licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 255 | # Example of vOptSpecific, for the 2LAP
# when the numerical instance is read on a file, according to the LAP format
# July 2017
using vOptSpecific
m = load2LAP("2ap03.dat") # comment: set up the path to the file if required
z1, z2, S = vSolve( m )
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 361 | using vOptSpecific
n = 3
C1 = [ 3 9 7 ; 16 10 6 ; 2 7 11]
C2 = [16 15 6 ; 5 7 13 ; 1 2 13]
myInstance = set2LAP( n , C1 , C2 )
algorithm = LAP_Przybylski2008( )
z1, z2, S = vSolve( myInstance , algorithm )
id = set2LAP(n, C1, C2)
z1,z2,solutions = vSolve(id)
for i = 1:length(z1)
println("(" , z1[i], " | ", z2[i], ") : ", solutions[i,:])
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 279 | # Example of vOptSpecific, for the 2OSP
# July 2017
using vOptSpecific
n =4
p = [2, 4, 3, 1]
d = [1, 2, 4, 6]
id = set2OSP(n, p, d)
z1, z2 , S = vSolve(id) #Default solver is OSP_Van_Wassenhove1980()
for i = 1:length(S)
println("(", z1[i], ", ", z2[i], ") : ", S[i])
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 221 | n = 4
p = [ 2 , 4 , 3 , 1 ]
d = [ 1 , 2 , 4 , 6 ]
r = [ 0 , 0 , 0 , 0 ]
w = [ 1 , 1 , 1 , 1 ]
using vOptSpecific
id = set2OSP( n , p , d , r , w )
solver = OSP_VanWassenhove1980( )
z1, z2 , S = vSolve( id , solver ) | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 121 |
using vOptSpecific
id = load2OSP( "2osp04.dat" )
solver = OSP_VanWassenhove1980( )
z1, z2 , S = vSolve( id , solver )
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 371 | # =======================================================================
# 2KP
using vOptSpecific
# ==========================================
# instance
id = load2UKP("../examples/2KP500-1A.DAT")
# ==========================================
z1, z2, w, solutions = vSolve(id)
for i = 1:length(z1)
println("(" , z1[i], " | ", z2[i], ") : ", solutions[i,:])
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 474 | # =======================================================================
# 2KP
using vOptSpecific
# ==========================================
# instance
n = 3
p1 = [ 3, 9 , 7]
p2 = [16, 15 , 6]
w = [ 2, 3 , 4]
c = 8
# ==========================================
myInstance = set2UKP( n , p1 , p2 , w , c )
algorithm = UKP_Jorge2010()
z1, z2, r, x = vSolve( myInstance , algorithm )
for i = 1:length(z1)
println("(" , z1[i], " | ", z2[i], ") : ", x[i,:])
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 391 | # =======================================================================
# 2UMFLP
using vOptSpecific
# ==========================================
# instance
id = load2UMFLP("../examples/F50-51.txt")
# ==========================================
# vOptSpecific : UMFLP_Delmee2017
Z1, Z2, Y, X, isEdge = vSolve(id)
for i = 1:length(z1)
println("(" , Z1[i], " | ", Z2[i], ") ")
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 690 | # =======================================================================
# 2UMFLP
using vOptSpecific
# ==========================================
# instance
n = 3 # facilities
m = 7 # customers
ca1 = [9 27 24; 34 9 34; 11 12 17; 14 9 13; 16 26 28; 82 95 49; 20 17 9]
ca2 = [34 9 34; 14 9 13; 20 17 9; 9 27 24; 11 12 17; 16 26 28; 82 95 49]
cr1 = [30, 30, 30]
cr2 = [12, 45, 25]
# ==========================================
# vOptSpecific : test 0 : UMFLP_Delmee2017
myInstance = set2UMFLP( m , n, ca1, ca2, cr1, cr2 )
algorithm = UMFLP_Delmee2017()
Z1, Z2, Y, X, isEdge = vSolve( myInstance , algorithm )
for i = 1:length(z1)
println("(" , Z1[i], " | ", Z2[i], ") ")
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1292 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct _2UKP
nSize::Int
P1::Vector{Int}
P2::Vector{Int}
W::Vector{Int}
C::Int
end
Base.show(io::IO, id::_2UKP) = print("Bi-Objective Knapsack Problem with $(id.nSize) variables.")
set2UKP(n::Int, p1::Vector{Int}, p2::Vector{Int}, w::Vector{Int}, c::Int) = begin
@assert n == length(p1) == length(p2) == length(w)
_2UKP(n, p1, p2, w, c)
end
set2UKP(p1::Vector{Int}, p2::Vector{Int}, w::Vector{Int}, c::Int) = set2UKP(length(p1), p1, p2, w, c)
struct UKPsolver
solve::Function #::Function(id::_2LAP) -> ...
end
function vSolve(id::_2UKP, solver::UKPsolver = UKP_Jorge2010())
solver.solve(id)
end
function UKP_Jorge2010(output::Bool = true)::UKPsolver
f = (id::_2UKP) -> begin
pb = Bi01KP.problem(id.P1, id.P2, id.W, id.C)
return Bi01KP.solve(pb, output)
end
return UKPsolver(f)
end
function load2UKP(fname)
f = open(fname)
n = parse(Int, readline(f))
P = parse(Int, readline(f))
nbC = parse(Int, readline(f))
p1 = parse.(Int, split(readline(f)))
p2 = parse.(Int, split(readline(f)))
w = parse.(Int, split(readline(f)))
c = parse(Int, readline(f))
_2UKP(n, p1, p2, w, c)
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 2313 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct _2LAP
nSize::Int
C1::Matrix{Int}
C2::Matrix{Int}
end
Base.show(io::IO, id::_2LAP) = print("Bi-Objective Linear Affectation Problem with $(id.nSize) variables.")
set2LAP(n::Int, c1::Matrix{Int}, c2::Matrix{Int}) = begin
if !(size(c1,1) == size(c1, 2) == size(c2,1) == size(c2 , 2) == n)
error("dimensions incorrectes")
end
_2LAP(n, c1, c2)
end
set2LAP(c1::Matrix{Int}, c2::Matrix{Int}) = _2LAP(size(c1,1), c1, c2)
struct LAPsolver
parameters
solve::Function #::Function(id::_2LAP) -> ...
end
function vSolve(id::_2LAP, solver::LAPsolver = LAP_Przybylski2008())
solver.solve(id)
end
function LAP_Przybylski2008()::LAPsolver
f = (id::_2LAP) -> begin
nSize, C1, C2 = Cint(id.nSize), vec(convert(Matrix{Cint}, id.C1)), vec(convert(Matrix{Cint}, id.C2))
p_z1,p_z2,p_solutions,p_nbsolutions = Ref{Ptr{Cint}}() , Ref{Ptr{Cint}}(), Ref{Ptr{Cint}}(), Ref{Cint}()
ccall(
(:solve_bilap_exact, libLAPpath),
Nothing,
(Ref{Cint},Ref{Cint}, Cint, Ref{Ptr{Cint}}, Ref{Ptr{Cint}}, Ref{Ptr{Cint}}, Ref{Cint}),
C1, C2, nSize, p_z1, p_z2, p_solutions, p_nbsolutions)
nbSol = p_nbsolutions.x
z1,z2 = convert(Array{Int,1},_unsafe_wrap(Array, p_z1.x, nbSol, own=true)), convert(Array{Int,1},_unsafe_wrap(Array, p_z2.x, nbSol, own=true))
solutions = convert(Array{Int,2},reshape(_unsafe_wrap(Array, p_solutions.x, nbSol*id.nSize, own=true), (id.nSize, nbSol)))
return z1, z2, permutedims(solutions, [2,1]).+1
end
return LAPsolver(nothing, f)
end
function load2LAP(fname::AbstractString)
f = open(fname)
n = parse(Int,readline(f))
C1 = zeros(Int,n,n)
C2 = zeros(Int,n,n)
for i = 1:n
@static if VERSION > v"0.7-"
C1[i,:] = parse.(Int, split(chomp(readline(f)), ' ', keepempty=false))
else
C1[i,:] = parse.(Int, split(chomp(readline(f)), ' ', keep=false))
end
end
for i=1:n
@static if VERSION > v"0.7-"
C2[i,:] = parse.(Int, split(chomp(readline(f)), ' ', keepempty=false))
else
C2[i,:] = parse.(Int, split(chomp(readline(f)), ' ', keep=false))
end
end
return _2LAP(n, C1, C2)
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 4334 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct _2UMFLP
m::Int #nbCustomers
n::Int #nbFacilities
A1::Matrix{Float64} #Assignment costs of clients to facilities
A2::Matrix{Float64} #Assignment costs of clients to facilities
R1::Vector{Float64} #Running cost of facilities
R2::Vector{Float64} #Running cost of facilities
end
Base.show(io::IO, id::_2UMFLP) = println("Bi-Objective Facility Location Problem with $(id.m) customers and $(id.n) facilities.")
set2UMFLP(m,n,A1,A2,R1,R2) = begin
@assert size(A1,2) == length(R1)
@assert n == size(A1, 2) == size(A2, 2) == length(R1) == length(R2)
@assert m == size(A1, 1) == size(A2, 1)
return _2UMFLP(m,n,A1,A2,R1,R2)
end
set2UMFLP(A1,A2,R1,R2) = set2UMFLP(size(A1,1), size(A1,2), A1, A2, R1, R2)
struct UMFLPsolver
solve::Function
end
function vSolve(id::_2UMFLP, solver::UMFLPsolver = UMFLP_Delmee2017())
solver.solve(id)
end
function load2UMFLP(fname)
f = open(fname)
nbC = parse(Int, readline(f))
nbF = parse(Int, readline(f))
d = readdlm(f)
c_alloc1 = convert(Matrix{Float64}, d[1:nbC, 1:nbF])
c_alloc2 = convert(Matrix{Float64}, d[nbC+1:2nbC, 1:nbF])
c_loc1 = convert(Vector{Float64}, d[2nbC+1, 1:nbF])
c_loc2 = convert(Vector{Float64}, d[2nbC+2, 1:nbF])
return _2UMFLP(nbC, nbF, c_alloc1, c_alloc2, c_loc1, c_loc2)
end
function UMFLP_Delmee2017(; modeVerbose = false, modeUpperBound = true, modeLowerBound = true, modeImprovedLB = false, modeParam = true)::UMFLPsolver
f = (id::_2UMFLP) -> begin
n, m = id.n, id.m #n facilities, m customers
A1, A2 = vec(permutedims(id.A1, [2,1])), vec(permutedims(id.A2, [2,1]))
R1, R2 = id.R1, id.R2
p_z1,p_z2 = Ref{Ptr{Cdouble}}() ,Ref{Ptr{Cdouble}}()
p_facility, p_isEdge, p_isExtremityDominated = Ref{Ptr{Cuchar}}(), Ref{Ptr{Cuchar}}(), Ref{Ptr{Cuchar}}()
p_nbAlloc, p_customerAlloc, p_correspondingFac = Ref{Ptr{Cint}}(), Ref{Ptr{Cint}}(), Ref{Ptr{Cint}}()
p_percentageAlloc = Ref{Ptr{Cdouble}}()
nbSol = ccall((:solve, libUMFLPpath),
Int,
(Cint, Cint, Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble}, Ref{Cdouble}, #Inputs
Cuchar, Cuchar, Cuchar, Cuchar, Cuchar, Cuchar, Cuchar, Cuchar, #Parameters
# Outputs :
Ref{Ptr{Cdouble}}, Ref{Ptr{Cdouble}}, #z1, z2
Ref{Ptr{Cuchar}}, Ref{Ptr{Cuchar}}, Ref{Ptr{Cuchar}},#facility, isEdge, isExtremityDominated,
Ref{Ptr{Cint}}, Ref{Ptr{Cint}}, Ref{Ptr{Cint}}, Ref{Ptr{Cdouble}}), #nb Alloc, SparseMatrix : i,j,k
m, n, A1, A2, R1, R2,
modeVerbose, modeLowerBound, false, false, modeImprovedLB, modeUpperBound, modeParam, false,
p_z1, p_z2,
p_facility, p_isEdge, p_isExtremityDominated,
p_nbAlloc, p_customerAlloc, p_correspondingFac, p_percentageAlloc)
z1 = _unsafe_wrap(Array, p_z1.x, nbSol, own=true)
z2 = _unsafe_wrap(Array, p_z2.x, nbSol, own=true)
facility = convert(BitArray, _unsafe_wrap(Array, p_facility.x, nbSol*n, own=true))
facility_res = [facility[i:i+n-1] for i = 1:n:nbSol*n]
isEdge = convert(BitArray, _unsafe_wrap(Array, p_isEdge.x, nbSol, own=true))
isExtremityDominated = convert(BitArray, _unsafe_wrap(Array, p_isExtremityDominated.x, nbSol, own=true))
nbAlloc = _unsafe_wrap(Array, p_nbAlloc.x, nbSol, own=true)
totalAlloc = sum(nbAlloc)
customerAlloc = 1 .+ _unsafe_wrap(Array, p_customerAlloc.x, totalAlloc, own=true)
correspondingFac = 1 .+ _unsafe_wrap(Array, p_correspondingFac.x, totalAlloc, own=true)
percentageAlloc = _unsafe_wrap(Array, p_percentageAlloc.x, totalAlloc, own=true)
ind = 1
X = SparseMatrixCSC{Float64, Int}[]
for i= 1:nbSol
sm = sparse(customerAlloc[ind:ind+nbAlloc[i]-1], correspondingFac[ind:ind+nbAlloc[i]-1], percentageAlloc[ind:ind+nbAlloc[i]-1])
ind += nbAlloc[i]
push!(X, sm)
end
return z1, z2, facility_res, X, isEdge, isExtremityDominated
end
return UMFLPsolver(f)
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 16879 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
# ==========================================================================
# vOpt solver
# Part of the open source prototype issued from the ANR-DFG research project
# Coordinator:
# [email protected]
# --------------------------------------------------------------------------
# Content of this package:
# Exact algorithm for solving the 1/./(sumCi , Tmax) scheduling problem
# Contributor(s):
# Pauline Chatellier-Bertin
# Xavier Gandibleux
# Version and Release date:
# V0.1 - April 28, 2017
# ==========================================================================
# ==========================================================================
# Types and structures
# ==========================================================================
# Environment variables
struct t_environment
# for display's options: false => mute, true => verbose
displayYN :: Bool # display the generation of all efficient solutions and non-dominated points
displayPrint :: Bool # display all the prints to follow the algorithm's activity
displayGraphic :: Bool # display the results on a graphic
end
# ==========================================================================
# Type of a instance for the scheduling problem presented in the paper Morita et al., 2001 (FCDS)
struct _2OSP
n ::Int # number of tasks (positive integer value)
p ::Vector{Int}# vector of processing time (positive integer values)
d ::Vector{Int}# vector of due dates (non-negative integer values)
r ::Vector{Int}#vector of release dates (non-negative integer values)
w ::Vector{Int}# vector of weights (non-negative integer values)
end
Base.show(io::IO, id::_2OSP) = begin
print(io, "Bi-Objective Scheduling Problem with $(id.n) tasks.")
print(io, "\nProcessing times : ") ; show(IOContext(io, :limit=>true), id.p)
print(io, "\nDue dates : ") ; show(IOContext(io, :limit=>true), id.d)
if any(x->x!=0, id.r)
print(io, "\nRelease dates : ") ; show(IOContext(io, :limit=>true), id.r)
end
if any(x->x!=1, id.w)
print(io, "\nWeights : ") ; show(IOContext(io, :limit=>true), id.w)
end
end
# ==========================================================================
# Type of a solution for the scheduling problem presented in the paper Morita et al., 2001 (FCDS)
mutable struct t_solution
x ::Vector{Int}# vector of index of jobs in the solution
z1::Int # performance objective 1 (integer)
z2::Int # performance objective 2 (integer)
end
# ==========================================================================
# Instance's Generators
# ==========================================================================
# Generate a didactic instance
function generateDidacticInstance(idInstance::String)::_2OSP
if idInstance == "2001"
# From the paper:
# Hiroyuki Morita, Xavier Gandibleux, Naoki Katoh.
# Experimental feedback on biobjective permutation scheduling problems solved with a population heuristic.
# Foundations of Computing and Decision Sciences 26 (1), 23-50.
# http://fcds.cs.put.poznan.pl/FCDS2/PastIssues.aspx
nTasks = 4
data = _2OSP(nTasks, [3, 4, 5, 6], [20, 16, 11, 5], [1, 1, 1, 1], ones(nTasks))
return data
elseif idInstance == "1980_4"
# From the paper:
# Luc Van Wassenhove and Ludo Gelders
# Solving a bicriterion scheduling problem.
# European Journal of Operational Research 4 (1980) 42-48.
nTasks = 4
data = _2OSP(nTasks, [2, 4, 3, 1], [1, 2, 4, 6], [1, 1, 1, 1], ones(nTasks))
# data = _2OSP(nTasks, [2, 3, 1, 2], [3, 4, 5, 6], [1, 1, 1, 1], ones(nTasks))
return data
elseif idInstance == "1980_10"
# From the paper:
# Luc Van Wassenhove and Ludo Gelders
# Solving a bicriterion scheduling problem.
# European Journal of Operational Research 4 (1980) 42-48.
nTasks = 10
data = _2OSP(nTasks,
[9, 9, 6, 7, 2, 4, 7, 2, 7, 8],
[32, 49, 7, 25, 55, 9, 54, 40, 52, 51],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
ones(nTasks))
return data
end
end
# ==========================================================================
# Generate a parameterized random instance
function generateRandomInstance(nTasks::Int, pMax::Int, dMax::Int, wMax::Int)::_2OSP
data = _2OSP(nTasks, rand(1:pMax, nTasks), rand(1:dMax, nTasks), rand(1:wMax, nTasks), ones(nTasks))
return data
end
# ==========================================================================
# Generate a parameterized instance according to (Yagiura and Ibaraki, 1996)
function generateHardInstance(nTasks::Int; pMax::Int = 30, LF::Float64 = 0.3, RDD::Float64 = 0.9)::_2OSP
# The generator follows the rules provided in the paper:
# Mutsunori Yagiura, Toshihide Ibaraki.
# Genetic and local search algorithms as robust and simple optimization tools.
# In "Meta-Heuristics: Theory and Applications" (I. Osman and J. Kelly Edts). Kluwer, pp.63-82, 1996.
# --------------------------------------------------------------------------
# The parameters are:
# nTasks : number of tasks for the scheduling problem
# nTasks > 0
# pMax : upper value of p_i
# 1 <= pMax <= 30
# LF : Average Lateness Factor (facteur de retard moyen)
# 0.1 <= LF <= 0.5
# RDD : Relative Range of Duedate (interval relatif des dates echues)
# 0.8 <= RDD <= 1.0
data_p = rand(1:pMax, nTasks)
MP = sum(data_p)
data_d = max.(0 , rand( floor(Int, (1-LF-RDD/2)*MP) : floor(Int, (1-LF+RDD/2)*MP) , nTasks))
data = _2OSP(nTasks, data_p, data_d, ones(Int,nTasks), ones(nTasks))
return data
end
# ==========================================================================
# Optimization algorithmsmax.(0 , rand( floor(Int, (1-LF-RDD/2)*MP) : floor(Int, (1-LF+RDD/2)*MP) , nTasks))
# ==========================================================================
# minimize the flowtime on a single machine (Smith's rule)
function computeMinFlowtime(env::t_environment, data::_2OSP)::Tuple{Vector{Int}, Int}
# minimise f1 : flowtime (SPT-rule)
SPT = sortperm(data.p)
somCi = 0
somPi = 0
c = zeros(Int,data.n)
for i=1:data.n
c[SPT[i]] = somPi + data.p[SPT[i]]
somPi = somPi + data.p[SPT[i]]
somCi = somCi + c[SPT[i]]
end
if env.displayPrint == true
println("minimum f1 (min flowtime) = ", somCi)
end
return SPT, somCi
end
# ==========================================================================
# minimize the maximum tardiness on a single machine
function computeMinMaxTardiness(env::t_environment, data::_2OSP)::Tuple{Vector{Int}, Int}
# minimise f2 : maximum tardiness (EDD-rule)
EDD = sortperm(data.d)
maxT = 0
somPi = 0
c = zeros(Int,data.n)
for i=1:data.n
c[EDD[i]] = somPi + data.p[EDD[i]]
somPi = somPi + data.p[EDD[i]]
maxT = max(maxT, c[EDD[i]]-data.d[EDD[i]])
end
if env.displayPrint == true
println("minimum f2 (max tardiness) = ", maxT)
end
return EDD, maxT
end
# ==========================================================================
# minimize the flowtime on a single machine (modified Smith's backward scheduling rule)
function smith_modifie(env::t_environment, data::_2OSP, I::Matrix{Int}, R::Int, D::Vector{Int})::Tuple{Vector{Int}, Bool}
sol = zeros(Int,data.n)
k = data.n
trouve = true
# Ensemble des taches triees par ordre lexicographique de leur processing time puis de leur due date
N = [I[i,3] for i = 1:data.n]
# Assignation des taches a chaque position en partant de la fin (on decremente k)
# jusqu'a les avoir toutes assignees ou lorsqu'il n'y a plus de tache i respectant D_i >= R
while 0 < k && trouve
i = length(N)
trouve = false
# Parcours des taches de l'ensemble N,
# en partant de celle ayant le plus grand p_i, en cas de p_i egaux celle ayant le plus grand d_i
while 0 < i && !trouve
# Si la tache i respecte la conditon D_i >= R
if D[N[i]] >= R
sol[k] = N[i] # on l'assigne à la position k
R = R - data.p[N[i]] # R = R - p_i
deleteat!(N, i) # on supprime i de l'ensemble N
k = k-1
trouve = true
else
i = i-1
end
end
end
return sol, trouve
end
# ==========================================================================
# minimize both flowtime and maximum tardiness on a single machine
function computeExactFlowtimeMaxTardiness(env::t_environment, data::_2OSP)::Vector{t_solution}
# The algorithm implemented is presented in the paper:
# Luc Van Wassenhove and Ludo Gelders
# Solving a bicriterion scheduling problem.
# European Journal of Operational Research 4 (1980) 42-48.
# --------------------------------------------------------------------------
# YN est un tableau contenant tous les points non-domines
YN = t_solution[]
# --------------------------------------------------------------------------
# Trie des taches par ordre lexicographique
# sur leur processing time puis leur due date
I = [data.p data.d 1:data.n]
I = @static if VERSION > v"0.7-"
sortslices(I, dims=1)
else
sortrows(I)
end
# --------------------------------------------------------------------------
# Initialisation de R avec la somme des processing time
R = sum(data.p)
# --------------------------------------------------------------------------
# Initialisation de delta avec la somme des processing time, puis des D_i = d_i - delta
delta = sum(data.p)
D = [data.d[i] + delta for i = 1:data.n]
# --------------------------------------------------------------------------
# Recherche d'une 1ere solution X avec les R et D_i initiaux
X, existeX = smith_modifie(env, data, I, R, D)
# --------------------------------------------------------------------------
# Recherche de l'ensemble des solutions efficaces
while existeX
sol = t_solution(X, 0, 0)
evaluateSolution!(env, data, sol) # (re)evalue la solution sur les 2 objectifs
push!(YN, sol) # ajoute le point non-domine a l'ensemble YN
# Affichage de la solution trouvée
if env.displayYN == true
println("")
println(" X (scheduling) = ", sol.x)
println(" z1 (total flow time) = ", sol.z1)
println(" z2 (maximum tardiness) = ", sol.z2)
println("")
end
# plotEfficientGraphicY(env, sol)
# Si z2 peut être amélioré on cherche de nouvelle solution sinon on arrête
if sol.z2 != 0
# Mise à jour de delta et D_i
delta = sol.z2 - 1
for j = 1:data.n
D[j] = data.d[j] + delta
end
X, existeX = smith_modifie(env, data, I, R, D)
else
existeX = false
end #if
end #while
return YN
end
# ==========================================================================
# Bi-objective evaluation of a solution
function evaluateSolution!(env::t_environment, data::_2OSP, sol::t_solution)
# a solution here is a feasible scheduling of tasks
c = 0; sol.z1 = 0; sol.z2 = 0
for i=1:data.n
# completion time de la tache i
c = c + data.p[sol.x[i]]
# calcule la somme des c_i (total flow time))
sol.z1 = sol.z1 + c
# calcule le retard maximum (maximum tardiness)
sol.z2 = max(sol.z2, c - data.d[sol.x[i]] )
end
end
# ==========================================================================
# Output on screen
# ==========================================================================
# display the values of the instance
function displayInstance(env::t_environment, data::_2OSP)
if env.displayPrint == true
println("Instance :")
println(" n = ", data.n)
println(" p = ", data.p)
println(" d = ", data.d)
end
end
# ==========================================================================
# display the points corresponding to optimal solutions for objectives separately
function displayOptimal(env::t_environment, optf1::t_solution, optf2::t_solution)
if env.displayPrint == true
println("")
println(" X optimal f1 = ", optf1.x)
println(" z1 (total flowtime) = ", optf1.z1)
println(" z2 (maximum tardiness) = ", optf1.z2)
println("")
println(" X optimal f2 = ", optf2.x)
println(" z1 (total flowtime) = ", optf2.z1)
println(" z2 (maximum tardiness) = ", optf2.z2)
println("")
println("------------------------------------------------------------------")
end
end
# ==========================================================================
# display on screen a summary of the solving process
function displaySummary(env::t_environment, YN, elapsedTime)
if env.displayPrint == true
println("")
println(" Number of non-dominated points = ", length(YN))
println(" Elapsed time (seconds) = ", elapsedTime)
println("")
end
end
# ==========================================================================
# Output on graphics
# ==========================================================================
# initiate the legends of the graphic in the objective space
# function setupGraphicY(env::t_environment, titleFigure, axisX, axisY)
# if env.displayGraphic == true
# title(titleFigure)
# xlabel(axisX)
# ylabel(axisY)
# end
# end
# ==========================================================================
# plot the optimal points corresponding to optimal solutions for both objectives separately
# function plotOptimalGraphicY(env::t_environment, optf1::t_solution, optf2::t_solution)
# if env.displayGraphic == true
# plot(optf1.z1,optf1.z2, color="green",linestyle="",marker="D", label="opt")
# plot(optf2.z1,optf2.z2, color="green",linestyle="",marker="D", label="opt")
# end
# end
# ==========================================================================
# plot one non-dominated point
# function plotEfficientGraphicY(env::t_environment, sol::t_solution)
# if env.displayGraphic == true
# plot(sol.z1,sol.z2, color="cyan",linestyle="",marker="o", label="YN")
# end
# end
function solveOSP(data::_2OSP, displayYN, displayPrint)
# --------------------------------------------------------------------------
env = t_environment(displayYN, displayPrint, false)
# display the values of the instance
displayInstance(env, data)
# --------------------------------------------------------------------------
# Elements pour la representation graphique de l'espace des objectifs
# setupGraphicY(env, "Y (objective space)", "z1 (total flow time)", "z2 (Maximum tardiness)")
# --------------------------------------------------------------------------
# Initialise le timer
tstart = time_ns()
# --------------------------------------------------------------------------
# Calcul des solutions optimales pour les 2 objectifs pris separement
optf1 = t_solution(zeros(data.n), 0, 0)
optf1.x, optf1.z1 = computeMinFlowtime(env, data)
evaluateSolution!(env, data, optf1) # (re)evalue la solution sur les 2 objectifs
optf2 = t_solution(zeros(data.n), 0, 0)
optf2.x, optf2.z2 = computeMinMaxTardiness(env, data)
evaluateSolution!(env, data, optf2) # (re)evalue la solution sur les 2 objectifs
# --------------------------------------------------------------------------
# plot on graphic the optimal points corresponding to optimal solutions for both objectives separately
# plotOptimalGraphicY(env, optf1, optf2)
# --------------------------------------------------------------------------
# display on screen the optimal solutions for both objectives separately
displayOptimal(env, optf1, optf2)
# --------------------------------------------------------------------------
# Calcul des points non-domines pour les 2 objectifs pris simultanement
YN = computeExactFlowtimeMaxTardiness(env, data)
# Releve le timer et donne le temps utilise par la resolution
elapsedTime = (time_ns() - tstart) * 1e-9
# --------------------------------------------------------------------------
# display on screen a summary of the solving process
displaySummary(env, YN, elapsedTime)
return map(x -> x.z1, YN), map(x -> x.z2, YN), map(x -> x.x, YN)
# ==========================================================================
end
function set2OSP(n::Int, p::Vector{Int}, d::Vector{Int}, r::Vector{Int}=zeros(Int,n), w::Vector{Int}=ones(Int,n))
@assert n==length(p)==length(d)==length(w)
@assert all(x->x>0, p)
@assert all(x->x>=0, d)
@assert all(x->x>=0, r)
@assert all(x->x>=0, w)
_2OSP(n,p,d,r,w)
end
set2OSP(p::Vector{Int},d::Vector{Int},r::Vector{Int}=zeros(Int,length(p)),w::Vector{Int}=ones(Int, length(p))) = set2OSP(length(p),p,d,r,w)
struct OSPSolver
solve::Function
end
function OSP_VanWassenhove1980(;displayYN=false, displayPrint=false)::OSPSolver
return OSPSolver((id::_2OSP) -> solveOSP(id,displayYN,displayPrint))
end
function vSolve(id::_2OSP, solver::OSPSolver = OSP_VanWassenhove1980())
solver.solve(id)
end
function load2OSP(fname::AbstractString)
f = open(fname)
n = parse(Int, readline(f))
data = convert(Matrix{Int}, readdlm(f))
p = data[1,:]
d = data[2,:]
r = data[3,:]
w = data[4,:]
close(f)
return set2OSP(p,d,r,w)
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1097 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
module vOptSpecific
const libLAPpath = joinpath(@__DIR__, "..", "deps", "libLAP.so")
const libUMFLPpath = joinpath(@__DIR__, "..", "deps", "libUMFLP.so")
const libcomboPath = joinpath(@__DIR__,"..","deps","libcombo.so")
include("LAP.jl")
include("UMFLP.jl")
include("jMOScheduling.jl")
include("Bi01KP/Bi01KP.jl")
include("KP.jl")
@static if VERSION > v"0.7-"
using DelimitedFiles
using SparseArrays
_unsafe_wrap(Atype, p, dims ; own=false) = unsafe_wrap(Atype, p, dims, own=own)
end
@static if VERSION < v"0.7-"
_unsafe_wrap(Atype, p, dims ; own=false) = unsafe_wrap(Atype, p, dims, own)
end
export vSolve,
load2LAP, set2LAP, LAP_Przybylski2008,
load2OSP, set2OSP, OSP_VanWassenhove1980, generateHardInstance,
load2UMFLP, set2UMFLP, UMFLP_Delmee2017,
load2UKP, set2UKP, UKP_Jorge2010
__init__() = (!isfile(libLAPpath) || !isfile(libUMFLPpath)) || !isfile(libcomboPath) && warn("""Some libraries are missing, run Pkg.build("vOptSpecific")""")
end # module
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 2135 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
module Bi01KP
using DataStructures
include("problem.jl") #Defines problems and reduce_problem!()
include("mono_problem.jl") #Defines mono_problems
include("solution.jl") #Defines solutions
include("mono_solution.jl") #Defines mono_solutions
include("combo.jl") #API to call Combo to solve mono-objective problems
include("first_phase.jl") #first_phase(pb::problem) -> XSE1m
include("vertex.jl") #Defines vertices
include("arc.jl") #Defines arcs, paths(arclists) and partitions
include("second_phase.jl")
include("graph.jl")
# include("BoundSetReduction.jl")
const libcomboPath = joinpath(@__DIR__,"..","..","deps","libcombo.so")
function solve(pb::problem, output=true)
reduce_problem!(pb, output)
XSE1m = first_phase(pb)
if length(XSE1m) == 1
X = XSE1m
else
X = second_phase(XSE1m, output)
end
z1, z2 = map(obj_1, X), map(obj_2, X)
w = map(weight, X)
x = map(full_variable_vector, X)
z1, z2, w, x
end
function parseKP(fname::AbstractString)
if fname[end-2:end] == "KNP"
f = open(fname)
while !(readline(f)[1]=='n') end
readline(f)
x = readdlm(f)
p1 = convert(Vector{Int},x[1:findfirst(x[:,3], "")-1 , 3])
p2 = convert(Vector{Int},x[1:findfirst(x[:,4], "")-1 , 4])
w = convert(Vector{Int},x[1:findfirst(x[:,2], "")-1 , 2])
c = Int(x[findfirst(x[:,1], "W"), 2])
elseif any(contains.(fname, ["TA","TB","TC","TD"]))
f = open(fname)
x = readdlm(f, skipstart=4)
p1 = convert(Vector{Int},x[1:findfirst(x[:,3], "")-1 , 3])
p2 = convert(Vector{Int},x[1:findfirst(x[:,4], "")-1 , 4])
w = convert(Vector{Int},x[1:findfirst(x[:,2], "")-1 , 2])
c = Int(x[findfirst(x[:,1], "W"), 2])
else
f = open(fname)
x = convert(Array{Int},readdlm(f, skipstart=11))[:,1]
close(f)
n = (length(x)-1) ÷ 3
c = x[end]
p1 = x[1:n]
p2 = x[n+1:2n]
w = x[2n+1:3n]
end
return problem(p1,p2,w,c)
end
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 2868 |
# MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
const Arc = Pair{vertex,vertex}
struct List{T}
head::T
tail::List{T}
List{T}() where T = new{T}()
List(a, l::List{T}) where T = new{T}(a, l)
end
List(T) = List{T}()
List() = List(Any)
Base.isempty(x::List) = !isdefined(x,2)
head(a::List) = a.head
tail(a::List) = a.tail
@static if VERSION > v"0.7-"
function Base.iterate(l::List, state::List = l)
isempty(state) && return nothing
state.head, state.tail
end
end
@static if VERSION < v"0.7-"
Base.start(l::List) = l
Base.done(l::List, state::List) = isempty(state)
Base.next(l::List, state::List) = (state.head, state.tail)
end
function reverse(l::List{T}) where T
l2 = List(T)
for h in l
l2 = List(h, l2)
end
l2
end
struct Partition
v::vertex
arcs::List{Arc}
nbArcs::UInt16
zλ::Int
z1::Int
z2::Int
end
<(a::Partition, b::Partition) = a.zλ < b.zλ || a.zλ == b.zλ && a.nbArcs < b.nbArcs #Used to sort the binary heap of Partitions
Base.isless(a::Partition, b::Partition) = a.zλ < b.zλ || a.zλ == b.zλ && a.nbArcs < b.nbArcs #Used to sort the binary heap of Partitions
# Base.isless(a::Partition, b::Partition) = a.zλ < b.zλ || (a.zλ == b.zλ && a.z1 <= b.z1 && a.z2 <= b.z2) #Used to sort the binary heap of Partitions
# <(a::Partition, b::Partition) = a.zλ < b.zλ || (a.zλ == b.zλ && a.z1 <= b.z1 && a.z2 <= b.z2) #Used to sort the binary heap of Partitions
zλ(p::Partition) = p.zλ
z1(p::Partition) = p.z1
z2(p::Partition) = p.z2
Partition(v::vertex) = Partition(v, List(Arc), 0, v.zλ, v.z1, v.z2)
#Reconstruct a solution from a Partition
function solution(l, pb::problem, mono_pb::mono_problem)
vars = falses(size(pb))
obj1, obj2, w = mono_pb.min_profit_1, mono_pb.min_profit_2, mono_pb.ω
#TODO :
#variables in l are sorted by decreasing profit of the mono_problem,
#the first pass should be doable in O(n) instead of O(n^2)
#Variables in C1 could be sorted after the reduction to make the second pass in O(n) too
for i = 1:length(l)
if l[i]
ind_var = mono_pb.variables[i]
vars[findfirst(isequal(ind_var), pb.variables)] = true
obj1 += pb.p1[ind_var]
obj2 += pb.p2[ind_var]
w += pb.w[ind_var]
end
end
for v in mono_pb.C1
vars[findfirst(isequal(v), pb.variables)] = true
end
res = solution(pb, vars, obj1 - pb.min_profit_1, obj2 - pb.min_profit_2, w - pb.ω)
# @assert dot(pb.p1, res.x, pb.variables) + pb.min_profit_1 == obj_1(res)
# @assert dot(pb.p2, res.x, pb.variables) + pb.min_profit_2 == obj_2(res)
return res
end
zλ(s, t, mpb) = s.w == t.w ? 0 : mpb.p[s.i]
z1(s, t, pb) = s.w == t.w ? 0 : pb.p1[s.i]
z2(s, t, pb) = s.w == t.w ? 0 : pb.p2[s.i]
weight(s, t) = t.w - s.w
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1485 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct combo_item
p::Clonglong
w::Clonglong
x::Cint
i::Cint
end
function solve_mono(pb::mono_problem,lb=0,ub=0)
if isempty(variables(pb))
return mono_solution(pb, BitArray(0), 0, 0)
end
#If all items fit in the KP (which happens sometimes when doing variable reductions),
#combo throws a ReadOnlyMemoryError()
if sum(x -> pb.w[x], variables(pb)) + pb.ω <= pb.c
return mono_solution(pb, trues(size(pb)), sum(x -> pb.p[x], variables(pb)), sum(x -> pb.w[x], variables(pb)))
end
#@assert all(x -> x>=0, pb.p) "$(pb.p)"
#@assert all(x -> x>0, pb.w)
items = [combo_item(pb.p[j], pb.w[j], 0, i) for (i,j) in enumerate(variables(pb))]
z = ccall((:solve,libcomboPath),
Clonglong,
(Ref{combo_item}, Cint, Clonglong, Clonglong, Clonglong),
items, size(pb), pb.c - pb.ω, lb, ub)
# #@assert lb <= z <= ub
vars = falses(size(pb))
for it in items
it.x==1 && (vars[it.i]=true)
end
#If combo can't find a solution better than the lower bound,
#it returns z = lb with an empty solution...
#in that case, we recalculate z
if z == lb
z = dot(pb.p, vars, pb.variables)
end
#@assert z == dot(pb.p, vars, pb.variables) "$z != $(dot(pb.p, vars, pb.variables)) $lb $ub"
return mono_solution(pb, vars, z, dot(pb.w, vars, pb.variables))
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1103 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
function solveWeightedSum(pb::problem, λ1::Int, λ2::Int, lb::Int=0)
mono_p = mono_problem(pb, λ1, λ2, false)
mono_s = solve_mono(mono_p,lb)
return solution(mono_s)
end
#Calcul de X_SE1m par dichotomie
function solveRecursion(xr::solution, xs::solution, X::Vector{solution})
λ1 = obj_2(xr) - obj_2(xs)
λ2 = obj_1(xs) - obj_1(xr)
lb = λ1*xr.obj_1 + λ2*xr.obj_2
x = solveWeightedSum(xr.pb, λ1, λ2, lb)
if λ1*x.obj_1 + λ2*x.obj_2 > lb
push!(X, x)
solveRecursion(xr, x, X)
solveRecursion(x, xs, X)
end
nothing
end
function first_phase(pb::problem)
xr = solveWeightedSum(pb, 0, 1)
xs = solveWeightedSum(pb, 1, 0)
X = [xr,xs]
solveRecursion(xr, xs, X)
sort!(X, by = obj, lt = isless, alg=QuickSort)
del_inds = Int[]
for i = 1:length(X)-1
X[i] >= X[i+1] && push!(del_inds, i+1)
X[i] <= X[i+1] && push!(del_inds, i)
end
deleteat!(X, del_inds)
return unique(obj, X)
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 3607 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct graph
pb::problem
mono_pb::mono_problem
layer::Vector{vertex} #last layer of the graph
end
Base.isempty(g::graph) = isempty(g.layer)
function build_graph(Δ::Triangle, output::Bool)
xr = Δ.xr
xs = Δ.xs
pb = xr.pb
λ1, λ2 = Δ.λ
mono_pb = mono_problem(pb, λ1, λ2)
# @assert obj(solve_mono(mono_pb)) == Δ.ub "$xr => $xs isn't a supporting edge of Y ($(solution(pb,solve_mono(mono_pb))))"
reduce!(mono_pb, Δ, output)
size(mono_pb) == 0 && return graph(pb, mono_pb, vertex[])
s = source(mono_pb)
current_layer = [s]
for l = 1:size(mono_pb)
# @assert mono_pb.variables[l] == current_layer[1].i
# @assert l == current_layer[1].layer
previous_layer = current_layer
current_layer = vertex[]
#Adds all vertices in the next layer obtained without picking the object
for v in previous_layer
if relax(v, mono_pb) >= Δ.lb #&& relax_z1(v, sortperm_z1) >= obj_1(xr) || relax_z2(v, sortperm_z2) >= obj_2(xs)
push!(current_layer, vertex_skip(v, mono_pb))
end
end
#Adds all vertices in the next layer obtained by picking the object (if possible)
for v in previous_layer
let wplus1 = v.w + pb.w[v.i] #Calculate the weight of the solution when we pick item i
wplus1 > mono_pb.c && continue #If the solution is too heavy for the knapsack, skip it.
child = vertex_keep(v, mono_pb) #else, create the vertex
# Check if a node with that weight already exists so we can merge them.
# The nodes in the layer are sorted by their weight so we can use a dichotomic search
range = searchsorted(current_layer, wplus1, lt = weight_lt) # (weight_lt compares a vertex to an Integer weight)
if isempty(range)
# ∄ node with that weight, we can add it (at the right place) to the current layer
insert!(current_layer, range.start , child)
else
# a node with this weight already exists, we merge them
merge!(current_layer[range.start], child)
end
end
end
end
return graph(pb, mono_pb, current_layer)
end
#Calculates the relaxation for the combined problem
function relax(v::vertex, mpb::mono_problem)
#we assume the items are already sorted by utility
#we only consider picking items which come after v.i
vars = view(variables(mpb), v.layer+1:size(mpb))::SubArray{Int}
zλ= v.zλ
w = v.w
c = mpb.c
i = 1
while i <= length(vars) && w + mpb.w[vars[i]] <= c
var = vars[i]
w += mpb.w[var]
zλ += mpb.p[var]
i += 1
end
if i <= length(vars) && length(vars) > 1
cleft = mpb.c - w
if i == 1
varplus1 = vars[i+1]
zλ += floor(Int, cleft * mpb.p[varplus1]/mpb.w[varplus1])
elseif i == length(vars)
varminus1 = vars[i-1]
zλ += floor(Int, mpb.p[var] - (mpb.w[var] - cleft)*(mpb.p[varminus1]/mpb.w[varminus1]))
else
var = vars[i]
varplus1 = vars[i+1]
varminus1 = vars[i-1]
U0 = zλ + floor(Int, cleft * mpb.p[varplus1]/mpb.w[varplus1])
U1 = zλ + floor(Int, mpb.p[var] - (mpb.w[var] - cleft)*(mpb.p[varminus1]/mpb.w[varminus1]))
zλ = max(U0,U1)
end
end
return zλ
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 7227 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
mutable struct mono_problem
pb::problem
psize::Int
p::Vector{Int} #combined profit vector
p1::Vector{Int}
p2::Vector{Int}
w::Vector{Int}
c::Int
C0::Vector{Int} #Variables that have been fixed to 0 for the mono_problem only
C1::Vector{Int} #Variables that have been fixed to 1 for the mono_problem only
ω::Int #Minimum weight
min_profit_λ::Int
min_profit_1::Int
min_profit_2::Int
eff::Vector{Float64}
variables::Vector{Int} #Order of variables with decreasing utiliy wrt to the combined objective
ub_z1_i0::Vector{Int} #Upper bound on z1 for each variable i fixed to 0
ub_z1_i1::Vector{Int} #Upper bound on z1 for each variable i fixed to 1
ub_z2_i0::Vector{Int} #Upper bound on z2 for each variable i fixed to 0
ub_z2_i1::Vector{Int} #Upper bound on z2 for each variable i fixed to 1
end
#Printer
Base.show(io::IO, pb::mono_problem) =
print(io, "Mono-objective Knapsack Problem with $(size(pb))($(pb.psize)) variables :
\tω=$(pb.ω)\n\tc=$(pb.c)\n\tvars=$(pb.variables)\n\tp=$(pb.p[pb.variables])\n\tw=$(pb.w[pb.variables])")
size(pb::mono_problem)::Int = length(pb.variables)
variables(pb::mono_problem)::Vector{Int} = pb.variables
function fix!(mp::mono_problem, C0::Vector{Int}, C1::Vector{Int})
for i in C0
v = mp.variables[i]
push!(mp.C0, v)
end
for i in C1
v = mp.variables[i]
push!(mp.C1, v)
mp.min_profit_λ += mp.p[v]
mp.min_profit_1 += mp.p1[v]
mp.min_profit_2 += mp.p2[v]
mp.ω += mp.w[v]
end
deleteat!(mp.variables, sort(vcat(C0,C1)))
end
#Constructor from a bi_problem
function mono_problem(p::problem, λ1::Int, λ2::Int, calculate_efficiency::Bool = true)
profits = λ1*p.p1 + λ2*p.p2
eff = calculate_efficiency ? profits ./ p.w : Float64[]
vars = variables(p)[:]
calculate_efficiency && sort!(vars, by = x -> eff[x], rev=true)
return mono_problem(
p,
size(p), #Number of variables
profits, #Combined profit vector
p.p1,
p.p2,
p.w, #Weight vector
p.c, #Capacity
Int[], #C0
Int[], #C1
p.ω, #ω
λ1*p.min_profit_1 + λ2*p.min_profit_2,#min_profit
p.min_profit_1,
p.min_profit_2,
eff, #Utility vector
vars, #variables
p.ub_z1_i0,
p.ub_z1_i1,
p.ub_z2_i0,
p.ub_z2_i1
)
end
function reduce!(mp::mono_problem, Δ, output::Bool)
#Here, C0 and C1 will contain not the variables to be fixed to 0/1 but their indices in mp.variables
#It makes their removal faster : we don't have to use findfirst(...) to find the values we have to remove from mp.variables
lb_zλ, lb_z1, lb_z2 = Δ.lb, obj_1(Δ.xr), obj_2(Δ.xs)
vars = variables(mp)
### Reduction with lb_z1
C0,C1 = Vector{Int}(), Vector{Int}()
for i = 1:size(mp)
if mp.ub_z1_i0[vars[i]] <= lb_z1
push!(C1, i)
elseif mp.ub_z1_i1[vars[i]] <= lb_z1
push!(C0, i)
end
end
##@assert isempty(intersect(C1,C0))
# @show C0
# @show C1
fix!(mp, C0, C1)
empty!(C0) ; empty!(C1)
#Reduction with lb_z2
for i = 1:size(mp)
if mp.ub_z2_i0[vars[i]] <= lb_z2
push!(C1, i)
end
if mp.ub_z2_i1[vars[i]] <= lb_z2
push!(C0, i)
end
end
##@assert isempty(intersect(C1,C0))
fix!(mp, C0, C1)
empty!(C0) ; empty!(C1)
#TODO : find the break_item and only calculate C0 for variables before the break_item and C1 for those after.
