licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
4983
using Crystalline, Test using Crystalline: corep_orthogonality_factor using LinearAlgebra: dot @testset "Point groups" begin @testset "Find a point group for every space group" begin for D in 1:3 for sgnum in 1:MAX_SGNUM[D] G = spacegroup(sgnum) pg = Crystalline.find_parent_pointgroup(G) @test pg !== nothing end end end @testset "Matching operator-sorting between symmorphic space groups & point groups" begin for D in 1:3 for sgnum in 1:MAX_SGNUM[D] G = spacegroup(sgnum) # get isogonal point group of G: strip away translational parts and retain # unique rotation parts; does not change ordering (except for stripping out # non-unique rotational parts) and retains conventional lattice vectors isogonal_G = pointgroup(G) # find a matching point group from those stored obtained directly from # pointgroup(iuclab, D), via find_parent_pointgroup pg = Crystalline.find_parent_pointgroup(G) # compare operator sorting and setting; equivalent in the database @test pg == isogonal_G end end end @testset "Schoenflies notation: space vs. point group" begin for sgnum in 1:MAX_SGNUM[3] sg = spacegroup(sgnum, Val(3)) pg = Crystalline.find_parent_pointgroup(sg) sglab = schoenflies(sgnum) pglab = schoenflies(pg) @test pglab == sglab[1:lastindex(pglab)] end end @testset "Generators" begin for (Dα΅›, gtype) in ((Val(1), PointGroup{1}), (Val(2), PointGroup{2}), (Val(3), PointGroup{3})) D = typeof(Dα΅›).parameters[1] for iuclab in Crystalline.PG_IUCs[D] ops1 = sort!(pointgroup(iuclab, Dα΅›)) ops2 = sort!(generate(generators(iuclab, gtype))) @test ops1 β‰ˆ ops2 end for pgnum in 1:length(Crystalline.PG_NUM2IUC[D]) ops1 = sort!(pointgroup(pgnum, Dα΅›)) ops2 = sort!(generate(generators(pgnum, gtype))) @test ops1 β‰ˆ ops2 end end end @testset "Irrep orthogonality" begin ## 2ⁿᡈ orthogonality theorem (characters) [automatically includes 1Λ’α΅— orthog. theorem also]: # βˆ‘α΅’Ο‡α΅’β½α΅ƒβΎ*χᡒ⁽ᡝ⁾ = δₐᡦfNβ‚’β‚šβ½α΅ƒβΎ # for irreps Dᡒ⁽ᡃ⁾ and Dᡒ⁽ᡝ⁾ in the same point group (with i running over the # Nβ‚’β‚š = Nβ‚’β‚šβ½α΅ƒβΎ = Nβ‚’β‚šβ½α΅βΎ elements). `f` incorporates a multiplicative factor due to the # conversionn to "physically real" irreps; see `corep_orthogonality_factor(..)`. @testset "2ⁿᡈ orthogonality theorem" begin for D in 1:3 for pgiuc in PG_IUCs[D] pgirsβ€² = pgirreps(pgiuc, Val(D)) Nβ‚’β‚š = order(first(pgirsβ€²)) # check both "ordinary" irreps and "physically real" irreps (coreps) for irtype in (identity, realify) pgirs = irtype(pgirsβ€²) for (a, pgir⁽ᡃ⁾) in enumerate(pgirs) χ⁽ᡃ⁾ = characters(pgir⁽ᡃ⁾) f = corep_orthogonality_factor(pgir⁽ᡃ⁾) for (Ξ², pgir⁽ᡝ⁾) in enumerate(pgirs) χ⁽ᡝ⁾ = characters(pgir⁽ᡝ⁾) # βˆ‘α΅’Ο‡α΅’β½α΅ƒβΎ*χᡒ⁽ᡝ⁾ == δₐᡦf|g| @test (dot(χ⁽ᡃ⁾, χ⁽ᡝ⁾) β‰ˆ (a==Ξ²)*f*Nβ‚’β‚š) atol=1e-12 end end end end end end # @testset "2ⁿᡈ orthogonality theorem" ## Great orthogonality theorem of irreps: # βˆ‘α΅’[Dᡒ⁽ᡃ⁾]β‚™β‚˜*[Dᡒ⁽ᡝ⁾]β±Όβ‚– = Ξ΄β‚α΅¦Ξ΄β‚™β±ΌΞ΄β‚˜β‚–Nβ‚’β‚šβ½α΅ƒβΎ/dim(D⁽ᡃ⁾) # for irreps Dᡒ⁽ᡃ⁾ and Dᡒ⁽ᡝ⁾ in the same point group (with i running over the # Nβ‚’β‚š = Nβ‚’β‚šβ½α΅ƒβΎ = Nβ‚’β‚šβ½α΅βΎ elements) # NB: cannot test this for coreps (see notes in `test/irreps_reality.jl`) @testset "Great orthogonality theorem" begin Ξ±Ξ²Ξ³ = nothing for D in 1:3 for pgiuc in PG_IUCs[D] pgirs = pgirreps(pgiuc, Val(D)) Nβ‚’β‚š = order(first(pgirs)) for (a, pgir⁽ᡃ⁾) in enumerate(pgirs) D⁽ᡃ⁾ = pgir⁽ᡃ⁾(Ξ±Ξ²Ξ³) # vector of irreps in (a) dim⁽ᡃ⁾ = size(first(D⁽ᡃ⁾),1) for (Ξ², pgir⁽ᡝ⁾) in enumerate(pgirs) D⁽ᡝ⁾ = pgir⁽ᡝ⁾(Ξ±Ξ²Ξ³) # vector of irreps in (Ξ²) dim⁽ᡝ⁾ = size(first(D⁽ᡝ⁾),1) δₐᡦ = (a==Ξ²) for n in Base.OneTo(dim⁽ᡃ⁾), j in Base.OneTo(dim⁽ᡝ⁾) # rows of each irrep δₐᡦδₙⱼ = δₐᡦ*(n==j) for m in Base.OneTo(dim⁽ᡃ⁾), k in Base.OneTo(dim⁽ᡝ⁾) # cols of each irrep Ξ΄β‚α΅¦Ξ΄β‚™β±ΌΞ΄β‚˜β‚– = δₐᡦδₙⱼ*(m==k) # compute βˆ‘α΅’[Dᡒ⁽ᡃ⁾]β‚™β‚˜*[Dᡒ⁽ᡝ⁾]β±Όβ‚– g_orthog = sum(conj(D⁽ᡃ⁾[i][n,m])*D⁽ᡝ⁾[i][j,k] for i in Base.OneTo(Nβ‚’β‚š)) # test equality to Ξ΄β‚α΅¦Ξ΄β‚™β±ΌΞ΄β‚˜β‚–Nβ‚’β‚šβ½α΅ƒβΎ/dim(D⁽ᡃ⁾) @test isapprox(g_orthog, Ξ΄β‚α΅¦Ξ΄β‚™β±ΌΞ΄β‚˜β‚–*Nβ‚’β‚š/dim⁽ᡃ⁾, atol=1e-12) end end end end end end end # @testset "Great orthogonality theorem" end # @testset "Irrep orthogonality" end # @testset "Point groups
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
1743
using Crystalline, Test @testset "Crystalline" begin # basic symmetry operations include("symops.jl") include("SquareStaticMatrices.jl") include("groups_xyzt_vs_coded.jl") include("generators_xyzt_vs_coded.jl") # Bravais.jl include("niggli.jl") include("basisvecs.jl") # abstractvecs include("kvecs.jl") include("wyckoff.jl") # symmetry vectors include("symmetryvectors.jl") # show, notation, and cached info include("show.jl") include("notation.jl") include("orders.jl") # group checks include("littlegroup_orders.jl") include("pointgroup.jl") # loading irreps from .jld files vs parsing of ISOTROPY include("parsed_vs_loaded_littlegroup_irreps.jl") # multiplication tables and irreps include("irreps_orthogonality.jl") include("chartable.jl") include("multtable.jl") include("irreps_reality.jl") include("lgirreps_vs_pgirreps_at_Gamma.jl") # compatibility include("compatibility.jl") # conjugacy classes and irreps include("conjugacy.jl") # lattices include("lattices.jl") # additional k-vectors in Ξ¦-Ξ© ("special" representation domain vectors) include("holosymmetric.jl") # band representations & site symmetry groups include("classification.jl") # => does topo classification agree w/ Adrian? include("bandrep.jl") # => do k-vectors match (Bilbao's bandreps vs ISOTROPY)? include("calc_bandreps.jl") # => tests of /src/calc_bandreps.jl include("isomorphic_parent_pointgroup.jl") # => do we find the same "parent" point # groups as Bilbao? # magnetic space groups include("mspacegroup.jl") end
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
13029
using Crystalline, Test using LinearAlgebra: dot # ---------------------------------------------------------------------------------------- # # test print with nicely printed diff on failures (from https://github.com/invenia/PkgTemplates.jl/blob/master/test/runtests.jl) using DeepDiffs: deepdiff function print_diff(a, b) old = Base.have_color @eval Base have_color = true try println(deepdiff(a, b)) finally @eval Base have_color = $old end end function test_show(expected::AbstractString, observed::AbstractString) if expected == observed @test true else print_diff(expected, observed) @test :expected == :observed end end test_tp_show(v, observed::AbstractString) = test_show(repr(MIME"text/plain"(), v), observed) # ---------------------------------------------------------------------------------------- # @testset "`show` overloads" begin # ------------------------------- # DirectBasis # ------------------------------- Rs = DirectBasis([1,0,0], [0,1,0], [0,0,1]) # cubic str = """ DirectBasis{3} (cubic): [1.0, 0.0, 0.0] [0.0, 1.0, 0.0] [0.0, 0.0, 1.0]""" test_tp_show(Rs, str) Rs = DirectBasis([1,0,0], [-0.5, √(3)/2, 0.0], [0, 0, 1.5]) # hexagonal str = """ DirectBasis{3} (hexagonal): [1.0, 0.0, 0.0] [-0.5, 0.8660254037844386, 0.0] [0.0, 0.0, 1.5]""" test_tp_show(Rs, str) Rsβ€² = directbasis(183, Val(3)) @test Rs[1] β‰ˆ Rsβ€²[1] && Rs[2] β‰ˆ Rsβ€²[2] @test abs(dot(Rs[1], Rsβ€²[3])) < 1e-14 @test abs(dot(Rs[2], Rsβ€²[3])) < 1e-14 @test abs(dot(Rs[3], Rsβ€²[3])) > 1e-1 Gs = reciprocalbasis(Rs) str = """ ReciprocalBasis{3} (hexagonal): [6.283185307179586, 3.6275987284684357, -0.0] [0.0, 7.255197456936871, 0.0] [0.0, -0.0, 4.1887902047863905]""" test_tp_show(Gs, str) # ------------------------------- # SymOperation # ------------------------------- str = """ 1 ──────────────────────────────── (x,y,z) β”Œ 1 0 0 β•· 0 ┐ β”‚ 0 1 0 ┆ 0 β”‚ β”” 0 0 1 β•΅ 0 β”˜""" test_tp_show(S"x,y,z", str) str = """ {-3₋₁₋₁₁⁺|0,Β½,β…“} ──────── (z,-x+1/2,y+1/3) β”Œ 0 0 1 β•· 0 ┐ β”‚ -1 0 0 ┆ 1/2 β”‚ β”” 0 1 0 β•΅ 1/3 β”˜""" test_tp_show(S"z,-x+1/2,y+1/3", str) str = """ 3⁻ ───────────────────────────── (-x+y,-x) β”Œ -1 1 β•· 0 ┐ β”” -1 0 β•΅ 0 β”˜""" test_tp_show(S"y-x,-x", str) str = """ 3-element Vector{SymOperation{3}}: 1 2₀₁₁ {3₁₁₁⁻|0,0,β…“}""" test_tp_show([S"x,y,z", S"-x,z,y", S"y,z,x+1/3"], str) str = """ 4Γ—4 Matrix{SymOperation{3}}: 1 2₀₀₁ 2₀₁₀ 2₁₀₀ 2₀₀₁ 1 2₁₀₀ 2₀₁₀ 2₀₁₀ 2₁₀₀ 1 2₀₀₁ 2₁₀₀ 2₀₁₀ 2₀₀₁ 1""" sg = spacegroup(16) test_tp_show(sg .* permutedims(sg), str) # ------------------------------- # MultTable # ------------------------------- str = """ 6Γ—6 MultTable{SymOperation{3}}: ───────┬────────────────────────────────────────── β”‚ 1 3₀₀₁⁺ 3₀₀₁⁻ 2₀₀₁ 6₀₀₁⁻ 6₀₀₁⁺ ───────┼────────────────────────────────────────── 1 β”‚ 1 3₀₀₁⁺ 3₀₀₁⁻ 2₀₀₁ 6₀₀₁⁻ 6₀₀₁⁺ 3₀₀₁⁺ β”‚ 3₀₀₁⁺ 3₀₀₁⁻ 1 6₀₀₁⁻ 6₀₀₁⁺ 2₀₀₁ 3₀₀₁⁻ β”‚ 3₀₀₁⁻ 1 3₀₀₁⁺ 6₀₀₁⁺ 2₀₀₁ 6₀₀₁⁻ 2₀₀₁ β”‚ 2₀₀₁ 6₀₀₁⁻ 6₀₀₁⁺ 1 3₀₀₁⁺ 3₀₀₁⁻ 6₀₀₁⁻ β”‚ 6₀₀₁⁻ 6₀₀₁⁺ 2₀₀₁ 3₀₀₁⁺ 3₀₀₁⁻ 1 6₀₀₁⁺ β”‚ 6₀₀₁⁺ 2₀₀₁ 6₀₀₁⁻ 3₀₀₁⁻ 1 3₀₀₁⁺ ───────┴────────────────────────────────────────── """ test_tp_show(MultTable(pointgroup("6")), str) str = """ 4Γ—4 MultTable{SymOperation{3}}: ──────────────┬──────────────────────────────────────────────────────── β”‚ 1 {2₀₁₀|0,0,Β½} -1 {m₀₁₀|0,0,Β½} ──────────────┼──────────────────────────────────────────────────────── 1 β”‚ 1 {2₀₁₀|0,0,Β½} -1 {m₀₁₀|0,0,Β½} {2₀₁₀|0,0,Β½} β”‚ {2₀₁₀|0,0,Β½} 1 {m₀₁₀|0,0,Β½} -1 -1 β”‚ -1 {m₀₁₀|0,0,Β½} 1 {2₀₁₀|0,0,Β½} {m₀₁₀|0,0,Β½} β”‚ {m₀₁₀|0,0,Β½} -1 {2₀₁₀|0,0,Β½} 1 ──────────────┴──────────────────────────────────────────────────────── """ test_tp_show(MultTable(spacegroup(13)), str) # ------------------------------- # KVec # ------------------------------- for v in (KVec, RVec) test_tp_show(v("0,0,.5+u"), "[0, 0, 1/2+Ξ±]") test_tp_show(v("1/2+Ξ±,Ξ²+Ξ±,1/4"), "[1/2+Ξ±, Ξ±+Ξ², 1/4]") test_tp_show(v("Ξ²,-Ξ±"), "[Ξ², -Ξ±]") @test repr(MIME"text/plain"(), v("y,Ξ³,u")) == repr(MIME"text/plain"(), v("Ξ²,w,x")) end # ------------------------------- # AbstractGroup # ------------------------------- str = """ PointGroup{3} β‹•21 (6) with 6 operations: 1 3₀₀₁⁺ 3₀₀₁⁻ 2₀₀₁ 6₀₀₁⁻ 6₀₀₁⁺""" test_tp_show(pointgroup("6", Val(3)), str) str = """ SpaceGroup{3} β‹•213 (P4₁32) with 24 operations: 1 {2₀₀₁|Β½,0,Β½} {2₀₁₀|0,Β½,Β½} {2₁₀₀|Β½,Β½,0} 3₁₁₁⁺ {3₋₁₁₋₁⁺|Β½,Β½,0} {3₋₁₁₁⁻|Β½,0,Β½} {3₋₁₋₁₁⁺|0,Β½,Β½} 3₁₁₁⁻ {3₋₁₁₁⁺|0,Β½,Β½} {3₋₁₋₁₁⁻|Β½,Β½,0} {3₋₁₁₋₁⁻|Β½,0,Β½} {2₁₁₀|ΒΎ,ΒΌ,ΒΌ} {2₋₁₁₀|ΒΎ,ΒΎ,ΒΎ} {4₀₀₁⁻|ΒΌ,ΒΌ,ΒΎ} {4₀₀₁⁺|ΒΌ,ΒΎ,ΒΌ} {4₁₀₀⁻|ΒΎ,ΒΌ,ΒΌ} {2₀₁₁|ΒΌ,ΒΎ,ΒΌ} {2₀₋₁₁|ΒΎ,ΒΎ,ΒΎ} {4₁₀₀⁺|ΒΌ,ΒΌ,ΒΎ} {4₀₁₀⁺|ΒΎ,ΒΌ,ΒΌ} {2₁₀₁|ΒΌ,ΒΌ,ΒΎ} {4₀₁₀⁻|ΒΌ,ΒΎ,ΒΌ} {2₋₁₀₁|ΒΎ,ΒΎ,ΒΎ}""" test_tp_show(spacegroup(213, Val(3)), str) str = """ SiteGroup{2} β‹•17 (p6mm) at 2b = [1/3, 2/3] with 6 operations: 1 {3⁺|1,1} {3⁻|0,1} {m₁₁|1,1} m₁₀ {m₀₁|0,1}""" sg = spacegroup(17,Val(2)) wps = wyckoffs(17, Val(2)) test_tp_show(sitegroup(sg, wps[end-1]), str) # ------------------------------- # LGIrrep # ------------------------------- str = """ 4-element Collection{LGIrrep{3}} for β‹•16 (P222) at Ξ“ = [0, 0, 0]: Γ₁ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ 1 β”‚ β”œβ”€ 2₀₁₀: ─────────────────────────── (-x,y,-z) β”‚ 1 β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ 1 └───────────────────────────────────────────── Ξ“β‚‚ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ -1 β”‚ β”œβ”€ 2₀₁₀: ─────────────────────────── (-x,y,-z) β”‚ -1 β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ 1 └───────────────────────────────────────────── Γ₃ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ 1 β”‚ β”œβ”€ 2₀₁₀: ─────────────────────────── (-x,y,-z) β”‚ -1 β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ -1 └───────────────────────────────────────────── Ξ“β‚„ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ -1 β”‚ β”œβ”€ 2₀₁₀: ─────────────────────────── (-x,y,-z) β”‚ 1 β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ -1 └─────────────────────────────────────────────""" test_tp_show(lgirreps(16)["Ξ“"], str) str = """ 4-element Collection{LGIrrep{3}}: #undef #undef #undef #undef""" test_tp_show(similar(lgirreps(16)["Ξ“"]), str) str = """ Ξ“β‚… ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ ⎑ 1 0 ⎀ β”‚ ⎣ 0 1 ⎦ β”‚ β”œβ”€ {2₁₀₀|0,Β½,ΒΌ}: ─────────── (x,-y+1/2,-z+1/4) β”‚ ⎑ 1 0 ⎀ β”‚ ⎣ 0 -1 ⎦ β”‚ β”œβ”€ {2₀₁₀|0,Β½,ΒΌ}: ─────────── (-x,y+1/2,-z+1/4) β”‚ ⎑ -1 0 ⎀ β”‚ ⎣ 0 1 ⎦ β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ ⎑ -1 0 ⎀ β”‚ ⎣ 0 -1 ⎦ β”‚ β”œβ”€ -4₀₀₁⁺: ───────────────────────── (y,-x,-z) β”‚ ⎑ 0 1 ⎀ β”‚ ⎣ -1 0 ⎦ β”‚ β”œβ”€ -4₀₀₁⁻: ───────────────────────── (-y,x,-z) β”‚ ⎑ 0 -1 ⎀ β”‚ ⎣ 1 0 ⎦ β”‚ β”œβ”€ {m₁₁₀|0,Β½,ΒΌ}: ─────────── (-y,-x+1/2,z+1/4) β”‚ ⎑ 0 -1 ⎀ β”‚ ⎣ -1 0 ⎦ β”‚ β”œβ”€ {m₋₁₁₀|0,Β½,ΒΌ}: ──────────── (y,x+1/2,z+1/4) β”‚ ⎑ 0 1 ⎀ β”‚ ⎣ 1 0 ⎦ └─────────────────────────────────────────────""" test_tp_show(lgirreps(122)["Ξ“"][end], str) str = """ Γ₆ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ -1 β”‚ β”œβ”€ 3₀₀₁⁺: ───────────────────────── (-y,x-y,z) β”‚ exp(-0.6667iΟ€) β”‚ β”œβ”€ 3₀₀₁⁻: ──────────────────────── (-x+y,-x,z) β”‚ exp(0.6667iΟ€) β”‚ β”œβ”€ 6₀₀₁⁺: ────────────────────────── (x-y,x,z) β”‚ exp(-0.3333iΟ€) β”‚ β”œβ”€ 6₀₀₁⁻: ───────────────────────── (y,-x+y,z) β”‚ exp(0.3333iΟ€) └─────────────────────────────────────────────""" test_tp_show(lgirreps(168)["Ξ“"][end], str) # ------------------------------- # PGIrrep # ------------------------------- str = """ Γ₄Γ₆ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ ⎑ 1 0 ⎀ β”‚ ⎣ 0 1 ⎦ β”‚ β”œβ”€ 3₀₀₁⁺: ───────────────────────── (-y,x-y,z) β”‚ ⎑ -0.5+0.866im 0 ⎀ β”‚ ⎣ 0 -0.5-0.866im ⎦ β”‚ β”œβ”€ 3₀₀₁⁻: ──────────────────────── (-x+y,-x,z) β”‚ ⎑ -0.5-0.866im 0 ⎀ β”‚ ⎣ 0 -0.5+0.866im ⎦ β”‚ β”œβ”€ 2₀₀₁: ─────────────────────────── (-x,-y,z) β”‚ ⎑ -1 0 ⎀ β”‚ ⎣ 0 -1 ⎦ β”‚ β”œβ”€ 6₀₀₁⁻: ───────────────────────── (y,-x+y,z) β”‚ ⎑ 0.5-0.866im 0 ⎀ β”‚ ⎣ 0 0.5+0.866im ⎦ β”‚ β”œβ”€ 6₀₀₁⁺: ────────────────────────── (x-y,x,z) β”‚ ⎑ 0.5+0.866im 0 ⎀ β”‚ ⎣ 0 0.5-0.866im ⎦ └─────────────────────────────────────────────""" pgirs = pgirreps("6") pgirsβ€² = realify(pgirs) test_tp_show(pgirsβ€²[end], str) @test summary(pgirs) == "6-element Collection{PGIrrep{3}}" @test summary(pgirsβ€²) == "4-element Collection{PGIrrep{3}}" # ------------------------------- # CharacterTable # ------------------------------- str = """ CharacterTable{3} for β‹•21 (6): ───────┬──────────────────── β”‚ Γ₁ Ξ“β‚‚ Γ₃Γ₅ Γ₄Γ₆ ───────┼──────────────────── 1 β”‚ 1 1 2 2 3₀₀₁⁺ β”‚ 1 1 -1 -1 3₀₀₁⁻ β”‚ 1 1 -1 -1 2₀₀₁ β”‚ 1 -1 2 -2 6₀₀₁⁻ β”‚ 1 -1 -1 1 6₀₀₁⁺ β”‚ 1 -1 -1 1 ───────┴──────────────────── """ test_tp_show(characters(pgirsβ€²), str) str = """ CharacterTable{3} for β‹•230 (Ia-3d) at P = [1/2, 1/2, 1/2]: ─────────────────┬────────────────────── β”‚ P₁ Pβ‚‚ P₃ ─────────────────┼────────────────────── 1 β”‚ 2 2 4 {2₁₀₀|0,0,Β½} β”‚ 0 0 0 {2₀₁₀|Β½,0,0} β”‚ 0 0 0 {2₀₀₁|0,Β½,0} β”‚ 0 0 0 3₁₁₁⁺ β”‚ -1 -1 1 3₁₁₁⁻ β”‚ -1 -1 1 {3₋₁₁₁⁺|Β½,0,0} β”‚ -1im -1im 1im {3₋₁₁₁⁻|0,Β½,0} β”‚ 1im 1im -1im {3₋₁₁₋₁⁻|0,Β½,0} β”‚ -1im -1im 1im {3₋₁₁₋₁⁺|0,0,Β½} β”‚ 1im 1im -1im {3₋₁₋₁₁⁻|0,0,Β½} β”‚ -1im -1im 1im {3₋₁₋₁₁⁺|Β½,0,0} β”‚ 1im 1im -1im {-4₁₀₀⁺|ΒΌ,ΒΌ,ΒΎ} β”‚ -1+1im 1-1im 0 {-4₁₀₀⁻|ΒΎ,ΒΌ,ΒΌ} β”‚ 1-1im -1+1im 0 {-4₀₁₀⁺|ΒΎ,ΒΌ,ΒΌ} β”‚ -1+1im 1-1im 0 {-4₀₁₀⁻|ΒΌ,ΒΎ,ΒΌ} β”‚ 1-1im -1+1im 0 {-4₀₀₁⁺|ΒΌ,ΒΎ,ΒΌ} β”‚ -1+1im 1-1im 0 {-4₀₀₁⁻|ΒΌ,ΒΌ,ΒΎ} β”‚ 1-1im -1+1im 0 {m₁₁₀|ΒΎ,ΒΌ,ΒΌ} β”‚ 0 0 0 {m₋₁₁₀|ΒΌ,ΒΌ,ΒΌ} β”‚ 0 0 0 {m₁₀₁|ΒΌ,ΒΌ,ΒΎ} β”‚ 0 0 0 {m₋₁₀₁|ΒΌ,ΒΌ,ΒΌ} β”‚ 0 0 0 {m₀₁₁|ΒΌ,ΒΎ,ΒΌ} β”‚ 0 0 0 {m₀₋₁₁|ΒΌ,ΒΌ,ΒΌ} β”‚ 0 0 0 ─────────────────┴────────────────────── """ test_tp_show(characters(lgirreps(230)["P"]), str) # ------------------------------- # BandRepSet and BandRep # ------------------------------- brs = bandreps(42, 3) str = """ BandRepSet (β‹•42): 6 BandReps, sampling 17 LGIrreps (spin-1 w/ TR) ────┬──────────────────────── β”‚ 4a 4a 4a 4a 8b 8b β”‚ A₁ Aβ‚‚ B₁ Bβ‚‚ A B ────┼──────────────────────── Γ₁ β”‚ 1 Β· Β· Β· 1 Β· Ξ“β‚‚ β”‚ Β· 1 Β· Β· 1 Β· Γ₃ β”‚ Β· Β· Β· 1 Β· 1 Ξ“β‚„ β”‚ Β· Β· 1 Β· Β· 1 T₁ β”‚ 1 Β· Β· Β· Β· 1 Tβ‚‚ β”‚ Β· 1 Β· Β· Β· 1 T₃ β”‚ Β· Β· Β· 1 1 Β· Tβ‚„ β”‚ Β· Β· 1 Β· 1 Β· Y₁ β”‚ 1 Β· Β· Β· Β· 1 Yβ‚‚ β”‚ Β· 1 Β· Β· Β· 1 Y₃ β”‚ Β· Β· Β· 1 1 Β· Yβ‚„ β”‚ Β· Β· 1 Β· 1 Β· Z₁ β”‚ 1 Β· Β· Β· 1 Β· Zβ‚‚ β”‚ Β· 1 Β· Β· 1 Β· Z₃ β”‚ Β· Β· Β· 1 Β· 1 Zβ‚„ β”‚ Β· Β· 1 Β· Β· 1 L₁ β”‚ 1 1 1 1 2 2 ────┼──────────────────────── ΞΌ β”‚ 1 1 1 1 2 2 ────┴──────────────────────── KVecs: Ξ“, T, Y, Z, L""" test_tp_show(brs, str) test_tp_show(brs[1], "1-band BandRep (A₁↑G at 4a):\n [Γ₁, T₁, Y₁, Z₁, L₁]") test_tp_show(brs[end], "2-band BandRep (B↑G at 8b):\n [Γ₃+Ξ“β‚„, T₁+Tβ‚‚, Y₁+Yβ‚‚, Z₃+Zβ‚„, 2L₁]") end # @testset
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
834
using Test using Crystalline @testset "(Abstract)SymmetryVectors" begin brs = calc_bandreps(221) # ::Collection{NewBandRep{3}} # addition of symmetry vectors @test brs[1] + brs[2] == SymmetryVector(brs[1]) + SymmetryVector(brs[2]) @test Vector(brs[1] + brs[2]) == Vector(brs[1]) + Vector(brs[2]) # multiplication of symmetry vectors @test brs[1] + brs[1] == 2brs[1] @test -brs[1] == 2brs[1] - 3brs[1] @test zero(brs[1]) == 0*brs[1] @test brs[3]*7 == 7*brs[3] # type-stable summation @test sum(brs[1:1]) isa SymmetryVector{3} @test sum(brs[1:2]) isa SymmetryVector{3} # printing SymmetryVector that have zero-contents n = SymmetryVector(brs[1]) @test n*0 == zero(n) @test string(zero(n)) == "[0Mα΅’, 0Xα΅’, 0Ξ“α΅’, 0Rα΅’] (0 bands)" end # @testset "(Abstract)SymmetryVectors"
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
6717
using Crystalline, Test @testset "Symmetry operations" begin @testset "Basics" begin # Space group β‹•1 sg = spacegroup(1, Val(3)) @test order(sg) == 1 @test dim(sg) == 3 op = sg[1] @test matrix(op) == [1.0 0.0 0.0 0.0; 0.0 1.0 0.0 0.0; 0.0 0.0 1.0 0.0] @test xyzt(op) == "x,y,z" # Space group β‹•146 sg = spacegroup(146, Val(3)) @test order(sg) == 9 @test dim(sg) == 3 op = sg[9] @test matrix(op) β‰ˆ [-1.0 1.0 0.0 1/3; -1.0 0.0 0.0 2/3; 0.0 0.0 1.0 2/3] @test xyzt(op) == "-x+y+1/3,-x+2/3,z+2/3" # Plane group β‹•7 sg = spacegroup(7, 2) # keep as 2 (rather than Val(2)) intentionally, to test... @test order(sg) == 4 @test dim(sg) == 2 op = sg[2] @test matrix(op) β‰ˆ [-1.0 0.0 0.0; 0.0 -1.0 0.0] @test xyzt(op) == "-x,-y" # Round-trippability of constructors op = SymOperation{3}("-y,x,z+1/2") @test op == SymOperation("-y,x,z+1/2") @test op == S"-y,x,z+1/2" @test op == SymOperation(rotation(op), translation(op)) @test op == SymOperation(matrix(op)) # SMatrix @test op == SymOperation(Matrix(op)) # Matrix # identity operation @test S"x,y,z" == one(S"y,z,x") == one(SymOperation{3}) end @testset "Parsing cornercases" begin # allow some forms of whitespace in xyzt string parsing (issue #29) @test SymOperation("x,y,z") == SymOperation("x, y, z") @test SymOperation("x,-y,+z") == SymOperation(" x, - y, +z") @test SymOperation("x,-y+x,+z-1/2") == SymOperation("x, - y + x, +z - 1/2") @test SymOperation(" x,-y+x+1/3,+z-1/2") == SymOperation(" x, - y + x + 1/3, +z - 1/2") end @testset "Conversion between xyzt and matrix forms" begin for D = 1:3 Dα΅› = Val(D) @testset "D = $(D)" begin for sgnum in 1:MAX_SGNUM[D] @testset "β‹•$sgnum" begin sg = spacegroup(sgnum, Dα΅›) for op in sg @test Crystalline.xyzt2matrix(xyzt(op), Dα΅›) β‰ˆ matrix(op) # xyzt->matrix (`β‰ˆ` due to possible rounding errors and precision loss on round-trip) @test Crystalline.matrix2xyzt(matrix(op)) == xyzt(op) # matrix->xyzt end end end end end end @testset "Composition" begin sg = spacegroup(230, Val(3)) # random space group # test associativity (with and without modular arithmetic) g₁, gβ‚‚, g₃ = sg[5:7] @test g₁*(gβ‚‚*g₃) == (g₁*gβ‚‚)*g₃ @test compose(compose(g₁, gβ‚‚, false), g₃, false) == compose(g₁, compose(gβ‚‚, g₃, false), false) end @testset "Operators in differents bases" begin sgnum = 110 # bravais type "tI" cntr = centering(sgnum, 3) # 'I' csg = spacegroup(sgnum, Val(3)) # conventional basis psg = SpaceGroup{3}(sgnum, primitivize.(csg, cntr, false)) # primitive basis # compute a random possible basis for tI bravais type cRs = directbasis(sgnum, Val(3)) # conventional basis pRs = primitivize(cRs, cntr) # primitive basis # check that the cartesian representation of the space group operations, obtained # from `csg` & `cRs` versus `psg` and `pRs` agree (as it should) cartRs_from_cRs = cartesianize(csg, cRs) cartRs_from_pRs = cartesianize(psg, pRs) @test all(isapprox.(cartRs_from_cRs, cartRs_from_pRs, atol=1e-12)) # `isapprox` with centering op = S"-y+2/3,x-y+1/3,z+1/3" # {3₀₀₁⁺|β…”,β…“,β…“} (in a rhombohedral system) opβ€² = op * SymOperation{3}(Bravais.centeringtranslation('R',Val(3))) @test isapprox(op, opβ€², 'R', true) @test !isapprox(op, opβ€², 'P', true) # `isapprox` with `modw = false` op = S"x,-y,z" opβ€² = S"x-3,-y+10,z-5" @test !isapprox(op, opβ€², 'I', false) @test !isapprox(op, opβ€², 'P', false) @test isapprox(op, opβ€², 'P', true) @test isapprox(op, opβ€², 'I', true) end @testset "Groups created from generators" begin # (`generate` default sorts by `seitz`) # generate plane group (17) p6mm from 6⁺ and m₁₀ gens = SymOperation.(["x-y,x", "-x+y,y"]) sg = spacegroup(17, Val(2)) @test sort!(generate(gens)) == sort!(sg) # generate site symmetry group of Wyckoff position 2b in p6mm ops = SymOperation.( ["x,y","-y+1,x-y+1", "-x+y,-x+1", # {1|0}, {3⁺|1.0,1.0}, {3⁻|0,1.0}, "-y+1,-x+1", "-x+y,y", "x,x-y+1"]) # {m₁₁|1.0,1.0}, {m₁₀|0}, {m₀₁|0,1.0} gens = ops[[2,6]] @test sort!(generate(gens, modΟ„=false), by=xyzt) == sort!(ops, by=xyzt) # generate space group with nonsymmorphic operations sg = spacegroup(180, Val(3)) # P6β‚‚22 gens = sg[[6,8]] # {6₀₀₁⁺|0,0,β…“}, 2₁₀₀ @test sort!(generate(gens)) β‰ˆ sort!(sg) # generators do not specify a finite group under "non-modulo" composition @test_throws OverflowError generate(SymOperation.(["x,y+1,z"]); modΟ„=false, Nmax=50) end @testset "Generators" begin for (Dα΅›, gtype) in ((Val(1), SpaceGroup{1}), (Val(2), SpaceGroup{2}), (Val(3), SpaceGroup{3})) D = typeof(Dα΅›).parameters[1] for sgnum in 1:MAX_SGNUM[D] ops1 = sort!(spacegroup(sgnum, Dα΅›)) ops2 = sort!(generate(generators(sgnum, gtype))) @test ops1 β‰ˆ ops2 end end end @testset "Error types and domain checking" begin @test_throws DomainError spacegroup(231, 3) @test_throws DomainError spacegroup(-1, 2) @test_throws DomainError spacegroup(2, 0) @test_throws DomainError spacegroup(41, 5) @test_throws ArgumentError SymOperation{2}("x,z") @test_throws ArgumentError SymOperation("x,z") @test_throws ArgumentError SymOperation("x,Γ·z") @test_throws ArgumentError SymOperation("x ,z") # don't allow spaces *after* entries @test_throws DimensionMismatch SymOperation{3}("x,y+z") end @testset "Checking symmorphic space groups" begin # we do a memoized look-up for `issymmorph(::Integer, ::Integer)`: ensure that it # agrees with explicit calculations for D in 1:3 for sgnum in 1:MAX_SGNUM[D] @test issymmorph(sgnum, D) == issymmorph(spacegroup(sgnum, D)) end end end end
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
2984
using Crystalline, Test, PrettyTables debug = false if !isdefined(Main, :LGIRS) LGIRS = lgirreps.(1:MAX_SGNUM[3], Val(3)) # loaded from our saved .jld2 files end @testset "Order of space group, Bilbao vs. ISOTROPY, in primitivized basis" begin for sgnum = 1:230 cntr = centering(sgnum, 3) # sgops from Bilbao (BCD) ops = operations(spacegroup(sgnum)) reduce_ops # go to primitive basis β‡’ reduce to unique set β‡’ go back to conventional basis opsβ€² = reduce_ops(ops, cntr, true) if debug if length(ops) β‰  length(opsβ€²) # a trivial translation set was then removed println(sgnum, ": ", length(ops), " β‰  ", length(opsβ€²)) end end Nops_ISO = length(operations(LGIRS[sgnum][1][1])) @test Nops_ISO == length(opsβ€²) # test that ISOTROPY spacegroup(..) indeed excludes trivial translation sets end end let count = 0, failures = Int[] for sgnum = 1:230 cntr = centering(sgnum, 3) # sgops from Bilbao (BCD) ops_BCD = operations(spacegroup(sgnum)) ops_BCDβ€² = reduce_ops(ops_BCD, cntr, true) # go to primitive basis β‡’ reduce to unique # set β‡’ go back to conventional basis # sgops from ISOTROPY (via Ξ“ point) ops_ISO = operations(LGIRS[sgnum][1][1]) # sorting according to seitz notation sorted_idx_BCD = sortperm(seitz.(ops_BCDβ€²)) sorted_idx_ISO = sortperm(seitz.(ops_ISO)) ops_BCDβ€² = ops_BCDβ€²[sorted_idx_BCD] ops_ISO = ops_ISO[sorted_idx_ISO] # extracting various (sorted) metrics of the sgops seitz_BCD = seitz.(ops_BCDβ€²) seitz_ISO = seitz.(ops_ISO) matrix_BCD = matrix.(ops_BCDβ€²) matrix_ISO = matrix.(ops_ISO) Ο„_BCD = translation.(ops_BCDβ€²) Ο„_ISO = translation.(ops_ISO) # comparisons of (sorted) sgops across BCD and ISO BCD_vs_ISO = seitz_BCD .== seitz_ISO # 6 disagreements (trivial differences of **primitive** lattice translations) # print some stuff if BCD and ISO sgops sets not equivalent if any(!, BCD_vs_ISO) count += 1 push!(failures, sgnum) dΟ„ = Ο„_BCD .- Ο„_ISO P = Crystalline.primitivebasismatrix(cntr, Val(3)) dΟ„_primitive = [P\dΟ„_i for dΟ„_i in dΟ„] if debug println("\nsgnum=$(sgnum) ($(bravaistype(sgnum, 3))):") pretty_table(stdout, [seitz_BCD seitz_ISO BCD_vs_ISO dΟ„ dΟ„_primitive]; header = ["BCD", "ISOTROPY", "==?", "dΟ„ (conventional basis)", "dΟ„ (primitive basis)"], highlighters = Highlighter((d,i,j)->!d[i,3], Crayon(background=:red))) end end end print("\n$(count)/230 disagreements, for space groups: ") join(stdout, failures, ", "); println() end
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
code
2230
using Test, Crystalline using Crystalline: constant, free @testset "SiteGroup" begin neg_error_tol = 1e-15 for D in 1:3 Dα΅› = Val(D) for sgnum in 1:MAX_SGNUM[D] sg = spacegroup(sgnum, Dα΅›) wps = wyckoffs(sgnum, Dα΅›) for wp in wps g = sitegroup(sg, wp) @test g isa SiteGroup rv = parent(wp) # test that ops in `g` leave the Wyckoff position `wp` invariant for op in g rvβ€² = op*rv @test isapprox(rv, rvβ€², nothing, false) # isapprox(::RVec, ::RVec) wpβ€² = op*wp @test isapprox(wp, wpβ€², nothing, false) # isapprox(::WyckoffPosition, ::WyckoffPosition) end # test that all the constant parts of the positions in the Wyckoff orbit # all have coordinates in [0,1) wpreps = orbit(g) # wyckoff position representatives @test all(wpreps) do wp all(xyz->xyzβ‰₯(-neg_error_tol) && xyz<1, constant(wp)) end # test that `g` and `cosets(g)` furnishes a left-coset decomposition of `sg` ops = [opΚ°*opᡍ for opΚ° in cosets(g) for opᡍ in g]; @test sort!(ops, by=xyzt) β‰ˆ sort(sg, by=xyzt) end end end end @testset "Maximal Wyckoff positions" begin for sgnum in 1:MAX_SGNUM[3] sg = spacegroup(sgnum, Val(3)) sitegs = sitegroups(sg) max_sitegs = findmaximal(sitegs) max_wps = position.(max_sitegs) # the band representations should include all maximal wyckoff positions; # check consistency against that max_wps_brs_str = getfield.(bandreps(sgnum, 3).bandreps, Ref(:wyckpos)) @test sort(unique(max_wps_brs_str)) == sort(label.(max_wps)) end # type-stability @test (@inferred Vector{WyckoffPosition{1}} wyckoffs(1, Val(1))) isa Vector{WyckoffPosition{1}} @test (@inferred Vector{WyckoffPosition{2}} wyckoffs(1, Val(2))) isa Vector{WyckoffPosition{2}} @test (@inferred Vector{WyckoffPosition{3}} wyckoffs(1, Val(3))) isa Vector{WyckoffPosition{3}} end
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
4272
# Crystalline.jl [![Documentation (stable)][docs-stable-img]][docs-stable-url] [![Documentation (dev)][docs-dev-img]][docs-dev-url] [![Build status][ci-status-img]][ci-status-url] [![Coverage][coverage-img]][coverage-url] Tools for crystalline symmetry analysis implemented in the Julia language. This package provides access to the symmetry operations of crystalline point groups, space groups, Wyckoff positions, their irreducible representations and band representations, as well as tools for their associated manipulation. ## Installation The package can be installed via Julia's package manager: ```julia julia> using Pkg; Pkg.add("Crystalline") julia> using Crystalline ``` ## Functionality Crystalline.jl provides several functionalities for line groups, plane groups, and space groups, as well as crystallographic point groups. Example use includes: ```julia # construct a 3D `SymOperation` from its triplet form julia> S"x,-y,-z" 2₁₀₀ ─────────────────────────── (x,-y,-z) β”Œ 1 0 0 β•· 0 ┐ β”‚ 0 -1 0 ┆ 0 β”‚ β”” 0 0 -1 β•΅ 0 β”˜ # load the `SymOperation`s of the 3D space group β‹•16 in a conventional setting julia> sg = spacegroup(16, Val(3)) SpaceGroup{3} β‹•16 (P222) with 4 operations: 1 2₀₀₁ 2₀₁₀ 2₁₀₀ # load a dictionary of small irreps and their little groups for space group β‹•16, # indexed by their k-point labels; then inspect the small irreps at the A point julia> lgirs = lgirreps(16, Val(3)) julia> lgirs["A"] 2-element Collection{LGIrrep{3}} for β‹•16 (P222) at A = [Ξ±, 0, 1/2]: A₁ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ 1 └───────────────────────────────────────────── Aβ‚‚ ─┬───────────────────────────────────────────── β”œβ”€ 1: ──────────────────────────────── (x,y,z) β”‚ 1 β”‚ β”œβ”€ 2₁₀₀: ─────────────────────────── (x,-y,-z) β”‚ -1 └───────────────────────────────────────────── # construct the character table for the small irreps at the Ξ“ point julia> characters(lgirs["Ξ“"]) CharacterTable{3} for β‹•16 (P222) at Ξ“ = [0, 0, 0]: ──────┬──────────────── β”‚ Γ₁ Ξ“β‚‚ Γ₃ Ξ“β‚„ ──────┼──────────────── 1 β”‚ 1 1 1 1 2₁₀₀ β”‚ 1 -1 1 -1 2₀₁₀ β”‚ 1 -1 -1 1 2₀₀₁ β”‚ 1 1 -1 -1 ──────┴──────────────── ``` Additional functionality includes e.g. point group operations (`pointgroup`) and irreps (`pgirreps`), elementary band representations (`bandreps`), Wyckoff positions (`wyckoffs`), conjugacy classes (`classes`), class-specific characters (`classcharacters`), group generators (`generators`), subperiodic groups (`subperiodicgroup`), 3D magnetic space groups (`mspacegroup`), and physically real irreps (`realify`). In addition, Bravais lattice utilities and conventions are accessible via the lightweight stand-alone sub-package [Bravais.jl](https://github.com/thchr/Crystalline.jl/tree/master/Bravais). For a full description of the public API, see the [documentation][docs-dev-url]. ### Current limitations At present, the package's emphasis is on spinless systems (i.e., double groups and spinful irreps are not implemented). ## API stability Crystalline.jl is a research package in active development: breaking changes are likely (but will respect semantic versioning). ## Citation If you find this package useful in your reseach, please cite our paper: - T. Christensen, H.C. Po, J.D. Joannopoulos, & M. SoljačiΔ‡, *Location and topology of the fundamental gap in photonic crystals*, [Phys. Rev. X **12**, 021066 (2022)](https://doi.org/10.1103/PhysRevX.12.021066). In addition, please cite any earlier works explicitly referenced in the documentation of individual functions. [ci-status-img]: https://github.com/thchr/Crystalline.jl/workflows/CI/badge.svg [ci-status-url]: https://github.com/thchr/Crystalline.jl/actions [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://thchr.github.io/Crystalline.jl/dev [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://thchr.github.io/Crystalline.jl/stable [coverage-img]: https://codecov.io/gh/thchr/Crystalline.jl/branch/master/graph/badge.svg [coverage-url]: https://codecov.io/gh/thchr/Crystalline.jl
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1002
We vendor the entirety of https://github.com/wildart/SmithNormalForm.jl because it is not, and will not (see [SmithNormalForm.jl #2](https://github.com/wildart/SmithNormalForm.jl/issues/2)) be, registered in Julia's General registry. However, in order for Crystalline to be registered in the General Registry, we cannot depend on an unregistrered package, so we need to vendor it ourselves. ## git subtree We can use git's subtree functionality to pull down SmithNormalForm.jl and also keep it up-to-date: Specifically, SmithNormalForm.jl's git repo was added following the strategy in https://www.atlassian.com/git/tutorials/git-subtree, with the commands: ```sh git remote add -f wildart-snf https://github.com/wildart/SmithNormalForm.jl.git git subtree add --prefix .vendor/SmithNormalForm wildart-snf master --squash ``` and we can check for updates (and integrate them) via: ```sh git fetch wildart-snf master git subtree pull --prefix .vendor/SmithNormalForm wildart-snf master --squash ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1242
# Smith Normal Form [![Build Status](https://travis-ci.org/wildart/SmithNormalForm.jl.svg?branch=master)](https://travis-ci.org/wildart/SmithNormalForm.jl) [![Coverage Status](https://coveralls.io/repos/wildart/SmithNormalForm.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/wildart/SmithNormalForm.jl?branch=master) The [Smith normal form](https://en.wikipedia.org/wiki/Smith_normal_form) decomposition over integer domain implementation in Julia. ## Installation For Julia 1.1+, add [BoffinStuff](https://github.com/wildart/BoffinStuff.git) registry in the package manager, and proceed with the installation: ``` pkg> registry add https://github.com/wildart/BoffinStuff.git pkg> add SmithNormalForm ``` ## Example ```julia julia> using SmithNormalForm, LinearAlgebra julia> M = [2 4 4; -6 6 12; 10 -4 -16] 3Γ—3 Array{Int64,2}: 2 4 4 -6 6 12 10 -4 -16 julia> F = smith(M) Smith normal form: [2 0 0; 0 6 0; 0 0 12] julia> F.S 3Γ—3 Array{Int64,2}: 1 0 0 -3 1 0 5 -2 1 julia> F.T 3Γ—3 Array{Int64,2}: 1 2 2 0 3 4 0 1 1 julia> diagm(F) 3Γ—3 Array{Int64,2}: 2 0 0 0 6 0 0 0 12 julia> F.S*diagm(F)*F.T 3Γ—3 Array{Int64,2}: 2 4 4 -6 6 12 10 -4 -16 ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1415
# Bravais.jl [![Documentation (stable)][docs-stable-img]][docs-stable-url] [![Documentation (dev)][docs-dev-img]][docs-dev-url] [![Build status][ci-status-img]][ci-status-url] Tools for treating lattice bases, crystal systems, and Bravais types. --- Bravais.jl is developed as a light-weight shared utility package for [Crystalline.jl](https://github.com/thchr/Crystalline.jl) and [Brillouin.jl](https://github.com/thchr/Brillouin.jl), intended to give access to a set of systematic conventions and tools related to point lattices as they arise in crystallography and space group theory. See the associated [documentation][docs-dev-url] for a specification of available methods and public API. ## Citation If you find this package useful in your reseach, consider citing our arXiv paper: - T. Christensen, H.C. Po, J.D. Joannopoulos, & M. SoljačiΔ‡, *Location and topology of the fundamental gap in photonic crystals*, [arXiv:2106.10267 (2021)](https://arxiv.org/abs/2106.10267) [ci-status-img]: https://github.com/thchr/Crystalline.jl/workflows/CI/badge.svg [ci-status-url]: https://github.com/thchr/Crystalline.jl/actions [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://thchr.github.io/Crystalline.jl/dev/bravais/ [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://thchr.github.io/Crystalline.jl/stable/bravais/
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
103
1D and 2D data is not explicitly stored: both can be transferred directly from a subset of the 3D data.
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1412
# ISOTROPY ISO-IR dataset The files `CIR_data.txt` and `PIR_data.txt` are sourced from the [ISOTROPY software's ISO-IR dataset](https://stokes.byu.edu/iso/irtables.php) and contain data needed to generate *space group* irreps. In ISOTROPY, the data files are extracted in Fortran using associated files `CIR_data.f` and `PIR_data.f` (which we do not include here). We extract the data files using Julia instead (see `build/ParseIsotropy.jl`). Two datasets are included in ISOTROPY, one for "ordinary" irreps (`CIR_data.txt`) and one for "physically real" irreps/coreps in a real form (`PIR_data.txt`). In practice, we only use the `CIR_data.txt` dataset in Crystalline. (The `PIR_data.txt` dataset can be used via `build/ParseIsotropy.jl` to obtain physically real _space group_ (i.e. not little group) irreps, however.) ## References Included below is the original header of the `CIR_data.txt` and `PIR_data.txt` files (omitted in the included files for ease of parsing): > ISO-IR: Complex Irreducible Representations of the 230 Crystallographic Space Groups > 2011 Version > Harold T. Stokes and Branton J. Campbell, 2013 The corresponding journal reference is: - H. T. Stokes, B. J. Campbell, and R. Cordes, "Tabulation of Irreducible Representations of the Crystallographic Space Groups and Their Superspace Extensions", [Acta Cryst. A. **69**, 388-395 (2013)](https://doi.org/10.1107/S0108767313007538).
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
451
# Public API --- ```@meta CurrentModule = Crystalline ``` ## Exported types ```@autodocs Modules = [Crystalline] Private = false Order = [:type] ``` ## Exported methods ```@autodocs Modules = [Crystalline] Private = false Order = [:function] ``` ## Exported macros ```@autodocs Modules = [Crystalline] Private = false Order = [:macro] ``` ## Exported constants ```@autodocs Modules = [Crystalline] Private = false Order = [:constant] ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1808
# Elementary band representations Crystalline.jl provides an interface to access the elementary band representations (EBRs) hosted by the Bilbao Crystallographic Server's [BANDREP](https://www.cryst.ehu.es/cgi-bin/cryst/programs/bandrep.pl) program via [`bandreps`](@ref). Please cite the original research (listed in the associated docstrings). As an example, we can obtain the all inequivalent EBRs in space group 219 (F-43c) with: ```@example ebrs using Crystalline brs = bandreps(219, 3) # space group 219 (dimension 3) ``` which returns a `BandRepSet`, which itself is an `AbstractVector` of `BandRep`s. This allows us to index into `brs` easily: ```@example ebrs brs[1] # obtain the EBR induced by Wyckoff position 8a with irrep A ``` By default, `bandreps` returns the spinless EBRs with time-reversal symmetry. This behavior can be controlled with the keyword arguments `spinful` (default, `false`) and `timereversal` (default, `true`). By default, only minimal paths are included in the sampling of **k**-vectors; additional paths can be obtained by setting the keyword argument `allpaths = true` (default, `false`). The distinct topological classes identifiable from symmetry can can be calculated via [`classification`](@ref), which uses the Smith normal form's principle factors: ```@example ebrs classification(brs) ``` Which demonstrates that the symmetry indicator group of spinless particles with time-reversal symmetry in space group 219 is trivial. ## Topology and associated bases The [`SymmetryBases.jl`](https://github.com/thchr/SymmetryBases.jl) package provides tools to analyze topology of symmetry vectors and compute associated Hilbert bases. ## API ```@meta CurrentModule = Crystalline ``` ```@docs; canonical=false bandreps classification nontrivial_factors basisdim ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
1286
# Bravais.jl Bravais types, basis systems, and transformations between conventional and primitive settings. ## API ```@meta CurrentModule = Bravais ``` ### Types ```@docs AbstractBasis DirectBasis ReciprocalBasis AbstractPoint DirectPoint ReciprocalPoint ``` ### Crystal systems & Bravais types ```@docs crystalsystem bravaistype centering ``` ### Basis construction ```@docs crystal directbasis reciprocalbasis nigglibasis ``` ### Transformations ```@docs primitivebasismatrix transform primitivize conventionalize cartesianize cartesianize! latticize latticize! ``` ### Miscellaneous ```@docs volume metricmatrix ``` ## Crystalline.jl extensions of Bravais.jl functions ```@meta CurrentModule = Crystalline ``` ### `SymOperation` ```@docs transform(::SymOperation, ::AbstractMatrix{<:Real}, ::Union{AbstractVector{<:Real}, Nothing}, ::Bool=true) primitivize(::SymOperation, ::Char, ::Bool) conventionalize(::SymOperation, ::Char, ::Bool) ``` ### `AbstractVec` ```@docs transform(::Crystalline.AbstractVec, ::AbstractMatrix{<:Real}) primitivize(::Crystalline.AbstractVec, ::Char) conventionalize(::Crystalline.AbstractVec, ::Char) ``` ### `AbstractFourierLattice` ```@docs primitivize(::AbstractFourierLattice, ::Char) conventionalize(::AbstractFourierLattice, ::Char) ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
3093
# Groups All groups in Crystalline are concrete instances of the abstract supertype [`Crystalline.AbstractGroup{D}`](@ref), referring to a group in `D` dimensions. `Crystalline.AbstractGroup{D}` is itself a subtype of `AbstractVector{SymOperation{D}}`. Crystalline currently supports five group types: [`SpaceGroup`](@ref), [`PointGroup`](@ref), [`LittleGroup`](@ref), [`SubperiodicGroup`](@ref), [`SiteGroup`](@ref), and [`MSpaceGroup`](@ref). ## Example: space groups The one, two, and three-dimensional space groups are accessible via [`spacegroup`](@ref), which takes the space group number `sgnum` and dimensino `D` as input (ideally, the dimension is provided as a `Val{D}` for the sake of type stability) and returns a `SpaceGroup{D}` structure: ```@example spacegroup using Crystalline D = 3 # dimension sgnum = 16 # space group number (≀2 in 1D, ≀17 in 2D, ≀230 in 3D) sg = spacegroup(sgnum, D) # where practical, `spacegroup` should be called with a `Val{D}` dimension to ensure type stability; here we have D::Int instead for simplicity ``` By default, the returned operations are given in the conventional setting of the International Tables of Crystallography, Volume A (ITA). Conversion to a primitive basis (in the CDML setting) can be accomplished via [`primitivize`](@ref). In addition to space groups, Crystalline.jl provides access to the operations of point groups ([`pointgroup`](@ref)), little groups ([`littlegroups`](@ref)), subperiodic groups ([`subperiodicgroup`](@ref); including rod, layer, and frieze groups), site symmetry groups ([`sitegroup`](@ref) and [`sitegroups`](@ref)), and magnetic space groups ([`mspacegroup`](@ref)). ### Multiplication tables We can compute the multiplication table of a space group (under the previously defined notion of operator composition) using [`MultTable`](@ref): ```@example spacegroup MultTable(sg) ``` Alternatively, exploiting overloading of the `*`-operator, "raw" multiplication tables can be constructed via a simple outer product: ```@example spacegroup sg .* permutedims(sg) # equivalent to `reshape(kron(sg, sg), (length(sg), length(sg)))` ``` ### Symmorphic vs. nonsymorphic space groups To determine whether a space group is symmorphic or not, use [`issymmorph`](@ref) taking either a `SpaceGroup`, `LittleGroup`, or `SubperiodicGroup` (or a `SpaceGroup` identified by its number and dimensionality; in this case, using tabulated look-up). To test whether a given `SymOperation` is symmorphic in a given centering setting, use [`issymmorph(::SymOperation, ::Char)`](@ref) ## Group generators Generators of `SpaceGroup`s, `PointGroup`s, and `SubperiodicGroup`s are accessible via [`generators`](@ref), e.g.: ```@example spacegroup ops = generators(sgnum, SpaceGroup{D}) ``` To generate a group from a list of generators, we can use the [`generate`](@ref) method. As an example, we can verify that `ops` in fact returns symmetry operations identical to those in `sg`: ```@example spacegroup generate(ops) ``` ## Magnetic space groups Magnetic space groups are accessible via [`mspacegroup`](@ref).
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
552
# Crystalline.jl --- Documentation for [Crystalline.jl](https://github.com/thchr/Crystalline.jl) and [Bravais.jl](https://github.com/thchr/Crystalline.jl/tree/master/Bravais). !!! note Crystalline.jl remains a work-in-progress research package. Breaking changes are likely (but will respect [semver](https://semver.org/) conventions). ```@contents Pages = ["operations.md", "groups.md", "irreps.md", "bravais.md", "bandreps.md", "lattices.md", "api.md", "internal-api.md"] ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
311
# Internal API This page lists unexported functionality from Crystalline, that may be of interest to developers. --- ```@meta CurrentModule = Crystalline ``` ## Unexported, internal functionality ```@autodocs Modules = [Crystalline] Private = true Public = false Order = [:type, :function, :constant] ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
6610
# Irreducible representations Crystalline.jl provides easy access to crystallographic point group irreps, site symmetry group irreps, and the little group irreps of space groups. Currently, we only provide access to spinless (or "single-valued") irreps. ## Point group irreps Irreps for the crystallographic point groups are accessible via [`pgirreps`](@ref), with the point group specified either by IUC label and dimensionality. As an example, we may load the irreps of the 6mm (C₆α΅₯ in Schoenflies notation; see also [`schoenflies(::PointGroup)`](@ref)) point group in 3D. ```@example pgirs using Crystalline pgirs = pgirreps("6mm", Val(3)) ``` Frequently, the character table of the associated irreps is more informative than the irrep matrices themselves. We can construct this table using [`characters`](@ref), which returns a `CharacterTable`: ```@example pgirs characters(pgirs) ``` The characters are functions of the conjugacy class (i.e., the characters of operations in the same conjugacy class are equal). Thus, a more compact representation of the character table can be achieved by a class-resolved table, achievable via [`classcharacters`](@ref): ```@example pgirs classcharacters(pgirs) ``` ### Notation The default point group irrep labeling follows the Bilbao Crystallographic Server's labeling, which in turn follows the 1963 labelling of Koster, Dimmock, Wheeler, & Statz [^2] (which is also followed e.g. by CDML [^1] labeling as well as Bradley and Cracknell's book). Associated Muliken (or "spectroscopist's") notation can be obtained via `mulliken`. ## Little group irreps Little group irreps, sometimes called ''small'' irreps, are accessible via [`lgirreps`](@ref) and provided with CDML [^1] labels (courtesy of ISOTROPY). As an example, we can obtain the irreps of space group 183 (P6mm; the trivial 3D extension of plane group 17, which in turn is the space group extension of point group 6mm from above) by: ```@example lgirs using Crystalline lgirsd = lgirreps(183, Val(3)) ``` which returns a dictionary of `LGIrrep`s, indexed by k-labels given as `String`s, corresponding to different little groups. In general, we include all the little groups included in ISOTROPY; unfortunately, there is no strict guarantee that this includes a full listing of all inequivalent irreps (although it is typically true). The listing typically contains both special points, lines, and planes (and also always the general point). We can inspect the little group irreps of any particular **k**-point, accessing it via its canonical label. As before, we can inspect the associated character tables to get an overview of the irreps: ```@example lgirs lgirs = lgirsd["Ξ“"] # little group irreps at the Ξ“ point characters(lgirs) ``` ## Space group irreps We currently do not provide access to "full" space group irreps. They can, however, be readily built by induction from little group irreps. Specifically, every little group irrep $D_{\mathbf{k}}^\alpha$ associated with the little group $G_{\mathbf{k}}$, induces a space group irrep, sometimes denoted ${}^*D_{\mathbf{k}}^{\alpha}$ or $D^{\alpha}_{\mathbf{k}}\uparrow G$, in the full space group $G$:[^Inui] ```math [{}^*D_{\mathbf{k}}^{\alpha}(g)]_{ij} = \begin{cases} D_{\mathbf{k}}^{\alpha}(h_i^{-1}gh_j) & \text{if }h_i^{-1}gh_j \in G_{\mathbf{k}}\\ \boldsymbol{0}_{d_{\mathbf{k}}^{\alpha}\times d_{\mathbf{k}}^{\alpha}} & \text{otherwise} \end{cases}, ``` where $d_{\mathbf{k}}^{\alpha}$ is the dimension of the little group irrep $D^{\alpha}_{\mathbf{k}}$, $\boldsymbol{0}_{d_{\mathbf{k}}^{\alpha}\times d_{\mathbf{k}}^{\alpha}}$ is a $d_{\mathbf{k}}^{\alpha}\times d_{\mathbf{k}}^{\alpha}$ zero matrix, and $h_i$ and $h_j$ iterate over the (left) coset representatives of $G_{\mathbf{k}}$ in $G$ (of which there are $|\mathrm{star}\{\mathbf{k}\}|$, i.e., the order of the star of $\mathbf{k}$). The induced irrep ${}^*D_{\mathbf{k}}^{\alpha}$ is consequently a $d_{\mathbf{k}}^{\alpha}|\mathrm{star}\{\mathbf{k}\}|\times d_{\mathbf{k}}^{\alpha}|\mathrm{star}\{\mathbf{k}\}|$ matrix. [^Inui]: Inui, Tanabe, & Onodera, *Group Theory and its Applications in Physics*, Springer (1990). Section 11.9. ## Site symmetry irreps To obtain irreps associated with a given site symmetry group (see [`SiteGroup`](@ref)), use [`siteirreps`](@ref) which obtains the irreps associated with the site symmetry group by identifying a "parent" point group which is isomorphic to the provided site symmetry group, and then returning a suitable permutation of the point group's irreps. ## Time-reversal symmetry & "physically real" irreps Irreps returned in Crystalline.jl do not assume time-reversal symmetry by default. To incorporate time-reversal symmetry (or, equivalently, to obtain associated "physically real" irreps - or, more technically, co-representations), which may cause irreps to "stick together", see [`realify`](@ref) (which takes a vector of `PGIrrep`s or `LGIrrep`s). As an example, the Γ₃, Ξ“β‚„, Ξ“β‚…, and Γ₆ irreps of point group 6 (C₆) are intrinsically complex in the absence of time-reversal symmetry: ```@example realirs using Crystalline pgirs = pgirreps("6", Val(3)) characters(pgirs) ``` When time-reversal symmetry is incorporated, the irreps stick together pairwise and have real characters: ```@example realirs pgirsβ€² = realify(pgirs) characters(pgirsβ€²) ``` To inspect the reality type of a given irrep, see [`reality`](@ref). Possible types are `REAL`, `COMPLEX`, and `PSEUDOREAL` (the latter does not arise for point groups): ```@example realirs label.(pgirs) .=> reality.(pgirs) ``` The reality type can be computed ab initio via [`calc_reality`](@ref), using the Frobenius criterion for `PGIrrep`s and `SiteIrrep`s and the Herring criterion for `LGIrrep`s. ## Data sources Point group irreps are obtained from the Bilbao Crystallographic Server's [Representations PG program](https://www.cryst.ehu.es/cgi-bin/cryst/programs/representations_point.pl?tipogrupo=spg) and little group irreps of space groups are obtained from [ISOTROPY's 2011 ISO-IR dataset](https://stokes.byu.edu/iso/irtables.php). If these functionalities are used in published research, please cite the original publications (listed in associated function docstrings). [^1]: Cracknell, A.P., Davies, B.L., Miller, S.C., & Love, W.F., *Kronecker Product Tables, Vol. 1. General Introduction and Tables of Irreducible Representations of Space Groups*, New York: IFI/Plenum (1979). [^2]: Koster, G.F., Dimmock, J.O., Wheeler, R.G., & Statz, H., *Properties of the Thirty-two Point Groups*, Cambridge: MIT Press (1963).
