licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2961 | module SmithNormalForm
using LinearAlgebra
using SparseArrays
using Base.CoreLogging
import Base: show, summary
import LinearAlgebra: diagm, diag
export snf, smith, Smith
include("bezout.jl")
include("snf.jl")
# ---------------------------------------------------------------------------------------- #
struct Smith{P,Q<:AbstractMatrix{P},V<:AbstractVector{P}} <: Factorization{P}
S::Q
Sinv::Q
T::Q
Tinv::Q
SNF::V
Smith{P,Q,V}(S::AbstractMatrix{P}, Sinv::AbstractMatrix{P},
T::AbstractMatrix{P}, Tinv::AbstractMatrix{P},
D::AbstractVector{P}) where {P,Q,V} = new(S, Sinv, T, Tinv, D)
end
Smith(S::AbstractMatrix{P}, T::AbstractMatrix{P}, SNF::AbstractVector{P}) where {P} =
Smith{P,typeof(S),typeof(SNF)}(S, similar(S, 0, 0), T, similar(T, 0, 0), SNF)
# ---------------------------------------------------------------------------------------- #
"""
smith(X::AbstractMatrix{P}; inverse::Bool=true) --> Smith{P,Q,V}
Return a Smith normal form of an integer matrix `X` as a `Smith` structure (of element type
`P`, matrix type `Q`, and invariant factor type `V`).
The Smith normal form is well-defined for any matrix ``m×n`` matrix `X` with elements in a
principal domain (PID; e.g., integers) and provides a decomposition of `X` into ``m×m``,
``m×n``, and `S`, `Λ`, and `T` as `X = SΛT`, where `Λ` is a diagonal matrix with entries
("invariant factors") Λᵢ ≥ Λᵢ₊₁ ≥ 0 with nonzero entries divisible in the sense Λᵢ | Λᵢ₊₁.
The invariant factors can be obtained from [`diag(::Smith)`](@ref).
`S` and `T` are invertible matrices; if the keyword argument `inverse` is true (default),
the inverse matrices are computed and returned as part of the `Smith` factorization.
"""
function smith(X::AbstractMatrix{P}; inverse::Bool=true) where {P}
S, T, D, Sinv, Tinv = snf(X, inverse=inverse)
SNF = diag(D)
return Smith{P, typeof(X), typeof(SNF)}(S, Sinv, T, Tinv, SNF)
end
# ---------------------------------------------------------------------------------------- #
"""
diagm(F::Smith) --> AbstractMatrix
Return the Smith normal form diagonal matrix `Λ` from a factorization `F`.
"""
function diagm(F::Smith{P}) where P
rows = size(F.S, 1)
cols = size(F.T, 1)
D = issparse(F.SNF) ? spzeros(P, rows, cols) : zeros(P, rows, cols)
for (i,Λᵢ) in enumerate(diag(F))
D[i,i] = Λᵢ
end
return D
end
"""
diag(F::Smith) --> AbstractVector
Return the invariant factors (or, equivalently, the elementary divisors) of a Smith normal
form `F`.
"""
diag(F::Smith) = F.SNF
summary(io::IO, F::Smith{P,Q,V}) where {P,Q,V} = print(io, "Smith{", P, ",", Q, ",", V, "}")
function show(io::IO, ::MIME"text/plain", F::Smith)
summary(io, F)
println(io, " with:")
Base.print_matrix(io, diagm(F), " Λ = "); println(io)
Base.print_matrix(io, F.S, " S = "); println(io)
Base.print_matrix(io, F.T, " T = ")
return nothing
end
end # module
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 545 | """
Calculates Bézout coefficients (see `gcdx`)
"""
function bezout(a::R, b::R) where {R}
rev = a < b
x, y = rev ? (a,b) : (b,a)
s0, s1 = oneunit(R), zero(R)
t0, t1 = zero(R), oneunit(R)
while y != zero(R)
q = div(x, y)
x, y = y, x - y * q
s0, s1 = s1, s0 - q * s1
t0, t1 = t1, t0 - q * t1
end
s, t = rev ? (s0, t0) : (t0, s0)
g = x
if g == a
s = one(R)
t = zero(R)
elseif g == -a
s = -one(R)
t = zero(R)
end
return s, t, g
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 6843 | # Smith Normal Form
function divisable(y::R, x::R) where {R}
x == zero(R) && return y == zero(R)
return div(y,x)*x == y
end
function divide(y::R, x::R) where {R}
if x != -one(R)
return div(y,x)
else
return y * x
end
end
function rcountnz(X::AbstractMatrix{R}, i) where {R}
c = 0
z = zero(R)
@inbounds for row in eachrow(X)
if row[i] != z
c += 1
end
end
return c
end
function ccountnz(X::AbstractMatrix{R}, j) where {R}
c = 0
z = zero(R)
@inbounds for col in eachcol(X)
if col[j] != z
c += 1
end
end
return c
end
function rswap!(M::AbstractMatrix, r1::Int, r2::Int)
r1 == r2 && return M
@inbounds for col in eachcol(M)
tmp = col[r1]
col[r1] = col[r2]
col[r2] = tmp
end
return M
end
function cswap!(M::AbstractMatrix, c1::Int, c2::Int)
c1 == c2 && return M
@inbounds for row in eachrow(M)
tmp = row[c1]
row[c1] = row[c2]
row[c2] = tmp
end
return M
end
function rowelimination(D::AbstractMatrix{R}, a::R, b::R, c::R, d::R, i::Int, j::Int) where {R}
@inbounds for col in eachcol(D)
t = col[i]
s = col[j]
col[i] = a*t + b*s
col[j] = c*t + d*s
end
return D
end
function colelimination(D::AbstractMatrix{R}, a::R, b::R, c::R, d::R, i::Int, j::Int) where {R}
@inbounds for row in eachrow(D)
t = row[i]
s = row[j]
row[i] = a*t + b*s
row[j] = c*t + d*s
end
return D
end
function rowpivot(U::AbstractArray{R,2},
Uinv::AbstractArray{R,2},
D::AbstractArray{R,2},
i, j; inverse=true) where {R}
for k in reverse!(findall(!iszero, view(D, :, j)))
a = D[i,j]
b = D[k,j]
i == k && continue
s, t, g = bezout(a, b)
x = divide(a, g)
y = divide(b, g)
rowelimination(D, s, t, -y, x, i, k)
inverse && rowelimination(Uinv, s, t, -y, x, i, k)
colelimination(U, x, y, -t, s, i, k)
end
end
function colpivot(V::AbstractArray{R,2},
Vinv::AbstractArray{R,2},
D::AbstractArray{R,2},
i, j; inverse=true) where {R}
for k in reverse!(findall(!iszero, view(D, i, :)))
a = D[i,j]
b = D[i,k]
j == k && continue
s, t, g = bezout(a, b)
x = divide(a, g)
y = divide(b, g)
colelimination(D, s, t, -y, x, j, k)
inverse && colelimination(Vinv, s, t, -y, x, j, k)
rowelimination(V, x, y, -t, s, j, k)
end
end
function smithpivot(U::AbstractMatrix{R},
Uinv::AbstractMatrix{R},
V::AbstractMatrix{R},
Vinv::AbstractMatrix{R},
D::AbstractMatrix{R},
i, j; inverse=true) where {R}
pivot = D[i,j]
@assert pivot != zero(R) "Pivot cannot be zero"
while ccountnz(D,i) > 1 || rcountnz(D,j) > 1
colpivot(V, Vinv, D, i, j, inverse=inverse)
rowpivot(U, Uinv, D, i, j, inverse=inverse)
end
end
function init(M::AbstractSparseMatrix{R,Ti}; inverse=true) where {R, Ti}
D = copy(M)
rows, cols = size(M)
U = spzeros(R, rows, rows)
for i in 1:rows
U[i,i] = one(R)
end
Uinv = inverse ? copy(U) : spzeros(R, 0, 0)
V = spzeros(R, cols, cols)
for i in 1:cols
V[i,i] = one(R)
end
Vinv = inverse ? copy(V) : spzeros(R, 0, 0)
return U, V, D, Uinv, Vinv
end
function init(M::AbstractMatrix{R}; inverse=true) where {R}
D = copy(M)
rows, cols = size(M)
U = zeros(R, rows, rows)
for i in 1:rows
U[i,i] = one(R)
end
Uinv = inverse ? copy(U) : zeros(R, 0, 0)
V = zeros(R, cols, cols)
for i in 1:cols
V[i,i] = one(R)
end
Vinv = inverse ? copy(V) : zeros(R, 0, 0)
return U, V, D, Uinv, Vinv
end
formatmtx(M) = size(M,1) == 0 ? "[]" : repr(collect(M); context=IOContext(stdout, :compact => true))
function snf(M::AbstractMatrix{R}; inverse=true) where {R}
rows, cols = size(M)
U, V, D, Uinv, Vinv = init(M, inverse=inverse)
t = 1
for j in 1:cols
@debug "Working on column $j out of $cols" D=formatmtx(D)
rcountnz(D,j) == 0 && continue
prow = 1
if D[t,t] != zero(R)
prow = t
else
# Good pivot row for j-th column is the one
# that have a smallest number of elements
rsize = typemax(R)
for i in 1:rows
if D[i,j] != zero(R)
c = count(!iszero, view(D, i, :))
if c < rsize
rsize = c
prow = i
end
end
end
end
@debug "Pivot Row selected: t = $t, pivot = $prow" D=formatmtx(D)
rswap!(D, t, prow)
inverse && rswap!(Uinv, t, prow)
cswap!(U, t, prow)
@debug "Performing the pivot step at (t=$t, j=$j)" D=formatmtx(D)
smithpivot(U, Uinv, V, Vinv, D, t, j, inverse=inverse)
cswap!(D, t, j)
inverse && cswap!(Vinv, t, j)
rswap!(V, t, j)
t += 1
@logmsg (Base.CoreLogging.Debug-1) "Factorization" D=formatmtx(D) U=formatmtx(U) V=formatmtx(V) U⁻¹=formatmtx(Uinv) V⁻¹=formatmtx(Vinv)
end
# Make sure that d_i is divisible be d_{i+1}.
r = minimum(size(D))
pass = true
while pass
pass = false
for i in 1:r-1
divisable(D[i+1,i+1], D[i,i]) && continue
pass = true
D[i+1,i] = D[i+1,i+1]
colelimination(Vinv, one(R), one(R), zero(R), one(R), i, i+1)
rowelimination(V, one(R), zero(R), -one(R), one(R), i, i+1)
smithpivot(U, Uinv, V, Vinv, D, i, i, inverse=inverse)
end
end
# To guarantee SNFⱼ = Λⱼ ≥ 0 we absorb the sign of Λ into T and T⁻¹, s.t.
# Λ′ = Λ*sign(Λ), T′ = sign(Λ)*T, and T⁻¹′ = T⁻¹*sign(Λ),
# with the convention that sign(0) = 1. Then we still have that X = SΛT = SΛ′T′
# and also that Λ = S⁻¹XT⁻¹ ⇒ Λ′ = S⁻¹XT⁻¹′.
for j in 1:rows
j > cols && break
Λⱼ = D[j,j]
if Λⱼ < 0
@views V[j,:] .*= -1 # T′ = sign(Λ)*T [rows]
if inverse
@views Vinv[:,j] .*= -1 # T⁻¹′ = T⁻¹*sign(Λ) [columns]
end
D[j,j] = abs(Λⱼ) # Λ′ = Λ*sign(Λ)
end
end
@logmsg (Base.CoreLogging.Debug-1) "Factorization" D=formatmtx(D) U=formatmtx(U) V=formatmtx(V) U⁻¹=formatmtx(Uinv) V⁻¹=formatmtx(Vinv)
if issparse(D)
return dropzeros!(U), dropzeros!(V), dropzeros!(D), dropzeros!(Uinv), dropzeros!(Vinv)
else
return U, V, D, Uinv, Vinv
end
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2033 | using LinearAlgebra
using SparseArrays
using Test
using SmithNormalForm
@testset "Bezout" begin
a = 12
b = 42
s,t,g = SmithNormalForm.bezout(a,b)
@test s*a + t*b == g
g,s,t = gcdx(a,b)
@test s*a + t*b == g
s,t,g = SmithNormalForm.bezout(b,a)
@test s*b + t*a == g
g,s,t = gcdx(b,a)
@test s*b + t*a == g
end
@testset "Smith Normal Form" begin
M=[ 1 0 0 0 0 0 ;
0 0 0 0 0 0 ;
-1 0 1 0 0 1 ;
0 -1 0 -1 0 0 ;
0 0 0 1 1 -1 ;
0 1 -1 0 -1 0 ]
P, Q, A, Pinv, Qinv = snf(M)
@test !issparse(A)
@test P*A*Q == M
@test inv(P) == Pinv
@test inv(Q) == Qinv
@testset "dense diag" for i in 1:4
@test A[i,i] == 1
end
P, Q, A, Pinv, Qinv = snf(dropzeros(sparse(M)))
@test issparse(A)
@test P*A*Q == M
@test inv(collect(P)) == Pinv
@test inv(collect(Q)) == Qinv
@testset "sparse diag" for i in 1:4
@test A[i,i] == 1
end
P, Q, A, Pinv, Qinv = snf(sparse(M), inverse=false)
@test issparse(A)
@test iszero(Pinv)
@test iszero(Qinv)
@test P*A*Q == M
@testset "sparse diag" for i in 1:4
@test A[i,i] == 1
end
# Factorization
M =[22 30 64 93 36;
45 42 22 11 67;
21 1 35 45 42]
n, m = size(M)
F = smith(M)
@test !issparse(F.SNF)
@test size(F.S) == (n,n)
@test size(F.T) == (m,m)
@test size(F.Sinv) == (n,n)
@test size(F.Tinv) == (m,m)
@test F.S*diagm(F)*F.T == M
@test F.S*F.Sinv == Matrix{eltype(F)}(I, n, n)
@test F.T*F.Tinv == Matrix{eltype(F)}(I, m, m)
F = smith(sparse(M), inverse=false)
@test issparse(F.SNF)
@test size(F.S) == (n,n)
@test size(F.T) == (m,m)
@test F.S*diagm(F)*F.T == M
@test iszero(F.Sinv)
@test iszero(F.Tinv)
# https://en.wikipedia.org/wiki/Smith_normal_form#Example
M = [2 4 4; -6 6 12; 10 -4 -16]
F = smith(M, inverse=true)
@test F.SNF == [2, 6, 12]
@test F.S*diagm(F)*F.T == M
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1020 | module Bravais
using LinearAlgebra
using StaticArrays
# ---------------------------------------------------------------------------------------- #
using Base:
@propagate_inbounds,
ImmutableDict
import Base:
parent,
convert,
getindex,
size,
IndexStyle
# ---------------------------------------------------------------------------------------- #
export crystal,
crystalsystem,
bravaistype,
centering,
primitivebasismatrix,
centering_volume_fraction,
directbasis,
reciprocalbasis,
AbstractBasis,
volume,
metricmatrix,
DirectBasis,
ReciprocalBasis,
AbstractPoint,
DirectPoint,
ReciprocalPoint,
transform,
primitivize,
conventionalize,
cartesianize,
latticize,
nigglibasis
# ---------------------------------------------------------------------------------------- #
include("utils.jl")
include("types.jl")
include("show.jl")
include("systems.jl")
include("transform.jl")
include("niggli.jl")
end # module | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 13212 | """
nigglibasis(Rs; rtol=1e-5, max_iterations=200)
Given a set of primitive basis vectors `Rs`, return a basis `Rs′` for the corresponding
Niggli-reduced unit cell, as well as a transformation matrix `P`, such that
`Rs′ = transform(Rs, P)` (see [`transform`](@ref)).
## Definition
A Niggli-reduced basis ``(\\mathbf{a}, \\mathbf{b}, \\mathbf{c})`` represents a unique
choice of basis for any given lattice (or, more precisely, a unique choice of the basis
vector lengths ``|\\mathbf{a}|, |\\mathbf{b}|, |\\mathbf{c}|``, and mutual angles between
``\\mathbf{a}, \\mathbf{b}, \\mathbf{c}``). This uniqueness is one of the main motivations
for computing the Niggli reduction procedure, as it enables easy comparison of lattices.
Additionally, the associated Niggli-reduced basis vectors ``(\\mathbf{a}, \\mathbf{b},
\\mathbf{c})``, fulfil several conditions [^3]:
1. **"Main" conditions:**
- The basis vectors are sorted by increasing length:
``|\\mathbf{a}| ≤ |\\mathbf{b}| ≤ |\\mathbf{c}|``.
- The angles between basis vectors are either all acute or all non-acute.
2. **"Special" conditions:**
- Several special conditions, applied in "special" cases, such as
``|\\mathbf{a}| = |\\mathbf{b}|`` or
`\\mathbf{b}\\cdot\\mathbf{c} = \\tfrac{1}{2}|\\mathbf{b}|^2`. See Ref. [^3] for
details.
Equivalently, the Niggli-reduced basis fulfils the following geometric conditions (Section
9.3.1 of Ref. [^3]):
- The basis vectors are sorted by increasing length.
- The basis vectors have least possible total length, i.e., ``|\\mathbf{a}| + |\\mathbf{b}|
+ |\\mathbf{c}|`` is minimum. I.e., the associated Niggli cell is a Buerger cell.
- The associated Buerger cell has maximum deviation among all other Buerger cells, i.e., the
basis vector angles ``α, β, γ`` maximize ``|90° - α| + |90° - β| + |90° - γ|``.
## Keyword arguments
- `rtol :: Real`: relative tolerance used in the Grosse-Kunstleve approach for floating point
comparisons (default: `1e-5`).
- `max_iterations :: Int`: maximum number of iterations in which to cycle the Krivy-Gruber
steps (default: `200`).
## Implementation
Implementation follows the algorithm originally described by Krivy & Gruber [^1], with the
stability modificiations proposed by Grosse-Kunstleve et al. [^2] (without which the
algorithm proposed in [^1] simply does not work on floating point hardware).
[^1] I. Krivy & B. Gruber. A unified algorithm for determinign the reduced (Niggli) cell,
[Acta Crystallogr. A **32**, 297 (1976)](https://doi.org/10.1107/S0567739476000636).
[^2] R.W. Grosse-Kunstleve, N.K. Sauter, & P.D. Adams, Numerically stable algorithms for the
computation of reduced unit cells,
[Acta Crystallogr. A **60**, 1 (2004)](https://doi.org/10.1107/S010876730302186X)
[^3] Sections 9.2 & 9.3, International Tables of Crystallography, Volume A, 5th ed. (2005).
"""
function nigglibasis(
Rs :: DirectBasis{3};
rtol :: Real = 1e-5, # default relative tolereance, following [2]
max_iterations :: Int = 200
)
# check input
if length(Rs) ≠ 3
error("the Niggli reduction implementation only supports 3D settings: at least 3 \
basis vectors must be given")
end
if any(R -> length(R) ≠ 3, Rs)
error("the Niggli reduction implementation only supports 3D settings: a basis \
vector was supplied that does not have 3 components")
end
rtol < 0 && throw(DomainError(rtol, "relative tolerance `rtol` must be non-negative"))
max_iterations ≤ 0 && throw(DomainError(max_iterations, "`max_iterations` must be positive"))
# tolerance
D = 3 # algorithm assumes 3D setting (TODO: extend to 2D?)
ϵ = rtol * abs(volume(Rs))^(1/D)
# initialization
A, B, C, ξ, η, ζ = niggli_parameters(Rs)
P = @SMatrix [1 0 0; 0 1 0; 0 0 1]
# performing steps A1-A8 until no condition is met
iteration = 0
while iteration < max_iterations
iteration += 1
# At each step below, we update the transformation matrix `P` by post-multiplying it
# with `P′` in the sense P ← P * P′. We also update the associated Niggli parameters
# (A, B, C, ξ, η, ζ) by applying the transformation `P` to the original basis
# vectors `Rs`. If we reach the end of the set of steps, without being returned to
# step A1, we are done. Executing steps A2, A5, A6, A7, & A8 subsequently returns us
# to step A1.
# step A1 A > B || (A == B && abs(ξ) > abs(η))
if A > B + ϵ || (abs(A-B) < ϵ && abs(ξ) > abs(η) + ϵ)
P′ = @SMatrix [0 -1 0; -1 0 0; 0 0 -1] # swap (A,ξ) ↔ (B,η)
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
end
# step A2 B > C || (B == C && abs(η) > abs(ζ))
if B > C + ϵ || (abs(B-C) < ϵ && abs(η) > abs(ζ) + ϵ)
P′ = @SMatrix [-1 0 0; 0 0 -1; 0 -1 0] # swap (B,η) ↔ (C,ζ)
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
continue # restart from step A1
end
# step A3 ξ*η*ζ > 0
if tolsign(ξ, ϵ) * tolsign(η, ϵ) * tolsign(ζ, ϵ) == 1
i, j, k = ifelse(ξ < -ϵ, -1, 1), ifelse(η < -ϵ, -1, 1), ifelse(ζ < -ϵ, -1, 1)
P′ = @SMatrix [i 0 0; 0 j 0; 0 0 k] # update (ξ,η,ζ) to (|ξ|,|η|,|ζ|)
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
end
# step A4 ξ*η*ζ ≤ 0
l, m, n = tolsign(ξ, ϵ), tolsign(η, ϵ), tolsign(ζ, ϵ)
if !(l == m == n == -1) && (l*m*n == -1 || l*m*n == 0)
i, j, k = _stepA4_ijk(l, m, n)
P′ = @SMatrix [i 0 0; 0 j 0; 0 0 k] # update (ξ,η,ζ) to (-|ξ|,-|η|,-|ζ|)
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
end
# step A5 abs(ξ) > B || (ξ == B && 2η < ζ) || (ξ == -B, ζ < 0)
if abs(ξ) > B + ϵ || (abs(B-ξ) < ϵ && 2η < ζ - ϵ) || (abs(ξ + B) < ϵ && ζ < -ϵ)
P′ = @SMatrix [1 0 0; 0 1 ifelse(ξ > 0, -1, 1); 0 0 1]
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
continue # restart from step A1
end
# step A6 abs(η) > A || (η == A && 2ξ < ζ) || (η == -A && ζ < 0)
if abs(η) > A + ϵ || (abs(η-A) < ϵ && 2ξ < ζ - ϵ) || (abs(η+A) < η && ζ < -ϵ)
P′ = @SMatrix [1 0 ifelse(η > 0, -1, 1); 0 1 0; 0 0 1]
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
continue # restart from step A1
end
# step A7 abs(ζ) > A || (ζ == A && 2ξ < η) || (ζ == -A && η < 0)
if abs(ζ) > A + ϵ || (abs(ζ-A) < ϵ && 2ξ < η - ϵ) || (abs(ζ+A) < ϵ && η < -ϵ)
P′ = @SMatrix [1 ifelse(ζ > 0, -1, 1) 0; 0 1 0; 0 0 1]
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
continue # restart from step A1
end
# step A8 ξ + η + ζ + A + B < 0 || (ξ + η + ζ + A + B == 0 && 2(A + η) + ζ > 0)
if ξ + η + ζ + A + B < -ϵ || (abs(ξ + η + ζ + A + B) < ϵ && 2(A + η) + ζ > ϵ)
P′ = @SMatrix [1 0 1; 0 1 1; 0 0 1]
P *= P′
A, B, C, ξ, η, ζ = niggli_parameters(transform(Rs, P))
continue # restart from step A1
end
# end of steps, without being returned to step A1 → we are done
Rs′ = transform(Rs, P)
return Rs′, P
end
error("Niggli reduction did not converge after $max_iterations iterations")
end
function niggli_parameters(Rs)
# The Gram matrix G (or metric tensor) is related to the Niggli parameters (A, B, C, ξ,
# η, ζ) via
# G = [A ζ/2 η/2; ζ/2 B ξ/2; η ξ/2 C/2]
# and `G = stack(Rs)'*stack(Rs)` = VᵀV.
a, b, c = Rs[1], Rs[2], Rs[3]
A = dot(a, a)
B = dot(b, b)
C = dot(c, c)
ξ = 2dot(b, c)
η = 2dot(c, a)
ζ = 2dot(a, b)
return A, B, C, ξ, η, ζ
end
intsign(x::Real) = signbit(x) ? -1 : 1
tolsign(x::Real, ϵ::Real) = abs(x) > ϵ ? intsign(x) : 0 # -1 if x<-ϵ, +1 if x>ϵ, else 0
function _stepA4_ijk(l::Int, m::Int, n::Int)
i = j = k = 1
r = 0 # reference to variables i, j, k: r = 0 → undef, r = 1 → i, r = 2 → j, r = 3 → k
if l == 1 # ξ > ϵ
i = -1
elseif l == 0 # ξ ≈ 0
r = 1 # → `i`
end
if m == 1 # η > ϵ
j = -1
elseif m == 0 # η ≈ 0
r = 2 # → `j`
end
if n == 1 # ζ > ϵ
k = -1
elseif n == 0 # ζ ≈ 0
r = 3 # → `k`
end
if i*j*k == -1
if r == 1
i = -1
elseif r == 2
j = -1
elseif r == 3
k = -1
else # r == 0 (unset, but needed)
error("unhandled error in step A4 of Niggli reduction; \
failed to set reference `r` to variables `i, j, k`, but \
expected reference to be set")
end
end
return i, j, k
end
# ---------------------------------------------------------------------------------------- #
# Implementations in 1D & 2D
niggle_reduce(Rs :: DirectBasis{1}; kws...) = Rs # 1D (trivial)
function nigglibasis( # 2D by 3D-piggybacking
Rs :: DirectBasis{2};
rtol :: Real = 1e-5, kws...)
max_norm = maximum(norm, Rs)
# create trivially 3D-extended basis by appending a basis vector along z (& make this
# interim vector longer than any other basis vector, so it is necessarily last in the
# Niggli basis so it can be readily removed)
Rs³ᴰ = DirectBasis{3}(SVector(Rs[1]..., 0.0),
SVector(Rs[2]..., 0.0),
SVector(0.0, 0.0, 2max_norm))
Rs³ᴰ′, P³ᴰ = nigglibasis(Rs³ᴰ; rtol=rtol, kws...)
# extract associated 2D basis and transformation
Rs′ = DirectBasis{2}(Rs³ᴰ′[1][1:2], Rs³ᴰ′[2][1:2])
P = P³ᴰ[SOneTo(2), SOneTo(2)]
# the 2D basis is now Niggli-reduced, but we want to maintain its original handedness:
# even though P³ᴰ is guaranteed to have det(P³ᴰ) = 1, the same is not necessarily true
# for P = P³ᴰ[1:2,1:2], if P³ᴰ[3,3] == -1; in that case, we have to fix it - doing so is
# not trickier than one might naively think: one cannot simply rotate the basis (this
# could correspond to rotating the lattice, which might not preserve the lattice), nor
# simply swap the signs of `Rs′[1]` or `Rs′[2]`, since that change their mutual angles -
# nor even generically swap `Rs[1]` to `Rs′[2]`; instead, the appropriate change depends
# on the relative lengths and angles of `Rs′[1]` & `Rs′[2]`
if P³ᴰ[3,3] == -1
ϵ = rtol * abs(volume(Rs′))^(1/2)
local P_flip :: SMatrix{2,2,Int,4}
if abs(dot(Rs′[1], Rs′[1]) - dot(Rs′[2], Rs′[2])) < ϵ # Rs′[1] ≈ Rs′[2]
# then we can just swap 𝐚 and 𝐛 to get a right-handed basis, without worrying
# about breaking the Niggli-rule |𝐚|≤|𝐛|
P_flip = @SMatrix [0 1; 1 0]
else # norm(Rs′[1]) > norm(Rs′[2])
# we either swap the sign of 𝐛 or check if 𝐛=𝐚-𝐛 gives a bigger ∠(𝐚, 𝐛) while
# having the same length as |𝐛| (cf. Sec. 9.3.1 ITA5)
candidate1 = -Rs′[2]
candidate2 = Rs′[1] - Rs′[2]
if abs(dot(candidate1, candidate1) - dot(candidate2, candidate2)) < ϵ
# pick the candidate that maximizes the term |π/2 - ∠(𝐚,𝐛)| (Buerger
# condition (iv))
γ1 = signed_angle²ᴰ(Rs′[1], candidate1) # ∠(𝐚, candidate1)
γ2 = signed_angle²ᴰ(Rs′[1], candidate2) # ∠(𝐚, candidate2)
if abs(π/2 - γ1) < abs(π/2 - γ2) # pick `candidate2` for 𝐛
P_flip = @SMatrix [1 0; 1 -1]
else # pick `candidate1` for 𝐛
P_flip = @SMatrix [1 0; 0 -1]
end
else # use `candidate1` for 𝐛
P_flip = @SMatrix [1 0; 0 -1]
end
end
P *= P_flip
Rs′ = transform(Rs′, P_flip)
end
if det(P) < 0 # basis change did not preserve handedness, contrary to intent
error("2D Niggli reduction failed to produce a preserve handedness")
end
if P³ᴰ[1,3] ≠ 0 || P³ᴰ[2,3] ≠ 0 || P³ᴰ[3,1] ≠ 0 || P³ᴰ[3,2] ≠ 0
error(lazy"interim 3D transformation has unexpected nonzero elements: P³ᴰ=$P³ᴰ")
end
return Rs′, P
end
# computes the angle between 2D vectors a & b in [-π,π)
signed_angle²ᴰ(a::StaticVector{2}, b::StaticVector{2}) = atan(a[1]*b[2]-a[2]*b[1], dot(a,b))
# ---------------------------------------------------------------------------------------- #
# Reciprocal lattice vector by Niggli reduction of the direct lattice first
function nigglibasis(Gs :: ReciprocalBasis{D}; kws...) where D
Rs = DirectBasis(reciprocalbasis(Gs).vs) # TODO: replace by `dualbasis` when implemented
Rs′, P = nigglibasis(Rs; kws...)
return reciprocalbasis(Rs′), P
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 297 | # ---------------------------------------------------------------------------------------- #
# DirectBasis
function Base.show(io::IO, ::MIME"text/plain", Vs::AbstractBasis)
print(io, typeof(Vs))
print(io, " ($(crystalsystem(Vs))):")
for V in Vs
print(io, "\n ", V)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 17855 | """
crystal(a, b, c, α, β, γ) --> DirectBasis{3}
Calculate basis vectors ``\\mathbf{R}_1``, ``\\mathbf{R}_2``, ``\\mathbf{R}_3`` in a 3D
Cartesian basis for a right-handed coordinate system with specified basis vector lengths
`a`, `b`, `c` (associated with ``\\mathbf{R}_1``, ``\\mathbf{R}_2``, & ``\\mathbf{R}_3``,
respectively) and specified interaxial angles
`α` ``= ∠(\\mathbf{R}_2,\\mathbf{R}_3)``, `β` ``= ∠(\\mathbf{R}_3,\\mathbf{R}_1)``,
`γ` ``= ∠(\\mathbf{R}_1,\\mathbf{R}_2)``, with ``∠`` denoting the angle between two vectors.
For definiteness, the ``\\mathbf{R}_1`` basis vector is oriented along the ``x``-axis of the
Cartesian coordinate system, and the ``\\mathbf{R}_2`` axis is placed in the ``xy``-plane.
"""
function crystal(a::Real, b::Real, c::Real, α::Real, β::Real, γ::Real)
# consistency checks on interaxial angles (equivalently, sides of the corresponding
# unit-spherical triangle)
if !isvalid_sphericaltriangle(α,β,γ)
throw(DomainError((α,β,γ), "The provided angles α,β,γ cannot be mapped to a spherical triangle, and thus do not form a valid axis system"))
end
sinγ, cosγ = sincos(γ)
# R₁ and R₂ are easy
R₁ = SVector{3,Float64}(a, 0.0, 0.0)
R₂ = SVector{3,Float64}(b*cosγ, b*sinγ, 0.0)
# R3 is harder
cosα = cos(α)
cosβ = cos(β)
ϕ = atan(cosα - cosγ*cosβ, sinγ*cosβ)
θ = asin(sign(β)*sqrt(cosα^2 + cosβ^2 - 2*cosα*cosγ*cosβ)/abs(sin(γ))) # more stable than asin(cosβ/cosϕ) when β or γ ≈ π/2
sinθ, cosθ = sincos(θ)
sinϕ, cosϕ = sincos(ϕ)
R₃ = SVector{3,Float64}(c.*(sinθ*cosϕ, sinθ*sinϕ, cosθ))
Rs = DirectBasis(R₁, R₂, R₃)
return Rs
end
"""
crystal(a, b, γ) --> DirectBasis{2}
Calculate basis vectors ``\\mathbf{R}_1``, ``\\mathbf{R}_2`` in a 2D Cartesian basis for a
right-handed coordinate system with specified basis vector lengths `a`, `b` (associated with
``\\mathbf{R}_1`` & ``\\mathbf{R}_2``, respectively) and specified interaxial angle
`γ` ``= ∠(\\mathbf{R}_1,\\mathbf{R}_2)``.
For definiteness, the ``\\mathbf{R}_1`` basis vector is oriented along the ``x``-axis of the
Cartesian coordinate system.
"""
function crystal(a::Real,b::Real,γ::Real)
R₁ = SVector{2,Float64}(a, 0.0)
R₂ = SVector{2,Float64}(b.*(cos(γ), sin(γ)))
return DirectBasis(R₁,R₂)
end
"""
crystal(a) --> DirectBasis{1}
Return a one-dimensional crystal with lattice period `a`.
"""
crystal(a::Real) = DirectBasis(SVector{1,Float64}(float(a)))
# For a three-axis system, α, β, and γ are subject to constraints: specifically,
# since they correspond to sides of a (unit-radius) spherical triangle, they
# are subject to identical constraints. These constraints are
# 0 < α + β + γ < 2π, (1)
# sin(s-α)*sin(s-β)*sin(s-γ)/sin(s) > 0, (2)
# with s = (α + β + γ)/2. Constraint (2) can be identified from Eq. (38) of
# http://mathworld.wolfram.com/SphericalTrigonometry.html; due to (1), it can
# be simplified to sin(s-α)*sin(s-β)*sin(s-γ) > 0. This impacts generation
# of triclinic and monoclinic crystals.
function isvalid_sphericaltriangle(α::Real, β::Real, γ::Real)
s = (α+β+γ)/2
check1 = zero(s) < s < π
check2 = sin(s-α)*sin(s-β)*sin(s-γ) > zero(s)
return check1 && check2
end
°(φ::Real) = deg2rad(φ)
"""
crystalsystem(Rs::DirectBasis{D}) --> String
crystalsystem(Gs::ReciprocalBasis{D}) --> String
Determine the crystal system of a point lattice with `DirectBasis` `Rs`, assuming the
conventional setting choice defined in the International Tables of Crystallography [^ITA6].
If a `ReciprocalBasis` `Gs` is provided for the associated reciprocal point lattice, the
crystal system is determined by first transforming to the direct lattice.
There are 4 crystal systems in 2D and 7 in 3D (see Section 2.1.2(iii) of [^ITA5]):
| `D` | System | Conditions | Free parameters |
|:-------|--------------|------------------------|----------------------|
| **1D** | linear | none | a |
| **2D** | square | a=b & γ=90° | a |
| | rectangular | γ=90° | a,b |
| | hexagonal | a=b & γ=120° | a |
| | oblique | none | a,b,γ |
| **3D** | cubic | a=b=c & α=β=γ=90° | a |
| | hexagonal | a=b & α=β=90° & γ=120° | a,c |
| | trigonal | a=b & α=β=90° & γ=120° | a,c (a,α for hR) |
| | tetragonal | a=b & α=β=γ=90° | a,c |
| | orthorhombic | α=β=γ=90° | a,b,c |
| | monoclinic | α=γ=90° | a,b,c,β≥90° |
| | triclinic | none | a,b,c,α,β,γ |
The `Rs` must specify a set of conventional basis vectors, i.e., not generally primitive.
For primitive basis vectors, the crystal system can be further reduced into 5 Bravais types
in 2D and 14 in 3D (see [`bravaistype`](@ref)).
[^ITA6]: M.I. Aroyo, International Tables of Crystallography, Vol. A, 6th ed. (2016): Tables
3.1.2.1 and 3.1.2.2 (or Tables 2.1.2.1, 9.1.7.1, and 9.1.7.2 of [^ITA5]).
[^ITA5]: T. Hahn, International Tables of Crystallography, Vol. A, 5th ed. (2005).
"""
function crystalsystem(Rs::DirectBasis{D}) where D
if D == 1
# doesn't seem to exist a well-established convention for 1D? this is ours...
system = "linear"
elseif D == 2
a,b = norm.(Rs)
γ = angles(Rs)
if a≈b && γ≈°(90)
system = "square"
elseif γ≈°(90)
system = "rectangular"
elseif a≈b && γ≈°(120)
system = "hexagonal"
else
system = "oblique"
end
elseif D == 3
# TODO: Generalize this to work for non-standard orientations of the lattice/
# lattice-vector orderings
a,b,c = norm.(Rs)
α,β,γ = angles(Rs)
if a≈b≈c && α≈β≈γ≈°(90) # cubic (cP, cI, cF)
system = "cubic"
elseif a≈b && γ≈°(120) && α≈β≈°(90) # hexagonal (hR, hP)
system = "hexagonal"
elseif a≈b≈c && α≈β≈γ # trigonal (? hP, hI ?)
system = "trigonal"
# rhombohedral axes (a = b = c, α=β=γ < 120° ≠ 90° ?)
# hexagonal axes, triple obverse axes (a = b ≠ c, α=β=90°, γ=120° ?)
elseif a≈b && α≈β≈γ≈°(90) # tetragonal (tP, tI)
system = "tetragonal"
elseif α≈β≈γ≈°(90) # orthorhombic (oP, oI, oF, oC)
system = "orthorhombic"
elseif α≈γ≈°(90) # monoclinic (mP, mC)
system = "monoclinic"
else # triclinic (aP)
system = "triclinic"
end
else
throw(DomainError(D, "dimension must be 1, 2, or 3"))
end
return system
end
function crystalsystem(Gs::ReciprocalBasis{D}) where D
Rs = DirectBasis{D}(reciprocalbasis(Gs).vs)
return crystalsystem(Rs)
end
function crystalsystem(sgnum::Integer, D::Integer=3)
if D == 1
# doesn't seem to exist a well-established convention for 1D? this is ours...
if sgnum ∈ 1:2; return "linear" # lp
else _throw_invalid_sgnum(sgnum, D)
end
elseif D == 2
if sgnum ∈ 1:2; return "oblique" # mp
elseif sgnum ∈ 3:9; return "rectangular" # op, oc
elseif sgnum ∈ 10:12; return "square" # tp
elseif sgnum ∈ 13:17; return "hexagonal" # hp
else _throw_invalid_sgnum(sgnum, D)
end
elseif D == 3
if sgnum ∈ 1:2; return "triclinic" # aP
elseif sgnum ∈ 3:15; return "monoclinic" # mP, mC
elseif sgnum ∈ 16:74; return "orthorhombic" # oP, oI, oF, oC
elseif sgnum ∈ 75:142; return "tetragonal" # tP, tI
elseif sgnum ∈ 143:167; return "trigonal" # hR, hP
elseif sgnum ∈ 168:194; return "hexagonal" # hR, hP
elseif sgnum ∈ 195:230; return "cubic" # cP, cI, cF
else _throw_invalid_sgnum(sgnum, D)
end
end
end
"""
directbasis(sgnum, D=3; abclims, αβγlims)
directbasis(sgnum, Val(D); abclims, αβγlims) --> DirectBasis{D}
Return a random (conventional) `DirectBasis` for a crystal compatible with the space group
number `sgnum` and dimensionality `D`.
Free parameters in the lattice vectors are chosen randomly, with limits optionally supplied
in `abclims` (lengths) and `αβγlims` (angles).
By convention, the length of the first lattice vector (`a`) is set to unity, such that the
second and third (`b` and `c`) lattice vectors' lengths are relative to the first.
Limits on the relative uniform distribution of lengths `b` and `c` can be specified as
2-tuple kwarg `abclims`; similarly, limits on the angles `α`, `β`, `γ` can be set via
αβγlims (only affects oblique, monoclinic, & triclinic lattices).
"""
function directbasis(sgnum::Integer, Dᵛ::Val{D}=Val(3);
abclims::NTuple{2,Real}=(0.5,2.0),
αβγlims::NTuple{2,Real}=(°(30),°(150))) where D
system = crystalsystem(sgnum, D)
if D == 1
a = 1.0
return crystal(a)
elseif D == 2
if system == "square" # a=b & γ=90° (free: a)
a = b = 1.0
γ = °(90)
elseif system == "rectangular" # γ=90° (free: a,b)
a = 1.0; b = relrand(abclims)
γ = °(90)
elseif system == "hexagonal" # a=b & γ=120° (free: a)
a = b = 1.0;
γ = °(120)
elseif system == "oblique" # no conditions (free: a,b,γ)
a = 1.0; b = relrand(abclims)
γ = uniform_rand(αβγlims...)
else
throw(DomainError(system))
end
return crystal(a,b,γ)
elseif D == 3
if system == "cubic" # a=b=c & α=β=γ=90° (free: a)
a = b = c = 1.0
α = β = γ = °(90)
elseif system == "hexagonal" || # a=b & α=β=90° & γ=120° (free: a,c)
system == "trigonal"
a = b = 1.0; c = relrand(abclims)
α = β = °(90); γ = °(120)
# For the trigonal crystal system, a convention is adopted where
# the crystal basis matches the a hexagonal one, even when the
# Bravais type is rhombohedral (of course, the primitive basis
# differs). The conventional cell is always chosen to have (triple
# obverse) hexagonal axes (see ITA6 Sec. 3.1.1.4, Tables 2.1.1.1,
# & 3.1.2.2).
# For rhombohedral systems the primitive cell has a=b=c, α=β=γ<120°≠90°.
# Note that the hexagonal and trigonal crystal systems also share
# the same crystal system abbreviation 'h' (see CRYSTALSYSTEM_ABBREV),
# which already suggests this choice.
# TODO: in principle, this means it would be more meaningful to
# branch on `CRYSTALSYSTEM_ABBREV[D][system]` than on `system`.
elseif system == "tetragonal" # a=b & α=β=γ=90° (free: a,c)
a = b = 1.0; c = relrand(abclims)
α = β = γ = °(90)
elseif system == "orthorhombic" # α=β=γ=90° (free: a,b,c)
a = 1.0; b, c = relrand(abclims), relrand(abclims)
α = β = γ = °(90)
elseif system == "monoclinic" # α=γ=90° (free: a,b,c,β≥90°)
a = 1.0; b, c = relrand(abclims), relrand(abclims)
α = γ = °(90); β = uniform_rand(°(90), αβγlims[2])
while !isvalid_sphericaltriangle(α,β,γ)
# arbitrary combinations of α,β,γ need not correspond to a valid
# axis-system; reroll until they do
β = uniform_rand(°(90), αβγlims[2])
end
elseif system == "triclinic" # no conditions (free: a,b,c,α,β,γ)
a = 1.0; b, c = relrand(abclims), relrand(abclims)
low, high = αβγlims
α, β, γ = uniform_rand(low, high), uniform_rand(low, high), uniform_rand(low, high)
while !isvalid_sphericaltriangle(α,β,γ)
# arbitrary combinations of α,β,γ need not correspond to a valid
# axis-system; reroll until they do
α, β, γ = uniform_rand(low, high), uniform_rand(low, high), uniform_rand(low, high)
end
else
throw(DomainError(system))
end
return crystal(a,b,c,α,β,γ)
else
_throw_invalid_dim(D)
end
end
function directbasis(sgnum::Integer, D::Integer;
abclims::NTuple{2,Real}=(0.5,2.0), αβγlims::NTuple{2,Real}=(°(30),°(150)))
directbasis(sgnum, Val(D); abclims=abclims, αβγlims=αβγlims)
end
const CRYSTALSYSTEM_ABBREV = (
ImmutableDict("linear"=>'l'), # 1D
ImmutableDict("oblique"=>'m', "rectangular"=>'o', "square"=>'t', "hexagonal"=>'h'), # 2D
ImmutableDict("triclinic"=>'a', "monoclinic"=>'m', "orthorhombic"=>'o', # 3D
"tetragonal"=>'t', "trigonal"=>'h', "hexagonal"=>'h', "cubic"=>'c')
)
# cached results of combining `crystalsystem(sgnum, D)` w/ a centering calc from `iuc`
const BRAVAISTYPE_2D = (
"mp", "mp", "op", "op", "oc", "op", "op", "op", "oc", "tp", "tp", "tp", "hp", "hp",
"hp", "hp", "hp")
const BRAVAISTYPE_3D = (
"aP", "aP", "mP", "mP", "mC", "mP", "mP", "mC", "mC", "mP", "mP", "mC", "mP", "mP",
"mC", "oP", "oP", "oP", "oP", "oC", "oC", "oF", "oI", "oI", "oP", "oP", "oP", "oP",
"oP", "oP", "oP", "oP", "oP", "oP", "oC", "oC", "oC", "oA", "oA", "oA", "oA", "oF",
"oF", "oI", "oI", "oI", "oP", "oP", "oP", "oP", "oP", "oP", "oP", "oP", "oP", "oP",
"oP", "oP", "oP", "oP", "oP", "oP", "oC", "oC", "oC", "oC", "oC", "oC", "oF", "oF",
"oI", "oI", "oI", "oI", "tP", "tP", "tP", "tP", "tI", "tI", "tP", "tI", "tP", "tP",
"tP", "tP", "tI", "tI", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tI", "tI",
"tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tI", "tI", "tI", "tI", "tP", "tP",
"tP", "tP", "tP", "tP", "tP", "tP", "tI", "tI", "tI", "tI", "tP", "tP", "tP", "tP",
"tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tP", "tI", "tI",
"tI", "tI", "hP", "hP", "hP", "hR", "hP", "hR", "hP", "hP", "hP", "hP", "hP", "hP",
"hR", "hP", "hP", "hP", "hP", "hR", "hR", "hP", "hP", "hP", "hP", "hR", "hR", "hP",
"hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP",
"hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "hP", "cP", "cF",
"cI", "cP", "cI", "cP", "cP", "cF", "cF", "cI", "cP", "cI", "cP", "cP", "cF", "cF",
"cI", "cP", "cP", "cI", "cP", "cF", "cI", "cP", "cF", "cI", "cP", "cP", "cP", "cP",
"cF", "cF", "cF", "cF", "cI", "cI")
"""
bravaistype(sgnum::Integer, D::Integer=3; normalize::Bool=false) --> String
Return the Bravais type of `sgnum` in dimension `D` as a string (as the concatenation
of the single-character crystal abbreviation and the centering type).
## Keyword arguments
- **`normalize`:** If the centering type associated with `sgnum` is `'A'`, we can choose
(depending on the keyword argument `normalize`, defaulting to `false`) to "normalize" to
the centering type `'C'`, since the difference between `'A'` and `'C'` centering only
amounts to a basis change.
With `normalize=true` we then have only the canonical 14 Bravais type, i.e.
`unique(bravaistype.(1:230, 3), normalize=true)` returns only 14 distinct types, rather
than 15.
This only affects space groups 38-41 (normalizing their conventional Bravais types from
`"oA"` to `"oC"`).
"""
function bravaistype(sgnum::Integer, D::Integer=3; normalize::Bool=false)
@boundscheck boundscheck_sgnum(sgnum, D)
if D == 3
# If the centering type is 'A', then we could in fact always pick the basis
# differently such that the centering would be 'C'; in other words, base-centered
# lattices at 'A' and 'C' in fact describe the same Bravais lattice; there is no
# significance in trying to differentiate them - if we do, we end up with 15
# Bravais lattices in 3D rather than 14: so we manually fix that here:
bt = @inbounds BRAVAISTYPE_3D[sgnum]
if normalize
return bt != "oA" ? bt : "oC"
else
return bt
end
elseif D == 2
return @inbounds BRAVAISTYPE_2D[sgnum]
else
return "lp"
end
end
"""
centering(sgnum::Integer, D::Integer=3) --> Char
Return the conventional centering type `cntr` of the space group with number `sgnum` and
dimension `D`.
The centering type is equal to the first letter of the Hermann-Mauguin notation's label,
i.e., `centering(sgnum, D) == first(Crystalline.iuc(sgnum, D))`. Equivalently, the
centering type is the second and last letter of the Bravais type ([`bravaistype`](@ref)),
i.e., `centering(sgnum, D) == bravaistype(sgnum, D)`.
Possible values of `cntr`, depending on dimensionality `D`, are (see ITA Sec. 9.1.4):
- `D = 1`:
- `cntr = 'p'`: no centering (primitive)
- `D = 2`:
- `cntr = 'p'`: no centring (primitive)
- `cntr = 'c'`: face centered
- `D = 3`:
- `cntr = 'P'`: no centring (primitive)
- `cntr = 'I'`: body centred (innenzentriert)
- `cntr = 'F'`: all-face centred
- `cntr = 'A'` or `'C'`: one-face centred, (b,c) or (a,b)
- `cntr = 'R'`: hexagonal cell rhombohedrally centred
"""
centering(sgnum::Integer, D::Integer=3) = last(bravaistype(sgnum, D)) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 21710 | # Transformation matrices P that map bases and coordinate vectors in either direct or
# reciprocal space from a conventional to a primitive setting:
#
# === Basis transformation ===
# --- Direct basis ---
# Under P, a direct-space conventional basis (𝐚 𝐛 𝐜) is mapped to a primitive basis
# (𝐚′ 𝐛′ 𝐜′) = (𝐚 𝐛 𝐜)𝐏
# --- Reciprocal basis ---
# Under P, a reciprocal-space conventional basis (𝐚* 𝐛* 𝐜*) is mapped to a primitive basis
# (𝐚*′ 𝐛*′ 𝐜*′) = (𝐚* 𝐛* 𝐜*)(𝐏⁻¹)ᵀ
# since (𝐚 𝐛 𝐜)(𝐚* 𝐛* 𝐜*)ᵀ = 2πI must be conserved after the basis change.
#
# === Coordinate vector transformation ===
# The _coefficients_ of a vector transform differently than its _bases_. Specifically:
# --- Direct coordinate vectors ---
# An 𝐫-vector specified in a conventional reciprocal basis (𝐚 𝐛 𝐜) with an associated
# coefficient vector (r₁ r₂ r₃)ᵀ, i.e. 𝐫 ≡ (𝐚 𝐛 𝐜)(r₁ r₂ r₃)ᵀ [w/ (r₁ r₂ r₃)ᵀ a column
# vector], is mapped to a primitive coefficient vector under P:
# (r₁′ r₂′ r₃′)ᵀ = P⁻¹(r₁ r₂ r₃)ᵀ
# since
# 𝐤 = (𝐚′ 𝐛′ 𝐜′)(r₁′ r₂′ r₃′)ᵀ (1) [... by definition]
# = (𝐚 𝐛 𝐜)P(r₁′ r₂′ r₃′)ᵀ [... transformation of (𝐚 𝐛 𝐜) under P]
# = (𝐚 𝐛 𝐜)(r₁ r₂ r₃)ᵀ (2) [... by definition]
# then, combining (1) and (2)
# P(r₁′ r₂′ r₃′)ᵀ = (r₁ r₂ r₃)ᵀ
# ⇔ (r₁′ r₂′ r₃′)ᵀ = P⁻¹(r₁ r₂ r₃)ᵀ
# --- Reciprocal coordinate vectors ---
# A 𝐤-vector specified in a conventional reciprocal basis (𝐚* 𝐛* 𝐜*) with an associated
# coefficient vector (k₁ k₂ k₃)ᵀ, i.e. 𝐤 ≡ (𝐚* 𝐛* 𝐜*)(k₁ k₂ k₃)ᵀ [w/ (k₁ k₂ k₃)ᵀ a column
# vector], is mapped to a primitive coefficient vector under P
# (k₁′ k₂′ k₃′)ᵀ = Pᵀ(k₁ k₂ k₃)ᵀ
# since
# 𝐤 = (𝐚*′ 𝐛*′ 𝐜*′)(k₁′ k₂′ k₃′)ᵀ (1) [... by definition]
# = (𝐚* 𝐛* 𝐜*)(P⁻¹)ᵀ(k₁′ k₂′ k₃′)ᵀ [... transformation of (𝐚* 𝐛* 𝐜*) under P]
# = (𝐚* 𝐛* 𝐜*)(k₁ k₂ k₃)ᵀ (2) [... by definition]
# then, combining (1) and (2)
# (P⁻¹)ᵀ(k₁′ k₂′ k₃′)ᵀ = (k₁ k₂ k₃)ᵀ
# ⇔ (k₁′ k₂′ k₃′)ᵀ = Pᵀ(k₁ k₂ k₃)ᵀ
#
# The values of P depend on convention. We adopt those of Table 2 of the Aroyo's Bilbao
# publication (https://doi.org/10.1107/S205327331303091X), which give the coefficients of
# (Pᵀ)⁻¹. Equivalently, this is the "CDML" setting choices that can also be inferred by
# combining Tables 1.5.4.1 and 1.5.4.2 of the International Tables of Crystallography,
# Vol. B, Ed. 2, 2001 (ITB2). Of note, this is _not_ the standard ITA choice for the
# primitive cell for 'R' or 'A'-centered cells (see Tables 3.1.2.2 of ITA6; the CDML
# convention is more widespread, however, especially for k-vectors; hence our choice).
# See also the 2016 HPKOT/Hinuma paper (https://doi.org/10.1016/j.commatsci.2016.10.015)
# for additional details and context, though note that they use different matrices for 'A'
# and complicate the 'C' scenario (Table 3).
# Note that, by convention, the centering type 'B' never occurs among the space groups.
const PRIMITIVE_BASIS_MATRICES = (
# 1D
ImmutableDict('p'=>SMatrix{1,1,Float64}(1)), # primitive
# 2D
ImmutableDict('p'=>SMatrix{2,2,Float64}([1 0; 0 1]), # primitive/simple
'c'=>SMatrix{2,2,Float64}([1 1; -1 1]./2)), # centered
# 3D
ImmutableDict(
'P'=>SMatrix{3,3,Float64}([1 0 0; 0 1 0; 0 0 1]), # primitive/simple
'F'=>SMatrix{3,3,Float64}([0 1 1; 1 0 1; 1 1 0]./2), # face-centered
'I'=>SMatrix{3,3,Float64}([-1 1 1; 1 -1 1; 1 1 -1]./2), # body-centered
'R'=>SMatrix{3,3,Float64}([2 -1 -1; 1 1 -2; 1 1 1]./3), # rhombohedrally-centered
'A'=>SMatrix{3,3,Float64}([2 0 0; 0 1 -1; 0 1 1]./2), # base-centered (along x)
'C'=>SMatrix{3,3,Float64}([1 1 0; -1 1 0; 0 0 2]./2)) # base-centered (along z)
)
function canonicalize_centering(cntr, ::Val{D}, ::Val{P}) where {D,P}
if D == P # space/plane/line groups
return cntr
elseif D == 3 && P == 2 # layer groups
return cntr == '𝑝' ? 'P' :
cntr == '𝑐' ? 'C' : error(DomainError(cntr, "invalid layer group centering"))
elseif D == 3 && P == 1 # rod groups
return cntr == '𝓅' ? 'P' : error(DomainError(cntr, "invalid rod group centering"))
elseif D == 2 && P == 1 # frieze groups
return cntr == '𝓅' ? 'p' : error(DomainError(cntr, "invalid frieze group centering"))
else
throw(DomainError((D,P), "invalid combination of dimensionality D and periodicity P"))
end
end
@doc raw"""
primitivebasismatrix(cntr::Char, ::Val{D}=Val(3)) --> SMatrix{D,D,Float64}
primitivebasismatrix(cntr::Char, ::Val{D}, ::Val{P}) --> SMatrix{D,D,Float64}
Return the transformation matrix ``\mathbf{P}`` that transforms a conventional unit cell
with centering `cntr` to the corresponding primitive unit cell (in dimension `D` and
periodicity `P`) in CDML setting.
If `P` is not provided, it default to `D` (as e.g., applicable to Crystalline.jl's
`spacegroup`). If `D` and `P` differ, a subperiodic group setting is assumed (as e.g.,
applicable to Crystalline.jl's `subperiodicgroup`).
## Transformations in direct and reciprocal space
### Bases
The returned transformation matrix ``\mathbf{P}`` transforms a direct-space conventional
basis ``(\mathbf{a}\ \mathbf{b}\ \mathbf{c})`` to the direct-space primitive basis
```math
(\mathbf{a}'\ \mathbf{b}'\ \mathbf{c}') =
(\mathbf{a}\ \mathbf{b}\ \mathbf{c})\mathbf{P}.
```
Analogously, ``\mathbf{P}`` transforms a reciprocal-space conventional basis
``(\mathbf{a}^*\ \mathbf{b}^*\ \mathbf{c}^*)`` to
```math
(\mathbf{a}^{*\prime}\ \mathbf{b}^{*\prime}\ \mathbf{c}^{*\prime}) =
(\mathbf{a}^*\ \mathbf{b}^*\ \mathbf{c}^*)(\mathbf{P}^{-1})^{\text{T}}.
```
see also [`transform(::DirectBasis, ::AbstractMatrix{<:Real})`](@ref) and
[`transform(::ReciprocalBasis, ::AbstractMatrix{<:Real})`](@ref)).
### Coordinates
The coordinates of a point in either direct or reciprocal space, each referred to a basis,
also transform under ``\mathbf{P}``. Concretely, direct- and reciprocal-space
conventional points ``\mathbf{r} = (r_1, r_2, r_3)^{\text{T}}`` and
``\mathbf{k} = (k_1, k_2, k_3)^{\text{T}}``, respectively, transform to a primitive setting
under ``\mathbf{P}`` according to:
```math
\mathbf{r}' = \mathbf{P}^{-1}\mathbf{r},\\
\mathbf{k}' = \mathbf{P}^{\text{T}}\mathbf{k}.
```
See also [`transform(::DirectPoint, ::AbstractMatrix{<:Real})`](@ref) and
[`transform(::ReciprocalPoint, ::AbstractMatrix{<:Real})`](@ref)).
## Setting conventions
The setting choice for the primitive cell implied by the returned ``\mathbf{P}`` follows the
widely adopted Cracknell-Davies-Miller-Love (CDML) convention.[^CDML]
This convention is explicated e.g. in Table 2 of [^Aroyo] (or, alternatively, can be
inferred from Tables 1.5.4.1 and 1.5.4.2 of [^ITB2]) and is followed e.g. on the Bilbao
Crystallographic Server[^BCS], in the CDML reference work on space group irreps[^CDML], and
in the C library `spglib`.[^spglib]
Note that this setting choice is _not_ what is frequently referred to as the "ITA primitive
setting", from which it differs for hP, hR, and oA Bravais types.
The setting choice is usually referred to as the CDML primitive setting, or, less
frequently and more ambiguously, as the crystallographic primitive setting.
[^CDML]: Cracknell, Davies, Miller, & Love, Kroenecker Product Tables, Vol. 1 (1979).
[^BCS]: Bilbao Crystallographic Server, [KVEC](https://www.cryst.ehu.es/cryst/get_kvec.html).
[^Aroyo]: Aroyo *et al.*, [Acta Cryst. A70, 126 (2014)]
(https://doi.org/10.1107/S205327331303091X): Table 2 gives
``(\mathbf{P}^{-1})^{\text{T}}``.
[^ITB2]: Hahn, International Tables of Crystallography, Vol. B, 2nd edition (2001).
[^spglib]: Spglib documentation: [Transformation to the primitive setting]
(https://spglib.github.io/spglib/definition.html#transformation-to-the-primitive-cell).
Thus, Bravais.jl and [Spglib.jl](https://github.com/singularitti/Spglib.jl)
transform to identical primitive settings and are hence mutually compatible.
"""
@inline function primitivebasismatrix(cntr::Char,
Dᵛ::Val{D}=Val(3), Pᵛ::Val{P}=Val(D)) where {D,P}
D ∉ 1:3 && _throw_invalid_dim(D)
P ∉ 1:D && throw(DomainError((D,P), "invalid combination of dimensionality D and periodicity P"))
cntr = canonicalize_centering(cntr, Dᵛ, Pᵛ)
return PRIMITIVE_BASIS_MATRICES[D][cntr]
end
@inline function centeringtranslation(cntr::Char,
Dᵛ::Val{D}=Val(3), Pᵛ::Val{P}=Val(D)) where {D,P}
D ∉ 1:3 && _throw_invalid_dim(D)
P ∉ 1:D && throw(DomainError((D,P), "invalid combination of dimensionality D and periodicity P"))
cntr = canonicalize_centering(cntr, Dᵛ, Pᵛ)
if D == 3
if cntr == 'P'; return zeros(SVector{3})
elseif cntr == 'I'; return SVector((1,1,1)./2)
elseif cntr == 'F'; return SVector((1,0,1)./2)
elseif cntr == 'R'; return SVector((2,1,1)./3)
elseif cntr == 'A'; return SVector((0,1,1)./2)
elseif cntr == 'C'; return SVector((1,1,0)./2)
else; _throw_invalid_cntr(cntr, 3)
end
elseif D == 2
if cntr == 'p'; return zeros(SVector{2})
elseif cntr == 'c'; return SVector((1,1)./2)
else; _throw_invalid_cntr(cntr, 2)
end
elseif D == 1
if cntr == 'p'; return zeros(SVector{1})
else; _throw_invalid_cntr(cntr, 1)
end
end
error("unreachable reached")
end
function all_centeringtranslations(cntr::Char,
Dᵛ::Val{D}=Val(3), Pᵛ::Val{P}=Val(D)) where {D,P}
D ∉ 1:3 && _throw_invalid_dim(D)
P ∉ 1:D && _throw_invalid_dim(P)
cntr = canonicalize_centering(cntr, Dᵛ, Pᵛ)
if cntr == 'P' || cntr == 'p'
# primitive cell is equal to conventional cell: 0 extra centers
return SVector{D,Float64}[]
elseif D == 3 && cntr == 'F'
# primitive cell has 1/4th the volume of conventional cell: 3 extra centers
return [SVector((0,1,1)./2), SVector((1,0,1)./2), SVector((1,1,0)./2)]
elseif D == 3 && cntr == 'R'
# primitive cell has 1/3rd the volume of conventional cell: 2 extra centers
return [SVector((2,1,1)./3), SVector((1,2,2)./3)]
else # 'I', 'C', 'c', 'A'
# primitive cell has half the volume of conventional cell: 1 extra center
return [centeringtranslation(cntr, Dᵛ)]
end
end
"""
centering_volume_fraction(cntr, Dᵛ, Pᵛ) --> Int
Return the (integer-) ratio between the volumes of the conventional and primitive unit cells
for a space or subperiodic group with centering `cntr`, embedding dimension `D`, and
periodicity dimension `P`.
"""
@inline function centering_volume_fraction(cntr::Char,
Dᵛ::Val{D}=Val(3), Pᵛ::Val{P}=Val(D)) where {D,P}
D ∉ 1:3 && _throw_invalid_dim(D)
P ∉ 1:D && _throw_invalid_dim(P)
cntr = canonicalize_centering(cntr, Dᵛ, Pᵛ)
if cntr == 'P' || cntr == 'p'
return 1
elseif D == 3 && cntr == 'F'
return 4
elseif D == 3 && cntr == 'R'
return 3
else # 'I', 'C', 'c', 'A'
return 2
end
end
# ---------------------------------------------------------------------------------------- #
"""
reciprocalbasis(Rs) --> ::ReciprocalBasis{D}
Return the reciprocal basis of a direct basis `Rs` in `D` dimensions, provided as a
`StaticVector` of `AbstractVector`s (e.g., a `DirectBasis{D}`) or a `D`-dimensional `NTuple`
of `AbstractVector`s, or a (or, type-unstably, as any iterable of `AbstractVector`s).
"""
function reciprocalbasis(Rs::Union{NTuple{D, <:AbstractVector{<:Real}},
StaticVector{D, <:AbstractVector{<:Real}}}) where D
if D == 3
G₁′ = Rs[2]×Rs[3]
pref = 2π/dot(Rs[1], G₁′)
vecs = pref .* (G₁′, Rs[3]×Rs[1], Rs[1]×Rs[2])
elseif D == 2
G₁′ = (@SVector [-Rs[2][2], Rs[2][1]])
pref = 2π/dot(Rs[1], G₁′)
vecs = pref .* (G₁′, (@SVector [Rs[1][2], -Rs[1][1]]))
elseif D == 1
vecs = (SVector{1,Float64}(2π/first(Rs[1])),)
else
# The general definition of the reciprocal basis is [G₁ ... Gₙ]ᵀ = 2π[R₁ ... Rₙ]⁻¹;
# that form should generally be a bit slower than the above specific variants, cf.
# the inversion operation, so we only use it as a high-dimensional fallback. Since
# we use SVectors, however, either approach will probably have the same performance.
Rm = stack(Rs)
Gm = 2π.*inv(transpose(Rm))
vecs = ntuple(i->Gm[:,i], Val(D))
end
return ReciprocalBasis{D}(vecs)
end
reciprocalbasis(Rs) = reciprocalbasis(Tuple(Rs)) # type-unstable convenience accesor
# TODO: Provide a utility to go from ReciprocalBasis -> DirectBasis. Maybe deprecate
# `reciprocalbasis` and have a more general function `dualbasis` instead?
# ---------------------------------------------------------------------------------------- #
@doc raw"""
transform(Rs::DirectBasis, P::AbstractMatrix{<:Real})
Transform a direct basis `Rs` ``= (\mathbf{a}\ \mathbf{b}\ \mathbf{c})`` under the
transformation matrix `P` ``= \mathbf{P}``, returning
`Rs′` ``= (\mathbf{a}'\ \mathbf{b}'\ \mathbf{c}') = (\mathbf{a}\ \mathbf{b}\ \mathbf{c})
\mathbf{P}``.
"""
function transform(Rs::DirectBasis{D}, P::AbstractMatrix{<:Real}) where D
# Rm′ = Rm*P (w/ Rm a matrix w/ columns of untransformed direct basis vecs Rᵢ)
Rm′ = stack(Rs)*P
return DirectBasis{D}(ntuple(i->Rm′[:,i], Val(D)))
end
@doc raw"""
transform(Gs::ReciprocalBasis, P::AbstractMatrix{<:Real})
Transform a reciprocal basis `Gs` ``= (\mathbf{a}^* \mathbf{b}^* \mathbf{c}^*)`` under the
transformation matrix `P` ``= \mathbf{P}``, returning
`Gs′` ``= (\mathbf{a}^{*\prime}\ \mathbf{b}^{*\prime}\ \mathbf{c}^{*\prime}) =
(\mathbf{a}^*\ \mathbf{b}^*\ \mathbf{c}^*)(\mathbf{P}^{-1})^{\text{T}}``.
"""
function transform(Gs::ReciprocalBasis{D}, P::AbstractMatrix{<:Real}) where D
# Gm′ = Gm*(P⁻¹)ᵀ = Gm*(Pᵀ)⁻¹ (w/ Gm a matrix w/ columns of reciprocal vecs Gᵢ)
Gm′ = stack(Gs)/P'
return ReciprocalBasis{D}(ntuple(i->Gm′[:,i], Val(D)))
end
@doc raw"""
transform(r::DirectPoint, P::AbstractMatrix{<:Real}) --> r′::typeof(r)
Transform a point in direct space `r` ``= (r_1, r_2, r_3)^{\text{T}}`` under the
transformation matrix `P` ``= \mathbf{P}``, returning `r′` ``= (r_1', r_2', r_3')^{\text{T}}
= \mathbf{P}^{-1}(r_1', r_2', r_3')^{\text{T}}``.
"""
function transform(r::DirectPoint{D}, P::AbstractMatrix{<:Real}) where D
return DirectPoint{D}(P\parent(r))
end
@doc raw"""
transform(k::ReciprocalPoint, P::AbstractMatrix{<:Real}) --> k′::typeof(k)
Transform a point in reciprocal space `k` ``= (k_1, k_2, k_3)^{\text{T}}`` under the
transformation matrix `P` ``= \mathbf{P}``, returning `k′` ``= (k_1', k_2', k_3')^{\text{T}}
= \mathbf{P}^{\text{T}}(k_1', k_2', k_3')^{\text{T}}``.
"""
function transform(k::ReciprocalPoint{D}, P::AbstractMatrix{<:Real}) where D
return ReciprocalPoint{D}(P'*parent(k))
end
# ---------------------------------------------------------------------------------------- #
function primitivize(V::Union{AbstractBasis{D}, AbstractPoint{D}}, cntr::Char) where D
if cntr == 'P' || cntr == 'p' # the conventional and primitive bases coincide
return V
else
P = primitivebasismatrix(cntr, Val(D))
return transform(V, P)
end
end
function primitivize(V::Union{AbstractBasis{D}, AbstractPoint{D}}, sgnum::Integer) where D
cntr = centering(sgnum, D)
return primitivize(V, cntr)
end
@doc """
primitivize(V::Union{AbstractBasis, AbstractPoint},
cntr_or_sgnum::Union{Char, <:Integer}) --> V′::typeof(V)
Return the primitive basis or point `V′` associated with the input conventional
`AbstractBasis` or `AbstractPoint` `V`.
The assumed centering type is specified by `cntr_or_sgnum`, given either as a centering
character (`::Char`) or inferred from a space group number (`::Integer`) and the
dimensionality of `V` (see also [`centering(::Integer, ::Integer)`](@ref)).
"""
primitivize(::Union{AbstractBasis, AbstractPoint}, ::Union{Char, <:Integer})
@doc """
primitivize(Rs::DirectBasis, cntr_or_sgnum::Union{Char, <:Integer}) --> Rs′::typeof(Rs)
Return the primitive direct basis `Rs′` corresponding to the input conventional direct basis
`Rs`.
"""
primitivize(::DirectBasis, ::Union{Char, <:Integer})
@doc """
primitivize(Gs::ReciprocalBasis, cntr_or_sgnum::Union{Char, <:Integer}) --> Gs′::typeof(Gs)
Return the primitive reciprocal basis `Gs′` corresponding to the input conventional
reciprocal basis `Gs`.
"""
primitivize(::ReciprocalBasis, ::Union{Char, <:Integer})
@doc """
primitivize(r::DirectPoint, cntr_or_sgnum::Union{Char, <:Integer}) --> r′::typeof(r)
Return the direct point `r′` with coordinates in a primitive basis, corresponding to
the input point `r` with coordinates in a conventional basis.
"""
primitivize(::DirectPoint, ::Union{Char, <:Integer})
@doc """
primitivize(k::ReciprocalPoint, cntr_or_sgnum::Union{Char, <:Integer}) --> k′::typeof(k)
Return the reciprocal point `k′` with coordinates in a primitive basis, corresponding to
the input point `k` with coordinates in a conventional basis.
"""
primitivize(::ReciprocalPoint, ::Union{Char, <:Integer})
# ---------------------------------------------------------------------------------------- #
function conventionalize(V′::Union{AbstractBasis{D}, AbstractPoint{D}}, cntr::Char) where D
if cntr == 'P' || cntr == 'p' # the conventional and primitive bases coincide
return V′
else
P = primitivebasismatrix(cntr, Val(D))
return transform(V′, inv(P))
end
end
function conventionalize(V′::Union{AbstractBasis{D}, AbstractPoint{D}}, sgnum::Integer) where D
cntr = centering(sgnum, D)
return conventionalize(V′, cntr)
end
@doc """
conventionalize(V′::Union{AbstractBasis, AbstractPoint},
cntr_or_sgnum::Union{Char, <:Integer}) --> V::typeof(V′)
Return the conventional basis or point `V` associated with the input primitive
`AbstractBasis` or `AbstractPoint` `V′`.
The assumed centering type is specified by `cntr_or_sgnum`, given either as a centering
character (`::Char`) or inferred from a space group number (`::Integer`) and the
dimensionality of `V′` (see also [`centering(::Integer, ::Integer)`](@ref)).
"""
conventionalize(::Union{AbstractBasis, AbstractPoint}, ::Union{Char, <:Integer})
@doc """
conventionalize(Rs′::DirectBasis, cntr_or_sgnum::Union{Char, <:Integer}) --> Rs::typeof(Rs′)
Return the conventional direct basis `Rs` corresponding to the input primitive direct basis
`Rs′`.
"""
conventionalize(::DirectBasis, ::Union{Char, <:Integer})
@doc """
conventionalize(Gs′::ReciprocalBasis, cntr_or_sgnum::Union{Char, <:Integer}) --> Gs::typeof(Gs′)
Return the conventional reciprocal basis `Gs` corresponding to the input primitive
reciprocal basis `Gs′`.
"""
conventionalize(::ReciprocalBasis, ::Union{Char, <:Integer})
@doc """
conventionalize(r′::DirectPoint, cntr_or_sgnum::Union{Char, <:Integer}) --> r::typeof(r′)
Return the direct point `r` with coordinates in a conventional basis, corresponding to the
input point `r′` with coordinates in a primitive basis.
"""
conventionalize(::DirectPoint, ::Union{Char, <:Integer})
@doc """
conventionalize(k′::ReciprocalPoint, cntr_or_sgnum::Union{Char, <:Integer}) --> k::typeof(k′)
Return the reciprocal point `k` with coordinates in a conventional basis, corresponding to
the input point `k′` with coordinates in a primitive basis.
"""
conventionalize(::ReciprocalPoint, ::Union{Char, <:Integer})
# ---------------------------------------------------------------------------------------- #
const _basis_explain_str = "Depending on the object, the basis may be inferrable " *
"directly from the object; if not, it must be supplied explicitly."
@doc """
cartesianize!
In-place transform an object with coordinates in an lattice basis to an object with
coordinates in a Cartesian basis.
$_basis_explain_str
"""
function cartesianize! end
@doc """
cartesianize
Transform an object with coordinates in an lattice basis to an object with coordinates in a
Cartesian basis.
$_basis_explain_str
@doc """
function cartesianize end
@doc """
latticize!
In-place transform object with coordinates in a Cartesian basis to an object with
coordinates in a lattice basis.
$_basis_explain_str
"""
function latticize! end
@doc """
latticize
Transform an object with coordinates in a Cartesian basis to an object with coordinates in
a lattice basis.
$_basis_explain_str
"""
function latticize end
@doc """
cartesianize(v::AbstractVector{<:Real}, basis)
Transform a vector `v` with coordinates referred to a lattice basis to a vector with
coordinates referred to the Cartesian basis implied by the columns (or vectors) of `basis`.
"""
cartesianize(v::AbstractVector{<:Real}, basis::AbstractMatrix{<:Real}) = basis*v
function cartesianize(v::AbstractVector{<:Real},
basis::AbstractVector{<:AbstractVector{<:Real}})
return v'basis
end
@doc """
latticize(v::AbstractVector{<:Real}, basis)
Transform a vector `v` with coordinates referred to the Cartesian basis to a vector with
coordinates referred to the lattice basis implied by the columns (or vectors) of `basis`.
"""
latticize(v::AbstractVector{<:Real}, basis::AbstractMatrix{<:Real}) = basis\v
function latticize(v::AbstractVector{<:Real},
basis::AbstractVector{<:AbstractVector{<:Real}})
return latticize(v, reduce(hcat, basis))
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 6497 | # --- DirectBasis and ReciprocalBasis for crystalline lattices ---
"""
AbstractBasis <: StaticVector{D, SVector{D,Float64}}
Abstract supertype of a `D`-dimensional basis in `D`-dimensional space.
"""
abstract type AbstractBasis{D, T} <: StaticVector{D, SVector{D, T}} end
for (T, space_type) in zip((:DirectBasis, :ReciprocalBasis), ("direct", "reciprocal"))
@eval begin
@doc """
$($T){D} <: AbstractBasis{D}
A wrapper type over `D` distinct `D`-dimensional vectors (given as a
`SVector{D, SVector{D,Float64}}`), defining a lattice basis in $($space_type)
space.
"""
struct $T{D} <: AbstractBasis{D, Float64}
vs::SVector{D, SVector{D, Float64}}
# ambiguity-resolving methods relative to StaticArrays's methods
$T{D}(vs::StaticVector{D}) where D = new{D}(convert(SVector{D, SVector{D, Float64}}, vs))
$T{D}(vs::NTuple{D}) where D = new{D}(convert(SVector{D, SVector{D, Float64}}, vs))
$T{D}(vs::AbstractVector) where D = new{D}(convert(SVector{D, SVector{D, Float64}}, vs))
# special-casing for D=1 (e.g., to make `$T([1.0])` work)
$T{1}(vs::StaticVector{1,<:Real}) = new{1}(SVector((convert(SVector{1, Float64}, vs),)))
$T{1}(vs::NTuple{1,Real}) = new{1}(SVector((convert(SVector{1, Float64}, vs),)))
$T{1}(vs::AbstractVector{<:Real}) = new{D}(SVector((convert(SVector{1, Float64}, vs),)))
end
end
@eval function convert(::Type{$T{D}}, vs::StaticVector{D, <:StaticVector{D, <:Real}}) where D
$T{D}(convert(SVector{D, SVector{D, Float64}}, vs))
end
@eval $T(vs::StaticVector{D}) where D = $T{D}(vs) # resolve more ambiguities, both
@eval $T(vs::StaticVector{D}...) where D = $T{D}(vs) # internally and with StaticArrays,
@eval $T(vs::NTuple{D}) where D = $T{D}(vs) # and make most reasonable accessor
@eval $T(vs::NTuple{D}...) where D = $T{D}(vs) # patterns functional
@eval $T(vs::AbstractVector) = $T{length(vs)}(vs) # [type-unstable]
@eval $T(vs::AbstractVector...) = $T{length(vs)}(promote(vs...))
end
parent(Vs::AbstractBasis) = Vs.vs
# define the AbstractArray interface for AbstractBasis{D}
@propagate_inbounds getindex(Vs::AbstractBasis, i::Int) = parent(Vs)[i]
size(::AbstractBasis{D}) where D = (D,)
IndexStyle(::Type{<:AbstractBasis}) = IndexLinear()
_angle(rA, rB) = acos(dot(rA, rB) / (norm(rA) * norm(rB)))
angles(Rs::AbstractBasis{2}) = _angle(Rs[1], Rs[2])
function angles(Rs::AbstractBasis{3})
α = _angle(Rs[2], Rs[3])
β = _angle(Rs[3], Rs[1])
γ = _angle(Rs[1], Rs[2])
return α, β, γ
end
angles(::AbstractBasis{D}) where D = _throw_invalid_dim(D)
if VERSION > v"1.9.0-DEV.1163"
# since https://github.com/JuliaLang/julia/pull/43334, Julia defines its own `stack`;
# however, it is still much slower than a naive implementation based on `reduce` cf.
# https://github.com/JuliaLang/julia/issues/52590. As such, we extend `Base.stack` even
# on more recent versions; when the issue is fixed, it would be enough to only define
# `stack` on earlier versions of Julia, falling back to `Base.stack` on later versions.
import Base: stack
end
"""
stack(Vs::AbstractBasis)
Return a matrix `[Vs[1] Vs[2] .. Vs[D]]` from `Vs::AbstractBasis{D}`, i.e., the matrix whose
columns are the basis vectors of `Vs`.
"""
stack(Vs::AbstractBasis) = reduce(hcat, parent(Vs))
"""
volume(Vs::AbstractBasis)
Return the volume ``V`` of the unit cell associated with the basis `Vs::AbstractBasis{D}`.
The volume is computed as ``V = \\sqrt{\\mathrm{det}\\mathbf{G}}`` with with ``\\mathbf{G}``
denoting the metric matrix of `Vs` (cf. the International Tables of Crystallography,
Volume A, Section 5.2.2.3).
See also [`metricmatrix`](@ref).
"""
volume(Vs::AbstractBasis) = sqrt(det(metricmatrix(Vs)))
"""
metricmatrix(Vs::AbstractBasis)
Return the (real, symmetric) metric matrix of a basis `Vs`, i.e., the matrix with elements
``G_{ij} =`` `dot(Vs[i], Vs[j])`, as defined in the International Tables of Crystallography,
Volume A, Section 5.2.2.3.
Equivalently, this is the Gram matrix of `Vs`, and so can also be expressed as `Vm' * Vm`
with `Vm` denoting the columnwise concatenation of the basis vectors in `Vs`.
See also [`volume`](@ref).
"""
function metricmatrix(Vs::AbstractBasis{D}) where D
Vm = stack(Vs)
return Vm' * Vm # equivalent to [dot(v, w) for v in Vs, w in Vs]
end
# ---------------------------------------------------------------------------------------- #
"""
AbstractPoint{D, T} <: StaticVector{D, T}
Abstract supertype of a `D`-dimensional point with elements of type `T`.
"""
abstract type AbstractPoint{D, T} <: StaticVector{D, T} end
parent(p::AbstractPoint) = p.v
@propagate_inbounds getindex(v::AbstractPoint, i::Int) = parent(v)[i]
size(::AbstractPoint{D}) where D = (D,)
IndexStyle(::Type{<:AbstractPoint}) = IndexLinear()
for (PT, BT, space_type) in zip((:DirectPoint, :ReciprocalPoint),
(:DirectBasis, :ReciprocalBasis),
("direct", "reciprocal"))
@eval begin
@doc """
$($PT){D} <: AbstractPoint{D}
A wrapper type over an `SVector{D, Float64}`, defining a single point in
`D`-dimensional $($space_type) space.
The coordinates of a $($PT) are generally assumed specified relative to an
associated $($BT). To convert to Cartesian coordinates, see [`cartesianize`](@ref).
"""
struct $PT{D} <: AbstractPoint{D, Float64}
v::SVector{D, Float64}
# ambiguity-resolving methods relative to StaticArray's
$PT{D}(v::StaticVector{D, <:Real}) where D = new{D}(convert(SVector{D, Float64}, v))
$PT{D}(v::NTuple{D, Real}) where D = new{D}(convert(SVector{D, Float64}, v))
$PT{D}(v::AbstractVector{<:Real}) where D = new{D}(convert(SVector{D, Float64}, v))
end
@eval function convert(::Type{$PT{D}}, v::StaticVector{D, <:Real}) where D
$PT{D}(convert(SVector{D, Float64}, v))
end
@eval $PT(v::StaticVector{D}) where D = $PT{D}(v) # resolve internal/StaticArrays
@eval $PT(v::NTuple{D, Real}) where D = $PT{D}(v) # ambiguities & add accessors
@eval $PT(v::AbstractVector) = $PT{length(v)}(v)
@eval $PT(v::Real...) = $PT{length(v)}(v)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2447 | # Equivalent to (unchecked) `rand(Uniform(low, high))` from Distributions.jl, but copied
# in here to avoid taking on that dependency (long load time; ~7 s)
uniform_rand(low::Real, high::Real) = low + (high - low) * rand()
#=
relrand(lims::NTuple{2,Real}) --> Float64
Computes a random number in the range specified by the two-element
tuple `lims`. The random numbers are sampled from two uniform
distributions, namely [`lims[1]`, 1] and [1, `lims[2]`], in such a
way as to ensure that the sampling is uniform over the joint
interval [-1/`lims[1]`, -1] ∪ [1, `lims[2]`].
This is useful for ensuring an even sampling of numbers that are
either smaller or larger than unity. E.g. for `x = relrand((0.2,5.0))`,
`x` is equally probable to fall in inv(`x`)∈[1,5] or `x`∈[1,5].
=#
function relrand(lims::NTuple{2,<:Real})
low, high = lims; invlow = inv(low)
lowthres = (invlow - 1.0)/(invlow + high - 2.0)
if rand() < lowthres && low < 1.0 # smaller than 1.0
r = uniform_rand(low, 1.0)
elseif high > 1.0 # bigger than 1.0
r = uniform_rand(1.0, high)
else # default
return uniform_rand(low, high)
end
end
# === frequent error messages ===
# Note: there are some copied/overlapping definitions w/ Crystalline here
@noinline function _throw_invalid_cntr(cntr::AbstractChar, D::Integer)
if D == 3
throw(DomainError(cntr,
"centering abbreviation must be either P, I, F, R, A, or C in dimension 3"))
elseif D == 2
throw(DomainError(cntr,
"centering abbreviation must be either p or c in dimension 2"))
elseif D == 1
throw(DomainError(cntr,
"centering abbreviation must be p in dimension 1"))
else
_throw_invalid_dim(D)
end
end
@noinline function _throw_invalid_dim(D::Integer)
throw(DomainError(D, "dimension must be 1, 2, or 3"))
end
@noinline function _throw_invalid_sgnum(sgnum::Integer, D::Integer)
throw(DomainError(sgnum,
"group number must be between 1 and $((2, 17, 230)[D]) in dimension $D"))
end
@inline function boundscheck_sgnum(sgnum::Integer, D::Integer)
if D == 3
sgnum ∈ 1:230 || _throw_invalid_sgnum(sgnum, 3)
elseif D == 2
sgnum ∈ 1:17 || _throw_invalid_sgnum(sgnum, 2)
elseif D == 1 &&
sgnum ∈ 1:2 || _throw_invalid_sgnum(sgnum, 1)
else
_throw_invalid_dim(D)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 22243 | module ParseIsotropy
using Crystalline
using Crystalline: AbstractIrrep
export parselittlegroupirreps
# --- Magic numbers ---
const BYTES_PER_KCHAR = 3
const BYTES_PER_KVEC = 16*BYTES_PER_KCHAR;
# --- 3D Space group irrep struct ---
struct SGIrrep3D{T} <: AbstractIrrep{3} where T
iridx::Int # sequential index assigned to ir by Stokes et al
cdml::String # CDML label of irrep (including 𝐤-point label)
irdim::Int # dimensionality of irrep (i.e. size)
sgnum::Int # space group number
sglabel::String # Hermann-Mauguin label of space group
reality::Reality # real, pseudo-real, or complex
order::Int # number of operations
knum::Int # number of 𝐤-vecs in star
pmknum::Int # number of ±𝐤-vecs in star
special::Bool # whether star{𝐤} describes high-symmetry points
pmkstar::Vector{KVec{3}} # star{𝐤} for Complex, star{±𝐤} for Real
ops::Vector{SymOperation{3}} # every symmetry operation in space group
translations::Vector{Vector{Float64}} # translations assoc with matrix repres of ops in irrep
matrices::Vector{Matrix{T}} # non-translation assoc with matrix repres of ops in irrep
end
num(sgir::SGIrrep3D) = sgir.sgnum
(sgir::SGIrrep3D)(αβγ=nothing) = sgir.matrices # TODO: add missing αβγ dependence
order(sgir::SGIrrep3D) = sgir.order
iuc(sgir::SGIrrep3D) = sgir.sglabel
operations(sgir::SGIrrep3D) = sgir.ops
isspecial(sgir::SGIrrep3D) = sgir.special
orbit(sgir::SGIrrep3D) = sgir.pmkstar
irdim(sgir::SGIrrep3D) = sgir.irdim
dim(sgir::SGIrrep3D) = 3
# --- Parsing ---
parseisoir(T::Type{Real}) = parseisoir(Float64) # just for being able to call it with Real or Complex
parseisoir(T::Type{Complex}) = parseisoir(ComplexF64) # as input rather than Float64 and ComplexF64
function parseisoir(::Type{T}) where T<:Union{Float64,ComplexF64}
datatag = if T <: Real; "PIR"; elseif T <: Complex; "CIR"; end
io = open((@__DIR__)*"/../data/misc/ISOTROPY/"*datatag*"_data.txt","r")
irreps = Vector{Vector{SGIrrep3D{T}}}()
while !eof(io)
# --- READ BASIC INFO, LIKE SG & IR #, NAMES, DIMENSIONALITY, ORDER ---
irnum = parse(Int, String(read(io, 5))) # read IR# (next 5 characters)
sgnum = parse(Int, String(read(io, 4))) # read SG# (next 4 characters)
# read SGlabel, IRlabel,
skip(io, 2)
sglabel = filter(!isequal(' '), readuntil(io, "\""))
skip(io, 2)
irlabel = Crystalline.formatirreplabel(
Crystalline.roman2greek(filter(!isequal(' '), readuntil(io, "\""))))
# read irdim, irreality, knum, pmknum, opnum (rest of line; split at spaces)
# irdim : dimension of IR
# irreality : reality of IR (see Sec. 5 of Acta Cryst. (2013). A69, 388)
# - 1 : intrinsically real IR
# - 2 : intrinsically complex IR, but equiv. to its
# own complex conjugate; pseudoreal
# - 3 : intrinsically complex IR, inequivalent to
# its own complex conjugate
# knum : # of 𝐤-points in 𝐤-star
# pmknum : # of 𝐤-points in ±𝐤-star
# opnum : number of symmetry elements in little group of 𝐤-star
# (i.e. order of little group of 𝐤-star)
irdim, irreality′, knum, pmknum, opnum = parsespaced(String(readline(io)))
# --- REMAP REALITY TYPE TO USUAL CONVENTION ---
# ISOTROPY's convention is: 1 => REAL, 2 => PSEUDOREAL, and 3 => COMPLEX.
# Our convention (consistent with the Herring and Frobenius-Schur criteria) is
# instead that REAL = 1, PSEUDOREAL = -1, and COMPLEX = 0, as in encoded in the
# Reality enum. We make the swap here, so we get a single consistent convention.
irreality = fix_isotropy_reality_convention(irreality′)
# --- READ VECTORS IN THE (±)𝐤-STAR (those not related by ±symmetry) ---
# this is a weird subtlelty: Stokes et al store their 4×4 𝐤-matrices
# in column major format; but they store their operators and irreps
# in row-major format - we take care to follow their conventions on
# a case-by-case basis
Nstoredk = T <: Real ? pmknum : knum # number of stored 𝐤-points depend on whether we load real or complex representations
k = [Vector{Float64}(undef, 3) for n=Base.OneTo(Nstoredk)]
kabc = [Matrix{Float64}(undef, 3,3) for n=Base.OneTo(Nstoredk)]
for n = Base.OneTo(Nstoredk) # for Complex, loop over distinct vecs in 𝐤-star; for Real loop over distinct vecs in ±𝐤-star
if n == 1 # we don't have to worry about '\n' then, and can use faster read()
kmat = reshape(parsespaced(String(read(io, BYTES_PER_KVEC))), (4,4)) # load as column major matrix
else
kmat = reshape(parsespaced(readexcept(io, BYTES_PER_KVEC, '\n')), (4,4)) # load as column major matrix
end
# Stokes' conventions implicitly assign NaN columns to unused free parameters when any
# other free parameters are in play; here, we prefer to just have zero-columns. To do
# that, we change common denominators to 1 if they were 0 in Stokes' data.
kdenom = [(iszero(origdenom) ? 1 : origdenom) for origdenom in kmat[4,:]]
# 𝐤-vectors are specified as a pair (k, kabc), denoting a 𝐤-vector
# ∑³ᵢ₌₁ (kᵢ + aᵢα+bᵢβ+cᵢγ)*𝐆ᵢ (w/ recip. basis vecs. 𝐆ᵢ)
# here the matrix kabc is decomposed into vectors (𝐚,𝐛,𝐜) while α,β,γ are free
# parameters ranging over all non-special values (i.e. not coinciding with high-sym 𝐤)
k[n] = (@view kmat[1:3,1])./kdenom[1] # coefs of "fixed" parts
kabc[n] = (@view kmat[1:3,2:4])./(@view kdenom[2:4])' # coefs of free parameters (α,β,γ)
end
kspecial = iszero(kabc[1]) # if no free parameters, i.e. 𝐚=𝐛=𝐜=𝟎 ⇒ high-symmetry 𝐤-point (i.e. "special")
checked_read2eol(io) # read to end of line & check we didn't miss anything
# --- READ OPERATORS AND IRREPS IN LITTLE GROUP OF ±𝐤-STAR ---
opmatrix = [Matrix{Float64}(undef, 3,4) for _=1:opnum]
irtranslation = [zeros(Float64, 3) for _=1:opnum]
irmatrix = [Matrix{T}(undef, irdim,irdim) for _=1:opnum]
for i = 1:opnum
# --- OPERATOR ---
# matrix form of the symmetry operation (originally in a 4×4 form; the [4,4] idx is a common denominator)
optempvec = parsespaced(readline(io))
opmatrix[i] = rowmajorreshape(optempvec, (4,4))[1:3,:]./optempvec[16] # surprisingly, this is in row-major form..!
# note the useful convention that the nonsymmorphic translation always ∈[0,1[; in parts of Bilbao, components are
# occasionally negative; this makes construction of `MultTable`s unnecessarily cumbersome
# --- ASSOCIATED IRREP ---
if !kspecial # if this is a general position, we have to incorporate a translational modulation in the point-part of the irreps
transtemp = parsespaced(readline(io))
irtranslation[i] = transtemp[1:3]./transtemp[4]
else
irtranslation[i] = zeros(Float64, 3)
end
# irrep matrix "base" (read next irdim^2 elements into matrix)
elcount1 = elcount2 = 0
while elcount1 != irdim^2
tempvec = parsespaced(T, readline(io))
elcount2 += length(tempvec)
irmatrix[i][elcount1+1:elcount2] = tempvec
elcount1 = elcount2
end
irmatrix[i] = permutedims(irmatrix[i], (2,1)) # we loaded as column-major, but Stokes et al use row-major (unlike conventional Fortran)
irmatrix[i] .= reprecision_data.(irmatrix[i])
end
# --- STORE DATA IN VECTOR OF IRREPS ---
irrep = SGIrrep3D{T}(irnum, irlabel, irdim, sgnum, sglabel, irreality,
opnum, knum, pmknum, kspecial, KVec.(k, kabc),
SymOperation{3}.(opmatrix), irtranslation, irmatrix)
length(irreps) < sgnum && push!(irreps, Vector{SGIrrep3D{T}}()) # new space group idx
push!(irreps[sgnum], irrep)
# --- FINISHED READING CURRENT IRREP; MOVE TO NEXT ---
end
close(io)
return irreps
end
"""
parsespaced(T::Type, s::AbstractString)
Parses a string `s` with spaces interpreted as delimiters, split-
ting at every contiguious block of spaces and returning a vector
of the split elements, with elements parsed as type `T`.
E.g. `parsespaced(Int, " 1 2 5") = [1, 2, 5]`
"""
@inline function parsespaced(T::Type{<:Number}, s::AbstractString)
spacesplit=split(s, r"\s+", keepempty=false)
if T <: Complex
for (i,el) in enumerate(spacesplit)
if el[1]=='('
@inbounds spacesplit[i] = replace(replace(el[2:end-1],",-"=>"-"),','=>'+')*"i"
end
end
end
return parse.(T, spacesplit)
end
@inline parsespaced(s::AbstractString) = parsespaced(Int, s)
"""
readexcept(s::IO, nb::Integer, except::Char; all=true)
Same as `read(s::IO, nb::Integer; all=true)` but allows us ignore byte matches to
those in `except`.
"""
function readexcept(io::IO, nb::Integer, except::Union{Char,Nothing}='\n'; all=true)
out = IOBuffer(); n = 0
while n < nb && !eof(io)
c = read(io, Char)
if c == except
continue
end
write(out, c)
n += 1
end
return String(take!(out))
end
function checked_read2eol(io) # read to end of line & check that this is indeed the last character
s = readline(io)
# check that the string indeed is empty; i.e. we didn't miss anything
@assert isempty(s) "Parsing error; unexpected additional characters after expected EOL"
return nothing
end
function rowmajorreshape(v::AbstractVector, dims::Tuple)
return PermutedDimsArray(reshape(v, dims), reverse(ntuple(i->i, length(dims))))
end
function fix_isotropy_reality_convention(iso_reality::Integer)
iso_reality == 1 && return REAL
iso_reality == 2 && return PSEUDOREAL
iso_reality == 3 && return COMPLEX
throw(DomainError(iso_reality, "unreachable: unexpected ISOTROPY reality value"))
end
const tabfloats = (sqrt(3)/2, sqrt(2)/2, sqrt(3)/4, cos(π/12)/sqrt(2), sin(π/12)/sqrt(2))
"""
reprecision_data(x::Float64) --> Float64
Stokes et al. used a table to convert integers to floats; in addition,
the floats were truncated on writing. We can restore their precision
by checking if any of the relevant entries occur, and then returning
their untruncated floating point value. See also `tabfloats::Tuple`.
The possible floats that can occur in the irrep tables are:
┌ 0,1,-1,0.5,-0.5,0.25,-0.25 (parsed with full precision)
│ ±0.866025403784439 => ±sqrt(3)/2
│ ±0.707106781186548 => ±sqrt(2)/2
│ ±0.433012701892219 => ±sqrt(3)/4
│ ±0.683012701892219 => ±cos(π/12)/sqrt(2)
└ ±0.183012701892219 => ±sin(π/12)/sqrt(2)
"""
function reprecision_data(x::T) where T<:Real
absx = abs(x)
for preciseabsx in tabfloats
if isapprox(absx, preciseabsx, atol=1e-4)
return copysign(preciseabsx, x)
end
end
return x
end
reprecision_data(z::T) where T<:Complex = complex(reprecision_data(real(z)), reprecision_data(imag(z)))
function littlegroupirrep(ir::SGIrrep3D{<:Complex})
lgidx, lgops = littlegroup(operations(ir), orbit(ir)[1], centering(num(ir),3))
lgirdim′ = irdim(ir)/ir.knum; lgirdim = div(irdim(ir), ir.knum)
@assert lgirdim′ == lgirdim "The dimension of the little group irrep must be an integer, equaling "*
"the dimension of the space group irrep divided by the number of vectors "*
"in star{𝐤}"
kv = orbit(ir)[1] # representative element of the k-star; the k-vector of assoc. w/ this little group
if !is_erroneous_lgir(num(ir), label(ir), 3)
# broadcasting to get all the [1:lgirdim, 1:lgirdim] blocks of every irrep assoc. w/ the lgidx list
lgirmatrices = getindex.((@view ir()[lgidx]), Ref(Base.OneTo(lgirdim)), Ref(Base.OneTo(lgirdim)))
lgirtrans = ir.translations[lgidx]
else
#println("Manually swapped out corrected (CDML) LGIrrep for sgnum ", num(ir), ", irrep ", label(ir))
lgirmatrices, lgirtrans = manually_fixed_lgir(num(ir), label(ir))
end
return LGIrrep{3}(label(ir), LittleGroup(num(ir), kv, klabel(ir), collect(lgops)), lgirmatrices, lgirtrans, reality(ir), false)
end
parselittlegroupirreps() = parselittlegroupirreps.(parseisoir(Complex))
function parselittlegroupirreps(irvec::Vector{SGIrrep3D{ComplexF64}})
lgirsd = Dict{String, Collection{LGIrrep{3}}}()
curklab = nothing; accidx = Int[]
for (idx, ir) in enumerate(irvec) # loop over distinct irreps (e.g., Γ1, Γ2, Γ3, Z1, Z2, ..., GP1)
if curklab == klabel(ir)
push!(accidx, idx)
else
if curklab !== nothing
lgirs = Vector{LGIrrep{3}}(undef, length(accidx))
for (pos, kidx) in enumerate(accidx) # write all irreps of a specific k-point to a vector (e.g., Z1, Z2, ...)
lgirs[pos] = littlegroupirrep(irvec[kidx])
end
push!(lgirsd, curklab=>Collection(lgirs))
end
curklab = klabel(ir)
accidx = [idx,]
end
end
# after the loop finishes, one batch of k-point irreps still needs
# incorporation (because we're always _writing_ a new batch, when
# we've moved into the next one); for ISOTROPY's default sorting,
# this is the GP=Ω=[α,β,γ]ᵀ point)
lgirs = Vector{LGIrrep{3}}(undef, length(accidx))
for (pos, kidx) in enumerate(accidx)
lgirs[pos] = littlegroupirrep(irvec[kidx])
end
lastklab = klabel(irvec[last(accidx)])
@assert lastklab == "Ω"
push!(lgirsd, lastklab=>Collection(lgirs))
return lgirsd
end
const ERRONEOUS_LGIRS = (214=>"P₁", 214=>"P₂", 214=>"P₃") # extend to tuple of three-tuples if we ever need D ≠ 3 as well
@inline function is_erroneous_lgir(sgnum::Integer, irlab::String, D::Integer=3)
D == 1 && return false
D ≠ 3 && Crystalline._throw_2d_not_yet_implemented(D)
@simd for ps in ERRONEOUS_LGIRS
(ps[1]==sgnum && ps[2]==irlab) && return true
end
return false
end
"""
manually_fixed_lgir(sgnum::Integer, irlab::String)
The small irreps associated with the little group of k-point P ≡ KVec(½,½,½)
of space group 214 are not correct in ISOTROPY's dataset: specifically, while
they have the correct characters and pass the 1st and 2nd character orthogonality
theorems, they do not pass the grand orthogonality theorem that tests the irrep
matrices themselves. To that end, we manually replace these small irreps with
those listed by CDML (read off from their tables).
Those irreps are manually extracted in the scripts/cdml_sg214_P1P2P3.jl file.
The fix is made in littlegroupirrep(ir::SGIrrep3D{<:Complex}), using the check
in is_erroneous_lgir(...), with the constant "erroneous" tuple ERRONEOUS_LGIRS.
Emailed Stokes & Campton regarding the issue on Sept. 26, 2019; did not yet
hear back.
"""
function manually_fixed_lgir(sgnum::Integer, irlab::String)
# TODO: Use their new and corrected dataset (from February 17, 2020) instead of manually
# fixing the old dataset.
# I already verified that their new dataset is correct (and parses), and that P₁
# and P₃ pass tests. Their P₁ and P₃ (and P₂) irreps are not the same as those we
# had below, but differ by a transformation R(THEIRS)R⁻¹ = (OURS) with
# R = [1 1; 1 -1]/√2.
# Thus, we should remove this method (here and from other callers), update and
# commit the new datasets and then finally regenerate/refresh our own saved format
# of the irreps (from build/write_littlegroup_irreps_from_ISOTROPY.jl)
if sgnum == 214
CP = cis(π/12)/√2 # C*P ≈ 0.683013 + 0.183013im
CQ = cis(5π/12)/√2 # C*Q ≈ 0.183013 + 0.683013im
CcP = cis(-π/12)/√2 # C*conj(P) ≈ 0.683013 - 0.183013im
CcQ = cis(-5π/12)/√2 # C*conj(Q) ≈ 0.183013 - 0.683013im
if irlab == "P₁"
matrices = [[1.0+0.0im 0.0+0.0im; 0.0+0.0im 1.0+0.0im], # x,y,z
[0.0+0.0im 1.0+0.0im; 1.0+0.0im 0.0+0.0im], # x,-y,-z+1/2
[0.0+0.0im 0.0-1.0im; 0.0+1.0im 0.0+0.0im], # -x+1/2,y,-z
[1.0+0.0im 0.0+0.0im; 0.0+0.0im -1.0+0.0im], # -x,-y+1/2,z
[CP CcQ; CP -CcQ], # z,x,y
[CcP CcP; CQ -CQ], # y,z,x
[CcP -CcP; CQ CQ], # -y+1/2,z,-x
[CP CcQ; -CP CcQ], # -z,-x+1/2,y
[CcP CcP; -CQ CQ], # -y,-z+1/2,x
[CP -CcQ; CP CcQ], # z,-x,-y+1/2
[CQ -CQ; CcP CcP], # y,-z,-x+1/2
[CcQ CP; -CcQ CP]] # -z+1/2,x,-y
elseif irlab == "P₂"
# there is, as far as I can see, nothing wrong with ISOTROPY's (214, P₂)
# small irrep: but it doesn't agree with the form we extract from CDML
# either. To be safe, and to have a consistent set of irreps for the P
# point we just swap out this irrep as well.
matrices = [[1.0+0.0im 0.0+0.0im; 0.0+0.0im 1.0+0.0im], # x,y,z
[0.0+0.0im 0.0+1.0im; 0.0-1.0im 0.0+0.0im], # x,-y,-z+1/2
[0.0+0.0im -1.0+0.0im; -1.0+0.0im 0.0+0.0im], # -x+1/2,y,-z
[-1.0+0.0im 0.0+0.0im; 0.0+0.0im 1.0+0.0im], # -x,-y+1/2,z
[-0.5-0.5im -0.5-0.5im; 0.5-0.5im -0.5+0.5im], # z,x,y
[-0.5+0.5im 0.5+0.5im; -0.5+0.5im -0.5-0.5im], # y,z,x
[0.5-0.5im 0.5+0.5im; 0.5-0.5im -0.5-0.5im], # -y+1/2,z,-x
[0.5+0.5im 0.5+0.5im; 0.5-0.5im -0.5+0.5im], # -z,-x+1/2,y
[0.5-0.5im -0.5-0.5im; -0.5+0.5im -0.5-0.5im], # -y,-z+1/2,x
[0.5+0.5im -0.5-0.5im; -0.5+0.5im -0.5+0.5im], # z,-x,-y+1/2
[-0.5-0.5im 0.5-0.5im; 0.5+0.5im 0.5-0.5im], # y,-z,-x+1/2
[-0.5+0.5im 0.5-0.5im; 0.5+0.5im 0.5+0.5im]] # -z+1/2,x,-y
elseif irlab == "P₃"
matrices = [[1.0+0.0im 0.0+0.0im; 0.0+0.0im 1.0+0.0im], # x,y,z
[0.0+0.0im 1.0+0.0im; 1.0+0.0im 0.0+0.0im], # x,-y,-z+1/2
[0.0+0.0im 0.0-1.0im; 0.0+1.0im 0.0+0.0im], # -x+1/2,y,-z
[1.0+0.0im 0.0+0.0im; 0.0+0.0im -1.0+0.0im], # -x,-y+1/2,z
[-CQ -CcP; -CQ CcP], # z,x,y
[-CcQ -CcQ; -CP CP], # y,z,x
[-CcQ CcQ; -CP -CP], # -y+1/2,z,-x
[-CQ -CcP; CQ -CcP], # -z,-x+1/2,y
[-CcQ -CcQ; CP -CP], # -y,-z+1/2,x
[-CQ CcP; -CQ -CcP], # z,-x,-y+1/2
[-CP CP; -CcQ -CcQ], # y,-z,-x+1/2
[-CcP -CQ; CcP -CQ]] # -z+1/2,x,-y
else
throw(DomainError((sgnum, irlab), "should not be called with these input; nothing to fix"))
end
translations = [zeros(Float64, 3) for _=Base.OneTo(length(matrices))]
return matrices, translations
else
throw(DomainError((sgnum, irlab), "should not be called with these input; nothing to fix"))
end
end
# TODO: We need to manually do things for the "special" k-points kᴮ from
# the representation domain Φ that do not exist in the basic domain kᴬ∈Ω
# i.e. for kᴮ∈Φ-Ω (labels like KA, ZA, etc.), which are not included in
# ISOTROPY. We can do this by first finding a transformation R such that
# kᴮ = Rkᴬ, and then transforming the LGIrrep of kᴬ appropriately (see
# CDML Sec. 4.1 or B&C Sec. 5.5.). Parts of the steps are like this:
#
# kvmaps = ΦnotΩ_kvecs(sgnum, D) # from src/special_representation_domain_kpoints.jl
# if kvmaps !== nothing # contains KVecs in the representation domain Φ that
# # cannot be mapped to ones in the basic domain Ω
# for kvmap in kvmaps # loop over each "new" KVec
#
# cdmlᴮ = kvmap.kᴮlab # CDML label of "new" KVec kᴮ∈Φ-Ω
# cdmlᴬ = kvmap.kᴮlab # CDML label of "old" KVec kᴬ∈Ω
# R = kvmap.op # Mapping from kᴬ to kᴮ: kᴮ = Rkᴬ
# # pick kᴬ irreps in lgirsd
# lgirsᴬ = lgirsd[cdmlᴬ]
# end
# # ... do stuff to lgirsᴬ to get lgirsᴮ via a transformation {R|v}
# # derived from a holosymmetric parent group of sgnum and the transformation R
# end
#
# The only kᴮ included in ISOTROPY is Z′≡ZA for sgs 195, 198, 200, 201, & 205:
# all other kᴮ∈Φ-Ω points are omitted)
#
# Pa3 (Tₕ⁶), sg 205, cannot be treated by the transformation method and requires
# manual treatment (B&C p. 415-417); fortunately, the Z′₁=ZA₁ irrep of 205 is
# already included in ISOTROPY.
#=
function add_special_representation_domain_lgirs(lgirsd::Dict{String, <:AbstractVector{LGIrrep{D}}}) where D
D ≠ 3 && Crystalline._throw_1d2d_not_yet_implemented(D)
sgnum = num(first(first(lgirsd)))
# does this space group contain any nontrivial k-vectors in Φ-Ω?
# what is the method for adding in these missing k-vectors?
end
=#
end # module | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 6575 | using Crystalline, HTTP
import ProgressMeter: @showprogress
# crawling functionality
const BANDREP_URL="https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl"
"""
crawlbandreps(sgnum::Integer, allpaths::Bool=false, timereversal::Bool=true)
--> ::String (valid HTML table)
Crawls a band representation from the Bilbao database. This is achieved by sending a "POST"
request to the `<form> ... </form>` part of their HTML page.
**Input**:
- `sgnum` : Space group number
- `allpaths` : Whether to include only maximal **k**-points (true) or
all, i.e. general, **k**-points (true)
- `timereversal` : Whether the band representation assumes time-reversal symmetry (`true`)
or not (`false`)Type of bandrep, as string, either
Note that we do not presently try to crawl Wyckoff-type inputs.
**Output**:
- `table_html` : Valid HTML <table> ... </table> for the requested band representation.
"""
function crawlbandreps(sgnum::Integer, allpaths::Bool=false, timereversal::Bool=true)
# with (true ⇒ "Elementary TR") or without (false ⇒ "Elementary") time-reversal symmetry
brtype = timereversal ? "Elementary TR" : "Elementary"
brtypename = lowercasefirst(filter(!isspace, brtype))
allpaths_post = allpaths ? "yes" : "no"
inputs = "super=$(sgnum)&"* # inputs to <form> ... </form>, in POST mode;
"$(brtypename)=$(brtype)&"* # inputs are supplied as name=value pairs, with
"nomaximal=$allpaths_post" # distinct inputs separated by '&' (see e.g.,
# (see e.g. https://stackoverflow.com/a/8430062/9911781)
response = HTTP.post(BANDREP_URL, [], inputs)
body = String(response.body)
startstring = r"\<tr\>\<td(?:.*?)\>Wyckoff pos."
startidx = findfirst(startstring, body)[1]
stopidx = findlast("</td></tr></table>",body)[end]
table_html="<table>"*body[startidx:stopidx]
return table_html
end
# parsing functionality
function html2dlm(body::String, oplus::Union{String,Char}='⊕')
dlm='|'
# list of replacements, mostly using regexes; see https://regexr.com for inspiration.
replacepairlist= (
r"\<tr\>(.*?)\<\/tr\>" => SubstitutionString("\\1\n"), # rows; newline-separated (requires ugly hack around https://github.com/JuliaLang/julia/issues/27125 to escape \n)
"<tr>"=>"\n", # <tr> tags are not always paired with </tr>; second pass here to remove stragglers
r"\<td(?:.*?)\>(.*?)\<\/td\>" => SubstitutionString("\\1$(dlm)"), # columns; comma-separated
r"\<sup\>(.*?)\<\/sup\>" => x->Crystalline.supscriptify(x[6:end-6]), # superscripts (convert to unicode)
r"\<sub\>(.*?)\<\/sub\>" => x->Crystalline.subscriptify(x[6:end-6]), # subscripts (convert to unicode)
r"\<i\>(.*?)\<\/i\>"=>s"\1", # italic annotations
r"\<center\>(.*?)\<\/center\>"=>s"\1", # centering annotations
"<br>"=>"", # linebreak tag in html; no </br> tag exists
"<font size=\"5\">↑</font>"=>"↑", # induction arrow
r"<font style\=\"text-decoration:overline;\"\>([1-6])\<\/font\>"=>s"-\1", # wyckoff site symmetry groups w/ (roto)inversion (must come before spinful irrep conversion)
r"\<font style\=\"text-decoration:overline;\"\>(.*?)\<\/font\>"=>s"\1ˢ", # spinful irrep
"⊕"=>oplus, # special symbols # ⊕
"Γ"=>'Γ', # Γ
"Σ"=>'Σ', # Σ
"Λ"=>'Λ', # Λ
"Δ"=>'Δ', # Δ
"GP"=>'Ω', # GP to Ω
" "=>"", # non-breaking space
'*'=>"", # * (for Σ k-points in e.g. sg 146: sending `u,-2*u,0`⇒`u,-2u,0`)
"'"=>"′", # ′ (some Mulliken irrep labels)
r"\<form.*?\"Decomposable\"\>\<\/form\>"=>"Decomposable", # decomposable bandreps contain a link to decompositions; ignore it
"$(dlm)Decomposable"=>"$(dlm)true", # simplify statement of composability
"$(dlm)Indecomposable"=>"$(dlm)false",
"\\Indecomposable"=>"",
"<table>"=>"","</table>"=>"", # get rid of table tags
"$(dlm)\n"=>"\n", # if the last bits of a line is ", ", get rid of it
r"\n\s*\Z"=>"", # if the last char in the string is a newline (possibly with spurious spaces), get rid of it
r"\n\s+"=>"\n", # remove spurious white/space at start of any lines
#r"((_.){2,})"=>(x)->"_{"*replace(x,"_"=>"")*"}", # tidy up multi-index subscripts
#r"((\^.){2,})"=>(x)->"^{"*replace(x,"^"=>"")*"}" # tidy up multi-index superscripts
)
for replacepair in replacepairlist
body = replace(body, replacepair)
end
return body
end
#=
# utilities for conversion between different textual/array/struct representations
html2array(body) = Crystalline.dlm2array(html2dlm(body))
function html2struct(body::String, sgnum::Integer, allpaths::Bool=false,
spinful::Bool=false, timereversal::Bool=true)
Crystalline.array2struct(html2array(body), sgnum, allpaths, spinful, timereversal)
end
=#
# crawl & write bandreps to disk
function writebandreps(sgnum, allpaths, timereversal=true)
paths_str = allpaths ? "allpaths" : "maxpaths"
brtype_str = timereversal ? "ElementaryTR" : "Elementary"
BR_dlm = html2dlm(crawlbandreps(sgnum, allpaths, timereversal), '⊕')
filename = (@__DIR__)*"/../data/bandreps/3d/$(brtype_str)/$(paths_str)/$(string(sgnum)).csv"
open(filename; write=true, create=true, truncate=true) do io
write(io, BR_dlm)
end
return nothing
end
# run to crawl everything... (takes ∼5 min)
for allpaths in (true, false)
for timereversal in (true, false)
@info "allpaths=$allpaths, timereversal=$timereversal"
@showprogress 0.1 "Crawling ..." for sgnum in 1:MAX_SGNUM[3]
writebandreps(sgnum, allpaths, timereversal)
end
# @sync for sgnum in 1:MAX_SGNUM[3] # spuriously fails on HTTP requests; not worth it
# @async writebandreps(sgnum, allpaths, timereversal)
# end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2115 | using Crystalline, HTTP, Gumbo
# Small convenience script to crawl and subsequently write all the xyzt forms of the
# generators of the 3D space-groups.
# ---------------------------------------------------------------------------------------- #
## Functions for crawling the generators of 3D space groups from Bilbao
"""
crawl_generators_xyzt(sgnum::Integer, D::Integer=3)
Obtains the generators in xyzt format for a given space group number `sgnum` by crawling
the Bilbao server. Only works for `D = 3`.
"""
function crawl_generators_xyzt(sgnum::Integer, D::Integer=3)
htmlraw = crawl_generators_html(sgnum, D)
# grab relevant rows of table
table_html = children(children(children(children(last(children(htmlraw.root)))[6])[1])[1])[3:end]
# grab relevant columns of table & extract xyzt-forms of generators
gens_str = strip.(text.(only.(children.(getindex.(table_html, 2)))))
return gens_str
end
function crawl_generators_html(sgnum::Integer, D::Integer=3)
D != 3 && error("only 3D space group operations are crawlable")
(sgnum < 1 || sgnum > 230) && error(DomainError(sgnum))
baseurl = "http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-getgen?what=&gnum="
contents = HTTP.request("GET", baseurl * string(sgnum))
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
## Use crawling functions & write information to `/data/generators/sgs/3d/`
for sgnum in 1:230
println(sgnum)
gens_str = crawl_generators_xyzt(sgnum)
filename = (@__DIR__)*"/../data/generators/sgs/3d/"*string(sgnum)*".csv"
open(filename; write=true, create=true, truncate=true) do io
first = true
for str in gens_str
# skip identity operation unless it's the only element; otherwise redundant
if str != "x,y,z" || length(gens_str) == 1
if first
first = false
else
write(io, '\n')
end
write(io, str)
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4261 | using Crystalline, HTTP, Gumbo
# Small convenience script to crawl and subsequently write all the xyzt forms of the
# generators of the 3D space-groups.
# ---------------------------------------------------------------------------------------- #
## Functions for crawling the generators of 3D space groups from Bilbao
"""
crawl_generators_xyzt(pgnum::Integer, D::Integer=3)
Obtains the generators in xyzt format for a given point group number `pgnum` by crawling
the Bilbao server. Only works for `D = 3`.
"""
function crawl_pg_generators_xyzt(pgnum::Integer, D::Integer=3,
include_pgiuc::Union{Nothing, String}=nothing)
htmlraw = crawl_pg_generators_html(pgnum, D, include_pgiuc)
# grab relevant rows of table
table_html = children(children(children(children(last(children(htmlraw.root)))[7])[1])[1])[3:end]
# grab relevant columns of table & extract xyzt-forms of generators
gens_str = strip.(text.(only.(children.(getindex.(table_html, 2)))))
return gens_str
end
function crawl_pg_generators_html(pgnum::Integer, D::Integer=3,
include_pgiuc::Union{Nothing, String}=nothing)
baseurl = begin
if D == 3
"https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-point_genpos?w2do=gens&num="
elseif D == 2
"https://www.cryst.ehu.es/cgi-bin/plane/programs/nph-point_plane-genpos?w2do=gens&num="
include_pgiuc === nothing || error(DomainError(setting, "setting requests cannot be made separately in 2D"))
else
error(DomainError(D, "only 2D and 3D point group generators are crawlable"))
end
end
url = baseurl * string(pgnum)
if include_pgiuc !== nothing
url *= "&what=" * include_pgiuc
end
contents = HTTP.request("GET", url)
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
## Use crawling functions & write information to `/data/generators/pgs/`
let D = 3
for (pgnum, pgiucs) in enumerate(Crystalline.PG_NUM2IUC[D])
for (setting, pgiuc) in enumerate(pgiucs)
if pgiuc ∈ ("-62m", "-6m2")
# need to flip the meaning of `setting` here to match sorting on Bilbao
setting = setting == 1 ? 2 : (setting == 2 ? 1 : error())
end
if setting == 1
gens_str = crawl_pg_generators_xyzt(pgnum, D)
else
gens_str = crawl_pg_generators_xyzt(pgnum, D, pgiuc)
end
unmangled_pgiuc = Crystalline._unmangle_pgiuclab(pgiuc)
filename = (@__DIR__)*"/../data/generators/pgs/$(D)d/$(unmangled_pgiuc).csv"
open(filename; write=true, create=true, truncate=true) do io
first = true
for str in gens_str
# skip identity operation unless it's the only element; otherwise redundant
if str != "x,y,z" || length(gens_str) == 1
if first
first = false
else
write(io, '\n')
end
write(io, str)
end
end
end
end
end
end
# Dimension 2 is following a different scheme than dimension 3 on Bilbao, so just correct
# for that manually
let D = 2
for (pgnum, pgiuc) in enumerate(Crystalline.PG_IUCs[D])
gens_str = crawl_pg_generators_xyzt(pgnum, D)
unmangled_pgiuc = Crystalline._unmangle_pgiuclab(pgiuc)
filename = (@__DIR__)*"/../data/generators/pgs/$(D)d/$(unmangled_pgiuc).csv"
open(filename; write=true, create=true, truncate=true) do io
first = true
for str in gens_str
# skip identity operation unless it's the only element; otherwise redundant
if str != "x,y,z" || length(gens_str) == 1
if first
first = false
else
write(io, '\n')
end
write(io, str)
end
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 10070 | using Crystalline, HTTP, Gumbo, JLD2, ProgressMeter, StaticArrays
const BILBAO_PG_URL_BASE = "https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_out.pl?tipogrupo=spg&pointspace=point&"
function bilbao_pgs_specifier(parent_sgnum::Integer, pgnum::Integer, pgiuc::String)
# in principle, it is sufficient to only supply the appropraite parent space group
# `parent_sgnum`. Note that it is _not_ sufficient to only supply `pgnum` due to
# different setting variation possibilities. The inclusion of `pgiuc` appear mostly
# immaterial
return "num=$(parent_sgnum)&super=$(pgnum)&symbol=$(pgiuc)"
# the url to a given point group is BILBAO_PG_URL_BASE*bilbao_pgs_specifier(..)
end
function findfirst_matching_parent_sgnum(pgiuc::String)
# The 1D and 2D cases could be inferred from the 3D case, and Bilbao only lists the 3D
# case, so this is restricted to the 3D case (note though, that the settings are not
# shared between 1D/2D and 3D, unfortunately (e.g. "m"))
for sgnum in 1:MAX_SGNUM[3]
sg = spacegroup(sgnum, Val(3))
pg = Crystalline.find_parent_pointgroup(sg)
label(pg) == pgiuc && return sgnum, num(pg) # return parent_sgnum, pgnum
end
throw(DomainError(pgiuc, "requested label cannot be found"))
end
function bilbao_pgs_url(pgiuc::String)
parent_sgnum, pgnum = findfirst_matching_parent_sgnum(pgiuc)
url = BILBAO_PG_URL_BASE*bilbao_pgs_specifier(parent_sgnum, pgnum, pgiuc)
return url
end
if !isdefined(@__MODULE__,:PG_HTML_REPLACEMENTS)
const PG_HTML_REPLACEMENTS = (
r"<font style=\\\"text-decoration: overline;\\\">(.*?)</font>"=>s"-\1",
# ↑ overbar ⇒ minus sign
r"<sub>(.*)</sub>"=>x->Crystalline.subscriptify(x[6:end-6]), # subscripts
r"<sup>(.*)</sup>"=>x->Crystalline.supscriptify(x[6:end-6]), # superscripts
)
end
function _parse_pgs_elements(s::AbstractString)
if first(s) === 'e'
# the form of ϕ_str will always be "(-)iNπ/M" with integers N and M: to just get the
# paesing job done, I resort to the following hardcoded approach:
ϕ_str_nom, ϕ_str_den = getfield(match(r"e<sup>(.*?)/(.*)</sup>", s), :captures)
ϕ_str_nom′ = replace(replace(ϕ_str_nom, 'i'=>""), 'π'=>"") # strip i and π
ϕ_nom′ = if ϕ_str_nom′ == "-" # special handling for N = 1
-1.0
elseif ϕ_str_nom′ == ""
1.0
else
parse(Float64, ϕ_str_nom′)
end
ϕ = π*ϕ_nom′/parse(Float64, ϕ_str_den)
return cis(ϕ)
else
# first, handle corner case for parse(ComplexF64, s): cannot parse "±i", but "±1i"
# is OK (substitution below hacks around fact that s"\11i" refers to capture 11,
# rather than capture 1 + string 1i)
if occursin('i', s)
s = replace(s, r"(\+|\-)i"=>m->m[1]*"1i")
if s == "i"; s = "1i"; end # not covered by regex above
end
return parse(ComplexF64, s)
end
end
"""
crawl_pgirs(pgiuc::String, D::Integer=3, consistency_checks::Bool=true)
Crawl the point group symmetry operations as well as the associated point group irreps for
the point group characterized by the IUC label `pgiuc` and dimension `D` from Bilbao's
website. Only works for `D = 3`, since Bilbao doesn't tabulate 1D/2D point group irreps
explicitly. Returns a `Vector{PGIrrep{D}}`.
"""
function crawl_pgirs(pgiuc::String, D::Integer=3; consistency_checks::Bool=true)
D ≠ 3 && throw(DomainError(D, "dimensions D≠3 not crawlable"))
# --- crawl html data from Bilbao ---
contents = HTTP.request("GET", bilbao_pgs_url(pgiuc))
body = parsehtml(String(contents.body))
# pick out the table that contains the irreps, including header
table_html = children(last(children(body.root)))[end-7] # -7 part is hardcoded
# strip out the header row and split at rows (i.e. across pgops)
# header is [N | pgop matrix | pgop seitz | irrep 1 | irrep 2 | ...])
header_html = table_html[1][1]
rows_html = children(table_html[1])[2:end]
# split each row into columns
rowcols_html = children.(rows_html)
Nirs = length(first(rowcols_html))-3
# --- extract point group operators ---
# extract pgops' matrix form from 2nd column
pgops_html = getindex.(rowcols_html, 2)
pgops_str = replace.(replace.(string.(pgops_html),
Ref(r".*?<td align=\"right\">(.*?)</td>"=>s"\1")), # extra matrix elements & remove "front"
Ref(r"</tr>.*"=>"")) # remove "tail"
pgops_strs = split.(pgops_str, " ", keepempty=false) # matrix elements, row by row
pgops_matrices = [collect(reshape(parse.(Int, strs), (3,3))') for strs in pgops_strs]
pgops = SymOperation.(SMatrix{3,3,Float64}.(pgops_matrices))
# build point group PointGroup{3} from extracted pgops
pgnum = Crystalline.pointgroup_iuc2num(pgiuc, 3)
pg = PointGroup{3}(pgnum, pgiuc, pgops) # note that sorting matches pointgroup(...)
if consistency_checks
# test that pgops match results from pointgroup(pgiuc, 3), incl. matching sorting
pg′ = pointgroup(pgiuc, Val(3))
@assert operations(pg) == operations(pg′)
#= # ~~~ dead code ~~~
# extract pgops' seitz notation from 3rd columns
seitz_html = children.(first.(children.(getindex.(rowcols_html, 3))))
seitz_str = [join(string.(el)) for el in seitz_html]
for replacepair in PG_HTML_REPLACEMENTS
seitz_str .= replace.(seitz_str, Ref(replacepair))
end
# | test whether we extract pgops and seitz notation mutually consistently; this
# | isn't really possible to test for neatly in general, unfortunately, due to an
# | indeterminacy of conventions in cases like 2₁₋₁₀ vs 2₋₁₁₀; at the moment.
# | We keep the code in case it needs to be used for debugging at some point.
@assert all(replace.(seitz.(pgops), Ref(r"{(.*)\|0}"=>s"\1")) .== seitz_str)
=#
end
# --- extract irreps ---
irreps_html = [string.(getindex.(rowcols_html, i)) for i in 4:3+Nirs] # indexed first over distinct irreps, then over operators
irreps_mats = Vector{Vector{Matrix{ComplexF64}}}(undef, Nirs)
for (i,irs_html) in enumerate(irreps_html)
# strip non-essential "pre/post" html; retain matrix/scalar as nested row/columns
matrix_tabular =
first.(getfield.(match.(r".*?<table><tbody>(.*?)</tbody></table>.*", irs_html),
:captures))
matrix_els_regexs =
eachmatch.(r"<td align=\\\"(?:left|right|center)\\\">\s*(.*?)</td>",
matrix_tabular)
matrix_els_strs = [first.(getfield.(els, :captures)) for els in matrix_els_regexs]
# matrix_elements′ is an array of "flattened" matrices with string elements; some of
# these elements can be of the form e<sup>(.*?)</sup> for an exponential, the rest
# are integers. Now we parse these strings, taking care to allow exponential forms
matrix_els = [_parse_pgs_elements.(els) for els in matrix_els_strs] # ::Vector{C64}
Dⁱʳ = isqrt(length(first(matrix_els)))
# a vector of matrices, one for each operation in pgops, for the ith irrep
irreps_mats[i] = [collect(transpose(reshape(els, Dⁱʳ, Dⁱʳ))) for els in matrix_els]
end
# --- extract irrep labels and irrep reality ---
# ↓ ::Vector{Vector{HTMLNode}}
labs_and_realities_html = children.(getindex.(children(header_html)[4:end],1))
irrreps_labs_html = join.(getindex.(labs_and_realities_html, # ::Vector{String}
Base.OneTo.(lastindex.(labs_and_realities_html) .- 1)))
irreps_labs = replace.(replace.(irrreps_labs_html, Ref(PG_HTML_REPLACEMENTS[2])),
Ref(PG_HTML_REPLACEMENTS[3]))
irreps_labs .= replace.(irreps_labs, Ref("GM"=>"Γ"))
irreps_realities = parse.(Int8, strip.(string.(getindex.(labs_and_realities_html,
lastindex.(labs_and_realities_html))),
Ref(['(', ')'])))
# --- return a vector of extracted point group irreps ::Vector{PGIrrep{3}} ---
return PGIrrep{3}.(irreps_labs, Ref(pg), irreps_mats, Reality.(irreps_realities))
end
function __crawl_and_write_3d_pgirreps()
savepath = (@__DIR__)*"/../data/irreps/pgs/3d/"
# we only save the point group irreps.
filename_irreps = savepath*"/irreps_data"
JLD2.jldopen(filename_irreps*".jld2", "w") do irreps_file
@showprogress for pgiuc in PG_IUCs[3]
# ==== crawl and prepare irreps data ====
pgirs = crawl_pgirs(pgiuc, 3; consistency_checks=true)
matrices = [pgir.matrices for pgir in pgirs]
realities = [reality(pgir) for pgir in pgirs]
cdmls = [label(pgir) for pgir in pgirs]
# ==== save irreps ====
# we do not save the point group operations anew; they are already stored in
# "test/data/xyzt-operations/pgs/..."; note that we explicitly checked the
# sorting and # equivalence of operations when pgirs was crawled above (cf. flag
# `consistency_checks=true`)
unmangled_pgiuc = Crystalline._unmangle_pgiuclab(pgiuc) # replace '/'s by '_slash_'s
irreps_file[unmangled_pgiuc*"/matrices"] = matrices
irreps_file[unmangled_pgiuc*"/realities"] = Integer.(realities)
irreps_file[unmangled_pgiuc*"/cdmls"] = cdmls
end
end
return filename_irreps
end
# ======================================================
#=
pgirs = Vector{Vector{PGIrrep{3}}}(undef, length(PG_IUCs[3]))
for (idx, pgiuc) in enumerate(PG_IUCs[3])
println(pgiuc)
pgirs[idx] = crawl_pgirs(pgiuc)
end
=#
# Save to local format
__crawl_and_write_3d_pgirreps()
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3564 | using HTTP, Gumbo
# Small convenience script to crawl and subsequently write all the xyzt forms of the
# general positions/generators of subperiodic groups.
# ---------------------------------------------------------------------------------------- #
## Functions for crawling the generators of 3D space groups from Bilbao
"""
crawl_subperiodic_xyzt(num::Integer, D::Integer=3)
Obtains the general positions or generators in xyzt format for a given subperiodic group
number `num` by crawling the Bilbao server.
"""
function crawl_subperiodic_xyzt(num::Integer, D::Integer=3, P::Integer=2,
kind::String="operations")
htmlraw = crawl_subperiodic_html(num, D, P, kind)
# layout of html page depends on whether kind is `"operations"` or `"generators"`, so we
# pick a different html element in the structure depending on this
idx = kind == "generators" ? 5 : kind == "operations" ? 4 : error(DomainError(kind))
# grab relevant rows of table
table_html = children(children(children(children(last(children(htmlraw.root)))[idx])[1])[1])[3:end]
# grab relevant columns of table & extract xyzt-forms of generators
gens_str = strip.(text.(only.(children.(getindex.(table_html, 2)))))
return gens_str
end
function subperiodic_url(num::Integer, D::Integer, P::Integer, kind::String)
sub = if D==3 && P==2
(num < 1 || num > 80) && error(DomainError(num))
"layer"
elseif D==3 && P==1
(num < 1 || num > 75) && error(DomainError(num))
"rod"
elseif D==2 && P==1
(num < 1 || num > 7) && error(DomainError(num))
"frieze"
else
error("cannot crawl subperiodic groups of dimensionality $D and periodicity $P")
end
return "https://cryst.ehu.es/cgi-bin/subperiodic/programs/nph-sub_gen?" *
"what=$(kind == "generators" ? "gen" : kind == "operations" ? "gp" : error())" *
"&gnum=$(num)&subtype=$(sub)&"
end
function crawl_subperiodic_html(num::Integer, D::Integer, P::Integer, kind::String)
contents = HTTP.request("GET", subperiodic_url(num, D, P, kind))
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
## Use crawling functions & write information to:
# `/test/data/xyzt-operations/generators/subperiodic/{layer|rod|frieze}/`
# `/test/data/xyzt-operations/subperiodic/{layer|rod|frieze}/`
for (D, P, sub, maxnum) in [(3,2,"layer",80), (3,1,"rod",75), (2,1,"frieze",7)]
println(sub)
for kind in ["operations", "generators"]
println(" ", kind)
for num in 1:maxnum
println(" ", num)
gens_str = crawl_subperiodic_xyzt(num, D, P, kind)
filename = (@__DIR__)*"/../test/data/xyzt-$kind/subperiodic/$sub/"*string(num)*".csv"
open(filename; write=true, create=true, truncate=true) do io
first = true
for str in gens_str
# skip identity operation unless it's the only element; otherwise redundant
if kind == "operations" ||
(((D == 3 && str != "x,y,z") || (D == 2 && str != "x,y")) ||
length(gens_str) == 1)
if first
first = false
else
write(io, '\n')
end
write(io, str)
end
end
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2175 | using Crystalline, HTTP, Gumbo
# Small convenience script to crawl and subsequently write all the xyzt forms of the
# symmetry operations of the 230 three-dimensional space groups. Enables us to just read the
# symmetry data from the hard-disk rather than constantly querying the Bilbao server
# ---------------------------------------------------------------------------------------- #
## Functions for crawling the operations of 3D space groups from Bilbao
"""
crawl_sgops_xyzt(sgnum::Integer, D::Integer=3)
Obtains the symmetry operations in xyzt format for a given space group
number `sgnum` by crawling the Bilbao server; see `spacegroup` for
additional details. Only works for `D = 3`.
"""
function crawl_sgops_xyzt(sgnum::Integer, D::Integer=3)
htmlraw = crawl_sgops_html(sgnum, D)
ops_html = children.(children(last(children(htmlraw.root)))[4:2:end])
Nops = length(ops_html)
sgops_str = Vector{String}(undef,Nops)
for (i,op_html) in enumerate(ops_html)
sgops_str[i] = _stripnum(op_html[1].text) # strip away the space group number
end
return sgops_str
end
function crawl_sgops_html(sgnum::Integer, D::Integer=3)
D != 3 && error("only 3D space group operations are crawlable")
(sgnum < 1 || sgnum > 230) && error(DomainError(sgnum))
baseurl = "http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-getgen?what=text&gnum="
contents = HTTP.request("GET", baseurl * string(sgnum))
return parsehtml(String(contents.body))
end
function _stripnum(s)
if occursin(' ', s) # if the operation "number" is included as part of s
_,s′ = split(s, isspace; limit=2)
end
return String(s′) # ensure we return a String, rather than possibly a SubString
end
# ---------------------------------------------------------------------------------------- #
## Use crawling functions & write information to `/data/operations/sgs/3d/`
for sgnum in 1:230
sgops_str = crawl_sgops_xyzt(sgnum)
filename = (@__DIR__)*"/../data/operations/sgs/3d/"*string(sgnum)*".csv"
open(filename; write=true, create=true, truncate=true) do io
foreach(str -> write(io, str, '\n'), sgops_str)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2263 | using Crystalline, HTTP, Gumbo
using StaticArrays, LinearAlgebra
# ---------------------------------------------------------------------------------------- #
# CRAWL 3D WYCKOFF POSITIONS FROM BILBAO (2D and 1D obtained manually...)
const BILBAO_URL = "https://www.cryst.ehu.es/cgi-bin/cryst/programs/"
const WYCK_URL_BASE_3D = BILBAO_URL*"nph-normsets?from=wycksets&gnum="
wyck_3d_url(sgnum) = WYCK_URL_BASE_3D*string(sgnum)
"""
crawl_wyckpos_3d(sgnum::Integer)
Obtains the 3D Wyckoff positions for a given space group number `sgnum` by crawling the
Bilbao Crystallographic Server; returns a vector of `WyckoffPosition{3}`.
"""
function crawl_wyckpos_3d(sgnum::Integer)
htmlraw = crawl_wyckpos_3d_html(sgnum)
wps_html = children.(children(children(children(last(children(htmlraw.root)))[3])[5][1]))
N_wps = length(wps_html)-1
wps = Vector{WyckoffPosition{3}}(undef, N_wps)
for (i,el) in enumerate(@view wps_html[2:end])
letter, mult_str, sitesym_str, rv_str, _ =
getfield.(first.(getfield.(el, Ref(:children))), Ref(:text))
rv = RVec{3}(rv_str)
mult = parse(Int, mult_str)
wps[i] = WyckoffPosition{3}(mult, only(letter), rv)
end
return wps
end
function crawl_wyckpos_3d_html(sgnum::Integer)
(sgnum < 1 || sgnum > 230) && error(DomainError(sgnum))
contents = HTTP.request("GET", wyck_3d_url(sgnum))
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
# CRAWL & SAVE/WRITE 3D WYCKOFF POSITIONS TO `data/wyckpos/3d/...`
function _write_wyckpos_3d(sgnum::Integer)
wps = crawl_wyckpos_3d(sgnum)
open((@__DIR__)*"/../data/wyckpos/3d/"*string(sgnum)*".csv", "w+") do io
for (idx, wp) in enumerate(wps)
qstr = strip(string(parent(wp)), ('[',']'))
for repl in ('α'=>'x', 'β'=>'y', 'γ'=>'z', " "=>"")
qstr = replace(qstr, repl)
end
print(io, wp.mult, '|', wp.letter, '|', qstr)
idx ≠ length(wps) && println(io)
end
end
end
# actually crawl and write 3D Wyckoff positions
foreach(1:MAX_SGNUM[3]) do sgnum
println(sgnum)
_write_wyckpos_3d(sgnum)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 9650 |
using Crystalline, HTTP, Gumbo, LinearAlgebra
# getting the maximal subgroups of t type
# getting the matching transformation matrix
# https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-tranmax?way=up&super=2&sub=1&index=2&client=maxsub&what=&path=&series=&conj=all&type=t
# simpler:
# https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-tranmax?way=up&super=2&sub=1&type=t
"""
crawl_maximal_subgroups(numᴳ::Integer; subgroup_kind=:tk))
Obtains the maximal subgroups for a given space group G, with number `numᴳ`, by crawling
the Bilbao server, i.e. find the space groups {Hⱼ} such that Hⱼ < G with _no_ Hⱼ < Hₖ.
Only works for 3D space groups.
The keyword argument `subgroup_kind` specifies whether to return the translationengleiche
("t"), klassengleiche ("k"), or either ("tk") subgroup kind.
"""
function crawl_maximal_subgroups(numᴳ::Integer, D::Integer=3;
subgroup_kind::Symbol=:tk, verbose::Bool=true)
if subgroup_kind ∉ (:t, :k, :tk)
throw(DomainError(subgroup_kind, "the subgroup type must be :t, :k, or :tk"))
end
htmlraw = http_request_maximal_subgroups(numᴳ, D)
# grab relevant rows of table
body_html = last(children(htmlraw.root))
table_html = if D == 3
children(body_html[6][1][1])[2:end]
elseif D == 2
children(children(body_html[4][3][1])[1])[2:end]
end
# grab relevant columns of table & extract xyzt-forms of generators
numsᴴ = parse.(Int, _grab_column(table_html, 2)) :: Vector{Int}
indices = parse.(Int, _grab_column(table_html, 4)) :: Vector{Int}
kinds = Symbol.(_grab_column(table_html, 5)) :: Vector{Symbol}
if subgroup_kind != :tk
subgroup_kind_indices = findall(==(subgroup_kind), kinds)
keepat!(numsᴴ, subgroup_kind_indices)
keepat!(indices, subgroup_kind_indices)
keepat!(kinds, subgroup_kind_indices)
end
Ppss = find_transformation_matrices.(numsᴴ, numᴳ, D, kinds, indices) # vector of {P|p} transformations
verbose && println(stdout, "crawled ", D == 3 ? "space" : "plane", " group ", numᴳ,
" (", length(numsᴴ), " subgroups)")
return [(;num, index, kind, Pps) for (num, index, kind, Pps) in zip(numsᴴ, indices, kinds, Ppss)]
end
function _grab_column(table_html::Vector{HTMLNode}, i::Integer)
strip.(Gumbo.text.(only.(children.(getindex.(table_html, i))))) :: Vector{SubString{String}}
end
function http_request_maximal_subgroups(numᴳ::Integer, D::Integer=3)
(numᴳ < 1 || numᴳ > 230) && error(DomainError(numᴳ))
bilbaourl = "https://www.cryst.ehu.es/cgi-bin/"
program_spec = if D == 3
"cryst/programs/nph-lxi?client=maxsub&way=up&type=t&gnum="
elseif D == 2
"plane/programs/nph-plane_maxsub?gnum="
else
throw(DomainError(D))
end
contents = HTTP.request("GET", bilbaourl * program_spec * string(numᴳ))
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
function find_transformation_matrices(numᴴ::Integer, numᴳ::Integer, D::Integer,
kind::Symbol, index::Integer)
htmlraw = http_request_subgroup_transformation(numᴴ, numᴳ, D, kind, index)
# grab relevant rows of table(s)
body_html = children(last(children(htmlraw.root)))
multiple_conjugacy_classes = (Gumbo.text(body_html[5]) ==
" The subgroups of the same type can be divided in\n ")
if !multiple_conjugacy_classes
# all transformations in the single (only) conjugacy class
tables_html = [children(body_html[5][5][2])[2:end]]
# Note that a single conjugacy class may still have multiple distinct transformations
# (e.g., mapping H onto different conjugate parts of G); we are generally only interested
# in the first mapping, so we just grab the first row (the first transformation;
# usually the simplest).
else
# transformations to multiple distinct conjugacy classes: include a representative
# of each conjugacy class. Different conjugacy class transformations map to
# different conjugacy classes of the supergroup; so we should include both when
# we think about implications for topology (because the symmetry eigenvalues in
# distinct conjugacy classes can differ)
table_idx = 5
tables_html = Vector{HTMLNode}[]
while (table_idx ≤ length(children(body_html[9])) &&
(subbody_html = body_html[9][table_idx];
begins_with_conjugacy_str = startswith(Gumbo.text(subbody_html[1]), "Conjugacy class");
begins_with_conjugacy_str || table_idx == 5) )
subbody_idx = 1+begins_with_conjugacy_str
push!(tables_html, children(subbody_html[subbody_idx])[2:end]) # transformation
table_idx += 2
end
end
# The transformations {P|p} consist of a rotation part P and a translation part p;
# notably, the rotation part P may also contain a scaling part (i.e. detP is not
# necessarily 1)
Pps = Vector{Tuple{Matrix{Rational{Int}}, Vector{Rational{Int}}}}(undef, length(tables_html))
for (i,table_html) in enumerate(tables_html)
row_html = table_html[1]
Pp_str = replace(replace(Gumbo.text(row_html[2]), r"\n *"=>'\n'), r" +"=>',')
Pp_str_rows = split.(split(Pp_str, '\n'), ',')
P = [parse_maybe_fraction(Pp_str_rows[row][col]) for row in 1:D, col in 1:D]
p = [parse_maybe_fraction(Pp_str_rows[row][D+1]) for row in 1:D]
Pps[i] = (P, p)
end
# the transformation is intended as acting _inversely_ on the elements of H
# (equivalently, directly on the elements of g∈G that have isomorphic elements in H);
# that is, for every h∈H, there exists a mapped h′∈H′ with H′<G in the exact sense, with
# h′ = {P|p} h {P|p}⁻¹ = `transform(h, inv(P), -inv(W)*p)`
# since det P is not necessarily 1, the transformation can collapse multiple elements
# onto eachother, such that some h′ become equivalent in the new lattice basis; this is
# e.g. the case in subgroup 167 of space group 230; to fix this, the result could be
# passed to `reduce_ops`. Hence, the relation we get it:
# H′ = [transform(h, inv(P), -inv(P)*p) for h in H]
# H′_reduced = reduce_ops(H′, centering(G))
# G_reduced = reduce_ops(G, centering(G))
# issubgroup(H′_reduced, G_reduced) == true
return Pps
end
function parse_maybe_fraction(s)
slash_idxs = findfirst("/", s)
if isnothing(slash_idxs)
return Rational{Int}(parse(Int, s)::Int)
else
slash_idx = slash_idxs[1] # only takes up one codepoint
parse(Int, s[1:slash_idx-1])::Int // parse(Int, s[slash_idx+1:end])::Int
end
end
function http_request_subgroup_transformation(numᴴ::Integer, numᴳ::Integer, # H < G
D::Integer, kind::Symbol, index::Integer)
(numᴳ < 1 || numᴳ > 230) && error(DomainError(numᴳ))
(numᴴ < 1 || numᴴ > 230) && error(DomainError(numᴴ))
baseurl = "https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-tranmax?way=up&"
url = baseurl * "type=$(kind)&super=$(numᴳ)&sub=$(numᴴ)&index=$(index)"
if D == 2
url *= "&client=planesubmax&subtype=plane"
end
contents = HTTP.request("GET", url)
return parsehtml(String(contents.body))
end
# ---------------------------------------------------------------------------------------- #
# Crawl and save all the data (~10-15 min)
@time begin
subgroup_data = ([# === 1D === (done manually)
# line group 1
[(num = 1, index = 2, kind = :k, Pps = [([2//1;;], [0//1])]),
(num = 1, index = 3, kind = :k, Pps = [([3//1;;], [0//1])]) ],
# line group 2
[(num = 1, index = 2, kind = :t, Pps = [([1//1;;], [0//1])]),
(num = 2, index = 2, kind = :k, Pps = [([2//1;;], [0//1]),
([2//1;;], [1//2])]),
(num = 2, index = 3, kind = :k, Pps = [([3//1;;], [0//1])]) ] ],
# === 2D ===
crawl_maximal_subgroups.(1:17, 2),
# === 3D ===
crawl_maximal_subgroups.(1:230, 3))
end
using JLD2
jldsave("data/spacegroup_subgroups_data.jld2"; subgroups_data=subgroups_data)
# ---------------------------------------------------------------------------------------- #
# Test that H and G are indeed subgroups under the provided transformations
using Test
@testset for D in 1:3
println("=== D = ", D, " ===")
subgroups_data_D = subgroups_data[D]
for numᴳ in 1:MAX_SGNUM[D]
println(" G = ", numᴳ)
G = spacegroup(numᴳ, D)
G_reduced = reduce_ops(G, centering(G))
subgroup_data = subgroups_data_D[numᴳ]
numsᴴ = getindex.(subgroup_data, Ref(:num))
Ppss = getindex.(subgroup_data, Ref(:Pps))
kinds = getindex.(subgroup_data, Ref(:kind))
for (numᴴ, kind, Pps) in zip(numsᴴ, kinds, Ppss)
kind == :k && continue # skip klassengleiche
println(" H = ", numᴴ)
H = spacegroup(numᴴ, D)
for (c, (P, p)) in enumerate(Pps)
length(Pps) > 1 && println(" Conjugacy class ", Char(Int('a')-1+c))
H′ = transform.(H, Ref(inv(P)), Ref(-inv(P)*p))
H′_reduced = reduce_ops(H′, centering(G))
@test issubgroup(G_reduced, H′_reduced)
end
end
end
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3087 | using Crystalline
using StaticArrays
# --- definitions ---
# to be transferred to Crystalline's definitions
# --- parsing ---
#cd(@__DIR__)
io = open((@__DIR__)*"/../data/operations/msgs/iso-magnetic_table_bns.txt")
# --- read dictionary of operations ---
function read_ops!(io, ops_d, stop_string)
while (str=readline(io); str ≠ stop_string)
parts = split(str, isspace; keepempty=false)
code, xyz = parts[1], parts[2]
op = SymOperation(xyz)
ops_d[code] = op
end
return ops_d
end
readuntil(io, "Non-hexagonal groups:"); readline(io)
nonhex_ops_d = Dict{String, SymOperation{3}}()
read_ops!(io, nonhex_ops_d, "Hexagonal groups:")
hex_ops_d = Dict{String, SymOperation{3}}()
read_ops!(io, hex_ops_d, "----------")
# --- read individual groups ---
function parse_opstr(str::AbstractString, ops_d)
str′ = strip(str, ['(', ')','\''])
code, translation_str = split(str′, '|')::Vector{SubString{String}}
translation_parts = split(translation_str, ',')
translation_tup = ntuple(Val(3)) do i
Crystalline.parsefraction(translation_parts[i])
end
translation = SVector{3, Float64}(translation_tup)
op = SymOperation{3}(ops_d[code].rotation, translation)
tr = last(str) == '\''
return MSymOperation(op, tr)
end
function read_group!(io)
# BNS: number & label
readuntil(io, "BNS: ")
num_str = readuntil(io, " ") # numbering in format `sgnum.cnum`
sgnum, cnum = parse.(Int, split(num_str, "."))::Vector{Int}
# `sgnum`: F space-group associated number, `cnum`: crystal-system sequential number
bns_label = replace(readuntil(io, " "), '\''=>'′') # BNS label in IUC-style
# OG: number and label
readuntil(io, "OG: ")
N₁N₂N₃_str = readuntil(io, " ") # numbering in format `N₁.N₂.N₃`
N₁, N₂, N₃ = parse.(Int, split(N₁N₂N₃_str, "."))::Vector{Int}
og_label = replace(readuntil(io, '\n'), '\''=>'′') # OG label in IUC-style
# operator strings
is_hex = crystalsystem(sgnum) ∈ ("hexagonal" , "trigonal")
readuntil(io, "Operators")
c = read(io, Char)
if c == ' '
readuntil(io, "(BNS):")
elseif c ≠ ':'
error("unexpected parsing failure")
end
ops_str = readuntil(io, "Wyckoff")
op_strs = split(ops_str, isspace; keepempty=false)
# parse operator strings to operations
g = Vector{MSymOperation{3}}(undef, length(op_strs))
for (i, str) in enumerate(op_strs)
g[i] = parse_opstr(str, is_hex ? hex_ops_d : nonhex_ops_d)
isdone = str[end] == '\n'
isdone && break
end
return MSpaceGroup{3}((sgnum, cnum), g), bns_label, og_label, (N₁, N₂, N₃)
end
msgs = MSpaceGroup{3}[]
MSG_BNS_LABELs_D = Dict{Tuple{Int, Int}, String}()
MSG_OG_LABELs_D = Dict{Tuple{Int, Int, Int}, String}()
MSG_BNS2OG_NUMs_D = Dict{Tuple{Int, Int}, Tuple{Int, Int, Int}}()
for i in 1:1651
msg, bns_label, og_label, (N₁, N₂, N₃) = read_group!(io)
push!(msgs, msg)
MSG_BNS_LABELs_D[msg.num] = bns_label
MSG_OG_LABELs_D[(N₁, N₂, N₃)] = og_label
MSG_BNS2OG_NUMs_D[msg.num] = (N₁, N₂, N₃)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 7526 | using Crystalline
# The listings below include all unique, labelled k-points in the representation domain
# whose little group is not trivial. In addition, Γ=(0,0) and Ω=(u,v) are included for
# every group. The notation follows Bilbao's LKVEC tool [^1] entirely. Note that this
# implies some occasionally odd-looking choices, e.g. (see (*) marks below):
# - *Plane groups 3 & 4*: the X and Y labels are defined counter-intuitively, such that
# X = (0,1/2) and Y = (1/2,0). This also differs from the definitions in the
# other primitive rectangular (op) Bravais lattices (i.e. 6, 7, & 8), which
# instead have X = (1/2,0) etc. The difference also exists for k-line labels.
# - *Plane group 5 vs. 9*: although both are centred rectangular (oc) Bravais lattices,
# their k-vector labels do not agree, but differ by coordinate permutations.
# The origin for these differences lies in different settings for the plane group
# operations. Because we use Bilbao's conventions for plane group operations, we also stick
# with their conventions for k-vector labels here, even though they are somewhat unsightly
# occasionally.
# Litvin & Wike's 'Character tables and compatibility relations of the eighty layer groups
# and seventeen plane groups' (1991), give labels that do not have these deficiencies (and
# otherwise agree with LKVEC) in table 24 and figure 7. However, this implies a different
# setting for the symmetry operations, so we cannot really adopt it.
# [^1]: [Bilbao's LKVEC](https://www.cryst.ehu.es/subperiodic/get_layer_kvec.html)
PLANE2KVEC = Dict(
1 => ([], KVec{2}.([])),
2 => (["Y", "B", "A"], KVec{2}.(["0,1/2", "1/2,0", "1/2,-1/2"])),
3 => (["X", "Y", "S", #= (*) =#
"Σ", "ΣA", "C",
"CA"], KVec{2}.(["0,1/2", "1/2,0", "1/2,1/2", "0,u", "0,-u", "1/2,u", "1/2,-u"])),
4 => (["X", "Y", "S", #= non-symmorphic =# #= (*) =#
"Σ", "ΣA", "C",
"CA"], KVec{2}.(["0,1/2", "1/2,0", "1/2,1/2", "0,u", "0,-u", "1/2,u", "1/2,-u"])),
5 => (["Y", "Σ", "ΣA", #= (*) =#
"C", "CA"], KVec{2}.(["0,1", "0,2u", "0,-2u", "1,2u", "1,-2u"])),
6 => (["X", "Y", "S",
"Σ", "C", "Δ",
"D"], KVec{2}.(["1/2,0", "0,1/2", "1/2,1/2", "u,0", "u,1/2", "0,u", "1/2,u"])),
7 => (["X", "Y", "S", #= non-symmorphic =#
"Σ", "C", "Δ",
"D"], KVec{2}.(["1/2,0", "0,1/2", "1/2,1/2", "u,0", "u,1/2", "0,u", "1/2,u"])),
8 => (["X", "Y", "S", #= non-symmorphic =#
"Σ", "C", "Δ",
"D"], KVec{2}.(["1/2,0", "0,1/2", "1/2,1/2", "u,0", "u,1/2", "0,u", "1/2,u"])),
9 => (["Y", "S", "Σ",
"Δ", "F", "C"], KVec{2}.(["1,0", "1/2,1/2", "2u,0", "0,2u", "1,2u", "2u,1"])),
10 => (["X", "M"], KVec{2}.(["0,1/2", "1/2,1/2"])),
11 => (["X", "M", "Σ",
"Δ", "Y"], KVec{2}.(["0,1/2", "1/2,1/2", "u,u", "0,u", "u,1/2"])),
12 => (["X", "M", "Σ", #= non-symmorphic =#
"Δ", "Y"], KVec{2}.(["0,1/2", "1/2,1/2", "u,u", "0,u", "u,1/2"])),
13 => (["K", "KA"], KVec{2}.(["1/3,1/3", "2/3,-1/3"])),
14 => (["K", "M", "Σ",
"ΣA"], KVec{2}.(["1/3,1/3", "1/2,0", "u,0", "0,u"])),
15 => (["K", "KA", "M",
"Λ", "ΛA", "T",
"TA"], KVec{2}.(["1/3,1/3", "2/3,-1/3", "1/2,0", "u,u", "2u,-u", "1/2-u,2u", "1/2+u,-2u"])),
16 => (["K", "M"], KVec{2}.(["1/3,1/3", "1/2,0"])),
17 => (["K", "M", "Σ",
"Λ", "T"], KVec{2}.(["1/3,1/3", "1/2,0", "u,0", "u,u", "1/2-u,2u"]))
)
# push Γ and Ω k-points, which are in all plane groups, to front & end of the above vectors
foreach(values(PLANE2KVEC)) do d
pushfirst!(d[1], "Γ"); push!(d[1], "Ω")
pushfirst!(d[2], KVec("0,0")); push!(d[2], KVec("α,β"))
end
# should be called with a reduced set of operations (i.e. no centering translation copies)
function _find_isomorphic_parent_pointgroup(G)
D = dim(G)
ctᴳ = MultTable(G).table
@inbounds for iuclab in PG_IUCs[D]
P = pointgroup(iuclab, D)
ctᴾ = MultTable(P).table
if ctᴳ == ctᴾ # bit sloppy; would miss ismorphisms that are "concealed" by row/column swaps
return P
end
end
error("failed to find an isomorphic parent point group")
end
# build little group irreps of tabulated k-points by matching up to the assoc. point group
LGIRSD_2D = Dict{Int, Dict{String, Vector{LGIrrep{2}}}}()
for (sgnum, (klabs, kvs)) in PLANE2KVEC
issymmorph(sgnum, 2) || continue # treat only symmorphic groups
sg = spacegroup(sgnum, Val(2))
lgs = littlegroup.(Ref(sg), kvs) # little groups at each tabulated k-point
ops′ = reduce_ops.(lgs) # reduce to operations without centering "copies"
lgs .= LittleGroup.(sgnum, kvs, klabs, ops′)
pgs = _find_isomorphic_parent_pointgroup.(lgs) # find the parent point group
pglabs = label.(pgs) # labels of the parent point groups
pgirs_vec = pgirreps.(pglabs, Val(2))
LGIRSD_2D[sgnum] = Dict{String, Vector{LGIrrep{2}}}()
for (klab, lg, pgirs) in zip(klabs, lgs, pgirs_vec)
# regarding cdml labels: in 3D some CDML labels can have a ± superscript; in 2D,
# however, the labelling scheme is just numbers; taking `last(label(pgir))` picks
# out this number ('₁', '₂', etc.)
cdmls = Ref(klab).*last.(label.(pgirs))
matrices = getfield.(pgirs, Ref(:matrices))
translations = [zeros(2) for _ in lg]
pgirs_realities = reality.(pgirs)
lgirs = LGIrrep{2}.(cdmls, Ref(lg), matrices, Ref(translations), pgirs_realities, false)
LGIRSD_2D[sgnum][klab] = lgirs
end
end
# correct the reality by calling out to `calc_reality` explicitly (the thing to guard
# against here is that the Herring criterion and the Frobenius-Schur criterion need not
# agree: i.e. LGIrreps do not necessarily inherit the reality of a parent PGIrrep)
LGIRSD_2D′ = Dict{Int, Dict{String, Vector{LGIrrep{2}}}}()
for (sgnum, LGIRSD_2D) in LGIRSD_2D
sg = reduce_ops(spacegroup(sgnum, Val(2)))
LGIRSD_2D′[sgnum] = Dict{String, Vector{LGIrrep{2}}}()
for (klab, lgirs) in LGIRSD_2D
lgirs′ = LGIrrep{2}[]
for lgir in lgirs
reality_type = calc_reality(lgir, sg)
lgir′ = LGIrrep{2}(label(lgir), group(lgir), lgir.matrices, lgir.translations,
reality_type , false)
push!(lgirs′, lgir′)
end
LGIRSD_2D′[sgnum][klab]= lgirs′
end
end
# -----------------------------------------------------------------------------------------
# ADD LGIRREPS OR THE NON-SYMMORPHIC PLANE GROUPS (FROM HAND-TABULATION)
let
# "load" the `LGIrrep`s of plane groups 4, 7, 8, and 12 into `LGIRSD_2D` (using `let`
# statement to avoid namespace clash w/ existing `LGIRSD_2D`)
include("setup_2d_littlegroup_irreps_nonsymmorph.jl")
merge!(LGIRSD_2D′, LGIRSD_2D)
end
# -----------------------------------------------------------------------------------------
# CREATE A SORTED VECTOR OF `Vector{LGIrrep}` WHOSE INDICES MATCH THE SGNUM
LGIRS_2D′ = Vector{valtype(LGIRSD_2D′)}(undef, 17)
foreach(LGIRSD_2D′) do (sgnum, lgirsd)
LGIRS_2D′[sgnum] = lgirsd
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 10814 | using Crystalline
function make_lgirrep(cdml_suffix::String, lg::LittleGroup{D},
scalars_or_matrices::Vector, reality_type::Reality=REAL,
translations=nothing) where D
cdml = klabel(lg)*cdml_suffix
if eltype(scalars_or_matrices) <: Number
matrices = [fill(ComplexF64(v), 1,1) for v in scalars_or_matrices]
else
matrices = scalars_or_matrices
end
if isnothing(translations)
translations = [zeros(D) for _ in matrices]
end
return LGIrrep{D}(cdml, lg, matrices, translations, reality_type, false)
end
# -----------------------------------------------------------------------------------------
# --- MANUAL TABULATION OF IRREPS OF NONSYMMORPHIC PLANE GROUPS (4, 7, 8, & 12) -----------
# In all cases, the irreps (and associated labels) were obtained simply by comparison with
# their parent space group. The settings are identical between these plane groups and their
# parent space group, except for plane group 4, which corresponds to an yz-plane instead of
# an xy-plane of its parent.
LGIRSD_2D = Dict{Int, Dict{String, Vector{LGIrrep{2}}}}()
# --- Plane group 4 -----------------------------------------------------------------------
# The yz-plane of space group 7
LGIRSD_2D[4] = Dict{String, Vector{LGIrrep{2}}}()
# Γ
kv = KVec(0,0)
lg = LittleGroup(4, kv, "Γ", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["Γ"] = [
make_lgirrep("₁", lg, [1, +1], REAL)
make_lgirrep("₂", lg, [1, -1], REAL)
]
# X (from 3D B-point)
kv = KVec(0,1/2)
lg = LittleGroup(4, kv, "X", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["X"] = [
make_lgirrep("₁", lg, [1, 1im], COMPLEX)
make_lgirrep("₂", lg, [1, -1im], COMPLEX)
]
# Y (from 3D Z-point)
kv = KVec(1/2,0)
lg = LittleGroup(4, kv, "Y", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["Y"] = [
make_lgirrep("₁", lg, [1, 1], REAL)
make_lgirrep("₂", lg, [1, -1], REAL)
]
# S (from 3D D-point)
kv = KVec(1/2,1/2)
lg = LittleGroup(4, kv, "S", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["S"] = [
make_lgirrep("₁", lg, [1, 1im], COMPLEX)
make_lgirrep("₂", lg, [1, -1im], COMPLEX)
]
# Σ (from 3D F-point)
kv = KVec("0,u")
lg = LittleGroup(4, kv, "Σ", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["Σ"] = [
make_lgirrep("₁", lg, [1, 1], COMPLEX, [[0.0,0.0], [0.0,0.5]])
make_lgirrep("₂", lg, [1, -1], COMPLEX, [[0.0,0.0], [0.0,0.5]])
]
# ΣA (from Σ)
kv = KVec("0,-u")
lg = LittleGroup(4, kv, "ΣA", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["ΣA"] = [
make_lgirrep("₁", lg, [1, 1], COMPLEX, [[0.0,0.0], [0.0,0.5]]) # same as Σ ...
make_lgirrep("₂", lg, [1, -1], COMPLEX, [[0.0,0.0], [0.0,0.5]])
]
# C (from 3D G-point)
kv = KVec("1/2,u")
lg = LittleGroup(4, kv, "C", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["C"] = [
make_lgirrep("₁", lg, [1, 1], COMPLEX, [[0.0,0.0], [0.0,0.5]]) # same as Σ ...
make_lgirrep("₂", lg, [1, -1], COMPLEX, [[0.0,0.0], [0.0,0.5]])
]
# CA (from C)
kv = KVec("1/2,-u")
lg = LittleGroup(4, kv, "CA", [S"x,y", S"-x,y+1/2"])
LGIRSD_2D[4]["CA"] = [
make_lgirrep("₁", lg, [1, 1], COMPLEX, [[0.0,0.0], [0.0,0.5]]) # same as Σ ...
make_lgirrep("₂", lg, [1, -1], COMPLEX, [[0.0,0.0], [0.0,0.5]])
]
# --- Plane group 7 -----------------------------------------------------------------------
# The xz-plane of space group 28
LGIRSD_2D[7] = Dict{String, Vector{LGIrrep{2}}}()
# Γ
kv = KVec(0,0)
lg = LittleGroup(7, kv, "Γ", [S"x,y", S"-x,-y", S"-x+1/2,y", S"x+1/2,-y"])
LGIRSD_2D[7]["Γ"] = [
make_lgirrep("₁", lg, [1, +1, +1, +1], REAL)
make_lgirrep("₂", lg, [1, +1, -1, -1], REAL)
make_lgirrep("₃", lg, [1, -1, +1, -1], REAL)
make_lgirrep("₄", lg, [1, -1, -1, +1], REAL)
]
# Y
kv = KVec(0,1/2)
lg = LittleGroup(7, kv, "Y", [S"x,y", S"-x,-y", S"-x+1/2,y", S"x+1/2,-y"])
LGIRSD_2D[7]["Y"] = [
make_lgirrep("₁", lg, [1, +1, +1, +1], REAL)
make_lgirrep("₂", lg, [1, +1, -1, -1], REAL)
make_lgirrep("₃", lg, [1, -1, +1, -1], REAL)
make_lgirrep("₄", lg, [1, -1, -1, +1], REAL)
]
# X
kv = KVec(1/2,0)
lg = LittleGroup(7, kv, "X", [S"x,y", S"-x,-y", S"-x+1/2,y", S"x+1/2,-y"])
LGIRSD_2D[7]["X"] = [
make_lgirrep("₁", lg, [[1 0; 0 1], [0 -1; -1 0], [1 0; 0 -1], [0 -1; 1 0]], REAL)
]
# S
kv = KVec(1/2,1/2)
lg = LittleGroup(7, kv, "S", [S"x,y", S"-x,-y", S"-x+1/2,y", S"x+1/2,-y"])
LGIRSD_2D[7]["S"] = [
make_lgirrep("₁", lg, [[1 0; 0 1], [0 -1; -1 0], [1 0; 0 -1], [0 -1; 1 0]], REAL)
]
# Σ
kv = KVec("u,0")
lg = LittleGroup(7, kv, "Σ", [S"x,y", S"x+1/2,-y"])
LGIRSD_2D[7]["Σ"] = [
make_lgirrep("₁", lg, [1, +1], REAL, [[0.0,0.0], [0.5,0.0]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.0]])
]
# C
kv = KVec("u,1/2")
lg = LittleGroup(7, kv, "C", [S"x,y", S"x+1/2,-y"])
LGIRSD_2D[7]["C"] = [
make_lgirrep("₁", lg, [1, +1], REAL, [[0.0,0.0], [0.5,0.0]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.0]])
]
# Δ
kv = KVec("0,u")
lg = LittleGroup(7, kv, "Δ", [S"x,y", S"-x+1/2,y"])
LGIRSD_2D[7]["Δ"] = [
make_lgirrep("₁", lg, [1, -1], REAL)
make_lgirrep("₂", lg, [1, +1], REAL)
]
# D
kv = KVec("1/2,u")
lg = LittleGroup(7, kv, "D", [S"x,y", S"-x+1/2,y"])
LGIRSD_2D[7]["D"] = [
make_lgirrep("₁", lg, [1, +1], COMPLEX)
make_lgirrep("₂", lg, [1, -1], COMPLEX)
]
# --- Plane group 8 -----------------------------------------------------------------------
# The xz-plane of space group 32
LGIRSD_2D[8] = Dict{String, Vector{LGIrrep{2}}}()
# Γ
kv = KVec(0,0)
lg = LittleGroup(8, kv, "Γ", [S"x,y", S"-x,-y", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["Γ"] = [
make_lgirrep("₁", lg, [1, +1, +1, +1], REAL)
make_lgirrep("₂", lg, [1, +1, -1, -1], REAL)
make_lgirrep("₃", lg, [1, -1, +1, -1], REAL)
make_lgirrep("₄", lg, [1, -1, -1, +1], REAL)
]
# Y
kv = KVec(0,1/2)
lg = LittleGroup(8, kv, "Y", [S"x,y", S"-x,-y", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["Y"] = [
make_lgirrep("₁", lg, [[1 0; 0 1], [0 -1; -1 0], [0 -1; 1 0], [1 0; 0 -1]], REAL)
]
# X
kv = KVec(1/2,0)
lg = LittleGroup(8, kv, "X", [S"x,y", S"-x,-y", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["X"] = [
make_lgirrep("₁", lg, [[1 0; 0 1], [0 -1; -1 0], [1 0; 0 -1], [0 -1; 1 0]], REAL)
]
# S
kv = KVec(1/2,1/2)
lg = LittleGroup(8, kv, "S", [S"x,y", S"-x,-y", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["S"] = [
make_lgirrep("₁", lg, [1, +1, +1im, +1im], COMPLEX)
make_lgirrep("₂", lg, [1, +1, -1im, -1im], COMPLEX)
make_lgirrep("₃", lg, [1, -1, +1im, -1im], COMPLEX)
make_lgirrep("₄", lg, [1, -1, -1im, +1im], COMPLEX)
]
# Σ
kv = KVec("u,0")
lg = LittleGroup(8, kv, "Σ", [S"x,y", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["Σ"] = [
make_lgirrep("₁", lg, [1, +1], REAL, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.5]])
]
# C
kv = KVec("u,1/2")
lg = LittleGroup(8, kv, "C", [S"x,y", S"x+1/2,-y+1/2"])
LGIRSD_2D[8]["C"] = [
make_lgirrep("₁", lg, [1, -1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, +1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
]
# Δ
kv = KVec("0,u")
lg = LittleGroup(8, kv, "Δ", [S"x,y", S"-x+1/2,y+1/2"])
LGIRSD_2D[8]["Δ"] = [
make_lgirrep("₁", lg, [1, +1], REAL, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.5]])
]
# D
kv = KVec("1/2,u")
lg = LittleGroup(8, kv, "D", [S"x,y", S"-x+1/2,y+1/2"])
LGIRSD_2D[8]["D"] = [
make_lgirrep("₁", lg, [1, -1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, +1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
]
# --- Plane group 12 ----------------------------------------------------------------------
# The xy-plane of space group 100
LGIRSD_2D[12] = Dict{String, Vector{LGIrrep{2}}}()
# Γ
kv = KVec(0,0)
lg = LittleGroup(12, kv, "Γ", [S"x,y", S"-x,-y", S"-y,x", S"y,-x", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2", S"-y+1/2,-x+1/2", S"y+1/2,x+1/2"])
LGIRSD_2D[12]["Γ"] = [
make_lgirrep("₁", lg, [1, +1, +1, +1, +1, +1, +1, +1], REAL)
make_lgirrep("₂", lg, [1, +1, -1, -1, +1, +1, -1, -1], REAL)
make_lgirrep("₃", lg, [1, +1, -1, -1, -1, -1, +1, +1], REAL)
make_lgirrep("₄", lg, [1, +1, +1, +1, -1, -1, -1, -1], REAL)
make_lgirrep("₅", lg, [[1 0; 0 1], [-1 0; 0 -1], [0 -1; 1 0], [0 1; -1 0], [-1 0; 0 1], [1 0; 0 -1], [0 -1; -1 0], [0 1; 1 0]], REAL)
]
# M
kv = KVec(1/2,1/2)
lg = LittleGroup(12, kv, "M", [S"x,y", S"-x,-y", S"-y,x", S"y,-x", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2", S"-y+1/2,-x+1/2", S"y+1/2,x+1/2"])
LGIRSD_2D[12]["M"] = [
make_lgirrep("₁", lg, [1, -1, 1im, -1im, 1im, -1im, 1, -1], COMPLEX)
make_lgirrep("₂", lg, [1, -1, -1im, 1im, 1im, -1im, -1, 1], COMPLEX)
make_lgirrep("₃", lg, [1, -1, -1im, 1im, -1im, 1im, 1, -1], COMPLEX)
make_lgirrep("₄", lg, [1, -1, 1im, -1im, -1im, 1im, -1, 1], COMPLEX)
make_lgirrep("₅", lg, [[1 0; 0 1], [1 0; 0 1], [-1 0; 0 1], [-1 0; 0 1], [0 -1; 1 0], [0 -1; 1 0], [0 -1; -1 0], [0 -1; -1 0]])
]
# X
kv = KVec(0,1/2)
lg = LittleGroup(12, kv, "X", [S"x,y", S"-x,-y", S"-x+1/2,y+1/2", S"x+1/2,-y+1/2"])
LGIRSD_2D[12]["X"] = [
make_lgirrep("₁", lg, [[1 0; 0 1], [1 0; 0 -1], [0 -1; 1 0], [0 1; 1 0]])
]
# Δ
kv = KVec("0,u")
lg = LittleGroup(12, kv, "Δ", [S"x,y", S"-x+1/2,y+1/2"])
LGIRSD_2D[12]["Δ"] = [
make_lgirrep("₁", lg, [1, 1], REAL, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.5]])
]
# Y
kv = KVec("u,1/2")
lg = LittleGroup(12, kv, "Y", [S"x,y", S"x+1/2,-y+1/2"])
LGIRSD_2D[12]["Y"] = [
make_lgirrep("₁", lg, [1, -1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, 1im], COMPLEX, [[0.0,0.0], [0.5,0.5]])
]
# Σ
kv = KVec("u,u")
lg = LittleGroup(12, kv, "Σ", [S"x,y", S"y+1/2,x+1/2"])
LGIRSD_2D[12]["Σ"] = [
make_lgirrep("₁", lg, [1, 1], REAL, [[0.0,0.0], [0.5,0.5]])
make_lgirrep("₂", lg, [1, -1], REAL, [[0.0,0.0], [0.5,0.5]])
]
# -----------------------------------------------------------------------------------------
# ADD TRIVIAL Ω IRREP TO EACH LISTING
for (sgnum, lgirsd) in LGIRSD_2D
local lg = LittleGroup(sgnum, KVec("u,v"), "Ω", [S"x,y"])
lgirsd["Ω"] = [make_lgirrep("₁", lg, [1], sgnum == 4 ? COMPLEX : REAL)]
# (reality is COMPLEX at Ω for plane group 4, and REAL for plane groups 7, 8, and 12)
end
# -----------------------------------------------------------------------------------------
# TEST FOR SUBSET OF POSSIBLE TYPOS
for (sgnum, lgirsd) in LGIRSD_2D
sg = reduce_ops(spacegroup(sgnum, Val(2)), true)
for (klab,lgirs) in lgirsd
g = group(first(lgirs))
if klabel(g) != klab
error("Tabulation error: mismatched k-label $(klabel(g)) and dict-index $(klab)")
end
if reality.(lgirs) != calc_reality.(lgirs, Ref(sg), Ref(Crystalline.TEST_αβγs[2]))
error("Tabulation error: reality type")
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2410 | # Utility to write a ::BandRepSet to a .csv file
using Crystalline
function bandrep2csv(filename::String, brs::BandRepSet)
open(filename, "w") do io
bandrep2csv(io, brs)
end
end
function extract_klabel(s::String)
# cheat a bit here and exploit that we know that the only greek letters
# occuring in the k-label are Γ, Λ, Δ, Σ, and Ω
stopidx = findfirst(c->c∉(('A':'Z'..., 'Γ', 'Λ', 'Δ', 'Σ', 'Ω')), s)::Int
return s[1:prevind(s, stopidx)] # `prevind` needed since labels are not just ascii
end
function bandrep2csv(io::IO, brs::BandRepSet)
print(io, "Wyckoff pos.")
for br in brs
print(io, "|", br.wyckpos, "(", br.sitesym, ")")
end
println(io)
print(io, "Band-Rep.")
for br in brs
print(io, "|", br.label, "(", br.dim, ")")
end
println(io)
irlabs = brs.irlabs
for (idx, (klab,kv)) in enumerate(zip(brs.klabs, brs.kvs))
print(io, klab, ":")
print(io, '('*strip(replace(string(kv), " "=>""), ('[', ']'))*')')
iridxs = findall(irlab -> extract_klabel(irlab) == klab, irlabs)
for br in brs
print(io, "|", )
has_multiple = false
for iridx in iridxs
v = br.irvec[iridx]
if !iszero(v)
has_multiple && print(io, '⊕')
isone(v) || print(io, v)
print(io, irlabs[iridx])
# TODO: write irrep dimension; possible, but tedious & requires
# loading irreps separately
has_multiple = true
end
end
end
idx ≠ length(brs.klabs) && println(io)
end
end
# ---------------------------------------------------------------------------------------- #
# define `make_bandrep_set` that creates `::BandRepSet`
include("setup_2d_band_representations.jl")
basepath = joinpath((@__DIR__), "..", "data/bandreps/2d")
for allpaths in (false, true)
path_tag = allpaths ? "allpaths" : "maxpaths"
for timereversal in (false, true)
tr_tag = timereversal ? "elementaryTR" : "elementary"
for sgnum in 1:MAX_SGNUM[2]
brs = calc_bandreps(sgnum, Val(2); allpaths=allpaths, timereversal=timereversal)
filename = joinpath(basepath, tr_tag, path_tag, string(sgnum)*".csv")
bandrep2csv(filename, brs)
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 6907 | using Crystalline, JLD2
"""
__write_littlegroupirreps(LGIRS::Vector{Dict{Vector{LGIrrep}}})
--> ::String, ::String
Write all little group/small irreps, i.e. `LGIrrep`s, in the input to disk, as JLD2 files,
in order to ease subsequent loading of `LGIrrep`s. Input is of the type
`LGIRS::Vector{Dict{Vector{LGIrrep}}}`
intended as vector-indexed across space group number, then dict-indexed across distinct
**k**-point labels, and finally vector-indexed across distinct irreps; in practice, calling
`__write_littlegroupirreps()`
will load `LGIRS` via `parselittlegroupirreps` and write **all** the `LGIrrep`s in ISOTROPY.
