 0
# if tag == 0 && n >= 2: compinfo = n1
# if tag == 1: compinfo = n2
# if tag >= 2 && coeff is formed from 2 coeffs: compinfo = 1
# if tag >= 2 && coeff is formed from 1 coeff: compinfo = 0
if isempty(GP.compinfo)
GP.compinfo = zeros(Int, N, jmax)
end
compinfo = GP.compinfo # for simple notation!
#
# 1. Perform the transform
#
for j = (jmax - 1):-1:1 # # Bottom-1 (jmax-1) to up to the coarsest (j=1)
regioncount = count(!iszero,rs[:, j]) - 1
for r = 1:regioncount
rs1 = rs[r, j] # the start of the 1st subregion
rs3 = rs[r + 1, j] # 1 + the end of the 2nd subregion
n = rs3 - rs1 # # of points in the current region
if n > 1 # single node region passes this part
rs2 = rs1 + 1 # the start of the 2nd subregion
while rs2 < rs3 && tag[rs2, j + 1] != 0 ### && rs2 < N+1
rs2 += 1
end
if rs2 == rs3 # the parent region is a copy of the subregion
tag[rs1:(rs3 - 1), j] = tag[rs1:(rs3 - 1), j + 1]
else # the parent region has 2 child regions
n1 = rs2 - rs1 # # of pts in the 1st subregion
n2 = rs3 - rs2 # # of pts in the 2nd subregion
# SCALING COEFFICIENT (n > 1)
compinfo[rs1, j] = n1;
# HAAR COEFFICIENT
compinfo[rs1 + 1, j] = n2; tag[rs1 + 1, j] = 1
# WALSH COEFFICIENTS
# sweep through the coefficients in subregions 1 & 2
parent = rs1 + 2 # ind of the new coeffs to be created on level j
child1 = rs1 + 1 # ind of the current coeffs in subregion 1
child2 = rs2 + 1 # ind of the current coeffs in subregion 2
while parent < rs3
# no matching coefficient (use subregion 1)
if child1 < rs2 && (child2 == rs3 || tag[child1, j + 1] < tag[child2, j + 1])
tag[parent, j] = 2 * tag[child1, j + 1]
child1 += 1; parent += 1
# no matching coefficient (use subregion 2)
elseif child2 < rs3 && (child1 == rs2 || tag[child2, j + 1] < tag[child1, j + 1])
tag[parent, j] = 2 * tag[child2, j + 1]
child2 += 1; parent += 1
# matching coefficients
else
tag[parent, j] = 2 * tag[child1, j + 1]
#tag[parent + 1, j] = 2 * tag[child1, j + 1] + 1
tag[parent + 1, j] = tag[parent, j] + 1
compinfo[parent, j] = 1; compinfo[parent + 1, j] = 1
child1 += 1; child2 += 1; parent += 2
end # of if child1 < rs2 ...
end # of while
end # of if rs2 == rs3 ...
elseif n <= 0 # n must be positive
error("n must be positive: n = ", n)
end # of if n > 1 ... elseif n <= 0 ...; note: do nothing for n==1
end # of for r = 1:regioncount
end # of for j = (jmax - 1):-1:1
end # of function ghwt_core!
"""
ghwt_core!(GP::GraphPart, dmatrix::Array{Float64,3})
performs the forward GHWT transform, which generates expansion coefficients, tag, and compinfo.
### Input Arguments
* `GP::GraphPart`: a GraphPart object (with or without tag and compinfo data); note that tag and compinfo will be modified after this function is executed
* `dmatrix::Array{Float64,3}`: a matrix of expansion coefficients with only the last column filled in as the original input signal(s) `f`; after this function is executed, this matrix contains whole expansion coefficients of the input signal(s) relative to the GHWT dictionary
"""
function ghwt_core!(GP::GraphPart, dmatrix::Array{Float64,3})
#
# 0. Preliminaries
#
rs = GP.rs # for simple notation!
(N, jmax) = Base.size(rs)
N = N - 1
# tag -- when expressed in binary, tag indicates the sequence of
# average (0's) and difference (1's) operations used to obtain the given
# basis vector
if isempty(GP.tag)
GP.tag = zeros(Int, N, jmax)
end
tag = GP.tag # for simple notation!
# allocate space for compinfo (used for synthesis from fine-to-coarse dictionary)
# if tag == 0 && n == 1: compinfo = 0
# if tag == 0 && n >= 2: compinfo = n1
# if tag == 1: compinfo = n2
# if tag >= 2 && coeff is formed from 2 coeffs: compinfo = 1
# if tag >= 2 && coeff is formed from 1 coeff: compinfo = 0
if isempty(GP.compinfo)
GP.compinfo = zeros(Int, N, jmax)
end
compinfo = GP.compinfo # for simple notation!
#
# 1. Perform the transform
#
for j = (jmax - 1):-1:1 # Bottom-1 (jmax-1) to up to the coarsest (j=1)
regioncount = count(!iszero,rs[:, j]) - 1
for r = 1:regioncount
rs1 = rs[r, j] # the start of the 1st subregion
rs3 = rs[r + 1, j] # 1 + the end of the 2nd subregion
n = rs3 - rs1 # # of points in the current region
if n == 1 # single node region
# SCALING COEFFICIENT (n == 1)
dmatrix[rs1, j, :] = dmatrix[rs1, j + 1, :]
elseif n > 1
rs2 = rs1 + 1 # the start of the 2nd subregion
while rs2 < rs3 && tag[rs2, j + 1] != 0 ### && rs2 < N+1
rs2 += 1
end
if rs2 == rs3 # the parent region is a copy of the subregion
dmatrix[rs1:(rs3 - 1), j, :] = dmatrix[rs1:(rs3 - 1), j + 1, :]
tag[rs1:(rs3 - 1), j] = tag[rs1:(rs3 - 1), j + 1]
else # the parent region has 2 child regions
n1 = rs2 - rs1 # # of pts in the 1st subregion
n2 = rs3 - rs2 # # of pts in the 2nd subregion
# SCALING COEFFICIENT (n > 1)
dmatrix[rs1, j, :] =
( sqrt(n1) * dmatrix[rs1, j + 1, :] +
sqrt(n2) * dmatrix[rs2, j + 1, :] ) / sqrt(n)
compinfo[rs1, j] = n1
# HAAR COEFFICIENT
dmatrix[rs1 + 1, j, :] =
( sqrt(n2) * dmatrix[rs1, j + 1, :] -
sqrt(n1) * dmatrix[rs2, j + 1, :] ) / sqrt(n)
# Note these sqrt's arguments are not typos!!
compinfo[rs1 + 1, j] = n2; tag[rs1 + 1, j] = 1
# WALSH COEFFICIENTS
# sweep through the coefficients in subregions 1 & 2
parent = rs1 + 2 # ind of the new coeffs to be created on level j
child1 = rs1 + 1 # ind of the current coeffs in subregion 1
child2 = rs2 + 1 # ind of the current coeffs in subregion 2
while parent < rs3
# no matching coefficient (use subregion 1)
if child1 < rs2 && (child2 == rs3 || tag[child1, j + 1] < tag[child2, j + 1])
dmatrix[parent, j, :] = dmatrix[child1, j + 1, :]
tag[parent, j] = 2 * tag[child1, j + 1]
child1 += 1; parent += 1
# no matching coefficient (use subregion 2)
elseif child2 < rs3 && (child1 == rs2 || tag[child2, j + 1] < tag[child1, j + 1])
dmatrix[parent, j, :] = dmatrix[child2, j + 1, :]
tag[parent, j] = 2 * tag[child2, j + 1]
child2 += 1; parent += 1
# matching coefficients
else
dmatrix[parent, j, :] =
( dmatrix[child1, j + 1, :] +
dmatrix[child2, j + 1, :] ) / sqrt(2)
tag[parent, j] = 2 * tag[child1, j + 1]
compinfo[parent, j] = 1
dmatrix[parent + 1, j, :] =
( dmatrix[child1, j + 1, :] -
dmatrix[child2, j + 1, :] ) / sqrt(2)
#tag[parent + 1, j] = 2 * tag[child1, j + 1] + 1
tag[parent + 1, j] = tag[parent, j] + 1
compinfo[parent + 1, j] = 1
child1 += 1; child2 += 1; parent += 2
end # of if child1 < rs2 ...
end # of while
end # of if rs2 == rs3 ...
else # n must be positive
error("n must be positive: n = ", n)
end # of if n == 1 ... elseif n > 1 ...
end # of for r = 1:regioncount
end # of for j = (jmax - 1):-1:1
end # of function ghwt_core!
"""
dmatrix = ghwt_analysis!(G::GraphSig, GP::GraphPart = nothing, c2f::Bool = true)
For a GraphSig object `G`, generate the matrix of GHWT expansion coefficients
### Input Arguments
* `G::GraphSig`: an input GraphSig object
* `GP::GraphPart`: an input GraphPart object (optional); after this function is run, `GP`'s `compinfo`, `tag`, etc. are filled
### Output Argument
* `dmatrix::Array{Float64,3}`: the 3D array of expansion coefficients (i.e., for each input signal vector, the matrix of coefficients; hence, for multiple input signals, the coefficients are organized as a 3D array)
"""
function ghwt_analysis!(G::GraphSig; GP::GraphPart = nothing, c2f::Bool = true)
#
# 0. Preliminaries
#
if isnothing(GP)
GP = partition_tree_fiedler(G)
end
# Simplify the subsequent notation without overhead. We can do this
# since `ind`, `rs`, `f` share the same memory as `GP.ind`, `GP.rs`, `G.f`
ind = GP.ind
rs = GP.rs
f = G.f
(N, jmax) = Base.size(rs)
N = N - 1
# allocate space for the expansion coefficients
fcols = size(f, 2)
dmatrix = zeros(N, jmax, fcols)
dmatrix[:, jmax, :] = f[ind, :]
## 1. Perform the transform
# generate expansion coefficients, tag, and compinfo
ghwt_core!(GP, dmatrix)
# fill in the remaining (i.e. fine-to-coarse) GraphPart fields
if c2f
return dmatrix
else
return fine2coarse!(GP, dmatrix=dmatrix, coefp = true)
end
end # of ghwt_analysis!
"""
(dmatrixf2c, IX) = fine2coarse!(GP::GraphPart;
dmatrix::Array{Float64,3} = zeros(0, 0, 0),
coefp::Bool = false, indp::Bool = false)
Fill in the fine-to-coarse info (rs2f2c, tagf2c, and compinfof2c) in a
GraphPart object. Also, rearrange a matrix of expansion coefficients.
### Input Arguments
* `GP::GraphPart`: an input GraphPart object without fine-to-coarse info (rsf2c, tagf2c, compinfof2c); after this function, rsf2c, tagf2c, compinfof2c are filled. Note that rs, tag, compinfo are intact.
* `dmatrix::Array{Float64,3}`: a matrix of expansion coefficients in coarse-to-fine arrangement (default: null matrix)
* `coefp::Bool`: a flag to return the rearranged f2c coefficients (default: false)
* `indp::Bool`: a flag to return the reordering index (default: false)
### Output Arguments
* `dmatrixf2c::Array{Float64,3}`: a matrix of expansion coefficients in fine-to-coarse arrangement (if requested)
* `IX::Vector{Unsigned}`: the reordering index for all levels
"""
function fine2coarse!(GP::GraphPart;
dmatrix::Array{Float64,3} = zeros(0, 0, 0),
coefp::Bool = false, indp::Bool = false)
#
# 0. Preliminaries
#
# get constants
(N, jmax) = Base.size(GP.rs)
N = N - 1
# allocate spaces
if isempty(GP.rsf2c)
GP.rsf2c = zeros(Int, N + 1, jmax)
end
GP.rsf2c[1, :] .= 1
GP.rsf2c[2, 1] = N + 1
if isempty(GP.tagf2c)
GP.tagf2c = zeros(Int, N, jmax)
end
if isempty(GP.compinfof2c)
GP.compinfof2c = zeros(Int, N, jmax)
end
IX = zeros(Int, N, jmax)
if coefp
dmatrixf2c = zeros(Base.size(dmatrix))
end
# make sure the coarse-to-fine tag field is filled in
if isempty(GP.tag) || isempty(GP.compinfo)
ghwt_core!(GP)
end
# for simple notation!
ind = GP.ind; rs = GP. rs
tag = GP.tag; compinfo = GP.compinfo
rsf2c = GP.rsf2c; tagf2c = GP.tagf2c; compinfof2c = GP.compinfof2c
#
# 1. Generate the fine-to-coarse dictionary
#
# put the coefficients into fine-to-coarse order
for j = 1:jmax
# put the basis into tag order
# MATLAB: [GP.tagf2c(:,j),IX(:,j)] = sort(GP.tag(:,jmax+1-j));
IX[:, j] = sortperm(tag[:, jmax + 1 - j])
tagf2c[:, j] = tag[IX[:, j], jmax + 1 - j]
compinfof2c[:, j] = compinfo[IX[:, j], jmax + 1 - j]
if coefp
dmatrixf2c[:, j, :] = dmatrix[IX[:, j], jmax + 1 - j, :]
end
# fill in the fine-to-coarse regionstarts
if j > 1
rsf2crow = 2
for row = 2:N
if tagf2c[row, j] > tagf2c[row - 1, j]
rsf2c[rsf2crow, j] = row
rsf2crow += 1
end
end
rsf2c[rsf2crow, j] = N + 1
end
end # of for j = 1:jmax
#
# 2. Return the appropriate variables if requested
#
if coefp && indp
return dmatrixf2c, IX
elseif coefp && !indp
return dmatrixf2c
elseif !coefp && indp
return IX
end
end # of function fine2coarse!
"""
f = ghwt_synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec)
Given a vector of GHWT expansion coefficients and info about the graph
partitioning and the choice of basis, reconstruct the signal
### Input Arguments
* `dvec::Matrix{Float64}`: the expansion coefficients corresponding to the chosen basis
* `GP::GraphPart`: an input GraphPart object
* `BS::BasisSpec`: an input BasisSpec object
### Output Arguments
* `f::Matrix{Float64}`: the reconstructed signal(s)
"""
function ghwt_synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec)
#
# 0. Preliminaries
#
# if necessary, fill in the tag info in GP
if isempty(GP.tag)
ghwt_core!(GP)
end
# figure out which dictionary is used: coarse-to-fine or fine-to-coarse
if !BS.c2f && isempty(GP.tagf2c)
fine2coarse!(GP)
end
# constants
N = Base.length(GP.ind)
jmax = Base.size(GP.rs, 2)
fcols = Base.size(dvec, 2)
# fill in the appropriate entries of dmatrix
dmatrix = dvec2dmatrix(dvec, GP, BS)
#
# 1. Synthesis from the basis dictionary
#
if BS.c2f # for coarse-to-fine case
# for simpler notation!
dvec_loc = zeros(Int, size(GP.tag))
for i = 1:length(BS.levlist)
dvec_loc[BS.levlist[i][1], BS.levlist[i][2]] = 1
end
rs = GP.rs
tag = GP.tag
for j = 1:(jmax - 1) # from top to bottom-1
regioncount = count(!iszero, rs[:, j]) - 1
for r = 1:regioncount
rs1 = rs[r, j] # the start of the 1st subregion
rs3 = rs[r + 1, j] # 1 + the end of the 2nd subregion
n = rs3 - rs1 # # of points in the current region
# only proceed forward if coefficients do not exist
#if count(!iszero, dmatrix[rs1:(rs3 - 1), j + 1, :]) == 0 &&
# count(!iszero, dmatrix[rs1:(rs3 - 1), j, :]) > 0
if count(!iszero, dvec_loc[rs1:(rs3-1),j]) > 0
if n == 1 # single node region
# SCALING COEFFICIENT (n == 1)
if dvec_loc[rs1,j] == 1
dmatrix[rs1, j + 1, :] = dmatrix[rs1, j, :]
dvec_loc[rs1,j+1] = 1
end
elseif n > 1
rs2 = rs1 + 1 # the start of the 2nd subregion
while rs2 < rs3 && tag[rs2, j + 1] != 0 ### && rs2 < N+1
rs2 += 1
end
if rs2 == rs3 # the parent is a copy of the subregion
if dvec_loc[rs1:rs3-1,j] == 1
dmatrix[rs1:(rs3 - 1), j + 1, :] = dmatrix[rs1:(rs3 - 1), j, :]
dvec_loc[rs1:rs3-1,j+1] = 1
end
else # the parent region has 2 child regions
n1 = rs2 - rs1 # # of pts in the 1st subregion
n2 = rs3 - rs2 # # of pts in the 2nd subregion
# SCALING COEFFICIENTS (n > 1)
if dvec_loc[rs1,j] == 1 && dvec_loc[rs1+1,j] == 1
dmatrix[rs1, j + 1, :] =
( sqrt(n1) * dmatrix[rs1, j, :] +
sqrt(n2) * dmatrix[rs1 + 1, j, :] ) / sqrt(n)
# HAAR COEFFICIENTS
dmatrix[rs2, j + 1, :] =
( sqrt(n2) * dmatrix[rs1, j, :] -
sqrt(n1) * dmatrix[rs1 + 1, j, :] ) / sqrt(n)
dvec_loc[rs1,j+1] = 1
dvec_loc[rs2,j+1] = 1
end
# WALSH COEFFICIENTS
# search through the remaining coefs in each subregion
parent = rs1 + 2
child1 = rs1 + 1
child2 = rs2 + 1
while child1 < rs2 || child2 < rs3
# subregion 1 has the smaller tag
if child2 == rs3 ||
(tag[child1, j + 1] < tag[child2, j + 1] &&
child1 < rs2)
if dvec_loc[parent,j]==1
dmatrix[child1, j + 1, :] =
dmatrix[parent, j, :]
dvec_loc[child1, j+1] =1
end
child1 += 1; parent += 1
# subregion 2 has the smaller tag
elseif child1 == rs2 ||
(tag[child2, j + 1] < tag[child1, j + 1] &&
child2 < rs3)
if dvec_loc[parent, j] == 1
dmatrix[child2, j + 1, :] =
dmatrix[parent, j, :]
dvec_loc[child2, j+1] = 1
end
child2 += 1; parent += 1
# both subregions have the same tag
else
if dvec_loc[parent,j] == 1 && dvec_loc[parent+1, j] == 1
dmatrix[child1, j + 1, :] =
( dmatrix[parent, j, :] +
dmatrix[parent + 1, j, :] ) / sqrt(2)
dmatrix[child2, j + 1, :] =
( dmatrix[parent, j, :] -
dmatrix[parent + 1, j, :] ) / sqrt(2)
dvec_loc[child1,j+1]=1
dvec_loc[child2,j+1]=1
end
child1 += 1; child2 += 1; parent += 2
end # of if child2 == r3 ...
end # of while child1 < rs2 ...
end # of if rs2 == rs3 ... else
end # of if n == 1 ... elseif n > 1 ...
end # of if countnz(...)
end # of for r = 1:regioncount
end # of for j = 1:(jmax - 1)
# MATLAB: if fcols == 1
# f = dmatrix[:, end]
# else
# f = reshape(dmatrix[:, end, :], N, fcols)
# end
# GS.f = dmatrix[:, end, :] # Do this later for clarity
else # for fine-to-coarse case
# for simpler notation!
rsf2c = GP.rsf2c
tagf2c = GP.tagf2c
compinfof2c = GP.compinfof2c
for j = (jmax - 1):-1:1 # from bottom-1 to top
regioncount = count(!iszero, rsf2c[:, j]) - 1
for r = 1:regioncount
rs1 = rsf2c[r, j] # the start of the 1st subregin
rs3 = rsf2c[r + 1, j] # 1 + the end of the 2nd subregion
# only proceed forward if coefficients do not exist
if count(!iszero, dmatrix[rs1:(rs3 - 1), j, :]) == 0 &&
count(!iszero, dmatrix[rs1:(rs3 - 1), j + 1, :]) > 0
# one subregion ==> copy the coefficients
if tagf2c[rs1, j + 1] == tagf2c[rs3 - 1, j + 1]
dmatrix[rs1:(rs3 - 1), j, :] =
dmatrix[rs1:(rs3 - 1), j + 1, :]
# two subregions ==> compute the coefficients
else
rs2 = rs1 + 1 # the start of the 2nd subregion
while rs2 < rs3 &&
tagf2c[rs1, j + 1] == tagf2c[rs2, j + 1] ### && rs2 < N+1
rs2 += 1
end
if rs2 == rs3 # the parent is a copy of the subregion
# no need to do the following
# dmatrix[rs1:(rs3 - 1), (j + 1) , :] =
# dmatrix[rs1:(rs3 - 1) , j, :]
nothing
else # the parent region has 2 child regions
parent = rs1 # the current coef in the parent
child1 = rs1 # the current coefs in the children
child2 = rs2
# SCALING & HAAR COEFFICIENTS
if tagf2c[rs1, j] == 0
while parent < rs3
# 1 coef formed from 1 coef
if compinfof2c[child1, j + 1] == 0
dmatrix[parent, j, :] =
dmatrix[child1, j + 1, :]
parent += 1; child1 += 1
# 2 coefs formed from 2 coefs
else
n1 = compinfof2c[child1, j + 1]
n2 = compinfof2c[child2, j + 1]
n = n1 + n2 # # of points in the parent
# SCALING COEFFICIENT
dmatrix[parent, j, :] =
( sqrt(n1) * dmatrix[child1, j + 1, :] +
sqrt(n2) * dmatrix[child2, j + 1, :] ) / sqrt(n)
# HAAR COEFFICIENT
dmatrix[parent + 1, j, :] =
( sqrt(n2) * dmatrix[child1, j + 1, :] -
sqrt(n1) * dmatrix[child2, j + 1, :] ) / sqrt(n)
parent += 2; child1 += 1; child2 += 1
end
end # of while
# WALSH COEFFICIENTS
else
while parent < rs3
# 1 coef formed from 1 coef
if compinfof2c[child1, j + 1] == 0
dmatrix[parent, j, :] =
dmatrix[child1, j + 1, :]
parent += 1; child1 += 1
# 2 coefs formed from 2 coefs
else
dmatrix[parent, j, :] =
( dmatrix[child1, j + 1, :] +
dmatrix[child2, j + 1, :] ) / sqrt(2)
dmatrix[parent + 1, j, :] =
( dmatrix[child1, j + 1, :] -
dmatrix[child2, j + 1, :] ) / sqrt(2)
parent += 2; child1 += 1; child2 += 1
end # of if compinfof2c[...]
end # of while parent < rs3
end # of if tagf2c[rs1, j] == 0 ... else ...
end # of if rs2 == rs3 ... else ...
end # of if tagf2c[rs1, j + 1] == tagf2c[rs3 - 1, j + 1] ...
end # of if countnz(dmatrix[rs1:(rs3 - 1), j, :]) == 0 ...
end # for r = 1:regioncount
end # for j=(jmax - 1):-1:1
# GS.f = dmatrix[:, 1, :]
end # of if BS.c2f ... else ...
#
# 2. Final prepartion for returning variables
#
ftemp = dmatrix[:, 1, :] # for fine-to-coarse and make f available
if BS.c2f
ftemp = dmatrix[:, end, :] # for coarse-to-fine
end
# put the reconstructed values in the correct order and return it.
f = zeros(size(ftemp))
f[GP.ind, :] = ftemp
return f
end # of function ghwt_synthesis (without G input)
"""
(f, GS) = ghwt_synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec, G::GraphSig)
Given a vector of GHWT expansion coefficients and info about the graph
partitioning and the choice of basis, reconstruct the signal
### Input Arguments
* `dvec::Matrix{Float64}`: the expansion coefficients corresponding to the chosen basis
* `GP::GraphPart`: an input GraphPart object
* `BS::BasisSpec`: an input BasisSpec object
* `G::GraphSig`: an input GraphSig object
### Output Arguments
* `f::Matrix{Float64}`: the reconstructed signal(s)
* `GS::GraphSig`: the reconstructed GraphSig object
"""
function ghwt_synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec, G::GraphSig)
# call the normal ghwt_synthesis
f = ghwt_synthesis(dvec, GP, BS)
# create a GraphSig object with the reconstructed data and return it with f.
GS = deepcopy(G) # generate a new copy of G as GS
replace_data!(GS, f) # then replace the graph signal field
return f, GS
end # of ghwt_synthesis (with G input)
"""
(dvecc2f, BSc2f) = ghwt_c2f_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix,2),
useParent::Bool = true)
Select the coarse-to-fine best basis from the matrix of GHWT expansion coefficients
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `cfspec::Any`: the specification of cost functional to be used (default = 1.0, i.e., 1-norm)
* `flatten::Any`: the method for flattening vector-valued data to scalar-valued data (default = 1.0, i.e, 1-norm)
* `useParent::Bool`: the flag to indicate if we update the selected best basis
subspace to the parent when parent and child have the same cost (default = true)
### Output Arguments
* `dvecc2f::Matrix{Float64}`: the vector of expansion coefficients corresponding to the coarse-to-fine best basis
* `BSc2f::BasisSpec`: a BasisSpec object which specifies the coarse-to-fine best basis
"""
function ghwt_c2f_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix,2),
useParent::Bool = true)
# determine the cost functional to be used
costfun = cost_functional(cfspec)
# constants and dmatrix cleanup
(N, jmax, fcols) = Base.size(dmatrix)
if ~(1 <= j_start <= j_end <= jmax)
error("j_start and j_end should satisfy the inequality 1 <= j_start <= j_end <= "*string(jmax))
end
dmatrix[ abs.(dmatrix) .< 10^2 * eps() ] .= 0
# "flatten" dmatrix
if fcols > 1
dmatrix0 = deepcopy(dmatrix) # keep the original dmatrix as dmatrix0
if !isnothing(flatten)
dmatrix = dmatrix_flatten(dmatrix, flatten)
end
end
## Find the best-basis from the GHWT coarse-to-fine dictionary
# allocate/initialize
dvecc2f = dmatrix[:, j_end, 1]
levlistc2f = j_end * ones(Int, N)
# set the tolerance with sign
tol = 10^4 * eps() * (1 - useParent * 2)
# perform the basis search
for j = (j_end - 1):-1:j_start
regioncount = count(!iszero, GP.rs[:, j]) - 1
for r = 1:regioncount
indr = GP.rs[r, j]:(GP.rs[r + 1, j]-1)
##### compute the cost of the current best basis
costBB = costfun(dvecc2f[indr])
costNEW = costfun(dmatrix[indr, j, 1])
if costBB >= costNEW + tol
#(dvecc2f[indr], levlistc2f[indr]) = bbchange(dmatrix[indr, j, 1], j)
dvecc2f[indr] = dmatrix[indr, j, 1]
levlistc2f[indr] .= j
end
end
end
#levlistc2f = Array{Int}(levlistc2f[ levlistc2f .!= 0 ])
levlistc2f = collect(enumerate(levlistc2f))
BSc2f = BasisSpec(levlistc2f, c2f = true, description = "GHWT c2f Best Basis")
#levlist2levlengths!(GP, BSc2f)
# if we flattened dmatrix, then "unflatten" the expansion coefficients
if fcols > 1
dvecc2f = dmatrix2dvec(dmatrix0, GP, BSc2f)
else
dvecc2f = reshape(dvecc2f,(length(dvecc2f),1))
end
# Return things
return dvecc2f, BSc2f
end # of function ghwt_c2f_bestbasis
"""
(dvecf2c, BSf2c) = ghwt_f2c_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix,2),
useParent::Bool = true)
Select the fine-to-coarse best basis from the matrix of GHWT expansion coefficients
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `cfspec::Any`: the specification of cost functional to be used (default: 1.0, i.e., 1-norm)
* `flatten::Any`: the method for flattening vector-valued data to scalar-valued data (default: 1.0, i.e., 1-norm)
* `useParent::Bool`: the flag to indicate if we update the selected best basis
subspace to the parent when parent and child have the same cost (default = true)
### Output Arguments
* `dvecf2c::Matrix{Float64}`: the vector of expansion coefficients corresponding to the fine-to-coarse best basis
* `BSf2c::BasisSpec`: a BasisSpec object which specifies the fine-to-coarse best basis
"""
function ghwt_f2c_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix,2),
useParent::Bool = true)
# determine the cost functional to be used
costfun = cost_functional(cfspec)
# constants and dmatrix cleanup
(N, jmax, fcols) = Base.size(dmatrix)
if ~(1 <= j_start <= j_end <= jmax)
error("j_start and j_end should satisfy the inequality 1 <= j_start <= j_end <= "*string(jmax))
end
dmatrix[ abs.(dmatrix) .< 10^2 * eps() ] .= 0
# "flatten" dmatrix
if fcols > 1
dmatrix0 = deepcopy(dmatrix) # keep the original dmatrix as dmatrix0
if !isnothing(flatten)
dmatrix = dmatrix_flatten(dmatrix, flatten)
end
end
## Find the best-basis from the GHWT fine-to-coarse dictionary
# generate the fine-to-coarse GraphPart fields and coefficient matrix
dmatrixf2c = fine2coarse!(GP, dmatrix = dmatrix, coefp = true)
# allocate/initialize
dvecf2c = dmatrixf2c[:, j_end, 1]
levlistf2c = j_end * ones(Int, N)
# set the tolerance with sign
tol = 10^4 * eps() * (1 - useParent * 2)
# perform the basis search
for j = (j_end - 1):-1:j_start
regioncount = count(!iszero, GP.rsf2c[:, j]) - 1
for r = 1:regioncount
indr = GP.rsf2c[r, j]:(GP.rsf2c[r + 1, j] - 1)
##### compute the cost of the current best basis
costBB = costfun(dvecf2c[indr])
costNEW = costfun(dmatrixf2c[indr, j, 1])
if costBB >= costNEW + tol
#(dvecf2c[indr], levlistf2c[indr]) = bbchange(dmatrixf2c[indr, j, 1], j)
dvecf2c[indr] = dmatrixf2c[indr, j, 1]
levlistf2c[indr] .= j
end
end
end
#levlistf2c = Array{Int}(levlistf2c[ levlistf2c .!= 0 ])
levlistf2c = collect(enumerate(levlistf2c))
BSf2c = BasisSpec(levlistf2c, c2f = false, description = "GHWT f2c Best Basis")
#levlist2levlengths!(GP, BSf2c)
# costf2c = costfun(dvecf2c)
# if we flattened dmatrix, then "unflatten" the expansion coefficients
if fcols > 1
dvecf2c = dmatrix2dvec(dmatrix0, GP, BSf2c)
else
dvecf2c = reshape(dvecf2c,(length(dvecf2c),1))
end
# Return things
return dvecf2c, BSf2c
end # of function ghwt_f2c_bestbasis
"""
(dvec, BS) = ghwt_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart; cfspec::Any, flatten::Any = 1.0)
Select the overall best basis among the c2f and f2c best bases
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `cfspec::Any`: the specification of cost functional to be used (default: 1.0, i.e., 1-norm)
* `flatten::Any`: the method for flattening vector-valued data to scalar-valued data (default: 1.0, i.e., 1-norm)
### Output Arguments
* `dvec::Matrix{Float64}`: the vector of expansion coefficients corresponding to the best basis
* `BS::BasisSpec`: a BasisSpec object which specifies the best basis
"""
function ghwt_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0, j_start::Int = 1, j_end::Int = size(dmatrix,2))
costfun = cost_functional(cfspec)
jmax = size(dmatrix,2)
if ~(1 <= j_start <= j_end <= jmax)
error("j_start and j_end should satisfy the inequality 1 <= j_start <= j_end <= "*string(jmax))
end
# Select the c2f best basis
(dvecc2f, BSc2f) = ghwt_c2f_bestbasis(dmatrix, GP, cfspec = cfspec, flatten = flatten, j_start = j_start, j_end = j_end)
costc2f = costfun(dvecc2f)
# Select the f2c best basis
(dvecf2c, BSf2c) = ghwt_f2c_bestbasis(dmatrix, GP, cfspec = cfspec, flatten = flatten, j_start = jmax + 1 - j_end, j_end = jmax + 1 - j_start)
costf2c = costfun(dvecf2c)
# Compare the coarse-to-fine and fine-to-coarse best-bases
if costc2f >= costf2c
dvec = dvecf2c
BS = BSf2c
else
dvec = dvecc2f
BS = BSc2f
end
# Return things
return dvec, BS
end # of function ghwt_bestbasis
"""
function GHWT_jkl(GP::GraphPart, drow::Int, dcol::Int; c2f::Bool = true)
Generate the (j,k,l) indices for the GHWT basis vector corresponding to the coefficient dmatrix(drow,dcol)
### Input Arguments
* `GP`: a GraphPart object
* `drow`: the row of the expansion coefficient
* `dcol`: the column of the expansion coefficient
### Output Argument
* `j`: the level index of the expansion coefficient
* `k`: the subregion index of the expansion coefficient
* `l`: the tag of the expansion coefficient
"""
function GHWT_jkl(GP::GraphPart, drow::Int, dcol::Int; c2f::Bool = true)
if c2f
j = dcol - 1
k = findfirst(GP.rs[:,dcol] .> drow)
k -= 2
if isempty(GP.tag)
ghwt_core!(GP)
end
l = GP.tag[drow,dcol]
else
jmax = size(GP.rs, 2)
j = jmax - dcol
IX = fine2coarse!(GP; indp = true)
k = findfirst(GP.rs[:,j+1] .> IX[drow,dcol])
k -= 2
l = GP.tagf2c[drow,dcol]
end
return j,k,l
end # of function GHWT_jkl
end # of module GHWT
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 7434 | module GHWT_2d
include("utils.jl")
using ..GraphSignal, ..GraphPartition, ..BasisSpecification, ..GHWT, LinearAlgebra, SparseArrays
include("common.jl")
export ghwt_analysis_2d, ghwt_bestbasis_2d, ghwt_synthesis_2d
"""
dmatrix = ghwt_analysis_2d(matrix::Array{Float64,2}, GProws::GraphPart, GPcols::GraphPart)
For a matrix, equipped with row and column weight recursive partitionings
and weight matrices, generate the redundant matrix of GHWT
expansion coefficients.
### Input Arguments
`matrix` the matrix to be analyzed
`GProws` the recursive partitioning on the rows
`GPcols` the recursive partitioning on the columns
### Output Arguments
`dmatrix` the GHWT dictionary expansion coefficients
Copyright 2019 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_analysis_2d(matrix::Array{Float64,2}, GProws::GraphPart, GPcols::GraphPart)
if isempty(GProws.tag)
ghwt_core!(GProws)
end
if isempty(GPcols.tag)
ghwt_core!(GPcols)
end
matrix_re = matrix[GProws.ind, GPcols.ind]
(N, jmax_row) = size(GProws.rs)
N = N-1
# expand on the row direction
(frows, fcols) = size(matrix_re)
dmatrix = zeros((N,jmax_row,fcols))
dmatrix[:,jmax_row,:] = matrix_re
ghwt_core!(GProws, dmatrix)
dmatrix = reshape(dmatrix, (frows*jmax_row, fcols))'
# expand on the column direction
(N, jmax_col) = size(GPcols.rs)
N = N - 1
dmatrix2 = zeros(N,jmax_col,size(dmatrix,2))
dmatrix2[:, jmax_col, :] = dmatrix
ghwt_core!(GPcols, dmatrix2)
dmatrix = reshape(dmatrix2, (fcols*jmax_col, frows*jmax_row))'
return Array{Float64,2}(dmatrix)
end
"""
dvec, BSrows, BScols = ghwt_2d_bestbasis(matrix::Array{Float64,2},GProws::GraphPart,GPcols::GraphPart,
costfun_rows::Any = 1.0, costfun_cols::Any = 1.0, flatten_rows::Any = 1.0, flatten_cols::Any = 1.0)
For a matrix, equipped with row and column weight recursive partitionings
and weight matrices, generate the (non-redundant) matrix of GHWT
expansion coefficients, using the best basis algorithm to select best bases for the rows and columns
### Input Argument
* `matrix` the matrix to be analyzed
* `GProws` the recursive partitioning on the rows
* `GPcols` the recursive partitioning on the columns
* `costfun_rows` the cost functional to be used for the rows
* `costfun_cols` the cost functional to be used for the columns
* `flatten_rows` the method for flattening vector-valued data to scalar-valued data for the rows
* `flatten_cols` the method for flattening vector-valued data to scalar-valued data for the columns
### Output Argument
* `dvec` the GHWT expansion coefficients (not redundant)
* `BSrows` the best basis on the rows
* `BScols` the best basis on the columns
Copyright 2019 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_bestbasis_2d(matrix::Array{Float64,2},GProws::GraphPart,GPcols::GraphPart;
costfun_rows::Any = 1.0, costfun_cols::Any = 1.0, flatten_rows::Any = 1.0, flatten_cols::Any = 1.0)
# generate GraphSig objects for the matrix
rows,cols = size(matrix)
Grows = GraphSig(spzeros(rows,rows),f = matrix)
Gcols = GraphSig(spzeros(cols,cols),f = Matrix{Float64}(matrix'))
# analyze the data matrix using the rows
dmatrix = ghwt_analysis!(Grows, GP = GProws)
# analyze the data matrix using the columns
dmatrix2 = ghwt_analysis!(Gcols, GP = GPcols)
# find the row and column best bases
dvec,BSrows = ghwt_bestbasis(dmatrix,GProws,cfspec = costfun_rows,flatten = flatten_rows)
~,BScols = ghwt_bestbasis(dmatrix2,GPcols,cfspec = costfun_cols,flatten = flatten_cols)
# analyze the row best-basis coefficient matrix using the columns
Gcols.f = Matrix{Float64}(dvec')
dmatrix = ghwt_analysis!(Gcols, GP = GPcols)
# extract the col best-basis coefficients
dvec = Matrix{Float64}(dmatrix2dvec(dmatrix, GPcols, BScols)')
return dvec, BSrows, BScols
end
"""
dvec = ghwt_2d_dmatrix2dvec(matrix::Array{Float64,2},BSrows::BasisSpec,BScols::BasisSpec)
For a matrix, equipped with row and column weight recursive partitionings
and weight matrices, generate the (non-redundant) matrix of GHWT
expansion coefficients, using the best basis algorithm to select best bases for the rows and columns
### Input Argument
* `matrix` the matrix to be analyzed
* `GProws` the recursive partitioning on the rows
* `GPcols` the recursive partitioning on the columns
### Output Argument
* `dvec` the GHWT expansion coefficients (not redundant)
Copyright 2019 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_2d_haar(matrix::Array{Float64,2},GProws::GraphPart,GPcols::GraphPart)
# generate GraphSig objects for the matrix
rows,cols = size(matrix)
Grows = GraphSig(spzeros(rows,rows),f = matrix)
Gcols = GraphSig(spzeros(cols,cols),f = Matrix{Float64}(matrix'))
# analyze the data matrix using the rows
dmatrix = ghwt_analysis!(Grows, GP = GProws)
# analyze the data matrix using the columns
#dmatrix2 = ghwt_analysis!(Gcols, GP = GPcols)
# find the row and column best bases
#BH=bs_haar(GP)
#dvec=dmatrix2dvec(dc2f, GP, BH)
BSrows = bs_haar(GProws)
dvec = dmatrix2dvec(dmatrix, GProws, BSrows)
BScols = bs_haar(GPcols)
#dvec,BSrows = ghwt_bestbasis(dmatrix,GProws,cfspec = costfun_rows,flatten = flatten_rows)
#~,BScols = ghwt_bestbasis(dmatrix2,GPcols,cfspec = costfun_cols,flatten = flatten_cols)
# analyze the row best-basis coefficient matrix using the columns
Gcols.f = Matrix{Float64}(dvec')
dmatrix = ghwt_analysis!(Gcols, GP = GPcols)
# extract the col best-basis coefficients
dvec = Matrix{Float64}(dmatrix2dvec(dmatrix, GPcols, BScols)')
return dvec, BSrows, BScols
end
"""
matrix = ghwt_synthesis_2d(dvec::Matrix{Float64},GProws::GraphPart,GPcols::GraphPart,BSrows::BasisSpec,BScols::BasisSpec)
Given a vector of GHWT expansion coefficients and info about the graph
partitioning and the choice of basis, reconstruct the signal
### Input Arguments
* `dvec` the expansion coefficients corresponding to the chosen basis
* `GProws` the recursive partitioning on the rows
* `GPcols` the recursive partitioning on the columns
* `BSrows` the best basis on the rows
* `BScols` the best basis on the columns
### Output Arguments
* matrix the reconstructed matrix
Copyright 2019 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_synthesis_2d(dvec::Matrix{Float64},GProws::GraphPart,GPcols::GraphPart,BSrows::BasisSpec,BScols::BasisSpec)
# reconstruct
dvec = ghwt_synthesis(Matrix{Float64}(dvec'), GPcols, BScols)
matrix = ghwt_synthesis(Matrix{Float64}(dvec'), GProws, BSrows)
return matrix
end
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 23875 | """
ind,rse,IND = PartitionTreeMatrixDhillon_QuadTree(matrix,jmax)
Perform the quadtree partition of matrix.
### Input Arguments
* `matrix`: The matrix to be partitioned
* `jmax`: Specify the max level of partitioning the matrix
### Output Arguments
* `ind`: Vector with the same length as length(matrix[:]), indicate the order of matrix after partition.
