licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 561 | """
Mustache
[Mustache](https://github.com/jverzani/Mustache.jl) is a templating package for `Julia` based on [Mustache.js](http://mustache.github.io/). [ [Docs](https://jverzani.github.io/Mustache.jl/dev/) ]
"""
module Mustache
if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel"))
@eval Base.Experimental.@optlevel 1
end
using Tables
include("utils.jl")
include("tokens.jl")
include("context.jl")
include("writer.jl")
include("parse.jl")
include("render.jl")
export @mt_str, @jmt_str, render, render_from_file
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 5604 | ## context
## A context stores objects where named values are looked up.
mutable struct Context
view ## of what? a Dict, Module, CompositeKind, DataFrame.parent.
parent ## a context or nothing
_cache::Dict
end
function Context(view, parent=nothing)
d = Dict()
d["."] = isa(view, AnIndex) ? view.value : view
Context(view, parent, d)
end
## used by renderTokens
function ctx_push(ctx::Context, view)
Context(view, ctx) ## add context as a parent
end
function ctx_pop(ctx::Context)
ctx.parent
end
# we have some rules here
# * Each part of a dotted name should resolve only against its parent.
# * Any falsey value prior to the last part of the name should yield ''.
# * The first part of a dotted name should resolve as any other name.
function lookup_dotted(ctx::Context, dotted)
for key in split(dotted, ".")
nctx = lookup(Context(ctx.view), key)
falsy(nctx) && return nothing
ctx = Context(nctx, ctx)
end
ctx.view
end
# look up key in context
function lookup(ctx::Context, key)
if haskey(ctx._cache, key)
return ctx._cache[key]
end
# use global lookup down
global_lookup = false
if startswith(key, "~")
global_lookup = true
key = replace(key, r"^~" => "")
end
# begin
context = ctx
value = nothing
while context !== nothing
value′ = nothing
## does name have a .? We first check if it is a key, then use lookup_dotted
value′ = lookup_in_view(context.view, stripWhitespace(key))
if value′ === nothing && occursin(r"\.", key)
value′ = lookup_dotted(context, key)
if value′ == nothing
## do something with "."
## we use .[ind] to refer to value in parent of given index;
m = match(r"^\.\[(.*)\]$", key)
if m !== nothing
idx = first(m.captures)
idx == nothing && throw(ArgumentError("XXX"))
vals = context.parent.view
# this has limited support for indices: "end", or a number, but no
# arithmetic, such as `end-1`.
## This is for an iterable; rather than
## limit the type, we let non-iterables error.
if true # isa(vals, AbstractVector) || isa(vals, Tuple) # supports getindex(v, i)?
if idx == "end"
value′ = AnIndex(-1, vals[end])
else
ind = Base.parse(Int, idx)
value′ = AnIndex(ind, string(vals[ind]))
end
end
else
!global_lookup && break
end
end
end
if value′ !== nothing
value = value′
!global_lookup && break
end
context = context.parent
end
## cache
ctx._cache[key] = value
return(value)
end
## Lookup value in an object by key
## This of course varies based on the view.
## After checking several specific types, if view is Tables compatible
## this will return "column" corresponding to the key
function lookup_in_view(view, key)
val = _lookup_in_view(view, key)
!falsy(val) && return val
if Tables.istable(view)
isempty(Tables.rows(view)) && return nothing
sch = Tables.schema(Tables.rows(view))
falsy(sch) && return nothing
k = normalize(key)
if k ∈ sch.names
return [row[k] for row ∈ Tables.rows(view)]
end
# elseif is_dataframe(view)
# if occursin(r"^:", key) key = key[2:end] end
# key = Symbol(key)
# out = nothing
# if haskey(view, key)
# out = view[1, key] ## first element only
# end
# out
else
__lookup_in_view(view, key)
end
end
# look up key in view, return `nothing` if not found
function _lookup_in_view(view::AbstractDict, key)
get(view, normalize(key), nothing)
end
# support legacy use of `first` and `second` as variable names
# referring to piece, otherwise look up value
function _lookup_in_view(view::Pair, key)
## is it a symbol?
key == "first" && return view.first
key == "second" && return view.second
view.first == normalize(key) ? view.second : nothing
end
function _lookup_in_view(view::NamedTuple, key)
key′ = normalize(key)
haskey(view, key′) && return getindex(view, key′)
return nothing
end
function _lookup_in_view(view::Module, key)
hasmatch = false
re = Regex("^$key\$")
for i in names(view, all=true)
if occursin(re, string(i))
hasmatch = true
break
end
end
out = nothing
if hasmatch
out = getfield(view, Symbol(key)) ## view.key
end
out
end
_lookup_in_view(view, key) = nothing
## Default lookup is likely not great,
function __lookup_in_view(view, key)
k = normalize(key)
k′ = Symbol(k)
# check propertyname, then fieldnames
if k in propertynames(view)
getproperty(view, k)
elseif k′ in propertynames(view)
getproperty(view, k′)
else
nms = fieldnames(typeof(view))
# we match on symbol or string for fieldname
if isa(k, Symbol)
has_match = k in nms
else
has_match = Symbol(k) in nms
end
out = nothing
if has_match
out = getfield(view, Symbol(k)) ## view.key
end
out
end
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 6559 | ## Main function to parse a template This works in several steps: each
## character parsed into a token, the tokens are squashed, then
## nested, then rendered.
"""
Mustache.parse(template, tags = ("{{", "}}"))
Parse a template into tokens.
* `template`: a string containing a template
* `tags`: the tags used to indicate a variable. Adding interior braces (`{`,`}`) around the variable will prevent HTML escaping. (That is for the default tags, `{{{varname}}}` is used; for tags like `("<<",">>")` then `<<{varname}>>` is used.)
# Extended
The template interprets tags in different ways. The string macro `mt`
is used below to both `parse` (on construction) and `render` (when
called).
## Variable substitution.
Like basic string interpolation, variable substitution can be performed using a non-prefixed tag:
```jldoctest mustache
julia> using Mustache
julia> a = mt"Some {{:variable}}.";
julia> a(; variable="pig")
"Some pig."
julia> a = mt"Cut: {{{:scissors}}}";
julia> a(; scissors = "8< ... >8")
"Cut: 8< ... >8"
```
Both using a symbol, as the values to substitute are passed through keyword arguments. The latter uses triple braces to inhibit the escaping of HTML entities.
Tags can be given special meanings through prefixes. For example, to avoid the HTML escaping an `&` can be used:
```jldoctest mustache
julia> a = mt"Cut: {{&:scissors}}";
julia> a(; scissors = "8< ... >8")
"Cut: 8< ... >8"
```
## Sections
Tags can create "sections" which can be used to conditionally include text, apply a function to text, or iterate over the values passed to `render`.
### Include text
To include text, the `#` prefix can open a section followed by a `/` to close the section:
```jldoctest mustache
julia> a = mt"I see a {{#:ghost}}ghost{{/:ghost}}";
julia> a(; ghost=true)
"I see a ghost"
julia> a(; ghost=false)
"I see a "
```
The latter is to illustrate that if the variable does not exist or is "falsy", the section text will not display.
The `^` prefix shows text when the variable is not present.
```jldoctest mustache
julia> a = mt"I see {{#:ghost}}a ghost{{/:ghost}}{{^:ghost}}nothing{{/:ghost}}";
julia> a(; ghost=false)
"I see nothing"
```
### Apply a function to the text
If the variable refers to a function, it will be applied to the text within the section:
```jldoctest mustache
julia> a = mt"{{#:fn}}How many letters{{/:fn}}";
julia> a(; fn=length)
"16"
```
The use of the prefix `!` will first render the text in the section, then apply the function:
```jldoctest mustache
julia> a = mt"The word '{{:variable}}' has {{|:fn}}{{:variable}}{{/:fn}} letters.";
julia> a(; variable="length", fn=length)
"The word 'length' has 6 letters."
```
### Iterate over values
If the variable in a section is an iterable container, the values will be iterated over. `Tables.jl` compatible values are iterated in a row by row manner, such as this view, which is a tuple of named tuples:
```jldoctest mustache
julia> a = mt"{{#:data}}x={{:x}}, y={{:y}} ... {{/:data}}";
julia> a(; data=((x=1,y=2), (x=2, y=4)))
"x=1, y=2 ... x=2, y=4 ... "
```
Iterables like vectors, tuples, or ranges -- which have no named values -- can have their values referenced by a `{{.}}` tag:
```jldoctest mustache
julia> a = mt"{{#:countdown}}{{.}} ... {{/:countdown}} blastoff";
julia> a(; countdown = 5:-1:1)
"5 ... 4 ... 3 ... 2 ... 1 ... blastoff"
```
## Partials
Partials allow substitution. The use of the tag prefix `>` includes either a file or a string and renders it accordingly:
```jldoctest mustache
julia> a = mt"{{>:partial}}";
julia> a(; partial="variable is {{:variable}}", variable=42)
"variable is 42"
```
The use of the tag prefix `<` just includes the partial (a file in this case) without rendering.
## Comments
Using the tag-prefix `!` will comment out the text:
```jldoctest mustache
julia> a = mt"{{! ignore this comment}}This is rendered";
julia> a()
"This is rendered"
```
Multi-lne comments are permitted.
"""
function parse(template, tags = ("{{", "}}"))
tokens = make_tokens(template, tags)
out = nestTokens(tokens)
MustacheTokens(out)
end
"""
mt"string"
String macro to parse tokens from a string. See [`parse`](@ref).
"""
macro mt_str(s)
parse(s)
end
"""
jmt"string"
String macro that interpolates values escaped by dollar signs, then parses strings.
Note: modified from a macro in [HypertextLiteral](https://github.com/clarkevans/HypertextLiteral.jl/blob/master/src/macros.jl).
Example:
```
x = 1
toks = jmt"\$(2x) by {{:a}}"
toks(; a=2) # "2 by 2"
```
"""
macro jmt_str(expr::String)
# Essentially this is an ad-hoc scanner of the string, splitting
# it by `$` to find interpolated parts and delegating the hard work
# to `Meta.parse`, treating everything else as a literal string.
args = Any[]
start = idx = 1
strlen = length(expr)
while true
idx = findnext(isequal('$'), expr, start)
if idx == nothing
push!(args, expr[start:strlen])
break
end
push!(args, expr[start:idx-1])
start = idx + 1
(nest, tail) = Meta.parse(expr, start; greedy=false)
if nest == nothing
throw("missing interpolation expression")
end
if !(expr[start] == '(' || nest isa Symbol)
throw(DomainError(nest,
"interpolations must be symbols or parenthesized"))
end
if Meta.isexpr(nest, :(=))
throw(DomainError(nest,
"assignments are not permitted in an interpolation"))
end
if nest isa String
# this is an interpolated string literal
nest = Expr(:string, nest)
end
push!(args, nest)
start = tail
end
quote
Mustache.parse(string($(map(esc, args)...)))
end
end
## Dict for storing parsed templates
TEMPLATES = Dict{AbstractString, MustacheTokens}()
"""
Mustache.load(filepath, args...)
Load file specified through `filepath` and return the compiled tokens.
Tokens are memoized for efficiency,
Additional arguments are passed to `Mustache.parse` (for adjusting the tags).
"""
function load(filepath, args...)
isfile(filepath) || throw(ArgumentError("File $filepath not found"))
key = string(mtime(filepath)) * filepath * string(hash(args))
haskey(TEMPLATES,key) && return TEMPLATES[key]
open(filepath) do s
global tpl = parse(read(s, String), args...)
end
TEMPLATES[key] = tpl
tpl
end
# old names. To be deprecated?
const template_from_file = load
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2513 | """
render([io], tokens, view)
render([io], tokens; kwargs...)
(tokens::MustacheTokens)([io]; kwargs...)
Render a set of tokens with a view, using optional `io` object to print or store.
## Arguments
* `io::IO`: Optional `IO` object.
* `tokens`: Either Mustache tokens, or a string to parse into tokens
* `view`: A view provides a context to look up unresolved symbols
demarcated by mustache braces. A view may be specified by a
dictionary, a module, a composite type, a vector, a named tuple, a
data frame, a `Tables` object, or keyword arguments.
!!! note
The `render` method is currently exported, but this export may be deprecated in the future.
"""
function render(io::IO, tokens::MustacheTokens, view)
_writer = Writer()
render(io, _writer, tokens, view)
end
function render(io::IO, tokens::MustacheTokens; kwargs...)
render(io, tokens, Dict(kwargs...))
end
render(tokens::MustacheTokens, view) = sprint(io -> render(io, tokens, view))
render(tokens::MustacheTokens; kwargs...) = sprint(io -> render(io, tokens; kwargs...))
## make MustacheTokens callable for kwargs...
function (m::MustacheTokens)(io::IO, args...; kwargs...)
if length(args) == 1
render(io, m, first(args))
else
render(io, m; kwargs...)
end
end
(m::MustacheTokens)(args...; kwargs...) = sprint(io -> m(io, args...; kwargs...))
## Exported call without first parsing tokens via mt"literal"
##
## @param template a string containing the template for expansion
## @param view a Dict, Module, CompositeType, DataFrame holding variables for expansion
function render(io::IO, template::AbstractString, view; tags= ("{{", "}}"))
return render(io, parse(template, tags), view)
end
function render(io::IO, template::AbstractString; kwargs...)
return render(io, parse(template); kwargs...)
end
render(template::AbstractString, view; tags=("{{", "}}")) = sprint(io -> render(io, template, view, tags=tags))
render(template::AbstractString; kwargs...) = sprint(io -> render(io, template; kwargs...))
# Exported, but should be deprecated....
"""
render_from_file(filepath, view)
render_from_file(filepath; kwargs...)
Renders a template from `filepath` and `view`.
!!! note
This function simply combines `Mustache.render` and `Mustache.load` and may be deprecated in the future.
"""
render_from_file(filepath, view) = render(Mustache.load(filepath), view)
render_from_file(filepath::AbstractString; kwargs...) = render(Mustache.load(filepath); kwargs...)
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 22372 | # XXX
# * if the value of a section variable is a function, it will be called in the context of the current item in the list on each iteration
# * If the value of a section key is a function, it is called with the section's literal block of text, un-rendered, as its first argument. The second argument is a special rendering function that uses the current view as its view argument. It is called in the context of the current view object.
# Token types
abstract type Token end
mutable struct TextToken <: Token
_type::String
value::String
end
mutable struct TagToken <: Token
_type::String
value::String
ltag::String
rtag::String
indent::String
TagToken(_type, value, ltag, rtag, indent="") = new(_type, value, ltag, rtag, indent)
end
mutable struct SectionToken <: Token
_type::String
value::String
ltag::String
rtag::String
collector::Vector
SectionToken(_type, value, ltag, rtag) = new(_type, value, ltag, rtag, Any[])
end
mutable struct BooleanToken <: Token
_type::String
value::String
ltag::String
rtag::String
collector::Vector
BooleanToken(_type, value, ltag, rtag) = new(_type, value, ltag, rtag, Any[])
end
mutable struct MustacheTokens
tokens::Vector{Token}
end
MustacheTokens() = MustacheTokens(Token[])
Base.length(tokens::MustacheTokens) = length(tokens.tokens)
Base.lastindex(tokens::MustacheTokens) = lastindex(tokens.tokens)
Base.getindex(tokens::MustacheTokens, ind) = getindex(tokens.tokens, ind)
Base.pop!(tokens::MustacheTokens) = pop!(tokens.tokens)
function Base.push!(tokens::MustacheTokens, token::Token)
# squash if possible
if length(tokens) == 0
push!(tokens.tokens, token)
return
end
lastToken = tokens[end]
if !falsy(lastToken) && lastToken._type == "text" == token._type
lastToken.value *= token.value
else
push!(tokens.tokens, token)
end
end
struct AnIndex
ind::Int
value::String
end
Base.string(ind::AnIndex) = string(ind.value)
Base.iterate(I::AnIndex, st=nothing) = st === nothing ? (I.ind, nothing) : nothing
### We copy some functions from Tokenize
function peekchar(io::Base.GenericIOBuffer)
if !io.readable || io.ptr > io.size
return '∅'
end
ch, _ = readutf(io)
return ch
end
# this implementation is copied from Tokenize,
@inline function utf8_trailing(i)
if i < 193
return 0
elseif i < 225
return 1
elseif i < 241
return 2
elseif i < 249
return 3
elseif i < 253
return 4
else
return 5
end
end
const utf8_offset = [0x00000000
0x00003080
0x000e2080
0x03c82080
0xfa082080
0x82082080]
function readutf(io, offset = 0)
ch = convert(UInt8, io.data[io.ptr + offset])
if ch < 0x80
return convert(Char, ch), 0
end
trailing = utf8_trailing(ch + 1)
c::UInt32 = 0
for j = 1:trailing
c += ch
c <<= 6
ch = convert(UInt8, io.data[io.ptr + j + offset])
end
c += ch
c -= utf8_offset[trailing + 1]
return convert(Char, c), trailing
end
####
## this is modified from dpeekchar in Tokenize
function peekaheadmatch(io::IO, m=['{','{'])
if !io.readable || io.ptr > io.size
return false
end
i,N = 1, length(m)
ch1, trailing = readutf(io)
ch1 != m[1] && return false
offset = 0
while true
i == N && return true
i += 1
offset += trailing + 1
if io.ptr + offset > io.size
return false
end
chn, trailing = readutf(io, offset)
chn != m[i] && return false
end
return false
end
# ...{{.... -> (..., {{....)
function scan_until!(io, tags, firstline)
out = IOBuffer()
while !end_of_road(io)
if peekaheadmatch(io, tags)
val = String(take!(out))
close(out)
return val, firstline
else
c = read(io, Char)
firstline = firstline && !(c== '\n')
print(out, c)
end
end
val = String(take!(out))
close(out)
return val, firstline
end
# skip over tags
function scan_past!(io, tags = ('{','{'))
for i in 1:length(tags)
t = read(io, Char)
end
end
# end of io stream
function end_of_road(io)
!io.readable && return true
io.ptr > io.size && return true
return false
end
# strip whitespace at head of io stream
WHITESPACE = (' ', '\t', '\r')
function popfirst!_whitespace(io)
while !end_of_road(io)
c::Char = peekchar(io)
!(c in WHITESPACE) && break
read(io, Char)
end
end
# is tag possibly standalone
# check the left side
# XXX This could be part of scan_until!
# then we could avoid regular expressions here
function is_l_standalone(txt, firstline)
if firstline
occursin(r"^ *$", txt)
else
out = occursin(r"\n *$", txt)
out
end
end
# check the last side
function is_r_standalone(io)
end_of_road(io) && return true
offset = 0
ch::Char, trailing::Int = readutf(io)
while true
ch == '\n' && return true
!(ch in WHITESPACE) && return false
offset += trailing + 1
io.ptr + offset > io.size && return true
ch, trailing = readutf(io, offset)
end
return false
end
## Make the initial set of tokens before nesting
function make_tokens(template, tags)
ltag, rtag = tags
ltags = collect(ltag)
rtags = collect(rtag)
sections = MustacheTokens()
tokens = MustacheTokens()
firstline = true
io = IOBuffer(template)
while !end_of_road(io)
# we have
# ...text... {{ tag }} ...rest...
# each lap makes token of ...text... and {{tag}} leaving ...rest...
b0 = 0
text_value, firstline = scan_until!(io, ltags, firstline)
b1 = position(io)
if end_of_road(io)
token = TextToken("text", text_value)
push!(tokens, token)
return tokens
end
scan_past!(io, ltags)
text_token = TextToken("text", text_value)
# grab tag token
t0 = position(io)
token_value, firstline = scan_until!(io, rtags, firstline)
t1 = position(io)
if end_of_road(io)
throw(ArgumentError("tag not closed: $token_value $ltag $rtag"))
end
scan_past!(io, rtags)
# what kinda tag did we get?
token_value = stripWhitespace(token_value)
_type = token_value[1:1]
if _type in ("#", "^", "/", ">", "<", "!", "|", "=", "{", "&", "@")
# type is first, we peel it off, also strip trailing = and },
# as necessary
token_value = stripWhitespace(token_value[2:(end-(_type == "="))])
if _type == "{"
#strip "}" if present in token, and if not io
if token_value[end]=='}'
token_value = token_value[1:end-1]
else
c = peekchar(io)
c == '}' && read(io, Char)
end
end
if _type == "="
tag_token = TagToken("=", token_value, ltag, rtag)
ts = String.(split(token_value, r"[ \t]+"))
length(ts) != 2 && throw(ArgumentError("Change of delimiter must be a pair. Identified: $ts"))
ltag, rtag = ts
ltags, rtags = collect(ltag), collect(rtag)
elseif _type == ">"
# get indentation
if firstline && occursin(r"^\h*$", text_value)
m = match(r"^(\h*)$", text_value)
else
m = match(r"\n([\s\t\h]*)$", text_value)
end
indent = m == nothing ? "" : m.captures[1]
tag_token = TagToken(_type, token_value, ltag, rtag,
indent==nothing ? "" : indent)
elseif _type in ("#", "^", "|")
tag_token = SectionToken(_type, token_value, ltag, rtag)
elseif _type in ("@",)
tag_token = BooleanToken(_type, token_value, ltag, rtag)
else
tag_token = TagToken(_type, token_value, ltag, rtag)
end
else
token_value = stripWhitespace(token_value)
tag_token = TagToken("name", token_value, ltag, rtag)
end
if tag_token._type == "name"
firstline = false
end
# are we standalone?
# yes if firstline and all whitespace
# yes if !firstline and match \nwhitespace
# AND
# match rest with space[EOF,\n]
standalone = is_r_standalone(io) && is_l_standalone(text_value, firstline)
firstline = false
if standalone && _type in ("!", "^", "/", "#", "<", ">", "|", "=")
# we strip text_value back to \n or beginning
text_token.value = replace(text_token.value, r" *$" => "")
# strip whitespace at outset of io and "\n"
popfirst!_whitespace(io)
if !end_of_road(io)
read(io, Char) # will be \n
firstline = true
end
end
push!(tokens, text_token)
push!(tokens, tag_token)
# account for matching/nested sections
if _type == "#" || _type == "^" || _type == "|" || _type == "@"
push!(sections, tag_token)
elseif _type == "/"
## section nestinng
if length(sections) == 0
throw(ArgumentError("Unopened section $token_value at $t0"))
end
openSection = pop!(sections)
if openSection.value != token_value
throw(ArgumentError("Unclosed section: " * openSection.value * " at $t0"))
end
end
end
if length(sections) > 0
openSection = pop!(sections)
throw(ArgumentError("Unclosed section " * string(openSection.value)))
end
return(tokens)
end
## Forms the given array of `tokens` into a nested tree structure where
## tokens that represent a section have two additional items: 1) an array of
## all tokens that appear in that section and 2) the index in the original
## template that represents the end of that section.
function nestTokens(tokens)
tree = Array{Any}(undef, 0)
collector = tree
sections = MustacheTokens() #Array{Any}(undef, 0)
for i ∈ 1:length(tokens)
token = tokens[i]
## a {{#name}}...{{/name}} will iterate over name
## a {{^name}}...{{/name}} does ... if we have no name
## start nesting
if token._type == "^" || token._type == "#" || token._type == "|" || token._type == "@"
push!(sections, token)
push!(collector, token)
token.collector = Array{Any}(undef, 0)
collector = token.collector
elseif token._type == "/"
section = pop!(sections)
if length(sections) > 0
push!(sections[end].collector, token)
collector = sections[end].collector
else
collector = tree
end
else
push!(collector, token)
end
end
return(tree)
end
## In lambdas with section this is used to go from the tokens to an unevaluated string
## This might have issues with space being trimmed
function toString(tokens)
io = IOBuffer()
for token in tokens
write(io, _toString(Val{Symbol(token._type)}(), token))
end
out = String(take!(io))
close(io)
out
end
_toString(::Val{:name}, t) = t.ltag * t.value * t.rtag
_toString(::Val{:text}, t) = t.value
_toString(::Val{Symbol("^")}, t) = t.ltag * "^" * t.value * t.rtag
_toString(::Val{Symbol("|")}, t) = t.ltag * "|" * t.value * t.rtag
_toString(::Val{Symbol("/")}, t) = t.ltag * "/" * t.value * t.rtag
_toString(::Val{Symbol(">")}, t) = t.ltag * ">" * t.value * t.rtag
_toString(::Val{Symbol("<")}, t) = t.ltag * "<" * t.value * t.rtag
_toString(::Val{Symbol("&")}, t) = t.ltag * "&" * t.value * t.rtag
_toString(::Val{Symbol("{")}, t) = t.ltag * "{" * t.value * t.rtag
_toString(::Val{Symbol("=")}, t) = ""
function _toString(::Val{Symbol("#")}, t)
out = t.ltag * "#" * t.value * t.rtag
if !isempty(t.collector)
out *= toString(t.collector)
end
out
end
## ----------------------------------------------------
# render tokens with values given in context
function renderTokensByValue(value, io, token, writer, context, template, args...)