There is generally no reason for a user to **ever** do this.
Returns the filepath of the saved .jld2 files.
"""
function __write_littlegroupirreps(
LGIRS::Vector{Dict{String, <:AbstractVector{LGIrrep{D}}}}) where D
savepath = (@__DIR__)*"/../data/irreps/lgs/"*string(D)*"d"
filename_lgs = joinpath(savepath, "littlegroups_data.jld2")
filename_irreps = joinpath(savepath, "irreps_data.jld2")
JLD2.jldopen(filename_lgs, "w") do littlegroups_file
JLD2.jldopen(filename_irreps, "w") do irreps_file
for lgirsd in LGIRS # fixed sgnum: lgirsd has structure lgirsd[klab][iridx]
sgnum = num(first(lgirsd["Γ"]))
Nk = length(lgirsd)
# ==== little groups data ====
sgops = operations(first(lgirsd["Γ"]))
klab_list = Vector{String}(undef, Nk)
kstr_list = Vector{String}(undef, Nk)
opsidx_list = Vector{Vector{Int16}}(undef, Nk) # Int16 because number of ops ≤ 192; ideally, would use UInt8
for (kidx, (klab, lgirs)) in enumerate(lgirsd) # lgirs is a vector of LGIrreps, all at the same 𝐤-point
lgir = first(lgirs) # 𝐤-info is the same for each LGIrrep in vector lgirs
klab_list[kidx] = klab
kstr_list[kidx] = filter(!isspace, chop(string(position(lgir)); head=1, tail=1))
opsidx_list[kidx] = map(y->findfirst(==(y), sgops), operations(lgir))
end
# ==== irreps data ====
matrices_list = [[lgir.matrices for lgir in lgirs] for lgirs in values(lgirsd)]
#translations_list = [[lgir.translations for lgir in lgirs] for lgirs in values(lgirsd)]
# don't want to save a bunch of zeros if all translations are zero:
# instead, save `nothing` as a sentinel value
translations_list = [Union{Nothing, Vector{Vector{Float64}}}[
all(iszero, Crystalline.translations(lgir)) ? nothing : Crystalline.translations(lgir)
for lgir in lgirs] for lgirs in values(lgirsd)] # dreadful generator, but OK...
realities_list = [[Integer(reality(lgir)) for lgir in lgirs] for lgirs in values(lgirsd)]
cdml_list = [[label(lgir) for lgir in lgirs] for lgirs in values(lgirsd)]
# ==== save data ====
# little groups
littlegroups_file[string(sgnum)*"/sgops"] = xyzt.(sgops)
littlegroups_file[string(sgnum)*"/klab_list"] = klab_list
littlegroups_file[string(sgnum)*"/kstr_list"] = kstr_list
littlegroups_file[string(sgnum)*"/opsidx_list"] = opsidx_list
# irreps
irreps_file[string(sgnum)*"/matrices_list"] = matrices_list
irreps_file[string(sgnum)*"/translations_list"] = translations_list
irreps_file[string(sgnum)*"/realities_list"] = realities_list # ::Vector{Int8}
irreps_file[string(sgnum)*"/cdml_list"] = cdml_list
end # end of loop
end # close irreps_file
end # close littlegroups_file
return filename_lgs, filename_irreps
end
# ---------------------------------------------------------------------------------------- #
# 1D line groups: little groups irreps written down manually
LGIRS_1D = [Dict{String, Vector{LGIrrep{1}}}() for _ in 1:2]
function make_1d_lgirrep(sgnum::Integer, klab::String, cdml_suffix::String,
kx, ops::Vector{SymOperation{1}}, scalars::Vector{<:Number}=[1.0,],
reality_type::Reality=REAL)
cdml = klab*cdml_suffix
lg = LittleGroup{1}(sgnum, KVec{1}(string(kx)), klab, ops)
matrices = [fill(ComplexF64(v), 1,1) for v in scalars]
translations = [zeros(1) for _ in scalars]
return LGIrrep{1}(cdml, lg, matrices, translations, reality_type, false)
end
# Line group 1
LGIRS_1D[1]["Γ"] = [make_1d_lgirrep(1, "Γ", "₁", 0, [S"x"], [1.0])]
LGIRS_1D[1]["X"] = [make_1d_lgirrep(1, "X", "₁", 0.5, [S"x"], [1.0])]
LGIRS_1D[1]["Ω"] = [make_1d_lgirrep(1, "Ω", "₁", "u", [S"x"], [1.0], COMPLEX)]
# Line group 2
LGIRS_1D[2]["Γ"] = [make_1d_lgirrep(2, "Γ", "₁⁺", 0, [S"x", S"-x"], [1.0, 1.0]), # even
make_1d_lgirrep(2, "Γ", "₁⁻", 0, [S"x", S"-x"], [1.0, -1.0])] # odd
LGIRS_1D[2]["X"] = [make_1d_lgirrep(2, "X", "₁⁺", 0.5, [S"x", S"-x"], [1.0, 1.0]), # even
make_1d_lgirrep(2, "X", "₁⁻", 0.5, [S"x", S"-x"], [1.0, -1.0])] # odd
LGIRS_1D[2]["Ω"] = [make_1d_lgirrep(2, "Ω", "₁", "u", [S"x"], [1.0])]
# ---------------------------------------------------------------------------------------- #
# 2D plane groups: little groups irreps extracted for symmorphic groups via point groups
include("setup_2d_littlegroup_irreps.jl") # defines the variable LGIRS_2D′
# ---------------------------------------------------------------------------------------- #
# ---------------------------------------------------------------------------------------- #
# actually write .jld files for 1D and 3D
# (to do this, we must close `LGIRREPS_JLDFILES` and `LGS_JLDFILES` - which are opened upon
# initialization of Crystalline - before writing new content to them; to that end, we simply
# close the files below (make sure you don't have Crystalline loaded in another session
# though..!))
foreach(jldfile -> close(jldfile[]), Crystalline.LGIRREPS_JLDFILES)
foreach(jldfile -> close(jldfile[]), Crystalline.LGS_JLDFILES)
# 3D (from ISOTROPY)
include(joinpath((@__DIR__), "ParseIsotropy.jl")) # load the ParseIsotropy module
using Main.ParseIsotropy # (exports `parselittlegroupirreps`)
LGIRS_3D = parselittlegroupirreps()
# ... ISOTROPY is missing several irreps; we bring those in below, obtained from manual
# transcription of irreps from Bilbao; script below defines `LGIRS_add` which stores these
# manual additions (a Dict with `sgnum` keys)
include(joinpath((@__DIR__), "..", "data/irreps/lgs/manual_lgirrep_additions.jl"))
for (sgnum, lgirsd_add) in LGIRS_add # merge Bilbao additions with ISOTROPY irreps
merge!(LGIRS_3D[sgnum], lgirsd_add)
end
__write_littlegroupirreps(LGIRS_3D)
# 2D (from point group matching)
__write_littlegroupirreps(LGIRS_2D′)
# 1D (manual)
__write_littlegroupirreps(LGIRS_1D) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 37129 | # The goal of this script is to tabulate and construct the irreps in Φ-Ω (basic domain, Ω;
# representation domain, Φ) that are missing from ISOTROPY but still feature in the bandreps
# from Bilbao. By manual comparison, we found that there are 145 such irreps, across 20
# space groups, namely:
# ┌───────┬─────────────────────────────────────────────────────────────────────────────┬───────────────┬────────────────────────────────┬──────────────┐
# │ │ Missing │ Missing │ [NS≡nonsymmorph; S≡symmorph] │ Has fragile │
# │ SGs │ LGIrrep labels │ KVec labels │ Match method │ phases? │
# │───────┼─────────────────────────────────────────────────────────────────────────────┼───────────────┼────────────────────────────────┼──────────────│
# │ 23 │ WA₁, WA₂, WA₃, WA₄ │ WA │ S: MonoOrthTetraCubic ┐ │ ÷ │
# │ 24 │ WA₁ │ WA │ NS: Inherits from └ 23 │ ÷ │
# │ 82 │ PA₁, PA₂, PA₃, PA₄ │ PA │ S: MonoOrthTetraCubic │ │
# │ 121 │ PA₁, PA₂, PA₃, PA₄, PA₅ │ PA │ S: MonoOrthTetraCubic ┐ │ │
# │ 122 │ PA₁, PA₂ │ PA │ NS: Inherits from └ 121 │ │
# │ 143 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PC₁, PC₂, PC₃ │ HA, KA, PC │ S: TriHex │ │
# │ 144 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PC₁, PC₂, PC₃ │ HA, KA, PC │ NS: Orphan (type b) ┐ │ ÷ │
# │ 145 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PC₁, PC₂, PC₃ │ HA, KA, PC │ NS: Orphan (type b) ┘ │ ÷ │
# │ 150 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PA₁, PA₂, PA₃ │ HA, KA, PA │ S: TriHex │ │
# │ 152 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PA₁, PA₂, PA₃ │ HA, KA, PA │ NS: Orphan (type b) ┐ │ ÷ │
# │ 154 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PA₁, PA₂, PA₃ │ HA, KA, PA │ NS: Orphan (type b) ┘ │ │
# │ 157 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PC₁, PC₂, PC₃ │ HA, KA, PC │ S: TriHex ───────┐ │ │
# │ 159 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, PC₁, PC₂, PC₃ │ HA, KA, PC │ NS: Inherits from └ 157 │ │
# │ 174 │ HA₁, HA₂, HA₃, HA₄, HA₅, HA₆, KA₁, KA₂, KA₃, KA₄, KA₅, KA₆, PA₁, PA₂, PA₃ │ HA, KA, PA │ S: TriHex │ │
# │ 189 │ HA₁, HA₂, HA₃, HA₄, HA₅, HA₆, KA₁, KA₂, KA₃, KA₄, KA₅, KA₆, PA₁, PA₂, PA₃ │ HA, KA, PA │ S: TriHex ───────┐ │ │
# │ 190 │ HA₁, HA₂, HA₃, KA₁, KA₂, KA₃, KA₄, KA₅, KA₆, PA₁, PA₂, PA₃ │ HA, KA, PA │ NS: Inherits from └ 189 │ │
# │ 197 │ PA₁, PA₂, PA₃, PA₄ │ PA │ S: MonoOrthTetraCubic ┐ │ ÷ │
# │ 199 │ PA₁, PA₂, PA₃ │ PA │ NS: Inherits from └ 197 │ ÷ │
# │ 217 │ PA₁, PA₂, PA₃, PA₄, PA₅ │ PA │ S: MonoOrthTetraCubic ┐ │ │
# │ 220 │ PA₁, PA₂, PA₃ │ PA │ NS: Inherits from └ 217 │ │
# └───────┴─────────────────────────────────────────────────────────────────────────────┴───────────────┴────────────────────────────────┴──────────────┘
# In principle, these irreps _could_ be constructed from the existing irreps in ISOTROPY by
# suitable transformations, as described by B&C (e.g. near p. 414) or CDML (p. 69-73).
# Unfortunately, we have thus far not managed to implement that scheme correctly. Instead,
# we here just go the brute-force path and tabulate the things we need manually.
# NB: Of the above space groups, only SG 82 has nontrivial symmetry indicator for bosons
# with TR. Most of the space groups, however, can support symmetry-indicated fragile
# topology (÷ means 'cannot').
# ======================================================================================== #
# ================================== UTILITY FUNCTIONS =================================== #
# ======================================================================================== #
using Crystalline
# manually converting
# https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_out.pl
# to our own data format for the missing k-points listed in
# src/special_representation_domain_kpoints.jl
function build_lgirrep_with_type(cdml, lg, Psτs, sgops)
# input handling
if Psτs isa Vector # assume zero-τ factors
Ps = complex.(float.(Psτs))
τs = nothing
elseif Psτs isa Tuple{<:Any, <:Any} # nonzero τ-factors; input as 2-tuple
Ps = complex.(float.(Psτs[1]))
τs = Psτs[2]
else
throw("Unexpected input format of Psτs")
end
# convert scalar irreps (numbers) to 1×1 matrices
if eltype(Ps) <: Number
Ps = fill.(Ps, 1, 1)
end
lgir = LGIrrep{3}(cdml, lg, Ps, τs, REAL) # place-holder `REAL` reality type
reality = calc_reality(lgir, sgops)
lgir = LGIrrep{3}(cdml, lg, Ps, τs, reality) # update reality type
end
function prepare_lg_and_sgops(sgnum, kv, klab, ops)
lg = LittleGroup{3}(sgnum, kv, klab, ops)
sgops = reduce_ops(spacegroup(sgnum, Val(3)), centering(sgnum, 3), true) # for herrring
return lg, sgops
end
function assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
lg, sgops = prepare_lg_and_sgops(sgnum, kv, klab, lgops)
cdmls = Crystalline.formatirreplabel.(Ref(klab) .* string.(1:length(Psτs)))
lgirs = build_lgirrep_with_type.(cdmls, Ref(lg), Psτs, Ref(sgops))
end
if !isdefined(Main, :cispi)
cispi(x) = cis(π*x)
end
# ======================================================================================== #
# =========================== MANUALLY COPIED IRREP DATA BELOW =========================== #
# ======================================================================================== #
# "preallocate" a storage dict
sgnums = [23, 24, 82, 121, 122, 143, 144, 145, 150, 152, 154, 157, 159, 174, 189, 190, 197,
199, 217, 220]
LGIRS_add = Dict(sgnum=>Dict{String, Vector{LGIrrep{3}}}() for sgnum in sgnums)
# ========= 23 =========
sgnum = 23
# WA₁, WA₂, WA₃, WA₄
klab = "WA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "x,-y,-z", "-x,y,-z", "-x,-y,z"]) # 1, 2₁₀₀, 2₀₁₀, 2₀₀₁
# listed first across irrep (ascending, e.g. WA1, WA2, WA3, WA4 here) then across lgops
Psτs = [[1, 1, 1, 1], # Ps = matrices
# nonzero τs (translations) can be specified by entering a 2-tuple of Ps and τs instead of a vector of Ps
[1, -1, -1, 1],
[1, 1, -1, -1],
[1, -1, 1, -1],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 24 =========
sgnum = 24
# WA₁
klab = "WA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "x,-y,-z+1/2", "-x+1/2,y,-z", "-x,-y+1/2,z"]) # 1, {2₁₀₀|00½}, {2₀₁₀|½00}, {2₀₀₁|0½0}
Psτs = [[[1 0; 0 1], [1 0; 0 -1], [0 -im; im 0], [0 1; 1 0]],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 82 =========
sgnum = 82
# PA₁, PA₂, PA₃, PA₄
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y,z", "y,-x,-z", "-y,x,-z"]) # 1, 2₀₀₁, -4⁺₀₀₁, -4⁻₀₀₁
Psτs = [[1, 1, 1, 1],
[1, 1, -1, -1],
[1, -1, -im, im],
[1, -1, im, -im],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 121 =========
sgnum = 121
# PA₁, PA₂, PA₃, PA₄, PA₅
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y,z", "y,-x,-z", "-y,x,-z", "-x,y,-z", "x,-y,-z", "-y,-x,z", "y,x,z"])
# 1, 2₀₀₁, -4⁺₀₀₁, -4⁻₀₀₁, 2₀₁₀, 2₁₀₀, m₁₁₀, m₁₋₁₀
Psτs = [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, -1, -1, 1, 1, -1, -1],
[1, 1, -1, -1, -1, -1, 1, 1],
[1, 1, 1, 1, -1, -1, -1, -1],
[[1 0; 0 1], [-1 0; 0 -1], [0 -1; 1 0], [0 1; -1 0], [0 1; 1 0], [0 -1; -1 0], [1 0; 0 -1], [-1 0; 0 1]],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 122 =========
sgnum = 122
# PA₁, PA₂
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y,z", "y,-x,-z", "-y,x,-z", "-x,y+1/2,-z+1/4", "x,-y+1/2,-z+1/4", "-y,-x+1/2,z+1/4", "y,x+1/2,z+1/4"])
# 1, 2₀₀₁, -4⁺₀₀₁, -4⁻₀₀₁, {2₀₁₀|0,1/2,1/4}, {2₁₀₀|0,1/2,1/4}, {m₁₁₀|0,1/2,1/4}, {m₁₋₁₀|0,1/2,1/4}
Psτs = [[[1 0; 0 1], [1 0; 0 -1], [1 0; 0 im], [1 0; 0 -im], [0 -1; 1 0], [0 1; 1 0], [0 -im; 1 0], [0 im; 1 0]],
[[1 0; 0 1], [1 0; 0 -1], [-1 0; 0 -im], [-1 0; 0 im], [0 1; -1 0], [0 -1; -1 0], [0 -im; 1 0], [0 im; 1 0]],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 143 =========
sgnum = 143
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z"]) # 1, 3⁺₀₀₁, 3⁻₀₀₁
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
Psτs = [[1, 1, 1],
[1, cispi(-2/3), cispi(2/3)],
[1, cispi(2/3), cispi(-2/3)],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops & irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PC₁, PC₂, PC₃
klab = "PC"
kv = KVec("-1/3,-1/3,-w")
# ... same lgops & irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 144 =========
sgnum = 144
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+1/3", "-x+y,-x,z+2/3"]) # 1, {3⁺₀₀₁|0,0,1/3}, {3⁻₀₀₁|0,0,2/3}
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
Psτs = [[1, cispi(-1/3), cispi(-2/3)],
[1, -1, 1],
[1, cispi(1/3), cispi(2/3)],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
Psτs = [[1, 1, 1],
[1, cispi(-2/3), cispi(2/3)],
[1, cispi(2/3), cispi(-2/3)],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PC₁, PC₂, PC₃
klab = "PC"
kv = KVec("-1/3,-1/3,-w")
Psτs = [([1, 1, 1], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]), # nonzero τs
([1, cispi(-2/3), cispi(2/3)], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]),
([1, cispi(2/3), cispi(-2/3)], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]),]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 145 =========
sgnum = 145
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+2/3", "-x+y,-x,z+1/3"]) # 1, {3⁺₀₀₁|0,0,2/3}, {3⁻₀₀₁|0,0,1/3}
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
Psτs = [[1, 1, -1],
[1, cispi(-2/3), cispi(-1/3)],
[1, cispi(2/3), cispi(1/3)],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [[1, 1, 1],
[1, cispi(-2/3), cispi(2/3)],
[1, cispi(2/3), cispi(-2/3)],]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PC₁, PC₂, PC₃
klab = "PC"
kv = KVec("-1/3,-1/3,-w")
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [([1, 1, 1], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]), # nonzero τs
([1, cispi(-2/3), cispi(2/3)], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]),
([1, cispi(2/3), cispi(-2/3)], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]),]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 150 =========
sgnum = 150
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "y,x,-z", "x-y,-y,-z", "-x,-x+y,-z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, 2₁₁₀, 2₁₀₀, 2₀₁₀
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops & irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻
Psτs = [[1, 1, 1],
[1, cispi(-2/3), cispi(2/3)],
[1, cispi(2/3), cispi(-2/3)], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 152 =========
sgnum = 152
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+1/3", "-x+y,-x,z+2/3", "y,x,-z", "x-y,-y,-z+2/3", "-x,-x+y,-z+1/3"]) # 1, {3₀₀₁⁺|0,0,⅓}, {3₀₀₁⁻|0,0,⅔}, 2₁₁₀, {2₁₀₀|0,0,⅔}, {2₀₁₀|0,0,⅓}
Psτs = [[1, -1, 1, 1, 1, -1],
[1, -1, 1, -1, -1, 1],
[[1 0; 0 1], [cispi(-1/3) 0; 0 cispi(1/3)], [cispi(-2/3) 0; 0 cispi(2/3)], [0 1; 1 0], [0 cispi(-2/3); cispi(2/3) 0], [0 cispi(-1/3); cispi(1/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+1/3", "-x+y,-x,z+2/3"]) # 1, {3₀₀₁⁺|0,0,⅓}, {3₀₀₁⁻|0,0,⅔}
Psτs = [([1, 1, 1], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]),
([1, cispi(-2/3), cispi(2/3)], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]),
([1, cispi(2/3), cispi(-2/3)], [[0.0,0,0], [0,0,1/3], [0,0,2/3]]), ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 154 =========
sgnum = 154
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+2/3", "-x+y,-x,z+1/3", "y,x,-z", "x-y,-y,-z+1/3", "-x,-x+y,-z+2/3"]) # 1, {3₀₀₁⁺|0,0,⅔}, {3₀₀₁⁻|0,0,⅓}, 2₁₁₀, {2₁₀₀|0,0,⅓}, {2₀₁₀|0,0,⅔}
Psτs = [[1, 1, -1, -1, 1, -1],
[1, 1, -1, 1, -1, 1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(-1/3) 0; 0 cispi(1/3)], [0 1; 1 0], [0 cispi(-1/3); cispi(1/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z+2/3", "-x+y,-x,z+1/3"]) # 1, {3₀₀₁⁺|0,0,⅔}, {3₀₀₁⁻|0,0,⅓}
Psτs = [([1, 1, 1], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]),
([1, cispi(-2/3), cispi(2/3)], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]),
([1, cispi(2/3), cispi(-2/3)], [[0.0,0,0], [0,0,2/3], [0,0,1/3]]), ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 157 =========
sgnum = 157
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "y,x,z", "x-y,-y,z", "-x,-x+y,z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, m₋₁₁₀, m₁₂₀, m₂₁₀
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops & irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PC₁, PC₂, PC₃
klab = "PC"
kv = KVec("-1/3,-1/3,-w")
# ... same lgops & irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 159 =========
sgnum = 159
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "y,x,z+1/2", "x-y,-y,z+1/2", "-x,-x+y,z+1/2"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, {m₋₁₁₀|0,0,½}, {m₁₂₀|0,0,½}, {m₂₁₀|0,0,½}
Psτs = [[1, 1, 1, -1im, -1im, -1im],
[1, 1, 1, 1im, 1im, 1im],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 -1; 1 0], [0 cispi(-1/3); cispi(-2/3) 0], [0 cispi(1/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PC₁, PC₂, PC₃
klab = "PC"
kv = KVec("-1/3,-1/3,-w")
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [([1, 1, 1, 1, 1, 1],
[[0.0,0,0], [0.0,0,0], [0.0,0,0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]),
([1, 1, 1, -1, -1, -1],
[[0.0,0,0], [0.0,0,0], [0.0,0,0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]),
([[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
[[0.0,0,0], [0.0,0,0], [0.0,0,0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]),
]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 174 =========
sgnum = 174
# HA₁, HA₂, HA₃, HA₄, HA₅, HA₆
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "x,y,-z", "-y,x-y,-z", "-x+y,-x,-z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, m₀₀₁, -6₀₀₁⁻, -6₀₀₁⁺
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[1, cispi(-2/3), cispi(2/3), 1, cispi(-2/3), cispi(2/3)],
[1, cispi(-2/3), cispi(2/3), -1, cispi(1/3), cispi(-1/3)],
[1, cispi(2/3), cispi(-2/3), 1, cispi(2/3), cispi(-2/3)],
[1, cispi(2/3), cispi(-2/3), -1, cispi(-1/3), cispi(1/3)], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃, KA₄, KA₅, KA₆
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops and irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻
Psτs = [[1, 1, 1],
[1, cispi(-2/3), cispi(2/3)],
[1, cispi(2/3), cispi(-2/3)], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 189 =========
sgnum = 189
# HA₁, HA₂, HA₃, HA₄, HA₅, HA₆
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "x,y,-z", "-y,x-y,-z", "-x+y,-x,-z", "y,x,-z", "x-y,-y,-z", "-x,-x+y,-z", "y,x,z", "x-y,-y,z", "-x,-x+y,z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, m₀₀₁, -6₀₀₁⁻, -6₀₀₁⁺, 2₁₁₀, 2₁₀₀, 2₀₁₀, m₋₁₁₀, m₁₂₀, m₂₁₀
Psτs = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1],
[1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [-1 0; 0 -1], [cispi(1/3) 0; 0 cispi(-1/3)], [cispi(-1/3) 0; 0 cispi(1/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 -1; -1 0], [0 cispi(-1/3); cispi(1/3) 0], [0 cispi(1/3); cispi(-1/3) 0]],
]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃, KA₄, KA₅, KA₆
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops and irreps as HA₁, HA₂, HA₃
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "y,x,z", "x-y,-y,z", "-x,-x+y,z"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, m₋₁₁₀, m₁₂₀, m₂₁₀
Psτs = [[1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 190 =========
sgnum = 190
# HA₁, HA₂, HA₃
klab = "HA"
kv = KVec(-1/3,-1/3,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "x,y,-z+1/2", "-y,x-y,-z+1/2", "-x+y,-x,-z+1/2", "y,x,-z", "x-y,-y,-z", "-x,-x+y,-z", "y,x,z+1/2", "x-y,-y,z+1/2", "-x,-x+y,z+1/2"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, {m₀₀₁|0,0,½}, {-6₀₀₁⁻|0,0,½}, {-6₀₀₁⁺|0,0,½}, 2₁₁₀, 2₁₀₀, 2₀₁₀, {m₋₁₁₀|0,0,½}, {m₁₂₀|0,0,½}, {m₂₁₀|0,0,½}
Psτs = [[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [1 0; 0 -1], [cispi(-2/3) 0; 0 cispi(-1/3)], [cispi(2/3) 0; 0 cispi(1/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 1; -1 0], [0 cispi(2/3); cispi(1/3) 0], [0 cispi(-2/3); cispi(-1/3) 0]],
[[1 0; 0 1], [cispi(2/3) 0; 0 cispi(-2/3)], [cispi(-2/3) 0; 0 cispi(2/3)], [1 0; 0 -1], [cispi(2/3) 0; 0 cispi(1/3)], [cispi(-2/3) 0; 0 cispi(-1/3)], [0 1; 1 0], [0 cispi(-2/3); cispi(2/3) 0], [0 cispi(2/3); cispi(-2/3) 0], [0 1; -1 0], [0 cispi(-2/3); cispi(-1/3) 0], [0 cispi(2/3); cispi(1/3) 0]],
[[1 0; 0 1], [1 0; 0 1], [1 0; 0 1], [1 0; 0 -1], [1 0; 0 -1], [1 0; 0 -1], [0 1; 1 0], [0 1; 1 0], [0 1; 1 0], [0 1; -1 0], [0 1; -1 0], [0 1; -1 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# KA₁, KA₂, KA₃, KA₄, KA₅, KA₆
klab = "KA"
kv = KVec(-1/3,-1/3,0)
# ... same lgops as HA₁, HA₂, HA₃
Psτs = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1],
[1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
[[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [-1 0; 0 -1], [cispi(1/3) 0; 0 cispi(-1/3)], [cispi(-1/3) 0; 0 cispi(1/3)], [0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 -1; -1 0], [0 cispi(-1/3); cispi(1/3) 0], [0 cispi(1/3); cispi(-1/3) 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec("-1/3,-1/3,-w")
lgops = SymOperation{3}.(["x,y,z", "-y,x-y,z", "-x+y,-x,z", "y,x,z+1/2", "x-y,-y,z+1/2", "-x,-x+y,z+1/2"]) # 1, 3₀₀₁⁺, 3₀₀₁⁻, {m₋₁₁₀|0,0,½}, {m₁₂₀|0,0,½}, {m₂₁₀|0,0,½}
Psτs = [([1, 1, 1, 1, 1, 1], [[0,0,0.0], [0,0,0.0], [0,0,0.0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]),
([1, 1, 1, -1, -1, -1], [[0,0,0.0], [0,0,0.0], [0,0,0.0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]),
([[1 0; 0 1], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(2/3) 0; 0 cispi(-2/3)],
[0 1; 1 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
[[0,0,0.0], [0,0,0.0], [0,0,0.0], [0,0,1/2], [0,0,1/2], [0,0,1/2]]), ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 197 =========
sgnum = 197
# PA₁, PA₂, PA₃, PA₄
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y,z", "-x,y,-z", "x,-y,-z", "z,x,y", "z,-x,-y", # 1, 2₀₀₁, 2₀₁₀, 2₁₀₀, 3₁₁₁⁺, 3₋₁₁₋₁⁺, 3₋₁₁₁⁻, 3₋₁₋₁₁⁺, 3₁₁₁⁻, 3₋₁₁₁⁺, 3₋₁₋₁₁⁻, 3₋₁₁₋₁⁻
"-z,-x,y", "-z,x,-y", "y,z,x", "-y,z,-x", "y,-z,-x", "-y,-z,x"])
Psτs = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, cispi(-2/3), cispi(-2/3), cispi(-2/3), cispi(-2/3), cispi(2/3), cispi(2/3), cispi(2/3), cispi(2/3)],
[1, 1, 1, 1, cispi(2/3), cispi(2/3), cispi(2/3), cispi(2/3), cispi(-2/3), cispi(-2/3), cispi(-2/3), cispi(-2/3)],
[[1 0 0; 0 1 0; 0 0 1], [1 0 0; 0 -1 0; 0 0 -1], [-1 0 0; 0 -1 0; 0 0 1],
[-1 0 0; 0 1 0; 0 0 -1], [0 0 1; 1 0 0; 0 1 0], [0 0 -1; 1 0 0; 0 -1 0],
[0 0 1; -1 0 0; 0 -1 0], [0 0 -1; -1 0 0; 0 1 0], [0 1 0; 0 0 1; 1 0 0],
[0 -1 0; 0 0 -1; 1 0 0], [0 -1 0; 0 0 1; -1 0 0], [0 1 0; 0 0 -1; -1 0 0]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 199 =========
sgnum = 199
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y+1/2,z", "-x+1/2,y,-z", "x,-y,-z+1/2", "z,x,y", # 1, {2₀₀₁|0,½,0}, {2₀₁₀|½,0,0}, {2₁₀₀|0,0,½}, 3₁₁₁⁺, {3₋₁₁₋₁⁺|0,0,½}, {3₋₁₁₁⁻|0,½,0}, {3₋₁₋₁₁⁺|½,0,0}, 3₁₁₁⁻, {3₋₁₁₁⁺|½,0,0}, {3₋₁₋₁₁⁻|0,0,½}, {3₋₁₁₋₁⁻|0,½,0}
"z,-x,-y+1/2", "-z,-x+1/2,y", "-z+1/2,x,-y", "y,z,x", "-y+1/2,z,-x", "y,-z,-x+1/2", "-y,-z+1/2,x"])
Psτs = [[[1 0; 0 1], [1 0; 0 -1], [0 1; 1 0], [0 -1im; 1im 0],
[cispi(-1/12)/√2 cispi(-1/12)/√2; cispi(5/12)/√2 cispi(-7/12)/√2],
[cispi(-1/12)/√2 cispi(11/12)/√2; cispi(5/12)/√2 cispi(5/12)/√2],
[cispi(-1/12)/√2 cispi(-1/12)/√2; cispi(-7/12)/√2 cispi(5/12)/√2],
[cispi(5/12)/√2 cispi(-7/12)/√2; cispi(-1/12)/√2 cispi(-1/12)/√2],
[cispi(1/12)/√2 cispi(-5/12)/√2; cispi(1/12)/√2 cispi(7/12)/√2],
[cispi(1/12)/√2 cispi(7/12)/√2; cispi(1/12)/√2 cispi(-5/12)/√2],
[cispi(-5/12)/√2 cispi(1/12)/√2; cispi(7/12)/√2 cispi(1/12)/√2],
[cispi(1/12)/√2 cispi(-5/12)/√2; cispi(-11/12)/√2 cispi(-5/12)/√2]],
[[1 0; 0 1], [1 0; 0 -1], [0 1; 1 0], [0 -1im; 1im 0],
[cispi(-3/4)/√2 cispi(-3/4)/√2; cispi(-1/4)/√2 cispi(3/4)/√2],
[cispi(-3/4)/√2 cispi(1/4)/√2; cispi(-1/4)/√2 cispi(-1/4)/√2],
[cispi(-3/4)/√2 cispi(-3/4)/√2; cispi(3/4)/√2 cispi(-1/4)/√2],
[cispi(-1/4)/√2 cispi(3/4)/√2; cispi(-3/4)/√2 cispi(-3/4)/√2],
[cispi(3/4)/√2 cispi(1/4)/√2; cispi(3/4)/√2 cispi(-3/4)/√2],
[cispi(3/4)/√2 cispi(-3/4)/√2; cispi(3/4)/√2 cispi(1/4)/√2],
[cispi(1/4)/√2 cispi(3/4)/√2; cispi(-3/4)/√2 cispi(3/4)/√2],
[cispi(3/4)/√2 cispi(1/4)/√2; cispi(-1/4)/√2 cispi(1/4)/√2]],
[[1 0; 0 1], [1 0; 0 -1], [0 1; 1 0], [0 -1im; 1im 0],
[cispi(7/12)/√2 cispi(7/12)/√2; cispi(-11/12)/√2 cispi(1/12)/√2],
[cispi(7/12)/√2 cispi(-5/12)/√2; cispi(-11/12)/√2 cispi(-11/12)/√2],
[cispi(7/12)/√2 cispi(7/12)/√2; cispi(1/12)/√2 cispi(-11/12)/√2],
[cispi(-11/12)/√2 cispi(1/12)/√2; cispi(7/12)/√2 cispi(7/12)/√2],
[cispi(-7/12)/√2 cispi(11/12)/√2; cispi(-7/12)/√2 cispi(-1/12)/√2],
[cispi(-7/12)/√2 cispi(-1/12)/√2; cispi(-7/12)/√2 cispi(11/12)/√2],
[cispi(11/12)/√2 cispi(-7/12)/√2; cispi(-1/12)/√2 cispi(-7/12)/√2],
[cispi(-7/12)/√2 cispi(11/12)/√2; cispi(5/12)/√2 cispi(11/12)/√2]], ]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 217 =========
sgnum = 217
# PA₁, PA₂, PA₃, PA₄, PA₅
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y,z", "-x,y,-z", "x,-y,-z", "z,x,y", "z,-x,-y", # 1, 2₀₀₁, 2₀₁₀, 2₁₀₀, 3₁₁₁⁺, 3₋₁₁₋₁⁺, 3₋₁₁₁⁻, 3₋₁₋₁₁⁺, 3₁₁₁⁻, 3₋₁₁₁⁺, 3₋₁₋₁₁⁻, 3₋₁₁₋₁⁻, m₋₁₁₀, m₁₁₀, -4₀₀₁⁺, -4₀₀₁⁻, m₀₋₁₁, -4₁₀₀⁺, -4₁₀₀⁻, m₀₁₁, m₋₁₀₁, -4₀₁₀⁻, m₁₀₁, -4₀₁₀⁺
"-z,-x,y", "-z,x,-y", "y,z,x", "-y,z,-x", "y,-z,-x", "-y,-z,x", "y,x,z",
"-y,-x,z", "y,-x,-z", "-y,x,-z", "x,z,y", "-x,z,-y", "-x,-z,y", "x,-z,-y",
"z,y,x", "z,-y,-x", "-z,y,-x", "-z,-y,x"])
Psτs = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[[1 0; 0 1], [1 0; 0 1], [1 0; 0 1], [1 0; 0 1],
[cispi(-2/3) 0; 0 cispi(2/3)], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(-2/3) 0; 0 cispi(2/3)], [cispi(-2/3) 0; 0 cispi(2/3)],
[cispi(2/3) 0; 0 cispi(-2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [cispi(2/3) 0; 0 cispi(-2/3)], [cispi(2/3) 0; 0 cispi(-2/3)],
[0 1; 1 0], [0 1; 1 0], [0 1; 1 0], [0 1; 1 0],
[0 cispi(2/3); cispi(-2/3) 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(2/3); cispi(-2/3) 0], [0 cispi(2/3); cispi(-2/3) 0],
[0 cispi(-2/3); cispi(2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 cispi(-2/3); cispi(2/3) 0], [0 cispi(-2/3); cispi(2/3) 0]],
[[1 0 0; 0 1 0; 0 0 1], [1 0 0; 0 -1 0; 0 0 -1], [-1 0 0; 0 -1 0; 0 0 1], [-1 0 0; 0 1 0; 0 0 -1], [0 0 1; 1 0 0; 0 1 0], [0 0 -1; 1 0 0; 0 -1 0], [0 0 1; -1 0 0; 0 -1 0], [0 0 -1; -1 0 0; 0 1 0], [0 1 0; 0 0 1; 1 0 0], [0 -1 0; 0 0 -1; 1 0 0], [0 -1 0; 0 0 1; -1 0 0], [0 1 0; 0 0 -1; -1 0 0],
[1 0 0; 0 0 1; 0 1 0], [1 0 0; 0 0 -1; 0 -1 0], [-1 0 0; 0 0 1; 0 -1 0], [-1 0 0; 0 0 -1; 0 1 0], [0 0 1; 0 1 0; 1 0 0], [0 0 -1; 0 -1 0; 1 0 0], [0 0 1; 0 -1 0; -1 0 0], [0 0 -1; 0 1 0; -1 0 0], [0 1 0; 1 0 0; 0 0 1], [0 -1 0; 1 0 0; 0 0 -1], [0 -1 0; -1 0 0; 0 0 1], [0 1 0; -1 0 0; 0 0 -1]],
[[1 0 0; 0 1 0; 0 0 1], [1 0 0; 0 -1 0; 0 0 -1], [-1 0 0; 0 -1 0; 0 0 1], [-1 0 0; 0 1 0; 0 0 -1], [0 0 1; 1 0 0; 0 1 0], [0 0 -1; 1 0 0; 0 -1 0], [0 0 1; -1 0 0; 0 -1 0], [0 0 -1; -1 0 0; 0 1 0], [0 1 0; 0 0 1; 1 0 0], [0 -1 0; 0 0 -1; 1 0 0], [0 -1 0; 0 0 1; -1 0 0], [0 1 0; 0 0 -1; -1 0 0], # same as first "half" of PA₄
-[1 0 0; 0 0 1; 0 1 0], -[1 0 0; 0 0 -1; 0 -1 0], -[-1 0 0; 0 0 1; 0 -1 0], -[-1 0 0; 0 0 -1; 0 1 0], -[0 0 1; 0 1 0; 1 0 0], -[0 0 -1; 0 -1 0; 1 0 0], -[0 0 1; 0 -1 0; -1 0 0], -[0 0 -1; 0 1 0; -1 0 0], -[0 1 0; 1 0 0; 0 0 1], -[0 -1 0; 1 0 0; 0 0 -1], -[0 -1 0; -1 0 0; 0 0 1], -[0 1 0; -1 0 0; 0 0 -1]], # negative of second "half" of PA₄
]
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
# ========= 220 =========
sgnum = 220
# PA₁, PA₂, PA₃
klab = "PA"
kv = KVec(-1/2,-1/2,-1/2)
lgops = SymOperation{3}.(["x,y,z", "-x,-y+1/2,z", "-x+1/2,y,-z", "x,-y,-z+1/2", "z,x,y", # 1, {2₀₀₁|0,½,0}, {2₀₁₀|½,0,0}, {2₁₀₀|0,0,½}, 3₁₁₁⁺, {3₋₁₁₋₁⁺|0,0,½}, {3₋₁₁₁⁻|0,½,0}, {3₋₁₋₁₁⁺|½,0,0}, 3₁₁₁⁻, {3₋₁₁₁⁺|½,0,0}, {3₋₁₋₁₁⁻|0,0,½}, {3₋₁₁₋₁⁻|0,½,0}, {m₋₁₁₀|¼,¼,¼}, {m₁₁₀|¾,¼,¼}, {-4₀₀₁⁺|¼,¾,¼}, {-4₀₀₁⁻|¼,¼,¾}, {m₀₋₁₁|¼,¼,¼}, {-4₁₀₀⁺|¼,¼,¾}, {-4₁₀₀⁻|¾,¼,¼}, {m₀₁₁|¼,¾,¼}, {m₋₁₀₁|¼,¼,¼}, {-4₀₁₀⁻|¼,¾,¼}, {m₁₀₁|¼,¼,¾}, {-4₀₁₀⁺|¾,¼,¼}
"z,-x,-y+1/2", "-z,-x+1/2,y", "-z+1/2,x,-y", "y,z,x", "-y+1/2,z,-x",
"y,-z,-x+1/2", "-y,-z+1/2,x", "y+1/4,x+1/4,z+1/4", "-y+3/4,-x+1/4,z+1/4",
"y+1/4,-x+3/4,-z+1/4", "-y+1/4,x+1/4,-z+3/4", "x+1/4,z+1/4,y+1/4",
"-x+1/4,z+1/4,-y+3/4", "-x+3/4,-z+1/4,y+1/4", "x+1/4,-z+3/4,-y+1/4",
"z+1/4,y+1/4,x+1/4", "z+1/4,-y+3/4,-x+1/4", "-z+1/4,y+1/4,-x+3/4",
"-z+3/4,-y+1/4,x+1/4"])
Psτs = # PA₁
[[ [1 0; 0 1], [1 0; 0 -1], [0 1; 1 0], [0 -1im; 1im 0],
[cispi(-3/4)/√2 cispi(-3/4)/√2; cispi(-1/4)/√2 cispi(3/4)/√2 ],
[cispi(-3/4)/√2 cispi(1/4)/√2; cispi(-1/4)/√2 cispi(-1/4)/√2],
[cispi(-3/4)/√2 cispi(-3/4)/√2; cispi(3/4)/√2 cispi(-1/4)/√2],
[cispi(-1/4)/√2 cispi(3/4)/√2; cispi(-3/4)/√2 cispi(-3/4)/√2],
[cispi(3/4)/√2 cispi(1/4)/√2; cispi(3/4)/√2 cispi(-3/4)/√2],
[cispi(3/4)/√2 cispi(-3/4)/√2; cispi(3/4)/√2 cispi(1/4)/√2 ],
[cispi(1/4)/√2 cispi(3/4)/√2; cispi(-3/4)/√2 cispi(3/4)/√2 ],
[cispi(3/4)/√2 cispi(1/4)/√2; cispi(-1/4)/√2 cispi(1/4)/√2 ],
[0 -1im; -1 0], [0 1im; -1 0], [-1im 0; 0 -1], [1 0; 0 1im],
[cispi(-3/4)/√2 cispi(1/4)/√2; cispi(1/4)/√2 cispi(1/4)/√2 ],
[cispi(-3/4)/√2 cispi(-3/4)/√2; cispi(1/4)/√2 cispi(-3/4)/√2],
[cispi(1/4)/√2 cispi(-3/4)/√2; cispi(1/4)/√2 cispi(1/4)/√2 ],
[cispi(3/4)/√2 cispi(3/4)/√2; cispi(3/4)/√2 cispi(-1/4)/√2],
[cispi(1/4)/√2 cispi(3/4)/√2; cispi(-1/4)/√2 cispi(-3/4)/√2],
[cispi(1/4)/√2 cispi(-1/4)/√2; cispi(-1/4)/√2 cispi(1/4)/√2 ],
[cispi(3/4)/√2 cispi(1/4)/√2; cispi(-3/4)/√2 cispi(-1/4)/√2],
[cispi(-3/4)/√2 cispi(-1/4)/√2; cispi(-1/4)/√2 cispi(-3/4)/√2], ]]
push!(Psτs, # PA₂ (first 12 irreps same as PA₁, next 12 have sign flipped)
Psτs[1] .* vcat(ones(Int, 12), fill(-1, 12))
)
push!(Psτs, # PA₃ (4-dimensional irrep)
[ [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1], # ---
[1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1], # ---
[0 1 0 0; 1 0 0 0; 0 0 0 1im; 0 0 -1im 0], # ---
[0 -1im 0 0; 1im 0 0 0; 0 0 0 -1; 0 0 -1 0], # ---
[cispi(7/12)/√2 cispi(7/12)/√2 0 0; # ---
cispi(-11/12)/√2 cispi(1/12)/√2 0 0;
0 0 cispi(-7/12)/√2 cispi(11/12)/√2;
0 0 cispi(-7/12)/√2 cispi(-1/12)/√2],
[cispi(7/12)/√2 cispi(-5/12)/√2 0 0; # ---
cispi(-11/12)/√2 cispi(-11/12)/√2 0 0;
0 0 cispi(5/12)/√2 cispi(11/12)/√2;
0 0 cispi(5/12)/√2 cispi(-1/12)/√2],
[cispi(7/12)/√2 cispi(7/12)/√2 0 0; # ---
cispi(1/12)/√2 cispi(-11/12)/√2 0 0;
0 0 cispi(5/12)/√2 cispi(-1/12)/√2;
0 0 cispi(-7/12)/√2 cispi(-1/12)/√2],
[cispi(-11/12)/√2 cispi(1/12)/√2 0 0; # ---
cispi(7/12)/√2 cispi(7/12)/√2 0 0;
0 0 cispi(-1/12)/√2 cispi(5/12)/√2;
0 0 cispi(11/12)/√2 cispi(5/12)/√2],
[cispi(-7/12)/√2 cispi(11/12)/√2 0 0; # ---
cispi(-7/12)/√2 cispi(-1/12)/√2 0 0;
0 0 cispi(7/12)/√2 cispi(7/12)/√2;
0 0 cispi(-11/12)/√2 cispi(1/12)/√2],
[cispi(-7/12)/√2 cispi(-1/12)/√2 0 0; # ---
cispi(-7/12)/√2 cispi(11/12)/√2 0 0;
0 0 cispi(-5/12)/√2 cispi(7/12)/√2;
0 0 cispi(1/12)/√2 cispi(1/12)/√2],
[cispi(11/12)/√2 cispi(-7/12)/√2 0 0; # ---
cispi(-1/12)/√2 cispi(-7/12)/√2 0 0;
0 0 cispi(1/12)/√2 cispi(-11/12)/√2;
0 0 cispi(-5/12)/√2 cispi(-5/12)/√2],
[cispi(-7/12)/√2 cispi(11/12)/√2 0 0; # ---
cispi(5/12)/√2 cispi(11/12)/√2 0 0;
0 0 cispi(-5/12)/√2 cispi(-5/12)/√2;
0 0 cispi(-11/12)/√2 cispi(1/12)/√2],
[0 0 1im 0; 0 0 0 1im; 1 0 0 0; 0 1 0 0], # ---
[0 0 -1im 0; 0 0 0 1im; 1 0 0 0; 0 -1 0 0], # ---
[0 0 0 -1; 0 0 1 0; 0 1 0 0; 1 0 0 0], # ---
[0 0 0 -1im; 0 0 -1im 0; 0 -1im 0 0; 1im 0 0 0], # ---
[0 0 cispi(-1/12)/√2 cispi(-7/12)/√2; # ---
0 0 cispi(-1/12)/√2 cispi(5/12)/√2;
cispi(7/12)/√2 cispi(7/12)/√2 0 0;
cispi(-11/12)/√2 cispi(1/12)/√2 0 0],
[0 0 cispi(11/12)/√2 cispi(-7/12)/√2; # ---
0 0 cispi(11/12)/√2 cispi(5/12)/√2;
cispi(7/12)/√2 cispi(-5/12)/√2 0 0;
cispi(-11/12)/√2 cispi(-11/12)/√2 0 0],
[0 0 cispi(11/12)/√2 cispi(5/12)/√2; # ---
0 0 cispi(-1/12)/√2 cispi(5/12)/√2;
cispi(7/12)/√2 cispi(7/12)/√2 0 0;
cispi(1/12)/√2 cispi(-11/12)/√2 0 0],
[0 0 cispi(5/12)/√2 cispi(11/12)/√2; # ---
0 0 cispi(-7/12)/√2 cispi(11/12)/√2;
cispi(-11/12)/√2 cispi(1/12)/√2 0 0;
cispi(7/12)/√2 cispi(7/12)/√2 0 0],
[0 0 cispi(-11/12)/√2 cispi(-11/12)/√2; # ---
0 0 cispi(-5/12)/√2 cispi(7/12)/√2;
cispi(-7/12)/√2 cispi(11/12)/√2 0 0;
cispi(-7/12)/√2 cispi(-1/12)/√2 0 0],
[0 0 cispi(1/12)/√2 cispi(-11/12)/√2; # ---
0 0 cispi(7/12)/√2 cispi(7/12)/√2;
cispi(-7/12)/√2 cispi(-1/12)/√2 0 0;
cispi(-7/12)/√2 cispi(11/12)/√2 0 0],
[0 0 cispi(7/12)/√2 cispi(-5/12)/√2; # ---
0 0 cispi(1/12)/√2 cispi(1/12)/√2;
cispi(11/12)/√2 cispi(-7/12)/√2 0 0;
cispi(-1/12)/√2 cispi(-7/12)/√2 0 0],
[0 0 cispi(1/12)/√2 cispi(1/12)/√2; # ---
0 0 cispi(-5/12)/√2 cispi(7/12)/√2;
cispi(-7/12)/√2 cispi(11/12)/√2 0 0;
cispi(5/12)/√2 cispi(11/12)/√2 0 0],
]
)
LGIRS_add[sgnum][klab] = assemble_lgirreps(sgnum, kv, klab, lgops, Psτs)
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2729 | # Conversion from the basis setting of ITA to ML/CDML: for an operator
# in ITA setting, gᴵᵀᴬ, the corresponding operator in ML/CDML setting,
# gᴹᴸ, is obtained as gᴹᴸ = PgᴵᵀᴬP⁻¹.
#
# We can use this to transform an operator in CDML to one in the ITA
# setting by gᴵᵀᴬ = P⁻¹gᴹᴸP; if P has rotation and rotation parts 𝐏 and 𝐩,
# we can achieve this by `gᴵᵀᴬ = transform(gᴹᴸ, P, p)`. [We use an opposite
# convention for P vs. P⁻¹ internally, so the switch from ML→ITA is correct.]
#
# The transformation matrices P are obtained from Stokes & Hatch's book,
# Isotropy subgroups of the 230 crystallographic space groups, Table 6,
# p. 6-1 to 6-4 (its use is described in their Section 4).
#
# If the settings agree between ITA and ML/CDML (i.e. if orientation and
# origo are the same; they are both in "conventional" settings, in the sense
# that they are not forced-primitive, as in B&C) the transformation is
# trivial and we do not give one.
_unpack(pair::Pair{Int,<:SymOperation}) = pair[1] => copy.(Crystalline.unpack(pair[2]))
const TRANSFORMS_CDML2ITA = Base.ImmutableDict(_unpack.([
3:15 .=> Ref(SymOperation{3}("z,x,y"))
38:41 .=> Ref(SymOperation{3}("-z,y,x"))
48 => SymOperation{3}("x-1/4,y-1/4,z-1/4")
50 => SymOperation{3}("x-1/4,y-1/4,z")
59 => SymOperation{3}("x-1/4,y-1/4,z")
68 => SymOperation{3}("x,y-1/4,z-1/4")
70 => SymOperation{3}("x-7/8,y-7/8,z-7/8")
85 => SymOperation{3}("x-3/4,y-1/4,z")
86 => SymOperation{3}("x-3/4,y-3/4,z-3/4")
88 => SymOperation{3}("x,y-3/4,z-7/8")
125 => SymOperation{3}("x-3/4,y-3/4,z")
126 => SymOperation{3}("x-3/4,y-3/4,z-3/4")
129 => SymOperation{3}("x-3/4,y-1/4,z")
130 => SymOperation{3}("x-3/4,y-1/4,z")
133 => SymOperation{3}("x-3/4,y-1/4,z-3/4")
134 => SymOperation{3}("x-3/4,y-1/4,z-3/4")
137 => SymOperation{3}("x-3/4,y-1/4,z-3/4")
138 => SymOperation{3}("x-3/4,y-1/4,z-3/4")
141 => SymOperation{3}("x,y-1/4,z-7/8")
142 => SymOperation{3}("x,y-1/4,z-7/8")
146 => SymOperation{3}("y,-x+y,z")
148 => SymOperation{3}("y,-x+y,z")
151 => SymOperation{3}("x,y,z-1/6")
153 => SymOperation{3}("x,y,z-5/6")
154 => SymOperation{3}("x,y,z-1/6")
155 => SymOperation{3}("y,-x+y,z")
160 => SymOperation{3}("y,-x+y,z")
161 => SymOperation{3}("y,-x+y,z")
166 => SymOperation{3}("y,-x+y,z")
167 => SymOperation{3}("y,-x+y,z")
201 => SymOperation{3}("x-3/4,y-3/4,z-3/4")
203 => SymOperation{3}("x-7/8,y-7/8,z-7/8")
222 => SymOperation{3}("x-3/4,y-3/4,z-3/4")
224 => SymOperation{3}("x-3/4,y-3/4,z-3/4")
])...) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1968 | using Documenter
using Crystalline
# make sure we actually do `using Crystalline` before calling doctests (as described in
# https://juliadocs.github.io/Documenter.jl/stable/man/doctests/#Module-level-metadata)
DocMeta.setdocmeta!(Crystalline, :DocTestSetup, :(using Crystalline); recursive=true)
makedocs(
modules = [Crystalline, Bravais],
sitename = "Crystalline.jl",
authors = "Thomas Christensen <[email protected]> and contributors",
repo = "https://github.com/thchr/Crystalline.jl/blob/{commit}{path}#L{line}",
format=Documenter.HTML(;
prettyurls = get(ENV, "CI", nothing) == "true",
canonical = "https://thchr.github.io/Crystalline.jl",
assets = ["assets/custom.css"], # increase logo size
size_threshold = 300 * 2^10, # or include "api.md" page in `size_threshold_ignore`
),
pages = [
"Home" => "index.md",
"Symmetry operations" => "operations.md",
"Groups" => "groups.md",
"Irreps" => "irreps.md",
"Bravais types & bases" => "bravais.md",
"Band representations" => "bandreps.md",
"Lattices" => "lattices.md",
"API" => "api.md",
"Internal API" => "internal-api.md",
],
warnonly = Documenter.except(
:autodocs_block, :cross_references, :docs_block, :doctest, :eval_block,
:example_block, :footnote, :linkcheck_remotes, :linkcheck, :meta_block,
:parse_error, :setup_block,
#:missing_docs # necessary due to docstrings from SmithNormalForm vendoring :(
),
clean = true
)
# Documenter can also automatically deploy documentation to gh-pages.
# See "Hosting Documentation" and deploydocs() in the Documenter manual
# for more information.
deploydocs(
repo = "github.com/thchr/Crystalline.jl.git",
target = "build",
deps = nothing,
make = nothing,
push_preview = true
)
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 9335 | module CrystallineGraphMakieExt
if isdefined(Base, :get_extension)
import GraphMakie
using GraphMakie: Makie, NetworkLayout
else
import ..GraphMakie
using ..GraphMakie: Makie, NetworkLayout
end
using Crystalline
using Crystalline: GroupRelationGraph, SG_PRIMITIVE_ORDERs, SUPERGROUP
using Graphs, StaticArrays, LinearAlgebra
using LayeredLayouts: solve_positions, Zarate
## -------------------------------------------------------------------------------------- ##
# Visualize graph of maximal subgroups a particular group (descendants of `g`)
# -----------------
function map_numbers_to_oneto(xs; rev::Bool=false)
uxs = sort!(unique(xs); rev)
idxss = [findall(==(x), xs) for x in uxs]
ys = Vector{Int}(undef, length(xs))
for (y,idxs) in enumerate(idxss)
ys[idxs] .= y
end
return ys
end
# TODO: generalize to groups besides `SpaceGroup`?
function layout_by_order(gr::GroupRelationGraph{D,SpaceGroup{D}};
ymap=map_numbers_to_oneto) where D
orders = SG_PRIMITIVE_ORDERs[D][gr.nums]
N = length(orders)
yposs = ymap(orders)
xposs = Vector{Float64}(undef, N)
maxwidth = maximum([length(findall(==(o), orders)) for o in unique(orders)])
for o in unique(orders)
idxs = findall(==(o), orders)
xposs[idxs] = ((1:length(idxs)) .- (1 + (length(idxs)-1)/2)) .* (maxwidth / length(idxs))
end
return Makie.Point2f.(xposs, yposs), orders
end
# use a spring layout in x-coordinates, fixing y-coordinates, via NetworkLayout.jl/pull/52
function layout_by_order_spring(gr::GroupRelationGraph{D,SpaceGroup{D}};
ymap=map_numbers_to_oneto) where D
xy, orders = layout_by_order(gr; ymap)
orderslim = extrema(orders)
# to use `pin` in this manner we require NetworkLayout ≥v0.4.5
pin = Dict(i=>(false, true) for i in eachindex(xy))
algo = NetworkLayout.Spring(; initialpos=xy, pin, initialtemp=1.0)
xy′ = algo(gr)
return xy′, orders
end
function layout_by_minimal_crossings(gr::GroupRelationGraph{D,SpaceGroup{D}};
force_layer_bool=true) where D
orders = SG_PRIMITIVE_ORDERs[D][gr.nums]
is_supergroup_relations = gr.direction==SUPERGROUP # if true, must flip y-ordering twice
force_layer = if force_layer_bool
layers′ = map_numbers_to_oneto(orders; rev = is_supergroup_relations)
maxlayer = maximum(layers′)
1:length(orders) .=> (maxlayer+1) .- layers′
else
Pair{Int, Int}[]
end
# `solve_positions` implicitly assumes `SimpleGraph`/`SimpleDiGraph` type graphs, so we
# must first convert `gr` to `gr′::SimpleDiGraph`
gr′ = SimpleDiGraphFromIterator(edges(gr))
xs, ys, _ = solve_positions(Zarate(), gr′; force_layer)
is_supergroup_relations && (xs .= -xs) # re-reverse the ordering
return Makie.Point2f.(ys, -xs), orders
end
# -----------------
function prettystring(x::Rational)
io = IOBuffer()
show(io, numerator(x))
isone(denominator(x)) && return String(take!(io))
print(io, "/")
show(io, denominator(x))
return String(take!(io))
end
function rationalizedstring(x)
s = sprint(show, prettystring.(rationalize.(x)))
return replace(s, "\""=>"")
end
function stringify_relations(gr::GroupRelationGraph, e::Edge)
s, d = src(e), dst(e)
snum, dnum = gr.nums[s], gr.nums[d]
info = gr.infos[snum]
didx = findfirst(child->child.num==(dnum), info.children)
isnothing(didx) && error("edge destination not contained in graph")
Pps = info[didx]
if length(Pps.classes) > 1
return "multiple conjugacy classes"
else
Pp = only(Pps.classes)
P, p = Pp.P, Pp.p
if isone(P)
if iszero(p)
return "identity" # trivial mapping
else
return "p = "*rationalizedstring(p) # translation mapping
end
else
return "P = "*rationalizedstring(P) * # rotation mapping
(iszero(p) ? "" : ", p = "*rationalizedstring(p))
end
end
end
"""
plot!(ax, gr::GroupRelationGraph{D}; layout)
Visualize the graph structure of `gr`.
If the Makie backend is GLMakie, the resulting plot will be interactive (on hover and drag).
See also `Makie.plot`.
## Keyword arguments
- `layout`: `:strict`, `:quick`, or `:spring`. By default, `:strict` is chosen for Graphs
with less than 40 edges and less than 20 vertices, otherwise `:spring`.
- `:strict`: a Sugiyama-style DAG layout algorithm, which rigorously minimizes the number
of edge crossings in the graph layout. Performs well for relatively few edges, but very
poorly otherwise.
- `:quick`: distributes nodes in each layer horizontally, with node randomly assigned
relative node positions.
- `:spring`: same as `:quick`, but with node positions in each layer relaxed using a
layer-pinned spring layout.
## Example
```jl
using Crystalline
using GraphMakie, GLMakie
gr = maximal_subgroups(202)
plot(gr)
```
Note that `plot(gr)` is conditionally defined only upon loading of GraphMakie; additionally,
a backend for Makie must be explicitly loaded (here, GLMakie).
"""
function Makie.plot!(
ax::Makie.Axis,
gr::GroupRelationGraph{D};
layout::Symbol=(Graphs.ne(gr) ≤ 40 && Graphs.nv(gr) ≤ 20) ? :strict : :spring
) where D
mapping_strings = stringify_relations.(Ref(gr), edges(gr))
# --- compute layout of vertices ---
xy, orders = layout == :strict ? layout_by_minimal_crossings(gr; force_layer_bool=true) :
layout == :spring ? layout_by_order_spring(gr) :
layout == :quick ? layout_by_order(gr) :
error("invalid `layout` keyword argument (valid: `:strict`, `:spring`, `:quick`)")
# --- graphplot ---
p = GraphMakie.graphplot!(ax, gr;
nlabels = string.(gr.nums),
nlabels_distance = 6,
nlabels_align = (:center, :bottom),
nlabels_textsize = 20,
nlabels_attr=(;strokecolor=:white, strokewidth=2.5),
node_color = Makie.RGBf(.2, .5, .3),
edge_color = fill(Makie.RGBf(.5, .5, .5), ne(gr)),
edge_width = fill(2.0, ne(gr)),
node_size = fill(10, nv(gr)),
arrow_size = 0,
elabels = fill("", ne(gr)),
elabels_textsize = 16,
elabels_distance = 15)
p[:node_pos][] = xy # update layout of vertices
# --- group "order" y-axis ---
Makie.hidespines!(ax, :r, :b, :t) # remove other axes spines
Makie.hidexdecorations!(ax, grid = true)
unique_yidxs = unique(i->xy[i][2], eachindex(xy))
unique_yvals = [xy[i][2] for i in unique_yidxs]
unique_yorders = [string(orders[i]) for i in unique_yidxs]
ax.yticks = (unique_yvals, unique_yorders)
ax.ylabel = "group order (primitive)"
ax.ylabelsize = 18
ax.ygridvisible = false
ax.ytrimspine = true
# --- enable interactions ---
# (following http://juliaplots.org/GraphMakie.jl/stable/generated/depgraph/)
Makie.deregister_interaction!(ax, :rectanglezoom)
Makie.register_interaction!(ax, :edrag, GraphMakie.EdgeDrag(p))
Makie.register_interaction!(ax, :ndrag, GraphMakie.NodeDrag(p))
es = collect(edges(gr))
function node_hover_action(state, idx, event, axis)
num = gr.nums[idx]
iuclabel = iuc(num, D)
p.nlabels[][idx] = string(num) * (state ? " (" * iuclabel * ")" : "")
p.node_size[][idx] = state ? 17 : 10
p.nlabels[] = p.nlabels[]; p.node_size[] = p.node_size[]; # trigger observables
# highlight edge descendants of highlighted nodes
nidxs = Int[idx]
i = 1
while i ≤ length(nidxs)
s = nidxs[i]
for d in gr.fadjlist[s]
e = Edge(s, d)
eidx = something(findfirst(==(e), es))
p.edge_width[][eidx] = state ? 2.75 : 2.0
p.edge_color[][eidx] = state ? Makie.RGBf(.35, .35, .7) :
Makie.RGBf(.5, .5, .5)
d ∈ nidxs || push!(nidxs, d)
end
i += 1
end
p.edge_width[] = p.edge_width[]; p.edge_color[] = p.edge_color[]
end
nodehover = GraphMakie.NodeHoverHandler(node_hover_action)
Makie.register_interaction!(ax, :nodehover, nodehover)
function edge_hover_action(state, idx, event, axis)
p.elabels[][idx] = state ? mapping_strings[idx] : "" # edge text
p.edge_width[][idx] = state ? 4.0 : 2.0 # edge width
p.elabels[] = p.elabels[]; p.edge_width[] = p.edge_width[] # trigger observable
end
edgehover = GraphMakie.EdgeHoverHandler(edge_hover_action)
Makie.register_interaction!(ax, :edgehover, edgehover)
return p
end
function Makie.plot(gr::GroupRelationGraph;
axis = NamedTuple(), figure = NamedTuple(), kws...)
f = Makie.Figure(size=(800,900); figure...)
f[1,1] = ax = Makie.Axis(f; axis...)
p = Makie.plot!(ax, gr; kws...)
return Makie.FigureAxisPlot(f, ax, p)
end
end # module CrystallineGraphMakieExt | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 14040 | module CrystallinePyPlotExt
# Preamble --------------------------------------------------------------------------------
if isdefined(Base, :get_extension)
using PyPlot
using PyPlot: plot3D, plt
import PyPlot: plot
else
using ..PyPlot
using ..PyPlot: plot3D, plt
import ..PyPlot: plot
end
using Crystalline
using Crystalline: AbstractFourierLattice, AbstractVec, calcfouriergridded
# extend rather than define so it can be called externally via `Crystalline.(...)`
import Crystalline: _create_isosurf_plot_data
using Meshing: MarchingCubes, isosurface
using Statistics: quantile
using StaticArrays: SVector
export mesh_3d_levelsetlattice
# Defaults --------------------------------------------------------------------------------
const ORIGIN_MARKER_OPTS = (marker="o", markerfacecolor="white", markeredgecolor="black",
markeredgewidth=1.5, markersize=4.5)
# ::DirectBasis ---------------------------------------------------------------------------
function plot(Rs::AbstractBasis{D},
cntr::SVector{D, <:Real}=zeros(SVector{D, Float64}),
ax=plt.axes(projection = D==3 ? (using3D(); "3d") : "rectilinear")) where D
Rs′ = Rs .+ Ref(cntr) # basis vectors translated by cntr
if D == 1
ax.plot((cntr[1], Rs′[1]), (0, 0))
ax.plot((cntr[1],), (0,); ORIGIN_MARKER_OPTS...) # origin
elseif D == 2
corner = sum(Rs) + cntr
for R′ in Rs′
ax.plot((cntr[1], R′[1]), (cntr[2], R′[2]); color="black") # basis vectors
ax.plot((R′[1], corner[1]), (R′[2], corner[2]); color="grey") # remaining unit cell boundaries
end
ax.plot((cntr[1],), (cntr[2],); ORIGIN_MARKER_OPTS...) # origin
elseif D == 3
corners = (Rs[1]+Rs[3], Rs[1]+Rs[2], Rs[2]+Rs[3]) .+ Ref(cntr)
dirs = ((-1,1,-1), (-1,-1,1), (1,-1,-1))
for R′ in Rs′
ax.plot3D((cntr[1], R′[1]), (cntr[2], R′[2]), (cntr[3], R′[3]); color="black") # basis vectors
end
for (i,R) in enumerate(Rs)
for (corner,dir) in zip(corners,dirs) # remaining unit cell boundaries
ax.plot3D((corner[1], corner[1]+dir[i]*R[1]),
(corner[2], corner[2]+dir[i]*R[2]),
(corner[3], corner[3]+dir[i]*R[3]); color="grey")
end
end
ax.plot3D((cntr[1],), (cntr[2],), (cntr[3],); ORIGIN_MARKER_OPTS...) # origin
ax.set_zlabel("z")
end
ax.set_xlabel("x"); ax.set_ylabel("y")
# seems broken in 3D (https://github.com/matplotlib/matplotlib/pull/13474);
# FIXME: may raise an error in later matplotlib releases
# ax.set_aspect("equal", adjustable="box")
# actually, seems fixed after https://github.com/matplotlib/matplotlib/pull/23409
# but will error on some matplotlib versions, so should be behind a version guard
return ax
end
# ::AbstractFourierLattice ----------------------------------------------------------------
"""
plot(flat::AbstractFourierLattice, Rs::DirectBasis)
Plots a lattice `flat::AbstractFourierLattice` with lattice vectors
given by `Rs::DirectBasis`. Possible kwargs are (defaults in brackets)
- `N`: resolution [`100` in 2D, `20` in 3D]
- `filling`: determine isovalue from relative filling fraction [`0.5`]
- `isoval`: isovalue [nothing (inferred from `filling`)]
- `repeat`: if not `nothing`, repeats the unit cell an integer number of times [`nothing`]
- `fig`: figure handle to plot [`nothing`, i.e. opens a new figure]
If both `filling` and `isoval` kwargs simultaneously not equal
to `nothing`, then `isoval` takes precedence.
## Examples
Compute a modulated `FourierLattice` for a lattice in plane group 16 and plot it via
PyPlot.jl:
```julia-repl
julia> using Crystalline, PyPlot
julia> flat = modulate(levelsetlattice(16, Val(2)))
julia> Rs = directbasis(16, Val(2))
julia> plot(flat, Rs)
```
"""
function plot(flat::AbstractFourierLattice, Rs::DirectBasis{D};
N::Integer=(D==2 ? 100 : 20),
filling::Union{Real, Nothing}=0.5,
isoval::Union{Real, Nothing}=nothing,
repeat::Union{Integer, Nothing}=nothing,
fig=nothing,
ax=nothing) where D
xyz, vals, isoval = _create_isosurf_plot_data(flat; N, filling, isoval)
plotiso(xyz, vals, isoval, Rs, repeat, fig, ax)
return xyz, vals, isoval
end
function _create_isosurf_plot_data(
flat::AbstractFourierLattice{D};
N::Integer=(D==2 ? 100 : 20),
filling::Union{Real, Nothing}=0.5,
isoval::Union{Real, Nothing}=nothing) where D
xyz = range(-.5, .5, length=N)
vals = calcfouriergridded(xyz, flat, N)
if isnothing(isoval)
isnothing(filling) && error(ArgumentError("`filling` and `isoval` cannot both be `nothing`"))
# we don't want to "double count" the BZ edges - so to avoid that, exclude the last
# index of each dimension (same approach as in `MPBUtils.filling2isoval`)
isoidxs = Base.OneTo(N-1)
vals′ = if D == 2; (@view vals[isoidxs, isoidxs])
elseif D == 3; (@view vals[isoidxs, isoidxs, isoidxs])
end
isoval = quantile(Iterators.flatten(vals′), filling)
end
return xyz, vals, isoval
end
# plot isocontour of data
function plotiso(xyz, vals, isoval::Real, Rs::DirectBasis{D},
repeat::Union{Integer, Nothing}=nothing,
fig=nothing,
ax=nothing) where D
# If `fig` is nothing and `ax`` is nothing, we make a figure and add a subplot
# If `fig` is nothing but `ax`` is not nothing, we plot directly into the provided axis
# If `fig` is not nothing but `ax`` is nothing, we add an axis to the provided figure
if isnothing(ax)
if isnothing(fig)
fig = plt.figure()
end
ax = fig.add_subplot(projection= D==3 ? (using3D(); "3d") : "rectilinear")
end
if D == 2
# convert to a cartesian coordinate system rather than direct basis of Ri
N = length(xyz)
X = broadcast((x,y) -> x*Rs[1][1] + y*Rs[2][1], reshape(xyz,(1,N)), reshape(xyz, (N,1)))
Y = broadcast((x,y) -> x*Rs[1][2] + y*Rs[2][2], reshape(xyz,(1,N)), reshape(xyz, (N,1)))
# note: the x-vs-y ordering has to be funky this way, because plotting routines expect
# x to vary across columns and y to vary across rows - sad :(. See also the
# `calcfouriergridded` method.
ax.contourf(X,Y,vals; levels=(-1e12, isoval, 1e12), cmap=plt.get_cmap("gray",2))
ax.contour(X,Y,vals,levels=(isoval,), colors="w", linestyles="solid")
origo = sum(Rs)./2
plot(Rs, -origo, ax) # plot unit cell
ax.scatter([0],[0], color="C4", s=30, marker="+")
uc = (zeros(eltype(Rs)), Rs[1], Rs[1]+Rs[2], Rs[2]) .- Ref(origo)
pad = (maximum(maximum.(uc)) .- minimum(minimum.(uc)))/25
xlims = extrema(getindex.(uc, 1)); ylims = extrema(getindex.(uc, 2))
if !isnothing(repeat) # allow repetitions of unit cell in 2D
minval, maxval = extrema(vals)
for r1 in -repeat:repeat
for r2 in -repeat:repeat
if r1 == r2 == 0; continue; end
offset = Rs[1].*r1 .+ Rs[2].*r2
X′ = X .+ offset[1]; Y′ = Y .+ offset[2]
ax.contourf(X′, Y′, vals; levels=(minval, isoval, maxval),
cmap=plt.get_cmap("gray",256)) #get_cmap(coolwarm,3) is also good
ax.contour(X′, Y′, vals; levels=(isoval,), colors="w", linestyles="solid")
end
end
xd = -(-)(xlims...)*repeat; yd = -(-)(ylims...)*repeat
plt.xlim(xlims .+ (-1,1).*xd .+ (-1,1).*pad)
plt.ylim(ylims .+ (-1,1).*yd .+ (-1,1).*pad)
else
plt.xlim(xlims .+ (-1,1).*pad); plt.ylim(ylims .+ (-1,1).*pad);
end
ax.set_aspect("equal", adjustable="box")
ax.set_axis_off()
elseif D == 3
# TODO: Isocaps (when Meshing.jl supports it)
#caps_verts′, caps_faces′ = mesh_3d_levelsetisocaps(vals, isoval, Rs)
# Calculate a triangular meshing of the Fourier lattice using Meshing.jl
verts′, faces′ = mesh_3d_levelsetlattice(vals, isoval, Rs)
# TODO: All plot utilities should probably be implemented as PlotRecipies or similar
# In principle, it would be good to plot the isosurface using Makie here; but it
# just doesn't make sense to take on Makie as a dependency, solely for this purpose.
# It seems more appropriate to let a user bother with that, and instead give some
# way to extract the isosurface's verts and faces. Makie can then plot it with
# using Makie
# verts′, faces′ = Crystalline.mesh_3d_levelsetlattice(flat, isoval, Rs)
# isomesh = convert_arguments(Mesh, verts′, faces′)[1]
# scene = Scene()
# mesh!(isomesh, color=:grey)
# display(scene)
# For now though, we just use matplotlib; the performance is awful though, since it
# vector-renders each face (of which there are _a lot_).
plot_trisurf(verts′[:,1], verts′[:,2], verts′[:,3], triangles = faces′ .- 1)
plot(Rs, -sum(Rs)./2, ax) # plot the boundaries of the lattice's unit cell
end
return nothing
end
# Meshing utilities (for ::AbstractFourierLattice) ----------------------------------------
function mesh_3d_levelsetlattice(vals, isoval::Real, Rs::DirectBasis{3})
# marching cubes algorithm to find isosurfaces (using Meshing.jl)
algo = MarchingCubes(iso=isoval, eps=1e-3)
verts, faces = isosurface(vals, algo;
origin = SVector(-0.5,-0.5,-0.5),
widths = SVector(1.0,1.0,1.0))
# transform to Cartesian basis & convert from N-vectors of 3-vectors to N×3 matrices
verts′, faces′ = _mesh_to_cartesian(verts, faces, Rs)
return verts′, faces′
end
function mesh_3d_levelsetlattice(flat::AbstractFourierLattice, isoval::Real,
Rs::DirectBasis{3})
# marching cubes algorithm to find isosurfaces (using Meshing.jl)
algo = MarchingCubes(iso=isoval, eps=1e-3)
verts, faces = isosurface(flat, algo;
origin = SVector(-0.5,-0.5,-0.5),
widths = SVector(1.0,1.0,1.0))
# transform to Cartesian basis & convert from N-vectors of 3-vectors to N×3 matrices
verts′, faces′ = _mesh_to_cartesian(verts, faces, Rs)
return verts′, faces′
end
function _mesh_to_cartesian(verts::AbstractVector, faces::AbstractVector, Rs::AbstractBasis{3})
Nᵛᵉʳᵗˢ = length(verts); Nᶠᵃᶜᵉˢ = length(faces)
verts′ = Matrix{Float64}(undef, Nᵛᵉʳᵗˢ, 3)
@inbounds @simd for j in (1,2,3) # Cartesian xyz-coordinates
R₁ⱼ, R₂ⱼ, R₃ⱼ = Rs[1][j], Rs[2][j], Rs[3][j]
for i in Base.OneTo(Nᵛᵉʳᵗˢ) # vertices
verts′[i,j] = verts[i][1]*R₁ⱼ + verts[i][2]*R₂ⱼ + verts[i][3]*R₃ⱼ
end
end
# convert `faces` from Nᶠᵃᶜᵉˢ-vector of 3-vectors to Nᶠᵃᶜᵉˢ×3 matrix
faces′ = [faces[i][j] for i in Base.OneTo(Nᶠᵃᶜᵉˢ), j in (1,2,3)]
return verts′, faces′
end
#=
# TODO: requires `using Contour.jl`
function mesh_3d_levelsetisocaps(vals, isoval::Real, Rs::DirectBasis{3})
N = size(vals, 1)
xyz = range(-.5, .5, length=N)
# gotta do this for each side of the box; each opposing side is equivalent due to
# translational invariance though - so just 3 sides to check
patches = NTuple{3, Vector{Float64}}[]
for ss = 1:3
vals_slice = ss == 1 ? vals[1,:,:] : (ss == 2 ? vals[:,1,:] : vals[:,:,1])
cnt=Contour.contour(xyz, xyz, vals_slice, isoval)
for line in lines(cnt)
e = coordinates(line)
fixed_coords = fill(-0.5, length(e[1]))
if ss == 1 # fixed x-side
xs, ys, zs = fixed_coords, e...
elseif ss == 2 # fixed y-side
ys, xs, zs = fixed_coords, e...
else # ss == 3 # fixed z-side
zs, xs, ys = fixed_coords, e...
end
end
push!(patches, (xs, ys, zs))
end
# TODO: We need to construct a mesh out of the boundary lines now
# TODO: We need to copy counter-facing sides
end
=#
# ::KVec ----------------------------------------------------------------------------------
# Plotting a single `KVec` or `RVec`
function plot(kv::AbstractVec{D},
ax=plt.axes(projection = D==3 ? (using3D(); "3d") : "rectilinear")) where D
freeαβγ = freeparams(kv)
nαβγ = count(freeαβγ)
nαβγ == 3 && return ax # general point/volume (nothing to plot)
_scatter = D == 3 ? ax.scatter3D : ax.scatter
_plot = D == 3 ? ax.plot3D : ax.plot
if nαβγ == 0 # point
k = kv()
_scatter(k...)
elseif nαβγ == 1 # line
k⁰, k¹ = kv(zeros(D)), kv(freeαβγ.*0.5)
ks = [[k⁰[i], k¹[i]] for i in 1:D]
_plot(ks...)
elseif nαβγ == 2 && D > 2 # plane
k⁰⁰, k¹¹ = kv(zeros(D)), kv(freeαβγ.*0.5)
αβγ, j = (zeros(3), zeros(3)), 1
for i = 1:3
if freeαβγ[i]
αβγ[j][i] = 0.5
j += 1
end
end
k⁰¹, k¹⁰ = kv(αβγ[1]), kv(αβγ[2])
# calling Poly3DCollection is not so straightforward: follow the advice
# at https://discourse.julialang.org/t/3d-polygons-in-plots-jl/9761/3
verts = ([tuple(k⁰⁰...); tuple(k¹⁰...); tuple(k¹¹...); tuple(k⁰¹...)],)
plane = PyPlot.PyObject(art3D).Poly3DCollection(verts, alpha = 0.15)
PyPlot.PyCall.pycall(plane.set_facecolor, PyPlot.PyCall.PyAny, [52, 152, 219]./255)
PyPlot.PyCall.pycall(ax.add_collection3d, PyPlot.PyCall.PyAny, plane)
end
return ax
end
# Plotting a vector of `KVec`s or `RVec`s
function plot(vs::AbstractVector{<:AbstractVec{D}}) where D
ax = plt.axes(projection= D==3 ? (using3D(); "3d") : "rectilinear")
for v in vs
plot(v, ax)
end
return ax
end
# Plotting a `LittleGroup`
plot(lgs::AbstractVector{<:LittleGroup}) = plot(position.(lgs))
end # module CrystallinePyPlotExt | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 8542 | module Crystalline
# dependencies
using LinearAlgebra
using StaticArrays
using DelimitedFiles
using JLD2
using PrettyTables
using Combinatorics # → `find_isomorphic_parent_pointgroup` in pointgroup.jl
using Requires
using Reexport
using DocStringExtensions
import Graphs
using Base: OneTo, @propagate_inbounds
import Base: getindex, setindex!, # → iteration/AbstractArray interface
IndexStyle, size, copy, # ⤶
iterate,
string, zero,
readuntil, show, summary,
*, +, -, ==, ImmutableDict,
isone, one,
convert, parent,
sort!
import LinearAlgebra: inv
# include submodules
include("SquareStaticMatrices.jl")
using .SquareStaticMatrices # exports `SSqMatrix{D,T}`
# include vendored SmithNormalForm.jl package from ../.vendor/
include("../.vendor/SmithNormalForm/src/SmithNormalForm.jl")
using .SmithNormalForm
import .SmithNormalForm: smith, Smith # TODO: remove explicit import when we update SmithNormalForm
export smith, Smith # export, so that loading Crystalline effectively also provides SmithNormalForm
@reexport using Bravais
import Bravais: primitivize, conventionalize, cartesianize, transform, centering
using Bravais: stack, all_centeringtranslations, centeringtranslation,
centering_volume_fraction
# included files and exports
include("constants.jl")
export MAX_SGNUM, MAX_SUBGNUM, MAX_MSGNUM, MAX_MSUBGNUM, ENANTIOMORPHIC_PAIRS
include("utils.jl") # useful utility methods (seldom needs exporting)
export splice_kvpath, interpolate_kvpath
include("types.jl") # defines useful types for space group symmetry analysis
export SymOperation, # types
DirectBasis, ReciprocalBasis,
Reality, REAL, PSEUDOREAL, COMPLEX,
Collection,
MultTable, LGIrrep, PGIrrep, SiteIrrep,
KVec, RVec,
BandRep, BandRepSet,
SpaceGroup, PointGroup, LittleGroup,
CharacterTable,
# operations on ...
matrix, xyzt, # ::AbstractOperation
rotation, translation,
issymmorph, # ::SymOperation
num, order, operations, # ::AbstractGroup
klabel, characters, # ::AbstractIrrep
classcharacters,
label, reality, group,
⊕,
israyrep, # ::LGIrrep
isspecial,
dim, parts, # ::KVec & RVec
irreplabels, klabels, # ::BandRep & ::BandRepSet
isspinful
include("types_symmetryvectors.jl")
export SymmetryVector, NewBandRep, CompositeBandRep
export irreps, multiplicities, occupation
include("notation.jl")
export schoenflies, iuc, centering, seitz, mulliken
include("subperiodic.jl")
export SubperiodicGroup
include("magnetic/notation-data.jl")
include("magnetic/types.jl")
export MSymOperation, MSpaceGroup
include("tables/rotation_translation.jl")
include("tables/groups/pointgroup.jl")
include("tables/groups/spacegroup.jl")
include("tables/groups/subperiodicgroup.jl")
include("tables/groups/mspacegroup.jl")
include("tables/generators/pointgroup.jl")
include("tables/generators/spacegroup.jl")
include("tables/generators/subperiodicgroup.jl")
include("assembly/groups/pointgroup.jl")
include("assembly/groups/spacegroup.jl")
include("assembly/groups/subperiodicgroup.jl")
include("assembly/groups/mspacegroup.jl")
export pointgroup, spacegroup, subperiodicgroup, mspacegroup
include("assembly/generators/pointgroup.jl")
include("assembly/generators/spacegroup.jl")
include("assembly/generators/subperiodicgroup.jl")
export generate, generators
include("show.jl") # printing of structs from src/[types.jl, types_symmetry_vectors.jl]
include("orders.jl")
include("symops.jl") # symmetry operations for space, plane, and line groups
export @S_str, compose,
issymmorph, littlegroup, orbit,
reduce_ops,
issubgroup, isnormal
include("conjugacy.jl") # construction of conjugacy classes
export classes, is_abelian
include("wyckoff.jl") # wyckoff positions and site symmetry groups
export wyckoffs, WyckoffPosition,
multiplicity,
SiteGroup, sitegroup, sitegroups,
cosets,
findmaximal,
siteirreps
include("symeigs2irrep.jl") # find irrep multiplicities from symmetry eigenvalue data
export find_representation
include("pointgroup.jl") # symmetry operations for crystallographic point groups
export pgirreps, PG_IUCs, find_isomorphic_parent_pointgroup
include("irreps_reality.jl")
export realify, realify!, calc_reality
# Large parts of the functionality in special_representation_domain_kpoints.jl should not be
# in the core module, but belongs in a build file or similar. For now, the main goal of the
# file hasn't been achieved and the other methods are non-essential. So, we skip it.
#=
# TODO: The `const ΦNOTΩ_KVECS_AND_MAPS = _ΦnotΩ_kvecs_and_maps_imdict()` call takes 15 s
# precompile. It is a fundamentally awful idea to do it this way.
using CSV # → special_representation_domain_kpoints.jl
include("special_representation_domain_kpoints.jl")
export ΦnotΩ_kvecs
=#
include("littlegroup_irreps.jl")
export lgirreps, littlegroups
include("lattices.jl")
export ModulatedFourierLattice,
getcoefs, getorbits, levelsetlattice,
modulate, normscale, normscale!
include("compatibility.jl")
export subduction_count
include("bandrep.jl")
export bandreps, classification, nontrivial_factors, basisdim
include("calc_bandreps.jl")
export calc_bandreps
include("deprecations.jl")
export get_littlegroups, get_lgirreps, get_pgirreps, WyckPos, kvec, wyck, kstar
include("grouprelations/grouprelations.jl")
export maximal_subgroups, minimal_supergroups
# some functions are extensions of base-owned names; we need to (re)export them in order to
# get the associated docstrings listed by Documeter.jl
export position, inv, isapprox
# ---------------------------------------------------------------------------------------- #
# EXTENSIONS AND JLD-FILE INITIALIZATION
if !isdefined(Base, :get_extension)
using Requires # load extensions via Requires.jl on Julia versions <v1.9
end
# define functions we want to extend and have accessible via `Crystalline.(...)` if an
# extension is loaded
function _create_isosurf_plot_data end # implemented on CrystallinePyPlotExt load
## __init__
# - open .jld2 data files, so we don't need to keep opening/closing them
# - optional code-loading, using Requires.
# store the opened jldfiles in `Ref{..}`s for type-stability's sake (need `Ref` since we
# need to mutate them in `__init__` but cannot use `global const` in a function, cf.
# https://github.com/JuliaLang/julia/issues/13817)
const LGIRREPS_JLDFILES = ntuple(_ -> Ref{JLD2.JLDFile{JLD2.MmapIO}}(), Val(3))
const LGS_JLDFILES = ntuple(_ -> Ref{JLD2.JLDFile{JLD2.MmapIO}}(), Val(3))
const PGIRREPS_JLDFILE = Ref{JLD2.JLDFile{JLD2.MmapIO}}()
const DATA_DIR = joinpath(dirname(@__DIR__), "data")
function __init__()
# open `LGIrrep` and `LittleGroup` data files for read access on package load (this
# saves a lot of time compared to `jldopen`ing each time we call e.g. `lgirreps`,
# where the time for opening/closing otherwise dominates)
for D in (1,2,3)
global LGIRREPS_JLDFILES[D][] =
JLD2.jldopen(DATA_DIR*"/irreps/lgs/$(D)d/irreps_data.jld2", "r")
global LGS_JLDFILES[D][] =
JLD2.jldopen(DATA_DIR*"/irreps/lgs/$(D)d/littlegroups_data.jld2", "r")
end
global PGIRREPS_JLDFILE[] = # only has 3D data; no need for tuple over dimensions
JLD2.jldopen(DATA_DIR*"/irreps/pgs/3d/irreps_data.jld2", "r")
# ensure we close files on exit
atexit(() -> foreach(jldfile -> close(jldfile[]), LGIRREPS_JLDFILES))
atexit(() -> foreach(jldfile -> close(jldfile[]), LGS_JLDFILES))
atexit(() -> close(PGIRREPS_JLDFILE[]))
# load extensions via Requires.jl on Julia versions <v1.9
@static if !isdefined(Base, :get_extension)
@require PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee" begin
include("../ext/CrystallinePyPlotExt.jl") # loads PyPlot and Meshing
export mesh_3d_levelsetlattice
end
@require GraphMakie = "1ecd5474-83a3-4783-bb4f-06765db800d2" begin
include("../ext/CrystallineGraphMakieExt.jl")
end
end
end
# precompile statements
if Base.VERSION >= v"1.4.2"
include("precompile.jl")
_precompile_()
end
end # module
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5776 | module SquareStaticMatrices
# This module defines `SqSMatrix{D,T}` an analogue of `SMatrix{D,D,T,D*D}` that only needs
# a single dimensional type parameter, avoiding the redundant type parameter `L=D*D`.
# This is desirable if we want to have a square static matrix in some struct but want to
# avoid dragging the redundant `L` parameter around *everywhere*.
# The trick here is to store the matrix as a nested `NTuple{D,NTuple{D,T}}` rather than as
# `NTuple{D*D, T}` as in StaticArrays.
# The performance is pretty much on par with an `SMatrix` (e.g. there are no allocations),
# only very slightly slower because we didn't bother to implemented certain things as
# generated functions. Other than that, the memory layout should be essentially the same.
# Some relevant discussion of related problems is e.g.:
# https://github.com/JuliaLang/julia/issues/18466
# https://discourse.julialang.org/t/addition-to-parameter-of-parametric-type/20059
using LinearAlgebra: checksquare
using Base: @propagate_inbounds
using StaticArrays: StaticMatrix
import StaticArrays: SMatrix, MMatrix
import Base: convert, size, getindex, firstindex, lastindex, eachcol, one, zero,
IndexStyle, copy
export SqSMatrix
# ---------------------------------------------------------------------------------------- #
# struct definition
# an equivalent of `SMatrix{D,D,T}`, but requiring only a single dimension type
# parameter, rather than two
struct SqSMatrix{D, T} <: StaticMatrix{D, D, T}
cols::NTuple{D, NTuple{D, T}} # tuple of columns (themselves stored as tuples)
end
# ---------------------------------------------------------------------------------------- #
# AbstractArray interface
eachcol(A::SqSMatrix) = A.cols
@propagate_inbounds function getindex(A::SqSMatrix{D}, idx::Int) where D
@boundscheck 1 ≤ idx ≤ D*D || throw(BoundsError(A, (idx,)))
j, i = (idx+D-1)÷D, mod1(idx, D)
return @inbounds A.cols[j][i]
end
@propagate_inbounds function getindex(A::SqSMatrix{D}, i::Int, j::Int) where D
@boundscheck (1 ≤ i ≤ D && 1 ≤ j ≤ D) || throw(BoundsError(A, (i,j)))
return @inbounds A.cols[j][i]
end
IndexStyle(::Type{<:SqSMatrix}) = IndexCartesian()
copy(A::SqSMatrix) = A # cf. https://github.com/JuliaLang/julia/issues/41918
# ---------------------------------------------------------------------------------------- #
# constructors and converters
@propagate_inbounds @inline function convert(::Type{SqSMatrix{D, T}}, A::AbstractMatrix) where {D,T}
# TODO: this could be a little bit faster if we used a generated function as they do in
# for the StaticArrays ` unroll_tuple(a::AbstractArray, ::Length{L})` method...
@boundscheck checksquare(A) == D
cols = ntuple(Val{D}()) do j
ntuple(i->convert(T, @inbounds A[i,j]), Val{D}())
end
SqSMatrix{D,T}(cols)
end
# allow an NTuple{D,NTuple{D,T}} to be converted automatically to SqSMatrix{D,T} if relevant
function convert(::Type{SqSMatrix{D, T}}, cols::NTuple{D, NTuple{D, T}}) where {D,T}
SqSMatrix{D,T}(cols)
end
@propagate_inbounds SqSMatrix{D,T}(A::AbstractMatrix) where {D,T} = convert(SqSMatrix{D,T}, A)
@propagate_inbounds SqSMatrix{D}(A::AbstractMatrix{T}) where {D,T} = convert(SqSMatrix{D,T}, A)
@propagate_inbounds function SqSMatrix(A::AbstractMatrix{T}) where T
D = checksquare(A)
@inbounds SqSMatrix{D}(A::AbstractMatrix{T})
end
SqSMatrix{D,T}(A::SqSMatrix{D,T}) where {D,T} = A # resolve an ambiguity (StaticMatrix vs. AbstractMatrix)
SqSMatrix(A::SqSMatrix) = A # resolve another ambiguity
function flatten_nested(cols::NTuple{D, NTuple{D, T}}) where {D,T}
ntuple(Val{D*D}()) do idx
i, j = (idx+D-1)÷D, mod1(idx, D)
@inbounds cols[i][j]
end
end
flatten(A::SqSMatrix{D,T}) where {D,T} = flatten_nested(A.cols)
# equivalent recursive implementation (equal performance for small N but much worse for large N)
# flatten_nested(cols::NTuple{N, NTuple{N, T}}) where {N,T} = flatten_nested(cols...)
# flatten_nested(x) = x
# flatten_nested(x,y) = (x...,y...)
# flatten_nested(x,y,z...) = (x..., flatten_nested(y, z...)...)
for M in (:SMatrix, :MMatrix)
@eval $M(A::SqSMatrix{D, T}) where {D,T} = $M{D, D, T}(flatten(A))
end
# use a generated function to stack a "square" NTuple very efficiently: allows efficient
# conversion from an `SMatrix` to an `SqSmatrix`
@generated function stack_square_tuple(xs::NTuple{N, T}) where {N,T}
D = isqrt(N)
if D*D != N
return :(throw(DomainError($N, "called with tuple of non-square length $N")))
else
exs=[[:(xs[$i+($j-1)*$D]) for i in 1:D] for j in 1:D]
quote
Base.@_inline_meta
@inbounds return $(Expr(:tuple, (map(ex->Expr(:tuple, ex...), exs))...))
end
end
end
@inline function convert(::Type{SqSMatrix{D,T}}, A::Union{SMatrix{D,D,T}, MMatrix{D,D,T}}) where {D,T}
SqSMatrix{D,T}(@inbounds stack_square_tuple(A.data))
end
SqSMatrix(A::SMatrix{D,D,T}) where {D,T} = convert(SqSMatrix{D,T}, A)
SqSMatrix{D,T}(A::SMatrix{D,D,T′}) where {D,T,T′} = convert(SqSMatrix{D,T}, convert(SMatrix{D,D,T}, A))
# resolve ambiguity in convert due to interaction w/ StaticArray's `StaticMatrix` subtyping:
convert(::Type{SqSMatrix{D, T}}, A::SqSMatrix{D, T}) where {D, T} = A
# ---------------------------------------------------------------------------------------- #
# linear algebra and other methods
# by the magic of julia's compiler, this reduces to the exact same machine code as if we
# were writing out ntuples ourselves (i.e. the initial construction as an SMatrix is
# optimized out completely)
for f in (:zero, :one)
@eval $f(::Type{SqSMatrix{D,T}}) where {D,T} = SqSMatrix{D,T}($f(SMatrix{D,D,T}))
@eval $f(::SqSMatrix{D,T}) where {D, T} = $f(SqSMatrix{D,T})
end
end # module | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 12369 | # conversion between delimited text files and array representations
dlm2array(io::IO) = DelimitedFiles.readdlm(io, '|', String, '\n')
dlm2array(str::String) = dlm2array(IOBuffer(str))
# utilities for creation of BandRep and BandRepSet
function dlm2struct(str::Union{String,IO}, sgnum::Integer, allpaths::Bool=false, spinful::Bool=false,
timereversal::Bool=true)
M = dlm2array(str);
array2struct(M, sgnum, allpaths, spinful, timereversal)
end
function array2struct(M::Matrix{String}, sgnum::Integer, allpaths::Bool=false, spinful::Bool=false,
timereversal::Bool=true)
klist = permutedims(mapreduce(x->String.(split(x,":")), hcat, M[4:end,1])) # 1ˢᵗ col is labels, 2ⁿᵈ col is coordinates as strings
klabs, kvs = (@view klist[:,1]), KVec.(@view klist[:,2])
temp = split_paren.(@view M[1,2:end])
wyckpos, sitesym = getindex.(temp, 1), getindex.(temp, 2) # wyckoff position and site symmetry point group of bandrep
temp .= split_paren.(@view M[2,2:end]) # same size, so reuse array
label, dim = getindex.(temp, 1), parse.(Int, getindex.(temp, 2)) # label of bandrep
# whether M contains info on decomposability; we don't use this anymore, but need to
# know to parse the rest of the contents correctly (we used to always include this info
# but might not in the future; so protect against this)
has_decomposable_info = M[3,1] == "Decomposable"
# decomposable = parse.(Bool, vec(@view M[3,2:end])) # whether BR can be BR-decomposed
# set of irreps that jointly make up the bandrep
brtags = collect(eachcol(@view M[3+has_decomposable_info:end, 2:end]))
for br in brtags
br .= replace.(br, Ref(r"\([1-9]\)"=>"")) # get rid of irrep dimension info
end
# A BandRepSet can either reference single-valued or double-valued irreps, not both;
# thus, we "throw out" one of the two here, depending on `spinful`.
if spinful # double-valued irreps only (spinful systems)
delidxs = findall(map(!isspinful, brtags))
else # single-valued irreps only (spinless systems)
delidxs = findall(map(isspinful, brtags))
end
for vars in (brtags, wyckpos, sitesym, label, dim)
deleteat!(vars, delidxs)
end
irlabs, irvecs = get_irrepvecs(brtags)
BRs = BandRep.(wyckpos, sitesym, label, dim, map(isspinful, brtags), irvecs,
Ref(irlabs))
return BandRepSet(sgnum, BRs, kvs, klabs, irlabs, spinful, timereversal)
end
function get_irrepvecs(brtags)
Nklabs = length(first(brtags)) # there's equally many (composite) irrep tags in each band representation
irlabs = Vector{String}()
for kidx in OneTo(Nklabs)
irlabs_at_kidx = Vector{String}()
for tag in getindex.(brtags, kidx) # tag could be a combination like Γ1⊕2Γ₂ (or something simpler, like Γ₁)
for irrep in split(tag, '⊕')
irrep′ = filter(!isdigit, irrep) # filter off any multiplicities
if irrep′ ∉ irlabs_at_kidx
push!(irlabs_at_kidx, irrep′)
end
end
end
sort!(irlabs_at_kidx)
append!(irlabs, irlabs_at_kidx)
end
irvecs = [zeros(Int, length(irlabs)) for _ in OneTo(length(brtags))]
for (bridx, tags) in enumerate(brtags)
for (kidx,tag) in enumerate(tags)
for irrep in split(tag, '⊕') # note this irrep tag may contain numerical prefactors!
buf = IOBuffer(irrep)
prefac_str = readuntil(buf, !isdigit)
seek(buf, ncodeunits(prefac_str)) # go back to first non-digit position in buffer
if isempty(prefac_str)
prefac = Int(1)
else
prefac = parse(Int, prefac_str)
end
ir′ = read(buf, String) # the rest of the irrep buffer is the actual cdml label
close(buf)
iridx = findfirst(==(ir′), irlabs) # find position in irlabs vector
irvecs[bridx][iridx] = prefac
end
end
end
return irlabs, irvecs
end
"""
bandreps(sgnum::Integer, D::Integer=3;
allpaths::Bool=false, spinful::Bool=false, timereversal::Bool=true)
Returns the elementary band representations (EBRs) as a `BandRepSet` for space group `sgnum`
and dimension `D`.
## Keyword arguments
- `allpaths`: include a minimal sufficient set (`false`, default) or all (`true`)
**k**-vectors.
- `spinful`: single- (`false`, default) or double-valued (`true`) irreps, as appropriate for
spinless and spinful particles, respectively. Only available for `D=3`.
- `timereversal`: assume presence (`true`, default) or absence (`false`) of time-reversal
symmetry.
## References
3D EBRs are obtained from the Bilbao Crystallographic Server's
[BANDREP program](http://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl);
please reference the original research papers noted there if used in published work.
"""
function bandreps(sgnum::Integer, D::Integer=3;
allpaths::Bool=false, spinful::Bool=false,
timereversal::Bool=true)
D ∉ (1,2,3) && _throw_invalid_dim(D)
paths_str = allpaths ? "allpaths" : "maxpaths"
brtype_str = timereversal ? "elementaryTR" : "elementary"
filename = joinpath(DATA_DIR,
"bandreps/$(D)d/$(brtype_str)/$(paths_str)/$(string(sgnum)).csv")
open(filename) do io
brs = dlm2struct(io, sgnum, allpaths, spinful, timereversal)
end
end
"""
$(TYPEDSIGNATURES)
Return the nontrivial (i.e., ≠ {0,1}) elementary factors of an EBR basis, provided as a
`BandRepSet` or `Smith` decomposition.
"""
function nontrivial_factors(F::Smith)
Λ = F.SNF
nontriv_idx = findall(is_not_one_or_zero, Λ)
return Λ[nontriv_idx]
end
function nontrivial_factors(brs::BandRepSet)
F = smith(stack(brs), inverse=false)
return nontrivial_factors(F)
end
is_not_one_or_zero(x) = !(isone(x) || iszero(x))
"""
classification(brs_or_F::Union{BandRepSet, Smith}) --> String
Return the symmetry indicator group ``X^{\\text{BS}}`` of an EBR basis `F_or_brs`, provided
as a `BandRepSet` or `Smith` decomposition.
Technically, the calculation answers the question "what direct product of
``\\mathbb{Z}_n`` groups is the the quotient group
``X^{\\text{BS}} = \\{\\text{BS}\\}/\\{\\text{AI}\\}`` isomorphic to?" (see
[Po, Watanabe, & Vishwanath, Nature Commun. **8**, 50 (2017)](https://doi.org/10.1038/s41467-017-00133-2)
for more information).
"""
function classification(nontriv_Λ::AbstractVector{<:Integer})
if isempty(nontriv_Λ)
return "Z₁"
else
return "Z"*subscriptify(join(nontriv_Λ, "×Z"))
end
end
function classification(brs_or_F::Union{BandRepSet, Smith})
return classification(nontrivial_factors(brs_or_F))
end
"""
basisdim(brs::BandRepSet) --> Int
Return the dimension of the (linearly independent parts) of a band representation set.
This is ``d^{\\text{bs}} = d^{\\text{ai}}`` in the notation of [Po, Watanabe, & Vishwanath,
Nature Commun. **8**, 50 (2017)](https://doi.org/10.1038/s41467-017-00133-2), or
equivalently, the rank of `stack(brs)` over the ring of integers.
This is the number of linearly independent basis vectors that span the expansions of
a band structure viewed as symmetry data.
"""
function basisdim(brs::BandRepSet)
Λ = smith(stack(brs)).SNF
nnz = count(!iszero, Λ) # number of nonzeros in Smith normal diagonal matrix
return nnz
end
"""
wyckbasis(brs::BandRepSet) --> Vector{Vector{Int}}
Computes the (band representation) basis for bands generated by localized orbitals placed at
the Wyckoff positions. Any band representation that can be expanded on this basis with
positive integer coefficients correspond to a trivial insulators (i.e. deformable to atomic
limit).
Conversely, bands that cannot are topological, either fragily (some negative coefficients)
or strongly (fractional coefficients).
"""
function wyckbasis(brs::BandRepSet)
# Compute Smith normal form: for an n×m matrix B with integer elements,
# find matrices S, diagm(Λ), and T (of size n×n, n×m, and m×m, respectively)
# with integer elements such that B = S*diagm(Λ)*T. Λ is a vector
# [λ₁, λ₂, ..., λᵣ, 0, 0, ..., 0] with λⱼ₊₁ divisible by λⱼ and r ≤ min(n,m).
# The matrices T and S have integer-valued pseudo-inverses.
F = smith(stack(brs)) # Smith normal factorization with λⱼ ≥ 0
S, S⁻¹, Λ = F.S, F.Sinv, F.SNF
#T, T⁻¹ = F.T, F.Tinv,
nnz = count(!iszero, Λ) # number of nonzeros in Smith normal diagonal matrix
nzidxs = OneTo(nnz)
# If we apply S⁻¹ to a given set of (integer) symmetry data 𝐧, the result
# should be the (integer) factors qᵢCᵢ (Cᵢ=Λᵢ here) discussed in Tang, Po,
# [...], Nature Physics 15, 470 (2019). Conversely, the columns of S gives an integer-
# coefficient basis for all gapped band structures, while the columns of S*diagm(Λ)
# generates all atomic insulator band structures (assuming integer coefficients).
# See also your notes in scripts/derive_sg2_bandrep.jl
return S[:, nzidxs], diagm(F)[:,nzidxs], S⁻¹[:, nzidxs]
end
# misc minor utility functions
isspinful(br::AbstractVector{T} where T<:AbstractString) = any(x->occursin(r"\\bar|ˢ", x), br)
function split_paren(str::AbstractString)
openpar = something(findfirst(==('('), str)) # index of the opening parenthesis
before_paren = SubString(str, firstindex(str), prevind(str, openpar))
inside_paren = SubString(str, nextind(str, openpar), prevind(str, lastindex(str)))
return before_paren, inside_paren
end
# TODO: Remove this (unexported method)
"""
matching_littlegroups(brs::BandRepSet, ::Val{D}=Val(3))
Finds the matching little groups for each *k*-point referenced in `brs`. This is mainly a
a convenience accessor, since e.g. [`littlegroup(::SpaceGroup, ::KVec)`](@ref) could also
return the required little groups. The benefit here is that the resulting operator sorting
of the returned little group is identical to the operator sortings assumed in
[`lgirreps`](@ref) and [`littlegroups`](@ref).
Returns a `Vector{LittleGroup{D}}` (unlike [`littlegroups`](@ref), which returns a
`Dict{String, LittleGroup{D}}`).
## Note 1
Unlike the operations returned by [`spacegroup`](@ref), the returned little groups do not
include copies of operators that would be identical when transformed to a primitive basis.
The operators are, however, still given in a conventional basis.
"""
function matching_littlegroups(brs::BandRepSet, ::Val{D}=Val(3)) where D
lgs = littlegroups(num(brs), Val(D)) # TODO: generalize to D≠3
klabs_in_brs = klabels(brs) # find all k-point labels in BandRepSet
if !issubset(klabs_in_brs, keys(lgs))
throw(DomainError(klabs_in_brs, "Could not locate all LittleGroups from BandRep"))
end
return getindex.(Ref(lgs), klabs_in_brs)
end
function matching_lgirreps(brs::BandRepSet)
lgirsd = lgirreps(num(brs), Val(3))
# create "physical/real" irreps if `brs` assumes time-reversal symmetry
if brs.timereversal
for (klab, lgirs) in lgirsd
lgirsd[klab] = realify(lgirs)
end
end
# all lgirreps from ISOTROPY as a flat vector; note that sorting is arbitrary
lgirs = collect(Iterators.flatten(values(lgirsd))) # TODO: generalize to D≠3
# find all the irreps in lgirs that feature in the BandRepSet, and
# sort them according to BandRepSet's sorting
lgirlabs = label.(lgirs)
brlabs = normalizesubsup.(irreplabels(brs))
find_and_sort_idxs = Vector{Int}(undef, length(brlabs))
@inbounds for (idx, brlab) in enumerate(brlabs)
matchidx = findfirst(==(brlab), lgirlabs)
if matchidx !== nothing
find_and_sort_idxs[idx] = matchidx
else
throw(DomainError(brlab, "could not be found in ISOTROPY dataset"))
end
end
# find all the irreps _not_ in the BandRepSet; keep existing sorting
not_in_brs_idxs = filter(idx -> idx∉find_and_sort_idxs, eachindex(lgirlabs))
# return: 1st element = lgirs ∈ BandRepSet (matching)
# 2nd element = lgirs ∉ BandRepSet (not matching)
return (@view lgirs[find_and_sort_idxs]), (@view lgirs[not_in_brs_idxs])
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 9291 | using LinearAlgebra: dot, \
# The implementation here follows Cano et al., Phys. Rev. B 97, 035139 (2018)
# (https://doi.org/10.1103/PhysRevB.97.035139), specifically, Sections II.C-D
# ---------------------------------------------------------------------------------------- #
"""
reduce_dict_of_vectors([f=identity,] d::Dict{_, <:Vector}) --> Vector{T}
Return the concatenated vector of all of vectors in `d` under the element-wise application
of `f`. Effectively flattens a `Dict` of `Vector`s to a single `Vector`.
Note that application of `f` to vector-elements of `d` must return a stable type `T`.
"""
function reduce_dict_of_vectors(f::F, d::Dict{<:Any, <:AbstractVector}) where F
# get element type of application of `f` to elements of vectors in `d`; assumed fixed
eltype = typeof(f(first(first(values(d)))))
# get total number of elements across vectors in `d`
N = sum(((_, v),) -> length(v), d)
# preallocate output vector
w = Vector{eltype}(undef, N)
start = 1
for v in values(d)
stop = start + length(v) - 1
@inbounds for (i, j) in enumerate(start:stop)
w[j] = f(v[i])
end
start = stop + 1
end
return w
end
reduce_dict_of_vectors(d::Dict{<:Any, <:Vector}) = reduce_dict_of_vectors(identity, d)
"""
reduce_orbits!(orbits::Vector{WyckoffPosition}, cntr::Char, conv_or_prim::Bool=true])
Update `orbits` in-place to contain only those Wyckoff positions that are not equivalent
in a primitive basis (as determined by the centering type `cntr`). Returns the updated
`orbits`.
If `conv_or_prim = true` (default), the Wyckoff positions are returned in the original,
conventional basis; if `conv_or_prim = false`, they are returned in a primitive basis.
"""
function reduce_orbits!(
orbits::AbstractVector{WyckoffPosition{D}}, cntr::Char, conv_or_prim::Bool=true
) where D
orbits′ = primitivize.(orbits, cntr)
i = 2 # start from second element
while i ≤ length(orbits)
wp′ = parent(orbits′[i])
was_removed = false
for j in 1:i-1
δᵢⱼ = wp′ - parent(orbits′[j])
if (iszero(free(δᵢⱼ)) &&
all(x->abs(rem(x, 1.0, RoundNearest)) < DEFAULT_ATOL, constant(δᵢⱼ)))
# -> means it's equivalent to a previously "greenlit" orbit
deleteat!(orbits, i)
deleteat!(orbits′, i)
was_removed = true
break
end
end
was_removed || (i += 1)
end
return conv_or_prim ? orbits : orbits′
end
# TODO: This is probably pretty fragile and depends on an implicit shared iteration order of
# cosets and orbits; it also assumes that wp is the first position in the `orbits`
# vector. Seems to be sufficient for now though...
function reduce_cosets!(ops::Vector{SymOperation{D}}, wp::WyckoffPosition{D},
orbits::Vector{WyckoffPosition{D}}) where D
wp ≈ first(orbits) || error("implementation depends on a shared iteration order; sorry...")
i = 1
while i ≤ length(ops) && i ≤ length(orbits)
wpᵢ = orbits[i]
opᵢ = ops[i]
if opᵢ*parent(wp) ≈ parent(wpᵢ)
i += 1 # then opᵢ is indeed a "generator" of wpᵢ
else
deleteat!(ops, i)
end
end
i ≤ length(ops) && deleteat!(ops, i:length(ops))
return ops
end
# ---------------------------------------------------------------------------------------- #
# Bandrep related functions: induction/subduction
"""
induce_bandrep(siteir::SiteIrrep, h::SymOperation, kv::KVec)
Return the band representation induced by the provided `SiteIrrep` evaluated at `kv` and for
a `SymOperation` `h`.
"""
function induce_bandrep(siteir::SiteIrrep{D}, h::SymOperation{D}, kv::KVec{D}) where D
siteg = group(siteir)
wp = position(siteg)
kv′ = constant(h*kv) # <-- TODO: Why only constant part?
χs = characters(siteir)
# only loop over the cosets/orbits that are not mere centering "copies"
orbits = orbit(siteg)
gαs = cosets(siteg)
cntr = centering(num(siteg), D)
reduce_orbits!(orbits, cntr, true) # remove centering "copies" from orbits
reduce_cosets!(gαs, wp, orbits) # remove the associated cosets
# sum over all the (non-centering-equivalent) wyckoff positions/cosets in the orbit
χᴳₖ = zero(ComplexF64)
for (wpα′, gα′) in zip(orbits, gαs)
tα′α′ = constant(parent(h*wpα′) - parent(wpα′)) # TODO: <-- explain why we only need constant part here?
opᵗ = SymOperation(-tα′α′)
gα′⁻¹ = inv(gα′)
gα′⁻¹ggα′ = compose(gα′⁻¹, compose(opᵗ, compose(h, gα′, false), false ), false)
site_symmetry_index = findfirst(≈(gα′⁻¹ggα′), siteg)
if site_symmetry_index !== nothing
χᴳₖ += cis(2π*dot(kv′, tα′α′)) * χs[site_symmetry_index]
# NB: The sign in this `cis(...)` above is different from in Elcoro's.
# I think this is consistent with our overall sign convention (see #12),
# however, and flipping the sign causes problems for the calculation of some
# subductions to `LGIrrep`s, which would be consistent with this. I.e.,
# I'm fairly certain this is consistent and correct given our phase
# conventions for `LGIrrep`s.
end
end
return χᴳₖ
end
function subduce_onto_lgirreps(
siteir::SiteIrrep{D}, lgirs::AbstractVector{LGIrrep{D}}
) where D
lg = group(first(lgirs))
kv = position(lg)
# characters of induced site representation and little group irreps
site_χs = induce_bandrep.(Ref(siteir), lg, Ref(kv))
lgirs_χm = matrix(characters(lgirs))
# little group irrep multiplicities, after subduction
m = lgirs_χm\site_χs
m′ = round.(Int, real.(m)) # truncate to integers
isapprox(m, m′, atol=DEFAULT_ATOL) || error(DomainError(m, "failed to convert to integers"))
return m′
end
# ---------------------------------------------------------------------------------------- #
function calc_bandrep(
siteir :: SiteIrrep{D},
lgirsv :: AbstractVector{<:AbstractVector{LGIrrep{D}}},
timereversal :: Bool
) where D
multsv = [subduce_onto_lgirreps(siteir, lgirs) for lgirs in lgirsv]
occupation = sum(zip(first(multsv), first(lgirsv)); init=0) do (m, lgir)
m * irdim(lgir)
end
n = SymmetryVector(lgirsv, multsv, occupation)
spinful = false # NB: default; Crystalline currently doesn't have spinful irreps
return NewBandRep(siteir, n, timereversal, spinful)
end
function calc_bandrep(
siteir :: SiteIrrep{D};
timereversal :: Bool=true,
allpaths :: Bool=false
) where D
lgirsd = lgirreps(num(siteir), Val(D))
allpaths || filter!(((_, lgirs),) -> isspecial(first(lgirs)), lgirsd)
timereversal && realify!(lgirsd)
lgirsv = [lgirs for lgirs in values(lgirsd)]
return calc_bandrep(siteir, lgirsv, timereversal)
end
# ---------------------------------------------------------------------------------------- #
"""
calc_bandreps(sgnum::Integer, Dᵛ::Val{D}=Val(3);
timereversal::Bool=true,
allpaths::Bool=false)
Compute the band representations of space group `sgnum` in dimension `D`, returning a
`BandRepSet`.
## Keyword arguments
- `timereversal` (default, `true`): whether the irreps used to induce the band
representations are assumed to be time-reversal invariant (i.e., are coreps, see
[`realify`](@ref)).
- `allpaths` (default, `false`): whether the band representations are projected to all
distinct **k**-points returned by `lgirreps` (`allpaths = false`), including high-symmetry
**k**-lines and -plane, or only to the maximal **k**-points (`allpaths = true`), i.e.,
just to high-symmetry points.
## Notes
All band representations associated with maximal Wyckoff positions are returned,
irregardless of whether they are elementary (i.e., no regard is made to whether the band
representation is "composite"). As such, the returned band representations generally are
a superset of the set of elementary band representations (and so contain all elementary
band representations).
## Implementation
The implementation is based on Cano, Bradlyn, Wang, Elcoro, et al., [Phys. Rev. B **97**,
035139 (2018)](https://doi.org/10.1103/PhysRevB.97.035139), Sections II.C-D.
"""
function calc_bandreps(
sgnum::Integer,
Dᵛ::Val{D} = Val(3);
timereversal::Bool = true,
allpaths::Bool = false
) where D
# get all the little group irreps that we want to subduce onto
lgirsd = lgirreps(sgnum, Val(D))
allpaths || filter!(((_, lgirs),) -> isspecial(first(lgirs)), lgirsd)
timereversal && realify!(lgirsd)
lgirsv = [lgirs for lgirs in values(lgirsd)]
# get the bandreps induced by every maximal site symmetry irrep
sg = spacegroup(sgnum, Dᵛ)
sitegs = findmaximal(sitegroups(sg))
brs = NewBandRep{D}[]
for siteg in sitegs
siteirs = siteirreps(siteg; mulliken=true)
timereversal && (siteirs = realify(siteirs))
append!(brs, calc_bandrep.(siteirs, Ref(lgirsv), Ref(timereversal)))
end
return Collection(brs)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5429 | @doc raw"""
subduction_count(Dᴳᵢ, Dᴴⱼ[, αβγᴴⱼ]) --> Int
For two groups ``G`` and ``H``, where ``H`` is a subgroup of ``G``, i.e. ``H<G``, with
associated irreducible representations `Dᴳᵢ` = ``D^G_i(g)`` and `Dᴴⱼ` = ``D^H_j(g)`` over
operations ``g∈G`` and ``h∈H<G``, compute the compatibility relation between the two irreps
from the subduction reduction formula (or "magic" formula/Schur orthogonality relation),
returning how many times ``n^{GH}_{ij}`` the subduced representation ``D^G_i↓H`` contains
the irrep ``D^H_j``; in other words, this gives the compatibility between the two irreps.
Optionally, a vector `αβγᴴⱼ` may be provided, to evaluate the characters/irreps
of `Dᴳᵢ` at a concrete value of ``(α,β,γ)``. This is e.g. meaningful for `LGIrrep`s at
non-special **k**-vectors. Defaults to `nothing`.
The result is computed using the reduction formula [see e.g. Eq. (15) of
[arXiv:1706.09272v2](https://arxiv.org/abs/1706.09272)]:
``n^{GH}_{ij} = |H|^{-1} \sum_h \chi^G_i(h)\chi^H_j(h)^*``
## Example
Consider the two compatible **k**-vectors Γ (a point) and Σ (a line) in space group 207:
```jl
lgirsd = lgirreps(207, Val(3));
Γ_lgirs = lgirsd["Γ"]; # at Γ ≡ [0.0, 0.0, 0.0]
Σ_lgirs = lgirsd["Σ"]; # at Σ ≡ [α, α, 0.0]
```
We can test their compatibility via:
```jl
[[subduction_count(Γi, Σj) for Γi in Γ_lgirs] for Σj in Σ_lgirs]
> # Γ₁ Γ₂ Γ₃ Γ₄ Γ₅
> [ 1, 0, 1, 1, 2] # Σ₁
> [ 0, 1, 1, 2, 1] # Σ₂
```
With following enterpretatation for compatibility relations between irreps at Γ and Σ:
| Compatibility relation | Degeneracies |
|------------------------|--------------|
| Γ₁ → Σ₁ | 1 → 1 |
| Γ₂ → Σ₂ | 1 → 1 |
| Γ₃ → Σ₁ + Σ₂ | 2 → 1 + 1 |
| Γ₄ → Σ₁ + 2Σ₂ | 3 → 1 + 2 |
| Γ₅ → 2Σ₁ + Σ₂ | 3 → 2 + 1 |
where, in this case, all the small irreps are one-dimensional.
"""
function subduction_count(Dᴳᵢ::T, Dᴴⱼ::T,
αβγᴴⱼ::Union{Vector{<:Real},Nothing}=nothing) where T<:AbstractIrrep
# find matching operations between H & G and verify that H<G
boolsubgroup, idxsᴳ²ᴴ = _findsubgroup(operations(Dᴳᵢ), operations(Dᴴⱼ))
!boolsubgroup && throw(DomainError("Provided irreps are not H<G subgroups"))
# compute characters
# TODO: Care should be taken that the irreps
# actually can refer to identical k-points; that should be a check
# too, and then we should make sure that the characters are actually
# evaluated at that KVec
χᴳᵢ = characters(Dᴳᵢ)
χᴴⱼ = characters(Dᴴⱼ, αβγᴴⱼ)
# compute number of times that Dᴴⱼ occurs in the reducible
# subduced irrep Dᴳᵢ↓H
s = zero(ComplexF64)
@inbounds for (idxᴴ, χᴴⱼ′) in enumerate(χᴴⱼ)
s += χᴳᵢ[idxsᴳ²ᴴ[idxᴴ]]*conj(χᴴⱼ′)
end
(abs(imag(s)) > DEFAULT_ATOL) && error("unexpected finite imaginary part")
nᴳᴴᵢⱼ_float = real(s)/order(Dᴴⱼ)
# account for the fact that the orthogonality relations are changed for coreps; seems
# only the subgroup is important to include here - not exactly sure why
nᴳᴴᵢⱼ_float /= corep_orthogonality_factor(Dᴴⱼ)
nᴳᴴᵢⱼ = round(Int, nᴳᴴᵢⱼ_float)
abs(nᴳᴴᵢⱼ - nᴳᴴᵢⱼ_float) > DEFAULT_ATOL && error("unexpected non-integral compatibility count")
return nᴳᴴᵢⱼ
end
"""
$(TYPEDSIGNATURES)
"""
function find_compatible(kv::KVec{D}, kvs′::Vector{KVec{D}}) where D
isspecial(kv) || throw(DomainError(kv, "input kv must be a special k-point"))
compat_idxs = Vector{Int}()
@inbounds for (idx′, kv′) in enumerate(kvs′)
isspecial(kv′) && continue # must be a line/plane/general point to match a special point kv
is_compatible(kv, kv′) && push!(compat_idxs, idx′)
end
return compat_idxs
end
"""
$(TYPEDSIGNATURES)
Check whether a special k-point `kv` is compatible with a non-special k-point `kv′`. Note
that, in general, this is only meaningful if the basis of `kv` and `kv′` is primitive.
TODO: This method should eventually be merged with the equivalently named method in
PhotonicBandConnectivity/src/connectivity.jl, which handles everything more correctly,
but currently has a slightly incompatible API.
"""
function is_compatible(kv::KVec{D}, kv′::KVec{D}) where D
isspecial(kv) || throw(DomainError(kv, "must be special"))
isspecial(kv′) && return false
return _can_intersect(kv′, kv)
# TODO: We need some way to also get the intersection αβγ and reciprocal lattice vector
# difference, if any.
end
#=
function compatibility_matrix(brs::BandRepSet)
lgirs_in, lgirs_out = matching_lgirreps(brs::BandRepSet)
for (iᴳ, Dᴳᵢ) in enumerate(lgirs_in) # super groups
for (jᴴ, Dᴴⱼ) in enumerate(lgirs_out) # sub groups
# we ought to only check this on a per-kvec basis instead of
# on a per-lgir basis to avoid redunant checks, but can't be asked...
compat_bool = is_compatible(position(Dᴳᵢ), position(Dᴴⱼ))
# TODO: Get associated (αβγ, G) "matching" values that makes kvⱼ and kvᵢ and
# compatible; use to get correct lgirs at their "intersection".
if compat_bool
nᴳᴴᵢⱼ = subduction_count(Dᴳᵢ, Dᴴⱼ, αβγ)
if !iszero(nᴳᴴᵢⱼ)
# TODO: more complicated than I thought: have to match across different
special lgirreps.
end
end
end
end
end
=# | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5253 | """
classes(ops::AbstractVector{SymOperation{D}}, [cntr::Union{Char, Nothing}])
--> Vector{Vector{SymOperation{D}}}
Return the conjugacy classes of a group ``G`` defined by symmetry operations `ops`.
## Definitions
Two elements ``a`` and ``b`` in ``G`` are considered conjugate if there exists a ``g ∈ G``
such that ``gag^{-1} = b``. This defines an equivalence relation ``\\sim``, i.e., we say
that ``a \\sim b`` if ``a`` and ``b`` are conjugate.
The conjugacy classes of ``G`` are the distinct equivalence classes that can be identified
under this equivalence relation, i.e. the grouping of ``G`` into subsets that are equivalent
under conjugacy.
## Extended help
If `ops` describe operations in a crystal system that is not primitive (i.e., if its
[`centering`](@ref) type is not `p` or `P`) but is presented in a conventional setting,
the centering symbol `cntr` _must_ be given. If `ops` is not in a centered crystal
system, or if `ops` is already reduced to a primitive setting, `cntr` should be given as
`nothing` (default behavior) or, alternatively, as `P` or `p` (depending on dimensionality).
A single-argument calls to `classes` with `SpaceGroup` or `LittleGroup` types will
assume that `ops` is provided in a conventional setting, i.e., will forward the method call
to `classes(ops, centering(ops, dim(ops)))`. To avoid this behavior (if `ops` was already
reduced to a primitive setting prior to calling `classes`), `cntr` should be provided
explicitly as `nothing`.
"""
function classes(
ops::AbstractVector{SymOperation{D}},
cntr::Union{Char, Nothing}=nothing,
_modτ::Bool=!(ops isa SiteGroup) # `SiteGroup` elements compose w/ `modτ=false`
) where D
ops⁻¹ = inv.(ops)
cntr_ops = if cntr === nothing
nothing
else
SymOperation{D}.(all_centeringtranslations(cntr, Val(D)))
end
conj_classes = Vector{Vector{SymOperation{D}}}()
classified = sizehint!(BitSet(), length(ops))
i = 0
while length(classified) < length(ops)
i += 1
i ∈ classified && continue
a = ops[i]
conj_class = push!(conj_classes, [a])[end]
push!(classified, i)
for (g, g⁻¹) in zip(ops, ops⁻¹)
b = compose(compose(g, a, _modτ), g⁻¹, _modτ)
if all(Base.Fix1(!≈, b), conj_class) # check that `b` is not already in class
add_to_class!(classified, conj_class, b, ops)
end
# special treatment for cases where we have a space or little group that
# is not in a primitive setting (but a conventional setting) and might
# additionally not include "copies" of trivial centering translations among
# `ops`; to account for this case, we just create translated copies of `b`
# over all possible centers and check those against `ops` as well until
# convergence (TODO: there's probably a much cleaner/more performant way of
# doing this)
if cntr_ops !== nothing && length(cntr_ops) > 0
all_additions = 0
new_additions = 1 # initialize to enter loop
while new_additions != 0 && all_additions < length(cntr_ops)
# this while loop is here to make sure we don't depend on ordering of
# translation additions to `conj_class`, i.e. to ensure convergence
new_additions = 0
for cntr_op in cntr_ops
b′ = compose(cntr_op, b, _modτ)
if all(Base.Fix1(!≈, b′), conj_class)
new_additions += add_to_class!(classified, conj_class, b′, ops)
end
end
all_additions += new_additions
end
end
end
end
return conj_classes
end
classes(g::AbstractGroup) = classes(g, centering(g))
# adds `b` to `class` and index of `b` in `ops` to `classified`
function add_to_class!(classified, class, b, ops)
i′ = findfirst(op -> isapprox(op, b, nothing, false), ops)
if i′ !== nothing
# `b` might not exist in `ops` if `ops` refers to a group of reduced symmetry
# operations (i.e. without centering translation copies) that nevertheless is
# still in a non-primitive setting; in that case, we just don't include `b`
push!(classified, i′)
push!(class, ops[i′]) # better to take `ops[i′]` than `b` cf. possible float errors
return true
else
return false # added nothing
end
end
"""
is_abelian(ops::AbstractVector{SymOperation}, [cntr::Union{Char, Nothing}]) --> Bool
Return the whether the group composed of the elements `ops` is Abelian.
A group ``G`` is Abelian if all its elements commute mutually, i.e., if
``g = hgh^{-1}`` for all ``g,h ∈ G``.
See discussion of the setting argument `cntr` in [`classes`](@ref).
"""
function is_abelian(
ops::AbstractVector{SymOperation{D}},
cntr::Union{Char, Nothing}=nothing
) where D
return length(classes(ops, cntr)) == length(ops)
end
is_abelian(g::AbstractGroup) = is_abelian(g, centering(g)) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4270 | # --- SCALARS ---
const DEFAULT_ATOL = 1e-12 # absolute tolerance for approximate equality
const NULL_ATOL = 1e-11 # absolute tolerance for nullspace
@doc raw"""
MAX_SGNUM :: Tuple{Int,Int,Int}
Return the number of distinct space group types across dimensions 1, 2, and 3 (indexable by
dimensionality).
"""
const MAX_SGNUM = (2, 17, 230)
@doc raw"""
MAX_SUBGNUM :: ImmutableDict
An immutable dictionary with values `v::Int` and keys `k::Tuple{Int,Int}`, where `v` is
the number of distinct subperiodic group types for a given key `k = (D,P)` describing a
subperiodic group of dimensionality `D` and periodicity `P`:
- layer groups: `(D,P) = (3,2)`
- rod groups: `(D,P) = (3,1)`
- frieze groups: `(D,P) = (2,1)`
"""
const MAX_SUBGNUM = ImmutableDict((3,2)=>80, (3,1)=>75, (2,1)=>7)
@doc raw"""
MAX_MSGNUM :: Tuple{Int,Int,Int}
Analogous to `MAX_SUBGNUM`, but for the number of magnetic space groups.
"""
const MAX_MSGNUM = (7, 80, 1651) # Figure 1.2.1 of Litvin's book
@doc raw"""
MAX_MSUBGNUM :: Tuple{Int,Int,Int}
Analogous to `MAX_SUBGNUM`, but for the number of magnetic subperiodic groups.
"""
const MAX_MSUBGNUM = ImmutableDict((3,2)=>528, (3,1)=>394, (2,1)=>31) # Litvin, Fig. 1.2.1
# --- VECTORS ---
# arbitrary test vector for e.g. evaluating KVecs lines/planes/volumes; 3D by default
const TEST_αβγ = [0.123123123, 0.456456456, 0.789789789]
const TEST_αβγs = (TEST_αβγ[1:1], TEST_αβγ[1:2], TEST_αβγ)
# --- LISTS ---
# The following space group numbers are symmorphic; in 3D they each embody one of
# the 73 arithmetic crystal classes. Basically, this is the combination of the 14
# Bravais lattices with the 32 point groups/geometric crystal classes. Obtained from e.g.
# > tuple((tuple([i for i in 1:MAX_SGNUM[D] if issymmorph(i, D)]...) for D = 1:3)...)
const SYMMORPH_SGNUMS = (# 1D (1st index; all elements are symmorph)
(1, 2),
# 2D (2nd index)
((1, 2, 3, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17)),
# 3D (3rd index)
(1,2,3,5,6,8,10,12,16,21,22,23,25,35,38,42,44,47,65,
69,71,75,79,81,82,83,87,89,97,99,107,111,115,119,121,
123,139,143,146,147,148,149,150,155,156,157,160,162,
164,166,168,174,175,177,183,187,189,191,195,196,197,
200,202,204,207,209,211,215,216,217,221,225,229)
)
@doc raw"""
ENANTIOMORPHIC_PAIRS :: NTuple{11, Pair{Int,Int}}
Return the space group numbers of the 11 enantiomorphic space group pairs in 3D.
The space group types associated with each such pair `(sgnum, sgnum')` are related by a
mirror transformation: i.e. there exists a transformation
``\mathbb{P} = \{\mathbf{P}|\mathbf{p}\}`` between the two groups ``G = \{g\}`` and
``G' = \{g'\}`` such that ``G' = \mathbb{P}^{-1}G\mathbb{P}`` where ``\mathbf{P}`` is
improper (i.e. ``\mathrm{det}\mathbf{P} < 0``).
We define distinct space group *types* as those that cannot be related by a proper
transformation (i.e. with ``\mathrm{det}\mathbf{P} > 0``). With that view, there are 230
space group types. If the condition is relaxed to allow improper rotations, there are
``230-11 = 219`` distinct *affine* space group types. See e.g. ITA5 Section 8.2.2.
The enantiomorphic space group types are also chiral space group types in 3D. There are no
enantiomorphic pairs in lower dimensions; in 3D all enantiomorphic pairs involve screw
symmetries, whose direction is inverted between pairs (i.e. have opposite handedness).
"""
const ENANTIOMORPHIC_PAIRS = (76 => 78, 91 => 95, 92 => 96, 144 => 145, 152 => 154,
151 => 153, 169 => 170, 171 => 172, 178 => 179, 180 => 181,
213 => 212)
# this is just the cached result of
# pairs_label = [ # cf. ITA5 p. 727
# "P4₁" => "P4₃", "P4₁22" => "P4₃22", "P4₁2₁2" => "P4₃2₁2", "P3₁" => "P3₂",
# "P3₁21" => "P3₂21", "P3₁12" => "P3₂12", "P6₁" => "P6₅", "P6₂" => "P6₄",
# "P6₁22" => "P6₅22", "P6₂22" => "P6₄22", "P4₁32" => "P4₃32"
# ]
# iucs = iuc.(1:230)
# pairs = map(((x,y),) -> findfirst(==(x), iucs) => findfirst(==(y), iucs), ps) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1270 | @deprecate get_littlegroups littlegroups
@deprecate get_lgirreps lgirreps
@deprecate get_pgirreps pgirreps
@deprecate get_wycks wyckoffs
@deprecate WyckPos WyckoffPosition
@deprecate(
CharacterTable(irs::AbstractVector{<:AbstractIrrep},
αβγ::Union{AbstractVector{<:Real}, Nothing}),
characters(irs, αβγ)
)
@deprecate(
CharacterTable(irs::AbstractVector{<:AbstractIrrep}),
characters(irs)
)
@deprecate kvec(lg::LittleGroup) position(lg)
@deprecate kvec(lgir::LGIrrep) position(lgir)
@deprecate wyck(g::SiteGroup) position(g)
@deprecate wyck(wp::WyckoffPosition) parent(wp)
@deprecate wyck(BR::BandRep) position(BR)
@deprecate(
kstar(g::AbstractVector{SymOperation{D}}, kv::KVec{D}, cntr::Char) where D,
orbit(g, kv, cntr)
)
@deprecate kstar(lgir::LGIrrep) orbit(lgir)
@deprecate(
SiteGroup(sg::SpaceGroup{D}, wp::WyckoffPosition{D}) where D,
sitegroup(sg, wp)
)
@deprecate(
SiteGroup(sgnum::Integer, wp::WyckoffPosition{D}) where D,
sitegroup(sgnum, wp)
)
Base.@deprecate_binding( # cannot use plain `@deprecate` for types
IrrepCollection,
Collection{T} where T<:AbstractIrrep
)
@deprecate matrix(brs::BandRepSet; kws...) stack(brs::BandRepSet) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 24310 | """
realify(lgirsd::AbstractDict{<:AbstractIrrep, <:AbstractVector{<:AbstractIrrep}})
--> Dict{<:AbstractIrrep, <:AbstractVector{<:AbstractIrrep}}
Apply `realify` to each value of `lgirsd`, returning a new `Dict` of realified irreps.
"""
function realify(lgirsd::AbstractDict{<:AbstractString, <:AbstractVector{<:AbstractIrrep}})
return Dict(klab => realify(lgirs) for (klab, lgirs) in lgirsd)
end
"""
realify!(lgirsd::AbstractDict{<:AbstractIrrep, <:AbstractVector{<:AbstractIrrep}})
Apply `realify` to each value of `lgirsd` in-place, returning the mutated `lgirsd`.
"""
function realify!(lgirsd::AbstractDict{<:AbstractString, <:AbstractVector{<:AbstractIrrep}})
for (klab, lgirs) in lgirsd
lgirsd[klab] = realify(lgirs)
end
return lgirsd
end
# ---------------------------------------------------------------------------------------- #
"""
realify(lgirs::AbstractVector{<:LGIrrep}; verbose::Bool=false)
--> AbstractVector{<:LGIrrep}
From `lgirs`, a vector of `LGIrrep`s, determine the associated (gray) co-representations,
i.e. the "real", or "physical" irreps that are relevant in scenarios with time-reversal
symmetry.
For `LGIrrep` that are `REAL`, or that characterize a k-point 𝐤 which is not
equivalent to -𝐤 (i.e. its star does not include both 𝐤 and -𝐤; equivalently, the little
group includes time-reversal symmetry), the associated co-representations are just the
original irreps themselves.
For `PSEUDOREAL` and `COMPLEX` `LGIrrep`s where ±𝐤 are equivalent, the
associated co-representations are built from pairs of irreps that "stick" together. This
method computes this pairing and sets the `LGIrrep` field `iscorep` to true, to indicate
that the resulting "paired irrep" (i.e. the co-representation) should be doubled with
itself (`PSEUDOREAL` reality) or its complex conjugate (`COMPLEX` reality).
### Background
For background, see p. 650-652 (and p. 622-626 for point groups) in Bradley & Cracknell's
book. Their discussion is for magnetic groups (the "realified" irreps are, in fact, simply
co-representations of the "gray" magnetic groups).
Cornwell's book also explicates this at some length as does Inui et al. (p. 296-299).
### Keyword arguments
- `verbose::Bool`: if set to `true`, prints details about mapping from small irrep to small
corep for each `LGIrrep` (default: `false`).
"""
function realify(lgirs::AbstractVector{LGIrrep{D}}; verbose::Bool=false) where D
Nirr = length(lgirs)
lg = group(first(lgirs))
kv = position(lg) # must be the same for all irreps in list
αβγ = SVector{D}(TEST_αβγs[D])
kv_αβγ = kv(αβγ)
sgnum = num(lg)
lgops = operations(lg)
Nops = order(lg) # order of little group (= number of operations)
cntr = centering(sgnum, D)
sgops = operations(spacegroup(sgnum, Val(D)))
verbose && print(klabel(lg), " │ ")
# Check if -𝐤 is in the star of 𝐤, or if 𝐤 is equivalent to -𝐤:
# if so, TR is an element of the little group; if not, it isn't
# ║ 𝐑𝐞𝐚𝐬𝐨𝐧: if there is an element g of the (unitary) 𝑠𝑝𝑎𝑐𝑒 group G
# ║ that takes 𝐤 to -𝐤 mod 𝐆, then (denoting the TR element by Θ,
# ║ acting as θ𝐤 = -𝐤) the antiunitary element θg will take 𝐤 to
# ║ 𝐤 mod 𝐆, i.e. θg will be an element of the little group of 𝐤
# ║ M(k) associated with the **gray** space group M ≡ G + θG.
# ║ Conversely, if no such element g exists, there can be no anti-
# ║ unitary elements in the little group derived from M; as a result,
# ║ TR is not part of the little group and so does not modify its
# ║ small irreps (called "co-reps" for magnetic groups).
# ║ There can then only be type 'x' degeneracy (between 𝐤 and -𝐤)
# ║ but TR will not change the degeneracy at 𝐤 itself. Cornwall
# ║ refers to this as "Case (1)" on p. 151.
corep_idxs = Vector{Vector{Int}}() # define outside `if-else` to help inference
if !isapproxin(-kv, orbit(sgops, kv, cntr), cntr, true; atol=DEFAULT_ATOL)
append!(corep_idxs, ([i] for i in OneTo(Nirr))) # TR ∉ M(k) ⇒ smalls irrep (... small co-reps) not modified by TR
verbose && println(klabel(lg), "ᵢ ∀i (type x) ⇒ no additional degeneracy (star{k} ∌ -k)")
else
# Test if 𝐤 is equivalent to -𝐤, i.e. if 𝐤 = -𝐤 + 𝐆
k_equiv_kv₋ = isapprox(-kv, kv, cntr; atol=DEFAULT_ATOL)
# Find an element in G that takes 𝐤 → -𝐤 (if 𝐤 is equivalent to -𝐤,
# then this is just the unit-element I (if `sgops` is sorted conven-
# tionally, with I first, this is indeed what the `findfirst(...)`
# bits below will find)
if !k_equiv_kv₋
g₋ = sgops[findfirst(g-> isapprox(g*kv, -kv, cntr; atol=DEFAULT_ATOL), sgops)]
else
# This is a bit silly: if k_equiv_kv₋ = true, we will never use g₋; but I'm not sure if
# the compiler will figure that out, or if it will needlessly guard against missing g₋?
g₋ = one(SymOperation{D}) # ... the unit element I
end
# -𝐤 is part of star{𝐤}; we infer reality of irrep from ISOTROPY's data (could also
# be done using `calc_reality(...)`) ⇒ deduce new small irreps (... small co-reps)
skiplist = Vector{Int}()
for (i, lgir) in enumerate(lgirs)
i ∈ skiplist && continue # already matched to this irrep previously; i.e. already included now
_check_not_corep(lgir)
verbose && i ≠ 1 && print(" │ ")
if reality(lgir) == REAL
push!(corep_idxs, [i])
if verbose
println(label(lgir), " (real) ⇒ no additional degeneracy")
end
elseif reality(lgir) == PSEUDOREAL
# doubles irrep on its own
push!(corep_idxs, [i, i])
if verbose
println(label(lgir)^2, " (pseudo-real) ⇒ doubles degeneracy")
end
elseif reality(lgir) == COMPLEX
# In this case, there must exist a "partner" irrep (say, Dⱼ) which is
# equivalent to the complex conjugate of the current irrep (say, Dᵢ), i.e.
# an equivalence Dⱼ ∼ Dᵢ*; we next search for this equivalence.
# When we check for equivalence between irreps Dᵢ* and Dⱼ we must account
# for the possibility of a 𝐤-dependence in the matrix-form of the irreps;
# specifically, for an element g, its small irrep is
# Dᵢ[g] = exp(2πik⋅τᵢ[g])Pᵢ[g],
# where, crucially, for symmetry lines, planes, and general points 𝐤 depends
# on (one, two, and three) free parameters (α,β,γ).
# Thus, for equivalence of irreps Dᵢ* and Dⱼ we require that
# Dᵢ*[g] ~ Dⱼ[g] ∀g ∈ G(k)
# ⇔ exp(-2πik⋅τᵢ[g])Pᵢ*[g] ~ exp(2πik⋅τⱼ[g])Pⱼ[g]
# It seems rather tedious to prove that this is the case for all 𝐤s along a
# line/plane (α,β,γ). Rather than attempt this, we simply test against an
# arbitrary value of (α,β,γ) [superfluous entries are ignored] that is
# non-special (i.e. ∉ {0,0.5,1}); this is `αβγ`.
# Characters of the conjugate of Dᵢ, i.e. tr(Dᵢ*) = tr(Dᵢ)*
θχᵢ = conj.(characters(lgir, αβγ))
# Find matching complex partner
partner = 0
for j = i+1:Nirr
# only check if jth irrep has not previously matched and is complex
if j ∉ skiplist && reality(lgirs[j]) == COMPLEX
# Note that we require only equivalence of Dᵢ* and Dⱼ; not equality.
# Cornwell describes (p. 152-153 & 188) a neat trick for checking this
# efficiently: specifically, Dᵢ* and Dⱼ are equivalent irreps if
# χⁱ(g)* = χʲ(g₋⁻¹gg₋) ∀g ∈ G(k)
# with g₋ an element of G that takes 𝐤 to -𝐤, and where χⁱ (χʲ) denotes
# the characters of the respective irreps.
χⱼ = characters(lgirs[j], αβγ)
match = true
for n in OneTo(Nops)
if k_equiv_kv₋ # 𝐤 = -𝐤 + 𝐆 ⇒ g₋ = I (the unit element), s.t. g₋⁻¹gg₋ = I⁻¹gI = g (Cornwall's case (3))
χⱼ_g₋⁻¹gg₋ = χⱼ[n]
else # 𝐤 not equivalent to -𝐤, i.e. 𝐤 ≠ -𝐤 + 𝐆, but -𝐤 is in the star of 𝐤 (Cornwall's case (2))
g₋⁻¹gg₋ = compose(compose(inv(g₋), lgops[n], false), g₋, false)
n′Δw = findequiv(g₋⁻¹gg₋, lgops, cntr)
if n′Δw === nothing
error("unexpectedly did not find little group element matching g₋⁻¹gg₋")
end
n′, Δw = n′Δw
χⱼ_g₋⁻¹gg₋ = cispi(2*dot(kv_αβγ, Δw)) .* χⱼ[n′]
end
match = isapprox(θχᵢ[n], χⱼ_g₋⁻¹gg₋; atol=DEFAULT_ATOL)
if !match # ⇒ not a match
break
end
end
if match # ⇒ a match
partner = j
if verbose
println(label(lgir)*label(lgirs[j]), " (complex) ⇒ doubles degeneracy")
end
end
end
end
partner == 0 && error("Didn't find a matching complex partner for $(label(lgir))")
push!(skiplist, partner)
push!(corep_idxs, [i, partner])
else
throw(ArgumentError("unreachable: invalid real/pseudo-real/complex reality = $(reality(lgir))"))
end
end
end
Ncoreps = length(corep_idxs)
# New small co-rep labels (composite)
newlabs = [join(label(lgirs[i]) for i in corep_idxs[i′]) for i′ in OneTo(Ncoreps)]
# Build a vector of "new" small irreps (small co-reps), following B&C p. 616 & Inui p.
# 298-299. For pseudo-real and complex co-reps, we set a flag `iscorep = true`, to
# indicate to "evaluation" methods, `(lgir::LGIrrep)(αβγ)`, that a diagonal
# "doubling" is required (see below).
lgirs′ = Vector{LGIrrep{D}}(undef, Ncoreps)
for i′ in OneTo(Ncoreps)
idxs = corep_idxs[i′]
if length(idxs) == 1 # ⇒ real or type x (unchanged irreps)
lgirs′[i′] = lgirs[idxs[1]] # has iscorep = false flag set already
elseif idxs[1] == idxs[2] # ⇒ pseudoreal ("self"-doubles irreps)
# The resulting co-rep of a pseudo-real irrep Dᵢ is
# D = diag(Dᵢ, Dᵢ)
# See other details under complex case.
lgir = lgirs[idxs[1]]
blockmatrices = _blockdiag2x2.(lgir.matrices)
lgirs′[i′] = LGIrrep{D}(newlabs[i′], lg, blockmatrices, lgir.translations,
PSEUDOREAL, true)
else # ⇒ complex (doubles irreps w/ complex conjugate)
# The co-rep of a complex irreps Dᵢ and Dⱼ is
# D = diag(Dᵢ, Dⱼ)
# where we know that Dⱼ ∼ Dᵢ*. Note that this is _not_ generally the same as
# diag(Dⱼ, Dⱼ*), since we have only established that Dⱼ ∼ Dᵢ*, not Dⱼ = Dᵢ*.
# Note also that we require the Dᵢ and Dⱼ irreps to have identical free phases,
# i.e. `translations` fields, so that the overall irrep "moves" with a single
# phase factor in k-space - we check for that explicitly for now, to be safe.
τsᵢ = lgirs[idxs[1]].translations; τsⱼ = lgirs[idxs[2]].translations
@assert τsᵢ == τsⱼ
blockmatrices = _blockdiag2x2.(lgirs[idxs[1]].matrices, lgirs[idxs[2]].matrices)
lgirs′[i′] = LGIrrep{D}(newlabs[i′], lg, blockmatrices, τsᵢ, COMPLEX, true)
end
end
return Collection(lgirs′)
end
"""
realify(pgirs::AbstractVector{T}) where T<:AbstractIrrep --> Vector{T}
Return physically real irreps (coreps) from a set of conventional irreps (as produced by
e.g. [`pgirreps`](@ref)). Fallback method for point-group-like `AbstractIrrep`s.
## Example
```jl-doctest
julia> pgirs = pgirreps("4", Val(3));
julia> characters(pgirs)
CharacterTable{3}: ⋕9 (4)
───────┬────────────────────
│ Γ₁ Γ₂ Γ₃ Γ₄
───────┼────────────────────
1 │ 1 1 1 1
2₀₀₁ │ 1 1 -1 -1
4₀₀₁⁺ │ 1 -1 1im -1im
4₀₀₁⁻ │ 1 -1 -1im 1im
───────┴────────────────────
julia> characters(realify(pgirs))
CharacterTable{3}: ⋕9 (4)
───────┬──────────────
│ Γ₁ Γ₂ Γ₃Γ₄
───────┼──────────────
1 │ 1 1 2
2₀₀₁ │ 1 1 -2
4₀₀₁⁺ │ 1 -1 0
4₀₀₁⁻ │ 1 -1 0
───────┴──────────────
```
"""
function realify(irs::AbstractVector{T}) where T<:AbstractIrrep
irs′ = Vector{T}()
sizehint!(irs′, length(irs))
# a small dance to accomodate `AbstractIrrep`s that may have more fields than `PGIrrep`:
# find out if that is the case and identify "where" those fields are (assumed defined at
# the "end" of the `AbstractIrrep` type definition)
T_nfields = nfields(first(irs))
T_extrafields = T_nfields - 5
skiplist = Int[]
for (idx, ir) in enumerate(irs)
_check_not_corep(ir)
r = reality(ir)
# usually REAL; inline-check
r == REAL && (push!(irs′, ir); continue)
# ir is either COMPLEX or PSEUDOREAL if we reached this point
if r == COMPLEX
idx ∈ skiplist && continue # already included
χs = characters(ir)
# identify complex partner by checking for irreps whose characters are
# equal to the complex conjugate of `ir`'s
idx_partner = findfirst(irs) do ir′
χ′s = characters(ir′)
all(i-> conj(χs[i]) ≈ χ′s[i], eachindex(χ′s))
end
idx_partner === nothing && error("fatal: could not find complex partner")
push!(skiplist, idx_partner)
ir_partner = irs[idx_partner]
blockmatrices = _blockdiag2x2.(ir.matrices, ir_partner.matrices)
if T <: PGIrrep || T <: SiteIrrep
# if `irs` were a SiteIrrep or PGIrrep w/ Mulliken labels, we may have to
# manually abbreviate the composite label
newlab = _abbreviated_mulliken_corep_label(label(ir), label(ir_partner))
else
newlab = label(ir)*label(ir_partner)
end
elseif r == PSEUDOREAL
# NB: this case doesn't actually ever arise for crystallographic point groups...
blockmatrices = _blockdiag2x2.(ir.matrices)
newlab = label(ir)^2
end
push!(irs′, T(newlab, group(ir), blockmatrices, r, true,
# if there are more than 5 fields in `ir`, assume they are unchanged
# and splat them in now (NB: this depends a fixed field ordering in
# `AbstractIrrep`, which is probably not a great idea, but meh)
ntuple(i->getfield(ir, 5+i), Val(T_extrafields))...))
end
return Collection(irs′)
end
# ---------------------------------------------------------------------------------------- #
@noinline function _check_not_corep(ir::AbstractIrrep)
if iscorep(ir)
throw(DomainError(true, "method cannot be applied to irreps that have already been converted to coreps"))
end
end
# returns the block diagonal matrix `diag(A1, A2)` (and assumes identically sized and
# square `A1` and `A2`).
function _blockdiag2x2(A1::AbstractMatrix{T}, A2::AbstractMatrix{T}) where T
n = LinearAlgebra.checksquare(A1)
LinearAlgebra.checksquare(A2) == n || throw(DimensionMismatch())
B = zeros(T, 2n, 2n)
for i in OneTo(n)
i′ = i+n
@inbounds for j in OneTo(n)
j′ = j+n
B[i,j] = A1[i,j]
B[i′,j′] = A2[i,j]
end
end
return B
end
# returns the block diagonal matrix `diag(A, A)` (and assumes square `A`)
function _blockdiag2x2(A::AbstractMatrix{T}) where T
n = LinearAlgebra.checksquare(A)
B = zeros(T, 2n, 2n)
for i in OneTo(n)
i′ = i+n
@inbounds for j in OneTo(n)
j′ = j+n
aᵢⱼ = A[i,j]
B[i,j] = aᵢⱼ
B[i′,j′] = aᵢⱼ
end
end
return B
end
# ---------------------------------------------------------------------------------------- #
function _abbreviated_mulliken_corep_label(lab1, lab2)
# the Mulliken label of a corep is not always the concatenation of the Mulliken labels
# of the associated irrep labels, because the corep label is sometimes abbreviated
# relative to the concatenated form; this only occurs for COMPLEX labels where the
# abbreviation will remove repeated pre-superscript labels; we fix it below in a
# slightly dull way by just checking the abbreviation-exceptions manually listed in
# `MULLIKEN_LABEL_REALITY_EXCEPTIONS` and abbreviating accordingly; if not an exception
# it is still the concatenation of irrep-labels
MULLIKEN_LABEL_REALITY_EXCEPTIONS = (
("²E", "¹E") => "E",
("²Eg", "¹Eg") => "Eg",
("²Eᵤ", "¹Eᵤ") => "Eᵤ",
("²E₁", "¹E₁") => "E₁",
("²E₂", "¹E₂") => "E₂",
("²E′", "¹E′") => "E′",
("²E′′", "¹E′′") => "E′′",
("²E₁g", "¹E₁g") => "E₁g",
("²E₁ᵤ", "¹E₁ᵤ") => "E₁ᵤ",
("²E₂g", "¹E₂g") => "E₂g",
("²E₂ᵤ", "¹E₂ᵤ") => "E₂ᵤ")
for (lab1′lab2′, abbreviated_lab1′lab2′) in MULLIKEN_LABEL_REALITY_EXCEPTIONS
if (lab1, lab2) == lab1′lab2′ || (lab2, lab1) == lab1′lab2′
return abbreviated_lab1′lab2′
end
end
return lab1*lab2
end
# ---------------------------------------------------------------------------------------- #
@doc raw"""
calc_reality(lgir::LGIrrep,
sgops::AbstractVector{SymOperation{D}},
αβγ::Union{Vector{<:Real},Nothing}=nothing) --> ::(Enum Reality)
Compute and return the reality of a `lgir::LGIrrep` using the Herring criterion.
The computed value is one of three integers in ``{1,-1,0}``.
In practice, this value is returned via a member of the Enum `Reality`, which has instances
`REAL = 1`, `PSEUDOREAL = -1`, and `COMPLEX = 0`.
## Optional arguments
As a sanity check, a value of `αβγ` can be provided to check for invariance along a symmetry
symmetry line/plane/general point in k-space. The reality must be invariant to this choice.
## Note
The provided space group operations `sgops` **must** be the set reduced by primitive
translation vectors; i.e. using `spacegroup(...)` directly is **not** allowable in general
(since the irreps we reference only include these "reduced" operations). This reduced set
of operations can be obtained e.g. from the Γ point irreps of ISOTROPY's dataset, or
alternatively, from `reduce_ops(spacegroup(...), true)`.
## Implementation
The Herring criterion evaluates the following sum
``[∑ χ({β|b}²)]/[g_0/M(k)]``
over symmetry operations ``{β|b}`` that take ``k → -k``. Here ``g_0`` is the order of the
point group of the space group and ``M(k)`` is the order of star(``k``) [both in a primitive
basis].
See e.g. Cornwell, p. 150-152 & 187-188 (which we mainly followed), Inui Eq. (13.48),
Dresselhaus, p. 618, or [Herring's original paper](https://doi.org/10.1103/PhysRev.52.361).
"""
function calc_reality(lgir::LGIrrep{D},
sgops::AbstractVector{SymOperation{D}},
αβγ::Union{Vector{<:Real},Nothing}=nothing) where D
iscorep(lgir) && throw(DomainError(iscorep(lgir), "method should not be called with LGIrreps where iscorep=true"))
lgops = operations(lgir)
kv = position(lgir)
kv₋ = -kv
cntr = centering(num(lgir), D)
χs = characters(lgir, αβγ)
kv_αβγ = kv(αβγ)
s = zero(ComplexF64)
for op in sgops
if isapprox(op*kv, kv₋, cntr, atol=DEFAULT_ATOL) # check if op*k == -k; if so, include in sum
op² = compose(op, op, false) # this is `op*op`, _including_ trivial lattice translation parts
# find the equivalent of `op²` in `lgops`; this may differ by a number of
# primitive lattice vectors `w_op²`; the difference must be included when
# we calculate the trace of the irrep 𝐃: the irrep matrix 𝐃 is ∝exp(2πi𝐤⋅𝐭)
tmp = findequiv(op², lgops, cntr)
tmp === nothing && error("unexpectedly could not find matching operator of op²")
idx_of_op²_in_lgops, Δw_op² = tmp
ϕ_op² = cispi(2*dot(kv_αβγ, Δw_op²)) # phase accumulated by "trivial" lattice translation parts [cispi(x) = exp(iπx)]
χ_op² = ϕ_op²*χs[idx_of_op²_in_lgops] # χ(op²)
s += χ_op²
end
end
pgops = pointgroup(sgops) # point group assoc. w/ space group
g₀ = length(pgops) # order of pgops (denoted h, or macroscopic order, in Bradley & Cracknell)
Mk = length(orbit(pgops, kv, cntr)) # order of star of k (denoted qₖ in Bradley & Cracknell)
normalization = convert(Int, g₀/Mk) # order of G₀ᵏ; the point group derived from the little group Gᵏ (denoted b in Bradley & Cracknell; [𝐤] in Inui)
# s = ∑ χ({β|b}²) and normalization = g₀/M(k) in Cornwell's Eq. (7.18) notation
type_float = real(s)/normalization
type = round(Int8, type_float)
# check that output is a valid: real integer in (0,1,-1)
isapprox(imag(s), 0.0, atol=DEFAULT_ATOL) || _throw_reality_not_real(s)
isapprox(type_float, type, atol=DEFAULT_ATOL) || _throw_reality_not_integer(type_float)
return type ∈ (-1, 0, 1) ? Reality(type) : UNDEF # return [∑ χ({β|b}²)]/[g₀/M(k)]
end
# Frobenius-Schur criterion for point group irreps (Inui p. 74-76):
# |g|⁻¹∑ χ(g²) = {1 (≡ real), -1 (≡ pseudoreal), 0 (≡ complex)}
function calc_reality(pgir::PGIrrep)
χs = characters(pgir)
pg = group(pgir)
s = zero(eltype(χs))
for op in pg
op² = op*op
idx = findfirst(op->isapprox(op, op², nothing, false), pg)
idx === nothing && error("unexpectedly did not find point group element matching op²")
s += χs[idx]
end
type_float = real(s)/order(pg)
type = round(Int8, type_float)
isapprox(imag(s), 0.0, atol=DEFAULT_ATOL) || _throw_reality_not_real(s)
isapprox(type_float, type, atol=DEFAULT_ATOL) || _throw_reality_not_integer(type_float)
return type ∈ (-1, 0, 1) ? Reality(type) : UNDEF # return |g|⁻¹∑ χ(g²)
end
@noinline _throw_reality_not_integer(x) = error("Criterion must yield an integer; obtained non-integer value = $(x)")
@noinline _throw_reality_not_real(x) = error("Criterion must yield a real value; obtained complex value = $(x)")
"""
$TYPEDSIGNATURES --> Int
Return a multiplicative factor for use in checking the orthogonality relations of
"physically real" irreps (coreps).
For such "physically real" irreps, the conventional orthogonality relations (by conventional
we mean orthogonality relations that sum only over unitary operations, i.e. no "gray"
operations/products with time-inversion) still hold if we include a multiplicative factor
`f` that depends on the underlying reality type `r` of the corep, such that `f(REAL) = 1`,
`f(COMPLEX) = 2`, and `f(PSEUDOREAL) = 4`.
If the provided irrep is not a corep (i.e. has `iscorep(ir) = false`), the multiplicative
factor is 1.