#Reduction with lb_zλ
for i=1:size(mp)
#Calculate relaxation with variable i set to 0
w = mp.ω
ub = mp.min_profit_λ
j = 1
while j <= size(mp) && (i==j || w + mp.w[vars[j]] <= mp.c)
v = vars[j]
if j != i
w += mp.w[v]
ub += mp.p[v]
end
j += 1
end
if j <= size(mp)
v = vars[j]
cleft = mp.c - w
if j+1 == i || j == size(mp)
if j+2 <= size(mp)
U0 = ub + floor(Int, cleft * mp.p[vars[j+2]]/mp.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * mp.p[vars[j+1]]/mp.w[vars[j+1]])
end
if j-1 == i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, mp.p[v] - (mp.w[v] - cleft)*(mp.p[vars[j-2]]/mp.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, mp.p[v] - (mp.w[v] - cleft)*(mp.p[vars[j-1]]/mp.w[vars[j-1]]))
end
ub = max(U0,U1)
end
if ub < lb_zλ
push!(C1, i)
end
end
for i=1:size(mp)
#Calculate relaxation with variable i set to 1
w = mp.ω + mp.w[vars[i]]
ub = mp.min_profit_λ + mp.p[vars[i]]
j = 1
while j <= size(mp) && (i==j || w + mp.w[vars[j]] <= mp.c)
v = vars[j]
if j != i
w += mp.w[v]
ub += mp.p[v]
end
j += 1
end
if j <= size(mp)
v = vars[j]
cleft = mp.c - w
if j+1 == i || j == size(mp)
if j+2 <= size(mp)
U0 = ub + floor(Int, cleft * mp.p[vars[j+2]]/mp.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * mp.p[vars[j+1]]/mp.w[vars[j+1]])
end
if j-1==i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, mp.p[v] - (mp.w[v] - cleft)*(mp.p[vars[j-2]]/mp.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, mp.p[v] - (mp.w[v] - cleft)*(mp.p[vars[j-1]]/mp.w[vars[j-1]]))
end
ub = max(U0,U1)
end
if ub < lb_zλ
push!(C0, i)
end
end
fix!(mp, C0, C1)
reduce_again!(mp, Δ)
output && mp.psize != size(mp) && println("Problem reduced from $(mp.psize) to $(size(mp)) variables")
nothing
end
function reduce_again!(mp::mono_problem, Δ)
size0 = size(mp)
lb_zλ = Δ.lb
vars = variables(mp)
C0,C1 = Vector{Int}(), Vector{Int}()
M = 500000
for i = 1:length(vars)
v = vars[i]
p_old = mp.p[v] ; mp.p[v] = 0 #fix_0!(p, v)
ms = solve_mono(mp)
if obj(ms) < lb_zλ
push!(C1, i)
end
mp.p[v] = p_old
end
for i = 1:length(vars)
v = vars[i]
if mp.ω + mp.w[v] > mp.c
push!(C0, i)
continue
end
mp.p[v] += M ; mp.min_profit_λ -= M # fix_1!(mp, v)
ms = solve_mono(mp)
if obj(ms) < lb_zλ
push!(C0, i)
end
mp.p[v] -= M ; mp.min_profit_λ += M #unfix_0
end
fix!(mp, C0, C1)
return nothing
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1143 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct mono_solution
mpb::mono_problem
x::BitArray
obj::Int
weight::Int
end
#Constructur : empty solution
# mono_solution(p::mono_problem) = mono_solution(p, falses(size(p)), 0, 0)
obj(s::mono_solution) = s.obj + s.mpb.min_profit_λ
weight(s::mono_solution) = s.weight + s.mpb.ω
#Print function
Base.show(io::IO, s::mono_solution) =
print(io, "mono_sol(p=$(obj(s)), w=$(weight(s)))")
#Convert a mono_solution to a solution
solution(s::mono_solution) = begin
#@assert dot(s.pb.w, s.x, s.pb.variables) + s.pb.ω == weight(s)
p = s.mpb.pb
C1 = s.mpb.C1
x = falses(size(p))
for (i,v) = enumerate(s.mpb.variables)
s.x[i] && (x[findfirst(isequal(v), p.variables)] = true)
end
for v in s.mpb.C1
x[findfirst(isequal(v), p.variables)] = true
end
res = solution(
p,
x,
dot(p.p1, x, p.variables),
dot(p.p2, x, p.variables),
weight(s) - p.ω)
#@assert weight(res) == dot(p.w, res.x, p.variables) + p.ω
return res
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 9004 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
mutable struct problem
psize::Int #Number of variables
p1::Vector{Int} #Objective vector 1
p2::Vector{Int} #Objective vector 1
w::Vector{Int} #Weights vector
c::Int #Knapsack Capacity
C0::Vector{Int} #Indices of variables always set to 0
C1::Vector{Int} #Indices of variables always set to 1
ω::Int #Weight of items always picked
min_profit_1::Int #Guaranteed profit on first objective by picking the items in C1
min_profit_2::Int #Guaranteed profit on second objective by picking the items in C1
eff1::Vector{Float64} #Variables efficiency wrt objective 1
eff2::Vector{Float64} #Variables efficiency wrt objective 2
variables::Vector{Int} #Remaining variables of the problem after reduction
ub_z1_i0::Vector{Int} #Upper bound on z1 for each variable i fixed to 0
ub_z1_i1::Vector{Int} #Upper bound on z1 for each variable i fixed to 1
ub_z2_i0::Vector{Int} #Upper bound on z2 for each variable i fixed to 0
ub_z2_i1::Vector{Int} #Upper bound on z2 for each variable i fixed to 1
end
Base.copy(pb::problem) = problem(pb.psize, pb.p1, pb.p2, pb.w, pb.c, copy(pb.C0), copy(pb.C1),
pb.ω, pb.min_profit_1, pb.min_profit_2, pb.eff1, pb.eff2, copy(pb.variables), pb.ub_z1_i0,
pb.ub_z1_i1, pb.ub_z2_i0, pb.ub_z2_i1)
#Printer
Base.show(io::IO, pb::problem) =
print(io, "Bi-objective Knapsack Problem with $(size(pb))($(pb.psize)) variables :\n
p1=$(pb.p1)\np2=$(pb.p2)\nw=$(pb.w)\nc=$(pb.c)\nC0=$(pb.C0)\nC1=$(pb.C1)\n")
#Constructor
problem(p1, p2, w, c) = problem(length(w), p1, p2, w, c, Int[], Int[], 0, 0, 0, p1 ./ w, p2 ./ w, collect(1:length(w)), zeros(Int, length(w)), zeros(Int, length(w)), zeros(Int, length(w)), zeros(Int, length(w)))
size(pb::problem)::Int = length(pb.variables)
variables(pb::problem)::Vector{Int} = pb.variables
function reduce_problem!(pb::problem, output::Bool)
n = size(pb)
#Compute Pref(vi) and Dom(vi) ∀i = 1..n
Pref = [Int[] for i = 1:size(pb)]
Dom = [Int[] for i = 1:size(pb)]
for i = 1:n-1, j = i+1:n
i1, i2, j1, j2 = pb.p1[i], pb.p2[i], pb.p1[j], pb.p2[j]
wi, wj = pb.w[i], pb.w[j]
if ((i1 > j1 && i2 >= j2) || (i1 >= j1 && i2 > j2)) && wi <= wj
push!(Pref[j], i)
push!(Dom[i], j)
end
if ((j1 > i1 && j2 >= i2) || (j1 >= i1 && j2 > i2)) && wj <= wi
push!(Pref[i], j)
push!(Dom[j], i)
end
end
#Compute LB and UB : bounds on the cardinality of an efficient solution
c = pb.c
w = sort(pb.w, rev=true)
sum_weight = 0
LB = 0
while LB < n && w[LB+1] + sum_weight <= c
LB += 1
sum_weight += w[LB]
end
reverse!(w)
sum_weight = 0
UB = 0
while UB < n && w[UB+1] + sum_weight <= c
UB += 1
sum_weight += w[UB]
end
#Compute C0 and C1 : sets of variables always set to 0 / 1 in an efficient solution
C0 = pb.C0
C1 = pb.C1
for i = 1:n
if length(Pref[i]) >= UB
push!(C0, i)
elseif n - length(Dom[i]) <= LB
push!(C1, i)
elseif !isempty(Pref[i]) && sum(j -> pb.w[j], Pref[i]) + pb.w[i] > c
push!(C0, i)
elseif sum(j -> j ∉ Dom[i] ? pb.w[j] : 0 , 1:n) <= c
push!(C1, i)
end
end
if !isempty(C1)
pb.ω = sum(i -> pb.w[i], C1)
pb.min_profit_1 = sum(i -> pb.p1[i], C1)
pb.min_profit_2 = sum(i -> pb.p2[i], C1)
end
deleteat!(pb.variables, sort(union(C0,C1)))
if output && pb.psize != size(pb)
println("Global reduction from $(pb.psize) to $(size(pb)) variables")
end
calculate_upper_bounds!(pb)
nothing
end
function calculate_upper_bounds!(pb::problem)
vars = sort(variables(pb), by = v -> pb.eff1[v], rev=true)
for i=1:size(pb)
#Calculate relaxation with variable i set to 0
w = pb.ω
ub = pb.min_profit_1
j = 1
while j <= size(pb) && (i==j || w + pb.w[vars[j]] <= pb.c)
v = vars[j]
if j != i
w += pb.w[v]
ub += pb.p1[v]
end
j += 1
end
if j <= size(pb)
v = vars[j]
cleft = pb.c - w
if j+1 == i || j == size(pb)
if j+2 <= size(pb)
U0 = ub + floor(Int, cleft * pb.p1[vars[j+2]]/pb.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * pb.p1[vars[j+1]]/pb.w[vars[j+1]])
end
if j-1==i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, pb.p1[v] - (pb.w[v] - cleft)*(pb.p1[vars[j-2]]/pb.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, pb.p1[v] - (pb.w[v] - cleft)*(pb.p1[vars[j-1]]/pb.w[vars[j-1]]))
end
ub = max(U0,U1)
end
pb.ub_z1_i0[vars[i]] = ub
end
for i=1:size(pb)
#Calculate relaxation with variable i set to 1
w = pb.ω + pb.w[vars[i]]
ub = pb.min_profit_1 + pb.p1[vars[i]]
j = 1
while j <= size(pb) && (i==j || w + pb.w[vars[j]] <= pb.c)
v = vars[j]
if j != i
w += pb.w[v]
ub += pb.p1[v]
end
j += 1
end
if j <= size(pb)
v = vars[j]
cleft = pb.c - w
if j+1 == i || j == size(pb)
if j+2 <= size(pb)
U0 = ub + floor(Int, cleft * pb.p1[vars[j+2]]/pb.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * pb.p1[vars[j+1]]/pb.w[vars[j+1]])
end
if j-1==i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, pb.p1[v] - (pb.w[v] - cleft)*(pb.p1[vars[j-2]]/pb.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, pb.p1[v] - (pb.w[v] - cleft)*(pb.p1[vars[j-1]]/pb.w[vars[j-1]]))
end
ub = max(U0,U1)
end
pb.ub_z1_i1[vars[i]] = ub
end
vars = sort(variables(pb), by = v -> pb.eff2[v], rev=true)
for i=1:size(pb)
#Calculate relaxation with variable i set to 0
w = pb.ω
ub = pb.min_profit_2
j = 1 ; v = vars[j]
j = 1
while j <= size(pb) && (i==j || w + pb.w[vars[j]] <= pb.c)
v = vars[j]
if j != i
w += pb.w[v]
ub += pb.p2[v]
end
j += 1
end
if j <= size(pb)
v = vars[j]
cleft = pb.c - w
if j+1 == i || j == size(pb)
if j+2 <= size(pb)
U0 = ub + floor(Int, cleft * pb.p2[vars[j+2]]/pb.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * pb.p2[vars[j+1]]/pb.w[vars[j+1]])
end
if j-1==i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, pb.p2[v] - (pb.w[v] - cleft)*(pb.p2[vars[j-2]]/pb.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, pb.p2[v] - (pb.w[v] - cleft)*(pb.p2[vars[j-1]]/pb.w[vars[j-1]]))
end
ub = max(U0,U1)
end
pb.ub_z2_i0[vars[i]] = ub
end
for i=1:size(pb)
#Calculate relaxation with variable i set to 1
w = pb.ω + pb.w[vars[i]]
ub = pb.min_profit_2 + pb.p2[vars[i]]
j = 1
while j <= size(pb) && (i==j || w + pb.w[vars[j]] <= pb.c)
v = vars[j]
if j != i
w += pb.w[v]
ub += pb.p2[v]
end
j += 1
end
if j <= size(pb)
v = vars[j]
cleft = pb.c - w
if j+1 == i || j == size(pb)
if j+2 <= size(pb)
U0 = ub + floor(Int, cleft * pb.p2[vars[j+2]]/pb.w[vars[j+2]])
else
U0 = ub
end
else
U0 = ub + floor(Int, cleft * pb.p2[vars[j+1]]/pb.w[vars[j+1]])
end
if j-1==i || j == 1
if j-2 >= 1
U1 = ub + floor(Int, pb.p2[v] - (pb.w[v] - cleft)*(pb.p2[vars[j-2]]/pb.w[vars[j-2]]))
else
U1 = 0
end
else
U1 = ub + floor(Int, pb.p2[v] - (pb.w[v] - cleft)*(pb.p2[vars[j-1]]/pb.w[vars[j-1]]))
end
ub = max(U0,U1)
end
pb.ub_z2_i1[vars[i]] = ub
end
end | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 7011 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
mutable struct Triangle
xr::solution
xs::solution
XΔ::Vector{solution}
λ::Tuple{Int,Int}
ub::Int
lb::Int
pending::Bool
end
Triangle(xr::solution,xs::solution) = begin
λ1,λ2 = obj_2(xr) - obj_2(xs), obj_1(xs) - obj_1(xr)
Triangle(xr,xs,solution[xr,xs],(λ1,λ2),λ1*obj_1(xr) + λ2*obj_2(xr),λ1*obj_1(xr) + λ2*obj_2(xs), true)
end
#const PartitionHeap = BinaryHeap{Partition, DataStructures.GreaterThan} # update 22-07-2021
const PartitionHeap = BinaryMaxHeap{Partition}
#Returns the partition p in τ maximizing p.zλ
function parent_partition!(τ::PartitionHeap)
pop!(τ)
end
function clean!(τ::PartitionHeap, lb::Int)
deleteat!(τ.valtree, findall(elt -> elt.zλ < lb, τ.valtree))
heapify!(τ.valtree, Base.Order.Reverse)
# @assert all(top(τ).zλ .>= zλ.(τ.valtree[2:end]))
end
#constructs the optimal path for a partition p=<v, U>
#new partitions are added to τ if their value for zλ is >= lb
function const_Path_New_Partition(p::Partition, τ::PartitionHeap, lb::Int, mono_pb::mono_problem)::BitArray
t = p.v #The vertex from which we're constructing the path
U = p.arcs #The imposed arcs
U_prime = reverse(U)
ϕ = falses(size(mono_pb)) #The path that will be returned
while t.layer != 1
if !isempty(U_prime) && last(head(U_prime)) == t #if an arc (s=>t) is imposed
s = first(head(U_prime))
U_prime = tail(U_prime)
elseif inner_degree(t) == 1 #elseif the vertex only has one parent
s = parent(t)
else
s1,s2 = parents(t)
#(s => t) is the optimal arc, (s' => t) is the secondary arc, not imposed yet
if s2.zλ + zλ(s2, t, mono_pb) == t.zλ
s = s2
s_prime = s1
else
s = s1
s_prime = s2
end
if isempty(U_prime) #Create a partition imposing the secondary arc (s' => t)
ϕ_zλ = zλ(p) - zλ(t) + zλ(s_prime) + zλ(s_prime, t, mono_pb)
if ϕ_zλ >= lb #Add it only if it's interesting
ϕ_z1 = z1(p) - z1(t) + z1(s_prime) + z1(s_prime, t, mono_pb)
ϕ_z2 = z2(p) - z2(t) + z2(s_prime) + z2(s_prime, t, mono_pb)
#@assert ϕ_zλ <= p.zλ
♇ = Partition(p.v, List(s_prime=>t, U), p.nbArcs+1, ϕ_zλ, ϕ_z1, ϕ_z2 )
push!(τ,♇)
end
end
end
#If the weight of the arc isn't 0 (-> if we picked the item)
if weight(s, t) != 0
ϕ[s.layer] = true #We add s.i to the list of items picked
end
t = s
end
ϕ
end
in_triangle(y::Tuple{Int,Int}, yr::Tuple{Int,Int}, ys::Tuple{Int,Int}) = yr[1] <= y[1] <= ys[1] && ys[2] <= y[2] <= yr[2]
in_triangle(y::Tuple{Int,Int}, xr::solution, xs::solution) = in_triangle(y, obj(xr), obj(xs))
in_triangle(xt::solution, xr::solution, xs::solution) = in_triangle(obj(xt), obj(xr), obj(xs))
in_triangle(y::solution, Δ::Triangle) = in_triangle(y, Δ.XΔ[1], Δ.XΔ[end])
in_triangle(y::Tuple{Int,Int}, Δ::Triangle) = in_triangle(y, Δ.XΔ[1], Δ.XΔ[end])
function update_lb!(Δ::Triangle)
# @assert issorted(Δ.XΔ, by = x -> obj_1(x))
XΔ = Δ.XΔ
λ1, λ2 = Δ.λ
lb = λ1*obj_1(XΔ[1]) + λ2*obj_2(XΔ[1])
for i = 2:length(XΔ)
zλ = λ1*obj_1(XΔ[i]) + λ2*obj_2(XΔ[i])
lb = min(lb,zλ)
end
for i = 1:length(XΔ)-1
xr = XΔ[i]
xs = XΔ[i+1]
zλ = λ1*(obj_1(xr)+1) + λ2*(obj_2(xs)+1)
lb = min(lb,zλ)
end
Δ.lb = lb
end
function explore_triangle(Δ::Triangle, output::Bool)
Δ.pending = false
XΔ = Δ.XΔ
OΔ = solution[] #Nondominated points located outside of Δ(yr, ys)
GKP = build_graph(Δ, output)
isempty(GKP) && return OΔ
mono_pb = GKP.mono_pb
# τ = binary_maxheap([Partition(v) for v in GKP.layer]) # updated 23-07-2021
τ = BinaryMaxHeap([Partition(v) for v in GKP.layer])
Tk = parent_partition!(τ)
while Tk.zλ >= Δ.lb
ϕk = const_Path_New_Partition(Tk, τ, Δ.lb, mono_pb)
let yk = (Tk.z1, Tk.z2)
if in_triangle(yk, Δ)#If the solution is in the triangle
if !any(x -> dominates(obj(x), yk), XΔ) #and no other solution in the triangle dominates it
s = solution(ϕk, GKP.pb, GKP.mono_pb) #Create the solution( O(n) )
deleteat!(XΔ, findall(x -> s>=x, XΔ))#Delete solutions dominated by this one
#Add the solution to the list
indinsert = searchsortedfirst(XΔ, s, by = obj_1)
insert!(XΔ, indinsert, s)
if Δ.lb != update_lb!(Δ)#And update the lower bound
clean!(τ, Δ.lb) #If the lower bound has been updated, we can remove some partitions from τ
end
end
else
if !any(y -> dominates(obj(y), yk), OΔ)#If the solution isn't in the triangle and isn't dominated by any other in OΔ
deleteat!(OΔ, findall(y -> dominates(yk, obj(y)), OΔ))#Delete solutions dominated by this one
push!(OΔ, solution(ϕk, GKP.pb, GKP.mono_pb))#push it in OΔ
end
end
end
length(τ)==0 && break #If there are no more partitions to explore, stop
Tk = parent_partition!(τ)#Else, pick the one with the better zλ
end
OΔ
end
function second_phase(XSE::Vector{solution}, output::Bool)
res = solution[]
Δlist = [Triangle(XSE[i], XSE[i+1]) for i = 1:length(XSE)-1]
for i = 1:length(Δlist)
Δ = select_triangle(Δlist)
output && println("exploring triangle $i/$(length(Δlist)) : Δ$(obj(Δ.xr))$(obj(Δ.xs)) ($((Δ.ub-Δ.lb)/2))")
# output && plot_triangle(Δ)
OΔ = explore_triangle(Δ, output)
append!(res, Δ.XΔ)
for sol in OΔ
for j = 1:length(Δlist)
Δj = Δlist[j]
if in_triangle(sol,Δj)
let sol=sol #15938
!(Δj.pending) && break
any(x -> x>=sol, Δj.XΔ) && break
deleteat!(Δj.XΔ, findall(x -> sol>=x, Δj.XΔ))
indinsert = searchsortedfirst(Δj.XΔ, sol, by = obj_1)
insert!(Δj.XΔ, indinsert, sol)
end
update_lb!(Δj)
break
end
end
end
end
sort!(res, by = obj_1, alg=QuickSort)
return unique(elt -> elt.x, res)
end
function select_triangle(Δlist::Vector{Triangle})
res = Δlist[findfirst(x->x.pending, Δlist)]
val_min = res.ub - res.lb
for i in findall(x -> x.pending, Δlist)
val = Δlist[i].ub - Δlist[i].lb
if val < val_min
val_min = val
res = Δlist[i]
end
end
return res
end
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 2290 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
struct solution
pb::problem #The problem for which it's a solution
x::BitArray #Variable states
obj_1::Int #Value on first objective
obj_2::Int #Value on second objective
weight::Int #Weight of the solution
end
#Constructor : empty solution
solution(p::problem) = solution(p, falses(size(p)), 0, 0, 0)
#Getters
obj_1(s::solution) = s.obj_1 + s.pb.min_profit_1
obj_2(s::solution) = s.obj_2 + s.pb.min_profit_2
obj(s::solution) = obj_1(s), obj_2(s)
weight(s::solution) = s.weight + s.pb.ω
full_variable_vector(s::solution) = begin
res = zeros(Int,s.pb.psize)
for i in s.pb.C1
res[i] = 1
end
for i = 1:size(s.pb)
if s.x[i] == true
res[s.pb.variables[i]] = 1
end
end
return res
end
print_vars(s::solution) = String([i==1 ? '1' : '0' for i in full_variable_vector(s)])
#Print function
Base.show(io::IO, s::solution) =
# print(io, "sol(p1=$(obj_1(s)), p2=$(obj_2(s)), w=$(weight(s)))")
print(io, "sol(p1=",obj_1(s),", p2=",obj_2(s),") w=",weight(s)," : " ,print_vars(s))
#Helper function to calculate an objective value or an accumulated weight
function dot(v::Vector{Int}, status::BitArray, indices::AbstractArray{Int,1})
#@assert length(v) >= length(status) == length(indices)
res = 0
for i = 1:length(status)
@inbounds res += status[i] * v[indices[i]]
end
res
end
#Relation operators
dominates(a1::Int,a2::Int,b1::Int,b2::Int) = (a1 > b1 && a2 >= b2) || (a1 >= b1 && a2 > b2)
dominates(yr::Tuple{Int,Int}, ys::Tuple{Int,Int}) = dominates(yr[1], yr[2], ys[1], ys[2])
ideal(yr::Tuple{Int,Int}, ys::Tuple{Int,Int}) = max(yr[1],ys[1]), max(yr[2],ys[2])
nadir(yr::Tuple{Int,Int}, ys::Tuple{Int,Int}) = min(yr[1],ys[1]), min(yr[2],ys[2])
import Base.==
==(a::solution, b::solution) = a.obj_1==b.obj_1 && a.obj_2==b.obj_2 && a.weight==b.weight && a.x==b.x
import Base.<
import Base.<=
<=(a::solution,b::solution) = dominates(obj(b),obj(a))
<=(a, b::solution) = dominates(obj(b), a)
<=(a::solution, b) = dominates(b, obj(a))
ideal(a::solution,b::solution) = max(obj_1(a), obj_1(b)) , max(obj_2(a), obj_2(b))
nadir(a::solution,b::solution) = nadir(obj(a), obj(b)) | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 2537 | # MIT License
# Copyright (c) 2017: Xavier Gandibleux, Anthony Przybylski, Gauthier Soleilhac, and contributors.
mutable struct vertex
layer::Int #index of the layer in the graph
i::Int #index of the variable
w::Int #accumulated weight
zλ::Int #best profit possible for zλ
z1::Int #best profit possible for z1
z2::Int #best profit possible for z2
has_parent_0::Bool
has_parent_1::Bool
parent_0::vertex #parent node, with an edge having a profit == 0
parent_1::vertex #parent node, with an edge having a profit > 0
vertex(l,i,w,zλ,z1,z2,hp0,hp1) = new(l,i,w,zλ,z1,z2,hp0,hp1)
vertex(l,i,w,zλ,z1,z2,hp0,hp1,p) = new(l,i,w,zλ,z1,z2,hp0,hp1,p,p)
end
# Base.show(io::IO, v::vertex) = print(io, "v_",v.i,"_",v.w,"(",v.zλ,")(",v.layer,")")
Base.show(io::IO, v::vertex) = print(io, "v_",v.i,"_",v.w,"(",v.z1,",",v.z2,")(",v.layer,")")
#v_i_0
source(mono_pb::mono_problem) = vertex(1,mono_pb.variables[1],mono_pb.ω,mono_pb.min_profit_λ,mono_pb.min_profit_1,mono_pb.min_profit_2,false,false)
#inner degree of a vertex
inner_degree(v::vertex) = v.has_parent_0 + v.has_parent_1
#Creates a vertex v_i+1_w from a vertex v_i_w assuming we decided not to pick item i
function vertex_skip(v::vertex, mono_pb::mono_problem)
varplus1 = v.layer == size(mono_pb) ? v.layer + 1 : mono_pb.variables[v.layer+1]
return vertex(v.layer+1, varplus1, v.w, v.zλ, v.z1, v.z2, true, false, v)
end
#Creates a vertex v_i+1_w' from a vertex v_i_w assuming we decided to pick item i
function vertex_keep(v::vertex, mono_pb::mono_problem)
#@assert v.mono_pb.variables[v.layer] == v.i
var = v.i
varplus1 = v.layer == size(mono_pb) ? v.layer + 1 : mono_pb.variables[v.layer+1]
return vertex(v.layer+1,
varplus1,
v.w+mono_pb.w[var],
v.zλ+mono_pb.p[var],
v.z1+mono_pb.p1[var],
v.z2+mono_pb.p2[var],
false, true,
v)
end
#merge two vertices
function merge!(a::vertex, b::vertex)
if b.zλ >= a.zλ
a.zλ, a.z1, a.z2 = b.zλ, b.z1, b.z2
end
a.has_parent_1 = true
a.parent_1 = b.parent_1
end
#Comparison functions for searchsorted()
weight_lt(v::vertex, w::Int) = v.w < w
weight_lt(w::Int, v::vertex) = w < v.w
#Returns the unique parent of a vertex
function parent(v::vertex)
return v.has_parent_0 ? v.parent_0 : v.parent_1
end
#Returns both parents of a vertex
function parents(v::vertex)
return v.parent_0, v.parent_1
end
zλ(v::vertex) = v.zλ
z1(v::vertex) = v.z1
z2(v::vertex) = v.z2 | vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | code | 1807 | using vOptSpecific
using Test
println("Testing 2LAP...")
C1 = [3 9 0 0 6 10 7 5 16 11 ;
16 0 6 12 19 8 17 10 9 18 ;
2 7 11 15 8 10 10 12 8 6 ;
4 11 7 16 3 13 18 11 11 7 ;
14 19 7 0 4 19 8 13 9 10 ;
11 4 17 14 19 5 16 2 17 4 ;
8 14 7 15 2 11 0 1 14 11 ;
8 8 3 15 8 7 14 9 0 16 ;
11 3 12 8 9 11 6 5 5 15 ;
2 5 1 9 0 4 12 13 5 6 ]
C2 = [16 5 6 19 12 7 18 19 16 10 ;
15 7 13 7 7 2 10 5 0 8 ;
1 2 13 2 3 6 6 16 19 3 ;
14 7 8 1 7 13 8 17 12 16 ;
8 19 15 1 18 14 16 8 0 8 ;
8 1 10 14 15 5 0 14 1 11 ;
9 16 10 10 9 17 3 17 15 15 ;
5 15 14 0 16 12 14 4 12 6 ;
12 1 19 14 15 15 0 7 1 13 ;
10 10 1 0 0 10 10 3 19 17 ]
id = set2LAP(10, C1, C2)
z1,z2,solutions = vSolve(id)
@test z1 == [18,19,28,35,43,54,66,22,26,34,51]
@test solutions[1,:] == [3, 2, 1, 5, 4, 10, 7, 9, 8, 6]
id = load2LAP("../examples/2AP10-1A100.dat")
z1,z2,solutions = vSolve(id)
@test z1 == [146, 155, 185, 271, 363, 478, 572, 149, 220, 267, 307, 402, 433]
@test solutions[1,:] == [6, 3, 7, 9, 2, 10, 1, 5, 4, 8]
println("\nTesting 2UKP...")
id = set2UKP([1,2,3], [4,5,6], [7,8,9], 16)
z1, z2, w, solutions = vSolve(id)
@test z1 == [4]
@test w == [16]
@test solutions == [[1, 0, 1]]
id = load2UKP("../examples/2KP500-1A.DAT")
z1, z2, w, solutions = vSolve(id)
@assert length(z1) == 1682
@assert extrema(z1) == (16028, 20360)
@assert allunique(solutions)
println("\nTesting 2UMFLP...")
id = load2UMFLP("../examples/F50-51.txt")
z1, z2, facility_res, X, isEdge = vSolve(id)
@test length(z1) == 198
@test count(!iszero, X[21]) == 91
@test count(isEdge) == 188
println("\nTesting 2OSP...")
id = set2OSP(4, [2, 4, 3, 1], [1, 2, 4, 6])
z1, z2 , S = vSolve(id)
for i = 1:length(S)
println("(", z1[i], ", ", z2[i], ") : ", S[i])
end
@test z1 == [20, 21, 27]
@test z2 == [8, 6, 5]
@test S == [[4, 1, 3, 2], [4, 1, 2, 3], [1, 2, 3, 4]]
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 1.1.0 | c5ce2a59e213e5bb3de8bcbb9a9f600ba3c4487f | docs | 3605 | # vOptSpecific: part of vOptSolver for structured problems
[](https://travis-ci.org/vOptSolver/vOptSpecific.jl)
[](http://codecov.io/github/vOptSolver/vOptSpecific.jl?branch=master)
**vOptSolver** is a solver of multiobjective linear optimization problems (MOMIP, MOLP, MOIP, MOCO).
This repository concerns **vOptSpecific**, the part of vOptSolver devoted to **multiobjective structured problems** (currently available: 2LAP, 2OSP, 2UKP, 2UMFLP). With vOptSpecific, the problem is expressed using an Application Programming Interface. vOptSpecific runs on macOS, and linux-ubuntu.
We suppose you are familiar with vOptSolver; if not, read first this [presentation](https://voptsolver.github.io/vOptSolver/).
## !!! Warning !!!
vOptSpecific calls C/C++ codes through julia wrappers. Compilation, configuration, and installation are done automatically when the package is added to your own julia environment. These steps require none action from the user. However, some issues with the C/C++ compilation scripts on the latest versions of macOS and Linux have been reported to us recently. You may have to manually compile codes with commands set in the scripts and install the resulting shared libraries in the ad hoc folders for executing vOptSpecific. Sorry for these inconveniences, we will examine and fix this soon.
## Instructions
For an use, a working version of:
- Julia must be ready; instructions for the installation are available [here](https://julialang.org/downloads/)
- your favorite C/C++ compiler must be ready (GCC is suggested)
### Run Julia
On macOS:
- locate the application `julia` and
- click on the icon, the julia console comes to the screen
On linux:
- open a console on your computer or in the cloud
- when the prompt is ready, type in the console `julia`
### Installation Instructions
Before your first use,
1. run Julia and when the terminal is ready with the prompt `julia` on screen,
2. add and build as follow the mandatory package to your Julia distribution:
```
julia> using Pkg
julia> Pkg.add("vOptSpecific")
julia> Pkg.build("vOptSpecific")
```
That's all folk; at this point, vOptSpecific is properly installed.
### Usage Instructions
When vOptSpecific is properly installed,
1. run Julia and when the terminal is ready with the prompt `julia` on screen,
2. invoke vOptSpecific in typing in the console:
```
julia> using vOptSpecific
```
vOptSpecific is ready. See examples for further informations and have fun with the solver!
## Problems available:
| Problem | Description | API | src | Reference |
|:--------|:-----------------------------------|:-------------:| --------:| --------------:|
| LAP | Linear Assignment Problem | **2LAP2008** | C | Przybylski2008 |
| OSP | One machine Scheduling Problem | **2OSP1980** | Julia | Wassenhove1980 |
| UKP | 01 Unidimensional knapsack problem | **2UKP2010** | Julia + C | Jorge2010 |
| UMFLP | Uncapacitated Mixed variables Facility Location Problem |**2UMFLP2016**| C++ | Delmee2017|
## Examples
The folder `examples` provides (1) source code of problems ready to be solved and (2) selected datafiles into different formats.
## Limitations
- The problem size for 2LAP is limited to 100x100.
## Validation
Tested the
- 22-Jul-2021
with
- Julia 1.6.2
on
- macOS 11.4 (Big Sur)
- Linux ubuntu 18.04.5 LTS
| vOptSpecific | https://github.com/vOptSolver/vOptSpecific.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 1448 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - https://github.com/strickek/ReadWriteDlm2.jl
"""
## ReadWriteDlm2
`ReadWriteDlm2` functions `readdlm2()`, `writedlm2()`, `readcsv2()` and
`writecsv2()` are similar to those of stdlib.DelimitedFiles, but with additional
support for `Date`, `DateTime`, `Time`, `Complex`, `Rational`, `Missing` types
and special decimal marks. `ReadWriteDlm2` supports the `Tables` interface.
### `readcsv2(), writecsv2()`:
For "decimal dot" users the functions `readcsv2()` and `writecsv2()` have the
respective defaults: Delimiter is `','` (fixed) and `decimal='.'`.
### `readdlm2(), writedlm2()`:
The basic idea of these functions is to support the "decimal comma countries".
They use `';'` as default delimiter and `','` as default decimal mark.
"Decimal dot" users of these functions need to define `decimal='.'`
### Detailed Documentation:
For more information about functionality and (keyword) arguments see `?help` for
`readdlm2()`, `writedlm2()`, `readcsv2()` and `writecsv2()`.
"""
module ReadWriteDlm2
using Dates
using DelimitedFiles
using DelimitedFiles: readdlm_string, val_opts
import Tables
export readdlm2, writedlm2, readcsv2, writecsv2
include("rwd2_dateregex.jl")
include("rwd2_readutils.jl")
include("rwd2_read.jl")
include("rwd2_writeutils.jl")
include("rwd2_write.jl")
include("rwd2_csv.jl")
include("rwd2_tables.jl")
end # End module ReadWriteDlm2
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 1206 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_csv.jl - https://github.com/strickek/ReadWriteDlm2.jl
"""
readcsv2(source, T::Type=Any; opts...)
Equivalent to `readdlm2()` with delimiter `','` and `decimal='.'`. Default Type
`Any` activates parsing of `Bool`, `Int`, `Float64`, `Complex`, `Rational`,
`Missing`, `DateTime`, `Date` and `Time`.
# Code Example
```jldoctest
julia> using ReadWriteDlm2
julia> B = Any[1 complex(1.5,2.7);1.0 1//3];
julia> writecsv2("test.csv", B)
julia> readcsv2("test.csv")
2×2 Array{Any,2}:
1 1.5+2.7im
1.0 1//3
```
"""
readcsv2(input; opts...) =
readdlm2auto(input, ',', Nothing, '\n', false; decimal='.', opts...)
readcsv2(input, T::Type; opts...) =
readdlm2auto(input, ',', T, '\n', false; decimal='.', opts...)
"""
writecsv2(f, A; opts...)
Equivalent to `writedlm2()` with fixed delimiter `','` and `decimal='.'`.
# Code Example
```jldoctest
julia> using ReadWriteDlm2
julia> B = Any[1 complex(1.5,2.7);1.0 1//3];
julia> writecsv2("test.csv", B)
julia> read("test.csv", String)
"1,1.5+2.7im\\n1.0,1//3\\n"
```
"""
writecsv2(f, a; opts...) = writedlm2auto(f, a, ','; decimal='.', opts...)
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 4622 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_dateregex - https://github.com/strickek/ReadWriteDlm2.jl
"""
dfregex(df::AbstractString, locale::AbstractString=\"english\")
Create a regex string `r\"^...\$\"` for the given `Date` or `DateTime`
`format`string `df`.
The regex groups are named according to the `format`string codes. `locale` is
used to calculate min and max length of month and day names (for codes: UuEe).
"""
function dfregex(df::AbstractString, locale::AbstractString="english")
# calculate min and max string lengths of months and day_of_weeks names
Ule = try extrema([length(Dates.monthname(i;locale=locale)) for i in 1:12])catch; (3, 9) end
ule = try extrema([length(Dates.monthabbr(i;locale=locale)) for i in 1:12])catch; (3, 3) end
Ele = try extrema([length(Dates.dayname(i;locale=locale)) for i in 1:7])catch; (6, 9) end
ele = try extrema([length(Dates.dayabbr(i;locale=locale)) for i in 1:7])catch; (3, 3) end
codechars = 'y', 'Y', 'm', 'u', 'e', 'U', 'E', 'd', 'H', 'M', 'S', 's', 'Z', 'z', '\\'
r = "^ *"; repeat_count = 1; ldf = length(df); dotsec = false
for i = 1:ldf
repeat_next = ((i < ldf) && (df[(i + 1)] == df[i])) ? true : false
((df[i] == '.') && (i < ldf) && (df[(i + 1)] == 's')) && (dotsec = true)
repeat_count = (((i > 2) && (df[(i - 2)] != '\\') && (df[(i - 1)] == df[i])) ||
((i == 2) && (df[1] == df[2]))) ? (repeat_count + 1) : 1
r = r * (
((i > 1) && (df[(i - 1)] == '\\')) ? string(df[i]) :
((df[i] == 'y') && (repeat_count < 5) && !repeat_next) ? "(?<y>\\d{1,4})" :
((df[i] == 'y') && (repeat_count > 4) && !repeat_next) ? "(?<y>\\d{1,$repeat_count})" :
((df[i] == 'Y') && (repeat_count < 5) && !repeat_next) ? "(?<y>\\d{1,4})" :
((df[i] == 'Y') && (repeat_count > 4) && !repeat_next) ? "(?<y>\\d{1,$repeat_count})" :
((df[i] == 'm') && (repeat_count == 1) && !repeat_next) ? "(?<m>0?[1-9]|1[012])" :
((df[i] == 'm') && (repeat_count == 2) && !repeat_next) ? "(?<m>0[1-9]|1[012])" :
((df[i] == 'm') && (repeat_count > 2) && !repeat_next) ? "0{$(repeat_count-2)}(?<m>0[1-9]|1[012])" :
((df[i] == 'u') && (repeat_count == 1)) ? "(?<u>[A-Za-z\u00C0-\u017F]{$(ule[1]),$(ule[2])})" :
((df[i] == 'U') && (repeat_count == 1)) ? "(?<U>[A-Za-z\u00C0-\u017F]{$(Ule[1]),$(Ule[2])})" :
((df[i] == 'e') && (repeat_count == 1)) ? "(?<e>[A-Za-z\u00C0-\u017F]{$(ele[1]),$(ele[2])})" :
((df[i] == 'E') && (repeat_count == 1)) ? "(?<E>[A-Za-z\u00C0-\u017F]{$(Ele[1]),$(Ele[2])})" :
((df[i] == 'd') && (repeat_count == 1) && !repeat_next) ? "(?<d>0?[1-9]|[12]\\d|3[01])" :
((df[i] == 'd') && (repeat_count == 2) && !repeat_next) ? "(?<d>0[1-9]|[12]\\d|3[01])" :
((df[i] == 'd') && (repeat_count > 2) && !repeat_next) ? "0{$(repeat_count-2)}(?<d>0[1-9]|[12]\\d|3[01])" :
((df[i] == 'H') && (repeat_count == 1) && !repeat_next) ? "(?<H>0?\\d|1\\d|2[0-3])" :
((df[i] == 'H') && (repeat_count == 2) && !repeat_next) ? "(?<H>0\\d|1\\d|2[0-3])" :
((df[i] == 'H') && (repeat_count > 2) && !repeat_next) ? "0{$(repeat_count-2)}(?<H>0\\d|1\\d|2[0-3])" :
((df[i] == 'M') && (repeat_count == 1) && !repeat_next) ? "(?<M>\\d|[0-5]\\d)" :
((df[i] == 'M') && (repeat_count == 2) && !repeat_next) ? "(?<M>[0-5]\\d)" :
((df[i] == 'M') && (repeat_count > 2) && !repeat_next) ? "0{$(repeat_count-2)}(?<M>[0-5]\\d)" :
((df[i] == 'S') && (repeat_count == 1) && !repeat_next) ? "(?<S>\\d|[0-5]\\d)" :
((df[i] == 'S') && (repeat_count == 2) && !repeat_next) ? "(?<S>[0-5]\\d)" :
((df[i] == 'S') && (repeat_count > 2) && !repeat_next) ? "0{$(repeat_count-2)}(?<S>[0-5]\\d)" :
((df[i] == '.') && dotsec) ? "" :
((df[i] == '.')) ? "\\." :
((df[i] == 's') && (dotsec == true) && (repeat_count < 4) && !repeat_next) ? "(\\.(?<s>\\d{0,3}0{0,6}))?" :
((df[i] == 's') && (dotsec == true) && (repeat_count > 3) && !repeat_next) ? "(\\.(?<s>\\d{$(repeat_count)}))?" :
((df[i] == 's') && (dotsec == false) && (repeat_count < 4) && !repeat_next) ? "(?<s>\\d{3})?" :
((df[i] == 's') && (dotsec == false) && (repeat_count > 3) && !repeat_next) ? "(?<s>\\d{$(repeat_count)})?" :
((df[i] == 'z') && !repeat_next) ? "(?<z>[\\+|\\-]?(0\\d|1\\d|2[0-3]):?[0-5]\\d)" :
((df[i] == 'Z') && !repeat_next) ? "(?<Z>[A-Z]{3,14})" :
in(df[i], codechars) ? "" : string(df[i])
)
end
return Regex(r * " *" * string('$'))
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 11260 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_read.jl - https://github.com/strickek/ReadWriteDlm2.jl
"""
readdlm2(source; options...)
readdlm2(source, T::Type; options...)
readdlm2(source, delim::AbstractChar; options...)
readdlm2(source, delim::AbstractChar, T::Type; options...)
readdlm2(source, delim::AbstractChar, eol::AbstractChar; options...)
readdlm2(source, delim::AbstractChar, T::Type, eol::AbstractChar; options...)
Read a matrix from `source`. The `source` can be a text file, stream or byte
array. Each line (separated by `eol`, this is `'\\n'` by default) gives one row.
The columns are separated by `';'`, another `delim` can be defined.
Pre-processing of `source` with regex substitution changes the decimal marks
from `d,d` to `d.d`. For default `rs` the keyword argument `decimal=','` sets
the decimal Char in the `r`-string of `rs`. When a special regex substitution
tuple `rs=(r.., s..)` is defined, the argument `decimal` is not used.
Pre-processing can be switched off with: `rs=()`.
In addition to stdlib readdlm(), data is also parsed for `Dates` formats,
the `Time` format `\"HH:MM[:SS[.s{1,9}]]\"` and for complex and rational numbers.
To deactivate parsing dates/time set: `dfs=\"\", dtfs=\"\"`.
`locale` defines the language of day (`E`, `e`) and month (`U`, `u`) names.
The result will be a (heterogeneous) array of default element type `Any`. If
`header=true` it will be a tuple containing the data array and a vector for
the columnnames. Other (abstract) types for the data array elements could be
defined. If data is empty, a `0×0 Array{T,2}` is returned.
With `tables=true`[, `header=true`] option[s] a `Tables` interface compatible
`MatrixTable` with individual column types is returned, which for example
can be used as Argument for `DataFrame()`.
# Additional Keyword Arguments
* `decimal=','`: Decimal mark Char used by default `rs`, irrelevant if `rs`-tuple is not the default one
* `rs=(r\"(\\d),(\\d)\", s\"\\1.\\2\")`: Regex (r,s)-tuple, the default change d,d to d.d if `decimal=','`
* `dtfs=\"yyyy-mm-ddTHH:MM:SS.s\"`: Format string for DateTime parsing
* `dfs=\"yyyy-mm-dd\"`: Format string for Date parsing
* `locale=\"english\"`: Language for parsing dates names
* `tables=false`: Return `Tables` interface compatible MatrixTable if `true`
* `dfheader=false`: 'dfheader=true' is shortform for `tables=true, header=true`
* `missingstring=\"na\"`: How missing values are represented
Find more information about `readdlm()` functionality and (keyword) arguments -
which are also supported by `readdlm2()` - in `help` for `readdlm()`.
# Code Example
```jldoctest
julia> using ReadWriteDlm2
julia> A = Any[1 1.2; "text" missing];
julia> writedlm2("test.csv", A)
julia> readdlm2("test.csv")
2×2 Array{Any,2}:
1 1.2
"text" missing
```
"""
readdlm2(input; opts...) =
readdlm2auto(input, ';', Nothing, '\n', true; opts...)
readdlm2(input, T::Type; opts...) =
readdlm2auto(input, ';', T, '\n', false; opts...)
readdlm2(input, dlm::AbstractChar; opts...) =
readdlm2auto(input, dlm, Nothing, '\n', true; opts...)
readdlm2(input, dlm::AbstractChar, T::Type; opts...) =
readdlm2auto(input, dlm, T, '\n', false; opts...)
readdlm2(input, dlm::AbstractChar, eol::AbstractChar; opts...) =
readdlm2auto(input, dlm, Nothing, eol, true; opts...)
readdlm2(input, dlm::AbstractChar, T::Type, eol::AbstractChar; opts...) =
readdlm2auto(input, dlm, T, eol, false; opts...)
function readdlm2auto(input, dlm, T, eol, auto;
decimal::AbstractChar=',',
rs::Tuple=(r"(\d),(\d)", s"\1.\2"),
dtfs::AbstractString="yyyy-mm-ddTHH:MM:SS.s",
dfs::AbstractString="yyyy-mm-dd",
locale::AbstractString="english",
tables::Bool=false,
dfheader::Bool=false,
missingstring::AbstractString="na",
opts...)
if dfheader == true
tables = true
opts = [opts...]
push!(opts, :header => true)
end
((!isempty(dtfs) && !occursin(Regex("[^YymdHMSs]"), dtfs)) ||
(!isempty(dfs) && !occursin(Regex("[^YymdHMSs]"), dfs))) && info(
"""
Format string for DateTime(`$dtfs`) or Date(`$dfs`)
contains numeric code elements only. At least one non-numeric
code element or character is needed for parsing dates.
""")
# "parsing-logic" - defaults
doparsedatetime = !isempty(dtfs)
doparsedate = !isempty(dfs)
doparsetime = false
doparsecomplex = true
doparserational = true
doparsemissing = false
doparsenothing = false
convertarray = true
T2 = Any
if T == Nothing # to know wether T ist Any by default
T = Any
anybydefault = true
else
anybydefault = false
end
# "parsing-logic" for different T::Types
((typeintersect(DateTime, T)) == Union{}) && (doparsedatetime = false)
((typeintersect(Date, T)) == Union{}) && (doparsedate = false)
doparsetime =
((doparsedatetime && doparsedate) || ((Time <: T) && !(Any <:T)))
T <: Union{AbstractFloat, AbstractString, Char} &&
(T2 = T; convertarray = false)
((typeintersect(Complex, T)) == Union{}) && (doparsecomplex = false)
((typeintersect(Rational, T)) == Union{}) && (doparserational = false)
Missing <: T && (doparsemissing = true)
Nothing <: T && (doparsenothing = true)
(Any <: T) && (convertarray = false)
if tables == true
T2 = Any
convertarray = false
!anybydefault && (convertarray = true)
T <: Union{AbstractString, Char} &&
(T2 = T; convertarray = false)
end
s = read(input, String)
# empty input data - return empty array
if (isempty(s) || (s == string(eol)))
return Array{T2}(undef, 0, 0)
end
if (!isempty(rs) && (decimal != '.')) # do pre-processing of decimal mark
# adopt dfs if decimal between two digits of formatstring
if (rs == (r"(\d),(\d)", s"\1.\2")) && doparsedate
drs = (Regex("([YymdHM])$decimal([YymdHM])"), s"\1.\2")
dfs = replace(dfs, drs[1] => drs[2])
end
# adopt dtfs if decimal between two digits of formatstring
if (rs == (r"(\d),(\d)", s"\1.\2")) && doparsedatetime
drs = (Regex("([YymdHMSs])$decimal([YymdHMSs])"), s"\1.\2")
dtfs = replace(dtfs, drs[1] => drs[2])
end
# Change default regex substitution Tuple if decimal != ','
if ((rs == (r"(\d),(\d)", s"\1.\2")) && (decimal != ','))
rs = (Regex("(\\d)$decimal(\\d)"), s"\1.\2")
end
# Error if decimal mark to replace is also the delim Char
"1"*string(dlm)*"1" != replace("1"*string(dlm)*"1", rs[1] => rs[2]) &&
error(
"""
Error: Decimal mark to replace is also the delim Char.
Pre-processing with decimal mark Regex substitution for
`$(dlm)` (= delim!!) is not allowed - change rs/decimal or delim!
""")
# Regex substitution decimal
s = replace(s, rs[1] => rs[2])
end
# Using stdlib DelimitedFiles internal function to read dlm-string
z = readdlm_string(s, dlm, T2, eol, auto, val_opts(opts))
# Formats, Regex for Date/DateTime parsing
doparsedatetime &&
(dtdf = DateFormat(dtfs, locale); rdt = dfregex(dtfs, locale))
doparsedate &&
(ddf = DateFormat(dfs, locale); rd = dfregex(dfs, locale))
if tables == true # return MatrixTable for Tables Interface
if isa(z, Tuple)
y, h = z
headerexist = true
cn = Symbol.(reshape(h, :))
else
y = z
headerexist = false
end
rows, cols = size(y)
coltypes = Array{Type, 1}(undef, cols)
Tn = typeintersect(T, Number)
for c in 1:cols # iterate columns
colcontainmissing = false
colcontainnothing = false
coltype = Union{}
for r in 1:rows # iterate rows in columns
if isa(y[r,c], AbstractString)
if doparsedatetime && occursin(rdt, y[r,c]) # parse DateTime
try y[r,c] = DateTime(y[r,c], dtdf) catch; end
elseif doparsedate && occursin(rd, y[r,c]) # parse Date
try y[r,c] = Date(y[r,c], ddf) catch; end
elseif doparsemissing && y[r,c] == missingstring # parse Missing
try y[r,c] = missing catch; end
elseif doparsenothing && y[r,c] == "nothing" # parse Nothing
try y[r,c] = nothing catch; end
else # parse Time, Complex and Rational
try y[r,c] = parseothers(y[r,c], doparsetime, doparsecomplex, doparserational) catch; end
if isa(y[r,c], AbstractString)
#Substring to String
try y[r,c] = String.(split(y[r,c]))[1] catch; end
end
end
elseif convertarray && !(typeof(y[r,c]) <: Tn)
try y[r,c] = convert(Tn, y[r,c]) catch; end
end
if typeof(y[r,c]) == Missing
colcontainmissing = true
elseif typeof(y[r,c]) == Nothing
colcontainnothing = true
else
coltype = typejoin(coltype, typeof(y[r,c]))
end
end # end for - iterate rows in columns
if colcontainmissing && colcontainnothing
coltypes[c] = Union{Missing, Nothing, coltype}
elseif colcontainmissing
coltypes[c] = Union{Missing, coltype}
elseif colcontainnothing
coltypes[c] = Union{Nothing, coltype}
else
coltypes[c] = coltype
end
if convertarray && (coltypes[c] <: T)
coltypes[c] = T
end
end # end for - iterate columns
vdata = vecofvec(y, coltypes)
if headerexist
return Tables.table(vdata, header=cn)
else
return Tables.table(vdata)
end
else # return standard Format (Arry or Tuple(data, header))
if isa(z, Tuple)
y, h = z
else
y = z
end
for i in eachindex(y)
if isa(y[i], AbstractString)
if doparsedatetime && occursin(rdt, y[i]) # parse DateTime
try y[i] = DateTime(y[i], dtdf) catch; end
elseif doparsedate && occursin(rd, y[i]) # parse Date
try y[i] = Date(y[i], ddf) catch; end
elseif doparsemissing && y[i] == missingstring # parse Missing
try y[i] = missing catch; end
elseif doparsenothing && y[i] == "nothing" # parse Nothing
try y[i] = nothing catch; end
else # parse Time, Complex and Rational
try y[i] = parseothers(y[i], doparsetime, doparsecomplex, doparserational) catch; end
end
end
end
end
if convertarray
isa(z, Tuple) ? z = (convert(Array{T}, y), h) : z = convert(Array{T}, z)
end
return z
end # End function readdlm2auto()
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 2188 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_readutils.jl- https://github.com/strickek/ReadWriteDlm2.jl
"""
parseothers(y::AbstractString, doparsetime::Bool, doparsecomplex::Bool, doparserational::Bool)
Parse string `y` for `Time`, `Complex` and `Rational` format and if match return the value.
Otherwise return the input string `y`.
"""
function parseothers(y, doparsetime, doparsecomplex, doparserational)
if doparsetime # parse Time
mt = match(r"^ *(0?\d|1\d|2[0-3])[:Hh]([0-5]?\d)(:([0-5]?\d)([\.,](\d{1,3})(\d{1,3})?(\d{1,3})?)?)? *$", y)
if mt != nothing
h = parse(Int, mt[1])
mi = parse(Int, mt[2])
(mt[4] == nothing) ? s = ms = us = ns = 0 :
s = parse(Int, lpad(string(mt[4]), 2, string(0))); (mt[6] == nothing) ? ms = us = ns = 0 :
ms = parse(Int, rpad(string(mt[6]), 3, string(0))); (mt[7] == nothing) ? us = ns = 0 :
us = parse(Int, rpad(string(mt[7]), 3, string(0))); (mt[8] == nothing) ? ns = 0 :
ns = parse(Int, rpad(string(mt[8]), 3, string(0)))
return Dates.Time(h, mi, s, ms, us, ns)
end
end
if doparsecomplex # parse Complex
mc = match(r"^ *(-?\d+(\.\d+)?([eE]-?\d+)?|(-?\d+)//(\d+)) ?([\+-]) ?(\d+(\.\d+)?([eE]-?\d+)?|(\d+)//(\d+))(\*im|\*i|\*j|im|i|j) *$", y)
if mc != nothing
real =
((mc[4] != nothing) && (mc[5] != nothing)) ? //(parse(Int, mc[4]), parse(Int, mc[5])) :
((mc[2] == nothing) && (mc[3] == nothing)) ? parse(Int, mc[1]) : parse(Float64, mc[1])
imag =
((mc[10] != nothing) && (mc[11] != nothing)) ? //(parse(Int, mc[6]*mc[10]), parse(Int, mc[11])) :
((mc[8] == nothing) && (mc[9] == nothing)) ? parse(Int, mc[6]*mc[7]) : parse(Float64, mc[6]*mc[7])
return complex(real, imag)
end
end
if doparserational # parse Rational
mr = match(r"^ *(-?\d+)//(-?\d+) *$", y)
if mr != nothing
nu = parse(Int, mr[1])
de = parse(Int, mr[2])
return //(nu, de)
end
end
return y
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 4964 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_tables.jl - https://github.com/strickek/ReadWriteDlm2.jl
"""
ReadWriteDlm2.matrix2(table)
Materialize any table source input as a `Matrix{Any}`.
Column names - in Symbol type - are written in first row.
"""
function matrix2(table)
cols = Tables.Columns(table)
cnames = Tables.columnnames(table)
nr = Tables.rowcount(cols) + 1
nc = length(cnames)
matrix = Matrix{Any}(undef, nr, nc)
for (i, col) in enumerate(cols)
matrix[1, i] = cnames[i]
matrix[2:end, i] = col
end
return matrix
end
"""
vecofvec(a::Matrix, ct::Vector{Type})
Take the columns of Matrix `a`, convert each column to `Array{T,1} where T`
(`ct` provides Type), and return the columns as `Vector{Array{T,1} where T}`.
"""
function vecofvec(a::Matrix, ct::Vector{<:Type})
cols = size(a, 2)
cols == length(ct) || throw(ArgumentError(
"`ct` length ($(length(ct))) must match number of columns in matrix ($(size(a, 2)))"
))
vov = Vector{Array{T,1} where T}(undef, cols)
for i = 1:cols
vov[i] = convert(Vector{ct[i]}, view(a, :,i))
end
return vov
end
# MatrixTable - ReadWriteDlm2 outputformat for Tables interface
struct MatrixTable <: Tables.AbstractColumns
names::Vector{Symbol}
lookup::Dict{Symbol, Int}
matrix::Vector{Array{T,1} where T}
end
# Overload Table.table for m::Vector{Vector}
"""
Tables.table(m::Vector{Array{T,1} where T; [header::Vector{Symbol}])
Wrap an vector containing columns as vectors (`Array{T,1} where T`) in a
`MatrixTable`, which satisfies the Tables.jl interface. This allows accesing
the matrix via `Tables.rows` and `Tables.columns`. An optional keyword argument
`header` can be passed as a `Vector{Symbol}` to be used as the column names.
"""
function Tables.table(m::Vector{Array{T,1} where T};
header::Vector{Symbol} = [Symbol("Column$i") for i = 1:length(m)]
)
length(header) == length(m) || throw(ArgumentError(
"`header` length must match number of columns in matrix ($(length(m)))"))
lookup = Dict(nm=>i for (i, nm) in enumerate(header))
return MatrixTable(header, lookup, m)
end
"""
mttoarray(m::ReadWriteDlm2.MatrixTable; elt::Type=Union{})
Take Vectors of field matrix in MatrixTable `m` and return data as Array{T,2}.
With given `elt` T=elt, otherwise T is the union of element types in matrix.
"""
function mttoarray(m::ReadWriteDlm2.MatrixTable; elt::Type=Union{})
ma = ReadWriteDlm2.matrix(m)
nc = length(ma)
nr = length(ma[1])
elt == Union{} ? T1 = Any : T1 = elt
a = Array{T1}(undef, (nr,nc))
T = elt
for i in eachindex(ma)
T = Union{T, eltype(m[i])}
a[:,i] = m[i]
end
elt != Union{} && return a
return convert(Array{T,2}, a)
end
# declare that MatrixTable is a table
Tables.istable(::Type{<:MatrixTable}) = true
# getter methods to avoid getproperty clash
names(m::MatrixTable) = getfield(m, :names)
matrix(m::MatrixTable) = getfield(m, :matrix)
lookup(m::MatrixTable) = getfield(m, :lookup)
# schema is column names and types
Tables.schema(m::MatrixTable) = Tables.Schema(names(m), eltype.(matrix(m)))
# column interface
Tables.columnaccess(::Type{<:MatrixTable}) = true
Tables.columns(m::MatrixTable) = m
# required Tables.AbstractColumns object methods
Tables.getcolumn(m::MatrixTable, ::Type{T}, col::Int, nm::Symbol) where {T} = matrix(m)[col]
Tables.getcolumn(m::MatrixTable, nm::Symbol) = matrix(m)[lookup(m)[nm]]
Tables.getcolumn(m::MatrixTable, i::Int) = matrix(m)[i]
Tables.columnnames(m::MatrixTable) = names(m)
# declare that any MatrixTable defines its own `Tables.rows` method
Tables.rowaccess(::Type{<:MatrixTable}) = true
# just return itself, which means MatrixTable must iterate `Tables.AbstractRow`-compatible objects
Tables.rows(m::MatrixTable) = m
# the iteration interface, at a minimum, requires `eltype`, `length`, and `iterate`
# for `MatrixTable` `eltype`, we're going to provide a custom row type
Base.eltype(m::MatrixTable) = MatrixRow
Base.length(m::MatrixTable) = length(matrix(m)[1])
Base.iterate(m::MatrixTable, st=1) = st > length(m) ? nothing : (MatrixRow(st, m), st + 1)
# a custom row type; acts as a "view" into a row of an AbstractMatrix
struct MatrixRow <: Tables.AbstractRow
row::Int
source::MatrixTable
end
# required `Tables.AbstractRow` interface methods (same as for `Tables.AbstractColumns` object before)
# but this time, on our custom row type
Tables.getcolumn(m::MatrixRow, ::Type, col::Int, nm::Symbol) =
getfield(getfield(m, :source), :matrix)[col][getfield(m, :row)]
Tables.getcolumn(m::MatrixRow, i::Int) =
getfield(getfield(m, :source), :matrix)[i][getfield(m, :row)]
Tables.getcolumn(m::MatrixRow, nm::Symbol) =
getfield(getfield(m, :source), :matrix)[getfield(getfield(m, :source), :lookup)[nm]][getfield(m, :row)]
Tables.columnnames(m::MatrixRow) = names(getfield(m, :source))
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 4107 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_write.jl - https://github.com/strickek/ReadWriteDlm2.jl
"""
writedlm2(f, A; opts...)
writedlm2(f, A, delim; opts...)
Write `A` (a vector, matrix, or an iterable collection of iterable rows, a
`Tables` source) as text to `f` (either a filename or an IO stream). The columns
are separated by `';'`, another `delim` (Char or String) can be defined.
By default, a pre-processing of values takes place. Before writing as strings,
decimal marks are changed from `'.'` to `','`. With the keyword argument
`decimal=` another decimal mark can be defined.
To switch off this pre-processing set: `decimal='.'`.
In `writedlm2()` the output format for `Date` and `DateTime` data can be
defined with format strings. Defaults are the ISO formats. Day (`E`, `e`)
and month (`U`, `u`) names are written in the `locale` language. For writing
`Complex` numbers the imaginary component suffix can be selected with the
`imsuffix=` keyword argument.
# Additional Keyword Arguments
* `decimal=','`: Character for writing decimal marks
* `dtfs=\"yyyy-mm-ddTHH:MM:SS.s\"`: DateTime write format
* `dfs=\"yyyy-mm-dd\"`: Date write format
* `locale=\"english\"`: Language for DateTime writing
* `imsuffix=\"im\"`: Complex Imag suffix `\"im\"`, `\"i\"` or `\"j\"`
* `missingstring=\"na\"`: How missing values are written
# Code Example
```jldoctest
julia> using ReadWriteDlm2, Dates
julia> A = Any[1 1.2; "text" Date(2017)];
julia> writedlm2("test.csv", A)
julia> read("test.csv", String)
"1;1,2\\ntext;2017-01-01\\n"
```
"""
writedlm2(io::IO, a; opts...) =
writedlm2auto(io, a, ';'; opts...)
writedlm2(io::IO, a, dlm; opts...) =
writedlm2auto(io, a, dlm; opts...)
writedlm2(f::AbstractString, a; opts...) =
writedlm2auto(f, a, ';'; opts...)
writedlm2(f::AbstractString, a, dlm; opts...) =
writedlm2auto(f, a, dlm; opts...)
function writedlm2auto(f, a, dlm;
decimal::AbstractChar=',',
dtfs::AbstractString="yyyy-mm-ddTHH:MM:SS.s",
dfs::AbstractString="yyyy-mm-dd",
locale::AbstractString="english",
imsuffix::AbstractString="im",
missingstring::AbstractString="na",
opts...)
((!isempty(dtfs) && !occursin(Regex("[^YymdHMSs]"), dtfs)) ||
(!isempty(dfs) && !occursin(Regex("[^YymdHMSs]"), dfs))) && info(
"""
Format string for DateTime(`$dtfs`) or Date(`$dfs`)
contains numeric code elements only. At least one non-numeric
code element or character is needed for parsing dates.
""")
(string(dlm) == string(decimal)) && error(
"Error: decimal = delim = ´$(dlm)´ - change decimal or delim!")
((imsuffix != "im") && (imsuffix != "i") && (imsuffix != "j")) && error(
"Only `\"im\"`, `\"i\"` or `\"j\"` are valid for `imsuffix`.")
if isa(a, Union{Nothing, Missing, Number, TimeType})
a = [a] # create 1 element Array
elseif Tables.istable(a) == true # Tables interface
a = matrix2(a) # Matrix{Any}, first row columnnames, row 2:end -> data
end
if isa(a, AbstractArray)
fdt = !isempty(dtfs) # Bool: format DateTime
dtdf = DateFormat(dtfs, locale)
fd = !isempty(dfs) # Bool: format Date
ddf = DateFormat(dfs, locale)
ft = (decimal != '.') # Bool: format Time (change decimal)
# create b for manipulation/write - keep a unchanged
b = similar(a, Any)
for i in eachindex(a)
b[i] =
isa(a[i], AbstractFloat) ? floatformat(a[i], decimal) :
isa(a[i], Missing) ? missingstring :
isa(a[i], Nothing) ? "nothing" :
isa(a[i], DateTime) && fdt ? Dates.format(a[i], dtdf) :
isa(a[i], Date) && fd ? Dates.format(a[i], ddf) :
isa(a[i], Time) && ft ? timeformat(a[i], decimal) :
isa(a[i], Complex) ? complexformat(a[i], decimal, imsuffix) :
string(a[i])
end
else # a is not a Number, TimeType or Array -> no preprocessing
b = a
end
writedlm(f, b, dlm; opts...)
end # End function writedlm2auto()
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 1065 | # Stricker Klaus 2020 - License is MIT: http://julialang.org/license
# ReadWriteDlm2 - rwd2_writeutils.jl - https://github.com/strickek/ReadWriteDlm2.jl
"""
floatformat(a, decimal::AbstractChar)
Convert Int or Float64 numbers to String and change decimal mark.
"""
function floatformat(a, decimal)
a = string(a)
(decimal != '.') && (a = replace(a, '.' => decimal))
return a
end
"""
timeformat(a, decimal::AbstractChar)
Convert Time to String, optional with change of decimal mark for seconds.
"""
function timeformat(a, decimal)
a = string(a)
(decimal != '.') && (a = replace(a, '.' => decimal))
return a
end
"""
Complexformat(a, decimal::AbstractChar, imsuffix::AbstractString)
Convert Complex number to String, optional change of decimal and/or imsuffix.