* `rse`: Region start and end. Each pair represents the start and end of a region in the matrix, corresponding to one node in the quadtree
* `IND`: IND[i] indicate the order of matrix after iteration i.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function PartitionTreeMatrixDhillon_QuadTree(matrix,jmax)
# 0.Preliminary
# Constants
rows,cols = size(matrix);
N = rows*cols
ind = Matrix{Int64}(reshape(1:N,rows,cols))
IND = zeros(rows,cols,jmax);
IND[:,:,1] = ind;
# region starts & ends
rse = Vector{Vector{Int64}}(jmax)
rse[1] = [1,N];
# 1. Partition the graph to yield rse, ind and jmax
j=1;
regioncount = 0;
while j<=jmax-1
# add a column for j+1, if necessary
rr = 1#for tracking the child regions
rse[j+1] = zeros(Int64,4*length(rse[j]))
for r = 1:2:(length(rse[j]) - 1)
rs_rows,rs_cols = ind2sub((rows,cols),rse[j][r])
re_rows,re_cols = ind2sub((rows,cols),rse[j][r+1])
n_rows = re_rows-rs_rows+1
n_cols = re_cols-rs_cols+1
indrs = ind[rs_rows:re_rows,rs_cols:re_cols]
if n_rows > 1 && n_cols > 1
# compute the left and right singular vectors
u_rows,v_cols = second_largest_singular_vectors(reshape(matrix[indrs[:]],n_rows,n_cols))
# partition the current region
pm,_ = partition_fiedler(SparseMatrixCSC{Float64,Int}(ones(1,1)),v = vcat(u_rows, v_cols))
pm_rows = pm[1:n_rows]
pm_cols = pm[n_rows+1:end]
# determine the number of points in child region 1
n1_rows = sum(pm_rows .> 0);
n1_cols = sum(pm_cols .> 0);
# update the indexing
ind[rs_rows:re_rows,rs_cols:re_cols] = indrs[vcat(find(pm_rows .> 0),find(pm_rows.<=0)),vcat(find(pm_cols.>0),find(pm_cols.<=0))]
if !(n1_rows==0 || n1_rows == n_rows) && !(n1_cols==0 ||n1_cols==n_cols)
child_rows = [rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows, rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows];
child_cols = [rs_cols, rs_cols+n1_cols-1, rs_cols, rs_cols+n1_cols-1, rs_cols+n1_cols, re_cols, rs_cols+n1_cols, re_cols];
for k = 1:8
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 8
elseif (n1_rows == 0 || n1_rows == n_rows) && !(n1_cols == 0 || n1_cols == n_cols)
child_rows = [rs_rows, re_rows, rs_rows, re_rows];
child_cols = [rs_cols, rs_cols+n1_cols-1, rs_cols+n1_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
elseif (n1_cols == 0 || n1_cols == n_cols) && !(n1_rows == 0 || n1_rows == n_rows)
child_rows = [rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows];
child_cols = [rs_cols, re_cols, rs_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
else
rse[j+1][rr:rr+1] = rse[j][r:r+1]
rr = rr + 2
end
elseif n_rows == 1 && n_cols > 1 #no bisection on rows
pm_cols,_ = partition_fiedler(SparseMatrixCSC{Float64,Int}(ones(1,1)),v = matrix[indrs[:]])
n1_cols = sum(pm_cols .> 0);
ind[rs_rows:re_rows,rs_cols:re_cols] = indrs[:,vcat(find(pm_cols.>0),find(pm_cols.<=0))]
child_rows = [rs_rows, re_rows, rs_rows, re_rows];
child_cols = [rs_cols, rs_cols+n1_cols-1, rs_cols+n1_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
elseif n_rows > 1 && n_cols == 1 #no bisection on cols
pm_rows,_ = partitio_fiedler(SparseMatrixCSC{Float64,Int}(ones(1,1)),v = matrix[indrs[:]])
n1_rows = sum(pm_rows .> 0);
ind[rs_rows:re_rows,rs_cols:re_cols] = indrs[vcat(find(pm_rows .> 0),find(pm_rows.<=0)),:]
child_rows = [rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows];
child_cols = [rs_cols, re_cols, rs_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
else
rse[j+1][rr:rr+1] = rse[j][r:r+1]
rr = rr + 2
end
end
j = j+1
rse[j] = rse[j][rse[j].!=0]
IND[:,:,j] = ind
end
return ind,rse,IND
end
"""
u,v = second_largest_singular_vectors(A::Matrix{Float64})
Compute the second largest left and right singular vectors of matrix.
### Input Arguments
* `A`: The matrix of which the singular vectors will be computed.
### Output Arguments
* `u`: Second largest left singular vector.
* `v`: Second largest right singular vector.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function second_largest_singular_vectors(A::Matrix{Float64})
#Compute the second largest left and right singular vectors of An = D1^-0.5*A*D2^-0.5
rows,cols = size(A)
# compute D1 and D2 and make sure there are no zeros
D1 = sum(A,2)
D1[D1 .== 0] = maximum([0.01, minimum(D1[D1 .> 0])/10])
D2 = sum(A,1)
D2[D2 .== 0] = maximum([0.01, minimum(D2[D2 .> 0])/10])
u,_,v = svd(Diagonal(D1[:].^(-0.5))*A*Diagonal(D2[:].^(-0.5)))
# extract the 2nd singular vectors and multiply by D_i^-0.5
u = Diagonal(D1[:].^-0.5)*u[:,2]
v = Diagonal(D2[:].^-0.5)*v[:,2]
return u,v
end
"""
BBmatrix, BBmatrix_ind, tag, dmatrix = GHWT_Matrix2D_Analysis_BestBasis(matrix::Matrix{Float64},ind::Matrix{Int64} ,rse::Vector{Array{Int64,1}})
Compute the expanding coeffcients of all levels and search for the best-basis given the partition quadtree of matrix.
### Input Arguments
* `matrix`: The matrix which will be analyzed.
* `ind`: Vector with the same length as length(matrix[:]), indicate the order of matrix after partition.
* `rse`: Region start and end. Each pair represents the start and end of a region in the matrix, corresponding to one node in the quadtree
### Output Arguments
* `BBmatrix`: Coefficients of the best-basis.
* `BBmatrix_ind`: Location of the best-basis in dmatrix.
* `tag`: Tag information of the expanding coefficients.
* `dmatrix`: The expanding coefficients on all levels.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function GHWT_Matrix2D_Analysis_BestBasis(matrix::Matrix{Float64},ind::Matrix{Int64} ,rse::Vector{Array{Int64,1}})
# cost functional
costfun = function(x) norm(x[:],1) end
# constants
rows,cols = size(matrix);
#tol = 10^4*eps()
# 1. Recursively partition the rows and columns of the matrix in a coupled manner
#ind,rse,_ = PartitionTreeMatrixDhillon_QuadTree_ys(matrix)
jmax = length(rse)
# 2. Analyze the matrix and perform the best basis search
dmatrix = zeros(rows,cols,jmax)
dmatrix[:,:,jmax] = matrix[ind]
tag = zeros(Int64,rows,cols,jmax)
for r = 1:2:length(rse[jmax])
if rse[jmax][r] != rse[jmax][r+1]
rs_rows,rs_cols = ind2sub((rows,cols),rse[jmax][r])
re_rows,re_cols = ind2sub((rows,cols),rse[jmax][r+1])
tag[rs_rows:re_rows,rs_cols:re_cols,jmax] = reshape(0:(re_rows-rs_rows+1)*(re_cols-rs_cols+1)-1,re_rows-rs_rows+1,re_cols-rs_cols+1)
average = sum(dmatrix[rs_rows:re_rows,rs_cols:re_cols,jmax])/sqrt((re_rows-rs_rows+1)*(re_cols-rs_cols+1))
dmatrix[rs_rows:re_rows,rs_cols:re_cols,jmax] = 0
dmatrix[rs_rows,rs_cols,jmax] = average
end
end
#best basis
BBmatrix = dmatrix[:,:,jmax]
BBmatrix_ind = jmax*ones(Int64,rows,cols)
for j = jmax-1:-1:1
rr = 1;
for r = 1:2:length(rse[j])
rs_rows,rs_cols = ind2sub((rows,cols),rse[j][r])
re_rows,re_cols = ind2sub((rows,cols),rse[j][r+1])
# the row indices being considered
indrs_rows = rs_rows:re_rows
# the column indices being considered
indrs_cols = rs_cols:re_cols
n_rows = re_rows-rs_rows+1
n_cols = re_cols-rs_cols+1
#copy of children
if rse[j][r+1] == rse[j+1][rr+1]
dmatrix[indrs_rows,indrs_cols,j] = dmatrix[indrs_rows,indrs_cols,j+1]
tag[indrs_rows,indrs_cols,j] = tag[indrs_rows,indrs_cols,j+1]
rr = rr+2
#copy of two childern
elseif rse[j][r+1] == rse[j+1][rr+3]
a,b = zeros(Int64,4), zeros(Int64,4)
for k = 1:4
a[k],b[k] = ind2sub((rows,cols),rse[j+1][rr+k-1])
end
region1 = dmatrix[a[1]:a[2],b[1]:b[2],j+1]
region2 = dmatrix[a[3]:a[4],b[3]:b[4],j+1]
tag1 = tag[a[1]:a[2],b[1]:b[2],j+1]
tag2 = tag[a[3]:a[4],b[3]:b[4],j+1]
region_vec, tag_vec = twoblockcombine(region1[:],region2[:],tag1[:],tag2[:]);
tag[indrs_rows,indrs_cols,j] = reshape(tag_vec,n_rows,n_cols);
dmatrix[indrs_rows,indrs_cols,j] = reshape(region_vec,n_rows,n_cols)
rr = rr + 4
elseif rse[j][r+1] == rse[j+1][rr+7]
a,b = zeros(Int64,8), zeros(Int64,8)
for k = 1:8
a[k],b[k] = ind2sub((rows,cols),rse[j+1][rr+k-1])
end
region11 = dmatrix[a[1]:a[2],b[1]:b[2],j+1]
region21 = dmatrix[a[3]:a[4],b[3]:b[4],j+1]
tag11 = tag[a[1]:a[2],b[1]:b[2],j+1]
tag21 = tag[a[3]:a[4],b[3]:b[4],j+1]
region12 = dmatrix[a[5]:a[6],b[5]:b[6],j+1]
region22 = dmatrix[a[7]:a[8],b[7]:b[8],j+1]
tag12 = tag[a[5]:a[6],b[5]:b[6],j+1]
tag22 = tag[a[7]:a[8],b[7]:b[8],j+1]
region_vec_1, tag_vec_1 = twoblockcombine(region11[:],region21[:],tag11[:],tag21[:])
region_vec_2, tag_vec_2 = twoblockcombine(region12[:],region22[:],tag12[:],tag22[:])
region_vec, tag_vec = twoblockcombine(region_vec_1,region_vec_2,tag_vec_1,tag_vec_2)
tag[indrs_rows,indrs_cols,j] = reshape(tag_vec, n_rows,n_cols)
dmatrix[indrs_rows,indrs_cols,j] = reshape(region_vec,n_rows,n_cols)
rr = rr + 8
end
#Obtaining BBmatrix
if costfun(BBmatrix[indrs_rows,indrs_cols]) > costfun(dmatrix[indrs_rows,indrs_cols,j])
BBmatrix[indrs_rows,indrs_cols] = dmatrix[indrs_rows,indrs_cols,j]
BBmatrix_ind[indrs_rows,indrs_cols] = j;
end
end
end
return BBmatrix, BBmatrix_ind, tag, dmatrix
end
"""
region, tag = twoblockcombine(region1::Vector{Float64}, region2::Vector{Float64}, tag1::Vector{Int64}, tag2::Vector{Int64})
Compute the coefficients of coarser basis-vectors after combining finer basis-vectors supported on two sub-regions.
### Input Arguments
* `region1`: The coeffcient of finer basis-vectors supported on region 1.
* `tag1`: The tag information of finer basis-vectors supported on region 1.
* `region2`: The coeffcient of finer basis-vectors supported on region 2.
* `tag2`: The tag information of finer basis-vectors supported on region 2.
### Output Arguments
* `region`: The coeffcient of coarser basis-vectors supported on region 1 and region 2.
* `tag`: The tag information of coarser basis-vectors supported on region 1 and region 2.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function twoblockcombine(region1::Vector{Float64}, region2::Vector{Float64}, tag1::Vector{Int64}, tag2::Vector{Int64})
# the number of points in the first subregion
n1 = length(region1)
# the number of points in the second subregion
n2 = length(region2)
n = n1+n2
region = zeros(n)
tag = zeros(Int64,n)
### SCALING COEFFICIENT (n > 1)
region[1] = ( sqrt(n1)*region1[1] + sqrt(n2)*region2[1] )/sqrt(n)
tag[1] = 0
### HAAR-LIKE COEFFICIENT
region[2] = ( sqrt(n2)*region1[1] - sqrt(n1)*region2[1] )/sqrt(n);
tag[2] = 1
### WALSH-LIKE COEFFICIENTS
# sweep through the coefficients in subregion 1 and subregion 2
# the index of the new coefficient(s) to be created on level j
parent = 3
# the index of the current coefficients in subregions 1 and 2
child1 = 2
child2 = 2
while parent <= n
# no matching coefficient (use subregion 1)
if child1 <= n1 && (child2 == n2+1 || tag1[child1] < tag2[child2])
region[parent] = region1[child1]
tag[parent] = 2*tag1[child1]
child1 = child1+1;
parent = parent+1;
# no matching coefficient (use subregion 2)
elseif child2 <=n2 && (child1 == n1+1 || tag2[child2] < tag1[child1])
region[parent] = region2[child2]
tag[parent] = 2*tag2[child2]
child2 = child2+1
parent = parent+1
# matching coefficients
else
region[parent] = ( region1[child1] + region2[child2] )/sqrt(2)
tag[parent] = 2*tag[child1]
region[parent+1] = ( region1[child1] - region2[child2] )/sqrt(2)
tag[parent+1] = 2*tag[child1]+1
child1 = child1+1
child2 = child2+1
parent = parent+2
end
end
return region, tag
end
"""
matrix_r = GHWT_Matrix2D_Analysis_Synthesis(BBmatrix::Matrix{Float64},BBmatrix_ind::Matrix{Int64},tag::Array{Int64,3} ,rse::Vector{Array{Int64,1}})
Synthesize the matrix given coefficients of selected basis-vectors.
### Input Arguments
* `BBmatrix`: Coefficients of the best-basis.
* `BBmatrix_ind`: Location of the best-basis in dmatrix.
* `tag`: Tag information of the expanding coefficients.
* `rse`: Region start and end. Each pair represents the start and end of a region in the matrix, corresponding to one node in the quadtree.
### Output Arguments
* `matrix_r`: The synthesized matrix.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function GHWT_Matrix2D_Analysis_Synthesis(BBmatrix::Matrix{Float64},BBmatrix_ind::Matrix{Int64},tag::Array{Int64,3} ,rse::Vector{Array{Int64,1}})
costfun = function(x) norm(x[:],1) end
# constants
rows,cols = size(BBmatrix);
#tol = 10^4*eps()
jmax = length(rse)
cmatrix = zeros(rows,cols,jmax);
for i = 1:rows
for j = 1:cols
cmatrix[i,j,BBmatrix_ind[i,j]] = BBmatrix[i,j];
end
end
for j = 1:1:jmax-1
rr = 1
for r = 1:2:length(rse[j])
rs_rows,rs_cols = ind2sub((rows,cols),rse[j][r])
re_rows,re_cols = ind2sub((rows,cols),rse[j][r+1])
if rse[j][r+1] == rse[j+1][rr+1]
if countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j+1]) == 0 && countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]) > 0
cmatrix[rs_rows:re_rows,rs_cols:re_cols,j+1] = cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]
end
rr = rr + 2
elseif rse[j][r+1] == rse[j+1][rr+3]
if countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j+1]) == 0 && countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]) > 0
a,b = zeros(Int64,4), zeros(Int64,4)
for k = 1:4
a[k],b[k] = ind2sub((rows,cols),rse[j+1][rr+k-1])
end
region = cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]
tag1 = tag[a[1]:a[2],b[1]:b[2],j+1]
tag2 = tag[a[3]:a[4],b[3]:b[4],j+1]
region1_vec, region2_vec = twoblocksplit(region[:],tag1[:],tag2[:]);
cmatrix[a[1]:a[2],b[1]:b[2],j+1] = reshape(region1_vec,a[2]-a[1]+1,b[2]-b[1]+1)
cmatrix[a[3]:a[4],b[3]:b[4],j+1] = reshape(region2_vec,a[4]-a[3]+1,b[4]-b[3]+1)
end
rr = rr + 4
else
if countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j+1]) == 0 && countnz(cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]) > 0
a,b = zeros(Int64,8), zeros(Int64,8)
for k = 1:8
a[k],b[k] = ind2sub((rows,cols),rse[j+1][rr+k-1])
end
tag11 = tag[a[1]:a[2],b[1]:b[2],j+1]
tag21 = tag[a[3]:a[4],b[3]:b[4],j+1]
tag12 = tag[a[5]:a[6],b[5]:b[6],j+1]
tag22 = tag[a[7]:a[8],b[7]:b[8],j+1]
tag11 = tag11[:]
tag21 = tag21[:]
tag12 = tag12[:]
tag22 = tag22[:]
tag1 = twoblockcombine_tag(tag11,tag21)
tag2 = twoblockcombine_tag(tag12,tag22)
region = cmatrix[rs_rows:re_rows,rs_cols:re_cols,j]
region1_vec,region2_vec = twoblocksplit(region[:], tag1,tag2)
region11,region21 = twoblocksplit(region1_vec,tag11,tag21)
region12,region22 = twoblocksplit(region2_vec,tag12,tag22)
cmatrix[a[1]:a[2],b[1]:b[2],j+1] = reshape(region11,a[2]-a[1]+1,b[2]-b[1]+1)
cmatrix[a[3]:a[4],b[3]:b[4],j+1] = reshape(region21,a[4]-a[3]+1,b[4]-b[3]+1)
cmatrix[a[5]:a[6],b[5]:b[6],j+1] = reshape(region12,a[6]-a[5]+1,b[6]-b[5]+1)
cmatrix[a[7]:a[8],b[7]:b[8],j+1] = reshape(region22,a[8]-a[7]+1,b[8]-b[7]+1)
end
rr = rr + 8
end
end
end
matrix_r = cmatrix[:,:,end]
for r = 1:2:length(rse[jmax])
if rse[jmax][r] != rse[jmax][r+1]
rs_rows,rs_cols = ind2sub((rows,cols),rse[j][r])
re_rows,re_cols = ind2sub((rows,cols),rse[j][r+1])
matrix_r[rs_rows:re_rows,rs_cols:re_cols] = matrix_r[rs_rows,rs_cols]/sqrt((re_rows-rs_rows+1)*(re_cols-rs_cols+1))
end
end
return matrix_r
end
"""
tag = twoblockcombine_tag(tag1::Vector{Int64},tag2::Vector{Int64})
Compute the tag information of coarser basis-vectors after combining finer basis-vectors supported on two sub-regions.
### Input Arguments
* `tag1`: The tag information of finer basis-vectors supported on region 1.
* `tag2`: The tag information of finer basis-vectors supported on region 2.
### Output Arguments
* `tag`: The tag information of coarser basis-vectors supported on region 1 and region 2.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function twoblockcombine_tag(tag1::Vector{Int64},tag2::Vector{Int64})
# the number of points in the first subregion
n1 = length(tag1)
# the number of points in the second subregion
n2 = length(tag2)
n = n1+n2
tag = zeros(Int64,n)
### SCALING COEFFICIENT (n > 1)
tag[1] = 0
### HAAR-LIKE COEFFICIENT
tag[2] = 1
### WALSH-LIKE COEFFICIENTS
# sweep through the coefficients in subregion 1 and subregion 2
# the index of the new coefficient(s) to be created on level j
parent = 3
# the index of the current coefficients in subregions 1 and 2
child1 = 2
child2 = 2
while parent <= n
# no matching coefficient (use subregion 1)
if child1 <= n1 && (child2 == n2+1 || tag1[child1] < tag2[child2])
tag[parent] = 2*tag1[child1]
child1 = child1+1
parent = parent+1
# no matching coefficient (use subregion 2)
elseif child2 <=n2 && (child1 == n1+1 || tag2[child2] < tag1[child1])
tag[parent] = 2*tag2[child2]
child2 = child2+1
parent = parent+1
# matching coefficients
else
tag[parent] = 2*tag[child1]
tag[parent+1] = 2*tag[child1]+1
child1 = child1+1
child2 = child2+1
parent = parent+2
end
end
return tag
end
"""
region1,region2 = twoblocksplit(region::Matrix{Float64}, tag1::Vector{Int64}, tag2::Vector{Int64})
Compute the coefficients of finer basis-vectors supported on two sub-regions given the coeffcients of coarser basis-vectors supported on both regions.
### Input Arguments
* `region`: The coeffcient of coarser basis-vectors supported on region 1 and region 2.
* `tag1`: The tag information of finer basis-vectors supported on region 1.
* `tag2`: The tag information of finer basis-vectors supported on region 2.
### Output Arguments
* `region1`: The coeffcient of finer basis-vectors supported on region 1.
* `region2`: The coeffcient of finer basis-vectors supported on region 2.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function twoblocksplit(region::Matrix{Float64}, tag1::Vector{Int64}, tag2::Vector{Int64})
# the number of points in the first subregion
n1 = length(tag1)
# the number of points in the second subregion
n2 = length(tag2)
n = n1+n2
region1 = zeros(n1)
region2 = zeros(n2);
### SCALING COEFFICIENT (n > 1)
region1[1] = ( sqrt(n1)*region[1] + sqrt(n2)*region[2] )/sqrt(n);
### HAAR-LIKE COEFFICIENT
region2[1] = ( sqrt(n2)*region[1] - sqrt(n1)*region[2] )/sqrt(n);
### WALSH-LIKE COEFFICIENTS
# sweep through the coefficients in subregion 1 and subregion 2
# the index of the new coefficient(s) to be created on level j
parent = 3
# the index of the current coefficients in subregions 1 and 2
child1 = 2
child2 = 2
while parent <= n
# no matching coefficient (use subregion 1)
if child1 <= n1 && (child2 == n2+1 || tag1[child1] < tag2[child2])
region1[child1] = region[parent]
child1 = child1+1
parent = parent+1
# no matching coefficient (use subregion 2)
elseif child2 <=n2 && (child1 == n1+1 || tag2[child2] < tag1[child1])
region2[child2] = region[parent]
child2 = child2+1
parent = parent+1
# matching coefficients
else
region1[child1] = ( region[parent] + region[parent+1] )/sqrt(2)
region2[child2] = ( region[parent] - region[parent+1] )/sqrt(2)
child1 = child1+1
child2 = child2+1
parent = parent+2
end
end
return region1,region2
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 11844 | module GHWT_tf_1d
include("utils.jl")
using ..GraphSignal, ..GraphPartition, ..BasisSpecification, LinearAlgebra
include("common.jl")
export ghwt_tf_bestbasis, eghwt_bestbasis
"""
coeffdict = tf_init(dmatrix::Matrix{Float64},GP::GraphPart)
Store the expanding coeffcients from matrix into a list of dictionary (inbuilt hashmap in Julia)
### Input Arguments
* `dmatrix`: The expanding GHWT coefficients of all levels corresponding to input GP
* `GP::GraphPart`: an input GraphPart object
### Output Arguments
* `coeffdict`: The expanding GHWT coeffcients stored in a list of "dictionary" (inbuilt hashmap in Julia),
* `coeffdict`: The entry `coeffdict[j][(k,l)]` corresponds to the coefficient of basis-vector on level j with region k and tag l.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf_init(dmatrix::Matrix{Float64},GP::GraphPart)
# Obtain the tag information
tag = convert(Array{Int,2},GP.tag)
# Obtain the region information
tag_r = convert(Array{Int,2},rs_to_region(GP.rs, GP.tag))
(m,n) = size(dmatrix)
# Initialize coeffdict
coeffdict = Array{Dict{Tuple{Int,Int},Float64}}(undef, n)
# Fill in the values with the rule that `coeffdict[j][(k,l)]` represents
# the coefficient of basis-vector on level j with region k and tag l.
for i = 1:n
coeffdict[i]= Dict{Tuple{Int,Int},Float64}((tag_r[j,i],tag[j,i]) => dmatrix[j,i] for j=1:m)
end
return coeffdict
end
"""
coeffdict_new,tag_tf = tf_core_new(coeffdict::Array{Dict{Tuple{Int,Int},Float64},1})
One forward iteration of time-frequency adapted GHWT method. For each entry in `coeffdict_new`, we compare two (or one) entries in 'coeffdict' on time-direction and two (or one) entries in 'coeffdict' on frequency-direction.
Those two groups reprensent the same subspace. We compare the cost-functional value of them and choose the smaller one as a new entry in 'coeffdict_new'.
### Input Arguments
* `coeffdict`: The entries of which reprensents the cost functional value of some basis-vectors' coefficients.
### Output Arguments
* `coeffdict_new`: The entries of which represents the cost functional value of some basis-vectors' coefficients
* `tag_tf`: Indicating whether the time-direction (0) or frequency direction (1) was chosen for each entry in coeffdict_new.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf_core_new(coeffdict::Array{Dict{Tuple{Int,Int},Float64},1})
# We choose '1-norm' as the optional cost functional
costfun = cost_functional(1)
jmax = length(coeffdict)
# Initialization
coeffdict_new = Array{Dict{Tuple{Int,Int},Float64}}(undef, jmax-1)
tag_tf = Array{Dict{Tuple{Int,Int},Bool}}(undef, jmax-1)
# Iterate through levels
for j = 1:(jmax-1)
# the temporary dictionary, which will be the j-th level of `coeffdict_new`
temp_coeff = Dict{Tuple{Int,Int},Float64}()
# the temporary dictionary, which will be the j-th level of 'tag_tf'
temp_tf = Dict{Tuple{Int,Int},Bool}()
# iterate through the entries in coeffdict on level j
for key in keys(coeffdict[j])
# coeffdict[j][k,l] represent the entry on level j with region k and tag l
k = key[1] # region index
l = key[2] # tag index
# only look at the entry with even tag l to avoid duplication
if l%2 == 0
# search for the (j,k,l+1) entry.
# the (j,k,l) and (j,k,l+1) span the same subspace as (j+1,2*k,l/2) and (j+1,2*k+1,l/2)
# (j,k,l) and (j,k,l+1) are `frequency-direction`
# (j,k,l) and (j,k,l+1) are `time-direction`
if haskey(coeffdict[j],(k,l+1)) # check for degenerate case ((j,k,l+1) doesn't exist)
freqcos = costfun([coeffdict[j][(k,l)],coeffdict[j][(k,l+1)]])
else
freqcos = costfun([coeffdict[j][(k,l)]])
end
if ~haskey(coeffdict[j+1],(2*k,l/2)) # check for degenerate case ((j+1,2*k,l/2) or (j+1,2*k+1,l/2) doesn't exist)
timecos = costfun([coeffdict[j+1][(2*k+1,l/2)]])
elseif ~haskey(coeffdict[j+1],(2*k+1,l/2))
timecos = costfun([coeffdict[j+1][(2*k,l/2)]])
else
timecos = costfun([coeffdict[j+1][(2*k+1,l/2)],coeffdict[j+1][(2*k,l/2)]])
end
# compare the cost-functional value and record into 'tag_tf'
if timecos <= freqcos
temp_coeff[(k,l/2)] = timecos
temp_tf[(k,l/2)] = false
else
temp_coeff[(k,l/2)] = freqcos
temp_tf[(k,l/2)] = true
end
end
end
coeffdict_new[j] = temp_coeff
tag_tf[j] = temp_tf
end
return coeffdict_new,tag_tf
end
"""
tag_tf_b_new = tf_basisrecover_new(tag_tf_b::Array{Dict{Tuple{Int,Int},Bool}},tag_tf_f::Array{Dict{Tuple{Int,Int},Bool}})
One backward iteration of time-frequency adapted GHWT method to recover the best-basis from the `tag_tf`s recorded.
### Input Arguments
* `tag_tf_b`: The `dictionary` recording the time-or-frequency information on some iteration 'i' in the main algorithm
* `tag_tf_f`: The `dictionary` recording the time-or-frequency information on some iteration 'i+1' in the main algorithm
### Output Arguments
* `tag_tf_b_new`: The updated 'tag_tf_b'. Eventually the 'tag_tf' on iteration 1 will represent the selected best-basis
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf_basisrecover_new(tag_tf_b::Array{Dict{Tuple{Int,Int},Bool}},tag_tf_f::Array{Dict{Tuple{Int,Int},Bool}})
# Initialization
jmax = length(tag_tf_b)
#tag_tf_b_new = Array{Dict{Tuple{Int,Int},Bool}}(jmax)
tag_tf_b_new = Array{Dict{Tuple{Int,Int},Bool}}(undef, jmax)
for j = 1:jmax
tag_tf_b_new[j] = Dict{Tuple{Int,Int},Bool}()
end
# Iterate on the levels
for j = 1:(jmax-1)
for key in keys(tag_tf_f[j])
k = key[1]
l = key[2]
# The entries on frequency-direction are selected
if tag_tf_f[j][(k,l)] == true
if ~haskey(tag_tf_b[j],(k,2*l))
tag_tf_b_new[j][(k,2*l+1)] = tag_tf_b[j][(k,2*l+1)]
elseif ~haskey(tag_tf_b[j],(k,2*l+1))
tag_tf_b_new[j][(k,2*l)] = tag_tf_b[j][(k,2*l)]
else
tag_tf_b_new[j][(k,2*l)] = tag_tf_b[j][(k,2*l)]
tag_tf_b_new[j][(k,2*l+1)] = tag_tf_b[j][(k,2*l+1)]
end
else
# The entries on time-direction are selected
if ~haskey(tag_tf_b[j+1],(2*k,l))
tag_tf_b_new[j+1][(2*k+1,l)] = tag_tf_b[j+1][(2*k+1,l)]
elseif ~haskey(tag_tf_b[j+1],(2*k+1,l))
tag_tf_b_new[j+1][(2*k,l)] = tag_tf_b[j+1][(2*k,l)]
else
tag_tf_b_new[j+1][(2*k+1,l)] = tag_tf_b[j+1][(2*k+1,l)]
tag_tf_b_new[j+1][(2*k,l)] = tag_tf_b[j+1][(2*k,l)]
end
end
end
end
return tag_tf_b_new
end
"""
(dvec, BS) = ghwt_tf_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart; cfspec::Float64 = 1.0, flatten::Any = 1.0)
Implementation of time-frequency adapted GHWT method = eGHWT.
Modified from the algorithm in the paper: "A Fast Algorithm for Adapted Time Frequency Tilings" by Christoph M. Thiele and Lars F. Villemoes.
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `cfspec::Any`: the specification of cost functional to be used (default: 1.0, i.e., 1-norm)
* `flatten::Any`: the method for flattening vector-valued data to scalar-valued data (default: 1.0, i.e., 1-norm)
### Output Arguments
* `dvec::Matrix{Float64}`: the vector of expansion coefficients corresponding to the eGHWT best basis
* `BS::BasisSpec`: a BasisSpec object which specifies the eGHWT best basis
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_tf_bestbasis(dmatrix::Array{Float64,3}, GP::GraphPart; cfspec::Float64 = 1.0, flatten::Any = 1.0)
# determine the cost functional to be used
costfun = cost_functional(cfspec)
# constants and dmatrix cleanup
fcols = Base.size(dmatrix,3)
dmatrix[ abs.(dmatrix) .< 10^2 * eps() ] .= 0
dmatrix0 = deepcopy(dmatrix) # keep the original dmatrix as dmatrix0
# "flatten" dmatrix
if fcols > 1
if !isnothing(flatten)
dmatrix = dmatrix_flatten(dmatrix, flatten)[:,:,1]
end
end
dmatrix = dmatrix.^cfspec
# Initialization. Store the expanding coeffcients from matrix into a list of dictionary (inbuilt hashmap in Julia)
# The entry `coeffdict[j][(k,l)]` corresponds to the coefficient of basis-vector on level j with region k and tag l.
tag = convert(Array{Int,2},GP.tag)
tag_r = rs_to_region(GP.rs, GP.tag)
(m,n) = size(dmatrix)
coeffdict = Array{Dict{Tuple{Int,Int},Float64}}(undef, n)
for i = 1:n
coeffdict[i]= Dict{Tuple{Int,Int},Float64}((tag_r[j,i],tag[j,i]) => dmatrix[j,i] for j=1:m)
end
# TAG_tf stores the time-or-frequency information on every iteration
# COEFFDICT stores the corresponding cost-functional values.
COEFFDICT = Vector(undef, n)
TAG_tf = Vector(undef, n)
# Initialization of the first iteration
COEFFDICT[1] = coeffdict
TAG_tf_init = Array{Dict{Tuple{Int,Int},Bool}}(undef, n)
for j = 1:n
TAG_tf_init[j] = Dict(key => true for key in keys(coeffdict[j]))
end
TAG_tf[1] = TAG_tf_init
# Iterate forward. For each entry in `COEFFDICT[i+1]`, we compare two (or one) entries in 'COEFFDICT[i]' on time-direction and two (or one) on frequency-direction.
# Those two groups reprensent the same subspace. We compare the cost-functional value of them and choose the smaller one as a new entry in 'COEFFDICT[i+1]'
# 'TAG_tf[i+1]' records if frequency-direction (1) or time-direction (0) was chosen.
for i = 1:(n-1)
COEFFDICT[i+1], TAG_tf[i+1] = tf_core_new(COEFFDICT[i])
end
# Iterate backward with the existing tag_tf information to recover the best-basis.
bestbasis_tag = TAG_tf[n]
for i = (n-1):-1:1
bestbasis_tag = tf_basisrecover_new(TAG_tf[i],bestbasis_tag)
end
# Change the data structure from dictionary to matrix
#bestbasis = zeros(m,n)
#bestbasis_tag_matrix = zeros(Int,m,n)
levlist = Vector{Tuple{Int,Int}}(undef, 0)
dvec = Vector{Float64}(undef, 0)
for j = 1:n
for i = 1:m
k = tag_r[i,j]
l = tag[i,j]
if haskey(bestbasis_tag[j],(k,l))
#bestbasis_tag_matrix[i,j] = 1
push!(levlist, (i,j))
#bestbasis[i,j] = dmatrix[i,j]
push!(dvec, dmatrix[i,j])
end
end
end
BS = BasisSpec(levlist, c2f = true, description = "eGHWT Best Basis")
dvec = dmatrix2dvec(dmatrix0, GP, BS)
return dvec, BS
end # of function ghwt_tf_bestbasis
const eghwt_bestbasis = ghwt_tf_bestbasis # This should be a useful alias!
end # of module GHWT_tf_1d
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 24892 | module GHWT_tf_2d
include("utils.jl")
using ..GraphSignal, ..GraphPartition, ..BasisSpecification, ..GHWT, ..GHWT_2d, LinearAlgebra
include("common.jl")
include("partition_fiedler.jl")
export ghwt_tf_init_2d, ghwt_tf_bestbasis_2d, ghwt_tf_synthesis_2d, ghwt_tf_init_2d_Lindberg, eghwt_init_2d, eghwt_bestbasis_2d, eghwt_synthesis_2d, eghwt_init_2d_Lindberg, BS2loc
"""
tf2d_init(tag::Matrix{Int},tag_r::Matrix{Int})
Storing the relation between the coefficient location in the 2D coefficients matrix of all levels with the (level, tag, region) information
### Input Arguments
* `tag`: The matrix of the tag information
* `tag_r`: The matrix of the region information
### Output Arguments
* `tag2ind`: tag2ind[(j,k,l)] is the location of the column of coefficients on level j, region k and tag l
* `ind2tag`: key and item of dicionary `tag2ind` interchanged
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf2d_init(tag::Matrix{Int},tag_r::Matrix{Int})
(m,n) = size(tag)
tag2ind = Dict{Tuple{Int,Int,Int},Int}()
ind2tag = Dict{Int,Tuple{Int,Int,Int}}()
for j = 1:n
for i = 1:m
tag2ind[(j,tag_r[i,j],tag[i,j])] = i + (j-1)*m
ind2tag[i+(j-1)*m] = (j,tag_r[i,j],tag[i,j])
end
end
return tag2ind, ind2tag
end
"""
dmatrix_new,tag2ind_new,ind2tag_new,tag_tf = tf_core_2d_col(dmatrix::Matrix{Float64},tag2ind::Dict{Tuple{Int,Int,Int},Int},ind2tag::Dict{Int,Tuple{Int,Int,Int}},jmax::Integer)
One forward iteration of 2-d time-frequency adapted ghwt on the column direction
### Input Arguments
* `dmatrix`: The cost-functional values of coeffcients
* `tag2ind`: tag2ind[(j,k,l)] is the location of the column of coefficients on level j, region k and tag l
* `ind2tag`: key and item of dicionary `tag2ind` interchanged
### Output Arguments
* `dmatrix_new`: The cost-functional values of coeffcients
* `tag2ind_new`: tag2ind_new[(j,k,l)] is the location of the column of coefficients on level j, region k and tag l
* `ind2tag_new`: key and item of dicionary `tag2ind` interchanged
* `tag_tf`: recording the time-or-frequency information
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf_core_2d_col(dmatrix::Matrix{Float64},tag2ind::Dict{Tuple{Int,Int,Int},Int},ind2tag::Dict{Int,Tuple{Int,Int,Int}},jmax::Integer)
# power of the cost-functional
costp = 1
p,q = size(dmatrix)
dmatrix_new = zeros(p,q)
# Initialization
tag_tf = zeros(Bool,(p,q))
tag2ind_new = Dict{Tuple{Int,Int,Int},Int}()
ind2tag_new = Dict{Int,Tuple{Int,Int,Int}}()
s = 1
# Iterate through columns
for i = 1:q
# Find out the corresponding level,region,tag information
j,k,l = ind2tag[i]
# only look at the entry with even tag l to avoid duplication
if l%2 == 0 && j < jmax
# search for the (j,k,l+1) entry.
# the (j,k,l) and (j,k,l+1) span the same subspace as (j+1,2*k,l/2) and (j+1,2*k+1,l/2)
# (j,k,l) and (j,k,l+1) are `frequency-direction`
# (j,k,l) and (j,k,l+1) are `time-direction`
if haskey(tag2ind,(j,k,l+1)) # check for degenerate case ((j,k,l+1) doesn't exist)
freqcos = abs.(dmatrix[:,i]).^costp + abs.(dmatrix[:,tag2ind[(j,k,l+1)]]).^costp
else
freqcos = abs.(dmatrix[:,i]).^costp
end
if ~haskey(tag2ind,(j+1,2*k,l/2)) # check for degenerate case ((j+1,2*k,l/2) or (j+1,2*k+1,l/2) doesn't exist)
timecos = abs.(dmatrix[:,tag2ind[(j+1,2*k+1,l/2)]]).^costp
elseif ~haskey(tag2ind,(j+1,2*k+1,l/2))
timecos = abs.(dmatrix[:,tag2ind[(j+1,2*k,l/2)]]).^costp
else
timecos = abs.(dmatrix[:,tag2ind[(j+1,2*k+1,l/2)]]).^costp + abs.(dmatrix[:,tag2ind[(j+1,2*k,l/2)]]).^costp
end
tag_tf[:,s] = timecos.>=freqcos
dmatrix_new[:,s] = tag_tf[:,s].*freqcos + .~tag_tf[:,s].*timecos
ind2tag_new[s] = (j,k,l/2)
tag2ind_new[(j,k,l/2)] = s
s = s + 1
end
end
dmatrix_new = dmatrix_new[:,1:s-1]
tag_tf = tag_tf[:,1:s-1]
return dmatrix_new,tag2ind_new,ind2tag_new,Matrix{UInt8}(tag_tf)
end
"""
dmatrix_new,tag2ind_new,ind2tag_new,tag_tf = tf_core_2d_row(dmatrix::Matrix{Float64},tag2ind::Dict{Tuple{Int,Int,Int},Int},ind2tag::Dict{Int,Tuple{Int,Int,Int}},jmax::Integer)
Almost the same as tf_core_2d_col. But all the operations on matrix are row-wise.
Due to the column-based matrix feature of Julia language. We are currently only using the tf_core_2d_col here.
### Input Arguments
* `dmatrix`: The cost-functional values of coeffcients
* `tag2ind`: tag2ind[(j,k,l)] is the location of the column of coefficients on level j, region k and tag l
* `ind2tag`: key and item of dicionary `tag2ind` interchanged
### Output Arguments
* `dmatrix_new`: The cost-functional values of coeffcients
* `tag2ind_new`: tag2ind_new[(j,k,l)] is the location of the row of coefficients on level j, region k and tag l
* `ind2tag_new`: key and item of dicionary `tag2ind` interchanged
* `tag_tf`: recording the time-or-frequency information
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function tf_core_2d_row(dmatrix::Matrix{Float64},tag2ind::Dict{Tuple{Int,Int,Int},Int},ind2tag::Dict{Int,Tuple{Int,Int,Int}},jmax::Integer)
costp = 1
p,q = size(dmatrix)
dmatrix_new = zeros(p,q)
tag_tf = zeros(Bool,(p,q))
tag2ind_new = Dict{Tuple{Int,Int,Int},Int}()
ind2tag_new = Dict{Int,Tuple{Int,Int,Int}}()
s = 1
for i = 1:p
j,k,l = ind2tag[i]
if l%2 == 0 && j < jmax
if haskey(tag2ind,(j,k,l+1))
freqcos = abs.(dmatrix[i,:]).^costp + abs.(dmatrix[tag2ind[(j,k,l+1)],:]).^costp
else
freqcos = abs.(dmatrix[i,:]).^costp
end
if ~haskey(tag2ind,(j+1,2*k,l/2))
timecos = abs.(dmatrix[tag2ind[(j+1,2*k+1,l/2)],:]).^costp
elseif ~haskey(tag2ind,(j+1,2*k+1,l/2))
timecos = abs.(dmatrix[tag2ind[(j+1,2*k,l/2)],:]).^costp
else
timecos = abs.(dmatrix[tag2ind[(j+1,2*k+1,l/2)],:]).^costp + abs.(dmatrix[tag2ind[(j+1,2*k,l/2)],:]).^costp
end
tag_tf[s,:] = timecos.>=freqcos
dmatrix_new[s,:] = tag_tf[s,:].*freqcos + .~tag_tf[s,:].*timecos
ind2tag_new[s] = (j,k,l/2)
tag2ind_new[(j,k,l/2)] = s
s = s + 1
end
end
dmatrix_new = dmatrix_new[1:s-1,:]
tag_tf = tag_tf[1:s-1,:]
return dmatrix_new,tag2ind_new,ind2tag_new,Matrix{UInt8}(tag_tf)
end
"""
Bbasis, infovec = ghwt_tf_bestbasis_2d(dmatrix::Matrix{Float64},GProws::GraphPart,GPcols::GraphPart)
Implementation of 2d time-frequency adapted GHWT method.