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
308
# Isosurfaces with space group symmetry ```@meta CurrentModule = Crystalline ``` ```@docs; canonical=false UnityFourierLattice ModulatedFourierLattice levelsetlattice modulate primitivize(::AbstractFourierLattice, ::Char) conventionalize(::AbstractFourierLattice, ::Char) AbstractFourierLattice(::Any) ```
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
3183
# Symmetry operations A [`SymOperation{D}`](@ref) is a representation of a spatial symmetry operation $g=\{\mathbf{W}|\mathbf{w}\}$, composed of a rotational $\mathbf{W}$ and a translation part $\mathbf{w}$. The rotational and translation parts are assumed to share the same basis setting; by default, operations returned by Crystalline.jl are in the conventional setting of the International Tables of Crystallography, Volume A (ITA). `SymOperation`s can be constructed in two ways, either by explicitly specifying the $\mathbf{W}$ and $\mathbf{w}$: ```@example operations using Crystalline, StaticArrays W, w = (@SMatrix [1 0 0; 0 0 1; 0 1 0]), (@SVector [0, 0.5, 0]) op = SymOperation(W, w) ``` or by its equivalent triplet form ```julia op = SymOperation{3}("x,z+1/2,y") ``` There is also a string macro accessor `@S_str` that allows triplet input via `S"x,z+1/2,y"`. In the above output, three equivalent notations for the symmetry operation are given: first, the Seitz notation {m₀₋₁₁|0,Β½,0}, then the triplet notation (x,z+1/2,y), and finally the explicit matrix notation. ## Components The rotation and translation parts $\mathbf{W}$ and $\mathbf{w}$ of a `SymOperation{D}` $\{\mathbf{W}|\mathbf{w}\}$ can be accessed via [`rotation`](@ref) and [`translation`](@ref), returning an `SMatrix{D, D, Float64}` and an `SVector{D, Float64}`, respectively. The "augmented" matrix $[\mathbf{W}|\mathbf{w}]$ can similarly be obtained via [`matrix`](@ref). ## Operator composition Composition of two operators $g_1$ and $g_2$ is defined by ```math g_1 \circ g_2 = \{\mathbf{W}_1|\mathbf{w}_1\} \circ \{\mathbf{W}_2|\mathbf{w}_2\} = \{\mathbf{W}_1\mathbf{W}_2|\mathbf{w}_1 + \mathbf{W}_1\mathbf{w}_2\} ``` We can compose two `SymOperation`s in Crystalline via: ```@example operations op1 = S"z,x,y" # 3₁₁₁⁺ op2 = S"z,y,x" # m₋₁₀₁ op1 * op2 ``` which is accessed by an overloaded call to `Base.*`, i.e. the multiplication operator (this enables us to also call derived methods of `*`, such as integer powers (e.g., `S"-y,x-y,z"^3 == S"x,y,z"`). Note that composition is taken modulo integer lattice translations by default, such that ```@example operations op2β€² = S"z,y,x+1" # {m₋₁₀₁|001} op1 * op2β€² # equivalent to compose(op1, op2β€², true) ``` rather than `S"x+1,z,y"`, which is the result of direct application of the above composition rule. To compute "unreduced" composition, the more precise [`compose`](@ref) variant of `*` can be used with an optional third argument `false`: ```@example operations compose(op1, op2β€², false) ``` ## Operator inverses The operator inverse is defined as $\{\mathbf{W}|\mathbf{w}\} = \{\mathbf{W}^{-1}|-\mathbf{W}^{-1}\mathbf{w}\}$ and can be computed via ```@example operations inv(op1) # inv(3₁₁₁⁺) ``` ## Action of symmetry operators A `SymOperation` can act on vectors in direct ([`RVec`](@ref)) or reciprocal ([`KVec`](@ref)) space. When acting in reciprocal space, translation parts of a `SymOperation` have no effect. # Magnetic symmetry operations Magnetic symmetry operations that may incorporate composition with an anti-unitary time-reversal operation can be created via [`MSymOperation`](@ref) (see also [`mspacegroup`](@ref)).
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.6.4
b4ac59b6877535177e89e1fe1b0ff5d0c2e903de
docs
66
We only include _crystallographic_ point groups in this tabulation
Crystalline
https://github.com/thchr/Crystalline.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
923
using Distributed addprocs(1) @everywhere using Revise @everywhere using VersatileHDPMixtureModels function generate_data(dim, groups_count,sample_count,var,Ξ± = 10, Ξ³ = 1) crf_prior = hdp_prior_crf_draws(sample_count,groups_count,Ξ±,Ξ³) pts,labels = generate_grouped_gaussian_from_hdp_group_counts(crf_prior[2],dim,var) return pts, labels end function results_stats(pred_dict, gt_dict) avg_nmi = 0 for i=1:length(pred_dict) nmi = mutualinfo(pred_dict[i],gt_dict[i]) avg_nmi += nmi end return avg_nmi / length(pred_dict) end function run_and_compare(pts,labels,gdim,iters = 100) gprior, lprior = create_default_priors(gdim,0,:niw) model = hdp_fit(pts,10,1,gprior,iters) model_results = get_model_global_pred(model[1]) return results_stats(labels,model_results) end gdim = 3 pts,labels = generate_data(gdim,4,100,100.0) run_and_compare(pts,labels,gdim)
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
3078
include("../CODE/ds.jl") include("../CODE/distributions/niw.jl") using LinearAlgebra #Global Setting use_gpu = false use_darrays = false #Only relevant if use_gpu = false random_seed = nothing #Data Loading specifics data_path = "../DATA/Bees/" data_prefix = "XXX" groups_count = 4 global_preprocessing = nothing local_preprocessing = nothing #Model Parameters iterations = 100 hard_clustering = false total_dim = 10 local_dim = 7 Ξ± = 10.0 Ξ³ = 1000000000000.0 global_weight = 1.0 local_weight= 1.0 initial_global_clusters = 1 initial_local_clusters = 1 use_dict_for_global = false ignore_local = true split_stop = 5 argmax_sample_stop = 5 glob_dim = 6 global_hyper_params = niw_hyperparams(1.0, zeros(glob_dim), glob_dim+3, Matrix{Float64}(I, glob_dim, glob_dim)*0.1) local_mult = 0.1 count_list = [1,1,1,1] local_hyper_params = [niw_hyperparams(1.0, zeros(i),i+3,Matrix{Float64}(I, i, i)*local_mult) for i in count_list] #local_hyper_params = [niw_hyperparams(1.0, zeros(5),8+3,Matrix{Float64}(I, 5, 5)*local_mult) for i in count_list] # local_hyper_params = [niw_hyperparams(1.0, # zeros(3), # 6, # Matrix{Float64}(I, 3, 3)*local_mult), # niw_hyperparams(1.0, # zeros(6), # 9.0, # Matrix{Float64}(I, 6, 6)*local_mult), # niw_hyperparams(1.0, # zeros(9), # 12.0, # Matrix{Float64}(I, 9, 9)*local_mult), # niw_hyperparams(1.0, # zeros(12), # 15.0, # Matrix{Float64}(I, 12, 12)*local_mult), # niw_hyperparams(1.0, # zeros(15), # 18.0, # Matrix{Float64}(I, 15, 15)*local_mult), # niw_hyperparams(1.0, # zeros(18), # 21.0, # Matrix{Float64}(I, 18, 18)*local_mult), # niw_hyperparams(1.0, # zeros(21), # 24.0, # Matrix{Float64}(I, 21, 21)*local_mult), # niw_hyperparams(1.0, # zeros(24), # 27.0, # Matrix{Float64}(I, 24, 24)*local_mult), # niw_hyperparams(1.0, # zeros(27), # 30.0, # Matrix{Float64}(I, 27, 27)*local_mult)] # local_hyper_params = [niw_hyperparams(1.0, # zeros(3), # 100.0, # Matrix{Float64}(I, 3, 3)*10.0), # niw_hyperparams(1.0, # zeros(6), # 100.0, # Matrix{Float64}(I, 6, 6)*10.0), # niw_hyperparams(1.0, # zeros(9), # 100.0, # Matrix{Float64}(I, 9, 9)*10.0), # niw_hyperparams(1.0, # zeros(12), # 100.0, # Matrix{Float64}(I, 12, 12)*10.0), # niw_hyperparams(1.0, # zeros(15), # 100.0, # Matrix{Float64}(I, 15, 15)*10.0), # niw_hyperparams(1.0, # zeros(18), # 100.0, # Matrix{Float64}(I, 18, 18)*10.0), # niw_hyperparams(1.0, # zeros(21), # 100.0, # Matrix{Float64}(I, 21, 21)*10.0), # niw_hyperparams(1.0, # zeros(24), # 100.0, # Matrix{Float64}(I, 24, 24)*10.0), # niw_hyperparams(1.0, # zeros(27), # 100.0, # Matrix{Float64}(I, 27, 27)*10.0)]
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
868
using VersatileHDPMixtureModels nips_path = "docword.nips.txt" function text_file_to_dict(path) data_dict = Dict() cur_doc = 0 open(path) do file cur_vec =[] for ln in eachline(file) items = [parse(Int64,x) for x in split(ln)] if length(items) < 3 continue end if cur_doc != items[1] data_dict[cur_doc] = Float32.(cur_vec)[:,:]' cur_vec = [] cur_doc = items[1] end for i=1:items[3] push!(cur_vec,items[2]) end end data_dict[cur_doc] = Float32.(cur_vec)[:,:]' end delete!(data_dict,0) return data_dict end nips_data = text_file_to_dict(nips_path) nips_gprior = topic_modeling_hyper(Float64.(ones(12419))*0.1) ### Unlike the HDP, here to promote splits you need to increase both Ξ³ and Ξ±. model = hdp_fit(nips_data,100.0,100.0,nips_gprior,80,1,10) avg_word = VersatileHDPMixtureModels.calc_avg_word(model[1])
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
1730
__precompile__() module VersatileHDPMixtureModels using Distributed using StatsBase using Distributions using SpecialFunctions using LinearAlgebra using JLD2 using Clustering using Random using NPZ using Base using PDMats #DS: include("ds.jl") #Distributions: include("distributions/mv_gaussian.jl") include("distributions/mv_group_gaussian.jl") include("distributions/multinomial_dist.jl") include("distributions/topic_modeling_dist.jl") include("distributions/compact_mnm.jl") #Priors: include("priors/multinomial_prior.jl") include("priors/topic_modeling_prior.jl") include("priors/niw.jl") include("priors/niw_stable_var.jl") include("priors/bayes_network_model.jl") include("priors/compact_mnm_prior.jl") #Rest: include("params_base.jl") include("utils.jl") include("shared_actions.jl") include("local_clusters_actions.jl") include("global_clusters_actions.jl") include("crf_hdp.jl") include("gaussian_generator.jl") include("hdp_shared_features.jl") #Data Generators: export generate_sph_gaussian_data, generate_gaussian_data, generate_mnmm_data, generate_grouped_mnm_data, generate_grouped_gaussian_data, create_mnmm_data, create_gaussian_data, create_grouped_gaussian_data, create_grouped_mnmm_data, hdp_prior_crf_draws, generate_grouped_gaussian_from_hdp_group_counts, #Model DS: hdp_shared_features, multinomial_dist, mv_gaussian, mv_group_gaussian, topic_modeling_dist, bayes_network_model, niw_hyperparams, niw_stable_hyperparams, topic_modeling_hyper, compact_mnm_hyper, compact_mnm_dist, #Functions hdp_fit, vhdp_fit, create_default_priors, get_model_global_pred, create_global_labels end # module
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
7191
mutable struct Dish count::Int64 cluster_params::cluster_parameters end mutable struct Table count::Int64 dish_index::Int64 end mutable struct Restaurant tables::Vector{Table} points::AbstractArray{Float64,2} labels::AbstractArray{Int64,2} end mutable struct Crf_model dishes::Vector{Dish} restaurants::Vector{Restaurant} prior::distribution_hyper_params end function create_new_dish(prior) #pts = point[:,:] suff = create_sufficient_statistics(prior,[]) post = calc_posterior(prior,suff) dist = sample_distribution(prior) cluster_params = cluster_parameters(prior,dist,suff,post) dish = Dish(1,cluster_params) return dish end function resample_dish!(pts_vec,dish) if length(pts_vec) == 0 suff = create_sufficient_statistics(dish.cluster_params.hyperparams,[]) post = calc_posterior(dish.cluster_params.hyperparams,suff) dist = sample_distribution(dish.cluster_params.hyperparams) cluster_params = cluster_parameters(dish.cluster_params.hyperparams,dist,suff,post) dish.cluster_params = cluster_params else all_pts = reduce(hcat,pts_vec) suff = create_sufficient_statistics(dish.cluster_params.hyperparams,dish.cluster_params.hyperparams,all_pts) post = calc_posterior(dish.cluster_params.hyperparams,suff) dist = sample_distribution(post) cluster_params = cluster_parameters(dish.cluster_params.hyperparams,dist,suff,post) dish.cluster_params = cluster_params end end function init_crf_model(data,prior) restaurants = [] dishes = [] for i=1:length(data) v = data[i] table = Table(size(v,2),1) restaurant = Restaurant([table],v,ones(size(v,2),1)) push!(restaurants,restaurant) end first_dish = create_new_dish(prior) first_dish.count = length(data) #Amount of tables at init model = Crf_model([first_dish],restaurants,prior) return model end function get_tables_probability_vec(tables,Ξ±) counts = [x.count for x in tables] push!(counts,Ξ±) weights = [x/sum(counts) for x in counts] return weights end function sample_dish(dishes, pts, Ξ³,new_dish,cur_dish = -1) counts = [x.count for x in dishes] if cur_dish > 0 counts[cur_dish] -= 1 end push!(counts,Ξ³) weights = [x/sum(counts) for x in counts] dists = [x.cluster_params.distribution for x in dishes] push!(dists, new_dish.cluster_params.distribution) parr = zeros(length(size(pts,2)), length(dists)) for (k,v) in enumerate(dists) log_likelihood!(reshape((@view parr[:,k]),:,1), pts,v) end parr = sum(parr, dims = 1)[:,:] + reshape(log.(weights),1,:) labels = [0][:,:] sample_log_cat_array!(labels,parr) return labels[1,1] end function sample_table(dists,weights,pts) parr = zeros(length(size(pts,2)), length(dists)) for (k,v) in enumerate(dists) log_likelihood!(reshape((@view parr[:,k]),:,1), pts,v) end parr = sum(parr, dims = 1) + reshape(log.(weights),1,:) labels = [0][:,:] sample_log_cat_array!(labels,parr) return labels[1,1] end function crf_hdp_fit(data,Ξ±,Ξ³,prior,iters) model = init_crf_model(data,prior) #Each iteration is a single pass on all points for iter=1:iters println("Iter " * string(iter) * " Dish count: " * string(length(model.dishes))) #Resample dishes distribution cur_new_dish = create_new_dish(prior) for (dish_index,dish) in enumerate(model.dishes) pts = [] for restaurant in model.restaurants for (table_index,table) in enumerate(restaurant.tables) if table.dish_index == dish_index push!(pts, restaurant.points[:,restaurant.labels[:] .== table_index]) end end end resample_dish!(pts,dish) end #Samples points for restaurant in model.restaurants # println([x.count for x in restaurant.tables]) for i=1:size(restaurant.points,2) point = restaurant.points[:,i][:,:] prev_table = restaurant.labels[i,1] restaurant.tables[prev_table].count -= 1 weights = get_tables_probability_vec(restaurant.tables,Ξ±) new_table_dish = sample_dish(model.dishes, point,Ξ³,cur_new_dish) dists = [model.dishes[x.dish_index].cluster_params.distribution for x in restaurant.tables] if new_table_dish > length(model.dishes) push!(dists, cur_new_dish.cluster_params.distribution) else push!(dists,model.dishes[new_table_dish].cluster_params.distribution) end try log.(weights) catch e println("error print:") println([x.count for x in restaurant.tables]) rethrow([e]) end new_table = sample_table(dists,weights,point) restaurant.labels[i,1] = new_table if new_table > length(restaurant.tables) push!(restaurant.tables,Table(1,new_table_dish)) if new_table_dish > length(model.dishes) cur_new_dish.count = 1 push!(model.dishes, cur_new_dish) cur_new_dish = create_new_dish(prior) else model.dishes[new_table_dish].count +=1 end else restaurant.tables[new_table].count += 1 end if restaurant.tables[prev_table].count == 0 model.dishes[restaurant.tables[prev_table].dish_index].count -= 1 end end end #Samples tables for restaurant in model.restaurants for (index,table) in enumerate(restaurant.tables) if table.count == 0 continue end point = restaurant.points[:,(restaurant.labels .== index)[:]] prev_dish = table.dish_index new_table_dish = sample_dish(model.dishes, point,Ξ³,cur_new_dish,prev_dish) model.dishes[prev_dish].count -=1 if new_table_dish > length(model.dishes) cur_new_dish.count = 1 push!(model.dishes, cur_new_dish) cur_new_dish = create_new_dish(prior) else model.dishes[new_table_dish].count +=1 end # println("old dish:" * string(prev_dish) * " new dish:" * string(new_table_dish)) table.dish_index = new_table_dish end end end return model end function get_dish_labels_from_model(model::Crf_model) labels_dict = Dict() for (k,v) in enumerate(model.restaurants) labels = [v.tables[v.labels[i,1]].dish_index for i=1:size(v.points,2)] labels_dict[k] = labels end return labels_dict end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
2452
abstract type distribution_hyper_params end #Suff statistics must contain N which is the number of points associated with the cluster abstract type sufficient_statistics end abstract type distibution_sample end import Base.copy struct model_hyper_params global_hyper_params::distribution_hyper_params local_hyper_params Ξ±::Float64 Ξ³::Float64 Ξ·::Float64 global_weight::Float64 local_weight::Float64 total_dim::Int64 local_dim::Int64 end mutable struct cluster_parameters hyperparams::distribution_hyper_params distribution::distibution_sample suff_statistics::sufficient_statistics posterior_hyperparams::distribution_hyper_params end mutable struct splittable_cluster_params cluster_params::cluster_parameters cluster_params_l::cluster_parameters cluster_params_r::cluster_parameters lr_weights::AbstractArray{Float64, 1} splittable::Bool logsublikelihood_hist::AbstractArray{Float64,1} end mutable struct global_cluster cluster_params::splittable_cluster_params total_dim::Int64 local_dim::Int64 points_count::Int64 clusters_count::Int64 clusters_sub_counts::AbstractArray{Int64, 1} end mutable struct local_cluster cluster_params::splittable_cluster_params total_dim::Int64 local_dim::Int64 points_count::Int64 global_weight::Float64 local_weight::Float64 globalCluster::Int64 globalCluster_subcluster::Int64 #1 for left, 2 for right global_suff_stats::AbstractArray{Int64, 1} end mutable struct local_group model_hyperparams::model_hyper_params points::AbstractArray{Float64,2} labels::AbstractArray{Int64,2} labels_subcluster::AbstractArray{Int64,2} local_clusters::Vector{local_cluster} weights::Vector{Float64} group_num::Int64 end mutable struct local_group_stats labels::AbstractArray{Int64,2} labels_subcluster::AbstractArray{Int64,2} local_clusters::Vector{local_cluster} end mutable struct hdp_shared_features model_hyperparams::model_hyper_params groups_dict::Dict global_clusters::Vector{global_cluster} weights::AbstractArray{Float64, 1} end function copy_local_cluster(c::local_cluster) return deepcopy(c) end function update_group_from_stats!(group::local_group, stats::local_group_stats) group.labels = stats.labels group.labels_subcluster = stats.labels_subcluster group.local_clusters = stats.local_clusters end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
9582
using NPZ using Distributions using LinearAlgebra using Distributed using StatsBase using Distributions using SpecialFunctions using LinearAlgebra using Random function generate_sph_gaussian_data(N::Int64, D::Int64, K::Int64) x = randn(D,N) tpi = rand(Dirichlet(ones(K))) tzn = rand(Multinomial(N,tpi)) tz = zeros(N) tmean = zeros(D,K) tcov = zeros(D,D,K) ind = 1 println(tzn) for i=1:length(tzn) indices = ind:ind+tzn[i]-1 tz[indices] .= i tmean[:,i] .= rand(MvNormal(zeros(D), 100*Matrix{Float64}(I, D, D))) tcov[:,:,i] .= rand(InverseGamma((D+2)/2,1))*Matrix{Float64}(I, D, D) # T = chol(slice(tcov,:,:,i)) # x[:,indices] = broadcast(+, T*x[:,indices], tmean[:,i]); d = MvNormal(tmean[:,i], tcov[:,:,i]) for j=indices x[:,j] = rand(d) end ind += tzn[i] end x, tz, tmean, tcov end function generate_gaussian_data(N::Int64, D::Int64, K::Int64) x = randn(D,N) tpi = rand(Dirichlet(ones(K))) tzn = rand(Multinomial(N,tpi)) tz = zeros(N) tmean = zeros(D,K) tcov = zeros(D,D,K) ind = 1 println(tzn) for i=1:length(tzn) indices = ind:ind+tzn[i]-1 tz[indices] .= i tmean[:,i] .= rand(MvNormal(zeros(D), 100*Matrix{Float64}(I, D, D))) tcov[:,:,i] .= rand(InverseWishart(D+2, Matrix{Float64}(I, D, D))) # T = chol(slice(tcov,:,:,i)) # x[:,indices] = broadcast(+, T'*x[:,indices], tmean[:,i]); d = MvNormal(tmean[:,i], tcov[:,:,i]) for j=indices x[:,j] = rand(d) end ind += tzn[i] end x, tz, tmean, tcov end function generate_mnmm_data(N::Int64, D::Int64, K::Int64, trials::Int64) clusters = zeros(D,K) x = zeros(D,N) labels = rand(1:K,(N,)) for i=1:K alphas = rand(1:20,(D,)) alphas[i] = rand(30:100) clusters[:,i] = rand(Dirichlet(alphas)) end for i=1:N x[:,i] = rand(Multinomial(trials,clusters[:,labels[i]])) end return x, labels, clusters end function generate_grouped_mnm_data(N::Int64, D_global::Int64, D_local, K_global::Int64, K_local::Int64, groups_count::Int64, rand_local::Bool, trials::Int64) global_weights = rand(Dirichlet(ones(K_global))) pts_dict = Dict() labels_dict = Dict() clusters_g = zeros(D_global,K_global) for i=1:length(global_weights) alphas = ones(D_global)*2 alphas[rand(1:D_global,Int(floor(D_global/40)))] .= rand(trials/2:trials) clusters_g[:,i] = rand(Dirichlet(alphas)) end for j=1:groups_count x = zeros(D_global + D_local,N) x_labels = zeros(size(x,2),2) if rand_local local_k = rand(1:K_local*2) else local_k = K_local end clusters_tzn = sample(1:length(global_weights),ProbabilityWeights(global_weights),local_k) local_weights = rand(Dirichlet(ones(local_k)*100)) clusters_l = zeros(D_global+D_local,local_k) ind = 1 group_ind = 1 group_tzn = rand(Multinomial(N,local_weights)) # group_tzn = rand(Multinomial(N,ones(local_k))) for i=1:length(local_weights) indices = ind:ind+group_tzn[i]-1 # println(indices) alphas = ones(D_local)*2 alphas[rand(1:D_local,Int(floor(D_local/1.25)))] .= rand(trials/2:trials) # local_part = rand(Dirichlet(alphas)) # clusters_l[:,i] .= cat(clusters_g[:,clusters_tzn[i]], alphas, dims = [1]) pvector = rand(Dirichlet(alphas)) for a=indices x[1:D_global,a] = rand(Multinomial(trials,clusters_g[:,clusters_tzn[i]])) x[D_global+1:end,a] = rand(Multinomial(trials,pvector)) x_labels[a,1] = clusters_tzn[i] x_labels[a,2] = i end ind += group_tzn[i] end pts_dict[j] = x labels_dict[j] = x_labels end return pts_dict, labels_dict end function generate_grouped_gaussian_data(N::Int64, D_global::Int64, D_local, K_global::Int64, K_local::Int64, groups_count::Int64, rand_local::Bool, var_size, hdp=false) global_weights = rand(Dirichlet(ones(K_global))) pts_dict = Dict() labels_dict = Dict() tmean = zeros(D_global,K_global) tcov = zeros(D_global,D_global,K_global) for i=1:length(global_weights) tmean[:,i] .= rand(MvNormal(zeros(D_global), var_size*Matrix{Float64}(I, D_global, D_global))) tcov[:,:,i] .= rand(InverseWishart(D_global+2, Matrix{Float64}(I, D_global, D_global))) end for j=1:groups_count x = randn(D_global + D_local,N) x_labels = zeros(size(x,2),2) if rand_local local_k = rand(K_local-2:K_local+2) else local_k = K_local end clusters_tzn = sample(1:length(global_weights),ProbabilityWeights(global_weights),local_k) local_weights = rand(Dirichlet(ones(local_k)*100)) group_mean = zeros(D_global+D_local,local_k) group_cov = zeros(D_global+D_local,D_global+D_local,local_k) ind = 1 group_ind = 1 group_tzn = rand(Multinomial(N,local_weights)) # group_tzn = rand(Multinomial(N,ones(local_k))) for i=1:length(local_weights) indices = ind:ind+group_tzn[i]-1 g_mean = rand(MvNormal(zeros(D_local), var_size*Matrix{Float64}(I, D_local, D_local))) g_cov = rand(InverseWishart(D_local+2, Matrix{Float64}(I, D_local, D_local))) group_mean[:,i] .= cat(tmean[:,clusters_tzn[i]], g_mean, dims = [1]) group_cov[:,:,i] .= cat(tcov[:,:,clusters_tzn[i]], g_cov, dims = [1,2]) d = MvNormal(group_mean[:,i], group_cov[:,:,i]) for j=indices x[:,j] = rand(d) x_labels[j,1] = clusters_tzn[i] x_labels[j,2] = i end ind += group_tzn[i] end if hdp x[D_global+1:end,:] .= 0 end pts_dict[j] = x labels_dict[j] = x_labels end return pts_dict, labels_dict end function create_mnmm_data() x,labels,clusters = generate_mnmm_data(10^6,100,6,1000) npzwrite("data/mnmm/1milD100K6.npy",x') x,labels,clusters = generate_mnmm_data(10^6,100,60,100) npzwrite("data/mnmm/1milD100K60.npy",x') end function create_gaussian_data() x,labels,clusters = generate_gaussian_data(10^5,2,20) npzwrite("data/2d-1mil/samples_100k1.npy",x') # x,labels,clusters = generate_gaussian_data(10^5,100,60,100) # npzwrite("data/30d-1mil/samples.npy",x') end function create_grouped_gaussian_data() samples_count = 10000 global_dim = 2 local_dim = 1 global_clusters_count = 4 local_clusters_count = 5 groups_count = 5 random_local_cluster_count = true var_size = 60 hdp = true path_to_save = "data/3d-gaussians/" prefix = "gg" pts, labels = generate_grouped_gaussian_data(samples_count, global_dim, local_dim, global_clusters_count, local_clusters_count, groups_count, random_local_cluster_count, var_size, hdp) for (k,v) in pts npzwrite(path_to_save * prefix * string(k) * ".npy",v') end for (k,v) in labels npzwrite(path_to_save * prefix*"_labels" * string(k) * ".npy",v) end end function create_grouped_mnmm_data() samples_count = 10000 global_dim = 100 local_dim = 100 global_clusters_count = 10 local_clusters_count = 20 groups_count = 4 random_local_cluster_count = false trials = 1000 path_to_save = "data/200d-mnm/" prefix = "g" pts, labels = generate_grouped_mnm_data(samples_count, global_dim, local_dim, global_clusters_count, local_clusters_count, groups_count, random_local_cluster_count, trials) for (k,v) in pts npzwrite(path_to_save * prefix * string(k) * ".npy",v') end for (k,v) in labels npzwrite(path_to_save * prefix*"_labels" * string(k) * ".npy",v) end end function single_crp_draw(tables,Ξ±) tables = push!(tables,Ξ±) sum_tables = sum(tables) table_probs = [x / sum_tables for x in tables] return sample(ProbabilityWeights(table_probs)) end function hdp_prior_crf_draws(N,J,Ξ±,Ξ³) groups_tables_counts = Dict() for j=1:J table_counts = [] for i=1:N point_table = single_crp_draw(table_counts[:],Ξ±) if point_table == length(table_counts)+1 push!(table_counts,1) else table_counts[point_table] += 1 end end groups_tables_counts[j] = table_counts end global_tables_count = [] groups_tables_assignments = Dict([i=>[] for i=1:J]) cur_group_table = Dict([i=>1 for i=1:J]) is_done = [false for i=1:J] while any(is_done .== false) for j=1:J group_assignments = groups_tables_assignments[j] i = cur_group_table[j] if i > length(groups_tables_counts[j]) is_done[j] = true continue end table_assignment = single_crp_draw(global_tables_count,Ξ³) if table_assignment == length(global_tables_count)+1 push!(global_tables_count,1) else global_tables_count[table_assignment] += 1 end push!(group_assignments,table_assignment) groups_tables_assignments[j] = group_assignments cur_group_table[j]+=1 end end global_mixture = [x / sum(global_tables_count) for x in global_tables_count] groups_mixtures = Dict() for j=1:J local_mixture = zeros(length(global_mixture)) for i = 1:length(global_mixture) if i in groups_tables_assignments[j] local_mixture[i] = sum(groups_tables_counts[j][groups_tables_assignments[j] .== i]) end end groups_mixtures[j] = local_mixture end return global_mixture,groups_mixtures,groups_tables_counts,groups_tables_assignments end function generate_grouped_gaussian_from_hdp_group_counts(group_counts, dim, var_size) pts_dict = Dict() labels_dict = Dict() K = length(group_counts[1]) tmean = zeros(dim,K) tcov = zeros(dim,dim,K) J = length(group_counts) components = [] for i=1:length(group_counts[1]) tmean[:,i] .= rand(MvNormal(zeros(dim), var_size*Matrix{Float64}(I, dim, dim))) tcov[:,:,i] .= rand(InverseWishart(dim+2, Matrix{Float64}(I, dim, dim))) push!(components,MvNormal(tmean[:,i], tcov[:,:,i])) end for j=1:J points = reduce(hcat,[rand(components[i],Int(group_counts[j][i])) for i=1:length(group_counts[j])]) labels = reduce(vcat,[Int.(ones(Int(group_counts[j][i])))*i for i=1:length(group_counts[j])]) pts_dict[j] = points labels_dict[j] = labels end return pts_dict, labels_dict end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
24107
function create_first_global_cluster(hyperparams::model_hyper_params, groups_dict::Dict, cluster_index::Int64) pts = Vector{AbstractArray{Float64,2}}() sub_labels = Vector{AbstractArray{Int64,2}}() pts_to_groups = Vector{AbstractArray{Int64,1}}() count = 0 for (k,v) in groups_dict push!(pts,(@view v.points[1:hyperparams.local_dim-1,:])) push!(sub_labels,v.labels_subcluster) push!(pts_to_groups,ones(Int64,(size(pts[end],2)))*k) for c in v.local_clusters if c.globalCluster == cluster_index count +=1 end end end suff = create_sufficient_statistics(hyperparams.global_hyper_params, []) # suff = nothing post = hyperparams.global_hyper_params dist = sample_distribution(post) cp = cluster_parameters(hyperparams.global_hyper_params, dist, suff, post) cpl = deepcopy(cp) cpr = deepcopy(cp) splittable = splittable_cluster_params(cp,cpl,cpr,[0.5,0.5], false, ones(20).*-Inf) all_pts = reduce(hcat,pts) all_sub_labels = reduce(vcat,sub_labels)[:] all_pts_to_group = reduce(vcat,pts_to_groups)[:] update_splittable_cluster_params!(splittable,all_pts[1:hyperparams.local_dim-1,:], all_sub_labels, true, all_pts_to_group) # println(splittable) # println(count) cluster = global_cluster(splittable, hyperparams.total_dim, hyperparams.local_dim,splittable.cluster_params.suff_statistics.N,count,[1,1]) return cluster end function get_p_for_point(x) x = log.(exp.(x .- maximum(x)) ./ exp(sum(x .- maximum(x)))) x ./= sum(x) return log.(x) end function sample_group_cluster_labels(group_num::Int64, weights::AbstractArray{Float64, 1},final::Bool) group = groups_dict[group_num] points = group.points parr = zeros(length(group.labels), length(global_clusters_vector)) for (k,v) in enumerate(global_clusters_vector) local_dim = v.local_dim log_likelihood!((@view parr[:,k]), points[1 : local_dim-1,:],v.cluster_params.cluster_params.distribution, group_num) end clusters_parr = zeros(length(group.local_clusters),length(global_clusters_vector)) labels = zeros(Int64,length(group.local_clusters),1) for (i,c) in enumerate(group.local_clusters) relevant_arr = parr[(@view group.labels[:]) .== i,:] clusters_parr[i,:] .= sum(relevant_arr, dims = 1)[:] + log.(weights) sum_arr_trick = exp.(clusters_parr[i,:]) testarr = clusters_parr[i,:] .- maximum(clusters_parr[i,:]) testarr = exp.(testarr) if final labels[i,1] = argmax(clusters_parr[i,:][:]) else labels[i,1] = sample(1:length(global_clusters_vector), ProbabilityWeights(testarr[:])) end end return labels end function sample_cluster_label(group::local_group, cluster::local_cluster ,i, weights::AbstractArray{Float64, 1},final::Bool) points = group.points[1 : cluster.local_dim - 1, @view (group.labels .== i)[:]] parr = zeros(size(points,2), length(global_clusters_vector)) for (k,v) in enumerate(global_clusters_vector) log_likelihood!((@view parr[:,k]),points,v.cluster_params.cluster_params.distribution,group.group_num) end weights = reshape(weights,1,:) sum_arr = sum(parr,dims = 1) sum_arr .+= log.(weights) sum_arr_trick = exp.(sum_arr) testarr = sum_arr .- maximum(sum_arr) testarr = exp.(testarr) if final cluster.globalCluster = argmax(sum_arr[:]) else cluster.globalCluster = sample(1:length(global_clusters_vector), ProbabilityWeights(testarr[:])) end # println("sum arr: " *string(sum_arr) * " parr:" * string(sum_arr_trick) * " testarr:" * string(testarr) * " choosen: " * string(cluster.globalCluster)) return cluster.globalCluster end function sample_clusters_labels!(model::hdp_shared_features, final::Bool) labels_dict = Vector{Array}(undef,length(model.groups_dict)) groups_count = zeros(length(global_clusters_vector)) wvector = model.weights if mp @sync for (k,v) in model.groups_dict @async labels_dict[k] = @spawnat ((k % nworkers())+2) sample_group_cluster_labels(k, wvector, final) # labels_dict[k] = Dict() # for (i,c) in enumerate(v.local_clusters) # # labels_dict[k][i] = @spawn sample_cluster_label(c, v.points[1 : v.model_hyperparams.local_dim - 1, (@view (v.labels .== i)[:])], model.weights, final) # labels_dict[k][i] = sample_cluster_label(v,c, i, model.weights, final) # end end else Threads.@threads for k=1:length(model.groups_dict) labels_dict[k] = sample_group_cluster_labels(k, wvector, final) end end #at ((k % num_of_workers)+1) for (k,v) in model.groups_dict fetched_labels = fetch(labels_dict[k]) for (i,c) in enumerate(v.local_clusters) c.globalCluster = fetched_labels[i,1] groups_count[c.globalCluster] += 1 end end for (i,v) in enumerate(groups_count) global_clusters_vector[i].clusters_count = v end end function sample_sub_clusters!(model::hdp_shared_features) labels_dict = Dict() for v in global_clusters_vector v.clusters_sub_counts = [0,0] end for (k,v) in model.groups_dict labels_dict[k] = Vector{Array}(undef,length(model.groups_dict)) if mp for (i,c) in enumerate(v.local_clusters) labels_dict[k][i] = @spawnat ((k % num_of_workers)+1) sample_cluster_sub_label(c, v.points[1 : v.model_hyperparams.local_dim - 1, (@view (v.labels .== i)[:])]) end else Threads.@threads for i=1:length(v.local_clusters) c=local_clusters[i] labels_dict[k][i] = sample_cluster_sub_label(c, v.points[1 : v.model_hyperparams.local_dim - 1, (@view (v.labels .== i)[:])]) end end end for (k,v) in model.groups_dict for (i,c) in enumerate(v.local_clusters) c.globalCluster_subcluster = fetch(labels_dict[k][i]) global_clusters_vector[c.globalCluster].clusters_sub_counts[c.globalCluster_subcluster] += 1 end end end function split_cluster!(model::hdp_shared_features, index::Int64, new_index::Int64) cluster = global_clusters_vector[index] new_cluster = deepcopy(cluster) new_cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, model.model_hyperparams.Ξ³) cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, model.model_hyperparams.Ξ³) new_cluster.points_count = new_cluster.cluster_params.cluster_params.suff_statistics.N cluster.points_count = cluster.cluster_params.cluster_params.suff_statistics.N global_clusters_vector[new_index] = new_cluster end function merge_clusters!(model::hdp_shared_features,index_l::Int64, index_r::Int64) new_splittable_cluster = merge_clusters_to_splittable(global_clusters_vector[index_l].cluster_params.cluster_params, global_clusters_vector[index_r].cluster_params.cluster_params, model.model_hyperparams.Ξ±) global_clusters_vector[index_l].cluster_params = new_splittable_cluster global_clusters_vector[index_l].clusters_count += global_clusters_vector[index_r].clusters_count global_clusters_vector[index_l].cluster_params.splittable = true global_clusters_vector[index_r].cluster_params.cluster_params.suff_statistics.N = 0 global_clusters_vector[index_r].cluster_params.splittable = true global_clusters_vector[index_r].clusters_count = 0 end function should_split!(should_split::AbstractArray{Float64,1}, cluster_params::splittable_cluster_params, groups_dict::Dict, Ξ±::Float64, Ξ³::Float64, c_count::Int64, lr_count::AbstractArray{Int64,1}, index::Int64, glob_weight::Float64, final::Bool) cpl = cluster_params.cluster_params_l cpr = cluster_params.cluster_params_r cp = cluster_params.cluster_params if final || cpl.suff_statistics.N == 0 ||cpr.suff_statistics.N == 0 #||lr_count[1] == 0 || lr_count[2] == 0 should_split .= 0 return end log_likihood_l = log_marginal_likelihood(cpl.hyperparams, cpl. posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams, cpr. posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp. posterior_hyperparams, cp.suff_statistics) log_HR = log(Ξ³) + logabsgamma(cpl.suff_statistics.N)[1] + log_likihood_l + logabsgamma(cpr.suff_statistics.N)[1] + log_likihood_r -(logabsgamma(cp.suff_statistics.N)[1] + log_likihood) + cp.suff_statistics.N*log(glob_weight)-cpl.suff_statistics.N*log(glob_weight*cluster_params.lr_weights[1])-cpr.suff_statistics.N*log(glob_weight*cluster_params.lr_weights[2]) log_HR += get_groups_split_log_likelihood(groups_dict, index, cluster_params.lr_weights[1], cluster_params.lr_weights[2], glob_weight, Ξ±) if log_HR > log(rand()) should_split .= 1 end end function should_merge!(should_merge::AbstractArray{Float64,1}, cpl::cluster_parameters, cpr::cluster_parameters, groups_dict::Dict, Ξ±::Float64, c1_count::Int64, c2_count::Int64, i::Int64, j::Int64, wi::Float64, wj::Float64, final::Bool) new_suff = aggregate_suff_stats(cpl.suff_statistics, cpr.suff_statistics) cp = cluster_parameters(cpl.hyperparams, cpl.distribution, new_suff,cpl.posterior_hyperparams) cp.posterior_hyperparams = calc_posterior(cp.hyperparams, cp.suff_statistics) log_likihood_l = log_marginal_likelihood(cpl.hyperparams, cpl.posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams, cpr.posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp.posterior_hyperparams, cp.suff_statistics) log_HR = -log(Ξ±) + logabsgamma(Ξ±)[1] -logabsgamma(wi*Ξ±)[1] -logabsgamma(wj*Ξ±)[1] + logabsgamma(cp.suff_statistics.N)[1] -logabsgamma(cp.suff_statistics.N + Ξ±)[1] + logabsgamma(cpl.suff_statistics.N + wi*Ξ±)[1]-logabsgamma(cpl.suff_statistics.N)[1] - logabsgamma(cpr.suff_statistics.N)[1] + logabsgamma(cpr.suff_statistics.N + wj*Ξ±)[1]+ log_likihood- log_likihood_l- log_likihood_r if (log_HR > log(rand())) || (final && log_HR > log(0.5)) should_merge .= 1 end end function get_groups_split_log_likelihood(groups_dict::Dict, global_cluster_index::Int64, lweight::Float64, rweight::Float64, glob_weight::Float64, Ξ³::Float64) total_likelihood = 0.0 for (k,group) in groups_dict lcount = 0.0 rcount = 0.0 for c in group.local_clusters if c.globalCluster == global_cluster_index lcount = c.global_suff_stats[1] rcount = c.global_suff_stats[2] if is_tp == false total_likelihood += (logabsgamma(Ξ³ * glob_weight)[1] - logabsgamma(Ξ³ * glob_weight + lcount+ rcount)[1] + logabsgamma(Ξ³ * glob_weight * lweight + lcount)[1] - logabsgamma(Ξ³ * glob_weight * lweight)[1] + logabsgamma(Ξ³ * glob_weight * rweight + rcount)[1] - logabsgamma(Ξ³ * glob_weight * rweight)[1]) else total_likelihood += (logabsgamma(Ξ³ * glob_weight)[1] - logabsgamma( glob_weight + lcount+ rcount)[1] + logabsgamma(Ξ³ * glob_weight * lweight + lcount)[1] - logabsgamma(glob_weight * lweight)[1] + logabsgamma(Ξ³ * glob_weight * rweight + rcount)[1] - logabsgamma(glob_weight * rweight)[1]) end end end end # println(total_likelihood) return total_likelihood end function get_groups_merge_log_likelihood(groups_dict::Dict, global_cluster_i::Int64, global_cluster_j::Int64, weight_i::Float64, weight_j::Float64, Ξ³::Float64) total_likelihood = 0.0 for (k,group) in groups_dict lcount = 0.0 rcount = 0.0 for c in group.local_clusters if c.globalCluster == global_cluster_i lcount += c.cluster_params.cluster_params_l.suff_statistics.N end if c.globalCluster == global_cluster_j rcount += c.cluster_params.cluster_params_r.suff_statistics.N end end total_likelihood += logabsgamma(Ξ³ * (weight_i+weight_j))[1] - logabsgamma(Ξ³ * (weight_i+weight_j)[1] + lcount+ rcount)[1] + logabsgamma(Ξ³ * weight_i + lcount)[1] - logabsgamma(Ξ³ * weight_i)[1] + logabsgamma(Ξ³ * weight_j + rcount)[1] - logabsgamma(Ξ³ * weight_j)[1] end return -total_likelihood end function check_and_split!(model::hdp_shared_features, final::Bool) split_arr= zeros(length(global_clusters_vector)) for (index,cluster) in enumerate(global_clusters_vector) # println("index: " * string(index) * " splittable: " * string(cluster.cluster_params.splittable)) if cluster.cluster_params.splittable == true should_split!((@view split_arr[index,:]), cluster.cluster_params, model.groups_dict, model.model_hyperparams.Ξ±, model.model_hyperparams.Ξ³, cluster.clusters_count, cluster.clusters_sub_counts, index, model.weights[index], final) if split_arr[index,:] == 1 break end end end new_index = length(global_clusters_vector) + 1 resize!(global_clusters_vector,Int64(length(global_clusters_vector) + sum(split_arr))) indices = Vector{Int64}() for i=1:length(split_arr) if split_arr[i,1] == 1 split_cluster!(model,i, new_index) push!(indices,i) push!(indices,new_index) new_index += 1 end end return indices end function check_and_merge!(model::hdp_shared_features, final::Bool) mergable = zeros(1) indices = Vector{Int64}() distance_matrix = zeros(length(global_clusters_vector),length(global_clusters_vector)) if (@isdefined use_mean_for_merge) && use_mean_for_merge == true for i=1:length(global_clusters_vector)-1 for j=i+1:length(global_clusters_vector) distance_matrix[i,j] = norm(global_clusters_vector[i].cluster_params.cluster_params.distribution.ΞΌ - global_clusters_vector[j].cluster_params.cluster_params.distribution.ΞΌ) end indice_to_check = argmin(distance_matrix[i,i+1:end]) if (global_clusters_vector[i].cluster_params.splittable == true && global_clusters_vector[indice_to_check].cluster_params.splittable == true) || final should_merge!(mergable, global_clusters_vector[i].cluster_params.cluster_params, global_clusters_vector[indice_to_check].cluster_params.cluster_params,model.groups_dict, model.model_hyperparams.Ξ³,global_clusters_vector[i].clusters_count, global_clusters_vector[indice_to_check].clusters_count,i,indice_to_check,model.weights[i], model.weights[indice_to_check], final) end if mergable[1] == 1 merge_clusters!(model, i, indice_to_check) push!(indices,i) push!(indices,indice_to_check) break end end else for i=1:length(global_clusters_vector) for j=i+1:length(global_clusters_vector) if (global_clusters_vector[i].cluster_params.splittable == true && global_clusters_vector[j].cluster_params.splittable == true) || final should_merge!(mergable, global_clusters_vector[i].cluster_params.cluster_params, global_clusters_vector[j].cluster_params.cluster_params,model.groups_dict, model.model_hyperparams.Ξ³,global_clusters_vector[i].clusters_count, global_clusters_vector[j].clusters_count,i,j,model.weights[i], model.weights[j], final) end if mergable[1] == 1 merge_clusters!(model, i, j) push!(indices,i) push!(indices,j) break end end if mergable[1] == 1 break end end end return indices end function update_suff_stats_posterior!(model::hdp_shared_features, indices::AbstractArray{Int64,1}) local_dim = model.model_hyperparams.local_dim pts_vector_dict = Dict() sub_labels_vector_dict = Dict() clusters_count_dict = Dict() pts_to_groups = Dict() for i=1:length(global_clusters_vector) if i in indices pts_vector_dict[i] = Vector{AbstractArray{Float64,2}}() sub_labels_vector_dict[i] = Vector{AbstractArray{Int64,1}}() pts_to_groups[i] = Vector{AbstractArray{Int64,1}}() clusters_count_dict[i] = 0 end end for (k,v) in model.groups_dict for (i,c) in enumerate(v.local_clusters) if c.globalCluster in indices push!(pts_vector_dict[c.globalCluster], (@view v.points[1:local_dim-1,(@view (v.labels .== i)[:])])) sub_labels = (@view v.labels_subcluster[(@view (v.labels .== i)[:])]) push!(sub_labels_vector_dict[c.globalCluster], sub_labels) push!(pts_to_groups[c.globalCluster],ones(Int64,size(sub_labels,1))*k) end end end cluster_params_dict = Dict() begin @sync for (index,cluster) in enumerate(global_clusters_vector) if index in indices if size(pts_vector_dict[index],1) > 0 #pts = reshape(CatView(Tuple(pts_vector_dict[index])),local_dim - 1,:) cluster.clusters_sub_counts = [0,0] pts = reduce(hcat,pts_vector_dict[index]) for sublabel in sub_labels_vector_dict[index] if sum(sublabel .<= 2) >= sum(sublabel .> 2) cluster.clusters_sub_counts[1] += 1 else cluster.clusters_sub_counts[2] += 1 end end sublabels = reduce(vcat,sub_labels_vector_dict[index]) pts_group= reduce(vcat,pts_to_groups[index]) #sublabels = CatView(Tuple(sub_labels_vector_dict[index])) # println(cluster.clusters_sub_counts) cluster_params_dict[index] = update_splittable_cluster_params(cluster.cluster_params, pts , sublabels, true, pts_group) end end end for (index,cluster) in enumerate(global_clusters_vector) if index in indices if size(pts_vector_dict[index],1) > 0 cluster.cluster_params = fetch(cluster_params_dict[index]) #println(cluster.cluster_params) end end end end end function sample_global_clusters_params!(model::hdp_shared_features) points_count = Vector{Float64}() for cluster in global_clusters_vector #push!(points_count, cluster.clusters_count) push!(points_count, cluster.cluster_params.cluster_params.suff_statistics.N) sample_cluster_params!(cluster.cluster_params, model.model_hyperparams.Ξ³, cluster.clusters_sub_counts) end push!(points_count, model.model_hyperparams.Ξ³) model.weights = rand(Dirichlet(points_count))[1:end-1] # println("Weights:" * string(model.weights)) # println("Samples: " * string([x.cluster_params.cluster_params.distribution for x in global_clusters_vector])) end function remove_empty_clusters!(model::hdp_shared_features) new_vec = Vector{global_cluster}() to_remove = [] for (index,cluster) in enumerate(global_clusters_vector) if cluster.clusters_count == 0 push!(to_remove, index) else push!(new_vec,cluster) end end if length(to_remove) > 0 for (k,v) in model.groups_dict for (i,c) in enumerate(v.local_clusters) c.globalCluster -= sum(to_remove .< c.globalCluster) end end global global_clusters_vector = new_vec end end function local_split!(model::hdp_shared_features, index::Int64, new_index::Int64) cluster = global_clusters_vector[index] new_cluster = deepcopy(cluster) new_cluster.clusters_count = 0 new_cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, model.model_hyperparams.Ξ³) cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, model.model_hyperparams.Ξ³) new_cluster.points_count = new_cluster.cluster_params.cluster_params.suff_statistics.N cluster.points_count = cluster.cluster_params.cluster_params.suff_statistics.N global_clusters_vector[new_index] = new_cluster end function split_new_clusters_from_local!(model::hdp_shared_features) cur_count = length(global_clusters_vector) new_clusters_to_global = Dict() #keys are global clusters to split for (i,group) in model.groups_dict for c in group.local_clusters new_global = c.globalCluster if new_global > cur_count #new cluster # println(new_global) if haskey(new_clusters_to_global, new_global - cur_count) push!(new_clusters_to_global[new_global - cur_count], c) #The last2 clusters are in the new global else new_clusters_to_global[new_global - cur_count] = [c] end end end end new_index = Int64(length(global_clusters_vector)) +1 # println(keys(new_clusters_to_global)) resize!(global_clusters_vector,Int64(length(global_clusters_vector) + length(new_clusters_to_global))) indicies_to_re_evaluate = Vector{Int64}() for (k,v) in new_clusters_to_global local_split!(model,k,new_index) # global_clusters_vector[k].clusters_count += length(v) / 2 # global_clusters_vector[new_index].clusters_count += length(v) for group in v group.globalCluster = new_index end push!(indicies_to_re_evaluate,k) push!(indicies_to_re_evaluate,new_index) new_index += 1 end if length(indicies_to_re_evaluate) > 0 update_pts_count!(model) remove_empty_clusters!(model) update_weights!(model) end return indicies_to_re_evaluate end function update_pts_count!(model::hdp_shared_features) counts = zeros(length(global_clusters_vector)) for (k,v) in model.groups_dict for c in v.local_clusters counts[c.globalCluster] += 1 end end # println(counts) for (k,v) in enumerate(global_clusters_vector) v.clusters_count = counts[k] end end function update_weights!(model::hdp_shared_features) counts = Vector{Float64}() for c in global_clusters_vector push!(counts,c.clusters_count) end push!(counts, model.model_hyperparams.Ξ³) model.weights = rand(Dirichlet(counts))[1:end-1] end function update_partial_pts_count!(model::hdp_shared_features) counts = zeros(length(global_clusters_vector)) for (k,v) in model.groups_dict for c in v.local_clusters if c.globalCluster < length(counts) counts[c.globalCluster] += 1 end end end for (k,v) in enumerate(global_clusters_vector) v.clusters_count = counts[k] end end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
1312
#Global Setting use_gpu = false use_darrays = false #Only relevant if use_gpu = false random_seed = 1234567 random_seed = nothing #Data Loading specifics data_path = "data/multi-d-gaussians//" data_prefix = "g" groups_count = 9 global_preprocessing = nothing local_preprocessing = nothing #Model Parameters iterations = 100 hard_clustering = false total_dim = 3 local_dim = 3 Ξ± = 500.0 Ξ³ = 10000.0 global_weight = 1.0 local_weight= 1.0 initial_global_clusters = 1 initial_local_clusters = 1 #this is per group use_dict_for_global = false split_delays = false ignore_local = false split_stop = 10 argmax_sample_stop = 10 use_mean_for_merge = false global_hyper_params = niw_hyperparams(1.0, zeros(2), 20.0, Matrix{Float64}(I, 2, 2)*1) local_hyper_params = niw_hyperparams(1.0, zeros(1), 20.0, Matrix{Float64}(I, 1, 1)*1) # #Model Parameters # iterations = 10 # # total_dim = 3 # local_dim = 3 # # Ξ± = 4.0 # Ξ³ = 2.0 # global_weight = 1.0 # local_weight= 1.0 # # # global_hyper_params = niw_hyperparams(5.0, # ones(3)*2.5, # 10.0, # [[0.8662817 0.78323282 0.41225376];[0.78323282 0.74170384 0.50340258];[0.41225376 0.50340258 0.79185577]]) # # local_hyper_params = niw_hyperparams(1.0, # [217.0,510.0], # 10.0, # Matrix{Float64}(I, 2, 2)*0.5)
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
14317
function init_model(swap_axes; data = nothing , model_params = nothing) if random_seed != nothing @eval @everywhere Random.seed!($random_seed) end global lm if data == nothing points_dict = load_data(data_path, groups_count, prefix = data_prefix) if swap_axes != nothing points_dict = axes_swapper(points_dict,swap_axes) end preprocessing!(points_dict,local_dim,global_preprocessing,local_preprocessing) else points_dict = data end if model_params == nothing model_hyperparams = model_hyper_params(global_hyper_params,local_hyper_params,Ξ±,Ξ³,Ξ·,global_weight,local_weight,total_dim,local_dim) else model_hyperparams = model_params end blocal_hyper_params = model_hyperparams.local_hyper_params groups_dict = Dict() for (k,v) in points_dict labels = rand(1:initial_local_clusters,(size(v,2),1)) labels_subcluster = rand(1:4,(size(v,2),1)) weights = ones(initial_local_clusters) * (1/initial_local_clusters) local_clusters = local_cluster[] if isa(blocal_hyper_params,Array) localised_params = model_hyper_params(model_hyperparams.global_hyper_params ,blocal_hyper_params[k],model_hyperparams.Ξ±, model_hyperparams.Ξ³,model_hyperparams.Ξ·,model_hyperparams.global_weight, model_hyperparams.local_weight,model_hyperparams.total_dim,model_hyperparams.local_dim) else localised_params = model_hyperparams end groups_dict[k] = local_group(localised_params,v,labels,labels_subcluster,local_clusters,Float64[],k) end if isa(model_hyperparams.global_hyper_params,topic_modeling_hyper) global is_tp = true else global is_tp = false end @eval global groups_dict = $groups_dict if mp num_of_workers = nworkers() for w in workers() @spawnat w global groups_dict = Dict() end @sync for (index,group) in groups_dict @spawnat ((index % num_of_workers)+2) set_group(index,group) end end return hdp_shared_features(model_hyperparams,groups_dict,global_cluster[],Float64[]) end function init_first_clusters!(hdp_model::hdp_shared_features) for (k,v) in hdp_model.groups_dict v.local_clusters = [] for i=1:initial_local_clusters push!(v.local_clusters, create_first_local_cluster(v, initial_global_clusters)) end end global_c = [] for i=1:initial_global_clusters push!(global_c,create_first_global_cluster(hdp_model.model_hyperparams, hdp_model.groups_dict, i)) end global global_clusters_vector = global_c for w in workers() @eval @spawnat $w global global_clusters_vector = $global_c end # @eval @everywhere global global_clusters_vector = $global_c end function hdp_shared_features(model_params, swap_axes = nothing;multiprocess = false) cur_dir = pwd() include(model_params) cd(cur_dir) hdp_model = init_model(swap_axes) init_first_clusters!(hdp_model) groups_stats = Dict() global num_of_workers = nworkers() if @isdefined split_delays @everywhere global split_delays = split_delays else @everywhere global split_delays = true end @everywhere global hard_clustering = hard_clustering global posterior_history = [] global word_ll_history = [] global topic_count = [] global mp = multiprocess for i=1:iterations println("Iteration: " * string(i)) println("Global Counts: " * string([x.clusters_count for x in global_clusters_vector])) final = false no_more_splits = false if i > iterations - argmax_sample_stop #We assume the cluters k has been setteled by now, and a low probability random split can do dmg final = true end if i >= iterations - split_stop no_more_splits = true end model_iteration(hdp_model,final,no_more_splits) end hdp_model.global_clusters = global_clusters_vector return hdp_model, posterior_history, word_ll_history, topic_count end function model_iteration(hdp_model,final, no_more_splits,burnout = 5) groups_stats = Vector{local_group_stats}(undef,length(groups_dict)) @everywhere global burnout_period = 5 sample_global_clusters_params!(hdp_model) global global_clusters_vector = global_clusters_vector refs= Dict() if mp for w in workers() refs[w] = remotecall(set_global_clusters_vector, w, global_clusters_vector) end for w in workers() fetch(refs[w]) end end begin if mp @sync for (index,group) in hdp_model.groups_dict lc = group.local_clusters groups_stats[index] = @spawnat ((index % num_of_workers)+2) group_step(index,lc, final) end else Threads.@threads for index=1:length(groups_dict) group=groups_dict[index] lc = group.local_clusters groups_stats[index] = group_step(index,lc, final) end end for index=1:length(groups_dict) update_group_from_stats!(hdp_model.groups_dict[index], fetch(groups_stats[index])) end end sample_clusters_labels!(hdp_model, (hard_clustering ? true : final)) remove_empty_clusters!(hdp_model) update_suff_stats_posterior!(hdp_model,collect(1:length(global_clusters_vector))) hdp_model.global_clusters = global_clusters_vector push!(posterior_history,calc_global_posterior(hdp_model)) # if isa(hdp_model.model_hyperparams.global_hyper_params, topic_modeling_hyper) # word_ll = calc_avg_word(hdp_model) # println("Per Word LL:" * string(word_ll)) # push!(word_ll_history,word_ll) # push!(topic_count,length(global_clusters_vector)) # end if no_more_splits == false # println(length((global_clusters_vector))) indices = check_and_split!(hdp_model, final) i = 1 while i < length(indices) for (index,group) in hdp_model.groups_dict split_global_cluster!(group,indices[i],indices[i+1]) end i+= 2 end # println(length((global_clusters_vector))) indices = check_and_merge!(hdp_model, final) if length(indices) > 0 for (index,group) in hdp_model.groups_dict merge_global_cluster!(group,indices[1],indices[2]) end end remove_empty_clusters!(hdp_model) if length(indices) > 0 println("merged:" * string(indices)) end end end function create_default_priors(gdim,ldim,prior_type::Symbol) if prior_type == :niw g_prior = niw_hyperparams(1.0, zeros(gdim), gdim+3, Matrix{Float64}(I, gdim, gdim)*1) l_prior = niw_hyperparams(1.0, zeros(ldim), ldim+3, Matrix{Float64}(I, ldim, ldim)*1) else g_prior = multinomial_hyper(ones(gdim)*500.0) l_prior = multinomial_hyper(ones(ldim)*500.0) end return g_prior, l_prior end @everywhere function swap_axes_worker(swap_vec) for (k,v) in groups_dict v.points = v.points[swap_vec,:] end end function create_swap_vec(dim,glob_mapping, index) swap_vec = zeros(dim) reverse_swap_vec = zeros(dim) front_index = 1 back_index = dim for (k,v) in enumerate(glob_mapping) if k == index || v == 1 swap_vec[front_index] = k reverse_swap_vec[k] = front_index front_index+=1 else swap_vec[back_index] = k reverse_swap_vec[k] = back_index back_index -= 1 end end return Int.(swap_vec), Int.(reverse_swap_vec) end function calc_global_posterior(hdp_model::hdp_shared_features, ismnm = false) pts_count = 0.0 log_posterior = log(hdp_model.model_hyperparams.Ξ³) for (k,group) in hdp_model.groups_dict pts_count += size(group.points,2) # if ismnm log_posterior+= calc_group_posterior(group) # end end log_posterior-= logabsgamma(pts_count)[1] for cluster in hdp_model.global_clusters if cluster.cluster_params.cluster_params.suff_statistics.N == 0 continue end #posterior_param = update_posterior_evidence(model.hyper, model.clusters_params.sufficient_stats, index) log_posterior += log_marginal_likelihood(cluster.cluster_params.cluster_params.hyperparams, cluster.cluster_params.cluster_params.posterior_hyperparams, cluster.cluster_params.cluster_params.suff_statistics) log_posterior += log(hdp_model.model_hyperparams.Ξ³) + logabsgamma(cluster.cluster_params.cluster_params.suff_statistics.N)[1] # println(cluster.cluster_params.cluster_params.suff_statistics) end return log_posterior end function calc_avg_word(hdp_model::hdp_shared_features) # return 0 global_preds = get_model_global_pred(hdp_model) group_mixtures = Dict([k => [x/ sum(counts(v,length(hdp_model.global_clusters))) for x in counts(v,length(hdp_model.global_clusters))] for (k,v) in global_preds]) # word_count = Dict([k => counts(Int.(v.points[:]), length(hdp_model.model_hyperparams.global_hyper_params.Ξ±)) for (k,v) in hdp_model.groups_dict]) cluster_dists = [x.cluster_params.cluster_params.distribution.Ξ± for x in hdp_model.global_clusters] total_likelihood = 0.0 total_points = 0 for (k,v) in group_mixtures parr = zeros(length(hdp_model.model_hyperparams.global_hyper_params.Ξ±),length(v)) for (index,part) in enumerate(v) parr[:,index] = cluster_dists[index] .+ log(part) end parr = exp.(parr) parr[isnan.(parr)] .= 0 wordp = sum(parr,dims = 2) wordp = log.(wordp) wordp[isnan.(wordp)] .= 0 rel_pts = hdp_model.groups_dict[k].points word_counts = counts(Int.(rel_pts), length(hdp_model.model_hyperparams.global_hyper_params.Ξ±)) cluster_ll = wordp .* word_counts cluster_ll[isnan.(cluster_ll)] .= 0 total_points += sum(word_counts) # println(any(isnan.(cluster_ll))) total_likelihood += sum(cluster_ll) end # println("ll: " * string(total_likelihood) * " pts: " * string(total_points)) return total_likelihood / total_points end function calc_group_posterior(group::local_group) log_posterior = log(group.model_hyperparams.Ξ±) - logabsgamma(size(group.points,2))[1] for cluster in group.local_clusters if cluster.cluster_params.cluster_params.suff_statistics.N == 0 continue end log_posterior += log_marginal_likelihood(cluster.cluster_params.cluster_params.hyperparams, cluster.cluster_params.cluster_params.posterior_hyperparams, cluster.cluster_params.cluster_params.suff_statistics) end return log_posterior end function k_mean_likelihood(likehood_rating,k) min_likelihood = minimum(likehood_rating) max_likelihood = maximum(likehood_rating) k_means = zeros(k) k_means[1] = min_likelihood k_means[k] = 0 k_interval = abs(max_likelihood - min_likelihood) / k for i=2:k-1 k_means[i] = k_means[i-1] + k_interval end centers = reshape(k_means,1,k) R = kmeans!(reshape(likehood_rating,1,:), centers; maxiter=100) return R.centers, assignments(R) end function hdp_fit(data, Ξ±,Ξ³,prior,iters, initial_custers = 1,burnout = 5;multiprocess=false) dim = size(data[1],1) gdim = dim gprior,lprior = create_default_priors(gdim,dim-gdim,:niw) return vhdp_fit(data,gdim, Ξ±,Ξ³,Ξ±,prior,lprior,iters,initial_custers,burnout,multiprocess=multiprocess) end function vhdp_fit(data,gdim, Ξ±,Ξ³,Ξ·,prior::Symbol,iters, initial_custers = 1,burnout = 5;multiprocess=false) dim = size(data[1],1) gprior,lprior = create_default_priors(gdim,dim-gdim,prior) return vhdp_fit(data,gdim, Ξ±,Ξ³,Ξ·,gprior,lprior,iters, initial_custers,burnout,multiprocess=multiprocess) end function vhdp_fit(data,gdim, Ξ±,Ξ³,Ξ·,gprior::distribution_hyper_params,lprior,iters, initial_custers = 1,burnout = 5;multiprocess=false) global random_seed = nothing global initial_local_clusters = initial_custers global initial_global_clusters = initial_custers global mp = multiprocess dim = size(data[1],1) model_hyperparams = model_hyper_params(gprior,lprior,Ξ±,Ξ³,Ξ·,1.0,1.0,dim,gdim + 1) model = init_model(nothing; data = data , model_params = model_hyperparams) global posterior_history = [] global word_ll_history = [] global topic_count = [] @everywhere global split_delays = true global burnout_period = burnout if mp for w in workers() @spawnat w set_burnout(burnout) end end global num_of_workers = nworkers() iter = 1 total_time = 0 init_first_clusters!(model) for i=1:iters tic = time() model_iteration(model,false,false,burnout) toc = time() -tic println("Iteration: " * string(i) * "|| Global Counts: " * string([x.clusters_count for x in global_clusters_vector]) * "|| iter time: " * string(toc)) total_time+= toc end model.global_clusters = global_clusters_vector return model, total_time, posterior_history,word_ll_history,topic_count end function remove_all_zeros_from_data(data) concatenated_vals = reduce(hcat,values(data)) all_zeros = [] for i=1:size(concatenated_vals,1) if all(concatenated_vals[i,:] .== 0) push!(all_zeros,i) end end allvec = [i for i=1:size(concatenated_vals,1) if !(i in(all_zeros))] new_data = deepcopy(data) for (k,v) in data vlen = size(v,2) new_data[k] = v[allvec,:] end return new_data end function get_model_global_pred(model) return Dict([k=>create_global_labels(v) for (k,v) in model.groups_dict]) end function results_stats(pred_dict, gt_dict) avg_nmi = 0 for i=1:length(pred_dict) nmi = mutualinfo(pred_dict[i],gt_dict[i]) avg_nmi += nmi end return avg_nmi / length(pred_dict) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
27670