"""
function complexformat(a, decimal, imsuffix)
a = string(a)
a = replace(a, " " => "" ) #"1 + 3im" => "1+3im"
(imsuffix != "im") && (a = string(split(a, "im")[1], imsuffix))
(decimal != '.') && (a = replace(a, '.' => decimal))
return a
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 387 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# runtests.jl
using DelimitedFiles
using ReadWriteDlm2
using Test
using Random
using Dates
import Tables
import ReadWriteDlm2.dfregex
include("rwd2tests_1.jl")
include("rwd2tests_2.jl")
include("rwd2tests_3.jl")
include("rwd2tests_4.jl")
include("rwd2tests_5.jl")
include("rwd2tests_6.jl")
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 15341 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_1.jl
# 1st block modified standardtests
isequaldlm(m1, m2, t) = isequal(m1, m2) && (eltype(m1) == eltype(m2) == t)
@testset "1_ readdlm2" begin
@test isequaldlm(readdlm2(IOBuffer("1;2\n3;4\n5;6\n"), Float64), [1. 2; 3 4; 5 6], Float64)
@test isequaldlm(readdlm2(IOBuffer("1;2\n3;4\n5;6\n"), Int), [1 2; 3 4; 5 6], Int)
@test isequaldlm(readdlm2(IOBuffer("1 2\n3 4\n5 6\n"),' ', Float64), [1. 2; 3 4; 5 6], Float64)
@test isequaldlm(readdlm2(IOBuffer("1 2\n3 4\n5 6\n"), ' ', Int), [1 2; 3 4; 5 6], Int)
@test size(readdlm2(IOBuffer("1;2;3;4\n1;2;3"))) == (2,4)
@test size(readdlm2(IOBuffer("1; 2;3;4\n1;2;3"))) == (2,4)
@test size(readdlm2(IOBuffer("1; 2;3;4\n1;2;3\n"))) == (2,4)
@test size(readdlm2(IOBuffer("1;;2;3;4\n1;2;3\n"))) == (2,5)
let result1 = reshape(Any["", "", "", "", "", "", 1.0, 1.0, "", "", "", "", "", 1.0, 2.0, "", 3.0, "", "", "", "", "", 4.0, "", "", ""], 2, 13),
result2 = reshape(Any[1.0, 1.0, 2.0, 1.0, 3.0, "", 4.0, ""], 2, 4)
@test isequaldlm(readdlm2(IOBuffer(";;;1;;;;2;3;;;4;\n;;;1;;;1\n")), result1, Any)
@test isequaldlm(readdlm2(IOBuffer(" 1 2 3 4 \n 1 1\n"), ' '), result1, Any)
@test isequaldlm(readdlm2(IOBuffer(" 1 2 3 4 \n 1 1\n"), ' '), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("1;2\n3;4 \n"), Float64), [[1.0, 3.0] [2.0, 4.0]], Float64)
end
let result1 = reshape(Any["", "", "", "", "", "", "भारत", 1.0, "", "", "", "", "", 1.0, 2.0, "", 3.0, "", "", "", "", "", 4.0, "", "", ""], 2, 13)
@test isequaldlm(readdlm2(IOBuffer(",,,भारत,,,,2,3,,,4,\n,,,1,,,1\n"), ',', rs=()) , result1, Any)
end
let result1 = reshape(Any[1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, ""], 2, 4)
@test isequaldlm(readdlm2(IOBuffer("1;2;3;4\n1;2;3")), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("1;2;3;4\n1;2;3;"),';'), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("1,2,3,4\n1,2,3"), ',', rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("1,2,3,4\r\n1,2,3\r\n"), ',', rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("1,2,3,\"4\"\r\n1,2,3\r\n"), ',', rs=()), result1, Any)
end
let result1 = reshape(Any["abc", "hello", "def,ghi", " \"quote\" ", "new\nline", "world"], 2, 3),
result2 = reshape(Any["abc", "line\"", "\"hello\"", "\"def", "", "\" \"\"quote\"\" \"", "ghi\"", "", "world", "\"new", "", ""], 3, 4)
@test isequaldlm(readdlm2(IOBuffer("abc,\"def,ghi\",\"new\nline\"\n\"hello\",\" \"\"quote\"\" \",world"), ',', rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("abc,\"def,ghi\",\"new\nline\"\n\"hello\",\" \"\"quote\"\" \",world"), ',', rs=(), quotes=false), result2, Any)
@test isequaldlm(readdlm2(IOBuffer("abc,\"def,ghi\",\"new\nline\"\n\"hello\",\" \"\"quote\"\" \",world"), ',', rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("abc,\"def,ghi\",\"new\nline\"\n\"hello\",\" \"\"quote\"\" \",world"), ',', rs=(), quotes=false), result2, Any)
@test isequaldlm(readdlm2(IOBuffer("abc;\"def,ghi\";\"new\nline\"\n\"hello\";\" \"\"quote\"\" \";world")), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("abc;\"def;ghi\";\"new\nline\"\n\"hello\";\" \"\"quote\"\" \";world"), quotes=false), result2, Any)
@test isequaldlm(readdlm2(IOBuffer("abc;\"def,ghi\";\"new\nline\"\n\"hello\";\" \"\"quote\"\" \";world"), rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("abc;\"def;ghi\";\"new\nline\"\n\"hello\";\" \"\"quote\"\" \";world"), rs=(), quotes=false), result2, Any)
end
let result1 = reshape(Any["t", "c", "", "c"], 2, 2),
result2 = reshape(Any["t", "\"c", "t", "c"], 2, 2)
@test isequaldlm(readdlm2(IOBuffer("t;\n\"c\";c")), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("t;t\n\"\"\"c\";c")), result2, Any)
@test isequaldlm(readdlm2(IOBuffer("t;\n\"c\";c"), rs=()), result1, Any)
@test isequaldlm(readdlm2(IOBuffer("t;t\n\"\"\"c\";c"), rs=()), result2, Any)
end
@test isequaldlm(readdlm2(IOBuffer("\n1;2;3\n4;5;6\n\n\n"), skipblanks=false),
reshape(Any["",1.0,4.0,"","","",2.0,5.0,"","","",3.0,6.0,"",""], 5, 3), Any)
@test isequaldlm(readdlm2(IOBuffer("\n1;2;3\n4;5;6\n\n\n"), Float64, skipblanks=true),
reshape([1.0,4.0,2.0,5.0,3.0,6.0], 2, 3), Float64)
@test isequaldlm(readdlm2(IOBuffer("1;2\n\n4;5"), skipblanks=false),
reshape(Any[1.0,"",4.0,2.0,"",5.0], 3, 2), Any)
@test isequaldlm(readdlm2(IOBuffer("1;2\n\n4;5"), Float64, skipblanks=true),
reshape([1.0,4.0,2.0,5.0], 2, 2), Float64)
end
@testset "1_ writedlm2" begin
let x = bitrand(5, 10), io = IOBuffer()
writedlm2(io, x)
seek(io, 0)
@test readdlm2(io, Bool) == x
end
let x = bitrand(5, 10)
writedlm2("test.csv", x, ";")
@test readdlm2("test.csv", ';', Bool, '\n') == x
@test readdlm2("test.csv", ';', '\n') == x
end
let x = bitrand(5, 10)
writedlm2("test.csv", x, ";")
@test readdlm2("test.csv", ';', Bool) == x
@test readdlm2("test.csv", ';') == x
end
let x = bitrand(5, 10)
writedlm2("test.csv", x)
@test readdlm2("test.csv", Bool) == x
@test readdlm2("test.csv") == x
end
let x = [1,2,3], y = [4,5,6], io = IOBuffer()
writedlm2(io, zip(x,y), ", ")
seek(io, 0)
@test readdlm2(io, ',', rs=()) == [x y]
end
let x = [0.1 0.3 0.5], io = IOBuffer()
writedlm2(io, x, ", ")
seek(io, 0)
@test read(io, String) == "0,1, 0,3, 0,5\n"
end
let x = [0.1 0.3 0.5], io = IOBuffer()
writedlm2(io, x, "; ")
seek(io, 0)
@test read(io, String) == "0,1; 0,3; 0,5\n"
end
let x = [0.1 0.3 0.5], io = IOBuffer()
writedlm2(io, x)
seek(io, 0)
@test readdlm2(io) == [0.1 0.3 0.5]
end
let x = [0.1 0.3 0.5], io = IOBuffer()
writedlm2(io, x, decimal='€')
seek(io, 0)
@test readdlm2(io, rs=(r"(\d)€(\d)", s"\1.\2")) == [0.1 0.3 0.5]
end
let x = [0.1 0.3 0.5], io = IOBuffer()
writedlm2(io, x, ':', decimal='€')
seek(io, 0)
@test readdlm2(io, ':', rs=(r"(\d)€(\d)", s"\1.\2")) == [0.1 0.3 0.5]
end
let x = ["abc", "def\"ghi", "jk\nl"], y = [1, ",", "\"quoted\""], io = IOBuffer()
writedlm2(io, zip(x,y))
seek(io, 0)
@test readdlm2(io) == [x y]
end
let x = ["abc", "def\"ghi", "jk\nl"], y = [1, ",", "\"quoted\""], io = IOBuffer()
writedlm2(io, zip(x,y))
seek(io, 0)
@test readdlm2(io, Any) == [x y]
end
let x = ["a" "b"; "d" ""], io = IOBuffer()
writedlm2(io, x)
seek(io, 0)
@test readdlm2(io) == x
end
let x = ["\"hello\"", "world\""], io = IOBuffer()
writedlm2(io, x, quotes=false)
@test String(take!(io)) == "\"hello\"\nworld\"\n"
writedlm2(io, x)
@test String(take!(io)) == "\"\"\"hello\"\"\"\n\"world\"\"\"\n"
end
end
@testset "1_ comments" begin
@test isequaldlm(readdlm2(IOBuffer("#this is comment\n1;2;3\n#one more comment\n4;5;6"), Float64, comments=true), [1. 2. 3.;4. 5. 6.], Float64)
@test isequaldlm(readdlm2(IOBuffer("#this is \n#comment\n1;2;3\n#one more \n#comment\n4;5;6"), Float64, comments=true), [1. 2. 3.;4. 5. 6.], Float64)
@test isequaldlm(readdlm2(IOBuffer("1;2;#3\n4;5;6"), comments=true), [1. 2. "";4. 5. 6.], Any)
@test isequaldlm(readdlm2(IOBuffer("1#;2;3\n4;5;6"), comments=true), [1. "" "";4. 5. 6.], Any)
@test isequaldlm(readdlm2(IOBuffer("1;2;\"#3\"\n4;5;6"), comments=true), [1. 2. "#3";4. 5. 6.], Any)
@test isequaldlm(readdlm2(IOBuffer("1;2;3\n #with leading whitespace\n4;5;6"), comments=true), [1. 2. 3.;" " "" "";4. 5. 6.], Any)
end
@testset "1_ skipstart" begin
x = ["a" "b" "c"; "d" "e" "f"; "g" "h" "i"; "A" "B" "C"; 1 2 3; 4 5 6; 7 8 9]
io = IOBuffer()
writedlm2(io, x, quotes=false)
seek(io, 0)
(data, hdr) = readdlm2(io, header=true, skipstart=3)
@test data == [1 2 3; 4 5 6; 7 8 9]
@test hdr == ["A" "B" "C"]
x = ["a" "b" "\nc"; "d" "\ne" "f"; "g" "h" "i\n"; "A" "B" "C"; 1 2 3; 4 5 6; 7 8 9]
io = IOBuffer()
writedlm2(io, x, quotes=true)
seek(io, 0)
(data, hdr) = readdlm2(io, header=true, skipstart=6)
@test data == [1 2 3; 4 5 6; 7 8 9]
@test hdr == ["A" "B" "C"]
io = IOBuffer()
writedlm2(io, x, quotes=false)
seek(io, 0)
(data, hdr) = readdlm2(io, header=true, skipstart=6)
@test data == [1 2 3; 4 5 6; 7 8 9]
@test hdr == ["A" "B" "C"]
end
@testset "1_ i18n" begin
# source: http://www.i18nguy.com/unicode/unicode-example-utf8.zip
let i18n_data = ["Origin (English)", "Name (English)", "Origin (Native)", "Name (Native)",
"Australia", "Nicole Kidman", "Australia", "Nicole Kidman",
"Austria", "Johann Strauss", "Österreich", "Johann Strauß",
"Belgium (Flemish)", "Rene Magritte", "België", "René Magritte",
"Belgium (French)", "Rene Magritte", "Belgique", "René Magritte",
"Belgium (German)", "Rene Magritte", "Belgien", "René Magritte",
"Bhutan", "Gonpo Dorji", "འབྲུག་ཡུལ།", "མགོན་པོ་རྡོ་རྗེ།",
"Canada", "Celine Dion", "Canada", "Céline Dion",
"Canada - Nunavut (Inuktitut)", "Susan Aglukark", "ᓄᓇᕗᒻᒥᐅᑦ", "ᓱᓴᓐ ᐊᒡᓗᒃᑲᖅ",
"Democratic People's Rep. of Korea", "LEE Sol-Hee", "조선 민주주의 인민 공화국", "이설희",
"Denmark", "Soren Hauch-Fausboll", "Danmark", "Søren Hauch-Fausbøll",
"Denmark", "Soren Kierkegaard", "Danmark", "Søren Kierkegård",
"Egypt", "Abdel Halim Hafez", "ﻣﺼﺮ", "ﻋﺑﺪﺍﻠﺣﻟﻳﻢ ﺤﺎﻓﻅ",
"Egypt", "Om Kolthoum", "ﻣﺼﺮ", "ﺃﻡ ﻛﻟﺛﻭﻡ",
"Eritrea", "Berhane Zeray", "ብርሃነ ዘርኣይ", "ኤርትራ",
"Ethiopia", "Haile Gebreselassie", "ኃይሌ ገብረሥላሴ", "ኢትዮጵያ",
"France", "Gerard Depardieu", "France", "Gérard Depardieu",
"France", "Jean Reno", "France", "Jean Réno",
"France", "Camille Saint-Saens", "France", "Camille Saint-Saëns",
"France", "Mylene Demongeot", "France", "Mylène Demongeot",
"France", "Francois Truffaut", "France", "François Truffaut",
"France (Braille)", "Louis Braille", "⠋⠗⠁⠝⠉⠑", "⠇⠕⠥⠊⠎⠀<BR>⠃⠗⠁⠊⠇⠇⠑",
"Georgia", "Eduard Shevardnadze", "საქართველო", "ედუარდ შევარდნაძე",
"Germany", "Rudi Voeller", "Deutschland", "Rudi Völler",
"Germany", "Walter Schultheiss", "Deutschland", "Walter Schultheiß",
"Greece", "Giorgos Dalaras", "Ελλάς", "Γιώργος Νταλάρας",
"Iceland", "Bjork Gudmundsdottir", "Ísland", "Björk Guðmundsdóttir",
"India (Hindi)", "Madhuri Dixit", "भारत", "माधुरी दिछित",
"Ireland", "Sinead O'Connor", "Éire", "Sinéad O'Connor",
"Israel", "Yehoram Gaon", "ישראל", "יהורם גאון",
"Italy", "Fabrizio DeAndre", "Italia", "Fabrizio De André",
"Japan", "KUBOTA Toshinobu", "日本", "久保田 利伸",
"Japan", "HAYASHIBARA Megumi", "日本", "林原 めぐみ",
"Japan", "Mori Ogai", "日本", "森鷗外",
"Japan", "Tex Texin", "日本", "テクス テクサン",
"Norway", "Tor Age Bringsvaerd", "Noreg", "Tor Åge Bringsværd",
"Pakistan (Urdu)", "Nusrat Fatah Ali Khan", "پاکستان", "نصرت فتح علی خان",
"People's Rep. of China", "ZHANG Ziyi", "中国", "章子怡",
"People's Rep. of China", "WONG Faye", "中国", "王菲",
"Poland", "Lech Walesa", "Polska", "Lech Wałęsa",
"Puerto Rico", "Olga Tanon", "Puerto Rico", "Olga Tañón",
"Rep. of China", "Hsu Chi", "臺灣", "舒淇",
"Rep. of China", "Ang Lee", "臺灣", "李安",
"Rep. of Korea", "AHN Sung-Gi", "한민국", "안성기",
"Rep. of Korea", "SHIM Eun-Ha", "한민국", "심은하",
"Russia", "Mikhail Gorbachev", "Россия", "Михаил Горбачёв",
"Russia", "Boris Grebenshchikov", "Россия", "Борис Гребенщиков",
"Slovenia", "\"Frane \"\"Jezek\"\" Milcinski", "Slovenija", "Frane Milčinski - Ježek",
"Syracuse (Sicily)", "Archimedes", "Συρακούσα", "Ἀρχιμήδης",
"Thailand", "Thongchai McIntai", "ประเทศไทย", "ธงไชย แม็คอินไตย์",
"U.S.A.", "Brad Pitt", "U.S.A.", "Brad Pitt",
"Yugoslavia (Cyrillic)", "Djordje Balasevic", "Југославија", "Ђорђе Балашевић",
"Yugoslavia (Latin)", "Djordje Balasevic", "Jugoslavija", "Đorđe Balašević"]
i18n_arr = permutedims(reshape(i18n_data, 4, Int(floor(length(i18n_data)/4))), [2, 1])
i18n_buff = PipeBuffer()
writedlm2(i18n_buff, i18n_arr, ',', decimal='.')
@test i18n_arr == readdlm2(i18n_buff, ',', rs=())
writedlm2(i18n_buff, i18n_arr)
@test i18n_arr == readdlm2(i18n_buff)
hdr = i18n_arr[1:1, :]
data = i18n_arr[2:end, :]
writedlm2(i18n_buff, i18n_arr)
@test (data, hdr) == readdlm2(i18n_buff, header=true)
end
end
@testset "1_ issue #13028" begin
for data in ["A B C", "A B C\n"]
data,hdr = readdlm2(IOBuffer(data), ' ', header=true)
@test hdr == AbstractString["A" "B" "C"]
@test data == Array{Float64}(undef, 0, 3)
end
end
@testset "1_ issue #13179" begin # fix #13179 parsing unicode lines with default delmiters
@test isequaldlm(readdlm2(IOBuffer("# Should ignore this π\n1\tα\n2\tβ\n"), '\t', comments=true), Any[1 "α"; 2 "β"], Any)
@test isequaldlm(readdlm2(IOBuffer("# Should ignore this π\n1;α\n2;β\n"), comments=true), Any[1 "α"; 2 "β"], Any)
@test isequaldlm(readdlm2(IOBuffer("# Should ignore this π\n1\tα\n2\tβ\n"), '\t', rs=(), comments=true), Any[1 "α"; 2 "β"], Any)
@test isequaldlm(readdlm2(IOBuffer("# Should ignore this π\n1;α\n2;β\n"), rs=(), comments=true), Any[1 "α"; 2 "β"], Any)
end
@testset "1_ other issues" begin
# BigInt parser
let data = "1;2;3"
@test readdlm2(IOBuffer(data), BigInt) == BigInt[1 2 3]
@test readdlm2(IOBuffer(data), BigInt, rs=()) == BigInt[1 2 3]
end
let data = "1 2 3"
@test readdlm2(IOBuffer(data), ' ', BigInt) == BigInt[1 2 3]
@test readdlm2(IOBuffer(data), ' ', BigInt, rs=()) == BigInt[1 2 3]
end
# Test that we can read a write protected file
let fn = tempname()
open(fn, "w") do f
write(f, "Julia")
end
chmod(fn, 0o444)
@test readdlm2(fn)[] == "Julia"
rm(fn)
end
# issue #21180
let data = "\"721\",\"1438\",\"1439\",\"…\",\"1\""
@test readdlm2(IOBuffer(data), ',', rs=()) == Any[721 1438 1439 "…" 1]
end
let data = "\"721\";\"1438\";\"1439\";\"…\";\"1\""
@test readdlm2(IOBuffer(data)) == Any[721 1438 1439 "…" 1]
end
# issue #21207
let data = "\"1\";\"灣\"\"灣灣灣灣\";\"3\""
@test readdlm2(IOBuffer(data)) == Any[1 "灣\"灣灣灣灣" 3]
end
# issue #11484: useful error message for invalid readdlm filepath arguments
# not implemented in ReadWriteDlm2
end
@testset "1_ complex" begin
@test readdlm2(IOBuffer("3+4im; 4+5im"), Complex{Int}) == [3+4im 4+5im]
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 10121 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_2.jl
# 2nd block
# Test the new functions of ReadWriteDlm2
@testset "2_ dfregex" begin
@test true == occursin(dfregex("HH:MM"), "22:00")
@test true == occursin(dfregex("H:M"), "1:30")
@test true == occursin(dfregex("H:M"), "10:30")
@test false == occursin(dfregex("H:M"), "10:62")
@test true == occursin(dfregex("HHhMM"), "22h00")
@test false == occursin(dfregex("HHhMM"), "22h")
@test true == occursin(dfregex("Hh"), "22h")
@test true == occursin(dfregex("HhM\\min"), "22h15min")
@test true == occursin(dfregex("yyyy-mm-dd"), "2018-01-23")
@test true == occursin(dfregex("yyyy.mm.dd"), "2018.01.23")
@test false == occursin(dfregex("yyyy-mm-dd"), "2018.01.23")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM:SS"), "2018-01-23T23:52:00")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MM:SS"), "2018-01-23T23:72:00")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMz"), "2018-01-23T23:52+01:00")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMz"), "2018-01-23T23:52+0100")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMz"), "2018-01-23T23:52-10:00")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MM z"), "2018-01-23T23:52+01:00")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MM z"), "2018-01-23T23:52 ")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM z"), "2018-01-23T23:52 10:00")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMZ"), "2018-01-23T23:52UTC")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMZ"), "2018-01-23T23:52CET")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMZ"), "2018-01-23T23:52CEST")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MM Z"), "2018-01-23T23:52CET")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM Z"), "2018-01-23T23:52 CEST")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MM Z"), "2018-01-23T23:52CEST")
@test false == occursin(dfregex("yyyy-mm-ddTHH:MMZ"), "2018-01-23T23:52CE")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MMZZZZZZ"), "2018-01-23T23:52CEST")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM ZZZZ"), "2018-01-23T23:52 CET")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM zzzzzz"), "2018-01-23T23:52 +11:00")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM zzzz"), "2018-01-23T23:52 -09:00")
@test true == occursin(dfregex("yyyy-mm-ddTHH:MM\\Z"), "2018-01-23T23:52Z")
end
@testset "2_new functions" begin
let data = "2015-01-01;5,1;Text1\n10;19e6;4\n"
@test isequaldlm(readdlm2(IOBuffer(data)), [Date(2015) 5.1 "Text1";10 190.0e5 4.0], Any)
@test isequaldlm(readdlm2(IOBuffer(data)), [Date(2015) 5.1 "Text1";10 190.0e5 4.0], Any)
end
a = [Date(2015) 5.1 "Text1";10 190.0e5 4.0]
writedlm2("test.csv", a, decimal='€')
@test read("test.csv", String) == "2015-01-01;5€1;Text1\n10;1€9e7;4€0\n"
b = readdlm2("test.csv", rs=(r"(\d)€(\d)", s"\1.\2"))
rm("test.csv")
@test b[1] == Date(2015)
a = DateTime(2017)
writedlm2("test.csv", a)
@test read("test.csv", String) == "2017-01-01T00:00:00.0\n"
b = readdlm2("test.csv")
rm("test.csv")
@test b[1] == DateTime(2017)
a = Any[Date(2017,1,14) DateTime(2017,2,15,23,40,59)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "2017-01-14;2017-02-15T23:40:59.0\n"
b = readdlm2("test.csv")
rm("test.csv")
@test isequaldlm(a, b, Any)
a = Any[Date(2017, 1, 1) DateTime(2017, 2, 15, 23, 0, 0)]
writedlm2("test.csv", a, dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
@test read("test.csv", String) == "01/2017;15.02.2017/23.h\n"
writedlm2("test.csv", a, dfs="", dtfs="")
@test read("test.csv", String) == "2017-01-01;2017-02-15T23:00:00\n"
writedlm2("test.csv", a, decimal='.')
@test read("test.csv", String) == "2017-01-01;2017-02-15T23:00:00.0\n"
writedlm2("test.csv", a, decimal='.', dfs="\\Y\\ear: yyyy", dtfs="\\Y\\ear: yyyy")
@test read("test.csv", String) == "Year: 2017;Year: 2017\n"
writedlm2("test.csv", a, dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
@test read("test.csv", String) == "01/2017;15.02.2017/23.h\n"
b = readdlm2("test.csv", dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
@test isequaldlm(a, b, Any)
b = readdlm2("test.csv", rs=(), dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
rm("test.csv")
@test isequaldlm(a, b, Any)
a = Date(2017,5,1)
writedlm2("test.csv", a, dfs="dd.mm.yyyy")
@test read("test.csv", String) == "01.05.2017\n"
b = readdlm2("test.csv", dfs="dd.mm.yyyy")
rm("test.csv")
@test b[1] == a
a = "ABC"
writedlm2("test.csv", a)
@test read("test.csv", String) == "A\nB\nC\n"
b = readdlm2("test.csv")
rm("test.csv")
@test b[1] == "A" && b[3] == "C"
D = rand(1:9, 10, 5)
writedlm2("test.csv", D)
@test length(read("test.csv", String)) == 100
b = readdlm2("test.csv")
rm("test.csv")
@test D == b
a = 10.9
writedlm2("test.csv", a, decimal='€')
@test read("test.csv", String) == "10€9\n"
b = readdlm2("test.csv")
rm("test.csv")
@test b[1] == "10€9"
a = 10.9
writedlm2("test.csv", a, decimal='.')
@test read("test.csv", String) == "10.9\n"
b = readdlm2("test.csv")
rm("test.csv")
@test b[1] == 10.9
a = [10.9 12.5; Date(2017) DateTime(2017)]
writedlm2("test.csv", a, ',', decimal='€')
b = readdlm2("test.csv", ',', decimal='€')
rm("test.csv")
@test a == b
a = [10.9 12.5; Date(2017) DateTime(2017)]
writedlm2("test.csv", a, ',', decimal='.')
b = readdlm2("test.csv", ',', decimal='.')
rm("test.csv")
@test a == b
a = [10.9 12.5; Date(2017) DateTime(2017)]
writedlm2("test.csv", a)
b = readdlm2("test.csv")
rm("test.csv")
@test a == b
end
@testset "2_ date format" begin
# test date format strings with variable length
a = DateTime(2017,5,1,5,59,1)
writedlm2("test.csv", a, dtfs="E, dd.mm.yyyy H:M:S")
@test read("test.csv", String) == "Monday, 01.05.2017 5:59:1\n"
b = readdlm2("test.csv", dtfs="E, dd.mm.yyyy H:M:S")
rm("test.csv")
@test a == b[1]
a = DateTime(2017,5,1,5,59,1,898)
writedlm2("test.csv", a, dtfs="E, d.u yyyy H:M:S,s")
@test read("test.csv", String) == "Monday, 1.May 2017 5:59:1,898\n"
b = readdlm2("test.csv", dtfs="E, d.u yyyy H:M:S.s")
@test a == b[1]
b = readdlm2("test.csv", dtfs="E, d.u yyyy H:M:S,s")
@test a == b[1]
rm("test.csv")
# test date format strings with fix length
a = [DateTime(2017,5,1,5,59,1,898) 1.0 1.1 1.222e7 1 true]
writedlm2("test.csv", a, dtfs="yyyyymmmdddTHHHMMMSSSsss")
@test read("test.csv", String) == "02017005001T005059001898;1,0;1,1;1,222e7;1;true\n"
b = readdlm2("test.csv", dtfs="yyyyymmmdddTHHHMMMSSSsss")
rm("test.csv")
@test b == a
end
@testset "2_ Time parsing" begin
a = [Dates.Time(23,55,56,123,456,789) Dates.Time(23,55,56,123,456) Dates.Time(23,55,56,123) Dates.Time(12,45) Dates.Time(11,23,11)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "23:55:56,123456789;23:55:56,123456;23:55:56,123;12:45:00;11:23:11\n"
b = readdlm2("test.csv")
@test b == a
write("test.csv", "23:55:56.123456789;23:55:56,123456;23:55:56,123;12:45;11:23:11\n")
b = readdlm2("test.csv")
rm("test.csv")
@test b == a
a = [Dates.Time(23,55,56,123,456) Dates.Time(12,45) Dates.Time(11,23,11)]
writedlm2("test.csv", a, decimal='.')
@test read("test.csv", String) == "23:55:56.123456;12:45:00;11:23:11\n"
@test readdlm2("test.csv", dtfs="", dfs="") == ["23:55:56.123456" "12:45:00" "11:23:11"]
@test readdlm2("test.csv") == a
rm("test.csv")
end
@testset "2_ DateLocale" begin # Test locale for french and german
Dates.LOCALES["french"] = Dates.DateLocale(
["janvier", "février", "mars", "avril", "mai", "juin",
"juillet", "août", "septembre", "octobre", "novembre", "décembre"],
["janv", "févr", "mars", "avril", "mai", "juin",
"juil", "août", "sept", "oct", "nov", "déc"],
["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"],
["lu", "ma", "me", "je", "ve", "sa", "di"],
)
Dates.LOCALES["german"] = Dates.DateLocale(
["Januar", "Februar", "März", "April", "Mai", "Juni",
"Juli", "August", "September", "Oktober", "November", "Dezember"],
["Jan", "Feb", "Mar", "Apr", "Mai", "Jun",
"Jul", "Aug", "Sep", "Okt", "Nov", "Dez"],
["Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag"],
["Mo", "Di", "Mi", "Do", "Fr", "Sa", "So"],
)
a = DateTime(2017,5,1,5,59,1)
writedlm2("test.csv", a, dtfs="E, dd.mm.yyyy H:M:S", locale="french")
@test read("test.csv", String) == "lundi, 01.05.2017 5:59:1\n"
b = readdlm2("test.csv", dtfs="E, dd.mm.yyyy H:M:S", locale="french")
rm("test.csv")
@test b[1] == a
a = DateTime(2017,1,1,5,59,1,898)
writedlm2("test.csv", a, dtfs="E, d.u yyyy H:M:S,s", locale="french")
@test read("test.csv", String) == "dimanche, 1.janv 2017 5:59:1,898\n"
b = readdlm2("test.csv", dtfs="E, d.u yyyy H:M:S.s", locale="french")
@test b[1] == a
b = readdlm2("test.csv", dtfs="E, d.u yyyy H:M:S,s", locale="french")
@test b[1] == a
rm("test.csv")
a = DateTime(2017,8,1,5,59,1)
writedlm2("test.csv", a, dtfs="E, dd.mm.yyyy H:M:S", locale="german")
@test read("test.csv", String) == "Dienstag, 01.08.2017 5:59:1\n"
b = readdlm2("test.csv", dtfs="E, dd.mm.yyyy H:M:S", locale="german")
rm("test.csv")
@test b[1] == a
a = DateTime(2017,11,1,5,59,1,898)
writedlm2("test.csv", a, dtfs="E, d. U yyyy H:M:S,s", locale="german")
@test read("test.csv", String) == "Mittwoch, 1. November 2017 5:59:1,898\n"
b = readdlm2("test.csv", dtfs="E, d. U yyyy H:M:S.s", locale="german")
@test b[1] == a
b = readdlm2("test.csv", dtfs="E, d. U yyyy H:M:S,s", locale="german")
@test b[1] == a
rm("test.csv")
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 7729 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_3.jl
@testset "3_ other types" begin
# Test Complex and Rational parsing
a = Any[complex(-1,-2) complex(1.2,-2) complex(1e9,3e19) 1//3 -1//5 -2//-4 1//-0 -0//1]
writedlm2("test.csv", a)
@test read("test.csv", String) == "-1-2im;1,2-2,0im;1,0e9+3,0e19im;1//3;-1//5;1//2;1//0;0//1\n"
b = readdlm2("test.csv", Any)
rm("test.csv")
@test isequaldlm(a, b, Any)
# Complex and Rational - tolerance with blancs, i/j and different signes
write("test.csv", " -1-2j; 1,2 - 2,0i ;1.0E9+3.0E19im; -1//-3;1//-5; 1//2 ;1//-0;-0//1 \n")
b = readdlm2("test.csv", Any)
rm("test.csv")
@test b == a
# Test Complex and Rational parsing - decimal = '.', delimiter = \t
a = Any[complex(-1,-2) complex(1.2,-2) complex(1e9,3e19) 1//3 -1//5 -2//-4 1//-0 -0//1]
writedlm2("test.csv", a, '\t', decimal='.')
@test read("test.csv", String) == "-1-2im\t1.2-2.0im\t1.0e9+3.0e19im\t1//3\t-1//5\t1//2\t1//0\t0//1\n"
b = readdlm2("test.csv",'\t', Any, decimal='.')
rm("test.csv")
@test isequaldlm(a, b, Any)
# Test different types with header and Any Array - decimal comma
a = Any["Nr" "Wert";1 Date(2017);2 DateTime(2018);3 Dates.Time(23,54,45,123,456,78);4 1.5e10+5im;5 1500//5;6 1.5e10]
writedlm2("test.csv", a)
@test read("test.csv", String) ==
"""
Nr;Wert
1;2017-01-01
2;2018-01-01T00:00:00.0
3;23:54:45,123456078
4;1,5e10+5,0im
5;300//1
6;1,5e10
"""
b = readdlm2("test.csv", Any, header=true)
rm("test.csv")
@test a[2:end,:] == b[1]
@test a[1:1,:] == b[2]
# Test different types with header and Any Array - english decimal
a = Any["Nr" "Value";1 Date(2017);2 DateTime(2018);3 Dates.Time(23,54,45,123,456,78);4 1.5e10+5im;5 1500//5;6 1.5e10]
writedlm2("test.csv", a, '\t', decimal='.')
@test read("test.csv", String) ==
"""
Nr\tValue
1\t2017-01-01
2\t2018-01-01T00:00:00.0
3\t23:54:45.123456078
4\t1.5e10+5.0im
5\t300//1
6\t1.5e10
"""
b = readdlm2("test.csv", '\t', Any, decimal='.', header=true)
rm("test.csv")
@test a[2:end,:] == b[1]
@test a[1:1,:] == b[2]
# Test Complex Array read and write
a = Complex[complex(-1,-2) complex(1.2,-2) complex(-1e9,3e-19)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "-1-2im;1,2-2,0im;-1,0e9+3,0e-19im\n"
b = readdlm2("test.csv", Complex)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Complex,2}
a = Complex[complex(-1,-2) complex(1.2,-2) complex(-1e9,3e-19)]
writedlm2("test.csv", a, imsuffix="i")
@test read("test.csv", String) == "-1-2i;1,2-2,0i;-1,0e9+3,0e-19i\n"
b = readdlm2("test.csv", Complex)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Complex,2}
a = Any["test" "test2";complex(-1,-2) complex(1.2,-2);complex(-1e9,3e-19) complex(1,115)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test;test2\n-1-2im;1,2-2,0im\n-1,0e9+3,0e-19im;1+115im\n"
b = readdlm2("test.csv", Any)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Any,2}
a = Any["test1" "test2";complex(-1,-2) complex(1.2,-2);complex(-1e9,3e-19) complex(1,115)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test1;test2\n-1-2im;1,2-2,0im\n-1,0e9+3,0e-19im;1+115im\n"
b, h = readdlm2("test.csv", Complex, header=true)
rm("test.csv")
@test b == Complex[complex(-1,-2) complex(1.2,-2);complex(-1e9,3e-19) complex(1,115)]
@test h == AbstractString["test1" "test2"]
a = Complex[complex(-1//3,-7//5) complex(1,-1//3) complex(-1//2,3e-19)]
writedlm2("test.csv", a, imsuffix="i")
@test read("test.csv", String) == "-1//3-7//5*i;1//1-1//3*i;-0,5+3,0e-19i\n"
b = readdlm2("test.csv", Complex)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Complex,2}
a = Complex[complex(-1//3,-7//5) complex(1,-1//3) complex(-1//2,3e-19)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "-1//3-7//5*im;1//1-1//3*im;-0,5+3,0e-19im\n"
b = readdlm2("test.csv", Complex)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Complex,2}
# Test Time read and write
a = Time[Time(12,54,43,123,456,789) Time(13,45);Time(1,45,58,0,0,1) Time(23,59,59)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "12:54:43,123456789;13:45:00\n01:45:58,000000001;23:59:59\n"
b = readdlm2("test.csv", Time)
rm("test.csv")
@test b == a
@test typeof(b) == Array{Time,2}
a = Any["test1" "test2";Time(12,54,43,123,456,789) Time(13,45);Time(1,45,58,0,0,1) Time(23,59,59)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test1;test2\n12:54:43,123456789;13:45:00\n01:45:58,000000001;23:59:59\n"
b, h = readdlm2("test.csv", Time, header=true)
rm("test.csv")
@test b == Time[Time(12,54,43,123,456,789) Time(13,45);Time(1,45,58,0,0,1) Time(23,59,59)]
@test h == AbstractString["test1" "test2"]
# Test Rational read and write
a = Rational[456//123 123//45;456//23 1203//45]
writedlm2("test.csv", a)
@test read("test.csv", String) == "152//41;41//15\n456//23;401//15\n"
b = readdlm2("test.csv", Rational)
rm("test.csv")
@test b == a
@test typeof(b) == Array{Rational,2}
a = Any["test1" "test2";456//123 123//45;456//23 1203//45]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test1;test2\n152//41;41//15\n456//23;401//15\n"
b, h = readdlm2("test.csv", Rational, header=true)
rm("test.csv")
@test b == Rational[456//123 123//45;456//23 1203//45]
@test h == AbstractString["test1" "test2"]
# Test DateTime read and write
a = DateTime[DateTime(2017) DateTime(2016);DateTime(2015) DateTime(2014)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "2017-01-01T00:00:00.0;2016-01-01T00:00:00.0\n2015-01-01T00:00:00.0;2014-01-01T00:00:00.0\n"
b = readdlm2("test.csv", DateTime)
c = readdlm2("test.csv", DateTime, tables=true) # test tables interface
@test ReadWriteDlm2.mttoarray(c) == a
rm("test.csv")
@test b == a
@test typeof(b) == Array{DateTime,2}
a = Any["test1" "test2";DateTime(2017) DateTime(2016);DateTime(2015) DateTime(2014)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test1;test2\n2017-01-01T00:00:00.0;2016-01-01T00:00:00.0\n2015-01-01T00:00:00.0;2014-01-01T00:00:00.0\n"
b, h = readdlm2("test.csv", DateTime, header=true)
rm("test.csv")
@test b == DateTime[DateTime(2017) DateTime(2016);DateTime(2015) DateTime(2014)]
@test h == AbstractString["test1" "test2"]
# Test Date read and write
a = Date[Date(2017) Date(2016);Date(2015) Date(2014)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "2017-01-01;2016-01-01\n2015-01-01;2014-01-01\n"
b = readdlm2("test.csv", Date)
rm("test.csv")
@test b == a
@test typeof(b) == Array{Date,2}
a = Any["test1" "test2";Date(2017) Date(2016);Date(2015) Date(2014)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "test1;test2\n2017-01-01;2016-01-01\n2015-01-01;2014-01-01\n"
b, h = readdlm2("test.csv", Date, header=true)
rm("test.csv")
@test b == Date[Date(2017) Date(2016);Date(2015) Date(2014)]
@test h == AbstractString["test1" "test2"]
# Test alternative rs Tuple - is decimal ignored?
a = Float64[1.1 1.2;2.1 2.2]
writedlm2("test.csv", a, decimal='€')
@test read("test.csv", String) == "1€1;1€2\n2€1;2€2\n"
b = readdlm2("test.csv", Any, rs=(r"(\d)€(\d)", s"\1.\2"), decimal='n')
rm("test.csv")
@test a == b
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 8521 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_4.jl
# Tests for readcsv2 and writecsv2
# ================================
@testset "4_readwritecsv2" begin
# test comments with readcsv2
@test isequaldlm(readcsv2(IOBuffer("#this is comment\n1,2,3\n#one more comment\n4,5,6"), comments=true), Any[1 2 3;4 5 6], Any)
@test isequaldlm(readcsv2(IOBuffer("#this is \n#comment\n1,2,3\n#one more \n#comment\n4,5,6"), comments=true), Any[1 2 3;4 5 6], Any)
# test readcsv2 and writecsv2 with alternative decimal
a = Float64[1.1 1.2;2.1 2.2]
writecsv2("test.csv", a, decimal='€')
@test read("test.csv", String) == "1€1,1€2\n2€1,2€2\n"
b = readcsv2("test.csv", Any, rs=(r"(\d)€(\d)", s"\1.\2"), decimal='n')
rm("test.csv")
@test a == b
# Test different types with header for readcsv2 and writecsv2
a = Any["Nr" "Value";1 Date(2017);2 DateTime(2018);3 Dates.Time(23,54,45,123,456,78);4 1.5e10+5im;5 1500//5;6 1.5e10]
writecsv2("test.csv", a)
@test read("test.csv", String) ==
"""
Nr,Value
1,2017-01-01
2,2018-01-01T00:00:00.0
3,23:54:45.123456078
4,1.5e10+5.0im
5,300//1
6,1.5e10
"""
b = readcsv2("test.csv", header=true)
rm("test.csv")
@test a[2:end,:] == b[1]
@test a[1:1,:] == b[2]
# Test size for readcsv2
@test size(readcsv2(IOBuffer("1,2,3,4"))) == (1,4)
@test size(readcsv2(IOBuffer("1,2,3,"))) == (1,4)
@test size(readcsv2(IOBuffer("1,2,3,4\n"))) == (1,4)
@test size(readcsv2(IOBuffer("1,2,3,\n"))) == (1,4)
@test size(readcsv2(IOBuffer("1,2,3,4\n1,2,3,4"))) == (2,4)
@test size(readcsv2(IOBuffer("1,2,3,4\n1,2,3,"))) == (2,4)
@test size(readcsv2(IOBuffer("1,2,3,4\n1,2,3"))) == (2,4)
@test size(readcsv2(IOBuffer("1,2,3,4\r\n"))) == (1,4)
@test size(readcsv2(IOBuffer("1,2,3,4\r\n1,2,3\r\n"))) == (2,4)
@test size(readcsv2(IOBuffer("1,2,3,4\r\n1,2,3,4\r\n"))) == (2,4)
@test size(readcsv2(IOBuffer("1,2,3,\"4\"\r\n1,2,3,4\r\n"))) == (2,4)
#Time types for readcsv2 and writecsv2
a = [Dates.Time(23,55,56,123,456,789) Dates.Time(23,55,56,123,456) Dates.Time(23,55,56,123) Dates.Time(12,45) Dates.Time(11,23,11)]
writecsv2("test.csv", a)
@test read("test.csv", String) == "23:55:56.123456789,23:55:56.123456,23:55:56.123,12:45:00,11:23:11\n"
b = readcsv2("test.csv")
rm("test.csv")
@test b == a
# Test readcsv2/writecsv2 with Complex - Rationals
a = Complex[complex(-1//3,-7//5) complex(1,-1//3) complex(-1//2,3e-19)]
writecsv2("test.csv", a)
@test read("test.csv", String) == "-1//3-7//5*im,1//1-1//3*im,-0.5+3.0e-19im\n"
b = readcsv2("test.csv", Complex)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Complex,2}
end
@testset "4_empty IO-data" begin
# Tests for empty IO-Data
a = ""
writedlm2("test.csv", a)
@test read("test.csv", String) == ""
b = readdlm2("test.csv")
@test typeof(b) == Array{Any,2}
@test typeof(readdlm2("test.csv", Any)) == Array{Any,2}
rm("test.csv")
@test isempty(b)
writecsv2("test.csv", a)
@test read("test.csv", String) == ""
b = readcsv2("test.csv")
@test typeof(b) == Array{Any,2}
@test typeof(readcsv2("test.csv", Float64)) == Array{Float64,2}
rm("test.csv")
@test isempty(b)
a = [""]
writedlm2("test.csv", a)
@test read("test.csv", String) == "\n"
b = readdlm2("test.csv")
@test typeof(b) == Array{Any,2}
@test typeof(readdlm2("test.csv", Any)) == Array{Any,2}
rm("test.csv")
@test isempty(b)
writecsv2("test.csv", a)
@test read("test.csv", String) == "\n"
b = readcsv2("test.csv")
@test typeof(b) == Array{Any,2}
@test typeof(readcsv2("test.csv", Float64)) == Array{Float64,2}
rm("test.csv")
@test isempty(b)
a = missing
writedlm2("test.csv", a)
@test read("test.csv", String) == "na\n"
b = readcsv2("test.csv")
rm("test.csv")
@test typeof(b) == Array{Any,2}
@test isequal(a, b[1])
writecsv2("test.csv", a)
@test read("test.csv", String) == "na\n"
b = readcsv2("test.csv")
rm("test.csv")
@test typeof(b) == Array{Any,2}
@test isequal(a, b[1])
a = [nothing]
a = reshape(a, 1,1)
writedlm2("test.csv", a)
@test read("test.csv", String) == "nothing\n"
b = readdlm2("test.csv")
rm("test.csv")
@test typeof(b) == Array{Any,2}
@test isequal(a, b)
writecsv2("test.csv", a)
@test read("test.csv", String) == "nothing\n"
b = readdlm2("test.csv")
rm("test.csv")
@test typeof(b) == Array{Any,2}
@test isequal(a, b)
a = [1.2 NaN "" nothing missing]
writedlm2("test.csv", a)
@test read("test.csv", String) == "1,2;NaN;;nothing;na\n"
b = readdlm2("test.csv")
rm("test.csv")
@test isequal(a, b)
a = [1.2 NaN "" nothing missing]
writecsv2("test.csv", a)
@test read("test.csv", String) == "1.2,NaN,,nothing,na\n"
b = readcsv2("test.csv")
rm("test.csv")
@test isequal(a, b)
end
@testset "4_ random data" begin
# Test write and read of random Any array with 10000 rows
n = 1000
A = Array{Any}(undef, n, 9)
for i = 1:n
A[i,:] = Any[randn() rand(Int) rand(Bool) rand(Date(1980,1,1):Day(1):Date(2017,12,31)) rand(Dates.Time(0,0,0,0,0,0):Dates.Nanosecond(1):Dates.Time(23,59,59,999,999,999)) rand(DateTime(1980,1,1,0,0,0,0):Dates.Millisecond(1):DateTime(2017,12,31,23,59,59,999)) randstring(24) complex(randn(), randn()) (rand(Int)//rand(Int))]
end
writedlm2("test.csv", A)
B = readdlm2("test.csv")
rm("test.csv")
@test isequaldlm(A, B, Any)
writecsv2("test.csv", A)
B = readcsv2("test.csv")
rm("test.csv")
@test isequaldlm(A, B, Any)
end
@testset "4_abstract type" begin
#Abstract Time Types
a = TimeType[Date(2017, 1, 1) DateTime(2017, 2, 15, 23, 0, 0)]
writedlm2("test.csv", a, dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
b = readdlm2("test.csv", TimeType, dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
@test isequaldlm(a, b, TimeType)
b = readdlm2("test.csv", TimeType, rs=(), dfs="mm/yyyy", dtfs="dd.mm.yyyy/HH.h")
rm("test.csv")
@test isequaldlm(a, b, TimeType)
# Abstract Number
a = Number[1 1.1 1//3 complex(-1,-2) complex(1.2,-2) complex(-1e9,3e-19)]
writedlm2("test.csv", a)
@test read("test.csv", String) == "1;1,1;1//3;-1-2im;1,2-2,0im;-1,0e9+3,0e-19im\n"
b = readdlm2("test.csv", Number)
rm("test.csv")
@test a == b
@test typeof(b) == Array{Number,2}
# Abstract real
a = readdlm2(IOBuffer("1,1;2\n3;4,5\n5;1//3\n"), Real)
b = Real[1.1 2; 3 4.5; 5 1//3]
@test a == b
@test typeof(a) == typeof(b)
end
@testset "4_ 1 0 1 0 0" begin
# Different Types for "1 0 1 0 0"
a = readdlm2(IOBuffer("1;0;1;0;0\n"))
b = Any[1 0 1 0 0]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Float64)
b = [1.0 0.0 1.0 0.0 0.0]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Float16)
b = Float16[1.0 0.0 1.0 0.0 0.0]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Int)
b = [1 0 1 0 0]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Char)
b = ['1' '0' '1' '0' '0']
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), AbstractString)
b = AbstractString["1" "0" "1" "0" "0"]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), String)
b = ["1" "0" "1" "0" "0"]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Bool)
b = [true false true false false]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Complex{Int})
b = [1+0im 0+0im 1+0im 0+0im 0+0im]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Complex{Float64})
b = [1.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Complex{Rational{Int}})
b = [1//1+0//1*im 0//1+0//1*im 1//1+0//1*im 0//1+0//1*im 0//1+0//1*im]
@test a == b
@test typeof(a) == typeof(b)
a = readdlm2(IOBuffer("1;0;1;0;0\n"), Rational)
b = Rational[1//1 0//1 1//1 0//1 0//1]
@test a == b
@test typeof(a) == typeof(b)
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 10480 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_5.jl
# Tests for Tables interface
# ==========================
@testset "5_Stand1 Tables" begin
mat = [1 4.0 "7"; 2 5.0 "8"; 3 6.0 "9"]
# first, create a MatrixTable from our matrix input
mattbl = Tables.table(mat)
# test that the MatrixTable `istable`
@test Tables.istable(typeof(mattbl))
# test that it defines row access
@test Tables.rowaccess(typeof(mattbl))
# test that it defines column access
@test Tables.columnaccess(typeof(mattbl))
@test Tables.columns(mattbl) === mattbl
# test that we can access the first "column" of our matrix table by column name
@test mattbl.Column1 == [1,2,3]
# test our `Tables.AbstractColumns` interface methods
@test Tables.getcolumn(mattbl, :Column1) == [1,2,3]
@test Tables.getcolumn(mattbl, 1) == [1,2,3]
@test Tables.columnnames(mattbl) == [:Column1, :Column2, :Column3]
# now let's iterate our MatrixTable to get our first MatrixRow
matrowtbl = Tables.rows(mattbl)
matrow = first(matrowtbl)
@test eltype(matrowtbl) == typeof(matrow)
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
@test matrow.Column1 == 1
@test Tables.getcolumn(matrow, :Column1) == 1
@test Tables.getcolumn(matrow, 1) == 1
@test propertynames(mattbl) == propertynames(matrow) == [:Column1, :Column2, :Column3]
end
@testset "5_Stand2 Tables" begin
rt = [(a=1, b=4.0, c="7"), (a=2, b=5.0, c="8"), (a=3, b=6.0, c="9")]
ct = (a=[1,2,3], b=[4.0, 5.0, 6.0])
# let's turn our row table into a plain Julia Matrix object
mat = Tables.matrix(rt)
# test that our matrix came out like we expected
@test mat[:, 1] == [1, 2, 3]
@test size(mat) == (3, 3)
@test eltype(mat) == Any
# so we successfully consumed a row-oriented table,
# now let's try with a column-oriented table
mat2 = Tables.matrix(ct)
@test eltype(mat2) == Float64
@test mat2[:, 1] == ct.a
# now let's take our matrix input, and make a column table out of it
tbl = Tables.table(mat) |> Tables.columntable
@test keys(tbl) == (:Column1, :Column2, :Column3)
@test tbl.Column1 == [1, 2, 3]
# and same for a row table
tbl2 = Tables.table(mat2) |> Tables.rowtable
@test length(tbl2) == 3
@test map(x->x.Column1, tbl2) == [1.0, 2.0, 3.0]
end
@testset "5_matrix2 Tabl" begin
mat = Any[1 4.0 true "a"; 2 5.0 false "b"; 3 6.0 true "c"]
# first, create a MatrixTable from our matrix input
mattbl = Tables.table(mat)
# test that the MatrixTable `istable`
@test Tables.istable(typeof(mattbl))
# ReadWriteDlm2.matrix2: Matrix{Any}, first row Symbol colnames
ma2 = ReadWriteDlm2.matrix2(mattbl)
# test that it defines row access
@test Tables.rowaccess(typeof(mattbl))
# test that it defines column access
@test Tables.columnaccess(typeof(mattbl))
@test Tables.columns(mattbl) === mattbl
# test that data fit
@test mattbl.Column1 == [1, 2, 3]
@test mattbl.Column2 == [4.0, 5.0, 6.0]
@test mattbl.Column3 == [true, false, true]
@test mattbl.Column4 == ["a", "b", "c"]
matrowtbl = Tables.rows(mattbl)
@test length(matrowtbl) === 3
@test ma2[2:end, 1] == [1, 2, 3]
@test ma2[2:end, 2] == [4.0, 5.0, 6.0]
@test ma2[2:end, 3] == [true, false, true]
@test ma2[2:end, 4] == ["a", "b", "c"]
@test ma2[1, :] == [:Column1, :Column2, :Column3, :Column4]
# test our `Tables.AbstractColumns` interface methods
@test Tables.getcolumn(mattbl, :Column1) == [1, 2, 3]
@test Tables.getcolumn(mattbl, 1) == [1, 2, 3]
@test Tables.columnnames(mattbl) == [:Column1, :Column2, :Column3, :Column4]
# now let's iterate our MatrixTable to get our first MatrixRow
matrow = first(matrowtbl)
@test eltype(matrowtbl) == typeof(matrow)
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
@test matrow.Column1 == 1
@test Tables.getcolumn(matrow, :Column1) == 1
@test Tables.getcolumn(matrow, 1) == 1
@test propertynames(mattbl) == propertynames(matrow) == [:Column1, :Column2, :Column3, :Column4]
end
@testset "5_Speci Tables" begin
mat = [1 4.0 "7"; 2 5.0 "8"; 3 6.0 "9"]
ct = [Int64, Float64, String]
vof = ReadWriteDlm2.vecofvec(mat, ct) # take columns from array -> Vector{Vector{ct}}
# first, create a MatrixTable from our Vector{Vector{T}} input
mattbl = Tables.table(vof)
# test that the MatrixTable `istable`
@test Tables.istable(typeof(mattbl))
# test that it defines row access
@test Tables.rowaccess(typeof(mattbl))
@test Tables.rows(mattbl) === mattbl
# test that it defines column access
@test Tables.columnaccess(typeof(mattbl))
@test Tables.columns(mattbl) === mattbl
# test that we can access the first "column" of our matrix table by column name
@test mattbl.Column1 == [1,2,3]
# test our `Tables.AbstractColumns` interface methods
@test Tables.getcolumn(mattbl, :Column1) == [1,2,3]
@test Tables.getcolumn(mattbl, 1) == [1,2,3]
@test Tables.getcolumn(mattbl, ReadWriteDlm2.MatrixTable, 1, :Column1) == [1,2,3]
@test Tables.columnnames(mattbl) == [:Column1, :Column2, :Column3]
@test length(mattbl) === 3
@test iterate(mattbl)[1] == first(mattbl)
@test iterate(mattbl)[2] == 2
@test iterate(mattbl, 4) == nothing
@test Tables.schema(mattbl) ==
Tables.Schema([:Column1, :Column2, :Column3], [Int64, Float64, String])
# now let's iterate our MatrixTable to get our first MatrixRow
matrow = first(mattbl)
@test eltype(mattbl) == typeof(matrow)
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
@test matrow.Column1 == 1
@test matrow.Column2 == 4.0
@test Tables.getcolumn(matrow, :Column1) == 1
@test Tables.getcolumn(matrow, 1) == 1
@test Tables.getcolumn(matrow, ReadWriteDlm2.MatrixRow, 1, :Column1) == 1
@test propertynames(mattbl) == propertynames(matrow) == [:Column1, :Column2, :Column3]
end
@testset "5_rwdf Tables" begin
ma_in = Any[1 4.0 "7"; 2 5.0 "8"; 3 6.0 "9"]
ct = [Int64, Float64, String]
# take columns from array -> Vector{Vector{ct}}
vof = ReadWriteDlm2.vecofvec(ma_in, ct)
# create a MatrixTable from our Vector{Vector{T}} input
mattbl = Tables.table(vof)
@test Tables.istable(typeof(mattbl))
# take data from Matrixtable mattbl in array
ma_out = ReadWriteDlm2.mttoarray(mattbl, elt=Any)
# test input array = output array
@test ma_out == ma_in
ma_in = Any[1 4.0 "7"; 2 5.0 "8"; 3 6.0 "9"]
ct = [Float64, Float64, String]
# take columns from array -> Vector{Vector{ct}}
vof = ReadWriteDlm2.vecofvec(ma_in, ct)
# create a MatrixTable from our Vector{Vector{T}} input
mattbl = Tables.table(vof)
@test Tables.istable(typeof(mattbl))
# take data from Matrixtable mattbl in array
ma_out = ReadWriteDlm2.mttoarray(mattbl, elt=Union{String, Float64})
# test input array = output array (different types in column1), but ok
@test ma_out == ma_in
cn = [:date, :value_1, :value_2]
mat = [Date(2017,1,1) 1.4 2;
Date(2017,1,2) 1.8 3;
nothing missing 4]
ct = [Union{Nothing, Date}, Union{Missing, Float64}, Int64]
cna = reshape(cn, 1, :)
a = vcat(cna, mat)
writedlm2("test.csv", a)
astr = read("test.csv", String)
cstr = "date;value_1;value_2\n2017-01-01;1,4;2\n2017-01-02;1,8;3\nnothing;na;4\n"
@test astr == cstr
rdlm1 = readdlm2("test.csv", tables=true, header=true)
aro1 = ReadWriteDlm2.mttoarray(rdlm1)
@test isequal(aro1, mat)
rdlm2 = readdlm2("test.csv", Union{Missing, Nothing, Date, Float64},
tables=true, header=true)
aro2 = ReadWriteDlm2.mttoarray(rdlm2)
@test isequal(aro2, mat)
rm("test.csv")
end
@testset "5_csvdlm Tables" begin
cn = [:date, :value_1, :value_2]
mat = [Date(2017,1,1) 1.4 2;
Date(2017,1,2) 1.8 3]
ct = [Union{Nothing, Date}, Union{Missing, Float64}, Int64]
vof = ReadWriteDlm2.vecofvec(mat, ct) # take columns from array -> Vector{Vector{ct}}
# first, create a MatrixTable from our Vector{Vector{T}} input
mattdf = Tables.table(vof, header=cn)
# write CSV
cna = reshape(Tables.columnnames(mattdf), 1, :)
amt = ReadWriteDlm2.mttoarray(mattdf)
a = vcat(cna, amt)
writedlm2("test1.csv", a)
writecsv2("test2.csv", a)
# read CSV / Tables Interface
@test read("test1.csv", String) ==
"date;value_1;value_2\n2017-01-01;1,4;2\n2017-01-02;1,8;3\n"
@test read("test2.csv", String) ==
"date,value_1,value_2\n2017-01-01,1.4,2\n2017-01-02,1.8,3\n"
df2input1a = readdlm2("test1.csv", dfheader=true)
df2input2a = readcsv2("test2.csv", dfheader=true)
@test string(df2input1a) == string(df2input2a)
df2input1 = readdlm2("test1.csv", tables=true, header=true)
df2input2 = readcsv2("test2.csv", tables=true, header=true)
@test string(df2input1) == string(df2input2)
@test string(df2input1) == string(df2input1a)
@test string(df2input2) == string(df2input2a)
end
@testset "5_MisNtg Tables" begin
cn = [:date, :value_1, :value_2]
mat = [Date(2017,1,1) 1.4 missing;
Date(2017,1,2) 1.8 nothing]
ct = [Date, Float64, Union{Missing, Nothing}]
vof = ReadWriteDlm2.vecofvec(mat, ct) # take columns from array -> Vector{Vector{ct}}
# first, create a MatrixTable from our Vector{Vector{T}} input
mattdf = Tables.table(vof, header=cn)
# write CSV
cna = reshape(Tables.columnnames(mattdf), 1, :)
amt = ReadWriteDlm2.mttoarray(mattdf)
a = vcat(cna, amt)
writedlm2("test1.csv", a)
writecsv2("test2.csv", a)
# read CSV / Tables Interface
@test read("test1.csv", String) ==
"date;value_1;value_2\n2017-01-01;1,4;na\n2017-01-02;1,8;nothing\n"
@test read("test2.csv", String) ==
"date,value_1,value_2\n2017-01-01,1.4,na\n2017-01-02,1.8,nothing\n"
df2input1a = readdlm2("test1.csv", dfheader=true)
df2input2a = readcsv2("test2.csv", dfheader=true)
@test string(df2input1a) == string(df2input2a)
df2input1 = readdlm2("test1.csv", tables=true, header=true)
df2input2 = readcsv2("test2.csv", tables=true, header=true)
@test string(df2input1) == string(df2input2)
@test string(df2input1) == string(df2input1a)
@test string(df2input2) == string(df2input2a)
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | code | 7784 | #2020 Klaus Stricker - Tests for ReadWriteDlm2
#License is MIT: http://julialang.org/license
# rwd2tests_6.jl
@testset "6_1 Examples" begin
# README.md - Basic Example
a = ["text" 1.2; Date(2017,1,1) 1] # create array with eltype: String, Date, Float64 and Int
writedlm2("test.csv", a) # test.csv(decimal comma): "text;1,2\n2017-01-01;1\n"
@test readdlm2("test.csv") == a # read `CSV` data: All four eltypes are parsed correctly!
b = readdlm2("test.csv", tables=true) # test Tables interface
# b = ReadWriteDlm2.MatrixTable: (Column1 = Any["text", 2017-01-01], Column2 = Real[1.2, 1])
@test Tables.istable(typeof(b))
@test Tables.rowaccess(typeof(b))
@test Tables.getcolumn(b, :Column1) == Any["text", Date(2017,1,1)]
@test Tables.getcolumn(b, :Column2) == Real[1.2, 1]
@test Tables.getcolumn(b, 1) == Any["text", Date(2017,1,1)]
@test Tables.getcolumn(b, 2) == Real[1.2, 1]
@test Tables.columnnames(b) == [:Column1, :Column2]
fr = first(b) # first row of 'b' = ReadWriteDlm2.MatrixRow: (Column1 = "text", Column2 = 1.2)
@test eltype(b) == typeof(fr) # ReadWriteDlm2.MatrixRow
# README.md - More Examples
# `writecsv2()` And `readcsv2()`
a = Any[1 complex(1.5,2.7);1.0 1//3] # create array with: Int, Complex, Float64 and Rational type
writecsv2("test.csv", a) # test.csv(decimal dot): "1,1.5+2.7im\n1.0,1//3\n"
@test readcsv2("test.csv") == a # read CSV data: All four types are parsed correctly!
rm("test.csv")
# `writedlm2()` And `readdlm2()` With Special `decimal=`
a = Float64[1.1 1.2;2.1 2.2]
writedlm2("test.csv", a; decimal='€') # '€' is decimal Char in 'test.csv'
@test readdlm2("test.csv", Float64; decimal='€') == a # standard: use keyword argument
@test readdlm2("test.csv", Float64; rs=(r"(\d)€(\d)", s"\1.\2")) == a # alternativ: rs-Regex-Tupel
rm("test.csv")
# `writedlm2()` And `readdlm2()` With `Union{Missing, Float64}`
a = Union{Missing, Float64}[1.1 0/0;missing 2.2;1/0 -1/0]
writedlm2("test.csv", a; missingstring="???") # use "???" for missing data
@test read("test.csv", String) == "1,1;NaN\n???;2,2\nInf;-Inf\n"
b = readdlm2("test.csv", Union{Missing, Float64}; missingstring="???")