inverted = token._type == "^"
if (inverted && falsy(value))
_renderTokensByValue(value, io, token, writer, context, template, args...)
elseif Tables.istable(value)
isempty(Tables.rows(value)) && return nothing
rows = Tables.rows(value)
for row in rows
renderTokens(io, token.collector, writer, ctx_push(context, row), template, args...)
end
elseif !falsy(value)
_renderTokensByValue(value, io, token, writer, context, template, args...)
else
nothing
# value == nothing
end
end
## Helper function for dispatch based on value in renderTokens
function _renderTokensByValue(value::AbstractDict, io, token, writer, context, template, args...)
renderTokens(io, token.collector, writer, ctx_push(context, value), template, args...)
end
function _renderTokensByValue(value::Union{AbstractArray, Tuple}, io, token, writer, context, template, args...)
inverted = token._type == "^"
if (inverted && falsy(value))
renderTokens(io, token.collector, writer, ctx_push(context, ""), template, args...)
else
n = length(value)
for (i,v) in enumerate(value)
renderTokens(io, token.collector, writer, ctx_push(context, v), template, (i,n))
end
end
end
## what to do with an index value `.[ind]`?
## We have `.[ind]` being of a leaf type (values are not pushed onto a Context) so of simple usage
function _renderTokensByValue(value::AnIndex, io, token, writer, context, template, idx=(0,0))
idx_match = (value.ind == idx[1]) || (value.ind==-1 && idx[1] == idx[2])
if token._type == "#" || token._type == "|"
# print if match
if idx_match
renderTokens(io, token.collector, writer, context, template, idx)
end
elseif token._type == "^"
# print if *not* a match
if !idx_match
renderTokens(io, token.collector, writer, context, template, idx)
end
else
renderTokens(io, token.collector, writer, ctx_push(context, value.value), template)
end
end
function _renderTokensByValue(value::Function, io, token, writer, context, template, args...)
## function get's passed
# When the value is a callable
# object, such as a function or lambda, the object will
# be invoked and passed the block of text. The text
# passed is the literal block, unrendered. {{tags}} will
# not have been expanded - the lambda should do that on
# its own. In this way you can implement filters or
# caching.
# out = (value())(token.collector, render)
if token._type == "name"
push_task_local_storage(context.view)
out = render(string(value()), context.view)
elseif token._type == "|"
# pass evaluated values
view = context.parent.view
push_task_local_storage(view)
sec_value = render(MustacheTokens(token.collector), view)
out = render(string(value(sec_value)), view)
else
## How to get raw section value?
## desc: Lambdas used for sections should receive the raw section string.
## Lambdas used for sections should parse with the current delimiters.
sec_value = toString(token.collector)
view = context.parent.view
if isa(value, Function)
## Supposed to be called value(sec_value, render+context) but
## we call render(value(sec_value), context)
push_task_local_storage(view)
tags = (token.ltag, token.rtag)
_render = x -> render(parse(x, tags), view)
out = try
value(sec_value, _render)
catch err
value(sec_value)
end
else
out = value
end
# ensure tags are used
out = render(parse(string(out), (token.ltag, token.rtag)), view)
end
write(io, out)
end
function _renderTokensByValue(value::Any, io, token, writer, context, template, args...)
inverted = token._type == "^"
if (inverted && falsy(value)) || !falsy(value)
renderTokens(io, token.collector, writer, context, template)
end
end
## Low-level function that renders the given `tokens` using the given `writer`
## and `context`. The `template` string is only needed for templates that use
## higher-order sections to extract the portion of the original template that
## was contained in that section.
function renderTokens(io, tokens, writer, context, template, idx=(0,0))
for i in 1:length(tokens)
token = tokens[i]
tokenValue = token.value
if token._type == "#" || token._type == "|"
## iterate over value if Dict, Array or DataFrame,
## or display conditionally
value = lookup(context, tokenValue)
ctx = isa(value, AnIndex) ? context : Context(value, context)
renderTokensByValue(value, io, token, writer, ctx, template, idx)
# if !isa(value, AnIndex)
# context = Context(value, context)
# end
# renderTokensByValue(value, io, token, writer, context, template, idx)
# if !isa(value, AnIndex)
# context = ctx_pop(context)
# end
elseif token._type == "^"
## display if falsy, unlike #
value = lookup(context, tokenValue)
if !isa(value, AnIndex)
ctx = Context(value, context)
if falsy(value)
renderTokensByValue(value, io, token, writer, ctx, template, idx)
end
else
# for indices falsy test is performed in
# _renderTokensByValue(value::AnIndex,...)
renderTokensByValue(value, io, token, writer, context, template, idx)
end
elseif token._type == ">"
## partials: desc: Each line of the partial should be indented before rendering.
fname = stripWhitespace(tokenValue)
value = lookup(context, tokenValue)
tpl_string = ""
if isfile(fname)
found_partial = true
indent = token.indent
buf = IOBuffer()
for (rowno, l) in enumerate(eachline(fname, keep=true))
# we don't strip indent from first line, so we don't indent that
print(buf, rowno > 0 ? indent : "", l)
end
tpl_string = String(take!(buf))
else
value = lookup(context, fname)
if !falsy(value)
indent = token.indent
slashn = ""
# don't indent if last \n
if occursin(r"\n$", value)
value = chomp(value)
slashn = "\n"
end
buf = IOBuffer()
l = split(value, r"[\n]")
print(buf, indent*join(l, "\n"*indent))
tpl_string = String(take!(buf)) * slashn
close(buf)
end
end
if tpl_string != ""
## Delimiters set in a parent template should not affect a partial.
## Delimiters set in a partial should not affect the parent template.
tpl = parse(tpl_string, ("{{", "}}"))
## Issue 82, what context to pass along to the partial
## this makes "scope" of partial just the immediate value, not
## the parent
renderTokens(io, tpl, writer, Context(context.view,nothing), template,idx)
else
# can't find partial. Issue #83 requests signal, but this doesn't
# seem to match spec. Signal would go here.
end
elseif token._type == "<"
## partials without parse
fname = stripWhitespace(tokenValue)
if isfile(fname)
print(io, open(x -> read(x, String), fname))
else
@warn("File $fname not found")
end
elseif token._type == "&"
value = lookup(context, tokenValue)
if !falsy(value)
## desc: A lambda's return value should parse with the default delimiters.
## parse(value()) ensures that
if isa(value, Function)
push_task_local_storage(context.view)
val = render(parse(string(value())), context.view)
else
val = value
end
print(io, val)
end
elseif token._type == "{"
value = lookup(context, tokenValue)
if !falsy(value)
if isa(value, Function)
push_task_local_storage(context.view)
val = render(parse(string(value())), context.view)
else
val = value
end
print(io, val)
end
elseif token._type == "@"
value = lookup(context, tokenValue)
if !falsy(value)
print(io, render(MustacheTokens(token.collector), value))
end
elseif token._type == "name"
value = lookup(context, tokenValue)
if !falsy(value)
if isa(value, Function)
push_task_local_storage(context.view)
val = render(string(value()), context.view)
else
val = value
end
print(io, escape_html(val))
end
elseif token._type == "text"
print(io, string(tokenValue))
end
end
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2659 |
## regular expressions to use
whiteRe = r"\s*"
spaceRe = r"\s+"
nonSpaceRe = r"\S"
eqRe = r"\s*="
curlyRe = r"\s*\}"
# # section
# ^ inversion
# / close section
# > partials
# { dont' escape
# & unescape a variable
# = set delimiters {{=<% %>=}} will set delimiters to <% %>
# ! comments
# | lamdda "section" with *evaluated* value
tagRe = r"^[#^/<>{&=!|]"
function asRegex(txt)
for i in ("[","]")
txt = replace(txt, Regex("\\$i") => "\\$i")
end
for i in ("(", ")", "{","}", "|")
txt = replace(txt, Regex("[$i]") => "[$i]")
end
Regex(txt)
end
isWhitespace(x) = occursin(whiteRe, x)
function stripWhitespace(x)
y = replace(x, r"^\s+" => "")
replace(y, r"\s+$" => "")
end
## this is for falsy value
## Falsy is true if x is false, 0 length, "", ...
falsy(x::Bool) = !x
falsy(x::Array) = isempty(x) || all(falsy, x)
falsy(x::AbstractString) = x == ""
falsy(x::Nothing) = true
falsy(x::Missing) = true
#falsy(x) = (x == nothing) || false # default
function falsy(x)
Tables.istable(x) && isempty(Tables.rows(x)) && return true
x == nothing && return true
false
end
## escape_html with entities
entityMap = [("&", "&"),
("<", "<"),
(">", ">"),
("'", "'"),
("\"", """),
("/", "/")]
function escape_html(x)
y = string(x)
for (k,v) in entityMap
y = replace(y, k => v)
end
y
end
## Make these work
function escapeRe(string)
replace(string, r"[\-\[\]{}()*+?.,\\\^$|#\s]" => "\\\$&");
end
function escapeTags(tags)
[Regex(escapeRe(tags[1]) * "\\s*"),
Regex("\\s*" * escapeRe(tags[2]))]
end
# key may be string or a ":symbol"
function normalize(key)
if occursin(r"^:", key)
key = key[2:end]
key = Symbol(key)
end
return key
end
# means to push values into scope of function through
# magic `this` variable, ala JavaScript
# user in function has
# `this = Mustache.get_this()`
# then `this.prop` should get value or nothing
struct This{T}
__v__::T
end
# get
function Base.getproperty(this::This, key::Symbol)
key == :__v__ && return getfield(this, :__v__)
get(this.__v__, key, nothing)
end
# push to task local storage to evaluate function
function push_task_local_storage(view)
task_local_storage(:__this__,This(view))
end
get_this() = get(task_local_storage(), :__this__, This(()))
## heuristic to avoid loading DataFrames
## Once `Tables.jl` support for DataFrames is available, this can be dropped
is_dataframe(x) = !isa(x, Dict) && !isa(x, Module) &&!isa(x, Array) && occursin(r"DataFrame", string(typeof(x)))
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 1323 | ## writer
mutable struct Writer
_cache::Dict
_partialCache::Dict
_loadPartial ## Function or nothing
end
Writer() = Writer(Dict(), Dict(), nothing)
function clearCache(w::Writer)
w._cache=Dict()
w._partialCache=Dict()
end
function compile(io::IO, w::Writer, template, tags)
# if haskey(w._cache, template)
# return(w._cache[template])
# end
## tokens = parse(template, tags)
tokens = template
compileTokens(io, w, tokens.tokens, template)
# w._cache[template] = compileTokens(io, w, tokens.tokens, template)
# return(w._cache[template])
end
function compilePartial(w::Writer, name, template, tags)
fn = sprint(io -> compile(io, w, template, tags))
w._partialCache[name] = fn
fn
end
function getPartial(w::Writer, name)
## didn't do loadPartial, as not sure where template is
# if !haskey(w._partialCache, name) && is(w._loadPartial, Function)
# compilePartial(w,
w._partialCache[name]
end
function compileTokens(io, w::Writer, tokens, template)
## return a function
function f(w::Writer, view) # no partials
renderTokens(io, tokens, w, Context(view), template) # io in closure
end
return(f)
end
function render(io::IO, w::Writer, template, view)
f = compile(io, w, template, ["{{", "}}"])
f(w, view)
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 10244 | using Mustache
using Test
tpl = mt"a:{{x}} b:{{{y}}}"
x, y = "ex", "why"
d = Dict("x"=>"ex", "y"=>"why")
mutable struct ThrowAway
x
y
end
struct Issue123
range
end
@test render(tpl, Main) == "a:ex b:why"
@test render(tpl, d) == "a:ex b:why"
@test render(tpl, ThrowAway(x,y)) == "a:ex b:why"
## triple quoted
tpl = mt"""a:{{x}} b:{{y}}"""
@test render(tpl, Main) == "a:ex b:why"
@test render(tpl, d) == "a:ex b:why"
@test render(tpl, ThrowAway(x,y)) == "a:ex b:why"
## conditional
tpl = "{{#b}}this doesn't show{{/b}}{{#a}}this does show{{/a}}"
@test render(tpl, Dict("a" => 1)) == "this does show"
## dict using symbols
d = Dict(:a => x, :b => y)
tpl = "a:{{:a}} b:{{:b}}"
@test render(tpl, d) == "a:ex b:why"
## keyword args
@test render(tpl, a="ex", b="why") == "a:ex b:why"
## unicode
module TMP
α = 1
β = 2
end
@test render("{{α}} + 1 = {{β}}", TMP) == "1 + 1 = 2"
@test render("{{:β}}", β=2) == "2"
@test render("α - {{:β}}", β=2) == "α - 2"
@test render("{{:α}}", α="β") == "β"
## {{.}} test
tpl = mt"{{#:vec}}{{.}} {{/:vec}}"
@test render(tpl, vec=[1,2,3]) == "1 2 3 "
## test of function, see http://mustache.github.io/mustache.5.html (Lambdas)
tpl = mt"""{{#wrapped}}
{{name}} is awesome.
{{/wrapped}}
"""
d = Dict("name" => "Willy", "wrapped" => (txt, r) -> "<b>" * r(txt) * "</b>")
@test Mustache.render(tpl, d) == "<b>Willy is awesome.\n</b>"
# this shouldn't be "Willy", rather "{{name}}"
d = Dict("name" => "Willy", "wrapped" => (txt) -> "<b>" * txt * "</b>")
@test Mustache.render(tpl, d) == "<b>Willy is awesome.\n</b>"
## Test of using Dict in {{#}}/{{/}} things
tpl = mt"{{#:d}}{{x}} and {{y}}{{/:d}}"
d = Dict(); d["x"] = "salt"; d["y"] = "pepper"
@test Mustache.render(tpl, d=d) == "salt and pepper"
## Added a new tag "|" for applying a function to a section
tpl = """{{|lambda}}{{value}}{{/lambda}} dollars."""
d = Dict("value"=>"1.23456789", "lambda"=>(txt) -> "<b>" * string(round(parse(Float64, txt), digits=2)) * "</b>")
@test Mustache.render(tpl, d) == "<b>1.23</b> dollars."
tpl = """{{|lambda}}key{{/lambda}} dollars."""
d = Dict("lambda" => (txt) -> begin
d = Dict("key" => "value")
d[txt]
end
)
@test Mustache.render(tpl, d) == "value dollars."
## test nested section with filtering lambda
tpl = """
{{#lambda}}
{{#iterable}}
{{#iterable2}}
{{.}}
{{/iterable2}}
{{/iterable}}
{{/lambda}}
"""
d = Dict("iterable"=>Dict("iterable2"=>["a","b","c"]), "lambda"=>(txt) -> "XXX $txt XXX")
expected = "XXX a\nb\nc\n XXX"
@test Mustache.render(tpl, d) == expected
## If the value of a section key is a function, it is called with the section's literal block of text, un-rendered, as its first argument. The second argument is a special rendering function that uses the current view as its view argument. It is called in the context of the current view object.
tpl = mt"{{#:bold}}Hi {{:name}}.{{/:bold}}"
function bold(text, render)
this = Mustache.get_this()
"<b>" * render(text) * "</b>" * this.xtra
end
expected = "<b>Hi Tater.</b>Hi Willy."
@test Mustache.render(tpl; name="Tater", bold=bold, xtra = "Hi Willy.") == expected
## if the value of a section variable is a function, it will be called in the context of the current item in the list on each iteration.
tpl = mt"{{#:beatles}}
* {{:name}}
{{/:beatles}}"
function name()
this = Mustache.get_this()
this.first * " " * this.last
end
beatles = [(first="John", last="Lennon"), (first="Paul", last="McCartney")]
expected = "* John Lennon\n* Paul McCartney\n"
@test tpl(; beatles=beatles, name=name) == expected
## Test with Named Tuples as a view
tpl = "{{#:NT}}{{:a}} and {{:b}}{{/:NT}}"
expected = "eh and bee"
@test Mustache.render(tpl, NT=(a="eh", b="bee")) == expected
expected = "eh and "
@test Mustache.render(tpl, NT=(a="eh",)) == expected
## Test with a Table interface
nt = (a="eh", b="bee", c="see")
rt = [nt, nt, nt] # Tables.istable(rt) == true
expected = "eh and bee"^3
@test Mustache.render(tpl, NT=rt) == expected
## test load
filepath = joinpath(@__DIR__, "test.tpl")
expected = "Testing 1, 2, 3..."
@test render(Mustache.load(filepath), (one="1", two="2", three="3")) == expected
@test render(Mustache.load(filepath), one="1", two="2", three="3") == expected
filepath = joinpath(@__DIR__, "test-sections-lf.tpl")
tokens = Mustache.load(filepath)
@test Mustache.render(tokens, Dict("a"=>Dict("x"=>111,),)) == """ 111\n"""
@test Mustache.render(tokens, Dict("y"=>222,)) == " 222\n"
filepath = joinpath(@__DIR__, "test-sections-crlf.tpl")
tokens = Mustache.load(filepath)
@test Mustache.render(tokens, Dict("a"=>Dict("x"=>111,),)) == " 111\r\n"
@test Mustache.render(tokens, Dict("y"=>222,)) == " 222\r\n"
## Test of MustacheTokens being callable
tpl = mt"""Hello {{:name}}"""
@test tpl(name="world") == "Hello world" # using kwargs...
@test tpl((name="world",)) == "Hello world" # using arg
@testset "closed issues" begin
## issue #51 inverted section
@test Mustache.render("""{{^repos}}No repos :({{/repos}}""", Dict("repos" => [])) == "No repos :("
@test Mustache.render("{{^repos}}foo{{/repos}}",Dict("repos" => [Dict("name" => "repo name")])) == ""
## Issue #80 with 0 as falsy
tpl = "this is {{:zero}}"
@test render(tpl, zero=0) == "this is 0"
## Issue 88
template = "{{#:vec}}{{.}}{{^.[end]}},{{/.[end]}}{{/:vec}}";
@test render(template, vec=["a", "b", "c"]) == "a,b,c"
@test render(template, vec=fill("a", 3)) == "a,a,a"
## Issue 91 handle istable without a schema. (Is getfield a general enough solution?)
tpl = "{{#list}}{{ item }} {{/list}}"
v = Dict("list" => Any[Dict("item" => "one"),Dict("item" => "two")])
@test Mustache.render(tpl, v) == "one two "
## Issue 99 expose tags
tpl = "<<#list>><< item >> <</list>>"
v = Dict("list" => Any[Dict("item" => "one"),Dict("item" => "two")])
@test Mustache.render(tpl, v, tags=("<<", ">>")) == "one two "
tpl = "[[#list]][[ item ]] [[/list]]"
@test Mustache.render(tpl, v, tags=("[[", "]]")) == "one two "
## Issue 104, bad nesting (needed to pop context)
tpl1 = mt"""
{{#nested.vec}}
{{.}}
{{/nested.vec}}
{{nested.foo}}
"""
tpl2 = mt"""
{{#nested}}
{{#vec}}
{{.}}
{{/vec}}
{{foo}}
{{/nested}}
{{nested.foo}}
"""
data2 = Dict("nested" => Dict("vec" => [1,2], "foo" => "bar"))
@test Mustache.render(tpl1, data2) == "1\n2\nbar\n"
@test Mustache.render(tpl2, data2) == "1\n2\nbar\nbar\n"
## Issue 114 Combine custom tags with no HTML escaping
@test Mustache.render("\$[[{JL_VERSION_MATRIX}]]", Dict("JL_VERSION_MATRIX"=>"&"), tags=("\$[[","]]")) == "&"
## Issue fixed by PR #122
tpl = """
{{#:vec}}{{#.[1]}}<bold>{{.}}</bold>{{/.[1]}}{{^.[1]}}{{.}} {{/.[1]}}{{/:vec}}
"""
@test Mustache.render(tpl, vec = ["A1", "B2", "C3"]) == "<bold>A1</bold>B2 C3 \n"
##
tpl = mt"""
<input type="range" {{@:range}} min="{{start}}" step="{{step}}" max="{{stop}}" {{/:range}}>
"""
@test render(tpl, Issue123(1:2:3)) == "<input type=\"range\" min=\"1\" step=\"2\" max=\"3\" >\n"
## Issue 124 regression test"
tpl = mt"""
{{^dims}}<input type="text" value="">{{/dims}}
{{#dims}}<textarea {{#.[1]}}cols="{{.}}"{{/.[1]}} {{#.[2]}}rows="{{.}}"{{/.[2]}}></textarea>{{/dims}}
"""
@test render(tpl, Dict("dims"=>missing)) == "<input type=\"text\" value=\"\">\n\n"
@test render(tpl, Dict("dims"=>["1", "2"])) == "\n<textarea cols=\"1\" ></textarea><textarea rows=\"2\"></textarea>\n"
@test render(tpl, Dict("dims"=>("1", "2"))) == "\n<textarea cols=\"1\" ></textarea><textarea rows=\"2\"></textarea>\n"
@test render(tpl, Dict("dims"=>(1, 2))) == "\n<textarea cols=\"1\" ></textarea><textarea rows=\"2\"></textarea>\n"
@test render(tpl, Dict("dims"=>1:2)) == "\n<textarea cols=\"1\" ></textarea><textarea rows=\"2\"></textarea>\n"
## issue 128 global versus local
d = Dict(:two=>Dict(:x=>3), :x=>2)
tpl = mt"""
{{#:one}}
{{#:two}}
{{:x}}
{{/:two}}
{{/:one}}
"""
@test render(tpl, one=d) == "3\n"
tpl = mt"""
{{#:one}}
{{#:two}}
{{~:x}}
{{/:two}}
{{/:one}}
"""
@test render(tpl, one=d) == "2\n"
@test render(tpl, one=d, x=1) == "1\n"
## Issue #133 triple brace with }
tpl = raw"\includegraphics{<<{:filename}>>}"
tokens = Mustache.parse(tpl, ("<<",">>"))
@test render(tokens, filename="XXX") == raw"\includegraphics{XXX}"
# alternative is to use `&` to avoid escaping
@test render(raw"\includegraphics{<<&:filename>>}", (filename="XXX",), #render(string, view;tags=...)
tags=("<<",">>")) == raw"\includegraphics{XXX}"
## jmt macro
x = 1
tpl = jmt"$(2x) by {{:a}}"
@test tpl(a=2) == "2 by 2"
## Issue #139 -- mishandling of tables data with partials
A = [Dict("a" => "eh", "b" => "bee"),
Dict("a" => "ah", "b" => "buh")]
tpl = mt"{{#:A}}Pronounce a as {{>:d}} and b as {{b}}. {{/:A}}"
out1 = render(tpl, A=A, d="*{{a}}*")
A = [Dict(:a => "eh", :b => "bee"),
Dict(:a => "ah", :b => "buh")]
tpl = mt"{{#:A}}Pronounce a as {{>:d}} and b as {{:b}}. {{/:A}}"
out2 = render(tpl, A=A, d="*{{:a}}*")
A = [(a = "eh", b = "bee"),
(a = "ah", b = "buh")]
tpl = mt"{{#:A}}Pronounce a as {{>:d}} and b as {{:b}}. {{/:A}}"
out3 = render(tpl, A=A, d="*{{:a}}*")
@test out1 == out2 == out3
## lookup in Tables compatible data
## find column
tpl = mt"{{#:vec}}{{.}} {{/:vec}}"
A = [(vec=1, a=2),
(vec=2, a=3),
(vec=3, a=4)]
@test render(tpl, A) == "1 2 3 "
## Issue #143 look up key before checking for dotted
@test render("Hello, {{ values.name }}!", Dict("values.name"=>"world")) == "Hello, world!"