function create_first_local_cluster(group::local_group, max_global::Int64 = 1) suff = create_sufficient_statistics(group.model_hyperparams.local_hyper_params, []) post = group.model_hyperparams.local_hyper_params dist = sample_distribution(post) cp = cluster_parameters(group.model_hyperparams.local_hyper_params, dist, suff, post) cpl = deepcopy(cp) cpr = deepcopy(cp) splittable = splittable_cluster_params(cp,cpl,cpr,[0.5,0.5], false, ones(20).*-Inf) update_splittable_cluster_params!(splittable, (@view group.points[group.model_hyperparams.local_dim : end,:]), (@view group.labels_subcluster[:]), false) cluster = local_cluster(splittable, group.model_hyperparams.total_dim, group.model_hyperparams.local_dim,splittable.cluster_params.suff_statistics.N,1.0,1.0,rand(1:max_global),rand(1:2),[]) return cluster end function sample_sub_clusters!(group::local_group, final::Bool) for (i,v) in enumerate(group.local_clusters) create_subclusters_labels!(reshape((@view group.labels_subcluster[group.labels .== i]),:,1), (@view group.points[:,(@view (group.labels .== i)[:])]), v.cluster_params, global_clusters_vector[v.globalCluster].cluster_params, v.local_dim, group.group_num, final) end end function create_subclusters_labels!(labels::AbstractArray{Int64,2}, points::AbstractArray{Float64,2}, cluster_params::splittable_cluster_params, global_cluster_params::splittable_cluster_params, local_dim::Int64, group_num::Int64, final::Bool) if size(labels,1) == 0 return end parr = zeros(length(labels), 6) log_likelihood!((@view parr[:,5]),(@view points[1:local_dim-1, : ]),global_cluster_params.cluster_params_l.distribution, group_num) log_likelihood!((@view parr[:,6]),(@view points[1:local_dim-1, : ]),global_cluster_params.cluster_params_r.distribution, group_num) if ignore_local == false log_likelihood!((@view parr[:,1]),(@view points[local_dim:end, : ]),cluster_params.cluster_params_l.distribution) log_likelihood!((@view parr[:,4]),(@view points[local_dim:end, : ]),cluster_params.cluster_params_r.distribution) end # println(global_cluster_params.cluster_params_l.distribution) # println(global_cluster_params.cluster_params_r.distribution) parr[:,5] .+= log(global_cluster_params.lr_weights[1]) parr[:,6] .+= log(global_cluster_params.lr_weights[2]) parr[:,1] .+= log(cluster_params.lr_weights[1]) parr[:,4] .+= log(cluster_params.lr_weights[2]) parr[:,3] .= parr[:,1]+ parr[:,6] parr[:,1] .+= parr[:,5] parr[:,2] .= parr[:,5] + parr[:,4] parr[:,4] .+= parr[:,6] if final labels .= mapslices(argmax, parr, dims= [2]) else sample_log_cat_array!(labels,parr[:,1:4]) end end function get_local_cluster_likelihood!(parr::AbstractArray{Float64,2}, points::AbstractArray{Float64,2}, cluster::local_cluster, group_num::Int64) global_p = zeros(size(parr)) local_dim = cluster.local_dim log_likelihood!(global_p, (@view points[1 : local_dim-1,:]),global_clusters_vector[cluster.globalCluster].cluster_params.cluster_params.distribution, group_num) if ignore_local == false log_likelihood!(parr, (@view points[local_dim:end,:]),cluster.cluster_params.cluster_params.distribution) end parr .*= (1 / cluster.local_weight) parr .+= (global_p .* (1 / cluster.global_weight)) end function sample_labels!(group::local_group, final::Bool) sample_labels!(group.labels, group.points, group.local_clusters, group.weights, final, group.group_num) end function sample_labels!(labels::AbstractArray{Int64,2}, points::AbstractArray{Float64,2}, local_clusters::Vector{local_cluster}, weights::Vector{Float64}, final::Bool, group_num::Int64) parr = zeros(length(labels), length(local_clusters)) for (k,v) in enumerate(local_clusters) get_local_cluster_likelihood!(reshape((@view parr[:,k]),:,1),points,v, group_num) end for (k,v) in enumerate(weights) parr[:,k] .+= log(v) end if final labels .= mapslices(argmax, parr, dims= [2]) else sample_log_cat_array!(labels,parr) end end function update_local_cluster_params!(cluster::local_cluster, points::AbstractArray{Float64,2}, sub_labels::AbstractArray{Int64,1}) splittable_cluster = cluster.cluster_params cpl = splittable_cluster.cluster_params_l cpr = splittable_cluster.cluster_params_r cp = splittable_cluster.cluster_params local_dim = cluster.local_dim gc = cluster.globalCluster gc_params = global_clusters_vector[gc].cluster_params # gl_suff_statistics = create_sufficient_statistics(gc_params.cluster_params_l.hyperparams, # gc_params.cluster_params_l.posterior_hyperparams, # (@view points[1:local_dim-1,(@view (sub_labels .<= 2)[:])]), # ones(sum((@view (sub_labels .<= 2)[:])))) # gr_suff_statistics = create_sufficient_statistics(gc_params.cluster_params_r.hyperparams, # gc_params.cluster_params_r.posterior_hyperparams, # (@view points[1:local_dim-1,(@view (sub_labels .> 2)[:])]), # nes(sum((@view (sub_labels .> 2)[:])))) cpl.suff_statistics = create_sufficient_statistics(cpl.hyperparams, cpl.posterior_hyperparams,@view points[local_dim: end,sub_labels .% 2 .== 1]) cpr.suff_statistics = create_sufficient_statistics(cpr.hyperparams, cpr.posterior_hyperparams,@view points[local_dim: end,sub_labels .% 2 .== 0]) l_count = sum(sub_labels .<= 2) r_count = sum(sub_labels .> 2) cp.suff_statistics = aggregate_suff_stats(cpl.suff_statistics, cpr.suff_statistics) cp.posterior_hyperparams = calc_posterior(cp.hyperparams, cp.suff_statistics) cpl.posterior_hyperparams = calc_posterior(cpl.hyperparams, cpl.suff_statistics) cpr.posterior_hyperparams = calc_posterior(cpr.hyperparams, cpr.suff_statistics) cluster.global_suff_stats = [l_count,r_count] cluster.cluster_params = splittable_cluster # cluster.global_suff_stats = [gl_suff_statistics, gr_suff_statistics] end function update_suff_stats_posterior!(group::local_group) local_dim = group.model_hyperparams.local_dim for (index,cluster) in enumerate(group.local_clusters) pts = @view group.points[:, (@view (group.labels .== index)[:])] sub_labels = @view group.labels_subcluster[group.labels .== index] update_local_cluster_params!(cluster,pts, sub_labels) end end function update_suff_stats_posterior!(group::local_group, clusters::AbstractArray{Int64,1}) local_dim = group.model_hyperparams.local_dim for (index,cluster) in enumerate(group.local_clusters) if index in clusters pts = @view group.points[1 : end, (@view (group.labels .== index)[:])] sub_labels = @view group.labels_subcluster[(@view (group.labels .== index)[:]),:] cluster.points_count = size(pts,2) if cluster.points_count > 0 update_splittable_cluster_params!(cluster.cluster_params, pts[local_dim:end,:], (@view sub_labels[:]),false) end end end end # function split_cluster!(group::local_group, cluster::local_cluster, index::Int64, new_index::Int64) # labels = @view group.labels[group.labels .== index] # sub_labels = @view group.labels_subcluster[group.labels .== index] # labels[sub_labels .== 2] .= new_index # labels[sub_labels .== 3] .= new_index+1 # labels[sub_labels .== 4] .= new_index+2 # g_split = copy_local_cluster(cluster) # l_split = copy_local_cluster(cluster) # lg_split = copy_local_cluster(cluster) # l_split.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, group.model_hyperparams.Ξ±) # lg_split.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, group.model_hyperparams.Ξ±) # cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, group.model_hyperparams.Ξ±) # g_split.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, group.model_hyperparams.Ξ±) # l_split.points_count = length(labels[sub_labels .== 2]) # cluster.points_count = length(labels[sub_labels .== 1]) # g_split.points_count = length(labels[sub_labels .== 3]) # lg_split.points_count = length(labels[sub_labels .== 4]) # sub_labels .= rand(1:4,length(sub_labels)) # g_split.globalCluster = cluster.globalCluster + length(global_clusters_vector) # lg_split.globalCluster = g_split.globalCluster # cluster.globalCluster_subcluster = rand(1:2) # g_split.globalCluster_subcluster = rand(1:2) # lg_split.globalCluster_subcluster = rand(1:2) # l_split.globalCluster_subcluster = rand(1:2) # # new_sub_labels = @view sub_labels[sub_labels .==2] # # sub_labels = @view sub_labels[sub_labels .==1] # # if size(sub_labels,1) > 0 # # create_subclusters_labels!(reshape(sub_labels,:,1),(@view group.points[group.model_hyperparams.local_dim: end,(@view (group.labels .== index)[:])]), cluster.cluster_params) # # end # # if size(new_sub_labels,1) > 0 # # create_subclusters_labels!(reshape(new_sub_labels,:,1),(@view group.points[group.model_hyperparams.local_dim: end,(@view (group.labels .== new_index)[:])]), new_cluster.cluster_params) # # end # group.local_clusters[new_index] = l_split # group.local_clusters[new_index+1] = g_split # group.local_clusters[new_index+2] = lg_split # end function split_cluster_local!(group::local_group, cluster::local_cluster, index::Int64, new_index::Int64) labels = @view group.labels[group.labels .== index] sub_labels = @view group.labels_subcluster[group.labels .== index] labels[sub_labels .== 2] .= new_index labels[sub_labels .== 4] .= new_index l_split = copy_local_cluster(cluster) l_split.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, group.model_hyperparams.Ξ·) cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, group.model_hyperparams.Ξ·) l_split.points_count = length(labels[sub_labels .== 2]) + length(labels[sub_labels .== 4]) cluster.points_count = length(labels[sub_labels .== 1]) + length(labels[sub_labels .== 3]) sub_labels[(x -> x ==1 || x==2).(sub_labels)] .= rand(1:2,length((@view sub_labels[(x -> x ==1 || x==2).(sub_labels)]))) sub_labels[(x -> x ==3 || x==4).(sub_labels)] .= rand(3:4,length((@view sub_labels[(x -> x ==3 || x==4).(sub_labels)]))) group.local_clusters[new_index] = l_split end function split_cluster_global!(group::local_group, cluster::local_cluster, index::Int64, new_index::Int64, new_global_index::Int64) labels = @view group.labels[group.labels .== index] sub_labels = @view group.labels_subcluster[group.labels .== index] labels[sub_labels .== 3] .= new_index labels[sub_labels .== 4] .= new_index g_split = copy_local_cluster(cluster) g_split.points_count = length(labels[sub_labels .== 3]) + length(labels[sub_labels .== 4]) cluster.points_count = length(labels[sub_labels .== 1]) + length(labels[sub_labels .== 2]) sub_labels[(x -> x ==1 || x==3).(sub_labels)] .= rand(1:2:3,length((@view sub_labels[(x -> x ==1 || x==3).(sub_labels)]))) sub_labels[(x -> x ==2 || x==4).(sub_labels)] .= rand(2:2:4,length((@view sub_labels[(x -> x ==2 || x==4).(sub_labels)]))) g_split.globalCluster = new_global_index group.local_clusters[new_index] = g_split end # function split_cluster!(group::local_group, cluster::local_cluster, index::Int64, new_index::Int64) # labels = @view group.labels[group.labels .== index] # sub_labels = @view group.labels_subcluster[group.labels .== index] # labels[sub_labels .== 2] .= new_index # labels[sub_labels .== 3] .= new_index+1 # labels[sub_labels .== 2] .= new_index+2 # new_cluster = copy_local_cluster(cluster) # new_cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_r, group.model_hyperparams.Ξ·) # cluster.cluster_params = create_splittable_from_params(cluster.cluster_params.cluster_params_l, group.model_hyperparams.Ξ±) # new_cluster.points_count = new_cluster.cluster_params.cluster_params.suff_statistics.N # cluster.points_count = cluster.cluster_params.cluster_params.suff_statistics.N # new_sub_labels = @view sub_labels[sub_labels .==2] # sub_labels = @view sub_labels[sub_labels .==1] # if size(sub_labels,1) > 0 # create_subclusters_labels!(reshape(sub_labels,:,1),(@view group.points[group.model_hyperparams.local_dim: end,(@view (group.labels .== index)[:])]), cluster.cluster_params) # end # if size(new_sub_labels,1) > 0 # create_subclusters_labels!(reshape(new_sub_labels,:,1),(@view group.points[group.model_hyperparams.local_dim: end,(@view (group.labels .== new_index)[:])]), new_cluster.cluster_params) # end # group.local_clusters[new_index] = new_cluster # end function merge_clusters!(group::local_group,index_l::Int64, index_r::Int64) new_splittable_cluster = merge_clusters_to_splittable(group.local_clusters[index_l].cluster_params.cluster_params, group.local_clusters[index_r].cluster_params.cluster_params, group.model_hyperparams.Ξ·) group.local_clusters[index_l].cluster_params = new_splittable_cluster group.local_clusters[index_l].points_count += group.local_clusters[index_r].points_count group.local_clusters[index_r].points_count = 0 group.local_clusters[index_r].cluster_params.cluster_params.suff_statistics.N = 0 group.local_clusters[index_r].cluster_params.splittable = false # println("merging " * string(index_l) * " with " * string(index_r)) for i=1:size(group.labels_subcluster,1) if group.labels[i] == index_l if group.labels_subcluster[i] <= 2 group.labels_subcluster[i] = 1 else group.labels_subcluster[i] = 3 end elseif group.labels[i] == index_r if group.labels_subcluster[i] <= 2 group.labels_subcluster[i] = 2 else group.labels_subcluster[i] = 4 end end end group.labels[@view (group.labels .== index_r)[:]] .= index_l end function should_split_local!(should_split::AbstractArray{Float64,1}, cluster_params::splittable_cluster_params,global_params::splittable_cluster_params, global_subcluster_suff::Vector{sufficient_statistics}, Ξ±::Float64, final::Bool) cpl = cluster_params.cluster_params_l cpr = cluster_params.cluster_params_r cp = cluster_params.cluster_params cpgl = global_params.cluster_params_l cpgr = global_params.cluster_params_r cpg = global_params.cluster_params # println("bob2") if final || cpl.suff_statistics.N == 0 ||cpr.suff_statistics.N == 0 should_split .= 0 return end log_likihood_l = log_marginal_likelihood(cpl.hyperparams,cpl.posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams,cpr.posterior_hyperparams, cpr.suff_statistics) log_likihood_gl = log_marginal_likelihood(cpgl.hyperparams,cpgl.posterior_hyperparams, global_subcluster_suff[1]) log_likihood_gr = log_marginal_likelihood(cpgr.hyperparams,cpgr.posterior_hyperparams, global_subcluster_suff[2]) log_likihood = log_marginal_likelihood(cp.hyperparams, cp.posterior_hyperparams, cp.suff_statistics) log_likihood_g = log_marginal_likelihood(cpg.hyperparams, cpg.posterior_hyperparams, global_subcluster_suff[3]) log_HR = (log(Ξ±) + logabsgamma(cpl.suff_statistics.N + cpgl.suff_statistics.N)[1] + log_likihood_l + logabsgamma(cpr.suff_statistics.N + cpgr.suff_statistics.N)[1] + log_likihood_r + log_likihood_gl +log_likihood_gr - (logabsgamma(cp.suff_statistics.N + cpg.suff_statistics.N)[1] + log_likihood + log_likihood_g)) println(log_likihood_l) if log_HR > log(rand()) should_split .= 1 end end function should_split_local!(should_split::AbstractArray{Float64,1}, cluster_params::splittable_cluster_params, Ξ±::Float64, final::Bool, is_zero_dim = false) cpl = cluster_params.cluster_params_l cpr = cluster_params.cluster_params_r cp = cluster_params.cluster_params # println("bob") if (final || cpl.suff_statistics.N == 0 ||cpr.suff_statistics.N == 0) && is_zero_dim == false should_split .= 0 return end log_likihood_l = log_marginal_likelihood(cpl.hyperparams,cpl.posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams,cpr.posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp.posterior_hyperparams, cp.suff_statistics) if is_zero_dim log_likihood_l = 0 log_likihood_r = 0 log_likihood = 0 end log_HR = (log(Ξ±) + logabsgamma(cpl.suff_statistics.N)[1] + log_likihood_l + logabsgamma(cpr.suff_statistics.N)[1] + log_likihood_r - (logabsgamma(cp.suff_statistics.N)[1] + log_likihood)) if log_HR > log(rand()) should_split .= 1 end end function should_merge!(should_merge::AbstractArray{Float64,1},lr_weights::AbstractArray{Float64, 1}, cpl::cluster_parameters,cpr::cluster_parameters, Ξ±::Float64, final::Bool) new_suff = aggregate_suff_stats(cpl.suff_statistics, cpr.suff_statistics) cp = cluster_parameters(cpl.hyperparams, cpl.distribution, new_suff,cpl.posterior_hyperparams) cp.posterior_hyperparams = calc_posterior(cp.hyperparams, cp.suff_statistics) log_likihood_l = log_marginal_likelihood(cpl.hyperparams, cpl.posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams, cpr.posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp.posterior_hyperparams, cp.suff_statistics) log_HR = -log(Ξ±) + logabsgamma(Ξ±)[1] -logabsgamma(lr_weights[1]*Ξ±)[1] -logabsgamma(lr_weights[2]*Ξ±)[1] + logabsgamma(cp.suff_statistics.N)[1] -logabsgamma(cp.suff_statistics.N + Ξ±)[1] + logabsgamma(cpl.suff_statistics.N + lr_weights[1]*Ξ±)[1]-logabsgamma(cpl.suff_statistics.N)[1] - logabsgamma(cpr.suff_statistics.N)[1] + logabsgamma(cpr.suff_statistics.N + lr_weights[2]*Ξ±)[1]+ log_likihood- log_likihood_l- log_likihood_r if (log_HR > log(rand())) || (final && log_HR > log(0.5)) should_merge .= 1 end end function check_and_split!(group::local_group, final::Bool) split_arr= zeros(length(group.local_clusters)) for (index,cluster) in enumerate(group.local_clusters) if cluster.cluster_params.splittable == true should_split_local!((@view split_arr[index,:]), cluster.cluster_params, group.model_hyperparams.Ξ·,final, false) end end new_index = length(group.local_clusters) + 1 bobob = new_index indices = Vector{Int64}() resize!(group.local_clusters,Int64(length(group.local_clusters) + sum(split_arr))) for i=1:length(split_arr) if split_arr[i] == 1 # push!(indices, new_index) # push!(indices, new_index+1) # push!(indices, new_index+2) # split_cluster!(group, group.local_clusters[i],i,new_index) # new_index += 3 push!(indices, new_index) split_cluster_local!(group, group.local_clusters[i],i,new_index) new_index += 1 end end return indices end function check_and_merge!(group::local_group, final::Bool) clusters_dict = create_mergable_dict(group) indices = Vector{Int64}() for (k,v) in clusters_dict indices = vcat(indices,check_and_merge!(group, v, final)) end return indices end function check_and_merge!(group::local_group, indices::Vector{Int64}, final::Bool) mergable = zeros(1) ret_indices = Vector{Int64}() for i=1:length(indices) for j=i+1:length(indices) if (group.local_clusters[indices[i]].cluster_params.splittable == true && group.local_clusters[indices[j]].cluster_params.splittable == true) should_merge!(mergable,group.local_clusters[indices[j]].cluster_params.lr_weights, group.local_clusters[indices[i]].cluster_params.cluster_params, group.local_clusters[indices[j]].cluster_params.cluster_params, group.model_hyperparams.Ξ·, final) end if mergable[1] == 1 merge_clusters!(group, indices[i], indices[j]) push!(ret_indices, indices[i]) end mergable[1] = 0 end end return ret_indices end function should_split_global!(should_split::AbstractArray{Float64,1}, cluster_params::splittable_cluster_params, points::AbstractArray{Float64,2}, sublabels::AbstractArray{Int64,2}, Ξ±::Float64, final::Bool, group_num::Int64) parr = zeros(size(points,2), 1) sleft = @view (sublabels .<=2)[:] sright = @view (sublabels .>2)[:] lcount = sum(sleft) rcount = sum(sright) if lcount == 0 || rcount == 0 should_split .= 0 return end parr_left = zeros(lcount, 1) parr_right = zeros(rcount, 1) log_likelihood!(parr[:,1],points,cluster_params.cluster_params.distribution,group_num) log_likelihood!(parr_left[:,1],points[:,sleft],cluster_params.cluster_params_l.distribution,group_num) log_likelihood!(parr_right[:,1],points[:,sright],cluster_params.cluster_params_r.distribution,group_num) # println("sublabels lr_parr: "* string(size(lr_arr))) sum_all = sum(parr,dims = 1)[1] sum_left = sum(parr_left,dims = 1)[1] sum_right = sum(parr_right,dims = 1)[1] h_ratio = sum_left + logabsgamma(lcount)[1] + sum_right + logabsgamma(rcount)[1] - sum_all - logabsgamma(lcount + rcount)[1] if h_ratio > log(rand()) # println("hratio: " * string(h_ratio)) should_split .= 1 end end function check_and_split_global!(group::local_group, final::Bool) split_arr= zeros(length(group.local_clusters)) for (index,cluster) in enumerate(group.local_clusters) if cluster.cluster_params.splittable == true # should_split_local!((@view split_arr[index,:]), cluster.cluster_params, # global_clusters_vector[cluster.globalCluster].cluster_params, # cluster.global_subcluster_suff, group.model_hyperparams.Ξ±,final) should_split_global!((@view split_arr[index,:]), global_clusters_vector[cluster.globalCluster].cluster_params, group.points[1:cluster.local_dim-1,(@view (group.labels .== index)[:])], (@view group.labels_subcluster[(@view (group.labels .== index)[:]),:]), group.model_hyperparams.Ξ±,final, group.group_num) # split_arr[index,:] .= 1 #break #This ensures 1 split per iteration end end new_index = length(group.local_clusters) + 1 global_count = length(global_clusters_vector) indices = Vector{Int64}() resize!(group.local_clusters,Int64(length(group.local_clusters) + sum(split_arr))) for i=1:length(split_arr) if split_arr[i] == 1 # push!(indices, new_index) # push!(indices, new_index+1) # push!(indices, new_index+2) # split_cluster!(group, group.local_clusters[i],i,new_index) # new_index += 3 push!(indices, new_index) # println("new g cluster:" * string(group.local_clusters[i].globalCluster + global_count)) split_cluster_global!(group, group.local_clusters[i],i,new_index,group.local_clusters[i].globalCluster + global_count) new_index += 1 println("Global single split") end end return indices end function create_mergable_dict(group::local_group) clusters_dict = Dict() for (index,cluster) in enumerate(group.local_clusters) if haskey(clusters_dict,cluster.globalCluster)# && cluster.cluster_params.splittable == true push!(clusters_dict[cluster.globalCluster], index) else clusters_dict[cluster.globalCluster] = [index] end end return clusters_dict end function sample_clusters!(group::local_group) points_count = Vector{Float64}() for cluster in group.local_clusters push!(points_count, sample_cluster_params!(cluster.cluster_params, group.model_hyperparams.Ξ±, true)) end push!(points_count, group.model_hyperparams.Ξ±) # println(points_count) group.weights = rand(Dirichlet(points_count))[1:end-1] end function remove_empty_clusters!(group::local_group) new_vec = Vector{local_cluster}() removed = 0 for (index,cluster) in enumerate(group.local_clusters) if cluster.cluster_params.cluster_params.suff_statistics.N == 0 # println("test" * string(index)) group.labels[group.labels .> index - removed] .-= 1 removed += 1 else push!(new_vec,cluster) end end group.local_clusters = new_vec end function split_global_cluster!(group::local_group,global_cluster::Int64, new_global_index::Int64) clusters_count = 0 for cluster in group.local_clusters if cluster.globalCluster == global_cluster clusters_count += 1 end end new_index = length(group.local_clusters) + 1 resize!(group.local_clusters,Int64(length(group.local_clusters) + clusters_count)) for (i,cluster) in enumerate(group.local_clusters) if cluster.globalCluster == global_cluster split_cluster_global!(group, cluster, i,new_index,new_global_index) new_index += 1 end end end function merge_global_cluster!(group::local_group,global_cluster::Int64, merged_index::Int64) clusters_count = 0 for cluster in group.local_clusters if cluster.globalCluster == global_cluster clusters_count += 1 end end for (i,cluster) in enumerate(group.local_clusters) if cluster.globalCluster == global_cluster sublabels = @view group.labels_subcluster[group.labels .== i] sublabels[(x -> x ==3 || x==4).(sublabels)] .-= 2 elseif cluster.globalCluster == merged_index sublabels = @view group.labels_subcluster[group.labels .== i] sublabels[(x -> x ==1 || x==2).(sublabels)] .+= 2 cluster.globalCluster = global_cluster end end end function group_step(group_num::Number, local_clusters::Vector{local_cluster}, final::Bool) group = groups_dict[group_num] group.local_clusters = local_clusters sample_clusters!(group) sample_labels!(group, (hard_clustering ? true : final)) sample_sub_clusters!(group, false) update_suff_stats_posterior!(group) remove_empty_clusters!(group) if final == false && ignore_local == false check_and_split!(group, final) indices = check_and_merge!(group, final) end remove_empty_clusters!(group) return local_group_stats(group.labels, group.labels_subcluster, group.local_clusters) end function set_group(group_num,group) groups_dict[group_num] = group end function set_burnout(burnout) global burnout_period = burnout end function set_global_clusters_vector(g_vector) global global_clusters_vector = g_vector end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
641
#Global Setting use_gpu = false use_darrays = false #Only relevant if use_gpu = false hard_clustering = false ignore_local = false global_weight = 1.0 local_weight= 1.0 split_delays = false # #Model Parameters # iterations = 10 # # total_dim = 3 # local_dim = 3 # # Ξ± = 4.0 # Ξ³ = 2.0 # global_weight = 1.0 # local_weight= 1.0 # # # global_hyper_params = niw_hyperparams(5.0, # ones(3)*2.5, # 10.0, # [[0.8662817 0.78323282 0.41225376];[0.78323282 0.74170384 0.50340258];[0.41225376 0.50340258 0.79185577]]) # # local_hyper_params = niw_hyperparams(1.0, # [217.0,510.0], # 10.0, # Matrix{Float64}(I, 2, 2)*0.5)
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
12165
function create_subclusters_labels!(labels::AbstractArray{Int64,2},points::AbstractArray{Float64,2},cluster_params::splittable_cluster_params) if size(labels,1) == 0 return end lr_arr = zeros(length(labels), 2) log_likelihood!(lr_arr[:,1],points,cluster_params.cluster_params_l.distribution) log_likelihood!(lr_arr[:,2],points,cluster_params.cluster_params_r.distribution) lr_arr[:,1] .+= log(cluster_params.lr_weights[1]) lr_arr[:,2] .+= log(cluster_params.lr_weights[2]) sample_log_cat_array!(labels,lr_arr) end function sample_labels!(labels::AbstractArray{Int64,2},points::AbstractArray{Float64,2},clusters_samples::Dict,final::Bool) parr = zeros(length(labels), length(clusters_samples)) for (k,v) in clusters_samples log_likelihood!((@view parr[:,k]),points,v) end sample_log_cat_array!(labels,parr,final) end function create_splittable_from_params(params::cluster_parameters, Ξ±::Float64) params_l = deepcopy(params) params_l.distribution = sample_distribution(params.posterior_hyperparams) params_r = deepcopy(params) params_r.distribution = sample_distribution(params.posterior_hyperparams) #params_l = cluster_parameters(params.distribution_hyper_params, sample_distribution(params.posterior_hyperparams), params.suff_stats, params.posterior_hyperparams) #params_r = cluster_parameters(params.distribution_hyper_params, sample_distribution(params.posterior_hyperparams), params.suff_stats, params.posterior_hyperparams) lr_weights = rand(Dirichlet([Ξ± / 2, Ξ± / 2])) return splittable_cluster_params(params,params_l,params_r,lr_weights, false, ones(20).*-Inf) end function merge_clusters_to_splittable(cpl::cluster_parameters,cpr::cluster_parameters, Ξ±::Float64) suff_stats = aggregate_suff_stats(cpl.suff_statistics,cpr.suff_statistics) posterior_hyperparams = calc_posterior(cpl.hyperparams, suff_stats) lr_weights = rand(Dirichlet([cpl.suff_statistics.N + (Ξ± / 2), cpr.suff_statistics.N + (Ξ± / 2)])) cp = cluster_parameters(cpl.hyperparams, cpl.distribution, suff_stats, posterior_hyperparams) return splittable_cluster_params(cp,cpl,cpr,lr_weights, false, ones(20).*-Inf) end function should_split!(should_split::AbstractArray{Float64,1}, cluster_params::splittable_cluster_params, Ξ±::Float64, final::Bool) cpl = cluster_params.cluster_params_l cpr = cluster_params.cluster_params_r cp = cluster_params.cluster_params if final || cpl.suff_statistics.N == 0 ||cpr.suff_statistics.N == 0 should_split .= 0 return end log_likihood_l = log_marginal_likelihood(cpl.hyperparams, cpl. posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams, cpr. posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp. posterior_hyperparams, cp.suff_statistics) log_HR = log(Ξ±) + logabsgamma(cpl.suff_statistics.N)[1] + log_likihood_l + logabsgamma(cpr.suff_statistics.N)[1] + log_likihood_r-(logabsgamma(cp.suff_statistics.N)[1] + log_likihood) if log_HR > log(rand()) should_split .= 1 end end function should_split!(cluster_params::splittable_cluster_params, Ξ±::Float64, final::Bool) cpl = cluster_params.cluster_params_l cpr = cluster_params.cluster_params_r cp = cluster_params.cluster_params if final || cpl.suff_statistics.N == 0 ||cpr.suff_statistics.N == 0 should_split .= 0 return end log_likihood_l = log_marginal_likelihood(cpl.hyperparams, cpl. posterior_hyperparams, cpl.suff_statistics) log_likihood_r = log_marginal_likelihood(cpr.hyperparams, cpr. posterior_hyperparams, cpr.suff_statistics) log_likihood = log_marginal_likelihood(cp.hyperparams, cp. posterior_hyperparams, cp.suff_statistics) log_HR = log(Ξ±) + logabsgamma(cpl.suff_statistics.N)[1] + log_likihood_l + logabsgamma(cpr.suff_statistics.N)[1] + log_likihood_r-(logabsgamma(cp.suff_statistics.N)[1] + log_likihood) # println(log_HR) end function update_splittable_cluster_params!(splittable_cluser::splittable_cluster_params, points::AbstractArray{Float64,2}, sub_labels::AbstractArray{Int64,1}, is_global::Bool, pts_to_groups = -1) cpl = splittable_cluser.cluster_params_l cpr = splittable_cluser.cluster_params_r cp = splittable_cluser.cluster_params if is_global cp.suff_statistics = create_sufficient_statistics(cp.hyperparams,cp.posterior_hyperparams, points, pts_to_groups) pts_gl = @view pts_to_groups[(@view (sub_labels .<= 2)[:])] pts_gr = @view pts_to_groups[(@view (sub_labels .> 2)[:])] cpl.suff_statistics = create_sufficient_statistics(cpl.hyperparams,cpl.posterior_hyperparams, (@view points[:,(@view (sub_labels .<= 2)[:])]),pts_gl) cpr.suff_statistics = create_sufficient_statistics(cpr.hyperparams,cpr.posterior_hyperparams, (@view points[:,(@view (sub_labels .> 2)[:])]),pts_gr) else cp.suff_statistics = create_sufficient_statistics(cp.hyperparams,cp.posterior_hyperparams, points) cpl.suff_statistics = create_sufficient_statistics(cpl.hyperparams,cpl.posterior_hyperparams, @view points[:,(@view (sub_labels .% 2 .== 1)[:])]) cpr.suff_statistics = create_sufficient_statistics(cpr.hyperparams,cpr.posterior_hyperparams, @view points[:,(@view (sub_labels .% 2 .== 0)[:])]) end cp.posterior_hyperparams = calc_posterior(cp.hyperparams, cp.suff_statistics) cpl.posterior_hyperparams = calc_posterior(cpl.hyperparams, cpl.suff_statistics) cpr.posterior_hyperparams = calc_posterior(cpr.hyperparams, cpr.suff_statistics) end function update_splittable_cluster_params(splittable_cluser::splittable_cluster_params, points::AbstractArray{Float64,2}, sub_labels::AbstractArray{Int64,1}, is_global::Bool, pts_to_groups = -1) cpl = splittable_cluser.cluster_params_l cpr = splittable_cluser.cluster_params_r cp = splittable_cluser.cluster_params # println(sum((@view (sub_labels .> 2)[:]))) if is_global cp.suff_statistics = create_sufficient_statistics(cp.hyperparams,cp.posterior_hyperparams, points, pts_to_groups) pts_gl = @view pts_to_groups[(@view (sub_labels .<= 2)[:])] pts_gr = @view pts_to_groups[(@view (sub_labels .> 2)[:])] cpl.suff_statistics = create_sufficient_statistics(cpl.hyperparams, cpl.posterior_hyperparams, (@view points[:,(@view (sub_labels .<= 2)[:])]),pts_gl) cpr.suff_statistics = create_sufficient_statistics(cpr.hyperparams, cpr.posterior_hyperparams,(@view points[:,(@view (sub_labels .> 2)[:])]),pts_gr) else cp.suff_statistics = create_sufficient_statistics(cp.hyperparams,cp.posterior_hyperparams,points) cpl.suff_statistics = create_sufficient_statistics(cpl.hyperparams, cpl.posterior_hyperparams,@view points[:,(@view (sub_labels .% 2 .== 1)[:])]) cpr.suff_statistics = create_sufficient_statistics(cpr.hyperparams, cpr.posterior_hyperparams,@view points[:,(@view (sub_labels .% 2 .== 0)[:])]) end begin cp.posterior_hyperparams = calc_posterior(cp.hyperparams, cp.suff_statistics) cpl.posterior_hyperparams = calc_posterior(cpl.hyperparams, cpl.suff_statistics) cpr.posterior_hyperparams = calc_posterior(cpr.hyperparams, cpr.suff_statistics) end return splittable_cluser end function sample_cluster_params!(params::splittable_cluster_params, Ξ±::Float64, is_zero_dim = false) points_count = Vector{Float64}() params.cluster_params.distribution = sample_distribution(params.cluster_params.posterior_hyperparams) params.cluster_params_l.distribution = sample_distribution(params.cluster_params_l.posterior_hyperparams) params.cluster_params_r.distribution = sample_distribution(params.cluster_params_r.posterior_hyperparams) push!(points_count, params.cluster_params_l.suff_statistics.N) push!(points_count, params.cluster_params_r.suff_statistics.N) points_count .+= Ξ±/2 params.lr_weights = rand(Dirichlet(points_count)) log_likihood_l = log_marginal_likelihood(params.cluster_params_l.hyperparams,params.cluster_params_l.posterior_hyperparams, params.cluster_params_l.suff_statistics) log_likihood_r = log_marginal_likelihood(params.cluster_params_r.hyperparams,params.cluster_params_r.posterior_hyperparams, params.cluster_params_r.suff_statistics) # params.logsublikelihood_hist[1:4] = params.logsublikelihood_hist[2:5] # params.logsublikelihood_hist[5] = log_likihood_l + log_likihood_r # logsublikelihood_now = 0.0 # for i=1:5 # logsublikelihood_now += params.logsublikelihood_hist[i] *0.20 # end # if logsublikelihood_now != -Inf && logsublikelihood_now - params.logsublikelihood_hist[5] < 1e-2 # propogate abs change to other versions? # params.splittable = true # end # println(split_delays) # logsublikelihood_now = (log_likihood_l+log_likihood_r) / (params.cluster_params_l.suff_statistics.N+ params.cluster_params_r.suff_statistics.N) # if logsublikelihood_now - params.logsublikelihood_hist[1] < 0 # params.splittable = true # end # params.logsublikelihood_hist[1] = logsublikelihood_now # # if split_delays == false # params.splittable = true # end params.logsublikelihood_hist[1:burnout_period-1] = params.logsublikelihood_hist[2:burnout_period] params.logsublikelihood_hist[burnout_period] = log_likihood_l + log_likihood_r logsublikelihood_now = 0.0 for i=1:burnout_period logsublikelihood_now += params.logsublikelihood_hist[i] *(1/(burnout_period-0.1)) end if logsublikelihood_now != -Inf && logsublikelihood_now - params.logsublikelihood_hist[burnout_period] < 1e-2 # propogate abs change to other versions? # println(params.logsublikelihood_hist) params.splittable = true end if is_zero_dim == true params.splittable = true end return params.cluster_params.suff_statistics.N end function sample_cluster_params!(params::splittable_cluster_params, Ξ±::Float64, counts::AbstractArray{Int64,1}) points_count = [params.cluster_params_l.suff_statistics.N, params.cluster_params_r.suff_statistics.N] params.cluster_params.distribution = sample_distribution(params.cluster_params.posterior_hyperparams) params.cluster_params_l.distribution = sample_distribution(params.cluster_params_l.posterior_hyperparams) params.cluster_params_r.distribution = sample_distribution(params.cluster_params_r.posterior_hyperparams) points_count .+= Ξ±/2 # println(points_count) params.lr_weights = rand(Dirichlet(points_count)) log_likihood_l = log_marginal_likelihood(params.cluster_params_l.hyperparams,params.cluster_params_l.posterior_hyperparams, params.cluster_params_l.suff_statistics) log_likihood_r = log_marginal_likelihood(params.cluster_params_r.hyperparams,params.cluster_params_r.posterior_hyperparams, params.cluster_params_r.suff_statistics) # params.logsublikelihood_hist[1:4] = params.logsublikelihood_hist[2:5] # params.logsublikelihood_hist[5] = log_likihood_l + log_likihood_r # logsublikelihood_now = 0.0 # for i=1:5 # logsublikelihood_now += params.logsublikelihood_hist[i] *0.20 # end # if logsublikelihood_now != -Inf && logsublikelihood_now - params.logsublikelihood_hist[5] < 1e-2 # propogate abs change to other versions? # params.splittable = true # end params.logsublikelihood_hist[1:burnout_period-1] = params.logsublikelihood_hist[2:burnout_period] params.logsublikelihood_hist[burnout_period] = log_likihood_l + log_likihood_r logsublikelihood_now = 0.0 for i=1:burnout_period logsublikelihood_now += params.logsublikelihood_hist[i] *(1/(burnout_period-0.1)) end if logsublikelihood_now != -Inf && logsublikelihood_now - params.logsublikelihood_hist[burnout_period] < 1e-2 # propogate abs change to other versions? # println(params.logsublikelihood_hist) params.splittable = true end return params.cluster_params.suff_statistics.N end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
8335
# We expects the data to be in npy format, return a dict of {group: items}, each file is a different group function load_data(path::String,groupcount::Number; prefix::String="", swapDimension::Bool = true) groups_dict = Dict() for i = 1:groupcount arr = npzread(path * prefix * string(i) * ".npy") for (index, value) in enumerate(arr) if isnan(value) arr[index] = 0.0 end end groups_dict[i] = swapDimension ? transpose(arr) : arr end return groups_dict end # Preprocessing on the samples, global_preprocessing and local_preprocessing are functions. only same dimesions input output are supported atm function preprocessing!(samples_dict,local_dim::Number, global_preprocessing, local_preprocessing) gp = x->Base.invokelatest(global_preprocessing,x) lp = x->Base.invokelatest(local_preprocessing,x) if global_preprocessing == nothing && local_preprocessing == nothing return end for (k,v) in samples_dict if global_preprocessing != nothing samples_dict[k][1 : local_dim-1,:] = mapslices(gp,v[1 : local_dim-1,:], dims= [2]) end if local_preprocessing != nothing samples_dict[k][local_dim : end,:] = mapslices(lp,v[local_dim : end,:], dims= [2]) end end end function dcolwise_dot!(r::AbstractArray, a::AbstractMatrix, b::AbstractMatrix) n = length(r) for j = 1:n v = zero(promote_type(eltype(a), eltype(b))) for i = 1:size(a, 1) @inbounds v += a[i, j]*b[i, j] end r[j] = v end end function distributer_factory(arr::AbstractArray) function distributer!(a,b) #for arg in args try show(a) show(b) arr[b[1]] = b[2] catch y show(a) show(b) println("Exception: ", y) end return -1 #end end return distributer! end # Note that we expect the log_likelihood_array to be in rows (samples) x columns (clusters) , this is due to making it more efficent that way. # function sample_log_cat_array!(labels::AbstractArray{Int64,2}, log_likelihood_array::AbstractArray{Float64,2}) # # println("lsample log cat" * string(log_likelihood_array)) # max_log_prob_arr = maximum(log_likelihood_array, dims = 2) # log_likelihood_array .-= max_log_prob_arr # map!(exp,log_likelihood_array,log_likelihood_array) # # println("lsample log cat2" * string(log_likelihood_array)) # #sum_prob_arr = sum(log_likelihood_array, dims =[2]) # sum_prob_arr = (cumsum(log_likelihood_array, dims =2)) # randarr = rand(length(labels)) .* sum_prob_arr[:,(size(sum_prob_arr,2))] # sum_prob_arr .-= randarr # sum_prob_arr[sum_prob_arr .< 0] .= maxintfloat() # #replace!(x -> x < 0 ? maxintfloat() : x, sum_prob_arr) # labels .= mapslices(argmin, sum_prob_arr, dims= [2]) # end function sample_log_cat_array!(labels::AbstractArray{Int64,2}, log_likelihood_array::AbstractArray{Float64,2}) # println("lsample log cat" * string(log_likelihood_array)) log_likelihood_array[isnan.(log_likelihood_array)] .= -Inf #Numerical errors arent fun max_log_prob_arr = maximum(log_likelihood_array, dims = 2) log_likelihood_array .-= max_log_prob_arr map!(exp,log_likelihood_array,log_likelihood_array) # println("lsample log cat2" * string(log_likelihood_array)) sum_prob_arr = sum(log_likelihood_array, dims =[2]) log_likelihood_array ./= sum_prob_arr for i=1:length(labels) labels[i,1] = sample(1:size(log_likelihood_array,2), ProbabilityWeights(log_likelihood_array[i,:])) end end function sample_log_cat(logcat_array::AbstractArray{Float64, 1}) max_logprob::Float64 = maximum(logcat_array) for i=1:length(logcat_array) logcat_array[i] = exp(logcat_array[i]-max_logprob) end sum_logprob::Float64 = sum(logcat_array) i::Int64 = 1 c::Float64 = logcat_array[1] u::Float64 = rand()*sum(logcat_array) while c < u && i < length(logcat_array) c += logcat_array[i += 1] end return i end function create_sufficient_statistics(dist::distribution_hyper_params, pts::Array{Any,1}) return create_sufficient_statistics(dist,dist, Array{Float64}(undef, 0, 0)) end function get_labels_histogram(labels) hist_dict = Dict() for v in labels if haskey(hist_dict,v) == false hist_dict[v] = 0 end hist_dict[v] += 1 end return sort(collect(hist_dict), by=x->x[1]) end function create_global_labels(group::local_group) clusters_dict = Dict() for (i,v) in enumerate(group.local_clusters) clusters_dict[i] = v.globalCluster end return [clusters_dict[i] for i in group.labels] end function print_global_sub_cluster(group::local_group) println([v.globalCluster for v in group.local_clusters]) println([v.globalCluster_subcluster for v in group.local_clusters]) end function print_groups_global_clusters(model::hdp_shared_features) for (k,g) in model.groups_dict println("Group: " * string(k) * "Global Clusters: " * string([x.globalCluster for x in g.local_clusters])) end end function axes_swapper(groups_pts_dict::Dict, axes_swap_vector) for (k,v) in groups_pts_dict groups_pts_dict[k] = v[axes_swap_vector,:] end return groups_pts_dict end function create_params_jld(jld_path, random_seed, data_path, data_prefix, groups_count, global_preprocessing, local_preprocessing, iterations, hard_clustering, total_dim, local_dim, split_stop, argmax_sample_stop, Ξ±, Ξ³, global_weight, local_weight, initial_global_clusters, initial_local_clusters, global_hyper_params, local_hyper_params) @save jld_path random_seed data_path data_prefix groups_count global_preprocessing local_preprocessing iterations hard_clustering total_dim local_dim split_stop argmax_sample_stop Ξ± Ξ³ global_weight local_weight initial_global_clusters initial_local_clusters global_hyper_params local_hyper_params end function print_params_to_files(file_path, random_seed, iterations, hard_clustering, split_stop, argmax_sample_stop, Ξ±, Ξ³, global_weight, local_weight, initial_global_clusters, initial_local_clusters, global_hyper_params, local_hyper_params, global_multiplier = 0, local_multiplier = 0) io = open(file_path, "w+") println(io, "random_seed = " * string(random_seed)) println(io, "iterations = " * string(iterations)) println(io, "hard_clustering = " * string(hard_clustering)) println(io, "split_stop = " * string(split_stop)) println(io, "argmax_sample_stop = " * string(argmax_sample_stop)) println(io, "Ξ± = " * string(Ξ±)) println(io, "Ξ³ = " * string(Ξ³)) println(io, "global_weight = " * string(global_weight)) println(io, "local_weight = " * string(local_weight)) println(io, "initial_global_clusters = " * string(initial_global_clusters)) println(io, "initial_local_clusters = " * string(initial_local_clusters)) println(io, "global_hyper_params = " * string(global_hyper_params)) println(io, "local_hyper_params = " * string(local_hyper_params)) println(io, "global_multiplier = " * string(global_multiplier)) println(io, "local_multiplier = " * string(local_multiplier)) close(io) end function get_node_leaders_dict() leader_dict = Dict() cur_leader = 2 leader_dict[cur_leader] = [] for i in workers() if i in procs(cur_leader) push!(leader_dict[cur_leader], i) else cur_leader = i leader_dict[cur_leader] = [i] end end return leader_dict end function assign_group_leaders(groups_count, leader_dict) group_assignments = zeros(groups_count) group_leaders = collect(keys(leader_dict)) for i=1:length(group_assignments) group_assignments[i] = group_leaders[i%length(group_leaders) +1 ] end return group_assignments end function log_multivariate_gamma(x::Number, D::Number) res::Float64 = D*(D-1)/4*log(pi) for d = 1:D res += logabsgamma(x+(1-d)/2)[1] end return res end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
583
include("../ds.jl") using LinearAlgebra using Distributions # using PDMats struct compact_mnm_dist <: distibution_sample Ξ±::AbstractArray{Float64,1} end #topic_modeling_dist function log_likelihood!(r::AbstractArray,x::AbstractArray, distibution_sample::compact_mnm_dist , group::Int64 = -1) if length(distibution_sample.Ξ±) == 0 return end @inbounds for i in eachindex(r) r[i] = 0.0 @inbounds for j=1:size(x,1) if x[j,i] > 0 r[i] += distibution_sample.Ξ±[Int64.(x[j,i])] end end end end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
265
struct multinomial_dist <: distibution_sample Ξ±::AbstractArray{Float64,1} end #Multinomial function log_likelihood!(r::AbstractArray,x::AbstractArray, distibution_sample::multinomial_dist , group::Int64 = -1) r .= (distibution_sample.Ξ±' * x)[1,:] end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
551
struct mv_gaussian <: distibution_sample ΞΌ::AbstractArray{Float64,1} Ξ£::AbstractArray{Float64,2} invΞ£::AbstractArray{Float64,2} logdetΞ£::Float64 # mvn::MvNormal end function dinvquad!(r,a,x) dcolwise_dot!(r,x, a \ x) end function log_likelihood!(r::AbstractArray,x::AbstractArray, distibution_sample::mv_gaussian , group::Int64 = -1) z = x .- distibution_sample.ΞΌ dcolwise_dot!(r,z, distibution_sample.invΞ£ * z) r .= -((length(distibution_sample.Ξ£) * Float64(log(2Ο€)) + logdet(distibution_sample.Ξ£))/2) .-r end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
494
struct mv_group_gaussian <: distibution_sample ΞΌ::Vector{AbstractArray{Float64,1}} Ξ£::AbstractArray{Float64,2} invΞ£::AbstractArray{Float64,2} logdetΞ£::Float64 end function log_likelihood!(r::AbstractArray,x::AbstractArray, distibution_sample::mv_group_gaussian ,group::Int64 = 1) z = x .- distibution_sample.ΞΌ[group] dcolwise_dot!(r,z, distibution_sample.invΞ£ * z) r .= -((length(distibution_sample.Ξ£) * Float64(log(2Ο€)) + logdet(distibution_sample.Ξ£))/2) .-r end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
392
struct topic_modeling_dist <: distibution_sample Ξ±::AbstractArray{Float64,1} end #topic_modeling_dist function log_likelihood!(r::AbstractArray,x::AbstractArray, distibution_sample::topic_modeling_dist , group::Int64 = -1) if length(distibution_sample.Ξ±) == 0 return end @inbounds for i in eachindex(r) r[i] = distibution_sample.Ξ±[Int64.(x[i])] end end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
5665
struct bayes_network_model <: distribution_hyper_params κ::Float64 m::AbstractArray{Float64} ν::Float64 ψ::AbstractArray{Float64} count::Int64 ms::Vector{AbstractArray{Float64}} λ::Float64 end mutable struct bayes_network_sufficient_statistics <: sufficient_statistics N::Float64 Ngroups::Vector{Float64} points_sum::AbstractArray{Float64,1} mu_vector::Vector{AbstractArray{Float64,1}} S::AbstractArray{Float64,2} end function calc_posterior(prior::bayes_network_model, suff_statistics::bayes_network_sufficient_statistics) if suff_statistics.N == 0 return prior end κ = prior.κ + suff_statistics.N ν = prior.ν + suff_statistics.N m = (prior.m.*prior.κ + suff_statistics.points_sum) / κ ψ = (prior.ν * prior.ψ + prior.κ*prior.m*prior.m' -κ*m*m'+ suff_statistics.S) / ν ψ = Matrix(Hermitian(ψ)) #ψ = Hermitian((prior.ν * prior.ψ + prior.κ*prior.m*prior.m' -κ*m*m' + suff_statistics.S) ./ ν) if isposdef(ψ) == false println(ψ) println(m) println(κ*m*m') println(suff_statistics) end return bayes_network_model(κ,m,ν,ψ,prior.count,suff_statistics.mu_vector,prior.λ) end function sample_distribution(hyperparams::bayes_network_model) Σ = rand(Distributions.InverseWishart(hyperparams.ν, hyperparams.ν* hyperparams.ψ)) mu_vector = Vector{AbstractArray{Float64,1}}() μ = rand(Distributions.MvNormal(hyperparams.m, Σ/hyperparams.κ)) for i=1:hyperparams.count push!(mu_vector, rand(Distributions.MvNormal(hyperparams.ms[i], Σ/hyperparams.κ))) end return mv_group_gaussian(mu_vector,Σ,inv(Σ),logdet(Σ)) end function create_sufficient_statistics(hyper::bayes_network_model, posterior::bayes_network_model, points::AbstractArray{Float64,2}, point_to_group = 0) if size(points,2) == 0 return bayes_network_sufficient_statistics(0, [0 for i=1:hyper.count], zeros(length(hyper.m)), [hyper.m for i=1:hyper.count], zeros(length(hyper.m),length(hyper.m))) end pts_dict = Dict() for i=1:hyper.count pts_dict[i] = @view points[:,point_to_group .== i] end mu_vector = create_mu_vector(pts_dict, posterior.ψ,hyper.λ) dim = size(posterior.ψ,1) S = zeros(dim,dim) points_sum = zeros(dim) Ngroups = Vector{Float64}() N = 0 for i=1:hyper.count pts = Array(pts_dict[i]) if size(pts,2) == 0 push!(Ngroups,0) else movedPts = pts .- mu_vector[i] S += movedPts * movedPts' points_sum += sum(movedPts, dims = 2) push!(Ngroups,size(pts,2)) N += size(pts,2) end end return bayes_network_sufficient_statistics(N,Ngroups,points_sum[:],mu_vector,S) end function log_marginal_likelihood(hyper::bayes_network_model, posterior_hyper::bayes_network_model, suff_stats::bayes_network_sufficient_statistics) D = size(suff_stats.S,1) logpi = log(pi) return -suff_stats.N*D/2*logpi + log_multivariate_gamma(posterior_hyper.ν/2, D)- log_multivariate_gamma(hyper.ν/2, D) + (hyper.ν/2)*logdet(hyper.ψ*hyper.ν)- (posterior_hyper.ν/2)*logdet(posterior_hyper.ψ*posterior_hyper.ν) + (D/2)*(log(hyper.κ)-(D/2)*log(posterior_hyper.κ)) end function aggregate_suff_stats(suff_l::bayes_network_sufficient_statistics, suff_r::bayes_network_sufficient_statistics) new_suff = deepcopy(suff_l) N = 0 for i=1:length(new_suff.Ngroups) new_suff.mu_vector[i] = (new_suff.mu_vector[i] .* (new_suff.Ngroups[i] / (new_suff.Ngroups[i] + suff_r.Ngroups[i]))) +(suff_r.mu_vector[i] .* (suff_r.Ngroups[i] / (new_suff.Ngroups[i] + suff_r.Ngroups[i]))) new_suff.Ngroups[i] += suff_r.Ngroups[i] new_suff.N += suff_r.Ngroups[i] end new_suff.S += suff_r.S new_suff.points_sum += suff_r.points_sum return new_suff end function create_mu_vector(points::Dict, Σ::AbstractArray{Float64}, λ::Float64) group_count = length(keys(points)) A, b = create_matrix_for_least_squares(points, Σ, λ, group_count) xhat = inv(A'*A)*(A'*b) dim = size(Σ,1) mu_vector = reshape(xhat, dim, group_count) return [mu_vector[:,i] for i=1:group_count] end function create_matrix_for_least_squares(points::Dict, Σ::AbstractArray{Float64}, λ::Float64, group_count::Int64) points_count = zeros(group_count) points_sum::Int64 = 0 dim = size(Σ,1) for i=1:length(points) points_count[i] = (points[i] == -1 ? 0 : size(points[i],2)) points_sum += points_count[i] end points = [x for x in values(points) if x != -1] points_arr = vcat(points, [zeros(dim) for x in 1:group_count]) points_arr = reduce(hcat, points_arr) points_arr = points_arr[:] A = zeros(length(points_arr),groups_count * dim) L = cholesky(Σ).U Linv = Matrix(inv(L)) for i=1:points_sum b = points_arr[(i-1)*dim+1:i*dim] tmp = Linv * b points_arr[(i-1)*dim+1:i*dim] = Linv * points_arr[(i-1)*dim+1:i*dim] end count = 1 for i=1:group_count for j=1:points_count[i] A[count:count+dim-1,dim*(i-1)+1:dim*i] = Linv count+= dim end end λsqrt = λ^2 count += dim #Skip the first μ for i=1:(size(A,2) - dim) A[count,i] = -λsqrt A[count,i+dim] = λsqrt count+=1 end return A, points_arr end function create_bayes_model_hyper_from_niw(niw::niw_hyperparams, λ, count) ms = [niw.m for i=1:count] return bayes_network_model(niw.κ,niw.m,niw.ν,niw.ψ,count,ms,λ) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
1821
include("../ds.jl") struct compact_mnm_hyper <: distribution_hyper_params Ξ±::AbstractArray{Float64,1} end mutable struct compact_mnm_sufficient_statistics <: sufficient_statistics N::Float64 points_sum::AbstractArray{Int64,1} end function calc_posterior(prior:: compact_mnm_hyper, suff_statistics::compact_mnm_sufficient_statistics) if suff_statistics.N == 0 return prior end return compact_mnm_hyper(prior.Ξ± + suff_statistics.points_sum) end function sample_distribution(hyperparams::compact_mnm_hyper) cat_dist = rand(Dirichlet(hyperparams.Ξ±)) return compact_mnm_dist(log.(cat_dist)) end function create_sufficient_statistics(hyper::compact_mnm_hyper,posterior::compact_mnm_hyper,points::AbstractArray{Float64,2}, pts_to_group = 0) if length(points) == 0 return compact_mnm_sufficient_statistics(size(points,2),zeros(Int64,length(hyper.Ξ±))) end pt_count = counts(Int.(points),length(hyper.Ξ±)) return compact_mnm_sufficient_statistics(size(points,2),pt_count) end function log_multivariate_gamma(x::Number, D::Number) res::Float64 = D*(D-1)/4*log(pi) for d = 1:D res += logabsgamma(x+(1-d)/2)[1] end return res end function log_marginal_likelihood(hyper::compact_mnm_hyper, posterior_hyper::compact_mnm_hyper, suff_stats::compact_mnm_sufficient_statistics) D = length(suff_stats.points_sum) logpi = log(pi) val = logabsgamma(sum(hyper.Ξ±))[1] -logabsgamma(sum(posterior_hyper.Ξ±))[1] + sum((x-> logabsgamma(x)[1]).(posterior_hyper.Ξ±) - (x-> logabsgamma(x)[1]).(hyper.Ξ±)) return val end function aggregate_suff_stats(suff_l::compact_mnm_sufficient_statistics, suff_r::compact_mnm_sufficient_statistics) return compact_mnm_sufficient_statistics(suff_l.N+suff_r.N, suff_l.points_sum + suff_r.points_sum) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
1538
struct multinomial_hyper <: distribution_hyper_params Ξ±::AbstractArray{Float64,1} end mutable struct multinomial_sufficient_statistics <: sufficient_statistics N::Float64 points_sum::AbstractArray{Float64,1} S end function calc_posterior(prior:: multinomial_hyper, suff_statistics::multinomial_sufficient_statistics) if suff_statistics.N == 0 return prior end return multinomial_hyper(prior.Ξ± + suff_statistics.points_sum) end function sample_distribution(hyperparams::multinomial_hyper) return multinomial_dist(log.(rand(Dirichlet(hyperparams.Ξ±)))) end function create_sufficient_statistics(hyper::multinomial_hyper,posterior::multinomial_hyper,points::AbstractArray{Float64,2}, pts_to_group = 0) # pts = copy(points) points_sum = sum(points, dims = 2)[:] #S = pts * pts' return multinomial_sufficient_statistics(size(points,2),points_sum, 0) end function log_marginal_likelihood(hyper::multinomial_hyper, posterior_hyper::multinomial_hyper, suff_stats::multinomial_sufficient_statistics) D = length(suff_stats.points_sum) logpi = log(pi) val = logabsgamma(sum(hyper.Ξ±))[1] -logabsgamma(sum(posterior_hyper.Ξ±))[1] + sum((x-> logabsgamma(x)[1]).(posterior_hyper.Ξ±) - (x-> logabsgamma(x)[1]).(hyper.Ξ±)) return val end function aggregate_suff_stats(suff_l::multinomial_sufficient_statistics, suff_r::multinomial_sufficient_statistics) return multinomial_sufficient_statistics(suff_l.N+suff_r.N, suff_l.points_sum + suff_r.points_sum, suff_l.S+suff_r.S) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
2761
struct niw_hyperparams <: distribution_hyper_params κ::Float64 m::AbstractArray{Float64} ν::Float64 ψ::AbstractArray{Float64} end mutable struct niw_sufficient_statistics <: sufficient_statistics N::Float64 points_sum::AbstractArray{Float64,1} S::AbstractArray{Float64,2} end function calc_posterior(prior:: niw_hyperparams, suff_statistics::niw_sufficient_statistics) if suff_statistics.N == 0 return prior end κ = prior.κ + suff_statistics.N ν = prior.ν + suff_statistics.N m = (prior.m.*prior.κ + suff_statistics.points_sum) / κ ψ = (prior.ν * prior.ψ + prior.κ*prior.m*prior.m' -κ*m*m'+ suff_statistics.S) / ν ψ = Matrix(Hermitian(ψ)) if isposdef(ψ) == false println(ψ) println(m) println(κ*m*m') println(suff_statistics) println(prior) end return niw_hyperparams(κ,m,ν,ψ) end #function calc_posterior(prior:: niw_hyperparams, suff_statistics::niw_sufficient_statistics) # κ = prior.κ + suff_statistics.N # m = (κ * prior.m + suff_statistics.points_sum) / κ # ν = prior.ν + suff_statistics.N # ψ = prior.ψ + suff_statistics.S + prior.κ*prior.m*prior.m'-κ*m*m' # return niw_hyperparams(κ,m,ν,ψ) #end function sample_distribution(hyperparams::niw_hyperparams) Σ = rand(Distributions.InverseWishart(hyperparams.ν, hyperparams.ν* hyperparams.ψ)) μ = rand(Distributions.MvNormal(hyperparams.m, Σ/hyperparams.κ)) return mv_gaussian(μ,Σ,inv(Σ),logdet(Σ)) end function create_sufficient_statistics(hyper::niw_hyperparams,posterior::niw_hyperparams,points::AbstractArray{Float64,2}, pts_to_group = 0) if size(points,2) == 0 return niw_sufficient_statistics(size(points,2),zeros(length(hyper.m)),zeros(length(hyper.m),length(hyper.m))) end pts = Array(points) points_sum = @view sum(pts, dims = 2)[:] S = pts * pts' #println(size(points)) #println(points_sum) #println(S) return niw_sufficient_statistics(size(points,2),points_sum,S) end function log_marginal_likelihood(hyper::niw_hyperparams, posterior_hyper::niw_hyperparams, suff_stats::niw_sufficient_statistics) D = length(suff_stats.points_sum) logpi = log(pi) return -suff_stats.N*D/2*logpi + log_multivariate_gamma(posterior_hyper.ν/2, D)- log_multivariate_gamma(hyper.ν/2, D) + (hyper.ν/2)*logdet(hyper.ψ*hyper.ν)- (posterior_hyper.ν/2)*logdet(posterior_hyper.ψ*posterior_hyper.ν) + (D/2)*(log(hyper.κ))-(D/2)*log(posterior_hyper.κ) end function aggregate_suff_stats(suff_l::niw_sufficient_statistics, suff_r::niw_sufficient_statistics) return niw_sufficient_statistics(suff_l.N+suff_r.N, suff_l.points_sum + suff_r.points_sum, suff_l.S+suff_r.S) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
2861
struct niw_stable_hyperparams <: distribution_hyper_params κ::Float64 m::AbstractArray{Float64} ν::Float64 ψ::AbstractArray{Float64} end mutable struct niw_stable_sufficient_statistics <: sufficient_statistics N::Float64 points_sum::AbstractArray{Float64,1} S::AbstractArray{Float64,2} end function calc_posterior(prior:: niw_stable_hyperparams, suff_statistics::niw_stable_sufficient_statistics) if suff_statistics.N == 0 return prior end κ = prior.κ + suff_statistics.N ν = prior.ν + suff_statistics.N m = (prior.m.*prior.κ + suff_statistics.points_sum) / κ ψ = (prior.ν * prior.ψ + prior.κ*prior.m*prior.m' -κ*m*m'+ suff_statistics.S) / ν ψ = Matrix(Hermitian(ψ)) if isposdef(ψ) == false println(ψ) println(m) println(κ*m*m') println(suff_statistics) println(prior) end return niw_stable_hyperparams(κ,m,ν,ψ) end #function calc_posterior(prior:: niw_hyperparams, suff_statistics::niw_sufficient_statistics) # κ = prior.κ + suff_statistics.N # m = (κ * prior.m + suff_statistics.points_sum) / κ # ν = prior.ν + suff_statistics.N # ψ = prior.ψ + suff_statistics.S + prior.κ*prior.m*prior.m'-κ*m*m' # return niw_hyperparams(κ,m,ν,ψ) #end function sample_distribution(hyperparams::niw_stable_hyperparams) Σ = rand(Distributions.InverseWishart(hyperparams.ν, hyperparams.ν* hyperparams.ψ)) μ = rand(Distributions.MvNormal(hyperparams.m, Σ/hyperparams.κ)) Σ = Matrix{Float64}(I, length(μ), length(μ)) * 1.0 return mv_gaussian(μ,Σ,inv(Σ),logdet(Σ)) end function create_sufficient_statistics(hyper::niw_stable_hyperparams,posterior::niw_stable_hyperparams,points::AbstractArray{Float64,2}, pts_to_group = 0) if size(points,2) == 0 return niw_stable_sufficient_statistics(size(points,2),zeros(length(hyper.m)),zeros(length(hyper.m),length(hyper.m))) end pts = Array(points) points_sum = @view sum(pts, dims = 2)[:] S = pts * pts' return niw_stable_sufficient_statistics(size(points,2),points_sum,S) end function log_marginal_likelihood(hyper::niw_stable_hyperparams, posterior_hyper::niw_stable_hyperparams, suff_stats::niw_stable_sufficient_statistics) D = length(suff_stats.points_sum) logpi = log(pi) return -suff_stats.N*D/2*logpi + log_multivariate_gamma(posterior_hyper.ν/2, D)- log_multivariate_gamma(hyper.ν/2, D) + (hyper.ν/2)*logdet(hyper.ψ*hyper.ν)- (posterior_hyper.ν/2)*logdet(posterior_hyper.ψ*posterior_hyper.ν) + (D/2)*(log(hyper.κ)-(D/2)*log(posterior_hyper.κ)) end function aggregate_suff_stats(suff_l::niw_stable_sufficient_statistics, suff_r::niw_stable_sufficient_statistics) return niw_stable_sufficient_statistics(suff_l.N+suff_r.N, suff_l.points_sum + suff_r.points_sum, suff_l.S+suff_r.S) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
code
1746
struct topic_modeling_hyper <: distribution_hyper_params Ξ±::AbstractArray{Float64,1} end mutable struct topic_modeling_sufficient_statistics <: sufficient_statistics N::Float64 points_sum::AbstractArray{Int64,1} end function calc_posterior(prior:: topic_modeling_hyper, suff_statistics::topic_modeling_sufficient_statistics) if suff_statistics.N == 0 return prior end return topic_modeling_hyper(prior.Ξ± + suff_statistics.points_sum) end function sample_distribution(hyperparams::topic_modeling_hyper) cat_dist = rand(Dirichlet(hyperparams.Ξ±)) return topic_modeling_dist(log.(cat_dist)) end function create_sufficient_statistics(hyper::topic_modeling_hyper,posterior::topic_modeling_hyper,points::AbstractArray{Float64,2}, pts_to_group = 0) if length(points) == 0 return topic_modeling_sufficient_statistics(size(points,2),zeros(Int64,length(hyper.Ξ±))) end pt_count = counts(Int.(points),length(hyper.Ξ±)) return topic_modeling_sufficient_statistics(size(points,2),pt_count) end function log_marginal_likelihood(hyper::topic_modeling_hyper, posterior_hyper::topic_modeling_hyper, suff_stats::topic_modeling_sufficient_statistics) D = length(suff_stats.points_sum) N = Int(ceil(sum(posterior_hyper.Ξ± - hyper.Ξ±))) logpi = log(pi) val = sum((x-> logabsgamma(x)[1]).(posterior_hyper.Ξ±) - suff_stats.points_sum .* (x-> logabsgamma(x)[1]).(hyper.Ξ±)) + logabsgamma(sum(hyper.Ξ±))[1] -logabsgamma(N + sum(hyper.Ξ±))[1] return val end function aggregate_suff_stats(suff_l::topic_modeling_sufficient_statistics, suff_r::topic_modeling_sufficient_statistics) return topic_modeling_sufficient_statistics(suff_l.N+suff_r.N, suff_l.points_sum + suff_r.points_sum) end
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
0.1.1
1eee6b029f0312479bad622c48c5902458eb3888
docs
3537
# VersatileHDPMixtureModels.jl This package is the code for our UAI '20 paper titled "Scalable and Flexible Clustering of Grouped Data via Parallel and Distributed Sampling in Versatile Hierarchical Dirichlet Processes". <br> [Paper](https://www.cs.bgu.ac.il/~orenfr/papers/Dinari_UAI_2020.pdf), [Supplemental Material](https://www.cs.bgu.ac.il/~orenfr/papers/Dinari_UAI_2020_supmat.pdf) <br> ### What can it do? This package allows to perform inference in the *vHDPMM* setting, as described in the paper, or as an alternative, it can perform inference in *HDPMM* setting. ### Quick Start 1. Get Julia from [here](https://julialang.org/), any version above 1.1.0 should work, install, and run it. 2. Add the package `]add VersatileHDPMixtureModels`. 3. Add some processes and use the package: ``` using Distributed addprocs(2) @everywhere using VersatileHDPMixtureModels ``` 4. Now you can start using it! * For the HDP Version: ``` # Sample some data from a CRF PRIOR: # We sample 3D data, 4 Groups, with $\alpha=10,\gamma=1$. and variance of 100 between the components means. crf_prior = hdp_prior_crf_draws(100,3,10,1) pts,labels = generate_grouped_gaussian_from_hdp_group_counts(crf_prior[2],3,100.0) #Create the priors we opt to use: #As we want HDP, we set the local prior dimension to 0, and the global prior dimension to 3 gprior, lprior = create_default_priors(3,0,:niw) #Run the model: model = hdp_fit(pts,10,1,gprior,100) #Get results: model_results = get_model_global_pred(model[1]) # Get global components assignments ## ``` * Running the vHDP full setting: ``` #Generate some data: #We generate gaussian data, 20K pts each group, Global Dim= 2, Local Dim = 1, 3 Global components, 5 Local in each group, 10 groups: pts,labels = generate_grouped_gaussian_data(20000, 2, 1, 3, 5, 10, false, 25.0, false) #Create Priors: g_prior, l_prior = create_default_priors(2,1,:niw) #Run the model: vhdpmm_results = vhdp_fit(pts,2,100.0,1000.0,100.0,g_prior,l_prior,50) #Get global and local assignments for the points: vhdpmm_global = Dict([i=> create_global_labels(vhdpmm_results[1].groups_dict[i]) for i=1:length(data)]) vhdpmm_local = Dict([i=> vhdpmm_results[1].groups_dict[i].labels for i=1:length(data)]) ``` ### Examples: [Coseg with super pixels](https://nbviewer.jupyter.org/github/BGU-CS-VIL/VersatileHDPMixtureModels.jl/blob/master/examples/Coseg.ipynb) <br> [vHDP as HDP](https://nbviewer.jupyter.org/github/BGU-CS-VIL/VersatileHDPMixtureModels.jl/blob/master/examples/vHDPasHDPGMM.ipynb) <br> [Missing data experiment](https://nbviewer.jupyter.org/github/BGU-CS-VIL/VersatileHDPMixtureModels.jl/blob/master/examples/MissingData.ipynb) <br> [Synthethic data experiemnt](https://nbviewer.jupyter.org/github/BGU-CS-VIL/VersatileHDPMixtureModels.jl/blob/master/examples/SynthethicData.ipynb) ### License This software is released under the MIT License (included with the software). Note, however, that if you are using this code (and/or the results of running it) to support any form of publication (e.g., a book, a journal paper, a conference paper, a patent application, etc.) then we request you will cite our paper: ``` @inproceedings{dinari2020vhdp, title={Scalable and Flexible Clustering of Grouped Data via Parallel and Distributed Sampling in Versatile Hierarchical {D}irichlet Processes}, author={{Dinari, Or and Freifeld, Oren}, booktitle={UAI}, year={2020} } ``` ### Misc For any questions: dinari at post.bgu.ac.il Contributions, feature requests, suggestion etc.. are welcomed.