@test typeof(a) == typeof(b)
@test isequal(a, b)
rm("test.csv")
# `Date` And `DateTime` With `locale="french"`
Dates.LOCALES["french"] = Dates.DateLocale(
["janvier", "février", "mars", "avril", "mai", "juin",
"juillet", "août", "septembre", "octobre", "novembre", "décembre"],
["janv", "févr", "mars", "avril", "mai", "juin",
"juil", "août", "sept", "oct", "nov", "déc"],
["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"],
["lu", "ma", "me", "je", "ve", "sa", "di"],
);
a = hcat([Date(2017,1,1), DateTime(2017,1,1,5,59,1,898), 1, 1.0, "text"])
writedlm2("test.csv", a; dfs="E, d.U yyyy", dtfs="e, d.u yyyy H:M:S,s", locale="french")
@test read("test.csv", String) == "dimanche, 1.janvier 2017\ndi, 1.janv 2017 5:59:1,898\n1\n1,0\ntext\n"
@test readdlm2("test.csv"; dfs="E, d.U yyyy", dtfs="e, d.u yyyy H:M:S,s", locale="french") == a
rm("test.csv")
end
@testset "6_2 df-Examples" begin
cn = [:date, :value_1, :value_2]
mat = [Date(2017,1,1) 1.4 2;
Date(2017,1,2) 1.8 3;
nothing missing 4]
ct = [Union{Nothing, Date}, Union{Missing, Float64}, Int64]
vof = ReadWriteDlm2.vecofvec(mat, ct) # take columns from array -> Vector{Vector{ct}}
# first, create a MatrixTable from our Vector{Vector{T}} input
mattdf = Tables.table(vof, header=cn)
# test that the MatrixTable `istable`
@test Tables.istable(typeof(mattdf))
# test that it defines row access
@test Tables.rowaccess(typeof(mattdf))
@test Tables.rows(mattdf) === mattdf
# test that it defines column access
@test Tables.columnaccess(typeof(mattdf))
@test Tables.columns(mattdf) === mattdf
# test that we can access the first "column" of our matrix table by column name
@test mattdf.date == [Date(2017,1,1),Date(2017,1,2),nothing]
# test our `Tables.AbstractColumns` interface methods
@test Tables.getcolumn(mattdf, :date) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.getcolumn(mattdf, 1) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.columnnames(mattdf) == [:date, :value_1, :value_2]
# now let's iterate our MatrixTable to get our first MatrixRow
matrow = first(mattdf)
@test eltype(mattdf) == typeof(matrow)
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
@test matrow.date == Date(2017,1,1)
@test matrow.value_1 == 1.4
@test Tables.getcolumn(matrow, :date) == Date(2017,1,1)
@test Tables.getcolumn(matrow, 1) == Date(2017,1,1)
@test propertynames(mattdf) == propertynames(matrow) == cn
# write CSV
cna = reshape(Tables.columnnames(mattdf), 1, :)
amt = ReadWriteDlm2.mttoarray(mattdf)
a = vcat(cna, amt)
writedlm2("test1.csv", a)
writecsv2("test2.csv", a)
# read CSV / Tables Interface
@test read("test1.csv", String) ==
"date;value_1;value_2\n2017-01-01;1,4;2\n2017-01-02;1,8;3\nnothing;na;4\n"
@test read("test2.csv", String) ==
"date,value_1,value_2\n2017-01-01,1.4,2\n2017-01-02,1.8,3\nnothing,na,4\n"
df2input1 = readdlm2("test1.csv", tables=true, header=true)
df2input2 = readcsv2("test2.csv", tables=true, header=true)
rm("test1.csv")
rm("test2.csv")
# test result from reading csv
@test Tables.istable(typeof(df2input1))
@test Tables.istable(typeof(df2input2))
# test that it defines row access
@test Tables.rowaccess(typeof(df2input1))
@test Tables.rowaccess(typeof(df2input2))
@test Tables.rows(df2input1) === df2input1
@test Tables.rows(df2input2) === df2input2
# test that it defines column access
@test Tables.columnaccess(typeof(df2input1))
@test Tables.columnaccess(typeof(df2input2))
@test Tables.columns(df2input1) === df2input1
@test Tables.columns(df2input2) === df2input2
# test that we can access the first "column" of our matrix table by column name
@test df2input1.date == [Date(2017,1,1),Date(2017,1,2),nothing]
@test df2input2.date == [Date(2017,1,1),Date(2017,1,2),nothing]
# test our `Tables.AbstractColumns` interface methods
@test Tables.getcolumn(df2input1, :date) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.getcolumn(df2input1, 1) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.columnnames(df2input1) == [:date, :value_1, :value_2]
@test Tables.getcolumn(df2input2, :date) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.getcolumn(df2input2, 1) == [Date(2017,1,1),Date(2017,1,2),nothing]
@test Tables.columnnames(df2input2) == [:date, :value_1, :value_2]
# now let's iterate our MatrixTable to get our first MatrixRow
matrow = first(df2input1)
@test eltype(df2input1) == typeof(matrow)
matrow = first(df2input2)
@test eltype(df2input2) == typeof(matrow)
# now we can test our `Tables.AbstractRow` interface methods on our MatrixRow
@test matrow.date == Date(2017,1,1)
@test matrow.value_1 == 1.4
@test Tables.getcolumn(matrow, :date) == Date(2017,1,1)
@test Tables.getcolumn(matrow, 1) == Date(2017,1,1)
@test propertynames(df2input1) == propertynames(matrow) == cn
@test matrow.date == Date(2017,1,1)
@test matrow.value_1 == 1.4
@test Tables.getcolumn(matrow, :date) == Date(2017,1,1)
@test Tables.getcolumn(matrow, 1) == Date(2017,1,1)
@test propertynames(df2input2) == propertynames(matrow) == cn
end
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.8.2 | b89320763efe871aec3d3ae7b4fd24ddb1130dbc | docs | 13458 | # ReadWriteDlm2
### CSV IO Supports Decimal Comma, Date, DateTime, Time, Complex, Missing and Rational
[](https://github.com//strickek/ReadWriteDlm2.jl/actions) [](https://ci.appveyor.com/project/strickek/readwritedlm2-jl/branch/main) [](http://codecov.io/github/strickek/ReadWriteDlm2.jl?branch=main)
`ReadWriteDlm2` functions `readdlm2()`, `writedlm2()`, `readcsv2()` and `writecsv2()` are similar to those of stdlib.DelimitedFiles, but with additional support for `Dates` formats, `Complex`, `Rational`, `Missing` types and special decimal marks. `ReadWriteDlm2` supports the `Tables.jl` interface.
* For "decimal dot" users the functions `readcsv2()` and `writecsv2()` have the respective defaults: Delimiter is `','` (fixed) and `decimal='.'`.
* The basic idea of `readdlm2()` and `writedlm2()` is to support the [decimal comma countries](https://commons.wikimedia.org/wiki/File:DecimalSeparator.svg?uselang=en#file). These functions use `';'` as default delimiter and `','` as default decimal mark. "Decimal dot" users of these functions need to define `decimal='.'`.
* Alternative package: `CSV` (supports also special decimal marks)
### Installation
This package is registered and can be installed within the [`Pkg` REPL-mode](https://docs.julialang.org/en/latest/stdlib/Pkg/): Type `]` in the REPL and then:
```
pkg> add ReadWriteDlm2
```
### Basic Example([-> more](#more-examples)): How To Use `ReadWriteDlm2`
```
julia> using ReadWriteDlm2, Dates # activate modules ReadWriteDlm2, Dates
julia> a = ["text" 1.2; Date(2017,1,1) 1]; # create array with: String, Date, Float64 and Int eltype
julia> writedlm2("test.csv", a) # test.csv(decimal comma): "text;1,2\n2017-01-01;1\n"
julia> readdlm2("test.csv") # read `CSV` data: All four eltypes are parsed correctly!
2×2 Array{Any,2}:
"text" 1.2
2017-01-01 1
julia> using DataFrames # Tables interface: auto Types for DataFrame columns
julia> DataFrame(readdlm2("test.csv", tables=true))
2×2 DataFrame
│ Row │ Column1 │ Column2 │
│ │ Any │ Real │
├─────┼────────────┼─────────┤
│ 1 │ text │ 1.2 │
│ 2 │ 2017-01-01 │ 1 │
```
## Function `readdlm2()`
Read a matrix from `source`. The `source` can be a text file, stream or byte array.
Each line, separated by `eol` (default is `'\n'`), gives one row.
The columns are separated by `';'`, another `delim` can be defined.
readdlm2(source; options...)
readdlm2(source, T::Type; options...)
readdlm2(source, delim::Char; options...)
readdlm2(source, delim::Char, T::Type; options...)
readdlm2(source, delim::Char, eol::Char; options...)
readdlm2(source, delim::Char, T::Type, eol::Char; options...)
Pre-processing of `source` with regex substitution changes the decimal marks
from `d,d` to `d.d`. For default `rs` the keyword argument `decimal=','` sets
the decimal Char in the `r`-string of `rs`. When a special regex substitution
tuple `rs=(r.., s..)` is defined, the argument `decimal` is not used (
[-> Example](#writedlm2-and-readdlm2-with-special-decimal)). Pre-processing
can be switched off with: `rs=()`.
In addition to stdlib `readdlm()`, data is also parsed for `Dates` formats (ISO),
the`Time` format `HH:MM[:SS[.s{1,9}]]` and for complex and rational numbers.
To deactivate parsing dates/time set: `dfs="", dtfs=""`.
`locale` defines the language of day (`E`, `e`) and month (`U`, `u`) names.
The result will be a (heterogeneous) array of default element type `Any`. If
`header=true` it will be a tuple containing the data array and a vector for
the columnnames. Other (abstract) types for the data array elements could be
defined. If data is empty, a `0×0 Array{T,2}` is returned.
With `tables=true`[, `header=true`] option[s] a `Tables` interface compatible
`MatrixTable` with individual column types is returned, which for example can
be used as argument for `DataFrame()`.
### Additional Keyword Arguments `readdlm2()`
* `decimal=','`: Decimal mark Char used by default `rs`, irrelevant if `rs`-tuple is not the default one
* `rs=(r"(\d),(\d)", s"\1.\2")`: [Regex](https://docs.julialang.org/en/latest/manual/strings/#Regular-Expressions-1) (r,s)-tuple, the default change d,d to d.d if `decimal=','`
* `dtfs="yyyy-mm-ddTHH:MM:SS.s"`: [Format string](https://docs.julialang.org/en/latest/stdlib/Dates/#Dates.DateFormat) for DateTime parsing
* `dfs="yyyy-mm-dd"`: [Format string](https://docs.julialang.org/en/latest/stdlib/Dates/#Dates.DateFormat) for Date parsing
* `locale="english"`: Language for parsing dates names, default is english
* `tables=false`: Return `Tables` interface compatible MatrixTable if `true`
* `dfheader=false`: `dfheader=true` is shortform for `tables=true, header=true`
* `missingstring="na"`: How missing values are represented, default is `"na"`
### Function `readcsv2()`
readcsv2(source, T::Type=Any; opts...)
Equivalent to `readdlm2()` with delimiter `','` and `decimal='.'`.
### Documentation For Base `readdlm()`
More information about Base functionality and (keyword) arguments - which are also
supported by `readdlm2()` and `readcsv2()` - is available in the [documentation for readdlm()](https://docs.julialang.org/en/latest/stdlib/DelimitedFiles/#DelimitedFiles.readdlm-Tuple{Any,AbstractChar,Type,AbstractChar}).
### Compare Default Functionality `readdlm()` - `readdlm2()` - `readcsv2()`
| Module | Function | Delimiter | Dec. Mark | Element Type | Ext. Parsing |
|:-------------- |:----------------------------|:----------:|:---------:|:-------------|:-------------|
| DelimitedFiles | `readdlm()` | `' '` | `'.'` | Float64/Any | No (String) |
| ReadWriteDlm2 | `readdlm2()` | `';'` | `','` | Any | Yes |
| ReadWriteDlm2 | `readcsv2()` | `','` | `'.'` | Any | Yes |
| ReadWriteDlm2 | `readdlm2(opt:tables=true)` | `';'` | `','` | Column spec. | Yes, + col T |
| ReadWriteDlm2 | `readcsv2(opt:tables=true)` | `','` | `'.'` | Column spec. | Yes, + col T |
## Function `writedlm2()`
Write `A` (a vector, matrix, or an iterable collection of iterable rows, a
`Tables` source) as text to `f` (either a filename or an IO stream). The columns
are separated by `';'`, another `delim` (Char or String) can be defined.
writedlm2(f, A; options...)
writedlm2(f, A, delim; options...)
By default, a pre-processing of values takes place. Before writing as strings,
decimal marks are changed from `'.'` to `','`.
With a keyword argument another decimal mark can be defined.
To switch off this pre-processing set: `decimal='.'`.
In `writedlm2()` the output format for `Date` and `DateTime` data can be
defined with format strings. Defaults are the ISO formats. Day (`E`, `e`) and
month (`U`, `u`) names are written in the `locale` language. For writing
`Complex` numbers the imaginary component suffix can be selected with the
`imsuffix=` keyword argument.
### Additional Keyword Arguments `writedlm2()`
* `decimal=','`: Character for writing decimal marks, default is a comma
* `dtfs="yyyy-mm-ddTHH:MM:SS.s"`: [Format string](https://docs.julialang.org/en/latest/stdlib/Dates/#Dates.DateFormat), DateTime write format
* `dfs="yyyy-mm-dd"`: [Format string](https://docs.julialang.org/en/latest/stdlib/Dates/#Dates.DateFormat), Date write format
* `locale="english"`: Language for writing date names, default is english
* `imsuffix="im"`: Complex - imaginary component suffix `"im"`(=default), `"i"` or `"j"`
* `missingstring="na"`: How missing values are written, default is `"na"`
### Function `writecsv2()`
writecsv2(f, A; opts...)
Equivalent to `writedlm2()` with fixed delimiter `','` and `decimal='.'`.
### Compare Default Functionality `writedlm()` - `writedlm2()` - `writecsv2()`
| Module | Function | Delimiter | Decimal Mark |
|:--------------- |:------------------ |:---------:|:------------:|
| DelimitedFiles | `writedlm()` | `'\t'` | `'.'` |
| ReadWriteDlm2 | `writedlm2()` | `';'` | `','` |
| ReadWriteDlm2 | `writecsv2()` | `','` | `'.'` |
## More Examples
#### `writecsv2()` And `readcsv2()`
```
julia> using ReadWriteDlm2
julia> a = Any[1 complex(1.5,2.7);1.0 1//3]; # create array with: Int, Complex, Float64 and Rational type
julia> writecsv2("test.csv", a) # test.csv(decimal dot): "1,1.5+2.7im\n1.0,1//3\n"
julia> readcsv2("test.csv") # read CSV data: All four types are parsed correctly!
2×2 Array{Any,2}:
1 1.5+2.7im
1.0 1//3
```
#### `writedlm2()` And `readdlm2()` With Special `decimal=`
```
julia> using ReadWriteDlm2
julia> a = Float64[1.1 1.2;2.1 2.2]
2×2 Array{Float64,2}:
1.1 1.2
2.1 2.2
julia> writedlm2("test.csv", a; decimal='€') # '€' is decimal Char in 'test.csv'
julia> readdlm2("test.csv", Float64; decimal='€') # a) standard: use keyword argument
2×2 Array{Float64,2}:
1.1 1.2
2.1 2.2
julia> readdlm2("test.csv", Float64; rs=(r"(\d)€(\d)", s"\1.\2")) # b) more flexible: rs-Regex-Tupel
2×2 Array{Float64,2}:
1.1 1.2
2.1 2.2
```
#### `writedlm2()` And `readdlm2()` With `Union{Missing, Float64}`
```
julia> using ReadWriteDlm2
julia> a = Union{Missing, Float64}[1.1 0/0;missing 2.2;1/0 -1/0]
3×2 Array{Union{Missing, Float64},2}:
1.1 NaN
missing 2.2
Inf -Inf
julia> writedlm2("test.csv", a; missingstring="???") # use "???" for missing data
julia> read("test.csv", String)
"1,1;NaN\n???;2,2\nInf;-Inf\n"
julia> readdlm2("test.csv", Union{Missing, Float64}; missingstring="???")
3×2 Array{Union{Missing, Float64},2}:
1.1 NaN
missing 2.2
Inf -Inf
```
#### `Date` And `DateTime` With `locale="french"`
```
julia> using ReadWriteDlm2, Dates
julia> Dates.LOCALES["french"] = Dates.DateLocale(
["janvier", "février", "mars", "avril", "mai", "juin",
"juillet", "août", "septembre", "octobre", "novembre", "décembre"],
["janv", "févr", "mars", "avril", "mai", "juin",
"juil", "août", "sept", "oct", "nov", "déc"],
["lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche"],
["lu", "ma", "me", "je", "ve", "sa", "di"],
);
julia> a = hcat([Date(2017,1,1), DateTime(2017,1,1,5,59,1,898), 1, 1.0, "text"])
5x1 Array{Any,2}:
2017-01-01
2017-01-01T05:59:01.898
1
1.0
"text"
julia> writedlm2("test.csv", a; dfs="E, d.U yyyy", dtfs="e, d.u yyyy H:M:S,s", locale="french")
julia> read("test.csv", String) # to see what have been written in "test.csv" file
"dimanche, 1.janvier 2017\ndi, 1.janv 2017 5:59:1,898\n1\n1,0\ntext\n"
julia> readdlm2("test.csv"; dfs="E, d.U yyyy", dtfs="e, d.u yyyy H:M:S,s", locale="french")
5×1 Array{Any,2}:
2017-01-01
2017-01-01T05:59:01.898
1
1.0
"text"
```
#### `Tables`-Interface Example With `DataFrames`
See [-> `DataFrames`](https://github.com/JuliaData/DataFrames.jl) for installation and more information.
```
julia> using ReadWriteDlm2, Dates, DataFrames, Statistics
```
##### Write CSV: `Tables & DataFrames` compared with `Array`
```
julia> a = ["date" "value_1" "value_2"; # Create Array `a`
Date(2017,1,1) 1.4 2;
Date(2017,1,2) 1.8 3;
nothing missing 4]
4×3 Array{Any,2}:
"date" "value_1" "value_2"
2017-01-01 1.4 2
2017-01-02 1.8 3
nothing missing 4
julia> df = DataFrame( # Create DataFrame `df`
date = [Date(2017,1,1), Date(2017,1,2), nothing],
value_1 = [1.4, 1.8, missing],
value_2 = [2, 3, 4]
)
3×3 DataFrame
│ Row │ date │ value_1 │ value_2 │
│ │ Union… │ Float64⍰ │ Int64 │
├─────┼────────────┼──────────┼─────────┤
│ 1 │ 2017-01-01 │ 1.4 │ 2 │
│ 2 │ 2017-01-02 │ 1.8 │ 3 │
│ 3 │ │ missing │ 4 │
julia> writedlm2("testa_com.csv", a) # decimal comma: write array a
julia> writedlm2("testdf_com.csv", df) # decimal comma: write DataFrame df
julia> read("testa_com.csv", String) == # decimal comma: a.csv == df.csv
read("testdf_com.csv", String) ==
"date;value_1;value_2\n2017-01-01;1,4;2\n2017-01-02;1,8;3\nnothing;na;4\n"
true
julia> writecsv2("testa_dot.csv", a) # decimal dot: write array a
julia> writecsv2("testdf_dot.csv", df) # decimal dot: write DataFrame df
julia> read("testa_dot.csv", String) == # decimal dot: a.csv == df.csv
read("testdf_dot.csv", String) ==
"date,value_1,value_2\n2017-01-01,1.4,2\n2017-01-02,1.8,3\nnothing,na,4\n"
true
```
##### Read CSV: Using `Tables` interface and create a `DataFrame`
```
julia> df2 = DataFrame(readdlm2("testdf_com.csv", header=true, tables=true))
3×3 DataFrame
│ Row │ date │ value_1 │ value_2 │
│ │ Union… │ Float64⍰ │ Int64 │
├─────┼────────────┼──────────┼─────────┤
│ 1 │ 2017-01-01 │ 1.4 │ 2 │
│ 2 │ 2017-01-02 │ 1.8 │ 3 │
│ 3 │ │ missing │ 4 │
julia> mean(skipmissing(df2[!, :value_1]))
1.6
julia> mean(df2[!, :value_2])
3.0
```
| ReadWriteDlm2 | https://github.com/strickek/ReadWriteDlm2.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 854 | using ClassicalOrthogonalPolynomials, Plots
##
# Ideal fluid flow consists of level sets of the imagainary part of a function
# that is asymptotic to c*z and whose imaginary part vanishes on Γ
#
#
# On the unit interval, -2*H*u gives the imaginary part of cauchy(u,x)
# So if we want to find u defined on Γ so that stieltjes(u,x) = imag(c*x)
# then c*z + 2cauchy(u,z) vanishes on Γ
##
T = ChebyshevT()
U = ChebyshevU()
x = axes(U,1)
H = inv.(x .- x')
c = exp(0.5im)
u = Weighted(U) * ((H * Weighted(U)) \ imag(c * x))
ε = eps(); (inv.(0.1+ε*im .- x') * u + inv.(0.1-ε*im .- x') * u)/2 ≈ imag(c*0.1)
ε = eps(); real(inv.(0.1+ε*im .- x') * u ) ≈ imag(c*0.1)
v = (s,t) -> (z = (s + im*t); imag(c*z) - real(inv.(z .- x') * u))
xx = range(-3,3; length=100)
yy = range(-1,1; length=100)
plot([-1,1],[0,0]; color=:black)
contour!(xx,yy,v.(xx',yy)) | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 3137 | module SingularIntegrals
using ClassicalOrthogonalPolynomials, ContinuumArrays, QuasiArrays, LazyArrays, LazyBandedMatrices, FillArrays, BandedMatrices, LinearAlgebra, SpecialFunctions, HypergeometricFunctions, InfiniteArrays
using ContinuumArrays: @simplify, Weight, AbstractAffineQuasiVector, inbounds_getindex, broadcastbasis, MappedBasisLayouts, MemoryLayout, MappedWeightLayout, AbstractWeightLayout, ExpansionLayout, demap, basismap, AbstractBasisLayout, SubBasisLayout
using QuasiArrays: AbstractQuasiMatrix, BroadcastQuasiMatrix, LazyQuasiArrayStyle, AbstractQuasiVecOrMat
import ClassicalOrthogonalPolynomials: AbstractJacobiWeight, WeightedBasis, jacobimatrix, orthogonalityweight, recurrencecoefficients, _p0, Clenshaw, chop, initiateforwardrecurrence, MappedOPLayouts, unweighted, WeightedOPLayout, MappedOPLayout
using LazyBandedMatrices: Tridiagonal, SymTridiagonal, subdiagonaldata, supdiagonaldata, diagonaldata, ApplyLayout
import LazyArrays: AbstractCachedMatrix, AbstractCachedArray, paddeddata, arguments, resizedata!, cache_filldata!, zero!, cacheddata, LazyArrayStyle
import Base: *, +, -, /, \, Slice, axes, getindex, sum, ==, oneto, size, broadcasted, copy, tail, view
import LinearAlgebra: dot
using BandedMatrices: _BandedMatrix
using FastTransforms: _forwardrecurrence!, _forwardrecurrence_next
export associated, stieltjes, logkernel, powerkernel, complexlogkernel
include("recurrence.jl")
include("stieltjes.jl")
include("logkernel.jl")
include("power.jl")
### generic fallback
for Op in (:Stieltjes, :StieltjesPoint, :LogKernelPoint, :PowerKernelPoint, :LogKernel)
@eval begin
@simplify function *(H::$Op, wP::WeightedBasis{<:Any,<:Weight,<:Any})
w,P = wP.args
Q = OrthogonalPolynomial(w)
(H * Weighted(Q)) * (Q \ P)
end
@simplify *(H::$Op, wP::Weighted{<:Any,<:SubQuasiArray{<:Any,2}}) = H * view(Weighted(parent(wP.P)), parentindices(wP.P)...)
end
end
for lk in (:complexlogkernel, :stieltjes)
lk_layout = Symbol(lk, :_layout)
@eval $lk_layout(::AbstractBasisLayout, P, z...) = error("not implemented")
end
# general routines
for lk in (:logkernel, :complexlogkernel, :stieltjes)
lk_layout = Symbol(lk, :_layout)
@eval begin
$lk_layout(::AbstractWeightLayout, w, zs::AbstractVector) = [stieltjes(w, z) for z in zs]
function $lk_layout(::AbstractWeightLayout, w, z::Inclusion)
axes(w,1) == z || error("Not implemented")
$lk(w)
end
function $lk_layout(::AbstractBasisLayout, w, z::Inclusion)
axes(w,1) == z || error("Not implemented")
$lk(w)
end
$lk_layout(lay, P, z...) = $lk(expand(P), z...)
function $lk_layout(LAY::ApplyLayout{typeof(*)}, V::AbstractQuasiVecOrMat, y...)
a = arguments(LAY, V)
*($lk(a[1], y...), tail(a)...)
end
$lk_layout(::ExpansionLayout, A, dims...) = $lk_layout(ApplyLayout{typeof(*)}(), A, dims...)
$lk_layout(::SubBasisLayout, A, dims...) = $lk(parent(A), dims...)[:, parentindices(A)[2]]
end
end
end # module SingularIntegrals
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 7629 | const ComplexLogKernelPoint{T,C,W<:Number,V,D} = BroadcastQuasiMatrix{T,typeof(log),Tuple{ConvKernel{C,W,V,D}}}
const ComplexLogKernelPoints{T,C,W<:AbstractVector{<:Number},V,D} = BroadcastQuasiMatrix{T,typeof(log),Tuple{ConvKernel{C,W,V,D}}}
const LogKernelPoint{T<:Real,C,W<:Number,V,D} = BroadcastQuasiMatrix{T,typeof(log),Tuple{BroadcastQuasiMatrix{T,typeof(abs),Tuple{ConvKernel{C,W,V,D}}}}}
const LogKernelPoints{T<:Real,C,W<:AbstractVector{<:Number},V,D} = BroadcastQuasiMatrix{T,typeof(log),Tuple{BroadcastQuasiMatrix{T,typeof(abs),Tuple{ConvKernel{C,W,V,D}}}}}
const LogKernel{T,D1,D2} = BroadcastQuasiMatrix{T,typeof(log),Tuple{BroadcastQuasiMatrix{T,typeof(abs),Tuple{ConvKernel{T,Inclusion{T,D1},T,D2}}}}}
@simplify function *(L::LogKernel, P::AbstractQuasiVecOrMat)
T = promote_type(eltype(L), eltype(P))
logkernel(convert(AbstractQuasiArray{T}, P))
end
@simplify function *(L::LogKernelPoint, P::AbstractQuasiVecOrMat)
T = promote_type(eltype(L), eltype(P))
z, xc = L.args[1].args[1].args
logkernel(convert(AbstractQuasiArray{T}, P), z)
end
@simplify function *(L::LogKernelPoints, P::AbstractQuasiVecOrMat)
T = promote_type(eltype(L), eltype(P))
z, xc = L.args[1].args[1].args
logkernel(convert(AbstractQuasiArray{T}, P), z)
end
@simplify function *(L::ComplexLogKernelPoint, P::AbstractQuasiVecOrMat)
z, xc = L.args[1].args
T = promote_type(eltype(L), eltype(P))
complexlogkernel(convert(AbstractQuasiArray{T}, P), z)
end
@simplify function *(L::ComplexLogKernelPoints, P::AbstractQuasiVecOrMat)
z, xc = L.args[1].args
T = promote_type(eltype(L), eltype(P))
complexlogkernel(convert(AbstractQuasiArray{T}, P), z)
end
###
# LogKernel
###
"""
logkernel(P)
applies the log kernel log(abs(x-t)) to the columns of a quasi matrix, i.e., `(log.(abs.(x - x')) * P)/π`
"""
logkernel(P, z...) = logkernel_layout(MemoryLayout(P), P, z...)
"""
complexlogkernel(P)
applies the log kernel log(x-t) to the columns of a quasi matrix, i.e., `(log.(x - x') * P)`
"""
complexlogkernel(P, z...) = complexlogkernel_layout(MemoryLayout(P), P, z...)
logkernel(wT::Weighted{T,<:ChebyshevT}) where T = ChebyshevT{T}() * Diagonal(Vcat(-convert(T,π)*log(2*one(T)),-convert(T,π)./(1:∞)))
function logkernel_layout(::Union{MappedBasisLayouts, MappedOPLayouts}, wT)
V = eltype(wT)
kr = basismap(wT)
@assert kr isa AbstractAffineQuasiVector
W = demap(wT)
A = kr.A
# L = logkernel(W)
# Σ = sum(W; dims=1)
# basis(L)[kr,:] * (coefficients(L)/A - OneElement(∞) * Σ*log(abs(A))/A)
@assert W isa Weighted{<:Any,<:ChebyshevT}
unweighted(wT) * Diagonal(Vcat(-convert(V,π)*(log(2*one(V))+log(abs(A)))/A,-convert(V,π) ./ (A * (1:∞))))
end
function logkernel_demap(wT, z)
P = demap(wT)
kr = basismap(wT)
z̃ = inbounds_getindex(kr, z)
c = inv(kr.A)
LP = logkernel(P, z̃)
Σ = sum(P; dims=1)
transpose(c*transpose(LP) .+ c*log(c)*vec(Σ))
end
logkernel_layout(::Union{MappedBasisLayouts, MappedOPLayouts}, wT, z...) = logkernel_demap(wT, z...)
logkernel_layout(::WeightedOPLayout{MappedOPLayout}, wT, z::Real) = logkernel_demap(wT, z)
####
# LogKernelPoint
####
function complexlogkernel_ics(wP::Weighted{<:Any,<:ChebyshevT}, z::Number)
V = promote_type(eltype(wP), typeof(z))
ξ = inv(z + sqrtx2(z))
r0 = convert(V,π)*(-log(ξ)-log(convert(V,2)))
r1 = -convert(V,π)*ξ
r2 = convert(V,π)/2 + z*r1
r0,r1,r2
end
function complexlogkernel_recurrence(wP::Weighted{<:Any,<:ChebyshevT})
# We have for n ≠ 0 L_n(z) = stieltjes(U_n, z)
# where U_n(z) = ∫_1^x T_n(x)/sqrt(1-x^2) dx = -(1-x^2)^(-1/2)T_{n-1}(x)/n
# We have the 3-term recurrence
# T_{n+1}(x) == 2 x T_n(x) - T_{n-1}(x)
# Thus
# U_{n+1}(x) == -(1-x^2)^(-1/2) T_n(x)/(n+1)
# == -(1-x^2)^(-1/2) * ( 2x T_{n-1}(x) - T_{n-2}(x))/(n+1)
# == -(1-x^2)^(-1/2) * ( 2n/(n+1) x T_{n-1}(x)/n - (n-1)/(n+1) T_{n-2}(x)/(n-1))
# == (2n/(n+1) * x U_n(x) - (n - 1)/(n+1) * U_{n-1}(x)
R = real(eltype(wP))
n = zero(R):∞
(2n) ./ (n .+ 1), Zeros{R}(∞), (n .- 1) ./ (n .+ 1)
end
function complexlogkernel_ics(wP::Weighted{<:Any,<:ChebyshevU}, z::Number)
T = promote_type(eltype(wP), typeof(z))
ξ = inv(z + sqrtx2(z))
r0 = convert(T,π)*(ξ^2/4 - (log.(abs.(ξ)) + log(2*one(T)))/2)
r1 = convert(T,π)*(ξ^3/3 - ξ)/2
r2 = convert(T,π)*(ξ^4/4 - ξ^2/2)/2
r0,r1,r2
end
function complexlogkernel_recurrence(wP::Weighted{<:Any,<:ChebyshevU})
# We have for n ≠ 0 L_n(z) = stieltjes(U_n, z)
# where U_n(z) = ∫_1^x sqrt(1-x^2) U_n(x) dx = -(1-x^2)^(3/2)C_{n-1}(x) * 2/(n * (n + 2))
# where C_n(x) = C_n^{(2)}(x)
# We have the 3-term recurrence
# C_{n+1}(x) == 2(n + 2) / (n + 1) * x C_n(x) - (n + 3) / (n + 1) C_{n-1}(x)
# Thus
# U_{n+1}(x) == -(1-x^2)^(3/2) C_n(x) * 2/((n+1) * (n + 3))
# == -(1-x^2)^(3/2) * 2/((n+1) * (n + 3)) ( 2(n + 1) / n * x C_{n-1}(x) - (n + 2) / n C_{n-2}(x))
# == -(1-x^2)^(3/2) * (4 / (n*(n+3)) * x C_{n-1}(x) - 2 (n + 2) /(n*(n+1)*(n+3)) C_{n-2}(x))
# == -(1-x^2)^(3/2) * (2 (n-1)*(n+1) / (n*(n+3)) * x 2/((n-1)*(n+1)) C_{n-1}(x) - (n + 2)*(n-1) /(n*(n+3)) * 2/((n-1)*(n+1)) C_{n-2}(x))
# == (2 (n+2)/(n+3) * x U_n(x) - (n + 2)*(n-1) /(n*(n+3)) * U_{n-1}(x)
R = real(eltype(wP))
n = zero(R):∞
(2*(n .+ 2)) ./ (n .+ 3), Zeros{R}(∞), (n .+ 2) .* (n .- 1) ./ (n .* (n .+ 3))
end
function complexlogkernel_ics(P::Weighted{<:Any,<:Legendre}, z::Number)
T = promote_type(eltype(P), typeof(z))
r0 = (1 + z)log(1 + z) - (z-1)log(z-1) - 2one(T)
r1 = (z+1)*r0/2 + 1 - (z+1)log(z+1)
r2 = z*r1 + 2*one(T)/3
r0,r1,r2
end
function complexlogkernel_recurrence(wP::Weighted{<:Any,<:Legendre})
# We have for n ≠ 0 L_n(z) = stieltjes(U_n, z)
# where U_n(z) = ∫_1^x P_n(x) dx = C_{n+1}^{(-1/2)}(x)
# Since these are equivalent to weihted OPs (1-x^2)C_{n-1}^(3/2)(x)
# we know they satisfy the same recurrence coefficients.
# Thus the following could also be written:
# A,B,C = recurrencecoefficients(Ultraspherical(-1/2))
# A[2:end],B[2:end],C[2:end]
R = real(eltype(wP))
((one(R):2:∞)./(2:∞), Zeros{R}(∞), (-one(R):∞)./(2:∞))
end
complexlogkernel(P::Legendre, z...) = complexlogkernel(Weighted(P), z...)
logkernel(P::Legendre, x...) = logkernel(Weighted(P), x...)
complexlogkernel_layout(::WeightedOPLayout, wP, z::Number) = transpose(RecurrenceArray(z, complexlogkernel_recurrence(wP), [complexlogkernel_ics(wP,z)...]))
function complexlogkernel_layout(::WeightedOPLayout, wP, zs::AbstractVector)
T = promote_type(eltype(wP), eltype(zs))
m = length(zs)
data = Matrix{T}(undef, 3, m)
for j = 1:m
z = zs[j]
data[1:3,j] .= complexlogkernel_ics(wP, z)
end
transpose(RecurrenceArray(zs, complexlogkernel_recurrence(wP), data))
end
logkernel_layout(::AbstractBasisLayout, P, z...) = real.(complexlogkernel(P, z...))
function logkernel_layout(::WeightedOPLayout, P, x::Real)
L = transpose(complexlogkernel(P, complex(x)))
transpose(RecurrenceArray(x, (L.A, L.B, L.C), real.(L.data)))
end
function logkernel_layout(::WeightedOPLayout, P, x::AbstractVector{<:Real})
L = transpose(complexlogkernel(P, complex(x)))
transpose(RecurrenceArray(x, (L.A, L.B, L.C), real.(L.data)))
end
###
# Maps
###
function logkernel(S::PiecewiseInterlace, z::Number)
@assert length(S.args) == 2
a,b = S.args
xa,xb = axes(a,1),axes(b,1)
Sa = logkernel(a, z)
Sb = logkernel(b, z)
transpose(BlockBroadcastArray(vcat, unitblocks(transpose(Sa)), unitblocks(transpose(Sb))))
end
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 2128 | const PowerKernel{T,D1,D2,F<:Real} = BroadcastQuasiMatrix{T,typeof(^),Tuple{BroadcastQuasiMatrix{T,typeof(abs),Tuple{ConvKernel{T,Inclusion{T,D1},T,D2}}},F}}
# recognize structure of W = abs.(t .- x).^a
const PowerKernelPoint{T,W<:Number,V,D,A<:Number} = BroadcastQuasiMatrix{T,typeof(^),Tuple{BroadcastQuasiMatrix{T,typeof(abs),Tuple{ConvKernel{T,W,V,D}}},A}}
@simplify function *(K::PowerKernelPoint, wC::AbstractQuasiVecOrMat)
T = promote_type(eltype(K), eltype(wC))
cnv,α = K.args
z,x = cnv.args[1].args
powerkernel(convert(AbstractQuasiArray{T}, wC), α, z)
end
###
# PowerKernel
###
function powerlawmoment(::Val{0}, α, λ, z::Real)
T = promote_type(typeof(α), typeof(λ), typeof(z))
if -1 ≤ z ≤ 1
beta((α+one(T))/2, λ+one(T)/2)_₂F₁(-α/2, -λ-α/2, one(T)/2, z^2)
else
beta(one(T)/2, λ+one(T)/2)abs(z)^α*_₂F₁((1-α)/2, -α/2, 1+λ, 1/z^2)
end
end
function powerlawmoment(::Val{1}, α, λ, z::Real)
T = promote_type(typeof(α), typeof(λ), typeof(z))
if -1 ≤ z ≤ 1
-2^(2-α)*λ*sqrt(convert(T,π))*gamma(α+2)*gamma(λ+one(T)/2)/(gamma(α/2)*gamma(α/2+λ+1))*((2*z^2*(α+λ)+1)*_₂F₁(-α/2,-λ-α/2,one(T)/2,z^2)+(z^2-1)*_₂F₁(-α/2,-λ-α/2,-one(T)/2,z^2))/(α*(α+1)*(α+2*λ+1)*z)+2*λ*z*gamma((α+1)/2)*gamma(λ+one(T)/2)/(gamma(λ+α/2+1))*_₂F₁(-α/2,-λ-α/2,one(T)/2,z^2)
else
-sign(z)α*λ*beta(one(T)/2, λ+one(T)/2)*abs(z)^(α-1)*_₂F₁((1-α)/2, 1-α/2, 2+λ, 1/z^2)/(1+λ)
end
end
powerkernel(wC::UltrasphericalWeight, α, z) = powerlawmoment(Val(0), α, wC.λ, z)
powerkernel(wC::LegendreWeight, α, z) = powerkernel(UltrasphericalWeight(wC), α, z)
function powerlawrecurrence(α, λ)
T = promote_type(typeof(α), typeof(λ))
n = 0:∞
A = @. 2*(λ + n) * (2λ + n) / ((n+1)*(2λ+n+α+1))
B = Zeros{T}(∞)
C = @. (n-α-1)*(2λ+n-1)*(2λ+n)/(n*(n+1)*(2λ+n+α+1))
A,B,C
end
powerkernel(wC::Legendre{T}, α, z) where T = powerkernel(Weighted(Ultraspherical{T}(one(T)/2)), α, z)
function powerkernel(wC::Weighted, α, z)
λ = wC.P.λ
transpose(RecurrenceArray(z, powerlawrecurrence(α, λ), [powerlawmoment(Val(0), α, λ, z), powerlawmoment(Val(1), α, λ, z)]))
end
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 7478 | """
r = RecurrenceArray(z, (A, B, C), data)
is a vector corresponding to the non-domainant solution to the recurrence relationship, for `k = size(data,1)`
r[1:k,:] == data
r[k+1,j] == (A[k]z[j] + B[k])r[k,j] - C[k]*r[k-1,j]
"""
mutable struct RecurrenceArray{T, N, ZZ, AA<:AbstractVector, BB<:AbstractVector, CC<:AbstractVector} <: AbstractCachedArray{T,N}
z::ZZ
A::AA
B::BB
C::CC
data::Array{T,N}
datasize::NTuple{N,Int}
p0::Vector{T} # stores p_{s-1} to determine when to switch to backward
p1::Vector{T} # stores p_{s} to determine when to switch to backward
u::Vector{T} # used for backsubstitution to store diagonal of U in LU
end
const RecurrenceVector{T, A<:AbstractVector, B<:AbstractVector, C<:AbstractVector} = RecurrenceArray{T, 1, T, A, B, C}
const RecurrenceMatrix{T, Z<:AbstractVector, A<:AbstractVector, B<:AbstractVector, C<:AbstractVector} = RecurrenceArray{T, 2, Z, A, B, C}
RecurrenceArray(z, A, B, C, data::Array{T,N}, datasize, p0, p1) where {T,N} = RecurrenceArray{T,N,typeof(z),typeof(A),typeof(B),typeof(C)}(z, A, B, C, data, datasize, p0, p1, T[])
function RecurrenceArray(z::Number, (A,B,C), data::AbstractVector{T}) where T
N = length(data)
p0, p1 = initiateforwardrecurrence(N, A, B, C, z, one(z))
if iszero(p1)
p1 = one(p1) # avoid degeneracy in recurrence. Probably needs more thought
end
RecurrenceVector{T,typeof(A),typeof(B),typeof(C)}(z, A, B, C, data, size(data), T[p0], T[p1], T[])
end
function RecurrenceArray(z::AbstractVector, (A,B,C), data::AbstractMatrix{T}) where T
M,N = size(data)
p0 = Vector{T}(undef, N)
p1 = Vector{T}(undef, N)
for j = axes(z,1)
p0[j], p1[j] = initiateforwardrecurrence(M, A, B, C, z[j], one(T))
if iszero(p1[j])
p1[j] = one(p1[j]) # avoid degeneracy in recurrence. Probably needs more thought
end
end
RecurrenceMatrix{T,typeof(z),typeof(A),typeof(B),typeof(C)}(z, A, B, C, data, size(data), p0, p1, T[])
end
size(R::RecurrenceVector) = (ℵ₀,) # potential to add maximum size of operator
size(R::RecurrenceMatrix) = (ℵ₀, size(R.data,2)) # potential to add maximum size of operator
copy(R::RecurrenceArray) = R # immutable entries
function _growdata!(B::AbstractArray{<:Any,N}, nm::Vararg{Integer,N}) where N
# increase size of array if necessary
olddata = B.data
νμ = size(olddata)
nm = max.(νμ,nm)
if νμ ≠ nm
B.data = similar(B.data, nm...)
B.data[axes(olddata)...] = olddata
end
end
# to estimate error in forward recurrence we compute the dominant solution (the OPs) simeultaneously
function resizedata!(K::RecurrenceArray, m, n...)
m ≤ 0 && return K
# increase size of array if necessary
_growdata!(K, m, n...)
ν = K.datasize[1]
if m > ν
A,B,C = K.A,K.B,K.C
tol = 100
for j = axes(K.z,1)
z = K.z[j]
if ν > 2 && iszero(K.data[ν-1,j]) && iszero(K.data[ν,j])
# no data
zero!(view(K.data, ν+1:m, j))
else
p0, p1 = K.p0[j], K.p1[j]
k = ν
while abs(p1) < tol*k && k < m
p1,p0 = _forwardrecurrence_next(k, A, B, C, z, p0, p1),p1
k += 1
end
K.p0[j], K.p1[j] = p0, p1
if k > ν
_forwardrecurrence!(view(K.data,:,j), A, B, C, z, ν:k)
end
if k < m
if K isa AbstractVector
backwardrecurrence!(K, A, B, C, z, k:m)
else
backwardrecurrence!(K, A, B, C, z, k:m, j)
end
end
end
end
K.datasize = (max(K.datasize[1],m), tail(K.datasize)...)
end
end
function backwardrecurrence!(K, A, B, C, z, nN::AbstractUnitRange, j...)
n,N = first(nN),last(nN)
T = eltype(z)
tol = 100eps(real(T))
maxiterations = 100_000_000
data = K.data
u = K.u
resize!(u, max(length(u), N))
# we use data as a working vector and do an inplace LU
# r[n+1] - (A[n]z + B[n])r[n] + C[n] r[n-1] == 0
u[n+1] = -(A[n+1]z + B[n+1])
data[n+1, j...] = -C[n+1]*data[n, j...]
# forward elimination
k = n+1
while abs(data[k,j...]) > tol
k ≥ maxiterations && error("maximum iterations reached")
if k == N
# need to resize data, lets use rate of decay as estimate
μ = min(abs(data[k,j...]/data[k-1,j...]), abs(data[k-1,j...]/data[k-2,j...]))
# data[k] * μ^M ≤ ε
# M ≥ log(ε/data[k])/log(μ)
N = ceil(Int, max(2N, min(maxiterations, log(eps(real(T))/100)/log(μ+eps(real(T))))))
_growdata!(K, N, j...)
resize!(u, N)
data = K.data
end
ℓ = -C[k+1]/u[k]
u[k+1] = ℓ-(A[k+1]z + B[k+1])
data[k+1,j...] = ℓ*data[k,j...]
k += 1
end
data[k,j...] /= u[k]
# back-sub
for κ = k-1:-1:n+1
data[κ,j...] = (data[κ,j...] - data[κ+1,j...])/u[κ]
end
for κ = k+1:N
data[κ,j...] = 0
end
K
end
###
# override indexing to resize first
####
function _getindex_resize_iffinite!(A, kr, jr, m::Int)
resizedata!(A, m, size(A,2))
A.data[kr,jr]
end
_getindex_resize_iffinite!(A, kr, jr, _) = layout_getindex(A, kr, jr)
@inline getindex(A::RecurrenceMatrix, kr::AbstractUnitRange, jr::AbstractUnitRange) = _getindex_resize_iffinite!(A, kr, jr, maximum(kr))
@inline getindex(A::RecurrenceMatrix, kr::AbstractVector, jr::AbstractVector) = _getindex_resize_iffinite!(A, kr, jr, maximum(kr))
@inline getindex(A::RecurrenceMatrix, k::Integer, jr::AbstractVector) = _getindex_resize_iffinite!(A, k, jr, k)
@inline getindex(A::RecurrenceMatrix, k::Integer, jr::AbstractUnitRange) = _getindex_resize_iffinite!(A, k, jr, k)
@inline getindex(A::RecurrenceMatrix, k::Integer, ::Colon) = _getindex_resize_iffinite!(A, k, :, k)
@inline getindex(A::RecurrenceMatrix, kr::AbstractVector, ::Colon) = _getindex_resize_iffinite!(A, kr, :, maximum(kr))
@inline getindex(A::RecurrenceMatrix, kr::AbstractUnitRange, ::Colon) = _getindex_resize_iffinite!(A, kr, :, maximum(kr))
function view(A::RecurrenceVector, kr::AbstractVector)
resizedata!(A, maximum(kr))
view(A.data, kr)
end
###
# broadcasted
###
broadcasted(::LazyArrayStyle, op, A::Transpose{<:Any,<:RecurrenceArray}) = transpose(op.(parent(A)))
broadcasted(::LazyArrayStyle, ::typeof(*), c::Number, A::RecurrenceArray) = RecurrenceArray(A.z, A.A, A.B, A.C, c .* A.data, A.datasize, c .* A.p0, c .* A.p1)
function recurrence_broadcasted(op, A::RecurrenceMatrix, x::AbstractVector)
p = paddeddata(x)
n = size(p,1)
resizedata!(A, n, size(p,2))
data = copy(A.data)
data[1:n,:] .+= p
RecurrenceArray(A.z, A.A, A.B, A.C, data, A.datasize, A.p0, A.p1)
end
function recurrence_broadcasted(op, A::RecurrenceVector, x::AbstractVector)
p = paddeddata(x)
n = size(p,1)
resizedata!(A, n)
data = copy(A.data)
data[1:n] .+= p
RecurrenceArray(A.z, A.A, A.B, A.C, data, A.datasize, A.p0, A.p1)
end
for op in (:+, :-)
@eval begin
broadcasted(::LazyArrayStyle, ::typeof($op), A::RecurrenceArray, x::AbstractVector) = recurrence_broadcasted($op, A, x)
broadcasted(::LazyArrayStyle, ::typeof($op), A::RecurrenceVector, x::Vcat{<:Any,1}) = recurrence_broadcasted($op, A, x)
end
end | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 7968 | ####
# Associated
####
"""
AssociatedWeighted(P)
We normalise so that `orthogonalityweight(::Associated)` is a probability measure.
"""
struct AssociatedWeight{T,OPs<:AbstractQuasiMatrix{T}} <: Weight{T}
P::OPs
end
axes(w::AssociatedWeight) = (axes(w.P,1),)
sum(::AssociatedWeight{T}) where T = one(T)
"""
Associated(P)
constructs the associated orthogonal polynomials for P, which have the Jacobi matrix
jacobimatrix(P)[2:end,2:end]
and constant first term. Or alternatively
w = orthogonalityweight(P)
A = recurrencecoefficients(P)[1]
Associated(P) == (w/(sum(w)*A[1]))'*((P[:,2:end]' - P[:,2:end]) ./ (x' - x))
where `x = axes(P,1)`.
"""
struct Associated{T, OPs<:AbstractQuasiMatrix{T}} <: OrthogonalPolynomial{T}
P::OPs
end
associated(P) = Associated(P)
axes(Q::Associated) = axes(Q.P)
==(A::Associated, B::Associated) = A.P == B.P
orthogonalityweight(Q::Associated) = AssociatedWeight(Q.P)
function associated_jacobimatrix(X::Tridiagonal)
c,a,b = subdiagonaldata(X),diagonaldata(X),supdiagonaldata(X)
Tridiagonal(c[2:end], a[2:end], b[2:end])
end
function associated_jacobimatrix(X::SymTridiagonal)
a,b = diagonaldata(X),supdiagonaldata(X)
SymTridiagonal(a[2:end], b[2:end])
end
jacobimatrix(a::Associated) = associated_jacobimatrix(jacobimatrix(a.P))
associated(::ChebyshevT{T}) where T = ChebyshevU{T}()
associated(::ChebyshevU{T}) where T = ChebyshevU{T}()
const ConvKernel{T,D1,V,D2} = BroadcastQuasiMatrix{T,typeof(-),Tuple{D1,QuasiAdjoint{V,Inclusion{V,D2}}}}
const StieltjesPoint{T,W<:Number,V,D} = BroadcastQuasiMatrix{T,typeof(inv),Tuple{ConvKernel{T,W,V,D}}}
const StieltjesPoints{T,W<:AbstractVector{<:Number},V,D} = BroadcastQuasiMatrix{T,typeof(inv),Tuple{ConvKernel{T,W,V,D}}}
const Stieltjes{T,D1,D2} = BroadcastQuasiMatrix{T,typeof(inv),Tuple{ConvKernel{T,Inclusion{T,D1},T,D2}}}
@simplify function *(H::Stieltjes, w::AbstractQuasiVecOrMat)
T = promote_type(eltype(H), eltype(w))
stieltjes(convert(AbstractQuasiArray{T}, w), axes(H,1))
end
@simplify function *(H::StieltjesPoint, w::AbstractQuasiMatrix)
T = promote_type(eltype(H), eltype(w))
z = H.args[1].args[1]
convert(AbstractArray{T}, stieltjes(w, z))
end
@simplify function *(H::StieltjesPoint, w::AbstractQuasiVector)
T = promote_type(eltype(H), eltype(w))
z = H.args[1].args[1]
convert(T, stieltjes(w, z))
end
"""
stieltjes(P, y)
computes inv.(y - x') * P understood in a principle value sense.