## References
See e.g. Bradley & Cracknell Eq. (7.4.10).
"""
function corep_orthogonality_factor(ir::AbstractIrrep)
if iscorep(ir)
r = reality(ir)
r == PSEUDOREAL && return 4
r == COMPLEX && return 2
# error call is needed for type stability
error("unreachable; invalid combination of iscorep=true and reality type")
else # not a corep or REAL
return 1
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 22403 | ## --- TYPES ---
abstract type AbstractFourierLattice{D}; end
getcoefs(flat::AbstractFourierLattice) = flat.orbitcoefs
getorbits(flat::AbstractFourierLattice) = flat.orbits
dim(::AbstractFourierLattice{D}) where D = D
function (==)(flat1::AbstractFourierLattice, flat2::AbstractFourierLattice)
return flat1.orbits == flat2.orbits && flat1.orbitcoefs == flat2.orbitcoefs
end
function Base.isapprox(flat1::AbstractFourierLattice, flat2::AbstractFourierLattice; kwargs...)
return ( isapprox(flat1.orbits, flat2.orbits; kwargs...) &&
isapprox(flat1.orbitcoefs, flat2.orbitcoefs; kwargs...) )
end
@doc """
UnityFourierLattice{D} <: AbstractFourierLattice{D}
A general `D`-dimensional Fourier (plane wave) lattice specified by orbits of
reciprocal lattice vectors (`orbits`) and coefficient interrelations (`orbitcoefs`)).
The norm of all elements in `orbitcoefs` is unity. `orbits` (and associated
coefficients) are sorted in order of increasing norm (low to high).
"""
struct UnityFourierLattice{D} <: AbstractFourierLattice{D}
orbits::Vector{Vector{SVector{D, Int}}} # Vector of orbits of 𝐆-vectors (in 𝐆-basis)
orbitcoefs::Vector{Vector{ComplexF64}} # Vector of interrelations between coefficients of 𝐆-plane waves within an orbit; unit norm
end
@doc """
ModulatedFourierLattice{D} <: AbstractFourierLattice{D}
A `D`-dimensional concrete Fourier (plane wave) lattice, derived from
a [`UnityFourierLattice{D}`](@ref) by scaling and modulating its orbit coefficients
by complex numbers; in general, the coefficients do not have unit norm.
"""
struct ModulatedFourierLattice{D} <: AbstractFourierLattice{D}
orbits::Vector{Vector{SVector{D, Int}}} # Vector of orbits of 𝐆-vectors (in 𝐆-basis)
orbitcoefs::Vector{Vector{ComplexF64}} # Vector of coefficients of 𝐆-plane waves within an orbit
end
## --- METHODS ---
# Group orbits of plane waves G = (G)ᵀ under a symmetry operation Ô = {W|w},
# using that Ô acts as Ô⁻¹={W⁻¹|-W⁻¹w} when acting on functions, i.e.
# Ôexp(iG⋅r) = Ôexp(iG⋅Ô⁻¹r) = exp[iG⋅(W⁻¹r-W⁻¹w)]
# and
# exp(iG⋅W⁻¹r) = exp(iGᵀW⁻¹r) = exp{i[(W⁻¹)ᵀG]ᵀ⋅r}
@doc """
levelsetlattice(sgnum::Integer, D::Integer=2, idxmax::NTuple=ntuple(i->2,D))
--> UnityFourierLattice{D}
Compute a "neutral"/uninitialized Fourier lattice basis, a [`UnityFourierLattice`](@ref),
consistent with the symmetries of the space group `sgnum` in dimension `D`.
The resulting lattice `flat` is expanded in a Fourier basis split into symmetry-derived
orbits, with intra-orbit coefficients constrained by the symmetries of the space-group.
The inter-orbit coefficients are, however, free and unconstrained.
The Fourier resolution along each reciprocal lattice vector is controlled by `idxmax`:
e.g., if `D = 2` and `idxmax = (2, 3)`, the resulting Fourier lattice may contain
reciprocal lattice vectors (k₁, k₂) with k₁∈[0,±1,±2] and k₂∈[0,±1,±2,±3], referred
to a 𝐆-basis.
This "neutral" lattice can, and usually should, be subsequently modulated by
[`modulate`](@ref) (which modulates the inter-orbit coefficients, which may eliminate
"synthetic symmetries" that can exist in the "neutral" configuration, due to all
inter-orbit coefficients being set to unity).
## Examples
Compute a `UnityFourierLattice`, modulate it with random inter-orbit coefficients
via `modulate`, and finally plot it (via PyPlot.jl):
```julia-repl
julia> uflat = levelsetlattice(16, Val(2))
julia> flat = modulate(uflat)
julia> Rs = directbasis(16, Val(2))
julia> using PyPlot
julia> plot(flat, Rs)
```
"""
function levelsetlattice(sgnum::Integer, D::Integer=2,
idxmax::NTuple{D′,Int}=ntuple(i->2, D)) where D′
D == D′ || throw(DomainError((D=D, idxmax=idxmax), "incompatible dimensions"))
return levelsetlattice(sgnum, Val(D′), idxmax)
end
function levelsetlattice(sgnum::Integer, Dᵛ::Val{D}, idxmax::NTuple{D,Int}=ntuple(i->2, D)) where D
# check validity of inputs
(sgnum < 1) && throw(DomainError(sgnum, "sgnum must be greater than 1"))
D ∉ (1,2,3) && _throw_invalid_dim(D)
D ≠ length(idxmax) && throw(DomainError((D, idxmax), "D must equal length(idxmax): got (D = $D) ≠ (length(idxmax) = $(length(idxmax)))"))
(D == 2 && sgnum > 17) || (D == 3 && sgnum > 230) && throw(DomainError(sgnum, "sgnum must be in range 1:17 in 2D and in 1:230 in 3D"))
# prepare
sg = spacegroup(sgnum, Dᵛ)
sgops = operations(sg)
Ws = rotation.(sgops) # operations W in R-basis (point group part)
ws = translation.(sgops)
# We define the "reciprocal orbit" associated with the action of W through (W⁻¹)ᵀ
# calculating the operators (W⁻¹)ᵀ in the 𝐆-basis:
# The action of a symmetry operator in an 𝐑-basis, i.e. W(𝐑), on a 𝐤 vector in a
# 𝐆-basis, i.e. 𝐤(𝐆), is 𝐤′(𝐆)ᵀ = 𝐤(𝐆)ᵀW(𝐑)⁻¹. To deal with column vectors, we
# transpose, obtaining 𝐤′(𝐆) = [W(𝐑)⁻¹]ᵀ𝐤(𝐆) [details in symops.jl, above littlegroup(...)].
W⁻¹ᵀs = transpose.(inv.(Ws))
# If idxmax is interpreted as (imax, jmax, ...), then this produces an iterator
# over i = -imax:imax, j = -jmax:jmax, ..., where each call returns (..., j, i);
# note that the final order is anti-lexicographical; so we reverse it in the actual
# loop for our own sanity's sake
reviter = Iterators.product(reverse((:).(.-idxmax, idxmax))...)
# --- compute orbits ---
orbits = Vector{Vector{SVector{D,Int}}}() # vector to store orbits of G-vectors (in G-basis)
for rG in reviter
G = SVector{D,Int}(reverse(rG)) # fix order and convert to SVector{D,Int} from Tuple
skip = false # if G already contained in an orbit; go to next G
for orb in orbits
isapproxin(G, orb) && (skip=true; break)
end
skip && continue
neworb = _orbit(W⁻¹ᵀs, G) # compute orbit assoc with G-vector
# the symmetry transformation may introduce round-off errors, but we know that
# the indices must be integers; fix that here, and check its validity as well
neworb′ = [round.(Int,G′) for G′ in neworb]
if norm(neworb′ .- neworb) > DEFAULT_ATOL;
error("The G-combinations and their symmetry-transforms must be integers");
end
push!(orbits, neworb′) # add orbit to list of orbits
end
# --- restrictions on orbit coeffs. due to nonsymmorphic elements in space group ---
orbitcoefs = Vector{Vector{ComplexF64}}()
deleteidx = Vector{Int}()
for (o,orb) in enumerate(orbits)
start = true; prevspan = []
for (W⁻¹ᵀ, w) in zip(W⁻¹ᵀs, ws)
conds = zeros(ComplexF64, length(orb), length(orb))
for (m, G) in enumerate(orb)
G′ = W⁻¹ᵀ*G # planewave G is transformed to by W⁻¹ᵀ
diffs = norm.(Ref(G′) .- orb);
n = argmin(diffs) # find assoc linear index in orbit
diffs[n] > DEFAULT_ATOL && error("Part of an orbit was miscalculated; diff = $(diffs[n])")
# the inverse translation is -W⁻¹w; the phase is thus exp(-iG⋅W⁻¹w) which
# is equivalent to exp[-i(W⁻¹ᵀG)w]. We use the latter, so we avoid an
# unnecessary matrix-vector product [i.e. dot(G, W⁻¹w) = dot(G′, w)]
conds[n,m] = cis(-2π*dot(G′, w)) # cis(x) = exp(ix)
end
nextspan = nullspace(conds-I, atol=NULL_ATOL)
if start
prevspan = nextspan
start = false
elseif !isempty(prevspan) && !isempty(nextspan)
spansect = nullspace([prevspan -nextspan], atol=NULL_ATOL)[size(prevspan, 2)+1:end,:]
prevspan = nextspan*spansect
else
prevspan = nothing; break
end
end
if !isnothing(prevspan)
if size(prevspan,2) != 1; error("Unexpected size of prevspan"); end
coefbasis = vec(prevspan)
coefbasis ./= coefbasis[argmax(norm(coefbasis, Inf))]
push!(orbitcoefs, coefbasis)
else
push!(deleteidx, o)
end
end
deleteat!(orbits, deleteidx)
# sort in order of descending wavelength (e.g., [0,0,...] term comes first; highest G-combinations come last)
perm = sortperm(orbits, by=x->norm(first(x)))
permute!(orbits, perm)
permute!(orbitcoefs, perm)
return UnityFourierLattice{D}(orbits, orbitcoefs)
end
@doc """
_orbit(Ws, x)
Computes the orbit of a direct-space point `x` under a set of point-group operations `Ws`,
i.e. computes the set {gx | g∈G} where g denotes elements of the group G composed of all
operations in `Ws` (possibly iterated, to ensure full coverage).
It is important that `Ws` and `x` are given in the same basis.
[``W' = PWP⁻¹`` if the basis change is from coordinates r to r' = Pr, corresponding
to a new set of basis vectors (x̂')ᵀ=x̂ᵀP; e.g., when going from a direct basis
representation to a Cartesian one, the basis change matrix is P = [R₁ R₂ R₃],
with Rᵢ inserted as column vectors]
"""
function _orbit(Ws::AbstractVector{<:AbstractMatrix{<:Real}}, x::AbstractVector{<:Real})
fx = float.(x)
xorbit = [fx]
for W in Ws
x′ = fx
while true
x′ = W*x′
if !isapproxin(x′, xorbit)
push!(xorbit, x′)
else
break
end
end
end
return sort!(xorbit) # convenient to sort it before returning, for future comparisons
end
function transform(flat::AbstractFourierLattice{D}, P::AbstractMatrix{<:Real}) where D
# The orbits consist of G-vector specified as a coordinate vector 𝐤≡(k₁,k₂,k₃)ᵀ, referred
# to the untransformed 𝐆-basis (𝐚* 𝐛* 𝐜*), and we want to instead express it as a coordinate
# vector 𝐤′≡(k₁′,k₂′,k₃′)ᵀ referred to the transformed 𝐆-basis (𝐚*′ 𝐛*′ 𝐜*′)≡(𝐚* 𝐛* 𝐜*)(P⁻¹)ᵀ,
# where P is the transformation matrix. This is achieved by transforming according to 𝐤′ = Pᵀ𝐤
# or, equivalently, (k₁′ k₂′ k₃′)ᵀ = Pᵀ(k₁ k₂ k₃)ᵀ. See also `transform(::KVec, ...)` and
# `transform(::ReciprocalBasis, ...)`.
# vec of vec of G-vectors (in a **untransformed** 𝐆-basis)
orbits = getorbits(flat)
# prealloc. a vec of vec of k-vecs (to be filled in the **transformed** 𝐆-basis)
orbits′ = [Vector{SVector{D, Int}}(undef, length(orb)) for orb in orbits]
# transform all k-vecs in the orbits
for (i, orb) in enumerate(orbits)
for (j, k) in enumerate(orb)
k′ = P'*k
int_k′ = round.(Int, k′)
if !isapprox(k′, int_k′, atol=DEFAULT_ATOL)
error("unexpectedly obtained non-integer k-vector in orbit")
end
orbits′[i][j] = int_k′ :: SVector{D,Int}
end
end
# --- Comment regarding the `convert(SVector{D, Int}, ...)` call above: ---
# Because primitive reciprocal basis Gs′≡(𝐚*′ 𝐛*′ 𝐜*′) consists of "larger" vectors
# than the conventional basis Gs≡(𝐚* 𝐛* 𝐜*) (since the direct lattice shrinks when we
# go to a primitive basis), not every conventional reciprocal lattice coordinate vector
# 𝐤 has a primitive integer-coordinate vector 𝐤′=Pᵀ𝐤 (i.e. kᵢ∈ℕ does not imply kᵢ′∈ℕ).
# However, since `flat` is derived consistent with the symmetries in a conventional
# basis, the necessary restrictions will already have been imposed in the creation of
# `flat` so that the primitivized version will have only integer coefficients (otherwise
# the lattice would not be periodic in the primitive cell). I.e. we need not worry that
# the conversion is impossible, so long that we transform to a meaningful basis.
# The same issue of course isn't relevant for transforming in the reverse direction.
# the coefficients of flat are unchanged; only the 𝐑- and 𝐆-basis change
return typeof(flat)(orbits′, deepcopy(getcoefs(flat))) # return in the same type as `flat`
end
@doc raw"""
primitivize(flat::AbstractFourierLattice, cntr::Char) --> ::typeof(flat)
Given `flat` referred to a conventional basis with centering `cntr`, compute the derived
(but physically equivalent) lattice `flat′` referred to the associated primitive basis.
Specifically, if `flat` refers to a direct conventional basis `Rs`
``≡ (\mathbf{a} \mathbf{b} \mathbf{c})`` [with coordinate vectors
``\mathbf{r} ≡ (r_1, r_2, r_3)^{\mathrm{T}}``] then `flat′` refers to a direct primitive
basis `Rs′`
``≡ (\mathbf{a}' \mathbf{b}' \mathbf{c}') ≡ (\mathbf{a} \mathbf{b} \mathbf{c})\mathbf{P}``
[with coordinate vectors
``\mathbf{r}' ≡ (r_1', r_2', r_3')^{\mathrm{T}} = \mathbf{P}^{-1}\mathbf{r}``], where
``\mathbf{P}`` denotes the basis-change matrix obtained from `primitivebasismatrix(...)`.
To compute the associated primitive basis vectors, see
[`primitivize(::DirectBasis, ::Char)`](@ref) [specifically, `Rs′ = primitivize(Rs, cntr)`].
## Examples
A centered ('c') lattice from plane group 5 in 2D, plotted in its
conventional and primitive basis (requires `using PyPlot`):
```julia-repl
julia> sgnum = 5; D = 2; cntr = centering(sgnum, D) # 'c' (body-centered)
julia> Rs = directbasis(sgnum, Val(D)) # conventional basis (rectangular)
julia> flat = levelsetlattice(sgnum, Val(D)) # Fourier lattice in basis of Rs
julia> flat = modulate(flat) # modulate the lattice coefficients
julia> plot(flat, Rs)
julia> Rs′ = primitivize(Rs, cntr) # primitive basis (oblique)
julia> flat′ = primitivize(flat, cntr) # Fourier lattice in basis of Rs′
julia> using PyPlot
julia> plot(flat′, Rs′)
```
"""
function primitivize(flat::AbstractFourierLattice{D}, cntr::Char) where D
# Short-circuit for lattices that have trivial transformation matrices
(D == 3 && cntr == 'P') && return flat
(D == 2 && cntr == 'p') && return flat
D == 1 && return flat
P = primitivebasismatrix(cntr, Val(D))
return transform(flat, P)
end
"""
conventionalize(flat::AbstractFourierLattice, cntr::Char) --> ::typeof(flat′)
Given `flat` referred to a primitive basis with centering `cntr`, compute the derived (but
physically equivalent) lattice `flat′` referred to the associated conventional basis.
See also the complementary method
[`primitivize(::AbstractFourierLattice, ::Char)`](@ref) for additional details.
"""
function conventionalize(flat::AbstractFourierLattice{D}, cntr::Char) where D
# Short-circuit for lattices that have trivial transformation matrices
(D == 3 && cntr == 'P') && return flat
(D == 2 && cntr == 'p') && return flat
D == 1 && return flat
P = primitivebasismatrix(cntr, Val(D))
return transform(flat, inv(P))
end
@doc """
modulate(flat::UnityFourierLattice{D},
modulation::AbstractVector{ComplexF64}=rand(ComplexF64, length(getcoefs(flat))),
expon::Union{Nothing, Real}=nothing, Gs::Union{ReciprocalBasis{D}, Nothing}=nothing)
--> ModulatedFourierLattice{D}
Derive a concrete, modulated Fourier lattice from a `UnityFourierLattice` `flat`
(containing the _interrelations_ between orbit coefficients), by
multiplying the "normalized" orbit coefficients by a `modulation`, a _complex_
modulating vector (in general, should be complex; otherwise restores unintended
symmetry to the lattice). Distinct `modulation` vectors produce distinct
realizations of the same lattice described by the original `flat`. By default,
a random complex vector is used.
An exponent `expon` can be provided, which introduces a penalty term to short-
wavelength features (i.e. high-|G| orbits) by dividing the orbit coefficients
by |G|^`expon`; producing a "simpler" and "smoother" lattice boundary
when `expon > 0` (reverse for `expon < 0`). This basically amounts to a
continuous "simplifying" operation on the lattice (it is not necessarily a
smoothing operation; it simply suppresses "high-frequency" components).
If `expon = nothing`, no rescaling is performed. If `Gs` is provided as `nothing`,
the orbit norm is computed in the reciprocal lattice basis (and, so, may not strictly
speaking be a norm if the lattice basis is not cartesian); to account for the basis
explicitly, `Gs` must be provided as a [`ReciprocalBasis`](@ref), see also
[`normscale`](@ref).
"""
function modulate(flat::AbstractFourierLattice{D},
modulation::Union{Nothing, AbstractVector{ComplexF64}}=nothing,
expon::Union{Nothing, Real}=nothing,
Gs::Union{ReciprocalBasis{D}, Nothing}=nothing) where D
if isnothing(modulation)
Ncoefs = length(getcoefs(flat))
mod_r, mod_ϕ = rand(Float64, Ncoefs), 2π.*rand(Float64, Ncoefs)
modulation = mod_r .* cis.(mod_ϕ) # ≡ reⁱᵠ (pick modulus and phase uniformly random)
end
orbits = getorbits(flat); orbitcoefs = getcoefs(flat) # unpacking ...
# multiply the orbit coefficients by the overall `modulation` vector
modulated_orbitcoefs = orbitcoefs.*modulation
flat′ = ModulatedFourierLattice{D}(orbits, modulated_orbitcoefs)
if !isnothing(expon) && !iszero(expon)
# `expon ≠ 0`: interpret as a penalty term on short-wavelength orbits (high |𝐆|)
# by dividing the orbit coefficients by |𝐆|^`expon`; producing smoother lattice
# boundaries and simpler features for `expon > 0` (reverse for `expon < 0`)
normscale!(flat′, expon, Gs)
end
return flat′
end
@doc """
normscale(flat::ModulatedFourierLattice, expon::Real,
Gs::Union{ReciprocalBasis, Nothing} = nothing) --> ModulatedFourierLattice
Applies inverse-orbit norm rescaling of expansion coefficients with a norm exponent `expon`.
If `Gs` is nothing, the orbit norm is computed in the lattice basis (and, so, is not
strictly a norm); by providing `Gs` as [`ReciprocalBasis`](@ref), the norm is evaluated
correctly in cartesian setting. See further discussion in [`modulate`](@ref).
An in-place equivalent is provided in [`normscale!`](@ref).
"""
function normscale(flat::ModulatedFourierLattice{D}, expon::Real,
Gs::Union{ReciprocalBasis{D}, Nothing} = nothing) where D
return normscale!(deepcopy(flat), expon, Gs)
end
@doc """
normscale!(flat::ModulatedFourierLattice, expon::Real,
Gs::Union{ReciprocalBasis, Nothing} = nothing) --> ModulatedFourierLattice
In-place equivalent of [`normscale`](@ref): mutates `flat`.
"""
function normscale!(flat::ModulatedFourierLattice{D}, expon::Real,
Gs::Union{ReciprocalBasis{D}, Nothing} = nothing) where D
n₀ = isnothing(Gs) ? 1.0 : sum(norm, Gs) / D
if !iszero(expon)
orbits = getorbits(flat)
@inbounds for i in eachindex(orbits)
n = if isnothing(Gs)
norm(first(orbits[i]))
else
norm(first(orbits[i])'*Gs) / n₀
end
rescale_factor = n^expon
rescale_factor == zero(rescale_factor) && continue # for G = [0,0,0] case
flat.orbitcoefs[i] ./= rescale_factor
end
end
return flat
end
# -----------------------------------------------------------------------------------------
# The utilities and methods below are mostly used for plotting (see src/pyplotting.jl).
# We keep them here since they do not depend on PyPlot and have more general utility in
# principle (e.g., exporting associated Meshes).
@doc raw"""
(flat::AbstractFourierLattice)(xyz) --> Float64
(flat::AbstractFourierLattice)(xyzs...) --> Float64
Evaluate an `AbstractFourierLattice` at the point `xyz` and return its real part, i.e.
```math
\mathop{\mathrm{Re}}\sum_i c_i \exp(2\pi i\mathbf{G}_i\cdot\mathbf{r})
```
with ``\mathrm{G}_i`` denoting reciprocal lattice vectors in the allowed orbits of `flat`,
with ``c_i`` denoting the associated coefficients (and ``\mathbf{r} \equiv`` `xyz`).
`xyz` may be any iterable object with dimension matching `flat` consisting of real numbers
(e.g., a `Tuple`, `Vector`, or `SVector`). Alternatively, the coordinates can be supplied
individually (i.e., as `flat(x, y, z)`).
"""
function (flat::AbstractFourierLattice)(xyz)
dim(flat) == length(xyz) || throw(DimensionMismatch("dimensions of flat and xyz are mismatched"))
orbits = getorbits(flat)
coefs = getcoefs(flat)
f = zero(Float64)
for (orb, cs) in zip(orbits, coefs)
for (G, c) in zip(orb, cs)
# though one might naively think the phase would need a conversion between
# 𝐑- and 𝐆-bases, this is not necessary since P(𝐆)ᵀP(𝐑) = 2π𝐈 by definition
exp_im, exp_re = sincos(2π*dot(G, xyz))
f += real(c)*exp_re - imag(c)*exp_im # ≡ real(c*exp(2π*1im*dot(G, xyz)))
end
end
return f
end
(flat::AbstractFourierLattice{D})(xyzs::Vararg{Real, D}) where D = flat(SVector{D, Float64}(xyzs))
# note:
# the "(x,y,z) ordering" depends on dimension D:
# D = 2: x runs over cols (dim=2), y over rows (dim=1), i.e. "y-then-x"
# D = 3: x runs over dim=1, y over dim=2, z over dim=3, i.e. "x-then-y-then-z"
# this is because plotting utilities usually "y-then-x", but e.g. Meshing.jl (for 3D
# isosurfaces) assumes the the more natural "x-then-y-then-z" sorting used here. This does
# require some care though, because if we export the output of a 3D calculation to Matlab,
# to use it for isosurface generation, it again requires a sorting like "y-then-x-then-z",
# so we need to permute dimensions 1 and 2 of the output of `calcfouriergridded` when used
# with Matlab.
function calcfouriergridded!(vals, xyz, flat::AbstractFourierLattice{D},
N::Integer=length(xyz)) where D
# evaluate `flat` over all gridpoints via broadcasting
if D == 2
# x along columns, y along rows: "y-then-x"
broadcast!(flat, vals, reshape(xyz, (1,N)), reshape(xyz, (N,1)))
elseif D == 3
# x along dim 1, y along dim 2, z along dim 3: "x-then-y-then-z", equivalent to a
# triple loop, ala `for x∈xyz, y∈xyz, z∈xyz; vals[ix,iy,iz] = f(x,y,z); end`
broadcast!(flat, vals, reshape(xyz, (N,1,1)), reshape(xyz, (1,N,1)), reshape(xyz, (1,1,N)))
end
return vals
end
function calcfouriergridded(xyz, flat::AbstractFourierLattice{D},
N::Integer=length(xyz)) where D
vals = Array{Float64, D}(undef, ntuple(i->N, D)...)
return calcfouriergridded!(vals, xyz, flat, N)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 10973 | # ---------------------------------------------------------------------------------------- #
# LittleGroup data loading
"""
littlegroups(sgnum::Integer, D::Union{Val{Int}, Integer}=Val(3))
-> Dict{String, LittleGroup{D}}
For given space group number `sgnum` and dimension `D`, return the associated little groups
(`LittleGroups{D}`s) at high-symmetry k-points, lines, and planes (see also
[`lgirreps`](@ref)).
Returns a `Dict` with little group **k**-point labels as keys and vectors of
`LittleGroup{D}`s as values.
## Notes
A conventional crystallographic setting is assumed (as in [`spacegroup`](@ref)).
Unlike `spacegroup`, "centering"-copies of symmetry operations are not included in the
returned `LittleGroup`s; as an example, space group 110 (body-centered, with centering
symbol 'I') has a centering translation `[1/2,1/2,1/2]` in the conventional setting:
the symmetry operations returned by `spacegroup` thus includes e.g. both `{1|0}` and
`{1|½,½,½}` while the symmetry operations returned by `littlegroups` only include
`{1|0}` (and so on).
Currently, only `D = 3` is supported.
## References
The underlying data is sourced from the ISOTROPY dataset: see also [`lgirreps`](@ref).
"""
function littlegroups(sgnum::Integer, ::Val{D}=Val(3),
jldfile::JLD2.JLDFile=LGS_JLDFILES[D][]) where D
D ∉ (1,2,3) && _throw_invalid_dim(D)
sgops_str, klabs, kstrs, opsidxs = _load_littlegroups_data(sgnum, jldfile)
sgops = SymOperation{D}.(sgops_str)
lgs = Dict{String, LittleGroup{D}}()
@inbounds for (klab, kstr, opsidx) in zip(klabs, kstrs, opsidxs)
lgs[klab] = LittleGroup{D}(sgnum, KVec{D}(kstr), klab, sgops[opsidx])
end
return lgs
end
# convenience functions without Val(D) usage; avoid internally
littlegroups(sgnum::Integer, D::Integer) = littlegroups(sgnum, Val(D))
# ---------------------------------------------------------------------------------------- #
# LGIrrep data loading
"""
lgirreps(sgnum::Integer, D::Union{Val{Int}, Integer}=Val(3))
-> Dict{String, Collection{LGIrrep{D}}}
For given space group number `sgnum` and dimension `D`, return the associated little group
(or "small") irreps (`LGIrrep{D}`s) at high-symmetry k-points, lines, and planes.
Returns a `Dict` with little group **k**-point labels as keys and vectors of `LGIrrep{D}`s
as values.
## Notes
- The returned irreps are complex in general. Real irreps (as needed in time-reversal
invariant settings) can subsequently be obtained with the [`realify`](@ref) method.
- Returned irreps are spinless.
- The irrep labelling follows CDML conventions.
- Irreps along lines or planes may depend on free parameters `αβγ` that parametrize the
**k** point. To evaluate the irreps at a particular value of `αβγ` and return the
associated matrices, use `(lgir::LGIrrep)(αβγ)`. If `αβγ` is an empty tuple in this call,
the matrices associated with `lgir` will be evaluated assuming `αβγ = [0,0,...]`.
## References
The underlying data is sourced from the ISOTROPY ISO-IR dataset. Please cite the original
reference material associated with ISO-IR:
1. Stokes, Hatch, & Campbell,
[ISO-IR, ISOTROPY Software Suite](https://stokes.byu.edu/iso/irtables.php).
2. Stokes, Campbell, & Cordes,
[Acta Cryst. A. **69**, 388-395 (2013)](https://doi.org/10.1107/S0108767313007538).
The ISO-IR dataset is occasionally missing some **k**-points that lie outside the basic
domain but still resides in the representation domain (i.e. **k**-points with postscripted
'A', 'B', etc. labels, such as 'ZA'). In such cases, the missing irreps may instead have
been manually sourced from the Bilbao Crystallographic Database.
"""
function lgirreps(sgnum::Integer, Dᵛ::Val{D}=Val(3),
lgs_jldfile::JLD2.JLDFile=LGS_JLDFILES[D][],
irs_jldfile::JLD2.JLDFile=LGIRREPS_JLDFILES[D][]) where D
D ∉ (1,2,3) && _throw_invalid_dim(D)
lgs = littlegroups(sgnum, Dᵛ, lgs_jldfile)
Ps_list, τs_list, realities_list, cdmls_list = _load_lgirreps_data(sgnum, irs_jldfile)
lgirsd = Dict{String, Collection{LGIrrep{D}}}()
for (Ps, τs, realities, cdmls) in zip(Ps_list, τs_list, realities_list, cdmls_list)
klab = klabel(first(cdmls))
lg = lgs[klab]
lgirsd[klab] = Collection(
[LGIrrep{D}(cdml, lg, P, τ, Reality(reality))
for (P, τ, reality, cdml) in zip(Ps, τs, realities, cdmls)])
end
return lgirsd
end
lgirreps(sgnum::Integer, D::Integer) = lgirreps(sgnum, Val(D))
# ===== utility functions (loads raw data from the harddisk) =====
function _load_littlegroups_data(sgnum::Integer, jldfile::JLD2.JLDFile)
jldgroup = jldfile[string(sgnum)]
sgops_str::Vector{String} = jldgroup["sgops"]
klabs::Vector{String} = jldgroup["klab_list"]
kstrs::Vector{String} = jldgroup["kstr_list"]
opsidxs::Vector{Vector{Int16}} = jldgroup["opsidx_list"]
return sgops_str, klabs, kstrs, opsidxs
end
function _load_lgirreps_data(sgnum::Integer, jldfile::JLD2.JLDFile)
jldgroup = jldfile[string(sgnum)]
# ≈ 70% of the time in loading all irreps is spent in getting Ps_list and τs_list
Ps_list::Vector{Vector{Vector{Matrix{ComplexF64}}}} = jldgroup["matrices_list"]
τs_list::Vector{Vector{Union{Nothing,Vector{Vector{Float64}}}}} = jldgroup["translations_list"]
realities_list::Vector{Vector{Int8}} = jldgroup["realities_list"]
cdmls_list::Vector{Vector{String}} = jldgroup["cdml_list"]
return Ps_list, τs_list, realities_list, cdmls_list
end
# ---------------------------------------------------------------------------------------- #
# Evaluation of LGIrrep at specific `αβγ`
function (lgir::LGIrrep)(αβγ::Union{AbstractVector{<:Real}, Nothing} = nothing)
Ps = lgir.matrices
τs = lgir.translations
if !iszero(τs)
k = position(lgir)(αβγ)
Ps′ = [copy(P) for P in Ps] # copy this way to avoid overwriting nested array..!
for (i,τ) in enumerate(τs)
if !iszero(τ) && !iszero(k)
Ps′[i] .*= cispi(2*dot(k,τ)) # note cis(x) = exp(ix)
# NOTE/TODO/FIXME:
# This follows the convention in Eq. (11.37) of Inui as well as the Bilbao
# server, i.e. has Dᵏ({I|𝐭}) = exp(i𝐤⋅𝐭); but disagrees with several other
# references (e.g. Herring 1937a and Kovalev's book; and even Bilbao's
# own _publications_?!).
# In these other references one has Dᵏ({I|𝐭}) = exp(-i𝐤⋅𝐭), while Inui takes
# Dᵏ({I|𝐭}) = exp(i𝐤⋅𝐭) [cf. (11.36)]. The former choice, i.e. Dᵏ({I|𝐭}) =
# exp(-i𝐤⋅𝐭) actually appears more natural, since we usually have symmetry
# operations acting _inversely_ on functions of spatial coordinates and
# Bloch phases exp(i𝐤⋅𝐫).
# Importantly, the exp(i𝐤⋅τ) is also the convention adopted by Stokes et al.
# in Eq. (1) of Acta Cryst. A69, 388 (2013), i.e. in ISOTROPY (also
# explicated at https://stokes.byu.edu/iso/irtableshelp.php), so, overall,
# this is probably the sanest choice for this dataset.
# This weird state of affairs was also noted explicitly by Chen Fang in
# https://doi.org/10.1088/1674-1056/28/8/087102 (near Eqs. (11-12)).
#
# If we wanted swap the sign here, we'd likely have to swap t₀ in the check
# for ray-representations in `check_multtable_vs_ir(::MultTable, ::LGIrrep)`
# to account for this difference. It is not enough just to swap the sign
# - I checked (⇒ 172 failures in test/multtable.jl) - you would have
# to account for the fact that it would be -β⁻¹τ that appears in the
# inverse operation, not just τ. Same applies here, if you want to
# adopt the other convention, it should probably not just be a swap
# to -τ, but to -β⁻¹τ. Probably best to stick with Inui's definition.
end
end
return Ps′
else
return Ps
end
# FIXME: Attempt to flip phase convention. Does not pass tests.
#=
lg = group(lgir)
if !issymmorph(lg)
k = position(lgir)(αβγ)
for (i,op) in enumerate(lg)
Ps[i] .* cis(-4π*dot(k, translation(op)))
end
end
=#
end
# ---------------------------------------------------------------------------------------- #
# Misc functions with `LGIrrep`
"""
israyrep(lgir::LGIrrep, αβγ=nothing) -> (::Bool, ::Matrix)
Computes whether a given little group irrep `ir` is a ray representation
by computing the coefficients αᵢⱼ in DᵢDⱼ=αᵢⱼDₖ; if any αᵢⱼ differ
from unity, we consider the little group irrep a ray representation
(as opposed to the simpler "vector" representations where DᵢDⱼ=Dₖ).
The function returns a boolean (true => ray representation) and the
coefficient matrix αᵢⱼ.
"""
function israyrep(lgir::LGIrrep, αβγ::Union{Nothing,Vector{Float64}}=nothing)
k = position(lgir)(αβγ)
lg = group(lgir) # indexing into/iterating over `lg` yields the LittleGroup's operations
Nₒₚ = length(lg)
α = Matrix{ComplexF64}(undef, Nₒₚ, Nₒₚ)
# TODO: Verify that this is OK; not sure if we can just use the primitive basis
# here, given the tricks we then perform subsequently?
mt = MultTable(primitivize(lg))
for (row, oprow) in enumerate(lg)
for (col, opcol) in enumerate(lg)
t₀ = translation(oprow) + rotation(oprow)*translation(opcol) - translation(lg[mt.table[row,col]])
ϕ = 2π*dot(k,t₀) # include factor of 2π here due to normalized bases
α[row,col] = cis(ϕ)
end
end
return any(x->norm(x-1.0)>DEFAULT_ATOL, α), α
end
function ⊕(lgir1::LGIrrep{D}, lgir2::LGIrrep{D}) where D
if position(lgir1) ≠ position(lgir2) || num(lgir1) ≠ num(lgir2) || order(lgir1) ≠ order(lgir2)
error("The direct sum of two LGIrreps requires identical little groups")
end
if lgir1.translations ≠ lgir2.translations
error("The provided LGIrreps have different translation-factors and cannot be \
combined within a single translation factor system")
end
cdml = label(lgir1)*"⊕"*label(lgir2)
g = group(lgir1)
T = eltype(eltype(lgir1.matrices))
z12 = zeros(T, irdim(lgir1), irdim(lgir2))
z21 = zeros(T, irdim(lgir2), irdim(lgir1))
matrices = [[m1 z12; z21 m2] for (m1, m2) in zip(lgir1.matrices, lgir2.matrices)]
translations = lgir1.translations
reality = UNDEF
iscorep = lgir1.iscorep || lgir2.iscorep
return LGIrrep{D}(cdml, g, matrices, translations, reality, iscorep)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 38780 | """
schoenflies(sgnum::Integer) --> String
Return the [Schoenflies notation](https://en.wikipedia.org/wiki/Schoenflies_notation) for
space group number `sgnum` in dimension 3.
Note that Schoenflies notation is well-defined only for 3D point and space groups.
"""
schoenflies(sgnum::Integer) = SCHOENFLIES_TABLE[sgnum]
schoenflies(sg::SpaceGroup{3}) = schoenflies(num(sg))
"""
iuc(sgnum::Integer, D::Integer=3) --> String
Return the IUC (International Union of Crystallography) notation for space group number
`sgnum` in dimension `D` (1, 2, or 3), as used in the International Tables of
Crystallography.
The notation is sometimes also known as the
[Hermann-Mauguin notation](https://en.wikipedia.org/wiki/Hermann–Mauguin_notation).
"""
@inline function iuc(sgnum::Integer, D::Integer=3)
if D==3
@boundscheck (sgnum ∈ 1:230) || _throw_invalid_sgnum(sgnum, 3)
return @inbounds SG_IUCs[3][sgnum]
elseif D==2
@boundscheck (sgnum ∈ 1:17) || _throw_invalid_sgnum(sgnum, 2)
return @inbounds SG_IUCs[2][sgnum]
elseif D==1
@boundscheck (sgnum ∈ 1:2) || _throw_invalid_sgnum(sgnum, 1)
return @inbounds SG_IUCs[1][sgnum]
else
_throw_invalid_dim(D)
end
end
@inline iuc(sg::Union{SpaceGroup{D},LittleGroup{D}}) where D = iuc(num(sg), D)
"""
centering(g::AbstractGroup) --> Char
Return the conventional centering type of a group.
For groups without lattice structure (e.g., point groups), return `nothing`.
"""
centering(sg_or_lg::Union{SpaceGroup{D},LittleGroup{D}}) where D = centering(num(sg_or_lg), D)
# Schoenflies notation, ordered relative to space group number
# [from https://bruceravel.github.io/demeter/artug/atoms/space.html]
const SCHOENFLIES_TABLE = (
# triclinic
"C₁¹", "Cᵢ¹",
# monoclinic
"C₂¹", "C₂²", "C₂³", "Cₛ¹", "Cₛ²", "Cₛ³",
"Cₛ⁴", "C₂ₕ¹", "C₂ₕ²", "C₂ₕ³", "C₂ₕ⁴", "C₂ₕ⁵",
"C₂ₕ⁶",
# orthorhombic
"D₂¹", "D₂²", "D₂³", "D₂⁴", "D₂⁵", "D₂⁶",
"D₂⁷", "D₂⁸", "D₂⁹", "C₂ᵥ¹", "C₂ᵥ²", "C₂ᵥ³",
"C₂ᵥ⁴", "C₂ᵥ⁵", "C₂ᵥ⁶", "C₂ᵥ⁷", "C₂ᵥ⁸", "C₂ᵥ⁹",
"C₂ᵥ¹⁰", "C₂ᵥ¹¹", "C₂ᵥ¹²", "C₂ᵥ¹³", "C₂ᵥ¹⁴", "C₂ᵥ¹⁵",
"C₂ᵥ¹⁶", "C₂ᵥ¹⁷", "C₂ᵥ¹⁸", "C₂ᵥ¹⁹", "C₂ᵥ²⁰", "C₂ᵥ²¹",
"C₂ᵥ²²", "D₂ₕ¹", "D₂ₕ²", "D₂ₕ³", "D₂ₕ⁴", "D₂ₕ⁵",
"D₂ₕ⁶", "D₂ₕ⁷", "D₂ₕ⁸", "D₂ₕ⁹", "D₂ₕ¹⁰", "D₂ₕ¹¹",
"D₂ₕ¹²", "D₂ₕ¹³", "D₂ₕ¹⁴", "D₂ₕ¹⁵", "D₂ₕ¹⁶", "D₂ₕ¹⁷",
"D₂ₕ¹⁸", "D₂ₕ¹⁹", "D₂ₕ²⁰", "D₂ₕ²¹", "D₂ₕ²²", "D₂ₕ²³",
"D₂ₕ²⁴", "D₂ₕ²⁵", "D₂ₕ²⁶", "D₂ₕ²⁷", "D₂ₕ²⁸",
# tetragonal
"C₄¹", "C₄²", "C₄³", "C₄⁴", "C₄⁵", "C₄⁶",
"S₄¹", "S₄²", "C₄ₕ¹", "C₄ₕ²", "C₄ₕ³", "C₄ₕ⁴",
"C₄ₕ⁵", "C₄ₕ⁶", "D₄¹", "D₄²", "D₄³", "D₄⁴",
"D₄⁵", "D₄⁶", "D₄⁷", "D₄⁸", "D₄⁹", "D₄¹⁰",
"C₄ᵥ¹", "C₄ᵥ²", "C₄ᵥ³", "C₄ᵥ⁴", "C₄ᵥ⁵", "C₄ᵥ⁶",
"C₄ᵥ⁷", "C₄ᵥ⁸", "C₄ᵥ⁹", "C₄ᵥ¹⁰", "C₄ᵥ¹¹", "C₄ᵥ¹²",
"D₂d¹", "D₂d²", "D₂d³", "D₂d⁴", "D₂d⁵", "D₂d⁶",
"D₂d⁷", "D₂d⁸", "D₂d⁹", "D₂d¹⁰", "D₂d¹¹", "D₂d¹²",
"D₄ₕ¹", "D₄ₕ²", "D₄ₕ³", "D₄ₕ⁴", "D₄ₕ⁵", "D₄ₕ⁶",
"D₄ₕ⁷", "D₄ₕ⁸", "D₄ₕ⁹", "D₄ₕ¹⁰", "D₄ₕ¹¹", "D₄ₕ¹²",
"D₄ₕ¹³", "D₄ₕ¹⁴", "D₄ₕ¹⁵", "D₄ₕ¹⁶", "D₄ₕ¹⁷", "D₄ₕ¹⁸",
"D₄ₕ¹⁹", "D₄ₕ²⁰",
# trigonal
"C₃¹", "C₃²", "C₃³", "C₃⁴", "C₃ᵢ¹", "C₃ᵢ²",
"D₃¹", "D₃²", "D₃³", "D₃⁴", "D₃⁵", "D₃⁶",
"D₃⁷", "C₃ᵥ¹", "C₃ᵥ²", "C₃ᵥ³", "C₃ᵥ⁴", "C₃ᵥ⁵",
"C₃ᵥ⁶", "D₃d¹", "D₃d²", "D₃d³", "D₃d⁴", "D₃d⁵",
"D₃d⁶",
# hexagonal
"C₆¹", "C₆²", "C₆³", "C₆⁴", "C₆⁵", "C₆⁶",
"C₃ₕ¹", "C₆ₕ¹", "C₆ₕ²", "D₆¹", "D₆²", "D₆³",
"D₆⁴", "D₆⁵", "D₆⁶", "C₆ᵥ¹", "C₆ᵥ²", "C₆ᵥ³",
"C₆ᵥ⁴", "D₃ₕ¹", "D₃ₕ²", "D₃ₕ³", "D₃ₕ⁴", "D₆ₕ¹",
"D₆ₕ²", "D₆ₕ³", "D₆ₕ⁴",
# cubic
"T¹", "T²", "T³", "T⁴", "T⁵", "Tₕ¹",
"Tₕ²", "Tₕ³", "Tₕ⁴", "Tₕ⁵", "Tₕ⁶", "Tₕ⁷",
"O¹", "O²", "O³", "O⁴", "O⁵", "O⁶",
"O⁷", "O⁸", "Td¹", "Td²", "Td³", "Td⁴",
"Td⁵", "Td⁶", "Oₕ¹", "Oₕ²", "Oₕ³", "Oₕ⁴",
"Oₕ⁵", "Oₕ⁶", "Oₕ⁷", "Oₕ⁸", "Oₕ⁹", "Oₕ¹⁰"
)
# IUC/Hermann-Mauguin notation, ordered relative to space/plane group number
const SG_IUCs = (
# ------------------------------------------------------------------------------------------
# line-group notation (one dimension) [see https://en.wikipedia.org/wiki/Line_group]
# ------------------------------------------------------------------------------------------
("p1", "p1m"),
# ------------------------------------------------------------------------------------------
# plane-group notation (two dimensions) [see e.g. Table 19 of Cracknell, Adv. Phys. 1974, or
# https://www.cryst.ehu.es/cgi-bin/plane/programs/nph-plane_getgen?from=getwp]
# ------------------------------------------------------------------------------------------
(
# oblique
"p1", "p2",
# rectangular ('p' or 'c' centering; c-centered lattices are rhombic in their primitive cell)
"p1m1", "p1g1", "c1m1", "p2mm", "p2mg", "p2gg", "c2mm",
# square
"p4", "p4mm", "p4gm",
# hexagonal
"p3", "p3m1", "p31m", "p6", "p6mm"
),
# ------------------------------------------------------------------------------------------
# space-group notation (three dimensions) following the conventions of ITA and Bilbao:
# https://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-getgen
# ------------------------------------------------------------------------------------------
(
# triclinic
"P1", "P-1",
# monoclinic
"P2", "P2₁", "C2", "Pm", "Pc", "Cm",
"Cc", "P2/m", "P2₁/m", "C2/m", "P2/c", "P2₁/c",
"C2/c",
# orthorhombic
"P222", "P222₁", "P2₁2₁2", "P2₁2₁2₁", "C222₁", "C222",
"F222", "I222", "I2₁2₁2₁", "Pmm2", "Pmc2₁", "Pcc2",
"Pma2", "Pca2₁", "Pnc2", "Pmn2₁", "Pba2", "Pna2₁",
"Pnn2", "Cmm2", "Cmc2₁", "Ccc2", "Amm2", "Aem2",
"Ama2", "Aea2", "Fmm2", "Fdd2", "Imm2", "Iba2",
"Ima2", "Pmmm", "Pnnn", "Pccm", "Pban", "Pmma",
"Pnna", "Pmna", "Pcca", "Pbam", "Pccn", "Pbcm",
"Pnnm", "Pmmn", "Pbcn", "Pbca", "Pnma", "Cmcm",
"Cmce", "Cmmm", "Cccm", "Cmme", "Ccce", "Fmmm",
"Fddd", "Immm", "Ibam", "Ibca", "Imma",
# tetragonal
"P4", "P4₁", "P4₂", "P4₃", "I4", "I4₁",
"P-4", "I-4", "P4/m", "P4₂/m", "P4/n", "P4₂/n",
"I4/m", "I4₁/a", "P422", "P42₁2", "P4₁22", "P4₁2₁2",
"P4₂22", "P4₂2₁2", "P4₃22", "P4₃2₁2", "I422", "I4₁22",
"P4mm", "P4bm", "P4₂cm", "P4₂nm", "P4cc", "P4nc",
"P4₂mc", "P4₂bc", "I4mm", "I4cm", "I4₁md", "I4₁cd",
"P-42m", "P-42c", "P-42₁m", "P-42₁c", "P-4m2", "P-4c2",
"P-4b2", "P-4n2", "I-4m2", "I-4c2", "I-42m", "I-42d",
"P4/mmm", "P4/mcc", "P4/nbm", "P4/nnc", "P4/mbm", "P4/mnc",
"P4/nmm", "P4/ncc", "P4₂/mmc", "P4₂/mcm", "P4₂/nbc", "P4₂/nnm",
"P4₂/mbc", "P4₂/mnm", "P4₂/nmc", "P4₂/ncm", "I4/mmm", "I4/mcm",
"I4₁/amd", "I4₁/acd",
# trigonal
"P3", "P3₁", "P3₂", "R3", "P-3", "R-3",
"P312", "P321", "P3₁12", "P3₁21", "P3₂12", "P3₂21",
"R32", "P3m1", "P31m", "P3c1", "P31c", "R3m",
"R3c", "P-31m", "P-31c", "P-3m1", "P-3c1", "R-3m",
"R-3c",
# hexagonal
"P6", "P6₁", "P6₅", "P6₂", "P6₄", "P6₃",
"P-6", "P6/m", "P6₃/m", "P622", "P6₁22", "P6₅22",
"P6₂22", "P6₄22", "P6₃22", "P6mm", "P6cc", "P6₃cm",
"P6₃mc", "P-6m2", "P-6c2", "P-62m", "P-62c", "P6/mmm",
"P6/mcc", "P6₃/mcm", "P6₃/mmc",
# cubic
"P23", "F23", "I23", "P2₁3", "I2₁3", "Pm-3",
"Pn-3", "Fm-3", "Fd-3", "Im-3", "Pa-3", "Ia-3",
"P432", "P4₂32", "F432", "F4₁32", "I432", "P4₃32",
"P4₁32", "I4₁32", "P-43m", "F-43m", "I-43m", "P-43n",
"F-43c", "I-43d", "Pm-3m", "Pn-3n", "Pm-3n", "Pn-3m",
"Fm-3m", "Fm-3c", "Fd-3m", "Fd-3c", "Im-3m", "Ia-3d"
)
)
@doc raw"""
seitz(op::SymOperation) --> String
Computes the correponding Seitz notation for a symmetry operation in triplet/xyzt form.
Implementation based on ITA5 Table 11.2.1.1, with 3D point group parts inferred from
the trace and determinant of the matrix ``\mathb{W}`` in the triplet
``\{\mathbf{W}|\mathbf{w}\}``.
| detW/trW | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
|:---------|----|----|----|----|---|---|---|
| **1** | | | 2 | 3 | 4 | 6 | 1 |
| **-1** | -1 | -6 | -4 | -3 | m | | |
with the elements of the table giving the type of symmetry operation in in Hermann-Mauguin
notation. The rotation axis and the rotation sense are computed following the rules in ITA6
Sec. 1.2.2.4(1)(b-c). See also .
Note that the orientation of the axis (i.e. its sign) does not necessarily match the
orientation picked in Tables 1.4.2.1-5 of ITA6; it is a matter of (arbitrary) convention,
and the conventions have not been explicated in ITA.
2D operations are treated by the same procedure, by elevation in a third dimension; 1D
operations by a simple inspection of sign.
"""
function seitz(op::SymOperation{D}) where D
w = translation(op)
if D == 3
W = rotation(op)
elseif D == 2 # augment 2D case by "adding" an invariant z dimension
W′ = rotation(op)
W = @inbounds SMatrix{3,3,Float64,9}( # build by column (= [W′ zeros(2); 0 0 1])
W′[1], W′[2], 0.0, W′[3], W′[4], 0.0, 0.0, 0.0, 1.0 )
elseif D == 1
W = rotation(op)
isone(abs(W[1])) || throw(DomainError((W,w), "not a valid 1D symmetry operation"))
W_str = signbit(W[1]) ? "-1" : "1"
if iszero(w[1])
return W_str
else
w_str = unicode_frac(w[1])
return '{'*W_str*'|'*w_str*'}'
end
else
throw(DomainError(D, "dimension different from 1, 2, or 3 is not supported"))
end
detW′ = det(W); detW = round(Int, detW′) # det, then trunc & check
isapprox(detW′, detW, atol=DEFAULT_ATOL) || throw(DomainError(detW′, "det W must be an integer for a SymOperation {W|w}"))
trW′ = tr(W); trW = round(Int, trW′) # tr, then trunc & check
isapprox(trW′, trW, atol=DEFAULT_ATOL) || throw(DomainError(trW′, "tr W must be an integer for a SymOperation {W|w}"))
io_pgop = IOBuffer()
iszero(w) || print(io_pgop, '{')
# --- rotation order (and proper/improper determination) ---
rot = rotation_order_3d(detW, trW) # works for 2D also, since we augmented W above
order = abs(rot)
if rot == -2
print(io_pgop, 'm')
else
print(io_pgop, rot)
end
if order ≠ 1
# --- rotation axis (for order ≠ 1)---
u = if D == 2 && rot ≠ -2 # only need orientation in 2D for mirrors
SVector{3,Int}(0, 0, 1)
else
rotation_axis_3d(W, detW, order)
end
if !(D == 2 && rot ≠ -2)
# (for 2D, ignore z-component)
join(io_pgop, (subscriptify(string(u[i])) for i in SOneTo(D)))
end
# --- rotation sense (for order > 2}) ---
# ±-rotation sense is determined from sign of det(𝐙) where
# 𝐙 ≡ [𝐮|𝐱|det(𝐖)𝐖𝐱] where 𝐱 is an arbitrary vector that
# is not parallel to 𝐮. [ITA6 Vol. A, p. 16, Sec. 1.2.2.4(1)(c)]
if order > 2
x = rand(-1:1, SVector{3, Int})
while iszero(x×u) # check that generated 𝐱 is not parallel to 𝐮 (if it is, 𝐱×𝐮 = 0)
x = rand(-1:1, SVector{3, Int})
iszero(u) && error("rotation axis has zero norm; input is likely invalid")
end
Z = hcat(u, x, detW*(W*x))
print(io_pgop, signbit(det(Z)) ? '⁻' : '⁺')
end
end
# --- add translation for nonsymorphic operations ---
if !iszero(w)
print(io_pgop, '|')
join(io_pgop, (unicode_frac(wᵢ) for wᵢ in w), ',')
print(io_pgop, '}')
end
return String(take!(io_pgop))
end
seitz(str::String) = seitz(SymOperation(str))
"""
rotation_order_3d(detW::Real, trW::Real) --> Int
Determine the integer rotation order of a 3D point group operation with a 3×3 matrix
representation `W` (alternatively specified by its determinant `detW` and its trace `trW`).
The rotation order of
- Proper rotations is positive.
- Improper (mirrors, inversion, roto-inversions) is negative.
"""
function rotation_order_3d(detW::Real, trW::Real)
if detW == 1 # proper rotations
if -1 ≤ trW ≤ 1 # 2-, 3-, or 4-fold rotation
rot = convert(Int, trW) + 3
elseif trW == 2 # 6-fold rotation
rot = 6
elseif trW == 3 # identity operation
rot = 1
else
_throw_seitzerror(trW, detW)
end
elseif detW == -1 # improper rotations (rotoinversions)
if trW == -3 # inversion
rot = -1
elseif trW == -2 # 6-fold rotoinversion
rot = -6
elseif -1 ≤ trW ≤ 0 # 4- and 3-fold rotoinversion
rot = convert(Int, trW) - 3
elseif trW == 1 # mirror, note that "m" == "-2" conceptually
rot = -2
else
_throw_seitzerror(trW, detW)
end
else
_throw_seitzerror(trW, detW)
end
return rot
end
"""
rotation_order(W::Matrix{<:Real}) --> Int
rotation_order(op::SymOperation) --> Int
Determine the integer rotation order of a point group operation, input either as a matrix
`W` or `op::SymOperation`.
The rotation order of
- Proper rotations is positive.
- Improper (mirrors, inversion, roto-inversions) is negative.
"""
function rotation_order(W::AbstractMatrix{<:Real})
if size(W) == (1,1)
return convert(Int, W[1,1])
elseif size(W) == (2,2)
# we augment 2D case by effectively "adding" an invariant z dimension, extending
# into 3D: then we just shortcut to what det and tr of that "extended" matrix is
return rotation_order_3d(det(W), tr(W) + one(eltype(W)))
elseif size(W) ≠ (3,3)
throw(DomainError(size(W), "Point group operation must have a dimension ≤3"))
end
return rotation_order_3d(det(W), tr(W))
end
rotation_order(op::SymOperation) = rotation_order(rotation(op))
function rotation_axis_3d(W::AbstractMatrix{<:Real}, detW::Real, order::Integer)
# the rotation axis 𝐮 of a 3D rotation 𝐖 of order k is determined from the product of
# 𝐘ₖ(𝐖) ≡ (d𝐖)ᵏ⁻¹+(d𝐖)ᵏ⁻² + ... + (d𝐖) + 𝐈 where d ≡ det(𝐖)
# with an arbitrary vector 𝐯 that is not perpendicular to 𝐮 [cf. ITA6 Vol. A, p. 16,
# Sec. 1.2.2.4(1)(b)]
order ≤ 0 && throw(DomainError(order, "order must be positive (i.e. not include sign)"))
# if W is the identity or inversion, the notion of an axis doesn't make sense
isone(order) && throw(DomainError(order, "order must be non-unity (i.e. operation must not be identity or inversion)"))
Yₖ = SMatrix{3,3,Float64}(I) # calculate Yₖ by iteration
term = SMatrix{3,3,eltype(W)}(I)
for j in OneTo(order-1)
term = term*W # iteratively computes Wʲ
if detW^j == -1;
Yₖ = Yₖ - term
else
Yₖ = Yₖ + term
end
end
u′ = Yₖ*rand(SVector{3, Float64})
while LinearAlgebra.norm(u′) < 1e-6
# there is near-infinitesimal chance that u′ is zero for random v, but check anyway
u′ = Yₖ*rand(SVector{3, Float64})
end
# TODO: this ought to be more robust: the below doesn't allow for axes that are e.g.,
# [2 3 0]; only axes that have a `1` somewhere; in general, we need to find a way
# to e.g., "multiply-up" [1, 1.333333, 0] to [3, 4, 0]. Conceptually, it is
# related to identifying a floating-point analogue of gcd.
norm = minimum(abs, Base.Filter(x->abs(x)>DEFAULT_ATOL, u′)) # minimum nonzero element
u′ = u′/norm # normalize
u = round.(Int, u′) # convert from float to integer and check validity of conversion
if !isapprox(u′, u, atol=DEFAULT_ATOL)
throw(DomainError(u′, "the rotation axis must be equivalent to an integer vector by appropriate normalization"))
end
# the sign of u is arbitrary: we adopt the convention of '-' elements coming "before"
# '+' elements; e.g. [-1 -1 1] is picked over [1 1 -1] and [-1 1 -1] is picked over
# [1 -1 1]; note that this impacts the sense of rotation which depends on the sign of
# the rotation axis; finally, if all elements have the same sign (or zero), we pick a
# positive overall sign ('+')
if all(≤(0), u)
u = -u
else
negidx = findfirst(signbit, u)
firstnonzero = findfirst(≠(0), u) # don't need to bother taking abs, as -0 = 0 for integers (and floats)
if negidx ≠ nothing && (negidx ≠ firstnonzero || negidx === firstnonzero === 3)
u = -u
end
end
return u
end
rotation_axis_3d(W::AbstractMatrix) = rotation_axis_3d(W, det(W), rotation_order(W))
rotation_axis_3d(op::SymOperation{3}) = (W=rotation(op); rotation_axis_3d(W, det(W), abs(rotation_order(W))))
_throw_seitzerror(trW, detW) = throw(DomainError((trW, detW), "trW = $(trW) for detW = $(detW) is not a valid symmetry operation; see ITA5 Vol A, Table 11.2.1.1"))
# -----------------------------------------------------------------------------------------
# MULLIKEN NOTATION FOR POINT GROUP IRREPS
const PGIRLABS_CDML2MULLIKEN_3D = ImmutableDict(
# sorted in ascending order wrt. Γᵢ CDML sorting; i.e. as
# Γ₁, Γ₂, ...
# or Γ₁⁺, Γ₁⁻, Γ₂⁺, Γ₂⁻, ...
# the association between CDMl and Mulliken labels are obtained obtained from
# https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=spg
# note that e.g., https://www.cryst.ehu.es/rep/point.html cannot be used, because the
# Γ-labels there do not always refer to the CDML convention; more likely, the B&C
# convention. For "setting = 2" cases, we used the `bilbao_pgs_url(..)` from the
# point group irrep crawl script
# includes all labels in PG_IUCs[3]
"1" => ImmutableDict("Γ₁"=>"A"),
"-1" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ"),
"2" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B"),
"m" => ImmutableDict("Γ₁"=>"A′", "Γ₂"=>"A′′"),
"2/m" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"Bg", "Γ₂⁻"=>"Bᵤ"),
"222" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B₁", "Γ₃"=>"B₃", "Γ₄"=>"B₂"),
"mm2" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"B₂", "Γ₄"=>"B₁"),
"mmm" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"B₁g", "Γ₂⁻"=>"B₁ᵤ", "Γ₃⁺"=>"B₃g", "Γ₃⁻"=>"B₃ᵤ", "Γ₄⁺"=>"B₂g", "Γ₄⁻"=>"B₂ᵤ"),
"4" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃"=>"²E", "Γ₄"=>"¹E"),
"-4" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃"=>"²E", "Γ₄"=>"¹E"),
"4/m" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"Bg", "Γ₂⁻"=>"Bᵤ", "Γ₃⁺"=>"²Eg", "Γ₃⁻"=>"²Eᵤ", "Γ₄⁺"=>"¹Eg", "Γ₄⁻"=>"¹Eᵤ"),
"422" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"B₁", "Γ₃"=>"A₂", "Γ₄"=>"B₂", "Γ₅"=>"E"),
"4mm" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"B₁", "Γ₃"=>"B₂", "Γ₄"=>"A₂", "Γ₅"=>"E"),
"-42m" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"B₁", "Γ₃"=>"B₂", "Γ₄"=>"A₂", "Γ₅"=>"E"), # setting 1
"-4m2" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"B₁", "Γ₃"=>"B₂", "Γ₄"=>"A₂", "Γ₅"=>"E"), # setting 2 *** see notes below ***
# NB: Bilbao has chosen a convention where the Mulliken irrep labels of -4m2 are a bit
# strange, at least in one perspective: specifically, the labels do not make sense
# when compared to the labels of -42m and break with the usual "Mulliken rules",
# (to establish a correspondence between the irrep labels of -4m2 and -42m, one
# ought to make the swaps (-4m2 → -42m): B₁ → B₂, B₂ → A₂, A₂ → B₁); the cause of
# this is partly also that the Γᵢ labels are permuted seemingly unnecessarily
# -42m and -4m2; but this is because those irrep labels are "inherited" from space
# groups 111 (P-42m) and 115 (P-4m2); ultimately, Bilbao chooses to retain
# consistency between space & point groups and a simple Γᵢ and Mulliken label
# matching rule. We follow their conventions; otherwise comparisons are too hard
# (and it seems Bilba's conventions are also motivated by matching ISOTROPY's).
# The Mulliken label assignment that "makes sense" in comparison to the labels of
# -42m is:
# `ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"B₁", "Γ₄"=>"B₂", "Γ₅"=>"E")`
# More discussion and context in issue #57; and a similar issue affects the irreps
# in point group -6m2
"4/mmm" => ImmutableDict("Γ₁⁺"=>"A₁g", "Γ₁⁻"=>"A₁ᵤ", "Γ₂⁺"=>"B₁g", "Γ₂⁻"=>"B₁ᵤ", "Γ₃⁺"=>"A₂g", "Γ₃⁻"=>"A₂ᵤ", "Γ₄⁺"=>"B₂g", "Γ₄⁻"=>"B₂ᵤ", "Γ₅⁺"=>"Eg", "Γ₅⁻"=>"Eᵤ"),
"3" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"²E", "Γ₃"=>"¹E"),
"-3" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"²Eg", "Γ₂⁻"=>"²Eᵤ", "Γ₃⁺"=>"¹Eg", "Γ₃⁻"=>"¹Eᵤ"),
"312" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E"), # setting 1
"321" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E"), # setting 2
"3m1" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E"), # setting 1
"31m" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E"), # setting 2
"-31m" => ImmutableDict("Γ₁⁺"=>"A₁g", "Γ₁⁻"=>"A₁ᵤ", "Γ₂⁺"=>"A₂g", "Γ₂⁻"=>"A₂ᵤ", "Γ₃⁺"=>"Eg", "Γ₃⁻"=>"Eᵤ"), # setting 1
"-3m1" => ImmutableDict("Γ₁⁺"=>"A₁g", "Γ₁⁻"=>"A₁ᵤ", "Γ₂⁺"=>"A₂g", "Γ₂⁻"=>"A₂ᵤ", "Γ₃⁺"=>"Eg", "Γ₃⁻"=>"Eᵤ"), # setting 2
"6" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃"=>"²E₁", "Γ₄"=>"²E₂", "Γ₅"=>"¹E₁", "Γ₆"=>"¹E₂"),
"-6" => ImmutableDict("Γ₁"=>"A′", "Γ₂"=>"A′′", "Γ₃"=>"²E′", "Γ₄"=>"²E′′", "Γ₅"=>"¹E′", "Γ₆"=>"¹E′′"),
"6/m" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"Bg", "Γ₂⁻"=>"Bᵤ", "Γ₃⁺"=>"²E₁g", "Γ₃⁻"=>"²E₁ᵤ", "Γ₄⁺"=>"²E₂g", "Γ₄⁻"=>"²E₂ᵤ", "Γ₅⁺"=>"¹E₁g", "Γ₅⁻"=>"¹E₁ᵤ", "Γ₆⁺"=>"¹E₂g", "Γ₆⁻"=>"¹E₂ᵤ"),
"622" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"B₂", "Γ₄"=>"B₁", "Γ₅"=>"E₂", "Γ₆"=>"E₁"),
"6mm" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"B₂", "Γ₄"=>"B₁", "Γ₅"=>"E₂", "Γ₆"=>"E₁"),
"-62m" => ImmutableDict("Γ₁"=>"A₁′", "Γ₂"=>"A₁′′", "Γ₃"=>"A₂′′", "Γ₄"=>"A₂′", "Γ₅"=>"E′", "Γ₆"=>"E′′"), # setting 1
"-6m2" => ImmutableDict("Γ₁"=>"A₁′", "Γ₂"=>"A₁′′", "Γ₃"=>"A₂′′", "Γ₄"=>"A₂′", "Γ₅"=>"E′", "Γ₆"=>"E′′"), # setting 2 *** see also (*) above for discussion of label "issues" **
"6/mmm" => ImmutableDict("Γ₁⁺"=>"A₁g", "Γ₁⁻"=>"A₁ᵤ", "Γ₂⁺"=>"A₂g", "Γ₂⁻"=>"A₂ᵤ", "Γ₃⁺"=>"B₂g", "Γ₃⁻"=>"B₂ᵤ", "Γ₄⁺"=>"B₁g", "Γ₄⁻"=>"B₁ᵤ", "Γ₅⁺"=>"E₂g", "Γ₅⁻"=>"E₂ᵤ", "Γ₆⁺"=>"E₁g", "Γ₆⁻"=>"E₁ᵤ"),
"23" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"¹E", "Γ₃"=>"²E", "Γ₄"=>"T"),
"m-3" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"¹Eg", "Γ₂⁻"=>"¹Eᵤ", "Γ₃⁺"=>"²Eg", "Γ₃⁻"=>"²Eᵤ", "Γ₄⁺"=>"Tg", "Γ₄⁻"=>"Tᵤ"),
"432" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E", "Γ₄"=>"T₁", "Γ₅"=>"T₂"),
"-43m" => ImmutableDict("Γ₁"=>"A₁", "Γ₂"=>"A₂", "Γ₃"=>"E", "Γ₄"=>"T₂", "Γ₅"=>"T₁"),
"m-3m" => ImmutableDict("Γ₁⁺"=>"A₁g", "Γ₁⁻"=>"A₁ᵤ", "Γ₂⁺"=>"A₂g", "Γ₂⁻"=>"A₂ᵤ", "Γ₃⁺"=>"Eg", "Γ₃⁻"=>"Eᵤ", "Γ₄⁺"=>"T₁g", "Γ₄⁻"=>"T₁ᵤ", "Γ₅⁺"=>"T₂g", "Γ₅⁻"=>"T₂ᵤ")
)
const PGIRLABS_CDML2MULLIKEN_3D_COREP = ImmutableDict(
# Same as `PGIRLABS_CDML2MULLIKEN_3D` but with labels for physically real irreps
# (coreps); the label for real irreps are unchanged, but the labels for complex irreps
# differ (e.g. ¹E and ²E becomes E). Point groups 1, -1, 2, m, 2/m, 222, mm2, mmm, 422,
# 4mm, -42m, -4m2, 4/mmm, 312, 321, 3m1, 31m, -31m, -3m1, 622, 6mm, -62m, -6m2, 6/mmm,
# 432, -43m, and m-3m have only real irreps, so we don't include them here.
"4" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃Γ₄"=>"E"),
"-4" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃Γ₄"=>"E"),
"4/m" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"Bg", "Γ₂⁻"=>"Bᵤ", "Γ₃⁺Γ₄⁺"=>"Eg", "Γ₃⁻Γ₄⁻"=>"Eᵤ"),
"3" => ImmutableDict("Γ₁"=>"A", "Γ₂Γ₃"=>"E"),
"-3" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺Γ₃⁺"=>"Eg", "Γ₂⁻Γ₃⁻"=>"Eᵤ"),
"6" => ImmutableDict("Γ₁"=>"A", "Γ₂"=>"B", "Γ₃Γ₅"=>"E₁", "Γ₄Γ₆"=>"E₂"),
"-6" => ImmutableDict("Γ₁"=>"A′", "Γ₂"=>"A′′", "Γ₃Γ₅"=>"E′", "Γ₄Γ₆"=>"E′′"),
"6/m" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺"=>"Bg", "Γ₂⁻"=>"Bᵤ", "Γ₃⁺Γ₅⁺"=>"E₁g", "Γ₃⁻Γ₅⁻"=>"E₁ᵤ", "Γ₄⁺Γ₆⁺"=>"E₂g", "Γ₄⁻Γ₆⁻"=>"E₂ᵤ"),
"23" => ImmutableDict("Γ₁"=>"A", "Γ₂Γ₃"=>"E", "Γ₄"=>"T"),
"m-3" => ImmutableDict("Γ₁⁺"=>"Ag", "Γ₁⁻"=>"Aᵤ", "Γ₂⁺Γ₃⁺"=>"Eg", "Γ₂⁻Γ₃⁻"=>"Eᵤ", "Γ₄⁺"=>"Tg", "Γ₄⁻"=>"Tᵤ"),
)
"""
$(TYPEDSIGNATURES)
Return the Mulliken label of a point group irrep `pgir`.
## Notes
This functionality is a simple mapping between the tabulated CDML point group irrep labels
and associated Mulliken labels [^1], using the listings from the Bilbao Crystallographic
Database [^2].
Ignoring subscript, the rough rules associated with assignment of Mulliken labels are:
1. **Irrep dimensionality**:
- **1D irreps**: if a real irrep, assign A or B (B if antisymmetric under a principal
rotation); if a complex irrep, assigned label ¹E or ²E.
- **2D irreps**: assign label E.
- **3D irreps**: assign label T.
2. **_u_ and _g_ subscripts**: if the group contains inversion, indicate whether irrep is
symmetric (g ~ gerade) or antisymmetric (u ~ ungerade) under inversion.
3. **Prime superscripts**: if the group contains a mirror *m* aligned with a principal
rotation axis, but does *not* contain inversion, indicate whether irrep is symmetric (′)
or antisymmetric (′′) under this mirror.
4. **Numeral subscripts**: the rules for assignment of numeral subscripts are too
complicated in general - and indeed, we are unaware of a general coherent rule -- to
describe here.
## References
[^1]: Mulliken, Report on Notation for the Spectra of Polyatomic Molecules,
[J. Chem. Phys. *23*, 1997 (1955)](https://doi.org/10.1063/1.1740655).
[^2]: Bilbao Crystallographic Database's
[Representations PG program](https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=spg).
"""
function mulliken(pgir::PGIrrep{D}) where D
pglab = label(group(pgir))
pgirlab = label(pgir)
return _mulliken(pglab, pgirlab, iscorep(pgir))
end
function _mulliken(pglab, pgirlab, iscorep) # split up to let `SiteIrrep` overload `mulliken`
if iscorep
return PGIRLABS_CDML2MULLIKEN_3D_COREP[pglab][pgirlab]
else
return PGIRLABS_CDML2MULLIKEN_3D[pglab][pgirlab]
end
end
#=
# ATTEMPT AT ACTUALLY IMPLEMENTING THE MULLIKEN NOTATION OURSELVES, USING THE "RULES"
# UNFORTUNATELY, THERE IS A LACK OF SPECIFICATION OF THESE RULES; THIS E.G. IMPACTS:
# - ¹ and ² superscripts to E labels: no rules, whatsoever. Cannot reverse-engineer
# whatever the "rule" is (if there is any) that fits all point groups; e.g., rule
# seems different between e.g. {4, -4, 4/m} and {6, -6, 23, m-3}. the rule we went
# with below works for {4, -4, 4/m}, but not {6, -6, 23, m-3}
# - how to infer that a ₁₂₃ subscript to a label is not needed (i.e. that the label
# is already unambiguous? there just doesn't seem to be any way to infer this
# generally, without looking at all the different irreps at the same time.
# - straaange corner cases for A/B label assignment; e.g. -6m2 is all A labels,
# but the principal rotation (-6) has characters with both positive and negative
# sign; so the only way strictly A-type labels could be assigned if we pick some
# other principal rotation, e.g. 3₀₀₁... that doesn't make sense.
# - sometimes, subscript assignment differs, e.g. for 622: B₁ vs. B₂. the rule used
# to pick subscripts are ambiguous here, because there are two sets of two-fold
# rotation operations perpendicular to the principal axis - and they have opposite
# signs; so the assignment of ₁₂ subscripts depends on arbitrarily picking one of
# these sets.
# - more issues probably exist...
# BECAUSE OF THIS, WE JUST OPT TO ULTIMATELY JUST NOT IMPLEMENT THIS OURSELVES, AND INSTEAD
# RESTRICT OURSELVES TO GETTING THE MULLIKEN NOTATION ONLY FOR TABULATED POINT GROUPS BY
# COMPARING WITH THE ASSOCIATED LABELS
#
# TENTATIVE IMPLEMENTATION:
# Rough guidelines are e.g. in http://www.pci.tu-bs.de/aggericke/PC4e/Kap_IV/Mulliken.html &
# xuv.scs.illinois.edu/516/handouts/Mulliken%20Symbols%20for%20Irreducible%20Representations.pdf
# The "canonical" standard/most explicit resource is probably Pure & Appl. Chem., 69, 1641
# (1997), see e.g. https://core.ac.uk/download/pdf/9423.pdf or Mulliken's own 'Report on
# Notation for the Spectra of Polyatomic Molecules' (https://doi.org/10.1063/1.1740655)
#
# Note that the convention's choices not terribly specific when it comes to cornercases,
# such as for B-type labels with 3 indices or E-type labels with 1/2 indices
function mulliken(ir::Union{PGIrrep{D}, LGIrrep{D}}) where D
D ∈ (1,2,3) || _throw_invalid_dim(D)
if ir isa LGIrrep && !issymmorphic(num(ir), D)
error("notation not defined for `LGIrrep`s of nonsymmorphic space groups")
end
g = group(ir)
χs = characters(ir)
irD = irdim(ir)
# --- determine "main" label of the irrep (A, B, E, or T) ---
# find all "maximal" (=principal) rotations, including improper ones
idxs_principal = find_principal_rotations(g, include_improper=true)
op_principal = g[first(idxs_principal)] # a representative principal rotation
axis_principal = D == 1 ? nothing : # associcated rotation axis
isone(op_principal) ? nothing :
D == 2 ? SVector(0,0,1) :
#= D == 3 =# rotation_axis_3d(op_principal)
lab = if irD == 1 # A or B
χ′s = @view χs[idxs_principal]
# if character of rotation around _any_ principal rotation axis (i.e. maximum
# rotation order) is negative, then label is B; otherwise A. If complex character
# label is ¹E or ²E
if all(x->isapprox(abs(real(x)), 1, atol=DEFAULT_ATOL), χ′s) # => real irrep
any(isapprox(-1, atol=DEFAULT_ATOL), χ′s) ? "B" : "A"
else # => complex irrep
# must then be a complex rep; label is ¹E or ²E. the convention at e.g. Bilbao
# seems to be to (A) pick a principal rotation with positive sense ("⁺"),
# then (B) look at its character, χ, then (C) if Imχ < 0 => assign ¹
# superscript, if Imχ > 0 => assign ² superscript. this is obviously a very
# arbitrary convention, but I guess it's as good as any
idx⁺ = findfirst(idx->seitz(g[idx])[end] == '⁺', idxs_principal)
idx⁺ === nothing && (idx⁺ = 1) # in case of 2-fold rotations where 2⁺ = 2⁻
imag(χ′s[idx⁺]) < 0 ? "¹E" : "²E"
end
elseif irD == 2 # E (reality is always real for PGIrreps w/ irD = 3)
"E"
elseif irD == 3 # T (reality is always real for PGIrreps w/ irD = 3)
"T"
else
throw(DomainError(irD, "the dimensions of a crystallographic point group irrep "*
"is expected to be between 1 and 3"))
# in principle, 4 => "G" and 5 => "H", but irreps of dimension larger than 3 never
# arise for crystallographic point groups; not even when considering time-reversal
end
# --> number subscript ₁, ₂, ₃
# NOTE: these rules are very messy and also not well-documented; it is especially
# bad for E and T labels; there, I've just inferred a rule that works for the
# crystallographic point groups, simply by comparing to published tables (e.g.,
# Bilbao and http://symmetry.jacobs-university.de/)
if axis_principal !== nothing
if lab == "A" || lab == "B"
# ordinarily, we can follow a "simple" scheme - but there is an arbitrary
# choice involved when we have point groups 222 or mmm - where we need to assign
# 3 different labels to B-type irreps
# special rules needed for "222" (C₂) and "mmm" (D₂ₕ) groups
# check B-type label and point group 222 [identity + 3×(2-fold rotation)] or
# mmm [identity + 3×(2-fold rotation + mirror) + inversion]
istricky_B_case = if lab == "B"
(length(g)==4 && count(op->rotation_order(op)==2, g) == 3) || # 222
(length(g)==8 && count(op->abs(rotation_order(op))==2, g) == 6) # mmm
else
false
end
if !istricky_B_case
# simple scheme:
# find a 2-fold rotation or mirror (h) whose axis is ⟂ to principal axis:
# χ(h) = +1 => ₁
# χ(h) = -1 => ₂
idxᴬᴮ = if D == 3
findfirst(g) do op
abs(rotation_order(op)) == 2 &&
dot(rotation_axis_3d(op), axis_principal) == 0
end
elseif D == 2
findfirst(op -> rotation_order(op) == -2, g)
end
if idxᴬᴮ !== nothing
lab *= real(χs[idxᴬᴮ]) > 0 ? '₁' : '₂'
end
else # tricky B case (222 or mmm)
# there's no way to do this independently of a choice of setting; we just
# follow what seems to be the norm and _assume_ the presence of 2₀₀₁, 2₀₁₀,
# and 2₁₀₀; if they don't exist, things will go bad! ... no way around it
idxˣ = findfirst(op->seitz(op)=="2₁₀₀", g)
idxʸ = findfirst(op->seitz(op)=="2₀₁₀", g)
idxᶻ = findfirst(op->seitz(op)=="2₀₀₁", g)
if idxˣ === nothing || idxʸ === nothing || idxᶻ === nothing
error("cannot assign tricky B-type labels for nonconventional axis settings")
end
χsˣʸᶻ = (χs[idxˣ], χs[idxʸ], χs[idxᶻ])
lab *= χsˣʸᶻ == (-1,-1,+1) ? '₁' :
χsˣʸᶻ == (-1,+1,-1) ? '₂' :
χsˣʸᶻ == (+1,-1,-1) ? '₃' : error("unexpected character combination")
end
elseif lab == "E" || lab == "¹E" || lab == "²E"
# TODO
# disambiguation needed for pgs 6 (C₆), 6/m (C₆ₕ), 622 (D₆), 6mm (C₆ᵥ),
# 6/mmm (D₆ₕ)
# rule seems to be that we look at the 2-fold rotation operation aligned with
# the principal axis; denoting this operation by 2, the rule is:
# χ(2) = -1 => E₁
# χ(2) = +1 => E₂
idxᴱ = findfirst(g) do op
rotation_order(op) == 2 && (D==2 || rotation_axis_3d(op) == axis_principal)
end
if idxᴱ !== nothing
lab *= real(χs[idxᴱ]) < 0 ? '₁' : '₂'
end
elseif lab == "T"
# disambiguation of T symbols is only needed for 432 (O), -43m (Td) and m-3m
# (Oₕ) pgs; the disambiguation can be done by checking the sign of the character
# of a principal rotation; which in this case is always a 4-fold proper or
# improper rotation ±4, the rule thus is:
# χ(±4) = -1 => T₂
# χ(±4) = +1 => T₁
# to avoid also adding unnecessary subscripts to pgs 23 and m-3 (whose T-type
# irreps are already disambiguated), we check if the principal rotation has
# order 4 - if not, this automatically excludes 23 and m-3.
if abs(rotation_order(op_principal)) == 4
# we only need to check a single character; all ±4 rotations have the same
# character in this cornercase
lab *= real(χs[first(idxs_principal)]) > 0 ? '₁' : '₂'
end
end
end
# --> letter subscript g, ᵤ and prime superscript ′, ′′
idx_inversion = findfirst(op -> isone(-rotation(op)), g)
if idx_inversion !== nothing
# --> letter subscript g, ᵤ
# rule applies for groups with inversion -1:
# χ(-1) = +1 => _g [gerade ~ even]
# χ(-1) = -1 => ᵤ [ungerade ~ odd]
lab *= real(χs[idx_inversion]) > 0 ? 'g' : 'ᵤ'
elseif length(g) > 1
# --> prime superscript ′, ′′
# rule applies for groups without inversion and with a mirror aligned with a
# principal rotation axis; most often m₀₀₁ in 3D _or_ for the 2-element group
# consisting only of {1, "mᵢⱼₖ"}. Denoting the mirror by "m", the rule is:
# χ(m) = +1 => ′
# χ(m) = -1 => ′′
# rule is relevant only for point groups m, -6, -62m in 3D and m in 2D
idxᵐ = if length(g) == 2
findfirst(op -> occursin("m", seitz(op)), g) # check if {1, "mᵢⱼₖ"} case
elseif D == 3
# mirror aligned with principal axis casecan now assume that D == 3
# (only occurs if D = 3; so if D = 2, we just move on)
findfirst(g) do op # find aligned mirror
(rotation_order(op) == -2) && (rotation_axis_3d(op) == axis_principal)
end
end
if idxᵐ !== nothing
lab *= real(χs[idxᵐ]) > 0 ? "′" : "′′"
end
end
return lab
end
=#
"""
$(TYPEDSIGNATURES)
Return the the indices of the "maximal" rotations among a set of operations `ops`, i.e.
those of maximal order (the "principal rotations").
## Keyword arguments
- `include_improper` (`=false`): if `true`, improper rotations are included in the
consideration. If the order of improper and proper rotations is identical, only
the indices of the proper rotations are returned. If the maximal (signed) rotation
order is -2 (a mirror), it is ignored, and the index of the identity operation is
returned.
"""
function find_principal_rotations(ops::AbstractVector{SymOperation{D}};
include_improper::Bool=false) where D
# this doesn't distinguish between rotation direction; i.e., picks either ⁺ or ⁻
# depending on ordering of `ops`. if there are no rotations, then we expect that there
# will at least always be an identity operation - otherwise, we throw an error
# may pick either a proper or improper rotation; picks a proper rotation if max order
# of proper rotation exceeds order of max improper rotation
rots = rotation_order.(ops)
maxrot = maximum(rots) # look for proper rotations
rot = if include_improper
minrot = minimum(rots) # look for improper rotations
maxrot ≥ abs(minrot) ? maxrot : (minrot == -2 ? maxrot : minrot)
else
maxrot
end
idxs = findall(==(rot), rots)
return idxs::Vector{Int}
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5599 | # ---------------------------------------------------------------------------------------- #
# POINT GROUPS
const PG_ORDERs = ImmutableDict( # PG_ORDERs[iuc] == order(pointgroup(iuc, D)) (for all D)
"1" => 1, "-1" => 2,
"2" => 2, "m" => 2, "2/m" => 4, # unique axes b setting
"222" => 4, "mm2" => 4, "mmm" => 8, "4" => 4,
"-4" => 4, "4/m" => 8, "422" => 8, "4mm" => 8,
"-42m" => 8, "-4m2" => 8, # D₂d setting variations
"4/mmm" => 16, "3" => 3, "-3" => 6,
"312" => 6, "321" => 6, # D₃ setting variations (hexagonal axes)
"3m1" => 6, "31m" => 6, # C₃ᵥ setting variations (hexagonal axes)
"-31m" => 12, "-3m1" => 12, # D₃d setting variations (hexagonal axes)
"6" => 6, "-6" => 6, "6/m" => 12, "622" => 12,
"6mm" => 12,
"-62m" => 12, "-6m2" => 12, # D₃ₕ setting variations
"6/mmm" => 24, "23" => 12,
"m-3" => 24, "432" => 24, "-43m" => 24, "m-3m" => 48
)
# ---------------------------------------------------------------------------------------- #
# SPACE GROUPS
const SG_ORDERs = ( # SG_ORDERs[D][n] == order(spacegroup(n, D))
# ----- D=1 -----
[ 1, 2],
# ----- D=2 -----
[ 1, 2, 2, 2, 4, 4, 4, 4, 8, 4, 8, 8, 3, 6, 6, 6, 12],
# ----- D=3 -----
[ 1, 2, 2, 2, 4, 2, 2, 4, 4, 4, 4, 8, 4, 4, 8, 4, 4,
4, 4, 8, 8, 16, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
8, 8, 8, 8, 8, 8, 8, 16, 16, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16,
32, 32, 16, 16, 16, 16, 4, 4, 4, 4, 8, 8, 4, 8, 8, 8, 8,
8, 16, 16, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 8, 8, 8, 8,
8, 8, 8, 8, 16, 16, 16, 16, 8, 8, 8, 8, 8, 8, 8, 8, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 32, 32, 32, 32, 3, 3, 3, 9, 6, 18, 6, 6, 6, 6, 6,
6, 18, 6, 6, 6, 6, 18, 18, 12, 12, 12, 12, 36, 36, 6, 6, 6,
6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 24, 24, 24, 24, 12, 48, 24, 12, 24, 24, 24, 96, 96, 48,
24, 48, 24, 24, 96, 96, 48, 24, 24, 48, 24, 96, 48, 24, 96, 48, 48,
48, 48, 48, 192, 192, 192, 192, 96, 96]
)
const SG_PRIMITIVE_ORDERs = ( # SG_ORDERs[D][n] == order(primitivize(spacegroup(n, D)))
# ----- D=1 -----
SG_ORDERs[1], # no centered lattices
# ----- D=2 -----
[ 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 3, 6, 6, 6, 12],
# ----- D=3 -----
[ 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 6, 6, 6, 6, 6, 6, 6, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 12, 12, 12, 12,
12, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
48, 48, 48, 48, 48, 48, 48, 48, 48, 48]
)
# ---------------------------------------------------------------------------------------- #
# SUBPERIODIC GROUPS
subg_index(D,P) = fld(D*P+1,2) # hashmap of (D,P) → idx: (2,1) → 1, (3,1) → 2, (3,2) → 3
const SUBG_ORDERs = (# SUBG_ORDERs[subg_index(D,P)][n] == order(subperiodicgroup(n, D, P))
# ----- D=2, P=1 (frieze groups) -----
[ 1, 2, 2, 2, 2, 4, 4],
# ----- D=3, P=1 (rod groups) -----
[ 1, 2, 2, 2, 2, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8,
4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 3, 3, 3,
6, 6, 6, 6, 6, 6, 12, 12, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 24, 24, 24],
# ----- D=3, P=2 (layer groups) -----
[ 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, 4, 4, 8, 4, 4, 4, 8,
4, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 16, 16, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 3, 6,
6, 6, 6, 6, 12, 12, 6, 6, 12, 12, 12, 12, 12, 24]
)
const SUBG_PRIMITIVE_ORDERs = (
# SUBG_PRIMITIVE_ORDERs[subg_index(D,P)][n] == order(primitivize(subperiodicgroup(n,D,P)))
# ----- D=2, P=1 -----
SUBG_ORDERs[subg_index(2,1)], # no centered lattices
# ----- D=3, P=1 -----
SUBG_ORDERs[subg_index(3,1)], # no centered lattices
[# ----- D=3, P=2 -----
1, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 3, 6,
6, 6, 6, 6, 12, 12, 6, 6, 12, 12, 12, 12, 12, 24],
)
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 27272 | # ===== CONSTANTS =====
# We include several axes settings; as a result, there are more than 32 point groups
# under the 3D case, because some variations are "setting-degenerate" (but are needed
# to properly match all space group settings)
const PG_NUM2IUC = (
(["1"], ["m"]), # 1D
(["1"], ["2"], ["m"], ["mm2"], ["4"], ["4mm"], ["3"], # 2D
["3m1", "31m"], # C₃ᵥ setting variations
["6"], ["6mm"]),
(["1"], ["-1"], ["2"], ["m"], ["2/m"], ["222"], ["mm2"], # 3D
["mmm"], ["4"], ["-4"], ["4/m"], ["422"], ["4mm"],
["-42m", "-4m2"], # D₂d setting variations
["4/mmm"], ["3"], ["-3"],
["312", "321"], # D₃ setting variations (hexagonal axes)
["3m1", "31m"], # C₃ᵥ setting variations (hexagonal axes)
["-31m", "-3m1"], # D₃d setting variations (hexagonal axes)
["6"], ["-6"], ["6/m"], ["622"], ["6mm"],
["-62m", "-6m2"], # D₃ₕ setting variations
["6/mmm"], ["23"], ["m-3"], ["432"], ["-43m"], ["m-3m"])
)
# a flat tuple-listing of all the iuc labels in PG_NUM2IUC; sliced across dimensions
const PG_IUCs = map(x->collect(Iterators.flatten(x)), PG_NUM2IUC)
# a tuple of ImmutableDicts, giving maps from iuc label to point group number
const PG_IUC2NUM = tuple([ImmutableDict([lab=>findfirst(∋(lab), PG_NUM2IUC[D])
for lab in PG_IUCs[D]]...) for D in (1,2,3)]...)
# The IUC notation for point groups can be mapped to the Schoenflies notation, but the
# mapping is not one-to-one but rather one-to-many; e.g. 3m1 and 31m maps to C₃ᵥ but
# correspond to different axis orientations.
# When there is a choice of either hexagonal vs. rhombohedral or unique axes b vs unique
# axes a/c we choose hexagonal and unique axes b, respectively.
const PG_IUC2SCHOENFLIES = ImmutableDict(
"1" => "C₁", "-1" => "Cᵢ",
"2" => "C₂", "m" => "Cₛ", "2/m" => "C₂ₕ", # unique axes b setting
"222" => "D₂", "mm2" => "C₂ᵥ", "mmm" => "D₂ₕ", "4" => "C₄",
"-4" => "S₄", "4/m" => "C₄ₕ", "422" => "D₄", "4mm" => "C₄ᵥ",
"-42m" => "D₂d", "-4m2" => "D₂d", # D₂d setting variations
"4/mmm" => "D₄ₕ", "3" => "C₃", "-3" => "C₃ᵢ",
"312" => "D₃", "321" => "D₃", # D₃ setting variations (hexagonal axes)
"3m1" => "C₃ᵥ", "31m" => "C₃ᵥ", # C₃ᵥ setting variations (hexagonal axes)
"-31m" => "D₃d", "-3m1" => "D₃d", # D₃d setting variations (hexagonal axes)
"6" => "C₆", "-6" => "C₃ₕ", "6/m" => "C₆ₕ", "622" => "D₆",
"6mm" => "C₆ᵥ",
"-62m" => "D₃ₕ", "-6m2" => "D₃ₕ", # D₃ₕ setting variations
"6/mmm" => "D₆ₕ", "23" => "T",
"m-3" => "Tₕ", "432" => "O", "-43m" => "Td", "m-3m" => "Oₕ"
)
# ===== METHODS =====
# --- Notation ---
function pointgroup_iuc2num(iuclab::String, D::Integer)
pgnum = get(PG_IUC2NUM[D], iuclab, nothing)
if pgnum === nothing
throw(DomainError(iuclab, "invalid point group IUC label"))
else
return pgnum
end
end
schoenflies(pg::PointGroup) = PG_IUC2SCHOENFLIES[iuc(pg)]
@inline function pointgroup_num2iuc(pgnum::Integer, Dᵛ::Val{D}, setting::Integer) where D
@boundscheck D ∉ (1,2,3) && _throw_invalid_dim(D)
@boundscheck 1 ≤ pgnum ≤ length(PG_NUM2IUC[D]) || throw(DomainError(pgnum, "invalid pgnum; out of bounds of Crystalline.PG_NUM2IUC"))
iucs = @inbounds PG_NUM2IUC[D][pgnum]
@boundscheck 1 ≤ setting ≤ length(iucs) || throw(DomainError(setting, "invalid setting; out of bounds of Crystalline.PG_NUM2IUC[pgnum]"))
return @inbounds iucs[setting]
end
# --- POINT GROUPS VS SPACE & LITTLE GROUPS ---
function find_parent_pointgroup(g::AbstractGroup{D}) where D
# Note: this method will only find parent point groups with the same setting (i.e.
# basis) as `g` *and* with the same operator sorting. From a more general
# perspective, one might be interested in finding any isomorphic parent point
# group (that is achieved by `find_isomorphic_parent_pointgroup`).
xyzt_pgops = sort!(xyzt.(pointgroup(g)))
@inbounds for iuclab in PG_IUCs[D]
P = pointgroup(iuclab, D)
if sort!(xyzt.(P)) == xyzt_pgops # the sorting/xyzt isn't strictly needed; belts & buckles...
return P
end
end
return nothing
end
# --- POINT GROUP IRREPS ---
_unmangle_pgiuclab(iuclab) = replace(iuclab, "/"=>"_slash_")
# loads 3D point group data from the .jld2 file opened in `PGIRREPS_JLDFILE`
function _load_pgirreps_data(iuclab::String)
jldgroup = PGIRREPS_JLDFILE[][_unmangle_pgiuclab(iuclab)]
matrices::Vector{Vector{Matrix{ComplexF64}}} = jldgroup["matrices"]
realities::Vector{Int8} = jldgroup["realities"]
cdmls::Vector{String} = jldgroup["cdmls"]
return matrices, realities, cdmls
end
# 3D
"""
pgirreps(iuclab::String, ::Val{D}=Val(3); mullikken::Bool=false) where D ∈ (1,2,3)
pgirreps(iuclab::String, D; mullikken::Bool=false)
Return the (crystallographic) point group irreps of the IUC label `iuclab` of dimension `D`
as a `Vector{PGIrrep{D}}`.
See `Crystalline.PG_IUC2NUM[D]` for possible IUC labels in dimension `D`.
## Notation
The irrep labelling follows the conventions of CDML [^1] [which occasionally differ from
those in e.g. Bradley and Cracknell, *The Mathematical Theory of Symmetry in Solids*
(1972)].
To use Mulliken ("spectroscopist") irrep labels instead, set the keyword argument
`mulliken = true` (default, `false`). See also [`mulliken`](@ref).
## Data sources
The data is sourced from the Bilbao Crystallographic Server [^2]. If you are using this
functionality in an explicit fashion, please cite the original reference [^3].
## References
[^1]: Cracknell, Davies, Miller, & Love, Kronecher Product Tables 1 (1979).
[^2]: Bilbao Crystallographic Database's
[Representations PG program](https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=spg).
[^3]: Elcoro et al.,
[J. of Appl. Cryst. **50**, 1457 (2017)](https://doi.org/10.1107/S1600576717011712)
"""
function pgirreps(iuclab::String, ::Val{3}=Val(3); mulliken::Bool=false)
pg = pointgroup(iuclab, Val(3)) # operations
matrices, realities, cdmls = _load_pgirreps_data(iuclab)
pgirlabs = !mulliken ? cdmls : _mulliken.(Ref(iuclab), cdmls, false)
return Collection(PGIrrep{3}.(pgirlabs, Ref(pg), matrices, Reality.(realities)))
end
# 2D
function pgirreps(iuclab::String, ::Val{2}; mulliken::Bool=false)
pg = pointgroup(iuclab, Val(2)) # operations
# Because the operator sorting and setting is identical* between the shared point groups
# of 2D and 3D, we can just do a whole-sale transfer of shared irreps from 3D to 2D.
# (*) Actually, "2" and "m" have different settings in 2D and 3D; but they just have two
# operators and irreps each, so the setting difference doesn't matter.
# That the settings and sorting indeed agree between 2D and 3D is tested in
# scripts/compare_pgops_3dvs2d.jl
matrices, realities, cdmls = _load_pgirreps_data(iuclab)
pgirlabs = !mulliken ? cdmls : _mulliken.(Ref(iuclab), cdmls, false)
return Collection(PGIrrep{2}.(pgirlabs, Ref(pg), matrices, Reality.(realities)))
end
# 1D
function pgirreps(iuclab::String, ::Val{1}; mulliken::Bool=false)
pg = pointgroup(iuclab, Val(1))
# Situation in 1D is sufficiently simple that we don't need to bother with loading from
# a disk; just branch on one of the two possibilities
if iuclab == "1"
matrices = [[fill(one(ComplexF64), 1, 1)]]
cdmls = ["Γ₁"]
elseif iuclab == "m"
matrices = [[fill(one(ComplexF64), 1, 1), fill(one(ComplexF64), 1, 1)], # even
[fill(one(ComplexF64), 1, 1), -fill(one(ComplexF64), 1, 1)]] # odd
cdmls = ["Γ₁", "Γ₂"]
else
throw(DomainError(iuclab, "invalid 1D point group IUC label"))
end
pgirlabs = !mulliken ? cdmls : _mulliken.(Ref(iuclab), cdmls, false)
return Collection(PGIrrep{1}.(pgirlabs, Ref(pg), matrices, REAL))
end
pgirreps(iuclab::String, ::Val{D}; kws...) where D = _throw_invalid_dim(D) # if D ∉ (1,2,3)
pgirreps(iuclab::String, D::Integer; kws...) = pgirreps(iuclab, Val(D); kws...)
function pgirreps(pgnum::Integer, Dᵛ::Val{D}=Val(3);
setting::Integer=1, kws...) where D
iuc = pointgroup_num2iuc(pgnum, Dᵛ, setting)
return pgirreps(iuc, Dᵛ; kws...)
end
function pgirreps(pgnum::Integer, D::Integer; kws...)
return pgirreps(pgnum, Val(D); kws...) :: Collection{<:PGIrrep}
end
function ⊕(pgir1::PGIrrep{D}, pgir2::PGIrrep{D}) where D
if label(group(pgir1)) ≠ label(group(pgir2)) || order(pgir1) ≠ order(pgir2)
error("The direct sum of two PGIrreps requires identical point groups")
end
pgirlab = label(pgir1)*"⊕"*label(pgir2)
g = group(pgir1)
T = eltype(eltype(pgir1.matrices))
z12 = zeros(T, irdim(pgir1), irdim(pgir2))
z21 = zeros(T, irdim(pgir2), irdim(pgir1))
matrices = [[m1 z12; z21 m2] for (m1, m2) in zip(pgir1.matrices, pgir2.matrices)]
reality = UNDEF
iscorep = pgir1.iscorep || pgir2.iscorep
return PGIrrep{D}(pgirlab, g, matrices, reality, iscorep)
end
# ---------------------------------------------------------------------------------------- #
"""
find_isomorphic_parent_pointgroup(g::AbstractVector{SymOperation{D}})
--> PointGroup{D}, Vector{Int}, Bool
Given a group `g` (or a collection of operators, defining a group), identifies a "parent"
point group that is isomorphic to `g`.
Three variables are returned:
- `pg`: the identified "parent" point group, with operators sorted to match the sorting
of `g`'s operators.
- `Iᵖ²ᵍ`: a permutation vector which transforms the standard sorting of point group
operations (as returned by [`pointgroup(::String)`](@ref)) to the operator sorting of `g`.
- `equal`: a boolean, identifying whether the point group parts of `g` operations are
identical (`true`) or merely isomorphic to the point group operations in `g`.
In practice, this indicates whether `pg` and `g` are in the same setting or not.
## Implementation
The identification is made partly on the basis of comparison of operators (this is is
sufficient for the `equal = true` case) and partly on the basis of comparison of
multiplication tables (`equal = false` case); the latter can be combinatorially slow if
the sorting of operators is unlucky (i.e., if permutation between sortings in `g` and `pg`
differ by many pairwise permutations).
Beyond mere isomorphisms of multiplication tables, the search also guarantees that all
rotation orders are shared between `pg` and `g`; similarly, the rotation senses (e.g., 4⁺ &
4⁻ have opposite rotation senses or directions) are shared. This disambiguates point groups
that are intrinsically isomorphic to eachother, e.g. "m" and "-1", but which still differ in
their spatial interpretation.
## Properties
The following properties hold for `g`, `pg`, and `Iᵖ²ᵍ`:
```jl
pg, Iᵖ²ᵍ, equal = find_isomorphic_parent_pointgroup(g)
@assert MultTable(pg) == MultTable(pointgroup(g))
pg′ = pointgroup(label(pg), dim(pg)) # "standard" sorting
@assert pg′[Iᵖ²ᵍ] == pg
```
If `equal = true`, the following also holds:
```jl
pointgroup(g) == operations(pg) == operations(pg′)[Iᵖ²ᵍ]
```
## Example
```jl
sgnum = 141
wp = wyckoffs(sgnum, Val(3))[end] # 4a Wyckoff position
sg = spacegroup(sgnum, Val(3))
siteg = sitegroup(sg, wp)
pg, Iᵖ²ᵍ, equal = find_isomorphic_parent_pointgroup(siteg)
```
"""
function find_isomorphic_parent_pointgroup(g::AbstractVector{SymOperation{D}}) where D
Nᵍ = length(g)
Nᵍ == 1 && isone(first(g)) && return pointgroup("1", Val(D)), [1], true
# a site group is always similar to a point group (i.e. a group w/o translations); it
# can be transformed to that setting by transforming each element g∈`siteg` as t⁻¹∘g∘t
# where t denotes translation by the site group's wyckoff position. In practice, we can
# just "drop the translation" parts to get the same result though; this is faster
g′ = pointgroup(g) # get rid of any repeated point group operations, if they exist
ordersᵍ = rotation_order_and_sense.(g′)
# first sorting step: by rotation order
Iᵍ = sortperm(ordersᵍ)
permute!(ordersᵍ, Iᵍ)
permute!(g′, Iᵍ)
# identify rotation orders as indexing groups
I_groups = _find_equal_groups_in_sorted(ordersᵍ)
# --------------------------------------------------------------------------------------
# first, we check if we literally have the exact same group operations; in that case
# we can check for group equality rather than isomorphism, and get combinatorial speedup
# since we don't have to attempt a search over permutations of multiplication tables
Iᵖ = Vector{Int}(undef, Nᵍ)
ordersᵖ = Vector{Tuple{Int, Int}}(undef, Nᵍ)
for iuclab in PG_IUCs[D]
pg = _fast_path_necessary_checks!(iuclab, ordersᵖ, Iᵖ, Nᵍ, ordersᵍ, Val(D))
isnothing(pg) && continue
# check if there is a permutation of operators that makes `g` and `pg` equal
bool, permᵖ²ᵍ = _has_equal_pg_operations(g′, pg, I_groups, nothing)
bool || continue
# we have a match: compute "unwinding" compound permutation, s.t. `g ~ pg[Iᵖ²ᵍ]`
Iᵖ²ᵍ = invpermute!(permute!(Iᵖ, permᵖ²ᵍ), Iᵍ) # Iᵖ[permᵖ²ᵍ][invperm(Iᵍ)], but faster
invpermute!(permute!(pg.operations, permᵖ²ᵍ), Iᵍ) # sort `pg` to match `g`
return pg, Iᵖ²ᵍ, true
end
# --------------------------------------------------------------------------------------
# if there is a rotation order with only one element, which is not simply the identity,
# then we can compare that element directly with an associated point group element,
# even if we are in different settings: whatever the mapping is between them, it will be
# uniquely defined (up to a sign); so if this the case, we can do the "exact check"
# also for groups that are related by an orthogonal transformation
unique_op_idx_into_I_groups = findfirst(I_groups) do I_group
length(I_group) == 1 || return false
isone(g′[I_group[1]]) && return false
return true
end
if !isnothing(unique_op_idx_into_I_groups)
unique_op_idx = only(I_groups[something(unique_op_idx_into_I_groups)]) # into `g′`
unique_opᵍ = g′[unique_op_idx]
unique_Wᵍ = rotation(unique_opᵍ)
for iuclab in PG_IUCs[D]
pg = _fast_path_necessary_checks!(iuclab, ordersᵖ, Iᵖ, Nᵍ, ordersᵍ, Val(D))
isnothing(pg) && continue
# compute the unique transformation between the two group's "unique" elements
# s.t. `unique_Wᵖ = transformation * unique_Wᵍ * transformation⁻¹`
unique_Wᵖ = rotation(pg[unique_op_idx])
transformation = find_similarity_transform(unique_Wᵍ, unique_Wᵖ)
# check if there is a permutation of operators that makes `g` and `pg` equal
bool, permᵖ²ᵍ = _has_equal_pg_operations(g′, pg, I_groups, transformation)
bool || continue
# we have a match: compute "unwinding" compound permutation, s.t. `g ~ pg[Iᵖ²ᵍ]`
Iᵖ²ᵍ = invpermute!(permute!(Iᵖ, permᵖ²ᵍ), Iᵍ) # = Iᵖ[permᵖ²ᵍ][invperm(Iᵍ)]
invpermute!(permute!(pg.operations, permᵖ²ᵍ), Iᵍ) # sort `pg` to match `g`
return pg, Iᵖ²ᵍ, false
end
end
# --------------------------------------------------------------------------------------
# if we arrived here, the group is not equal to any group in our "storage", so we must
# make do with finding an isomorphic group; this is potentially much more demanding
# because we have to check all (meaningful) permutations of the multiplication tables;
# for some groups, this is practically impossible (even with the tricks we play to
# reduce the combinatorial explosion into a product of smaller combinatorial problems).
# fortunately, for the space groups we are interested in, the earlier equality check
# takes care of bad situations like that.
# we deliberately split this into a separate loop (even though it incurs a bit of
# repetive work) because we'd prefer to return an identical group rather than an
# isomorphic group, if that is at all possible
mtᵍ = MultTable(g′).table
for iuclab in PG_IUCs[D]
# NB: in principle, this could probably be sped up a lot by using subgroup relations
# to "group up" meaningful portions (in addition to grouping by rotation order)
pg = _fast_path_necessary_checks!(iuclab, ordersᵖ, Iᵖ, Nᵍ, ordersᵍ, Val(D))
isnothing(pg) && continue
# create `pg`'s multiplication table, "order-sorted"
mtᵖ = MultTable(pg).table
# rigorous, slow, combinatorial search
P = rigorous_isomorphism_search(I_groups, mtᵍ, mtᵖ)
if P !== nothing # found isomorphic point group!
# compute "combined/unwound indexing" Iᵖ²ᵍ of Iᵍ, Iᵖ, and P, where Iᵖ²ᵍ has
# produces g ~ pg[Iᵖ²ᵍ] in the sense that they have the same character table
# and same rotation orders. We can get that by noting that we already have
# g[Iᵍ] ~ pg[Iᵖ[P]], and then `invperm` gets us the rest of the way.
Iᵖ²ᵍ = invpermute!(permute!(Iᵖ, P), Iᵍ) # = Iᵖ[P][invperm(Iᵍ)], but faster
invpermute!(permute!(pg.operations, P), Iᵍ) # sort pg to match g
return pg, Iᵖ²ᵍ, false
end
end
error("could not find an isomorphic parent point group")
end
"""
_find_equal_groups_in_sorted(v::AbstractVector) --> Vector{UnitRange}
Returns indices into groups of equal values in `v`. Input `v` *must* be sorted so that
identical values are adjacent.
## Example
```jl
_find_equal_groups_in_sorted([-4,1,1,3,3,3]) # returns [1:1, 2:3, 4:6]
```
"""
function _find_equal_groups_in_sorted(v::AbstractVector)
vᵘ = unique(v)
Nᵘ, N = length(vᵘ), length(v)
idx_groups = Vector{UnitRange{Int}}(undef, Nᵘ)
start = stop = 1
for (i,o) in enumerate(vᵘ)
while stop < N && v[stop+1] == o
stop += 1
end
idx_groups[i] = start:stop
stop += 1
start = stop
end
return idx_groups
end
# checks two necessary (but not sufficient) conditions for a reference (point) group ("g";
# specified by its order `Nᵍ` and sorted rotation-order-&-sense vector `ordersᵍ`) to be
# isomorphic to the conventional point group ("p") with label `iuclab` and dimension `D`;
# the rotation-order-&-sense values of `pg` are written into `ordersᵖ` which is mutated
# (provided the first check succeeds); similarly, the sorting-permutation is written into
# `Iᵖ` in mutating fashion
# if the conditions are not met, we can bail early to save time, returning `nothing` - but
# if they are met, we return the rotation-order-&-sense sorted point group operations `pg`
# associated with `iuclab` as well as a permutation vector `Iᵖ` that implements the sorting
function _fast_path_necessary_checks!(
iuclab::AbstractString,
ordersᵖ::Vector{Tuple{Int, Int}}, # ← mutated: must be `similar` to `ordersᵍ`
Iᵖ::Vector{Int}, # ← mutated: must have same length as `ordersᵍ`
Nᵍ::Integer,
ordersᵍ::Vector{Tuple{Int, Int}},
Dᵛ::Val{D} where D
)
# fast-path check: number of group elements (order) must agree
PG_ORDERs[iuclab] == Nᵍ || return nothing
# go ahead and load the point group operations for closer inspection
pg = pointgroup(iuclab, Dᵛ)
# copare in rotation-order-&-sense-sorting + check if they agree between "g" and "p"
ordersᵖ .= rotation_order_and_sense.(pg)
sortperm!(Iᵖ, ordersᵖ)
permute!(ordersᵖ, Iᵖ)
ordersᵍ == ordersᵖ || return nothing
# checks passed; return point group rotation-order-&-sense-sorted
permute!(pg.operations, Iᵖ)
return pg
end
# check if the group `g′` has the same operations as the point group with label `iuclab`,
# possibly with in a different sorting
function _has_equal_pg_operations(
g′::AbstractVector{SymOperation{D}},
pg::AbstractVector{SymOperation{D}},
I_groups::AbstractVector{<:AbstractVector{<:Integer}},
transformation::Union{Nothing, AbstractMatrix{<:Real}}
# ↑ assumes mapping `Ref(pg) = transformation .* Ref(g′) .* inv(transformation)`
) where D
# check if the group operations literally are equal, but (maybe) just shuffled
permᵖ²ᵍ = Vector{Int}(undef, sum(length, I_groups))
for I_group in I_groups
for i in I_group
opᵢ = if isnothing(transformation)
g′[i]
else
transform(g′[i], transformation) # `transformation * g′[i] * transformation⁻¹`
end
idx = findfirst(≈(opᵢ), (@view pg[I_group]))
idx === nothing && return false, permᵖ²ᵍ # ... not equal
permᵖ²ᵍ[i] = idx + I_group[1] - 1
end
end
return true, permᵖ²ᵍ
end
"""
$TYPEDSIGNATURES --> Matrix{Int}
Returns a multiplication table derived from `mt` but under a reordering permutation `P` of
the operator indices in `mt`. In practice, this corresponds to a permutation of the rows
and columns of `mt` as well as a subsequent relabelling of elements via `P`.
## Example
```jl
pg = pointgroup("-4m2", Val(3))
mt = MultTable(pg)
P = [2,3,1,4,5,8,6,7] # permutation of operator indices
mt′ = permute_multtable(mt.table, P)
mt′ == MultTable(pg[P]).table
```
"""
function permute_multtable(mt::Matrix{Int}, P::AbstractVector{Int})
replace!(mt[P, P], (P .=> Base.OneTo(length(P)))...)
end
# this is a rigorous search; it checks every possible permutation of each "order group".
# it is much faster (sometimes by ~14 orders of magnitude) than a naive permutation search
# which doesn't divide into "order groups" first, but can still be intractably slow (e.g.
# for site groups of space group 216).
function rigorous_isomorphism_search(I_orders::AbstractVector{<:AbstractVector{Int}},
mtᵍ::Matrix{Int}, mtᵖ::Matrix{Int}, Jᵛ::Val{J}=Val(length(I_orders))) where J
# we're using `j` as the rotation-order-group index below
J == length(I_orders) || throw(DimensionMismatch("static parameter and length must match"))
Ns = ntuple(j->factorial(length(I_orders[j])), Jᵛ)
P = Vector{Int}(undef, sum(length, I_orders))
# loop over all possible products of permutations of the elements of I_orders (each a
# vector); effectively, this is a kroenecker product of permutations. In total, there
# are `prod(Iⱼ -> factorial(length(Iⱼ), I_orders)` such permutations; this is much less
# than a brute-force search over permutations that doesn't exploit groupings (with
# `factorial(sum(length, I_orders))`) - but it can still be overwhelming occassionally
ns_prev = zeros(Int, J)
for ns in CartesianIndices(Ns)
# TODO: This should be done in "blocks" of equal order: i.e., there is no point in
# exploring permutations of I_orders[j+1] etc. if the current permutation of
# I_orders[j] isn't matching up with mtᵍ - this could give very substantial
# scaling improvements since it approximately turns a `prod(...` above into a
# `sum(...`
for j in Base.OneTo(J)
nⱼ = ns[j]
if nⱼ != ns_prev[j]
Iⱼ = I_orders[j]
P[Iⱼ] .= nthperm(Iⱼ, nⱼ)
ns_prev[j] = nⱼ
end
end
mtᵖ′ = permute_multtable(mtᵖ, P)
if mtᵍ == mtᵖ′
return P # found a valid isomorphism (the permutation) between mtᵍ and mtᵖ
end
end
return nothing # failed to find an isomorphism (because there wasn't any!)
end
function rotation_order_and_sense(op::SymOperation{D}) where D
r = rotation_order(op)
D == 1 && return (r, 0) # no "rotation sense" in 1D; `0` as sentinel
o = abs(r)
if o ≤ 2 # no rotation sense for identity, mirrors, 2-fold rotation, or inversion
return (r, 0) # use `0` as sentinel
end
# henceforth, `o > 2`, and it is possible to define a ±1 (left/right) sense relative to
# an axis; the calculation below is borrowed from `seitz` (TODO: consolidate)
W = rotation(op)
detW = det(W)
if D == 2 # augment to be 3×3 for ease of implementation
W = @inbounds SMatrix{3,3,Float64,9}( # build by column (= [W zeros(2); 0 0 1])
W[1], W[2], 0.0, W[3], W[4], 0.0, 0.0, 0.0, 1.0)
end
# --- rotation axis ---
u = if D == 2
SVector{3,Int}(0, 0, 1)
else # D == 3
rotation_axis_3d(rotation(op), detW, o)
end
# --- rotation sense ---
# ±-rotation sense is determined from sign of det(𝐙) where 𝐙 ≡ [𝐮|𝐱|det(𝐖)𝐖𝐱]
# with 𝐱 an arbitrary vector that is not parallel to 𝐮. [ITA6 vol. A, p. 16, sec.
# 1.2.2.4(1)(c)]
x = rand(-1:1, SVector{3, Int})
while iszero(x×u) # check that generated 𝐱 is not parallel to 𝐮 (if it is, 𝐱×𝐮 = 0)
x = rand(-1:1, SVector{3, Int})
iszero(u) && error("rotation axis has zero norm; input is likely invalid")
end
Z = hcat(u, x, detW*(W*x))
sense_float = sign(det(Z))
sense = round(Int, sense_float)
sense_float ≈ sense || error("rotation sense is not an integer; unexpected failure")
return (r, sense)
end
# find_similarity_transform(X, Y) --> Matrix{<:Real}
# Given two similar (diagonalizable) matrices, `X` and `Y`, find an orthogonal
# transformation matrix `P` s.t. `Y = P⁻¹XP`. Errors if `X` and `Y` are not similar.
# The idea works like this: denote by `Λ` the (identical, by necessity of being similar)
# eigenvalue matrix of `X` and `Y` and by `Vˣ` and `Vʸ` the associated (invertible)
# eigenvector matrices. Then `X = VˣΛ(Vˣ)⁻¹` and `Y = VʸΛ(Vʸ)⁻¹` and equivalently
# `(Vʸ)⁻¹YVʸ = Λ = (Vˣ)⁻¹XVˣ`; left- & right-multiplying this relation by `Vʸ` & `(Vʸ)⁻¹`,
# respectively, gives `Vʸ(Vʸ)⁻¹YVʸ(Vʸ)⁻¹ = Y = Vʸ(Vˣ)⁻¹XVˣ(Vʸ)⁻¹ = [Vʸ(Vˣ)⁻¹]X[Vˣ(Vʸ)⁻¹]`,
# which, finally, by comparison with `Y = P⁻¹XP` lets us identify `P = Vʸ(Vˣ)⁻¹`.
# If `X` and `Y` are real symmetric matrices, we have `(Vˣʸ)⁻¹ = (Vˣʸ)ᵀ` (i.e., orthogonal
# eigenvector matrices), in which case the transformation is also orthogonal (`Pᵀ=P⁻¹`).
function find_similarity_transform(X, Y)
eˣ = eigen(X); eʸ = eigen(Y)
if !(eˣ.values ≈ eʸ.values)
error("matrices `X` and `Y` are not similar; a basis change between `X` and `Y` does not exist")
end
Vˣ = eˣ.vectors; Vʸ = eʸ.vectors
P = Vˣ*inv(Vʸ)
if P isa Matrix{<:Real}
# oftentimes, the eigendecomposition will simply be real already
return P
else
# we don't want to be working with complex matrices, and physically, this should never
# occur, so we check here and error if we have non-negligible imaginary entries
if sum(abs∘imag, P) > DEFAULT_ATOL
error("non-neglible imaginary parts in transformation matrix")
end
return real(P)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2040 | # Generated by SnoopCompile using
# tinf = @snoopi_deep begin
# using Crystalline
# D = 3
# for D in 3:-1:2
# spacegroup(MAX_SGNUM[D], Val(D))
# lgirreps(MAX_SGNUM[D], Val(D))
# directbasis(MAX_SGNUM[D], Val(D))
# wyckoffs(MAX_SGNUM[D], Val(D))
# pointgroup(PG_IUCs[D][end], Val(D))
# bandreps(MAX_SGNUM[D], D)
# characters(lgirreps(MAX_SGNUM[D], Val(D))["Γ"])
# MultTable(primitivize(littlegroups(MAX_SGNUM[D], Val(D))["Γ"]))
# conventionalize(primitivize(spacegroup(MAX_SGNUM[D], Val(D)))[end], centering(MAX_SGNUM[D], D))
# end
# KVec("0,0,1/2"); KVec("0,1/2")
# seitz(SymOperation("-x,-y,-z+1")); seitz(SymOperation("-x,-y+1/2"))
# end
# julia> ttot, pcs = SnoopCompile.parcel(tinf; tmin=0.05)
# julia> SnoopCompile.write("src/precompile.jl", pcs[end][end][end])
#
# I then manually removed several of the methods that "ping" the on disk (e.g.,
# `spacegroup`, `lgirreps`, `bandreps`, `littlegroups`) since they seem to
# invalidate themselves on package load (they all depend on some global state via the
# currently non-relocatable files they load data from; maybe they need to be Artifacts to
# not do that?). In addition, I manually removed several other precompile statements that
# ultimately seemed to cause _increased_ latency (again, perhaps due to invalidation).
# What remains is rather modest, but I think a net, albeit modest, win.
function _precompile_()
ccall(:jl_generating_output, Cint, ()) == 1 || return nothing
Base.precompile(Tuple{typeof(seitz),SymOperation{3}}) # time: 0.9289543
Base.precompile(Tuple{typeof(characters),Vector{LGIrrep{3}}}) # time: 0.5580262
Base.precompile(Tuple{typeof(characters),Vector{LGIrrep{2}}}) # time: 0.1106631
Base.precompile(Tuple{Type{SymOperation},String}) # time: 0.1149793
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 23333 | # ---------------------------------------------------------------------------------------- #
# SymOperation
function show(io::IO, ::MIME"text/plain", op::AbstractOperation{D}) where D
opseitz, opxyzt = seitz(op), xyzt(op)
print(io, opseitz)
# don't print triplet & matrix format if the IOContext is :compact=>true
if get(io, :compact, false)
return nothing
end
# --- print triplet expression ---
printstyled(io, " ", repeat('─',max(38-length(opseitz)-length(opxyzt), 1)),
" (", opxyzt, ")"; color=:light_black)
println(io)
# --- print matrix ---
# info that is needed before we start writing by column
τstrs = fractionify.(translation(op), false)
Nsepτ = maximum(length, τstrs)
firstcol_hasnegative = any(_has_negative_sign_and_isnonzero, @view matrix(op)[:,1])
for i in 1:D
printstyled(io, " ", i == 1 ? '┌' : (i == D ? '└' : '│'), color=:light_black) # open brace char
for j in 1:D
c = matrix(op)[i,j]
# assume and exploit that a valid symop (in the lattice basis only!) never has an
# entry that is more than two characters long (namely, -1) in its rotation parts
sep = repeat(' ', 1 + (j ≠ 1 || firstcol_hasnegative) - _has_negative_sign_and_isnonzero(c))
if isinteger(c)
cᴵ = convert(Int, matrix(op)[i,j])
printstyled(io, sep, cᴵ, color=:light_black)
else
# just use the same sep even if the symop is specified in a nonstandard basis (e.g.
# cartesian); probably isn't a good general solution, but good enough for now
printstyled(io, sep, round(c; digits=4), color=:light_black)
end
end
printstyled(io, " ", i == 1 ? "╷" : (i == D ? "╵" : "┆"), " ", repeat(' ', Nsepτ-length(τstrs[i])), τstrs[i], " ", color=:light_black)
printstyled(io, i == 1 ? '┐' : (i == D ? '┘' : '│'), color=:light_black) # close brace char
op isa MSymOperation && i == 1 && timereversal(op) && print(io, '′')
i ≠ D && println(io)
end
return nothing
end
_has_negative_sign_and_isnonzero(x) = !iszero(x) && signbit(x)
# print vectors of `SymOperation`s compactly
show(io::IO, op::AbstractOperation) = print(io, seitz(op))
# ---------------------------------------------------------------------------------------- #
# MultTable
function show(io::IO, ::MIME"text/plain", mt::MultTable)
summary(io, mt)
println(io, ":")
seitz_ops = seitz.(mt.operations)
pretty_table(io,
getindex.(Ref(seitz_ops), mt.table);
row_labels = seitz_ops,
header = seitz_ops,
vlines = [1,],
hlines = [:begin, 1, :end]
)
return nothing
end
# ---------------------------------------------------------------------------------------- #
# AbstractVec
function show(io::IO, ::MIME"text/plain", v::AbstractVec)
cnst, free = parts(v)
print(io, '[')
if isspecial(v)
for i in eachindex(cnst)
coord = cnst[i] == -0.0 ? 0.0 : cnst[i] # normalize -0.0 to 0.0
prettyprint_scalar(io, coord)
# prepare for next coordinate/termination
i == length(cnst) ? print(io, ']') : print(io, ", ")
end
else
for i in eachindex(cnst)
# constant/fixed parts
if !iszero(cnst[i]) || iszero(@view free[i,:]) # don't print zero, if it adds unto anything nonzero
coord = cnst[i] == -0.0 ? 0.0 : cnst[i] # normalize -0.0 to 0.0
prettyprint_scalar(io, coord)
end
# free-parameter parts
for j in eachindex(cnst)
if !iszero(free[i,j])
sgn = signaschar(free[i,j])
if !(iszero(cnst[i]) && sgn=='+' && iszero(free[i,1:j-1])) # don't print '+' if nothing precedes it
print(io, sgn)
end
if abs(free[i,j]) != oneunit(eltype(free)) # don't print prefactors of 1
prettyprint_scalar(io, abs(free[i,j]))
end
print(io, j==1 ? 'α' : (j == 2 ? 'β' : 'γ'))
end
end
# prepare for next coordinate/termination
i == length(cnst) ? print(io, ']') : print(io, ", ")
end
end
return
end
# print arrays of `AbstractVec`s compactly
show(io::IO, v::AbstractVec) = show(io, MIME"text/plain"(), v)
function prettyprint_scalar(io, v::Real)
if isinteger(v)
print(io, Int(v))
else
# print all fractions divisible by 2, ..., 10 as fractions, and everything else
# as decimal
rv = rationalize(Int, v; tol=1e-2)
if isapprox(v, rv; atol=DEFAULT_ATOL)
print(io, rv.num, "/", rv.den)
else
print(io, v)
end
end
end
function show(io::IO, ::MIME"text/plain", wp::WyckoffPosition)
print(io, wp.mult, wp.letter, ": ") # TODO: This is `=` elsewhere; change?
show(io, MIME"text/plain"(), parent(wp))
end
# ---------------------------------------------------------------------------------------- #
# AbstractGroup
function summary(io::IO, g::AbstractGroup)
print(io, typeof(g))
_print_group_descriptor(io, g; prefix=" ")
print(io, " with ", order(g), " operations")
end
function show(io::IO, ::MIME"text/plain", g::AbstractGroup)
if !haskey(io, :compact)
io = IOContext(io, :compact => true)
end
summary(io, g)
println(io, ':')
for (i, op) in enumerate(g)
print(io, ' ')
show(io, MIME"text/plain"(), op)
if i < order(g); println(io); end
end
end
function show(io::IO, g::AbstractGroup)
print(io, '[')
join(io, g, ", ")
print(io, ']')
end
function show(io::IO, g::Union{LittleGroup, SiteGroup})
print(io, '[')
join(io, g, ", ")
print(io, ']')
printstyled(io, " (", position(g), ")", color=:light_black)
end
function _print_group_descriptor(io::IO, g::AbstractGroup; prefix::AbstractString="")
print(io, prefix)
g isa GenericGroup && return nothing
print(io, "⋕")
join(io, num(g), '.') # this slightly odd approach to treat magnetic groups also
print(io, " (", label(g), ")")
if position(g) !== nothing
print(io, " at ")
print(io, fullpositionlabel(g))
end
return nothing
end
function _group_descriptor(g; prefix::AbstractString="")
return sprint( (io, _g) -> _print_group_descriptor(io, _g; prefix), g)
end
# ---------------------------------------------------------------------------------------- #
# AbstractIrrep
function show(io::IO, ::MIME"text/plain", ir::AbstractIrrep)
irlab = label(ir)
lablen = length(irlab)
nindent = lablen+1
prettyprint_header(io, irlab)
prettyprint_irrep_matrices(io, ir, nindent)
end
function show(io::IO, ir::AbstractIrrep)
print(io, label(ir))
end
# ... utilities to print PGIrreps and LGIrreps
function prettyprint_group_header(io::IO, g::AbstractGroup)
print(io, "⋕", num(g), " (", iuc(g), ")")
if g isa LittleGroup
print(io, " at " , klabel(g), " = ")
show(io, MIME"text/plain"(), position(g))
end
println(io)
end
function prettyprint_scalar_or_matrix(io::IO, printP::AbstractMatrix, prefix::AbstractString,
ϕabc_contrib::Bool=false, digits::Int=4)
if size(printP) == (1,1) # scalar case
v = @inbounds printP[1]
prettyprint_irrep_scalars(io, v, ϕabc_contrib; digits)
else # matrix case
formatter(x) = _stringify_characters(x; digits)
# FIXME: not very optimal; e.g. makes a whole copy and doesn't handle displaysize
compact_print_matrix(io, printP, prefix, formatter)
end
end
function prettyprint_irrep_scalars(
io::IO, v::Number, ϕabc_contrib::Bool=false;
atol::Real=DEFAULT_ATOL, digits::Int=4
)
if norm(v) < atol
print(io, 0)
elseif isapprox(v, real(v), atol=atol) # real scalar
if ϕabc_contrib && isapprox(abs(real(v)), 1.0, atol=atol)
signbit(real(v)) && print(io, '-')
else
print(io, _stringify_characters(real(v); digits))
end
elseif isapprox(v, imag(v)*im, atol=atol) # imaginary scalar
if ϕabc_contrib && isapprox(abs(imag(v)), 1.0, atol=atol)
signbit(imag(v)) && print(io, '-')
else
print(io, _stringify_characters(imag(v); digits))
end
print(io, "i")
else # complex scalar (print as polar)
vρ, vθ = abs(v), angle(v)
vθ /= π
isapprox(vρ, 1.0, atol=atol) || print(io, _stringify_characters(vρ; digits))
print(io, "exp(")
if isapprox(abs(vθ), 1.0, atol=atol)
signbit(vθ) && print(io, '-')
else
print(io, _stringify_characters(vθ; digits))
end
print(io, "iπ)")
#print(io, ϕabc_contrib ? "(" : "", v, ϕabc_contrib ? ")" : "")
end
end
function prettyprint_irrep_matrix(
io::IO, lgir::LGIrrep, i::Integer, prefix::AbstractString;
digits::Int=4
)
# unpack
k₀, kabc = parts(position(group(lgir)))
P = lgir.matrices[i]
τ = lgir.translations[i]
# phase contributions
ϕ₀ = dot(k₀, τ) # constant phase
ϕabc = [dot(kabcⱼ, τ) for kabcⱼ in eachcol(kabc)] # variable phase
ϕabc_contrib = norm(ϕabc) > sqrt(dim(lgir))*DEFAULT_ATOL
# print the constant part of the irrep that is independent of α,β,γ
printP = abs(ϕ₀) < DEFAULT_ATOL ? P : cis(2π*ϕ₀)*P # avoids copy if ϕ₀≈0; copies otherwise
prettyprint_scalar_or_matrix(io, printP, prefix, ϕabc_contrib)
# print the variable phase part that depends on the free parameters α,β,γ
if ϕabc_contrib
nnzabc = count(c->abs(c)>DEFAULT_ATOL, ϕabc)
print(io, "exp")
if nnzabc == 1
print(io, "(")
i = findfirst(c->abs(c)>DEFAULT_ATOL, ϕabc)
c = ϕabc[i]
signbit(c) && print(io, "-")
if !(abs(c) ≈ 0.5) # do not print if multiplicative factor is 1
print(io, _stringify_characters(abs(2c); digits))
end
print(io, "iπ", 'ΰ'+i, ")") # prints 'α', 'β', and 'γ' for i = 1, 2, and 3, respectively ('ΰ'='α'-1)
else
print(io, "[iπ(")
first_nzidx = true
for (i,c) in enumerate(ϕabc)
if abs(c) > DEFAULT_ATOL
if first_nzidx
signbit(c) && print(io, '-')
first_nzidx = false
else
print(io, signaschar(c))
end
if !(abs(c) ≈ 0.5) # do not print if multiplicative factor is 1
print(io, _stringify_characters(abs(2c); digits))
end
print(io, 'ΰ'+i) # prints 'α', 'β', and 'γ' for i = 1, 2, and 3, respectively ('ΰ'='α'-1)
end
end
print(io, ")]")
end
end
end
function prettyprint_irrep_matrix(
io::IO, ir::Union{<:PGIrrep, <:SiteIrrep}, i::Integer, prefix::AbstractString
)
P = ir.matrices[i]
prettyprint_scalar_or_matrix(io, P, prefix, false)
end
function prettyprint_irrep_matrices(
io::IO, ir::Union{<:LGIrrep, <:PGIrrep, <:SiteIrrep}, nindent::Integer,
nboxdelims::Integer=45
)
indent = repeat(" ", nindent)
boxdelims = repeat("─", nboxdelims)
linelen = nboxdelims + 4 + nindent
Nₒₚ = order(ir)
for (i,op) in enumerate(operations(ir))
print(io, indent, " ├─ ")
opseitz, opxyzt = seitz(op), xyzt(op)
printstyled(io, opseitz, ": ",
repeat("─", linelen-11-nindent-length(opseitz)-length(opxyzt)),
" (", opxyzt, ")\n"; color=:light_black)
print(io, indent, " │ ")
prettyprint_irrep_matrix(io, ir, i, indent*" │ ")
if i < Nₒₚ; println(io, '\n', indent, " │"); end
end
print(io, "\n", indent, " └", boxdelims)
end
function prettyprint_header(io::IO, irlab::AbstractString, nboxdelims::Integer=45)
println(io, irlab, " ─┬", repeat("─", nboxdelims))
end
# ---------------------------------------------------------------------------------------- #
# Collection{<:AbstractIrrep}
function summary(io::IO, c::Collection{T}) where T <: AbstractIrrep
print(io, length(c), "-element Collection{", T, "}")
end
function show(io::IO, ::MIME"text/plain", c::Collection{T}) where T <: AbstractIrrep
summary(io, c)
isassigned(c, firstindex(c)) && _print_group_descriptor(io, group(first(c)); prefix=" for ")
println(io, ":")
for i in eachindex(c)
if isassigned(c, i)
show(io, MIME"text/plain"(), c[i])
else
print(io, " #undef")
end
i ≠ length(c) && println(io)
end
end
function show(io::IO, c::Collection{T}) where T <: AbstractIrrep
show(io, c.vs)
g = group(first(c))
if position(g) !== nothing
printstyled(io, " (", fullpositionlabel(g), ")"; color=:light_black)
end
end
# ---------------------------------------------------------------------------------------- #
# CharacterTable
function show(io::IO, ::MIME"text/plain", ct::AbstractCharacterTable)
chars = matrix(ct)
chars_formatted = _stringify_characters.(chars; digits=4)
ops = operations(ct)
println(io, typeof(ct), " for ", tag(ct), ":") # type name and space group/k-point tags
pretty_table(io,
chars_formatted;
# row/column names
row_labels = seitz.(ops), # seitz labels
header = labels(ct), # irrep labels
tf = tf_unicode,
vlines = [1,], hlines = [:begin, 1, :end]
)
if ct isa ClassCharacterTable
_print_class_representatives(io, ct)
end
end
function _print_class_representatives(io::IO, ct::ClassCharacterTable)
maxlen = maximum(length∘seitz∘first, classes(ct))
print(io, "Class representatives:")
for class in classes(ct)
print(io, "\n ")
for (i, op) in enumerate(class)#
op_str = seitz(op)
if i == 1
printstyled(io, op_str; bold=true)
length(class) ≠ 1 && print(io, " "^(maxlen-length(op_str)), " : ")
else
printstyled(io, op_str; color=:light_black)
i ≠ length(class) && printstyled(io, ", "; color=:light_black)
end
end
end
end
function _stringify_characters(c::Number; digits::Int=4)
c′ = round(c; digits)
cr, ci = reim(c′)
if iszero(ci) # real
isinteger(cr) && return string(Int(cr))
return string(cr)
elseif iszero(cr) # imaginary
isinteger(ci) && return string(Int(ci))*"im"
return string(ci)*"im"
else # complex
(isinteger(cr) && isinteger(ci)) && return _complex_as_compact_string(Complex{Int}(cr,ci))
return _complex_as_compact_string(c′)
end
end
function _complex_as_compact_string(c::Complex) # usual string(::Complex) has spaces; avoid that
io = IOBuffer()
print(io, real(c), signaschar(imag(c)), abs(imag(c)), "im")
return String(take!(io))
end
# ---------------------------------------------------------------------------------------- #
# BandRep
function prettyprint_symmetryvector(
io::IO,
irvec::AbstractVector{<:Real},
irlabs::Vector{String};
braces::Bool=true)
Nⁱʳʳ = length(irlabs)
Nⁱʳʳ′ = length(irvec)
if !(Nⁱʳʳ′ == Nⁱʳʳ || Nⁱʳʳ′ == Nⁱʳʳ+1)
# we allow irvec to exceed the dimension of irlabs by 1, in case it includes dim(BR)
throw(DimensionMismatch("irvec and irlabs must have matching dimensions"))
end
braces && print(io, '[')
first_nz = true
group_klab = klabel(first(irlabs))
for idx in 1:Nⁱʳʳ
# shared prepwork
irlab = irlabs[idx]
klab = klabel(irlab)
if klab ≠ group_klab # check if this irrep belongs to a new k-label group
first_nz = true
group_klab = klab
print(io, ", ")
end
c = irvec[idx] # coefficient of current term
c == 0 && continue # early stop if the coefficient is zero
absc = abs(c)
if first_nz # first nonzero entry in a k-label group
if abs(c) == 1
c == -1 && print(io, '-')
else
print(io, c)
end
first_nz = false
else # entry that is added/subtracted from another irrep
print(io, signaschar(c))
if absc ≠ 1
print(io, absc)
end
end
print(io, irlab)
end
braces && print(io, ']')
end
function symvec2string(irvec::AbstractVector{<:Real}, irlabs::Vector{String};
braces::Bool=true)
io = IOBuffer()
prettyprint_symmetryvector(io, irvec, irlabs; braces=braces)
return String(take!(io))
end
summary(io::IO, BR::BandRep) = print(io, dim(BR), "-band BandRep (", label(BR), " at ", position(BR), ")")
function show(io::IO, ::MIME"text/plain", BR::BandRep)
summary(io, BR)
print(io, ":\n ")
prettyprint_symmetryvector(io, BR, irreplabels(BR))
end
function show(io::IO, BR::BandRep)
prettyprint_symmetryvector(io, BR, irreplabels(BR))
end
# ---------------------------------------------------------------------------------------- #
# BandRepSet
function show(io::IO, ::MIME"text/plain", brs::BandRepSet)
Nⁱʳʳ = length(irreplabels(brs))
Nᵉᵇʳ = length(brs)
# print a "title" line and the irrep labels
println(io, "BandRepSet (⋕", num(brs), "): ",
length(brs), " BandReps, ",
"sampling ", Nⁱʳʳ, " LGIrreps ",
"(spin-", isspinful(brs) ? "½" : "1", " ",
brs.timereversal ? "w/" : "w/o", " TR)")
# print band representations as table
k_idx = (i) -> findfirst(==(klabel(irreplabels(brs)[i])), klabels(brs)) # highlighters
h_odd = Highlighter((data,i,j) -> i≤Nⁱʳʳ && isodd(k_idx(i)), crayon"light_blue")
h_μ = Highlighter((data,i,j) -> i==Nⁱʳʳ+1, crayon"light_yellow")
pretty_table(io,
# table contents
stack(brs);
# row/column names
row_labels = vcat(irreplabels(brs), "μ"),
header = (position.(brs), chop.(label.(brs), tail=2)), # remove repetitive "↑G" postfix
# options/formatting/styling
formatters = (v,i,j) -> iszero(v) ? "·" : string(v),
vlines = [1,], hlines = [:begin, 1, Nⁱʳʳ+1, :end],
row_label_alignment = :l,
alignment = :c,
highlighters = (h_odd, h_μ),
header_crayon = crayon"bold"
# TODO: Would be nice to highlight the `row_labels` in a style matching the contents,
# but not possible atm (https://github.com/ronisbr/PrettyTables.jl/issues/122)
)
# print k-vec labels
print(io, " KVecs: ")
join(io, klabels(brs), ", ")
end
# ---------------------------------------------------------------------------------------- #
# SymmetryVector
function Base.show(io :: IO, ::MIME"text/plain", n :: SymmetryVector)
print(io, length(n)-1, "-irrep ", typeof(n), ":\n ")
show(io, n)
end
function Base.show(io :: IO, n :: SymmetryVector)
print(io, "[")
for (i, (mults_k, lgirs_k)) in enumerate(zip(n.multsv, n.lgirsv))
str = if !iszero(mults_k)
Crystalline.symvec2string(mults_k, label.(lgirs_k); braces=false)
else # if there are no occupied irreps at the considered k-point print "0kᵢ"
"0" * klabel(first(lgirs_k)) * "ᵢ"
end
printstyled(io, str; color=iseven(i) ? :normal : :light_blue)
i ≠ length(n.multsv) && print(io, ", ")
end
print(io, "]")
printstyled(io, " (", occupation(n), " band", abs(occupation(n)) ≠ 1 ? "s" : "", ")";
color=:light_black)
end
# ---------------------------------------------------------------------------------------- #
# NewBandRep
function Base.show(io :: IO, ::MIME"text/plain", br :: NewBandRep)
print(io, length(br.n)-1, "-irrep ", typeof(br), ":\n ")
print(io, "(", )
printstyled(io, label(position(br.siteir)); bold=true)
print(io, "|")
printstyled(io, label(br.siteir); bold=true)
print(io, "): ")
show(io, br.n)
end
function Base.show(io :: IO, br :: NewBandRep)
print(io, "(", label(position(br.siteir)), "|", label(br.siteir), ")")
end
# ---------------------------------------------------------------------------------------- #
# Collection{<:NewBandRep}
function Base.show(io :: IO, ::MIME"text/plain", brs :: Collection{<:NewBandRep})
irlabs = irreplabels(brs)
Nⁱʳʳ = length(irlabs)
# print a "summary" line
print(io, length(brs), "-element ", typeof(brs), " for ⋕", num(brs))
print(io, " (", iuc(num(brs), dim(brs)), ") ")
print(io, "over ", Nⁱʳʳ, " irreps")
print(io, " (spin-", first(brs).spinful ? "½" : "1",
" w/", first(brs).timereversal ? "" : "o", "TR):")
println(io)
# print band representations as table
k_idx = (i) -> findfirst(==(klabel(irreplabels(brs)[i])), klabels(brs)) # highlighters
h_odd = Highlighter((data,i,j) -> i≤Nⁱʳʳ && isodd(k_idx(i)), crayon"light_blue")
h_μ = Highlighter((data,i,j) -> i==Nⁱʳʳ+1, crayon"light_yellow")
pretty_table(io,
# table contents
stack(brs);
# row/column names
row_labels = vcat(irlabs, "μ"),
header = (label.(position.(brs)), label.(getfield.(brs, :siteir))),
# options/formatting/styling
formatters = (v,i,j) -> iszero(v) ? "·" : string(v),
vlines = [1,], hlines = [:begin, 1, Nⁱʳʳ+1, :end],
row_label_alignment = :l,
alignment = :c,
highlighters = (h_odd, h_μ),
header_crayon = crayon"bold"
# TODO: Would be nice to highlight the `row_labels` in a style matching the contents,
# but not possible atm (https://github.com/ronisbr/PrettyTables.jl/issues/122)
)
end
# ---------------------------------------------------------------------------------------- #
# CompositeBandRep
function Base.show(io::IO, cbr::CompositeBandRep{D}) where D
first = true
for (j, c) in enumerate(cbr.coefs)
iszero(c) && continue
absc = abs(c)
if first
first = false
c < 0 && print(io, "-")
else
print(io, " ", Crystalline.signaschar(c), " ")
end
if !isone(absc)
if isinteger(absc)
print(io, Int(absc))
else
print(io, "(", numerator(absc), "/", denominator(absc), ")×")
end
end
print(io, cbr.brs[j])
end
first && print(io, "0")
end
function Base.show(io::IO, ::MIME"text/plain", cbr::CompositeBandRep{D}) where D
println(io, length(irreplabels(cbr)), "-irrep ", typeof(cbr), ":")
print(io, " ")
show(io, cbr)
μ = occupation(cbr)
printstyled(io, " (", μ, " band", abs(μ) ≠ 1 ? "s" : "", ")", color=:light_black)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 39471 | # The basic goal of this endeavor is only to find the k-points and irreps that
# are missing in ISOTROPY still belong to representation domain Φ (ISOTROPY all points from
# the basic domain Ω and some - but not all - from Φ).
# TODO: Unfortunately, it doesn't currently work.
# --- STRUCTS ---
struct KVecMapping
kᴬlab::String
kᴮlab::String
op::SymOperation
end
function show(io::IO, ::MIME"text/plain", kvmap::KVecMapping)
println(io, kvmap.kᴬlab, " => ", kvmap.kᴮlab, " via R = ", xyzt(kvmap.op))
end
# --- HARDCODED CONSTANTS ---
# Cached results of `Tuple(tuple(_find_holosymmetric_sgnums(D)...) for D = 1:3)`
HOLOSYMMETRIC_SGNUMS = (
(2,), # 1D
(2, 6, 7, 8, 9, 11, 12, 17), # 2D
(2, 10, 11, 12, 13, 14, 15, 47, 48, 49, 50, 51, 52, 53, 54, 55, # 3D
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 166, 167, 191,
192, 193, 194, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230)
)
# Holosymmetric point group labels (get corresponding point groups from `pointgroup(...)`)
# ordered in ascending point group order (number of operators).
# For 3D, we used Table 2 of J. Appl. Cryst. (2018). 51, 1481–1491 (https://doi.org/10.1107/S1600576718012724)
# For 2D and 1D, the cases can be inferred from case-by-case enumeration.
const HOLOSYMMETRIC_PG_IUCLABs = (
("m",), # 1D
("2", "mm2", "4mm", "6mm"), # 2D
("-1", "2/m", "mmm", "-31m", "-3m1", "4/mmm", "6/mmm", "m-3m") # 3D
)
# Table 1 of J. Appl. Cryst. (2018). 51, 1481–1491 (https://doi.org/10.1107/S1600576718012724)
const HOLOSYMMETRIC_PG_FOR_BRAVAISTYPE = ImmutableDict(
"aP" => ["-1"], # (not ideal to be using Vector here, but meh...)
(("mP", "mC") .=> Ref(["2/m"]))...,
(("oP", "oI", "oF", "oC") .=> Ref(["mmm"]))...,
"hR" => ["-31m","-3m1"], # special case: two possible settings (-31m and -3m1)
"hP" => ["6/mmm"],
(("tP", "tI") .=> Ref(["4/mmm"]))...,
(("cP", "cI", "cF") .=> Ref(["m-3m"]))...
)
# Mnemonized/cached data from calling
# Tuple(tuple(getindex.(_find_arithmetic_partner.(1:MAX_SGNUM[D], D), 2)...) for D in 1:3)
const ARITH_PARTNER_GROUPS = (
(1,2), # 1D
(1,2,3,3,5,6,6,6,9,10,11,11,13,14,15,16,17), # 2D
(1,2,3,3,5,6,6,8,8,10,10,12,10,10,12,16,16,16,16,21,21,22,23,23,25,25,25,25,25,25,25,25,25,25, # 3D
35,35,35,38,38,38,38,42,42,44,44,44,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,65,65,65,
65,65,65,69,69,71,71,71,71,75,75,75,75,79,79,81,82,83,83,83,83,87,87,89,89,89,89,89,89,89,89,
97,97,99,99,99,99,99,99,99,99,107,107,107,107,111,111,111,111,115,115,115,115,119,119,121,121,
123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,123,139,139,139,139,143,143,143,146,
147,148,149,150,149,150,149,150,155,156,157,156,157,160,160,162,162,164,164,166,166,168,168,168,
168,168,168,174,175,175,177,177,177,177,177,177,183,183,183,183,187,187,189,189,191,191,191,191,
195,196,197,195,197,200,200,202,202,204,200,204,207,207,209,209,211,207,207,211,215,216,217,215,
216,217,221,221,221,221,225,225,225,225,229,229)
)
# Orphan space group numbers in (3D only)
const ORPHAN_SGNUMS = (
(198,), # type (a) in B&C p. 414
(76, 78, 144, 145, 151, 152, 153, 154, 169, 170, 171, 172), # type (b)
(91, 95, 92, 96, 178, 179, 180, 181, 212, 213), # type (c); no new k-vecs though
(205,) # type (d)
)
# The group to supergroups (G => G′) map from CDML Table 4.1; necessary to
# construct the irrep mapping for orphans of type (a) and (b). In addition,
# we include a translation vector p that is necessary in order to ensure the
# same setting for group/supergroups (only relevant for sgnums 151-154).
const ORPHAN_AB_SUPERPARENT_SGNUMS = ImmutableDict(
# group sgnum => (supergroup sgnum, transformation translation p [rotation P = "x,y,z" for all])
76 => (91, zeros(3)),
78 => (95, zeros(3)),
144 => (178, zeros(3)),
145 => (179, zeros(3)),
151 => (181, [0.0,0.0,1/3]), # cf. www.cryst.ehu.es/cryst/minsup.html
152 => (178, [0.0,0.0,1/6]),
153 => (180, [0.0,0.0,1/6]),
154 => (179, [0.0,0.0,1/3]),
169 => (178, zeros(3)),
170 => (179, zeros(3)),
171 => (180, zeros(3)),
172 => (181, zeros(3)),
198 => (212, zeros(3))
)
# Dict of group (G) => supergroup (G₀) relations, along with their transformation operators,
# for tricky corner cases that cannot be treated by a naïve subgroup check which
# doesn't account for the changes in crystal setting between space groups (centering,
# orientation etc.); this is rather tedious. We manually read off the appropriate
# supergroups - and picked one from the list of holosymmetric sgs - and then subsequently
# manually verified that that choice makes G a normal/invariant of G₀, i.e. that G◁G₀.
# This extraction was done using Bilbao's MINSUP program (www.cryst.ehu.es/cryst/minsup.html),
# so the setting is already consistent with ITA.
# Abbreviations below: min-sup-sg ≡ minimal (normal and holosymmetric) supergroup
const CORNERCASES_SUBSUPER_NORMAL_SGS = Crystalline.ImmutableDict(
# group sgnum => (supergroup sgnum, transformation rotation P, transformation translation p)
17 => (51, copy.(unpack(SymOperation{3}("z,x,y")))...), # min-sup-sg
26 => (51, copy.(unpack(SymOperation{3}("z,x,y")))...), # min-sup-sg
28 => (51, copy.(unpack(SymOperation{3}("x,-z,y")))...), # min-sup-sg
29 => (54, copy.(unpack(SymOperation{3}("-z,y,x+1/4")))...), # min-sup-sg
30 => (52, copy.(unpack(SymOperation{3}("z,x+1/4,y+1/4")))...), # min-sup-sg
33 => (52, copy.(unpack(SymOperation{3}("x+1/4,z,-y+1/4")))...), # min-sup-sg
38 => (63, copy.(unpack(SymOperation{3}("y,z,x+1/4")))...), # min-sup-sg
39 => (64, copy.(unpack(SymOperation{3}("y+1/4,z,x+1/4")))...), # min-sup-sg
40 => (63, copy.(unpack(SymOperation{3}("-z,y,x")))...), # min-sup-sg
41 => (64, copy.(unpack(SymOperation{3}("-z,y,x")))...), # min-sup-sg
43 => (70, copy.(unpack(SymOperation{3}("z,x+3/8,y+3/8")))...), # min-sup-sg
46 => (72, copy.(unpack(SymOperation{3}("-z,y,x+1/4")))...), # min-sup-sg
80 => (141, copy.(unpack(SymOperation{3}("x+1/2,y+3/4,z")))...), # NOT min-sup-sg: instead, a cycle through 88=>141 which ensures normality/invariance
86 => (133, copy.(unpack(SymOperation{3}("x,y+1/2,z")))...), # min-sup-sg
88 => (141, copy.(unpack(SymOperation{3}("x,y+1/2,z")))...), # min-sup-sg
90 => (127, copy.(unpack(SymOperation{3}("x,y+1/2,z")))...), # min-sup-sg
98 => (141, copy.(unpack(SymOperation{3}("x,y+1/4,z+3/8")))...), # min-sup-sg
109 => (141, copy.(unpack(SymOperation{3}("x,y+1/4,z")))...), # min-sup-sg
110 => (142, copy.(unpack(SymOperation{3}("x,y+1/4,z")))...), # min-sup-sg
122 => (141, copy.(unpack(SymOperation{3}("x,y+1/4,z+3/8")))...), # min-sup-sg
210 => (227, copy.(unpack(SymOperation{3}("x+3/8,y+3/8,z+3/8")))...) # min-sup-sg
)
# Transformation matrices from CDML to ITA settings
include(joinpath(DATA_DIR, "misc/transformation_matrices_CDML2ITA.jl")) # ⇒ defines TRANSFORMS_CDML2ITA::ImmutableDict
# --- FUNCTIONS ---
function is_orphan_sg(sgnum::Integer, D::Integer=3)
D ≠ 3 && _throw_1d2d_not_yet_implemented(D) # 2D not considered in CDML
for orphantypeidx in eachindex(ORPHAN_SGNUMS)
sgnum ∈ ORPHAN_SGNUMS[orphantypeidx] && return orphantypeidx
end
return 0 # ⇒ not an orphan
end
"""
_find_holosymmetric_sgnums(D::Integer)
We compute the list of holosymmetric space group numbers by first finding the "maximal"
arithmetic point group of each Bravais type (looping through all the space groups
in that Bravais type); then we subsequently compare the arithmetic point groups of
each space group to this maximal (Bravais-type-specific) point group; if they agree
the space group is holosymmetric.
See `is_holosymmetric` for description of holosymmetric space groups and of
their connection to the representation and basic domains Φ and Ω.
"""
function _find_holosymmetric_sgnums(D::Integer)
bravaistypes = bravaistype.(OneTo(MAX_SGNUM[D]), D, normalize=true)
uniquebravaistypes = unique(bravaistypes) # Bravais types (1, 5, & 14 in 1D, 2D, & 3D)
# find maximum point groups for each bravais type
maxpointgroups = Dict(ubt=>Vector{SymOperation{D}}() for ubt in uniquebravaistypes)
for (sgnum,bt) in enumerate(bravaistypes)
pg = sort(pointgroup(spacegroup(sgnum,D)), by=xyzt)
if length(pg) > length(maxpointgroups[bt])
maxpointgroups[bt] = pg;
end
end
# determine whether each space group is a holosymmetric space group
# then accumulate the `sgnum`s of the holosymmetric space groups
holosymmetric_sgnums = Vector{Int}()
for (sgnum,bt) in enumerate(bravaistypes)
pg = sort(pointgroup(spacegroup(sgnum,D)), by=xyzt)
if length(pg) == length(maxpointgroups[bt])
push!(holosymmetric_sgnums, sgnum)
end
end
return holosymmetric_sgnums
end
"""
is_holosymmetric(sgnum::Integer, D::Integer) --> Bool
Return a Boolean answer for whether the representation domain Φ equals
the basic domain Ω, i.e. whether the space group is holosymmetric (see
CDML p. 31 and 56). Φ and Ω are defined such that the Brillouin zone BZ
can be generated from Φ through the point group-parts of the space group
operations g∈F (the "isogonal point group" in CDML; just the "point group
of G" in ITA) and from Ω through the lattice's point group operations
g∈P (the "holosymmetric point group") i.e. BZ≡∑_(r∈F)rΦ and BZ≡∑_(r∈P)rΦ.
If Φ=Ω, we say that the space group is holosymmetric; otherwise, Φ is an
integer multiple of Ω and we say that the space group is non-holosymmetric.
In practice, rather than compute explicitly every time, we use a cache of
holosymmetric space group numbers obtained from `_find_holosymmetric_sgnums`
(from the `const` `HOLOSYMMERIC_SGNUMS`).
"""
is_holosymmetric(sgnum::Integer, D::Integer=3)::Bool = (sgnum ∈ HOLOSYMMETRIC_SGNUMS[D])
is_holosymmetric(sg::SpaceGroup) = is_holosymmetric(num(sg), dim(sg))
"""
find_holosymmetric_supergroup(G::SpaceGroup)
find_holosymmetric_supergroup(sgnum::Integer, D::Integer)
--> PointGroup{D}
Finds the minimal holosymmetric super point group `P` of a space group `G`
(alternatively specified by its number `sgnum` and dimension `D`), such
that the (isogonal) point group of `G`, denoted `F`, is a subgroup of `P`,
i.e. such that `F`≤`P` with `P` restricted to the lattice type of `G` (see
`HOLOSYMMETRIC_PG_FOR_BRAVAISTYPE`). For holosymmetric space groups `F=P`.
"""
function find_holosymmetric_superpointgroup(G::SpaceGroup)
D = dim(G)
F = pointgroup(G) # (isogonal) point group of G (::Vector{SymOperation{D}})
if D == 3
# In 3D there are cases (162, 163, 164, 165) where the distinctions
# between hP and hR need to be accounted for explicitly, so there we
# have to explicitly ensure that we only compare with pointgroups
# that indeed match the lattice type (hR and hP have different holohedries)
bt = bravaistype(num(G), D, normalize=true)
for pglab in HOLOSYMMETRIC_PG_FOR_BRAVAISTYPE[bt]
# this check is actually redunant for everything except the hR groups; we do it anyway
P = pointgroup(pglab, D) # holosymmetric point group (::PointGroup)
if issubgroup(operations(P), F)
return P
end
end
else
# No tricky cornercasees in 2D or 1D: we can iterate through
# the holosymmetric point groups to find the minimal holosymmetric
# supergroup, because we already sorted HOLOSYMMETRIC_PG_IUCLABs
# by the point group order
for pglab in HOLOSYMMETRIC_PG_IUCLABs[D]
P = pointgroup(pglab, D) # holosymmetric point group (::PointGroup)
if issubgroup(operations(P), F)
return P
end
end
end
throw("Did not find a holosymmetric super point group: if the setting is conventional, this should never happen")
end
find_holosymmetric_superpointgroup(sgnum::Integer, D::Integer=3) = find_holosymmetric_superpointgroup(spacegroup(sgnum, D))
"""
find_holosymmetric_parent(G::SpaceGroup{D})
find_holosymmetric_parent(sgnum::Integer, D::Integer)
--> Union{SpaceGroup{D}, Nothing}
Find a holosymmetric space group G₀ such that the space group G with number `sgnum`
is an invariant subgroup of G₀, i.e. G◁G₀: a "holosymmetric parent spacegroup" of G,
in the notation of B&C and CDML.
This identification is not necessarily unique; several distinct parents may exist.
The meaning of invariant subgroup (also called a "normal subgroup") is that G is
both a subgroup of G₀, i.e. G<G₀, and G is invariant under conjugation by any
element g₀ of G₀.
Thus, to find if G is an invariant subgroup of G₀ we first check if G is a subgroup
of a G₀; then check that for every g₀∈G₀ and g∈G we have g₀gg₀⁻¹∈G. If we find
these conditions to be fulfilled, we return the space group G₀.
The search is complicated by the fact that the appropriate G₀ may be in a different
setting than G is. At the moment a poor-man's fix is implemented that manually
circumvents this case by explicit tabulation of cornercases; though this is only
tested in 3D.
If we find no match, we return `nothing`: the space groups for which this is true
should agree with those in `ORPHAN_SGNUMS`.
"""
find_holosymmetric_parent(sgnum::Integer, D::Integer=3) = find_holosymmetric_parent(spacegroup(sgnum, D))
function find_holosymmetric_parent(G::SpaceGroup{D}) where D
D ≠ 3 && _throw_1d2d_not_yet_implemented()
sgnum = num(G)
if !is_holosymmetric(sgnum, D) # nontrivial case: find invariant subgroup
cntr = centering(sgnum, D)
if !haskey(CORNERCASES_SUBSUPER_NORMAL_SGS, sgnum)
# Naïve attempt to find a holosymmetric supergroup; this fails in 21 cases:
# see data/misc/cornercases_normal_subsupergroup_pairs_with_transformations.jl.
# Basically, this naïve approach assumes that the crystal setting between
# G and its supergroup G⁰ agrees: it does not in general.
for sgnum₀ in HOLOSYMMETRIC_SGNUMS[D]
G₀ = spacegroup(sgnum₀, D)
cntr₀ = centering(G₀)
# === check whether G is a subgroup of G₀, G<G₀ ===
# won't be a naïve subgroup if centerings are different (effectively, a cheap short-circuit check)
cntr ≠ cntr₀ && continue
# now check if G<G₀ operator-element-wise
issubgroup(G₀, G) || continue
# check if G is an _invariant_ subgroup of G₀, i.e. if g₀gg₀⁻¹∈G
# for every g₀∈G₀ and g∈G
isnormal(G₀, G) && return G₀
end
else # G must be a cornercase
# The above naïve search does not work generally because different sgs are in
# different settings; even when the Bravais types match, different choices can
# be made for the coordinate axis (rotation, orientation, origo, handedness).
# In general, that means that two sets of symmetry operations can be considered
# to be a group-subgroup pair if there exists a single transformation operator
# such that their operators agree.
# Put more abstractly, in the above we check for a normal supergroup; but what
# we really want is to check for a normal supergroup TYPE (the notion of "space
# group type" differentiates from a concrete "space group", signifying a specific
# choice of setting: usually, the distinction is ignored.).
# We manually found the appropriate normal and holosymmetric supergroup by using
# Bilbao's MINSUP program, along with the appropriate transformation matrix; see
# data/misc/cornercases_normal_subsupergroup_pairs_with_transformations.jl and
# the constant Tuple `CORNERCASES_SUBSUPER_NORMAL_SGS`.
# So far only checked for 3D.
sgnum₀, P₀, p₀ = CORNERCASES_SUBSUPER_NORMAL_SGS[sgnum]
opsG₀ = operations(spacegroup(sgnum₀, 3))
# find the supergroup G₀ in its transformed setting using P₀ and p₀
opsG₀ .= transform.(opsG₀, Ref(P₀), Ref(p₀))
G₀ = SpaceGroup{D}(sgnum₀, opsG₀)
# with G₀ in this setting, G is a subgroup of G₀, G is normal in G₀
# and G₀ is a holosymmetric space group (see test/holosymmetric.jl)
return G₀
end
# G doesn't have a holosymmetric parent space group ⇒ one of the "orphans" from CDML/B&C
return nothing
else # trivial case; a holosymmetric sg is its own parent
return G
end
end
"""
find_arithmetic_partner(sgnum::Integer, D::Integer=3)
Find the arithmetic/isogonal parent group of a space group G with number `sgnum`
in dimension `D`.
The arithmetic/isogonal parent group is the symmorphic group F that contains all
the rotation parts of G.
See `_find_arithmetic_partner` which this method is a mnemonization interface to.
"""
find_arithmetic_partner(sgnum::Integer, D::Integer=3)::Int = ARITH_PARTNER_GROUPS[D][sgnum]
"""
find_map_from_Ω_to_ΦnotΩ(G::SpaceGroup)
find_map_from_Ω_to_ΦnotΩ(sgnum::Integer, D::Integer)
Find the point group operations `Rs` that map the basic domain Ω to the
"missing" domains in Φ-Ω for the space group `G`; this is akin to a coset
decomposition of the (isogonal) point group `F` of `G` into the holosymmetric
super point group `P` of `G`.
"""
function find_map_from_Ω_to_ΦnotΩ(G::SpaceGroup)
if is_holosymmetric(num(G), dim(G))
return nothing
else # G is not a holosymmetric sg, so Φ-Ω is finite
P = operations(find_holosymmetric_superpointgroup(G)) # holosymmetric supergroup of G (::Vector{SymOperation{D}})
F = pointgroup(G) # (isogonal) point group of G (::Vector{SymOperation{D}})
index::Int = length(P)/length(F) # index of F in P = 2^"number of needed maps"
if index == 1; println(num(G)); return nothing; end
N::Int = log2(index)
Rs = Vector{SymOperation{dim(G)}}(undef, N)
matchidx = 0
# Find N coset representatives
for i in 1:N
matchidx = findnext(op->op∉F, P, matchidx+1) # find a coset representative for F in P
Rs[i] = P[matchidx]
if N > 1 && i < N
# a bit of extra work to make sure we find an operator which
# is not already in the coset P[matchidx]∘F by growing F with
# the "newly added" elements that P[matchidx] produce
F = append!(F, Ref(Rs[i]) .* F)
end
end
return Rs
end
end
find_map_from_Ω_to_ΦnotΩ(sgnum::Integer, D::Integer=3) = find_map_from_Ω_to_ΦnotΩ(spacegroup(sgnum, D))
# A sanity check for the above implementation, is to compare the number of distinct maps
# obtained by first defining
# Nmaps = [length(ops) for ops in Crystalline.find_map_from_Ω_to_ΦnotΩ.(keys(Crystalline.ΦNOTΩ_KVECS_AND_MAPS),3)]
# against the tabulated maps
# maxfreq(x) = maximum(values(StatsBase.countmap(x)))
# Nmapsᶜᵈᵐˡ = [maxfreq([x.kᴬlab for x in mapset]) for mapset in values(Crystalline.ΦNOTΩ_KVECS_AND_MAPS)]
# Then, Nmaps .> Nmapsᶜᵈᵐˡ (not equal, necessarily, because some maps might be trivially related to
# a k-star or to a G-vector).
function find_new_kvecs(G::SpaceGroup{D}) where D
Rs = find_map_from_Ω_to_ΦnotΩ(G)
Rs === nothing && return nothing # holosymmetric case
cntr = centering(G)
# load the KVecs in Ω from the ISOTROPY dataset
lgs = littlegroups(num(G), Val(D))
# We are only interested in mapping kvs from the basic domain Ω; but ISOTROPY already
# includes some of the ZA points that are in Φ-Ω, so we strip these already here (and
# so find these points anew effectively). Also, there is no point in trying to map the
# general point (also denoted Ω by us) to a new point, since it can be obtained by
# parameter variation; so we filter that out as well.
filter!(klablg_pair-> length(first(klablg_pair)) == 1 && first(klablg_pair) != "Ω", lgs)
kvs = position.(values(lgs))
klabs = klabel.(values(lgs))
Nk = length(lgs)
newkvs = [KVec[] for _ in OneTo(Nk)]
newklabs = [String[] for _ in OneTo(Nk)]
for (kidx, (kv, klab)) in enumerate(zip(kvs, klabs))
for (Ridx, R) in enumerate(Rs)
newkv = R*kv
# compare newkv to the stars of kv: if it is equivalent to any member of star{kv},
# it is not a "new" k-vector. We do not have to compare to _all_ kv′∈Ω (i.e. to all
# kvs), because they must have inequivalent stars to kv in the first place and also
# cannot be mapped to them by a point group operation of the arithmetic/isogonal point group
kstar = orbit(G, kv, cntr)
if any(kv′ -> isapprox(newkv, kv′, cntr), kstar)
continue # jump out of loop if newkv is equivalent to any star{kv′}
end
# if we are not careful we may now add a "new" k-vector which is equivalent
# to a previously added new k-vector (i.e. is equivalent to a k-vector in its
# star): this can e.g. happen if R₁ and R₂ maps to the same KVec, which is a real
# possibility. We check against the k-star of the new k-vectors just added.
newkv_bool_vs_ΦnotΩ = true
for kv′ in newkvs[kidx]
k′star = orbit(G, kv′, cntr) # k-star of previously added new k-vector
if any(kv′′ -> isapprox(newkv, kv′′, cntr), k′star)
newkv_bool_vs_ΦnotΩ = false
continue
end
end
!newkv_bool_vs_ΦnotΩ && continue # jump out of loop if newkv is equivalent to any just added new KVec
# newkv must now be a bonafide "new" KVec which is inequivalent to any original KVecs
# kv′∈Ω, as well as any elements in their stars, and similarly inequivalent to any
# previously added new KVecs newkv′∈Φ-Ω ⇒ add it to the list of new KVecs!
push!(newkvs[kidx], newkv)
push!(newklabs[kidx], klab*('@'+Ridx)*'′') # new labels, e.g. if klab = "Γ", then newklab = "ΓA′", "ΓB′", "ΓC′", ...
# TODO: It seems we would need to rule out additional k-vectors by some rule
# that I don't quite know yet. One option may be to consider k-vectors
# that can be obtained by parameter-variation equivalent; I think this
# is what is called the "uni-arm" description in
# https://www.cryst.ehu.es/cryst/help/definitions_kvec.html#uniarm
# Another concern could be that the symmetry of the reciprocal lattice
# is not same as that of the direct lattice; that is also discussed in
# link. In general, we should be finding the same k-vectors as those
# generated by https://www.cryst.ehu.es/cryst/get_kvec.html; right now
# we occassionally find too many (148 is a key example; 75 another).
# See also their companion paper to that utility.
#
# Easiest ways to inspect our results is as:
# sgnum = 75
# v=Crystalline.find_new_kvecs(sgnum, 3)
# [v[3] string.(v[1]) first.(v[4]) string.(first.(v[2]))] # (only shows "A" generated KVecs though...)
#
# We also have some debugging code for this issue in test/holosymmetric.jl,
# but at present it is not a priority to fix this, since we have the nominally
# correct additions from CDML.
end
end
# only retain the cases where something "new" was added
mappedkvs = [kvs[kidx] for (kidx, newkvsₖᵥ) in enumerate(newkvs) if !isempty(newkvsₖᵥ)]
mappedklabs = [klabs[kidx] for (kidx, newkvsₖᵥ) in enumerate(newkvs) if !isempty(newkvsₖᵥ)]
filter!(!isempty, newkvs)
filter!(!isempty, newklabs)
# return arrays of {original KVec in Ω}, {new KVec(s) in Φ-Ω}, {original KVec label in Ω}, {new KVec label(s) in Φ-Ω},
return mappedkvs, newkvs, mappedklabs, newklabs
end
find_new_kvecs(sgnum::Integer, D::Integer=3) = find_new_kvecs(spacegroup(sgnum, D))
"""
_find_arithmetic_partner(sg::SpaceGroup)
_find_arithmetic_partner(sgnum::Integer, D::Integer=3)
Find the symmorphic partner space group `sg′` of a space group `sg`, i.e.
find the space group `sg′` whose group embodies the arithmetic crystal class
of `sg`. In practice, this means that they have the same point group operations
and that they share the same Bravais lattice (i.e. centering) and Brillouin zone.