## Issue 156 function calls with other tags
tpla = """
<<#:vec>>
- <<{name}>>
- <<#:uppercase>><<{name}>><</:uppercase>>
<</:vec>>
"""
tplb = """
{{#:vec}}
- {{{name}}}
- {{#:uppercase}}{{{name}}}{{/:uppercase}}
{{/:vec}}
"""
vec = [Dict("name" => x) for x in ("a", "b")]
_uppercase(str, render) = uppercase(render(str))
a = Mustache.render(Mustache.parse(tpla, ("<<", ">>")); vec=vec, uppercase=_uppercase)
b = Mustache.render(Mustache.parse(tplb); vec=vec, uppercase=_uppercase)
@test a == b
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 617 | ## Data frame test
## not run by default. Too time consuming and relies on external pacakgs
using Mustache, DataFrames
using Test
using Printf
# simple usage
tpl = mt"""
{{:TITLE}}
{{#:D}}
{{:english}} <--> {{:spanish}}
{{/:D}}
"""
d = DataFrame(english=["hello", "good bye"], spanish=["hola", "adios"])
@test render(tpl, TITLE="translate", D=d) == "translate\nhello <--> hola\ngood bye <--> adios\n"
## Issue with data frames as keyword arguments
tpl = """
{{#:fred}}{{:a}}--{{:b}}{{/:fred}}
{{:barney}}
"""
d = DataFrame(a=[1,2,3], b=[3,2,1])
@test render(tpl, fred=d, barney="123") == "1--32--23--1\n123\n"
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2060 | ## Some simple tests of the package
using Mustache
mtrender = render
tpl = mt"the value of x is {{x}} and that of y is {{y}}"
## a dict
out = mtrender(tpl, Dict("x"=>1, "y"=>2))
println(out)
## A module
x = 1; y = "two"
mtrender(tpl, Main)
## a CompositeKind
mutable struct ThrowAway
x
y
end
mtrender(tpl, ThrowAway("ex","why"))
## a more useful CompositeKind
using Distributions
tpl = mt"Beta distribution with alpha={{alpha}}, beta={{beta}}"
mtrender(tpl, Beta(1, 2))
## conditional text
using Mustache
tpl = "{{#b}}this doesn't show{{/b}}{{#a}}this does show{{/a}}"
mtrender(tpl, Dict("a" => 1))
## We can iterate over data frames. Handy for making tables
using Mustache
using DataFrames
## SHow values in Main in a web page
_names = Array(String, 0)
_summaries = Array(String, 0)
m = Main
for s in sort(map(string, names(m)))
v = Symbol(s)
if isdefined(m,v)
push!(_names, s)
push!(_summaries, summary(eval(m,v)))
end
end
using DataFrames
d = DataFrame(names = _names, summs = _summaries)
tpl = "
<html>
<head>
<title>{{Title}}</title>
</head>
<body>
<table>
<tr><th>name</th><th>summary</th></tr>
{{#d}}
<tr><td>{{names}}</td><td>{{summs}}</td></tr>
{{/d}}
</body>
</html>
";
out = mtrender(tpl, {"Title" => "A quick table", "d" => d})
## show in browser (on Mac)
f = tempname()
io = open("$f.html", "w")
print(io, out)
close(io)
run(`open $f.html`)
## A dict using symbols
d = { :a => 1, :b => 2}
tpl = "symbol {{:a}} and {{:b}}"
mtrender(tpl, d)
## array of Dicts
using Mustache
A = [Dict("a" => "eh", "b" => "bee"),
Dict("a" => "ah", "b" => "buh")]
## Contrast to data frame:
# D = DataFrame(quote
# a = ["eh", "ah"]
# b = ["bee", "buh"]
# end);
tpl = mt"{{#A}} pronounce a as {{a}} and b as {{b}}.{{/A}}"
mtrender(tpl, Dict("A" => A))
## use .[ind] to index within a vector:
tpl = mt"{{#:vec}}{{.[1]}}{{/:vec}}" # just first one
mtrender(tpl, vec=["A1","B2","C3"])
tpl = mt"{{#:vec}}{{.}}{{^.[end]}}, {{/.[end]}}{{/:vec}}" # serial commas
mtrender(tpl, vec=["A1","B2","C3"])
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 1618 | using Mustache
function test_data(str, iter)
[Dict(str => x) for x in iter]
end
failing_template = mt"{{#report}}[{{#times1}}{{x}},{{/times1}}],[{{#times2}}{{y}},{{/times2}}]{{/report}}"
test_func = () -> render(failing_template,
Dict("report" => [ Dict("times1" => test_data("x", 1:4), "times2" => test_data("y",4:8))]))
res = test_func()
@assert res == "[1,2,3,4,],[4,5,6,7,8,]"
failing_template = mt"{{#report}}[{{#times1}}{{x}},[{{#times2}}{{y}},{{/times2}}],{{/times1}}]{{/report}}"
test_func = () -> render(failing_template,
Dict("report" => [Dict("times1" => test_data("x", 1:3), "times2" => test_data("y",4:8))]))
res = test_func()
@assert res == "[1,[4,5,6,7,8,],2,[4,5,6,7,8,],3,[4,5,6,7,8,],]"
failing_template = mt"{{#report}}{{/report}}[{{#times1}}{{x}},[{{#times2}}{{x}},{{/times2}}],{{/times1}}]"
test_func = () -> render(failing_template,
Dict("report" => [],
"times1" => test_data("x", 1:3),
"times2" => test_data("x", 4:8)))
res = test_func()
@assert res == "[1,[4,5,6,7,8,],2,[4,5,6,7,8,],3,[4,5,6,7,8,],]"
## issue #31 -- nested sections
mutable struct Location
lat::Float64
lon::Float64
end
mutable struct Thing
location::Location
name::AbstractString
end
x = [Thing(Location(1.,2.), "name"), Thing(Location(3.,4.), "nombre")]
tpl = """
{{#:x}}
{{#.}}
{{#location}}
{{lat}}--{{lon}}
{{/location}}
{{name}}
{{/.}}
{{/:x}}
"""
Mustache.render(tpl, x=x) == "\n\n\n1.0--2.0\n\nname\n\n\n\n\n3.0--4.0\n\nnombre\n\n\n"
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2992 | ## This downloads and populates the spec test files
using Mustache
using YAML
using Test
ghub = "https://raw.githubusercontent.com/mustache/spec/72233f3ffda9e33915fd3022d0a9ebbcce265acd/specs/{{:spec}}.yml"
specs = ["comments",
"delimiters",
"interpolation",
"inverted",
"partials",
"sections"#,
#"~lambdas"
]
D = Dict()
for spec in specs
nm = Mustache.render(ghub, spec=spec)
D[spec] = YAML.load_file(download(nm))
end
function write_spec_file(fname)
io = open("spec_$fname.jl","w")
println(io, """
using Mustache
using Test
""")
x = D[fname]
println(io, "@testset \" $fname \" begin\n")
for (i,t) in enumerate(x["tests"])
tpl = t["template"]
tpl = replace(tpl, "\\" => "\\\\")
tpl = replace(tpl, r"\"" => "\\\"")
data = t["data"]
desc = t["desc"]
if haskey(t, "partials")
for (k,v) in t["partials"]
data[k] = v
end
end
val = try
Mustache.render(t["template"], data)
catch err
"Failed"
end
expected = t["expected"]
expected_ = replace(expected, "\\" => "\\\\")
expected_ = replace(expected_, r"\"" => "\\\"")
expected_ = "\"\"\"" * expected_ * "\"\"\""
println(io, "\n\t## $desc")
print(io, "tpl = \"\"\"")
print(io, tpl)
println(io, "\"\"\"\n")
println(io, "\t@test Mustache.render(tpl, $data) == $expected_")
println("")
end
println(io, "end\n\n")
close(io)
end
for spec in specs
write_spec_file(spec)
end
# partials are different, as they refer to an external file
# this should clean up temp files, but we don't run as part of test suite
# test 7 fails, but I think that one is wrong
using Test
function test_partials()
for spec in specs
for (i,t) in enumerate(D[spec]["tests"])
if haskey(t, "partials")
println("""Test $spec / $i""")
d = t["data"]
partial = t["partials"]
for (k,v) in partial
io = open(k, "w")
write(io, v)
close(io)
end
tpl = t["template"]
expected = t["expected"]
out = Mustache.render(tpl, d)
val = out == expected
if val
@test val
else
val = replace(out, r"\n"=>"") == replace(expected, r"\n"=>"")
if val
println("""$(t["desc"]): newline issue ...""")
@test val
else
println("""$(t["desc"]): FAILED:\n $out != $expected""")
end
end
for (k,v) in partial
rm(k)
end
end
end
end
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 1756 | using Mustache
using Test
tpl = mt"a:{{x}} b:{{{y}}}"
x, y = "ex", "why"
d = Dict("x"=>"ex", "y"=>"why")
mutable struct ThrowAway
x
y
end
@test render(tpl, Main) == "a:ex b:why"
@test render(tpl, d) == "a:ex b:why"
@test render(tpl, ThrowAway(x,y)) == "a:ex b:why"
## triple quoted
tpl = mt"""a:{{x}} b:{{y}}"""
@test render(tpl, Main) == "a:ex b:why"
@test render(tpl, d) == "a:ex b:why"
@test render(tpl, ThrowAway(x,y)) == "a:ex b:why"
## conditional
tpl = "{{#b}}this doesn't show{{/b}}{{#a}}this does show{{/a}}"
@test render(tpl, Dict("a" => 1)) == "this does show"
## dict using symbols
d = Dict(:a => x, :b => y)
tpl = "a:{{:a}} b:{{:b}}"
@test render(tpl, d) == "a:ex b:why"
## keyword args
@test render(tpl, a="ex", b="why") == "a:ex b:why"
## unicode
module TMP
α = 1
β = 2
end
@test render("{{α}} + 1 = {{β}}", TMP) == "1 + 1 = 2"
@test render("{{:β}}", β=2) == "2"
@test render("α - {{:β}}", β=2) == "α - 2"
@test render("{{:α}}", α="β") == "β"
## {{.}} test
tpl = mt"{{#:vec}}{{.}} {{/:vec}}"
@test render(tpl, vec=[1,2,3]) == "1 2 3 "
## test of function, see http://mustache.github.io/mustache.5.html (Lambdas)
tpl = mt"""{{#wrapped}}
{{name}} is awesome.
{{/wrapped}}
"""
d = Dict()
d["name"] = "Willy"
d["wrapped"] = function()
function(text, render)
"<b>" * render(text) * "</b>"
end
end
@test Mustache.render(tpl, d) == "<b>\n Willy is awesome.\n</b>\n" #?? extra \n??
## Test of using Dict in {{#}}/{{/}} things
tpl = mt"{{#:d}}{{x}} and {{y}}{{/:d}}"
d = Dict(); d["x"] = "salt"; d["y"] = "pepper"
@test Mustache.render(tpl, d=d) == "salt and pepper"
## issue #51 inverted section
@test Mustache.render("""{{^repos}}No repos :({{/repos}}""", Dict("repos" => [])) == "No repos :("
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 339 | include("Mustache_test.jl")
include("multiple_nested_sections.jl")
include("test_index.jl")
#include("data-frame-test.jl")
# spec tests
include("spec_comments.jl")
include("spec_delimiters.jl")
include("spec_interpolation.jl")
include("spec_inverted.jl")
include("spec_partials.jl")
include("spec_sections.jl")
include("spec_lambdas.jl")
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 1945 | using Mustache
using Test
@testset " comments " begin
## Comment blocks should be removed from the template.
tpl = """12345{{! Comment Block! }}67890"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """1234567890"""
## Multiline comments should be permitted.
tpl = """12345{{!
This is a
multi-line comment...
}}67890
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """1234567890
"""
## All standalone comment lines should be removed.
tpl = """Begin.
{{! Comment Block! }}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## All standalone comment lines should be removed.
tpl = """Begin.
{{! Indented Comment Block! }}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## "\r\n" should be considered a newline for standalone tags.
tpl = """|
{{! Standalone Comment }}
|"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """|
|"""
## Standalone tags should not require a newline to precede them.
tpl = """ {{! I'm Still Standalone }}
!"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """!"""
## Standalone tags should not require a newline to follow them.
tpl = """!
{{! I'm Still Standalone }}"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """!
"""
## All standalone comment lines should be removed.
tpl = """Begin.
{{!
Something's going on here...
}}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## All standalone comment lines should be removed.
tpl = """Begin.
{{!s
Something's going on here...
}}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## Inline comments should not strip whitespace
tpl = """ 12 {{! 34 }}
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """ 12
"""
## Comment removal should preserve surrounding whitespace.
tpl = """12345 {{! Comment Block! }} 67890"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """12345 67890"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2855 | using Mustache
using Test
@testset " delimiters " begin
## The equals sign (used on both sides) should permit delimiter changes.
tpl = """{{=<% %>=}}(<%text%>)"""
@test Mustache.render(tpl, Dict{Any,Any}("text"=>"Hey!")) == """(Hey!)"""
## Characters with special meaning regexen should be valid delimiters.
tpl = """({{=[ ]=}}[text])"""
@test Mustache.render(tpl, Dict{Any,Any}("text"=>"It worked!")) == """(It worked!)"""
## Delimiters set outside sections should persist.
tpl = """[
{{#section}}
{{data}}
|data|
{{/section}}
{{= | | =}}
|#section|
{{data}}
|data|
|/section|
]
"""
@test Mustache.render(tpl, Dict{Any,Any}("section"=>true,"data"=>"I got interpolated.")) == """[
I got interpolated.
|data|
{{data}}
I got interpolated.
]
"""
## Delimiters set outside inverted sections should persist.
tpl = """[
{{^section}}
{{data}}
|data|
{{/section}}
{{= | | =}}
|^section|
{{data}}
|data|
|/section|
]
"""
@test Mustache.render(tpl, Dict{Any,Any}("section"=>false,"data"=>"I got interpolated.")) == """[
I got interpolated.
|data|
{{data}}
I got interpolated.
]
"""
## Delimiters set in a parent template should not affect a partial.
tpl = """[ {{>include}} ]
{{= | | =}}
[ |>include| ]
"""
@test Mustache.render(tpl, Dict{Any,Any}("value"=>"yes","include"=>".{{value}}.")) == """[ .yes. ]
[ .yes. ]
"""
## Delimiters set in a partial should not affect the parent template.
tpl = """[ {{>include}} ]
[ .{{value}}. .|value|. ]
"""
@test Mustache.render(tpl, Dict{Any,Any}("value"=>"yes","include"=>".{{value}}. {{= | | =}} .|value|.")) == """[ .yes. .yes. ]
[ .yes. .|value|. ]
"""
## Surrounding whitespace should be left untouched.
tpl = """| {{=@ @=}} |"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """| |"""
## Whitespace should be left untouched.
tpl = """ | {{=@ @=}}
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """ |
"""
## Standalone lines should be removed from the template.
tpl = """Begin.
{{=@ @=}}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## Indented standalone lines should be removed from the template.
tpl = """Begin.
{{=@ @=}}
End.
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Begin.
End.
"""
## "\r\n" should be considered a newline for standalone tags.
tpl = """|
{{= @ @ =}}
|"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """|
|"""
## Standalone tags should not require a newline to precede them.
tpl = """ {{=@ @=}}
="""
@test Mustache.render(tpl, Dict{Any,Any}()) == """="""
## Standalone tags should not require a newline to follow them.
tpl = """=
{{=@ @=}}"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """=
"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{= @ @ =}}|"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """||"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 6479 | using Mustache
using Test
@testset " interpolation " begin
## Mustache-free templates should render as-is.
tpl = """Hello from {Mustache}!
"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """Hello from {Mustache}!
"""
## Unadorned tags should interpolate content into the template.
tpl = """Hello, {{subject}}!
"""
@test Mustache.render(tpl, Dict{Any,Any}("subject"=>"world")) == """Hello, world!
"""
## Basic interpolation should be HTML escaped.
tpl = """These characters should be HTML escaped: {{forbidden}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("forbidden"=>"& \" < >")) == """These characters should be HTML escaped: & " < >
"""
## Triple mustaches should interpolate without HTML escaping.
tpl = """These characters should not be HTML escaped: {{{forbidden}}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("forbidden"=>"& \" < >")) == """These characters should not be HTML escaped: & \" < >
"""
## Ampersand should interpolate without HTML escaping.
tpl = """These characters should not be HTML escaped: {{&forbidden}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("forbidden"=>"& \" < >")) == """These characters should not be HTML escaped: & \" < >
"""
## Integers should interpolate seamlessly.
tpl = """\"{{mph}} miles an hour!\""""
@test Mustache.render(tpl, Dict{Any,Any}("mph"=>85)) == """\"85 miles an hour!\""""
## Integers should interpolate seamlessly.
tpl = """\"{{{mph}}} miles an hour!\""""
@test Mustache.render(tpl, Dict{Any,Any}("mph"=>85)) == """\"85 miles an hour!\""""
## Integers should interpolate seamlessly.
tpl = """\"{{&mph}} miles an hour!\""""
@test Mustache.render(tpl, Dict{Any,Any}("mph"=>85)) == """\"85 miles an hour!\""""
## Decimals should interpolate seamlessly with proper significance.
tpl = """\"{{power}} jiggawatts!\""""
@test Mustache.render(tpl, Dict{Any,Any}("power"=>1.21)) == """\"1.21 jiggawatts!\""""
## Decimals should interpolate seamlessly with proper significance.
tpl = """\"{{{power}}} jiggawatts!\""""
@test Mustache.render(tpl, Dict{Any,Any}("power"=>1.21)) == """\"1.21 jiggawatts!\""""
## Decimals should interpolate seamlessly with proper significance.
tpl = """\"{{&power}} jiggawatts!\""""
@test Mustache.render(tpl, Dict{Any,Any}("power"=>1.21)) == """\"1.21 jiggawatts!\""""
## Failed context lookups should default to empty strings.
tpl = """I ({{cannot}}) be seen!"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """I () be seen!"""
## Failed context lookups should default to empty strings.
tpl = """I ({{{cannot}}}) be seen!"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """I () be seen!"""
## Failed context lookups should default to empty strings.
tpl = """I ({{&cannot}}) be seen!"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """I () be seen!"""