Modified from the idea in paper "Image compression with adaptive Haar-Walsh tilings" by Maj Lindberg and Lars F. Villemoes.
### Input Arguments
* `dmatrix`: The ghwt expanding coefficients of matrix on all levels contatenated in a 2d matrix.
* `GProws`: Corresponding to the affinity matrix on rows.
* `GPcols`: Corresponding to the affinity matrix on cols.
### Output Arguments
* `Bbasis`: The coefficients of the best-basis.
* `infovec`: [infovec[i,1],infovec[i,2]] is the location of Bbasis[i] in dmatrix.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_tf_bestbasis_2d(matrix::Matrix{Float64},GProws::GraphPart,GPcols::GraphPart)
dmatrix = ghwt_analysis_2d(matrix, GProws, GPcols)
# Initialization
tag_r_row = rs_to_region(GProws.rs, GProws.tag)
tag_r_col = rs_to_region(GPcols.rs, GPcols.tag)
tag2ind_row,ind2tag_row = tf2d_init(Matrix{Int}(GProws.tag),Matrix{Int}(tag_r_row))
tag2ind_col,ind2tag_col = tf2d_init(Matrix{Int}(GPcols.tag),Matrix{Int}(tag_r_col))
jmax_col = size(GPcols.tag,2)
jmax_row = size(GProws.tag,2)
# (level,region,tag) information on the columns
TAG2IND_col = Vector(undef, jmax_col)
TAG2IND_col[1] = tag2ind_col
IND2TAG_col = Vector(undef, jmax_col)
IND2TAG_col[1] = ind2tag_col
# (level,region,tag) information on the rows
TAG2IND_row = Vector(undef, jmax_row)
TAG2IND_row[1] = tag2ind_row
IND2TAG_row = Vector(undef, jmax_row)
IND2TAG_row[1] = ind2tag_row
# recording if time or frequency direction is chosen
TAG_tf = Matrix(undef, jmax_row,jmax_col)
# storing the cost functional values
DMATRIX = Matrix(undef, jmax_row, jmax_col)
DMATRIX[1,1] = dmatrix
# comparison in the row direction
for i=1:(jmax_row - 1)
DMATRIX[i+1,1], TAG2IND_row[i+1], IND2TAG_row[i+1], TAG_tf[i+1,1] = tf_core_2d_col(Array{Float64,2}(DMATRIX[i,1]'), TAG2IND_row[i], IND2TAG_row[i],jmax_row+1-i)
TAG_tf[i+1,1] = Array{UInt8,2}((TAG_tf[i+1,1] .+ UInt8(2))')
DMATRIX[i+1,1] = Array{Float64,2}(DMATRIX[i+1,1]')
end
# comparison in the column direction
for i=1:(jmax_col - 1)
DMATRIX[1,i+1], TAG2IND_col[i+1], IND2TAG_col[i+1], TAG_tf[1,i+1] = tf_core_2d_col(DMATRIX[1,i],TAG2IND_col[i], IND2TAG_col[i], jmax_col+1-i)
end
#DMATRIX[1,1] = 0 # release the memory
# comparison in both directions
for i = 2:jmax_row
for j = 2:jmax_col
(temp_col,_,_,temp_tf_col) = tf_core_2d_col(DMATRIX[i,j-1], TAG2IND_col[j-1], IND2TAG_col[j-1],jmax_col + 2 - j)
(temp_row,_,_,temp_tf_row) = tf_core_2d_col(Array{Float64,2}(DMATRIX[i-1,j]'), TAG2IND_row[i-1], IND2TAG_row[i-1],jmax_row + 2 - i)
temp_row = Array{Float64,2}(temp_row')
temp_tf_row = Array{UInt8,2}((temp_tf_row .+ UInt8(2))')
row_or_col = temp_col.<=temp_row
DMATRIX[i,j] = row_or_col.*temp_col + .~row_or_col.*temp_row
TAG_tf[i,j] = Matrix{UInt8}(row_or_col).*temp_tf_col + Matrix{UInt8}(.~row_or_col).*temp_tf_row
#DMATRIX[i-1,j] = 0
end
#DMATRIX[i,1] = 0 # release the memory
end
#for j = 2: jmax_col
#DMATRIX[jmax_row, j] = 0 # release the memory
#end
#recover the bestbasis
infovec = Array{Int}([jmax_row; jmax_col; 1; 1])
for iter = 1:(jmax_row + jmax_col - 2)
newinfovec = -1*ones(Int,(4,2*size(infovec,2)))
for h = 1:size(infovec,2)
m = infovec[1,h]
n = infovec[2,h]
p = infovec[3,h]
q = infovec[4,h]
#if the bestbasis comes from column direction
if TAG_tf[m,n][p,q] == 0 #time domain
j,k,l = IND2TAG_col[n][q]
if haskey(TAG2IND_col[n-1],(j+1,2*k,l))
q1 = TAG2IND_col[n-1][(j+1,2*k,l)]
newinfovec[:,2*h-1] = [m;n-1;p;q1]
end
if haskey(TAG2IND_col[n-1],(j+1,2*k+1,l))
q2 = TAG2IND_col[n-1][(j+1,2*k+1,l)]
newinfovec[:,2*h] = [m;n-1;p;q2]
end
end
if TAG_tf[m,n][p,q] == 1 # frequency domain
j,k,l = IND2TAG_col[n][q]
if haskey(TAG2IND_col[n-1],(j,k,2*l))
q1 = TAG2IND_col[n-1][(j,k,2*l)]
newinfovec[:,2*h-1] = [m;n-1;p;q1]
end
if haskey(TAG2IND_col[n-1],(j,k,2*l+1))
q2 = TAG2IND_col[n-1][(j,k,2*l+1)]
newinfovec[:,2*h] = [m;n-1;p;q2]
end
end
#if the bestbasis comes from row direction
if TAG_tf[m,n][p,q] == 2 # time domain
j,k,l = IND2TAG_row[m][p]
if haskey(TAG2IND_row[m-1],(j+1,2*k,l))
p1 = TAG2IND_row[m-1][(j+1,2*k,l)]
newinfovec[:,2*h-1] = [m-1;n;p1;q]
end
if haskey(TAG2IND_row[m-1],(j+1,2*k+1,l))
p2 = TAG2IND_row[m-1][(j+1,2*k+1,l)]
newinfovec[:,2*h] = [m-1;n;p2;q]
end
end
if TAG_tf[m,n][p,q] == 3 # frequency domain
j,k,l = IND2TAG_row[m][p]
if haskey(TAG2IND_row[m-1],(j,k,2*l))
p1 = TAG2IND_row[m-1][(j,k,2*l)]
newinfovec[:,2*h-1] = [m-1;n;p1;q]
end
if haskey(TAG2IND_row[m-1],(j,k,2*l+1))
p2 = TAG2IND_row[m-1][(j,k,2*l+1)]
newinfovec[:,2*h] = [m-1;n;p2;q]
end
end
end
infovec = newinfovec[:,newinfovec[1,:].!=-1]
end
#return Array{Float64,2}(dmatrix[sub2ind(size(dmatrix),infovec[3,:],infovec[4,:])]'),infovec[3:4,:]
return dmatrix[(LinearIndices(size(dmatrix)))[CartesianIndex.(infovec[3,:],infovec[4,:])]],infovec[3:4,:]
end
"""
ghwt_tf_synthesis_2d_core!(dmatrix::Array{Float64,3},tag::Array{Int,2},rs::Array{Int,2})
Core function of ghwt_tf_synthesis_2d. Synthesize on column direction
### Input Arguments
* `dmatrix`: Same size as dmatrix, but only selected basis vectors are nonzero with expanding coeffcients.
* `tag`: Tag information in GP.
* `rs`: Rs information in GP.
### Output Arguments
* `dmatrix`: Synthesized on column direction.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_tf_synthesis_2d_core!(dmatrix::Array{Float64,3},tag::Array{Int,2},rs::Array{Int,2})
jmax = size(tag,2)
for j = 1:jmax-1
regioncount = count(!iszero, rs[:,j]) - 1
for r = 1:regioncount
# the index that marks the start of the first subregion
rs1 = rs[r,j]
# the index that is one after the end of the second subregion
rs3 = rs[r+1,j]
#the number of points in the current region
n = rs3 - rs1
# proceed if not all coefficients are zero in this region
if count(!iszero, dmatrix[rs1:rs3-1,j,:]) > 0
if n == 1
### SCALING COEFFICIENT (n == 1)
dmatrix[rs1,j+1,:] = dmatrix[rs1,j,:] + dmatrix[rs1,j+1,:]
elseif n > 1
# the index that marks the start of the second subregion
rs2 = rs1+1;
while rs2 < rs3 && tag[rs2,j+1] != 0
rs2 = rs2+1;
end
# the parent region is a copy of the subregion
if rs2 == rs3
dmatrix[rs1:rs3-1,j+1,:] = dmatrix[rs1:rs3-1,j,:] + dmatrix[rs1:rs3-1,j+1,:]
# the parent region has 2 child regions
else
# the number of points in the first subregion
n1 = rs2 - rs1
# the number of points in the second subregion
n2 = rs3 - rs2
### SCALING COEFFICIENTS
dmatrix[rs1,j+1,:] = ( sqrt(n1).*dmatrix[rs1,j,:] + sqrt(n2).*dmatrix[rs1+1,j,:] )./sqrt(n) + dmatrix[rs1,j+1,:]
dmatrix[rs2,j+1,:] = ( sqrt(n2).*dmatrix[rs1,j,:] - sqrt(n1).*dmatrix[rs1+1,j,:] )./sqrt(n) + dmatrix[rs2,j+1,:]
# HAAR-LIKE & WALSH-LIKE COEFFICIENTS
# search through the remaining coefficients in each subregion
parent = rs1+2
child1 = rs1+1
child2 = rs2+1
while child1 < rs2 || child2 < rs3
# subregion 1 has the smaller tag
if child2 == rs3 || (tag[child1,j+1] < tag[child2,j+1] && child1 < rs2)
dmatrix[child1,j+1,:] = dmatrix[parent,j,:] + dmatrix[child1,j+1,:]
child1 = child1+1;
parent = parent+1;
# subregion 2 has the smaller tag
elseif child1 == rs2 || (tag[child2,j+1] < tag[child1,j+1] && child2 < rs3)
dmatrix[child2,j+1,:] = dmatrix[parent,j,:] + dmatrix[child2,j+1,:]
child2 = child2+1;
parent = parent+1;
# both subregions have the same tag
else
dmatrix[child1,j+1,:] = ( dmatrix[parent,j,:] + dmatrix[parent+1,j,:] )/sqrt(2) + dmatrix[child1,j+1,:]
dmatrix[child2,j+1,:] = ( dmatrix[parent,j,:] - dmatrix[parent+1,j,:] )/sqrt(2) + dmatrix[child2,j+1,:]
child1 = child1+1;
child2 = child2+1;
parent = parent+2;
end
end
end
end
end
end
end
end
"""
matrix = ghwt_tf_synthesis_2d(dmatrix::Matrix{Float64}, GProws::GraphPart, GPcols::GraphPart)
Synthesis the matrix from the coefficients of selected basis vectors.
### Input Arguments
* `dmatrix`: Only selected basis vectors are nonzero with expanding coeffcients.
* `GProws`: Corresponding to the affinity matrix on rows.
* `GPcols`: Corresponding to the affinity matrix on cols.
### Output Arguments
* `matrix`: Synthesized matrix
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function ghwt_tf_synthesis_2d(dvec::Vector{Float64}, infovec::Matrix{Int}, GProws::GraphPart, GPcols::GraphPart)
tag_col, rs_col = GPcols.tag, GPcols.rs
tag_row, rs_row = GProws.tag, GProws.rs
fcols, jmax_col = size(tag_col);
frows, jmax_row = size(tag_row);
dmatrix = zeros(frows*jmax_row, fcols*jmax_col)
for i in 1:size(infovec,2)
dmatrix[infovec[1,i],infovec[2,i]] = dvec[i]
end
matrix_r = Array{Float64,2}(dmatrix');
matrix_r = reshape(matrix_r, fcols, jmax_col, frows*jmax_row);
ghwt_tf_synthesis_2d_core!(matrix_r, Matrix{Int}(tag_col), Matrix{Int}(rs_col));
matrix_r = matrix_r[:,end,:];
#matrix_r = reshape(matrix_r, fcols, frows*jmax_row);
matrix_r = reshape(Array{Float64,2}(matrix_r'),frows,jmax_row, fcols);
ghwt_tf_synthesis_2d_core!(matrix_r, Matrix{Int}(tag_row), Matrix{Int}(rs_row));
matrix_r = matrix_r[:,end,:];
#matrix_r = reshape(matrix_r,frows, fcols);
matrix = zeros(frows, fcols)
matrix[GProws.ind,GPcols.ind] = matrix_r
return matrix
end
"""
dmatrix, GProws, GPcols = ghwt_tf_init_2d(matrix::Matrix{Float64})
Partition matrix first to get GProws and GPcols. Then expand matrix
in two directions to get dmatrix
### Input Arguments
* `matrix::Matrix{Float64}`: an input matrix
### Output Argument
* `GProws::GraphPart`: partitioning using rows as samples
* `GPcols::GraphPart`: partitioning using cols as samples
* `dmatrix::matrix{Float64}`: expansion coefficients of matrix
"""
function ghwt_tf_init_2d(matrix::Matrix{Float64})
#Partition matrix recuisively using Dhillon's method
GProws, GPcols = PartitionTreeMatrixDhillon(matrix)
ghwt_core!(GProws)
ghwt_core!(GPcols)
matrix_re = matrix[GProws.ind, GPcols.ind]
(N, jmax_row) = size(GProws.rs)
N = N-1
# expand on the row direction
(frows, fcols) = size(matrix_re)
dmatrix = zeros((N,jmax_row,fcols))
dmatrix[:,jmax_row,:] = matrix_re
ghwt_core!(GProws, dmatrix)
dmatrix = reshape(dmatrix, (frows*jmax_row, fcols))'
# expand on the column direction
(N, jmax_col) = size(GPcols.rs)
N = N - 1
dmatrix2 = zeros(N,jmax_col,size(dmatrix,2))
dmatrix2[:, jmax_col, :] = dmatrix
ghwt_core!(GPcols, dmatrix2)
dmatrix = reshape(dmatrix2, (fcols*jmax_col, frows*jmax_row))'
return Array{Float64,2}(dmatrix), GProws, GPcols
end
function ghwt_tf_init_2d_Lindberg(matrix::Matrix{Float64})
#Partition matrix recuisively using Dhillon's method
m,n = size(matrix)
GProws = regularhaar(m)
GPcols = regularhaar(n)
ghwt_core!(GProws)
ghwt_core!(GPcols)
matrix_re = matrix[GProws.ind, GPcols.ind]
(N, jmax_row) = size(GProws.rs)
N = N-1
# expand on the row direction
(frows, fcols) = size(matrix_re)
dmatrix = zeros((N,jmax_row,fcols))
dmatrix[:,jmax_row,:] = matrix_re
ghwt_core!(GProws, dmatrix)
dmatrix = reshape(dmatrix, (frows*jmax_row, fcols))'
# expand on the column direction
(N, jmax_col) = size(GPcols.rs)
N = N - 1
dmatrix2 = zeros(N,jmax_col,size(dmatrix,2))
dmatrix2[:, jmax_col, :] = dmatrix
ghwt_core!(GPcols, dmatrix2)
dmatrix = Array{Float64,2}(reshape(dmatrix2, (fcols*jmax_col, frows*jmax_row))')
return dmatrix, GProws, GPcols
end
function regularhaar(n::Int)
if log2(n)%1 != 0
error("Input number should be some power of 2")
else
ind = Array{Int64}(1:n)
l = Int64(log2(n))
rs = zeros(Int64,n+1,l+1)
for j = 1:l+1
gap = Int64(n/(2^(j-1)))
for i = 1:(2^(j-1) + 1)
rs[i,j] = Int64((i-1)*gap + 1)
end
end
end
return GraphPart(ind, rs)
end
"""
dmatrix = ghwt_tf_init_2d(matrix::Matrix{Float64}, GProws::GraphPart, GPcols::GraphPart)
Partition matrix first to get GProws and GPcols. Then expand matrix
in two directions to get dmatrix
### Input Arguments
* `matrix::Matrix{Float64}`: an input matrix
* `GProws::GraphPart`: partitioning using rows as samples
* `GPcols::GraphPart`: partitioning using cols as samples
### Output Argument
* `dmatrix::matrix{Float64}`: expansion coefficients of matrix
"""
function ghwt_tf_init_2d(matrix::Matrix{Float64}, GProws::GraphPart, GPcols::GraphPart)
ghwt_core!(GProws)
ghwt_core!(GPcols)
matrix_re = matrix[GProws.ind, GPcols.ind]
(N, jmax_row) = size(GProws.rs)
N = N-1
# expand on the row direction
(frows, fcols) = size(matrix_re)
dmatrix = zeros((N,jmax_row,fcols))
dmatrix[:,jmax_row,:] = matrix_re
ghwt_core!(GProws, dmatrix)
dmatrix = reshape(dmatrix, (frows*jmax_row, fcols))'
# expand on the column direction
(N, jmax_col) = size(GPcols.rs)
N = N - 1
dmatrix2 = zeros(N,jmax_col,size(dmatrix,2))
dmatrix2[:, jmax_col, :] = dmatrix
ghwt_core!(GPcols, dmatrix2)
dmatrix = Array{Float64,2}(reshape(dmatrix2, (fcols*jmax_col, frows*jmax_row))')
return dmatrix
end
function BS2ind(GP::GraphPart, BS::BasisSpec)
tag = GP.tag
N = size(tag,1)
jmax = size(tag,2)
tag_r = rs_to_region(GP.rs, tag)
tag2ind, ind2tag = tf2d_init(Array{Int,2}(tag),tag_r)
ind = fill(0, N)
if BS.c2f
for i = 1:N
j2, j = BS.levlist[i]
k = tag_r[j2,j]
l = tag[j2,j]
ind[i] = tag2ind[(j,k,l)]
end
else
tag_r_f2c = Array{Int,2}(fine2coarse!(GP, dmatrix = Array{Float64,3}(reshape(tag_r,(size(tag_r,1),size(tag_r,2),1))), coefp = true)[:,:,1])
tag_f2c = GP.tagf2c
for i = 1:N
j2, j = BS.levlist[i]
k = tag_r_f2c[j2,j]
l = tag_f2c[j2,j]
ind[i] = tag2ind[(jmax + 1 - j, k, l)]
end
end
return ind
end
function BS2loc(dmatrix::Matrix{Float64}, GProws::GraphPart, GPcols::GraphPart, BSrows::BasisSpec, BScols::BasisSpec)
indrows = BS2ind(GProws, BSrows)
indcols = BS2ind(GPcols, BScols)
m = length(indrows)
n = length(indcols)
loc = fill(0, (2,m*n))
dvec = fill(0., m*n)
global idx = 1
for i = 1:n
for j = 1:m
loc[1,idx] = indrows[j]
loc[2,idx] = indcols[i]
dvec[idx] = dmatrix[indrows[j], indcols[i]]
global idx += 1
end
end
return dvec, loc
end
# A useful and meaningful set of aliases here
const eghwt_init_2d = ghwt_tf_init_2d
const eghwt_bestbasis_2d = ghwt_tf_bestbasis_2d
const eghwt_synthesis_2d = ghwt_tf_synthesis_2d
const eghwt_init_2d_Lindberg = ghwt_tf_init_2d_Lindberg
end # of module GHWT_tf_2d
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 17988 | module GraphPartition
using ..GraphSignal, SparseArrays, LinearAlgebra
include("partition_fiedler.jl")
include("utils.jl")
export GraphPart, partition_tree_fiedler, partition_tree_matrixDhillon
# GraphPart data structure and constructors
"""
GP = GraphPart(ind::Vector{Int}, rs::Matrix{Int}, tag::Matrix{Int}, compinfo::Matrix{Int}, rsf2c::Matrix{Int}, tagf2c::Matrix{Int}, compinfof2c::Matrix{Int}, inds::Matrix{Int}, method::Vector{Symbol})
is a data structure for a GraphPart object containing the following fields:
* `ind::Vector{Int}`: ordering of the indices on the finest level
* `rs::Matrix{Int}`: regionstarInt (coarse-to-fine) <==> the index in `ind` of the first point in region number `i` is `rs[i]`
* `tag::Matrix{Int}`: tag info for the GHWT coarse-to-fine basis
* `compinfo::Matrix{Int}`: indicates whether the coefficient was formed from 2 coefficenInt (value is nonzero) or from only 1 coefficient (value is zero); when a scaling and Haar-like coefficient are formed, their corresponding values in compinfo indicate the number of nodes in each of the 2 subregions
* `rsf2c::Matrix{Int}`: the fine-to-coarse version of `rs`
* `tagf2c::Matrix{Int}`: the fine-to-coarse version of `tag`
* `compinfof2c::Matrix{Int}`: the fine-to-coarse version of `compinfo`
* `inds::Matrix{Int}`: ordering of the indices on all levels
* `method::Symbol`: how the partition tree was constructed
The unsigned integer depends on the size of the underlying graph.
Copyright 2015 The RegenInt of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito) |
Translated and modified by Naoki Saito, Feb. 7, 2017
Revised for two parameters by Naoki Saito, Feb. 24, 2017
"""
mutable struct GraphPart
ind::Vector{Int} # ordering of the indices on the finest level
rs::Matrix{Int} # `rs[i,j]` = the index in `ind` of the first
# point in Region `i` at level j
tag::Matrix{Int} # Int <: Int because max(tag) <= log2(max(T))
compinfo::Matrix{Int} # coef was from 2 coefs or from 1 coef
rsf2c::Matrix{Int} # f2c version of `rs`
tagf2c::Matrix{Int} # f2c version of `tag`
compinfof2c::Matrix{Int} # f2c version of `compinfo`
inds::Matrix{Int} # ordering of the indices on all levels
method::Symbol # specification of graph partition method
# An inner constructor here.
function GraphPart(ind::Vector{Int}, rs::Matrix{Int};
tag::Matrix{Int} = Matrix{Int}(undef, 0, 0),
compinfo::Matrix{Int} = Matrix{Int}(undef, 0, 0),
rsf2c::Matrix{Int} = Matrix{Int}(undef, 0, 0),
tagf2c::Matrix{Int} = Matrix{Int}(undef, 0, 0),
compinfof2c::Matrix{Int} = Matrix{Int}(undef, 0, 0),
inds::Matrix{Int} = Matrix{Int}(undef, 0, 0),
method::Symbol = :unspecified)
# Sanity checks
if Base.size(rs, 1) != Base.length(ind) + 1
@warn("size(rs,1) must be length(ind) + 1")
@warn("both rs and ind now become null arrays!")
ind = Vector{Int}(undef, 0)
rs = Matrix{Int}(undef, 0, 0)
end
if Base.length(tag) != 0 && (Base.size(rs, 1) != Base.size(tag, 1) + 1
|| Base.size(rs, 2) != Base.size(tag, 2))
@warn("tag size is inconsistent with rs size.")
@warn("tag now becomes a null array!")
tag = Matrix{Int}(undef, 0, 0)
end
if Base.length(compinfo) != 0 &&
( Base.size(rs, 1) != Base.size(compinfo, 1) + 1
|| Base.size(rs, 2) != Base.size(compinfo, 2) )
@warn("compinfo size is inconsistent with rs size.")
@warn("compinfo now becomes a null array!")
compinfo = Matrix{Int}(undef, 0, 0)
end
if Base.length(rsf2c) != 0 && Base.length(rsf2c) != Base.length(rs)
@warn("length(rsf2c) must be length(rs)")
@warn("rsf2c now becomes a null array!")
rsf2c = Matrix{Int}(undef, 0, 0)
end
if Base.length(tagf2c) != 0 && Base.length(tagf2c) != Base.length(tag)
@warn("length(tagf2c) must be length(tag)")
@warn("tagf2c now becomes a null array!")
tagf2c = Matrix{Int}(undef, 0, 0)
end
if Base.length(compinfof2c) != 0 &&
Base.length(compinfof2c) != Base.length(compinfo)
@warn("length(compinfof2c) must be length(compinfo)")
@warn("compf2c now becomes a null array!")
compf2c = Matrix{Int}(undef, 0, 0)
end
new(ind, rs, tag, compinfo, rsf2c, tagf2c, compinfof2c, inds, method)
end # of an inner constructor GraphPart
end # of type GraphPart
"""
GP = partition_tree_fiedler(G::GraphSig; method::Symbol = :Lrw, swapRegion::Bool = true)
Generate a partition tree for a graph using the Fiedler vector of either
L (the unnormalized Laplacian) or L_rw (the random-walk normalized
Laplacian).
### Input ArgumenInt
* `G::GraphSig`: an input GraphSig object
* `method::Symbol`: how the partition tree was constructed (default: :Lrw)
* `swapRegion::Bool`: swap the child regions based on the sum of the subgraphs' edge weights (default: true)
### Output Argument
* `GP::GraphPart`: an ouput GraphPart object
Copyright 2015 The RegenInt of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito) |
Translated and modified by Naoki Saito, Feb. 7, 2017
"""
function partition_tree_fiedler(G::GraphSignal.GraphSig; method::Symbol = :Lrw, swapRegion::Bool = true)
#
# 0. Preliminary stuff
#
# constanInt
N = G.length
jmax = max(3 * floor(Int, log2(N)), 4) # jmax >= 4 is guaranteed.
# This jmax is the upper bound of the true jmax; the true jmax
# is computed as the number of columns of the matrix `rs` in the end.
# TRACKING VARIABLES
# `ind` records the way in which the nodes are indexed on each level
ind = Vector{Int}(1:N)
# `inds` records the way in which the nodes are indexed on all levels
inds = zeros(Int, N, jmax)
inds[:, 1] = ind
# `rs` stands for regionstarInt, meaning that the index in `ind` of the first
# point in region number `i` is `rs[i]`
rs = zeros(Int, N + 1, jmax)
rs[1, :] .= 1
rs[2, 1] = N + 1
#
# 1. Partition the graph to yield rs, ind, and jmax
#
j = 1 # j=1 in julia <=> j=0 in theory
regioncount = 0
rs0 = 0 # define here for the whole loops,
# which differs from MAIntAB.
while regioncount < N
#regioncount = countnz(rs[:,j]) - 1
regioncount = count(!iszero,rs[:, j]) - 1 # the number of regions on level j
if j == jmax # add a column to rs and inds for level j+1, if necessary
rs = hcat(rs, vcat(Int(1), zeros(Int,N)))
inds = hcat(inds, zeros(Int, N))
jmax = jmax + 1
end
# for tracking the child regions
rr = 1
for r = 1:regioncount # cycle through the parent regions
rs1 = rs[r, j] # the start of the parent region
rs2 = rs[r + 1, j] # 1 node after the end of the parent region
n = rs2 - rs1 # the number of nodes in the parent region
if n > 1 # regions with 2 or more nodes
indrs = ind[rs1:(rs2 - 1)]
# partition the current region
(pm, ) = partition_fiedler(G.W[indrs,indrs], method = method)
# determine the number of poinInt in child region 1
n1 = sum(pm .> 0)
# switch regions 1 and 2, if necessary, based on the sum of
# edge weighInt to the previous child region (i.e., cousin)
if r > 1 && swapRegion
# MAIntAB: sum(sum(...)) instead of sum(...)
if sum(G.W[ind[rs0:(rs1 - 1)], indrs[pm .> 0]]) <
sum(G.W[ind[rs0:(rs1 - 1)], indrs[pm .< 0]])
pm = -pm
n1 = n - n1
end
end
# update the indexing
ind[rs1:(rs1 + n1 - 1)] = indrs[pm .> 0]
ind[(rs1 + n1):(rs2 - 1)] = indrs[pm .< 0]
# update the region tracking
rs[rr + 1, j + 1] = rs1 + n1
rs[rr + 2, j + 1] = rs2
rr = rr + 2
rs0 = rs1 + n1
elseif n == 1 # regions with 1 node
rs[rr + 1, j + 1] = rs2
rr = rr + 1
rs0 = rs1
end # of if n > 1 ... elseif n==1 construct
end # of for r=1:regioncount
j = j + 1
inds[:, j] = ind
end # of while regioncount < N statement
#
# 2. Postprocessing
#
# get rid of excess columns in rs
rs = rs[:, 1:(j - 1)] # in MAIntAB, it was rs(:,j:end) = [];
# get rid of excess columns in inds
inds = inds[:, 1:(j - 1)]
# create a GraphPart object
return GraphPart(ind, rs; inds = inds, method = method)
end # of function partition_tree_fiedler
"""
GProws, GPcols = partition_tree_matrixDhillon(matrix::Matrix{Float64})
Recursively partition the rows and columns of the matrix using the
bipartite model proposed by Dhillon in "Co-clustering documents and words
using Bipartite Spectral Graph Partitioning"
### Input Arguments
* `matrix::Matrix{Float64}`: an input matrix
### Output Argument
* `GProws::GraphPart`: partitioning using rows as samples
* `GPcols::GraphPart`: partitioning using cols as samples
"""
function partition_tree_matrixDhillon(matrix::Matrix{Float64})
## 0. Preliminary stuff
# constants
(rows, cols) = size(matrix)
N = max(rows,cols)
jmax = Int(max(3*floor(log2(N)),4))
### Tracking variables for the rows
# order index
ind_rows = Vector{Int}(1:rows)
ind_cols = Vector{Int}(1:cols)
# regionstarts
rs_rows = zeros(Int, (N+1,jmax))
rs_rows[1,:] .= 1
rs_rows[2,1] = rows + 1
rs_cols = zeros(Int, (N+1,jmax))
rs_cols[1,:] .= 1
rs_cols[2,1] = cols + 1
## 1. Partition the graph to yield rs, ind, and jmax
j = 1
regioncount_rows = 0
regioncount_cols = 0
while (regioncount_rows) < rows || (regioncount_cols < cols)
# the number of true regions (i.e, has 1 or more nodes) on level j
regioncount_rows = length(unique(vcat(rs_rows[:,j],[0]))) - 2
regioncount_cols = length(unique(vcat(rs_cols[:,j],[0]))) - 2
# the number of total regions (including those with no nodes)
false_regioncount = max(count(!iszero, rs_rows[:,j]),count(!iszero, rs_cols[:,j])) - 1
# add a column for level j+1, if necessary
if j == jmax
rs_rows = hcat(rs_rows,zeros(N+1))
rs_cols = hcat(rs_cols,zeros(N+1))
rs_rows[1,j+1] = 1
rs_cols[1,j+1] = 1
jmax = jmax + 1
end
# for tracking the child regions (for both rows and columns)
rr = 1
# cycle through the parent regions
for r = 1 : false_regioncount
# the start of the parent region and 1 node after the end of the parent region
rs1_rows = rs_rows[r,j]
rs2_rows = rs_rows[r+1,j]
rs1_cols = rs_cols[r,j]
rs2_cols = rs_cols[r+1,j]
# the number of nodes in the parent region
n_rows = rs2_rows - rs1_rows
n_cols = rs2_cols - rs1_cols
if (n_rows <=1) && (n_cols > 1)
indrs_rows = ind_rows[rs1_rows]
indrs_cols = ind_cols[rs1_cols:(rs2_cols-1)]
# compute the left and right singular vectors
#(u_rows, v_cols) = second_largest_singular_vectors(reshape(matrix[indrs_rows,indrs_cols],(n_rows,n_cols)))
# partition the current region
pm_cols = partition_vector(matrix[indrs_rows,indrs_cols])
# determine the number of points in child region 1
n1_cols = sum(pm_cols .>0)
# update the column indexing
ind_cols[rs1_cols:(rs1_cols+n1_cols-1)] = indrs_cols[pm_cols.>0]
ind_cols[(rs1_cols+n1_cols):(rs2_cols-1)] = indrs_cols[pm_cols.<0]
# update the row region tracking
rs_rows[rr+1,j+1] = rs1_rows
rs_rows[rr+2,j+1] = rs2_rows
# update the column region tracking
rs_cols[rr+1, j+1] = rs1_cols + n1_cols
rs_cols[rr+2, j+1] = rs2_cols
rr = rr + 2
elseif (n_rows > 1) && (n_cols <= 1)
indrs_rows = ind_rows[rs1_rows:(rs2_rows-1)]
indrs_cols = ind_cols[rs1_cols]
# compute the left and right singular vectors
#(u_rows, u_cols) = second_largest_singular_vectors(reshape(matrix[indrs_rows, indrs_cols],(n_rows,n_cols)))
# partition the current region
pm_rows = partition_vector(matrix[indrs_rows, indrs_cols])
# determine the number of points in child region 1
n1_rows = sum(pm_rows.>0)
# update the row indexing
ind_rows[rs1_rows:(rs1_rows+n1_rows-1)] = indrs_rows[pm_rows.>0]
ind_rows[(rs1_rows+n1_rows):(rs2_rows-1)] = indrs_rows[pm_rows.<0]
# update the row region tracking
rs_rows[rr+1,j+1] = rs1_rows + n1_rows
rs_rows[rr+2,j+1] = rs2_rows
# update the column region tracking
rs_cols[rr+1,j+1] = rs1_cols
rs_cols[rr+2,j+1] = rs2_cols
rr = rr + 2
elseif (n_rows > 1) && (n_cols > 1)
indrs_rows = ind_rows[rs1_rows:(rs2_rows-1)]
indrs_cols = ind_cols[rs1_cols:(rs2_cols-1)]
# compute the left and right singular vectors
(u_rows,v_cols) = second_largest_singular_vectors(matrix[indrs_rows,indrs_cols])
# partition the current region
pm, = partition_fiedler_pm(vcat(u_rows, v_cols))
pm_rows = pm[1:n_rows]
pm_cols = pm[(n_rows+1):end]
# determine the number of points in child region 1
n1_rows = sum(pm_rows .> 0)
n1_cols = sum(pm_cols .> 0)
# update the row indexing
ind_rows[rs1_rows:(rs1_rows + n1_rows - 1)] = indrs_rows[pm_rows .> 0]
ind_rows[(rs1_rows + n1_rows):(rs2_rows - 1)] = indrs_rows[pm_rows .< 0]
# update the column indexing
ind_cols[rs1_cols:(rs1_cols + n1_cols - 1)] = indrs_cols[pm_cols .> 0]
ind_cols[(rs1_cols + n1_cols):(rs2_cols - 1)] = indrs_cols[pm_cols .< 0]
# update the row region tracking
rs_rows[rr+1, j+1] = rs1_rows + n1_rows
rs_rows[rr+2, j+1] = rs2_rows
# update the column region tracking
rs_cols[rr+1, j+1] = rs1_cols + n1_cols
rs_cols[rr+2, j+1] = rs2_cols
rr = rr + 2
else
rs_rows[rr+1, j+1] = rs2_rows
rs_cols[rr+1, j+1] = rs2_cols
rr = rr + 1
end
if rr > size(rs_rows,1) - 2
rs_rows = vcat(rs_rows,zeros(Int,(2,size(rs_rows,2))))
end
if rr > size(rs_cols,1) - 2
rs_cols = vcat(rs_cols,zeros(Int,(2,size(rs_cols,2))))
end
end
j = j + 1
end
# get rid of excess columns in rs_rows and rs_cols
rs_rows = rs_rows[:, 1:(j-1)]
rs_cols = rs_cols[:, 1:(j-1)]
jmax = size(rs_rows,2)
#remove duplicates
M_rows = size(rs_rows,1)
M_cols = size(rs_cols,1)
for j = jmax:-1:1
### ROWS
# remove duplicate regionstarts
unique_rows = unique(rs_rows[:,j])
if unique_rows[1] == 0
shift!(unique_rows)
end
rs_rows[:,j] = vcat(unique_rows, zeros(M_rows-length(unique_rows)))
#remove duplicate columns of rs
if (j < jmax) && (sum(rs_rows[:,j] .!= rs_rows[:,j+1]) == 0)
rs_rows = rs_rows[:,setdiff(1:end,j+1)]
end
### COLUMNS
# remove duplicate regionscounts
unique_cols = unique(rs_cols[:,j])
if unique_cols[1] == 0
shift!(unique_cols)
end
rs_cols[:,j] = vcat(unique_cols, zeros(M_cols-length(unique_cols)))
# remove duplicate columns of rs
if (j < jmax) && (sum(rs_cols[:,j].!=rs_cols[:,j+1]) == 0)
rs_cols = rs_cols[:,setdiff(1:end,j+1)]
end
end
# remove unnecessary rows and columns in the regionstarts
if rows < M_rows - 1
rs_rows = rs_rows[1:(rows+1),:]
end
if cols < M_cols - 1
rs_cols = rs_cols[1:(cols+1),:]
end
# create GraphPart Objects
GProws = GraphPart(ind_rows, rs_rows)
GPcols = GraphPart(ind_cols, rs_cols)
return GProws, GPcols
# make sure the GraphPart objects meet our requirements
#blablabla
end
function second_largest_singular_vectors(A::Matrix{Float64})
# Compute the second largest left and right singular vectors of
# An = D1^(-0.5)*A*D2^(-0.5)
(rows, cols) = size(A)
# compute D1 and D2 and make sure there are no zeros
D1 = sum(A,dims = 2)
D1[D1.==0] .= max(0.01, minimum(D1[D1.>0]/10))
D2 = sum(A,dims = 1)
D2[D2.==0] .= max(0.01, minimum(D2[D2.>0]/10))
# compute the singular vectors
(u,D,v) = svd(Diagonal(D1[:].^(-0.5))*A*Diagonal(D2[:].^(-0.5)), full = false)
if (rows > 1) && (cols > 1)
# extract the second left singular vector
u = u[:,2]
v = v[:,2]
# extract the 2nd singular vectors and multiply by D_i^(-0.5)
u = D1[:].^(-0.5).*u
v = D2[:].^(-0.5).*v
return u, v
end
end
function partition_vector(v:: Vector{Float64})
# Partition vector into half, diveded by the mean of the values.
l = size(v[:],1)
m = mean(v)
pm = zeros(l)
pm[v.>m] .= 1
pm[v.<=m] .= -1
if size(unique(pm),1) == 1
f = UInt(floor(l/2))
pm[1:f] .= 1
pm[f+1:end] .= -1
end
return pm
end
end # of module GraphPartition
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 5987 | using Plots
"""
GraphSig_Plot(G::GraphSig; symmetric::Bool = false,
markersize::Float64 = 2.,
markercolor::Symbol = :balance,
markershape::Symbol = :circle,
markerstrokewidth::Float64 = 1.0,
markerstrokealpha::Float64 = 1.0,
markervaluevaries::Bool = true,
linewidth::Float64 = 1.,
linecolor::Symbol = :blue,
linestyle::Symbol = :solid,
clim::Tuple{Float64,Float64} = (0., 0.),
notitle::Bool = false, nocolorbar::Bool = false, nolegend::Bool = true,
stemplot::Bool = false, sortnodes::Symbol = :normal)
Display a plot of the data in a GraphSig object
### Input Argument
* `G::GraphSig`: an input GraphSig object
* `symmetric` symmetrize the colorbar
* `markersize` the size of the nodes
* `markercolor` markercolor scheme
* `markershape` shape of marker
* `markerstrokewidth` width of marker stroke
* `markerstrokealpha` capacity of marker stroke
* `markervaluevaries` if the marker color depends on the signal value
* `linewidth` the width of the lines in gplot
* `linecolor` the color of the lines (1D) / graph edges (2D & 3D)
* `linestyle`: the style of line
* `notitle` display a title
* `nocolorbar` display a colorbar
* `nolegend` display a legend
* `stemplot` use a stem plot
* `clim` specify the dynamic display range
* `sortnodes` plot the signal values from smallest to largest in magnitude
"""
function GraphSig_Plot(G::GraphSig; symmetric::Bool = false,
markersize::Any = 2.,
markercolor::Symbol = :balance,
markershape::Symbol = :circle,
markerstrokewidth::Float64 = 1.0,
markerstrokealpha::Float64 = 1.0,
markervaluevaries::Bool = true,
linewidth::Float64 = 1.,
linecolor::Symbol = :blue,
linestyle::Symbol = :solid,
clim::Tuple{Float64,Float64} = (0., 0.),
notitle::Bool = false, nocolorbar::Bool = false, nolegend::Bool = true,
stemplot::Bool = false, sortnodes::Symbol = :normal)
# only run this for 1D signals
fcols = Base.size(G.f, 2)
if fcols == 0
G.f = zeros(G.length, 1)
elseif fcols != 1
warn("Cannot handle multiple signals at this time!")
return
end
## Case 1: the graph does not have spatial coordinates or it is too large
if G.length > 10^4 || G.dim > 3 || G.dim < 1
if G.length < 10^6
spy(G.W, show = true) # not too clear if we can change the dot size.
scatter!((1:G.length)', (1:G.length)', marker=(:circle, 4), zcolor = G.f, title = G.name)
else
warn("Cannot handle a graph with more than 10^6 nodes at this time!")
end
return
end
## Case 2: the graph does have spatial coordinates (G.dim = 1, 2, or 3).
# extract the plot specifications
# set(0, 'DefaultFigureVisible', 'on');
#################################
############# 1-D ###############
#################################
if G.dim == 1
if G.length < 65 || stemplot
# stem(G.xy, G.f, '-o','LineWidth',2,'Color',linecolor,'MarkerFaceColor',linecolor,'MarkerSize',markersize(1));
# stem(G.xy, G.f, linetype = [:sticks :scatter], linewidth = 2, linecolor = linecolor, markercolor = linecolor, markersize = markersize)
stem(G.f; x = G.xy, lw = linewidth, c = linecolor, ms = markersize, shape = markershape)
else
# plot(G.xy, G.f, '-','Color',linecolor,'LineWidth',linewidth);
plot(G.xy, G.f, linetype = :line, linecolor = linecolor, linewidth = linewidth);
end
xmin = minimum(G.xy)
xmax = maximum(G.xy)
dx = xmax - xmin
if dx < 10 * eps()
dx = 1
end
xmin = xmin - 0.1 * dx
xmax = xmax + 0.1 * dx
ymin = minimum(G.f)
ymax = maximum(G.f)
dy = ymax - ymin
if dy < 10 * eps()
dy = 1
end
ymin = ymin - 0.1*dy
ymax = ymax + 0.1*dy
# symmetric?
if symmetric
ymax = 1.1 * max(ymax, -ymin)
ymin = -ymax
end
xlims!(xmin, xmax)
ylims!(ymin, ymax)
# title?
if ~isempty(G.name) && ~notitle
title!(G.name)
end
# legend?
if nolegend
plot!(leg = false)
end
#################################
######### 2-D or 3-D ###########
#################################
else
#fig = figure('visible','on');
# plot the graph
gplot(G.W, G.xy; style = linestyle, color = linecolor, width = linewidth)
#hold on
# plot the nodes
scatter_gplot!(G.xy;
marker = G.f, ms = markersize,
shape = markershape, mswidth = markerstrokewidth,
msalpha = markerstrokealpha, plotOrder = sortnodes,
c = markercolor)
# colorbar?
if nocolorbar
plot!(colorbar = :none)
end
# custom dynamic display range?
if clim != (0., 0.)
plot!(clim = clim)
end
# symmetric?
if symmetric
if clim != (0., 0.)
cmax = maximum(abs.(clim));
else
cmax = maximum(abs.(G.f[:]));
end
if cmax < 10*eps()
cmax = 1;
end
plot!(cLims = (cmax, cmax))
end
# title?
if !isempty(G.name) && !notitle
title!(G.name);
end
# legend?
if nolegend
plot!(leg = false)
end
end
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 11491 | module GraphSignal
using Distances # This is necessary in Ggrid
using Distributions # This is necessary in AddNoise
using SparseArrays
using Statistics
using LinearAlgebra
export GraphSig, replace_data!, snr, gpath, ggrid, Adj2InvEuc, AddNoise
# GraphSig data structure and constructors
"""
G = GraphSig(W, xy, f, name, plotspecs, length, dim, size)
is a data structure for a GraphSig object containing the following fields:
* `W::SparseMatrixCSC{Float64,Int}`: the edge weight matrix in a sparse format
* `xy::Matrix{Float64}`: the coordinates of the vertices (could be >= 3D)
* `f::Matrix{Float64}`: the values of the function/data at the vertices; each column is an input signal vector, i.e., number of rows == number of nodes.