For symmorphic space groups, this is simply the space group itself.
An equivalent terminonology (favored by B&C and CDML) for this operation is the
"*isogonal* partner group" of `sg`. ITA doesn't appear to have a specific name
for this operation, but we borrow the terminology from the notion of an "arithmetic
crystal class".
The answer is returned as a pair of space group numbers: `num(sg)=>num(sg′)`.
"""
function _find_arithmetic_partner(sg::SpaceGroup)
D = dim(sg)
sgnum = num(sg)
cntr = centering(sgnum, D)
if sgnum ∈ SYMMORPH_SGNUMS[D]
return sgnum=>sgnum
else
pgops_sorted = sort(pointgroup(sg), by=xyzt)
N_pgops = length(pgops_sorted)
N_arith_crys_class = length(SYMMORPH_SGNUMS[D])
# exploit that the arithmetic partner typically is close to the index
# of the space group, but is (at least for 3D space groups) always smaller
idx₀ = findfirst(>(sgnum), SYMMORPH_SGNUMS[D])
if idx₀ === nothing # no point group of smaller index than the provided sg
idx₀ = N_arith_crys_class
end
for idx′ in Iterators.flatten((idx₀-1:-1:1, idx₀:N_arith_crys_class))
sgnum′ = SYMMORPH_SGNUMS[D][idx′]
# We have to take the `pointgroup(...)` operation here even though `sgops`
# is symmorphic, because the `SymOperation`s are in a conventional basis
# and may contain contain trivial primitive translations if `cntr′ ≠ 'P'`
sgops′ = sort(pointgroup(spacegroup(sgnum′, D)), by=xyzt)
if (length(sgops′) == N_pgops &&
all(sgops′ .== pgops_sorted) && # ... this assumes the coordinate setting
# is the same between sg and sg′ (not
# generally valid; but seems to work here,
# probably because the setting is shared
# by definition between these "partners"?)
centering(sgnum′, D) == cntr) # the centering (actually, Bravais type,
# but doesn't seem to make a difference)
# must also agree!
return sgnum=>sgnum′
end
end
end
# if we reached this point, no match was found ⇒ implies an error..!
throw(ErrorException("No arithmetic/isogonal partner group was found: this should"*
"never happen for well-defined groups."))
end
function _find_arithmetic_partner(sgnum::Integer, D::Integer=3)
_find_arithmetic_partner(spacegroup(sgnum, D))
end
"""
_ΦnotΩ_kvecs_and_maps_imdict(;verbose::Bool=false)
Load the special k-points kᴮ∈Φ-Ω that live in the representation domain Φ, but not in
the basic domain Ω, as well parent space group operation R that link them to a related
k-point in the basic domain kᴬ∈Ω. Returns an `ImmutableDict` over `KVecMapping` `Tuple`s,
each a containing {kᴬ, kᴮ, R} triad, with kᴬ and kᴮ represented by their labels.
The keys of the `ImmutableDict` give the associated space group number.
The data used here is obtained from Table 3.11 of CDML. Because they split symmetry
operations up into two groups, {monoclinic, orthorhombic, tetragonal, and cubic} vs.
{trigonal, hexagonal}, we do the same when we load it; but the end-result concatenates
both types into a single `ImmutableDict`.
For convenience we later write the results of this function to constants
`ΦNOTΩ_KVECS_AND_MAPS`.
"""
function _ΦnotΩ_kvecs_and_maps_imdict(;verbose::Bool=false)
# prepare for loading csv files into ImmutableDict
baseloadpath = (@__DIR__)*"/../data/misc/CDML_RepresentationDomainSpecialKPoints_"
kwargs = (header=["kᴮ_num", "kᴮ", "R", "kᴬ"], comment="#", delim=", ",
ignoreemptylines=true, types=[Int, String, Int, String])
d = Base.ImmutableDict{Int, NTuple{N, KVecMapping} where N}()
for loadtype in ["MonoOrthTetraCubic", "TriHex"]
# load crystal-specific variables
loadpath = baseloadpath*loadtype*".csv"
if loadtype == "MonoOrthTetraCubic"
# Monoclinic, cubic, tetragonal, orthorhombic
num2ops = Dict( 2=>SymOperation{3}("x,-y,-z"), 3=>SymOperation{3}("-x,y,-z"),
4=>SymOperation{3}("-x,-y,z"), 16=>SymOperation{3}("y,x,-z"),
26=>SymOperation{3}("-x,y,z"), 28=>SymOperation{3}("x,y,-z"),
37=>SymOperation{3}("y,x,z") )
elseif loadtype == "TriHex"
# Trigonal & hexagonal
num2ops = Dict( 2=>SymOperation{3}("x-y,x,z"), 6=>SymOperation{3}("y,-x+y,z"),
8=>SymOperation{3}("x,x-y,-z"), 9=>SymOperation{3}("y,x,-z"),
10=>SymOperation{3}("-x+y,y,-z"), 16=>SymOperation{3}("x,y,-z"),
23=>SymOperation{3}("x,x-y,z"), 24=>SymOperation{3}("y,x,z") )
end
# read data from csv file
data = CSV.read(loadpath; kwargs...)
# convert csv file to ImmutableDict of KVecMapping NTuples
cur_sgnum = 0
tempvec = Vector{KVecMapping}()
for (idx, row) in enumerate(eachrow(data))
if iszero(row[:kᴮ_num])
if cur_sgnum ≠ 0
d = Base.ImmutableDict(d, cur_sgnum=>tuple(tempvec...))
end
cur_sgnum = row[:R]
tempvec = Vector{KVecMapping}()
else
R = num2ops[row[:R]]
# CDML setting is not the same as ITA settings for all cases; for
# the cur_sgnums where the two differ, we store the transformations
# between the two settings in TRANSFORMS_CDML2ITA and apply it here
if haskey(TRANSFORMS_CDML2ITA, cur_sgnum)
P, p = TRANSFORMS_CDML2ITA[cur_sgnum]
if verbose
Pstr = xyzt(SymOperation{3}(hcat(P, p)))
println("SG $(cur_sgnum): transforming from CDML to ITA setting via P = $(Pstr):\n",
" From R = $(xyzt(R))\t= $(seitz(R))")
end
R = transform(R, P, p)
verbose && println(" to R′ = $(xyzt(R))\t= $(seitz(R))")
end
push!(tempvec, KVecMapping(row[:kᴬ], row[:kᴮ], R))
end
if idx == size(data, 1)
d = Base.ImmutableDict(d, cur_sgnum=>tuple(tempvec...))
end
end
end
return d
end
# Mnemonized data from calling `_ΦnotΩ_kvecs_and_maps_imdict()` (in 3D only) as an
# ImmutableDict
const ΦNOTΩ_KVECS_AND_MAPS = _ΦnotΩ_kvecs_and_maps_imdict()
"""
ΦnotΩ_kvecs(sgnum::Integer, D::Integer)
For a space group G with number `sgnum` and dimensionality `D`, find the
"missing" k-vectors in Φ-Ω, denoted kᴮ, as well as a mapping operation {R|v}
that links these operations to an operation in Ω, denoted kᴬ such that
kᴮ = Rkᴬ.
The operation {R|v} is chosen from a parent space group. If possible, this
parent space group is a holosymmetric parent group of which G is a normal
subgroup. For 24 so-called "orphans", such a choice is impossible, and we
instead have to make do with an ordinary non-holosymmetric parent (of which
G is still a normal subgroup). Four "flavors" of orphans exist; 1, 2, 3, and
4. For orphan type 4, no normal supergroup can be found.
Only in-equivalent "missing" k-vectors are returned (i.e. kᴮs are inequivalent
to all the stars of all kᴬ∈Ω): this listing is obtained from CDML, and
conveniently takes care of orphan types 3 and 4.
If there are no "missing" k-vectors in Φ-Ω the method returns `nothing`.
Otherwise, the method returns a `Vector` of `KVecMapping`s as well as the
orphan type (`0` if not an orphan).
Presently only works in 3D, since CDML does not tabulate the special
k-points in Φ-Ω in 2D.
This method should be used to subsequently generate the `LGIrrep`s of the
missing k-vectors in Φ-Ω from the tabulated `LGIrrep`s for kᴬ∈Ω. This is
possible for all 3D space groups except for number 205, which requires
additional manual tabulation.
"""
function ΦnotΩ_kvecs(sgnum::Integer, D::Integer=3)
D ≠ 3 && _throw_1d2d_not_yet_implemented(D)
# No new k-points for holosymmetric sgs where Φ = Ω
is_holosymmetric(sgnum, D) && return nothing
# Check if sg is an "orphan" type (if 0 ⇒ not an orphan) in the sense discussed in CDML p. 70-71.
orphantype = is_orphan_sg(sgnum, D)
if orphantype == 3 # no new k-vectors after all (CDML p. 71, bullet (i)) [type (c)]
return nothing
elseif orphantype == 4 # sgnum = 205 needs special treatment [type (d)]
# return the KVecMappings, which are handy to have even though the transformation
# procedure doesn't apply to sg 205. Below are the cached results of
# ΦNOTΩ_KVECS_AND_MAPS[find_arithmetic_partner(205, 3)]. The actual irreps at
# ZA, AA, and BA are given in CDML p. C491; ZA is already include in ISOTROPY
R₂₀₅ = SymOperation{D}("y,x,z")
kvmaps = [KVecMapping("Z","ZA",R₂₀₅), KVecMapping("A","AA",R₂₀₅), KVecMapping("B","BA",R₂₀₅)]
return kvmaps, orphantype
elseif orphantype ∈ (1,2) # supergroup case [types (a,b)]
# A supergroup G′ exists which contains some (but not all) necessary operations
# that otherwise exist in the holosymmetric group; see table 4.1 of CDML; by exploiting
# their connection to an isomorphic partner, we can get all the necessary operations
# (see B&C).
parent_sgnum, p = ORPHAN_AB_SUPERPARENT_SGNUMS[sgnum]
end
# If we reached here, orphantype is either 0 - in which case we can follow
# the holosymmetric parent space group (G₀) approach - or orphantype is
# 1 (a) or 2 (b); in that case, we should use the supergroup G′ to identify
# the irrep mapping vectors {R|v}; but we can still use the point group operation
# R inferred from find_arithmetic_partner and ΦNOTΩ_KVECS_AND_MAPS (if featuring)
# We need the arithmetic parent group to find the correct key in ΦNOTΩ_KVECS_AND_MAPS
# (since it only stores symmorphic space groups)
arith_parent_sgnum = find_arithmetic_partner(sgnum, D)
# There are some space groups (i.e. some isogonal partner groups) that just
# do not get truly new k-points in Φ-Ω since they either already feature in
# star{𝐤} or are equivalent (either via a primitive reciprocal G-vector or
# by trivial parameter variation) to an existing KVec in Ω. In that case,
# there is no entry for arith_parent_sgnum in ΦNOTΩ_KVECS_AND_MAPS and
# there is nothing to add. This is the case for sgnums 1, 16, 22, 89, 148,
# 177, 207, & 211). In that case, we set kvmaps_pg to `nothing`; otherwise
# we obtain the matching set of mappings from ΦNOTΩ_KVECS_AND_MAPS that
# contains ALL the new k-vecs and point-group mappings R from CDML Table 3.11
kvmaps_pg = get(ΦNOTΩ_KVECS_AND_MAPS, arith_parent_sgnum, nothing)
kvmaps_pg === nothing && return nothing
# now we need to find the appropriate parent group Gᵖᵃʳ: if not an orphan,
# this is the parent holosymmetric space group G₀; if an orphan of type
# (a) or (b) it is the supergroup G′
if iszero(orphantype) # ⇒ not an orphan
opsGᵖᵃʳ = operations(find_holosymmetric_parent(sgnum, D))
else # ⇒ an orphan of type (a) or (b)
opsGᵖᵃʳ = operations(spacegroup(parent_sgnum, D))
if !iszero(p) # transform setting if it differs (origin only)
opsGᵖᵃʳ .= transform.(opsGᵖᵃʳ, Ref(Matrix{Float64}(I, 3, 3)), Ref(p))
end
end
# The mapping kvmaps_pg refers to a point operation {R|0} which may or may not
# exist in the parent space group `Gᵖᵃʳ` with operations `opsGᵖᵃʳ`: but an operation
# {R|v} should exist. We now find that operation (which we need when mapping irreps)
kvmaps = Vector{KVecMapping}()
for kvmap_pg in kvmaps_pg
R = kvmap_pg.op # R in CDML notation
matchidx = findfirst(op′->rotation(R)==rotation(op′), opsGᵖᵃʳ)
# For orphans of type (a) or (b) there is the possibility of a situation
# where R is **not** in Gᵖᵃʳ, namely if R = SymOperation{3}("-x,-y,-z"), see
# B&C p. 414-415.
# Despite this, for the KVecMappings included in CDML, this situation
# never arises; this must mean that all those "new" KVecs generated by
# inversion are equivalent to one of the "old" KVecs in Ω. We have verified
# this explicitly, see below:
# for otype = 1:2
# arith_orphs = Crystalline.find_arithmetic_partner.(Crystalline.ORPHAN_SGNUMS[otype])
# kvmaps_pg = get.(Ref(Crystalline.ΦNOTΩ_KVECS_AND_MAPS), arith_orphs, Ref(nothing))
# check = all.(xyzt.(getfield.(kvmap, :op)) .!= "-x,-y,-z" for kvmap in kvmaps_pg)
# display(check) # ⇒ vector of `true`s
# end
if matchidx === nothing
throw("Unexpected scenario encountered: please submit a bug-report.\n\t"*
"R = $(xyzt(R)), parent_sgnum = $(parent_sgnum), orphantype = $(orphantype)")
end
sgop = opsGᵖᵃʳ[matchidx] # {R|v} symop from parent sg (CDML/B&C notation)
push!(kvmaps, KVecMapping(kvmap_pg.kᴬlab, kvmap_pg.kᴮlab, sgop))
end
return kvmaps, orphantype
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 14694 | # ---------------------------------------------------------------------------------------- #
# NOTATION FOR LAYER, ROD, AND FRIEZE GROUPS
# notation from https://www.cryst.ehu.es/cgi-bin/subperiodic/programs/nph-sub_gen with a
# few manual corrections from Kopsky & Litvin's 'Nomenclature, Symbols and Classification
# of the Subperiodic Groups' report.
const LAYERGROUP_IUCs = ( # 80 layer groups
#=1=# "𝑝1", #=2=# "𝑝-1", #=3=# "𝑝112", #=4=# "𝑝11m", #=5=# "𝑝11a",
#=6=# "𝑝112/m", #=7=# "𝑝112/a", #=8=# "𝑝211", #=9=# "𝑝2₁11", #=10=# "𝑐211",
#=11=# "𝑝m11", #=12=# "𝑝b11", #=13=# "𝑐m11", #=14=# "𝑝2/m11", #=15=# "𝑝2₁/m11",
#=16=# "𝑝2/b11", #=17=# "𝑝2₁/b11", #=18=# "𝑐2/m11", #=19=# "𝑝222", #=20=# "𝑝2₁22",
#=21=# "𝑝2₁2₁2", #=22=# "𝑐222", #=23=# "𝑝mm2", #=24=# "𝑝ma2", #=25=# "𝑝ba2",
#=26=# "𝑐mm2", #=27=# "𝑝m2m", #=28=# "𝑝m2₁b", #=29=# "𝑝b2₁m", #=30=# "𝑝b2b",
#=31=# "𝑝m2a", #=32=# "𝑝m2₁n", #=33=# "𝑝b2₁a", #=34=# "𝑝b2n", #=35=# "𝑐m2m",
#=36=# "𝑐m2e", #=37=# "𝑝mmm", #=38=# "𝑝maa", #=39=# "𝑝ban", #=40=# "𝑝mam",
#=41=# "𝑝mma", #=42=# "𝑝man", #=43=# "𝑝baa", #=44=# "𝑝bam", #=45=# "𝑝bma",
#=46=# "𝑝mmn", #=47=# "𝑐mmm", #=48=# "𝑐mme", #=49=# "𝑝4", #=50=# "𝑝-4",
#=51=# "𝑝4/m", #=52=# "𝑝4/n", #=53=# "𝑝422", #=54=# "𝑝42₁2", #=55=# "𝑝4mm",
#=56=# "𝑝4bm", #=57=# "𝑝-42m", #=58=# "𝑝-42₁m", #=59=# "𝑝-4m2", #=60=# "𝑝-4b2",
#=61=# "𝑝4/mmm", #=62=# "𝑝4/nbm", #=63=# "𝑝4/mbm", #=64=# "𝑝4/nmm", #=65=# "𝑝3",
#=66=# "𝑝-3", #=67=# "𝑝312", #=68=# "𝑝321", #=69=# "𝑝3m1", #=70=# "𝑝31m",
#=71=# "𝑝-31m", #=72=# "𝑝-3m1", #=73=# "𝑝6", #=74=# "𝑝-6", #=75=# "𝑝6/m",
#=76=# "𝑝622", #=77=# "𝑝6mm", #=78=# "𝑝-6m2", #=79=# "𝑝-62m", #=80=# "𝑝6/mmm")
const RODGROUP_IUCs = ( # 75 rod groups
# (for multiple setting choices, we always pick setting 1)
#=1=# "𝓅1", #=2=# "𝓅-1", #=3=# "𝓅211", #=4=# "𝓅m11", #=5=# "𝓅c11",
#=6=# "𝓅2/m11", #=7=# "𝓅2/c1", #=8=# "𝓅112", #=9=# "𝓅112₁", #=10=# "𝓅11m",
#=11=# "𝓅112/m", #=12=# "𝓅112₁/m", #=13=# "𝓅222", #=14=# "𝓅222₁", #=15=# "𝓅mm2",
#=16=# "𝓅cc2", #=17=# "𝓅mc2₁", #=18=# "𝓅2mm", #=19=# "𝓅2cm", #=20=# "𝓅mmm",
#=21=# "𝓅ccm", #=22=# "𝓅mcm", #=23=# "𝓅4", #=24=# "𝓅4₁", #=25=# "𝓅4₂",
#=26=# "𝓅4₃", #=27=# "𝓅-4", #=28=# "𝓅4/m", #=29=# "𝓅4₂/m", #=30=# "𝓅422",
#=31=# "𝓅4₁22", #=32=# "𝓅4₂22", #=33=# "𝓅4₃22", #=34=# "𝓅4mm", #=35=# "𝓅4₂cm",
#=36=# "𝓅4cc", #=37=# "𝓅-42m", #=38=# "𝓅-42c", #=39=# "𝓅4/mmm", #=40=# "𝓅4/mcc",
#=41=# "𝓅4₂/mmc", #=42=# "𝓅3", #=43=# "𝓅3₁", #=44=# "𝓅3₂", #=45=# "𝓅-3",
#=46=# "𝓅312", #=47=# "𝓅3₁12", #=48=# "𝓅3₂12", #=49=# "𝓅3m1", #=50=# "𝓅3c1",
#=51=# "𝓅-31m", #=52=# "𝓅-31c", #=53=# "𝓅6", #=54=# "𝓅6₁", #=55=# "𝓅6₂",
#=56=# "𝓅6₃", #=57=# "𝓅6₄", #=58=# "𝓅6₅", #=59=# "𝓅-6", #=60=# "𝓅6/m",
#=61=# "𝓅6₃/m", #=62=# "𝓅622", #=63=# "𝓅6₁22", #=64=# "𝓅6₂22", #=65=# "𝓅6₃22",
#=66=# "𝓅6₄22", #=67=# "𝓅6₅22", #=68=# "𝓅6mm", #=69=# "𝓅6cc", #=70=# "𝓅6₃mc",
#=71=# "𝓅-6m2", #=72=# "𝓅-6c2", #=73=# "𝓅6/mmm", #=74=# "𝓅6/mcc", #=75=# "𝓅6₃/mmc")
const FRIEZEGROUP_IUCs = ( # 7 frieze groups
#=1=# "𝓅1", #=2=# "𝓅2", #=3=# "𝓅1m1", #=4=# "𝓅11m", #=5=# "𝓅11g",
#=6=# "𝓅2mm", #=7=# "𝓅2mg")
# ---------------------------------------------------------------------------------------- #
# ASSOCIATIONS BETWEEN LAYER, ROD, & FRIEZE GROUPS VS. SPACE, PLANE, & LINE GROUPS
# By indexing into the following arrays, one obtains the "parent" group number, associated
# with the index' group number. As an example, `PLANE2SPACE_NUM[16] = 168`, meaning that the
# 2D plane group ⋕16 has a parent in the 3D space group ⋕168.
# Manual comparison to Bilbao's listings, and consulting Litvin's book's Table 30 (which
# doesn't fully give the correct 1-to-1 matches, because the conventions changed later on)
const PLANE2LAYER_NUMS = (
1 #= p1 ⇒ 𝑝1 =#, 3 #= p2 ⇒ 𝑝112 =#, 11 #= p1m1 ⇒ 𝑝m11 =#,
12 #= p1g1 ⇒ 𝑝b11 =#, 13 #= c1m1 ⇒ 𝑐m11 =#, 23 #= p2mm ⇒ 𝑝mm2 =#,
24 #= p2mg ⇒ 𝑝ma2 =#, 25 #= p2gg ⇒ 𝑝ba2 =#, 26 #= c2mm ⇒ 𝑐mm2 =#,
49 #= p4 ⇒ 𝑝4 =#, 55 #= p4mm ⇒ 𝑝4mm =#, 56 #= p4gm ⇒ 𝑝4bm =#,
65 #= p3 ⇒ 𝑝3 =#, 69 #= p3m1 ⇒ 𝑝3m1 =#, 70 #= p31m ⇒ 𝑝3m1 =#,
73 #= p6 ⇒ 𝑝6 =#, 77 #= p6mm ⇒ 𝑝6mm =#)
# Data from Table 1 of the SI of Watanabe, Po, and Vishwanath's 2017 Nature Commun.
const LAYER2SPACE_NUMS = (
1 #= 𝑝1 ⇒ P1 =#, 2 #= 𝑝-1 ⇒ P-1 =#, 3 #= 𝑝112 ⇒ P2 =#,
6 #= 𝑝11m ⇒ Pm =#, 7 #= 𝑝11a ⇒ Pc =#, 10 #= 𝑝112/m ⇒ P2/m =#,
13 #= 𝑝112/a ⇒ P2/c =#, 3 #= 𝑝211 ⇒ P2 =#, 4 #= 𝑝2₁11 ⇒ P2₁ =#,
5 #= 𝑐211 ⇒ C2 =#, 6 #= 𝑝m11 ⇒ Pm =#, 7 #= 𝑝b11 ⇒ Pc =#,
8 #= 𝑐m11 ⇒ Cm =#, 10 #= 𝑝2/m11 ⇒ P2/m =#, 11 #= 𝑝2₁/m11 ⇒ P2₁/m =#,
13 #= 𝑝2/b11 ⇒ P2/c =#, 14 #= 𝑝2₁/b11 ⇒ P2₁/c =#, 12 #= 𝑐2/m11 ⇒ C2/m =#,
16 #= 𝑝222 ⇒ P222 =#, 17 #= 𝑝2₁22 ⇒ P222₁ =#, 18 #= 𝑝2₁2₁2 ⇒ P2₁2₁2 =#,
21 #= 𝑐222 ⇒ C222 =#, 25 #= 𝑝mm2 ⇒ Pmm2 =#, 28 #= 𝑝ma2 ⇒ Pma2 =#,
32 #= 𝑝ba2 ⇒ Pba2 =#, 35 #= 𝑐mm2 ⇒ Cmm2 =#, 25 #= 𝑝m2m ⇒ Pmm2 =#,
26 #= 𝑝m2₁b ⇒ Pmc2₁ =#, 26 #= 𝑝b2₁m ⇒ Pmc2₁ =#, 27 #= 𝑝b2b ⇒ Pcc2 =#,
28 #= 𝑝m2a ⇒ Pma2 =#, 31 #= 𝑝m2₁n ⇒ Pmn2₁ =#, 29 #= 𝑝b2₁a ⇒ Pca2₁ =#,
30 #= 𝑝b2n ⇒ Pnc2 =#, 38 #= 𝑐m2m ⇒ Amm2 =#, 39 #= 𝑐m2e ⇒ Aem2 =#,
47 #= 𝑝mmm ⇒ Pmmm =#, 49 #= 𝑝maa ⇒ Pccm =#, 50 #= 𝑝ban ⇒ Pban =#,
51 #= 𝑝mam ⇒ Pmma =#, 51 #= 𝑝mma ⇒ Pmma =#, 53 #= 𝑝man ⇒ Pmna =#,
54 #= 𝑝baa ⇒ Pcca =#, 55 #= 𝑝bam ⇒ Pbam =#, 57 #= 𝑝bma ⇒ Pbcm =#,
59 #= 𝑝mmn ⇒ Pmmn =#, 65 #= 𝑐mmm ⇒ Cmmm =#, 67 #= 𝑐mme ⇒ Cmme =#,
75 #= 𝑝4 ⇒ P4 =#, 81 #= 𝑝-4 ⇒ P-4 =#, 83 #= 𝑝4/m ⇒ P4/m =#,
85 #= 𝑝4/n ⇒ P4/n =#, 89 #= 𝑝422 ⇒ P422 =#, 90 #= 𝑝42₁2 ⇒ P42₁2 =#,
99 #= 𝑝4mm ⇒ P4mm =#, 100 #= 𝑝4bm ⇒ P4bm =#, 111 #= 𝑝-42m ⇒ P-42m =#,
113 #= 𝑝-42₁m ⇒ P-42₁m =#, 115 #= 𝑝-4m2 ⇒ P-4m2 =#, 117 #= 𝑝-4b2 ⇒ P-4b2 =#,
123 #= 𝑝4/mmm ⇒ P4/mmm =#, 125 #= 𝑝4/nbm ⇒ P4/nbm =#, 127 #= 𝑝4/mbm ⇒ P4/mbm =#,
129 #= 𝑝4/nmm ⇒ P4/nmm =#, 143 #= 𝑝3 ⇒ P3 =#, 147 #= 𝑝-3 ⇒ P-3 =#,
149 #= 𝑝312 ⇒ P312 =#, 150 #= 𝑝321 ⇒ P321 =#, 156 #= 𝑝3m1 ⇒ P3m1 =#,
157 #= 𝑝31m ⇒ P31m =#, 162 #= 𝑝-31m ⇒ P-31m =#, 164 #= 𝑝-3m1 ⇒ P-3m1 =#,
168 #= 𝑝6 ⇒ P6 =#, 174 #= 𝑝-6 ⇒ P-6 =#, 175 #= 𝑝6/m ⇒ P6/m =#,
177 #= 𝑝622 ⇒ P622 =#, 183 #= 𝑝6mm ⇒ P6mm =#, 187 #= 𝑝-6m2 ⇒ P-6m2 =#,
189 #= 𝑝-62m ⇒ P-62m =#, 191 #= 𝑝6/mmm ⇒ P6/mmm =#)
# this is just `LAYER2SPACE_NUMS[[PLANE2LAYER_NUMS...]]`
const PLANE2SPACE_NUMS = (
1 #= p1 ⇒ P1 =#, 3 #= p2 ⇒ P2 =#, 6 #= p1m1 ⇒ Pm =#,
7 #= p1g1 ⇒ Pc =#, 8 #= c1m1 ⇒ Cm =#, 25 #= p2mm ⇒ Pmm2 =#,
28 #= p2mg ⇒ Pma2 =#, 32 #= p2gg ⇒ Pba2 =#, 35 #= c2mm ⇒ Cmm2 =#,
75 #= p4 ⇒ P4 =#, 99 #= p4mm ⇒ P4mm =#, 100 #= p4gm ⇒ P4bm =#,
143 #= p3 ⇒ P3 =#, 156 #= p3m1 ⇒ P3m1 =#, 157 #= p31m ⇒ P31m =#,
168 #= p6 ⇒ P6 =#, 183 #= p6mm ⇒ P6mm =#)
const FRIEZE2SPACE_NUMS = (
1 #= 𝓅1 ⇒ P1 =#, 3 #= 𝓅2 ⇒ P2 =#, 6 #= 𝓅1m1 ⇒ Pm =#,
6 #= 𝓅11m ⇒ Pm =#, 7 #= 𝓅11g ⇒ Pc =#, 25 #= 𝓅2mm ⇒ Pmm2 =#,
28 #= 𝓅2mg ⇒ Pma2 =#)
const FRIEZE2LAYER_NUMS = (
1 #= 𝓅1 ⇒ 𝑝1 =#, 3 #= 𝓅2 ⇒ 𝑝112 =#, 11 #= 𝓅1m1 ⇒ 𝑝m11 =#,
4 #= 𝓅11m ⇒ 𝑝11m =#, 5 #= 𝓅11g ⇒ 𝑝11a =#, 23 #= 𝓅2mm ⇒ 𝑝mm2 =#,
24 #= 𝓅2mg ⇒ 𝑝ma2 =#)
const FRIEZE2ROD_NUMS = (
1 #= 𝓅1 ⇒ 𝓅1 =#, 3 #= 𝓅2 ⇒ 𝓅211 =#, 10 #= 𝓅1m1 ⇒ 𝓅11m =#,
4 #= 𝓅11m ⇒ 𝓅m11 =#, 5 #= 𝓅11g ⇒ 𝓅c11 =#, 18 #= 𝓅2mm ⇒ 𝓅2mm =#,
19 #= 𝓅2mg ⇒ 𝓅2cm =#)
const FRIEZE2PLANE_NUMS = (
1 #= 𝓅1 ⇒ p1 =#, 2 #= 𝓅2 ⇒ p2 =#, 3 #= 𝓅1m1 ⇒ p1m1 =#,
3 #= 𝓅11m ⇒ p1m1 =#, 4 #= 𝓅11g ⇒ p1g1 =#, 6 #= 𝓅2mm ⇒ p2mm =#,
7 #= 𝓅2mg ⇒ p2mg =#)
const ROD2SPACE_NUMS = (
1 #= 𝓅1 ⇒ P1 =#, 2 #= 𝓅-1 ⇒ P-1 =#, 3 #= 𝓅211 ⇒ P2 =#,
6 #= 𝓅m11 ⇒ Pm =#, 7 #= 𝓅c11 ⇒ Pc =#, 10 #= 𝓅2/m11 ⇒ P2/m =#,
13 #= 𝓅2/c1 ⇒ P2/c =#, 3 #= 𝓅112 ⇒ P2 =#, 4 #= 𝓅112₁ ⇒ P2₁ =#,
6 #= 𝓅11m ⇒ Pm =#, 10 #= 𝓅112/m ⇒ P2/m =#, 11 #= 𝓅112₁/m ⇒ P2₁/m =#,
16 #= 𝓅222 ⇒ P222 =#, 17 #= 𝓅222₁ ⇒ P222₁ =#, 25 #= 𝓅mm2 ⇒ Pmm2 =#,
27 #= 𝓅cc2 ⇒ Pcc2 =#, 26 #= 𝓅mc2₁ ⇒ Pmc2₁ =#, 25 #= 𝓅2mm ⇒ Pmm2 =#,
28 #= 𝓅2cm ⇒ Pma2 =#, 47 #= 𝓅mmm ⇒ Pmmm =#, 49 #= 𝓅ccm ⇒ Pccm =#,
63 #= 𝓅mcm ⇒ Cmcm =#, 75 #= 𝓅4 ⇒ P4 =#, 76 #= 𝓅4₁ ⇒ P4₁ =#,
77 #= 𝓅4₂ ⇒ P4₂ =#, 78 #= 𝓅4₃ ⇒ P4₃ =#, 81 #= 𝓅-4 ⇒ P-4 =#,
83 #= 𝓅4/m ⇒ P4/m =#, 84 #= 𝓅4₂/m ⇒ P4₂/m =#, 89 #= 𝓅422 ⇒ P422 =#,
91 #= 𝓅4₁22 ⇒ P4₁22 =#, 93 #= 𝓅4₂22 ⇒ P4₂22 =#, 95 #= 𝓅4₃22 ⇒ P4₃22 =#,
99 #= 𝓅4mm ⇒ P4mm =#, 101 #= 𝓅4₂cm ⇒ P4₂cm =#, 103 #= 𝓅4cc ⇒ P4cc =#,
111 #= 𝓅-42m ⇒ P-42m =#, 112 #= 𝓅-42c ⇒ P-42c =#, 123 #= 𝓅4/mmm ⇒ P4/mmm =#,
124 #= 𝓅4/mcc ⇒ P4/mcc =#, 131 #= 𝓅4₂/mmc ⇒ P4₂/mmc =#, 143 #= 𝓅3 ⇒ P3 =#,
144 #= 𝓅3₁ ⇒ P3₁ =#, 145 #= 𝓅3₂ ⇒ P3₂ =#, 147 #= 𝓅-3 ⇒ P-3 =#,
149 #= 𝓅312 ⇒ P312 =#, 151 #= 𝓅3₁12 ⇒ P3₁12 =#, 153 #= 𝓅3₂12 ⇒ P3₂12 =#,
156 #= 𝓅3m1 ⇒ P3m1 =#, 158 #= 𝓅3c1 ⇒ P3c1 =#, 162 #= 𝓅-31m ⇒ P-31m =#,
163 #= 𝓅-31c ⇒ P-31c =#, 168 #= 𝓅6 ⇒ P6 =#, 169 #= 𝓅6₁ ⇒ P6₁ =#,
171 #= 𝓅6₂ ⇒ P6₂ =#, 173 #= 𝓅6₃ ⇒ P6₃ =#, 172 #= 𝓅6₄ ⇒ P6₄ =#,
170 #= 𝓅6₅ ⇒ P6₅ =#, 174 #= 𝓅-6 ⇒ P-6 =#, 175 #= 𝓅6/m ⇒ P6/m =#,
176 #= 𝓅6₃/m ⇒ P6₃/m =#, 177 #= 𝓅622 ⇒ P622 =#, 178 #= 𝓅6₁22 ⇒ P6₁22 =#,
180 #= 𝓅6₂22 ⇒ P6₂22 =#, 182 #= 𝓅6₃22 ⇒ P6₃22 =#, 181 #= 𝓅6₄22 ⇒ P6₄22 =#,
179 #= 𝓅6₅22 ⇒ P6₅22 =#, 183 #= 𝓅6mm ⇒ P6mm =#, 184 #= 𝓅6cc ⇒ P6cc =#,
186 #= 𝓅6₃mc ⇒ P6₃mc =#, 187 #= 𝓅-6m2 ⇒ P-6m2 =#, 188 #= 𝓅-6c2 ⇒ P-6c2 =#,
191 #= 𝓅6/mmm ⇒ P6/mmm =#, 192 #= 𝓅6/mcc ⇒ P6/mcc =#, 194 #= 𝓅6/mmc ⇒ P6₃/mmc =#)
const LINE2ROD_NUMS = (1 #= p1 ⇒ 𝓅1 =#, 10 #= p1m ⇒ 𝓅11m =#)
const LINE2FRIEZE_NUMS = (1 #= p1 ⇒ 𝓅1 =#, 3 #= p1m ⇒ 𝓅1m1 =#)
# ---------------------------------------------------------------------------------------- #
# GROUP ELEMENTS
"""
$(TYPEDEF)$(TYPEDFIELDS)
A subperiodic group of embedding dimension `D` and periodicity dimension `P`.
Fields:
- `operations`: the `SymOperation`s of the finite factor group ``G/T``, where ``G`` is the
subperiodic group and ``T`` is the translation group of the associated lattice.
- `num`: the canonical number of the group, following the International Tables for
Crystallography, Volume E.
"""
struct SubperiodicGroup{D,P} <: AbstractGroup{D, SymOperation{D}}
num :: Int
operations :: Vector{SymOperation{D}}
end
const LayerGroup = SubperiodicGroup{3,2}
const RodGroup = SubperiodicGroup{3,1}
const FriezeGroup = SubperiodicGroup{2,1}
function _throw_subperiodic_domain(D::Integer, P::Integer)
throw(DomainError((D, P), "invalid dimension and periodicity for subperiodic group"))
end
@noinline function _throw_subperiodic_num(num::Integer, D::Integer, P::Integer)
maxnum, sub = (D==3 && P==2) ? (80, "layer") :
(D==3 && P==1) ? (75, "rod") :
(D==2 && P==1) ? (7, "frieze") :
_throw_subperiodic_domain(D, P)
throw(DomainError(num,
"group number must be between 1 and $maxnum for $sub groups (D=$D, P=$P)"))
end
@inline function _subperiodic_kind(D, P)
# TODO: Move to a testing-utils module (only used in /test/)
if D == 3 && P == 2
return "layer"
elseif D == 3 && P == 1
return "rod"
elseif D == 2 && P == 1
return "frieze"
else
_throw_subperiodic_domain(D, P)
end
end
function _check_valid_subperiodic_num_and_dim(num::Integer, D::Integer, P::Integer)
if D == 3 && P == 2 # layer groups
num > 80 && _throw_subperiodic_num(num, D, P)
elseif D == 3 && P == 1 # rod groups
num > 75 && _throw_subperiodic_num(num, D, P)
elseif D == 2 && P == 1 # frieze groups
num > 7 && _throw_subperiodic_num(num, D, P)
else
_throw_subperiodic_domain(D,P)
end
num < 1 && throw(DomainError(num, "group number must be a positive integer"))
return nothing
end
label(g::SubperiodicGroup{D,P}) where {D,P} = _subperiodic_label(num(g), D, P)
@inline function _subperiodic_label(num::Integer, D::Integer, P::Integer)
@boundscheck _check_valid_subperiodic_num_and_dim(num, D, P)
if D == 3 && P == 2
return LAYERGROUP_IUCs[num]
elseif D == 3 && P == 1
return RODGROUP_IUCs[num]
elseif D == 2 && P == 1
return FRIEZEGROUP_IUCs[num]
else
_throw_subperiodic_domain(D, P) # unreachable under boundschecking
end
end
centering(g::SubperiodicGroup{D,P}) where {D,P} = centering(num(g), D, P)
function centering(num::Integer, D::Integer, P::Integer)
if D == P
return centering(num, D)
else
lab = _subperiodic_label(num, D, P) # (also checks input validity)
return first(lab)
end
error("unreachable")
end
# ---------------------------------------------------------------------------------------- #
function reduce_ops(subg::SubperiodicGroup{<:Any,P}, conv_or_prim::Bool=true,
modw::Bool=true) where P
return reduce_ops(operations(subg), centering(subg), conv_or_prim, modw, Val(P))
end
function primitivize(subg::SubperiodicGroup{<:Any,P}, modw::Bool=true) where P
return typeof(subg)(num(subg), reduce_ops(subg, false, modw))
end
# TODO: conventionalize(::SubperiodicGroup)
# ---------------------------------------------------------------------------------------- #
# Band topology check for layer groups:
# w/ time-reversal symmetry
# "Z₂" = [2, 3, 7, 49, 50, 52, 66, 73]
# "Z₂×Z₂" = [6, 51, 75]
# w/o time-reversal symmetry:
# "Z₂" = [2, 3, 7]
# "Z₃" = [65]
# "Z₄" = [49, 50, 52]
# "Z₆" = [66, 73]
# "Z₂×Z₂" = [6]
# "Z₃×Z₃" = [74]
# "Z₄×Z₄" = [51]
# "Z₆×Z₆" = [75]
# cf. Tables S18 and S20 of https://doi.org/10.1038/s41467-017-00133-2
# ---------------------------------------------------------------------------------------- # | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 7504 | """
find_representation(symvals::AbstractVector{Number},
lgirs::AbstractVector{<:AbstractIrrep},
αβγ::Union{AbstractVector{<:Real},Nothing}=nothing,
assert_return_T::Type{<:Union{Integer, AbstractFloat}}=Int),
atol::Real=DEFAULT_ATOL,
maxresnorm::Real=1e-3,
verbose::Bool=false)
--> Vector{assert_return_T}
From a vector (or vector of vectors) of symmetry eigenvalues `symvals` sampled along all the
operations of a group gᵢ, whose irreps are contained in `irs` (evaluated with optional free
parameters `αβγ`), return the multiplicities of each irrep.
Optionally, the multiciplities' element type can be specified via the `assert_return_T`
argument (performing checked conversion; returns `nothing` if representation in
`assert_return_T` is impossible). This can be useful if one suspects a particular band to
transform like a fraction of an irrep (i.e., the specified symmetry data is incomplete).
If no valid set of multiplicities exist (i.e., is solvable, and has real-valued and
`assert_return_T` representible type), the sentinel value `nothing` is returned. Optional
debugging information can in this case be shown by setting `verbose=true`.
# Extended help
Effectively, this applies the projection operator P⁽ʲ⁾ of each irrep's character set
χ⁽ʲ⁾(gᵢ) (j = 1, ... , Nⁱʳʳ) to the symmetry data sᵢ ≡ `symvals`:
P⁽ʲ⁾ ≡ (dⱼ/|g|) ∑ᵢ χ⁽ʲ⁾(gᵢ)*gᵢ [characters χ⁽ʲ⁾(gᵢ), irrep dimension dⱼ]
P⁽ʲ⁾s = (dⱼ/|g|) ∑ᵢ χ⁽ʲ⁾(gᵢ)*sᵢ = nⱼ, [number of bands that transform like jth irrep]
returning the irrep multiplicities mⱼ ≡ nⱼ/dⱼ.
"""
function find_representation(symvals::AbstractVector{<:Number},
lgirs::AbstractVector{<:AbstractIrrep},
αβγ::Union{AbstractVector{<:Real},Nothing}=nothing,
assert_return_T::Type{<:Union{Integer, AbstractFloat}}=Int;
atol::Real=DEFAULT_ATOL,
maxresnorm::Real=1e-3,
verbose::Bool=false)
ct = characters(lgirs, αβγ)
χs = matrix(ct) # character table as matrix (irreps-as-columns & operations-as-rows)
# METHOD/THEORY: From projection operators, we have
# (dⱼ/|g|) ∑ᵢ χᵢⱼ*sᵢ = nⱼ ∀j (1)
# where χᵢⱼ≡χ⁽ʲ⁾(gᵢ) are the characters of the ith operation gᵢ of the jth irrep, sᵢ are
# the symmetry eigenvalues (possibly, a sum!)¹ of gᵢ, and nⱼ is the number of bands that
# transform like the jth irrep; finally, dⱼ is the jth irrep's dimension, and |g| is the
# number of operations in the group. What we want here is the multiplicity mⱼ, i.e. the
# number of times each irrep features in the band selection. mⱼ and nⱼ are related by
# mⱼ ≡ nⱼ/dⱼ and are both integers since each irrep must feature a whole number of
# times. Thus, we have
# |g|⁻¹ ∑ᵢ χᵢⱼ*sᵢ = mⱼ ∀j (2a)
# |g|⁻¹ χ†s = m (matrix notation) (2b)
# Adrian suggested an equivalent approach, namely that ∑ⱼ χᵢⱼmⱼ = sᵢ ∀i, i.e. that
# χm = s, (3)
# such that s can be decomposed in a basis of irrep characters. This is clearly an
# appealing perspective. It is easy to see that (2) and (3) are equivalent; but only if
# we start from (3). Specifically, from the orthogonality of characters, we have
# ∑ᵢ χʲ(gᵢ)*χᵏ(gᵢ) = δⱼₖ|g| ⇔ χ†χ = |g|I (4)
# Thus, if we multiply (3) by χ†, we immediately obtain (2b) by using (4).
# To go the other way, i.e. from (2) to (3), is harder since it is *not* true in general
# that χχ† ∝ I. Instead, the situation is that χ/|g| is the *pseudo*inverse of χ†, in
# the sense χ†(χ/|g|)χ† = χ†. This could almost certainly be exploited to go from (2b)
# to (3), but it is not really important.
#
# Unfortunately, (1) doesn't seem to hold if we work with "realified" co-reps (i.e.
# "doubled" complex or pseudoreal irreps). In that case, we do _not_² have χ†χ = |g|I.
# TODO: I'm not sure why this ruins (2) and not (3), but that seems to be the case.
# As such, we just use (3), even if it is slightly slower.
#
# ¹⁾ We can choose to work with a sum of symmetry eigenvalues of multiple bands - to
# obtain the irrep multiplicities of a band multiplet - because (1) is a linear
# one-to-one relation.
# ²⁾ Instead, χ†χ is still a diagonal matrix, but the diagonal entries corresponding to
# doubled irreps are 2|g| instead of |g| (from testing).
#inv_g_order = inv(order(first(lgirs))) # [not used; see above]
#ms = inv_g_order .* (χs' * symvals) # irrep multiplicities obtained from (2b)
ms = χs\symvals # Adrian's approach
residual = χs*ms - symvals
if norm(residual) > maxresnorm
if verbose
@info """computed multiplicities have a residual exceeding `maxresnorm`,
suggesting that there is no solution to ``χm = s``; typically, this
means that `symdata` is "incomplete" (in the sense that it e.g.,
only contains "half" a degeneracy); `nothing` returned as sentinel"""
end
return nothing
end
# check that imaginary part is numerically zero and that all entries are representible
# in type assert_return_T
msℝ = real.(ms)
if !isapprox(msℝ, ms, atol=atol)
if verbose
@info """non-negligible imaginary components found in irrep multicity; returning
`nothing` as sentinel""" maximum(imag, ms)
end
return nothing
end
if assert_return_T <: Integer
msT = round.(assert_return_T, msℝ)
if isapprox(msT, msℝ, atol=atol)
return msT
else
if verbose
@info """multiplicities cannot be represented by the requested integer type,
within the specified absolute tolerance (typically, this means that
`symdata` is "incomplete" and needs to be "expanded" (i.e. add
bands)"""
end
return nothing
end
elseif assert_return_T <: AbstractFloat
# TODO: not sure why we wouldn't want to check for `atol` distance from nearest
# integer here (returning `nothing` in the negative case) - should check if
# we ever actually rely on this
return convert.(assert_return_T, msℝ)
end
end
function find_representation(multiplet_symvals::AbstractVector{<:AbstractVector{<:Number}},
lgirs::AbstractVector{<:LGIrrep},
αβγ::Union{AbstractVector{<:Real},Nothing}=nothing,
assert_return_T::Type{<:Union{Integer, AbstractFloat}}=Int;
atol::Real=DEFAULT_ATOL)
# If multiple symmetry values are given, as a vector of vectors, we take their sum over
# the band-multiplet to determine irrep of the overall multiplet (see discussion in main
# method)
find_representation(sum.(multiplet_symvals), lgirs, αβγ, assert_return_T, atol=atol)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 40577 | """
@S_str -> SymOperation
Construct a `SymOperation` from a triplet form given as a string.
## Example
```jldoctest
julia> S"-y,x"
4⁺ ──────────────────────────────── (-y,x)
┌ 0 -1 ╷ 0 ┐
└ 1 0 ╵ 0 ┘
```
"""
macro S_str(s)
SymOperation(s)
end
function xyzt2matrix(s::AbstractString, Dᵛ::Val{D}) where D
W, w = xyzt2components(s, Dᵛ)
return hcat(SMatrix(W), SVector(w))
end
if !isdefined(Base, :eachsplit) # compat (https://github.com/JuliaLang/julia/pull/39245)
eachsplit(str::T, splitter; limit::Integer=0, keepempty::Bool=true) where T =
split(str, splitter; limit, keepempty)
end
function xyzt2components(s::AbstractString, ::Val{D}) where D
# initialize zero'd MArrays for rotation/translation parts (allocation will be elided)
W = zero(MMatrix{D, D, Float64}) # rotation
w = zero(MVector{D, Float64}) # translation
# "fill in" `W` and `w` according to content of `xyzts`
xyzts = eachsplit(s, ',')
xyzt2components!(W, w, xyzts)
# convert to SArrays (elides allocation since `xyzt2components!` is inlined)
return SMatrix(W), SVector(w)
end
@inline function xyzt2components!(W::MMatrix{D,D,T}, w::MVector{D,T},
xyzts #= iterator of AbstractStrings =#) where {D,T<:Real}
chars = D == 3 ? ('x','y','z') : D == 2 ? ('x','y') : ('x',)
d = 0 # dimension-consistency check
@inbounds for (i,s) in enumerate(xyzts)
# rotation/inversion/reflection part
firstidx = nextidx = firstindex(s)
while (idx = findnext(c -> c ∈ chars, s, nextidx)) !== nothing
idx = something(idx)
c = s[idx]
j = c=='x' ? 1 : (c=='y' ? 2 : 3)
if idx == firstidx
W[i,j] = one(T)
else
previdx = prevind(s, idx)
while (c′=s[previdx]; isspace(s[previdx]))
previdx = prevind(s, previdx)
previdx ≤ firstidx && break
end
if c′ == '+' || isspace(c′)
W[i,j] = one(T)
elseif c′ == '-'
W[i,j] = -one(T)
else
throw(ArgumentError("failed to parse provided string representation"))
end
end
nextidx = nextind(s, idx)
end
# nonsymmorphic part/fractional translation part
lastidx = lastindex(s)
if nextidx ≤ lastidx # ⇒ stuff "remaining" in `s`; a nonsymmorphic part
slashidx = findnext(==('/'), s, nextidx)
if slashidx !== nothing # interpret as integer fraction
num = SubString(s, nextidx, prevind(s, slashidx))
den = SubString(s, nextind(s, slashidx), lastidx)
w[i] = convert(T, parse(Int, num)/parse(Int, den))
else # interpret at number of type `T`
w[i] = parse(T, SubString(s, nextidx, lastidx))
end
end
d = i
end
d == D || throw(DimensionMismatch("incompatible matrix size and string format"))
return W, w
end
const IDX2XYZ = ('x', 'y', 'z')
function matrix2xyzt(O::AbstractMatrix{<:Real})
D = size(O,1)
buf = IOBuffer()
@inbounds for i in OneTo(D)
# point group part
firstchar = true
for j in OneTo(D)
Oᵢⱼ = O[i,j]
if !iszero(Oᵢⱼ)
if !firstchar || signbit(Oᵢⱼ)
print(buf, signaschar(Oᵢⱼ))
end
print(buf, IDX2XYZ[j])
firstchar = false
end
end
# nonsymmorphic/fractional translation part
if size(O,2) == D+1 # for size(O) = D×D+1, interpret as a space-group operation and
# check for nonsymmorphic parts
if !iszero(O[i,D+1])
fractionify!(buf, O[i,D+1])
end
end
i != D && print(buf, ',')
end
return String(take!(buf))
end
"""
issymmorph(op::SymOperation, cntr::Char) --> Bool
Return whether a given symmetry operation `op` is symmorphic (`true`) or nonsymmorphic
(`false`).
The operation is assumed provided in conventional basis with centering type `cntr`:
checking symmorphism is then equivalent to checking whether the operation's translation
part is zero or a lattice vector in the associated primitive basis.
"""
@inline function issymmorph(op::SymOperation{D}, cntr::Char) where D
P = primitivebasismatrix(cntr, Val(D))
w_primitive = transform_translation(op, P, nothing) # translation in a primitive basis
return iszero(w_primitive)
end
"""
issymmorph(sg::Union{SpaceGroup, LittleGroup}) --> Bool
Return whether a given space group `sg` is symmorphic (`true`) or nonsymmorphic (`false`).
"""
function issymmorph(g::AbstractGroup)
all(op->issymmorph(op, centering(g)), operations(g))
end
issymmorph(::PointGroup) = true
"""
issymmorph(sgnum::Integer, D::Integer=3) --> Bool
Return whether the space group with number `sgnum` and dimensionality `D` is symmorphic
(`true`) or nonsymmorphic (`false`).
Equivalent to `issymmorph(spacegroup(sgnum, D))` but uses memoization for performance.
"""
function issymmorph(sgnum::Integer, D::Integer=3)
@boundscheck _check_valid_sgnum_and_dim(sgnum, D)
# check against memoized look-up of calling `issymmorph(spacegroup(sgnum, D))`
if D == 3
return sgnum ∈ (1, 2, 3, 5, 6, 8, 10, 12, 16, 21, 22, 23, 25, 35, 38, 42, 44, 47,
65, 69, 71, 75, 79, 81, 82, 83, 87, 89, 97, 99, 107, 111, 115, 119,
121, 123, 139, 143, 146, 147, 148, 149, 150, 155, 156, 157, 160,
162, 164, 166, 168, 174, 175, 177, 183, 187, 189, 191, 195, 196,
197, 200, 202, 204, 207, 209, 211, 215, 216, 217, 221, 225, 229)
elseif D == 2
return sgnum ∉ (4, 7, 8, 12)
elseif D == 1
return true
else
error("unreachable: file a bug report")
end
end
# ----- POINT GROUP ASSOCIATED WITH SPACE/PLANE GROUP (FULL OR LITTLE) ---
"""
pointgroup(ops:AbstractVector{SymOperation{D}})
pointgroup(sg::AbstractGroup)
Computes the point group associated with a space group `sg` (characterized by
a set of operators `ops`, which, jointly with lattice translations generate
the space group), obtained by "taking away" any translational parts and
then reducing to the resulting unique rotational operations.
(technically, in the language of Bradley & Cracknell, this is the so-called
isogonal point group of `sg`; see Sec. 1.5).
Returns a `Vector` of `SymOperation`s.
"""
function pointgroup(ops::AbstractVector{SymOperation{D}}) where D
# find SymOperations that are unique with respect to their rotational parts
pgops = unique(rotation, ops)
# return rotations only from the above unique set (set translations to zero)
pgops .= SymOperation.(rotation.(pgops))
return pgops
end
pointgroup(sg::Union{SpaceGroup,LittleGroup}) = pointgroup(operations(sg))
# ----- GROUP ELEMENT COMPOSITION -----
"""
compose(op1::T, op2::T, modτ::Bool=true) where T<:SymOperation
Compose two symmetry operations `op1` ``= \\{W₁|w₁\\}`` and `op2` ``= \\{W₂|w₂\\}``
using the composition rule (in Seitz notation)
``\\{W₁|w₁\\}\\{W₂|w₂\\} = \\{W₁W₂|w₁+W₁w₂\\}``
By default, the translation part of the ``\\{W₁W₂|w₁+W₁w₂\\}`` is reduced to the range
``[0,1[``, i.e. computed modulo 1. This can be toggled off (or on) by the Boolean flag
`modτ` (enabled, i.e. `true`, by default). Returns another `SymOperation`.
The multiplication operator `*` is overloaded for `SymOperation`s to call `compose`, in the
manner `op1 * op2 = compose(op1, op2, modτ=true)`.
"""
function compose(op1::T, op2::T, modτ::Bool=true) where T<:SymOperation
T(compose(unpack(op1)..., unpack(op2)..., modτ)...)
end
function compose(W₁::T, w₁::R, W₂::T, w₂::R, modτ::Bool=true) where T<:SMatrix{D,D,<:Real} where R<:SVector{D,<:Real} where D
W′ = W₁*W₂
w′ = w₁ + W₁*w₂
if modτ
w′ = reduce_translation_to_unitrange(w′)
end
return W′, w′
end
(*)(op1::T, op2::T) where T<:SymOperation = compose(op1, op2)
"""
reduce_translation_to_unitrange_q(w::AbstractVector{<:Real}) --> :: typeof(w)
Reduce the components of the vector `w` to range [0.0, 1.0[, incorporating a tolerance
`atol` in the reduction.
"""
function reduce_translation_to_unitrange(w::AbstractVector{<:Real}; atol=DEFAULT_ATOL)
# naïve approach to achieve semi-robust reduction of integer-translation via a slightly
# awful "approximate" modulo approach; basically just the equivalent of mod.(w′,1.0),
# but reducing in a range DEFAULT_ATOL around each value.
w′ = similar(w)
for (i, wᵢ) in enumerate(w)
w′ᵢ = mod(wᵢ, one(eltype(w)))
if _fastpath_atol_isapprox(round(w′ᵢ), w′ᵢ; atol)
# mod.(w, 1.0) occassionally does not reduce values that are very nearly 1.0
# due to floating point errors: we use a tolerance here to round everything
# close to 0.0 or 1.0 exactly to 0.0
w′ᵢ = zero(eltype(w))
end
@inbounds w′[i] = w′ᵢ
end
return typeof(w)(w′)
end
"""
(⊚)(op1::T, op2::T) where T<:SymOperation --> Vector{Float64}
Compose two symmetry operations `op1` ``= \\{W₁|w₁\\}`` and `op2` ``= \\{W₂|w₂\\}`` and
return the quotient of ``w₁+W₁w₂`` and 1. This functionality complements
`op1*op2`, which yields the translation modulo 1; accordingly,
`translation(op1*op2) + op1⊚op2` yields the translation component
of the composition `op1` and `op2` *without* taking it modulo 1,
i.e. including any "trivial" lattice translation.
Note that ⊚ can be auto-completed in Julia via \\circledcirc+[tab]
"""
function (⊚)(op1::T, op2::T) where T<:SymOperation
# Translation result _without_ taking `mod`
w′ = translation(op1) + rotation(op1)*translation(op2)
# Then we take w′ modulo lattice vectors
w′′ = reduce_translation_to_unitrange(w′)
# Then we subtract the two
w′′′ = w′ - w′′
return w′′′
end
"""
inv(op::SymOperation{D}) --> SymOperation{D}
Compute the inverse {W|w}⁻¹ ≡ {W⁻¹|-W⁻¹w} of an operator `op` ≡ {W|w}.
"""
function inv(op::T) where T<:SymOperation
W = rotation(op)
w = translation(op)
W⁻¹ = inv(W)
w⁻¹ = -W⁻¹*w
return T(W⁻¹, w⁻¹)
end
"""
MultTable(ops::AbstractVector, modτ=true)
Compute the multiplication (or Cayley) table of `ops`, an iterable of `SymOperation`s.
A `MultTable` is returned, which contains symmetry operations resulting from composition
of `row` and `col` operators; the table of indices give the symmetry operators relative to
the ordering of `ops`.
## Keyword arguments
- `modτ` (default: `true`): whether composition of operations is taken modulo lattice
vectors (`true`) or not (`false`).
"""
function MultTable(ops; modτ::Bool=true)
N = length(ops)
table = Matrix{Int}(undef, N,N)
for (row,oprow) in enumerate(ops)
for (col,opcol) in enumerate(ops)
op′ = compose(oprow, opcol, modτ)
match = findfirst(≈(op′), ops)
if isnothing(match)
throw(DomainError(ops, "provided operations do not form a group; group does not contain $op′"))
end
@inbounds table[row,col] = match
end
end
return MultTable(ops, table)
end
function check_multtable_vs_ir(lgir::LGIrrep{D}, αβγ=nothing) where D
ops = operations(lgir)
sgnum = num(lgir); cntr = centering(sgnum, D)
primitive_ops = primitivize.(ops, cntr) # must do multiplication table in primitive basis, cf. choices in `compose`
check_multtable_vs_ir(MultTable(primitive_ops), lgir, αβγ)
end
function check_multtable_vs_ir(mt::MultTable, ir::AbstractIrrep, αβγ=nothing;
verbose::Bool=false)
havewarned = false
Ds = ir(αβγ)
ops = operations(ir)
if ir isa LGIrrep
k = position(ir)(αβγ)
end
N = length(ops)
checked = trues(N, N)
for (i,Dⁱ) in enumerate(Ds) # rows
for (j,Dʲ) in enumerate(Ds) # cols
@inbounds mtidx = mt.table[i,j]
if iszero(mtidx) && !havewarned
@warn "Provided MultTable is not a group; cannot compare with irreps"
checked[i,j] = false
havewarned = true
end
Dⁱʲ = Dⁱ*Dʲ
# If 𝐤 is on the BZ boundary and if the little group is nonsymmorphic
# the representation could be a ray representation (see Inui, p. 89),
# such that DᵢDⱼ = αᵢⱼᵏDₖ with a phase factor αᵢⱼᵏ = exp(i*𝐤⋅𝐭₀) where
# 𝐭₀ is a lattice vector 𝐭₀ = τᵢ + βᵢτⱼ - τₖ, for symmetry operations
# {βᵢ|τᵢ}. To ensure we capture this, we include this phase here.
# See Inui et al. Eq. (5.29) for explanation.
# Note that the phase's sign is opposite to that used in many other
# conventions (e.g. Bradley & Cracknell, 1972, Eq. 3.7.7 & 3.7.8),
# but consistent with that used in Stokes' paper (see irreps(::LGIrrep)).
# It is still a puzzle to me why I cannot successfully flip the sign
# of `ϕ` here and in `(lgir::LGIrrep)(αβγ)`.
if ir isa LGIrrep
t₀ = translation(ops[i]) .+ rotation(ops[i])*translation(ops[j]) .-
translation(ops[mtidx])
ϕ = 2π*dot(k, t₀) # accumulated ray-phase
match = Dⁱʲ ≈ cis(ϕ)*Ds[mtidx] # cis(x) = exp(ix)
else
match = Dⁱʲ ≈ Ds[mtidx]
end
if !match
checked[i,j] = false
if !havewarned && verbose
println("""Provided irreps do not match group multiplication table for group $(num(ir)) in irrep $(label(ir)):
First failure at (row,col) = ($(i),$(j));
Expected idx $(mtidx), got idx $(findall(≈(Dⁱʲ), Ds))""")
print("Expected irrep = ")
if ir isa LGIrrep
println(cis(ϕ)*Ds[mtidx])
else
println(Dⁱʲ)
end
println("Got irrep = $(Dⁱʲ)")
havewarned = true
end
end
end
end
return checked
end
# ----- LITTLE GROUP OF 𝐤 -----
# A symmetry operation g acts on a wave vector as (𝐤′)ᵀ = 𝐤ᵀg⁻¹ since we
# generically operate with g on functions f(𝐫) via gf(𝐫) = f(g⁻¹𝐫), such that
# the operation on a plane wave creates exp(i𝐤⋅g⁻¹𝐫); invariant plane waves
# then define the little group elements {g}ₖ associated with wave vector 𝐤.
# The plane waves are evidently invariant if 𝐤ᵀg⁻¹ = 𝐤ᵀ, or since g⁻¹ = gᵀ
# (orthogonal transformations), if (𝐤ᵀg⁻¹)ᵀ = 𝐤 = (g⁻¹)ᵀ𝐤 = g𝐤; corresponding
# to the requirement that 𝐤 = g𝐤). Because we have g and 𝐤 in different bases
# (in the direct {𝐑} and reciprocal {𝐆} bases, respectively), we have to take
# a little extra care here. Consider each side of the equation 𝐤ᵀ = 𝐤ᵀg⁻¹,
# originally written in Cartesian coordinates, and rewrite each Cartesian term
# through basis-transformation to a representation we know (w/ P(𝐗) denoting
# a matrix with columns of 𝐗m that facilitates this transformation):
# 𝐤ᵀ = [P(𝐆)𝐤(𝐆)]ᵀ = 𝐤(𝐆)ᵀP(𝐆)ᵀ (1)
# 𝐤ᵀg⁻¹ = [P(𝐆)𝐤(𝐆)]ᵀ[P(𝐑)g(𝐑)P(𝐑)⁻¹]⁻¹
# = 𝐤(𝐆)ᵀP(𝐆)ᵀ[P(𝐑)⁻¹]⁻¹g(𝐑)⁻¹P(𝐑)⁻¹
# = 𝐤(𝐆)ᵀ2πg(𝐑)⁻¹P(𝐑)⁻¹ (2)
# (1+2): 𝐤′(𝐆)ᵀP(𝐆)ᵀ = 𝐤(𝐆)ᵀ2πg(𝐑)⁻¹P(𝐑)⁻¹
# ⇔ 𝐤′(𝐆)ᵀ = 𝐤(𝐆)ᵀ2πg(𝐑)⁻¹P(𝐑)⁻¹[P(𝐆)ᵀ]⁻¹
# = 𝐤(𝐆)ᵀ2πg(𝐑)⁻¹P(𝐑)⁻¹[2πP(𝐑)⁻¹]⁻¹
# = 𝐤(𝐆)ᵀg(𝐑)⁻¹
# ⇔ 𝐤′(𝐆) = [g(𝐑)⁻¹]ᵀ𝐤(𝐆) = [g(𝐑)ᵀ]⁻¹𝐤(𝐆)
# where we have used that P(𝐆)ᵀ = 2πP(𝐑)⁻¹ several times. Importantly, this
# essentially shows that we can consider g(𝐆) and g(𝐑) mutually interchangeable
# in practice.
# By similar means, one can show that
# [g(𝐑)⁻¹]ᵀ = P(𝐑)ᵀP(𝐑)g(𝐑)[P(𝐑)ᵀP(𝐑)]⁻¹
# = [P(𝐆)ᵀP(𝐆)]⁻¹g(𝐑)[P(𝐆)ᵀP(𝐆)],
# by using that g(C)ᵀ = g(C)⁻¹ is an orthogonal matrix in the Cartesian basis.
# [ *) We transform from a Cartesian basis to an arbitrary 𝐗ⱼ basis via a
# [ transformation matrix P(𝐗) = [𝐗₁ 𝐗₂ 𝐗₃] with columns of 𝐗ⱼ; a vector
# [ v(𝐗) in the 𝐗-representation corresponds to a Cartesian vector v(C)≡v via
# [ v(C) = P(𝐗)v(𝐗)
# [ while an operator O(𝐗) corresponds to a Cartesian operator O(C)≡O via
# [ O(C) = P(𝐗)O(𝐗)P(𝐗)⁻¹
function littlegroup(ops::AbstractVector{SymOperation{D}}, kv::KVec{D},
cntr::Char='P') where D
k₀, kabc = parts(kv)
checkabc = !iszero(kabc)
idxlist = Int[]
for (idx, op) in enumerate(ops)
k₀′, kabc′ = parts(compose(op, kv, checkabc)) # this is k₀(𝐆)′ = [g(𝐑)ᵀ]⁻¹k₀(𝐆)
diff = k₀′ .- k₀
diff = primitivebasismatrix(cntr, Val(D))'*diff
kbool = all(el -> isapprox(el, round(el), atol=DEFAULT_ATOL), diff) # check if k₀ and k₀′ differ by a _primitive_ reciprocal vector
abcbool = checkabc ? isapprox(kabc′, kabc, atol=DEFAULT_ATOL) : true # check if kabc == kabc′; no need to check for difference by a reciprocal vec, since kabc is in interior of BZ
if kbool && abcbool # ⇒ part of little group
push!(idxlist, idx)
end
end
return idxlist, view(ops, idxlist)
end
"""
$(TYPEDSIGNATURES)
Return the little group associated with space group `sg` at the **k**-vector `kv`.
Optionally, an associated **k**-vector label `klab` can be provided; if not provided, the
empty string is used as label.
"""
function littlegroup(sg::SpaceGroup, kv::KVec, klab::String="")
_, lgops = littlegroup(operations(sg), kv, centering(sg))
return LittleGroup{dim(sg)}(num(sg), kv, klab, lgops)
end
# TODO: Generalize docstring to actual (broader) signature
"""
orbit(g::AbstractVector{<:SymOperation}, kv::KVec, cntr::Char) --> Vector{KVec{D}}
orbit(lg::LittleGroup)
orbit(lgir::LGIrrep)
Return the orbit of of the reciprocal-space vector `kv` under the action of the group
`g`, also known as the star of **k**.
The orbit of `kv` in `g` is the set of inequivalent **k**-points obtained by composition
of all the symmetry operations of `g` with `kv`. Two reciprocal vectors ``\\mathbf{k}``
and ``\\mathbf{k}'`` are equivalent if they differ by a primitive reciprocal lattice vector.
If `kv` and `g` are specified in a conventional basis but refer to a non-primitive
lattice, the centering type `cntr` must be provided to ensure that only equivalence by
primitive (not conventional) reciprocal lattice vectors are considered.
If the centering type of the group `g` can be inferred from `g` (e.g., if `g` is a
`SpaceGroup`), `orbit` will assume a conventional setting and use the inferred centering
type; otherwise, if `cntr` is neither explicitly set nor inferrable, a primitive setting is
assumed.
"""
function orbit(g::AbstractVector{SymOperation{D}},
v::Union{AbstractVec{D}, Bravais.AbstractPoint{D}},
P::Union{Nothing, AbstractMatrix{<:Real}} = nothing) where D
vs = [v]
for op in g
v′ = op*v
if !isapproxin(v′, vs, P, #=modw=#true)
push!(vs, v′)
end
end
return vs
end
function orbit(g::AbstractVector{SymOperation{D}},
v::Union{AbstractVec{D}, Bravais.AbstractPoint{D}},
cntr::Char) where D
return orbit(g, v, primitivebasismatrix(cntr, Val(D)))
end
orbit(sg::SpaceGroup{D}, kv::KVec{D}) where D = orbit(sg, kv, centering(sg))
"""
cosets(G, H)
For a subgroup `H` ``=H`` of `G` = ``G``, find a set of (left) coset representatives
``\\{g_i\\}`` of ``H`` in ``G``, such that (see e.g., Inui et al., Section 2.7)
```math
G = \\bigcup_i g_i H.
```
The identity operation ``1`` is always included in ``\\{g_i\\}``.
## Example
```jldoctest cosets
julia> G = pointgroup("6mm");
julia> H = pointgroup("3");
julia> Q = cosets(G, H)
4-element Vector{SymOperation{3}}:
1
2₀₀₁
m₁₁₀
m₋₁₁₀
```
To generate the associated cosets, simply compose the representatives with `H`:
```jldoctest cosets
julia> [compose.(Ref(q), H) for q in Q]
4-element Vector{Vector{SymOperation{3}}}:
[1, 3₀₀₁⁺, 3₀₀₁⁻]
[2₀₀₁, 6₀₀₁⁻, 6₀₀₁⁺]
[m₁₁₀, m₁₀₀, m₀₁₀]
[m₋₁₁₀, m₁₂₀, m₂₁₀]
```
"""
function cosets(
G::AbstractVector{T},
H::AbstractVector{T}
) where T<:AbstractOperation
iszero(rem(length(G), length(H))) || error("H must be a subgroup of G: failed Lagrange's theorem")
ind = div(length(G), length(H)) # [H:G]
representatives = [one(T)]
_cosets = Vector{T}[operations(H)]
sizehint!(representatives, ind)
sizehint!(_cosets, ind)
for g in G
any(_coset -> isapproxin(g, _coset), _cosets) && continue
push!(representatives, g)
push!(_cosets, compose.(Ref(g), H))
length(representatives) == ind && break
end
length(representatives) == ind || error("failed to find a set of coset representatives")
return representatives
end
@doc raw"""
compose(op::SymOperation, kv::KVec[, checkabc::Bool=true]) --> KVec
Return the composition `op` ``= \{\mathbf{W}|\mathbf{w}\}`` and a reciprocal-space vector
`kv` ``= \mathbf{k}``.
The operation is assumed to be specified the direct lattice basis, and `kv` in the
reciprocal lattice basis. If both were specified in the Cartesian basis, `op` would act
directly via its rotation part. However, because of the different bases, it now acts as:
```math
\mathbf{k}' = (\mathbf{W}^{\text{T}})^{-1}\mathbf{k}.
```
Note the transposition _and_ inverse of ``\mathbf{W}``, arising as a result of the implicit
real-space basis of ``\{\mathbf{W}|\mathbf{w}\}`` versus the reciprocal-space basis of
``\mathbf{k}``.
Note also that the composition of ``\{\mathbf{W}|\mathbf{w}\}`` with ``\mathbf{k}`` is
invariant under ``\mathbf{w}``, i.e., translations do not act in reciprocal space.
## Extended help
If `checkabc = false`, the free part of `KVec` is not transformed (can be improve
performance in situations when `kabc` is zero, and several transformations are requested).
"""
@inline function compose(op::SymOperation{D}, kv::KVec{D}, checkabc::Bool=true) where D
k₀, kabc = parts(kv)
W⁻¹ᵀ = transpose(inv(rotation(op)))
k₀′ = W⁻¹ᵀ*k₀
kabc′ = checkabc ? W⁻¹ᵀ * kabc : kabc
return KVec{D}(k₀′, kabc′)
end
@doc raw"""
compose(op::SymOperation, rv::RVec) --> RVec
Return the composition of `op` ``= \{\mathbf{W}|\mathbf{w}\}`` and a real-space vector `rv`
``= \mathbf{r}``.
The operation is taken to act directly, returning
```math
\mathbf{r}' = \{\mathbf{W}|\mathbf{w}\}\mathbf{r} = \mathbf{W}\mathbf{r} + \mathbf{w}.
```
The corresponding inverse action ``\{\mathbf{W}|\mathbf{w}\}^{-1}\mathbf{r} =
\mathbf{W}^{-1}\mathbf{r} - \mathbf{W}^{-1}\mathbf{w}`` can be obtained via
`compose(inv(op), rv)`.
"""
function compose(op::SymOperation{D}, rv::RVec{D}) where D
cnst, free = parts(rv)
W, w = unpack(op)
cnst′ = W*cnst + w
free′ = W*free
return RVec{D}(cnst′, free′)
end
(*)(op::SymOperation{D}, v::AbstractVec{D}) where D = compose(op, v)
"""
primitivize(op::SymOperation, cntr::Char, modw::Bool=true) --> typeof(op)
Return a symmetry operation `op′` ``≡ \\{W'|w'\\}`` in a primitive setting, transformed
from an input symmetry operation `op` ``= \\{W|w\\}`` in a conventional setting.
The operations ``\\{W'|w'\\}`` and ``\\{W|w\\}`` are related by a transformation
``\\{P|p\\}`` via (cf. Section 1.5.2.3 of [^ITA6]):
```math
\\{W'|w'\\} = \\{P|p\\}⁻¹\\{W|w\\}\\{P|p\\}.
```
where ``P`` and ``p`` are the basis change matrix and origin shifts, respectively.
The relevant transformation ``\\{P|p\\}`` is inferred from the centering type, as provided
by `cntr` (see also [`Bravais.centering`](@ref)).
By default, translation parts of `op′`, i.e. ``w'`` are reduced modulo 1 (`modw = true`); to
disable this, set `modw = false`.
[^ITA6]: M.I. Aroyo, International Tables of Crystallography, Vol. A, 6th ed. (2016).
"""
function primitivize(op::SymOperation{D}, cntr::Char, modw::Bool=true) where D
if (D == 3 && cntr === 'P') || (D == 2 && cntr === 'p')
# primitive basis: identity-transform, short circuit
return op
else
P = primitivebasismatrix(cntr, Val(D))
return transform(op, P, nothing, modw)
end
end
"""
conventionalize(op′::SymOperation, cntr::Char, modw::Bool=true) --> typeof(op)
Return a symmetry operation `op` ``= \\{W|w\\}`` in a conventional setting, transformed
from an input symmetry operation `op′` ``≡ \\{W'|w'\\}`` in a primitive setting.
See [`primitivize(::SymOperation, ::Char, ::Bool)`](@ref) for description of the centering
argument `cntr` and optional argument `modw`.
"""
function conventionalize(op::SymOperation{D}, cntr::Char, modw::Bool=true) where D
if (D == 3 && cntr === 'P') || (D == 2 && cntr === 'p')
# primitive basis: identity-transform, short circuit
return op
else
P = primitivebasismatrix(cntr, Val(D))
return transform(op, inv(P), nothing, modw)
end
end
@doc raw"""
transform(op::SymOperation, P::AbstractMatrix{<:Real},
p::Union{AbstractVector{<:Real}, Nothing}=nothing,
modw::Bool=true) --> SymOperation
Transforms a `op` ``= \{\mathbf{W}|\mathbf{w}\}`` by a rotation matrix `P` and a translation
vector `p` (can be `nothing` for zero-translations), producing a new symmetry operation
`op′` ``= \{\mathbf{W}'|\mathbf{w}'\}`` (cf. Section 1.5.2.3 of [^ITA6])
```math
\{\mathbf{W}'|\mathbf{w}'\} = \{\mathbf{P}|\mathbf{p}\}^{-1}\{\mathbf{W}|\mathbf{w}\}
\{\mathbf{P}|\mathbf{p}\}
```
with
```math
\mathbf{W}' = \mathbf{P}^{-1}\mathbf{W}\mathbf{P}
\text{ and }
\mathbf{w}' = \mathbf{P}^{-1}(\mathbf{w}+\mathbf{W}\mathbf{p}-\mathbf{p})
```
By default, the translation part of `op′`, i.e. ``\mathbf{w}'``, is reduced to the range
``[0,1)``, i.e. computed modulo 1. This can be disabled by setting `modw = false` (default,
`modw = true`).
See also [`Bravais.primitivize(::SymOperation, ::Char, ::Bool)`](@ref) and
[`Bravais.conventionalize(::SymOperation, ::Char, ::Bool)`](@ref).
[^ITA6]: M.I. Aroyo, International Tables of Crystallography, Vol. A, 6th ed. (2016).
"""
function transform(op::SymOperation{D}, P::AbstractMatrix{<:Real},
p::Union{AbstractVector{<:Real}, Nothing}=nothing,
modw::Bool=true) where D
W′ = transform_rotation(op, P) # = P⁻¹WP (+ rounding)
w′ = transform_translation(op, P, p, modw) # = P⁻¹(w+Wp-p)
# with W ≡ rotation(op) and w ≡ translation(op)
return SymOperation{D}(W′, w′)
end
function transform_rotation(op::SymOperation{D}, P::AbstractMatrix{<:Real}) where D
W = rotation(op)
W′ = P\(W*P) # = P⁻¹WP
# clean up rounding-errors introduced by transformation (e.g.
# occassionally produces -0.0). The rotational part will
# always have integer coefficients if it is in the conventional
# or primitive basis of its lattice; if transformed to a nonstandard
# lattice, it might not have that though.
W′_cleanup = ntuple(Val(D*D)) do i
@inbounds W′ᵢ = W′[i]
rW′ᵢ = round(W′ᵢ)
if !isapprox(W′ᵢ, rW′ᵢ, atol=DEFAULT_ATOL)
rW′ᵢ = W′ᵢ # non-standard lattice transformation; fractional elements
# (this is why we need Float64 in SymOperation{D})
end
# since round(x) takes positive values x∈[0,0.5] to 0.0 and negative
# values x∈[-0.5,-0.0] to -0.0 -- and since it is bad for us to have
# both 0.0 and -0.0 -- we convert -0.0 to 0.0 here
rW′ᵢ === -zero(Float64) && (rW′ᵢ = zero(Float64))
return W′ᵢ
end
if W′ isa SMatrix{D,D,Float64,D*D}
return SMatrix{D,D,Float64,D*D}(W′_cleanup)
else # P was not an SMatrix, so output isn't either
return copyto!(W′, W′_cleanup)
end
end
function transform_translation(op::SymOperation, P::AbstractMatrix{<:Real},
p::Union{AbstractVector{<:Real}, Nothing}=nothing,
modw::Bool=true)
w = translation(op)
if !isnothing(p)
w′ = P\(w+rotation(op)*p-p) # = P⁻¹(w+Wp-p)
else
w′ = P\w # = P⁻¹w [with p = zero(dim(op))]
end
if modw
return reduce_translation_to_unitrange(w′)
else
return w′
end
end
# TODO: Maybe implement this in mutating form; lots of unnecessary allocations below in
# many usecases
"""
reduce_ops(ops::AbstractVector{SymOperation{D}},
cntr::Char,
conv_or_prim::Bool=true,
modw::Bool=true) --> Vector{SymOperation{D}}
Reduce the operations `ops`, removing operations that are identical in the primitive basis
associated with the centering `cntr`.
If `conv_or_prim = false`, the reduced operations are returned in the primitive basis
associated with `cntr`; otherwise, in the conventional.
If `modw = true`, the comparison in the primitive basis is done modulo unit primitive
lattice vectors; otherwise not.
A final argument of type `::Val{P}` can be specified to indicate a subperiodic group of
periodicity dimension `P`, different from the spatial embedding dimension `D`.
"""
function reduce_ops(ops::AbstractVector{SymOperation{D}}, cntr::Char,
conv_or_prim::Bool=true, modw::Bool=true,
::Val{Pdim}=Val(D) #= to allow subperiodic groups =#) where {D,Pdim}
P = primitivebasismatrix(cntr, Val(D), Val(Pdim))
# transform ops (equiv. to `primitivize.(ops, cntr, modw)` but avoids loading `P` anew
# for each SymOperation
ops′ = transform.(ops, Ref(P), nothing, modw)
# remove equivalent operations
ops′_reduced = SymOperation{D}.(uniquetol(matrix.(ops′), atol=Crystalline.DEFAULT_ATOL))
if conv_or_prim # `true`: return in conventional basis
return transform.(ops′_reduced, Ref(inv(P)), nothing, modw)
else # `false`: return in primitive basis
return ops′_reduced
end
end
@inline function reduce_ops(slg::Union{SpaceGroup, LittleGroup},
conv_or_prim::Bool=true, modw::Bool=true)
return reduce_ops(operations(slg), centering(slg), conv_or_prim, modw)
end
function primitivize(sg::SpaceGroup, modw::Bool=true)
return typeof(sg)(num(sg), reduce_ops(sg, false, modw))
end
function primitivize(lg::LittleGroup, modw::Bool=true)
cntr = centering(lg)
# transform both k-point and operations
kv′ = primitivize(position(lg), cntr)
ops′ = reduce_ops(operations(lg), cntr, false, modw)
return typeof(lg)(num(lg), kv′, klabel(lg), ops′)
end
"""
cartesianize(op::SymOperation{D}, Rs::DirectBasis{D}) --> SymOperation{D}
Converts `opˡ` from a lattice basis to a Cartesian basis, by computing the
transformed operators `opᶜ = 𝐑*opˡ*𝐑⁻¹` via the Cartesian basis matrix 𝐑 (whose columns are
the `DirectBasis` vectors `Rs[i]`).
# Note 1
The matrix 𝐑 maps vectors coefficients in a lattice basis 𝐯ˡ to coefficients in a Cartesian
basis 𝐯ᶜ as 𝐯ˡ = 𝐑⁻¹𝐯ᶜ and vice versa as 𝐯ᶜ = 𝐑𝐯ˡ. Since a general transformation P
transforms an "original" vectors with coefficients 𝐯 to new coefficients 𝐯′ via 𝐯′ = P⁻¹𝐯
and since we here here consider the lattice basis as the "original" basis we have P = 𝐑⁻¹.
As such, the transformation of the operator `op` transforms as `opᶜ = P⁻¹*opˡ*P`, i.e.
`opᶜ = transform(opˡ,P) = transform(opˡ,𝐑⁻¹)`.
# Note 2
The display (e.g. Seitz and xyzt notation) of `SymOperation`s e.g. in the REPL implicitly
assumes integer coefficients for its point-group matrix: as a consequence, displaying
`SymOperation`s in a Cartesian basis may produce undefined behavior. The matrix
representation remains valid, however.
"""
function cartesianize(op::SymOperation{D}, Rs::DirectBasis{D}) where D
𝐑 = stack(Rs)
# avoids computing inv(𝐑) by _not_ calling out to transform(opˡ, inv(𝐑))
op′ = SymOperation{D}([𝐑*rotation(op)/𝐑 𝐑*translation(op)])
return op′
end
function cartesianize(sg::SpaceGroup{D}, Rs::DirectBasis{D}) where D
return SpaceGroup{D}(num(sg), cartesianize.(operations(sg), Ref(Rs)))
end
"""
findequiv(op::SymOperation, ops::AbstractVector{SymOperation{D}}, cntr::Char)
--> Tuple{Int, Vector{Float64}}
Search for an operator `op′` in `ops` which is equivalent, modulo differences
by *primitive* lattice translations `Δw`, to `op`. Return the index of `op′` in
`ops`, as well as the primitive translation difference `Δw`. If no match is found
returns `nothing`.
The small irreps of `op` at wavevector k, Dⱼᵏ[`op`], can be computed from
the small irreps of `op′`, Dⱼᵏ[`op′`], via Dⱼᵏ[`op`] = exp(2πik⋅`Δw`)Dⱼᵏ[`op′`]
"""
function findequiv(op::SymOperation{D}, ops::AbstractVector{SymOperation{D}},
cntr::Char) where D
W = rotation(op)
w = translation(op)
P = primitivebasismatrix(cntr, Val(D))
w′ = P\w # `w` in its primitive basis
for (j, opⱼ) in enumerate(ops)
Wⱼ = rotation(opⱼ)
wⱼ = translation(opⱼ)
wⱼ′ = P\w
if W == Wⱼ # rotation-part of op and opⱼ is identical
# check if translation-part of op and opⱼ is equivalent, modulo a primitive lattice translation
if all(el -> isapprox(el, round(el), atol=DEFAULT_ATOL), w′.-wⱼ′)
return j, w.-wⱼ
end
end
end
return nothing # didn't find any match
end
"""
_findsubgroup(opsᴳ::T, opsᴴ::T′) where T⁽′⁾<:AbstractVector{SymOperation}
--> Tuple{Bool, Vector{Int}}
Returns a 2-tuple with elements:
1. A boolean, indicating whether the group ``H`` (with operators `opsᴴ`) is a subgroup of
the group ``G`` (with operators `opsᴳ`), i.e. whether ``H < G``.
2. An indexing vector `idxs` of `opsᴳ` into `opsᴴ` (empty if `H` is not a subgroup of `G`),
such that `opsᴳ[idxs] == opsᴴ`.
"""
function _findsubgroup(opsᴳ::AbstractVector{SymOperation{D}},
opsᴴ::AbstractVector{SymOperation{D}}) where D
idxsᴳ²ᴴ = Vector{Int}(undef, length(opsᴴ))
@inbounds for (idxᴴ, opᴴ) in enumerate(opsᴴ)
idxᴳ = findfirst(==(opᴴ), opsᴳ)
if idxᴳ !== nothing
idxsᴳ²ᴴ[idxᴴ] = idxᴳ
else
return false, Int[]
end
end
return true, idxsᴳ²ᴴ
end
"""
issubgroup(opsᴳ::T, opsᴴ::T′) where T⁽′⁾<:AbstractVector{SymOperation} --> Bool
Determine whether the operations in group ``H`` are a subgroup of the group ``G`` (each with
operations `opsᴳ` and `opsᴴ`, respectively), i.e. whether ``H<G``.
Specifically, this requires that ``G`` and ``H`` are both groups and that for every ``h∈H``
there exists an element ``g∈G`` such that ``h=g``.
Returns a Boolean answer (`true` if normal, `false` if not).
## Note
This compares space groups rather than space group types, i.e. the comparison assumes a
matching setting choice between ``H`` and ``G``. To compare space group types with different
conventional settings, they must first be transformed to a shared setting.
"""
function issubgroup(opsᴳ::AbstractVector{SymOperation{D}},
opsᴴ::AbstractVector{SymOperation{D}}) where D
_subgroup_fastpath_checks(length(opsᴳ), length(opsᴴ)) || return false
return _is_setting_matched_subgroup(opsᴳ, opsᴴ)
end
function _is_setting_matched_subgroup(opsᴳ::AbstractVector{SymOperation{D}},
opsᴴ::AbstractVector{SymOperation{D}}) where D
for h in opsᴴ
found = false
for g in opsᴳ
# consider two operations identical if they differ by an integer translation
Δw = translation(h) - translation(g)
if isapprox(rotation(h), rotation(g), atol=DEFAULT_ATOL) &&
isapprox(Δw, round.(Δw), atol=DEFAULT_ATOL)
found = true
continue
end
end
found || return false
end
return true
end
function _subgroup_fastpath_checks(Nᴳ::Integer, Nᴴ::Integer)
# "fast-path" checks for H !< G (returns false if violated, true as sentinel otherwise)
Nᴳ > Nᴴ || return false # 1. Must be a proper supergroup (i.e. higher order)
return rem(Nᴳ, Nᴴ) == 0 # 2. Must obey Lagrange's theorem (index is an integer)
end
"""
isnormal(opsᴳ::AbstractVector{<:SymOperation},
opsᴴ::AbstractVector{<:SymOperation};
verbose::Bool=false) --> Bool
Determine whether the operations in group ``H`` are normal in the group ``G`` (each with
operations `opsᴳ` and `opsᴴ`), in the sense that
```math
ghg⁻¹ ∈ H, ∀ g∈G, ∀ h∈H
```
Returns a Boolean answer (`true` if normal, `false` if not).
## Note
This compares space groups rather than space group types, i.e. the comparison assumes a
matching setting choice between ``H`` and ``G``. To compare space group types with
different conventional settings, they must first be transformed to a shared setting.
"""
function isnormal(opsᴳ::AbstractVector{SymOperation{D}},
opsᴴ::AbstractVector{SymOperation{D}};
verbose::Bool=false) where D
for g in opsᴳ
g⁻¹ = inv(g)
for h in opsᴴ
# check if ghg⁻¹ ∉ G
h′ = g*h*g⁻¹
if !isapproxin(h′, opsᴴ, nothing; atol=Crystalline.DEFAULT_ATOL)
if verbose
println("\nNormality-check failure:\n",
"Found h′ = ", seitz(h′), "\n",
"But h′ should be an element of the group: ",
join(seitz.(opsᴴ), ", "))
end
return false
end
end
end
return true
end
"""
$(TYPEDSIGNATURES)
Return the group generated from a finite set of generators `gens`.
## Keyword arguments
- `cntr` (default, `nothing`): check equivalence of operations modulo primitive lattice
vectors (see also `isapprox(::SymOperation, ::SymOperation, cntr::Union{Nothing, Char})`;
only nonequivalent operations are included in the returned group.
- `modτ` (default, `true`): the group composition operation can either be taken modulo
lattice vectors (`true`) or not (`false`, useful e.g. for site symmetry groups). In this
case, the provided generators will also be taken modulo integer lattice translations.
- `Nmax` (default, `256`): the maximum size of the generated group. This is essentially
a cutoff set to ensure halting of execution in case the provided set of generators do not
define a *finite* group (especially relevant if `modτ=false`). If more operations than
`Nmax` are generated, the method throws an overflow error.
"""
function generate(gens::AbstractVector{SymOperation{D}};
cntr::Union{Nothing,Char}=nothing,
modτ::Bool = true,
Nmax::Integer = 256) where D
ops = if modτ
[SymOperation{D}(op.rotation,
reduce_translation_to_unitrange(translation(op))) for op in gens]
else
collect(gens)
end
unique!(ops)
Ngens = length(ops)
# FIXME: there's probably a more efficient way to do this?
# Ideas: apparently, the group order can be inferred from the generators without
# needing to compute the group itself (Schreier-Sims algorithm, see GAP; &
# also the Orbit-Stabilizer theorem; https://math.stackexchange.com/a/1706006).
while true
Nₒₚ = length(ops)
for opᵢ in (@view ops[OneTo(Nₒₚ)])
for opⱼ in (@view ops[OneTo(Ngens)]) # every op can be written as products w/ original generators
opᵢⱼ = compose(opᵢ, opⱼ, modτ)
if !isapproxin(opᵢⱼ, ops, cntr, modτ)
push!(ops, opᵢⱼ)
# early out if generators don't seem to form a closed group ...
length(ops) > Nmax && _throw_overflowed_generation()
end
end
end
Nₒₚ == length(ops) && return GenericGroup{D}(ops)
end
end
_throw_overflowed_generation() =
throw(OverflowError("The provided set of generators overflowed Nmax distinct "*
"operations: generators may not form a finite group; "*
"otherwise, try increasing Nmax")) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 40332 | # ---------------------------------------------------------------------------------------- #
# SymOperation
# ---------------------------------------------------------------------------------------- #
abstract type AbstractOperation{D} <: AbstractMatrix{Float64} end
# the subtyping of `AbstractOperation{D}` to `AbstractMatrix{Float64}` is a bit of a pun,
# especially for `MSymOperation` - but it makes a lot of linear-algebra-like things "just
# work"™; examples includes `^` and `isapprox` of arrays of `<:AbstractOperation`s.
# The interface of `AbstractOperation` is that it must define a `SymOperation(...)` that
# returns a `SymOperation` with the associated spatial transform
# define the AbstractArray interface for SymOperation
@propagate_inbounds getindex(op::AbstractOperation, i::Int) = matrix(op)[i]
IndexStyle(::Type{<:AbstractOperation}) = IndexLinear()
size(::AbstractOperation{D}) where D = (D, D+1)
copy(op::AbstractOperation) = op # cf. https://github.com/JuliaLang/julia/issues/41918
dim(::AbstractOperation{D}) where D = D
# extracting StaticArray representations of the symmetry operation, amenable to linear algebra
"""
rotation(op::AbstractOperation{D}) --> SMatrix{D, D, Float64}
Return the `D`×`D`` rotation part of `op`.
"""
rotation(op::AbstractOperation) = SMatrix(SymOperation(op).rotation)
"""
translation(op::AbstractOperation{D}) --> SVector{D, Float64}
Return the `D`-dimensional translation part of `op`.
"""
translation(op::AbstractOperation) = SymOperation(op).translation
"""
matrix(op::AbstractOperation{D}) --> SMatrix{D, D+1, Float64}
Return the `D`×`D+1` matrix representation of `op`.
"""
matrix(op::AbstractOperation) = matrix(SymOperation(op))
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct SymOperation{D} <: AbstractOperation{D}
rotation :: SqSMatrix{D, Float64} # a square stack-allocated matrix
translation :: SVector{D, Float64}
end
SymOperation(m::AbstractMatrix{<:Real}) = SymOperation{size(m,1)}(float(m))
function SymOperation{D}(m::AbstractMatrix{Float64}) where D
@boundscheck size(m) == (D, D+1) || throw(DomainError(size(m), "matrix size must be (D, D+1)"))
# we construct the SqSMatrix's tuple data manually, rather than calling e.g.
# `convert(SqSMatrix{D, Float64}, @view m[OneTo(D),OneTo(D)])`, just because it is
# slightly faster that way (maybe the view has a small penalty?)...
tuple_cols = ntuple(j -> ntuple(i -> (@inbounds m[i,j]), Val(D)), Val(D))
rotation = SqSMatrix{D, Float64}(tuple_cols)
translation = SVector{D, Float64}(ntuple(j -> (@inbounds m[j, D+1]), Val(D)))
return SymOperation{D}(rotation, translation)
end
function SymOperation(
r::Union{SMatrix{D,D,<:Real}, MMatrix{D,D,<:Real}},
t::Union{SVector{D,<:Real}, MVector{D,<:Real}}=zero(SVector{D,Float64})
) where D
return SymOperation{D}(SqSMatrix{D,Float64}(r), t)
end
SymOperation(t::SVector{D,<:Real}) where D = SymOperation(one(SqSMatrix{D,Float64}), SVector{D,Float64}(t))
SymOperation{D}(t::AbstractVector{<:Real}) where D = SymOperation(one(SqSMatrix{D,Float64}), SVector{D,Float64}(t))
SymOperation{D}(op::SymOperation{D}) where D = op # part of `AbstractOperation` interface (to allow shared `MSymOperation` & `SymOperation` manipulations)
function matrix(op::SymOperation{D}) where D
return SMatrix{D, D+1, Float64, D*(D+1)}(
(SquareStaticMatrices.flatten(op.rotation)..., translation(op)...))
end
# string constructors
xyzt(op::SymOperation) = matrix2xyzt(matrix(op))
SymOperation{D}(s::AbstractString) where D = SymOperation{D}(xyzt2components(s, Val(D))...)
# type-unstable convenience constructors; avoid for anything non-REPL related, if possible
SymOperation(m::Matrix{<:Real}) = SymOperation{size(m,1)}(float(m))
SymOperation(t::AbstractVector{<:Real}) = SymOperation{length(t)}(t)
SymOperation(s::AbstractString) = SymOperation{count(==(','), s)+1}(s)
rotation(m::AbstractMatrix{<:Real}) = @view m[:,1:end-1] # rotational (proper or improper) part of an operation
translation(m::AbstractMatrix{<:Real}) = @view m[:,end] # translation part of an operation
rotation(m::SMatrix{D,Dp1,<:Real}) where {D,Dp1} = m[:,SOneTo(D)] # needed for type-stability w/ StaticArrays (returns an SMatrix{D,D,...})
translation(m::SMatrix{D,Dp1,<:Real}) where {D,Dp1} = m[:,Dp1] # not strictly needed for type-stability (returns an SVector{D,...})
function (==)(op1::SymOperation{D}, op2::SymOperation{D}) where D
return op1.rotation == op2.rotation && translation(op1) == translation(op2)
end
function Base.isapprox(op1::SymOperation{D}, op2::SymOperation{D},
cntr::Union{Nothing,Char}=nothing, modw::Bool=true;
kws...) where D
# check rotation part
_fastpath_atol_isapprox(rotation(op1), rotation(op2); kws...) || return false
# check translation part
if cntr !== nothing && (D == 3 && cntr ≠ 'P' || D == 2 && cntr ≠ 'p')
P = primitivebasismatrix(cntr, Val(D))
t1 = transform_translation(op1, P, nothing, modw)
t2 = transform_translation(op2, P, nothing, modw)
else
t1 = translation(op1)
t2 = translation(op2)
if modw
t1 = reduce_translation_to_unitrange(t1)
t2 = reduce_translation_to_unitrange(t2)
end
end
return _fastpath_atol_isapprox(t1, t2; kws...)
end
@inline _fastpath_atol_isapprox(x, y; atol=DEFAULT_ATOL) = norm(x - y) ≤ atol # (cf. https://github.com/JuliaLang/julia/pull/47464)
unpack(op::SymOperation) = (rotation(op), translation(op))
one(::Type{SymOperation{D}}) where D = SymOperation{D}(one(SqSMatrix{D,Float64}),
zero(SVector{D,Float64}))
one(op::SymOperation) = one(typeof(op))
function isone(op::SymOperation{D}) where D
@inbounds for D₁ in SOneTo(D)
iszero(op.translation[D₁]) || return false
for D₂ in SOneTo(D)
check = D₁ ≠ D₂ ? iszero(op.rotation[D₁,D₂]) : isone(op.rotation[D₁,D₁])
check || return false
end
end
return true
end
# ---------------------------------------------------------------------------------------- #
# MultTable
# ---------------------------------------------------------------------------------------- #
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct MultTable{O} <: AbstractMatrix{O}
operations::Vector{O}
table::Matrix{Int} # Cayley table: indexes into `operations`
end
MultTable(ops::Vector{O}, table) where O = MultTable{O}(ops, Matrix{Int}(table))
MultTable(ops, table) = (O=typeof(first(ops)); MultTable(collect(O, ops), table))
@propagate_inbounds function getindex(mt::MultTable, i::Int)
mtidx = mt.table[i]
return mt.operations[mtidx]
end
size(mt::MultTable) = size(mt.table)
IndexStyle(::Type{<:MultTable}) = IndexLinear()
# ---------------------------------------------------------------------------------------- #
# AbstractVec: KVec & RVec & WyckoffPosition
# ---------------------------------------------------------------------------------------- #
# 𝐤-vectors (or, equivalently, 𝐫-vectors) are specified as a pair (k₀, kabc), denoting a 𝐤-vector
# 𝐤 = ∑³ᵢ₌₁ (k₀ᵢ + aᵢα+bᵢβ+cᵢγ)*𝐆ᵢ (w/ recip. basis vecs. 𝐆ᵢ)
# here the matrix kabc is columns of the vectors (𝐚,𝐛,𝐜) while α,β,γ are free parameters
# ranging over all non-special values (i.e. not coinciding with any high-sym 𝐤).
abstract type AbstractVec{D} end
# A type which must have a vector field `cnst` (subtyping `AbstractVector`, of length `D`)
# and a matrix field `free` (subtyping `AbstractMatrix`; of size `(D,D)`).
# Intended to represent points, lines, planes and volumes in direct (`RVec`) or reciprocal
# space (`KVec`).
constant(v::AbstractVec) = v.cnst
free(v::AbstractVec) = v.free
parts(v::AbstractVec) = (constant(v), free(v))
dim(::AbstractVec{D}) where D = D
isspecial(v::AbstractVec) = iszero(free(v))
parent(v::AbstractVec) = v # fall-back for non-wrapped `AbstracVec`s
"""
$(TYPEDSIGNATURES)
Return a vector whose entries are `true` (`false`) if the free parameters α,β,γ,
respectively, occur with nonzero (zero) coefficients in `v`.
"""
freeparams(v::AbstractVec) = map(colⱼ->!iszero(colⱼ), eachcol(free(v)))
"""
$(TYPEDSIGNATURES)
Return total number of free parameters occuring in `v`.
"""
nfreeparams(v::AbstractVec) = count(colⱼ->!iszero(colⱼ), eachcol(free(v)))
function (v::AbstractVec)(αβγ::AbstractVector{<:Real})
cnst, free = parts(v)
return cnst + free*αβγ
end
(v::AbstractVec)(αβγ::Vararg{Real}) = v([αβγ...])
(v::AbstractVec)(::Nothing) = constant(v)
(v::AbstractVec)() = v(nothing)
# parsing `AbstractVec`s from string format
function _strip_split(str::AbstractString)
str = filter(!isspace, strip(str, ['(', ')', '[', ']'])) # tidy up string (remove parens & spaces)
return split(str, ',') # TODO: change to `eachsplit`
end
function parse_abstractvec(xyz::Vector{<:SubString}, T::Type{<:AbstractVec{D}}) where D
length(xyz) == D || throw(DimensionMismatch("Dimension D doesn't match input string"))
cnst = zero(MVector{D, Float64})
free = zero(MMatrix{D, D, Float64})
for (i, coord) in enumerate(xyz)
# --- "free" coordinates, free[i,:] ---
for (j, matchgroup) in enumerate((('α','u','x'), ('β','v','y'), ('γ','w','z')))
pos₂ = findfirst(∈(matchgroup), coord)
if !isnothing(pos₂)
free[i,j] = searchpriornumerals(coord, pos₂)
end
end
# --- "fixed"/constant coordinate, cnst[i] ---
m = match(r"(?:\+|\-)?(?:(?:[0-9]|/|\.)+)(?!(?:[0-9]|\.)*[αuxβvyγwz])", coord)
# regex matches any digit sequence, possibly including slashes, that is _not_
# followed by one of the free-part identifiers αuβvγw (this is the '(?!' bit).
# If a '+' or '-' exist before the first digit, it is included in the match.
# The '(?:' bits in the groups simply makes sure that we don't actually create a
# capture group, because we only need the match and not the individual captures
# (i.e. just a small optimization of the regex).
# We do not allow arithmetic aside from division here, obviously: any extra numbers
# terms are ignored.
if m===nothing # no constant terms
if last(coord) ∈ ('α','u','x','β','v','y','γ','w','z') # free-part only case
continue # cnst[i] is zero already
else
throw(ErrorException("Unexpected parsing error in constant term"))
end
else
cnst[i] = parsefraction(m.match)
end
end
return T(cnst, free)
end
# generate KVec and RVec structs and parsers jointly...
for T in (:KVec, :RVec)
@eval begin
struct $T{D} <: AbstractVec{D}
cnst :: SVector{D,Float64}
free :: SqSMatrix{D,Float64}
end
free(v::$T) = SMatrix(v.free)
@doc """
$($T){D}(str::AbstractString) --> $($T){D}
$($T)(str::AbstractString) --> $($T)
$($T)(::AbstractVector, ::AbstractMatrix) --> $($T)
Return a `$($T)` by parsing the string representations `str`, supplied in one of the
following formats:
```jl
"(\$1,\$2,\$3)"
"[\$1,\$2,\$3]"
"\$1,\$2,\$3"
```
where the coordinates `\$1`,`\$2`, and `\$3` are strings that may contain fractions,
decimal numbers, and "free" parameters {`'α'`,`'β'`,`'γ'`} (or, alternatively and
equivalently, {`'u'`,`'v'`,`'w'`} or {`'x'`,`'y'`,`'z'`}).
Fractions such as `1/2` and decimal numbers can be parsed: but use of any other special
operator besides `/` will produce undefined behavior (e.g. do not use `*`).
## Example
```jldoctest
julia> $($T)("0.25,α,0")
[1/4, α, 0]
```
"""
function $T{D}(str::AbstractString) where D
xyz = _strip_split(str)
return parse_abstractvec(xyz, $T{D})
end
function $T(str::AbstractString)
xyz = _strip_split(str)
D = length(xyz)
return parse_abstractvec(xyz, $T{D})
end
function $T(cnst::AbstractVector{<:Real},
free::AbstractMatrix{<:Real}=zero(SqSMatrix{length(cnst), Float64}))
D = length(cnst)
@boundscheck D == LinearAlgebra.checksquare(free) || throw(DimensionMismatch("Mismatched argument sizes"))
$T{D}(SVector{D,Float64}(cnst), SqSMatrix{D,Float64}(free))
end
$T(xs::Vararg{Real, D}) where D = $T(SVector{D, Float64}(xs))
$T(xs::NTuple{D, <:Real}) where D = $T(SVector{D, Float64}(xs))
end
end
# arithmetic with abstract vectors
(-)(v::T) where T<:AbstractVec = T(-constant(v), -free(v))
for op in (:(-), :(+))
@eval function $op(v1::T, v2::T) where T<:AbstractVec
cnst1, free1 = parts(v1); cnst2, free2 = parts(v2)
return T($op(cnst1, cnst2), $op(free1, free2))
end
@eval function $op(v1::T, cnst2::AbstractVector) where T<:AbstractVec
dim(v1) == length(cnst2) || throw(DimensionMismatch("argument dimensions must be equal"))
cnst1, free1 = parts(v1)
return T($op(cnst1, cnst2), free1)
end
@eval function $op(cnst1::AbstractVector, v2::T) where T<:AbstractVec
length(cnst1) == dim(v2) || throw(DimensionMismatch("argument dimensions must be equal"))
cnst2, free2 = parts(v2)
return T($op(cnst1, cnst2), $op(free2))
end
end
function zero(::Type{T}) where T<:AbstractVec{D} where D
T(zero(SVector{D,Float64}), zero(SqSMatrix{D,Float64}))
end
zero(v::AbstractVec) = zero(typeof(v))
function (==)(v1::T, v2::T) where T<:AbstractVec
cnst1, free1 = parts(v1); cnst2, free2 = parts(v2) # ... unpacking
return cnst1 == cnst2 && free1 == free2
end
"""
isapprox(v1::T, v2::T,
[cntr::Union{Char, Nothing, AbstractMatrix{<:Real}}, modw::Bool];
kwargs...) --> Bool
Compute approximate equality of two vector quantities `v1` and `v2` of type,
`T = Union{<:AbstractVec, <:AbstractPoint}`.
If `modw = true`, equivalence is considered modulo lattice vectors. If `v1` and `v2` are
in the conventional setting of a non-primitive lattice, the centering type `cntr`
(see [`Bravais.centering`](@ref)) should be given to ensure that the relevant (primitive)
lattice vectors are used in the comparison.
## Optional arguments
- `cntr`: if not provided, the comparison will not account for equivalence by primitive
lattice vectors (equivalent to setting `cntr=nothing`), only equivalence by lattice
vectors in the basis of `v1` and `v2`.
`cntr` may also be provided as a `D`×`D` `AbstractMatrix` to give the relevant
transformation matrix directly.
- `modw`: whether vectors that differ by multiples of a lattice vector are considered
equivalent.
- `kwargs...`: optional keyword arguments (e.g., `atol` and `rtol`) to be forwarded to
`Base.isapprox`.
"""
function Base.isapprox(v1::T, v2::T,
cntr::Union{Nothing, Char, AbstractMatrix{<:Real}}=nothing,
modw::Bool=true;
kwargs...) where T<:AbstractVec{D} where D
v₀1, vabc1 = parts(v1); v₀2, vabc2 = parts(v2) # ... unpacking
T′ = typeof(parent(v1)) # for wrapped RVec or KVec types like WyckoffPosition
if modw # equivalence modulo a primitive lattice vector
δ₀ = v₀1 - v₀2
if cntr !== nothing
P = if cntr isa Char
primitivebasismatrix(cntr, Val(D))
else # AbstractMatrix{<:Real}
convert(SMatrix{D, D, eltype(cntr), D*D}, cntr)
end
δ₀ = T′ <: KVec ? P' * δ₀ :
T′ <: RVec ? P \ δ₀ :
error("`isapprox` is not implemented for type $T")
end
all(x -> isapprox(x, round(x); kwargs...), δ₀) || return false
else # ordinary equivalence
isapprox(v₀1, v₀2; kwargs...) || return false
end
# check if `vabc1 ≈ vabc2`; no need to check for difference by a lattice vector, since
# `vabc1` and `vabc2` are in the interior of the BZ
return isapprox(vabc1, vabc2; kwargs...)
end
function Base.isapprox(v1::T, v2::T,
cntr::Union{Nothing, Char, AbstractMatrix{<:Real}}=nothing,
modw::Bool=true;
kwargs...) where T<:AbstractPoint{D} where D
if modw # equivalence modulo a primitive lattice vector
δ = v1 - v2
if cntr !== nothing
P = if cntr isa Char
primitivebasismatrix(cntr, Val(D))
else # AbstractMatrix{<:Real}
convert(SMatrix{D, D, eltype(cntr), D*D}, cntr)
end
δ = T <: ReciprocalPoint ? P' * δ :
T <: DirectPoint ? P \ δ :
error("`isapprox` is not implemented for type $T")
end
return all(x -> isapprox(x, round(x); kwargs...), δ)
else # ordinary equivalence
return isapprox(v1, v2; kwargs...)
end
end
# Note that the _coefficients_ of a general 𝐤- or 𝐫-vector transforms differently than the
# reciprocal or direct _basis_, which transforms from non-primed to primed variants. See
# discussion in Bravais.jl /src/transform.jl.
@doc raw"""
transform(v::AbstractVec, P::AbstractMatrix) --> v′::typeof(v)
Return a transformed coordinate vector `v′` from an original coordinate vector `v` using a
basis change matrix `P`.
Note that a basis change matrix ``\mathbf{P}`` transforms direct coordinate vectors (`RVec`)
as ``\mathbf{r}' = \mathbf{P}^{-1}\mathbf{r}`` but transforms reciprocal coordinates
(`KVec`) as ``\mathbf{k}' = \mathbf{P}^{\mathrm{T}}\mathbf{k}`` [^ITA6]
[^ITA6]: M.I. Aroyo, International Tables of Crystallography, Vol. A, 6th edition (2016):
Secs. 1.5.1.2 and 1.5.2.1.
"""
transform(::AbstractVec, ::AbstractMatrix{<:Real})
function transform(kv::KVec{D}, P::AbstractMatrix{<:Real}) where D
# P maps an "original" reciprocal-space coefficient vector (k₁ k₂ k₃)ᵀ to a transformed
# coefficient vector (k₁′ k₂′ k₃′)ᵀ = Pᵀ(k₁ k₂ k₃)ᵀ
k₀, kabc = parts(kv)
return KVec{D}(P'*k₀, P'*kabc)
end
function transform(rv::RVec{D}, P::AbstractMatrix{<:Real}) where D
# P maps an "original" direct-space coefficient vector (r₁ r₂ r₃)ᵀ to a transformed
# coefficient vector (r₁′ r₂′ r₃′)ᵀ = P⁻¹(r₁ r₂ r₃)ᵀ
rcnst, rfree = parts(rv)
return RVec{D}(P\rcnst, P\rfree)
end
@doc raw"""
primitivize(v::AbstractVec, cntr::Char) --> v′::typeof(v)
Transforms a conventional coordinate vector `v` to a standard primitive basis (specified by
the centering type `cntr`), returning the primitive coordinate vector `v′`.
Note that a basis change matrix ``\mathbf{P}`` (as returned e.g. by
[`Bravais.primitivebasismatrix`](@ref)) transforms direct coordinate vectors
([`RVec`](@ref)) as ``\mathbf{r}' = \mathbf{P}^{-1}\mathbf{r}`` but transforms reciprocal
coordinates ([`KVec`](@ref)) as ``\mathbf{k}' = \mathbf{P}^{\text{T}}\mathbf{k}`` [^ITA6].
Recall also the distinction between transforming a basis and the coordinates of a vector.
[^ITA6]: M.I. Aroyo, International Tables of Crystallography, Vol. A, 6th edition (2016):
Secs. 1.5.1.2 and 1.5.2.1.
"""
function primitivize(v::AbstractVec{D}, cntr::Char) where D
if cntr == 'P' || cntr == 'p'
return v
else
P = primitivebasismatrix(cntr, Val(D))
return transform(v, P)
end
end
"""
conventionalize(v′::AbstractVec, cntr::Char) --> v::typeof(v′)
Transforms a primitive coordinate vector `v′` back to a standard conventional basis
(specified by the centering type `cntr`), returning the conventional coordinate vector `v`.
See also [`primitivize`](@ref) and [`transform`](@ref).
"""
function conventionalize(v′::AbstractVec{D}, cntr::Char) where D
if cntr == 'P' || cntr == 'p'
return v′
else
P = primitivebasismatrix(cntr, Val(D))
return transform(v′, inv(P))
end
end
# --- Wyckoff positions ---
struct WyckoffPosition{D} <: AbstractVec{D}
mult :: Int
letter :: Char
v :: RVec{D} # associated with a single representative
end
parent(wp::WyckoffPosition) = wp.v
free(wp::WyckoffPosition) = free(parent(wp))
constant(wp::WyckoffPosition) = constant(parent(wp))
multiplicity(wp::WyckoffPosition) = wp.mult
label(wp::WyckoffPosition) = string(multiplicity(wp), wp.letter)
function transform(wp::WyckoffPosition, P::AbstractMatrix{<:Real})
return typeof(wp)(wp.mult, wp.letter, transform(parent(wp), P))
end
# ---- ReciprocalPosition/Wingten position ---
# TODO: Wrap all high-symmetry k-points in a structure with a label and a `KVec`, similarly
# to `WyckoffPosition`s? Maybe kind of awful for dispatch purposes, unless we introduce a
# new abstract type between `AbstractVec` and `KVec`/`RVec`...
# ---------------------------------------------------------------------------------------- #
# AbstractGroup: Generic Group, SpaceGroup, PointGroup, LittleGroup, SiteGroup, MSpaceGroup
# ---------------------------------------------------------------------------------------- #
"""
$(TYPEDEF)
The abstract supertype of all group structures, with assumed group elements of type `O` and
embedding dimension `D`.
Minimum interface includes definitions of:
- `num(::AbstractGroup)`, returning an integer or tuple of integers.
- `operations(::AbstractGroup)`, returning a set of operations.
or, alternatively, fields with names `num` and `operations`, behaving accordingly.
"""
abstract type AbstractGroup{D,O} <: AbstractVector{O} end # where O <: AbstractOperation{D}
# Interface: must have fields `operations`, `num` and dimensionality `D`.
"""
num(g::AbstractGroup) -> Int
Return the conventional number assigned to the group `g`.
"""
num(g::AbstractGroup) = g.num
"""
operations(g::AbstractGroup) -> Vector{<:AbstractOperation}
Return an `Vector` containing the operations of the group `g`.
"""
operations(g::AbstractGroup) = g.operations
"""
dim(g::AbstractGroup) -> Int
Return the dimensionality of the coordinate space of the group `g`.
This is a statically known number, either equaling 1, 2, or 3.
"""
dim(::AbstractGroup{D}) where D = D
# define the AbstractArray interface for AbstractGroup
@propagate_inbounds getindex(g::AbstractGroup, i::Int) = operations(g)[i] # allows direct indexing into an op::SymOperation like op[1,2] to get matrix(op)[1,2]
@propagate_inbounds setindex!(g::AbstractGroup, op::SymOperation, i::Int) = (operations(g)[i] .= op)
size(g::AbstractGroup) = size(operations(g))
IndexStyle(::Type{<:AbstractGroup}) = IndexLinear()
# common `AbstractGroup` utilities
order(g::AbstractGroup) = length(g)
# fall-back for groups without an associated position notion (for dispatch); this extends
# `Base.position` rather than introducing a new `position` function due to
# https://github.com/JuliaLang/julia/issues/33799
"""
position(x::Union{AbstractGroup, AbstractIrrep})
If a position is associated with `x`, return it; if no position is associated, return
`nothing`.
Applicable cases include `LittleGroup` (return the associated **k**-vector) and `SiteGroup`
(returns the associated Wyckoff position), as well as their associated irrep types
(`LGIrrep` and `SiteIrrep`).
"""
Base.position(::AbstractGroup) = nothing
# sorting
sort!(g::AbstractGroup; by=xyzt, kws...) = (sort!(operations(g); by, kws...); g)
# --- Generic group ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct GenericGroup{D} <: AbstractGroup{D, SymOperation{D}}
operations::Vector{SymOperation{D}}
end
num(::GenericGroup) = 0
label(::GenericGroup) = ""
# --- Space group ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct SpaceGroup{D} <: AbstractGroup{D, SymOperation{D}}
num::Int
operations::Vector{SymOperation{D}}
end
label(sg::SpaceGroup) = iuc(sg)
# --- Point group ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct PointGroup{D} <: AbstractGroup{D, SymOperation{D}}
num::Int
label::String
operations::Vector{SymOperation{D}}
end
label(pg::PointGroup) = pg.label
iuc(pg::PointGroup) = label(pg)
centering(::PointGroup) = nothing
# --- Little group ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct LittleGroup{D} <: AbstractGroup{D, SymOperation{D}}
num::Int
kv::KVec{D}
klab::String
operations::Vector{SymOperation{D}}
end
LittleGroup(num::Integer, kv::KVec{D}, klab::AbstractString, ops::AbstractVector{SymOperation{D}}) where D = LittleGroup{D}(num, kv, klab, ops)
LittleGroup(num::Integer, kv::KVec{D}, ops::AbstractVector{SymOperation{D}}) where D = LittleGroup{D}(num, kv, "", ops)
Base.position(lg::LittleGroup) = lg.kv
klabel(lg::LittleGroup) = lg.klab
label(lg::LittleGroup) = iuc(num(lg), dim(lg))
orbit(lg::LittleGroup) = orbit(spacegroup(num(lg), dim(lg)), position(lg),
centering(num(lg), dim(lg)))
# --- Site symmetry group ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct SiteGroup{D} <: AbstractGroup{D, SymOperation{D}}
num::Int
wp::WyckoffPosition{D}
operations::Vector{SymOperation{D}}
cosets::Vector{SymOperation{D}}
end
label(g::SiteGroup) = iuc(num(g), dim(g))
centering(::SiteGroup) = nothing
"""
$(TYPEDSIGNATURES)
Return the cosets of a `SiteGroup` `g`.
The cosets generate the orbit of the Wyckoff position [`position(g)`](@ref) (see also
[`orbit(::SiteGroup)`](@ref)) and furnish a left-coset decomposition of the underlying space
group, jointly with the operations in `g` itself.
"""
cosets(g::SiteGroup) = g.cosets
Base.position(g::SiteGroup) = g.wp
# --- "position labels" of LittleGroup and SiteGroups ---
positionlabel(g::LittleGroup) = klabel(g)
positionlabel(g::SiteGroup) = label(position(g))
positionlabel(g::AbstractGroup) = ""
function fullpositionlabel(g::AbstractGroup) # print position label L & coords C as "L = C"
if position(g) !== nothing
return string(positionlabel(g), " = ", parent(position(g)))
else
return ""
end
end
# TODO: drop `klabel` and use `position` label exclusively?
# ---------------------------------------------------------------------------------------- #
# Reality <: Enum{Int8}: 1 (≡ real), -1 (≡ pseudoreal), 0 (≡ complex)
# ---------------------------------------------------------------------------------------- #
"""
Reality <: Enum{Int8}
Enum type with instances
```
REAL = 1
PSEUDOREAL = -1
COMPLEX = 0
```
The return value of [`reality(::AbstractIrrep)`](@ref) and [`calc_reality`](@ref) is an
instance of `Reality`. The reality type of an irrep is relevant for constructing "physically
real" irreps (co-reps) via [`realify`](@ref).
"""
@enum Reality::Int8 begin
REAL = 1
PSEUDOREAL = -1
COMPLEX = 0
UNDEF = 2 # for irreps that are artificially joined together (e.g., by ⊕)
end
# ---------------------------------------------------------------------------------------- #
# AbstractIrrep: PGIrrep, LGIrrep, SiteIrrep
# ---------------------------------------------------------------------------------------- #
"""
AbstractIrrep{D}
Abstract supertype for irreps of dimensionality `D`: must have fields `cdml`, `matrices`,
`g` (underlying group), `reality` (and possibly `translations`). May overload a function
`irreps` that returns the associated irrep matrices; if not, will simply be `matrices`.
"""
abstract type AbstractIrrep{D} end
group(ir::AbstractIrrep) = ir.g
label(ir::AbstractIrrep) = ir.cdml
matrices(ir::AbstractIrrep) = ir.matrices
"""
reality(ir::AbstractIrrep) --> Reality
Return the reality of `ir` (see []`Reality`](@ref)).
"""
reality(ir::AbstractIrrep) = ir.reality
translations(ir::AbstractIrrep) = hasfield(typeof(ir), :translations) ? ir.translations : nothing
characters(ir::AbstractIrrep, αβγ::Union{AbstractVector{<:Real},Nothing}=nothing) = tr.(ir(αβγ))
irdim(ir::AbstractIrrep) = size(first(matrices(ir)),1)
klabel(ir::AbstractIrrep) = klabel(label(ir))
order(ir::AbstractIrrep) = order(group(ir))
operations(ir::AbstractIrrep) = operations(group(ir))
num(ir::AbstractIrrep) = num(group(ir))
dim(::AbstractIrrep{D}) where D = D
Base.position(ir::AbstractIrrep) = position(group(ir))
function klabel(cdml::String)
idx = findfirst(c->isdigit(c) || issubdigit(c) || c=='ˢ', cdml) # look for regular digit or subscript digit
previdx = idx !== nothing ? prevind(cdml, idx) : lastindex(cdml)
return cdml[firstindex(cdml):previdx]
end
(ir::AbstractIrrep)(αβγ) = [copy(m) for m in matrices(ir)]
"""
$TYPEDSIGNATURES --> Bool
Return whether the provided irrep has been made "physically real" (i.e. is a corep) so that
it differs from the underlying irrep (i.e. whether the irrep and "derived" corep differ).
For an irrep that has not been passed to [`realify`](@ref), this is always `false`.
For an irrep produced by `realify`, this can be either `false` or `true`: if the reality
type is `REAL` it is `false`; if the reality type is `PSEUDOREAL` or `COMPLEX` it is `true`.
"""
iscorep(ir::AbstractIrrep) = ir.iscorep
"""
⊕(ir1::T, ir2::T, ir3::T...) where T<:AbstractIrrep --> T
Compute the representation obtained from direct sum of the irreps `ir1`, `ir2`, `ir3`, etc.
The resulting representation is reducible and has dimension
`irdim(ir1) + irdim(ir2) + irdim(ir3) + …`.
The groups of the provided irreps must be identical.
If `T isa LGIrrep`, the irrep translation factors must also be identical (due to an
implementation detail of the `LGIrrep` type).
Also provided via `Base.:+`.
"""
⊕(ir1::T, ir2::T, ir3::T...) where T<:AbstractIrrep = ⊕(⊕(ir1, ir2), ir3...)
Base.:+(ir1::T, ir2::T) where T<:AbstractIrrep = ⊕(ir1, ir2)
Base.:+(ir1::T, ir2::T, ir3::T...) where T<:AbstractIrrep = +(+(ir1, ir2), ir3...)
# --- Point group irreps ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct PGIrrep{D} <: AbstractIrrep{D}
cdml::String
g::PointGroup{D}
matrices::Vector{Matrix{ComplexF64}}
reality::Reality
iscorep::Bool
end
function PGIrrep{D}(cdml::String, pg::PointGroup{D}, matrices::Vector{Matrix{ComplexF64}},
reality::Reality) where D
PGIrrep{D}(cdml, pg, matrices, reality, false)
end
# --- Little group irreps ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct LGIrrep{D} <: AbstractIrrep{D}
cdml::String # CDML label of irrep (including k-point label)
g::LittleGroup{D} # contains sgnum, kv, klab, and operations that define the little group
matrices::Vector{Matrix{ComplexF64}}
translations::Vector{Vector{Float64}}
reality::Reality
iscorep::Bool
end
function LGIrrep{D}(cdml::String, lg::LittleGroup{D},
matrices::Vector{Matrix{ComplexF64}},
translations::Union{Vector{Vector{Float64}}, Nothing},
reality::Reality) where D
translations = if translations === nothing # sentinel value for all-zero translations
[zeros(Float64, D) for _=OneTo(order(lg))]
else
translations
end
return LGIrrep{D}(cdml, lg, matrices, translations, reality, false)
end
isspecial(lgir::LGIrrep) = isspecial(position(lgir))
issymmorph(lgir::LGIrrep) = issymmorph(group(lgir))
orbit(lgir::LGIrrep) = orbit(spacegroup(num(lgir), dim(lgir)), position(lgir),
centering(num(lgir), dim(lgir)))
# Site symmetry irreps
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct SiteIrrep{D} <: AbstractIrrep{D}
cdml :: String
g :: SiteGroup{D}
matrices :: Vector{Matrix{ComplexF64}}
reality :: Reality
iscorep :: Bool
pglabel :: String # label of point group that is isomorphic to the site group `g`
end
Base.position(siteir::SiteIrrep) = position(group(siteir))
# ---------------------------------------------------------------------------------------- #
# Collection{T}
# ---------------------------------------------------------------------------------------- #
"""
Collection{T} <: AbstractVector{T}
A wrapper around a `Vector{T}`, that allows custom printing and dispatch rules of custom
`T` (e.g., `AbstractIrrep` & `NewBandRep`).
In Crystalline, it is assumed that all elements of the wrapped vector are associated with
the _same_ space or point group. Accordingly, if `T` implements [`dim`](@ref) or
[`num`](@ref), either must return the same value for each element of the `Collection`
(and is equal to `dim(::Collection)` and `num(::Collection)`).
"""
struct Collection{T} <: AbstractVector{T}
vs :: Vector{T}
end
# ::: AbstractArray interface :::
Base.size(c::Collection) = size(c.vs)
Base.IndexStyle(::Type{<:Collection}) = IndexLinear()
@propagate_inbounds Base.getindex(c::Collection{T}, i::Integer) where T = c.vs[i]::T
@propagate_inbounds Base.setindex!(c::Collection{T}, v::T, i::Integer) where T = (c.vs[i]=v)
Base.similar(c::Collection{T}) where T = Collection{T}(similar(c.vs))
Base.iterate(c::Collection) = iterate(c.vs)
Base.iterate(c::Collection, state) = iterate(c.vs, state)
# ::: Interface :::
dim(vs::Collection) = dim(first(vs))
num(vs::Collection) = num(first(vs))
# ::: Methods for `Collection{<:AbstractIrrep}` :::
Base.position(c::Collection{<:AbstractIrrep}) = position(first(c))
# ---------------------------------------------------------------------------------------- #
# CharacterTable
# ---------------------------------------------------------------------------------------- #
abstract type AbstractCharacterTable <: AbstractMatrix{ComplexF64} end
@propagate_inbounds getindex(ct::AbstractCharacterTable, i::Int) = matrix(ct)[i]
size(ct::AbstractCharacterTable) = size(matrix(ct))
IndexStyle(::Type{<:AbstractCharacterTable}) = IndexLinear()
labels(ct::AbstractCharacterTable) = ct.irlabs
matrix(ct::AbstractCharacterTable) = ct.table
tag(ct::AbstractCharacterTable) = ct.tag
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct CharacterTable{D} <: AbstractCharacterTable
ops::Vector{SymOperation{D}}
irlabs::Vector{String}
table::Matrix{ComplexF64} # irreps along columns & operations along rows
# TODO: for LGIrreps, it might be nice to keep this more versatile and include the
# translations and k-vector as well; then we could print a result that doesn't
# specialize on a given αβγ choice (see also CharacterTable(::LGirrep))
tag::String
end
function CharacterTable{D}(ops::AbstractVector{SymOperation{D}},
irlabs::AbstractVector{String},
table::AbstractMatrix{<:Real}) where D
return CharacterTable{D}(ops, irlabs, table, "")
end
operations(ct::CharacterTable) = ct.ops
"""
characters(irs::AbstractVector{<:AbstractIrrep}, αβγ=nothing)
Compute the character table associated with vector of `AbstractIrrep`s `irs`, returning a
`CharacterTable`.
## Optional arguments
Optionally, an `αβγ::AbstractVector{<:Real}` variable can be passed to evaluate the irrep
(and associated characters) with concrete free parameters (e.g., for `LGIrrep`s, a concrete
**k**-vector sampled from a "line-irrep"). Defaults to `nothing`, indicating it being either
irrelevant (e.g., for `PGIrrep`s) or all free parameters implicitly set to zero.
"""
function characters(irs::AbstractVector{<:AbstractIrrep{D}},
αβγ::Union{AbstractVector{<:Real}, Nothing}=nothing) where D
g = group(first(irs))
table = Array{ComplexF64}(undef, length(g), length(irs))
for (j,col) in enumerate(eachcol(table))
col .= characters(irs[j], αβγ)
end
return CharacterTable{D}(operations(g), label.(irs), table, _group_descriptor(g))
end
struct ClassCharacterTable{D} <: AbstractCharacterTable
classes_ops::Vector{Vector{SymOperation{D}}}
irlabs::Vector{String}
table::Matrix{ComplexF64} # irreps along columns & class-representative along rows
tag::String
end
classes(ct::ClassCharacterTable) = ct.classes_ops
operations(ct::ClassCharacterTable) = first.(classes(ct)) # representative operations
"""
classcharacters(irs::AbstractVector{<:AbstractIrrep}, αβγ=nothing)
Compute the character table associated with the conjugacy classes of a vector of
`AbstractIrrep`s `irs`, returning a `ClassCharacterTable`.
Since characters depend only on the conjugacy class (this is not true for ray, or
projective, irreps), the class-specific characters often more succintly communicate the same
information as the characters for each operation (as returned by [`characters`](@ref)).
See also: [`classes`](@ref).
## Optional arguments
Optionally, an `αβγ::AbstractVector{<:Real}` variable can be passed to evaluate the irrep
(and associated characters) with concrete free parameters (e.g., for `LGIrrep`s, a concrete
**k**-vector sampled from a "line-irrep"). Defaults to `nothing`, indicating it being either
irrelevant (e.g., for `PGIrrep`s) or all free parameters implicitly set to zero.
"""
function classcharacters(irs::AbstractVector{<:AbstractIrrep{D}},
αβγ::Union{AbstractVector{<:Real}, Nothing}=nothing) where D
g = group(first(irs))
classes_ops = classes(g)
classes_idx = [findfirst(==(first(class_ops)), g)::Int for class_ops in classes_ops]
table = Array{ComplexF64}(undef, length(classes_ops), length(irs))
for j in 1:length(irs)
ir = irs[j](αβγ)
for (i,idx) in enumerate(classes_idx)
table[i,j] = tr(ir[idx])
end
end
return ClassCharacterTable{D}(classes_ops, label.(irs), table, _group_descriptor(g))
end
# ---------------------------------------------------------------------------------------- #
# BandRep & BandRepSet (band representations)
# ---------------------------------------------------------------------------------------- #
# --- BandRep ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct BandRep <: AbstractVector{Int}
wyckpos::String # Wyckoff position that induces the BR
sitesym::String # Site-symmetry point group of Wyckoff pos (IUC notation)
label::String # Symbol ρ↑G, with ρ denoting the irrep of the site-symmetry group
dim::Int # Dimension (i.e. # of bands) in band rep
spinful::Bool # Whether a given bandrep involves spinful irreps ("\bar"'ed irreps)
irvec::Vector{Int} # Vector that references irlabs of a parent BandRepSet; nonzero
# entries correspond to an element in the band representation
irlabs::Vector{String} # A reference to the labels; same as in the parent BandRepSet
end
Base.position(BR::BandRep) = BR.wyckpos
sitesym(BR::BandRep) = BR.sitesym
label(BR::BandRep) = BR.label
irreplabels(BR::BandRep) = BR.irlabs
"""
dim(BR::BandRep) --> Int
Return the number of bands included in the provided `BandRep`.
"""
dim(BR::BandRep) = BR.dim # TODO: Deprecate to `occupation` instead
# define the AbstractArray interface for BandRep
size(BR::BandRep) = (size(BR.irvec)[1] + 1,) # number of irreps sampled by BandRep + 1 (filling)
@propagate_inbounds function getindex(BR::BandRep, i::Int)
return i == length(BR.irvec)+1 ? dim(BR) : BR.irvec[i]
end
IndexStyle(::Type{<:BandRep}) = IndexLinear()
function iterate(BR::BandRep, i=1)
# work-around performance issue noted in https://discourse.julialang.org/t/iteration-getindex-performance-of-abstractarray-wrapper-types/53729
if i == length(BR)
return dim(BR), i+1
else
return iterate(BR.irvec, i) # also handles `nothing` when iteration is done
end
end
# --- BandRepSet ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct BandRepSet <: AbstractVector{BandRep}
sgnum::Int # space group number, sequential
bandreps::Vector{BandRep}
kvs::Vector{<:KVec} # Vector of 𝐤-points # TODO: Make parametric
klabs::Vector{String} # Vector of associated 𝐤-labels (in CDML notation)
irlabs::Vector{String} # Vector of (sorted) CDML irrep labels at _all_ 𝐤-points
spinful::Bool # Whether the band rep set includes (true) or excludes (false) spinful irreps
timereversal::Bool # Whether the band rep set assumes time-reversal symmetry (true) or not (false)
end
num(brs::BandRepSet) = brs.sgnum
klabels(brs::BandRepSet) = brs.klabs
irreplabels(brs::BandRepSet) = brs.irlabs
isspinful(brs::BandRepSet) = brs.spinful
reps(brs::BandRepSet) = brs.bandreps
# define the AbstractArray interface for BandRepSet
size(brs::BandRepSet) = (length(reps(brs)),) # number of distinct band representations
@propagate_inbounds getindex(brs::BandRepSet, i::Int) = reps(brs)[i]
IndexStyle(::Type{<:BandRepSet}) = IndexLinear() | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 17407 | # ---------------------------------------------------------------------------------------- #
# AbstractSymmetryVector definition
abstract type AbstractSymmetryVector{D} <: AbstractVector{Int} end
# ---------------------------------------------------------------------------------------- #
# SymmetryVector
mutable struct SymmetryVector{D} <: AbstractSymmetryVector{D}
const lgirsv :: Vector{Collection{LGIrrep{D}}}
const multsv :: Vector{Vector{Int}}
occupation :: Int
end
# ::: AbstractSymmetryVector interface :::
irreps(n::SymmetryVector) = n.lgirsv
multiplicities(n::SymmetryVector) = n.multsv
occupation(n::SymmetryVector) = n.occupation
SymmetryVector(n::SymmetryVector) = n
SymmetryVector{D}(n::SymmetryVector{D}) where D = n
SymmetryVector{D′}(::SymmetryVector{D}) where {D′, D} = error("incompatible dimensions")
# ::: AbstractArray interface beyond AbstractSymmetryVector :::
function Base.similar(n::SymmetryVector{D}) where D
SymmetryVector{D}(n.lgirsv, similar(n.multsv), 0)
end
@propagate_inbounds function Base.setindex!(n::SymmetryVector, v::Int, i::Int)
Nⁱʳ = length(n)
@boundscheck i > Nⁱʳ && throw(BoundsError(n, i))
i == Nⁱʳ && (n.occupation = v; return v)
i₀ = i₁ = 0
for mults in multiplicities(n)
i₁ += length(mults)
if i ≤ i₁
mults[i-i₀] = v
return v
end
i₀ = i₁
end
end
# ::: Optimizations and utilities :::
function Base.Vector(n::SymmetryVector)
nv = Vector{Int}(undef, length(n))
i = 1
@inbounds for mults in multiplicities(n)
N = length(mults)
nv[i:i+N-1] .= mults
i += N
end
nv[end] = occupation(n)
return nv
end
irreplabels(n::SymmetryVector) = [label(ir) for ir in Iterators.flatten(irreps(n))]
klabels(n::SymmetryVector) = [klabel(first(irs)) for irs in irreps(n)]
num(n::SymmetryVector) = num(first(first(irreps(n))))
# ::: Parsing from string :::
"""
parse(::Type{SymmetryVector{D}},
s::AbstractString,
lgirsv::Vector{Collection{LGIrrep{D}}}) -> SymmetryVector{D}
Parse a string `s` to a `SymmetryVector` over the irreps provided in `lgirsv`.
The irrep labels of `lgirsv` and `s` must use the same convention.
## Example
```jldoctest
julia> brs = calc_bandreps(220);
julia> lgirsv = irreps(brs); # irreps at P, H, Γ, & PA
julia> s = "[2P₃, 4N₁, H₁H₂+H₄H₅, Γ₁+Γ₂+Γ₄+Γ₅, 2PA₃]";
julia> parse(SymmetryVector, s, lgirsv)
15-irrep SymmetryVector{3}:
[2P₃, 4N₁, H₁H₂+H₄H₅, Γ₁+Γ₂+Γ₄+Γ₅, 2PA₃] (8 bands)
```
"""
function Base.parse(
T::Type{<:SymmetryVector},
s::AbstractString,
lgirsv::Vector{Collection{LGIrrep{D}}}) where D
if !isnothing(dim(T)) && dim(T) != D
# small dance to allow using both `T=SymmetryVector` & `T=SymmetryVector{D}`
error("incompatible dimensions of requested SymmetryVector and provided `lgirsv`")
end
s′ = replace(s, " "=>"", "*"=>"")
multsv = [zeros(Int, length(lgirs)) for lgirs in lgirsv]
μ = typemax(Int) # sentinel for uninitialized
for (i, lgirs) in enumerate(lgirsv)
found_irrep = false
for (j, lgir) in enumerate(lgirs)
irlab = label(lgir)
idxs = findfirst(irlab, s′)
isnothing(idxs) && continue
found_irrep = true
pos₂ = first(idxs)
m = searchpriornumerals(s′, pos₂, Int)
multsv[i][j] = m
end
if !found_irrep
error("could not identify any irreps associated with the \
$(klabel(first(lgirs)))-point in the input string $s")
end
μ′ = sum(multsv[i][j]*irdim(lgirs[j]) for j in eachindex(lgirs))
if μ == typemax(Int) # uninitialized
μ = μ′
else
# validate that occupation number is invariant across all k-points
μ == μ′ || error("inconsistent occupation numbers across k-points")
end
end
return SymmetryVector(lgirsv, multsv, μ)
end
# ---------------------------------------------------------------------------------------- #
# AbstractSymmetryVector interface & shared implementation
# ::: API :::
"""
SymmetryVector(n::AbstractSymmetryVector) -> SymmetryVector
Return a `SymmetryVector` realization of `n`. If `n` is already a `SymmetryVector`,
return `n` directly; usually, the returned value will directly reference information in `n`
(i.e., will not be a copy).
"""
function SymmetryVector(::AbstractSymmetryVector) end
# ::: Optional API (if not `SymmetryVector`; otherwise fall-back to `SymmetryVector`) :::
"""
irreps(n::AbstractSymmetryVector{D}) -> AbstractVector{<:Collection{<:AbstractIrrep{D}}}
Return the irreps referenced by `n`.
The returned value is an `AbstractVector` of `Collection{<:AbstractIrrep}`s, with irreps for
distinct groups, usually associated with specific **k**-manifolds, belonging to the same
`Collection`.
See also [`multiplicities(::AbstractSymmetryVector)`](@ref).
"""
irreps(n::AbstractSymmetryVector) = irreps(SymmetryVector(n))
"""
multiplicities(n::AbstractSymmetryVector) -> AbstractVector{<:AbstractVector{Int}}
Return the multiplicities of the irreps referenced by `n`.
See also [`irreps(::AbstractSymmetryVector)`](@ref).
"""
multiplicities(n::AbstractSymmetryVector) = multiplicities(SymmetryVector(n))
"""
occupation(n::AbstractSymmetryVector) -> Int
Return the occupation of (i.e., number of bands contained within) `n`.
"""
occupation(n::AbstractSymmetryVector) = occupation(SymmetryVector(n))
# misc convenience accessors
irreplabels(n::AbstractSymmetryVector) = irreplabels(SymmetryVector(n))
klabels(n::AbstractSymmetryVector) = klabels(SymmetryVector(n))
num(n::AbstractSymmetryVector) = num(SymmetryVector(n))
# ::: AbstractArray interface :::
Base.size(n::AbstractSymmetryVector) = (mapreduce(length, +, multiplicities(n)) + 1,)
@propagate_inbounds function Base.getindex(n::AbstractSymmetryVector, i::Int)
Nⁱʳ = length(n)
@boundscheck i > Nⁱʳ && throw(BoundsError(n, i))
i == Nⁱʳ && return occupation(n)
i₀ = i₁ = 0
for mults in multiplicities(n)
i₁ += length(mults)
if i ≤ i₁
return mults[i-i₀]
end
i₀ = i₁
end
error("unreachable reached")
end
Base.iterate(n::AbstractSymmetryVector) = multiplicities(n)[1][1], (1, 1)
function Base.iterate(n::AbstractSymmetryVector, state::Tuple{Int, Int})
i, j = state
j += 1
if i > length(multiplicities(n))
return nothing
end
if j > length(multiplicities(n)[i])
if i == length(multiplicities(n))
return occupation(n), (i+1, j)
end
i += 1
j = 1
end
return multiplicities(n)[i][j], (i, j)
end
# ::: Algebraic operations :::
function Base.:+(n::AbstractSymmetryVector{D}, m::AbstractSymmetryVector{D}) where D
_n = SymmetryVector(n)
_m = SymmetryVector(m)
irreps(_n) === irreps(_m)
return SymmetryVector(irreps(_n),
multiplicities(_n) .+ multiplicities(_m),
occupation(_n) + occupation(_m))
end
function Base.:-(n::AbstractSymmetryVector{D}) where D
SymmetryVector{D}(irreps(n), -multiplicities(n), -occupation(n))
end
Base.:-(n::AbstractSymmetryVector{D}, m::AbstractSymmetryVector{D}) where D = n + (-m)
function Base.:*(n::AbstractSymmetryVector{D}, k::Integer) where D
SymmetryVector{D}(irreps(n), [ms .* k for ms in multiplicities(n)], occupation(n) * k)
end
Base.:*(k::Integer, n::AbstractSymmetryVector) = n * k
function Base.zero(n::AbstractSymmetryVector{D}) where D
SymmetryVector{D}(irreps(n), zero.(multiplicities(n)), 0)
end
# make sure `sum(::AbstractSymmetryVector)` is type-stable (necessary since the + operation
# now may change the type of an `AbstractSymmetryVector` - so `n[1]` and `n[1]+n[2]` may
# be of different types) and always returns a `SymmetryVector`
Base.reduce_first(::typeof(+), n::AbstractSymmetryVector) = SymmetryVector(n)
# ::: Utilities & misc :::
dim(::AbstractSymmetryVector{D}) where D = D
dim(::Type{<:AbstractSymmetryVector{D}}) where D = D
dim(::Type{<:AbstractSymmetryVector}) = nothing
# ---------------------------------------------------------------------------------------- #
# NewBandRep
struct NewBandRep{D} <: AbstractSymmetryVector{D}
siteir :: SiteIrrep{D}
n :: SymmetryVector{D}
timereversal :: Bool
spinful :: Bool
end
# ::: AbstractSymmetryVector interface :::
SymmetryVector(br::NewBandRep) = br.n
# ::: AbstractArray interface beyond AbstractSymmetryVector :::
Base.setindex!(br::NewBandRep{D}, v::Int, i::Int) where D = (br.n[i] = v)
function Base.similar(br::NewBandRep{D}) where D
NewBandRep{D}(br.siteir, similar(br.n), br.timereversal, br.spinful)
end
Base.Vector(br::NewBandRep) = Vector(br.n)
# ::: Utilities :::
group(br::NewBandRep) = group(br.siteir)
Base.position(br::NewBandRep) = position(group(br))
# ::: Conversion to BandRep :::
function Base.convert(::Type{BandRep}, br::NewBandRep{D}) where D
wyckpos = label(position(br.siteir))
sitesym = br.siteir.pglabel
siteirlabel = label(br.siteir)*"↑G"
dim = occupation(br)
spinful = br.spinful
irvec = collect(br)[1:end-1]
irlabs = irreplabels(br)
return BandRep(wyckpos, sitesym, siteirlabel, dim, spinful, irvec, irlabs)
end
# ---------------------------------------------------------------------------------------- #
# Collection{<:NewBandRep}
# ::: Utilities :::
irreps(brs::Collection{<:NewBandRep}) = irreps(SymmetryVector(first(brs)))
irreplabels(brs::Collection{<:NewBandRep}) = irreplabels(SymmetryVector(first(brs)))
klabels(brs::Collection{<:NewBandRep}) = klabels(SymmetryVector(first(brs)))
# ::: Conversion to BandRepSet :::
function Base.convert(::Type{BandRepSet}, brs::Collection{<:NewBandRep})
sgnum = num(brs)
bandreps = convert.(Ref(BandRep), brs)
kvs = [position(lgirs) for lgirs in irreps(brs)]
klabs = klabels(brs)
irlabs = irreplabels(brs)
spinful = first(brs).spinful
timereversal = first(brs).timereversal
return BandRepSet(sgnum, bandreps, kvs, klabs, irlabs, spinful, timereversal)
end
# ---------------------------------------------------------------------------------------- #
# CompositeBandRep
"""
CompositeBandRep{D} <: AbstractSymmetryVector{D}
A type representing a linear rational-coefficient combination of `NewBandRep{D}`s.
Although the coefficients may be rational numbers in general, their superposition must
correspond to integer-valued irrep multiplicities and band occupation numbers; in
particular, if they do not, conversion to a `SymmetryVector` will error.
See also [`CompositeBandRep_from_indices`](@ref) for construction from a vector included
indices into `brs`.
## Fields
- `coefs::Vector{Rational{Int}}`: a coefficient vector associated with each band
representation in `brs`; the coefficient of the `i`th band representation `brs[i]` is
`coefs[i]`.
- `brs::Collection{NewBandRep{D}}`: the band representations referenced by `coefs`.
## Example
### Fragile symmetry vector
As a first example, we build a `CompositeBandRep` representing a fragilely topological
configuration (i.e., featuring negative integer coefficients):
```julia
julia> brs = calc_bandreps(2);
julia> coefs = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1];
julia> cbr = CompositeBandRep(coefs, brs)
16-irrep CompositeBandRep{3}:
(1g|Ag) + (1f|Aᵤ) + (1e|Ag) - (1a|Aᵤ) (2 bands)
```
We can build the associated [`SymmetryVector`](@ref) to inspect the associated irrep
content:
```julia
julia> SymmetryVector(cbr)
[2Z₁⁺, 2Y₁⁻, 2U₁⁻, 2X₁⁺, 2T₁⁺, 2Γ₁⁺, 2V₁⁺, 2R₁⁺] (2 bands)
```
Similarly, we can confirm that `cbr` is indeed a simple linear combination of the
associated band representations:
```julia
julia> sum(c * brs[i] for (i, c) in enumerate(coefs)) == cbr
true
```
And we can even do simple arithmetic with `cbr` (a `CompositeBandRep` is an element of a
monoid:
```julia
julia> cbr + 2cbr
3(1g|Ag) + 3(1f|Aᵤ) + 3(1e|Ag) - 3(1a|Aᵤ) (6 bands)
```
### Nontrivial symmetry vector
The coefficients of a `CompositeBandRep` can be non-integer, provided the associated irrep
multiplicities of the overall summation are integer. Accordingly, a `CompositeBandRep` may
also be used to represent a topologically nontrivial symmetry vector (and, by extension, any
physical symmetry vector):
```julia
julia> coefs = [-1//4, 0, -1//4, 0, -1//4, 0, 1//4, 0, 1//4, 0, 1//4, 0, -1//4, 0, 1//4, 1];
julia> cbr = CompositeBandRep{3}(coefs, brs)
16-irrep CompositeBandRep{3}:
-(1/4)×(1h|Ag) - (1/4)×(1g|Ag) - (1/4)×(1f|Ag) + (1/4)×(1e|Ag) + (1/4)×(1d|Ag) + (1/4)×(1c|Ag) - (1/4)×(1b|Ag) + (1/4)×(1a|Ag) + (1a|Aᵤ) (1 band)
julia> SymmetryVector(cbr)
16-irrep SymmetryVector{3}:
[Z₁⁺, Y₁⁻, U₁⁻, X₁⁻, T₁⁻, Γ₁⁻, V₁⁻, R₁⁻] (1 band)
```
"""
struct CompositeBandRep{D} <: AbstractSymmetryVector{D}
coefs :: Vector{Rational{Int}}
brs :: Collection{NewBandRep{D}}
function CompositeBandRep{D}(coefs, brs) where D
if length(coefs) ≠ length(brs)
error("length of provided coefficients do not match length of provided band \
representations")
end
new{D}(coefs, brs)
end
end
function CompositeBandRep(coefs, brs::Collection{NewBandRep{D}}) where D
return CompositeBandRep{D}(coefs, brs)
end
# ::: Convenience constructor :::
"""
CompositeBandRep_from_indices(idxs::Vector{Int}, brs::Collection{<:NewBandRep})
Return a [`CompositeBandRep`](@ref) whose symmetry content is equal to the sum the band
representations of `brs` over `idxs`.
In terms of irrep multiplicity, this is equivalent to `sum(brs[idxs])` in the sense that
`CompositeBandRep(idxs, brs)` is equal to `sum(brs[idxs])` for each irrep multiplicity.
The difference, and primary motivation for using `CompositeBandRep`, is that
`CompositeBandRep` retains information about which band representations are included and
with what multiplicity (the multiplicity of the `i`th `brs`-element being equaling to
`count(==(i), idxs)`).
## Example
```julia
julia> brs = calc_bandreps(2);
julia> cbr = CompositeBandRep_from_indices([1, 1, 2, 6], brs)
16-irrep CompositeBandRep{3}:
(1f|Aᵤ) + (1h|Aᵤ) + 2(1h|Ag) (4 bands)
julia> cbr == brs[1] + brs[1] + brs[2] + brs[6]
true
julia> SymmetryVector(cbr)
16-irrep SymmetryVector{3}:
[2Z₁⁺+2Z₁⁻, Y₁⁺+3Y₁⁻, 2U₁⁺+2U₁⁻, 2X₁⁺+2X₁⁻, 3T₁⁺+T₁⁻, 2Γ₁⁺+2Γ₁⁻, 3V₁⁺+V₁⁻, R₁⁺+3R₁⁻] (4 bands)
```
"""
function CompositeBandRep_from_indices(idxs::Vector{Int}, brs::Collection{<:NewBandRep})
coefs = zeros(Rational{Int}, length(brs))
for i in idxs
@boundscheck checkbounds(brs, i)
coefs[i] += 1
end
CompositeBandRep(coefs, brs)
end
# ::: AbstractSymmetryVector interface :::
function SymmetryVector(cbr::CompositeBandRep{D}) where {D}
brs = cbr.brs
lgirsv = irreps(brs)
multsv_r = zeros.(eltype(cbr.coefs), size.(multiplicities(first(brs))))
μ = 0
for (j, c) in enumerate(cbr.coefs)
iszero(c) && continue
multsv_r .+= c * multiplicities(brs[j])
μ += c * occupation(brs[j])
end
multsv = similar.(multsv_r, Int)
for (i, (mults_r, mults)) in enumerate(zip(multsv_r, multsv))
for (j, m_r) in enumerate(mults_r)
m_int = round(Int, m_r)
if m_int ≠ m_r
error(LazyString("CompositeBandRep has non-integer multiplicity ",
m_r, " for irrep ", label(lgirsv[i][j]),
": cannot convert to SymmetryVector"))
end
mults[j] = m_int
end
end
multsv = [Int.(mults) for mults in multsv_r]
μ = Int(μ)
return SymmetryVector{D}(lgirsv, multsv, μ)
end
function occupation(cbr::CompositeBandRep)
μ_r = sum(c * occupation(cbr.brs[j]) for (j, c) in enumerate(cbr.coefs) if !iszero(c);
init=zero(eltype(cbr.coefs)))
isinteger(μ_r) || error(lazy"CompositeBandRep has non-integer occupation (= $μ_r)")
return Int(μ_r)
end
# ::: overloads to avoid materializing a SymmetryVector unnecessarily :::
irreps(cbr::CompositeBandRep) = irreps(first(cbr.brs))
klabels(cbr::CompositeBandRep) = klabels(first(cbr.brs))
irreplabels(cbr::CompositeBandRep) = irreplabels(first(cbr.brs))
num(cbr::CompositeBandRep) = num(first(cbr.brs))
# ::: AbstractArray interface :::
Base.size(cbr::CompositeBandRep) = size(first(cbr.brs))
function Base.getindex(cbr::CompositeBandRep{D}, i::Int) where {D}
m_r = sum(c * cbr.brs[j][i] for (j, c) in enumerate(cbr.coefs) if !iszero(c);
init=zero(eltype(cbr.coefs)))
isinteger(m_r) || error(lazy"CompositeBandRep has non-integer multiplicity (= $m_r)")
return Int(m_r)
end
# ::: Arithmetic operations :::
function Base.:+(cbr1::CompositeBandRep{D}, cbr2::CompositeBandRep{D}) where D
if cbr1.brs !== cbr2.brs
error("provided CompositeBandReps must reference egal `brs`")
end
return CompositeBandRep{D}(cbr1.coefs + cbr2.coefs, cbr1.brs)
end
Base.:-(cbr::CompositeBandRep{D}) where D = CompositeBandRep{D}(-cbr.coefs, cbr.brs)
Base.:-(cbr1::CompositeBandRep{D}, cbr2::CompositeBandRep{D}) where D = cbr1 + (-cbr2)
function Base.:*(cbr::CompositeBandRep{D}, n::Integer) where D
return CompositeBandRep{D}(cbr.coefs .* n, cbr.brs)
end
Base.zero(cbr::CompositeBandRep{D}) where D = CompositeBandRep{D}(zero(cbr.coefs), cbr.brs)
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 10617 | # === frequent error messages ===
@noinline _throw_1d2d_not_yet_implemented(D::Integer) =
throw(DomainError(D, "dimensions D≠3 not yet supported"))
@noinline _throw_2d_not_yet_implemented(D::Integer) =
throw(DomainError(D, "dimensions D=2 not yet supported"))
@noinline _throw_invalid_dim(D::Integer) =
throw(DomainError(D, "dimension must be 1, 2, or 3"))
@noinline _throw_invalid_sgnum(sgnum::Integer, D::Integer) =
throw(DomainError(sgnum, "sgnum must be between 1 and $(MAX_SGNUM[D]) in dimension $(D)"))
# === string manipulation/parsing ===
"""
parsefraction(str::AbstractString)
Parse a string `str`, allowing fraction inputs (e.g. `"1/2"`), return as `Float64`.
"""
function parsefraction(str::AbstractString)
slashidx = findfirst(==('/'), str)
if slashidx === nothing
return parse(Float64, str)
else
num = SubString(str, firstindex(str), prevind(str, slashidx))
den = SubString(str, nextind(str, slashidx), lastindex(str))
return parse(Float64, num)/parse(Float64, den)
end
end
"""
fractionify!(io::IO, x::Real, forcesign::Bool=true, tol::Real=1e-6)
Write a string representation of the nearest fraction (within a tolerance `tol`) of `x` to
`io`. If `forcesign` is true, the sign character of `x` is printed whether `+` or `-`
(otherwise, only printed if `-`).
"""
function fractionify!(io::IO, x::Number, forcesign::Bool=true, tol::Real=1e-6)
if forcesign || signbit(x)
print(io, signaschar(x))
end
t = rationalize(float(x), tol=tol) # convert to "minimal" Rational fraction (within nearest `tol` neighborhood)
print(io, abs(numerator(t)))
if !isinteger(t)
print(io, '/')
print(io, denominator(t))
end
return nothing
end
function fractionify(x::Number, forcesign::Bool=true, tol::Real=1e-6)
buf = IOBuffer()
fractionify!(buf, x, forcesign, tol)
return String(take!(buf))
end
signaschar(x::Real) = signbit(x) ? '-' : '+'
function searchpriornumerals(coord, pos₂, ::Type{T}=Float64) where T
pos₁ = pos₂
while (prev = prevind(coord, pos₁)) != 0 # not first character
if isnumeric(coord[prev]) || coord[prev] == '.'
pos₁ = prev
elseif coord[prev] == '+' || coord[prev] == '-'
pos₁ = prev
break
else
break
end
end
prefix = coord[pos₁:prevind(coord, pos₂)]
if !any(isnumeric, prefix) # in case there's no numerical prefix, it must be unity
if prefix == "+" || prefix == ""
return one(T)
elseif prefix == "-"
return -one(T)
else
throw(DomainError(prefix, "unable to parse prefix"))
end
else
return parse(T, prefix)
end
end
# --- UNICODE FUNCTIONALITY ---
const SUBSCRIPT_MAP = Dict('1'=>'₁', '2'=>'₂', '3'=>'₃', '4'=>'₄', '5'=>'₅', # digits
'6'=>'₆', '7'=>'₇', '8'=>'₈', '9'=>'₉', '0'=>'₀',
'a'=>'ₐ', 'e'=>'ₑ', 'h'=>'ₕ', 'i'=>'ᵢ', 'j'=>'ⱼ', # letters (missing several)
'k'=>'ₖ', 'l'=>'ₗ', 'm'=>'ₘ', 'n'=>'ₙ', 'o'=>'ₒ',
'p'=>'ₚ', 'r'=>'ᵣ', 's'=> 'ₛ', 't'=>'ₜ', 'u'=>'ᵤ',
'v'=>'ᵥ', 'x'=>'ₓ',
'+'=>'₊', '-'=>'₋', '='=>'₌', '('=>'₍', ')'=>'₎', # special characters
'β'=>'ᵦ', 'γ'=>'ᵧ', 'ρ'=>'ᵨ', 'ψ'=>'ᵩ', 'χ'=>'ᵪ', # greek
# missing letter subscripts: b, c, d, f, g, q, w, y, z
)
const SUPSCRIPT_MAP = Dict('1'=>'¹', '2'=>'²', '3'=>'³', '4'=>'⁴', '5'=>'⁵', # digits
'6'=>'⁶', '7'=>'⁷', '8'=>'⁸', '9'=>'⁹', '0'=>'⁰',
'a'=>'ᵃ', 'b'=>'ᵇ', 'c'=>'ᶜ', 'd'=>'ᵈ', 'e'=>'ᵉ',
'f'=>'ᶠ', 'g'=>'ᵍ', 'h'=>'ʰ', 'i'=>'ⁱ', 'j'=>'ʲ', # letters (only 'q' missing)
'k'=>'ᵏ', 'l'=>'ˡ', 'm'=>'ᵐ', 'n'=>'ⁿ', 'o'=>'ᵒ',
'p'=>'ᵖ', 'r'=>'ʳ', 's'=>'ˢ', 't'=>'ᵗ', 'u'=>'ᵘ',
'v'=>'ᵛ', 'w'=>'ʷ', 'x'=>'ˣ', 'y'=>'ʸ', 'z'=>'ᶻ',
'+'=>'⁺', '-'=>'⁻', '='=>'⁼', '('=>'⁽', ')'=>'⁾', # special characters
'α'=>'ᵅ', 'β'=>'ᵝ', 'γ'=>'ᵞ', 'δ'=>'ᵟ', 'ε'=>'ᵋ', # greek
'θ'=>'ᶿ', 'ι'=>'ᶥ', 'φ'=>'ᶲ', 'ψ'=>'ᵠ', 'χ'=>'ᵡ',
# missing letter superscripts: q
)
const SUBSCRIPT_MAP_REVERSE = Dict(v=>k for (k,v) in SUBSCRIPT_MAP)
const SUPSCRIPT_MAP_REVERSE = Dict(v=>k for (k,v) in SUPSCRIPT_MAP)
subscriptify(str::AbstractString) = map(subscriptify, str)
function subscriptify(c::Char)
if c ∈ keys(SUBSCRIPT_MAP)
return SUBSCRIPT_MAP[c]
else
return c
end
end
supscriptify(str::AbstractString) = map(supscriptify, str)
function supscriptify(c::Char)
if c ∈ keys(SUPSCRIPT_MAP)
return SUPSCRIPT_MAP[c]
else
return c
end
end
function formatirreplabel(str::AbstractString)
buf = IOBuffer()
for c in str
if c ∈ ('+','-')
write(buf, supscriptify(c))
elseif isdigit(c)
write(buf, subscriptify(c))
else
write(buf, c)
end
end
return String(take!(buf))
end
normalizesubsup(str::AbstractString) = map(normalizesubsup, str)
function normalizesubsup(c::Char)
if c ∈ keys(SUBSCRIPT_MAP_REVERSE)
return SUBSCRIPT_MAP_REVERSE[c]
elseif c ∈ keys(SUPSCRIPT_MAP_REVERSE)
return SUPSCRIPT_MAP_REVERSE[c]
else
return c
end
end
issubdigit(c::AbstractChar) = (c >= '₀') & (c <= '₉')
issupdigit(c::AbstractChar) = (c ≥ '⁰') & (c ≤ '⁹') || c == '\u00B3' || c == '\u00B2'
function unicode_frac(x::Number)
xabs=abs(x)
if xabs == 0; return "0" # early termination for common case & avoids undesirable sign for -0.0
elseif isinteger(x); return string(convert(Int, x))
elseif xabs ≈ 1/2; xstr = "½"
elseif xabs ≈ 1/3; xstr = "⅓"
elseif xabs ≈ 2/3; xstr = "⅔"
elseif xabs ≈ 1/4; xstr = "¼"
elseif xabs ≈ 3/4; xstr = "¾"
elseif xabs ≈ 1/5; xstr = "⅕"
elseif xabs ≈ 2/5; xstr = "⅖"
elseif xabs ≈ 3/5; xstr = "⅗"
elseif xabs ≈ 4/5; xstr = "⅘"
elseif xabs ≈ 1/6; xstr = "⅙"
elseif xabs ≈ 5/6; xstr = "⅚"
elseif xabs ≈ 1/7; xstr = "⅐"
elseif xabs ≈ 1/8; xstr = "⅛"
elseif xabs ≈ 3/8; xstr = "⅜"
elseif xabs ≈ 5/8; xstr = "⅝"
elseif xabs ≈ 7/8; xstr = "⅞"
elseif xabs ≈ 1/9; xstr = "⅑"
elseif xabs ≈ 1/10; xstr = "⅒"
else xstr = string(xabs) # return a conventional string representation
end
return signbit(x) ? "-"*xstr : xstr
end
const ROMAN2GREEK_DICT = Dict("LD"=>"Λ", "DT"=>"Δ", "SM"=>"Σ", "GM"=>"Γ", "GP"=>"Ω")
#"LE"=>"ΛA", "DU"=>"ΔA", "SN"=>"ΣA", # These are the awkwardly annoted greek analogues of the pairs (Z,ZA), (W,WA) etc.
# They "match" a simpler k-vector, by reducing their second character by one,
# alphabetically (e.g. LE => LD = Λ). The primed post-scripting notation is our own
# (B&C seems to use prime instead, e.g. on p. 412)
function roman2greek(label::String)
idx = findfirst(!isletter, label)
if idx !== nothing
front=label[firstindex(label):prevind(label,idx)]
if front ∈ keys(ROMAN2GREEK_DICT)
return ROMAN2GREEK_DICT[front]*label[idx:lastindex(label)]
end
end
return label
end
function printboxchar(io, i, N)
if i == 1
print(io, "╭") #┌
elseif i == N
print(io, "╰") #└
else
print(io, "│")
end
end
function readuntil(io::IO, delim::F; keep::Bool=false) where F<:Function
buf = IOBuffer()
while !eof(io)
c = read(io, Char)
if delim(c)
keep && write(buf, c)
break
end
write(buf, c)
end
return String(take!(buf))
end
const tf_compact_borderless = TextFormat(
' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', Symbol[], :none)
"""
$(TYPEDSIGNATURES)
Print a matrix using PrettyTables, allowing a `prerow` input to be printed before each row
of the matrix. `elformat` is applied to each element of the matrix before printing.
"""
function compact_print_matrix(io, X::Matrix, prerow, elformat=identity)
rowsA = UnitRange(axes(X,1))
io′ = IOBuffer()
pretty_table(io′, X;
tf=tf_compact_borderless,
show_header=false,
formatters = (v,i,j) -> elformat(v),
alignment = :r)
X_str = String(take!(io′))
X_rows = split(X_str, '\n')
for i in rowsA
i != first(rowsA) && print(io, prerow)
# w/ unicode characters for left/right square braces (https://en.wikipedia.org/wiki/Miscellaneous_Technical)
print(io, i == first(rowsA) ? '⎡' : (i == last(rowsA) ? '⎣' : '⎢'))
print(io, X_rows[i], ' ')
print(io, i == first(rowsA) ? '⎤' : (i == last(rowsA) ? '⎦' : '⎥'))
if i != last(rowsA); println(io); end
end
end
# === misc functionality ===
"""
isapproxin(x, itr, optargs...; kwargs...) --> Bool
Determine whether `x` ∈ `itr` with approximate equality.
"""
isapproxin(x, itr, optargs...; kwargs...) = any(y -> isapprox(y, x, optargs...; kwargs...), itr)
"""
uniquetol(a; kwargs)
Computes approximate-equality unique with tolerance specifiable
via keyword arguments `kwargs` in O(n²) runtime.
Copied from https://github.com/JuliaLang/julia/issues/19147#issuecomment-256981994
"""
function uniquetol(A::AbstractArray{T}; kwargs...) where T
S = Vector{T}()
for a in A
if !any(s -> isapprox(s, a; kwargs...), S)
push!(S, a)
end
end
return S
end
if VERSION < v"1.5"
"""
ImmutableDict(ps::Pair...)
Construct an `ImmutableDict` from any number of `Pair`s; a convenience function that extends
`Base.ImmutableDict` which otherwise only allows construction by iteration.
"""
function Base.ImmutableDict(ps::Pair{K,V}...) where {K,V}
d = Base.ImmutableDict{K,V}()
for p in ps # construct iteratively (linked list)
d = Base.ImmutableDict(d, p)
end
return d
end
Base.ImmutableDict(ps::Pair...) = Base.ImmutableDict(ps)
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 16238 | # ---------------------------------------------------------------------------------------- #
# CONSTRUCTORS/GETTERS FOR WYCKPOS
"""
$(TYPEDSIGNATURES)
Return the Wyckoff positions of space group `sgnum` in dimension `D` as a
`Vector{WyckoffPosition{D}`.
The positions are given in the conventional basis setting, following the conventions of the
Bilbao Crystallographic Server (from which the underlying data is sourced [^1]).
