licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
843
cd(@__DIR__); include("setups/path128.jl") gr(dpi = 200) ## f = 1.5 * 𝚽[:, 11] + 𝚽[:, 31] .* characteristic(1:32, N) + 𝚽[:, 61] .* characteristic(1:64, N) + 0.5 * 𝚽[:, 111] ## (a) plot(f, c = :black, grid = false, legend = false, frame = :box, lw = 1.5) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) plt = plot!(xlab = latexstring("x"), ylab = latexstring("f"), size = (600, 400), guidefontsize = 18, xlim = [1, N]) savefig(plt, "../figs/Path128_Spectrogram_f.png") ## (b) plot(0:N-1, 𝚽' * f, c = :black, grid = false, legend = false, frame = :box, lw = 1.5) xticks!([0; 15:16:127], vcat(string("DC"), [string(k) for k in 15:16:127])) plt = plot!(xlab = latexstring("l"), ylab = latexstring("g"), size = (600, 400), guidefontsize = 18, xlim = [1, N]) savefig(plt, "../figs/Path128_Spectrogram_g.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
684
cd(@__DIR__); include("setups/path128.jl") gr(dpi = 200) ## f = 1.5 * 𝚽[:, 11] + 𝚽[:, 31] .* characteristic(1:32, N) + 𝚽[:, 61] .* characteristic(1:64, N) + 0.5 * 𝚽[:, 111] ## (a) plt = path_spectrogram(f, distDCT, 𝚽; c = 0.01) savefig(plt, "../figs/Path128_Spectrogram_CoeffEnergy_sig001dmax.png") ## (b) plt = path_spectrogram(f, distDCT, 𝚽; c = 0.02) savefig(plt, "../figs/Path128_Spectrogram_CoeffEnergy_sig002dmax.png") ## (c) plt = path_spectrogram(f, distDCT, 𝚽; c = 0.05) savefig(plt, "../figs/Path128_Spectrogram_CoeffEnergy_sig005dmax.png") ## (d) plt = path_spectrogram(f, distDCT, 𝚽; c = 0.1) savefig(plt, "../figs/Path128_Spectrogram_CoeffEnergy_sig01dmax.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
652
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## frame = sgwt_frame(W; nf = 6) filters = sgwt_filter_banks(W, π›Œ; nf = 6) plot(π›Œ, filters', lw = 3, size = (800, 450), grid = false, frame = :box, legendfontsize = 14, xlab = latexstring("\\lambda"), xguidefontsize = 14, lab = [latexstring("h(\\lambda)") latexstring("g(s_{1}\\lambda)") latexstring("g(s_{2}\\lambda)") latexstring("g(s_{3}\\lambda)") latexstring("g(s_{4}\\lambda)") latexstring("g(s_{5}\\lambda)")]) # plot!(π›Œ, sum(filters, dims = 1)[:]/6, c = :black, lw = 3, lab = "partition of unity") plt = current() savefig(plt, "../figs/Grid$(Nx)x$(Ny)_SGWT_filter_banks.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
331
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## frame = sgwt_frame(W; nf = 6) x = 242 for j = 1:6 plt = heatmap(reshape(frame[:, x, j], (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [1, Nx], size = (500, 400)) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_SGWT_frame_j$(j-1)_x$(x).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
793
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## x = 242 ## (a) l = 11 # vertical plt = grid_eigenvector_plot(l) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_eigenvector_l$(l-1).png") ## (d) plt = grid_NGWFvector_plot(l, x, D, 𝚽) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_NGWF_DAG_sig02_l$(l-1)_x$(x).png") ## (b) l = 16 # horizontal plt = grid_eigenvector_plot(l) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_eigenvector_l$(l-1).png") ## (e) plt = grid_NGWFvector_plot(l, x, D, 𝚽) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_NGWF_DAG_sig02_l$(l-1)_x$(x).png") ## (c) l = 30 # mix plt = grid_eigenvector_plot(l) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_eigenvector_l$(l-1).png") ## (f) plt = grid_NGWFvector_plot(l, x, D, 𝚽) savefig(plt, "../figs/Grid$(Nx)x$(Ny)_NGWF_DAG_sig02_l$(l-1)_x$(x).png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1077
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## assemble frames frame = sgwt_frame(W; nf = 6) SGWT = reshape(frame, (N, :)) SGWT_dual = (SGWT * SGWT') \ SGWT rNGWF, dic_l2x = rngwf_all_vectors(D, 𝚽; Οƒ = 0.2 * maximum(D), thres = 0.15) rNGWF_dual = (rNGWF * rNGWF') \ rNGWF Ξ“ = rngwf_lx(dic_l2x) ## (a) f = digit_img[:] plt = heatmap(reshape(f, (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [1, Nx], size = (600, 500)) savefig(plt, "../figs/grid23x22_fdigit3.png") ## (b) rel_approx_sgwt, f_approx_sgwt = frame_approx(f, SGWT, SGWT_dual; num_kept = 3 * N) rel_approx_rngwf, f_approx_rngwf = frame_approx(f, rNGWF, rNGWF_dual; num_kept = 3 * N) plot(0:length(rel_approx_rngwf)-1, [rel_approx_sgwt rel_approx_rngwf], grid = false, lw = 2, c = [:blue :green], xlab = "Number of Coefficients Retained", ylab = "Relative Approximation Error", yaxis = :log, lab = ["SGWT" "rNGWF"]) plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 500)) savefig(plt, "../figs/grid23x22_approx_fdigit3.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
505
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## build SGWT frame frame = sgwt_frame(W; nf = 6) SGWT = reshape(frame, (N, :)) SGWT_dual = (SGWT * SGWT') \ SGWT f = digit_img[:] important_idx = sortperm((SGWT' * f).^2; rev = true) plot(layout = Plots.grid(10,10), size = (2300, 2800)) for i = 1:100 grid_vector_plot!(important_idx[i], i, SGWT) if i == 90 plot_square!(Nx, Ny; subplot = i) end end plt = current() savefig(plt, "../figs/Grid23x22_fdigit3_sgwt_top100.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
780
cd(@__DIR__); include("setups/grid23x22.jl") gr(dpi = 200) ## build rNGWF rNGWF, dic_l2x = rngwf_all_vectors(D, 𝚽; Οƒ = 0.2 * maximum(D), thres = 0.15) rNGWF_dual = (rNGWF * rNGWF') \ rNGWF Ξ“ = rngwf_lx(dic_l2x) f = digit_img[:] important_idx = sortperm((rNGWF' * f).^2; rev = true) red_box_inds = [41, 43, 66, 69, 71, 73, 75, 84, 85, 86, 89, 99] orange_box_inds = [40, 53, 54, 55, 72] plot(layout = Plots.grid(10,10), size = (2300, 2800)) for i = 1:100 plot!(clims = (-0.002, 0.02)) grid_vector_plot!(important_idx[i], i, rNGWF) if i in red_box_inds plot_square!(Nx, Ny; subplot = i) elseif i in orange_box_inds plot_square!(Nx, Ny; subplot = i, c = :orange) end end plt = current() savefig(plt, "../figs/Grid23x22_fdigit3_rngwf_top100.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
974
cd(@__DIR__); include("setups/grid7x3.jl") pyplot(dpi = 200) ## (a) eigenvectors by nondecreasing eigenvalue ordering plot(layout = Plots.grid(3, 7)) for i in 1:N heatmap!(reshape(𝚽[:, i], (Nx, Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, ylim = [0, Ny + 1], title = latexstring("\\phi_{", i-1, "}"), titlefont = 12, subplot = i) end plt = current() savefig(plt, "../figs/grid7x3_evsp_title.png") ## (b) eigenvectors by natural frequency ordering plot(layout = Plots.grid(3, 7)) for i in 1:N k = grid2eig_ind[i] heatmap!(reshape(𝚽[:,k], (Nx, Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, ylim = [0, Ny + 1], title = latexstring("\\varphi_{", string(eig2dct[k,1]), ",", string(eig2dct[k,2]), "}"), titlefont = 12, subplot = i) end plt = current() savefig(plt, "../figs/grid7x3_dct_title2.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
189
cd(@__DIR__); include("setups/rgc100.jl") plotlyjs(dpi = 200) gplot(W, X3; grid = true, shape = :circle, mcolor = :yellow) plot!(xlab = "x", ylab = "y", zlab = "z", size = (500, 500))
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
315
cd(@__DIR__); include("setups/rgc100.jl") gr(dpi = 200) plt = plot(0:(N - 1), π›Œ, c = :black, lw = 1, ylims = [0, 5], legend = false, shape = :circle, frame = :box, xlab = latexstring("l"), ylab = latexstring("\\tilde{\\lambda}_l"), size = (500, 400)) savefig(plt, "../figs/RGC100_eigenvalues.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
662
cd(@__DIR__); include("setups/rgc100.jl") gr(dpi = 200) plt = gplot(W, X; width = 1); scatter_gplot!(X; marker = 𝚽[:, 1142], ms = 4) plot!(xlims = [-180, 220], xlabel = "x(μm)", ylabel = "y(μm)", clims = (-0.12, 0.12), frame = :box, size = (550, 500), right_margin = 5mm) savefig(plt, "../figs/RGC100_twotypes_semi_oscillation.png") plt = gplot(W, X; width = 1); scatter_gplot!(X; marker = 𝚽[:, 1143], ms = 4, plotOrder = :s2l); plot!(xlims = [-180, 220], xlabel = "x(μm)", ylabel = "y(μm)", clims = (-0.3, 0.3), frame = :box, size = (550, 500), right_margin = 5mm) savefig(plt, "../figs/RGC100_twotypes_localized.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1204
cd(@__DIR__); include("setups/distROT_distTSD_ratio.jl") gr(dpi = 200) ## (a) P64 include("setups/path64.jl") ρ1 = generate_ROT_TSD_ratio(nsim, 𝚽, βˆ‡πš½, π›Œ, Q) # plt = ROT_TSD_ratio_histogram(ρ1) # savefig(plt, "../figs/Path64_ROT_TSD.png") ## (b) P₇ x P₃ include("setups/grid7x3.jl") ρ2 = generate_ROT_TSD_ratio(nsim, 𝚽, βˆ‡πš½, π›Œ, Q) # plt = ROT_TSD_ratio_histogram(ρ2) # savefig(plt, "../figs/Grid7x3_ROT_TSD.png") ## (c) Erdos RΓ©nyi include("setups/er.jl") ρ3 = generate_ROT_TSD_ratio(nsim, 𝚽, βˆ‡πš½, π›Œ, Q) # plt = ROT_TSD_ratio_histogram(ρ3) # savefig(plt, "../figs/Erdos_Renyi_ROT_TSD.png") ## (d) weighted RGC100 include("setups/rgc100.jl") ρ4 = generate_ROT_TSD_ratio(nsim, 𝚽, βˆ‡πš½, π›Œ, Q; edge_length = edge_length) # plt = ROT_TSD_ratio_histogram(ρ4) # savefig(plt, "../figs/wRGC100_ROT_TSD.png") ## boxplot plt = boxplot(["(a) Path" "(b) Grid" "(c) ER" "(d) RGC100"], [ρ1, ρ2, ρ3, ρ4]; legend = false, frame = :box, ylim = [0.9, 1.9], tickfontsize = 11, outliers = true, grid = false, range = 3, lw = 1, size = (800, 600), ylab = "ρ", yguidefontsize = 14, xtickfontsize = 12, color = :white) savefig(plt, "../figs/ROT_TSD_boxplots.png") ## Table 4.1 display_basic_stats([ρ1, ρ2, ρ3, ρ4])
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
316
cd(@__DIR__); include("setups/grid7x3.jl"); ## ROT1 + pmf1 D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 0.5, input_format = :pmf1, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_ROT1_pmf1_alpha05.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
321
cd(@__DIR__); include("setups/simpletree.jl"); gr(dpi=200) plt = plot(0:(N - 1), π›Œ, c = :black, lw = 1, ylims = [0, 5], legend = false, shape = :circle, frame = :box, xlab = latexstring("l"), ms = 4, ylab = latexstring("\\lambda_l"), size = (500, 400)) savefig(plt, "../figs/SimpleTree_eigenvalues.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
337
cd(@__DIR__); include("setups/simpletree.jl"); pyplot(dpi=200) for l = 97:100 local plt plot(size = (200, 500), framestyle = :none) gplot!(W, X, width = 1) scatter_gplot!(X; marker = 𝚽[:, l], ms = 5) plt = plot!(cbar = false, clims = (-0.3, 0.3)) savefig(plt, "../figs/SimpleTree_eigenvector$(l-1)_red.png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
740
cd(@__DIR__); include("setups/simpletree.jl"); plotlyjs(dpi = 200) ## (a) D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 1.0, input_format = :pmf1, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=3, distances=true)) E[1, :] .*= 1; E[2, :] .*= -1; E[3, :] .*= 1; plt = simpletree_mds_plot(E, ieb1, ieb2, ieb3, ieb4, iejc); plot!(camera=(210,-37), xlims = [-18, 15]) # savefig(plt, "../figs/SimpleTree_MDS_ROT1_pmf1_alpha1.html") savefig(plt, "../figs/SimpleTree_MDS_ROT1_pmf1_alpha1.pdf") ## (b) D = dist_sROT E = transform(fit(MDS, D, maxoutdim=3, distances=true)) plt = simpletree_mds_plot(E, ieb1, ieb2, ieb3, ieb4, iejc) # savefig(plt, "../figs/SimpleTree_MDS_sROT_pmf1_alpha1.html") savefig(plt, "../figs/SimpleTree_MDS_sROT_pmf1_alpha1.pdf")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
370
cd(@__DIR__); include("setups/grid7x3.jl"); ## ROT1 + pmf2 D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 0.1, input_format = :pmf2, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) E[1, :] .*= sign(E[1, 2]); E[2, :] .*= -sign(E[1, 2]) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_ROT1_pmf2_alpha01.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
336
cd(@__DIR__); include("setups/grid7x3.jl"); ## ROT2 D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 0.1, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) E[1, :] .*= sign(E[1, 2]); E[2, :] .*= -sign(E[1, 2]) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_ROT2_alpha01.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
263
cd(@__DIR__); include("setups/grid7x3.jl"); ## HAD D = natural_eigdist(𝚽, π›Œ, Q; distance = :HAD) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_HAD.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
263
cd(@__DIR__); include("setups/grid7x3.jl"); ## DAG D = natural_eigdist(𝚽, π›Œ, Q; distance = :DAG) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_DAG.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
342
cd(@__DIR__); include("setups/grid7x3.jl"); ## TSD (T = 0.1) D = natural_eigdist(𝚽, π›Œ, Q; T = 0.1, distance = :TSD) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) # E[1, :] .*= sign(E[1, 2]); E[2, :] .*= -sign(E[1, 2]) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) savefig(plt, "../figs/Grid7x3_MDS_TSD_T01.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1126
cd(@__DIR__); include("setups/grid7x3.jl"); ## ROT2 D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 1.0, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot, annotate_ind = vcat(1:6, 8, 10, 11), plotOrder = N:-1:1) savefig(plt, "../figs/Grid7x3_MDS_ROT2_alpha1.png") display(plt) ## TSD (T = :Inf) D = natural_eigdist(𝚽, π›Œ, Q; T = :Inf, distance = :TSD) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) E[1, :] .*= sign(E[1, 2]); E[2, :] .*= -sign(E[1, 2]) plt = grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot, annotate_ind = vcat(1:8, 11), plotOrder = vcat(N:-1:9, 6:8, 5:-1:1)) savefig(plt, "../figs/Grid7x3_MDS_TSD_Tinfty.png") display(plt) ## TSD T from 0.1 to 10 anim = @animate for t ∈ 0.1:0.1:10 D = natural_eigdist(𝚽, π›Œ, Q; T = t, distance = :TSD) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) E[1, :] .*= sign(E[1, 2]) E[2, :] .*= sign(E[2, 2]) * ((t <= 1) * 2 - 1) grid7x3_mds_heatmaps(E, 𝚽; backend = :pyplot) title!("T = $(t)") end gif(anim, "../gifs/Grid7x3_MDS_TSD_T01_inf.gif", fps = 5)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1103
cd(@__DIR__); include("setups/simpletree.jl"); pyplot(dpi = 200) ## (a) plot(size = (200,500)) gplot!(W, X, width = 1) scatter_gplot!(X[ib1, :]; c = :pink, ms = 5) scatter_gplot!(X[ib2, :]; c = :orange, ms = 5) scatter_gplot!(X[ib3, :]; c = :green, ms = 5) scatter_gplot!(X[ib4, :]; c = :yellow, ms = 5) scatter_gplot!(X[ijc, :]; c = :red, ms = 5) scatter_gplot!(X[ir, :]; c = :grey, ms = 5) plot!(framestyle = :none) plot!([0, 0], [0.3, 2], line = :arrow, c = :black, lw = 1) plt = annotate!(0, 3, text("root", 9)) savefig(plt, "../figs/SimpleTree.png") ## (b) plot(size = (200, 500)) gplot!(Ws, Xs, width = 1) scatter_gplot!(Xs[11:11, :]; c = :pink, ms = 5) scatter_gplot!(Xs[10:10, :]; c = :orange, ms = 5) scatter_gplot!(Xs[13:13, :]; c = :green, ms = 5) scatter_gplot!(Xs[12:12, :]; c = :yellow, ms = 5) scatter_gplot!(Xs[[2,4,6,8], :]; c = :red, ms = 5) scatter_gplot!(Xs[[1,3,5,7,9], :]; c = :grey, ms = 5) plt = plot!(framestyle = :none, xlims = [minimum(X[:, 1]), maximum(X[:, 1])], ylims = [minimum(X[:, 2]), maximum(X[:, 2])]) savefig(plt, "../figs/SimpleTree_simplified.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1294
cd(@__DIR__); include("setups/simpletree.jl"); pyplot(dpi = 200) ## (a) println("l = $(ieb1[end] - 1) and Ξ»β‚— = $(π›Œ[ieb1[end] - 1])") plot(size = (200, 500), framestyle = :none) gplot!(W, X, width = 1) scatter_gplot!(X; marker = 𝚽[:, ieb1[end]], ms = 5) plt = plot!(cbar = false, clims = (-0.3, 0.3)) savefig(plt, "../figs/SimpleTree_eigenvector$(ieb1[end]-1)_pink.png") ## (b) println("l = $(ieb2[end] - 1) and Ξ»β‚— = $(π›Œ[ieb2[end] - 1])") plot(size = (200, 500), framestyle = :none) gplot!(W, X, width = 1) scatter_gplot!(X; marker = 𝚽[:, ieb2[end]], ms = 5) plt = plot!(cbar = false, clims = (-0.3, 0.3)) savefig(plt, "../figs/SimpleTree_eigenvector$(ieb2[end]-1)_orange.png") ## (c) println("l = $(ieb3[end] - 1) and Ξ»β‚— = $(π›Œ[ieb3[end] - 1])") plot(size = (200, 500), framestyle = :none) gplot!(W, X, width = 1) scatter_gplot!(X; marker = 𝚽[:, ieb3[end]], ms = 5) plt = plot!(cbar = false, clims = (-0.3, 0.3)) savefig(plt, "../figs/SimpleTree_eigenvector$(ieb3[end]-1)_green.png") ## (d) println("l = $(ieb4[end] - 1) and Ξ»β‚— = $(π›Œ[ieb4[end] - 1])") plot(size = (200, 500), framestyle = :none) gplot!(W, X, width = 1) scatter_gplot!(X; marker = 𝚽[:, ieb4[end]], ms = 5) plt = plot!(cbar = false, clims = (-0.3, 0.3)) savefig(plt, "../figs/SimpleTree_eigenvector$(ieb4[end]-1)_yellow.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1241
cd(@__DIR__); include("setups/grid7x3.jl"); pyplot(dpi = 200) # DAG pseudo-metric distDAG = eigDAG_Distance(𝚽, Q, N) # MDS embedding into R² D = distDAG E = transform(fit(MDS, D, maxoutdim=2, distances=true)) # set up all heatmap plots' positions dx = 0.01; dy = dx; xej = zeros(Nx, N); yej=zeros(Ny, N); a = 5.0; b = 9.0; for k = 1:N xej[:,k] = LinRange(E[1,k] - Ny * a * dx, E[1, k] + Ny * a * dx, Nx) yej[:,k] = LinRange(E[2,k] - a * dy, E[2, k] + a * dy, Ny) end ## plot() for k=1:N heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1, annotations = (xej[4, k], yej[3, k] + b*dy, text(latexstring("\\varphi_{", string(eig2dct[k, 1]), ",", string(eig2dct[k, 2]), "}"), 10))) end plt = plot!(xlim = [-1.4, 1.3], ylim = [-1.4, 1.3], grid = false, clims = (-0.4, 0.4)) # first level partition p1x = [-0.2, 1.0, NaN]; p1y = [1.3, -1.0, NaN]; plot!(p1x, p1y, c = :red, legend = false, width = 3) # second level partition p2x = [-1.0, 0.2, NaN, 0.4, 1.2, NaN]; p2y = [-0.8, 0.45, NaN, 0.25, 0.2, NaN]; plot!(p2x, p2y, c=:orange, legend = false, width = 2) plt = current() savefig(plt, "../figs/Grid7x3_DAG_2levels_partition.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
444
cd(@__DIR__); include("setups/path512.jl"); gr(dpi = 200) ## Build VM-NGWP @time VM_NGWP = vm_ngwp(𝚽, GP_dual) #################### Fig.5 j = 5 for k in [1, 2, 5] WW = sort_wavelets(VM_NGWP[GP_dual.rs[k, j]:(GP_dual.rs[k + 1, j] - 1), j, :]') sc = 0.75 if k == 1 sc = 0.5 end if k == 2 WW[:, end] *= -1 end plt = wiggle(WW; sc = sc) savefig(plt, "../figs/Path512_VM_NGWP_j$(j-1)k$(k-1).png") end current()
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1961
cd(@__DIR__); include("setups/grid7x3.jl"); pyplot(dpi = 200) # DAG pseudo-metric distDAG = eigDAG_Distance(𝚽, Q, N) # MDS embedding into R² D = distDAG E = transform(fit(MDS, D, maxoutdim=2, distances=true)) # set up all heatmap plots' positions dx = 0.01; dy = dx; xej = zeros(Nx, N); yej=zeros(Ny, N); a = 5.0; b = 9.0; for k = 1:N xej[:,k] = LinRange(E[1,k] - Ny * a * dx, E[1, k] + Ny * a * dx, Nx) yej[:,k] = LinRange(E[2,k] - a * dy, E[2, k] + a * dy, Ny) end ## Build Dual Graph Gstar_Sig = dualgraph(distDAG) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) VM_NGWP = vm_ngwp(𝚽, GP_dual) ## level 2 VM-NGWP vectors j = 3; W_VM = VM_NGWP[:, j, :]' wav_kl = [[0 0];[0 1];[0 2];[1 0];[1 1];[1 2];[1 3];[2 0];[2 1];[2 2];[3 0]; [3 1];[3 2];[3 3];[2 3];[2 4];[2 5];[2 6];[3 4];[3 5];[3 6]]; wav_kl = wav_kl[eig2grid_ind,:]; # reorder_ind = [2,3,1,5,7,4,6, 16,17,15, 9,11,8,10, 18,20,21,19, 13,14,12] reorder_ind = [1,3,2,5,7,4,6, 8,10,9,17,15,18,16, 11,13,14,12,20,21,19] W_VM = W_VM[:,reorder_ind[eig2grid_ind]]; sgn = ones(N); sgn[grid2eig_ind[[4,6,8,11,12,14]]] .= -1; W_VM = W_VM * Diagonal(sgn); #################### Fig. 6 plot() for k=1:N heatmap!(xej[:, k], yej[:, k], reshape(W_VM[:,k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1, annotations = (xej[4, k], yej[3, k] + b * dy, text(latexstring("\\psi_{", string(wav_kl[k,1]), ",", string(wav_kl[k,2]), "}"), 10))) end plot!(aspect_ratio = 1, xlim = [-1.4, 1.3], ylim = [-1.4, 1.3], grid = false, clims=(-0.34, 0.34)) # first level partition p1x = [-0.2, 1.0, NaN]; p1y = [1.3, -1.0, NaN]; plot!(p1x, p1y, c = :red, legend = false, width = 3) # second level partition p2x = [-1.0, 0.2, NaN, 0.4, 1.2, NaN]; p2y = [-0.8, 0.45, NaN, 0.25, 0.2, NaN]; plot!(p2x, p2y, c = :orange, legend = false, width = 2) plt = current() savefig(plt, "../figs/Grid7x3_DAG_VM_NGWP_lvl2_wavelets.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1145
cd(@__DIR__); include("setups/path16.jl"); gr(dpi = 250) plot(size = (800, 250), framestyle = :none, xlim = [-10.5, N+13], ylim = [-5, 1]) path_pc_plot!(W, X; c = :yellow) k = 1 path_pc_plot!(W, X .- [12 4]; c = :yellow, ind = GP_primal.inds[GP_primal.rs[k, 2]:GP_primal.rs[k+1, 2] - 1, 2]) k = 2 path_pc_plot!(W, X .- [-12 4]; c = :yellow, ind = GP_primal.inds[GP_primal.rs[k, 2]:GP_primal.rs[k+1, 2] - 1, 2]) plot!([6, -1], [-0.8, -3.3], line = :solid, c = :black, lw = 0.65) plot!([11, 18], [-0.8, -3.3], line = :solid, c = :black, lw = 0.65) annotate!(mean(X[:, 1]), 0.5, text(latexstring("V= \\{ \\delta_{1}, ..., \\delta_{16} \\}"), :bottom, 11)) annotate!(mean(X[:, 1]) - 12, -4 - 0.7, text(latexstring("V_{0}= \\{ \\delta_{1}, \\delta_{3}, \\delta_{5}, \\delta_{7}, \\delta_{10}, \\delta_{12}, \\delta_{14}, \\delta_{16} \\}"), :top, 11)) annotate!(mean(X[:, 1]) + 12, -4 - 0.7, text(latexstring("V_{1}= \\{ \\delta_{2}, \\delta_{4}, \\delta_{6}, \\delta_{8}, \\delta_{9}, \\delta_{11}, \\delta_{13}, \\delta_{15} \\}"), :top, 11)) plt = current() savefig(plt, "../figs/Path16_1lev_PC.png") display(plt)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
975
cd(@__DIR__); include("setups/path512.jl") pyplot(dpi = 200) ## construct full HGLET and Lapped-HGLET dictionaries @time HGLET_dic = HGLET_dictionary(GP, G_Sig; gltype = :L) @time LPHGLET_dic = LPHGLET_dictionary(GP, G_Sig; gltype = :L, Ο΅ = 0.3) j = 3; k = 2; l = 6; WH = HGLET_dic[GP.rs[k, j]:(GP.rs[k + 1, j] - 1), j, :]' WlH = LPHGLET_dic[GP.rs[k, j]:(GP.rs[k + 1, j] - 1), j, :]' plt = plot(WH[:, l], c = :black, grid = false, frame = :box, lw = 0.8, legendfontsize = 11, legend = false, size = (500, 400), ylim = [-0.15, 0.15]) xticks!([1; 64:64:N], vcat(string(1), [string(k) for k in 64:64:N])) savefig(plt, "../figs/Path512_HGLET_j$(j-1)k$(k-1)l$(l-1).png") plt = plot(WlH[:, l], c = :black, grid = false, frame = :box, lw = 0.8, legendfontsize = 11, legend = false, size = (500, 400), ylim = [-0.15, 0.15]) xticks!([1; 64:64:N], vcat(string(1), [string(k) for k in 64:64:N])) savefig(plt, "../figs/Path512_LPHGLET_j$(j-1)k$(k-1)l$(l-1).png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1932