## Dotted names should be considered a form of shorthand for sections.
tpl = """\"{{person.name}}\" == \"{{#person}}{{name}}{{/person}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("person"=>Dict{Any,Any}("name"=>"Joe"))) == """\"Joe\" == \"Joe\""""
## Dotted names should be considered a form of shorthand for sections.
tpl = """\"{{{person.name}}}\" == \"{{#person}}{{{name}}}{{/person}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("person"=>Dict{Any,Any}("name"=>"Joe"))) == """\"Joe\" == \"Joe\""""
## Dotted names should be considered a form of shorthand for sections.
tpl = """\"{{&person.name}}\" == \"{{#person}}{{&name}}{{/person}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("person"=>Dict{Any,Any}("name"=>"Joe"))) == """\"Joe\" == \"Joe\""""
## Dotted names should be functional to any level of nesting.
tpl = """\"{{a.b.c.d.e.name}}\" == \"Phil\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>Dict{Any,Any}("d"=>Dict{Any,Any}("e"=>Dict{Any,Any}("name"=>"Phil"))))))) == """\"Phil\" == \"Phil\""""
## Any falsey value prior to the last part of the name should yield ''.
tpl = """\"{{a.b.c}}\" == \"\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}())) == """\"\" == \"\""""
## Each part of a dotted name should resolve only against its parent.
tpl = """\"{{a.b.c.name}}\" == \"\""""
@test Mustache.render(tpl, Dict{Any,Any}("c"=>Dict{Any,Any}("name"=>"Jim"),"a"=>Dict{Any,Any}("b"=>Dict{Any,Any}()))) == """\"\" == \"\""""
## The first part of a dotted name should resolve as any other name.
tpl = """\"{{#a}}{{b.c.d.e.name}}{{/a}}\" == \"Phil\""""
@test Mustache.render(tpl, Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>Dict{Any,Any}("d"=>Dict{Any,Any}("e"=>Dict{Any,Any}("name"=>"Wrong")))),"a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>Dict{Any,Any}("d"=>Dict{Any,Any}("e"=>Dict{Any,Any}("name"=>"Phil"))))))) == """\"Phil\" == \"Phil\""""
## Dotted names should be resolved against former resolutions.
tpl = """{{#a}}{{b.c}}{{/a}}"""
@test Mustache.render(tpl, Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>"ERROR"),"a"=>Dict{Any,Any}("b"=>Dict{Any,Any}()))) == """"""
## Interpolation should not alter surrounding whitespace.
tpl = """| {{string}} |"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """| --- |"""
## Interpolation should not alter surrounding whitespace.
tpl = """| {{{string}}} |"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """| --- |"""
## Interpolation should not alter surrounding whitespace.
tpl = """| {{&string}} |"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """| --- |"""
## Standalone interpolation should not alter surrounding whitespace.
tpl = """ {{string}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """ ---
"""
## Standalone interpolation should not alter surrounding whitespace.
tpl = """ {{{string}}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """ ---
"""
## Standalone interpolation should not alter surrounding whitespace.
tpl = """ {{&string}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """ ---
"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{ string }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """|---|"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{{ string }}}|"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """|---|"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{& string }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("string"=>"---")) == """|---|"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 4698 | using Mustache
using Test
@testset " inverted " begin
## Falsey sections should have their contents rendered.
tpl = """\"{{^boolean}}This should be rendered.{{/boolean}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """\"This should be rendered.\""""
## Truthy sections should have their contents omitted.
tpl = """\"{{^boolean}}This should not be rendered.{{/boolean}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """\"\""""
## Objects and hashes should behave like truthy values.
tpl = """\"{{^context}}Hi {{name}}.{{/context}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("context"=>Dict{Any,Any}("name"=>"Joe"))) == """\"\""""
## Lists should behave like truthy values.
tpl = """\"{{^list}}{{n}}{{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>Dict{Any,Any}[Dict("n"=>1), Dict("n"=>2), Dict("n"=>3)])) == """\"\""""
## Empty lists should behave like falsey values.
tpl = """\"{{^list}}Yay lists!{{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>Any[])) == """\"Yay lists!\""""
## Multiple inverted sections per template should be permitted.
tpl = """{{^bool}}
* first
{{/bool}}
* {{two}}
{{^bool}}
* third
{{/bool}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("two"=>"second","bool"=>false)) == """* first
* second
* third
"""
## Nested falsey sections should have their contents rendered.
tpl = """| A {{^bool}}B {{^bool}}C{{/bool}} D{{/bool}} E |"""
@test Mustache.render(tpl, Dict{Any,Any}("bool"=>false)) == """| A B C D E |"""
## Nested truthy sections should be omitted.
tpl = """| A {{^bool}}B {{^bool}}C{{/bool}} D{{/bool}} E |"""
@test Mustache.render(tpl, Dict{Any,Any}("bool"=>true)) == """| A E |"""
## Failed context lookups should be considered falsey.
tpl = """[{{^missing}}Cannot find key 'missing'!{{/missing}}]"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """[Cannot find key 'missing'!]"""
## Dotted names should be valid for Inverted Section tags.
tpl = """\"{{^a.b.c}}Not Here{{/a.b.c}}\" == \"\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>true)))) == """\"\" == \"\""""
## Dotted names should be valid for Inverted Section tags.
tpl = """\"{{^a.b.c}}Not Here{{/a.b.c}}\" == \"Not Here\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>false)))) == """\"Not Here\" == \"Not Here\""""
## Dotted names that cannot be resolved should be considered falsey.
tpl = """\"{{^a.b.c}}Not Here{{/a.b.c}}\" == \"Not Here\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}())) == """\"Not Here\" == \"Not Here\""""
## Inverted sections should not alter surrounding whitespace.
tpl = """ | {{^boolean}} | {{/boolean}} |
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """ | | |
"""
## Inverted should not alter internal whitespace.
tpl = """ | {{^boolean}} {{! Important Whitespace }}
{{/boolean}} |
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == " | \n |\n"
#""" |\\s
# |
#"""
## Single-line sections should not alter surrounding whitespace.
tpl = """ {{^boolean}}NO{{/boolean}}
{{^boolean}}WAY{{/boolean}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """ NO
WAY
"""
## Standalone lines should be removed from the template.
tpl = """| This Is
{{^boolean}}
|
{{/boolean}}
| A Line
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """| This Is
|
| A Line
"""
## Standalone indented lines should be removed from the template.
tpl = """| This Is
{{^boolean}}
|
{{/boolean}}
| A Line
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """| This Is
|
| A Line
"""
## "\r\n" should be considered a newline for standalone tags.
tpl = """|
{{^boolean}}
{{/boolean}}
|"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """|
|"""
## Standalone tags should not require a newline to precede them.
tpl = """ {{^boolean}}
^{{/boolean}}
/"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """^
/"""
## Standalone tags should not require a newline to follow them.
tpl = """^{{^boolean}}
/
{{/boolean}}"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """^
/
"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{^ boolean }}={{/ boolean }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """|=|"""
## Inverted section should not affect following render.
tpl = """|{{^ boolean }}={{/ boolean }} {{ following.subfield }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false, "following"=>Dict("subfield"=>1))) == """|= 1|"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 8424 | using Mustache
using Test
mutable struct CallableFunction <: Function
calls::Int
end
(F::CallableFunction)() = (F.calls += 1; string(F.calls))
@testset " lambdas " begin
# overview: |
# Lambdas are a special-cased data type for use in interpolations and
# sections.
# When used as the data value for an Interpolation tag, the lambda MUST be
# treatable as an arity 0 function, and invoked as such. The returned value
# MUST be rendered against the default delimiters, then interpolated in place
# of the lambda.
# When used as the data value for a Section tag, the lambda MUST be treatable
# as an arity 1 function, and invoked as such (passing a String containing the
# unprocessed section contents). The returned value MUST be rendered against
# the current delimiters, then interpolated in place of the section.
# tests:
# - name: Interpolation
# desc: A lambda's return value should be interpolated.
# data:
# lambda: !code
# ruby: 'proc { "world" }'
# perl: 'sub { "world" }'
# js: 'function() { return "world" }'
# php: 'return "world";'
# python: 'lambda: "world"'
# clojure: '(fn [] "world")'
# template: "Hello, {{lambda}}!"
# expected: "Hello, world!"
template = "Hello, {{lambda}}!"
expected = "Hello, world!"
data = Dict("lambda"=> () -> "world")
@test Mustache.render(template, data) == expected
# - name: Interpolation - Expansion
# desc: A lambda's return value should be parsed.
# data:
# planet: "world"
# lambda: !code
# ruby: 'proc { "{{planet}}" }'
# perl: 'sub { "{{planet}}" }'
# js: 'function() { return "{{planet}}" }'
# php: 'return "{{planet}}";'
# python: 'lambda: "{{planet}}"'
# clojure: '(fn [] "{{planet}}")'
# template: "Hello, {{lambda}}!"
# expected: "Hello, world!"
template = "Hello, {{lambda}}!"
expected = "Hello, world!"
data = Dict("lambda" => () -> "{{planet}}", "planet" => "world")
@test Mustache.render(template, data) == expected
# - name: Interpolation - Alternate Delimiters
# desc: A lambda's return value should parse with the default delimiters.
# data:
# planet: "world"
# lambda: !code
# ruby: 'proc { "|planet| => {{planet}}" }'
# perl: 'sub { "|planet| => {{planet}}" }'
# js: 'function() { return "|planet| => {{planet}}" }'
# php: 'return "|planet| => {{planet}}";'
# python: 'lambda: "|planet| => {{planet}}"'
# clojure: '(fn [] "|planet| => {{planet}}")'
# template: "{{= | | =}}\nHello, (|&lambda|)!"
# expected: "Hello, (|planet| => world)!"
template = "{{= | | =}}\nHello, (|&lambda|)!"
expected = "Hello, (|planet| => world)!"
data = Dict("planet"=>"world", "lambda"=> () -> "|planet| => {{planet}}")
@test Mustache.render(template, data) == expected
# - name: Interpolation - Multiple Calls
# desc: Interpolated lambdas should not be cached.
# data:
# lambda: !code
# ruby: 'proc { $calls ||= 0; $calls += 1 }'
# perl: 'sub { no strict; $calls += 1 }'
# js: 'function() { return (g=(function(){return this})()).calls=(g.calls||0)+1 }'
# php: 'global $calls; return ++$calls;'
# python: 'lambda: globals().update(calls=globals().get("calls",0)+1) or calls'
# clojure: '(def g (atom 0)) (fn [] (swap! g inc))'
# template: '{{lambda}} == {{{lambda}}} == {{lambda}}'
# expected: '1 == 2 == 3'
template = "{{lambda}} == {{{lambda}}} == {{lambda}}"
expected = "1 == 2 == 3"
data = Dict("lambda" => CallableFunction(0))
@test Mustache.render(template, data) == expected
# - name: Escaping
# desc: Lambda results should be appropriately escaped.
# data:
# lambda: !code
# ruby: 'proc { ">" }'
# perl: 'sub { ">" }'
# js: 'function() { return ">" }'
# php: 'return ">";'
# python: 'lambda: ">"'
# clojure: '(fn [] ">")'
# template: "<{{lambda}}{{{lambda}}}"
# expected: "<>>"
template = "<{{lambda}}{{{lambda}}}"
expected = "<>>"
data = Dict("lambda" => () -> ">")
@test Mustache.render(template, data) == expected
# - name: Section
# desc: Lambdas used for sections should receive the raw section string.
# data:
# x: 'Error!'
# lambda: !code
# ruby: 'proc { |text| text == "{{x}}" ? "yes" : "no" }'
# perl: 'sub { $_[0] eq "{{x}}" ? "yes" : "no" }'
# js: 'function(txt) { return (txt == "{{x}}" ? "yes" : "no") }'
# php: 'return ($text == "{{x}}") ? "yes" : "no";'
# python: 'lambda text: text == "{{x}}" and "yes" or "no"'
# clojure: '(fn [text] (if (= text "{{x}}") "yes" "no"))'
# template: "<{{#lambda}}{{x}}{{/lambda}}>"
# expected: "<yes>"
template = "<{{#lambda}}{{x}}{{/lambda}}>"
expected = "<yes>"
data = Dict("x" => "Error!", "lambda" => (txt) -> txt == "{{x}}" ? "yes" : "no")
@test Mustache.render(template, data) == expected
# - name: Section - Expansion
# desc: Lambdas used for sections should have their results parsed.
# data:
# planet: "Earth"
# lambda: !code
# ruby: 'proc { |text| "#{text}{{planet}}#{text}" }'
# perl: 'sub { $_[0] . "{{planet}}" . $_[0] }'
# js: 'function(txt) { return txt + "{{planet}}" + txt }'
# php: 'return $text . "{{planet}}" . $text;'
# python: 'lambda text: "%s{{planet}}%s" % (text, text)'
# clojure: '(fn [text] (str text "{{planet}}" text))'
# template: "<{{#lambda}}-{{/lambda}}>"
# expected: "<-Earth->"
template = "<{{#lambda}}-{{/lambda}}>"
expected = "<-Earth->"
data = Dict("planet"=> "Earth", "lambda" => (txt) -> txt * "{{planet}}" * txt)
@test Mustache.render(template, data) == expected
# - name: Section - Alternate Delimiters
# desc: Lambdas used for sections should parse with the current delimiters.
# data:
# planet: "Earth"
# lambda: !code
# ruby: 'proc { |text| "#{text}{{planet}} => |planet|#{text}" }'
# perl: 'sub { $_[0] . "{{planet}} => |planet|" . $_[0] }'
# js: 'function(txt) { return txt + "{{planet}} => |planet|" + txt }'
# php: 'return $text . "{{planet}} => |planet|" . $text;'
# python: 'lambda text: "%s{{planet}} => |planet|%s" % (text, text)'
# clojure: '(fn [text] (str text "{{planet}} => |planet|" text))'
# template: "{{= | | =}}<|#lambda|-|/lambda|>"
# expected: "<-{{planet}} => Earth->"
template = "{{= | | =}}<|#lambda|-|/lambda|>"
expected = "<-{{planet}} => Earth->"
data = Dict("planet"=>"Earth", "lambda"=> (txt) -> txt * "{{planet}} => |planet|" * txt)
@test Mustache.render(template, data) == expected
# - name: Section - Multiple Calls
# desc: Lambdas used for sections should not be cached.
# data:
# lambda: !code
# ruby: 'proc { |text| "__#{text}__" }'
# perl: 'sub { "__" . $_[0] . "__" }'
# js: 'function(txt) { return "__" + txt + "__" }'
# php: 'return "__" . $text . "__";'
# python: 'lambda text: "__%s__" % (text)'
# clojure: '(fn [text] (str "__" text "__"))'
# template: '{{#lambda}}FILE{{/lambda}} != {{#lambda}}LINE{{/lambda}}'
# expected: '__FILE__ != __LINE__'
template = "{{#lambda}}FILE{{/lambda}} != {{#lambda}}LINE{{/lambda}}"
expected = "__FILE__ != __LINE__"
data = Dict("lambda" => (txt) -> "__" * txt * "__")
@test Mustache.render(template, data) == expected
# - name: Inverted Section
# desc: Lambdas used for inverted sections should be considered truthy.
# data:
# static: 'static'
# lambda: !code
# ruby: 'proc { |text| false }'
# perl: 'sub { 0 }'
# js: 'function(txt) { return false }'
# php: 'return false;'
# python: 'lambda text: 0'
# clojure: '(fn [text] false)'
# template: "<{{^lambda}}{{static}}{{/lambda}}>"
# expected: "<>"
template = "<{{^lambda}}{{static}}{{/lambda}}>"
expected = "<>"
data = Dict("static" => "static", "lambda" => (txt) -> false)
@test Mustache.render(template, data) == expected
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 2174 | using Mustache
using Test
@testset " partials " begin
## The greater-than operator should expand to the named partial.
tpl = """\"{{>text}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("text"=>"from partial")) == """\"from partial\""""
## The empty string should be used when the named partial is not found.
tpl = """\"{{>text}}\""""
@test Mustache.render(tpl, Dict{Any,Any}()) == """\"\""""
## The greater-than operator should operate within the current context.
tpl = """\"{{>partial}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>"*{{text}}*","text"=>"content")) == """\"*content*\""""
## The greater-than operator should properly recurse.
tpl = """{{>node}}"""
@test Mustache.render(tpl, Dict{Any,Any}("nodes"=>Dict{Any,Any}[Dict("nodes"=>Any[],"content"=>"Y")],"content"=>"X","node"=>"{{content}}<{{#nodes}}{{>node}}{{/nodes}}>")) == """X<Y<>>"""
## The greater-than operator should not alter surrounding whitespace.
tpl = """| {{>partial}} |"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>"\t|\t")) == """| | |"""
## Whitespace should be left untouched.
tpl = """ {{data}} {{> partial}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>">\n>","data"=>"|")) == """ | >
>
"""
## "\r\n" should be considered a newline for standalone tags.
tpl = """|
{{>partial}}
|"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>">")) == """|
>|"""
## Standalone tags should not require a newline to precede them.
tpl = """ {{>partial}}
>"""
@test_skip Mustache.render(tpl, Dict{Any,Any}("partial"=>">\n>")) == """ >
>>"""
## Standalone tags should not require a newline to follow them.
tpl = """>
{{>partial}}"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>">\n>")) == """>
>
>"""
## Each line of the partial should be indented before rendering.
tpl = """\\
{{>partial}}
/
"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>"|\n{{{content}}}\n|\n","content"=>"<\n->")) == """\\
|
<
->
|
/
"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{> partial }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("partial"=>"[]","boolean"=>true)) == """|[]|"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 6043 | using Mustache
using Test
@testset " sections " begin
## Truthy sections should have their contents rendered.
tpl = """\"{{#boolean}}This should be rendered.{{/boolean}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """\"This should be rendered.\""""
## Falsey sections should have their contents omitted.
tpl = """\"{{#boolean}}This should not be rendered.{{/boolean}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>false)) == """\"\""""
## Objects and hashes should be pushed onto the context stack.
tpl = """\"{{#context}}Hi {{name}}.{{/context}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("context"=>Dict{Any,Any}("name"=>"Joe"))) == """\"Hi Joe.\""""
## All elements on the context stack should be accessible.
tpl = """{{#a}}
{{one}}
{{#b}}
{{one}}{{two}}{{one}}
{{#c}}
{{one}}{{two}}{{three}}{{two}}{{one}}
{{#d}}
{{one}}{{two}}{{three}}{{four}}{{three}}{{two}}{{one}}
{{#e}}
{{one}}{{two}}{{three}}{{four}}{{five}}{{four}}{{three}}{{two}}{{one}}
{{/e}}
{{one}}{{two}}{{three}}{{four}}{{three}}{{two}}{{one}}
{{/d}}
{{one}}{{two}}{{three}}{{two}}{{one}}
{{/c}}
{{one}}{{two}}{{one}}
{{/b}}
{{one}}
{{/a}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("c"=>Dict{Any,Any}("three"=>3),"e"=>Dict{Any,Any}("five"=>5),"b"=>Dict{Any,Any}("two"=>2),"a"=>Dict{Any,Any}("one"=>1),"d"=>Dict{Any,Any}("four"=>4))) == """1
121
12321
1234321
123454321
1234321
12321
121
1
"""
## Lists should be iterated; list items should visit the context stack.
tpl = """\"{{#list}}{{item}}{{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>Dict{Any,Any}[Dict("item"=>1), Dict("item"=>2), Dict("item"=>3)])) == """\"123\""""
## Empty lists should behave like falsey values.
tpl = """\"{{#list}}Yay lists!{{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>Any[])) == """\"\""""
## Multiple sections per template should be permitted.
tpl = """{{#bool}}
* first
{{/bool}}
* {{two}}
{{#bool}}
* third
{{/bool}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("two"=>"second","bool"=>true)) == """* first
* second
* third
"""
## Nested truthy sections should have their contents rendered.
tpl = """| A {{#bool}}B {{#bool}}C{{/bool}} D{{/bool}} E |"""
@test Mustache.render(tpl, Dict{Any,Any}("bool"=>true)) == """| A B C D E |"""
## Nested falsey sections should be omitted.
tpl = """| A {{#bool}}B {{#bool}}C{{/bool}} D{{/bool}} E |"""
@test Mustache.render(tpl, Dict{Any,Any}("bool"=>false)) == """| A E |"""
## Failed context lookups should be considered falsey.
tpl = """[{{#missing}}Found key 'missing'!{{/missing}}]"""
@test Mustache.render(tpl, Dict{Any,Any}()) == """[]"""
## Implicit iterators should directly interpolate strings.
tpl = """\"{{#list}}({{.}}){{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>["a", "b", "c", "d", "e"])) == """\"(a)(b)(c)(d)(e)\""""
## Implicit iterators should cast integers to strings and interpolate.
tpl = """\"{{#list}}({{.}}){{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>[1, 2, 3, 4, 5])) == """\"(1)(2)(3)(4)(5)\""""
## Implicit iterators should cast decimals to strings and interpolate.
tpl = """\"{{#list}}({{.}}){{/list}}\""""
@test Mustache.render(tpl, Dict{Any,Any}("list"=>[1.1, 2.2, 3.3, 4.4, 5.5])) == """\"(1.1)(2.2)(3.3)(4.4)(5.5)\""""
## Dotted names should be valid for Section tags.
tpl = """\"{{#a.b.c}}Here{{/a.b.c}}\" == \"Here\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>true)))) == """\"Here\" == \"Here\""""
## Dotted names should be valid for Section tags.
tpl = """\"{{#a.b.c}}Here{{/a.b.c}}\" == \"\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}("b"=>Dict{Any,Any}("c"=>false)))) == """\"\" == \"\""""
## Dotted names that cannot be resolved should be considered falsey.
tpl = """\"{{#a.b.c}}Here{{/a.b.c}}\" == \"\""""
@test Mustache.render(tpl, Dict{Any,Any}("a"=>Dict{Any,Any}())) == """\"\" == \"\""""
## Sections should not alter surrounding whitespace.
tpl = """ | {{#boolean}} | {{/boolean}} |
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """ | | |
"""
## Sections should not alter internal whitespace.
tpl = """ | {{#boolean}} {{! Important Whitespace }}
{{/boolean}} |
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """ |
|
"""
## Single-line sections should not alter surrounding whitespace.
tpl = """ {{#boolean}}YES{{/boolean}}
{{#boolean}}GOOD{{/boolean}}
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """ YES
GOOD
"""
## Standalone lines should be removed from the template.
tpl = """| This Is
{{#boolean}}
|
{{/boolean}}
| A Line
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """| This Is
|
| A Line
"""
## Indented standalone lines should be removed from the template.
tpl = """| This Is
{{#boolean}}
|
{{/boolean}}
| A Line
"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """| This Is
|
| A Line
"""
## "\r\n" should be considered a newline for standalone tags.
tpl = """|
{{#boolean}}
{{/boolean}}
|"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """|
|"""
## Standalone tags should not require a newline to precede them.
tpl = """ {{#boolean}}
#{{/boolean}}
/"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """#
/"""
## Standalone tags should not require a newline to follow them.
tpl = """#{{#boolean}}
/
{{/boolean}}"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """#
/
"""
## Superfluous in-tag whitespace should be ignored.
tpl = """|{{# boolean }}={{/ boolean }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("boolean"=>true)) == """|=|"""
## Nested object fields should be accessible via global lookup
tpl = """|{{# inner }}{{ field.subfield }}{{/ inner }} {{# inner }}{{ ~field.subfield }}{{/ inner }}|"""
@test Mustache.render(tpl, Dict{Any,Any}("inner"=>Dict("field"=>Dict("subfield"=>1)),"field"=>Dict("subfield"=>2))) == """|1 2|"""
end
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | code | 359 | ## Experimental syntax for indexing within vectors:
using Test
## use # to include
tpl = mt"{{#:vec}}{{#.[1]}}{{.}}{{/.[1]}}{{/:vec}}"
out = Mustache.render(tpl, vec=["A1","B2","C3"])
@test out == "A1"
## use ^ to exclude
tpl = mt"{{#:vec}}{{.}}{{^.[end]}}, {{/.[end]}}{{/:vec}}"
out = Mustache.render(tpl, vec=["A1","B2","C3"])
@test out == "A1, B2, C3"
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | docs | 806 | # Mustache
[](https://jverzani.github.io/Mustache.jl/dev)
[](https://github.com/jverzani/Mustache.jl/actions)
[](https://codecov.io/gh/jverzani/Mustache.jl)
[{{ mustache }}](http://mustache.github.io/) is
... a logic-less template syntax. It can be used for HTML,
config files, source code - anything. It works by expanding tags in a
template using values provided in a hash or object.
This package ports over the [mustache.js](https://github.com/janl/mustache.js) implementation for use in [Julia](http://julialang.org). All credit should go there. All bugs are my own.
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.0.20 | 3b2db451a872b20519ebb0cec759d3d81a1c6bcb | docs | 18935 | # Mustache.jl
Documentation for [Mustache.jl](https://github.com/jverzani/Mustache.jl).
## Examples
Following the main [documentation](http://mustache.github.io/mustache.5.html) for `Mustache.js` we have a "typical Mustache template" defined by:
```julia
using Mustache
tpl = mt"""
Hello {{name}}
You have just won {{value}} dollars!