## Example
```jldoctest
julia> wps = wyckoffs(16, 2)
4-element Vector{WyckoffPosition{2}}:
6d: [α, β]
3c: [1/2, 0]
2b: [1/3, 2/3]
1a: [0, 0]
```
## References
[^1]: Aroyo, *et al.*,
[Z. Kristallogr. **221**, 15-27 (2006)](https://doi.org/0.1524/zkri.2006.221.1.15)
"""
function wyckoffs(sgnum::Integer, ::Val{D}=Val(3)) where D
strarr = open(joinpath(DATA_DIR, "wyckpos/$(D)d/"*string(sgnum)*".csv")) do io
DelimitedFiles.readdlm(io, '|', String, '\n')
end::Matrix{String}
mults = parse.(Int, @view strarr[:,1])::Vector{Int}
letters = only.(@view strarr[:,2])::Vector{Char}
rvs = RVec{D}.((@view strarr[:,3]))::Vector{RVec{D}}
return WyckoffPosition{D}.(mults, letters, rvs)
end
wyckoffs(sgnum::Integer, D::Integer) = wyckoffs(sgnum, Val(D))
# ---------------------------------------------------------------------------------------- #
# METHODS
function compose(op::SymOperation{D}, wp::WyckoffPosition{D}) where D
WyckoffPosition{D}(multiplicity(wp), wp.letter, compose(op, parent(wp)))
end
(*)(op::SymOperation{D}, wp::WyckoffPosition{D}) where D = compose(op, wp)
"""
$(TYPEDSIGNATURES)
Return all site symmetry groups associated with a space group, specified either as
`sg :: SpaceGroup{D}` or by its conventional number `sgnum` and dimension `D`.
See also [`sitegroup`](@ref) for calculation of the site symmetry group of a specific
Wyckoff position.
"""
function sitegroups(sg::SpaceGroup{D}) where D
wps = wyckoffs(num(sg), Val(D))
return sitegroup.(Ref(sg), wps)
end
sitegroups(sgnum::Integer, Dᵛ::Val{D}) where D = sitegroups(spacegroup(sgnum, Dᵛ))
sitegroups(sgnum::Integer, D::Integer) = sitegroups(spacegroup(sgnum, D))
"""
$(TYPEDSIGNATURES)
Return the site symmetry group `g::SiteGroup` for a Wyckoff position `wp` in space group
`sg` (or with space group number `sgnum`; in this case, the dimensionality is inferred from
`wp`).
`g` is a group of operations that are isomorphic to the those listed in `sg` (in the sense
that they might differ by lattice vectors) and that leave the Wyckoff position `wp`
invariant, such that `all(op -> wp == compose(op, wp), g) == true`.
The returned `SiteGroup` also contains the coset representatives of the Wyckoff position
(that are again isomorphic to those featured in `sg`), accessible via [`cosets`](@ref),
which e.g. generate the orbit of the Wyckoff position (see [`orbit(::SiteGroup)`](@ref)) and
define a left-coset decomposition of `sg` jointly with the elements in `g`.
## Example
```jldoctest sitegroup
julia> sgnum = 16;
julia> D = 2;
julia> wp = wyckoffs(sgnum, D)[3] # pick a Wyckoff position
2b: [1/3, 2/3]
julia> sg = spacegroup(sgnum, D);
julia> g = sitegroup(sg, wp)
SiteGroup{2} ⋕16 (p6) at 2b = [1/3, 2/3] with 3 operations:
1
{3⁺|1,1}
{3⁻|0,1}
```
The group structure of a `SiteGroup` can be inspected with `MultTable`:
```jldoctest sitegroup
julia> MultTable(g)
3×3 MultTable{SymOperation{2}}:
──────────┬──────────────────────────────
│ 1 {3⁺|1,1} {3⁻|0,1}
──────────┼──────────────────────────────
1 │ 1 {3⁺|1,1} {3⁻|0,1}
{3⁺|1,1} │ {3⁺|1,1} {3⁻|0,1} 1
{3⁻|0,1} │ {3⁻|0,1} 1 {3⁺|1,1}
──────────┴──────────────────────────────
```
The original space group can be reconstructed from a left-coset decomposition, using the
operations and cosets contained in a `SiteGroup`:
```jldoctest sitegroup
julia> ops = [opʰ*opᵍ for opʰ in cosets(g) for opᵍ in g];
julia> Set(sg) == Set(ops)
true
```
## Terminology
Mathematically, the site symmetry group is a *stabilizer group* for a Wyckoff position,
in the same sense that the little group of **k** is a stabilizer group for a **k**-point.
See also [`sitegroups`](@ref) for calculation of all site symmetry groups of a given space
group.
"""
function sitegroup(sg::SpaceGroup{D}, wp::WyckoffPosition{D}) where D
Nsg = order(sg)
Ncoset = multiplicity(wp)
Nsite, check = divrem(Nsg, Ncoset)
if check != 0
throw(DomainError((Ncoset, Nsg), "Wyckoff multiplicity must divide space group order"))
end
siteops = Vector{SymOperation{D}}(undef, Nsite)
cosets = Vector{SymOperation{D}}(undef, Ncoset)
orbitrvs = Vector{RVec{D}}(undef, Ncoset)
rv = parent(wp)
# both cosets and site symmetry group contains the identity operation, and the orbit
# automatically contains rv; add them outside loop
siteops[1] = cosets[1] = one(SymOperation{D})
orbitrvs[1] = rv
isite = icoset = 1
for op in sg
icoset == Ncoset && isite == Nsite && break # stop if all representatives found
isone(op) && continue # already added identity outside loop; avoid adding twice
W, w = unpack(op) # rotation and translation
rv′ = op * rv
Δ = rv′ - rv
Δcnst, Δfree = parts(Δ)
# Check whether difference between rv and rv′ is a lattice vector: if so, `op` is
# isomorphic to a site symmetry operation; if not, to a coset operation.
# We check this in the original lattice basis, i.e. do not force conversion to a
# primitive basis. This is consistent with e.g. Bilbao and makes good sense.
# The caller is of course free to do this themselves (via their choice of basis for
# the specified `sg` and `wp`).
if ( # tolerance'd equiv. of `all(isinteger, Δcnst) && all(iszero, Δfree)`
all(x->isapprox(x, round(x), atol=DEFAULT_ATOL), Δcnst) &&
all(x->abs(x)≤(DEFAULT_ATOL), Δfree) ) # ⇒ site symmetry operation
w′ = w - Δcnst
siteops[isite+=1] = SymOperation{D}(W, w′)
else # ⇒ coset operation
icoset == Ncoset && continue # we only need `Ncoset` representatives in total
# reduce generated Wyckoff representative to coordinate range q′ᵢ∈[0,1)
rv′′ = RVec(reduce_translation_to_unitrange(constant(rv′)), free(rv′))
if any(rv->isapprox(rv, rv′′, nothing, false), (@view orbitrvs[OneTo(icoset)]))
# ⇒ already included a coset op that maps to this rv′′; don't include twice
continue
end
# shift operation so generated `WyckoffPosition`s has coordinates q′ᵢ∈[0,1)
w′ = w - (constant(rv′) - constant(rv′′))
# add coset operation and new Wyckoff position to orbit
cosets[icoset+=1] = SymOperation{D}(W, w′)
orbitrvs[icoset] = rv′′
# TODO: For certain Wyckoff positions in space groups 151:154 (8 in total), the
# above calculation of w′ lead to very small (~1e-16) negative values for
# the new representatives generated from these coset operations, i.e.
# `orbit(g)` can contain Wyckoff positions with negative coordinates,
# differing from zero by ~1e-16.
end
end
return SiteGroup{D}(num(sg), wp, siteops, cosets)
end
function sitegroup(sgnum::Integer, wp::WyckoffPosition{D}) where D
sg = spacegroup(sgnum, Val(D))
return sitegroup(sg, wp)
end
# `MulTable`s of `SiteGroup`s should be calculated with `modτ = false` always
function MultTable(g::SiteGroup)
MultTable(operations(g); modτ=false)
end
"""
orbit(g::SiteGroup) --> Vector{WyckoffPosition}
Compute the orbit of the Wyckoff position associated with the site symmetry group `g`.
## Extended help
The orbit of a Wyckoff position ``\\mathbf{r}`` in a space group ``G`` is defined as the
set of inequivalent points in the unit cell that can be obtained by applying the elements of
``G`` to ``\\mathbf{r}``.
Equivalently, every element of the orbit of ``\\mathbf{r}`` can be written as the
composition of a coset representative of the Wyckoff position's site group in ``G`` with
``\\mathbf{r}``.
"""
function orbit(g::SiteGroup)
rv′s = cosets(g) .* Ref(position(g))
end
"""
findmaximal(sitegs::AbstractVector{<:SiteGroup})
Given an `AbstractVector{<:SiteGroup}` over the distinct Wyckoff positions of a space group,
return those `SiteGroup`s that are associated with a maximal Wyckoff positions.
Results are returned as a `view` into the input vector (i.e. as an
`AbstractVector{<:SiteGroup}`). The associated Wyckoff positions can be retrieved via
[`position`](@ref).
## Definition
A Wyckoff position is maximal if its site symmetry group has higher order than the site
symmetry groups of any "nearby" Wyckoff positions (i.e. Wyckoff positions that can be
connected, i.e. made equivalent, through parameter variation to the considered Wyckoff
position).
## Example
```jldoctest
julia> sgnum = 5;
julia> D = 2;
julia> sg = spacegroup(sgnum, Val(D));
julia> sitegs = sitegroups(sg)
2-element Vector{SiteGroup{2}}:
[1] (4b: [α, β])
[1, m₁₀] (2a: [0, β])
julia> only(findmaximal(sitegs))
SiteGroup{2} ⋕5 (c1m1) at 2a = [0, β] with 2 operations:
1
m₁₀
```
"""
function findmaximal(sitegs::AbstractVector{SiteGroup{D}}) where D
maximal = Int[]
for (idx, g) in enumerate(sitegs)
wp = position(g)
v = parent(wp)
N = order(g)
# if `wp` is "special" (i.e. has no "free" parameters), then it must
# be a maximal wyckoff position, since if there are other lines
# passing through it, they must have lower symmetry (otherwise, only
# the line would have been included in the listings of wyckoff positions)
isspecial(v) && (push!(maximal, idx); continue)
# if `wp` has "free" parameters, it can still be a maximal wyckoff
# position, provided that it doesn't go through any other special
# points or intersect any other wyckoff lines/planes of higher symmetry
has_higher_sym_nearby = false
for (idx′, g′) in enumerate(sitegs)
idx′ == idx && continue # don't check against self
order(g′) < order(g) && continue # `g′` must have higher symmetry to "supersede" `g`
wp′_orbit = orbit(g′) # must check for all orbits of wp′ in general
for wp′′ in wp′_orbit
v′ = parent(wp′′)
if _can_intersect(v, v′) # `wp′` can "intersect" `wp` and is higher order
has_higher_sym_nearby = true
break
end
end
has_higher_sym_nearby && break
end
# check if there were "nearby" points that had higher symmetry, if not, `wp` is a
# maximal wyckoff position
has_higher_sym_nearby || push!(maximal, idx)
end
return @view sitegs[maximal]
end
function _can_intersect(v::AbstractVec{D}, v′::AbstractVec{D};
atol::Real=DEFAULT_ATOL) where D
# check if solution exists to [A] v′ = v(αβγ) or [B] v′(αβγ′) = v(αβγ) by solving
# a least squares problem and then checking if it is a strict solution. Details:
# Let v(αβγ) = v₀ + V*αβγ and v′(αβγ′) = v₀′ + V′*αβγ′
# [A] v₀′ = v₀ + V*αβγ ⇔ V*αβγ = v₀′-v₀
# [B] v₀′ + V′*αβγ′ = v₀ + V*αβγ ⇔ V*αβγ - V′*αβγ′ = v₀′-v₀
# ⇔ hcat(V,-V′)*vcat(αβγ,αβγ′) = v₀′-v₀
# these equations can always be solved in the least squares sense using the
# pseudoinverse; we can then subsequently check if the residual of that solution is in
# fact zero, in which can the least squares solution is a "proper" solution, signaling
# that `v` and `v′` can intersect (at the found values of `αβγ` and `αβγ′`)
Δcnst = constant(v′) - constant(v)
if isspecial(v′) # `v′` is special; `v` is not
Δfree = free(v) # D×D matrix
return _can_intersect_equivalence_check(Δcnst, Δfree, atol)
else # neither `v′` nor `v` are special
Δfree = hcat(free(v), -free(v′)) # D×2D matrix
return _can_intersect_equivalence_check(Δcnst, Δfree, atol)
end
# NB: the above seemingly trivial splitting of return statements is intentional & to
# avoid type-instability (because the type of `Δfree` differs in the two brances)
end
function _can_intersect_equivalence_check(Δcnst::StaticVector{D}, Δfree::StaticMatrix{D},
atol::Real) where D
# to be safe, we have to check for equivalence between `v` and `v′` while accounting
# for the fact that they could differ by a lattice vector; in practice, for the wyckoff
# listings that we have have in 3D, this seems to only make a difference in a single
# case (SG 130, wyckoff position 8f) - but there the distinction is actually needed
Δfree⁻¹ = pinv(Δfree)
for V in Iterators.product(ntuple(_->(0.0, -1.0, 1.0), Val(D))...) # loop over adjacent lattice vectors
Δcnst_plus_V = Δcnst + SVector{D,Float64}(V)
αβγ = Δfree⁻¹*Δcnst_plus_V # either D-dim `αβγ` or 2D-dim `hcat(αβγ, αβγ′)`
Δ = Δcnst_plus_V - Δfree*αβγ # residual of least squares solve
norm(Δ) < atol && return true
end
return false
end
# ---------------------------------------------------------------------------------------- #
"""
siteirreps(sitegroup::SiteGroup; mulliken::Bool=false]) --> Vector{PGIrrep}
Return the site symmetry irreps associated with the provided `SiteGroup`, obtained from a
search over isomorphic point groups. The `SiteIrrep`s are in general a permutation of the
irreps of the associated isomorphic point group.
By default, the labels of the site symmetry irreps are given in the CDML notation; to
use the Mulliken notation, set the keyword argument `mulliken` to `true` (default, `false`).
## Example
```jldoctest
julia> sgnum = 16;
julia> sg = spacegroup(sgnum, 2);
julia> wp = wyckoffs(sgnum, 2)[3] # pick the third Wyckoff position
2b: [1/3, 2/3]
julia> siteg = sitegroup(sg, wp)
SiteGroup{2} ⋕16 (p6) at 2b = [1/3, 2/3] with 3 operations:
1
{3⁺|1,1}
{3⁻|0,1}
julia> siteirs = siteirreps(siteg)
3-element Collection{SiteIrrep{2}} for ⋕16 (p6) at 2b = [1/3, 2/3]:
Γ₁ ─┬─────────────────────────────────────────────
├─ 1: ────────────────────────────────── (x,y)
│ 1
│
├─ {3⁺|1,1}: ──────────────────── (-y+1,x-y+1)
│ 1
│
├─ {3⁻|0,1}: ───────────────────── (-x+y,-x+1)
│ 1
└─────────────────────────────────────────────
Γ₂ ─┬─────────────────────────────────────────────
├─ 1: ────────────────────────────────── (x,y)
│ 1
│
├─ {3⁺|1,1}: ──────────────────── (-y+1,x-y+1)
│ exp(0.6667iπ)
│
├─ {3⁻|0,1}: ───────────────────── (-x+y,-x+1)
│ exp(-0.6667iπ)
└─────────────────────────────────────────────
Γ₃ ─┬─────────────────────────────────────────────
├─ 1: ────────────────────────────────── (x,y)
│ 1
│
├─ {3⁺|1,1}: ──────────────────── (-y+1,x-y+1)
│ exp(-0.6667iπ)
│
├─ {3⁻|0,1}: ───────────────────── (-x+y,-x+1)
│ exp(0.6667iπ)
└─────────────────────────────────────────────
```
"""
function siteirreps(siteg::SiteGroup{D}; mulliken::Bool=false) where D
parent_pg, Iᵖ²ᵍ, _ = find_isomorphic_parent_pointgroup(siteg)
pglabel = label(parent_pg)
pgirs = pgirreps(pglabel, Val(D); mulliken)
# note that we _have to_ make a copy when re-indexing `pgir.matrices` here, since
# .jld files apparently cache accessed content; so if we modify it, we mess with the
# underlying data (see https://github.com/JuliaIO/JLD2.jl/issues/277)
siteirs = map(pgirs) do pgir
SiteIrrep{D}(label(pgir), siteg, pgir.matrices[Iᵖ²ᵍ], reality(pgir), pgir.iscorep,
pglabel)
end
return Collection(siteirs)
end
mulliken(siteir::SiteIrrep) = _mulliken(siteir.pglabel, label(siteir), iscorep(siteir)) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 692 | function generators(iuclab::String, ::Type{PointGroup{D}}=PointGroup{3}) where D
@boundscheck _check_valid_pointgroup_label(iuclab, D)
codes = PG_GENS_CODES_Ds[D][iuclab]
# convert `codes` to `SymOperation`s and add to `operations`
operations = Vector{SymOperation{D}}(undef, length(codes))
for (n, code) in enumerate(codes)
op = SymOperation{D}(get_indexed_rotation(code, Val{D}()), zero(SVector{D,Float64}))
operations[n] = op
end
return operations
end
function generators(pgnum::Integer, ::Type{PointGroup{D}}, setting::Integer=1) where D
iuclab = pointgroup_num2iuc(pgnum, Val(D), setting)
return generators(iuclab, PointGroup{D})
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3686 | """
generators(num::Integer, T::Type{AbstractGroup{D}}[, optargs])
generators(pgiuc::String, T::PointGroup{D}}) --> Vector{SymOperation{D}}
Return the generators of the group type `T` which may be a `SpaceGroup{D}` or a
`PointGroup{D}` parameterized by its dimensionality `D`. Depending on `T`, the group is
determined by inputting as the first argument:
- `SpaceGroup{D}`: the space group number `num::Integer`.
- `PointGroup{D}`: the point group IUC label `pgiuc::String` (see also
[`pointgroup(::String)`) or the canonical point group number `num::Integer`, which can
optionally be supplemented by an integer-valued setting choice `setting::Integer` (see
also [`pointgroup(::Integer, ::Integer, ::Integer)`](@ref)]).
- `SubperiodicGroup{D}`: the subperiodic group number `num::Integer`.
Setting choices match those in [`spacegroup`](@ref), [`pointgroup`](@ref), and
[`subperiodicgroup`](@ref).
Iterated composition of the returned symmetry operations will generate all operations of the
associated space or point group (see [`generate`](@ref)).
As an example, `generate(generators(num, `SpaceGroup{D}))` and `spacegroup(num, D)` return
identical operations (with different sorting typically); and similarly so for point and
subperiodic groups.
## Example
Generators of space group 200:
```jldoctest
julia> generators(200, SpaceGroup{3})
4-element Vector{SymOperation{3}}:
2₀₀₁
2₀₁₀
3₁₁₁⁺
-1
```
Generators of point group m-3m:
```jldoctest
julia> generators("2/m", PointGroup{3})
2-element Vector{SymOperation{3}}:
2₀₁₀
-1
```
Generators of the Frieze group 𝓅2mg:
```jldoctest
julia> generators(7, SubperiodicGroup{2, 1})
2-element Vector{SymOperation{2}}:
2
{m₁₀|½,0}
```
## Citing
Please cite the original data sources if used in published work:
- Space groups:
[Aroyo et al., Z. Kristallogr. Cryst. Mater. **221**, 15
(2006)](https://doi.org/10.1524/zkri.2006.221.1.15);
- Point group: Bilbao Crystallographic Server's
[2D and 3D GENPOS](https://www.cryst.ehu.es/cryst/get_point_genpos.html);
- Subperiodic groups: Bilbao Crystallographic Server's
[SUBPERIODIC GENPOS](https://www.cryst.ehu.es/subperiodic/get_sub_gen.html).
## Extended help
Note that the returned generators are not guaranteed to be the smallest possible set of
generators; i.e., there may exist other generators with fewer elements (an example is space
group 168 (P6), for which the returned generators are `[2₀₀₁, 3₀₀₁⁺]` even though the group
could be generated by just `[6₀₀₁⁺]`).
The returned generators, additionally, are not guaranteed to be
[minimal](https://en.wikipedia.org/wiki/Generating_set_of_a_module), i.e., they may include
proper subsets that generate the group themselves (e.g., in space group 75 (P4), the
returned generators are `[2₀₀₁, 4₀₀₁⁺]` although the subset `[4₀₀₁⁺]` is sufficient to
generate the group).
The motivation for this is to expose as similar generators as possible for similar crystal
systems (see e.g. Section 8.3.5 of the International Tables of Crystallography, Vol. A,
Ed. 5 (ITA) for further background).
Note also that, contrary to conventions in ITA, the identity operation is excluded among the
returned generators (except in space group 1) since it composes trivially and adds no
additional context.
"""
function generators(sgnum::Integer, ::Type{SpaceGroup{D}}=SpaceGroup{3}) where D
@boundscheck _check_valid_sgnum_and_dim(sgnum, D)
codes = SG_GENS_CODES_Vs[D][sgnum]
# convert `codes` to `SymOperation`s and add to `operations`
operations = Vector{SymOperation{D}}(undef, length(codes))
_include_symops_from_codes!(operations, codes; add_identity=false)
return operations
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1092 | """
generators(num::Integer, ::Type{SubperiodicGroup{D,P}}) --> ::Vector{SymOperation{D}}
Return a canonical set of generators for the subperiodic group `num` of embedding dimension
`D` and periodicity dimension `P`. See also [`subperiodicgroup`](@ref).
See also [`generators(::Integer, ::Type{SpaceGroup})`](@ref) and information therein.
## Example
```jldoctest
julia> generators(7, SubperiodicGroup{2, 1})
2-element Vector{SymOperation{2}}:
2
{m₁₀|½,0}
```
## Data sources
The generators returned by this function were originally retrieved from the [Bilbao
Crystallographic Database, SUBPERIODIC GENPOS](https://www.cryst.ehu.es/subperiodic/get_sub_gen.html).
"""
function generators(num::Integer, ::Type{SubperiodicGroup{D,P}}) where {D,P}
@boundscheck _check_valid_subperiodic_num_and_dim(num, D, P)
codes = SUBG_GENS_CODES_Vs[(D,P)][num]
# convert `codes` to `SymOperation`s and add to `operations`
operations = Vector{SymOperation{D}}(undef, length(codes))
_include_symops_from_codes!(operations, codes; add_identity=false)
return operations
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2191 | """
mspacegroup(BNS₁, BNS₂)
mspacegroup(OG₃) --> MSpaceGroup{3}
Return the magnetic space group with BNS numbers `(BNS₁, BNS₂)` or the sequential OG number
`OG₃` (from 1 to 1651).
## Data sources
The data underlying this function was retrieved from ISOTROPY's compilation of Daniel
Litvin's magnetic space group tables (http://www.bk.psu.edu/faculty/litvin/Download.html).
"""
function mspacegroup(BNS₁::Integer, BNS₂::Integer, Dᵛ::Val{D}=Val(3)) where D
D == 3 || throw(DomainError("only 3D magnetic space groups are supported"))
msgnum = (BNS₁, BNS₂)
codes = MSG_CODES_D[msgnum]
label = MSG_BNS_LABELs_D[msgnum]
cntr = first(label)
Ncntr = centering_volume_fraction(cntr, Dᵛ)
Nop = (length(codes)+1) # number of operations ÷ by equiv. centering translations
operations = Vector{MSymOperation{D}}(undef, Nop * Ncntr)
operations[1] = MSymOperation{D}(one(SymOperation{D}), false)
for (n, code) in enumerate(codes)
op = SymOperation{D}(ROTATIONS_3D[code[1]], TRANSLATIONS_3D[code[2]])
operations[n+1] = MSymOperation{D}(op, code[3])
end
# add the centering-translation related operations (not included in `codes`)
if Ncntr > 1
cntr_translations = all_centeringtranslations(cntr, Dᵛ)
for (i, t) in enumerate(cntr_translations)
for n in 1:Nop
mop = operations[n]
t′ = reduce_translation_to_unitrange(translation(mop) + t)
op′ = SymOperation{D}(mop.op.rotation, t′)
mop′ = MSymOperation{D}(op′, mop.tr)
operations[n+i*Nop] = mop′
end
end
end
return MSpaceGroup{D}(msgnum, operations)
end
function mspacegroup(OG₃::Integer, ::Val{D}=Val(3)) where D
D == 3 || throw(DomainError("only 3-dimensional magnetic space groups are supported"))
OG₃ ∈ 1:MAX_MSGNUM[D] || _throw_invalid_msgnum(OG₃, D)
BNS₁, BNS₂ = MSG_OG₃2BNS_NUMs_V[OG₃]
return mspacegroup(BNS₁, BNS₂, Val(3))
end
@noinline function _throw_invalid_msgnum(OG₃, D)
throw(DomainError(OG₃, "the sequential magnetic space group number must be between 1 and $(MAX_MSGNUM[D]) in dimension $D"))
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2447 | """
pointgroup(iuclab::String, ::Union{Val{D}, Integer}=Val(3)) --> PointGroup{D}
Return the symmetry operations associated with the point group identified with label
`iuclab` in dimension `D` as a `PointGroup{D}`.
"""
function pointgroup(iuclab::AbstractString, Dᵛ::Val{D}=Val(3)) where D
@boundscheck _check_valid_pointgroup_label(iuclab, D)
pgnum = pointgroup_iuc2num(iuclab, D) # this is not generally a particularly well-established numbering
return _pointgroup(iuclab, pgnum, Dᵛ)
end
@inline pointgroup(iuclab::String, D::Integer) = pointgroup(iuclab, Val(D))
"""
pointgroup(pgnum::Integer, ::Union{Val{D}, Integer}=Val(3), setting::Integer=1)
--> PointGroup{D}
Return the symmetry operations associated with the point group identfied with canonical
number `pgnum` in dimension `D` as a `PointGroup{D}`. The connection between a point group's
numbering and its IUC label is enumerated in `Crystalline.PG_NUM2IUC[D]` and
`Crystalline.IUC2NUM[D]`.
Certain point groups feature in multiple setting variants: e.g., IUC labels 321 and 312 both
correspond to `pgnum = 18` and correspond to the same group structure expressed in two
different settings. The `setting` argument allows choosing between these setting variations.
"""
function pointgroup(pgnum::Integer, Dᵛ::Val{D}=Val(3), setting::Integer=1) where D
iuclab = pointgroup_num2iuc(pgnum, Dᵛ, setting) # also checks validity of `(pgnum, D)`
return _pointgroup(iuclab, pgnum, Dᵛ)
end
@inline function pointgroup(pgnum::Integer, D::Integer, setting::Integer=1)
return pointgroup(pgnum, Val(D), setting)
end
function _pointgroup(iuclab::String, pgnum::Integer, Dᵛ::Val{D}) where D
codes = PG_CODES_Ds[D][iuclab]
Nop = (length(codes)+1) # number of operations
operations = Vector{SymOperation{D}}(undef, Nop)
operations[1] = one(SymOperation{D})
for (n, code) in enumerate(codes)
op = SymOperation{D}(get_indexed_rotation(code, Dᵛ),
zero(SVector{D,Float64}))
operations[n+1] = op
end
return PointGroup{D}(pgnum, iuclab, operations)
end
function _check_valid_pointgroup_label(iuclab::AbstractString, D)
D ∉ (1,2,3) && _throw_invalid_dim(D)
if iuclab ∉ PG_IUCs[D]
throw(DomainError(iuclab,
"iuc label not found in database (see possible labels in `PG_IUCs[D]`)"))
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3707 | """
spacegroup(sgnum::Integer, ::Val{D}=Val(3))
spacegroup(sgnum::Integer, D::Integer) --> SpaceGroup{D}
Return the space group symmetry operations for a given space group number `sgnum` and
dimensionality `D` as a `SpaceGroup{D}`.
The returned symmetry operations are specified relative to the conventional basis vectors,
i.e. are not necessarily primitive (see [`centering`](@ref)).
If desired, operations for the primitive unit cell can subsequently be generated using
[`primitivize`](@ref) or [`Crystalline.reduce_ops`](@ref).
The default choices for the conventional basis vectors follow the conventions of the Bilbao
Crystallographic Server (or, equivalently, the International Tables of Crystallography),
which are:
- Unique axis *b* (cell choice 1) for monoclinic space groups.
- Obverse triple hexagonal unit cell for rhombohedral space groups.
- Origin choice 2: inversion centers are placed at (0,0,0). (relevant for certain
centrosymmetric space groups with two possible choices; e.g., in the orthorhombic,
tetragonal or cubic crystal systems).
See also [`directbasis`](@ref).
## Data sources
The symmetry operations returned by this function were originally retrieved from the [Bilbao
Crystallographic Server, SPACEGROUP GENPOS](https://www.cryst.ehu.es/cryst/get_gen.html).
The associated citation is: ([Aroyo et al., Z. Kristallogr. Cryst. Mater. **221**, 15
(2006).](https://doi.org/10.1524/zkri.2006.221.1.15)).
"""
function spacegroup(sgnum, Dᵛ::Val{D}=Val(3)) where D
@boundscheck _check_valid_sgnum_and_dim(sgnum, D)
codes = SG_CODES_Vs[D][sgnum]
cntr = centering(sgnum, D)
Ncntr = centering_volume_fraction(cntr, Dᵛ)
Nop = length(codes)+1 # number of operations ÷ by equiv. centering translations
operations = Vector{SymOperation{D}}(undef, Nop * Ncntr)
# convert `codes` to `SymOperation`s and add to `operations`
_include_symops_from_codes!(operations, codes)
# add the centering-translation related operations (not included in `codes`)
if Ncntr > 1
cntr_translations = all_centeringtranslations(cntr, Dᵛ)
_include_symops_centering_related!(operations, cntr_translations, Nop)
end
return SpaceGroup{D}(sgnum, operations)
end
spacegroup(sgnum::Integer, D::Integer) = spacegroup(sgnum, Val(D))
function _include_symops_from_codes!(
operations::Vector{SymOperation{D}}, codes;
add_identity::Bool = true) where D
if add_identity # add trivial identity operation separately and manually
operations[1] = one(SymOperation{D})
end
for (n, code) in enumerate(codes)
op = SymOperation{D}(get_indexed_rotation(code[1], Val{D}()),
get_indexed_translation(code[2], Val{D}()))
operations[n+add_identity] = op
end
return operations
end
function _include_symops_centering_related!(
operations::Vector{SymOperation{D}}, cntr_translations, Nop) where D
for (i, t) in enumerate(cntr_translations)
for n in 1:Nop
op = operations[n]
t′ = reduce_translation_to_unitrange(translation(op) + t)
op′ = SymOperation{D}(op.rotation, t′)
operations[n+i*Nop] = op′
end
end
return operations
end
function _check_valid_sgnum_and_dim(sgnum::Integer, D::Integer)
if D == 3
sgnum > 230 && _throw_invalid_sgnum(sgnum, D)
elseif D == 2
sgnum > 17 && _throw_invalid_sgnum(sgnum, D)
elseif D == 1
sgnum > 2 && _throw_invalid_sgnum(sgnum, D)
else
_throw_invalid_dim(D)
end
sgnum < 1 && throw(DomainError(sgnum, "group number must be a positive integer"))
return nothing
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3140 | # NOTE: There's some unfortunate conventional choices regarding the setting of rod groups:
# the periodicity is assumed to be along the z-direction - this is contrary to how the
# layer groups (xy periodicity) and frieze groups (x periodicity) are built... One
# possible motivation for this choice would be to have rod groups more closely
# resemble the corresponding space groups; but this way, the frieze groups don't
# resemble the rod groups (instead, the layer groups)... Quite annoying in a
# computational setting ...: we now need to keep track of _which_ direction is the
# periodic one... Seems more appealing to just establish some convention (say,
# P = 1 ⇒ x periodicity; P = 2 ⇒ xy periodicity). Unfortunately, if we do that,
# we need to change the labels for the rod groups (they are setting dependent).
# This problem is discussed in e.g. ITE1 Section 1.2.6; one option is to indicate the
# direction of periodicity with a subscript (e.g., ₐ for x-direction; but that doesn't
# work too well with unicode that doesn't have {b,c}-subscripts.
"""
subperiodicgroup(num::Integer, ::Val{D}=Val(3), ::Val{P}=Val(2))
subperiodicgroup(num::Integer, D::Integer, P::Integer)
--> ::SubperiodicGroup{D,P}
Return the operations of the subperiodic group `num` of embedding dimension `D` and
periodicity dimension `P` as a `SubperiodicGroup{D,P}`.
The setting choices are those of the International Tables for Crystallography, Volume E.
Allowed combinations of `D` and `P` and their associated group names are:
- `D = 3`, `P = 2`: Layer groups (`num` = 1, …, 80).
- `D = 3`, `P = 1`: Rod groups (`num` = 1, …, 75).
- `D = 2`, `P = 1`: Frieze groups (`num` = 1, …, 7).
## Example
```jldoctest
julia> subperiodicgroup(7, Val(2), Val(1))
SubperiodicGroup{2, 1} ⋕7 (𝓅2mg) with 4 operations:
1
2
{m₁₀|½,0}
{m₀₁|½,0}
```
## Data sources
The symmetry operations returned by this function were originally retrieved from the [Bilbao
Crystallographic Database, SUBPERIODIC GENPOS](https://www.cryst.ehu.es/subperiodic/get_sub_gen.html).
"""
function subperiodicgroup(num::Integer, Dᵛ::Val{D}=Val(3), Pᵛ::Val{P}=Val(2)) where {D, P}
@boundscheck _check_valid_subperiodic_num_and_dim(num, D, P)
codes = SUBG_CODES_Vs[(D,P)][num]
cntr = centering(num, D, P)
Ncntr = centering_volume_fraction(cntr, Dᵛ, Pᵛ)
Nop = (length(codes)+1) # number of operations ÷ by equiv. centering translations
operations = Vector{SymOperation{D}}(undef, Nop * Ncntr)
# convert `codes` to `SymOperation`s and add to `operations`
_include_symops_from_codes!(operations, codes)
# add the centering-translation related operations (not included in `codes`)
if Ncntr > 1
cntr_translations = all_centeringtranslations(cntr, Dᵛ, Pᵛ)
_include_symops_centering_related!(operations, cntr_translations, Nop)
end
return SubperiodicGroup{D, P}(num, operations)
end
subperiodicgroup(num::Integer, D::Integer, P::Integer) = subperiodicgroup(num, Val(D), Val(P)) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4289 |
using Graphs
include(joinpath((@__DIR__), "types.jl"))
include(joinpath((@__DIR__), "show.jl"))
include(joinpath((@__DIR__), "init_data.jl"))
# ---------------------------------------------------------------------------------------- #
function group(g::GroupRelation{D,AG}, classidx::Int=1) where {D,AG}
# TODO: instantiate a group of type AG with number `n.num`
H = spacegroup(g.num, Val{D}())
# transform `H` to the setting defined by `transforms[conjugacyclass]`
t = g.classes[classidx]
if isnothing(t.P) && isnothing(t.p)
return H
else
P, p = something(t.P), something(t.p)
P⁻¹ = inv(P)
return typeof(H)(num(H), transform.(H, Ref(P⁻¹), Ref(-P⁻¹*p)))
end
end
# technically, this concept of taking a "all the recursive children" of a graph vertex is
# called the "descendants" of the graph in 'networkx'; similarly, going the other way
# (supergroups) is called the "ancestors":
# see https://networkx.org/documentation/stable/reference/algorithms/dag.html)
for (f, rel_shorthand, rel_kind, doctxt) in
((:maximal_subgroups, :MAXSUB, :SUBGROUP, "maximal sub"),
(:minimal_supergroups, :MINSUP, :SUPERGROUP, "minimal super"))
relations_3D = Symbol(rel_shorthand, :_RELATIONSD_3D)
relations_2D = Symbol(rel_shorthand, :_RELATIONSD_2D)
relations_1D = Symbol(rel_shorthand, :_RELATIONSD_1D)
@eval begin
@doc """
$($f)(num::Integer, AG::Type{<:AbstractGroup}=SpaceGrop{3}; kind)
Returns the graph structure of the $($doctxt)groups as a `GroupRelationGraph` for a
group of type `AG` and number `num`.
## Visualization
The resulting group structure can be plotted using Makie.jl (e.g., GLMakie.jl) using
`plot(::GroupRelationGraph)`:
```jl
julia> using Crystalline
julia> gr = $($f)(112, SpaceGroup{3})
julia> using GraphMakie, GLMakie
julia> plot(gr)
```
## Keyword arguments
- `kind` (default, `Crystalline.TRANSLATIONENGLEICHE`): to return klassengleiche
relations, set `kind = Crystalline.KLASSENGLEICHE`). For klassengleiche
relationships, only a selection of reasonably low-index relationships are
returned.
## Data sources
The group relationships returned by this function were retrieved from the Bilbao
Crystallographic Server's [MAXSUB](https://www.cryst.ehu.es/cryst/maxsub.html)
program. Please cite the original reference work associated with MAXSUB:
- Aroyo et al., [Z. Kristallogr. Cryst. Mater. **221**, 15 (2006)](https://doi.org/10.1524/zkri.2006.221.1.15).
"""
function $f(num::Integer, ::Type{SpaceGroup{D}}=SpaceGroup{3};
kind::GleicheKind = TRANSLATIONENGLEICHE) where D
D ∈ (1,2,3) || _throw_invalid_dim(D)
relationsd = (D == 3 ? $relations_3D :
D == 2 ? $relations_2D :
D == 1 ? $relations_1D : error("unreachable")
) :: Dict{Int, GroupRelations{D, SpaceGroup{D}}}
infos = Dict{Int, GroupRelations{D,SpaceGroup{D}}}()
vertices = Int[num]
remaining_vertices = Int[num]
fadjlist = Vector{Int}[]
while !isempty(remaining_vertices)
num′ = pop!(remaining_vertices)
info′ = relationsd[num′]
children = filter(rel->rel.kind==kind, info′)
infos[num′] = valtype(infos)(num′, children)
push!(fadjlist, Int[])
for child in children
k = findfirst(==(child.num), vertices)
if isnothing(k)
push!(vertices, child.num)
if child.num ∉ remaining_vertices
pushfirst!(remaining_vertices, child.num)
end
k = length(vertices)
end
push!(fadjlist[end], k)
end
end
return GroupRelationGraph(vertices, fadjlist, infos, $rel_kind)
end # function $f
end # begin @eval
end # for (f, ...)
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2967 | # ---------------------------------------------------------------------------------------- #
# Dictionaries of maximal subgroup relationships in 1D, 2D, & 3D
const MAXSUB_RELATIONSD_1D = Dict{Int, GroupRelations{1, SpaceGroup{1}}}()
const MAXSUB_RELATIONSD_2D = Dict{Int, GroupRelations{2, SpaceGroup{2}}}()
const MAXSUB_RELATIONSD_3D = Dict{Int, GroupRelations{3, SpaceGroup{3}}}()
let subgroup_data = JLD2.load_object(joinpath((@__DIR__), "..", "..", "data",
"spacegroup_subgroups_data.jld2"))
for (D, maxsubsd) in
zip(1:3, (MAXSUB_RELATIONSD_1D, MAXSUB_RELATIONSD_2D, MAXSUB_RELATIONSD_3D))
for (numᴳ, data) in enumerate(subgroup_data[D])
grouprels = Vector{GroupRelation{D,SpaceGroup{D}}}(undef, length(data))
for (i, (numᴴ, index, kindstr, Pps)) in enumerate(data)
classes = Vector{ConjugacyTransform{D}}(undef, length(Pps))
for (j, (P, p)) in enumerate(Pps)
P′ = isnothing(P) ? P : SqSMatrix{D,Float64}(P)
p′ = isnothing(p) ? p : SVector{D,Float64}(p)
classes[j] = ConjugacyTransform(P′, p′)
end
kind = kindstr == :t ? TRANSLATIONENGLEICHE : KLASSENGLEICHE
grouprels[i] = GroupRelation{SpaceGroup{D}}(numᴳ, numᴴ, index, kind, classes)
end
maxsubsd[numᴳ] = GroupRelations{SpaceGroup{D}}(numᴳ, reverse!(grouprels))
end
end
end
# ---------------------------------------------------------------------------------------- #
# Dictionaries of minimal supergroup relationships in 1D, 2D, & 3D
const MINSUP_RELATIONSD_1D = Dict{Int, GroupRelations{1, SpaceGroup{1}}}()
const MINSUP_RELATIONSD_2D = Dict{Int, GroupRelations{2, SpaceGroup{2}}}()
const MINSUP_RELATIONSD_3D = Dict{Int, GroupRelations{3, SpaceGroup{3}}}()
for (D, minsupsd, maxsubsd) in
zip(1:3,
(MINSUP_RELATIONSD_1D, MINSUP_RELATIONSD_2D, MINSUP_RELATIONSD_3D),
(MAXSUB_RELATIONSD_1D, MAXSUB_RELATIONSD_2D, MAXSUB_RELATIONSD_3D))
for numᴴ in 1:MAX_SGNUM[D]
grouprels = Vector{GroupRelation{D,SpaceGroup{D}}}()
for numᴳ in 1:MAX_SGNUM[D]
# NB: the loop-range above cannot be reduced to `numᴴ:MAX_SGNUM[D]` since
# that would exclude some klassengleiche relationships where `numᴴ > numᴳ`
rsᴳᴴ = maxsubsd[numᴳ]
idxs = findall(rᴳᴴ -> rᴳᴴ.num==numᴴ, rsᴳᴴ)
for i in idxs
rᴳᴴ = rsᴳᴴ[i]
rᴴᴳ = GroupRelation{SpaceGroup{D}}(numᴴ, numᴳ,
rᴳᴴ.index, rᴳᴴ.kind,
rᴳᴴ.classes #= NB: note, per Bilbao convention, we do not
invert transformations in `.classes` =#)
push!(grouprels, rᴴᴳ)
end
end
minsupsd[numᴴ] = GroupRelations{SpaceGroup{D}}(numᴴ, grouprels)
end
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5116 | # `show` & `summary`
is_tgleiche(kind::GleicheKind) = kind == TRANSLATIONENGLEICHE
function Base.summary(io::IO, rels::GroupRelations{D,AG}) where {D,AG}
print(io, "GroupRelations{", AG, "} ⋕", rels.num, " (", iuc(rels.num, D),
") with ", length(rels), " elements")
end
function Base.summary(io::IO, rel::GroupRelation{D,AG}) where {D,AG}
print(io, "GroupRelation{", AG, "} ⋕", rel.num)
printstyled(io, is_tgleiche(rel.kind) ? "ᵀ" : "ᴷ";
color = is_tgleiche(rel.kind) ? :green : :red)
print(io, " (", iuc(rel.num, D), ") with ", length(rel.classes), " conjugacy class",
length(rel.classes) == 1 ? "" : "es")
end
function Base.show(io::IO, ::MIME"text/plain", rels::GroupRelations{D,AG}) where {D,AG}
AG <: SpaceGroup || error("correct show not yet implemented for this type")
summary(io, rels)
print(io, ":")
for rel in values(rels)
print(io, "\n ")
_print_child(io, rel.num, rel.kind, rel.index)
end
end
function _print_child(
io::IO,
num::Int,
kind::Union{Nothing, GleicheKind},
index::Union{Nothing, Int})
print(io, "⋕", num)
if !isnothing(kind)
printstyled(io, is_tgleiche(kind) ? "ᵀ" : "ᴷ";
color = is_tgleiche(kind) ? :green : :red)
end
if !isnothing(index)
printstyled(io, " (index ", index, ")"; color=:light_black)
end
end
function Base.show(io::IO, rels::GroupRelations{D,AG}) where {AG,D}
print(io, "[")
Nrels = length(rels)
for (i, rel) in enumerate(values(rels))
print(io, rel.num)
printstyled(io, is_tgleiche(rel.kind) ? "ᵀ" : "ᴷ";
color = is_tgleiche(rel.kind) ? :green : :red)
i == Nrels || print(io, ", ")
end
print(io, "]")
end
function Base.show(io::IO, ::MIME"text/plain", g::GroupRelation)
summary(io, g)
print(io, ":")
for (i, ct) in enumerate(g.classes)
printstyled(io, "\n ", Crystalline.supscriptify(string(i)), "⁾ ", color=:light_black)
print(io, ct)
end
end
function Base.show(io::IO, t::ConjugacyTransform{D}) where D
print(io, "P = ")
if isnothing(t.P) && isnothing(t.p)
print(io, 1)
else
P, p = something(t.P), something(t.p)
if !isone(P)
print(io, replace(string(rationalize.(float(P))), r"//1([ |\]|;])"=>s"\1", "//"=>"/", "Rational{Int64}"=>""))
else
print(io, 1)
end
if !iszero(p)
print(io, ", p = ",
replace(string(rationalize.(float(p))), r"//1([,|\]])"=>s"\1", "//"=>"/", "Rational{Int64}"=>""))
end
end
end
function Base.summary(io::IO, gr::GroupRelationGraph{D, AG}) where {D,AG}
print(io, "GroupRelationGraph",
" (", gr.direction == SUPERGROUP ? "super" : "sub", "groups)",
" of ", AG, " ⋕", first(gr.nums),
" with ", length(gr.nums), " vertices")
end
function Base.show(io::IO, gr::GroupRelationGraph)
summary(io, gr)
print(io, ":")
num = first(gr.nums) # find "base" group number
_print_graph_leaves(io, gr, num, Bool[], nothing, nothing)
end
function _print_graph_leaves(
io::IO,
gr::GroupRelationGraph,
num::Int,
is_last::Vector{Bool},
kind::Union{Nothing, GleicheKind},
index::Union{Nothing, Int}
)
# indicate "structure"-relationship of graph "leaves"/children via box-characters
indent = length(is_last)
print(io, "\n ")
if indent ≥ 2
for l in 1:indent-1
if !is_last[l]
printstyled(io, "│"; color=:light_black)
print(io, " ")
else
print(io, " ")
end
end
end
if indent > 0
printstyled(io, last(is_last) ? "└" : "├", "─►"; color=:light_black)
end
# print info about child
_print_child(io, num, kind, index)
# now move on to children of current child; print info about them, recursively
if !isnothing(kind) && kind == KLASSENGLEICHE
# avoid printing recursively for klassengleiche as this implies infinite looping
# NB: in principle, this means we don't show the entire structure of
# `gr.infos`; but it is also really not that clear how to do this
# properly for klassengleiche relations which are not a DAG but often
# cyclic
# only one child and child is trivial group
elseif length(gr.infos[num].children) == 1 && gr.infos[num].children[1].num == 1
child = gr.infos[num].children[1]
printstyled(io, " ╌╌►"; color=:light_black)
_print_child(io, child.num, child.kind, child.index)
# multiple children/nontrivial children
else
N_children = length(gr.infos[num].children)
for (i,child) in enumerate(gr.infos[num].children)
child_is_last = vcat(is_last, i==N_children)
_print_graph_leaves(io, gr, child.num, child_is_last, child.kind, child.index)
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3865 | # ---------------------- #
@enum GleicheKind::Int8 TRANSLATIONENGLEICHE KLASSENGLEICHE
@enum RelationKind::Int8 SUBGROUP SUPERGROUP
# ---------------------- #
struct ConjugacyTransform{D} # transform to a specific conjugacy class
P :: Union{Nothing, SqSMatrix{D,Float64}}
p :: Union{Nothing, SVector{D,Float64}}
end
# ---------------------- #
struct GroupRelation{D,AG} # all conjugacy classes of a subgroup
parent :: Int # the supergroup if num indicates a subgroup, and vice versa
num :: Int # group label; aka node label
index :: Int # index of H in G or vice versa, depending on context
kind :: GleicheKind
classes :: Vector{ConjugacyTransform{D}} # isomorphisms over distinct conjugacy classes
end
function GroupRelation{AG}(parent::Int, num::Integer, index::Integer, kind::GleicheKind,
transforms::Union{Nothing, Vector{ConjugacyTransform{D}}}
) where {D,AG}
return GroupRelation{D,AG}(parent, num, index, kind, transforms)
end
# ---------------------- #
struct GroupRelations{D,AG} <: AbstractVector{GroupRelation{D,AG}}
num :: Int # group label; aka node label
children :: Vector{GroupRelation{D,AG}} # list of sub- or supergroups
end
function GroupRelations{AG}(num::Integer, gs::AbstractVector{GroupRelation{D,AG}}
) where {D,AG}
return GroupRelations{D,AG}(num, gs)
end
Base.getindex(rels::GroupRelations, i::Integer) = getindex(rels.children, i)
Base.size(rels::GroupRelations) = size(rels.children)
# ---------------------- #
struct GroupRelationGraph{D,AG} <: Graphs.AbstractGraph{Int}
nums :: Vector{Int} # group numbers associated w/ each graph vertex index
fadjlist :: Vector{Vector{Int}} # indexes into `nums` conceptually
infos :: Dict{Int, GroupRelations{D,AG}} # sub/supergroup relation details
direction :: RelationKind # whether this is a sub- or supergroup relation
end
dim(::GroupRelationGraph{D}) where D = D
Base.getindex(gr::GroupRelationGraph, i::Integer) = getindex(gr.infos, i)
# ---------------------------------------------------------------------------------------- #
# Graphs.jl `AbstractGraph` interface for `GroupRelationGraph`
Graphs.vertices(gr::GroupRelationGraph) = eachindex(gr.nums)
Base.eltype(::GroupRelationGraph) = Int
Graphs.edgetype(::GroupRelationGraph) = Graphs.SimpleEdge{Int}
function Graphs.has_edge(gr::GroupRelationGraph, src::Integer, dst::Integer)
return Graphs.has_vertex(gr, src) && dst ∈ gr.fadjlist[src]
end
Graphs.has_vertex(gr::GroupRelationGraph, src::Integer) = src ∈ Graphs.vertices(gr)
function Graphs.outneighbors(gr, src::Integer) # every index "outgoing" upon `src`
Graphs.has_vertex(gr, src) || throw(DomainError(src, "`src` is not in graph"))
return gr.fadjlist[src]
end
function Graphs.inneighbors(gr, src::Integer) # every index "incident" upon `src`
Graphs.has_vertex(gr, src) || throw(DomainError(src, "`src` is not in graph"))
idxs = findall(∋(src), gr.fadjlist)
return idxs
end
Graphs.ne(gr::GroupRelationGraph) = sum(length, gr.fadjlist)
Graphs.nv(gr::GroupRelationGraph) = length(Graphs.vertices(gr))
Graphs.is_directed(::Union{Type{<:GroupRelationGraph}, GroupRelationGraph}) = true
Graphs.edges(gr::GroupRelationGraph) = GroupRelationGraphEdgeIter(gr)
struct GroupRelationGraphEdgeIter{D,AG}
gr :: GroupRelationGraph{D,AG}
end
function Base.iterate(it::GroupRelationGraphEdgeIter,
state::Union{Nothing, Tuple{Int,Int}}=(1,1))
# breadth-first iteration
i,j = state
if length(it.gr.fadjlist[i]) < j
if length(it.gr.fadjlist) > i
return iterate(it, (i+1, 1)) # go to next vertex
else
return nothing # no more edges or vertices
end
else
return Graphs.Edge(i, it.gr.fadjlist[i][j]), (i, j+1)
end
end
Base.length(it::GroupRelationGraphEdgeIter) = Graphs.ne(it.gr) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 117131 | const MSG_BNS_LABELs_D = Dict{Tuple{Int, Int}, String}(
(1, 1) => "P1",
(1, 2) => "P11′",
(1, 3) => "P_S1",
(2, 4) => "P-1",
(2, 5) => "P-11′",
(2, 6) => "P-1′",
(2, 7) => "P_S-1",
(3, 1) => "P2",
(3, 2) => "P21′",
(3, 3) => "P2′",
(3, 4) => "P_a2",
(3, 5) => "P_b2",
(3, 6) => "P_C2",
(4, 7) => "P2₁",
(4, 8) => "P2₁1′",
(4, 9) => "P2₁′",
(4, 10) => "P_a2₁",
(4, 11) => "P_b2₁",
(4, 12) => "P_C2₁",
(5, 13) => "C2",
(5, 14) => "C21′",
(5, 15) => "C2′",
(5, 16) => "C_c2",
(5, 17) => "C_a2",
(6, 18) => "Pm",
(6, 19) => "Pm1′",
(6, 20) => "Pm′",
(6, 21) => "P_am",
(6, 22) => "P_bm",
(6, 23) => "P_Cm",
(7, 24) => "Pc",
(7, 25) => "Pc1′",
(7, 26) => "Pc′",
(7, 27) => "P_ac",
(7, 28) => "P_cc",
(7, 29) => "P_bc",
(7, 30) => "P_Cc",
(7, 31) => "P_Ac",
(8, 32) => "Cm",
(8, 33) => "Cm1′",
(8, 34) => "Cm′",
(8, 35) => "C_cm",
(8, 36) => "C_am",
(9, 37) => "Cc",
(9, 38) => "Cc1′",
(9, 39) => "Cc′",
(9, 40) => "C_cc",
(9, 41) => "C_ac",
(10, 42) => "P2/m",
(10, 43) => "P2/m1′",
(10, 44) => "P2′/m",
(10, 45) => "P2/m′",
(10, 46) => "P2′/m′",
(10, 47) => "P_a2/m",
(10, 48) => "P_b2/m",
(10, 49) => "P_C2/m",
(11, 50) => "P2₁/m",
(11, 51) => "P2₁/m1′",
(11, 52) => "P2₁′/m",
(11, 53) => "P2₁/m′",
(11, 54) => "P2₁′/m′",
(11, 55) => "P_a2₁/m",
(11, 56) => "P_b2₁/m",
(11, 57) => "P_C2₁/m",
(12, 58) => "C2/m",
(12, 59) => "C2/m1′",
(12, 60) => "C2′/m",
(12, 61) => "C2/m′",
(12, 62) => "C2′/m′",
(12, 63) => "C_c2/m",
(12, 64) => "C_a2/m",
(13, 65) => "P2/c",
(13, 66) => "P2/c1′",
(13, 67) => "P2′/c",
(13, 68) => "P2/c′",
(13, 69) => "P2′/c′",
(13, 70) => "P_a2/c",
(13, 71) => "P_b2/c",
(13, 72) => "P_c2/c",
(13, 73) => "P_A2/c",
(13, 74) => "P_C2/c",
(14, 75) => "P2₁/c",
(14, 76) => "P2₁/c1′",
(14, 77) => "P2₁′/c",
(14, 78) => "P2₁/c′",
(14, 79) => "P2₁′/c′",
(14, 80) => "P_a2₁/c",
(14, 81) => "P_b2₁/c",
(14, 82) => "P_c2₁/c",
(14, 83) => "P_A2₁/c",
(14, 84) => "P_C2₁/c",
(15, 85) => "C2/c",
(15, 86) => "C2/c1′",
(15, 87) => "C2′/c",
(15, 88) => "C2/c′",
(15, 89) => "C2′/c′",
(15, 90) => "C_c2/c",
(15, 91) => "C_a2/c",
(16, 1) => "P222",
(16, 2) => "P2221′",
(16, 3) => "P2′2′2",
(16, 4) => "P_a222",
(16, 5) => "P_C222",
(16, 6) => "P_I222",
(17, 7) => "P222₁",
(17, 8) => "P222₁1′",
(17, 9) => "P2′2′2₁",
(17, 10) => "P22′2₁′",
(17, 11) => "P_a222₁",
(17, 12) => "P_c222₁",
(17, 13) => "P_B222₁",
(17, 14) => "P_C222₁",
(17, 15) => "P_I222₁",
(18, 16) => "P2₁2₁2",
(18, 17) => "P2₁2₁21′",
(18, 18) => "P2₁′2₁′2",
(18, 19) => "P2₁2₁′2′",
(18, 20) => "P_b2₁2₁2",
(18, 21) => "P_c2₁2₁2",
(18, 22) => "P_B2₁2₁2",
(18, 23) => "P_C2₁2₁2",
(18, 24) => "P_I2₁2₁2",
(19, 25) => "P2₁2₁2₁",
(19, 26) => "P2₁2₁2₁1′",
(19, 27) => "P2₁′2₁′2₁",
(19, 28) => "P_c2₁2₁2₁",
(19, 29) => "P_C2₁2₁2₁",
(19, 30) => "P_I2₁2₁2₁",
(20, 31) => "C222₁",
(20, 32) => "C222₁1′",
(20, 33) => "C2′2′2₁",
(20, 34) => "C22′2₁′",
(20, 35) => "C_c222₁",
(20, 36) => "C_a222₁",
(20, 37) => "C_A222₁",
(21, 38) => "C222",
(21, 39) => "C2221′",
(21, 40) => "C2′2′2",
(21, 41) => "C22′2′",
(21, 42) => "C_c222",
(21, 43) => "C_a222",
(21, 44) => "C_A222",
(22, 45) => "F222",
(22, 46) => "F2221′",
(22, 47) => "F2′2′2",
(22, 48) => "F_S222",
(23, 49) => "I222",
(23, 50) => "I2221′",
(23, 51) => "I2′2′2",
(23, 52) => "I_c222",
(24, 53) => "I2₁2₁2₁",
(24, 54) => "I2₁2₁2₁1′",
(24, 55) => "I2₁′2₁′2₁",
(24, 56) => "I_c2₁2₁2₁",
(25, 57) => "Pmm2",
(25, 58) => "Pmm21′",
(25, 59) => "Pm′m2′",
(25, 60) => "Pm′m′2",
(25, 61) => "P_cmm2",
(25, 62) => "P_amm2",
(25, 63) => "P_Cmm2",
(25, 64) => "P_Amm2",
(25, 65) => "P_Imm2",
(26, 66) => "Pmc2₁",
(26, 67) => "Pmc2₁1′",
(26, 68) => "Pm′c2₁′",
(26, 69) => "Pmc′2₁′",
(26, 70) => "Pm′c′2₁",
(26, 71) => "P_amc2₁",
(26, 72) => "P_bmc2₁",
(26, 73) => "P_cmc2₁",
(26, 74) => "P_Amc2₁",
(26, 75) => "P_Bmc2₁",
(26, 76) => "P_Cmc2₁",
(26, 77) => "P_Imc2₁",
(27, 78) => "Pcc2",
(27, 79) => "Pcc21′",
(27, 80) => "Pc′c2′",
(27, 81) => "Pc′c′2",
(27, 82) => "P_ccc2",
(27, 83) => "P_acc2",
(27, 84) => "P_Ccc2",
(27, 85) => "P_Acc2",
(27, 86) => "P_Icc2",
(28, 87) => "Pma2",
(28, 88) => "Pma21′",
(28, 89) => "Pm′a2′",
(28, 90) => "Pma′2′",
(28, 91) => "Pm′a′2",
(28, 92) => "P_ama2",
(28, 93) => "P_bma2",
(28, 94) => "P_cma2",
(28, 95) => "P_Ama2",
(28, 96) => "P_Bma2",
(28, 97) => "P_Cma2",
(28, 98) => "P_Ima2",
(29, 99) => "Pca2₁",
(29, 100) => "Pca2₁1′",
(29, 101) => "Pc′a2₁′",
(29, 102) => "Pca′2₁′",
(29, 103) => "Pc′a′2₁",
(29, 104) => "P_aca2₁",
(29, 105) => "P_bca2₁",
(29, 106) => "P_cca2₁",
(29, 107) => "P_Aca2₁",
(29, 108) => "P_Bca2₁",
(29, 109) => "P_Cca2₁",
(29, 110) => "P_Ica2₁",
(30, 111) => "Pnc2",
(30, 112) => "Pnc21′",
(30, 113) => "Pn′c2′",
(30, 114) => "Pnc′2′",
(30, 115) => "Pn′c′2",
(30, 116) => "P_anc2",
(30, 117) => "P_bnc2",
(30, 118) => "P_cnc2",
(30, 119) => "P_Anc2",
(30, 120) => "P_Bnc2",
(30, 121) => "P_Cnc2",
(30, 122) => "P_Inc2",
(31, 123) => "Pmn2₁",
(31, 124) => "Pmn2₁1′",
(31, 125) => "Pm′n2₁′",
(31, 126) => "Pmn′2₁′",
(31, 127) => "Pm′n′2₁",
(31, 128) => "P_amn2₁",
(31, 129) => "P_bmn2₁",
(31, 130) => "P_cmn2₁",
(31, 131) => "P_Amn2₁",
(31, 132) => "P_Bmn2₁",
(31, 133) => "P_Cmn2₁",
(31, 134) => "P_Imn2₁",
(32, 135) => "Pba2",
(32, 136) => "Pba21′",
(32, 137) => "Pb′a2′",
(32, 138) => "Pb′a′2",
(32, 139) => "P_cba2",
(32, 140) => "P_bba2",
(32, 141) => "P_Cba2",
(32, 142) => "P_Aba2",
(32, 143) => "P_Iba2",
(33, 144) => "Pna2₁",
(33, 145) => "Pna2₁1′",
(33, 146) => "Pn′a2₁′",
(33, 147) => "Pna′2₁′",
(33, 148) => "Pn′a′2₁",
(33, 149) => "P_ana2₁",
(33, 150) => "P_bna2₁",
(33, 151) => "P_cna2₁",
(33, 152) => "P_Ana2₁",
(33, 153) => "P_Bna2₁",
(33, 154) => "P_Cna2₁",
(33, 155) => "P_Ina2₁",
(34, 156) => "Pnn2",
(34, 157) => "Pnn21′",
(34, 158) => "Pn′n2′",
(34, 159) => "Pn′n′2",
(34, 160) => "P_ann2",
(34, 161) => "P_cnn2",
(34, 162) => "P_Ann2",
(34, 163) => "P_Cnn2",
(34, 164) => "P_Inn2",
(35, 165) => "Cmm2",
(35, 166) => "Cmm21′",
(35, 167) => "Cm′m2′",
(35, 168) => "Cm′m′2",
(35, 169) => "C_cmm2",
(35, 170) => "C_amm2",
(35, 171) => "C_Amm2",
(36, 172) => "Cmc2₁",
(36, 173) => "Cmc2₁1′",
(36, 174) => "Cm′c2₁′",
(36, 175) => "Cmc′2₁′",
(36, 176) => "Cm′c′2₁",
(36, 177) => "C_cmc2₁",
(36, 178) => "C_amc2₁",
(36, 179) => "C_Amc2₁",
(37, 180) => "Ccc2",
(37, 181) => "Ccc21′",
(37, 182) => "Cc′c2′",
(37, 183) => "Cc′c′2",
(37, 184) => "C_ccc2",
(37, 185) => "C_acc2",
(37, 186) => "C_Acc2",
(38, 187) => "Amm2",
(38, 188) => "Amm21′",
(38, 189) => "Am′m2′",
(38, 190) => "Amm′2′",
(38, 191) => "Am′m′2",
(38, 192) => "A_amm2",
(38, 193) => "A_bmm2",
(38, 194) => "A_Bmm2",
(39, 195) => "Abm2",
(39, 196) => "Abm21′",
(39, 197) => "Ab′m2′",
(39, 198) => "Abm′2′",
(39, 199) => "Ab′m′2",
(39, 200) => "A_abm2",
(39, 201) => "A_bbm2",
(39, 202) => "A_Bbm2",
(40, 203) => "Ama2",
(40, 204) => "Ama21′",
(40, 205) => "Am′a2′",
(40, 206) => "Ama′2′",
(40, 207) => "Am′a′2",
(40, 208) => "A_ama2",
(40, 209) => "A_bma2",
(40, 210) => "A_Bma2",
(41, 211) => "Aba2",
(41, 212) => "Aba21′",
(41, 213) => "Ab′a2′",
(41, 214) => "Aba′2′",
(41, 215) => "Ab′a′2",
(41, 216) => "A_aba2",
(41, 217) => "A_bba2",
(41, 218) => "A_Bba2",
(42, 219) => "Fmm2",
(42, 220) => "Fmm21′",
(42, 221) => "Fm′m2′",
(42, 222) => "Fm′m′2",
(42, 223) => "F_Smm2",
(43, 224) => "Fdd2",
(43, 225) => "Fdd21′",
(43, 226) => "Fd′d2′",
(43, 227) => "Fd′d′2",
(43, 228) => "F_Sdd2",
(44, 229) => "Imm2",
(44, 230) => "Imm21′",
(44, 231) => "Im′m2′",
(44, 232) => "Im′m′2",
(44, 233) => "I_cmm2",
(44, 234) => "I_amm2",
(45, 235) => "Iba2",
(45, 236) => "Iba21′",
(45, 237) => "Ib′a2′",
(45, 238) => "Ib′a′2",
(45, 239) => "I_cba2",
(45, 240) => "I_aba2",
(46, 241) => "Ima2",
(46, 242) => "Ima21′",
(46, 243) => "Im′a2′",
(46, 244) => "Ima′2′",
(46, 245) => "Im′a′2",
(46, 246) => "I_cma2",
(46, 247) => "I_ama2",
(46, 248) => "I_bma2",
(47, 249) => "Pmmm",
(47, 250) => "Pmmm1′",
(47, 251) => "Pm′mm",
(47, 252) => "Pm′m′m",
(47, 253) => "Pm′m′m′",
(47, 254) => "P_ammm",
(47, 255) => "P_Cmmm",
(47, 256) => "P_Immm",
(48, 257) => "Pnnn",
(48, 258) => "Pnnn1′",
(48, 259) => "Pn′nn",
(48, 260) => "Pn′n′n",
(48, 261) => "Pn′n′n′",
(48, 262) => "P_cnnn",
(48, 263) => "P_Cnnn",
(48, 264) => "P_Innn",
(49, 265) => "Pccm",
(49, 266) => "Pccm1′",
(49, 267) => "Pc′cm",
(49, 268) => "Pccm′",
(49, 269) => "Pc′c′m",
(49, 270) => "Pc′cm′",
(49, 271) => "Pc′c′m′",
(49, 272) => "P_accm",
(49, 273) => "P_cccm",
(49, 274) => "P_Bccm",
(49, 275) => "P_Cccm",
(49, 276) => "P_Iccm",
(50, 277) => "Pban",
(50, 278) => "Pban1′",
(50, 279) => "Pb′an",
(50, 280) => "Pban′",
(50, 281) => "Pb′a′n",
(50, 282) => "Pb′an′",
(50, 283) => "Pb′a′n′",
(50, 284) => "P_aban",
(50, 285) => "P_cban",
(50, 286) => "P_Aban",
(50, 287) => "P_Cban",
(50, 288) => "P_Iban",
(51, 289) => "Pmma",
(51, 290) => "Pmma1′",
(51, 291) => "Pm′ma",
(51, 292) => "Pmm′a",
(51, 293) => "Pmma′",
(51, 294) => "Pm′m′a",
(51, 295) => "Pmm′a′",
(51, 296) => "Pm′ma′",
(51, 297) => "Pm′m′a′",
(51, 298) => "P_amma",
(51, 299) => "P_bmma",
(51, 300) => "P_cmma",
(51, 301) => "P_Amma",
(51, 302) => "P_Bmma",
(51, 303) => "P_Cmma",
(51, 304) => "P_Imma",
(52, 305) => "Pnna",
(52, 306) => "Pnna1′",
(52, 307) => "Pn′na",
(52, 308) => "Pnn′a",
(52, 309) => "Pnna′",
(52, 310) => "Pn′n′a",
(52, 311) => "Pnn′a′",
(52, 312) => "Pn′na′",
(52, 313) => "Pn′n′a′",
(52, 314) => "P_anna",
(52, 315) => "P_bnna",
(52, 316) => "P_cnna",
(52, 317) => "P_Anna",
(52, 318) => "P_Bnna",
(52, 319) => "P_Cnna",
(52, 320) => "P_Inna",
(53, 321) => "Pmna",
(53, 322) => "Pmna1′",
(53, 323) => "Pm′na",
(53, 324) => "Pmn′a",
(53, 325) => "Pmna′",
(53, 326) => "Pm′n′a",
(53, 327) => "Pmn′a′",
(53, 328) => "Pm′na′",
(53, 329) => "Pm′n′a′",
(53, 330) => "P_amna",
(53, 331) => "P_bmna",
(53, 332) => "P_cmna",
(53, 333) => "P_Amna",
(53, 334) => "P_Bmna",
(53, 335) => "P_Cmna",
(53, 336) => "P_Imna",
(54, 337) => "Pcca",
(54, 338) => "Pcca1′",
(54, 339) => "Pc′ca",
(54, 340) => "Pcc′a",
(54, 341) => "Pcca′",
(54, 342) => "Pc′c′a",
(54, 343) => "Pcc′a′",
(54, 344) => "Pc′ca′",
(54, 345) => "Pc′c′a′",
(54, 346) => "P_acca",
(54, 347) => "P_bcca",
(54, 348) => "P_ccca",
(54, 349) => "P_Acca",
(54, 350) => "P_Bcca",
(54, 351) => "P_Ccca",
(54, 352) => "P_Icca",
(55, 353) => "Pbam",
(55, 354) => "Pbam1′",
(55, 355) => "Pb′am",
(55, 356) => "Pbam′",
(55, 357) => "Pb′a′m",
(55, 358) => "Pb′am′",
(55, 359) => "Pb′a′m′",
(55, 360) => "P_abam",
(55, 361) => "P_cbam",
(55, 362) => "P_Abam",
(55, 363) => "P_Cbam",
(55, 364) => "P_Ibam",
(56, 365) => "Pccn",
(56, 366) => "Pccn1′",
(56, 367) => "Pc′cn",
(56, 368) => "Pccn′",
(56, 369) => "Pc′c′n",
(56, 370) => "Pc′cn′",
(56, 371) => "Pc′c′n′",
(56, 372) => "P_bccn",
(56, 373) => "P_cccn",
(56, 374) => "P_Accn",
(56, 375) => "P_Cccn",
(56, 376) => "P_Iccn",
(57, 377) => "Pbcm",
(57, 378) => "Pbcm1′",
(57, 379) => "Pb′cm",
(57, 380) => "Pbc′m",
(57, 381) => "Pbcm′",
(57, 382) => "Pb′c′m",
(57, 383) => "Pbc′m′",
(57, 384) => "Pb′cm′",
(57, 385) => "Pb′c′m′",
(57, 386) => "P_abcm",
(57, 387) => "P_bbcm",
(57, 388) => "P_cbcm",
(57, 389) => "P_Abcm",
(57, 390) => "P_Bbcm",
(57, 391) => "P_Cbcm",
(57, 392) => "P_Ibcm",
(58, 393) => "Pnnm",
(58, 394) => "Pnnm1′",
(58, 395) => "Pn′nm",
(58, 396) => "Pnnm′",
(58, 397) => "Pn′n′m",
(58, 398) => "Pnn′m′",
(58, 399) => "Pn′n′m′",
(58, 400) => "P_annm",
(58, 401) => "P_cnnm",
(58, 402) => "P_Bnnm",
(58, 403) => "P_Cnnm",
(58, 404) => "P_Innm",
(59, 405) => "Pmmn",
(59, 406) => "Pmmn1′",
(59, 407) => "Pm′mn",
(59, 408) => "Pmmn′",
(59, 409) => "Pm′m′n",
(59, 410) => "Pmm′n′",
(59, 411) => "Pm′m′n′",
(59, 412) => "P_bmmn",
(59, 413) => "P_cmmn",
(59, 414) => "P_Bmmn",
(59, 415) => "P_Cmmn",
(59, 416) => "P_Immn",
(60, 417) => "Pbcn",
(60, 418) => "Pbcn1′",
(60, 419) => "Pb′cn",
(60, 420) => "Pbc′n",
(60, 421) => "Pbcn′",
(60, 422) => "Pb′c′n",
(60, 423) => "Pbc′n′",
(60, 424) => "Pb′cn′",
(60, 425) => "Pb′c′n′",
(60, 426) => "P_abcn",
(60, 427) => "P_bbcn",
(60, 428) => "P_cbcn",
(60, 429) => "P_Abcn",
(60, 430) => "P_Bbcn",
(60, 431) => "P_Cbcn",
(60, 432) => "P_Ibcn",
(61, 433) => "Pbca",
(61, 434) => "Pbca1′",
(61, 435) => "Pb′ca",
(61, 436) => "Pb′c′a",
(61, 437) => "Pb′c′a′",
(61, 438) => "P_abca",
(61, 439) => "P_Cbca",
(61, 440) => "P_Ibca",
(62, 441) => "Pnma",
(62, 442) => "Pnma1′",
(62, 443) => "Pn′ma",
(62, 444) => "Pnm′a",
(62, 445) => "Pnma′",
(62, 446) => "Pn′m′a",
(62, 447) => "Pnm′a′",
(62, 448) => "Pn′ma′",
(62, 449) => "Pn′m′a′",
(62, 450) => "P_anma",
(62, 451) => "P_bnma",
(62, 452) => "P_cnma",
(62, 453) => "P_Anma",
(62, 454) => "P_Bnma",
(62, 455) => "P_Cnma",
(62, 456) => "P_Inma",
(63, 457) => "Cmcm",
(63, 458) => "Cmcm1′",
(63, 459) => "Cm′cm",
(63, 460) => "Cmc′m",
(63, 461) => "Cmcm′",
(63, 462) => "Cm′c′m",
(63, 463) => "Cmc′m′",
(63, 464) => "Cm′cm′",
(63, 465) => "Cm′c′m′",
(63, 466) => "C_cmcm",
(63, 467) => "C_amcm",
(63, 468) => "C_Amcm",
(64, 469) => "Cmca",
(64, 470) => "Cmca1′",
(64, 471) => "Cm′ca",
(64, 472) => "Cmc′a",
(64, 473) => "Cmca′",
(64, 474) => "Cm′c′a",
(64, 475) => "Cmc′a′",
(64, 476) => "Cm′ca′",
(64, 477) => "Cm′c′a′",
(64, 478) => "C_cmca",
(64, 479) => "C_amca",
(64, 480) => "C_Amca",
(65, 481) => "Cmmm",
(65, 482) => "Cmmm1′",
(65, 483) => "Cm′mm",
(65, 484) => "Cmmm′",
(65, 485) => "Cm′m′m",
(65, 486) => "Cmm′m′",
(65, 487) => "Cm′m′m′",
(65, 488) => "C_cmmm",
(65, 489) => "C_ammm",
(65, 490) => "C_Ammm",
(66, 491) => "Cccm",
(66, 492) => "Cccm1′",
(66, 493) => "Cc′cm",
(66, 494) => "Cccm′",
(66, 495) => "Cc′c′m",
(66, 496) => "Ccc′m′",
(66, 497) => "Cc′c′m′",
(66, 498) => "C_cccm",
(66, 499) => "C_accm",
(66, 500) => "C_Accm",
(67, 501) => "Cmma",
(67, 502) => "Cmma1′",
(67, 503) => "Cm′ma",
(67, 504) => "Cmma′",
(67, 505) => "Cm′m′a",
(67, 506) => "Cmm′a′",
(67, 507) => "Cm′m′a′",
(67, 508) => "C_cmma",
(67, 509) => "C_amma",
(67, 510) => "C_Amma",
(68, 511) => "Ccca",
(68, 512) => "Ccca1′",
(68, 513) => "Cc′ca",
(68, 514) => "Ccca′",
(68, 515) => "Cc′c′a",
(68, 516) => "Ccc′a′",
(68, 517) => "Cc′c′a′",
(68, 518) => "C_ccca",
(68, 519) => "C_acca",
(68, 520) => "C_Acca",
(69, 521) => "Fmmm",
(69, 522) => "Fmmm1′",
(69, 523) => "Fm′mm",
(69, 524) => "Fm′m′m",
(69, 525) => "Fm′m′m′",
(69, 526) => "F_Smmm",
(70, 527) => "Fddd",
(70, 528) => "Fddd1′",
(70, 529) => "Fd′dd",
(70, 530) => "Fd′d′d",
(70, 531) => "Fd′d′d′",
(70, 532) => "F_Sddd",
(71, 533) => "Immm",
(71, 534) => "Immm1′",
(71, 535) => "Im′mm",
(71, 536) => "Im′m′m",
(71, 537) => "Im′m′m′",
(71, 538) => "I_cmmm",
(72, 539) => "Ibam",
(72, 540) => "Ibam1′",
(72, 541) => "Ib′am",
(72, 542) => "Ibam′",
(72, 543) => "Ib′a′m",
(72, 544) => "Iba′m′",
(72, 545) => "Ib′a′m′",
(72, 546) => "I_cbam",
(72, 547) => "I_bbam",
(73, 548) => "Ibca",
(73, 549) => "Ibca1′",
(73, 550) => "Ib′ca",
(73, 551) => "Ib′c′a",
(73, 552) => "Ib′c′a′",
(73, 553) => "I_cbca",
(74, 554) => "Imma",
(74, 555) => "Imma1′",
(74, 556) => "Im′ma",
(74, 557) => "Imma′",
(74, 558) => "Im′m′a",
(74, 559) => "Imm′a′",
(74, 560) => "Im′m′a′",
(74, 561) => "I_cmma",
(74, 562) => "I_bmma",
(75, 1) => "P4",
(75, 2) => "P41′",
(75, 3) => "P4′",
(75, 4) => "P_c4",
(75, 5) => "P_C4",
(75, 6) => "P_I4",
(76, 7) => "P4₁",
(76, 8) => "P4₁1′",
(76, 9) => "P4₁′",
(76, 10) => "P_c4₁",
(76, 11) => "P_C4₁",
(76, 12) => "P_I4₁",
(77, 13) => "P4₂",
(77, 14) => "P4₂1′",
(77, 15) => "P4₂′",
(77, 16) => "P_c4₂",
(77, 17) => "P_C4₂",
(77, 18) => "P_I4₂",
(78, 19) => "P4₃",
(78, 20) => "P4₃1′",
(78, 21) => "P4₃′",
(78, 22) => "P_c4₃",
(78, 23) => "P_C4₃",
(78, 24) => "P_I4₃",
(79, 25) => "I4",
(79, 26) => "I41′",
(79, 27) => "I4′",
(79, 28) => "I_c4",
(80, 29) => "I4₁",
(80, 30) => "I4₁1′",
(80, 31) => "I4₁′",
(80, 32) => "I_c4₁",
(81, 33) => "P-4",
(81, 34) => "P-41′",
(81, 35) => "P-4′",
(81, 36) => "P_c-4",
(81, 37) => "P_C-4",
(81, 38) => "P_I-4",
(82, 39) => "I-4",
(82, 40) => "I-41′",
(82, 41) => "I-4′",
(82, 42) => "I_c-4",
(83, 43) => "P4/m",
(83, 44) => "P4/m1′",
(83, 45) => "P4′/m",
(83, 46) => "P4/m′",
(83, 47) => "P4′/m′",
(83, 48) => "P_c4/m",
(83, 49) => "P_C4/m",
(83, 50) => "P_I4/m",
(84, 51) => "P4₂/m",
(84, 52) => "P4₂/m1′",
(84, 53) => "P4₂′/m",
(84, 54) => "P4₂/m′",
(84, 55) => "P4₂′/m′",
(84, 56) => "P_c4₂/m",
(84, 57) => "P_C4₂/m",
(84, 58) => "P_I4₂/m",
(85, 59) => "P4/n",
(85, 60) => "P4/n1′",
(85, 61) => "P4′/n",
(85, 62) => "P4/n′",
(85, 63) => "P4′/n′",
(85, 64) => "P_c4/n",
(85, 65) => "P_C4/n",
(85, 66) => "P_I4/n",
(86, 67) => "P4₂/n",
(86, 68) => "P4₂/n1′",
(86, 69) => "P4₂′/n",
(86, 70) => "P4₂/n′",
(86, 71) => "P4₂′/n′",
(86, 72) => "P_c4₂/n",
(86, 73) => "P_C4₂/n",
(86, 74) => "P_I4₂/n",
(87, 75) => "I4/m",
(87, 76) => "I4/m1′",
(87, 77) => "I4′/m",
(87, 78) => "I4/m′",
(87, 79) => "I4′/m′",
(87, 80) => "I_c4/m",
(88, 81) => "I4₁/a",
(88, 82) => "I4₁/a1′",
(88, 83) => "I4₁′/a",
(88, 84) => "I4₁/a′",
(88, 85) => "I4₁′/a′",
(88, 86) => "I_c4₁/a",
(89, 87) => "P422",
(89, 88) => "P4221′",
(89, 89) => "P4′22′",
(89, 90) => "P42′2′",
(89, 91) => "P4′2′2",
(89, 92) => "P_c422",
(89, 93) => "P_C422",
(89, 94) => "P_I422",
(90, 95) => "P42₁2",
(90, 96) => "P42₁21′",
(90, 97) => "P4′2₁2′",
(90, 98) => "P42₁′2′",
(90, 99) => "P4′2₁′2",
(90, 100) => "P_c42₁2",
(90, 101) => "P_C42₁2",
(90, 102) => "P_I42₁2",
(91, 103) => "P4₁22",
(91, 104) => "P4₁221′",
(91, 105) => "P4₁′22′",
(91, 106) => "P4₁2′2′",
(91, 107) => "P4₁′2′2",
(91, 108) => "P_c4₁22",
(91, 109) => "P_C4₁22",
(91, 110) => "P_I4₁22",
(92, 111) => "P4₁2₁2",
(92, 112) => "P4₁2₁21′",
(92, 113) => "P4₁′2₁2′",
(92, 114) => "P4₁2₁′2′",
(92, 115) => "P4₁′2₁′2",
(92, 116) => "P_c4₁2₁2",
(92, 117) => "P_C4₁2₁2",
(92, 118) => "P_I4₁2₁2",
(93, 119) => "P4₂22",
(93, 120) => "P4₂221′",
(93, 121) => "P4₂′22′",
(93, 122) => "P4₂2′2′",
(93, 123) => "P4₂′2′2",
(93, 124) => "P_c4₂22",
(93, 125) => "P_C4₂22",
(93, 126) => "P_I4₂22",
(94, 127) => "P4₂2₁2",
(94, 128) => "P4₂2₁21′",
(94, 129) => "P4₂′2₁2′",
(94, 130) => "P4₂2₁′2′",
(94, 131) => "P4₂′2₁′2",
(94, 132) => "P_c4₂2₁2",
(94, 133) => "P_C4₂2₁2",
(94, 134) => "P_I4₂2₁2",
(95, 135) => "P4₃22",
(95, 136) => "P4₃221′",
(95, 137) => "P4₃′22′",
(95, 138) => "P4₃2′2′",
(95, 139) => "P4₃′2′2",
(95, 140) => "P_c4₃22",
(95, 141) => "P_C4₃22",
(95, 142) => "P_I4₃22",
(96, 143) => "P4₃2₁2",
(96, 144) => "P4₃2₁21′",
(96, 145) => "P4₃′2₁2′",
(96, 146) => "P4₃2₁′2′",
(96, 147) => "P4₃′2₁′2",
(96, 148) => "P_c4₃2₁2",
(96, 149) => "P_C4₃2₁2",
(96, 150) => "P_I4₃2₁2",
(97, 151) => "I422",
(97, 152) => "I4221′",
(97, 153) => "I4′22′",
(97, 154) => "I42′2′",
(97, 155) => "I4′2′2",
(97, 156) => "I_c422",
(98, 157) => "I4₁22",
(98, 158) => "I4₁221′",
(98, 159) => "I4₁′22′",
(98, 160) => "I4₁2′2′",
(98, 161) => "I4₁′2′2",
(98, 162) => "I_c4₁22",
(99, 163) => "P4mm",
(99, 164) => "P4mm1′",
(99, 165) => "P4′m′m",
(99, 166) => "P4′mm′",
(99, 167) => "P4m′m′",
(99, 168) => "P_c4mm",
(99, 169) => "P_C4mm",
(99, 170) => "P_I4mm",
(100, 171) => "P4bm",
(100, 172) => "P4bm1′",
(100, 173) => "P4′b′m",
(100, 174) => "P4′bm′",
(100, 175) => "P4b′m′",
(100, 176) => "P_c4bm",
(100, 177) => "P_C4bm",
(100, 178) => "P_I4bm",
(101, 179) => "P4₂cm",
(101, 180) => "P4₂cm1′",
(101, 181) => "P4₂′c′m",
(101, 182) => "P4₂′cm′",
(101, 183) => "P4₂c′m′",
(101, 184) => "P_c4₂cm",
(101, 185) => "P_C4₂cm",
(101, 186) => "P_I4₂cm",
(102, 187) => "P4₂nm",
(102, 188) => "P4₂nm1′",
(102, 189) => "P4₂′n′m",
(102, 190) => "P4₂′nm′",
(102, 191) => "P4₂n′m′",
(102, 192) => "P_c4₂nm",
(102, 193) => "P_C4₂nm",
(102, 194) => "P_I4₂nm",
(103, 195) => "P4cc",
(103, 196) => "P4cc1′",
(103, 197) => "P4′c′c",
(103, 198) => "P4′cc′",
(103, 199) => "P4c′c′",
(103, 200) => "P_c4cc",
(103, 201) => "P_C4cc",
(103, 202) => "P_I4cc",
(104, 203) => "P4nc",
(104, 204) => "P4nc1′",
(104, 205) => "P4′n′c",
(104, 206) => "P4′nc′",
(104, 207) => "P4n′c′",
(104, 208) => "P_c4nc",
(104, 209) => "P_C4nc",
(104, 210) => "P_I4nc",
(105, 211) => "P4₂mc",
(105, 212) => "P4₂mc1′",
(105, 213) => "P4₂′m′c",
(105, 214) => "P4₂′mc′",
(105, 215) => "P4₂m′c′",
(105, 216) => "P_c4₂mc",
(105, 217) => "P_C4₂mc",
(105, 218) => "P_I4₂mc",
(106, 219) => "P4₂bc",
(106, 220) => "P4₂bc1′",
(106, 221) => "P4₂′b′c",
(106, 222) => "P4₂′bc′",
(106, 223) => "P4₂b′c′",
(106, 224) => "P_c4₂bc",
(106, 225) => "P_C4₂bc",
(106, 226) => "P_I4₂bc",
(107, 227) => "I4mm",
(107, 228) => "I4mm1′",
(107, 229) => "I4′m′m",
(107, 230) => "I4′mm′",
(107, 231) => "I4m′m′",
(107, 232) => "I_c4mm",
(108, 233) => "I4cm",
(108, 234) => "I4cm1′",
(108, 235) => "I4′c′m",
(108, 236) => "I4′cm′",
(108, 237) => "I4c′m′",
(108, 238) => "I_c4cm",
(109, 239) => "I4₁md",
(109, 240) => "I4₁md1′",
(109, 241) => "I4₁′m′d",
(109, 242) => "I4₁′md′",
(109, 243) => "I4₁m′d′",
(109, 244) => "I_c4₁md",
(110, 245) => "I4₁cd",
(110, 246) => "I4₁cd1′",
(110, 247) => "I4₁′c′d",
(110, 248) => "I4₁′cd′",
(110, 249) => "I4₁c′d′",
(110, 250) => "I_c4₁cd",
(111, 251) => "P-42m",
(111, 252) => "P-42m1′",
(111, 253) => "P-4′2′m",
(111, 254) => "P-4′2m′",
(111, 255) => "P-42′m′",
(111, 256) => "P_c-42m",
(111, 257) => "P_C-42m",
(111, 258) => "P_I-42m",
(112, 259) => "P-42c",
(112, 260) => "P-42c1′",
(112, 261) => "P-4′2′c",
(112, 262) => "P-4′2c′",
(112, 263) => "P-42′c′",
(112, 264) => "P_c-42c",
(112, 265) => "P_C-42c",
(112, 266) => "P_I-42c",
(113, 267) => "P-42₁m",
(113, 268) => "P-42₁m1′",
(113, 269) => "P-4′2₁′m",
(113, 270) => "P-4′2₁m′",
(113, 271) => "P-42₁′m′",
(113, 272) => "P_c-42₁m",
(113, 273) => "P_C-42₁m",
(113, 274) => "P_I-42₁m",
(114, 275) => "P-42₁c",
(114, 276) => "P-42₁c1′",
(114, 277) => "P-4′2₁′c",
(114, 278) => "P-4′2₁c′",
(114, 279) => "P-42₁′c′",
(114, 280) => "P_c-42₁c",
(114, 281) => "P_C-42₁c",
(114, 282) => "P_I-42₁c",
(115, 283) => "P-4m2",
(115, 284) => "P-4m21′",
(115, 285) => "P-4′m′2",
(115, 286) => "P-4′m2′",
(115, 287) => "P-4m′2′",
(115, 288) => "P_c-4m2",
(115, 289) => "P_C-4m2",
(115, 290) => "P_I-4m2",
(116, 291) => "P-4c2",
(116, 292) => "P-4c21′",
(116, 293) => "P-4′c′2",
(116, 294) => "P-4′c2′",
(116, 295) => "P-4c′2′",
(116, 296) => "P_c-4c2",
(116, 297) => "P_C-4c2",
(116, 298) => "P_I-4c2",
(117, 299) => "P-4b2",
(117, 300) => "P-4b21′",
(117, 301) => "P-4′b′2",
(117, 302) => "P-4′b2′",
(117, 303) => "P-4b′2′",
(117, 304) => "P_c-4b2",
(117, 305) => "P_C-4b2",
(117, 306) => "P_I-4b2",
(118, 307) => "P-4n2",
(118, 308) => "P-4n21′",
(118, 309) => "P-4′n′2",
(118, 310) => "P-4′n2′",
(118, 311) => "P-4n′2′",
(118, 312) => "P_c-4n2",
(118, 313) => "P_C-4n2",
(118, 314) => "P_I-4n2",
(119, 315) => "I-4m2",
(119, 316) => "I-4m21′",
(119, 317) => "I-4′m′2",
(119, 318) => "I-4′m2′",
(119, 319) => "I-4m′2′",
(119, 320) => "I_c-4m2",
(120, 321) => "I-4c2",
(120, 322) => "I-4c21′",
(120, 323) => "I-4′c′2",
(120, 324) => "I-4′c2′",
(120, 325) => "I-4c′2′",
(120, 326) => "I_c-4c2",
(121, 327) => "I-42m",
(121, 328) => "I-42m1′",
(121, 329) => "I-4′2′m",
(121, 330) => "I-4′2m′",
(121, 331) => "I-42′m′",
(121, 332) => "I_c-42m",
(122, 333) => "I-42d",
(122, 334) => "I-42d1′",
(122, 335) => "I-4′2′d",
(122, 336) => "I-4′2d′",
(122, 337) => "I-42′d′",
(122, 338) => "I_c-42d",
(123, 339) => "P4/mmm",
(123, 340) => "P4/mmm1′",
(123, 341) => "P4/m′mm",
(123, 342) => "P4′/mm′m",
(123, 343) => "P4′/mmm′",
(123, 344) => "P4′/m′m′m",
(123, 345) => "P4/mm′m′",
(123, 346) => "P4′/m′mm′",
(123, 347) => "P4/m′m′m′",
(123, 348) => "P_c4/mmm",
(123, 349) => "P_C4/mmm",
(123, 350) => "P_I4/mmm",
(124, 351) => "P4/mcc",
(124, 352) => "P4/mcc1′",
(124, 353) => "P4/m′cc",
(124, 354) => "P4′/mc′c",
(124, 355) => "P4′/mcc′",
(124, 356) => "P4′/m′c′c",
(124, 357) => "P4/mc′c′",
(124, 358) => "P4′/m′cc′",
(124, 359) => "P4/m′c′c′",
(124, 360) => "P_c4/mcc",
(124, 361) => "P_C4/mcc",
(124, 362) => "P_I4/mcc",
(125, 363) => "P4/nbm",
(125, 364) => "P4/nbm1′",
(125, 365) => "P4/n′bm",
(125, 366) => "P4′/nb′m",
(125, 367) => "P4′/nbm′",
(125, 368) => "P4′/n′b′m",
(125, 369) => "P4/nb′m′",
(125, 370) => "P4′/n′bm′",
(125, 371) => "P4/n′b′m′",
(125, 372) => "P_c4/nbm",
(125, 373) => "P_C4/nbm",
(125, 374) => "P_I4/nbm",
(126, 375) => "P4/nnc",
(126, 376) => "P4/nnc1′",
(126, 377) => "P4/n′nc",
(126, 378) => "P4′/nn′c",
(126, 379) => "P4′/nnc′",
(126, 380) => "P4′/n′n′c",
(126, 381) => "P4/nn′c′",
(126, 382) => "P4′/n′nc′",
(126, 383) => "P4/n′n′c′",
(126, 384) => "P_c4/nnc",
(126, 385) => "P_C4/nnc",
(126, 386) => "P_I4/nnc",
(127, 387) => "P4/mbm",
(127, 388) => "P4/mbm1′",
(127, 389) => "P4/m′bm",
(127, 390) => "P4′/mb′m",
(127, 391) => "P4′/mbm′",
(127, 392) => "P4′/m′b′m",
(127, 393) => "P4/mb′m′",
(127, 394) => "P4′/m′bm′",
(127, 395) => "P4/m′b′m′",
(127, 396) => "P_c4/mbm",
(127, 397) => "P_C4/mbm",
(127, 398) => "P_I4/mbm",
(128, 399) => "P4/mnc",
(128, 400) => "P4/mnc1′",
(128, 401) => "P4/m′nc",
(128, 402) => "P4′/mn′c",
(128, 403) => "P4′/mnc′",
(128, 404) => "P4′/m′n′c",
(128, 405) => "P4/mn′c′",
(128, 406) => "P4′/m′nc′",
(128, 407) => "P4/m′n′c′",
(128, 408) => "P_c4/mnc",
(128, 409) => "P_C4/mnc",
(128, 410) => "P_I4/mnc",
(129, 411) => "P4/nmm",
(129, 412) => "P4/nmm1′",
(129, 413) => "P4/n′mm",
(129, 414) => "P4′/nm′m",
(129, 415) => "P4′/nmm′",
(129, 416) => "P4′/n′m′m",
(129, 417) => "P4/nm′m′",
(129, 418) => "P4′/n′mm′",
(129, 419) => "P4/n′m′m′",
(129, 420) => "P_c4/nmm",
(129, 421) => "P_C4/nmm",
(129, 422) => "P_I4/nmm",
(130, 423) => "P4/ncc",
(130, 424) => "P4/ncc1′",
(130, 425) => "P4/n′cc",
(130, 426) => "P4′/nc′c",
(130, 427) => "P4′/ncc′",
(130, 428) => "P4′/n′c′c",
(130, 429) => "P4/nc′c′",
(130, 430) => "P4′/n′cc′",
(130, 431) => "P4/n′c′c′",
(130, 432) => "P_c4/ncc",
(130, 433) => "P_C4/ncc",
(130, 434) => "P_I4/ncc",
(131, 435) => "P4₂/mmc",
(131, 436) => "P4₂/mmc1′",
(131, 437) => "P4₂/m′mc",
(131, 438) => "P4₂′/mm′c",
(131, 439) => "P4₂′/mmc′",
(131, 440) => "P4₂′/m′m′c",
(131, 441) => "P4₂/mm′c′",
(131, 442) => "P4₂′/m′mc′",
(131, 443) => "P4₂/m′m′c′",
(131, 444) => "P_c4₂/mmc",
(131, 445) => "P_C4₂/mmc",
(131, 446) => "P_I4₂/mmc",
(132, 447) => "P4₂/mcm",
(132, 448) => "P4₂/mcm1′",
(132, 449) => "P4₂/m′cm",
(132, 450) => "P4₂′/mc′m",
(132, 451) => "P4₂′/mcm′",
(132, 452) => "P4₂′/m′c′m",
(132, 453) => "P4₂/mc′m′",
(132, 454) => "P4₂′/m′cm′",
(132, 455) => "P4₂/m′c′m′",
(132, 456) => "P_c4₂/mcm",
(132, 457) => "P_C4₂/mcm",
(132, 458) => "P_I4₂/mcm",
(133, 459) => "P4₂/nbc",
(133, 460) => "P4₂/nbc1′",
(133, 461) => "P4₂/n′bc",
(133, 462) => "P4₂′/nb′c",
(133, 463) => "P4₂′/nbc′",
(133, 464) => "P4₂′/n′b′c",
(133, 465) => "P4₂/nb′c′",
(133, 466) => "P4₂′/n′bc′",
(133, 467) => "P4₂/n′b′c′",
(133, 468) => "P_c4₂/nbc",
(133, 469) => "P_C4₂/nbc",
(133, 470) => "P_I4₂/nbc",
(134, 471) => "P4₂/nnm",
(134, 472) => "P4₂/nnm1′",
(134, 473) => "P4₂/n′nm",
(134, 474) => "P4₂′/nn′m",
(134, 475) => "P4₂′/nnm′",
(134, 476) => "P4₂′/n′n′m",
(134, 477) => "P4₂/nn′m′",
(134, 478) => "P4₂′/n′nm′",
(134, 479) => "P4₂/n′n′m′",
(134, 480) => "P_c4₂/nnm",
(134, 481) => "P_C4₂/nnm",
(134, 482) => "P_I4₂/nnm",
(135, 483) => "P4₂/mbc",
(135, 484) => "P4₂/mbc1′",
(135, 485) => "P4₂/m′bc",
(135, 486) => "P4₂′/mb′c",
(135, 487) => "P4₂′/mbc′",
(135, 488) => "P4₂′/m′b′c",
(135, 489) => "P4₂/mb′c′",
(135, 490) => "P4₂′/m′bc′",
(135, 491) => "P4₂/m′b′c′",
(135, 492) => "P_c4₂/mbc",
(135, 493) => "P_C4₂/mbc",
(135, 494) => "P_I4₂/mbc",
(136, 495) => "P4₂/mnm",
(136, 496) => "P4₂/mnm1′",
(136, 497) => "P4₂/m′nm",
(136, 498) => "P4₂′/mn′m",
(136, 499) => "P4₂′/mnm′",
(136, 500) => "P4₂′/m′n′m",
(136, 501) => "P4₂/mn′m′",
(136, 502) => "P4₂′/m′nm′",
(136, 503) => "P4₂/m′n′m′",
(136, 504) => "P_c4₂/mnm",
(136, 505) => "P_C4₂/mnm",
(136, 506) => "P_I4₂/mnm",
(137, 507) => "P4₂/nmc",
(137, 508) => "P4₂/nmc1′",
(137, 509) => "P4₂/n′mc",
(137, 510) => "P4₂′/nm′c",
(137, 511) => "P4₂′/nmc′",
(137, 512) => "P4₂′/n′m′c",
(137, 513) => "P4₂/nm′c′",
(137, 514) => "P4₂′/n′mc′",
(137, 515) => "P4₂/n′m′c′",
(137, 516) => "P_c4₂/nmc",
(137, 517) => "P_C4₂/nmc",
(137, 518) => "P_I4₂/nmc",
(138, 519) => "P4₂/ncm",
(138, 520) => "P4₂/ncm1′",
(138, 521) => "P4₂/n′cm",
(138, 522) => "P4₂′/nc′m",
(138, 523) => "P4₂′/ncm′",
(138, 524) => "P4₂′/n′c′m",
(138, 525) => "P4₂/nc′m′",
(138, 526) => "P4₂′/n′cm′",
(138, 527) => "P4₂/n′c′m′",
(138, 528) => "P_c4₂/ncm",
(138, 529) => "P_C4₂/ncm",
(138, 530) => "P_I4₂/ncm",
(139, 531) => "I4/mmm",
(139, 532) => "I4/mmm1′",
(139, 533) => "I4/m′mm",
(139, 534) => "I4′/mm′m",
(139, 535) => "I4′/mmm′",
(139, 536) => "I4′/m′m′m",
(139, 537) => "I4/mm′m′",
(139, 538) => "I4′/m′mm′",
(139, 539) => "I4/m′m′m′",
(139, 540) => "I_c4/mmm",
(140, 541) => "I4/mcm",
(140, 542) => "I4/mcm1′",
(140, 543) => "I4/m′cm",
(140, 544) => "I4′/mc′m",
(140, 545) => "I4′/mcm′",
(140, 546) => "I4′/m′c′m",
(140, 547) => "I4/mc′m′",
(140, 548) => "I4′/m′cm′",
(140, 549) => "I4/m′c′m′",
(140, 550) => "I_c4/mcm",
(141, 551) => "I4₁/amd",
(141, 552) => "I4₁/amd1′",
(141, 553) => "I4₁/a′md",
(141, 554) => "I4₁′/am′d",
(141, 555) => "I4₁′/amd′",
(141, 556) => "I4₁′/a′m′d",
(141, 557) => "I4₁/am′d′",
(141, 558) => "I4₁′/a′md′",
(141, 559) => "I4₁/a′m′d′",
(141, 560) => "I_c4₁/amd",
(142, 561) => "I4₁/acd",
(142, 562) => "I4₁/acd1′",
(142, 563) => "I4₁/a′cd",
(142, 564) => "I4₁′/ac′d",
(142, 565) => "I4₁′/acd′",
(142, 566) => "I4₁′/a′c′d",
(142, 567) => "I4₁/ac′d′",
(142, 568) => "I4₁′/a′cd′",
(142, 569) => "I4₁/a′c′d′",
(142, 570) => "I_c4₁/acd",
(143, 1) => "P3",
(143, 2) => "P31′",
(143, 3) => "P_c3",
(144, 4) => "P3₁",
(144, 5) => "P3₁1′",
(144, 6) => "P_c3₁",
(145, 7) => "P3₂",
(145, 8) => "P3₂1′",
(145, 9) => "P_c3₂",
(146, 10) => "R3",
(146, 11) => "R31′",
(146, 12) => "R_I3",
(147, 13) => "P-3",
(147, 14) => "P-31′",
(147, 15) => "P-3′",
(147, 16) => "P_c-3",
(148, 17) => "R-3",
(148, 18) => "R-31′",
(148, 19) => "R-3′",
(148, 20) => "R_I-3",
(149, 21) => "P312",
(149, 22) => "P3121′",
(149, 23) => "P312′",
(149, 24) => "P_c312",
(150, 25) => "P321",
(150, 26) => "P3211′",
(150, 27) => "P32′1",
(150, 28) => "P_c321",
(151, 29) => "P3₁12",
(151, 30) => "P3₁121′",
(151, 31) => "P3₁12′",
(151, 32) => "P_c3₁12",
(152, 33) => "P3₁21",
(152, 34) => "P3₁211′",
(152, 35) => "P3₁2′1",
(152, 36) => "P_c3₁21",
(153, 37) => "P3₂12",
(153, 38) => "P3₂121′",
(153, 39) => "P3₂12′",
(153, 40) => "P_c3₂12",
(154, 41) => "P3₂21",
(154, 42) => "P3₂211′",
(154, 43) => "P3₂2′1",
(154, 44) => "P_c3₂21",
(155, 45) => "R32",
(155, 46) => "R321′",
(155, 47) => "R32′",
(155, 48) => "R_I32",
(156, 49) => "P3m1",
(156, 50) => "P3m11′",
(156, 51) => "P3m′1",
(156, 52) => "P_c3m1",
(157, 53) => "P31m",
(157, 54) => "P31m1′",
(157, 55) => "P31m′",
(157, 56) => "P_c31m",
(158, 57) => "P3c1",
(158, 58) => "P3c11′",
(158, 59) => "P3c′1",
(158, 60) => "P_c3c1",
(159, 61) => "P31c",
(159, 62) => "P31c1′",
(159, 63) => "P31c′",
(159, 64) => "P_c31c",
(160, 65) => "R3m",
(160, 66) => "R3m1′",
(160, 67) => "R3m′",
(160, 68) => "R_I3m",
(161, 69) => "R3c",
(161, 70) => "R3c1′",
(161, 71) => "R3c′",
(161, 72) => "R_I3c",
(162, 73) => "P-31m",
(162, 74) => "P-31m1′",
(162, 75) => "P-3′1m",
(162, 76) => "P-3′1m′",
(162, 77) => "P-31m′",
(162, 78) => "P_c-31m",
(163, 79) => "P-31c",
(163, 80) => "P-31c1′",
(163, 81) => "P-3′1c",
(163, 82) => "P-3′1c′",
(163, 83) => "P-31c′",
(163, 84) => "P_c-31c",
(164, 85) => "P-3m1",
(164, 86) => "P-3m11′",
(164, 87) => "P-3′m1",
(164, 88) => "P-3′m′1",
(164, 89) => "P-3m′1",
(164, 90) => "P_c-3m1",
(165, 91) => "P-3c1",
(165, 92) => "P-3c11′",
(165, 93) => "P-3′c1",
(165, 94) => "P-3′c′1",
(165, 95) => "P-3c′1",
(165, 96) => "P_c-3c1",
(166, 97) => "R-3m",
(166, 98) => "R-3m1′",
(166, 99) => "R-3′m",
(166, 100) => "R-3′m′",
(166, 101) => "R-3m′",
(166, 102) => "R_I-3m",
(167, 103) => "R-3c",
(167, 104) => "R-3c1′",
(167, 105) => "R-3′c",
(167, 106) => "R-3′c′",
(167, 107) => "R-3c′",
(167, 108) => "R_I-3c",
(168, 109) => "P6",
(168, 110) => "P61′",
(168, 111) => "P6′",
(168, 112) => "P_c6",
(169, 113) => "P6₁",
(169, 114) => "P6₁1′",
(169, 115) => "P6₁′",
(169, 116) => "P_c6₁",
(170, 117) => "P6₅",
(170, 118) => "P6₅1′",
(170, 119) => "P6₅′",
(170, 120) => "P_c6₅",
(171, 121) => "P6₂",
(171, 122) => "P6₂1′",
(171, 123) => "P6₂′",
(171, 124) => "P_c6₂",
(172, 125) => "P6₄",
(172, 126) => "P6₄1′",
(172, 127) => "P6₄′",
(172, 128) => "P_c6₄",
(173, 129) => "P6₃",
(173, 130) => "P6₃1′",
(173, 131) => "P6₃′",
(173, 132) => "P_c6₃",
(174, 133) => "P-6",
(174, 134) => "P-61′",
(174, 135) => "P-6′",
(174, 136) => "P_c-6",
(175, 137) => "P6/m",
(175, 138) => "P6/m1′",
(175, 139) => "P6′/m",
(175, 140) => "P6/m′",
(175, 141) => "P6′/m′",
(175, 142) => "P_c6/m",
(176, 143) => "P6₃/m",
(176, 144) => "P6₃/m1′",
(176, 145) => "P6₃′/m",
(176, 146) => "P6₃/m′",
(176, 147) => "P6₃′/m′",
(176, 148) => "P_c6₃/m",
(177, 149) => "P622",
(177, 150) => "P6221′",
(177, 151) => "P6′2′2",
(177, 152) => "P6′22′",
(177, 153) => "P62′2′",
(177, 154) => "P_c622",
(178, 155) => "P6₁22",
(178, 156) => "P6₁221′",
(178, 157) => "P6₁′2′2",
(178, 158) => "P6₁′22′",
(178, 159) => "P6₁2′2′",
(178, 160) => "P_c6₁22",
(179, 161) => "P6₅22",
(179, 162) => "P6₅221′",
(179, 163) => "P6₅′2′2",
(179, 164) => "P6₅′22′",
(179, 165) => "P6₅2′2′",
(179, 166) => "P_c6₅22",
(180, 167) => "P6₂22",
(180, 168) => "P6₂221′",
(180, 169) => "P6₂′2′2",
(180, 170) => "P6₂′22′",
(180, 171) => "P6₂2′2′",
(180, 172) => "P_c6₂22",
(181, 173) => "P6₄22",
(181, 174) => "P6₄221′",
(181, 175) => "P6₄′2′2",
(181, 176) => "P6₄′22′",
(181, 177) => "P6₄2′2′",
(181, 178) => "P_c6₄22",
(182, 179) => "P6₃22",
(182, 180) => "P6₃221′",
(182, 181) => "P6₃′2′2",
(182, 182) => "P6₃′22′",
(182, 183) => "P6₃2′2′",
(182, 184) => "P_c6₃22",
(183, 185) => "P6mm",
(183, 186) => "P6mm1′",
(183, 187) => "P6′m′m",
(183, 188) => "P6′mm′",
(183, 189) => "P6m′m′",
(183, 190) => "P_c6mm",
(184, 191) => "P6cc",
(184, 192) => "P6cc1′",
(184, 193) => "P6′c′c",
(184, 194) => "P6′cc′",
(184, 195) => "P6c′c′",
(184, 196) => "P_c6cc",
(185, 197) => "P6₃cm",
(185, 198) => "P6₃cm1′",
(185, 199) => "P6₃′c′m",
(185, 200) => "P6₃′cm′",
(185, 201) => "P6₃c′m′",
(185, 202) => "P_c6₃cm",
(186, 203) => "P6₃mc",
(186, 204) => "P6₃mc1′",
(186, 205) => "P6₃′m′c",
(186, 206) => "P6₃′mc′",
(186, 207) => "P6₃m′c′",
(186, 208) => "P_c6₃mc",
(187, 209) => "P-6m2",
(187, 210) => "P-6m21′",
(187, 211) => "P-6′m′2",
(187, 212) => "P-6′m2′",
(187, 213) => "P-6m′2′",
(187, 214) => "P_c-6m2",
(188, 215) => "P-6c2",
(188, 216) => "P-6c21′",
(188, 217) => "P-6′c′2",
(188, 218) => "P-6′c2′",
(188, 219) => "P-6c′2′",
(188, 220) => "P_c-6c2",
(189, 221) => "P-62m",
(189, 222) => "P-62m1′",
(189, 223) => "P-6′2′m",
(189, 224) => "P-6′2m′",
(189, 225) => "P-62′m′",
(189, 226) => "P_c-62m",
(190, 227) => "P-62c",
(190, 228) => "P-62c1′",
(190, 229) => "P-6′2′c",
(190, 230) => "P-6′2c′",
(190, 231) => "P-62′c′",
(190, 232) => "P_c-62c",
(191, 233) => "P6/mmm",
(191, 234) => "P6/mmm1′",
(191, 235) => "P6/m′mm",
(191, 236) => "P6′/mm′m",
(191, 237) => "P6′/mmm′",
(191, 238) => "P6′/m′m′m",
(191, 239) => "P6′/m′mm′",
(191, 240) => "P6/mm′m′",
(191, 241) => "P6/m′m′m′",
(191, 242) => "P_c6/mmm",
(192, 243) => "P6/mcc",
(192, 244) => "P6/mcc1′",
(192, 245) => "P6/m′cc",
(192, 246) => "P6′/mc′c",
(192, 247) => "P6′/mcc′",
(192, 248) => "P6′/m′c′c",
(192, 249) => "P6′/m′cc′",
(192, 250) => "P6/mc′c′",
(192, 251) => "P6/m′c′c′",
(192, 252) => "P_c6/mcc",
(193, 253) => "P6₃/mcm",
(193, 254) => "P6₃/mcm1′",
(193, 255) => "P6₃/m′cm",
(193, 256) => "P6₃′/mc′m",
(193, 257) => "P6₃′/mcm′",
(193, 258) => "P6₃′/m′c′m",
(193, 259) => "P6₃′/m′cm′",
(193, 260) => "P6₃/mc′m′",
(193, 261) => "P6₃/m′c′m′",
(193, 262) => "P_c6₃/mcm",
(194, 263) => "P6₃/mmc",
(194, 264) => "P6₃/mmc1′",
(194, 265) => "P6₃/m′mc",
(194, 266) => "P6₃′/mm′c",
(194, 267) => "P6₃′/mmc′",
(194, 268) => "P6₃′/m′m′c",
(194, 269) => "P6₃′/m′mc′",
(194, 270) => "P6₃/mm′c′",
(194, 271) => "P6₃/m′m′c′",
(194, 272) => "P_c6₃/mmc",
(195, 1) => "P23",
(195, 2) => "P231′",
(195, 3) => "P_I23",
(196, 4) => "F23",
(196, 5) => "F231′",
(196, 6) => "F_S23",
(197, 7) => "I23",
(197, 8) => "I231′",
(198, 9) => "P2₁3",
(198, 10) => "P2₁31′",
(198, 11) => "P_I2₁3",
(199, 12) => "I2₁3",
(199, 13) => "I2₁31′",
(200, 14) => "Pm-3",
(200, 15) => "Pm-31′",
(200, 16) => "Pm′-3′",
(200, 17) => "P_Im-3",
(201, 18) => "Pn-3",
(201, 19) => "Pn-31′",
(201, 20) => "Pn′-3′",
(201, 21) => "P_In-3",
(202, 22) => "Fm-3",
(202, 23) => "Fm-31′",
(202, 24) => "Fm′-3′",
(202, 25) => "F_Sm-3",
(203, 26) => "Fd-3",
(203, 27) => "Fd-31′",
(203, 28) => "Fd′-3′",
(203, 29) => "F_Sd-3",
(204, 30) => "Im-3",
(204, 31) => "Im-31′",
(204, 32) => "Im′-3′",
(205, 33) => "Pa-3",
(205, 34) => "Pa-31′",
(205, 35) => "Pa′-3′",
(205, 36) => "P_Ia-3",
(206, 37) => "Ia-3",
(206, 38) => "Ia-31′",
(206, 39) => "Ia′-3′",
(207, 40) => "P432",
(207, 41) => "P4321′",
(207, 42) => "P4′32′",
(207, 43) => "P_I432",
(208, 44) => "P4₂32",
(208, 45) => "P4₂321′",
(208, 46) => "P4₂′32′",
(208, 47) => "P_I4₂32",
(209, 48) => "F432",
(209, 49) => "F4321′",
(209, 50) => "F4′32′",
(209, 51) => "F_S432",
(210, 52) => "F4₁32",
(210, 53) => "F4₁321′",
(210, 54) => "F4₁′32′",
(210, 55) => "F_S4₁32",
(211, 56) => "I432",
(211, 57) => "I4321′",
(211, 58) => "I4′32′",
(212, 59) => "P4₃32",
(212, 60) => "P4₃321′",
(212, 61) => "P4₃′32′",
(212, 62) => "P_I4₃32",
(213, 63) => "P4₁32",
(213, 64) => "P4₁321′",
(213, 65) => "P4₁′32′",
(213, 66) => "P_I4₁32",
(214, 67) => "I4₁32",
(214, 68) => "I4₁321′",
(214, 69) => "I4₁′32′",
(215, 70) => "P-43m",
(215, 71) => "P-43m1′",
(215, 72) => "P-4′3m′",
(215, 73) => "P_I-43m",
(216, 74) => "F-43m",
(216, 75) => "F-43m1′",
(216, 76) => "F-4′3m′",
(216, 77) => "F_S-43m",
(217, 78) => "I-43m",
(217, 79) => "I-43m1′",
(217, 80) => "I-4′3m′",
(218, 81) => "P-43n",
(218, 82) => "P-43n1′",
(218, 83) => "P-4′3n′",
(218, 84) => "P_I-43n",
(219, 85) => "F-43c",
(219, 86) => "F-43c1′",
(219, 87) => "F-4′3c′",
(219, 88) => "F_S-43c",
(220, 89) => "I-43d",
(220, 90) => "I-43d1′",
(220, 91) => "I-4′3d′",
(221, 92) => "Pm-3m",
(221, 93) => "Pm-3m1′",
(221, 94) => "Pm′-3′m",
(221, 95) => "Pm-3m′",
(221, 96) => "Pm′-3′m′",
(221, 97) => "P_Im-3m",
(222, 98) => "Pn-3n",
(222, 99) => "Pn-3n1′",
(222, 100) => "Pn′-3′n",
(222, 101) => "Pn-3n′",
(222, 102) => "Pn′-3′n′",
(222, 103) => "P_In-3n",
(223, 104) => "Pm-3n",
(223, 105) => "Pm-3n1′",
(223, 106) => "Pm′-3′n",
(223, 107) => "Pm-3n′",
(223, 108) => "Pm′-3′n′",
(223, 109) => "P_Im-3n",
(224, 110) => "Pn-3m",
(224, 111) => "Pn-3m1′",
(224, 112) => "Pn′-3′m",
(224, 113) => "Pn-3m′",
(224, 114) => "Pn′-3′m′",
(224, 115) => "P_In-3m",
(225, 116) => "Fm-3m",
(225, 117) => "Fm-3m1′",
(225, 118) => "Fm′-3′m",
(225, 119) => "Fm-3m′",
(225, 120) => "Fm′-3′m′",
(225, 121) => "F_Sm-3m",
(226, 122) => "Fm-3c",
(226, 123) => "Fm-3c1′",
(226, 124) => "Fm′-3′c",
(226, 125) => "Fm-3c′",
(226, 126) => "Fm′-3′c′",
(226, 127) => "F_Sm-3c",
(227, 128) => "Fd-3m",
(227, 129) => "Fd-3m1′",
(227, 130) => "Fd′-3′m",
(227, 131) => "Fd-3m′",
(227, 132) => "Fd′-3′m′",
(227, 133) => "F_Sd-3m",
(228, 134) => "Fd-3c",
(228, 135) => "Fd-3c1′",
(228, 136) => "Fd′-3′c",
(228, 137) => "Fd-3c′",
(228, 138) => "Fd′-3′c′",
(228, 139) => "F_Sd-3c",
(229, 140) => "Im-3m",
(229, 141) => "Im-3m1′",
(229, 142) => "Im′-3′m",
(229, 143) => "Im-3m′",
(229, 144) => "Im′-3′m′",
(230, 145) => "Ia-3d",
(230, 146) => "Ia-3d1′",
(230, 147) => "Ia′-3′d",
(230, 148) => "Ia-3d′",
(230, 149) => "Ia′-3′d′",
)
# OG labels indexed by N₃ᴼᴳ of `MSG_BNS2OG_NUMs_D` (consecutively running numbering)
const MSG_OG_LABELS_V = String[
"P1 # ", # 1
"P11′", # 2
"P_2s1", # 3
"P-1", # 4
"P-11′", # 5
"P-1′", # 6
"P_2s-1", # 7
"P2", # 8
"P21′", # 9
"P2′", # 10
"P_2a2", # 11
"P_2b2", # 12
"P_C2", # 13
"P_2b2′", # 14
"P2_1", # 15
"P2_11′", # 16
"P2_1′", # 17
"P_2a2_1", # 18
"C2", # 19
"C21′", # 20
"C2′", # 21
"C_2c2", # 22
"C_P2", # 23
"C_P2′", # 24
"Pm", # 25
"Pm1′", # 26
"Pm′", # 27
"P_2am", # 28
"P_2bm", # 29
"P_Cm", # 30
"P_2cm′", # 31
"Pc", # 32
"Pc1′", # 33
"Pc′", # 34
"P_2ac", # 35
"P_2bc", # 36
"P_Cc", # 37
"Cm", # 38
"Cm1′", # 39
"Cm′", # 40
"C_2cm", # 41
"C_Pm", # 42
"C_2cm′", # 43
"C_Pm′", # 44
"Cc", # 45
"Cc1′", # 46
"Cc′", # 47
"C_Pc", # 48
"P2/m", # 49
"P2/m1′", # 50
"P2′/m", # 51
"P2/m′", # 52
"P2′/m′", # 53
"P_2a2/m", # 54
"P_2b2/m", # 55
"P_C2/m", # 56
"P_2b2′/m", # 57
"P_2c2/m′", # 58
"P2_1/m", # 59
"P2_1/m1′", # 60
"P2_1′/m", # 61
"P2_1/m′", # 62
"P2_1′/m′", # 63
"P_2a2_1/m", # 64
"P_2c2_1/m′", # 65
"C2/m", # 66
"C2/m1′", # 67
"C2′/m", # 68
"C2/m′", # 69
"C2′/m′", # 70
"C_2c2/m", # 71
"C_P2/m", # 72
"C_2c2/m′", # 73
"C_P2′/m", # 74
"C_P2/m′", # 75
"C_P2′/m′", # 76
"P2/c", # 77
"P2/c1′", # 78
"P2′/c", # 79
"P2/c′", # 80
"P2′/c′", # 81
"P_2a2/c", # 82
"P_2b2/c", # 83
"P_C2/c", # 84
"P_2b2′/c", # 85
"P2_1/c", # 86
"P2_1/c1′", # 87
"P2_1′/c", # 88
"P2_1/c′", # 89
"P2_1′/c′", # 90
"P_2a2_1/c", # 91
"C2/c", # 92
"C2/c1′", # 93
"C2′/c", # 94
"C2/c′", # 95
"C2′/c′", # 96
"C_P2/c", # 97
"C_P2′/c", # 98
"P222", # 99
"P2221′", # 100
"P2′2′2", # 101
"P_2a222", # 102
"P_C222", # 103
"P_F222", # 104
"P_2c22′2′", # 105
"P222_1", # 106
"P222_11′", # 107
"P2′2′2_1", # 108
"P22′2_1′", # 109
"P_2a222_1", # 110
"P_C222_1", # 111
"P_2a2′2′2_1", # 112
"P2_12_12", # 113
"P2_12_121′", # 114
"P2_1′2_1′2", # 115
"P2_12_1′2′", # 116
"P_2c2_12_12", # 117
"P_2c2_12_1′2′", # 118
"P2_12_12_1", # 119
"P2_12_12_11′", # 120
"P2_1′2_1′2_1", # 121
"C222_1", # 122
"C222_11′", # 123
"C2′2′2_1", # 124
"C22′2_1′", # 125
"C_P222_1", # 126
"C_P2′2′2_1", # 127
"C_P22′2_1′", # 128
"C222", # 129
"C2221′", # 130
"C2′2′2", # 131
"C22′2′", # 132
"C_2c222", # 133
"C_P222", # 134
"C_I222", # 135
"C_2c22′2′", # 136
"C_P2′2′2", # 137
"C_P22′2′", # 138
"C_I2′22′", # 139
"F222", # 140
"F2221′", # 141
"F2′2′2", # 142
"F_C222", # 143
"F_C22′2′", # 144
"I222", # 145
"I2221′", # 146
"I2′2′2", # 147
"I_P222", # 148
"I_P2′2′2", # 149
"I2_12_12_1", # 150
"I2_12_12_11′", # 151
"I2_1′2_1′2_1", # 152
"I_P2_12_12_1", # 153
"I_P2_1′2_1′2_1", # 154
"Pmm2", # 155
"Pmm21′", # 156
"Pm′m2′", # 157
"Pm′m′2", # 158
"P_2cmm2", # 159
"P_2amm2", # 160
"P_Cmm2", # 161
"P_Amm2", # 162
"P_Fmm2", # 163
"P_2cmm′2′", # 164
"P_2cm′m′2", # 165
"P_2am′m′2", # 166
"P_Am′m′2", # 167
"Pmc2_1", # 168
"Pmc2_11′", # 169
"Pm′c2_1′", # 170
"Pmc′2_1′", # 171
"Pm′c′2_1", # 172
"P_2amc2_1", # 173
"P_2bmc2_1", # 174
"P_Cmc2_1", # 175
"P_2amc′2_1′", # 176
"P_2bm′c′2_1", # 177
"Pcc2", # 178
"Pcc21′", # 179
"Pc′c2′", # 180
"Pc′c′2", # 181
"P_2acc2", # 182
"P_Ccc2", # 183
"P_2bc′c2′", # 184
"Pma2", # 185
"Pma21′", # 186
"Pm′a2′", # 187
"Pma′2′", # 188
"Pm′a′2", # 189
"P_2bma2", # 190
"P_2cma2", # 191
"P_Ama2", # 192
"P_2bm′a2′", # 193
"P_2cm′a2′", # 194
"P_2cma′2′", # 195
"P_2cm′a′2", # 196
"P_Am′a′2", # 197
"Pca2_1", # 198
"Pca2_11′", # 199
"Pc′a2_1′", # 200
"Pca′2_1′", # 201
"Pc′a′2_1", # 202
"P_2bca2_1", # 203
"P_2bc′a′2_1", # 204
"Pnc2", # 205
"Pnc21′", # 206
"Pn′c2′", # 207
"Pnc′2′", # 208
"Pn′c′2", # 209
"P_2anc2", # 210
"P_2anc′2′", # 211
"Pmn2_1", # 212
"Pmn2_11′", # 213
"Pm′n2_1′", # 214
"Pmn′2_1′", # 215
"Pm′n′2_1", # 216
"P_2bmn2_1", # 217
"P_2bm′n2_1′", # 218
"Pba2", # 219
"Pba21′", # 220
"Pb′a2′", # 221
"Pb′a′2", # 222
"P_2cba2", # 223
"P_2cb′a2′", # 224
"P_2cb′a′2", # 225
"Pna2_1", # 226
"Pna2_11′", # 227
"Pn′a2_1′", # 228
"Pna′2_1′", # 229
"Pn′a′2_1", # 230
"Pnn2", # 231
"Pnn21′", # 232
"Pn′n2′", # 233
"Pn′n′2", # 234
"P_Fnn2", # 235
"Cmm2", # 236
"Cmm21′", # 237
"Cm′m2′", # 238
"Cm′m′2", # 239
"C_2cmm2", # 240
"C_Pmm2", # 241
"C_Imm2", # 242
"C_2cm′m2′", # 243
"C_2cm′m′2", # 244
"C_Pm′m2′", # 245
"C_Pm′m′2", # 246
"C_Im′m2′", # 247
"C_Im′m′2", # 248
"Cmc2_1", # 249
"Cmc2_11′", # 250
"Cm′c2_1′", # 251
"Cmc′2_1′", # 252
"Cm′c′2_1", # 253
"C_Pmc2_1", # 254
"C_Pm′c2_1′", # 255
"C_Pmc′2_1′", # 256
"C_Pm′c′2_1", # 257
"Ccc2", # 258
"Ccc21′", # 259
"Cc′c2′", # 260
"Cc′c′2", # 261
"C_Pcc2", # 262
"C_Pc′c2′", # 263
"C_Pc′c′2", # 264
"Amm2", # 265
"Amm21′", # 266
"Am′m2′", # 267
"Amm′2′", # 268
"Am′m′2", # 269
"A_2amm2", # 270
"A_Pmm2", # 271
"A_Imm2", # 272
"A_2amm′2′", # 273
"A_Pm′m2′", # 274
"A_Pmm′2′", # 275
"A_Pm′m′2", # 276
"A_Im′m′2", # 277
"Abm2", # 278
"Abm21′", # 279
"Ab′m2′", # 280
"Abm′2′", # 281
"Ab′m′2", # 282
"A_2abm2", # 283
"A_Pbm2", # 284
"A_Ibm2", # 285
"A_2ab′m′2", # 286
"A_Pb′m2′", # 287
"A_Pbm′2′", # 288
"A_Pb′m′2", # 289
"A_Ib′m′2", # 290
"Ama2", # 291
"Ama21′", # 292
"Am′a2′", # 293
"Ama′2′", # 294
"Am′a′2", # 295
"A_Pma2", # 296
"A_Pm′a2′", # 297
"A_Pma′2′", # 298
"A_Pm′a′2", # 299
"Aba2", # 300
"Aba21′", # 301
"Ab′a2′", # 302
"Aba′2′", # 303
"Ab′a′2", # 304
"A_Pba2", # 305
"A_Pb′a2′", # 306
"A_Pba′2′", # 307
"A_Pb′a′2", # 308
"Fmm2", # 309
"Fmm21′", # 310
"Fm′m2′", # 311
"Fm′m′2", # 312
"F_Cmm2", # 313
"F_Amm2", # 314
"F_Cmm′2′", # 315
"F_Cm′m′2", # 316
"F_Am′m2′", # 317
"F_Amm′2′", # 318
"F_Am′m′2", # 319
"Fdd2", # 320
"Fdd21′", # 321
"Fd′d2′", # 322
"Fd′d′2", # 323
"Imm2", # 324
"Imm21′", # 325
"Im′m2′", # 326
"Im′m′2", # 327
"I_Pmm2", # 328
"I_Pmm′2′", # 329
"I_Pm′m′2", # 330
"Iba2", # 331
"Iba21′", # 332
"Ib′a2′", # 333
"Ib′a′2", # 334
"I_Pba2", # 335
"I_Pba′2′", # 336
"I_Pb′a′2", # 337
"Ima2", # 338
"Ima21′", # 339
"Im′a2′", # 340
"Ima′2′", # 341
"Im′a′2", # 342
"I_Pma2", # 343
"I_Pm′a2′", # 344
"I_Pma′2′", # 345
"I_Pm′a′2", # 346
"Pmmm", # 347
"Pmmm1′", # 348
"Pm′mm", # 349
"Pm′m′m", # 350
"Pm′m′m′", # 351
"P_2ammm", # 352
"P_Cmmm", # 353
"P_Fmmm", # 354
"P_2ammm′", # 355
"P_2cm′m′m", # 356
"P_Cmmm′", # 357
"Pnnn", # 358
"Pnnn1′", # 359
"Pn′nn", # 360
"Pn′n′n", # 361
"Pn′n′n′", # 362
"P_Fnnn", # 363
"Pccm", # 364
"Pccm1′", # 365
"Pc′cm", # 366
"Pccm′", # 367
"Pc′c′m", # 368
"Pc′cm′", # 369
"Pc′c′m′", # 370
"P_2accm", # 371
"P_Cccm", # 372
"P_2accm′", # 373
"P_2ac′c′m", # 374
"P_2ac′c′m′", # 375
"P_Cccm′", # 376
"Pban", # 377
"Pban1′", # 378
"Pb′an", # 379
"Pban′", # 380
"Pb′a′n", # 381
"Pb′an′", # 382
"Pb′a′n′", # 383
"P_2cban", # 384
"P_2cb′an", # 385
"P_2cb′a′n", # 386
"Pmma", # 387
"Pmma1′", # 388
"Pm′ma", # 389
"Pmm′a", # 390
"Pmma′", # 391
"Pm′m′a", # 392
"Pmm′a′", # 393
"Pm′ma′", # 394
"Pm′m′a′", # 395
"P_2bmma", # 396
"P_2cmma", # 397
"P_Amma", # 398
"P_2bm′ma", # 399
"P_2bmma′", # 400
"P_2bm′ma′", # 401
"P_2cm′ma", # 402
"P_2cmm′a", # 403
"P_2cm′m′a", # 404
"P_Am′ma", # 405
"Pnna", # 406
"Pnna1′", # 407
"Pn′na", # 408
"Pnn′a", # 409
"Pnna′", # 410
"Pn′n′a", # 411
"Pnn′a′", # 412
"Pn′na′", # 413
"Pn′n′a′", # 414
"Pmna", # 415
"Pmna1′", # 416
"Pm′na", # 417
"Pmn′a", # 418
"Pmna′", # 419
"Pm′n′a", # 420
"Pmn′a′", # 421
"Pm′na′", # 422
"Pm′n′a′", # 423
"P_2bmna", # 424
"P_2bm′na", # 425
"P_2bmna′", # 426
"P_2bm′na′", # 427
"Pcca", # 428
"Pcca1′", # 429
"Pc′ca", # 430
"Pcc′a", # 431
"Pcca′", # 432
"Pc′c′a", # 433
"Pcc′a′", # 434
"Pc′ca′", # 435
"Pc′c′a′", # 436
"P_2bcca", # 437
"P_2bc′ca", # 438
"P_2bcca′", # 439
"P_2bc′ca′", # 440
"Pbam", # 441
"Pbam1′", # 442
"Pb′am", # 443
"Pbam′", # 444
"Pb′a′m", # 445
"Pb′am′", # 446
"Pb′a′m′", # 447
"P_2cbam", # 448
"P_2cb′am", # 449
"P_2cb′a′m", # 450
"Pccn", # 451
"Pccn1′", # 452
"Pc′cn", # 453
"Pccn′", # 454
"Pc′c′n", # 455
"Pc′cn′", # 456
"Pc′c′n′", # 457
"Pbcm", # 458
"Pbcm1′", # 459
"Pb′cm", # 460
"Pbc′m", # 461
"Pbcm′", # 462
"Pb′c′m", # 463
"Pbc′m′", # 464
"Pb′cm′", # 465
"Pb′c′m′", # 466
"P_2abcm", # 467
"P_2abc′m", # 468
"P_2abcm′", # 469
"P_2abc′m′", # 470
"Pnnm", # 471
"Pnnm1′", # 472
"Pn′nm", # 473
"Pnnm′", # 474
"Pn′n′m", # 475
"Pnn′m′", # 476
"Pn′n′m′", # 477
"Pmmn", # 478
"Pmmn1′", # 479
"Pm′mn", # 480
"Pmmn′", # 481
"Pm′m′n", # 482
"Pmm′n′", # 483
"Pm′m′n′", # 484
"P_2cmmn", # 485
"P_2cm′mn", # 486
"P_2cm′m′n", # 487
"Pbcn", # 488
"Pbcn1′", # 489
"Pb′cn", # 490
"Pbc′n", # 491
"Pbcn′", # 492
"Pb′c′n", # 493
"Pbc′n′", # 494
"Pb′cn′", # 495
"Pb′c′n′", # 496
"Pbca", # 497
"Pbca1′", # 498
"Pb′ca", # 499
"Pb′c′a", # 500
"Pb′c′a′", # 501
"Pnma", # 502
"Pnma1′", # 503
"Pn′ma", # 504
"Pnm′a", # 505
"Pnma′", # 506
"Pn′m′a", # 507
"Pnm′a′", # 508
"Pn′ma′", # 509
"Pn′m′a′", # 510
"Cmcm", # 511
"Cmcm1′", # 512
"Cm′cm", # 513
"Cmc′m", # 514
"Cmcm′", # 515
"Cm′c′m", # 516
"Cmc′m′", # 517
"Cm′cm′", # 518
"Cm′c′m′", # 519
"C_Pmcm", # 520
"C_Pm′cm", # 521
"C_Pmc′m", # 522
"C_Pmcm′", # 523
"C_Pm′c′m", # 524
"C_Pmc′m′", # 525
"C_Pm′cm′", # 526
"C_Pm′c′m′", # 527
"Cmca", # 528
"Cmca1′", # 529
"Cm′ca", # 530
"Cmc′a", # 531
"Cmca′", # 532
"Cm′c′a", # 533
"Cmc′a′", # 534
"Cm′ca′", # 535
"Cm′c′a′", # 536
"C_Pmca", # 537
"C_Pm′ca", # 538
"C_Pmc′a", # 539
"C_Pmca′", # 540
"C_Pm′c′a", # 541
"C_Pmc′a′", # 542
"C_Pm′ca′", # 543
"C_Pm′c′a′", # 544
"Cmmm", # 545
"Cmmm1′", # 546
"Cm′mm", # 547
"Cmmm′", # 548
"Cm′m′m", # 549
"Cmm′m′", # 550
"Cm′m′m′", # 551
"C_2cmmm", # 552
"C_Pmmm", # 553
"C_Immm", # 554
"C_2cm′m′m", # 555
"C_2cmm′m′", # 556
"C_Pm′mm", # 557
"C_Pmmm′", # 558
"C_Pm′m′m", # 559
"C_Pmm′m′", # 560
"C_Pm′m′m′", # 561
"C_Im′mm", # 562
"C_Im′m′m", # 563
"Cccm", # 564
"Cccm1′", # 565
"Cc′cm", # 566
"Cccm′", # 567
"Cc′c′m", # 568
"Ccc′m′", # 569
"Cc′c′m′", # 570
"C_Pccm", # 571
"C_Pc′cm", # 572
"C_Pccm′", # 573
"C_Pc′c′m", # 574
"C_Pcc′m′", # 575
"C_Pc′c′m′", # 576
"Cmma", # 577
"Cmma1′", # 578
"Cm′ma", # 579
"Cmma′", # 580
"Cm′m′a", # 581
"Cmm′a′", # 582
"Cm′m′a′", # 583
"C_2cmma", # 584
"C_Pmma", # 585
"C_Imma", # 586
"C_2cm′ma", # 587
"C_2cm′m′a", # 588
"C_Pm′ma", # 589
"C_Pmm′a", # 590
"C_Pmma′", # 591
"C_Imm′a", # 592
"C_Im′ma′", # 593
"Ccca", # 594
"Ccca1′", # 595
"Cc′ca", # 596
"Ccca′", # 597
"Cc′c′a", # 598
"Ccc′a′", # 599
"Cc′c′a′", # 600
"C_Pcca", # 601
"C_Pc′ca", # 602
"C_Pcca′", # 603
"C_Pcc′a′", # 604
"Fmmm", # 605
"Fmmm1′", # 606
"Fm′mm", # 607
"Fm′m′m", # 608
"Fm′m′m′", # 609
"F_Cmmm", # 610
"F_Cm′mm", # 611
"F_Cmmm′", # 612
"F_Cm′m′m", # 613
"F_Cmm′m′", # 614
"F_Cm′m′m′", # 615
"Fddd", # 616
"Fddd1′", # 617
"Fd′dd", # 618
"Fd′d′d", # 619
"Fd′d′d′", # 620
"Immm", # 621
"Immm1′", # 622
"Im′mm", # 623
"Im′m′m", # 624
"Im′m′m′", # 625
"I_Pmmm", # 626
"I_Pm′mm", # 627
"I_Pm′m′m", # 628
"I_Pm′m′m′", # 629
"Ibam", # 630
"Ibam1′", # 631
"Ib′am", # 632
"Ibam′", # 633
"Ib′a′m", # 634
"Iba′m′", # 635
"Ib′a′m′", # 636
"I_Pbam", # 637
"I_Pb′am", # 638
"I_Pbam′", # 639
"I_Pb′a′m", # 640
"I_Pb′am′", # 641
"I_Pb′a′m′", # 642
"Ibca", # 643
"Ibca1′", # 644
"Ib′ca", # 645
"Ib′c′a", # 646
"Ib′c′a′", # 647
"I_Pbca", # 648
"I_Pb′ca", # 649
"Imma", # 650
"Imma1′", # 651
"Im′ma", # 652
"Imma′", # 653
"Im′m′a", # 654
"Imm′a′", # 655
"Im′m′a′", # 656
"I_Pmma", # 657
"I_Pm′m′a", # 658
"I_Pmm′a′", # 659
"I_Pm′ma′", # 660
"P4", # 661
"P41′", # 662
"P4′", # 663
"P_2c4", # 664
"P_P4", # 665
"P_I4", # 666
"P_2c4′", # 667
"P4_1", # 668
"P4_11′", # 669
"P4_1′", # 670
"P_P4_1", # 671
"P4_2", # 672
"P4_21′", # 673
"P4_2′", # 674
"P_2c4_2", # 675
"P_P4_2", # 676
"P_I4_2", # 677
"P_2c4_2′", # 678
"P4_3", # 679
"P4_31′", # 680
"P4_3′", # 681
"P_P4_3", # 682
"I4", # 683
"I41′", # 684
"I4′", # 685
"I_P4", # 686
"I_P4′", # 687
"I4_1", # 688
"I4_11′", # 689
"I4_1′", # 690
"I_P4_1", # 691
"I_P4_1′", # 692
"P-4", # 693
"P-41′", # 694
"P-4′", # 695
"P_2c-4", # 696
"P_P-4", # 697
"P_I-4", # 698
"I-4", # 699
"I-41′", # 700
"I-4′", # 701
"I_P-4", # 702
"P4/m", # 703
"P4/m1′", # 704
"P4′/m", # 705
"P4/m′", # 706
"P4′/m′", # 707
"P_2c4/m", # 708
"P_P4/m", # 709
"P_I4/m", # 710
"P_2c4′/m", # 711
"P_P4/m′", # 712
"P4_2/m", # 713
"P4_2/m1′", # 714
"P4_2′/m", # 715
"P4_2/m′", # 716
"P4_2′/m′", # 717
"P_P4_2/m", # 718
"P_P4_2/m′", # 719
"P4/n", # 720
"P4/n1′", # 721
"P4′/n", # 722
"P4/n′", # 723
"P4′/n′", # 724
"P_2c4/n", # 725
"P_2c4′/n", # 726
"P4_2/n", # 727
"P4_2/n1′", # 728
"P4_2′/n", # 729
"P4_2/n′", # 730
"P4_2′/n′", # 731
"P_I4_2/n", # 732
"I4/m", # 733
"I4/m1′", # 734
"I4′/m", # 735
"I4/m′", # 736
"I4′/m′", # 737
"I_P4/m", # 738
"I_P4′/m", # 739
"I_P4/m′", # 740
"I_P4′/m′", # 741
"I4_1/a", # 742
"I4_1/a1′", # 743
"I4_1′/a", # 744
"I4_1/a′", # 745
"I4_1′/a′", # 746
"P422", # 747
"P4221′", # 748
"P4′22′", # 749
"P42′2′", # 750
"P4′2′2", # 751
"P_2c422", # 752
"P_P422", # 753
"P_I422", # 754
"P_2c4′22′", # 755
"P_P4′22′", # 756
"P42_12", # 757
"P42_121′", # 758
"P4′2_12′", # 759
"P42_1′2′", # 760
"P4′2_1′2", # 761
"P_2c42_12", # 762
"P_2c4′2_1′2", # 763
"P4_122", # 764
"P4_1221′", # 765
"P4_1′22′", # 766
"P4_12′2′", # 767
"P4_1′2′2", # 768
"P_P4_122", # 769
"P_P4_1′22′", # 770
"P4_12_12", # 771
"P4_12_121′", # 772
"P4_1′2_12′", # 773
"P4_12_1′2′", # 774
"P4_1′2_1′2", # 775
"P4_222", # 776
"P4_2221′", # 777
"P4_2′22′", # 778
"P4_22′2′", # 779
"P4_2′2′2", # 780
"P_2c4_222′", # 781
"P_P4_222", # 782
"P_I4_222′", # 783
"P_2c4_2′22", # 784
"P_P4_2′22′", # 785
"P4_22_12", # 786
"P4_22_121′", # 787
"P4_2′2_12′", # 788
"P4_22_1′2′", # 789
"P4_2′2_1′2", # 790
"P_2c4_22_12", # 791
"P_2c4_2′2_1′2", # 792
"P4_322", # 793
"P4_3221′", # 794
"P4_3′22′", # 795
"P4_32′2′", # 796
"P4_3′2′2", # 797
"P_P4_322", # 798
"P_P4_3′22′", # 799
"P4_32_12", # 800
"P4_32_121′", # 801
"P4_3′2_12′", # 802
"P4_32_1′2′", # 803
"P4_3′2_1′2", # 804
"I422", # 805
"I4221′", # 806
"I4′22′", # 807
"I42′2′", # 808
"I4′2′2", # 809
"I_P422", # 810
"I_P4′22′", # 811
"I_P42′2′", # 812
"I_P4′2′2", # 813
"I4_122", # 814
"I4_1221′", # 815
"I4_1′22′", # 816
"I4_12′2′", # 817
"I4_1′2′2", # 818
"I_P4_122", # 819
"I_P4_1′22′", # 820
"I_P4_12′2′", # 821
"I_P4_1′2′2", # 822
"P4mm", # 823
"P4mm1′", # 824
"P4′m′m", # 825
"P4′mm′", # 826
"P4m′m′", # 827
"P_2c4mm", # 828
"P_P4mm", # 829
"P_I4mm", # 830
"P_2c4′m′m", # 831
"P_2c4′mm′", # 832
"P_2c4m′m′", # 833
"P_P4′mm′", # 834
"P_I4m′m′", # 835
"P4bm", # 836
"P4bm1′", # 837
"P4′b′m", # 838
"P4′bm′", # 839
"P4b′m′", # 840
"P_2c4bm", # 841
"P_2c4′b′m", # 842
"P_2c4′bm′", # 843
"P_2c4b′m′", # 844
"P4_2cm", # 845
"P4_2cm1′", # 846
"P4_2′c′m", # 847
"P4_2′cm′", # 848
"P4_2c′m′", # 849
"P_P4_2cm", # 850
"P_P4_2′cm′", # 851
"P4_2nm", # 852
"P4_2nm1′", # 853
"P4_2′n′m", # 854
"P4_2′nm′", # 855
"P4_2n′m′", # 856
"P_I4_2nm", # 857
"P_I4_2n′m′", # 858
"P4cc", # 859
"P4cc1′", # 860
"P4′c′c", # 861
"P4′cc′", # 862
"P4c′c′", # 863
"P_P4cc", # 864
"P_P4′cc′", # 865
"P4nc", # 866
"P4nc1′", # 867
"P4′n′c", # 868
"P4′nc′", # 869
"P4n′c′", # 870
"P4_2mc", # 871
"P4_2mc1′", # 872
"P4_2′m′c", # 873
"P4_2′mc′", # 874
"P4_2m′c′", # 875
"P_P4_2mc", # 876
"P_P4_2′mc′", # 877
"P4_2bc", # 878
"P4_2bc1′", # 879
"P4_2′b′c", # 880
"P4_2′bc′", # 881
"P4_2b′c′", # 882
"I4mm", # 883
"I4mm1′", # 884
"I4′m′m", # 885
"I4′mm′", # 886
"I4m′m′", # 887
"I_P4mm", # 888
"I_P4′m′m", # 889
"I_P4′mm′", # 890
"I_P4m′m′", # 891
"I4cm", # 892
"I4cm1′", # 893
"I4′c′m", # 894
"I4′cm′", # 895
"I4c′m′", # 896
"I_P4cm", # 897
"I_P4′c′m", # 898
"I_P4′cm′", # 899
"I_P4c′m′", # 900
"I4_1md", # 901
"I4_1md1′", # 902
"I4_1′m′d", # 903
"I4_1′md′", # 904
"I4_1m′d′", # 905
"I4_1cd", # 906
"I4_1cd1′", # 907
"I4_1′c′d", # 908
"I4_1′cd′", # 909
"I4_1c′d′", # 910
"P-42m", # 911
"P-42m1′", # 912
"P-4′2′m", # 913
"P-4′2m′", # 914
"P-42′m′", # 915
"P_2c-42m", # 916
"P_P-42m", # 917
"P_I-42m", # 918
"P_2c-42′m′", # 919
"P_P-4′2m′", # 920
"P_I-4′2m′", # 921
"P-42c", # 922
"P-42c1′", # 923
"P-4′2′c", # 924
"P-4′2c′", # 925
"P-42′c′", # 926
"P_P-42c", # 927
"P_P-4′2c′", # 928
"P-42_1m", # 929
"P-42_1m1′", # 930
"P-4′2_1′m", # 931
"P-4′2_1m′", # 932
"P-42_1′m′", # 933
"P_2c-42_1m", # 934
"P_2c-4′2_1m′", # 935
"P-42_1c", # 936
"P-42_1c1′", # 937
"P-4′2_1′c", # 938
"P-4′2_1c′", # 939
"P-42_1′c′", # 940
"P-4m2", # 941
"P-4m21′", # 942
"P-4′m′2", # 943
"P-4′m2′", # 944
"P-4m′2′", # 945
"P_2c-4m2", # 946
"P_P-4m2", # 947
"P_I-4m2", # 948
"P_2c-4′m′2", # 949
"P_P-4′m2′", # 950
"P-4c2", # 951
"P-4c21′", # 952
"P-4′c′2", # 953
"P-4′c2′", # 954
"P-4c′2′", # 955
"P_P-4c2", # 956
"P_P-4′c2′", # 957
"P-4b2", # 958
"P-4b21′", # 959
"P-4′b′2", # 960
"P-4′b2′", # 961
"P-4b′2′", # 962
"P_2c-4b2", # 963
"P_2c-4′b′2", # 964
"P-4n2", # 965
"P-4n21′", # 966
"P-4′n′2", # 967
"P-4′n2′", # 968
"P-4n′2′", # 969
"P_I-4n2", # 970
"I-4m2", # 971
"I-4m21′", # 972
"I-4′m′2", # 973
"I-4′m2′", # 974
"I-4m′2′", # 975
"I_P-4m2", # 976
"I_P-4′m′2", # 977
"I-4c2", # 978
"I-4c21′", # 979
"I-4′c′2", # 980
"I-4′c2′", # 981
"I-4c′2′", # 982
"I_P-4c2", # 983
"I_P-4c′2′", # 984
"I-42m", # 985
"I-42m1′", # 986
"I-4′2′m", # 987
"I-4′2m′", # 988
"I-42′m′", # 989
"I_P-42m", # 990
"I_P-4′2′m", # 991
"I_P-4′2m′", # 992
"I_P-42′m′", # 993
"I-42d", # 994
"I-42d1′", # 995
"I-4′2′d", # 996
"I-4′2d′", # 997
"I-42′d′", # 998
"P4/mmm", # 999
"P4/mmm1′", # 1000
"P4/m′mm", # 1001
"P4′/mm′m", # 1002
"P4′/mmm′", # 1003
"P4′/m′m′m", # 1004
"P4/mm′m′", # 1005
"P4′/m′mm′", # 1006
"P4/m′m′m′", # 1007
"P_2c4/mmm", # 1008
"P_P4/mmm", # 1009
"P_I4/mmm", # 1010
"P_2c4′/mm′m", # 1011
"P_2c4′/mmm′", # 1012
"P_2c4/mm′m′", # 1013
"P_P4/m′mm", # 1014
"P_P4′/mmm′", # 1015
"P_P4′/m′mm′", # 1016
"P_I4/mm′m′", # 1017
"P4/mcc", # 1018
"P4/mcc1′", # 1019
"P4/m′cc", # 1020
"P4′/mc′c", # 1021
"P4′/mcc′", # 1022
"P4′/m′c′c", # 1023
"P4/mc′c′", # 1024
"P4′/m′cc′", # 1025
"P4/m′c′c′", # 1026
"P_P4/mcc", # 1027
"P_P4/m′cc", # 1028
"P_P4′/mcc′", # 1029
"P_P4′/m′cc′", # 1030
"P4/nbm", # 1031
"P4/nbm1′", # 1032
"P4/n′bm", # 1033
"P4′/nb′m", # 1034
"P4′/nbm′", # 1035
"P4′/n′b′m", # 1036
"P4/nb′m′", # 1037
"P4′/n′bm′", # 1038
"P4/n′b′m′", # 1039
"P_2c4/nbm", # 1040
"P_2c4′/nb′m", # 1041
"P_2c4′/nbm′", # 1042
"P_2c4/nb′m′", # 1043
"P4/nnc", # 1044
"P4/nnc1′", # 1045
"P4/n′nc", # 1046
"P4′/nn′c", # 1047
"P4′/nnc′", # 1048
"P4′/n′n′c", # 1049
"P4/nn′c′", # 1050
"P4′/n′nc′", # 1051
"P4/n′n′c′", # 1052
"P4/mbm", # 1053
"P4/mbm1′", # 1054
"P4/m′bm", # 1055
"P4′/mb′m", # 1056
"P4′/mbm′", # 1057
"P4′/m′b′m", # 1058
"P4/mb′m′", # 1059
"P4′/m′bm′", # 1060
"P4/m′b′m′", # 1061
"P_2c4/mbm", # 1062
"P_2c4′/mb′m", # 1063
"P_2c4′/mbm′", # 1064
"P_2c4/mb′m′", # 1065
"P4/mnc", # 1066
"P4/mnc1′", # 1067
"P4/m′nc", # 1068
"P4′/mn′c", # 1069
"P4′/mnc′", # 1070
"P4′/m′n′c", # 1071
"P4/mn′c′", # 1072
"P4′/m′nc′", # 1073
"P4/m′n′c′", # 1074
"P4/nmm", # 1075
"P4/nmm1′", # 1076
"P4/n′mm", # 1077
"P4′/nm′m", # 1078
"P4′/nmm′", # 1079
"P4′/n′m′m", # 1080
"P4/nm′m′", # 1081
"P4′/n′mm′", # 1082
"P4/n′m′m′", # 1083
"P_2c4/nmm", # 1084
"P_2c4′/nm′m", # 1085
"P_2c4′/nmm′", # 1086
"P_2c4/nm′m′", # 1087
"P4/ncc", # 1088
"P4/ncc1′", # 1089
"P4/n′cc", # 1090
"P4′/nc′c", # 1091
"P4′/ncc′", # 1092
"P4′/n′c′c", # 1093
"P4/nc′c′", # 1094
"P4′/n′cc′", # 1095
"P4/n′c′c′", # 1096
"P4_2/mmc", # 1097
"P4_2/mmc1′", # 1098
"P4_2/m′mc", # 1099
"P4_2′/mm′c", # 1100
"P4_2′/mmc′", # 1101
"P4_2′/m′m′c", # 1102
"P4_2/mm′c′", # 1103
"P4_2′/m′mc′", # 1104
"P4_2/m′m′c′", # 1105
"P_P4_2/mmc", # 1106
"P_P4_2/m′mc", # 1107
"P_P4_2/mm′c′", # 1108
"P_P4_2′/m′mc′", # 1109
"P4_2/mcm", # 1110
"P4_2/mcm1′", # 1111
"P4_2/m′cm", # 1112
"P4_2′/mc′m", # 1113
"P4_2′/mcm′", # 1114
"P4_2′/m′c′m", # 1115
"P4_2/mc′m′", # 1116
"P4_2′/m′cm′", # 1117
"P4_2/m′c′m′", # 1118
"P_P4_2/mcm", # 1119
"P_P4_2/m′cm", # 1120
"P_P4_2′/mcm′", # 1121
"P_P4_2′/m′cm′", # 1122
"P4_2/nbc", # 1123
"P4_2/nbc1′", # 1124
"P4_2/n′bc", # 1125
"P4_2′/nb′c", # 1126
"P4_2′/nbc′", # 1127
"P4_2′/n′b′c", # 1128
"P4_2/nb′c′", # 1129
"P4_2′/n′bc′", # 1130
"P4_2/n′b′c′", # 1131
"P4_2/nnm", # 1132
"P4_2/nnm1′", # 1133
"P4_2/n′nm", # 1134
"P4_2′/nn′m", # 1135
"P4_2′/nnm′", # 1136
"P4_2′/n′n′m", # 1137
"P4_2/nn′m′", # 1138
"P4_2′/n′nm′", # 1139
"P4_2/n′n′m′", # 1140
"P_I4_2/nnm", # 1141
"P_I4_2/nn′m′", # 1142
"P4_2/mbc", # 1143
"P4_2/mbc1′", # 1144
"P4_2/m′bc", # 1145
"P4_2′/mb′c", # 1146
"P4_2′/mbc′", # 1147
"P4_2′/m′b′c", # 1148
"P4_2/mb′c′", # 1149
"P4_2′/m′bc′", # 1150
"P4_2/m′b′c′", # 1151
"P4_2/mnm", # 1152
"P4_2/mnm1′", # 1153
"P4_2/m′nm", # 1154
"P4_2′/mn′m", # 1155
"P4_2′/mnm′", # 1156
"P4_2′/m′n′m", # 1157
"P4_2/mn′m′", # 1158
"P4_2′/m′nm′", # 1159
"P4_2/m′n′m′", # 1160
"P4_2/nmc", # 1161
"P4_2/nmc1′", # 1162
"P4_2/n′mc", # 1163
"P4_2′/nm′c", # 1164
"P4_2′/nmc′", # 1165
"P4_2′/n′m′c", # 1166
"P4_2/nm′c′", # 1167
"P4_2′/n′mc′", # 1168
"P4_2/n′m′c′", # 1169
"P4_2/ncm", # 1170
"P4_2/ncm1′", # 1171
"P4_2/n′cm", # 1172
"P4_2′/nc′m", # 1173
"P4_2′/ncm′", # 1174
"P4_2′/n′c′m", # 1175
"P4_2/nc′m′", # 1176
"P4_2′/n′cm′", # 1177
"P4_2/n′c′m′", # 1178
"I4/mmm", # 1179
"I4/mmm1′", # 1180
"I4/m′mm", # 1181
"I4′/mm′m", # 1182
"I4′/mmm′", # 1183
"I4′/m′m′m", # 1184
"I4/mm′m′", # 1185
"I4′/m′mm′", # 1186
"I4/m′m′m′", # 1187
"I_P4/mmm", # 1188
"I_P4/m′mm", # 1189
"I_P4′/mm′m", # 1190
"I_P4′/mmm′", # 1191
"I_P4′/m′m′m", # 1192
"I_P4/mm′m′", # 1193
"I_P4′/m′mm′", # 1194
"I_P4/m′m′m′", # 1195
"I4/mcm", # 1196
"I4/mcm1′", # 1197
"I4/m′cm", # 1198
"I4′/mc′m", # 1199
"I4′/mcm′", # 1200
"I4′/m′c′m", # 1201
"I4/mc′m′", # 1202
"I4′/m′cm′", # 1203
"I4/m′c′m′", # 1204
"I_P4/mcm", # 1205
"I_P4/m′cm", # 1206
"I_P4′/mc′m", # 1207
"I_P4′/mcm′", # 1208
"I_P4′/m′c′m", # 1209
"I_P4/mc′m′", # 1210
"I_P4′/m′cm′", # 1211
"I_P4/m′c′m′", # 1212
"I4_1/amd", # 1213
"I4_1/amd1′", # 1214
"I4_1/a′md", # 1215
"I4_1′/am′d", # 1216
"I4_1′/amd′", # 1217
"I4_1′/a′m′d", # 1218
"I4_1/am′d′", # 1219
"I4_1′/a′md′", # 1220
"I4_1/a′m′d′", # 1221
"I4_1/acd", # 1222
"I4_1/acd1′", # 1223
"I4_1/a′cd", # 1224
"I4_1′/ac′d", # 1225
"I4_1′/acd′", # 1226
"I4_1′/a′c′d", # 1227
"I4_1/ac′d′", # 1228
"I4_1′/a′cd′", # 1229
"I4_1/a′c′d′", # 1230
"P3", # 1231
"P31′", # 1232
"P_2c3", # 1233
"P3_1", # 1234
"P3_11′", # 1235
"P_2c3_2", # 1236
"P3_2", # 1237
"P3_21′", # 1238
"P_2c3_1", # 1239
"R3", # 1240
"R31′", # 1241
"R_R3", # 1242
"P-3", # 1243
"P-31′", # 1244
"P-3′", # 1245
"P_2c-3", # 1246
"R-3", # 1247
"R-31′", # 1248
"R-3′", # 1249
"R_R-3", # 1250
"P312", # 1251
"P3121′", # 1252
"P312′", # 1253
"P_2c312", # 1254
"P321", # 1255
"P3211′", # 1256
"P32′1", # 1257
"P_2c321", # 1258
"P3_112", # 1259
"P3_1121′", # 1260
"P3_112′", # 1261
"P_2c3_212", # 1262
"P3_121", # 1263
"P3_1211′", # 1264
"P3_12′1", # 1265
"P_2c3_221", # 1266
"P3_212", # 1267
"P3_2121′", # 1268
"P3_212′", # 1269
"P_2c3_112′", # 1270
"P3_221", # 1271
"P3_2211′", # 1272
"P3_22′1", # 1273
"P_2c3_12′1", # 1274
"R32", # 1275
"R321′", # 1276
"R32′", # 1277
"R_R32", # 1278
"P3m1", # 1279
"P3m11′", # 1280
"P3m′1", # 1281
"P_2c3m1", # 1282
"P_2c3m′1", # 1283
"P31m", # 1284
"P31m1′", # 1285
"P31m′", # 1286
"P_2c31m", # 1287
"P_2c31m′", # 1288
"P3c1", # 1289
"P3c11′", # 1290
"P3c′1", # 1291
"P31c", # 1292
"P31c1′", # 1293
"P31c′", # 1294
"R3m", # 1295
"R3m1′", # 1296
"R3m′", # 1297
"R_R3m", # 1298
"R_R3m′", # 1299
"R3c", # 1300
"R3c1′", # 1301
"R3c′", # 1302
"P-31m", # 1303
"P-31m1′", # 1304
"P-3′1m", # 1305
"P-3′1m′", # 1306
"P-31m′", # 1307
"P_2c-31m", # 1308
"P_2c-31m′", # 1309
"P-31c", # 1310
"P-31c1′", # 1311
"P-3′1c", # 1312
"P-3′1c′", # 1313
"P-31c′", # 1314
"P-3m1", # 1315
"P-3m11′", # 1316
"P-3′m1", # 1317
"P-3′m′1", # 1318
"P-3m′1", # 1319
"P_2c-3m1", # 1320
"P_2c-3m′1", # 1321
"P-3c1", # 1322
"P-3c11′", # 1323
"P-3′c1", # 1324
"P-3′c′1", # 1325
"P-3c′1", # 1326
"R-3m", # 1327
"R-3m1′", # 1328
"R-3′m", # 1329
"R-3′m′", # 1330
"R-3m′", # 1331
"R_R-3m", # 1332
"R_R-3m′", # 1333
"R-3c", # 1334
"R-3c1′", # 1335
"R-3′c", # 1336
"R-3′c′", # 1337
"R-3c′", # 1338
"P6", # 1339
"P61′", # 1340
"P6′", # 1341
"P_2c6", # 1342
"P_2c6′", # 1343
"P6_1", # 1344
"P6_11′", # 1345
"P6_1′", # 1346
"P6_5", # 1347
"P6_51′", # 1348
"P6_5′", # 1349
"P6_2", # 1350
"P6_21′", # 1351
"P6_2′", # 1352
"P_2c6_2", # 1353
"P_2c6_2′", # 1354
"P6_4", # 1355
"P6_41′", # 1356
"P6_4′", # 1357
"P_2c6_4", # 1358
"P_2c6_4′", # 1359
"P6_3", # 1360
"P6_31′", # 1361
"P6_3′", # 1362
"P-6", # 1363
"P-61′", # 1364
"P-6′", # 1365
"P_2c-6", # 1366
"P6/m", # 1367
"P6/m1′", # 1368
"P6′/m", # 1369
"P6/m′", # 1370
"P6′/m′", # 1371
"P_2c6/m", # 1372
"P_2c6′/m", # 1373
"P6_3/m", # 1374
"P6_3/m1′", # 1375
"P6_3′/m", # 1376
"P6_3/m′", # 1377
"P6_3′/m′", # 1378
"P622", # 1379
"P6221′", # 1380
"P6′2′2", # 1381
"P6′22′", # 1382
"P62′2′", # 1383
"P_2c622", # 1384
"P_2c6′22′", # 1385
"P6_122", # 1386
"P6_1221′", # 1387
"P6_1′2′2", # 1388
"P6_1′22′", # 1389
"P6_12′2′", # 1390
"P6_522", # 1391
"P6_5221′", # 1392
"P6_5′2′2", # 1393
"P6_5′22′", # 1394
"P6_52′2′", # 1395
"P6_222", # 1396
"P6_2221′", # 1397
"P6_2′2′2", # 1398
"P6_2′22′", # 1399
"P6_22′2′", # 1400
"P_2c6_222′", # 1401
"P_2c6_2′22", # 1402
"P6_422", # 1403
"P6_4221′", # 1404
"P6_4′2′2", # 1405
"P6_4′22′", # 1406
"P6_42′2′", # 1407
"P_2c6_422′", # 1408
"P_2c6_4′2′2′", # 1409
"P6_322", # 1410
"P6_3221′", # 1411
"P6_3′2′2", # 1412
"P6_3′22′", # 1413
"P6_32′2′", # 1414
"P6mm", # 1415
"P6mm1′", # 1416
"P6′m′m", # 1417
"P6′mm′", # 1418
"P6m′m′", # 1419
"P_2c6mm", # 1420
"P_2c6′m′m", # 1421
"P_2c6′mm′", # 1422
"P_2c6m′m′", # 1423
"P6cc", # 1424
"P6cc1′", # 1425
"P6′c′c", # 1426
"P6′cc′", # 1427
"P6c′c′", # 1428
"P6_3cm", # 1429
"P6_3cm1′", # 1430
"P6_3′c′m", # 1431
"P6_3′cm′", # 1432
"P6_3c′m′", # 1433
"P6_3mc", # 1434
"P6_3mc1′", # 1435
"P6_3′m′c", # 1436
"P6_3′mc′", # 1437
"P6_3m′c′", # 1438
"P-6m2", # 1439
"P-6m21′", # 1440
"P-6′m′2", # 1441
"P-6′m2′", # 1442
"P-6m′2′", # 1443
"P_2c-6m2", # 1444
"P_2c-6′m′2", # 1445
"P-6c2", # 1446
"P-6c21′", # 1447
"P-6′c′2", # 1448
"P-6′c2′", # 1449
"P-6c′2′", # 1450
"P-62m", # 1451
"P-62m1′", # 1452
"P-6′2′m", # 1453
"P-6′2m′", # 1454
"P-62′m′", # 1455
"P_2c-62m", # 1456
"P_2c-6′2m′", # 1457
"P-62c", # 1458
"P-62c1′", # 1459
"P-6′2′c", # 1460
"P-6′2c′", # 1461
"P-62′c′", # 1462
"P6/mmm", # 1463
"P6/mmm1′", # 1464
"P6/m′mm", # 1465
"P6′/mm′m", # 1466
"P6′/mmm′", # 1467
"P6′/m′m′m", # 1468
"P6′/m′mm′", # 1469
"P6/mm′m′", # 1470
"P6/m′m′m′", # 1471
"P_2c6/mmm", # 1472
"P_2c6′/mm′m", # 1473
"P_2c6′/mmm′", # 1474
"P_2c6/mm′m′", # 1475
"P6/mcc", # 1476
"P6/mcc1′", # 1477
"P6/m′cc", # 1478
"P6′/mc′c", # 1479
"P6′/mcc′", # 1480
"P6′/m′c′c", # 1481
"P6′/m′cc′", # 1482
"P6/mc′c′", # 1483
"P6/m′c′c′", # 1484
"P6_3/mcm", # 1485
"P6_3/mcm1′", # 1486
"P6_3/m′cm", # 1487
"P6_3′/mc′m", # 1488
"P6_3′/mcm′", # 1489
"P6_3′/m′c′m", # 1490
"P6_3′/m′cm′", # 1491
"P6_3/mc′m′", # 1492
"P6_3/m′c′m′", # 1493
"P6_3/mmc", # 1494
"P6_3/mmc1′", # 1495
"P6_3/m′mc", # 1496
"P6_3′/mm′c", # 1497
"P6_3′/mmc′", # 1498
"P6_3′/m′m′c", # 1499
"P6_3′/m′mc′", # 1500
"P6_3/mm′c′", # 1501
"P6_3/m′m′c′", # 1502
"P23", # 1503
"P231′", # 1504
"P_F23", # 1505
"F23", # 1506
"F231′", # 1507
"I23", # 1508
"I231′", # 1509
"I_P23", # 1510
"P2_13", # 1511
"P2_131′", # 1512
"I2_13", # 1513
"I2_131′", # 1514
"I_P2_13", # 1515
"Pm-3", # 1516
"Pm-31′", # 1517
"Pm′-3′", # 1518
"P_Fm-3", # 1519
"Pn-3", # 1520
"Pn-31′", # 1521
"Pn′-3′", # 1522
"P_Fn-3", # 1523
"Fm-3", # 1524
"Fm-31′", # 1525
"Fm′-3′", # 1526
"Fd-3", # 1527
"Fd-31′", # 1528
"Fd′-3′", # 1529
"Im-3", # 1530
"Im-31′", # 1531
"Im′-3′", # 1532
"I_Pm-3", # 1533
"I_Pm′-3′", # 1534
"Pa-3", # 1535
"Pa-31′", # 1536
"Pa′-3′", # 1537
"Ia-3", # 1538
"Ia-31′", # 1539
"Ia′-3′", # 1540
"I_Pa-3′", # 1541
"P432", # 1542
"P4321′", # 1543
"P4′32′", # 1544
"P_F432", # 1545
"P4_232", # 1546
"P4_2321′", # 1547
"P4_2′32′", # 1548
"P_F4_232", # 1549
"F432", # 1550
"F4321′", # 1551
"F4′32′", # 1552
"F4_132", # 1553
"F4_1321′", # 1554
"F4_1′32′", # 1555
"I432", # 1556
"I4321′", # 1557
"I4′32′", # 1558
"I_P432", # 1559
"I_P4′32′", # 1560
"P4_332", # 1561
"P4_3321′", # 1562
"P4_3′32′", # 1563
"P4_132", # 1564
"P4_1321′", # 1565
"P4_1′32′", # 1566
"I4_132", # 1567
"I4_1321′", # 1568
"I4_1′32′", # 1569
"I_P4_132", # 1570
"I_P4_1′32′", # 1571
"P-43m", # 1572
"P-43m1′", # 1573
"P-4′3m′", # 1574
"P_F-43m", # 1575
"P_F-4′3m′", # 1576
"F-43m", # 1577
"F-43m1′", # 1578
"F-4′3m′", # 1579
"I-43m", # 1580
"I-43m1′", # 1581
"I-4′3m′", # 1582
"I_P-43m", # 1583
"I_P-4′3m′", # 1584
"P-43n", # 1585
"P-43n1′", # 1586
"P-4′3n′", # 1587
"F-43c", # 1588
"F-43c1′", # 1589
"F-4′3c′", # 1590
"I-43d", # 1591
"I-43d1′", # 1592
"I-4′3d′", # 1593
"Pm-3m", # 1594
"Pm-3m1′", # 1595
"Pm′-3′m", # 1596
"Pm-3m′", # 1597
"Pm′-3′m′", # 1598
"P_Fm-3m", # 1599
"P_Fm-3m′", # 1600
"Pn-3n", # 1601
"Pn-3n1′", # 1602
"Pn′-3′n", # 1603
"Pn-3n′", # 1604
"Pn′-3′n′", # 1605
"Pm-3n", # 1606
"Pm-3n1′", # 1607
"Pm′-3′n", # 1608
"Pm-3n′", # 1609
"Pm′-3′n′", # 1610
"Pn-3m", # 1611
"Pn-3m1′", # 1612
"Pn′-3′m", # 1613
"Pn-3m′", # 1614
"Pn′-3′m′", # 1615
"P_Fn-3m", # 1616
"P_Fn-3m′", # 1617
"Fm-3m", # 1618
"Fm-3m1′", # 1619
"Fm′-3′m", # 1620
"Fm-3m′", # 1621
"Fm′-3′m′", # 1622
"Fm-3c", # 1623
"Fm-3c1′", # 1624
"Fm′-3′c", # 1625
"Fm-3c′", # 1626
"Fm′-3′c′", # 1627
"Fd-3m", # 1628
"Fd-3m1′", # 1629
"Fd′-3′m", # 1630
"Fd-3m′", # 1631
"Fd′-3′m′", # 1632
"Fd-3c", # 1633
"Fd-3c1′", # 1634
"Fd′-3′c", # 1635
"Fd-3c′", # 1636
"Fd′-3′c′", # 1637
"Im-3m", # 1638
"Im-3m1′", # 1639
"Im′-3′m", # 1640
"Im-3m′", # 1641
"Im′-3′m′", # 1642
"I_Pm-3m", # 1643
"I_Pm′-3′m", # 1644
"I_Pm-3m′", # 1645
"I_Pm′-3′m′", # 1646
"Ia-3d", # 1647
"Ia-3d1′", # 1648
"Ia′-3′d", # 1649
"Ia-3d′", # 1650
"Ia′-3′d′" # 1651
]
# mapping from BNS numbering N₁ᴮᴺˢ.N₂ᴮᴺˢ to OG numbering N₁ᴼᴳ.N₂ᴼᴳ.N₃ᴼᴳ
const MSG_BNS2OG_NUMs_D = Dict{Tuple{Int, Int}, Tuple{Int, Int, Int}}(
#(N₁ᴮᴺˢ, N₂ᴮᴺˢ) => (N₁ᴼᴳ, N₂ᴼᴳ, N₃ᴼᴳ)
(1, 1) => (1, 1, 1),
(1, 2) => (1, 2, 2),
(1, 3) => (1, 3, 3),
(2, 4) => (2, 1, 4),
(2, 5) => (2, 2, 5),
(2, 6) => (2, 3, 6),
(2, 7) => (2, 4, 7),
(3, 1) => (3, 1, 8),
(3, 2) => (3, 2, 9),
(3, 3) => (3, 3, 10),
(3, 4) => (3, 4, 11),
(3, 5) => (3, 5, 12),
(3, 6) => (5, 5, 23),
(4, 7) => (4, 1, 15),
(4, 8) => (4, 2, 16),
(4, 9) => (4, 3, 17),
(4, 10) => (4, 4, 18),
(4, 11) => (3, 7, 14),
(4, 12) => (5, 6, 24),
(5, 13) => (5, 1, 19),
(5, 14) => (5, 2, 20),
(5, 15) => (5, 3, 21),
(5, 16) => (5, 4, 22),
(5, 17) => (3, 6, 13),
(6, 18) => (6, 1, 25),
(6, 19) => (6, 2, 26),
(6, 20) => (6, 3, 27),
(6, 21) => (6, 4, 28),
(6, 22) => (6, 5, 29),
(6, 23) => (8, 5, 42),
(7, 24) => (7, 1, 32),
(7, 25) => (7, 2, 33),
(7, 26) => (7, 3, 34),
(7, 27) => (7, 4, 35),
(7, 28) => (6, 7, 31),
(7, 29) => (7, 5, 36),
(7, 30) => (9, 4, 48),
(7, 31) => (8, 7, 44),
(8, 32) => (8, 1, 38),
(8, 33) => (8, 2, 39),
(8, 34) => (8, 3, 40),
(8, 35) => (8, 4, 41),
(8, 36) => (6, 6, 30),
(9, 37) => (9, 1, 45),
(9, 38) => (9, 2, 46),
(9, 39) => (9, 3, 47),
(9, 40) => (8, 6, 43),
(9, 41) => (7, 6, 37),
(10, 42) => (10, 1, 49),
(10, 43) => (10, 2, 50),
(10, 44) => (10, 3, 51),
(10, 45) => (10, 4, 52),
(10, 46) => (10, 5, 53),
(10, 47) => (10, 6, 54),
(10, 48) => (10, 7, 55),
(10, 49) => (12, 7, 72),
(11, 50) => (11, 1, 59),
(11, 51) => (11, 2, 60),
(11, 52) => (11, 3, 61),
(11, 53) => (11, 4, 62),
(11, 54) => (11, 5, 63),
(11, 55) => (11, 6, 64),
(11, 56) => (10, 9, 57),
(11, 57) => (12, 9, 74),
(12, 58) => (12, 1, 66),
(12, 59) => (12, 2, 67),
(12, 60) => (12, 3, 68),
(12, 61) => (12, 4, 69),
(12, 62) => (12, 5, 70),
(12, 63) => (12, 6, 71),
(12, 64) => (10, 8, 56),
(13, 65) => (13, 1, 77),
(13, 66) => (13, 2, 78),
(13, 67) => (13, 3, 79),
(13, 68) => (13, 4, 80),
(13, 69) => (13, 5, 81),
(13, 70) => (13, 6, 82),
(13, 71) => (13, 7, 83),
(13, 72) => (10, 10, 58),
(13, 73) => (12, 10, 75),
(13, 74) => (15, 6, 97),
(14, 75) => (14, 1, 86),
(14, 76) => (14, 2, 87),
(14, 77) => (14, 3, 88),
(14, 78) => (14, 4, 89),
(14, 79) => (14, 5, 90),
(14, 80) => (14, 6, 91),
(14, 81) => (13, 9, 85),
(14, 82) => (11, 7, 65),
(14, 83) => (12, 11, 76),
(14, 84) => (15, 7, 98),
(15, 85) => (15, 1, 92),
(15, 86) => (15, 2, 93),
(15, 87) => (15, 3, 94),
(15, 88) => (15, 4, 95),
(15, 89) => (15, 5, 96),
(15, 90) => (12, 8, 73),
(15, 91) => (13, 8, 84),
(16, 1) => (16, 1, 99),
(16, 2) => (16, 2, 100),
(16, 3) => (16, 3, 101),
(16, 4) => (16, 4, 102),
(16, 5) => (21, 6, 134),
(16, 6) => (23, 4, 148),
(17, 7) => (17, 1, 106),
(17, 8) => (17, 2, 107),
(17, 9) => (17, 3, 108),
(17, 10) => (17, 4, 109),
(17, 11) => (17, 5, 110),
(17, 12) => (16, 7, 105),
(17, 13) => (21, 10, 138),
(17, 14) => (20, 5, 126),
(17, 15) => (24, 5, 154),
(18, 16) => (18, 1, 113),
(18, 17) => (18, 2, 114),
(18, 18) => (18, 3, 115),
(18, 19) => (18, 4, 116),
(18, 20) => (17, 7, 112),
(18, 21) => (18, 5, 117),
(18, 22) => (20, 7, 128),
(18, 23) => (21, 9, 137),
(18, 24) => (23, 5, 149),
(19, 25) => (19, 1, 119),
(19, 26) => (19, 2, 120),
(19, 27) => (19, 3, 121),
(19, 28) => (18, 6, 118),
(19, 29) => (20, 6, 127),
(19, 30) => (24, 4, 153),
(20, 31) => (20, 1, 122),
(20, 32) => (20, 2, 123),
(20, 33) => (20, 3, 124),
(20, 34) => (20, 4, 125),
(20, 35) => (21, 8, 136),
(20, 36) => (17, 6, 111),
(20, 37) => (22, 5, 144),
(21, 38) => (21, 1, 129),
(21, 39) => (21, 2, 130),
(21, 40) => (21, 3, 131),
(21, 41) => (21, 4, 132),
(21, 42) => (21, 5, 133),
(21, 43) => (16, 5, 103),
(21, 44) => (22, 4, 143),
(22, 45) => (22, 1, 140),
(22, 46) => (22, 2, 141),
(22, 47) => (22, 3, 142),
(22, 48) => (16, 6, 104),
(23, 49) => (23, 1, 145),
(23, 50) => (23, 2, 146),
(23, 51) => (23, 3, 147),
(23, 52) => (21, 7, 135),
(24, 53) => (24, 1, 150),
(24, 54) => (24, 2, 151),
(24, 55) => (24, 3, 152),
(24, 56) => (21, 11, 139),
(25, 57) => (25, 1, 155),
(25, 58) => (25, 2, 156),
(25, 59) => (25, 3, 157),
(25, 60) => (25, 4, 158),
(25, 61) => (25, 5, 159),
(25, 62) => (25, 6, 160),
(25, 63) => (35, 6, 241),
(25, 64) => (38, 7, 271),
(25, 65) => (44, 5, 328),
(26, 66) => (26, 1, 168),
(26, 67) => (26, 2, 169),
(26, 68) => (26, 3, 170),
(26, 69) => (26, 4, 171),
(26, 70) => (26, 5, 172),
(26, 71) => (26, 6, 173),
(26, 72) => (26, 7, 174),
(26, 73) => (25, 10, 164),
(26, 74) => (38, 11, 275),
(26, 75) => (39, 10, 287),
(26, 76) => (36, 6, 254),
(26, 77) => (46, 8, 345),
(27, 78) => (27, 1, 178),
(27, 79) => (27, 2, 179),
(27, 80) => (27, 3, 180),
(27, 81) => (27, 4, 181),
(27, 82) => (25, 11, 165),
(27, 83) => (27, 5, 182),
(27, 84) => (37, 5, 262),
(27, 85) => (39, 12, 289),
(27, 86) => (45, 5, 335),
(28, 87) => (28, 1, 185),
(28, 88) => (28, 2, 186),
(28, 89) => (28, 3, 187),
(28, 90) => (28, 4, 188),
(28, 91) => (28, 5, 189),
(28, 92) => (25, 12, 166),
(28, 93) => (28, 6, 190),
(28, 94) => (28, 7, 191),
(28, 95) => (40, 6, 296),
(28, 96) => (39, 7, 284),
(28, 97) => (35, 10, 245),
(28, 98) => (46, 6, 343),
(29, 99) => (29, 1, 198),
(29, 100) => (29, 2, 199),
(29, 101) => (29, 3, 200),
(29, 102) => (29, 4, 201),
(29, 103) => (29, 5, 202),
(29, 104) => (26, 10, 177),
(29, 105) => (29, 6, 203),
(29, 106) => (28, 10, 194),
(29, 107) => (41, 7, 306),
(29, 108) => (39, 11, 288),
(29, 109) => (36, 7, 255),
(29, 110) => (45, 6, 336),
(30, 111) => (30, 1, 205),
(30, 112) => (30, 2, 206),
(30, 113) => (30, 3, 207),
(30, 114) => (30, 4, 208),
(30, 115) => (30, 5, 209),
(30, 116) => (30, 6, 210),
(30, 117) => (27, 7, 184),
(30, 118) => (28, 12, 196),
(30, 119) => (38, 12, 276),
(30, 120) => (41, 9, 308),
(30, 121) => (37, 6, 263),
(30, 122) => (46, 9, 346),
(31, 123) => (31, 1, 212),
(31, 124) => (31, 2, 213),
(31, 125) => (31, 3, 214),
(31, 126) => (31, 4, 215),
(31, 127) => (31, 5, 216),
(31, 128) => (26, 9, 176),
(31, 129) => (31, 6, 217),
(31, 130) => (28, 11, 195),
(31, 131) => (40, 8, 298),
(31, 132) => (38, 10, 274),
(31, 133) => (36, 8, 256),
(31, 134) => (44, 6, 329),
(32, 135) => (32, 1, 219),
(32, 136) => (32, 2, 220),
(32, 137) => (32, 3, 221),
(32, 138) => (32, 4, 222),
(32, 139) => (32, 5, 223),
(32, 140) => (28, 9, 193),
(32, 141) => (35, 11, 246),
(32, 142) => (41, 6, 305),
(32, 143) => (45, 7, 337),
(33, 144) => (33, 1, 226),
(33, 145) => (33, 2, 227),
(33, 146) => (33, 3, 228),
(33, 147) => (33, 4, 229),
(33, 148) => (33, 5, 230),
(33, 149) => (31, 7, 218),
(33, 150) => (29, 7, 204),
(33, 151) => (32, 6, 224),
(33, 152) => (40, 7, 297),
(33, 153) => (41, 8, 307),
(33, 154) => (36, 9, 257),
(33, 155) => (46, 7, 344),
(34, 156) => (34, 1, 231),
(34, 157) => (34, 2, 232),
(34, 158) => (34, 3, 233),
(34, 159) => (34, 4, 234),
(34, 160) => (30, 7, 211),
(34, 161) => (32, 7, 225),
(34, 162) => (40, 9, 299),
(34, 163) => (37, 7, 264),
(34, 164) => (44, 7, 330),
(35, 165) => (35, 1, 236),
(35, 166) => (35, 2, 237),
(35, 167) => (35, 3, 238),
(35, 168) => (35, 4, 239),
(35, 169) => (35, 5, 240),
(35, 170) => (25, 7, 161),
(35, 171) => (42, 5, 313),
(36, 172) => (36, 1, 249),
(36, 173) => (36, 2, 250),
(36, 174) => (36, 3, 251),
(36, 175) => (36, 4, 252),
(36, 176) => (36, 5, 253),
(36, 177) => (35, 8, 243),
(36, 178) => (26, 8, 175),
(36, 179) => (42, 7, 315),
(37, 180) => (37, 1, 258),
(37, 181) => (37, 2, 259),
(37, 182) => (37, 3, 260),
(37, 183) => (37, 4, 261),
(37, 184) => (35, 9, 244),
(37, 185) => (27, 6, 183),
(37, 186) => (42, 8, 316),
(38, 187) => (38, 1, 265),
(38, 188) => (38, 2, 266),
(38, 189) => (38, 3, 267),
(38, 190) => (38, 4, 268),
(38, 191) => (38, 5, 269),
(38, 192) => (38, 6, 270),
(38, 193) => (25, 8, 162),
(38, 194) => (42, 6, 314),
(39, 195) => (39, 1, 278),
(39, 196) => (39, 2, 279),
(39, 197) => (39, 3, 280),
(39, 198) => (39, 4, 281),
(39, 199) => (39, 5, 282),
(39, 200) => (39, 6, 283),
(39, 201) => (25, 13, 167),
(39, 202) => (42, 9, 317),
(40, 203) => (40, 1, 291),
(40, 204) => (40, 2, 292),
(40, 205) => (40, 3, 293),
(40, 206) => (40, 4, 294),
(40, 207) => (40, 5, 295),
(40, 208) => (38, 9, 273),
(40, 209) => (28, 8, 192),
(40, 210) => (42, 10, 318),
(41, 211) => (41, 1, 300),
(41, 212) => (41, 2, 301),
(41, 213) => (41, 3, 302),
(41, 214) => (41, 4, 303),
(41, 215) => (41, 5, 304),
(41, 216) => (39, 9, 286),
(41, 217) => (28, 13, 197),
(41, 218) => (42, 11, 319),
(42, 219) => (42, 1, 309),
(42, 220) => (42, 2, 310),
(42, 221) => (42, 3, 311),
(42, 222) => (42, 4, 312),
(42, 223) => (25, 9, 163),
(43, 224) => (43, 1, 320),
(43, 225) => (43, 2, 321),
(43, 226) => (43, 3, 322),
(43, 227) => (43, 4, 323),
(43, 228) => (34, 5, 235),
(44, 229) => (44, 1, 324),
(44, 230) => (44, 2, 325),
(44, 231) => (44, 3, 326),
(44, 232) => (44, 4, 327),
(44, 233) => (35, 7, 242),
(44, 234) => (38, 8, 272),
(45, 235) => (45, 1, 331),
(45, 236) => (45, 2, 332),
(45, 237) => (45, 3, 333),
(45, 238) => (45, 4, 334),
(45, 239) => (35, 13, 248),
(45, 240) => (39, 13, 290),
(46, 241) => (46, 1, 338),
(46, 242) => (46, 2, 339),
(46, 243) => (46, 3, 340),
(46, 244) => (46, 4, 341),
(46, 245) => (46, 5, 342),
(46, 246) => (35, 12, 247),
(46, 247) => (38, 13, 277),
(46, 248) => (39, 8, 285),
(47, 249) => (47, 1, 347),
(47, 250) => (47, 2, 348),
(47, 251) => (47, 3, 349),
(47, 252) => (47, 4, 350),
(47, 253) => (47, 5, 351),
(47, 254) => (47, 6, 352),
(47, 255) => (65, 9, 553),
(47, 256) => (71, 6, 626),
(48, 257) => (48, 1, 358),
(48, 258) => (48, 2, 359),
(48, 259) => (48, 3, 360),
(48, 260) => (48, 4, 361),
(48, 261) => (48, 5, 362),
(48, 262) => (50, 10, 386),
(48, 263) => (66, 13, 576),
(48, 264) => (71, 9, 629),
(49, 265) => (49, 1, 364),
(49, 266) => (49, 2, 365),
(49, 267) => (49, 3, 366),
(49, 268) => (49, 4, 367),
(49, 269) => (49, 5, 368),
(49, 270) => (49, 6, 369),
(49, 271) => (49, 7, 370),
(49, 272) => (49, 8, 371),
(49, 273) => (47, 10, 356),
(49, 274) => (67, 9, 585),
(49, 275) => (66, 8, 571),
(49, 276) => (72, 8, 637),
(50, 277) => (50, 1, 377),
(50, 278) => (50, 2, 378),
(50, 279) => (50, 3, 379),
(50, 280) => (50, 4, 380),
(50, 281) => (50, 5, 381),
(50, 282) => (50, 6, 382),
(50, 283) => (50, 7, 383),
(50, 284) => (49, 12, 375),
(50, 285) => (50, 8, 384),
(50, 286) => (68, 8, 601),
(50, 287) => (65, 17, 561),
(50, 288) => (72, 13, 642),
(51, 289) => (51, 1, 387),
(51, 290) => (51, 2, 388),
(51, 291) => (51, 3, 389),
(51, 292) => (51, 4, 390),
(51, 293) => (51, 5, 391),
(51, 294) => (51, 6, 392),
(51, 295) => (51, 7, 393),
(51, 296) => (51, 8, 394),
(51, 297) => (51, 9, 395),
(51, 298) => (47, 9, 355),
(51, 299) => (51, 10, 396),
(51, 300) => (51, 11, 397),
(51, 301) => (63, 10, 520),
(51, 302) => (65, 13, 557),
(51, 303) => (67, 14, 590),
(51, 304) => (74, 8, 657),