VersatileHDPMixtureModels
https://github.com/BGU-CS-VIL/VersatileHDPMixtureModels.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
code
553
using CFITSIO using Documenter DocMeta.setdocmeta!(CFITSIO, :DocTestSetup, :(using CFITSIO); recursive=true) include("pages.jl") makedocs(; modules=[CFITSIO], authors="JuliaAstro", repo="https://github.com/JuliaAstro/CFITSIO.jl/blob/{commit}{path}#L{line}", sitename="CFITSIO.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://juliaastro.github.io/CFITSIO.jl", assets=String[], ), pages=pages ) deploydocs(; repo="github.com/JuliaAstro/CFITSIO.jl", )
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
code
60
pages=[ "Home" => "index.md", ] requiredmods = Symbol[]
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
code
68537
module CFITSIO using CFITSIO_jll export FITSFile, FITSMemoryHandle, fits_assert_open, fits_clobber_file, fits_close_file, fits_copy_image_section, fits_create_ascii_tbl, fits_create_binary_tbl, fits_create_diskfile, fits_create_file, fits_create_img, fits_delete_file, fits_delete_key, fits_delete_record, fits_delete_rows, fits_file_mode, fits_file_name, fits_get_hdrspace, fits_get_hdu_num, fits_get_hdu_type, fits_delete_hdu, fits_get_img_dim, fits_get_img_equivtype, fits_get_img_size, fits_get_img_type, fits_get_num_cols, fits_get_num_hdus, fits_get_num_rows, fits_get_rowsize, fits_get_colnum, fits_get_coltype, fits_get_eqcoltype, fits_get_version, fits_read_tdim, fits_hdr2str, fits_insert_img, fits_insert_rows, fits_movabs_hdu, fits_movrel_hdu, fits_movnam_hdu, fits_open_data, fits_open_diskfile, fits_open_file, fits_open_image, fits_open_table, fits_open_memfile, fits_read_col, fits_read_descript, fits_read_keyn, fits_read_key_str, fits_read_key_lng, fits_read_keys_lng, fits_read_keyword, fits_read_pix, fits_read_pixnull, fits_read_record, fits_read_subset, fits_resize_img, fits_update_key, fits_write_col, fits_write_date, fits_write_comment, fits_write_history, fits_write_key, fits_write_pix, fits_write_pixnull, fits_write_subset, fits_write_null_img, fits_write_record, fits_write_tdim, libcfitsio_version, cfitsio_typecode, bitpix_from_type, type_from_bitpix @enum FileMode R = 0 RW = 1 """ cfitsio_typecode(::Type) -> Cint Return the CFITSIO type code for the given Julia type """ cfitsio_typecode """ bitpix_from_type(::Type) -> Cint Return the FITS BITPIX code for the given Julia type """ bitpix_from_type """ type_from_bitpix(::Integer) -> Type Return the Julia type from the FITS BITPIX code """ type_from_bitpix for (T, code) in ( (UInt8, 11), (Int8, 12), (Bool, 14), (String, 16), (Cushort, 20), (Cshort, 21), (Cuint, 30), (Cint, 31), (UInt64, 80), (Int64, 81), (Float32, 42), (Float64, 82), (ComplexF32, 83), (ComplexF64, 163), ) @eval cfitsio_typecode(::Type{$T}) = Cint($code) end for (T, code) in ((UInt8, 8), # BYTE_IMG (Int16, 16), # SHORT_IMG (Int32, 32), # LONG_IMG (Int64, 64), # LONGLONG_IMG (Float32, -32), # FLOAT_IMG (Float64, -64), # DOUBLE_IMG (Int8, 10), # SBYTE_IMG (UInt16, 20), # USHORT_IMG (UInt32, 40), # ULONG_IMG (UInt64, 80)) # ULONGLONG_IMG local value = Cint(code) @eval begin bitpix_from_type(::Type{$T}) = $value type_from_bitpix(::Val{$value}) = $T end end type_from_bitpix(code::Integer) = type_from_bitpix(Val(Cint(code))) # Above, we don't define a method for Clong because it is either Cint (Int32) # or Int64 depending on the platform, and those methods are already defined. # Culong is either UInt64 or Cuint depending on platform. # ----------------------------------------------------------------------------- # FITSFile type mutable struct FITSFile ptr::Ptr{Cvoid} FITSFile(ptr::Ptr{Cvoid}) = finalizer(fits_close_file, new(ptr)) end # FITS wants to be able to update the ptr, so keep them # in a mutable struct mutable struct FITSMemoryHandle ptr::Ptr{Cvoid} size::Csize_t end FITSMemoryHandle() = FITSMemoryHandle(C_NULL, 0) # ----------------------------------------------------------------------------- # error messaging function fits_assert_open(f::FITSFile) if f.ptr == C_NULL error("attempt to access a FITS file that has been closed previously") end end function fits_assert_nonempty(f::FITSFile) if fits_get_num_hdus(f) == 0 error("No HDU found in FITS file") end end struct CFITSIOError{T} <: Exception filename :: T errcode :: Cint errmsgshort :: String errmsgfull :: String end function Base.showerror(io::IO, c::CFITSIOError) print(io, "CFITSIO has encountered an error") if c.filename !== nothing print(io, " while processing ", c.filename) end println(io, ". Error code ", c.errcode, ": ", c.errmsgshort) if !isempty(c.errmsgfull) println(io, "Detailed error message follows: ") print(io, c.errmsgfull) end end function fits_get_errstatus(status::Cint) msg = Vector{UInt8}(undef, 31) ccall((:ffgerr, libcfitsio), Cvoid, (Cint, Ptr{UInt8}), status, msg) unsafe_string(pointer(msg)) end function fits_read_errmsg() msg = Vector{UInt8}(undef, 80) msgstr = "" ccall((:ffgmsg, libcfitsio), Cvoid, (Ptr{UInt8},), msg) msgstr = unsafe_string(pointer(msg)) errstr = msgstr while msgstr != "" ccall((:ffgmsg, libcfitsio), Cvoid, (Ptr{UInt8},), msg) msgstr = unsafe_string(pointer(msg)) errstr *= '\n' * msgstr end return errstr end function fits_assert_ok(status::Cint, filename = nothing) if status != 0 err = CFITSIOError(filename, status, fits_get_errstatus(status), fits_read_errmsg(), ) throw(err) end end fits_assert_isascii(str::String) = !isascii(str) && error("FITS file format accepts ASCII strings only") fits_get_version() = ccall((:ffvers, libcfitsio), Cfloat, (Ref{Cfloat},), 0.0) # ----------------------------------------------------------------------------- # Utility function zerost(::Type{T}, n) where {T} = ntuple(_ -> zero(T), n) onest(::Type{T}, n) where {T} = ntuple(_ -> one(T), n) # ----------------------------------------------------------------------------- # file access & info functions """ fits_create_file(filename::AbstractString) Create and open a new empty output `FITSFile`. This methods uses the [extended file name syntax](https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node83.html) to create the file. See also [`fits_create_diskfile`](@ref) which does not use the extended filename parser. """ function fits_create_file(filename::AbstractString) ptr = Ref{Ptr{Cvoid}}() status = Ref{Cint}(0) ccall( (:ffinit, libcfitsio), Cint, (Ref{Ptr{Cvoid}}, Ptr{UInt8}, Ref{Cint}), ptr, filename, status, ) fits_assert_ok(status[], filename) FITSFile(ptr[]) end """ fits_create_diskfile(filename::AbstractString) Create and open a new empty output `FITSFile`. Unlike [`fits_create_file`](@ref), this function does not use an extended filename parser and treats the string as is as the filename. """ function fits_create_diskfile(filename::AbstractString) ptr = Ref{Ptr{Cvoid}}() status = Ref{Cint}(0) ccall( (:ffdkinit, libcfitsio), Cint, (Ref{Ptr{Cvoid}}, Ptr{UInt8}, Ref{Cint}), ptr, filename, status, ) fits_assert_ok(status[], filename) FITSFile(ptr[]) end """ fits_clobber_file(filename::AbstractString) Like [`fits_create_file`](@ref), but overwrites `filename` if it exists. """ fits_clobber_file(filename::AbstractString) = fits_create_file("!" * filename) """ fits_open_data(filename::String, [mode = 0]) Open an existing data file (like [`fits_open_file`](@ref)) and move to the first HDU containing either an image or a table. ## Modes: * 0 : Read only (equivalently denoted by `CFITSIO.R`) * 1 : Read-write (equivalently denoted by `CFITSIO.RW`) """ fits_open_data """ fits_open_file(filename::String, [mode = 0]) Open an existing data file. ## Modes: * 0 : Read only (equivalently denoted by `CFITSIO.R`) * 1 : Read-write (equivalently denoted by `CFITSIO.RW`) This function uses the extended filename syntax to open the file. See also [`fits_open_diskfile`](@ref) that does not use the extended filename parser and uses `filename` as is as the name of the file. """ fits_open_file """ fits_open_diskfile(filename::String, [mode = 0]) Open an existing data file. ## Modes: * 0 : Read only (equivalently denoted by `CFITSIO.R`) * 1 : Read-write (equivalently denoted by `CFITSIO.RW`) This function does not use the extended filename parser, and uses `filename` as is as the name of the file that is to be opened. See also [`fits_open_file`](@ref) which uses the extended filename syntax. """ fits_open_diskfile """ fits_open_image(filename::String, [mode = 0]) Open an existing data file (like [`fits_open_file`](@ref)) and move to the first HDU containing an image. ## Modes: * 0 : Read only (equivalently denoted by `CFITSIO.R`) * 1 : Read-write (equivalently denoted by `CFITSIO.RW`) """ fits_open_image """ fits_open_table(filename::String, [mode = 0]) Open an existing data file (like [`fits_open_file`](@ref)) and move to the first HDU containing either an ASCII or a binary table. ## Modes: * 0 : Read only (equivalently denoted by `CFITSIO.R`) * 1 : Read-write (equivalently denoted by `CFITSIO.RW`) """ fits_open_table for (a, b) in ( (:fits_open_data, "ffdopn"), (:fits_open_file, "ffopen"), (:fits_open_image, "ffiopn"), (:fits_open_table, "fftopn"), (:fits_open_diskfile, "ffdkopn"), ) @eval begin function ($a)(filename::AbstractString, mode = 0) ptr = Ref{Ptr{Cvoid}}() status = Ref{Cint}(0) ccall( ($b, libcfitsio), Cint, (Ref{Ptr{Cvoid}}, Ptr{UInt8}, Cint, Ref{Cint}), ptr, filename, mode, status, ) fits_assert_ok(status[], filename) FITSFile(ptr[]) end end end # filename is ignored by the C library function fits_open_memfile(data::Vector{UInt8}, mode = 0, filename = "") # Only reading is supported right now @assert Int(mode) == 0 "only reading is supported currently, so mode must be 0 or CFITSIO.R. Received mode = $mode" ptr = Ref{Ptr{Cvoid}}(C_NULL) status = Ref{Cint}(0) handle = FITSMemoryHandle(pointer(data), length(data)) dataptr = Ptr{Ptr{Cvoid}}(pointer_from_objref(handle)) sizeptr = Ptr{Csize_t}(dataptr + sizeof(Ptr{Cvoid})) ccall( ("ffomem", libcfitsio), Cint, ( Ptr{Ptr{Cvoid}}, Ptr{UInt8}, Cint, Ptr{Ptr{UInt8}}, Ptr{Csize_t}, Csize_t, Ptr{Cvoid}, Ptr{Cint}, ), ptr, filename, mode, dataptr, sizeptr, 2880, C_NULL, status, ) fits_assert_ok(status[]) FITSFile(ptr[]), handle end """ fits_close_file(f::FITSFile) Close a previously opened FITS file. """ fits_close_file """ fits_delete_file(f::FITSFile) Close an opened FITS file (like [`fits_close_file`](@ref)) and removes it from the disk. """ fits_delete_file for (a, b) in ((:fits_close_file, "ffclos"), (:fits_delete_file, "ffdelt")) @eval begin function ($a)(f::FITSFile) # fits_close_file() is called during garbage collection, but file # may already be closed by user, so we need to check if it is open. if (ptr = f.ptr) != C_NULL f.ptr = C_NULL # avoid closing twice even if an error occurs status = Ref{Cint}(0) ccall(($b, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}), ptr, status) fits_assert_ok(status[]) end end end end Base.close(f::FITSFile) = fits_close_file(f) """ fits_file_name(f::FITSFile) Return the name of the file associated with object `f`. """ function fits_file_name(f::FITSFile) fits_assert_open(f) value = Vector{UInt8}(undef, 1025) status = Ref{Cint}(0) ccall( (:ffflnm, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), f.ptr, value, status, ) fits_assert_ok(status[]) unsafe_string(pointer(value)) end """ fits_file_mode(f::FITSFile) Return the I/O mode of the FITS file, where 0 indicates a read-only mode and 1 indicates a read-write mode. """ function fits_file_mode(f::FITSFile) fits_assert_open(f) result = Ref{Cint}(0) status = Ref{Cint}(0) ccall( ("ffflmd", libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}, Ref{Cint}), f.ptr, result, status, ) fits_assert_ok(status[]) result[] end # ----------------------------------------------------------------------------- # header access functions """ fits_get_hdrspace(f::FITSFile) -> (keysexist, morekeys) Return the number of existing keywords (not counting the END keyword) and the amount of space currently available for more keywords. """ function fits_get_hdrspace(f::FITSFile) fits_assert_open(f) keysexist = Ref{Cint}(0) morekeys = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffghsp, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, Ref{Cint}), f.ptr, keysexist, morekeys, status, ) fits_assert_ok(status[]) (keysexist[], morekeys[]) end function fits_read_key_str(f::FITSFile, keyname::String) fits_assert_open(f) value = Vector{UInt8}(undef, 71) comment = Vector{UInt8}(undef, 71) status = Ref{Cint}(0) ccall( (:ffgkys, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ptr{UInt8}, Ptr{UInt8}, Ref{Cint}), f.ptr, keyname, value, comment, status, ) fits_assert_ok(status[]) unsafe_string(pointer(value)), unsafe_string(pointer(comment)) end function fits_read_key_lng(f::FITSFile, keyname::String) fits_assert_open(f) value = Ref{Clong}(0) comment = Vector{UInt8}(undef, 71) status = Ref{Cint}(0) ccall( (:ffgkyj, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Clong}, Ptr{UInt8}, Ref{Cint}), f.ptr, keyname, value, comment, status, ) fits_assert_ok(status[]) value[], unsafe_string(pointer(comment)) end function fits_read_keys_lng(f::FITSFile, keyname::String, nstart::Integer, nmax::Integer) fits_assert_open(f) value = Vector{Clong}(undef, nmax - nstart + 1) nfound = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgknj, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Cint, Cint, Ptr{Clong}, Ref{Cint}, Ref{Cint}), f.ptr, keyname, nstart, nmax, value, nfound, status, ) fits_assert_ok(status[]) value, nfound[] end """ fits_read_keyword(f::FITSFile, keyname::String) -> (value, comment) yields the specified keyword value and commend (as a tuple of strings), throws and error if the keyword is not found. """ function fits_read_keyword(f::FITSFile, keyname::String) fits_assert_open(f) value = Vector{UInt8}(undef, 71) comment = Vector{UInt8}(undef, 71) status = Ref{Cint}(0) ccall( (:ffgkey, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ptr{UInt8}, Ptr{UInt8}, Ref{Cint}), f.ptr, keyname, value, comment, status, ) fits_assert_ok(status[]) unsafe_string(pointer(value)), unsafe_string(pointer(comment)) end """ fits_read_record(f::FITSFile, keynum::Int) -> String Return the nth header record in the CHU. The first keyword in the header is at `keynum = 1`. """ function fits_read_record(f::FITSFile, keynum::Integer) fits_assert_open(f) card = Vector{UInt8}(undef, 81) status = Ref{Cint}(0) ccall( (:ffgrec, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{UInt8}, Ref{Cint}), f.ptr, keynum, card, status, ) fits_assert_ok(status[]) unsafe_string(pointer(card)) end """ fits_read_keyn(f::FITSFile, keynum::Int) -> (name, value, comment) Return the nth header record in the CHU. The first keyword in the header is at `keynum = 1`. """ function fits_read_keyn(f::FITSFile, keynum::Integer) fits_assert_open(f) keyname = Vector{UInt8}(undef, 9) value = Vector{UInt8}(undef, 71) comment = Vector{UInt8}(undef, 71) status = Ref{Cint}(0) ccall( (:ffgkyn, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{UInt8}, Ptr{UInt8}, Ptr{UInt8}, Ref{Cint}), f.ptr, keynum, keyname, value, comment, status, ) fits_assert_ok(status[]) ( unsafe_string(pointer(keyname)), unsafe_string(pointer(value)), unsafe_string(pointer(comment)), ) end """ fits_write_key(f::FITSFile, keyname::String, value, comment::String) Write a keyword of the appropriate data type into the CHU. """ function fits_write_key( f::FITSFile, keyname::String, value::Union{Real,String}, comment::String, ) fits_assert_open(f) fits_assert_isascii(keyname) fits_assert_isascii(comment) cvalue = isa(value, String) ? value : isa(value, Bool) ? Cint[value] : reinterpret(UInt8, [value]) status = Ref{Cint}(0) ccall( (:ffpky, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{UInt8}, Ptr{UInt8}, Ptr{UInt8}, Ref{Cint}), f.ptr, cfitsio_typecode(typeof(value)), keyname, cvalue, comment, status, ) fits_assert_ok(status[]) end function fits_write_date(f::FITSFile) fits_assert_open(f) status = Ref{Cint}(0) ccall((:ffpdat, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}), f.ptr, status) fits_assert_ok(status[]) end function fits_write_comment(f::FITSFile, comment::String) fits_assert_open(f) fits_assert_isascii(comment) status = Ref{Cint}(0) ccall( (:ffpcom, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), f.ptr, comment, status, ) fits_assert_ok(status[]) end function fits_write_history(f::FITSFile, history::String) fits_assert_open(f) fits_assert_isascii(history) status = Ref{Cint}(0) ccall( (:ffphis, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), f.ptr, history, status, ) fits_assert_ok(status[]) end # update key: if already present, update it, otherwise add it. for (a, T, S) in ( ("ffukys", :String, :(Ptr{UInt8})), ("ffukyl", :Bool, :Cint), ("ffukyj", :Integer, :Int64), ) @eval begin function fits_update_key( f::FITSFile, key::String, value::$T, comment::Union{String,Ptr{Cvoid}} = C_NULL, ) fits_assert_open(f) isa(value, String) && fits_assert_isascii(value) isa(comment, String) && fits_assert_isascii(comment) status = Ref{Cint}(0) ccall( ($a, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, $S, Ptr{UInt8}, Ref{Cint}), f.ptr, key, value, comment, status, ) fits_assert_ok(status[]) end end end function fits_update_key( f::FITSFile, key::String, value::AbstractFloat, comment::Union{String,Ptr{Cvoid}} = C_NULL, ) fits_assert_open(f) isa(comment, String) && fits_assert_isascii(comment) status = Ref{Cint}(0) ccall( ("ffukyd", libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Cdouble, Cint, Ptr{UInt8}, Ref{Cint}), f.ptr, key, value, -15, comment, status, ) fits_assert_ok(status[]) end function fits_update_key( f::FITSFile, key::String, value::Nothing, comment::Union{String,Ptr{Cvoid}} = C_NULL, ) fits_assert_open(f) isa(comment, String) && fits_assert_isascii(comment) status = Ref{Cint}(0) ccall( ("ffukyu", libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ptr{UInt8}, Ref{Cint}), f.ptr, key, comment, status, ) fits_assert_ok(status[]) end """ fits_write_record(f::FITSFile, card::String) Write a user specified keyword record into the CHU. """ function fits_write_record(f::FITSFile, card::String) fits_assert_open(f) fits_assert_isascii(card) status = Ref{Cint}(0) ccall( (:ffprec, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), f.ptr, card, status, ) fits_assert_ok(status[]) end """ fits_delete_record(f::FITSFile, keynum::Int) Delete the keyword record at the specified index. """ function fits_delete_record(f::FITSFile, keynum::Integer) fits_assert_open(f) status = Ref{Cint}(0) ccall((:ffdrec, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ref{Cint}), f.ptr, keynum, status) fits_assert_ok(status[]) end """ fits_delete_key(f::FITSFile, keyname::String) Delete the keyword named `keyname`. """ function fits_delete_key(f::FITSFile, keyname::String) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffdkey, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), f.ptr, keyname, status, ) fits_assert_ok(status[]) end """ fits_hdr2str(f::FITSFile, nocomments::Bool=false) Return the header of the CHDU as a string. If `nocomments` is `true`, comment cards are stripped from the output. """ function fits_hdr2str(f::FITSFile, nocomments::Bool = false) fits_assert_open(f) status = Ref{Cint}(0) header = Ref{Ptr{UInt8}}() nkeys = Ref{Cint}(0) ccall( (:ffhdr2str, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ref{Ptr{UInt8}}, Cint, Ptr{Ptr{UInt8}}, Ref{Cint}, Ref{Cint}), f.ptr, nocomments, C_NULL, 0, header, nkeys, status, ) result = unsafe_string(header[]) # free header pointer allocated by cfitsio (result is a copy) ccall((:fffree, libcfitsio), Ref{Cint}, (Ptr{UInt8}, Ref{Cint}), header[], status) fits_assert_ok(status[]) result end # ----------------------------------------------------------------------------- # HDU info functions and moving the current HDU function hdu_int_to_type(hdu_type_int) if hdu_type_int == 0 return :image_hdu elseif hdu_type_int == 1 return :ascii_table elseif hdu_type_int == 2 return :binary_table end :unknown end """ fits_movabs_hdu(f::FITSFile, hduNum::Integer) Change the current HDU to the value specified by `hduNum`, and return a symbol describing the type of the HDU. Possible symbols are: `image_hdu`, `ascii_table`, or `binary_table`. The value of `hduNum` must range between 1 and the value returned by [`fits_get_num_hdus`](@ref). """ fits_movabs_hdu """ fits_movrel_hdu(f::FITSFile, hduNum::Integer) Change the current HDU by moving forward or backward by `hduNum` HDUs (positive means forward), and return the same as [`fits_movabs_hdu`](@ref). """ fits_movrel_hdu for (a, b) in ((:fits_movabs_hdu, "ffmahd"), (:fits_movrel_hdu, "ffmrhd")) @eval begin function ($a)(f::FITSFile, hduNum::Integer) fits_assert_open(f) hdu_type = Ref{Cint}(0) status = Ref{Cint}(0) ccall( ($b, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ref{Cint}, Ref{Cint}), f.ptr, hduNum, hdu_type, status, ) fits_assert_ok(status[]) hdu_int_to_type(hdu_type[]) end end end """ fits_movnam_hdu(f::FITSFile, extname::String, extver::Integer=0, hdu_type_int::Integer=-1) Change the current HDU by moving to the (first) HDU which has the specified extension type and EXTNAME and EXTVER keyword values (or HDUNAME and HDUVER keywords). If `extver` is 0 (the default) then the EXTVER keyword is ignored and the first HDU with a matching EXTNAME (or HDUNAME) keyword will be found. If `hdu_type_int` is -1 (the default) only the extname and extver values will be used to locate the correct extension. If no matching HDU is found in the file, the current HDU will remain unchanged. """ function fits_movnam_hdu( f::FITSFile, extname::String, extver::Integer = 0, hdu_type::Integer = -1, ) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffmnhd, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{UInt8}, Cint, Ref{Cint}), f.ptr, hdu_type, extname, extver, status, ) fits_assert_ok(status[]) end function fits_get_hdu_num(f::FITSFile) fits_assert_open(f) hdunum = Ref{Cint}(0) ccall((:ffghdn, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}), f.ptr, hdunum) hdunum[] end function fits_get_hdu_type(f::FITSFile) fits_assert_open(f) hdutype = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffghdt, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}, Ref{Cint}), f.ptr, hdutype, status, ) fits_assert_ok(status[]) hdu_int_to_type(hdutype[]) end """ fits_delete_hdu(f::FITSFile) Delete the HDU from the FITS file and shift the following HDUs forward. If `f` is the primary HDU in the file then it'll be replaced by a null primary HDU with no data and minimal header information. Return a symbol to indicate the type of the new current HDU. Possible symbols are: `image_hdu`, `ascii_table`, or `binary_table`. The value of `hduNum` must range between 1 and the value returned by [`fits_get_num_hdus`](@ref). """ function fits_delete_hdu(f::FITSFile) fits_assert_open(f) status = Ref{Cint}(0) hdutype = Ref{Cint}(0) ccall( (:ffdhdu, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}), f.ptr, hdutype, status, ) fits_assert_ok(status[]) hdu_int_to_type(hdutype[]) end # ----------------------------------------------------------------------------- # image HDU functions """ fits_get_img_size(f::FITSFile) Get the dimensions of the image. """ fits_get_img_size for (a, b) in ( (:fits_get_img_type, "ffgidt"), (:fits_get_img_equivtype, "ffgiet"), (:fits_get_img_dim, "ffgidm"), ) @eval function ($a)(f::FITSFile) fits_assert_open(f) result = Ref{Cint}(0) status = Ref{Cint}(0) ccall( ($b, libcfitsio), Cint, (Ptr{Cvoid}, Ref{Cint}, Ref{Cint}), f.ptr, result, status, ) fits_assert_ok(status[]) result[] end end """ fits_create_img(f::FITSFile, T::Type, naxes::Vector{<:Integer}) Create a new primary array or IMAGE extension with the specified data type `T` and size `naxes`. """ function fits_create_img(f::FITSFile, ::Type{T}, naxes::Vector{<:Integer}) where {T} fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffcrimll, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ptr{Int64}, Ref{Cint}), f.ptr, bitpix_from_type(T), length(naxes), convert(Vector{Int64}, naxes), status, ) fits_assert_ok(status[]) end # This method accepts a tuple of pixels instead of a vector function fits_create_img(f::FITSFile, ::Type{T}, naxes::NTuple{N,Integer}) where {T,N} status = Ref{Cint}(0) naxesr = Ref(convert(NTuple{N,Int64}, naxes)) ccall( (:ffcrimll, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ptr{NTuple{N,Int64}}, Ref{Cint}), f.ptr, bitpix_from_type(T), N, naxesr, status, ) fits_assert_ok(status[]) end """ fits_create_img(f::FITSFile, A::AbstractArray) Create a new primary array or IMAGE extension with the element type and size of `A`, that is capable of storing the entire array `A`. """ fits_create_img(f::FITSFile, a::AbstractArray) = fits_create_img(f, eltype(a), size(a)) """ fits_insert_img(f::FITSFile, T::Type, naxes::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}) Insert a new image extension immediately following the CHDU, or insert a new Primary Array at the beginning of the file. """ function fits_insert_img(f::FITSFile, T::Type, naxes::Vector{<:Integer}) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffiimgll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Cint, Ptr{Int64}, Ref{Cint}, ), f.ptr, bitpix_from_type(T), length(naxes), convert(Vector{Int64}, naxes), status, ) fits_assert_ok(status[]) end function fits_insert_img(f::FITSFile, T::Type, naxes::NTuple{N,Integer}) where {N} fits_assert_open(f) status = Ref{Cint}(0) naxesr = Ref(map(Int64, naxes)) ccall( (:ffiimgll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Cint, Ptr{NTuple{N,Int64}}, Ref{Cint}, ), f.ptr, bitpix_from_type(T), N, naxesr, status, ) fits_assert_ok(status[]) end fits_insert_img(f::FITSFile, a::AbstractArray) = fits_insert_img(f, eltype(a), size(a)) """ fits_write_pix(f::FITSFile, fpixel::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}, nelements::Integer, data::StridedArray) Write `nelements` pixels from `data` into the FITS file starting from the pixel `fpixel`. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_write_pixnull`](@ref) """ function fits_write_pix( f::FITSFile, fpixel::Vector{<:Integer}, nelements::Integer, data::StridedArray, ) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffppxll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Int64}, Int64, Ptr{Cvoid}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Int64}, fpixel), nelements, data, status, ) fits_assert_ok(status[]) end # This method accepts a tuple of pixels instead of a vector function fits_write_pix( f::FITSFile, fpixel::NTuple{N,Integer}, nelements::Integer, data::StridedArray, ) where {N} fits_assert_open(f) status = Ref{Cint}(0) fpixelr = Ref(convert(NTuple{N,Int64}, fpixel)) ccall( (:ffppxll, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{NTuple{N,Int64}}, Int64, Ptr{Cvoid}, Ref{Cint}), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, nelements, data, status, ) fits_assert_ok(status[]) end """ fits_write_pix(f::FITSFile, data::StridedArray) Write the entire array `data` into the FITS file. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_write_pixnull`](@ref), [`fits_write_subset`](@ref) """ function fits_write_pix(f::FITSFile, data::StridedArray) fits_write_pix(f, onest(Int64, ndims(data)), length(data), data) end # cfitsio expects the null value to be of the same type as the eltype of data # It may also be C_NULL or nothing # We check if it is a number and convert it to the correct eltype, otherwise leave it alone _maybeconvert(::Type{ET}, nullval::Real) where {ET<:Real} = convert(ET, nullval) _maybeconvert(::Type, nullval) = nullval """ fits_write_pixnull(f::FITSFile, fpixel::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}, nelements::Integer, data::StridedArray, nulval) Write `nelements` pixels from `data` into the FITS file starting from the pixel `fpixel`. The argument `nulval` specifies the values that are to be considered as "null values", and replaced by appropriate numbers corresponding to the element type of `data`. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_write_pix`](@ref) """ function fits_write_pixnull( f::FITSFile, fpixel::Vector{<:Integer}, nelements::Integer, data::StridedArray, nulval, ) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffppxnll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Int64}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Int64}, fpixel), nelements, data, Ref(_maybeconvert(eltype(data), nulval)), status, ) fits_assert_ok(status[]) end function fits_write_pixnull( f::FITSFile, fpixel::NTuple{N,Integer}, nelements::Integer, data::StridedArray, nulval, ) where {N} fits_assert_open(f) status = Ref{Cint}(0) fpixelr = Ref(convert(NTuple{N,Int64}, fpixel)) ccall( (:ffppxnll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Int64}}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, nelements, data, Ref(_maybeconvert(eltype(data), nulval)), status, ) fits_assert_ok(status[]) end """ fits_write_pixnull(f::FITSFile, data::StridedArray, nulval) Write the entire array `data` into the FITS file. The argument `nulval` specifies the values that are to be considered as "null values", and replaced by appropriate numbers corresponding to the element type of `data`. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_write_pix`](@ref) """ function fits_write_pixnull(f::FITSFile, data::StridedArray, nulval) fits_write_pixnull(f, onest(Int64, ndims(data)), length(data), data, nulval) end """ fits_write_subset(f::FITSFile, fpixel::V, lpixel::V, data::StridedArray) where {V<:Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}} Write a rectangular section of the FITS image. The number of pixels to be written will be computed from the first and last pixels (specified as the `fpixel` and `lpixel` arguments respectively). !!! note The section to be written out must be contiguous in memory, so all the dimensions aside from the last one must span the entire axis range. The arguments `fpixel` and `lpixel` must account for this. See also: [`fits_write_pix`](@ref) """ function fits_write_subset( f::FITSFile, fpixel::Vector{<:Integer}, lpixel::Vector{<:Integer}, data::StridedArray, ) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffpss, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Clong}, Ptr{Clong}, Ptr{Cvoid}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Clong}, fpixel), convert(Vector{Clong}, lpixel), data, status, ) fits_assert_ok(status[]) end function fits_write_subset( f::FITSFile, fpixel::NTuple{N,Integer}, lpixel::NTuple{N,Integer}, data::StridedArray, ) where {N} fits_assert_open(f) status = Ref{Cint}(0) fpixelr, lpixelr = map((fpixel, lpixel)) do x Ref(convert(NTuple{N,Clong}, x)) end ccall( (:ffpss, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Clong}}, Ptr{NTuple{N,Clong}}, Ptr{Cvoid}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, lpixelr, data, status, ) fits_assert_ok(status[]) end function fits_read_pix( f::FITSFile, fpixel::Vector{<:Integer}, nelements::Integer, nullval, data::StridedArray, ) fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgpxvll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Int64}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Int64}, fpixel), nelements, Ref(_maybeconvert(eltype(data), nullval)), data, anynull, status, ) fits_assert_ok(status[]) anynull[] end # This method accepts a tuple of pixels instead of a vector function fits_read_pix( f::FITSFile, fpixel::NTuple{N,Integer}, nelements::Integer, nullval, data::StridedArray, ) where {N} fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) fpixelr = Ref(convert(NTuple{N,Int64}, fpixel)) ccall( (:ffgpxvll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Int64}}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, nelements, Ref(_maybeconvert(eltype(data), nullval)), data, anynull, status, ) fits_assert_ok(status[]) anynull[] end """ fits_read_pix(f::FITSFile, fpixel::NTuple{Vector{<:Integer}, Tuple{Vararg{Integer}}}, nelements::Integer, [nulval], data::StridedArray) Read `nelements` pixels from the FITS file into `data` starting from the pixel `fpixel`. If the optional argument `nulval` is specified and is non-zero, any null value present in the array will be replaced by it. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_read_pixnull`](@ref), [`fits_read_subset`](@ref) """ function fits_read_pix( f::FITSFile, fpixel::Vector{<:Integer}, nelements::Integer, data::StridedArray, ) fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgpxvll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Int64}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Int64}, fpixel), nelements, C_NULL, data, anynull, status, ) fits_assert_ok(status[]) anynull[] end # This method accepts a tuple of pixels instead of a vector function fits_read_pix( f::FITSFile, fpixel::NTuple{N,Integer}, nelements::Int, data::StridedArray, ) where {N} fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) fpixelr = Ref(convert(NTuple{N,Int64}, fpixel)) ccall( (:ffgpxvll, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{NTuple{N,Int64}}, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, nelements, C_NULL, data, anynull, status, ) fits_assert_ok(status[]) anynull[] end """ fits_read_pix(f::FITSFile, data::StridedArray, [nulval]) Read `length(data)` pixels from the FITS file into `data` starting from the first pixel. The optional argument `nulval`, if specified and non-zero, is used to replace any null value present in the array. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_read_pixnull`](@ref) """ function fits_read_pix(f::FITSFile, data::StridedArray) fits_read_pix(f, onest(Int64, ndims(data)), length(data), data) end function fits_read_pix(f::FITSFile, data::StridedArray, nulval) fits_read_pix(f, onest(Int64, ndims(data)), length(data), nulval, data) end """ fits_read_pixnull(f::FITSFile, fpixel::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}, nelements::Integer, data::StridedArray, nullarray::Array{UInt8}) Read `nelements` pixels from the FITS file into `data` starting from the pixel `fpixel`. At output, the indices of `nullarray` where `data` has a corresponding null value are set to `1`. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_read_pix`](@ref) """ function fits_read_pixnull(f::FITSFile, fpixel::Vector{<:Integer}, nelements::Integer, data::StridedArray, nullarray::Array{UInt8}, ) fits_assert_open(f) fits_assert_nonempty(f) if length(data) != length(nullarray) error("data and nullarray must have the same number of elements") end anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgpxfll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Int64}, Int64, Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Int64}, fpixel), nelements, data, nullarray, anynull, status, ) fits_assert_ok(status[]) anynull[] end function fits_read_pixnull(f::FITSFile, fpixel::NTuple{N,Integer}, nelements::Integer, data::StridedArray, nullarray::Array{UInt8}, ) where {N} fits_assert_open(f) fits_assert_nonempty(f) if length(data) != length(nullarray) error("data and nullarray must have the same number of elements") end anynull = Ref{Cint}(0) status = Ref{Cint}(0) fpixelr = Ref(convert(NTuple{N,Int64}, fpixel)) ccall( (:ffgpxfll, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Int64}}, Int64, Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, nelements, data, nullarray, anynull, status, ) fits_assert_ok(status[]) anynull[] end """ fits_read_pixnull(f::FITSFile, data::StridedArray, nullarray::Array{UInt8}) Read `length(data)` pixels from the FITS file into `data` starting from the first pixel. At output, the indices of `nullarray` where `data` has a corresponding null value are set to `1`. !!! note `data` needs to be stored contiguously in memory. See also: [`fits_read_pix`](@ref) """ function fits_read_pixnull(f::FITSFile, data::StridedArray, nullarray::Array{UInt8}) fits_read_pixnull(f, onest(Int64, ndims(data)), length(data), data, nullarray) end """ fits_read_subset(f::FITSFile, fpixel::V, lpixel::V, inc::V, [nulval], data::StridedArray) where {V<:Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}} Read a rectangular section of the FITS image. The number of pixels to be read will be computed from the first and last pixels (specified as the `fpixel` and `lpixel` arguments respectively). The argument `inc` specifies the step-size in pixels along each dimension. If the optional argument `nulval` is specified and is non-zero, null values in `data` will be replaced by it. !!! note `data` needs to be stored contiguously in memory, and will be populated contiguously with the pixels that are read in. See also: [`fits_read_pix`](@ref) """ function fits_read_subset( f::FITSFile, fpixel::Vector{<:Integer}, lpixel::Vector{<:Integer}, inc::Vector{<:Integer}, data::StridedArray, ) fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgsv, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Clong}, Ptr{Clong}, Ptr{Clong}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Clong}, fpixel), convert(Vector{Clong}, lpixel), convert(Vector{Clong}, inc), C_NULL, data, anynull, status, ) fits_assert_ok(status[]) anynull[] end function fits_read_subset( f::FITSFile, fpixel::Vector{<:Integer}, lpixel::Vector{<:Integer}, inc::Vector{<:Integer}, nulval, data::StridedArray, ) fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgsv, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{Clong}, Ptr{Clong}, Ptr{Clong}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), convert(Vector{Clong}, fpixel), convert(Vector{Clong}, lpixel), convert(Vector{Clong}, inc), Ref(_maybeconvert(eltype(data), nulval)), data, anynull, status, ) fits_assert_ok(status[]) anynull[] end function fits_read_subset( f::FITSFile, fpixel::NTuple{N,Integer}, lpixel::NTuple{N,Integer}, inc::NTuple{N,Integer}, data::StridedArray, ) where {N} fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) fpixelr, lpixelr, incr = map((fpixel, lpixel, inc)) do x Ref(convert(NTuple{N,Clong}, x)) end ccall( (:ffgsv, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Clong}}, Ptr{NTuple{N,Clong}}, Ptr{NTuple{N,Clong}}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, lpixelr, incr, C_NULL, data, anynull, status, ) fits_assert_ok(status[]) anynull[] end function fits_read_subset( f::FITSFile, fpixel::NTuple{N,Integer}, lpixel::NTuple{N,Integer}, inc::NTuple{N,Integer}, nulval, data::StridedArray, ) where {N} fits_assert_open(f) fits_assert_nonempty(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) fpixelr, lpixelr, incr = map((fpixel, lpixel, inc)) do x Ref(convert(NTuple{N,Clong}, x)) end ccall( (:ffgsv, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Ptr{NTuple{N,Clong}}, Ptr{NTuple{N,Clong}}, Ptr{NTuple{N,Clong}}, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), fpixelr, lpixelr, incr, Ref(_maybeconvert(eltype(data), nulval)), data, anynull, status, ) fits_assert_ok(status[]) anynull[] end """ fits_copy_image_section(fin::FITSFile, fout::FITSFile, section::String) Copy a rectangular section of an image from `fin` and write it to a new FITS primary image or image extension in `fout`. The section specifier is described on the [`CFITSIO website`](https://heasarc.gsfc.nasa.gov/docs/software/fitsio/c/c_user/node97.html). """ function fits_copy_image_section(fin::FITSFile, fout::FITSFile, section::String) fits_assert_open(fin) fits_assert_nonempty(fin) fits_assert_open(fout) status = Ref{Cint}(0) ccall( (:fits_copy_image_section, libcfitsio), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{UInt8}, Ref{Cint}), fin.ptr, fout.ptr, section, status, ) fits_assert_ok(status[]) end """ fits_write_null_img(f::FITSFile, firstelem::Integer, nelements::Integer) Set a stretch of elements to the appropriate null value, starting from the pixel number `firstelem` and extending over `nelements` pixels. """ function fits_write_null_img(f::FITSFile, firstelem::Integer, nelements::Integer) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffpprn, libcfitsio), Cint, (Ptr{Cvoid}, Clonglong, Clonglong, Ref{Cint}), f.ptr, firstelem, nelements, status, ) fits_assert_ok(status[]) end """ fits_resize_img(f::FITSFile, T::Type, naxis::Integer, sz::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}) Modify the size, dimensions and optionally the element type of the image in `f`. The new image will have an element type `T`, be a `naxis`-dimensional image with size `sz`. If the new image is larger than the existing one, it will be zero-padded at the end. If the new image is smaller, existing image data will be truncated. fits_resize_img(f::FITSFile, sz::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}) Resize the image to the new size `sz`. The element type is preserved, and the number of dimensions is set equal to `length(sz)`. fits_resize_img(f::FITSFile, T::Type) Change the element type of the image to `T`, leaving the size unchanged. !!! note This method reinterprets the data instead of coercing the elements. # Example ```jldoctest julia> f = fits_clobber_file(tempname()); julia> a = [1 2; 3 4]; julia> fits_create_img(f, a); julia> fits_write_pix(f, a); julia> fits_get_img_size(f) 2-element Vector{Int64}: 2 2 julia> fits_resize_img(f, [3,3]); julia> fits_get_img_size(f) 2-element Vector{Int64}: 3 3 julia> b = similar(a, (3,3)); julia> fits_read_pix(f, b); b 3Γ—3 Matrix{Int64}: 1 4 0 3 0 0 2 0 0 julia> fits_resize_img(f, [4]); julia> b = similar(a, (4,)); julia> fits_read_pix(f, b); b 4-element Vector{Int64}: 1 3 2 4 ``` """ function fits_resize_img(f::FITSFile, T::Type, naxis::Integer, sz::Vector{<:Integer}) fits_assert_open(f) fits_assert_nonempty(f) status = Ref{Cint}(0) ccall( (:ffrsim, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ptr{Clong}, Ref{Cint}), f.ptr, bitpix_from_type(T), naxis, convert(Vector{Clong}, sz), status, ) fits_assert_ok(status[]) end function fits_resize_img(f::FITSFile, T::Type, naxis::Integer, sz::NTuple{N,Integer}) where {N} fits_assert_open(f) fits_assert_nonempty(f) status = Ref{Cint}(0) szr = Ref(convert(NTuple{N,Clong}, sz)) ccall( (:ffrsim, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ptr{NTuple{N,Clong}}, Ref{Cint}), f.ptr, bitpix_from_type(T), naxis, szr, status, ) fits_assert_ok(status[]) end function fits_resize_img(f::FITSFile, sz::Union{Vector{<:Integer}, Tuple{Vararg{Integer}}}) fits_assert_open(f) fits_assert_nonempty(f) T = type_from_bitpix(fits_get_img_type(f)) naxis = length(sz) fits_resize_img(f, T, naxis, sz) end function fits_resize_img(f::FITSFile, T::Type) fits_assert_open(f) fits_assert_nonempty(f) sz = fits_get_img_size(f) naxis = fits_get_img_dim(f) fits_resize_img(f, T, naxis, sz) end # ----------------------------------------------------------------------------- # ASCII/binary table HDU functions # The three fields are: ttype, tform, tunit (CFITSIO's terminology) const ColumnDef = Tuple{String,String,String} """ fits_create_binary_tbl(f::FITSFile, numrows::Integer, coldefs::Array{ColumnDef}, extname::String) Append a new HDU containing a binary table. The meaning of the parameters is the same as in a call to [`fits_create_ascii_tbl`](@ref). In general, one should pick this function for creating tables in a new HDU, as binary tables require less space on the disk and are more efficient to read and write. (Moreover, a few datatypes are not supported in ASCII tables). """ fits_create_binary_tbl """ fits_create_ascii_tbl(f::FITSFile, numrows::Integer, coldefs::Array{CFITSIO.ColumnDef}, extname::String) Append a new HDU containing an ASCII table. The table will have `numrows` rows (this parameter can be set to zero), each initialized with the default value. In order to create a table, the programmer must specify the characteristics of each column. The columns are specified by the `coldefs` variable, which is an array of tuples. Each tuple must have three string fields: 1. The name of the column. 2. The data type and the repetition count. It must be a string made by a number (the repetition count) followed by a letter specifying the type (in the example above, `D` stands for `Float64`, `E` stands for `Float32`, `A` stands for `Char`). Refer to the CFITSIO documentation for more information about the syntax of this parameter. 3. The measure unit of this field. This is used only as a comment. The value of `extname` sets the "extended name" of the table, i.e., a string that in some situations can be used to refer to the HDU itself. Note that, unlike for binary tables, CFITSIO puts some limitations to the types that can be used in an ASCII table column. Refer to the CFITSIO manual for further information. See also [`fits_create_binary_tbl`](@ref) for a similar function which creates binary tables. """ fits_create_ascii_tbl for (a, b) in ((:fits_create_binary_tbl, 2), (:fits_create_ascii_tbl, 1)) @eval begin function ($a)( f::FITSFile, numrows::Integer, coldefs::Array{ColumnDef}, extname::String, ) fits_assert_open(f) # Ensure that extension name, column names and units are # ASCII, as these get written to the file. We don't check # need to check that tform is ASCII because presumably # cfitsio will thrown an appropriate error if it doesn't # recognize the tform string. fits_assert_isascii(extname) for coldef in coldefs fits_assert_isascii(coldef[1]) fits_assert_isascii(coldef[3]) end # get length and convert coldefs to three arrays of Ptr{Uint8} ntype = length(coldefs) ttype = [pointer(x[1]) for x in coldefs] tform = [pointer(x[2]) for x in coldefs] tunit = [pointer(x[3]) for x in coldefs] status = Ref{Cint}(0) ccall( ("ffcrtb", libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Int64, Cint, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{Ptr{UInt8}}, Ptr{UInt8}, Ref{Cint}, ), f.ptr, $b, numrows, ntype, ttype, tform, tunit, extname, status, ) fits_assert_ok(status[]) end end end """ fits_get_num_hdus(f::FITSFile) Return the number of HDUs in the file. """ fits_get_num_hdus for (a, b, T) in ( (:fits_get_num_cols, "ffgncl", :Cint), (:fits_get_num_hdus, "ffthdu", :Cint), (:fits_get_rowsize, "ffgrsz", :Clong), ) @eval begin function ($a)(f::FITSFile) fits_assert_open(f) result = Ref{$T}(0) status = Ref{Cint}(0) ccall( ($b, libcfitsio), Cint, (Ptr{Cvoid}, Ref{$T}, Ref{Cint}), f.ptr, result, status, ) fits_assert_ok(status[]) result[] end end end function fits_get_colnum(f::FITSFile, tmplt::String; case_sensitive::Bool = true) fits_assert_open(f) result = Ref{Cint}(0) status = Ref{Cint}(0) # Second argument is case-sensitivity of search: 0 = case-insensitive # 1 = case-sensitive ccall( ("ffgcno", libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{UInt8}, Ref{Cint}, Ref{Cint}), f.ptr, case_sensitive, tmplt, result, status, ) fits_assert_ok(status[]) return result[] end # The following block are all functions that have separate variants for Clong # and 64-bit integers in cfitsio. Rather than providing both of these, we # provide only one according to the native integer type on the platform. if promote_type(Int, Clong) == Clong T = Clong ffgtdm = "ffgtdm" ffgnrw = "ffgnrw" ffptdm = "ffptdm" ffgtcl = "ffgtcl" ffeqty = "ffeqty" ffgdes = "ffgdes" ffgisz = "ffgisz" else T = Int64 ffgtdm = "ffgtdmll" ffgnrw = "ffgnrwll" ffptdm = "ffptdmll" ffgtcl = "ffgtclll" ffeqty = "ffeqtyll" ffgdes = "ffgdesll" ffgisz = "ffgiszll" end """ fits_get_coltype(f::FITSFile, colnum::Integer) Provided that the current HDU contains either an ASCII or binary table, return information about the column at position `colnum` (counting from 1). Return is a tuple containing - `typecode`: CFITSIO integer type code of the column. - `repcount`: Repetition count for the column. - `width`: Width of an individual element. """ fits_get_coltype @eval begin function fits_get_coltype(ff::FITSFile, colnum::Integer) fits_assert_open(ff) typecode = Ref{Cint}(0) repcnt = Ref{$T}(0) width = Ref{$T}(0) status = Ref{Cint}(0) ccall( ($ffgtcl, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ref{Cint}, Ref{$T}, Ref{$T}, Ref{Cint}), ff.ptr, colnum, typecode, repcnt, width, status, ) fits_assert_ok(status[]) return Int(typecode[]), Int(repcnt[]), Int(width[]) end function fits_get_eqcoltype(ff::FITSFile, colnum::Integer) fits_assert_open(ff) typecode = Ref{Cint}(0) repcnt = Ref{$T}(0) width = Ref{$T}(0) status = Ref{Cint}(0) ccall( ($ffeqty, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ref{Cint}, Ref{$T}, Ref{$T}, Ref{Cint}), ff.ptr, colnum, typecode, repcnt, width, status, ) fits_assert_ok(status[]) return Int(typecode[]), Int(repcnt[]), Int(width[]) end function fits_get_img_size(f::FITSFile) fits_assert_open(f) ndim = fits_get_img_dim(f) naxes = Vector{$T}(undef, ndim) status = Ref{Cint}(0) ccall( ($ffgisz, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{$T}, Ref{Cint}), f.ptr, ndim, naxes, status, ) fits_assert_ok(status[]) naxes end function fits_get_img_size(f::FITSFile, ::Val{N}) where {N} naxes = Ref(zerost($T, N)) status = Ref{Cint}(0) ccall( ($ffgisz, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Ptr{NTuple{N,$T}}, Ref{Cint}), f.ptr, N, naxes, status, ) fits_assert_ok(status[]) naxes[] end function fits_get_num_rows(f::FITSFile) fits_assert_open(f) result = Ref{$T}(0) status = Ref{Cint}(0) ccall( ($ffgnrw, libcfitsio), Cint, (Ptr{Cvoid}, Ref{$T}, Ref{Cint}), f.ptr, result, status, ) fits_assert_ok(status[]) return Int(result[]) end # `fits_read_tdim` returns the dimensions of a table column in a # binary table. Normally this information is given by the TDIMn # keyword, but if this keyword is not present then this routine # returns `[r]` with `r` equals to the repeat count in the TFORM # keyword. function fits_read_tdim(ff::FITSFile, colnum::Integer) fits_assert_open(ff) naxes = Vector{$T}(undef, 99) # 99 is the maximum allowed number of axes naxis = Ref{Cint}(0) status = Ref{Cint}(0) ccall( ($ffgtdm, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ref{Cint}, Ptr{$T}, Ref{Cint}), ff.ptr, colnum, length(naxes), naxis, naxes, status, ) fits_assert_ok(status[]) return naxes[1:naxis[]] end function fits_write_tdim(ff::FITSFile, colnum::Integer, naxes::Array{$T}) fits_assert_open(ff) status = Ref{Cint}(0) ccall( ($ffptdm, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Ptr{$T}, Ref{Cint}), ff.ptr, colnum, length(naxes), naxes, status, ) fits_assert_ok(status[]) end function fits_read_descript(f::FITSFile, colnum::Integer, rownum::Integer) fits_assert_open(f) repeat = Ref{$T}(0) offset = Ref{$T}(0) status = Ref{Cint}(0) ccall( ($ffgdes, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Int64, Ref{$T}, Ref{$T}, Ref{Cint}), f.ptr, colnum, rownum, repeat, offset, status, ) fits_assert_ok(status[]) return Int(repeat[]), Int(offset[]) end end """ fits_read_col(f, colnum, firstrow, firstelem, data) Read data from one column of an ASCII/binary table and convert the data into the specified type `T`. ### Arguments ### * `f::FITSFile`: the file to be read. * `colnum::Integer`: the column number, where the value of the first column is `1`. * `firstrow::Integer`: the elements to be read start from this row. * `firstelem::Integer`: specifies which is the first element to be read, when each cell contains more than one element (i.e., the "repetition count" of the field is greater than one). * `data::Array`: at the end of the call, this will be filled with the elements read from the column. The length of the array gives the overall number of elements. """ function fits_read_col( f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array{String}, ) fits_assert_open(f) # get width: number of characters in each string typecode, repcount, width = fits_get_eqcoltype(f, colnum) # ensure that data are strings, otherwise cfitsio will try to write # formatted strings, which have widths given by fits_get_col_display_width # not by the repeat value from fits_get_coltype. abs(typecode) == 16 || error("not a string column") # create an array of character buffers of the correct width buffers = [Vector{UInt8}(undef, width) for i in 1:length(data)] # Call the CFITSIO function anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgcvs, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Int64, Int64, Int64, Ptr{UInt8}, Ptr{Ptr{UInt8}}, Ref{Cint}, Ref{Cint}, ), f.ptr, colnum, firstrow, firstelem, length(data), " ", buffers, anynull, status, ) fits_assert_ok(status[]) # Create strings out of the buffers, terminating at null characters. # Note that `String(x)` does not copy the buffer x. for i in 1:length(data) zeropos = something(findfirst(isequal(0x00), buffers[i]), 0) data[i] = (zeropos >= 1) ? String(buffers[i][1:(zeropos-1)]) : String(buffers[i]) end end function fits_read_col( f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array, ) fits_assert_open(f) anynull = Ref{Cint}(0) status = Ref{Cint}(0) ccall( (:ffgcv, libcfitsio), Cint, ( Ptr{Cvoid}, Cint, Cint, Int64, Int64, Int64, Ptr{Cvoid}, Ptr{Cvoid}, Ref{Cint}, Ref{Cint}, ), f.ptr, cfitsio_typecode(eltype(data)), colnum, firstrow, firstelem, length(data), C_NULL, data, anynull, status, ) fits_assert_ok(status[]) end """ fits_write_col(f, colnum, firstrow, firstelem, data) Write some data in one column of a ASCII/binary table. If there is no room for the elements, new rows will be created. (It is therefore useless to call [`fits_insert_rows`](@ref) if you only need to *append* elements to the end of a table.) * `f::FITSFile`: the file in which data will be written. * `colnum::Integer`: the column number, where the value of the first column is `1`. * `firstrow::Integer`: the data wil be written from this row onwards. * `firstelem::Integer`: specifies the position in the row where the first element will be written. * `data::Array`: contains the elements that are to be written to the column of the table. """ function fits_write_col( f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array{String}, ) fits_assert_open(f) for el in data fits_assert_isascii(el) end status = Ref{Cint}(0) ccall( (:ffpcls, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Int64, Int64, Int64, Ptr{Ptr{UInt8}}, Ref{Cint}), f.ptr, colnum, firstrow, firstelem, length(data), data, status, ) fits_assert_ok(status[]) end function fits_write_col( f::FITSFile, colnum::Integer, firstrow::Integer, firstelem::Integer, data::Array, ) fits_assert_open(f) status = Ref{Cint}(0) ccall( (:ffpcl, libcfitsio), Cint, (Ptr{Cvoid}, Cint, Cint, Int64, Int64, Int64, Ptr{Cvoid}, Ref{Cint}), f.ptr, cfitsio_typecode(eltype(data)), colnum, firstrow, firstelem, length(data), data, status, ) fits_assert_ok(status[]) end """ fits_insert_rows(f::FITSFile, firstrow::Integer, nrows::Integer) Insert a number of rows equal to `nrows` after the row number `firstrow`. The elements in each row are initialized to their default value: you can modify them later using [`fits_write_col`](@ref). Since the first row is at position 1, in order to insert rows *before* the first one `firstrow` must be equal to zero. """ fits_insert_rows """ fits_delete_rows(f::FITSFile, firstrow::integer, nrows::Integer) Delete `nrows` rows, starting from the one at position `firstrow`. The index of the first row is 1. """ fits_delete_rows for (a, b) in ((:fits_insert_rows, "ffirow"), (:fits_delete_rows, "ffdrow")) @eval begin function ($a)(f::FITSFile, firstrow::Integer, nrows::Integer) fits_assert_open(f) status = Ref{Cint}(0) ccall( ($b, libcfitsio), Cint, (Ptr{Cvoid}, Int64, Int64, Ref{Cint}), f.ptr, firstrow, nrows, status, ) fits_assert_ok(status[]) end end end """ libcfitsio_version() -> VersionNumber Return the version of the underlying CFITSIO library # Example ```julia julia> libcfitsio_version() v"3.37.0" ``` """ function libcfitsio_version(version = fits_get_version()) # fits_get_version returns a float. e.g., 3.341f0. We parse that # into a proper version number. E.g., 3.341 -> v"3.34.1" v = round(Int, 1000 * version) x = div(v, 1000) y = div(rem(v, 1000), 10) z = rem(v, 10) VersionNumber(x, y, z) end end # module