cd(@__DIR__); include("setups/path512.jl") pyplot(dpi = 200) ## @time VM_NGWP = vm_ngwp(𝚽, GP_dual) @time LP_NGWP = lp_ngwp(𝚽, Gstar_Sig.W, GP_dual; ϡ = 0.3) dict_VM = Dict() dict_LP = Dict() for j in [3, 4, 5] for k in [1, 2, 3] if GP_dual.rs[k + 1, j] - GP_dual.rs[k, j] < 1 continue end WW_VM = sort_wavelets(VM_NGWP[GP_dual.rs[k, j]:(GP_dual.rs[k + 1, j] - 1), j, :]') WW_LP = sort_wavelets(LP_NGWP[GP_dual.rs[k, j]:(GP_dual.rs[k + 1, j] - 1), j, :]') Y = [-0.5, 0.6] l = Int(floor(size(WW_LP, 2) / 2)) dict_VM[(j-1, k-1, l-1)] = WW_VM[:, l] dict_LP[(j-1, k-1, l-1)] = WW_LP[:, l] plt = plot(size = (400, 350), layout = Plots.grid(2, 1), ylim = Y) plot!(WW_VM[:, l], c = :black, grid = false, frame = :box, lw = 0.8, xtick = false, lab = latexstring("\\psi^{($(j-1))}_{$(k-1), $(l-1)} (\\mathrm{VM})"), legendfontsize = 11) plot!(WW_LP[:, l], c = :black, grid = false, frame = :box, lw = 0.8, lab = latexstring("\\psi^{($(j-1))}_{$(k-1), $(l-1)} (\\mathrm{LP})"), legendfontsize = 11, subplot = 2) xticks!([1; 64:64:N], vcat(string(1), [string(k) for k in 64:64:N]), subplot = 2) savefig(plt, "../figs/Path512_VM_LP_j$(j-1)k$(k-1)l$(l-1).png") end end ## Table 8.2 using PrettyTables header = ["basis vector" "main support width" "sidelobe attenuation"] res = Matrix{String}(undef, 0, 3) iter = sort(collect(keys(dict_VM))) for γ in iter global res ms = find_mainsupport(dict_VM[γ]; ϡ = 0.01) sa = sidelobe_attenuation(dict_VM[γ]) j, k, l = γ res = vcat(res, ["ψ^{$(j)}_{$(k), $(l)} (VM)" ms[2] - ms[1] + 1 round(sa; digits = 4)]) ms = find_mainsupport(dict_LP[γ]; ϡ = 0.01) sa = sidelobe_attenuation(dict_LP[γ]) res = vcat(res, ["ψ^{$(j)}_{$(k), $(l)} (LP)" ms[2] - ms[1] + 1 round(sa; digits = 4)]) end pretty_table(res; header = tuple(header), alignment = :c)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1362
cd(@__DIR__); include("setups/path128.jl"); gr(dpi = 200) ## (a) plt = plot(size = (400, 480), layout = Plots.grid(2, 1), ylim = [-0.3, 1.3]) scatter!(Ο‡(1:64, N), c = :black, grid = false, legend = false, frame = :box, lw = 1.5, ms = 3) bar!(Ο‡(1:64, N); bar_width = 0.02, c = :black) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) scatter!(Ο‡(65:N, N), c = :black, grid = false, legend = false, frame = :box, lw = 1.5, subplot = 2, ms = 3) bar!(Ο‡(65:N, N); bar_width = 0.02, c = :black, subplot = 2) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128]), subplot = 2) savefig(plt, "../figs/Path128_hard_bipart_restric_j1.png") ## (b) plt = plot(size = (400, 480), layout = Plots.grid(2, 1), ylim = [-0.3, 1.3]) scatter!(P0 * ones(N), c = :black, grid = false, legend = false, frame = :box, lw = 1.5, ms = 3) bar!(P0 * ones(N); bar_width = 0.02, c = :black) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) scatter!(P1 * ones(N), c = :black, grid = false, legend = false, frame = :box, lw = 1.5, ms = 3, subplot = 2) bar!(P1 * ones(N); bar_width = 0.02, c = :black, subplot = 2) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128]), subplot = 2) savefig(plt, "../figs/Path128_soft_bipart_PSO_j1.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1099
cd(@__DIR__); include("setups/path128.jl"); gr(dpi = 200) ## (a) plt = plot(size = (500, 400)) heatmap!(Uf, c = :viridis, ratio = 1, yflip = true, xlim = [1, N], clims = (-1, 1)) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) yticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) savefig(plt, "../figs/Path128_Uf_j1.png") ## (b) plt = plot(size = (500, 560), layout = Plots.grid(2, 1)) scatter!(diag(Uf), ylim = [-1, 1], c = :black, grid = false, legend = false, frame = :box, lw = 1.5, ms = 3) bar!(diag(Uf); bar_width = 0.02, c = :black) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) title!("Diagonal entries") scatter!(anti_diag(Uf), ylim = [-1, 1], c = :black, grid = false, legend = false, frame = :box, lw = 1.5, ms = 3, subplot = 2) bar!(anti_diag(Uf); bar_width = 0.02, c = :black, subplot = 2) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) title!("Antidiagonal entries", subplot = 2) savefig(plt, "../figs/Path128_Uf_diag_entries.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
833
cd(@__DIR__); include("setups/path128.jl"); gr(dpi = 200) ## (a) Uf = unitary_folding_operator(W, GP; Ο΅ = 0.38, J = 2)' # Ο΅a β‰ˆ 0.38β‹…βˆ₯π›Ÿβ‚βˆ₯_{∞} plt = plot(size = (500, 400)) heatmap!(Uf, c = :viridis, ratio = 1, yflip = true, xlim = [1, N], clims = (-1, 1)) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) yticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) savefig(plt, "../figs/Path128_Uf_j2.png") ## (b) Uf = unitary_folding_operator(W, GP; Ο΅ = 0.38, J = 3)' plt = plot(size = (500, 400)) heatmap!(Uf, c = :viridis, ratio = 1, yflip = true, xlim = [1, N], clims = (-1, 1)) xticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) yticks!([1; 16:16:128], vcat(string(1), [string(k) for k in 16:16:128])) savefig(plt, "../figs/Path128_Uf_j3.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
761
cd(@__DIR__); include("setups/rgc100.jl"); ## Ο΅ = 0.3 pair_inds, π›Ÿ1 = find_pairinds(W; Ο΅ = Ο΅) ## (a) fiedler vector on RGC100 gr(dpi = 200) plt = gplot(W, X; width = 1) scatter_gplot!(X; marker = π›Ÿ1, plotOrder = :l2s) plot!(xlims = [-180, 220], xlabel = "x(ΞΌm)", ylabel = "y(ΞΌm)", frame = :box, size = (520, 500), right_margin = 5mm) savefig(plt, "../figs/RGC100_fiedler.png") ## (b) fiedler embedding pyplot(dpi = 200) plt = plot(size = (520, 150)) plot!(-0.055:0.11:0.055, zeros(2), c = :black, lw = 2, yticks = false, xlab = latexstring("\\phi^{rw}_1(v)")) scatter!(π›Ÿ1, 0:0, ylim = [-0.2, 0.2], grid = false, ms = 4, mswidth = 0, legend = false, frame = :box, c = :black) savefig(plt, "../figs/RGC100_fiedler_embedding.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
4246
cd(@__DIR__); include("setups/rgc100.jl"); pyplot(dpi = 200) ## Ο΅ = 0.3 pair_inds, π›Ÿ1 = find_pairinds(W; Ο΅ = Ο΅) v_bar = (π›Ÿ1[pair_inds[1, end-1:end]] - π›Ÿ1[pair_inds[2, end-1:end]]) ./ 2 band = Ο΅ * norm(π›Ÿ1, Inf) pos_ar = findall(0 .< π›Ÿ1 .< band) neg_ar = findall(-band .< π›Ÿ1 .<= 0) # soft partition 1D plt = plot(layout = Plots.grid(2, 1), size = (520, 500)) plot!(-0.055:0.11:0.055, zeros(2), c = :black, lw = 2, yticks = false, subplot = 1) plot!(zeros(2), [-0.1, 0.1], lw = 3, c = :grey, linestyle = :solid, xlab = latexstring("\\phi^{rw}_1(v)"), subplot = 1) scatter!(π›Ÿ1[π›Ÿ1 .> 0], 0:0, ylim = [-0.2, 0.2], grid = false, ms = 4, mswidth = 0, legend = false, frame = :box, c = :red, subplot = 1) scatter!(π›Ÿ1[π›Ÿ1 .< 0], 0:0, m = (1, 4), mswidth = 0, c = :blue, subplot = 1) plot!(ones(2) * Ο΅ * norm(π›Ÿ1, Inf), [-0.08, 0.08], lw = 2, c = :grey, linestyle = :dash, subplot = 1) plot!(-ones(2) * Ο΅ * norm(π›Ÿ1, Inf), [-0.08, 0.08], lw = 2, c = :grey, linestyle = :dash, subplot = 1) annotate!(0.02, -0.12, text(latexstring("\\epsilon \\cdot \\Vert \\phi^{rw}_1 \\Vert_{\\infty}"), 11), subplot = 1) annotate!(-0.02, -0.12, text(latexstring("-\\epsilon \\cdot \\Vert \\phi^{rw}_1 \\Vert_{\\infty}"), 11), subplot = 1) annotate!(0, 0.15, text("action region", 10), subplot = 1) plot!(-0.016:0.032:0.016, zeros(2), c = :black, lw = 2, yticks = false, subplot = 2) plot!(zeros(2), [-0.1, 0.1], lw = 3, c = :grey, linestyle = :solid, xlab = latexstring("\\phi^{rw}_1(v)"), subplot = 2) scatter!(π›Ÿ1[pos_ar], 0:0, ylim = [-0.2, 0.2], grid = false, ms = 4, mswidth = 0, legend = false, frame = :box, c = :red, subplot = 2) scatter!(π›Ÿ1[neg_ar], 0:0, m = (1, 4), mswidth = 0, c = :blue, subplot = 2) plot!(ones(2) * Ο΅ * norm(π›Ÿ1, Inf), [-0.08, 0.08], lw = 2, c = :grey, linestyle = :dash, subplot = 2) plot!(-ones(2) * Ο΅ * norm(π›Ÿ1, Inf), [-0.08, 0.08], lw = 2, c = :grey, linestyle = :dash, subplot = 2) annotate!(0.012, -0.12, text(latexstring("\\epsilon \\cdot \\Vert \\phi^{rw}_1 \\Vert_{\\infty}"), 11), subplot = 2) annotate!(-0.012, -0.12, text(latexstring("-\\epsilon \\cdot \\Vert \\phi^{rw}_1 \\Vert_{\\infty}"), 11), subplot = 2) annotate!(-0.0075, 0.15, text("negative action region", 10), subplot = 2) annotate!(0.0075, 0.15, text("positive action region", 10), subplot = 2) savefig(plt, "../figs/RGC100_fiedler_embedding_soft_clustering.png") # zoom-in: find relection points about the nodal point plt = plot(layout = Plots.grid(2, 1), size = (520, 500)) plot!(-0.005:0.01:0.005, zeros(2), c = :black, lw = 2, yticks = false, subplot = 1) scatter!(π›Ÿ1[pair_inds[1, end-1:end]], 0:0, ylim = [-0.2, 0.2], grid = false, ms = 6, mswidth = 0, legend = false, frame = :box, c = :red, subplot = 1) scatter!(π›Ÿ1[pair_inds[2, end-1:end]], 0:0, ms = 6, mswidth = 0, c = :blue, subplot = 1) plot!(zeros(2), [-0.1, 0.1], lw = 3, c = :grey, linestyle = :solid, xlab = latexstring("\\phi^{rw}_1(v)"), subplot = 1) annotate!(π›Ÿ1[pair_inds[1, end]], 0.05, text(latexstring("v^{+}_{1}"), 11), subplot = 1) annotate!(π›Ÿ1[pair_inds[1, end-1]], 0.05, text(latexstring("v^{+}_{2}"), 11), subplot = 1) annotate!(π›Ÿ1[pair_inds[2, end]], 0.05, text(latexstring("v^{-}_{1}"), 11), subplot = 1) annotate!(π›Ÿ1[pair_inds[2, end-1]], 0.05, text(latexstring("v^{-}_{2}"), 11), subplot = 1) plot!(vec(-0.005:0.01:0.005), zeros(2), c = :black, lw = 2, yticks = false, subplot = 2) scatter!(vcat(v_bar, -v_bar), 0:0, ylim = [-0.2, 0.2], grid = false, ms = 6, mswidth = 0, legend = false, frame = :box, c = :purple, subplot = 2) plot!(zeros(2), [-0.1, 0.1], lw = 3, c = :grey, linestyle = :solid, xlab = latexstring("r"), subplot = 2) annotate!(v_bar[end], -0.05, text(latexstring("r_{1}"), 11), subplot = 2) annotate!(v_bar[end-1], -0.05, text(latexstring("r_{2}"), 11), subplot = 2) annotate!(-v_bar[end], -0.05, text(latexstring("-r_{1}"), 11), subplot = 2) annotate!(-v_bar[end-1], -0.05, text(latexstring("-r_{2}"), 11), subplot = 2) savefig(plt, "../figs/RGC100_fiedler_embedding_find_reflection_points.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
438
cd(@__DIR__); include("setups/rgc100.jl"); pyplot(dpi = 200) ## Ο΅ = 0.3 for J = 1:2 Uf = unitary_folding_operator(W, GP; Ο΅ = Ο΅, J = J) gplot(W, X; width = 1) scatter_gplot!(X; marker = diag(Uf), plotOrder = :l2s, ms = 4) plt = plot!(xlims = [-180, 220], xlabel = "x(ΞΌm)", ylabel = "y(ΞΌm)", clims = (0.6, 1), frame = :box, size = (520, 500)) savefig(plt, "../figs/RGC100_unitary_folding_diag_J$(J).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1934
cd(@__DIR__); include("setups/rgc100.jl") gr(dpi = 200) ## construct full HGLET and Lapped-HGLET dictionaries @time HGLET_dic = HGLET_dictionary(GP, G_Sig; gltype = :L) @time LPHGLET_dic = LPHGLET_dictionary(GP, G_Sig; gltype = :L, ϡ = 0.3) ## generate figures # pre-selected (j, k, l)s T = [(2, 1, 1), (2, 1, 12), (3, 1, 3), (3, 1, 5), (4, 5, 6), (6, 23, 3), (7, 5, 2), (8, 15, 1)] XLs = [ [-50, 50], [-50, 50], [-110, 40], [-110, 40], [-20, 50], [50, 120], [-80, -20], [-40, -10] ] YLs = [ [-50, 50], [-50, 50], [-50, 100], [-50, 100], [-50, 20], [-70, 0], [-90, -30], [-160, -130] ] for i in 1:length(T) (j, k, l) = T[i] 𝚽H = HGLET_dic[GP.rs[k, j]:(GP.rs[k + 1, j] - 1), j, :]' 𝚽lH = LPHGLET_dic[GP.rs[k, j]:(GP.rs[k + 1, j] - 1), j, :]' p1 = gplot(W, X; width = 1) scatter_gplot!(X; marker = 𝚽H[:, l], plotOrder = :s2l, ms = 5) plot!(xlims = [-180, 220], xlabel = "x(μm)", ylabel = "y(μm)", frame = :box, cbar = false) plot!(left_margin = 3mm, bottom_margin = 3mm, clims = (-0.05, 0.05)) p2 = gplot(W, X; width = 1) scatter_gplot!(X; marker = 𝚽lH[:, l], plotOrder = :s2l, ms = 5) plot!(xlims = [-180, 220], xlabel = "x(μm)", ylabel = "y(μm)", frame = :box, cbar = false) plot!(left_margin = 3mm, bottom_margin = 3mm, clims = (-0.05, 0.05)) plt = plot(p1, p2, size = (640, 300), layout = Plots.grid(1, 2), xlims = XLs[i], ylims = YLs[i]) # xlims = [-120, 120], ylims = [-150, 150]) # gplot(W, X; width = 1) # ord = :s2l # if i == 8 # ord = :l2s # end # scatter_gplot!(X; marker = 𝚽lH[:, l] - 𝚽H[:, l], plotOrder = ord, ms = 4) # plot!(xlabel = "x(μm)", ylabel = "y(μm)", frame = :box, cbar = true) # plot!(left_margin = 3mm, bottom_margin = 3mm, right_margin = 3mm) # plt = plot!(size = (500, 500)) savefig(plt, "../figs/RGC100_HGLET_LPHGLET_j$(j-1)k$(k-1)l$(l-1).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
542
cd(@__DIR__); runapprox = false; include("setups/sunflower.jl") gr(dpi = 200) ## (a) sunflower graph gplot(W, X; width = 1) scatter_gplot!(X; c = :red, ms = LinRange(1, 9, N)) plt = plot!(frame = :none) savefig(plt, "../figs/SunFlower.png") ## (b) voronoi tessellation xx, yy = getplotxy(voronoiedges(tess)) plt = plot(xx, yy, xlim = [1, 2], ylim = [1, 2], linestyle = :auto, linewidth = 1, linecolor = :blue, grid = false, label = "", ratio = 1, frame = :box, ticks = false) savefig(plt, "../figs/Sunflower_Barbara_Voronoi_cells.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1039
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") gr(dpi = 200) ## pedestrian signal 16 most important PC-NGWP vectors PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal) fp = load("../datasets/new_toronto.jld", "fp") G_Sig.f = reshape(fp, (N, 1)) dmatrix_PC = ngwp_analysis(G_Sig, PC_NGWP) dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GP_dual) important_idx = sortperm(dvec_pc_ngwp[:].^2; rev = true) println("================fp-PC-NGWP-top-basis-vectors=================") for i in 1:16 dr, dc = BS_pc_ngwp.levlist[important_idx[i]] w = PC_NGWP[dr, dc, :] j, k, l = NGWP_jkl(GP_dual, dr, dc) print("(j, k, l) = ($(j), $(k), $(l)) ") if j == jmax print("Ο†_{$(GP_dual.ind[dr]-1)}") end println() sgn = (maximum(w) > -minimum(w)) * 2 - 1 gplot(A, X; width=1) scatter_gplot!(X; marker = sgn .* w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) savefig(plt, "../figs/Toronto_fp_DAG_PC_NGWP_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
969
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") gr(dpi = 200) ## pedestrian signal 16 most important LP-NGWP vectors LP_NGWP = lp_ngwp(𝚽, Gstar_Sig.W, GP_dual; ϡ = 0.3) fp = load("../datasets/new_toronto.jld", "fp") G_Sig.f = reshape(fp, (N, 1)) dmatrix_LP = ngwp_analysis(G_Sig, LP_NGWP) dvec_lp_ngwp, BS_lp_ngwp = ngwp_bestbasis(dmatrix_LP, GP_dual) important_idx = sortperm(dvec_lp_ngwp[:].^2; rev = true) println("================fp-LP-NGWP-top-basis-vectors=================") for i in 1:16 dr, dc = BS_lp_ngwp.levlist[important_idx[i]] w = LP_NGWP[dr, dc, :] j, k, l = NGWP_jkl(GP_dual, dr, dc) println("(j, k, l) = ($(j), $(k), $(l))") sgn = (maximum(w) > -minimum(w)) * 2 - 1 gplot(A, X; width=1) scatter_gplot!(X; marker = sgn .* w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) savefig(plt, "../figs/Toronto_fp_DAG_LP_NGWP_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1117
cd(@__DIR__); runapprox = true; allNGWPs = true; include("setups/sunflower.jl") gr(dpi = 200) ## (a) barbara sunflower eye heatmap(barbara, yflip = true, ratio = 1, c = :greys) scatter_gplot!(transform2D(X; s = 20, t = [395, 100]); ms = 2, c = :red) sample_location_plt = plot!(cbar = false, frame = :none) savefig(sample_location_plt, "../figs/barb_sunflower_eye.png") ## (b) barbara eye graph signal f = matread("../datasets/sunflower_barbara_voronoi.mat")["f_eye_voronoi"] G_Sig.f = reshape(f, (N, 1)) scatter_gplot(X; marker = f, ms = LinRange(4.0, 14.0, N), c = :greys); plt = plot!(xlim = [-1.2,1.2], ylim = [-1.2,1.2], frame = :none) savefig(plt, "../figs/SunFlower_barbara_feye.png") ## (c) barbara eye relative l2 approximation error by various methods DVEC = getall_expansioncoeffs2(G_Sig, GP_dual, GP_dual_Lsym, VM_NGWP, PC_NGWP, LP_NGWP, VM_NGWP_Lsym, PC_NGWP_Lsym, LP_NGWP_Lsym, 𝚽, 𝚽sym) approx_error_plot2(DVEC); plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 600)) savefig(plt, "../figs/SunFlower_barbara_feye_DAG_approx.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1118
cd(@__DIR__); runapprox = true; allNGWPs = false; include("setups/sunflower.jl") gr(dpi = 200) ## VM_NGWP_Lsym = vm_ngwp(𝚽sym, GP_dual_Lsym) f = matread("../datasets/sunflower_barbara_voronoi.mat")["f_eye_voronoi"] G_Sig.f = reshape(f, (N, 1)) dmatrix_VM_Lsym = ngwp_analysis(G_Sig, VM_NGWP_Lsym) dvec_vm_ngwp_Lsym, BS_vm_ngwp_Lsym = ngwp_bestbasis(dmatrix_VM_Lsym, GP_dual_Lsym) important_idx = sortperm(dvec_vm_ngwp_Lsym[:].^2; rev = true) println("================feye-VM-NGWP-Lsym-top-basis-vectors=================") for i in 2:17 dr, dc = BS_vm_ngwp_Lsym.levlist[important_idx[i]] w = VM_NGWP_Lsym[dr, dc, :] j, k, l = NGWP_jkl(GP_dual_Lsym, dr, dc) print("(j, k, l) = ($(j), $(k), $(l)) ") if j == jmax_Lsym print("Ο†_{$(GP_dual_Lsym.ind[dr]-1)}") end println() scatter_gplot(X; marker = w, ms = LinRange(4.0, 14.0, N), c = :greys) plt = plot!(xlim = [-1.2, 1.2], ylim = [-1.2, 1.2], frame = :none, cbar = false, clims = (-0.15, 0.15)) savefig(plt, "../figs/SunFlower_feye_DAG_VM_NGWP_Lsym_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1127
cd(@__DIR__); runapprox = true; allNGWPs = true; include("setups/sunflower.jl") gr(dpi = 200) ## (a) barbara sunflower pants heatmap(barbara, yflip=true, ratio=1, c=:greys) scatter_gplot!(transform2D(X; s = 20, t = [280, 320]); ms = 2, c = :red) sample_location_plt = plot!(cbar = false, frame = :none) savefig(sample_location_plt, "../figs/barb_sunflower_pants.png") ## (b) barbara eye graph signal f = matread("../datasets/sunflower_barbara_voronoi.mat")["f_trouser_voronoi"] G_Sig.f = reshape(f, (N, 1)) scatter_gplot(X; marker = f, ms = LinRange(4.0, 14.0, N), c = :greys); plt = plot!(xlim = [-1.2,1.2], ylim = [-1.2,1.2], frame = :none) savefig(plt, "../figs/SunFlower_barbara_ftrouser.png") ## (c) barbara eye relative l2 approximation error by various methods DVEC = getall_expansioncoeffs2(G_Sig, GP_dual, GP_dual_Lsym, VM_NGWP, PC_NGWP, LP_NGWP, VM_NGWP_Lsym, PC_NGWP_Lsym, LP_NGWP_Lsym, 𝚽, 𝚽sym) approx_error_plot2(DVEC); plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 600)) savefig(plt, "../figs/SunFlower_barbara_ftrouser_DAG_approx.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1047
cd(@__DIR__); runapprox = true; allNGWPs = false; include("setups/sunflower.jl") gr(dpi = 200) ## VM_NGWP = vm_ngwp(𝚽, GP_dual) f = matread("../datasets/sunflower_barbara_voronoi.mat")["f_trouser_voronoi"] G_Sig.f = reshape(f, (N, 1)) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) println("================ftrouser-VM-NGWP-top-basis-vectors=================") for i in 2:17 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] j, k, l = NGWP_jkl(GP_dual, dr, dc) print("(j, k, l) = ($(j), $(k), $(l)) ") if j == jmax print("Ο†_{$(GP_dual.ind[dr]-1)}") end println() scatter_gplot(X; marker = w, ms = LinRange(4.0, 14.0, N), c = :greys) plt = plot!(xlim = [-1.2, 1.2], ylim = [-1.2, 1.2], frame = :none, cbar = false, clims = (-0.15, 0.15)) savefig(plt, "../figs/SunFlower_ftrouser_DAG_VM_NGWP_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1017
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") gr(dpi = 200) ## (a) a smooth spatial distribution of the street intersections graph signal f = zeros(N); for i in 1:N; f[i] = length(findall(dist_X[:,i] .< 1/minimum(edge_weight))); end G_Sig.f = reshape(f, (N, 1)) gplot(A, X; width=1); plot!(size = (600, 600)) signal_plt = scatter_gplot!(X; marker = f, plotOrder = :s2l, ms = 3) savefig(signal_plt, "../figs/Toronto_fdensity.png") ## (b) spatial distribution signal relative l2 approximation error by various methods # uncomment the following if `allNGWPs` = true # DVEC = getall_expansioncoeffs2(G_Sig, GP_dual, GP_dual_Lsym, VM_NGWP, PC_NGWP, LP_NGWP, # VM_NGWP_Lsym, PC_NGWP_Lsym, LP_NGWP_Lsym, 𝚽, 𝚽sym) # use precomputed results DVEC = load("../datasets/Toronto_fdensity_DVEC.jld", "DVEC") approx_error_plot2(DVEC); plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 600)) savefig(plt, "../figs/Toronto_fdensity_DAG_approx.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1049
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") gr(dpi = 200) ## fdensity 16 most important VM-NGWP vectors (ignore the DC vector) VM_NGWP = vm_ngwp(𝚽, GP_dual) f = zeros(N); for i in 1:N; f[i] = length(findall(dist_X[:,i] .< 1/minimum(edge_weight))); end G_Sig.f = reshape(f, (N, 1)) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) println("================fdensity-VM-NGWP-top-basis-vectors=================") for i in 2:17 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] j, k, l = NGWP_jkl(GP_dual, dr, dc) print("(j, k, l) = ($(j), $(k), $(l)) ") if j == jmax print("Ο†_{$(GP_dual.ind[dr]-1)}") end println() gplot(A, X; width=1) scatter_gplot!(X; marker = w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) savefig(plt, "../figs/Toronto_fdensity_DAG_VM_NGWP_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
948
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") using Plots.PlotMeasures gr(dpi = 200) ## (a) pedestrian volume graph signal fp = load("../datasets/new_toronto.jld", "fp") G_Sig.f = reshape(fp, (N, 1)) gplot(A, X; width=1); plot!(size = (600, 600), right_margin = 5mm) signal_plt = scatter_gplot!(X; marker = fp, plotOrder = :s2l, ms = 3) savefig(signal_plt, "../figs/Toronto_fp.png") ## (b) pedestrian signal relative l2 approximation error by various methods # uncomment the following if `allNGWPs` = true # DVEC = getall_expansioncoeffs2(G_Sig, GP_dual, GP_dual_Lsym, VM_NGWP, PC_NGWP, LP_NGWP, # VM_NGWP_Lsym, PC_NGWP_Lsym, LP_NGWP_Lsym, 𝚽, 𝚽sym) # use precomputed results DVEC = load("../datasets/Toronto_fp_DVEC.jld", "DVEC") approx_error_plot2(DVEC); plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 11, size = (600, 600)) savefig(plt, "../figs/Toronto_fp_DAG_approx.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
978