(52, 305) => (52, 1, 406),
(52, 306) => (52, 2, 407),
(52, 307) => (52, 3, 408),
(52, 308) => (52, 4, 409),
(52, 309) => (52, 5, 410),
(52, 310) => (52, 6, 411),
(52, 311) => (52, 7, 412),
(52, 312) => (52, 8, 413),
(52, 313) => (52, 9, 414),
(52, 314) => (53, 13, 427),
(52, 315) => (50, 9, 385),
(52, 316) => (54, 13, 440),
(52, 317) => (66, 12, 575),
(52, 318) => (63, 17, 527),
(52, 319) => (68, 11, 604),
(52, 320) => (74, 9, 658),
(53, 321) => (53, 1, 415),
(53, 322) => (53, 2, 416),
(53, 323) => (53, 3, 417),
(53, 324) => (53, 4, 418),
(53, 325) => (53, 5, 419),
(53, 326) => (53, 6, 420),
(53, 327) => (53, 7, 421),
(53, 328) => (53, 8, 422),
(53, 329) => (53, 9, 423),
(53, 330) => (51, 15, 401),
(53, 331) => (53, 10, 424),
(53, 332) => (49, 11, 374),
(53, 333) => (66, 9, 572),
(53, 334) => (65, 16, 560),
(53, 335) => (64, 15, 542),
(53, 336) => (74, 10, 659),
(54, 337) => (54, 1, 428),
(54, 338) => (54, 2, 429),
(54, 339) => (54, 3, 430),
(54, 340) => (54, 4, 431),
(54, 341) => (54, 5, 432),
(54, 342) => (54, 6, 433),
(54, 343) => (54, 7, 434),
(54, 344) => (54, 8, 435),
(54, 345) => (54, 9, 436),
(54, 346) => (49, 10, 373),
(54, 347) => (54, 10, 437),
(54, 348) => (51, 18, 404),
(54, 349) => (64, 11, 538),
(54, 350) => (67, 13, 589),
(54, 351) => (68, 9, 602),
(54, 352) => (73, 7, 649),
(55, 353) => (55, 1, 441),
(55, 354) => (55, 2, 442),
(55, 355) => (55, 3, 443),
(55, 356) => (55, 4, 444),
(55, 357) => (55, 5, 445),
(55, 358) => (55, 6, 446),
(55, 359) => (55, 7, 447),
(55, 360) => (51, 16, 402),
(55, 361) => (55, 8, 448),
(55, 362) => (64, 10, 537),
(55, 363) => (65, 15, 559),
(55, 364) => (72, 11, 640),
(56, 365) => (56, 1, 451),
(56, 366) => (56, 2, 452),
(56, 367) => (56, 3, 453),
(56, 368) => (56, 4, 454),
(56, 369) => (56, 5, 455),
(56, 370) => (56, 6, 456),
(56, 371) => (56, 7, 457),
(56, 372) => (54, 12, 439),
(56, 373) => (59, 10, 487),
(56, 374) => (64, 14, 541),
(56, 375) => (66, 10, 573),
(56, 376) => (72, 10, 639),
(57, 377) => (57, 1, 458),
(57, 378) => (57, 2, 459),
(57, 379) => (57, 3, 460),
(57, 380) => (57, 4, 461),
(57, 381) => (57, 5, 462),
(57, 382) => (57, 6, 463),
(57, 383) => (57, 7, 464),
(57, 384) => (57, 8, 465),
(57, 385) => (57, 9, 466),
(57, 386) => (57, 10, 467),
(57, 387) => (51, 17, 403),
(57, 388) => (51, 13, 399),
(57, 389) => (67, 15, 591),
(57, 390) => (64, 13, 540),
(57, 391) => (63, 11, 521),
(57, 392) => (72, 9, 638),
(58, 393) => (58, 1, 471),
(58, 394) => (58, 2, 472),
(58, 395) => (58, 3, 473),
(58, 396) => (58, 4, 474),
(58, 397) => (58, 5, 475),
(58, 398) => (58, 6, 476),
(58, 399) => (58, 7, 477),
(58, 400) => (53, 12, 426),
(58, 401) => (55, 10, 450),
(58, 402) => (63, 15, 525),
(58, 403) => (66, 11, 574),
(58, 404) => (71, 8, 628),
(59, 405) => (59, 1, 478),
(59, 406) => (59, 2, 479),
(59, 407) => (59, 3, 480),
(59, 408) => (59, 4, 481),
(59, 409) => (59, 5, 482),
(59, 410) => (59, 6, 483),
(59, 411) => (59, 7, 484),
(59, 412) => (51, 14, 400),
(59, 413) => (59, 8, 485),
(59, 414) => (63, 12, 522),
(59, 415) => (65, 14, 558),
(59, 416) => (71, 7, 627),
(60, 417) => (60, 1, 488),
(60, 418) => (60, 2, 489),
(60, 419) => (60, 3, 490),
(60, 420) => (60, 4, 491),
(60, 421) => (60, 5, 492),
(60, 422) => (60, 6, 493),
(60, 423) => (60, 7, 494),
(60, 424) => (60, 8, 495),
(60, 425) => (60, 9, 496),
(60, 426) => (54, 11, 438),
(60, 427) => (57, 13, 470),
(60, 428) => (53, 11, 425),
(60, 429) => (64, 17, 544),
(60, 430) => (68, 10, 603),
(60, 431) => (63, 16, 526),
(60, 432) => (72, 12, 641),
(61, 433) => (61, 1, 497),
(61, 434) => (61, 2, 498),
(61, 435) => (61, 3, 499),
(61, 436) => (61, 4, 500),
(61, 437) => (61, 5, 501),
(61, 438) => (57, 12, 469),
(61, 439) => (64, 16, 543),
(61, 440) => (73, 6, 648),
(62, 441) => (62, 1, 502),
(62, 442) => (62, 2, 503),
(62, 443) => (62, 3, 504),
(62, 444) => (62, 4, 505),
(62, 445) => (62, 5, 506),
(62, 446) => (62, 6, 507),
(62, 447) => (62, 7, 508),
(62, 448) => (62, 8, 509),
(62, 449) => (62, 9, 510),
(62, 450) => (59, 9, 486),
(62, 451) => (55, 9, 449),
(62, 452) => (57, 11, 468),
(62, 453) => (63, 13, 523),
(62, 454) => (63, 14, 524),
(62, 455) => (64, 12, 539),
(62, 456) => (74, 11, 660),
(63, 457) => (63, 1, 511),
(63, 458) => (63, 2, 512),
(63, 459) => (63, 3, 513),
(63, 460) => (63, 4, 514),
(63, 461) => (63, 5, 515),
(63, 462) => (63, 6, 516),
(63, 463) => (63, 7, 517),
(63, 464) => (63, 8, 518),
(63, 465) => (63, 9, 519),
(63, 466) => (65, 12, 556),
(63, 467) => (51, 12, 398),
(63, 468) => (69, 7, 611),
(64, 469) => (64, 1, 528),
(64, 470) => (64, 2, 529),
(64, 471) => (64, 3, 530),
(64, 472) => (64, 4, 531),
(64, 473) => (64, 5, 532),
(64, 474) => (64, 6, 533),
(64, 475) => (64, 7, 534),
(64, 476) => (64, 8, 535),
(64, 477) => (64, 9, 536),
(64, 478) => (67, 11, 587),
(64, 479) => (51, 19, 405),
(64, 480) => (69, 10, 614),
(65, 481) => (65, 1, 545),
(65, 482) => (65, 2, 546),
(65, 483) => (65, 3, 547),
(65, 484) => (65, 4, 548),
(65, 485) => (65, 5, 549),
(65, 486) => (65, 6, 550),
(65, 487) => (65, 7, 551),
(65, 488) => (65, 8, 552),
(65, 489) => (47, 7, 353),
(65, 490) => (69, 6, 610),
(66, 491) => (66, 1, 564),
(66, 492) => (66, 2, 565),
(66, 493) => (66, 3, 566),
(66, 494) => (66, 4, 567),
(66, 495) => (66, 5, 568),
(66, 496) => (66, 6, 569),
(66, 497) => (66, 7, 570),
(66, 498) => (65, 11, 555),
(66, 499) => (49, 9, 372),
(66, 500) => (69, 9, 613),
(67, 501) => (67, 1, 577),
(67, 502) => (67, 2, 578),
(67, 503) => (67, 3, 579),
(67, 504) => (67, 4, 580),
(67, 505) => (67, 5, 581),
(67, 506) => (67, 6, 582),
(67, 507) => (67, 7, 583),
(67, 508) => (67, 8, 584),
(67, 509) => (47, 11, 357),
(67, 510) => (69, 8, 612),
(68, 511) => (68, 1, 594),
(68, 512) => (68, 2, 595),
(68, 513) => (68, 3, 596),
(68, 514) => (68, 4, 597),
(68, 515) => (68, 5, 598),
(68, 516) => (68, 6, 599),
(68, 517) => (68, 7, 600),
(68, 518) => (67, 12, 588),
(68, 519) => (49, 13, 376),
(68, 520) => (69, 11, 615),
(69, 521) => (69, 1, 605),
(69, 522) => (69, 2, 606),
(69, 523) => (69, 3, 607),
(69, 524) => (69, 4, 608),
(69, 525) => (69, 5, 609),
(69, 526) => (47, 8, 354),
(70, 527) => (70, 1, 616),
(70, 528) => (70, 2, 617),
(70, 529) => (70, 3, 618),
(70, 530) => (70, 4, 619),
(70, 531) => (70, 5, 620),
(70, 532) => (48, 6, 363),
(71, 533) => (71, 1, 621),
(71, 534) => (71, 2, 622),
(71, 535) => (71, 3, 623),
(71, 536) => (71, 4, 624),
(71, 537) => (71, 5, 625),
(71, 538) => (65, 10, 554),
(72, 539) => (72, 1, 630),
(72, 540) => (72, 2, 631),
(72, 541) => (72, 3, 632),
(72, 542) => (72, 4, 633),
(72, 543) => (72, 5, 634),
(72, 544) => (72, 6, 635),
(72, 545) => (72, 7, 636),
(72, 546) => (65, 19, 563),
(72, 547) => (67, 10, 586),
(73, 548) => (73, 1, 643),
(73, 549) => (73, 2, 644),
(73, 550) => (73, 3, 645),
(73, 551) => (73, 4, 646),
(73, 552) => (73, 5, 647),
(73, 553) => (67, 17, 593),
(74, 554) => (74, 1, 650),
(74, 555) => (74, 2, 651),
(74, 556) => (74, 3, 652),
(74, 557) => (74, 4, 653),
(74, 558) => (74, 5, 654),
(74, 559) => (74, 6, 655),
(74, 560) => (74, 7, 656),
(74, 561) => (67, 16, 592),
(74, 562) => (65, 18, 562),
(75, 1) => (75, 1, 661),
(75, 2) => (75, 2, 662),
(75, 3) => (75, 3, 663),
(75, 4) => (75, 4, 664),
(75, 5) => (75, 5, 665),
(75, 6) => (79, 4, 686),
(76, 7) => (76, 1, 668),
(76, 8) => (76, 2, 669),
(76, 9) => (76, 3, 670),
(76, 10) => (77, 4, 675),
(76, 11) => (76, 4, 671),
(76, 12) => (80, 4, 691),
(77, 13) => (77, 1, 672),
(77, 14) => (77, 2, 673),
(77, 15) => (77, 3, 674),
(77, 16) => (75, 7, 667),
(77, 17) => (77, 5, 676),
(77, 18) => (79, 5, 687),
(78, 19) => (78, 1, 679),
(78, 20) => (78, 2, 680),
(78, 21) => (78, 3, 681),
(78, 22) => (77, 7, 678),
(78, 23) => (78, 4, 682),
(78, 24) => (80, 5, 692),
(79, 25) => (79, 1, 683),
(79, 26) => (79, 2, 684),
(79, 27) => (79, 3, 685),
(79, 28) => (75, 6, 666),
(80, 29) => (80, 1, 688),
(80, 30) => (80, 2, 689),
(80, 31) => (80, 3, 690),
(80, 32) => (77, 6, 677),
(81, 33) => (81, 1, 693),
(81, 34) => (81, 2, 694),
(81, 35) => (81, 3, 695),
(81, 36) => (81, 4, 696),
(81, 37) => (81, 5, 697),
(81, 38) => (82, 4, 702),
(82, 39) => (82, 1, 699),
(82, 40) => (82, 2, 700),
(82, 41) => (82, 3, 701),
(82, 42) => (81, 6, 698),
(83, 43) => (83, 1, 703),
(83, 44) => (83, 2, 704),
(83, 45) => (83, 3, 705),
(83, 46) => (83, 4, 706),
(83, 47) => (83, 5, 707),
(83, 48) => (83, 6, 708),
(83, 49) => (83, 7, 709),
(83, 50) => (87, 6, 738),
(84, 51) => (84, 1, 713),
(84, 52) => (84, 2, 714),
(84, 53) => (84, 3, 715),
(84, 54) => (84, 4, 716),
(84, 55) => (84, 5, 717),
(84, 56) => (83, 9, 711),
(84, 57) => (84, 6, 718),
(84, 58) => (87, 7, 739),
(85, 59) => (85, 1, 720),
(85, 60) => (85, 2, 721),
(85, 61) => (85, 3, 722),
(85, 62) => (85, 4, 723),
(85, 63) => (85, 5, 724),
(85, 64) => (85, 6, 725),
(85, 65) => (83, 10, 712),
(85, 66) => (87, 8, 740),
(86, 67) => (86, 1, 727),
(86, 68) => (86, 2, 728),
(86, 69) => (86, 3, 729),
(86, 70) => (86, 4, 730),
(86, 71) => (86, 5, 731),
(86, 72) => (85, 7, 726),
(86, 73) => (84, 7, 719),
(86, 74) => (87, 9, 741),
(87, 75) => (87, 1, 733),
(87, 76) => (87, 2, 734),
(87, 77) => (87, 3, 735),
(87, 78) => (87, 4, 736),
(87, 79) => (87, 5, 737),
(87, 80) => (83, 8, 710),
(88, 81) => (88, 1, 742),
(88, 82) => (88, 2, 743),
(88, 83) => (88, 3, 744),
(88, 84) => (88, 4, 745),
(88, 85) => (88, 5, 746),
(88, 86) => (86, 6, 732),
(89, 87) => (89, 1, 747),
(89, 88) => (89, 2, 748),
(89, 89) => (89, 3, 749),
(89, 90) => (89, 4, 750),
(89, 91) => (89, 5, 751),
(89, 92) => (89, 6, 752),
(89, 93) => (89, 7, 753),
(89, 94) => (97, 6, 810),
(90, 95) => (90, 1, 757),
(90, 96) => (90, 2, 758),
(90, 97) => (90, 3, 759),
(90, 98) => (90, 4, 760),
(90, 99) => (90, 5, 761),
(90, 100) => (90, 6, 762),
(90, 101) => (89, 10, 756),
(90, 102) => (97, 8, 812),
(91, 103) => (91, 1, 764),
(91, 104) => (91, 2, 765),
(91, 105) => (91, 3, 766),
(91, 106) => (91, 4, 767),
(91, 107) => (91, 5, 768),
(91, 108) => (93, 6, 781),
(91, 109) => (91, 6, 769),
(91, 110) => (98, 6, 819),
(92, 111) => (92, 1, 771),
(92, 112) => (92, 2, 772),
(92, 113) => (92, 3, 773),
(92, 114) => (92, 4, 774),
(92, 115) => (92, 5, 775),
(92, 116) => (94, 6, 791),
(92, 117) => (91, 7, 770),
(92, 118) => (98, 8, 821),
(93, 119) => (93, 1, 776),
(93, 120) => (93, 2, 777),
(93, 121) => (93, 3, 778),
(93, 122) => (93, 4, 779),
(93, 123) => (93, 5, 780),
(93, 124) => (89, 9, 755),
(93, 125) => (93, 7, 782),
(93, 126) => (97, 7, 811),
(94, 127) => (94, 1, 786),
(94, 128) => (94, 2, 787),
(94, 129) => (94, 3, 788),
(94, 130) => (94, 4, 789),
(94, 131) => (94, 5, 790),
(94, 132) => (90, 7, 763),
(94, 133) => (93, 10, 785),
(94, 134) => (97, 9, 813),
(95, 135) => (95, 1, 793),
(95, 136) => (95, 2, 794),
(95, 137) => (95, 3, 795),
(95, 138) => (95, 4, 796),
(95, 139) => (95, 5, 797),
(95, 140) => (93, 9, 784),
(95, 141) => (95, 6, 798),
(95, 142) => (98, 7, 820),
(96, 143) => (96, 1, 800),
(96, 144) => (96, 2, 801),
(96, 145) => (96, 3, 802),
(96, 146) => (96, 4, 803),
(96, 147) => (96, 5, 804),
(96, 148) => (94, 7, 792),
(96, 149) => (95, 7, 799),
(96, 150) => (98, 9, 822),
(97, 151) => (97, 1, 805),
(97, 152) => (97, 2, 806),
(97, 153) => (97, 3, 807),
(97, 154) => (97, 4, 808),
(97, 155) => (97, 5, 809),
(97, 156) => (89, 8, 754),
(98, 157) => (98, 1, 814),
(98, 158) => (98, 2, 815),
(98, 159) => (98, 3, 816),
(98, 160) => (98, 4, 817),
(98, 161) => (98, 5, 818),
(98, 162) => (93, 8, 783),
(99, 163) => (99, 1, 823),
(99, 164) => (99, 2, 824),
(99, 165) => (99, 3, 825),
(99, 166) => (99, 4, 826),
(99, 167) => (99, 5, 827),
(99, 168) => (99, 6, 828),
(99, 169) => (99, 7, 829),
(99, 170) => (107, 6, 888),
(100, 171) => (100, 1, 836),
(100, 172) => (100, 2, 837),
(100, 173) => (100, 3, 838),
(100, 174) => (100, 4, 839),
(100, 175) => (100, 5, 840),
(100, 176) => (100, 6, 841),
(100, 177) => (99, 12, 834),
(100, 178) => (108, 6, 897),
(101, 179) => (101, 1, 845),
(101, 180) => (101, 2, 846),
(101, 181) => (101, 3, 847),
(101, 182) => (101, 4, 848),
(101, 183) => (101, 5, 849),
(101, 184) => (99, 9, 831),
(101, 185) => (105, 6, 876),
(101, 186) => (108, 7, 898),
(102, 187) => (102, 1, 852),
(102, 188) => (102, 2, 853),
(102, 189) => (102, 3, 854),
(102, 190) => (102, 4, 855),
(102, 191) => (102, 5, 856),
(102, 192) => (100, 7, 842),
(102, 193) => (105, 7, 877),
(102, 194) => (107, 7, 889),
(103, 195) => (103, 1, 859),
(103, 196) => (103, 2, 860),
(103, 197) => (103, 3, 861),
(103, 198) => (103, 4, 862),
(103, 199) => (103, 5, 863),
(103, 200) => (99, 11, 833),
(103, 201) => (103, 6, 864),
(103, 202) => (108, 9, 900),
(104, 203) => (104, 1, 866),
(104, 204) => (104, 2, 867),
(104, 205) => (104, 3, 868),
(104, 206) => (104, 4, 869),
(104, 207) => (104, 5, 870),
(104, 208) => (100, 9, 844),
(104, 209) => (103, 7, 865),
(104, 210) => (107, 9, 891),
(105, 211) => (105, 1, 871),
(105, 212) => (105, 2, 872),
(105, 213) => (105, 3, 873),
(105, 214) => (105, 4, 874),
(105, 215) => (105, 5, 875),
(105, 216) => (99, 10, 832),
(105, 217) => (101, 6, 850),
(105, 218) => (107, 8, 890),
(106, 219) => (106, 1, 878),
(106, 220) => (106, 2, 879),
(106, 221) => (106, 3, 880),
(106, 222) => (106, 4, 881),
(106, 223) => (106, 5, 882),
(106, 224) => (100, 8, 843),
(106, 225) => (101, 7, 851),
(106, 226) => (108, 8, 899),
(107, 227) => (107, 1, 883),
(107, 228) => (107, 2, 884),
(107, 229) => (107, 3, 885),
(107, 230) => (107, 4, 886),
(107, 231) => (107, 5, 887),
(107, 232) => (99, 8, 830),
(108, 233) => (108, 1, 892),
(108, 234) => (108, 2, 893),
(108, 235) => (108, 3, 894),
(108, 236) => (108, 4, 895),
(108, 237) => (108, 5, 896),
(108, 238) => (99, 13, 835),
(109, 239) => (109, 1, 901),
(109, 240) => (109, 2, 902),
(109, 241) => (109, 3, 903),
(109, 242) => (109, 4, 904),
(109, 243) => (109, 5, 905),
(109, 244) => (102, 6, 857),
(110, 245) => (110, 1, 906),
(110, 246) => (110, 2, 907),
(110, 247) => (110, 3, 908),
(110, 248) => (110, 4, 909),
(110, 249) => (110, 5, 910),
(110, 250) => (102, 7, 858),
(111, 251) => (111, 1, 911),
(111, 252) => (111, 2, 912),
(111, 253) => (111, 3, 913),
(111, 254) => (111, 4, 914),
(111, 255) => (111, 5, 915),
(111, 256) => (111, 6, 916),
(111, 257) => (115, 7, 947),
(111, 258) => (121, 6, 990),
(112, 259) => (112, 1, 922),
(112, 260) => (112, 2, 923),
(112, 261) => (112, 3, 924),
(112, 262) => (112, 4, 925),
(112, 263) => (112, 5, 926),
(112, 264) => (111, 9, 919),
(112, 265) => (116, 6, 956),
(112, 266) => (121, 8, 992),
(113, 267) => (113, 1, 929),
(113, 268) => (113, 2, 930),
(113, 269) => (113, 3, 931),
(113, 270) => (113, 4, 932),
(113, 271) => (113, 5, 933),
(113, 272) => (113, 6, 934),
(113, 273) => (115, 10, 950),
(113, 274) => (121, 7, 991),
(114, 275) => (114, 1, 936),
(114, 276) => (114, 2, 937),
(114, 277) => (114, 3, 938),
(114, 278) => (114, 4, 939),
(114, 279) => (114, 5, 940),
(114, 280) => (113, 7, 935),
(114, 281) => (116, 7, 957),
(114, 282) => (121, 9, 993),
(115, 283) => (115, 1, 941),
(115, 284) => (115, 2, 942),
(115, 285) => (115, 3, 943),
(115, 286) => (115, 4, 944),
(115, 287) => (115, 5, 945),
(115, 288) => (115, 6, 946),
(115, 289) => (111, 7, 917),
(115, 290) => (119, 6, 976),
(116, 291) => (116, 1, 951),
(116, 292) => (116, 2, 952),
(116, 293) => (116, 3, 953),
(116, 294) => (116, 4, 954),
(116, 295) => (116, 5, 955),
(116, 296) => (115, 9, 949),
(116, 297) => (112, 6, 927),
(116, 298) => (120, 6, 983),
(117, 299) => (117, 1, 958),
(117, 300) => (117, 2, 959),
(117, 301) => (117, 3, 960),
(117, 302) => (117, 4, 961),
(117, 303) => (117, 5, 962),
(117, 304) => (117, 6, 963),
(117, 305) => (111, 10, 920),
(117, 306) => (120, 7, 984),
(118, 307) => (118, 1, 965),
(118, 308) => (118, 2, 966),
(118, 309) => (118, 3, 967),
(118, 310) => (118, 4, 968),
(118, 311) => (118, 5, 969),
(118, 312) => (117, 7, 964),
(118, 313) => (112, 7, 928),
(118, 314) => (119, 7, 977),
(119, 315) => (119, 1, 971),
(119, 316) => (119, 2, 972),
(119, 317) => (119, 3, 973),
(119, 318) => (119, 4, 974),
(119, 319) => (119, 5, 975),
(119, 320) => (111, 8, 918),
(120, 321) => (120, 1, 978),
(120, 322) => (120, 2, 979),
(120, 323) => (120, 3, 980),
(120, 324) => (120, 4, 981),
(120, 325) => (120, 5, 982),
(120, 326) => (111, 11, 921),
(121, 327) => (121, 1, 985),
(121, 328) => (121, 2, 986),
(121, 329) => (121, 3, 987),
(121, 330) => (121, 4, 988),
(121, 331) => (121, 5, 989),
(121, 332) => (115, 8, 948),
(122, 333) => (122, 1, 994),
(122, 334) => (122, 2, 995),
(122, 335) => (122, 3, 996),
(122, 336) => (122, 4, 997),
(122, 337) => (122, 5, 998),
(122, 338) => (118, 6, 970),
(123, 339) => (123, 1, 999),
(123, 340) => (123, 2, 1000),
(123, 341) => (123, 3, 1001),
(123, 342) => (123, 4, 1002),
(123, 343) => (123, 5, 1003),
(123, 344) => (123, 6, 1004),
(123, 345) => (123, 7, 1005),
(123, 346) => (123, 8, 1006),
(123, 347) => (123, 9, 1007),
(123, 348) => (123, 10, 1008),
(123, 349) => (123, 11, 1009),
(123, 350) => (139, 10, 1188),
(124, 351) => (124, 1, 1018),
(124, 352) => (124, 2, 1019),
(124, 353) => (124, 3, 1020),
(124, 354) => (124, 4, 1021),
(124, 355) => (124, 5, 1022),
(124, 356) => (124, 6, 1023),
(124, 357) => (124, 7, 1024),
(124, 358) => (124, 8, 1025),
(124, 359) => (124, 9, 1026),
(124, 360) => (123, 15, 1013),
(124, 361) => (124, 10, 1027),
(124, 362) => (140, 10, 1205),
(125, 363) => (125, 1, 1031),
(125, 364) => (125, 2, 1032),
(125, 365) => (125, 3, 1033),
(125, 366) => (125, 4, 1034),
(125, 367) => (125, 5, 1035),
(125, 368) => (125, 6, 1036),
(125, 369) => (125, 7, 1037),
(125, 370) => (125, 8, 1038),
(125, 371) => (125, 9, 1039),
(125, 372) => (125, 10, 1040),
(125, 373) => (123, 18, 1016),
(125, 374) => (140, 17, 1212),
(126, 375) => (126, 1, 1044),
(126, 376) => (126, 2, 1045),
(126, 377) => (126, 3, 1046),
(126, 378) => (126, 4, 1047),
(126, 379) => (126, 5, 1048),
(126, 380) => (126, 6, 1049),
(126, 381) => (126, 7, 1050),
(126, 382) => (126, 8, 1051),
(126, 383) => (126, 9, 1052),
(126, 384) => (125, 13, 1043),
(126, 385) => (124, 13, 1030),
(126, 386) => (139, 17, 1195),
(127, 387) => (127, 1, 1053),
(127, 388) => (127, 2, 1054),
(127, 389) => (127, 3, 1055),
(127, 390) => (127, 4, 1056),
(127, 391) => (127, 5, 1057),
(127, 392) => (127, 6, 1058),
(127, 393) => (127, 7, 1059),
(127, 394) => (127, 8, 1060),
(127, 395) => (127, 9, 1061),
(127, 396) => (127, 10, 1062),
(127, 397) => (123, 17, 1015),
(127, 398) => (140, 15, 1210),
(128, 399) => (128, 1, 1066),
(128, 400) => (128, 2, 1067),
(128, 401) => (128, 3, 1068),
(128, 402) => (128, 4, 1069),
(128, 403) => (128, 5, 1070),
(128, 404) => (128, 6, 1071),
(128, 405) => (128, 7, 1072),
(128, 406) => (128, 8, 1073),
(128, 407) => (128, 9, 1074),
(128, 408) => (127, 13, 1065),
(128, 409) => (124, 12, 1029),
(128, 410) => (139, 15, 1193),
(129, 411) => (129, 1, 1075),
(129, 412) => (129, 2, 1076),
(129, 413) => (129, 3, 1077),
(129, 414) => (129, 4, 1078),
(129, 415) => (129, 5, 1079),
(129, 416) => (129, 6, 1080),
(129, 417) => (129, 7, 1081),
(129, 418) => (129, 8, 1082),
(129, 419) => (129, 9, 1083),
(129, 420) => (129, 10, 1084),
(129, 421) => (123, 16, 1014),
(129, 422) => (139, 11, 1189),
(130, 423) => (130, 1, 1088),
(130, 424) => (130, 2, 1089),
(130, 425) => (130, 3, 1090),
(130, 426) => (130, 4, 1091),
(130, 427) => (130, 5, 1092),
(130, 428) => (130, 6, 1093),
(130, 429) => (130, 7, 1094),
(130, 430) => (130, 8, 1095),
(130, 431) => (130, 9, 1096),
(130, 432) => (129, 13, 1087),
(130, 433) => (124, 11, 1028),
(130, 434) => (140, 11, 1206),
(131, 435) => (131, 1, 1097),
(131, 436) => (131, 2, 1098),
(131, 437) => (131, 3, 1099),
(131, 438) => (131, 4, 1100),
(131, 439) => (131, 5, 1101),
(131, 440) => (131, 6, 1102),
(131, 441) => (131, 7, 1103),
(131, 442) => (131, 8, 1104),
(131, 443) => (131, 9, 1105),
(131, 444) => (123, 14, 1012),
(131, 445) => (132, 10, 1119),
(131, 446) => (139, 13, 1191),
(132, 447) => (132, 1, 1110),
(132, 448) => (132, 2, 1111),
(132, 449) => (132, 3, 1112),
(132, 450) => (132, 4, 1113),
(132, 451) => (132, 5, 1114),
(132, 452) => (132, 6, 1115),
(132, 453) => (132, 7, 1116),
(132, 454) => (132, 8, 1117),
(132, 455) => (132, 9, 1118),
(132, 456) => (123, 13, 1011),
(132, 457) => (131, 10, 1106),
(132, 458) => (140, 13, 1208),
(133, 459) => (133, 1, 1123),
(133, 460) => (133, 2, 1124),
(133, 461) => (133, 3, 1125),
(133, 462) => (133, 4, 1126),
(133, 463) => (133, 5, 1127),
(133, 464) => (133, 6, 1128),
(133, 465) => (133, 7, 1129),
(133, 466) => (133, 8, 1130),
(133, 467) => (133, 9, 1131),
(133, 468) => (125, 12, 1042),
(133, 469) => (132, 13, 1122),
(133, 470) => (140, 14, 1209),
(134, 471) => (134, 1, 1132),
(134, 472) => (134, 2, 1133),
(134, 473) => (134, 3, 1134),
(134, 474) => (134, 4, 1135),
(134, 475) => (134, 5, 1136),
(134, 476) => (134, 6, 1137),
(134, 477) => (134, 7, 1138),
(134, 478) => (134, 8, 1139),
(134, 479) => (134, 9, 1140),
(134, 480) => (125, 11, 1041),
(134, 481) => (131, 13, 1109),
(134, 482) => (139, 14, 1192),
(135, 483) => (135, 1, 1143),
(135, 484) => (135, 2, 1144),
(135, 485) => (135, 3, 1145),
(135, 486) => (135, 4, 1146),
(135, 487) => (135, 5, 1147),
(135, 488) => (135, 6, 1148),
(135, 489) => (135, 7, 1149),
(135, 490) => (135, 8, 1150),
(135, 491) => (135, 9, 1151),
(135, 492) => (127, 12, 1064),
(135, 493) => (132, 12, 1121),
(135, 494) => (140, 12, 1207),
(136, 495) => (136, 1, 1152),
(136, 496) => (136, 2, 1153),
(136, 497) => (136, 3, 1154),
(136, 498) => (136, 4, 1155),
(136, 499) => (136, 5, 1156),
(136, 500) => (136, 6, 1157),
(136, 501) => (136, 7, 1158),
(136, 502) => (136, 8, 1159),
(136, 503) => (136, 9, 1160),
(136, 504) => (127, 11, 1063),
(136, 505) => (131, 12, 1108),
(136, 506) => (139, 12, 1190),
(137, 507) => (137, 1, 1161),
(137, 508) => (137, 2, 1162),
(137, 509) => (137, 3, 1163),
(137, 510) => (137, 4, 1164),
(137, 511) => (137, 5, 1165),
(137, 512) => (137, 6, 1166),
(137, 513) => (137, 7, 1167),
(137, 514) => (137, 8, 1168),
(137, 515) => (137, 9, 1169),
(137, 516) => (129, 12, 1086),
(137, 517) => (132, 11, 1120),
(137, 518) => (139, 16, 1194),
(138, 519) => (138, 1, 1170),
(138, 520) => (138, 2, 1171),
(138, 521) => (138, 3, 1172),
(138, 522) => (138, 4, 1173),
(138, 523) => (138, 5, 1174),
(138, 524) => (138, 6, 1175),
(138, 525) => (138, 7, 1176),
(138, 526) => (138, 8, 1177),
(138, 527) => (138, 9, 1178),
(138, 528) => (129, 11, 1085),
(138, 529) => (131, 11, 1107),
(138, 530) => (140, 16, 1211),
(139, 531) => (139, 1, 1179),
(139, 532) => (139, 2, 1180),
(139, 533) => (139, 3, 1181),
(139, 534) => (139, 4, 1182),
(139, 535) => (139, 5, 1183),
(139, 536) => (139, 6, 1184),
(139, 537) => (139, 7, 1185),
(139, 538) => (139, 8, 1186),
(139, 539) => (139, 9, 1187),
(139, 540) => (123, 12, 1010),
(140, 541) => (140, 1, 1196),
(140, 542) => (140, 2, 1197),
(140, 543) => (140, 3, 1198),
(140, 544) => (140, 4, 1199),
(140, 545) => (140, 5, 1200),
(140, 546) => (140, 6, 1201),
(140, 547) => (140, 7, 1202),
(140, 548) => (140, 8, 1203),
(140, 549) => (140, 9, 1204),
(140, 550) => (123, 19, 1017),
(141, 551) => (141, 1, 1213),
(141, 552) => (141, 2, 1214),
(141, 553) => (141, 3, 1215),
(141, 554) => (141, 4, 1216),
(141, 555) => (141, 5, 1217),
(141, 556) => (141, 6, 1218),
(141, 557) => (141, 7, 1219),
(141, 558) => (141, 8, 1220),
(141, 559) => (141, 9, 1221),
(141, 560) => (134, 10, 1141),
(142, 561) => (142, 1, 1222),
(142, 562) => (142, 2, 1223),
(142, 563) => (142, 3, 1224),
(142, 564) => (142, 4, 1225),
(142, 565) => (142, 5, 1226),
(142, 566) => (142, 6, 1227),
(142, 567) => (142, 7, 1228),
(142, 568) => (142, 8, 1229),
(142, 569) => (142, 9, 1230),
(142, 570) => (134, 11, 1142),
(143, 1) => (143, 1, 1231),
(143, 2) => (143, 2, 1232),
(143, 3) => (143, 3, 1233),
(144, 4) => (144, 1, 1234),
(144, 5) => (144, 2, 1235),
(144, 6) => (145, 3, 1239),
(145, 7) => (145, 1, 1237),
(145, 8) => (145, 2, 1238),
(145, 9) => (144, 3, 1236),
(146, 10) => (146, 1, 1240),
(146, 11) => (146, 2, 1241),
(146, 12) => (146, 3, 1242),
(147, 13) => (147, 1, 1243),
(147, 14) => (147, 2, 1244),
(147, 15) => (147, 3, 1245),
(147, 16) => (147, 4, 1246),
(148, 17) => (148, 1, 1247),
(148, 18) => (148, 2, 1248),
(148, 19) => (148, 3, 1249),
(148, 20) => (148, 4, 1250),
(149, 21) => (149, 1, 1251),
(149, 22) => (149, 2, 1252),
(149, 23) => (149, 3, 1253),
(149, 24) => (149, 4, 1254),
(150, 25) => (150, 1, 1255),
(150, 26) => (150, 2, 1256),
(150, 27) => (150, 3, 1257),
(150, 28) => (150, 4, 1258),
(151, 29) => (151, 1, 1259),
(151, 30) => (151, 2, 1260),
(151, 31) => (151, 3, 1261),
(151, 32) => (153, 4, 1270),
(152, 33) => (152, 1, 1263),
(152, 34) => (152, 2, 1264),
(152, 35) => (152, 3, 1265),
(152, 36) => (154, 4, 1274),
(153, 37) => (153, 1, 1267),
(153, 38) => (153, 2, 1268),
(153, 39) => (153, 3, 1269),
(153, 40) => (151, 4, 1262),
(154, 41) => (154, 1, 1271),
(154, 42) => (154, 2, 1272),
(154, 43) => (154, 3, 1273),
(154, 44) => (152, 4, 1266),
(155, 45) => (155, 1, 1275),
(155, 46) => (155, 2, 1276),
(155, 47) => (155, 3, 1277),
(155, 48) => (155, 4, 1278),
(156, 49) => (156, 1, 1279),
(156, 50) => (156, 2, 1280),
(156, 51) => (156, 3, 1281),
(156, 52) => (156, 4, 1282),
(157, 53) => (157, 1, 1284),
(157, 54) => (157, 2, 1285),
(157, 55) => (157, 3, 1286),
(157, 56) => (157, 4, 1287),
(158, 57) => (158, 1, 1289),
(158, 58) => (158, 2, 1290),
(158, 59) => (158, 3, 1291),
(158, 60) => (156, 5, 1283),
(159, 61) => (159, 1, 1292),
(159, 62) => (159, 2, 1293),
(159, 63) => (159, 3, 1294),
(159, 64) => (157, 5, 1288),
(160, 65) => (160, 1, 1295),
(160, 66) => (160, 2, 1296),
(160, 67) => (160, 3, 1297),
(160, 68) => (160, 4, 1298),
(161, 69) => (161, 1, 1300),
(161, 70) => (161, 2, 1301),
(161, 71) => (161, 3, 1302),
(161, 72) => (160, 5, 1299),
(162, 73) => (162, 1, 1303),
(162, 74) => (162, 2, 1304),
(162, 75) => (162, 3, 1305),
(162, 76) => (162, 4, 1306),
(162, 77) => (162, 5, 1307),
(162, 78) => (162, 6, 1308),
(163, 79) => (163, 1, 1310),
(163, 80) => (163, 2, 1311),
(163, 81) => (163, 3, 1312),
(163, 82) => (163, 4, 1313),
(163, 83) => (163, 5, 1314),
(163, 84) => (162, 7, 1309),
(164, 85) => (164, 1, 1315),
(164, 86) => (164, 2, 1316),
(164, 87) => (164, 3, 1317),
(164, 88) => (164, 4, 1318),
(164, 89) => (164, 5, 1319),
(164, 90) => (164, 6, 1320),
(165, 91) => (165, 1, 1322),
(165, 92) => (165, 2, 1323),
(165, 93) => (165, 3, 1324),
(165, 94) => (165, 4, 1325),
(165, 95) => (165, 5, 1326),
(165, 96) => (164, 7, 1321),
(166, 97) => (166, 1, 1327),
(166, 98) => (166, 2, 1328),
(166, 99) => (166, 3, 1329),
(166, 100) => (166, 4, 1330),
(166, 101) => (166, 5, 1331),
(166, 102) => (166, 6, 1332),
(167, 103) => (167, 1, 1334),
(167, 104) => (167, 2, 1335),
(167, 105) => (167, 3, 1336),
(167, 106) => (167, 4, 1337),
(167, 107) => (167, 5, 1338),
(167, 108) => (166, 7, 1333),
(168, 109) => (168, 1, 1339),
(168, 110) => (168, 2, 1340),
(168, 111) => (168, 3, 1341),
(168, 112) => (168, 4, 1342),
(169, 113) => (169, 1, 1344),
(169, 114) => (169, 2, 1345),
(169, 115) => (169, 3, 1346),
(169, 116) => (171, 4, 1353),
(170, 117) => (170, 1, 1347),
(170, 118) => (170, 2, 1348),
(170, 119) => (170, 3, 1349),
(170, 120) => (172, 5, 1359),
(171, 121) => (171, 1, 1350),
(171, 122) => (171, 2, 1351),
(171, 123) => (171, 3, 1352),
(171, 124) => (172, 4, 1358),
(172, 125) => (172, 1, 1355),
(172, 126) => (172, 2, 1356),
(172, 127) => (172, 3, 1357),
(172, 128) => (171, 5, 1354),
(173, 129) => (173, 1, 1360),
(173, 130) => (173, 2, 1361),
(173, 131) => (173, 3, 1362),
(173, 132) => (168, 5, 1343),
(174, 133) => (174, 1, 1363),
(174, 134) => (174, 2, 1364),
(174, 135) => (174, 3, 1365),
(174, 136) => (174, 4, 1366),
(175, 137) => (175, 1, 1367),
(175, 138) => (175, 2, 1368),
(175, 139) => (175, 3, 1369),
(175, 140) => (175, 4, 1370),
(175, 141) => (175, 5, 1371),
(175, 142) => (175, 6, 1372),
(176, 143) => (176, 1, 1374),
(176, 144) => (176, 2, 1375),
(176, 145) => (176, 3, 1376),
(176, 146) => (176, 4, 1377),
(176, 147) => (176, 5, 1378),
(176, 148) => (175, 7, 1373),
(177, 149) => (177, 1, 1379),
(177, 150) => (177, 2, 1380),
(177, 151) => (177, 3, 1381),
(177, 152) => (177, 4, 1382),
(177, 153) => (177, 5, 1383),
(177, 154) => (177, 6, 1384),
(178, 155) => (178, 1, 1386),
(178, 156) => (178, 2, 1387),
(178, 157) => (178, 3, 1388),
(178, 158) => (178, 4, 1389),
(178, 159) => (178, 5, 1390),
(178, 160) => (180, 6, 1401),
(179, 161) => (179, 1, 1391),
(179, 162) => (179, 2, 1392),
(179, 163) => (179, 3, 1393),
(179, 164) => (179, 4, 1394),
(179, 165) => (179, 5, 1395),
(179, 166) => (181, 7, 1409),
(180, 167) => (180, 1, 1396),
(180, 168) => (180, 2, 1397),
(180, 169) => (180, 3, 1398),
(180, 170) => (180, 4, 1399),
(180, 171) => (180, 5, 1400),
(180, 172) => (181, 6, 1408),
(181, 173) => (181, 1, 1403),
(181, 174) => (181, 2, 1404),
(181, 175) => (181, 3, 1405),
(181, 176) => (181, 4, 1406),
(181, 177) => (181, 5, 1407),
(181, 178) => (180, 7, 1402),
(182, 179) => (182, 1, 1410),
(182, 180) => (182, 2, 1411),
(182, 181) => (182, 3, 1412),
(182, 182) => (182, 4, 1413),
(182, 183) => (182, 5, 1414),
(182, 184) => (177, 7, 1385),
(183, 185) => (183, 1, 1415),
(183, 186) => (183, 2, 1416),
(183, 187) => (183, 3, 1417),
(183, 188) => (183, 4, 1418),
(183, 189) => (183, 5, 1419),
(183, 190) => (183, 6, 1420),
(184, 191) => (184, 1, 1424),
(184, 192) => (184, 2, 1425),
(184, 193) => (184, 3, 1426),
(184, 194) => (184, 4, 1427),
(184, 195) => (184, 5, 1428),
(184, 196) => (183, 9, 1423),
(185, 197) => (185, 1, 1429),
(185, 198) => (185, 2, 1430),
(185, 199) => (185, 3, 1431),
(185, 200) => (185, 4, 1432),
(185, 201) => (185, 5, 1433),
(185, 202) => (183, 7, 1421),
(186, 203) => (186, 1, 1434),
(186, 204) => (186, 2, 1435),
(186, 205) => (186, 3, 1436),
(186, 206) => (186, 4, 1437),
(186, 207) => (186, 5, 1438),
(186, 208) => (183, 8, 1422),
(187, 209) => (187, 1, 1439),
(187, 210) => (187, 2, 1440),
(187, 211) => (187, 3, 1441),
(187, 212) => (187, 4, 1442),
(187, 213) => (187, 5, 1443),
(187, 214) => (187, 6, 1444),
(188, 215) => (188, 1, 1446),
(188, 216) => (188, 2, 1447),
(188, 217) => (188, 3, 1448),
(188, 218) => (188, 4, 1449),
(188, 219) => (188, 5, 1450),
(188, 220) => (187, 7, 1445),
(189, 221) => (189, 1, 1451),
(189, 222) => (189, 2, 1452),
(189, 223) => (189, 3, 1453),
(189, 224) => (189, 4, 1454),
(189, 225) => (189, 5, 1455),
(189, 226) => (189, 6, 1456),
(190, 227) => (190, 1, 1458),
(190, 228) => (190, 2, 1459),
(190, 229) => (190, 3, 1460),
(190, 230) => (190, 4, 1461),
(190, 231) => (190, 5, 1462),
(190, 232) => (189, 7, 1457),
(191, 233) => (191, 1, 1463),
(191, 234) => (191, 2, 1464),
(191, 235) => (191, 3, 1465),
(191, 236) => (191, 4, 1466),
(191, 237) => (191, 5, 1467),
(191, 238) => (191, 6, 1468),
(191, 239) => (191, 7, 1469),
(191, 240) => (191, 8, 1470),
(191, 241) => (191, 9, 1471),
(191, 242) => (191, 10, 1472),
(192, 243) => (192, 1, 1476),
(192, 244) => (192, 2, 1477),
(192, 245) => (192, 3, 1478),
(192, 246) => (192, 4, 1479),
(192, 247) => (192, 5, 1480),
(192, 248) => (192, 6, 1481),
(192, 249) => (192, 7, 1482),
(192, 250) => (192, 8, 1483),
(192, 251) => (192, 9, 1484),
(192, 252) => (191, 13, 1475),
(193, 253) => (193, 1, 1485),
(193, 254) => (193, 2, 1486),
(193, 255) => (193, 3, 1487),
(193, 256) => (193, 4, 1488),
(193, 257) => (193, 5, 1489),
(193, 258) => (193, 6, 1490),
(193, 259) => (193, 7, 1491),
(193, 260) => (193, 8, 1492),
(193, 261) => (193, 9, 1493),
(193, 262) => (191, 11, 1473),
(194, 263) => (194, 1, 1494),
(194, 264) => (194, 2, 1495),
(194, 265) => (194, 3, 1496),
(194, 266) => (194, 4, 1497),
(194, 267) => (194, 5, 1498),
(194, 268) => (194, 6, 1499),
(194, 269) => (194, 7, 1500),
(194, 270) => (194, 8, 1501),
(194, 271) => (194, 9, 1502),
(194, 272) => (191, 12, 1474),
(195, 1) => (195, 1, 1503),
(195, 2) => (195, 2, 1504),
(195, 3) => (197, 3, 1510),
(196, 4) => (196, 1, 1506),
(196, 5) => (196, 2, 1507),
(196, 6) => (195, 3, 1505),
(197, 7) => (197, 1, 1508),
(197, 8) => (197, 2, 1509),
(198, 9) => (198, 1, 1511),
(198, 10) => (198, 2, 1512),
(198, 11) => (199, 3, 1515),
(199, 12) => (199, 1, 1513),
(199, 13) => (199, 2, 1514),
(200, 14) => (200, 1, 1516),
(200, 15) => (200, 2, 1517),
(200, 16) => (200, 3, 1518),
(200, 17) => (204, 4, 1533),
(201, 18) => (201, 1, 1520),
(201, 19) => (201, 2, 1521),
(201, 20) => (201, 3, 1522),
(201, 21) => (204, 5, 1534),
(202, 22) => (202, 1, 1524),
(202, 23) => (202, 2, 1525),
(202, 24) => (202, 3, 1526),
(202, 25) => (200, 4, 1519),
(203, 26) => (203, 1, 1527),
(203, 27) => (203, 2, 1528),
(203, 28) => (203, 3, 1529),
(203, 29) => (201, 4, 1523),
(204, 30) => (204, 1, 1530),
(204, 31) => (204, 2, 1531),
(204, 32) => (204, 3, 1532),
(205, 33) => (205, 1, 1535),
(205, 34) => (205, 2, 1536),
(205, 35) => (205, 3, 1537),
(205, 36) => (206, 4, 1541),
(206, 37) => (206, 1, 1538),
(206, 38) => (206, 2, 1539),
(206, 39) => (206, 3, 1540),
(207, 40) => (207, 1, 1542),
(207, 41) => (207, 2, 1543),
(207, 42) => (207, 3, 1544),
(207, 43) => (211, 4, 1559),
(208, 44) => (208, 1, 1546),
(208, 45) => (208, 2, 1547),
(208, 46) => (208, 3, 1548),
(208, 47) => (211, 5, 1560),
(209, 48) => (209, 1, 1550),
(209, 49) => (209, 2, 1551),
(209, 50) => (209, 3, 1552),
(209, 51) => (207, 4, 1545),
(210, 52) => (210, 1, 1553),
(210, 53) => (210, 2, 1554),
(210, 54) => (210, 3, 1555),
(210, 55) => (208, 4, 1549),
(211, 56) => (211, 1, 1556),
(211, 57) => (211, 2, 1557),
(211, 58) => (211, 3, 1558),
(212, 59) => (212, 1, 1561),
(212, 60) => (212, 2, 1562),
(212, 61) => (212, 3, 1563),
(212, 62) => (214, 4, 1570),
(213, 63) => (213, 1, 1564),
(213, 64) => (213, 2, 1565),
(213, 65) => (213, 3, 1566),
(213, 66) => (214, 5, 1571),
(214, 67) => (214, 1, 1567),
(214, 68) => (214, 2, 1568),
(214, 69) => (214, 3, 1569),
(215, 70) => (215, 1, 1572),
(215, 71) => (215, 2, 1573),
(215, 72) => (215, 3, 1574),
(215, 73) => (217, 4, 1583),
(216, 74) => (216, 1, 1577),
(216, 75) => (216, 2, 1578),
(216, 76) => (216, 3, 1579),
(216, 77) => (215, 4, 1575),
(217, 78) => (217, 1, 1580),
(217, 79) => (217, 2, 1581),
(217, 80) => (217, 3, 1582),
(218, 81) => (218, 1, 1585),
(218, 82) => (218, 2, 1586),
(218, 83) => (218, 3, 1587),
(218, 84) => (217, 5, 1584),
(219, 85) => (219, 1, 1588),
(219, 86) => (219, 2, 1589),
(219, 87) => (219, 3, 1590),
(219, 88) => (215, 5, 1576),
(220, 89) => (220, 1, 1591),
(220, 90) => (220, 2, 1592),
(220, 91) => (220, 3, 1593),
(221, 92) => (221, 1, 1594),
(221, 93) => (221, 2, 1595),
(221, 94) => (221, 3, 1596),
(221, 95) => (221, 4, 1597),
(221, 96) => (221, 5, 1598),
(221, 97) => (229, 6, 1643),
(222, 98) => (222, 1, 1601),
(222, 99) => (222, 2, 1602),
(222, 100) => (222, 3, 1603),
(222, 101) => (222, 4, 1604),
(222, 102) => (222, 5, 1605),
(222, 103) => (229, 9, 1646),
(223, 104) => (223, 1, 1606),
(223, 105) => (223, 2, 1607),
(223, 106) => (223, 3, 1608),
(223, 107) => (223, 4, 1609),
(223, 108) => (223, 5, 1610),
(223, 109) => (229, 8, 1645),
(224, 110) => (224, 1, 1611),
(224, 111) => (224, 2, 1612),
(224, 112) => (224, 3, 1613),
(224, 113) => (224, 4, 1614),
(224, 114) => (224, 5, 1615),
(224, 115) => (229, 7, 1644),
(225, 116) => (225, 1, 1618),
(225, 117) => (225, 2, 1619),
(225, 118) => (225, 3, 1620),
(225, 119) => (225, 4, 1621),
(225, 120) => (225, 5, 1622),
(225, 121) => (221, 6, 1599),
(226, 122) => (226, 1, 1623),
(226, 123) => (226, 2, 1624),
(226, 124) => (226, 3, 1625),
(226, 125) => (226, 4, 1626),
(226, 126) => (226, 5, 1627),
(226, 127) => (221, 7, 1600),
(227, 128) => (227, 1, 1628),
(227, 129) => (227, 2, 1629),
(227, 130) => (227, 3, 1630),
(227, 131) => (227, 4, 1631),
(227, 132) => (227, 5, 1632),
(227, 133) => (224, 6, 1616),
(228, 134) => (228, 1, 1633),
(228, 135) => (228, 2, 1634),
(228, 136) => (228, 3, 1635),
(228, 137) => (228, 4, 1636),
(228, 138) => (228, 5, 1637),
(228, 139) => (224, 7, 1617),
(229, 140) => (229, 1, 1638),
(229, 141) => (229, 2, 1639),
(229, 142) => (229, 3, 1640),
(229, 143) => (229, 4, 1641),
(229, 144) => (229, 5, 1642),
(230, 145) => (230, 1, 1647),
(230, 146) => (230, 2, 1648),
(230, 147) => (230, 3, 1649),
(230, 148) => (230, 4, 1650),
(230, 149) => (230, 5, 1651),
)
const MSG_OG₃2BNS_NUMs_V = let d = Dict(v[3]=>k for (k,v) in Crystalline.MSG_BNS2OG_NUMs_D)
[d[OG₃] for OG₃ in 1:1651]
end
const SG2MSG_NUMs_D = [
# label conventions differ between space groups and BNS symbols for SGs 39, 41, 64, 67, 68;
# I have verified that this difference also exists on the Bilbao crystallographic server
(1, 1),
(2, 4),
(3, 1),
(4, 7),
(5, 13),
(6, 18),
(7, 24),
(8, 32),
(9, 37),
(10, 42),
(11, 50),
(12, 58),
(13, 65),
(14, 75),
(15, 85),
(16, 1),
(17, 7),
(18, 16),
(19, 25),
(20, 31),
(21, 38),
(22, 45),
(23, 49),
(24, 53),
(25, 57),
(26, 66),
(27, 78),
(28, 87),
(29, 99),
(30, 111),
(31, 123),
(32, 135),
(33, 144),
(34, 156),
(35, 165),
(36, 172),
(37, 180),
(38, 187),
(39, 195), # label conventions differ! (Aem2 vs Abm2)
(40, 203),
(41, 211), # label conventions differ! (Aea2 vs Aba2)
(42, 219),
(43, 224),
(44, 229),
(45, 235),
(46, 241),
(47, 249),
(48, 257),
(49, 265),
(50, 277),
(51, 289),
(52, 305),
(53, 321),
(54, 337),
(55, 353),
(56, 365),
(57, 377),
(58, 393),
(59, 405),
(60, 417),
(61, 433),
(62, 441),
(63, 457),
(64, 469), # label conventions differ! (Cmce vs Cmca)
(65, 481),
(66, 491),
(67, 501), # label conventions differ! (Cmme vs Cmma)
(68, 511), # label conventions differ! (Ccce vs Ccca)
(69, 521),
(70, 527),
(71, 533),
(72, 539),
(73, 548),
(74, 554),
(75, 1),
(76, 7),
(77, 13),
(78, 19),
(79, 25),
(80, 29),
(81, 33),
(82, 39),
(83, 43),
(84, 51),
(85, 59),
(86, 67),
(87, 75),
(88, 81),
(89, 87),
(90, 95),
(91, 103),
(92, 111),
(93, 119),
(94, 127),
(95, 135),
(96, 143),
(97, 151),
(98, 157),
(99, 163),
(100, 171),
(101, 179),
(102, 187),
(103, 195),
(104, 203),
(105, 211),
(106, 219),
(107, 227),
(108, 233),
(109, 239),
(110, 245),
(111, 251),
(112, 259),
(113, 267),
(114, 275),
(115, 283),
(116, 291),
(117, 299),
(118, 307),
(119, 315),
(120, 321),
(121, 327),
(122, 333),
(123, 339),
(124, 351),
(125, 363),
(126, 375),
(127, 387),
(128, 399),
(129, 411),
(130, 423),
(131, 435),
(132, 447),
(133, 459),
(134, 471),
(135, 483),
(136, 495),
(137, 507),
(138, 519),
(139, 531),
(140, 541),
(141, 551),
(142, 561),
(143, 1),
(144, 4),
(145, 7),
(146, 10),
(147, 13),
(148, 17),
(149, 21),
(150, 25),
(151, 29),
(152, 33),
(153, 37),
(154, 41),
(155, 45),
(156, 49),
(157, 53),
(158, 57),
(159, 61),
(160, 65),
(161, 69),
(162, 73),
(163, 79),
(164, 85),
(165, 91),
(166, 97),
(167, 103),
(168, 109),
(169, 113),
(170, 117),
(171, 121),
(172, 125),
(173, 129),
(174, 133),
(175, 137),
(176, 143),
(177, 149),
(178, 155),
(179, 161),
(180, 167),
(181, 173),
(182, 179),
(183, 185),
(184, 191),
(185, 197),
(186, 203),
(187, 209),
(188, 215),
(189, 221),
(190, 227),
(191, 233),
(192, 243),
(193, 253),
(194, 263),
(195, 1),
(196, 4),
(197, 7),
(198, 9),
(199, 12),
(200, 14),
(201, 18),
(202, 22),
(203, 26),
(204, 30),
(205, 33),
(206, 37),
(207, 40),
(208, 44),
(209, 48),
(210, 52),
(211, 56),
(212, 59),
(213, 63),
(214, 67),
(215, 70),
(216, 74),
(217, 78),
(218, 81),
(219, 85),
(220, 89),
(221, 92),
(222, 98),
(223, 104),
(224, 110),
(225, 116),
(226, 122),
(227, 128),
(228, 134),
(229, 140),
(230, 145)
] | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1534 | # --- MSymOperation ---
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct MSymOperation{D} <: AbstractOperation{D}
op :: SymOperation{D}
tr :: Bool
end
SymOperation{D}(mop::MSymOperation{D}) where D = mop.op
timereversal(mop::MSymOperation) = mop.tr
seitz(mop::MSymOperation) = (s = seitz(mop.op); (mop.tr ? s : s * "′"))
xyzt(mop::MSymOperation) = xyzt(mop.op) # does not feature time-reversal!
function compose(
mop₁ :: MSymOperation{D},
mop₂ :: MSymOperation{D},
modτ :: Bool=true) where D
return MSymOperation{D}(compose(mop₁.op, mop₂.op, modτ), xor(mop₁.tr, mop₂.tr))
end
Base.:*(mop₁::MSymOperation{D}, mop₂::MSymOperation{D}) where D = compose(mop₁, mop₂)
function Base.isapprox(
mop₁ :: MSymOperation{D},
mop₂ :: MSymOperation{D},
vs...;
kws...) where D
return mop₁.tr == mop₂.tr && isapprox(mop₁.op, mop₂.op, vs...; kws...)
end
# --- MSpaceGroup ---
# Notation: there two "main" notations and settings:
# - BNS (Belov, Neronova, & Smirnova)
# - OG (Opechowski & Guccione)
# We use the BNS setting (and notation), not OG (see Sec. 4, Acta Cryst. A78, 99 (2022)).
# The `num` field of `MSpaceGroup` gives the the two BNS numbers:
# - `num[1]`: F space-group associated number
# - `num[2]`: crystal-system sequential number
"""
$(TYPEDEF)$(TYPEDFIELDS)
"""
struct MSpaceGroup{D} <: AbstractGroup{D, MSymOperation{D}}
num :: Tuple{Int, Int}
operations :: Vector{MSymOperation{D}}
end
label(msg::MSpaceGroup) = MSG_BNS_LABELs_D[msg.num]::String | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 7072 | get_indexed_rotation(n::Integer, Dᵛ::Val{3}) = ROTATIONS_3D[n]
get_indexed_rotation(n::Integer, Dᵛ::Val{2}) = ROTATIONS_2D[n]
get_indexed_rotation(n::Integer, Dᵛ::Val{1}) = ROTATIONS_1D[n]
get_indexed_translation(n::Integer, Dᵛ::Val{3}) = TRANSLATIONS_3D[n]
get_indexed_translation(n::Integer, Dᵛ::Val{2}) = TRANSLATIONS_2D[n]
get_indexed_translation(n::Integer, Dᵛ::Val{1}) = TRANSLATIONS_1D[n]
const ROTATIONS_3D = [
# needed for Litvin magnetic space group data, ISOTROPY space group data, and point
# group data
SqSMatrix{3,Float64}([1 0 0 ; 0 1 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([-1 0 0; 0 -1 0; 0 0 -1]),
SqSMatrix{3,Float64}([-1 0 0; 0 1 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([1 0 0 ; 0 -1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([1 0 0 ; 0 -1 0; 0 0 -1]),
SqSMatrix{3,Float64}([-1 0 0; 0 -1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([-1 0 0; 0 1 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([1 0 0 ; 0 1 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([0 -1 0; 1 0 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([0 1 0 ; -1 0 0; 0 0 1 ]),
SqSMatrix{3,Float64}([0 1 0 ; -1 0 0; 0 0 -1]),
SqSMatrix{3,Float64}([0 -1 0; 1 0 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([0 1 0 ; 1 0 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([0 -1 0; -1 0 0; 0 0 -1]),
SqSMatrix{3,Float64}([0 -1 0; -1 0 0; 0 0 1 ]),
SqSMatrix{3,Float64}([0 1 0 ; 1 0 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([0 -1 0; 1 -1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([-1 1 0; -1 0 0; 0 0 1 ]),
SqSMatrix{3,Float64}([0 1 0 ; -1 1 0; 0 0 -1]),
SqSMatrix{3,Float64}([1 -1 0; 1 0 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([1 0 0 ; 1 -1 0; 0 0 -1]),
SqSMatrix{3,Float64}([-1 1 0; 0 1 0 ; 0 0 -1]),
SqSMatrix{3,Float64}([1 -1 0; 0 -1 0; 0 0 -1]),
SqSMatrix{3,Float64}([-1 0 0; -1 1 0; 0 0 -1]),
SqSMatrix{3,Float64}([-1 1 0; 0 1 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([1 0 0 ; 1 -1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([-1 0 0; -1 1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([1 -1 0; 0 -1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([1 -1 0; 1 0 0 ; 0 0 1 ]),
SqSMatrix{3,Float64}([0 1 0 ; -1 1 0; 0 0 1 ]),
SqSMatrix{3,Float64}([-1 1 0; -1 0 0; 0 0 -1]),
SqSMatrix{3,Float64}([0 -1 0; 1 -1 0; 0 0 -1]),
SqSMatrix{3,Float64}([0 0 1 ; 1 0 0 ; 0 1 0 ]),
SqSMatrix{3,Float64}([0 1 0 ; 0 0 1 ; 1 0 0 ]),
SqSMatrix{3,Float64}([0 -1 0; 0 0 1 ; -1 0 0]),
SqSMatrix{3,Float64}([0 0 -1; -1 0 0; 0 1 0 ]),
SqSMatrix{3,Float64}([0 -1 0; 0 0 -1; 1 0 0 ]),
SqSMatrix{3,Float64}([0 0 1 ; -1 0 0; 0 -1 0]),
SqSMatrix{3,Float64}([0 1 0 ; 0 0 -1; -1 0 0]),
SqSMatrix{3,Float64}([0 0 -1; 1 0 0 ; 0 -1 0]),
SqSMatrix{3,Float64}([0 0 -1; -1 0 0; 0 -1 0]),
SqSMatrix{3,Float64}([0 -1 0; 0 0 -1; -1 0 0]),
SqSMatrix{3,Float64}([0 1 0 ; 0 0 -1; 1 0 0 ]),
SqSMatrix{3,Float64}([0 0 1 ; 1 0 0 ; 0 -1 0]),
SqSMatrix{3,Float64}([0 1 0 ; 0 0 1 ; -1 0 0]),
SqSMatrix{3,Float64}([0 0 -1; 1 0 0 ; 0 1 0 ]),
SqSMatrix{3,Float64}([0 -1 0; 0 0 1 ; 1 0 0 ]),
SqSMatrix{3,Float64}([0 0 1 ; -1 0 0; 0 1 0 ]),
SqSMatrix{3,Float64}([1 0 0 ; 0 0 -1; 0 1 0 ]),
SqSMatrix{3,Float64}([1 0 0 ; 0 0 1 ; 0 -1 0]),
SqSMatrix{3,Float64}([0 0 1 ; 0 1 0 ; -1 0 0]),
SqSMatrix{3,Float64}([0 0 -1; 0 1 0 ; 1 0 0 ]),
SqSMatrix{3,Float64}([-1 0 0; 0 0 1 ; 0 1 0 ]),
SqSMatrix{3,Float64}([-1 0 0; 0 0 -1; 0 -1 0]),
SqSMatrix{3,Float64}([0 0 1 ; 0 -1 0; 1 0 0 ]),
SqSMatrix{3,Float64}([0 0 -1; 0 -1 0; -1 0 0]),
SqSMatrix{3,Float64}([-1 0 0; 0 0 1 ; 0 -1 0]),
SqSMatrix{3,Float64}([-1 0 0; 0 0 -1; 0 1 0 ]),
SqSMatrix{3,Float64}([0 0 -1; 0 -1 0; 1 0 0 ]),
SqSMatrix{3,Float64}([0 0 1 ; 0 -1 0; -1 0 0]),
SqSMatrix{3,Float64}([1 0 0 ; 0 0 -1; 0 -1 0]),
SqSMatrix{3,Float64}([1 0 0 ; 0 0 1 ; 0 1 0 ]),
SqSMatrix{3,Float64}([0 0 -1; 0 1 0 ; -1 0 0]),
SqSMatrix{3,Float64}([0 0 1 ; 0 1 0 ; 1 0 0 ]),
]
const TRANSLATIONS_3D = [
# needed for Litvin magnetic space group data
SVector{3,Float64}(0, 0, 0),
SVector{3,Float64}(0, 0, 0.5),
SVector{3,Float64}(0.5, 0, 0),
SVector{3,Float64}(0, 0.5, 0),
SVector{3,Float64}(0.5, 0.5, 0),
SVector{3,Float64}(0.5, 0, 0.5),
SVector{3,Float64}(0, 0.5, 0.5),
SVector{3,Float64}(0.5, 0.5, 0.5),
SVector{3,Float64}(0.25, 0.25, 0.25),
SVector{3,Float64}(0.75, 0.75, 0.75),
SVector{3,Float64}(0, 0.75, 0.75),
SVector{3,Float64}(0.75, 0, 0.75),
SVector{3,Float64}(0.75, 0.75, 0),
SVector{3,Float64}(0, 0.25, 0.25),
SVector{3,Float64}(0.25, 0, 0.25),
SVector{3,Float64}(0.25, 0.25, 0),
SVector{3,Float64}(0.5, 0.25, 0.25),
SVector{3,Float64}(0.25, 0.5, 0.25),
SVector{3,Float64}(0.25, 0.25, 0.5),
SVector{3,Float64}(0.5, 0.75, 0.75),
SVector{3,Float64}(0.75, 0.5, 0.75),
SVector{3,Float64}(0.75, 0.75, 0.5),
SVector{3,Float64}(0, 0, 0.25),
SVector{3,Float64}(0, 0, 0.75),
SVector{3,Float64}(0.5, 0.5, 0.25),
SVector{3,Float64}(0.5, 0.5, 0.75),
SVector{3,Float64}(0, 0.5, 0.25),
SVector{3,Float64}(0.5, 0, 0.25),
SVector{3,Float64}(0.75, 0.25, 0.25),
SVector{3,Float64}(0.25, 0.75, 0.75),
SVector{3,Float64}(0.25, 0.75, 0.25),
SVector{3,Float64}(0.75, 0.75, 0.25),
SVector{3,Float64}(0.75, 0.25, 0.75),
SVector{3,Float64}(0.25, 0.25, 0.75),
SVector{3,Float64}(0, 0, 1/3),
SVector{3,Float64}(0, 0, 2/3),
SVector{3,Float64}(0, 0, 5/6),
SVector{3,Float64}(0, 0, 1/6),
# extra entries for ISOTROPY space group data
SVector{3,Float64}(0.5, 0, 0.75),
SVector{3,Float64}(0, 0.5, 0.75),
SVector{3,Float64}(0.75, 0.25, 0.5),
SVector{3,Float64}(0.25, 0.5, 0.75),
SVector{3,Float64}(0.5, 0.75, 0.25),
SVector{3,Float64}(0.25, 0.75, 0.5),
SVector{3,Float64}(0.75, 0.5, 0.25),
SVector{3,Float64}(0.5, 0.25, 0.75),
SVector{3,Float64}(0.75, 0.25, 0),
SVector{3,Float64}(0.25, 0, 0.75),
SVector{3,Float64}(0, 0.75, 0.25),
SVector{3,Float64}(0.25, 0.75, 0),
SVector{3,Float64}(0.75, 0, 0.25),
SVector{3,Float64}(0, 0.25, 0.75),
# extra entries for `generators` data
SVector{3,Float64}(2/3, 1/3, 1/3),
]
const ROTATIONS_2D = [
SqSMatrix{2,Float64}([1 0 ; 0 1]),
SqSMatrix{2,Float64}([-1 0; 0 -1]),
SqSMatrix{2,Float64}([-1 0; 0 1]),
SqSMatrix{2,Float64}([1 0 ; 0 -1]),
SqSMatrix{2,Float64}([0 -1; 1 0]),
SqSMatrix{2,Float64}([0 1 ; -1 0]),
SqSMatrix{2,Float64}([0 1 ; 1 0]),
SqSMatrix{2,Float64}([0 -1; -1 0]),
SqSMatrix{2,Float64}([0 -1; 1 -1]),
SqSMatrix{2,Float64}([-1 1; -1 0]),
SqSMatrix{2,Float64}([-1 1; 0 1]),
SqSMatrix{2,Float64}([1 0 ; 1 -1]),
SqSMatrix{2,Float64}([1 -1; 0 -1]),
SqSMatrix{2,Float64}([-1 0; -1 1]),
SqSMatrix{2,Float64}([0 1 ; -1 1]),
SqSMatrix{2,Float64}([1 -1; 1 0]),
]
const TRANSLATIONS_2D = [
SVector{2,Float64}(0, 0),
SVector{2,Float64}(0, 0.5),
SVector{2,Float64}(0.5, 0.5),
SVector{2,Float64}(0.5, 0),
]
const ROTATIONS_1D = [
SqSMatrix{1,Float64}([1;;]),
SqSMatrix{1,Float64}([-1;;]),
]
const TRANSLATIONS_1D = [
SVector{1,Float64}(0),
] | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2068 | # generated from original `xyzt`-based data via:
# begin
# io = stdout
# println(io, "PG_GENS_CODES_Ds = (")
# for D in 1:3
# pglabs = Crystalline.PG_IUCs[D]
# gensv = generators_from_xyzt.(pglabs, PointGroup{D})
# ROTATIONS = D == 3 ? Crystalline.ROTATIONS_3D :
# D == 2 ? Crystalline.ROTATIONS_2D :
# D == 1 ? Crystalline.ROTATIONS_1D : error()
# println(io, "# PointGroup{", D, "}")
# println(io, "Dict{String,Vector{Int8}}(")
# for (pglab, gens) in zip(pglabs, gensv)
# Nops = length(gens)
# pg_codes = Vector{Int8}(undef, Nops)
# idx = 0
# for (n,op) in enumerate(gens)
# r = rotation(op)
# r_idx = Int8(something(findfirst(==(r), ROTATIONS)))
# pg_codes[idx+=1] = r_idx
# end
# print(io, "\"", pglab, "\" => [")
# join(io, pg_codes, ",")
# println(io, "],")
# end
# println(io, "),")
# end
# println(io, ")")
# end
const PG_GENS_CODES_Ds = (
# PointGroup{1}
Dict{String,Vector{Int8}}(
"1" => [1],
"m" => [2],
),
# PointGroup{2}
Dict{String,Vector{Int8}}(
"1" => [1],
"2" => [2],
"m" => [3],
"mm2" => [2,3],
"4" => [2,5],
"4mm" => [2,5,3],
"3" => [9],
"3m1" => [9,8],
"31m" => [9,7],
"6" => [9,2],
"6mm" => [9,2,8],
),
# PointGroup{3}
Dict{String,Vector{Int8}}(
"1" => [1],
"-1" => [2],
"2" => [3],
"m" => [4],
"2/m" => [3,2],
"222" => [6,3],
"mm2" => [6,4],
"mmm" => [6,3,2],
"4" => [6,9],
"-4" => [6,11],
"4/m" => [6,9,2],
"422" => [6,9,3],
"4mm" => [6,9,4],
"-42m" => [6,11,3],
"-4m2" => [6,11,4],
"4/mmm" => [6,9,3,2],
"3" => [17],
"-3" => [17,2],
"312" => [17,14],
"321" => [17,13],
"3m1" => [17,15],
"31m" => [17,16],
"-31m" => [17,14,2],
"-3m1" => [17,13,2],
"6" => [17,6],
"-6" => [17,8],
"6/m" => [17,6,2],
"622" => [17,6,13],
"6mm" => [17,6,15],
"-62m" => [17,8,13],
"-6m2" => [17,8,15],
"6/mmm" => [17,6,13,2],
"23" => [6,3,33],
"m-3" => [6,3,33,2],
"432" => [6,3,33,13],
"-43m" => [6,3,33,16],
"m-3m" => [6,3,33,13,2],
)
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 9319 | # generated from original `xyzt`-based data via:
# io = stdout
# println(io, "SG_GENS_CODES_Ds = (")
# for D in 1:3
# sgnums = 1:MAX_SGNUM[D]
# gensv = generators_from_xyzt.(sgnums, SpaceGroup{D})
# ROTATIONS = D == 3 ? Crystalline.ROTATIONS_3D :
# D == 2 ? Crystalline.ROTATIONS_2D :
# D == 1 ? Crystalline.ROTATIONS_1D : error()
# TRANSLATIONS = D == 3 ? Crystalline.TRANSLATIONS_3D :
# D == 2 ? Crystalline.TRANSLATIONS_2D :
# D == 1 ? Crystalline.TRANSLATIONS_1D : error()
# println(io, "# ", SpaceGroup{D})
# println(io, "Vector{Tuple{Int8,Int8}}[")
# for (sgnum, gens) in zip(sgnums, gensv)
# Nops = length(gens)
# pg_codes = Vector{Tuple{Int8, Int8}}(undef, Nops)
# idx = 0
# for (n,op) in enumerate(gens)
# r, t = rotation(op), translation(op)
# r_idx = Int8(@something findfirst(==(r), ROTATIONS) error("could not find r = $r"))
# t_idx = Int8(@something findfirst(==(t), TRANSLATIONS) error("could not find t = $t"))
# pg_codes[idx+=1] = (r_idx, t_idx)
# end
# print(io, "#=", sgnum, "=# [")
# for (idx, pg_code) in enumerate(pg_codes)
# print(io, "(")
# join(io, pg_code, ",")
# print(io, ")")
# idx ≠ length(pg_codes) && print(io, ",")
# end
# println(io, "],")
# end
# println(io, "],")
# end
# println(io, ")")
SG_GENS_CODES_Vs = (
# SpaceGroup{1}
Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
],
# SpaceGroup{2}
Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(3,2)],
#=5=# [(3,1),(1,3)],
#=6=# [(2,1),(3,1)],
#=7=# [(2,1),(3,4)],
#=8=# [(2,1),(3,3)],
#=9=# [(2,1),(3,1),(1,3)],
#=10=# [(2,1),(5,1)],
#=11=# [(2,1),(5,1),(3,1)],
#=12=# [(2,1),(5,1),(3,3)],
#=13=# [(9,1)],
#=14=# [(9,1),(8,1)],
#=15=# [(9,1),(7,1)],
#=16=# [(9,1),(2,1)],
#=17=# [(9,1),(2,1),(8,1)],
],
# SpaceGroup{3}
Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(3,4)],
#=5=# [(3,1),(1,5)],
#=6=# [(4,1)],
#=7=# [(4,2)],
#=8=# [(4,1),(1,5)],
#=9=# [(4,2),(1,5)],
#=10=# [(3,1),(2,1)],
#=11=# [(3,4),(2,1)],
#=12=# [(3,1),(2,1),(1,5)],
#=13=# [(3,2),(2,1)],
#=14=# [(3,7),(2,1)],
#=15=# [(3,2),(2,1),(1,5)],
#=16=# [(6,1),(3,1)],
#=17=# [(6,2),(3,2)],
#=18=# [(6,1),(3,5)],
#=19=# [(6,6),(3,7)],
#=20=# [(6,2),(3,2),(1,5)],
#=21=# [(6,1),(3,1),(1,5)],
#=22=# [(6,1),(3,1),(1,7),(1,6)],
#=23=# [(6,1),(3,1),(1,8)],
#=24=# [(6,6),(3,7),(1,8)],
#=25=# [(6,1),(4,1)],
#=26=# [(6,2),(4,2)],
#=27=# [(6,1),(4,2)],
#=28=# [(6,1),(4,3)],
#=29=# [(6,2),(4,3)],
#=30=# [(6,1),(4,7)],
#=31=# [(6,6),(4,6)],
#=32=# [(6,1),(4,5)],
#=33=# [(6,2),(4,5)],
#=34=# [(6,1),(4,8)],
#=35=# [(6,1),(4,1),(1,5)],
#=36=# [(6,2),(4,2),(1,5)],
#=37=# [(6,1),(4,2),(1,5)],
#=38=# [(6,1),(4,1),(1,7)],
#=39=# [(6,1),(4,4),(1,7)],
#=40=# [(6,1),(4,3),(1,7)],
#=41=# [(6,1),(4,5),(1,7)],
#=42=# [(6,1),(4,1),(1,7),(1,6)],
#=43=# [(6,1),(4,9),(1,7),(1,6)],
#=44=# [(6,1),(4,1),(1,8)],
#=45=# [(6,1),(4,5),(1,8)],
#=46=# [(6,1),(4,3),(1,8)],
#=47=# [(6,1),(3,1),(2,1)],
#=48=# [(6,5),(3,6),(2,1)],
#=49=# [(6,1),(3,2),(2,1)],
#=50=# [(6,5),(3,3),(2,1)],
#=51=# [(6,3),(3,1),(2,1)],
#=52=# [(6,3),(3,8),(2,1)],
#=53=# [(6,6),(3,6),(2,1)],
#=54=# [(6,3),(3,2),(2,1)],
#=55=# [(6,1),(3,5),(2,1)],
#=56=# [(6,5),(3,7),(2,1)],
#=57=# [(6,2),(3,7),(2,1)],
#=58=# [(6,1),(3,8),(2,1)],
#=59=# [(6,5),(3,4),(2,1)],
#=60=# [(6,8),(3,2),(2,1)],
#=61=# [(6,6),(3,7),(2,1)],
#=62=# [(6,6),(3,4),(2,1)],
#=63=# [(6,2),(3,2),(2,1),(1,5)],
#=64=# [(6,7),(3,7),(2,1),(1,5)],
#=65=# [(6,1),(3,1),(2,1),(1,5)],
#=66=# [(6,1),(3,2),(2,1),(1,5)],
#=67=# [(6,4),(3,4),(2,1),(1,5)],
#=68=# [(6,3),(3,2),(2,1),(1,5)],
#=69=# [(6,1),(3,1),(2,1),(1,7),(1,6)],
#=70=# [(6,13),(3,12),(2,1),(1,7),(1,6)],
#=71=# [(6,1),(3,1),(2,1),(1,8)],
#=72=# [(6,1),(3,5),(2,1),(1,8)],
#=73=# [(6,6),(3,7),(2,1),(1,8)],
#=74=# [(6,4),(3,4),(2,1),(1,8)],
#=75=# [(6,1),(9,1)],
#=76=# [(6,2),(9,23)],
#=77=# [(6,1),(9,2)],
#=78=# [(6,2),(9,24)],
#=79=# [(6,1),(9,1),(1,8)],
#=80=# [(6,8),(9,27),(1,8)],
#=81=# [(6,1),(11,1)],
#=82=# [(6,1),(11,1),(1,8)],
#=83=# [(6,1),(9,1),(2,1)],
#=84=# [(6,1),(9,2),(2,1)],
#=85=# [(6,5),(9,3),(2,1)],
#=86=# [(6,5),(9,7),(2,1)],
#=87=# [(6,1),(9,1),(2,1),(1,8)],
#=88=# [(6,6),(9,29),(2,1),(1,8)],
#=89=# [(6,1),(9,1),(3,1)],
#=90=# [(6,1),(9,5),(3,5)],
#=91=# [(6,2),(9,23),(3,1)],
#=92=# [(6,2),(9,25),(3,25)],
#=93=# [(6,1),(9,2),(3,1)],
#=94=# [(6,1),(9,8),(3,8)],
#=95=# [(6,2),(9,24),(3,1)],
#=96=# [(6,2),(9,26),(3,26)],
#=97=# [(6,1),(9,1),(3,1),(1,8)],
#=98=# [(6,8),(9,27),(3,39),(1,8)],
#=99=# [(6,1),(9,1),(4,1)],
#=100=# [(6,1),(9,1),(4,5)],
#=101=# [(6,1),(9,2),(4,2)],
#=102=# [(6,1),(9,8),(4,8)],
#=103=# [(6,1),(9,1),(4,2)],
#=104=# [(6,1),(9,1),(4,8)],
#=105=# [(6,1),(9,2),(4,1)],
#=106=# [(6,1),(9,2),(4,5)],
#=107=# [(6,1),(9,1),(4,1),(1,8)],
#=108=# [(6,1),(9,1),(4,2),(1,8)],
#=109=# [(6,8),(9,27),(4,1),(1,8)],
#=110=# [(6,8),(9,27),(4,2),(1,8)],
#=111=# [(6,1),(11,1),(3,1)],
#=112=# [(6,1),(11,1),(3,2)],
#=113=# [(6,1),(11,1),(3,5)],
#=114=# [(6,1),(11,1),(3,8)],
#=115=# [(6,1),(11,1),(4,1)],
#=116=# [(6,1),(11,1),(4,2)],
#=117=# [(6,1),(11,1),(4,5)],
#=118=# [(6,1),(11,1),(4,8)],
#=119=# [(6,1),(11,1),(4,1),(1,8)],
#=120=# [(6,1),(11,1),(4,2),(1,8)],
#=121=# [(6,1),(11,1),(3,1),(1,8)],
#=122=# [(6,1),(11,1),(3,39),(1,8)],
#=123=# [(6,1),(9,1),(3,1),(2,1)],
#=124=# [(6,1),(9,1),(3,2),(2,1)],
#=125=# [(6,5),(9,3),(3,3),(2,1)],
#=126=# [(6,5),(9,3),(3,6),(2,1)],
#=127=# [(6,1),(9,1),(3,5),(2,1)],
#=128=# [(6,1),(9,1),(3,8),(2,1)],
#=129=# [(6,5),(9,3),(3,4),(2,1)],
#=130=# [(6,5),(9,3),(3,7),(2,1)],
#=131=# [(6,1),(9,2),(3,1),(2,1)],
#=132=# [(6,1),(9,2),(3,2),(2,1)],
#=133=# [(6,5),(9,6),(3,3),(2,1)],
#=134=# [(6,5),(9,6),(3,6),(2,1)],
#=135=# [(6,1),(9,2),(3,5),(2,1)],
#=136=# [(6,1),(9,8),(3,8),(2,1)],
#=137=# [(6,5),(9,6),(3,4),(2,1)],
#=138=# [(6,5),(9,6),(3,7),(2,1)],
#=139=# [(6,1),(9,1),(3,1),(2,1),(1,8)],
#=140=# [(6,1),(9,1),(3,2),(2,1),(1,8)],
#=141=# [(6,6),(9,31),(3,6),(2,1),(1,8)],
#=142=# [(6,6),(9,31),(3,3),(2,1),(1,8)],
#=143=# [(17,1)],
#=144=# [(17,35)],
#=145=# [(17,36)],
#=146=# [(17,1),(1,53)],
#=147=# [(17,1),(2,1)],
#=148=# [(17,1),(2,1),(1,53)],
#=149=# [(17,1),(14,1)],
#=150=# [(17,1),(13,1)],
#=151=# [(17,35),(14,36)],
#=152=# [(17,35),(13,1)],
#=153=# [(17,36),(14,35)],
#=154=# [(17,36),(13,1)],
#=155=# [(17,1),(13,1),(1,53)],
#=156=# [(17,1),(15,1)],
#=157=# [(17,1),(16,1)],
#=158=# [(17,1),(15,2)],
#=159=# [(17,1),(16,2)],
#=160=# [(17,1),(15,1),(1,53)],
#=161=# [(17,1),(15,2),(1,53)],
#=162=# [(17,1),(14,1),(2,1)],
#=163=# [(17,1),(14,2),(2,1)],
#=164=# [(17,1),(13,1),(2,1)],
#=165=# [(17,1),(13,2),(2,1)],
#=166=# [(17,1),(13,1),(2,1),(1,53)],
#=167=# [(17,1),(13,2),(2,1),(1,53)],
#=168=# [(17,1),(6,1)],
#=169=# [(17,35),(6,2)],
#=170=# [(17,36),(6,2)],
#=171=# [(17,36),(6,1)],
#=172=# [(17,35),(6,1)],
#=173=# [(17,1),(6,2)],
#=174=# [(17,1),(8,1)],
#=175=# [(17,1),(6,1),(2,1)],
#=176=# [(17,1),(6,2),(2,1)],
#=177=# [(17,1),(6,1),(13,1)],
#=178=# [(17,35),(6,2),(13,35)],
#=179=# [(17,36),(6,2),(13,36)],
#=180=# [(17,36),(6,1),(13,36)],
#=181=# [(17,35),(6,1),(13,35)],
#=182=# [(17,1),(6,2),(13,1)],
#=183=# [(17,1),(6,1),(15,1)],
#=184=# [(17,1),(6,1),(15,2)],
#=185=# [(17,1),(6,2),(15,2)],
#=186=# [(17,1),(6,2),(15,1)],
#=187=# [(17,1),(8,1),(15,1)],
#=188=# [(17,1),(8,2),(15,2)],
#=189=# [(17,1),(8,1),(13,1)],
#=190=# [(17,1),(8,2),(13,1)],
#=191=# [(17,1),(6,1),(13,1),(2,1)],
#=192=# [(17,1),(6,1),(13,2),(2,1)],
#=193=# [(17,1),(6,2),(13,2),(2,1)],
#=194=# [(17,1),(6,2),(13,1),(2,1)],
#=195=# [(6,1),(3,1),(33,1)],
#=196=# [(6,1),(3,1),(33,1),(1,7),(1,6)],
#=197=# [(6,1),(3,1),(33,1),(1,8)],
#=198=# [(6,6),(3,7),(33,1)],
#=199=# [(6,6),(3,7),(33,1),(1,8)],
#=200=# [(6,1),(3,1),(33,1),(2,1)],
#=201=# [(6,5),(3,6),(33,1),(2,1)],
#=202=# [(6,1),(3,1),(33,1),(2,1),(1,7),(1,6)],
#=203=# [(6,13),(3,12),(33,1),(2,1),(1,7),(1,6)],
#=204=# [(6,1),(3,1),(33,1),(2,1),(1,8)],
#=205=# [(6,6),(3,7),(33,1),(2,1)],
#=206=# [(6,6),(3,7),(33,1),(2,1),(1,8)],
#=207=# [(6,1),(3,1),(33,1),(13,1)],
#=208=# [(6,1),(3,1),(33,1),(13,8)],
#=209=# [(6,1),(3,1),(33,1),(13,1),(1,7),(1,6)],
#=210=# [(6,7),(3,5),(33,1),(13,33),(1,7),(1,6)],
#=211=# [(6,1),(3,1),(33,1),(13,1),(1,8)],
#=212=# [(6,6),(3,7),(33,1),(13,30)],
#=213=# [(6,6),(3,7),(33,1),(13,29)],
#=214=# [(6,6),(3,7),(33,1),(13,29),(1,8)],
#=215=# [(6,1),(3,1),(33,1),(16,1)],
#=216=# [(6,1),(3,1),(33,1),(16,1),(1,7),(1,6)],
#=217=# [(6,1),(3,1),(33,1),(16,1),(1,8)],
#=218=# [(6,1),(3,1),(33,1),(16,8)],
#=219=# [(6,1),(3,1),(33,1),(16,8),(1,7),(1,6)],
#=220=# [(6,6),(3,7),(33,1),(16,9),(1,8)],
#=221=# [(6,1),(3,1),(33,1),(13,1),(2,1)],
#=222=# [(6,5),(3,6),(33,1),(13,2),(2,1)],
#=223=# [(6,1),(3,1),(33,1),(13,8),(2,1)],
#=224=# [(6,5),(3,6),(33,1),(13,5),(2,1)],
#=225=# [(6,1),(3,1),(33,1),(13,1),(2,1),(1,7),(1,6)],
#=226=# [(6,1),(3,1),(33,1),(13,8),(2,1),(1,7),(1,6)],
#=227=# [(6,41),(3,42),(33,1),(13,41),(2,1),(1,7),(1,6)],
#=228=# [(6,44),(3,45),(33,1),(13,47),(2,1),(1,7),(1,6)],
#=229=# [(6,1),(3,1),(33,1),(13,1),(2,1),(1,8)],
#=230=# [(6,6),(3,7),(33,1),(13,29),(2,1),(1,8)],
],
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5898 | # generated from original `xyzt`-based data via:
# io = stdout
# println(io, "SUBG_GENS_CODES_Ds = ImmutableDict(")
# for (D,P) in ((3,2), (3,1), (2,1))
# sgnums = 1:MAX_SUBGNUM[(D,P)]
# gensv = generators_from_xyzt.(sgnums, SubperiodicGroup{D,P})
# ROTATIONS = D == 3 ? Crystalline.ROTATIONS_3D :
# D == 2 ? Crystalline.ROTATIONS_2D :
# D == 1 ? Crystalline.ROTATIONS_1D : error()
# TRANSLATIONS = D == 3 ? Crystalline.TRANSLATIONS_3D :
# D == 2 ? Crystalline.TRANSLATIONS_2D :
# D == 1 ? Crystalline.TRANSLATIONS_1D : error()
# println(io, "# ", SubperiodicGroup{D, P})
# println(io, (D,P), " => Vector{Tuple{Int8,Int8}}[")
# for (sgnum, gens) in zip(sgnums, gensv)
# Nops = length(gens)
# pg_codes = Vector{Tuple{Int8, Int8}}(undef, Nops)
# idx = 0
# for (n, op) in enumerate(gens)
# r, t = rotation(op), translation(op)
# r_idx = Int8(@something findfirst(==(r), ROTATIONS) error("could not find r = $r"))
# t_idx = Int8(@something findfirst(==(t), TRANSLATIONS) error("could not find t = $t"))
# pg_codes[idx+=1] = (r_idx, t_idx)
# end
# print(io, "#=", sgnum, "=# [")
# for (idx, pg_code) in enumerate(pg_codes)
# print(io, "(")
# join(io, pg_code, ",")
# print(io, ")")
# idx ≠ length(pg_codes) && print(io, ",")
# end
# println(io, "],")
# end
# println(io, "],")
# end
# println(io, ")")
SUBG_GENS_CODES_Vs = Base.ImmutableDict(
# SubperiodicGroup{3, 2}
(3, 2) => Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
#=3=# [(6,1)],
#=4=# [(8,1)],
#=5=# [(8,3)],
#=6=# [(6,1),(2,1)],
#=7=# [(6,3),(2,1)],
#=8=# [(5,1)],
#=9=# [(5,3)],
#=10=# [(5,1),(1,5)],
#=11=# [(7,1)],
#=12=# [(7,4)],
#=13=# [(7,1),(1,5)],
#=14=# [(5,1),(2,1)],
#=15=# [(5,3),(2,1)],
#=16=# [(5,4),(2,1)],
#=17=# [(5,5),(2,1)],
#=18=# [(5,1),(2,1),(1,5)],
#=19=# [(6,1),(3,1)],
#=20=# [(5,3),(3,3)],
#=21=# [(6,1),(3,5)],
#=22=# [(6,1),(3,1),(1,5)],
#=23=# [(6,1),(4,1)],
#=24=# [(6,1),(4,3)],
#=25=# [(6,1),(4,5)],
#=26=# [(6,1),(4,1),(1,5)],
#=27=# [(3,1),(7,1)],
#=28=# [(3,4),(8,4)],
#=29=# [(3,4),(7,4)],
#=30=# [(3,1),(8,4)],
#=31=# [(3,1),(8,3)],
#=32=# [(3,5),(8,5)],
#=33=# [(3,4),(8,3)],
#=34=# [(3,1),(7,5)],
#=35=# [(3,1),(7,1),(1,5)],
#=36=# [(3,1),(7,3),(1,5)],
#=37=# [(6,1),(3,1),(2,1)],
#=38=# [(5,1),(6,3),(2,1)],
#=39=# [(6,5),(3,3),(2,1)],
#=40=# [(3,3),(6,1),(2,1)],
#=41=# [(6,3),(3,1),(2,1)],
#=42=# [(3,5),(6,5),(2,1)],
#=43=# [(5,4),(6,3),(2,1)],
#=44=# [(6,1),(3,5),(2,1)],
#=45=# [(3,4),(5,5),(2,1)],
#=46=# [(6,5),(3,4),(2,1)],
#=47=# [(6,1),(3,1),(2,1),(1,5)],
#=48=# [(6,4),(3,4),(2,1),(1,5)],
#=49=# [(6,1),(9,1)],
#=50=# [(6,1),(11,1)],
#=51=# [(6,1),(9,1),(2,1)],
#=52=# [(6,5),(9,3),(2,1)],
#=53=# [(6,1),(9,1),(3,1)],
#=54=# [(6,1),(9,1),(3,5)],
#=55=# [(6,1),(9,1),(4,1)],
#=56=# [(6,1),(9,1),(4,5)],
#=57=# [(6,1),(11,1),(3,1)],
#=58=# [(6,1),(11,1),(3,5)],
#=59=# [(6,1),(11,1),(4,1)],
#=60=# [(6,1),(11,1),(4,5)],
#=61=# [(6,1),(9,1),(3,1),(2,1)],
#=62=# [(6,5),(9,3),(3,3),(2,1)],
#=63=# [(6,1),(9,1),(3,5),(2,1)],
#=64=# [(6,5),(9,3),(3,4),(2,1)],
#=65=# [(17,1)],
#=66=# [(17,1),(2,1)],
#=67=# [(17,1),(14,1)],
#=68=# [(17,1),(13,1)],
#=69=# [(17,1),(15,1)],
#=70=# [(17,1),(16,1)],
#=71=# [(17,1),(14,1),(2,1)],
#=72=# [(17,1),(13,1),(2,1)],
#=73=# [(17,1),(6,1)],
#=74=# [(17,1),(8,1)],
#=75=# [(17,1),(6,1),(2,1)],
#=76=# [(17,1),(6,1),(13,1)],
#=77=# [(17,1),(6,1),(15,1)],
#=78=# [(17,1),(8,1),(15,1)],
#=79=# [(17,1),(8,1),(13,1)],
#=80=# [(17,1),(6,1),(13,1),(2,1)],
],
# SubperiodicGroup{3, 1}
(3, 1) => Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
#=3=# [(5,1)],
#=4=# [(7,1)],
#=5=# [(7,2)],
#=6=# [(5,1),(2,1)],
#=7=# [(5,2),(2,1)],
#=8=# [(6,1)],
#=9=# [(6,2)],
#=10=# [(8,1)],
#=11=# [(6,1),(2,1)],
#=12=# [(6,2),(2,1)],
#=13=# [(6,1),(3,1)],
#=14=# [(6,2),(3,2)],
#=15=# [(6,1),(4,1)],
#=16=# [(6,1),(4,2)],
#=17=# [(6,2),(4,2)],
#=18=# [(5,1),(8,1)],
#=19=# [(5,1),(4,2)],
#=20=# [(6,1),(3,1),(2,1)],
#=21=# [(6,1),(3,2),(2,1)],
#=22=# [(3,2),(5,1),(2,1)],
#=23=# [(6,1),(9,1)],
#=24=# [(6,2),(9,23)],
#=25=# [(6,1),(9,2)],
#=26=# [(6,2),(9,24)],
#=27=# [(6,1),(11,1)],
#=28=# [(6,1),(9,1),(2,1)],
#=29=# [(6,1),(9,2),(2,1)],
#=30=# [(6,1),(9,1),(3,1)],
#=31=# [(6,2),(9,23),(5,1)],
#=32=# [(6,1),(9,2),(3,1)],
#=33=# [(6,2),(9,24),(5,1)],
#=34=# [(6,1),(9,1),(4,1)],
#=35=# [(6,1),(9,2),(4,2)],
#=36=# [(6,1),(9,1),(4,2)],
#=37=# [(6,1),(11,1),(3,1)],
#=38=# [(6,1),(11,1),(3,2)],
#=39=# [(6,1),(9,1),(3,1),(2,1)],
#=40=# [(6,1),(9,1),(3,2),(2,1)],
#=41=# [(6,1),(9,2),(3,1),(2,1)],
#=42=# [(17,1)],
#=43=# [(17,35)],
#=44=# [(17,36)],
#=45=# [(17,1),(2,1)],
#=46=# [(17,1),(14,1)],
#=47=# [(17,35),(14,36)],
#=48=# [(17,36),(14,35)],
#=49=# [(17,1),(15,1)],
#=50=# [(17,1),(15,2)],
#=51=# [(17,1),(14,1),(2,1)],
#=52=# [(17,1),(14,2),(2,1)],
#=53=# [(17,1),(6,1)],
#=54=# [(17,35),(6,2)],
#=55=# [(17,36),(6,1)],
#=56=# [(17,1),(6,2)],
#=57=# [(17,35),(6,1)],
#=58=# [(17,36),(6,2)],
#=59=# [(17,1),(8,1)],
#=60=# [(17,1),(6,1),(2,1)],
#=61=# [(17,1),(6,2),(2,1)],
#=62=# [(17,1),(6,1),(13,1)],
#=63=# [(17,35),(6,2),(13,35)],
#=64=# [(17,36),(6,1),(13,36)],
#=65=# [(17,1),(6,2),(13,1)],
#=66=# [(17,35),(6,1),(13,35)],
#=67=# [(17,36),(6,2),(13,36)],
#=68=# [(17,1),(6,1),(15,1)],
#=69=# [(17,1),(6,1),(15,2)],
#=70=# [(17,1),(6,2),(15,1)],
#=71=# [(17,1),(8,1),(15,1)],
#=72=# [(17,1),(8,1),(15,2)],
#=73=# [(17,1),(6,1),(13,1),(2,1)],
#=74=# [(17,1),(6,1),(13,2),(2,1)],
#=75=# [(17,1),(6,2),(13,1),(2,1)],
],
# SubperiodicGroup{2, 1}
(2, 1) => Vector{Tuple{Int8,Int8}}[
#=1=# [(1,1)],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(4,1)],
#=5=# [(4,4)],
#=6=# [(2,1),(3,1)],
#=7=# [(2,1),(3,4)],
],
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 240239 | #=
MSG_CODES_D = Dict{Tuple{Int, Int}, Vector{Tuple{Int8, Int8, Bool}}}()
for msg in msgs
msg_codes = Vector{Tuple{Int8, Int8, Bool}}(undef, length(msg)-1)
for (n, mop) in enumerate(msg)
op = mop.op
tr = mop.op
isone(op) && !tr && continue # skip identity (trivially in group): no need to list
r, t = rotation(op), translation(op)
r_idx = Int8(something(findfirst(==(r), ROTATIONS_3D)))
t_idx = Int8(something(findfirst(==(t), TRANSLATIONS_3D)))
msg_codes[n] = (r_idx, t_idx, tr)
end
MSG_CODES_D[msg.num] = msg_codes
end
=#
const MOP_CODE = Tuple{Int8, Int8, Bool}
const MSG_CODES_D = Dict{Tuple{Int, Int}, Vector{Tuple{Int8, Int8, Bool}}}(
(1,1) => MOP_CODE[],
(1,2) => MOP_CODE[(1,1,1)],
(1,3) => MOP_CODE[(1,2,1)],
(2,4) => MOP_CODE[(2,1,0)],
(2,5) => MOP_CODE[(2,1,0),(1,1,1),(2,1,1)],
(2,6) => MOP_CODE[(2,1,1)],
(2,7) => MOP_CODE[(2,1,0),(1,2,1),(2,2,1)],
(3,1) => MOP_CODE[(3,1,0)],
(3,2) => MOP_CODE[(3,1,0),(1,1,1),(3,1,1)],
(3,3) => MOP_CODE[(3,1,1)],
(3,4) => MOP_CODE[(3,1,0),(1,3,1),(3,3,1)],
(3,5) => MOP_CODE[(3,1,0),(1,4,1),(3,4,1)],
(3,6) => MOP_CODE[(3,1,0),(1,5,1),(3,5,1)],
(4,7) => MOP_CODE[(3,4,0)],
(4,8) => MOP_CODE[(3,4,0),(1,1,1),(3,4,1)],
(4,9) => MOP_CODE[(3,4,1)],
(4,10) => MOP_CODE[(3,4,0),(1,3,1),(3,5,1)],
(4,11) => MOP_CODE[(3,4,0),(1,4,1),(3,1,1)],
(4,12) => MOP_CODE[(3,4,0),(1,5,1),(3,3,1)],
(5,13) => MOP_CODE[(3,1,0)],
(5,14) => MOP_CODE[(3,1,0),(1,1,1),(3,1,1)],
(5,15) => MOP_CODE[(3,1,1)],
(5,16) => MOP_CODE[(3,1,0),(1,2,1),(3,2,1)],
(5,17) => MOP_CODE[(3,1,0),(1,3,1),(3,4,1)],
(6,18) => MOP_CODE[(4,1,0)],
(6,19) => MOP_CODE[(4,1,0),(1,1,1),(4,1,1)],
(6,20) => MOP_CODE[(4,1,1)],
(6,21) => MOP_CODE[(4,1,0),(1,3,1),(4,3,1)],
(6,22) => MOP_CODE[(4,1,0),(1,4,1),(4,4,1)],
(6,23) => MOP_CODE[(4,1,0),(1,5,1),(4,5,1)],
(7,24) => MOP_CODE[(4,2,0)],
(7,25) => MOP_CODE[(4,2,0),(1,1,1),(4,2,1)],
(7,26) => MOP_CODE[(4,2,1)],
(7,27) => MOP_CODE[(4,2,0),(1,3,1),(4,6,1)],
(7,28) => MOP_CODE[(4,2,0),(1,2,1),(4,1,1)],
(7,29) => MOP_CODE[(4,2,0),(1,4,1),(4,7,1)],
(7,30) => MOP_CODE[(4,2,0),(1,5,1),(4,8,1)],
(7,31) => MOP_CODE[(4,2,0),(1,7,1),(4,4,1)],
(8,32) => MOP_CODE[(4,1,0)],
(8,33) => MOP_CODE[(4,1,0),(1,1,1),(4,1,1)],
(8,34) => MOP_CODE[(4,1,1)],
(8,35) => MOP_CODE[(4,1,0),(1,2,1),(4,2,1)],
(8,36) => MOP_CODE[(4,1,0),(1,3,1),(4,4,1)],
(9,37) => MOP_CODE[(4,2,0)],
(9,38) => MOP_CODE[(4,2,0),(1,1,1),(4,2,1)],
(9,39) => MOP_CODE[(4,2,1)],
(9,40) => MOP_CODE[(4,2,0),(1,2,1),(4,1,1)],
(9,41) => MOP_CODE[(4,2,0),(1,3,1),(4,7,1)],
(10,42) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0)],
(10,43) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,1,1),(3,1,1),(2,1,1),(4,1,1)],
(10,44) => MOP_CODE[(3,1,1),(2,1,1),(4,1,0)],
(10,45) => MOP_CODE[(3,1,0),(2,1,1),(4,1,1)],
(10,46) => MOP_CODE[(3,1,1),(2,1,0),(4,1,1)],
(10,47) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,3,1),(3,3,1),(2,3,1),(4,3,1)],
(10,48) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,4,1),(3,4,1),(2,4,1),(4,4,1)],
(10,49) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,5,1),(3,5,1),(2,5,1),(4,5,1)],
(11,50) => MOP_CODE[(3,4,0),(2,1,0),(4,4,0)],
(11,51) => MOP_CODE[(3,4,0),(2,1,0),(4,4,0),(1,1,1),(3,4,1),(2,1,1),(4,4,1)],
(11,52) => MOP_CODE[(3,4,1),(2,1,1),(4,4,0)],
(11,53) => MOP_CODE[(3,4,0),(2,1,1),(4,4,1)],
(11,54) => MOP_CODE[(3,4,1),(2,1,0),(4,4,1)],
(11,55) => MOP_CODE[(3,4,0),(2,1,0),(4,4,0),(1,3,1),(3,5,1),(2,3,1),(4,5,1)],
(11,56) => MOP_CODE[(3,4,0),(2,1,0),(4,4,0),(1,4,1),(3,1,1),(2,4,1),(4,1,1)],
(11,57) => MOP_CODE[(3,4,0),(2,1,0),(4,4,0),(1,5,1),(3,3,1),(2,5,1),(4,3,1)],
(12,58) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0)],
(12,59) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,1,1),(3,1,1),(2,1,1),(4,1,1)],
(12,60) => MOP_CODE[(3,1,1),(2,1,1),(4,1,0)],
(12,61) => MOP_CODE[(3,1,0),(2,1,1),(4,1,1)],
(12,62) => MOP_CODE[(3,1,1),(2,1,0),(4,1,1)],
(12,63) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,2,1),(3,2,1),(2,2,1),(4,2,1)],
(12,64) => MOP_CODE[(3,1,0),(2,1,0),(4,1,0),(1,3,1),(3,4,1),(2,4,1),(4,4,1)],
(13,65) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0)],
(13,66) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,1,1),(3,2,1),(2,1,1),(4,2,1)],
(13,67) => MOP_CODE[(3,2,1),(2,1,1),(4,2,0)],
(13,68) => MOP_CODE[(3,2,0),(2,1,1),(4,2,1)],
(13,69) => MOP_CODE[(3,2,1),(2,1,0),(4,2,1)],
(13,70) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,3,1),(3,6,1),(2,3,1),(4,6,1)],
(13,71) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,4,1),(3,7,1),(2,4,1),(4,7,1)],
(13,72) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,2,1),(3,1,1),(2,2,1),(4,1,1)],
(13,73) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,7,1),(3,4,1),(2,7,1),(4,4,1)],
(13,74) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,5,1),(3,8,1),(2,5,1),(4,8,1)],
(14,75) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0)],
(14,76) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,1,1),(3,7,1),(2,1,1),(4,7,1)],
(14,77) => MOP_CODE[(3,7,1),(2,1,1),(4,7,0)],
(14,78) => MOP_CODE[(3,7,0),(2,1,1),(4,7,1)],
(14,79) => MOP_CODE[(3,7,1),(2,1,0),(4,7,1)],
(14,80) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,3,1),(3,8,1),(2,3,1),(4,8,1)],
(14,81) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,4,1),(3,2,1),(2,4,1),(4,2,1)],
(14,82) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,2,1),(3,4,1),(2,2,1),(4,4,1)],
(14,83) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,7,1),(3,1,1),(2,7,1),(4,1,1)],
(14,84) => MOP_CODE[(3,7,0),(2,1,0),(4,7,0),(1,5,1),(3,6,1),(2,5,1),(4,6,1)],
(15,85) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0)],
(15,86) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,1,1),(3,2,1),(2,1,1),(4,2,1)],
(15,87) => MOP_CODE[(3,2,1),(2,1,1),(4,2,0)],
(15,88) => MOP_CODE[(3,2,0),(2,1,1),(4,2,1)],
(15,89) => MOP_CODE[(3,2,1),(2,1,0),(4,2,1)],
(15,90) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,2,1),(3,1,1),(2,2,1),(4,1,1)],
(15,91) => MOP_CODE[(3,2,0),(2,1,0),(4,2,0),(1,3,1),(3,7,1),(2,4,1),(4,7,1)],
(16,1) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0)],
(16,2) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1)],
(16,3) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0)],
(16,4) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,3,1),(5,3,1),(3,3,1),(6,3,1)],
(16,5) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,5,1),(5,5,1),(3,5,1),(6,5,1)],
(16,6) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1)],
(17,7) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0)],
(17,8) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,1,1),(5,1,1),(3,2,1),(6,2,1)],
(17,9) => MOP_CODE[(5,1,1),(3,2,1),(6,2,0)],
(17,10) => MOP_CODE[(5,1,0),(3,2,1),(6,2,1)],
(17,11) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,3,1),(5,3,1),(3,6,1),(6,6,1)],
(17,12) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,2,1),(5,2,1),(3,1,1),(6,1,1)],
(17,13) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,6,1),(5,6,1),(3,3,1),(6,3,1)],
(17,14) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,5,1),(5,5,1),(3,8,1),(6,8,1)],
(17,15) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,8,1),(5,8,1),(3,5,1),(6,5,1)],
(18,16) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0)],
(18,17) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,1,1),(5,5,1),(3,5,1),(6,1,1)],
(18,18) => MOP_CODE[(5,5,1),(3,5,1),(6,1,0)],
(18,19) => MOP_CODE[(5,5,0),(3,5,1),(6,1,1)],
(18,20) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,4,1),(5,3,1),(3,3,1),(6,4,1)],
(18,21) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,2,1),(5,8,1),(3,8,1),(6,2,1)],
(18,22) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,6,1),(5,7,1),(3,7,1),(6,6,1)],
(18,23) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,5,1),(5,1,1),(3,1,1),(6,5,1)],
(18,24) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(1,8,1),(5,2,1),(3,2,1),(6,8,1)],
(19,25) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0)],
(19,26) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(1,1,1),(5,5,1),(3,7,1),(6,6,1)],
(19,27) => MOP_CODE[(5,5,1),(3,7,1),(6,6,0)],
(19,28) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(1,2,1),(5,8,1),(3,4,1),(6,3,1)],
(19,29) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(1,5,1),(5,1,1),(3,6,1),(6,7,1)],
(19,30) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(1,8,1),(5,2,1),(3,3,1),(6,4,1)],
(20,31) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0)],
(20,32) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,1,1),(5,1,1),(3,2,1),(6,2,1)],
(20,33) => MOP_CODE[(5,1,1),(3,2,1),(6,2,0)],
(20,34) => MOP_CODE[(5,1,0),(3,2,1),(6,2,1)],
(20,35) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,2,1),(5,2,1),(3,1,1),(6,1,1)],
(20,36) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,3,1),(5,3,1),(3,6,1),(6,6,1)],
(20,37) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(1,7,1),(5,6,1),(3,3,1),(6,3,1)],
(21,38) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0)],
(21,39) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1)],
(21,40) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0)],
(21,41) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1)],
(21,42) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1)],
(21,43) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,3,1),(5,3,1),(3,3,1),(6,3,1)],
(21,44) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,7,1),(5,6,1),(3,6,1),(6,6,1)],
(22,45) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0)],
(22,46) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1)],
(22,47) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0)],
(22,48) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1)],
(23,49) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0)],
(23,50) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1)],
(23,51) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0)],
(23,52) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1)],
(24,53) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0)],
(24,54) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(1,1,1),(5,2,1),(3,3,1),(6,4,1)],
(24,55) => MOP_CODE[(5,2,1),(3,3,1),(6,4,0)],
(24,56) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(1,2,1),(5,1,1),(3,4,1),(6,3,1)],
(25,57) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0)],
(25,58) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(7,1,1),(4,1,1)],
(25,59) => MOP_CODE[(6,1,1),(7,1,1),(4,1,0)],
(25,60) => MOP_CODE[(6,1,0),(7,1,1),(4,1,1)],
(25,61) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(7,2,1),(4,2,1)],
(25,62) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,3,1),(6,3,1),(7,3,1),(4,3,1)],
(25,63) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,5,1),(6,5,1),(7,5,1),(4,5,1)],
(25,64) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,7,1),(6,7,1),(7,7,1),(4,7,1)],
(25,65) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,8,1),(6,8,1),(7,8,1),(4,8,1)],
(26,66) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0)],
(26,67) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,1,1),(6,2,1),(7,1,1),(4,2,1)],
(26,68) => MOP_CODE[(6,2,1),(7,1,1),(4,2,0)],
(26,69) => MOP_CODE[(6,2,1),(7,1,0),(4,2,1)],
(26,70) => MOP_CODE[(6,2,0),(7,1,1),(4,2,1)],
(26,71) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,3,1),(6,6,1),(7,3,1),(4,6,1)],
(26,72) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,4,1),(6,7,1),(7,4,1),(4,7,1)],
(26,73) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,2,1),(6,1,1),(7,2,1),(4,1,1)],
(26,74) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,7,1),(6,4,1),(7,7,1),(4,4,1)],
(26,75) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,6,1),(6,3,1),(7,6,1),(4,3,1)],
(26,76) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,5,1),(6,8,1),(7,5,1),(4,8,1)],
(26,77) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,8,1),(6,5,1),(7,8,1),(4,5,1)],
(27,78) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0)],
(27,79) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(7,2,1),(4,2,1)],
(27,80) => MOP_CODE[(6,1,1),(7,2,1),(4,2,0)],
(27,81) => MOP_CODE[(6,1,0),(7,2,1),(4,2,1)],
(27,82) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(7,1,1),(4,1,1)],
(27,83) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,3,1),(6,3,1),(7,6,1),(4,6,1)],
(27,84) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,5,1),(6,5,1),(7,8,1),(4,8,1)],
(27,85) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,7,1),(6,7,1),(7,4,1),(4,4,1)],
(27,86) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,8,1),(6,8,1),(7,5,1),(4,5,1)],
(28,87) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0)],
(28,88) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,1,1),(6,1,1),(7,3,1),(4,3,1)],
(28,89) => MOP_CODE[(6,1,1),(7,3,1),(4,3,0)],
(28,90) => MOP_CODE[(6,1,1),(7,3,0),(4,3,1)],
(28,91) => MOP_CODE[(6,1,0),(7,3,1),(4,3,1)],
(28,92) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,3,1),(6,3,1),(7,1,1),(4,1,1)],
(28,93) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,4,1),(6,4,1),(7,5,1),(4,5,1)],
(28,94) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,2,1),(6,2,1),(7,6,1),(4,6,1)],
(28,95) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,7,1),(6,7,1),(7,8,1),(4,8,1)],
(28,96) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,6,1),(6,6,1),(7,2,1),(4,2,1)],
(28,97) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,5,1),(6,5,1),(7,4,1),(4,4,1)],
(28,98) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,8,1),(6,8,1),(7,7,1),(4,7,1)],
(29,99) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0)],
(29,100) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,1,1),(6,2,1),(7,6,1),(4,3,1)],
(29,101) => MOP_CODE[(6,2,1),(7,6,1),(4,3,0)],
(29,102) => MOP_CODE[(6,2,1),(7,6,0),(4,3,1)],
(29,103) => MOP_CODE[(6,2,0),(7,6,1),(4,3,1)],
(29,104) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,3,1),(6,6,1),(7,2,1),(4,1,1)],
(29,105) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,4,1),(6,7,1),(7,8,1),(4,5,1)],
(29,106) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,2,1),(6,1,1),(7,3,1),(4,6,1)],
(29,107) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,7,1),(6,4,1),(7,5,1),(4,8,1)],
(29,108) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,6,1),(6,3,1),(7,1,1),(4,2,1)],
(29,109) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,5,1),(6,8,1),(7,7,1),(4,4,1)],
(29,110) => MOP_CODE[(6,2,0),(7,6,0),(4,3,0),(1,8,1),(6,5,1),(7,4,1),(4,7,1)],
(30,111) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0)],
(30,112) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,1,1),(6,1,1),(7,7,1),(4,7,1)],
(30,113) => MOP_CODE[(6,1,1),(7,7,1),(4,7,0)],
(30,114) => MOP_CODE[(6,1,1),(7,7,0),(4,7,1)],
(30,115) => MOP_CODE[(6,1,0),(7,7,1),(4,7,1)],
(30,116) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,3,1),(6,3,1),(7,8,1),(4,8,1)],
(30,117) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,4,1),(6,4,1),(7,2,1),(4,2,1)],
(30,118) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,2,1),(6,2,1),(7,4,1),(4,4,1)],
(30,119) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,7,1),(6,7,1),(7,1,1),(4,1,1)],
(30,120) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,6,1),(6,6,1),(7,5,1),(4,5,1)],
(30,121) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,5,1),(6,5,1),(7,6,1),(4,6,1)],
(30,122) => MOP_CODE[(6,1,0),(7,7,0),(4,7,0),(1,8,1),(6,8,1),(7,3,1),(4,3,1)],
(31,123) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0)],
(31,124) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,1,1),(6,6,1),(7,1,1),(4,6,1)],
(31,125) => MOP_CODE[(6,6,1),(7,1,1),(4,6,0)],
(31,126) => MOP_CODE[(6,6,1),(7,1,0),(4,6,1)],
(31,127) => MOP_CODE[(6,6,0),(7,1,1),(4,6,1)],
(31,128) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,3,1),(6,2,1),(7,3,1),(4,2,1)],
(31,129) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,4,1),(6,8,1),(7,4,1),(4,8,1)],
(31,130) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,2,1),(6,3,1),(7,2,1),(4,3,1)],
(31,131) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,7,1),(6,5,1),(7,7,1),(4,5,1)],
(31,132) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,6,1),(6,1,1),(7,6,1),(4,1,1)],
(31,133) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,5,1),(6,7,1),(7,5,1),(4,7,1)],
(31,134) => MOP_CODE[(6,6,0),(7,1,0),(4,6,0),(1,8,1),(6,4,1),(7,8,1),(4,4,1)],
(32,135) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0)],
(32,136) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,1,1),(6,1,1),(7,5,1),(4,5,1)],
(32,137) => MOP_CODE[(6,1,1),(7,5,1),(4,5,0)],
(32,138) => MOP_CODE[(6,1,0),(7,5,1),(4,5,1)],
(32,139) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,2,1),(6,2,1),(7,8,1),(4,8,1)],
(32,140) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,4,1),(6,4,1),(7,3,1),(4,3,1)],
(32,141) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,5,1),(6,5,1),(7,1,1),(4,1,1)],
(32,142) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,7,1),(6,7,1),(7,6,1),(4,6,1)],
(32,143) => MOP_CODE[(6,1,0),(7,5,0),(4,5,0),(1,8,1),(6,8,1),(7,2,1),(4,2,1)],
(33,144) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0)],
(33,145) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,1,1),(6,2,1),(7,8,1),(4,5,1)],
(33,146) => MOP_CODE[(6,2,1),(7,8,1),(4,5,0)],
(33,147) => MOP_CODE[(6,2,1),(7,8,0),(4,5,1)],
(33,148) => MOP_CODE[(6,2,0),(7,8,1),(4,5,1)],
(33,149) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,3,1),(6,6,1),(7,7,1),(4,4,1)],
(33,150) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,4,1),(6,7,1),(7,6,1),(4,3,1)],
(33,151) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,2,1),(6,1,1),(7,5,1),(4,8,1)],
(33,152) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,7,1),(6,4,1),(7,3,1),(4,6,1)],
(33,153) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,6,1),(6,3,1),(7,4,1),(4,7,1)],
(33,154) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,5,1),(6,8,1),(7,2,1),(4,1,1)],
(33,155) => MOP_CODE[(6,2,0),(7,8,0),(4,5,0),(1,8,1),(6,5,1),(7,1,1),(4,2,1)],
(34,156) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0)],
(34,157) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,1,1),(6,1,1),(7,8,1),(4,8,1)],
(34,158) => MOP_CODE[(6,1,1),(7,8,1),(4,8,0)],
(34,159) => MOP_CODE[(6,1,0),(7,8,1),(4,8,1)],
(34,160) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,3,1),(6,3,1),(7,7,1),(4,7,1)],
(34,161) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,2,1),(6,2,1),(7,5,1),(4,5,1)],
(34,162) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,7,1),(6,7,1),(7,3,1),(4,3,1)],
(34,163) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,5,1),(6,5,1),(7,2,1),(4,2,1)],
(34,164) => MOP_CODE[(6,1,0),(7,8,0),(4,8,0),(1,8,1),(6,8,1),(7,1,1),(4,1,1)],
(35,165) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0)],
(35,166) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(7,1,1),(4,1,1)],
(35,167) => MOP_CODE[(6,1,1),(7,1,1),(4,1,0)],
(35,168) => MOP_CODE[(6,1,0),(7,1,1),(4,1,1)],
(35,169) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(7,2,1),(4,2,1)],
(35,170) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,3,1),(6,3,1),(7,3,1),(4,3,1)],
(35,171) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,7,1),(6,6,1),(7,6,1),(4,6,1)],
(36,172) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0)],
(36,173) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,1,1),(6,2,1),(7,1,1),(4,2,1)],
(36,174) => MOP_CODE[(6,2,1),(7,1,1),(4,2,0)],
(36,175) => MOP_CODE[(6,2,1),(7,1,0),(4,2,1)],
(36,176) => MOP_CODE[(6,2,0),(7,1,1),(4,2,1)],
(36,177) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,2,1),(6,1,1),(7,2,1),(4,1,1)],
(36,178) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,3,1),(6,6,1),(7,3,1),(4,6,1)],
(36,179) => MOP_CODE[(6,2,0),(7,1,0),(4,2,0),(1,7,1),(6,3,1),(7,6,1),(4,3,1)],
(37,180) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0)],
(37,181) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(7,2,1),(4,2,1)],
(37,182) => MOP_CODE[(6,1,1),(7,2,1),(4,2,0)],
(37,183) => MOP_CODE[(6,1,0),(7,2,1),(4,2,1)],
(37,184) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(7,1,1),(4,1,1)],
(37,185) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,3,1),(6,3,1),(7,6,1),(4,6,1)],
(37,186) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,7,1),(6,6,1),(7,3,1),(4,3,1)],
(38,187) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0)],
(38,188) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(7,1,1),(4,1,1)],
(38,189) => MOP_CODE[(6,1,1),(7,1,1),(4,1,0)],
(38,190) => MOP_CODE[(6,1,1),(7,1,0),(4,1,1)],
(38,191) => MOP_CODE[(6,1,0),(7,1,1),(4,1,1)],
(38,192) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,3,1),(6,3,1),(7,3,1),(4,3,1)],
(38,193) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(7,2,1),(4,2,1)],
(38,194) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,5,1),(6,6,1),(7,6,1),(4,6,1)],
(39,195) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0)],
(39,196) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(7,2,1),(4,2,1)],
(39,197) => MOP_CODE[(6,1,1),(7,2,1),(4,2,0)],
(39,198) => MOP_CODE[(6,1,1),(7,2,0),(4,2,1)],
(39,199) => MOP_CODE[(6,1,0),(7,2,1),(4,2,1)],
(39,200) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,3,1),(6,3,1),(7,6,1),(4,6,1)],
(39,201) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(7,1,1),(4,1,1)],
(39,202) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,5,1),(6,6,1),(7,3,1),(4,3,1)],
(40,203) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0)],
(40,204) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,1,1),(6,1,1),(7,3,1),(4,3,1)],
(40,205) => MOP_CODE[(6,1,1),(7,3,1),(4,3,0)],
(40,206) => MOP_CODE[(6,1,1),(7,3,0),(4,3,1)],
(40,207) => MOP_CODE[(6,1,0),(7,3,1),(4,3,1)],
(40,208) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,3,1),(6,3,1),(7,1,1),(4,1,1)],
(40,209) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,2,1),(6,2,1),(7,6,1),(4,6,1)],
(40,210) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,5,1),(6,6,1),(7,2,1),(4,2,1)],
(41,211) => MOP_CODE[(6,1,0),(7,6,0),(4,6,0)],
(41,212) => MOP_CODE[(6,1,0),(7,6,0),(4,6,0),(1,1,1),(6,1,1),(7,6,1),(4,6,1)],
(41,213) => MOP_CODE[(6,1,1),(7,6,1),(4,6,0)],
(41,214) => MOP_CODE[(6,1,1),(7,6,0),(4,6,1)],
(41,215) => MOP_CODE[(6,1,0),(7,6,1),(4,6,1)],
(41,216) => MOP_CODE[(6,1,0),(7,6,0),(4,6,0),(1,3,1),(6,3,1),(7,2,1),(4,2,1)],
(41,217) => MOP_CODE[(6,1,0),(7,6,0),(4,6,0),(1,2,1),(6,2,1),(7,3,1),(4,3,1)],
(41,218) => MOP_CODE[(6,1,0),(7,6,0),(4,6,0),(1,5,1),(6,6,1),(7,1,1),(4,1,1)],
(42,219) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0)],
(42,220) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(7,1,1),(4,1,1)],
(42,221) => MOP_CODE[(6,1,1),(7,1,1),(4,1,0)],
(42,222) => MOP_CODE[(6,1,0),(7,1,1),(4,1,1)],
(42,223) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,2,1),(6,8,1),(7,8,1),(4,8,1)],
(43,224) => MOP_CODE[(6,1,0),(7,9,0),(4,9,0)],
(43,225) => MOP_CODE[(6,1,0),(7,9,0),(4,9,0),(1,1,1),(6,1,1),(7,9,1),(4,9,1)],
(43,226) => MOP_CODE[(6,1,1),(7,9,1),(4,9,0)],
(43,227) => MOP_CODE[(6,1,0),(7,9,1),(4,9,1)],
(43,228) => MOP_CODE[(6,1,0),(7,9,0),(4,9,0),(1,2,1),(6,8,1),(7,10,1),(4,10,1)],
(44,229) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0)],
(44,230) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(7,1,1),(4,1,1)],
(44,231) => MOP_CODE[(6,1,1),(7,1,1),(4,1,0)],
(44,232) => MOP_CODE[(6,1,0),(7,1,1),(4,1,1)],
(44,233) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(7,2,1),(4,2,1)],
(44,234) => MOP_CODE[(6,1,0),(7,1,0),(4,1,0),(1,3,1),(6,3,1),(7,3,1),(4,3,1)],
(45,235) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0)],
(45,236) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(7,2,1),(4,2,1)],
(45,237) => MOP_CODE[(6,1,1),(7,2,1),(4,2,0)],
(45,238) => MOP_CODE[(6,1,0),(7,2,1),(4,2,1)],
(45,239) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(7,1,1),(4,1,1)],
(45,240) => MOP_CODE[(6,1,0),(7,2,0),(4,2,0),(1,3,1),(6,3,1),(7,4,1),(4,4,1)],
(46,241) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0)],
(46,242) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,1,1),(6,1,1),(7,3,1),(4,3,1)],
(46,243) => MOP_CODE[(6,1,1),(7,3,1),(4,3,0)],
(46,244) => MOP_CODE[(6,1,1),(7,3,0),(4,3,1)],
(46,245) => MOP_CODE[(6,1,0),(7,3,1),(4,3,1)],
(46,246) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,2,1),(6,2,1),(7,4,1),(4,4,1)],
(46,247) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,3,1),(6,3,1),(7,1,1),(4,1,1)],
(46,248) => MOP_CODE[(6,1,0),(7,3,0),(4,3,0),(1,4,1),(6,4,1),(7,2,1),(4,2,1)],
(47,249) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0)],
(47,250) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(47,251) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,0),(8,1,0)],
(47,252) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(2,1,0),(7,1,1),(4,1,1),(8,1,0)],
(47,253) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(47,254) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,3,1),(5,3,1),(3,3,1),(6,3,1),(2,3,1),(7,3,1),(4,3,1),(8,3,1)],
(47,255) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,5,1),(5,5,1),(3,5,1),(6,5,1),(2,5,1),(7,5,1),(4,5,1),(8,5,1)],
(47,256) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(2,8,1),(7,8,1),(4,8,1),(8,8,1)],
(48,257) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0)],
(48,258) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(1,1,1),(5,7,1),(3,6,1),(6,5,1),(2,1,1),(7,7,1),(4,6,1),(8,5,1)],
(48,259) => MOP_CODE[(5,7,0),(3,6,1),(6,5,1),(2,1,1),(7,7,1),(4,6,0),(8,5,0)],
(48,260) => MOP_CODE[(5,7,1),(3,6,1),(6,5,0),(2,1,0),(7,7,1),(4,6,1),(8,5,0)],
(48,261) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,1),(7,7,1),(4,6,1),(8,5,1)],
(48,262) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(1,2,1),(5,4,1),(3,3,1),(6,8,1),(2,2,1),(7,4,1),(4,3,1),(8,8,1)],
(48,263) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(1,5,1),(5,6,1),(3,7,1),(6,1,1),(2,5,1),(7,6,1),(4,7,1),(8,1,1)],
(48,264) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(1,8,1),(5,3,1),(3,4,1),(6,2,1),(2,8,1),(7,3,1),(4,4,1),(8,2,1)],
(49,265) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0)],
(49,266) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,1,1),(5,2,1),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(49,267) => MOP_CODE[(5,2,0),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,0),(8,1,0)],
(49,268) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,1),(7,2,0),(4,2,0),(8,1,1)],
(49,269) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,0),(7,2,1),(4,2,1),(8,1,0)],
(49,270) => MOP_CODE[(5,2,1),(3,2,0),(6,1,1),(2,1,0),(7,2,1),(4,2,0),(8,1,1)],
(49,271) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(49,272) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,3,1),(5,6,1),(3,6,1),(6,3,1),(2,3,1),(7,6,1),(4,6,1),(8,3,1)],
(49,273) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,2,1),(5,1,1),(3,1,1),(6,2,1),(2,2,1),(7,1,1),(4,1,1),(8,2,1)],
(49,274) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,6,1),(5,3,1),(3,3,1),(6,6,1),(2,6,1),(7,3,1),(4,3,1),(8,6,1)],
(49,275) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,5,1),(5,8,1),(3,8,1),(6,5,1),(2,5,1),(7,8,1),(4,8,1),(8,5,1)],
(49,276) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,8,1),(5,5,1),(3,5,1),(6,8,1),(2,8,1),(7,5,1),(4,5,1),(8,8,1)],
(50,277) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0)],
(50,278) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,1,1),(5,4,1),(3,3,1),(6,5,1),(2,1,1),(7,4,1),(4,3,1),(8,5,1)],
(50,279) => MOP_CODE[(5,4,0),(3,3,1),(6,5,1),(2,1,1),(7,4,1),(4,3,0),(8,5,0)],
(50,280) => MOP_CODE[(5,4,1),(3,3,1),(6,5,0),(2,1,1),(7,4,0),(4,3,0),(8,5,1)],
(50,281) => MOP_CODE[(5,4,1),(3,3,1),(6,5,0),(2,1,0),(7,4,1),(4,3,1),(8,5,0)],
(50,282) => MOP_CODE[(5,4,1),(3,3,0),(6,5,1),(2,1,0),(7,4,1),(4,3,0),(8,5,1)],
(50,283) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,1),(7,4,1),(4,3,1),(8,5,1)],
(50,284) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,3,1),(5,5,1),(3,1,1),(6,4,1),(2,3,1),(7,5,1),(4,1,1),(8,4,1)],
(50,285) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,2,1),(5,7,1),(3,6,1),(6,8,1),(2,2,1),(7,7,1),(4,6,1),(8,8,1)],
(50,286) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,7,1),(5,2,1),(3,8,1),(6,6,1),(2,7,1),(7,2,1),(4,8,1),(8,6,1)],
(50,287) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,5,1),(5,3,1),(3,4,1),(6,1,1),(2,5,1),(7,3,1),(4,4,1),(8,1,1)],
(50,288) => MOP_CODE[(5,4,0),(3,3,0),(6,5,0),(2,1,0),(7,4,0),(4,3,0),(8,5,0),(1,8,1),(5,6,1),(3,7,1),(6,2,1),(2,8,1),(7,6,1),(4,7,1),(8,2,1)],
(51,289) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0)],
(51,290) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,1,1),(5,3,1),(3,1,1),(6,3,1),(2,1,1),(7,3,1),(4,1,1),(8,3,1)],
(51,291) => MOP_CODE[(5,3,0),(3,1,1),(6,3,1),(2,1,1),(7,3,1),(4,1,0),(8,3,0)],
(51,292) => MOP_CODE[(5,3,1),(3,1,0),(6,3,1),(2,1,1),(7,3,0),(4,1,1),(8,3,0)],
(51,293) => MOP_CODE[(5,3,1),(3,1,1),(6,3,0),(2,1,1),(7,3,0),(4,1,0),(8,3,1)],
(51,294) => MOP_CODE[(5,3,1),(3,1,1),(6,3,0),(2,1,0),(7,3,1),(4,1,1),(8,3,0)],
(51,295) => MOP_CODE[(5,3,0),(3,1,1),(6,3,1),(2,1,0),(7,3,0),(4,1,1),(8,3,1)],
(51,296) => MOP_CODE[(5,3,1),(3,1,0),(6,3,1),(2,1,0),(7,3,1),(4,1,0),(8,3,1)],
(51,297) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,1),(7,3,1),(4,1,1),(8,3,1)],
(51,298) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,3,1),(5,1,1),(3,3,1),(6,1,1),(2,3,1),(7,1,1),(4,3,1),(8,1,1)],
(51,299) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,4,1),(5,5,1),(3,4,1),(6,5,1),(2,4,1),(7,5,1),(4,4,1),(8,5,1)],
(51,300) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,2,1),(5,6,1),(3,2,1),(6,6,1),(2,2,1),(7,6,1),(4,2,1),(8,6,1)],
(51,301) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,7,1),(5,8,1),(3,7,1),(6,8,1),(2,7,1),(7,8,1),(4,7,1),(8,8,1)],
(51,302) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,6,1),(5,2,1),(3,6,1),(6,2,1),(2,6,1),(7,2,1),(4,6,1),(8,2,1)],
(51,303) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,5,1),(5,4,1),(3,5,1),(6,4,1),(2,5,1),(7,4,1),(4,5,1),(8,4,1)],
(51,304) => MOP_CODE[(5,3,0),(3,1,0),(6,3,0),(2,1,0),(7,3,0),(4,1,0),(8,3,0),(1,8,1),(5,7,1),(3,8,1),(6,7,1),(2,8,1),(7,7,1),(4,8,1),(8,7,1)],
(52,305) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0)],
(52,306) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,1,1),(5,7,1),(3,8,1),(6,3,1),(2,1,1),(7,7,1),(4,8,1),(8,3,1)],
(52,307) => MOP_CODE[(5,7,0),(3,8,1),(6,3,1),(2,1,1),(7,7,1),(4,8,0),(8,3,0)],
(52,308) => MOP_CODE[(5,7,1),(3,8,0),(6,3,1),(2,1,1),(7,7,0),(4,8,1),(8,3,0)],
(52,309) => MOP_CODE[(5,7,1),(3,8,1),(6,3,0),(2,1,1),(7,7,0),(4,8,0),(8,3,1)],
(52,310) => MOP_CODE[(5,7,1),(3,8,1),(6,3,0),(2,1,0),(7,7,1),(4,8,1),(8,3,0)],
(52,311) => MOP_CODE[(5,7,0),(3,8,1),(6,3,1),(2,1,0),(7,7,0),(4,8,1),(8,3,1)],
(52,312) => MOP_CODE[(5,7,1),(3,8,0),(6,3,1),(2,1,0),(7,7,1),(4,8,0),(8,3,1)],
(52,313) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,1),(7,7,1),(4,8,1),(8,3,1)],
(52,314) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,3,1),(5,8,1),(3,7,1),(6,1,1),(2,3,1),(7,8,1),(4,7,1),(8,1,1)],
(52,315) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,4,1),(5,2,1),(3,6,1),(6,5,1),(2,4,1),(7,2,1),(4,6,1),(8,5,1)],
(52,316) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,2,1),(5,4,1),(3,5,1),(6,6,1),(2,2,1),(7,4,1),(4,5,1),(8,6,1)],
(52,317) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,7,1),(5,1,1),(3,3,1),(6,8,1),(2,7,1),(7,1,1),(4,3,1),(8,8,1)],
(52,318) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,6,1),(5,5,1),(3,4,1),(6,2,1),(2,6,1),(7,5,1),(4,4,1),(8,2,1)],
(52,319) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,5,1),(5,6,1),(3,2,1),(6,4,1),(2,5,1),(7,6,1),(4,2,1),(8,4,1)],
(52,320) => MOP_CODE[(5,7,0),(3,8,0),(6,3,0),(2,1,0),(7,7,0),(4,8,0),(8,3,0),(1,8,1),(5,3,1),(3,1,1),(6,7,1),(2,8,1),(7,3,1),(4,1,1),(8,7,1)],
(53,321) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0)],
(53,322) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,1,1),(5,1,1),(3,6,1),(6,6,1),(2,1,1),(7,1,1),(4,6,1),(8,6,1)],
(53,323) => MOP_CODE[(5,1,0),(3,6,1),(6,6,1),(2,1,1),(7,1,1),(4,6,0),(8,6,0)],
(53,324) => MOP_CODE[(5,1,1),(3,6,0),(6,6,1),(2,1,1),(7,1,0),(4,6,1),(8,6,0)],
(53,325) => MOP_CODE[(5,1,1),(3,6,1),(6,6,0),(2,1,1),(7,1,0),(4,6,0),(8,6,1)],
(53,326) => MOP_CODE[(5,1,1),(3,6,1),(6,6,0),(2,1,0),(7,1,1),(4,6,1),(8,6,0)],
(53,327) => MOP_CODE[(5,1,0),(3,6,1),(6,6,1),(2,1,0),(7,1,0),(4,6,1),(8,6,1)],
(53,328) => MOP_CODE[(5,1,1),(3,6,0),(6,6,1),(2,1,0),(7,1,1),(4,6,0),(8,6,1)],
(53,329) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,1),(7,1,1),(4,6,1),(8,6,1)],
(53,330) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,3,1),(5,3,1),(3,2,1),(6,2,1),(2,3,1),(7,3,1),(4,2,1),(8,2,1)],
(53,331) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,4,1),(5,4,1),(3,8,1),(6,8,1),(2,4,1),(7,4,1),(4,8,1),(8,8,1)],
(53,332) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,2,1),(5,2,1),(3,3,1),(6,3,1),(2,2,1),(7,2,1),(4,3,1),(8,3,1)],
(53,333) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,7,1),(5,7,1),(3,5,1),(6,5,1),(2,7,1),(7,7,1),(4,5,1),(8,5,1)],
(53,334) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,6,1),(5,6,1),(3,1,1),(6,1,1),(2,6,1),(7,6,1),(4,1,1),(8,1,1)],
(53,335) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,5,1),(5,5,1),(3,7,1),(6,7,1),(2,5,1),(7,5,1),(4,7,1),(8,7,1)],
(53,336) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,8,1),(5,8,1),(3,4,1),(6,4,1),(2,8,1),(7,8,1),(4,4,1),(8,4,1)],
(54,337) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0)],
(54,338) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,1,1),(5,6,1),(3,2,1),(6,3,1),(2,1,1),(7,6,1),(4,2,1),(8,3,1)],
(54,339) => MOP_CODE[(5,6,0),(3,2,1),(6,3,1),(2,1,1),(7,6,1),(4,2,0),(8,3,0)],
(54,340) => MOP_CODE[(5,6,1),(3,2,0),(6,3,1),(2,1,1),(7,6,0),(4,2,1),(8,3,0)],
(54,341) => MOP_CODE[(5,6,1),(3,2,1),(6,3,0),(2,1,1),(7,6,0),(4,2,0),(8,3,1)],
(54,342) => MOP_CODE[(5,6,1),(3,2,1),(6,3,0),(2,1,0),(7,6,1),(4,2,1),(8,3,0)],
(54,343) => MOP_CODE[(5,6,0),(3,2,1),(6,3,1),(2,1,0),(7,6,0),(4,2,1),(8,3,1)],
(54,344) => MOP_CODE[(5,6,1),(3,2,0),(6,3,1),(2,1,0),(7,6,1),(4,2,0),(8,3,1)],
(54,345) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,1),(7,6,1),(4,2,1),(8,3,1)],
(54,346) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,3,1),(5,2,1),(3,6,1),(6,1,1),(2,3,1),(7,2,1),(4,6,1),(8,1,1)],
(54,347) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,4,1),(5,8,1),(3,7,1),(6,5,1),(2,4,1),(7,8,1),(4,7,1),(8,5,1)],
(54,348) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,2,1),(5,3,1),(3,1,1),(6,6,1),(2,2,1),(7,3,1),(4,1,1),(8,6,1)],
(54,349) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,7,1),(5,5,1),(3,4,1),(6,8,1),(2,7,1),(7,5,1),(4,4,1),(8,8,1)],
(54,350) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,6,1),(5,1,1),(3,3,1),(6,2,1),(2,6,1),(7,1,1),(4,3,1),(8,2,1)],
(54,351) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,5,1),(5,7,1),(3,8,1),(6,4,1),(2,5,1),(7,7,1),(4,8,1),(8,4,1)],
(54,352) => MOP_CODE[(5,6,0),(3,2,0),(6,3,0),(2,1,0),(7,6,0),(4,2,0),(8,3,0),(1,8,1),(5,4,1),(3,5,1),(6,7,1),(2,8,1),(7,4,1),(4,5,1),(8,7,1)],
(55,353) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0)],
(55,354) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,1,1),(5,5,1),(3,5,1),(6,1,1),(2,1,1),(7,5,1),(4,5,1),(8,1,1)],
(55,355) => MOP_CODE[(5,5,0),(3,5,1),(6,1,1),(2,1,1),(7,5,1),(4,5,0),(8,1,0)],
(55,356) => MOP_CODE[(5,5,1),(3,5,1),(6,1,0),(2,1,1),(7,5,0),(4,5,0),(8,1,1)],
(55,357) => MOP_CODE[(5,5,1),(3,5,1),(6,1,0),(2,1,0),(7,5,1),(4,5,1),(8,1,0)],
(55,358) => MOP_CODE[(5,5,1),(3,5,0),(6,1,1),(2,1,0),(7,5,1),(4,5,0),(8,1,1)],
(55,359) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,1),(7,5,1),(4,5,1),(8,1,1)],
(55,360) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,3,1),(5,4,1),(3,4,1),(6,3,1),(2,3,1),(7,4,1),(4,4,1),(8,3,1)],
(55,361) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,2,1),(5,8,1),(3,8,1),(6,2,1),(2,2,1),(7,8,1),(4,8,1),(8,2,1)],
(55,362) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,7,1),(5,6,1),(3,6,1),(6,7,1),(2,7,1),(7,6,1),(4,6,1),(8,7,1)],
(55,363) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,5,1),(5,1,1),(3,1,1),(6,5,1),(2,5,1),(7,1,1),(4,1,1),(8,5,1)],
(55,364) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(2,1,0),(7,5,0),(4,5,0),(8,1,0),(1,8,1),(5,2,1),(3,2,1),(6,8,1),(2,8,1),(7,2,1),(4,2,1),(8,8,1)],
(56,365) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0)],
(56,366) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,1,1),(5,6,1),(3,7,1),(6,5,1),(2,1,1),(7,6,1),(4,7,1),(8,5,1)],
(56,367) => MOP_CODE[(5,6,0),(3,7,1),(6,5,1),(2,1,1),(7,6,1),(4,7,0),(8,5,0)],
(56,368) => MOP_CODE[(5,6,1),(3,7,1),(6,5,0),(2,1,1),(7,6,0),(4,7,0),(8,5,1)],
(56,369) => MOP_CODE[(5,6,1),(3,7,1),(6,5,0),(2,1,0),(7,6,1),(4,7,1),(8,5,0)],
(56,370) => MOP_CODE[(5,6,1),(3,7,0),(6,5,1),(2,1,0),(7,6,1),(4,7,0),(8,5,1)],
(56,371) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,1),(7,6,1),(4,7,1),(8,5,1)],
(56,372) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,4,1),(5,8,1),(3,2,1),(6,3,1),(2,4,1),(7,8,1),(4,2,1),(8,3,1)],
(56,373) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,2,1),(5,3,1),(3,4,1),(6,8,1),(2,2,1),(7,3,1),(4,4,1),(8,8,1)],
(56,374) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,7,1),(5,5,1),(3,1,1),(6,6,1),(2,7,1),(7,5,1),(4,1,1),(8,6,1)],
(56,375) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,5,1),(5,7,1),(3,6,1),(6,1,1),(2,5,1),(7,7,1),(4,6,1),(8,1,1)],
(56,376) => MOP_CODE[(5,6,0),(3,7,0),(6,5,0),(2,1,0),(7,6,0),(4,7,0),(8,5,0),(1,8,1),(5,4,1),(3,3,1),(6,2,1),(2,8,1),(7,4,1),(4,3,1),(8,2,1)],
(57,377) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0)],
(57,378) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,1,1),(5,4,1),(3,7,1),(6,2,1),(2,1,1),(7,4,1),(4,7,1),(8,2,1)],
(57,379) => MOP_CODE[(5,4,0),(3,7,1),(6,2,1),(2,1,1),(7,4,1),(4,7,0),(8,2,0)],
(57,380) => MOP_CODE[(5,4,1),(3,7,0),(6,2,1),(2,1,1),(7,4,0),(4,7,1),(8,2,0)],
(57,381) => MOP_CODE[(5,4,1),(3,7,1),(6,2,0),(2,1,1),(7,4,0),(4,7,0),(8,2,1)],
(57,382) => MOP_CODE[(5,4,1),(3,7,1),(6,2,0),(2,1,0),(7,4,1),(4,7,1),(8,2,0)],
(57,383) => MOP_CODE[(5,4,0),(3,7,1),(6,2,1),(2,1,0),(7,4,0),(4,7,1),(8,2,1)],
(57,384) => MOP_CODE[(5,4,1),(3,7,0),(6,2,1),(2,1,0),(7,4,1),(4,7,0),(8,2,1)],
(57,385) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,1),(7,4,1),(4,7,1),(8,2,1)],
(57,386) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,3,1),(5,5,1),(3,8,1),(6,6,1),(2,3,1),(7,5,1),(4,8,1),(8,6,1)],
(57,387) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,4,1),(5,1,1),(3,2,1),(6,7,1),(2,4,1),(7,1,1),(4,2,1),(8,7,1)],
(57,388) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,2,1),(5,7,1),(3,4,1),(6,1,1),(2,2,1),(7,7,1),(4,4,1),(8,1,1)],
(57,389) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,7,1),(5,2,1),(3,1,1),(6,4,1),(2,7,1),(7,2,1),(4,1,1),(8,4,1)],
(57,390) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,6,1),(5,8,1),(3,5,1),(6,3,1),(2,6,1),(7,8,1),(4,5,1),(8,3,1)],
(57,391) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,5,1),(5,3,1),(3,6,1),(6,8,1),(2,5,1),(7,3,1),(4,6,1),(8,8,1)],
(57,392) => MOP_CODE[(5,4,0),(3,7,0),(6,2,0),(2,1,0),(7,4,0),(4,7,0),(8,2,0),(1,8,1),(5,6,1),(3,3,1),(6,5,1),(2,8,1),(7,6,1),(4,3,1),(8,5,1)],
(58,393) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0)],
(58,394) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,1,1),(5,8,1),(3,8,1),(6,1,1),(2,1,1),(7,8,1),(4,8,1),(8,1,1)],
(58,395) => MOP_CODE[(5,8,0),(3,8,1),(6,1,1),(2,1,1),(7,8,1),(4,8,0),(8,1,0)],
(58,396) => MOP_CODE[(5,8,1),(3,8,1),(6,1,0),(2,1,1),(7,8,0),(4,8,0),(8,1,1)],
(58,397) => MOP_CODE[(5,8,1),(3,8,1),(6,1,0),(2,1,0),(7,8,1),(4,8,1),(8,1,0)],
(58,398) => MOP_CODE[(5,8,0),(3,8,1),(6,1,1),(2,1,0),(7,8,0),(4,8,1),(8,1,1)],
(58,399) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,1),(7,8,1),(4,8,1),(8,1,1)],
(58,400) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,3,1),(5,7,1),(3,7,1),(6,3,1),(2,3,1),(7,7,1),(4,7,1),(8,3,1)],
(58,401) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,2,1),(5,5,1),(3,5,1),(6,2,1),(2,2,1),(7,5,1),(4,5,1),(8,2,1)],
(58,402) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,6,1),(5,4,1),(3,4,1),(6,6,1),(2,6,1),(7,4,1),(4,4,1),(8,6,1)],
(58,403) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,5,1),(5,2,1),(3,2,1),(6,5,1),(2,5,1),(7,2,1),(4,2,1),(8,5,1)],
(58,404) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(2,1,0),(7,8,0),(4,8,0),(8,1,0),(1,8,1),(5,1,1),(3,1,1),(6,8,1),(2,8,1),(7,1,1),(4,1,1),(8,8,1)],
(59,405) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0)],
(59,406) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,1,1),(5,3,1),(3,4,1),(6,5,1),(2,1,1),(7,3,1),(4,4,1),(8,5,1)],
(59,407) => MOP_CODE[(5,3,0),(3,4,1),(6,5,1),(2,1,1),(7,3,1),(4,4,0),(8,5,0)],
(59,408) => MOP_CODE[(5,3,1),(3,4,1),(6,5,0),(2,1,1),(7,3,0),(4,4,0),(8,5,1)],
(59,409) => MOP_CODE[(5,3,1),(3,4,1),(6,5,0),(2,1,0),(7,3,1),(4,4,1),(8,5,0)],
(59,410) => MOP_CODE[(5,3,0),(3,4,1),(6,5,1),(2,1,0),(7,3,0),(4,4,1),(8,5,1)],
(59,411) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,1),(7,3,1),(4,4,1),(8,5,1)],
(59,412) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,4,1),(5,5,1),(3,1,1),(6,3,1),(2,4,1),(7,5,1),(4,1,1),(8,3,1)],
(59,413) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,2,1),(5,6,1),(3,7,1),(6,8,1),(2,2,1),(7,6,1),(4,7,1),(8,8,1)],
(59,414) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,6,1),(5,2,1),(3,8,1),(6,7,1),(2,6,1),(7,2,1),(4,8,1),(8,7,1)],
(59,415) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,5,1),(5,4,1),(3,3,1),(6,1,1),(2,5,1),(7,4,1),(4,3,1),(8,1,1)],
(59,416) => MOP_CODE[(5,3,0),(3,4,0),(6,5,0),(2,1,0),(7,3,0),(4,4,0),(8,5,0),(1,8,1),(5,7,1),(3,6,1),(6,2,1),(2,8,1),(7,7,1),(4,6,1),(8,2,1)],
(60,417) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0)],
(60,418) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,1,1),(5,5,1),(3,2,1),(6,8,1),(2,1,1),(7,5,1),(4,2,1),(8,8,1)],
(60,419) => MOP_CODE[(5,5,0),(3,2,1),(6,8,1),(2,1,1),(7,5,1),(4,2,0),(8,8,0)],
(60,420) => MOP_CODE[(5,5,1),(3,2,0),(6,8,1),(2,1,1),(7,5,0),(4,2,1),(8,8,0)],
(60,421) => MOP_CODE[(5,5,1),(3,2,1),(6,8,0),(2,1,1),(7,5,0),(4,2,0),(8,8,1)],
(60,422) => MOP_CODE[(5,5,1),(3,2,1),(6,8,0),(2,1,0),(7,5,1),(4,2,1),(8,8,0)],
(60,423) => MOP_CODE[(5,5,0),(3,2,1),(6,8,1),(2,1,0),(7,5,0),(4,2,1),(8,8,1)],
(60,424) => MOP_CODE[(5,5,1),(3,2,0),(6,8,1),(2,1,0),(7,5,1),(4,2,0),(8,8,1)],
(60,425) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,1),(7,5,1),(4,2,1),(8,8,1)],
(60,426) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,3,1),(5,4,1),(3,6,1),(6,7,1),(2,3,1),(7,4,1),(4,6,1),(8,7,1)],
(60,427) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,4,1),(5,3,1),(3,7,1),(6,6,1),(2,4,1),(7,3,1),(4,7,1),(8,6,1)],
(60,428) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,2,1),(5,8,1),(3,1,1),(6,5,1),(2,2,1),(7,8,1),(4,1,1),(8,5,1)],
(60,429) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,7,1),(5,6,1),(3,4,1),(6,3,1),(2,7,1),(7,6,1),(4,4,1),(8,3,1)],
(60,430) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,6,1),(5,7,1),(3,3,1),(6,4,1),(2,6,1),(7,7,1),(4,3,1),(8,4,1)],
(60,431) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,5,1),(5,1,1),(3,8,1),(6,2,1),(2,5,1),(7,1,1),(4,8,1),(8,2,1)],
(60,432) => MOP_CODE[(5,5,0),(3,2,0),(6,8,0),(2,1,0),(7,5,0),(4,2,0),(8,8,0),(1,8,1),(5,2,1),(3,5,1),(6,1,1),(2,8,1),(7,2,1),(4,5,1),(8,1,1)],
(61,433) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0)],
(61,434) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(1,1,1),(5,5,1),(3,7,1),(6,6,1),(2,1,1),(7,5,1),(4,7,1),(8,6,1)],
(61,435) => MOP_CODE[(5,5,0),(3,7,1),(6,6,1),(2,1,1),(7,5,1),(4,7,0),(8,6,0)],
(61,436) => MOP_CODE[(5,5,1),(3,7,1),(6,6,0),(2,1,0),(7,5,1),(4,7,1),(8,6,0)],
(61,437) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,1),(7,5,1),(4,7,1),(8,6,1)],
(61,438) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(1,3,1),(5,4,1),(3,8,1),(6,2,1),(2,3,1),(7,4,1),(4,8,1),(8,2,1)],
(61,439) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(1,5,1),(5,1,1),(3,6,1),(6,7,1),(2,5,1),(7,1,1),(4,6,1),(8,7,1)],
(61,440) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(1,8,1),(5,2,1),(3,3,1),(6,4,1),(2,8,1),(7,2,1),(4,3,1),(8,4,1)],
(62,441) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0)],
(62,442) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,1,1),(5,8,1),(3,4,1),(6,6,1),(2,1,1),(7,8,1),(4,4,1),(8,6,1)],
(62,443) => MOP_CODE[(5,8,0),(3,4,1),(6,6,1),(2,1,1),(7,8,1),(4,4,0),(8,6,0)],
(62,444) => MOP_CODE[(5,8,1),(3,4,0),(6,6,1),(2,1,1),(7,8,0),(4,4,1),(8,6,0)],
(62,445) => MOP_CODE[(5,8,1),(3,4,1),(6,6,0),(2,1,1),(7,8,0),(4,4,0),(8,6,1)],
(62,446) => MOP_CODE[(5,8,1),(3,4,1),(6,6,0),(2,1,0),(7,8,1),(4,4,1),(8,6,0)],
(62,447) => MOP_CODE[(5,8,0),(3,4,1),(6,6,1),(2,1,0),(7,8,0),(4,4,1),(8,6,1)],
(62,448) => MOP_CODE[(5,8,1),(3,4,0),(6,6,1),(2,1,0),(7,8,1),(4,4,0),(8,6,1)],
(62,449) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,1),(7,8,1),(4,4,1),(8,6,1)],
(62,450) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,3,1),(5,7,1),(3,5,1),(6,2,1),(2,3,1),(7,7,1),(4,5,1),(8,2,1)],
(62,451) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,4,1),(5,6,1),(3,1,1),(6,8,1),(2,4,1),(7,6,1),(4,1,1),(8,8,1)],
(62,452) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,2,1),(5,5,1),(3,7,1),(6,3,1),(2,2,1),(7,5,1),(4,7,1),(8,3,1)],
(62,453) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,7,1),(5,3,1),(3,2,1),(6,5,1),(2,7,1),(7,3,1),(4,2,1),(8,5,1)],
(62,454) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,6,1),(5,4,1),(3,8,1),(6,1,1),(2,6,1),(7,4,1),(4,8,1),(8,1,1)],
(62,455) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,5,1),(5,2,1),(3,3,1),(6,7,1),(2,5,1),(7,2,1),(4,3,1),(8,7,1)],
(62,456) => MOP_CODE[(5,8,0),(3,4,0),(6,6,0),(2,1,0),(7,8,0),(4,4,0),(8,6,0),(1,8,1),(5,1,1),(3,6,1),(6,4,1),(2,8,1),(7,1,1),(4,6,1),(8,4,1)],
(63,457) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,0),(7,1,0),(4,2,0),(8,2,0)],
(63,458) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,0),(7,1,0),(4,2,0),(8,2,0),(1,1,1),(5,1,1),(3,2,1),(6,2,1),(2,1,1),(7,1,1),(4,2,1),(8,2,1)],
(63,459) => MOP_CODE[(5,1,0),(3,2,1),(6,2,1),(2,1,1),(7,1,1),(4,2,0),(8,2,0)],
(63,460) => MOP_CODE[(5,1,1),(3,2,0),(6,2,1),(2,1,1),(7,1,0),(4,2,1),(8,2,0)],
(63,461) => MOP_CODE[(5,1,1),(3,2,1),(6,2,0),(2,1,1),(7,1,0),(4,2,0),(8,2,1)],
(63,462) => MOP_CODE[(5,1,1),(3,2,1),(6,2,0),(2,1,0),(7,1,1),(4,2,1),(8,2,0)],
(63,463) => MOP_CODE[(5,1,0),(3,2,1),(6,2,1),(2,1,0),(7,1,0),(4,2,1),(8,2,1)],
(63,464) => MOP_CODE[(5,1,1),(3,2,0),(6,2,1),(2,1,0),(7,1,1),(4,2,0),(8,2,1)],
(63,465) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,1),(7,1,1),(4,2,1),(8,2,1)],
(63,466) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,0),(7,1,0),(4,2,0),(8,2,0),(1,2,1),(5,2,1),(3,1,1),(6,1,1),(2,2,1),(7,2,1),(4,1,1),(8,1,1)],
(63,467) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,0),(7,1,0),(4,2,0),(8,2,0),(1,3,1),(5,3,1),(3,6,1),(6,6,1),(2,3,1),(7,3,1),(4,6,1),(8,6,1)],
(63,468) => MOP_CODE[(5,1,0),(3,2,0),(6,2,0),(2,1,0),(7,1,0),(4,2,0),(8,2,0),(1,7,1),(5,6,1),(3,3,1),(6,3,1),(2,6,1),(7,6,1),(4,3,1),(8,3,1)],
(64,469) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0)],
(64,470) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,1,1),(5,1,1),(3,6,1),(6,6,1),(2,1,1),(7,1,1),(4,6,1),(8,6,1)],
(64,471) => MOP_CODE[(5,1,0),(3,6,1),(6,6,1),(2,1,1),(7,1,1),(4,6,0),(8,6,0)],
(64,472) => MOP_CODE[(5,1,1),(3,6,0),(6,6,1),(2,1,1),(7,1,0),(4,6,1),(8,6,0)],
(64,473) => MOP_CODE[(5,1,1),(3,6,1),(6,6,0),(2,1,1),(7,1,0),(4,6,0),(8,6,1)],
(64,474) => MOP_CODE[(5,1,1),(3,6,1),(6,6,0),(2,1,0),(7,1,1),(4,6,1),(8,6,0)],
(64,475) => MOP_CODE[(5,1,0),(3,6,1),(6,6,1),(2,1,0),(7,1,0),(4,6,1),(8,6,1)],
(64,476) => MOP_CODE[(5,1,1),(3,6,0),(6,6,1),(2,1,0),(7,1,1),(4,6,0),(8,6,1)],
(64,477) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,1),(7,1,1),(4,6,1),(8,6,1)],
(64,478) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,2,1),(5,2,1),(3,3,1),(6,3,1),(2,2,1),(7,2,1),(4,3,1),(8,3,1)],
(64,479) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,3,1),(5,3,1),(3,2,1),(6,2,1),(2,3,1),(7,3,1),(4,2,1),(8,2,1)],
(64,480) => MOP_CODE[(5,1,0),(3,6,0),(6,6,0),(2,1,0),(7,1,0),(4,6,0),(8,6,0),(1,7,1),(5,6,1),(3,1,1),(6,1,1),(2,6,1),(7,6,1),(4,1,1),(8,1,1)],
(65,481) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0)],
(65,482) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(65,483) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,0),(8,1,0)],
(65,484) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(2,1,1),(7,1,0),(4,1,0),(8,1,1)],
(65,485) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(2,1,0),(7,1,1),(4,1,1),(8,1,0)],
(65,486) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1),(2,1,0),(7,1,0),(4,1,1),(8,1,1)],
(65,487) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(65,488) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1),(2,2,1),(7,2,1),(4,2,1),(8,2,1)],
(65,489) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,3,1),(5,3,1),(3,3,1),(6,3,1),(2,3,1),(7,3,1),(4,3,1),(8,3,1)],
(65,490) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,7,1),(5,6,1),(3,6,1),(6,6,1),(2,6,1),(7,6,1),(4,6,1),(8,6,1)],
(66,491) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0)],
(66,492) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,1,1),(5,2,1),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(66,493) => MOP_CODE[(5,2,0),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,0),(8,1,0)],
(66,494) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,1),(7,2,0),(4,2,0),(8,1,1)],
(66,495) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,0),(7,2,1),(4,2,1),(8,1,0)],
(66,496) => MOP_CODE[(5,2,0),(3,2,1),(6,1,1),(2,1,0),(7,2,0),(4,2,1),(8,1,1)],
(66,497) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(66,498) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,2,1),(5,1,1),(3,1,1),(6,2,1),(2,2,1),(7,1,1),(4,1,1),(8,2,1)],
(66,499) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,3,1),(5,6,1),(3,6,1),(6,3,1),(2,3,1),(7,6,1),(4,6,1),(8,3,1)],
(66,500) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,7,1),(5,3,1),(3,3,1),(6,6,1),(2,6,1),(7,3,1),(4,3,1),(8,6,1)],
(67,501) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,0),(7,1,0),(4,3,0),(8,3,0)],
(67,502) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,0),(7,1,0),(4,3,0),(8,3,0),(1,1,1),(5,1,1),(3,3,1),(6,3,1),(2,1,1),(7,1,1),(4,3,1),(8,3,1)],
(67,503) => MOP_CODE[(5,1,0),(3,3,1),(6,3,1),(2,1,1),(7,1,1),(4,3,0),(8,3,0)],
(67,504) => MOP_CODE[(5,1,1),(3,3,1),(6,3,0),(2,1,1),(7,1,0),(4,3,0),(8,3,1)],
(67,505) => MOP_CODE[(5,1,1),(3,3,1),(6,3,0),(2,1,0),(7,1,1),(4,3,1),(8,3,0)],
(67,506) => MOP_CODE[(5,1,0),(3,3,1),(6,3,1),(2,1,0),(7,1,0),(4,3,1),(8,3,1)],
(67,507) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,1),(7,1,1),(4,3,1),(8,3,1)],
(67,508) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,0),(7,1,0),(4,3,0),(8,3,0),(1,2,1),(5,2,1),(3,6,1),(6,6,1),(2,2,1),(7,2,1),(4,6,1),(8,6,1)],
(67,509) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,0),(7,1,0),(4,3,0),(8,3,0),(1,3,1),(5,3,1),(3,1,1),(6,1,1),(2,3,1),(7,3,1),(4,1,1),(8,1,1)],
(67,510) => MOP_CODE[(5,1,0),(3,3,0),(6,3,0),(2,1,0),(7,1,0),(4,3,0),(8,3,0),(1,7,1),(5,6,1),(3,2,1),(6,2,1),(2,6,1),(7,6,1),(4,2,1),(8,2,1)],
(68,511) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,0),(7,6,0),(4,8,0),(8,3,0)],
(68,512) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,0),(7,6,0),(4,8,0),(8,3,0),(1,1,1),(5,7,1),(3,2,1),(6,4,1),(2,5,1),(7,6,1),(4,8,1),(8,3,1)],
(68,513) => MOP_CODE[(5,7,0),(3,2,1),(6,4,1),(2,5,1),(7,6,1),(4,8,0),(8,3,0)],
(68,514) => MOP_CODE[(5,7,1),(3,2,1),(6,4,0),(2,5,1),(7,6,0),(4,8,0),(8,3,1)],
(68,515) => MOP_CODE[(5,7,1),(3,2,1),(6,4,0),(2,5,0),(7,6,1),(4,8,1),(8,3,0)],
(68,516) => MOP_CODE[(5,7,0),(3,2,1),(6,4,1),(2,5,0),(7,6,0),(4,8,1),(8,3,1)],
(68,517) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,1),(7,6,1),(4,8,1),(8,3,1)],
(68,518) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,0),(7,6,0),(4,8,0),(8,3,0),(1,2,1),(5,4,1),(3,1,1),(6,7,1),(2,8,1),(7,3,1),(4,5,1),(8,6,1)],
(68,519) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,0),(7,6,0),(4,8,0),(8,3,0),(1,3,1),(5,8,1),(3,6,1),(6,5,1),(2,4,1),(7,2,1),(4,7,1),(8,1,1)],
(68,520) => MOP_CODE[(5,7,0),(3,2,0),(6,4,0),(2,5,0),(7,6,0),(4,8,0),(8,3,0),(1,7,1),(5,5,1),(3,3,1),(6,8,1),(2,7,1),(7,1,1),(4,4,1),(8,2,1)],
(69,521) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0)],
(69,522) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(69,523) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,0),(8,1,0)],
(69,524) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(2,1,0),(7,1,1),(4,1,1),(8,1,0)],
(69,525) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(69,526) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1),(2,8,1),(7,8,1),(4,8,1),(8,8,1)],
(70,527) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0)],
(70,528) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0),(1,1,1),(5,11,1),(3,12,1),(6,13,1),(2,1,1),(7,14,1),(4,15,1),(8,16,1)],
(70,529) => MOP_CODE[(5,11,0),(3,12,1),(6,13,1),(2,1,1),(7,14,1),(4,15,0),(8,16,0)],
(70,530) => MOP_CODE[(5,11,1),(3,12,1),(6,13,0),(2,1,0),(7,14,1),(4,15,1),(8,16,0)],
(70,531) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(2,1,1),(7,14,1),(4,15,1),(8,16,1)],
(70,532) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0),(1,2,1),(5,17,1),(3,18,1),(6,19,1),(2,8,1),(7,20,1),(4,21,1),(8,22,1)],
(71,533) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0)],
(71,534) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(71,535) => MOP_CODE[(5,1,0),(3,1,1),(6,1,1),(2,1,1),(7,1,1),(4,1,0),(8,1,0)],
(71,536) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(2,1,0),(7,1,1),(4,1,1),(8,1,0)],
(71,537) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1)],
(71,538) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1),(2,2,1),(7,2,1),(4,2,1),(8,2,1)],
(72,539) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0)],
(72,540) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,1,1),(5,2,1),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(72,541) => MOP_CODE[(5,2,0),(3,2,1),(6,1,1),(2,1,1),(7,2,1),(4,2,0),(8,1,0)],
(72,542) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,1),(7,2,0),(4,2,0),(8,1,1)],
(72,543) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(2,1,0),(7,2,1),(4,2,1),(8,1,0)],
(72,544) => MOP_CODE[(5,2,0),(3,2,1),(6,1,1),(2,1,0),(7,2,0),(4,2,1),(8,1,1)],
(72,545) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,1),(7,2,1),(4,2,1),(8,1,1)],
(72,546) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,2,1),(5,1,1),(3,1,1),(6,2,1),(2,2,1),(7,1,1),(4,1,1),(8,2,1)],
(72,547) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(2,1,0),(7,2,0),(4,2,0),(8,1,0),(1,4,1),(5,3,1),(3,3,1),(6,4,1),(2,4,1),(7,3,1),(4,3,1),(8,4,1)],
(73,548) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(2,1,0),(7,2,0),(4,3,0),(8,4,0)],
(73,549) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(2,1,0),(7,2,0),(4,3,0),(8,4,0),(1,1,1),(5,2,1),(3,3,1),(6,4,1),(2,1,1),(7,2,1),(4,3,1),(8,4,1)],
(73,550) => MOP_CODE[(5,2,0),(3,3,1),(6,4,1),(2,1,1),(7,2,1),(4,3,0),(8,4,0)],
(73,551) => MOP_CODE[(5,2,1),(3,3,1),(6,4,0),(2,1,0),(7,2,1),(4,3,1),(8,4,0)],
(73,552) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(2,1,1),(7,2,1),(4,3,1),(8,4,1)],
(73,553) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(2,1,0),(7,2,0),(4,3,0),(8,4,0),(1,2,1),(5,1,1),(3,4,1),(6,3,1),(2,2,1),(7,1,1),(4,4,1),(8,3,1)],
(74,554) => MOP_CODE[(5,1,0),(3,4,0),(6,4,0),(2,1,0),(7,1,0),(4,4,0),(8,4,0)],
(74,555) => MOP_CODE[(5,1,0),(3,4,0),(6,4,0),(2,1,0),(7,1,0),(4,4,0),(8,4,0),(1,1,1),(5,1,1),(3,4,1),(6,4,1),(2,1,1),(7,1,1),(4,4,1),(8,4,1)],
(74,556) => MOP_CODE[(5,1,0),(3,4,1),(6,4,1),(2,1,1),(7,1,1),(4,4,0),(8,4,0)],
(74,557) => MOP_CODE[(5,1,1),(3,4,1),(6,4,0),(2,1,1),(7,1,0),(4,4,0),(8,4,1)],
(74,558) => MOP_CODE[(5,1,1),(3,4,1),(6,4,0),(2,1,0),(7,1,1),(4,4,1),(8,4,0)],
(74,559) => MOP_CODE[(5,1,0),(3,4,1),(6,4,1),(2,1,0),(7,1,0),(4,4,1),(8,4,1)],
(74,560) => MOP_CODE[(5,1,0),(3,4,0),(6,4,0),(2,1,1),(7,1,1),(4,4,1),(8,4,1)],
(74,561) => MOP_CODE[(5,1,0),(3,4,0),(6,4,0),(2,1,0),(7,1,0),(4,4,0),(8,4,0),(1,2,1),(5,2,1),(3,3,1),(6,3,1),(2,2,1),(7,2,1),(4,3,1),(8,3,1)],
(74,562) => MOP_CODE[(5,1,0),(3,4,0),(6,4,0),(2,1,0),(7,1,0),(4,4,0),(8,4,0),(1,4,1),(5,4,1),(3,1,1),(6,1,1),(2,4,1),(7,4,1),(4,1,1),(8,1,1)],
(75,1) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0)],
(75,2) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1)],
(75,3) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0)],
(75,4) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1)],
(75,5) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1)],
(75,6) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1)],
(76,7) => MOP_CODE[(9,23,0),(10,24,0),(6,2,0)],
(76,8) => MOP_CODE[(9,23,0),(10,24,0),(6,2,0),(1,1,1),(9,23,1),(10,24,1),(6,2,1)],
(76,9) => MOP_CODE[(9,23,1),(10,24,1),(6,2,0)],
(76,10) => MOP_CODE[(9,23,0),(10,24,0),(6,2,0),(1,2,1),(9,24,1),(10,23,1),(6,1,1)],
(76,11) => MOP_CODE[(9,23,0),(10,24,0),(6,2,0),(1,5,1),(9,25,1),(10,26,1),(6,8,1)],
(76,12) => MOP_CODE[(9,23,0),(10,24,0),(6,2,0),(1,8,1),(9,26,1),(10,25,1),(6,5,1)],
(77,13) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0)],
(77,14) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(1,1,1),(9,2,1),(10,2,1),(6,1,1)],
(77,15) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0)],
(77,16) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(1,2,1),(9,1,1),(10,1,1),(6,2,1)],
(77,17) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(1,5,1),(9,8,1),(10,8,1),(6,5,1)],
(77,18) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(1,8,1),(9,5,1),(10,5,1),(6,8,1)],
(78,19) => MOP_CODE[(9,24,0),(10,23,0),(6,2,0)],
(78,20) => MOP_CODE[(9,24,0),(10,23,0),(6,2,0),(1,1,1),(9,24,1),(10,23,1),(6,2,1)],
(78,21) => MOP_CODE[(9,24,1),(10,23,1),(6,2,0)],
(78,22) => MOP_CODE[(9,24,0),(10,23,0),(6,2,0),(1,2,1),(9,23,1),(10,24,1),(6,1,1)],
(78,23) => MOP_CODE[(9,24,0),(10,23,0),(6,2,0),(1,5,1),(9,26,1),(10,25,1),(6,8,1)],
(78,24) => MOP_CODE[(9,24,0),(10,23,0),(6,2,0),(1,8,1),(9,25,1),(10,26,1),(6,5,1)],
(79,25) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0)],
(79,26) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1)],
(79,27) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0)],
(79,28) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1)],
(80,29) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0)],
(80,30) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(1,1,1),(9,27,1),(10,27,1),(6,1,1)],
(80,31) => MOP_CODE[(9,27,1),(10,27,1),(6,1,0)],
(80,32) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(1,2,1),(9,28,1),(10,28,1),(6,2,1)],