{{#in_ca}}
Well, {{taxed_value}} dollars, after taxes.
{{/in_ca}}
"""
```
The values with braces (mustaches on their side) are looked up in a view, such as a dictionary or module. For example,
```julia
d = Dict(
"name" => "Chris",
"value" => 10000,
"taxed_value" => 10000 - (10000 * 0.4),
"in_ca" => true)
Mustache.render(tpl, d)
```
Yielding
```
Hello Chris
You have just won 10000 dollars!
Well, 6000.0 dollars, after taxes.
```
The `render` function pieces things together. Like `print`, the first
argument is for an optional `IO` instance. In the above example, where
one is not provided, a string is returned.
The flow is
* a template is parsed into tokens by `Mustache.parse`. This can be called directly, indirectly through the non-standard string literal `mt`, or when loading a file with `Mustache.load`. The templates use tags comprised of matching mustaches (`{}`), either two or three, to indicate a value to be substituted for. These tags may be adjusted when `parse` is called.
* The tokens and a view are `render`ed. The `render` function takes tokens as its second argument. If this argument is a string, `parse` is called internally. The `render` function than reassambles the template, substituting values, as appropriate, from the "view" passed to it and writes the output to the specified `io` argument.
There are only 4 exports: `mt` and `jmt`, string literals to specify a template, `render`, and `render_from_file`.
The view used to provide values to substitute into the template can be
specified in a variety of ways. The above example used a dictionary. A
Module may also be used, such as `Main`:
```julia
name, value, taxed_value, in_ca = "Christine", 10000, 10000 - (10000 * 0.4), false
Mustache.render(tpl, Main) |> print
```
Which yields:
```
Hello Christine
You have just won 10000 dollars!
```
Further, keyword arguments can be used when the variables in the
templates are symbols:
```julia
goes_together = mt"{{{:x}}} and {{{:y}}}."
Mustache.render(goes_together, x="Salt", y="pepper")
Mustache.render(goes_together, x="Bread", y="butter")
```
`Tokens` objects are functors; keyword arguments can also be passed to a `Tokens` object directly (bypassing the use of `render`):
```julia
goes_together = mt"{{{:x}}} and {{{:y}}}."
goes_together(x="Fish", y="chips")
```
Similarly, a named tuple may be used as a view. As well, one can use
Composite Kinds. This may make writing `show` methods easier:
```julia
using Distributions
tpl = "Beta distribution with alpha={{α}}, beta={{β}}"
Mustache.render(tpl, Beta(1, 2))
```
gives
```
"Beta distribution with alpha=1.0, beta=2.0"
```
### Rendering
The `render` function combines tokens and a view to fill in the template. The basic call is `render([io::IO], tokens, view)`, however there are variants:
* `render(tokens; kwargs...)`
* `render(string, view)` (`string` is parsed into tokens)
* `render(string; kwargs...)`
Finally, tokens are callable, so there are these variants to call `render`:
* `tokens([io::IO], view)`
* `tokens([io::IO]; kwargs...)`
### Views
Views are used to hold values for the templates variables. There are many possible objects that can be used for views:
* a dictionary
* a named tuple
* keyword arguments to `render`
* a module
For templates which iterate over a variable, these can be
* a `Tables.jl` compatible object with row iteration support (e.g., A `DataFrame`, a tuple of named tuples, ...)
* a vector or tuple (in which case "`.`" is used to match
### Templates and tokens
A template is parsed into tokens. The `render` function combines the tokens with the view to create the output.
* Parsing is done at compile time, if the `mt` string literal is used to define the template. If re-using a template, this is encouraged, as it will be more performant.
* If string interpolation is desired prior to the parsing into tokens, the `jmt` string literal can be used.
* As well, a string can be used to define a template. When `parse` is called, the string will be parsed into tokens. This is the flow if `render` is called on a string (and not tokens).
### Variables
Tags representing variables for substitution have the form `{{varname}}`,
`{{:symbol}}`, or their triple-braced versions `{{{varname}}}` or
`{{{:symbol}}}`.
The `varname` version will match variables in a view such as a dictionary or a module.
The `:symbol` version will match variables passed in via named tuple or keyword arguments.
```julia
b = "be"
Mustache.render(mt"a {{b}} c", Main) # "a be c"
Mustache.render(mt"a {{:b}} c", b="bee") # "a bee c"
Mustache.render(mt"a {{:b}} c", (b="bee", c="sea")) # "a bee c"
```
The triple brace prevents HTML substitution for
entities such as `<`. The following are escaped when only double
braces are used: "&", "<", ">", "'", "\", and "/".
```julia
Mustache.render(mt"a {{:b}} c", b = "%< bee >%") # "a %< bee >% c"
Mustache.render(mt"a {{{:b}}} c", b = "%< bee >%") # "a %< bee >% c"
```
If different tags are specified to `parse`,
say `<<` or `>>`, then `<<{` and `}>>` indicate the prevention of substitution.
```julia
tokens = Mustache.parse("a <<:b>> c", ("<<", ">>"))
Mustache.render(tokens, b = "%< B >%") # a %< B >% c"
tokens = Mustache.parse("a <<{:b}>> c", ("<<", ">>"))
Mustache.render(tokens, b = "%< B >%") # "a %< B >% c"
```
If the variable refers to a function, the value will be the result of
calling the function with no arguments passed in.
```julia
Mustache.render(mt"a {{:b}} c", b = () -> "Bea") # "a Bea c"
```
```julia
using Dates
Mustache.render(mt"Written in the year {{:yr}}."; yr = year∘now) # "Written in the year 2023."
```
### Sections
In the main example, the template included:
```
{{#in_ca}}
Well, {{taxed_value}} dollars, after taxes.
{{/in_ca}}
```
Tags beginning with `#varname` and closed with `/varname` create
"sections." These have different behaviors depending on the value of
the variable. When the variable is not a function or a container the
part between them is used only if the variable is defined and not
"falsy:"
```julia
a = mt"{{#:b}}Hi{{/:b}}";
a(; b=true) # "Hi"
a(; c=true) # ""
a(; b=false) # "" also, as `b` is "falsy" (e.g., false, nothing, "")
```
If the variable name refers to a function that function will be passed
the unevaluated string within the section, as expected by the Mustache
specification:
```julia
Mustache.render("{{#:a}}one{{/:a}}", a=length) # "3"
```
The specification has been widened to accept functions of two arguments, the string and a render function:
```julia
tpl = mt"{{#:bold}}Hi {{:name}}.{{/:bold}}"
function bold(text, render)
"<b>" * render(text) * "</b>"
end
tpl(; name="Tater", bold=bold) # "<b>Hi Tater.</b>"
```
If the tag "|" is used, the section value will be rendered first, an enhancement to the specification.
```julia
fmt(txt) = "<b>" * string(round(parse(Float64, txt), digits=2)) * "</b>";
tpl = """{{|:lambda}}{{:value}}{{/:lambda}} dollars.""";
Mustache.render(tpl, value=1.23456789, lambda=fmt) # "<b>1.23</b> dollars."
```
(Without the `|` in the tag, an error, `ERROR: ArgumentError: cannot parse "{{:value}}" as Float64`, will be thrown.)
### Inverted
Related, if the tag begins with `^varname` and ends with `/varname`
the text between these tags is included only if the variable is *not*
defined or is `falsy`.
### Iteration
If the section variable, `{{#varname}}`, binds to an iterable
collection, then the text in the section is repeated for each item in
the collection with the view used for the context of the template
given by the item.
This is useful for collections of named objects, such as DataFrames
(where the collection is comprised of rows) or arrays of
dictionaries. For `Tables.jl` objects the rows are iterated over.
For data frames, the variable names are specified as
symbols or strings. Here is a template for making a web page:
```julia
tpl = mt"""
<html>
<head>
<title>{{:TITLE}}</title>
</head>
<body>
<table>
<tr><th>name</th><th>summary</th></tr>
{{#:D}}
<tr><td>{{:names}}</td><td>{{:summs}}</td></tr>
{{/:D}}
</body>
</html>
"""
```
This can be used to generate a web page for `varinfo`-like values:
```julia
_names = String[]
_summaries = String[]
for s in sort(map(string, names(Main)))
v = Symbol(s)
if isdefined(Main,v)
push!(_names, s)
push!(_summaries, summary(eval(v)))
end
end
using DataFrames
d = DataFrame(names=_names, summs=_summaries)
out = Mustache.render(tpl, TITLE="A quick table", D=d)
print(out)
```
This can be compared to using an array of `Dict`s, convenient if you have data by the row:
```julia
A = [Dict("a" => "eh", "b" => "bee"),
Dict("a" => "ah", "b" => "buh")]
tpl = mt"{{#:A}}Pronounce a as {{a}} and b as {{b}}. {{/:A}}"
Mustache.render(tpl, A=A) |> print
```
yielding
```
Pronounce a as eh and b as bee. Pronounce a as ah and b as buh.
```
The same approach can be made to make a LaTeX table from a data frame:
```julia
function df_to_table(df, label="label", caption="caption")
fmt = repeat("c", size(df,2))
header = join(string.(names(df)), " & ")
row = join(["{{:$x}}" for x in map(string, names(df))], " & ")
tpl="""
\\begin{table}
\\centering
\\begin{tabular}{$fmt}
$header\\\\
{{#:DF}} $row\\\\
{{/:DF}} \\end{tabular}
\\caption{$caption}
\\label{tab:$label}
\\end{table}
"""
Mustache.render(tpl, DF=df)
end
```
In the above, a string is used above -- and not a `mt` macro -- so that string
interpolation can happen. The `jmt_str` string macro allows for substitution, so the above template could also have been more simply written as:
```julia
function df_to_table(df, label="label", caption="caption")
fmt = repeat("c", size(df,2))
header = join(string.(names(df)), " & ")
row = join(["{{:$x}}" for x in map(string, names(df))], " & ")
tpl = jmt"""
\begin{table}
\centering
\begin{tabular}{$fmt}
$header\\
{{#:DF}} $row\\
{{/:DF}} \end{tabular}
\caption{$caption}
\label{tab:$label}
\end{table}
"""
Mustache.render(tpl, DF=df)
end
```
#### Iterating over vectors
Though it isn't part of the Mustache specification, when iterating
over an unnamed vector or tuple, `Mustache.jl uses` `{{.}}` to refer to the item:
```julia
tpl = mt"{{#:vec}}{{.}} {{/:vec}}"
Mustache.render(tpl, vec = ["A1", "B2", "C3"]) # "A1 B2 C3 "
```
Note the extra space after `C3`.
There is also *limited* support for indexing with the iteration of a vector that
allows one to treat the last element differently. The syntax `.[ind]`
refers to the value `vec[ind]`. (There is no support for the usual
arithmetic on indices.)
To print commas one can use this pattern:
```julia
tpl = mt"{{#:vec}}{{.}}{{^.[end]}}, {{/.[end]}}{{/:vec}}"
Mustache.render(tpl, vec = ["A1", "B2", "C3"]) # "A1, B2, C3"
```
To put the first value in bold, but no others, say:
```julia
tpl = mt"""
{{#:vec}}
{{#.[1]}}<bold>{{.}}</bold>{{/.[1]}}
{{^.[1]}}{{.}}{{/.[1]}}
{{/:vec}}
"""
Mustache.render(tpl, vec = ["A1", "B2", "C3"]) # basically "<bold>A1</bold>B2 C3"
```
This was inspired by
[this](http://stackoverflow.com/questions/11147373/only-show-the-first-item-in-list-using-mustache)
question, but the syntax chosen was more Julian. This syntax -- as
implemented for now -- does not allow for iteration. That is
constructs like `{{#.[1]}}` don't introduce iteration, but only offer
a conditional check.
### Iterating when the value of a section variable is a function
From the Mustache documentation, consider the template
```julia
tpl = mt"{{#:beatles}}
* {{:name}}
{{/:beatles}}"
```
when `beatles` is a vector of named tuples (or some other `Tables.jl` object) and `name` is a function.
When iterating over `beatles`, `name` can reference the rows of the `beatles` object by name. In `JavaScript`, this is done with `this.XXX`. In `Julia`, the values are stored in the `task_local_storage` object (with symbols as keys) allowing the access. The `Mustache.get_this` function allows `JavaScript`-like usage:
```julia
function name()
this = Mustache.get_this()
this.first * " " * this.last
end
beatles = [(first="John", last="Lennon"), (first="Paul", last="McCartney")]
tpl(; beatles, name) # "* John Lennon\n* Paul McCartney\n"
```
### Conditional checking without iteration
The section tag, `#`, check for existence; pushes the object into the view; and then iterates over the object. For cases where iteration is not desirable; the tag type `@` can be used.
Compare these:
```julia
julia> struct RANGE
range
end
julia> tpl = mt"""
<input type="range" {{@:range}} min="{{start}}" step="{{step}}" max="{{stop}}" {{/:range}}>
""";
julia> Mustache.render(tpl, RANGE(1:1:2))
"<input type=\"range\" min=\"1\" step=\"1\" max=\"2\" >\n"
julia> tpl = mt"""
<input type="range" {{#:range}} min="{{start}}" step="{{step}}" max="{{stop}}" {{/:range}}>
""";
julia> Mustache.render(tpl, RANGE(1:1:2)) # iterates over Range.range
"<input type=\"range\" min=\"1\" step=\"1\" max=\"2\" min=\"1\" step=\"1\" max=\"2\" >\n"
```
### Non-eager finding of values
A view might have more than one variable bound to a symbol. The first one found is replaced in the template *unless* the variable is prefaced with `~`. This example illustrates:
```julia
d = Dict(:two=>Dict(:x=>3), :x=>2)
tpl = mt"""
{{#:one}}
{{#:two}}
{{~:x}}
{{/:two}}
{{/:one}}
"""
Mustache.render(tpl, one=d) # "2\n"
Mustache.render(tpl, one=d, x=1) # "1\n"
```
Were `{{:x}}` used, the value `3` would have been found within the dictionary `Dict(:x=>3)`; however, the presence of `{{~:x}}` is an instruction to keep looking up in the specified view to find other values, and use the last one found to substitute in. (This is hinted at in [this issue](https://github.com/janl/mustache.js/issues/399))
### Partials
Partials are used to include partial templates into a template.
Partials begin with a greater than sign, like `{{> box.tpl }}`. In this example, the file `box.tpl` is opened and inserted into the template, then populated. A full path may be specified.
They also inherit the calling context.
In this way you may want to think of partials as includes, imports,
template expansion, nested templates, or subtemplates, even though
those aren't literally the case here.
The partial specified by `{{< box.tpl }}` is not parsed, rather included as is into the file. This can be faster.
The variable can be a filename, as indicated above, or if not a variable. For example
```julia
julia> tpl = """\"{{>partial}}\""""
"\"{{>partial}}\""
julia> Mustache.render(tpl, Dict("partial"=>"*{{text}}*","text"=>"content"))
"\"*content*\""
```
### Summary of tags
To summarize the different tags marking a variable:
* `{{variable}}` does substitution of the value held in `variable` in the current view; escapes HTML characters
* `{{{variable}}}` does substitution of the value held in `variable` in the current view; does not escape HTML characters. The outer pair of mustache braces can be adjusted using `Mustache.parse`.
* `{{&variable}}` is an alternative syntax for triple braces (useful with custom braces)
* `{{~variable}}` does substitution of the value held in `variable` in the outmost view
* `{{#variable}}` depending on the type of variable, does the following:
- if `variable` is not a functions container and is not absent or
`nothing` will use the text between the matching tags, marked
with `{{/variable}}`; otherwise that text will be skipped. (Like
an `if/end` block.)
- if `variable` is a function, it will be applied to contents of
the section. Use of `|` instead of `#` will instruct the
rendering of the contents before applying the function. The spec
allows for a function to have signature `(x, render)` where `render` is
used internally to convert. This implementation allows rendering
when `(x)` is the single argument.
- if `variable` is a `Tables.jl` compatible object (row wise, with
named rows), will iterate over the values, pushing the named
tuple to be the top-most view for the part of the template up to
`{{\variable}}`.
- if `variable` is a vector or tuple -- for the part of the
template up to `{{\variable}}` -- will iterate over the
values. Use `{{.}}` to refer to the (unnamed) values. The values
`.[end]` and `.[i]`, for a numeric literal, will refer to values
in the vector or tuple.
* `{{^variable}}`/`{{.variable}}` tags will show the values when `variable` is not defined, or is `nothing`.
* `{{>partial}}` will include the partial value into the template, filling in the template using the current view. The partial can be a variable or a filename (checked with `isfile`).
* `{{<partial}}` directly include partial value into template without filling in with the current view.
* `{{!comment}}` comments begin with a bang, `!`
## Alternatives
`Julia` provides some alternatives to this package which are better
suited for many jobs:
* For simple substitution inside a string there is string
[interpolation](https://docs.julialang.org/en/latest/manual/strings/).
* For piecing together pieces of text either the `string` function or
string concatenation (the `*` operator) are useful. (Also an
`IOBuffer` is useful for larger tasks of this type.)
* For formatting numbers and text, the
[Formatting.jl](https://github.com/JuliaLang/Formatting.jl) package,
the [Format](https://github.com/JuliaString/Format.jl) package, and the
[StringLiterals](https://github.com/JuliaString/StringLiterals.jl)
package are available.
* The
[HypertextLiteral](https://github.com/MechanicalRabbit/HypertextLiteral.jl)
package is useful when interpolating HTML, SVG, or SGML tagged
content.
## Differences from Mustache.js
This project deviates from Mustache.js in a few significant ways:
* Julia structures are used, not JavaScript objects. As illustrated,
one can use Dicts, Modules, DataFrames, functions, ...
* In the Mustache spec, when lambdas are used as section names, the function is passed the unevaluated section:
```julia
template = "<{{#lambda}}{{x}}{{/lambda}}>"
data = Dict("x" => "Error!", "lambda" => (txt) -> txt == "{{x}}" ? "yes" : "no")
Mustache.render(template, data) ## "<yes>", as txt == "{{x}}"
```
The tag "|" is similar to the section tag "#", but will receive the *evaluated* section:
```julia
template = "<{{|lambda}}{{x}}{{/lambda}}>"
data = Dict("x" => "Error!", "lambda" => (txt) -> txt == "{{x}}" ? "yes" : "no")
Mustache.render(template, data) ## "<no>", as "Error!" != "{{x}}"
```
## API
```@autodocs
Modules = [Mustache]
```
| Mustache | https://github.com/jverzani/Mustache.jl.git |
|
[
"MIT"
] | 1.1.0 | 13cad02cb3224ad0810ce364b785e81812d6cf02 | code | 984 | module PlotReferenceImages
local_path(args...) = normpath(@__DIR__, "..", args...)
"""
reference_file(backend::Symbol, i::Int, version::String)
Find the latest version of the reference image file for the reference image `i` and the backend `be`.
This returns a path to the file in the folder of the latest version.
If no file is found, a path pointing to the file of the folder specified by `version` is returned.
"""
function reference_file(backend, i, version)
refdir = local_path("Plots", string(backend))
fn = "ref$i.png"
versions = sort(VersionNumber.(readdir(refdir)), rev = true)
reffn = joinpath(refdir, string(version), fn)
for v in versions
tmpfn = joinpath(refdir, string(v), fn)
if isfile(tmpfn)
reffn = tmpfn
break
end
end
return reffn
end
reference_path(backend, version) = local_path("Plots", string(backend), string(version))
export reference_file, reference_path
end # module
| PlotReferenceImages | https://github.com/JuliaPlots/PlotReferenceImages.jl.git |
|
[
"MIT"
] | 1.1.0 | 13cad02cb3224ad0810ce364b785e81812d6cf02 | code | 174 | using Test, PlotReferenceImages
@testset "PlotReferenceImages" begin
@test !isdir(reference_path(:notabackend, v"1"))
@test isfile(reference_file(:gr, 1, v"1"))
end
| PlotReferenceImages | https://github.com/JuliaPlots/PlotReferenceImages.jl.git |
|
[
"MIT"
] | 1.1.0 | 13cad02cb3224ad0810ce364b785e81812d6cf02 | docs | 2109 | # PlotReferenceImages
[](https://travis-ci.org/JuliaPlots/PlotReferenceImages.jl)
This package serves two purposes.
It holds the reference images for the [Plots.jl](https://github.com/JuliaPlots/Plots.jl) test suite and it provides utilities to generate the images for the [Plots.jl documentation](http://docs.juliaplots.org/latest/) at [PlotDocs.jl](https://github.com/JuliaPlots/PlotDocs.jl)
## Installation
To update test reference images for Plots.jl you can develop this package with:
```julia
julia> ]
pkg> dev https://github.com/JuliaPlots/PlotReferenceImages.jl.git
```
## Usage
Plots test images can be updated with the Plots test suite:
```julia
julia> ]
pkg> test Plots
```
If reference images differ from the previously saved images, a window opens showing both versions.
Check carefully if the changes are expected and an improvement.
In that case agree to overwrite the old image.
Otherwise it would be great if you could open an issue on Plots.jl, submit a PR with a fix for the regression or update the PR you are currently working on.
After updating all the images, make sure that all tests pass, `git add` the new files, commit and submit a PR.
---
You can update the images for a specific backend in the backends section of the Plots documentation with:
```julia
using PlotReferenceImages
generate_reference_images(sym)
```
Currently `sym ∈ (:gr, :pyplot, :plotlyjs, :pgfplots)` is supported.
To update only a single image you can do:
```julia
generate_reference_image(sym, i::Int)
```
To update the Plots documentaion images run:
```julia
using PlotReferenceImages
generate_doc_images()
```
This takes some time. So if you only want to update a specific image, run:
```julia
generate_doc_image(id::String)
```
Possible values for `id` can be found in the keys of `PlotReferenceImages.DOC_IMAGE_FILES`.
If you are satisfied with the new images, commit and submit a PR.