* `name::String`: a title/name for the data
* `plotspecs::Vector{Symbol}`: specifications for plotting:
(most likely may be dropped later thanks to julia/Plots.jl)
- symm: use a symmetric colorscale
- gray: use grayscale
- gray255: plot a grayscale image with color bounds [0,255]
- copper: use a copper color scale
- notitle: don't display the title
- nocolorbar: don't display a colorbar
- stem: use a stem plot
- CLim[cmin,cmax]: set the dynamic display range to [cmin,cmax]
- size25: set the size of the nodes to 25 (or whatever value is specified)
- LineWidth2: set the width of the lines to 2 (or whatever value is specified)
- LineColorb: set the color of the lines/graph edges to color 'b' (or whatever color is specified)
- red/black/blue: make the nodes red, black, or blue
- verbatim{{...}}: execute the command in the brackets
"""
mutable struct GraphSig
W::SparseMatrixCSC{Float64,Int} # edge weight matrix
xy::Matrix{Float64} # spatial coordinates (could be >= 3D)
f::Matrix{Float64} # the data sequences (signals) on the nodes
name::String # name of the GraphSig object
plotspecs::String # special instructions for plotting
# The following three are deriable from W, xy, and f:
length::Int # length of the data sequence
dim::Int # the dimension of the node coordinates
size::Tuple{Int,Int} # size of all the data specified
# An inner constructor here.
function GraphSig(W::SparseMatrixCSC{Float64,Int};
xy::Matrix{Float64} = Matrix{Float64}(undef, 0, 0),
f::Matrix{Float64} = zeros(Base.size(W, 1), 1),
name::String = "",
plotspecs :: String = "",
#plotspecs::Vector{Symbol} = Vector{Symbol}(0),
length::Int = Base.size(W, 1),
dim::Int = Base.size(xy, 2),
size::Tuple{Int,Int} = (Base.size(W, 1), Base.size(W, 2) + Base.size(xy, 2) + Base.size(f, 2)))
#
if isempty(W)
error("Cannot setup a graph without an edge weight matrix W!")
elseif Base.size(W, 1) != Base.size(f, 1)
error("Signal length != # Nodes!!")
elseif Base.size(W, 1) != Base.size(xy, 1) && Base.size(xy, 1) != 0
@warn("# Node coordinates != # Nodes. Hence, use null coordinates.")
new( W, Matrix{Float64}(0, 0), f, name, plotspecs, Base.size(W, 1),
0, (Base.size(W, 1), Base.size(W, 2) + Base.size(f, 2)) )
else # Finally, the full constructor!
new( W, xy, f, name, plotspecs, Base.size(W, 1), Base.size(xy, 2),
(Base.size(W, 1), Base.size(W, 2) + Base.size(xy, 2) + Base.size(f, 2)) )
end
end # of the inner constructor
end # of type GraphSig
#
# Other GraphSig related functions
#
"""
replace_data!(G::GraphSig, newdata::Matrix{Float64})
Replace the data in a GraphSig object
### Input Arguments
* `G::GraphSig`: the input GraphSig object whose data is to be replaced; various fields are updated after execution of this function
* `newdata::Matrix{Float64}`: the new data (must be a matrix)
"""
function replace_data!(G::GraphSig, newdata::Matrix{Float64})
(rows, cols) = Base.size(newdata)
if G.length == rows # update the relevant fields accordingly
G.f = newdata
G.size = (rows, Base.size(G.W, 2) + Base.size(G.xy, 2) + cols)
else
error("The length of each signal (", rows, ") does not match the number of nodes (", G.length, ")!")
# elseif G.length == cols # This is a dangerous assumption; so prohibit it.
# G.f = newdata'
# elseif isscalar(newdata) # This does not work anymore unlike MATLAB
# G.f = newdata*ones(G.length, 1)
end
end # of function replace_data!
"""
(value, sigma) = snr(G1::GraphSig, G2::GraphSig, stdp::Bool = false)
Compute the SNR between G1 (original signal) and G2 (noisy signal)
### Input Arguments
* `G1::GraphSig`: Original reference graph signal
* `G2::GraphSig`: Restored or noisy graph signal
* `stdp::Bool`: A flag to specify to compute the standard deviation of the difference
### Output Arguments
* `value`: Signal/Noise Ratio in the dB unit
* `sigma`: the standard deviation of the noise (if stdp == true)
"""
function snr(G1::GraphSig, G2::GraphSig, stdp=false)
tmp = norm(G2.f - G1.f)
if tmp < 10 * eps()
@warn("Two signals are the same, hence SNR = Inf")
value = Inf
else
value = 20 * log10(norm(G1.f) / tmp)
end
if stdp
return value, std(G2.f - G1.f)
else
return value
end
end # of snr
"""
G = gpath(N, f, name)
Generate a GraphSig object for a 1-D path of length `N`
### Input Arguments
* `N::Int`: the length of the path
* `f::Matrix{Float64}`: the signal to be used
* `name::String`: the name for the GraphSig object
### Output Argument
* `G::GraphSig`: the GraphSig ojbect representing the 1-D path of length `N`
"""
function gpath(N::Int,
f::Matrix{Float64} = ones(N, 1),
name::String = "Path of length $(N)")
# the x coordinates
xy = Matrix{Float64}(reshape(1:N, N, 1))
# another option: xy = (1.0:Float64(N))[:,:]
# the weight matrix
ev = ones(N - 1) # subdiagonal entries
W = spdiagm(-1 => ev, 1 => ev)
#W = spdiagm((ev, ev), (-1, 1)) # size(W) is (N, N)
# MATLAB:
# ev = ones(N,1);
# W = spdiags([ev 0*ev ev], [-1 0 1], N, N);
# create and return the GraphSig object
return GraphSig(W, xy = xy, f = f, name = name)
end # of function gpath
"""
function ggrid(Nx::Int, Ny::Int, connect::Symbol)
Generate a GraphSig object for a 2-D grid that is `Nx` by `Ny`.
### Input Arguments
* `Nx::Int`: the number of points in the x direction
* `Ny::Int`: the number of points in the y direction
* `connect::Symbol`: specifies the connectivity mode of the 2-D grid:
choices are: :c4 (default), :c8, :full
### Output Argument
* `G::GraphSig`: the GraphSig ojbect representing the 2-D `Nx` by `Ny` grid.
"""
function ggrid(Nx::Int, Ny::Int, connect::Symbol = :c4)
# the total number of nodes
N = Nx * Ny
# the xy coordinates
# MATLAB:
# xy = [(1:N)', repmat((1:Ny)',Nx,1)];
# xy(:,1) = ceil(xy(:,1)/Ny);
xy =hcat( ceil.(collect(1:N) / Ny), repeat(1:Ny, Nx) )
if connect == :c4 # this is the default, i.e., l; r; u; d.
# make 1-D weight matrices
ex = ones(Nx - 1)
Wx = spdiagm(-1 => ex, 1 => ex)
#Wx = spdiagm((ex, ex), (-1, 1))
ey = ones(Ny - 1)
Wy = spdiagm(-1 => ey, 1 => ey)
#Wy = spdiagm((ey, ey), (-1, 1))
# form the 2-D weight matrix
W = kron(sparse(1.0I, Nx, Nx), Wy) + kron(Wx, sparse(1.0I, Ny, Ny))
# this keeps a sparse form
else # now for 8-connected or fully-connected cases
W = sparse(pairwise(Euclidean(), xy')) # This is from Distances package.
W[1:(N + 1):(N * N)] = 10 # set each diagonal entry to 10 to prevent blowup.
W = W.^-1 # convert dist to affinity = inv. dist.
if connect == :c8 # 8-connected case incl. diagonal connections
W[find(W .< 0.7)] = 0
elseif connect == :full # a complete graph case
W[1:(N + 1):(N * N)] = 0 # set the diagonal to zero (i.e., no loops)
else
error("Cannot understand this connectivity: ", connect)
end
end
return GraphSig(W, xy = xy, f = Matrix{Float64}((1:N)[:, :]), name = "$(Nx) by $(Ny) grid with connectivity mode $(connect)")
end # of function ggrid
"""
function Adj2InvEuc(G::GraphSig)
Given a GraphSig object 'G' with a binary weight (adjacency) matrix, generate a GraphSig object 'GInvEuc' with an inverse Euclidean distance matrix
### Input Arguments
* `G::GraphSig`: a GraphSig object
### Output Argument
* `G::GraphSig`: a GraphSig object with inverse Euclidean weights
"""
function Adj2InvEuc(G::GraphSig)
W = deepcopy(G.W)
xy = deepcopy(G.xy)
f = deepcopy(G.f)
#find the edges
(rows,cols) = findnz(W)
#remove duplicate points
for j = length(rows):-1:1
if j<=length(rows) && norm(xy[rows[j],:]-xy[cols[j],:],2) < 10^3*eps()
W = W[setdiff(1:end, rows[j]), :]
W = W[:, setdiff(1:end, rows[j])]
xy = xy[setdiff(1:end, rows[j]), :]
f = f[setdiff(1:end, rows[j]),:]
(rows,cols) = findnz(W)
end
end
for j = 1:length(rows)
W[rows[j],cols[j]] = 1/norm(xy[rows[j],:]-xy[cols[j],:],2)
end
return GraphSig(W, xy = xy, f = f, name = string(G.name, " (inverse Euclidean weight matrix)"), plotspecs = G.plotspecs)
end
"""
function AddNoise(G::GraphSig; SNR::Float64=Float64(1.24), noisetype::String = "gaussian")
Add noise to the data of a GraphSig object
### Input Arguments
* `G::GraphSig`: a GraphSig object
* `SNR`: the SNR that the noisy signal should have
* `noisetype`: the type of noise: Gaussian (default) or Poisson
### Output Argument
* `G::GraphSig`: the GraphSig object with added noise
* `sigma`: the standard deviation of the noise
"""
function AddNoise(G::GraphSig; SNR::Float64=Float64(1.24), noisetype::String = "gaussian")
f = deepcopy(G.f)
if noisetype == "gaussian"
# generate Gaussian noise
noise = randn(size(f))
# scale the noise to the desired SNR level
sigma = norm(f,2)/10.0^(0.05*SNR)/norm(noise,2)
noise = sigma*noise
# generate the noisy signal
f = f + noise
elseif noisetype == "poisson"
# generate Poisson noise
(rows,cols) = size(f)
noise = zeros(rows,cols)
for i = 1:rows
for j = 1:cols
noise[i,j] = rand(Poisson(f[i,j])) - f[i,j]
end
end
# scale the noise to the desired SNR level
sigma = norm(f,2)/10.0^(0.05*SNR)/norm(noise,2)
noise = sigma*noise
# generate the noisy signal
f = f + noise
end
return GraphSig(G.W, xy = G.xy, f = f, name = string("SNR = ",SNR," ", G.name), plotspecs = G.plotspecs)
end
end # of module GraphSignal
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 30234 | module HGLET
include("utils.jl")
using ..GraphSignal, ..GraphPartition, ..BasisSpecification, ..GHWT, SparseArrays
include("common.jl")
export HGLET_Synthesis, HGLET_jkl, HGLET_Analysis, HGLET_Analysis_All,
HGLET_BestBasis, HGLET_GHWT_BestBasis, HGLET_GHWT_Synthesis, HGLET_GHWT_BestBasis_minrelerror
"""
function HGLET_Synthesis(dvec::Vector{Float64}, GP::GraphPart, BS::BasisSpec,
G::GraphSig; gltype::Symbol = :L)
### Input Arguments
* `dvec`: the expansion coefficients corresponding to the chosen basis
* `GP`: a GraphPart object
* `BS`: a BasisSpec object
* `G`: a GraphSig object
* `gltype`: :L, :Lrw, or :Lsym, indicating which eigenvectors are used
### Output Argument
* `f`: the reconstructed signal
* `GS`: the reconstructed GraphSig object
"""
function HGLET_Synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec,
G::GraphSig; gltype::Symbol = :L)
# Preliminaries
W = G.W
jmax = size(GP.rs,2)
# Fill in the appropriate entries of dmatrix
dmatrix = dvec2dmatrix(dvec,GP,BS)
f = dmatrix[:,jmax,:]
# Perform the signal synthesis from the given coefficients
for j = jmax:-1:1
regioncount = count(!iszero, GP.rs[:,j]) - 1
for r = 1:regioncount
# the index that marks the start of the region
rs1 = GP.rs[r,j]
# the index that is one after the end of the region
rs3 = GP.rs[r+1,j]
# the number of points in the current region
n = rs3 - rs1
# only proceed forward if coefficients do not exist
if (j == jmax || count(!iszero, dmatrix[rs1:rs3-1,j+1,:]) == 0) && count(!iszero, dmatrix[rs1:rs3-1,j,:]) > 0
if n == 1
f[rs1,:] = dmatrix[rs1,j,:]
elseif n > 1
indrs = GP.ind[rs1:rs3-1]
W_temp = W[indrs,indrs]
D = Diagonal(vec(sum(W_temp, dims = 1)))
D2 =Diagonal(vec(sum(W_temp, dims = 1)).^(-0.5))
normalizep = false # a flag for normalizing L for Lsym/Lrw
if minimum(diag(D)) > 10^3*eps() # avoiding 1/small entries
normalizep = true
end
# compute the GL eigenvectors via svd.
if ( gltype == :Lrw || gltype == :Lsym ) && normalizep
v,_,_ = svd(D2 * (D - Matrix(W_temp)) * D2)
else
v,_,_ = svd(D - Matrix(W_temp))
if gltype != :L
@warn("Due to the small diagonal entries of W, we revert back to the option :L, not :" * String(gltype))
end
end
v = v[:,end:-1:1] # reorder the ev's in the decreasing ew's
# standardize the eigenvector signs
for col = 1:n
row = 1
standardized = false
while !standardized
if v[row,col] > 10^3*eps()
standardized = true
elseif v[row,col] < -10^3*eps()
v[:,col] = - v[:,col]
standardized = true
else
row += 1
end
end
end
# reconstruct the signal
if gltype == :Lrw && normalizep
f[rs1:rs3-1,:] = D2*v*dmatrix[rs1:rs3-1,j,:]
else
f[rs1:rs3-1,:] = v*dmatrix[rs1:rs3-1,j,:]
end
end
end
end
end
# put the reconstructed values in the correct order
f[GP.ind,:] = f
# creat a GraphSig object with the reconstructed data
GS = deepcopy(G)
replace_data!(GS,f)
return f, GS
end
"""
function HGLET_jkl(GP::GraphPart, drow::Int, dcol::Int)
Generate the (j,k,l) indices for the HGLET basis vector corresponding to
the coefficient dmatrix(drow,dcol)
### Input Arguments
* `GP`: a GraphPart object
* `drow`: the row of the expansion coefficient
* `dcol`: the column of the expansion coefficient
### Output Argument
* `j`: the level index of the expansion coefficient
* `k`: the subregion index of the expansion coefficient
* `l`: the eigenvector index of the expansion coefficient
"""
function HGLET_jkl(GP::GraphPart, drow::Int, dcol::Int)
j = dcol - 1
k = findfirst(GP.rs[:,dcol] .> drow)
k = k-2
l = drow - GP.rs[k+1,dcol]
return j,k,l
end
"""
function HGLET_Analysis(G::GraphSig, GP::GraphPart, gltype::Symbol = :L)
For a GraphSig object 'G', generate the matrix of HGLET expansion
coefficients corresponding to the eigenvectors of specified version of
the graph Laplacian matrix, i.e., either L, Lrw, or Lsym
### Input Arguments
* `G`: a GraphSig object
* `GP`: a GraphPart object
* `gltype`: :L, :Lrw, or :Lsym, indicating which eigenvectors are used
### Output Argument
* `dmatrix`: the matrix of expansion coefficients using the specific GL matrix
"""
function HGLET_Analysis(G::GraphSig, GP::GraphPart, gltype::Symbol = :L)
# Preliminaries
W = G.W
ind = GP.ind
rs = GP.rs
N = size(G.W,1)
jmax = size(rs,2)
fcols = size(G.f,2)
dmatrix = zeros(N,jmax,fcols)
dmatrix[:,jmax,:] = G.f[ind,:]
# Perform the HGLET analysis, i.e., generating the HGLET coefficients
for j = jmax-1:-1:1
regioncount = count(!iszero, rs[:,j]) - 1
for r = 1:regioncount
# the index that marks the start of the region
rs1 = rs[r,j]
# the index that is one after the end of the region
rs3 = rs[r+1,j]
# the number of points in the current region
n = rs3 - rs1
if n == 1
dmatrix[rs1,j,:] = G.f[ind[rs1],:]
elseif n > 1
indrs = ind[rs1:rs3-1]
W_temp = W[indrs,indrs]
D = Diagonal(vec(sum(W_temp, dims = 1)))
D2 = Diagonal(vec(sum(W_temp, dims = 1)).^(-0.5))
normalizep = false # a flag for normalizing L for Lsym and Lrw
if minimum(diag(D)) > 10^3*eps() # avoiding 1/small entries
normalizep = true
end
# compute the GL eigenvectors via svd
if ( gltype == :Lrw || gltype == :Lsym ) && normalizep
v,_,_ = svd(D2 * (D - Matrix(W_temp)) * D2)
else
v,_,_ = svd(D - Matrix(W_temp))
if gltype != :L
@warn("Due to the small diagonal entries of W, we revert back to the option :L, not :" * String(gltype))
end
end
v = v[:,end:-1:1] # reorder the ev's in the decreasing ew's
# standardize the eigenvector signs
for col = 1:n
row = 1
standardized = false
while !standardized
if v[row,col] > 10^3*eps()
standardized = true
elseif v[row,col] < -10^3*eps()
v[:,col] = - v[:,col]
standardized = true
else
row += 1
end
end
end
# obtain the expansion coeffcients
if gltype == :Lrw && normalizep
dmatrix[rs1:rs3-1,j,:] = v'*(D.^0.5)*G.f[indrs,:]
else
dmatrix[rs1:rs3-1,j,:] = v'*G.f[indrs,:]
end
end
end
end
return dmatrix
end
"""
function HGLET_Analysis_All(G::GraphSig, GP::GraphPart)
For a GraphSig object 'G', generate the 3 matrices of HGLET expansion
coefficients corresponding to the eigenvectors of L, Lrw and Lsym
### Input Arguments
* `G`: a GraphSig object
* `GP`: a GraphPart object
### Output Argument
* `dmatrixH`: the matrix of expansion coefficients for L
* `dmatrixHrw`: the matrix of expansion coefficients for Lrw
* `dmatrixHsym`: the matrix of expansion coefficients for Lsym
"""
function HGLET_Analysis_All(G::GraphSig, GP::GraphPart)
# Preliminaries
W = G.W
ind = GP.ind
rs = GP.rs
# This is the type of graph Laplacian matrix used for graph partitioning;
# Not the eigenvector dictionary computed for the HGLET.
method = GP.method
N = size(G.W,1)
jmax = size(rs,2)
fcols = size(G.f,2)
dmatrixH = zeros(N,jmax,fcols)
dmatrixH[:,jmax,:] = G.f[ind,:]
dmatrixHrw = deepcopy(dmatrixH)
dmatrixHsym = deepcopy(dmatrixH)
# Perform the transform ==> eigenvectors of L
for j = jmax-1:-1:1
regioncount = count(!iszero, rs[:,j]) - 1
for r = 1:regioncount
# the index that marks the start of the region
rs1 = rs[r,j]
# the index that is one after the end of the region
rs3 = rs[r+1,j]
# the number of points in the current region
n = rs3-rs1
if n == 1
dmatrixH[rs1,j,:] = G.f[ind[rs1],:]
elseif n > 1
indrs = ind[rs1:rs3-1]
# compute the eigenvectors of L ==> svd(L)
v,_,_ = svd(Diagonal(vec(sum(W[indrs,indrs],dims = 1)))
- Matrix(W[indrs,indrs]))
v = v[:,end:-1:1]
# standardize the eigenvector signs
for col = 1:n
row = 1
standardized = false
while !standardized
if v[row,col] > 10^3*eps()
standardized = true
elseif v[row,col] < -10^3*eps()
v[:,col] = - v[:,col]
standardized = true
else
row += 1
end
end
end
# obtain the expansion coefficients
dmatrixH[rs1:rs3-1,j,:] = v'*G.f[indrs,:]
end
end
end
for j = jmax-1:-1:1
regioncount = count(!iszero, rs[:,j])-1
for r = 1:regioncount
# the index that marks the start of the region
rs1 = rs[r,j]
# the index that is one after the end of the region
rs3 = rs[r+1,j]
# the number of points in the current region
n = rs3 - rs1
if n == 1
dmatrixHrw[rs1,j,:] = G.f[ind[rs1],:]
dmatrixHsym[rs1,j,:] = G.f[ind[rs1],:]
elseif n > 1
indrs = ind[rs1:rs3-1]
# compute the eigenvectors
if minimum(sum(W[indrs,indrs],dims = 1)) > 10^3*eps()
useLrw = true
### eigenvectors of L_rw ==> svd(L_sym)
W_temp = W[indrs,indrs]
D = Diagonal(vec(sum(W_temp,dims = 1)))
D2 =Diagonal(vec(sum(W_temp,dims = 1)).^(-0.5))
v,_,_ = svd(D2 * (D - Matrix(W_temp)) * D2)
v = v[:,end:-1:1]
else
useLrw = false
### eigenvectors of L ==> svd(L)
W_temp = W[indrs,indrs]
D = Diagonal(vec(sum(W_temp,dims = 1)))
v,_,_ = svd(D - Matrix(W_temp))
v = v[:,end:-1:1]
end
#standardized the eigenvector signs
for col = 1:n
row = 1
standardized = false
while !standardized
if v[row,col] > 10^3*eps()
standardized = true
elseif v[row,col] < -10^3*eps()
v[:,col] = - v[:,col]
standardized = true
else
row += 1
end
end
end
# obtain the expansion coefficients for L_sym
dmatrixHsym[rs1:rs3-1,j,:] = v'*G.f[indrs,:]
# obtain the expansion coeffcients for L_rw
if useLrw
dmatrixHrw[rs1:rs3-1,j,:] = v'*(Diagonal(vec(sum(W_temp,dims = 1)).^0.5))*G.f[indrs,:]
else
dmatrixHrw[rs1:rs3-1,j,:] = v'*G.f[indrs,:]
end
end
end
end
return dmatrixH, dmatrixHrw, dmatrixHsym
end
"""
function HGLET_BestBasis(GP::GraphPart;
dmatrix::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
gltype::Symbol = :L, cfspec::Any = 0.1, flatten::Any = 1)
Select the HGLET best basis from the input matrix of expansion coefficients
### Input Arguments
* `GP`: a GraphPart object
* `dmatrix`: the matrix of HGLET expansion coefficients
* `gltype`: the type of graph Laplacian matrix used for HGLET dictionary
(default = :L)
* `cfspec`: the cost functional specification to be used: see utils.jl
for the detail. If it's a number, say, p, then the l^p norm is used.
If it's a function, then that function is used. Default is 0.1, i.e., l^0.1
* `flatten`: the method for flattening vector-valued data to scalar-valued data;
If it's a number, say, p, then the sum of the l^p norm is computed.
There are many other options, such as :ash, :entropy, etc. See utils.jl
for the detail. Default is 1, i.e, the sum of the l^1 norm of the coefs.
### Output Argument
* `dvec`: the vector of expansion coefficients corresponding to the bestbasis
* `BS`: a BasisSpec object which specifies the best basis
"""
function HGLET_BestBasis(GP::GraphPart;
dmatrix::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
gltype::Symbol = :L, cfspec::Any = 0.1, flatten::Any = 1)
# the cost functional to be used
costfun = cost_functional(cfspec)
# constants and dmatrix cleanup
N, jmax, fcols = size(dmatrix)
dmatrix[abs.(dmatrix) .< 10^2*eps()] .= 0
# flatten dmatrix for more than one input signals
if fcols > 1
dmatrix0 = deepcopy(dmatrix)
dmatrix = dropdims(dmatrix_flatten(dmatrix, flatten), dims = 3)
end
#
# Find the HGLET best basis now!
#
# allocate/initialize ==> order matters here
dvec = dmatrix[:,jmax]
levlist = jmax*ones(Int,N)
# set the tolerance
tol = 10^4*eps()
# perform the basis search
for j = jmax:-1:1
regioncount = count(!iszero, GP.rs[:,j]) - 1
for r = 1:regioncount
indr = GP.rs[r,j]:(GP.rs[r+1,j]-1)
### compute the cost of the current best basis
costBB = costfun(dvec[indr])
### compute the cost of the HGLET coefficients
costNew = costfun(dmatrix[indr,j])
# change the best basis if the new cost is less expensive
if costBB >= costNew - tol
costBB, dvec[indr], levlist[indr] = BBchange(costNew, dmatrix[indr,j], j)
end
end
end
levlist = collect(enumerate(levlist))
BS = BasisSpec(levlist, c2f = true, description = "HGLET Best Basis")
#levlist2levlengths!(GP, BS)
# if we flattened dmatrix, then "unflatten" the expansion coefficients
if fcols > 1
dvec = dmatrix2dvec(dmatrix0, GP, BS)
end
return dvec, BS
end
"""
function HGLET_GHWT_BestBasis(GP::GraphPart;
dmatrixH::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHrw::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHsym::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixG::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
cfspec::Any = 0.1,flatten::Any = 1)
Select the best basis from several matrices of expansion coefficients
### Input Arguments
* `dmatrixH`: the matrix of HGLET expansion coefficients ==> eigenvectors of L
* `dmatrixHrw`: the matrix of HGLET expansion coefficients ==> eigenvectors of Lrw
* `dmatrixHsym`: the matrix of HGLET expansion coefficients ==> eigenvectors of Lsym
* `dmatrixG`: the matrix of GHWT expansion coefficients
* `GP`: a GraphPart object
* `cfspec`: the cost functional specification to be used: see utils.jl
for the detail. If it's a number, say, p, then the l^p norm is used.
If it's a function, then that function is used. Default is 0.1, i.e., l^0.1
* `flatten`: the method for flattening vector-valued data to scalar-valued data;
If it's a number, say, p, then the sum of the l^p norm is computed.
There are many other options, such as :ash, :entropy, etc. See utils.jl
for the detail. Default is 1, i.e, the sum of the l^1 norm of the coefs.
### Output Argument
* `dvec`: the vector of expansion coefficients corresponding to the bestbasis
* `BS`: a BasisSpec object which specifies the best basis
* `trans`: specifies which transform was used for that portion of the signal:
00 = HGLET with L
01 = HGLET with Lrw
10 = HGLET with Lsym
11 = GHWT
"""
function HGLET_GHWT_BestBasis(GP::GraphPart;
dmatrixH::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHrw::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHsym::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixG::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
cfspec::Any = 0.1,flatten::Any = 1)
# specify transform codes
transHsym = [true false]
transG = [true true]
transHrw = [false true]
transH = [false false]
# the cost functional to be used
costfun = cost_functional(cfspec)
# constants and dmatrix cleanup
if !isempty(dmatrixHsym)
N, jmax, fcols = size(dmatrixHsym)
dmatrixHsym[abs.(dmatrixHsym).<10^2*eps()] .= 0
end
if !isempty(dmatrixG)
N, jmax, fcols = size(dmatrixG)
dmatrixG[abs.(dmatrixG).<10^2*eps()] .= 0
end
if !isempty(dmatrixHrw)
N, jmax, fcols = size(dmatrixHrw)
dmatrixHrw[abs.(dmatrixHrw).<10^2*eps()] .= 0
end
if !isempty(dmatrixH)
N, jmax, fcols = size(dmatrixH)
dmatrixH[abs.(dmatrixH).<10^2*eps()] .= 0
end
# flatten dmatrix
if fcols > 1
if !isempty(dmatrixHsym)
dmatrix0Hsym = deepcopy(dmatrixHsym)
dmatrixHsym = dropdims(dmatrix_flatten(dmatrixHsym,flatten),dims = 3)
end
if !isempty(dmatrixG)
dmatrix0G = deepcopy(dmatrixG)
dmatrixG = dropdims(dmatrix_flatten(dmatrixG,flatten),dims = 3)
end
if !isempty(dmatrixHrw)
dmatrix0Hrw = deepcopy(dmatrixHrw)
dmatrixHrw = dropdims(dmatrix_flatten(dmatrixHrw,flatten),dims = 3)
end
if !isempty(dmatrixH)
dmatrix0H = deepcopy(dmatrixH)
dmatrixH = dropdims(dmatrix_flatten(dmatrixH,flatten),dims = 3)
end
end
# Find the HGLET/GHWT best basis
# allocate/initialize ==> order matters here
if !isempty(dmatrixHsym)
dvec = dmatrixHsym[:,jmax]
trans = repeat(transHsym,N,1)
end
if !isempty(dmatrixG)
dvec = dmatrixG[:,jmax]
trans = repeat(transG,N,1)
end
if !isempty(dmatrixHrw)
dvec = dmatrixHrw[:,jmax]
trans = repeat(transHrw,N,1)
end
if !isempty(dmatrixH)
dvec = dmatrixH[:,jmax]
trans = repeat(transH,N,1)
end
levlist = jmax*ones(Int,N)
# set the tolerance
tol = 10^4*eps()
# perform the basis search
for j = jmax:-1:1
regioncount = count(!iszero, GP.rs[:,j]) - 1
for r = 1:regioncount
indr = GP.rs[r,j]:(GP.rs[r+1,j]-1)
### compute the cost of the current best basis
costBB = costfun(dvec[indr])
### compute the cost of the HGLET-Lsym coefficients
if !isempty(dmatrixHsym)
costNew = costfun(dmatrixHsym[indr,j])
# change the best basis if the new cost is less expensive
if costBB >= costNew - tol
costBB, dvec[indr], levlist[indr], trans[indr,:] = BBchange(costNew, dmatrixHsym[indr,j],j,transHsym)
end
end
### compute the cost of the GHWT coefficients
if !isempty(dmatrixG)
costNew = costfun(dmatrixG[indr,j])
# change the best basis if the new cost is less expensive
if costBB >= costNew - tol
costBB, dvec[indr], levlist[indr], trans[indr,:] = BBchange(costNew, dmatrixG[indr,j],j,transG)
end
end
### compute the cost of the HGLET-Lrw coefficients
if !isempty(dmatrixHrw)
costNew = costfun(dmatrixHrw[indr,j])
# change the best basis if the new cost is less expensive
if costBB >= costNew - tol
costBB, dvec[indr], levlist[indr], trans[indr,:] = BBchange(costNew, dmatrixHrw[indr,j],j,transHrw)
end
end
### compute the cost of the HGLET-L coefficients
if !isempty(dmatrixH)
costNew = costfun(dmatrixH[indr,j])
# change the best basis if the new cost is less expensive
if costBB >= costNew - tol
_, dvec[indr],levlist[indr],trans[indr,:] = BBchange(costNew, dmatrixH[indr,j],j,transH)
end
end
end
end
transfull = deepcopy(trans)
#trans = trans[levlist.!=0,:]
levlist = collect(enumerate(levlist))
BS = BasisSpec(levlist,c2f = true, description = "HGLET-GHWT Best Basis")
#levlist2levlengths!(GP,BS)
# if we flattened dmatrix, then "unflatten" the expansion coefficients
if fcols > 1
# create vectors of coefficients (which are zero if the transform's coefficients were not included as function inputs)
if !isempty(dmatrixH)
dvecH = dmatrix2dvec(dmatrix0H,GP,BS)
else
dvecH = zeros(N,fcols)
end
if !isempty(dmatrixHrw)
dvecHrw = dmatrix2dvec(dmatrix0Hrw,GP,BS)
else
dvecHrw = zeros(N,fcols)
end
if !isempty(dmatrixHsym)
dvecHsym = dmatrix2dvec(dmatrix0Hsym,GP,BS)
else
dvecHsym = zeros(N,fcols)
end
if !isempty(dmatrixG)
dvecG = dmatrix2dvec(dmatrix0G,GP,BS)
else
dvecG = zeros(N,fcols)
end
dvec = dvecHsym.*(transfull[:,1].*(.~transfull[:,2]))
+ dvecG.*(transfull[:,1].*transfull[:,2])
+ dvecHrw.*((.~transfull[:,1]).*transfull[:,2])
+ dvecH.*((.~transfull[:,1]).*(.~transfull[:,2]))
end
return dvec, BS, transfull
end
function BBchange(costNew::Float64, dvec::Vector{Float64}, j::Int)
#change to the new best basis
costBB = costNew
n = length(dvec)
levlist = fill(j, n)
return costBB, dvec, levlist
end
function BBchange(costNew::Float64, dvec::Vector{Float64}, j::Int, trans::Array{Bool,2})
#change to the new best basis
costBB = costNew
n = length(dvec)
levlist = fill(j, n)
trans = repeat(trans,n,1)
return costBB, dvec, levlist, trans
end
"""
function HGLET_GHWT_Synthesis(dvec::Matrix{Float64},GP::GraphPart,BS::BasisSpec,trans::Array{Bool,2},G::GraphSig)
Given a vector of HGLET & GHWT expansion coefficients, info about the
graph partitioning, and the choice of basis and corresponding transforms,
reconstruct the signal.
### Input Arguments
* `dvec`: the expansion coefficients corresponding to the chosen basis
* `GP`: a GraphPart object
* `BS`: a BasisSpec object
* `trans`: a specification of the transforms used for the HGLET-GHWT hybrid transform
00 = HGLET with L
01 = HGLET with Lrw
10 = HGLET with Lsym
11 = GHWT
* `G`: a GraphSig object
### Output Argument
* `f`: the reconstructed signal
* `GS`: the reconstructed GraphSig object
"""
function HGLET_GHWT_Synthesis(dvec::Matrix{Float64},GP::GraphPart,BS::BasisSpec,trans::Array{Bool,2},G::GraphSig)
# fill out trans
#_,_,transfull = BSfull(GP,BS,trans)
transfull = trans
# decompose dvec into GHWT and HGLET components
dvecHsym= dvec.*(transfull[:,1].*(.~transfull[:,2]))
dvecG = dvec.*(transfull[:,1].*transfull[:,2])
dvecHrw = dvec.*((.~transfull[:,1]).*transfull[:,2])
dvecH = dvec.*((.~transfull[:,1]).*(.~transfull[:,2]))
# Synthesize using the transforms separately
fH,_ = HGLET_Synthesis(dvecH, GP, BS, G)
fHrw,_ = HGLET_Synthesis(dvecHrw, GP, BS, G, gltype = :Lrw)
fHsym,_ = HGLET_Synthesis(dvecHsym, GP, BS, G, gltype = :Lsym)
fG = ghwt_synthesis(dvecG, GP, BS)
f = fH + fHrw + fHsym + fG
GS = deepcopy(G)
replace_data!(GS,f)
return f, GS
end
"""
function HGLET_GHWT_BestBasis_minrelerror(GP::GraphPart, G::GraphSig;
dmatrixH::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHrw::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHsym::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixG::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
compare::Bool = true)
Find the best basis for approximating the signal 'G' by performing the
best basis search with a range of tau-measures as cost functionals
(tau = 0.1,0.2,...,1.9) and minimizing the relative error.