(81,33) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0)],
(81,34) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,1,1),(6,1,1),(11,1,1),(12,1,1)],
(81,35) => MOP_CODE[(6,1,0),(11,1,1),(12,1,1)],
(81,36) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,2,1),(6,2,1),(11,2,1),(12,2,1)],
(81,37) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,5,1),(6,5,1),(11,5,1),(12,5,1)],
(81,38) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,8,1),(6,8,1),(11,8,1),(12,8,1)],
(82,39) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0)],
(82,40) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,1,1),(6,1,1),(11,1,1),(12,1,1)],
(82,41) => MOP_CODE[(6,1,0),(11,1,1),(12,1,1)],
(82,42) => MOP_CODE[(6,1,0),(11,1,0),(12,1,0),(1,2,1),(6,2,1),(11,2,1),(12,2,1)],
(83,43) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0)],
(83,44) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(2,1,1),(11,1,1),(12,1,1),(8,1,1)],
(83,45) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(2,1,0),(11,1,1),(12,1,1),(8,1,0)],
(83,46) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,1),(11,1,1),(12,1,1),(8,1,1)],
(83,47) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(2,1,1),(11,1,0),(12,1,0),(8,1,1)],
(83,48) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(2,2,1),(11,2,1),(12,2,1),(8,2,1)],
(83,49) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1),(2,5,1),(11,5,1),(12,5,1),(8,5,1)],
(83,50) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1),(2,8,1),(11,8,1),(12,8,1),(8,8,1)],
(84,51) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,0),(11,2,0),(12,2,0),(8,1,0)],
(84,52) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,0),(11,2,0),(12,2,0),(8,1,0),(1,1,1),(9,2,1),(10,2,1),(6,1,1),(2,1,1),(11,2,1),(12,2,1),(8,1,1)],
(84,53) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(2,1,0),(11,2,1),(12,2,1),(8,1,0)],
(84,54) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,1),(11,2,1),(12,2,1),(8,1,1)],
(84,55) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(2,1,1),(11,2,0),(12,2,0),(8,1,1)],
(84,56) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,0),(11,2,0),(12,2,0),(8,1,0),(1,2,1),(9,1,1),(10,1,1),(6,2,1),(2,2,1),(11,1,1),(12,1,1),(8,2,1)],
(84,57) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,0),(11,2,0),(12,2,0),(8,1,0),(1,5,1),(9,8,1),(10,8,1),(6,5,1),(2,5,1),(11,8,1),(12,8,1),(8,5,1)],
(84,58) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(2,1,0),(11,2,0),(12,2,0),(8,1,0),(1,8,1),(9,5,1),(10,5,1),(6,8,1),(2,8,1),(11,5,1),(12,5,1),(8,8,1)],
(85,59) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,0),(11,3,0),(12,4,0),(8,5,0)],
(85,60) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,0),(11,3,0),(12,4,0),(8,5,0),(1,1,1),(9,3,1),(10,4,1),(6,5,1),(2,1,1),(11,3,1),(12,4,1),(8,5,1)],
(85,61) => MOP_CODE[(9,3,1),(10,4,1),(6,5,0),(2,1,0),(11,3,1),(12,4,1),(8,5,0)],
(85,62) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,1),(11,3,1),(12,4,1),(8,5,1)],
(85,63) => MOP_CODE[(9,3,1),(10,4,1),(6,5,0),(2,1,1),(11,3,0),(12,4,0),(8,5,1)],
(85,64) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,0),(11,3,0),(12,4,0),(8,5,0),(1,2,1),(9,6,1),(10,7,1),(6,8,1),(2,2,1),(11,6,1),(12,7,1),(8,8,1)],
(85,65) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,0),(11,3,0),(12,4,0),(8,5,0),(1,5,1),(9,4,1),(10,3,1),(6,1,1),(2,5,1),(11,4,1),(12,3,1),(8,1,1)],
(85,66) => MOP_CODE[(9,3,0),(10,4,0),(6,5,0),(2,1,0),(11,3,0),(12,4,0),(8,5,0),(1,8,1),(9,7,1),(10,6,1),(6,2,1),(2,8,1),(11,7,1),(12,6,1),(8,2,1)],
(86,67) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,0),(11,7,0),(12,6,0),(8,5,0)],
(86,68) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,0),(11,7,0),(12,6,0),(8,5,0),(1,1,1),(9,7,1),(10,6,1),(6,5,1),(2,1,1),(11,7,1),(12,6,1),(8,5,1)],
(86,69) => MOP_CODE[(9,7,1),(10,6,1),(6,5,0),(2,1,0),(11,7,1),(12,6,1),(8,5,0)],
(86,70) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,1),(11,7,1),(12,6,1),(8,5,1)],
(86,71) => MOP_CODE[(9,7,1),(10,6,1),(6,5,0),(2,1,1),(11,7,0),(12,6,0),(8,5,1)],
(86,72) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,0),(11,7,0),(12,6,0),(8,5,0),(1,2,1),(9,4,1),(10,3,1),(6,8,1),(2,2,1),(11,4,1),(12,3,1),(8,8,1)],
(86,73) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,0),(11,7,0),(12,6,0),(8,5,0),(1,5,1),(9,6,1),(10,7,1),(6,1,1),(2,5,1),(11,6,1),(12,7,1),(8,1,1)],
(86,74) => MOP_CODE[(9,7,0),(10,6,0),(6,5,0),(2,1,0),(11,7,0),(12,6,0),(8,5,0),(1,8,1),(9,3,1),(10,4,1),(6,2,1),(2,8,1),(11,3,1),(12,4,1),(8,2,1)],
(87,75) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0)],
(87,76) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(2,1,1),(11,1,1),(12,1,1),(8,1,1)],
(87,77) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(2,1,0),(11,1,1),(12,1,1),(8,1,0)],
(87,78) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,1),(11,1,1),(12,1,1),(8,1,1)],
(87,79) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(2,1,1),(11,1,0),(12,1,0),(8,1,1)],
(87,80) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(2,1,0),(11,1,0),(12,1,0),(8,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(2,2,1),(11,2,1),(12,2,1),(8,2,1)],
(88,81) => MOP_CODE[(9,29,0),(10,9,0),(6,4,0),(2,1,0),(11,30,0),(12,10,0),(8,4,0)],
(88,82) => MOP_CODE[(9,29,0),(10,9,0),(6,4,0),(2,1,0),(11,30,0),(12,10,0),(8,4,0),(1,1,1),(9,29,1),(10,9,1),(6,4,1),(2,1,1),(11,30,1),(12,10,1),(8,4,1)],
(88,83) => MOP_CODE[(9,29,1),(10,9,1),(6,4,0),(2,1,0),(11,30,1),(12,10,1),(8,4,0)],
(88,84) => MOP_CODE[(9,29,0),(10,9,0),(6,4,0),(2,1,1),(11,30,1),(12,10,1),(8,4,1)],
(88,85) => MOP_CODE[(9,29,1),(10,9,1),(6,4,0),(2,1,1),(11,30,0),(12,10,0),(8,4,1)],
(88,86) => MOP_CODE[(9,29,0),(10,9,0),(6,4,0),(2,1,0),(11,30,0),(12,10,0),(8,4,0),(1,2,1),(9,31,1),(10,32,1),(6,7,1),(2,5,1),(11,31,1),(12,32,1),(8,3,1)],
(89,87) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0)],
(89,88) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1)],
(89,89) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1)],
(89,90) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1)],
(89,91) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0)],
(89,92) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,2,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,2,1),(13,2,1),(14,2,1)],
(89,93) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,5,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,5,1),(13,5,1),(14,5,1)],
(89,94) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1)],
(90,95) => MOP_CODE[(9,5,0),(10,5,0),(5,5,0),(3,5,0),(6,1,0),(13,1,0),(14,1,0)],
(90,96) => MOP_CODE[(9,5,0),(10,5,0),(5,5,0),(3,5,0),(6,1,0),(13,1,0),(14,1,0),(1,1,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,1,1),(13,1,1),(14,1,1)],
(90,97) => MOP_CODE[(9,5,1),(10,5,1),(5,5,0),(3,5,0),(6,1,0),(13,1,1),(14,1,1)],
(90,98) => MOP_CODE[(9,5,0),(10,5,0),(5,5,1),(3,5,1),(6,1,0),(13,1,1),(14,1,1)],
(90,99) => MOP_CODE[(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,1,0),(13,1,0),(14,1,0)],
(90,100) => MOP_CODE[(9,5,0),(10,5,0),(5,5,0),(3,5,0),(6,1,0),(13,1,0),(14,1,0),(1,2,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,2,1),(13,2,1),(14,2,1)],
(90,101) => MOP_CODE[(9,5,0),(10,5,0),(5,5,0),(3,5,0),(6,1,0),(13,1,0),(14,1,0),(1,5,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,5,1),(13,5,1),(14,5,1)],
(90,102) => MOP_CODE[(9,5,0),(10,5,0),(5,5,0),(3,5,0),(6,1,0),(13,1,0),(14,1,0),(1,8,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,8,1),(13,8,1),(14,8,1)],
(91,103) => MOP_CODE[(9,23,0),(10,24,0),(5,2,0),(3,1,0),(6,2,0),(13,24,0),(14,23,0)],
(91,104) => MOP_CODE[(9,23,0),(10,24,0),(5,2,0),(3,1,0),(6,2,0),(13,24,0),(14,23,0),(1,1,1),(9,23,1),(10,24,1),(5,2,1),(3,1,1),(6,2,1),(13,24,1),(14,23,1)],
(91,105) => MOP_CODE[(9,23,1),(10,24,1),(5,2,0),(3,1,0),(6,2,0),(13,24,1),(14,23,1)],
(91,106) => MOP_CODE[(9,23,0),(10,24,0),(5,2,1),(3,1,1),(6,2,0),(13,24,1),(14,23,1)],
(91,107) => MOP_CODE[(9,23,1),(10,24,1),(5,2,1),(3,1,1),(6,2,0),(13,24,0),(14,23,0)],
(91,108) => MOP_CODE[(9,23,0),(10,24,0),(5,2,0),(3,1,0),(6,2,0),(13,24,0),(14,23,0),(1,2,1),(9,24,1),(10,23,1),(5,1,1),(3,2,1),(6,1,1),(13,23,1),(14,24,1)],
(91,109) => MOP_CODE[(9,23,0),(10,24,0),(5,2,0),(3,1,0),(6,2,0),(13,24,0),(14,23,0),(1,5,1),(9,25,1),(10,26,1),(5,8,1),(3,5,1),(6,8,1),(13,26,1),(14,25,1)],
(91,110) => MOP_CODE[(9,23,0),(10,24,0),(5,2,0),(3,1,0),(6,2,0),(13,24,0),(14,23,0),(1,8,1),(9,26,1),(10,25,1),(5,5,1),(3,8,1),(6,5,1),(13,25,1),(14,26,1)],
(92,111) => MOP_CODE[(9,25,0),(10,26,0),(5,26,0),(3,25,0),(6,2,0),(13,1,0),(14,2,0)],
(92,112) => MOP_CODE[(9,25,0),(10,26,0),(5,26,0),(3,25,0),(6,2,0),(13,1,0),(14,2,0),(1,1,1),(9,25,1),(10,26,1),(5,26,1),(3,25,1),(6,2,1),(13,1,1),(14,2,1)],
(92,113) => MOP_CODE[(9,25,1),(10,26,1),(5,26,0),(3,25,0),(6,2,0),(13,1,1),(14,2,1)],
(92,114) => MOP_CODE[(9,25,0),(10,26,0),(5,26,1),(3,25,1),(6,2,0),(13,1,1),(14,2,1)],
(92,115) => MOP_CODE[(9,25,1),(10,26,1),(5,26,1),(3,25,1),(6,2,0),(13,1,0),(14,2,0)],
(92,116) => MOP_CODE[(9,25,0),(10,26,0),(5,26,0),(3,25,0),(6,2,0),(13,1,0),(14,2,0),(1,2,1),(9,26,1),(10,25,1),(5,25,1),(3,26,1),(6,1,1),(13,2,1),(14,1,1)],
(92,117) => MOP_CODE[(9,25,0),(10,26,0),(5,26,0),(3,25,0),(6,2,0),(13,1,0),(14,2,0),(1,5,1),(9,23,1),(10,24,1),(5,24,1),(3,23,1),(6,8,1),(13,5,1),(14,8,1)],
(92,118) => MOP_CODE[(9,25,0),(10,26,0),(5,26,0),(3,25,0),(6,2,0),(13,1,0),(14,2,0),(1,8,1),(9,24,1),(10,23,1),(5,23,1),(3,24,1),(6,5,1),(13,8,1),(14,5,1)],
(93,119) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0)],
(93,120) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(1,1,1),(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,1,1),(13,2,1),(14,2,1)],
(93,121) => MOP_CODE[(9,2,1),(10,2,1),(5,1,0),(3,1,0),(6,1,0),(13,2,1),(14,2,1)],
(93,122) => MOP_CODE[(9,2,0),(10,2,0),(5,1,1),(3,1,1),(6,1,0),(13,2,1),(14,2,1)],
(93,123) => MOP_CODE[(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,1,0),(13,2,0),(14,2,0)],
(93,124) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(1,2,1),(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,2,1),(13,1,1),(14,1,1)],
(93,125) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(1,5,1),(9,8,1),(10,8,1),(5,5,1),(3,5,1),(6,5,1),(13,8,1),(14,8,1)],
(93,126) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(1,8,1),(9,5,1),(10,5,1),(5,8,1),(3,8,1),(6,8,1),(13,5,1),(14,5,1)],
(94,127) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0)],
(94,128) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(1,1,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,1,1),(13,1,1),(14,1,1)],
(94,129) => MOP_CODE[(9,8,1),(10,8,1),(5,8,0),(3,8,0),(6,1,0),(13,1,1),(14,1,1)],
(94,130) => MOP_CODE[(9,8,0),(10,8,0),(5,8,1),(3,8,1),(6,1,0),(13,1,1),(14,1,1)],
(94,131) => MOP_CODE[(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,1,0),(13,1,0),(14,1,0)],
(94,132) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(1,2,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,2,1),(13,2,1),(14,2,1)],
(94,133) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(1,5,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,5,1),(13,5,1),(14,5,1)],
(94,134) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(1,8,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,8,1),(13,8,1),(14,8,1)],
(95,135) => MOP_CODE[(9,24,0),(10,23,0),(5,2,0),(3,1,0),(6,2,0),(13,23,0),(14,24,0)],
(95,136) => MOP_CODE[(9,24,0),(10,23,0),(5,2,0),(3,1,0),(6,2,0),(13,23,0),(14,24,0),(1,1,1),(9,24,1),(10,23,1),(5,2,1),(3,1,1),(6,2,1),(13,23,1),(14,24,1)],
(95,137) => MOP_CODE[(9,24,1),(10,23,1),(5,2,0),(3,1,0),(6,2,0),(13,23,1),(14,24,1)],
(95,138) => MOP_CODE[(9,24,0),(10,23,0),(5,2,1),(3,1,1),(6,2,0),(13,23,1),(14,24,1)],
(95,139) => MOP_CODE[(9,24,1),(10,23,1),(5,2,1),(3,1,1),(6,2,0),(13,23,0),(14,24,0)],
(95,140) => MOP_CODE[(9,24,0),(10,23,0),(5,2,0),(3,1,0),(6,2,0),(13,23,0),(14,24,0),(1,2,1),(9,23,1),(10,24,1),(5,1,1),(3,2,1),(6,1,1),(13,24,1),(14,23,1)],
(95,141) => MOP_CODE[(9,24,0),(10,23,0),(5,2,0),(3,1,0),(6,2,0),(13,23,0),(14,24,0),(1,5,1),(9,26,1),(10,25,1),(5,8,1),(3,5,1),(6,8,1),(13,25,1),(14,26,1)],
(95,142) => MOP_CODE[(9,24,0),(10,23,0),(5,2,0),(3,1,0),(6,2,0),(13,23,0),(14,24,0),(1,8,1),(9,25,1),(10,26,1),(5,5,1),(3,8,1),(6,5,1),(13,26,1),(14,25,1)],
(96,143) => MOP_CODE[(9,26,0),(10,25,0),(5,25,0),(3,26,0),(6,2,0),(13,1,0),(14,2,0)],
(96,144) => MOP_CODE[(9,26,0),(10,25,0),(5,25,0),(3,26,0),(6,2,0),(13,1,0),(14,2,0),(1,1,1),(9,26,1),(10,25,1),(5,25,1),(3,26,1),(6,2,1),(13,1,1),(14,2,1)],
(96,145) => MOP_CODE[(9,26,1),(10,25,1),(5,25,0),(3,26,0),(6,2,0),(13,1,1),(14,2,1)],
(96,146) => MOP_CODE[(9,26,0),(10,25,0),(5,25,1),(3,26,1),(6,2,0),(13,1,1),(14,2,1)],
(96,147) => MOP_CODE[(9,26,1),(10,25,1),(5,25,1),(3,26,1),(6,2,0),(13,1,0),(14,2,0)],
(96,148) => MOP_CODE[(9,26,0),(10,25,0),(5,25,0),(3,26,0),(6,2,0),(13,1,0),(14,2,0),(1,2,1),(9,25,1),(10,26,1),(5,26,1),(3,25,1),(6,1,1),(13,2,1),(14,1,1)],
(96,149) => MOP_CODE[(9,26,0),(10,25,0),(5,25,0),(3,26,0),(6,2,0),(13,1,0),(14,2,0),(1,5,1),(9,24,1),(10,23,1),(5,23,1),(3,24,1),(6,8,1),(13,5,1),(14,8,1)],
(96,150) => MOP_CODE[(9,26,0),(10,25,0),(5,25,0),(3,26,0),(6,2,0),(13,1,0),(14,2,0),(1,8,1),(9,23,1),(10,24,1),(5,24,1),(3,23,1),(6,5,1),(13,8,1),(14,5,1)],
(97,151) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0)],
(97,152) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1)],
(97,153) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1)],
(97,154) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1)],
(97,155) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0)],
(97,156) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(1,2,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,2,1),(13,2,1),(14,2,1)],
(98,157) => MOP_CODE[(9,27,0),(10,27,0),(5,27,0),(3,27,0),(6,1,0),(13,1,0),(14,1,0)],
(98,158) => MOP_CODE[(9,27,0),(10,27,0),(5,27,0),(3,27,0),(6,1,0),(13,1,0),(14,1,0),(1,1,1),(9,27,1),(10,27,1),(5,27,1),(3,27,1),(6,1,1),(13,1,1),(14,1,1)],
(98,159) => MOP_CODE[(9,27,1),(10,27,1),(5,27,0),(3,27,0),(6,1,0),(13,1,1),(14,1,1)],
(98,160) => MOP_CODE[(9,27,0),(10,27,0),(5,27,1),(3,27,1),(6,1,0),(13,1,1),(14,1,1)],
(98,161) => MOP_CODE[(9,27,1),(10,27,1),(5,27,1),(3,27,1),(6,1,0),(13,1,0),(14,1,0)],
(98,162) => MOP_CODE[(9,27,0),(10,27,0),(5,27,0),(3,27,0),(6,1,0),(13,1,0),(14,1,0),(1,2,1),(9,28,1),(10,28,1),(5,28,1),(3,28,1),(6,2,1),(13,2,1),(14,2,1)],
(99,163) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0)],
(99,164) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(99,165) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,1,1),(4,1,1),(15,1,0),(16,1,0)],
(99,166) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,1,0),(4,1,0),(15,1,1),(16,1,1)],
(99,167) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(99,168) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(99,169) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1),(7,5,1),(4,5,1),(15,5,1),(16,5,1)],
(99,170) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1),(7,8,1),(4,8,1),(15,8,1),(16,8,1)],
(100,171) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,0),(4,5,0),(15,5,0),(16,5,0)],
(100,172) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,0),(4,5,0),(15,5,0),(16,5,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,5,1),(4,5,1),(15,5,1),(16,5,1)],
(100,173) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,5,1),(4,5,1),(15,5,0),(16,5,0)],
(100,174) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,5,0),(4,5,0),(15,5,1),(16,5,1)],
(100,175) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,1),(4,5,1),(15,5,1),(16,5,1)],
(100,176) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,0),(4,5,0),(15,5,0),(16,5,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,8,1),(4,8,1),(15,8,1),(16,8,1)],
(100,177) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,0),(4,5,0),(15,5,0),(16,5,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(100,178) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,5,0),(4,5,0),(15,5,0),(16,5,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(101,179) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,0),(4,2,0),(15,1,0),(16,1,0)],
(101,180) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,0),(4,2,0),(15,1,0),(16,1,0),(1,1,1),(9,2,1),(10,2,1),(6,1,1),(7,2,1),(4,2,1),(15,1,1),(16,1,1)],
(101,181) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,2,1),(4,2,1),(15,1,0),(16,1,0)],
(101,182) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,2,0),(4,2,0),(15,1,1),(16,1,1)],
(101,183) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,1),(4,2,1),(15,1,1),(16,1,1)],
(101,184) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,0),(4,2,0),(15,1,0),(16,1,0),(1,2,1),(9,1,1),(10,1,1),(6,2,1),(7,1,1),(4,1,1),(15,2,1),(16,2,1)],
(101,185) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,0),(4,2,0),(15,1,0),(16,1,0),(1,5,1),(9,8,1),(10,8,1),(6,5,1),(7,8,1),(4,8,1),(15,5,1),(16,5,1)],
(101,186) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,2,0),(4,2,0),(15,1,0),(16,1,0),(1,8,1),(9,5,1),(10,5,1),(6,8,1),(7,5,1),(4,5,1),(15,8,1),(16,8,1)],
(102,187) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,0),(4,8,0),(15,1,0),(16,1,0)],
(102,188) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,0),(4,8,0),(15,1,0),(16,1,0),(1,1,1),(9,8,1),(10,8,1),(6,1,1),(7,8,1),(4,8,1),(15,1,1),(16,1,1)],
(102,189) => MOP_CODE[(9,8,1),(10,8,1),(6,1,0),(7,8,1),(4,8,1),(15,1,0),(16,1,0)],
(102,190) => MOP_CODE[(9,8,1),(10,8,1),(6,1,0),(7,8,0),(4,8,0),(15,1,1),(16,1,1)],
(102,191) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,1),(4,8,1),(15,1,1),(16,1,1)],
(102,192) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,0),(4,8,0),(15,1,0),(16,1,0),(1,2,1),(9,5,1),(10,5,1),(6,2,1),(7,5,1),(4,5,1),(15,2,1),(16,2,1)],
(102,193) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,0),(4,8,0),(15,1,0),(16,1,0),(1,5,1),(9,2,1),(10,2,1),(6,5,1),(7,2,1),(4,2,1),(15,5,1),(16,5,1)],
(102,194) => MOP_CODE[(9,8,0),(10,8,0),(6,1,0),(7,8,0),(4,8,0),(15,1,0),(16,1,0),(1,8,1),(9,1,1),(10,1,1),(6,8,1),(7,1,1),(4,1,1),(15,8,1),(16,8,1)],
(103,195) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0)],
(103,196) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(103,197) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,2,1),(4,2,1),(15,2,0),(16,2,0)],
(103,198) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,2,0),(4,2,0),(15,2,1),(16,2,1)],
(103,199) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(103,200) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(103,201) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1),(7,8,1),(4,8,1),(15,8,1),(16,8,1)],
(103,202) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1),(7,5,1),(4,5,1),(15,5,1),(16,5,1)],
(104,203) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,0),(4,8,0),(15,8,0),(16,8,0)],
(104,204) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,0),(4,8,0),(15,8,0),(16,8,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,8,1),(4,8,1),(15,8,1),(16,8,1)],
(104,205) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,8,1),(4,8,1),(15,8,0),(16,8,0)],
(104,206) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,8,0),(4,8,0),(15,8,1),(16,8,1)],
(104,207) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,1),(4,8,1),(15,8,1),(16,8,1)],
(104,208) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,0),(4,8,0),(15,8,0),(16,8,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,5,1),(4,5,1),(15,5,1),(16,5,1)],
(104,209) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,0),(4,8,0),(15,8,0),(16,8,0),(1,5,1),(9,5,1),(10,5,1),(6,5,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(104,210) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,8,0),(4,8,0),(15,8,0),(16,8,0),(1,8,1),(9,8,1),(10,8,1),(6,8,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(105,211) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,0),(4,1,0),(15,2,0),(16,2,0)],
(105,212) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,0),(4,1,0),(15,2,0),(16,2,0),(1,1,1),(9,2,1),(10,2,1),(6,1,1),(7,1,1),(4,1,1),(15,2,1),(16,2,1)],
(105,213) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,1,1),(4,1,1),(15,2,0),(16,2,0)],
(105,214) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,1,0),(4,1,0),(15,2,1),(16,2,1)],
(105,215) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,1),(4,1,1),(15,2,1),(16,2,1)],
(105,216) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,0),(4,1,0),(15,2,0),(16,2,0),(1,2,1),(9,1,1),(10,1,1),(6,2,1),(7,2,1),(4,2,1),(15,1,1),(16,1,1)],
(105,217) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,0),(4,1,0),(15,2,0),(16,2,0),(1,5,1),(9,8,1),(10,8,1),(6,5,1),(7,5,1),(4,5,1),(15,8,1),(16,8,1)],
(105,218) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,1,0),(4,1,0),(15,2,0),(16,2,0),(1,8,1),(9,5,1),(10,5,1),(6,8,1),(7,8,1),(4,8,1),(15,5,1),(16,5,1)],
(106,219) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,0),(4,5,0),(15,8,0),(16,8,0)],
(106,220) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,0),(4,5,0),(15,8,0),(16,8,0),(1,1,1),(9,2,1),(10,2,1),(6,1,1),(7,5,1),(4,5,1),(15,8,1),(16,8,1)],
(106,221) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,5,1),(4,5,1),(15,8,0),(16,8,0)],
(106,222) => MOP_CODE[(9,2,1),(10,2,1),(6,1,0),(7,5,0),(4,5,0),(15,8,1),(16,8,1)],
(106,223) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,1),(4,5,1),(15,8,1),(16,8,1)],
(106,224) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,0),(4,5,0),(15,8,0),(16,8,0),(1,2,1),(9,1,1),(10,1,1),(6,2,1),(7,8,1),(4,8,1),(15,5,1),(16,5,1)],
(106,225) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,0),(4,5,0),(15,8,0),(16,8,0),(1,5,1),(9,8,1),(10,8,1),(6,5,1),(7,1,1),(4,1,1),(15,2,1),(16,2,1)],
(106,226) => MOP_CODE[(9,2,0),(10,2,0),(6,1,0),(7,5,0),(4,5,0),(15,8,0),(16,8,0),(1,8,1),(9,5,1),(10,5,1),(6,8,1),(7,2,1),(4,2,1),(15,1,1),(16,1,1)],
(107,227) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0)],
(107,228) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(107,229) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,1,1),(4,1,1),(15,1,0),(16,1,0)],
(107,230) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,1,0),(4,1,0),(15,1,1),(16,1,1)],
(107,231) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(107,232) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,1,0),(4,1,0),(15,1,0),(16,1,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(108,233) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0)],
(108,234) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,1,1),(9,1,1),(10,1,1),(6,1,1),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(108,235) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,2,1),(4,2,1),(15,2,0),(16,2,0)],
(108,236) => MOP_CODE[(9,1,1),(10,1,1),(6,1,0),(7,2,0),(4,2,0),(15,2,1),(16,2,1)],
(108,237) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,1),(4,2,1),(15,2,1),(16,2,1)],
(108,238) => MOP_CODE[(9,1,0),(10,1,0),(6,1,0),(7,2,0),(4,2,0),(15,2,0),(16,2,0),(1,2,1),(9,2,1),(10,2,1),(6,2,1),(7,1,1),(4,1,1),(15,1,1),(16,1,1)],
(109,239) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,1,0),(4,1,0),(15,27,0),(16,27,0)],
(109,240) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,1,0),(4,1,0),(15,27,0),(16,27,0),(1,1,1),(9,27,1),(10,27,1),(6,1,1),(7,1,1),(4,1,1),(15,27,1),(16,27,1)],
(109,241) => MOP_CODE[(9,27,1),(10,27,1),(6,1,0),(7,1,1),(4,1,1),(15,27,0),(16,27,0)],
(109,242) => MOP_CODE[(9,27,1),(10,27,1),(6,1,0),(7,1,0),(4,1,0),(15,27,1),(16,27,1)],
(109,243) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,1,1),(4,1,1),(15,27,1),(16,27,1)],
(109,244) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,1,0),(4,1,0),(15,27,0),(16,27,0),(1,2,1),(9,28,1),(10,28,1),(6,2,1),(7,2,1),(4,2,1),(15,28,1),(16,28,1)],
(110,245) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,2,0),(4,2,0),(15,28,0),(16,28,0)],
(110,246) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,2,0),(4,2,0),(15,28,0),(16,28,0),(1,1,1),(9,27,1),(10,27,1),(6,1,1),(7,2,1),(4,2,1),(15,28,1),(16,28,1)],
(110,247) => MOP_CODE[(9,27,1),(10,27,1),(6,1,0),(7,2,1),(4,2,1),(15,28,0),(16,28,0)],
(110,248) => MOP_CODE[(9,27,1),(10,27,1),(6,1,0),(7,2,0),(4,2,0),(15,28,1),(16,28,1)],
(110,249) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,2,1),(4,2,1),(15,28,1),(16,28,1)],
(110,250) => MOP_CODE[(9,27,0),(10,27,0),(6,1,0),(7,2,0),(4,2,0),(15,28,0),(16,28,0),(1,2,1),(9,28,1),(10,28,1),(6,2,1),(7,1,1),(4,1,1),(15,27,1),(16,27,1)],
(111,251) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0)],
(111,252) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1)],
(111,253) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(11,1,1),(12,1,1),(15,1,0),(16,1,0)],
(111,254) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,1),(12,1,1),(15,1,1),(16,1,1)],
(111,255) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(11,1,0),(12,1,0),(15,1,1),(16,1,1)],
(111,256) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1),(11,2,1),(12,2,1),(15,2,1),(16,2,1)],
(111,257) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,5,1),(5,5,1),(3,5,1),(6,5,1),(11,5,1),(12,5,1),(15,5,1),(16,5,1)],
(111,258) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1)],
(112,259) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,0),(12,1,0),(15,2,0),(16,2,0)],
(112,260) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,0),(12,1,0),(15,2,0),(16,2,0),(1,1,1),(5,2,1),(3,2,1),(6,1,1),(11,1,1),(12,1,1),(15,2,1),(16,2,1)],
(112,261) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(11,1,1),(12,1,1),(15,2,0),(16,2,0)],
(112,262) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,1),(12,1,1),(15,2,1),(16,2,1)],
(112,263) => MOP_CODE[(5,2,1),(3,2,1),(6,1,0),(11,1,0),(12,1,0),(15,2,1),(16,2,1)],
(112,264) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,0),(12,1,0),(15,2,0),(16,2,0),(1,2,1),(5,1,1),(3,1,1),(6,2,1),(11,2,1),(12,2,1),(15,1,1),(16,1,1)],
(112,265) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,0),(12,1,0),(15,2,0),(16,2,0),(1,5,1),(5,8,1),(3,8,1),(6,5,1),(11,5,1),(12,5,1),(15,8,1),(16,8,1)],
(112,266) => MOP_CODE[(5,2,0),(3,2,0),(6,1,0),(11,1,0),(12,1,0),(15,2,0),(16,2,0),(1,8,1),(5,5,1),(3,5,1),(6,8,1),(11,8,1),(12,8,1),(15,5,1),(16,5,1)],
(113,267) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,0),(12,1,0),(15,5,0),(16,5,0)],
(113,268) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,0),(12,1,0),(15,5,0),(16,5,0),(1,1,1),(5,5,1),(3,5,1),(6,1,1),(11,1,1),(12,1,1),(15,5,1),(16,5,1)],
(113,269) => MOP_CODE[(5,5,1),(3,5,1),(6,1,0),(11,1,1),(12,1,1),(15,5,0),(16,5,0)],
(113,270) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,1),(12,1,1),(15,5,1),(16,5,1)],
(113,271) => MOP_CODE[(5,5,1),(3,5,1),(6,1,0),(11,1,0),(12,1,0),(15,5,1),(16,5,1)],
(113,272) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,0),(12,1,0),(15,5,0),(16,5,0),(1,2,1),(5,8,1),(3,8,1),(6,2,1),(11,2,1),(12,2,1),(15,8,1),(16,8,1)],
(113,273) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,0),(12,1,0),(15,5,0),(16,5,0),(1,5,1),(5,1,1),(3,1,1),(6,5,1),(11,5,1),(12,5,1),(15,1,1),(16,1,1)],
(113,274) => MOP_CODE[(5,5,0),(3,5,0),(6,1,0),(11,1,0),(12,1,0),(15,5,0),(16,5,0),(1,8,1),(5,2,1),(3,2,1),(6,8,1),(11,8,1),(12,8,1),(15,2,1),(16,2,1)],
(114,275) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,0),(12,1,0),(15,8,0),(16,8,0)],
(114,276) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,0),(12,1,0),(15,8,0),(16,8,0),(1,1,1),(5,8,1),(3,8,1),(6,1,1),(11,1,1),(12,1,1),(15,8,1),(16,8,1)],
(114,277) => MOP_CODE[(5,8,1),(3,8,1),(6,1,0),(11,1,1),(12,1,1),(15,8,0),(16,8,0)],
(114,278) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,1),(12,1,1),(15,8,1),(16,8,1)],
(114,279) => MOP_CODE[(5,8,1),(3,8,1),(6,1,0),(11,1,0),(12,1,0),(15,8,1),(16,8,1)],
(114,280) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,0),(12,1,0),(15,8,0),(16,8,0),(1,2,1),(5,5,1),(3,5,1),(6,2,1),(11,2,1),(12,2,1),(15,5,1),(16,5,1)],
(114,281) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,0),(12,1,0),(15,8,0),(16,8,0),(1,5,1),(5,2,1),(3,2,1),(6,5,1),(11,5,1),(12,5,1),(15,2,1),(16,2,1)],
(114,282) => MOP_CODE[(5,8,0),(3,8,0),(6,1,0),(11,1,0),(12,1,0),(15,8,0),(16,8,0),(1,8,1),(5,1,1),(3,1,1),(6,8,1),(11,8,1),(12,8,1),(15,1,1),(16,1,1)],
(115,283) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0)],
(115,284) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(13,1,1),(14,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1)],
(115,285) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,1),(12,1,1),(7,1,1),(4,1,1)],
(115,286) => MOP_CODE[(6,1,0),(13,1,1),(14,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0)],
(115,287) => MOP_CODE[(6,1,0),(13,1,1),(14,1,1),(11,1,0),(12,1,0),(7,1,1),(4,1,1)],
(115,288) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(13,2,1),(14,2,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1)],
(115,289) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,5,1),(6,5,1),(13,5,1),(14,5,1),(11,5,1),(12,5,1),(7,5,1),(4,5,1)],
(115,290) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,8,1),(6,8,1),(13,8,1),(14,8,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1)],
(116,291) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0)],
(116,292) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(13,2,1),(14,2,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1)],
(116,293) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,1),(12,1,1),(7,2,1),(4,2,1)],
(116,294) => MOP_CODE[(6,1,0),(13,2,1),(14,2,1),(11,1,1),(12,1,1),(7,2,0),(4,2,0)],
(116,295) => MOP_CODE[(6,1,0),(13,2,1),(14,2,1),(11,1,0),(12,1,0),(7,2,1),(4,2,1)],
(116,296) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(13,1,1),(14,1,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1)],
(116,297) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,5,1),(6,5,1),(13,8,1),(14,8,1),(11,5,1),(12,5,1),(7,8,1),(4,8,1)],
(116,298) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,8,1),(6,8,1),(13,5,1),(14,5,1),(11,8,1),(12,8,1),(7,5,1),(4,5,1)],
(117,299) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0)],
(117,300) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(1,1,1),(6,1,1),(13,5,1),(14,5,1),(11,1,1),(12,1,1),(7,5,1),(4,5,1)],
(117,301) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,1),(12,1,1),(7,5,1),(4,5,1)],
(117,302) => MOP_CODE[(6,1,0),(13,5,1),(14,5,1),(11,1,1),(12,1,1),(7,5,0),(4,5,0)],
(117,303) => MOP_CODE[(6,1,0),(13,5,1),(14,5,1),(11,1,0),(12,1,0),(7,5,1),(4,5,1)],
(117,304) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(1,2,1),(6,2,1),(13,8,1),(14,8,1),(11,2,1),(12,2,1),(7,8,1),(4,8,1)],
(117,305) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(1,5,1),(6,5,1),(13,1,1),(14,1,1),(11,5,1),(12,5,1),(7,1,1),(4,1,1)],
(117,306) => MOP_CODE[(6,1,0),(13,5,0),(14,5,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(1,8,1),(6,8,1),(13,2,1),(14,2,1),(11,8,1),(12,8,1),(7,2,1),(4,2,1)],
(118,307) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0)],
(118,308) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(1,1,1),(6,1,1),(13,8,1),(14,8,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1)],
(118,309) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,1),(12,1,1),(7,8,1),(4,8,1)],
(118,310) => MOP_CODE[(6,1,0),(13,8,1),(14,8,1),(11,1,1),(12,1,1),(7,8,0),(4,8,0)],
(118,311) => MOP_CODE[(6,1,0),(13,8,1),(14,8,1),(11,1,0),(12,1,0),(7,8,1),(4,8,1)],
(118,312) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(1,2,1),(6,2,1),(13,5,1),(14,5,1),(11,2,1),(12,2,1),(7,5,1),(4,5,1)],
(118,313) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(1,5,1),(6,5,1),(13,2,1),(14,2,1),(11,5,1),(12,5,1),(7,2,1),(4,2,1)],
(118,314) => MOP_CODE[(6,1,0),(13,8,0),(14,8,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(1,8,1),(6,8,1),(13,1,1),(14,1,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1)],
(119,315) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0)],
(119,316) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,1,1),(6,1,1),(13,1,1),(14,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1)],
(119,317) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,1),(12,1,1),(7,1,1),(4,1,1)],
(119,318) => MOP_CODE[(6,1,0),(13,1,1),(14,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0)],
(119,319) => MOP_CODE[(6,1,0),(13,1,1),(14,1,1),(11,1,0),(12,1,0),(7,1,1),(4,1,1)],
(119,320) => MOP_CODE[(6,1,0),(13,1,0),(14,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(1,2,1),(6,2,1),(13,2,1),(14,2,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1)],
(120,321) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0)],
(120,322) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,1,1),(6,1,1),(13,2,1),(14,2,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1)],
(120,323) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,1),(12,1,1),(7,2,1),(4,2,1)],
(120,324) => MOP_CODE[(6,1,0),(13,2,1),(14,2,1),(11,1,1),(12,1,1),(7,2,0),(4,2,0)],
(120,325) => MOP_CODE[(6,1,0),(13,2,1),(14,2,1),(11,1,0),(12,1,0),(7,2,1),(4,2,1)],
(120,326) => MOP_CODE[(6,1,0),(13,2,0),(14,2,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(1,2,1),(6,2,1),(13,1,1),(14,1,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1)],
(121,327) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0)],
(121,328) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1)],
(121,329) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(11,1,1),(12,1,1),(15,1,0),(16,1,0)],
(121,330) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,1),(12,1,1),(15,1,1),(16,1,1)],
(121,331) => MOP_CODE[(5,1,1),(3,1,1),(6,1,0),(11,1,0),(12,1,0),(15,1,1),(16,1,1)],
(121,332) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(1,2,1),(5,2,1),(3,2,1),(6,2,1),(11,2,1),(12,2,1),(15,2,1),(16,2,1)],
(122,333) => MOP_CODE[(5,27,0),(3,27,0),(6,1,0),(11,1,0),(12,1,0),(15,27,0),(16,27,0)],
(122,334) => MOP_CODE[(5,27,0),(3,27,0),(6,1,0),(11,1,0),(12,1,0),(15,27,0),(16,27,0),(1,1,1),(5,27,1),(3,27,1),(6,1,1),(11,1,1),(12,1,1),(15,27,1),(16,27,1)],
(122,335) => MOP_CODE[(5,27,1),(3,27,1),(6,1,0),(11,1,1),(12,1,1),(15,27,0),(16,27,0)],
(122,336) => MOP_CODE[(5,27,0),(3,27,0),(6,1,0),(11,1,1),(12,1,1),(15,27,1),(16,27,1)],
(122,337) => MOP_CODE[(5,27,1),(3,27,1),(6,1,0),(11,1,0),(12,1,0),(15,27,1),(16,27,1)],
(122,338) => MOP_CODE[(5,27,0),(3,27,0),(6,1,0),(11,1,0),(12,1,0),(15,27,0),(16,27,0),(1,2,1),(5,28,1),(3,28,1),(6,2,1),(11,2,1),(12,2,1),(15,28,1),(16,28,1)],
(123,339) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0)],
(123,340) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(2,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1)],
(123,341) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,1),(15,1,0),(16,1,0)],
(123,342) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,0),(15,1,0),(16,1,0)],
(123,343) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,0),(15,1,1),(16,1,1)],
(123,344) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,1),(15,1,0),(16,1,0)],
(123,345) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,0),(15,1,1),(16,1,1)],
(123,346) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,1),(15,1,1),(16,1,1)],
(123,347) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1)],
(123,348) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,2,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,2,1),(13,2,1),(14,2,1),(2,2,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,2,1),(15,2,1),(16,2,1)],
(123,349) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,5,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,5,1),(13,5,1),(14,5,1),(2,5,1),(11,5,1),(12,5,1),(7,5,1),(4,5,1),(8,5,1),(15,5,1),(16,5,1)],
(123,350) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1),(2,8,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,8,1),(15,8,1),(16,8,1)],
(124,351) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0)],
(124,352) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,1,1),(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,1),(13,2,1),(14,2,1),(2,1,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,1),(15,2,1),(16,2,1)],
(124,353) => MOP_CODE[(9,1,0),(10,1,0),(5,2,1),(3,2,1),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,1,1),(12,1,1),(7,2,0),(4,2,0),(8,1,1),(15,2,0),(16,2,0)],
(124,354) => MOP_CODE[(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,0),(15,2,0),(16,2,0)],
(124,355) => MOP_CODE[(9,1,1),(10,1,1),(5,2,0),(3,2,0),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,1,1),(12,1,1),(7,2,0),(4,2,0),(8,1,0),(15,2,1),(16,2,1)],
(124,356) => MOP_CODE[(9,1,1),(10,1,1),(5,2,0),(3,2,0),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,1,0),(12,1,0),(7,2,1),(4,2,1),(8,1,1),(15,2,0),(16,2,0)],
(124,357) => MOP_CODE[(9,1,0),(10,1,0),(5,2,1),(3,2,1),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,1,0),(12,1,0),(7,2,1),(4,2,1),(8,1,0),(15,2,1),(16,2,1)],
(124,358) => MOP_CODE[(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,1),(15,2,1),(16,2,1)],
(124,359) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,1),(15,2,1),(16,2,1)],
(124,360) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,2,1),(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,2,1),(13,1,1),(14,1,1),(2,2,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1),(8,2,1),(15,1,1),(16,1,1)],
(124,361) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,5,1),(9,5,1),(10,5,1),(5,8,1),(3,8,1),(6,5,1),(13,8,1),(14,8,1),(2,5,1),(11,5,1),(12,5,1),(7,8,1),(4,8,1),(8,5,1),(15,8,1),(16,8,1)],
(124,362) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,8,1),(9,8,1),(10,8,1),(5,5,1),(3,5,1),(6,8,1),(13,5,1),(14,5,1),(2,8,1),(11,8,1),(12,8,1),(7,5,1),(4,5,1),(8,8,1),(15,5,1),(16,5,1)],
(125,363) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,0),(15,1,0),(16,5,0)],
(125,364) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,0),(15,1,0),(16,5,0),(1,1,1),(9,3,1),(10,4,1),(5,4,1),(3,3,1),(6,5,1),(13,1,1),(14,5,1),(2,1,1),(11,3,1),(12,4,1),(7,4,1),(4,3,1),(8,5,1),(15,1,1),(16,5,1)],
(125,365) => MOP_CODE[(9,3,0),(10,4,0),(5,4,1),(3,3,1),(6,5,0),(13,1,1),(14,5,1),(2,1,1),(11,3,1),(12,4,1),(7,4,0),(4,3,0),(8,5,1),(15,1,0),(16,5,0)],
(125,366) => MOP_CODE[(9,3,1),(10,4,1),(5,4,1),(3,3,1),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,1),(12,4,1),(7,4,1),(4,3,1),(8,5,0),(15,1,0),(16,5,0)],
(125,367) => MOP_CODE[(9,3,1),(10,4,1),(5,4,0),(3,3,0),(6,5,0),(13,1,1),(14,5,1),(2,1,0),(11,3,1),(12,4,1),(7,4,0),(4,3,0),(8,5,0),(15,1,1),(16,5,1)],
(125,368) => MOP_CODE[(9,3,1),(10,4,1),(5,4,0),(3,3,0),(6,5,0),(13,1,1),(14,5,1),(2,1,1),(11,3,0),(12,4,0),(7,4,1),(4,3,1),(8,5,1),(15,1,0),(16,5,0)],
(125,369) => MOP_CODE[(9,3,0),(10,4,0),(5,4,1),(3,3,1),(6,5,0),(13,1,1),(14,5,1),(2,1,0),(11,3,0),(12,4,0),(7,4,1),(4,3,1),(8,5,0),(15,1,1),(16,5,1)],
(125,370) => MOP_CODE[(9,3,1),(10,4,1),(5,4,1),(3,3,1),(6,5,0),(13,1,0),(14,5,0),(2,1,1),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,1),(15,1,1),(16,5,1)],
(125,371) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,1),(11,3,1),(12,4,1),(7,4,1),(4,3,1),(8,5,1),(15,1,1),(16,5,1)],
(125,372) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,0),(15,1,0),(16,5,0),(1,2,1),(9,6,1),(10,7,1),(5,7,1),(3,6,1),(6,8,1),(13,2,1),(14,8,1),(2,2,1),(11,6,1),(12,7,1),(7,7,1),(4,6,1),(8,8,1),(15,2,1),(16,8,1)],
(125,373) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,0),(15,1,0),(16,5,0),(1,5,1),(9,4,1),(10,3,1),(5,3,1),(3,4,1),(6,1,1),(13,5,1),(14,1,1),(2,5,1),(11,4,1),(12,3,1),(7,3,1),(4,4,1),(8,1,1),(15,5,1),(16,1,1)],
(125,374) => MOP_CODE[(9,3,0),(10,4,0),(5,4,0),(3,3,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,3,0),(12,4,0),(7,4,0),(4,3,0),(8,5,0),(15,1,0),(16,5,0),(1,8,1),(9,7,1),(10,6,1),(5,6,1),(3,7,1),(6,2,1),(13,8,1),(14,2,1),(2,8,1),(11,7,1),(12,6,1),(7,6,1),(4,7,1),(8,2,1),(15,8,1),(16,2,1)],
(126,375) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0)],
(126,376) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(1,1,1),(9,3,1),(10,4,1),(5,7,1),(3,6,1),(6,5,1),(13,2,1),(14,8,1),(2,1,1),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,5,1),(15,2,1),(16,8,1)],
(126,377) => MOP_CODE[(9,3,0),(10,4,0),(5,7,1),(3,6,1),(6,5,0),(13,2,1),(14,8,1),(2,1,1),(11,3,1),(12,4,1),(7,7,0),(4,6,0),(8,5,1),(15,2,0),(16,8,0)],
(126,378) => MOP_CODE[(9,3,1),(10,4,1),(5,7,1),(3,6,1),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,5,0),(15,2,0),(16,8,0)],
(126,379) => MOP_CODE[(9,3,1),(10,4,1),(5,7,0),(3,6,0),(6,5,0),(13,2,1),(14,8,1),(2,1,0),(11,3,1),(12,4,1),(7,7,0),(4,6,0),(8,5,0),(15,2,1),(16,8,1)],
(126,380) => MOP_CODE[(9,3,1),(10,4,1),(5,7,0),(3,6,0),(6,5,0),(13,2,1),(14,8,1),(2,1,1),(11,3,0),(12,4,0),(7,7,1),(4,6,1),(8,5,1),(15,2,0),(16,8,0)],
(126,381) => MOP_CODE[(9,3,0),(10,4,0),(5,7,1),(3,6,1),(6,5,0),(13,2,1),(14,8,1),(2,1,0),(11,3,0),(12,4,0),(7,7,1),(4,6,1),(8,5,0),(15,2,1),(16,8,1)],
(126,382) => MOP_CODE[(9,3,1),(10,4,1),(5,7,1),(3,6,1),(6,5,0),(13,2,0),(14,8,0),(2,1,1),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,1),(15,2,1),(16,8,1)],
(126,383) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,1),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,5,1),(15,2,1),(16,8,1)],
(126,384) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(1,2,1),(9,6,1),(10,7,1),(5,4,1),(3,3,1),(6,8,1),(13,1,1),(14,5,1),(2,2,1),(11,6,1),(12,7,1),(7,4,1),(4,3,1),(8,8,1),(15,1,1),(16,5,1)],
(126,385) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(1,5,1),(9,4,1),(10,3,1),(5,6,1),(3,7,1),(6,1,1),(13,8,1),(14,2,1),(2,5,1),(11,4,1),(12,3,1),(7,6,1),(4,7,1),(8,1,1),(15,8,1),(16,2,1)],
(126,386) => MOP_CODE[(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(1,8,1),(9,7,1),(10,6,1),(5,3,1),(3,4,1),(6,2,1),(13,5,1),(14,1,1),(2,8,1),(11,7,1),(12,6,1),(7,3,1),(4,4,1),(8,2,1),(15,5,1),(16,1,1)],
(127,387) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,0),(15,5,0),(16,5,0)],
(127,388) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,0),(15,5,0),(16,5,0),(1,1,1),(9,1,1),(10,1,1),(5,5,1),(3,5,1),(6,1,1),(13,5,1),(14,5,1),(2,1,1),(11,1,1),(12,1,1),(7,5,1),(4,5,1),(8,1,1),(15,5,1),(16,5,1)],
(127,389) => MOP_CODE[(9,1,0),(10,1,0),(5,5,1),(3,5,1),(6,1,0),(13,5,1),(14,5,1),(2,1,1),(11,1,1),(12,1,1),(7,5,0),(4,5,0),(8,1,1),(15,5,0),(16,5,0)],
(127,390) => MOP_CODE[(9,1,1),(10,1,1),(5,5,1),(3,5,1),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,1),(12,1,1),(7,5,1),(4,5,1),(8,1,0),(15,5,0),(16,5,0)],
(127,391) => MOP_CODE[(9,1,1),(10,1,1),(5,5,0),(3,5,0),(6,1,0),(13,5,1),(14,5,1),(2,1,0),(11,1,1),(12,1,1),(7,5,0),(4,5,0),(8,1,0),(15,5,1),(16,5,1)],
(127,392) => MOP_CODE[(9,1,1),(10,1,1),(5,5,0),(3,5,0),(6,1,0),(13,5,1),(14,5,1),(2,1,1),(11,1,0),(12,1,0),(7,5,1),(4,5,1),(8,1,1),(15,5,0),(16,5,0)],
(127,393) => MOP_CODE[(9,1,0),(10,1,0),(5,5,1),(3,5,1),(6,1,0),(13,5,1),(14,5,1),(2,1,0),(11,1,0),(12,1,0),(7,5,1),(4,5,1),(8,1,0),(15,5,1),(16,5,1)],
(127,394) => MOP_CODE[(9,1,1),(10,1,1),(5,5,1),(3,5,1),(6,1,0),(13,5,0),(14,5,0),(2,1,1),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,1),(15,5,1),(16,5,1)],
(127,395) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,1),(11,1,1),(12,1,1),(7,5,1),(4,5,1),(8,1,1),(15,5,1),(16,5,1)],
(127,396) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,0),(15,5,0),(16,5,0),(1,2,1),(9,2,1),(10,2,1),(5,8,1),(3,8,1),(6,2,1),(13,8,1),(14,8,1),(2,2,1),(11,2,1),(12,2,1),(7,8,1),(4,8,1),(8,2,1),(15,8,1),(16,8,1)],
(127,397) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,0),(15,5,0),(16,5,0),(1,5,1),(9,5,1),(10,5,1),(5,1,1),(3,1,1),(6,5,1),(13,1,1),(14,1,1),(2,5,1),(11,5,1),(12,5,1),(7,1,1),(4,1,1),(8,5,1),(15,1,1),(16,1,1)],
(127,398) => MOP_CODE[(9,1,0),(10,1,0),(5,5,0),(3,5,0),(6,1,0),(13,5,0),(14,5,0),(2,1,0),(11,1,0),(12,1,0),(7,5,0),(4,5,0),(8,1,0),(15,5,0),(16,5,0),(1,8,1),(9,8,1),(10,8,1),(5,2,1),(3,2,1),(6,8,1),(13,2,1),(14,2,1),(2,8,1),(11,8,1),(12,8,1),(7,2,1),(4,2,1),(8,8,1),(15,2,1),(16,2,1)],
(128,399) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,0),(15,8,0),(16,8,0)],
(128,400) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,0),(15,8,0),(16,8,0),(1,1,1),(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,1,1),(13,8,1),(14,8,1),(2,1,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,1,1),(15,8,1),(16,8,1)],
(128,401) => MOP_CODE[(9,1,0),(10,1,0),(5,8,1),(3,8,1),(6,1,0),(13,8,1),(14,8,1),(2,1,1),(11,1,1),(12,1,1),(7,8,0),(4,8,0),(8,1,1),(15,8,0),(16,8,0)],
(128,402) => MOP_CODE[(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,1,0),(15,8,0),(16,8,0)],
(128,403) => MOP_CODE[(9,1,1),(10,1,1),(5,8,0),(3,8,0),(6,1,0),(13,8,1),(14,8,1),(2,1,0),(11,1,1),(12,1,1),(7,8,0),(4,8,0),(8,1,0),(15,8,1),(16,8,1)],
(128,404) => MOP_CODE[(9,1,1),(10,1,1),(5,8,0),(3,8,0),(6,1,0),(13,8,1),(14,8,1),(2,1,1),(11,1,0),(12,1,0),(7,8,1),(4,8,1),(8,1,1),(15,8,0),(16,8,0)],
(128,405) => MOP_CODE[(9,1,0),(10,1,0),(5,8,1),(3,8,1),(6,1,0),(13,8,1),(14,8,1),(2,1,0),(11,1,0),(12,1,0),(7,8,1),(4,8,1),(8,1,0),(15,8,1),(16,8,1)],
(128,406) => MOP_CODE[(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,1,0),(13,8,0),(14,8,0),(2,1,1),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,1),(15,8,1),(16,8,1)],
(128,407) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,1,1),(15,8,1),(16,8,1)],
(128,408) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,0),(15,8,0),(16,8,0),(1,2,1),(9,2,1),(10,2,1),(5,5,1),(3,5,1),(6,2,1),(13,5,1),(14,5,1),(2,2,1),(11,2,1),(12,2,1),(7,5,1),(4,5,1),(8,2,1),(15,5,1),(16,5,1)],
(128,409) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,0),(15,8,0),(16,8,0),(1,5,1),(9,5,1),(10,5,1),(5,2,1),(3,2,1),(6,5,1),(13,2,1),(14,2,1),(2,5,1),(11,5,1),(12,5,1),(7,2,1),(4,2,1),(8,5,1),(15,2,1),(16,2,1)],
(128,410) => MOP_CODE[(9,1,0),(10,1,0),(5,8,0),(3,8,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,1,0),(12,1,0),(7,8,0),(4,8,0),(8,1,0),(15,8,0),(16,8,0),(1,8,1),(9,8,1),(10,8,1),(5,1,1),(3,1,1),(6,8,1),(13,1,1),(14,1,1),(2,8,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,8,1),(15,1,1),(16,1,1)],
(129,411) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,0),(15,5,0),(16,1,0)],
(129,412) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,0),(15,5,0),(16,1,0),(1,1,1),(9,3,1),(10,4,1),(5,3,1),(3,4,1),(6,5,1),(13,5,1),(14,1,1),(2,1,1),(11,3,1),(12,4,1),(7,3,1),(4,4,1),(8,5,1),(15,5,1),(16,1,1)],
(129,413) => MOP_CODE[(9,3,0),(10,4,0),(5,3,1),(3,4,1),(6,5,0),(13,5,1),(14,1,1),(2,1,1),(11,3,1),(12,4,1),(7,3,0),(4,4,0),(8,5,1),(15,5,0),(16,1,0)],
(129,414) => MOP_CODE[(9,3,1),(10,4,1),(5,3,1),(3,4,1),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,1),(12,4,1),(7,3,1),(4,4,1),(8,5,0),(15,5,0),(16,1,0)],
(129,415) => MOP_CODE[(9,3,1),(10,4,1),(5,3,0),(3,4,0),(6,5,0),(13,5,1),(14,1,1),(2,1,0),(11,3,1),(12,4,1),(7,3,0),(4,4,0),(8,5,0),(15,5,1),(16,1,1)],
(129,416) => MOP_CODE[(9,3,1),(10,4,1),(5,3,0),(3,4,0),(6,5,0),(13,5,1),(14,1,1),(2,1,1),(11,3,0),(12,4,0),(7,3,1),(4,4,1),(8,5,1),(15,5,0),(16,1,0)],
(129,417) => MOP_CODE[(9,3,0),(10,4,0),(5,3,1),(3,4,1),(6,5,0),(13,5,1),(14,1,1),(2,1,0),(11,3,0),(12,4,0),(7,3,1),(4,4,1),(8,5,0),(15,5,1),(16,1,1)],
(129,418) => MOP_CODE[(9,3,1),(10,4,1),(5,3,1),(3,4,1),(6,5,0),(13,5,0),(14,1,0),(2,1,1),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,1),(15,5,1),(16,1,1)],
(129,419) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,1),(11,3,1),(12,4,1),(7,3,1),(4,4,1),(8,5,1),(15,5,1),(16,1,1)],
(129,420) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,0),(15,5,0),(16,1,0),(1,2,1),(9,6,1),(10,7,1),(5,6,1),(3,7,1),(6,8,1),(13,8,1),(14,2,1),(2,2,1),(11,6,1),(12,7,1),(7,6,1),(4,7,1),(8,8,1),(15,8,1),(16,2,1)],
(129,421) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,0),(15,5,0),(16,1,0),(1,5,1),(9,4,1),(10,3,1),(5,4,1),(3,3,1),(6,1,1),(13,1,1),(14,5,1),(2,5,1),(11,4,1),(12,3,1),(7,4,1),(4,3,1),(8,1,1),(15,1,1),(16,5,1)],
(129,422) => MOP_CODE[(9,3,0),(10,4,0),(5,3,0),(3,4,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,3,0),(12,4,0),(7,3,0),(4,4,0),(8,5,0),(15,5,0),(16,1,0),(1,8,1),(9,7,1),(10,6,1),(5,7,1),(3,6,1),(6,2,1),(13,2,1),(14,8,1),(2,8,1),(11,7,1),(12,6,1),(7,7,1),(4,6,1),(8,2,1),(15,2,1),(16,8,1)],
(130,423) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,0),(15,8,0),(16,2,0)],
(130,424) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,0),(15,8,0),(16,2,0),(1,1,1),(9,3,1),(10,4,1),(5,6,1),(3,7,1),(6,5,1),(13,8,1),(14,2,1),(2,1,1),(11,3,1),(12,4,1),(7,6,1),(4,7,1),(8,5,1),(15,8,1),(16,2,1)],
(130,425) => MOP_CODE[(9,3,0),(10,4,0),(5,6,1),(3,7,1),(6,5,0),(13,8,1),(14,2,1),(2,1,1),(11,3,1),(12,4,1),(7,6,0),(4,7,0),(8,5,1),(15,8,0),(16,2,0)],
(130,426) => MOP_CODE[(9,3,1),(10,4,1),(5,6,1),(3,7,1),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,1),(12,4,1),(7,6,1),(4,7,1),(8,5,0),(15,8,0),(16,2,0)],
(130,427) => MOP_CODE[(9,3,1),(10,4,1),(5,6,0),(3,7,0),(6,5,0),(13,8,1),(14,2,1),(2,1,0),(11,3,1),(12,4,1),(7,6,0),(4,7,0),(8,5,0),(15,8,1),(16,2,1)],
(130,428) => MOP_CODE[(9,3,1),(10,4,1),(5,6,0),(3,7,0),(6,5,0),(13,8,1),(14,2,1),(2,1,1),(11,3,0),(12,4,0),(7,6,1),(4,7,1),(8,5,1),(15,8,0),(16,2,0)],
(130,429) => MOP_CODE[(9,3,0),(10,4,0),(5,6,1),(3,7,1),(6,5,0),(13,8,1),(14,2,1),(2,1,0),(11,3,0),(12,4,0),(7,6,1),(4,7,1),(8,5,0),(15,8,1),(16,2,1)],
(130,430) => MOP_CODE[(9,3,1),(10,4,1),(5,6,1),(3,7,1),(6,5,0),(13,8,0),(14,2,0),(2,1,1),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,1),(15,8,1),(16,2,1)],
(130,431) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,1),(11,3,1),(12,4,1),(7,6,1),(4,7,1),(8,5,1),(15,8,1),(16,2,1)],
(130,432) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,0),(15,8,0),(16,2,0),(1,2,1),(9,6,1),(10,7,1),(5,3,1),(3,4,1),(6,8,1),(13,5,1),(14,1,1),(2,2,1),(11,6,1),(12,7,1),(7,3,1),(4,4,1),(8,8,1),(15,5,1),(16,1,1)],
(130,433) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,0),(15,8,0),(16,2,0),(1,5,1),(9,4,1),(10,3,1),(5,7,1),(3,6,1),(6,1,1),(13,2,1),(14,8,1),(2,5,1),(11,4,1),(12,3,1),(7,7,1),(4,6,1),(8,1,1),(15,2,1),(16,8,1)],
(130,434) => MOP_CODE[(9,3,0),(10,4,0),(5,6,0),(3,7,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,3,0),(12,4,0),(7,6,0),(4,7,0),(8,5,0),(15,8,0),(16,2,0),(1,8,1),(9,7,1),(10,6,1),(5,4,1),(3,3,1),(6,2,1),(13,1,1),(14,5,1),(2,8,1),(11,7,1),(12,6,1),(7,4,1),(4,3,1),(8,2,1),(15,1,1),(16,5,1)],
(131,435) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,0),(15,2,0),(16,2,0)],
(131,436) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,0),(15,2,0),(16,2,0),(1,1,1),(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,1,1),(13,2,1),(14,2,1),(2,1,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1),(8,1,1),(15,2,1),(16,2,1)],
(131,437) => MOP_CODE[(9,2,0),(10,2,0),(5,1,1),(3,1,1),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,2,1),(12,2,1),(7,1,0),(4,1,0),(8,1,1),(15,2,0),(16,2,0)],
(131,438) => MOP_CODE[(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,1),(12,2,1),(7,1,1),(4,1,1),(8,1,0),(15,2,0),(16,2,0)],
(131,439) => MOP_CODE[(9,2,1),(10,2,1),(5,1,0),(3,1,0),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,2,1),(12,2,1),(7,1,0),(4,1,0),(8,1,0),(15,2,1),(16,2,1)],
(131,440) => MOP_CODE[(9,2,1),(10,2,1),(5,1,0),(3,1,0),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,2,0),(12,2,0),(7,1,1),(4,1,1),(8,1,1),(15,2,0),(16,2,0)],
(131,441) => MOP_CODE[(9,2,0),(10,2,0),(5,1,1),(3,1,1),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,2,0),(12,2,0),(7,1,1),(4,1,1),(8,1,0),(15,2,1),(16,2,1)],
(131,442) => MOP_CODE[(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,1),(15,2,1),(16,2,1)],
(131,443) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1),(8,1,1),(15,2,1),(16,2,1)],
(131,444) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,0),(15,2,0),(16,2,0),(1,2,1),(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,2,1),(13,1,1),(14,1,1),(2,2,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,2,1),(15,1,1),(16,1,1)],
(131,445) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,0),(15,2,0),(16,2,0),(1,5,1),(9,8,1),(10,8,1),(5,5,1),(3,5,1),(6,5,1),(13,8,1),(14,8,1),(2,5,1),(11,8,1),(12,8,1),(7,5,1),(4,5,1),(8,5,1),(15,8,1),(16,8,1)],
(131,446) => MOP_CODE[(9,2,0),(10,2,0),(5,1,0),(3,1,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,2,0),(12,2,0),(7,1,0),(4,1,0),(8,1,0),(15,2,0),(16,2,0),(1,8,1),(9,5,1),(10,5,1),(5,8,1),(3,8,1),(6,8,1),(13,5,1),(14,5,1),(2,8,1),(11,5,1),(12,5,1),(7,8,1),(4,8,1),(8,8,1),(15,5,1),(16,5,1)],
(132,447) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,0),(15,1,0),(16,1,0)],
(132,448) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,0),(15,1,0),(16,1,0),(1,1,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,1,1),(13,1,1),(14,1,1),(2,1,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,1,1),(15,1,1),(16,1,1)],
(132,449) => MOP_CODE[(9,2,0),(10,2,0),(5,2,1),(3,2,1),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,2,1),(12,2,1),(7,2,0),(4,2,0),(8,1,1),(15,1,0),(16,1,0)],
(132,450) => MOP_CODE[(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,1,0),(15,1,0),(16,1,0)],
(132,451) => MOP_CODE[(9,2,1),(10,2,1),(5,2,0),(3,2,0),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,2,1),(12,2,1),(7,2,0),(4,2,0),(8,1,0),(15,1,1),(16,1,1)],
(132,452) => MOP_CODE[(9,2,1),(10,2,1),(5,2,0),(3,2,0),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,2,0),(12,2,0),(7,2,1),(4,2,1),(8,1,1),(15,1,0),(16,1,0)],
(132,453) => MOP_CODE[(9,2,0),(10,2,0),(5,2,1),(3,2,1),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,2,0),(12,2,0),(7,2,1),(4,2,1),(8,1,0),(15,1,1),(16,1,1)],
(132,454) => MOP_CODE[(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,1),(15,1,1),(16,1,1)],
(132,455) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,1,1),(15,1,1),(16,1,1)],
(132,456) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,0),(15,1,0),(16,1,0),(1,2,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,2,1),(13,2,1),(14,2,1),(2,2,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,2,1),(15,2,1),(16,2,1)],
(132,457) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,0),(15,1,0),(16,1,0),(1,5,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,5,1),(13,5,1),(14,5,1),(2,5,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,5,1),(15,5,1),(16,5,1)],
(132,458) => MOP_CODE[(9,2,0),(10,2,0),(5,2,0),(3,2,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,2,0),(12,2,0),(7,2,0),(4,2,0),(8,1,0),(15,1,0),(16,1,0),(1,8,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,8,1),(13,8,1),(14,8,1),(2,8,1),(11,5,1),(12,5,1),(7,5,1),(4,5,1),(8,8,1),(15,8,1),(16,8,1)],
(133,459) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,0),(15,2,0),(16,8,0)],
(133,460) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,0),(15,2,0),(16,8,0),(1,1,1),(9,6,1),(10,7,1),(5,4,1),(3,3,1),(6,5,1),(13,2,1),(14,8,1),(2,1,1),(11,6,1),(12,7,1),(7,4,1),(4,3,1),(8,5,1),(15,2,1),(16,8,1)],
(133,461) => MOP_CODE[(9,6,0),(10,7,0),(5,4,1),(3,3,1),(6,5,0),(13,2,1),(14,8,1),(2,1,1),(11,6,1),(12,7,1),(7,4,0),(4,3,0),(8,5,1),(15,2,0),(16,8,0)],
(133,462) => MOP_CODE[(9,6,1),(10,7,1),(5,4,1),(3,3,1),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,1),(12,7,1),(7,4,1),(4,3,1),(8,5,0),(15,2,0),(16,8,0)],
(133,463) => MOP_CODE[(9,6,1),(10,7,1),(5,4,0),(3,3,0),(6,5,0),(13,2,1),(14,8,1),(2,1,0),(11,6,1),(12,7,1),(7,4,0),(4,3,0),(8,5,0),(15,2,1),(16,8,1)],
(133,464) => MOP_CODE[(9,6,1),(10,7,1),(5,4,0),(3,3,0),(6,5,0),(13,2,1),(14,8,1),(2,1,1),(11,6,0),(12,7,0),(7,4,1),(4,3,1),(8,5,1),(15,2,0),(16,8,0)],
(133,465) => MOP_CODE[(9,6,0),(10,7,0),(5,4,1),(3,3,1),(6,5,0),(13,2,1),(14,8,1),(2,1,0),(11,6,0),(12,7,0),(7,4,1),(4,3,1),(8,5,0),(15,2,1),(16,8,1)],
(133,466) => MOP_CODE[(9,6,1),(10,7,1),(5,4,1),(3,3,1),(6,5,0),(13,2,0),(14,8,0),(2,1,1),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,1),(15,2,1),(16,8,1)],
(133,467) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,1),(11,6,1),(12,7,1),(7,4,1),(4,3,1),(8,5,1),(15,2,1),(16,8,1)],
(133,468) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,0),(15,2,0),(16,8,0),(1,2,1),(9,3,1),(10,4,1),(5,7,1),(3,6,1),(6,8,1),(13,1,1),(14,5,1),(2,2,1),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,8,1),(15,1,1),(16,5,1)],
(133,469) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,0),(15,2,0),(16,8,0),(1,5,1),(9,7,1),(10,6,1),(5,3,1),(3,4,1),(6,1,1),(13,8,1),(14,2,1),(2,5,1),(11,7,1),(12,6,1),(7,3,1),(4,4,1),(8,1,1),(15,8,1),(16,2,1)],
(133,470) => MOP_CODE[(9,6,0),(10,7,0),(5,4,0),(3,3,0),(6,5,0),(13,2,0),(14,8,0),(2,1,0),(11,6,0),(12,7,0),(7,4,0),(4,3,0),(8,5,0),(15,2,0),(16,8,0),(1,8,1),(9,4,1),(10,3,1),(5,6,1),(3,7,1),(6,2,1),(13,5,1),(14,1,1),(2,8,1),(11,4,1),(12,3,1),(7,6,1),(4,7,1),(8,2,1),(15,5,1),(16,1,1)],
(134,471) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,0),(15,1,0),(16,5,0)],
(134,472) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,0),(15,1,0),(16,5,0),(1,1,1),(9,6,1),(10,7,1),(5,7,1),(3,6,1),(6,5,1),(13,1,1),(14,5,1),(2,1,1),(11,6,1),(12,7,1),(7,7,1),(4,6,1),(8,5,1),(15,1,1),(16,5,1)],
(134,473) => MOP_CODE[(9,6,0),(10,7,0),(5,7,1),(3,6,1),(6,5,0),(13,1,1),(14,5,1),(2,1,1),(11,6,1),(12,7,1),(7,7,0),(4,6,0),(8,5,1),(15,1,0),(16,5,0)],
(134,474) => MOP_CODE[(9,6,1),(10,7,1),(5,7,1),(3,6,1),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,1),(12,7,1),(7,7,1),(4,6,1),(8,5,0),(15,1,0),(16,5,0)],
(134,475) => MOP_CODE[(9,6,1),(10,7,1),(5,7,0),(3,6,0),(6,5,0),(13,1,1),(14,5,1),(2,1,0),(11,6,1),(12,7,1),(7,7,0),(4,6,0),(8,5,0),(15,1,1),(16,5,1)],
(134,476) => MOP_CODE[(9,6,1),(10,7,1),(5,7,0),(3,6,0),(6,5,0),(13,1,1),(14,5,1),(2,1,1),(11,6,0),(12,7,0),(7,7,1),(4,6,1),(8,5,1),(15,1,0),(16,5,0)],
(134,477) => MOP_CODE[(9,6,0),(10,7,0),(5,7,1),(3,6,1),(6,5,0),(13,1,1),(14,5,1),(2,1,0),(11,6,0),(12,7,0),(7,7,1),(4,6,1),(8,5,0),(15,1,1),(16,5,1)],
(134,478) => MOP_CODE[(9,6,1),(10,7,1),(5,7,1),(3,6,1),(6,5,0),(13,1,0),(14,5,0),(2,1,1),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,1),(15,1,1),(16,5,1)],
(134,479) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,1),(11,6,1),(12,7,1),(7,7,1),(4,6,1),(8,5,1),(15,1,1),(16,5,1)],
(134,480) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,0),(15,1,0),(16,5,0),(1,2,1),(9,3,1),(10,4,1),(5,4,1),(3,3,1),(6,8,1),(13,2,1),(14,8,1),(2,2,1),(11,3,1),(12,4,1),(7,4,1),(4,3,1),(8,8,1),(15,2,1),(16,8,1)],
(134,481) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,0),(15,1,0),(16,5,0),(1,5,1),(9,7,1),(10,6,1),(5,6,1),(3,7,1),(6,1,1),(13,5,1),(14,1,1),(2,5,1),(11,7,1),(12,6,1),(7,6,1),(4,7,1),(8,1,1),(15,5,1),(16,1,1)],
(134,482) => MOP_CODE[(9,6,0),(10,7,0),(5,7,0),(3,6,0),(6,5,0),(13,1,0),(14,5,0),(2,1,0),(11,6,0),(12,7,0),(7,7,0),(4,6,0),(8,5,0),(15,1,0),(16,5,0),(1,8,1),(9,4,1),(10,3,1),(5,3,1),(3,4,1),(6,2,1),(13,8,1),(14,2,1),(2,8,1),(11,4,1),(12,3,1),(7,3,1),(4,4,1),(8,2,1),(15,8,1),(16,2,1)],
(135,483) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,0),(15,8,0),(16,8,0)],
(135,484) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,0),(15,8,0),(16,8,0),(1,1,1),(9,2,1),(10,2,1),(5,5,1),(3,5,1),(6,1,1),(13,8,1),(14,8,1),(2,1,1),(11,2,1),(12,2,1),(7,5,1),(4,5,1),(8,1,1),(15,8,1),(16,8,1)],
(135,485) => MOP_CODE[(9,2,0),(10,2,0),(5,5,1),(3,5,1),(6,1,0),(13,8,1),(14,8,1),(2,1,1),(11,2,1),(12,2,1),(7,5,0),(4,5,0),(8,1,1),(15,8,0),(16,8,0)],
(135,486) => MOP_CODE[(9,2,1),(10,2,1),(5,5,1),(3,5,1),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,1),(12,2,1),(7,5,1),(4,5,1),(8,1,0),(15,8,0),(16,8,0)],
(135,487) => MOP_CODE[(9,2,1),(10,2,1),(5,5,0),(3,5,0),(6,1,0),(13,8,1),(14,8,1),(2,1,0),(11,2,1),(12,2,1),(7,5,0),(4,5,0),(8,1,0),(15,8,1),(16,8,1)],
(135,488) => MOP_CODE[(9,2,1),(10,2,1),(5,5,0),(3,5,0),(6,1,0),(13,8,1),(14,8,1),(2,1,1),(11,2,0),(12,2,0),(7,5,1),(4,5,1),(8,1,1),(15,8,0),(16,8,0)],
(135,489) => MOP_CODE[(9,2,0),(10,2,0),(5,5,1),(3,5,1),(6,1,0),(13,8,1),(14,8,1),(2,1,0),(11,2,0),(12,2,0),(7,5,1),(4,5,1),(8,1,0),(15,8,1),(16,8,1)],
(135,490) => MOP_CODE[(9,2,1),(10,2,1),(5,5,1),(3,5,1),(6,1,0),(13,8,0),(14,8,0),(2,1,1),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,1),(15,8,1),(16,8,1)],
(135,491) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,1),(11,2,1),(12,2,1),(7,5,1),(4,5,1),(8,1,1),(15,8,1),(16,8,1)],
(135,492) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,0),(15,8,0),(16,8,0),(1,2,1),(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,2,1),(13,5,1),(14,5,1),(2,2,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,2,1),(15,5,1),(16,5,1)],
(135,493) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,0),(15,8,0),(16,8,0),(1,5,1),(9,8,1),(10,8,1),(5,1,1),(3,1,1),(6,5,1),(13,2,1),(14,2,1),(2,5,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,5,1),(15,2,1),(16,2,1)],
(135,494) => MOP_CODE[(9,2,0),(10,2,0),(5,5,0),(3,5,0),(6,1,0),(13,8,0),(14,8,0),(2,1,0),(11,2,0),(12,2,0),(7,5,0),(4,5,0),(8,1,0),(15,8,0),(16,8,0),(1,8,1),(9,5,1),(10,5,1),(5,2,1),(3,2,1),(6,8,1),(13,1,1),(14,1,1),(2,8,1),(11,5,1),(12,5,1),(7,2,1),(4,2,1),(8,8,1),(15,1,1),(16,1,1)],
(136,495) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,0),(15,1,0),(16,1,0)],
(136,496) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,0),(15,1,0),(16,1,0),(1,1,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,1,1),(13,1,1),(14,1,1),(2,1,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,1,1),(15,1,1),(16,1,1)],
(136,497) => MOP_CODE[(9,8,0),(10,8,0),(5,8,1),(3,8,1),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,8,1),(12,8,1),(7,8,0),(4,8,0),(8,1,1),(15,1,0),(16,1,0)],
(136,498) => MOP_CODE[(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,1,0),(15,1,0),(16,1,0)],
(136,499) => MOP_CODE[(9,8,1),(10,8,1),(5,8,0),(3,8,0),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,8,1),(12,8,1),(7,8,0),(4,8,0),(8,1,0),(15,1,1),(16,1,1)],
(136,500) => MOP_CODE[(9,8,1),(10,8,1),(5,8,0),(3,8,0),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,8,0),(12,8,0),(7,8,1),(4,8,1),(8,1,1),(15,1,0),(16,1,0)],
(136,501) => MOP_CODE[(9,8,0),(10,8,0),(5,8,1),(3,8,1),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,8,0),(12,8,0),(7,8,1),(4,8,1),(8,1,0),(15,1,1),(16,1,1)],
(136,502) => MOP_CODE[(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,1),(15,1,1),(16,1,1)],
(136,503) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,1,1),(15,1,1),(16,1,1)],
(136,504) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,0),(15,1,0),(16,1,0),(1,2,1),(9,5,1),(10,5,1),(5,5,1),(3,5,1),(6,2,1),(13,2,1),(14,2,1),(2,2,1),(11,5,1),(12,5,1),(7,5,1),(4,5,1),(8,2,1),(15,2,1),(16,2,1)],
(136,505) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,0),(15,1,0),(16,1,0),(1,5,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,5,1),(13,5,1),(14,5,1),(2,5,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,5,1),(15,5,1),(16,5,1)],
(136,506) => MOP_CODE[(9,8,0),(10,8,0),(5,8,0),(3,8,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,8,0),(12,8,0),(7,8,0),(4,8,0),(8,1,0),(15,1,0),(16,1,0),(1,8,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,8,1),(13,8,1),(14,8,1),(2,8,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,8,1),(15,8,1),(16,8,1)],
(137,507) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,0),(15,8,0),(16,2,0)],
(137,508) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,0),(15,8,0),(16,2,0),(1,1,1),(9,6,1),(10,7,1),(5,3,1),(3,4,1),(6,5,1),(13,8,1),(14,2,1),(2,1,1),(11,6,1),(12,7,1),(7,3,1),(4,4,1),(8,5,1),(15,8,1),(16,2,1)],
(137,509) => MOP_CODE[(9,6,0),(10,7,0),(5,3,1),(3,4,1),(6,5,0),(13,8,1),(14,2,1),(2,1,1),(11,6,1),(12,7,1),(7,3,0),(4,4,0),(8,5,1),(15,8,0),(16,2,0)],
(137,510) => MOP_CODE[(9,6,1),(10,7,1),(5,3,1),(3,4,1),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,1),(12,7,1),(7,3,1),(4,4,1),(8,5,0),(15,8,0),(16,2,0)],
(137,511) => MOP_CODE[(9,6,1),(10,7,1),(5,3,0),(3,4,0),(6,5,0),(13,8,1),(14,2,1),(2,1,0),(11,6,1),(12,7,1),(7,3,0),(4,4,0),(8,5,0),(15,8,1),(16,2,1)],
(137,512) => MOP_CODE[(9,6,1),(10,7,1),(5,3,0),(3,4,0),(6,5,0),(13,8,1),(14,2,1),(2,1,1),(11,6,0),(12,7,0),(7,3,1),(4,4,1),(8,5,1),(15,8,0),(16,2,0)],
(137,513) => MOP_CODE[(9,6,0),(10,7,0),(5,3,1),(3,4,1),(6,5,0),(13,8,1),(14,2,1),(2,1,0),(11,6,0),(12,7,0),(7,3,1),(4,4,1),(8,5,0),(15,8,1),(16,2,1)],
(137,514) => MOP_CODE[(9,6,1),(10,7,1),(5,3,1),(3,4,1),(6,5,0),(13,8,0),(14,2,0),(2,1,1),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,1),(15,8,1),(16,2,1)],
(137,515) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,1),(11,6,1),(12,7,1),(7,3,1),(4,4,1),(8,5,1),(15,8,1),(16,2,1)],
(137,516) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,0),(15,8,0),(16,2,0),(1,2,1),(9,3,1),(10,4,1),(5,6,1),(3,7,1),(6,8,1),(13,5,1),(14,1,1),(2,2,1),(11,3,1),(12,4,1),(7,6,1),(4,7,1),(8,8,1),(15,5,1),(16,1,1)],
(137,517) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,0),(15,8,0),(16,2,0),(1,5,1),(9,7,1),(10,6,1),(5,4,1),(3,3,1),(6,1,1),(13,2,1),(14,8,1),(2,5,1),(11,7,1),(12,6,1),(7,4,1),(4,3,1),(8,1,1),(15,2,1),(16,8,1)],
(137,518) => MOP_CODE[(9,6,0),(10,7,0),(5,3,0),(3,4,0),(6,5,0),(13,8,0),(14,2,0),(2,1,0),(11,6,0),(12,7,0),(7,3,0),(4,4,0),(8,5,0),(15,8,0),(16,2,0),(1,8,1),(9,4,1),(10,3,1),(5,7,1),(3,6,1),(6,2,1),(13,1,1),(14,5,1),(2,8,1),(11,4,1),(12,3,1),(7,7,1),(4,6,1),(8,2,1),(15,1,1),(16,5,1)],
(138,519) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,0),(15,5,0),(16,1,0)],
(138,520) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,0),(15,5,0),(16,1,0),(1,1,1),(9,6,1),(10,7,1),(5,6,1),(3,7,1),(6,5,1),(13,5,1),(14,1,1),(2,1,1),(11,6,1),(12,7,1),(7,6,1),(4,7,1),(8,5,1),(15,5,1),(16,1,1)],
(138,521) => MOP_CODE[(9,6,0),(10,7,0),(5,6,1),(3,7,1),(6,5,0),(13,5,1),(14,1,1),(2,1,1),(11,6,1),(12,7,1),(7,6,0),(4,7,0),(8,5,1),(15,5,0),(16,1,0)],
(138,522) => MOP_CODE[(9,6,1),(10,7,1),(5,6,1),(3,7,1),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,1),(12,7,1),(7,6,1),(4,7,1),(8,5,0),(15,5,0),(16,1,0)],
(138,523) => MOP_CODE[(9,6,1),(10,7,1),(5,6,0),(3,7,0),(6,5,0),(13,5,1),(14,1,1),(2,1,0),(11,6,1),(12,7,1),(7,6,0),(4,7,0),(8,5,0),(15,5,1),(16,1,1)],
(138,524) => MOP_CODE[(9,6,1),(10,7,1),(5,6,0),(3,7,0),(6,5,0),(13,5,1),(14,1,1),(2,1,1),(11,6,0),(12,7,0),(7,6,1),(4,7,1),(8,5,1),(15,5,0),(16,1,0)],
(138,525) => MOP_CODE[(9,6,0),(10,7,0),(5,6,1),(3,7,1),(6,5,0),(13,5,1),(14,1,1),(2,1,0),(11,6,0),(12,7,0),(7,6,1),(4,7,1),(8,5,0),(15,5,1),(16,1,1)],
(138,526) => MOP_CODE[(9,6,1),(10,7,1),(5,6,1),(3,7,1),(6,5,0),(13,5,0),(14,1,0),(2,1,1),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,1),(15,5,1),(16,1,1)],
(138,527) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,1),(11,6,1),(12,7,1),(7,6,1),(4,7,1),(8,5,1),(15,5,1),(16,1,1)],
(138,528) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,0),(15,5,0),(16,1,0),(1,2,1),(9,3,1),(10,4,1),(5,3,1),(3,4,1),(6,8,1),(13,8,1),(14,2,1),(2,2,1),(11,3,1),(12,4,1),(7,3,1),(4,4,1),(8,8,1),(15,8,1),(16,2,1)],
(138,529) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,0),(15,5,0),(16,1,0),(1,5,1),(9,7,1),(10,6,1),(5,7,1),(3,6,1),(6,1,1),(13,1,1),(14,5,1),(2,5,1),(11,7,1),(12,6,1),(7,7,1),(4,6,1),(8,1,1),(15,1,1),(16,5,1)],
(138,530) => MOP_CODE[(9,6,0),(10,7,0),(5,6,0),(3,7,0),(6,5,0),(13,5,0),(14,1,0),(2,1,0),(11,6,0),(12,7,0),(7,6,0),(4,7,0),(8,5,0),(15,5,0),(16,1,0),(1,8,1),(9,4,1),(10,3,1),(5,4,1),(3,3,1),(6,2,1),(13,2,1),(14,8,1),(2,8,1),(11,4,1),(12,3,1),(7,4,1),(4,3,1),(8,2,1),(15,2,1),(16,8,1)],
(139,531) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0)],
(139,532) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(2,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1)],
(139,533) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,1),(15,1,0),(16,1,0)],
(139,534) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,0),(15,1,0),(16,1,0)],
(139,535) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,0),(15,1,1),(16,1,1)],
(139,536) => MOP_CODE[(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(2,1,1),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,1),(15,1,0),(16,1,0)],
(139,537) => MOP_CODE[(9,1,0),(10,1,0),(5,1,1),(3,1,1),(6,1,0),(13,1,1),(14,1,1),(2,1,0),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,0),(15,1,1),(16,1,1)],
(139,538) => MOP_CODE[(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,1),(15,1,1),(16,1,1)],
(139,539) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1)],
(139,540) => MOP_CODE[(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(2,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(1,2,1),(9,2,1),(10,2,1),(5,2,1),(3,2,1),(6,2,1),(13,2,1),(14,2,1),(2,2,1),(11,2,1),(12,2,1),(7,2,1),(4,2,1),(8,2,1),(15,2,1),(16,2,1)],
(140,541) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0)],
(140,542) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,1,1),(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,1),(13,2,1),(14,2,1),(2,1,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,1),(15,2,1),(16,2,1)],
(140,543) => MOP_CODE[(9,1,0),(10,1,0),(5,2,1),(3,2,1),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,1,1),(12,1,1),(7,2,0),(4,2,0),(8,1,1),(15,2,0),(16,2,0)],
(140,544) => MOP_CODE[(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,0),(15,2,0),(16,2,0)],
(140,545) => MOP_CODE[(9,1,1),(10,1,1),(5,2,0),(3,2,0),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,1,1),(12,1,1),(7,2,0),(4,2,0),(8,1,0),(15,2,1),(16,2,1)],
(140,546) => MOP_CODE[(9,1,1),(10,1,1),(5,2,0),(3,2,0),(6,1,0),(13,2,1),(14,2,1),(2,1,1),(11,1,0),(12,1,0),(7,2,1),(4,2,1),(8,1,1),(15,2,0),(16,2,0)],
(140,547) => MOP_CODE[(9,1,0),(10,1,0),(5,2,1),(3,2,1),(6,1,0),(13,2,1),(14,2,1),(2,1,0),(11,1,0),(12,1,0),(7,2,1),(4,2,1),(8,1,0),(15,2,1),(16,2,1)],
(140,548) => MOP_CODE[(9,1,1),(10,1,1),(5,2,1),(3,2,1),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,1),(15,2,1),(16,2,1)],
(140,549) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,1),(11,1,1),(12,1,1),(7,2,1),(4,2,1),(8,1,1),(15,2,1),(16,2,1)],
(140,550) => MOP_CODE[(9,1,0),(10,1,0),(5,2,0),(3,2,0),(6,1,0),(13,2,0),(14,2,0),(2,1,0),(11,1,0),(12,1,0),(7,2,0),(4,2,0),(8,1,0),(15,2,0),(16,2,0),(1,2,1),(9,2,1),(10,2,1),(5,1,1),(3,1,1),(6,2,1),(13,1,1),(14,1,1),(2,2,1),(11,2,1),(12,2,1),(7,1,1),(4,1,1),(8,2,1),(15,1,1),(16,1,1)],
(141,551) => MOP_CODE[(9,31,0),(10,32,0),(5,1,0),(3,4,0),(6,4,0),(13,33,0),(14,34,0),(2,1,0),(11,33,0),(12,34,0),(7,1,0),(4,4,0),(8,4,0),(15,31,0),(16,32,0)],
(141,552) => MOP_CODE[(9,31,0),(10,32,0),(5,1,0),(3,4,0),(6,4,0),(13,33,0),(14,34,0),(2,1,0),(11,33,0),(12,34,0),(7,1,0),(4,4,0),(8,4,0),(15,31,0),(16,32,0),(1,1,1),(9,31,1),(10,32,1),(5,1,1),(3,4,1),(6,4,1),(13,33,1),(14,34,1),(2,1,1),(11,33,1),(12,34,1),(7,1,1),(4,4,1),(8,4,1),(15,31,1),(16,32,1)],
(141,553) => MOP_CODE[(9,31,0),(10,32,0),(5,1,1),(3,4,1),(6,4,0),(13,33,1),(14,34,1),(2,1,1),(11,33,1),(12,34,1),(7,1,0),(4,4,0),(8,4,1),(15,31,0),(16,32,0)],
(141,554) => MOP_CODE[(9,31,1),(10,32,1),(5,1,1),(3,4,1),(6,4,0),(13,33,0),(14,34,0),(2,1,0),(11,33,1),(12,34,1),(7,1,1),(4,4,1),(8,4,0),(15,31,0),(16,32,0)],
(141,555) => MOP_CODE[(9,31,1),(10,32,1),(5,1,0),(3,4,0),(6,4,0),(13,33,1),(14,34,1),(2,1,0),(11,33,1),(12,34,1),(7,1,0),(4,4,0),(8,4,0),(15,31,1),(16,32,1)],
(141,556) => MOP_CODE[(9,31,1),(10,32,1),(5,1,0),(3,4,0),(6,4,0),(13,33,1),(14,34,1),(2,1,1),(11,33,0),(12,34,0),(7,1,1),(4,4,1),(8,4,1),(15,31,0),(16,32,0)],
(141,557) => MOP_CODE[(9,31,0),(10,32,0),(5,1,1),(3,4,1),(6,4,0),(13,33,1),(14,34,1),(2,1,0),(11,33,0),(12,34,0),(7,1,1),(4,4,1),(8,4,0),(15,31,1),(16,32,1)],
(141,558) => MOP_CODE[(9,31,1),(10,32,1),(5,1,1),(3,4,1),(6,4,0),(13,33,0),(14,34,0),(2,1,1),(11,33,0),(12,34,0),(7,1,0),(4,4,0),(8,4,1),(15,31,1),(16,32,1)],
(141,559) => MOP_CODE[(9,31,0),(10,32,0),(5,1,0),(3,4,0),(6,4,0),(13,33,0),(14,34,0),(2,1,1),(11,33,1),(12,34,1),(7,1,1),(4,4,1),(8,4,1),(15,31,1),(16,32,1)],
(141,560) => MOP_CODE[(9,31,0),(10,32,0),(5,1,0),(3,4,0),(6,4,0),(13,33,0),(14,34,0),(2,1,0),(11,33,0),(12,34,0),(7,1,0),(4,4,0),(8,4,0),(15,31,0),(16,32,0),(1,2,1),(9,29,1),(10,9,1),(5,5,1),(3,3,1),(6,7,1),(13,29,1),(14,9,1),(2,5,1),(11,29,1),(12,9,1),(7,2,1),(4,7,1),(8,3,1),(15,29,1),(16,9,1)],
(142,561) => MOP_CODE[(9,31,0),(10,32,0),(5,5,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(2,1,0),(11,33,0),(12,34,0),(7,2,0),(4,7,0),(8,4,0),(15,29,0),(16,9,0)],
(142,562) => MOP_CODE[(9,31,0),(10,32,0),(5,5,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(2,1,0),(11,33,0),(12,34,0),(7,2,0),(4,7,0),(8,4,0),(15,29,0),(16,9,0),(1,1,1),(9,31,1),(10,32,1),(5,5,1),(3,3,1),(6,4,1),(13,29,1),(14,9,1),(2,1,1),(11,33,1),(12,34,1),(7,2,1),(4,7,1),(8,4,1),(15,29,1),(16,9,1)],
(142,563) => MOP_CODE[(9,31,0),(10,32,0),(5,5,1),(3,3,1),(6,4,0),(13,29,1),(14,9,1),(2,1,1),(11,33,1),(12,34,1),(7,2,0),(4,7,0),(8,4,1),(15,29,0),(16,9,0)],
(142,564) => MOP_CODE[(9,31,1),(10,32,1),(5,5,1),(3,3,1),(6,4,0),(13,29,0),(14,9,0),(2,1,0),(11,33,1),(12,34,1),(7,2,1),(4,7,1),(8,4,0),(15,29,0),(16,9,0)],
(142,565) => MOP_CODE[(9,31,1),(10,32,1),(5,5,0),(3,3,0),(6,4,0),(13,29,1),(14,9,1),(2,1,0),(11,33,1),(12,34,1),(7,2,0),(4,7,0),(8,4,0),(15,29,1),(16,9,1)],
(142,566) => MOP_CODE[(9,31,1),(10,32,1),(5,5,0),(3,3,0),(6,4,0),(13,29,1),(14,9,1),(2,1,1),(11,33,0),(12,34,0),(7,2,1),(4,7,1),(8,4,1),(15,29,0),(16,9,0)],
(142,567) => MOP_CODE[(9,31,0),(10,32,0),(5,5,1),(3,3,1),(6,4,0),(13,29,1),(14,9,1),(2,1,0),(11,33,0),(12,34,0),(7,2,1),(4,7,1),(8,4,0),(15,29,1),(16,9,1)],
(142,568) => MOP_CODE[(9,31,1),(10,32,1),(5,5,1),(3,3,1),(6,4,0),(13,29,0),(14,9,0),(2,1,1),(11,33,0),(12,34,0),(7,2,0),(4,7,0),(8,4,1),(15,29,1),(16,9,1)],
(142,569) => MOP_CODE[(9,31,0),(10,32,0),(5,5,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(2,1,1),(11,33,1),(12,34,1),(7,2,1),(4,7,1),(8,4,1),(15,29,1),(16,9,1)],
(142,570) => MOP_CODE[(9,31,0),(10,32,0),(5,5,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(2,1,0),(11,33,0),(12,34,0),(7,2,0),(4,7,0),(8,4,0),(15,29,0),(16,9,0),(1,2,1),(9,29,1),(10,9,1),(5,1,1),(3,4,1),(6,7,1),(13,33,1),(14,34,1),(2,5,1),(11,29,1),(12,9,1),(7,1,1),(4,4,1),(8,3,1),(15,31,1),(16,32,1)],
(143,1) => MOP_CODE[(17,1,0),(18,1,0)],
(143,2) => MOP_CODE[(17,1,0),(18,1,0),(1,1,1),(17,1,1),(18,1,1)],
(143,3) => MOP_CODE[(17,1,0),(18,1,0),(1,2,1),(17,2,1),(18,2,1)],
(144,4) => MOP_CODE[(17,35,0),(18,36,0)],
(144,5) => MOP_CODE[(17,35,0),(18,36,0),(1,1,1),(17,35,1),(18,36,1)],
(144,6) => MOP_CODE[(17,35,0),(18,36,0),(1,2,1),(17,37,1),(18,38,1)],
(145,7) => MOP_CODE[(17,36,0),(18,35,0)],
(145,8) => MOP_CODE[(17,36,0),(18,35,0),(1,1,1),(17,36,1),(18,35,1)],
(145,9) => MOP_CODE[(17,36,0),(18,35,0),(1,2,1),(17,38,1),(18,37,1)],
(146,10) => MOP_CODE[(17,1,0),(18,1,0)],
(146,11) => MOP_CODE[(17,1,0),(18,1,0),(1,1,1),(17,1,1),(18,1,1)],
(146,12) => MOP_CODE[(17,1,0),(18,1,0),(1,2,1),(17,2,1),(18,2,1)],
(147,13) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0)],
(147,14) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0),(1,1,1),(17,1,1),(18,1,1),(2,1,1),(19,1,1),(20,1,1)],
(147,15) => MOP_CODE[(17,1,0),(18,1,0),(2,1,1),(19,1,1),(20,1,1)],
(147,16) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0),(1,2,1),(17,2,1),(18,2,1),(2,2,1),(19,2,1),(20,2,1)],
(148,17) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0)],
(148,18) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0),(1,1,1),(17,1,1),(18,1,1),(2,1,1),(19,1,1),(20,1,1)],
(148,19) => MOP_CODE[(17,1,0),(18,1,0),(2,1,1),(19,1,1),(20,1,1)],
(148,20) => MOP_CODE[(17,1,0),(18,1,0),(2,1,0),(19,1,0),(20,1,0),(1,2,1),(17,2,1),(18,2,1),(2,2,1),(19,2,1),(20,2,1)],
(149,21) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0)],
(149,22) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(1,1,1),(17,1,1),(18,1,1),(21,1,1),(22,1,1),(14,1,1)],
(149,23) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1)],
(149,24) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(1,2,1),(17,2,1),(18,2,1),(21,2,1),(22,2,1),(14,2,1)],
(150,25) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0)],
(150,26) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1)],
(150,27) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1)],
(150,28) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1)],
(151,29) => MOP_CODE[(17,35,0),(18,36,0),(21,1,0),(22,35,0),(14,36,0)],
(151,30) => MOP_CODE[(17,35,0),(18,36,0),(21,1,0),(22,35,0),(14,36,0),(1,1,1),(17,35,1),(18,36,1),(21,1,1),(22,35,1),(14,36,1)],
(151,31) => MOP_CODE[(17,35,0),(18,36,0),(21,1,1),(22,35,1),(14,36,1)],
(151,32) => MOP_CODE[(17,35,0),(18,36,0),(21,1,0),(22,35,0),(14,36,0),(1,2,1),(17,37,1),(18,38,1),(21,2,1),(22,37,1),(14,38,1)],
(152,33) => MOP_CODE[(17,35,0),(18,36,0),(23,36,0),(13,1,0),(24,35,0)],
(152,34) => MOP_CODE[(17,35,0),(18,36,0),(23,36,0),(13,1,0),(24,35,0),(1,1,1),(17,35,1),(18,36,1),(23,36,1),(13,1,1),(24,35,1)],
(152,35) => MOP_CODE[(17,35,0),(18,36,0),(23,36,1),(13,1,1),(24,35,1)],
(152,36) => MOP_CODE[(17,35,0),(18,36,0),(23,36,0),(13,1,0),(24,35,0),(1,2,1),(17,37,1),(18,38,1),(23,38,1),(13,2,1),(24,37,1)],
(153,37) => MOP_CODE[(17,36,0),(18,35,0),(21,1,0),(22,36,0),(14,35,0)],
(153,38) => MOP_CODE[(17,36,0),(18,35,0),(21,1,0),(22,36,0),(14,35,0),(1,1,1),(17,36,1),(18,35,1),(21,1,1),(22,36,1),(14,35,1)],
(153,39) => MOP_CODE[(17,36,0),(18,35,0),(21,1,1),(22,36,1),(14,35,1)],
(153,40) => MOP_CODE[(17,36,0),(18,35,0),(21,1,0),(22,36,0),(14,35,0),(1,2,1),(17,38,1),(18,37,1),(21,2,1),(22,38,1),(14,37,1)],
(154,41) => MOP_CODE[(17,36,0),(18,35,0),(23,35,0),(13,1,0),(24,36,0)],
(154,42) => MOP_CODE[(17,36,0),(18,35,0),(23,35,0),(13,1,0),(24,36,0),(1,1,1),(17,36,1),(18,35,1),(23,35,1),(13,1,1),(24,36,1)],
(154,43) => MOP_CODE[(17,36,0),(18,35,0),(23,35,1),(13,1,1),(24,36,1)],
(154,44) => MOP_CODE[(17,36,0),(18,35,0),(23,35,0),(13,1,0),(24,36,0),(1,2,1),(17,38,1),(18,37,1),(23,37,1),(13,2,1),(24,38,1)],
(155,45) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0)],
(155,46) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1)],
(155,47) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1)],
(155,48) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1)],
(156,49) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0)],
(156,50) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0),(1,1,1),(17,1,1),(18,1,1),(25,1,1),(15,1,1),(26,1,1)],
(156,51) => MOP_CODE[(17,1,0),(18,1,0),(25,1,1),(15,1,1),(26,1,1)],
(156,52) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0),(1,2,1),(17,2,1),(18,2,1),(25,2,1),(15,2,1),(26,2,1)],
(157,53) => MOP_CODE[(17,1,0),(18,1,0),(27,1,0),(28,1,0),(16,1,0)],
(157,54) => MOP_CODE[(17,1,0),(18,1,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(17,1,1),(18,1,1),(27,1,1),(28,1,1),(16,1,1)],
(157,55) => MOP_CODE[(17,1,0),(18,1,0),(27,1,1),(28,1,1),(16,1,1)],
(157,56) => MOP_CODE[(17,1,0),(18,1,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(17,2,1),(18,2,1),(27,2,1),(28,2,1),(16,2,1)],
(158,57) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0)],
(158,58) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0),(1,1,1),(17,1,1),(18,1,1),(25,2,1),(15,2,1),(26,2,1)],
(158,59) => MOP_CODE[(17,1,0),(18,1,0),(25,2,1),(15,2,1),(26,2,1)],
(158,60) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0),(1,2,1),(17,2,1),(18,2,1),(25,1,1),(15,1,1),(26,1,1)],
(159,61) => MOP_CODE[(17,1,0),(18,1,0),(27,2,0),(28,2,0),(16,2,0)],
(159,62) => MOP_CODE[(17,1,0),(18,1,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(17,1,1),(18,1,1),(27,2,1),(28,2,1),(16,2,1)],
(159,63) => MOP_CODE[(17,1,0),(18,1,0),(27,2,1),(28,2,1),(16,2,1)],
(159,64) => MOP_CODE[(17,1,0),(18,1,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(17,2,1),(18,2,1),(27,1,1),(28,1,1),(16,1,1)],
(160,65) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0)],
(160,66) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0),(1,1,1),(17,1,1),(18,1,1),(25,1,1),(15,1,1),(26,1,1)],
(160,67) => MOP_CODE[(17,1,0),(18,1,0),(25,1,1),(15,1,1),(26,1,1)],
(160,68) => MOP_CODE[(17,1,0),(18,1,0),(25,1,0),(15,1,0),(26,1,0),(1,2,1),(17,2,1),(18,2,1),(25,2,1),(15,2,1),(26,2,1)],
(161,69) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0)],
(161,70) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0),(1,1,1),(17,1,1),(18,1,1),(25,2,1),(15,2,1),(26,2,1)],
(161,71) => MOP_CODE[(17,1,0),(18,1,0),(25,2,1),(15,2,1),(26,2,1)],
(161,72) => MOP_CODE[(17,1,0),(18,1,0),(25,2,0),(15,2,0),(26,2,0),(1,2,1),(17,2,1),(18,2,1),(25,1,1),(15,1,1),(26,1,1)],
(162,73) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(19,1,0),(20,1,0),(27,1,0),(28,1,0),(16,1,0)],
(162,74) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(19,1,0),(20,1,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(17,1,1),(18,1,1),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(19,1,1),(20,1,1),(27,1,1),(28,1,1),(16,1,1)],
(162,75) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(19,1,1),(20,1,1),(27,1,0),(28,1,0),(16,1,0)],
(162,76) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,1),(19,1,1),(20,1,1),(27,1,1),(28,1,1),(16,1,1)],
(162,77) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(2,1,0),(19,1,0),(20,1,0),(27,1,1),(28,1,1),(16,1,1)],
(162,78) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(19,1,0),(20,1,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(17,2,1),(18,2,1),(21,2,1),(22,2,1),(14,2,1),(2,2,1),(19,2,1),(20,2,1),(27,2,1),(28,2,1),(16,2,1)],
(163,79) => MOP_CODE[(17,1,0),(18,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(19,1,0),(20,1,0),(27,2,0),(28,2,0),(16,2,0)],
(163,80) => MOP_CODE[(17,1,0),(18,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(19,1,0),(20,1,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(17,1,1),(18,1,1),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(19,1,1),(20,1,1),(27,2,1),(28,2,1),(16,2,1)],
(163,81) => MOP_CODE[(17,1,0),(18,1,0),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(19,1,1),(20,1,1),(27,2,0),(28,2,0),(16,2,0)],
(163,82) => MOP_CODE[(17,1,0),(18,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,1),(19,1,1),(20,1,1),(27,2,1),(28,2,1),(16,2,1)],
(163,83) => MOP_CODE[(17,1,0),(18,1,0),(21,2,1),(22,2,1),(14,2,1),(2,1,0),(19,1,0),(20,1,0),(27,2,1),(28,2,1),(16,2,1)],
(163,84) => MOP_CODE[(17,1,0),(18,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(19,1,0),(20,1,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(17,2,1),(18,2,1),(21,1,1),(22,1,1),(14,1,1),(2,2,1),(19,2,1),(20,2,1),(27,1,1),(28,1,1),(16,1,1)],
(164,85) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0)],
(164,86) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1),(2,1,1),(19,1,1),(20,1,1),(25,1,1),(15,1,1),(26,1,1)],
(164,87) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(2,1,1),(19,1,1),(20,1,1),(25,1,0),(15,1,0),(26,1,0)],
(164,88) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,1),(19,1,1),(20,1,1),(25,1,1),(15,1,1),(26,1,1)],
(164,89) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(2,1,0),(19,1,0),(20,1,0),(25,1,1),(15,1,1),(26,1,1)],
(164,90) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1),(2,2,1),(19,2,1),(20,2,1),(25,2,1),(15,2,1),(26,2,1)],
(165,91) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0)],
(165,92) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0),(1,1,1),(17,1,1),(18,1,1),(23,2,1),(13,2,1),(24,2,1),(2,1,1),(19,1,1),(20,1,1),(25,2,1),(15,2,1),(26,2,1)],
(165,93) => MOP_CODE[(17,1,0),(18,1,0),(23,2,1),(13,2,1),(24,2,1),(2,1,1),(19,1,1),(20,1,1),(25,2,0),(15,2,0),(26,2,0)],
(165,94) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,1),(19,1,1),(20,1,1),(25,2,1),(15,2,1),(26,2,1)],
(165,95) => MOP_CODE[(17,1,0),(18,1,0),(23,2,1),(13,2,1),(24,2,1),(2,1,0),(19,1,0),(20,1,0),(25,2,1),(15,2,1),(26,2,1)],
(165,96) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0),(1,2,1),(17,2,1),(18,2,1),(23,1,1),(13,1,1),(24,1,1),(2,2,1),(19,2,1),(20,2,1),(25,1,1),(15,1,1),(26,1,1)],
(166,97) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0)],
(166,98) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1),(2,1,1),(19,1,1),(20,1,1),(25,1,1),(15,1,1),(26,1,1)],
(166,99) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(2,1,1),(19,1,1),(20,1,1),(25,1,0),(15,1,0),(26,1,0)],
(166,100) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,1),(19,1,1),(20,1,1),(25,1,1),(15,1,1),(26,1,1)],
(166,101) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(2,1,0),(19,1,0),(20,1,0),(25,1,1),(15,1,1),(26,1,1)],
(166,102) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(2,1,0),(19,1,0),(20,1,0),(25,1,0),(15,1,0),(26,1,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1),(2,2,1),(19,2,1),(20,2,1),(25,2,1),(15,2,1),(26,2,1)],
(167,103) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0)],
(167,104) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0),(1,1,1),(17,1,1),(18,1,1),(23,2,1),(13,2,1),(24,2,1),(2,1,1),(19,1,1),(20,1,1),(25,2,1),(15,2,1),(26,2,1)],
(167,105) => MOP_CODE[(17,1,0),(18,1,0),(23,2,1),(13,2,1),(24,2,1),(2,1,1),(19,1,1),(20,1,1),(25,2,0),(15,2,0),(26,2,0)],
(167,106) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,1),(19,1,1),(20,1,1),(25,2,1),(15,2,1),(26,2,1)],
(167,107) => MOP_CODE[(17,1,0),(18,1,0),(23,2,1),(13,2,1),(24,2,1),(2,1,0),(19,1,0),(20,1,0),(25,2,1),(15,2,1),(26,2,1)],
(167,108) => MOP_CODE[(17,1,0),(18,1,0),(23,2,0),(13,2,0),(24,2,0),(2,1,0),(19,1,0),(20,1,0),(25,2,0),(15,2,0),(26,2,0),(1,2,1),(17,2,1),(18,2,1),(23,1,1),(13,1,1),(24,1,1),(2,2,1),(19,2,1),(20,2,1),(25,1,1),(15,1,1),(26,1,1)],
(168,109) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0)],
(168,110) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1)],
(168,111) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1)],
(168,112) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1)],
(169,113) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0)],
(169,114) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(1,1,1),(29,38,1),(17,35,1),(6,2,1),(18,36,1),(30,37,1)],
(169,115) => MOP_CODE[(29,38,1),(17,35,0),(6,2,1),(18,36,0),(30,37,1)],
(169,116) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(1,2,1),(29,36,1),(17,37,1),(6,1,1),(18,38,1),(30,35,1)],
(170,117) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0)],
(170,118) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(1,1,1),(29,37,1),(17,36,1),(6,2,1),(18,35,1),(30,38,1)],
(170,119) => MOP_CODE[(29,37,1),(17,36,0),(6,2,1),(18,35,0),(30,38,1)],
(170,120) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(1,2,1),(29,35,1),(17,38,1),(6,1,1),(18,37,1),(30,36,1)],
(171,121) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0)],
(171,122) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(1,1,1),(29,35,1),(17,36,1),(6,1,1),(18,35,1),(30,36,1)],
(171,123) => MOP_CODE[(29,35,1),(17,36,0),(6,1,1),(18,35,0),(30,36,1)],
(171,124) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(1,2,1),(29,37,1),(17,38,1),(6,2,1),(18,37,1),(30,38,1)],
(172,125) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0)],
(172,126) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(1,1,1),(29,36,1),(17,35,1),(6,1,1),(18,36,1),(30,35,1)],
(172,127) => MOP_CODE[(29,36,1),(17,35,0),(6,1,1),(18,36,0),(30,35,1)],
(172,128) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(1,2,1),(29,38,1),(17,37,1),(6,2,1),(18,38,1),(30,37,1)],
(173,129) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0)],
(173,130) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1)],
(173,131) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1)],
(173,132) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1)],
(174,133) => MOP_CODE[(17,1,0),(18,1,0),(31,1,0),(8,1,0),(32,1,0)],
(174,134) => MOP_CODE[(17,1,0),(18,1,0),(31,1,0),(8,1,0),(32,1,0),(1,1,1),(17,1,1),(18,1,1),(31,1,1),(8,1,1),(32,1,1)],
(174,135) => MOP_CODE[(17,1,0),(18,1,0),(31,1,1),(8,1,1),(32,1,1)],
(174,136) => MOP_CODE[(17,1,0),(18,1,0),(31,1,0),(8,1,0),(32,1,0),(1,2,1),(17,2,1),(18,2,1),(31,2,1),(8,2,1),(32,2,1)],
(175,137) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0)],
(175,138) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1)],
(175,139) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(2,1,1),(31,1,0),(19,1,1),(8,1,0),(20,1,1),(32,1,0)],
(175,140) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1)],
(175,141) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(2,1,0),(31,1,1),(19,1,0),(8,1,1),(20,1,0),(32,1,1)],
(175,142) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(2,2,1),(31,2,1),(19,2,1),(8,2,1),(20,2,1),(32,2,1)],
(176,143) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0)],
(176,144) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1)],
(176,145) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(2,1,1),(31,2,0),(19,1,1),(8,2,0),(20,1,1),(32,2,0)],
(176,146) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1)],
(176,147) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(2,1,0),(31,2,1),(19,1,0),(8,2,1),(20,1,0),(32,2,1)],
(176,148) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(2,2,1),(31,1,1),(19,2,1),(8,1,1),(20,2,1),(32,1,1)],
(177,149) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0)],
(177,150) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1)],
(177,151) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,1,0),(22,1,0),(14,1,0)],
(177,152) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,0),(13,1,0),(24,1,0),(21,1,1),(22,1,1),(14,1,1)],
(177,153) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1)],
(177,154) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(23,2,1),(13,2,1),(24,2,1),(21,2,1),(22,2,1),(14,2,1)],
(178,155) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(23,1,0),(13,35,0),(24,36,0),(21,38,0),(22,2,0),(14,37,0)],
(178,156) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(23,1,0),(13,35,0),(24,36,0),(21,38,0),(22,2,0),(14,37,0),(1,1,1),(29,38,1),(17,35,1),(6,2,1),(18,36,1),(30,37,1),(23,1,1),(13,35,1),(24,36,1),(21,38,1),(22,2,1),(14,37,1)],
(178,157) => MOP_CODE[(29,38,1),(17,35,0),(6,2,1),(18,36,0),(30,37,1),(23,1,1),(13,35,1),(24,36,1),(21,38,0),(22,2,0),(14,37,0)],
(178,158) => MOP_CODE[(29,38,1),(17,35,0),(6,2,1),(18,36,0),(30,37,1),(23,1,0),(13,35,0),(24,36,0),(21,38,1),(22,2,1),(14,37,1)],
(178,159) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(23,1,1),(13,35,1),(24,36,1),(21,38,1),(22,2,1),(14,37,1)],
(178,160) => MOP_CODE[(29,38,0),(17,35,0),(6,2,0),(18,36,0),(30,37,0),(23,1,0),(13,35,0),(24,36,0),(21,38,0),(22,2,0),(14,37,0),(1,2,1),(29,36,1),(17,37,1),(6,1,1),(18,38,1),(30,35,1),(23,2,1),(13,37,1),(24,38,1),(21,36,1),(22,1,1),(14,35,1)],
(179,161) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(23,1,0),(13,36,0),(24,35,0),(21,37,0),(22,2,0),(14,38,0)],
(179,162) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(23,1,0),(13,36,0),(24,35,0),(21,37,0),(22,2,0),(14,38,0),(1,1,1),(29,37,1),(17,36,1),(6,2,1),(18,35,1),(30,38,1),(23,1,1),(13,36,1),(24,35,1),(21,37,1),(22,2,1),(14,38,1)],
(179,163) => MOP_CODE[(29,37,1),(17,36,0),(6,2,1),(18,35,0),(30,38,1),(23,1,1),(13,36,1),(24,35,1),(21,37,0),(22,2,0),(14,38,0)],
(179,164) => MOP_CODE[(29,37,1),(17,36,0),(6,2,1),(18,35,0),(30,38,1),(23,1,0),(13,36,0),(24,35,0),(21,37,1),(22,2,1),(14,38,1)],
(179,165) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(23,1,1),(13,36,1),(24,35,1),(21,37,1),(22,2,1),(14,38,1)],
(179,166) => MOP_CODE[(29,37,0),(17,36,0),(6,2,0),(18,35,0),(30,38,0),(23,1,0),(13,36,0),(24,35,0),(21,37,0),(22,2,0),(14,38,0),(1,2,1),(29,35,1),(17,38,1),(6,1,1),(18,37,1),(30,36,1),(23,2,1),(13,38,1),(24,37,1),(21,35,1),(22,1,1),(14,36,1)],
(180,167) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(23,1,0),(13,36,0),(24,35,0),(21,35,0),(22,1,0),(14,36,0)],
(180,168) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(23,1,0),(13,36,0),(24,35,0),(21,35,0),(22,1,0),(14,36,0),(1,1,1),(29,35,1),(17,36,1),(6,1,1),(18,35,1),(30,36,1),(23,1,1),(13,36,1),(24,35,1),(21,35,1),(22,1,1),(14,36,1)],
(180,169) => MOP_CODE[(29,35,1),(17,36,0),(6,1,1),(18,35,0),(30,36,1),(23,1,1),(13,36,1),(24,35,1),(21,35,0),(22,1,0),(14,36,0)],
(180,170) => MOP_CODE[(29,35,1),(17,36,0),(6,1,1),(18,35,0),(30,36,1),(23,1,0),(13,36,0),(24,35,0),(21,35,1),(22,1,1),(14,36,1)],
(180,171) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(23,1,1),(13,36,1),(24,35,1),(21,35,1),(22,1,1),(14,36,1)],
(180,172) => MOP_CODE[(29,35,0),(17,36,0),(6,1,0),(18,35,0),(30,36,0),(23,1,0),(13,36,0),(24,35,0),(21,35,0),(22,1,0),(14,36,0),(1,2,1),(29,37,1),(17,38,1),(6,2,1),(18,37,1),(30,38,1),(23,2,1),(13,38,1),(24,37,1),(21,37,1),(22,2,1),(14,38,1)],
(181,173) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(23,1,0),(13,35,0),(24,36,0),(21,36,0),(22,1,0),(14,35,0)],
(181,174) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(23,1,0),(13,35,0),(24,36,0),(21,36,0),(22,1,0),(14,35,0),(1,1,1),(29,36,1),(17,35,1),(6,1,1),(18,36,1),(30,35,1),(23,1,1),(13,35,1),(24,36,1),(21,36,1),(22,1,1),(14,35,1)],
(181,175) => MOP_CODE[(29,36,1),(17,35,0),(6,1,1),(18,36,0),(30,35,1),(23,1,1),(13,35,1),(24,36,1),(21,36,0),(22,1,0),(14,35,0)],
(181,176) => MOP_CODE[(29,36,1),(17,35,0),(6,1,1),(18,36,0),(30,35,1),(23,1,0),(13,35,0),(24,36,0),(21,36,1),(22,1,1),(14,35,1)],
(181,177) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(23,1,1),(13,35,1),(24,36,1),(21,36,1),(22,1,1),(14,35,1)],
(181,178) => MOP_CODE[(29,36,0),(17,35,0),(6,1,0),(18,36,0),(30,35,0),(23,1,0),(13,35,0),(24,36,0),(21,36,0),(22,1,0),(14,35,0),(1,2,1),(29,38,1),(17,37,1),(6,2,1),(18,38,1),(30,37,1),(23,2,1),(13,37,1),(24,38,1),(21,38,1),(22,2,1),(14,37,1)],
(182,179) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0)],
(182,180) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1)],
(182,181) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,2,0),(22,2,0),(14,2,0)],
(182,182) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,0),(13,1,0),(24,1,0),(21,2,1),(22,2,1),(14,2,1)],
(182,183) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1)],
(182,184) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(23,2,1),(13,2,1),(24,2,1),(21,1,1),(22,1,1),(14,1,1)],
(183,185) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0)],
(183,186) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(183,187) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(25,1,1),(15,1,1),(26,1,1),(27,1,0),(28,1,0),(16,1,0)],
(183,188) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(25,1,0),(15,1,0),(26,1,0),(27,1,1),(28,1,1),(16,1,1)],
(183,189) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(183,190) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(184,191) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0)],
(184,192) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(184,193) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(25,2,1),(15,2,1),(26,2,1),(27,2,0),(28,2,0),(16,2,0)],
(184,194) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(25,2,0),(15,2,0),(26,2,0),(27,2,1),(28,2,1),(16,2,1)],
(184,195) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(184,196) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(185,197) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0)],
(185,198) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(185,199) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(25,2,1),(15,2,1),(26,2,1),(27,1,0),(28,1,0),(16,1,0)],
(185,200) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(25,2,0),(15,2,0),(26,2,0),(27,1,1),(28,1,1),(16,1,1)],
(185,201) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(185,202) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(186,203) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0)],
(186,204) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(186,205) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(25,1,1),(15,1,1),(26,1,1),(27,2,0),(28,2,0),(16,2,0)],
(186,206) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(25,1,0),(15,1,0),(26,1,0),(27,2,1),(28,2,1),(16,2,1)],
(186,207) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(186,208) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(187,209) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,1,0),(8,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0)],
(187,210) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,1,0),(8,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(1,1,1),(17,1,1),(18,1,1),(21,1,1),(22,1,1),(14,1,1),(31,1,1),(8,1,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1)],
(187,211) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,1,1),(8,1,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1)],
(187,212) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(31,1,1),(8,1,1),(32,1,1),(25,1,0),(15,1,0),(26,1,0)],
(187,213) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(31,1,0),(8,1,0),(32,1,0),(25,1,1),(15,1,1),(26,1,1)],
(187,214) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,1,0),(8,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(1,2,1),(17,2,1),(18,2,1),(21,2,1),(22,2,1),(14,2,1),(31,2,1),(8,2,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1)],
(188,215) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,2,0),(8,2,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0)],
(188,216) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,2,0),(8,2,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(1,1,1),(17,1,1),(18,1,1),(21,1,1),(22,1,1),(14,1,1),(31,2,1),(8,2,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1)],
(188,217) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,2,1),(8,2,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1)],
(188,218) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(31,2,1),(8,2,1),(32,2,1),(25,2,0),(15,2,0),(26,2,0)],
(188,219) => MOP_CODE[(17,1,0),(18,1,0),(21,1,1),(22,1,1),(14,1,1),(31,2,0),(8,2,0),(32,2,0),(25,2,1),(15,2,1),(26,2,1)],
(188,220) => MOP_CODE[(17,1,0),(18,1,0),(21,1,0),(22,1,0),(14,1,0),(31,2,0),(8,2,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(1,2,1),(17,2,1),(18,2,1),(21,2,1),(22,2,1),(14,2,1),(31,1,1),(8,1,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1)],
(189,221) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,1,0),(8,1,0),(32,1,0),(27,1,0),(28,1,0),(16,1,0)],
(189,222) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,1,0),(8,1,0),(32,1,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1),(31,1,1),(8,1,1),(32,1,1),(27,1,1),(28,1,1),(16,1,1)],
(189,223) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(31,1,1),(8,1,1),(32,1,1),(27,1,0),(28,1,0),(16,1,0)],
(189,224) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,1,1),(8,1,1),(32,1,1),(27,1,1),(28,1,1),(16,1,1)],
(189,225) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(31,1,0),(8,1,0),(32,1,0),(27,1,1),(28,1,1),(16,1,1)],
(189,226) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,1,0),(8,1,0),(32,1,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1),(31,2,1),(8,2,1),(32,2,1),(27,2,1),(28,2,1),(16,2,1)],
(190,227) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,2,0),(8,2,0),(32,2,0),(27,2,0),(28,2,0),(16,2,0)],
(190,228) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,2,0),(8,2,0),(32,2,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(17,1,1),(18,1,1),(23,1,1),(13,1,1),(24,1,1),(31,2,1),(8,2,1),(32,2,1),(27,2,1),(28,2,1),(16,2,1)],
(190,229) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(31,2,1),(8,2,1),(32,2,1),(27,2,0),(28,2,0),(16,2,0)],
(190,230) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,2,1),(8,2,1),(32,2,1),(27,2,1),(28,2,1),(16,2,1)],
(190,231) => MOP_CODE[(17,1,0),(18,1,0),(23,1,1),(13,1,1),(24,1,1),(31,2,0),(8,2,0),(32,2,0),(27,2,1),(28,2,1),(16,2,1)],
(190,232) => MOP_CODE[(17,1,0),(18,1,0),(23,1,0),(13,1,0),(24,1,0),(31,2,0),(8,2,0),(32,2,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(17,2,1),(18,2,1),(23,2,1),(13,2,1),(24,2,1),(31,1,1),(8,1,1),(32,1,1),(27,1,1),(28,1,1),(16,1,1)],
(191,233) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0)],
(191,234) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(191,235) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0)],
(191,236) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,0),(13,1,0),(24,1,0),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,1,0),(19,1,1),(8,1,0),(20,1,1),(32,1,0),(25,1,1),(15,1,1),(26,1,1),(27,1,0),(28,1,0),(16,1,0)],
(191,237) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,1,0),(22,1,0),(14,1,0),(2,1,1),(31,1,0),(19,1,1),(8,1,0),(20,1,1),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,1),(28,1,1),(16,1,1)],
(191,238) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,1,1),(19,1,0),(8,1,1),(20,1,0),(32,1,1),(25,1,1),(15,1,1),(26,1,1),(27,1,0),(28,1,0),(16,1,0)],
(191,239) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,1,0),(13,1,0),(24,1,0),(21,1,1),(22,1,1),(14,1,1),(2,1,0),(31,1,1),(19,1,0),(8,1,1),(20,1,0),(32,1,1),(25,1,0),(15,1,0),(26,1,0),(27,1,1),(28,1,1),(16,1,1)],
(191,240) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(191,241) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(191,242) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,1,0),(13,1,0),(24,1,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,1,0),(15,1,0),(26,1,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(23,2,1),(13,2,1),(24,2,1),(21,2,1),(22,2,1),(14,2,1),(2,2,1),(31,2,1),(19,2,1),(8,2,1),(20,2,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(192,243) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,0),(13,2,0),(24,2,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0)],
(192,244) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,0),(13,2,0),(24,2,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(29,1,1),(17,1,1),(6,1,1),(18,1,1),(30,1,1),(23,2,1),(13,2,1),(24,2,1),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(192,245) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,1),(13,2,1),(24,2,1),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0)],
(192,246) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,2,0),(13,2,0),(24,2,0),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,1,0),(19,1,1),(8,1,0),(20,1,1),(32,1,0),(25,2,1),(15,2,1),(26,2,1),(27,2,0),(28,2,0),(16,2,0)],
(192,247) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,2,1),(13,2,1),(24,2,1),(21,2,0),(22,2,0),(14,2,0),(2,1,1),(31,1,0),(19,1,1),(8,1,0),(20,1,1),(32,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,1),(28,2,1),(16,2,1)],
(192,248) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,2,1),(13,2,1),(24,2,1),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,1,1),(19,1,0),(8,1,1),(20,1,0),(32,1,1),(25,2,1),(15,2,1),(26,2,1),(27,2,0),(28,2,0),(16,2,0)],
(192,249) => MOP_CODE[(29,1,1),(17,1,0),(6,1,1),(18,1,0),(30,1,1),(23,2,0),(13,2,0),(24,2,0),(21,2,1),(22,2,1),(14,2,1),(2,1,0),(31,1,1),(19,1,0),(8,1,1),(20,1,0),(32,1,1),(25,2,0),(15,2,0),(26,2,0),(27,2,1),(28,2,1),(16,2,1)],
(192,250) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,1),(13,2,1),(24,2,1),(21,2,1),(22,2,1),(14,2,1),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(192,251) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,0),(13,2,0),(24,2,0),(21,2,0),(22,2,0),(14,2,0),(2,1,1),(31,1,1),(19,1,1),(8,1,1),(20,1,1),(32,1,1),(25,2,1),(15,2,1),(26,2,1),(27,2,1),(28,2,1),(16,2,1)],
(192,252) => MOP_CODE[(29,1,0),(17,1,0),(6,1,0),(18,1,0),(30,1,0),(23,2,0),(13,2,0),(24,2,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,1,0),(19,1,0),(8,1,0),(20,1,0),(32,1,0),(25,2,0),(15,2,0),(26,2,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(29,2,1),(17,2,1),(6,2,1),(18,2,1),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,1,1),(22,1,1),(14,1,1),(2,2,1),(31,2,1),(19,2,1),(8,2,1),(20,2,1),(32,2,1),(25,1,1),(15,1,1),(26,1,1),(27,1,1),(28,1,1),(16,1,1)],
(193,253) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,0),(13,2,0),(24,2,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0)],
(193,254) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,0),(13,2,0),(24,2,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(23,2,1),(13,2,1),(24,2,1),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(193,255) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,1),(13,2,1),(24,2,1),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0)],
(193,256) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,2,0),(13,2,0),(24,2,0),(21,1,1),(22,1,1),(14,1,1),(2,1,1),(31,2,0),(19,1,1),(8,2,0),(20,1,1),(32,2,0),(25,2,1),(15,2,1),(26,2,1),(27,1,0),(28,1,0),(16,1,0)],
(193,257) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,2,1),(13,2,1),(24,2,1),(21,1,0),(22,1,0),(14,1,0),(2,1,1),(31,2,0),(19,1,1),(8,2,0),(20,1,1),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,1),(28,1,1),(16,1,1)],
(193,258) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,2,1),(13,2,1),(24,2,1),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,2,1),(19,1,0),(8,2,1),(20,1,0),(32,2,1),(25,2,1),(15,2,1),(26,2,1),(27,1,0),(28,1,0),(16,1,0)],
(193,259) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,2,0),(13,2,0),(24,2,0),(21,1,1),(22,1,1),(14,1,1),(2,1,0),(31,2,1),(19,1,0),(8,2,1),(20,1,0),(32,2,1),(25,2,0),(15,2,0),(26,2,0),(27,1,1),(28,1,1),(16,1,1)],
(193,260) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,1),(13,2,1),(24,2,1),(21,1,1),(22,1,1),(14,1,1),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(193,261) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,0),(13,2,0),(24,2,0),(21,1,0),(22,1,0),(14,1,0),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(193,262) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,2,0),(13,2,0),(24,2,0),(21,1,0),(22,1,0),(14,1,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,2,0),(15,2,0),(26,2,0),(27,1,0),(28,1,0),(16,1,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1),(2,2,1),(31,1,1),(19,2,1),(8,1,1),(20,2,1),(32,1,1),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(194,263) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0)],
(194,264) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0),(1,1,1),(29,2,1),(17,1,1),(6,2,1),(18,1,1),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(194,265) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0)],
(194,266) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,0),(13,1,0),(24,1,0),(21,2,1),(22,2,1),(14,2,1),(2,1,1),(31,2,0),(19,1,1),(8,2,0),(20,1,1),(32,2,0),(25,1,1),(15,1,1),(26,1,1),(27,2,0),(28,2,0),(16,2,0)],
(194,267) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,2,0),(22,2,0),(14,2,0),(2,1,1),(31,2,0),(19,1,1),(8,2,0),(20,1,1),(32,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,1),(28,2,1),(16,2,1)],
(194,268) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,1),(13,1,1),(24,1,1),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,2,1),(19,1,0),(8,2,1),(20,1,0),(32,2,1),(25,1,1),(15,1,1),(26,1,1),(27,2,0),(28,2,0),(16,2,0)],
(194,269) => MOP_CODE[(29,2,1),(17,1,0),(6,2,1),(18,1,0),(30,2,1),(23,1,0),(13,1,0),(24,1,0),(21,2,1),(22,2,1),(14,2,1),(2,1,0),(31,2,1),(19,1,0),(8,2,1),(20,1,0),(32,2,1),(25,1,0),(15,1,0),(26,1,0),(27,2,1),(28,2,1),(16,2,1)],
(194,270) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,1),(13,1,1),(24,1,1),(21,2,1),(22,2,1),(14,2,1),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(194,271) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,1),(31,2,1),(19,1,1),(8,2,1),(20,1,1),(32,2,1),(25,1,1),(15,1,1),(26,1,1),(27,2,1),(28,2,1),(16,2,1)],
(194,272) => MOP_CODE[(29,2,0),(17,1,0),(6,2,0),(18,1,0),(30,2,0),(23,1,0),(13,1,0),(24,1,0),(21,2,0),(22,2,0),(14,2,0),(2,1,0),(31,2,0),(19,1,0),(8,2,0),(20,1,0),(32,2,0),(25,1,0),(15,1,0),(26,1,0),(27,2,0),(28,2,0),(16,2,0),(1,2,1),(29,1,1),(17,2,1),(6,1,1),(18,2,1),(30,1,1),(23,2,1),(13,2,1),(24,2,1),(21,1,1),(22,1,1),(14,1,1),(2,2,1),(31,1,1),(19,2,1),(8,1,1),(20,2,1),(32,1,1),(25,2,1),(15,2,1),(26,2,1),(27,1,1),(28,1,1),(16,1,1)],
(195,1) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(195,2) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(195,3) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(196,4) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(196,5) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(196,6) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(197,7) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(197,8) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(198,9) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0)],
(198,10) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,1,1),(5,5,1),(3,7,1),(6,6,1),(33,1,1),(34,1,1),(35,7,1),(36,6,1),(37,6,1),(38,5,1),(39,5,1),(40,7,1)],
(198,11) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,8,1),(5,2,1),(3,3,1),(6,4,1),(33,8,1),(34,8,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1)],
(199,12) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0)],
(199,13) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(1,1,1),(5,2,1),(3,3,1),(6,4,1),(33,1,1),(34,1,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1)],
(200,14) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(200,15) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(200,16) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(200,17) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(7,8,1),(4,8,1),(8,8,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(201,18) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0)],
(201,19) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,1,1),(5,7,1),(3,6,1),(6,5,1),(33,1,1),(34,1,1),(35,6,1),(36,5,1),(37,5,1),(38,7,1),(39,7,1),(40,6,1),(2,1,1),(7,7,1),(4,6,1),(8,5,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(201,20) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,1),(7,7,1),(4,6,1),(8,5,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(201,21) => MOP_CODE[(5,7,0),(3,6,0),(6,5,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(7,7,0),(4,6,0),(8,5,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,8,1),(5,3,1),(3,4,1),(6,2,1),(33,8,1),(34,8,1),(35,4,1),(36,2,1),(37,2,1),(38,3,1),(39,3,1),(40,4,1),(2,8,1),(7,3,1),(4,4,1),(8,2,1),(41,8,1),(42,8,1),(43,4,1),(44,2,1),(45,2,1),(46,3,1),(47,3,1),(48,4,1)],
(202,22) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(202,23) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(202,24) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(202,25) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(7,8,1),(4,8,1),(8,8,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(203,26) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(33,1,0),(34,1,0),(35,12,0),(36,13,0),(37,13,0),(38,11,0),(39,11,0),(40,12,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0)],
(203,27) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(33,1,0),(34,1,0),(35,12,0),(36,13,0),(37,13,0),(38,11,0),(39,11,0),(40,12,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,1,1),(5,11,1),(3,12,1),(6,13,1),(33,1,1),(34,1,1),(35,12,1),(36,13,1),(37,13,1),(38,11,1),(39,11,1),(40,12,1),(2,1,1),(7,14,1),(4,15,1),(8,16,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(203,28) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(33,1,0),(34,1,0),(35,12,0),(36,13,0),(37,13,0),(38,11,0),(39,11,0),(40,12,0),(2,1,1),(7,14,1),(4,15,1),(8,16,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(203,29) => MOP_CODE[(5,11,0),(3,12,0),(6,13,0),(33,1,0),(34,1,0),(35,12,0),(36,13,0),(37,13,0),(38,11,0),(39,11,0),(40,12,0),(2,1,0),(7,14,0),(4,15,0),(8,16,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,2,1),(5,17,1),(3,18,1),(6,19,1),(33,8,1),(34,8,1),(35,18,1),(36,19,1),(37,19,1),(38,17,1),(39,17,1),(40,18,1),(2,8,1),(7,20,1),(4,21,1),(8,22,1),(41,8,1),(42,8,1),(43,21,1),(44,22,1),(45,22,1),(46,20,1),(47,20,1),(48,21,1)],
(204,30) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(204,31) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(7,1,0),(4,1,0),(8,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(204,32) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(7,1,1),(4,1,1),(8,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(205,33) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(41,1,0),(42,1,0),(43,7,0),(44,6,0),(45,6,0),(46,5,0),(47,5,0),(48,7,0)],
(205,34) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(41,1,0),(42,1,0),(43,7,0),(44,6,0),(45,6,0),(46,5,0),(47,5,0),(48,7,0),(1,1,1),(5,5,1),(3,7,1),(6,6,1),(33,1,1),(34,1,1),(35,7,1),(36,6,1),(37,6,1),(38,5,1),(39,5,1),(40,7,1),(2,1,1),(7,5,1),(4,7,1),(8,6,1),(41,1,1),(42,1,1),(43,7,1),(44,6,1),(45,6,1),(46,5,1),(47,5,1),(48,7,1)],
(205,35) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(2,1,1),(7,5,1),(4,7,1),(8,6,1),(41,1,1),(42,1,1),(43,7,1),(44,6,1),(45,6,1),(46,5,1),(47,5,1),(48,7,1)],
(205,36) => MOP_CODE[(5,5,0),(3,7,0),(6,6,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(2,1,0),(7,5,0),(4,7,0),(8,6,0),(41,1,0),(42,1,0),(43,7,0),(44,6,0),(45,6,0),(46,5,0),(47,5,0),(48,7,0),(1,8,1),(5,2,1),(3,3,1),(6,4,1),(33,8,1),(34,8,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1),(2,8,1),(7,2,1),(4,3,1),(8,4,1),(41,8,1),(42,8,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)],
(206,37) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,0),(7,2,0),(4,3,0),(8,4,0),(41,1,0),(42,1,0),(43,3,0),(44,4,0),(45,4,0),(46,2,0),(47,2,0),(48,3,0)],
(206,38) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,0),(7,2,0),(4,3,0),(8,4,0),(41,1,0),(42,1,0),(43,3,0),(44,4,0),(45,4,0),(46,2,0),(47,2,0),(48,3,0),(1,1,1),(5,2,1),(3,3,1),(6,4,1),(33,1,1),(34,1,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1),(2,1,1),(7,2,1),(4,3,1),(8,4,1),(41,1,1),(42,1,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)],
(206,39) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,1),(7,2,1),(4,3,1),(8,4,1),(41,1,1),(42,1,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)],
(207,40) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(207,41) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(207,42) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(207,43) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,8,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(208,44) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(208,45) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,1),(3,1,1),(6,1,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(208,46) => MOP_CODE[(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,0),(3,1,0),(6,1,0),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(208,47) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,8,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,8,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(209,48) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(209,49) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(209,50) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(209,51) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,2,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(210,52) => MOP_CODE[(49,9,0),(50,9,0),(51,9,0),(52,9,0),(9,9,0),(10,9,0),(5,1,0),(3,1,0),(6,1,0),(13,9,0),(14,9,0),(53,9,0),(54,9,0),(55,9,0),(56,9,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(210,53) => MOP_CODE[(49,9,0),(50,9,0),(51,9,0),(52,9,0),(9,9,0),(10,9,0),(5,1,0),(3,1,0),(6,1,0),(13,9,0),(14,9,0),(53,9,0),(54,9,0),(55,9,0),(56,9,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(49,9,1),(50,9,1),(51,9,1),(52,9,1),(9,9,1),(10,9,1),(5,1,1),(3,1,1),(6,1,1),(13,9,1),(14,9,1),(53,9,1),(54,9,1),(55,9,1),(56,9,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(210,54) => MOP_CODE[(49,9,1),(50,9,1),(51,9,1),(52,9,1),(9,9,1),(10,9,1),(5,1,0),(3,1,0),(6,1,0),(13,9,1),(14,9,1),(53,9,1),(54,9,1),(55,9,1),(56,9,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(210,55) => MOP_CODE[(49,9,0),(50,9,0),(51,9,0),(52,9,0),(9,9,0),(10,9,0),(5,1,0),(3,1,0),(6,1,0),(13,9,0),(14,9,0),(53,9,0),(54,9,0),(55,9,0),(56,9,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,2,1),(49,10,1),(50,10,1),(51,10,1),(52,10,1),(9,10,1),(10,10,1),(5,8,1),(3,8,1),(6,8,1),(13,10,1),(14,10,1),(53,10,1),(54,10,1),(55,10,1),(56,10,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1)],
(211,56) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(211,57) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1)],
(211,58) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0)],
(212,59) => MOP_CODE[(49,32,0),(50,30,0),(51,30,0),(52,33,0),(9,33,0),(10,32,0),(5,5,0),(3,7,0),(6,6,0),(13,30,0),(14,9,0),(53,33,0),(54,9,0),(55,32,0),(56,9,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0)],
(212,60) => MOP_CODE[(49,32,0),(50,30,0),(51,30,0),(52,33,0),(9,33,0),(10,32,0),(5,5,0),(3,7,0),(6,6,0),(13,30,0),(14,9,0),(53,33,0),(54,9,0),(55,32,0),(56,9,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,1,1),(49,32,1),(50,30,1),(51,30,1),(52,33,1),(9,33,1),(10,32,1),(5,5,1),(3,7,1),(6,6,1),(13,30,1),(14,9,1),(53,33,1),(54,9,1),(55,32,1),(56,9,1),(33,1,1),(34,1,1),(35,7,1),(36,6,1),(37,6,1),(38,5,1),(39,5,1),(40,7,1)],
(212,61) => MOP_CODE[(49,32,1),(50,30,1),(51,30,1),(52,33,1),(9,33,1),(10,32,1),(5,5,0),(3,7,0),(6,6,0),(13,30,1),(14,9,1),(53,33,1),(54,9,1),(55,32,1),(56,9,1),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0)],
(212,62) => MOP_CODE[(49,32,0),(50,30,0),(51,30,0),(52,33,0),(9,33,0),(10,32,0),(5,5,0),(3,7,0),(6,6,0),(13,30,0),(14,9,0),(53,33,0),(54,9,0),(55,32,0),(56,9,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,8,1),(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,1),(3,3,1),(6,4,1),(13,29,1),(14,10,1),(53,31,1),(54,10,1),(55,34,1),(56,10,1),(33,8,1),(34,8,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1)],
(213,63) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,5,0),(3,7,0),(6,6,0),(13,29,0),(14,10,0),(53,31,0),(54,10,0),(55,34,0),(56,10,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0)],
(213,64) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,5,0),(3,7,0),(6,6,0),(13,29,0),(14,10,0),(53,31,0),(54,10,0),(55,34,0),(56,10,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,1,1),(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,5,1),(3,7,1),(6,6,1),(13,29,1),(14,10,1),(53,31,1),(54,10,1),(55,34,1),(56,10,1),(33,1,1),(34,1,1),(35,7,1),(36,6,1),(37,6,1),(38,5,1),(39,5,1),(40,7,1)],
(213,65) => MOP_CODE[(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,5,0),(3,7,0),(6,6,0),(13,29,1),(14,10,1),(53,31,1),(54,10,1),(55,34,1),(56,10,1),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0)],
(213,66) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,5,0),(3,7,0),(6,6,0),(13,29,0),(14,10,0),(53,31,0),(54,10,0),(55,34,0),(56,10,0),(33,1,0),(34,1,0),(35,7,0),(36,6,0),(37,6,0),(38,5,0),(39,5,0),(40,7,0),(1,8,1),(49,32,1),(50,30,1),(51,30,1),(52,33,1),(9,33,1),(10,32,1),(5,2,1),(3,3,1),(6,4,1),(13,30,1),(14,9,1),(53,33,1),(54,9,1),(55,32,1),(56,9,1),(33,8,1),(34,8,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1)],
(214,67) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,2,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(53,31,0),(54,9,0),(55,34,0),(56,9,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0)],
(214,68) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,2,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(53,31,0),(54,9,0),(55,34,0),(56,9,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(1,1,1),(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,1),(3,3,1),(6,4,1),(13,29,1),(14,9,1),(53,31,1),(54,9,1),(55,34,1),(56,9,1),(33,1,1),(34,1,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1)],
(214,69) => MOP_CODE[(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,0),(3,3,0),(6,4,0),(13,29,1),(14,9,1),(53,31,1),(54,9,1),(55,34,1),(56,9,1),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0)],
(215,70) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0)],
(215,71) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(215,72) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(215,73) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(216,74) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0)],
(216,75) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(216,76) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(216,77) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(217,78) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0)],
(217,79) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(217,80) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(218,81) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0)],
(218,82) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(218,83) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(218,84) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(1,8,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(219,85) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0)],
(219,86) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(1,1,1),(5,1,1),(3,1,1),(6,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(219,87) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1)],
(219,88) => MOP_CODE[(5,1,0),(3,1,0),(6,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(1,2,1),(5,8,1),(3,8,1),(6,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1)],
(220,89) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(57,34,0),(58,29,0),(59,29,0),(60,31,0),(11,31,0),(12,34,0),(15,29,0),(16,9,0),(61,31,0),(62,9,0),(63,34,0),(64,9,0)],
(220,90) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(57,34,0),(58,29,0),(59,29,0),(60,31,0),(11,31,0),(12,34,0),(15,29,0),(16,9,0),(61,31,0),(62,9,0),(63,34,0),(64,9,0),(1,1,1),(5,2,1),(3,3,1),(6,4,1),(33,1,1),(34,1,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1),(57,34,1),(58,29,1),(59,29,1),(60,31,1),(11,31,1),(12,34,1),(15,29,1),(16,9,1),(61,31,1),(62,9,1),(63,34,1),(64,9,1)],
(220,91) => MOP_CODE[(5,2,0),(3,3,0),(6,4,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(57,34,1),(58,29,1),(59,29,1),(60,31,1),(11,31,1),(12,34,1),(15,29,1),(16,9,1),(61,31,1),(62,9,1),(63,34,1),(64,9,1)],
(221,92) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(221,93) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(221,94) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,1),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(221,95) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,0),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(221,96) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(221,97) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,8,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(222,98) => MOP_CODE[(49,4,0),(50,2,0),(51,2,0),(52,3,0),(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(53,3,0),(54,8,0),(55,4,0),(56,8,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,4,0),(58,2,0),(59,2,0),(60,3,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(61,3,0),(62,8,0),(63,4,0),(64,8,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0)],
(222,99) => MOP_CODE[(49,4,0),(50,2,0),(51,2,0),(52,3,0),(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(53,3,0),(54,8,0),(55,4,0),(56,8,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,4,0),(58,2,0),(59,2,0),(60,3,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(61,3,0),(62,8,0),(63,4,0),(64,8,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,1,1),(49,4,1),(50,2,1),(51,2,1),(52,3,1),(9,3,1),(10,4,1),(5,7,1),(3,6,1),(6,5,1),(13,2,1),(14,8,1),(53,3,1),(54,8,1),(55,4,1),(56,8,1),(33,1,1),(34,1,1),(35,6,1),(36,5,1),(37,5,1),(38,7,1),(39,7,1),(40,6,1),(2,1,1),(57,4,1),(58,2,1),(59,2,1),(60,3,1),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,5,1),(15,2,1),(16,8,1),(61,3,1),(62,8,1),(63,4,1),(64,8,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(222,100) => MOP_CODE[(49,4,1),(50,2,1),(51,2,1),(52,3,1),(9,3,1),(10,4,1),(5,7,0),(3,6,0),(6,5,0),(13,2,1),(14,8,1),(53,3,1),(54,8,1),(55,4,1),(56,8,1),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,1),(57,4,0),(58,2,0),(59,2,0),(60,3,0),(11,3,0),(12,4,0),(7,7,1),(4,6,1),(8,5,1),(15,2,0),(16,8,0),(61,3,0),(62,8,0),(63,4,0),(64,8,0),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(222,101) => MOP_CODE[(49,4,1),(50,2,1),(51,2,1),(52,3,1),(9,3,1),(10,4,1),(5,7,0),(3,6,0),(6,5,0),(13,2,1),(14,8,1),(53,3,1),(54,8,1),(55,4,1),(56,8,1),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,4,1),(58,2,1),(59,2,1),(60,3,1),(11,3,1),(12,4,1),(7,7,0),(4,6,0),(8,5,0),(15,2,1),(16,8,1),(61,3,1),(62,8,1),(63,4,1),(64,8,1),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0)],