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
code
25796
using CFITSIO using Test using Aqua function tempfitsfile(fn) mktempdir() do dir filename = joinpath(dir, "temp.fits") fitsfile = fits_clobber_file(filename) fn(fitsfile) if fitsfile.ptr != C_NULL # write some data to file to avoid errors on closing data = ones(1) fits_create_img(fitsfile, data) fits_write_pix(fitsfile, data) fits_delete_file(fitsfile) end end end @testset "project quality" begin Aqua.test_all(CFITSIO) end # `create_test_file` : Create a simple FITS file for testing, with the # given header string added after the required keywords. The length of # `header` must be a multiple of 80. The purpose of creating such # files is to test the parsing of non-standard FITS keyword records # (non-standard files can't be created with cfitsio). function create_test_file(fname::AbstractString, header::String) if length(header) % 80 != 0 error("length of header must be multiple of 80") end f = open(fname, "w") stdhdr = "SIMPLE = T / file does conform to FITS standard BITPIX = -64 / number of bits per data pixel NAXIS = 2 / number of data axes NAXIS1 = 10 / length of data axis 1 NAXIS2 = 10 / length of data axis 2 EXTEND = T / FITS dataset may contain extensions " endline = "END " data = fill(0., (10, 10)) # 10x10 array of big-endian Float64 zeros # write header write(f, stdhdr) write(f, header) write(f, endline) # add padding block_position = (length(stdhdr) + length(header) + length(endline)) % 2880 padding = (block_position == 0) ? 0 : 2880 - block_position write(f, " "^padding) # write data write(f, data) # add padding block_position = sizeof(data) % 2880 padding = (block_position == 0) ? 0 : 2880 - block_position write(f, fill(0x00, (padding,))) close(f) end function writehealpix(filename, pixels, nside, ordering, coordsys) if eltype(pixels) == Float32 tform = "1E" elseif eltype(pixels) == Float64 tform = "1D" end file = fits_clobber_file(filename) try fits_create_img(file, Int16, Int[]) fits_write_date(file) fits_movabs_hdu(file, 1) fits_create_binary_tbl(file, length(pixels), [("SIGNAL", tform, "")], "BINTABLE") fits_write_key(file, "PIXTYPE", "HEALPIX", "HEALPIX pixelization") fits_write_key(file, "ORDERING", ordering, "Pixel ordering scheme (either RING or NESTED)") fits_write_key(file, "NSIDE", nside, "Resolution parameter for HEALPIX") fits_write_key(file, "COORDSYS", coordsys, "Pixelization coordinate system") fits_write_comment(file, "G = galactic, E = ecliptic, C = celestial = equatorial") fits_write_col(file, 1, 1, 1, pixels) finally fits_close_file(file) end end function readhealpix(filename) file = fits_open_file(filename) try hdutype = fits_movabs_hdu(file, 2) tform, tform_comment = fits_read_key_str(file, "TFORM1") if tform == "1E" T = Float32 elseif tform == "1D" T = Float64 end naxes, naxis_comment = fits_read_key_lng(file, "NAXIS") naxis, nfound = fits_read_keys_lng(file, "NAXIS", 1, naxes) nside, nside_comment = fits_read_key_lng(file, "NSIDE") npix = 12*nside*nside ordering, ordering_comment = fits_read_key_str(file, "ORDERING") coordsys, coordsys_comment = fits_read_key_str(file, "COORDSYS") pixels = zeros(T, npix) fits_read_col(file, 1, 1, 1, pixels) return pixels, nside, ordering, coordsys finally fits_close_file(file) end end @testset "CFITSIO.jl" begin @testset "file name and mode" begin mktempdir() do dir filename = joinpath(dir, "temp.fits") f = fits_clobber_file(filename) @test fits_file_name(f) == filename @test fits_file_mode(f) == 1 # Write some data to the file a = ones(2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) close(f) f = fits_open_file(filename, 0) @test fits_file_mode(f) == 0 == Int(CFITSIO.R) close(f) f = fits_open_file(filename, CFITSIO.R) @test fits_file_mode(f) == 0 == Int(CFITSIO.R) close(f) f = fits_open_file(filename, 1) @test fits_file_mode(f) == 1 == Int(CFITSIO.RW) close(f) f = fits_open_file(filename, CFITSIO.RW) @test fits_file_mode(f) == 1 == Int(CFITSIO.RW) close(f) end end @testset "types" begin for (T, code) in ( (UInt8, 11), (Int8, 12), (Bool, 14), (String, 16), (Cushort, 20), (Cshort, 21), (Cuint, 30), (Cint, 31), (UInt64, 80), (Int64, 81), (Float32, 42), (Float64, 82), (ComplexF32, 83), (ComplexF64, 163), ) @test cfitsio_typecode(T) == Cint(code) end for (T, code) in ((UInt8, 8), # BYTE_IMG (Int16, 16), # SHORT_IMG (Int32, 32), # LONG_IMG (Int64, 64), # LONGLONG_IMG (Float32, -32), # FLOAT_IMG (Float64, -64), # DOUBLE_IMG (Int8, 10), # SBYTE_IMG (UInt16, 20), # USHORT_IMG (UInt32, 40), # ULONG_IMG (UInt64, 80)) # ULONGLONG_IMG @test bitpix_from_type(T) == code @test type_from_bitpix(Cint(code)) == type_from_bitpix(Val(Cint(code))) == T @test type_from_bitpix(Int16(code)) == T end @test_throws MethodError type_from_bitpix(7) @test_throws MethodError type_from_bitpix("BITPIX") end # test reading/writing Healpix maps as FITS binary tables using the Libcfitsio interface mktempdir() do dir filename = joinpath(dir, "temp.fits") for T in (Float32, Float64) nside = 4 npix = 12*nside*nside pixels = rand(T, npix) ordering = "NESTED" coordsys = "G" writehealpix(filename, pixels, nside, ordering, coordsys) @test readhealpix(filename) == (pixels, nside, ordering, coordsys) end end @testset "Miscellaneous" begin # test that this function works and returns the right type. @test typeof(libcfitsio_version()) === VersionNumber # test it parses a number as intended. @test libcfitsio_version(3.341) === VersionNumber(3, 34, 1) @test libcfitsio_version(3.41f0) === VersionNumber(3, 41, 0) end @testset "hdu operations" begin tempfitsfile() do f # Create a few HDUs a = ones(2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) a = ones(3,3) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) a = ones(4,4) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) @test fits_get_num_hdus(f) == 3 for i in 1:3 fits_movabs_hdu(f, i) @test fits_get_hdu_num(f) == i @test fits_get_hdu_type(f) == :image_hdu end for i = 1:2 fits_movrel_hdu(f, -1) @test fits_get_hdu_num(f) == 3 - i end fits_movabs_hdu(f, 2) fits_delete_hdu(f) @test fits_get_num_hdus(f) == 2 @test fits_get_hdu_num(f) == 2 @test fits_get_img_size(f) == [4,4] fits_movabs_hdu(f, 1) fits_delete_hdu(f) @test fits_get_num_hdus(f) == 2 @test fits_get_hdu_num(f) == 1 @test fits_get_img_dim(f) == 0 end @testset "insert image" begin tempfitsfile() do f a = ones(2,2); b = similar(a) fits_insert_img(f, a) fits_write_pix(f, a) fits_read_pix(f, b) @test b == a @test fits_get_num_hdus(f) == 1 a .*= 2 fits_insert_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) fits_read_pix(f, b) @test b == a @test fits_get_num_hdus(f) == 2 fits_movabs_hdu(f, 1) a .*= 2 fits_insert_img(f, a) fits_write_pix(f, a) fits_read_pix(f, b) @test b == a @test fits_get_num_hdus(f) == 3 # test that the HDU is added in the middle fits_movabs_hdu(f, 1) fits_read_pix(f, b) @test b == ones(2,2) fits_movabs_hdu(f, 3) fits_read_pix(f, b) @test b == ones(2,2) .* 2 fits_movabs_hdu(f, 2) fits_read_pix(f, b) @test b == ones(2,2) .* 4 end end end @testset "image type/size" begin tempfitsfile() do f a = ones(2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) @test fits_get_img_dim(f) == 2 @test fits_get_img_size(f) == [2, 2] @test fits_get_img_type(f) == -64 @test fits_get_img_equivtype(f) == -64 a = ones(Int64, 2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) @test fits_get_img_dim(f) == 2 @test fits_get_img_size(f) == [2, 2] @test fits_get_img_type(f) == 64 @test fits_get_img_equivtype(f) == 64 end end @testset "read/write subset" begin tempfitsfile() do f a = rand(10,10) b = similar(a) fits_create_img(f, a) fits_write_pix(f, a) fits_read_subset(f, [1,1], [size(a)...], [1,1], b) @test a == b fits_write_subset(f, [1,1], [size(a,1),4], a) c = zeros(eltype(a), size(a,1), 4) fits_read_subset(f, [1,1], [size(a,1),4], [1,1], c) @test a[:, 1:4] == c a[:,1] .= NaN fits_write_subset(f, [1,1], [size(a,1),4], a) c .= 0 fits_read_subset(f, [1,1], [size(a,1),4], [1,1], 100.0, c) @test all(==(100), c[:, 1]) @test c[:, 2:4] == a[:,2:4] fits_read_subset(f, [1,1], [size(a,1),4], [1,1], 0.0, c) @test all(isnan, c[:, 1]) @test c[:, 2:4] == a[:,2:4] tempfitsfile() do f2 a = rand(20,20) fits_create_img(f, a) fits_write_pix(f, a) fits_copy_image_section(f, f2, "1:20,1:10") b = similar(a, 20, 10) fits_read_pix(f2, b) close(f2) @test a[1:20, 1:10] == b end end end @testset "error message" begin mktempdir() do dir filename = joinpath(dir, "temp.fits") try f = fits_clobber_file(filename) fits_close_file(f) catch e @test e isa CFITSIO.CFITSIOError @test e isa Exception # bugfix test as CFITSIOError didn't subtype Exception in #3 io = IOBuffer() Base.showerror(io, e) errstr = String(take!(io)) @test occursin(r"Error code"i, errstr) @test occursin(r"Error message"i, errstr) finally rm(filename, force=true) end end end @testset "closed file errors" begin tempfitsfile() do f # write arbitrary data to the file a = ones(2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) close(f) # check that closed files throw a julia error and don't segfault for fn in [fits_file_name, fits_file_mode, fits_get_hdrspace, fits_write_date, fits_hdr2str, fits_get_hdu_num, fits_get_hdu_type, fits_get_img_type, fits_get_img_equivtype, fits_get_img_dim, fits_get_num_cols, fits_get_num_hdus, fits_get_rowsize, fits_get_img_size, fits_get_img_size, fits_get_num_rows, fits_delete_hdu, ] @test_throws Exception fn(f) end for fn in [fits_read_key_str, fits_read_key_lng, fits_read_keyword, fits_write_comment, fits_write_history, fits_write_record, fits_delete_key, fits_movnam_hdu, fits_get_colnum, ] @test_throws Exception fn(f, "abc") end for fn in [fits_read_record, fits_read_keyn, fits_delete_record, fits_movabs_hdu, fits_movrel_hdu, fits_get_coltype, fits_get_eqcoltype, fits_read_tdim, ] @test_throws Exception fn(f, 1) end for fn in [fits_insert_rows, fits_delete_rows, fits_read_descript, CFITSIO.fits_write_null_img] @test_throws Exception fn(f, 1, 2) end for fn in [fits_write_pix, fits_read_pix] @test_throws Exception fn(f, a) end for fn in [fits_write_pix, fits_read_pix] @test_throws Exception fn(f, [1,1], length(a), a) end @test_throws Exception fits_read_pix(f, ones(Int, ndims(a)), length(a), zero(eltype(a)), a) @test_throws Exception fits_read_keys_lng(f, "a", 1, 2) for fn in [fits_write_key, fits_update_key] @test_throws Exception fn(f, "a", 1, "b") end for fn in [fits_read_col, fits_write_col] @test_throws Exception fn(f, 1, 1, 1, ["abc"]) @test_throws Exception fn(f, 1, 1, 1, ["abc", 1]) end for fn in [fits_create_binary_tbl, fits_create_ascii_tbl] @test_throws Exception fn(f, 1, [("name", "3D", "c")], "extname") end @test_throws Exception fits_update_key(f, "a", 1.0, "b") @test_throws Exception fits_update_key(f, "a", nothing, "b") @test_throws Exception fits_write_tdim(f, 1, [1, 2]) @test_throws Exception fits_read_subset(f, [1,1], [2,2], [1,1], a) @test_throws Exception fits_write_subset(f, [1,1], [2,2], a) @test_throws Exception fits_create_img(f, Int64, [2,3]) tempfitsfile() do f2 fits_create_img(f2, eltype(a), [size(a)...]) fits_write_pix(f2, a) close(f2) @test_throws Exception fits_copy_image_section(f, f2, "1:2") @test_throws Exception fits_copy_image_section(f2, f, "1:2") end end end @testset "null values" begin tempfitsfile() do f # all values are nullified a = ones(2,2) nullarray = similar(a, UInt8) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pixnull(f, ones(Int, ndims(a)), length(a), a, 1.0) fits_read_pix(f, a) @test all(isnan, a) # one values is nullified a .= [1 2; 3 4] fits_write_pixnull(f, a, 3.0) fits_read_pix(f, a) @test isnan(a[2,1]) @test !isnan(a[2,2]) && all(!isnan, a[1,:]) # one values is nullified, but replaced while being read back in a .= [1 2; 3 4] fits_write_pixnull(f, a, 3.0) fits_read_pix(f, a, 3.0) @test !any(isnan, a) @test a[2,1] == 3.0 fits_write_pixnull(f, a, 3.0) fits_read_pix(f, a, 0.0) @test isnan(a[2,1]) fits_read_pix(f, a, C_NULL) @test isnan(a[2,1]) # get the indices of null values nullarray .= 0 fits_read_pixnull(f, a, nullarray) @test nullarray[2,1] == 1 @test iszero(nullarray[2,2]) && all(iszero, nullarray[1,:]) nullarray .= 0 fits_read_pixnull(f, a, vec(nullarray)) @test nullarray[2,1] == 1 @test iszero(nullarray[2,2]) && all(iszero, nullarray[1,:]) @test_throws Exception fits_read_pixnull(f, a, similar(nullarray, 1)) # don't treat null values as special while writing out a .= [1 2; 3 4] fits_write_pixnull(f, a, C_NULL) fits_read_pix(f, a) @test !any(isnan, a) a .= [1 2; NaN 4] fits_write_pixnull(f, a, C_NULL) fits_read_pix(f, a) @test isnan(a[2,1]) @test !isnan(a[2,2]) && all(!isnan, a[1,:]) # test that tuples and vectors of pixels behave identically a .= [1 2; NaN 4] nullarray .= 0 nullarray2 = similar(nullarray) fits_write_pixnull(f, a, C_NULL) b = similar(a) fits_read_pixnull(f, [1,1], length(b), b, nullarray) fits_read_pixnull(f, (1,1), length(b), b, nullarray2) @test nullarray == nullarray2 # Read in data by replacing null values with the specified value for nullval in Any[7, 7.0], fpixel in Any[[1,1], (1,1)] b .= 0 fits_read_pix(f, fpixel, length(b), nullval, b) @test b[2,1] == nullval end for fpixel in Any[[1,1], (1,1)] # Write data first by treating the value 2 as null fits_write_pixnull(f, fpixel, length(b), a, 2) b .= 0 fits_read_pix(f, fpixel, length(b), b) @test isnan(b[1,2]) @test isnan(b[2,1]) # replace the null value by a specified one for nullval in Any[7, 7.0] b .= 0 fits_read_pix(f, fpixel, length(b), nullval, b) @test b[2,1] == nullval @test b[1,2] == nullval end end # set a stretch of values to null (NaN in this case) # for the test we set all values to null fits_write_null_img(f, 1, length(a)) fits_read_pix(f, a) @test all(isnan, a) end end @testset "empty file" begin tempfitsfile() do f a = zeros(2,2) @test_throws ErrorException fits_read_pix(f, a) @test_throws ErrorException fits_read_pix(f, a, 1) @test_throws ErrorException fits_read_pixnull(f, a, similar(a, UInt8)) end end @testset "non-Int64 types" begin tempfitsfile() do f # write arbitrary data to the file a = ones(2,2) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, Int32[1,1], big(length(a)), a) b = similar(a) fits_read_pix(f, Int32[1,1], Int128(length(b)), b) @test b == a end end @testset "resize image" begin tempfitsfile() do f a = [1 2; 3 4]; fits_create_img(f, a); fits_write_pix(f, a); fits_resize_img(f, [3,3]); @test fits_get_img_size(f) == [3,3] fits_resize_img(f, (4,4)); @test fits_get_img_size(f) == [4,4] fits_resize_img(f, (7,)); @test fits_get_img_size(f) == [7] fits_resize_img(f, Float64); @test type_from_bitpix(fits_get_img_type(f)) == Float64 fits_write_pix(f, Float64.(1:7)) b = zeros(Float64, 7) fits_read_pix(f, b) @test b == 1:7 end end @testset "tuples vs vectors" begin tempfitsfile() do f a = Float64[1 3; 2 4] b = similar(a); c = similar(a); @testset "create" begin fits_create_img(f, eltype(a), size(a)) fits_write_pix(f, a) fits_read_pix(f, b) fits_create_img(f, eltype(a), [size(a)...]) fits_write_pix(f, a) fits_read_pix(f, c) @test b == c end @testset "write" begin fits_write_pix(f, [1,1], length(a), a) fits_read_pix(f, b) fits_write_pix(f, (1,1), length(a), a) fits_read_pix(f, c) @test b == c end @testset "size" begin @test fits_get_img_size(f, Val(2)) == (2,2) end @testset "read" begin @testset "full image" begin fits_read_pix(f, b) @test b == a # test that vectors and tuples of pixels behave identically fits_read_pix(f, [1,1], length(b), b) fits_read_pix(f, (1,1), length(c), c) @test b == c end @testset "subset" begin b .= 0 # test that vectors and tuples of pixels behave identically fits_read_subset(f, (1,1), (2,1), (1,1), @view b[:,1]) fits_read_subset(f, [1,1], [2,1], [1,1], @view b[:,2]) @test @views b[:,1] == b[:,2] end end @testset "subset" begin fits_create_img(f, eltype(a), (size(a,1),)) fits_write_subset(f, [1,1], [2,1], a) fits_read_pix(f, @view b[:,1]) fits_write_subset(f, (1,1), (2,1), a) fits_read_pix(f, @view b[:, 2]) @test @views b[:,1] == b[:,2] b .= 0 fits_write_subset(f, [1,1], [2,1], a) fits_read_subset(f, [1,1], [2,1], [1,1], @view b[:,1]) fits_read_subset(f, (1,1), (2,1), (1,1), @view b[:,2]) @test @views b[:,1] == b[:,2] b .= 0 fits_write_subset(f, [1,1], [2,1], replace(a, 2 => NaN)) fits_read_subset(f, [1,1], [2,1], [1,1], 4, @view b[:,1]) fits_read_subset(f, (1,1), (2,1), (1,1), 4, @view b[:,2]) @test @views b[:,1] == b[:,2] @test b[2,1] == b[2,2] == 4 end end end @testset "extended filename parser" begin filename = tempname() a = [1 3; 2 4] b = similar(a) try # for filenames that don't contain extended format specifications, # the diskfile functions are equivalent to the file ones for createfn in [fits_create_file, fits_create_diskfile] f = createfn(filename) fits_create_img(f, a) fits_write_pix(f, a) close(f) # Extended format: flipping the image f = fits_open_file(filename*"[*,-*]") fits_read_pix(f, b) @test a[:, [2,1]] == b close(f) f = fits_open_file(filename*"[-*,*]") fits_read_pix(f, b) @test a[[2,1], :] == b close(f) # without extended format f = fits_open_diskfile(filename) fits_read_pix(f, b) @test a == b close(f) rm(filename) end finally rm(filename, force = true) end # the diskfile functions may include [] in the filenames filename2 = filename * "[abc].fits" @test_throws CFITSIO.CFITSIOError fits_create_file(filename2) try f = fits_create_diskfile(filename2) fits_create_img(f, a) fits_write_pix(f, a) fits_read_pix(f, b) @test a == b close(f) f = fits_open_diskfile(filename2) fits_read_pix(f, b) @test a == b close(f) @test_throws CFITSIO.CFITSIOError fits_open_file(filename2) finally rm(filename2, force = true) end end @testset "stdout/stdin streams" begin # We redirect the output streams to a temp file to avoid cluttering the output # At present this doesn't work completely, as there is some output from fits_create_img # that is not captured mktemp() do _, io redirect_stdout(io) do for fname in ["-", "stdout.gz"] f = fits_create_file(fname); for a in Any[[1 2; 3 4], Float64[1 2; 3 4]] b = similar(a) fits_create_img(f, a) fits_write_pix(f, a) fits_read_pix(f, b) @test a == b end close(f) end end end end end
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
docs
1158
# CFITSIO.jl [![Build Status](https://github.com/JuliaAstro/CFITSIO.jl/workflows/CI/badge.svg)](https://github.com/JuliaAstro/CFITSIO.jl/actions) [![PkgEval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/C/CFITSIO.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html) [![Coverage](https://codecov.io/gh/JuliaAstro/CFITSIO.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaAstro/CFITSIO.jl) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaAstro.github.io/CFITSIO.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaAstro.github.io/CFITSIO.jl/dev) ## C-style interface to CFITSIO functions - Function names closely mirror the C interface (e.g., `fits_open_file()`). - Functions operate on `FITSFile`, a thin wrapper for `fitsfile` C struct (`FITSFile` has concept of "current HDU", as in CFITSIO). - Note that the wrapper functions *do* check the return status from CFITSIO and throw an error with the appropriate message. For more information and usage examples, please visit the [documentation](https://JuliaAstro.github.io/CFITSIO.jl/dev).
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
1.4.2
fc0abb338eb8d90bc186ccf0a47c90825952c950
docs
6448
```@meta CurrentModule = CFITSIO ``` # CFITSIO.jl [![GitHub](https://img.shields.io/badge/Code-GitHub-black.svg)](https://github.com/juliaastro/CFITSIO.jl) [![Build Status](https://github.com/JuliaAstro/CFITSIO.jl/workflows/CI/badge.svg)](https://github.com/JuliaAstro/CFITSIO.jl/actions) [![PkgEval](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/C/CFITSIO.svg)](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html) [![Coverage](https://codecov.io/gh/JuliaAstro/CFITSIO.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaAstro/CFITSIO.jl) This module provides an interface familiar to users of the [CFITSIO](http://heasarc.gsfc.nasa.gov/fitsio/) C library. It can be used with ```julia using CFITSIO ``` The functions exported by this module operate on `FITSFile` objects, which is a thin wrapper around a pointer to a CFITSIO `fitsfile`. For the most part, the functions are thin wrappers around the CFITSIO routines of the same names. Typically, they: * Convert from Julia types to C types as necessary. * Check the returned status value and raise an appropriate exception if non-zero. The following tables give the correspondances between CFITSIO "types", the BITPIX keyword and Julia types. ## Type Conversions ### CFITSIO Types | CODE | CFITSIO | Julia | |----------------------: |-------------- |------------------ | | | int | `Cint` | | | long | `Clong` | | | LONGLONG | `Int64` | ### FITS BITPIX | CODE | CFITSIO | Julia | |----------------------: |-------------- |------------------ | | 8 | BYTE_IMG | `Uint8` | | 16 | SHORT_IMG | `Int16` | | 32 | LONG_IMG | `Int32` | | 64 | LONGLONG_IMG | `Int64` | | -32 | FLOAT_IMG | `Float32` | | -64 | DOUBLE_IMG | `Float64` | ### CFITSIO Aliases | CODE | CFITSIO | Julia | Comments | |----------------------: |-------------- |------------------ |:-------------------------------------------------------- | | 10 | SBYTE_IMG | `Int8` | written as: BITPIX = 8, BSCALE = 1, BZERO = -128 | | 20 | USHORT_IMG | `Uint16` | written as: BITPIX = 16, BSCALE = 1, BZERO = 32768 | | 40 | LONG_IMG | `Uint32` | written as: BITPIX = 32, BSCALE = 1, BZERO = 2147483648 | | 80 | ULONGLONG_IMG | `UInt64` | written as: BITPIX = 64, BSCALE = 1, BZERO = 9223372036854775808 | ### FITS Table Data Types | CODE | CFITSIO | Julia | |----------------------: |-------------- |------------------- | | 1 | TBIT | | | 11 | TBYTE | `Cuchar`, `Uint8` | | 12 | TSBYTE | `Cchar`, `Int8` | | 14 | TLOGICAL | `Bool ` | | 16 | TSTRING | `String ` | | 20 | TUSHORT | `Cushort` | | 21 | TSHORT | `Cshort` | | 30 | TUINT | `Cuint` | | 31 | TINT | `Cint` | | 40 | TULONG | `Culong` | | 41 | TLONG | `Clong` | | 42 | TFLOAT | `Cfloat` | | 80 | TULONGLONG | `UInt64` | | 81 | TLONGLONG | `Int64` | | 82 | TDOUBLE | `Cdouble` | | 83 | TCOMPLEX | `Complex{Cfloat}` | | 163 | TDBLCOMPLEX | `Complex{Cdouble}` | ```@docs bitpix_from_type type_from_bitpix cfitsio_typecode ``` ## File access ```@docs fits_create_file fits_create_diskfile fits_clobber_file fits_open_file fits_open_diskfile fits_open_table fits_open_image fits_open_data fits_close_file fits_delete_file fits_file_name fits_file_mode ``` ## HDU Routines The functions described in this section change the current HDU and to find their number and type. The following is a short example which shows how to use them: ```julia num = fits_get_num_hdus(f) println("Number of HDUs in the file: ", num) for i = 1:num hdu_type = fits_movabs_hdu(f, i) println(i, ") hdu_type = ", hdu_type) end ``` ```@docs fits_get_num_hdus fits_movabs_hdu fits_movrel_hdu fits_movnam_hdu fits_delete_hdu ``` ## Header Keyword Routines ```@docs fits_get_hdrspace fits_read_keyword fits_read_record fits_read_keyn fits_write_key fits_write_record fits_delete_record fits_delete_key fits_hdr2str ``` ## Image HDU Routines ```@docs fits_get_img_size fits_create_img fits_insert_img fits_write_pix fits_write_pixnull fits_write_subset fits_read_pix fits_read_pixnull fits_read_subset fits_copy_image_section fits_write_null_img fits_resize_img ``` ## Table Routines There are two functions to create a new HDU table extension: `fits_create_ascii_table` and `fits_create_binary_table`. In general, one should pick the second as binary tables require less space on the disk and are more efficient to read and write. (Moreover, a few datatypes are not supported in ASCII tables). In order to create a table, the programmer must specify the characteristics of each column by passing an array of tuples. Here is an example: ```julia f = fits_create_file("!new.fits") coldefs = [("SPEED", "1D", "m/s"), ("MASS", "1E", "kg"), ("PARTICLE", "20A", "Name")] fits_create_binary_tbl(f, 10, coldefs, "PARTICLE") ``` This example creates a table with room for 10 entries, each of them describing the characteristics of a particle: its speed, its mass, and its name (codified as a 20-character string). See the documentation of `fits_create_ascii_tbl` for more details. ```@docs fits_create_ascii_tbl fits_create_binary_tbl fits_get_coltype fits_insert_rows fits_delete_rows fits_read_col fits_write_col ``` ## Miscellaneous ```@docs libcfitsio_version ```
CFITSIO
https://github.com/JuliaAstro/CFITSIO.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
931
using Documenter using ClearSky DocMeta.setdocmeta!(ClearSky, :DocTestSetup, :(using ClearSky); recursive=true) makedocs(; modules=[ClearSky], authors="Mark Baum", repo="https://github.com/wordsworthgroup/ClearSky.jl/blob/{commit}{path}#{line}", sitename="ClearSky.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://wordsworthgroup.github.io/ClearSky.jl", assets=String[], ), pages=[ "Home" => "index.md", "Absorption Data" => "absorption_data.md", "Line Shapes" => "line_shapes.md", "Gas Objects" => "gas_objects.md", "Atmospheric Profiles" => "atmospheric_profiles.md", "Modeling" => "modeling.md", "Orbits & Insolation" => "orbits_insolation.md" ], ) deploydocs(; repo="github.com/wordsworthgroup/ClearSky.jl", devbranch="main", versions=["stable"=>"v^"] )
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
525
module ClearSky using Base: tail using Base.Threads: @threads using QuadGK: gauss using Cubature using BasicInterpolators using ScalarRadau #order matters include("constants.jl") include("util.jl") include("molparam.jl") include("par.jl") include("faddeyeva.jl") include("line_shapes.jl") include("gases.jl") include("collision_induced_absorption.jl") include("atmospherics.jl") include("radiation.jl") include("modeling_core.jl") include("modeling.jl") include("orbits.jl") include("insolation.jl") using .Faddeyeva end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
15281
#minimum pressure in temperature profiles and floor for hydrostatic profile const PMIN = 1e-9 #------------------------------------------------------------------------------- #constructing generalized hydrostatic pressure profiles and inverting for z export scaleheight, hydrostatic, altitude export Hydrostatic """ scaleheight(g, ΞΌ, T) Evaluate the [atmospheric scale height](https://en.wikipedia.org/wiki/Scale_height), ``\\frac{RT}{ΞΌg}`` where ``R`` is the [universial gas constant](https://en.wikipedia.org/wiki/Gas_constant). # Arguments * `g`: gravitational acceleration [m/s``^s``] * `ΞΌ`: mean molar mass [kg/mole] * `T`: temperature [K] """ scaleheight(g, ΞΌ, T)::Float64 = 𝐑*T/(ΞΌ*g) #parameterized hydrostatic relation in log coordinates function dlnPdz(z, lnP, param::Tuple)::Float64 #unpack parameters Pβ‚›, g, fT, fΞΌ = param #evaluate temperature and mean molar mass [kg/mole] P = exp(lnP) if P < PMIN return 0.0 end P = min(P, Pβ‚›) #don't allow tiny numerical dips below Pβ‚› T = fT(P) ΞΌ = fΞΌ(T, P) #evaluate derivative -ΞΌ*g/(𝐑*T) end """ hydrostatic(z, Pβ‚›, g, fT, fΞΌ) Compute the hydrostatic pressure [Pa] at a specific altitude using arbitrary atmospheric profiles of temperature and mean molar mass # Arguments * `z`: altitude [m] to compute pressure at * `Pβ‚›`: surface pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure, `fT(P)` * `fΞΌ`: mean molar mass [kg/mole] as a function of pressure and temperature `fΞΌ(T,P)` """ function hydrostatic(z, Pβ‚›, g, fT::T, fΞΌ::U)::Float64 where {T,U} @assert z >= 0 "cannot compute pressure at negative altitude $z m" @assert Pβ‚› > PMIN "pressure cannot be less than $PMIN Pa" #parameters param = (Pβ‚›, g, fT, fΞΌ) #integrate in log coordinates lnP = radau(dlnPdz, log(Pβ‚›), 0, z, param) #convert exp(lnP) end """ altitude(P, Pβ‚›, g, fT, fΞΌ) Compute the altitude [m] at which a specific hydrostatic pressure occurs using arbitrary atmospheric profiles of temperature and mean molar mass # Arguments * `P`: pressure [Pa] to compute altitude at * `Pβ‚›`: surface pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure, `fT(P)` * `fΞΌ`: mean molar mass [kg/mole] as a function of pressure and temperature `fΞΌ(T,P)` """ function altitude(P, Pβ‚›, g, fT::T, fΞΌ::U)::Float64 where {T,U} #pressure decreases monotonically, find altitudes bracketing Pβ‚œ z₁ = 0.0 zβ‚‚ = 1e2 P₁ = Pβ‚› Pβ‚‚ = hydrostatic(zβ‚‚, Pβ‚›, g, fT, fΞΌ) while Pβ‚‚ > P z₁ = zβ‚‚ zβ‚‚ *= 2 P₁ = Pβ‚‚ Pβ‚‚ = hydrostatic(zβ‚‚, Pβ‚›, g, fT, fΞΌ) end #find precise altitude where P = Pβ‚œ falseposition((z,p) -> log(hydrostatic(z, Pβ‚›, g, fT, fΞΌ)) - log(P), z₁, zβ‚‚) end """ [Function-like type](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects) for initializing and evaluating a hydrostatic pressure profile with arbitrary temperature and mean molar mass profiles. A `Hydrostatic` object maps altitude to pressure. # Constructor Hydrostatic(Pβ‚›, Pβ‚œ, g, fT, fΞΌ, N=1000) * `Pβ‚›`: surface pressure [Pa] * `Pβ‚œ`: top of profile pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of presssure, `fT(P)` * `fΞΌ`: mean molar mass [kg/mole] as a function of temperature and pressure, `fΞΌ(T,P)` * `N`: optional, number of interpolation nodes For a constant molar mass or temperature, you can use [anonymous functions](https://docs.julialang.org/en/v1/manual/functions/#man-anonymous-functions) directly. For example, to construct a hydrostatic pressure profile for a crude Earth-like atmosphere: ```@example #moist adiabatic temperature profile M = MoistAdiabat(288, 1e5, 1040, 1996, 0.029, 0.018, 2.3e6, psatH2O, Ptropo=1e4); #hydrostatic pressure profile with constant mean molar mass H = Hydrostatic(1e5, 1, 9.8, M, (T,P)->0.029); #evaluate pressures at a few different altitudes H.([0, 1e3, 1e4]) ``` """ struct Hydrostatic Ο•::LinearInterpolator{Float64,WeakBoundaries} zβ‚œ::Float64 end function Hydrostatic(Pβ‚›, Pβ‚œ, g, fT::T, fΞΌ::U, N::Int=1000) where {T,U} #find the altitude corresponding to Pβ‚œ zβ‚œ = altitude(Pβ‚œ, Pβ‚›, g, fT, fΞΌ) #interpolation knots and output array z = logrange(0, zβ‚œ, N) lnP = zeros(Float64, N) #integrate to get a full pressure profile radau!(lnP, z, dlnPdz, log(Pβ‚›), 0, zβ‚œ, (Pβ‚›, g, fT, fΞΌ)) #construct and return Hydrostatic(LinearInterpolator(z, lnP, WeakBoundaries()), zβ‚œ) end (H::Hydrostatic)(z)::Float64 = exp(H.Ο•(z)) """ altitude(H::Hydrostatic, P) Compute the altitude at which a specific pressure occurs in a [`Hydrostatic`](@ref) pressure profile. """ function altitude(H::Hydrostatic, P::Real)::Float64 falseposition((z,p) -> log(H(z)) - log(P), 0.0, H.zβ‚œ) end #------------------------------------------------------------------------------- #general function for adiabat with one condensable in bulk non-condensable function dTdΟ‰(Ο‰, T, cβ‚šβ‚™, cβ‚šα΅₯, Rβ‚™, Rα΅₯, L, psat::F)::Float64 where {F} #molar mixing ratio of condensible Ξ± = psat(T)/Ο‰2P(Ο‰) #whole expression at once -T*(Rβ‚™/cβ‚šβ‚™)*(1 + Ξ±*L/(Rβ‚™*T))/(1 + Ξ±*(cβ‚šα΅₯/cβ‚šβ‚™ + (L/(T*Rα΅₯) - 1)*L/(cβ‚šβ‚™*T))) end dTdΟ‰(Ο‰, T, param::Tuple)::Float64 = dTdΟ‰(Ο‰, T, param...) #------------------------------------ abstract type AbstractAdiabat end export MoistAdiabat, DryAdiabat export tropopause function checkadiabat(Tβ‚›, Pβ‚›, Pβ‚œ, Tstrat, Ptropo) @assert Pβ‚› > Pβ‚œ "Pβ‚› must be greater than Pβ‚œ" @assert Pβ‚œ > 0 "Pβ‚œ must be greater than 0" if Tstrat > 0 @assert Tstrat < Tβ‚› "Tstrat cannot be greater than Tβ‚›" end if (Tstrat != 0) & (Ptropo != 0) throw("Cannot have nonzero Tstrat and Ptropo, must use one or the other") end end #------------------------------------ """ [Function-like type](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects) for initializing and evaluating a dry adiabatic temperature profile. Optional uniform upper atmospheric temperature below a specified temperature or pressure. # Constructor DryAdiabat(Tβ‚›, Pβ‚›, cβ‚š, ΞΌ, Pβ‚œ=$PMIN; Tstrat=0.0, Ptropo=0.0) * `Tβ‚›`: surface temperature [K] * `Pβ‚›`: surface pressure [K] * `Pβ‚œ`: highest allowable pressure (can be small but not zero) [Pa] * `cβ‚š`: specific heat of the atmosphere [J/kg/K] * `ΞΌ`: molar mass of the atmosphere [kg/mole] * `Pβ‚œ`: highest pressure in the temperature profile (should generally be small to avoid evaluating out of range) [Pa] If `Tstrat` is greater than zero, the temperature profile will not drop below that temperature. If `Ptropo` is greater than zero, the temperature profile at pressures lower than `Ptropo` will be equal to the temperature at exactly `Ptropo`. `Tstrat` and `Ptropo` cannot be greater than zero simultaneously. # Example Once constructed, use a `DryAdiabat` like a function to compute temperature at a given pressure. ```@example Tβ‚› = 288; #surface temperature [K] Pβ‚› = 1e5; #surface pressure [Pa] cβ‚š = 1040; #specific heat of air [J/kg/K] ΞΌ = 0.029; #molar mass of air [kg/mole] #construct the dry adiabat with an upper atmosphere temperature of 190 K D = DryAdiabat(Tβ‚›, Pβ‚›, cβ‚š, ΞΌ, Tstrat=190); #temperatures at 40-10 kPa D.([4e4, 3e4, 2e4, 1e4]) ``` """ struct DryAdiabat <: AbstractAdiabat Tβ‚›::Float64 Pβ‚›::Float64 Pβ‚œ::Float64 cβ‚š::Float64 ΞΌ::Float64 Tstrat::Float64 Ptropo::Float64 end function DryAdiabat(Tβ‚›, Pβ‚›, cβ‚š, ΞΌ, Pβ‚œ=PMIN; Tstrat=0, Ptropo=0) checkadiabat(Tβ‚›, Pβ‚›, Pβ‚œ, Tstrat, Ptropo) DryAdiabat(Tβ‚›, Pβ‚›, Pβ‚œ, cβ‚š, ΞΌ, Tstrat, Ptropo) end #------------------------------------ """ [Function-like type](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects) for initializing and evaluating a moist adiabatic temperature profile. Optional uniform upper atmospheric temperature below a specified temperature or pressure. # Constructor MoistAdiabat(Tβ‚›, Pβ‚›, cβ‚šβ‚™, cβ‚šα΅₯, ΞΌβ‚™, ΞΌα΅₯, L, psat, Pβ‚œ=$PMIN; Tstrat=0, Ptropo=0, N=1000) * `Tβ‚›`: surface temperature [K] * `Pβ‚›`: surface pressure [K] * `cβ‚šβ‚™`: specific heat of the non-condensible atmospheric component (air) [J/kg/K] * `cβ‚šα΅₯`: specific heat of the condensible atmospheric component [J/kg/K] * `ΞΌβ‚™`: molar mass of the non-condensible atmospheric component (air) [kg/mole] * `ΞΌα΅₯`: molar mass of the condensible atmospheric component [kg/mole] * `L`: condsible component's latent heat of vaporization [J/kg] * `psat`: function defining the saturation vapor pressure for a given temperature, `psat(T)` * `Pβ‚œ`: highest pressure in the temperature profile (should generally be small to avoid evaluating pressures out of range) [Pa] If `Tstrat` is greater than zero, the temperature profile will not drop below that temperature. If `Ptropo` is greater than zero, the temperature profile at pressures lower than `Ptropo` will be equal to the temperature at exactly `Ptropo`. `Tstrat` and `Ptropo` cannot be greater than zero simultaneously. The profile is evaluated along a number of pressure values in the atmosphere set by `N`. Those points are then used to construct a cubic spline interpolator for efficient and accurate temperature calculation. Experience indicates that 1000 points is very accurate and also fast. # Example Once constructed, use a `MoistAdiabat` like a function to compute temperature at a given pressure. ```@example Tβ‚› = 288; #surface temperature [K] Pβ‚› = 1e5; #surface pressure [Pa] cβ‚šβ‚™ = 1040; #specific heat of air [J/kg/K] cβ‚šα΅₯ = 1996; #specific heat of H2O [J/kg/K] ΞΌβ‚™ = 0.029; #molar mass of air [kg/mole] ΞΌα΅₯ = 0.018; #molar mass of H2O [kg/mole] L = 2.3e6; #H2O latent heat of vaporization [J/kg] #a saturation vapor pressure function for H2O is built in psat = psatH2O; #construct the moist adiabat with a tropopause pressure of 1e4 Pa M = MoistAdiabat(Tβ‚›, Pβ‚›, cβ‚šβ‚™, cβ‚šα΅₯, ΞΌβ‚™, ΞΌα΅₯, L, psat, Ptropo=1e4); #temperatures at 30-5 kPa M.([3e4, 2e4, 1e4, 5e3]) ``` """ struct MoistAdiabat <: AbstractAdiabat Ο•::LinearInterpolator{Float64,WeakBoundaries} Pβ‚›::Float64 Pβ‚œ::Float64 Tstrat::Float64 Ptropo::Float64 end function MoistAdiabat(Tβ‚›, Pβ‚›, cβ‚šβ‚™, cβ‚šα΅₯, ΞΌβ‚™, ΞΌα΅₯, L, psat::F, Pβ‚œ=PMIN; Tstrat=0.0, Ptropo=0.0, N::Int=1000) where {F<:Function} checkadiabat(Tβ‚›, Pβ‚›, Pβ‚œ, Tstrat, Ptropo) #interpolation knots and output vector ω₁, Ο‰β‚‚ = P2Ο‰(Pβ‚›, Pβ‚œ) Ο‰ = logrange(ω₁, Ο‰β‚‚, N) T = zeros(Float64, N) #pack the parameters param = (cβ‚šβ‚™, cβ‚šα΅₯, 𝐑/ΞΌβ‚™, 𝐑/ΞΌα΅₯, L, psat) #integrate with in-place dense output radau!(T, Ο‰, dTdΟ‰, Tβ‚›, Ο‰[1], Ο‰[end], param) #natural spline in log pressure coordinates itp = LinearInterpolator(Ο‰, T, WeakBoundaries()) MoistAdiabat(itp, Pβ‚›, Pβ‚œ, Tstrat, Ptropo) end #------------------------------------ #general operations with an adiabat #direct calculation temperature(Ξ“::DryAdiabat, P)::Float64 = Ξ“.Tβ‚›*(P/Ξ“.Pβ‚›)^(𝐑/(Ξ“.ΞΌ*Ξ“.cβ‚š)) #coordinate conversion and interpolation temperature(Ξ“::MoistAdiabat, P)::Float64 = Ξ“.Ο•(P2Ο‰(P)) #find the pressure corresponding to a temperature (ignores Tstrat, Ptropo) function pressure(Ξ“::AbstractAdiabat, T)::Float64 Tβ‚› = temperature(Ξ“, Ξ“.Pβ‚›) Tβ‚œ = temperature(Ξ“, Ξ“.Pβ‚œ) @assert Tβ‚› >= T >= Tβ‚œ "temperature $T K out of adiabat range [$(Tβ‚›),$(Tβ‚œ)] K" falseposition((P,p) -> temperature(Ξ“, P) - T, Ξ“.Pβ‚›, Ξ“.Pβ‚œ) end function (Ξ“::AbstractAdiabat)(P)::Float64 #check bounds if (P < Ξ“.Pβ‚œ) && !(P β‰ˆ Ξ“.Pβ‚œ) throw("Adiabat defined within $(Ξ“.Pβ‚œ) and $(Ξ“.Pβ‚›) Pa, $P Pa is too low.") end if (P > Ξ“.Pβ‚›) && !(P β‰ˆ Ξ“.Pβ‚›) throw("Adiabat defined within $(Ξ“.Pβ‚œ) and $(Ξ“.Pβ‚›) Pa, $P Pa is too high.") end #check if pressure is below tropopause if P < Ξ“.Ptropo return temperature(Ξ“, Ξ“.Ptropo) end #what the temperature would be without any floor T = temperature(Ξ“, P) #apply the floor, if desired if T < Ξ“.Tstrat return Ξ“.Tstrat end #ensure positive @assert T > 0 "non-positive temperature ($T K) encountered in adiabat at $P Pa" return T end """ tropopause(Ξ“::AbstractAdiabat) Compute the temperature [K] and pressure [Pa] at which the tropopause occurs in an adiabatic temperature profile. This function can be called on a `DryAdiabat` or a `MoistAdiabat` if it was constructed with nonzero `Tstrat` or `Ptropo`. Returns a tuple, `(T,P)`. """ function tropopause(Ξ“::AbstractAdiabat)::Tuple{Float64,Float64} if Ξ“.Ptropo != 0 return temperature(Ξ“, Ξ“.Ptropo), Ξ“.Ptropo end if Ξ“.Tstrat != 0 return Ξ“.Tstrat, pressure(Ξ“, Ξ“.Tstrat) end error("no stratosphere temperature or pressure has been defined (Tstrat/Ptropo)") end #------------------------------------------------------------------------------- export psatH2O, tsatCO2, ozonelayer """ psatH2O(T) Compute the saturation partial pressure of water vapor at a certain temperature using expressions from * [Murphy, D. M. & Koop, T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 131, 1539–1565 (2005).](https://rmets.onlinelibrary.wiley.com/doi/10.1256/qj.04.94) """ function psatH2O(T)::Float64 a = log(T) b = 1/T if T >= 273.15 #equation 10 c = 53.878 - 1331.22*b - 9.44523*a + 0.014025*T d = c*tanh(0.0415*(T - 218.8)) P = exp(54.842763 - 6763.22*b - 4.21*a + 3.67e-4*T + d) else #equation 7 P = exp(9.550426 - 5723.265*b + 3.53068*a - 0.00728332*T) end return P end """ tsatCO2(P) Compute the saturation pressure of carbon dioxide at a certain pressure using an expression from Fanale et al. (1982) """ function tsatCO2(P)::Float64 @assert P <= 518000.0 "Pressure cannot be above 518000 Pa for CO2 saturation temperature" -3167.8/(log(0.01*P) - 23.23) end """ ozonelayer(P, Cmax=8e-6) Approximate the molar concentration of ozone in Earth's ozone layer using an 8 ppm peak at 1600 Pa which falls to zero at 100 Pa and 25500 Pa. Peak concentration is defined by `Cmax`. """ function ozonelayer(P, Cmax::Float64=8e-6)::Float64 P = log(P) P₁ = 10.146433731146518 #ln(25500) Pβ‚‚ = 7.3777589082278725 #ln(1600) P₃ = 4.605170185988092 #ln(100) if Pβ‚‚ <= P <= P₁ return Cmax*(P₁ - P)/(P₁ - Pβ‚‚) elseif P₃ <= P <= Pβ‚‚ return Cmax*(P - P₃)/(Pβ‚‚ - P₃) end return 0 end #------------------------------------------------------------------------------- # function for uniform condensible concentration in stratosphere export adiabatconcentration function adiabatconcentration(Ξ“::AbstractAdiabat, psat::F)::Function where {F<:Function} #insist on an isothermal stratosphere @assert ((Ξ“.Ptropo != 0) | (Ξ“.Tstrat != 0)) "adiabat must have isothermal stratosphere" #compute tropopause pressure and temperature Tβ‚œ, Pβ‚œ = tropopause(Ξ“) #compute saturation partial pressure at tropopause Psatβ‚œ = psat(Tβ‚œ) #create concentration function let (Pβ‚œ, Psatβ‚œ) = (Pβ‚œ, Psatβ‚œ) function(T, P) if P >= Pβ‚œ Pβ‚› = psat(T) C = Pβ‚›/(Pβ‚› + P) else C = Psatβ‚œ/(Pβ‚œ + Psatβ‚œ) end return C end end end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
17150
#------------------------------------------------------------------------------- # reading and constructing CIA export readcia, CIATables function nextspace(s::String, i::Int, L::Int)::Int while (i <= L) && (s[i] != ' ') i += 1 end return i end function nextnonspace(s::String, i::Int, L::Int)::Int while (i <= L) && (s[i] == ' ') i += 1 end return i end """ readcia(filename) Read a collision induced absorption data file. These files are available from [HITRAN](https://hitran.org/cia/) and desribed by [this readme](https://hitran.org/data/CIA/CIA_Readme.pdf). A vector of dictionaries is returned. Each dictionary represents absorption coefficients for a single temperature over a range of wavenumbers. Each dictionary contains: | Key | Type | Description | | --- | :--- | :---------- | | `symbol` | `String` | chemical symbol | | `Ξ½min` | `Float64` | minimum wavenumber of absorption range [cm``^{-1}``] | | `Ξ½max` | `Float64` | maximum wavenumber of absorption range [cm``^{-1}``] | | `npts` | `Int64` | number of points | `T` | `Float64` | temperature for absorption data [K] | | `Ξ½` | `Vector{Float64}` | wavenumber samples [cm``^{-1}``] | `k` | `Vector{Float64}` | absorption coefficients [cm``^5``/molecule``^2``] | `maxcia` | `Float64` | maximum absorption coefficient [cm``^5``/molecule``^2``] | `res` | `Float64` | ? | | `comments` | `String` | miscelleneous comments | | `reference` | `Int64` | indices of data references | """ function readcia(filename::String) @assert filename[end-3:end] == ".cia" "expected file with .cia extension downloaded from https://hitran.org/cia/" lines = readlines(filename) #lengths of all lines L = length.(lines) @assert maximum(L) == 100 "unexpected maximum line length in cia file, expected 100 but got $(maximum(L))" #find locations of header lines hidx = findall(len->len == 100, L) #allocate a big array of dictionaries for each range of data cia = Vector{Dict{String,Any}}(undef, length(hidx)) #parse the tables push!(hidx, length(lines) + 1) for i = 1:length(hidx) - 1 #start the dictionary for this table cia[i] = Dict{String,Any}() #line indices for the ith table ia = hidx[i] ib = hidx[i+1] #parse the header values line = lines[ia] cia[i]["symbol"] = strip(line[1:20]) cia[i]["Ξ½min"] = parse(Float64, line[21:30]) cia[i]["Ξ½max"] = parse(Float64, line[31:40]) cia[i]["npts"] = parse(Int64, line[41:47]) cia[i]["T"] = parse(Float64, line[48:54]) cia[i]["maxcia"] = parse(Float64, line[55:64]) cia[i]["res"] = parse(Float64, line[65:70]) cia[i]["comments"] = strip(line[71:97]) cia[i]["reference"] = parse(Int64, line[98:100]) #read the data columns table = lines[ia+1:ib-1] L = length(table) Ξ½ = zeros(Float64, L) k = zeros(Float64, L) for j = 1:L #string representing row of table line = table[j] N = length(line) #index of first non-space character na = nextnonspace(line, 1, N) #next space nb = nextspace(line, na, N) #and the next non-space nc = nextnonspace(line, nb, N) #finally, the next space or line end nd = nextspace(line, nc, N) #parse the values into arrays Ξ½[j] = parse(Float64, line[na:nb-1]) k[j] = parse(Float64, line[nc:nd-1]) end #add to the dictionary cia[i]["Ξ½"] = Ξ½ cia[i]["k"] = k end return cia end """ Organizing type for collision induced absorption data, with data tables loaded into [interpolators](https://wordsworthgroup.github.io/BasicInterpolators.jl/stable/). | Field | Type | Description | | ----- | :--- | :---------- | | `name` | `String` | molecular symbol, i.e. `"CO2-H2"` | | `formulae` | `Tuple{String,String}` | split molecular formulae, i.e `("CO2", "H2")` | | `Ξ¦` | `Vector{BilinearInterpolator}` | interpolators for each grid of absorption coefficients | | `Ο•` | `Vector{LinearInterpolator}` | interpolators for isolated ranges of absorption coefficients | | `T` | `Vector{Float64}` | temperatures [K] for single ranges in `Ο•` | | `extrapolate` | `Bool` | whether to extrapolate using flat boundaries from the coefficient grids in `Ξ¦` | | `singles` | `Bool` | whether to use the single ranges in `Ο•` at all | The interpolator objects are described in the [`BasicInterpolators.jl`](https://wordsworthgroup.github.io/BasicInterpolators.jl/stable/) documentation. # Constructors CIATables(cia::Vector{Dict}; extrapolate=false, singles=false, verbose=true) Construct a `CIATables` object from a dictionary of coefficient data, which can be read from files using [`readcia`](@ref). Keywords `extrapolate` and `singles` are used to set those fields of the returned object. CIATables(filename; extrapolate=false, singles=false, verbose=true) Construct a `CIATables` object directly from file, using [`readcia`](@ref) along the way. # Examples A `CIATables` object is [function-like](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects). To retrieve the absorption coefficient at a given wavenumber [cm``^{-1}``] and temperature [K], use the object like a function. ```julia co2co2 = CIATables("data/cia/CO2-CO2_2018.cia"); #read data Ξ½ = 100; #wavenumber [cm^-1] T = 288; #temperature [K] k = co2co2(Ξ½, T) #absorption coefficient [cm^5/molecule^2] ``` The object interpolates and sums all data tables that contain `Ξ½` and `T`. If `extrapolate` is `true`, boundary values are included whenever the temperature is out of range. If `singles` is `true`, data ranges for a single temperature are included whenever they contain `Ξ½`. A `CIATables` can be passed to the [`cia`](@ref) function to compute an absorption cross-section with different temperatures and pressures. ```julia co2ch4 = CIATables("data/cia/CO2-CH4_2018.cia"); #read data Ξ½ = 250; #wavenumber [cm^-1] T = 310 #temperature [K] Pair = 1e5; #air pressure [Pa] Pco2 = 40; #CO2 partial pressure [Pa] Pch4 = 0.1; #CH4 partial pressure [Pa] Οƒ = cia(Ξ½, co2ch4, T, Pair, Pco2, Pch4) #absorption cross-section [cm^2/molecule] ``` """ struct CIATables #molecular symbol (CO2-CO2, H2-H2, etc.) name::String #a Set object of the two gases involved formulae::Tuple{String,String} #interpolation structs Ξ¦::Vector{BilinearInterpolator{NoBoundaries}} Ο•::Vector{LinearInterpolator{NoBoundaries}} #temperatures for singles in Ο• T::Vector{Float64} #whether to extrapolate (!) extrapolate::Bool #whether to use single-temperature CIATables ranges singles::Bool end function CIATables(cia::Vector{Dict{String,Any}}; extrapolate::Bool=false, singles::Bool=false, verbose::Bool=true) if verbose println("creating CIATables") end #pull out wavenumber ranges and temperatures for each grid Ξ½min = map(x->x["Ξ½min"], cia) Ξ½max = map(x->x["Ξ½max"], cia) T = map(x->x["T"], cia) #select unique wavenumber ranges and sort 'em Ξ½ranges = sort(unique(zip(Ξ½min, Ξ½max)), by=x->x[1]) n = length(Ξ½ranges) #now get the interpolation tables and temperature ranges for each Ξ½range Ξ¦ = Vector{BilinearInterpolator}() Ο• = Vector{LinearInterpolator}() Ο„ = Vector{Float64}() for i = 1:n Ξ½min[i], Ξ½max[i] = Ξ½ranges[i] #pull out the data for this wavenumber range idx = findall(x->(x["Ξ½min"] β‰ˆ Ξ½min[i]) & (x["Ξ½max"] β‰ˆ Ξ½max[i]), cia) T = map(x->x["T"], cia[idx]) Ξ½ = map(x->x["Ξ½"], cia[idx]) k = map(x->x["k"], cia[idx]) #if there is only one range, make a linear interpolation if length(T) == 1 Ξ½, k = Ξ½[1], k[1] k[k .<= 0.0] .= 0.0 push!(Ο•, LinearInterpolator(Ξ½, log.(k), NoBoundaries())) push!(Ο„, T[1]) if verbose println(" ? single temperature CIA range found at $(T[1]) K, $(minimum(Ξ½)) - $(maximum(Ξ½)) cm^-1") end else #assert that all Ξ½ vectors are identical, then take one of them for j = 2:length(Ξ½) @assert sum(Ξ½[1] .- Ξ½[j]) β‰ˆ 0.0 "wavenumber sample within a wavenumber range appear to be different" end Ξ½ = Ξ½[1] #ensure sorted by temperature idx = sortperm(T) T, k = T[idx], k[idx] #put the k values into a 2d array k = convert.(Float64, hcat(k...)) #replace bizarre negative values with tiny values k[k .<= 0.0] .= floatmin(Float64) #construct an interpolator WITH THE LOG OF K for accuracy push!(Ξ¦, BilinearInterpolator(Ξ½, T, log.(k), NoBoundaries())) end end #make sure symbols are all the same and get the individual gas strings symbols = unique(map(x->x["symbol"], cia)) @assert length(symbols) == 1 symbol = symbols[1] formulae = Tuple(map(String, split(symbol, '-'))) #construct cia = CIATables(symbol, formulae, Ξ¦, Ο•, Ο„, extrapolate, singles) #print some info if desired if verbose println(" formulae: $(cia.formulae[1]) & $(cia.formulae[2])") Ξ¦ = cia.Ξ¦ n = length(Ξ¦) Ο• = cia.Ο• m = length(Ο•) println(" $(n+m) absorption region(s)") for i = 1:n println(" $i) Ξ½ = $(Ξ¦[i].G.xa) - $(Ξ¦[i].G.xb) cm^-1") println(" T = $(Ξ¦[i].G.ya) - $(Ξ¦[i].G.yb) K") end for i = 1:m println(" $(i+n)) Ξ½ = $(Ο•[i].r.xa) - $(Ο•[i].r.xb) cm^-1") println(" T = $(cia.T[i]) (single)") end end return cia end function CIATables(fn::String; extrapolate::Bool=false, singles::Bool=false, verbose::Bool=true) CIATables(readcia(fn), extrapolate=extrapolate, singles=singles, verbose=verbose) end #------------------------------------------------------------------------------- # interpolating k, the raw CIA values function (cia::CIATables)(Ξ½, T)::Float64 k = 0.0 #look at each grid for Ξ¦ ∈ cia.Ξ¦ if Ξ¦.G.xa <= Ξ½ <= Ξ¦.G.xb #inside wavenumber range if Ξ¦.G.ya <= T <= Ξ¦.G.yb #interpolate inside the grid of data k += exp(Ξ¦(Ξ½, T)) elseif cia.extrapolate #otherwise extrapolate using flat boundary values, if desired k += exp(Ξ¦(Ξ½, T > Ξ¦.G.yb ? Ξ¦.G.yb : Ξ¦.G.ya)) end end end #optionally include the weird ranges at a single temperature if cia.singles for Ο• ∈ cia.Ο• #wavenumber range if Ο•.r.xa <= Ξ½ <= Ο•.r.xb k += exp(Ο•(Ξ½)) end end end return k end #------------------------------------------------------------------------------- # computing collision induced absorption cross-sections export cia, cia! #the Loschmidt number, but in molecules/cm^3 then squared [molecules^2/cm^6] const Locmsq = 7.21879268e38 """ cia(k, T, Pₐ, P₁, Pβ‚‚) Compute a collision induced absorption cross-section # Arguments * `k`: absorption coefficient [cm``^5``/molecule``^2``] * `T`: temperature [K] * `Pₐ`: total air pressure [Pa] * `P₁`: partial pressure of first gas [Pa] * `Pβ‚‚`: partial pressure of second gas [Pa] """ function cia(k, T, Pₐ, P₁, Pβ‚‚)::Float64 #number densities of gases, in amagats ρ₁ = (P₁/𝐀)*(𝐓₀/T) ρ₂ = (Pβ‚‚/𝐀)*(𝐓₀/T) #number density of air, in molecules/cm^3 ρₐ = 1e-6*Pₐ/(𝐀*T) #Οƒ in cm^2/molecule, converting k from cm^5/molecule^2 to cm^-1/amagat^2 (k*Locmsq)*ρ₁*ρ₂/ρₐ end """ cia(Ξ½, x::CIATables, T, Pₐ, P₁, Pβ‚‚) Compute a collision induced absorption cross-section after retrieving the total absorption coefficient from a [`CIATables`](@ref) object # Arguments * `Ξ½`: wavenumber [cm``^{-1}``] * `x`: [`CIATables`](@ref) object * `T`: temperature [K] * `Pₐ`: total air pressure [Pa] * `P₁`: partial pressure of first gas [Pa] * `Pβ‚‚`: partial pressure of second gas [Pa] """ function cia(Ξ½::Real, x::CIATables, T, Pₐ, P₁, Pβ‚‚)::Float64 #first retrieve the absorption coefficient from the interpolator k = x(Ξ½, T) #cm^5/molecule^2 #then compute the cross-section cia(k, T, Pₐ, P₁, Pβ‚‚) #cm^2/molecule end """ cia!(Οƒ::AbstractVector, Ξ½::AbstractVector, x::CIATables, T, Pₐ, P₁, Pβ‚‚) Compute a vector of collision induced absorption cross-sections in-place, retrieving the total absorption coefficient from a [`CIATables`](@ref) object. # Arguments * `Οƒ`: vector to store computed cross-sections * `Ξ½`: vector of wavenumbers [cm``^{-1}``] * `x`: [`CIATables`](@ref) object * `T`: temperature [K] * `Pₐ`: total air pressure [Pa] * `P₁`: partial pressure of first gas [Pa] * `Pβ‚‚`: partial pressure of second gas [Pa] """ function cia!(Οƒ::AbstractVector, Ξ½::AbstractVector, x::CIATables, T, Pₐ, P₁, Pβ‚‚) @assert length(Οƒ) == length(Ξ½) for i = 1:length(Οƒ) Οƒ[i] += cia(Ξ½[i], x, T, P₁, Pβ‚‚, Pₐ) end end """ cia(Ξ½::AbstractVector, x::CIATables, T, Pₐ, P₁, Pβ‚‚) Compute a vector of collision induced absorption cross-sections, retrieving the total absorption coefficient from a [`CIATables`](@ref) object. # Arguments * `Ξ½`: vector of wavenumbers [cm``^{-1}``] * `x`: [`CIATables`](@ref) object * `T`: temperature [K] * `Pₐ`: total air pressure [Pa] * `P₁`: partial pressure of first gas [Pa] * `Pβ‚‚`: partial pressure of second gas [Pa] """ function cia(Ξ½::AbstractVector, x::CIATables, T, Pₐ, P₁, Pβ‚‚)::Vector{Float64} Οƒ = zeros(Float64, length(Ξ½)) cia!(Οƒ, Ξ½, x, T, P₁, Pβ‚‚, Pₐ) return Οƒ end """ cia(Ξ½, x::CIATables, T, Pₐ, g₁::AbstractGas, gβ‚‚::AbstractGas) Compute a collision induced absorption cross-section, retrieving the total absorption coefficient from a [`CIATables`](@ref) object and computing partial pressures from gas objects. # Arguments * `Ξ½`: vector of wavenumbers [cm``^{-1}``] * `x`: [`CIATables`](@ref) object * `T`: temperature [K] * `Pₐ`: total air pressure [Pa] * `g₁`: gas object representing the first component of the CIA pair * `gβ‚‚`: gas object representing the second component of the CIA pair """ function cia(Ξ½::Real, x::CIATables, T, Pₐ, g₁::AbstractGas, gβ‚‚::AbstractGas)::Float64 P₁ = Pₐ*concentration(g₁, T, Pₐ) Pβ‚‚ = Pₐ*concentration(gβ‚‚, T, Pₐ) cia(Ξ½, x, T, Pₐ, P₁, Pβ‚‚) end #------------------------------------------------------------------------------- # computing cross-sections efficiently with known gas objects export CIA """ Container for a [`CIATables`](@ref) object and the two gasses representing the CIA components. Specializes with the type of each gas for fast retreival of absorption cross-sections from CIA data and partial pressures. | Field | Type | Description | | ----- | :--- | :---------- | | `name` | `String` | molecular symbol, i.e. `"CO2-H2"` | | `formulae` | `Tuple{String,String}` | split molecular formulae, i.e `("CO2", "H2")` | | `x` | `CIATables` | collision induced absorption tables | | `g₁` | `<:AbstractGas` | first component of CIA pair | | `g₁` | `<:AbstractGas` | second component of CIA pair | # Constructors CIA(x::CIATables, g₁::AbstractGas, gβ‚‚::AbstractGas) The name and formulae are taken from `x`. CIA(x::CIATables, gases::AbstractGas...) Using the formulae in `x`, the correct pair of gases is automatically selected from a VarArg collection of gases. # Example A `CIA` object is [function-like](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects). Use it like a function, passing it wavenumber, temperature, and pressure arguments to compute an absorption cross-section. Underneath, the [`CIATables`](@ref) object is interpolated and partial pressures are computed using the concentrations stored with the gases. ```julia #load gases Ξ½ = LinRange(1, 2500, 2500); Ξ© = AtmosphericDomain(); co2 = BulkGas("data/par/CO2.par", 0.96, Ξ½, Ξ©); ch4 = MinorGas("data/par/CH4.par", 1e-6, Ξ½, Ξ©); #create CIA object co2ch4 = CIA(CIATables("data/cia/CO2-CH4_2018.cia"), co2, ch4); #compute a cross-section Ξ½ = 667; T = 250; P = 1e5; Οƒ = co2ch4(Ξ½, T, P) ``` """ struct CIA{T,U} name::String formulae::Tuple{String,String} x::CIATables g₁::T gβ‚‚::U end function CIA(x::CIATables, g₁::AbstractGas, gβ‚‚::AbstractGas) CIA(x.name, x.formulae, x, g₁, gβ‚‚) end function findgas(f::String, cianame::String, gases::AbstractGas...) idx = findall(g -> g.formula == f, gases) @assert length(idx) > 0 "pairing failed for $cianame CIA, gas $f is missing" @assert length(idx) == 1 "pairing failed for $cianame CIA, duplicate $f gases found" return gases[idx[1]] end function CIA(x::CIATables, gases::AbstractGas...) #gas formulae f₁, fβ‚‚ = x.formulae #find matching gases g₁, gβ‚‚ = findgas(f₁, x.name, gases...), findgas(fβ‚‚, x.name, gases...) #make a CIA object CIA(x, g₁, gβ‚‚) end (X::CIA)(Ξ½, T, P)::Float64 = cia(Ξ½, X.x, T, P, X.g₁, X.gβ‚‚)