### Input argument:
* `dmatrixH`: the matrix of HGLET expansion coefficients ==> eigenvectors of L
* `dmatrixHrw`: the matrix of HGLET expansion coefficients ==> eigenvectors of Lrw
* `dmatrixHsym`: the matrix of HGLET expansion coefficients ==> eigenvectors of Lsym
* `dmatrixG`: the matrix of GHWT expansion coefficients
* `GP`: a GraphPart object
* `G`: the GraphSig object
* `compare`: if it is false, don't compare the hybrid best basis to the GHWT fine-to-coarse best basis
### Output argument:
* `dvec`: the vector of expansion coefficients corresponding to the bestbasis
* `BS`: a BasisSpec object which specifies the best basis
* `trans`: specifies which transform was used for that portion of the signal
00 = HGLET with L
01 = HGLET with Lrw
10 = HGLET with Lsym
11 = GHWT
* `tau`: the tau that yields the smallest relative error
"""
function HGLET_GHWT_BestBasis_minrelerror(GP::GraphPart, G::GraphSig;
dmatrixH::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHrw::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixHsym::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
dmatrixG::Array{Float64,3} = Array{Float64,3}(undef,0,0,0),
compare::Bool = true)
dvec, BS, trans, tau = 0, 0, 0, 0 # predefine
sumrelerror = Inf
for tau_temp = 0.1:0.1:1.9
# we are only considering the GHWT
if isempty(dmatrixH) && isempty(dmatrixHrw) && isempty(dmatrixHsym) && !isempty(dmatrixG)
dvec_temp, BS_temp = ghwt_bestbasis(dmatrixG, GP, cfspec = tau_temp)
trans_temp = trues(length(BS_temp.levlist),2)
orthbasis = true
else
dvec_temp, BS_temp, trans_temp = HGLET_GHWT_BestBasis(GP,
dmatrixH = dmatrixH, dmatrixG = dmatrixG,
dmatrixHrw = dmatrixHrw, dmatrixHsym = dmatrixHsym,
cfspec = tau_temp)
# check whether any HGLET Lrw basis vectors are in the best basis
orthbasis = true
rows = size(trans_temp,1)
for row = 1:rows
if !trans_temp[row,1] && trans_temp[row,2]
orthbasis = false
break
end
end
end
# compute the relative errors
if orthbasis
relerror_temp = orth2relerror(dvec_temp[:])
else
B,_ = HGLET_GHWT_Synthesis(Matrix{Float64}(I,length(dvec_temp),length(dvec_temp)),
GP, BS_temp, trans_temp, G)
relerror_temp = nonorth2relerror(dvec_temp[:],B)
end
sumrelerror_temp = sum(relerror_temp)
# consider the GHWT fine-to-coarse best basis
if compare == true && !isempty(dmatrixG)
dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrixG, GP, cfspec = tau_temp)
sumrelerror_f2c = sum(orth2relerror(dvec_f2c[:]))
if sumrelerror_f2c < sumrelerror_temp
sumrelerror_temp = sumrelerror_f2c
dvec_temp = copy(dvec_f2c)
BS_temp = deepcopy(BS_f2c)
trans_temp = repeat([true true], length(BS_f2c.levlist),1)
end
end
# compare to the current lowest sum of relative errors
if sumrelerror_temp < sumrelerror
dvec = copy(dvec_temp)
BS = deepcopy(BS_temp)
trans = copy(trans_temp)
sumrelerror = sumrelerror_temp
tau = tau_temp
end
end
return dvec, BS, trans, tau
end
end # end of module HGLET
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 7502 | """
function LPHGLET_Synthesis(dvec::Vector{Float64}, GP::GraphPart, BS::BasisSpec, G::GraphSig; gltype::Symbol = :L, ϵ::Float64 = 0.3)
Perform Lapped-HGLET Synthesis transform
### Input Arguments
* `dvec`: the expansion coefficients corresponding to the chosen basis
* `GP`: a GraphPart object
* `BS`: a BasisSpec object
* `G`: a GraphSig object
* `gltype`: :L or :Lsym, indicating which eigenvectors are used
* `ϵ`: relative action bandwidth (default: 0.3)
### Output Argument
* `f`: the reconstructed signal
* `GS`: the reconstructed GraphSig object
"""
function LPHGLET_Synthesis(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec, G::GraphSig; gltype::Symbol = :L, ϵ::Float64 = 0.3)
# Preliminaries
W = G.W
inds = GP.inds
rs = GP.rs
N = size(W, 1)
jmax = size(rs, 2)
Uf = Matrix{Float64}(I, N, N)
used_node = Set()
# fill in the appropriate entries of dmatrix
dmatrix = dvec2dmatrix(dvec, GP, BS)
f = zeros(size(dmatrix[:, jmax, :]))
# Perform the synthesis transform
for j = 1:jmax
regioncount = count(!iszero, rs[:,j]) - 1
# assemble orthogonal folding operator at level j - 1
keep_folding!(Uf, used_node, W, GP; ϵ = ϵ, j = j - 1)
for r = 1:regioncount
# indices of current region
indr = rs[r, j]:(rs[r + 1, j] - 1)
# indices of current region's nodes
indrs = inds[indr, j]
# number of nodes in current region
n = length(indrs)
# only proceed forward if coefficients do not exist
if (j == jmax || count(!iszero, dmatrix[indr, j + 1, :]) == 0) && count(!iszero, dmatrix[indr, j, :]) > 0
# compute the eigenvectors
W_temp = W[indrs,indrs]
D_temp = Diagonal(vec(sum(W_temp, dims = 1)))
if gltype == :L
# compute the eigenvectors of L ==> svd(L)
v = svd(Matrix(D_temp - W_temp)).U
elseif gltype == :Lsym
# check if one can assemble the Lsym
if minimum(sum(W[indrs, indrs], dims = 1)) > 10^3 * eps()
### eigenvectors of L_sym ==> svd(L_sym)
D_temp_p = Diagonal(vec(sum(W_temp, dims = 1)).^(-0.5))
v = svd(Matrix(D_temp_p * (D_temp - W_temp) * D_temp_p)).U
else
### eigenvectors of L ==> svd(L)
v = svd(Matrix(D_temp - W_temp)).U
end
end
v = v[:,end:-1:1]
# standardize the eigenvector signs
standardize_eigenvector_signs!(v)
# construct unfolder operator custom to current region
P = Uf[indrs, :]'
# reconstruct the signal
f += (P * v) * dmatrix[indr, j, :]
end
end
end
# creat a GraphSig object with the reconstructed data
GS = deepcopy(G)
replace_data!(GS, f)
return f, GS
end
"""
function LPHGLET_Analysis_All(G::GraphSig, GP::GraphPart; ϵ::Float64 = 0.3)
For a GraphSig object 'G', generate the 2 matrices of Lapped-HGLET expansion coefficients
corresponding to the eigenvectors of L and Lsym
### Input Arguments
* `G`: a GraphSig object
* `GP`: a GraphPart object
* `ϵ`: relative action bandwidth (default: 0.3)
### Output Argument
* `dmatrixlH`: the matrix of expansion coefficients for L
* `dmatrixlHsym`: the matrix of expansion coefficients for Lsym
* `GP`: a GraphPart object
"""
function LPHGLET_Analysis_All(G::GraphSig, GP::GraphPart; ϵ::Float64 = 0.3)
# Preliminaries
W = G.W
inds = GP.inds
rs = GP.rs
N = size(W, 1)
jmax = size(rs, 2)
fcols = size(G.f, 2)
Uf = Matrix{Float64}(I, N, N)
used_node = Set()
dmatrixlH = zeros(N, jmax, fcols)
dmatrixlHsym = deepcopy(dmatrixlH)
for j = 1:jmax
regioncount = count(!iszero, rs[:,j]) - 1
# assemble orthogonal folding operator at level j - 1
keep_folding!(Uf, used_node, W, GP; ϵ = ϵ, j = j - 1)
for r = 1:regioncount
# indices of current region
indr = rs[r, j]:(rs[r + 1, j] - 1)
# indices of current region's nodes
indrs = inds[indr, j]
# number of nodes in current region
n = length(indrs)
# compute the eigenvectors
W_temp = W[indrs,indrs]
D_temp = Diagonal(vec(sum(W_temp, dims = 1)))
## eigenvectors of L ==> svd(L)
v = svd(Matrix(D_temp - W_temp)).U
## eigenvectors of L_sym ==> svd(L_sym)
if minimum(sum(W[indrs, indrs], dims = 1)) > 10^3 * eps()
### eigenvectors of L_sym ==> svd(L_sym)
D_temp_p = Diagonal(vec(sum(W_temp, dims = 1)).^(-0.5))
v_sym = svd(Matrix(D_temp_p * (D_temp - W_temp) * D_temp_p)).U
else
### eigenvectors of L ==> svd(L)
v_sym = deepcopy(v)
end
# standardize the eigenvector signs
v = v[:,end:-1:1]
standardize_eigenvector_signs!(v)
v_sym = v_sym[:,end:-1:1]
standardize_eigenvector_signs!(v_sym)
# construct unfolding operator custom to current region
P = Uf[indrs, :]'
# obtain the expansion coefficients
dmatrixlH[indr, j, :] = (P * v)' * G.f
dmatrixlHsym[indr, j, :] = (P * v_sym)' * G.f
end
end
return dmatrixlH, dmatrixlHsym
end
function standardize_eigenvector_signs!(v)
# standardize the eigenvector signs for HGLET (different with NGWPs)
for col = 1:size(v, 2)
row = 1
standardized = false
while !standardized
if v[row, col] > 10^3 * eps()
standardized = true
elseif v[row,col] < -10^3 * eps()
v[:, col] = -v[:, col]
else
row += 1
end
end
end
end
"""
HGLET_dictionary(GP::GraphPart, G::GraphSig; gltype::Symbol = :L)
assemble the whole HGLET dictionary
### Input Arguments
* `GP`: a GraphPart object
* `G`: a GraphSig object
* `gltype`: `:L` or `:Lsym`
### Output Argument
* `dictionary`: the HGLET dictionary
"""
function HGLET_dictionary(GP::GraphPart, G::GraphSig; gltype::Symbol = :L)
N = size(G.W, 1)
jmax = size(GP.rs, 2)
dictionary = zeros(N, jmax, N)
for j = 1:jmax
BS = BasisSpec(collect(enumerate(j * ones(Int, N))))
dictionary[:, j, :] = HGLET_Synthesis(Matrix{Float64}(I, N, N), GP, BS, G; gltype = gltype)[1]'
end
return dictionary
end
"""
LPHGLET_dictionary(GP::GraphPart, G::GraphSig; gltype::Symbol = :L, ϵ::Float64 = 0.3)
assemble the whole LP-HGLET dictionary
### Input Arguments
* `GP`: a GraphPart object
* `G`: a GraphSig object
* `gltype`: `:L` or `:Lsym`
* `ϵ`: relative action bandwidth (default: 0.3)
### Output Argument
* `dictionary`: the LP-HGLET dictionary
"""
function LPHGLET_dictionary(GP::GraphPart, G::GraphSig; gltype::Symbol = :L, ϵ::Float64 = 0.3)
N = size(G.W, 1)
jmax = size(GP.rs, 2)
dictionary = zeros(N, jmax, N)
for j = 1:jmax
BS = BasisSpec(collect(enumerate(j * ones(Int, N))))
dictionary[:, j, :] = LPHGLET_Synthesis(Matrix{Float64}(I, N, N), GP, BS, G; gltype = gltype, ϵ = ϵ)[1]'
end
return dictionary
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 9445 | function rising_cutoff(t)
r = 0
if t <= -1
r = 0
elseif t >= 1
r = 1
else
r = sin(π / 4 * (1 + sin(π / 2 * t)))
end
return r
end
function standardize_fiedler(v)
v1 = deepcopy(v)
v1 ./= norm(v1, 2)
if v1[1] < 0
v1 = -v1
end
return round.(v1; digits = 14)
end
function Lrw_eigenvec(W; nev = 6)
# N = size(W, 1)
# D = Diagonal(sum(W, dims = 1)[:])
# try
# val, vtmp = eigs(D - W, D,
# nev = nev, sigma = eps(), v0 = ones(N) / sqrt(N))
# vtmp = vtmp[:, sortperm(val)[2:end]]
# vtmp ./= sqrt.(sum(vtmp.^2; dims = 1))
# vtmp *= Diagonal(1 .- (vtmp[1, :] .< 0) .* 2)
# catch
#
# return round.(vtmp; digits = 14)
deg = sum(W, dims = 1)[:] # weighted degree vector
if minimum(deg) <= 10^3 * eps()
L = Diagonal(deg) - W
𝛌, 𝚽 = eigen(Matrix(L))
standardize_eigenvector_signs!(𝚽)
return round.(𝚽[:, 2:nev]; digits = 14)
end
Lsym = Diagonal(deg.^(-1/2)) * (Diagonal(deg) - W) * Diagonal(deg.^(-1/2))
𝛌sym, 𝚽sym = eigen(Matrix(Lsym))
𝚽rw = Diagonal(deg.^(-1/2)) * 𝚽sym
𝚽rw ./= sqrt.(sum(𝚽rw.^2; dims = 1))
𝚽rw *= Diagonal(1 .- (𝚽rw[1, :] .< 0) .* 2)
return round.(𝚽rw[:, 2:nev]; digits = 14)
end
function sortnodes_inmargin(active_region, Na, v, W, idx; sign = :positive)
ind = sortperm(v[active_region]; rev = (sign == :positive))
# if there is a tie, use the more dims eigenmaps and sort by lexical order
if length(unique(v[ind])) < length(active_region)
emb = Lrw_eigenvec(W[idx, idx]; nev = 3)'
# for the second dimension coordinate we sort
# the pos region and the neg region in the same order
emb_tp = [Tuple(emb[:, i] .* [1, (sign == :positive) * 2 - 1]) for i in 1:length(idx)]
ind = sortperm(emb_tp[active_region]; rev = (sign == :positive))
end
return ind[(end - Na + 1):end]
end
function find_pairinds(W; ϵ::Float64 = 0.2, idx = 1:size(W, 1), used_node = Set())
v = partition_fiedler(W[idx, idx])[2]
v = standardize_fiedler(v)
vmax = norm(v, Inf)
N = length(v)
pos_active_region = (Int64)[]
neg_active_region = (Int64)[]
tol = 10^3 * eps()
tol *= ((sum(v .>= tol) > sum(v .<= -tol)) * 2 - 1)
for i in 1:N
if idx[i] ∈ used_node
continue
end
if tol <= v[i] < ϵ * vmax
push!(pos_active_region, i)
end
if -ϵ * vmax < v[i] < tol
push!(neg_active_region, i)
end
end
Np = length(pos_active_region)
Nn = length(neg_active_region)
Na = min(Nn, Np) # number of pair inds in action region
# indp = sortperm(v[pos_active_region]; rev = true)[(end - Na + 1):end]
# indn = sortperm(v[neg_active_region])[(end - Na + 1):end]
indp = sortnodes_inmargin(pos_active_region, Na, v, W, idx; sign = :positive)
indn = sortnodes_inmargin(neg_active_region, Na, v, W, idx; sign = :negative)
pair_inds = vcat(idx[pos_active_region[indp]]',
idx[neg_active_region[indn]]')
return pair_inds, v
end
function pair_inds_shadding(W, GP; ϵ = 0.3, J = 1)
rs = GP.rs
inds = GP.inds
(N, jmax) = Base.size(inds)
used_node = Set()
shading = zeros(N)
for j = 1:J
regioncount = count(!iszero, rs[:, j]) - 1
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
pair_inds = find_pairinds(W; ϵ = ϵ, idx = inds[indr, j], used_node = used_node)[1]
for i in 1:size(pair_inds, 2)
pv, nv = pair_inds[:, i]
# if pv ∈ used_node || nv ∈ used_node
# continue
# end
if shading[pv] == 0
shading[pv] = J + 3 - j
end
if shading[nv] == 0
shading[nv] = -(J + 3 - j)
end
end
union!(used_node, Set(pair_inds[:]))
end
end
return shading
end
function keep_folding!(U, used_node, W, GP; ϵ = 0.3, j = 1)
if j == 0
return U
end
rs = GP.rs
inds = GP.inds
N = Base.size(inds, 1)
regioncount = count(!iszero, rs[:, j]) - 1
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
if length(indr) == 1
continue
end
pair_inds, v = find_pairinds(W; ϵ = ϵ, idx = inds[indr, j], used_node = used_node)
vmax = norm(v, Inf)
for i in 1:size(pair_inds, 2)
pv, nv = pair_inds[:, i]
if pv ∈ used_node || nv ∈ used_node
continue
end
# use the half distance between the 1D embeddings,
# i.e., t = const⋅(v[pv] - v[nv] / 2), to compute the rising
# cutoff function, which satisfy r(t)^2 + r(-t)^2 = 1
t = (v[findfirst(inds[indr, j] .== pv)] - v[findfirst(inds[indr, j] .== nv)]) / (2 * ϵ * vmax)
# t = v[findfirst(inds[indr, j] .== pv)] / (ϵ * vmax)
U[pv, pv] = rising_cutoff(t)
U[pv, nv] = rising_cutoff(-t)
U[nv, pv] = -rising_cutoff(-t)
U[nv, nv] = rising_cutoff(t)
end
union!(used_node, Set(pair_inds[:]))
end
end
function unitary_folding_operator(W, GP; ϵ = 0.3, J = 1)
rs = GP.rs
inds = GP.inds
(N, jmax) = Base.size(inds)
U = Matrix{Float64}(I, N, N)
used_node = Set()
for j = 1:J
keep_folding!(U, used_node, W, GP; ϵ = ϵ, j = j)
end
return U
end
"""
lp_ngwp(𝚽::Matrix{Float64}, W_dual::SparseMatrixCSC{Float64, Int64},
GP_dual::GraphPart; ϵ::Float64 = 0.3)
construct the lapped NGWP and GP.tag in place.
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors
- `W_dual::SparseMatrixCSC{Float64, Int64}`: weight matrix of the dual graph
- `GP_dual::GraphPart`: GraphPart object of the dual graph
# Output Argument
- `wavelet_packet::Array{Float64,3}`: the lapped NGWP dictionary. The first
index is for selecting wavelets at a fixed level; the second index is for
selecting the level `j`; the third index is for selecting elements in the
wavelet vector.
"""
function lp_ngwp(𝚽::Matrix{Float64}, W_dual::SparseMatrixCSC{Float64, Int64},
GP_dual::GraphPart; ϵ::Float64 = 0.3)
rs = GP_dual.rs
inds = GP_dual.inds
(N, jmax) = Base.size(inds)
GP_dual.tag = zeros(Int, N, jmax)
GP_dual.tag[:, 1] = Vector{Int}(0:(N - 1))
Uf = Matrix{Float64}(I, N, N)
used_node = Set()
wavelet_packet = zeros(N, jmax, N)
wavelet_packet[:, 1, :] = Matrix{Float64}(I, N, N)
for j = 2:jmax
regioncount = count(!iszero, rs[:, j]) - 1
# Uf = unitary_folding_operator(W_dual, GP_dual; ϵ = ϵ, J = j - 1)
keep_folding!(Uf, used_node, W_dual, GP_dual; ϵ = ϵ, j = j - 1)
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
GP_dual.tag[indr, j] = Vector{Int}(0:(length(indr) - 1))
wavelet_packet[indr, j, :] = const_meyer_wavelets(𝚽, Uf; idx = inds[indr, j])'
end
end
return wavelet_packet
end
function const_meyer_wavelets(𝚽, Uf; idx = 1:size(Uf, 1))
N = size(𝚽, 1)
# 1. nice interpretable way by smooth orthogonal projector
# assemble smooth orthogonal projector custom to nodes `idx`
P = Uf[idx, :]' * Uf[idx, idx]
if diag(P) == χ(idx, N)
B = 𝚽[:, idx]
else
# folding the eigenspace, i.e., 𝚽's column space
Y = 𝚽 * P
# find its column space's orthogonal basis
B = svd(Y).U
end
# 2. alternative faster way by orthogonal unfolding operator
# B = 𝚽 * Uf[:, idx]
# perform varimax rotation to get the meyer_wavelets
Wavelets = varimax(B)
return Wavelets
end
"""
lp_ngwp_analysis(G::GraphSig, 𝚽::Matrix{Float64}, W_dual::SparseMatrixCSC{Float64, Int64},
GP_dual::GraphPart; ϵ::Float64 = 0.3)
perform the LP-NGWP transform of the graph signal(s) `G.f`.
# Input Arguments
- `G::GraphSig`: a GraphSig object
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors
- `W_dual::SparseMatrixCSC{Float64, Int64}`: weight matrix of the dual graph
- `GP_dual::GraphPart`: GraphPart object of the dual graph
# Output Argument
- `wavelet_packet::Array{Float64,3}`: the lapped NGWP dictionary. The first
index is for selecting wavelets at a fixed level; the second index is for
selecting the level `j`; the third index is for selecting elements in the
wavelet vector.
"""
function lp_ngwp_analysis(G::GraphSig, 𝚽::Matrix{Float64}, W_dual::SparseMatrixCSC{Float64, Int64},
GP_dual::GraphPart; ϵ::Float64 = 0.3)
rs = GP_dual.rs
inds = GP_dual.inds
(N, jmax) = Base.size(inds)
fcols = size(G.f, 2)
GP_dual.tag = zeros(Int, N, jmax)
GP_dual.tag[:, 1] = Vector{Int}(0:(N - 1))
Uf = Matrix{Float64}(I, N, N)
used_node = Set()
dmatrix = zeros(N, jmax, fcols)
dmatrix[:, 1, :] = G.f
for j = 2:jmax
regioncount = count(!iszero, rs[:, j]) - 1
keep_folding!(Uf, used_node, W_dual, GP_dual; ϵ = ϵ, j = j - 1)
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
GP_dual.tag[indr, j] = Vector{Int}(0:(length(indr) - 1))
dmatrix[indr, j, :] = const_meyer_wavelets(𝚽, Uf; idx = inds[indr, j])' * G.f
end
end
return dmatrix
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 2293 | __precompile__()
module MultiscaleGraphSignalTransforms
include("GraphSignal.jl")
include("GraphPartition.jl")
include("BasisSpecification.jl")
include("common.jl")
include("GHWT.jl")
include("GHWT_2d.jl")
include("GHWT_tf_1d.jl")
include("GHWT_tf_2d.jl")
include("HGLET.jl")
include("GraphSig_Plot.jl")
include("gplot.jl")
include("partition_fiedler.jl")
using Reexport
@reexport using .GraphSignal, .GraphPartition, .BasisSpecification, .GHWT, .GHWT_2d, .GHWT_tf_1d, .GHWT_tf_2d, .HGLET
export dvec2dmatrix, dmatrix2dvec, levlist2levlengths!, bsfull, bs_haar, bs_level, bs_walsh, dvec_Threshold, rs_to_region, GraphSig_Plot, gplot, gplot!, partition_fiedler
export cost_functional, dmatrix_flatten, dmatrix_ldb_flatten
## export functions of NGWP.jl
using LinearAlgebra, SparseArrays, Graphs, SimpleWeightedGraphs, Clustering
using JuMP, Clp, Optim, Statistics, QuadGK, Arpack
import Plots: plot, plot!, scatter, scatter!
import StatsBase: crosscor
include("dualgraph.jl")
include("eigDAG_Distance.jl")
include("eigHAD_Distance.jl")
include("eigROT_Distance.jl")
include("eigsROT_Distance.jl")
include("eigTSD_Distance.jl")
include("helpers.jl")
include("LP-HGLET.jl")
include("LP-NGWP.jl")
include("natural_distances.jl")
include("utils.jl")
include("varimax.jl")
include("NGWF.jl")
include("NGWP.jl")
include("PC-NGWP.jl")
include("SunFlowerGraph.jl")
include("VM-NGWP.jl")
export eigDAG_Distance, eigHAD_Distance, eigHAD_Affinity
export eigROT_Distance, ROT_Distance, eigEMD_Distance
export eigsROT_Distance
export eigTSD_Distance, K_functional
export natural_eigdist
export SunFlowerGraph, dualgraph
export pc_ngwp, pairclustering, mgslp
export vm_ngwp, varimax
export lp_ngwp, rising_cutoff, find_pairinds, pair_inds_shadding, lp_ngwp_analysis
export LPHGLET_Synthesis, LPHGLET_Analysis_All, HGLET_dictionary, LPHGLET_dictionary
export unitary_folding_operator, keep_folding!
export ngwp_analysis, ngwp_bestbasis, NGWP_jkl
export natural_eigdist
export nat_spec_filter, ngwf_all_vectors, rngwf_all_vectors, ngwf_vector, frame_approx, rngwf_lx
export scatter_gplot, scatter_gplot!, stem, stem!
export standardize_eigenvectors!, spike, characteristic, χ, sort_wavelets, transform2D
export getall_expansioncoeffs, approx_error_plot, getall_expansioncoeffs2, approx_error_plot2
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 3912 | """
nat_spec_filter(l, D; σ = 0.25 * maximum(D), method = :regular, thres = 0.2)
assemble the natural spectral graph filter centered at the l-th eigenvector via
the distance matrix `D`.
# Input Arguments
- `l::Int64`: index of the centered eigenvector
- `D::Matrix{Float64}`: non-trivial distance matrix of the eigenvectors
- `σ::Float64`: Gaussian window width parameter (default: `0.25 * maximum(D)`)
- `method::Symbol`: `:regular` or `:reduced` (default: `:regular`)
- `thres::Float64`: cutoff threshold ∈ (0, 1).
# Output Argument
- `𝛍::Vector{Float64}`: the natural spectral graph filter
"""
function nat_spec_filter(l, D; σ = 0.25 * maximum(D), method = :regular, thres = 0.2)
d = D[:, l]
𝛍 = exp.(-(d ./ σ).^2)
𝛍 ./= sum(𝛍)
if method == :reduced
𝛍 .*= (𝛍 .> (thres * maximum(𝛍)))
end
return 𝛍
end
"""
ngwf_all_vectors(D, 𝚽; σ = 0.2 * maximum(D))
assemble the whole NGWF dictionary.
# Input Arguments
- `D::Matrix{Float64}`: non-trivial distance matrix of the eigenvectors
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors
- `σ::Float64`: Gaussian window width parameter (default: `0.25 * maximum(D)`)
# Output Argument
- `𝓤::Matrix{Float64}`: the NGWF dictionary
"""
function ngwf_all_vectors(D, 𝚽; σ = 0.2 * maximum(D))
N = size(D, 1)
𝓤 = zeros(N, 0)
for l = 1:N
𝛍 = nat_spec_filter(l, D; σ = σ)
P = 𝚽 * Diagonal(𝛍) * 𝚽'
𝓤 = hcat(𝓤, P)
end
return 𝓤
end
"""
rngwf_all_vectors(D, 𝚽; σ = 0.2 * maximum(D), thres = 0.2)
assemble the reduced NGWF (rNGWF) dictionary.
# Input Arguments
- `D::Matrix{Float64}`: non-trivial distance matrix of the eigenvectors
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors
- `σ::Float64`: Gaussian window width parameter (default: `0.25 * maximum(D)`)
- `thres::Float64`: cutoff threshold ∈ (0, 1).
# Output Argument
- `𝓤::Matrix{Float64}`: the rNGWF dictionary
- `dic_l2x::Dict`: a dictionary to store the filtered locations by QR at the l-th
centered eigenvector
"""
function rngwf_all_vectors(D, 𝚽; σ = 0.2 * maximum(D), thres = 0.2)
N = size(D, 1)
𝓤 = zeros(N, 0)
dic_l2x = Dict()
for l = 1:N
𝛍 = nat_spec_filter(l, D; σ = σ, method = :reduced, thres = thres)
P = 𝚽 * Diagonal(𝛍) * 𝚽'
dic_l2x[l] = qr(P, Val(true)).p[1:rank(P, rtol = 10^4 * eps())]
𝓤 = hcat(𝓤, P[:, dic_l2x[l]])
end
return 𝓤, dic_l2x
end
function ngwf_vector(D, l, x, 𝚽; σ = 0.1 * maximum(D))
N = size(𝚽, 1)
P = 𝚽 * Diagonal(nat_spec_filter(l, D; σ = σ)) * 𝚽'
ψ = P * spike(x, N)
ψ ./= norm(ψ, 2)
return ψ
end
"""
frame_approx(f, U, V; num_kept = length(f))
approximate signal `f` by the frame `U`.
# Input Arguments
- `f::Vector{Float64}`: input graph signal
- `U::Matrix{Float64}`: a frame operator (matrix or dictionary)
- `V::Matrix{Float64}`: the dual frame operator of `U`
- `num_kept::Int64`: number of kept coefficients (NCR)
# Output Argument
- `rel_error::Vector{Float64}`: the relative errors
- `f_approx::Vector{Float64}`: the approximated signal
"""
function frame_approx(f, U, V; num_kept = length(f))
g = U' * f
ind = sortperm(g.^2; rev = true)[1:num_kept]
f_approx = zeros(length(f))
rel_error = [1.0]
for γ in ind
f_approx += g[γ] * V[:, γ]
f_res = f - f_approx
push!(rel_error, norm(f_res)/norm(f))
end
return rel_error, f_approx
end
"""
rngwf_lx(dic_l2x)
find the sequential subindices of rNGWF vectors.
# Input Arguments
- `dic_l2x::Dict`: a dictionary to store the filtered locations by QR at the l-th
centered eigenvector
# Output Argument
- `Γ::Vector{Tuple{Int64,Int64}}`: the sequential subindices of rNGWF vectors.
"""
function rngwf_lx(dic_l2x)
N = length(dic_l2x)
Γ = (Tuple{Int64,Int64})[]
for l = 1:N
for x in dic_l2x[l]
push!(Γ, (l - 1, x))
end
end
return Γ
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 4970 |
"""
ngwp_analysis(G::GraphSig, wavelet_packet::Array{Float64,3})
For a GraphSig object `G`, generate the matrix of NGWP expansion coefficients.
# Input Arguments
- `G::GraphSig`: an input GraphSig object
- `wavelet_packet::Array{Float64,3}`: the varimax wavelets packet.
# Output Argument
- `dmatrix::Array{Float64,3}`: the expansion coefficients matrix.
"""
function ngwp_analysis(G::GraphSig, wavelet_packet::Array{Float64,3})
f = G.f
fcols = size(f, 2)
(N, jmax, ) = Base.size(wavelet_packet)
dmatrix = zeros(N, jmax, fcols)
dmatrix[:, 1, :] = f
for j = 2:jmax
for i = 1:N
dmatrix[i, j, :] = f' * wavelet_packet[i, j, :]
end
end
return dmatrix
end
"""
const_proj_wavelets(𝚽,vlist,elist; method = "Modified Gram-Schmidt with Lp Pivoting")
construct projection wavelets, i.e., project δ ∈ vlist onto span({φⱼ| j ∈ elist}).
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors 𝚽
- `vlist::Array{Int}`: the list of considered node indices.
- `elist::Array{Int}`: the list of considered eigenvector indices.
- `method::Symbol`: default is `:MGSLp`. other options: `:IP` (Iterative-Projection),
`GS` (Gram Schmidt).
# Output Argument
- `Wav::Matrix{Float64}`: a matrix whose columns are projected wavelet vectors.
"""
function const_proj_wavelets(𝚽, vlist, elist; method = :MGSLp)
if length(vlist) == 1
return 𝚽[:, elist]
end
N = size(𝚽, 1)
m = length(vlist)
Wav = zeros(N, m)
B = 𝚽[:, elist]
if method == :IP
for k in 1:length(vlist)
wavelet = Proj(spike(vlist[k], N), B)
Wav[:, k] .= wavelet ./ norm(wavelet)
B = wavelet_perp_Matrix(wavelet, B)
end
elseif method == :GS
P = B * B'
for k in 1:length(vlist)
wavelet = P * spike(vlist[k], N)
Wav[:,k] .= wavelet ./ norm(wavelet)
end
Wav, complement_dim = gram_schmidt(Wav)
if complement_dim != 0
complement_space = B * nullspace(Wav' * B)
Wav = hcat(Wav, complement_space)
end
elseif method == :MGSLp
P = B * B'
for k in 1:length(vlist)
wavelet = P * spike(vlist[k], N)
Wav[:,k] .= wavelet ./ norm(wavelet)
end
Wav, complement_dim = mgslp(Wav)
if complement_dim != 0
complement_space = B * nullspace(Wav' * B)
Wav = hcat(Wav, complement_space)
end
else
error("Do not support method ", method)
end
return Wav
end
"""
function NGWP_jkl(GP_star::GraphPart, drow::Int, dcol::Int)
Generate the (j,k,l) indices for the NGWP basis vector corresponding to the coefficient dmatrix(drow,dcol)
### Input Arguments
* `GP_star::GraphPart`: a GraphPart object of the dual grpah
* `drow::Int`: the row of the expansion coefficient
* `dcol::Int`: the column of the expansion coefficient
### Output Argument
* `j`: the level index of the expansion coefficient
* `k`: the subregion in dual graph's index of the expansion coefficient
* `l`: the tag of the expansion coefficient
"""
function NGWP_jkl(GP_star::GraphPart, drow::Int, dcol::Int)
(j, k, l) = GHWT_jkl(GP_star, drow, dcol)
return j,k,l
end
"""
(dvec_ngwp, BS_ngwp) = ngwp_bestbasis(dmatrix::Array{Float64,3}, GP_star::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix, 2),
useParent::Bool = true)
Select the best basis from the matrix of NGWP expansion coefficients.
# Input Arguments
- `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients
- `GP_star::GraphPart`: an input GraphPart object of the dual graph
- `cfspec::Any`: the specification of cost functional to be used (default = 1.0,
i.e., 1-norm)
- `flatten::Any`: the method for flattening vector-valued data to scalar-valued
data (default = 1.0, i.e, 1-norm)
- `useParent::Bool`: the flag to indicate if we update the selected best basis
subspace to the parent when parent and child have the same cost (default = false)
# Output Arguments
- `dvec_ngwp::Matrix{Float64}`: the vector of expansion coefficients corresponding
to the NGWP best basis
- `BS_ngwp::BasisSpec`: a BasisSpec object which specifies the NGWP best basis
"""
function ngwp_bestbasis(dmatrix::Array{Float64,3}, GP_star::GraphPart;
cfspec::Any = 1.0, flatten::Any = 1.0,
j_start::Int = 1, j_end::Int = size(dmatrix, 2),
useParent::Bool = false)
dvec_ngwp, BS_ngwp = ghwt_c2f_bestbasis(dmatrix, GP_star; cfspec = cfspec,
flatten = flatten, j_start = j_start, j_end = j_end,
useParent = useParent)
BS_ngwp.description = "NGWP Best Basis"
return dvec_ngwp, BS_ngwp
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 4819 | """
pairclustering(𝚽::Matrix{Float64}, GP_star::GraphPart)
construct the GraphPart object of the primal graph via pair-clustering algorithm.
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors 𝚽
- `GP_star::GraphPart`: GraphPart object of the dual graph
# Output Argument
- `GP::GraphPart`: GraphPart object of the primal graph via pair-clustering
"""
function pairclustering(𝚽::Matrix{Float64}, GP_star::GraphPart)
rs_dual = GP_star.rs
inds_dual = GP_star.inds
(N, jmax) = Base.size(inds_dual)
# TRACKING VARIABLES
# `ind` records the way in which the nodes are indexed on each level
ind = Vector{Int}(1:N)
# `inds` records the way in which the nodes are indexed on all levels
inds = zeros(Int, N, jmax)
inds[:, 1] = ind
# `rs` stands for regionstart, meaning that the index in `ind` of the first
# point in region number `i` is `rs[i]`
rs = deepcopy(rs_dual)
j = 1
regioncount = 0
while regioncount < N
regioncount = count(!iszero, rs[:, j]) - 1
if j == jmax # add a column to rs for level j+1, if necessary
rs = hcat(rs, vcat(Int(1), zeros(Int, N)))
inds = hcat(inds, zeros(Int, N))
jmax = jmax + 1
end
# for tracking the child regions
rr = 1
for r = 1:regioncount
rs1 = rs[r, j]
rs2 = rs[r + 1, j]
n = rs2 - rs1
if n > 1 # regions with 2 or more nodes
indrs = ind[rs1:(rs2 - 1)]
n1 = rs[rr + 1, j + 1] - rs1
indrs_dual1 = inds_dual[rs1:(rs1 + n1 - 1), j + 1]
indrs_dual2 = inds_dual[(rs1 + n1):(rs2 - 1), j + 1]
# partition the current region
(indp1, indp2) = partition_pc(𝚽, indrs, indrs_dual1, indrs_dual2)
# update the indexing
ind[rs1:(rs1 + n1 - 1)] = indrs[indp1]
ind[(rs1 + n1):(rs2 - 1)] = indrs[indp2]
# update the child region tracking
rr += 2
elseif n == 1
rr += 1
end
end
j = j + 1
inds[:, j] = ind
end
# get rid of excess columns in rs
rs = rs[:, 1:(j - 1)]
# get rid of excess columns in inds
inds = inds[:, 1:(j - 1)]
return GraphPart(ind, rs; inds = inds)
end
"""
partition_pc(𝚽::Matrix{Float64}, indrs::Vector{Int}, indrs_dual1::Vector{Int}, indrs_dual2::Vector{Int})
based on the partition on dual graph, partition the primal graph region
(indexed by `indrs`) into two pieces via the pair-clustering algorithm.
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors 𝚽
- `indrs::Vector{Int}`: indices of the primal graph region to be partitioned
- `indrs_dual1::Vector{Int}`: index1 of the dual graph region's partition result
- `indrs_dual2::Vector{Int}`: index2 of the dual graph region's partition result
# Output Argument
- `indp1::Vector{Int}`: index1 of `indrs` for the partition result
- `indp2::Vector{Int}`: index2 of `indrs` for the partition result
"""
function partition_pc(𝚽::Matrix{Float64}, indrs::Vector{Int}, indrs_dual1::Vector{Int}, indrs_dual2::Vector{Int})
n = length(indrs)
n1 = length(indrs_dual1)
E = 𝚽[indrs, :].^2
score = sum(E[:, indrs_dual1], dims = 2) - sum(E[:, indrs_dual2], dims = 2)
indp1 = sortperm(score[:]; rev = true)[1:n1]
indp2 = setdiff(1:n, indp1)
return indp1, indp2
end
"""
pc_ngwp(𝚽::Matrix{Float64}, GP_star::GraphPart, GP::GraphPart)
construct pair-clustering NGWP and GP.tag in place.
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors 𝚽
- `GP_star::GraphPart`: GraphPart object of the dual graph
- `GP::GraphPart`: GraphPart object of the primal graph
# Output Argument
- `wavelet_packet::Array{Float64,3}`: the pair-clustering NGWP. The first
index is for selecting wavelets at a fixed level; the second index is for
selecting the level `j`; the third index is for selecting elements in the
wavelet vector.
"""
function pc_ngwp(𝚽::Matrix{Float64}, GP_star::GraphPart, GP::GraphPart)
rs = GP_star.rs
inds_dual = GP_star.inds
inds_primal = GP.inds
(N, jmax) = Base.size(inds_dual)
GP_star.tag = zeros(Int, N, jmax)
GP_star.tag[:, 1] = Vector{Int}(0:(N - 1))
wavelet_packet = zeros(N, jmax, N)
wavelet_packet[:, 1, :] = Matrix{Float64}(I, N, N)
for j = 2:jmax
regioncount = count(!iszero, rs[:, j]) - 1
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
GP_star.tag[indr, j] = Vector{Int}(0:(length(indr) - 1))
wavelet_packet[indr, j, :] = const_proj_wavelets(𝚽, inds_primal[indr, j], inds_dual[indr, j])'
end
end
return wavelet_packet
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1346 | using Graphs, SimpleWeightedGraphs, LinearAlgebra
"""
SunFlowerGraph(; N = 400)
SUNFLOWERGRAPH construct a simple weighted sunflower graph with N vertices. Edge weights are the reciprocal of Euclidean distances.
# Input Arguments
- `N::Int64`: default is 400, the number of vertices. Requires N > 26.
# Output Argument
- `G::SimpleWeightedGraph{Int64,Float64}`: a simple weighted graph of the sunflower.
- `L::Matrix{Float64}`: the weighted unnormalized graph Laplacian matrix.
- `X::Matrix{Float64}`: a matrix whose i-th row represent the 2D coordinates of the i-th node.
"""
function SunFlowerGraph(; N = 400)
c=1.0/N; θ=(sqrt(5.0)-1)*π;
X = zeros(N,2); for k=1:N X[k,:]=c*(k-1)*[cos((k-1)*θ) sin((k-1)*θ)]; end
G = SimpleWeightedGraph(N)
for k = 2:8
G.weights[1,k] = 1/norm(X[1,:] - X[k,:])
G.weights[k,1] = 1/norm(X[1,:] - X[k,:])
end
for k = 1:N
if k+8 <= N
G.weights[k,k+8] = 1/norm(X[k,:] - X[k+8,:])
G.weights[k+8,k] = 1/norm(X[k,:] - X[k+8,:])
end
if k+13 <= N
G.weights[k,k+13] = 1/norm(X[k,:] - X[k+13,:])
G.weights[k+13,k] = 1/norm(X[k,:] - X[k+13,:])
end
end
W = weights(G) #weighted adjacency_matrix
Lw = Diagonal(sum(W, dims = 2)[:]) - W #weighted laplacian_matrix
return G, Lw, X
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1154 | """
vm_ngwp(𝚽::Matrix{Float64}, GP_star::GraphPart)
construct varimax NGWP and GP_star.tag in place.
# Input Arguments
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors 𝚽
- `GP_star::GraphPart`: GraphPart object of the dual graph
# Output Argument
- `wavelet_packet::Array{Float64,3}`: the varimax NGWP. The first index is for
selecting wavelets at a fixed level; the second index is for selecting the
level `j`; the third index is for selecting elements in the wavelet vector.
"""
function vm_ngwp(𝚽::Matrix{Float64}, GP_star::GraphPart)
rs = GP_star.rs
inds = GP_star.inds
(N, jmax) = Base.size(inds)
GP_star.tag = zeros(Int, N, jmax)
GP_star.tag[:, 1] = Vector{Int}(0:(N - 1))
wavelet_packet = zeros(N, jmax, N)
wavelet_packet[:, 1, :] = Matrix{Float64}(I, N, N)
for j = 2:jmax
regioncount = count(!iszero, rs[:, j]) - 1
for r = 1:regioncount
indr = rs[r, j]:(rs[r + 1, j] - 1)
GP_star.tag[indr, j] = Vector{Int}(0:(length(indr) - 1))
wavelet_packet[indr, j, :] = varimax(𝚽[:, inds[indr, j]])'
end
end
return wavelet_packet
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 15347 | using .GraphSignal, .GraphPartition, .BasisSpecification, LinearAlgebra
"""
dmatrix = dvec2dmatrix(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec)
Given a vector of expansion coefficients, convert it to a matrix.
### Input Arguments
* `dvec::Matrix{Float64}`: a vector of expansion coefficients
* `GP::GraphPart`: a GraphPart object
* `BS::BasisSpec`: a BasisSpec object
### Output Argument
* `dmatrix::Array{Float64,3}`: a set of matrices of expansion coefficients
"""
function dvec2dmatrix(dvec::Matrix{Float64}, GP::GraphPart, BS::BasisSpec)
#
# 0. Preliminaries
#
# extract data
# MATLAB: [levlist,levlengths] = ExtractData(BS,GP);
#if isempty(BS.levlengths) && GP != nothing
# levlist2levlengths!(GP, BS)
#end
levlist = BS.levlist
#levlengths = BS.levlengths
# constants
(N, jmax) = Base.size(GP.rs)
N = N - 1
fcols = Base.size(dvec, 2)
# allocate space
dmatrix = zeros(N, jmax, fcols)
#
# 1. Put the entries in the vector into the correct places in the matrix
#
# n = 1
# for row = 1:length(levlist)
# dmatrix[n:(n + levlengths[row] - 1), levlist[row], :] =
# dvec[n:(n + levlengths[row] - 1), :]
# n += levlengths[row]
# end
for i = 1:length(levlist)
dmatrix[levlist[i][1], levlist[i][2], :] = dvec[i,:]
end
#
# 2. Return the `dmatrix` array
#
return dmatrix
end # of function dvec2dmatrix
"""
(dvec, BS) = dmatrix2dvec(dmatrix::Array{Float64,3}, GP::GraphPart)
Given a matrix of expansion coefficients, convert it to a vector.
### Input Arguments
* `dmatrix::Array{Float64,3}`: matrices of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `BS::BasisSpec`: an input BasisSpec object
### Outputs Arguments
* `dvec::Matrix{Float64}`: a vector of expansion coefficients
* `BS::BasisSpec`: an output BasisSpec object
"""
function dmatrix2dvec(dmatrix::Array{Float64,3}, GP::GraphPart)
# constants
(N, jmax, fcols) = Base.size(dmatrix)
# THE BASIS IS NOT SPECIFIED ==> retain nonzero coeffs and specify the basis
## 0. Preliminaries
# allocate/initialize
dvec = dmatrix[:, jmax, :]
levlist = jmax * ones(Int, N)
## 1. Make a vector of the nonzero basis entries
for j = (jmax - 1):-1:1
regioncount = countnz(GP.rs[:, j]) - 1
for r = 1:regioncount
indr = GP.rs[r, j]:(GP.rs[r + 1, j] - 1)
if countnz(dmatrix[indr, j, :]) > 0
dvec[indr, :] = dmatrix[indr, j, :]
levlist[GP.rs[r, j]:(GP.rs[r + 1, j] - 1)] .= j
end
end
end
## 2. Specify the corresponding basis and return things
levlist = collect(enumerate(levlist))
BS = BasisSpec(levlist)
#levlist2levlengths!(GP, BS)
return dvec, BS
end # of function dmatrix2dvec (with no BS input)
"""
dvec = dmatrix2dvec(dmatrix::Array{Float64,3}, GP::GraphPart, BS::BasisSpec)
Given a matrix of expansion coefficients, convert it to a vector.