cd(@__DIR__); allNGWPs = false; include("setups/toronto.jl") gr(dpi = 200) ## pedestrian signal 16 most important VM-NGWP vectors VM_NGWP = vm_ngwp(𝚽, GP_dual) fp = load("../datasets/new_toronto.jld", "fp") G_Sig.f = reshape(fp, (N, 1)) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) println("================fp-VM-NGWP-top-basis-vectors=================") for i in 1:16 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] j, k, l = NGWP_jkl(GP_dual, dr, dc) print("(j, k, l) = ($(j), $(k), $(l)) ") if j == jmax print("Ο†_{$(GP_dual.ind[dr]-1)}") end println() gplot(A, X; width = 1) scatter_gplot!(X; marker = w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) savefig(plt, "../figs/Toronto_fp_DAG_VM_NGWP_ibv$(lpad(i,2,"0"))_j$(j)_k$(k)_l$(l).png") end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1055
using MultiscaleGraphSignalTransforms, Plots, Graphs, Random using PrettyTables, StatsPlots nsim = 500 function generate_ROT_TSD_ratio(nsim, 𝚽, βˆ‡πš½, π›Œ, Q; edge_length = 1) Random.seed!(1234) ρ = zeros(nsim) for i = 1:nsim p = rand(N); p ./= norm(p, 1) q = rand(N); q ./= norm(q, 1) W1 = ROT_Distance(p, q, Q; edge_length = edge_length) K = K_functional(p, q, 𝚽, βˆ‡πš½, π›Œ; length = edge_length)[1] ρ[i] = K / W1 end return ρ end function display_basic_stats(ρs) header = ["min" "max" "mean" "std"] basic_stats = zeros(0, 4) for ρ in ρs basic_stats = vcat( basic_stats, round.([minimum(ρ) maximum(ρ) mean(ρ) std(ρ)]; digits = 4) ) end pretty_table(basic_stats; header = tuple([header[i] for i = 1:length(header)])) end function ROT_TSD_ratio_histogram(ρ) plt = histogram(ρ, grid = false, legend = false, c = :teal, xlims = [minimum(ρ) - std(ρ), maximum(ρ) + std(ρ)], xlab = "ρ") return plt end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
246
Random.seed!(1234) N, M = 50, 200 G = erdos_renyi(N, M) # println("Is the ER graph connected: ", is_connected(G)) L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); standardize_eigenvectors!(𝚽) Q = incidence_matrix(G; oriented = true) βˆ‡πš½ = Q' * 𝚽
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1917
using MLDatasets, Graphs, Plots, LaTeXStrings, MultiscaleGraphSignalTransforms # Load local module push!(LOAD_PATH, @__DIR__) using pSGWT example, label = MNIST.traindata(Float64, 28) digit_img = example[4:26, 26:-1:5] # heatmap(digit_img', ratio = 1, c=:viridis, frame = :none, xlim = [1, 22]) Nx, Ny = size(digit_img) G = Graphs.grid([Nx, Ny]); N = nv(G); W = Matrix(adjacency_matrix(G)) L = Matrix(laplacian_matrix(G)) Q = incidence_matrix(G; oriented = true) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1, :])'; D = natural_eigdist(𝚽, π›Œ, Q; distance = :DAG) function grid_eigenvector_plot(l) heatmap(reshape(𝚽[:, l], (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [1, Nx], size = (500, 400), cbar = true) end function grid_NGWFvector_plot(l, x, D, 𝚽; Οƒ = 0.2 * maximum(D)) heatmap(reshape(ngwf_vector(D, l, x, 𝚽; Οƒ = Οƒ)', (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [1, Nx], size = (500, 400)) end function plot_edge!(A, B; style = :solid, subplot = 1, c = :red) plot!([A[1], B[1], NaN], [A[2], B[2], NaN], c = c, legend = false, width = 10, style = style, subplot = subplot) end function plot_square!(Nx, Ny; subplot = 1, c = :red) plot_edge!([-0.33, 0], [Nx + 1.24, 0]; subplot = subplot, c = c) plot_edge!([0, 0], [0, Ny + 1]; subplot = subplot, c = c) plot_edge!([-0.33, Ny + 1], [Nx + 1.24, Ny + 1]; subplot = subplot, c = c) plot_edge!([Nx + 0.92, 0], [Nx + 0.92, Ny + 1]; subplot = subplot, c = c) end function grid_vector_plot!(l, i, VECs) v = deepcopy(VECs[:, l]) v ./= norm(v, 1) heatmap!(reshape(v, (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [-0.5, Nx+1.5], cbar = false, subplot = i) end function grid_vec_heatmap(VEC, Nx, Ny; l = 1) v = VEC[:, l] heatmap(reshape(v, (Nx, Ny))', c = :viridis, ratio = 1, frame = :none, xlim = [1, Nx], size = (500, 400), cbar = true) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2358
using MultiscaleGraphSignalTransforms, Plots, Graphs, MultivariateStats using LaTeXStrings Nx, Ny = 7, 3 G = Graphs.grid([Nx, Ny]); N = nv(G); L = Matrix(laplacian_matrix(G)) Q = incidence_matrix(G; oriented = true) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽.*sign.(𝚽[1,:])'; # sign of DCT βˆ‡πš½ = Q' * 𝚽 W = 1.0 * adjacency_matrix(G) grid2eig_ind = [1,2,3,6,8,12,15,4,5,7,9,13,16,18,10,11,14,17,19,20,21]; eig2grid_ind = sortperm(grid2eig_ind); eig2dct = Array{Int64,3}(undef, Nx, Ny, 2); for i = 1:Nx; for j = 1:Ny; eig2dct[i,j,1] = i-1; eig2dct[i,j,2] = j-1; end; end eig2dct = reshape(eig2dct, (N, 2)); eig2dct = eig2dct[eig2grid_ind, :]; function grid7x3_mds_heatmaps(E, 𝚽; Nx = 7, Ny = 3, backend = :pyplot, annotate_ind = 1:N, plotOrder = 1:N) # set up all heatmap plots' positions max_x = maximum(E[1, :]); min_x = minimum(E[1, :]) width_x = max_x - min_x max_y = maximum(E[2, :]); min_y = minimum(E[2, :]) width_y = max_y - min_y dx = 0.005 * width_x; dy = dx; xej = zeros(Nx, N); yej=zeros(Ny, N); a = 5.0; b = 7.0; for k = 1:N xej[:,k] = LinRange(E[1,k] - Ny * a * dx, E[1, k] + Ny * a * dx, Nx) yej[:,k] = LinRange(E[2,k] - a * dy, E[2, k] + a * dy, Ny) end # generate Grid7x3 2D MDS heatmaps plot if backend == :gr gr(dpi = 200) elseif backend == :pyplot pyplot(dpi = 200) elseif backend == :plotlyjs plotlyjs(dpi = 200) else @error("backend does not support $(backend)!") end plot() for k in plotOrder if k in annotate_ind heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1, annotations = (xej[4, k], yej[3, k] + b*dy, text(latexstring("\\varphi_{", string(eig2dct[k, 1]), ",", string(eig2dct[k, 2]), "}"), 10))) else heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1) end end plt = plot!(xlim = [min_x - 0.12 * width_x, max_x + 0.12 * width_x], ylim = [min_y - 0.16 * width_y, max_y + 0.16 * width_y], grid = false, clims = (-0.4, 0.4), xlab = "X₁", ylab = "Xβ‚‚") return plt end # display(vcat((1:N)', eig2dct'))
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1192
module pSGWT using PyCall export sgwt_frame, sgwt_filter_banks const pygsp = PyNULL() function __init__() copy!(pygsp, pyimport_conda("pygsp", "pygsp", "conda-forge")) end function init_Graph(W) G = pygsp.graphs.Graph(PyReverseDims(W)) return G end """ sgwt_transform(loc, nf, W) SGWT\\_TRANSFORM perform the SGWT transform with MexicanHat filter as a python wrapper. See https://pygsp.readthedocs.io/en/stable/tutorials/wavelet.html # Input Arguments - `loc::Int64`: the vertex index that the output wavelet centered at. - `W::Matrix{Float64}`: weighted adjacency matrix. - `nf::Int64`: default is 6. Number of filters. # Output Argument - `frame::Array{Float64, 3}`: a N x N x nf matrix. """ function sgwt_frame(W; nf = 6) G = init_Graph(W) G.estimate_lmax() g = pygsp.filters.MexicanHat(G, Nf = nf) # np = pyimport("numpy") # s = np.zeros(G.N); s[loc] = 1 # s = g.filter(s, method="chebyshev") return g.compute_frame() end function sgwt_filter_banks(W, π›Œ; nf = 6) G = init_Graph(W) G.estimate_lmax() g = pygsp.filters.MexicanHat(G, Nf = nf) np = pyimport("numpy") e = np.array(π›Œ) return g.evaluate(e) end end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1660
using MultiscaleGraphSignalTransforms, Graphs, Plots, LaTeXStrings ## Build Graph N = 128; G = path_graph(N) X = zeros(N,2); X[:, 1] = 1:N L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); standardize_eigenvectors!(𝚽) W = 1.0 * adjacency_matrix(G) G_Sig = GraphSig(W, xy = X) GP = partition_tree_fiedler(G_Sig; swapRegion = false) function anti_diag(A) N = size(A, 1) return [A[i, N+1-i] for i = 1:N] end ## construct 1D smooth orthogonal projector Ο΅a = 16 pair_inds = vcat(vec((64 + Ο΅a):-1:65)', vec((64 - Ο΅a + 1):64)') Uf = Matrix{Float64}(I, N, N) Ξ² = 64.5 for i in 1:size(pair_inds, 2) pv, nv = pair_inds[:, i] t = abs(pv - Ξ²) / Ο΅a Uf[pv, pv] = rising_cutoff(t) Uf[pv, nv] = rising_cutoff(-t) Uf[nv, pv] = -rising_cutoff(-t) Uf[nv, nv] = rising_cutoff(t) end P0 = Uf' * diagm(Ο‡(1:64, N)) * Uf P1 = Uf' * diagm(Ο‡(65:N, N)) * Uf ## distDCT = zeros(N,N) for i in 1:N-1, j = i+1:N distDCT[i,j] = abs(i-j) end distDCT = distDCT + distDCT' function path_spectrogram(f, D, 𝚽; c = 0.01) N = length(f) dmatrix = zeros(N, N) for l = 1:N P = 𝚽 * diagm(nat_spec_filter(l, D; Οƒ = c * maximum(D))) * 𝚽' for x = 1:N ψ = P * spike(x, N) ψ ./= norm(ψ, 2) dmatrix[l, x] = ψ' * f end end heatmap(abs.(dmatrix), c = :thermal, ratio = 1, xlim = [0.5, N+1], ylim = [0.5, N], xlab = latexstring("x"), ylab = latexstring("l"), guidefontsize = 18) xticks!([16:16:128;], [string(k) for k in 16:16:128]) yticks!([1;16:16:128], vcat("DC", [string(k) for k in 15:16:127])) plt = plot!(size = (500, 400)) return plt end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
859
using MultiscaleGraphSignalTransforms, Graphs, Plots, LaTeXStrings ## Build Graph N = 16; G = path_graph(N) X = zeros(N,2); X[:, 1] = 1:N L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1,:])' W = 1.0 * adjacency_matrix(G) ## preliminaries for PC-NGWP Gstar_Sig = GraphSig(W) G_Sig = GraphSig(W, xy = X) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) ## Plots function path_pc_plot!(W, X; ind = 1:size(X, 1), c = :teal) # plot(size = (500, 50), framestyle = :none, xlim = [1, N+1.5], ylim = [-0.2, 0.3]) gplot!(W, X, width = 1, color = :blue, style = :solid) scatter_gplot!(X; ms = 6, c = :teal) annotate!(X[:, 1], X[:, 2] .- 0.2, [text(string(n), :top, 7) for n = 1:N]) scatter_gplot!(X[ind, :]; ms = 6, c = c) plt = plot!(ratio = :auto) return plt end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1333
using MultiscaleGraphSignalTransforms, Graphs, Plots, LaTeXStrings import WaveletsExt: wiggle ## Build Graph N = 512; G = path_graph(N) X = zeros(N,2); X[:, 1] = 1:N L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1,:])' W = 1.0 * adjacency_matrix(G) Gstar_Sig = GraphSig(W) G_Sig = GraphSig(W, xy = X) GP = partition_tree_fiedler(G_Sig; swapRegion = false) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) ## utility functions function find_mainsupport(w; Ο΅ = 0.01) N = length(w) l, r = 1, N for i in 1:N if abs(w[i]) >= Ο΅ l = i break end end for i in N:-1:l if abs(w[i]) >= Ο΅ r = i break end end return [l, r] end function findlocalmaxima(signal::Vector) inds = Int[] if length(signal)>1 if signal[1]>signal[2] push!(inds,1) end for i=2:length(signal)-1 if signal[i-1]<signal[i]>signal[i+1] push!(inds,i) end end if signal[end]>signal[end-1] push!(inds,length(signal)) end end inds end function sidelobe_attenuation(w) locmax_ind = findlocalmaxima(w) locmax_val = sort(w[locmax_ind]; rev = true) return locmax_val[2] / locmax_val[1] end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
152
N = 64; G = path_graph(N) L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1,:])' Q = incidence_matrix(G; oriented = true) βˆ‡πš½ = Q' * 𝚽
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
663
using Plots, Graphs, JLD, LaTeXStrings, MultiscaleGraphSignalTransforms, Distances using Plots.PlotMeasures G = loadgraph("../datasets/RGC100.lgz"); N = nv(G) X = load("../datasets/RGC100_xyz.jld", "xyz")[:, 1:2] X3 = load("../datasets/RGC100_xyz.jld", "xyz") L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L) standardize_eigenvectors!(𝚽) dist_X = pairwise(Euclidean(1e-12), X3; dims = 1) A = 1.0 .* adjacency_matrix(G) W = zeros(N, N); W[A .> 0] = 1 ./ dist_X[A .> 0]; W = A .* W Q = incidence_matrix(G; oriented = true) βˆ‡πš½ = Q' * 𝚽 edge_length = sqrt.(sum((Q' * X3).^2, dims = 2)[:]) G_Sig = GraphSig(W) GP = partition_tree_fiedler(G_Sig; swapRegion = false)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1996
using MultiscaleGraphSignalTransforms, JLD, Plots, Graphs, MultivariateStats using LaTeXStrings push!(LOAD_PATH, @__DIR__) using pSGWT G = loadgraph("../datasets/simple_tree_graph.lgz") X = load("../datasets/simple_tree_xy.jld", "xy") N = nv(G) L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L) standardize_eigenvectors!(𝚽) W = 1.0 * adjacency_matrix(G) Q = incidence_matrix(G; oriented = true) ib1 = 36:56 ib2 = 21:35 ib3 = 71:100 ib4 = 57:70 ijc = [3,5,12,16] ir = setdiff(1:N, ib1, ib2, ib3, ib4, ijc) ## P = 𝚽.^2 # P = exp.(𝚽) ./ sum(exp.(𝚽), dims = 1) dist_sROT, Ws, Xs, 𝚯 = eigsROT_Distance(P, W, X; Ξ± = 1.0) ## function find_active_eigenvectors(P, interest_locs; threshold = 0.5) N = size(P, 1) energy = zeros(N) for k=1:N energy[k] = norm(P[interest_locs, k], 1) / norm(P[:, k], 1) end ind = findall(energy .> threshold) return ind end # index of eigenvectors active at branch k (k = 1,2,3,4) ieb1 = find_active_eigenvectors(𝚽.^2, ib1) ieb2 = find_active_eigenvectors(𝚽.^2, ib2) ieb3 = find_active_eigenvectors(𝚽.^2, ib3) ieb4 = find_active_eigenvectors(𝚽.^2, ib4) iejc = find_active_eigenvectors(𝚽.^2, ijc; threshold = 0.1) function simpletree_mds_plot(E, ieb1, ieb2, ieb3, ieb4, iejc) scatter_gplot(E'; c = :grey, ms = 2) scatter_gplot!(E[:, ieb1]'; c = :pink, ms = 2) scatter_gplot!(E[:, ieb2]'; c = :orange, ms = 2) scatter_gplot!(E[:, ieb3]'; c = :green, ms = 2) scatter_gplot!(E[:, ieb4]'; c = :yellow, ms = 2) scatter_gplot!(E[:, iejc]'; c = :red, ms = 2) scatter_gplot!(E[:, 1:1]'; c = :magenta, ms = 4) plt = plot!(xaxis = "X₁", yaxis = "Xβ‚‚", zaxis = "X₃", legend = false, cbar = false, grid = true) return plt end ## f = zeros(N) ib1 = 36:56; ib2 = 21:35; ib3 = 71:100; ib4 = 57:70; ijc = [3,5,12,16] f[ib1] = sin.(0.3 * (0:(length(ib1) - 1))) f[ib2] = cos.(0.4 * (0:(length(ib2) - 1))) f[ib3] = sin.(0.5 * (0:(length(ib3) - 1))) f[ib4] = cos.(0.6 * (0:(length(ib4) - 1))) f[ijc] .= 1;
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2822
using MultiscaleGraphSignalTransforms, Plots, Graphs, JLD, MAT barbara = JLD.load("../datasets/barbara_gray_matrix.jld", "barbara") ## Build weighted graph G, L, X = SunFlowerGraph(N = 400); N = nv(G) W = 1.0 * adjacency_matrix(G) if runapprox Q = incidence_matrix(G; oriented = true) edge_weight = [e.weight for e in edges(G)] ## eigenvectors of L(G) π›Œ, 𝚽 = eigen(Matrix(L)) standardize_eigenvectors!(𝚽) ## eigenvectors of Lsym(G) deg = sum(W, dims = 1)[:] # weighted degree vector Lsym = diagm(deg.^(-1/2)) * (diagm(deg) - W) * diagm(deg.^(-1/2)) π›Œsym, 𝚽sym = eigen(Lsym) standardize_eigenvectors!(𝚽sym) ## Build Dual Graph by DAG metric distDAG = eigDAG_Distance(𝚽, Q, N; edge_weight = edge_weight) Gstar_Sig = dualgraph(distDAG) G_Sig = GraphSig(W, xy = X) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) jmax = size(GP_dual.rs, 2) - 1 # zero-indexed if allNGWPs # 54.986524 seconds (1.19 M allocations: 25.127 GiB, 2.36% gc time) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) # 0.611176 seconds (225.41 k allocations: 844.488 MiB, 11.71% gc time) @time PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal) # 50.939912 seconds (7.67 M allocations: 28.051 GiB, 3.11% gc time) @time LP_NGWP = lp_ngwp(𝚽, Gstar_Sig.W, GP_dual; Ο΅ = 0.3) end ## Build Dual Graph by DAG metric (Lsym) distDAG_Lsym = eigDAG_Distance(𝚽sym, Q, N; edge_weight = edge_weight) Gstar_Sig_Lsym = dualgraph(distDAG_Lsym) GP_dual_Lsym = partition_tree_fiedler(Gstar_Sig_Lsym; swapRegion = false) GP_primal_Lsym = pairclustering(𝚽sym, GP_dual_Lsym) jmax_Lsym = size(GP_dual_Lsym.rs, 2) - 1 if allNGWPs # 61.328441 seconds (1.34 M allocations: 29.058 GiB, 2.30% gc time) @time VM_NGWP_Lsym = vm_ngwp(𝚽sym, GP_dual_Lsym) # 0.605507 seconds (237.87 k allocations: 876.689 MiB, 10.83% gc time) @time PC_NGWP_Lsym = pc_ngwp(𝚽sym, GP_dual_Lsym, GP_primal_Lsym) # 77.918189 seconds (2.12 M allocations: 42.872 GiB, 2.91% gc time) @time LP_NGWP_Lsym = lp_ngwp(𝚽sym, Gstar_Sig_Lsym.W, GP_dual_Lsym; Ο΅ = 0.3) end else using VoronoiDelaunay, VoronoiCells, GeometricalPredicates ## Voronoi tessellation width_x = maximum(abs.(X[:, 1])) * 2; width_y = maximum(abs.(X[:, 2])) * 2; width = VoronoiDelaunay.max_coord - VoronoiDelaunay.min_coord center_coord = (VoronoiDelaunay.min_coord + VoronoiDelaunay.max_coord)/2 X_transform = zeros(N,2) for i in 1:N X_transform[i,:] = X[i,:] ./ [width_x/width, width_y/width] + [center_coord, center_coord] end pts = [Point2D(X_transform[i,1], X_transform[i,2]) for i in 1:N] tess = DelaunayTessellation(N) push!(tess, pts) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1943
using MultiscaleGraphSignalTransforms, JLD, Plots, Graphs, Distances ## Build weighted toronto street network graph G = loadgraph("../datasets/new_toronto_graph.lgz"); N = nv(G) X = load("../datasets/new_toronto.jld", "xy") dist_X = pairwise(Euclidean(), X; dims = 1) A = 1.0 .* adjacency_matrix(G) W = zeros(N, N); W[A .> 0] = 1 ./ dist_X[A .> 0]; W = A .* W Q = incidence_matrix(G; oriented = true) edge_weight = 1 ./ sqrt.(sum((Q' * X).^2, dims = 2)[:]) ## eigenvectors of L(G) deg = sum(W, dims = 1)[:] # weighted degree vector L = diagm(deg) - W π›Œ, 𝚽 = eigen(L) standardize_eigenvectors!(𝚽) ## eigenvectors of Lsym(G) Lsym = diagm(deg.^(-1/2)) * (diagm(deg) - W) * diagm(deg.^(-1/2)) π›Œsym, 𝚽sym = eigen(Lsym) standardize_eigenvectors!(𝚽sym) ## Build Dual Graph by DAG metric distDAG = eigDAG_Distance(𝚽, Q, N; edge_weight = edge_weight) #52.375477 seconds Gstar_Sig = dualgraph(distDAG) G_Sig = GraphSig(A, xy = X); G_Sig = Adj2InvEuc(G_Sig) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) jmax = size(GP_dual.rs, 2) - 1 # zero-indexed if allNGWPs #1315.821724 seconds (3.05 M allocations: 495.010 GiB, 7.04% gc time) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) #119.590168 seconds (12.14 M allocations: 158.035 GiB, 13.89% gc time) @time PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal) @time LP_NGWP = lp_ngwp(𝚽, Gstar_Sig.W, GP_dual; Ο΅ = 0.3) end ## Build Dual Graph by DAG metric (Lsym) distDAG_Lsym = eigDAG_Distance(𝚽sym, Q, N; edge_weight = edge_weight) Gstar_Sig_Lsym = dualgraph(distDAG_Lsym) GP_dual_Lsym = partition_tree_fiedler(Gstar_Sig_Lsym; swapRegion = false) GP_primal_Lsym = pairclustering(𝚽sym, GP_dual_Lsym) jmax_Lsym = size(GP_dual_Lsym.rs, 2) - 1 if allNGWPs VM_NGWP_Lsym = vm_ngwp(𝚽sym, GP_dual_Lsym) PC_NGWP_Lsym = pc_ngwp(𝚽sym, GP_dual_Lsym, GP_primal_Lsym) LP_NGWP_Lsym = lp_ngwp(𝚽sym, Gstar_Sig_Lsym.W, GP_dual_Lsym; Ο΅ = 0.3) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1264
#Figure 2.5 #Run function "Glevel" at bottom of file first using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms JLD2.@load "../data/Toronto.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"]) G = Adj2InvEuc(G) GP = partition_tree_fiedler(G,:Lrw) dmatrix = ghwt_analysis!(G, GP=GP) j = 1 GraphSig_Plot(Glevel(G,GP,1), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(axis = false) #savefig("G1.pdf") j = 2 GraphSig_Plot(Glevel(G,GP,2), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(axis = false) #savefig("G2.pdf") j = 3 GraphSig_Plot(Glevel(G,GP,3), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(axis = false) #savefig("G3.pdf") function Glevel(G::GraphSig, GP::GraphPart, j::Int64) f = zeros(size(G.f)) for k in 1:size(GP.rs,1) a = GP.rs[k,j] b = GP.rs[k+1,j] - 1 if b == -1 break end f[a:b] .= k*1.0 end Gsub = deepcopy(G) Gsub.f[GP.ind] = f return Gsub end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1578
#Figure 3.2 using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms include("../../../../src/utils.jl") JLD2.@load "../data/Toronto.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"]) G = Adj2InvEuc(G) GP = partition_tree_fiedler(G,:Lrw) dmatrix = ghwt_analysis!(G, GP=GP) N = length(G.f) j = 1 loc = 1 BS = bs_level(GP, j) dvec = zeros(N,1) dvec[loc,1] = 1 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha =0., notitle = true, clim = (-0.1, 0.1)) plot!(axis = false,colorbar = false) k,l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) #savefig("Toronto100.pdf") j = 2 loc = 2 BS = bs_level(GP, j) dvec = zeros(N,1) dvec[loc,1] = 1 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha =0., notitle = true, clim = (-0.1, 0.1)) plot!(axis = false,colorbar = false) k,l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) #savefig("Toronto201.pdf") j = 5 loc = 100 BS = bs_level(GP, j) dvec = zeros(N,1) dvec[loc,1] = 1 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha =0., notitle = true, clim = (-0.1, 0.1)) plot!(axis = false,colorbar = false) k,l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) #savefig("Toronto5134.pdf")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5055