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
665
#speed of light [m/s] const 𝐜 = 299792458.0 #Planck constant [J*s] const 𝐑 = 6.62607015e-34 #Boltzmann constant [J/Kelvin] const 𝐀 = 1.38064852e-23 #Stefan-Boltzmann constant [W/m^2*Kelvin^4] const 𝛔 = 5.67037442e-8 #gas constant [J/K*mole], equivalent to kB*Av const 𝐑 = 8.31446262 #Pascals in 1 atm const 𝐀 = 101325.0 #avogadros number [molecules/mole] const 𝐍𝐚 = 6.02214076e23 #Dalton [kg] (mass of particle basically, also ≑ 1/𝐍𝐚/1000) const πƒπš = 1.66053907e-27 #gravitational constant [m^3/kg/s^2] const 𝐆 = 6.6743e-11 #reference temperature of HITRAN database [K] const 𝐓ᡣ = 296.0 #reference temperature [K] equivalent to 0 degrees Celsius const 𝐓₀ = 273.15
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
4194
""" This module implements an efficient approximation for the Faddeyeva function (sometimes called Faddeeva). Two methods are provided, one that is refined for evaluation of the real part only and one for the whole complex result. The approximation is due to Mofreh R. Zaghloul, as descriped in the paper: * Mofreh R. Zaghloul. 2017. Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44, 2, Article 22 (August 2017), 9 pages. https://doi.org/10.1145/3119904 """ module Faddeyeva export faddeyeva const ΞΈ = 1/βˆšΟ€ const Ξ±0 = 122.60793 const Ξ±1 = 214.38239 const Ξ±2 = 181.92853 const Ξ±3 = 93.15558 const Ξ±4 = 30.180142 const Ξ±5 = 5.9126262 const Ξ±6 = 1/βˆšΟ€ const Ξ²0 = 122.60793 const Ξ²1 = 352.73063 const Ξ²2 = 457.33448 const Ξ²3 = 348.70392 const Ξ²4 = 170.35400 const Ξ²5 = 53.992907 const Ξ²6 = 10.479857 const Ξ³0 = 36183.31 const Ξ³1 = 3321.99 const Ξ³2 = 1540.787 const Ξ³3 = 219.031 const Ξ³4 = 35.7668 const Ξ³5 = 1.320522 const Ξ³6 = 1/βˆšΟ€ const Ξ»0 = 32066.6 const Ξ»1 = 24322.84 const Ξ»2 = 9022.228 const Ξ»3 = 2186.181 const Ξ»4 = 364.2191 const Ξ»5 = 61.57037 const Ξ»6 = 1.841439 const s0 = 38000.0 const s1 = 256.0 const s2 = 62.0 const s3 = 30.0 const t3 = 1.0e-13 const s4 = 2.5 const t4 = 5.0e-9 const t5 = 0.072 #region 4: Laplace continued fractions, 4 convergents function regionIV(z::Complex, x::Real, y::Real)::Complex zΒ² = z^2 (ΞΈ*(-y + im*x))*(zΒ² - 2.5)/(zΒ²*(zΒ² - 3.0) + 0.75) end #region 5: Humlicek's w4 (Region IV), part a function regionVa(z::Complex, xΒ²::Real)::Complex zΒ² = z^2 r = Ξ³0 + zΒ²*(Ξ³1 + zΒ²*(Ξ³2 + zΒ²*(Ξ³3 + zΒ²*(Ξ³4 + zΒ²*(Ξ³5 + zΒ²*Ξ³6))))) t = Ξ»0 + zΒ²*(Ξ»1 + zΒ²*(Ξ»2 + zΒ²*(Ξ»3 + zΒ²*(Ξ»4 + zΒ²*(Ξ»5 + zΒ²*(Ξ»6 + zΒ²)))))) exp(-xΒ²) + (im*z*r/t) end #region 5: Humlicek's w4 (Region IV), part b function regionVb(z::Complex)::Complex zΒ² = z^2 r = Ξ³0 + zΒ²*(Ξ³1 + zΒ²*(Ξ³2 + zΒ²*(Ξ³3 + zΒ²*(Ξ³4 + zΒ²*(Ξ³5 + zΒ²*Ξ³6))))) t = Ξ»0 + zΒ²*(Ξ»1 + zΒ²*(Ξ»2 + zΒ²*(Ξ»3 + zΒ²*(Ξ»4 + zΒ²*(Ξ»5 + zΒ²*(Ξ»6 + zΒ²)))))) exp(-zΒ²) + (im*z*r/t) end #region 6: Hui's p-6 Approximation function regionVI(x::Real, y::Real)::Complex q = y - im*x r = Ξ±0 + q*(Ξ±1 + q*(Ξ±2 + q*(Ξ±3 + q*(Ξ±4 + q*(Ξ±5 + q*Ξ±6))))) t = Ξ²0 + q*(Ξ²1 + q*(Ξ²2 + q*(Ξ²3 + q*(Ξ²4 + q*(Ξ²5 + q*(Ξ²6 + q)))))) r/t end function faddeyeva(z::Complex)::Complex x = real(z) y = imag(z) xΒ² = x*x yΒ² = y*y s = xΒ² + yΒ² #region 1: Laplace continued fractions, 1 convergent if s >= s0 return (y + im*x)*ΞΈ/s end #region 2: Laplace continued fractions, 2 convergents if s >= s1 a = y*(0.5 + s) b = x*(s - 0.5) d = s^2 + (yΒ² - xΒ²) + 0.25 return (a + im*b)*(ΞΈ/d) end #region 3: Laplace continued fractions, 3 convergents if s >= s2 q = yΒ² - xΒ² + 1.5 r = 4.0*xΒ²*yΒ² a = y*((q - 0.5)*q + r + xΒ²) b = x*((q - 0.5)*q + r - yΒ²) d = s*(q*q + r) return ΞΈ*(a + im*b)/d end #region 4: Laplace continued fractions, 4 convergents if s >= s3 && yΒ² >= t3 return regionIV(z, x, y) end #region 5: Humlicek's w4 (Region IV) if s > s4 && yΒ² < t4 return regionVa(z, xΒ²) elseif s > s4 && yΒ² < t5 return regionVb(z) end #region 6: Hui's p-6 Approximation return regionVI(x, y) end #real arguments representint z = x + im*y, returning only the real part function faddeyeva(x::Real, y::Real)::Float64 xΒ² = x*x yΒ² = y*y s = xΒ² + yΒ² #region 1: Laplace continued fractions, 1 convergent if s >= s0 return y*ΞΈ/s end #region 2: Laplace continued fractions, 2 convergents if s >= s1 return y*(0.5 + s)*(ΞΈ/((s^2 + (yΒ² - xΒ²)) + 0.25)) end #region 3: Laplace continued fractions, 3 convergents if s >= s2 q = yΒ² - xΒ² + 1.5 r = 4.0*xΒ²*yΒ² return ΞΈ*(y*((q - 0.5)*q + r + xΒ²))/(s*(q*q + r)) end if s >= s3 && yΒ² >= t3 return real(regionIV(x + im*y, x, y)) end if s > s4 && yΒ² < t4 return real(regionVa(x + im*y, xΒ²)) elseif s > s4 && yΒ² < t5 return real(regionVb(x + im*y)) end return real(regionVI(x, y)) end end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
12922
#------------------------------------------------------------------------------- # defining the radiative domain and associated functions export AtmosphericDomain """ Structure defining the temperature and pressure ranges over which absorption cross-sections are generated when constructing gas objects. `AtmosphericDomain` objects store the temperature and pressure coordinates of cross-section interpolation grids. More points lead to higher accuracy interpolation. Generally, about 12 temperature points and 24 pressure points results in maximum error of ~1 % and much smaller average error. | Field | Type | Description | | ----- | :--- | :---------- | | `T` | `Vector{Float64}` | temperature coordinates of grid [K] | | `Tmin` | `Float64` | lowest temperature value | | `Tmax` | `Float64` | highest temperature value | | `nT` | `Int64` | number of temperature coordinates | | `P` | `Vector{Float64}` | pressure coordinates of grid [Pa] | | `Pmin` | `Float64` | lowest pressure value | | `Pmax` | `Float64` | highest pressure value | | `nP` | `Int64` | number of pressure coordinates | # Constructors AtmosphericDomain(Trange, nT, Prange, nP) Creates a domain with the given temperature/pressure ranges and numbers of points. `Trange` and `Prange` should be tuples of two values. `nT` and `nP` indicate the number of points to use. AtmosphericDomain() For convenience, creates a domain with 12 temperature points in `[25, 550]` K and 24 pressure points in `[1,1e6]` Pa. """ struct AtmosphericDomain #temperature samples for interpolator [K] T::Vector{Float64} Tmin::Float64 Tmax::Float64 nT::Int64 #pressure samples for interpolator [atm] P::Vector{Float64} Pmin::Float64 Pmax::Float64 nP::Int64 end function AtmosphericDomain(Trange::Tuple{Real,Real}, nT::Int, Prange::Tuple{Real,Real}, nP::Int) #check for negatives @assert all(Trange .> 0) "temperature range must be positive" @assert all(Prange .> 0) "pressure range must be positive" #check the Qref/Q range @assert all(Trange .>= TMIN) "minimum temperature with Qref/Q accuracy is $TMIN K" @assert all(Trange .<= TMAX) "maximum temperature with Qref/Q accuracy is $TMAX K" #order @assert Trange[1] < Trange[2] "Trange[1] ($(Trange[1])) can't be greater than Trange[2] ($(Trange[2]))" @assert Prange[1] < Prange[2] "Prange[1] ($(Prange[1])) can't be greater than Prange[2] ($(Prange[2]))" #generate grid points T = chebygrid(Trange[1], Trange[2], nT) P = exp.(chebygrid(log(Prange[1]), log(Prange[2]), nP)) #assemble! AtmosphericDomain(T, Trange[1], Trange[2], nT, P, Prange[1], Prange[2], nP) end function AtmosphericDomain() Trange = (25, 550) Prange = (1, 1e6) nT = 12 nP = 24 AtmosphericDomain(Trange, nT, Prange, nP) end #------------------------------------------------------------------------------- #wrapper type for the BichebyshevInterpolators used for cross-sections export OpacityTable """ An `OpacityTable` is a simple object wrapping a [BichebyshevInterpolator](https://wordsworthgroup.github.io/BasicInterpolators.jl/stable/chebyshev/). Inside, the interpolator stores a grid of `log` cross-section values along `log` pressure coordinates and temperature coordinates. An `OpacityTable` behaves like a function, recieving a temperature and pressure. When called, it retrieves a cross-section from the interpolator, undoes the `log`, and returns it. When constructing a gas object, each wavenumber is allocated a unique `OpacityTable` for fast and accurate cross-section evaluation at any temperature and pressure inside the `AtmosphericDomain`. Generally, `OpacityTable` objects should be used indirectly through gas objects. """ struct OpacityTable Ξ¦::BichebyshevInterpolator empty::Bool end function OpacityTable(T::AbstractVector{<:Real}, P::AbstractVector{<:Real}, Οƒ::AbstractArray{<:Real,2}) if all(Οƒ .== 0) #avoid evaluating log(0) and passing -Infs to the interp constructor Ξ¦ = BichebyshevInterpolator(T, log.(P), fill(0.0, size(Οƒ))) empty = true else Ξ¦ = BichebyshevInterpolator(T, log.(P), log.(Οƒ)) empty = false end OpacityTable(Ξ¦, empty) end #gets cross sections out of interpolators, un-logged, cm^2/molecule #also explicitly handles empty tables function (Ξ ::OpacityTable)(T, P)::Float64 Ξ .empty && return 0.0 lnP = log(P) lnΟƒ = Ξ .Ξ¦(T, lnP) return exp(lnΟƒ) end #------------------------------------------------------------------------------- #function for building gas opacity tables function bake(sl::SpectralLines, Cfun::F, shape!::G, Δνcut::Real, Ξ½::Vector{Float64}, Ξ©::AtmosphericDomain )::Vector{OpacityTable} where {F, G<:Function} #check wavenumbers for problems @assert all(diff(Ξ½) .> 0) "wavenumbers must be unique and in ascending order" @assert all(Ξ½ .>= 0) "wavenumbers must be positive" #number of wavenumbers nΞ½ = length(Ξ½) #create a single block of cross-sections Οƒ = zeros(nΞ½, Ξ©.nT, Ξ©.nP) #fill it by evaluating in batches of wavenumbers (slow part) @threads for i = 1:Ξ©.nT # @distributed?? for j = 1:Ξ©.nP #get a view into the big Οƒ array Οƒα΅’β±Ό = view(Οƒ,:,i,j) #get temperature, pressure, concentration T = Ξ©.T[i] P = Ξ©.P[j] C = Cfun(T, P) #make sure concentration isn't wacky @assert 0 <= C <= 1 "gas molar concentrations must be in [0,1], not $C (encountered @ $T K, $P Pa)" #evaluate line shapes (slow part) shape!(Οƒα΅’β±Ό, Ξ½, sl, T, P, C*P, Δνcut) end end #check for weirdness z = zeros(Bool, nΞ½) for i = 1:nΞ½ Οƒα΅₯ = view(Οƒ,i,:,:) if (minimum(Οƒα΅₯) == 0) & (maximum(Οƒα΅₯) > 0) z[i] = true end end if any(z) @info "Zero cross-section values are mixed with non-zero values for the following wavenumbers for $(sl.name):\n\n$(Ξ½[z])\n\n Likely, absorption is extremely weak in these regions, causing underflow. Absorption is being set to zero for all temperatures and pressures at those wavenumbers to avoid non-smooth and inaccurate interpolation tables." Οƒ[z,:,:] .= 0.0 end #split the block and create interpolators for each Ξ½ Ξ  = Vector{OpacityTable}(undef, nΞ½) @threads for i = 1:nΞ½ Ξ [i] = OpacityTable(Ξ©.T, Ξ©.P, Οƒ[i,:,:]) end #fresh out the oven return Ξ  end #------------------------------------------------------------------------------- #for testing opacity table errors export opacityerror function opacityerror(Ξ ::OpacityTable, Ξ©::AtmosphericDomain, sl::SpectralLines, Ξ½::Real, C::F, #C(T,P) shape::G=voigt, N::Int=50) where {F,G} #create T and P grids from the domain T = LinRange(Ξ©.Tmin, Ξ©.Tmax, N) P = 10 .^ LinRange(log10(Ξ©.Pmin), log10(Ξ©.Pmax), N) #compute exact and approximate cross-sections Οƒop = zeros(N,N) Οƒex = zeros(N,N) @threads for i = 1:N for j = 1:N Οƒop[i,j] = Ξ (T[i], P[j]) Οƒex[i,j] = shape(Ξ½, sl, T[i], P[j], C(T[i],P[j])*P[j]) end end #compute error and relative error aerr = Οƒop .- Οƒex rerr = aerr./Οƒex return T, P, aerr, rerr end #------------------------------------------------------------------------------- #defining absorbers and access to cross-sections abstract type AbstractGas end export AbstractGas export WellMixedGas, VariableGas export concentration, reconcentrate #abundance weighted average molar mass meanmolarmass(sl::SpectralLines) = sum(sl.A .* sl.ΞΌ)/sum(sl.A) #------------------------------- """ Gas type for well mixed atmospheric constituents. Must be constructed from a `.par` file or a [`SpectralLines`](@ref) object. # Constructors WellMixedGas(sl::SpectralLines, C, Ξ½, Ξ©, shape!=voigt!) * `sl`: a [`SpectralLines`](@ref) object * `C`: molar concentration of the constituent [mole/mole] * `Ξ½`: vector of wavenumber samples [cm``^{-1}``] * `Ξ©`: [`AtmosphericDomain`](@ref) * `shape!`: line shape to use, must be the in-place version ([`voigt!`](@ref), [`lorentz!`](@ref), etc.) * `Δνcut`: profile truncation distance [cm``^{-1}``] WellMixedGas(par::String, C, Ξ½, Ξ©, shape!=voigt!, Δνcut=25; kwargs...) Same arguments as the first constructor, but reads a `par` file directly into the gas object. Keyword arguments are passed through to [`readpar`](@ref). """ struct WellMixedGas <: AbstractGas name::String formula::String ΞΌ::Float64 #mean molar mass [kg/mole] C::Float64 #constant fraction [mole/mole] of dry gas constituents Ξ½::Vector{Float64} Ξ©::AtmosphericDomain Ξ ::Vector{OpacityTable} #cross-section interpolators end function WellMixedGas(sl::SpectralLines, C::Real, Ξ½::AbstractVector{<:Real}, Ξ©::AtmosphericDomain, shape!::Function=voigt!, Δνcut::Real=25) ΞΌ = meanmolarmass(sl) Ξ½ = collect(Float64, Ξ½) Δνcut = convert(Float64, Δνcut) Ξ  = bake(sl, (T,P)->C, shape!, Δνcut, Ξ½, Ξ©) WellMixedGas(sl.name, sl.formula, ΞΌ, C, Ξ½, Ξ©, Ξ ) end function WellMixedGas(par, C, Ξ½, Ξ©, shape!::Function=voigt!, Δνcut=25; kwargs...) sl = SpectralLines(par; kwargs...) WellMixedGas(sl, C, Ξ½, Ξ©, shape!, Δνcut) end #------------------------------- """ Gas type for variable concentration atmospheric constituents. Must be constructed from a `.par` file or a [`SpectralLines`](@ref) object. # Constructors VariableGas(sl::SpectralLines, C, Ξ½, Ξ©, shape!=voigt!) * `sl`: a [`SpectralLines`](@ref) object * `C`: molar concentration of the constituent [mole/mole] as a function of temperature and pressure `C(T,P)` * `Ξ½`: vector of wavenumber samples [cm``^{-1}``] * `Ξ©`: [`AtmosphericDomain`](@ref) * `shape!`: line shape to use, must be the in-place version ([`voigt!`](@ref), [`lorentz!`](@ref), etc.) * `Δνcut`: profile truncation distance [cm``^{-1}``] VariableGas(par::String, C, Ξ½, Ξ©, shape!=voigt!, Δνcut=25; kwargs...) Same arguments as the first constructor, but reads a `par` file directly into the gas object. Keyword arguments are passed through to [`readpar`](@ref). """ struct VariableGas{F} <: AbstractGas name::String formula::String ΞΌ::Float64 #mean molar mass C::F #concentration [mole/mole] from temperature and pressure, C(T,P) Ξ½::Vector{Float64} Ξ©::AtmosphericDomain Ξ ::Vector{OpacityTable} #cross-section interpolators end function VariableGas(sl::SpectralLines, C::Q, Ξ½::AbstractVector{<:Real}, Ξ©::AtmosphericDomain, shape!::Function=voigt!, Δνcut::Real=25) where {Q} ΞΌ = meanmolarmass(sl) Ξ½ = collect(Float64, Ξ½) Ξ  = bake(sl, C, shape!, Δνcut, Ξ½, Ξ©) VariableGas(sl.name, sl.formula, ΞΌ, C, Ξ½, Ξ©, Ξ ) end function VariableGas(par, C, Ξ½, Ξ©, shape!::Function=voigt!, Δνcut=25; kwargs...) sl = SpectralLines(par; kwargs...) VariableGas(sl, C, Ξ½, Ξ©, shape!, Δνcut) end #------------------------------- """ concentration(g::WellMixedGas) Furnishes the molar concentration [mole/mole] of a [`WellMixedGas`](@ref) object. Identical to `g.C`. """ concentration(g::WellMixedGas) = g.C concentration(g::WellMixedGas, X...)::Float64 = g.C """ concentration(g::VariableGas, T, P) Furnishes the molar concentration [mole/mole] of a [`VariableGas`](@ref) object at a particular temperature and pressure. Identical to `g.C(T,P)`. """ concentration(g::VariableGas, T, P)::Float64 = g.C(T,P) """ reconcentrate(g::WellMixedGas, C) Create a copy of a [`WellMixedGas`](@ref) object with a different molar concentration, `C`, in mole/mole. !!! warning Only reconcentrate gas objects with very low concentrations. The self-broadening component of the line shape is not recomputed when using the `reconcentrate` function. This component is very small when partial pressure is very low, but may be appreciable for bulk components. """ function reconcentrate(g::WellMixedGas, C::Real)::WellMixedGas @assert 0 <= C <= 1 "gas molar concentrations must be in [0,1], not $C" Ξ© = deepcopy(g.Ξ©) Ξ  = deepcopy(g.Ξ ) WellMixedGas(g.name[:], g.formula[:], g.ΞΌ, C, g.Ξ½, Ξ©, Ξ ) end #------------------------------------------------------------------------------- #single cross-section (g::AbstractGas)(i::Int, T, P)::Float64 = concentration(g, T, P)*g.Ξ [i](T,P) #for full vectors of cross-sections with whatever gas function (g::AbstractGas)(T::Real, P::Real)::Vector{Float64} [g(i, T, P) for i ∈ eachindex(g.Ξ½)] end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
3638
export substellarlatitude, hourangle export diurnalfluxfactor, diurnalfluxfactors export annualfluxfactor, annualfluxfactors """ substellarlatitude(f, Ξ³) Compute the latitude of the substellar point for a given solar longitude `f` (true anomaly) and obliquity `Ξ³` """ substellarlatitude(f, Ξ³) = asin(cos(f)*sin(Ξ³)) """ hourangle(ΞΈ, ΞΈβ‚›) Compute the [hour angle](https://en.wikipedia.org/wiki/Hour_angle) """ function hourangle(ΞΈ, ΞΈβ‚›) x = -sin(ΞΈ)*sin(ΞΈβ‚›)/(cos(ΞΈ)*cos(ΞΈβ‚›)) if x <= -1 return Ο€ elseif x >= 1 return 0.0 end return acos(x) end #ΞΈ - latitude #ΞΈβ‚› - substellar latitude """ diurnalfluxfactor(ΞΈ, ΞΈβ‚›) Compute the diurnally averaged fraction of incoming stellar flux received by a point at latitude `ΞΈ` when the substellar latitude is `ΞΈβ‚›` """ function diurnalfluxfactor(ΞΈ, ΞΈβ‚›) h = hourangle(ΞΈ, ΞΈβ‚›) return (sin(h)*cos(ΞΈ)*cos(ΞΈβ‚›) + h*sin(ΞΈ)*sin(ΞΈβ‚›))/Ο€ end #ΞΈ - latitude #f - solar longitude #Ξ³ - obliquity """ diurnalfluxfactor(ΞΈ, f, Ξ³) Compute the diurnally averaged fraction of incoming stellar flux received by a point at latitude `ΞΈ` when the planet is at solar longitude (true anomaly) `f`, with obliquity `Ξ³` """ diurnalfluxfactor(ΞΈ, f, Ξ³) = diurnalfluxfactor(ΞΈ, substellarlatitude(f, Ξ³)) """ diurnalfluxfactor(t, a, m, e, ΞΈ, Ξ³, p) Compute the diurnally averaged fraction of incoming stellar flux received by a point at latitude `ΞΈ` for a general elliptical orbit """ function diurnalfluxfactor(t, a, m, e, ΞΈ, Ξ³, p) f = trueanomaly(t, a, m, e) r = orbitaldistance(a, f, e) return diurnalfluxfactor(ΞΈ, f - p, Ξ³)*(a/r)^2 end """ diurnalfluxfactors(Ξ³; nf=251, nΞΈ=181) Compute a grid of diurnally averaged fractions of incoming stellar flux received by a point at latitude `ΞΈ` for a planet with obliquity `Ξ³` in a circular orbit. Returns a solar longitude vector (column values), latitude vector (row values), and the grid of flux factors. `nf` indicates the number of points around the orbit and `nΞΈ` indicates the number of latitudes. """ function diurnalfluxfactors(Ξ³; nf::Int=251, nΞΈ::Int=181) ΞΈ = LinRange(-Ο€/2, Ο€/2, nΞΈ) f = LinRange(0, 2Ο€, nf) F, Θ = meshgrid(f, ΞΈ) return (f, ΞΈ, diurnalfluxfactor.(Θ, F, Ξ³)) end """ diurnalfluxfactors(a, m, e, Ξ³, p; nt=251, nΞΈ=181) Compute a grid of diurnally averaged fractions of incoming stellar flux for a planet in a general elliptical orbit. Returns a time vector (column values) over one orbital period, latitude vector (row values), and the grid of flux factors. `nt` indicates the number of time samples around the orbit and `nΞΈ` indicates the number of latitudes. """ function diurnalfluxfactors(a, m, e, Ξ³, p; nt::Int=251, nΞΈ::Int=181) t = LinRange(0, orbitalperiod(a, m), nt) ΞΈ = LinRange(-Ο€/2, Ο€/2, nΞΈ) T, Θ = meshgrid(t, ΞΈ) return (t, ΞΈ, diurnalfluxfactor.(T, a, m, e, Θ, Ξ³, p)) end """ annualfluxfactor(e, ΞΈ, Ξ³, p) Compute the annually averaged flux factor for a latitude `ΞΈ` on a planet in a general elliptical orbit. """ function annualfluxfactor(e, ΞΈ, Ξ³, p; tol::Float64=1e-4) T = orbitalperiod(1.0, 1.0) f(t) = diurnalfluxfactor(t, 1.0, 1.0, e, ΞΈ, Ξ³, p) F, _ = hquadrature(f, 0, T, reltol=tol, abstol=tol) return F/T end """ annualfluxfactors(e, Ξ³, p; nΞΈ=181) Compute a range of annually averaged flux factors for a planet in a general elliptical orbit. Returns a latitude vector (row values) and a vector of flux factors. `nΞΈ` indicates the number of latitude samples. """ function annualfluxfactors(e, Ξ³, p; nΞΈ::Int=181) ΞΈ = LinRange(-Ο€/2, Ο€/2, nΞΈ) F = annualfluxfactor.(e, ΞΈ, Ξ³, p) return ΞΈ, F end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
17641
#precompute a few numbers const sqΟ€ = βˆšΟ€ const osqΟ€ln2 = 1/sqrt(Ο€/log(2.0)) const sqln2 = sqrt(log(2.0)) const c2 = 100.0*𝐑*𝐜/𝐀 #------------------------------------------------------------------------------- # wavenumber truncation of line shapes cutline(Ξ½, Ξ½l, Δνcut)::Bool = abs(Ξ½ - Ξ½l) > Δνcut ? true : false function includedlines(Ξ½::Real, Ξ½l::AbstractVector{<:Real}, Δνcut::Real)::Vector{Int64} findall(x -> !cutline(Ξ½, x, Δνcut), Ξ½l) end function includedlines(Ξ½::AbstractVector{<:Real}, Ξ½l::AbstractVector{<:Real}, Δνcut::Real)::Vector{Int64} findall((Ξ½l .> minimum(Ξ½) - Δνcut) .& (Ξ½l .< maximum(Ξ½) + Δνcut)) end #------------------------------------------------------------------------------- # Chebyshev polynomial fit for Qref/Q function chebyQrefQ(T::Real, n::Int64, a::Vector{Float64})::Float64 #check the temperature range @assert TMIN <= T <= TMAX "temperature outside of Qref/Q interpolation range" #map T to [-1,1] Ο„ = 2*(T - TMIN)/(TMAX - TMIN) - 1 #values of first two chebys at Ο„ c₁ = 1.0 cβ‚‚ = Ο„ #value of expansion after first two terms y = a[1] + a[2]*cβ‚‚ for k = 3:n #next cheby value c₃ = 2*Ο„*cβ‚‚ - c₁ #contribute to expansion y += a[k]*c₃ #swap values c₁ = cβ‚‚ cβ‚‚ = c₃ end #return the inverse, Qref/Q return 1.0/y end #------------------------------------------------------------------------------- # special strategy for line profiles from sorted vectors of wavenumbers function surf!(Οƒ::AbstractVector, f::F, Ξ½::AbstractVector, Ξ½l::AbstractVector, Δνcut::Real, A::Vararg{Vector{Float64},N}) where {F<:Function, N} @assert all(diff(Ξ½) .> 0) "wavenumber vectors must be sorted in ascending order" L = length(Ξ½l) jstart = 1 #tracking index to avoid searching from beginning every time for i = eachindex(Ξ½) #find the first line that isn't cut off j = jstart while (j <= L) && cutline(Ξ½[i], Ξ½l[j], Δνcut) j += 1 end #only proceed if there is a line to include if j <= L #update the starting index for the search jstart = j #evaluate line profiles until one gets cut off, then move on while (j <= L) && !cutline(Ξ½[i], Ξ½l[j], Δνcut) #let block is required for good performance args = let k = j ntuple(n->A[n][k], N) end Οƒ[i] += f(Ξ½[i], Ξ½l[j], args...) j += 1 end end end end #------------------------------------------------------------------------------- # temperature scaling of line intensity export scaleintensity """ scaleintensity(S, Ξ½l, Epp, M, I, T) Compute the [temperature scaling for line intensity](https://hitran.org/docs/definitions-and-units/#mjx-eqn-eqn-intensity-temperature-dependence). # Arguments * `S`: spectal line intensity at 296 K [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] * `Ξ½l`: wavenumber of line [cm``^{-1}``] * `Epp`: lower-state energy of transition [cm``^{-1}``] * `M`: [HITRAN molecular identification number](https://hitran.org/docs/molec-meta) * `I`: [HITRAN local isotopologue number](https://hitran.org/docs/iso-meta/) * `T`: temperature [K] """ function scaleintensity(S, Ξ½l, Epp, M::Int16, I::Int16, T)::Float64 #arguments to exp a = -c2*Epp b = -c2*Ξ½l #numerator and denominator n = exp(a/T)*(1 - exp(b/T)) d = exp(a/𝐓ᡣ)*(1 - exp(b/𝐓ᡣ)) #check if there is an approximating function if MOLPARAM[M][10][I] QrefQ = chebyQrefQ(T, MOLPARAM[M][11][I], MOLPARAM[M][13][I]) else throw("no interpolating polynomial available to compute Qref/Q for isotopologue $I of $(MOLPARAM[M][3]) ($(MOLPARAM[M][2]))") #QrefQ = (𝐓ᡣ/T)^1.5 end #shifted line intensity S*QrefQ*(n/d) end function scaleintensity(sl::SpectralLines, i::Vector{Int64}, T)::Vector{Float64} S = view(sl.S, i) Ξ½ = view(sl.Ξ½, i) Epp = view(sl.Epp, i) I = view(sl.I, i) scaleintensity.(S, Ξ½, Epp, sl.M, I, T) end #------------------------------------------------------------------------------- # doppler broadening export Ξ±doppler, fdoppler, doppler, doppler! """ Ξ±doppler(Ξ½l, ΞΌ, T) Compute doppler (gaussian) broadening coefficient from line wavenumber `Ξ½l` [cm``^{-1}``], gas molar mass `ΞΌ` [kg/mole], and temperature `T` [K]. """ Ξ±doppler(Ξ½l, ΞΌ, T)::Float64 = (Ξ½l/𝐜)*sqrt(2.0*𝐑*T/ΞΌ) function Ξ±doppler(sl::SpectralLines, i::Vector{Int64}, T)::Vector{Float64} Ξ±doppler.(view(sl.Ξ½,i), view(sl.ΞΌ,i), T) end """ fdoppler(Ξ½, Ξ½l, Ξ±) Evaluate doppler (gaussian) profile # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `Ξ±`: doppler (gaussian) broadening coefficient """ fdoppler(Ξ½, Ξ½l, Ξ±)::Float64 = exp(-(Ξ½ - Ξ½l)^2/Ξ±^2)/(Ξ±*sqΟ€) """ doppler(Ξ½, Ξ½l, S, Ξ±) Evaluate doppler (gaussian) absoption cross-section [cm``^2``/molecule] # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `S`: line absoption intensity [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] * `Ξ±`: doppler (gaussian) broadening coefficient """ doppler(Ξ½, Ξ½l, S, Ξ±)::Float64 = S*fdoppler(Ξ½, Ξ½l, Ξ±) """ doppler(Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Evaluate a single doppler (gaussian) absoption cross-section [cm``^2``/molecule]. Temperature scaling and doppler profiles are evaluated along the way. # Arguments * `Ξ½`: wavenumber indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function doppler(Ξ½, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Float64 i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) sum(doppler.(Ξ½, view(sl.Ξ½,i), S, Ξ±)) end """ doppler!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Identical to [`doppler`](@ref), but fills the vector of cross-sections (`Οƒ`) in-place. """ function doppler!(Οƒ::AbstractVector, Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0) i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) surf!(Οƒ, doppler, Ξ½, view(sl.Ξ½,i), Δνcut, S, Ξ±) end """ doppler(Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Compute a vector of doppler (gaussian) absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and doppler profiles are evaluated along the way. # Arguments * `Ξ½`: vector of wavenumbers indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function doppler(Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Vector{Float64} Οƒ = zeros(Float64, length(Ξ½)) doppler!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut) return Οƒ end #------------------------------------------------------------------------------- # pressure broadening export Ξ³lorentz, florentz, lorentz, lorentz! """ Ξ³lorentz(Ξ³a, Ξ³s, na, T, P, Pβ‚š) Compute lorentzian broadening coefficient # Arguments * `Ξ³a`: air-broadened half width at half maximum (HWHM) [cm``^{-1}``/atm] at 296 K and 1 atm * `Ξ³s`: self-broadened half width at half maximum (HWHM) [cm``^{-1}``/atm] at 296 K and 1 atm * `na`: coefficient of temperature dependence of air-broadened half width * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] """ function Ξ³lorentz(Ξ³a, Ξ³s, na, T, P, Pβ‚š)::Float64 ((𝐓ᡣ/T)^na)*(Ξ³a*(P - Pβ‚š) + Ξ³s*Pβ‚š)/𝐀 end function Ξ³lorentz(sl::SpectralLines, i::Vector{Int64}, T, P, Pβ‚š)::Vector{Float64} Ξ³lorentz.(view(sl.Ξ³a,i), view(sl.Ξ³s,i), view(sl.na,i), T, P, Pβ‚š) end """ florentz(Ξ½, Ξ½l, Ξ³) Evaluate lorentz profile # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `Ξ³`: lorentzian broadening coefficient """ florentz(Ξ½, Ξ½l, Ξ³)::Float64 = Ξ³/(Ο€*((Ξ½ - Ξ½l)*(Ξ½ - Ξ½l) + Ξ³*Ξ³)) """ lorentz(Ξ½, Ξ½l, S, Ξ³) Evaluate lorentzian absoption cross-section [cm``^2``/molecule] # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `S`: line absoption intensity [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] * `Ξ³`: lorentzian broadening coefficient """ lorentz(Ξ½, Ξ½l, S, Ξ³)::Float64 = S*florentz(Ξ½, Ξ½l, Ξ³) """ lorentz(Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Compute a single lorentzian absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and lorentzian profiles are evaluated along the way. # Arguments * `Ξ½`: single wavenumber indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function lorentz(Ξ½, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Float64 i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) sum(lorentz.(Ξ½, view(sl.Ξ½,i), S, Ξ³)) end """ lorentz!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Identical to [`lorentz`](@ref), fills the vector of cross-sections (`Οƒ`) in-place. """ function lorentz!(Οƒ::AbstractVector, Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0) i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) surf!(Οƒ, lorentz, Ξ½, view(sl.Ξ½,i), Δνcut, S, Ξ³) end """ lorentz(Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Compute a vector of lorentzian absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and lorentzian profiles are evaluated along the way. # Arguments * `Ξ½`: vector of wavenumbers indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function lorentz(Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Vector{Float64} Οƒ = zeros(Float64, length(Ξ½)) lorentz!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut) return Οƒ end #------------------------------------------------------------------------------- # voigt profile export fvoigt, voigt, voigt! """ fvoigt(Ξ½, Ξ½l, Ξ±, Ξ³) Evaluate Voigt profile # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `Ξ±`: doppler (gaussian) broadening coefficient * `Ξ³`: lorentzian broadening coefficient """ function fvoigt(Ξ½, Ξ½l, Ξ±, Ξ³)::Float64 #inverse of the doppler parameter Ξ² = 1/Ξ± #factor for real and complex parts of Faddeeva args, avoiding Ξ² division d = sqln2*Ξ² #arguments to Faddeeva function x = (Ξ½ - Ξ½l)*d y = Ξ³*d #evaluate real part of Faddeeva function f = faddeyeva(x,y) #final calculation, avoiding Ξ± division by using Ξ² again osqΟ€ln2*Ξ²*f end """ voigt(Ξ½, Ξ½l, S, Ξ±, Ξ³) Evaluate Voigt absoption cross-section [cm``^2``/molecule] # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `S`: line absoption intensity [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] * `Ξ±`: doppler (gaussian) broadening coefficient * `Ξ³`: lorentzian broadening coefficient """ voigt(Ξ½, Ξ½l, S, Ξ±, Ξ³)::Float64 = S*fvoigt(Ξ½, Ξ½l, Ξ±, Ξ³) """ voigt(Ξ½, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25) Evaluate Voigt absorption cross-section at a single wavenumber. """ function voigt(Ξ½, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Float64 i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) sum(voigt.(Ξ½, view(sl.Ξ½,i), S, Ξ±, Ξ³)) end """ voigt!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Identical to [`voigt`](@ref), but fills the vector of cross-sections (`Οƒ`) in-place. """ function voigt!(Οƒ::AbstractVector, Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0) i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) surf!(Οƒ, voigt, Ξ½, view(sl.Ξ½,i), Δνcut, S, Ξ±, Ξ³) end """ voigt(Ξ½, sl, T, P, Pβ‚š, Δνcut=25) Compute a vector of Voigt absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and Voigt profiles are evaluated along the way. # Arguments * `Ξ½`: vector of wavenumbers indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function voigt(Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=25.0)::Vector{Float64} Οƒ = zeros(Float64, length(Ξ½)) voigt!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut) return Οƒ end #------------------------------------------------------------------------------- # sublorentzian profile for CO2 # Perrin, M. Y., and J. M. Hartman. β€œTemperature-Dependent Measurements and Modeling of Absorption by CO2-N2 Mixtures in the Far Line-Wings of the 4.3 Μm CO2 Band.” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 42, no. 4, 1989, pp. 311–17. export Ξ§PHCO2, PHCO2, PHCO2! """ Ξ§PHCO2(Ξ½, Ξ½l, T) Compute the `Ξ§` (Chi) factor for sub-lorentzian CO2 line profiles, as in * [Perrin, M. Y., and J. M. Hartman. β€œTemperature-Dependent Measurements and Modeling of Absorption by CO2-N2 Mixtures in the Far Line-Wings of the 4.3 Μm CO2 Band.” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 42, no. 4, 1989, pp. 311–17.](https://www.sciencedirect.com/science/article/abs/pii/0022407389900770) # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `T`: temperature [K] """ function Ξ§PHCO2(Ξ½, Ξ½l, T)::Float64 Δν = abs(Ξ½ - Ξ½l) if Δν < 3.0 return 1.0 end B1 = 0.0888 - 0.16*exp(-0.0041*T) if Δν < 30.0 return exp(-B1*(Δν - 3.0)) end B2 = 0.0526*exp(-0.00152*T) if Δν < 120.0 return exp(-B1*27.0 - B2*(Δν - 30.0)) end return exp(-B1*27.0 - B2*90.0 - 0.0232*(Δν - 120.0)) end """ PHCO2(Ξ½, Ξ½l, S, Ξ±) Evaluate Perrin & Hartman sub-lorentzian absoption cross-section [cm``^2``/molecule] for CO2 # Arguments * `Ξ½`: profile evaluation wavenumber [cm``^{-1}``] * `Ξ½l`: wavenumber of absorption line [cm``^{-1}``] * `T`: temperature [K] * `S`: line absoption intensity [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] * `Ξ±`: doppler (gaussian) broadening coefficient * `Ξ³`: lorentzian broadening coefficient """ function PHCO2(Ξ½, Ξ½l, T, S, Ξ±, Ξ³)::Float64 Ξ§ = Ξ§PHCO2(Ξ½, Ξ½l, T) voigt(Ξ½, Ξ½l, S, Ξ±, Ξ§*Ξ³) end """ PHCO2(Ξ½, sl, T, P, Pβ‚š, Δνcut=500) Compute a single Perrin & Hartman sub-lorentzian CO2 absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and profiles are evaluated along the way. # Arguments * `Ξ½`: single wavenumber indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function PHCO2(Ξ½, sl::SpectralLines, T, P, Pβ‚š, Δνcut=500.0)::Float64 i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) sum(PHCO2.(Ξ½, view(sl.Ξ½,i), T, S, Ξ±, Ξ³)) end """ PHCO2!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut=500) Identical to [`PHCO2`](@ref), but fills the vector of cross-sections (`Οƒ`) in-place. """ function PHCO2!(Οƒ::AbstractVector, Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=500.0) i = includedlines(Ξ½, sl.Ξ½, Δνcut) S = scaleintensity(sl, i, T) Ξ± = Ξ±doppler(sl, i, T) Ξ³ = Ξ³lorentz(sl, i, T, P, Pβ‚š) f(Ξ½, Ξ½l, S, Ξ±, Ξ³) = PHCO2(Ξ½, Ξ½l, T, S, Ξ±, Ξ³) #shove T into the function surf!(Οƒ, f, Ξ½, view(sl.Ξ½,i), Δνcut, S, Ξ±, Ξ³) end """ PHCO2(Ξ½, sl, T, P, Pβ‚š, Δνcut=500) Compute a vector of Perrin & Hartman sub-lorentzian CO2 absorption cross-sections [cm``^2``/molecule] from a [`SpectralLines`](@ref) object. Temperature scaling and profiles are evaluated along the way. # Arguments * `Ξ½`: vector of wavenumbers indicating where to evaluate [cm``^{-1}``] * `sl`: [`SpectralLines`](@ref) * `T`: temperature [K] * `P`: air pressure [Pa] * `Pβ‚š`: partial pressure [Pa] * `Δνcut`: profile truncation distance [cm``^{-1}``] """ function PHCO2(Ξ½::AbstractVector, sl::SpectralLines, T, P, Pβ‚š, Δνcut=500.0)::Vector{Float64} Οƒ = zeros(Float64, length(Ξ½)) PHCO2!(Οƒ, Ξ½, sl, T, P, Pβ‚š, Δνcut) return Οƒ end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
7311
#------------------------------------------------------------------------------- export opticaldepth """ opticaldepth(P₁, Pβ‚‚, g, fT, fΞΌ, ΞΈ, absorbers...; tol=1e-5) Compute monochromatic [optical depths](https://en.wikipedia.org/wiki/Optical_depth#Atmospheric_sciences) (Ο„) between two pressure levels # Arguments * `P₁`: first pressure level [Pa] * `Pβ‚‚`: second pressure level [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure [Pa], `fT(P)`. This may be any callable object, like [`MoistAdiabat`](@ref), for example. * `fΞΌ`: mean molar mass as a function of temperature [K] and pressure [Pa], `fΞΌ(T,P)` * `ΞΈ`: angle [radians] of path, must be ∈ [0,Ο€/2), where 0 is straight up/down * `absorbers`: at least one gas object and any number of [`CIATables`](@ref) and functions in the form Οƒ(Ξ½, T, P) Returns a vector of optical depths across all wavenumbers stored in gas objects. The `tol` keyword argument adjusts integrator error tolerance. """ function opticaldepth(P₁::Real, Pβ‚‚::Real, g::Real, fT::Q, fΞΌ::R, ΞΈ::Real, absorbers...; tol::Float64=1e-5 )::Vector{Float64} where {Q,R} #initialization P₁, Pβ‚‚ = max(P₁, Pβ‚‚), min(P₁, Pβ‚‚) A = setupintegration(P₁, Pβ‚‚, absorbers) checkazimuth(ΞΈ) #integrate wavenumbers in parallel Ο„ = zeros(Float64, A.nΞ½) m = 1/cos(ΞΈ) @threads for i ∈ eachindex(A.Ξ½) #integrate Ο„[i] = depth(dΟ„dΟ‰, P2Ο‰(P₁), P2Ο‰(Pβ‚‚), A, i, g, m, fT, fΞΌ, tol) end return Ο„ end #------------------------------------------------------------------------------- #the basic transmittance method exp(-Ο„) is already exported """ transmittance(P₁, Pβ‚‚, g, fT, fΞΌ, ΞΈ, absorbers...; tol=1e-5) Compute monochromatic [transmittances](https://en.wikipedia.org/wiki/Transmittance.) between two pressure levels Accepts the same arguments as [`opticaldepth`](@ref) and returns a vector of transmittances across all wavenumbers stored in gas objects. """ transmittance(X...; kwargs...) = transmittance.(opticaldepth(X...; kwargs...)) #------------------------------------------------------------------------------- export outgoing """ outgoing(Pβ‚›, Pβ‚œ, g, fT, fΞΌ, absorbers; nstream=5, tol=1e-5) Compute outgoing monochromatic radiative fluxes [W/m``^2``/cm``^{-1}``], line-by-line. Integrates the [`schwarzschild`](@ref) equation from `Pβ‚›` to `Pβ‚œ` at each wavenumber in the provided gas object(s) using any number of streams/angles. Total flux [W/m``^2``] can be evaluated with the [`trapz`](@ref) function. # Arguments * `Pβ‚›`: surface pressure [Pa] * `Pβ‚œ`: top of atmopshere pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure [Pa], `fT(P)`. This may be any callable object, like [`MoistAdiabat`](@ref), for example. * `fΞΌ`: mean molar mass as a function of temperature [K] and pressure [Pa], `fΞΌ(T,P)` * `absorbers`: at least one [gas object](gas_objects.md) and any number of [`CIATables`](@ref) and functions in the form Οƒ(Ξ½, T, P) The keyword argument `nstream` specifies how many independent streams, or beam angles through the atmosphere, to integrate. The keyword argument `tol` is a numerical error tolerance passed to the [`radau`](https://github.com/wordsworthgroup/ScalarRadau.jl) integrator. """ function outgoing(Pβ‚›::Real, Pβ‚œ::Real, g::Real, fT::Q, fΞΌ::R, absorbers...; nstream::Int64=5, #number of streams to use tol::Float64=1e-5 #integrator tolerance )::Vector{Float64} where {Q,R} #initialization ca = setupintegration(Pβ‚›, Pβ‚œ, absorbers) ω₁, Ο‰β‚‚ = P2Ο‰(Pβ‚›, Pβ‚œ) #surface temperature Tβ‚€ = fT(Pβ‚›) #integrate wavenumbers in parallel F = zeros(Float64, ca.nΞ½) @threads for i ∈ eachindex(ca.Ξ½) Iβ‚€ = planck(ca.Ξ½[i], Tβ‚€) F[i] = streams(dIdΟ‰, Iβ‚€, ω₁, Ο‰β‚‚, ca, i, g, nstream, fT, fΞΌ, tol) end return F end #------------------------------------------------------------------------------- export topfluxes, topimbalance """ topfluxes(Pβ‚›, Pβ‚œ, g, fT, fΞΌ, absorber::UnifiedAbsorber; nstream=5, ΞΈ=0.952, tol=1e-5) Compute the upward and downward monochromatic fluxes at the top of the atmopshere. # Arguments * `Pβ‚›`: surface pressure [Pa] * `Pβ‚œ`: top of atmopshere pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure [Pa], `fT(P)`. This may be any callable object, like [`MoistAdiabat`](@ref), for example. * `fΞΌ`: mean molar mass as a function of temperature [K] and pressure [Pa], `fΞΌ(T,P)` * `absorber`: a `UnifiedAbsorber`, which is either a [`GroupedAbsorber`](@ref) or an [`AcceleratedAbsorber`](@ref) """ function topfluxes(Pβ‚›::Real, Pβ‚œ::Real, g::Real, fT::Q, # fT(P) fΞΌ::R, # fΞΌ(T,P) fstellar::S, # fstellar(Ξ½) [W/m^2] albedo::Real, absorber::UnifiedAbsorber; nstream::Int64=5, #number of streams to use ΞΈ::Float64=0.952, #corresponds to cos(ΞΈ) = 0.66 tol::Float64=1e-5)::NTuple{2,Vector{Float64}} where {Q,R,S} #setup checkpressures(absorber, Pβ‚›, Pβ‚œ) Ξ½, nΞ½ = absorber.Ξ½, absorber.nΞ½ ω₁, Ο‰β‚‚ = P2Ο‰(Pβ‚›, Pβ‚œ) ι₁, ΞΉβ‚‚ = P2ΞΉ(Pβ‚œ, Pβ‚›) #incoming stellar flux at TOA Fβ‚œβ» = fstellar.(Ξ½)*cos(ΞΈ) #downward stellar flux at the ground/surface Fₛ⁻ = zeros(nΞ½) @threads for i ∈ eachindex(Ξ½) Ο„ = depth(dΟ„dΞΉ, ι₁, ΞΉβ‚‚, absorber, i, g, 1/cos(ΞΈ), fT, fΞΌ, tol) Fₛ⁻[i] = Fβ‚œβ»[i]*exp(-Ο„) end #some of it gets reflected back upward at the surface Iₛ⁺ = Fₛ⁻*albedo/Ο€ #Lambertian reflection #surface temperature Tβ‚› = fT(Pβ‚›) #radiation streams up out of the atmosphere Fβ‚œβΊ = zeros(nΞ½) @threads for i ∈ eachindex(Ξ½) Iβ‚€ = Iₛ⁺[i] + planck(Ξ½[i], Tβ‚›) Fβ‚œβΊ[i] = streams(dIdΟ‰, Iβ‚€, ω₁, Ο‰β‚‚, absorber, i, g, nstream, fT, fΞΌ, tol) end return Fβ‚œβ», Fβ‚œβΊ end """ topimbalance(Pβ‚›, Pβ‚œ, g, fT, fΞΌ, absorber::UnifiedAbsorber; nstream=5, ΞΈ=0.952, tol=1e-5) Compute the difference between the total upward and downward radiative flux at the top of the atmopshere. # Arguments * `Pβ‚›`: surface pressure [Pa] * `Pβ‚œ`: top of atmopshere pressure [Pa] * `g`: gravitational acceleration [m/s``^2``] * `fT`: temperature [K] as a function of pressure [Pa], `fT(P)`. This may be any callable object, like [`MoistAdiabat`](@ref), for example. * `fΞΌ`: mean molar mass as a function of temperature [K] and pressure [Pa], `fΞΌ(T,P)` * `absorber`: a `UnifiedAbsorber`, which is either a [`GroupedAbsorber`](@ref) or an [`AcceleratedAbsorber`](@ref) """ function topimbalance(X...; kwargs...)::Float64 #compute monochromatic fluxes at top of atmosphere Fβ‚œβ», Fβ‚œβΊ = topfluxes(X...; kwargs...) #get the wavenumber vector, knowing that last arg is UnifiedAbsorber Ξ½ = X[end].Ξ½ #integrate across wavenumbers trapz(Ξ½, Fβ‚œβ») - trapz(Ξ½, Fβ‚œβΊ) end #-------------------------------------------------------------------------------
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
15385
#------------------------------------------------------------------------------- # general gets and checks function pressurelimits(gases)::NTuple{2,Float64} #largest minimum pressure in gas atmospheric domains Pmin = maximum(map(g->g.Ξ©.Pmin, gases)) #smallest maximum pressure in gas atmospheric domains Pmax = minimum(map(g->g.Ξ©.Pmax, gases)) return Pmin, Pmax end function checkpressures(gases, pressures...)::Nothing #pressure bounds Pmin, Pmax = pressurelimits(gases) #demand all pressures within the range for P ∈ pressures @assert P >= Pmin "Pressure $P Pa too low, domain minimum is $Pmin" @assert P <= Pmax "Pressure $P Pa too low, domain minimum is $Pmax" end nothing end function checkazimuth(ΞΈ)::Nothing @assert 0 <= ΞΈ < Ο€/2 "azimuth angle ΞΈ must be ∈ [0,Ο€/2)" nothing end function getwavenumbers(absorbers::Tuple)::Vector{Float64} G = absorbers[findall(a -> typeof(a) <: AbstractGas, absorbers)] @assert length(G) > 0 "no gas objects found" getwavenumbers(G...) end #checks for identical wavenumber sampling across different gases function getwavenumbers(G::AbstractGas...)::Vector{Float64} ν₁ = G[1].Ξ½ for g ∈ G @assert ν₁ == g.Ξ½ "gases must have identical wavenumber vectors" end return ν₁ end #------------------------------------------------------------------------------- # super for both consolidated absorber types abstract type UnifiedAbsorber end export UnifiedAbsorber, noabsorption, getΟƒ #------------------------------------------------------------------------------- # specialized container for absorbing objects and functions export GroupedAbsorber """ GroupedAbsorber(absorbers...) A struct for consolidating absorbers. Construct with any number of [gas objects](gas_objects.md), functions in the form `Οƒ(Ξ½, T, P)` and [`CIATables`](@ref). """ struct GroupedAbsorber{T,U,V} <: UnifiedAbsorber #tuple of gas objects gas::T #tuple of CIA objects cia::U #tuple of functions in the for f(Ξ½, T, P) fun::V #wavenumber vector [cm^-1], must be identical for all gases Ξ½::Vector{Float64} #length of wavenumber vector nΞ½::Int64 #flag indicating whether cia and fun are both empty gasonly::Bool #flags indicating where all gas objects are empty gasempty::Vector{Bool} end GroupedAbsorber(absorbers...) = GroupedAbsorber(absorbers) #splits a group of gas, cia, & functions objects into their own tuples function GroupedAbsorber(absorbers::Tuple) #can't be empty @assert length(absorbers) > 0 "no absorbers... no need for modeling?" #check for dups @assert length(absorbers) == length(unique(absorbers)) "duplicate absorbers" #types of absorbers T = map(typeof, absorbers) #check for unexpected types for t ∈ T if !((t <: AbstractGas) | (t == CIATables) | (t <: Function)) throw("absorbers must only be gasses (<: AbstractGas), CIA objects, or functions in the form Οƒ(Ξ½, T, P)") end end #all gases G = absorbers[findall(t->t<:AbstractGas, T)] #cia tables, pairing with the correct gases in the process C = tuple([CIA(x, G...) for x ∈ absorbers[findall(t->t==CIATables, T)]]...) #functions in the form Οƒ(Ξ½, T, P) F = absorbers[findall(t->!(t<:AbstractGas) & !(t==CIATables), T)] #wavenumber vector, must be identical for all gases Ξ½ = getwavenumbers(G...) nΞ½ = length(Ξ½) #flag indicating whether there are only gases present, no cias orfunctions gasonly = isempty(C) & isempty(F) #flags indicating whether all gases are empty at each wavenumber gasempty = zeros(Bool, nΞ½) for i ∈ eachindex(Ξ½) gasempty[i] = all(ntuple(j->G[j].Ξ [i].empty, length(G))) end return GroupedAbsorber(G, C, F, Ξ½, nΞ½, gasonly, gasempty) end #https://discourse.julialang.org/t/tuple-indexing-taking-time/58309/18?u=markmbaum function Οƒrecur(A::Q, x, T, P)::Float64 where {Q} isempty(A) && return 0.0 first(A)(x, T, P) + Οƒrecur(tail(A), x, T, P) end function getΟƒ(ga::GroupedAbsorber, i::Int, T, P)::Float64 Ξ½ = ga.Ξ½[i] Οƒ = Οƒrecur(ga.gas, i, T, P) + Οƒrecur(ga.cia, Ξ½, T, P) + Οƒrecur(ga.fun, Ξ½, T, P) return Οƒ end (ga::GroupedAbsorber)(i::Int, T, P)::Float64 = getΟƒ(ga, i, T, P) function (ga::GroupedAbsorber)(T::Real, P::Real)::Vector{Float64} [ga(i, T, P) for i ∈ eachindex(ga.Ξ½)] end #check whether integration is pointless because there's no absorption noabsorption(ga::GroupedAbsorber, i::Int)::Bool = ga.gasonly && ga.gasempty[i] function noabsorption(ga::GroupedAbsorber)::Vector{Bool} [noabsorption(ga, i) for i ∈ eachindex(ga.Ξ½)] end function checkpressures(ga::GroupedAbsorber, pressures...) checkpressures(ga.gas, pressures...) end #------------------------------------------------------------------------------- # accelerated interpolation of cross-sections export AcceleratedAbsorber, update! """ AcceleratedAbsorber(ga, P, T) An accelerated struct for getting cross-sections from groups of absorbers. Pressure and temperature coordinates must be provided. """ struct AcceleratedAbsorber <: UnifiedAbsorber #cross-section interpolators Ο•::Vector{LinearInterpolator{Float64,WeakBoundaries}} #wavenumber vector [cm^-1], must be identical for all gases Ξ½::Vector{Float64} #length of wavenumber vector nΞ½::Int64 #flag indicating whether there is no absorption empty::Vector{Bool} #original pressures P::Vector{Float64} #reference to GroupedAbsorber ga::GroupedAbsorber end function AcceleratedAbsorber(ga::GroupedAbsorber, P::Vector{Float64}, T::Vector{Float64}) Ξ½, nΞ½ = ga.Ξ½, ga.nΞ½ logP = log.(P) Ο• = Vector{LinearInterpolator{Float64,WeakBoundaries}}(undef, nΞ½) empty = zeros(Bool, nΞ½) @threads for i ∈ eachindex(Ξ½) empty[i] = noabsorption(ga, i) if !empty[i] Οƒ = ga.(i, T, P) Οƒ[Οƒ .< 1e-200] .= 1e-200 Ο•[i] = LinearInterpolator(logP, log.(Οƒ), WeakBoundaries()) end end AcceleratedAbsorber(Ο•, Ξ½, nΞ½, empty, P, ga) end #also a method specifically for interpolators, P vs log(Οƒ) getΟƒ(aa::AcceleratedAbsorber, i, _, P)::Float64 = exp(aa.Ο•[i](log(P))) (aa::AcceleratedAbsorber)(i::Int, P)::Float64 = getΟƒ(aa, i, nothing, P) function (aa::AcceleratedAbsorber)(P::Real)::Vector{Float64} [aa(i, P) for i ∈ eachindex(aa.Ξ½)] end noabsorption(aa::AcceleratedAbsorber, i::Int)::Bool = aa.empty[i] function noabsorption(ga::GroupedAbsorber)::Vector{Bool} [noabsorption(aa, i) for i ∈ eachindex(ga.Ξ½)] end function checkpressures(aa::AcceleratedAbsorber, pressures...) checkpressures(aa.ga.gas, pressures...) end function update!(aa::AcceleratedAbsorber, T::Vector{Float64}) @assert length(T) == length(aa.P) @threads for i ∈ eachindex(aa.Ο•) if !aa.empty[i] for j ∈ eachindex(aa.P) aa.Ο•[i].r.y[j] = max(log(aa.ga(i, T[j], aa.P[j])), 1e-200) end end end end #------------------------------------------------------------------------------- #function and cache for gaussian quadrature of multiple streams over the azimuth const NODECACHE = Dict{Int64,NTuple{2,Vector{Float64}}}() function streamnodes(n::Int)::NTuple{2,Vector{Float64}} #pedantic with the key type n = convert(Int64, n) #getting the gauss nodes is fast but not trivial if !haskey(NODECACHE, n) if n < 4 @warn "careful! using nstream < 4 is likely to be inaccurate!" maxlog=1 end #gauss-legendre quadrature points and weights in [-1,1] x, w = gauss(n) #map angles and weights to ΞΈ ∈ [0,Ο€/2] ΞΈ = @. (Ο€/2)*(x + 1)/2 w .*= (Ο€/2)/2 #sines and cosines of ΞΈ c = cos.(ΞΈ) s = sin.(ΞΈ) #precompute 2Ο€*cos(ΞΈ)*sin(ΞΈ)*wzxc W = @. 2Ο€*w*c*s #precompute 1/cos(ΞΈ) using "m" because ΞΌ is for gas molar masses m = 1 ./ c #store these values NODECACHE[n] = (m, W) end return NODECACHE[n] end #------------------------------------------------------------------------------- # functions for setting up absorbers, coordinates, etc. for integration #operations common to setting up high-level radiative functions function setupintegration(Pβ‚›, Pβ‚œ, absorbers) #split gas objects from cia objects ga = GroupedAbsorber(absorbers) #check pressures in order @assert Pβ‚› > Pβ‚œ "Pβ‚› must be greater than Pβ‚œ" #check pressures against AtmosphericDomains checkpressures(ga.gas, Pβ‚›, Pβ‚œ) return ga end #------------------------------------------------------------------------------- # core differential equations with Tuples of parameters function dΟ„dP(P::Float64, Ο„::Float64, param::Tuple)::Float64 #unpack parameters A, i, g, m, fT, fΞΌ = param #temperature from given profile T = fT(P) #mean molar mass ΞΌ = fΞΌ(T, P) #sum of all cross-sections Οƒ = getΟƒ(A, i, T, P) #compute dΟ„/dlnP, scaled by the angle m = 1/cos(ΞΈ) m*dΟ„dP(Οƒ, g, ΞΌ) #no Planck emission end function dIdP(P::Float64, I::Float64, param::Tuple)::Float64 #unpack parameters A, i, g, m, fT, fΞΌ = param #compute temperature from given profile T = fT(P) #compute mean molar mass ΞΌ = fΞΌ(T, P) #sum of all cross-sections Οƒ = getΟƒ(A, i, T, P) #compute dI/dlnP, scaled by the angle m = 1/cos(ΞΈ) m*schwarzschild(I, A.Ξ½[i], Οƒ, g, ΞΌ, T) end #------------------------------------------------------------------------------- # wrappers for log pressure coordinates function dΟ„dΞΉ(ΞΉ::Float64, Ο„::Float64, param::Tuple)::Float64 P = ΞΉ2P(ΞΉ) P*dΟ„dP(P, Ο„, param) end function dΟ„dΟ‰(Ο‰::Float64, Ο„::Float64, param::Tuple)::Float64 P = Ο‰2P(Ο‰) P*dΟ„dP(P, Ο„, param) end function dIdΟ‰(Ο‰::Float64, I::Float64, param::Tuple)::Float64 P = Ο‰2P(Ο‰) P*dIdP(P, I, param) end function dIdΞΉ(ΞΉ::Float64, I::Float64, param::Tuple)::Float64 P = ΞΉ2P(ΞΉ) P*dIdP(P, I, param) end #------------------------------------------------------------------------------- # functions for optical depth paths function depth(dΟ„dx::Q, x₁::Real, xβ‚‚::Real, A::UnifiedAbsorber, idx::Int, g::Real, m::Real, # 1/cos(ΞΈ) fT::R, fΞΌ::S, tol::Float64 )::Float64 where {Q,R,S} #if zero absorption, don't integrate noabsorption(A, idx) && return 0.0 #pack parameters param = (A, idx, g, m, fT, fΞΌ) #integrate with the ODE solver (appears to be faster than quadrature) radau(dΟ„dx, 0.0, x₁, xβ‚‚, param, atol=tol, rtol=tol) end #------------------------------------------------------------------------------- # functions for streams and fluxes up/down the atmosphere, no storage function stream(dIdx::Q, #version of schwarzschild equation Iβ‚€::Real, #initial irradiance x₁::Real, #initial pressure coordinate xβ‚‚::Real, #final pressure coordinate A::UnifiedAbsorber, idx::Int, #index for wavenumber and opacity table g::Real, #gravity [m/s^2] m::Real, #1/cos(ΞΈ), where ΞΈ is the stream angle fT::R, #temperature profile fT(P) fΞΌ::S, #mean molar mass ΞΌ(T,P) tol::Float64 #integrator error tolerance )::Float64 where {Q,R,S} #if zero absorption, don't integrate noabsorption(A, idx) && return Iβ‚€ #pack parameters param = (A, idx, g, m, fT, fΞΌ) #integrate the Schwarzschild equation in log pressure coords and return radau(dIdx, Iβ‚€, x₁, xβ‚‚, param, atol=tol, rtol=tol) end function streams(dIdx::Q, #version of schwarzschild equation Iβ‚€::Real, #initial irradiance x₁::Real, #initial pressure coordinate xβ‚‚::Real, #final pressure coordinate A::UnifiedAbsorber, idx::Int, #index for wavenumber and opacity table g::Real, #gravity [m/s^2] nstream::Int, fT::R, #temperature profile fT(P) fΞΌ::S, #mean molar mass ΞΌ(T,P) tol::Float64 #integrator error tolerance )::Float64 where {Q,R,S} #setup gaussian quadrature nodes m, W = streamnodes(nstream) #solve schwarzschild w multiple streams, integrating over hemisphere F = 0.0 for i ∈ 1:nstream I = stream(dIdx, Iβ‚€, x₁, xβ‚‚, A, idx, g, m[i], fT, fΞΌ, tol) # integral over hemisphere: ∫∫ I cos(ΞΈ) sin(ΞΈ) dΞΈ dΟ•, where θ∈[0,Ο€/2], Ο•βˆˆ[0,2Ο€] F += W[i]*I #W = 2Ο€*w*cos(ΞΈ)*sin(ΞΈ), precomputed end return F end #------------------------------------------------------------------------------- # functions for streams and fluxes up/down the atmosphere with in-place storage function stream!(dIdx::Q, #version of schwarzschild equation Iβ‚€::Real, #initial irradiance I::AbstractVector{Float64}, #output/solution vector x::Vector{Float64}, #output/solution coordinates x₁::Real, #initial pressure coordinate xβ‚‚::Real, #final pressure coordinate A::UnifiedAbsorber, idx::Int, #index for wavenumber and interpolator g::Real, #gravity [m/s^2] m::Real, #1/cos(ΞΈ), where ΞΈ is the stream angle fT::R, #temperature profile fT(P) fΞΌ::S, #mean molar mass ΞΌ(T,P) tol::Float64 #integrator error tolerance )::Nothing where {Q,R,S} #if zero absorption, don't integrate if noabsorption(A, idx) I .= Iβ‚€ return nothing end #pack parameters param = (A, idx, g, m, fT, fΞΌ) #integrate the Schwarzschild equation in log pressure coords, in-place radau!(I, x, dIdx, Iβ‚€, x₁, xβ‚‚, param, atol=tol, rtol=tol) return nothing end function streams!(dIdx::Q, #version of schwarzschild equation Iβ‚€::Real, #initial irradiance I::AbstractVector{Float64}, #temporary irradiance vector F::AbstractVector{Float64}, #output/solution vector x::Vector{Float64}, #output/solution coordinates x₁::Real, #initial pressure coordinate xβ‚‚::Real, #final pressure coordinate A::UnifiedAbsorber, idx::Int, #index for wavenumber and opacity table g::Real, #gravity [m/s^2] nstream::Int, fT::R, #temperature profile fT(P) fΞΌ::S, #mean molar mass ΞΌ(T,P) tol::Float64 #integrator error tolerance )::Nothing where {Q,R,S} @assert length(I) == length(F) == length(x) #setup gaussian quadrature nodes m, W = streamnodes(nstream) #wipe any pre-existing values F .= 0.0 #solve schwarzschild w multiple streams, integrating over hemisphere for i ∈ 1:nstream stream!(dIdx, Iβ‚€, I, x, x₁, xβ‚‚, A, idx, g, m[i], fT, fΞΌ, tol) # integral over hemisphere: ∫∫ I cos(ΞΈ) sin(ΞΈ) dΞΈ dΟ•, where θ∈[0,Ο€/2], Ο•βˆˆ[0,2Ο€] for j ∈ eachindex(F) F[j] += W[i]*I[j] #W = 2Ο€*w*cos(ΞΈ)*sin(ΞΈ), precomputed end end return nothing end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
61505