This function assumes that the input coefficient array `dmatrix` is in the coarse-to-fine format. If `BS.c2f == false`, then this function internally converts `dmatrix` into the fine-to-coarse format. Hence, if one supplies the f2c `dmatrix`, the results become wrong, and the subsequent procedure may result in error.
### Input Arguments
* `dmatrix::Array{Float64,3}`: matrices of expansion coefficients
* `GP::GraphPart`: an input GraphPart object
* `BS::BasisSpec`: an input BasisSpec object
### Outputs Arguments
* `dvec::Matrix{Float64}`: a vector of expansion coefficients
"""
function dmatrix2dvec(dmatrix::Array{Float64,3}, GP::GraphPart, BS::BasisSpec)
# constants
(N, jmax, fcols) = Base.size(dmatrix)
# THE BASIS IS SPECIFIED ==> select the corresponding coefficients
## 0. Preliminaries
# allocate space
dvec = zeros(N, fcols)
# if isempty(BS.levlengths)
# levlist2levlengths!(GP, BS)
# else
# @warn("We assume that levlengths of the input BS were already computed properly prior to dmatrix2dvec.")
# end
levlist = BS.levlist
#levlengths = BS.levlengths
BSc2f = BS.c2f
# put dmatrix in the fine-to-coarse arrangement, if necessary
if !BSc2f # This assumes that dmatrix has not yet been arranged in f2c
#if !BSc2f && isempty(GP.rsf2c)
dmatrix = fine2coarse!(GP, dmatrix = dmatrix, coefp = true)
end
## 1. Make a vector of the matrix entries specified by the BS object
# n = 1
# for row = 1:length(levlist)
# dvec[n:(n + levlengths[row] - 1), :] =
# dmatrix[n:(n + levlengths[row] - 1), levlist[row], :]
# n += levlengths[row]
# end
for i = 1:length(levlist)
dvec[i,:] = dmatrix[levlist[i][1], levlist[i][2], :]
end
## 2. Return the dvec
return dvec
end # of dmatrix2dvec (with BS input)
"""
levlist2levlengths!(GP::GraphPart, BS::BasisSpec)
Compute the levlengths info for a BasisSpec object
### Input Arguments
* `GP::GraphPart`: a GraphPart object
* `BS::BasisSpec`: BasisSpec object, without `levlengths`; after this function, the `levlengths` field is filled.
"""
function levlist2levlengths!(GP::GraphPart, BS::BasisSpec)
# 0. Preliminaries
levlist = BS.levlist
rs = GP.rs
# allocate space
levlengths = zeros(typeof(rs[1]), length(levlist))
# 1. Determine the length of each basis block specified by levlist
if BS.c2f # coarse-to-fine case
n = 0
for row = 1:length(levlist)
# find the regionstart(s) of the next region
# MATLAB: IX = find( GP.rs(:,levlist(row))==n+1, 1, 'last' );
IX = something(findlast(isequal(n+1), rs[:, levlist[row]]), 0)
#IX = findlast( rs[:, levlist[row]], n + 1 )
levlengths[row] = rs[IX+1, levlist[row]] - rs[IX, levlist[row]]
n += levlengths[row]
end
else # fine-to-coarse case
n = 0
if isempty(GP.rsf2c)
fine2coarse!(GP)
end
rsf2c = GP.rsf2c # This must be here: GP.rsf2c cannot be null!
for row = 1:length(levlist)
IX = something(findlast(isequal(n+1), rsf2c[:, levlist[row]]), 0)
#IX = findlast( rsf2c[:, levlist[row]], n + 1 )
levlengths[row] = rsf2c[IX + 1, levlist[row]] - rsf2c[IX, levlist[row]]
n += levlengths[row]
end
end
# 2. Postprocessing
# get rid of blocks with length 0
# MATLAB: levlist(levlengths == 0) = [];
# levlengths(levlengths == 0) = [];
# BS = BasisSpec(levlist,levlengths,c2f,description);
levlist = levlist[levlengths .!= 0] # . before != is important here!!
levlengths = levlengths[levlengths .!= 0]
BS.levlengths = levlengths
end # of function levlist2levlengths!
"""
(levlistfull, levlengthsfull, transfull) = bsfull(GP::GraphPart, BS::BasisSpec, trans::Vector{Bool})
Given a BasisSpec object, return the full-length, redundant levlist, levlengths, and trans descriptions.
### Input Arguments
* `GP::GraphPart`: an input GraphPart object
* `BS::BasisSpec`: an input BasisSpec object
* `trans::Vector{Bool}`: a specification of the transforms used for the HGLET-GHWT hybrid transform (default: null)
* `levlengthsp::Bool`: a flag to return levlengthsfull (default: false)
* `transp::Bool`: a flag to return transfull (default: false)
### Output Arguments
* `levlistfull::Vector{UInt8}`: the full-length, redundant levels list description
* `levlengthsfull::Vector{UInt8}`: the full-length, redundant levels lengths description
* `transfull::Matrix{Bool}`: the full-length, redundant trans description
"""
function bsfull(GP::GraphPart, BS::BasisSpec;
trans::Vector{Bool} = Vector{Bool}(undef, 0),
levlengthsp::Bool = false, transp::Bool = false)
## 0. Preliminaries
# extract data
if isempty(BS.levlengths)
levlist2levlengths!(GP, BS)
end
levlist = BS.levlist
levlengths = BS.levlengths
# allocate space
N = Base.length(GP.ind)
levlistfull = zeros(Int, N)
# Assuming that the maximum value of levlist <= jmax \approx log2(N)
# can be representable by `UInt8`, i.e., N < \approx 5.79E76, which is
# reasonable. We cannot handle such a large N at this point.
if levlengthsp
levlengthsfull = zeros(Int, N)
end
if transp && !isempty(trans)
cols = Base.size(trans, 2)
# MATLAB: transfull = false(N, cols)
transfull = falses(N, cols)
else
transfull = falses(0) # transfull is empty.
end
## 1. Fill out the redundant descriptions
global idx = 0
for row = 1:length(levlist)
levlistfull[(idx + 1):(idx + levlengths[row])] .= levlist[row]
if levlengthsp
levlengthsfull[(idx + 1):(idx + levlengths[row])] .= levlengths[row]
end
if !isempty(transfull)
transfull[(idx + 1):(idx + levlengths[row]), :] = repmat(trans[row, :], levlengths[row], 1)
end
global idx += levlengths[row]
end
## 2. Prepare the returns
if levlengthsp
if transp
return levlistfull, levlengthsfull, transfull
else
return levlistfull, levlengthsfull
end
else
if transp
return levlistfull, transfull
else
return levlistfull
end
end
end # of function bsfull
"""
BS = bs_haar(GP::GraphPart)
Specify the Haar basis for a given graph partitioning
### Input Argument
* `GP::GraphPart`: an input GraphPart object
### Output Argument
* `BS::BasisSpec`: a BasisSpec object corresponding to the Haar basis
"""
# function bs_haar(GP::GraphPart)
#
# # determine jmax
# jmax = Base.size(GP.rs, 2)
#
# # allocate space for levlist
# levlist = zeros(Int, jmax)
#
# # fill in levlist for the Haar basis
# levlist[1] = jmax
# for row = 2:jmax
# levlist[row] = jmax + 2 - row
# end
#
# # make a BasisSpec object
# BS = BasisSpec(levlist, c2f = false, description = "Haar basis")
# # fill in the levlengths field of the BasisSpec object
# levlist2levlengths!(GP, BS)
# # return it
# return BS
# end # of function bs_haar
function bs_haar(GP::GraphPart)
if isempty(GP.tagf2c)
fine2coarse!(GP)
end
# determine jmax
jmax = Base.size(GP.rs, 2)
# allocate space for levlist
levlist = Vector{Tuple{Int,Int}}((findall(x->x==1, GP.tagf2c)))
pushfirst!(levlist, (1, jmax))
# make a BasisSpec object
BS = BasisSpec(levlist, c2f = false, description = "Haar basis")
# fill in the levlengths field of the BasisSpec object
#levlist2levlengths!(GP, BS)
# return it
return BS
end # of function bs_haar
"""
BS = bs_level(GP::GraphPart, j::Int, c2f::Bool = true)
Specify the basis corresponding to level j for a given graph partitioning
### Input Arguments
* `GP::GraphPart`: an input GraphPart object
* `j::Int`: the level to which the basis corresponds (`j = 0` is the global level)
* `c2f::Bool`: a flag for c2f or f2c (default: true, i.e., c2f)
### Output Argument
* `BS::BasisSpec`: a BasisSpec object corresponding to the level `j` basis
"""
function bs_level(GP::GraphPart, j::Int; c2f::Bool = true)
# coarse-to-fine dictionary
if c2f
#rspointer = GP.rs[:, j + 1]
bspec = "coarse-to-fine level $(j)"
# fine-to-coarse dictionary
else
if isempty(GP.rsf2c)
# if isempty(GP.tag) || isempty(GP.compinfo) # I don't think this part is necessary since GP should be partially filled.
# ghwt_core!(GP)
# end
fine2coarse!(GP)
end
#rspointer = GP.rsf2c[:, j + 1]
bspec = "fine-to-coarse level $(j)"
end
# specify the level j basis
#Nj = countnz(rspointer) - 1
if isempty(GP.tag) # otherwise, it doesn't work for HGLET!
N = size(GP.rs)[1]-1
else
N = size(GP.tag, 1)
end
levlist = collect(enumerate((j + 1) * ones(Int,N)))
BS = BasisSpec(levlist, c2f = c2f, description = bspec)
# fill in the levlengths field of the BasisSpec object
#levlist2levlengths!(GP, BS)
# return it
return BS
end # of bs_level
"""
BS = bs_walsh(GP::GraphPart)
Specify the walsh basis corresponding to for a given graph partitioning
### Input Arguments
* `GP::GraphPart`: an input GraphPart object
### Output Argument
* `BS::BasisSpec`: a BasisSpec object corresponding to the walsh basis
"""
function bs_walsh(GP::GraphPart)
BS = bs_level(GP, 0, c2f = true)
BS.description = "Walsh basis"
return BS
end # of bs_level
"""
function dvec_Threshold(dvec::Array{Float64}, SORH::String, keep::Float64,
GP::GraphPart, BS::BasisSpec)
Threshold HGLET / GHWT coefficients
### Input Arguments
* `dvec::Array{Float64,2}` the vector of expansion coefficients
* `SORH::String` use soft ('s') or hard ('h') thresholding
* `keep::Float64` a fraction between 0 and 1 which says how many coefficients should be kept
* `GP::GraphPart` a GraphPart object, used to identify scaling coefficients
* `BS::BasisSpec` a BasisSpec object, used to identify scaling coefficients
### Output Argument
* `dvec_new::Vector{Float64}` the thresholded expansion coefficients
* `kept::Float64` the number of coefficients kept
"""
function dvec_Threshold(dvec::Array{Float64,2}, SORH::String, keep::Float64,
GP::GraphPart, BS::BasisSpec)
#
# Apply to 1-D only for now. Need to modify in the future
#
dvec_new = deepcopy(dvec)
# Obtain the number of coefficients kept
if keep > 1 || keep < 0
error("The input keep should between 0~1")
else
kept = Int64(round(keep*size(dvec,1)))
end
if SORH == "s" || SORH == "soft"
ind = sortperm(abs.(dvec[:]), rev = true)
T = abs(dvec[ind[kept+1]])
if !isnothing(BS)
#convert the tag matrix to a vector corresponding to BS
tag = dmatrix2dvec(Array{Float64,3}(reshape(GP.tag,(size(GP.tag,1),size(GP.tag,2),1))),GP,BS)
#soft-threshold the non-scaling coefficients
ind = 1:size(dvec,1)
ind = ind[(tag .> 0)[:]]
dvec_new[ind] = sign.(dvec[ind]).*(abs.(dvec[ind]).-T).*(abs.(dvec[ind]).-T .>0)
# if BS is not given, soft-threshold all coefficients
else
dvec_new = sign.(dvec).*(abs.(dvec).-T).*(abs.(dvec).-T.>0)
end
kept = count(!iszero, dvec_new)
elseif SORH == "h" || SORH == "hard"
ind = sortperm(abs.(dvec[:]), rev = true)
dvec_new[ind[kept+1:end]] .= 0
kept = count(!iszero, dvec_new)
else
kept = count(!iszero, dvec_new)
end
return dvec_new, kept
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1178 | """
dualgraph(dist::Matrix{Float64}; method::Symbol = :inverse, σ::Float64 = 1.0)
build the dual graph's weight matrix based on the given non-trivial eigenvector
metric.
# Input Arguments
- `dist::Matrix{Float64}`: eigenvector distance matrix
- `method::Symbol`: default is by taking inverse of the distance between
eigenvectors. Ways to build the dual graph edge weights. Option: `:inverse`,
`:gaussian`.
- `σ::Float64`: default is `1.0`. Gaussian variance parameter.
# Output Argument
- `G_star::GraphSig`: A `GraphSig` object containing the weight matrix of the
dual graph.
"""
function dualgraph(dist::Matrix{Float64}; method::Symbol = :inverse, σ::Float64 = 1.0)
N = Base.size(dist, 1)
W_star = zeros(N, N)
if method == :inverse
for i = 1:(N - 1), j = (i + 1):N
W_star[i, j] = 1 / dist[i, j]
end
elseif method == :gaussian
for i = 1:(N - 1), j = (i + 1):N
W_star[i, j] = exp(-dist[i, j] / σ^2)
end
else
error("method must be :inverse or :gaussian.")
end
W_star = W_star + W_star'
G_star = GraphSig(sparse(W_star); name = "dual graph")
return G_star
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1372 | """
eigDAG_Distance(𝚽, Q, numEigs; edge_weights = 1)
compute DAG distances between pairwise graph Laplacian eigenvectors.
# Input Arguments
- `𝚽::Matrix{Float64}`: matrix of graph Laplacian eigenvectors, 𝜙ⱼ₋₁ (j = 1,...,size(𝚽,1)).
- `Q::Matrix{Float64}`: incidence matrix of the graph.
- `numEigs::Int64`: number of eigenvectors considered.
- `edge_weight::Any`: default value is 1, stands for unweighted graph
(i.e., all edge weights equal to 1). For weighted graph, edge_weight is the
weights vector, which stores the affinity weight of each edge.
# Output Argument
- `dis::Matrix{Float64}`: a numEigs x numEigs distance matrix, dis[i,j] = d_DAG(𝜙ᵢ₋₁, 𝜙ⱼ₋₁).
"""
function eigDAG_Distance(𝚽, Q, numEigs; edge_weight = 1)
dis = zeros(numEigs, numEigs)
abs_∇𝚽 = abs.(Q' * 𝚽)
for i = 1:numEigs, j = i+1:numEigs
dis[i,j] = (edge_weight == 1) ? norm(abs_∇𝚽[:,i]-abs_∇𝚽[:,j],2) : norm((abs_∇𝚽[:,i]-abs_∇𝚽[:,j]).*sqrt.(edge_weight),2)
end
return dis + dis'
end
function eigDAG_Distance_normalized(𝚽,Q,numEigs; edge_weight = 1)
dis = zeros(numEigs,numEigs)
abs_∇𝚽 = abs.(Q' * 𝚽)
for i = 1:numEigs, j = i+1:numEigs
dis[i,j] = (edge_weight == 1) ? norm(abs_∇𝚽[:,i]-abs_∇𝚽[:,j],2) : norm((abs_∇𝚽[:,i]-abs_∇𝚽[:,j]).*sqrt.(edge_weight),2)
dis[i,j] /= norm(𝚽[:,i] .* 𝚽[:,j],2)
end
return dis + dis'
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 2783 | """
eigHAD_Distance(𝚽, 𝛌; indexEigs = 1:size(𝚽,2))
compute HAD "distance" (not really a distance) between pairwise graph Laplacian
eigenvectors, i.e., d_HAD(𝜙ᵢ₋₁, 𝜙ⱼ₋₁) = √(1 - a_HAD(𝜙ᵢ₋₁, 𝜙ⱼ₋₁)²).
# Input Arguments
- `𝚽::Matrix{Float64}`: matrix of graph Laplacian eigenvectors, 𝜙ⱼ₋₁ (j = 1,...,size(𝚽,1)).
- `𝛌::Array{Float64}`: array of eigenvalues. (ascending order)
- `indexEigs::Int`: default is all eigenvectors, indices of eigenvectors considered.
# Output Argument
- `dis::Matrix{Float64}`: the HAD distance matrix, dis[i,j] = d_HAD(𝜙ᵢ₋₁, 𝜙ⱼ₋₁).
"""
function eigHAD_Distance(𝚽, 𝛌; indexEigs = 1:size(𝚽,2))
n = length(indexEigs)
A = eigHAD_Affinity(𝚽, 𝛌; indexEigs = indexEigs)
dis = sqrt.(ones(n, n) - A.^2)
dis[diagind(dis)] .= 0
return dis
end
function eigHAD_Distance_neglog(𝚽, 𝛌; indexEigs = 1:size(𝚽,2))
A = eigHAD_Affinity(𝚽, 𝛌; indexEigs = indexEigs)
n = size(A,1)
dis = zeros(n,n)
for i = 1:n, j = 1:n
if A[i,j] == 0
dis[i,j] = 1e9
else
dis[i,j] = -log(A[i,j])
end
end
return dis
end
"""
eigHAD_Affinity(𝚽, 𝛌; indexEigs = 1:size(𝚽,2))
EIGHAD_AFFINITY compute Hadamard (HAD) affinity between pairwise graph Laplacian eigenvectors.
# Input Arguments
- `𝚽::Matrix{Float64}`: matrix of graph Laplacian eigenvectors, 𝜙ⱼ₋₁ (j = 1,...,size(𝚽,1)).
- `𝛌::Array{Float64}`: array of eigenvalues. (ascending order)
- `indexEigs::Int`: default is all eigenvectors, indices of eigenvectors considered.
# Output Argument
- `A::Matrix{Float64}`: a numEigs x numEigs affinity matrix, A[i,j] = a_HAD(𝜙ᵢ₋₁, 𝜙ⱼ₋₁).
"""
function eigHAD_Affinity(𝚽, 𝛌; indexEigs = 1:size(𝚽,2))
N, numEigs = size(𝚽,1), length(indexEigs)
indNoDC = setdiff(indexEigs, 1) # get rid of DC component
J = length(indNoDC)
A = zeros(J, J)
for a in 1:J, b in a:J
i, j = indNoDC[a], indNoDC[b]
hadamardProd = 𝚽[:,i] .* 𝚽[:,j]
if norm(hadamardProd,2) < 0.01/sqrt(N)
continue
end
λ, μ = 𝛌[i], 𝛌[j]
x₀ = 1 ./ (max(λ, μ))
# Find minimizer t
result = optimize(t -> abs(exp(-t[1]*λ) + exp(-t[1]*μ) - 1), [x₀], BFGS());
t = Optim.minimizer(result)[1]
# Compute Hadamard affinity
heatEvolution = 𝚽 * Diagonal(exp.(-t .* 𝛌)) * 𝚽' * hadamardProd
A[a,b] = norm(heatEvolution,2) / (norm(hadamardProd,2) + 1e-6)
end
A = A + A'; for i in 1:J; A[i,i] /= 2; end
if 1 in indexEigs
# Set affinity measure of 𝜙₀ with itself to be the maximum and equals to 1.
A = matrix_augmentation(A)
A[1,1] = maximum(A)
end
return A ./ maximum(A)
end
function matrix_augmentation(A)
m, n = size(A)
B = zeros(m+1, n+1)
B[2:end, 2:end] = A
return B
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 3315 | """
eigROT_Distance(P, Q; edge_length = 1, α = 1.0)
computes the ROT distance matrix of P's column vectors on a graph.
# Input Argument
- `P::Matrix{Float64}`: a matrix whose columns are vector measures with the same total mass.
- `Q::SparseMatrixCSC{Int64,Int64}`: the unweighted incidence matrix of the graph.
- `edge_length::Any`: the length vector (default: 1 represents unweighted graphs)
- `α::Float64`: default is 1.0. ROT parameter.
# Output Argument
- `dis::Matrix{Float64}`: distance matrix, dis[i,j] = d_{ROT}(pᵢ, pⱼ; α).
"""
function eigROT_Distance(P::Matrix{Float64}, Q::SparseMatrixCSC{Int64,Int64};
edge_length::Any = 1, α::Float64 = 1.0)
n = size(P, 2)
total_mass = sum(P, dims = 1)[:]
if norm(total_mass - total_mass[1] * ones(n), Inf) > 10^4 * eps()
@error("P's column measures do not share the same total mass.")
return
end
dis = zeros(n,n)
le2 = [edge_length; edge_length]
Q2 = [Q -Q]
m2 = size(Q2, 2)
for i = 1:(n - 1), j = (i + 1):n
f = P[:, i] - P[:, j]
md = Model(optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0))
@variable(md, w[1:m2] >= 0.0)
edge_length == 1 ? @objective(md, Min, sum(w)) : @objective(md, Min, sum(w .* le2))
@constraint(md, Q2 * w .== f)
JuMP.optimize!(md)
wt = abs.(JuMP.value.(w))
dis[i,j] = edge_length == 1 ? norm(wt.^α, 1) : norm((wt.^α) .* le2, 1)
end
return dis + dis'
end
"""
ROT_Distance(A, B, Q; edge_length = 1, α = 1.0)
computes the ROT distance matrix from A's column vectors to B's column vectors.
If A, B are vector inputs, then it also returns the cost value and the optimal
transport plan.
# Input Argument
- `A::Any`: a vector or matrix whose columns are initial probability measures.
- `B::Any`: a vector or matrix whose columns are terminal probability measures.
- `Q::SparseMatrixCSC{Int64,Int64}`: the unweighted incidence matrix of the graph.
- `edge_length::Any`: the length vector (default: `1` represents unweighted graphs)
- `α::Float64`: default is `1.0`. ROT parameter.
- `retPlan::Bool`: an indicator if return the optimal plan (default: `false`)
# Output Argument
- `dis::Matrix{Float64}`: distance matrix, dis[i,j] = d_{ROT}(aᵢ, bⱼ; α).
"""
function ROT_Distance(A::Any, B::Any, Q::SparseMatrixCSC{Int64,Int64};
edge_length::Any = 1, α::Float64 = 1.0, retPlan::Bool = false)
m = ndims(A) > 1 ? size(A, 2) : 1
n = ndims(B) > 1 ? size(B, 2) : 1
dis = zeros(m, n)
le2 = [edge_length; edge_length]
Q2 = [Q -Q]
m2 = size(Q2, 2)
for i = 1:m, j = 1:n
f = (ndims(A) > 1 && ndims(B) > 1) ? B[:,j] - A[:,i] : B - A
md = Model(optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0))
@variable(md, w[1:m2] >= 0.0)
edge_length == 1 ? @objective(md, Min, sum(w)) : @objective(md, Min, sum(w .* le2))
@constraint(md, Q2 * w .== f)
JuMP.optimize!(md)
wt = abs.(JuMP.value.(w))
dis[i, j] = edge_length == 1 ? norm(wt.^α, 1) : norm((wt.^α) .* le2, 1)
if ndims(A) == 1 && ndims(B) == 1
if retPlan
return dis[1, 1], wt
else
return dis[1, 1]
end
end
end
return dis
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 3594 | """
eigTSD_Distance(P::Matrix{Float64}, 𝚽::Matrix{Float64}, 𝛌::Vector{Float64},
Q::SparseMatrixCSC{Int64,Int64}; length::Any = 1,
T::Any = :Inf, tol::Float64 = 1e-5)
computes the TSD distance matrix of P's column vectors on a graph.
# Input Argument
- `P::Matrix{Float64}`: vector measures with the same total mass 0.
- `𝚽::Matrix{Float64}`: matrix of the unweighted graph Laplacian eigenvectors.
- `𝛌::Vector{Float64}`: vector of eigenvalues.
- `Q::SparseMatrixCSC{Int64,Int64}`: the unweighted incidence matrix.
- `length::Any`: vector of edge lengths (default: `1` represents unweighted graphs)
- `T::Any`: the stopping time T in K_functional (default: `:Inf`)
- `tol::Float64`: tolerance for integral convergence (default: `1e-5`)
# Output Argument
- `dis::Matrix{Float64}`: distance matrix, d_{TSD}(φᵢ, φⱼ; T).
"""
function eigTSD_Distance(P::Matrix{Float64}, 𝚽::Matrix{Float64}, 𝛌::Vector{Float64},
Q::SparseMatrixCSC{Int64,Int64}; length::Any = 1,
T::Any = :Inf, tol::Float64 = 1e-5)
N, ncols = Base.size(P)
total_mass = sum(P, dims = 1)[:]
if norm(total_mass - total_mass[1] * ones(ncols), Inf) > 10^4 * eps()
@error("P's column measures do not share the same total mass.")
return
end
# initialize the distance matrix
dis = zeros(ncols, ncols)
# store gradient of 𝚽 to avoid repeated computation
∇𝚽 = Q' * 𝚽
for i = 1:(ncols - 1), j = (i + 1):ncols
dis[i, j] = K_functional(P[:, i], P[:, j], 𝚽, ∇𝚽, 𝛌; length = length,
T = T, tol = tol)[1]
end
return dis + dis'
end
"""
K_functional(𝐩::Vector{Float64}, 𝐪::Vector{Float64}, 𝚽::Matrix{Float64},
∇𝚽::Matrix{Float64}, 𝛌::Vector{Float64}; length::Any = 1,
T::Any = :Inf, dt::Float64 = 0.5/maximum(𝛌), tol::Float64 = 1e-5)
computes the K_functional between two vector meassures 𝐩 and 𝐪 on a graph.
# Input Argument
- `𝐩::Vector{Float64}`: the source vector measure.
- `𝐪::Vector{Float64}`: the destination vector measure.
- `𝚽::Matrix{Float64}`: matrix of the unweighted graph Laplacian eigenvectors.
- `∇𝚽::Matrix{Float64}`: gradient of unweighted graph Laplacian eigenvectors.
- `𝛌::Vector{Float64}`: vector of eigenvalues.
- `length::Any`: vector of edge lengths (default: 1 represents unweighted graphs)
- `T::Any`: the stopping time T in K_functional (default: :Inf)
- `tol::Float64`: tolerance for convergence (default: 1e-5)
# Output Argument
- `K::Float64`: TSD distance d_{TSD}(p, q; T).
- `E::Float64`: an estimated upper bound on the absolute error. In general,
`E <= tol * norm(K)`.
"""
function K_functional(𝐩::Vector{Float64}, 𝐪::Vector{Float64}, 𝚽::Matrix{Float64},
∇𝚽::Matrix{Float64}, 𝛌::Vector{Float64}; length::Any = 1,
T::Any = :Inf, tol::Float64 = 1e-5)
if abs(sum(𝐩 - 𝐪)) > 10^4 * eps()
@error("𝐩 and 𝐪 do not have the same total mass.")
end
f₀ = 𝐪 - 𝐩
# store b to avoid repeated computation
b = 𝚽' * f₀
if T == :Inf
# choose stopping time T such that exp(-λ₁T) = tol
T = -log(tol) / 𝛌[2]
end
# use QuadGK.jl to numerically evaluate the integral
K, E = quadgk(t -> weighted_1norm(∇f(t, ∇𝚽, b, 𝛌), length), 0, T, rtol=tol)
return K, E
end
function ∇f(t, ∇𝚽, b, 𝛌)
gu = ∇𝚽 * (exp.(-t * 𝛌) .* b)
return gu
end
function weighted_1norm(x, length)
if length == 1
return norm(x, 1)
else
return sum(abs.(x) .* length)
end
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 3274 | """
eigsROT_Distance(P::Matrix{Float64}, W::SparseMatrixCSC{Float64, Int64}, X::Matrix{Float64}; α::Float64 = 1.0)
computes the sROT distance matrix of P's column vectors on a (unweighted) tree.
# Input Argument
- `P::Matrix{Float64}`: a matrix whose columns are vector measures with the same total mass.
- `W::SparseMatrixCSC{Float64, Int64}`: the weight matrix of the tree.
- `X::Matrix{Float64}`: the node positions (i-th row represents node `i`'s location)
- `α::Float64`: default is 1.0. ROT parameter.
# Output Argument
- `dist_sROT::Matrix{Float64}`: distance matrix, dist_sROT[i,j] = d_{sROT}(pᵢ, pⱼ; α).
- `Ws::SparseMatrixCSC{Float64, Int64}`: the weight matrix of the simplified tree.
- `Xs::Matrix{Float64}`: the node locations of the simplified tree
- `𝚯::Matrix{Float64}`: the shortened pmfs from `P`.
"""
function eigsROT_Distance(P::Matrix{Float64}, W::SparseMatrixCSC{Float64, Int64}, X::Matrix{Float64}; α::Float64 = 1.0)
G = SimpleGraph(W)
# check if the input weight matrix forms a tree
if ne(G) + 1 != nv(G) || !is_connected(G)
@error("input graph is not a tree.")
end
d = degree(G)
# find index of junction nodes
ijc = findall(d .> 2)
# cut the graph into several disconnected subgraphs
Wc = deepcopy(W)
for i in ijc; Wc[i, :] .= 0; Wc[:, i] .= 0; end
# find the indices for each subgraph
Ind = find_subgraph_inds(Wc)
# low dimensional pmfs
𝚯 = Ind' * P
# the centroids of subgraphs
Xs = Diagonal(1 ./ sum(Ind, dims = 1)[:]) * Ind' * X
# build Gs, i.e., the graph of subgraphs or the simplified tree
Gs = Graph(size(Ind, 2))
Ns = nv(Gs)
# index of Gs's junction nodes
ijcs = []
for k = 1:Ns
supportind = findall(Ind[:, k] .== 1)
if issubset(supportind, ijc)
push!(ijcs, k)
end
end
# connect the branches to the junctions to form the simplified tree
for k in setdiff(1:Ns, ijcs)
supportind = findall(Ind[:,k] .== 1)
for i = 1:length(ijc)
if sum(W[supportind, ijc[i]]) > 0
add_edge!(Gs, Edge(k, ijcs[i]))
end
end
end
Ws = 1.0 * adjacency_matrix(Gs)
# compute the sROT distance matrix
Qs = incidence_matrix(Gs; oriented = true)
dist_sROT = eigROT_Distance(𝚯, Qs; edge_length = 1, α = α)
return dist_sROT, Ws, Xs, 𝚯
end
"""
find_subgraph_inds(Wc::SparseMatrixCSC{Float64, Int64})
find all subgraph indices of a tree. (subgraph includes: branches and junctions)
# Input Argument
- `Wc::SparseMatrixCSC{Float64, Int64}`: the weight matrix of the tree chopped by
the junctions.
# Output Argument
- `Ind::Matrix{Float64}`: a matrix whose columns represent the subgraph node
indices in binary form.
"""
function find_subgraph_inds(Wc::SparseMatrixCSC{Float64, Int64})
N = size(Wc, 1)
Dc = Diagonal(sum(Wc, dims=1)[:])
Lc = Matrix(Dc - Wc)
𝛌c, 𝚽c = eigen(Lc)
p = findall(𝛌c .< 100 * eps())
Uc = 𝚽c[:, p]
# use heat diffusion at t = ∞ and the siginal `1:N` to figure out all branch indices
a = round.(1e8 * Uc * Uc' * [k for k = 1:N])
ind = unique(a)
Ind = zeros(N, length(ind))
for k = 1:length(ind); Ind[findall(a .== ind[k]), k] .= 1; end
return Ind
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 9108 | using SparseArrays
"""
gplot(A, xyz; plotp = true,
style = :auto, width = 2, color = :blue,
shape = :none, mwidth = 2, mcolor = color, malpha = 1.0,
mscolor = color, mswidth = 1, msalpha = 1.0,
grid::Bool = false, label = "", subplot = 1)
GPLOT Plot graph, as in graph theory. GPLOT(A,xyz,...) plots the graph
specified by the adjacency matrix A and the node coordinates xyz.
GPLOT!(A,xyz,...) adds a plot to `current` one.
### Input Arguments
* `A::SparseMatrixCSC{Float64,Int}`: the adjacency matrix of a graph `G`
* `xyz::Matrix{Float64}`: The coordinates array, `xyz`, is an n-by-2 or n-by-3 matrix
with the position for node i in the i-th row, xyz[i,:] = [x[i] y[i]] or xyz[i,:] = [x[i] y[i] z[i]].
* `plotp::Bool`: if the plot is made (default) or return the X, Y, Z arrays
* `style::Symbol`: of line; choose from Symbol\\[:auto,:solid,:dash,:dot,:dashdot\\] (default: :auto)
* `width::Number`: of line in pixels (default: 2; fraction, e.g., 0.5 is allowed)
* `color::Symbol`: of line; choose from Symbol\\[:white,:blue,:red,:green,...\\] (default: :blue)
* `shape::Symbol`: choose from Symbol\\[:none,:auto,:circle,:rect,:star5,:diamond,
:hexagon,:cross,:xcross,:utriangle,
:dtriangle,:pentagon,:heptagon,:octagon,
:star4,:star6,:star7,:star8,:vline,:hline\\] (default: :none)
* `mwidth::Number`: marker size (or radius) in pixels (default: 2)
* `mcolor::Symbol`: of marker (default: the same as line color)
* `malpha::Float64`: opacity of marker interior; choose from \\[0,1\\] (default: 1.0)
* `mswidth::Number`: marker stroke size (width) in pixels (default: 1)
* `mscolor::Symbol`: of marker stroke (default: the same as line color)
* `msalpha::Float64`: opacity of marker stroke; choose from \\[0,1\\] (default: 1.0)
* `grid::Bool`: a flag to show grid lines (default: false)
* `label::String`: a string for legend (default: "")
* `subplot::Int`: subplot index (default: 1)
### Output Arguments
* `X::Matrix{Float64}`: Nan-punctuated X coordinate vector
* `Y::Matrix{Float64}`: Nan-punctuated Y coordinate vector
* `Z::Matrix{Float64}`: Nan-punctuated Z coordinate vector
(X,Y)= GPLOT(A,xyz,plotp=false,...) or (X,Y,Z) = GPLOT(A,xyz,plotp=false,...)
return the NaN-punctuated vectors X and Y or X, Y and Z without actually
generating a plot. These vectors can be used to generate the plot at a later
time with PLOT or PLOT3D if desired.
A backward-compatible elaboration of Mathworks's gplot that uses 3D data (if available) when the plot is rotated.
Robert Piche, Tampere Univ. of Tech., 2005
Translated into julia by Naoki Saito, Dec. 21, 2016.
Note that we should still consider the keywords organized as
`function gplot(A,xyz,kw...)`
Nicholas Hausch edits:
Must install Plots package
For 3D rotation, use `plotlyjs()` backend
Revised by Naoki Saito, Feb. 17, 2017
Revised by Naoki Saito, Oct. 13, 2017
Revised by Haotian Li, Jul. 25, 2018
Revised by Haotian Li and Naoki Saito for Julia v0.7/1.0, Sep. 21, 2018
Instead of plot(...), we decided to use Plots.plot(...) in order to avoid
the function name ambiguity; this is a safer approach.
Revised by Naoki Saito, Oct. 22, 2018
"""
function gplot(A::SparseMatrixCSC{Float64,Int}, xyz::Matrix{Float64}; plotp::Bool = true,
style::Symbol = :auto, width::Number = 2, color::Symbol = :blue,
shape::Symbol = :none, mwidth::Number = 1, mcolor::Symbol = color, malpha::Float64 = 1.0,
mscolor::Symbol = color, mswidth::Number = 1, msalpha::Float64 = 1.0,
grid::Bool = false, label::String = "", subplot::Int = 1)
# If A is symmetric, then use only the upper triangular part for efficiency.
if issymmetric(A)
A = UpperTriangular(A)
end
# Extract the node indices
ij = findall(A .!= 0.0); # Output of findall is an array of CartesianIndex.
i = [ij[k][1] for k=1:length(ij)]
j = [ij[k][2] for k=1:length(ij)]
p = sortperm(max.(i,j))
i = i[p]
j = j[p]
# Find out whether the graph is 2-D or 3-D
nspacedim = size(xyz, 2)
if nspacedim == 1
xyz = hcat(xyz, zeros(size(xyz, 1)))
nspacedim = 2
end
# Create a long, NaN-separated list of line segments
X = [ xyz[i,1] xyz[j,1] Base.fill(NaN,size(i)) ]'
Y = [ xyz[i,2] xyz[j,2] Base.fill(NaN,size(i)) ]'
X = X[:]
Y = Y[:]
if nspacedim == 3
Z = [ xyz[i,3] xyz[j,3] Base.fill(NaN,size(i)) ]'
Z = Z[:]
end
# Finally, do the work!
if plotp # plot the line-segments
if nspacedim < 3 # 2D
if shape == :none # no markers
Plots.plot(X, Y,
linestyle=style, linewidth=width, linecolor=color, grid=grid, label=label, subplot=subplot)
else # marker attributes are set.
Plots.plot(X, Y,
linestyle=style, linewidth=width, linecolor=color,
markershape=shape, markersize=mwidth, markercolor=mcolor, markeralpha=malpha,
markerstrokecolor=mscolor, markerstrokewidth=mswidth, markerstrokealpha=msalpha,
grid=grid, label=label, subplot=subplot)
end
else #3D
if shape == :none # no markers
Plots.plot(X, Y, Z,
linestyle=style, linewidth=width, linecolor=color, grid=grid, label=label, subplot=subplot)
else # marker attributes are set.
Plots.plot(X, Y, Z,
linestyle=style, linewidth=width, linecolor=color,
markershape=shape, markersize=mwidth, markercolor=mcolor, markeralpha=malpha,
markerstrokecolor=mscolor, markerstrokewidth=mswidth, markerstrokealpha=msalpha,
grid=grid, label=label, subplot=subplot)
end
end
else # Return the X, Y, Z array if desired.
if nspacedim < 3
return X, Y
else
return X, Y, Z
end
end
end
function gplot!(A::SparseMatrixCSC{Float64,Int}, xyz::Matrix{Float64}; plotp::Bool = true,
style::Symbol = :auto, width::Number = 2, color::Symbol = :blue,
shape::Symbol = :none, mwidth::Number = 1, mcolor::Symbol = color, malpha::Float64 = 1.0,
mscolor::Symbol = color, mswidth::Number = 1, msalpha::Float64 = 1.0,
grid::Bool = false, label::String = "", subplot::Int = 1)
# If A is symmetric, then use only the upper triangular part for efficiency.
if issymmetric(A)
A = UpperTriangular(A)
end
# Extract the node indices
ij = findall(A .!= 0.0); # Output of findall is an array of CartesianIndex.
i = [ij[k][1] for k=1:length(ij)]
j = [ij[k][2] for k=1:length(ij)]
p = sortperm(max.(i,j))
i = i[p]
j = j[p]
# Find out whether the graph is 2-D or 3-D
nspacedim = size(xyz, 2)
if nspacedim == 1
xyz = hcat(xyz, zeros(size(xyz, 1)))
nspacedim = 2
end
# Create a long, NaN-separated list of line segments
X = [ xyz[i,1] xyz[j,1] Base.fill(NaN,size(i)) ]'
Y = [ xyz[i,2] xyz[j,2] Base.fill(NaN,size(i)) ]'
X = X[:]
Y = Y[:]
if nspacedim == 3
Z = [ xyz[i,3] xyz[j,3] Base.fill(NaN,size(i)) ]'
Z = Z[:]
end
# Finally, do the work!
if plotp # plot the line-segments
if nspacedim < 3 # 2D
if shape == :none # no markers
Plots.plot!(X, Y,
linestyle=style, linewidth=width, linecolor=color, grid=grid, label=label, subplot=subplot)
else # marker attributes are set.
Plots.plot!(X, Y,
linestyle=style, linewidth=width, linecolor=color,
markershape=shape, markersize=mwidth, markercolor=mcolor, markeralpha=malpha,
markerstrokecolor=mscolor, markerstrokewidth=mswidth, markerstrokealpha=msalpha,
grid=grid, label=label, subplot=subplot)
end
else #3D
if shape == :none # no markers
Plots.plot!(X, Y, Z,
linestyle=style, linewidth=width, linecolor=color, grid=grid, label=label, subplot=subplot)
else # marker attributes are set.
Plots.plot!(X, Y, Z,
linestyle=style, linewidth=width, linecolor=color,
markershape=shape, markersize=mwidth, markercolor=mcolor, markeralpha=malpha,
markerstrokecolor=mscolor, markerstrokewidth=mswidth, markerstrokealpha=msalpha,
grid=grid, label=label, subplot=subplot)
end
end
else # Return the X, Y, Z array if desired.
if nspacedim < 3
return X, Y
else
return X, Y, Z
end
end
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 25085 | """
findminimum(v, n)
FINDMINIMUM finds the first n smallest elements' indices.
# Input Arguments
- `v::Array{Float64}`: the candidate values for selection.
- `n::Int`: number of smallest elements for consideration.
# Output Argument
- `idx::Array{Int}`: n smallest elements' indices.
"""
function findminimum(v, n)
idx = sortperm(v)[1:n]
return idx
end
"""
spike(i, N)
SPIKE gives the N-dim spike vector with i-th element equals 1.
# Input Arguments
- `i::Int`: index for one.
- `N::Int`: dimension of the target spike vector.
# Output Argument
- `v::Array{Float64}`: the N-dim spike vector with i-th element equals 1.
"""
function spike(i, N)
v = zeros(N)
v[i] = 1
return v
end
"""
characteristic(list, N)
CHARACTERISTIC gives the characteristic function in n-dim vector space with
values of index in list equal to 1.
# Input Arguments
- `list::Array{Int}`: list of indices.
- `N::Int`: dimension of the target vector.
# Output Argument
- `v::Array{Float64}`: the n-dim characteristic vector with values of index in list equal to 1.
"""
function characteristic(list, N)
v = zeros(N)
v[list] .= 1.0
return v
end
function χ(list, N)
v = zeros(N)
v[list] .= 1.0
return v
end
"""
heat_sol(f0,𝚽,Σ,t)
HEAT\\_SOL gives the solution of heat partial differential equation with initial condition u(⋅, 0) = f0
# Input Arguments
- `f0::Array{Float64}`: initial condition vector.