#Figure 5.4, 5.5 using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms JLD2.@load "../data/spie_data.jld2" matrix = vars["barbara"] #face row_zoom = 1:180 col_zoom = 330:450 #right leg row_zoom = 300:512 col_zoom = 400:512 #full image row_zoom = 1:512 col_zoom = 1:512 heatmap(matrix[row_zoom, col_zoom],ratio=1, yaxis =:flip, axis = false, color = :grays) #savefig("original.pdf") ### initialize the regular balanced binary partition and compute the expanding coefficients dmatrix, GProws, GPcols = ghwt_tf_init_2d_Lindberg(matrix) ### Compute the coefficients of different basis we will compare ############# Haar BS_haar_rows = bs_haar(GProws) BS_haar_cols = bs_haar(GPcols) dvec_haar, loc_haar = BS2loc(dmatrix, GProws, GPcols, BS_haar_rows, BS_haar_cols) ############# Walsh BS_walsh_rows = bs_walsh(GProws) BS_walsh_cols = bs_walsh(GPcols) dvec_walsh, loc_walsh = BS2loc(dmatrix, GProws, GPcols, BS_walsh_rows, BS_walsh_cols) ############# GHWT (i.e., regular haar-walsh wavelet packet dictionary) fcols, jmax_col = size(GProws.tag); frows, jmax_row = size(GPcols.tag); dmatrix_rows = reshape(dmatrix, (frows, jmax_row, fcols*jmax_col)) dmatrix_cols = Array{Float64,3}(reshape(dmatrix',(fcols, jmax_col, frows*jmax_row))) ############# c2f bestbasis dvec_c2f_rows, BS_c2f_rows = ghwt_c2f_bestbasis(dmatrix_rows, GProws) dvec_c2f_cols, BS_c2f_cols = ghwt_c2f_bestbasis(dmatrix_cols, GPcols) dvec_c2f, loc_c2f = BS2loc(dmatrix, GProws, GPcols, BS_c2f_rows, BS_c2f_cols) ############# f2c bestbasis dvec_f2c_rows, BS_f2c_rows = ghwt_f2c_bestbasis(dmatrix_rows, GProws) dvec_f2c_cols, BS_f2c_cols = ghwt_f2c_bestbasis(dmatrix_cols, GPcols) dvec_f2c, loc_f2c = BS2loc(dmatrix, GProws, GPcols, BS_f2c_rows, BS_f2c_cols) ############# ##################### tf bestbasis dvec_tf, loc_tf = ghwt_tf_bestbasis_2d(matrix, GProws, GPcols) ################################################################################ ##################### Visualize the results of synthesis######################## ################################################################################ ### function to plot the image synthesized by top p vectors function top_vectors_synthesis_2d(p::Int64, dvec::Vector{Float64}, loc::Matrix{Int64}, GProws::GraphPart, GPcols::GraphPart, dmatrix::Matrix{Float64}) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 matrix_syn = ghwt_tf_synthesis_2d(dvecT, loc, GProws, GPcols) heatmap(matrix_syn[row_zoom, col_zoom],ratio=1, yaxis =:flip, axis = false, color = :grays) mse = norm(matrix - matrix_syn,2)^2/length(matrix) psnr = -10*log10(mse) return psnr end ################################################################################ percent = 1/32; p = Int64(floor(percent*length(matrix))) ### haar # Figure 5.4(a) top_vectors_synthesis_2d(p, dvec_haar, loc_haar, GProws, GPcols, dmatrix) #savefig("synthesis_haar_1_32.pdf") ### walsh top_vectors_synthesis_2d(p, dvec_walsh, loc_walsh, GProws, GPcols, dmatrix) #savefig("synthesis_walsh_1_32.pdf") ### c2f # Figure 5.4(b) top_vectors_synthesis_2d(p, dvec_c2f, loc_c2f, GProws, GPcols, dmatrix) #savefig("synthesis_c2f_1_32.pdf") ### f2c # Figure 5.4(c) top_vectors_synthesis_2d(p, dvec_f2c, loc_f2c, GProws, GPcols, dmatrix) #savefig("synthesis_f2c_1_32.pdf") ### tf # Figure 5.4(d) top_vectors_synthesis_2d(p, dvec_tf, loc_tf, GProws, GPcols, dmatrix) #savefig("synthesis_tf_1_32.pdf") # To generate Figure 5.5, just change the row_zoom, and col_zoom at the head of this file. ################################################################################ ####################### Approximation error plot################################ ################################################################################ function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) end end approx_error([dvec_haar, dvec_walsh, dvec_c2f, dvec_f2c, dvec_tf]) current() ################# ### Generate the relative l2 error when approximating by 1/32 coefficients ################ DVEC = [dvec_haar, dvec_walsh, dvec_c2f, dvec_f2c, dvec_tf]; for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) p = Int64(floor(N./32)) print(sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
3700
#Figure 5.7, 5.8 using TestImages, Plots, SparseArrays, LinearAlgebra, Wavelets, MultiscaleGraphSignalTransforms img = testimage("camera"); matrix = convert(Array{Float64,2}, img)[1:4:512,1:4:512] heatmap(matrix,ratio=1, yaxis =:flip, axis = false, color = :grays, clim = (0,1), colorbar = false) matrix_gt = matrix[:] sigma = 0.007 #sigma = 0.07 m, n = size(matrix) ############### Get the neighbors for affinity matrix computing r = 5; # specify radius of neighbors l = 2*r + 1 temp_x, temp_y = fill(1,l^2), fill(1,l^2) temp_xy = CartesianIndices((1:l,1:l)) for i = 1:l^2 temp_x[i], temp_y[i] = temp_xy[i][1], temp_xy[i][2] end temp_ind = ((temp_x .- (r + 1)).^2 + (temp_y .- (r + 1)).^2).<= r^2 neighbor_x = temp_x[temp_ind] .- (r + 1) neighbor_y = temp_y[temp_ind] .- (r + 1) # for any index(x,y), (x + neighbor_x, y - neigbor_y) are the neighbors to calculate affinity ################ Create affinity matrix W = fill(0., (m*n,m*n)) for i = 1:m*n cur = CartesianIndices((m,n))[i] for j = 1:length(neighbor_x) if 1 <= cur[1] + neighbor_x[j] <= m && 1 <= cur[2] + neighbor_y[j] <= n tempd = LinearIndices((m,n))[cur[1] + neighbor_x[j], cur[2] + neighbor_y[j]] W[i,tempd] = exp(-(matrix_gt[i] - matrix_gt[tempd])^2/sigma) end end end W = sparse(W) ############### Preprocess to get G and GP G = GraphSig(W, f = reshape(matrix,(length(matrix_gt),1))) GP = partition_tree_fiedler(G) dmatrix = ghwt_analysis!(G, GP=GP) ############# Construct or search the specific basis ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) #################### function top_vectors_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.02,0.02)) sorted_ind = sortperm(abs.(dvec[:]), rev = true); plot(9,layout=(3,3),framestyle=:none, legend=false) for i=1:9 dvecT = fill(0., size(dvec)) #dvecT[sorted_ind[i]] = dvec_ghwt[sorted_ind[i]] dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) #print((maximum(f), minimum(f))) heatmap!(reshape(f, size(matrix)), subplot=i, ratio=1, yaxis=:flip, axis=false, color = :grays, clims = clims) end current() end #Figure 5.8a (re-run the code with sigma = 0.07 to generate figure 5.8b) top_vectors_plot(dvec_eghwt, BS_eghwt, GP) dvec_haar0007 = dvec_haar dvec_eghwt0007 = dvec_eghwt #re-run the code with sigma = 0.07 to generate dvec_haar007 and dvec_eghwt007 # dvec_haar007 = dvec_haar # dvec_eghwt007 = dvec_eghwt function approx_error2(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0.3 T = ["Classical Haar transform", "eGHWT Haar basis (sigma = 0.07)", "eGHWT best basis (sigma = 0.07)", "eGHWT Haar basis (sigma = 0.007)", "eGHWT best basis (sigma = 0.007)"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:dashdot,:purple),(:solid,:black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm # this is the relative L^2 error of the whole thing, i.e., its length is N p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac), label = T[i], line = L[i]) end end dvec_classichaar = dwt(matrix, wavelet(WT.haar)) #Figure 5.7 approx_error2([dvec_classichaar[:], dvec_haar007[:], dvec_eghwt007[:], dvec_haar0007[:], dvec_eghwt0007[:]])
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
3779
#Figure 5.9, 5.10 using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms, PyCall py""" import numpy xs = numpy.load('../data/texture_mask.npy') """ xs = PyArray(py"xs"o) matrix_gt = reshape(xs,(512,512))[1:4:512,1:4:512] heatmap(matrix_gt,ratio=1, yaxis =:flip, axis = false, color = :grays, colorbar = false) max1 = maximum(matrix_gt[:]) min1 = minimum(matrix_gt[:]) matrix_gt = (matrix_gt[:] .- min1)./(max1 - min1) JLD2.@load "../data/handcut_images.jld2" heatmap(tmp["block5"],ratio=1, yaxis =:flip, axis = false, color = :grays, colorbar = false) matrix = tmp["block5"] ######################## sigma = 0.001 m, n = size(matrix) ############### Get the neighbors for affinity matrix computing r = 5; # specify radius of neighbors l = 2*r + 1 temp_x, temp_y = fill(1,l^2), fill(1,l^2) temp_xy = CartesianIndices((1:l,1:l)) for i = 1:l^2 temp_x[i], temp_y[i] = temp_xy[i][1], temp_xy[i][2] end temp_ind = ((temp_x .- (r + 1)).^2 + (temp_y .- (r + 1)).^2).<= r^2 neighbor_x = temp_x[temp_ind] .- (r + 1) neighbor_y = temp_y[temp_ind] .- (r + 1) # for any index(x,y), (x + neighbor_x, y - neigbor_y) are the neighbors to calculate affinity ################ Create affinity matrix W = fill(0., (m*n,m*n)) for i = 1:m*n cur = CartesianIndices((m,n))[i] for j = 1:length(neighbor_x) if 1 <= cur[1] + neighbor_x[j] <= m && 1 <= cur[2] + neighbor_y[j] <= n tempd = LinearIndices((m,n))[cur[1] + neighbor_x[j], cur[2] + neighbor_y[j]] W[i,tempd] = exp(-(matrix_gt[i] - matrix_gt[tempd])^2/sigma) end end end W = sparse(W) ############### Preprocess to get G and GP G = GraphSig(W, f = reshape(matrix,(length(matrix_gt),1))) GP = partition_tree_fiedler(G) dmatrix = ghwt_analysis!(G, GP=GP) ##################### ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) function top_vectors_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.01,0.01)) sorted_ind = sortperm(abs.(dvec[:]), rev = true); plot(9,layout=(3,3),framestyle=:none, legend=false) for i=1:9 dvecT = fill(0., size(dvec)) #dvecT[sorted_ind[i]] = dvec_ghwt[sorted_ind[i]] dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) #print((maximum(f), minimum(f))) heatmap!(reshape(f, size(matrix)), subplot=i, ratio=1, yaxis=:flip, axis=false, color = :grays, clims = clims) end current() end #Figure 5.10b top_vectors_plot(dvec_eghwt, BS_eghwt, GP) function approx_error2(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0.3 T = ["eGHWT Haar basis","eGHWT Walsh basis","GHWT_c2f", "GHWT_f2c", "eGHWT best basis"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm # this is the relative L^2 error of the whole thing, i.e., its length is N p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac), label = T[i], line = L[i]) end end #Figure 5.10a approx_error2([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]])
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
4672
#Figure 5.1, 5.2, 5.3 using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms JLD2.@load "../data/Toronto.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"]) GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0.) G = Adj2InvEuc(G) GP = partition_tree_fiedler(G,:Lrw) dmatrix = ghwt_analysis!(G, GP=GP) ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) ################################################################################ ####################### Approximation error plot################################ ################################################################################ function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) print(er[26]) end end ################################################################################ ######################### Synthesized by top vectors########################### ################################################################################ color_limit_residual = (0., 0.15) function top_vectors_residual(p::Int64, dvec::Array{Float64,2}, BS::BasisSpec, GP::GraphPart, G::GraphSig) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 (f, GS) = ghwt_synthesis(dvecT, GP, BS, G) GS.name = "Square of the residual" #GS.f = (G.f - GS.f).^2 #print((maximum(GS.f), minimum(GS.f))) #GraphSig_Plot(GS) GS.f = (G.f - GS.f).^2 ./(G.f.^2) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., clim = color_limit_residual) current() end ################################ ### Generate results ################################ # Figure 5.1(b) approx_error([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) current() ### frac = 1/4 p = Int64(ceil(frac*G.length)) ### original (Figure ) # Figure 5.1(a) GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., clim = (2000., 110000.)) ### haar # Figure 5.2(a) top_vectors_residual(p, dvec_haar, BS_haar, GP, G) ### walsh # Figure 5.2(b) top_vectors_residual(p, dvec_walsh, BS_walsh, GP, G) ### c2f # Figure 5.2(b) top_vectors_residual(p, dvec_c2f, BS_c2f, GP, G) ### f2c # Figure 5.2(c) top_vectors_residual(p, dvec_f2c, BS_f2c, GP, G) ### eghwt # Figure 5.2(d) top_vectors_residual(p, dvec_eghwt, BS_eghwt, GP, G) ################################ Figure 5.3 and 5.4 ################################ using JLD; tmp = load("../data/new_toronto.jld"); G=GraphSig(SparseMatrixCSC{Float64,Int64}(tmp["W"]),xy=tmp["xy"],f=reshape(tmp["fp"],(length(tmp["fp"]),1))) GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0.) G = Adj2InvEuc(G) GP = partition_tree_fiedler(G,:Lrw) dmatrix = ghwt_analysis!(G, GP=GP) ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) ########## Figure 5.3a GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0.) #savefig("5_3a.pdf") ########## Figure 5.3b approx_error([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) current() #savefig("5_3b.pdf")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5750
#Table 6.2 #Run uility functions at bottom #Change the setting of Lambda if necessary using NMF, LinearAlgebra, MultiscaleGraphSignalTransforms, ScikitLearn @sk_import linear_model:Lasso ########################### utility functions ########################### function create_scaling_vectors(GProws::GraphPart) GP = GProws ### creating scaling vectors temp = GP.tag.== 0; scaling_index = findall(temp);# index of the scaling vectors .i.e. vectors with tag == 0 num_scaling = length(scaling_index); scaling_vectors = fill(0., (size(GP.tag,1), num_scaling)); for i = 1:num_scaling ind = scaling_index[i] dvec = fill(0., (size(GP.tag,1),1)) dvec[ind[1],1] = 1.; BS = bs_level(GP, ind[2] - 1) scaling_vectors[:,i] = ghwt_synthesis(dvec, GP, BS) end return scaling_vectors end function create_PHI(scaling_vectors_rows, scaling_vectors_cols, m, n) PHI_right = repeat(scaling_vectors_cols[:,1:n], outer = (1, m)) PHI_left = repeat(scaling_vectors_rows[:,1:m], inner = (1, n)) return PHI_left, PHI_right end function ghwtinit(matrix, k) GProws, GPcols = partition_tree_matrixDhillon(matrix) dmatrix = ghwt_analysis_2d(matrix, GProws, GPcols) scaling_vectors_rows = create_scaling_vectors(GProws) scaling_vectors_cols = create_scaling_vectors(GPcols) PHI_left, PHI_right = create_PHI(scaling_vectors_rows, scaling_vectors_cols, 10, 10) scaling_vectors = fill(0., (length(matrix[:]), size(PHI_left,2))) for i = 1:size(PHI_left,2) scaling_vectors[:,i] = (PHI_left[:,i]*PHI_right[:,i]')[:] end ########################## ####################################### perform lasso f = matrix[:] #Lambda = range(0.00001,stop = 0.0001, length = 10) Lambda = range(0.001,stop = 0.01, length = 10)# m=125,n=25,k=5,sigma = 0.5, #Lambda = range(0.001, stop = 0.01, length = 10) B = fill(0., (size(scaling_vectors,2), length(Lambda))) ### initialize coefficients for i = 1:length(Lambda) lasso_out = Lasso(alpha = Lambda[i], positive = true, fit_intercept = false) ScikitLearn.fit!(lasso_out, scaling_vectors, f) B[:,i] = lasso_out.coef_ end j = 1 if sum((B[:,j].!=0)) < k return false, false else while j <10 && sum(B[:,j+1].!=0) >= k j += 1 end end index = findall(B[:,j].!=0)[1:k] rescaleW = repeat(sqrt.(B[index,j]'),size(PHI_left,1),1) rescaleH = repeat(sqrt.(B[index,j]'),size(PHI_right,1),1) Wtilda = PHI_left[:,index].*rescaleW Htilda = Array{Float64,2}((PHI_right[:,index].*rescaleH)') return Wtilda, Htilda end function improved_NNDSVD(matrix, k) m,n = size(matrix) U,S,V = svd(matrix) W = zeros(m,k) H = zeros(k,n) Y = U*sqrt.(Diagonal(S)) Z = sqrt.(Diagonal(S))*transpose(V) W[:,1] = abs.(Y[:,1]) H[1,:] = abs.(Z[1,:]) j = 2 for i = 2:k if mod(i,2) == 0 W[:,i] = Y[:,j] H[i,:] = Z[i,:] else W[:,i] = .-Y[:,j] H[i,:] = .-Z[i,:] j += 1 end W[W[:,i] .< 0,i] .= 0 H[i,H[i,:] .< 0] .= 0 end return W, H end ########################### end of utility functions ########################### ### Now the start of the actual NMF experiments. k = 5 m = 125 n = 25 sigma = 0.5 #noise parameter #methodid = 1 corresponds to ALSPGRAD. #methodid = 2 corresponds to HALS. methodid = 2 num_pos_eghwt_svd = 0 num_neg_eghwt_svd = 0 num_pos_eghwt_rand = 0 num_neg_eghwt_rand = 0 num_pos_svd_rand = 0 num_neg_svd_rand = 0 num_pos_svd_newsvd = 0 num_neg_svd_newsvd = 0 num_pos_eghwt_newsvd = 0 num_neg_eghwt_newsvd = 0 for i = 1:50 Wtrue = rand(m,k) Htrue = rand(k,n) X = Wtrue*Htrue + sigma*rand(m,n) #X = rand(m,n) ################ ###################################### Wtilda, Htilda = ghwtinit(X, k) if Wtilda == false continue end Wsvd, Hsvd = NMF.nndsvd(X, k) Wrand, Hrand = NMF.randinit(X, k) Wnewsvd, Hnewsvd = improved_NNDSVD(X, k) iters = 1000000 method = [NMF.ALSPGrad{Float64}(maxiter=iters, tolg=1.0e-6), NMF.CoordinateDescent{Float64}(maxiter=iters, Ξ±=0.5, l₁ratio=0.5)] a = NMF.solve!(method[methodid], X, copy(Wtilda), copy(Htilda)) b = NMF.solve!(method[methodid], X, copy(Wsvd), copy(Hsvd)) c = NMF.solve!(method[methodid], X, copy(Wrand), copy(Hrand)) d = NMF.solve!(method[methodid], X, copy(Wnewsvd), copy(Hnewsvd)) #println("initial norm ",norm(X - Wtilda*Htilda)," ",norm(X-Wsvd*Hsvd)," ",norm(X - Wrand*Hrand)," ", norm(X - Wnewsvd*Hnewsvd)) #println(" ",a.niters," ",b.niters," ",c.niters," ",d.niters) #println("final norm",norm(X - a.W*a.H)," ",norm(X-b.W*b.H)," ",norm(X - c.W*c.H)," ", norm(X - d.W*d.H)) if a.niters < b.niters global num_pos_eghwt_svd += 1 else global num_neg_eghwt_svd += 1 end if a.niters < c.niters global num_pos_eghwt_rand += 1 else global num_neg_eghwt_rand += 1 end if b.niters < c.niters global num_pos_svd_rand += 1 else global num_neg_svd_rand += 1 end if a.niters < d.niters global num_pos_eghwt_newsvd += 1 else global num_neg_eghwt_newsvd += 1 end if b.niters < d.niters global num_pos_svd_newsvd += 1 else global num_neg_svd_newsvd += 1 end end println("compare eGHWT with NNDSVD ", num_pos_eghwt_svd/(num_pos_eghwt_svd + num_neg_eghwt_svd)) println("compare eGHWT with Random ", num_pos_eghwt_rand/(num_pos_eghwt_rand + num_neg_eghwt_rand)) println("compare eGHWT with NNSVD-LRC ", num_pos_eghwt_newsvd/(num_pos_eghwt_newsvd + num_neg_eghwt_newsvd))
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
4418
# script for Fig.1, Fig.2, Fig.4, Fig.6 using MultiscaleGraphSignalTransforms, Graphs, Plots, LaTeXStrings, MultivariateStats pyplot(dpi = 200) Nx, Ny = 7, 3 G = Graphs.grid([Nx, Ny]); N = nv(G); L = Matrix(laplacian_matrix(G)) Q = incidence_matrix(G; oriented = true) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1, :])'; #################### Fig. 1(a) eigenvectors by nondecreasing eigenvalue ordering plot(layout = Plots.grid(3, 7)) for i in 1:N heatmap!(reshape(𝚽[:, i],(Nx, Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, title = latexstring("\\phi_{", i-1, "}"), titlefont = 12, subplot = i) end plt = current() # savefig(plt, joinpath(@__DIR__, "../paperfigs/grid7x3_evsp_title.png")) #################### Fig. 1(b) eigenvectors by natural frequency ordering # find correct 2D index grid2eig_ind = [1,2,3,6,8,12,15,4,5,7,9,13,16,18,10,11,14,17,19,20,21]; eig2grid_ind = sortperm(grid2eig_ind); eig2dct = Array{Int64,3}(undef, Nx, Ny, 2); for i = 1:Nx; for j = 1:Ny; eig2dct[i,j,1] = i-1; eig2dct[i,j,2] = j-1; end; end eig2dct = reshape(eig2dct, (N, 2)); eig2dct = eig2dct[eig2grid_ind, :]; plot(layout = Plots.grid(3, 7)) for i in 1:N k = grid2eig_ind[i] heatmap!(reshape(𝚽[:,k],(Nx,Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, title = latexstring("\\varphi_{", string(eig2dct[k,1]), ",", string(eig2dct[k,2]), "}"), titlefont = 12, subplot = i) end plt = current() # savefig(plt, joinpath(@__DIR__, "../paperfigs/grid7x3_dct_title2.png")) # DAG pseudo-metric distDAG = eigDAG_Distance(𝚽, Q, N) # MDS embedding into RΒ² D = distDAG E = transform(fit(MDS, D, maxoutdim=2, distances=true)) # set up all heatmap plots' positions dx = 0.01; dy = dx; xej = zeros(Nx, N); yej=zeros(Ny, N); a = 5.0; b = 9.0; for k = 1:N xej[:,k] = LinRange(E[1,k] - Ny * a * dx, E[1, k] + Ny * a * dx, Nx) yej[:,k] = LinRange(E[2,k] - a * dy, E[2, k] + a * dy, Ny) end #################### Fig. 2 plot() for k=1:N heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1, annotations = (xej[4, k], yej[3, k] + b*dy, text(latexstring("\\varphi_{", string(eig2dct[k, 1]), ",", string(eig2dct[k, 2]), "}"), 10))) end plt = plot!(xlim = [-1.4, 1.3], ylim = [-1.4, 1.3], grid = false, clims = (-0.4, 0.4)) # savefig(plt, joinpath(@__DIR__, "../paperfigs/Grid7x3_DAG_MDS.png")) #################### Fig. 4 # first level partition p1x = [-0.2, 1.0, NaN]; p1y = [1.3, -1.0, NaN]; plot!(p1x, p1y, c = :red, legend = false, width = 3) # second level partition p2x = [-1.0, 0.2, NaN, 0.4, 1.2, NaN]; p2y = [-0.8, 0.45, NaN, 0.25, 0.2, NaN]; plot!(p2x, p2y, c=:orange, legend = false, width = 2) plt = current() # savefig(plt, joinpath(@__DIR__, "../paperfigs/Grid7x3_DAG_2levels_partition.png")) ## Build Dual Graph Gstar_Sig = dualgraph(distDAG) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) ## level 2 VM-NGWP vectors j = 3; W_VM = VM_NGWP[:, j, :]' wav_kl = [[0 0];[0 1];[0 2];[1 0];[1 1];[1 2];[1 3];[2 0];[2 1];[2 2];[3 0]; [3 1];[3 2];[3 3];[2 3];[2 4];[2 5];[2 6];[3 4];[3 5];[3 6]]; wav_kl = wav_kl[eig2grid_ind,:]; # reorder_ind = [2,3,1,5,7,4,6, 16,17,15, 9,11,8,10, 18,20,21,19, 13,14,12] reorder_ind = [1,3,2,5,7,4,6, 9,10,8,16,18,15,17, 11,13,14,12,20,21,19] W_VM = W_VM[:,reorder_ind[eig2grid_ind]]; sgn = ones(N); sgn[grid2eig_ind[[4,6,8,10,14]]] .= -1; W_VM = W_VM * Diagonal(sgn); #################### Fig. 6 plot() for k=1:N heatmap!(xej[:,k],yej[:,k],reshape(W_VM[:,k],(Nx,Ny))',c=:viridis,colorbar=false,ratio=1,annotations=(xej[4,k], yej[3,k]+b*dy, text(latexstring("\\psi_{", string(wav_kl[k,1]), ",", string(wav_kl[k,2]), "}"),10))) end plot!(aspect_ratio = 1, xlim = [-1.4, 1.3], ylim = [-1.4, 1.3], grid = false, clims=(-0.34,0.34)) # first level partition p1x = [-0.2, 1.0, NaN]; p1y = [1.3, -1.0, NaN]; plot!(p1x, p1y, c = :red, legend = false, width = 3) # second level partition p2x = [-1.0, 0.2, NaN, 0.4, 1.2, NaN]; p2y = [-0.8, 0.45, NaN, 0.25, 0.2, NaN]; plot!(p2x, p2y, c=:orange, legend = false, width = 2) plt = current() # savefig(plt, joinpath(@__DIR__, "../paperfigs/Grid7x3_DAG_VM_NGWP_lvl2_wavelets.png"))
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
812
# script for Fig.5 using MultiscaleGraphSignalTransforms, Graphs, Plots; gr(dpi = 200) import WaveletsExt: wiggle ## Build Graph N = 512; G = path_graph(N) X = zeros(N,2); X[:, 1] = 1:N L = Matrix(laplacian_matrix(G)) π›Œ, 𝚽 = eigen(L); 𝚽 = 𝚽 .* sign.(𝚽[1,:])' W = 1.0 * adjacency_matrix(G) ## Build NGWPs Gstar_Sig = GraphSig(W) G_Sig = GraphSig(W, xy = X) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) #################### Fig.5 j = 5 for k in [1, 2, 5] WW = sort_wavelets(VM_NGWP[GP_dual.rs[k, j]:(GP_dual.rs[k + 1, j] - 1), j, :]') if k == 2 WW[:, end] *= -1 end plt = wiggle(WW; sc = 0.75) # savefig(plt, joinpath(@__DIR__, "../paperfigs/Path512_VM_NGWP_j$(j-1)k$(k-1).png")) end current()
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
3959