"""
stieltjes(P, y...) = stieltjes_layout(MemoryLayout(P), P, y...)
"""
stieltjes(P)
computes inv.(x - x') * P understood in a principle value sense.
"""
stieltjes(w::ChebyshevTWeight{T}) where T = zeros(T, axes(w,1))
stieltjes(w::ChebyshevUWeight{T}) where T = convert(T,π) * axes(w,1)
function stieltjes(w::LegendreWeight{T}) where T
x = axes(w,1)
log.(x .+ one(T)) .- log.(one(T) .- x)
end
stieltjes(wT::Weighted{T,<:ChebyshevT}) where T = ChebyshevU{T}() * _BandedMatrix(Fill(-convert(T,π),1,∞), ℵ₀, -1, 1)
stieltjes(wU::Weighted{T,<:ChebyshevU}) where T = ChebyshevT{T}() * _BandedMatrix(Fill(convert(T,π),1,∞), ℵ₀, 1, -1)
function stieltjes(wP::Weighted{<:Any,<:OrthogonalPolynomial})
P = wP.P
w = orthogonalityweight(P)
A = recurrencecoefficients(P)[1]
Q = associated(P)
(-A[1]*sum(w))*[zero(axes(P,1)) Q] + stieltjes(w) .* P
end
stieltjes(P::Legendre) = stieltjes(Weighted(P))
##
# OffStieltjes
##
function stieltjes(W::Weighted{<:Any,<:ChebyshevU}, x::Inclusion)
x == axes(W,1) && return stieltjes(W)
tol = eps()
T̃ = chebyshevt(x)
ψ_1 = T̃ \ inv.(x .+ sqrtx2.(x)) # same ψ_1 = x .- sqrt(x^2 - 1) but with relative accuracy as x -> ∞
M = Clenshaw(T̃ * ψ_1, T̃)
data = zeros(eltype(ψ_1), ∞, ∞)
# Operator has columns π * ψ_1^k
copyto!(view(data,:,1), convert(eltype(data),π)*ψ_1)
for j = 2:∞
mul!(view(data,:,j),M,view(data,:,j-1))
norm(view(data,:,j)) ≤ tol && break
end
# we wrap in a Padded to avoid increasing cache size
T̃ * PaddedArray(chop(paddeddata(data), tol), size(data)...)
end
####
# StieltjesPoint
####
stieltjesmoment_jacobi_normalization(n::Int,α::Real,β::Real) = 2^(α+β)*gamma(n+α+1)*gamma(n+β+1)/gamma(2n+α+β+2)
function stieltjes(w::AbstractJacobiWeight, z::Number)
α,β = real(w.a),real(w.b)
(x = 2/(1-z);stieltjesmoment_jacobi_normalization(0,α,β)*HypergeometricFunctions.mxa_₂F₁(1,α+1,α+β+2,x))
end
function stieltjes(w::ChebyshevTWeight{T}, z::Number) where T
α,β = w.a,w.b
z in axes(w,1) && return zero(T)
convert(T, π)/sqrtx2(z)
end
function stieltjes(w::ChebyshevUWeight{T}, z::Number) where T
α,β = w.a,w.b
z in axes(w,1) && return π*z
convert(T, π)/(z + sqrtx2(z))
end
@simplify function *(S::StieltjesPoints, w::Weight)
zs = S.args[1].args[1] # vector of points to eval at
stieltjes(w, zs)
end
function stieltjes(wP::Weighted, z::Number)
P = wP.P
w = orthogonalityweight(P)
A,B,C = recurrencecoefficients(P)
r1 = stieltjes(w, z)*_p0(P) # stieltjes of the weight
# (a[1]-z)*r[1] + b[1]r[2] == -sum(w)*_p0(P)
# (a[1]/b[1]-z/b[1])*r[1] + r[2] == -sum(w)*_p0(P)/b[1]
# (A[1]z + B[1])*r[1] - r[2] == A[1]sum(w)*_p0(P)
# (A[1]z + B[1])*r[1]-A[1]sum(w)*_p0(P) == r[2]
r2 = (A[1]z + B[1])*r1-A[1]sum(w)*_p0(P)
transpose(RecurrenceArray(z, (A,B,C), [r1,r2]))
end
function stieltjes(wP::Weighted, z::AbstractVector)
T = promote_type(eltype(z), eltype(wP))
P = wP.P
A,B,C = recurrencecoefficients(P)
w = orthogonalityweight(P)
data = Matrix{T}(undef, 2, length(z))
data[1,:] .= stieltjes(w, z) .* _p0(P)
data[2,:] .= (A[1] .* z .+ B[1]) .* data[1,:] .- (A[1]sum(w)*_p0(P))
transpose(RecurrenceArray(z, (A,B,C), data))
end
sqrtx2(z::Number) = sqrt(z-1)*sqrt(z+1)
sqrtx2(x::Real) = sign(x)*sqrt(x^2-1)
stieltjes(P::Legendre, z...) = stieltjes(Weighted(P), z...)
@simplify function *(S::StieltjesPoints, wP::Weighted)
z = S.args[1].args[1] # vector of points to eval at
stieltjes(wP, z)
end
@simplify function *(S::StieltjesPoints, P::Legendre)
S * Weighted(P)
end
##
# mapped
###
function stieltjes_layout(::MappedWeightLayout, w::SubQuasiArray{<:Any,1})
m = parentindices(w)[1]
# TODO: mapping other geometries
P = parent(w)
stieltjes(P)[m]
end
function stieltjes_layout(::MappedWeightLayout, w::AbstractQuasiVector, z::Number)
m = basismap(w)
# TODO: mapping other geometries
P = demap(w)
stieltjes(P, inbounds_getindex(m, z))
end
function stieltjes_layout(::Union{MappedBasisLayouts, MappedOPLayouts}, wP::AbstractQuasiMatrix, x::Inclusion)
kr = basismap(wP)
W = demap(wP)
t̃ = axes(W,1)
t = axes(wP,1)
x == t && return stieltjes(W)[kr,:]
M = affine(t,t̃)
@assert x isa Inclusion
a,b = first(x),last(x)
x̃ = Inclusion((M.A * a .+ M.b)..(M.A * b .+ M.b)) # map interval to new interval
Q̃,M = arguments(*, stieltjes(W, x̃))
parent(Q̃)[affine(x,axes(parent(Q̃),1)),:] * M
end
function stieltjes_layout(::Union{MappedBasisLayouts, MappedOPLayouts}, wT::AbstractQuasiMatrix, z::Number)
P = demap(wT)
z̃ = inbounds_getindex(basismap(wT), z)
stieltjes(P, z̃)
end
###
# Interlace
###
function stieltjes(W::PiecewiseInterlace)
Hs = broadcast(function(a,b)
x,t = axes(a,1),axes(b,1)
H = stieltjes(b, x)
H
end, [W.args...], permutedims([W.args...]))
N = length(W.args)
Ts = [broadcastbasis(+, broadcast(H -> H.args[1], Hs[k,:])...) for k=1:N]
Ms = broadcast((T,H) -> unitblocks(T\H), Ts, Hs)
PiecewiseInterlace(Ts...) * BlockBroadcastArray{eltype(W)}(hvcat, N, permutedims(Ms)...)
end
function stieltjes(S::PiecewiseInterlace, z::Number)
@assert length(S.args) == 2
a,b = S.args
Sa = stieltjes(a, z)
Sb = stieltjes(b, z)
transpose(BlockBroadcastArray(vcat, unitblocks(transpose(Sa)), unitblocks(transpose(Sb))))
end | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 1064 | using SingularIntegrals, ClassicalOrthogonalPolynomials, ContinuumArrays, QuasiArrays, BandedMatrices, LinearAlgebra, Test
using SingularIntegrals: Stieltjes, StieltjesPoint, ChebyshevInterval, associated, Associated,
orthogonalityweight, Weighted, *, dot
using LazyArrays: MemoryLayout, PaddedLayout, colsupport, rowsupport, paddeddata
using LazyBandedMatrices: blockcolsupport, Block, BlockHcat, blockbandwidths
include("test_recurrence.jl")
@testset "Associated" begin
T = ChebyshevT()
U = ChebyshevU()
@test associated(T) ≡ U
@test associated(U) ≡ U
@test Associated(T)[0.1,1:10] == Associated(U)[0.1,1:10] == U[0.1,1:10]
P = Legendre()
Q = Associated(P)
x = axes(P,1)
u = Q * (Q \ exp.(x))
@test u[0.1] ≈ exp(0.1)
@test grid(Q[:,Base.OneTo(5)]) ≈ eigvals(Matrix(jacobimatrix(Normalized(Q))[1:5,1:5]))
w = orthogonalityweight(Q)
@test axes(w,1) == axes(P,1)
@test sum(w) == 1
end
include("test_stieltjes.jl")
include("test_logkernel.jl")
include("test_power.jl")
include("test_piecewise.jl") | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 6745 | using SingularIntegrals, ClassicalOrthogonalPolynomials, FillArrays, Test
using SingularIntegrals: RecurrenceArray, LogKernelPoint
using ClassicalOrthogonalPolynomials: affine
@testset "ComplexLogKernelPoint" begin
P = Legendre()
Pc = Legendre{ComplexF64}()
x = axes(P,1)
L = (z,k) -> sum(Pc / Pc \ (log.(z .- x).*P[:,k+1]))
for z in (5, 1+2im, -1+2im, 1-2im, -3+0.0im, -3-0.0im)
@test (log.(z .- x') * P)[1:5] ≈ L.(z, 0:4)
end
for z in ([2.1,3.], [2.1+im,-3-im])
@test (log.(z .- x') * P)[:,1:5] ≈ L.(z, (0:4)')
end
for z in (-5,-1,0,0.1)
@test_throws DomainError log.(z .- x') * P
end
@testset "expand" begin
@test complexlogkernel(exp.(x), 2 + im) ≈ sum(log.((2+im) .- x) .* exp.(x))
@test_throws ErrorException complexlogkernel(Jacobi(0.1,0.2), 2+im)
end
end
@testset "LogKernelPoint" begin
@testset "Complex point" begin
wU = Weighted(ChebyshevU())
x = axes(wU,1)
z = 0.1+0.2im
L = log.(abs.(z .- x'))
@test L isa LogKernelPoint{Float64,ComplexF64,ComplexF64,Float64,ChebyshevInterval{Float64}}
@test (L * wU)[1:5] ≈ [ -1.2919202947616695, -0.20965486677056738, 0.6799687631764493, 0.13811497572177128, -0.2289481463304956]
@test L * (wU / wU \ @.(exp(x) * sqrt(1 - x^2))) ≈ -1.4812979070884382
wT = Weighted(ChebyshevT())
@test L * (wT / wT \ @.(exp(x) / sqrt(1 - x^2))) ≈ -1.9619040529776954 #mathematica
end
@testset "Real point" begin
T = ChebyshevT()
U = ChebyshevU()
x = axes(U,1)
t = 2.0
@test (log.(abs.(t .- x') )* Weighted(T))[1,1:3] ≈ [1.9597591637624774, -0.8417872144769223, -0.11277810215896047] #mathematica
@test (log.(abs.(t .- x') )* Weighted(U))[1,1:3] ≈ [1.0362686329607178,-0.4108206734393296, -0.054364775221816465] #mathematica
t = 0.5
@test (log.(abs.(t .- x') )* Weighted(T))[1,1:3] ≈ [-2.1775860903036017, -1.5707963267948832, 0.7853981633974272] #mathematica
@test (log.(abs.(t .- x') )* Weighted(U))[1,1:3] ≈ [-1.4814921268505252, -1.308996938995747, 0.19634954084936207] #mathematica
t = 0.5+0im
@test (log.(abs.(t .- x') )* Weighted(T))[1,1:3] ≈ [-2.1775860903036017, -1.5707963267948832, 0.7853981633974272] #mathematica
@test (log.(abs.(t .- x') )* Weighted(U))[1,1:3] ≈ [-1.4814921268505252, -1.308996938995747, 0.19634954084936207] #mathematica
# checks for degeneracy in recurrence initial conditions
@test iszero(logkernel(Weighted(T), 10.3)[100])
end
@testset "mapped" begin
x = Inclusion(1..2)
wU = Weighted(ChebyshevU())[affine(x, axes(ChebyshevU(),1)),:]
x = axes(wU,1)
z = 5
L = log.(abs.(z .- x'))
f = wU / wU \ @.(sqrt(2-x)sqrt(x-1)exp(x))
@test L*f ≈ 2.2374312398976586 # MAthematica
wU = Weighted(chebyshevu(1..2))
f = wU / wU \ @.(sqrt(2-x)sqrt(x-1)exp(x))
@test L*f ≈ 2.2374312398976586 # MAthematica
@testset "vector" begin
z = [3.1,4]
wU = Weighted(ChebyshevU())[affine(x, axes(ChebyshevU(),1)),:]
c = wU \ @.(sqrt(2-x)sqrt(x-1)exp(x))
x = axes(wU,1)
@test logkernel(wU, z)[:,1:1000] == (log.(abs.(z .- x')) * wU)[:,1:1000]
@test logkernel(wU, z) * c ≈ [logkernel(wU, 3.1)*c, logkernel(wU, 4)*c]
end
end
@testset "Legendre" begin
@testset "Float64" begin
P = Legendre()
x = axes(P,1)
L = (z,k) -> sum(P / P \ (log.(abs.(z .- x)).*P[:,k+1]))
for z in (5, 1+2im, -1+2im, 1-2im, -3+0.0im, -3-0.0im, -3)
@test (log.(abs.(z .- x')) * P)[1:10] ≈ L.(z, 0:9)
end
end
@testset "BigFloat" begin
z = big(5.0)
P = Legendre{BigFloat}()
x = axes(P,1)
L = (z,k) -> sum(P / P \ (log.(abs.(z .- x)).*P[:,k+1]))
@test (log.(abs.(z .- x')) * P)[1:10] ≈ L.(z, 0:9)
end
@testset "derivation" begin
W = Weighted(Jacobi(1,1))
P = Legendre()
x = axes(P,1)
L = (z,k) -> sum(P / P \ (log.(abs.(z .- x)).*P[:,k+1]))
z = 5
@test L(z,0) ≈ 2log(z+1) + inv.(z .- x') * (P / P \ (x .- 1)) ≈ (1 + z)log(1 + z) - (z-1)log(z-1) - 2
@test L(z,1) ≈ (inv.(z .- x') * W)[1]/(-2)
@test z * L(z,0) ≈ 2z*log(z+1) + z*(inv.(z .- x') * (P / P \ (x .- 1))) ≈
2z*log(z+1) + (inv.(z .- x') * (P / P \ (x.^2 .- 1))) + (inv.(z .- x') * (P / P \ (1 .- x))) - 2 ≈
2L(z,1) - L(z,0) + 2(z+1)*log(z+1) - 2
@test z * L(z,1) ≈ z * (inv.(z .- x') * W)[1]/(-2) ≈ -2/3 + (inv.(z .- x') * (x .* W))[1]/(-2) ≈
-2/3 + (inv.(z .- x') * W)[2]/(-4) ≈ -2/3 + L(z,2)
for k = 2:5
@test z * L(z,k) ≈ (k-1)/(2k+1)*L(z,k-1)+ (k+2)/(2k+1)*L(z,k+1)
@test (2k+1)/(k+2)*z * L(z,k) ≈ (k-1)/(k+2)*L(z,k-1)+ L(z,k+1)
end
r0 = (1 + z)log(1 + z) - (z-1)log(z-1) - 2
r1 = (z+1)*r0/2 + 1 - (z+1)log(z+1)
r2 = z*r1 + 2*one(z)/3
r = RecurrenceArray(z, ((1:2:∞)./(2:∞), Zeros(∞), (-1:∞)./(2:∞)), [r0,r1,r2])
@test r[1:10] ≈ L.(z,0:9)
end
end
end
@testset "Log kernel" begin
T = Chebyshev()
wT = Weighted(Chebyshev())
x = axes(wT,1)
L = log.(abs.(x .- x'))
D = T \ (L * wT)
@test ((L * wT) * (T \ exp.(x)))[0.] ≈ -2.3347795490945797 # Mathematica
x = Inclusion(-1..1)
T = Chebyshev()[1x, :]
L = log.(abs.(x .- x'))
wT = Weighted(Chebyshev())[1x, :]
@test (T \ (L*wT))[1:10,1:10] ≈ D[1:10,1:10]
x = Inclusion(0..1)
T = Chebyshev()[2x.-1, :]
wT = Weighted(Chebyshev())[2x .- 1, :]
L = log.(abs.(x .- x'))
u = wT * (2 *(T \ exp.(x)))
@test u[0.1] ≈ exp(0.1)/sqrt(0.1-0.1^2)
@test (L * u)[0.5] ≈ -7.471469928754152 # Mathematica
@testset "mapped" begin
T = chebyshevt(0..1)
x = axes(T,1)
L = log.(abs.(x .- x'))
@test T[0.2,:]'*((T\L*Weighted(T)) * (T\exp.(x))) ≈ -2.9976362326874373 # Mathematica
end
@testset "Legendre" begin
P = Legendre()
f = expand(P, exp)
@test logkernel(f, 0.1) ≈ logkernel(f, complex(0.1)) ≈ -2.3204982810441956
@test logkernel(f, [0.1,1.2,-0.5]) ≈ logkernel(f, ComplexF64[0.1,1.2,-0.5])
@test logkernel(f, 0.1 + 0.2im) ≈ -1.6570185704416018
end
@testset "sub-Legendre" begin
P = Legendre()
@test logkernel(P[:,1:10],0.1)' == logkernel(P, 0.1)'[1:10]
end
end | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 2576 | @testset "two-interval" begin
T1,T2 = chebyshevt((-2)..(-1)), chebyshevt(0..2)
U1,U2 = chebyshevu((-2)..(-1)), chebyshevu(0..2)
W = PiecewiseInterlace(Weighted(U1), Weighted(U2))
T = PiecewiseInterlace(T1, T2)
U = PiecewiseInterlace(U1, U2)
x = axes(W,1)
H = T \ inv.(x .- x') * W;
@test iszero(H[1,1])
@test H[3,1] ≈ π
@test maximum(blockcolsupport(H,Block(5))) ≤ Block(50)
@test blockbandwidths(H) == (25,26)
c = W \ broadcast(x -> exp(x)* (0 ≤ x ≤ 2 ? sqrt(2-x)*sqrt(x) : sqrt(-1-x)*sqrt(x+2)), x)
f = W * c
@test T[0.5,1:200]'*(H*c)[1:200] ≈ -6.064426633490422
@testset "inversion" begin
H̃ = BlockHcat(Eye((axes(H,1),))[:,Block(1)], H)
@test blockcolsupport(H̃,Block(1)) == Block.(1:1)
@test last(blockcolsupport(H̃,Block(2))) ≤ Block(30)
UT = U \ T
D = U \ Derivative(x) * T
V = x -> x^4 - 10x^2
Vp = x -> 4x^3 - 20x
V_cfs = T \ V.(x)
Vp_cfs_U = D * V_cfs
Vp_cfs_T = T \ Vp.(x);
@test (UT \ Vp_cfs_U)[Block.(1:10)] ≈ Vp_cfs_T[Block.(1:10)]
@time c = H̃ \ Vp_cfs_T;
@test c[Block.(1:100)] ≈ H̃[Block.(1:100),Block.(1:100)] \ Vp_cfs_T[Block.(1:100)]
E1,E2 = c[Block(1)]
@test [E1,E2] ≈ [12.939686758642496,-10.360345667126758]
c1 = [paddeddata(c)[3:2:end]; Zeros(∞)]
c2 = [paddeddata(c)[4:2:end]; Zeros(∞)]
u1 = Weighted(U1) * c1
u2 = Weighted(U2) * c2
x1 = axes(u1,1)
x2 = axes(u2,1)
@test inv.(-1.3 .- x1') * u1 + inv.(-1.3 .- x2') * u2 + E1 ≈ Vp(-1.3)
@test inv.(1.3 .- x1') * u1 + inv.(1.3 .- x2') * u2 + E2 ≈ Vp(1.3)
end
@testset "Stieltjes" begin
z = 5.0
@test inv.(z .- x')*f ≈ 1.317290060427562
t = 1.2
@test inv.(t .- x')*f ≈ -2.797995066227555
@test log.(abs.(t .- x'))*f ≈ -5.9907385495482821485
@test log.(abs.(z .- x'))*f ≈ 6.523123127595374
@test log.(abs.((-z) .- x'))*f ≈ 8.93744698863906
end
end
@testset "three-interval" begin
d = (-2..(-1), 0..1, 2..3)
T = PiecewiseInterlace(chebyshevt.(d)...)
U = PiecewiseInterlace(chebyshevu.(d)...)
W = PiecewiseInterlace(Weighted.(U.args)...)
x = axes(W,1)
H = T \ inv.(x .- x') * W
c = W \ broadcast(x -> exp(x) *
if -2 ≤ x ≤ -1
sqrt(x+2)sqrt(-1-x)
elseif 0 ≤ x ≤ 1
sqrt(1-x)sqrt(x)
else
sqrt(x-2)sqrt(3-x)
end, x)
f = W * c
@test T[0.5,1:200]'*(H*c)[1:200] ≈ -3.0366466972156143
end | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 3166 | using SingularIntegrals, ClassicalOrthogonalPolynomials, Test
using SingularIntegrals: PowerKernelPoint, powerlawmoment, powerlawrecurrence, RecurrenceArray
@testset "Weights" begin
z = 10.0
x = axes(ChebyshevT(),1)
α = 0.1
L = abs.(z .- x') .^ α
# from Mathmatica
λ = 1
L0 = powerlawmoment(Val(0), α, λ, z)
L1 = powerlawmoment(Val(1), α, λ, z)
@test L* UltrasphericalWeight(λ) ≈ L0 ≈ 1.9772924292721128
@test L1 ≈ -0.009901716900034385
A, B, C = powerlawrecurrence(α, λ)
@test (A[2]z + B[2])*L1-C[2]L0 ≈ -0.00022324029766696007
r = RecurrenceArray(z, (A,B,C), [L0,L1])
@test r[5] ≈ -2.5742591209035326E-7
@test r[1:10] ≈ (L * Weighted(Ultraspherical(λ)))[1,1:10]
@test L* LegendreWeight() ≈ 2.517472100701719
@test (L * Legendre())[5] ≈ -1.3328397976790363E-7
end
@testset "Compare with Mathematica results" begin
@testset "z >> 1" begin
z = 10.0
x = axes(ChebyshevT(),1)
α = 0.1
L = abs.(z .- x') .^ α
# from Mathematica
λ = 1
L0 = powerlawmoment(Val(0), α, λ, z)
L1 = powerlawmoment(Val(1), α, λ, z)
@test L* UltrasphericalWeight(λ) ≈ L0 ≈ 1.9772924292721128
@test L1 ≈ -0.009901716900034385
A, B, C = powerlawrecurrence(α, λ)
@test (A[2]z + B[2])*L1-C[2]L0 ≈ -0.00022324029766696007
r = RecurrenceArray(z, (A,B,C), [L0,L1])
@test r[5] ≈ -2.5742591209035326E-7
@test r[1:10] ≈ (L * Weighted(Ultraspherical(λ)))[1,1:10]
@test L* LegendreWeight() ≈ 2.517472100701719
@test (L * Legendre())[5] ≈ -1.3328397976790363E-7
end
@testset "z > 1" begin
z = 1.1
x = axes(ChebyshevT(),1)
α = 0.1
L = abs.(z .- x') .^ α
# from Mathematica
λ = 1
L0 = powerlawmoment(Val(0), α, λ, z)
L1 = powerlawmoment(Val(1), α, λ, z)
@test L* UltrasphericalWeight(λ) ≈ L0 ≈ 1.56655191643602910
@test L1 ≈ -0.0850992609853987
A, B, C = powerlawrecurrence(α, λ)
r = RecurrenceArray(z, (A,B,C), [L0,L1])
@test r[5] ≈ -0.00381340800899034
end
@testset "z < -1" begin
z = -1.43
x = axes(ChebyshevT(),1)
α = 0.1
L = abs.(z .- x') .^ α
# from Mathematica
λ = 1
L0 = powerlawmoment(Val(0), α, λ, z)
L1 = powerlawmoment(Val(1), α, λ, z)
@test L* UltrasphericalWeight(λ) ≈ L0 ≈ 1.617769472203235
@test L1 ≈ 0.06180254575531147
A, B, C = powerlawrecurrence(α, λ)
r = RecurrenceArray(z, (A,B,C), [L0,L1])
@test r[5] ≈ -0.000807806617344142
end
@testset "1 < z < 1" begin
z = 0.7398
x = axes(ChebyshevT(),1)
α = 0.1
L = abs.(z .- x') .^ α
# from Mathematica
λ = 1
L0 = powerlawmoment(Val(0), α, λ, z)
L1 = powerlawmoment(Val(1), α, λ, z)
@test L* UltrasphericalWeight(λ) ≈ L0 ≈ 1.480874346601822
@test L1 ≈ -0.1328257513137366
A, B, C = powerlawrecurrence(α, λ)
r = RecurrenceArray(z, (A,B,C), [L0,L1])
@test r[5] ≈ 0.02537001925265781
end
end | SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 1649 | using SingularIntegrals, ClassicalOrthogonalPolynomials, Test
using SingularIntegrals: RecurrenceArray
using ClassicalOrthogonalPolynomials: recurrencecoefficients
@testset "RecurrenceArray" begin
@testset "RecurrenceVector" begin
T,U = ChebyshevT(),ChebyshevU()
for z in (0.1, 1.0)
r = RecurrenceArray(z, recurrencecoefficients(T), [0.0, 1.0])
@test r[1:1000] ≈ [0; U[z,1:999]]
@test r[10_000] ≈ U[z,9_999]
r = RecurrenceArray(z, recurrencecoefficients(U), [1.0, z])
@test r[1:1000] ≈ T[z,1:1000]
@test r[10_000] ≈ T[z,10_000]
end
for z in (1.000000001, 1.000001, -1.000001, 10.0, -10.0)
ξ = inv(z + sign(z)sqrt(z^2-1))
r = RecurrenceArray(z, recurrencecoefficients(U), [ξ,ξ^2])
@test r[1:1000] ≈ ξ.^(1:1000)
@test r[10_000] ≈ ξ.^(10_000) atol=3E-10
end
for z in (0.2567881003580743 - 0.33437737333561895im)
ξ = π * (z - √(z-1) * √(z+1))
r = RecurrenceArray(z, recurrencecoefficients(U), [ξ,2z*ξ-π])
@test sizeof(r.data) < 1000_000
end
end
@testset "RecurrenceMatrix" begin
U = ChebyshevU()
z = [2.,3.,100.]
ξ = @. inv(z + sign(z)sqrt(z^2-1))
r = RecurrenceArray(z, recurrencecoefficients(U), [ξ'; ξ'.^2])
@test r[1:100,:] ≈ [RecurrenceArray(z[j], recurrencecoefficients(U), [ξ[j],ξ[j]^2])[k] for k=1:100, j=axes(z,1)]
@test r[1:100,:] ≈ r[1:100,1:3] ≈ r[collect(1:100),1:3] ≈ r[1:100,collect(1:3)] ≈ r[collect(1:100),:]
@test r[100,:] ≈ r[100,1:3]
end
end
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | code | 7718 | using SingularIntegrals, ClassicalOrthogonalPolynomials, QuasiArrays, BandedMatrices, Test
using LazyBandedMatrices: blockcolsupport, Block, BlockHcat, blockbandwidths, paddeddata, colsupport, rowsupport
using ClassicalOrthogonalPolynomials: orthogonalityweight
using SingularIntegrals: Stieltjes, StieltjesPoint
@testset "Stieltjes" begin
@testset "weights" begin
w_T = ChebyshevTWeight()
w_U = ChebyshevUWeight()
w_P = LegendreWeight()
x = axes(w_T,1)
H = inv.(x .- x')
@test iszero(H*w_T)
@test (H*w_U)[0.1] ≈ π/10
@test (H*w_P)[0.1] ≈ log(1.1) - log(1-0.1)
@test H * w_T ≡ QuasiZeros{Float64}((x,))
@test H * w_U == π*x
@test (H * w_P)[0.1] ≈ log((0.1+1)/(1-0.1))
w_T = orthogonalityweight(chebyshevt(0..1))
w_U = orthogonalityweight(chebyshevu(0..1))
w_P = orthogonalityweight(legendre(0..1))
x = axes(w_T,1)
H = inv.(x .- x')
@test iszero(H*w_T)
@test (H*w_U)[0.1] ≈ (2*0.1-1)*π
@test (H*w_P)[0.1] ≈ (log(1+(-0.8)) - log(1-(-0.8)))
end
@testset "ops" begin
wT = Weighted(ChebyshevT())
wU = Weighted(ChebyshevU())
x = axes(wT,1)
H = inv.(x .- x')
@test H isa Stieltjes{Float64,ChebyshevInterval{Float64}}
@test (Ultraspherical(1) \ (H*wT))[1:10,1:10] == diagm(1 => fill(-π,9))
@test (Chebyshev() \ (H*wU))[1:10,1:10] == diagm(-1 => fill(1.0π,9))
# check consistency
@test (Ultraspherical(1) \ (H*wT) * (wT \ wU))[1:10,1:10] ==
((Ultraspherical(1) \ Chebyshev()) * (Chebyshev() \ (H*wU)))[1:10,1:10]
end
@testset "Other axes" begin
x = Inclusion(0..1)
y = 2x .- 1
H = inv.(x .- x')
T,U = ChebyshevT(),ChebyshevU()
wT = Weighted(T)
wU = Weighted(U)
wT2 = wT[y,:]
wU2 = wU[y,:]
@test (Ultraspherical(1)[y,:]\(H*wT2))[1:10,1:10] == diagm(1 => fill(-π,9))
@test (T[y,:]\(H*wU2))[1:10,1:10] == diagm(-1 => fill(1.0π,9))
end
@testset "Legendre" begin
P = Legendre()
x = axes(P,1)
H = inv.(x .- x')
Q = H*P
@test Q[0.1,1:3] ≈ [log(0.1+1)-log(1-0.1), 0.1*(log(0.1+1)-log(1-0.1))-2,-3*0.1 + 1/2*(-1 + 3*0.1^2)*(log(0.1+1)-log(1-0.1))]
X = jacobimatrix(P)
@test Q[0.1,1:11]'*X[1:11,1:10] ≈ (0.1 * Array(Q[0.1,1:10])' - [2 zeros(1,9)])
end
@testset "mapped" begin
T = chebyshevt(0..1)
U = chebyshevu(0..1)
x = axes(T,1)
H = inv.(x .- x')
@test U\H*Weighted(T) isa BandedMatrix
end
end
@testset "StieltjesPoint" begin
T = Chebyshev()
wT = Weighted(T)
x = axes(wT,1)
z = 0.1+0.2im
S = inv.(z .- x')
@test S isa StieltjesPoint{ComplexF64,ComplexF64,Float64,ChebyshevInterval{Float64}}
@test S * ChebyshevWeight() ≈ π/(sqrt(z-1)sqrt(z+1))
@test S * JacobiWeight(0.1,0.2) ≈ 0.051643014475741864 - 2.7066092318596726im
f = wT * [[1,2,3]; zeros(∞)];
J = T \ (x .* T)
@test π*((z*I-J) \ f.args[2])[1,1] ≈ (S*f)[1]
@test π*((z*I-J) \ f.args[2])[1,1] ≈ (S*f.args[1]*f.args[2])[1]
x = Inclusion(0..1)
y = 2x .- 1
wT2 = wT[y,:]
S = inv.(z .- x')
f = wT2 * [[1,2,3]; zeros(∞)];
@test (π/2*(((z-1/2)*I - J/2) \ f.args[2]))[1] ≈ (S*f.args[1]*f.args[2])[1]
@testset "Real point" begin
t = 2.0
T,U,P = ChebyshevT(),ChebyshevU(),Legendre()
x = axes(T,1)
@test (inv.(t .- x') * Weighted(T))[1:10] ≈ (inv.((t+eps()im) .- x') * Weighted(T))[1:10]
@test (inv.(t .- x') * Weighted(U))[1:10] ≈ (inv.((t+eps()im) .- x') * Weighted(U))[1:10]
@test (inv.(t .- x') * P)[5] ≈ 0.0023221516632410816
@test (inv.(t .- x') * P)[10] ≈ 2.2435707298304464E-6
t = 2
@test (inv.(t .- x') * Weighted(T))[1:10] ≈ (inv.((t+eps()im) .- x') * Weighted(T))[1:10]
@test (inv.(t .- x') * Weighted(U))[1:10] ≈ (inv.((t+eps()im) .- x') * Weighted(U))[1:10]
t = 0.5
@test (inv.(t .- x') * Weighted(T))[1,1:3] ≈ [0,-π,-π]
@test (inv.(t .- x') * Weighted(U))[1,1:3] ≈ [π/2,-π/2,-π]
t = 0.5+0im
@test (inv.(t .- x') * Weighted(T))[1,1:3] ≈ [0,-π,-π]
@test (inv.(t .- x') * Weighted(U))[1,1:3] ≈ [π/2,-π/2,-π]
end
@testset "DimensionMismatch" begin
x = Inclusion(0..1)
z = 2.0
@test_throws DimensionMismatch inv.(z .- x') * Weighted(ChebyshevT())
@test_throws DimensionMismatch inv.(z .- x') * Weighted(ChebyshevU())
@test_throws DimensionMismatch inv.(z .- x') * ChebyshevTWeight()
@test_throws DimensionMismatch inv.(z .- x') * ChebyshevUWeight()
end
@testset "Matrix" begin
z = [2.,3.]
T = ChebyshevT()
wT = Weighted(T)
x = axes(wT,1)
@test (inv.(z .- x') * wT)[:,1:100] ≈ ([(inv.(z[1] .- x') * wT)[1:100]'; (inv.(z[2] .- x') * wT)[1:100]'])
f = wT * (T \ exp.(x))
@test inv.(z .- x') * f ≈ [2.8826861116458593, 1.6307809018753612]
end
@testset "StieltjesPoints" begin
z = [2.,3.]
P = Legendre()
x = axes(P,1)
S = inv.(z .- x')
@test (S * P)[:,1:5] ≈ [(inv.(2 .- x')*P)[1:5]'; (inv.(3 .- x')*P)[1:5]']
@test S * JacobiWeight(0.1,0.2) == stieltjes.(Ref(JacobiWeight(0.1,0.2)), z)
end
end
@testset "Ideal Fluid Flow" begin
T = ChebyshevT()
U = ChebyshevU()
x = axes(U,1)
H = inv.(x .- x')
c = exp(0.5im)
u = Weighted(U) * ((H * Weighted(U)) \ imag(c * x))
ε = eps();
@test (inv.(0.1+ε*im .- x') * u + inv.(0.1-ε*im .- x') * u)/2 ≈ imag(c*0.1)
@test real(inv.(0.1+ε*im .- x') * u ) ≈ imag(c*0.1)
v = (s,t) -> (z = (s + im*t); imag(c*z) - real(inv.(z .- x') * u))
@test v(0.1,0.2) ≈ 0.18496257285081724 # Emperical
end
@testset "OffStieltjes" begin
@testset "ChebyshevU" begin
U = ChebyshevU()
W = Weighted(U)
t = axes(U,1)
x = Inclusion(2..3)
T = chebyshevt(2..3)
H = T \ inv.(x .- t') * W;
@test MemoryLayout(H) isa PaddedLayout
@test last(colsupport(H,1)) ≤ 20
@test last(colsupport(H,6)) ≤ 40
@test last(rowsupport(H)) ≤ 30
@test T[2.3,1:100]'*(H * (W \ @.(sqrt(1-t^2)exp(t))))[1:100] ≈ 0.9068295340935111
@test T[2.3,1:100]' * H[1:100,1:100] ≈ (inv.(2.3 .- t') * W)[:,1:100]
u = (I + H) \ [1; zeros(∞)]
@test u[3] ≈ -0.011220808241213699 #Emperical
@testset "properties" begin
U = chebyshevu(T)
X = jacobimatrix(U)
Z = jacobimatrix(T)
@test Z * H[:,1] - H[:,2]/2 ≈ [sum(W[:,1]); zeros(∞)]
@test norm(-H[:,1]/2 + Z * H[:,2] - H[:,3]/2) ≤ 1E-12
L = U \ ((x.^2 .- 1) .* Derivative(x) * T - x .* T)
c = T \ sqrt.(x.^2 .- 1)
@test [T[begin,:]'; L] \ [sqrt(2^2-1); zeros(∞)] ≈ c
end
end
@testset "mapped" begin
U = chebyshevu(-1..0)
W = Weighted(U)
t = axes(U,1)
x = Inclusion(2..3)
T = chebyshevt(2..3)
H = T \ inv.(x .- t') * W
N = 100
@test T[2.3,1:N]' * H[1:N,1:N] ≈ (inv.(2.3 .- t') * W)[:,1:N]
U = chebyshevu((-2)..(-1))
W = Weighted(U)
T = chebyshevt(0..2)
x = axes(T,1)
t = axes(W,1)
H = T \ inv.(x .- t') * W
@test T[0.5,1:N]'*(H * (W \ @.(sqrt(-1-t)*sqrt(t+2)*exp(t))))[1:N] ≈ 0.047390454610749054
end
@testset "expand" begin
P = Legendre()
@test stieltjes(P[:,1], 3) ≈ stieltjes(P,3)[1]
@test stieltjes(P[:,1:3], 3) ≈ stieltjes(P,3)[:,1:3]
end
end
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.3.2 | b90124c6b6014e49084c624b0d91f4d000642462 | docs | 1813 | # SingularIntegrals.jl
A Julia package for computing singular integrals
[](https://github.com/JuliaApproximation/SingularIntegrals.jl/actions)
[](https://codecov.io/gh/JuliaApproximation/SingularIntegrals.jl)
[](https://JuliaApproximation.github.io/SingularIntegrals.jl)
This package supports computing singular integrals involving Hilbert/Stieltjes/Cauchy,
log, and power law kernels.
Some examples:
```julia
julia> using SingularIntegrals, ClassicalOrthogonalPolynomials
julia> P = Legendre(); x = axes(P, 1); f = expand(P, exp); # expand exp(x) in Legendre polynomials
julia> @time inv.(10 .- x') * f # Stieltjes: ∫₋₁¹ exp(x) / (10-x) dx
0.000034 seconds (22 allocations: 2.266 KiB)
0.24332755428373515
julia> @time inv.(0.1+0im .- x') * f - inv.(0.1-0im .- x') * f ≈ -2π*im*exp(0.1) # example of Plemelj
0.000052 seconds (49 allocations: 6.031 KiB)
true
julia> @time abs.(10 .- x') .^ 0.2 * f # Power law: ∫₋₁¹ (10-x)^0.2 * exp(x) dx
0.000077 seconds (21 allocations: 1.875 KiB)
3.7006631248289135
julia> @time abs.(0.3 .- x') .^ 0.2 * f # ∫₋₁¹ abs(0.3-x)^0.2 * exp(x) dx
0.000040 seconds (25 allocations: 2.172 KiB)
1.9044201526740234
julia> W = Weighted(ChebyshevU()); f = expand(W, x -> exp(x) * sqrt(1-x^2));
julia> @time log.(abs.(10 .- x')) * f # Log-kernel: ∫₋₁¹ log(10-x) * exp(x) * sqrt(1-x^2) dx
0.000040 seconds (14 allocations: 400 bytes)
4.043032838853287
julia> @time log.(abs.(0.3 .- x')) * f # ∫₋₁¹ log(abs(0.3-x)) * exp(x) * sqrt(1-x^2) dx
0.000035 seconds (116 allocations: 6.250 KiB)
-2.320391559008445
```
| SingularIntegrals | https://github.com/JuliaApproximation/SingularIntegrals.jl.git |
|
[
"MIT"
] | 0.1.1 | 19e43171d465f44a9c04309e0088e5b5b66d66e7 | code | 3288 | using BinaryProvider # requires BinaryProvider 0.3.0 or later
# Parse some basic command-line arguments
const verbose = "--verbose" in ARGS
const prefix = Prefix(get([a for a in ARGS if a != "--verbose"], 1, joinpath(@__DIR__, "usr")))
products = [
LibraryProduct(prefix, ["libyaml"], :libyaml),
]
# Download binaries from hosted location
bin_prefix = "https://github.com/eschnett/libyaml-binaries/releases/download/v1.0.0"
# Listing of files generated by BinaryBuilder:
download_info = Dict(
Linux(:aarch64, libc=:glibc) => ("$bin_prefix/libyaml.v0.2.1.aarch64-linux-gnu.tar.gz", "d2247731b401c96d61995966422d24edf6e3ab06428ddec3f4ed4c12074c4661"),
Linux(:aarch64, libc=:musl) => ("$bin_prefix/libyaml.v0.2.1.aarch64-linux-musl.tar.gz", "67a745cbfc238b505fd6a1c677b5fd34177e51472867704a0464e52421454631"),
Linux(:armv7l, libc=:glibc, call_abi=:eabihf) => ("$bin_prefix/libyaml.v0.2.1.arm-linux-gnueabihf.tar.gz", "7f43ce82a5c039c7bec13c001631812ca9510131c06b13211dfc6679514559cd"),
Linux(:armv7l, libc=:musl, call_abi=:eabihf) => ("$bin_prefix/libyaml.v0.2.1.arm-linux-musleabihf.tar.gz", "ad7dd7464dd1df2b6438484a6dc82e889c222f7ec3688afed54c16875bbcd38a"),
Linux(:i686, libc=:glibc) => ("$bin_prefix/libyaml.v0.2.1.i686-linux-gnu.tar.gz", "27448c16b705d58ae903be76e7997045f73a8f28b8dbe52773d3794f73322379"),
Linux(:i686, libc=:musl) => ("$bin_prefix/libyaml.v0.2.1.i686-linux-musl.tar.gz", "c448e95e8ce0f2cc3826779c9086addea6fa78ac007bb958d41127ba90818481"),
Linux(:powerpc64le, libc=:glibc) => ("$bin_prefix/libyaml.v0.2.1.powerpc64le-linux-gnu.tar.gz", "47d27b1287f93a8aa33ac1570c7660a4ac6529f12006a6cc726f22d2f206428e"),
Linux(:x86_64, libc=:glibc) => ("$bin_prefix/libyaml.v0.2.1.x86_64-linux-gnu.tar.gz", "1410f0ffc3206433f30999d051a917fc19301006cadbef5679ef1619c2830002"),
Linux(:x86_64, libc=:musl) => ("$bin_prefix/libyaml.v0.2.1.x86_64-linux-musl.tar.gz", "0100c096ab78a7084d21ca84af23d0b2b318d11bef1fdbc31c5df0adb8cb8ca9"),
FreeBSD(:x86_64) => ("$bin_prefix/libyaml.v0.2.1.x86_64-unknown-freebsd11.1.tar.gz", "bd8fb84eca65fb20ef5cc493184e5adf17ab89476e9012e7c5ada86b1d8a3b24"),
MacOS(:x86_64) => ("$bin_prefix/libyaml.v0.2.1.x86_64-apple-darwin14.tar.gz", "49165350ac38b475fba21a76328bf9725e9de0dca60195249ab3fe73d5e11c4a"),
)
# Install unsatisfied or updated dependencies:
unsatisfied = any(!satisfied(p; verbose=verbose) for p in products)
dl_info = choose_download(download_info, platform_key_abi())
if dl_info === nothing && unsatisfied
# If we don't have a compatible .tar.gz to download, complain.
# Alternatively, you could attempt to install from a separate provider,
# build from source or something even more ambitious here.
error("Your platform (\"$(Sys.MACHINE)\", parsed as \"$(triplet(platform_key_abi()))\") is not supported by this package!")
end
# If we have a download, and we are unsatisfied (or the version we're
# trying to install is not itself installed) then load it up!
if unsatisfied || !isinstalled(dl_info...; prefix=prefix)
# Download and install binaries
install(dl_info...; prefix=prefix, force=true, verbose=verbose)
end
# Write out a deps.jl file that will contain mappings for our products
write_deps_file(joinpath(@__DIR__, "deps.jl"), products, verbose=verbose)
| LibYAML | https://github.com/eschnett/LibYAML.jl.git |
|
[
"MIT"
] | 0.1.1 | 19e43171d465f44a9c04309e0088e5b5b66d66e7 | code | 1111 | module LibYAML
using Libdl
# Load `deps.jl`, complaining if it does not exist
const depsjl_path = joinpath(@__DIR__, "..", "deps", "deps.jl")
if !isfile(depsjl_path)
error("LibYAML not installed properly, run Pkg.build(\"LibYAML\"), restart Julia, and try again")
end
include(depsjl_path)
# Module initialization function
function __init__()
# Always check your dependencies from `deps.jl`
check_deps()
end
"""
Get the library version as a string.
The function returns the pointer to a static string of the form
`X.Y.Z`, where `X` is the major version number, `Y` is a minor version
number, and `Z` is the patch version number.
"""
function get_version_string()
unsafe_string(ccall((:yaml_get_version_string, libyaml), Cstring, ()))
end
"""
Get the library version numbers.
Returns a tuple `(major, minor, patch)`.
"""
function get_version()
major = Ref{Cint}(0)
minor = Ref{Cint}(0)
patch = Ref{Cint}(0)
ccall((:yaml_get_version, libyaml),
Cvoid, (Ref{Cint}, Ref{Cint}, Ref{Cint}), major, minor, patch)
(Int(major[]), Int(minor[]), Int(patch[]))
end
end
| LibYAML | https://github.com/eschnett/LibYAML.jl.git |
|
[
"MIT"
] | 0.1.1 | 19e43171d465f44a9c04309e0088e5b5b66d66e7 | code | 115 | using LibYAML
using Test
@test LibYAML.get_version_string() === "0.2.1"
@test LibYAML.get_version() === (0, 2, 1)
| LibYAML | https://github.com/eschnett/LibYAML.jl.git |
|
[
"MIT"
] | 0.1.1 | 19e43171d465f44a9c04309e0088e5b5b66d66e7 | docs | 766 | # [LibYAML](https://github.com/eschnett/LibYAML)
A Julia library wrapping the
(LibYAML)[https://github.com/yaml/libyaml] C library.
[](https://travis-ci.org/eschnett/LibYAML.jl)
[](https://ci.appveyor.com/project/eschnett/libyaml-jl/branch/master) [unfortunately, Windows is not yet supported]
[](https://coveralls.io/github/eschnett/LibYAML.jl?branch=master)
XXX [](https://zenodo.org/badge/latestdoi/144600920)
| LibYAML | https://github.com/eschnett/LibYAML.jl.git |
|
[
"MIT"
] | 0.1.0 | fea1a8399e1e9cf0c72fd83a4408be2e6fcabf9e | code | 2209 | module ProgressView
export @monitor, monitor_flush, reset_tasks!, push_task!, pop_task!,
maybe_display_tasks, display_tasks
const ESC = "\e" # escape
const CR = "\r" # carriage return
const NL = "\n" # next line
const CSI = "$ESC[" # control sequence introducer
const CUU = "$(CSI)A" # cursor up
const CUD = "$(CSI)B" # cursor down
const ED = "$(CSI)J" # erase in display
const EL = "$(CSI)K" # erase in line
const update_every = 1.0 # update output every that many seconds
const stack = Vector{String}() # current task stack
const lastoutput = Vector{String}() # currently displayed task stack
const lasttime = Ref(0.0) # time at which stack was output
macro monitor(taskname::AbstractString, task)
quote
push_task!($taskname)
local result = $(esc(task))
pop_task!()
result
end
end
monitor_flush() = display_tasks()
function reset_tasks!()
empty!(stack)
display_tasks()
return nothing
end
function push_task!(task::AbstractString)
push!(stack, String(task))
maybe_display_tasks()
return nothing
end
function pop_task!()
pop!(stack)
maybe_display_tasks()
return nothing
end
function maybe_display_tasks()
currenttime = time_ns() / 1.0e+9
if currenttime ≥ lasttime[] + update_every
display_tasks()
lasttime[] = currenttime
end
return nothing
end
function display_tasks()
currentoutput = copy(stack)
# Find first difference between current and last output
tstart = 1
while tstart ≤ length(lastoutput) &&
tstart ≤ length(currentoutput) &&
lastoutput[tstart] == currentoutput[tstart]
tstart += 1
end
# Move cursor up to the first line that needs outputting
tmove = length(tstart:length(lastoutput))
print("$CUU"^tmove)
# Output new lines
for line in tstart:length(currentoutput)
print(" "^(line - 1), "$line: ", currentoutput[line], "$EL$NL")
end
# Clear remaining lines
print("$ED")
# Save state
copy!(lastoutput, currentoutput)
return nothing
end
end
| ProgressView | https://github.com/eschnett/ProgressView.jl.git |
|
[
"MIT"
] | 0.1.0 | fea1a8399e1e9cf0c72fd83a4408be2e6fcabf9e | code | 360 | using ProgressView
using Test
function inner()
sleep(1.1)
return 2
end
function fun()
sleep(1.1)
x = @monitor "inner" inner()
@test x == 2
sleep(1.1)
return nothing
end
@testset "ProgressView" begin
@monitor "testset" begin
@monitor "fun" fun()
end
sleep(1.1)
@monitor "fun" fun()
monitor_flush()
end
| ProgressView | https://github.com/eschnett/ProgressView.jl.git |
|
[
"MIT"
] | 0.1.0 | fea1a8399e1e9cf0c72fd83a4408be2e6fcabf9e | docs | 748 | # ProgressView
A Julia package for displaying categorical progress information
* [GitHub](https://github.com/eschnett/ProgressView.jl): Source code repository
* [](https://github.com/eschnett/ProgressView.jl/actions)
`ProgressView` displays periodically which functions a program is
currently executing with a stack-like view. This similar to a
hierarchical version of
[`ProgressMeter`](https://github.com/timholy/ProgressMeter.jl).
## Example
```Julia
function inner()
return 2
end
function fun()
x = @monitor "inner" inner()
return nothing
end
function main()
@monitor "fun" fun()
end
```
Sample snapshot of output:
```
1. fun
2. inner
```
| ProgressView | https://github.com/eschnett/ProgressView.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 1094 | # Setup julia dependencies for docs generation if not yet done
import Pkg
Pkg.activate(@__DIR__)
if !isfile(joinpath(@__DIR__, "Manifest.toml"))
Pkg.develop(Pkg.PackageSpec(path=joinpath(@__DIR__, "..")))
Pkg.instantiate()
end
using ASEconvert
using Documenter
DocMeta.setdocmeta!(ASEconvert, :DocTestSetup, :(using ASEconvert); recursive=true)
makedocs(;
modules=[ASEconvert],
authors="Michael F. Herbst <[email protected]> and contributors",
repo="https://github.com/mfherbst/ASEconvert.jl/blob/{commit}{path}#{line}",
sitename="ASEconvert.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://mfherbst.github.io/ASEconvert.jl",
edit_link="master",
assets=String[]),
pages=[
"Home" => "index.md",
"apireference.md",
])
deploydocs(;
repo="github.com/mfherbst/ASEconvert.jl",
devbranch="master")
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 728 | module ASEconvert
using PythonCall
using AtomsBase
using Unitful
using UnitfulAtomic
export ase
export pyconvert, pytuple # Reexport from PythonCall
export AbstractSystem # Reexport from AtomsBase
export ASEcalculator
export convert_ase
"""
Global constant representing the `ase` python module available from Julia.
"""
const ase = PythonCall.pynew()
function __init__()
PythonCall.pycopy!(ase, pyimport("ase"))
PythonCall.pyconvert_add_rule("ase.atoms:Atoms", AbstractSystem, ase_to_system)
# Make a bunch of submodules available
for sub in ("ase.io", "ase.build", "ase.lattice", "ase.visualize")
pyimport(sub)
end
end
include("ase_conversions.jl")
include("atoms_calculators.jl")
end
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 4671 | import PeriodicTable
# For ASE units, see https://wiki.fysik.dtu.dk/ase/ase/units.html
# In particular note that uTime = u"Å" * sqrt(u"u" / u"eV") and thus
const uVelocity = sqrt(u"eV" / u"u")
function ase_to_system(S::Type{<:AbstractSystem}, ase_atoms::Py)
box = [pyconvert(Vector, ase_atoms.cell[i])u"Å" for i = 0:2]
atnums = pyconvert(Vector, ase_atoms.get_atomic_numbers())
atsyms = pyconvert(Vector, ase_atoms.symbols)
atmasses = pyconvert(Vector, ase_atoms.get_masses())
positions = pyconvert(Matrix, ase_atoms.get_positions())
velocities = pyconvert(Matrix, ase_atoms.get_velocities())
magmoms = pyconvert(Vector, ase_atoms.get_initial_magnetic_moments())
charges = pyconvert(Vector, ase_atoms.get_initial_charges())
ase_info = pyconvert(Dict{String,Any}, ase_atoms.info)
atoms = map(1:length(atnums)) do i
AtomsBase.Atom(atnums[i], positions[i, :]u"Å", velocities[i, :] * uVelocity;
atomic_symbol=Symbol(atsyms[i]),
atomic_number=atnums[i],
atomic_mass=atmasses[i]u"u",
magnetic_moment=magmoms[i],
charge=charges[i]u"e_au")
end
# Parse extra data in info struct
info = Dict{Symbol, Any}()
for (k, v) in ase_info
if k == "charge"
info[Symbol(k)] = v * u"e_au"
else
info[Symbol(k)] = v
end
end
bcs = [p ? Periodic() : DirichletZero() for p in pyconvert(Vector, ase_atoms.pbc)]
PythonCall.pyconvert_return(atomic_system(atoms, box, bcs; info...))
end
"""
convert_ase(system::AbstractSystem)
Convert a passed `system` (which satisfies the AtomsBase.AbstractSystem interface) to an
`ase.Atoms` datastructure. Conversions to other ASE objects from equivalent Julia objects
may be added as additional methods in the future.
"""
function convert_ase(system::AbstractSystem{D}) where {D}
D != 3 && @warn "1D and 2D systems not yet fully supported."
n_atoms = length(system)
pbc = map(isequal(Periodic()), boundary_conditions(system))
numbers = atomic_number(system)
masses = ustrip.(u"u", atomic_mass(system))
symbols_match = [
PeriodicTable.elements[atnum].symbol == string(atomic_symbol(system, i))
for (i, atnum) in enumerate(numbers)
]
if !all(symbols_match)
@warn("Mismatch between atomic numbers and atomic symbols, which is not " *
"supported in ASE. Atomic numbers take preference.")
end
cell = zeros(3, 3)
for (i, v) in enumerate(bounding_box(system))
cell[i, 1:D] = ustrip.(u"Å", v)
end
positions = zeros(n_atoms, 3)
for at = 1:n_atoms
positions[at, 1:D] = ustrip.(u"Å", position(system, at))
end
velocities = nothing
if !ismissing(velocity(system))
velocities = zeros(n_atoms, 3)
for at = 1:n_atoms
velocities[at, 1:D] = ustrip.(uVelocity, velocity(system, at))
end
end
# We don't map any extra atom properties, which are not available in ASE as this
# only causes a mess: ASE could do something to the atoms, but not taking
# care of the extra properties, thus rendering the extra properties invalid
# without the user noticing.
charges = nothing
magmoms = nothing
for key in atomkeys(system)
if key in (:position, :velocity, :atomic_symbol, :atomic_number, :atomic_mass)
continue # Already dealt with
elseif key == :charge
charges = ustrip.(u"e_au", system[:, :charge])
elseif key == :magnetic_moment
magmoms = system[:, :magnetic_moment]
else
@warn "Skipping atomic property $key, which is not supported in ASE."
end
end
# Map extra system properties
info = Dict{String, Any}()
for (k, v) in pairs(system)
if k in (:bounding_box, :boundary_conditions)
continue
elseif k in (:charge, )
info[string(k)] = ustrip(u"e_au", v)
elseif v isa Quantity || (v isa AbstractArray && eltype(v) <: Quantity)
@warn("Unitful quantities are not yet supported in convert_ase. " *
"Ignoring key $k")
else
info[string(k)] = v
end
end
ase.Atoms(; positions, numbers, masses, magmoms, charges,
cell, pbc, velocities, info)
end
# TODO Could have a convert_ase(Vector{AbstractSystem}) to make an ASE trajectory
# TODO Could have a convert_ase(Vector{Vector{Unitful}}) to make an ASE cell
# TODO Could have a way to make an ASE calculator from an InteratomicPotential object | ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 2261 | import AtomsCalculators
import AtomsCalculators: @generate_interface, calculate, Energy, Forces, Virial
"""
ASEcalculator
This structure wraps python ASE calculator to AtomsCalculators
interface compatible structure.