- `𝚽::Matrix{Float64}`: graph Laplacian eigenvectors, served as graph Fourier transform matrix
- `Σ::Array{Int}`: diagonal matrix of eigenvalues.
- `t::Float`: time elapse.
# Output Argument
- `u::Array{Float64}`: the solution vector at time t
"""
function heat_sol(f0, 𝚽, Σ, t)
u = 𝚽 * (exp.(-t .* Σ) .* 𝚽' * f0)
return u
end
"""
freq_band_matrix(ls,n)
FREQ\\_BAND\\_MATRIX provides characteristic diagonal matrix, which is useful for spectral graph filters design.
# Input Arguments
- `ls::Array{Int}`: list of indices.
- `n::Int`: dimension of the target vector.
# Output Argument
- `D::Array{Float64}`: the zero/one diagonal matrix.
"""
function freq_band_matrix(ls, n)
f = characteristic(list, n)
return Diagonal(f)
end
"""
scatter_gplot(X; marker = nothing, ms = 4, plotOrder = :normal, c = :viridis, subplot = 1)
SCATTER\\_GPLOT generates a scatter plot figure, which is for quick viewing of a graph signal.
SCATTER\\_GPLOT!(X; ...) adds a plot to `current` one.
# Input Arguments
- `X::Matrix{Float64}`: points locations, can be 2-dim or 3-dim.
- `marker::Array{Float64}`: default is `nothing`. Present different colors given
different signal value at each node.
- `ms::Array{Float64}`: default is `4`. Present different node sizes given
different signal value at each node.
- `shape::Symbol`: default is `:none`. Shape of the markers.
- `mswidth::Number`: default is `0`. Width of the marker stroke border.
- `msalpha::Number`: default is `nothing`. The opacity for the marker stroke.
- `plotOrder::Symbol`: default is `:normal`. Optional choices `:s2l` or `:l2s`, i.e.,
plots from the smallest value of `marker` to the largest value or the other way around,
or `:propabs`, ms is automatically set to be proportional to the absolute value
of the marker values.
- `c::Symbol`: default is `:viridis`. Colors of the markers.
- `subgplot::Int`: default is `1`. The subplot index.
"""
function scatter_gplot(X; marker = nothing, ms = 4, shape = :none, mswidth = 0,
msalpha = nothing, plotOrder = :normal, c = :viridis, subplot = 1)
N, dim = size(X)
if !isnothing(marker)
if size(marker) == (N,) || size(marker) == (N, 1)
marker = marker[:] # reshape N x 1 matrix to a vector of length N
else
error("marker only accepts a vector of length $(N) or a matrix of size $(N) x 1.")
end
if plotOrder == :normal
idx = 1:N
elseif plotOrder == :s2l
idx = sortperm(marker)
elseif plotOrder == :l2s
idx = sortperm(marker, rev = true)
elseif plotOrder == :propabs
idx = sortperm(abs.(marker))
else
error("plotOrder only supports for :normal, :s2l, :l2s, or :propabs.")
end
X = X[idx, :]
marker = marker[idx]
if length(ms) > 1
ms = ms[idx]
end
# if plotOrder is :propabs, set ms to be a vector prop to
# abs.(marker) automatically.
# The maximum marker size is set to be maximum(ms).
if plotOrder == :propabs
maxmarkersize = maximum(ms)
markerabsmax = maximum(abs.(marker))
ms = maxmarkersize .* log.(1 .+ abs.(marker)) ./ (log(1 + markerabsmax) + 10^3 * eps())
end
end
if dim == 2
scatter(X[:, 1], X[:, 2], marker_z = marker, ms = ms, shape = shape, c = c,
legend = false, mswidth = mswidth, msalpha = msalpha, cbar = true,
aspect_ratio = 1, grid = false, subplot = subplot)
elseif dim == 3
scatter(X[:, 1], X[:, 2], X[:, 3], marker_z = marker, ms = ms, shape = shape, c = c,
legend = false, mswidth = mswidth, msalpha = msalpha, cbar = true,
aspect_ratio = 1, grid = false, subplot = subplot)
else
error("Dimension Error: scatter_gplot only supports for 2-dim or 3-dim scatter plots.")
end
end
function scatter_gplot!(X; marker = nothing, ms = 4, shape = :none, mswidth = 0,
msalpha = nothing, plotOrder = :normal, c = :viridis, subplot = 1)
N, dim = size(X)
if !isnothing(marker)
if size(marker) == (N,) || size(marker) == (N, 1)
marker = marker[:] # reshape N x 1 matrix to a vector of length N
else
error("marker only accepts a vector of length $(N) or a matrix of size $(N) x 1.")
end
if plotOrder == :normal
idx = 1:N
elseif plotOrder == :s2l
idx = sortperm(marker)
elseif plotOrder == :l2s
idx = sortperm(marker, rev = true)
elseif plotOrder == :propabs
idx = sortperm(abs.(marker))
else
error("plotOrder only supports for :normal, :s2l, :l2s, or :propabs.")
end
X = X[idx, :]
marker = marker[idx]
if length(ms) > 1
ms = ms[idx]
end
# if plotOrder is :propabs, set ms to be a vector prop to
# abs.(marker) automatically
# The maximum marker size is set to be maximum(ms).
if plotOrder == :propabs
maxmarkersize = maximum(ms)
markerabsmax = maximum(abs.(marker))
ms = maxmarkersize .* log.(1 .+ abs.(marker)) ./ (log(1 + markerabsmax) + 10^3 * eps())
end
end
if dim == 2
scatter!(X[:, 1], X[:, 2], marker_z = marker, ms = ms, shape = shape, c = c,
legend = false, mswidth = mswidth, msalpha = msalpha, cbar = true,
aspect_ratio = 1, grid = false, subplot = subplot)
elseif dim == 3
scatter!(X[:, 1], X[:, 2], X[:, 3], marker_z = marker, ms = ms, shape = shape, c = c,
legend = false, mswidth = mswidth, msalpha = msalpha, cbar = true,
aspect_ratio = 1, grid = false, subplot = subplot)
else
error("Dimension Error: scatter_gplot! only supports for 2-dim or 3-dim scatter plots.")
end
end
"""
cat_plot(X; marker = nothing, ms = 4)
CAT\\_PLOT generates a scatter plot figure for cat example, which is for quick
viewing of a graph signal within a specific range (i.e., xlims, ylims, zlims).
CAT\\_PLOT!(X; ...) adds a plot to `current` one.
# Input Arguments
- `X::Matrix{Float64}`: 3-dim points.
- `marker::Array{Float64}`: default is nothing. Present different colors given
different signal value at each node.
- `ms::Array{Float64}`: default is 4. Present different node sizes given
different signal value at each node.
"""
function cat_plot(X; marker = nothing, ms = 4)
scatter(X[:,1],X[:,2],X[:,3], marker_z = marker, ms = ms, c = :viridis,
legend = false, cbar = true, aspect_ratio = 1, xlims = [-100, 100],
ylims = [-100, 100], zlims = [-100, 100])
end
function cat_plot!(X; marker = nothing, ms = 4)
scatter!(X[:,1],X[:,2],X[:,3], marker_z = marker, ms = ms, c = :viridis,
legend = false, cbar = true, aspect_ratio = 1, xlims = [-100, 100],
ylims = [-100, 100], zlims = [-100, 100])
end
"""
approx_error_plot(DVEC::Vector{Vector{Float64}}; frac::Float64 = 0.50)
draw relative approx. error w.r.t. fraction of coefficients retained (FCR)
# Input Arguments
- `DVEC::Vector{Vector{Float64}}`: a list of expansion coefficients.
- `fraction::Float64`: default is 0.5.
"""
function approx_error_plot(DVEC::Vector{Vector{Float64}}; frac::Float64 = 0.50)
plot(xaxis = "Fraction of Coefficients Retained",
yaxis = "Relative Approximation Error")
T = ["Laplacian", "HGLET", "Haar", "Walsh", "GHWT_c2f", "GHWT_f2c", "eGHWT",
"PC-NGWP", "VM-NGWP"]
L = [(:dashdot, :red), (:solid, :brown), (:dashdot, :orange),
(:dashdot, :pink), (:solid, :gray), (:solid,:green),
(:solid,:blue), (:solid,:purple), (:solid,:black)]
for i = 1:length(DVEC)
dvec = DVEC[i]
N = length(dvec)
dvec_norm = norm(dvec,2)
dvec_sort = sort(dvec.^2) # the smallest first
er = max.(sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm, 1e-12)
p = Int64(floor(frac*N)) + 1 # upper limit
plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac),
label = T[i], line = L[i], linewidth = 2, grid = false)
end
end
"""
getall_expansioncoeffs(G_Sig::GraphSig, GP_star::GraphPart, VM_NGWP::Array{Float64,3}, PC_NGWP::Array{Float64,3}, 𝚽::Matrix{Float64})
get all expansion coefficients of `f` via all methods in NGWP.jl and MTSG.jl
# Input Arguments
- `G_Sig::GraphSig`: GraphSig of the primal graph
- `GP_star::GraphPart`: GraphPart of the dual graph
- `VM_NGWP::Array{Float64,3}`: varimax NGWP.
- `PC_NGWP::Array{Float64,3}`: pair-clustering NGWP.
- `𝚽::Matrix{Float64}`: the matrix of graph Laplacian eigenvectors.
"""
function getall_expansioncoeffs(G_Sig::GraphSig, GP_star::GraphPart, VM_NGWP::Array{Float64,3}, PC_NGWP::Array{Float64,3}, 𝚽::Matrix{Float64})
############# VM_NGWP
dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP)
dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_star)
############# PC_NGWP
dmatrix_PC = ngwp_analysis(G_Sig, PC_NGWP)
dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GP_star)
############# Laplacian
dvec_Laplacian = 𝚽' * G_Sig.f
############# plain Laplacian eigenvectors coefficients
GP = partition_tree_fiedler(G_Sig)
dmatrixH = HGLET_Analysis_All(G_Sig, GP)[1]
dvec_hglet, BS_hglet, _ = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixH, cfspec = 1)
dmatrix = ghwt_analysis!(G_Sig, GP = GP)
############# Haar
BS_haar = bs_haar(GP)
dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar)
############# Walsh
BS_walsh = bs_walsh(GP)
dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh)
############# GHWT_c2f
dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP)
############# GHWT_f2c
dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP)
############# eGHWT
dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP)
DVEC = [dvec_Laplacian[:], dvec_hglet[:], dvec_haar[:], dvec_walsh[:],
dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:], dvec_pc_ngwp[:],
dvec_vm_ngwp[:]]
return DVEC
end
using Clustering
"""
spectral_clustering(𝚽, M)
SPECTRAL_CLUSTERING return M graph clusters, i.e., {Vₖ| k = 1,2,...,M}.
# Input Argument
- `𝚽::Matrix{Float64}`: the matrix of graph Laplacian eigenvectors.
- `M::Int`: the number of graph clusters.
# Output Argument
- `clusters::Vector{Vector{Int}}`: graph cluster indices.
"""
function spectral_clustering(𝚽, M)
if M < 2
return [1:size(𝚽, 1)]
end
cluster_indices = assignments(kmeans(𝚽[:, 2:M]', M))
clusters = Vector{Vector{Int}}[]
for k in 1:M
push!(clusters, findall(cluster_indices .== k)[:])
end
return clusters
end
"""
transform2D(X; s = 1, t = [0,0])
TRANSFORM2D dilate each point of `X` by scale s and translate by 2D vector t.
"""
function transform2D(X; s = 1, t = [0,0])
X1 = X .* s
X2 = zeros(size(X))
for i in 1:size(X,1)
X2[i,1] = X1[i,1] + t[1]
X2[i,2] = X1[i,2] + t[2]
end
return X2
end
"""
NN_rendering(X, Img_Mat)
NN\\_RENDERING generates a rendering signal at each point of `X` from the image
`Img_Mat` by nearest neighbor method.
"""
function NN_rendering(X, Img_Mat)
N = size(X,1)
f = zeros(N)
for i in 1:N
nn_x, nn_y = Int(round(X[i, 2])), Int(round(X[i, 1]))
if nn_x < 1 || nn_x > size(Img_Mat, 2) || nn_y < 1 || nn_y > size(Img_Mat, 1)
print("Error: pixel out of boundary!")
return
end
f[i] = Img_Mat[nn_x, nn_y]
end
return f
end
"""
Bilinear_rendering(X, Img_Mat)
NN\\_RENDERING generates a rendering signal at each point of `X` from the image
`Img_Mat` by bilinear interpolation method.
"""
function Bilinear_rendering(X, Img_Mat)
N = size(X,1)
f = zeros(N)
for i in 1:N
x1, x2, y1, y2 = Int(floor(X[i, 2])), Int(floor(X[i, 2])) + 1, Int(floor(X[i, 1])), Int(floor(X[i, 1])) + 1
x, y = X[i,2], X[i,1]
F = [Img_Mat[x1,y1] Img_Mat[x1,y2]
Img_Mat[x2,y1] Img_Mat[x2,y2]]
prod_res = 1/((x2 - x1) * (y2 - y1)) * [x2-x x-x1] * F * [y2-y y-y1]'
f[i] = prod_res[1,1]
end
return f
end
"""
dct1d(k, N)
DCT1D returns k-th 1D DCT basis vector in Rᴺ.
# Input Arguments
- `k::Int64`: ord of DCT basis vector. k = 1,2,...,N.
- `N::Int64`: vector dimension.
# Output Argument
- `φ::Array{Float64}`: k-th 1D DCT basis vector in Rᴺ. (k is 1-indexed)
"""
function dct1d(k, N)
φ = [cos(π * (k - 1) * (l + 0.5) / N) for l = 0:(N - 1)]
return φ ./ norm(φ, 2)
end
"""
dct2d_basis(N1, N2)
DCT2D\\_BASIS returns 2D DCT basis vectors in [0,1] x [0,1] with N1-1 and N2-1 subintervals respectively.
# Input Arguments
- `N1::Int64`: number of nodes in x-axis.
- `N2::Int64`: number of nodes in y-axis.
# Output Argument
- `𝚽::Matrix{Float64}`: 2D DCT basis vectors.
"""
function dct2d_basis(N1, N2)
N = N1 * N2
𝚽 = zeros(N, N)
ind = 1
for i in 1:N1, j in 1:N2
φ₁, φ₂ = dct1d(i, N1), dct1d(j, N2)
φ = reshape(φ₁ * φ₂', N)
𝚽[:, ind] = φ
ind += 1
end
return 𝚽
end
"""
alternating_numbers(n)
ALTERNATING\\_NUMBERS e.g., n = 5, returns [1,5,2,4,3]; n = 6, returns [1,6,2,5,3,4]
# Input Arguments
- `n::Int64`: number of nodes in x-axis.
# Output Argument
- `arr::Array{Int64}`: result array.
"""
function alternating_numbers(n)
mid = Int(ceil(n / 2))
arr1 = 1:mid
arr2 = n:-1:(mid + 1)
arr = Array{Int64}(zeros(n))
p1, p2 = 1, 1
for i = 1:n
if i % 2 == 1
arr[i] = arr1[p1]
p1 += 1
else
arr[i] = arr2[p2]
p2 += 1
end
end
return arr
end
"""
compute_SNR(f, g)
COMPUTE\\_SNR, g = f + ϵ, SNR = 20 * log10(norm(f)/norm(g-f)).
# Input Arguments
- `f::Array{Float64}`: original signal.
- `g::Array{Float64}`: noisy signal.
# Output Argument
- `SNR::Float64`: SNR value.
"""
function compute_SNR(f, g)
SNR = 20 * log10(norm(f) / norm(g - f))
return SNR
end
"""
sort_wavelets(A; onlyByLoc = false)
sort A's column wavelet vectors based on their focused nodes' indices. flip
signs via the cross correlation.
# Input Arguments
- `A::Matrix{Float64}`: whose column vectors are wavelets.
# Output Argument
- `A::Matrix{Float64}`: a matrix with sorted and sign flipped column.
"""
function sort_wavelets(A; onlyByLoc = false)
ord = findmax(abs.(A), dims = 1)[2][:]
idx = sortperm([j[1] for j in ord])
A = A[:, idx]
if onlyByLoc
return A
end
N = size(A, 1)
sgn = ones(size(A, 2))
mid = Int(round(size(A, 2) / 2))
A[:, mid] .*= (maximum(A[:, mid]) > -minimum(A[:, mid])) * 2 - 1
for i in 1:size(A, 2)
cor_res = crosscor(A[:, mid], A[:, i], -Int(ceil(N / 2)):Int(floor(N / 2)))
if maximum(cor_res) < -minimum(cor_res)
sgn[i] = -1
end
end
A = A * Diagonal(sgn)
return A
end
"""
standardize_eigenvectors!(𝚽::Matrix{Float64})
standardize the signs of the eigenvectors such that 1) the term with the largest
magnitude is positive; 2) if the max == -min, then make sure the first non-zero
entry of the eigenvector is positive.
# Input Arguments
- `𝚽::Matrix{Float64}`: matrix of graph Laplacian eigenvectors
"""
function standardize_eigenvectors!(𝚽::Matrix{Float64})
N, nev = size(𝚽)
tol = 10^3 * eps()
for l in 1:nev
𝛟max = maximum(𝚽[:, l])
𝛟min = minimum(𝚽[:, l])
if abs(𝛟max + 𝛟min) < tol
row = 1
standardized = false
while !standardized
if 𝚽[row, l] > tol
standardized = true
elseif 𝚽[row, l] < -tol
𝚽[:, l] = -𝚽[:, l]
else
row += 1
end
end
elseif 𝛟max < -𝛟min
𝚽[:, l] *= -1
end
end
end
"""
getall_expansioncoeffs2(G_Sig::GraphSig, GP_star::GraphPart,
GP_star_Lsym::GraphPart,
VM_NGWP::Array{Float64,3},
PC_NGWP::Array{Float64,3},
LP_NGWP::Array{Float64,3},
VM_NGWP_Lsym::Array{Float64,3},
PC_NGWP_Lsym::Array{Float64,3},
LP_NGWP_Lsym::Array{Float64,3},
𝚽::Matrix{Float64},
𝚽sym::Matrix{Float64})
get all expansion coefficients of `f` in dissertation via all methods in NGWP.jl
and MTSG.jl
# Input Arguments
- `G_Sig::GraphSig`: GraphSig of the primal graph
- `GP_star::GraphPart`: GraphPart of the dual graph
- `VM_NGWP::Array{Float64,3}`: varimax NGWP.
- `PC_NGWP::Array{Float64,3}`: pair-clustering NGWP.
- `LP_NGWP::Array{Float64,3}`: lapped NGWP.
- `VM_NGWP_Lsym::Array{Float64,3}`: Lsym version of varimax NGWP.
- `PC_NGWP_Lsym::Array{Float64,3}`: Lsym version of pair-clustering NGWP.
- `LP_NGWP_Lsym::Array{Float64,3}`: Lsym version of lapped NGWP.
- `𝚽::Matrix{Float64}`: the matrix of `L` eigenvectors.
- `𝚽sym::Matrix{Float64}`: the matrix of `Lsym` eigenvectors.
"""
function getall_expansioncoeffs2(G_Sig::GraphSig, GP_star::GraphPart,
GP_star_Lsym::GraphPart,
VM_NGWP::Array{Float64,3},
PC_NGWP::Array{Float64,3},
LP_NGWP::Array{Float64,3},
VM_NGWP_Lsym::Array{Float64,3},
PC_NGWP_Lsym::Array{Float64,3},
LP_NGWP_Lsym::Array{Float64,3},
𝚽::Matrix{Float64},
𝚽sym::Matrix{Float64})
############# VM_NGWP
dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP)
dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_star)
############# PC_NGWP
dmatrix_PC = ngwp_analysis(G_Sig, PC_NGWP)
dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GP_star)
############# LP_NGWP
dmatrix_LP = ngwp_analysis(G_Sig, LP_NGWP)
dvec_lp_ngwp, BS_lp_ngwp = ngwp_bestbasis(dmatrix_LP, GP_star)
############# VM_NGWP_Lsym
dmatrix_VM_Lsym = ngwp_analysis(G_Sig, VM_NGWP_Lsym)
dvec_vm_ngwp_Lsym, BS_vm_ngwp_Lsym = ngwp_bestbasis(dmatrix_VM_Lsym, GP_star_Lsym)
############# PC_NGWP_Lsym
dmatrix_PC_Lsym = ngwp_analysis(G_Sig, PC_NGWP_Lsym)
dvec_pc_ngwp_Lsym, BS_pc_ngwp_Lsym = ngwp_bestbasis(dmatrix_PC_Lsym, GP_star_Lsym)
############# LP_NGWP
dmatrix_LP_Lsym = ngwp_analysis(G_Sig, LP_NGWP_Lsym)
dvec_lp_ngwp_Lsym, BS_lp_ngwp_Lsym = ngwp_bestbasis(dmatrix_LP_Lsym, GP_star_Lsym)
############# Laplacian L
dvec_Laplacian = 𝚽' * G_Sig.f
############# Laplacian Lsym
dvec_Laplacian_sym = 𝚽sym' * G_Sig.f
############# HGLET
GP = partition_tree_fiedler(G_Sig)
dmatrixH, _, dmatrixHsym = HGLET_Analysis_All(G_Sig, GP)
dvec_hglet, BS_hglet, trans_hglet = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixH, dmatrixHsym = dmatrixHsym, cfspec = 1)
############# LP-HGLET
dmatrixsH, dmatrixsHsym = LPHGLET_Analysis_All(G_Sig, GP; ϵ = 0.3)
dvec_lphglet, BS_lphglet, trans_lphglet = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixsH, dmatrixHsym = dmatrixsHsym, cfspec = 1)
############# GHWT dictionaries
dmatrix = ghwt_analysis!(G_Sig, GP = GP)
############# Haar
BS_haar = bs_haar(GP)
dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar)
############# Walsh
BS_walsh = bs_walsh(GP)
dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh)
############# GHWT_c2f
dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP)
############# GHWT_f2c
dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP)
############# eGHWT
dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP)
DVEC = [dvec_Laplacian[:], dvec_Laplacian_sym[:], dvec_hglet[:], dvec_lphglet[:],
dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:],
dvec_pc_ngwp[:], dvec_pc_ngwp_Lsym[:],
dvec_vm_ngwp[:], dvec_vm_ngwp_Lsym[:],
dvec_lp_ngwp[:], dvec_lp_ngwp_Lsym[:]]
return DVEC
end
"""
approx_error_plot2(DVEC::Vector{Vector{Float64}}; frac::Float64 = 0.50)
draw relative approx. error w.r.t. fraction of coefficients retained (FCR)
in dissertation
# Input Arguments
- `DVEC::Vector{Vector{Float64}}`: a list of expansion coefficients.
- `fraction::Float64`: default is 0.5.
"""
function approx_error_plot2(DVEC::Vector{Vector{Float64}}; frac::Float64 = 0.50)
plot(xaxis = "Fraction of Coefficients Retained",
yaxis = "Relative Approximation Error", size = (600, 500))
T = ["eigenbasis-L", "eigenbasis-Lsym", "HGLET", "LP-HGLET", "Haar", "Walsh",
"GHWT_c2f", "GHWT_f2c", "eGHWT", "PC-NGWP", "PC-NGWP-Lsym",
"VM-NGWP", "VM-NGWP-Lsym", "LP-NGWP", "LP-NGWP-Lsym"]
L = [(:dot, :red), (:dot, :magenta), (:solid, :teal), (:dashdot, :teal),
(:dashdot, :orange), (:dashdot, :pink), (:solid, :gray),
(:solid, :green), (:solid, :blue), (:solid, :purple), (:dash, :purple),
(:solid, :black), (:dash, :black), (:solid, :orange), (:dash, :orange)]
for i = 1:length(DVEC)
if i in [5, 6, 7, 8]
continue
end
dvec = DVEC[i]
N = length(dvec)
dvec_norm = norm(dvec,2)
dvec_sort = sort(dvec.^2) # the smallest first
er = max.(sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm, 1e-12)
p = Int64(floor(frac*N)) + 1 # upper limit
plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac),
label = T[i], line = L[i], linewidth = 2, grid = false)
end
end
"""
stem(f; x = 1:length(f[:]), c = :black, ms = 5, shape = :circle, lw = 1)
Display a length N discrete sequence data in a stem plot.
# Input Arguments
- `f`: function values could be a vector or an N x 1 matrix.
- `x`: default is `1:N`. x values.
- `c::Symbol`: default is `:black`. Color of the markers.
- `ms::Number`: default is `5`. Size of markers.
- `shape::Symbol`: default is `:circle`. Shape of the markers.
- `lw::Number`: default is `1`. The line width of the stems.
- `subgplot::Int`: default is `1`. The subplot index.
"""
function stem(f; x = 1:length(f[:]), c = :black, ms = 5, shape = :circle, lw = 1, subplot = 1)
if (ndims(f) == 2 && size(f, 2) > 1) || ndims(f) > 2
error("input only accepts a vector or a matrix of size (N, 1).")
return
end
f = f[:]
N = length(f)
plot(x, f, seriestype = :stem, color = c, lw = lw, subplot = subplot)
scatter!(x, f, marker = shape, color = c, ms = ms, mswidth = 0, subplot = subplot)
plot!(x, zeros(N), color = :black, lw = lw, subplot = subplot)
plot!(grid = false, legend = false, ratio = 1, frame = :none, subplot = subplot)
end
function stem!(f; x = 1:length(f[:]), c = :black, ms = 5, shape = :circle, lw = 1, subplot = 1)
if (ndims(f) == 2 && size(f, 2) > 1) || ndims(f) > 2
error("input only accepts a vector or a matrix of size (N, 1).")
return
end
f = f[:]
N = length(f)
plot!(x, f, seriestype = :stem, color = c, lw = lw, subplot = subplot)
scatter!(x, f, marker = shape, color = c, ms = ms, mswidth = 0, subplot = subplot)
plot!(x, zeros(N), color = :black, lw = lw, subplot = subplot)
plot!(grid = false, legend = false, ratio = 1, frame = :none, subplot = subplot)
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 2101 | """
natural_eigdist(𝚽, 𝛌, Q; α = 1.0, T = :Inf,
input_format = :zero_measures, distance = :DAG,
edge_weight = 1, edge_length = 1)
compute natural distances between graph Laplacian eigenvectors.
# Input Arguments
- `𝚽::Matrix{Float64}`: matrix of (weighted) graph Laplacian eigenvectors.
- `𝛌::Vector{Float64}`: vector of eigenvalues.
- `Q::Matrix{Float64}`: unweighted incidence matrix of the graph.
- `α::Float64`: ROT parameter. (default: `1.0`)
- `T::Any`: TSD parameter, i.e., the stopping time T in K_functional (default: `:Inf`)
- `input_format::Symbol`: options: `:zero_measures`, `:pmf1` and `:pmf2` (default: `:zero_measures`)
- `distance::Symbol`: options: `:ROT`, `:HAD`, `:DAG` and `:TSD` (default: `:DAG`)
- `edg_length::Any`: vector of edge lengths (default: 1 represents unweighted graphs)
- `edge_weight::Any`: the weights vector, which stores the affinity weight of
each edge (default: `1` represents unweighted graphs).
# Output Argument
- `dis::Matrix{Float64}`: the distance matrix, dis[i,j] = d(𝜙ᵢ₋₁, 𝜙ⱼ₋₁).
"""
function natural_eigdist(𝚽, 𝛌, Q; α = 1.0, T = :Inf,
input_format = :zero_measures, distance = :DAG,
edge_weight = 1, edge_length = 1)
N = size(Q, 1)
P = deepcopy(𝚽)
if input_format == :zero_measures
P[:, 1] .= 0
elseif input_format == :pmf1
P = P.^2
elseif input_format == :pmf2
P = exp.(P) ./ sum(exp.(P), dims = 1)
else
@error("input_format does not support $(input_format)!")
return
end
if distance == :ROT
D = eigROT_Distance(P, Q; edge_length = edge_length, α = α)
elseif distance == :HAD
D = eigHAD_Distance(𝚽, 𝛌)
elseif distance == :DAG
D = eigDAG_Distance(𝚽, Q, N; edge_weight = edge_weight)
elseif distance == :TSD
tL = Q * Q'
t𝛌, t𝚽 = eigen(Matrix(tL))
D = eigTSD_Distance(P, t𝚽, t𝛌, Q; length = edge_length, T = T)
else
error("distance does not support $(distance)!")
return
end
return D
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 11642 | using SparseArrays
using Statistics
using LinearAlgebra
using Arpack
"""
(pm,v) = partition_fiedler(W; method, v)
Partition the vertices of a graph according to the Fiedler vector
### Input Arguments
* `W::SparseMatrixCSC{Float64,Int}`: the edge weight matrix
* `method::Symbol`: the parition method to be used (:L or :Lrw or else ...)
* `v::Vector{Float64}`: the Fiedler vector supplied if `v` is a null vector
### Output Arguments
* `pm::Vector{Int}`: a vector of 1's and -1's
* `v::Vector{Float64}`: the Fiedler vector used for graph partitioning
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito)
Translated and revised by Naoki Saito, Feb. 9, 2017
"""
function partition_fiedler(W::SparseMatrixCSC{Float64,Int};
method::Symbol = :Lrw,
v::Vector{Float64} =Vector{Float64}(undef, 0))
#
# Easy case: the Fiedler vector is provided
#
if !isempty(v)
(pm, v) = partition_fiedler_pm(v)
if size(W, 1) == length(v)
# recovering the algebraic connectivity a(G)
# Note: regardless of v coming from L or Lrw, the eigenvalue
# computation below is fine: v'*L*v = a(G) or arw(G) because
# for L: v'*L*v = \lambda v'*v = \lambda
# for Lrw: vrw'*L*vrw = \lambda vrw'*D*vrw = \lambda
# Note also, the result of the quadratic form is scalar
# mathematically, but in julia, it's 1x1 array; so need to
# convert it to a real scalar via `val = val[1]`.
val = v' * (Diagonal(vec(sum(W, dims = 1))) - W) * v; val = val[1]
pm = partition_fiedler_troubleshooting(pm, v, W, val)
else
pm = partition_fiedler_troubleshooting(pm)
end
return pm, v
end
#
# Now, we need to compute the Fiedler vector here. Preliminaries first.
#
N = size(W, 1)
eigs_flag = 0
sigma = eps()
cutoff = 128 # this value could be changed...
# handle the case when there are 2 nodes
if N == 2
pm = [1; -1]
v = pm / sqrt(2)
return pm, v
end
# Use L (unnormalized) if specified or edge weights are very small
if method == :L || minimum(sum(W, dims = 1)) < 10^3 * sigma
if N > cutoff # for a relative large W
v0 = ones(N) / sqrt(N)
try
# MATLAB, [v,val,eigs_flag] = eigs(diag(sum(W))-W,2,sigma,opts);
val, vtmp = eigs(sparse(Diagonal(vec(sum(W, dims = 1)))) - W,
nev = 2, sigma = sigma, v0 = v0)
# val = real.(val)
# vtmp = real.(vtmp)
if isa(val[1], Complex{Float64})
eigs_flag = 1
end
catch emsg
@warn("Exception in eigs(L) occurred: ", emsg)
eigs_flag = 2
end
if eigs_flag == 0 # no problem in `eigs` is detected.
val, ind = findmax(val) # val is set to be a scalar.
v = vec(vtmp[:, ind]) # This is the Fiedler vector!
# In MATLAB, val was returned as a diagonal matrix, so we had to
# do all these manipulations while julia, val is simply a vector.
# [~,ind] = max(diag(val));
# v = v(:,ind);
# val = val(ind,ind);
end
end
if N <= cutoff || eigs_flag != 0 # if W is small or eigs had a problem,
# then use full svd.
vtmp, val = svd(Matrix(Diagonal(vec(sum(W, dims = 1))) - W)) # v <-> U, val <-> S
# Diagonal(vec(sum(W,1))) is Matrix{Float64} while W is SparseMatrix
# But the results of the subtraction becomes Matrix{Float64}.
# Also be careful here! val[end-2] == val[end-1] can happen.
# If that is the case, vtmp[:,end-2] could also be the Fiedler vec.
v = vec(vtmp[:, end - 1]) # v is set to be a vector.
val = val[end - 1] # val is set to a scalar.
# In MATLAB, `full` was necessary to convert a sparse matrix format
# to a usual matrix format as follows
# [v,val,~] = svd(full(diag(sum(W))-W));
end
elseif method == :Lrw # Otherwise, use L_rw, which is normally preferred.
if N > cutoff # for a relatively large W
v0 = ones(N) / sqrt(N)
try
# MATLAB: [v,val,eigs_flag] = ...
# eigs(diag(sum(W))-W,diag(sum(W)),2,sigma,opts);
# This is L*v = \lambda*D*v case.
temp = sparse(Diagonal(vec(sum(W, dims = 1))))
val, vtmp = eigs(temp - W, temp,
nev = 2, sigma = sigma, v0 = v0)
# val = real.(val)
# vtmp = real.(vtmp)
if isa(val[1], Complex{Float64})
eigs_flag = 1
end
catch emsg
@warn("Exception in eigs(Lrw) occurred: ", emsg)
eigs_flag = 2
end
if eigs_flag == 0
val, ind = findmax(val) # val is set to be a scalar.
v = vtmp[:, ind]
# MATLAB: v = (full(sum(W,2)).^(-0.5)) .* v
# v = vec((sum(W, dims = 2).^(-0.5)) .* v) # This is the Fiedler vector!
end
end
if N <= cutoff || eigs_flag != 0 # if W is small or eigs had a problem,
# then use full svd
colsumW = vec(sum(W, dims = 1))
D = Diagonal(colsumW)
D2 = Diagonal(colsumW.^(-0.5))
vtmp, val = svd(Matrix(D2 * (D - W) * D2)) # SVD of Lsym
# MATLAB: [v,val,~] = svd(full(...
# bsxfun(@times,bsxfun(@times,full(sum(W,2)).^(-0.5),diag(sum(W))-W),
# full(sum(W,1)).^(-0.5)) ) );
#
# SVD is ordered in the order of nonincreasing singular values,
# so, (end-1) entry corresponds to the algebraic connectivity.
# Also be careful here! val[end-2] == val[end-1] can happen.
# If that is the case, vtmp[:,end-2] could also be the Fiedler vec.
val = val[end - 1] # val is set to be a scalar.
v = vtmp[:, end - 1] # v is set to be a vector.
v = vec((sum(W, dims = 2).^(-0.5)) .* v) # This is the Fiedler vector of Lrw!
end
else # Unknown method is specified.
error("Graph partitioning method :", method, " is not recognized!")
end
# partition using the Fiedler vector and troubleshoot any potential issues
pm, v = partition_fiedler_pm(v)
pm = partition_fiedler_troubleshooting(pm, v, W, val)
return pm, v
end # of partition_fiedler
"""
(pm, v) = partition_fiedler_pm(v::Vector{Float64})
Partition an input Graph based on the Fiedler vector `v`
### Input Argument
* `v::Vector{Float64}`: the input Fiedler vector
### Output Arguments
* `pm::Vector{Int}`: the partition info
* `v::Vector{Float64}`: the output Fiedler vector if requested
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito)
Translated and revised by Naoki Saito, Feb. 10, 2017
"""
function partition_fiedler_pm(v::Vector{Float64})
# define a tolerance: if abs(x) < tol, then we view x = 0.
tol = 10^3 * eps()
# set the first nonzero element to be positive
row = 1
while abs(v[row]) < tol && row < length(v)
row += 1
end
if v[row] < 0
v = -v
end
# assign each point to either region 1 or region -1, and assign any zero
# entries to the smaller region
if sum(v .>= tol) > sum(v .<= -tol) # more (+) than (-) entries
pm = 2*(v .>= tol) .- 1
else
pm = 2*(v .<= -tol) .- 1
end
# make sure the first point is assigned to region 1 (not -1)
if pm[1] < 0
pm = -pm
end
return pm, v
end # of partition_fiedler_pm
"""
pm = partition_fiedler_troubleshooting(pm,v,W,val)
Troubleshoot potential issues with the partitioning
### Input Arguments
* `pm::Vector{Int}`: an input partition info (+1 or -1) of each node
* `v::Vector{Float64}`: the Fiedler vector of the graph
* `W::SparseMatrixCSC{Float64,Int}`: an input edge weight matrix
* `val::Float64`: the algebraic connectivity (i.e., ``\\lambda_2``)
### Ouput Arguments
* `pm::Vector{Int}`: a final partition info vector
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito)
Translated and revised by Naoki Saito, Feb. 10, 2017
"""
function partition_fiedler_troubleshooting(pm::Vector{Int},v::Vector{Float64},
W::SparseMatrixCSC{Float64,Int},
val::Float64)
# Initial setup
N = length(pm)
tol = 10^3 * eps()
# If pm vector indicates no partition (single sign) or ambiguities via
# 0 entries, then we'll trouble shoot.
if sum(pm .< 0) == 0 || sum(pm .> 0) == 0 || sum(abs.(pm)) < N
# Case 1: an input graph is not connected (i.e., alg. conn < tol)
if val < tol
pm = 2 .* (abs.(v) .> tol) .- 1
while sum(pm .< 0) == 0 || sum(pm .> 0) == 0
tol = 10 * tol # relax the tolerance
pm = 2 .* (abs.(v) .> tol) .- 1
if tol > 1
pm[1:Int(ceil(N / 2))] .= 1
pm[(Int(ceil(N / 2)) + 1):N] .= -1
end
end
# Case 2: it is connected, but something funny happened
else
pm = 2 .* (v .>= mean(v)) .- 1
if sum(abs.(pm)) < N
# assign the near-zero points based on the values of v
# at their neighbor nodes
pm0 = find(pm .== 0)
pm[pm0] = (W[pm0, :] * v .> tol) - (W[pm0, :] * v .< -tol)
# assign any remaining zeros to the group with fewer members
pm[find(pm .== 0)] = (sum(pm .> 0) - sum(pm .< 0)) .>= 0
end
end
# if one region has no points after all the above processing
if sum(pm .< 0) == 0 || sum(pm .> 0) == 0
pm[1:Int(ceil(N / 2))] .= 1
pm[Int(ceil(N / 2) + 1):N] .= -1
end
end
# make sure that the first point is assigned as a 1
if pm[1] < 0
pm = -pm
end
return pm
end # of partition_fiedler_troubleshooting
"""
pm = partition_fiedler_troubleshooting(pm)
Troubleshoot potential issues with the partitioning
### Input Arguments
* `pm::Vector{Int}`: an input partition info (+1 or -1) of each node
### Ouput Arguments
* `pm::Vector{Int}`: a final partition info vector
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito)
Translated and revised by Naoki Saito, Feb. 10, 2017
"""
function partition_fiedler_troubleshooting(pm::Vector{Int})
N = length(pm)
if sum(pm .< 0) == 0 || sum(pm .> 0) == 0
pm[1:Int(ceil(N / 2))] = 1
pm[Int(ceil(N / 2) + 1):N] = -1
end
# make sure that the first point is assigned as a 1
if pm[1] < 0
pm = -pm
end
return pm
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 7575 | """
rse = PartitionTreeMatrix_unbalanced_haar(matrix::Matrix{Float64},jmax::Int;method::Symbol = :Totalvar, p::Float64 = 2.)
Perform the quadtree partition of image matrix depending on total-variation or changes on the boundary.
### Input Arguments
* `matrix`: The image matrix.
* `jmax`: The maximum level of partition.
* `method`: ':Totalvar' indicates using total variation, the other indicates using changes on the boundary.
* `p`: The power used in the criterion to balance the sizes of the sub-regions. The larger `p`, the more weight on balancing the sub-regions.
### Output Arguments
* `rse`: Region start and end. Each pair represents the start and end of a region in the matrix, corresponding to one node in the quadtree.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function PartitionTreeMatrix_unbalanced_haar(matrix::Matrix{Float64},jmax::Int;method::Symbol = :Totalvar, p::Float64 = 2.)
rows,cols = size(matrix)
N = rows*cols
rse = Vector{Vector{Int}}(jmax)
rse[1] = [1,N];
j = 1
while j<=jmax-1
rr = 1
rse[j+1] = zeros(4*length(rse[j]))
for r = 1:2:(length(rse[j]) - 1)
rs_rows,rs_cols = ind2sub((rows,cols),rse[j][r])
re_rows,re_cols = ind2sub((rows,cols),rse[j][r+1])
n_rows = re_rows-rs_rows+1
n_cols = re_cols-rs_cols+1
n1_rows,n1_cols = PartitionTreeMatrix_unbalanced_haar_subblock(matrix[rs_rows:re_rows,rs_cols:re_cols],method = method, p = p)
if !(n1_rows==0 || n1_rows == n_rows) && !(n1_cols==0 ||n1_cols==n_cols)
child_rows = [rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows, rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows];
child_cols = [rs_cols, rs_cols+n1_cols-1, rs_cols, rs_cols+n1_cols-1, rs_cols+n1_cols, re_cols, rs_cols+n1_cols, re_cols];
for k = 1:8
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 8
elseif (n1_rows == 0 || n1_rows == n_rows) && !(n1_cols == 0 || n1_cols == n_cols)
child_rows = [rs_rows, re_rows, rs_rows, re_rows];
child_cols = [rs_cols, rs_cols+n1_cols-1, rs_cols+n1_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
elseif (n1_cols == 0 || n1_cols == n_cols) && !(n1_rows == 0 || n1_rows == n_rows)
child_rows = [rs_rows, rs_rows+n1_rows-1, rs_rows+n1_rows, re_rows];
child_cols = [rs_cols, re_cols, rs_cols, re_cols];
for k = 1:4
rse[j+1][rr+k-1] = sub2ind((rows,cols),child_rows[k],child_cols[k])
end
rr = rr + 4
else
rse[j+1][rr:rr+1] = rse[j][r:r+1]
rr = rr + 2
end
end
j = j+1
rse[j] = rse[j][rse[j].!=0]
end
return rse
end
"""
row_cut,col_cut = PartitionTreeMatrix_unbalanced_haar_subblock(matrix::Matrix{Float64};method::Symbol = :Totalvar, p::Float64 = 2.)