# script for Fig.8(b)(c), Fig.9, Fig.10(b)(c), Fig.11 using MultiscaleGraphSignalTransforms, Graphs, Plots; gr(dpi = 200) ## Build weighted graph G, L, X = SunFlowerGraph(N = 400); N = nv(G) π›Œ, 𝚽 = eigen(Matrix(L)) sgn = (maximum(𝚽, dims = 1)[:] .> -minimum(𝚽, dims = 1)[:]) .* 2 .- 1 𝚽 = 𝚽 * Diagonal(sgn) Q = incidence_matrix(G; oriented = true) W = 1.0 * adjacency_matrix(G) edge_weight = [e.weight for e in edges(G)] ## Build Dual Graph by DAG metric distDAG = eigDAG_Distance(𝚽, Q, N; edge_weight = edge_weight) Gstar_Sig = dualgraph(distDAG) G_Sig = GraphSig(W, xy = X) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) #54.986524 seconds (1.19 M allocations: 25.127 GiB, 2.36% gc time) @time PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal) #0.611176 seconds (225.41 k allocations: 844.488 MiB, 11.71% gc time) #################### Fig. 8(b) barbara eye graph signal using MAT f = matread(joinpath(@__DIR__, "../datasets", "sunflower_barbara_voronoi.mat"))["f_eye_voronoi"] G_Sig.f = reshape(f, (N, 1)) scatter_gplot(X; marker = f, ms = LinRange(4.0, 14.0, N), c = :greys); plt = plot!(xlim = [-1.2,1.2], ylim = [-1.2,1.2], frame = :none) # savefig(plt, joinpath(@__DIR__, "../paperfigs/SunFlower_barbara_feye.png")) #################### Fig. 8(c) barbara eye relative l2 approximation error by various methods DVEC = getall_expansioncoeffs(G_Sig, GP_dual, VM_NGWP, PC_NGWP, 𝚽) approx_error_plot(DVEC); plt = plot!(xguidefontsize = 16, yguidefontsize = 16, legendfontsize = 12) # savefig(plt, joinpath(@__DIR__, "../paperfigs/SunFlower_barbara_feye_DAG_approx.png")) #################### Fig. 9 barbara eye 16 most important VM-NGWP vectors (ignore the DC vector) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) for i in 2:17 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] println("(j, k, l) = ", NGWP_jkl(GP_dual, dr, dc)) scatter_gplot(X; marker = w, ms = LinRange(4.0, 14.0, N), c = :greys) plt = plot!(xlim = [-1.2, 1.2], ylim = [-1.2, 1.2], frame = :none, cbar = false, clims = (-0.15, 0.15)) # savefig(plt, joinpath(@__DIR__, # "../paperfigs/SunFlower_barbara_feye_DAG_VM_NGW_important_basis_vector$(lpad(i,2,"0")).png")) end #################### Fig. 10(b) barbara pants graph signal f = matread(joinpath(@__DIR__, "../datasets", "sunflower_barbara_voronoi.mat"))["f_trouser_voronoi"] scatter_gplot(X; marker = f, ms = LinRange(4.0, 14.0, N), c = :greys); plt = plot!(xlim = [-1.2,1.2], ylim = [-1.2,1.2], frame = :none) # savefig(plt, joinpath(@__DIR__, "../paperfigs/SunFlower_barbara_ftrouser.png")) #################### Fig. 10(c) barbara eye relative l2 approximation error by various methods G_Sig.f = reshape(f, (N, 1)) DVEC = getall_expansioncoeffs(G_Sig, GP_dual, VM_NGWP, PC_NGWP, 𝚽) approx_error_plot(DVEC); plt = plot!(xguidefontsize = 16, yguidefontsize = 16, legendfontsize = 12) # savefig(plt, joinpath(@__DIR__, "../paperfigs/SunFlower_barbara_ftrouser_DAG_approx.png")) #################### Fig. 11 barbara pants 16 most important VM-NGWP vectors (ignore the DC vector) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) for i in 2:17 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] println("(j, k, l) = ", NGWP_jkl(GP_dual, dr, dc)) scatter_gplot(X; marker = w, ms = LinRange(4.0, 14.0, N), c = :greys) plt = plot!(xlim = [-1.2, 1.2], ylim = [-1.2, 1.2], frame = :none, cbar = false, clims = (-0.15, 0.15)) # savefig(plt, joinpath(@__DIR__, # "../paperfigs/SunFlower_barbara_ftrouser_DAG_VM_NGW_important_basis_vector$(lpad(i,2,"0")).png")) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
1996
## script for Fig.7, Fig.8(a), Fig.10(a) using VoronoiDelaunay, VoronoiCells, GeometricalPredicates using MultiscaleGraphSignalTransforms, Plots, Graphs, JLD; gr(dpi = 200) barbara = JLD.load(joinpath(@__DIR__, "..", "datasets", "barbara_gray_matrix.jld"), "barbara") G, L, X = SunFlowerGraph(); N = nv(G) #################### Fig. 7(a) sunflower graph gplot(1.0*adjacency_matrix(G),X; width=1); scatter_gplot!(X; c = :red, ms = LinRange(1,9,N)); plt = plot!(frame = :none) # savefig(plt, joinpath(@__DIR__, "../paperfigs/SunFlower.png")) ## Voronoi tessellation width_x = maximum(abs.(X[:,1])) * 2; width_y = maximum(abs.(X[:,2])) * 2; width = VoronoiDelaunay.max_coord - VoronoiDelaunay.min_coord center_coord = (VoronoiDelaunay.min_coord + VoronoiDelaunay.max_coord)/2 X_transform = zeros(N,2) for i in 1:N X_transform[i,:] = X[i,:] ./ [width_x/width, width_y/width] + [center_coord, center_coord] end pts = [Point2D(X_transform[i,1], X_transform[i,2]) for i in 1:N] tess = DelaunayTessellation(N) push!(tess, pts) #################### Fig. 7(b) voronoi tessellation xx, yy = getplotxy(voronoiedges(tess)) plt = plot(xx, yy, xlim=[1,2], ylim=[1,2], linestyle=:auto, linewidth=1, linecolor=:blue, grid=false, label="", aspect_ratio=1, frame=:box) # savefig(plt, joinpath(@__DIR__, "../paperfigs/Sunflower_Barbara_Voronoi_cells.png")) #################### Fig. 8(a) barbara sunflower eye heatmap(barbara, yflip=true, ratio=1, c=:greys); scatter_gplot!(transform2D(X; s = 20, t = [395, 100]); ms = 2, c = :red); sample_location_plt = plot!(cbar = false, frame = :none) # savefig(sample_location_plt, joinpath(@__DIR__, "../paperfigs/barb_sunflower_eye.png")) #################### Fig. 10(a) barbara sunflower pants heatmap(barbara, yflip=true, ratio=1, c=:greys); scatter_gplot!(transform2D(X; s = 20, t = [280, 320]); ms = 2, c = :red); sample_location_plt = plot!(cbar = false, frame = :none) # savefig(sample_location_plt, joinpath(@__DIR__, "../paperfigs/barb_sunflower_pants.png"))
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
4789
# script for Fig.12, Fig.13, Fig.14, Fig.15, Fig.16 using MultiscaleGraphSignalTransforms, JLD, Plots, Graphs, Distances gr(dpi = 200) ## Build weighted toronto street network graph G = loadgraph(joinpath(@__DIR__, "../datasets", "new_toronto_graph.lgz")); N = nv(G) X = load(joinpath(@__DIR__, "../datasets", "new_toronto.jld"), "xy") dist_X = pairwise(Euclidean(), X; dims = 1) W = 1.0 .* adjacency_matrix(G) Weight = zeros(N, N); Weight[W .> 0] = 1 ./ dist_X[W .> 0]; Weight = W .* Weight L = Matrix(Diagonal(sum(Weight; dims = 1)[:]) - Weight) π›Œ, 𝚽 = eigen(L); sgn = (maximum(𝚽, dims = 1)[:] .> -minimum(𝚽, dims = 1)[:]) .* 2 .- 1; 𝚽 = 𝚽 .* sgn'; Q = incidence_matrix(G; oriented = true) edge_weight = 1 ./ sqrt.(sum((Q' * X).^2, dims = 2)[:]) ## Build Dual Graph by DAG metric distDAG = eigDAG_Distance(𝚽, Q, N; edge_weight = edge_weight) #52.375477 seconds Gstar_Sig = dualgraph(distDAG) G_Sig = GraphSig(W, xy = X); G_Sig = Adj2InvEuc(G_Sig) GP_dual = partition_tree_fiedler(Gstar_Sig; swapRegion = false) GP_primal = pairclustering(𝚽, GP_dual) @time PC_NGWP = pc_ngwp(𝚽, GP_dual, GP_primal) #119.590168 seconds (12.14 M allocations: 158.035 GiB, 13.89% gc time) @time VM_NGWP = vm_ngwp(𝚽, GP_dual) #1315.821724 seconds (3.05 M allocations: 495.010 GiB, 7.04% gc time) #################### Fig. 12(a) a smooth spatial distribution of the street intersections graph signal f = zeros(N); for i in 1:N; f[i] = length(findall(dist_X[:,i] .< 1/minimum(edge_weight))); end #fneighbor G_Sig.f = reshape(f, (N, 1)) gplot(W, X; width=1); signal_plt = scatter_gplot!(X; marker = f, plotOrder = :s2l, ms = 3) # savefig(signal_plt, joinpath(@__DIR__, "../paperfigs/Toronto_fdensity.png")) #################### Fig. 12(b) spatial distribution signal relative l2 approximation error by various methods DVEC = getall_expansioncoeffs(G_Sig, GP_dual, VM_NGWP, PC_NGWP, 𝚽) approx_error_plot(DVEC); plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 10) # savefig(plt, joinpath(@__DIR__, "../paperfigs/Toronto_fdensity_DAG_approx.png")) #################### Fig. 13 fdensity 16 most important VM-NGWP vectors (ignore the DC vector) dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) for i in 2:17 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] println("(j, k, l) = ", NGWP_jkl(GP_dual, dr, dc)) gplot(W, X; width=1) scatter_gplot!(X; marker = w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) # savefig(plt, joinpath(@__DIR__, # "../paperfigs/Toronto_fdensity_DAG_VM_NGW_important_basis_vector$(lpad(i,2,"0")).png")) end #################### Fig. 14(a) pedestrian volume graph signal fp = load(joinpath(@__DIR__, "../datasets", "new_toronto.jld"), "fp") G_Sig.f = reshape(fp, (N, 1)) gplot(W, X; width=1); signal_plt = scatter_gplot!(X; marker = fp, plotOrder = :s2l, ms = 3) # savefig(signal_plt, joinpath(@__DIR__, "../paperfigs/Toronto_fp.png")) #################### Fig. 14(b) pedestrian signal relative l2 approximation error by various methods DVEC = getall_expansioncoeffs(G_Sig, GP_dual, VM_NGWP, PC_NGWP, 𝚽) approx_error_plot(DVEC) plt = plot!(xguidefontsize = 14, yguidefontsize = 14, legendfontsize = 10) # savefig(plt, joinpath(@__DIR__, "../paperfigs/Toronto_fp_DAG_approx.png")) #################### Fig. 15 pedestrian signal 16 most important VM-NGWP vectors dmatrix_VM = ngwp_analysis(G_Sig, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GP_dual) important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) for i in 1:16 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] w = VM_NGWP[dr, dc, :] println("(j, k, l) = ", NGWP_jkl(GP_dual, dr, dc)) gplot(W, X; width=1) scatter_gplot!(X; marker = w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) # savefig(plt, joinpath(@__DIR__, # "../paperfigs/Toronto_fp_DAG_VM_NGW_important_basis_vector$(lpad(i,2,"0")).png")) end #################### Fig. 16 pedestrian signal 16 most important PC-NGWP vectors dmatrix_PC = ngwp_analysis(G_Sig, PC_NGWP) dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GP_dual) important_idx = sortperm(dvec_pc_ngwp[:].^2; rev = true) for i in 1:16 dr, dc = BS_pc_ngwp.levlist[important_idx[i]] w = PC_NGWP[dr, dc, :] println("(j, k, l) = ", NGWP_jkl(GP_dual, dr, dc)) sgn = (maximum(w) > -minimum(w)) * 2 - 1 gplot(W, X; width=1) scatter_gplot!(X; marker = sgn .* w, plotOrder = :s2l, ms = 3) plt = plot!(cbar = false, clims = (-0.075,0.075)) # savefig(plt, joinpath(@__DIR__, # "../paperfigs/Toronto_fp_DAG_PC_NGW_important_basis_vector$(lpad(i,2,"0")).png")) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5877
################################################################################ ####################### Approximation error plot ############################### ################################################################################ function approx_error2(DVEC::Array{Array{Float64,1},1}, T::Vector{String}, L::Vector{Tuple{Symbol,Symbol}}, frac::Float64 = 0.30) # This version plots the relative L2 errors against # the FRACTION of coefficients retained. plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") for i = 1:length(DVEC) dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm er[er .== 0.0] .= minimum(er[er .!= 0.0]) # avoid blowup by taking log in the plot below # er is the relative L^2 error of the whole thing: length(er)=N. p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac), label = T[i], line = L[i], linewidth = 2, grid = false) end display(current()) end function approx_error3(DVEC::Array{Array{Float64,1},1}, T::Vector{String}, L::Vector{Tuple{Symbol,Symbol}}, N::Int64) # This version plots the relative L2 errors against # the NUMBER of coefficients retained. plot(xaxis = "Number of Coefficients Retained", yaxis = "Relative Approximation Error") for i = 1:length(DVEC) dvec = DVEC[i] dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm er[er .== 0.0] .= minimum(er[er .!= 0.0]) # avoid blowup by taking log in the plot below # er is the relative L^2 error of the whole thing: length(er)=N. plot!(0:N-1, er[1:N], yaxis=:log, label = T[i], line = L[i], linewidth = 2, grid = false) end display(current()) end ################################################################################ ############ Computing a weight matrix using the Gaussian affinity ############# ################################################################################ function image_Gaussian_affinity(img::Matrix{Float64}, r::Int64, Οƒ::Float64) # Get the neighbors for affinity matrix computation l = 2*r + 1 temp_x, temp_y = fill(1,l^2), fill(1,l^2) temp_xy = CartesianIndices((1:l,1:l)) for i = 1:l^2 temp_x[i], temp_y[i] = temp_xy[i][1], temp_xy[i][2] end # (r+1, r+1) is the index of the center location. temp_ind = ((temp_x .- (r + 1)).^2 + (temp_y .- (r + 1)).^2) .<= r^2 # Now, temp_ind indicates those points withinin the circle of radius r # from the center while neighbor_x, neighbor_y represent relative positions # of those points from the center. neighbor_x = temp_x[temp_ind] .- (r + 1) neighbor_y = temp_y[temp_ind] .- (r + 1) # So, for any index (x, y), points within (x Β± neighbor_x, y Β± neighbor_y) are # its neighbors for the purpose of calculating affinity # Create affinity matrix m, n = size(img) sig = img[:] W = fill(0., (m*n,m*n)) for i = 1:m*n cur = CartesianIndices((m,n))[i] for j = 1:length(neighbor_x) # assuming dim(neighbor_x) == dim(neighbor_y) if 1 <= cur[1] + neighbor_x[j] <= m && 1 <= cur[2] + neighbor_y[j] <= n tempd = LinearIndices((m,n))[cur[1] + neighbor_x[j], cur[2] + neighbor_y[j]] W[i,tempd] = exp(-(sig[i] - sig[tempd])^2/Οƒ) end end end return sparse(W) end # end of the image_Gaussian_affinity function ################################################################################ ######## Display top 9 basis vectors of various bases for an image data ######## ################################################################################ function top_vectors_plot2(dvec::Array{Float64, 2}, m::Int64, n::Int64, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.01, 0.01)) # Get the indices from max to min in terms of absolute value of the coefs # Note that m*n == length(dvec); m and n are the image size. sorted_ind = sortperm(abs.(dvec[:]), rev = true); # Set up the layout as 3 x 3 subplots plot(9, layout = (3,3), framestyle = :none, legend = false) # Do the display! for i=1:9 dvecT = fill(0., size(dvec)) dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) heatmap!(reshape(f, (m,n)), subplot=i, ratio=1, yaxis=:flip, showaxis=false, ticks = false, color = :grays, clims = clims) end display(current()) end ################################################################################ function top_vectors_plot3(dvec::Array{Float64, 2}, m::Int64, n::Int64, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.01, 0.01), K::Int64 = 9) # Get the indices from max to min in terms of absolute value of the coefs # Note that m*n == length(dvec); m and n are the image size. sorted_ind = sortperm(abs.(dvec[:]), rev = true); # Set up the layout as 3 x 3 subplots plot(K, layout = (Int(sqrt(K)), Int(sqrt(K))), framestyle = :none, legend = false) # Do the display! for i=1:K dvecT = fill(0., size(dvec)) dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) heatmap!(reshape(f, (m,n)), subplot=i, ratio=1, yaxis=:flip, showaxis=false, ticks = false, color = :grays, clims = clims) end display(current()) end ################################################################################
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2041
# Script to generate figures in Figure 2. using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms # First define a utility function "Glevel", which generate a Graph Signal that # are piecewise constants whose values are actual region indices "k". function Glevel(G::GraphSig, GP::GraphPart, j::Int64) f = zeros(size(G.f)) for k in 1:size(GP.rs,1) a = GP.rs[k,j+1] b = GP.rs[k+1,j+1] - 1 if b == -1 break end f[a:b] .= k*1.0 end Gsub = deepcopy(G) Gsub.f[GP.ind] = f return Gsub end # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the Toronto street network (vehicular volume counts as its graph signal) JLD2.@load "Toronto_new.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"], plotspecs = tmp1["plotspecs"]) # Assign correct edge weights via 1/Euclidean distance G = Adj2InvEuc(G) # Perform the hierarchical graph partitioning using the Fiedler vectors GP = partition_tree_fiedler(G) # Lrw by default # Compute the expansion coefficients of the full GHWT c2f dictionary dmatrix = ghwt_analysis!(G, GP=GP) N = length(G.f) # Fig. 2a: Level 1 first since Level 0 is not interesting j = 1 GraphSig_Plot(Glevel(G,GP,j), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(showaxis = false, ticks = false) savefig("toronto_j1.pdf") savefig("toronto_j1.png") # Fig. 2b: Level 2 j = 2 GraphSig_Plot(Glevel(G,GP,j), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(showaxis = false, ticks = false) savefig("toronto_j2.pdf") savefig("toronto_j2.png") # Fig. 2c: Level 3 j = 3 GraphSig_Plot(Glevel(G,GP,j), linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., notitle = true, nocolorbar = true) plot!(showaxis = false, ticks = false) savefig("toronto_j3.pdf") savefig("toronto_j3.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2388
# Script to generate figures in Figure 4. using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the Toronto street network (vehicular volume counts as its graph signal) JLD2.@load "Toronto_new.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"], plotspecs = tmp1["plotspecs"]) # Assign correct edge weights via 1/Euclidean distance G = Adj2InvEuc(G) # Perform the hierarchical graph partitioning using the Fiedler vectors GP = partition_tree_fiedler(G) # Lrw by default # Compute the expansion coefficients of the full GHWT c2f dictionary dmatrix = ghwt_analysis!(G, GP=GP) N = length(G.f) # Fig. 4a: Sacling vector ψ^1_{0,0}, i.e., (j,k,l)=(1,0,0). j = 1 loc = 1 BS = bs_level(GP, j) dvec = zeros(N, 1) dvec[loc,1] = 1.0 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha = 0., markercolor = :viridis, notitle = true, nocolorbar = true, clim = (-0.01, 0.01)) plot!(showaxis = false, ticks = false) k, l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) savefig("toronto_psi100.pdf") savefig("toronto_psi100.png") # Fig. 4b: Haar vector ψ^2_{0,1}, i.e., (j,k,l)=(2,0,1). j = 2 loc = 2 BS = bs_level(GP, j) dvec = zeros(N, 1) dvec[loc,1] = 1.0 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha = 0., markercolor = :viridis, notitle = true, nocolorbar = true, clim = (-0.01, 0.01)) plot!(showaxis = false, ticks = false) k, l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) savefig("toronto_psi201.pdf") savefig("toronto_psi201.png") # Fig. 4c: Walsh vector ψ^3_{0,9}, i.e., (j,k,l)=(3,0,9). #j = 5 #loc = 1000 j = 3 loc = 10 BS = bs_level(GP, j) dvec = zeros(N, 1) dvec[loc,1] = 1 (f, GS) = ghwt_synthesis(dvec, GP, BS, G) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markerstrokealpha = 0., markercolor = :viridis, notitle = true, nocolorbar = true, clim = (-0.01, 0.01)) plot!(showaxis = false, ticks = false) k, l = BS.levlist[loc][1], BS.levlist[loc][2] print(j," ",(rs_to_region(GP.rs, GP.tag))[k,l]," ",GP.tag[k,l]) savefig("toronto_psi309.pdf") savefig("toronto_psi309.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2644
# Script to generate Figure 15. using Plots, SparseArrays, JLD2, LinearAlgebra, Wavelets, MultiscaleGraphSignalTransforms include("auxilaries.jl") include("../../../src/unbalanced_haar_image.jl") # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the Barbara image data JLD2.@load "barbara.jld2" # smaller face region of size 100x100 row_zoom = 71:170 col_zoom = 341:440 display(heatmap(barbara[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, color = :grays, clims = (0,1))) # Extract that portion of the image matrix = deepcopy(barbara[row_zoom, col_zoom]) # # Perform the image partition using the penalized total variation and then # compute the expansion coefficients # p = 3.0 maxlev = 9 # need this to reach the single node leaves GPcols = PartitionTreeMatrix_unbalanced_haar_binarytree(matrix, maxlev, p) maxlev = 8 # need this to reach the single node leaves GProws = PartitionTreeMatrix_unbalanced_haar_binarytree(copy(matrix'), maxlev, p) # copy() is necessary to switch the Adjoint type to a regular Matrix{Float64}. dmatrix = ghwt_analysis_2d(matrix, GProws, GPcols) # # Compute the graph Haar coefficients from the previous PTV partition tree # BS_haar_rows = bs_haar(GProws) BS_haar_cols = bs_haar(GPcols) dvec_haar, loc_haar = BS2loc(dmatrix, GProws, GPcols, BS_haar_rows, BS_haar_cols) # # Compute the eGHWT best basis # dvec_eghwt, loc_eghwt = eghwt_bestbasis_2d(matrix, GProws, GPcols) # # Classical Haar transform via Wavelets.jl with direct input # dvec_classichaar = dwt(matrix, wavelet(WT.haar)) # # Classical Haar transform via Wavelets.jl via putting in the dyadic image # matrix2 = zeros(128,128) matrix2[15:114,15:114] = deepcopy(matrix) dvec_classichaar2 = dwt(matrix2, wavelet(WT.haar)) # # Classical Haar transform via Wavelets.jl via putting in the dyadic image # matrix3 = zeros(128,128) matrix3[1:100,1:100] = deepcopy(matrix) matrix3[101:end,1:100] = deepcopy(matrix[end:-1:end-27,1:100]) matrix3[:,101:end] = matrix3[:,100:-1:73] dvec_classichaar3 = dwt(matrix3, wavelet(WT.haar)) # Figure 15 (Approximation error plot up to the top 5000 coefficients) DVEC = [ dvec_classichaar[:], dvec_classichaar2[:], dvec_classichaar3[:], dvec_haar[:], dvec_eghwt[:] ] T = [ "Classic Haar (direct)", "Classic Haar (zero pad)", "Classic Haar (even refl)", "Graph Haar (PTV cost)", "eGHWT (PTV cost)" ] L = [ (:dashdot, :orange), (:dashdot, :red), (:dashdot, :green), (:solid, :blue), (:solid, :black) ] approx_error3(DVEC, T, L, 5000) savefig("barbara_face100_nondyadic_haar_error.pdf") savefig("barbara_face100_nondyadic_haar_error.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5153
# Generate figures on the Toronto street network # Load necessary packages using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms include("auxilaries.jl") # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the Toronto street network (vehicular volume counts as its graph signal) JLD2.@load "Toronto_new.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"], plotspecs = tmp1["plotspecs"]) # Generate Fig. 10a # GraphSig_Plot(G, linewidth = 1., markersize = 4., # markercolor = :viridis, markerstrokealpha = 0., notitle = true) gplot(G.W, G.xy; width=1); plt = scatter_gplot!(G.xy; marker = G.f, plotOrder = :s2l, ms = G.f*8/maximum(G.f), mswidth=1) display(plt) savefig("toronto_vv.pdf") savefig("toronto_vv.png") # Assign correct edge weights via 1/Euclidean distance G = Adj2InvEuc(G) # Perform the hierarchical graph partitioning using the Fiedler vectors GP = partition_tree_fiedler(G) # Lrw by default # Compute the expansion coefficients of the full GHWT c2f dictionary dmatrix = ghwt_analysis!