## Contributing
Any help to make these processes less complicated or automate them is very much appreciated.
| PlotReferenceImages | https://github.com/JuliaPlots/PlotReferenceImages.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 2191 | using .Threads, LoopVectorization, ThreadPools, ThreadPinning
using LIKWID
function _blocked(A, blockid)
ilo, ihi, jlo, jhi = A.loop_limits[blockid]
data = @views A.blocks[blockid]
@turbo for j in jlo:jhi
for i in ilo:ihi
data[i, j] = i * j + 0.25(
data[i-2, j] + data[i-1, j] + data[i+2, j] + data[i+1, j] +
data[i, j] +
data[i, j-2] + data[i, j-1] + data[i, j+2] + data[i, j+1])
end
end
end
function blocked_version(A)
@sync for tid in 1:nthreads()
@tspawnat tid _blocked(A, tid)
end
end
function tturbo_version(data::AbstractArray{T,N}, nhalo) where {T, N}
ilo = first(axes(data, 1)) + nhalo
ihi = last(axes(data, 1)) - nhalo
jlo = first(axes(data, 2)) + nhalo
jhi = last(axes(data, 2)) - nhalo
@tturbo for j in jlo:jhi
for i in ilo:ihi
data[i, j] = i * j + 0.25(
data[i-2, j] + data[i-1, j] + data[i+2, j] + data[i+1, j] +
data[i, j] +
data[i, j-2] + data[i, j-1] + data[i, j+2] + data[i, j+1])
end
end
end
function compare_tturbo_v_blocked(A_blocked, A_tturbo)
println("Running benchmark")
println("-----------------")
tturbo_version(A_flat, nhalo)
blocked_version(A_block)
global t_elaps = 0.
max_iter = 10
for iter in 1:max_iter
global t_elaps += @elapsed tturbo_version(A_tturbo, nhalo)
end
t_tturbo = t_elaps / max_iter
global t_elaps = 0.
for iter in 1:max_iter
global t_elaps += @elapsed blocked_version(A_blocked)
end
t_blocked = t_elaps / max_iter
@show nthreads()
@show t_blocked t_tturbo
@show t_tturbo / t_blocked
println("-----------------")
println()
end
pinthreads(:compact)
use_numa = true
ni = 5000
nj = 5000
nhalo = 4
T = Float64
A_block = BlockHaloArray((ni, nj), nhalo, nthreads(); use_numa=use_numa, T=T);
A_flat = rand(T, ni + 2nhalo, nj + 2nhalo);
compare_tturbo_v_blocked(A_block, A_flat)
metrics, events = @perfmon "FLOPS_DP" tturbo_version(A_flat, nhalo);
metrics, events = @perfmon "FLOPS_DP" blocked_version(A_block);
nothing
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 1173 | using CairoMakie
using CSV
function strong_scaling(P, N)
S = 1 - P
1 / (S + (P / N))
end
f = CSV.File("deluge_results.csv")
max_nthreads = maximum(f.nthreads)
fig = Figure()
ax = Axis(fig[1, 1], title="Strong Scaling",
xlabel="Threads",
ylabel="Speedup (vs 1 thread)",
)
lines!(ax, 1:max_nthreads, 1:max_nthreads, label="Linear Scaling", color=:black)
lines!(ax, 1:max_nthreads, strong_scaling.(0.99, 1:max_nthreads),
label="99% Parallel", color=:green, linestyle=:dash)
lines!(ax, f.nthreads, first(f.t_block_ns) ./ f.t_block_ns, label="BlockHaloArray")
lines!(ax, f.nthreads, first(f.t_flat_ns) ./ f.t_flat_ns, label="@tturbo")
ax2 = Axis(fig[2, 1], title="Runtime vs Threads",
xlabel="Threads", ylabel="Runtime[s]")
ax3 = Axis(fig[2, 1], yaxisposition=:right, ylabel="@tturbo / BlockHaloArray")
hidespines!(ax3)
hidexdecorations!(ax3)
lines!(ax2, f.nthreads, f.t_block_ns, label="BlockHaloArray")
lines!(ax2, f.nthreads, f.t_flat_ns, label="@tturbo")
lines!(ax3, f.nthreads, f.t_flat_ns ./ f.t_block_ns, color=:black)
lines!(ax2, [NaN], [NaN], label="speedup", color=:black)
fig[1, 2] = Legend(fig, ax,)
fig[2, 2] = Legend(fig, ax2,)
fig | BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 186 | # import Pkg
# Pkg.activate("..")
include("stencils.jl")
recon = MUSCLReconstruction(MinMod())
nhalo = 2
run_stencil_benchmark(recon, nhalo, Float64, "stencil_2nd_order_results.csv")
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 176 | # import Pkg
# Pkg.activate("..")
include("stencils.jl")
recon = MLP5Reconstruction()
nhalo = 3
run_stencil_benchmark(recon, nhalo, Float64, "stencil_5th_order_results.csv") | BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 22688 | using .Threads
using ThreadPinning: pinthreads
using BlockHaloArrays
using BlockHaloArrays: @tspawnat
using LoopVectorization
using TimerOutputs
abstract type AbstractReconstructionScheme end
abstract type AbstractMUSCLReconstruction <: AbstractReconstructionScheme end
abstract type AbstractLimiter end
const to = TimerOutput()
const global L = 1
const global R = 2
const global SMALL_NUM = 1e-30
struct MinMod <: AbstractLimiter end
@inline limit(::MinMod, r) = max(0, min(r, 1))
struct VanLeer <: AbstractLimiter end
@inline limit(::VanLeer, r) = (r + abs(r)) / (1 + abs(r))
struct SuperBee <: AbstractLimiter end
@inline limit(::SuperBee, r) = max(0, min(2r, 1), min(r, 2))
struct MUSCLReconstruction{L<:AbstractLimiter} <: AbstractMUSCLReconstruction
limiter::L
end
struct MLP5Reconstruction <: AbstractMUSCLReconstruction end
function reconstruct_with_blocks!(RS::MUSCLReconstruction, U, i_edge, j_edge, blockid)
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
ilo, ihi, jlo, jhi = first(U).loop_limits[blockid]
ϵ = eps(Float64)
for (ϕ̄, ϕ_recon) in zip(U, i_edge) # (ρ, u, v, p)
@turbo for j = jlo:jhi
for i = ilo-1:ihi
ϕ̄ᵢⱼ = ϕ̄[blockid][i, j]
ϕ̄ᵢ₊₁ⱼ = ϕ̄[blockid][i+1, j]
Δ_minus_half = ϕ̄ᵢⱼ - ϕ̄[blockid][i-1, j]
Δ_plus_half = ϕ̄ᵢ₊₁ⱼ - ϕ̄ᵢⱼ
Δ_plus_three_half = ϕ̄[blockid][i+2, j] - ϕ̄ᵢ₊₁ⱼ
# Machine epsilon checks
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + 1e-30)
rR = Δ_plus_half / (Δ_plus_three_half + 1e-30)
lim_L = limit(RS.limiter, rL)
lim_R = limit(RS.limiter, rR)
ϕ_recon[blockid][1, i, j] = ϕ̄ᵢⱼ + 0.5lim_L * Δ_minus_half
ϕ_recon[blockid][2, i, j] = ϕ̄ᵢ₊₁ⱼ - 0.5lim_R * Δ_plus_three_half
end
end
end
for (ϕ̄, ϕ_recon) in zip(U, j_edge) # (ρ, u, v, p)
@turbo for j = jlo-1:jhi
for i = ilo:ihi
ϕ̄ᵢⱼ = ϕ̄[blockid][i, j]
ϕ̄ᵢⱼ₊₁ = ϕ̄[blockid][i, j+1]
Δ_minus_half = ϕ̄ᵢⱼ - ϕ̄[blockid][i, j-1]
Δ_plus_half = ϕ̄ᵢⱼ₊₁ - ϕ̄ᵢⱼ
Δ_plus_three_half = ϕ̄[blockid][i, j+2] - ϕ̄ᵢⱼ₊₁
# Machine epsilon checks
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + 1e-30)
rR = Δ_plus_half / (Δ_plus_three_half + 1e-30)
lim_L = limit(RS.limiter, rL)
lim_R = limit(RS.limiter, rR)
ϕ_recon[blockid][1, i, j] = ϕ̄ᵢⱼ + 0.5lim_L * Δ_minus_half
ϕ_recon[blockid][2, i, j] = ϕ̄ᵢⱼ₊₁ - 0.5lim_R * Δ_plus_three_half
end
end
end
return nothing
end
function reconstruct_flat!(RS::MUSCLReconstruction, U, i_edge, j_edge, looplimits)
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
ilo, ihi, jlo, jhi = looplimits
# @show ilo, ihi, jlo, jhi
ϵ = eps(Float64)
for (ϕ̄, ϕ_recon) in zip(U, i_edge) # (ρ, u, v, p)
@tturbo for j = jlo:jhi
for i = ilo-1:ihi
ϕ̄ᵢⱼ = ϕ̄[i, j]
ϕ̄ᵢ₊₁ⱼ = ϕ̄[i+1, j]
Δ_minus_half = ϕ̄ᵢⱼ - ϕ̄[i-1, j]
Δ_plus_half = ϕ̄ᵢ₊₁ⱼ - ϕ̄ᵢⱼ
Δ_plus_three_half = ϕ̄[i+2, j] - ϕ̄ᵢ₊₁ⱼ
# Machine epsilon checks
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + 1e-30)
rR = Δ_plus_half / (Δ_plus_three_half + 1e-30)
lim_L = limit(RS.limiter, rL)
lim_R = limit(RS.limiter, rR)
ϕ_recon[1, i, j] = ϕ̄ᵢⱼ + 0.5lim_L * Δ_minus_half
ϕ_recon[2, i, j] = ϕ̄ᵢ₊₁ⱼ - 0.5lim_R * Δ_plus_three_half
end
end
end
for (ϕ̄, ϕ_recon) in zip(U, j_edge) # (ρ, u, v, p)
@tturbo for j = jlo-1:jhi
for i = ilo:ihi
ϕ̄ᵢⱼ = ϕ̄[i, j]
ϕ̄ᵢⱼ₊₁ = ϕ̄[i, j+1]
Δ_minus_half = ϕ̄ᵢⱼ - ϕ̄[i, j-1]
Δ_plus_half = ϕ̄ᵢⱼ₊₁ - ϕ̄ᵢⱼ
Δ_plus_three_half = ϕ̄[i, j+2] - ϕ̄ᵢⱼ₊₁
# Machine epsilon checks
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + 1e-30)
rR = Δ_plus_half / (Δ_plus_three_half + 1e-30)
lim_L = limit(RS.limiter, rL)
lim_R = limit(RS.limiter, rR)
ϕ_recon[1, i, j] = ϕ̄ᵢⱼ + 0.5lim_L * Δ_minus_half
ϕ_recon[2, i, j] = ϕ̄ᵢⱼ₊₁ - 0.5lim_R * Δ_plus_three_half
end
end
end
return nothing
end
function reconstruct_with_blocks!(::MLP5Reconstruction, U, i_edge, j_edge, blockid, ϵ=eps(Float64))
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
ilo, ihi, jlo, jhi = first(U).loop_limits[blockid]
for (ϕ̄, ϕ_recon) in zip(U, i_edge) # (ρ, u, v, p)
@turbo for j = jlo:jhi
for i = ilo-1:ihi
Δ_minus_half = ϕ̄[blockid][i, j] - ϕ̄[blockid][i-1, j]
Δ_plus_three_half = ϕ̄[blockid][i+2, j] - ϕ̄[blockid][i+1, j]
Δ_plus_half = ϕ̄[blockid][i+1, j] - ϕ̄[blockid][i, j]
Δ_plus_five_half = ϕ̄[blockid][i+3, j] - ϕ̄[blockid][i+2, j]
Δ_minus_three_half = ϕ̄[blockid][i-1, j] - ϕ̄[blockid][i-2, j]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(ϕ̄[blockid][i, j+1] - ϕ̄[blockid][i, j-1]) / (abs(ϕ̄[blockid][i+1, j] - ϕ̄[blockid][i-1, j]) + SMALL_NUM)
tanθ_ij_p1 = abs(ϕ̄[blockid][i+1, j+1] - ϕ̄[blockid][i+1, j-1]) / (abs(ϕ̄[blockid][i+2, j] - ϕ̄[blockid][i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
ϕ_recon[blockid][1, i, j] = ϕ̄[blockid][i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
ϕ_recon[blockid][2, i, j] = ϕ̄[blockid][i+1, j] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
end
for (ϕ̄, ϕ_recon) in zip(U, j_edge) # (ρ, u, v, p)
@turbo for j = jlo-1:jhi
for i = ilo:ihi
Δ_minus_half = ϕ̄[blockid][i, j] - ϕ̄[blockid][i, j-1]
Δ_plus_three_half = ϕ̄[blockid][i, j+2] - ϕ̄[blockid][i, j+1]
Δ_plus_half = ϕ̄[blockid][i, j+1] - ϕ̄[blockid][i, j]
Δ_minus_three_half = ϕ̄[blockid][i, j-1] - ϕ̄[blockid][i, j-2]
Δ_plus_five_half = ϕ̄[blockid][i, j+3] - ϕ̄[blockid][i, j+3]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(ϕ̄[blockid][i+1, j] - ϕ̄[blockid][i-1, j]) / (abs(ϕ̄[blockid][i, j+1] - ϕ̄[blockid][i, j-1]) + SMALL_NUM)
tanθ_ij_p1 = abs(ϕ̄[blockid][i+1, j+1] - ϕ̄[blockid][i-1, j+1]) / (abs(ϕ̄[blockid][i, j+2] - ϕ̄[blockid][i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
ϕ_recon[blockid][1, i, j] = ϕ̄[blockid][i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
ϕ_recon[blockid][2, i, j] = ϕ̄[blockid][i, j+1] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
end
return nothing
end
function reconstruct_with_blocks_v2!(::MLP5Reconstruction, U, i_edge, j_edge, blockid, ϵ=eps(Float64))
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
limits = Tuple(first(U).loop_limits[blockid])
for (ϕ̄, ϕ_recon_i, ϕ_recon_j) in zip(U, i_edge, j_edge) # (ρ, u, v, p)
A = @views ϕ̄[blockid]
ϕ_recon_i_edge = @views ϕ_recon_i[blockid]
ϕ_recon_j_edge = @views ϕ_recon_j[blockid]
reconstruct_mlp5!(A, ϕ_recon_i_edge, ϕ_recon_j_edge, limits, ϵ)
end
return nothing
end
function reconstruct_mlp5!(A, i_edge, j_edge, limits::NTuple{4, Int}, ϵ=eps(Float64))
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
ilo, ihi, jlo, jhi = limits
@turbo for j = jlo:jhi
for i = ilo-1:ihi
Δ_minus_half = A[i, j] - A[i-1, j]
Δ_plus_three_half = A[i+2, j] - A[i+1, j]
Δ_plus_half = A[i+1, j] - A[i, j]
Δ_plus_five_half = A[i+3, j] - A[i+2, j]
Δ_minus_three_half = A[i-1, j] - A[i-2, j]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(A[i, j+1] - A[i, j-1]) / (abs(A[i+1, j] - A[i-1, j]) + SMALL_NUM)
tanθ_ij_p1 = abs(A[i+1, j+1] - A[i+1, j-1]) / (abs(A[i+2, j] - A[i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
i_edge[1, i, j] = A[i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
i_edge[2, i, j] = A[i+1, j] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
@turbo for j = jlo-1:jhi
for i = ilo:ihi
Δ_minus_half = A[i, j] - A[i, j-1]
Δ_plus_three_half = A[i, j+2] - A[i, j+1]
Δ_plus_half = A[i, j+1] - A[i, j]
Δ_minus_three_half = A[i, j-1] - A[i, j-2]
Δ_plus_five_half = A[i, j+3] - A[i, j+3]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(A[i+1, j] - A[i-1, j]) / (abs(A[i, j+1] - A[i, j-1]) + SMALL_NUM)
tanθ_ij_p1 = abs(A[i+1, j+1] - A[i-1, j+1]) / (abs(A[i, j+2] - A[i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
j_edge[1, i, j] = A[i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
j_edge[2, i, j] = A[i, j+1] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
return nothing
end
function reconstruct_flat!(::MLP5Reconstruction, U, i_edge, j_edge, looplimits, ϵ=eps(Float64))
# i_edge & j_edge holds the i+1/2 & j+1/2 L and R values
# these limits must be the no-halo versions. If the true array size is (10,10) with
# 2 halo cells, the limits must be ilo, ihi = 3, 8 and jlo, jhi = 3, 8
ilo, ihi, jlo, jhi = looplimits
for (ϕ̄, ϕ_recon) in zip(U, i_edge) # (ρ, u, v, p)
@tturbo for j = jlo:jhi
for i = ilo-1:ihi
Δ_minus_half = ϕ̄[i, j] - ϕ̄[i-1, j]
Δ_plus_three_half = ϕ̄[i+2, j] - ϕ̄[i+1, j]
Δ_plus_half = ϕ̄[i+1, j] - ϕ̄[i, j]
Δ_plus_five_half = ϕ̄[i+3, j] - ϕ̄[i+2, j]
Δ_minus_three_half = ϕ̄[i-1, j] - ϕ̄[i-2, j]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(ϕ̄[i, j+1] - ϕ̄[i, j-1]) / (abs(ϕ̄[i+1, j] - ϕ̄[i-1, j]) + SMALL_NUM)
tanθ_ij_p1 = abs(ϕ̄[i+1, j+1] - ϕ̄[i+1, j-1]) / (abs(ϕ̄[i+2, j] - ϕ̄[i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
ϕ_recon[1, i, j] = ϕ̄[i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
ϕ_recon[2, i, j] = ϕ̄[i+1, j] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
end
for (ϕ̄, ϕ_recon) in zip(U, j_edge) # (ρ, u, v, p)
@tturbo for j = jlo-1:jhi
for i = ilo:ihi
Δ_minus_half = ϕ̄[i, j] - ϕ̄[i, j-1]
Δ_plus_three_half = ϕ̄[i, j+2] - ϕ̄[i, j+1]
Δ_plus_half = ϕ̄[i, j+1] - ϕ̄[i, j]
Δ_minus_three_half = ϕ̄[i, j-1] - ϕ̄[i, j-2]
Δ_plus_five_half = ϕ̄[i, j+3] - ϕ̄[i, j+3]
Δ_minus_half = Δ_minus_half * (abs(Δ_minus_half) >= ϵ)
Δ_plus_three_half = Δ_plus_three_half * (abs(Δ_plus_three_half) >= ϵ)
Δ_plus_half = Δ_plus_half * (abs(Δ_plus_half) >= ϵ)
Δ_minus_three_half = Δ_minus_three_half * (abs(Δ_minus_three_half) >= ϵ)
Δ_plus_five_half = Δ_plus_five_half * (abs(Δ_plus_five_half) >= ϵ)
rL = Δ_plus_half / (Δ_minus_half + SMALL_NUM)
rL_m1 = Δ_minus_half / (Δ_minus_three_half + SMALL_NUM)
rL_p1 = Δ_plus_three_half / (Δ_plus_half + SMALL_NUM)
rR = Δ_minus_half / (Δ_plus_half + SMALL_NUM)
rR_p1 = Δ_plus_half / (Δ_plus_three_half + SMALL_NUM)
rR_p2 = Δ_plus_three_half / (Δ_plus_five_half + SMALL_NUM)
β_L = ((-2 / (rL_m1 + SMALL_NUM)) + 11.0 + 24rL - 3rL * rL_p1) / 30.0
β_R = ((-2 / (rR_p2 + SMALL_NUM)) + 11.0 + 24rR_p1 - 3rR_p1 * rR) / 30.0
tanθ_ij = abs(ϕ̄[i+1, j] - ϕ̄[i-1, j]) / (abs(ϕ̄[i, j+1] - ϕ̄[i, j-1]) + SMALL_NUM)
tanθ_ij_p1 = abs(ϕ̄[i+1, j+1] - ϕ̄[i-1, j+1]) / (abs(ϕ̄[i, j+2] - ϕ̄[i, j]) + SMALL_NUM)
α_L, α_R = get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
ϕ_recon[1, i, j] = ϕ̄[i, j] + 0.5max(0, min(α_L * rL, α_L, β_L)) * Δ_minus_half
ϕ_recon[2, i, j] = ϕ̄[i, j+1] - 0.5max(0, min(α_R * rR_p1, α_R, β_R)) * Δ_plus_three_half
end
end
end
return nothing
end
@inline function get_alpha(rL, rR_p1, tanθ_ij, tanθ_ij_p1)
α_L_term = ((2max(1, rL) *
(1 + max(0, (tanθ_ij_p1 / (rR_p1 + SMALL_NUM))))) / (1 + tanθ_ij))
α_R_term = ((2max(1, rR_p1) *
(1 + max(0, (tanθ_ij / (rL + SMALL_NUM))))) / (1 + tanθ_ij_p1))
# This is the g(x) = max(1, min(2, alpha)) function
α_L = max(1, min(2, α_L_term))
α_R = max(1, min(2, α_R_term))
return α_L, α_R
end
function run_stencil_benchmark(recon, nhalo, T, results_file)
@show nthreads()
pinthreads(:compact)
dims = (512, 1024) .* 10
nblocks = nthreads()
@show dims
@show T
# -------------------------------------------------------------------------------------
# Block version
# -------------------------------------------------------------------------------------
ρ_flat = rand(T, dims...)
u_flat = rand(T, dims...)
v_flat = rand(T, dims...)
p_flat = rand(T, dims...)