# Example
```julia
using ASEconvert
using AtomsBuilder
using AtomsCalculators
using PythonCall
ase_emt = pyimport("ase.calculators.emt")
calc_emt = ASEcalculator(ase_emt.EMT())
system = bulk(:Cu) * (4, 3, 2)
AtomsCalculators.potential_energy(system, calc_emt)
AtomsCalculators.forces(system, calc_emt)
AtomsCalculators.virial(system, calc_emt)
```
"""
mutable struct ASEcalculator
calculator::PythonCall.Py
end
# TODO The ASE calculator could change in-place, so it therefore itself
# is basically the state. The state handling should overall therefore
# be done more thoroughly here.
AtomsCalculators.energy_unit(::ASEcalculator) = u"eV"
AtomsCalculators.length_unit(::ASEcalculator) = u"Å"
@generate_interface function AtomsCalculators.calculate(::AtomsCalculators.Energy,
system, calc::ASEcalculator, parameters=nothing, state=nothing; kwargs...)
edata = calc.calculator.get_potential_energy(convert_ase(system))
(; energy=pyconvert(Float64, edata)u"eV", state)
end
@generate_interface function AtomsCalculators.calculate(::AtomsCalculators.Forces,
system, calc::ASEcalculator, parameters=nothing, state=nothing; kwargs...)
fdata = calc.calculator.get_forces(convert_ase(system))
# We need to convert from Python row major to Julia column major
# and from there to Vector with SVector{3,Float64} element.
# We do reallocation in the end to ensure we have the correct memory allignement
tmp = pyconvert(Array, fdata)
FT = AtomsCalculators.promote_force_type(system, calc)
tmp2 = reinterpret(FT, tmp')
(; forces=Vector(vec(tmp2)), state)
end
@generate_interface function AtomsCalculators.calculate(::AtomsCalculators.Virial,
system, calc::ASEcalculator, parameters=nothing, state=nothing; kwargs...)
ase_system = convert_ase(system)
sdata = calc.calculator.get_stress(ase_system)
Ω = ase_system.get_volume()
stress = -Ω * ase.constraints.voigt_6_to_full_3x3_stress(sdata)
(; virial=pyconvert(Array, stress) * u"eV", state)
end
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 5847 | using AtomsBase
using Test
using LinearAlgebra
using Unitful
using UnitfulAtomic
# TODO This file is duplicated across many packages, would be good to make
# an AtomsBaseTesting package or something similar.
"""
Test whether two abstract systems are approximately the same. Certain atomic or system
properties can be ignored during the comparison using the respective kwargs.
"""
function test_approx_eq(s::AbstractSystem, t::AbstractSystem;
rtol=1e-14, ignore_atprop=Symbol[], ignore_sysprop=Symbol[],
common_only=false)
rnorm(a, b) = (ustrip(norm(a)) < rtol ? norm(a - b) / 1unit(norm(a))
: norm(a - b) / norm(a))
for method in (length, size, boundary_conditions)
@test method(s) == method(t)
end
@test maximum(map(rnorm, bounding_box(s), bounding_box(t))) < rtol
for method in (position, atomic_mass)
@test maximum(map(rnorm, method(s), method(t))) < rtol
@test rnorm(method(s, 1), method(t, 1)) < rtol
end
for method in (atomic_symbol, atomic_number)
@test method(s) == method(t)
@test method(s, 1) == method(t, 1)
end
if !(:velocity in ignore_atprop)
@test ismissing(velocity(s)) == ismissing(velocity(t))
if !ismissing(velocity(s)) && !ismissing(velocity(t))
@test maximum(map(rnorm, velocity(s), velocity(t))) < rtol
@test rnorm(velocity(s, 1), velocity(t, 1)) < rtol
end
end
if common_only
test_atprop = [k for k in atomkeys(s) if hasatomkey(t, k)]
else
extra_atomic_props = (:charge, :covalent_radius, :vdw_radius, :magnetic_moment)
test_atprop = Set([atomkeys(s)..., atomkeys(t)..., extra_atomic_props...])
end
for prop in test_atprop
prop in ignore_atprop && continue
prop in (:velocity, :position) && continue
if hasatomkey(s, prop) != hasatomkey(t, prop)
println("hashatomkey mismatch for $prop")
@test hasatomkey(s, prop) == hasatomkey(t, prop)
end
for (at_s, at_t) in zip(s, t)
@test haskey(at_s, prop) == haskey(at_t, prop)
if haskey(at_s, prop) && haskey(at_t, prop)
if at_s[prop] isa Quantity
@test rnorm(at_s[prop], at_t[prop]) < rtol
else
@test at_s[prop] == at_t[prop]
end
end
end
end
if common_only
test_sysprop = [k for k in keys(s) if haskey(t, k)]
else
extra_system_props = (:charge, :multiplicity)
test_sysprop = Set([keys(s)..., keys(t)..., extra_system_props...])
end
for prop in test_sysprop
prop in ignore_sysprop && continue
if haskey(s, prop) != haskey(t, prop)
println("haskey mismatch for $prop")
@test haskey(s, prop) == haskey(t, prop)
end
if s[prop] isa Quantity
@test rnorm(s[prop], t[prop]) < rtol
elseif prop in (:bounding_box, )
@test maximum(map(rnorm, s[prop], t[prop])) < rtol
else
@test s[prop] == t[prop]
end
end
end
"""
Setup a standard test system using some random data and supply the data to the caller.
Extra atomic or system properties can be specified using `extra_atprop` and `extra_sysprop`
and specific standard keys can be ignored using `drop_atprop` and `drop_sysprop`.
"""
function make_test_system(D=3; drop_atprop=Symbol[], drop_sysprop=Symbol[],
extra_atprop=(; ), extra_sysprop=(; ), cellmatrix=:full)
# TODO Should be moved to AtomsBase
@assert D == 3
n_atoms = 5
# Generate some random data to store in Atoms
atprop = Dict{Symbol,Any}(
:position => [randn(3) for _ = 1:n_atoms]u"Å",
:velocity => [randn(3) for _ = 1:n_atoms] * 10^6*u"m/s",
# Note: reasonable velocity range in au
:atomic_symbol => [:H, :H, :C, :N, :He],
:atomic_number => [1, 1, 6, 7, 2],
:charge => [2, 1, 3.0, -1.0, 0.0]u"e_au",
:atomic_mass => 10rand(n_atoms)u"u",
:vdw_radius => randn(n_atoms)u"Å",
:covalent_radius => randn(n_atoms)u"Å",
:magnetic_moment => [0.0, 0.0, 1.0, -1.0, 0.0],
)
sysprop = Dict{Symbol,Any}(
:extra_data => 42,
:charge => -1u"e_au",
:multiplicity => 2,
)
for prop in drop_atprop
pop!(atprop, prop)
end
for prop in drop_sysprop
pop!(sysprop, prop)
end
sysprop = merge(sysprop, pairs(extra_sysprop))
atprop = merge(atprop, pairs(extra_atprop))
atoms = map(1:n_atoms) do i
atargs = Dict(k => v[i] for (k, v) in pairs(atprop)
if !(k in (:position, :velocity)))
if haskey(atprop, :velocity)
Atom(atprop[:atomic_symbol][i], atprop[:position][i], atprop[:velocity][i];
atargs...)
else
Atom(atprop[:atomic_symbol][i], atprop[:position][i]; atargs...)
end
end
if cellmatrix == :upper_triangular
box = [[1.54732, -0.807289, -0.500870],
[ 0.0, 0.4654985, 0.5615117],
[ 0.0, 0.0, 0.7928950]]u"Å"
elseif cellmatrix == :lower_triangular
box = [[1.54732, 0.0, 0.0],
[-0.807289, 0.4654985, 0.0],
[-0.500870, 0.5615117, 0.7928950]]u"Å"
else
box = [[-1.50304, 0.850344, 0.717239],
[ 0.36113, 0.008144, 0.814712],
[ 0.06828, 0.381122, 0.129081]]u"Å"
end
bcs = [Periodic(), Periodic(), DirichletZero()]
system = atomic_system(atoms, box, bcs; sysprop...)
(; system, atoms, atprop=NamedTuple(atprop), sysprop=NamedTuple(sysprop), box, bcs)
end
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | code | 6558 | using ASEconvert
using AtomsBase
using AtomsBaseTesting
using AtomsCalculators
using AtomsCalculators.Testing
using PythonCall
using Test
using Unitful
using UnitfulAtomic
@testset "ASEconvert.jl" begin
function make_ase_system(args...; drop_atprop=Symbol[], kwargs...)
# ASE does not support vdw_radius and covalent_radius
dropkeys = [:covalent_radius, :vdw_radius]
make_test_system(args...; drop_atprop=append!(drop_atprop, dropkeys), kwargs...)
end
# TODO Test reduced dimension
@testset "Conversion to ASE (3D, with velocity)" begin
system, atoms, atprop, sysprop, box, bcs = make_test_system()
ase_atoms = @test_logs((:warn, r"Skipping atomic property vdw_radius"),
(:warn, r"Skipping atomic property covalent_radius"),
match_mode=:any, convert_ase(system))
D = 3
for i = 1:D
@test pyconvert(Vector, ase_atoms.cell[i - 1]) ≈ ustrip.(u"Å", box[i]) atol=1e-14
end
@assert bcs == [Periodic(), Periodic(), DirichletZero()]
@test pyconvert(Vector, ase_atoms.pbc) == [true, true, false]
for (i, atom) in enumerate(ase_atoms)
@test(pyconvert(Vector, atom.position)
≈ ustrip.(u"Å", atprop.position[i]), atol=1e-14)
@test(pyconvert(Vector, ase_atoms.get_velocities()[i - 1])
≈ ustrip.(sqrt(u"eV"/u"u"), atprop.velocity[i]), atol=1e-12)
@test pyconvert(String, atom.symbol) == string(atprop.atomic_symbol[i])
@test pyconvert(Int, atom.number) == atprop.atomic_number[i]
@test pyconvert(Float64, atom.mass) == ustrip(u"u", atprop.atomic_mass[i])
@test pyconvert(Float64, atom.magmom) == atprop.magnetic_moment[i]
@test pyconvert(Float64, atom.charge) == ustrip(u"e_au", atprop.charge[i])
end
@test pyconvert(Int, ase_atoms.info["extra_data"]) == sysprop.extra_data
@test pyconvert(Int, ase_atoms.info["multiplicity"]) == sysprop[:multiplicity]
@test pyconvert(Float64, ase_atoms.info["charge"]) == ustrip(u"e_au", sysprop[:charge])
end
@testset "Conversion to ASE (without velocities)" begin
system = make_ase_system(drop_atprop=[:velocity]).system
ase_atoms = convert_ase(system)
for (i, atom) in enumerate(ase_atoms)
@test iszero(pyconvert(Vector, ase_atoms.get_velocities()[i - 1]))
end
end
@testset "Warning about mismatch between atomic symbols and numbers" begin
extra_atprop = (atomic_symbol=[:H, :H, :C, :N, :He],
atomic_number=[1, 2, 3, 4, 5])
system = make_ase_system(; extra_atprop).system
ase_atoms = @test_logs((:warn, r"Mismatch between atomic numbers"),
match_mode=:any, convert_ase(system))
expected_symbols = ["H", "He", "Li", "Be", "B"]
for (i, atom) in enumerate(ase_atoms)
@test pyconvert(Int, atom.number) == i
@test pyconvert(String, atom.symbol) == expected_symbols[i]
end
end
@testset "Ignoring of unitful quantities" begin
dropsystem1 = make_ase_system(; extra_sysprop=(; len=12u"m")).system
dropsystem2 = make_ase_system(; extra_sysprop=(; mass=[2u"kg", 1u"kg"])).system
for sys in (dropsystem1, dropsystem2)
ase_atoms = @test_logs((:warn, r"Unitful quantities are not yet supported"),
match_mode=:any, convert_ase(sys))
@test pyconvert(Int, ase_atoms.info["extra_data"]) == 42
end
end
@testset "Conversion AtomsBase -> ASE -> AtomsBase" begin
system = make_ase_system().system
newsystem = pyconvert(FlexibleSystem, convert_ase(system))
test_approx_eq(system, newsystem)
end
@testset "Construction of bulk systems in ASE" begin
bulk_Fe = pyconvert(AbstractSystem, ase.build.bulk("Fe"; cubic=true))
a = 2.87u"Å"
@test bounding_box(bulk_Fe) == a .* [[1.0, 0, 0], [0, 1.0, 0], [0, 0, 1.0]]
@test atomic_symbol(bulk_Fe) == [:Fe, :Fe]
@test position(bulk_Fe) == [[0.0, 0.0, 0.0], [1.435, 1.435, 1.435]]u"Å"
@test velocity(bulk_Fe) == [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]*sqrt(u"eV"/u"u")
end
@testset "Writing / reading files using ASE" begin
system = make_ase_system().system
mktempdir() do d
file = joinpath(d, "output.xyz")
ase.io.write(file, convert_ase(system))
newsystem = pyconvert(FlexibleSystem, ase.io.read(file))
test_approx_eq(system, newsystem; rtol=1e-6)
end
end
@testset "Writing files using ASE, reading using ExtXYZ" begin
using PeriodicTable
import ExtXYZ
# Unfortunately the conventions used in ExtXYZ for storing extra
# properties are *not* the same in ASE and ExtXYZ, therefore writing
# in one and reading in another is not loss-free. We thus drop some
# special things (atomic masses, magmoms, charges)
atomic_symbol = [:H, :H, :C, :N, :He]
atomic_number = [1, 1, 6, 7, 2]
atomic_mass = [elements[at].atomic_mass for at in atomic_number]
extra_atprop = (; atomic_symbol, atomic_number, atomic_mass)
system = make_ase_system(; extra_atprop, drop_atprop=[:velocity]).system
mktempdir() do d
file = joinpath(d, "output.xyz")
ase.io.write(file, convert_ase(system))
newsystem = ExtXYZ.Atoms(ExtXYZ.read_frame(file))
test_approx_eq(system, newsystem; rtol=1e-6,
ignore_atprop=[:initial_charges, :momenta, :masses,
:charge, :initial_magmoms, :magnetic_moment])
end
end
@testset "Test ASEcalculator" begin
# Setup LJ calculator in ASE
ase_lj = pyimport("ase.calculators.lj")
ε = ustrip(u"eV", 125.7u"K" * u"k")
σ = ustrip(3.345u"Å")
calc_lj = ASEcalculator(ase_lj.LennardJones(; epsilon=ε, sigma=σ))
# Build Argon supercell
ase_system = ase.build.bulk("Ar") * pytuple((5, 5, 5))
system = pyconvert(AbstractSystem, ase_system)
# Check we have not made a stupid coding mistake
@test -0.39120116 ≈ austrip(AtomsCalculators.potential_energy(system, calc_lj))
# Check the full AtomsCalculator test suite passes
test_energy_forces_virial(system, calc_lj; rtol=1e-8)
end
end
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | docs | 1923 | # ASEconvert
[](https://mfherbst.github.io/ASEconvert.jl/stable/)
[](https://mfherbst.github.io/ASEconvert.jl/dev/)
[](https://github.com/mfherbst/ASEconvert.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[](https://codecov.io/gh/mfherbst/ASEconvert.jl)
Light-weight module to install ASE
and provide routines for converting between the Atoms datastructure
from [ASE](https://wiki.fysik.dtu.dk/ase/index.html)
and atomistic data provided in
the [AtomsBase](https://github.com/JuliaMolSim/AtomsBase.jl) ecosystem.
For both the package makes use of the
[PythonCall](https://github.com/cjdoris/PythonCall.jl/).
This can be used for example as follows
```julia
using ASEconvert
# Make a silicon supercell using ASE
atoms_ase = ase.build.bulk("Si") * pytuple((4, 1, 1))
# Convert to an AtomsBase-compatible structure
atoms_ab = pyconvert(AbstractSystem, atoms_ase)
# Convert back to ASE and create a vacancy
newatoms_ase = convert_ase(atoms_ab)
newatoms_ase.pop(4)
```
### AtomsCalculators interface
You can use ASE calculators in julia, by wrapping them to a `ASEcalculator` structure.
Here is a brief example:
```julia
using AtomsCalculators
using AtomsBuilder
using ASEconvert
using PythonCall
# Setup calculator in ASE
potential = "path to eam potential file"
ase_calc = pyimport("ase.calculators.eam").EAM(potential)
# Convert into AtomsCalculator-compatible calculator
calc = ASEcalculator(ase_calc)
# Use it to compute a Nickel supercell
system = bulk(:Ni) * (4, 3, 2)
AtomsCalculators.potential_energy(system, calc)
AtomsCalculators.forces(system, calc)
AtomsCalculators.virial(system, calc)
```
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | docs | 98 | ```@meta
CurrentModule = ASEconvert
```
# API reference
```@autodocs
Modules = [ASEconvert]
```
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 0.1.7 | 3a0dab6c751c2cc4642f55ce3922e220a9f811f6 | docs | 3254 | ```@meta
CurrentModule = ASEconvert
```
# ASEconvert
Light-weight module to install the
[atomistic simulation environment (ASE)](https://wiki.fysik.dtu.dk/ase/index.html)
and provide routines for cross-converting between ASE datastructures
and the respective ones of the [JuliaMolSim](https://juliamolsim.org) ecosystem.
E.g. it allows to convert between the ASE Atoms and exposing them using an
[AtomsBase](https://github.com/JuliaMolSim/AtomsBase.jl) compatible interface
or it allows to employ calculators from ASE
as [AtomsCalculators](https://github.com/JuliaMolSim/AtomsCalculators.jl).
## Automatic ASE installation
Using the mechanism provided by [PythonCall](https://github.com/cjdoris/PythonCall.jl)
and [CondaPkg](https://github.com/cjdoris/CondaPkg.jl) ASEconvert will automatically
take care of installing ASE and exporting a useful subset of its modules under the
`ase` variable. For example one may easily create bulk systems
```@example
using ASEconvert
ase.build.bulk("Mg")
```
or surfaces
```@example
using ASEconvert
ase.build.surface(ase.build.bulk("Mg"), (1, 1, 0), 4, 0, periodic=true)
```
## Conversion from ASE to AtomsBase
```@example dftk
using ASEconvert
# Construct bulk magnesium using ASE and convert to atomsbase
mg_ase = ase.build.bulk("Mg")
mg_atb = pyconvert(AbstractSystem, mg_ase)
```
```julia
using DFTK
# Attach pseudopotentials, construct LDA DFT model and solve for DFT ground state
system = attach_psp(mg_atb; Mg="hgh/lda/mg-q2")
model = model_LDA(system; temperature=1e-3, smearing=Smearing.MarzariVanderbilt())
basis = PlaneWaveBasis(model; Ecut=20, kgrid=(4, 4, 4))
scfres = self_consistent_field(basis)
scfres.energies
```
## Conversion from AtomsBase to ASE
```@example extxyz
using ASEconvert
using AtomsIO
# Read an extxyz file using AtomsIO.jl.
system = load_system("Mn3Si.extxyz")
```
This example uses [AtomsIO](https://github.com/mfherbst/AtomsIO.jl)
to read the extended XYZ file file `Mn3Si.extxyz`. The data is returned
as a subtype of `AtomsBase.AbstractSystem`
(in this case an `ExtXYZ.Atoms` from [ExtXYZ](https://github.com/libAtoms/ExtXYZ.jl)).
We can thus directly convert this system to an `ase.Atoms` using [`convert_ase`](@ref)
and write it again as an ASE json file
```@example extxyz
ase.io.write("out.json", convert_ase(system));
```
## Employing ASE calculators in Julia
```@example calculators
using PythonCall
using ASEconvert
ase_emt = pyimport("ase.calculators.emt")
calculator = ASEcalculator(ase_emt.EMT())
```
The above codeblock employs [PythonCall](https://github.com/cjdoris/PythonCall.jl)
to setup an [EMT calculator](https://wiki.fysik.dtu.dk/ase/ase/calculators/emt.html)
in ASE. Using the [`ASEcalculator`](@ref) wrapper this calculator is wrapped
and now exposes a standard [AtomsCalculators](https://github.com/JuliaMolSim/AtomsCalculators.jl)-compatible
interface. For example one can use it to compute energy and forces of a copper supercell.
First we make the supercell:
```@example calculators
using AtomsBuilder
system = bulk(:Cu) * (4, 3, 2) # Make copper supercell
```
Next we use the `energy_forces` function from `AtomsCalculators`:
```@example calculators
using AtomsCalculators
AtomsCalculators.energy_forces(system, calculator)
```
| ASEconvert | https://github.com/mfherbst/ASEconvert.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | code | 654 | using CloudflareR2
using Documenter
DocMeta.setdocmeta!(CloudflareR2, :DocTestSetup, :(using CloudflareR2); recursive=true)
makedocs(;
modules=[CloudflareR2],
authors="Agustín Covarrubias",
repo="https://github.com/agucova/CloudflareR2.jl/blob/{commit}{path}#{line}",
sitename="CloudflareR2.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://agucova.github.io/CloudflareR2.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/agucova/CloudflareR2.jl",
devbranch="main",
)
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | code | 590 | module CloudflareR2
using AWS, AWSS3, URIs
include("client.jl")
export R2Config
export AWSCredentials
# exports from AWSS3.jl
export S3Path, s3_arn, s3_put, s3_get, s3_get_file, s3_exists, s3_delete, s3_copy,
s3_create_bucket,
s3_put_cors,
s3_enable_versioning, s3_delete_bucket, s3_list_buckets,
s3_list_objects, s3_list_keys, s3_list_versions,
s3_get_meta, s3_purge_versions,
s3_sign_url, s3_begin_multipart_upload, s3_upload_part,
s3_complete_multipart_upload, s3_multipart_upload,
s3_get_tags, s3_put_tags, s3_delete_tags
end
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | code | 4209 |
"""
R2Config
A configuration object allowing to use the AWS S3 interface from AWS.jl and AWSS3.jl with [Cloudflare R2](https://developers.cloudflare.com/r2/). You can generate your access key ID and secret access key from the [R2 dashboard](https://developers.cloudflare.com/r2/api/s3/tokens/), as well as your account ID from the [Cloudflare dashboard](https://developers.cloudflare.com/fundamentals/get-started/basic-tasks/find-account-and-zone-ids/).
## Constructors
```julia
# By passing only your Cloudflare account ID
R2Config(account_id; access_key_id, secret_access_key, region)
R2Config(account_id, creds; region)
# By passing the endpoint directly
using URIs
R2Config(URI(endpoint); access_key_id, secret_access_key, region)
R2Config(URI(endpoint), creds; region)
```
## Arguments
- `account_id`: Your [Cloudflare account ID](https://developers.cloudflare.com/fundamentals/get-started/basic-tasks/find-account-and-zone-ids/). This will be used to construct the endpoint URL.
- `endpoint`: Your Cloudflare S3 API endpoint.
- `creds`: An `AWSCredentials` object providing the credentials to access R2.
- `access_key_id`: An access key ID for Cloudflare R2. This will use `R2_ACCESS_KEY_ID` or `AWS_ACCESS_KEY_ID` if
available.
- `secret_access_key`: A secret access key for Cloudflare R2. This will use `R2_SECRET_ACCESS_KEY` or `AWS_SECRET_ACCESS_KEY`
if available.
- `region`: The region to use. Defaults to `"auto"`.
Valid values are `"auto"`, `"wnam"`, `"enam"`, `"weur"`, `"eeur"`, and `"apac"`.
## Examples
```julia
using R2
# tokens are read from environment
# region set to auto
config = R2Config("YOUR_ACCOUNT_ID")
# using the AWS S3 API
s3_list_buckets(config)
# using the S3Path interface
path = S3Path("s3://bucket-name", config=config)
readdir(path)
```
"""
struct R2Config <: AbstractAWSConfig
endpoint::URI
region::String
creds::AWSCredentials
end
CLOUDFLARE_REGIONS = [
"auto",
"wnam",
"enam",
"weur",
"eeur",
"apac"
]
function R2Config(endpoint::URI, creds::AWSCredentials; region::AbstractString="auto")
if region ∉ CLOUDFLARE_REGIONS
throw(ArgumentError("region must be one of $(CLOUDFLARE_REGIONS)."))
end
R2Config(endpoint, region, creds)
end
function isalnum(s::AbstractString)::Bool
for c in s
isletter(c) || isdigit(c) || return false
end
return true
end
function R2Config(account_id::AbstractString, creds::AWSCredentials; region::AbstractString="auto")
if !isalnum(account_id)
throw(ArgumentError("account_id must be alphanumeric." *
"If you want to pass the endpoint directly, pass a URI object instead."))
end
endpoint = URI("https://$(account_id).r2.cloudflarestorage.com")
R2Config(URI(endpoint), creds; region=region)
end
function get_access_key_id()::AbstractString
access_key = get(ENV, "R2_ACCESS_KEY_ID", nothing)
if access_key === nothing
access_key = get(ENV, "AWS_ACCESS_KEY_ID", nothing)
end
if access_key === nothing
throw(ArgumentError("No access key ID found."))
end
access_key
end
function get_secret_access_key()
secret_access_key = get(ENV, "R2_SECRET_ACCESS_KEY", nothing)
if secret_access_key === nothing
secret_access_key = get(ENV, "AWS_SECRET_ACCESS_KEY", nothing)
end
if secret_access_key === nothing
throw(ArgumentError("No secret access key found."))
end
secret_access_key
end
function R2Config(
id_or_endpoint::Union{AbstractString,URI};
access_key_id::AbstractString=get_access_key_id(),
secret_access_key::AbstractString=get_secret_access_key(),
region::AbstractString="auto"
)
R2Config(id_or_endpoint, AWSCredentials(access_key_id, secret_access_key, "", ""); region=region)
end
AWS.region(cfg::R2Config) = cfg.region
AWS.credentials(cfg::R2Config) = cfg.creds
function AWS.generate_service_url(cfg::R2Config, service::String, resource::String)
service == "s3" || throw(ArgumentError("An R2 config only supports S3 service requests; got $service"))
# NOTE: cannot use joinpath here, as it will silently truncate many resource strings
string(cfg.endpoint, resource)
end
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | code | 988 | using CloudflareR2
using Test
using URIs
# NOTE: the vast majority of min.io functionality is in AWSS3, which is why these tests are so minimal
# these should be picked up by R2Config
ENV["R2_ACCESS_KEY_ID"] = "testuser"
ENV["R2_SECRET_ACCESS_KEY"] = "testpassword"
@testset "CloudflareR2.jl" begin
cfg = R2Config("ACCOUNTID")
@test cfg.region == "auto"
@test cfg.endpoint == URI("https://ACCOUNTID.r2.cloudflarestorage.com")
# Test invalid account id
@test_throws ArgumentError R2Config("non_alpha")
# Custom endpoint
cfg = R2Config(URI("http://localhost:9000"))
@test cfg.region == "auto"
# With credentials
cfg = R2Config(URI("http://localhost:9000"),
access_key_id="test", secret_access_key="test")
@test cfg.region == "auto"
@test cfg.endpoint == URI("http://localhost:9000")
# Test invalid region
@test_throws ArgumentError R2Config(URI("http://localhost:9000"), cfg.creds; region="invalid")
end
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | docs | 821 | # CloudflareR2.jl
[](https://github.com/agucova/CloudflareR2.jl/actions/workflows/CI.yml)
[](https://agucova.github.io/CloudflareR2.jl/stable)
[](https://agucova.github.io/CloudflareR2.jl/dev)
Unofficial Julia tools for interacting with [Cloudflare R2](https://www.cloudflare.com/products/r2/)
using the Julia [AWS S3](https://github.com/JuliaCloud/AWSS3.jl) package.
> **Note**
> This package is a fork from [Minio.jl](https://gitlab.com/ExpandingMan/Minio.jl).
> This is also not an official Cloudflare package.
You can see the documentation [here](https://agucova.github.io/CloudflareR2.jl/stable).
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 1.0.1 | 086c303982f33d174f9979b232bafc3769ebec2c | docs | 908 | ```@meta
CurrentModule = CloudflareR2
```
# CloudflareR2
!!! note
This package is a fork from [Minio.jl](https://gitlab.com/ExpandingMan/Minio.jl).
This is also not an official Cloudflare package.
This package provides Julia tools for working with [Cloudflare R2](https://www.cloudflare.com/products/r2/). Cloudflare R2 is fully compatible with the AWS S3
interface, so interaction with R2 is achieved through
[AWSS3.jl](https://github.com/JuliaCloud/AWSS3.jl). This package simply contains some
convenient constructors to set up the configuration to be used with AWSS3.jl.
## Installation
The package itself can be installed with
```julia
Pkg.add("CloudflareR2")
```
or `]add CloudflareR2` in the REPL.
## Client
This package provides a `AbstractAWSConfig` object to be used with Cloudflare R2. This allows seamless integration with the AWSS3.jl package.
```@docs
CloudflareR2.R2Config
```
| CloudflareR2 | https://github.com/agucova/CloudflareR2.jl.git |
|
[
"MIT"
] | 0.3.1 | fac1dc69fff3ab196f1d7efcdf01527cfc27e7c3 | code | 574 | using Grader
using Documenter
DocMeta.setdocmeta!(Grader, :DocTestSetup, :(using Grader); recursive=true)
makedocs(;
modules=[Grader],
authors="Christopher Tessum and contributors",
repo="https://github.com/ctessum/Grader.jl/blob/{commit}{path}#{line}",
sitename="Grader.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://ctessum.github.io/Grader.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/ctessum/Grader.jl",
)
| Grader | https://github.com/ctessum/Grader.jl.git |
|
[
"MIT"
] | 0.3.1 | fac1dc69fff3ab196f1d7efcdf01527cfc27e7c3 | code | 6041 | module Grader
export Problem, @rungolden!, @runstudent!, grade!, pl_JSON, fill_answers
using Parameters
import Random
import JSON
import Espresso
"""
Represents an image with a label and url.
"""
@with_kw mutable struct Image
label::String = ""
url::String = ""
end
"""
Represents the result of a `grade!` action.
"""
@with_kw mutable struct TestResult
name::String = ""
description::String = ""
points::Float64 = 0
max_points::Float64 = 0
message::String = ""
output::String = ""
images::Vector{Image} = []
end
"""
Represent a problem for grading.
Fields:
- Gradable: whether the problem is gradable, i.e. whether the all relavent code
has executed without any errors
- Score: the score of the problem, as a fraction of the maximum possible score
- Message: Any message associated with the graded problem
- Output: The output of the problem grading
- Images: Any images associated with the problem grading
- Tests: A list of tests associated with the problem
"""
@with_kw mutable struct Problem
gradable::Bool = true
score::Float64 = 0
message::String = ""
output::String = ""
images::Vector{Image} = []
tests::Vector{TestResult} = []
end
"""
Return an expression representing the given code inside of a module.
"""
function asmodexpr(code::AbstractString)
mod = "module " * Random.randstring(Random.MersenneTwister(), "abcdefghijklmnopqrstuvwxyz", 20) * "\n" * code * "\nend"
Meta.parse(mod)
end
"""
rungolden! p::Problem goldencode::AbstractString
Run the provided code string inside a module and return the module. If an error occurs it will be logged in
`Problem` `p` as a problem with the "golden" code.
"""
macro rungolden!(p, goldencode)
runcode!(p, goldencode, [], "golden", "Internal grading error, please notify instructor.")
end
"""
@runstudent! p::Problem studentcode::AbstractString
Run the provided code string inside a module and return the module. If an error occurs it will be logged in
`Problem` `p` as a problem with the "student" code.
"""
macro runstudent!(p, studentcode, forbidden_symbols=[])
runcode!(p, studentcode, forbidden_symbols, "student", "There was an error running your code, please see information below.")
end
function runcode!(p, code, forbidden_symbols, codetype, errmessage)
return quote
local prob = $(esc(p))
local studentresult = Module()
try
local expr = Grader.asmodexpr($(esc(code)))
for symbol ∈ $(esc(forbidden_symbols))
if length(Espresso.findex(symbol, expr)) > 0
error("Using $symbol is not allowed.")
end
end
studentresult = Base.eval(expr)
catch err
prob.output = prob.output * "error running $($(esc(codetype))) code:\n" * sprint(showerror, err, backtrace()) * "\n"
prob.gradable = false
prob.message = $(esc(errmessage))
end
studentresult
end
end
"""
grade!(p::Problem, name::String, description::String, points::Real, expr::Expr, msg_if_incorrect::String)
Add a grade for problem `p`. This grade will have the given `name` and `description` in the grader output,
and will be associated with the number of `points`.
The function will evaluate the given expression `expr`; if it evaluates to true, the given number
of `points` will be awarded, otherwise zero points will be awarded and `msg_if_incorrect` will be
logged to the problem `p`.
"""
function grade!(p::Problem, name::String, description::String, points::Real, expr::Expr, msg_if_incorrect::String)
if !p.gradable
return nothing
end
t = TestResult(max_points=points, name=name, description=description)
correct = false
try
correct = eval(expr)
catch err
t.output = t.output * "\n" * sprint(showerror, err)
end
if correct === missing
t.message = "your answer contains a 'missing' value"
else
try
correct ? t.points = points : t.message = msg_if_incorrect
catch err
t.message = msg_if_incorrect
t.output = t.output * "\n" * sprint(showerror, err)
end
end
append!(p.tests, [t])
pts = 0
totalpts = 0
for t in p.tests
pts += t.points
totalpts += t.max_points
end
p.score = float(pts) / float(totalpts)
return nothing
end
@doc raw"""
fill_answers(code::AbstractString, answerkey::Dict)::String
Fill the answer key into a code template and return the resulting code string.
For example, consider the code template below, that gives the radius of
a circle and asks the student to fill in the area and perimeter. In the
template, the area and perimeter are given as variables `a` and `p`
with values `missing`, and the student is meant to replace `missing`
with the actual answer.
``` jldoctest
code = "# Calculate the area and perimeter of a circle with radius 2.\n"*
"r = 2\n"*
"a = missing # Area\n"*
"p = missing # Perimeter\n"
answer_code = fill_answers(code, Dict(
:(a = missing) => :(a = π * r^2),
:(p = missing) => :(p = 2π * r)));
p = Problem()
answer = @runstudent! p answer_code
grade!(p, "area", "calculate area", 1, :($answer.a ≈ 4π), "area is incorrect")
grade!(p, "perimeter", "calculate perimeter", 1, :($answer.p ≈ 4π), "perimeter is incorrect")
println("Answer key score is $(p.score).")
# output
Answer key score is 1.0.
```
"""
function fill_answers(code::AbstractString, answerkey::Dict)::String
expr = Meta.parse("begin\n $code \nend")
expr = Espresso.subs(expr, answerkey)
io = IOBuffer()
print(io, expr)
s = String(take!(io))
replace(replace(s, r"end$"=>""), r"^begin"=>"") # remove begin and end added above
end
"""
pl_JSON(io::IO, p::Problem)
Write a the contents of the `Problem` `p` to the IO stream `io`
as a [PrairieLearn](https://prairielearn.readthedocs.io/en/latest/)-compatible JSON file.
"""
function pl_JSON(io::IO, p::Problem)
JSON.print(io, p)
end
end | Grader | https://github.com/ctessum/Grader.jl.git |
|
[
"MIT"
] | 0.3.1 | fac1dc69fff3ab196f1d7efcdf01527cfc27e7c3 | code | 9124 | using Grader
using Test
@testset "Grader.jl" begin
# Test whether evalasmodule is working correctly for a basic problem.
@testset "evalasmodule" begin
golden_code = """x=2
y = x * 3
"""
student_code = """x=2
y = x + x + x
z = 4
"""
p = Problem()
golden_result = @rungolden! p golden_code
student_result = @runstudent! p student_code
@testset "correct x" begin
@test golden_result.x == student_result.x
end
@testset "correct y" begin
@test golden_result.y ≈ student_result.y
end
@testset "correct z only in student code" begin
@test_throws UndefVarError golden_result.z
@test student_result.z == 4
end
@testset "Throws ParseError for syntax error" begin
syntaxerr = "x= @@@"
p = Problem()
@runstudent! p syntaxerr
@test occursin("ParseError", p.output)
end
end
@testset "grade problem" begin
@testset "correct answer" begin
goldencode = """x=2
y = x * 3
"""
studentcode = """x=2
y = x + x + x
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
@test length(p.tests) == 1
@test p.tests[1].max_points ≈ 2
@test p.tests[1].points ≈ 2
@test p.score ≈ 1
end
@testset "partially correct answer" begin
goldencode = """x=2
y = x * 3
z = y + 2
"""
studentcode = """x=2
y = x + x + x
z = y + 3
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
grade!(p, "z", "check z", 8, :($student.z ≈ $golden.z), "z is incorrect")
@test length(p.tests) == 2
@test p.tests[1].max_points ≈ 2
@test p.tests[2].max_points ≈ 8
@test p.tests[1].points ≈ 2
@test p.tests[2].points ≈ 0
@test p.tests[2].message == "z is incorrect"
@test p.score ≈ 0.2
end
@testset "error in student code" begin
goldencode = """x=2
y = x * 3
"""
studentcode = """x=2
y = x + x + xx
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
@test !p.gradable
@test p.message == "There was an error running your code, please see information below."
end
@testset "missing value in student code" begin
goldencode = """x=2
y = x * 3
"""
studentcode = """x=2
y = missing
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
@test p.gradable
@test p.tests[1].message == "your answer contains a 'missing' value"
end
@testset "error in golden code" begin
goldencode = """x=2
y = x * 3y
"""
studentcode = """x=2
y = x + x + x
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
@test !p.gradable
@test p.message == "Internal grading error, please notify instructor."
end
@testset "student missing variable" begin
goldencode = """x=2
y = x * 3
"""
studentcode = """x=2
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
@test p.tests[1].output == "\nUndefVarError: y not defined"
@test p.tests[1].message == "y is incorrect"
end
@testset "forbidden symbol" begin
studentcode = """
using LinearAlgebra
x = 2
"""
p = Problem()
student = @runstudent! p studentcode [:YYY :LinearAlgebra]
@test occursin("Using LinearAlgebra is not allowed.", p.output)
@test p.message == "There was an error running your code, please see information below."
end
@testset "type conversion error" begin
studentcode = """
function fib(n::Int)::Int
nothing
end
"""
goldencode = """
function fib(n::Int)::Int
if n <= 1
return n
else
return fib(n - 1) + fib(n - 2)
end
end
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
Grader.grade!(p, "fib(1)", "Check fib(1)", 1, :($student.fib(1) ≈ $golden.fib(1)), "fib(1) is incorrect")
Grader.grade!(p, "fib(7)", "Check fib(7)", 2, :($student.fib(7) ≈ $golden.fib(7)), "fib(7) is incorrect")
Grader.grade!(p, "fib(7)", "Check fib(7)", 2, :($golden.fib(7) ≈ $golden.fib(7)), "fib(7) is incorrect")
@test p.score ≈ 2.0 / 5.0
@test occursin("Cannot `convert`", p.tests[1].output)
@test p.tests[1].message == "fib(1) is incorrect"
end
end
@testset "pl_JSON" begin
goldencode = """x=2
y = x * 3
z = y + 2
"""
studentcode = """x=2
y = x + x + x
z = y + 3
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
grade!(p, "z", "check z", 8, :($student.z ≈ $golden.z), "z is incorrect")
s = IOBuffer()
pl_JSON(s, p)
jsondata = String(take!(s))
@test jsondata == """{"gradable":true,"score":0.2,"message":"","output":"","images":[],"tests":[{"name":"y","description":"check y","points":2.0,"max_points":2.0,"message":"","output":"","images":[]},{"name":"z","description":"check z","points":0.0,"max_points":8.0,"message":"z is incorrect","output":"","images":[]}]}"""
@test length(p.tests) == 2
@test p.tests[1].max_points ≈ 2
@test p.tests[2].max_points ≈ 8
@test p.tests[1].points ≈ 2
@test p.tests[2].points ≈ 0
@test p.tests[2].message == "z is incorrect"
@test p.score ≈ 0.2
end
@testset "fill answers" begin
code = """
# Calculate the area and perimeter of a cirle with radius 2.
r = 2
a = missing # Area
p = missing # Perimeter
"""
answer_code = fill_answers(code, Dict(
:(a = missing) => :(a = π * r^2),
:(p = missing) => :(p = 2π * r)))
p = Problem()
answer = @runstudent! p answer_code
grade!(p, "area", "calculate area", 1, :($answer.a ≈ 4π), "area is incorrect")
grade!(p, "perimeter", "calculate perimeter", 1, :($answer.p ≈ 4π), "perimeter is incorrect")
@test p.score ≈ 1.0
end
@testset "fill answers 2" begin
code = """
using LinearAlgebra
using Markdown
n = missing
md\"\"\"Testing if markdown strings are okay.\"\"\"
"""
answer_code = fill_answers(code, Dict(
:(n = missing) => :(n = LinearAlgebra.norm([1, 2, 3]))
))
p = Problem()
answer = @runstudent! p answer_code
grade!(p, "norm", "calculate norm", 1, :($answer.n ≈ 3.7416573867739413), "norm is incorrect")
@test p.score ≈ 1.0
end
@testset "plot" begin
using LinearAlgebra
studentcode = """
using Plots
x=1:10
y = x.^2
xy = plot(x,y)
"""
p = Problem()
student = @runstudent! p studentcode
grade!(p, "XY Plot", "Data length", 1,
quote
xlen = length($student.xy[1][1][:x])
ylen = length($student.xy[1][1][:y])
xlen == ylen == 10
end,
"the number of data points in x or y is incorrect")
grade!(p, "XY Plot", "Y values", 3,
quote
ynorm = $norm($student.xy[1][1][:y])
ynorm ≈ 159.16343801262903
end,
"The Y values are not correct")
@test p.score ≈ 1.0
end
end | Grader | https://github.com/ctessum/Grader.jl.git |
|
[
"MIT"
] | 0.3.1 | fac1dc69fff3ab196f1d7efcdf01527cfc27e7c3 | docs | 851 | # Grader
[](https://ctessum.github.io/Grader.jl/stable)
[](https://ctessum.github.io/Grader.jl/dev)
[](https://github.com/ctessum/Grader.jl/actions)
[](https://codecov.io/gh/ctessum/Grader.jl)
[](https://github.com/invenia/BlueStyle)
[Grader](https://github.com/ctessum/Grader.jl) is an assignment autograder for Julia.
It has been designed to be used with the [PrairieLearn](https://prairielearn.readthedocs.io/en/latest/) learning system,
but it could also be used with any other learning system. | Grader | https://github.com/ctessum/Grader.jl.git |
|
[
"MIT"
] | 0.3.1 | fac1dc69fff3ab196f1d7efcdf01527cfc27e7c3 | docs | 3436 | ```@meta
CurrentModule = Grader
```
# Grader.jl Documentation
[Grader](https://github.com/ctessum/Grader.jl) is an assignment autograder for Julia.
It has been designed to be used with the [PrairieLearn](https://prairielearn.readthedocs.io/en/latest/) learning system,
but it could also be used with any other learning system.
# Examples
## Simple example
Here is a simple example of how to use Grader:
```jldoctest
using Grader
# This is the code with the correct answer:
goldencode = """
x=2
y = x * 3
"""
# This is the code with the student's answer:
studentcode = """
x=2
y = x + x + x
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
p
# output
Problem
gradable: Bool true
score: Float64 1.0
message: String ""
output: String ""
images: Array{Grader.Image}((0,))
tests: Array{Grader.TestResult}((1,))
```
## Example with incorrect answer
Here's an example of what it looks like when the student gets the wrong answer:
```jldoctest
using Grader
# This is the code with the correct answer:
goldencode = """
x=2
y = x * 3
"""
# This is the code with the student's answer:
studentcode = """
x=2
y = x + x + 2x
"""
p = Problem()
golden = @rungolden! p goldencode
student = @runstudent! p studentcode
grade!(p, "y", "check y", 2, :($student.y ≈ $golden.y), "y is incorrect")
p.tests[1]
# output
Grader.TestResult
name: String "y"
description: String "check y"
points: Float64 0.0
max_points: Float64 2.0
message: String "y is incorrect"
output: String ""
images: Array{Grader.Image}((0,))
```
We can also forbid students from using certain symbols (e.g libraries):
```jldoctest
using Grader
studentcode = """
using LinearAlgebra
x=2
y = x + x + 2x
"""
p = Problem()
@runstudent! p studentcode [:LinearAlgebra]
p.output[1:63]
# output
"error running student code:\nUsing LinearAlgebra is not allowed."
```
## Example with plot
This is a more complex example that grades a plot and writes out the output as JSON.
```jldoctest
using Grader
using LinearAlgebra, JSON
studentcode = """
using Plots
x=1:10
y = x.^2
xy = plot(x,y)
"""
p = Problem()
student = @runstudent! p studentcode
grade!(p, "XY Plot", "Data length", 1,
quote
xlen = length($student.xy[1][1][:x])
ylen = length($student.xy[1][1][:y])
xlen == ylen == 10
end,
"the number of data points in x or y is incorrect")
grade!(p, "XY Plot", "Y values", 3,
quote
ynorm = $norm($student.xy[1][1][:y])
ynorm ≈ 159.16343801262903
end,
"The Y values are not correct")
# Output to JSON and print the result
b = IOBuffer()
pl_JSON(b, p)
JSON.print(JSON.parse(String(take!(b))), 4)
# output
{
"images": [],
"score": 1.0,
"output": "",
"message": "",
"gradable": true,
"tests": [
{
"images": [],
"name": "XY Plot",
"points": 1.0,
"output": "",
"message": "",
"max_points": 1.0,
"description": "Data length"
},
{
"images": [],
"name": "XY Plot",
"points": 3.0,
"output": "",
"message": "",
"max_points": 3.0,
"description": "Y values"
}
]
}
```
# API Documentation
```@index
```
```@autodocs
Modules = [Grader]
```
| Grader | https://github.com/ctessum/Grader.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 604 | using Documenter, PhyloDiamond
makedocs(
sitename="PhyloDiamond.jl",
authors="Zhaoxing Wu, Claudia Solís-Lemus, and contributors",
modules=[PhyloDiamond],
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
pages = [
"Home" => "index.md",
"Manual" => [
"Installation" => "man/installation.md",
"Implementation" => "man/implementation.md",
],
"Library" => [
"Public Methods" => "lib/public_methods.md",
]
]
)
deploydocs(
repo = "github.com/solislemuslab/PhyloDiamond.jl.git",
) | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 1111 | using PhyloNetworks
using PhyloPlots
using DataFrames
using CSV
## Read network in parenthetical format
net = readTopology("((((A,B))#H1:::0.8,((E,F),(#H1:::0.2,(C,D)))),(G,H));")
plot(net,:R) ## just to check it matches the ipad notes
printEdges(net)
## List of quartets and create dummy CF table with observed cf
## we need this CF table so that readTableCF creates the DataCF object
quartets = PhyloNetworks.allQuartets(tipLabels(net), false)
tx1 = []
tx2 = []
tx3 = []
tx4 = []
for q in quartets
push!(tx1,q.taxon[1])
push!(tx2,q.taxon[2])
push!(tx3,q.taxon[3])
push!(tx4,q.taxon[4])
end
df = DataFrame(tx1=tx1, tx2=tx2, tx3=tx3, tx4=tx4, obsCF1=ones(length(tx1)), obsCF2=zeros(length(tx1)), obsCF3=zeros(length(tx1)))
cf = readTableCF!(df)
## We need to optimize the pseudolikelihood
## on the network for those dummy observed CF
## in order to compute the expected CFs
topologyQPseudolik!(net, cf)
df_wide = fittedQuartetCF(cf)
## "true" concordance factors:
expcf = df_wide[:,[:tx1, :tx2, :tx3, :tx4, :expCF12, :expCF13, :expCF14]]
CSV.write("scripts/julia/N2222_expCF.txt", expcf) | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 1431 | ## Julia script to map CF table to a values
## Claudia March 2022
## Note: this is just pseudo code for now
## we also want to put this script into a function with cf,N as input arguments and mean_a as output
## Input:
cf = DataFrame(CSV.File("N2222_expCF.txt"))
N = [("A","B"),("C","D"),("E","F"),("G","H")]
## create vector a
a = zeros(57)
## create vector that counts how many rows are mapped to each a value
c = ones(57)
## note: the names of the functions can be changed (I did not have your functions when I wrote this)
for row in eachrow(cf)
taxa = collect(row[1:4]) ## taxa for that quartet
cfs = collect(row[5:7]) ## CFs, not sure if they are in columns 5,6,7
n = get_n_quartet(taxa, N) ## returns the n=(1,2,1,0) quartet vector e.g.
ind = which_a(n) ## returns the indices in the a vector for that quartet vector e.g. (34,35,36). The order is major, minor, minor
ord_cfs = cfs_in_order(taxa, cfs, N) ## returns the CFs from the table (cfs) in the order major, minor, minor
if a[ind] .== 0 ## we have not added these a values before
a[ind] = ord_cfs ## we map the CFs values to the a values in the order major, minor, minor
else
a[ind] += ord_cfs ## we add the CFs values, and we will divide by the c vector at the end (to get the average)
c[ind] += 1 ## add one row that is mapped to this a values
end
end
mean_a = a./c ## divide a by c element-wise | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 2315 | # Julia script to plot the dog network
# Claudia (November 2022)
using PhyloNetworks, PhyloPlots
# Network by SNaQ and invariants
net = readTopology("(((Coyote,((GreyWolf,Dog):0.4736595577884197,#H7:::0.2642622177134866):0.14802726306398745):1.5457473684659713,(GoldenJackal)#H7:::0.7357377822865134):2.4037173930657434,AfricanHuntingDog,Dhole);")
rootatnode!(net,"AfricanHuntingDog")
plot(net,:R)
plot(net,:R, showNodeNumber=true)
rotate!(net, -2)
rotate!(net, -3)
rotate!(net, -4)
rotate!(net, -5)
using RCall
R"par"(mar=[.1,.1,.1,.1]);
plot(net, style=:majortree, edgewidth=2.0, arrowlen=0.1,
tipoffset = 0.1, majorhybridedgecolor = "forestgreen",
minorhybridedgecolor = "forestgreen")
# Network by PhyloNet ML
net2 = readTopology("(AfricanHuntingDog:1.6101210673311783,(Dhole:3.098659596612107,((GoldenJackal:0.06861236708130897)#H1:0.38708669395167933::0.748622919326696,(Coyote:3.9986647804844644,(#H1:0.8103263495430857::0.25137708067330405,(Dog:2.936141610506084,GreyWolf:0.5582715925453998):0.3935145303756744):0.08298883848855856):2.0660671784296514):2.678281274906509):3.7168919379799035);")
rootatnode!(net2,"AfricanHuntingDog")
plot(net2,:R, showNodeNumber=true)
rotate!(net2, -6)
plot(net2, style=:majortree, edgewidth=2.0, arrowlen=0.1,
tipoffset = 0.1, majorhybridedgecolor = "blue",
minorhybridedgecolor = "blue")
## same as snaq, so not included
# Network by PhyloNet MPL
net3 = readTopology("(AfricanHuntingDog:1.0,((((Coyote:1.0,(Dog:1.0,GreyWolf:1.0):0.5745418868229112):0.836566984410819,(GoldenJackal:1.0)#H1:1.0::0.940732692938983):2.2916146136988855,#H1:1.0::0.059267307061017016):0.8776623951631757,Dhole:1.0):5.909315396052653);")
rootatnode!(net3,"AfricanHuntingDog")
plot(net3,:R, showNodeNumber=true)
rotate!(net3, -3)
rotate!(net3, -4)
rotate!(net3, -5)
rotate!(net3, -6)
plot(net3, edgewidth=2.0, arrowlen=0.1,
tipoffset = 0.1, majorhybridedgecolor = "darkmagenta",
minorhybridedgecolor = "darkmagenta")
# Other networks
net = readTopology("((((((1,3),5),(2)#H1),6),#H1),4);")
rootatnode!(net,"1")
plot(net,:R, showNodeNumber=true)
rotate!(net, -4)
## Now with the names:
net = readTopology("((((((AfricanHuntDog,Dhole),GoldenJackal),(Coyote)#H1),GreyWolfEUR),#H1),Dog);")
rootatnode!(net,"AfricanHuntDog")
plot(net,:R, showNodeNumber=true)
rotate!(net, -4)
plot(net,:R) | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 342 | #cd("/Users/zhaoxingwu/Desktop/claudia lab/2022 spring phylogenetic/phylo-invariants")
using PhyloNetworks
#raxmltrees = joinpath(dirname(pathof(PhyloNetworks)), "..","examples","raxmltrees.tre")
#less(raxmltrees)
genetrees = readMultiTopology("./simulation/sim_trees_2222_100");
q,t = countquartetsintrees(genetrees);
df = writeTableCF(q,t) | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 5282 | """
cd("/Users/zhaoxingwu/Desktop/claudia lab/2022 spring phylogenetic/phylo-invariants")
include("./scripts/julia/mapping.jl")
include("./scripts/julia/invariants.jl")
include("./scripts/julia/test_invariants.jl")
"""
using PhyloNetworks, PhyloPlots, DataFrames, CSV, Statistics, Distributions, Random, DelimitedFiles, Combinatorics
using JLD2
#https://github.com/chaoszhang/Weighted-ASTRAL_data
#https://www.sciencedirect.com/science/article/pii/S0960982218311254
#choose(13, 4) = 715
#choose(12, 4)
function main()
end
function read_gene_trees()
#cf = generate_cf_from_gene_trees("./simulation/dogs_estimated_gene_trees.tree")
#genetrees = readMultiTopology("./simulation/sim_trees/dogs_estimated_gene_trees.tree")
#save_object("dog_genetrees.jld2", genetrees)
#DataFrame(taxon = unique!(vcat(df[:, "t1"], df[:, "t2"], df[:, "t3"], df[:, "t4"])))
"""
tm = DataFrame(CSV.File("./simulation/sim_trees/dog/taxonmap.csv"))
taxonmap = Dict(row[:individual] => row[:species] for row in eachrow(tm))
genetrees = load_object("dog_genetrees.jld2")
q,t = countquartetsintrees(genetrees, taxonmap, showprogressbar=true);
save_object("q.jld2", q)
save_object("t.jld2", t)
df_wide = writeTableCF(q,t)
df = df_wide[:,[:t1, :t2, :t3, :t4, :CF12_34, :CF13_24, :CF14_23]]
save_object("cf_dog.jld2", df)
df = load_object("./simulation/sim_trees/dog/cf_dog_merged.jld2")
tm = DataFrame(CSV.File("./simulation/sim_trees/dog/taxonmap.csv"))
taxon = unique!(tm[:,"species"])
for temp in ["Grey wolf Asian (Eurasian)", "Grey wolf North American", "Grey wolf Middle Eastern",
"African golden wolf hybrid", "African golden wolf Northwestern","African golden wolf Eastern",
"AndeanFox"]
deleteat!(taxon, findall(x->x==temp,taxon))
df = df[df[:,"t1"].!=temp,:]
df = df[df[:,"t2"].!=temp,:]
df = df[df[:,"t3"].!=temp,:]
df = df[df[:,"t4"].!=temp,:]
end
value_map = Dict(taxon[i] => i for i in 1:length(taxon))
for col in ["t1", "t2", "t3", "t4"]
for i in 1:nrow(df)
df[i,col] = string(value_map[df[i,col]])
end
end
"""
end
function run_snaq()
@time net0 = snaq!(readTopology("./simulation/sim_trees/dog/start.tree"), readTableCF(df), hmax=1, filename="net0_bucky", seed=123, runs=10)
end
function script_phylonet_dog_unrooted()
f = open("./simulation/sim_trees/dog/dogs_estimated_gene_trees.tree", "r")
file = open("dog.nex", "a")
cnt = 0
write(file, "#NEXUS\nBEGIN Trees;\n")
for line in readlines(f)
cnt+=1
net = readTopology(line)
leaf = []
for i in net.leaf
push!(leaf, i.name)
end
#delete species
for i in leaf
if i in ind_del
deleteleaf!(net, i, keeporiginalroot=true)
end
end
flag = Dict(Pair.(taxon, false))
net_merge = net
leaf_del = []
leaf = []
for i in net.leaf
push!(leaf, i.name)
end
for i in 1:length(leaf)
if leaf[i] in tm[:,"individual"]
if !flag[tm_dict[leaf[i]]]
flag[tm_dict[leaf[i]]] = true
net_merge.leaf[i].name = string(value_map[tm_dict[leaf[i]]])
else
push!(leaf_del, leaf[i])
end
end
end
for i in leaf_del
deleteleaf!(net_merge, i, keeporiginalroot=true)
end
if length(net_merge.leaf) > 3
write(file, "Tree gt"* string(cnt)* "="* writeTopology(net_merge)*"\n")
end
end
write(file, "END;\nBEGIN PHYLONET;\nInferNetwork_MPL (all) 1 -x 10 -pl 10;\nEND;")
close(f)
close(file)
end
#creating input file for phylonet
function script_phylonet_dog_rooted()
f = open("./scripts/julia/dog.nex", "r")
file = open("dog_rooted.nex", "a")
cnt = 0
write(file, "#NEXUS\nBEGIN Trees;\n")
for line in readlines(f)
if startswith(line, "Tree")
_, net = split(line, "=")
net = readTopology(net)
if net.numTaxa > 4
cnt+=1
if "1" in tipLabels(net)
rootatnode!(net,"1")
else
rootatnode!(net,"3")
end
write(file, "Tree gt"* string(cnt)* "="* writeTopology(net)*"\n")
end
end
end
write(file, "END;\nBEGIN PHYLONET;\nInferNetwork_MPL (all) 1 -x 10 -pl 10;\nEND;")
close(f)
close(file)
end
main()
"""
tm = DataFrame(CSV.File("./simulation/sim_trees/dog/taxonmap.csv")) #6 species
for temp in ["Grey wolf Asian (Eurasian)", "Grey wolf North American", "Grey wolf Middle Eastern",
"African golden wolf hybrid", "African golden wolf Northwestern","African golden wolf Eastern",
"AndeanFox"]
tm = tm[tm[:,"species"].!=temp,:]
end
tm_dict = Dict(Pair.(tm.individual, tm.species))
taxon = unique!(tm[:,"species"])
value_map = Dict(taxon[i] => i for i in 1:length(taxon))
tm_del = DataFrame(CSV.File("./simulation/sim_trees/dog/taxonmap_del.csv")) #species need to be deleted
ind_del = tm_del[:, "individual"]
""" | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 1794 | # Automatic test for the get_a function
# Claudia (June 2022)
include("../create_cf.jl")
# Reading CF table:
cf = CSV.read("scripts/julia/N2222_expCF.txt", DataFrame)
# Reading network
N = [("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")] ## true network
i=1
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
n == [2,0,2,0] || error("wrong n")
cfs_ord = cfs_in_order(N, q, cfs)
round.(cfs_ord;digits=2) == [0.96,0.02,0.02] || error("wrong cfs_ord")
i=69
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
n == [0,1,1,2] || error("wrong n")
cfs_ord = cfs_in_order(N, q, cfs)
round.(cfs_ord;digits=2) == [0.91,0.05,0.05] || error("wrong cfs_ord")
N = [("A","E"),("C","B"),("D","F"),("G","H")]
i=1
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
n == [2,1,1,0] || error("wrong n")
cfs_ord = cfs_in_order(N, q, cfs)
round.(cfs_ord;digits=2) == [0.02,0.96,0.02] || error("wrong cfs_ord")
i=2
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
n == [2,2,0,0] || error("wrong n")
cfs_ord = cfs_in_order(N, q, cfs)
round.(cfs_ord;digits=2) == [0.06,0.87,0.06] || error("wrong cfs_ord")
cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")],
["A","H","E","C"],
[0.7, 0.2, 0.1]) == [0.1,0.2,0.7] || error("wrong cfs order")
cfs_in_order([("E", "F"), ("A", "B"), ("G", "H"), ("C", "D"), ],
["A","H","E","C"],
[0.7, 0.2, 0.1]) == [0.2,0.1,0.7] || error("wrong cfs order")
cfs_in_order([("A", "B"), ("E", "F"), ("G", "H"), ("C", "D"), ],
["E","C","A","H"],
[0.7, 0.2, 0.1]) == [0.2,0.7,0.1] || error("wrong cfs order") | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 6591 | #cd("/Users/zhaoxingwu/Desktop/claudia lab/2022 spring phylogenetic/phylo-invariants")
include("../scripts/julia/mapping.jl")
using DelimitedFiles, DataFrames, CSV
# Reading CF table:
cf = CSV.read("scripts/julia/N2222_expCF.txt", DataFrame)
# We use the following networks to run get_a line by line (see test-get-a.pdf iPad notes)
# Reading network
#N = [("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")] ## true network
#N = [("A", "D"), ("C", "B"), ("E", "F"), ("G", "H")]
N = [("A","E"),("C","B"),("D","F"),("G","H")]
rst = get_a(cf, N, verbose=false)
i=70
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
cfs_ord = cfs_in_order(N, q, cfs) #reorder cf as major, minor, minor
#according to N
#for i in 1:Int(length(rst)/3)
#println(rst[i*3-2], " ", rst[i*3-1], " ", rst[i*3])
#end
#for i in 1:70
# temp = Array(cf[i, :])
# q = temp[1:4]
# cfs = temp[5:7]
# n = get_n(N, q)
#println(n)
# if n != [1, 1, 1, 1]
#println(cfs_in_order(N, q, cfs)[1], ", ", cfs_in_order(N, q, cfs)[2], ", ", cfs_in_order(N, q, cfs)[3])
# else
#println(cfs[1], ", ", cfs[2], ", ", cfs[3])
# end
#end
#get_a(cf, N)
#--------------------------------
# Testing cfs_in_order
#--------------------------------
#(1, 1, 1, 1), N2222
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")],
["A","H","E","C"],
[0.7, 0.2, 0.1])==[0.1, 0.2, 0.7])
println(cfs_in_order([("E", "F"), ("A", "B"), ("G", "H"), ("C", "D"), ],
["A","H","E","C"],
[0.7, 0.2, 0.1])==[0.2, 0.1, 0.7])
println(cfs_in_order([("A", "B"), ("E", "F"), ("G", "H"), ("C", "D"), ],
["E","C","A","H"],
[0.7, 0.2, 0.1])==[0.2, 0.7, 0.1])
#N2122
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")],
["A","B","E","C"],
[0.8, 0.1, 0.1])==[0.8, 0.1, 0.1]) #2110
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")],
["A","E","C","B"],
[0.1, 0.1, 0.8])==[0.8, 0.1, 0.1]) #2110
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")],
["E","G","A","C"],
[0.7, 0.2, 0.1])==[0.7, 0.2, 0.1]) #1111
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")],
["H","G","A","B"],
[0.8, 0.1, 0.1])==[0.8, 0.1, 0.1]) #2002
#N2221
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],
["E","B","F","C"],
[0.1, 0.8, 0.1])==[0.8, 0.1, 0.1]) #1120
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],
["A","B","C","F"],
[0.8, 0.1, 0.1])==[0.8, 0.1, 0.1]) #2110
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],
["F","G","A","C"],
[0.7, 0.2, 0.1])==[0.7, 0.2, 0.1]) #1111
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],
["B","F","A","E"],
[0.1, 0.8, 0.1])==[0.8, 0.1, 0.1]) #2020
#N2111
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", NaN), ("G", NaN)],
["E","B","G","A"],
[0.1, 0.8, 0.1])==[0.8, 0.1, 0.1]) #2011
println(cfs_in_order([("A", "B"), ("C", NaN), ("E", NaN), ("G", NaN)],
["B","E","G","A"],
[0.1, 0.1, 0.8])==[0.8, 0.1, 0.1]) #2011
#N2211
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],
["C","B","D","A"],
[0.1, 0.8, 0.1])==[0.8, 0.1, 0.1]) #2200
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],
["A","B","C","D"],
[0.8, 0.1, 0.1])==[0.8, 0.1, 0.1]) #2200
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],
["C","G","D","A"],
[0.1, 0.8, 0.1])==[0.8, 0.1, 0.1]) #1201
println(cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],
["E","G","C","B"],
[0.7, 0.1, 0.2])==[0.7, 0.2, 0.1]) #1111
#--------------------------------
# Testing invariants in true N
#--------------------------------
include("../mapping.jl")
include("../invariants.jl")
# Reading CF table:
cf = CSV.read("scripts/julia/N2222_expCF.txt", DataFrame)
# Reading network
N = [("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")] ## true network
a = get_a(cf, N)
norm(inv_net1112(a))
norm(inv_net1121(a))
norm(inv_net1211(a))
norm(inv_net2111(a))
norm(inv_net1122(a))
norm(inv_net1212(a))
norm(inv_net2112(a))
norm(inv_net2211(a))
norm(inv_net2121(a))
norm(inv_net1221(a))
norm(inv_net1222(a))
norm(inv_net2212(a))
## We do not have the true invariants which are 2222, but
## we still expect all invariants to be relative close to 0.0
## as the order of the taxa matches with the invariants
# this is not true for the following network
# Reading network
N = [("A","E"),("C","B"),("D","F"),("G","H")]
a = get_a(cf, N)
norm(inv_net1112(a))
norm(inv_net1121(a))
norm(inv_net1211(a))
norm(inv_net2111(a))
norm(inv_net1122(a))
norm(inv_net1212(a))
norm(inv_net2112(a))
norm(inv_net2211(a))
norm(inv_net2121(a))
norm(inv_net1221(a))
norm(inv_net1222(a))
norm(inv_net2212(a))