const TMIN = 25.000000 const TMAX = 1000.000000 const MOLPARAM = [ #1, molecule number [1, #2, molecule formula "H2O", #3, molecule name "Water", #4, global isotopologue numbers Int64[1, 2, 3, 4, 5, 6, 129], #5, isotopologue formulae String["H216O", "H218O", "H217O", "HD16O", "HD18O", "HD17O", "D216O"], #6, AFGL code Int64[161, 181, 171, 162, 182, 172, 262], #7, abundance fractions Float64[0.997317, 0.002, 0.000371884, 0.000310693, 6.23003e-07, 1.15853e-07, 2.4197e-08], #8, molecular masses (kg/mole) Float64[0.018010565, 0.020014811, 0.01901478, 0.019016739999999997, 0.021020985, 0.020020956000000003, 0.020022915000000002], #9, Qref Float64[174.58, 176.05, 1052.14, 864.74, 875.57, 5226.79, 1027.8], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 7, 7, 8, 8, 8, 8], #12, maximum relative errors of interpolation Float64[0.0028, 0.0028, 0.0029, 0.0094, 0.0094, 0.0096, 0.0091], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[2.8854493216841015, 3.4632621262928915, 0.6001640690631624, 0.016178811904860996, 0.015211044164822699, -0.004364096635145624, 0.0012395758566148274], Float64[2.8871644108577477, 3.465944358793127, 0.6012775643496776, 0.01626203386609267, 0.015073634800670662, -0.004421502003156756, 0.0012358242435368538], Float64[2.8843598005839284, 3.4613544216657774, 0.5988802292683817, 0.015592997489868013, 0.015071636079156958, -0.0043773144167319105, 0.0012344781178038982], Float64[2.988927843477164, 3.630916093351383, 0.6832681181788238, 0.03771653748442871, 0.01698698700299332, -0.0046881118088947715, 0.0017425144860104983, -0.00048799452244198605], Float64[2.995264646453848, 3.641366946322687, 0.6888505901076387, 0.03935511770905783, 0.01702953291306411, -0.004802882155796924, 0.0017375357666057514, -0.0004781891512090551], Float64[3.001991615535067, 3.651228173736914, 0.6917712772263419, 0.03877308927826554, 0.016728580596165613, -0.004750977994398704, 0.0017126280124818902, -0.00047877803465772625], Float64[3.1511970042488793, 3.8905643121864615, 0.8073563192325093, 0.06660577751477327, 0.01805683243327309, -0.004508003223199252, 0.0020143284208121565, -0.0006707506150274156] ] ], #1, molecule number [2, #2, molecule formula "CO2", #3, molecule name "Carbon Dioxide", #4, global isotopologue numbers Int64[7, 8, 9, 10, 11, 12, 13, 14, 121, 15, 120, 122], #5, isotopologue formulae String["12C16O2", "13C16O2", "16O12C18O", "16O12C17O", "16O13C18O", "16O13C17O", "12C18O2", "17O12C18O", "12C17O2", "13C18O2", "18O13C17O", "13C17O2"], #6, AFGL code Int64[626, 636, 628, 627, 638, 637, 828, 827, 727, 838, 837, 737], #7, abundance fractions Float64[0.984204, 0.011057, 0.003947, 0.000733989, 4.43446e-05, 8.24623e-06, 3.95734e-06, 1.4717999999999998e-06, 1.36847e-07, 4.4459999999999996e-08, 1.65354e-08, 1.5375000000000001e-09], #8, molecular masses (kg/mole) Float64[0.04398983, 0.044993185, 0.045994076, 0.044994044999999996, 0.046997431, 0.0459974, 0.047998322, 0.046998291000000005, 0.045998262, 0.049001675, 0.048001646, 0.047001618237800004], #9, Qref Float64[286.09, 576.64, 607.81, 3542.61, 1225.46, 7141.32, 323.42, 3766.58, 10971.57, 652.24, 7595.04, 22120.47], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true, true, true, true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 6, 7, 7, 6, 6, 7, 7, 7, 6, 6, 6], #12, maximum relative errors of interpolation Float64[0.0083, 0.0097, 0.0084, 0.0084, 0.0097, 0.0097, 0.0085, 0.0085, 0.0084, 0.0097, 0.0097, 0.0097], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[3.629868764336615, 4.6480808871061505, 1.3583273380857648, 0.2691914939179858, 0.012300344743387518, 0.004326678712311664, -0.0004876212718173771], Float64[3.7179211688304883, 4.786969447800756, 1.420400066599882, 0.2814003436457875, 0.012916486545213601, 0.005068159441358943], Float64[3.679005578420316, 4.726613084391979, 1.3953922253638875, 0.27781440229728993, 0.01314456082627761, 0.004419817566995832, -0.0004970214933885941], Float64[3.655363377445139, 4.688828648648713, 1.3775475553307868, 0.2736558449760584, 0.012739727465199616, 0.0043752016281623325, -0.0004930857409695122], Float64[3.770167807416816, 4.870520321377293, 1.45990358750975, 0.2906789686290149, 0.013857386918618885, 0.005159901644174525], Float64[3.7449516621478636, 4.830204291937045, 1.4408492290337949, 0.28620850769525374, 0.013406177679559405, 0.005114771601030554], Float64[3.7311033311460196, 4.809810916666548, 1.4345733694792095, 0.28689967884368855, 0.014046000533340042, 0.004524547647267359, -0.0005104693856422907], Float64[3.705985669094004, 4.769708282307593, 1.4156946951706022, 0.2825250989881978, 0.013613061747109967, 0.0044736845305030455, -0.000503988378637151], Float64[3.6816588053606285, 4.730840055680833, 1.3973606497267912, 0.2782602087069206, 0.013191466220107065, 0.004426317951875092, -0.000498417536415848], Float64[3.8253535330410573, 4.958741134066428, 1.5015645373059177, 0.30044270685108937, 0.014856805465608858, 0.005263210781243188], Float64[3.798742219093048, 4.916205675937364, 1.4814840206725617, 0.29574048323158914, 0.014376502287099413, 0.0052127748195452735], Float64[3.772887856184446, 4.874864915118713, 1.461940449659132, 0.29114887205345086, 0.013907974624242314, 0.005165919678550068] ] ], #1, molecule number [3, #2, molecule formula "O3", #3, molecule name "Ozone", #4, global isotopologue numbers Int64[16, 17, 18, 19, 20], #5, isotopologue formulae String["16O3", "16O16O18O", "16O18O16O", "16O16O17O", "16O17O16O"], #6, AFGL code Int64[666, 668, 686, 667, 676], #7, abundance fractions Float64[0.992901, 0.003982, 0.001991, 0.000740475, 0.00037023700000000004], #8, molecular masses (kg/mole) Float64[0.047984744999999995, 0.049988990999999997, 0.049988990999999997, 0.04898896, 0.04898896], #9, Qref Float64[3483.71, 7465.68, 3647.08, 43330.85, 21404.96], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 8, 8, 8, 8], #12, maximum relative errors of interpolation Float64[0.0081, 0.0085, 0.0082, 0.0083, 0.0081], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[5.198813326073512, 7.183627282058914, 2.4304058215844266, 0.47946442974793274, 0.04864953304330084, -0.003877687472476156, 0.0035095252917969333, -0.001342048768093613], Float64[5.289447393725946, 7.328403504739264, 2.499786028390479, 0.4961019241043351, 0.05020868215804548, -0.0036478605934218778, 0.003467093548097568, -0.0013615638674566405], Float64[5.32163909580045, 7.380784814348417, 2.527176975966621, 0.5040656085549876, 0.05090642322592535, -0.0036226978332624276, 0.0035401534819499147, -0.0013961748984979547], Float64[5.24568623397049, 7.258502442396174, 2.46630032008053, 0.488079931032065, 0.049452989319160166, -0.0037593580768103658, 0.003494383612559509, -0.0013477264983363974], Float64[5.262065893189635, 7.285163964911438, 2.4802630772444894, 0.4921466852101934, 0.0498022530511696, -0.0037485193119807087, 0.003527212690246679, -0.0013719459179242222] ] ], #1, molecule number [4, #2, molecule formula "N2O", #3, molecule name "Nitrogen oxide", #4, global isotopologue numbers Int64[21, 22, 23, 24, 25], #5, isotopologue formulae String["14N216O", "14N15N16O", "15N14N16O", "14N218O", "14N217O"], #6, AFGL code Int64[446, 456, 546, 448, 447], #7, abundance fractions Float64[0.990333, 0.003641, 0.003641, 0.001986, 0.00036928000000000004], #8, molecular masses (kg/mole) Float64[0.044001062, 0.044998095999999994, 0.044998095999999994, 0.046005308, 0.045005277999999996], #9, Qref Float64[4984.9, 3362.01, 3458.58, 5314.74, 30971.79], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[6, 6, 6, 6, 6], #12, maximum relative errors of interpolation Float64[0.007, 0.006, 0.0067, 0.0069, 0.0069], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.063103273197024, 5.333914221331409, 1.6639844097596002, 0.33067143798925497, 0.018935088814124867, 0.005959907290501931], Float64[4.157765791743768, 5.4838751764969, 1.7297047842704245, 0.34323622510507956, 0.020258240973265628, 0.005979204910197211], Float64[4.108724068330206, 5.406344295333827, 1.6961335382408997, 0.33687644580232573, 0.019294311268007645, 0.005866268561468502], Float64[4.132106894555242, 5.44362298720071, 1.7136070490521895, 0.34075869422226673, 0.019555787367178824, 0.005909433476340098], Float64[4.103738130527359, 5.3982340580606385, 1.6921417741556322, 0.3357097168910115, 0.01903526376545912, 0.005863689357000013] ] ], #1, molecule number [5, #2, molecule formula "CO", #3, molecule name "Carbon Monoxide", #4, global isotopologue numbers Int64[26, 27, 28, 29, 30, 31], #5, isotopologue formulae String["12C16O", "13C16O", "12C18O", "12C17O", "13C18O", "13C17O"], #6, AFGL code Int64[26, 36, 28, 27, 38, 37], #7, abundance fractions Float64[0.986544, 0.011084, 0.001978, 0.000367867, 2.2225000000000005e-05, 4.13292e-06], #8, molecular masses (kg/mole) Float64[0.027994915, 0.028998270000000003, 0.029999161, 0.02899913, 0.031002516, 0.030002485], #9, Qref Float64[107.42, 224.69, 112.77, 661.17, 236.44, 1384.66], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4, 4, 4, 4, 4], #12, maximum relative errors of interpolation Float64[0.0066, 0.0066, 0.0066, 0.0066, 0.0067, 0.0067], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7730339354052334, 1.7139901664342414, 0.04076391415723165, 0.012492844178307502], Float64[1.7765934677858093, 1.7196928711145105, 0.04337971749168412, 0.013094903152256995], Float64[1.7769442249020646, 1.7202283022733258, 0.043607118540340384, 0.013146398444950247], Float64[1.7750240019453913, 1.7171872823767103, 0.04223776885485675, 0.012834504758217532], Float64[1.7808256851317825, 1.7264850221557417, 0.04648621217831724, 0.013784369656134091], Float64[1.7787537718136903, 1.7231790283878674, 0.04498907480569617, 0.013455416168919024] ] ], #1, molecule number [6, #2, molecule formula "CH4", #3, molecule name "Methane", #4, global isotopologue numbers Int64[32, 33, 34, 35], #5, isotopologue formulae String["12CH4", "13CH4", "12CH3D", "13CH3D"], #6, AFGL code Int64[211, 311, 212, 312], #7, abundance fractions Float64[0.988274, 0.011103, 0.0006157510000000001, 6.917849999999999e-06], #8, molecular masses (kg/mole) Float64[0.016031300000000002, 0.017034655, 0.017037475, 0.01804083], #9, Qref Float64[590.48, 1180.82, 4794.73, 9599.16], #10, has interpolating chebyshev expansion? Bool[true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[11, 11, 8, 8], #12, maximum relative errors of interpolation Float64[0.0073, 0.0073, 0.0069, 0.0069], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.559320057536849, 6.246154790519078, 2.15851344284554, 0.563745455962757, 0.12015959690385385, 0.0061053536914517535, 0.004893088743789864, -0.0004958586065243687, 6.363692773234675e-05, -0.0001658264468598958, 0.0001301035427090369], Float64[4.5276900460578515, 6.192333563178976, 2.125650980876807, 0.549549228804292, 0.11577307616779402, 0.005066519270059899, 0.004703210444850381, -0.0005103723347237743, 6.382180973449892e-05, -0.00016759358231226428, 0.0001297215051426548], Float64[5.03072658646721, 7.023825144119229, 2.5828817683596705, 0.7081888710343947, 0.1496415451034128, 0.01136677561558308, 0.0055690189660779765, -0.0005441941308146982], Float64[5.038521129225728, 7.036277974255681, 2.5888898889443, 0.7096428906298792, 0.14975799107681567, 0.011399201669279182, 0.005580246938073178, -0.0005477396012294784] ] ], #1, molecule number [7, #2, molecule formula "O2", #3, molecule name "Oxygen", #4, global isotopologue numbers Int64[36, 37, 38], #5, isotopologue formulae String["16O2", "16O18O", "16O17O"], #6, AFGL code Int64[66, 68, 67], #7, abundance fractions Float64[0.995262, 0.003991, 0.000742235], #8, molecular masses (kg/mole) Float64[0.031989830000000004, 0.033994076, 0.032994045], #9, Qref Float64[215.73, 455.23, 2658.12], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4, 4], #12, maximum relative errors of interpolation Float64[0.0041, 0.0046, 0.0049], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.8169911476436258, 1.7787349638684251, 0.06038173512650354, 0.010527289874679694], Float64[1.8579285870104456, 1.8479587879352657, 0.09662133281030434, 0.021907776219117842], Float64[1.8534855385966251, 1.841048066429084, 0.09392781106403698, 0.021584982116504392] ] ], #1, molecule number [8, #2, molecule formula "NO", #3, molecule name "Nitric Oxide", #4, global isotopologue numbers Int64[39, 40, 41], #5, isotopologue formulae String["14N16O", "15N16O", "14N18O"], #6, AFGL code Int64[46, 56, 48], #7, abundance fractions Float64[0.993974, 0.003654, 0.001993], #8, molecular masses (kg/mole) Float64[0.029997989, 0.030995023, 0.032002234000000004], #9, Qref Float64[1142.13, 789.26, 1204.44], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[10, 10, 10], #12, maximum relative errors of interpolation Float64[0.0083, 0.0084, 0.0085], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[2.022879002635259, 2.1237886286875303, 0.12399689023022563, -0.009259037224789404, 0.01487593099804976, -0.007768913072230708, 0.002867728523709386, -0.0007316837794678621, -7.443930904828101e-05, 0.00013029548728265498], Float64[2.0273058689602084, 2.1309113128029358, 0.12723729874870546, -0.008638605216508043, 0.014726863586520296, -0.0077965256468788685, 0.0028961073794491693, -0.000737512056292195, -6.570282357958806e-05, 0.00013225984839040607], Float64[2.0294899939509414, 2.1344200568742244, 0.12882581216417885, -0.008331484385140185, 0.014653941163746952, -0.007814956390896736, 0.002906477403806661, -0.0007396933931758479, -6.357731128186433e-05, 0.00012902023942729102] ] ], #1, molecule number [9, #2, molecule formula "SO2", #3, molecule name "Sulfur Dioxide", #4, global isotopologue numbers Int64[42, 43], #5, isotopologue formulae String["32S16O2", "34S16O2"], #6, AFGL code Int64[626, 646], #7, abundance fractions Float64[0.945678, 0.04195], #8, molecular masses (kg/mole) Float64[0.063961901, 0.065957695], #9, Qref Float64[6340.3, 6368.98], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.008, 0.008], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[5.322899596644206, 7.361793665479842, 2.4685172475289034, 0.4593724914539494, 0.04693984072073576, -0.0022777800327913322, 0.0016853901083817568, -0.0009605272724346747, 0.0003893627846269787], Float64[5.322098471801372, 7.360509652089675, 2.4679029817288893, 0.4592255365312494, 0.04692738529504803, -0.0022790239425536374, 0.0016852856097759883, -0.0009602665910768415, 0.00038778403377648374] ] ], #1, molecule number [10, #2, molecule formula "NO2", #3, molecule name "Nitrogen Dioxide", #4, global isotopologue numbers Int64[44, 130], #5, isotopologue formulae String["14N16O2", "15N16O2"], #6, AFGL code Int64[646, 656], #7, abundance fractions Float64[0.991616, 0.003646], #8, molecular masses (kg/mole) Float64[0.045992904, 0.046989938], #9, Qref Float64[13577.48, 9324.7], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 8], #12, maximum relative errors of interpolation Float64[0.0098, 0.0098], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.28158486704412, 5.705703174793279, 1.6937108567035881, 0.28623161362735894, 0.03210370018398624, -0.004833093686365356, 0.002727672554545535, -0.0009386770019688129], Float64[4.28158486704412, 5.705703174793279, 1.6937108567035881, 0.28623161362735894, 0.03210370018398624, -0.004833093686365356, 0.002727672554545535, -0.0009386770019688129] ] ], #1, molecule number [11, #2, molecule formula "NH3", #3, molecule name "Ammonia", #4, global isotopologue numbers Int64[45, 46], #5, isotopologue formulae String["14NH3", "15NH3"], #6, AFGL code Int64[4111, 5111], #7, abundance fractions Float64[0.995872, 0.003661], #8, molecular masses (kg/mole) Float64[0.017026549, 0.018023583], #9, Qref Float64[1725.22, 1153.3], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0075, 0.0075], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[3.8555960403301373, 5.040288257810079, 1.4109697012367264, 0.24722432325106913, 0.04050656557366161, -0.0038690829501497603, 0.002775394410359233, -0.0008768219769410557, 0.00020945927498106087], Float64[3.7706796997985936, 4.891536114323181, 1.3123307039988636, 0.20002602773432243, 0.02604944595386982, -0.005835809118104995, 0.002916794286104585, -0.0008693703104207806, 0.00018585921410796402] ] ], #1, molecule number [12, #2, molecule formula "HNO3", #3, molecule name "Nitric Acid", #4, global isotopologue numbers Int64[47, 117], #5, isotopologue formulae String["H14N16O3", "H15N16O3"], #6, AFGL code Int64[146, 156], #7, abundance fractions Float64[0.98911, 0.003636], #8, molecular masses (kg/mole) Float64[0.062995644, 0.06399268], #9, Qref Float64[214000.0, 143000.0], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0072, 0.0073], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[23.230966874867196, 37.713046763492684, 20.728891814718033, 8.121744804012192, 2.305601327065478, 0.48245116851004877, 0.07614122727266803, 0.0068653086813306174, 0.0014066597448483265], Float64[23.63526946297278, 38.40170483557111, 21.15217371744953, 8.308610842642612, 2.3655429409129027, 0.49660656393444746, 0.07850397352590655, 0.0071504774322548315, 0.0014405894745461723] ] ], #1, molecule number [13, #2, molecule formula "OH", #3, molecule name "Hydroxyl", #4, global isotopologue numbers Int64[48, 49, 50], #5, isotopologue formulae String["16OH", "18OH", "16OD"], #6, AFGL code Int64[61, 81, 62], #7, abundance fractions Float64[0.997473, 0.002, 0.000155371], #8, molecular masses (kg/mole) Float64[0.01700274, 0.019006986, 0.018008914999999997], #9, Qref Float64[80.35, 80.88, 209.32], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9, 8], #12, maximum relative errors of interpolation Float64[0.0068, 0.0069, 0.0064], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.8348152488068417, 1.7541974761207322, 0.05921231834937474, -0.025587632394101223, 0.016697790226026132, -0.008941690431595317, 0.0052568726754337915, -0.003495533506610027, 0.0014773841302516688], Float64[1.8505560852233072, 1.7811349343619796, 0.07407620302602635, -0.020226248256200174, 0.017225839806468524, -0.009253742271296772, 0.005191375517307202, -0.003471462133196712, 0.0014838792162081837], Float64[1.8980931808868446, 1.8878476706620586, 0.06346999293280998, -0.025382216475793522, 0.01515875114784657, -0.007217914788709562, 0.003960092995426656, -0.0015407268617251596] ] ], #1, molecule number [14, #2, molecule formula "HF", #3, molecule name "Hydrogen Fluoride", #4, global isotopologue numbers Int64[51, 110], #5, isotopologue formulae String["H19F", "D19F"], #6, AFGL code Int64[19, 29], #7, abundance fractions Float64[0.999844, 0.000155741], #8, molecular masses (kg/mole) Float64[0.020006229, 0.021012404], #9, Qref Float64[41.47, 115.91], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 3], #12, maximum relative errors of interpolation Float64[0.0099, 0.0072], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7159194314292705, 1.603109095729781, 0.007421783834501869, 7.083322701672393e-05, 0.00164524541490359, -0.0009050350115482955, 0.0008683741416758904, -0.0004347685534003633], Float64[1.7382395497979517, 1.6521889828315073, 0.016506244352682442] ] ], #1, molecule number [15, #2, molecule formula "HCl", #3, molecule name "Hydrogen Chloride", #4, global isotopologue numbers Int64[52, 53, 107, 108], #5, isotopologue formulae String["H35Cl", "H37Cl", "D35Cl", "D37Cl"], #6, AFGL code Int64[15, 17, 25, 27], #7, abundance fractions Float64[0.757587, 0.242257, 0.000118005, 3.7735000000000004e-05], #8, molecular masses (kg/mole) Float64[0.035976678, 0.037973729, 0.036982852999999996, 0.038979903999999996], #9, Qref Float64[160.65, 160.89, 462.78, 464.13], #10, has interpolating chebyshev expansion? Bool[true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[3, 3, 4, 4], #12, maximum relative errors of interpolation Float64[0.0076, 0.0077, 0.0075, 0.0075], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7389932647539617, 1.6540553376906317, 0.016823417474485014], Float64[1.7390283919416012, 1.6541608552427125, 0.016862589474273326], Float64[1.7769014767992009, 1.7170608001937298, 0.046270829696325975, 0.013326424837602602], Float64[1.7771378593252287, 1.7174573475033619, 0.04644272154650967, 0.013365234531843573] ] ], #1, molecule number [16, #2, molecule formula "HBr", #3, molecule name "Hydrogen Bromide", #4, global isotopologue numbers Int64[54, 55, 111, 112], #5, isotopologue formulae String["H79Br", "H81Br", "D79Br", "D81Br"], #6, AFGL code Int64[19, 11, 29, 21], #7, abundance fractions Float64[0.506781, 0.493063, 7.893840000000001e-05, 7.68016e-05], #8, molecular masses (kg/mole) Float64[0.07992616, 0.081924115, 0.08093233600000001, 0.082930289], #9, Qref Float64[200.17, 200.23, 586.4, 586.76], #10, has interpolating chebyshev expansion? Bool[true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4, 4, 4], #12, maximum relative errors of interpolation Float64[0.0075, 0.0075, 0.0072, 0.0072], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7488750133890794, 1.669328183117771, 0.0263672556822101, 0.008005907904859702], Float64[1.748900710055193, 1.669366126576109, 0.026379118142379514, 0.008009591348277537], Float64[1.8028059428968322, 1.7589216134192316, 0.0639923517825675, 0.016990238558940145], Float64[1.8028645166164645, 1.7590220344851282, 0.06403776029402719, 0.01699860427688697] ] ], #1, molecule number [17, #2, molecule formula "HI", #3, molecule name "Hydrogen Iodide", #4, global isotopologue numbers Int64[56, 113], #5, isotopologue formulae String["H127I", "D127I"], #6, AFGL code Int64[17, 27], #7, abundance fractions Float64[0.999844, 0.000155741], #8, molecular masses (kg/mole) Float64[0.127912297, 0.128918472], #9, Qref Float64[388.99, 1147.06], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4], #12, maximum relative errors of interpolation Float64[0.0077, 0.0054], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.766635713209643, 1.699786979483175, 0.03930603336481905, 0.011626090261548741], Float64[1.8405398208009391, 1.8185964784146365, 0.08822013072731567, 0.020907340042985556] ] ], #1, molecule number [18, #2, molecule formula "ClO", #3, molecule name "Chlorine Monoxide", #4, global isotopologue numbers Int64[57, 58], #5, isotopologue formulae String["35Cl16O", "37Cl16O"], #6, AFGL code Int64[56, 76], #7, abundance fractions Float64[0.755908, 0.24172], #8, molecular masses (kg/mole) Float64[0.050963768, 0.052960819], #9, Qref Float64[3274.61, 3332.29], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 7], #12, maximum relative errors of interpolation Float64[0.0096, 0.0095], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[2.726090979162171, 3.1747524473309494, 0.53340481837599, 0.00862471634302627, -0.0033188447116862716, 0.002818989455709797, -0.0014107531874335184], Float64[2.730927657002032, 3.182125195917262, 0.536151715425191, 0.008740020580801774, -0.0034008147472519936, 0.0028494736999678714, -0.001422681090598843] ] ], #1, molecule number [19, #2, molecule formula "OCS", #3, molecule name "Carbonyl Sulfide", #4, global isotopologue numbers Int64[59, 60, 61, 62, 63, 135], #5, isotopologue formulae String["16O12C32S", "16O12C34S", "16O13C32S", "16O12C33S", "18O12C32S", "16O13C34S"], #6, AFGL code Int64[622, 624, 632, 623, 822, 634], #7, abundance fractions Float64[0.937395, 0.041583, 0.010531, 0.007399, 0.00188, 0.00046750800000000005], #8, molecular masses (kg/mole) Float64[0.059966986, 0.06196278, 0.060970341, 0.060966371000000005, 0.061971231, 0.06296613599999999], #9, Qref Float64[1221.01, 1253.48, 2484.15, 4950.11, 1313.78, 2546.53], #10, has interpolating chebyshev expansion? Bool[true, true, true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[6, 6, 6, 6, 6, 6], #12, maximum relative errors of interpolation Float64[0.0057, 0.0058, 0.0054, 0.0057, 0.0051, 0.0057], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[5.126342127660176, 7.034492494351397, 2.46587731887598, 0.5193274408013411, 0.03999760328325479, 0.007938846511621734], Float64[5.156948279839978, 7.083476707015535, 2.4892336653688045, 0.5249638067698701, 0.040620760059749725, 0.008015867648682118], Float64[5.272543748922432, 7.269032398550013, 2.575970190347018, 0.5458344409651564, 0.043964679171464384, 0.008125632759047364], Float64[5.142002462968687, 7.059554966519485, 2.4778239245689733, 0.5222067488374783, 0.04031309017091687, 0.007976767222211124], Float64[5.2433970110477635, 7.222282031530504, 2.554774663298425, 0.5409890003043852, 0.043020671404242705, 0.008132056962323376], Float64[5.126342127660176, 7.034492494351397, 2.46587731887598, 0.5193274408013411, 0.03999760328325479, 0.007938846511621734] ] ], #1, molecule number [20, #2, molecule formula "H2CO", #3, molecule name "Formaldehyde", #4, global isotopologue numbers Int64[64, 65, 66], #5, isotopologue formulae String["H212C16O", "H213C16O", "H212C18O"], #6, AFGL code Int64[126, 136, 128], #7, abundance fractions Float64[0.986237, 0.01108, 0.001978], #8, molecular masses (kg/mole) Float64[0.030010565, 0.03101392, 0.032014811000000004], #9, Qref Float64[2844.53, 5837.69, 2986.44], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 8, 8], #12, maximum relative errors of interpolation Float64[0.009, 0.0066, 0.0066], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.099296685534555, 5.46254008647207, 1.6762575149353685, 0.3607112319829267, 0.0658749047199505, -0.0032135863867808943, 0.0031701326455504386], Float64[4.096562472963226, 5.45838322129773, 1.6745262086094586, 0.36054806548097645, 0.06622828358352943, -0.0027924541403665515, 0.0030753561215511077, -0.0005451817250504222], Float64[4.0966583506132235, 5.458540573571016, 1.6745828181967304, 0.3605577126652277, 0.06623155701519713, -0.0027929745447514065, 0.0030755155592398103, -0.0005453868311245154] ] ], #1, molecule number [21, #2, molecule formula "HOCl", #3, molecule name "Hypochlorous Acid", #4, global isotopologue numbers Int64[67, 68], #5, isotopologue formulae String["H16O35Cl", "H16O37Cl"], #6, AFGL code Int64[165, 167], #7, abundance fractions Float64[0.75579, 0.241683], #8, molecular masses (kg/mole) Float64[0.051971592999999996, 0.053968643999999996], #9, Qref Float64[19274.79, 19616.2], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0041, 0.0041], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.143619456416505, 5.464534302985132, 1.535937117235669, 0.21748079463269954, 0.01850070265914905, -0.003603611521264982, 0.0025436888861178897, -0.0012872390879090645, 0.0004250820383528975], Float64[4.143652887452801, 5.46458889118496, 1.5359558687538701, 0.21748297167936315, 0.018501348337276458, -0.0036037772770924903, 0.0025437650379011023, -0.0012874828201296928, 0.0004249718859172802] ] ], #1, molecule number [22, #2, molecule formula "N2", #3, molecule name "Nitrogen", #4, global isotopologue numbers Int64[69, 118], #5, isotopologue formulae String["14N2", "14N15N"], #6, AFGL code Int64[44, 45], #7, abundance fractions Float64[0.992687, 0.007478], #8, molecular masses (kg/mole) Float64[0.028006147999999998, 0.029003182], #9, Qref Float64[467.1, 644.1], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4], #12, maximum relative errors of interpolation Float64[0.006, 0.0061], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7615954213555896, 1.6956422885022302, 0.03176548637294833, 0.01029121610063847], Float64[1.763674187848655, 1.6990430426037548, 0.03341123366974245, 0.010717926189910779] ] ], #1, molecule number [23, #2, molecule formula "HCN", #3, molecule name "Hydrogen Cyanide", #4, global isotopologue numbers Int64[70, 71, 72], #5, isotopologue formulae String["H12C14N", "H13C14N", "H12C15N"], #6, AFGL code Int64[124, 134, 125], #7, abundance fractions Float64[0.985114, 0.011068, 0.003622], #8, molecular masses (kg/mole) Float64[0.027010898999999998, 0.028014254000000002, 0.028007933000000002], #9, Qref Float64[892.2, 1830.97, 615.28], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 5, 5], #12, maximum relative errors of interpolation Float64[0.0081, 0.01, 0.0079], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[3.1500573196671033, 3.871952656895569, 0.9740837519171931, 0.1661471760780874, -0.0004121953054499657, 0.0038889475688232977, -0.00040715469175870805], Float64[3.168146071291571, 3.8993492460929553, 0.9876728830526877, 0.17458143818914662, -0.0006551859591950038], Float64[3.3184960101262417, 4.140109825563163, 1.1038407893004953, 0.19960512535349317, -0.0016887611352265353] ] ], #1, molecule number [24, #2, molecule formula "CH3Cl", #3, molecule name "Methyl Chloride", #4, global isotopologue numbers Int64[73, 74], #5, isotopologue formulae String["12CH335Cl", "12CH337Cl"], #6, AFGL code Int64[215, 217], #7, abundance fractions Float64[0.748937, 0.239491], #8, molecular masses (kg/mole) Float64[0.049992328, 0.051989379], #9, Qref Float64[57916.12, 58833.9], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 8], #12, maximum relative errors of interpolation Float64[0.0083, 0.0083], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[7.29969230201383, 10.76299105271942, 4.6188215208386625, 1.4061580874699755, 0.3052046132618746, 0.04120328062335891, 0.009648711581299096, -0.0008605824437495357], Float64[7.299832398848403, 10.763224928473894, 4.61894630404787, 1.4062027724380906, 0.3052168648070337, 0.041205502783890936, 0.00964906200847285, -0.0008605280785930956] ] ], #1, molecule number [25, #2, molecule formula "H2O2", #3, molecule name "Hydrogen Peroxide", #4, global isotopologue numbers Int64[75], #5, isotopologue formulae String["H216O2"], #6, AFGL code Int64[1661], #7, abundance fractions Float64[0.994952], #8, molecular masses (kg/mole) Float64[0.03400548], #9, Qref Float64[9847.99], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[11], #12, maximum relative errors of interpolation Float64[0.0067], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[6.659148751736031, 9.483437660502407, 3.4240505334530247, 0.6560605220688904, 0.07013734708443575, 0.0001766124815127057, 0.000513028749733202, -0.00029800025544997056, 7.57280500629065e-05, -0.00016363556385172727, 0.00010136968662237678] ] ], #1, molecule number [26, #2, molecule formula "C2H2", #3, molecule name "Acetylene", #4, global isotopologue numbers Int64[76, 77, 105], #5, isotopologue formulae String["12C2H2", "H12C13CH", "H12C12CD"], #6, AFGL code Int64[1221, 1231, 1222], #7, abundance fractions Float64[0.977599, 0.021966, 0.00030455], #8, molecular masses (kg/mole) Float64[0.02601565, 0.027019005, 0.027021825], #9, Qref Float64[412.45, 1656.18, 1581.84], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 8, 9], #12, maximum relative errors of interpolation Float64[0.0064, 0.0067, 0.005], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[6.606246082570006, 9.5021885391759, 3.8798354279414227, 1.0421227361830696, 0.15435826120434, 0.024812414831032723, 0.0013956143916372201, -0.0005373524520955186], Float64[6.691310653700157, 9.642511905249071, 3.9554948181251057, 1.0672351744197028, 0.1592037312638897, 0.02524828278728946, 0.0014209977344309874, -0.0005472408750750089], Float64[8.312818087515264, 12.296135611243283, 5.334539240450019, 1.5041555942106484, 0.25556636740202876, 0.040809216146493243, -5.996404029051661e-05, -0.0008823053560504945, 0.001325829564092551] ] ], #1, molecule number [27, #2, molecule formula "C2H6", #3, molecule name "Ethane", #4, global isotopologue numbers Int64[78, 106], #5, isotopologue formulae String["12C2H6", "12CH313CH3"], #6, AFGL code Int64[1221, 1231], #7, abundance fractions Float64[0.97699, 0.021953], #8, molecular masses (kg/mole) Float64[0.03004695, 0.031050305], #9, Qref Float64[70882.52, 36191.8], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0084, 0.0084], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[29.306413760745293, 48.87646045145203, 29.277666381786332, 13.421126486275961, 4.868450706061395, 1.4265486625599113, 0.350571677937209, 0.07303068189280282, 0.012110399026012075], Float64[29.31971200400752, 48.899765252850294, 29.29331784478448, 13.429280048978747, 4.87184061373862, 1.4276942043686383, 0.3508915525695748, 0.07310824356884638, 0.01212522620861023] ] ], #1, molecule number [28, #2, molecule formula "PH3", #3, molecule name "Phosphine", #4, global isotopologue numbers Int64[79], #5, isotopologue formulae String["31PH3"], #6, AFGL code Int64[1111], #7, abundance fractions Float64[0.999533], #8, molecular masses (kg/mole) Float64[0.033997238000000006], #9, Qref Float64[3249.44], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[8], #12, maximum relative errors of interpolation Float64[0.0061], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.77754526457992, 6.561487284314362, 2.241225465013582, 0.5263044273306788, 0.09227919777852593, 0.002846217167035497, 0.004031049657860259, -0.0011050831525177987] ] ], #1, molecule number [29, #2, molecule formula "COF2", #3, molecule name "Carbonyl Fluoride", #4, global isotopologue numbers Int64[80, 119], #5, isotopologue formulae String["12C16O19F2", "13C16O19F2"], #6, AFGL code Int64[269, 369], #7, abundance fractions Float64[0.986544, 0.011083], #8, molecular masses (kg/mole) Float64[0.065991722, 0.066995083], #9, Qref Float64[70028.43, 140000.0], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0037, 0.0037], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[11.629931174695397, 17.881640555690623, 8.45377717908021, 2.6794696985587407, 0.5645965476906625, 0.07777414142631045, 0.00947097051224155, -0.001480514566241098, 0.0007799374263299796], Float64[11.635249499599023, 17.889802343475637, 8.457586722083246, 2.6806408754837325, 0.5648398483725394, 0.07780705463459148, 0.009474014430588262, -0.0014807057725274575, 0.0007800005503160179] ] ], #1, molecule number [30, #2, molecule formula "SF6", #3, molecule name "Sulfur Hexafluoride", #4, global isotopologue numbers Int64[126], #5, isotopologue formulae String["32S19F6"], #6, AFGL code Int64[29], #7, abundance fractions Float64[0.95018], #8, molecular masses (kg/mole) Float64[0.145962492], #9, Qref Float64[1620000.0], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[14], #12, maximum relative errors of interpolation Float64[0.00024], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1870.7117266249759, 3396.573083307492, 2545.0085260475485, 1579.432604203472, 815.1045425222118, 351.0061028885553, 126.3795862864786, 38.05037645536903, 9.559459105261725, 1.9936675698906514, 0.3424948763082424, 0.04771635428971002, 0.005364060141101408, 0.00045015125453154236] ] ], #1, molecule number [31, #2, molecule formula "H2S", #3, molecule name "Hydrogen Sulfide", #4, global isotopologue numbers Int64[81, 82, 83], #5, isotopologue formulae String["H232S", "H234S", "H233S"], #6, AFGL code Int64[121, 141, 131], #7, abundance fractions Float64[0.949884, 0.042137, 0.007498], #8, molecular masses (kg/mole) Float64[0.033987721, 0.035983514999999994, 0.034987105], #9, Qref Float64[505.79, 504.35, 2014.94], #10, has interpolating chebyshev expansion? Bool[true, true, true], #11, lengths of interpolating chebyshev expansion Int64[8, 8, 8], #12, maximum relative errors of interpolation Float64[0.0056, 0.0083, 0.0083], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[3.1610034569623626, 3.9079200993763954, 0.8188618250430909, 0.07182197256747361, 0.018994732241263388, -0.004588514291410765, 0.00193425807974279, -0.0006258386386391075], Float64[3.136231167171715, 3.868597973183339, 0.801384127880046, 0.06811779813907153, 0.018316506534915036, -0.00478598833219644, 0.0020113628824416046, -0.0006519501360460518], Float64[3.136195916650622, 3.868549974556976, 0.8013728165558528, 0.06811697766351898, 0.0183160074539575, -0.004786003572910781, 0.002011194206114096, -0.0006519716060844973] ] ], #1, molecule number [32, #2, molecule formula "HCOOH", #3, molecule name "Formic Acid", #4, global isotopologue numbers Int64[84], #5, isotopologue formulae String["H12C16O16OH"], #6, AFGL code Int64[126], #7, abundance fractions Float64[0.983898], #8, molecular masses (kg/mole) Float64[0.04600548], #9, Qref Float64[39132.76], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[9], #12, maximum relative errors of interpolation Float64[0.0038], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[11.020149393914501, 16.9755902316461, 8.167574402236214, 2.7594738274122346, 0.6634809411963838, 0.11285962933776061, 0.01800084865083562, -5.6527863588229366e-05, 0.000655575724366031] ] ], #1, molecule number [33, #2, molecule formula "HO2", #3, molecule name "Hydroperoxyl", #4, global isotopologue numbers Int64[85], #5, isotopologue formulae String["H16O2"], #6, AFGL code Int64[166], #7, abundance fractions Float64[0.995107], #8, molecular masses (kg/mole) Float64[0.032997655], #9, Qref Float64[4300.39], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[8], #12, maximum relative errors of interpolation Float64[0.0074], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[3.4589368258406075, 4.387817669014019, 1.053710491228722, 0.12771732192601018, 0.018001614852028273, -0.006237091281306625, 0.002782788224954099, -0.000725510875379801] ] ], #1, molecule number [34, #2, molecule formula "O", #3, molecule name "Oxygen Atom", #4, global isotopologue numbers Int64[86], #5, isotopologue formulae String["16O"], #6, AFGL code Int64[6], #7, abundance fractions Float64[0.997628], #8, molecular masses (kg/mole) Float64[0.015994915000000002], #9, Qref Float64[6.72], #10, has interpolating chebyshev expansion? Bool[false], #11, lengths of interpolating chebyshev expansion Int64[0], #12, maximum relative errors of interpolation Float64[0], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[] ] ], #1, molecule number [35, #2, molecule formula "ClONO2", #3, molecule name "Chlorine Nitrate", #4, global isotopologue numbers Int64[127, 128], #5, isotopologue formulae String["35Cl16O14N16O2", "37Cl16O14N16O2"], #6, AFGL code Int64[5646, 7646], #7, abundance fractions Float64[0.74957, 0.239694], #8, molecular masses (kg/mole) Float64[0.096956672, 0.098953723], #9, Qref Float64[4790000.0, 4910000.0], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[10, 10], #12, maximum relative errors of interpolation Float64[0.0016, 0.0015], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[112.41039753461149, 192.5969283401371, 121.68354064743774, 57.30328926867914, 20.284701556330944, 5.410076429365737, 1.0808835468204576, 0.15853736954761644, 0.016535623193792363, 0.001150132727673281], Float64[112.45459127185921, 192.67265280226152, 121.7313921905935, 57.32582857162725, 20.292682333281764, 5.412206013024527, 1.081309309033366, 0.15859843363539816, 0.016538546940485805, 0.0011482640850822969] ] ], #1, molecule number [36, #2, molecule formula "NO+", #3, molecule name "Nitric Oxide Cation", #4, global isotopologue numbers Int64[87], #5, isotopologue formulae String["14N16O+"], #6, AFGL code Int64[46], #7, abundance fractions Float64[0.993974], #8, molecular masses (kg/mole) Float64[0.029997989], #9, Qref Float64[311.69], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[4], #12, maximum relative errors of interpolation Float64[0.0059], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.7605530293617953, 1.6939645379456973, 0.030855228843472766, 0.010020286719835495] ] ], #1, molecule number [37, #2, molecule formula "HOBr", #3, molecule name "Hypobromous Acid", #4, global isotopologue numbers Int64[88, 89], #5, isotopologue formulae String["H16O79Br", "H16O81Br"], #6, AFGL code Int64[169, 161], #7, abundance fractions Float64[0.505579, 0.491894], #8, molecular masses (kg/mole) Float64[0.095921076, 0.097919027], #9, Qref Float64[28339.38, 28237.98], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0051, 0.0052], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[4.483055511505265, 5.995051967678824, 1.7647444347848933, 0.2533586767055279, 0.016936791901325243, -0.002838029482718052, 0.0023154774596215733, -0.0013133740502127011, 0.00048033005031822285], Float64[4.486274449888522, 6.000089813847239, 1.7669127031543173, 0.25370966952649165, 0.01695092315480551, -0.0028181141360982265, 0.0023235097509621827, -0.0013007580536887886, 0.00048488773683352804] ] ], #1, molecule number [38, #2, molecule formula "C2H4", #3, molecule name "Ethylene", #4, global isotopologue numbers Int64[90, 91], #5, isotopologue formulae String["12C2H4", "12CH213CH2"], #6, AFGL code Int64[221, 231], #7, abundance fractions Float64[0.977294, 0.021959], #8, molecular masses (kg/mole) Float64[0.028031300000000002, 0.029034655], #9, Qref Float64[11041.54, 45196.89], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[7, 7], #12, maximum relative errors of interpolation Float64[0.0091, 0.0091], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[10.306665304688702, 15.910097139939962, 7.822086138506613, 2.834536775621054, 0.7613961848840939, 0.1521884153819452, 0.030223301156906263], Float64[10.306853180349535, 15.910413449245775, 7.822252700108585, 2.83459834274206, 0.7614149949091343, 0.15219218454683414, 0.030224516959518628] ] ], #1, molecule number [39, #2, molecule formula "CH3OH", #3, molecule name "Methanol", #4, global isotopologue numbers Int64[92], #5, isotopologue formulae String["12CH316OH"], #6, AFGL code Int64[2161], #7, abundance fractions Float64[0.98593], #8, molecular masses (kg/mole) Float64[0.032026215000000004], #9, Qref Float64[70569.92], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[11], #12, maximum relative errors of interpolation Float64[0.0063], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[13.749331968563945, 21.61345904772461, 10.955577051534103, 3.977402542310325, 1.0933160614782178, 0.2226208170647183, 0.038152444149720924, 0.00540115477077876, 0.0001595952470339057, 1.367409072514647e-05, 8.94526436184151e-05] ] ], #1, molecule number [40, #2, molecule formula "CH3Br", #3, molecule name "Methyl Bromide", #4, global isotopologue numbers Int64[93, 94], #5, isotopologue formulae String["12CH379Br", "12CH381Br"], #6, AFGL code Int64[219, 211], #7, abundance fractions Float64[0.500995, 0.487433], #8, molecular masses (kg/mole) Float64[0.093941811, 0.095939764], #9, Qref Float64[83051.98, 83395.21], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[9, 9], #12, maximum relative errors of interpolation Float64[0.0054, 0.0054], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[8.322478463681351, 12.445792571437991, 5.528514219140895, 1.7163686770516318, 0.37806637006999333, 0.05547356269277692, 0.010458543694655376, -0.0007773050759798394, 0.0004671678943388713], Float64[8.329461595021453, 12.457238194953582, 5.534590915534836, 1.7183801520233106, 0.3785478856826856, 0.05556730686168132, 0.010462922226282423, -0.0007745337034998911, 0.0004672506165874779] ] ], #1, molecule number [41, #2, molecule formula "CH3CN", #3, molecule name "Acetonitrile", #4, global isotopologue numbers Int64[95], #5, isotopologue formulae String["12CH312C14N"], #6, AFGL code Int64[2124], #7, abundance fractions Float64[0.973866], #8, molecular masses (kg/mole) Float64[0.041026549], #9, Qref Float64[88672.19], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[11], #12, maximum relative errors of interpolation Float64[0.0054], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[23.087630326330327, 37.50816558997893, 20.677521610415493, 8.221774398903325, 2.4554758737437163, 0.5635995654848657, 0.10208943244482249, 0.014556918325425272, 0.001771181894064, -0.00017207723102501403, 0.0001938628200505832] ] ], #1, molecule number [42, #2, molecule formula "CF4", #3, molecule name "PFC-14", #4, global isotopologue numbers Int64[96], #5, isotopologue formulae String["12C19F4"], #6, AFGL code Int64[29], #7, abundance fractions Float64[0.98889], #8, molecular masses (kg/mole) Float64[0.087993616], #9, Qref Float64[121000.0], #10, has interpolating chebyshev expansion? Bool[false], #11, lengths of interpolating chebyshev expansion Int64[0], #12, maximum relative errors of interpolation Float64[0], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[] ] ], #1, molecule number [43, #2, molecule formula "C4H2", #3, molecule name "Diacetylene", #4, global isotopologue numbers Int64[116], #5, isotopologue formulae String["12C4H2"], #6, AFGL code Int64[2211], #7, abundance fractions Float64[0.955998], #8, molecular masses (kg/mole) Float64[0.05001565], #9, Qref Float64[9818.97], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[10], #12, maximum relative errors of interpolation Float64[0.0044], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[139.66835957434776, 241.85305800353672, 157.95302972883783, 78.74096208726291, 30.283942023964958, 9.074668301483646, 2.130903025224642, 0.3944094168400372, 0.05767338336487329, 0.006565583269182045] ] ], #1, molecule number [44, #2, molecule formula "HC3N", #3, molecule name "Cyanoacetylene", #4, global isotopologue numbers Int64[109], #5, isotopologue formulae String["H12C314N"], #6, AFGL code Int64[1224], #7, abundance fractions Float64[0.963346], #8, molecular masses (kg/mole) Float64[0.051010899000000005], #9, Qref Float64[24786.84], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[9], #12, maximum relative errors of interpolation Float64[0.0062], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[54.67987143122882, 91.66794189149792, 54.56630682138059, 23.48211282466563, 7.394320212397229, 1.7249800510739384, 0.2979283599543656, 0.03885721387024432, 0.0032754500365292927] ] ], #1, molecule number [45, #2, molecule formula "H2", #3, molecule name "Hydrogen", #4, global isotopologue numbers Int64[103, 115], #5, isotopologue formulae String["H2", "HD"], #6, AFGL code Int64[11, 12], #7, abundance fractions Float64[0.999688, 0.00031143200000000005], #8, molecular masses (kg/mole) Float64[0.00201565, 0.003021825], #9, Qref Float64[7.67, 29.87], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[11, 11], #12, maximum relative errors of interpolation Float64[0.0072, 0.0085], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.664734139290654, 1.541274894552553, -0.009725177039028837, 0.010711847479083847, -0.0017437301893213019, -0.0036796434870607795, 0.006507341594540717, -0.006895927202643417, 0.006015970973214247, -0.004996438617030119, 0.002286683531610123], Float64[1.702133003802882, 1.5472084650368458, 0.02093893129594614, -0.005247622987785912, 0.0065559250200964096, -0.004561928075496269, 0.0036220249507184165, -0.002945429432234235, 0.002444808920724935, -0.002149668002996563, 0.0010267991465589433] ] ], #1, molecule number [46, #2, molecule formula "CS", #3, molecule name "Carbon Monosulfide", #4, global isotopologue numbers Int64[97, 98, 99, 100], #5, isotopologue formulae String["12C32S", "12C34S", "13C32S", "12C33S"], #6, AFGL code Int64[22, 24, 32, 23], #7, abundance fractions Float64[0.939624, 0.041682, 0.010556, 0.007417], #8, molecular masses (kg/mole) Float64[0.043971036, 0.045966786999999995, 0.044974368, 0.044970399], #9, Qref Float64[253.62, 257.77, 537.5, 1022.97], #10, has interpolating chebyshev expansion? Bool[true, true, true, true], #11, lengths of interpolating chebyshev expansion Int64[4, 4, 4, 4], #12, maximum relative errors of interpolation Float64[0.0053, 0.0055, 0.0058, 0.0054], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[1.928548290410206, 1.9559277563753463, 0.13775785658135606, 0.025167997114126095], Float64[1.9320348490293633, 1.9612931183817734, 0.13973653631415997, 0.025297795999263812], Float64[1.941312753398263, 1.975502364252016, 0.1449170140435975, 0.025619198538681925], Float64[1.9303466528392785, 1.9586867922618854, 0.13877109254914913, 0.02523509205534813] ] ], #1, molecule number [47, #2, molecule formula "SO3", #3, molecule name "Sulfur trioxide", #4, global isotopologue numbers Int64[114], #5, isotopologue formulae String["32S16O3"], #6, AFGL code Int64[26], #7, abundance fractions Float64[0.9434], #8, molecular masses (kg/mole) Float64[0.07995682], #9, Qref Float64[7783.3], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[9], #12, maximum relative errors of interpolation Float64[0.0083], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[15.308429278661556, 24.00276207581289, 11.897538539905902, 3.9481327675633446, 0.8795595441612623, 0.12893108012856036, 0.011262184567776501, -0.0008464360123436876, 0.0011600801108988534] ] ], #1, molecule number [48, #2, molecule formula "C2N2", #3, molecule name "Cyanogen", #4, global isotopologue numbers Int64[123], #5, isotopologue formulae String["12C214N2"], #6, AFGL code Int64[4224], #7, abundance fractions Float64[0.970752], #8, molecular masses (kg/mole) Float64[0.052006148], #9, Qref Float64[15582.44], #10, has interpolating chebyshev expansion? Bool[true], #11, lengths of interpolating chebyshev expansion Int64[8], #12, maximum relative errors of interpolation Float64[0.0078], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[23.898246264067748, 38.30762066370932, 20.017340299203973, 6.9592760018001645, 1.616441488972797, 0.2564194297139437, 0.025346935562266384, 0.0020212521367994896] ] ], #1, molecule number [49, #2, molecule formula "COCl2", #3, molecule name "Phosgene", #4, global isotopologue numbers Int64[124, 125], #5, isotopologue formulae String["12C16O35Cl2", "12C16O35Cl37Cl"], #6, AFGL code Int64[2655, 2657], #7, abundance fractions Float64[0.566392, 0.362235], #8, molecular masses (kg/mole) Float64[0.09793261997960001, 0.0999296698896], #9, Qref Float64[1480000.0, 3040000.0], #10, has interpolating chebyshev expansion? Bool[true, true], #11, lengths of interpolating chebyshev expansion Int64[10, 10], #12, maximum relative errors of interpolation Float64[0.0067, 0.0067], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[28.334677111812944, 45.91333430423453, 24.71182133380345, 9.013419514341322, 2.223400830715287, 0.3666455762516466, 0.03834885535248765, 0.0015768709148049867, 0.0005194428496066747, -0.00021849483690535484], Float64[28.38289115870957, 45.99285456416629, 24.75674368149981, 9.030958287676107, 2.2280852109188753, 0.367484622231376, 0.03844429301198539, 0.0015817522400456913, 0.0005200295439730477, -0.00021895935986688327] ] ], [50], #no molecule has been assigned this number [51], #no molecule has been assigned this number [52], #no molecule has been assigned this number #1, molecule number [53, #2, molecule formula "CS2", #3, molecule name "Carbon disulfide", #4, global isotopologue numbers Int64[131, 132, 133, 134], #5, isotopologue formulae String["12C32S2", "32S12C34S", "32S12C33S", "13C32S2"], #6, AFGL code Int64[222, 224, 223, 232], #7, abundance fractions Float64[0.892811, 0.07926, 0.014094, 0.01031], #8, molecular masses (kg/mole) Float64[0.07594414000000001, 0.07793994000000001, 0.076943256, 0.076947495], #9, Qref Float64[1352.6, 2798.0, 1107.0, 2739.7], #10, has interpolating chebyshev expansion? Bool[false, false, false, false], #11, lengths of interpolating chebyshev expansion Int64[0, 0, 0, 0], #12, maximum relative errors of interpolation Float64[0, 0, 0, 0], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[], Float64[], Float64[], Float64[] ] ], [54], #no molecule has been assigned this number #1, molecule number [55, #2, molecule formula "NF3", #3, molecule name "Nitrogen trifluoride", #4, global isotopologue numbers Int64[136], #5, isotopologue formulae String["14N19F3"], #6, AFGL code Int64[4999], #7, abundance fractions Float64[0.996337], #8, molecular masses (kg/mole) Float64[0.070998284], #9, Qref Float64[346000.0], #10, has interpolating chebyshev expansion? Bool[false], #11, lengths of interpolating chebyshev expansion Int64[0], #12, maximum relative errors of interpolation Float64[0], #13, chebyshev expansion coefficients Vector{Float64}[ Float64[] ] ] ]
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
2785
export periapsis, apoapsis, semimajoraxis, eccentricity export meananomaly, trueanomaly, eccentricanomaly export orbitalperiod, orbitaldistance, orbit """ periapsis(a, e) Compute the periapsis (closest approach) distance using semi-major axis and eccentricity """ periapsis(a, e) = a*(1 - e) """ apoapsis(a, e) Compute the apoapsis (farthest distance) distance using semi-major axis and eccentricity """ apoapsis(a, e) = a*(1 + e) """ semimajoraxis(T, m) Compute the [semi-major axis](https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes) of an orbit """ semimajoraxis(T, m) = (𝐆*m*T^2/(4Ο€^2))^(1/3) """ eccentricity(rβ‚š, rₐ) Compute [eccentricity](https://en.wikipedia.org/wiki/Orbital_eccentricity) """ eccentricity(rβ‚š, rₐ) = (rₐ - rβ‚š)/(rₐ + rβ‚š) """ meananomaly(E, e) Compute the [mean anomaly](https://en.wikipedia.org/wiki/Mean_anomaly) """ meananomaly(E, e) = E - e*sin(E) """ trueanomaly(E, e) Compute the [true anomaly](https://en.wikipedia.org/wiki/True_anomaly) """ function trueanomaly(E, e) f = 2*atan(sqrt((1 + e)/(1 - e))*tan(E/2)) #use [0,2Ο€] instead of [-Ο€,Ο€] f < 0 ? f + 2Ο€ : f end """ trueanomaly(t, a, m, e) Compute the [true anomaly](https://en.wikipedia.org/wiki/True_anomaly) """ trueanomaly(t, a, m, e) = trueanomaly(eccentricanomaly(t, a, m, e), e) """ eccentricanomaly(t, a, m, e) Numerically compute the [eccentric anomaly](https://en.wikipedia.org/wiki/Eccentric_anomaly) using [Kepler's equation](https://en.wikipedia.org/wiki/Kepler%27s_equation) """ function eccentricanomaly(t, a, m, e) @assert t >= 0 "time must be positive" #Kepler's Third Law T = orbitalperiod(a, m) #definition of mean anomaly M = 2Ο€*rem(t, T)/T #eccentric anomaly must be found numerically E = falseposition((E,p)->meananomaly(E, e) - M, 0, 2Ο€) return E end """ orbitalperiod(a, m) [Kepler's Third Law](https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion#Third_law) describing the orbital period of an elliptical orbit """ orbitalperiod(a, m) = 2Ο€*√(a^3/(𝐆*m)) """ orbitaldistance(a, f, e) Compute the distance of a planet from its host """ orbitaldistance(a, f, e) = a*(1 - e^2)/(1 + e*cos(f)) """ orbitaldistance(t, a, m, e) Compute the distance of a planet from its host, assuming the planet is at periapsis at t=0 """ orbitaldistance(t, a, m, e) = orbitaldistance(a, trueanomaly(t, a, m, e), e) """ orbit(a, m, e, N=1000) Create a distance time-series of `N` points for an elliptical orbit, returning vectors for time, distance, and true anomaly """ function orbit(a, m, e, N::Int=1000) T = orbitalperiod(a, m) t = LinRange(0, T, N+1)[1:end-1] f = trueanomaly.(t, a, m, e) r = orbitaldistance.(a, f, e) return t, r, f end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
9798