U = (ρ=BlockHaloArray(ρ_flat, nhalo, nblocks),
u=BlockHaloArray(u_flat, nhalo, nblocks),
v=BlockHaloArray(v_flat, nhalo, nblocks),
p=BlockHaloArray(p_flat, nhalo, nblocks))
edgedims = (2, dims...)
halodims = (2, 3)
i_edges = (ρ=BlockHaloArray(zeros(T, edgedims...), halodims, nhalo, nblocks),
u=BlockHaloArray(zeros(T, edgedims...), halodims, nhalo, nblocks),
v=BlockHaloArray(zeros(T, edgedims...), halodims, nhalo, nblocks),
p=BlockHaloArray(zeros(T, edgedims...), halodims, nhalo, nblocks))
j_edges = deepcopy(i_edges)
# cache it
reconstruct_with_blocks!(recon, U, i_edges, j_edges, 1)
max_iter = 10
for _ in 1:max_iter
@timeit to "reconstruct_with_blocks!" begin
@sync for thread_id in 1:nblocks
@tspawnat thread_id reconstruct_with_blocks!(recon, U, i_edges, j_edges, thread_id)
end
end
end
# cache it
reconstruct_with_blocks_v2!(recon, U, i_edges, j_edges, 1)
max_iter = 10
for _ in 1:max_iter
@timeit to "reconstruct_with_blocks_v2!" begin
@sync for thread_id in 1:nblocks
@tspawnat thread_id reconstruct_with_blocks_v2!(recon, U, i_edges, j_edges, thread_id)
end
end
end
# -------------------------------------------------------------------------------------
# Flat version
# -------------------------------------------------------------------------------------
ρ_edge_flat = zeros(T, edgedims)
u_edge_flat = zeros(T, edgedims)
v_edge_flat = zeros(T, edgedims)
p_edge_flat = zeros(T, edgedims)
U_flat = (ρ=ρ_flat,
u=u_flat,
v=v_flat,
p=p_flat)
i_edges_flat = (ρ=ρ_edge_flat,
u=u_edge_flat,
v=v_edge_flat,
p=p_edge_flat)
j_edges_flat = deepcopy(i_edges_flat)
ilo = first(axes(U_flat.ρ, 1)) + nhalo
jlo = first(axes(U_flat.ρ, 2)) + nhalo
ihi = last(axes(U_flat.ρ, 1)) - nhalo
jhi = last(axes(U_flat.ρ, 2)) - nhalo
looplimits = (ilo, ihi, jlo, jhi)
# cache it
reconstruct_flat!(recon, U_flat, i_edges_flat, j_edges_flat, looplimits)
for _ in 1:max_iter
@timeit to "reconstruct_flat!" begin
reconstruct_flat!(recon, U_flat, i_edges_flat, j_edges_flat, looplimits)
end
end
show(to)
println()
t_flat = TimerOutputs.time(to["reconstruct_flat!"])
t_block = TimerOutputs.time(to["reconstruct_with_blocks!"])
println("t_flat / t_block = $(t_flat / t_block)")
open(results_file, "a") do io
println(io, "$(nthreads()),$t_flat,$t_block")
end
nothing
end | BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 885 | using Documenter, BlockHaloArrays
DocMeta.setdocmeta!(BlockHaloArrays, :DocTestSetup, :(using BlockHaloArrays); recursive=true)
makedocs(
source = "src",
build = "build",
clean = true,
doctest = true,
repo = "https://github.com/smillerc/BlockHaloArrays.jl",
highlightsig = true,
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true"
),
expandfirst = [],
modules = [BlockHaloArrays],
pages = [
"BlockHaloArrays.jl" => "index.md",
# "Examples" => example_md_files,
"Reference" => [
# "MPIHaloArray" => "mpihaloarray.md",
# "Topology" => "topology.md",
"API" => "api.md"
]
],
sitename = "BlockHaloArrays.jl"
)
deploydocs(repo = "github.com/smillerc/BlockHaloArrays.jl.git",
branch = "gh-pages",
devbranch = "main",)
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 14424 | module BlockHaloArrays
using Base.Threads, Base.Iterators, LinearAlgebra
import Base.eltype, Base.size, Base.axes, Base.copy!
import Base.eachindex, Base.first, Base.firstindex, Base.last, Base.lastindex
using NumaAllocators
using EllipsisNotation
using OffsetArrays
export BlockHaloArray
export flatten, repartition!, updatehalo!, updateblockhalo!
export globalindices, nblocks
export domainview
export onboundary
export donorview, haloview
export blockindex, localindex
export @tspawnat
abstract type AbstractBlockHaloArray end
"""
A blocked array structure that stores thread-specific data in blocks. This facilitates a micro domain-decompisition
for shared-memory applications. Each thread operates on it's own block of data. This provides better performance
scaling than multi-threaded loops
# Fields
- `blocks::Vector{AA}`:
- `block_layout::NTuple{D,Int}`: number of blocks along each dimension
- `global_blockranges::Array{NTuple{D,UnitRange{Int}},D}`: Indexing/ranges of each block from the global perspective
- `nhalo::Int`: Number of halo regions, e.g. 2 entries along each dimension
- `loop_limits::Vector{Vector{Int}}`: Looping limits for convienence e.g. `[ilo,ihi,jlo,jhi]`
- `globaldims::NTuple{D,Int}`: Dimensions of the array if it were a simple `Array{T,D}`, e.g. `(20,20)`
"""
struct BlockHaloArray{NB,T,N,NH,NBL,AA<:Array{T,N},SA,NL} <: AbstractBlockHaloArray
blocks::NTuple{NB,AA}
block_layout::NTuple{NBL,Int}
halodims::NTuple{NH,Int}
global_blockranges::Vector{NTuple{N,UnitRange{Int}}}
nhalo::Int
loop_limits::NTuple{NB, NTuple{NL, Int}}
globaldims::NTuple{N,Int}
neighbor_blocks::Vector{Dict{Symbol,Int}}
# private vars
_cummulative_blocksize_per_dim::OffsetVector{Vector{Int64},Vector{Vector{Int64}}}
_linear_indices::LinearIndices{NBL,NTuple{NBL,Base.OneTo{Int}}}
_donor_views::Vector{Dict{Symbol,SA}}
_halo_views::Vector{Dict{Symbol,SA}}
end
"""
An MPI-aware BlockHaloArray. The only difference between this and the
plain `BlockHaloArray` is the addition of send/receive buffers that help
MPI communication.
# Fields
- `blocks::Vector{AA}`:
- `block_layout::NTuple{D,Int}`: number of blocks along each dimension
- `global_blockranges::Array{NTuple{D,UnitRange{Int}},D}`: Indexing/ranges of each block from the global perspective
- `nhalo::Int`: Number of halo regions, e.g. 2 entries along each dimension
- `loop_limits::Vector{Vector{Int}}`: Looping limits for convienence e.g. `[ilo,ihi,jlo,jhi]`
- `globaldims::NTuple{D,Int}`: Dimensions of the array if it were a simple `Array{T,D}`, e.g. `(20,20)`
- `_global_halo_send_buf::Vector{Array{T,D}}`: Buffers used to send across MPI ranks
- `_global_halo_recv_buf::Vector{Array{T,D}}`: Buffers used to receive across MPI ranks
"""
struct MPIBlockHaloArray{T,N,NH,NBL,AA<:Array{T,N}} <: AbstractBlockHaloArray
blocks::Vector{AA}
block_layout::NTuple{NBL,Int}
halodims::NTuple{NH,Int}
global_blockranges::Vector{NTuple{N,UnitRange{Int}}}
nhalo::Int
loop_limits::NTuple{NBL, NTuple{4, Int}}
globaldims::NTuple{N,Int}
neighbor_blocks::Vector{Dict{Symbol,Int}}
_global_halo_send_buf::Vector{Array{T,NH}}
_global_halo_recv_buf::Vector{Array{T,NH}}
end
include("spawn.jl")
include("partitioning.jl")
include("halo_exchange.jl")
include("indexing.jl")
"""
Construct a BlockHaloArray
# Arguments
- `dims::NTuple{N,Int}`: Array dimensions
- `nhalo::Integer`: Number of halo entries (equal in all dimensions)
# Keyword Arguments
- `nblocks::Integer`: Number of blocks to divide the array into; default is nthreads()
- `T`:: Array number type; default is Float64
"""
function BlockHaloArray(dims::NTuple{N,Int}, halodims::NTuple{N2,Int}, nhalo::Integer, nblocks=Base.Threads.nthreads(); T=Float64, use_numa=true, tile_dims=nothing) where {N,N2}
alldims = Tuple(1:length(dims))
non_halo_dims = Tuple([i for (i, v) in enumerate(dims) if !(i in halodims)])
for dim in halodims
if !(dim in alldims)
error("Invalid halo dimension: $(dim) not in any of the array axes $alldims")
end
end
if !isempty(non_halo_dims)
if !(all(non_halo_dims .< halodims))
error("The axes for halo exchange must be the outmost-most of the array: halodims=$halodims, non-halo dims=$non_halo_dims")
end
end
if any(halodims .> length(dims))
error("Some (or all) of the given halo_dims $(halodims) are incompatible with the dimensionality of the given array A")
end
mismatched_blocks = false
if nblocks > Threads.nthreads()
@warn "nblocks ($nblocks) > nthreads ($(nthreads()))"
mismatched_blocks = true
end
blocks = Vector{Array{T,N}}(undef, nblocks)
halo_only_sizes = Tuple([v for (i, v) in enumerate(dims) if i in halodims])
if tile_dims === nothing
tile_dims = block_layout(nblocks, length(halodims)) |> Tuple
else
if prod(tile_dims) != nblocks
error("Invalid tile_dims; the number of blocks is not consistent")
end
end
halo_only_dims = Tuple([v for (i, v) in enumerate(dims) if i in halodims])
nhalodims = length(halo_only_dims)
non_halo_dim_sizes = Tuple([v for (i, v) in enumerate(dims) if !(i in halodims)])
if halodims == Tuple(1:length(dims))
block_ranges = get_block_ranges(dims, tile_dims)
else
block_ranges_halo_only = get_block_ranges(halo_only_dims, tile_dims)
block_ranges = update_block_ranges_with_non_halo_dims(block_ranges_halo_only, dims, halodims)
end
block_sizes = [collect(flatten(size.(block))) for block in block_ranges]
# this is the cumulative block size along each dimension, indexed via [tile_dimension][1:blocks_in_tile_dim]
cummulative_blocksize_per_dim = OffsetArray(
cumsum.(collect(split_count.(dims[[i for i in halodims]], tile_dims))),
UnitRange(first(halodims), last(halodims))
)
LI = LinearIndices(tile_dims) # used to convert the cartesian block id into the linear one (for the get/set index methods)
# pad the dimensions that will include halo regions
for block in block_sizes
for i in eachindex(block)
if i in halodims
block[i] += 2nhalo
end
end
end
for threadid in eachindex(blocks)
# allocate on the thread's numa node
if use_numa
try
threadid_to_numa_mapping = map_threadid_to_numa()
numa_id = threadid_to_numa_mapping[threadid]
blocks[threadid] = Array{T}(numa(numa_id), block_sizes[threadid]...)
catch
# if threadid == firstindex(blocks)
# @warn "Unable to allocate blocks on the thread-local NUMA node"
# end
blocks[threadid] = Array{T}(undef, block_sizes[threadid]...)
end
else
blocks[threadid] = Array{T}(undef, block_sizes[threadid]...)
end
end
loop_limits = Vector{Vector{Int}}(undef, nblocks)
for i in eachindex(loop_limits)
loop_limits[i] = [(first(ax) + nhalo, last(ax) - nhalo)
for ax in axes(blocks[i])] |> flatten |> collect
end
loop_lims = Tuple(Tuple.(loop_limits))
neighbors = get_neighbor_blocks(tile_dims)
# Pass undef'ed vector to the constructor, since the views
# need to be done _after_ the type is created.
_halo_views = gen_halo_views(blocks, nhalo, halodims)
HaloViewTypes = typeof(first(_halo_views)[:ilo])
halo_views = Vector{Dict{Symbol, HaloViewTypes}}(undef, nblocks)
_donor_views = gen_donor_views(blocks, nhalo, halodims)
DonorViewTypes = typeof(first(_donor_views)[:ilo])
donor_views = Vector{Dict{Symbol, DonorViewTypes}}(undef, nblocks)
A = BlockHaloArray(tuple(blocks...), tile_dims, halodims, vec(block_ranges), nhalo,
loop_lims, dims, neighbors,
cummulative_blocksize_per_dim, LI,
donor_views, halo_views)
# Get the halo reciever and domain donor views of each block.
# These views are used during the halo sync process
halo_views = gen_halo_views(A)
donor_views = gen_donor_views(A)
for i in eachindex(A.blocks)
A._halo_views[i] = halo_views[i]
A._donor_views[i] = donor_views[i]
end
# # testing NUMA first-touch policy
if !mismatched_blocks
if use_numa
@sync for tid in 1:nblocks
@tspawnat tid fill!(A.blocks[tid], 0)
end
end
else
for tid in 1:nblocks
fill!(A.blocks[tid], 0)
end
end
return A
end
function BlockHaloArray(A::AbstractArray{T,N}, nhalo::Integer, nblocks=Base.Threads.nthreads(); use_numa=true, tile_dims=nothing) where {T,N}
halodims = Tuple(1:length(size(A)))
BlockHaloArray(A, halodims, nhalo, nblocks; use_numa=use_numa, tile_dims=tile_dims)
end
"""
Construct a BlockHaloArray from a normal Array
"""
function BlockHaloArray(A::AbstractArray{T,N}, halodims::NTuple{N2,Integer}, nhalo::Integer, nblocks=Base.Threads.nthreads(); use_numa=true, tile_dims=nothing) where {T,N,N2}
dims = size(A)
A_blocked = BlockHaloArray(dims, halodims, nhalo, nblocks; T=T, use_numa=use_numa, tile_dims=tile_dims)
block_ranges = A_blocked.global_blockranges
for tid in LinearIndices(block_ranges)
domain_view = domainview(A_blocked, tid)
A_view = view(A, block_ranges[tid]...)
copy!(domain_view, A_view)
end
return A_blocked
end
function BlockHaloArray(dims::NTuple{N,Int}, nhalo::Integer, nblocks=Base.Threads.nthreads(); T=Float64, use_numa=true, tile_dims=nothing) where {N}
halodims = Tuple(1:length(dims))
BlockHaloArray(dims, halodims, nhalo, nblocks; T=T, use_numa=use_numa, tile_dims=tile_dims)
end
"""Create a dictionary mapping the threadid to the NUMA node."""
function map_threadid_to_numa()
buf = []
for (id, node) in enumerate(cpuids_per_numa())
for tid in node
push!(buf, (tid + 1, id - 1)) # +/- 1 is due to difference in 0 and 1-based indexing with lscpu
end
end
Dict(buf)
end
eltype(A::AbstractBlockHaloArray) = eltype(first(A.blocks))
size(A::AbstractBlockHaloArray) = A.globaldims
size(A::AbstractBlockHaloArray, dim) = size.(A.blocks, dim)
axes(A::AbstractBlockHaloArray) = axes.(A.blocks)
axes(A::AbstractBlockHaloArray, dim) = axes.(A.blocks, dim)
first(A::AbstractBlockHaloArray) = first(A.blocks)
firstindex(A::AbstractBlockHaloArray) = firstindex(A.blocks)
last(A::AbstractBlockHaloArray) = last(A.blocks)
lastindex(A::AbstractBlockHaloArray) = lastindex(A.blocks)
eachindex(A::AbstractBlockHaloArray) = eachindex(A.blocks)
nblocks(A::AbstractBlockHaloArray) = length(A.blocks)
"""
Determine if the block is on the boundary
# Arguments
- `A::AbstractBlockHaloArray`: The array in question
- `blockid::Integer`: The id of the block. This is normally associated with the thread id
- `boundary::Symbol`: Which boundary are we checking for? Examples include :ilo, :jhi, etc...
"""
function onboundary(A::AbstractBlockHaloArray, blockid::Integer, boundary::Symbol)
try
if A.neighbor_blocks[blockid][boundary] < 0
return true
else
return false
end
catch
return false
end
end
"""
domainview(A::BlockHaloArray, blockid) -> SubArray
Get the SubArray view of the domain region of a block in the BlockHaloArray.
"""
function domainview(A::BlockHaloArray, blockid::Integer, offset)
if blockid < 1 || blockid > nblocks(A)
error("Invalid blockid, must be 1 <= blockid <= $(nblocks(A))")
end
if offset > A.nhalo
error("offset must be <= nhalo")
end
if offset < 0
error("offset must be > 0")
end
function f(i, halodims, offset)
if i in halodims
return offset
else
return 0
end
end
idx_offset = ntuple(i -> f(i, A.halodims, offset), length(A.globaldims))
_, _, lo_dom_start, _ = lo_indices(A.blocks[blockid], A.nhalo, A.halodims)
_, hi_dom_end, _, _ = hi_indices(A.blocks[blockid], A.nhalo, A.halodims)
lo_dom_start = lo_dom_start .- idx_offset
hi_dom_end = hi_dom_end .+ idx_offset
idx_range = UnitRange.(lo_dom_start, hi_dom_end)
return @views A.blocks[blockid][.., idx_range...]
end
domainview(A::BlockHaloArray, blockid::Integer) = domainview(A, blockid, 0)
"""Get the halo region at a particular location, e.g. `:ilo` for block `blockid`"""
haloview(A::BlockHaloArray, blockid::Integer, location::Symbol) = A._halo_views[blockid][location]
"""Get the domain donor region at a particular location, e.g. `:ilo` for block `blockid`"""
donorview(A::BlockHaloArray, blockid::Integer, location::Symbol) = A._donor_views[blockid][location]
"""
copy!(dst, src) -> dst
Copy from an AbstractArray into a BlockHaloArray. The global dimensions of the
BlockHaloArray must be the same as the AbstractArray
"""
function copy!(BHA::BlockHaloArray, AA::AbstractArray)
if eltype(AA) != eltype(BHA)
@warn "Mismatched AbstractArray and BlockHaloArray eltypes"
end
if size(AA) != BHA.globaldims
error("Mismatched array dimensions: BlockHaloArray.globaldims $(BHA.globaldims) != size(AbstractArray) $(size(AA))")
end
@sync for block_id in 1:nblocks(BHA)
@tspawnat block_id _array_to_block!(BHA, AA, block_id)
end
end
function _array_to_block!(BHA::BlockHaloArray, AA::AbstractArray, block_id::Int)
dv = domainview(BHA, block_id)
av = view(AA, BHA.global_blockranges[block_id]...)
copy!(dv, av) # update the block
end
"""
copy!(dst, src) -> dst
Copy from a BlockHaloArray into an AbstractArray. The global dimensions of the
BlockHaloArray must be the same as the AbstractArray
"""
function copy!(AA::AbstractArray, BHA::BlockHaloArray)
if size(AA) != BHA.globaldims
error("Mismatched array dimensions: BlockHaloArray.globaldims $(BHA.globaldims) != size(AbstractArray) $(size(AA))")
end
@sync for block_id in 1:nblocks(BHA)
@tspawnat block_id _block_to_array!(AA, BHA, block_id)
end
end
function _block_to_array!(AA::AbstractArray, BHA::BlockHaloArray, block_id::Int)
dv = domainview(BHA, block_id)
av = view(AA, BHA.global_blockranges[block_id]...)