(G, GP=GP) # Extract the coefficients corresponding to the Haar basis BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) # Extract the coefficients corresponding to the Walsh basis BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) # Compute the c2f GHWT best basis and the coefficients dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) # Compute the f2c GHWT best basis and the coefficients dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) # Compute the eGHWT best basis and the coefficients dvec_eghwt, BS_eghwt = eghwt_bestbasis(dmatrix, GP) ################################################################################ ###################### Generate approximaation errors ########################## ################################################################################ # Generate Fig. 10b up to 50% of the coefficients retained. DVEC = [ dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:] ] T = [ "Graph Haar","Graph Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT" ] L = [ (:dashdot, :orange), (:dashdot, :blue), (:solid, :red), (:solid, :green), (:solid, :black) ] approx_error2(DVEC, T, L, 0.5) savefig("toronto_vv_approx_error.pdf") savefig("toronto_vv_approx_error.png") ################################################################################ ######################### Synthesis by top vectors ############################# ################################################################################ color_limit_residual = (0., 0.15) function top_vectors_residual(p::Int64, dvec::Array{Float64,2}, BS::BasisSpec, GP::GraphPart, G::GraphSig) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 (recon, GS)= ghwt_synthesis(dvecT, GP, BS, G) GS.name = "Square of the residual" #GS.f = (G.f - GS.f).^2 #print((maximum(GS.f), minimum(GS.f))) #GraphSig_Plot(GS) GS.f = (G.f - recon).^2 ./(G.f.^2) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., clim = color_limit_residual) display(current()) end ################################################################################ ############## Visuallization of Top basis vectors ############################# ################################################################################ ### function to plot the basis vectors of user specified range # Recommended number of basis vectors are squared numbers, e.g., 9, 16, 25. function top_vectors_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart, G::GraphSig; istart = 2, iend = 17, ms = 2) sorted_ind = sortperm(dvec[:].^2; rev = true) ibs = iend-istart+1 n1 = Int64(sqrt(ibs)) plot(layout = Plots.grid(n1, n1)) idsp = 1 for ib in istart:iend dvecT = fill(0., size(dvec)) dvecT[sorted_ind[ib]] = 1 bv = ghwt_synthesis(dvecT, GP, BS) gplot!(G.W, G.xy; width=0.25, subplot=idsp, color=:gray) scatter_gplot!(G.xy; marker = bv, plotOrder = :propabs, ms, subplot=idsp) plt = plot!(cbar = false, clims = (-0.001,0.001), axis=([], false), subplot=idsp) idsp += 1 end display(current()) end # of top_vectors_plot ### Fig. 11a: Haar top_vectors_plot(dvec_haar, BS_haar, GP, G, iend=10) savefig("toronto_vv_haar09.png") savefig("toronto_vv_haar09.pdf") ### Walsh top_vectors_plot(dvec_walsh, BS_walsh, GP, G, iend=10) savefig("toronto_vv_walsh09.png") savefig("toronto_vv_walsh09.pdf") ### Fig. 11b: GHWT_c2f (= Walsh in this case) top_vectors_plot(dvec_c2f, BS_c2f, GP, G, iend=10) savefig("toronto_vv_c2f09.png") savefig("toronto_vv_c2f09.pdf") ### Fig. 11c: GHWT_f2c top_vectors_plot(dvec_f2c, BS_f2c, GP, G, iend=10) savefig("toronto_vv_f2c09.png") savefig("toronto_vv_f2c09.pdf") ### Fig. 11d: eGHWT top_vectors_plot(dvec_eghwt, BS_eghwt, GP, G, iend=10) savefig("toronto_vv_eghwt09.png") savefig("toronto_vv_eghwt09.pdf")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
7477
# Script to generate Figures 12, 13, and 14. using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms include("auxilaries.jl") # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the Barbara image data JLD2.@load "barbara.jld2" matrix = deepcopy(barbara) # Here are the list of local regions of interest: # full image row_zoom = 1:512 col_zoom = 1:512 # Generate the original Barbara image as a reference. heatmap(matrix[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, color = :grays) savefig("barbara.pdf") savefig("barbara.png") # # Initialize the regular balanced binary partition and compute the expansion coefficients # dmatrix, GProws, GPcols = eghwt_init_2d_Lindberg(matrix) # # Compute the coefficients of different bases with which we compare # # Haar BS_haar_rows = bs_haar(GProws) BS_haar_cols = bs_haar(GPcols) dvec_haar, loc_haar = BS2loc(dmatrix, GProws, GPcols, BS_haar_rows, BS_haar_cols) # Walsh BS_walsh_rows = bs_walsh(GProws) BS_walsh_cols = bs_walsh(GPcols) dvec_walsh, loc_walsh = BS2loc(dmatrix, GProws, GPcols, BS_walsh_rows, BS_walsh_cols) # GHWT c2f fcols, jmax_col = size(GProws.tag); frows, jmax_row = size(GPcols.tag); dmatrix_rows = reshape(dmatrix, (frows, jmax_row, fcols*jmax_col)) dmatrix_cols = Array{Float64,3}(reshape(dmatrix',(fcols, jmax_col, frows*jmax_row))) dvec_c2f_rows, BS_c2f_rows = ghwt_c2f_bestbasis(dmatrix_rows, GProws) dvec_c2f_cols, BS_c2f_cols = ghwt_c2f_bestbasis(dmatrix_cols, GPcols) dvec_c2f, loc_c2f = BS2loc(dmatrix, GProws, GPcols, BS_c2f_rows, BS_c2f_cols) # GHWT f2c dvec_f2c_rows, BS_f2c_rows = ghwt_f2c_bestbasis(dmatrix_rows, GProws) dvec_f2c_cols, BS_f2c_cols = ghwt_f2c_bestbasis(dmatrix_cols, GPcols) dvec_f2c, loc_f2c = BS2loc(dmatrix, GProws, GPcols, BS_f2c_rows, BS_f2c_cols) # eGHWT dvec_eghwt, loc_eghwt = eghwt_bestbasis_2d(matrix, GProws, GPcols) ################################################################################ ##################### Visualize the results of synthesis ####################### ################################################################################ ### function to plot the image synthesized by top p vectors function top_vectors_synthesis_2d(p::Int64, dvec::Vector{Float64}, loc::Matrix{Int64}, GProws::GraphPart, GPcols::GraphPart, dmatrix::Matrix{Float64}) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 matrix_syn = eghwt_synthesis_2d(dvecT, loc, GProws, GPcols) display(heatmap(matrix_syn[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar= false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) mse = norm(matrix - matrix_syn,2)^2/length(matrix) snr = 20 * log10(norm(matrix,2)/norm(matrix - matrix_syn,2)) psnr = 10 * log10(maximum(matrix)^2/mse) println("MSE: ", mse, "SNR (dB): ", snr, "PSNR (dB): ", psnr) return matrix_syn end ################################################################################ percent = 1/32; p = Int64(floor(percent*length(matrix))) # Fig. 13a: Haar haar32 = top_vectors_synthesis_2d(p, dvec_haar, loc_haar, GProws, GPcols, dmatrix) savefig("barbara_haar32.pdf") savefig("barbara_haar32.png") # Walsh walsh32 = top_vectors_synthesis_2d(p, dvec_walsh, loc_walsh, GProws, GPcols, dmatrix) savefig("barbara_walsh32.pdf") savefig("barbara_walsh32.png") # Fig. 13b: GHWT c2f c2f32 = top_vectors_synthesis_2d(p, dvec_c2f, loc_c2f, GProws, GPcols, dmatrix) savefig("barbara_c2f32.pdf") savefig("barbara_c2f32.png") # Fig. 13c: GHWT f2c f2c32 = top_vectors_synthesis_2d(p, dvec_f2c, loc_f2c, GProws, GPcols, dmatrix) savefig("barbara_f2c32.pdf") savefig("barbara_f2c32.png") # Fig. 13d: eGHWT eghwt32 = top_vectors_synthesis_2d(p, dvec_eghwt, loc_eghwt, GProws, GPcols, dmatrix) savefig("barbara_eghwt32.pdf") savefig("barbara_eghwt32.png") # # Zoom up the face region of those approximations (Fig. 14a) # row_zoom = 1:180 col_zoom = 330:450 # Haar display(heatmap(haar32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_face_haar32.pdf") savefig("barbara_face_haar32.png") # Walsh display(heatmap(walsh32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_face_walsh32.pdf") savefig("barbara_face_walsh32.png") # GHWT c2f display(heatmap(c2f32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_face_c2f32.pdf") savefig("barbara_face_c2f32.png") # GHWT f2c display(heatmap(f2c32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_face_f2c32.pdf") savefig("barbara_face_f2c32.png") # eGHWT display(heatmap(eghwt32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_face_eghwt32.pdf") savefig("barbara_face_eghwt32.png") # # Zoom up the left leg region of those approximations (Fig. 14b) # row_zoom = 300:512 col_zoom = 400:512 # Haar display(heatmap(haar32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_lleg_haar32.pdf") savefig("barbara_lleg_haar32.png") # Walsh display(heatmap(walsh32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_lleg_walsh32.pdf") savefig("barbara_lleg_walsh32.png") # GHWT c2f display(heatmap(c2f32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_lleg_c2f32.pdf") savefig("barbara_lleg_c2f32.png") # GHWT f2c display(heatmap(f2c32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_lleg_f2c32.pdf") savefig("barbara_lleg_f2c32.png") # eGHWT display(heatmap(eghwt32[row_zoom, col_zoom],ratio=1, yaxis =:flip, showaxis = false, ticks = false, colorbar = false, clims = (minimum(matrix), maximum(matrix)), color = :grays)) savefig("barbara_lleg_eghwt32.pdf") savefig("barbara_lleg_eghwt32.png") ################################################################################ ###################### Generate approximaation errors ########################## ################################################################################ # Generate Fig. 12b up to 50% of the coefficients retained. DVEC =[ dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:] ] T = [ "Graph Haar","Graph Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT" ] L = [ (:dashdot, :orange), (:dashdot, :blue), (:solid, :red), (:solid, :green), (:solid, :black)] approx_error2(DVEC, T, L, 0.5) savefig("barbara_approx_error.pdf") savefig("barbara_approx_error.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
2856
# Script to generate Figures 16 and 17 using TestImages, Plots, SparseArrays, LinearAlgebra, Wavelets, MultiscaleGraphSignalTransforms include("auxilaries.jl") # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the cameraman image and subsample it to make it as 128x128 image img = testimage("camera"); matrix = convert(Array{Float64,2}, img)[1:4:512,1:4:512] m, n = size(matrix) # Fig. 16a display(heatmap(matrix, ratio=1, yaxis =:flip, showaxis = false, ticks = false, color = :grays, clim = (0,1), colorbar = false)) savefig("cameraman.pdf") savefig("cameraman.png") # Now, let's compute the weight matrix based on the Gaussian affinity # of the small windows (or radius r) around pixels and the pixel locations. # Set up the key parameters r = 5; # specify radius of neighbors Οƒ = 0.007 # Do the weight matrix computation W007 = image_Gaussian_affinity(matrix, r, Οƒ) # Preprocess to generate G (GraphSig struct) and GP (GraphPart struct) # Note that GraphSig requires a matrix data even if it is just a one vector, i.e., # f = matrix[:] does not work! G007 = GraphSig(W007, f = reshape(matrix, (length(matrix), 1))) GP007 = partition_tree_fiedler(G007) dmatrix007 = ghwt_analysis!(G007, GP=GP007) # Construct or search the specific basis # Haar BS_haar007 = bs_haar(GP007) dvec_haar007 = dmatrix2dvec(dmatrix007, GP007, BS_haar007) # eGHWT dvec_eghwt007, BS_eghwt007 = eghwt_bestbasis(dmatrix007, GP007) # Generate Fig. 17a top_vectors_plot2(dvec_eghwt007, m, n, BS_eghwt007, GP007) savefig("cameraman_eghwt09_sigma007.pdf") savefig("cameraman_eghwt09_sigma007.png") # Now change the Οƒ value Οƒ = 0.07 W07 = image_Gaussian_affinity(matrix, r, Οƒ) # Preprocess to generate G (GraphSig struct) and GP (GraphPart struct) G07 = GraphSig(W07, f = reshape(matrix, (length(matrix), 1))) GP07 = partition_tree_fiedler(G07) dmatrix07 = ghwt_analysis!(G07, GP=GP07) # Construct or search the specific basis # Haar BS_haar07 = bs_haar(GP07) dvec_haar07 = dmatrix2dvec(dmatrix07, GP07, BS_haar07) # eGHWT dvec_eghwt07, BS_eghwt07 = eghwt_bestbasis(dmatrix07, GP07) # Generate Fig. 17b top_vectors_plot2(dvec_eghwt07, m, n, BS_eghwt07, GP07) savefig("cameraman_eghwt09_sigma07.pdf") savefig("cameraman_eghwt09_sigma07.png") # Finally, do the classical Haar transform in Wavelets.jl dvec_classichaar = dwt(matrix, wavelet(WT.haar)) # Fig. 16b (Approximation error plot) DVEC = [ dvec_classichaar[:], dvec_haar07[:], dvec_eghwt07[:], dvec_haar007[:], dvec_eghwt007[:] ] T = [ "Classical Haar", "Graph Haar (Οƒ = 0.07)", "eGHWT (Οƒ = 0.07)", "Graph Haar (Οƒ = 0.007)", "eGHWT (Οƒ = 0.007)"] L = [ (:dashdot,:orange), (:dashdot, :red), (:dashdot, :black), (:solid, :red), (:solid, :black) ] approx_error2(DVEC, T, L, 0.5) savefig("cameraman_approx_error.pdf") savefig("cameraman_approx_error.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5925
# Script to generate Figures 18 and 19 using FileIO, Images, ImageFiltering, JLD2, MultiscaleGraphSignalTransforms, MultivariateStats, Plots, StatsBase include("auxilaries.jl") # Set up the resolution and display size gr(dpi=200, size=(800,600)) # Load the original 512x512 composite texture image and its mastge textures = FileIO.load("5block.png") textures = Matrix{Float64}(textures) # convert it to a regular matrix # Compute the mask image using the Gabor features + PCA # # Step 1: Parameter setups # Orientations ndir = 2 Θ = [ Ο€/3; 5*Ο€/6 ] # Spatial frequencies Ξ = [0.2; 0.3; 0.4; 0.5] # Convert them to wavelengths Ξ› = 1.0 ./ Ξ # Gaussian bandwidth for Gabor filters bw = 1.0 Οƒ = 1.0/Ο€ * sqrt(log(2)/2) * (2^bw+1)/(2^bw-1) # Spatial aspect ratio: Οƒx = Οƒ; Οƒy = Οƒ/Ξ³ Ξ³ = 1.0 # Step 2: Apply Gabor filters; the same size as the input image. m, n = size(textures) K = length(Θ) *length(Ξ›) # K should be square number F = zeros(m, n, K) # This is the space for the Gabor filtered images Fg = zeros(m, n, K) # This is the space for the Gaussian smoothed version of F kr = zeros(m+1, n+1, K) ki = zeros(m+1, n+1, K) k = 1 kl = (0, 0) for ΞΈ in Θ for Ξ» in Ξ› kernel = Kernel.gabor(m, n, Ξ»*Οƒ, ΞΈ, Ξ», Ξ³, 0.0) kernel[1] ./= 2*Ο€*Οƒ*Οƒ/Ξ³ kernel[2] ./= 2*Ο€*Οƒ*Οƒ/Ξ³ global kl = size(kernel[1]) kr[1:kl[1],1:kl[2],k] = kernel[1] ki[1:kl[1],1:kl[2],k] = kernel[2] cker = (centered(kernel[1]), centered(kernel[2])) F[:,:,k] = sqrt.(imfilter(textures, reflect(cker[1])).^2 + imfilter(textures, reflect(cker[2])).^2) # "reflect"ing the kernel is necessary for convolution; # otherwise it does the correlation. Fg[:,:,k] = imfilter(F[:,:,k], Kernel.gaussian(3.0*Ξ»)) global k += 1 end end # Display those Gabor features plot(K, layout=(length(Θ),length(Ξ›)), framestyle=:none, legend=false) for k = 1:K heatmap!(kr[226:286,226:286,k], subplot=k, ratio=1, yaxis=:flip, showaxis=false, ticks=false, c=:grays, clims=(minimum(kr), maximum(kr)), colorbar=false) end display(current()) # Displaying the imaginary part of Gabor kernels may not be necessary... #plot(K, layout=(Int(sqrt(K)),Int(sqrt(K))), framestyle=:none, legend=false) #for k = 1:K # heatmap!(ki[:,:,k], subplot=k, ratio=1, yaxis=:flip, showaxis=false, # ticks=false, c=:grays, clims=(minimum(ki), maximum(ki)), colorbar=false) #end #display(current()) plot(K, layout=(length(Θ),length(Ξ›)), framestyle=:none, legend=false) for k = 1:K heatmap!(Fg[:,:,k], subplot=k, ratio=1, yaxis=:flip, showaxis=false, ticks=false, c=:grays, clims=(0, maximum(F)), colorbar=false) end display(current()) # Step 3. Compute the PCA and extract the first principal component Xtr=reshape(Fg, (m*n, K)) Xtr=Xtr' dt=StatsBase.fit(ZScoreTransform, Xtr) # Each variable is standardized to have # mean 0, stddev 1 Xtr=StatsBase.transform(dt, Xtr) M = MultivariateStats.fit(PCA, Xtr) Ytr=MultivariateStats.transform(M, Xtr) Ytr=Ytr' Ytr=reshape(Ytr, (m, n, size(Ytr, 2))) plot(K, layout=(length(Θ),length(Ξ›)), framestyle=:none, legend=false) for k = 1:outdim(M) heatmap!(Ytr[:,:,k], subplot=k, ratio=1, yaxis=:flip, showaxis=false, ticks=false, c=:grays, clims=(minimum(Ytr), maximum(Ytr)), colorbar=false) end display(current()) mask = Ytr[:,:,1] display(heatmap(mask, ratio=1, c=:grays, yaxis=:flip)) # End of 512 x 512 mask generation. # # Subsample both the original and mask images to 128 x 128 # textures = deepcopy(textures[1:4:end,1:4:end]) mask = deepcopy(mask[1:4:end,1:4:end]) m, n = size(textures) # recapture the subsampled matrix size # # Normalize the mask # mask = (mask.-minimum(mask))./(maximum(mask)-minimum(mask)); # # Generate Fig. 18a # display(heatmap(textures, ratio=1, yaxis =:flip, showaxis = false, ticks = false, color = :grays, colorbar = false)) savefig("textures_orig.pdf") savefig("textures_orig.png") # # Generate Fig. 18b # display(heatmap(mask, ratio=1, yaxis =:flip, showaxis = false, ticks = false, color = :grays, colorbar = false)) savefig("textures_mask.pdf") savefig("textures_mask.png") # # Now, let's compute the weight matrix based on the Gaussian affinity # of the small windows (or radius r) around pixels and the pixel locations. # # Set up the key parameters r = 3 # specify radius of neighbors; so far the best Οƒ = 0.0005 # the best so far with r=3 or r=5 # Do the weight matrix computation W = image_Gaussian_affinity(mask, r, Οƒ) # # Generate G (GraphSig object) and GP (GraphPart object) using the computed # weight matrix W, and the subsampled texture image as a graph signal. # Note that GraphSig requires a matrix data even if it is just a one vector, i.e., f = textures[:] does not work! G = GraphSig(W, f = reshape(textures, (length(textures), 1))) GP = partition_tree_fiedler(G) dmatrix = ghwt_analysis!(G, GP=GP) # # Construct or search the specific basis # # Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) # Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) # GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) # GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) # eGHWT dvec_eghwt, BS_eghwt = eghwt_bestbasis(dmatrix, GP) # # Generate Figure 19a (Approximation error plot) # DVEC = [ dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:] ] T = [ "Graph Haar", "Graph Walsh", "GHWT_c2f ", "GHWT_f2c", "eGHWT" ] L = [ (:dashdot,:orange), (:dashdot,:blue), (:solid, :red), (:solid, :green), (:solid, :black) ] approx_error2(DVEC, T, L, 0.5) savefig("textures_approx_error_r3_sigma0005.pdf") savefig("textures_approx_error_r3_sigma0005.png") # # Generate Figure 19b (Top 9 eGHWT basis vectors) # top_vectors_plot3(dvec_eghwt, m, n, BS_eghwt, GP) savefig("textures_eghwt09_r3_sigma0005.pdf") savefig("textures_eghwt09_r3_sigma0005.png")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
3665
using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms #@load "MN_MutGauss.jld2" #tmp1 = G["G"] #G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"]) #color_limit = (-0.2,2.2) JLD2.@load "Toronto.jld2" tmp1 = toronto["G"] G=GraphSig(tmp1["W"],xy=tmp1["xy"],f=tmp1["f"],name =tmp1["name"],plotspecs = tmp1["plotspecs"]) GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0.) G = Adj2InvEuc(G) GP = partition_tree_fiedler(G,:Lrw) dmatrix = ghwt_analysis!(G, GP=GP) ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) ################################################################################ ####################### Approximation error plot################################ ################################################################################ function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) print(er[26]) end end ################################################################################ ######################### Synthesized by top vectors########################### ################################################################################ color_limit_residual = (0., 0.15) function top_vectors_residual(p::Int64, dvec::Array{Float64,2}, BS::BasisSpec, GP::GraphPart, G::GraphSig) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 (f, GS) = ghwt_synthesis(dvecT, GP, BS, G) GS.name = "Square of the residual" #GS.f = (G.f - GS.f).^2 #print((maximum(GS.f), minimum(GS.f))) #GraphSig_Plot(GS) GS.f = (G.f - GS.f).^2 ./(G.f.^2) GraphSig_Plot(GS, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., clim = color_limit_residual) current() end ################################ ### Generate results ################################ # Figure 3(b) approx_error([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) current() ### frac = 1/4 p = Int64(ceil(frac*G.length)) ### original (Figure ) # Figure 3(a) GraphSig_Plot(G, linewidth = 1., markersize = 4., markercolor = :viridis, markerstrokealpha =0., clim = (2000., 110000.)) ### haar # Figure 4(a) top_vectors_residual(p, dvec_haar, BS_haar, GP, G) ### walsh # Figure 4(b) top_vectors_residual(p, dvec_walsh, BS_walsh, GP, G) ### c2f # Figure 4(b) top_vectors_residual(p, dvec_c2f, BS_c2f, GP, G) ### f2c # Figure 4(c) top_vectors_residual(p, dvec_f2c, BS_f2c, GP, G) ### eghwt # Figure 4(d) top_vectors_residual(p, dvec_eghwt, BS_eghwt, GP, G)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5018