## They are much larger than zero, yay!
#------------------------------------------------------
# Testing invariants in true N using test_invariants.jl
#------------------------------------------------------
include("test_invariants.jl")
N = [("A", NaN),("C","D"),("E","F"),("G","H")]
network = "(((A)#H1:::0.8, ((#H1:::0.2,(E,F)),(G,H))),(C,D));"
#network = "((((C,D),(A)#H1:::0.8),(#H1:::0.2,(E,F))),(G,H));"
N_test = [("G", NaN),("E", "A"),("C","H"),("D","F")]
println(test_invariants(N_test, generate_cf(N, network)))
#writedlm( "temp.csv", test_invariants(N_test, generate_cf(N, network)), ',')
t = ["A", "B", "C", "D", "E", "F", "G", "H"]
net_all = list_nw(t)
N = [("A", "B"),("C","D"),("E","F"),("G","H")]
network = "(((A, B)#H1:::0.8, ((#H1:::0.2,(E, F)),(G, H))),(C, D));"
cf = generate_cf(N, network)
df = DataFrame()
for i in 1:length(net_all)
colname = "Test$i"
df[!,colname] = test_invariants(net_all[i], cf)
end
#CSV.write( "temp.csv", df)
#--------------------------------
# Testing list_nw
#--------------------------------
t = ["A", "B", "C", "D", "E"]
t = ["A", "B", "C", "D", "E", "F"]
t = ["A", "B", "C", "D", "E", "F", "G"]
t = ["A", "B", "C", "D", "E", "F", "G", "H"]
ret = list_nw(t)
for i in 1:length(ret)
#println(i, ret[i])
end
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 31598 | function main()
mac1112 = "a32 - a33, a31 + 2a33 - 1, a28 + a29 + a30 - 1, a23 - a24, a22 + 2a24 - 1, a8 - a9, a7 + 2a9 - 1, 3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, 3a9*a29 - 2a9 + 2a24 - a33"
mac1121 = "a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a20 - a21, a19 + 2a21 - 1, a5 - a6, a4 + 2a6 - 1, a6*a29 + 2a6*a30 - a6 + a21 - a27"
mac1122 = "a32 - a33, a31 + 2a33 - 1, a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a23 - a24, a22 + 2a24 - 1, a20 - a21, a19 + 2a21 - 1, a8 - a9, a7 + 2a9 - 1, a5 - a6, a4 + 2a6 - 1, a2 - a3, a1 + 2a3 - 1, 3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, 3a9*a29 - 2a9 + 2a24 - a33, a6*a29 + 2a6*a30 - a6 + a21 - a27, a3*a29 + 2a3*a30 - 3a6*a33, 3a6*a24 - 3a3*a30 + 3a6*a33 - a3, 3a9*a21 - 3a9*a27 + 3a6*a33 - a3, 3a6*a9 - a3"
mac1211 = "a38 - a39, a37 + 2a39 - 1, a35 - a36, a34 + 2a36 - 1, a28 + a29 + a30 - 1, a14 - a15, a13 + 2a15 - 1, a15*a29 - a15*a30 + a36 - a39"
mac1212 = "a38 - a39, a37 + 2a39 - 1, a35 - a36, a34 + 2a36 - 1, a32 - a33, a31 + 2a33 - 1, a28 + a29 + a30 - 1, a23 - a24, a22 + 2a24 - 1, a17 - a18, a16 + 2a18 - 1, a14 - a15, a13 + 2a15 - 1, a8 - a9, a7 + 2a9 - 1, a18*a30 - a15*a33 - a9*a36 + a9*a39, 3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, a18*a29 - a15*a33 + 2a9*a36 - 2a9*a39, a15*a29 - a15*a30 + a36 - a39, 3a9*a29 - 2a9 + 2a24 - a33, 3a15*a24 - 3a9*a36 + 3a9*a39 - a18, 3a9*a15 - a18"
mac1221 = "a38 - a39, a37 + 2a39 - 1, a35 - a36, a34 + 2a36 - 1, a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a20 - a21, a19 + 2a21 - 1, a14 - a15, a13 + 2a15 - 1, a11 - a12, a10 + 2a12 - 1, a5 - a6, a4 + 2a6 - 1, a15*a29 - a15*a30 + a36 - a39, a12*a29 - a12*a30 + 3a6*a36 - 3a6*a39, a6*a29 + 2a6*a30 - a6 + a21 - a27, 3a15*a21 - 3a15*a27 + 3a12*a30 - 3a6*a36 + 3a6*a39 - a12, 3a6*a15 - a12, a21*a29*a36 + 2a21*a30*a36 - a27*a29*a39 + a27*a30*a39 - a15*a27 + a12*a30 - a6*a36 - a21*a36 - a27*a36 + 2a21*a39"
mac1222 = "a38 - a39, a37 + 2a39 - 1, a35 - a36, a34 + 2a36 - 1, a32 - a33, a31 + 2a33 - 1, a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a23 - a24, a22 + 2a24 - 1, a20 - a21, a19 + 2a21 - 1, a17 - a18, a16 + 2a18 - 1, a14 - a15, a13 + 2a15 - 1, a11 - a12, a10 + 2a12 - 1, a8 - a9, a7 + 2a9 - 1, a5 - a6, a4 + 2a6 - 1, a2 - a3, a1 + 2a3 - 1, a18*a30 - a15*a33 - a9*a36 + a9*a39, 3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, a18*a29 - a15*a33 + 2a9*a36 - 2a9*a39, a15*a29 - a15*a30 + a36 - a39, a12*a29 - a12*a30 + 3a6*a36 - 3a6*a39, 3a9*a29 - 2a9 + 2a24 - a33, a6*a29 + 2a6*a30 - a6 + a21 - a27, a3*a29 + 2a3*a30 - 3a6*a33, 3a15*a24 - 3a9*a36 + 3a9*a39 - a18, 3a6*a24 - 3a3*a30 + 3a6*a33 - a3, a18*a21 - a12*a24 - a18*a27 + a12*a33 + a3*a36 - a3*a39, 3a15*a21 - 3a15*a27 + 3a12*a30 - 3a6*a36 + 3a6*a39 - a12, 3a9*a21 - 3a9*a27 + 3a6*a33 - a3, a6*a18 - a12*a24 + a3*a36 - a3*a39, 3a9*a15 - a18, 3a6*a15 - a12, a3*a15 - a12*a24 + a3*a36 - a3*a39, a9*a12 - a12*a24 + a3*a36 - a3*a39, 3a6*a9 - a3, a21*a29*a36 + 2a21*a30*a36 - a27*a29*a39 + a27*a30*a39 - a15*a27 + a12*a30 - a6*a36 - a21*a36 - a27*a36 + 2a21*a39, 6a9*a27*a36 - 3a6*a33*a36 - 3a21*a33*a36 - 3a9*a27*a39 - 3a24*a27*a39 + 6a6*a33*a39 + a18*a27 - a12*a33 + a3*a36 - a3*a39"
mac2111 = "a53 - a54, a52 + 2a54 - 1, a50 - a51, a49 + 2a51 - 1, a44 - a45, a43 + 2a45 - 1, a28 + a29 + a30 - 1"
mac2112 = "a53 - a54, a52 + 2a54 - 1, a50 - a51, a49 + 2a51 - 1, a47 - a48, a46 + 2a48 - 1, a44 - a45, a43 + 2a45 - 1, a32 - a33, a31 + 2a33 - 1, a28 + a29 + a30 - 1, a23 - a24, a22 + 2a24 - 1, a8 - a9, a7 + 2a9 - 1, 3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, 3a9*a29 - 2a9 + 2a24 - a33"
mac2121_sub = "a5*a29 + 2a5*a30 - a5 + a20 - a26, 2a20*a29 a41 + a26*a29 a41 + 3a20*a29 a30*a41 - 3a20*a29*a30 a41 - 3a26*a29*a30 a41 - 2a20*a30 a41 + 2a26*a30 a41 - 3a20*a26*a29 a44 - 3a26 a29 a44 - 3a20*a26*a29*a30*a44 + 6a26 a29*a30*a44 + 6a20*a26*a30 a44 - 3a26 a30 a44 - 6a20 a29 a50 + 3a20*a26*a29 a50 - 15a20 a29*a30*a50 - 6a20*a26*a29*a30*a50 - 6a20 a30 a50 + 3a20*a26*a30 a50 + 3a20*a26*a29 a53 + 3a20*a26*a29*a30*a53 - 6a20*a26*a30 a53 - 4a20*a29 a41 - 2a26*a29 a41 - a20*a29*a30*a41 + a26*a29*a30*a41 + 5a20*a30 a41 + a26*a30 a41 + 3a20 a29*a44 + 6a20*a26*a29*a44 + 3a26 a29*a44 + 6a20 a30*a44 + 18a5*a26*a30*a44 - 6a20*a26*a30*a44 - 3a26 a30*a44 + 6a20*a26*a29*a50 - 9a5*a20*a30*a50 + 9a20 a30*a50 - 9a5*a26*a30*a50 + 12a20*a26*a30*a50 - 3a20 a29*a53 - 3a26 a29*a53 - 6a20 a30*a53 + 3a26 a30*a53 + 3a26*a29*a41 - 3a26*a30*a41 - 3a5 a44 + 3a5*a20*a44 - 3a5*a26*a44 - 6a26 a44 + 3a5 a50 - 6a5*a20*a50 + 3a20 a50 + 6a5*a26*a50 - 6a20*a26*a50 + 3a5*a20*a53 - 3a20 a53 - 3a5*a26*a53 + 6a20*a26*a53\n 3 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
mac2211_sub = "a14*a29 - a14*a30 + a35 - a38, 3a29 a35*a38*a44 + 3a29*a30*a35*a38*a44 - 6a30 a35*a38*a44 + 3a29 a35*a38*a50 + 12a29*a30*a35*a38*a50 + 12a30 a35*a38*a50 - 6a29 a38 a50 + 3a29*a30*a38 a50 + 3a30 a38 a50 - 3a29 a35 a53 - 12a29*a30*a35 a53 - 12a30 a35 a53 - 3a29 a35*a38*a53 - 3a29*a30*a35*a38*a53 + 6a30 a35*a38*a53 - a29 a35*a56 - 3a29 a30*a35*a56 + 4a30 a35*a56 - 2a29 a38*a56 - 3a29 a30*a38*a56 + 3a29*a30 a38*a56 + 2a30 a38*a56 + 3a29*a35 a44 + 6a30*a35 a44 - 6a29*a35*a38*a44 - 3a30*a35*a38*a44 + 3a29*a38 a44 - 3a30*a38 a44 - 9a14*a30*a35*a50 - 9a14*a30*a38*a50 - 12a29*a35*a38*a50 - 6a30*a35*a38*a50 + 12a29*a38 a50 + 6a30*a38 a50 + 18a14*a30*a35*a53 + 3a29*a35 a53 + 6a30*a35 a53 - 9a30*a35*a38*a53 - 3a29*a38 a53 + 3a30*a38 a53 + a29 a35*a56 + a29*a30*a35*a56 - 2a30 a35*a56 + 2a29 a38*a56 - a29*a30*a38*a56 - a30 a38*a56 - 3a14*a35*a44 - 3a35 a44 + 3a14*a38*a44 + 9a35*a38*a44 - 6a38 a44 + 3a14 a50 + 6a14*a35*a50 - 6a14*a38*a50 + 3a35*a38*a50 - 3a38 a50 - 3a14 a53 - 3a14*a35*a53 - 6a35 a53 + 3a14*a38*a53 + 3a35*a38*a53 + 3a38 a53 - 2a29*a35*a56 - 4a30*a35*a56 + 2a29*a38*a56 + 4a30*a38*a56 + 2a35*a56 - 2a38*a56\n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
mac2212_sub = "a17*a30 - a14*a32 - a8*a35 + a8*a38, 3a8*a30 + a8 - a23 - a32, a23*a29 + 2a23*a30 + a29*a32 - a30*a32 - a32, a17*a29 - a14*a32 + 2a8*a35 - 2a8*a38, a14*a29 - a14*a30 + a35 - a38, 3a8*a29 - 2a8 + 2a23 - a32, 3a14*a23 - 3a8*a35 + 3a8*a38 - a17, 3a8*a14 - a17, 3a32*a38*a44 - 2a29*a38*a47 - a30*a38*a47 - 3a32*a38*a50 + 3a32*a35*a53 + 3a8*a38*a53 - 3a23*a38*a53 + a29*a32*a56 - a30*a32*a56 - a17*a44 + a14*a47 - a35*a47 + a38*a47 + a17*a50 - a17*a53 - a8*a56 + a23*a56, 3a8*a35*a44 - 3a32*a35*a44 - 3a8*a38*a44 + a29*a35*a47 + 2a30*a35*a47 + 3a8*a35*a50 - 3a23*a38*a50 + a29*a32*a56 - a30*a32*a56 + a17*a44 - a14*a47 - a35*a47 + a38*a47 - a8*a56 + a23*a56, 3a17*a32*a44 - 6a14*a32*a44*a47 + 3a32*a35*a44*a47 + 3a14*a30*a47 - a29*a35*a47 - 2a30*a35*a47 - 3a8*a17*a44*a50 - 3a17*a32*a44*a50 + 3a14*a32*a47*a50 - 3a8*a35*a47*a50 + 3a23*a38*a47*a50 + 3a8*a17*a50 - 3a17*a23*a44*a53 + 3a8*a35*a47*a53 - 3a8*a38*a47*a53 - 3a17*a23*a50*a53 + 6a8*a32*a44*a56 - a29*a32*a47*a56 + a30*a32*a47*a56 - 3a8 a50*a56 + 3a8*a23*a50*a56 - 3a8*a32*a50*a56 + 3a8 a53*a56 - 3a8*a23*a53*a56 + 3a8*a32*a53*a56 - a35*a47 + a38*a47 + a17*a47*a50 + a17*a47*a53 - 2a32*a47*a56, 9a8*a23*a38*a44*a50 - 9a8*a23*a38*a50 + 9a23*a32*a35*a44*a53 + 9a8*a23*a38*a44*a53 + 3a29*a32*a35*a47*a53 - 3a30*a32*a35*a47*a53 + 9a23 a38*a50*a53 + 9a23*a30*a32*a53*a56 + 3a29*a32 a53*a56 - 3a30*a32 a53*a56 - 3a17*a23*a44 - 3a23*a35*a44*a47 + 6a32*a35*a44*a47 - 3a29*a35*a47 - 3a30*a35*a47 + 3a17*a23*a44*a50 - 9a8*a35*a47*a50 + 3a8*a38*a47*a50 + 3a23*a38*a47*a50 - 3a17*a23*a44*a53 + 3a8*a35*a47*a53 - 3a32*a35*a47*a53 - 3a8*a38*a47*a53 - 3a23*a38*a47*a53 - 6a8*a23*a44*a56 - 3a23*a30*a47*a56 - 3a29*a32*a47*a56 + 3a30*a32*a47*a56 + 6a8*a23*a50*a56 - 3a23 a50*a56 - 3a8*a23*a53*a56 - 3a32 a53*a56 + a14*a47 + 2a35*a47 - a38*a47 - a17*a47*a50 + a17*a47*a53 + 2a8*a47*a56 + a32*a47*a56, 9a23*a32*a35*a44 + 9a23*a30*a35*a44*a47 + a29 a35*a47 + 4a29*a30*a35*a47 - 5a30 a35*a47 - 18a23*a32*a35*a44*a50 - 6a29*a32*a35*a47*a50 + 6a30*a32*a35*a47*a50 + 27a23*a30*a38*a47*a50 + 9a29*a32*a38*a47*a50 - 9a30*a32*a38*a47*a50 + 18a8*a23*a35*a50 - 9a8*a23*a38*a50 - 9a23 a38*a50 - 9a23 a35*a44*a53 + 9a23*a32*a35*a44*a53 + 9a8*a23*a38*a44*a53 + 9a23*a30*a35*a47*a53 + 6a29*a32*a35*a47*a53 - 6a30*a32*a35*a47*a53 - 9a23 a35*a50*a53 + 9a23 a38*a50*a53 + 9a23*a30*a32*a44*a56 + 3a29*a32 a44*a56 - 3a30*a32 a44*a56 + 9a23*a30 a47*a56 + a29 a32*a47*a56 + a29*a30*a32*a47*a56 - 2a30 a32*a47*a56 + 9a23 a30*a50*a56 - 27a23*a30*a32*a50*a56 - 9a29*a32 a50*a56 + 9a30*a32 a50*a56 - 9a23 a30*a53*a56 + 18a23*a30*a32*a53*a56 + 6a29*a32 a53*a56 - 6a30*a32 a53*a56 - 3a17*a23*a44 - 9a23*a35*a44*a47 - 3a32*a35*a44*a47 + 9a23*a38*a44*a47 - 3a29*a35*a47 + 3a29*a38*a47 - 3a30*a38*a47 + 6a17*a23*a44*a50 - 3a8*a35*a47*a50 - 9a23*a35*a47*a50 + 6a32*a35*a47*a50 + 6a8*a38*a47*a50 + 6a23*a38*a47*a50 - 9a32*a38*a47*a50 - 3a17*a23*a44*a53 + 3a8*a35*a47*a53 + 3a23*a35*a47*a53 - 6a32*a35*a47*a53 - 3a8*a38*a47*a53 - 3a23*a38*a47*a53 - 3a8*a23*a44*a56 + 3a23 a44*a56 - 3a32 a44*a56 - 12a23*a30*a47*a56 - 4a29*a32*a47*a56 + a30*a32*a47*a56 - 3a23*a32*a50*a56 + 9a32 a50*a56 - 3a8*a23*a53*a56 + 3a23 a53*a56 + 3a23*a32*a53*a56 - 6a32 a53*a56 + a14*a47 + 4a35*a47 - 4a38*a47 - 2a17*a47*a50 + a17*a47*a53 - a8*a47*a56 + a23*a47*a56 + 4a32*a47*a56, 3a14*a17 a44 - 6a14 a17*a44*a47 + 3a14*a17*a35*a44*a47 + 3a14 a47 - 3a14 a35*a47 - 3a14*a17 a44*a50 - 3a17 a38*a44*a50 + 3a14 a17*a47*a50 + 3a14*a17*a38*a47*a50 + 3a17 a38*a50 - 3a17 a35*a44*a53 + 3a14*a17*a35*a47*a53 - 3a17 a35*a50*a53 + 3a8*a17*a35*a50*a56 - 3a8*a17*a38*a50*a56 - 3a8*a17*a35*a53*a56 + 3a8*a17*a38*a53*a56 + 2a17 a44*a56 - 2a14*a17*a47*a56 + a17*a35*a47*a56 - a17*a38*a47*a56 - a17 a50*a56 + a17 a53*a56, 3a29 a35*a38*a44 + 3a29*a30*a35*a38*a44 - 6a30 a35*a38*a44 + 3a29 a35*a38*a50 + 12a29*a30*a35*a38*a50 + 12a30 a35*a38*a50 - 6a29 a38 a50 + 3a29*a30*a38 a50 + 3a30 a38 a50 - 3a29 a35 a53 - 12a29*a30*a35 a53 - 12a30 a35 a53 - 3a29 a35*a38*a53 - 3a29*a30*a35*a38*a53 + 6a30 a35*a38*a53 - a29 a35*a56 - 3a29 a30*a35*a56 + 4a30 a35*a56 - 2a29 a38*a56 - 3a29 a30*a38*a56 + 3a29*a30 a38*a56 + 2a30 a38*a56 + 3a29*a35 a44 + 6a30*a35 a44 - 6a29*a35*a38*a44 - 3a30*a35*a38*a44 + 3a29*a38 a44 - 3a30*a38 a44 - 9a14*a30*a35*a50 - 9a14*a30*a38*a50 - 12a29*a35*a38*a50 - 6a30*a35*a38*a50 + 12a29*a38 a50 + 6a30*a38 a50 + 18a14*a30*a35*a53 + 3a29*a35 a53 + 6a30*a35 a53 - 9a30*a35*a38*a53 - 3a29*a38 a53 + 3a30*a38 a53 + a29 a35*a56 + a29*a30*a35*a56 - 2a30 a35*a56 + 2a29 a38*a56 - a29*a30*a38*a56 - a30 a38*a56 - 3a14*a35*a44 - 3a35 a44 + 3a14*a38*a44 + 9a35*a38*a44 - 6a38 a44 + 3a14 a50 + 6a14*a35*a50 - 6a14*a38*a50 + 3a35*a38*a50 - 3a38 a50 - 3a14 a53 - 3a14*a35*a53 - 6a35 a53 + 3a14*a38*a53 + 3a35*a38*a53 + 3a38 a53 - 2a29*a35*a56 - 4a30*a35*a56 + 2a29*a38*a56 + 4a30*a38*a56 + 2a35*a56 - 2a38*a56\n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
mac2122_inc = "3a8*a30 + a8 - a23 - a32, a23*a29 + 2a23*a30 + a29*a32 - a30*a32 - a32, 3a8*a29 - 2a8 + 2a23 - a32, a5*a29 + 2a5*a30 - a5 + a20 - a26, a2*a29 + 2a2*a30 - 3a5*a32, 3a5*a23 - 3a2*a30 + 3a5*a32 - a2, 3a8*a20 - 3a8*a26 + 3a5*a32 - a2, 3a5*a8 - a2 "
mac2221_inc = "a14*a29 - a14*a30 + a35 - a38, a11*a29 - a11*a30 + 3a5*a35 - 3a5*a38, a5*a29 + 2a5*a30 - a5 + a20 - a26, 3a14*a20 - 3a14*a26 + 3a11*a30 - 3a5*a35 + 3a5*a38 - a11, 3a5*a14 - a11, a20*a29*a35 + 2a20*a30*a35 - a26*a29*a38 + a26*a30*a38 - a14*a26 + a11*a30 - a5*a35 - a20*a35 - a26*a35 + 2a20*a38"
mac2222_inc = "a17*a30 - a14*a32 - a8*a35 + a8*a38, 3a8*a30 + a8 - a23 - a32, a23*a29 + 2a23*a30 + a29*a32 - a30*a32 - a32, a17*a29 - a14*a32 + 2a8*a35 - 2a8*a38, a14*a29 - a14*a30 + a35 - a38, a11*a29 - a11*a30 + 3a5*a35 - 3a5*a38, 3a8*a29 - 2a8 + 2a23 - a32, a5*a29 + 2a5*a30 - a5 + a20 - a26, a2*a29 + 2a2*a30 - 3a5*a32, 3a14*a23 - 3a8*a35 + 3a8*a38 - a17, 3a5*a23 - 3a2*a30 + 3a5*a32 - a2, a17*a20 - a11*a23 - a17*a26 + a11*a32 + a2*a35 - a2*a38, 3a14*a20 - 3a14*a26 + 3a11*a30 - 3a5*a35 + 3a5*a38 - a11, 3a8*a20 - 3a8*a26 + 3a5*a32 - a2, a5*a17 - a11*a23 + a2*a35 - a2*a38, 3a8*a14 - a17, 3a5*a14 - a11, a2*a14 - a11*a23 + a2*a35 - a2*a38, a8*a11 - a11*a23 + a2*a35 - a2*a38, 3a5*a8 - a2, a20*a29*a35 + 2a20*a30*a35 - a26*a29*a38 + a26*a30*a38 - a14*a26 + a11*a30 - a5*a35 - a20*a35 - a26*a35 + 2a20*a38, 6a8*a26*a35 - 3a5*a32*a35 - 3a20*a32*a35 - 3a8*a26*a38 - 3a23*a26*a38 + 6a5*a32*a38 + a17*a26 - a11*a32 + a2*a35 - a2*a38"
latex1112 = macaulay_latex(mac1112, false)
latex1121 = macaulay_latex(mac1121, false)
latex1122 = macaulay_latex(mac1122, false)
latex1211 = macaulay_latex(mac1211, false)
latex1212 = macaulay_latex(mac1212, false)
latex1221 = macaulay_latex(mac1221, false)
latex1222 = macaulay_latex(mac1222, false)
latex2111 = macaulay_latex(mac2111, false)
latex2112 = macaulay_latex(mac2112, false)
latex2121_sub = macaulay_latex(mac2121_sub, true)
latex2211_sub = macaulay_latex(mac2211_sub, true)
latex2212_sub = macaulay_latex(mac2212_sub, true)
latex2122_inc = macaulay_latex(mac2122_inc, false)
latex2221_inc = macaulay_latex(mac2221_inc, false)
latex2222_inc = macaulay_latex(mac2222_inc, false)
println("2122")
println(latex_julia(latex2122_inc))
println("2221")
println(latex_julia(latex2221_inc))
println("2222")
println(latex_julia(latex2222_inc))
"""
#a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a20 - a21, a19 + 2a21 - 1, a5 - a6, a4 + 2a6 - 1
a1111 = ["a28", "a29", "a30"]
mac1121_sub = "a6*a29 + 2a6*a30 - a6 + a21 - a27"
mac1112_sub = "3a9*a30 + a9 - a24 - a33, a24*a29 + 2a24*a30 + a29*a33 - a30*a33 - a33, 3a9*a29 - 2a9 + 2a24 - a33"
a2122_inc = unique_cf(mac2122_inc, false, a1111)
inv2122_inc = add_missing_inv(a2122_inc, a1111)
println("a2122_inc")
println(latex_julia(macaulay_latex(arr_sep(inv2122_inc), false)))
a2221_inc = unique_cf(mac2221_inc, false, a1111)
inv2221_inc = add_missing_inv(a2221_inc, a1111)
println("a2221_inc")
println(latex_julia(macaulay_latex(arr_sep(inv2221_inc), false)))
a2222_inc = unique_cf(mac2222_inc, false, a1111)
inv2222_inc = add_missing_inv(a2222_inc, a1111)
println("a2222_inc")
println(latex_julia(macaulay_latex(arr_sep(inv2222_inc), false)))
println("-----------------------")
println(latex_julia(macaulay_latex(arr_sep(inv2122_inc), false)))
println(latex_julia(macaulay_latex(arr_sep(inv2221_inc), false)))
println(latex_julia(macaulay_latex(arr_sep(inv2222_inc), false)))
"""
end
"""
add missing invariants of sub networks compared with complete networks
input:
a: an array of concordance factors (the length should be divisible by 3)
there should be no duplicates
if split into groups of 3, the first should be the major split, the rest is the minor split
eg. ["a37", "a38", "a39"] -> ["a37 + 2a39 - 1", "a38 - a39"]
a1111: the triplet of ordered concordance factors derived from n(1, 1, 1, 1)
eg. ["a37", "a38", "a39"] -> ["a37 + a38 + a39 - 1"]
eg add_missing_inv(["a4", "a5", "a6", "a28", "a29", "a30", "a19", "a20", "a21", "a25", "a26", "a27"],
["a28", "a29", "a30"])
-> ["a28 + a29 + a30 - 1, a26 - a27, a25 + 2a27 - 1, a20 - a21, a19 + 2a21 - 1, a5 - a6, a4 + 2a6 - 1"]
output: an array of all missing invariants
"""
function add_missing_inv(a, a1111)
n = length(a) #length of unique concordance factor
rst = []
for i in 1:Int(length(a)/3) #iterate every triplet of cf
if a[i*3] in a1111 #if the triplet is from n(1111)
push!(rst, a[i*3-2]*" + "*a[i*3-1]*" + "*a[i*3]*" - 1") #the sum should be 1
else
push!(rst, a[i*3-2]*" + 2"*a[i*3]*" - 1") #the sum should add up to 1
push!(rst, a[i*3-1]*" - "*a[i*3]) #the last two minor splits should be the same
end
end
return rst
end
"""
input: str: strings of the macaulay version invariants
before the newline is the invariants without exponent,
after the newline is the string of exponent, the position is the same in invariants
ASSUME the invariants only contain one element from the triplet
exp: true if there is exponent
a1111: the triplet of ordered concordance factors derived from n(1, 1, 1, 1)
eg unique_cf("a6*a29 + 2a6*a30 - a6 + a21 - a27", false, ["a28", "a29", "a30"])
-> ["a4", "a5", "a6", "a28", "a29", "a30", "a19", "a20", "a21", "a25", "a26", "a27"]
BUG: "a23 + a2" will return an error, "a23 + a2 "
"a3 + a23" will not return an error
output: array of strings, all triplet cf from the string
"""
function unique_cf(str, exp, a1111)
if exp
temp = split(str, "\n")
str = temp[1] #storing invariants
exp = temp[2] #storing exponents
end
if str[1] != 'a' #if there is a constant before `a`
temp = split(str, "a")[2:end] #skip it
else
temp = split(str, "a") #split the element on "a"
end
ret = []
#find out all the unique a from the input
for i in 1:length(temp) #iterate through every segment of the element after splitting
if length(temp[i]) > 0 #skip the empty splitted segment
a = "a"*rstrip(temp[i][1:2]) #the first two elements are all numbers, or one number and one non-numerical
if temp[i][1:2][2] == '*' || temp[i][1:2][2] == ',' #remove the non-numerical characters
a = a[1:2]
end
ind = findall(x->x==a, ret) #check if a has been added before
if size(ind) == (0,) #add the newly found a
push!(ret, a)
end
end
end
#generate the triplets of cf from the unique cf of the input
ret_comp = []
flag = false #record if any cf from n(1111) has been accessed, avoid adding the same triplet multiple times
for i in ret
int = parse(Int64, i[2:end])
if ("a"*string(int) in a1111) && flag == false #if cf from n(1111) is accessed for the first time
push!(ret_comp, a1111[1]) #add the triplet
push!(ret_comp, a1111[2])
push!(ret_comp, a1111[3])
flag = true #update the flag
elseif !("a"*string(int) in a1111) #if the current cf if not from n(1111)
if int % 3 == 0
push!(ret_comp, "a"*string(int - 2))
push!(ret_comp, "a"*string(int - 1))
push!(ret_comp, "a"*string(int))
elseif int % 3 == 1
push!(ret_comp, "a"*string(int))
push!(ret_comp, "a"*string(int + 1))
push!(ret_comp, "a"*string(int + 2))
elseif int % 3 == 2
push!(ret_comp, "a"*string(int - 1))
push!(ret_comp, "a"*string(int))
push!(ret_comp, "a"*string(int + 1))
end
end
end
return ret_comp
end
"""
input: a list of invariants separated by comma (eg. "a22 + 2a24 - 1, a8 - a9, a7 + 2a9 - 1")
output: returns arraylist of strings (eg. ["a22 + 2a24 - 1", "a8 - a9", "a7 + 2a9 - 1"])
"""
function comma_sep(str)
temp = split(str, ",") #split the string on comma
ret = [] #storing return value
for ele in temp #iterate through each element
if length(ele) > 0 #neglect the empty element
push!(ret, strip(ele, [' '])) #remove the first tab
end
end
return ret
end
"""
input: returns arraylist of strings (eg. ["a22 + 2a24 - 1", "a8 - a9", "a7 + 2a9 - 1"])
output: a list of invariants separated by comma (eg. "a22 + 2a24 - 1, a8 - a9, a7 + 2a9 - 1")
"""
function arr_sep(arr)
ans = ""
for i in 1:(length(arr)-1)
ans = ans*arr[i]*", "
end
return ans*arr[end]
end
"""
input: invariants separated by comma (eg. "a32^2 - a33, a31 + 2a33^2*a45 - 1, a28 + a29 + a30 - 1, a23 - a24, a22 + 2a24 - 1")
output: string
(eg. "\\item \$
a_{32}^{2} - a_{33}\$
\\item \$
a_{31} + 2a_{33}^{2}*a_{45} - 1\$
\\item \$
a_{28} + a_{29} + a_{30} - 1\$
\\item \$
a_{23} - a_{24}\$
\\item \$
a_{22} + 2a_{24} - 1\$")
"""
function latex_add_item(str)
temp = split(str, ",") #split the string on comma
ret = [] #storing return value
for ele in temp #iterate through each element
if length(ele) > 0 #neglect the empty element
push!(ret, "\\item \$\n"*ele*"\$\n")
end
end
return join(ret)
end
"""
input: str: strings of the macaulay version invariants
before the newline is the invariants without exponent,
after the newline is the string of exponent, the position is the same in invariants
eg. macaulay_latex("a5*a29 + 2a5*a30 - a5 + a20 - a26, 2a20*a29 a41\n 3", true)
exp: true if there is exponent
output: strings of the latex version invariants
eg. a_{5}*a_{29} + 2a_{5}*a_{30} - a_{5} + a_{20} - a_{26}, 2a_{20}*a_{29}^{3}*a_{41}
"""
function macaulay_latex(str, exp)
if exp
temp = split(str, "\n")
str = temp[1] #storing invariants
exp = temp[2] #storing exponents
j = 0 #store index in str
for i in 1:length(exp)
j += 1
if exp[i] != ' ' && str[j] == ' ' && str[j+1] != 'a'
str=str[1:j-1]*'^'*exp[i]*str[j+1:end]
j+=1
elseif exp[i] != ' ' && str[j] == ' ' && str[j+1] == 'a'
str=str[1:j-1]*'^'*exp[i]*'*'*str[j+1:end]
j+=2
end
end
end
temp = split(str, "a") #split the element on "a"
#iterate through every segment of the element after splitting
for i in 1:length(temp)
#if temp[i] is not empty,
#add "a_{}" around the index, add "{}" around the exponent
#eg. "a32^2-a33" --> ["", "32^2-", "33"] --> ["", "a_{32}^{2}-", "a_{33}"]
if length(temp[i]) > 0
#iterate though every character of the segment (temp[i][j])
for j in 1:length(temp[i])
#if the character is not a number and is the first occurance of non-number
if !occursin(r"[0-9]", string(temp[i][j]))
#add "}" in between the number and the non-number character
temp[i] = temp[i][1:j-1]*"}"*temp[i][j:length(temp[i])]
break
#if the character is number and is the last character of the segment
elseif occursin(r"[0-9]", string(temp[i][j])) && (j == length(temp[i]))
temp[i] = temp[i][1:j]*"}" #add "}" to the end
end
end
for j in 1:length(temp[i]) #handle the exponent
if occursin(r"[\^]", string(temp[i][j]))
if length(temp[i])> j+1
temp[i] = temp[i][1:j]*"{"*temp[i][j+1]*"}"*temp[i][j+2:length(temp[i])]
else
temp[i] = temp[i][1:j]*"{"*temp[i][j+1]*"}"
end
end
end
temp[i] = "a_{"*temp[i] #add "a_{" to the front
end
end
return join(temp)
end
"""
input: strings of the latex version invariants
eg. "a_{32}^{2} - a_{33}, a_{31} + 2a_{33}^{2}*a_{45} - 1, a_{28} + a_{29} + a_{30} - 1, a_{23} - a_{24}, a_{22} + 2a_{24} - 1"
output: strings of the macaulay version invariants
eg. "a32^2 - a33, a31 + 2a33^2*a45 - 1, a28 + a29 + a30 - 1, a23 - a24, a22 + 2a24 - 1"
"""
function latex_macaulay(str)
ret = replace(str, r"[{}_]" => "")
return ret
end
"""
input: strings of the latex version invariants
eg. "a_{32}^{2} - a_{33}, a_{31} + 2a_{33}^{2}*a_{45} - 1, a_{28} + a_{29} + a_{30} - 1, a_{23} - a_{24}, a_{22} + 2a_{24} - 1"
output: strings of the julia version invariants
eg. "a[32]^2 - a[33], a[31] + 2a[33]^2*a[45] - 1, a[28] + a[29] + a[30] - 1, a[23] - a[24], a[22] + 2a[24] - 1"
BUG: 3a8*a30 + a8 - a23 - a32 wrong output
"""
function latex_julia(str)
ret = []
temp = replace(str, "{" => "[")
temp = replace(temp, "}" => "]")
temp = replace(temp, "_" => "")
temp = split(temp, "^")
for i in 1:length(temp)
if length(temp[i]) > 0
if length(temp[i]) > 3
if temp[i][1] == '[' && temp[i][3] == ']' && temp[i][4] == 'a'
temp[i] = "^"*temp[i][2]*"*"*temp[i][4:length(temp[i])]
elseif temp[i][1] == '[' && temp[i][3] == ']' && temp[i][4] != 'a'
temp[i] = "^"*temp[i][2]*temp[i][4:length(temp[i])]
end
else
if temp[i][1] == '[' && temp[i][3] == ']'
temp[i] = "^"*temp[i][2]*temp[i][4:length(temp[i])]
end
end
end
push!(ret, temp[i])
end
return join(ret)
end
main() | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 134 | module PhyloDiamond
include("invariants.jl")
include("mapping.jl")
include("ntwk.jl")
include("helper.jl")
export phylo_diamond
end
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 7948 | """
input:
t: array of taxa
length(list_nw(["A", "B", "C", "D", "E", "F", "G", "H"])) ->2520 (N2222)
length(list_nw(["A", "B", "C", "D", "E", "F", "G"])) ->2520 (N1222, N2122, N2212, N2221)
length(list_nw(["A", "B", "C", "D", "E", "F"])) ->1080 (N1122, N1212, N1221, N2112, N2121, N2211)
length(list_nw(["A", "B", "C", "D", "E"])) ->240 (N1112, N1121, N1211, N2111)
output:
the whole list of potential networks for those taxa
"""
function list_nw(t)
#fill taxa array to length 8 with "na"
if length(t) != 8
for i in 1:8-length(t)
push!(t, "na") #use string "na" to avoid problems of NaN
end
end
ret = Vector{Any}([])
#n0
for i in 1:7
for j in i+1:8
#if both items are NaN, skip
#since n_i should be either 1 or 2
if t[i]=="na" && t[j]=="na"
continue
end
#remove the two selected items: t[i], t[j]
temp = deleteat!(deepcopy(t), i)
t1 = Vector{Any}(deleteat!(deepcopy(temp), j-1)) #length 6
#n1
for a in 1:5
for b in a+1:6
if t1[a]=="na" && t1[b]=="na"
continue
end
#remove the two selected items: t1[a], t1[b]
temp = deleteat!(deepcopy(t1), a)
t2 = Vector{Any}(deleteat!(deepcopy(temp), b-1)) #length 4
#n2
for c in 1:3
for d in c+1:4
if t2[c]=="na" && t2[d]=="na"
continue
end
#n3
#remove the two selected items: t2[c], t2[d]
temp = deleteat!(deepcopy(t2), c)
t3 = Vector{Any}(deleteat!(deepcopy(temp), d-1)) #length 2
if !(t3[1]=="na" && t3[2]=="na")
push!(ret, Vector{Any}([
[t[i], t[j]],
[t1[a], t1[b]],
[t2[c], t2[d]],
[t3[1], t3[2]]
]))
end
end
end
end
end
end
end
ret = Vector{Vector{Vector{Any}}}(unique!(ret)) #remove duplicated items (6 or 5 taxa)
return ret
end
"""
input: two N
output: true if the two networks are the same; false, otherwise
compare_nw([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")],
[("1", "2"), ("3", "4"), ("5", "6"), ("7", "9")]) -> false
compare_nw([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")],
[("1", "2"), ("3", "4"), ("5", "6"), ("8", "7")]) -> true
"""
function compare_nw(N1, N2)
for i in 1:4
for j in 1:2
if !(N1[i][j] in N2[i])
return false
end
end
end
return true
end
"""
input: array of tuples, individuals from each triangles of the network
output: a string of the input, mainly for saving
N_to_str([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8", "9")])
-> "[(1,2),(3,4),(5,6),(7,8,9)]"
"""
function N_to_str(N)
ret = "["
for n in N
ret=ret*"("
for j in n
if j != "na"
ret=string(ret, j*",")
end
end
ret=ret[1:end-1]*"),"
end
return ret[1:end-1]*"]"
end
"""
input: array of tuples, individuals from each triangles of the network
output: the parenthetical network format based on the wiki rules (default branch length and inheritance probability)
N_to_network([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")])
-> "((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
"""
function N_to_network(N)
rst = []
for i_taxon in 1:length(N)
str = ""
for species in N[i_taxon]
if species != "na"
if N[i_taxon][end] != "na" && N[i_taxon][end] == species
str = str*species*":1"
elseif N[i_taxon][end] == "na" && N[i_taxon][end-1] == species
str = str*species*":1"
else
str = str*species*":1,"
end
end
end
push!(rst, str)
end
return "((" * rst[4] *"):4, (((" * rst[2] * "):2, ((" * rst[1] * "):1)#H1:1::0.7):1, (#H1:1::0.3,(" * rst[3] *
"):2):1):1);"
end
"""
input: array of tuples, individuals from each triangles of the network
output: an array of each species, ignoring na
N_to_t([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")])
-> [ "1", "2", "3", "4", "5", "6", "7", "8"]
"""
function N_to_t(N)
t = []
for i_taxon in 1:length(N)
for species in N[i_taxon]
if species != "na"
push!(t, species)
end
end
end
return t
end
"""
input: array of tuples, individuals from each triangles of the network
output: N_num
N_to_N_num([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")])
-> "2222"
"""
function N_to_N_num(N)
rst = ""
for i_taxon in 1:length(N)
cnt = 0
for species in N[i_taxon]
if species != "na"
cnt += 1
end
end
rst = rst*string(cnt)
end
return rst
end
"""
input: cf table
output: an array of distinct taxa names
"""
function cf_to_t(cf)
t = unique!(cf[:,1])
t = vcat(t, unique!(cf[:,2]), unique!(cf[:,3]), unique!(cf[:,4]))
return unique!(t)
end
"""
input: the name of the file storing a list of gene trees
output: the table of CF values
"""
function generate_cf_from_gene_trees(filename_genetrees)
genetrees = readMultiTopology(filename_genetrees);
q,t = countquartetsintrees(genetrees);
df_wide = writeTableCF(q,t)
df = df_wide[:,[:t1, :t2, :t3, :t4, :CF12_34, :CF13_24, :CF14_23]]
return df
end
"""
input:
N: array of tuples, individuals from each triangles of the network
sd: control the level of noise added to cf table (for simulation use)
output: the table of CF values
"""
function generate_cf(N, sd=0)
network = N_to_network(N)
net = readTopology(network)
#identifiable edges lengths were originally missing, so assigned default value of 1.0
quartets = PhyloNetworks.allQuartets(tipLabels(net), false)
tx1 = []
tx2 = []
tx3 = []
tx4 = []
for q in quartets
push!(tx1,q.taxon[1])
push!(tx2,q.taxon[2])
push!(tx3,q.taxon[3])
push!(tx4,q.taxon[4])
end
df = DataFrame(tx1=tx1, tx2=tx2, tx3=tx3, tx4=tx4, obsCF1=ones(length(tx1)), obsCF2=zeros(length(tx1)), obsCF3=zeros(length(tx1)))
cf = readTableCF!(df)
## We need to optimize the pseudolikelihood on the network for those dummy observed CF in order to compute the expected CFs
topologyQPseudolik!(net, cf)
df_wide = fittedQuartetCF(cf)
## "true" concordance factors:
cf = df_wide[:,[:tx1, :tx2, :tx3, :tx4, :expCF12, :expCF13, :expCF14]]
## adding noise to cf table
noise = rand(Normal(0, sd), nrow(cf))
for i in 1:nrow(cf)
ind = randperm(3)
if cf[i, ind[1]+4]+noise[i]<1 && cf[i, ind[1]+4]+noise[i]>0
if cf[i, ind[2]+4]-noise[i]/2<1 && cf[i, ind[2]+4]-noise[i]/2>0
if cf[i, ind[3]+4]-noise[i]/2<1 && cf[i, ind[3]+4]-noise[i]/2>0
cf[i, ind[1]+4] = cf[i, ind[1]+4]+noise[i]
cf[i, ind[2]+4] = cf[i, ind[2]+4]-noise[i]/2
cf[i, ind[3]+4] = cf[i, ind[3]+4]-noise[i]/2
end
end
end
end
return cf
end | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 22375 | using LinearAlgebra
"""
input:
a: an array of concordance factors
output: an array of invariants
"""
function inv_net1112(a)
length(a) == 57 || error("wrong dimension of a")
return [a[32] - a[33],
a[31] + 2a[33] - 1,
a[28] + a[29] + a[30] - 1,
a[23] - a[24],
a[22] + 2a[24] - 1,
a[8] - a[9],
a[7] + 2a[9] - 1,
3a[9]*a[30] + a[9] - a[24] - a[33],
a[24]*a[29] + 2a[24]*a[30] + a[29]*a[33] - a[30]*a[33] - a[33],
3a[9]*a[29] - 2a[9] + 2a[24] - a[33]]
end
function inv_net1121(a)
length(a) == 57 || error("wrong dimension of a")
return [a[28] + a[29] + a[30] - 1,
a[26] - a[27],
a[25] + 2a[27] - 1,
a[20] - a[21],
a[19] + 2a[21] - 1,
a[5] - a[6],
a[4] + 2a[6] - 1,
a[6]*a[29] + 2a[6]*a[30] - a[6] + a[21] - a[27]]
end
function inv_net1211(a)
length(a) == 57 || error("wrong dimension of a")
return [a[38] - a[39],
a[37] + 2a[39] - 1,
a[35] - a[36],
a[34] + 2a[36] - 1,
a[28] + a[29] + a[30] - 1,
a[14] - a[15],
a[13] + 2a[15] - 1,
a[15]*a[29] - a[15]*a[30] + a[36] - a[39]]
end
function inv_net2111(a)
length(a) == 57 || error("wrong dimension of a")
return [a[53] - a[54],
a[52] + 2a[54] - 1,
a[50] - a[51],
a[49] + 2a[51] - 1,
a[44] - a[45],
a[43] + 2a[45] - 1,
a[28] + a[29] + a[30] - 1]
end
function inv_net1122(a)
length(a) == 57 || error("wrong dimension of a")
return [a[32] - a[33],
a[31] + 2a[33] - 1,
a[28] + a[29] + a[30] - 1,
a[26] - a[27],
a[25] + 2a[27] - 1,
a[23] - a[24],
a[22] + 2a[24] - 1,
a[20] - a[21],
a[19] + 2a[21] - 1,
a[8] - a[9],
a[7] + 2a[9] - 1,
a[5] - a[6],
a[4] + 2a[6] - 1,
a[2] - a[3],
a[1] + 2a[3] - 1,
3a[9]*a[30] + a[9] - a[24] - a[33],
a[24]*a[29] + 2a[24]*a[30] + a[29]*a[33] - a[30]*a[33] - a[33],
3a[9]*a[29] - 2a[9] + 2a[24] - a[33],
a[6]*a[29] + 2a[6]*a[30] - a[6] + a[21] - a[27],
a[3]*a[29] + 2a[3]*a[30] - 3a[6]*a[33],
3a[6]*a[24] - 3a[3]*a[30] + 3a[6]*a[33] - a[3],
3a[9]*a[21] - 3a[9]*a[27] + 3a[6]*a[33] - a[3],
3a[6]*a[9] - a[3]]
end
function inv_net1212(a)
length(a) == 57 || error("wrong dimension of a")
return [a[38] - a[39],
a[37] + 2a[39] - 1,
a[35] - a[36],
a[34] + 2a[36] - 1,
a[32] - a[33],
a[31] + 2a[33] - 1,
a[28] + a[29] + a[30] - 1,
a[23] - a[24],
a[22] + 2a[24] - 1,
a[17] - a[18],
a[16] + 2a[18] - 1,
a[14] - a[15],
a[13] + 2a[15] - 1,
a[8] - a[9],
a[7] + 2a[9] - 1,
a[18]*a[30] - a[15]*a[33] - a[9]*a[36] + a[9]*a[39],
3a[9]*a[30] + a[9] - a[24] - a[33],
a[24]*a[29] + 2a[24]*a[30] + a[29]*a[33] - a[30]*a[33] - a[33],
a[18]*a[29] - a[15]*a[33] + 2a[9]*a[36] - 2a[9]*a[39],
a[15]*a[29] - a[15]*a[30] + a[36] - a[39],
3a[9]*a[29] - 2a[9] + 2a[24] - a[33],
3a[15]*a[24] - 3a[9]*a[36] + 3a[9]*a[39] - a[18],
3a[9]*a[15] - a[18]]
end
function inv_net2112(a)
length(a) == 57 || error("wrong dimension of a")
return [a[53] - a[54],
a[52] + 2a[54] - 1,
a[50] - a[51],
a[49] + 2a[51] - 1,
a[47] - a[48],
a[46] + 2a[48] - 1,
a[44] - a[45],
a[43] + 2a[45] - 1,
a[32] - a[33],
a[31] + 2a[33] - 1,
a[28] + a[29] + a[30] - 1,
a[23] - a[24],
a[22] + 2a[24] - 1,
a[8] - a[9],
a[7] + 2a[9] - 1,
3a[9]*a[30] + a[9] - a[24] - a[33],
a[24]*a[29] + 2a[24]*a[30] + a[29]*a[33] - a[30]*a[33] - a[33],
3a[9]*a[29] - 2a[9] + 2a[24] - a[33]]
end
function inv_net2211(a)
length(a) == 57 || error("wrong dimension of a")
return [a[13] + 2a[15] - 1,
a[14] - a[15],
a[28] + a[29] + a[30] - 1,
a[34] + 2a[36] - 1,
a[35] - a[36],
a[37] + 2a[39] - 1,
a[38] - a[39],
a[43] + 2a[45] - 1,
a[44] - a[45],
a[49] + 2a[51] - 1,
a[50] - a[51],
a[52] + 2a[54] - 1,
a[53] - a[54],
a[55] + 2a[57] - 1,
a[56] - a[57],
a[14]*a[29] - a[14]*a[30] + a[35] - a[38],
3a[29]^2*a[35]*a[38]*a[44] + 3a[29]*a[30]*a[35]*a[38]*a[44] - 6a[30]^2*a[35]*a[38]*a[44] + 3a[29]^2*a[35]*a[38]*a[50] + 12a[29]*a[30]*a[35]*a[38]*a[50] +
12a[30]^2*a[35]*a[38]*a[50] - 6a[29]^2*a[38]^2*a[50] + 3a[29]*a[30]*a[38]^2*a[50] + 3a[30]^2*a[38]^2*a[50] - 3a[29]^2*a[35]^2*a[53] - 12a[29]*a[30]*a[35]^2*a[53] -
12a[30]^2*a[35]^2*a[53] - 3a[29]^2*a[35]*a[38]*a[53] - 3a[29]*a[30]*a[35]*a[38]*a[53] + 6a[30]^2*a[35]*a[38]*a[53] - a[29]^3*a[35]*a[56] - 3a[29]^2*a[30]*a[35]*a[56] +
4a[30]^3*a[35]*a[56] - 2a[29]^3*a[38]*a[56] - 3a[29]^2*a[30]*a[38]*a[56] + 3a[29]*a[30]^2*a[38]*a[56] + 2a[30]^3*a[38]*a[56] + 3a[29]*a[35]^2*a[44] + 6a[30]*a[35]^2*a[44] - 6a[29]*a[35]*a[38]*a[44] - 3a[30]*a[35]*a[38]*a[44] + 3a[29]*a[38]^2*a[44] -
3a[30]*a[38]^2*a[44] - 9a[14]*a[30]*a[35]*a[50] - 9a[14]*a[30]*a[38]*a[50] - 12a[29]*a[35]*a[38]*a[50] - 6a[30]*a[35]*a[38]*a[50] + 12a[29]*a[38]^2*a[50] +
6a[30]*a[38]^2*a[50] + 18a[14]*a[30]*a[35]*a[53] + 3a[29]*a[35]^2*a[53] + 6a[30]*a[35]^2*a[53] - 9a[30]*a[35]*a[38]*a[53] - 3a[29]*a[38]^2*a[53] +
3a[30]*a[38]^2*a[53] + a[29]^2*a[35]*a[56] + a[29]*a[30]*a[35]*a[56] - 2a[30]^2*a[35]*a[56] + 2a[29]^2*a[38]*a[56] - a[29]*a[30]*a[38]*a[56] -
a[30]^2*a[38]*a[56] - 3a[14]*a[35]*a[44] - 3a[35]^2*a[44] + 3a[14]*a[38]*a[44] + 9a[35]*a[38]*a[44] - 6a[38]^2*a[44] + 3a[14]^2*a[50] + 6a[14]*a[35]*a[50] -
6a[14]*a[38]*a[50] + 3a[35]*a[38]*a[50] - 3a[38]^2*a[50] - 3a[14]^2*a[53] - 3a[14]*a[35]*a[53] - 6a[35]^2*a[53] + 3a[14]*a[38]*a[53] + 3a[35]*a[38]*a[53] +
3a[38]^2*a[53] - 2a[29]*a[35]*a[56] - 4a[30]*a[35]*a[56] + 2a[29]*a[38]*a[56] + 4a[30]*a[38]*a[56] + 2a[35]*a[56] - 2a[38]*a[56]]
end
function inv_net2121(a)
length(a) == 57 || error("wrong dimension of a")
return [a[4] + 2a[6] - 1,
a[5] - a[6],
a[28] + a[29] + a[30] - 1,
a[19] + 2a[21] - 1,
a[20] - a[21],
a[25] + 2a[27] - 1,
a[26] - a[27],
a[40] + 2a[42] - 1,
a[41] - a[42],
a[43] + 2a[45] - 1,
a[44] - a[45],
a[49] + 2a[51] - 1,
a[50] - a[51],
a[52] + 2a[54] - 1,
a[53] - a[54],
a[5]*a[29] + 2a[5]*a[30] - a[5] + a[20] - a[26],
2a[20]*a[29]^3*a[41] + a[26]*a[29]^3*a[41] + 3a[20]*a[29]^2*a[30]*a[41] - 3a[20]*a[29]*a[30]^2*a[41] -
3a[26]*a[29]*a[30]^2*a[41] - 2a[20]*a[30]^3*a[41] + 2a[26]*a[30]^3*a[41] - 3a[20]*a[26]*a[29]^2*a[44] - 3a[26]^2*a[29]^2*a[44] - 3a[20]*a[26]*a[29]*a[30]*a[44] +
6a[26]^2*a[29]*a[30]*a[44] + 6a[20]*a[26]*a[30]^2*a[44] - 3a[26]^2*a[30]^2*a[44] - 6a[20]^2*a[29]^2*a[50] + 3a[20]*a[26]*a[29]^2*a[50] - 15a[20]^2*a[29]*a[30]*a[50] -