Partition a matrix block into four sub-blocks.
### Input Arguments
* `matrix`: The image matrix.
* `method`: ':Totalvar' indicates using total variation, the other indicates using changes on the boundary.
* `p`: The power used in the criterion to balance the sizes of the sub-regions. The larger `p`, the more weight on balancing the sub-regions.
### Output Arguments
* `row_cut`: The cut index on the row direction.
* `col_cut`: The cut index on the col direction.
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function PartitionTreeMatrix_unbalanced_haar_subblock(matrix::Matrix{Float64};method::Symbol = :Totalvar, p::Float64 = 2.)
m,n = size(matrix)
Entropy = Inf
if m>1 && n>1
for i=1:m-1
for j=1:n-1
if method == :Totalvar
Entropy_temp = total_var(matrix[1:i,1:j])/(i*j)^p + total_var(matrix[i+1:m,1:j])/((m-i)*j)^p + total_var(matrix[1:i,j+1:n])/(i*(n-j))^p + total_var(matrix[i+1:m,j+1:n])/((m-i)*(n-j))^p;
else
Entropy_temp = -( norm(matrix[i,:]-matrix[i+1,:],1) + norm(matrix[:,j] - matrix[:,j+1],1) )/((i*j)^(-p) + ((m-i)*j)^(-p) + (i*(n-j))^(-p) + ((m-i)*(n-j))^(-p));
end
if Entropy_temp < Entropy
Entropy = Entropy_temp
row_cut = i
col_cut = j
end
end
end
elseif m == 1 && n>1
row_cut = 0
for j = 1:n-1
if method == :Totalvar
Entropy_temp = total_var(matrix[1,1:j])/j^p + total_var(matrix[1,j+1:n])/(n-j)^p;
else
Entropy_temp = -norm(matrix[:,j] - matrix[:,j+1],1)*(j^(-p) + (n-j)^(-p));
end
if Entropy_temp < Entropy
Entropy = Entropy_temp
col_cut = j
end
end
elseif n == 1 && m>1
col_cut = 0
for i = 1:m-1
if method == :Totalvar
Entropy_temp = total_var(matrix[1:i,1])/i^p + total_var(matrix[i+1:m,1])/(m-i)^p;
else
Entropy_temp = -norm(matrix[i,:]-matrix[i+1,:],1)*(i^(-p) + (m-i)^(-p));
end
if Entropy_temp < Entropy
Entropy = Entropy_temp
row_cut = i
end
end
else
row_cut = 0
col_cut = 0
end
return row_cut,col_cut
end
"""
v = total_var(matrix::Matrix{Float64})
Compute the total variation of matrix
Copyright 2018 The Regents of the University of California
Implemented by Yiqun Shao (Adviser: Dr. Naoki Saito)
"""
function total_var(matrix::Matrix{Float64})
m,n = size(matrix)
row_val = abs.(matrix[1:m-1,:] - matrix[2:m,:])
col_val = abs.(matrix[:,1:n-1] - matrix[:,2:n])
v = norm(vcat(row_val[:],col_val[:]),1)
return v
end
function PartitionTreeMatrix_unbalanced_haar_binarytree(matrix::Matrix{Float64}, jmax::Int64, p::Float64)
N = size(matrix,2)
rs = fill(0, N+1, jmax)
rs[1,:] .= 1
rs[2,1] = N+1
for j = 1:jmax - 1
rr = 1
regioncount = sum(!iszero, rs[:,j]) - 1
for r = 1:regioncount
rs1 = rs[r,j]
rs2 = rs[r+1,j]
n = rs2 - rs1
if n > 1
n1 = PartiitonTreeMatrix_unbalanced_haar_col_partition(matrix[:,rs1:rs2-1],p)
rs[rr+1,j+1] = rs1+n1
rs[rr+2,j+1] = rs2
rr = rr+2
elseif n == 1
rs[rr+1,j+1] = rs2
rr = rr+1
end
end
end
GP = GraphPart(Vector{Int}(1:N), rs)
return GP
end
function PartiitonTreeMatrix_unbalanced_haar_col_partition(matrix::Matrix{Float64},p::Float64)
n = size(matrix,2)
entropy = Inf
col_cut = 1
for j = 1:n-1
entropy_temp = total_var(matrix[:, 1:j])/(j^p) + total_var(matrix[:,j+1:n])/(n-j)^p
if entropy_temp < entropy
entropy = entropy_temp
col_cut = j
end
end
return col_cut
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 16768 | using LinearAlgebra, AverageShiftedHistograms, Distances
"""
T = ind_class(N::Int)
Given `N`, determine what class `ind` (and `rs`) should be
### Input Argument
* `N::Int`: the length of the graph signal
### Output Argument
* `T <: Unsigned`: the unsigned integer class that `ind` should be
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito) |
Translated and revised by Naoki Saito, Feb. 8, 2017
"""
function ind_class(N::Int)
if N < 2^8-2
T = UInt8
elseif N < 2^16-2
T = UInt16
elseif N < 2^32-2
T = UInt32
elseif N < 2^64-2
T = UInt64
else
T = UInt128 # Hope this does not happen!
end
return T
end
"""
T = tag_class(jmax::Int)
Given `jmax`, determine what class `tag` should be.
### Input Argument
* `jmax::Int`: the number of levels in the recursive partitioning (j = 1:jmax)
### Output Argument
* `T <: Unsigned`: the unsigned integer class that `tag` should be
Copyright 2015 The Regents of the University of California
Implemented by Jeff Irion (Adviser: Dr. Naoki Saito) |
Translated and revised by Naoki Saito, Feb. 8, 2017
"""
function tag_class(jmax::Int)
if jmax - 1 <= 8
T = UInt8
elseif jmax - 1 <= 16
T = UInt16
elseif jmax - 1 <= 32
T = UInt32
elseif jmax - 1 <= 64
T = UInt64
else
T = UInt128 # Hope this does not happen!
end
return T
end
"""
dmatrix_flatten(dmatrix::Array{Float64,3}, flatten::Any)
Flatten dmatrix using the method specified by the string "flatten"
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of expansion coefficients; after this function is called, it becomes the size of (~, ~, 1).
* `flatten::Any`: the method for flattening dmatrix (see the code in details)
"""
function dmatrix_flatten(dmatrix::Array{Float64,3}, flatten::Any)
# p-norms or p-quasinorms
if isa(flatten, Number)
if flatten == 1
dmatrix = sum(abs.(dmatrix), dims = 3)
elseif flatten == 0
dmatrix = sum(dmatrix != 0, dims = 3)
else
dmatrix = (sum(abs.(dmatrix).^flatten, dims = 3)).^(1 / flatten)
end
# histogram
# # # elseif strcmpi(flatten,'histogram') # not yet implemented
# What I meant here was to implement ASH-like pdf estimation
# followed by the entropy computation.
# sum of absolute values = 1-norm
elseif isa(flatten, Symbol)
if flatten == :abs
dmatrix = sum(abs.(dmatrix), dims = 3)
# standard deviation
elseif flatten == :std
# MATLAB: dmatrix = std(dmatrix, 0, 3)
dmatrix = std(dmatrix, dims = 3)
# variance
elseif flatten == :var
dmatrix = var(dmatrix, dims = 3)
# inverse variance
elseif flatten == :invvar
dmatrix = var(dmatrix, dims = 3)
dmatrix[ abs.(dmatrix) < eps() ] = eps()
dmatrix = dmatrix.^-1;
# max coefficient - min coefficient
elseif flatten == :minmax || flatten == :maxmin
# MATLAB: dmatrix = max(dmatrix, [], 3) - min(dmatrix, [], 3)
dmatrix = maximum(dmatrix, dims = 3) - minimum(dmatrix, dims = 3)
# sum (no absolute value)
elseif flatten == :sum
dmatrix = sum(dmatrix, dims = 3)
# the sum of the differences of consecutive coeffs
elseif flatten == :sumdiff
dmatrix = sum(dmatrix[:, :, 2:end] - dmatrix[:, :, 1:(end - 1)], dims = 3)
# the sum of the absolute values of the differences of consecutive coeffs
elseif flatten == :sumabsdiff
dmatrix = sum(abs.(dmatrix[:, :, 2:end] - dmatrix[:, :, 1:(end - 1)]), dims = 3)
# Shannon entropy
elseif flatten === :entropy
# MATLAB: p = abs(dmatrix)/norm(dmatrix[:], 'fro')
# p = abs(dmatrix)/norm(dmatrix[:])
# dmatrix = sum(p. * log2(p), 3)
# Normally, we flatten to get an energy matrix, and then take entropy
dmatrix = sum(abs.(dmatrix).^2, dims = 3)
# now, all the column vectors have the same norm, so normalize it.
dmatrix /= sum(dmatrix[:, 1, 1])
# now, each column has a unit norm.
dmatrix = sum(-dmatrix .* log2.(dmatrix), dims = 3)
# threshold coefficients below 0.5*norm(dmatrix)/length(dmatrix) and sum
elseif flatten == :sub
# MATLAB: t = 0.5 * norm(dmatrix[:], 'fro') / numel(dmatrix)
t = 0.5 * norm(dmatrix[:]) / length(dmatrix)
dmatrix[abs.(dmatrix) .< t] = 0
dmatrix = sum(dmatrix, dims = 3)
# ASH pdf estimation followed by the entropy computation.
elseif flatten == :ash
(N, jmax, fcols) = Base.size(dmatrix)
for j = 1:jmax
for i = 1:N
# ASH pdf estimation
h = ash(dmatrix[i, j, :])
# number of sampling points (default: 500)
npts = length(h.density)
# width of the sampling range (default: max - min + 1*std)
width = h.rng[end] - h.rng[1]
# normalize pdf
pdf = h.density / norm(h.density, 1)
# estimate of differential entropy by the limiting density
# of discrete points (uniform sampling)
dmatrix[i, j, 1] = entropy(pdf, 2.0) + log2(width / npts)
end
end
# flatten dmatrix by slicing
dmatrix = reshape(dmatrix[:, :, 1], N, jmax, 1)
# default (1-norm)
else
@warn("the specified flatten symbol $(flatten) is not recognized; hence we assume it as 1-norm.")
dmatrix = sum(abs.(dmatrix), dims = 3)
end
else
@warn("the specified flatten argument $(flatten) is neither of number nor of symbol type; hence we assume it as 1-norm.")
dmatrix = sum(abs.(dmatrix), dims = 3)
end
return dmatrix
end # of function dmatrix_flatten!
"""
function ldb_discriminant_measure(p::Vector{Float64}, q::Vector{Float64}; dm::Symbol = :KLdivergence)
Discriminat measure in LDB.
### Input Arguments
* `p,q::Vector{Float64}`: probability mass functions.
* `dm::Symbol`: discriminant measure. Options: `:KLdivergence`(default),
`:Jdivergence`, `:l1`, `:l2`, and `:Hellinger`.
"""
function ldb_discriminant_measure(p::Vector{Float64}, q::Vector{Float64}; dm::Symbol = :KLdivergence)
@assert all(p .>= 0) && all(q .>= 0)
@assert length(p) == length(q)
if dm == :KLdivergence
ind = findall((p .> 0) .& (q .> 0))
return Distances.kl_divergence(p[ind], q[ind])
elseif dm == :Jdivergence
ind = findall((p .> 0) .& (q .> 0))
return Distances.kl_divergence(p[ind], q[ind]) + Distances.kl_divergence(q[ind], p[ind])
elseif dm == :l1
return norm(p - q, 1)
elseif dm == :l2
return norm(p - q, 2)
elseif dm == :Hellinger
return hellinger(p, q)
else
error("This discriminat measure $(dm) is not supported! ")
end
end
"""
function dmatrix_ldb_flatten(dmatrix::Array{Float64,3}...; dm::Symbol = :KLdivergence)
Flatten dmatrices using the LDB method; after this function is called, it returns
a matrix of size (~, ~, 1).
### Input Arguments
* `dmatrix::Array{Float64,3}`: the matrix of LDB expansion coefficients in one class.
* `dm::Symbol`: discriminant measure. Options: `:KLdivergence` (default),
`:Jdivergence`, `:l1`, `:l2`, and `:Hellinger`.
### Example Usage:
`dmatrix_ldb_flatten(dmatrix1, dmatrix2, dmatrix3)`,
each argument is the expansion coefficient matrix of a class of signals. It uses
the default discriminant measure KL divergence to flatten these matrices.
In other words, it flattens these expansion coefficent matrices by computing and
summing "statistical distances" among them.
"""
function dmatrix_ldb_flatten(dmatrix::Array{Float64,3}...; dm::Symbol = :KLdivergence)
C = length(dmatrix) # number of signal classes
if C < 2
error("Input should contain at least two classes of signals.")
end
N, jmax, _ = Base.size(dmatrix[1])
res = zeros(N, jmax)
for u = 1:(C - 1), v = (u + 1):C
for j = 1:jmax
for i = 1:N
h1 = ash(dmatrix[u][i, j, :])
p = h1.density / norm(h1.density, 1)
h2 = ash(dmatrix[v][i, j, :])
q = h2.density / norm(h2.density, 1)
res[i, j] += ldb_discriminant_measure(p, q; dm = dm)
end
end
end
res = reshape(res[:, :, 1], N, jmax, 1)
return res
end
"""
costfun = cost_functional(cfspec::Any)
Determine the cost functional to be used by the best-basis algorithm.
### Input Argument
* `cfspec::Any`: the specification for the cost functional
### Output Argument
* `costfun::Function`: the cost functional (as a function_handle)
"""
function cost_functional(cfspec::Any)
if isa(cfspec, Number)
return function (x) return norm(x, cfspec) end
elseif isa(cfspec, Function)
return function (x) return cfspec(x) end
else return function (x) return norm(x, 1) end # by default 1-norm
# else return function (x) return norm(x, 0.1) end # by default 0.1-quasinorm
end
end # of function cost_functional
# """
# (dvec, levlist) = bbchange(dvec::Vector{Float64}, j::Int)
#
# Change to the new best basis
#
# ### Input Arguments
# * `dvec::Vector{Float64}`: an input coefficient matrix
# * `j::Int`: a level index
#
# ### Output Arguments
# * `dvec::Vector{Float64}`: an output coefficient matrix
# * `levlist::Vector{Int}`: an output levlist
# """
# function bbchange(dvec::Vector{Float64}, j::Int)
# n = Base.size(dvec, 1) # assume each column corresponding to one signal
# levlist = zeros(Int, n)
# levlist[1] = j
# return dvec, levlist # might need deepcopy here.
# end
"""
function rs_to_region(rs::Matrix{Any}, tag::Matrix{Any})
From the imformation of rs, tag from GP, compute the tag_r matrix, which have the same
size of dmatrix (expansion coefficient matrix). Each element indicates the place of the
coefficient in the expansion tree.
### Input Arguments
* `rs::Matrix{Any}`: rs from GP, showing information of the partition tree
* `tag::Matrix{Any}`: tag from GP, indicating coefficients tag
### Output Arguments
* `tag_r::Matrix{UInt64}`: showing information of the partition tree, same size as dmatrix
"""
function rs_to_region(rs::Matrix{Int}, tag::Matrix{Int})
(m,n) = size(tag)
tag_r = zeros(m,n)
for j = 1:(n-1)
regioncount = count(!iszero, rs[:,j]) - 1
for r = 1:regioncount
rs1 = rs[r,j]
rs3 = rs[r+1,j]
s = rs3-rs1
if s==1 #the region and subregion have only one element
tag_r[rs1,j+1] = 2*tag_r[rs1,j]
elseif s > 1
# rs2 marks the start of the second subregion
rs2 = rs1 + 1
while rs2 < rs3 && tag[rs2, j+1]!=0
rs2 = rs2 + 1;
end
# the parent region is a copy of the subregion
if rs2 == rs3
tag_r[rs1:rs3-1,j+1] = 2*tag_r[rs1:rs3-1,j]
# the parent region has 2 child regions
else
tag_r[rs1:rs2-1,j+1] = 2*tag_r[rs1:rs2-1,j]
tag_r[rs2:rs3-1,j+1] = 2*tag_r[rs2:rs3-1,j] .+ 1
end
end
end
end
return Matrix{Int}(tag_r)
end
"""
function nonorth2relerror(nonorth::array{Float64,1},B::array{Float64,2})
Given a vector 'nonorth' of non-orthonormal expansion coefficients and
the matrix 'B' such that B*nonorth is the original signal, return a
vector of relative approximation errors when retaining the 1,2,...,N
largest coefficients in magnitude.
### Input argument
* `nonorth`: a vector of non-orthonormal expansion coefficients
* `B`: the matrix whose such that B*nonorth is the original signal
### Output argument
* `relerror`: a vector of relative approximation errors
"""
function nonorth2relerror(nonorth::Array{Float64,1},B::Array{Float64,2})
# sort the expansion coefficients
IX = sortperm(nonorth, by = abs, rev = true)
# generate a matrix where column j contains the j largest coefficients
matrix0 = Matrix(UpperTriangular(repeat(nonorth[IX],1,length(IX))))
matrix = deepcopy(matrix0)
matrix[IX,:] = matrix0
# the original signal and a matrix of reconstructions
f = B*nonorth
recons = B*matrix
# the relative errors
relerror = sum((repeat(f,1,length(IX)) - recons).^2, dims = 1)'.^(1/2)./norm(f,2)
return relerror
end
"""
function orth2relerror(orth)
Given a vector 'orth' of orthonormal expansion coefficients, return a
vector of relative approximation errors when retaining the 1,2,...,N
largest coefficients in magnitude.
### Input argument
* `orth`: a vector of orthonormal expansion coefficients
### Output argument
* `relerror`: a vector of relative approximation errors
"""
function orth2relerror(orth::Array{Float64,1})
# sort the coefficients
orth = sort(orth.^2, rev = true)
#compute the relative errors
relerror = ((abs.(sum(orth) .- cumsum(orth))).^(1/2))/sum(orth).^(1/2)
return relerror
end
## NGWP utils functions
# project vector x onto matrix A's column space, given A is full column rank
function Proj(x, A)
y = try
pinv(A' * A) * (A' * x)
catch err
if err != Nothing
A' * x
end
end
return A * y
end
function wavelet_perp_Matrix(w,A)
N, k = size(A)
B = zeros(N, k - 1)
if k == 1
return
end
tmp = A'*w
if tmp[1] > 1e-6
M = Matrix{Float64}(I, k-1, k-1)
return A*vcat((-tmp[2:end] ./ tmp[1])', M)
end
if tmp[end] > 1e-6
M = Matrix{Float64}(I, k-1, k-1)
return A*vcat(M,(-tmp[1:end-1] ./ tmp[end])')
end
ind = findall(tmp .== maximum(tmp))[1]
rest_ind = setdiff([i for i in 1:k], ind)
M = Matrix{Float64}(I, k-1, k-1)
B = A * vcat(vcat(M[1:ind-1,:], (-tmp[rest_ind] ./ tmp[ind])'), M[ind:end, :])
return B
end
# Gram-Schmidt Process Orthogonalization
function gram_schmidt(A; tol = 1e-12)
# Input: matirx A
# Output: orthogonalization matrix of A's column vectors
# Convert the matrix to a list of column vectors
a = [A[:,i] for i in 1:size(A,2)]
# Start Gram-Schmidt process
q = []
complement_dim = 0
for i = 1:length(a)
qtilde = a[i]
for j = 1:(i - 1)
qtilde -= (q[j]' * a[i]) * q[j]
end
if norm(qtilde) < tol
complement_dim = size(A,2) - i + 1
break
end
push!(q, qtilde / norm(qtilde))
end
Q = zeros(size(A,1), length(q))
for i = 1:length(q)
Q[:,i] .= q[i]
end
return Q, complement_dim
end
"""
mgslp(A::Matrix{Float64}; tol::Float64 = 1e-12, p::Float64 = 1.0)
Modified Gram-Schmidt Process Orthogonalization with ℓᵖ pivoting algorithm (MGSLp)
# Input Arguments
- `A::Matrix{Float64}`: whose column vectors are to be orthogonalized.
# Output Argument
- `A::Matrix{Float64}`: orthogonalization matrix of A's column vectors based on ℓᵖ pivoting.
"""
function mgslp(A::Matrix{Float64}; tol::Float64 = 1e-12, p::Float64 = 1.0)
n = size(A, 2)
# Convert the matrix to a list of column vectors
a = [A[:, i] for i in 1:n]
# Start modified Gram-Schmidt process
q = []
v = copy(a)
vec_lp_norm = [norm(v[i], p) for i in 1:n]
complement_dim = 0
for i = 1:n
# Pivoting based on minimum ℓᵖ-norm
idx = findmin(vec_lp_norm)[2]
v[i], v[idx + i - 1] = v[idx + i - 1], v[i]
# Check the linear dependency
if norm(v[i]) < tol
complement_dim = n - i + 1
break
end
qtilde = v[i] / norm(v[i], 2)
vec_lp_norm = []
for j = (i + 1):n
v[j] .-= (qtilde' * v[j]) * qtilde
push!(vec_lp_norm, norm(v[j], p))
end
push!(q, qtilde)
end
Q = zeros(size(A,1), length(q))
for i = 1:length(q)
Q[:,i] .= q[i]
end
return Q, complement_dim
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1907 | """
varimax(A; gamma = 1.0, minit = 20, maxit = 1000, reltol = 1e-12)
VARIMAX perform varimax (or quartimax, equamax, parsimax) rotation to the column vectors of the input matrix.
# Input Arguments
- `A::Matrix{Float64}`: input matrix, whose column vectors are to be rotated. d, m = size(A).
- `gamma::Float64`: default is 1. gamma = 0, 1, m/2, and d(m - 1)/(d + m - 2), corresponding to quartimax, varimax, equamax, and parsimax.
- `minit::Int`: default is 20. Minimum number of iterations, in case of the stopping criteria fails initially.
- `maxit::Int`: default is 1000. Maximum number of iterations.
- `reltol::Float64`: default is 1e-12. Relative tolerance for stopping criteria.
# Output Argument
- `B::Matrix{Float64}`: output matrix, whose columns are already been rotated.
Implemented by Haotian Li, Aug. 20, 2019
"""
function varimax(A; gamma = 1.0, minit = 20, maxit = 1000, reltol = 1e-12)
# Get the sizes of input matrix
d, m = size(A)
# If there is only one vector, then do nothing.
if m == 1
return A
end
if d == m && rank(A) == d
return Matrix{Float64}(I, d, m)
end
# Warm up step: start with a good initial orthogonal matrix T by SVD and QR
T = Matrix{Float64}(I, m, m)
B = A * T
L,_,M = svd(A' * (d*B.^3 - gamma*B * Diagonal(sum(B.^2, dims = 1)[:])))
T = L * M'
if norm(T-Matrix{Float64}(I, m, m)) < reltol
T = qr(randn(m,m)).Q
B = A * T
end
# Iteration step: get better T to maximize the objective (as described in Factor Analysis book)
D = 0
for k in 1:maxit
Dold = D
L,s,M = svd(A' * (d*B.^3 - gamma*B * Diagonal(sum(B.^2, dims = 1)[:])))
T = L * M'
D = sum(s)
B = A * T
if (abs(D - Dold)/D < reltol) && k >= minit
break
end
end
# Adjust the sign of each rotated vector such that the maximum absolute value is positive.
for i in 1:m
if abs(maximum(B[:,i])) < abs(minimum(B[:,i]))
B[:,i] .= - B[:,i]
end
end
return B
end
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 11635 | # This is a very preliminary test function;
# Just small scale examples, e.g., P6 with 10 random signals. More coming!
using Test, MultiscaleGraphSignalTransforms, LinearAlgebra, SparseArrays, JLD2, Plots
@testset "MultiscalGraphSignalTransforms.jl" begin
##############################################################
# 1. Testing basic GHWT functions on 10 random signals on P6 #
##############################################################
@testset "1. Testing basic GHWT functions" begin
println("1. Testing basic GHWT functions")
JLD2.@load "runtests_data/path6randn10.jld2" G
G = gpath(6, G["tmp"])
GP = partition_tree_fiedler(G)
dc2f = ghwt_analysis!(G, GP=GP)
@testset "Check the Haar basis" begin
BH=bs_haar(GP)
dvec=dmatrix2dvec(dc2f, GP, BH)
frecon=ghwt_synthesis(dvec,GP,BH)
println("Relative L2 error of the Haar transform: ", norm(G.f-frecon)/norm(G.f))
@test norm(G.f-frecon)/norm(G.f) < 10 * eps()
end
@testset "Check the best basis and its expansion coefficients" begin
bbc2f = ghwt_c2f_bestbasis(dc2f, GP)
levlist = collect(enumerate([4; 4; 3; 3; 3; 3]))
println("The true BB levlist: ", levlist)
println("The comp BB levlist: ", bbc2f[2].levlist)
println("They are equal: ", levlist == bbc2f[2].levlist)
@test levlist == bbc2f[2].levlist
JLD2.@load "runtests_data/bbcoef.jld2" tmp2
println("The relative L2 error of the BB coefs: ", norm(tmp2["bbcoef"]-bbc2f[1])/norm(tmp2["bbcoef"]))
@test norm(tmp2["bbcoef"]-bbc2f[1])/norm(tmp2["bbcoef"]) < 10 * eps()
end
println("\n")
end
################################################################
# 2. Testing GHWT/eGHWT functions on a simple synthetic signal on P6 #
################################################################
@testset "2. GHWT/eGHWT tests on P6" begin
f = Array{Float64}([2. -2. 1. 3. -1. -2.]')
G = gpath(6, f)
GP = partition_tree_fiedler(G; method = :Lrw)
dmatrix = ghwt_analysis!(G, GP=GP)
println("2. Testing the GHWT functions on a path signal: ", f)
println("The original signal has L1 norm: ", norm(f,1))
@testset "The full level GHWT best basis" begin
dvec,BS = ghwt_bestbasis(dmatrix, GP, cfspec=1.)
(f, GS) = ghwt_synthesis(dvec, GP, BS, G)
println("The coefficient vectors of the GHWT best basis has L1 norm: ", norm(dvec,1))
println("Relative L2 error of the synthesized signal: ", norm(G.f-f)/norm(G.f))
@test norm(G.f-f)/norm(G.f) < 10 * eps()
end
@testset "The GHWT best basis restricted levels" begin
j_start = 3
j_end = 4
dvec_restricted,BS_restricted = ghwt_bestbasis(dmatrix, GP, cfspec=1., j_start = j_start, j_end = j_end)
(f_restricted, GS_restricted) = ghwt_synthesis(dvec_restricted, GP, BS_restricted, G)
println("The coefficient vectors of the GHWT best basis restricted from level $(j_start) to level $(j_end) in c2f dictionary has L1 norm: ", norm(dvec_restricted,1))
println("Relative L2 error of the synthesized signal: ", norm(G.f-f_restricted)/norm(G.f))
@test norm(G.f-f_restricted)/norm(G.f) < 10 * eps()
end
@testset "The eGHWT best basis" begin
dvec_tf, BS_tf = ghwt_tf_bestbasis(dmatrix, GP, cfspec=1.)
(f_tf, GS_tf) = ghwt_synthesis(dvec_tf, GP, BS_tf, G)
println("The coefficient vectors of the time-frequency adapted GHWT best basis has L1 norm: ", norm(dvec_tf,1))
println("Relative L2 error of the synthesized signal: ", norm(G.f-f_tf)/norm(G.f))
@test norm(G.f-f_tf)/norm(G.f) < 10 * eps()
end
println("\n")
end
#################################################################################
# 3. Testing time-frequency adapted 2D GHWT functions using a simple 3x3 matrix #
#################################################################################
@testset "3. 2D GHWT/eGHWT on 3x3 matrix" begin
println("3. Testing 2D GHWT/eGHWT functions")
matrix = [ 1.0 2.0 3.0; 4.0 5.0 6.0]
#matrix = matread("termdoc.mat")["matrix"]
# expand matrix in 2 directions (rows and cols)
GProws, GPcols = partition_tree_matrixDhillon(matrix)
dmatrix = ghwt_analysis_2d(matrix, GProws, GPcols)
# find the best basis using the time-frequency analysis
# infovec indicate the location of each coefficient in dmatrix
dvec_tf, infovec_tf = ghwt_tf_bestbasis_2d(matrix, GProws, GPcols)
matrix_tf = ghwt_tf_synthesis_2d(dvec_tf, infovec_tf, GProws, GPcols)
# find the best basis using the GHWT
dvec_ghwt, BSrows, BScols = ghwt_bestbasis_2d(matrix, GProws, GPcols)
matrix_ghwt = ghwt_synthesis_2d(dvec_ghwt, GProws, GPcols, BSrows, BScols)
println("The toy matrix [1 2 3; 4 5 6] has 1-vecnorm as ", norm(matrix,1))
println("The eGHWT best basis of toy matrix [1 2 3; 4 5 6] has 1-vecnorm as ", norm(dvec_tf,1))
println("The GHWT best basis of toy matrix [1 2 3; 4 5 6] has 1-vecnorm as ", norm(dvec_ghwt,1))
println("Relative L2 error of the eGHWT synthesized matrix: ", norm(matrix - matrix_tf, 2)/norm(matrix,2))
@test norm(matrix - matrix_tf, 2)/norm(matrix,2) < 10 * eps()
println("Relative L2 error of the GHWT synthesized matrix: ", norm(matrix - matrix_ghwt, 2)/norm(matrix,2))
@test norm(matrix - matrix_ghwt, 2)/norm(matrix,2) < 10 * eps()
println("\n")
end
###################################################################
# 4. Testing HGLET functions and hybrid methods on a real dataset #
###################################################################
@testset "4. HGLET on Toronto Street Network" begin
println("4. HGLET on Toronto Street Network")
#JLD2.@load "runtests_data/Dendrite.jld2" G
#G = G["G"]
# convert to SparseMatrixCSC{Float64,Int} where Int is machine dependent.
#A = Array(G["W"])
#B = sparse(A)
#G = GraphSig(B, xy = G["xy"], f = G["f"], name = G["name"])
JLD2.@load "runtests_data/Toronto_new.jld2"
tmp1 = toronto["G"]
G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"])
GP = partition_tree_fiedler(G)
dmatrixH, dmatrixHrw, dmatrixHsym = HGLET_Analysis_All(G, GP) # expansion coefficients of 3-way HGLET bases
dmatrixG = ghwt_analysis!(G,GP = GP) # expansion coefficients of GHWT
dvec5,BS5,trans5,p5 = HGLET_GHWT_BestBasis_minrelerror(GP,G,dmatrixH = dmatrixH, dmatrixG = dmatrixG,
dmatrixHrw = dmatrixHrw, dmatrixHsym = dmatrixHsym) # best-basis among all combinations of bases
fS5, GS5 = HGLET_GHWT_Synthesis(reshape(dvec5,(size(dvec5)[1],1)),GP,BS5,trans5,G)
println("The original signal has L1 norm: ", norm(G.f,1))
println("The coefficients of best-basis selected from hybrid method has L1 norm: ", norm(dvec5,1))
println("Relative L2 error of the synthesized signal: ", norm(G.f-fS5)/norm(G.f))
@test norm(G.f-fS5)/norm(G.f) < 10 * eps()
println("\n")
end
###########################################################################
# 5. Testing GraphSig_Plot on mutilated Gaussian signal on the MN roadmap #
###########################################################################
@testset "5. GraphSig_Plot on the MN roadmap" begin
println("5. GraphSig_Plot on the MN roadmap")
println("... this may not display the plot if you run it via the package test.")
JLD2.@load "runtests_data/MN_MutGauss.jld2" G
tmp1 = G["G"]
G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"])
G = Adj2InvEuc(G)
plt = GraphSig_Plot(G)
display(plt)
@test typeof(plt) == Plots.Plot{Plots.GRBackend}
println("\n")
end
###################################################
# 6. Testing LP-HGLET functions on a real dataset #
###################################################
@testset "6. LP-HGLET on RGC100" begin
println("6. LP-HGLET on RGC100")
JLD2.@load "runtests_data/Dendrite.jld2" G
G = G["G_3D"]
f = G["f"]
G_Sig = GraphSig(1.0 * G["W"]; xy = G["xy"], f = f)
G_Sig = Adj2InvEuc(G_Sig)
GP = partition_tree_fiedler(G_Sig; swapRegion = false)
dmatrixlH, _ = LPHGLET_Analysis_All(G_Sig, GP; ϵ = 0.3)
dvec_lphglet, BS_lphglet, _ = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixlH)
fS, GS = LPHGLET_Synthesis(reshape(dvec_lphglet, (length(dvec_lphglet), 1)), GP, BS_lphglet, G_Sig; ϵ = 0.3)
println("The original signal has L1 norm: ", norm(f, 1))
println("The coefficients of LP-HGLET best-basis has L1 norm: ", norm(dvec_lphglet, 1))
println("Relative L2 error of the synthesized signal: ", norm(f - fS) / norm(f))
@test norm(f - fS) / norm(f) < 20 * eps()
println("\n")
end
#########################################################
# 7. Testing VM-NGWP, PC-NGWP, LP-NGWP functions on P64 #
#########################################################
@testset "7. testing VM-NGWP/PC-NGWP/LP-NGWP on P64" begin
println("7. testing VM-NGWP/PC-NGWP/LP-NGWP on P64")
N = 64
G = gpath(N)
# use Chebyshev polynomial T₅(x) (x ∈ [0, 1]) as the path signal
G.f = reshape([16 * x^5 - 20 * x^3 + 5 * x for x in LinRange(0, 1, N)], (N, 1))
# compute graph Laplacian eigenvectors
W = G.W
L = diagm(sum(W; dims = 1)[:]) - W
𝛌, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1,:])'
# build Gstar
Gstar = GraphSig(W)
GP = partition_tree_fiedler(G; swapRegion = false)
GP_dual = partition_tree_fiedler(Gstar; swapRegion = false)
GP_primal = pairclustering(𝚽, GP_dual) # for PC-NGWP
# construct NGWP dictionaries
VM_NGWP = vm_ngwp(𝚽, GP_dual)
PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal)
LP_NGWP = lp_ngwp(𝚽, W, GP_dual; ϵ = 0.3)
# NGWP analysis
dmatrix_VM = ngwp_analysis(G, VM_NGWP)
dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual)
dmatrix_PC = ngwp_analysis(G, PC_NGWP)
dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GP_dual)
dmatrix_LP = ngwp_analysis(G, LP_NGWP)
dvec_lp_ngwp, BS_lp_ngwp = ngwp_bestbasis(dmatrix_LP, GP_dual)
println("The original signal has L2 norm: ", norm(G.f))
println("The coefficients of VM-NGWP best-basis has L2 norm: ", norm(dvec_vm_ngwp))
@test abs(norm(G.f) - norm(dvec_vm_ngwp)) / norm(G.f) < 10 * eps()
println("The coefficients of PC-NGWP best-basis has L2 norm: ", norm(dvec_pc_ngwp))
@test abs(norm(G.f) - norm(dvec_pc_ngwp)) / norm(G.f) < 10 * eps()
println("The coefficients of LP-NGWP best-basis has L2 norm: ", norm(dvec_lp_ngwp))
@test abs(norm(G.f) - norm(dvec_lp_ngwp)) / norm(G.f) < 10 * eps()
println("\n")
end
end
# End of runtests.jl
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1082 | cd(@__DIR__); include("setups/path128.jl")
gr(dpi = 200)
l = 64
𝛍 = nat_spec_filter(l, distDCT; σ = 0.05 * maximum(distDCT))
plot(0:N-1, 𝛍, legend = true, c = :blue,
grid = false, frame = :box, marker = :circle, ms = 3, lw = 1, mswidth = 0,
lab = latexstring("\\sigma=0.05 \\cdot d_{\\max}"))
𝛍 = nat_spec_filter(l, distDCT; σ = 0.1 * maximum(distDCT))
plot!(0:N-1, 𝛍, legend = true, c = :red,
grid = false, frame = :box, marker = :circle, ms = 3, lw = 1, mswidth = 0,
lab = latexstring("\\sigma=0.1 \\cdot d_{\\max}"))
𝛍 = nat_spec_filter(l, distDCT; σ = 0.2 * maximum(distDCT))
plot!(0:N-1, 𝛍, ylim = [0, 0.1], legend = true, c = :green,
grid = false, frame = :box, marker = :circle, ms = 3, lw = 1, mswidth = 0,
lab = latexstring("\\sigma=0.2 \\cdot d_{\\max}"), tickfontsize=10, legendfontsize = 12)
xticks!([0; 15:16:127], vcat(string("DC"), [string(k) for k in 15:16:127]))
plot!(xlab = latexstring("i"), ylab = latexstring("\\mu_{63}"), guidefontsize = 16)
plt = current()
savefig(plt, "../figs/Path128_NSGfilters_mu$(l-1).png")
display(plt)
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1189 | cd(@__DIR__); include("setups/simpletree.jl")
gr(dpi = 200)
## build frames
SGWT = sgwt_frame(Matrix(W); nf = 6)
SGWT = reshape(SGWT, (N, :))
SGWT_dual = (SGWT * SGWT') \ SGWT
distROT = natural_eigdist(𝚽, 𝛌, Q; α = 1.0, input_format = :pmf1, distance = :ROT)
rNGWF, dic_l2x = rngwf_all_vectors(distROT, 𝚽; σ = 0.1 * maximum(distROT), thres = 0.15)
rNGWF_dual = (rNGWF * rNGWF') \ rNGWF
Γ = rngwf_lx(dic_l2x)
## (a)
plt = plot(size = (600, 500))
gplot!(W, X, width = 1)
scatter_gplot!(X; marker = f, ms = 4)
plot!(frame = :none, cbar = true, xlim = [-10, 14])
savefig(plt, "../figs/simpletree_f.png")
## (b)
rel_approx_sgwt, f_approx_sgwt = frame_approx(f, SGWT, SGWT_dual; num_kept = 3 * N)
rel_approx_rngwf, f_approx_rngwf = frame_approx(f, rNGWF, rNGWF_dual; num_kept = 3 * N)
plt = plot(0:length(rel_approx_rngwf)-1, [rel_approx_sgwt rel_approx_rngwf],
grid = false, lw = 2, c = [:blue :green],
xlab = "Number of Coefficients Retained",
ylab = "Relative Approximation Error", yaxis = :log,
lab = ["SGWT" "rNGWF"])
plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 500))
savefig(plt, "../figs/simpletree_approx_f.png")
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 735 | cd(@__DIR__); include("setups/simpletree.jl")
gr(dpi = 200)
## build SGWT frame
SGWT = sgwt_frame(Matrix(W); nf = 6)
SGWT = reshape(SGWT, (N, :))
important_idx = sortperm((SGWT' * f).^2; rev = true)
plot(layout = Plots.grid(3, 7), size = (1400, 1500))
for i = 1:21
ind = important_idx[i]
j = Int(floor(ind / N))
x = ind - j * N
w = SGWT[:, ind]
w ./= norm(w, 2)
scatter!(X[:, 1], X[:, 2], marker_z = w, ms = 5, c = :viridis, subplot = i, mswidth = 0)
plot!(frame = :none, cbar = false, grid = false, legend = false, subplot = i)
plot!(title = latexstring("\\psi^{\\mathrm{SGWT}}_{", j, ",", x, "}"), titlefont = 18, subplot = i)
end
plt = current()
savefig(plt, "../figs/simpletree_f_sgwt_top21.png")
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 1020 | cd(@__DIR__); include("setups/simpletree.jl")
gr(dpi = 200)
## build rNGWF
distROT = natural_eigdist(𝚽, 𝛌, Q; α = 1.0, input_format = :pmf1, distance = :ROT)
rNGWF, dic_l2x = rngwf_all_vectors(distROT, 𝚽; σ = 0.1 * maximum(distROT), thres = 0.15)
Γ = rngwf_lx(dic_l2x)
just_eigenvec = [2, 16]
important_idx = sortperm((rNGWF' * f).^2; rev = true)
plot(layout = Plots.grid(3, 7), size = (1400, 1500))
for i = 1:21
l, x = Γ[important_idx[i]]
w = rNGWF[:, important_idx[i]]
w ./= norm(w, 2)
scatter!(X[:, 1], X[:, 2], marker_z = w, ms = 5, c = :viridis, subplot = i, mswidth = 0)
plot!(frame = :none, cbar = false, grid = false, legend = false, subplot = i)
if l in just_eigenvec
plot!(title = latexstring("\\bar{\\psi}_{", l, ",", x, "} \\equiv \\mathbf{\\phi}_{$(l)}"), titlefont = 18, subplot = i)
else
plot!(title = latexstring("\\bar{\\psi}_{", l, ",", x, "}"), titlefont = 18, subplot = i)
end
end
plt = current()
savefig(plt, "../figs/simpletree_f_rngwf_top21.png")
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
|
[
"BSD-3-Clause"
] | 1.7.3 | b7903b11d1aa4a96fc63d04de036236099cf8608 | code | 621 | cd(@__DIR__); include("setups/simpletree.jl")
gr(dpi = 200)
##
ind_eig = [5, 6, 11, 18, 21, 25, 38]
plot(layout = Plots.grid(1, 7), size = (1400, 500))
for i = 1:length(ind_eig)
l = ind_eig[i]
w = 𝚽[:, l]
scatter!(X[:, 1], X[:, 2], marker_z = w, ms = 5, c = :viridis, subplot = i, mswidth = 0)
plot!(frame = :none, cbar = false, grid = false, legend = false, subplot = i)
plot!(title = latexstring("\\mathbf{\\phi}_{", l - 1, "}"), titlefont = 18, subplot = i)
end
plot!(subplot = 10, grid = false, frame = :none)
plt = current()
savefig(plt, "../figs/simpletree_f_rngwf_top21_ref_eigenvectors.png")
| MultiscaleGraphSignalTransforms | https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.