using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms @load "../spie_data.jld2" matrix = vars["barbara"] #face row_zoom = 1:180 col_zoom = 330:450 #right leg row_zoom = 300:512 col_zoom = 400:512 #full image row_zoom = 1:512 col_zoom = 1:512 heatmap(matrix[row_zoom, col_zoom],ratio=1, yaxis =:flip, axis = false, color = :grays) #savefig("original.pdf") ### initialize the regular balanced binary partition and compute the expanding coefficients dmatrix, GProws, GPcols = ghwt_tf_init_2d_Lindberg(matrix) ### Compute the coefficients of different basis we will compare ############# Haar BS_haar_rows = bs_haar(GProws) BS_haar_cols = bs_haar(GPcols) dvec_haar, loc_haar = BS2loc(dmatrix, GProws, GPcols, BS_haar_rows, BS_haar_cols) ############# Walsh BS_walsh_rows = bs_walsh(GProws) BS_walsh_cols = bs_walsh(GPcols) dvec_walsh, loc_walsh = BS2loc(dmatrix, GProws, GPcols, BS_walsh_rows, BS_walsh_cols) ############# GHWT (i.e., regular haar-walsh wavelet packet dictionary) fcols, jmax_col = size(GProws.tag); frows, jmax_row = size(GPcols.tag); dmatrix_rows = reshape(dmatrix, (frows, jmax_row, fcols*jmax_col)) dmatrix_cols = Array{Float64,3}(reshape(dmatrix',(fcols, jmax_col, frows*jmax_row))) ############# c2f bestbasis dvec_c2f_rows, BS_c2f_rows = ghwt_c2f_bestbasis(dmatrix_rows, GProws) dvec_c2f_cols, BS_c2f_cols = ghwt_c2f_bestbasis(dmatrix_cols, GPcols) dvec_c2f, loc_c2f = BS2loc(dmatrix, GProws, GPcols, BS_c2f_rows, BS_c2f_cols) ############# f2c bestbasis dvec_f2c_rows, BS_f2c_rows = ghwt_f2c_bestbasis(dmatrix_rows, GProws) dvec_f2c_cols, BS_f2c_cols = ghwt_f2c_bestbasis(dmatrix_cols, GPcols) dvec_f2c, loc_f2c = BS2loc(dmatrix, GProws, GPcols, BS_f2c_rows, BS_f2c_cols) ############# ##################### tf bestbasis dvec_tf, loc_tf = ghwt_tf_bestbasis_2d(matrix, GProws, GPcols) ################################################################################ ##################### Visualize the results of synthesis######################## ################################################################################ ### function to plot the image synthesized by top p vectors function top_vectors_synthesis_2d(p::Int64, dvec::Vector{Float64}, loc::Matrix{Int64}, GProws::GraphPart, GPcols::GraphPart, dmatrix::Matrix{Float64}) sorted_dvec = sort(abs.(dvec[:]), rev = true) dvecT = copy(dvec) dvecT[abs.(dvec) .< sorted_dvec[p]].= 0 matrix_syn = ghwt_tf_synthesis_2d(dvecT, loc, GProws, GPcols) heatmap(matrix_syn[row_zoom, col_zoom],ratio=1, yaxis =:flip, axis = false, color = :grays) mse = norm(matrix - matrix_syn,2)^2/length(matrix) psnr = -10*log10(mse) return psnr end ################################################################################ percent = 1/32; p = Int64(floor(percent*length(matrix))) ### haar # Figure 5(a) top_vectors_synthesis_2d(p, dvec_haar, loc_haar, GProws, GPcols, dmatrix) #savefig("synthesis_haar_1_32.pdf") ### walsh top_vectors_synthesis_2d(p, dvec_walsh, loc_walsh, GProws, GPcols, dmatrix) #savefig("synthesis_walsh_1_32.pdf") ### c2f # Figure 5(b) top_vectors_synthesis_2d(p, dvec_c2f, loc_c2f, GProws, GPcols, dmatrix) #savefig("synthesis_c2f_1_32.pdf") ### f2c # Figure 5(c) top_vectors_synthesis_2d(p, dvec_f2c, loc_f2c, GProws, GPcols, dmatrix) #savefig("synthesis_f2c_1_32.pdf") ### tf # Figure 5(d) top_vectors_synthesis_2d(p, dvec_tf, loc_tf, GProws, GPcols, dmatrix) #savefig("synthesis_tf_1_32.pdf") # To generate Figure 6. Just change the row_zoom, and col_zoom at the head of this file. ################################################################################ ####################### Approximation error plot################################ ################################################################################ function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) end end approx_error([dvec_haar, dvec_walsh, dvec_c2f, dvec_f2c, dvec_tf]) current() ################# ### Generate the relative l2 error when approximating by 1/32 coefficients ################ DVEC = [dvec_haar, dvec_walsh, dvec_c2f, dvec_f2c, dvec_tf]; for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) p = Int64(floor(N./32)) print(sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm) end
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
4320
using Plots, SparseArrays, JLD2, LinearAlgebra, Wavelets, MultiscaleGraphSignalTransforms @load "../spie_data.jld2" matrix = vars["barbara"] #face row_zoom = 1:180 col_zoom = 330:450 #right leg row_zoom = 300:512 col_zoom = 400:512 #full image row_zoom = 1:512 col_zoom = 1:512 #face_smaller row_zoom = 71:170 col_zoom = 341:440 heatmap(matrix[row_zoom, col_zoom],ratio=1, yaxis =:flip, axis = false, color = :grays) #savefig("original.pdf") matrix = matrix[row_zoom, col_zoom] ### initialize the regular balanced binary partition and compute the expanding coefficients GPcols = PartitionTreeMatrix_unbalanced_haar_binarytree(matrix, 9, 3.) GProws = PartitionTreeMatrix_unbalanced_haar_binarytree(Matrix{Float64}(transpose(matrix)), 8, 3.) dmatrix = ghwt_analysis_2d(matrix, GProws, GPcols) ### Compute the coefficients of different basis we will compare ############# Haar BS_haar_rows = bs_haar(GProws) BS_haar_cols = bs_haar(GPcols) dvec_haar, loc_haar = BS2loc(dmatrix, GProws, GPcols, BS_haar_rows, BS_haar_cols) # ############# Walsh # BS_walsh_rows = bs_walsh(GProws) # BS_walsh_cols = bs_walsh(GPcols) # dvec_walsh, loc_walsh = BS2loc(dmatrix, GProws, GPcols, BS_walsh_rows, BS_walsh_cols) # # ############# GHWT (i.e., regular haar-walsh wavelet packet dictionary) # fcols, jmax_col = size(GProws.tag); # frows, jmax_row = size(GPcols.tag); # dmatrix_rows = reshape(dmatrix, (frows, jmax_row, fcols*jmax_col)) # dmatrix_cols = Array{Float64,3}(reshape(dmatrix',(fcols, jmax_col, frows*jmax_row))) # ############# c2f bestbasis # dvec_c2f_rows, BS_c2f_rows = ghwt_c2f_bestbasis(dmatrix_rows, GProws) # dvec_c2f_cols, BS_c2f_cols = ghwt_c2f_bestbasis(dmatrix_cols, GPcols) # dvec_c2f, loc_c2f = BS2loc(dmatrix, GProws, GPcols, BS_c2f_rows, BS_c2f_cols) # # ############# f2c bestbasis # dvec_f2c_rows, BS_f2c_rows = ghwt_f2c_bestbasis(dmatrix_rows, GProws) # dvec_f2c_cols, BS_f2c_cols = ghwt_f2c_bestbasis(dmatrix_cols, GPcols) # dvec_f2c, loc_f2c = BS2loc(dmatrix, GProws, GPcols, BS_f2c_rows, BS_f2c_cols) ############# ##################### tf bestbasis dvec_tf, loc_tf = ghwt_tf_bestbasis_2d(matrix, GProws, GPcols) ##################### classical haar dvec_classichaar = dwt(matrix, wavelet(WT.haar)) ################################################################################ ######################### function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Classical Haar transform", "eGHWT Haar basis", "eGHWT best basis"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :black)] for i = 1:3 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) print(er[26]) end end ################################################################################ ####################### Approximation error plot################################ ################################################################################ ### function to plot the approximation error curve function approx_error2(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0.3 T = ["Classical Haar transform", "eGHWT Haar basis", "eGHWT best basis"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :black)] for i = 1:3 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm # this is the relative L^2 error of the whole thing, i.e., its length is N p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac), label = T[i], line = L[i]) end end ### Figure 7 #approx_error([dvec_classichaar[:], dvec_haar[:], dvec_tf[:]]) approx_error2([dvec_classichaar[:], dvec_haar[:], dvec_tf[:]]) current() savefig("figure7.pdf")
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
6818
using Plots, SparseArrays, JLD2, LinearAlgebra, Wavelets, MultiscaleGraphSignalTransforms #img = load("test\\8.jpg") #heatmap(img,ratio=1, yaxis =:flip, axis = false, color = :gray) JLD2.@load "../spie_data.jld2" matrix = vars["barbara"][1:4:512,1:4:512] heatmap(matrix,ratio=1, yaxis =:flip, axis = false, color = :grays, clim = (0,1)) matrix_gt = matrix[:] sigma = 0.01 m, n = size(matrix) ############### Get the neighbors for affinity matrix computing r = 5; # specify radius of neighbors l = 2*r + 1 temp_x, temp_y = fill(1,l^2), fill(1,l^2) temp_xy = CartesianIndices((1:l,1:l)) for i = 1:l^2 temp_x[i], temp_y[i] = temp_xy[i][1], temp_xy[i][2] end temp_ind = ((temp_x .- (r + 1)).^2 + (temp_y .- (r + 1)).^2).<= r^2 neighbor_x = temp_x[temp_ind] .- (r + 1) neighbor_y = temp_y[temp_ind] .- (r + 1) # for any index(x,y), (x + neighbor_x, y - neigbor_y) are the neighbors to calculate affinity ################ Create affinity matrix W = fill(0., (m*n,m*n)) for i = 1:m*n cur = CartesianIndices((m,n))[i] for j = 1:length(neighbor_x) if 1 <= cur[1] + neighbor_x[j] <= m && 1 <= cur[2] + neighbor_y[j] <= n tempd = LinearIndices((m,n))[cur[1] + neighbor_x[j], cur[2] + neighbor_y[j]] W[i,tempd] = exp(-(matrix_gt[i] - matrix_gt[tempd])^2/sigma) end end end W = sparse(W) ############### Preprocess to get G and GP G = GraphSig(W, f = reshape(matrix,(length(matrix_gt),1))) GP = partition_tree_fiedler(G) dmatrix = ghwt_analysis!(G, GP=GP) G_tmp = Glevel(G,GP,4) heatmap(reshape(G_tmp.f[:],(128,128))) ############# Construct or search the specific basis ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ################################################################################### ############## Visuallization of Top basis vector (multiple)####################### ################################################################################### ### visualization fo the first 12 vectors ### function to plot top 12 vectors function top_vectors_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.02,0.02)) sorted_ind = sortperm(abs.(dvec[:]), rev = true); plot(12,layout=(3,4),framestyle=:none, legend=false) for i=1:12 dvecT = fill(0., size(dvec)) #dvecT[sorted_ind[i]] = dvec_ghwt[sorted_ind[i]] dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) #print((maximum(f), minimum(f))) heatmap!(reshape(f, size(matrix)), subplot=i, ratio=1, yaxis=:flip, axis=false, color = :balance, clims = clims) end current() end ### haar top_vectors_plot(dvec_haar, BS_haar, GP) ### walsh top_vectors_plot(dvec_walsh, BS_walsh, GP) ### c2f top_vectors_plot(dvec_c2f, BS_c2f, GP) ### f2c top_vectors_plot(dvec_f2c, BS_f2c, GP) ### eghwt top_vectors_plot(dvec_eghwt, BS_eghwt, GP) ################################################################################### ############## Visuallization of Top basis vector (single)######################### ################################################################################### ### function to plot the first i-th vector ### Note that here only one vector is plotted instead of multiple vectors. function top_vector_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart, G::GraphSig, i::Int64; clims::Tuple{Float64,Float64} = (-0.02,0.02)) sorted_ind = sortperm(abs.(dvec[:]), rev = true); dvecT = fill(0., size(dvec)) #dvecT[sorted_ind[i]] = dvec_ghwt[sorted_ind[i]] dvecT[sorted_ind[i]] = 1 f, GS = ghwt_synthesis(dvecT, GP, BS, G) heatmap(reshape(f, size(matrix)), ratio=1, yaxis=:flip, axis=false, color = :grays, clims = clims) end ########################## plot top i-th vector i = 2 ### haar top_vector_plot(dvec_haar, BS_haar, GP, G, i) ### walsh top_vector_plot(dvec_walsh, BS_walsh, GP, G, i) ### c2f top_vector_plot(dvec_c2f, BS_c2f, GP, G, i) ### f2c top_vector_plot(dvec_f2c, BS_f2c, GP, G, i) ### eghwt top_vector_plot(dvec_eghwt, BS_eghwt, GP, G, i) ####################################################################################### ### generate figure used for spie paper ########################################################################################## # Figure 8b sorted_ind = sortperm(abs.(dvec_eghwt[:]), rev = true) plot(4, layout=(2,2), framestyle=:none, legend=false) for i = 1:4 dvec_T = fill(0., size(dvec_eghwt)) dvec_T[sorted_ind[i+1]] = 1 f = ghwt_synthesis(dvec_T, GP, BS_eghwt) heatmap!(reshape(f, size(matrix)), subplot=i, ratio=1, yaxis=:flip, axis=false, color = :grays, clims = (-0.01,0.01)) end current() savefig("barbara_top4.pdf") ######################### function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Classical Haar transform", "eGHWT Haar basis", "eGHWT best basis"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :black)] for i = 1:3 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) print(er[26]) end end ######################### function approx_error2(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0.3 T = ["Classical Haar transform", "eGHWT Haar basis", "eGHWT best basis"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :black)] for i = 1:3 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm # this is the relative L^2 error of the whole thing, i.e., its length is N p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac), label = T[i], line = L[i]) end end dvec_classichaar = dwt(matrix, wavelet(WT.haar)) ### Figure 8(a) #approx_error([dvec_classichaar[:], dvec_haar[:], dvec_eghwt[:]]) approx_error2([dvec_classichaar[:], dvec_haar[:], dvec_eghwt[:]]) current()
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
code
5984
using Plots, SparseArrays, JLD2, LinearAlgebra, MultiscaleGraphSignalTransforms JLD2.@load "handcut_images.jld2" heatmap(tmp["block5"],ratio=1, yaxis =:flip, axis = false, color = :grays) #savefig("original.pdf") heatmap(tmp["block5_gt"],ratio=1, yaxis =:flip, axis = false, color = :grays) #savefig("ground_truth.pdf") matrix = tmp["block5"] matrix_gt = tmp["block5_gt"][:] sigma = 0.0001 m, n = size(matrix) ############### Get the neighbors for affinity matrix computing r = 5; # specify radius of neighbors l = 2*r + 1 temp_x, temp_y = fill(1,l^2), fill(1,l^2) temp_xy = CartesianIndices((1:l,1:l)) for i = 1:l^2 temp_x[i], temp_y[i] = temp_xy[i][1], temp_xy[i][2] end temp_ind = ((temp_x .- (r + 1)).^2 + (temp_y .- (r + 1)).^2).<= r^2 neighbor_x = temp_x[temp_ind] .- (r + 1) neighbor_y = temp_y[temp_ind] .- (r + 1) # for any index(x,y), (x + neighbor_x, y - neigbor_y) are the neighbors to calculate affinity ################ Create affinity matrix W = fill(0., (m*n,m*n)) for i = 1:m*n cur = CartesianIndices((m,n))[i] for j = 1:length(neighbor_x) if 1 <= cur[1] + neighbor_x[j] <= m && 1 <= cur[2] + neighbor_y[j] <= n tempd = LinearIndices((m,n))[cur[1] + neighbor_x[j], cur[2] + neighbor_y[j]] W[i,tempd] = exp(-(matrix_gt[i] - matrix_gt[tempd])^2/sigma) end end end W = sparse(W) ############### Preprocess to get G and GP G = GraphSig(W, f = reshape(matrix,(length(matrix_gt),1))) GP = partition_tree_fiedler(G) dmatrix = ghwt_analysis!(G, GP=GP) ############# Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ############# Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ############# GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ############# GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ############# eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) ################################################################################ ############## Visuallization of Top basis vectors############################## ################################################################################ ### function to plot top 9 vectors function top_vectors_plot(dvec::Array{Float64, 2}, BS::BasisSpec, GP::GraphPart; clims::Tuple{Float64,Float64} = (-0.01,0.01)) sorted_ind = sortperm(abs.(dvec[:]), rev = true); plot(9,layout=(3,3),framestyle=:none, legend=false) for i=1:9 dvecT = fill(0., size(dvec)) #dvecT[sorted_ind[i]] = dvec_ghwt[sorted_ind[i]] dvecT[sorted_ind[i]] = 1 f = ghwt_synthesis(dvecT, GP, BS) #print((maximum(f), minimum(f))) heatmap!(reshape(f, size(matrix)), subplot=i, ratio=1, yaxis=:flip, axis=false, color = :grays, clims = clims) end current() end ########################## plot top vectors ### haar top_vectors_plot(dvec_haar, BS_haar, GP) #savefig("top9_haar.pdf") ### walsh top_vectors_plot(dvec_walsh, BS_walsh, GP) #savefig("top9_walsh.pdf") ### c2f top_vectors_plot(dvec_c2f, BS_c2f, GP) #savefig("top9_c2f.pdf") ### f2c top_vectors_plot(dvec_f2c, BS_f2c, GP) #savefig("top9_f2c.pdf") ### eghwt top_vectors_plot(dvec_eghwt, BS_eghwt, GP) ################################################################################ ####################### Approximation error plot################################ ################################################################################ ### function to plot the approximation error curve function approx_error(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0:0.01:0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2, rev = true) er = fill(0., length(frac)) for j = 1:length(frac) p = Int64(floor(frac[j]*N)) er[j] = sqrt(dvec_norm^2 - sum(dvec_sort[1:p]))/dvec_norm end plot!(frac, er, yaxis=:log, xlims = (0.,0.3), label = T[i], line = L[i]) end end #approx_error([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) #current() #savefig("approx_error.pdf") ################################################################################ ####################### Approximation error plot################################ ################################################################################ ### function to plot the approximation error curve function approx_error2(DVEC::Array{Array{Float64,1},1}) plot(xaxis = "Fraction of Coefficients Retained", yaxis = "Relative Approximation Error") frac = 0.3 T = ["Haar","Walsh","GHWT_c2f", "GHWT_f2c", "eGHWT"] L = [(:dashdot,:orange),(:dashdot,:blue),(:solid, :red),(:solid, :green),(:solid, :black)] for i = 1:5 dvec = DVEC[i] N = length(dvec) dvec_norm = norm(dvec,2) dvec_sort = sort(dvec.^2) # the smallest first er = sqrt.(reverse(cumsum(dvec_sort)))/dvec_norm # this is the relative L^2 error of the whole thing, i.e., its length is N p = Int64(floor(frac*N)) + 1 # upper limit plot!(frac*(0:(p-1))/(p-1), er[1:p], yaxis=:log, xlims = (0.,frac),ylims = (10^(-2.5),1), label = T[i], line = L[i]) end end ############################ ### spie figures ############################ # Figure 9(a) heatmap(tmp["block5"],ratio=1, yaxis =:flip, axis = false, color = :grays) # Figure 9(b) #approx_error([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) approx_error2([dvec_haar[:], dvec_walsh[:], dvec_c2f[:], dvec_f2c[:], dvec_eghwt[:]]) current() savefig("figure9b.pdf") # Figure 10(a) top_vectors_plot(dvec_haar, BS_haar, GP) # Figure 10(b) top_vectors_plot(dvec_eghwt, BS_eghwt, GP)
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
4386
# MultiscaleGraphSignalTransforms.jl | Doc | Build | Test | |------|-------|------| | [![](https://img.shields.io/badge/docs-passing-success)](https://ucd4ids.github.io/MultiscaleGraphSignalTransforms.jl/dev/) | [![CI](https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/actions) | [![codecov](https://codecov.io/gh/UCD4IDS/MultiscaleGraphSignalTransforms.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/UCD4IDS/MultiscaleGraphSignalTransforms.jl) | ![Haar-Walsh on R vs on Graph](./GHWT.png "Haar-Walsh on R vs on Graph") ## COPYRIGHT Copyright 2015-2022 The Regents of the University of California Implemented by Jeff Irion, Haotian Li, Naoki Saito, and Yiqun Shao ## SETUP To install the MultiscaleGraphSignalTransforms.jl, run ```julia julia> import Pkg; Pkg.add("MultiscaleGraphSignalTransforms") julia> using MultiscaleGraphSignalTransforms ``` ## GETTING STARTED Currently, you can run a set of very small tests via ```] test MultiscaleGraphSignalTransforms```; see the actual file ```test/runtest.jl``` as well as [the documentation](https://ucd4ids.github.io/MultiscaleGraphSignalTransforms.jl/dev) for further information. ## REFERENCES 1. J. Irion and N. Saito, [Hierarchical graph Laplacian eigen transforms](https://www.math.ucdavis.edu/~saito/publications/hglets.html), *Japan SIAM Letters*, vol. 6, pp. 21-24, 2014. 2. J. Irion and N. Saito, [The generalized Haar-Walsh transform](https://www.math.ucdavis.edu/~saito/publications/ghwt.html), *Proc. 2014 IEEE Statistical Signal Processing Workshop*, pp. 488-491, 2014. 3. J. Irion and N. Saito, [Applied and computational harmonic analysis on graphs and networks](https://www.math.ucdavis.edu/~saito/publications/spie15.html), *Wavelets and Sparsity XVI*, (M. Papadakis, V. K. Goyal, D. Van De Ville, eds.), *Proc. SPIE 9597*, Paper #95971F, Invited paper, 2015. 4. J. Irion, [Multiscale Transforms for Signals on Graphs: Methods and Applications](https://jefflirion.github.io/publications_and_presentations/irion_dissertation.pdf), Ph.D. dissertation, University of California, Davis, Dec. 2015. 5. J. Irion and N. Saito, [Learning sparsity and structure of matrices with multiscale graph basis dictionaries](https://www.math.ucdavis.edu/~saito/publications/matanal.html), *Proc. 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)*, (A. Uncini, K. Diamantaras, F. A. N. Palmieri, and J. Larsen, eds.), 2016. 6. J. Irion and N. Saito, [Efficient approximation and denoising of graph signals using the multiscale basis dictionaries](https://www.math.ucdavis.edu/~saito/publications/eadgsumbd.html), *IEEE Transactions on Signal and Information Processing over Networks*, Vol. 3, no. 3, pp. 607-616, 2017. 7. N. Saito, [How can we naturally order and organize graph Laplacian eigenvectors?](https://www.math.ucdavis.edu/~saito/publications/lapeigport.html) *Proc. 2018 IEEE Workshop on Statistical Signal Processing*, pp. 483-487, 2018. 8. Y. Shao and N. Saito, [The extended Generalized Haar-Walsh Transform and applications](https://www.math.ucdavis.edu/~saito/publications/eghwt.html), *Wavelets and Sparsity XVIII*, (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), *Proc. SPIE 11138*, Paper #111380C, 2019. 9. H. Li and N. Saito, [Metrics of graph Laplacian eigenvectors](https://www.math.ucdavis.edu/~saito/publications/metgraphlap.html), *Wavelets and Sparsity XVIII*, (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), *Proc. SPIE 11138*, Paper #111381K, 2019. 10. Y. Shao, [The Extended Generalized Haar-Walsh Transform and Applications](https://www.math.ucdavis.edu/~tdenena/dissertations/202008_Shao_Yiqun_dissertation.pdf), Ph.D. dissertation, University of California, Davis, Sep. 2020. 11. A. Cloninger, H. Li and N. Saito, [Natural graph wavelet packet dictionaries](https://www.math.ucdavis.edu/~saito/publications/ngwp.html), *J. Fourier Anal. Appl.*, vol. 27, Article \#41, 2021. 12. H. Li, Natural Graph Wavelet Dictionaries: Methods and Applications, Ph.D. dissertation, University of California, Davis, Jun. 2021. 13. N. Saito and Y. Shao, [eGHWT: The extended Generalized Haar-Walsh Transform](https://www.math.ucdavis.edu/~saito/publications/eghwt21.html), *J. Math. Imaging Vis.*, vol. 64, no. 3, pp. 261-283, 2022.