6a[20]*a[26]*a[29]*a[30]*a[50] - 6a[20]^2*a[30]^2*a[50] + 3a[20]*a[26]*a[30]^2*a[50] + 3a[20]*a[26]*a[29]^2*a[53] + 3a[20]*a[26]*a[29]*a[30]*a[53] -
6a[20]*a[26]*a[30]^2*a[53] - 4a[20]*a[29]^2*a[41] - 2a[26]*a[29]^2*a[41] - a[20]*a[29]*a[30]*a[41] + a[26]*a[29]*a[30]*a[41] + 5a[20]*a[30]^2*a[41] +
a[26]*a[30]^2*a[41] + 3a[20]^2*a[29]*a[44] + 6a[20]*a[26]*a[29]*a[44] + 3a[26]^2*a[29]*a[44] + 6a[20]^2*a[30]*a[44] + 18a[5]*a[26]*a[30]*a[44] -
6a[20]*a[26]*a[30]*a[44] - 3a[26]^2*a[30]*a[44] + 6a[20]*a[26]*a[29]*a[50] - 9a[5]*a[20]*a[30]*a[50] + 9a[20]^2*a[30]*a[50] - 9a[5]*a[26]*a[30]*a[50] +
12a[20]*a[26]*a[30]*a[50] - 3a[20]^2*a[29]*a[53] - 3a[26]^2*a[29]*a[53] - 6a[20]^2*a[30]*a[53] + 3a[26]^2*a[30]*a[53] + 3a[26]*a[29]*a[41] -
3a[26]*a[30]*a[41] - 3a[5]^2*a[44] + 3a[5]*a[20]*a[44] - 3a[5]*a[26]*a[44] - 6a[26]^2*a[44] + 3a[5]^2*a[50] - 6a[5]*a[20]*a[50] + 3a[20]^2*a[50] +
6a[5]*a[26]*a[50] - 6a[20]*a[26]*a[50] + 3a[5]*a[20]*a[53] - 3a[20]^2*a[53] - 3a[5]*a[26]*a[53] + 6a[20]*a[26]*a[53]]
end
function inv_net1221(a)
length(a) == 57 || error("wrong dimension of a")
return [a[38] - a[39],
a[37] + 2a[39] - 1,
a[35] - a[36],
a[34] + 2a[36] - 1,
a[28] + a[29] + a[30] - 1,
a[26] - a[27],
a[25] + 2a[27] - 1,
a[20] - a[21],
a[19] + 2a[21] - 1,
a[14] - a[15],
a[13] + 2a[15] - 1,
a[11] - a[12],
a[10] + 2a[12] - 1,
a[5] - a[6],
a[4] + 2a[6] - 1,
a[15]*a[29] - a[15]*a[30] + a[36] - a[39],
a[12]*a[29] - a[12]*a[30] + 3a[6]*a[36] - 3a[6]*a[39],
a[6]*a[29] + 2a[6]*a[30] - a[6] + a[21] - a[27],
3a[15]*a[21] - 3a[15]*a[27] + 3a[12]*a[30] - 3a[6]*a[36] + 3a[6]*a[39] - a[12],
3a[6]*a[15] - a[12],
a[21]*a[29]*a[36] + 2a[21]*a[30]*a[36] - a[27]*a[29]*a[39] + a[27]*a[30]*a[39] - a[15]*a[27] + a[12]*a[30] - a[6]*a[36] - a[21]*a[36] - a[27]*a[36] + 2a[21]*a[39]]
end
function inv_net1222(a)
length(a) == 57 || error("wrong dimension of a")
return [a[38] - a[39],
a[37] + 2a[39] - 1,
a[35] - a[36],
a[34] + 2a[36] - 1,
a[32] - a[33],
a[31] + 2a[33] - 1,
a[28] + a[29] + a[30] - 1,
a[26] - a[27],
a[25] + 2a[27] - 1,
a[23] - a[24],
a[22] + 2a[24] - 1,
a[20] - a[21],
a[19] + 2a[21] - 1,
a[17] - a[18],
a[16] + 2a[18] - 1,
a[14] - a[15],
a[13] + 2a[15] - 1,
a[11] - a[12],
a[10] + 2a[12] - 1,
a[8] - a[9],
a[7] + 2a[9] - 1,
a[5] - a[6],
a[4] + 2a[6] - 1,
a[2] - a[3],
a[1] + 2a[3] - 1,
a[18]*a[30] - a[15]*a[33] - a[9]*a[36] + a[9]*a[39],
3a[9]*a[30] + a[9] - a[24] - a[33],
a[24]*a[29] + 2a[24]*a[30] + a[29]*a[33] - a[30]*a[33] - a[33],
a[18]*a[29] - a[15]*a[33] + 2a[9]*a[36] - 2a[9]*a[39],
a[15]*a[29] - a[15]*a[30] + a[36] - a[39],
a[12]*a[29] - a[12]*a[30] + 3a[6]*a[36] - 3a[6]*a[39],
3a[9]*a[29] - 2a[9] + 2a[24] - a[33],
a[6]*a[29] + 2a[6]*a[30] - a[6] + a[21] - a[27],
a[3]*a[29] + 2a[3]*a[30] - 3a[6]*a[33],
3a[15]*a[24] - 3a[9]*a[36] + 3a[9]*a[39] - a[18],
3a[6]*a[24] - 3a[3]*a[30] + 3a[6]*a[33] - a[3],
a[18]*a[21] - a[12]*a[24] - a[18]*a[27] + a[12]*a[33] + a[3]*a[36] - a[3]*a[39],
3a[15]*a[21] - 3a[15]*a[27] + 3a[12]*a[30] - 3a[6]*a[36] + 3a[6]*a[39] - a[12],
3a[9]*a[21] - 3a[9]*a[27] + 3a[6]*a[33] - a[3],
a[6]*a[18] - a[12]*a[24] + a[3]*a[36] - a[3]*a[39],
3a[9]*a[15] - a[18],
3a[6]*a[15] - a[12],
a[3]*a[15] - a[12]*a[24] + a[3]*a[36] - a[3]*a[39],
a[9]*a[12] - a[12]*a[24] + a[3]*a[36] - a[3]*a[39],
3a[6]*a[9] - a[3],
a[21]*a[29]*a[36] + 2a[21]*a[30]*a[36] - a[27]*a[29]*a[39] + a[27]*a[30]*a[39] - a[15]*a[27] + a[12]*a[30] - a[6]*a[36] - a[21]*a[36] - a[27]*a[36] + 2a[21]*a[39],
6a[9]*a[27]*a[36] - 3a[6]*a[33]*a[36] - 3a[21]*a[33]*a[36] - 3a[9]*a[27]*a[39] - 3a[24]*a[27]*a[39] + 6a[6]*a[33]*a[39] + a[18]*a[27] - a[12]*a[33] + a[3]*a[36] - a[3]*a[39]]
end
function inv_net2212(a)
length(a) == 57 || error("wrong dimension of a")
return [a[16] + 2a[18] - 1,
a[17] - a[18],
a[28] + a[29] + a[30] - 1,
a[13] + 2a[15] - 1,
a[14] - a[15],
a[31] + 2a[33] - 1,
a[32] - a[33],
a[7] + 2a[9] - 1,
a[8] - a[9],
a[34] + 2a[36] - 1,
a[35] - a[36],
a[37] + 2a[39] - 1,
a[38] - a[39],
a[22] + 2a[24] - 1,
a[23] - a[24],
a[43] + 2a[45] - 1,
a[44] - a[45],
a[46] + 2a[48] - 1,
a[47] - a[48],
a[49] + 2a[51] - 1,
a[50] - a[51],
a[52] + 2a[54] - 1,
a[53] - a[54],
a[55] + 2a[57] - 1,
a[56] - a[57],
a[17]*a[30] - a[14]*a[32] - a[8]*a[35] + a[8]*a[38],
3a[8]*a[30] + a[8] - a[23] - a[32],
a[23]*a[29] + 2a[23]*a[30] + a[29]*a[32] - a[30]*a[32] - a[32],
a[17]*a[29] - a[14]*a[32] + 2a[8]*a[35] - 2a[8]*a[38],
a[14]*a[29] - a[14]*a[30] + a[35] - a[38],
3a[8]*a[29] - 2a[8] + 2a[23] - a[32],
3a[14]*a[23] - 3a[8]*a[35] + 3a[8]*a[38] - a[17],
3a[8]*a[14] - a[17],
3a[32]*a[38]*a[44] - 2a[29]*a[38]*a[47] - a[30]*a[38]*a[47] - 3a[32]*a[38]*a[50] + 3a[32]*a[35]*a[53] + 3a[8]*a[38]*a[53] - 3a[23]*a[38]*a[53] +
a[29]*a[32]*a[56] - a[30]*a[32]*a[56] - a[17]*a[44] + a[14]*a[47] - a[35]*a[47] + a[38]*a[47] + a[17]*a[50] - a[17]*a[53] - a[8]*a[56] + a[23]*a[56],
3a[8]*a[35]*a[44] - 3a[32]*a[35]*a[44] - 3a[8]*a[38]*a[44] + a[29]*a[35]*a[47] + 2a[30]*a[35]*a[47] + 3a[8]*a[35]*a[50] - 3a[23]*a[38]*a[50] +
a[29]*a[32]*a[56] - a[30]*a[32]*a[56] + a[17]*a[44] - a[14]*a[47] - a[35]*a[47] + a[38]*a[47] - a[8]*a[56] + a[23]*a[56],
3a[17]*a[32]*a[44]^2 - 6a[14]*a[32]*a[44]*a[47] + 3a[32]*a[35]*a[44]*a[47] + 3a[14]*a[30]*a[47]^2 - a[29]*a[35]*a[47]^2 - 2a[30]*a[35]*a[47]^2 -
3a[8]*a[17]*a[44]*a[50] - 3a[17]*a[32]*a[44]*a[50] + 3a[14]*a[32]*a[47]*a[50] - 3a[8]*a[35]*a[47]*a[50] + 3a[23]*a[38]*a[47]*a[50] + 3a[8]*a[17]*a[50]^2 -
3a[17]*a[23]*a[44]*a[53] + 3a[8]*a[35]*a[47]*a[53] - 3a[8]*a[38]*a[47]*a[53] - 3a[17]*a[23]*a[50]*a[53] + 6a[8]*a[32]*a[44]*a[56] - a[29]*a[32]*a[47]*a[56] +
a[30]*a[32]*a[47]*a[56] - 3a[8]^2*a[50]*a[56] + 3a[8]*a[23]*a[50]*a[56] - 3a[8]*a[32]*a[50]*a[56] + 3a[8]^2*a[53]*a[56] - 3a[8]*a[23]*a[53]*a[56] +
3a[8]*a[32]*a[53]*a[56] - a[35]*a[47]^2 + a[38]*a[47]^2 + a[17]*a[47]*a[50] + a[17]*a[47]*a[53] - 2a[32]*a[47]*a[56],
9a[8]*a[23]*a[38]*a[44]*a[50] - 9a[8]*a[23]*a[38]*a[50]^2 + 9a[23]*a[32]*a[35]*a[44]*a[53] + 9a[8]*a[23]*a[38]*a[44]*a[53] + 3a[29]*a[32]*a[35]*a[47]*a[53] -
3a[30]*a[32]*a[35]*a[47]*a[53] + 9a[23]^2*a[38]*a[50]*a[53] + 9a[23]*a[30]*a[32]*a[53]*a[56] + 3a[29]*a[32]^2*a[53]*a[56] - 3a[30]*a[32]^2*a[53]*a[56] -
3a[17]*a[23]*a[44]^2 - 3a[23]*a[35]*a[44]*a[47] + 6a[32]*a[35]*a[44]*a[47] - 3a[29]*a[35]*a[47]^2 - 3a[30]*a[35]*a[47]^2 + 3a[17]*a[23]*a[44]*a[50] -
9a[8]*a[35]*a[47]*a[50] + 3a[8]*a[38]*a[47]*a[50] + 3a[23]*a[38]*a[47]*a[50] - 3a[17]*a[23]*a[44]*a[53] + 3a[8]*a[35]*a[47]*a[53] - 3a[32]*a[35]*a[47]*a[53] -
3a[8]*a[38]*a[47]*a[53] - 3a[23]*a[38]*a[47]*a[53] - 6a[8]*a[23]*a[44]*a[56] - 3a[23]*a[30]*a[47]*a[56] - 3a[29]*a[32]*a[47]*a[56] + 3a[30]*a[32]*a[47]*a[56] +
6a[8]*a[23]*a[50]*a[56] - 3a[23]^2*a[50]*a[56] - 3a[8]*a[23]*a[53]*a[56] - 3a[32]^2*a[53]*a[56] + a[14]*a[47]^2 + 2a[35]*a[47]^2 - a[38]*a[47]^2 -
a[17]*a[47]*a[50] + a[17]*a[47]*a[53] + 2a[8]*a[47]*a[56] + a[32]*a[47]*a[56],
9a[23]*a[32]*a[35]*a[44]^2 + 9a[23]*a[30]*a[35]*a[44]*a[47] + a[29]^2*a[35]*a[47]^2 +
4a[29]*a[30]*a[35]*a[47]^2 - 5a[30]^2*a[35]*a[47]^2 - 18a[23]*a[32]*a[35]*a[44]*a[50] - 6a[29]*a[32]*a[35]*a[47]*a[50] + 6a[30]*a[32]*a[35]*a[47]*a[50] +
27a[23]*a[30]*a[38]*a[47]*a[50] + 9a[29]*a[32]*a[38]*a[47]*a[50] - 9a[30]*a[32]*a[38]*a[47]*a[50] + 18a[8]*a[23]*a[35]*a[50]^2 - 9a[8]*a[23]*a[38]*a[50]^2 -
9a[23]^2*a[38]*a[50]^2 - 9a[23]^2*a[35]*a[44]*a[53] + 9a[23]*a[32]*a[35]*a[44]*a[53] + 9a[8]*a[23]*a[38]*a[44]*a[53] + 9a[23]*a[30]*a[35]*a[47]*a[53] +
6a[29]*a[32]*a[35]*a[47]*a[53] - 6a[30]*a[32]*a[35]*a[47]*a[53] - 9a[23]^2*a[35]*a[50]*a[53] + 9a[23]^2*a[38]*a[50]*a[53] + 9a[23]*a[30]*a[32]*a[44]*a[56] +
3a[29]*a[32]^2*a[44]*a[56] - 3a[30]*a[32]^2*a[44]*a[56] + 9a[23]*a[30]^2*a[47]*a[56] + a[29]^2*a[32]*a[47]*a[56] + a[29]*a[30]*a[32]*a[47]*a[56] -
2a[30]^2*a[32]*a[47]*a[56] + 9a[23]^2*a[30]*a[50]*a[56] - 27a[23]*a[30]*a[32]*a[50]*a[56] - 9a[29]*a[32]^2*a[50]*a[56] + 9a[30]*a[32]^2*a[50]*a[56] -
9a[23]^2*a[30]*a[53]*a[56] + 18a[23]*a[30]*a[32]*a[53]*a[56] + 6a[29]*a[32]^2*a[53]*a[56] - 6a[30]*a[32]^2*a[53]*a[56] - 3a[17]*a[23]*a[44]^2 -
9a[23]*a[35]*a[44]*a[47] - 3a[32]*a[35]*a[44]*a[47] + 9a[23]*a[38]*a[44]*a[47] - 3a[29]*a[35]*a[47]^2 + 3a[29]*a[38]*a[47]^2 - 3a[30]*a[38]*a[47]^2 +
6a[17]*a[23]*a[44]*a[50] - 3a[8]*a[35]*a[47]*a[50] - 9a[23]*a[35]*a[47]*a[50] + 6a[32]*a[35]*a[47]*a[50] + 6a[8]*a[38]*a[47]*a[50] + 6a[23]*a[38]*a[47]*a[50] -
9a[32]*a[38]*a[47]*a[50] - 3a[17]*a[23]*a[44]*a[53] + 3a[8]*a[35]*a[47]*a[53] + 3a[23]*a[35]*a[47]*a[53] - 6a[32]*a[35]*a[47]*a[53] - 3a[8]*a[38]*a[47]*a[53] -
3a[23]*a[38]*a[47]*a[53] - 3a[8]*a[23]*a[44]*a[56] + 3a[23]^2*a[44]*a[56] - 3a[32]^2*a[44]*a[56] - 12a[23]*a[30]*a[47]*a[56] - 4a[29]*a[32]*a[47]*a[56] +
a[30]*a[32]*a[47]*a[56] - 3a[23]*a[32]*a[50]*a[56] + 9a[32]^2*a[50]*a[56] - 3a[8]*a[23]*a[53]*a[56] + 3a[23]^2*a[53]*a[56] + 3a[23]*a[32]*a[53]*a[56] -
6a[32]^2*a[53]*a[56] + a[14]*a[47]^2 + 4a[35]*a[47]^2 - 4a[38]*a[47]^2 - 2a[17]*a[47]*a[50] + a[17]*a[47]*a[53] - a[8]*a[47]*a[56] + a[23]*a[47]*a[56] +
4a[32]*a[47]*a[56],
3a[14]*a[17]^2*a[44]^2 - 6a[14]^2*a[17]*a[44]*a[47] + 3a[14]*a[17]*a[35]*a[44]*a[47] + 3a[14]^3*a[47]^2 - 3a[14]^2*a[35]*a[47]^2 -
3a[14]*a[17]^2*a[44]*a[50] - 3a[17]^2*a[38]*a[44]*a[50] + 3a[14]^2*a[17]*a[47]*a[50] + 3a[14]*a[17]*a[38]*a[47]*a[50] + 3a[17]^2*a[38]*a[50]^2 -
3a[17]^2*a[35]*a[44]*a[53] + 3a[14]*a[17]*a[35]*a[47]*a[53] - 3a[17]^2*a[35]*a[50]*a[53] + 3a[8]*a[17]*a[35]*a[50]*a[56] - 3a[8]*a[17]*a[38]*a[50]*a[56] -
3a[8]*a[17]*a[35]*a[53]*a[56] + 3a[8]*a[17]*a[38]*a[53]*a[56] + 2a[17]^2*a[44]*a[56] - 2a[14]*a[17]*a[47]*a[56] + a[17]*a[35]*a[47]*a[56] - a[17]*a[38]*a[47]*a[56] -
a[17]^2*a[50]*a[56] + a[17]^2*a[53]*a[56],
3a[29]^2*a[35]*a[38]*a[44] + 3a[29]*a[30]*a[35]*a[38]*a[44] - 6a[30]^2*a[35]*a[38]*a[44] + 3a[29]^2*a[35]*a[38]*a[50] +
12a[29]*a[30]*a[35]*a[38]*a[50] + 12a[30]^2*a[35]*a[38]*a[50] - 6a[29]^2*a[38]^2*a[50] + 3a[29]*a[30]*a[38]^2*a[50] + 3a[30]^2*a[38]^2*a[50] -
3a[29]^2*a[35]^2*a[53] - 12a[29]*a[30]*a[35]^2*a[53] - 12a[30]^2*a[35]^2*a[53] - 3a[29]^2*a[35]*a[38]*a[53] - 3a[29]*a[30]*a[35]*a[38]*a[53] +
6a[30]^2*a[35]*a[38]*a[53] - a[29]^3*a[35]*a[56] - 3a[29]^2*a[30]*a[35]*a[56] + 4a[30]^3*a[35]*a[56] - 2a[29]^3*a[38]*a[56] - 3a[29]^2*a[30]*a[38]*a[56] +
3a[29]*a[30]^2*a[38]*a[56] + 2a[30]^3*a[38]*a[56] + 3a[29]*a[35]^2*a[44] + 6a[30]*a[35]^2*a[44] - 6a[29]*a[35]*a[38]*a[44] - 3a[30]*a[35]*a[38]*a[44] +
3a[29]*a[38]^2*a[44] - 3a[30]*a[38]^2*a[44] - 9a[14]*a[30]*a[35]*a[50] - 9a[14]*a[30]*a[38]*a[50] - 12a[29]*a[35]*a[38]*a[50] - 6a[30]*a[35]*a[38]*a[50] +
12a[29]*a[38]^2*a[50] + 6a[30]*a[38]^2*a[50] + 18a[14]*a[30]*a[35]*a[53] + 3a[29]*a[35]^2*a[53] + 6a[30]*a[35]^2*a[53] - 9a[30]*a[35]*a[38]*a[53] -
3a[29]*a[38]^2*a[53] + 3a[30]*a[38]^2*a[53] + a[29]^2*a[35]*a[56] + a[29]*a[30]*a[35]*a[56] - 2a[30]^2*a[35]*a[56] + 2a[29]^2*a[38]*a[56] -
a[29]*a[30]*a[38]*a[56] - a[30]^2*a[38]*a[56] - 3a[14]*a[35]*a[44] - 3a[35]^2*a[44] + 3a[14]*a[38]*a[44] + 9a[35]*a[38]*a[44] - 6a[38]^2*a[44] +
3a[14]^2*a[50] + 6a[14]*a[35]*a[50] - 6a[14]*a[38]*a[50] + 3a[35]*a[38]*a[50] - 3a[38]^2*a[50] - 3a[14]^2*a[53] - 3a[14]*a[35]*a[53] - 6a[35]^2*a[53] +
3a[14]*a[38]*a[53] + 3a[35]*a[38]*a[53] + 3a[38]^2*a[53] - 2a[29]*a[35]*a[56] - 4a[30]*a[35]*a[56] + 2a[29]*a[38]*a[56] + 4a[30]*a[38]*a[56] + 2a[35]*a[56] - 2a[38]*a[56]]
end
function inv_net2122(a)
length(a) == 57 || error("wrong dimension of a")
return [a[7] + 2a[9] - 1,
a[8] - a[9],
a[28] + a[29] + a[30] - 1,
a[22] + 2a[24] - 1,
a[23] - a[24],
a[31] + 2a[33] - 1,
a[32] - a[33],
a[4] + 2a[6] - 1,
a[5] - a[6],
a[19] + 2a[21] - 1,
a[20] - a[21],
a[25] + 2a[27] - 1,
a[26] - a[27],
a[1] + 2a[3] - 1,
a[2] - a[3],
3a[8]*a[30] + a[8] - a[23] - a[32],
a[23]*a[29] + 2a[23]*a[30] + a[29]*a[32] - a[30]*a[32] - a[32],
3a[8]*a[29] - 2a[8] + 2a[23] - a[32],
a[5]*a[29] + 2a[5]*a[30] - a[5] + a[20] - a[26],
a[2]*a[29] + 2a[2]*a[30] - 3a[5]*a[32],
3a[5]*a[23] - 3a[2]*a[30] + 3a[5]*a[32] - a[2],
3a[8]*a[20] - 3a[8]*a[26] + 3a[5]*a[32] - a[2],
3a[5]*a[8] - a[2]]
end
function inv_net2221(a)
length(a) == 57 || error("wrong dimension of a")
return [a[13] + 2a[15] - 1,
a[14] - a[15],
a[28] + a[29] + a[30] - 1,
a[34] + 2a[36] - 1,
a[35] - a[36],
a[37] + 2a[39] - 1,
a[38] - a[39],
a[10] + 2a[12] - 1,
a[11] - a[12],
a[4] + 2a[6] - 1,
a[5] - a[6],
a[19] + 2a[21] - 1,
a[20] - a[21],
a[25] + 2a[27] - 1,
a[26] - a[27],
a[14]*a[29] - a[14]*a[30] + a[35] - a[38],
a[11]*a[29] - a[11]*a[30] + 3a[5]*a[35] - 3a[5]*a[38],
a[5]*a[29] + 2a[5]*a[30] - a[5] + a[20] - a[26],
3a[14]*a[20] - 3a[14]*a[26] + 3a[11]*a[30] - 3a[5]*a[35] + 3a[5]*a[38] - a[11],
3a[5]*a[14] - a[11],
a[20]*a[29]*a[35] + 2a[20]*a[30]*a[35] - a[26]*a[29]*a[38] + a[26]*a[30]*a[38] - a[14]*a[26] + a[11]*a[30] - a[5]*a[35] - a[20]*a[35] - a[26]*a[35] + 2a[20]*a[38]]
end
function inv_net2222(a)
length(a) == 57 || error("wrong dimension of a")
return [a[16] + 2a[18] - 1,
a[17] - a[18],
a[28] + a[29] + a[30] - 1,
a[13] + 2a[15] - 1,
a[14] - a[15],
a[31] + 2a[33] - 1,
a[32] - a[33],
a[7] + 2a[9] - 1,
a[8] - a[9],
a[34] + 2a[36] - 1,
a[35] - a[36],
a[37] + 2a[39] - 1,
a[38] - a[39],
a[22] + 2a[24] - 1,
a[23] - a[24],
a[10] + 2a[12] - 1,
a[11] - a[12],
a[4] + 2a[6] - 1,
a[5] - a[6],
a[19] + 2a[21] - 1,
a[20] - a[21],
a[25] + 2a[27] - 1,
a[26] - a[27],
a[1] + 2a[3] - 1,
a[2] - a[3],
a[17]*a[30] - a[14]*a[32] - a[8]*a[35] + a[8]*a[38],
3a[8]*a[30] + a[8] - a[23] - a[32],
a[23]*a[29] + 2a[23]*a[30] + a[29]*a[32] - a[30]*a[32] - a[32],
a[17]*a[29] - a[14]*a[32] + 2a[8]*a[35] - 2a[8]*a[38],
a[14]*a[29] - a[14]*a[30] + a[35] - a[38],
a[11]*a[29] - a[11]*a[30] + 3a[5]*a[35] - 3a[5]*a[38],
3a[8]*a[29] - 2a[8] + 2a[23] - a[32],
a[5]*a[29] + 2a[5]*a[30] - a[5] + a[20] - a[26],
a[2]*a[29] + 2a[2]*a[30] - 3a[5]*a[32],
3a[14]*a[23] - 3a[8]*a[35] + 3a[8]*a[38] - a[17],
3a[5]*a[23] - 3a[2]*a[30] + 3a[5]*a[32] - a[2],
a[17]*a[20] - a[11]*a[23] - a[17]*a[26] + a[11]*a[32] + a[2]*a[35] - a[2]*a[38],
3a[14]*a[20] - 3a[14]*a[26] + 3a[11]*a[30] - 3a[5]*a[35] + 3a[5]*a[38] - a[11],
3a[8]*a[20] - 3a[8]*a[26] + 3a[5]*a[32] - a[2],
a[5]*a[17] - a[11]*a[23] + a[2]*a[35] - a[2]*a[38],
3a[8]*a[14] - a[17],
3a[5]*a[14] - a[11],
a[2]*a[14] - a[11]*a[23] + a[2]*a[35] - a[2]*a[38],
a[8]*a[11] - a[11]*a[23] + a[2]*a[35] - a[2]*a[38],
3a[5]*a[8] - a[2],
a[20]*a[29]*a[35] + 2a[20]*a[30]*a[35] - a[26]*a[29]*a[38] + a[26]*a[30]*a[38] - a[14]*a[26] + a[11]*a[30] - a[5]*a[35] - a[20]*a[35] - a[26]*a[35] + 2a[20]*a[38],
6a[8]*a[26]*a[35] - 3a[5]*a[32]*a[35] - 3a[20]*a[32]*a[35] - 3a[8]*a[26]*a[38] - 3a[23]*a[26]*a[38] + 6a[5]*a[32]*a[38] + a[17]*a[26] - a[11]*a[32] + a[2]*a[35] - a[2]*a[38]]
end | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 6392 | using CSV, DataFrames
"""
input:
N: array of tuples, individuals from each triangles of the network
q: individuals of the quartet
eg. get_n([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")], ["C", "E", "G", "H"])
[0, 1, 1, 2]
get_n([("A", "B"), ("C", "D"), ("E", NaN), ("G", "H")], ["C", "E", "G", "H"])
[0, 1, 1, 2]
output: the number of individuals from each of the 4 triangles of the network (the quartet structure)
"""
function get_n(N, q)
rst = [0, 0, 0, 0]
for i in 1:4
for j in 1:4
if q[j] in N[i]
rst[i] += 1
end
end
end
return rst
end
"""
input:
N: array of tuples, individuals from each triangles of the network
q: individuals of the quartet
cfs: the dataframe storing the cf values
eg. cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")],
["A","B","E","C"],
[0.8718629189804454,0.06406854050977726,0.06406854050977726])
[0.8718629189804454,0.06406854050977726,0.06406854050977726]
output: returns the CFs in the order major, minor, minor
"""
function cfs_in_order(N, q, cfs)
n = get_n(N, q)
if n != [1, 1, 1, 1]
ind_major = findall(x->x==2, n)[1] # index of n with major split
ret = [N[ind_major][1], N[ind_major][2]] # the two taxon in the major split
# if q[1] is one of the two taxon in the major split
# locate `a` with index of the other taxon in q
if q[1] == ret[1]
i = findall(x->x==ret[2], q)[1]
if i == 2
return [cfs[1], cfs[2], cfs[3]]
elseif i == 3
return [cfs[2], cfs[1], cfs[3]]
elseif i == 4
return [cfs[3], cfs[1], cfs[2]]
end
elseif q[1] == ret[2]
i = findall(x->x==ret[1], q)[1]
if i == 2
return [cfs[1], cfs[2], cfs[3]]
elseif i == 3
return [cfs[2], cfs[1], cfs[3]]
elseif i == 4
return [cfs[3], cfs[1], cfs[2]]
end
# if q[1] is not one of the two taxon in the major split
elseif (q[2] == ret[1]) & (q[3] == ret[2]) |
(q[2] == ret[2]) & (q[3] == ret[1])
return [cfs[3], cfs[1], cfs[2]]
elseif (q[2] == ret[1]) & (q[4] == ret[2]) |
(q[2] == ret[2]) & (q[4] == ret[1])
return [cfs[2], cfs[1], cfs[3]]
elseif (q[3] == ret[1]) & (q[4] == ret[2]) |
(q[3] == ret[2]) & (q[4] == ret[1])
return [cfs[1], cfs[2], cfs[3]]
end
end
#handle case1111
#enumerate all possible order of q, and its corresponding cf
all_cfs = []
all_q = []
push!(all_cfs, [cfs[1], cfs[2], cfs[3]])
push!(all_q, [q[1], q[2], q[3], q[4]])
push!(all_q, [q[2], q[1], q[4], q[3]])
push!(all_q, [q[3], q[4], q[1], q[2]])
push!(all_q, [q[4], q[3], q[2], q[1]])
push!(all_cfs, [cfs[1], cfs[3], cfs[2]])
push!(all_q, [q[1], q[2], q[4], q[3]])
push!(all_q, [q[2], q[1], q[3], q[4]])
push!(all_q, [q[3], q[4], q[2], q[1]])
push!(all_q, [q[4], q[3], q[1], q[2]])
push!(all_cfs, [cfs[2], cfs[1], cfs[3]])
push!(all_q, [q[1], q[3], q[2], q[4]])
push!(all_q, [q[2], q[4], q[1], q[3]])
push!(all_q, [q[3], q[1], q[4], q[2]])
push!(all_q, [q[4], q[2], q[3], q[1]])
push!(all_cfs, [cfs[2], cfs[3], cfs[1]])
push!(all_q, [q[1], q[3], q[4], q[2]])
push!(all_q, [q[2], q[4], q[3], q[1]])
push!(all_q, [q[3], q[1], q[2], q[4]])
push!(all_q, [q[4], q[2], q[1], q[3]])
push!(all_cfs, [cfs[3], cfs[2], cfs[1]])
push!(all_q, [q[1], q[4], q[3], q[2]])
push!(all_q, [q[2], q[3], q[4], q[1]])
push!(all_q, [q[3], q[2], q[1], q[4]])
push!(all_q, [q[4], q[1], q[2], q[3]])
push!(all_cfs, [cfs[3], cfs[1], cfs[2]])
push!(all_q, [q[1], q[4], q[2], q[3]])
push!(all_q, [q[2], q[3], q[1], q[4]])
push!(all_q, [q[3], q[2], q[4], q[1]])
push!(all_q, [q[4], q[1], q[3], q[2]])
q_order = [] #reorder quartet according to order of N
for i in 1:4
for j in 1:4
if q[j] in N[i]
push!(q_order, q[j])
end
end
end
if n == [1, 1, 1, 1]
ind = findall(x->x==q_order, all_q)[1]
return all_cfs[(ind-1)÷4+1]
end
return false
end
"""
input:
cf: dataframe of concordance factors
N: array of tuples, individuals from each triangles of the network
verbose (default false): print variables to screen
output: returns vector a
for a's with the same quartet structure `n`, take the mean of a's
the order of a is determined by the order of n_order
"""
function get_a(cf, N; verbose=false::Bool)
# 19 different n, 57 different a
# this is a vector that we control (as developers), so we can define it internally
n_order = [[0, 0, 2, 2], [0, 1, 2, 1], [0, 1, 1, 2], [0, 2, 2, 0],
[0, 2, 1, 1], [0, 2, 0, 2], [1, 0, 2, 1], [1, 0, 1, 2],
[1, 1, 2, 0], [1, 1, 1, 1], [1, 1, 0, 2], [1, 2, 1, 0],
[1, 2, 0, 1], [2, 0, 2, 0], [2, 0, 1, 1], [2, 0, 0, 2],
[2, 1, 1, 0], [2, 1, 0, 1], [2, 2, 0, 0]]
a = zeros(length(n_order)*3)
c = zeros(length(n_order)*3) #create vector that counts how many rows are mapped to each a value
#it has the repeated entried to match the dimension of a
for i in 1:nrow(cf)
verbose && @show i
temp = Array(cf[i, :])
q = temp[1:4]
verbose && @show q
cfs = [temp[5], temp[6], temp[7]]
verbose && @show cfs
n = get_n(N, q)
verbose && @show n
if (sum(n) != 4) #if input network does not match with cf table
continue
end
cfs_ord = cfs_in_order(N, q, cfs) #reorder cf as major, minor, minor
#according to N
verbose && @show cfs_ord
ind = findall(x->x==n, n_order)[1] #the correct index of n in vector a
verbose && @show ind
a[ind*3] += cfs_ord[3]
a[ind*3-1] += cfs_ord[2]
a[ind*3-2] += cfs_ord[1]
c[ind*3] += 1
c[ind*3-1] += 1
c[ind*3-2] += 1
end
a = a./c
return a
end | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 10083 | include("mapping.jl")
include("invariants.jl")
include("helper.jl")
using PhyloNetworks, PhyloPlots, DataFrames, CSV, Statistics, Distributions, Random, DelimitedFiles, Combinatorics, StatsBase
"""
Implement PhyloDiamond algorithm (input cf table)
input:
cf: concordance factor table (first 4 columns should be taxon names, last 3 columns should be cf values)
m: the number of optimal phylogenetic networks returned
output_filename: a file name for the output file (or "phylo_diamond.txt" by default)
output:
top m optimal phylogenetic networks
"""
function phylo_diamond(cf::DataFrame, m::Int64, output_filename::String="phylo_diamond.txt")
cf = rename!(cf,[:tx1,:tx2, :tx3, :tx4, :expCF12,:expCF13,:expCF14])
t = cf_to_t(cf) #get all taxon names
if size(cf, 1) != binomial(length(t), 4) || size(cf, 2) != 7 #check the dimension of cf table
error("Please provide a complete cf table")
end
cf, value_map = taxon_dict(cf) #rename taxon to numbers
if length(t) <= 5
error("PhyloDiamond only accept more than 5 taxon")
elseif length(t) <= 8
phylo_diamond_no_more_than_8_helper(cf, m, output_filename, value_map)
else
phylo_diamond_more_than_8_helper(cf, m, output_filename, value_map)
end
end
"""
Implement PhyloDiamond algorithm (input gene tree file)
input:
gene_trees_filename
m: the number of optimal phylogenetic networks returned
output_filename: a file name for the output file (or "phylo_diamond.txt" by default)
output:
top m optimal phylogenetic networks
"""
function phylo_diamond(gene_trees_filename::String, m::Int64, output_filename::String="phylo_diamond.txt")
cf = generate_cf_from_gene_trees(gene_trees_filename)
cf = rename!(cf,[:tx1,:tx2, :tx3, :tx4, :expCF12,:expCF13,:expCF14])
t = cf_to_t(cf)
cf, value_map = taxon_dict(cf)
if length(t) <= 5
error("PhyloDiamond only accept more than 5 taxon")
elseif length(t) <= 8
phylo_diamond_no_more_than_8_helper(cf, m, output_filename, value_map)
else
phylo_diamond_more_than_8_helper(cf, m, output_filename, value_map)
end
end
"""
helper function to handle no more than 8 taxa
input:
cf: cf table
m: the number of optimal phylogenetic networks returned
output_filename: input a filename if users need to save output to a file; otherwise leave it blank or ""
newick: return networks in newick format if true; otherwise [(1,2),(3,4),(5,6),(7,8,9)]
value_map: the dictionary of taxa to numbers
output:
top m optimal phylogenetic networks
"""
function phylo_diamond_no_more_than_8_helper(cf, m, output_filename, value_map)
t = cf_to_t(cf)
net_all = list_nw(t)
inv_mean_sorted, net_all_sorted = get_inv_for_nw(net_all, cf)
return phylo_diamond_output_helper(inv_mean_sorted[1:m], net_all_sorted[1:m], m, t, value_map, output_filename)
end
"""
helper function to handle more than 8 taxa
input:
cf: cf table
m: the number of optimal phylogenetic networks returned
output_filename: input a filename if users need to save output to a file; otherwise leave it blank or ""
newick: return networks in newick format if true; otherwise [(1,2),(3,4),(5,6),(7,8,9)]
value_map: the dictionary of taxa to numbers
output:
top m optimal phylogenetic networks
"""
function phylo_diamond_more_than_8_helper(cf, m, output_filename, value_map)
t = cf_to_t(cf)
sub_all = subnetwork(t) #all possible subpermutation of the given network
inv_mean_sorted, subnet_all_sorted = get_inv_for_nw(sub_all, cf)
str = ""
rst_net = []
rst_inv = []
for i in 1:length(subnet_all_sorted)
#find the all the missing species for the subnetwork with smallest invariants
top_t = N_to_t(subnet_all_sorted[i])
mis_species = []
for i in t
if !(i in top_t)
push!(mis_species, i)
end
end
net = add_mis_species(mis_species, subnet_all_sorted[i:end]) #when selecting other top networks, remove the first few network information
if !(net in rst_net)
push!(rst_net, net)
push!(rst_inv, inv_mean_sorted[i])
end
if length(rst_net) == m
break
end
end
return phylo_diamond_output_helper(rst_inv, rst_net, m, t, value_map, output_filename)
end
"""
input:
mis_species: the taxa missing from the subnetwork
net_all_sorted: a list of all possible networks sorted by the invariant values
output: add missing species to the subnetwork with smallest invariants
"""
function add_mis_species(mis_species, net_all_sorted)
rst = net_all_sorted[1]
n1 = net_all_sorted[1]
for mis in mis_species
flag = false #whether the missing species is found
#find the position of the missing species in the next smallest-inv subnetworks
for next_net in 2:length(net_all_sorted)
for i in 1:4
if mis in net_all_sorted[next_net][i]
n2 = net_all_sorted[next_net]
if n1[1][1] in n2[1] && n1[1][2] in n2[1] && n1[4][1] in n2[4] && n1[4][2] in n2[4]
if n1[3][1] in n2[2] && n1[3][2] in n2[2] &&
(n2[3][1] in n1[2] || n2[3][2] in n1[2])
push!(rst[2], mis)
flag = true
elseif n1[2][1] in n2[3] && n1[2][2] in n2[3] &&
n2[2][1] in n1[3] || n2[2][2] in n1[3]
push!(rst[3], mis)
flag = true
end
else
push!(rst[i], mis)
flag = true
end
end
end
if flag #skip to proceed to the next missing species
break
end
end
end
for i in 1:4
rst[i] = sort(rst[i]; alg=QuickSort)
end
return rst
end
"""
(assuming all taxon are denoted by number starting from 1)
For the given network N with more than 8 taxon, find a list of taxon in subnetworks with 8 taxon
subnetwork([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8", "9")])
-> ["2", "3", "4", "5", "6","7", "8", "9"], ["1", "2", "3", "4", "5", "6", "7", "8"]...
"""
function subnetwork(t)
ind_all = vcat([collect(combinations(1:length(t),i)) for i=8:8]...) #select all combination of 6, 7, 8 indexes for N
ret = []
for net_i in ind_all #iterate through all subnetworks
ret = vcat(ret, list_nw(string.(net_i)))
end
return ret
end
"""
input:
N: array of tuples, individuals from each triangles of the network
cf: the expected CF table
output: an array of norm of invariants (we expect the value to be small if it is the correct network)
"""
function test_invariants(N, cf)
a = get_a(cf, N)
return [norm(inv_net1112(a)),
norm(inv_net1121(a)),
norm(inv_net1211(a)),
norm(inv_net2111(a)),
norm(inv_net1122(a)),
norm(inv_net1212(a)),
norm(inv_net2112(a)),
norm(inv_net2211(a)),
norm(inv_net2121(a)),
norm(inv_net1221(a)),
norm(inv_net1222(a)),
norm(inv_net2212(a)),
norm(inv_net2122(a)),
norm(inv_net2221(a)),
norm(inv_net2222(a))]
end
"""
input:
inv_mean_sorted: a sorted list of invariant values for each network
net_all_sorted: a list of all possible networks sorted by the invariant values
newick: return networks in newick format if true; otherwise [(1,2),(3,4),(5,6),(7,8,9)]
value_map: the dictionary of taxa to numbers
output:
a formatted string of optimal networks (net_all_sorted)
"""
function phylo_diamond_output_helper(inv_mean_sorted, net_all_sorted, m, t, value_map, output_filename)
value_map = Dict(value => key for (key, value) in value_map)
str = "Inference of top " * string(m) * " " * string(length(t)) * "-taxon phylogenetic networks with phylogenetic invariants\n"
rank = tiedrank(inv_mean_sorted)
ret = []
for i in 1:length(net_all_sorted)
# use the original taxon names according to value_map
for a in 1:length(net_all_sorted[i])
for b in 1:length(net_all_sorted[i][a])
if net_all_sorted[i][a][b] != "na"
net_all_sorted[i][a][b] = value_map[net_all_sorted[i][a][b]]
end
end
end
newick = N_to_network(net_all_sorted[i])
push!(ret, newick)
str = str * string(Int(round(rank[i]))) * ". N" * N_to_N_num(net_all_sorted[i]) * " (" * string(inv_mean_sorted[i]) * ")" *
"\n" * N_to_str(net_all_sorted[i]) *
"\n\"" * newick * "\"\n"
end
file = open(output_filename, "a")
write(file, str)
close(file)
print(str)
return Dict(zip(1:m, ret))
end
"""
input:
net_all: a list of all possible networks
cf: cf table
output:
inv_mean_sorted: a sorted list of invariant values for each network
net_all_sorted: a list of all possible networks sorted by the invariant values
"""
function get_inv_for_nw(net_all, cf)
rst_inv = []
for i in 1:length(net_all)
val = test_invariants(net_all[i], cf)
push!(rst_inv, mean(filter(!isnan, val)))
end
order = sortperm(rst_inv)
inv_mean_sorted = rst_inv[order]
net_all_sorted = net_all[order]
return inv_mean_sorted, net_all_sorted
end
"""
input: cf table
output: replace original taxon names with numbers in the cf table and a mapping from taxon names to numbers
"""
function taxon_dict(cf)
taxon = cf_to_t(cf)
value_map = Dict(taxon[i] => string(i) for i in 1:length(taxon))
for col in ["tx1", "tx2", "tx3", "tx4"]
for i in 1:nrow(cf)
cf[i,col] = string(value_map[cf[i,col]])
end
end
return cf, value_map
end | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 3527 | using PhyloDiamond
using Test
print(pwd())
@testset "PhyloDiamond.jl" begin
cf = PhyloDiamond.generate_cf([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8", "9")], 0)
dict = PhyloDiamond.phylo_diamond(cf, 5)
@test length(dict) == 5
@test dict[5] == "((9:1,5:1,6:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
@test dict[4] == "((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1,9:1):2):1):1);"
@test dict[2] == "((7:1,8:1,9:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
@test dict[3] == "((8:1,9:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,3:1,4:1):2):1):1);"
@test dict[1] == "((7:1,8:1,9:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
f = open("phylo_diamond.txt", "r")
s = read(f, String)
close(f)
s_1 = "Inference of top 5 9-taxon phylogenetic networks with phylogenetic invariants\n1. N2223 (2.2216927709301364e-16)\n[(1,2),(3,4),(5,6),(7,8,9)]\n\"((7:1,8:1,9:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);\"\n2. N2223 (2.2230610911746716e-16)\n[(1,2),(5,6),(3,4),(7,8,9)]\n\"((7:1,8:1,9:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);\"\n2. N2232 (2.2230610911746716e-16)\n[(1,2),(5,6),(7,3,4),(8,9)]\n\"((8:1,9:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,3:1,4:1):2):1):1);\"\n4. N2232 (0.006576057988736475)\n[(1,2),(3,4),(7,8,9),(5,6)]\n\"((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1,9:1):2):1):1);\"\n5. N2223 (0.00657929000066336)\n[(1,2),(7,8),(3,4),(9,5,6)]\n\"((9:1,5:1,6:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);\"\n"
@test s == s_1
rm("phylo_diamond.txt")
dict = PhyloDiamond.phylo_diamond("./file/gt.txt", 5)
@test length(dict) == 5
@test dict[5] == "((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);"
@test dict[4] == "((3:1,4:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);"
@test dict[2] == "((7:1,8:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);"
@test dict[3] == "((3:1,4:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
@test dict[1] == "((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
f = open("phylo_diamond.txt", "r")
s = read(f, String)
close(f)
s_1 = "Inference of top 5 8-taxon phylogenetic networks with phylogenetic invariants\n1. N2222 (0.03689157145883046)\n[(1,2),(3,4),(5,6),(7,8)]\n\"((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);\"\n2. N2222 (0.03823994257144703)\n[(1,2),(5,6),(3,4),(7,8)]\n\"((7:1,8:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(3:1,4:1):2):1):1);\"\n3. N2222 (0.04097959230267735)\n[(1,2),(7,8),(5,6),(3,4)]\n\"((3:1,4:1):4, (((7:1,8:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);\"\n4. N2222 (0.04258688497092598)\n[(1,2),(5,6),(7,8),(3,4)]\n\"((3:1,4:1):4, (((5:1,6:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);\"\n5. N2222 (0.04789498610785061)\n[(1,2),(3,4),(7,8),(5,6)]\n\"((5:1,6:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(7:1,8:1):2):1):1);\"\n"
@test s == s_1
rm("phylo_diamond.txt")
end
include("test_mapping.jl")
include("test_helper.jl")
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 1215 | include("../src/helper.jl")
@testset "helper.jl" begin
@testset "list_nw" begin
@test length(list_nw(["A", "B", "C", "D", "E", "F", "G", "H"])) == 2520 #(N2222)
@test length(list_nw(["A", "B", "C", "D", "E", "F", "G"])) == 2520 #(N1222, N2122, N2212, N2221)
@test length(list_nw(["A", "B", "C", "D", "E", "F"])) == 1080 #(N1122, N1212, N1221, N2112, N2121, N2211)
@test length(list_nw(["A", "B", "C", "D", "E"])) == 240 #(N1112, N1121, N1211, N2111)
end
@test compare_nw([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")],[("1", "2"), ("3", "4"), ("5", "6"), ("7", "9")]) == false
@test compare_nw([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")],[("1", "2"), ("3", "4"), ("5", "6"), ("8", "7")]) == true
@test N_to_str([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8", "9")]) == "[(1,2),(3,4),(5,6),(7,8,9)]"
@test N_to_network([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")]) == "((7:1,8:1):4, (((3:1,4:1):2, ((1:1,2:1):1)#H1:1::0.7):1, (#H1:1::0.3,(5:1,6:1):2):1):1);"
@test N_to_t([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")]) == [ "1", "2", "3", "4", "5", "6", "7", "8"]
@test N_to_N_num([("1", "2"), ("3", "4"), ("5", "6"), ("7", "8")]) == "2222"
end | PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
|
[
"MIT"
] | 0.1.0 | bbf6ce99c629eea8c4ed7ab0e9d660010f2f5de9 | code | 4043 | include("../src/mapping.jl")
@testset "mapping.jl" begin
@testset "get_a" begin
cf=CSV.read("./file/N2222_expCF.txt", DataFrame)
# Reading network
N = [("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")] ## true network
i=1
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
@test n == [2,0,2,0]
cfs_ord = cfs_in_order(N, q, cfs)
@test round.(cfs_ord;digits=2) == [0.96,0.02,0.02]
i=69
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
@test n == [0,1,1,2]
cfs_ord = cfs_in_order(N, q, cfs)
@test round.(cfs_ord;digits=2) == [0.91,0.05,0.05]
N = [("A","E"),("C","B"),("D","F"),("G","H")]
i=1
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
@test n == [2,1,1,0]
cfs_ord = cfs_in_order(N, q, cfs)
@test round.(cfs_ord;digits=2) == [0.02,0.96,0.02]
i=2
temp = Array(cf[i, :])
q = temp[1:4]
cfs = [temp[5], temp[6], temp[7]]
n = get_n(N, q)
@test n == [2,2,0,0]
cfs_ord = cfs_in_order(N, q, cfs)
@test round.(cfs_ord;digits=2) == [0.06,0.87,0.06]
end
@testset "get_n" begin
@test get_n([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")], ["C", "E", "G", "H"]) == [0, 1, 1, 2]
@test get_n([("A", "B"), ("C", "D"), ("E", NaN), ("G", "H")], ["C", "E", "G", "H"]) == [0, 1, 1, 2]
end
@testset "cfs_in_order" begin
#N2222 (1, 1, 1, 1)
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", "H")], ["A","H","E","C"], [0.7, 0.2, 0.1])==[0.1, 0.2, 0.7]
@test cfs_in_order([("E", "F"), ("A", "B"), ("G", "H"), ("C", "D")], ["A","H","E","C"], [0.7, 0.2, 0.1])==[0.2, 0.1, 0.7]
@test cfs_in_order([("A", "B"), ("E", "F"), ("G", "H"), ("C", "D")], ["E","C","A","H"], [0.7, 0.2, 0.1])==[0.2, 0.7, 0.1]
#N2122
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")], ["A","B","E","C"], [0.8, 0.1, 0.1])==[0.8, 0.1, 0.1] #2110
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")], ["A","E","C","B"], [0.1, 0.1, 0.8])==[0.8, 0.1, 0.1] #2110
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")], ["E","G","A","C"], [0.7, 0.2, 0.1])==[0.7, 0.2, 0.1] #1111
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", "F"), ("G", "H")], ["H","G","A","B"], [0.8, 0.1, 0.1])==[0.8, 0.1, 0.1] #2002
#N2221
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],["E","B","F","C"], [0.1, 0.8, 0.1])==[0.8, 0.1, 0.1] #1120
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],["A","B","C","F"], [0.8, 0.1, 0.1])==[0.8, 0.1, 0.1] #2110
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],["F","G","A","C"], [0.7, 0.2, 0.1])==[0.7, 0.2, 0.1] #1111
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", "F"), ("G", NaN)],["B","F","A","E"], [0.1, 0.8, 0.1])==[0.8, 0.1, 0.1] #2020
#N2111
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", NaN), ("G", NaN)],["E","B","G","A"], [0.1, 0.8, 0.1])==[0.8, 0.1, 0.1] #2011
@test cfs_in_order([("A", "B"), ("C", NaN), ("E", NaN), ("G", NaN)],["B","E","G","A"], [0.1, 0.1, 0.8])==[0.8, 0.1, 0.1] #2011
#N2211
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],["C","B","D","A"], [0.1, 0.8, 0.1])==[0.8, 0.1, 0.1] #2200
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],["A","B","C","D"], [0.8, 0.1, 0.1])==[0.8, 0.1, 0.1] #2200
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],["C","G","D","A"], [0.1, 0.8, 0.1])==[0.8, 0.1, 0.1] #1201
@test cfs_in_order([("A", "B"), ("C", "D"), ("E", NaN), ("G", NaN)],["E","G","C","B"], [0.7, 0.1, 0.2])==[0.7, 0.2, 0.1] #1111
end
end
| PhyloDiamond | https://github.com/solislemuslab/PhyloDiamond.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.