(222,102) => MOP_CODE[(49,4,0),(50,2,0),(51,2,0),(52,3,0),(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(53,3,0),(54,8,0),(55,4,0),(56,8,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,1),(57,4,1),(58,2,1),(59,2,1),(60,3,1),(11,3,1),(12,4,1),(7,7,1),(4,6,1),(8,5,1),(15,2,1),(16,8,1),(61,3,1),(62,8,1),(63,4,1),(64,8,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(222,103) => MOP_CODE[(49,4,0),(50,2,0),(51,2,0),(52,3,0),(9,3,0),(10,4,0),(5,7,0),(3,6,0),(6,5,0),(13,2,0),(14,8,0),(53,3,0),(54,8,0),(55,4,0),(56,8,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,4,0),(58,2,0),(59,2,0),(60,3,0),(11,3,0),(12,4,0),(7,7,0),(4,6,0),(8,5,0),(15,2,0),(16,8,0),(61,3,0),(62,8,0),(63,4,0),(64,8,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,8,1),(49,6,1),(50,5,1),(51,5,1),(52,7,1),(9,7,1),(10,6,1),(5,3,1),(3,4,1),(6,2,1),(13,5,1),(14,1,1),(53,7,1),(54,1,1),(55,6,1),(56,1,1),(33,8,1),(34,8,1),(35,4,1),(36,2,1),(37,2,1),(38,3,1),(39,3,1),(40,4,1),(2,8,1),(57,6,1),(58,5,1),(59,5,1),(60,7,1),(11,7,1),(12,6,1),(7,3,1),(4,4,1),(8,2,1),(15,5,1),(16,1,1),(61,7,1),(62,1,1),(63,6,1),(64,1,1),(41,8,1),(42,8,1),(43,4,1),(44,2,1),(45,2,1),(46,3,1),(47,3,1),(48,4,1)],
(223,104) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(223,105) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,1),(3,1,1),(6,1,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,1,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(223,106) => MOP_CODE[(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,0),(3,1,0),(6,1,0),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,1),(4,1,1),(8,1,1),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(223,107) => MOP_CODE[(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,0),(3,1,0),(6,1,0),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,0),(4,1,0),(8,1,0),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(223,108) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,1,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(223,109) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,8,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,8,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,8,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(224,110) => MOP_CODE[(49,6,0),(50,5,0),(51,5,0),(52,7,0),(9,7,0),(10,6,0),(5,7,0),(3,6,0),(6,5,0),(13,5,0),(14,1,0),(53,7,0),(54,1,0),(55,6,0),(56,1,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,6,0),(58,5,0),(59,5,0),(60,7,0),(11,7,0),(12,6,0),(7,7,0),(4,6,0),(8,5,0),(15,5,0),(16,1,0),(61,7,0),(62,1,0),(63,6,0),(64,1,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0)],
(224,111) => MOP_CODE[(49,6,0),(50,5,0),(51,5,0),(52,7,0),(9,7,0),(10,6,0),(5,7,0),(3,6,0),(6,5,0),(13,5,0),(14,1,0),(53,7,0),(54,1,0),(55,6,0),(56,1,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,6,0),(58,5,0),(59,5,0),(60,7,0),(11,7,0),(12,6,0),(7,7,0),(4,6,0),(8,5,0),(15,5,0),(16,1,0),(61,7,0),(62,1,0),(63,6,0),(64,1,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,1,1),(49,6,1),(50,5,1),(51,5,1),(52,7,1),(9,7,1),(10,6,1),(5,7,1),(3,6,1),(6,5,1),(13,5,1),(14,1,1),(53,7,1),(54,1,1),(55,6,1),(56,1,1),(33,1,1),(34,1,1),(35,6,1),(36,5,1),(37,5,1),(38,7,1),(39,7,1),(40,6,1),(2,1,1),(57,6,1),(58,5,1),(59,5,1),(60,7,1),(11,7,1),(12,6,1),(7,7,1),(4,6,1),(8,5,1),(15,5,1),(16,1,1),(61,7,1),(62,1,1),(63,6,1),(64,1,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(224,112) => MOP_CODE[(49,6,1),(50,5,1),(51,5,1),(52,7,1),(9,7,1),(10,6,1),(5,7,0),(3,6,0),(6,5,0),(13,5,1),(14,1,1),(53,7,1),(54,1,1),(55,6,1),(56,1,1),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,1),(57,6,0),(58,5,0),(59,5,0),(60,7,0),(11,7,0),(12,6,0),(7,7,1),(4,6,1),(8,5,1),(15,5,0),(16,1,0),(61,7,0),(62,1,0),(63,6,0),(64,1,0),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(224,113) => MOP_CODE[(49,6,1),(50,5,1),(51,5,1),(52,7,1),(9,7,1),(10,6,1),(5,7,0),(3,6,0),(6,5,0),(13,5,1),(14,1,1),(53,7,1),(54,1,1),(55,6,1),(56,1,1),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,6,1),(58,5,1),(59,5,1),(60,7,1),(11,7,1),(12,6,1),(7,7,0),(4,6,0),(8,5,0),(15,5,1),(16,1,1),(61,7,1),(62,1,1),(63,6,1),(64,1,1),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0)],
(224,114) => MOP_CODE[(49,6,0),(50,5,0),(51,5,0),(52,7,0),(9,7,0),(10,6,0),(5,7,0),(3,6,0),(6,5,0),(13,5,0),(14,1,0),(53,7,0),(54,1,0),(55,6,0),(56,1,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,1),(57,6,1),(58,5,1),(59,5,1),(60,7,1),(11,7,1),(12,6,1),(7,7,1),(4,6,1),(8,5,1),(15,5,1),(16,1,1),(61,7,1),(62,1,1),(63,6,1),(64,1,1),(41,1,1),(42,1,1),(43,6,1),(44,5,1),(45,5,1),(46,7,1),(47,7,1),(48,6,1)],
(224,115) => MOP_CODE[(49,6,0),(50,5,0),(51,5,0),(52,7,0),(9,7,0),(10,6,0),(5,7,0),(3,6,0),(6,5,0),(13,5,0),(14,1,0),(53,7,0),(54,1,0),(55,6,0),(56,1,0),(33,1,0),(34,1,0),(35,6,0),(36,5,0),(37,5,0),(38,7,0),(39,7,0),(40,6,0),(2,1,0),(57,6,0),(58,5,0),(59,5,0),(60,7,0),(11,7,0),(12,6,0),(7,7,0),(4,6,0),(8,5,0),(15,5,0),(16,1,0),(61,7,0),(62,1,0),(63,6,0),(64,1,0),(41,1,0),(42,1,0),(43,6,0),(44,5,0),(45,5,0),(46,7,0),(47,7,0),(48,6,0),(1,8,1),(49,4,1),(50,2,1),(51,2,1),(52,3,1),(9,3,1),(10,4,1),(5,3,1),(3,4,1),(6,2,1),(13,2,1),(14,8,1),(53,3,1),(54,8,1),(55,4,1),(56,8,1),(33,8,1),(34,8,1),(35,4,1),(36,2,1),(37,2,1),(38,3,1),(39,3,1),(40,4,1),(2,8,1),(57,4,1),(58,2,1),(59,2,1),(60,3,1),(11,3,1),(12,4,1),(7,3,1),(4,4,1),(8,2,1),(15,2,1),(16,8,1),(61,3,1),(62,8,1),(63,4,1),(64,8,1),(41,8,1),(42,8,1),(43,4,1),(44,2,1),(45,2,1),(46,3,1),(47,3,1),(48,4,1)],
(225,116) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(225,117) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(225,118) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,1),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(225,119) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,0),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(225,120) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(225,121) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,2,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,8,1),(3,8,1),(6,8,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,8,1),(4,8,1),(8,8,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(226,122) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(226,123) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,1),(3,1,1),(6,1,1),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,1,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(226,124) => MOP_CODE[(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,0),(3,1,0),(6,1,0),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,1),(4,1,1),(8,1,1),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(226,125) => MOP_CODE[(49,8,1),(50,8,1),(51,8,1),(52,8,1),(9,8,1),(10,8,1),(5,1,0),(3,1,0),(6,1,0),(13,8,1),(14,8,1),(53,8,1),(54,8,1),(55,8,1),(56,8,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,0),(4,1,0),(8,1,0),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(226,126) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,8,1),(58,8,1),(59,8,1),(60,8,1),(11,8,1),(12,8,1),(7,1,1),(4,1,1),(8,1,1),(15,8,1),(16,8,1),(61,8,1),(62,8,1),(63,8,1),(64,8,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(226,127) => MOP_CODE[(49,8,0),(50,8,0),(51,8,0),(52,8,0),(9,8,0),(10,8,0),(5,1,0),(3,1,0),(6,1,0),(13,8,0),(14,8,0),(53,8,0),(54,8,0),(55,8,0),(56,8,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,8,0),(58,8,0),(59,8,0),(60,8,0),(11,8,0),(12,8,0),(7,1,0),(4,1,0),(8,1,0),(15,8,0),(16,8,0),(61,8,0),(62,8,0),(63,8,0),(64,8,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,2,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,8,1),(3,8,1),(6,8,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,8,1),(34,8,1),(35,8,1),(36,8,1),(37,8,1),(38,8,1),(39,8,1),(40,8,1),(2,8,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,8,1),(4,8,1),(8,8,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,8,1),(42,8,1),(43,8,1),(44,8,1),(45,8,1),(46,8,1),(47,8,1),(48,8,1)],
(227,128) => MOP_CODE[(49,15,0),(50,16,0),(51,16,0),(52,14,0),(9,14,0),(10,15,0),(5,14,0),(3,15,0),(6,16,0),(13,16,0),(14,1,0),(53,14,0),(54,1,0),(55,15,0),(56,1,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,15,0),(58,16,0),(59,16,0),(60,14,0),(11,14,0),(12,15,0),(7,14,0),(4,15,0),(8,16,0),(15,16,0),(16,1,0),(61,14,0),(62,1,0),(63,15,0),(64,1,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0)],
(227,129) => MOP_CODE[(49,15,0),(50,16,0),(51,16,0),(52,14,0),(9,14,0),(10,15,0),(5,14,0),(3,15,0),(6,16,0),(13,16,0),(14,1,0),(53,14,0),(54,1,0),(55,15,0),(56,1,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,15,0),(58,16,0),(59,16,0),(60,14,0),(11,14,0),(12,15,0),(7,14,0),(4,15,0),(8,16,0),(15,16,0),(16,1,0),(61,14,0),(62,1,0),(63,15,0),(64,1,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,1,1),(49,15,1),(50,16,1),(51,16,1),(52,14,1),(9,14,1),(10,15,1),(5,14,1),(3,15,1),(6,16,1),(13,16,1),(14,1,1),(53,14,1),(54,1,1),(55,15,1),(56,1,1),(33,1,1),(34,1,1),(35,15,1),(36,16,1),(37,16,1),(38,14,1),(39,14,1),(40,15,1),(2,1,1),(57,15,1),(58,16,1),(59,16,1),(60,14,1),(11,14,1),(12,15,1),(7,14,1),(4,15,1),(8,16,1),(15,16,1),(16,1,1),(61,14,1),(62,1,1),(63,15,1),(64,1,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(227,130) => MOP_CODE[(49,15,1),(50,16,1),(51,16,1),(52,14,1),(9,14,1),(10,15,1),(5,14,0),(3,15,0),(6,16,0),(13,16,1),(14,1,1),(53,14,1),(54,1,1),(55,15,1),(56,1,1),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,1),(57,15,0),(58,16,0),(59,16,0),(60,14,0),(11,14,0),(12,15,0),(7,14,1),(4,15,1),(8,16,1),(15,16,0),(16,1,0),(61,14,0),(62,1,0),(63,15,0),(64,1,0),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(227,131) => MOP_CODE[(49,15,1),(50,16,1),(51,16,1),(52,14,1),(9,14,1),(10,15,1),(5,14,0),(3,15,0),(6,16,0),(13,16,1),(14,1,1),(53,14,1),(54,1,1),(55,15,1),(56,1,1),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,15,1),(58,16,1),(59,16,1),(60,14,1),(11,14,1),(12,15,1),(7,14,0),(4,15,0),(8,16,0),(15,16,1),(16,1,1),(61,14,1),(62,1,1),(63,15,1),(64,1,1),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0)],
(227,132) => MOP_CODE[(49,15,0),(50,16,0),(51,16,0),(52,14,0),(9,14,0),(10,15,0),(5,14,0),(3,15,0),(6,16,0),(13,16,0),(14,1,0),(53,14,0),(54,1,0),(55,15,0),(56,1,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,1),(57,15,1),(58,16,1),(59,16,1),(60,14,1),(11,14,1),(12,15,1),(7,14,1),(4,15,1),(8,16,1),(15,16,1),(16,1,1),(61,14,1),(62,1,1),(63,15,1),(64,1,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(227,133) => MOP_CODE[(49,15,0),(50,16,0),(51,16,0),(52,14,0),(9,14,0),(10,15,0),(5,14,0),(3,15,0),(6,16,0),(13,16,0),(14,1,0),(53,14,0),(54,1,0),(55,15,0),(56,1,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,15,0),(58,16,0),(59,16,0),(60,14,0),(11,14,0),(12,15,0),(7,14,0),(4,15,0),(8,16,0),(15,16,0),(16,1,0),(61,14,0),(62,1,0),(63,15,0),(64,1,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,2,1),(49,18,1),(50,19,1),(51,19,1),(52,17,1),(9,17,1),(10,18,1),(5,17,1),(3,18,1),(6,19,1),(13,19,1),(14,8,1),(53,17,1),(54,8,1),(55,18,1),(56,8,1),(33,8,1),(34,8,1),(35,18,1),(36,19,1),(37,19,1),(38,17,1),(39,17,1),(40,18,1),(2,8,1),(57,18,1),(58,19,1),(59,19,1),(60,17,1),(11,17,1),(12,18,1),(7,17,1),(4,18,1),(8,19,1),(15,19,1),(16,8,1),(61,17,1),(62,8,1),(63,18,1),(64,8,1),(41,8,1),(42,8,1),(43,18,1),(44,19,1),(45,19,1),(46,17,1),(47,17,1),(48,18,1)],
(228,134) => MOP_CODE[(49,18,0),(50,19,0),(51,19,0),(52,17,0),(9,17,0),(10,18,0),(5,14,0),(3,15,0),(6,16,0),(13,19,0),(14,8,0),(53,17,0),(54,8,0),(55,18,0),(56,8,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,18,0),(58,19,0),(59,19,0),(60,17,0),(11,17,0),(12,18,0),(7,14,0),(4,15,0),(8,16,0),(15,19,0),(16,8,0),(61,17,0),(62,8,0),(63,18,0),(64,8,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0)],
(228,135) => MOP_CODE[(49,18,0),(50,19,0),(51,19,0),(52,17,0),(9,17,0),(10,18,0),(5,14,0),(3,15,0),(6,16,0),(13,19,0),(14,8,0),(53,17,0),(54,8,0),(55,18,0),(56,8,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,18,0),(58,19,0),(59,19,0),(60,17,0),(11,17,0),(12,18,0),(7,14,0),(4,15,0),(8,16,0),(15,19,0),(16,8,0),(61,17,0),(62,8,0),(63,18,0),(64,8,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,1,1),(49,18,1),(50,19,1),(51,19,1),(52,17,1),(9,17,1),(10,18,1),(5,14,1),(3,15,1),(6,16,1),(13,19,1),(14,8,1),(53,17,1),(54,8,1),(55,18,1),(56,8,1),(33,1,1),(34,1,1),(35,15,1),(36,16,1),(37,16,1),(38,14,1),(39,14,1),(40,15,1),(2,1,1),(57,18,1),(58,19,1),(59,19,1),(60,17,1),(11,17,1),(12,18,1),(7,14,1),(4,15,1),(8,16,1),(15,19,1),(16,8,1),(61,17,1),(62,8,1),(63,18,1),(64,8,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(228,136) => MOP_CODE[(49,18,1),(50,19,1),(51,19,1),(52,17,1),(9,17,1),(10,18,1),(5,14,0),(3,15,0),(6,16,0),(13,19,1),(14,8,1),(53,17,1),(54,8,1),(55,18,1),(56,8,1),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,1),(57,18,0),(58,19,0),(59,19,0),(60,17,0),(11,17,0),(12,18,0),(7,14,1),(4,15,1),(8,16,1),(15,19,0),(16,8,0),(61,17,0),(62,8,0),(63,18,0),(64,8,0),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(228,137) => MOP_CODE[(49,18,1),(50,19,1),(51,19,1),(52,17,1),(9,17,1),(10,18,1),(5,14,0),(3,15,0),(6,16,0),(13,19,1),(14,8,1),(53,17,1),(54,8,1),(55,18,1),(56,8,1),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,18,1),(58,19,1),(59,19,1),(60,17,1),(11,17,1),(12,18,1),(7,14,0),(4,15,0),(8,16,0),(15,19,1),(16,8,1),(61,17,1),(62,8,1),(63,18,1),(64,8,1),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0)],
(228,138) => MOP_CODE[(49,18,0),(50,19,0),(51,19,0),(52,17,0),(9,17,0),(10,18,0),(5,14,0),(3,15,0),(6,16,0),(13,19,0),(14,8,0),(53,17,0),(54,8,0),(55,18,0),(56,8,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,1),(57,18,1),(58,19,1),(59,19,1),(60,17,1),(11,17,1),(12,18,1),(7,14,1),(4,15,1),(8,16,1),(15,19,1),(16,8,1),(61,17,1),(62,8,1),(63,18,1),(64,8,1),(41,1,1),(42,1,1),(43,15,1),(44,16,1),(45,16,1),(46,14,1),(47,14,1),(48,15,1)],
(228,139) => MOP_CODE[(49,18,0),(50,19,0),(51,19,0),(52,17,0),(9,17,0),(10,18,0),(5,14,0),(3,15,0),(6,16,0),(13,19,0),(14,8,0),(53,17,0),(54,8,0),(55,18,0),(56,8,0),(33,1,0),(34,1,0),(35,15,0),(36,16,0),(37,16,0),(38,14,0),(39,14,0),(40,15,0),(2,1,0),(57,18,0),(58,19,0),(59,19,0),(60,17,0),(11,17,0),(12,18,0),(7,14,0),(4,15,0),(8,16,0),(15,19,0),(16,8,0),(61,17,0),(62,8,0),(63,18,0),(64,8,0),(41,1,0),(42,1,0),(43,15,0),(44,16,0),(45,16,0),(46,14,0),(47,14,0),(48,15,0),(1,2,1),(49,15,1),(50,16,1),(51,16,1),(52,14,1),(9,14,1),(10,15,1),(5,17,1),(3,18,1),(6,19,1),(13,16,1),(14,1,1),(53,14,1),(54,1,1),(55,15,1),(56,1,1),(33,8,1),(34,8,1),(35,18,1),(36,19,1),(37,19,1),(38,17,1),(39,17,1),(40,18,1),(2,8,1),(57,15,1),(58,16,1),(59,16,1),(60,14,1),(11,14,1),(12,15,1),(7,17,1),(4,18,1),(8,19,1),(15,16,1),(16,1,1),(61,14,1),(62,1,1),(63,15,1),(64,1,1),(41,8,1),(42,8,1),(43,18,1),(44,19,1),(45,19,1),(46,17,1),(47,17,1),(48,18,1)],
(229,140) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(229,141) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,0),(4,1,0),(8,1,0),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0),(1,1,1),(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,1),(3,1,1),(6,1,1),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,1),(34,1,1),(35,1,1),(36,1,1),(37,1,1),(38,1,1),(39,1,1),(40,1,1),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(229,142) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,0),(58,1,0),(59,1,0),(60,1,0),(11,1,0),(12,1,0),(7,1,1),(4,1,1),(8,1,1),(15,1,0),(16,1,0),(61,1,0),(62,1,0),(63,1,0),(64,1,0),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(229,143) => MOP_CODE[(49,1,1),(50,1,1),(51,1,1),(52,1,1),(9,1,1),(10,1,1),(5,1,0),(3,1,0),(6,1,0),(13,1,1),(14,1,1),(53,1,1),(54,1,1),(55,1,1),(56,1,1),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,0),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,0),(4,1,0),(8,1,0),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,0),(42,1,0),(43,1,0),(44,1,0),(45,1,0),(46,1,0),(47,1,0),(48,1,0)],
(229,144) => MOP_CODE[(49,1,0),(50,1,0),(51,1,0),(52,1,0),(9,1,0),(10,1,0),(5,1,0),(3,1,0),(6,1,0),(13,1,0),(14,1,0),(53,1,0),(54,1,0),(55,1,0),(56,1,0),(33,1,0),(34,1,0),(35,1,0),(36,1,0),(37,1,0),(38,1,0),(39,1,0),(40,1,0),(2,1,1),(57,1,1),(58,1,1),(59,1,1),(60,1,1),(11,1,1),(12,1,1),(7,1,1),(4,1,1),(8,1,1),(15,1,1),(16,1,1),(61,1,1),(62,1,1),(63,1,1),(64,1,1),(41,1,1),(42,1,1),(43,1,1),(44,1,1),(45,1,1),(46,1,1),(47,1,1),(48,1,1)],
(230,145) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,2,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(53,31,0),(54,9,0),(55,34,0),(56,9,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,0),(57,34,0),(58,29,0),(59,29,0),(60,31,0),(11,31,0),(12,34,0),(7,2,0),(4,3,0),(8,4,0),(15,29,0),(16,9,0),(61,31,0),(62,9,0),(63,34,0),(64,9,0),(41,1,0),(42,1,0),(43,3,0),(44,4,0),(45,4,0),(46,2,0),(47,2,0),(48,3,0)],
(230,146) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,2,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(53,31,0),(54,9,0),(55,34,0),(56,9,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,0),(57,34,0),(58,29,0),(59,29,0),(60,31,0),(11,31,0),(12,34,0),(7,2,0),(4,3,0),(8,4,0),(15,29,0),(16,9,0),(61,31,0),(62,9,0),(63,34,0),(64,9,0),(41,1,0),(42,1,0),(43,3,0),(44,4,0),(45,4,0),(46,2,0),(47,2,0),(48,3,0),(1,1,1),(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,1),(3,3,1),(6,4,1),(13,29,1),(14,9,1),(53,31,1),(54,9,1),(55,34,1),(56,9,1),(33,1,1),(34,1,1),(35,3,1),(36,4,1),(37,4,1),(38,2,1),(39,2,1),(40,3,1),(2,1,1),(57,34,1),(58,29,1),(59,29,1),(60,31,1),(11,31,1),(12,34,1),(7,2,1),(4,3,1),(8,4,1),(15,29,1),(16,9,1),(61,31,1),(62,9,1),(63,34,1),(64,9,1),(41,1,1),(42,1,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)],
(230,147) => MOP_CODE[(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,0),(3,3,0),(6,4,0),(13,29,1),(14,9,1),(53,31,1),(54,9,1),(55,34,1),(56,9,1),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,1),(57,34,0),(58,29,0),(59,29,0),(60,31,0),(11,31,0),(12,34,0),(7,2,1),(4,3,1),(8,4,1),(15,29,0),(16,9,0),(61,31,0),(62,9,0),(63,34,0),(64,9,0),(41,1,1),(42,1,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)],
(230,148) => MOP_CODE[(49,34,1),(50,29,1),(51,29,1),(52,31,1),(9,31,1),(10,34,1),(5,2,0),(3,3,0),(6,4,0),(13,29,1),(14,9,1),(53,31,1),(54,9,1),(55,34,1),(56,9,1),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,0),(57,34,1),(58,29,1),(59,29,1),(60,31,1),(11,31,1),(12,34,1),(7,2,0),(4,3,0),(8,4,0),(15,29,1),(16,9,1),(61,31,1),(62,9,1),(63,34,1),(64,9,1),(41,1,0),(42,1,0),(43,3,0),(44,4,0),(45,4,0),(46,2,0),(47,2,0),(48,3,0)],
(230,149) => MOP_CODE[(49,34,0),(50,29,0),(51,29,0),(52,31,0),(9,31,0),(10,34,0),(5,2,0),(3,3,0),(6,4,0),(13,29,0),(14,9,0),(53,31,0),(54,9,0),(55,34,0),(56,9,0),(33,1,0),(34,1,0),(35,3,0),(36,4,0),(37,4,0),(38,2,0),(39,2,0),(40,3,0),(2,1,1),(57,34,1),(58,29,1),(59,29,1),(60,31,1),(11,31,1),(12,34,1),(7,2,1),(4,3,1),(8,4,1),(15,29,1),(16,9,1),(61,31,1),(62,9,1),(63,34,1),(64,9,1),(41,1,1),(42,1,1),(43,3,1),(44,4,1),(45,4,1),(46,2,1),(47,2,1),(48,3,1)]
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2613 | # generated from original `xyzt`-based data via:
# PG_CODES_3D_D = Dict{String,Vector{Int8}}()
# pglabs = Crystalline.PG_IUCs[3]
# pgs = pointgroup.(pglabs, Val(3))
# for pg in pgs
# pglab = label(pg)
# Nops = length(pg)
# pg_codes = Vector{Int8}(undef, Nops-1)
# idx = 0
# for (n,op) in enumerate(pg)
# isone(op) && continue # skip identity (trivially in group): no need to list
# r = rotation(op)
# r_idx = Int8(something(findfirst(==(r), Crystalline.ROTATIONS_3D)))
# pg_codes[idx+=1] = r_idx
# end
# PG_CODES_3D_D[pglab] = pg_codes
# end
# for pglab in pglabs
# println(pglab => PG_CODES_3D_D[pglab], ",")
# end
const PG_CODES_Ds = (
# PointGroup{1}
Dict{String, Vector{Int8}}(
"1" => [],
"m" => [2],
),
# PointGroup{2}
Dict{String, Vector{Int8}}(
"1" => [],
"2" => [2],
"m" => [3],
"mm2" => [2,4,3],
"4" => [2,5,6],
"4mm" => [2,5,6,4,3,8,7],
"3" => [9,10],
"3m1" => [9,10,8,11,12],
"31m" => [9,10,7,13,14],
"6" => [9,10,2,15,16],
"6mm" => [9,10,2,15,16,8,11,12,7,13,14],
),
# PointGroup{3}
Dict{String, Vector{Int8}}(
"1" => [],
"-1" => [2],
"2" => [3],
"m" => [4],
"2/m" => [3,2,4],
"222" => [6,3,5],
"mm2" => [6,4,7],
"mmm" => [6,3,5,2,8,4,7],
"4" => [6,9,10],
"-4" => [6,11,12],
"4/m" => [6,9,10,2,8,11,12],
"422" => [6,9,10,3,5,13,14],
"4mm" => [6,9,10,4,7,15,16],
"-42m" => [6,11,12,3,5,15,16],
"-4m2" => [6,11,12,4,7,13,14],
"4/mmm" => [6,9,10,3,5,13,14,2,8,11,12,4,7,15,16],
"3" => [17,18],
"-3" => [17,18,2,19,20],
"312" => [17,18,14,22,21],
"321" => [17,18,13,23,24],
"3m1" => [17,18,15,25,26],
"31m" => [17,18,16,28,27],
"-31m" => [17,18,14,22,21,2,19,20,16,28,27],
"-3m1" => [17,18,13,23,24,2,19,20,15,25,26],
"6" => [17,18,6,30,29],
"-6" => [17,18,8,32,31],
"6/m" => [17,18,6,30,29,2,19,20,8,32,31],
"622" => [17,18,6,30,29,13,23,24,14,22,21],
"6mm" => [17,18,6,30,29,15,25,26,16,28,27],
"-62m" => [17,18,8,32,31,13,23,24,16,28,27],
"-6m2" => [17,18,8,32,31,15,25,26,14,22,21],
"6/mmm" => [17,18,6,30,29,13,23,24,14,22,21,2,19,20,8,32,31,15,25,26,16,28,27],
"23" => [6,3,5,33,38,36,40,34,35,39,37],
"m-3" => [6,3,5,33,38,36,40,34,35,39,37,2,8,4,7,41,46,44,48,42,43,47,45],
"432" => [6,3,5,33,38,36,40,34,35,39,37,13,14,10,9,50,53,54,49,51,55,52,56],
"-43m" => [6,3,5,33,38,36,40,34,35,39,37,16,15,11,12,62,57,58,61,64,60,63,59],
"m-3m" => [6,3,5,33,38,36,40,34,35,39,37,13,14,10,9,50,53,54,49,51,55,52,56,2,8,4,7,41,46,44,48,42,43,47,45,15,16,12,11,58,61,62,57,59,63,60,64],
)
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 20304 | # generated from original `xyzt`-based data via:
# D = 2
# SG_CODES_V = Vector{Vector{Tuple{Int8, Int8}}}(undef, MAX_SGNUM[D])
# ROTATIONS = Crystalline.ROTATIONS_2D # adjust for D
# TRANSLATIONS = Crystalline.TRANSLATIONS_2D # adjust for D
# sgs = spacegroup_from_xyzt.(1:MAX_SGNUM[D], Val(D))
# for sg in sgs
# sgnum = num(sg)
# Nprimops = length(sg) ÷ Bravais.centering_volume_fraction(centering(sgnum, D))
# sg_codes = Vector{Tuple{Int8, Int8}}(undef, Nprimops-1)
# idx = 0
# for (n, op) in enumerate(sg)
# isone(op) && continue # skip identity (trivially in group): no need to list
# n > Nprimops && break
# r, t = rotation(op), translation(op)
# r_idx = Int8(something(findfirst(==(r), ROTATIONS)))
# t_idx = Int8(something(findfirst(==(t), TRANSLATIONS)))
# sg_codes[idx+=1] = (r_idx, t_idx)
# end
# SG_CODES_V[sgnum] = sg_codes
# end
const SG_CODES_Vs = (
# SpaceGroup{1}
Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
],
# SpaceGroup{2}
Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(3,2)],
#=5=# [(3,1)],
#=6=# [(2,1),(3,1),(4,1)],
#=7=# [(2,1),(3,4),(4,4)],
#=8=# [(2,1),(3,3),(4,3)],
#=9=# [(2,1),(3,1),(4,1)],
#=10=# [(2,1),(5,1),(6,1)],
#=11=# [(2,1),(5,1),(6,1),(3,1),(4,1),(7,1),(8,1)],
#=12=# [(2,1),(5,1),(6,1),(3,3),(4,3),(7,3),(8,3)],
#=13=# [(9,1),(10,1)],
#=14=# [(9,1),(10,1),(8,1),(11,1),(12,1)],
#=15=# [(9,1),(10,1),(7,1),(13,1),(14,1)],
#=16=# [(9,1),(10,1),(2,1),(15,1),(16,1)],
#=17=# [(9,1),(10,1),(2,1),(15,1),(16,1),(8,1),(11,1),(12,1),(7,1),(13,1),(14,1)],
],
# SpaceGroup{3}
Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(3,4)],
#=5=# [(3,1)],
#=6=# [(4,1)],
#=7=# [(4,2)],
#=8=# [(4,1)],
#=9=# [(4,2)],
#=10=# [(3,1),(2,1),(4,1)],
#=11=# [(3,4),(2,1),(4,4)],
#=12=# [(3,1),(2,1),(4,1)],
#=13=# [(3,2),(2,1),(4,2)],
#=14=# [(3,7),(2,1),(4,7)],
#=15=# [(3,2),(2,1),(4,2)],
#=16=# [(6,1),(3,1),(5,1)],
#=17=# [(6,2),(3,2),(5,1)],
#=18=# [(6,1),(3,5),(5,5)],
#=19=# [(6,6),(3,7),(5,5)],
#=20=# [(6,2),(3,2),(5,1)],
#=21=# [(6,1),(3,1),(5,1)],
#=22=# [(6,1),(3,1),(5,1)],
#=23=# [(6,1),(3,1),(5,1)],
#=24=# [(6,6),(3,7),(5,5)],
#=25=# [(6,1),(4,1),(7,1)],
#=26=# [(6,2),(4,2),(7,1)],
#=27=# [(6,1),(4,2),(7,2)],
#=28=# [(6,1),(4,3),(7,3)],
#=29=# [(6,2),(4,3),(7,6)],
#=30=# [(6,1),(4,7),(7,7)],
#=31=# [(6,6),(4,6),(7,1)],
#=32=# [(6,1),(4,5),(7,5)],
#=33=# [(6,2),(4,5),(7,8)],
#=34=# [(6,1),(4,8),(7,8)],
#=35=# [(6,1),(4,1),(7,1)],
#=36=# [(6,2),(4,2),(7,1)],
#=37=# [(6,1),(4,2),(7,2)],
#=38=# [(6,1),(4,1),(7,1)],
#=39=# [(6,1),(4,4),(7,4)],
#=40=# [(6,1),(4,3),(7,3)],
#=41=# [(6,1),(4,5),(7,5)],
#=42=# [(6,1),(4,1),(7,1)],
#=43=# [(6,1),(4,9),(7,9)],
#=44=# [(6,1),(4,1),(7,1)],
#=45=# [(6,1),(4,5),(7,5)],
#=46=# [(6,1),(4,3),(7,3)],
#=47=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=48=# [(6,5),(3,6),(5,7),(2,1),(8,5),(4,6),(7,7)],
#=49=# [(6,1),(3,2),(5,2),(2,1),(8,1),(4,2),(7,2)],
#=50=# [(6,5),(3,3),(5,4),(2,1),(8,5),(4,3),(7,4)],
#=51=# [(6,3),(3,1),(5,3),(2,1),(8,3),(4,1),(7,3)],
#=52=# [(6,3),(3,8),(5,7),(2,1),(8,3),(4,8),(7,7)],
#=53=# [(6,6),(3,6),(5,1),(2,1),(8,6),(4,6),(7,1)],
#=54=# [(6,3),(3,2),(5,6),(2,1),(8,3),(4,2),(7,6)],
#=55=# [(6,1),(3,5),(5,5),(2,1),(8,1),(4,5),(7,5)],
#=56=# [(6,5),(3,7),(5,6),(2,1),(8,5),(4,7),(7,6)],
#=57=# [(6,2),(3,7),(5,4),(2,1),(8,2),(4,7),(7,4)],
#=58=# [(6,1),(3,8),(5,8),(2,1),(8,1),(4,8),(7,8)],
#=59=# [(6,5),(3,4),(5,3),(2,1),(8,5),(4,4),(7,3)],
#=60=# [(6,8),(3,2),(5,5),(2,1),(8,8),(4,2),(7,5)],
#=61=# [(6,6),(3,7),(5,5),(2,1),(8,6),(4,7),(7,5)],
#=62=# [(6,6),(3,4),(5,8),(2,1),(8,6),(4,4),(7,8)],
#=63=# [(6,2),(3,2),(5,1),(2,1),(8,2),(4,2),(7,1)],
#=64=# [(6,7),(3,7),(5,1),(2,1),(8,7),(4,7),(7,1)],
#=65=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=66=# [(6,1),(3,2),(5,2),(2,1),(8,1),(4,2),(7,2)],
#=67=# [(6,4),(3,4),(5,1),(2,1),(8,4),(4,4),(7,1)],
#=68=# [(6,3),(3,2),(5,6),(2,1),(8,3),(4,2),(7,6)],
#=69=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=70=# [(6,13),(3,12),(5,11),(2,1),(8,16),(4,15),(7,14)],
#=71=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=72=# [(6,1),(3,5),(5,5),(2,1),(8,1),(4,5),(7,5)],
#=73=# [(6,6),(3,7),(5,5),(2,1),(8,6),(4,7),(7,5)],
#=74=# [(6,4),(3,4),(5,1),(2,1),(8,4),(4,4),(7,1)],
#=75=# [(6,1),(9,1),(10,1)],
#=76=# [(6,2),(9,23),(10,24)],
#=77=# [(6,1),(9,2),(10,2)],
#=78=# [(6,2),(9,24),(10,23)],
#=79=# [(6,1),(9,1),(10,1)],
#=80=# [(6,8),(9,27),(10,39)],
#=81=# [(6,1),(11,1),(12,1)],
#=82=# [(6,1),(11,1),(12,1)],
#=83=# [(6,1),(9,1),(10,1),(2,1),(8,1),(11,1),(12,1)],
#=84=# [(6,1),(9,2),(10,2),(2,1),(8,1),(11,2),(12,2)],
#=85=# [(6,5),(9,3),(10,4),(2,1),(8,5),(11,3),(12,4)],
#=86=# [(6,5),(9,7),(10,6),(2,1),(8,5),(11,7),(12,6)],
#=87=# [(6,1),(9,1),(10,1),(2,1),(8,1),(11,1),(12,1)],
#=88=# [(6,6),(9,29),(10,10),(2,1),(8,6),(11,30),(12,9)],
#=89=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1)],
#=90=# [(6,1),(9,5),(10,5),(3,5),(5,5),(13,1),(14,1)],
#=91=# [(6,2),(9,23),(10,24),(3,1),(5,2),(13,24),(14,23)],
#=92=# [(6,2),(9,25),(10,26),(3,25),(5,26),(13,1),(14,2)],
#=93=# [(6,1),(9,2),(10,2),(3,1),(5,1),(13,2),(14,2)],
#=94=# [(6,1),(9,8),(10,8),(3,8),(5,8),(13,1),(14,1)],
#=95=# [(6,2),(9,24),(10,23),(3,1),(5,2),(13,23),(14,24)],
#=96=# [(6,2),(9,26),(10,25),(3,26),(5,25),(13,1),(14,2)],
#=97=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1)],
#=98=# [(6,8),(9,27),(10,39),(3,39),(5,27),(13,8),(14,1)],
#=99=# [(6,1),(9,1),(10,1),(4,1),(7,1),(15,1),(16,1)],
#=100=# [(6,1),(9,1),(10,1),(4,5),(7,5),(15,5),(16,5)],
#=101=# [(6,1),(9,2),(10,2),(4,2),(7,2),(15,1),(16,1)],
#=102=# [(6,1),(9,8),(10,8),(4,8),(7,8),(15,1),(16,1)],
#=103=# [(6,1),(9,1),(10,1),(4,2),(7,2),(15,2),(16,2)],
#=104=# [(6,1),(9,1),(10,1),(4,8),(7,8),(15,8),(16,8)],
#=105=# [(6,1),(9,2),(10,2),(4,1),(7,1),(15,2),(16,2)],
#=106=# [(6,1),(9,2),(10,2),(4,5),(7,5),(15,8),(16,8)],
#=107=# [(6,1),(9,1),(10,1),(4,1),(7,1),(15,1),(16,1)],
#=108=# [(6,1),(9,1),(10,1),(4,2),(7,2),(15,2),(16,2)],
#=109=# [(6,8),(9,27),(10,39),(4,1),(7,8),(15,27),(16,39)],
#=110=# [(6,8),(9,27),(10,39),(4,2),(7,5),(15,40),(16,28)],
#=111=# [(6,1),(11,1),(12,1),(3,1),(5,1),(15,1),(16,1)],
#=112=# [(6,1),(11,1),(12,1),(3,2),(5,2),(15,2),(16,2)],
#=113=# [(6,1),(11,1),(12,1),(3,5),(5,5),(15,5),(16,5)],
#=114=# [(6,1),(11,1),(12,1),(3,8),(5,8),(15,8),(16,8)],
#=115=# [(6,1),(11,1),(12,1),(4,1),(7,1),(13,1),(14,1)],
#=116=# [(6,1),(11,1),(12,1),(4,2),(7,2),(13,2),(14,2)],
#=117=# [(6,1),(11,1),(12,1),(4,5),(7,5),(13,5),(14,5)],
#=118=# [(6,1),(11,1),(12,1),(4,8),(7,8),(13,8),(14,8)],
#=119=# [(6,1),(11,1),(12,1),(4,1),(7,1),(13,1),(14,1)],
#=120=# [(6,1),(11,1),(12,1),(4,2),(7,2),(13,2),(14,2)],
#=121=# [(6,1),(11,1),(12,1),(3,1),(5,1),(15,1),(16,1)],
#=122=# [(6,1),(11,1),(12,1),(3,39),(5,39),(15,39),(16,39)],
#=123=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1),(2,1),(8,1),(11,1),(12,1),(4,1),(7,1),(15,1),(16,1)],
#=124=# [(6,1),(9,1),(10,1),(3,2),(5,2),(13,2),(14,2),(2,1),(8,1),(11,1),(12,1),(4,2),(7,2),(15,2),(16,2)],
#=125=# [(6,5),(9,3),(10,4),(3,3),(5,4),(13,1),(14,5),(2,1),(8,5),(11,3),(12,4),(4,3),(7,4),(15,1),(16,5)],
#=126=# [(6,5),(9,3),(10,4),(3,6),(5,7),(13,2),(14,8),(2,1),(8,5),(11,3),(12,4),(4,6),(7,7),(15,2),(16,8)],
#=127=# [(6,1),(9,1),(10,1),(3,5),(5,5),(13,5),(14,5),(2,1),(8,1),(11,1),(12,1),(4,5),(7,5),(15,5),(16,5)],
#=128=# [(6,1),(9,1),(10,1),(3,8),(5,8),(13,8),(14,8),(2,1),(8,1),(11,1),(12,1),(4,8),(7,8),(15,8),(16,8)],
#=129=# [(6,5),(9,3),(10,4),(3,4),(5,3),(13,5),(14,1),(2,1),(8,5),(11,3),(12,4),(4,4),(7,3),(15,5),(16,1)],
#=130=# [(6,5),(9,3),(10,4),(3,7),(5,6),(13,8),(14,2),(2,1),(8,5),(11,3),(12,4),(4,7),(7,6),(15,8),(16,2)],
#=131=# [(6,1),(9,2),(10,2),(3,1),(5,1),(13,2),(14,2),(2,1),(8,1),(11,2),(12,2),(4,1),(7,1),(15,2),(16,2)],
#=132=# [(6,1),(9,2),(10,2),(3,2),(5,2),(13,1),(14,1),(2,1),(8,1),(11,2),(12,2),(4,2),(7,2),(15,1),(16,1)],
#=133=# [(6,5),(9,6),(10,7),(3,3),(5,4),(13,2),(14,8),(2,1),(8,5),(11,6),(12,7),(4,3),(7,4),(15,2),(16,8)],
#=134=# [(6,5),(9,6),(10,7),(3,6),(5,7),(13,1),(14,5),(2,1),(8,5),(11,6),(12,7),(4,6),(7,7),(15,1),(16,5)],
#=135=# [(6,1),(9,2),(10,2),(3,5),(5,5),(13,8),(14,8),(2,1),(8,1),(11,2),(12,2),(4,5),(7,5),(15,8),(16,8)],
#=136=# [(6,1),(9,8),(10,8),(3,8),(5,8),(13,1),(14,1),(2,1),(8,1),(11,8),(12,8),(4,8),(7,8),(15,1),(16,1)],
#=137=# [(6,5),(9,6),(10,7),(3,4),(5,3),(13,8),(14,2),(2,1),(8,5),(11,6),(12,7),(4,4),(7,3),(15,8),(16,2)],
#=138=# [(6,5),(9,6),(10,7),(3,7),(5,6),(13,5),(14,1),(2,1),(8,5),(11,6),(12,7),(4,7),(7,6),(15,5),(16,1)],
#=139=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1),(2,1),(8,1),(11,1),(12,1),(4,1),(7,1),(15,1),(16,1)],
#=140=# [(6,1),(9,1),(10,1),(3,2),(5,2),(13,2),(14,2),(2,1),(8,1),(11,1),(12,1),(4,2),(7,2),(15,2),(16,2)],
#=141=# [(6,6),(9,31),(10,34),(3,6),(5,1),(13,31),(14,34),(2,1),(8,6),(11,33),(12,32),(4,6),(7,1),(15,33),(16,32)],
#=142=# [(6,6),(9,31),(10,34),(3,3),(5,2),(13,30),(14,9),(2,1),(8,6),(11,33),(12,32),(4,3),(7,2),(15,29),(16,10)],
#=143=# [(17,1),(18,1)],
#=144=# [(17,35),(18,36)],
#=145=# [(17,36),(18,35)],
#=146=# [(17,1),(18,1)],
#=147=# [(17,1),(18,1),(2,1),(19,1),(20,1)],
#=148=# [(17,1),(18,1),(2,1),(19,1),(20,1)],
#=149=# [(17,1),(18,1),(14,1),(22,1),(21,1)],
#=150=# [(17,1),(18,1),(13,1),(23,1),(24,1)],
#=151=# [(17,35),(18,36),(14,36),(22,35),(21,1)],
#=152=# [(17,35),(18,36),(13,1),(23,36),(24,35)],
#=153=# [(17,36),(18,35),(14,35),(22,36),(21,1)],
#=154=# [(17,36),(18,35),(13,1),(23,35),(24,36)],
#=155=# [(17,1),(18,1),(13,1),(23,1),(24,1)],
#=156=# [(17,1),(18,1),(15,1),(25,1),(26,1)],
#=157=# [(17,1),(18,1),(16,1),(28,1),(27,1)],
#=158=# [(17,1),(18,1),(15,2),(25,2),(26,2)],
#=159=# [(17,1),(18,1),(16,2),(28,2),(27,2)],
#=160=# [(17,1),(18,1),(15,1),(25,1),(26,1)],
#=161=# [(17,1),(18,1),(15,2),(25,2),(26,2)],
#=162=# [(17,1),(18,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(16,1),(28,1),(27,1)],
#=163=# [(17,1),(18,1),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(16,2),(28,2),(27,2)],
#=164=# [(17,1),(18,1),(13,1),(23,1),(24,1),(2,1),(19,1),(20,1),(15,1),(25,1),(26,1)],
#=165=# [(17,1),(18,1),(13,2),(23,2),(24,2),(2,1),(19,1),(20,1),(15,2),(25,2),(26,2)],
#=166=# [(17,1),(18,1),(13,1),(23,1),(24,1),(2,1),(19,1),(20,1),(15,1),(25,1),(26,1)],
#=167=# [(17,1),(18,1),(13,2),(23,2),(24,2),(2,1),(19,1),(20,1),(15,2),(25,2),(26,2)],
#=168=# [(17,1),(18,1),(6,1),(30,1),(29,1)],
#=169=# [(17,35),(18,36),(6,2),(30,37),(29,38)],
#=170=# [(17,36),(18,35),(6,2),(30,38),(29,37)],
#=171=# [(17,36),(18,35),(6,1),(30,36),(29,35)],
#=172=# [(17,35),(18,36),(6,1),(30,35),(29,36)],
#=173=# [(17,1),(18,1),(6,2),(30,2),(29,2)],
#=174=# [(17,1),(18,1),(8,1),(32,1),(31,1)],
#=175=# [(17,1),(18,1),(6,1),(30,1),(29,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1)],
#=176=# [(17,1),(18,1),(6,2),(30,2),(29,2),(2,1),(19,1),(20,1),(8,2),(32,2),(31,2)],
#=177=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1)],
#=178=# [(17,35),(18,36),(6,2),(30,37),(29,38),(13,35),(23,1),(24,36),(14,37),(22,2),(21,38)],
#=179=# [(17,36),(18,35),(6,2),(30,38),(29,37),(13,36),(23,1),(24,35),(14,38),(22,2),(21,37)],
#=180=# [(17,36),(18,35),(6,1),(30,36),(29,35),(13,36),(23,1),(24,35),(14,36),(22,1),(21,35)],
#=181=# [(17,35),(18,36),(6,1),(30,35),(29,36),(13,35),(23,1),(24,36),(14,35),(22,1),(21,36)],
#=182=# [(17,1),(18,1),(6,2),(30,2),(29,2),(13,1),(23,1),(24,1),(14,2),(22,2),(21,2)],
#=183=# [(17,1),(18,1),(6,1),(30,1),(29,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
#=184=# [(17,1),(18,1),(6,1),(30,1),(29,1),(15,2),(25,2),(26,2),(16,2),(28,2),(27,2)],
#=185=# [(17,1),(18,1),(6,2),(30,2),(29,2),(15,2),(25,2),(26,2),(16,1),(28,1),(27,1)],
#=186=# [(17,1),(18,1),(6,2),(30,2),(29,2),(15,1),(25,1),(26,1),(16,2),(28,2),(27,2)],
#=187=# [(17,1),(18,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(14,1),(22,1),(21,1)],
#=188=# [(17,1),(18,1),(8,2),(32,2),(31,2),(15,2),(25,2),(26,2),(14,1),(22,1),(21,1)],
#=189=# [(17,1),(18,1),(8,1),(32,1),(31,1),(13,1),(23,1),(24,1),(16,1),(28,1),(27,1)],
#=190=# [(17,1),(18,1),(8,2),(32,2),(31,2),(13,1),(23,1),(24,1),(16,2),(28,2),(27,2)],
#=191=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
#=192=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,2),(23,2),(24,2),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1),(15,2),(25,2),(26,2),(16,2),(28,2),(27,2)],
#=193=# [(17,1),(18,1),(6,2),(30,2),(29,2),(13,2),(23,2),(24,2),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(8,2),(32,2),(31,2),(15,2),(25,2),(26,2),(16,1),(28,1),(27,1)],
#=194=# [(17,1),(18,1),(6,2),(30,2),(29,2),(13,1),(23,1),(24,1),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(8,2),(32,2),(31,2),(15,1),(25,1),(26,1),(16,2),(28,2),(27,2)],
#=195=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1)],
#=196=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1)],
#=197=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1)],
#=198=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6)],
#=199=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6)],
#=200=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1)],
#=201=# [(6,5),(3,6),(5,7),(33,1),(38,7),(36,5),(40,6),(34,1),(35,6),(39,7),(37,5),(2,1),(8,5),(4,6),(7,7),(41,1),(46,7),(44,5),(48,6),(42,1),(43,6),(47,7),(45,5)],
#=202=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1)],
#=203=# [(6,13),(3,12),(5,11),(33,1),(38,11),(36,13),(40,12),(34,1),(35,12),(39,11),(37,13),(2,1),(8,16),(4,15),(7,14),(41,1),(46,14),(44,16),(48,15),(42,1),(43,15),(47,14),(45,16)],
#=204=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1)],
#=205=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(2,1),(8,6),(4,7),(7,5),(41,1),(46,5),(44,6),(48,7),(42,1),(43,7),(47,5),(45,6)],
#=206=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(2,1),(8,6),(4,7),(7,5),(41,1),(46,5),(44,6),(48,7),(42,1),(43,7),(47,5),(45,6)],
#=207=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1)],
#=208=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,8),(14,8),(10,8),(9,8),(50,8),(53,8),(54,8),(49,8),(51,8),(55,8),(52,8),(56,8)],
#=209=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1)],
#=210=# [(6,7),(3,5),(5,6),(33,1),(38,6),(36,7),(40,5),(34,1),(35,5),(39,6),(37,7),(13,33),(14,9),(10,30),(9,32),(50,33),(53,32),(54,9),(49,30),(51,33),(55,30),(52,32),(56,9)],
#=211=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1)],
#=212=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(13,30),(14,9),(10,32),(9,33),(50,30),(53,33),(54,9),(49,32),(51,30),(55,32),(52,33),(56,9)],
#=213=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(13,29),(14,10),(10,34),(9,31),(50,29),(53,31),(54,10),(49,34),(51,29),(55,34),(52,31),(56,10)],
#=214=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(13,29),(14,10),(10,34),(9,31),(50,29),(53,31),(54,10),(49,34),(51,29),(55,34),(52,31),(56,10)],
#=215=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(16,1),(15,1),(11,1),(12,1),(62,1),(57,1),(58,1),(61,1),(64,1),(60,1),(63,1),(59,1)],
#=216=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(16,1),(15,1),(11,1),(12,1),(62,1),(57,1),(58,1),(61,1),(64,1),(60,1),(63,1),(59,1)],
#=217=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(16,1),(15,1),(11,1),(12,1),(62,1),(57,1),(58,1),(61,1),(64,1),(60,1),(63,1),(59,1)],
#=218=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(16,8),(15,8),(11,8),(12,8),(62,8),(57,8),(58,8),(61,8),(64,8),(60,8),(63,8),(59,8)],
#=219=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(16,8),(15,8),(11,8),(12,8),(62,8),(57,8),(58,8),(61,8),(64,8),(60,8),(63,8),(59,8)],
#=220=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(16,9),(15,30),(11,33),(12,32),(62,9),(57,32),(58,30),(61,33),(64,9),(60,33),(63,32),(59,30)],
#=221=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1),(15,1),(16,1),(12,1),(11,1),(58,1),(61,1),(62,1),(57,1),(59,1),(63,1),(60,1),(64,1)],
#=222=# [(6,5),(3,6),(5,7),(33,1),(38,7),(36,5),(40,6),(34,1),(35,6),(39,7),(37,5),(13,2),(14,8),(10,4),(9,3),(50,2),(53,3),(54,8),(49,4),(51,2),(55,4),(52,3),(56,8),(2,1),(8,5),(4,6),(7,7),(41,1),(46,7),(44,5),(48,6),(42,1),(43,6),(47,7),(45,5),(15,2),(16,8),(12,4),(11,3),(58,2),(61,3),(62,8),(57,4),(59,2),(63,4),(60,3),(64,8)],
#=223=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,8),(14,8),(10,8),(9,8),(50,8),(53,8),(54,8),(49,8),(51,8),(55,8),(52,8),(56,8),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1),(15,8),(16,8),(12,8),(11,8),(58,8),(61,8),(62,8),(57,8),(59,8),(63,8),(60,8),(64,8)],
#=224=# [(6,5),(3,6),(5,7),(33,1),(38,7),(36,5),(40,6),(34,1),(35,6),(39,7),(37,5),(13,5),(14,1),(10,6),(9,7),(50,5),(53,7),(54,1),(49,6),(51,5),(55,6),(52,7),(56,1),(2,1),(8,5),(4,6),(7,7),(41,1),(46,7),(44,5),(48,6),(42,1),(43,6),(47,7),(45,5),(15,5),(16,1),(12,6),(11,7),(58,5),(61,7),(62,1),(57,6),(59,5),(63,6),(60,7),(64,1)],
#=225=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1),(15,1),(16,1),(12,1),(11,1),(58,1),(61,1),(62,1),(57,1),(59,1),(63,1),(60,1),(64,1)],
#=226=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,8),(14,8),(10,8),(9,8),(50,8),(53,8),(54,8),(49,8),(51,8),(55,8),(52,8),(56,8),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1),(15,8),(16,8),(12,8),(11,8),(58,8),(61,8),(62,8),(57,8),(59,8),(63,8),(60,8),(64,8)],
#=227=# [(6,41),(3,42),(5,43),(33,1),(38,43),(36,41),(40,42),(34,1),(35,42),(39,43),(37,41),(13,41),(14,1),(10,42),(9,43),(50,41),(53,43),(54,1),(49,42),(51,41),(55,42),(52,43),(56,1),(2,1),(8,44),(4,45),(7,46),(41,1),(46,46),(44,44),(48,45),(42,1),(43,45),(47,46),(45,44),(15,44),(16,1),(12,45),(11,46),(58,44),(61,46),(62,1),(57,45),(59,44),(63,45),(60,46),(64,1)],
#=228=# [(6,44),(3,45),(5,46),(33,1),(38,46),(36,44),(40,45),(34,1),(35,45),(39,46),(37,44),(13,47),(14,8),(10,48),(9,49),(50,47),(53,49),(54,8),(49,48),(51,47),(55,48),(52,49),(56,8),(2,1),(8,41),(4,42),(7,43),(41,1),(46,43),(44,41),(48,42),(42,1),(43,42),(47,43),(45,41),(15,50),(16,8),(12,51),(11,52),(58,50),(61,52),(62,8),(57,51),(59,50),(63,51),(60,52),(64,8)],
#=229=# [(6,1),(3,1),(5,1),(33,1),(38,1),(36,1),(40,1),(34,1),(35,1),(39,1),(37,1),(13,1),(14,1),(10,1),(9,1),(50,1),(53,1),(54,1),(49,1),(51,1),(55,1),(52,1),(56,1),(2,1),(8,1),(4,1),(7,1),(41,1),(46,1),(44,1),(48,1),(42,1),(43,1),(47,1),(45,1),(15,1),(16,1),(12,1),(11,1),(58,1),(61,1),(62,1),(57,1),(59,1),(63,1),(60,1),(64,1)],
#=230=# [(6,6),(3,7),(5,5),(33,1),(38,5),(36,6),(40,7),(34,1),(35,7),(39,5),(37,6),(13,29),(14,10),(10,34),(9,31),(50,29),(53,31),(54,10),(49,34),(51,29),(55,34),(52,31),(56,10),(2,1),(8,6),(4,7),(7,5),(41,1),(46,5),(44,6),(48,7),(42,1),(43,7),(47,5),(45,6),(15,30),(16,9),(12,32),(11,33),(58,30),(61,33),(62,9),(57,32),(59,30),(63,32),(60,33),(64,9)],
]
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 9335 | # generated from original `xyzt`-based data via:
# D, P = 3, 2
# SUBG_CODES_V = Vector{Vector{Tuple{Int8, Int8}}}(undef, MAX_SUBGNUM[(D,P)])
# ROTATIONS = Crystalline.ROTATIONS_3D # adjust for D
# TRANSLATIONS = Crystalline.TRANSLATIONS_3D # adjust for D
# subgs = subperiodicgroup.(1:MAX_SUBGNUM[(D,P)], Val(D), Val(P))
# for subg in subgs
# sgnum = num(subg)
# Nprimops = length(subg) ÷ Bravais.centering_volume_fraction(centering(subg), Val(D), Val(P))
# subg_codes = Vector{Tuple{Int8, Int8}}(undef, Nprimops-1)
# idx = 0
# for (n, op) in enumerate(subg)
# isone(op) && continue # skip identity (trivially in group): no need to list
# n > Nprimops && break
# r, t = rotation(op), translation(op)
# r_idx = Int8(something(findfirst(==(r), ROTATIONS)))
# t_idx = Int8(something(findfirst(==(t), TRANSLATIONS)))
# subg_codes[idx+=1] = (r_idx, t_idx)
# end
# SUBG_CODES_V[sgnum] = subg_codes
# end
# for (subgnum, subg_codes) in enumerate(SUBG_CODES_V)
# println("#=", subgnum, "=# ", subg_codes, ",")
# end
const SUBG_CODES_Vs = ImmutableDict(
# SubperiodicGroup{3, 2}
(3, 2) => Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
#=3=# [(6,1)],
#=4=# [(8,1)],
#=5=# [(8,3)],
#=6=# [(6,1),(2,1),(8,1)],
#=7=# [(6,3),(2,1),(8,3)],
#=8=# [(5,1)],
#=9=# [(5,3)],
#=10=# [(5,1)],
#=11=# [(7,1)],
#=12=# [(7,4)],
#=13=# [(7,1)],
#=14=# [(5,1),(2,1),(7,1)],
#=15=# [(5,3),(2,1),(7,3)],
#=16=# [(5,4),(2,1),(7,4)],
#=17=# [(5,5),(2,1),(7,5)],
#=18=# [(5,1),(2,1),(7,1)],
#=19=# [(6,1),(3,1),(5,1)],
#=20=# [(5,3),(3,3),(6,1)],
#=21=# [(6,1),(3,5),(5,5)],
#=22=# [(6,1),(3,1),(5,1)],
#=23=# [(6,1),(4,1),(7,1)],
#=24=# [(6,1),(4,3),(7,3)],
#=25=# [(6,1),(4,5),(7,5)],
#=26=# [(6,1),(4,1),(7,1)],
#=27=# [(3,1),(7,1),(8,1)],
#=28=# [(3,4),(8,4),(7,1)],
#=29=# [(3,4),(7,4),(8,1)],
#=30=# [(3,1),(8,4),(7,4)],
#=31=# [(3,1),(8,3),(7,3)],
#=32=# [(3,5),(8,5),(7,1)],
#=33=# [(3,4),(8,3),(7,5)],
#=34=# [(3,1),(7,5),(8,5)],
#=35=# [(3,1),(7,1),(8,1)],
#=36=# [(3,1),(7,3),(8,3)],
#=37=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=38=# [(5,1),(6,3),(3,3),(2,1),(7,1),(8,3),(4,3)],
#=39=# [(6,5),(3,3),(5,4),(2,1),(8,5),(4,3),(7,4)],
#=40=# [(3,3),(6,1),(5,3),(2,1),(4,3),(8,1),(7,3)],
#=41=# [(6,3),(3,1),(5,3),(2,1),(8,3),(4,1),(7,3)],
#=42=# [(3,5),(6,5),(5,1),(2,1),(4,5),(8,5),(7,1)],
#=43=# [(5,4),(6,3),(3,5),(2,1),(7,4),(8,3),(4,5)],
#=44=# [(6,1),(3,5),(5,5),(2,1),(8,1),(4,5),(7,5)],
#=45=# [(3,4),(5,5),(6,3),(2,1),(4,4),(7,5),(8,3)],
#=46=# [(6,5),(3,4),(5,3),(2,1),(8,5),(4,4),(7,3)],
#=47=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=48=# [(6,4),(3,4),(5,1),(2,1),(8,4),(4,4),(7,1)],
#=49=# [(6,1),(9,1),(10,1)],
#=50=# [(6,1),(11,1),(12,1)],
#=51=# [(6,1),(9,1),(10,1),(2,1),(8,1),(11,1),(12,1)],
#=52=# [(6,5),(9,3),(10,4),(2,1),(8,5),(11,3),(12,4)],
#=53=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1)],
#=54=# [(6,1),(9,1),(10,1),(3,5),(5,5),(13,5),(14,5)],
#=55=# [(6,1),(9,1),(10,1),(4,1),(7,1),(15,1),(16,1)],
#=56=# [(6,1),(9,1),(10,1),(4,5),(7,5),(15,5),(16,5)],
#=57=# [(6,1),(11,1),(12,1),(3,1),(5,1),(15,1),(16,1)],
#=58=# [(6,1),(11,1),(12,1),(3,5),(5,5),(15,5),(16,5)],
#=59=# [(6,1),(11,1),(12,1),(4,1),(7,1),(13,1),(14,1)],
#=60=# [(6,1),(11,1),(12,1),(4,5),(7,5),(13,5),(14,5)],
#=61=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1),(2,1),(8,1),(11,1),(12,1),(4,1),(7,1),(15,1),(16,1)],
#=62=# [(6,5),(9,3),(10,4),(3,3),(5,4),(13,1),(14,5),(2,1),(8,5),(11,3),(12,4),(4,3),(7,4),(15,1),(16,5)],
#=63=# [(6,1),(9,1),(10,1),(3,5),(5,5),(13,5),(14,5),(2,1),(8,1),(11,1),(12,1),(4,5),(7,5),(15,5),(16,5)],
#=64=# [(6,5),(9,3),(10,4),(3,4),(5,3),(13,5),(14,1),(2,1),(8,5),(11,3),(12,4),(4,4),(7,3),(15,5),(16,1)],
#=65=# [(17,1),(18,1)],
#=66=# [(17,1),(18,1),(2,1),(19,1),(20,1)],
#=67=# [(17,1),(18,1),(14,1),(22,1),(21,1)],
#=68=# [(17,1),(18,1),(13,1),(23,1),(24,1)],
#=69=# [(17,1),(18,1),(15,1),(25,1),(26,1)],
#=70=# [(17,1),(18,1),(16,1),(28,1),(27,1)],
#=71=# [(17,1),(18,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(16,1),(28,1),(27,1)],
#=72=# [(17,1),(18,1),(13,1),(23,1),(24,1),(2,1),(19,1),(20,1),(15,1),(25,1),(26,1)],
#=73=# [(17,1),(18,1),(6,1),(30,1),(29,1)],
#=74=# [(17,1),(18,1),(8,1),(32,1),(31,1)],
#=75=# [(17,1),(18,1),(6,1),(30,1),(29,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1)],
#=76=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1)],
#=77=# [(17,1),(18,1),(6,1),(30,1),(29,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
#=78=# [(17,1),(18,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(14,1),(22,1),(21,1)],
#=79=# [(17,1),(18,1),(8,1),(32,1),(31,1),(13,1),(23,1),(24,1),(16,1),(28,1),(27,1)],
#=80=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
],
# SubperiodicGroup{3, 1}
(3, 1) => Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
#=3=# [(5,1)],
#=4=# [(7,1)],
#=5=# [(7,2)],
#=6=# [(5,1),(2,1),(7,1)],
#=7=# [(5,2),(2,1),(7,2)],
#=8=# [(6,1)],
#=9=# [(6,2)],
#=10=# [(8,1)],
#=11=# [(6,1),(2,1),(8,1)],
#=12=# [(6,2),(2,1),(8,2)],
#=13=# [(6,1),(3,1),(5,1)],
#=14=# [(6,2),(3,2),(5,1)],
#=15=# [(6,1),(4,1),(7,1)],
#=16=# [(6,1),(4,2),(7,2)],
#=17=# [(6,2),(4,2),(7,1)],
#=18=# [(5,1),(8,1),(4,1)],
#=19=# [(5,1),(4,2),(8,2)],
#=20=# [(6,1),(3,1),(5,1),(2,1),(8,1),(4,1),(7,1)],
#=21=# [(6,1),(3,2),(5,2),(2,1),(8,1),(4,2),(7,2)],
#=22=# [(3,2),(5,1),(6,2),(2,1),(4,2),(7,1),(8,2)],
#=23=# [(6,1),(9,1),(10,1)],
#=24=# [(6,2),(9,23),(10,24)],
#=25=# [(6,1),(9,2),(10,2)],
#=26=# [(6,2),(9,24),(10,23)],
#=27=# [(6,1),(11,1),(12,1)],
#=28=# [(6,1),(9,1),(10,1),(2,1),(8,1),(11,1),(12,1)],
#=29=# [(6,1),(9,2),(10,2),(2,1),(8,1),(11,2),(12,2)],
#=30=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1)],
#=31=# [(6,2),(9,23),(10,24),(5,1),(3,2),(13,23),(14,24)],
#=32=# [(6,1),(9,2),(10,2),(3,1),(5,1),(13,2),(14,2)],
#=33=# [(6,2),(9,24),(10,23),(5,1),(3,2),(13,24),(14,23)],
#=34=# [(6,1),(9,1),(10,1),(4,1),(7,1),(15,1),(16,1)],
#=35=# [(6,1),(9,2),(10,2),(4,2),(7,2),(15,1),(16,1)],
#=36=# [(6,1),(9,1),(10,1),(4,2),(7,2),(15,2),(16,2)],
#=37=# [(6,1),(11,1),(12,1),(3,1),(5,1),(15,1),(16,1)],
#=38=# [(6,1),(11,1),(12,1),(3,2),(5,2),(15,2),(16,2)],
#=39=# [(6,1),(9,1),(10,1),(3,1),(5,1),(13,1),(14,1),(2,1),(8,1),(11,1),(12,1),(4,1),(7,1),(15,1),(16,1)],
#=40=# [(6,1),(9,1),(10,1),(3,2),(5,2),(13,2),(14,2),(2,1),(8,1),(11,1),(12,1),(4,2),(7,2),(15,2),(16,2)],
#=41=# [(6,1),(9,2),(10,2),(3,1),(5,1),(13,2),(14,2),(2,1),(8,1),(11,2),(12,2),(4,1),(7,1),(15,2),(16,2)],
#=42=# [(17,1),(18,1)],
#=43=# [(17,35),(18,36)],
#=44=# [(17,36),(18,35)],
#=45=# [(17,1),(18,1),(2,1),(19,1),(20,1)],
#=46=# [(17,1),(18,1),(14,1),(22,1),(21,1)],
#=47=# [(17,35),(18,36),(14,36),(22,35),(21,1)],
#=48=# [(17,36),(18,35),(14,35),(22,36),(21,1)],
#=49=# [(17,1),(18,1),(15,1),(25,1),(26,1)],
#=50=# [(17,1),(18,1),(15,2),(25,2),(26,2)],
#=51=# [(17,1),(18,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(16,1),(28,1),(27,1)],
#=52=# [(17,1),(18,1),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(16,2),(28,2),(27,2)],
#=53=# [(17,1),(18,1),(6,1),(30,1),(29,1)],
#=54=# [(17,35),(18,36),(6,2),(30,37),(29,38)],
#=55=# [(17,36),(18,35),(6,1),(30,36),(29,35)],
#=56=# [(17,1),(18,1),(6,2),(30,2),(29,2)],
#=57=# [(17,35),(18,36),(6,1),(30,35),(29,36)],
#=58=# [(17,36),(18,35),(6,2),(30,38),(29,37)],
#=59=# [(17,1),(18,1),(8,1),(32,1),(31,1)],
#=60=# [(17,1),(18,1),(6,1),(30,1),(29,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1)],
#=61=# [(17,1),(18,1),(6,2),(30,2),(29,2),(2,1),(19,1),(20,1),(8,2),(32,2),(31,2)],
#=62=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1)],
#=63=# [(17,35),(18,36),(6,2),(30,37),(29,38),(13,35),(23,1),(24,36),(14,37),(22,2),(21,38)],
#=64=# [(17,36),(18,35),(6,1),(30,36),(29,35),(13,36),(23,1),(24,35),(14,36),(22,1),(21,35)],
#=65=# [(17,1),(18,1),(6,2),(30,2),(29,2),(13,1),(23,1),(24,1),(14,2),(22,2),(21,2)],
#=66=# [(17,35),(18,36),(6,1),(30,35),(29,36),(13,35),(23,1),(24,36),(14,35),(22,1),(21,36)],
#=67=# [(17,36),(18,35),(6,2),(30,38),(29,37),(13,36),(23,1),(24,35),(14,38),(22,2),(21,37)],
#=68=# [(17,1),(18,1),(6,1),(30,1),(29,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
#=69=# [(17,1),(18,1),(6,1),(30,1),(29,1),(15,2),(25,2),(26,2),(16,2),(28,2),(27,2)],
#=70=# [(17,1),(18,1),(6,2),(30,2),(29,2),(15,1),(25,1),(26,1),(16,2),(28,2),(27,2)],
#=71=# [(17,1),(18,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(14,1),(22,1),(21,1)],
#=72=# [(17,1),(18,1),(8,1),(32,1),(31,1),(15,2),(25,2),(26,2),(14,2),(22,2),(21,2)],
#=73=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,1),(23,1),(24,1),(14,1),(22,1),(21,1),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1),(15,1),(25,1),(26,1),(16,1),(28,1),(27,1)],
#=74=# [(17,1),(18,1),(6,1),(30,1),(29,1),(13,2),(23,2),(24,2),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(8,1),(32,1),(31,1),(15,2),(25,2),(26,2),(16,2),(28,2),(27,2)],
#=75=# [(17,1),(18,1),(6,2),(30,2),(29,2),(13,1),(23,1),(24,1),(14,2),(22,2),(21,2),(2,1),(19,1),(20,1),(8,2),(32,2),(31,2),(15,1),(25,1),(26,1),(16,2),(28,2),(27,2)],
],
# SubperiodicGroup{2, 1}
(2, 1) => Vector{Tuple{Int8,Int8}}[
#=1=# [],
#=2=# [(2,1)],
#=3=# [(3,1)],
#=4=# [(4,1)],
#=5=# [(4,4)],
#=6=# [(2,1),(3,1),(4,1)],
#=7=# [(2,1),(3,4),(4,4)],
]
) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 903 | using StaticArrays
using Crystalline
using Crystalline.SquareStaticMatrices
using Test
@testset "SquareStaticMatrices" begin
A = [1 2 3; 4 5 6; 7 8 9]
SA = SMatrix{3,3}(A)
SSA = SqSMatrix(SA)
@test (@inferred SqSMatrix(SA)) === SSA
@test SqSMatrix{3}(A) === SSA
@test SqSMatrix(A) === SSA
@test SSA[1] == SA[1]
@test SSA[1,1] == SA[1,1]
@test SSA == SA
@test SSA[1:end] == SA[1:end]
@test convert(typeof(A), SSA) isa typeof(A)
@test convert(SqSMatrix{3, Int}, eachcol(SSA)) === SSA
@test SqSMatrix{3,Int}(A) === SqSMatrix{3}(A)
@test SqSMatrix{3,Int}(A) == A
@test (@inferred SMatrix(SSA)) === SA
@test SMatrix{3,3}(SSA) === SA
@test SMatrix{3,3,Int}(SSA) === SA
@test SqSMatrix(SSA) === SSA === SqSMatrix{3,Int}(SSA)
A′ = [1 2; 3 4]
@test SqSMatrix(A′) === SqSMatrix{2}(A′)
@test zero(SSA) == zero(A)
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3083 | using Crystalline, Test
if !isdefined(Main, :LGIRS)
LGIRS = lgirreps.(1:MAX_SGNUM[3], Val(3)) # loaded from our saved .jld2 files
end
@testset "k-vectors required by BandRepSet analysis" begin
allpaths = false
spinful = false
debug = false
@testset "Complex (no TR) irreps" begin
# --- test complex-form irreps (not assuming time-reversal symmetry) ---
for (sgnum, lgirsd) in enumerate(LGIRS)
brs = bandreps(sgnum, allpaths=allpaths, spinful=spinful, timereversal=false)
irlabs_brs = irreplabels(brs)
klabs_brs = klabels(brs)
irlabs_ISO = [label(lgir) for lgirs in values(lgirsd) for lgir in lgirs]
klabs_ISO = keys(lgirsd)
for (iridx_brs, irlab_brs) in enumerate(irlabs_brs)
klab = klabel(irlab_brs)
@test irlab_brs ∈ irlabs_ISO
if debug && irlab_brs ∉ irlabs_ISO
@info "Cannot find complex irrep $(irlab_brs) in ISOTROPY dataset (sgnum = $sgnum)"
end
# test that ISOTROPY's labelling & representation of k-vectors agree with BCD
kidx_brs = findfirst(==(klab), klabs_brs)
@test brs.kvs[kidx_brs] == position(first(lgirsd[klab]))
if debug && brs.kvs[kidx_brs] ≠ position(first(lgirsd[klab]))
println("Different definitions of k-point labels in space group ", sgnum)
println(" brs, ", klab, ": ",string(brs.kvs[kidx_brs]))
println(" ISO, ", klab, ": ",string(position(first(lgirsd[klab]))), "\n")
end
end
end
end
@testset "Physically irreducible irreps/co-reps (with TR)" begin
# --- test physically irreducible irreps/co-reps (assuming time-reversal symmetry) ---
for (sgnum, lgirsd) in enumerate(LGIRS)
brs = bandreps(sgnum, allpaths=allpaths, spinful=spinful, timereversal=true)
irlabs_brs = irreplabels(brs)
klabs_brs = klabels(brs)
irlabs_ISO = Vector{String}()
realirlabs_ISO = Vector{String}()
klabs_ISO = keys(lgirsd)
klabs_ISO = Vector{String}(undef, length(lgirsd))
for lgirs in values(lgirsd)
append!(irlabs_ISO, [label(lgir) for lgir in lgirs])
append!(realirlabs_ISO, label.(realify(lgirs)))
end
irlabs_ISO = irlabs_ISO
realirlabs_ISO = realirlabs_ISO
for (iridx_brs, irlab_brs) in enumerate(irlabs_brs)
klab = klabel(irlab_brs)
@test irlab_brs ∈ realirlabs_ISO
if debug && irlab_brs ∉ realirlabs_ISO
@info "Cannot find real irrep $(irlab_brs) in ISOTROPY dataset (sgnum = $sgnum)"
end
# test that ISOTROPY's labelling & representation of k-vectors agree with BCD
kidx_brs = findfirst(==(klab), klabs_brs)
@test brs.kvs[kidx_brs] == position(first(lgirsd[klab]))
end
end
end
end
@testset "BandRepSet and BandRep" begin
brs = bandreps(230)
# iterated concatenation of vectors of `brs` should give `matrix`
@test stack(brs) == stack(brs) == hcat(brs...)
# length of BandRep as vectors should be = number of irreps + 1 (i.e. includes filling)
@test length(brs[1]) == length(brs[1].irvec)+1
@test brs[1] == vcat(brs[1].irvec, dim(brs[1]))
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2889 | using Crystalline, Test, LinearAlgebra, StaticArrays
@testset "Basis vectors" begin
@testset "Conventional bases" begin
for D in 1:3
for sgnum in 1:MAX_SGNUM[D]
Rs = directbasis(sgnum, D)
Gs = reciprocalbasis(Rs)
@test all(dot(Gs[i], Rs[i])≈2π for i in 1:D)
end
end
end
@test reciprocalbasis(([1,0.1], [0.1, 1])) == reciprocalbasis([[1, 0.1], [0.1, 1]])
@testset "Primitive bases" begin
for D in 1:3
for sgnum in 1:MAX_SGNUM[D]
cntr = centering(sgnum, D)
Rs = directbasis(sgnum, D)
Rs′ = primitivize(Rs, cntr)
Gs = reciprocalbasis(Rs)
Gs′ᵃ = primitivize(Gs, cntr)
Gs′ᵇ = reciprocalbasis(Rs′)
@test Gs′ᵃ ≈ Gs′ᵇ
@test all(dot(Gs′ᵇ[i], Rs′[i]) ≈ 2π for i in 1:D)
@test conventionalize(Rs′, cntr) ≈ Rs
@test conventionalize(Gs′ᵃ, cntr) ≈ Gs
end
end
end
@testset "Mixed inputs for constructors" begin
Rs = ([1.0, 0.0, 0.0], [-0.5, sqrt(3)/2, 0.0], [0, 0, 1.25])
Rs′ = DirectBasis{3}(Rs)
@test Rs′ == DirectBasis(Rs) # NTuple{3, Vector{3, Float64}}
Rsˢˢ = convert(SVector{3,SVector{3,Float64}}, Rs) # SVector{3, SVector{3, Float64}}
@test Rs′ == DirectBasis{3}(Rsˢˢ) == DirectBasis(Rsˢˢ)
Rsᵛ = [Rs...] # Vector{Vector{Float64}}
@test Rs′ == DirectBasis{3}(Rsᵛ) == DirectBasis(Rsᵛ)
Rsˢ = SVector{3,Float64}.(Rs) # NTuple{3, SVector{3, Float64}}
@test Rs′ == DirectBasis{3}(Rsˢ) == DirectBasis(Rsˢ)
Rsᵗ = ntuple(i->ntuple(j->Rs[i][j], Val(3)), Val(3)) # NTuple{3, NTuple{3, Float64}}
@test Rs′ == DirectBasis{3}(Rsᵗ) == DirectBasis(Rsᵗ)
@test Rs′ == DirectBasis(Rs[1], Rs[2], Rs[3]) == DirectBasis{3}(Rs[1], Rs[2], Rs[3])
# ↑ Varargs / splatting of Vector{Float64}
@test Rs′ == DirectBasis(Rsˢ[1], Rsˢ[2], Rsˢ[3]) == DirectBasis{3}(Rsˢ[1], Rsˢ[2], Rsˢ[3])
# ↑ Varargs / splatting of SVector{3, Float64}
end
@testset "AbstractPoint" begin
t = (.1,.2,.3)
v = [.1,.2,.3]
s = @SVector [.1,.2,.3]
r = ReciprocalPoint(.1,.2,.3)
# conversion
@test r == convert(ReciprocalPoint{3}, v) # AbstractVector conversion
@test r == convert(ReciprocalPoint{3}, s) # StaticVector conversion
# construction
@test r == ReciprocalPoint(s) == ReciprocalPoint{3}(s)
@test r == ReciprocalPoint(t) == ReciprocalPoint{3}(t)
@test r == ReciprocalPoint(v) == ReciprocalPoint{3}(v)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 7199 | using Test
using Crystalline
using Crystalline: dlm2struct
@testset "calc_bandreps" begin
# defines `is_exceptional_br` to check if a BR induced by a maximal Wyckoff position is an
# "exceptional" BR, i.e., is in fact not an elementary BR (EBR)
# include("ebr_exceptions.jl")
# TODO: currently unused - figure out if we need it or not & keep/delete accordingly
# ---------------------------------------------------------------------------------------- #
@testset "2D: `calc_bandreps` vs. (tabulated) `bandreps`" begin
# test that `bandreps` agrees with `calc_bandreps` in 2D (since the former is generated
# by the latter; basically check that the data behind the former is up-to-date)
for sgnum in 1:17
for timereversal in (false, true)
@test convert.(BandRep,
calc_bandreps(sgnum, Val(2); timereversal, allpaths = false)) ==
bandreps(sgnum, 2; timereversal, allpaths = false)
end
end
end
@testset "3D: every reference EBR must have a match in a calculated BR" begin
debug = false
error_counts = Dict{String, Int}()
for sgnum in 1:230
had_sg_error = false
for timereversal in (false, true)
had_tr_error = false
_brsᶜ = calc_bandreps(sgnum, Val(3); timereversal, allpaths = false)
brsᶜ = convert(BandRepSet, _brsᶜ)
brsʳ = bandreps(sgnum, 3; timereversal, allpaths = false)
# find a permutation of the irreps in `brsʳ` that matches `brsᶜ`'s sorting, s.t.
# `brsʳ.irlabs[irʳ²ᶜ_perm] == brsᶜ.irlabs`
irʳ²ᶜ_perm = [something(findfirst(==(irᶜ), brsʳ.irlabs)) for irᶜ in brsᶜ.irlabs]
append!(irʳ²ᶜ_perm, length(brsᶜ.irlabs)+1) # append occupation number
seen_wp = Dict{String, Bool}()
for brʳ in brsʳ
wpʳ = brʳ.wyckpos
idx = findfirst(brᶜ -> brᶜ.wyckpos == wpʳ && brᶜ.label == brʳ.label, brsᶜ)
haskey(seen_wp, wpʳ) || (seen_wp[wpʳ] = false)
if isnothing(idx)
# this can sometimes happen spuriously because Bilbao (i.e. `brsʳ`)
# lists the EBRs with unabbreviated Mulliken labels (e.g., A₁ rather
# than A or ¹E²E rather than E) even when it is possible to abbreviate
# unambiguously (what `mulliken` does and what `brsᶜ` consequently
# references); we account for that by doing a subsequent, slighly looser
# check (below)
idx = findfirst(brsᶜ) do brᶜ
brʳ.wyckpos == brᶜ.wyckpos || return false
labʳ = replace(brʳ.label, "↑G"=>"")
labᶜ = replace(brᶜ.label, "↑G"=>"")
length(labᶜ) == 1 && only(labᶜ) == first(labʳ) && return true # e.g., A ~ A₁
labʳ′ = replace(labʳ, "¹"=>"", "²"=>"") # e.g., ¹E²E ~ E
labʳ′ = replace(labʳ′, "EE" => "E",
"EgEg" => "Eg", "EᵤEᵤ" => "Eᵤ",
"E₁E₁" => "E₁", "E₂E₂" => "E₂",
"E′′E′′" => "E′′", "E′E′" => "E′",
"E₁gE₁g" => "E₁g", "E₂gE₂g" => "E₂g",
"E₁ᵤE₁ᵤ" => "E₁ᵤ", "E₂ᵤE₂ᵤ" => "E₂ᵤ")
labʳ′ == labᶜ && return true
end
end
@test idx !== nothing # test that an associated BR exists in brsʳ (it must)
idx = something(idx)
# there are a number of cases where it is impossible to test uniquely
# against Bilbao, because the assignment of irrep label to the site symmetry
# group is ambiguous (e.g., for site groups isomorphic to 222; but also for
# mmm and mm2): in this case, the assignment of irreps depends on a choice
# of coordinate system, which we cannot be uniquely determined but
# so, for these cases, we cannot do a one-to-one comparison (but we can at
# least test whether the reference Bilbao vector occurs in the set of
# computed band representation vectors)
if brʳ.sitesym ∉ ("222", "mmm", "mm2", "-4m2")
brᶜ = brsᶜ[idx]
@test Vector(brᶜ) == brʳ[irʳ²ᶜ_perm]
@test dim(brᶜ) == dim(brʳ)
elseif brʳ.sitesym == "-4m2"
# this is a special case: in principle, it is possible to uniquely
# assign the irrep labels, but we currently assign ones that are
# different from those in Bilbao (see issue #59)
# FIXME: remove this here and above once #59 is resolved
@test brʳ[irʳ²ᶜ_perm] ∈ Vector.(brsᶜ)
continue
else
# simply test that the reference Bilbao _vector_ is in the set of
# computed EBRs
@test brʳ[irʳ²ᶜ_perm] ∈ Vector.(brsᶜ)
continue
end
if debug
brᶜ = brsᶜ[idx]
if !(Vector(brᶜ) == brʳ[irʳ²ᶜ_perm])
had_sg_error || (print("sgnum = $sgnum\n"); had_sg_error = true)
had_tr_error || (println(" timereversal = $timereversal"); had_tr_error = true)
if !seen_wp[wpʳ]
print(" site = $wpʳ (")
printstyled("$(brʳ.sitesym)"; color=:yellow)
println(")")
seen_wp[wpʳ] = true
end
println(" $(replace(brʳ.label, "↑G"=>""))")
brʳ′ = deepcopy(brʳ)
brʳ′.irvec .= brʳ.irvec[irʳ²ᶜ_perm[1:end-1]]
brʳ′.irlabs .= brʳ.irlabs[irʳ²ᶜ_perm[1:end-1]]
println(" ref = $brʳ′")
println(" calc = $brᶜ")
if haskey(error_counts, brʳ.sitesym)
error_counts[brʳ.sitesym] += 1
else
error_counts[brʳ.sitesym] = 1
end
end
end
end
end
debug && had_sg_error && println()
end
end
@testset "Plane groups vs. parent space groups" begin
for (sgnum²ᴰ, sgnum³ᴰ) in enumerate(Crystalline.PLANE2SPACE_NUMS)
for timereversal in (false, true)
brs²ᴰ = bandreps(sgnum²ᴰ, 2; timereversal, allpaths = false)
brs³ᴰ = bandreps(sgnum³ᴰ, 3; timereversal, allpaths = false)
# dimensions
@test sort!(dim.(brs²ᴰ)) == sort!(dim.(brs³ᴰ))
# topological classification
@test classification(brs²ᴰ) == classification(brs³ᴰ)
end
end
end
end # @testset "calc_bandreps" begin | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1882 | using Crystalline, Test, LinearAlgebra
if !isdefined(Main, :LGIRSDIM)
LGIRSDIM = Tuple(lgirreps.(1:MAX_SGNUM[D], Val(D)) for D in 1:3)
end
@testset "CharacterTable and orthogonality theorems" begin
@testset "Little group irreps" begin
for LGIRS in LGIRSDIM # ... D in 1:3
for lgirsd in LGIRS
for lgirs in values(lgirsd)
ct = characters(lgirs)
χs = matrix(ct) # each column is a different representation
Nₒₚ = length(operations(ct))
# 1ˢᵗ orthogonality theorem: ∑ᵢ|χᵢ⁽ᵃ⁾|² = Nₒₚ⁽ᵃ⁾
@test all(n->isapprox.(n, Nₒₚ, atol=1e-14), sum(abs2, χs, dims=1))
# 2ⁿᵈ orthogonality theorem: ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾ = δₐᵦNₒₚ⁽ᵃ⁾
@test χs'*χs ≈ Nₒₚ*I
end
end
end # for LGIRS in LGIRSDIM
end # @testset "Little group irreps"
@testset "Point group irreps" begin
for D in 1:3
for pgiuc in PG_IUCs[D]
pgirs = pgirreps(pgiuc, Val(D))
ct = characters(pgirs)
χs = matrix(ct) # each column is a different representation
Nₒₚ = length(operations(ct))
# 1ˢᵗ orthogonality theorem: ∑ᵢ|χᵢ⁽ᵃ⁾|² = Nₒₚ⁽ᵃ⁾
@test all(n->isapprox.(n, Nₒₚ, atol=2e-14), sum(abs2, χs, dims=1))
# 2ⁿᵈ orthogonality theorem: ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾ = δₐᵦNₒₚ⁽ᵃ⁾
@test χs'*χs ≈ Nₒₚ*I
end
end
end
@testset "Indexing" begin
pgirs = pgirreps("m-3m", Val(3))
ct = characters(pgirs)
χs = matrix(ct)
@test ct[3] == χs[3]
@test ct[:,3] == χs[:,3]
@test ct[2,:] == χs[2,:]
@test ct' == χs'
@test ct'*ct ≈ χs'*χs # may differ since one dispatches to generic matmul, the other to BLAS
@test size(ct) == size(χs)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3159 | using Crystalline, Test
@testset "Band representations" begin
allpaths = false
spinful = false
# Check classification of spinless, time-reversal invariant band representations
# using Table 4 of Po, Watanabe, & Vishwanath Nature Commun 8, 50 (2017).
# Z₂: 3, 11, 14, 27, 37, 48, 49, 50, 52, 53, 54, 56, 58, 60, 66,
# 68, 70, 75, 77, 82, 85, 86, 88, 103, 124, 128, 130, 162,
# 163, 164, 165, 166, 167, 168, 171, 172, 176, 184, 192,
# 201, 203
# Z₂×Z₂: 12, 13, 15, 81, 84, 87
# Z₂×Z₄: 147, 148
# Z₂×Z₂×Z₂: 10, 83, 175
# Z₂×Z₂×Z₂×Z₄: 2
@testset "Classification (TR invar., spinless)" begin
table4 = ["Z₁" for _=1:230]
table4[[3, 11, 14, 27, 37, 48, 49, 50, 52, 53, 54, 56, 58, 60, 66,
68, 70, 75, 77, 82, 85, 86, 88, 103, 124, 128, 130, 162,
163, 164, 165, 166, 167, 168, 171, 172, 176, 184, 192,
201, 203]] .= "Z₂"
table4[[12, 13, 15, 81, 84, 87]] .= "Z₂×Z₂"
table4[[147, 148]] .= "Z₂×Z₄"
table4[[10, 83, 175]] .= "Z₂×Z₂×Z₂"
table4[2] = "Z₂×Z₂×Z₂×Z₄"
for sgnum = 1:230
brs = bandreps(sgnum, allpaths=allpaths, spinful=spinful, timereversal=true)
@test classification(brs) == table4[sgnum]
end
end
# Check basis dimension of spinless, time-reversal invariant band representations
# using Table 2 of Po, Watanabe, & Vishwanath Nature Commun 8, 50 (2017).
@testset "Band structure dimension (TR invar., spinless)" begin
table4 = Vector{Int}(undef, 230)
table4[[1, 4, 7, 9, 19, 29, 33, 76, 78, 144, 145, 169, 170]] .= 1
table4[[8, 31, 36, 41, 43, 80, 92, 96, 110, 146, 161, 198]] .= 2
table4[[5, 6, 18, 20, 26, 30, 32, 34, 40, 45, 46, 61, 106, 109, 151, 152, 153, 154, 159, 160, 171, 172, 173, 178, 179, 199, 212, 213]] .= 3
table4[[24, 28, 37, 39, 60, 62, 77, 79, 91, 95, 102, 104, 143, 155, 157, 158, 185, 186, 196, 197, 210]] .= 4
table4[[3, 14, 17, 27, 42, 44, 52, 56, 57, 94, 98, 100, 101, 108, 114, 122, 150, 156, 182, 214, 220]] .= 5
table4[[11, 15, 35, 38, 54, 70, 73, 75, 88, 90, 103, 105, 107, 113, 142, 149, 167, 168, 184, 195, 205, 219]] .= 6
table4[[13, 22, 23, 59, 64, 68, 82, 86, 117, 118, 120, 130, 163, 165, 180, 181, 203, 206, 208, 209, 211, 218, 228, 230]] .= 7
table4[[21, 58, 63, 81, 85, 97, 116, 133, 135, 137, 148, 183, 190, 201, 217]] .= 8
table4[[2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141, 147, 188, 207, 216, 222]] .= 9
table4[[12, 74, 93, 112, 119, 176, 177, 202, 204, 215]] .= 10
table4[[66, 84, 128, 136, 166, 227]] .= 11
table4[[51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226]] .= 12
table4[[16, 67, 111, 125, 194, 224]] .= 13
table4[[49, 140, 192, 200]] .= 14
table4[[10, 69, 71, 124, 127, 132, 187]] .= 15
table4[[225, 229]] .= 17
table4[[65, 83, 131, 139, 175]] .= 18
table4[221] = 22
table4[191] = 24
table4[[47, 123]] .= 27
for sgnum = 1:230
brs = bandreps(sgnum, allpaths=allpaths, spinful=spinful, timereversal=true)
@test basisdim(brs) == table4[sgnum]
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1464 | using Test, Crystalline, StaticArrays
@testset "Compatibility" begin
@testset "Subduction" begin
lgirsd = lgirreps(218)
Rᵢ²¹⁸ = realify(lgirsd["R"]) # 2D, 4D, & 6D irreps R₁R₂, R₃R₃, & R₄R₅ at R = [½,½,½]
Λᵢ²¹⁸ = realify(lgirsd["Λ"]) # 1D, 1D, & 2D irreps Λ₁, Λ₂, Λ₃ at Λ = [α,α,α]
# --- point to line subduction (R → Λ) ---
# R₁R₂ → Λ₁+Λ₂ | R₃R₃ → 2Λ₃ | R₄R₅ → Λ₁+Λ₂+2Λ₃
@test [[subduction_count(Rᵢ, Λᵢ) for Λᵢ in Λᵢ²¹⁸] for Rᵢ in Rᵢ²¹⁸] == [[1,1,0],[0,0,2],[1,1,2]]
# --- corep-specifics ---
R₄R₅²¹⁸ = Rᵢ²¹⁸[end]
# test that complex corep subduces to itself
@test subduction_count(R₄R₅²¹⁸, R₄R₅²¹⁸) == 1
# test that physically real corep subduces to its complex components
Rᵢ²¹⁸_notr = lgirsd["R"]
@test [subduction_count(R₄R₅²¹⁸, Rᵢ_notr) for Rᵢ_notr in Rᵢ²¹⁸_notr] == [0,0,0,1,1]
# --- sub-groups ---
# test that two distinct coreps in different groups decompose consistently
R₄²²² = realify(lgirreps(222)["R"])[end]; # 6D irrep
R₄R₅²¹⁸′ = deepcopy(R₄R₅²¹⁸) # 6D irrep
# SG 218 is a subgroup of 222, but in a different setting - so convert the little group
# of 218 to that of 222
lg_ops = operations(group(R₄R₅²¹⁸′))
lg_ops .= transform.(lg_ops, Ref(one(SMatrix{3,3})), Ref((@SVector [1,1,1])/4))
# check that R₄²²² subduces into R₄R₅²¹⁸
@test subduction_count(R₄²²², R₄R₅²¹⁸′) == 1
end # @testset "Subduction"
end # @testset "Compatibility" | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 5607 | using Crystalline, Test
@testset "Conjugacy classes" begin
@testset "Identical number of conjugacy classes and irreps" begin
# The number of conjugacy classes should equal the number of inequivalent irreps
# (see e.g. Inui, Section 4.6.1 or Bradley & Cracknel, Theorem 1.3.10) for "linear"
# or ordinary irreps (i.e. not ray/projective irreps)
@testset "Point groups" begin
for Dᵛ in (Val(1), Val(2), Val(3))
D = typeof(Dᵛ).parameters[1]
for pgiuc in Crystalline.PG_IUCs[D]
pg = pointgroup(pgiuc, Dᵛ)
conj_classes = classes(pg)
pgirs = pgirreps(pgiuc, Dᵛ)
@test length(pgirs) == length(conj_classes)
end
end
end
@testset "Little groups" begin
for Dᵛ in (Val(1), Val(2), Val(3))
D = typeof(Dᵛ).parameters[1]
for sgnum in 1:MAX_SGNUM[D]
lgirsd = lgirreps(sgnum, Dᵛ)
for (klab, lgirs) in lgirsd
lg = group(first(lgirs))
includes_ray_reps = any(lgir->Crystalline.israyrep(lgir)[1], lgirs)
if !includes_ray_reps
# the number of conjugacy classes is not generally equal to the
# number of inequivalent irreps if the irreps include ray (also
# called projective) representations as discussed by Inui, Sec. 5.4
# (instead, the number of "ray classes" is equal to the number of
# inequivalent irreps); so we only test if there are no ray reps
conj_classes = classes(lg)
@test length(lgirs) == length(conj_classes)
end
end
end
end
end
end
@testset "Primitive/conventional setting vs. conjugacy classes" begin
# The number of conjugacy classes should be invariant of whether we choose to compute it
# in a primitive or conventional setting (provided we specify the `cntr` argument
# correctly to `classes`):
for Dᵛ in (Val(1), Val(2), Val(3))
D = typeof(Dᵛ).parameters[1]
for sgnum in 1:MAX_SGNUM[D]
# space groups
sgᶜ = spacegroup(sgnum, Dᵛ) # conventional setting
sgᵖ = primitivize(sgᶜ) # primitive setting
@test length(classes(sgᶜ)) == length(classes(sgᵖ, nothing))
# little groups
lgsᶜ = littlegroups(sgnum, Dᵛ)
for lgᶜ in values(lgsᶜ)
lgᵖ = primitivize(lgᶜ)
@test length(classes(lgᶜ)) == length(classes(lgᵖ, nothing))
end
end
end
end
@testset "`SiteGroup` conjugacy classes" begin
# `SiteGroup` operations must multiply with `modτ = false`, which must be propagated to
# `classes`; check that we keep doing this correctly by comparing with a worked example
sgnum = 141
sg = spacegroup(sgnum, Val(3))
wp = wyckoffs(sgnum, Val(3))[end] # 4a position
siteg = sitegroup(sg, wp)
conj_classes = classes(siteg)
conj_classes_reference = [
SymOperation{3}.(["x,y,z"]),
SymOperation{3}.(["y-3/4,x+3/4,-z+1/4", "-y+3/4,-x+3/4,-z+1/4"]),
SymOperation{3}.(["-y+3/4,x+3/4,-z+1/4", "y-3/4,-x+3/4,-z+1/4"]),
SymOperation{3}.(["-x,y,z", "x,-y+3/2,z"]),
SymOperation{3}.(["-x,-y+3/2,z"])
]
@test Set(conj_classes) == Set(conj_classes_reference)
@test length(conj_classes) == 5 == length(classes(pointgroup("-4m2")))
end # @testset "`SiteGroup` conjugacy classes"
@testset "`sitegroups` accessor" begin
sgnum = 141
sg = spacegroup(sgnum, Val(3))
wps = wyckoffs(sgnum, Val(3))
sitegs_1 = sitegroups(sg)
@test Set(position.(sitegs_1)) == Set(wps)
@test sitegroups(sg) == sitegroups(sgnum, 3) == sitegroups(sgnum, Val(3))
end
# TODO
# @testset "Conjugacy classes and characters" begin
# the characters of elements in the same conjugacy class must be identical for ordinary
# (non-ray) irreps. I.e., for two conjugate elements ``a`` and ``b`` in ``G``, there
# exists a ``g ∈ G`` s.t. ``gag⁻¹ = b``. As a consequence: ``χ(b) = χ(gag⁻¹) =
# Tr(D(gag⁻¹)) = Tr(D(g)D(a)D(g⁻¹)) = Tr(D(a)D(g⁻¹)D(g)) = Tr(D(a)) = χ(a)``.
# end
end # @testset "Conjugacy classes"
@testset "Abelian groups" begin
# Abelian groups only have one-dimensional irreps (unless there are ray-irreps, then the
# rule doesn't hold in general)
@testset "Point groups" begin
for Dᵛ in (Val(1), Val(2), Val(3))
D = typeof(Dᵛ).parameters[1]
for pgiuc in Crystalline.PG_IUCs[D]
pg = pointgroup(pgiuc, Dᵛ)
if is_abelian(pg)
pgirs = pgirreps(pgiuc, Dᵛ)
@test all(pgir -> Crystalline.irdim(pgir) == 1, pgirs)
end
end
end
end
@testset "Little groups" begin
for Dᵛ in (Val(1), Val(2), Val(3))
D = typeof(Dᵛ).parameters[1]
for sgnum in 1:MAX_SGNUM[D]
lgirsd = lgirreps(sgnum, Dᵛ)
for (klab, lgirs) in lgirsd
lg = group(first(lgirs))
if is_abelian(lg)
includes_ray_reps = any(lgir->Crystalline.israyrep(lgir)[1], lgirs)
if !includes_ray_reps
@test all(lgir -> Crystalline.irdim(lgir) == 1, lgirs)
end
end
end
end
end
end
end # @testset "Abelian groups"
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2564 | # general exceptions (Table 3 of https://doi.org/10.1103/PhysRevB.97.035139)
const ebr_exceptions = Dict{Int, Tuple{Bool, String, Vector{String}}}(
# sgnum => (applies_with_tr, site group (Schoenflies notation), irreps (Mulliken notation))
([163, 165, 167, 228, 230, 223, 211, 208, 210, 228, 188, 190, 192, 193]
.=> Ref((false, "D₃" #=312/321=#, ["E"] #=Γ₃=#))) ...,
192 => ((false, "D₆" #=622=#, ["E₁", "E₂"] #=Γ₅, Γ₆=#)),
([207, 211, 222, 124, 140]
.=> Ref((false, "D₄" #=422=#, ["E"] #=Γ₅=#))) ...,
([229, 226, 215, 217, 224, 131, 132, 139, 140, 223]
.=> Ref((true, "D₂d" #=-42m/-4m2=#, ["E"] #=Γ₅=#))) ...
)
# time-reversal exceptions (Table 2 of https://doi.org/10.1103/PhysRevB.97.035139)
# always associated with site group S₄ (-4) and site irrep E (Γ₃Γ₄)
const ebr_tr_exceptions = (84, 87, 135, 136, 112, 116, 120, 121, 126, 130, 133, 138, 142,
218, 230, 222, 217, 219, 228)
# ---------------------------------------------------------------------------------------- #
function is_exceptional_br(sgnum::Integer, br::BandRep; timereversal::Bool=true)
# first check (Table 2): a composite physically real complex bandrep ("realified" rep)?
(timereversal && is_exceptional_tr_br(sgnum, br)) && return true
# second check (Table 3)
haskey(ebr_exceptions, sgnum) || return false
except_applies_with_tr, except_sitesym, except_siteirlabs = ebr_exceptions[sgnum]
# if we have TR, table 3 entries only apply if `except_applies_with_tr = true`
timereversal && (except_applies_with_tr || return false)
# check if site symmetry group matches
br_sitesym_iuc = br.sitesym == "32" ? "321" : br.sitesym
br_sitesym_schoenflies = Crystalline.PG_IUC2SCHOENFLIES[br_sitesym_iuc]
except_sitesym == br_sitesym_schoenflies || return false # didn't match
# check if site irrep matches
br_siteirlab = replace(br.label, "↑G"=>"")
br_siteirlab ∈ except_siteirlabs || return false # didn't match
return true
end
function is_exceptional_tr_br(sgnum::Integer, br::BandRep)
sgnum ∈ ebr_tr_exceptions || return false
# check if site symmetry group is S₄
br_sitesym_iuc = br.sitesym == "32" ? "321" : br.sitesym
br_sitesym_schoenflies = Crystalline.PG_IUC2SCHOENFLIES[br_sitesym_iuc]
br_sitesym_schoenflies == "S₄" || return false
# check if site irrep is E
br_siteirlab = replace(br.label, "↑G"=>"")
br_siteirlab == "E" || return false
return true
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4525 | # ---------------------------------------------------------------------------------------- #
module CrystallineTestGeneratorsXYZT
# Module with functionality to load generators from stored xyzt-data .csv files
# (this was how the data was loaded in Crystalline ≤v0.4.22)
using Crystalline
using Crystalline:
_unmangle_pgiuclab, pointgroup_num2iuc, # point groups
_check_valid_sgnum_and_dim, # space group
_subperiodic_kind, _check_valid_subperiodic_num_and_dim, # subperiodic groups
_throw_invalid_dim # general
export generators_from_xyzt
const XYZT_GEN_DATA_DIR = joinpath(@__DIR__, "data", "xyzt", "generators")
# ---------------------------------------------------------------------------------------- #
# Point groups
# ---------------------------------------------------------------------------------------- #
function read_pggens_xyzt(iuclab::String, D::Integer)
@boundscheck D ∉ (1,2,3) && _throw_invalid_dim(D)
@boundscheck iuclab ∉ PG_IUCs[D] && throw(DomainError(iuclab, "iuc label not found in database (see possible labels in PG_IUCs[D])"))
filepath = joinpath(XYZT_GEN_DATA_DIR, "pgs/"*string(D)*"d/"*_unmangle_pgiuclab(iuclab)*".csv")
return readlines(filepath)
end
function generators_from_xyzt(iuclab::String, ::Type{PointGroup{D}}=PointGroup{3}) where D
ops_str = read_pggens_xyzt(iuclab, D)
return SymOperation{D}.(ops_str)
end
function generators_from_xyzt(pgnum::Integer, ::Type{PointGroup{D}}, setting::Integer=1) where D
iuclab = pointgroup_num2iuc(pgnum, Val(D), setting)
return generators_from_xyzt(iuclab, PointGroup{D})
end
# ---------------------------------------------------------------------------------------- #
# Space groups
# ---------------------------------------------------------------------------------------- #
function generators_from_xyzt(sgnum::Integer, ::Type{SpaceGroup{D}}=SpaceGroup{3}) where D
ops_str = read_sggens_xyzt(sgnum, D)
return SymOperation{D}.(ops_str)
end
function read_sggens_xyzt(sgnum::Integer, D::Integer)
@boundscheck _check_valid_sgnum_and_dim(sgnum, D)
filepath = joinpath(XYZT_GEN_DATA_DIR, "sgs/"*string(D)*"d/"*string(sgnum)*".csv")
return readlines(filepath)
end
# ---------------------------------------------------------------------------------------- #
# Subperiodic groups
# ---------------------------------------------------------------------------------------- #
function generators_from_xyzt(num::Integer, ::Type{SubperiodicGroup{D,P}}) where {D,P}
ops_str = read_subperiodic_gens_xyzt(num, D, P)
return SymOperation{D}.(ops_str)
end
function read_subperiodic_gens_xyzt(num::Integer, D::Integer, P::Integer)
@boundscheck _check_valid_subperiodic_num_and_dim(num, D, P)
kind = _subperiodic_kind(D, P)
filepath = joinpath(XYZT_GEN_DATA_DIR, "subperiodic/"*kind*"/"*string(num)*".csv")
return readlines(filepath)
end
end # module CrystallineTestGeneratorsXYZT
# ---------------------------------------------------------------------------------------- #
using Crystalline, Test
using .CrystallineTestGeneratorsXYZT
@testset "Agreement between \"coded\" group generators and xyzt-data" begin
@testset "Point groups" begin
for D in 1:3
Dᵛ = Val(D)
for (pgnum, pgiucs) in enumerate(Crystalline.PG_NUM2IUC[D])
for (setting, pgiuc) in enumerate(pgiucs)
pg_gens = generators(pgiuc, PointGroup{D})
pg_gens_from_xyzt = generators_from_xyzt(pgiuc, PointGroup{D})
pg_gens′ = generators(pgnum, PointGroup{D}, setting)
@test pg_gens ≈ pg_gens_from_xyzt
@test pg_gens == pg_gens′
end
end
end
end
@testset "Space groups" begin
for D in 1:3
Dᵛ = Val(D)
for sgnum in 1:MAX_SGNUM[D]
sg_gens = generators(sgnum, SpaceGroup{D})
sg_gens_from_xyzt = generators_from_xyzt(sgnum, SpaceGroup{D})
@test sg_gens ≈ sg_gens_from_xyzt
end
end
end
@testset "Subperiodic groups" begin
for (D,P) in ((3, 2), (3, 1), (2, 1))
Dᵛ, Pᵛ = Val(D), Val(P)
for num in 1:MAX_SUBGNUM[(D,P)]
subg_gens = generators(num, SubperiodicGroup{D,P})
subg_gens_from_xyzt = generators_from_xyzt(num, SubperiodicGroup{D,P})
@test subg_gens ≈ subg_gens_from_xyzt
end
end
end
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4854 | # ---------------------------------------------------------------------------------------- #
module CrystallineTestXYZT
# Module with functionality to load `SymOperation`s from stored xyzt-data .csv files
# (this was how the data was loaded in Crystalline ≤v0.4.22)
using Crystalline
using Crystalline:
_unmangle_pgiuclab, pointgroup_iuc2num, # point groups
_check_valid_sgnum_and_dim, # space group
_subperiodic_kind, _check_valid_subperiodic_num_and_dim, # subperiodic groups
_throw_invalid_dim # general
export pointgroup_from_xyzt, spacegroup_from_xyzt, subperiodicgroup_from_xyzt
const XYZT_DATA_DIR = joinpath(@__DIR__, "data", "xyzt", "groups")
# ---------------------------------------------------------------------------------------- #
# Point groups
# ---------------------------------------------------------------------------------------- #
@inline function pointgroup_from_xyzt(iuclab::String, ::Val{D}=Val(3)) where D
pgnum = pointgroup_iuc2num(iuclab, D) # this is not generally a particularly well-established numbering
ops_str = read_pgops_xyzt(iuclab, D)
return PointGroup{D}(pgnum, iuclab, SymOperation{D}.(ops_str))
end
# Here, and below for space groups and subperiodic groups, we obtain the symmetry operations
# via a set of stored .csv files listing the operations in xyzt format for each group: the
# data is stored in `test/data/xyzt-operations/`
function read_pgops_xyzt(iuclab::String, D::Integer)
@boundscheck D ∉ (1,2,3) && _throw_invalid_dim(D)
@boundscheck iuclab ∉ PG_IUCs[D] && throw(DomainError(iuclab, "iuc label not found in database (see possible labels in PG_IUCs[D])"))
filepath = joinpath(XYZT_DATA_DIR, "pgs/"*string(D)*"d/"*_unmangle_pgiuclab(iuclab)*".csv")
return readlines(filepath)
end
# ---------------------------------------------------------------------------------------- #
# Space groups
# ---------------------------------------------------------------------------------------- #
function spacegroup_from_xyzt(sgnum::Integer, ::Val{D}=Val(3)) where D
ops_str = read_sgops_xyzt(sgnum, D)
ops = SymOperation{D}.(ops_str)
return SpaceGroup{D}(sgnum, ops)
end
function read_sgops_xyzt(sgnum::Integer, D::Integer)
@boundscheck _check_valid_sgnum_and_dim(sgnum, D)
filepath = joinpath(XYZT_DATA_DIR, "sgs/"*string(D)*"d/"*string(sgnum)*".csv")
return readlines(filepath)
end
# ---------------------------------------------------------------------------------------- #
# Subperiodic groups
# ---------------------------------------------------------------------------------------- #
function subperiodicgroup_from_xyzt(num::Integer,
::Val{D}=Val(3), ::Val{P}=Val(2)) where {D,P}
ops_str = read_subperiodic_ops_xyzt(num, D, P)
ops = SymOperation{D}.(ops_str)
return SubperiodicGroup{D,P}(num, ops)
end
function read_subperiodic_ops_xyzt(num::Integer, D::Integer, P::Integer)
@boundscheck _check_valid_subperiodic_num_and_dim(num, D, P)
kind = _subperiodic_kind(D, P)
filepath = joinpath(XYZT_DATA_DIR, "subperiodic/"*kind*"/"*string(num)*".csv")
return readlines(filepath)
end
# ---------------------------------------------------------------------------------------- #
# Magnetic space groups
# ---------------------------------------------------------------------------------------- #
# Maybe TODO
end # module CrystallineTestXYZT
# ---------------------------------------------------------------------------------------- #
using Crystalline, Test
using .CrystallineTestXYZT
@testset "Agreement between \"coded\" group operations and xyzt-data" begin
@testset "Point groups" begin
for D in 1:3
Dᵛ = Val(D)
for (pgnum, pgiucs) in enumerate(Crystalline.PG_NUM2IUC[D])
for (setting, pgiuc) in enumerate(pgiucs)
pg = pointgroup(pgiuc, Dᵛ)
pg_from_xyzt = pointgroup_from_xyzt(pgiuc, Dᵛ)
pg′ = pointgroup(pgnum, Dᵛ, setting)
@test pg ≈ pg_from_xyzt
@test pg == pg′
end
end
end
end
@testset "Space groups" begin
for D in 1:3
Dᵛ = Val(D)
for sgnum in 1:MAX_SGNUM[D]
sg = spacegroup(sgnum, Dᵛ)
sg_from_xyzt = spacegroup_from_xyzt(sgnum, Dᵛ)
@test sg ≈ sg_from_xyzt
end
end
end
@testset "Subperiodic groups" begin
for (D,P) in ((3, 2), (3, 1), (2, 1))
Dᵛ, Pᵛ = Val(D), Val(P)
for num in 1:MAX_SUBGNUM[(D,P)]
subg = subperiodicgroup(num, Dᵛ, Pᵛ)
subg_from_xyzt = subperiodicgroup_from_xyzt(num, Dᵛ, Pᵛ)
@test subg ≈ subg_from_xyzt
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 8008 | using Crystalline, Test, LinearAlgebra
# TODO: Cannot pass unless src/special_representation_domain_kpoints.jl is reincluded in
# src/Crystalline.jl. Currently disabled due to compilation time concerns.
@testset "Representation vs basic domain BZ" begin
# disable if src/special_representation_domain_kpoints.jl is reincluded
if (@test_broken false) isa Test.Broken
println("Skipping tests of src/special_representation_domain_kpoints.jl")
else
@testset "Identification of holosymmetric space groups" begin
# Check that our cached values of the holosymmetric space group numbers
# (stored in Crystalline.HOLOSYMMETRIC_SGNUMS) agree with the results of
# Crystalline._find_holosymmetric_sgnums(D)
recalc_holosgnums = Tuple(tuple(Crystalline._find_holosymmetric_sgnums(D)...) for D = 1:3)
@test recalc_holosgnums == Crystalline.HOLOSYMMETRIC_SGNUMS
# Compare our calculation of the holosymmetric space groups with Table 3.10
# of CDML: that table lists the `sgnum`s of every _symmorphic_ nonholosymmetric
# group in 3D, allowing us a sanity check on _find_holosymmetric_sgnums(D::Integer).
holo_sgnums = Crystalline._find_holosymmetric_sgnums(3)
nonholo_sgnums = filter(sgnum->sgnum∉holo_sgnums, 1:MAX_SGNUM[3])
symmorph_nonholo_sgnums = filter(issymmorph, nonholo_sgnums)
symmorph_nonholo_sgnums_CDML = (
1,3,6,5,8,16,25,21,35,38,22,42,23,44,75,81,83,89,99,111,115,79,82,87,
97,107,119,121,195,200,207,215,196,202,209,216,197,204,211,217,146,
148,155,160,143,147,150,157,168,149,156,162,164,177,183,174,175,189,187)
@test symmorph_nonholo_sgnums == sort([symmorph_nonholo_sgnums_CDML...])
# Check that our cached values for ARITH_PARTNER_GROUPS remain computed correctly: (avoid bit-rotting)
arith_partner_groups′ = Tuple(tuple(getindex.(Crystalline._find_arithmetic_partner.(1:MAX_SGNUM[D], D), 2)...) for D in 1:3)
@test Crystalline.ARITH_PARTNER_GROUPS == arith_partner_groups′
end
# Test the corner cases noted for the method `_find_holosymmetric_sgnums`
@testset "Cornercases and transformations for _find_holosymmetric_sgnums" begin
for (sgnum, info) in zip(keys(Crystalline.CORNERCASES_SUBSUPER_NORMAL_SGS),
values(Crystalline.CORNERCASES_SUBSUPER_NORMAL_SGS))
sgnum₀ = info[1] # supergroup number
P, p = info[2:3] # transformation pair (P,p)
cntr = centering(sgnum, 3)
G = operations(spacegroup(sgnum, 3)) # G in conventional basis of sgnum
Gᵖ = reduce_ops(G, cntr, false) # G in primitive basis of sgnum
G₀ = operations(spacegroup(sgnum₀, 3)) # G₀ in conventional basis of sgnum₀
G₀′ = transform.(G₀, Ref(P), Ref(p)) # G₀ in conventional basis of sgnum
G₀′ᵖ = reduce_ops(G₀′, cntr, false) # G₀ in primitive basis of sgnum
# verify that the G₀′ is indeed a normal, holosymmetric supergroup of G
@test issubgroup(G₀′ᵖ, Gᵖ) && issubgroup(G₀′, G) # test for both conventional
@test isnormal(G₀′ᵖ, Gᵖ) && isnormal(G₀′, G) # **and** primitive bases
@test Crystalline.is_holosymmetric(sgnum₀, 3)
end
end
@testset "Finding holosymmetric, normal supergroups (\"parent group\")" begin
holosym_parents = Crystalline.find_holosymmetric_parent.(1:MAX_SGNUM[3],3)
# We know that there should be 24 orphans, as tabulated in CDML.
# Verify that these are the cases "missed" by find_holosymmetric_parent
holosym_parents_orphans = findall(isnothing, holosym_parents)
@test holosym_parents_orphans == sort(collect(Iterators.flatten(Crystalline.ORPHAN_SGNUMS)))
end
@testset "Test find_holosymmetric_superpointgroup" begin
# the minimal super point group P₀ of a holosymmetric space group G₀ should equal its isogonal/arithmetic point group F₀
for D in 1:3
for sgnum₀ in Crystalline.HOLOSYMMETRIC_SGNUMS[D]
G₀ = spacegroup(sgnum₀, D)
F₀ = pointgroup(G₀) # isogonal/arithmetic point group of G₀
P₀ = operations(Crystalline.find_holosymmetric_superpointgroup(G₀)) # minimal holosymmetric super point group of G₀
@test sort(xyzt.(F₀)) == sort(xyzt.(P₀))
end
end
# every space group should have a holosymmetric super point group (i.e. never return nothing)
for D = 1:3
@test !any(sgnum->isnothing(Crystalline.find_holosymmetric_superpointgroup(sgnum, D)), 1:MAX_SGNUM[D])
end
end
@testset "Compare find_new_kvecs(sgnum, D) to \"new\" kvecs from CDML" begin
D = 3
# check that all holosymmetric sgs get no new k-vecs (trivial)
@test all(sgnum-> Crystalline.find_new_kvecs(sgnum, 3) === nothing, Crystalline.HOLOSYMMETRIC_SGNUMS[D])
# check that the new k-vecs from find_new_kvecs(...) agree with those of CDML
# for the case of nonholosymmetric sgs [TEST_BROKEN]
verbose_debug = false # toggle to inspect disagreements between CDML and find_new_kvecs
if verbose_debug; more, fewer = Int[], Int[]; end
for sgnum in Base.OneTo(MAX_SGNUM[D])
Crystalline.is_holosymmetric(sgnum, D) && continue # only check holosymmetric sgs
# look for new k-vectors (and mapping) in CDML data; if nothing is there, return an
# empty array of Crystalline.KVecMapping
arith_partner_sgnum = Crystalline.find_arithmetic_partner(sgnum, D)
kvmaps_CDML = get(Crystalline.ΦNOTΩ_KVECS_AND_MAPS, arith_partner_sgnum, Crystalline.KVecMapping[])
newklabs_CDML = [getfield.(kvmaps_CDML, :kᴮlab)...]
# look for new k-vectors using our own search implementation
_, _, _, newklabs = Crystalline.find_new_kvecs(sgnum, D)
newklabs = collect(Iterators.flatten(newklabs)) # flatten array of array structure
newklabs .= rstrip.(newklabs, '′') # strip "′" from newklabs
# compare the set of labels
sort!(newklabs_CDML)
sort!(newklabs)
@test_skip newklabs == newklabs_CDML # this is broken at present: toggle verbose_debug to inspect issue more clearly
# TODO: Make these tests pass (low priority; find_new_kvecs is not used anywhere)
if verbose_debug && (newklabs != newklabs_CDML)
bt = bravaistype(sgnum, 3)
if length(newklabs_CDML) > length(newklabs)
@info "More KVecs in CDML:" sgnum bt setdiff(newklabs_CDML, newklabs)
push!(more, sgnum)
elseif length(newklabs) > length(newklabs_CDML)
@info "Fewer KVecs in CDML:" sgnum bt setdiff(newklabs, newklabs_CDML)
push!(fewer, sgnum)
else
@info "Distinct KVecs from CDML:" sgnum bt newklabs newklabs_CDML
end
end
end
if verbose_debug && (!isempty(fewer) || !isempty(more))
println("\n$(length(more)+length(fewer)) disagreements were found relative to CDML's listing of new KVecs:")
print(" More KVecs in CDML:\n "); join(stdout, more, ' '); println()
print(" Fewer KVecs in CDML:\n "); join(stdout, fewer, ' '); println()
end
end
@testset "Tabulated orphan parent groups are indeed normal supergroups" begin
Pᴵ = Matrix{Float64}(I, 3, 3) # trivial transformation rotation (only translation may be nontrivial here)
for (sgnum, (parent_sgnum, p)) in pairs(Crystalline.ORPHAN_AB_SUPERPARENT_SGNUMS)
G = operations(spacegroup(sgnum, 3))
G′ = operations(spacegroup(parent_sgnum, 3)) # basis setting may differ from G (sgs 151-154)
# G′ in conventional basis of G
if !iszero(p)
G′ .= transform.(G′, Ref(Pᴵ), Ref(p))
# Note: we don't have to bother with going to the primitive lattice since
# all the group/supergroup pairs have the same bravais type.
end
# test that G◁G′
@test issubgroup(G′, G)
@test isnormal(G′, G)
end
end
end # @test_broken if
end # outer @testset | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 7070 | using Crystalline, Test, LinearAlgebra
if !isdefined(Main, :LGIRSDIM)
LGIRSDIM = Tuple(lgirreps.(1:MAX_SGNUM[D], Val(D)) for D in 1:3)
end
#foreach(LGIRS->Crystalline.add_ΦnotΩ_lgirs!.(LGIRS), LGIRSDIM)
αβγs = Crystalline.TEST_αβγs # to evaluate line/plane irreps at non-special points
@testset "Irrep orthogonality (complex little groups)" begin
## 1ˢᵗ orthogonality theorem (characters):
# ∑ᵢ|χᵢ⁽ᵃ⁾|² = Nₒₚ⁽ᵃ⁾
# for each irrep Dᵢ⁽ᵃ⁾ with i running over the Nₒₚ elements of the little group
@testset "1ˢᵗ orthogonality theorem" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS # loop over space groups: lgirsd contains _all_ little groups and their irreps
for lgirs in values(lgirsd) # loop over little group: lgirs contains all the associated irreps
Nₒₚ = order(first(lgirs)) # number of elements in little group
for lgir in lgirs # specific irrep {Dᵢ⁽ᵃ⁾} of the little group
χ = characters(lgir, αβγs[D]) # characters χᵢ⁽ᵃ⁾ of every operation
@test sum(abs2, χ) ≈ Nₒₚ # check ∑ᵢ|χᵢ⁽ᵃ⁾|² = Nₒₚ⁽ᵃ⁾
end
end
end
end
end # testset
## 2ⁿᵈ orthogonality theorem (characters):
# ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾ = δₐᵦNₒₚ⁽ᵃ⁾
# for irreps Dᵢ⁽ᵃ⁾ and Dᵢ⁽ᵝ⁾ in the same little group (with i running over the
# Nₒₚ = Nₒₚ⁽ᵃ⁾ = Nₒₚ⁽ᵝ⁾ elements)
@testset "2ⁿᵈ orthogonality theorem" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS # lgirsd: dict of little group irrep collections
for lgirs in values(lgirsd) # lgirs: vector of distinct little group irreps
Nₒₚ = order(first(lgirs))
for (a, lgir⁽ᵃ⁾) in enumerate(lgirs)
χ⁽ᵃ⁾ = characters(lgir⁽ᵃ⁾, αβγs[D])
for (β, lgir⁽ᵝ⁾) in enumerate(lgirs)
χ⁽ᵝ⁾ = characters(lgir⁽ᵝ⁾, αβγs[D])
orthog2nd = dot(χ⁽ᵃ⁾, χ⁽ᵝ⁾) # dot conjugates the first vector automatically,
# i.e. this is just ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾
@test (orthog2nd ≈ (a==β)*Nₒₚ) atol=1e-12
end
end
end
end
end
end # testset
## Great orthogonality theorem of irreps:
# ∑ᵢ[Dᵢ⁽ᵃ⁾]ₙₘ*[Dᵢ⁽ᵝ⁾]ⱼₖ = δₐᵦδₙⱼδₘₖNₒₚ⁽ᵃ⁾/dim(D⁽ᵃ⁾)
# for irreps Dᵢ⁽ᵃ⁾ and Dᵢ⁽ᵝ⁾ in the same little group (with
# i running over the Nₒₚ = Nₒₚ⁽ᵃ⁾ = Nₒₚ⁽ᵝ⁾ elements)
@testset "Great orthogonality theorem (little group irreps)" begin
debug = false# true
count = total = 0 # counters
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS # lgirsd: dict of little group irrep collections
for lgirs in values(lgirsd) # lgirs: vector of distinct little group irreps
Nₒₚ = order(first(lgirs))
for (a, lgir⁽ᵃ⁾) in enumerate(lgirs)
D⁽ᵃ⁾ = lgir⁽ᵃ⁾(αβγs[D]) # vector of irreps in (a)
dim⁽ᵃ⁾ = size(first(D⁽ᵃ⁾),1)
for (β, lgir⁽ᵝ⁾) in enumerate(lgirs)
D⁽ᵝ⁾ = lgir⁽ᵝ⁾(αβγs[D]) # vector of irreps in (β)
dim⁽ᵝ⁾ = size(first(D⁽ᵝ⁾),1)
δₐᵦ = (a==β)
if a == β && debug
display(label(lgir⁽ᵃ⁾))
display(label(lgir⁽ᵝ⁾))
g_orthog_kron = sum(kron(conj.(D⁽ᵃ⁾[i]), D⁽ᵝ⁾[i]) for i in Base.OneTo(Nₒₚ))
display(g_orthog_kron)
end
for n in Base.OneTo(dim⁽ᵃ⁾), j in Base.OneTo(dim⁽ᵝ⁾) # rows of each irrep
δₐᵦδₙⱼ = δₐᵦ*(n==j)
for m in Base.OneTo(dim⁽ᵃ⁾), k in Base.OneTo(dim⁽ᵝ⁾) # cols of each irrep
δₐᵦδₙⱼδₘₖ = δₐᵦδₙⱼ*(m==k)
# compute ∑ᵢ[Dᵢ⁽ᵃ⁾]ₙₘ*[Dᵢ⁽ᵝ⁾]ⱼₖ
g_orthog = sum(conj(D⁽ᵃ⁾[i][n,m])*D⁽ᵝ⁾[i][j,k] for i in Base.OneTo(Nₒₚ))
# test equality to δₐᵦδₙⱼδₘₖNₒₚ⁽ᵃ⁾/dim(D⁽ᵃ⁾)
check_g_orthog = isapprox(g_orthog, δₐᵦδₙⱼδₘₖ*Nₒₚ/dim⁽ᵃ⁾, atol=1e-12)
if !check_g_orthog
if debug
println("sgnum = $(num(lgir⁽ᵃ⁾)), ",
"{α = $(label(lgir⁽ᵃ⁾)), β = $(label(lgir⁽ᵝ⁾))}, ",
"(n,m) = ($n,$m), (j,k) = ($j,$k)"
)
println(" $(g_orthog) vs. $(δₐᵦδₙⱼδₘₖ*Nₒₚ/dim⁽ᵃ⁾)")
end
count += 1
end
total += 1
@test check_g_orthog
end
end
end
end
end
end # LGIRS
end # LGIRSDIM
if debug
println("\n\n", count, "/", total, " errored",
" (", round(100*count/total, digits=1), "%)\n")
end
end # testset
end # "outer" testset
if false
println()
## Comparison with Bilbao's REPRES for P1 and P3 of sg 214
D°s = Dict( # polar representation (r,ϕ) with ϕ in degrees
:P1 => [[(1.0, 0.0) (0.0, 0.0); (0.0, 0.0) (1.0, 0.0)],
[(1.0, 90.0) (0.0, 0.0); (0.0, 0.0) (1.0, 270.0)],
[(0.0, 0.0) (1.0, 180.0); (1.0, 0.0) (0.0, 0.0)],
[(0.0, 0.0) (1.0, 90.0); (1.0, 90.0) (0.0, 0.0)],
[(1/√2,255.0) (1/√2,345.0); (1/√2, 75.0) (1/√2,345.0)],
[(1/√2,345.0) (1/√2,255.0); (1/√2,165.0) (1/√2,255.0)],
[(1/√2,345.0) (1/√2, 75.0); (1/√2,345.0) (1/√2,255.0)],
[(1/√2, 75.0) (1/√2,345.0); (1/√2, 75.0) (1/√2,165.0)],
[(1/√2,105.0) (1/√2,285.0); (1/√2, 15.0) (1/√2, 15.0)],
[(1/√2,195.0) (1/√2,195.0); (1/√2,105.0) (1/√2,285.0)],
[(1/√2,285.0) (1/√2,285.0); (1/√2, 15.0) (1/√2,195.0)],
[(1/√2, 15.0) (1/√2,195.0); (1/√2,105.0) (1/√2,105.0)]],
:P3 => [[(1.0, 0.0) (0.0, 0.0); (0.0, 0.0) (1.0, 0.0)],
[(1.0, 90.0) (0.0, 0.0); (0.0, 0.0) (1.0, 270.0)],
[(0.0, 0.0) (1.0, 180.0); (1.0, 0.0) (0.0, 0.0)],
[(0.0, 0.0) (1.0, 90.0); (1.0, 90.0) (0.0, 0.0)],
[(1/√2, 15.0) (1/√2,105.0); (1/√2,195.0) (1/√2,105.0)],
[(1/√2,105.0) (1/√2, 15.0); (1/√2,285.0) (1/√2, 15.0)],
[(1/√2,105.0) (1/√2,195.0); (1/√2,105.0) (1/√2, 15.0)],
[(1/√2,195.0) (1/√2,105.0); (1/√2,195.0) (1/√2,285.0)],
[(1/√2,345.0) (1/√2,165.0); (1/√2,255.0) (1/√2,255.0)],
[(1/√2, 75.0) (1/√2, 75.0); (1/√2,345.0) (1/√2,165.0)],
[(1/√2,165.0) (1/√2,165.0); (1/√2,255.0) (1/√2, 75.0)],
[(1/√2,255.0) (1/√2, 75.0); (1/√2,345.0) (1/√2,345.0)]]
)
polar2complex(vs) = vs[1]*(cosd(vs[2])+1im*sind(vs[2]))
Ds = Dict(label=>[polar2complex.(m) for m in D°] for (label, D°) in pairs(D°s))
for (label, D) in pairs(Ds)
Nₒₚ = length(D)
dimD = size(first(D),1)
kroncheck = sum(kron(conj.(D[i]), D[i]) for i in Base.OneTo(Nₒₚ))
println("\nIrrep $(string(label)):")
println(" |G|/l = $(Nₒₚ/dimD)")
display(kroncheck)
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4225 | using Crystalline, Test, LinearAlgebra
using Crystalline: iscorep, corep_orthogonality_factor
using LinearAlgebra: dot
if !isdefined(Main, :LGIRSDIM)
LGIRSDIM = Tuple(lgirreps.(1:MAX_SGNUM[D], Val(D)) for D in 1:3)
end
αβγs = Crystalline.TEST_αβγs # to evaluate line/plane irreps at non-special points
@testset "Coreps/physically real irreps" begin
# Compare evaluation of the Herring criterion with the tabulated realities in ISOTROPY
@testset "Herring criterion" begin
#= error_count = 0 =# # for debugging
for LGIRS in LGIRSDIM
for (sgnum, lgirsd) in enumerate(LGIRS)
sgops = operations(first(lgirsd["Γ"])) # this is important: we may _not_ use trivial repeated sets, i.e. spacegroup(..) would not work generally
for lgirs in values(lgirsd)
for lgir in lgirs
iso_reality = reality(lgir)
#= try =# # for debugging
@test iso_reality == calc_reality(lgir, sgops)
#= catch err # for debugging
if true
println(sgnum, ", ",
Crystalline.subscriptify.(label(lgir)), ", ",
centering(sgnum,3), ", ",
issymmorph(sgnum))
end
error_count += 1
println(err)
end =#
end
end
end
end
#= # for debugging
if error_count>0
println(Crayon(foreground=:red, bold=true), "Outright errors: ", error_count)
else
println(Crayon(foreground=:green, bold=true), "No errors")
end
=#
end # @testset "Herring criterion"
@testset "Corep orthogonality" begin
# compute all coreps (aka "physically real" irreps, i.e. incorporate time-reversal sym) via
# the ordinary irreps and `realify`
## 2ⁿᵈ orthogonality theorem (characters) [automatically includes 1ˢᵗ orthog. theorem also]:
# ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾ = δₐᵦfNₒₚ⁽ᵃ⁾
# for irreps Dᵢ⁽ᵃ⁾ and Dᵢ⁽ᵝ⁾ in the same little group (with i running over the
# Nₒₚ = Nₒₚ⁽ᵃ⁾ = Nₒₚ⁽ᵝ⁾ elements). `f` incorporates a multiplicative factor due to the
# conversionn to "physically real" irreps; see `corep_orthogonality_factor(..)`.
@testset "2ⁿᵈ orthogonality theorem" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS # lgirsd: dict of little group irrep collections
for lgirs in values(lgirsd) # lgirs: vector of distinct little group irreps
Nₒₚ = order(first(lgirs))
# compute coreps (aka "physically real" irreps, i.e. incorporate time-reversal)
lgcoreps = realify(lgirs)
for (a, lgir⁽ᵃ⁾) in enumerate(lgcoreps)
χ⁽ᵃ⁾ = characters(lgir⁽ᵃ⁾, αβγs[D])
f = corep_orthogonality_factor(lgir⁽ᵃ⁾)
for (β, lgir⁽ᵝ⁾) in enumerate(lgcoreps)
χ⁽ᵝ⁾ = characters(lgir⁽ᵝ⁾, αβγs[D])
orthog2nd = dot(χ⁽ᵃ⁾, χ⁽ᵝ⁾) # ∑ᵢχᵢ⁽ᵃ⁾*χᵢ⁽ᵝ⁾
@test (orthog2nd ≈ (a==β)*f*Nₒₚ) atol=1e-12
end
end
end
end
end
end # @testset "2ⁿᵈ orthogonality theorem"
# TODO: Great orthogonality theorem of coreps:
# It's not immediately obvious how to do this properly. E.g., if we just try:
#
# ∑ᵢ[Dᵢ⁽ᵃ⁾]ₙₘ*[Dᵢ⁽ᵝ⁾]ⱼₖ = δₐᵦδₙⱼδₘₖNₒₚ⁽ᵃ⁾/dim(D⁽ᵃ⁾)
#
# with the sum only running over the unitary elements, then we run into trouble when
# (nm) and (jk) are referencing different blocks in the block diagonal form of the
# "realified" matrices. Of course, when they reference the same blocks, everything is
# fine, since it's then just as if we had never "realified" them in the first place.
# Introducing a multiplicative factor `f` as in the character orthogonality theorem
# also isn't helpful here.
# The issue probably is that we really do need to use the entire gray group here, i.e.
# include the antiunitary elements in the i-sum. That's more bothersome, and we don't
# have a use for the irreps of the antiunitary elements otherwise, so it doesn't seem
# worthwhile...
end # @testset "Corep orthogonality"
end # @testset "Coreps/physically real irreps"
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1235 | using Crystalline
using Test
@testset "Site symmetry groups & parent point group identification" begin
# here, we simply test that our identifications of the label associated with the site
#symmetry group's isomorphic point group are consistent with those made in the
# identification of the site symmetry group labels for band representations from the
# Bilbao Crystallographic Server
for sgnum in 1:MAX_SGNUM[3]
brs = bandreps(sgnum, 3)
sg = spacegroup(sgnum, Val(3))
sitegs = findmaximal(sitegroups(sg))
for siteg in sitegs
# "our" label
pg, _, _ = find_isomorphic_parent_pointgroup(siteg)
pglab = label(pg)
pglab = pglab ∈ ("312", "321") ? "32" : # normalize computed label (since
pglab ∈ ("-31m", "-3m1") ? "-3m" : # Bilbao doesn't distinguish
pglab ∈ ("31m", "3m1") ? "3m" : # between e.g., 312 and 321)
pglab
# Bilbao's label
idx = something(findfirst(br->br.wyckpos == label(siteg.wp), brs))
pglab_bilbao = brs[idx].sitesym
# compare
@test pglab == pglab_bilbao
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2173 | using Test, Crystalline, StaticArrays, LinearAlgebra
@testset "KVec" begin
@testset "Construction, parsing, and show" begin
@test dim(KVec("u")) == 1
@test dim(KVec("0,0.5")) == 2
@test dim(KVec("0.3,0.2,.1")) == 3
@test parts(KVec("u,v,w")) == ([0,0,0], [1 0 0; 0 1 0; 0 0 1])
@test KVec{1}("-u") == KVec{1}("-α") == KVec(zeros(1), fill(-1,1,1)) == KVec(zero(SVector{1,Float64}), -one(SMatrix{1,1,Float64}))
@test string(KVec{3}("u+1,0,0.5")) == string(KVec{3}("1.0+u,0,0.5")) == "[1+α, 0, 1/2]"
@test string(KVec{3}("u+v,u,0")) == string(KVec{3}("α+β,α,0")) == "[α+β, α, 0]"
@test string(KVec{3}("-0.3,0.2,-.1")) == "[-3/10, 1/5, -1/10]"
@test string(KVec{3}("α, 2α, 0.0")) == string(KVec{3}("α, 2.0α, 0.0")) == "[α, 2α, 0]"
@test string(KVec{3}("α, 2α+2, 0.0")) == string(KVec{3}("α, 2.0α+2.0, 0.0")) == "[α, 2+2α, 0]"
@test string(KVec{3}("β, -2/3, -0.75")) == string(KVec{3}("v, -0.66666666666666667, -3/4")) == "[β, -2/3, -3/4]"
@test KVec{3}("x,y,z")(0,1,2) == [0.0,1.0,2.0]
@test KVec{2}("α,.5")() == KVec{2}("α,.5")(nothing) == [0,0.5]
@test KVec{3}("u,v,0.5")([.7,.2,.3]) == [.7,.2,.5]
@test KVec{3}("v,u,0.5")([.7,.2,.3]) == [.2,.7,.5]
@test KVec([0.0,1//1,2]) == KVec{3}("0,1,2")
@test zero(KVec{3}) == KVec{3}("0,0,0") == zero(KVec{3}("1,2,3"))
end
αβγ = Crystalline.TEST_αβγ
@testset "Composition" begin
@test SymOperation{2}("x,y") * KVec{2}("1,α") == KVec{2}("1,α")
# 4⁺ rotation
@test SymOperation{2}("-y,x") * KVec(.4,.3) == KVec(-.3,.4)
# composition is associative for both `KVec`s and `RVec`s
kv = KVec("α, -α")
kv′ = KVec("α, 1/2-2β")
g = S"-x+y,-x" # 3⁻
h = S"-x,-x+y" # m₂₁
@test h * (g * kv) == (h * g) * kv
@test h * (g * kv′) == (h * g) * kv′
rv = RVec("α, -α")
rv′ = RVec("1/4+α, 1/2-2β")
g = S"-x+y,-x" # 3⁻
h = S"-x,-x+y+1/3" # m₂₁
@test h * (g * rv) == (h * g) * rv
@test h * (g * rv′) == (h * g) * rv′
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 869 | using Test
@testset "Fourier lattices" begin
for (sgnum, D) in ((5,2), (110, 3)) # centering 'c' in 2D and 'I' in 3D (both body-centered)
cntr = centering(sgnum, D)
flat = levelsetlattice(sgnum, D) # Fourier lattice in basis of Rs (rectangular)
flat = modulate(flat) # modulate the lattice coefficients
flat′ = primitivize(flat, cntr) # Fourier lattice in basis of Rs′ (oblique)
# test that a primitivize -> conventionalize cycle leaves the lattice unchanged
@test flat ≈ conventionalize(flat′, cntr)
end
# convert-to-integer bug found by Ali (conversion to integer-vectors bugged for
# ntuple(_->i, Val(3)) with i > 1)
sgnum = 146
flat = levelsetlattice(sgnum, Val(3), ntuple(_->2, Val(3)))
@test primitivize(flat, centering(sgnum)) isa typeof(flat) # = doesn't throw
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3671 | using Crystalline, Test, LinearAlgebra
if !isdefined(Main, :LGIRS) # load complex little groups, if not already loaded
LGIRS = lgirreps.(1:MAX_SGNUM[3], Val(3))
end
# this file tests the consistency between little group irreps at the Γ point and the
# associated point group irreps of the isogonal point group (they should agree, up
# basis change transformations of the irreps; i.e. their characters must agree)
for lgirsd in LGIRS
# grab the lgirreps at Γ point; then find associated point group of sgnum
# [pgirreps are sorted by label; ISOTROPY is not (so we sort here)]
lgirsΓ = sort(lgirsd["Γ"], by=label)
lg = group(first(lgirsΓ))
sgnum = num(lg)
pg = Crystalline.find_parent_pointgroup(lg)
pgirs = pgirreps(label(pg), Val(3))
# the little group irreps at Γ should equal the irreps of the associated point group
# (isogonal point group or little cogroup) of that space group because Γ implies k=0,
# which in turn turns all the translation phases {E|t} = e^{-ikt}I = I trivial. In other
# words, at Γ, the translation parts of the little group does not matter, only the
# rotational parts - and the associated irreps are then just that of the point group
# --- test that we get the same (formatted) labels ---
@test label.(pgirs) == label.(lgirsΓ)
# --- test that we get the same (point group) operations ---
pgops = operations(pg)
lgops = operations(lg)
lgops_pgpart = SymOperation{3}.(hcat.(rotation.(lgops), Ref(zeros(3))))
pg_sortperm = sortperm(pgops, by=seitz) # make sure everything's sorted identically
pgops = pgops[pg_sortperm]
lg_sortperm = sortperm(lgops_pgpart, by=seitz) # (we sort by the _point group_ part)
lgops = lgops[lg_sortperm]
lgops_pgpart = lgops_pgpart[lg_sortperm]
# --- test that pgops and lgops contain the same (point-group-part) operators ---
@test seitz.(pgops) == seitz.(lgops_pgpart)
# --- test that the character tables are the same ---
# special casing for SGs 38:41 (see details under (*)):
if sgnum ∈ 38:41
# overall, as it relates to our tests below, this effectively swaps the irreps of
# the m₁₀₀ and m₀₁₀ operators
m₁₀₀_idx = findfirst(op->seitz(op)=="m₁₀₀", lgops_pgpart)
m₀₁₀_idx = findfirst(op->seitz(op)=="m₀₁₀", lgops_pgpart)
a, b = lg_sortperm[m₁₀₀_idx], lg_sortperm[m₀₁₀_idx]
lg_sortperm[m₁₀₀_idx], lg_sortperm[m₀₁₀_idx] = b, a
end
for (lgir, pgir) in zip(lgirsΓ, pgirs)
@test characters(pgir)[pg_sortperm] ≈ characters(lgir)[lg_sortperm]
end
end
# (*) Special casing for SGs 38:41 w/ centering 'A':
# These four space groups are the only one-face centered lattices with centering 'A',
# and all have the isogonal point group mm2. There are several other SGs with isogonal
# point group mm2 (18 others), but they don't need special casing.
# For these four SGs, it seems the CDML irrep-labelling convention is to swap Γ₃ and Γ₄
# relative to the point group convention, or, equivalently, to match up with a
# differently oriented point group that has m₁₀₀ and m₀₁₀ swapped. I imagine that this
# is motivated by the fact that 'A' centered space groups in principle could be recast
# as 'C' centered groups by a basis change. Long story short, we just swap m₁₀₀ and m₀₁₀
# for the little group irreps here, just to get by. I checked the LGIrreps extracted from
# ISOTROPY indeed match those of Bilbao's (REPRES and REPRESENTATIONS SG), which they do:
# they also have this "odd" difference between the Γ-point irreps for SGs 38:41, versus all
# the other irreps with isogonal point group mm2 (e.g. 37). | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3764 | using Crystalline, Test
if !isdefined(Main, :LGIRSDIM)
LGIRSDIM = Tuple(lgirreps.(1:MAX_SGNUM[D], Val(D)) for D in 1:3)
end
@testset "Little group order" begin
# see e.g. Bradley & Cracknell p. 151(bottom)-152(top)
@testset "Decomposition, order[star{k}]*order[G₀ᵏ] = order[G₀]" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for (sgnum, lgirsd) in enumerate(LGIRS)
cntr = centering(sgnum, D)
# the "macroscopic" order is defined simply as the length of the
# point group associated with the space group
sgops = operations(spacegroup(sgnum, D)) # from crawling Bilbao
order_macroscopic = length(pointgroup(sgops))
for lgirs in values(lgirsd)
kv = position(first(lgirs))
for lgir in lgirs
# number of k-vectors in the star of k
order_kstar = length(orbit(sgops, kv, cntr))
# number of operations in the little group of k
order_pointgroupofk = length(pointgroup(operations(lgir)))
# test that q⋅b=h, where
# q ≡ order[star{k}]
# b ≡ order[G₀ᵏ] ≡ order of little co-group of k
# h ≡ order[G₀] ≡ macroscopic order of G
# and where G₀ denotes the point group derived from the space
# group G, Gᵏ denotes the little group of k derived from G,
# and G₀ᵏ denotes the point group derived from Gᵏ
@test order_kstar*order_pointgroupofk == order_macroscopic
end
end
end
end # for (D, LGIRS) in enumerate(LGIRSDIM)
end # @testset "Decomposition, ..."
@testset "Macroscopic order, Bilbao vs. ISOTROPY" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for (sgnum, lgirsd) in enumerate(LGIRS)
sgops_bilbao = operations(spacegroup(sgnum, D)) # from crawling Bilbao
sgops_isotropy = operations(first(lgirsd["Γ"])) # from ISOTROPY's Γ-point LittleGroup
# note that we don't have to worry about whether the operations
# are represented in conventional or primitive bases, and whether
# there are "repeated translation sets" in the former; taking the
# point group automatically removes such sets
order_macroscopic_bilbao = length(pointgroup(sgops_bilbao))
order_macroscopic_isotropy = length(pointgroup(sgops_isotropy))
@test order_macroscopic_bilbao == order_macroscopic_isotropy
end
end # for (D, LGIRS) in enumerate(LGIRSDIM)
end # @testset "Macroscopic order, ..."
end
@testset "Little group data-consistency" begin
for D in 1:3
for sgnum in 1:MAX_SGNUM[D]
lgs = littlegroups(sgnum, D)
sg = spacegroup(sgnum, Val(D))
sg = SpaceGroup{D}(sgnum, reduce_ops(sg))
for (klab, lg) in lgs
kv = position(lg)
lg′ = littlegroup(sg, kv)
# we compare the primitive little groups; otherwise there can be spurious
# differences relating to nonsymmorphic translations that "look" different
# in the conventional basis but in fact are equal in the primitive basis.
# an example is {m₀₁₀|0,½,½} (or S"x,-y+1/2,z+1/2") vs. {m₀₁₀|½,0,0} (or
# "x+1/2,-y,z") in an 'I' centered space group; both are actually included
# in `sg`, but when we reduce it, it may choose one or the other
@test Set(xyzt.(primitivize(lg))) == Set(xyzt.(primitivize(lg′)))
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 397 | using Crystalline, Test
@testset "`spacegroup` vs `mspacegroup` agreement" begin
for sgnum in 1:MAX_SGNUM[3]
bns_num = Crystalline.SG2MSG_NUMs_D[sgnum]
sg = spacegroup(sgnum)
msg = Crystalline.mspacegroup(bns_num[1], bns_num[2])
sort_sg = sort(sg, by=seitz)
sort_msg = sort(SymOperation.(msg), by=seitz)
@test sort_sg ≈ sort_msg
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4342 | using Crystalline, Test
if !isdefined(Main, :LGIRSDIM)
LGIRSDIM = Tuple(lgirreps.(1:MAX_SGNUM[D], Val(D)) for D in 1:3)
end
@testset "Multiplication tables" begin
# check that operations are sorted identically across distinct irreps for fixed sgnum, and k-label
@testset "Space groups (consistent operator sorting order in ISOTROPY)" begin
for LGIRS in LGIRSDIM # ... D in 1:3
for lgirsd in LGIRS
for lgirs in values(lgirsd)
ops = operations(first(lgirs))
for lgir in lgirs[2:end] # don't need to compare against itself
ops′ = operations(lgir)
@test all(ops.==ops′)
# if !all(ops.==ops′)
# println("sgnum = $(num(lgir)) at $(klabel(lgir))")
# display(ops.==ops′)
# display(ops)
# display(ops′)
# println('\n'^3)
# end
end
end
end
end # for LGIRS in LGIRSDIM
end # @testset "Space groups (consistent ..."
@testset "Iterable inputs" begin
sg = spacegroup(16)
sg_iter = (op for op in sg)
@test MultTable(sg) == MultTable(sg_iter)
end
@testset "Little groups: group property" begin
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS
for lgirs in values(lgirsd)
sgnum = num(first(lgirs))
cntr = centering(sgnum, D)
ops = operations(first(lgirs)) # ops in conventional basis
primitive_ops = primitivize.(ops, cntr) # ops in primitive basis
# test that multiplication table can be computed
@test MultTable(primitive_ops) isa MultTable
end
end
end # for LGIRS in LGIRSDIM
end # @testset "Little groups: ..."
@testset "Broadcasting vs. MultTable indexing" begin
@testset "Space groups" begin
for D in 1:3
for sgnum in 1:MAX_SGNUM[D]
# construct equivalent of MultTable as Matrix{SymOperation{D}} by using
# broadcasting and check that this agrees with MultTable and indexing into it
sg = spacegroup(sgnum, Val(D))
mt = MultTable(sg)
mt′ = sg .* permutedims(sg)
@test mt ≈ mt′
end
end
end
@testset "Magnetic space groups" begin
for msgnum in 1:MAX_MSGNUM[3]
msg = mspacegroup(msgnum, Val(3))
mt = MultTable(msg)
mt′ = msg .* permutedims(msg)
@test mt ≈ mt′
end
end
end
for D in 1:3
@testset "Space groups (Bilbao: $(D)D)" begin
for sgnum in 1:MAX_SGNUM[D]
cntr = centering(sgnum, D)
ops = operations(spacegroup(sgnum, Val(D))) # ops in conventional basis
primitive_ops = primitivize.(ops, cntr) # ops in primitive basis
@test MultTable(primitive_ops) isa MultTable # test that it doesn't error
end
end
end
@testset "Complex LGIrreps" begin
#failcount = 0
for (D, LGIRS) in enumerate(LGIRSDIM)
for lgirsd in LGIRS
for lgirs in values(lgirsd)
sgnum = num(first(lgirs))
cntr = centering(sgnum, D)
ops = operations(first(lgirs)) # ops in conventional basis
primitive_ops = primitivize.(ops, cntr) # ops in primitive basis
mt = MultTable(primitive_ops)
for lgir in lgirs
for αβγ in (nothing, Crystalline.TEST_αβγs[D]) # test finite and zero values of αβγ
checkmt = Crystalline.check_multtable_vs_ir(mt, lgir, αβγ)
@test all(checkmt)
#if !all(checkmt); failcount += 1; end
end
end
end
end
end # for LGIRS in LGIRSDIM
#println("\nFails: $(failcount)\n\n")
end # @testset "Complex LGIrreps"
@testset "Complex PGIrreps" begin
for D in 1:3
for pgiuc in PG_IUCs[D]
pgirs = pgirreps(pgiuc, D)
pg = group(first(pgirs))
for pgir in pgirs
mt = MultTable(operations(pg))
@test mt isa MultTable
checkmt = Crystalline.check_multtable_vs_ir(mt, pgir, nothing)
@test all(checkmt)
end
end
end
end
end
# TODO: Test physically irreducible irreps (co-reps) | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 4709 | using Crystalline # reexports Bravais' API
using LinearAlgebra: norm
using Test
# Example from Krivy & Gruber [1](https://doi.org/10.1107/S0567739476000636):
# NB: the example given by Krivy & Gruber first gives values for basis lengths & angles,
# i.e., a,b,c,α,β,γ - and then give associated values for the niggli parameters A, B, C, ξ,
# η, ζ. However, the values they give for the Niggli parameters are given with 0 significant
# digits - and it appears they actually use these zero-significant-digit values in the
# actual calculation they show afterwards. So here, we start from the provided values for
# A, b, C, ξ, η, ζ, and then calculate associated values for a, b, c, α, β, γ; the latter
# then deviates from those given in [1] due to their rounding, but are consistent with the
# actual calculation that they do (although they appear to have done the calculation with
# integers rather than floating points; and their evaluation of the associated angles is
# ultimately also very imprecise; see large `atol` values below)
# Starting from the a, b, c, α, β, γ values given in [1], rather than the Niggli parameters,
# actually lead to a very different Niggli reduced cell, highlighting that the approach is
# not terribly robust to imprecision / measurement errors.
@testset "Niggli reduction" begin
A, B, C, ξ, η, ζ = 9, 27, 4, -5, -4, -22
a, b, c = sqrt(A), sqrt(B), sqrt(C)
α, β, γ = acos(ξ/(2b*c)), acos(η/(2c*a)), acos(ζ/(2a*b))
Rs = crystal(a, b, c, α, β, γ)
Rs′, P = nigglibasis(Rs; rtol = 1e-5, max_iterations=100)
abc = norm.(Rs′)
αβγ = [(Bravais.angles(Rs′) .* (180/π))...]
@test abc ≈ [2.0,3.0,3.0] atol=1e-3 # norm accuracy from [1] is low
@test αβγ ≈ [60.0,75.31,70.32] atol=3e-1 # angle accuracy from [1] is _very_ low
@test Rs′ ≈ transform(Rs, P)
# the angles and lengths of the Niggli bases extracted from two equivalent lattice bases,
# mutually related by an element of SL(3, ℤ), must be the same (Niggli cell is unique)
P₁ = [1 2 3; 0 1 8; 0 0 1]
P₂ = [1 0 0; -3 1 0; -9 2 1]
P = P₂ * P₁ # random an element of SL(3, ℤ) (i.e., `det(P) == 1`)
for sgnum in 1:MAX_SGNUM[3]
Rs = directbasis(sgnum)
Rs′ = transform(Rs, P)
niggli_Rs = nigglibasis(Rs)[1]
niggli_Rs′ = nigglibasis(Rs′)[1]
abc = norm.(niggli_Rs)
abc′ = norm.(niggli_Rs′)
αβγ = [Bravais.angles(niggli_Rs)...]
αβγ′ = [Bravais.angles(niggli_Rs′)...]
@test abc ≈ abc′
@test αβγ ≈ αβγ′
@test sort(abc) ≈ abc # sorted by increasing norm
ϵ_ϕ = 1e-10 # angle tolerance in comparisons below
@test all(ϕ -> ϕ<π/2 + ϵ_ϕ, αβγ) || all(ϕ -> ϕ>π/2 - ϵ_ϕ, αβγ)
@test isapprox(collect(Bravais.niggli_parameters(niggli_Rs)), # equivalent to checking
collect(Bravais.niggli_parameters(niggli_Rs′))) # abc ≈ abc′ & αβγ ≈ αβγ′
# Idempotency of Niggli-reduced Niggli-parameters
niggli_niggli_Rs = nigglibasis(niggli_Rs)[1]
niggli_niggli_Rs′ = nigglibasis(niggli_Rs′)[1]
@test isapprox(collect(Bravais.niggli_parameters(niggli_Rs)),
collect(Bravais.niggli_parameters(niggli_niggli_Rs)))
@test isapprox(collect(Bravais.niggli_parameters(niggli_Rs)),
collect(Bravais.niggli_parameters(niggli_niggli_Rs′)))
# the following tests are not guaranteed (i.e., the Niggli parameters (lengths & angles)
# must be idempotent, but cannot guarantee exact choice of basis vectors `(...)Rs`)
@test niggli_Rs ≈ niggli_niggli_Rs
@test niggli_Rs′ ≈ niggli_niggli_Rs′
#@test niggli_Rs ≈ niggli_Rs′ # <-- in particular, this does not hold generally
end
# Niggli reduction of reciprocal lattice
for sgnum in 1:MAX_SGNUM[3]
Rs = directbasis(sgnum)
Gs = reciprocalbasis(Rs)
niggli_Rs, P_from_Rs = nigglibasis(Rs)
niggli_Gs, P_from_Gs = nigglibasis(Gs)
@test reciprocalbasis(niggli_Rs) ≈ niggli_Gs
@test reciprocalbasis(niggli_Gs).vs ≈ niggli_Rs.vs # duality of Niggli reduction
@test niggli_Gs ≈ transform(Gs, P_from_Gs)
@test P_from_Rs ≈ P_from_Gs
end
# Niggli reduction of 2D lattice
P₁²ᴰ = [1 4; 0 1]
P₂²ᴰ = [1 0; -3 1]
P²ᴰ = P₂²ᴰ * P₁²ᴰ # random an element of SL(2, ℤ)
for sgnum in 1:MAX_SGNUM[2]
Rs = directbasis(sgnum, Val(2))
niggli_Rs, niggli_P = nigglibasis(Rs)
@test niggli_Rs ≈ transform(Rs, niggli_P)
Rs′ = transform(Rs, P²ᴰ)
niggli_Rs′ = nigglibasis(Rs′)[1]
ab = norm.(niggli_Rs)
ab′ = norm.(niggli_Rs′)
α = only(Bravais.angles(niggli_Rs))
α′ = only(Bravais.angles(niggli_Rs′))
@test ab ≈ ab′
@test α ≈ α′
@test sort(ab) ≈ ab # sorted by increasing norm
ϵ_ϕ = 1e-10 # angle tolerance in comparisons below
@test α < π/2 + ϵ_ϕ || α > π/2 - ϵ_ϕ
end
end # @testset "Niggli reduction" | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 3801 | using Crystalline, Test
@testset "Notation" begin
@testset "Mulliken notation" begin
for D in 1:3
for pglab in PG_IUCs[D]
pgirs′ = pgirreps(pglab, Val(D))
g = group(first(pgirs′))
# check both "ordinary" irreps and physically real irreps (coreps)
for irtype in (identity, realify)
pgirs = irtype(pgirs′)
mlabs = mulliken.(pgirs) # Mulliken symbols for point group irreps
# each irrep must be assigned a unique symbol
@test allunique(mlabs)
# check irrep dimension vs. label
irDs = Crystalline.irdim.(pgirs)
mlabs_main = getfield.(match.(Ref(r"A|B|¹E|²E|E|T"), mlabs), Ref(:match))
for (irD, mlab_main) in zip(irDs, mlabs_main)
if irD == 1
@test mlab_main ∈ ("A", "B", "¹E", "²E")
elseif irD == 2
@test mlab_main == "E"
elseif irD == 3
@test mlab_main == "T"
else
error("Unexpectedly got point group irrep of dimension higher than 3")
end
end
# check 'u' and 'g' subscripts for transformation under inversion for 3d
# point group irreps (doesn't make complete sense for 2D and 1D, where
# inversion is really an embedded" 2-fold rotation (2D) or a mirror (1D))
if D == 3
if (idx⁻¹ = findfirst(op -> seitz(op) == "-1", g)) !== nothing
for (mlab, pgir) in zip(mlabs, pgirs)
irD = Crystalline.irdim(pgir)
χ⁻¹ = characters(pgir)[idx⁻¹]
if χ⁻¹ ≈ -irD # antisymmetric under inversion => ungerade
@test occursin('ᵤ', mlab)
elseif χ⁻¹ ≈ +irD # symmetric under inversion => gerade
@test occursin('g', mlab)
else
throw(DomainError(χ_inversion, "inversion character must be equal to ±(irrep dimension)"))
end
end
else
@test all(mlab -> !occursin('ᵤ', mlab) && !occursin('g', mlab), mlabs)
end
end
end
end
end
end
@testset "PGIrreps in Mulliken notation" begin
# 2D & 3D
for D in (2,3)
pgirs = pgirreps("6", Val(D); mulliken=false)
pgirs_mulliken = pgirreps("6", Val(D); mulliken=true)
@test label.(pgirs_mulliken) == mulliken.(pgirs)
# we do some reductions of Mulliken labels during "realification"; check that
# this works the same across `label.(realify(pgirreps(..; mulliken=true)))`
# and `mulliken.(realify(pgirreps(..)))`
pgirs′ = realify(pgirs)
pgirs_mulliken′ = realify(pgirs_mulliken)
@test label.(pgirs_mulliken′) == mulliken.(pgirs′)
end
# 1D
@test label.(pgirreps("m", Val(1); mulliken=true)) == mulliken.(pgirreps("m", Val(1))) == ["A′", "A′′"]
end
@testset "Centering, Bravais types, & IUC" begin
for D in 1:3
for sgnum in 1:MAX_SGNUM[D]
@test first(iuc(sgnum, D)) == centering(sgnum, D) == last(bravaistype(sgnum, D; normalize=false))
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 1266 | using Test, Crystalline
@testset "Cached orders:" begin
@testset "Point groups" begin
for (D,Dᵛ) in ((1,Val(1)), (2,Val(2)), (3,Val(3)))
for iucs in Crystalline.PG_NUM2IUC[D]
for iuc in iucs
@test Crystalline.PG_ORDERs[iuc] == order(pointgroup(iuc, Dᵛ))
end
end
end
end
@testset "Space groups" begin
for (D,Dᵛ) in ((1,Val(1)), (2,Val(2)), (3,Val(3)))
for n in 1:MAX_SGNUM[D]
sg = spacegroup(n, Dᵛ)
psg = primitivize(sg)
@test Crystalline.SG_ORDERs[D][n] == order(sg)
@test Crystalline.SG_PRIMITIVE_ORDERs[D][n] == order(psg)
end
end
end
@testset "Subperiodic groups" begin
subgind = Crystalline.subg_index
for (D,P,Dᵛ,Pᵛ) in ((2,1,Val(2),Val(1)), (3,1,Val(3),Val(1)), (3,2,Val(3),Val(2)))
for n in 1:MAX_SUBGNUM[(D,P)]
subg = subperiodicgroup(n, Dᵛ, Pᵛ)
psubg = primitivize(subg)
@test Crystalline.SUBG_ORDERs[subgind(D,P)][n] == order(subg)
@test Crystalline.SUBG_PRIMITIVE_ORDERs[subgind(D,P)][n] == order(psubg)
end
end
end
end
| Crystalline | https://github.com/thchr/Crystalline.jl.git |
|
[
"MIT"
] | 0.6.4 | b4ac59b6877535177e89e1fe1b0ff5d0c2e903de | code | 2314 | using Crystalline, Test
if !isdefined(Main, :LGIRS′)
include(joinpath(@__DIR__, "../build/ParseIsotropy.jl"))
using .ParseIsotropy
LGIRS′ = parselittlegroupirreps() # parsed explicitly from ISOTROPY's data (see ParseIsotropy)
end
if !isdefined(Main, :LGIRS)
LGIRS = lgirreps.(1:MAX_SGNUM[3], Val(3)) # loaded from our saved .jld2 files
end
@testset "Test equivalence of parsed and loaded LGIrreps" begin
addition_klabs = ("WA", "HA", "KA", "PA", "PC")
for sgnum in 1:MAX_SGNUM[3]
lgirsd′ = LGIRS′[sgnum] # parsed variant
lgirsd = LGIRS[sgnum] # loaded variant; may contain more irreps than parsed ISOTROPY (cf. `manual_lgirrep_additions.jl`)
# test we have same k-points in `lgirsd` and `lgirsd′` (or, possibly more in
# k-points `lgirsd`, if it contains manual additions)
klabs = sort!(collect(keys(lgirsd)))
klabs′ = sort!(collect(keys(lgirsd′)))
if klabs == klabs′
@test length(lgirsd) == length(lgirsd′)
else
# in case loaded irreps contain manually added 'xA'-type k-points (either "HA",
# "HA", "KA", or "PA", see `addition_klabs`) from Φ-Ω
extra_klabidxs = findall(klab -> klab ∉ klabs′, klabs)::Vector{Int}
extra_klabs = klabs[extra_klabidxs]
@test length(lgirsd) > length(lgirsd′) && all(∈(addition_klabs), extra_klabs)
end
for (kidx, (klab, lgirs)) in enumerate(lgirsd)
if !haskey(lgirsd′, klab) && klab ∈ addition_klabs
# `lgirs` is a manual addition that is not in ISOTROPY; nothing to compare
continue
end
lgirs′ = lgirsd′[klab]
@test length(lgirs) == length(lgirs′)
for (iridx, lgir) in enumerate(lgirs)
lgir′ = lgirs′[iridx]
# test that labels agree
@test label(lgir) == label(lgir′)
# test that little groups agree
@test position(lgir) ≈ position(lgir′)
@test all(operations(lgir) .== operations(lgir′))
# test that irreps agree
for αβγ in (nothing, Crystalline.TEST_αβγ)
@test lgir(αβγ) == lgir′(αβγ)
end
end
end
end
end | Crystalline | https://github.com/thchr/Crystalline.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.