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
3689
# MultiscaleGraphSignalTransforms.jl ![Haar-Walsh on R vs on Graph](https://raw.githubusercontent.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/master/GHWT.png) MultiscaleGraphSignalTransforms.jl is a collection of tools for graph signal processing including HGLET, GHWT, eGHWT, NGWP, Lapped NGWP, and Lapped HGLET. Some of them were originally written in MATLAB by Jeff Irion, but we added more functionalities, e.g., eGHWT, NGWP, etc. ## COPYRIGHT Copyright 2015-2021 The Regents of the University of California Implemented by Jeff Irion, Haotian Li, Naoki Saito, and Yiqun Shao ## SETUP To install the MultiscaleGraphSignalTransforms.jl, run ```julia julia> import Pkg; Pkg.add("MultiscaleGraphSignalTransforms") julia> using MultiscaleGraphSignalTransforms ``` ## GETTING STARTED Currently, you can run a set of very small tests via ```] test MultiscaleGraphSignalTransforms```; see the actual file [`test/runtest.jl`](https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/blob/master/test/runtests.jl) for more details. You can also check out the examples we provided in the sidebar. ## REFERENCES 1. J. Irion and N. Saito, [Hierarchical graph Laplacian eigen transforms](http://doi.org/10.14495/jsiaml.6.21), *Japan SIAM Letters*, vol. 6, pp. 21-24, 2014. 2. J. Irion and N. Saito, [The generalized Haar-Walsh transform](http://dx.doi.org/10.1109/SSP.2014.6884678), *Proc. 2014 IEEE Statistical Signal Processing Workshop*, pp. 488-491, 2014. 3. J. Irion and N. Saito, [Applied and computational harmonic analysis on graphs and networks](http://dx.doi.org/10.1117/12.2186921), *Wavelets and Sparsity XVI*, (M. Papadakis, V. K. Goyal, D. Van De Ville, eds.), *Proc. SPIE 9597*, Paper #95971F, Invited paper, 2015. 4. J. Irion, [Multiscale Transforms for Signals on Graphs: Methods and Applications](https://jefflirion.github.io/publications_and_presentations/irion_dissertation.pdf), Ph.D. dissertation, University of California, Davis, Dec. 2015. 5. J. Irion and N. Saito, [Learning sparsity and structure of matrices with multiscale graph basis dictionaries](http://dx.doi.org/10.1109/MLSP.2016.7738892), *Proc. 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)*, (A. Uncini, K. Diamantaras, F. A. N. Palmieri, and J. Larsen, eds.), 2016. 6. J. Irion and N. Saito, [Efficient approximation and denoising of graph signals using the multiscale basis dictionaries](http://dx.doi.org/10.1109/TSIPN.2016.2632039), *IEEE Transactions on Signal and Information Processing over Networks*, Vol. 3, no. 3, pp. 607-616, 2017. 7. Y. Shao and N. Saito, [The extended Generalized Haar-Walsh Transform and applications](https://www.math.ucdavis.edu/~saito/publications/saito_eghwt.pdf), *Wavelets and Sparsity XVIII*, (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), *Proc. SPIE 11138*, Paper #111380C, 2019. 8. Y. Shao, [The Extended Generalized Haar-Walsh Transform and Applications](https://www.math.ucdavis.edu/~tdenena/dissertations/202008_Shao_Yiqun_dissertation.pdf), Ph.D. dissertation, University of California, Davis, Sep. 2020. 9. H. Li and N. Saito, [Metrics of graph Laplacian eigenvectors](https://www.math.ucdavis.edu/~saito/publications/metgraphlap.html), *Wavelets and Sparsity XVIII*, (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), *Proc. SPIE 11138*, Paper #111381K, 2019. 10. C. Alexander, H. Li and N. Saito, [Natural graph wavelet packet dictionaries](https://link.springer.com/article/10.1007/s00041-021-09832-3), *J. Fourier Anal. Appl.*, vol. 27, Article \#41, 2021. 11. H. Li, Natural Graph Wavelet Dictionaries: Methods and Applications, Ph.D. dissertation, University of California, Davis, Jun. 2021.
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
4765
# Metrics of Graph Laplacian Eigenvectors on ``P_7 \times P_3`` ## Set up ```@example grid using MultiscaleGraphSignalTransforms, LightGraphs, MultivariateStats using Plots, LaTeXStrings, LinearAlgebra # compute the graph related quantities Nx, Ny = 7, 3 G = LightGraphs.grid([Nx, Ny]) N = nv(G) L = Matrix(laplacian_matrix(G)) Q = incidence_matrix(G; oriented = true) π›Œ, 𝚽 = eigen(L) 𝚽 = 𝚽 .* sign.(𝚽[1, :])' # sign of DCT βˆ‡πš½ = Q' * 𝚽 W = 1.0 * adjacency_matrix(G) # manually set up the mapping between 1D ordering and 2D ordering grid2eig_ind = [1,2,3,6,8,12,15,4,5,7,9,13,16,18,10,11,14,17,19,20,21]; eig2grid_ind = sortperm(grid2eig_ind); eig2dct = Array{Int64,3}(undef, Nx, Ny, 2); for i = 1:Nx; for j = 1:Ny; eig2dct[i,j,1] = i-1; eig2dct[i,j,2] = j-1; end; end eig2dct = reshape(eig2dct, (N, 2)); eig2dct = eig2dct[eig2grid_ind, :]; nothing # hide ``` Let us see the comparison between 1D ordering vs. 2D ordering of the eigenvectors. ```@example grid ## 1D ordering: non-decreasing eigenvalue ordering plot(layout = Plots.grid(3, 7)) for i in 1:N heatmap!(reshape(𝚽[:, i], (Nx, Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, ylim = [0, Ny + 1], title = latexstring("\\phi_{", i-1, "}"), titlefont = 12, subplot = i) end plot!(size = (815, 350)) # hide ``` ```@example grid ## 2D ordering: natural frequency ordering plot(layout = Plots.grid(3, 7)) for i in 1:N k = grid2eig_ind[i] heatmap!(reshape(𝚽[:,k], (Nx, Ny))', c = :viridis, cbar = false, clims = (-0.4,0.4), frame = :none, ratio = 1, ylim = [0, Ny + 1], title = latexstring("\\varphi_{", string(eig2dct[k,1]), ",", string(eig2dct[k,2]), "}"), titlefont = 12, subplot = i) end plot!(size = (815, 350)) # hide ``` What we really want to do is to *organize* those eigenvectors based on their natural frequencies or their behaviors instead of their eigenvalues. To do that, we utilize the metrics discussed in the [paper](https://www.math.ucdavis.edu/~saito/publications/metgraphlap.html) as follows. But first, we create a custom plotting function for later use. ```@example grid function grid7x3_mds_heatmaps(E, 𝚽; Nx = 7, Ny = 3, annotate_ind = 1:N, plotOrder = 1:N) # set up all heatmap plots' positions max_x = maximum(E[1, :]); min_x = minimum(E[1, :]) width_x = max_x - min_x max_y = maximum(E[2, :]); min_y = minimum(E[2, :]) width_y = max_y - min_y dx = 0.005 * width_x; dy = dx; xej = zeros(Nx, N); yej=zeros(Ny, N); a = 5.0; b = 7.0; for k = 1:N xej[:,k] = LinRange(E[1,k] - Ny * a * dx, E[1, k] + Ny * a * dx, Nx) yej[:,k] = LinRange(E[2,k] - a * dy, E[2, k] + a * dy, Ny) end plot() for k in plotOrder if k in annotate_ind heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1, annotations = (xej[4, k], yej[3, k] + b*dy, text(latexstring("\\varphi_{", string(eig2dct[k, 1]), ",", string(eig2dct[k, 2]), "}"), 10))) else heatmap!(xej[:, k], yej[:, k], reshape(𝚽[:, k], (Nx, Ny))', c = :viridis, colorbar = false, ratio = 1) end end plt = plot!(xlim = [min_x - 0.12 * width_x, max_x + 0.12 * width_x], ylim = [min_y - 0.16 * width_y, max_y + 0.16 * width_y], grid = false, clims = (-0.4, 0.4), xlab = "X₁", ylab = "Xβ‚‚") return plt end nothing # hide ``` ## ROT distance Before we measure the ROT distance between the eigenvectors, we convert them to probability mass functions by taking entrywise squares. After we got the ROT distance matrix of the eigenvectors, we visualize the arrangement of the eigenvectors in ``\mathbb{R}^{2}`` via [the classical MDS embedding](https://en.wikipedia.org/wiki/Multidimensional_scaling#Classical_multidimensional_scaling). ```@example grid ## ROT distance D = natural_eigdist(𝚽, π›Œ, Q; Ξ± = 0.5, input_format = :pmf1, distance = :ROT) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) grid7x3_mds_heatmaps(E, 𝚽) plot!(size = (815, 611)) # hide ``` ## DAG distance We organize the eigenvectors by the DAG distance. ```@example grid D = natural_eigdist(𝚽, π›Œ, Q; distance = :DAG) E = transform(fit(MDS, D, maxoutdim=2, distances=true)) grid7x3_mds_heatmaps(E, 𝚽) plot!(size = (815, 611)) # hide ``` ## TSD distance We organize the eigenvectors by the TSD distance with the parameter ``T = 0.1``. ```@example grid D = natural_eigdist(𝚽, π›Œ, Q; T = 0.1, distance = :TSD) # T = 0.1 E = transform(fit(MDS, D, maxoutdim=2, distances=true)) grid7x3_mds_heatmaps(E, 𝚽) plot!(size = (815, 611)) # hide ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
7377
# [Multiscale Graph Signal Transforms on 1D Path](@id p64) Let us use the *unweighted* 1D path with a synthetic signal as a simple example to demonstrate the usage of the MultiscaleGraphSignalTransforms.jl. ## Set up We first construct the `GraphSig` and `GraphPart` objects of the *primal* graph ``G = P_{64}``. ```@example path using MultiscaleGraphSignalTransforms, Plots, LinearAlgebra import WaveletsExt: wiggle using Plots.PlotMeasures # hide # construct P64 N = 64 G = gpath(N) # compute graph Laplacian eigenvectors W = G.W L = diagm(sum(W; dims = 1)[:]) - W # unnormalized graph Laplacian π›Œ, 𝚽 = eigen(L) 𝚽 = 𝚽 .* sign.(𝚽[1,:])' # perform recursive bipartitioning of G by the Fiedler vectors of Lrw GP = partition_tree_fiedler(G; swapRegion = false) # use Chebyshev polynomial Tβ‚…(x) (x ∈ [0, 1]) as an example signal G.f = reshape([16 * x^5 - 20 * x^3 + 5 * x for x in LinRange(0, 1, N)], (N, 1)) plot(G.f; c = :black, lw = 2, legend = false, grid = false, size = (815, 300)) xticks!([1; 8:8:64], vcat(string("1"), [string(k) for k in 8:8:64])) # hide plot!(left_margin = 5mm) # hide ``` ## Graph Signal Processing via HGLET/LP-HGLET ```@example path ## analyze the signal via HGLET dmatrixH, dmatrixHrw, dmatrixHsym = HGLET_Analysis_All(G, GP) dvec_hglet, BS_hglet, trans_hglet = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixH, dmatrixHrw = dmatrixHrw, dmatrixHsym = dmatrixHsym, costfun = 1) ## LP-HGLET dmatrixsH, dmatrixsHsym = LPHGLET_Analysis_All(G, GP; Ο΅ = 0.3) dvec_lphglet, BS_lphglet, trans_lphglet = HGLET_GHWT_BestBasis(GP, dmatrixH = dmatrixsH, dmatrixHsym = dmatrixsHsym, costfun = 1) # find the top 10 HGLET basis vectors important_idx = sortperm(dvec_hglet[:].^2; rev = true) hglet_top10 = zeros(N, 10) for i in 1:10 w, _ = HGLET_Synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_hglet, G, method = :L) hglet_top10[:, i] = w[:] end wiggle(hglet_top10; sc = 0.45) p1 = title!("Top 10 HGLET basis vectors") # find the top 10 LP-HGLET basis vectors important_idx = sortperm(dvec_lphglet[:].^2; rev = true) lphglet_top10 = zeros(N, 10) for i in 1:10 w, _ = LPHGLET_Synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_lphglet, G; method = :L, Ο΅ = 0.3) lphglet_top10[:, i] = w[:] end wiggle(lphglet_top10; sc = 0.45) p2 = title!("Top 10 LP-HGLET basis vectors") plot(p1, p2, layout = Plots.grid(2, 1), size = (815, 600)) xticks!([1; 8:8:64], vcat(string("1"), [string(k) for k in 8:8:64])) # hide yticks!([0; 1:10], vcat(string(""), [string(k) for k in 1:10])) # hide plot!(left_margin = 5mm) # hide ``` ## Graph Signal Processing via GHWT, eGHWT, etc. ```@example path ## analyze the signal via GHWT dmatrix = ghwt_analysis!(G, GP = GP) ## Haar BS_haar = bs_haar(GP) dvec_haar = dmatrix2dvec(dmatrix, GP, BS_haar) ## Walsh BS_walsh = bs_walsh(GP) dvec_walsh = dmatrix2dvec(dmatrix, GP, BS_walsh) ## GHWT_c2f dvec_c2f, BS_c2f = ghwt_c2f_bestbasis(dmatrix, GP) ## GHWT_f2c dvec_f2c, BS_f2c = ghwt_f2c_bestbasis(dmatrix, GP) ## eGHWT dvec_eghwt, BS_eghwt = ghwt_tf_bestbasis(dmatrix, GP) nothing # hide ``` We then find the top 10 basis vectors in each case. ```@example path ## Haar important_idx = sortperm(dvec_haar[:].^2; rev = true) haar_top10 = zeros(N, 10) for i in 1:10 w = ghwt_synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_haar) haar_top10[:, i] = w[:] end wiggle(haar_top10; sc = 0.45) p1 = title!("Top 10 Haar basis vectors") ## Walsh important_idx = sortperm(dvec_walsh[:].^2; rev = true) walsh_top10 = zeros(N, 10) for i in 1:10 w = ghwt_synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_walsh) walsh_top10[:, i] = w[:] end wiggle(walsh_top10; sc = 0.45) p2 = title!("Top 10 Walsh basis vectors") ## GHWT_c2f important_idx = sortperm(dvec_c2f[:].^2; rev = true) ghwt_c2f_top10 = zeros(N, 10) for i in 1:10 w = ghwt_synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_c2f) ghwt_c2f_top10[:, i] = w[:] end wiggle(ghwt_c2f_top10; sc = 0.45) p3 = title!("Top 10 GHWT c2f best basis vectors") ## GHWT_f2c important_idx = sortperm(dvec_f2c[:].^2; rev = true) ghwt_f2c_top10 = zeros(N, 10) for i in 1:10 w = ghwt_synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_f2c) ghwt_f2c_top10[:, i] = w[:] end wiggle(ghwt_f2c_top10; sc = 0.45) p4 = title!("Top 10 GHWT f2c best basis vectors") ## eGHWT important_idx = sortperm(dvec_eghwt[:].^2; rev = true) eghwt_top10 = zeros(N, 10) for i in 1:10 w = ghwt_synthesis(reshape(spike(important_idx[i], N), (N, 1)), GP, BS_eghwt) eghwt_top10[:, i] = w[:] end wiggle(eghwt_top10; sc = 0.45) p5 = title!("Top 10 eGHWT best basis vectors") # display the top 10 basis vectors plot(p1, p2, p3, p4, p5, layout = Plots.grid(5, 1), size = (815, 1500)) xticks!([1; 8:8:64], vcat(string("1"), [string(k) for k in 8:8:64])) # hide yticks!([0; 1:10], vcat(string(""), [string(k) for k in 1:10])) # hide plot!(left_margin = 5mm) # hide ``` ## Graph Signal Processing via the NGWP dictionaries To perform the NGWP transforms, we set up the *dual* graph ``G^{\star}`` (which is also ``P_{64}``). ```@example path # build the dual graph object Gstar = GraphSig(W) # perform recursive bipartitioning of Gstar by the Fiedler vectors of Lrw GstarP = partition_tree_fiedler(Gstar; swapRegion = false) # perform the pair-clustering algorithm to recursively bipartition G GP_pc = pairclustering(𝚽, GstarP) # for PC-NGWP nothing # hide ``` Now, let us construct the three NGWP dictionaries (i.e., the VM-NGWP, the PC-NGWP, and the LP-NGWP) and use them to analyze the signal, respectively. ```@example path VM_NGWP = vm_ngwp(𝚽, GstarP) PC_NGWP = pc_ngwp(𝚽, GstarP, GP_pc) LP_NGWP = lp_ngwp(𝚽, W, GstarP; Ο΅ = 0.3) # relative action region bandwidth Ο΅ # NGWP analysis, i.e., get the expansion coefficient matrix and apply the best # basis algorithm. dmatrix_VM = ngwp_analysis(G, VM_NGWP) dvec_vm_ngwp, BS_vm_ngwp = ngwp_bestbasis(dmatrix_VM, GstarP) dmatrix_PC = ngwp_analysis(G, PC_NGWP) dvec_pc_ngwp, BS_pc_ngwp = ngwp_bestbasis(dmatrix_PC, GstarP) dmatrix_LP = ngwp_analysis(G, LP_NGWP) dvec_lp_ngwp, BS_lp_ngwp = ngwp_bestbasis(dmatrix_LP, GstarP) nothing # hide ``` Then, the top 10 NGWP basis vectors selected from each dictionary can be displayed as follows. ```@example path important_idx = sortperm(dvec_vm_ngwp[:].^2; rev = true) wav_vm_top10 = zeros(N, 10) for i in 1:10 dr, dc = BS_vm_ngwp.levlist[important_idx[i]] wav_vm_top10[:, i] = VM_NGWP[dr, dc, :] end wiggle(wav_vm_top10; sc = 0.45) p1 = title!("Top 10 VM-NGWP basis vectors") important_idx = sortperm(dvec_pc_ngwp[:].^2; rev = true) wav_pc_top10 = zeros(N, 10) for i in 1:10 dr, dc = BS_pc_ngwp.levlist[important_idx[i]] wav_pc_top10[:, i] = PC_NGWP[dr, dc, :] end wiggle(wav_pc_top10; sc = 0.45) p2 = title!("Top 10 PC-NGWP basis vectors") important_idx = sortperm(dvec_lp_ngwp[:].^2; rev = true) wav_lp_top10 = zeros(N, 10) for i in 1:10 dr, dc = BS_lp_ngwp.levlist[important_idx[i]] wav_lp_top10[:, i] = LP_NGWP[dr, dc, :] end wiggle(wav_lp_top10; sc = 0.45) p3 = title!("Top 10 LP-NGWP basis vectors") plot(p1, p2, p3, layout = Plots.grid(3, 1), size = (815, 900)) xticks!([1; 8:8:64], vcat(string("1"), [string(k) for k in 8:8:64])) # hide yticks!([0; 1:10], vcat(string(""), [string(k) for k in 1:10])) # hide plot!(left_margin = 5mm) # hide ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
840
# Visualization of the Sunflower Graph ```@docs SunFlowerGraph ``` Let us see how to visualize the sunflower graph by `gplot()` and `scatter_gplot()`. ```@example sunflower using MultiscaleGraphSignalTransforms, LightGraphs, Plots # construct the sunflower graph G, L, X = SunFlowerGraph(); N = nv(G) # display the sunflower graph (node radii vary for visualization purpose) gplot(1.0 * adjacency_matrix(G), X; width = 1) scatter_gplot!(X; c = :red, ms = LinRange(1, 9, N)) plot!(frame = :none, size = (815, 500)) # hide ``` One can also represent a signal on the graph by colors. For example, ```@example sunflower f = zeros(N) f[1:200] .= 1 f[301:N] .= -1 # display the graph signal gplot(1.0 * adjacency_matrix(G), X; width = 1) scatter_gplot!(X; marker = f, ms = LinRange(1, 9, N)) plot!(frame = :none, size = (815, 500)) # hide ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
146
# Generalized Haar-Walsh Transform ```@index Pages = ["GHWT.md"] ``` ```@autodocs Modules = [GHWT, GHWT_2d] Pages = ["GHWT.jl", "GHWT_2d.jl"] ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
232
# (Lapped) Hierarchical Graph Laplacian Eigen Transform ```@index Pages = ["HGLET.md"] ``` ```@autodocs Modules = [HGLET] Pages = ["HGLET.jl"] ``` ```@autodocs Modules = [MultiscaleGraphSignalTransforms] Pages = ["LP-HGLET.jl"] ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
872
# Natural Graph Wavelet Dictionaries ```@index Pages = ["NGWD.md"] ``` ## Metrics of graph Laplacian eigenvectors ```@autodocs Modules = [MultiscaleGraphSignalTransforms] Pages = ["natural_distances.jl", "eigROT_Distance.jl", "eigsROT_Distance.jl", "eigDAG_Distance.jl", "eigHAD_Distance.jl", "eigDAG_Distance.jl", "eigTSD_Distance.jl"] ``` ## Dual Graph ```@docs dualgraph ``` ## Varimax Natural Graph Wavelet Packet ```@docs varimax ``` ```@docs vm_ngwp ``` ## Pair-Clustering Natural Graph Wavelet Packet ```@docs pairclustering ``` ```@docs mgslp ``` ```@docs pc_ngwp ``` ## Lapped Natural Graph Wavelet Packet ```@docs lp_ngwp ``` ## Graph Signal Processing via NGWP ```@docs ngwp_analysis ``` ```@docs ngwp_bestbasis ``` ```@docs NGWP_jkl ``` ## Natural Graph Wavelet Frame ```@autodocs Modules = [MultiscaleGraphSignalTransforms] Pages = ["NGWF.jl"] ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
208
# Recursive Graph Partitioning ```@index Pages = ["Partition.md"] ``` ## Graph Partition ```@autodocs Modules = [GraphPartition] Pages = ["GraphPartition.jl"] ``` ## BasisSpec Object ```@docs BasisSpec ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
204
## Visualization ```@docs gplot ``` ```@docs scatter_gplot ``` ```@docs GraphSig_Plot ``` ## Best Basis Related ```@docs cost_functional ``` ```@docs dmatrix_flatten ``` ```@docs dmatrix_ldb_flatten ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "BSD-3-Clause" ]
1.7.3
b7903b11d1aa4a96fc63d04de036236099cf8608
docs
174
# extended Generalized Haar-Walsh Transform ```@index Pages = ["eGHWT.md"] ``` ```@autodocs Modules = [GHWT_tf_1d, GHWT_tf_2d] Pages = ["GHWT_tf_1d.jl", "GHWT_tf_2d.jl"] ```
MultiscaleGraphSignalTransforms
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl.git
[ "MIT" ]
0.0.1
e2da55f31e0a03f2fc04109ea5534108163d4eee
code
709
using MetapopulationDynamics using Plots sl = StochasticLogistic(dt = 0.01, Οƒ = 1.0) rm = RickerModel() sg = SpatialGraph() djdm = DeterministicJumpDispersalModel( 0.8, DispersalPotential(ExponentialDispersalKernel(decay = 10.0, threshold = 0.01), sg), ) sjdm = StochasticJumpDispersalModel( 0.1, DispersalPotential(ExponentialDispersalKernel(decay = 1, threshold = 0.01), sg), ) fullmodel = modelset(djdm, rm) results = simulate(fullmodel, sg; numtimesteps = 100) computepcc(results) plt = plot(legend = :outerright, xlabel = "time", ylabel = "Abundance") for i = 1:size(results.timeseries, 1) plot!(1:size(results.timeseries, 2), results.timeseries[i, :], label = "Pop $i") end plt
MetapopulationDynamics
https://github.com/EcoJulia/MetapopulationDynamics.jl.git
[ "MIT" ]
0.0.1
e2da55f31e0a03f2fc04109ea5534108163d4eee
code
475
using Documenter, MetapopulationDynamics # For GR docs bug ENV["GKSwstype"] = "100" makedocs( sitename="MetapopulationDynamics.jl", authors="Michael Catchen", modules=[MetapopulationDynamics], pages=[ "Index" => "index.md", ], checkdocs=:all, strict=true, ) deploydocs( deps=Deps.pip("pygments", "python-markdown-math"), repo="github.com/EcoJulia/MetapopulationDyanmics.jl.git", devbranch="main", push_preview=true )
MetapopulationDynamics
https://github.com/EcoJulia/MetapopulationDynamics.jl.git