export readpar, SpectralLines """ Mapping between single character isotopologue codes and isotopologue numbers. This is only relevant for molecules with many isotopologues, like CO2. The isotopologue code is only alloted 1 column in the fixed width .par files, so capital letters are used after 0-9 are exhausted. For example, the 11th isotopologue of CO2 in the HITRAN database is coded 'A' and the 12th is coded 'B'. """ const ISOINDEX = Dict( '1'=>1, '2'=>2, '3'=>3, '4'=>4, '5'=>5, '6'=>6, '7'=>7, '8'=>8, '9'=>9, '0'=>10, 'A'=>11, 'B'=>12, 'C'=>13, 'D'=>14, 'E'=>15, 'F'=>16, 'G'=>17, 'H'=>18, 'I'=>19, 'J'=>20, 'K'=>21, 'L'=>22, 'M'=>23, 'N'=>24, 'O'=>25, 'P'=>26, 'Q'=>27, 'R'=>28, 'S'=>29, 'T'=>30, 'U'=>31, 'V'=>32, 'W'=>33, 'X'=>34, 'Y'=>35, 'Z'=>36 ) """ readpar(filename; Ξ½min=0, Ξ½max=Inf, Scut=0, I=[], maxlines=-1) Read an absoption line file from the HITRAN database, which should have the ".par" extension. These files are available at [`https://hitran.org/lbl`](https://hitran.org/lbl) after registering for a free account. # Keyword Arguments * `Ξ½min`: smallest line wavenumber to include * `Ξ½max`: largest line wavenumber to include * `Scut`: smallest spectral line intensity * `I`: array of isotopologue numbers to include (excludes all others) * `maxlines`: maximum number of lines to include (includes only the most intense `maxlines` lines) A dictionary of vectors is returned, reflecting the definitions from 1. [HITRAN website](https://hitran.org/docs/definitions-and-units`) 2. [Rothman, Laurence S., et al. "The HITRAN 2004 molecular spectroscopic database." Journal of quantitative spectroscopy and radiative transfer 96.2 (2005): 139-204.](https://www.sciencedirect.com/science/article/abs/pii/S0022407313002859) | Key | Vector Type | Description | | --- | :---------- | :---------- | | `M` | `Int16` | [HITRAN molecular identification number](https://hitran.org/docs/molec-meta) | | `I` | `Char` | HITRAN isotopologue identification symbol | | `Ξ½` | `Float64` | spectral line wavenumber [cm``^{-1}``] in a vacuum | | `S` | `Float64` | spectral line intensity [cm``^{-1}``/(molecule``\\cdot``cm``^{-2}``)] at 296 K | | `A` | `Float64` | Einstein-A coefficient (s``^{-1}``) of a transition | | `Ξ³a` | `Float64` | air-broadened half width at half maximum (HWHM) [cm``^{-1}``/atm] at 296 K and 1 atm | | `Ξ³s` | `Float64` | self-broadened half width at half maximum (HWHM) [cm``^{-1}``/atm] at 296 K and 1 atm | | `Epp` | `Float64` | lower-state energy of the transition [cm``^{-1}``] | | `na` | `Float64` | coefficient of temperature dependence of air-broadened half width | | `Ξ΄a` | `Float64` | pressure shift [cm``^{-1}``/atm] at 296 K and 1 atm of the line position with respect to vacuum transition wavenumber | | `Vp` | `String` | upper-state "global" quanta | | `Vpp` | `String` | lower-state "global" quanta | | `Qp` | `String` | upper-state "local" quanta | | `Qpp` | `String` | lower-state "local" quanta | | `Ierr` | `String` | uncertainty indices | | `Iref` | `String` | reference indices | | `*` | `Char` | flag (?) | | `gp` | `String` | statistical weight of upper state | | `gpp` | `String` | statistical weight of lower state | """ function readpar(filename::String; Ξ½min::Real=0, Ξ½max::Real=Inf, Scut::Real=0, I::Vector=[], maxlines::Int=-1) @assert filename[end-3:end] == ".par" "expected file with .par extension, downloaded from https://hitran.org/lbl/" lines = readlines(filename) N = length(lines) #hard code the format to make sure nothing slows it down Β―\_(ツ)_/Β― par = Dict{String,Vector}( "M" =>Vector{Int16}(undef, N), "I" =>Vector{Char}(undef, N), "Ξ½" =>Vector{Float64}(undef, N), "S" =>Vector{Float64}(undef, N), "A" =>Vector{Float64}(undef, N), "Ξ³a" =>Vector{Float64}(undef, N), "Ξ³s" =>Vector{Float64}(undef, N), "Epp" =>Vector{Float64}(undef, N), "na" =>Vector{Float64}(undef, N), "Ξ΄a" =>Vector{Float64}(undef, N), "Vp" =>Vector{String}(undef, N), "Vpp" =>Vector{String}(undef, N), "Qp" =>Vector{String}(undef, N), "Qpp" =>Vector{String}(undef, N), "Ierr"=>Vector{String}(undef, N), "Iref"=>Vector{String}(undef, N), "*" =>Vector{Char}(undef, N), "gp" =>Vector{String}(undef, N), "gpp" =>Vector{String}(undef, N) ) for (i,line) in enumerate(lines) par["M"][i] = parse(Int16, SubString(line,1,2)) par["I"][i] = line[3] par["Ξ½"][i] = parse(Float64, SubString(line,4,15)) par["S"][i] = parse(Float64, SubString(line,16,25)) par["A"][i] = parse(Float64, SubString(line,26,35)) par["Ξ³a"][i] = parse(Float64, SubString(line,36,40)) par["Ξ³s"][i] = parse(Float64, SubString(line,41,45)) par["Epp"][i] = parse(Float64, SubString(line,46,55)) par["na"][i] = parse(Float64, SubString(line,56,59)) par["Ξ΄a"][i] = parse(Float64, SubString(line,60,67)) par["Vp"][i] = line[68:82] par["Vpp"][i] = line[83:97] par["Qp"][i] = line[98:112] par["Qpp"][i] = line[113:127] par["Ierr"][i] = line[128:133] par["Iref"][i] = line[134:145] par["*"][i] = line[146] par["gp"][i] = line[147:153] par["gpp"][i] = line[154:160] end #filtering mask = ones(Bool, N) mask .&= par["Ξ½"] .>= Ξ½min mask .&= par["Ξ½"] .<= Ξ½max mask .&= par["S"] .>= Scut if length(I) > 0 for j = 1:N #isotopologue character c = par["I"][j] #isotopologue integer i = ISOINDEX[c] #check if I and its integer counterpart are not in I if !(c in I) & !(i in I) mask[j] = false end end end #check that there will be information left @assert any(mask) "par information has been filtered to nothing!" #slice all the par arrays for (k,v) ∈ par par[k] = v[mask] end #take strongest lines if needed if maxlines > 0 @assert maxlines > 0 "maxlines must be a positive integer" #check if there are fewer lines than desired already if N > maxlines idx = reverse(sortperm(par["S"]))[1:maxlines] for (k,v) in par par[k] = v[idx] end end end #ensure sorted by wavenumber idx = sortperm(par["Ξ½"]) for (k,v) ∈ par par[k] = v[idx] end return par end """ Organizing type for spectral line data of a single gas | Field | Type | Description | | ----- | :--- | :---------- | | `name` | `String` | gas name | | `formula` | `String` | gas formula | | `N` | `Int64` | number of lines | | `M` | `Int16` | see [`readpar`](@ref) | | `I` | `Vector{Int16}` | see [`readpar`](@ref) | | `ΞΌ` | `Vector{Float64}` | molar mass of isotopologues [kg/mole] | | `A` | `Vector{Float64}` | isotopologue abundance (Earth) | | `Ξ½` | `Vector{Float64}` | see [`readpar`](@ref) | | `S` | `Vector{Float64}` | see [`readpar`](@ref) | | `Ξ³a` | `Vector{Float64}` | see [`readpar`](@ref) | | `Ξ³s` | `Vector{Float64}` | see [`readpar`](@ref) | | `Epp` | `Vector{Float64}` | see [`readpar`](@ref) | | `na` | `Vector{Float64}` | see [`readpar`](@ref) | # Constructors SpectralLines(par::Dict) Construct a `SpectralLines` object from a dictionary of line data. That dictionary can be created with [`readpar`](@ref). SpectralLines(filename, Ξ½min=0, Ξ½max=Inf, Scut=0, I=[], maxlines=-1) Read a `.par` file directly into a `SpectralLines` object. Keyword arguments are passed through to [`readpar`](@ref). """ struct SpectralLines #gas name name::String #gas formula formula::String #number of lines N::Int64 #molecule number (https://hitran.org/docs/molec-meta/) M::Int16 #ordered isotopologue integer (https://hitran.org/docs/iso-meta/) I::Vector{Int16} #molar mass of isotopologues [kg/mole] ΞΌ::Vector{Float64} #isotopologue abundance in HITRAN A::Vector{Float64} #wavenumbers of absorption lines [cm^-1] Ξ½::Vector{Float64} #spectral line intensity [cm^-1/(molecule*cm^-2)] S::Vector{Float64} #air-broadened half-width [cm^-1/atm] Ξ³a::Vector{Float64} #self-broadened half-width [cm^-1/atm] Ξ³s::Vector{Float64} #lower state energy, E'' [cm^-1] Epp::Vector{Float64} #temperature-dependence exponent for Ξ³air [unitless] na::Vector{Float64} end function SpectralLines(par::Dict) #length N = length(par["Ξ½"]) #make sure there is only one molecule present @assert length(unique(par["M"])) == 1 "SpectralLines objects must contain only one molecule's lines" #get the molecule name and formula M = par["M"][1] name = MOLPARAM[M][3] form = MOLPARAM[M][2] #create arrays for isotopologue index, abundance, and molar mass I = map(i->ISOINDEX[par["I"][i]], 1:N) A = map(i->MOLPARAM[M][7][I[i]], 1:N) ΞΌ = map(i->MOLPARAM[M][8][I[i]], 1:N) #get sorting indices to make sure Ξ½ vector is in ascending order idx = sortperm(par["Ξ½"]) #create a SpectralLines structure SpectralLines( name, form, N, M, I[idx], ΞΌ[idx], A[idx], par["Ξ½"][idx], par["S"][idx], par["Ξ³a"][idx], par["Ξ³s"][idx], par["Epp"][idx], par["na"][idx] ) end function SpectralLines(filename::String; kwargs...) par = readpar(filename; kwargs...) SpectralLines(par) end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
4628
#------------------------------------------------------------------------------- #conversions between spectral units export Ξ½2f, f2Ξ½, Ξ½2Ξ», Ξ»2Ξ½, Ξ»2f, f2Ξ» """ Convert wavenumber [cm``^{-1}``] to frequency [1/s] """ Ξ½2f(Ξ½)::Float64 = 100.0*𝐜*Ξ½ """ Convert frequency [1/s] to wavenumber [cm``^{-1}``] """ f2Ξ½(f)::Float64 = f/(100.0*𝐜) """ Convert wavenumber [cm``^{-1}``] to wavelength [m] """ Ξ½2Ξ»(Ξ½)::Float64 = 0.01/Ξ½ """ Convert wavelength [m] to wavenumber [cm``^{-1}``] """ Ξ»2Ξ½(Ξ»)::Float64 = 0.01/Ξ» """ Convert wavelength [m] to frequency [1/s] """ Ξ»2f(Ξ»)::Float64 = 𝐜/Ξ» """ Convert frequency [1/s] to wavelength [m] """ f2Ξ»(f)::Float64 = f/𝐜 #------------------------------------------------------------------------------- export planck, normplanck, stefanboltzmann, equilibriumtemperature """ planck(Ξ½, T) Compute black body intensity [W/m``^2``/cm``^{-1}``/sr] using [Planck's law](https://en.wikipedia.org/wiki/Planck%27s_law) # Arguments * `Ξ½`: wavenumger [cm``^{-1}``] * `T`: temperature [Kelvin] """ planck(Ξ½, T)::Float64 = 100*2*𝐑*𝐜^2*(100*Ξ½)^3/(exp(𝐑*𝐜*(100*Ξ½)/(𝐀*T)) - 1) """ normplanck(Ξ½, T) Compute black body intensity [W/m``^2``/cm``^{-1}``/sr] using [Planck's law](https://en.wikipedia.org/wiki/Planck%27s_law), normalized by the power emitted per unit area at the given temperature ([`stefanboltzmann`](@ref)), ``` B(Ξ½,T)/ΟƒT^4 ``` yielding units of 1/cm``^{-1}``/sr. # Arguments * `Ξ½`: wavenumger [cm``^{-1}``] * `T`: temperature [Kelvin] """ normplanck(Ξ½, T)::Float64 = planck(Ξ½, T)/stefanboltzmann(T) """ stefanboltzmann(T) Compute black body radiation power using the [Stefan-Boltzmann](https://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law) law, ``ΟƒT^4`` [W/m``^2``]. """ stefanboltzmann(T)::Float64 = 𝛔*T^4 """ equilibriumtemperature(F, A) Compute the [planetary equilibrium temperature](https://en.wikipedia.org/wiki/Planetary_equilibrium_temperature), or equivalent blackbody temperature of a planet. ``(\\frac{(1 - A)F}{4\\sigma})^{1/4}`` # Arguments * `F`: stellar flux [W/m``^2``] * `A`: albedo """ equilibriumtemperature(F, A)::Float64 = ((1 - A)*F/(4*𝛔))^(1/4) """ equilibriumtemperature(L, A, R) Compute the [planetary equilibrium temperature](https://en.wikipedia.org/wiki/Planetary_equilibrium_temperature), or equivalent blackbody temperature of a planet. ``(\\frac{(1 - A)L}{16 \\sigma \\pi R^2})^{1/4}`` # Arguments * `L`: stellar luminosity [W] * `A`: albedo * `R`: orbital distance [m] """ equilibriumtemperature(L, A, R)::Float64 = (L*(1 - A)/(16*𝛔*Ο€*R^2))^(1/4) #------------------------------------------------------------------------------- export dΟ„dP, transmittance, schwarzschild """ dΟ„dP(Οƒ, g, ΞΌ) Evaluate the differential increase in optical depth in pressure coordinates, equivalent to the [`schwarzschild`](@ref) equation without Planck emission. ``\\frac{dΟ„}{dP} = Οƒ\\frac{\\textrm{N}_A}{g ΞΌ}`` where ``N_A`` is Avogadro's number. # Arguments * `Οƒ`: absorption cross-section [cm``^2``/molecule] * `g`: gravitational acceleration [m/s``^2``] * `ΞΌ`: mean molar mass [kg/mole] """ dΟ„dP(Οƒ, g, ΞΌ)::Float64 = 1e-4*Οƒ*(𝐍𝐚/(ΞΌ*g)) """ transmittance(Ο„) Evaluate transmittance from optical depth, ``t = e^{-Ο„}`` """ transmittance(Ο„)::Float64 = exp(-Ο„) """ schwarzschild(I, Ξ½, Οƒ, T, P) Evaluate the [Schwarzschild differential equation](https://en.wikipedia.org/wiki/Schwarzschild%27s_equation_for_radiative_transfer) for radiative transfer with units of length/height [m] and assuming the ideal gas law. ``\\frac{dI}{dz} = Οƒ\\frac{P}{k_B T}[B_Ξ½(T) - I]`` where ``B_Ξ½`` is [`planck`](@ref)'s law. # Arguments * `I`: radiative intensity [W/m``^2``/cm``^{-1}``/sr] * `Ξ½`: radiation wavenumber [cm``^{-1}``] * `Οƒ`: absorption cross-section [cm``^2``/molecule] * `T`: temperature [K] * `P`: pressure [Pa] """ schwarzschild(I, Ξ½, Οƒ, T, P)::Float64 = 1e-4*Οƒ*(P/(𝐀*T))*(planck(Ξ½,T) - I) """ schwarzschild(I, Ξ½, Οƒ, g, ΞΌ, T) Evaluate the [Schwarzschild differential equation](https://en.wikipedia.org/wiki/Schwarzschild%27s_equation_for_radiative_transfer) for radiative transfer with pressure units [Pa] and assuming the ideal gas law. ``\\frac{dI}{dP} = Οƒ\\frac{\\textrm{N}_A}{g ΞΌ}[B_Ξ½(T) - I]`` where ``B_Ξ½`` is [`planck`](@ref)'s law and ``N_A`` is Avogadro's number. # Arguments * `I`: radiative intensity [W/m``^2``/cm``^{-1}``/sr] * `Ξ½`: radiation wavenumber [cm``^{-1}``] * `Οƒ`: absorption cross-section [cm``^2``/molecule] * `g`: gravitational acceleration [m/s``^2``] * `ΞΌ`: mean molar mass [kg/mole] * `T`: temperature [K] """ schwarzschild(I, Ξ½, Οƒ, g, ΞΌ, T)::Float64 = 1e-4*Οƒ*(𝐍𝐚/(ΞΌ*g))*(planck(Ξ½,T) - I)
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
3111
export trapz, logrange, meshgrid, shellintegral """ trapz(x, y) Integrate a sorted group of coordinates using the composite [trapezoidal rule](https://en.wikipedia.org/wiki/Trapezoidal_rule). """ function trapz(x::AbstractVector, y::AbstractVector)::Float64 @assert length(x) == length(y) "vectors must be equal length" s = 0.0 for i = 1:length(x) - 1 @inbounds s += (x[i+1] - x[i])*(y[i] + y[i+1])/2 end return s end function meshgrid(x::AbstractVector, y::AbstractVector) X = x' .* ones(length(y)) Y = y .* ones(length(x))' return X, Y end function logrange(a, b, N::Int=101, Ξ³::Real=1)::Vector{Float64} ((10 .^ LinRange(0, Ξ³, N)) .- 1)*(b - a)/(10^Ξ³ - 1) .+ a end function interp(q::Float64, x::AbstractVector{Float64}, y::AbstractVector{Float64})::Float64 #find the proper cell i = findcell(q, x) #interpolate (q - x[i])*(y[i+1] - y[i])/(x[i+1] - x[i]) + y[i] end function falseposition(F::T, x₁::Real, xβ‚‚::Real, param=nothing; tol::Float64=1e-6)::Float64 where {T} y₁ = F(x₁, param) if y₁ == 0 return x₁ end yβ‚‚ = F(xβ‚‚, param) if yβ‚‚ == 0 return xβ‚‚ end @assert sign(y₁) != sign(yβ‚‚) "false position non-bracketing" yβ‚˜ = Inf yβ‚š = NaN n = 0 while abs(yβ‚š - yβ‚˜) > (tol + tol*abs(yβ‚˜)) || (n < 2) #store previous evaluation yβ‚š = yβ‚˜ #approximate zero xβ‚˜ = x₁ - y₁*(xβ‚‚ - x₁)/(yβ‚‚ - y₁) yβ‚˜ = F(xβ‚˜, param) #reduce the interval if y₁*yβ‚˜ > 0 x₁ = xβ‚˜ else xβ‚‚ = xβ‚˜ end #count n += 1 end return (x₁ + xβ‚‚)/2 end # ΞΈ: latitude [-Ο€/2,Ο€/2] # Ο•: longitude [0,2Ο€] # f(ΞΈ, Ο•) # approximates ∫∫ f cos(ΞΈ) dΞΈ dΟ• , with θ∈[-Ο€/2,Ο€/2] and Ο•βˆˆ[0,2Ο€] function shellintegral(f::T, param=nothing; nΞΈ::Int=360, nΟ•::Int=720)::Float64 where {T} I = 0.0 Δθ = Ο€/nΞΈ Δϕ = 2Ο€/nΟ• #integrate ΞΈ = -Ο€/2 + Δθ/2 for ΞΈ ∈ LinRange(-Ο€/2 + Δθ/2, Ο€/2 - Δθ/2, nΞΈ) for Ο• ∈ LinRange(Δϕ/2, 2Ο€ - Δϕ/2, nΟ•) I += f(ΞΈ, Ο•, param)*cos(ΞΈ)*Δθ*Δϕ end end return I end function derivative!(dydx::AbstractVector{T}, x::AbstractVector{T}, y::AbstractVector{T})::Nothing where {T} @assert length(dydx) == length(x) == length(y) n = length(x) dydx[1] = (y[2] - y[1])/(x[2] - x[1]) for i ∈ 2:n-1 dydx[i] = ((y[i+1] - y[i])/(x[i+1] - x[i]) + (y[i] - y[i-1])/(x[i] - x[i-1]))/2 end dydx[n] = (y[n] - y[n-1])/(x[n] - x[n-1]) return nothing end #------------------------------------------------------------------------------- #log coordinates are handy #upward calculations P2Ο‰(P)::Float64 = -log(P) Ο‰2P(Ο‰)::Float64 = exp(-Ο‰) P2Ο‰(Pβ‚›, Pβ‚œ)::NTuple{2,Float64} = P2Ο‰(Pβ‚›), P2Ο‰(Pβ‚œ) #downward calculations P2ΞΉ(P)::Float64 = log(P) ΞΉ2P(ΞΉ)::Float64 = exp(ΞΉ) P2ΞΉ(Pβ‚œ, Pβ‚›)::NTuple{2,Float64} = P2ΞΉ(Pβ‚œ), P2ΞΉ(Pβ‚›)
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
205
using ClearSky using Test using SpecialFunctions using ClearSky: faddeyeva, MOLPARAM @testset "Faddeyeva" begin include("test_faddeyeva.jl") end @testset "Molparam" begin include("test_molparam.jl") end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
944
#computes "exact" real part of faddeyeva wofz(z::Complex)::Complex = erfcx(-im*z) #grid characteristics for tests xa = [-500, -200, -10, -500] xb = [500, 200, 10, 500] nx = [40001, 40001, 40001, 1000] ya = [1e-5, 1e-20, 1e-5, 1e-20] yb = [1e5, 1e4, 1e5, 1e5] ny = [71, 71, 71, 25000] for i = 1:4 #make a grid x = collect(LinRange(xa[i], xb[i], nx[i])) y = 10 .^ collect(LinRange(log10(ya[i]), log10(yb[i]), ny[i])) X = ones(ny[i])*x' Y = y*ones(nx[i])' #complex argument to faddeyeva function Z = X .+ im*Y #whole complex result W = wofz.(Z) F = faddeyeva.(Z) relerr = @. abs(real(W) - real(F))/abs(real(W)) @test maximum(relerr) < 1e-4 relerr = @. abs(imag(W) - imag(F))/abs(imag(W)) relerr = relerr[@. !isnan(relerr)] @test maximum(relerr) < 1e-4 #real part only W = real.(W) F = faddeyeva.(X, Y) relerr = @. abs(W - F)/abs(W) @test maximum(relerr) < 1e-4 end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
code
513
for i in 1:length(MOLPARAM) if length(MOLPARAM[i]) > 1 bcheb = MOLPARAM[i][10] ncheb = MOLPARAM[i][11] rlerr = MOLPARAM[i][12] coefs = MOLPARAM[i][13] @test all(rlerr .<= 0.01) for j = 1:length(ncheb) @test ncheb[j] == length(coefs[j]) if bcheb[j] @test !any(isnan.(coefs[j])) else @test length(coefs[j]) == 0 end end @test sum(MOLPARAM[i][7]) <= 1.001 end end
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
1053
# ClearSky <!--- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://markmbaum.github.io/ClearSky.jl/stable) ---> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://markmbaum.github.io/ClearSky.jl/dev) [![Build Status](https://github.com/markmbaum/ClearSky.jl/workflows/CI/badge.svg)](https://github.com/markmbaum/ClearSky.jl/actions) [![Codecov](https://img.shields.io/codecov/c/github/markmbaum/ClearSky.jl?logo=codecov)](https://codecov.io/gh/markmbaum/ClearSky.jl) *under development* to use the code, download or clone the repository, take `.jl` out of the folder name, then start Julia with all your threads. For example, if your compute has 8 threads, ```shell julia --threads 8 ``` Tell Julia where you put the code ```julia push!(LOAD_PATH, "path/to/repo") ``` replacing `path/to/repo` with the path to the folder above the `ClearSky` folder. Then load the code with ```julia using ClearSky ``` and you should see something like ``` [ Info: Precompiling ClearSky [5964c129-204c-4c32-bd6e-c8dff7ca179b] ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
2390
# Absorption Data ## Spectral Lines The model is designed to use the [HITRAN](https://hitran.org/) database of spectral line data for various atmospheric gases. To download line data, you must register for a free account then [search](https://hitran.org/lbl/) for lines. It is generally best to download all lines for a single gas into a single file, which will have a `.par` extension. These are text files in fixed-width format and they can be read by functions in `ClearSky`. To work with spectral line data directly, use the [`readpar`](@ref) function to load the data. This function simply parses the fixed-width file into a dictionary of vectors with the appropriate data types. For more information, see the [`readpar`](@ref) documentation. If you plan to compute line shapes directly, read par files into [`SpectralLines`](@ref) objects. The constructor reads files using [`readpar`](@ref) then rearranges it for line shape calculations. Unnecessary information is dropped and the molecule name, formula, and molar masses are assigned. To compute line shapes, see [Computing Line Shapes](computing_line_shapes.md). For only high-level calculations, `par` files can also be loaded directly into [gas objects](gas_objects.md). ```@docs readpar SpectralLines ``` ## Collision Induced Absorption (CIA) The model also makes it easy to include CIA data from HITRAN. These files can be [downloaded directly](https://hitran.org/cia/) or all at once using the [`download_cia.py`](https://github.com/wordsworthgroup/ClearSky.jl/blob/main/scripts/download_cia.py) script. Each file contains potentially many tables of absorption data at different wavenumbers and temperatures. Like the line data, there is a function for reading these CIA files without doing anything else. The [`readcia`](@ref) function reads a `cia` file into a vector of dictionaries. Each dictionary represents a table of absorption data. This is the raw data, but it is relatively hard to work with. A [`CIATables`](@ref) object arranges each table of absorption data into an interpolator and makes it easy to compute the CIA absorption coefficient at any wavenumber and temperature. Also, in combination with the [`cia`](@ref) function, a [`CIATables`](@ref) can be used to compute absorption cross-sections from provided wavenumber, temperature, and partial pressures. ----- ```@docs readcia CIATables ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
1037
# Atmospheric Profiles `ClearSky` contains functions for common atmospheric profiles and quantities. ## Temperature Profiles Many radiative transfer calculations require an atmospheric temperature profile. `ClearSky` is designed to work with any arbitrary temperature profile if it can be defined as a function of pressure, `T(P)`. For convenience, dry and moist adiabatic profiles are available through the [`DryAdiabat`](@ref) and [`MoistAdiabat`](@ref) types, which are [function-like types](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects). There is also a [`tropopause`](@ref) function. ```@docs DryAdiabat MoistAdiabat tropopause ``` ## Pressure Profiles In case a pressure profile with constant scale height isn't sufficient, hydrostatic profiles with arbitrary temperature and mean molar mass functions are available through the [`Hydrostatic`](@ref) type and related functions. ```@docs Hydrostatic hydrostatic scaleheight altitude ``` ## Other Functions ```@docs psatH2O tsatCO2 ozonelayer ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
3443
# Gas Objects Gas objects are high-level representations of greenhouse gases that allow fast and continuous retrieval of absorption cross-sections over a range of temperatures and pressures. ## Creating Gases Before creating a gas object, you should start your Julia session with all available threads on your system. For example, if your computer has 8 threads available, use ```shell julia --threads 8 ``` then you can define the 1. vector of wavenumbers 2. temperature and pressure ranges ([`AtmosphericDomain`](@ref)) over which its absorption cross-sections will be defined. For example, ```julia using ClearSky Ξ½ = LinRange(1, 2500, 2500); Ξ© = AtmosphericDomain((100,350), 12, (1,1e5), 24); ``` defines 2500 evenly spaced wavenumber samples over the longwave window and an atmospheric domain between 100-350 K and 1-1e5 Pa. The numbers 12 and 24 define the number of interpolation nodes along the temperature and pressure axes, respectively. Now you can create a gas object directly from a `par` file containing the spectral line data from HITRAN. For example, to load carbon dioxide from the file `"CO2.par"` and assign a well-mixed concentration of 400 ppm, ```julia co2 = WellMixedGas("CO2.par", 400e-6, Ξ½, Ξ©) ``` In the background, `ClearSky` does the following 1. reads line data 2. computes absorption cross-sections for each wavenumber, temperature, and pressure point defined by `Ξ½` and `Ξ©` (using the [`voigt!`](@ref) profile by default) 3. generates high-accuracy interpolation functions for the temperature-pressure grid at each wavenumber 4. stores concentration information Consequently, loading gases will take some time. It will be faster with more threads and with fewer wavenumber, temperature, and pressure points. ## Retrieving Cross-Sections Gases are [function-like objects](https://docs.julialang.org/en/v1/manual/methods/#Function-like-objects). They can be used like functions to retrieve **concentration-scaled** cross-sections at any temperature and pressure within the atmospheric domain. For example, computing cross-sections at a specific temperature and pressure, 250 K and 10000 Pa for example, is as simple as ```julia co2(250, 1e4) ``` This returns a vector of cross-section values [cm``^2``/molecule] at each wavenumber point the gas was created with. The cross sections are scaled by the gas molar concentration that was used when constructing the gas. If you only need a cross-section for one of the specific wavenumber points in the gas, you must pass the index of that wavenumber before the temperature and pressure. For example, to get the cross-section corresponding to `Ξ½[600]`, ```julia co2(600, 250, 1e4) ``` ## Storing Gases Creating gas objects may take some time if you have few threads, a huge number of wavenumbers, and/or a dense temperature-pressure grid in your [`AtmosphericDomain`](@ref). To avoid loading the same gas twice, you can use Julia's built-in [serialization functions](https://docs.julialang.org/en/v1/stdlib/Serialization/) to save gases to files and quickly reload them. For example, assuming you have a gas object named `co2`, the following code will write the gas to file, then reload it. ```julia using Serialization #write the gas to a file called "co2" serialize("co2", co2); #reload the same gas from that file co2 = deserialize("co2"); ``` ----- ```@docs AtmosphericDomain OpacityTable WellMixedGas VariableGas concentration reconcentrate ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
469
# ClearSky Welcome to the documentation for `ClearSky`, a line-by-line radiative transfer model written entirely in Julia. The code is designed to make one-dimensional, clear-sky calculations easy, interactive, and fast. * [Reading Absorption Data](absorption_data.md) * [Computing Line Shapes](line_shapes.md) * [Gas Objects](gas_objects.md) * [Atmospheric Profiles](atmospheric_profiles.md) * [Modeling](modeling.md) * [Orbits and Insolation](orbits_insolation.md)
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
2943
# Line Shapes Line shapes are computed following the definitions and equations in [HITRAN](https://hitran.org/docs/definitions-and-units/) (and elsewhere). In `ClearSky`, line shapes can be computed from [`SpectralLines`](@ref) objects and built in shape functions. The following shape functions are implemented with the necessary supporting functions: * [`voigt`](@ref) * [`lorentz`](@ref), pressure-broadening * [`doppler`](@ref) * [`PHCO2`](@ref), the Perrin & Hartman sublorentzian shape for carbon dioxide Each of these functions has three methods for computing cross-sections: 1. at a single wavenumber, temperature, and pressure 2. over a sorted vector of wavenumbers, a single temperature, and a single pressure 3. the same as item 2, but computing cross-sections in-place Using multiple dispatch, the arguments supplied to the functions determine the behavior. For example, calling the [`voigt`](@ref) function with a single number for the `Ξ½` argument executes the function for a single cross-section. Calling the same function with a vector of wavenumbers in the `Ξ½` argument executes the version of the function optimized for that scenario. Another way to get cross-sections is through [gas objects](gas_objects.md), which are used for higher-level modeling. ##### A Note on Handling TIPS Evaluating line shapes requires evaluating the [temperature dependence of line intensities](https://hitran.org/docs/definitions-and-units/#mjx-eqn-eqn-intensity-temperature-dependence). To compute this scaling, the ratio of total internal partition functions (TIPS), ``Q(T_{ref})/Q(T)`` must be evaluated. The necessary information is provided by HITRAN [for every isotopologue](https://hitran.org/docs/iso-meta/) and computing the ratio requires interpolating a range of ``Q(T)`` values for the appropriate temperature. `ClearSky` evaluates the ratio accurately and automatically inside the [`scaleintensity`](@ref) function. To facilitate this, the [`molparam.py`](https://github.com/wordsworthgroup/ClearSky.jl/blob/main/scripts/molparam.py) script was used to download Q data for each isotopologue, generate high-accuracy interpolating Chebyshev polynomials for each one, and write the information to a Julia source file called [`molparam.jl`](https://github.com/wordsworthgroup/ClearSky.jl/blob/main/src/molparam.jl). The pre-computed interpolating coefficients are defined directly in source code, allowing rapid and accurate evaluation of the TIPS ratio. The interpolating functions are guaranteed to reproduce the provided data with less than 1 % error between 25 and 1000 K. ----- ## Voigt Profile ```@docs fvoigt voigt voigt! ``` ----- ## Lorentz Profile ```@docs Ξ³lorentz florentz lorentz lorentz! ``` ----- ## Doppler Profile ```@docs Ξ±doppler fdoppler doppler doppler! ``` ----- ## Perrin & Hartman Sublorentzian CO2 Profile ```@docs Ξ§PHCO2 PHCO2 PHCO2! ``` ----- ## Other ```@docs scaleintensity ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
120
# Modeling ```@docs opticaldepth transmittance outgoing topfluxes topimbalance GroupedAbsorber AcceleratedAbsorber ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "MIT" ]
0.1.0
861e207072e8717757e97af5c3a4af747b0c76ea
docs
1682
# Orbits and Insolation A collection of functions are available for working with general elliptical orbits and insolation patterns for planets orbiting stars. Function arguments are defined below | Argument | Definition | Units | | -------: | :--------- | :---- | | `a` | [semi-major axis](https://en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes) | m | | `e` | [eccentricity](https://en.wikipedia.org/wiki/Orbital_eccentricity) | - | | `E` | [eccentric anomaly](https://en.wikipedia.org/wiki/Eccentric_anomaly) | rad | | `f` | [true anomaly](https://en.wikipedia.org/wiki/True_anomaly) or stellar longitude | rad | | `Ξ³` | [obliquity](https://en.wikipedia.org/wiki/Axial_tilt) | rad | | `m` | star mass | kg | | `p` | [precession angle](https://en.wikipedia.org/wiki/Axial_precession) | rad | | `ΞΈ` | latitude | rad | | `ΞΈβ‚›` | substellar latitude | rad | | `rₐ` | apoapsis distance | m | | `rβ‚š` | periapsis distance | m | | `t` | time | sec | | `T` | orbital period | sec | The mass `m`, most precisely, should be the sum of the star mass and planet mass, ``m_s + m_p``. For most cases the planet mass is negligible, however, and ``m_s + m_p \approx m_s``. The precession angle `p` is defined so that when ``p=0``, the northern hemisphere is tilted directly toward the star at periapsis. This means that northern summer occurs when planet is closet to the star. Different values of ``p ∈ [0,2Ο€]`` control when in the orbital path the equinoxes and solstices occur. For example, if ``p = Ο€/2``, the vernal equinox occurs at periapsis and the northern hemisphere is moving into summer. ----- ```@autodocs Modules = [ClearSky] Pages = ["orbital.jl", "insolation.jl"] ```
ClearSky
https://github.com/markmbaum/ClearSky.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
416
push!(LOAD_PATH,"../src/") using Documenter using DataIO makedocs( sitename = "DataIO.jl", authors = "Tobias Frilling", format = Documenter.HTML(), modules = [DataIO], pages = [ "Home" => "index.md", "File Formats" => [ "Data `(*.lrn)`" => "lrn.md", "Matrix `(*.umx)`" => "umx.md" ] ] ) deploydocs( repo = "github.com/ckafi/DataIO.jl" )
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
1095
# Copyright 2019 Tobias Frilling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ readCLS(filename::String, directory=pwd()) Read the contents of a `*.cls` and return a `Dict` from classid to index. """ function readCLS(filename::String, directory = pwd()) filename = prepare_path(filename, "cls", directory) result = Dict{Int, Vector{Int}}() open(filename, "r") do f skipStarting(f, ['#', '%']) for row in eachrow(readdlm(f, '\t', Float64, skipblanks = true)) push!(get!(result, row[2], []), row[1]) end end return result end
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
776
# Copyright 2019 Tobias Frilling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. module DataIO using DelimitedFiles include("utils.jl") include("CLS.jl") export readCLS include("LRN.jl") export LRNData, writeLRN, readLRN include("UMX.jl") export readUMX end # module
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
5201
# Copyright 2019 Tobias Frilling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LRNCType Enum representing the column types for LRNData: `ignore = 0, data = 1, class = 3, key = 9` """ @enum LRNCType begin ignore = 0 data = 1 class = 3 key = 9 end """ LRNData `LRNData` represents the contents of a `*.lrn` file with the following fields: - `data::Matrix{Float64}` Matrix of data, cases in rows, variables in columns - `column_types::Array{LRNCType, 1}` Column types, see `LRNCType` - `key::Array{Integer, 1}` Unique key for each line - `names::Array{String, 1}` Column names - `key_name::String` Name for key column - `comment::String` Comments about the data """ struct LRNData data::Matrix{Float64} column_types::Array{LRNCType,1} key::Array{Int64,1} names::Array{String,1} key_name::String comment::String function LRNData(data::Matrix{Float64}, column_types, key, names, key_name, comment) (nrow, ncol) = size(data) # Enforcing invariants @assert length(names) == ncol @assert length(key) == nrow @assert length(column_types) == ncol @assert allunique(key) @assert all(i -> 1 <= i <= nrow, key) new(data, column_types, key, names, key_name, comment) end end """ LRNData(data::AbstractMatrix{Float64}) Convenience constructor for `LRNData`. Uses sensible defaults: ``` column_types=[9,1,1...] key=[1,2,3...] names=["C1","C2","C3"...] key_name="Key" comment="" ``` """ function LRNData( data::AbstractMatrix{Float64}; column_types = LRNCType.(fill(1, size(data, 2))), key = collect(1:size(data, 1)), names = fill("C", size(data, 2)) .* string.(1:size(data, 2)), key_name = "Key", comment = "", ) LRNData(data, column_types, key, names, key_name, comment) end Base.firstindex(D::LRNData) = 1 Base.lastindex(D::LRNData) = size(D, 2) Base.getindex(D::LRNData, i::Int) = D.data[D.key[i], :] Base.getindex(D::LRNData, I) = [D[i] for i in I] """ writeLRN(filename::String, lrn::LRNData, directory=pwd()) Write the contents of a `LRNData` struct into a file. """ function writeLRN(lrn::LRNData, filename::String, directory = pwd()) (nrow, ncol) = size(lrn.data) filename = prepare_path(filename, "lrn", directory) open(filename, "w") do f # write comment if it exists if !isempty(lrn.comment) write(f, "# $(lrn.comment)\n#\n") end # write number of cases write(f, "% $(nrow)\n") # write number of variables (+1 for key) write(f, "% $(ncol+1)\n") # write column types (9 for key) write(f, "% $(Int(key))\t$(join(map(Int,lrn.column_types), '\t'))\n") # write names write(f, "% $(lrn.key_name)\t$(join(lrn.names, '\t'))\n") # write data for (index, row) in enumerate(eachrow(lrn.data)) new_row = replace(row, Inf => NaN) write(f, "$(lrn.key[index])\t$(join(new_row,'\t'))\n") end end end """ readLRN(filename::String, directory=pwd()) Read the contents of a `*.lrn` and return a `LRNData` struct. """ function readLRN(filename::String, directory = pwd()) data = [] column_types = [] key = [] names = [] key_name = "" comment = "" key_index = 0 # There is currently no way to have a native file chooser dialogue # without building a whole Gtk/Tk GUI filename = prepare_path(filename, "lrn", directory) open(filename, "r") do f line = readline(f) # Comments while startswith(line, '#') comment *= strip(line, [' ', '\t', '#']) line = readline(f) end strip_header = l -> strip(l, [' ', '\t', '%']) # Number of datasets nrow = parse(Int, strip_header(line)) line = readline(f) # Number of columns ncol = parse(Int, strip_header(line)) line = readline(f) # Column types column_types = split(strip_header(line), '\t') column_types = map(x -> LRNCType(parse(Int, x)), column_types) key_index = findfirst(x -> x == DataIO.key, column_types) deleteat!(column_types, key_index) line = readline(f) # Names names = split(strip_header(line), '\t') key_name = names[key_index] deleteat!(names, key_index) # Data data = readdlm(f, '\t', Float64, skipblanks = true) key = map(Int, data[:, key_index]) data = data[:, deleteat!(collect(1:ncol), key_index)] # remove key column end LRNData(data, column_types, key, names, key_name, comment) end
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
1013
# Copyright 2019 Tobias Frilling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ readUMX(filename::String, directory=pwd()) Read the contents of a `*.umx` and return a `Matrix{Float64}` """ function readUMX(filename::String, directory = pwd()) filename = prepare_path(filename, "umx", directory) result = Matrix{Float64}(undef, (0,0)) open(filename, "r") do f skipStarting(f, ['#', '%']) result = readdlm(f, '\t', Float64, skipblanks = true) end return result end
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
code
2142
# Copyright 2019 Tobias Frilling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. function addext(filename::String, extension::String)::String filename = rstrip(filename, '.') extension = extension[1] == '.' ? extension : '.' * extension endswith(filename, extension) ? filename : filename * extension end function prepare_path(filename::String, extension::String, directory = pwd())::String # make sure the filename has the right extension filename = addext(filename, extension) # normalize path normpath(joinpath(directory, filename)) end function skipStarting(stream::IOStream, chars::AbstractVector{Char}) c = read(stream, Char) while c in chars readline(stream) c = read(stream, Char) end skip(stream, -ncodeunits(c)) end function r2j_weights(rweights::AbstractMatrix{Float64}, rows::Int, columns::Int) result = Array{Float64, 3}(undef, size(rweights)[2], rows, columns) for r in 1:rows, c in 1:columns ind = j2r_ind(r,c,columns) result[:,r,c] = rweights[ind,:] end result end function j2r_weights(jweights::AbstractArray{Float64, 3}) (n, rows, columns) = size(jweights) result = Array{Float64, 2}(undef, rows*columns, n) for r in 1:rows, c in 1:columns ind = j2r_ind(r,c,columns) result[ind,:] = jweights[:,r,c] end result end @inline j2r_ind(_, r, c, columns) = j2r_ind(r, c, columns) function j2r_ind(i::CartesianIndex, columns) j2r_ind(i.I...,columns) end function j2r_ind(r, c, columns) (r-1) * columns + c end function r2j_ind(i, col) (div(i-1, col) + 1, mod(i-1, col) + 1) end
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
docs
397
# DataIO.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://ckafi.github.io/DataIO.jl/stable/) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://ckafi.github.io/DataIO.jl/dev/) [![Build Status](https://travis-ci.com/ckafi/DataIO.jl.svg?branch=master)](https://travis-ci.com/ckafi/DataIO.jl) A Julia port of the [DataIO R package](https://github.com/aultsch/DataIO).
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
docs
405
# DataIO.jl A Julia port of the [DataIO R package](https://github.com/aultsch/DataIO). ## Introduction This package provides functions for reading and writing of data files consisting of ``n Γ— k`` matrices. ## Installation `DataIO` is not yet registered. To install the development version from a Julia REPL type `]` to enter Pkg REPL mode and run ``` pkg> add https://github.com/ckafi/DataIO.jl ```
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
docs
1324
# LRN ## File structure The `*.lrn` file contains the input data as tab separated values. Features in columns, datasets in rows. The first column should be a unique integer key. The optional header contains descriptions of the columns. ``` # comment # % n % m % s1 s2 .. sm % var_name1 var_name2 .. var_namem x11 x12 .. x1m x21 x22 .. x2m . . . . . . . . xn1 xn2 .. xnm ``` |Element |Description | |:------ |:---------- | |``n`` | Number of datasets | |``m`` | Number of columns (including index) | |``s_i`` | Type of column: 9 for unique key, 1 for data, 0 to ignore column | |``var\_name_i`` | Name for the i-th feature | |``x_{ij}`` | Elements of the data matrix. Decimal numbers denoted by '.', not by ','| ## Writing and Reading ```@docs writeLRN readLRN ``` ## Types and Constructors ```@docs LRNData LRNData(::AbstractMatrix{Float64}) LRNCType ```
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "Apache-2.0" ]
0.1.2
77d4f28d2f25763bb740a6646f36c4727e0a6605
docs
666
# UMX ## File structure The `*.umx` file contains a height value for each neuron of an ESOM, e.g. the elements of the U-Matrix. ``` % k l h11 h21 h31 .. hk1 h12 h22 h32 .. hk2 . . . .. . . . . .. . h1l h2l h3l .. hkl ``` |Element | Description | |:------ | :---------- | |``k`` | Number of rows of the ESOM. | |``l`` | Number of columns of the ESOM. | |``h_{ij}`` | Height of the neuron at position i in x-direction and j in y-direction.|
DataIO
https://github.com/ckafi/DataIO.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
312
using SurfaceTopology using Documenter using Literate Literate.markdown(joinpath(@__DIR__, "../examples/features.jl"), joinpath(@__DIR__,"src/"); credit = false, name = "index") makedocs(sitename="SurfaceTopology.jl",pages = ["index.md"]) deploydocs( repo = "github.com/akels/SurfaceTopology.jl.git", )
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
2534
using GeometryTypes using SurfaceTopology using LinearAlgebra function quadraticform(vects,vnormal) Lx = [0 0 0; 0 0 -1; 0 1 0] Ly = [0 0 1; 0 0 0; -1 0 0] Lz = [0 -1 0; 1 0 0; 0 0 0] d = [0,0,1] + vnormal d /= norm(d) Ln = d[1]*Lx + d[2]*Ly + d[3]*Lz R = exp(pi*Ln) vects = copy(vects) for vj in 1:length(vects) vects[vj] = R*vects[vj] end ### Construction of the system A = Array{Float64}(undef,3,3) B = Array{Float64}(undef,3) vects_norm2 = Array{Float64}(undef,length(vects)) for vj in 1:length(vects) vects_norm2[vj] = norm(vects[vj])^2 end A[1,1] = sum((v[1]^4 for v in vects) ./ vects_norm2) A[1,2] = sum((v[1]^3*v[2] for v in vects) ./ vects_norm2) A[1,3] = sum((v[1]^2*v[2]^2 for v in vects) ./ vects_norm2) A[2,1] = A[1,2] A[2,2] = A[1,3] A[2,3] = sum( (v[2]^3*v[1] for v in vects) ./vects_norm2) A[3,1] = A[1,3] A[3,2] = A[2,3] A[3,3] = sum((v[2]^4 for v in vects) ./vects_norm2) B[1] = sum((v[3]*v[1]^2 for v in vects) ./vects_norm2) B[2] = sum((v[1]*v[2]*v[3] for v in vects) ./vects_norm2) B[3] = sum((v[2]^2*v[3] for v in vects) ./vects_norm2) C,D,E = A\B return C,D,E end function meancurvature(points,topology) curvatures = Array{Float64}(undef,length(points)) for v in 1:length(points) s = Point(0,0,0) for (v1,v2) in EdgeRing(v,topology) s += cross(points[v2],points[v1]) end normal = s ./ norm(s) vring = collect(VertexRing(v,topology)) vects = [points[vi] - points[v] for vi in vring] C,D,E = quadraticform(vects,normal) A = [C D/2;D/2 E] k1,k2 = eigvals(-A) H = (k1 + k2)/2 curvatures[v] = H end return curvatures end ### Testing t = ( 1 + sqrt( 5 ) ) / 2; vertices = Point{3,Float64}[ [ -1, t, 0 ], [ 1, t, 0 ], [ -1, -t, 0 ], [ 1, -t, 0 ], [ 0, -1, t ], [ 0, 1, t ], [ 0, -1, -t ], [ 0, 1, -t ], [ t, 0, -1 ], [ t, 0, 1 ], [ -t, 0, -1 ], [ -t, 0, 1 ] ] ./ sqrt(1 + t^2) faces = Face{3,Int64}[ [1, 12, 6], [1, 6, 2], [1, 2, 8], [1, 8, 11], [1, 11, 12], [2, 6, 10], [6, 12, 5], [12, 11, 3], [11, 8, 7], [8, 2, 9], [4, 10, 5], [4, 5, 3], [4, 3, 7], [4, 7, 9], [4, 9, 10], [5, 10, 6], [3, 5, 12], [7, 3, 11], [9, 7, 8], [10, 9, 2] ] ### As paraboloid grows faster than sphere the estimated curvature for a coarse mesh would be lower curvatures = meancurvature(vertices,faces)
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
4924
# # Intorduction # As we know, triangular meshes can be stored in a computer in multiple different ways, each having strength and weaknesses in a particular case at hand. But it is not always clear which data structure would be most suitable for a specific task. Thus it is wise to write a data structure generic code which is the precise purpose of this package for closed oriented closed surfaces. # The most straightforward representation of triangular mesh topology is in array `Array{Faces{3,Int},1}` containing a list of triangular faces which are defined by their vertices. That as name stands allows quick iteration over faces and also edges. However, often in a numerical code one wants not only to iterate over faces or vertices but also in case of singularity subtraction, integration and local property estimation like in normal vector and curvature calculations to know what are neighbouring vertices surrounding a given vertex while keeping track of the orientation of the normals. Also, one wishes to modify the topology itself by collapsing, flipping and splitting edges. And that is why different data structures are needed for different problems. # Fortunately, it is possible to abstract mesh topology queries through iterators: # ```@docs # Faces # Edges # ``` # and circulators: # ```@docs # VertexRing # EdgeRing # ``` # ## API # The package implements multiple kinds of data structures. The simplest one is `PlainDS` one which stores a list of faces and is just an alias to `Array{Faces{3,Int},1}`. As an example of how that works, let's define the data structure. using GeometryTypes using SurfaceTopology faces = Face{3,Int64}[ [1, 12, 6], [1, 6, 2], [1, 2, 8], [1, 8, 11], [1, 11, 12], [2, 6, 10], [6, 12, 5], [12, 11, 3], [11, 8, 7], [8, 2, 9], [4, 10, 5], [4, 5, 3], [4, 3, 7], [4, 7, 9], [4, 9, 10], [5, 10, 6], [3, 5, 12], [7, 3, 11], [9, 7, 8], [10, 9, 2] ] # We can use the data structure `PlainDS` for the queries. The iterators, for example. collect(Faces(faces)) # and collect(Edges(faces)) # giving us desirable output. # We can also ask what neighbouring vertices and edges for a particular vertex by using circulators. For this simple data structure that requires us to do a full lookup on the face list, which is nicely abstracted away: collect(VertexRing(3,faces)) # and collect(EdgeRing(3,faces)) # In practice, one should use `EdgeRing` over `VertexRing` since, in the latter one, vertices are not ordered and thus can not be used for example to deduce the direction of the normal vector. # ## Data structures # The same API works for all other data structures. There is a data structure `CachedDS` built on top of `PlainDS` stores closest vertices (vertex ring). Then there is a data structure `FaceDS` which with `PlainDS` also stores neighbouring faces which have a common edge. And then there is the most commonly used data structure in numerics `HalfEdgeDS` (implemented as `EdgeDS`). # The most straightforward extension of `PlainDS` is just a plain caching of neighbouring vertices for each vertex which are stored in `CacheDS` also with the list of faces. # ```@docs # CachedDS # CachedDS(::SurfaceTopology.PlainDS) # ``` # which can be initialised from `PlainDS` cachedtopology = CachedDS(faces) # And the same API can be used for querries: collect(VertexRing(3,cachedtopology)) # A more advanced data structure is a face based data structure `FaceDS` which additionally for each face stores three neighbouring face indices. # ```@docs # FaceDS # FaceDS(::SurfaceTopology.PlainDS) # ``` # which again can be initialised from `PlainDS` facedstopology = FaceDS(faces) # and what would one expect collect(VertexRing(3,facedstopology)) # works. # All previous ones were some forms of face-based data structures. More common (by my own impression) the numerical world uses edge-based data structures. This package implements half-edge data structure `EdgeDS` which stores a list of edges by three numbers - base vertex index, next edge index and twin edge index. # ```@docs # EdgeDS # ``` # To initialise this datastructure one executes: edgedstopology = EdgeDS(faces) # collect(VertexRing(3,edgedstopology)) # ## Wishlist # At the moment the package is able only to answer queries, but it would be desirable also to be able to do topological surgery operations. For completeness, those would include. # + `edgeflip(topology,edge)` # + `edgesplit(topology,edge)` # + `edgecollapse(topology,edge)` # And with them even a method for `defragmenting` the topology (actually trivial if we generalize constructors as in `CachedDS`). Unfortunately, at the moment, I am not working with anything geometry related thus the development of that on my own will be slow. I hope that the clarity and simplicity of this package could serve someone as a first step, and so eventually, topological operations would be implemented out of necessity.
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
264
module SurfaceTopology using GeometryTypes include("primitives.jl") include("plainds.jl") include("faceds.jl") include("cachedds.jl") include("edgeds.jl") export FaceDS, CachedDS, EdgeDS export FaceRing, VertexRing, EdgeRing export Edges,Faces end # module
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
1141
""" A datastructure which in addition to a list of faces stores connectivity information for each vertex. """ struct CachedDS faces connectivity end Faces(t::CachedDS) = t.faces Edges(t::CachedDS) = filter(x->x[1]<x[2],decompose(Face{2,Int},t.faces)) """ CacheDS(t) Constructs cached face based datastructure `CachedDS` from arbitrary topology `t` which provides `EdgeRing` iterator. """ function CachedDS(faces) vmax = maximum(maximum(faces)) connectivity = Array{Int,1}[] for i in 1:vmax v1 = Array{Int}(undef,0) v2 = Array{Int}(undef,0) for (v1i,v2i) in EdgeRing(i,faces) push!(v1,v1i) push!(v2,v2i) end vj = v2[1] coni = [vj] for j in 2:length(v1) vj, = v2[v1.==vj] push!(coni,vj) end push!(connectivity,coni) end return CachedDS(faces,connectivity) end VertexRing(vi::Int64,t::CachedDS) = t.connectivity[vi] EdgeRing(vi::Int64,t::CachedDS) = PairIterator(t.connectivity[vi]) FaceRing(vi::Int64,t::CachedDS) = error("Face ring is not suitable for this datastructure.")
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
3444
function findtwin(edges,e) #edges = decompose(Face{2,Int},faces) for j in 1:length(edges) if edges[j][2]==e[1] && edges[j][1]==e[2] return j end end end """ EdgeDS(faces::PlainDS) Constructs and returns edge based datastructure `EdgeDS` from plain face based datastructure PlainDS. Half edge based datastructure `EdgeDS` stores list of edges consisting of base vertex, next edge index and twin edge index. """ struct EdgeDS edges::Array{Face{3,Int},1} ### It is equal to PlainDS. That is why we should introduce a new type. # row is data assciated with edge. It contains a base vertex, next edge and the twin edge #neighs::Array{Face{3,Int},1} ### For now keeping simple #vfaces::Array{Int,1} function EdgeDS(faces::PlainDS) edges = decompose(Face{2,Int},faces) rows = Face{3,Int}[] for ei in edges basev = ei[1] twin = -1 for j in 1:length(edges) if edges[j][2]==ei[1] && edges[j][1]==ei[2] twin = j break end end ### Now I could find triangle with specific edge ### Orientation is important ti = findtriangle(faces,ei) face = faces[ti] nedge = getedge(face,ei) next = -1 for j in 1:length(edges) if edges[j]==nedge next = j break end end # @show basev, next, twin push!(rows,Face(basev,next,twin)) end return new(rows) end end function findtriangle(faces::PlainDS,edge) equal(v1,v2) = v1==edge[1] && v2==edge[2] for i in 1:length(faces) if in(edge[1],faces[i]) & in(edge[2],faces[i]) v1,v2,v3 = faces[i] if equal(v1,v2) || equal(v2,v3) || equal(v3,v1) return i end end end end # Returns an edge which we need to look up function getedge(t,edge) v1,v2,v3=t if edge==Face(v1,v2) return Face(v2,v3) elseif edge==Face(v2,v3) return Face(v3,v1) else return Face(v1,v2) end end ### A little bit of thought ### the state could consist of ### This one would construct the beginign vertex ### So aftger that one is able to do VertexRing(v,t::EdgeDS) function VertexRing(v::Int,t::EdgeDS) edges = t.edges for ei in edges if v==ei[1] next = ei[2] return VertexRing(v,next,t) end end end function Base.iterate(iter::VertexRing{EdgeDS}) e = iter.start v = iter.t.edges[e][1] return (v,e) end function Base.iterate(iter::VertexRing{EdgeDS},e) edges = iter.t.edges ea = edges[e][2] eb = edges[ea][3] # the twin ec = edges[eb][2] if ec==iter.start return nothing else return (edges[ec][1],ec) end end function EdgeRing(v::Int,t::EdgeDS) iter = VertexRing(v,t) return PairIterator(iter) end ### One would need to mark used rows one by one and loop over the rows. Implementation is rather easy. Also important for exporting. Faces(t::EdgeDS) = error("Not implemented") ### Selects only edges if their next index is larger to avoid dublications. For simplicity let's not write it as an iterator. Edges(t::EdgeDS) = error("Not implemented")
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
3058
""" A face based datastructure storing faces, neighbour face indices and vertex to face map arrays. """ struct FaceDS faces::Array{Face{3,Int},1} neighs::Array{Face{3,Int},1} vfaces::Array{Int,1} end Faces(t::FaceDS) = t.faces Edges(t::FaceDS) = filter(x->x[1]<x[2],decompose(Face{2,Int},t.faces)) """ FaceDS(faces::PlainDS) Constructs a face based datastructure from PlainDS. Returns a struct FaceDS with original faces, computed neighbour faces and vertex to face map (one face for each vertex). """ function FaceDS(faces::PlainDS) vfaces = Array{Int}(undef,maximum(maximum(faces))) neighs = Array{Face{3,Int},1}(undef,length(faces)) for vi in 1:maximum(maximum(faces)) vfaces[vi] = find_triangle_vertex(vi,faces) end for ti in 1:length(faces) v1, v2, v3 = faces[ti] t1 = find_other_triangle_edge(v2,v3,ti,faces) t2 = find_other_triangle_edge(v1,v3,ti,faces) t3 = find_other_triangle_edge(v1,v2,ti,faces) neighs[ti] = Face(t1,t2,t3) end return FaceDS(faces,neighs,vfaces) end function start(iter::FaceRing{FaceDS}) vface = iter.t.vfaces[iter.v] i0 = 1 return (i0,vface) end function done(iter::FaceRing{FaceDS},state::Tuple{Int,Int}) i, face = state i0, vface = start(iter) if !(i==i0) & (face==vface) return true else return false end end function next(iter::FaceRing{FaceDS},state::Tuple{Int,Int}) i, tri = state v = iter.v face = iter.t.faces[tri] neighbours = iter.t.neighs[tri] index = face.==v w = index[[1,2,3]] cw = index[[3,1,2]] nexttri, = neighbours[cw] if nexttri==-1 error("The surface is not closed") end return tri, (i+1,nexttri) end Base.iterate(iter::FaceRing{FaceDS}) = next(iter,start(iter)) function Base.iterate(iter::FaceRing{FaceDS},ti) if done(iter,ti) return nothing else return next(iter,ti) end end VertexRing(v::Int,t::FaceDS) = VertexRing(v,t.vfaces[v],t) function done(iter::VertexRing{FaceDS},state::Tuple{Int,Int}) i, face = state if !(i==1) & (face==iter.t.vfaces[iter.v]) return true else return false end end function next(iter::VertexRing{FaceDS},tri::Int) v = iter.v face = iter.t.faces[tri] neighbours = iter.t.neighs[tri] index = face .== v w = index[[1,2,3]] cw = index[[3,1,2]] nexttri, = neighbours[cw] if nexttri==-1 error("The surface is not closed") end ### Code for extracting vertex from face tri face = iter.t.faces[tri] cw = (face.==v)[[3,1,2]] vi, = face[cw] return vi, nexttri end function Base.iterate(iter::VertexRing{FaceDS}) face = iter.start return next(iter,face) end function Base.iterate(iter::VertexRing{FaceDS},ti) if ti==iter.start return nothing else return next(iter,ti) end end function EdgeRing(v::Int,t::FaceDS) iter = VertexRing(v,t) return PairIterator(iter) end
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git
[ "MIT" ]
0.1.0
74840bce8734609e4b921aefdceed22e18460b52
code
2100
@doc "`Faces(t)` returns an iterator for faces from representation of topology `t`" Faces @doc "`Edges(t)` returns an iterator for edges from representation of topology `t`" Edges Faces(t::PlainDS) = t Edges(t::PlainDS) = filter(x->x[1]<x[2],decompose(Face{2,Int},t)) ### Hopefully works start(iter::FaceRing{PlainDS}) = find_triangle_vertex(iter.v,iter.t) done(iter::FaceRing{PlainDS},ti::Int) = ti<=length(iter.t) ? false : true function next(iter::FaceRing{PlainDS},i::Int) v = iter.v nexti = find_triangle_vertex(iter.v,iter.t[i+1:end]) + i # possible botleneck here return i, nexti end Base.iterate(iter::FaceRing{PlainDS}) = next(iter,start(iter)) function Base.iterate(iter::FaceRing{PlainDS},ti::Int) if done(iter,ti) return nothing else return next(iter,ti) end end start(iter::EdgeRing{PlainDS}) = find_triangle_vertex(iter.v,iter.t) done(iter::EdgeRing{PlainDS},ti::Int) = ti<=length(iter.t) ? false : true function next(iter::EdgeRing{PlainDS},i::Int) v = iter.v nexti = find_triangle_vertex(iter.v,iter.t[i+1:end]) + i # possible botleneck here face = iter.t[i] w = face.==v cw = w[[3,1,2]] ccw = w[[2,3,1]] return (face[cw]...,face[ccw]...), nexti end Base.iterate(iter::EdgeRing{PlainDS}) = next(iter,start(iter)) function Base.iterate(iter::EdgeRing{PlainDS},ti::Int) if done(iter,ti) return nothing else return next(iter,ti) end end start(iter::VertexRing{PlainDS}) = find_triangle_vertex(iter.v,iter.t) done(iter::VertexRing{PlainDS},ti::Int) = ti<=length(iter.t) ? false : true function next(iter::VertexRing{PlainDS},ti::Int) v = iter.v faces = iter.t face = faces[ti] cw = (face.==v)[[3,1,2]] vi, = face[cw] nexti = find_triangle_vertex(iter.v,iter.t[ti+1:end]) + ti # possible botleneck return vi, nexti end Base.iterate(iter::VertexRing{PlainDS}) = next(iter,start(iter)) function Base.iterate(iter::VertexRing{PlainDS},ti::Int) if done(iter,ti) return nothing else return next(iter,ti) end end
SurfaceTopology
https://github.com/akels/SurfaceTopology.jl.git