copy!(av, dv) # update the abstract array
end
end # module
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 31879 | const halo_1d_exchange_map = Dict(:ilo => :ihi, :ihi => :ilo)
const halo_2d_exchange_map = Dict(
:ilo => :ihi, :ihi => :ilo, :jlo => :jhi, :jhi => :jlo,
:ilojlo => :ihijhi, :ihijlo => :ilojhi, :ihijhi => :ilojlo, :ilojhi => :ihijlo
)
const halo_3d_exchange_map = Dict(
:ilo => :ihi,
:ihi => :ilo,
:jlo => :jhi,
:jhi => :jlo,
:klo => :khi,
:khi => :klo,
:ilojlo => :ihijhi,
:ihijlo => :ilojhi,
:ilojhi => :ihijlo,
:ihijhi => :ilojlo,
:ilokhi => :ihiklo,
:iloklo => :ihikhi,
:ihikhi => :iloklo,
:ihiklo => :ilokhi,
:jhikhi => :jloklo,
:jlokhi => :jhiklo,
:jhiklo => :jlokhi,
:jloklo => :jhikhi,
:ilojhikhi => :ihijloklo,
:ihijhikhi => :ilojloklo,
:ilojlokhi => :ihijhiklo,
:ihijlokhi => :ilojhiklo,
:ilojhiklo => :ihijlokhi,
:ihijhiklo => :ilojlokhi,
:ilojloklo => :ihijhikhi,
:ihijloklo => :ilojhikhi,
)
const hmap = (halo_1d_exchange_map, halo_2d_exchange_map, halo_3d_exchange_map)
"""1D halo exchange mapping, e.g. donor => reciever block ID"""
function halo_exchange_map(::NTuple{1,Int})
return Dict(:ilo => :ihi, :ihi => :ilo)
end
"""2D halo exchange mapping, e.g. donor => reciever block ID"""
function halo_exchange_map(::NTuple{2,Int})
return Dict(:ilo => :ihi, :ihi => :ilo, :jlo => :jhi, :jhi => :jlo,
:ilojlo => :ihijhi, :ihijlo => :ilojhi, :ihijhi => :ilojlo, :ilojhi => :ihijlo)
end
"""3D halo exchange mapping, e.g. donor => reciever block ID"""
function halo_exchange_map(::NTuple{3,Int})
return Dict(
:ilo => :ihi,
:ihi => :ilo,
:jlo => :jhi,
:jhi => :jlo,
:klo => :khi,
:khi => :klo,
:ilojlo => :ihijhi,
:ihijlo => :ilojhi,
:ilojhi => :ihijlo,
:ihijhi => :ilojlo,
:ilokhi => :ihiklo,
:iloklo => :ihikhi,
:ihikhi => :iloklo,
:ihiklo => :ilokhi,
:jhikhi => :jloklo,
:jlokhi => :jhiklo,
:jhiklo => :jlokhi,
:jloklo => :jhikhi,
:ilojhikhi => :ihijloklo,
:ihijhikhi => :ilojloklo,
:ilojlokhi => :ihijhiklo,
:ihijlokhi => :ilojhiklo,
:ilojhiklo => :ihijlokhi,
:ihijhiklo => :ilojlokhi,
:ilojloklo => :ihijhikhi,
:ihijloklo => :ilojhikhi,
)
end
"""
domain_donor_ranges(block, nhal, halodims::NTuple{1, Int}) -> Dict
Get the 1D ranges for each donor region in the doman that sends data to neighbor block halo regions
"""
function domain_donor_ranges(block, nhalo, halodims::NTuple{1,Int})
# domn == domain area
_, _, lo_domn_start, lo_domn_end = lo_indices(block, nhalo)
hi_domn_start, hi_domn_end, _, _ = hi_indices(block, nhalo)
ilo_domn_start = [v for (i, v) in enumerate(lo_domn_start) if i in halodims] |> first
ilo_domn_end = [v for (i, v) in enumerate(lo_domn_end) if i in halodims] |> first
ihi_domn_start = [v for (i, v) in enumerate(hi_domn_start) if i in halodims] |> first
ihi_domn_end = [v for (i, v) in enumerate(hi_domn_end) if i in halodims] |> first
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_domn_start:ilo_domn_end,),
:ihi => (ihi_domn_start:ihi_domn_end,),
)
end
"""
domain_donor_ranges(block, nhal, halodims::NTuple{2, Int}) -> Dict
Get the 2D ranges for each donor region in the doman that sends data to neighbor block halo regions
"""
function domain_donor_ranges(block, nhalo, halodims::NTuple{2,Int})
# domn == domain area
_, _, lo_domn_start, lo_domn_end = lo_indices(block, nhalo)
hi_domn_start, hi_domn_end, _, _ = hi_indices(block, nhalo)
ilo_domn_start, jlo_domn_start = [v for (i, v) in enumerate(lo_domn_start) if i in halodims]
ilo_domn_end, jlo_domn_end = [v for (i, v) in enumerate(lo_domn_end) if i in halodims]
ihi_domn_start, jhi_domn_start = [v for (i, v) in enumerate(hi_domn_start) if i in halodims]
ihi_domn_end, jhi_domn_end = [v for (i, v) in enumerate(hi_domn_end) if i in halodims]
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_domn_start:ilo_domn_end, jlo_domn_start:jhi_domn_end),
:jlo => (ilo_domn_start:ihi_domn_end, jlo_domn_start:jlo_domn_end),
:ihi => (ihi_domn_start:ihi_domn_end, jlo_domn_start:jhi_domn_end),
:jhi => (ilo_domn_start:ihi_domn_end, jhi_domn_start:jhi_domn_end),
:ilojlo => (ilo_domn_start:ilo_domn_end, jlo_domn_start:jlo_domn_end),
:ihijlo => (ihi_domn_start:ihi_domn_end, jlo_domn_start:jlo_domn_end),
:ilojhi => (ilo_domn_start:ilo_domn_end, jhi_domn_start:jhi_domn_end),
:ihijhi => (ihi_domn_start:ihi_domn_end, jhi_domn_start:jhi_domn_end),
)
end
"""
domain_donor_ranges(block, nhal, halodims::NTuple{3, Int}) -> Dict
Get the 3D ranges for each donor region in the doman that sends data to neighbor block halo regions
"""
function domain_donor_ranges(block, nhalo, halodims::NTuple{3,Int})
# dom == domain area
_, _, lo_dom_start, lo_dom_end = lo_indices(block, nhalo)
hi_dom_start, hi_dom_end, _, _ = hi_indices(block, nhalo)
ilo_dom_start, jlo_dom_start, klo_dom_start = [v for (i, v) in enumerate(lo_dom_start) if i in halodims]
ilo_dom_end, jlo_dom_end, klo_dom_end = [v for (i, v) in enumerate(lo_dom_end) if i in halodims]
ihi_dom_start, jhi_dom_start, khi_dom_start = [v for (i, v) in enumerate(hi_dom_start) if i in halodims]
ihi_dom_end, jhi_dom_end, khi_dom_end = [v for (i, v) in enumerate(hi_dom_end) if i in halodims]
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jhi_dom_end, klo_dom_start:khi_dom_end),
:ihi => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jhi_dom_end, klo_dom_start:khi_dom_end),
:jlo => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:khi_dom_end),
:jhi => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:khi_dom_end),
:klo => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:khi => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:ilojlo => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:khi_dom_end),
:ihijlo => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:khi_dom_end),
:ilojhi => (ilo_dom_start:ilo_dom_end, jhi_dom_start:jhi_dom_end, klo_dom_start:khi_dom_end),
:ihijhi => (ihi_dom_start:ihi_dom_end, jhi_dom_start:jhi_dom_end, klo_dom_start:khi_dom_end),
:ilokhi => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:iloklo => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:ihikhi => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:ihiklo => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:jhikhi => (ilo_dom_start:ihi_dom_end, jhi_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:jlokhi => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, khi_dom_start:khi_dom_end),
:jhiklo => (ilo_dom_start:ihi_dom_end, jhi_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:jloklo => (ilo_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:klo_dom_end),
:ilojhikhi => (ilo_dom_start:ilo_dom_end, jhi_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:ihijhikhi => (ihi_dom_start:ihi_dom_end, jhi_dom_start:jhi_dom_end, khi_dom_start:khi_dom_end),
:ilojlokhi => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jlo_dom_end, khi_dom_start:khi_dom_end),
:ihijlokhi => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, khi_dom_start:khi_dom_end),
:ilojhiklo => (ilo_dom_start:ilo_dom_end, jhi_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:ihijhiklo => (ihi_dom_start:ihi_dom_end, jhi_dom_start:jhi_dom_end, klo_dom_start:klo_dom_end),
:ilojloklo => (ilo_dom_start:ilo_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:klo_dom_end),
:ihijloklo => (ihi_dom_start:ihi_dom_end, jlo_dom_start:jlo_dom_end, klo_dom_start:klo_dom_end),
)
end
"""
halo_reciever_ranges(block, nhalo, halodims::NTuple{1, Int}) -> Dict
Get the 1D ranges for each halo region that recieves data from neighbor blocks
"""
function halo_reciever_ranges(block, nhalo, halodims::NTuple{1,Int})
# domn == domain area
lo_halo_start, lo_halo_end, _, _ = lo_indices(block, nhalo)
_, _, hi_halo_start, hi_halo_end = hi_indices(block, nhalo)
ilo_halo_start = [v for (i, v) in enumerate(lo_halo_start) if i in halodims] |> first
ilo_halo_end = [v for (i, v) in enumerate(lo_halo_end) if i in halodims] |> first
ihi_halo_start = [v for (i, v) in enumerate(hi_halo_start) if i in halodims] |> first
ihi_halo_end = [v for (i, v) in enumerate(hi_halo_end) if i in halodims] |> first
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_halo_start:ilo_halo_end,),
:ihi => (ihi_halo_start:ihi_halo_end,),
)
end
"""
halo_reciever_ranges(block, nhalo, halodims::NTuple{2, Int}) -> Dict
Get the 2D ranges for each halo region that recieves data from neighbor blocks
"""
function halo_reciever_ranges(block, nhalo, halodims::NTuple{2,Int})
# domn == domain area
lo_halo_start, lo_halo_end, lo_domn_start, _ = lo_indices(block, nhalo)
_, hi_domn_end, hi_halo_start, hi_halo_end = hi_indices(block, nhalo)
ilo_halo_start, jlo_halo_start = [v for (i, v) in enumerate(lo_halo_start) if i in halodims]
ilo_halo_end, jlo_halo_end = [v for (i, v) in enumerate(lo_halo_end) if i in halodims]
ilo_domn_start, jlo_domn_start = [v for (i, v) in enumerate(lo_domn_start) if i in halodims]
ihi_domn_end, jhi_domn_end = [v for (i, v) in enumerate(hi_domn_end) if i in halodims]
ihi_halo_start, jhi_halo_start = [v for (i, v) in enumerate(hi_halo_start) if i in halodims]
ihi_halo_end, jhi_halo_end = [v for (i, v) in enumerate(hi_halo_end) if i in halodims]
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end),
:ihi => (ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end),
:jlo => (ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end),
:jhi => (ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end),
:ilojlo => (ilo_halo_start:ilo_halo_end, jlo_halo_start:jlo_halo_end),
:ilojhi => (ilo_halo_start:ilo_halo_end, jhi_halo_start:jhi_halo_end),
:ihijlo => (ihi_halo_start:ihi_halo_end, jlo_halo_start:jlo_halo_end),
:ihijhi => (ihi_halo_start:ihi_halo_end, jhi_halo_start:jhi_halo_end),
)
end
"""
halo_reciever_ranges(block, nhalo, halodims::NTuple{3, Int}) -> Dict
Get the 3D ranges for each halo region that recieves data from neighbor blocks
"""
function halo_reciever_ranges(block, nhalo, halodims::NTuple{3,Int})
# domn == domain area
lo_halo_start, lo_halo_end, lo_domn_start, _ = lo_indices(block, nhalo)
_, hi_domn_end, hi_halo_start, hi_halo_end = hi_indices(block, nhalo)
ilo_halo_start, jlo_halo_start, klo_halo_start = [v for (i, v) in enumerate(lo_halo_start) if i in halodims]
ilo_halo_end, jlo_halo_end, klo_halo_end = [v for (i, v) in enumerate(lo_halo_end) if i in halodims]
ilo_domn_start, jlo_domn_start, klo_domn_start = [v for (i, v) in enumerate(lo_domn_start) if i in halodims]
ihi_domn_end, jhi_domn_end, khi_domn_end = [v for (i, v) in enumerate(hi_domn_end) if i in halodims]
ihi_halo_start, jhi_halo_start, khi_halo_start = [v for (i, v) in enumerate(hi_halo_start) if i in halodims]
ihi_halo_end, jhi_halo_end, khi_halo_end = [v for (i, v) in enumerate(hi_halo_end) if i in halodims]
# key -> neighbor id, value -> array index ranges
return Dict(
:ilo => (ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end, klo_domn_start:khi_domn_end),
:ihi => (ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end, klo_domn_start:khi_domn_end),
:jlo => (ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end, klo_domn_start:khi_domn_end),
:jhi => (ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end, klo_domn_start:khi_domn_end),
:klo => (ilo_domn_start:ihi_domn_end, jlo_domn_start:jhi_domn_end, klo_halo_start:klo_halo_end),
:khi => (ilo_domn_start:ihi_domn_end, jlo_domn_start:jhi_domn_end, khi_halo_start:khi_halo_end),
:ihijhi => (ihi_halo_start:ihi_halo_end, jhi_halo_start:jhi_halo_end, klo_domn_start:khi_domn_end),
:ihijlo => (ihi_halo_start:ihi_halo_end, jlo_halo_start:jlo_halo_end, klo_domn_start:khi_domn_end),
:ilojhi => (ilo_halo_start:ilo_halo_end, jhi_halo_start:jhi_halo_end, klo_domn_start:khi_domn_end),
:ilojlo => (ilo_halo_start:ilo_halo_end, jlo_halo_start:jlo_halo_end, klo_domn_start:khi_domn_end),
:ihikhi => (ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end, khi_halo_start:khi_halo_end),
:ihiklo => (ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end, klo_halo_start:klo_halo_end),
:iloklo => (ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end, klo_halo_start:klo_halo_end),
:ilokhi => (ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end, khi_halo_start:khi_halo_end),
:jloklo => (ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end, klo_halo_start:klo_halo_end),
:jhikhi => (ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end, khi_halo_start:khi_halo_end),
:jhiklo => (ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end, klo_halo_start:klo_halo_end),
:jlokhi => (ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end, khi_halo_start:khi_halo_end),
:ihijloklo => (ihi_halo_start:ihi_halo_end, jlo_halo_start:jlo_halo_end, klo_halo_start:klo_halo_end),
:ilojhiklo => (ilo_halo_start:ilo_halo_end, jhi_halo_start:jhi_halo_end, klo_halo_start:klo_halo_end),
:ilojloklo => (ilo_halo_start:ilo_halo_end, jlo_halo_start:jlo_halo_end, klo_halo_start:klo_halo_end),
:ihijhiklo => (ihi_halo_start:ihi_halo_end, jhi_halo_start:jhi_halo_end, klo_halo_start:klo_halo_end),
:ihijlokhi => (ihi_halo_start:ihi_halo_end, jlo_halo_start:jlo_halo_end, khi_halo_start:khi_halo_end),
:ilojhikhi => (ilo_halo_start:ilo_halo_end, jhi_halo_start:jhi_halo_end, khi_halo_start:khi_halo_end),
:ilojlokhi => (ilo_halo_start:ilo_halo_end, jlo_halo_start:jlo_halo_end, khi_halo_start:khi_halo_end),
:ihijhikhi => (ihi_halo_start:ihi_halo_end, jhi_halo_start:jhi_halo_end, khi_halo_start:khi_halo_end),
)
end
"""
updatehalo!(A, include_periodic_bc=false)
Synchronize the halo regions within each block. This spawns tasks so that
each thread/block copies from it's neighbor block's domain into the current block's halo region.
# Arguments
- `A`: `BlockHaloArray`
- `include_periodic_bc`: Update the halo regions that are on periodic boundaries
"""
function updatehalo!(A::BlockHaloArray, include_periodic_bc)
@sync for tid in eachindex(A.blocks)
@tspawnat tid updateblockhalo!(A, tid, include_periodic_bc)
end
end
function updatehalo!(A::BlockHaloArray)
@sync for tid in eachindex(A.blocks)
@tspawnat tid updateblockhalo!(A, tid)
end
end
@inline function valid_neighbor(id::Integer)
if id > 0
return true
else
return false
end
end
"""
updateblockhalo!(A::BlockHaloArray, block_id::Integer, include_periodic_bc=false)
Copy data from the neighbor block into the current block's halo region
# Arguments
- `A`: `BlockHaloArray`
- `block_id::Integer`: Block index
- `include_periodic_bc`: Update the halo regions that are on periodic boundaries
"""
updateblockhalo!(A, current_block_id) = updateblockhalo!(A, current_block_id, false)
function updateblockhalo!(A::BlockHaloArray{NB,T,N,NH,NBL,AA,SA,Y}, current_block_id::Integer, include_periodic_bc::Bool) where {NB,T,N,NH,NBL,AA,SA,Y}
exchange_map = hmap[NH]
for (dom_id, halo_id) in exchange_map
neighbor_block_id = A.neighbor_blocks[current_block_id][halo_id]
# The convention is that periodic neighbors block ids are < 0 as a hint to the
# user and code.
if include_periodic_bc
neighbor_block_id = abs(neighbor_block_id)
end
if valid_neighbor(neighbor_block_id)
copy!(
A._halo_views[current_block_id][halo_id],
A._donor_views[neighbor_block_id][dom_id]
) # copy donor -> halo
# for idx in eachindex(A._halo_views[current_block_id][halo_id])
# A._halo_views[current_block_id][halo_id][idx] = A._donor_views[neighbor_block_id][dom_id][idx]
# end
end
end
return nothing
end
"""Get the upper indices for an array `A` given a number of halo entries `nhalo`"""
function hi_indices(A, nhalo)
hmod = 1 .* (nhalo .== 0)
hi_halo_end = last.(axes(A))
hi_halo_start = hi_halo_end .- nhalo .+ 1 .- hmod
hi_domn_end = hi_halo_start .- 1 .+ hmod
hi_domn_start = hi_domn_end .- nhalo .+ 1 .- hmod
return (hi_domn_start, hi_domn_end, hi_halo_start, hi_halo_end)
end
"""Get the upper indices for an array `A` given a number of halo entries `nhalo`. This
version properly accounts for non-halo dimensions"""
function hi_indices(A::AbstractArray{T,N}, nhalo, halodims) where {N,T}
function f(i, halodims, nhalo)
if i in halodims
return nhalo
else
return 0
end
end
halo_tuple = ntuple(i -> f(i, halodims, nhalo), Val(N))
hi_indices(A, halo_tuple)
end
"""Get the lower indices for an array `A` given a number of halo entries `nhalo`"""
function lo_indices(A, nhalo)
lmod = 1 .* (nhalo .== 0)
lo_halo_start = first.(axes(A))
lo_halo_end = lo_halo_start .+ nhalo .- 1 .+ lmod
lo_domn_start = lo_halo_end .+ 1 .- lmod
lo_domn_end = lo_domn_start .+ nhalo .- 1 .+ lmod
return (lo_halo_start, lo_halo_end, lo_domn_start, lo_domn_end)
end
"""Get the lower indices for an array `A` given a number of halo entries `nhalo`. This
version properly accounts for non-halo dimensions"""
function lo_indices(A::AbstractArray{T,N}, nhalo, halodims) where {N,T}
function f(i, halodims, nhalo)
if i in halodims
return nhalo
else
return 0
end
end
halo_tuple = ntuple(i -> f(i, halodims, nhalo), Val(N))
lo_indices(A, halo_tuple)
end
"""Get the neighbor block id's for a 1D decomposition"""
function get_neighbor_blocks_no_periodic(tile_dims::NTuple{1,Integer})
nblocks = prod(tile_dims)
nneighbors = 2
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [:ilo, :ihi]
for i in LI
# set up the block neighbors based on cartesian indexing
neighbor_indices = [(i - 1), (i + 1)]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
# if the index is out of bounds, it's invalid.
# Otherwise, save the 1D index of the block
# that is the proper neighbor
for (neighbor_id, idx) in enumerate(neighbor_indices)
neighbor_symbol = neighbor_block_sym[neighbor_id]
valid_neighbor = checkbounds(Bool, CI, idx...)
if valid_neighbor
neighbor_block = LI[idx...]
else
neighbor_block = -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[i] = Dict(block_neighbor_set)
end
return block_neighbors
end
"""Get the neighbor block id's for a 2D decomposition"""
function get_neighbor_blocks_no_periodic(tile_dims::NTuple{2,Integer})
nblocks = prod(tile_dims)
nneighbors = 8
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [:ilojlo, :jlo, :ihijlo, :ihi, :ihijhi, :jhi, :ilojhi, :ilo]
for block_idx in CI
i, j = Tuple(block_idx)
# set up the block neighbors based on cartesian indexing
neighbor_indices = [
(i - 1, j - 1),
(i, j - 1),
(i + 1, j - 1),
(i + 1, j),
(i + 1, j + 1),
(i, j + 1),
(i - 1, j + 1),
(i - 1, j)
]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
# if the index is out of bounds, it's invalid. Otherwise, save the 1D index of the block
# that is the proper neighbor
for (neighbor_id, idx) in enumerate(neighbor_indices)
neighbor_symbol = neighbor_block_sym[neighbor_id]
valid_neighbor = checkbounds(Bool, CI, idx...)
if valid_neighbor
neighbor_block = LI[idx...]
else
neighbor_block = -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[LI[i, j]] = Dict(block_neighbor_set) # e.g. (:ilo => 4, :jhi => ...), where 4 is the ilo neighbor
end
return block_neighbors
end
"""Get the neighbor block id's for a 3D decomposition"""
function get_neighbor_blocks_no_periodic(tile_dims::NTuple{3,Integer})
nblocks = prod(tile_dims)
nneighbors = 3^length(tile_dims) - 1
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [
:ihi,
:ihijhi,
:ihijhikhi,
:ihijhiklo,
:ihijlo,
:ihijlokhi,
:ihijloklo,
:ihikhi,
:ihiklo,
:ilo,
:ilojhi,
:ilojhikhi,
:ilojhiklo,
:ilojlo,
:ilojlokhi,
:ilojloklo,
:ilokhi,
:iloklo,
:jhi,
:jhikhi,
:jhiklo,
:jlo,
:jlokhi,
:jloklo,
:khi,
:klo,
]
for block_idx in CI
i, j, k = Tuple(block_idx)
# set up the block neighbors based on cartesian indexing
neighbor_indices = [
(i + 1, j, k),
(i + 1, j + 1, k),
(i + 1, j + 1, k + 1),
(i + 1, j + 1, k - 1),
(i + 1, j - 1, k),
(i + 1, j - 1, k + 1),
(i + 1, j - 1, k - 1),
(i + 1, j, k + 1),
(i + 1, j, k - 1),
(i - 1, j, k),
(i - 1, j + 1, k),
(i - 1, j + 1, k + 1),
(i - 1, j + 1, k - 1),
(i - 1, j - 1, k),
(i - 1, j - 1, k + 1),
(i - 1, j - 1, k - 1),
(i - 1, j, k + 1),
(i - 1, j, k - 1),
(i, j + 1, k),
(i, j + 1, k + 1),
(i, j + 1, k - 1),
(i, j - 1, k),
(i, j - 1, k + 1),
(i, j - 1, k - 1),
(i, j, k + 1),
(i, j, k - 1),
]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
# if the index is out of bounds, it's invalid.
# Otherwise, save the 1D index of the block
# that is the proper neighbor
for (neighbor_id, idx) in enumerate(neighbor_indices)
neighbor_symbol = neighbor_block_sym[neighbor_id]
valid_neighbor = checkbounds(Bool, CI, idx...)
if valid_neighbor
neighbor_block = LI[idx...]
else
neighbor_block = -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[LI[i, j, k]] = Dict(block_neighbor_set)
end
return block_neighbors
end
"""Get the neighbor block id's for a 1D decomposition (with periodic edges)"""
function get_neighbor_blocks(tile_dims::NTuple{1,Integer})
nblocks = prod(tile_dims)
nneighbors = 2
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [:ilo, :ihi]
for i in LI
# set up the block neighbors based on cartesian indexing
neighbor_indices = [[i - 1], [i + 1]]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
# if the index is out of bounds, it's invalid.
# Otherwise, save the 1D index of the block
# that is the proper neighbor
for (neighbor_id, idx) in enumerate(neighbor_indices)
periodic = false
neighbor_symbol = neighbor_block_sym[neighbor_id]
for (i, dim) in enumerate(idx)
if dim < 1
periodic = true
idx[i] = tile_dims[i]
elseif dim > tile_dims[i]
periodic = true
idx[i] = 1
end
end
neighbor_block = LI[CI[idx...]]
if periodic
neighbor_block *= -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[i] = Dict(block_neighbor_set)
end
return block_neighbors
end
"""Get the neighbor block id's for a 2D decomposition (with periodic edges)"""
function get_neighbor_blocks(tile_dims::NTuple{2,Integer})
nblocks = prod(tile_dims)
nneighbors = 8
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [:ilojlo, :jlo, :ihijlo, :ihi, :ihijhi, :jhi, :ilojhi, :ilo]
for block_idx in CI
i, j = Tuple(block_idx)
# set up the block neighbors based on cartesian indexing
neighbor_indices = [
[i - 1, j - 1],
[i, j - 1],
[i + 1, j - 1],
[i + 1, j],
[i + 1, j + 1],
[i, j + 1],
[i - 1, j + 1],
[i - 1, j]
]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
for (neighbor_id, idx) in enumerate(neighbor_indices)
periodic = false
neighbor_symbol = neighbor_block_sym[neighbor_id]
for (i, dim) in enumerate(idx)
if dim < 1
periodic = true
idx[i] = tile_dims[i]
elseif dim > tile_dims[i]
periodic = true
idx[i] = 1
end
end
neighbor_block = LI[CI[idx...]]
if periodic
neighbor_block *= -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[LI[i, j]] = Dict(block_neighbor_set) # e.g. (:ilo => 4, :jhi => ...), where 4 is the ilo neighbor
end
return block_neighbors
end
"""Get the neighbor block id's for a 3D decomposition (with periodic edges)"""
function get_neighbor_blocks(tile_dims::NTuple{3,Integer})
nblocks = prod(tile_dims)
nneighbors = 3^length(tile_dims) - 1
CI = CartesianIndices(tile_dims)
LI = LinearIndices(tile_dims)
block_neighbors = Vector{Dict{Symbol,Int}}(undef, nblocks)
neighbor_block_sym = [
:ihi,
:ihijhi,
:ihijhikhi,
:ihijhiklo,
:ihijlo,
:ihijlokhi,
:ihijloklo,
:ihikhi,
:ihiklo,
:ilo,
:ilojhi,
:ilojhikhi,
:ilojhiklo,
:ilojlo,
:ilojlokhi,
:ilojloklo,
:ilokhi,
:iloklo,
:jhi,
:jhikhi,
:jhiklo,
:jlo,
:jlokhi,
:jloklo,
:khi,
:klo,
]
for block_idx in CI
i, j, k = Tuple(block_idx)
# set up the block neighbors based on cartesian indexing
neighbor_indices = [
[i + 1, j, k],
[i + 1, j + 1, k],
[i + 1, j + 1, k + 1],
[i + 1, j + 1, k - 1],
[i + 1, j - 1, k],
[i + 1, j - 1, k + 1],
[i + 1, j - 1, k - 1],
[i + 1, j, k + 1],
[i + 1, j, k - 1],
[i - 1, j, k],
[i - 1, j + 1, k],
[i - 1, j + 1, k + 1],
[i - 1, j + 1, k - 1],
[i - 1, j - 1, k],
[i - 1, j - 1, k + 1],
[i - 1, j - 1, k - 1],
[i - 1, j, k + 1],
[i - 1, j, k - 1],
[i, j + 1, k],
[i, j + 1, k + 1],
[i, j + 1, k - 1],
[i, j - 1, k],
[i, j - 1, k + 1],
[i, j - 1, k - 1],
[i, j, k + 1],
[i, j, k - 1],
]
block_neighbor_set = Vector{Tuple{Symbol,Int}}(undef, nneighbors)
# if the index is out of bounds, it's invalid.
# Otherwise, save the 1D index of the block
# that is the proper neighbor
for (neighbor_id, idx) in enumerate(neighbor_indices)
periodic = false
neighbor_symbol = neighbor_block_sym[neighbor_id]
for (i, dim) in enumerate(idx)
if dim < 1
periodic = true
idx[i] = tile_dims[i]
elseif dim > tile_dims[i]
periodic = true
idx[i] = 1
end
end
neighbor_block = LI[CI[idx...]]
if periodic
neighbor_block *= -1
end
block_neighbor_set[neighbor_id] = (neighbor_symbol, neighbor_block)
end
block_neighbors[LI[i, j, k]] = Dict(block_neighbor_set)
end
return block_neighbors
end
"""
Generate the SubArray views of each halo region in `A::BlockHaloArray` that
"reciever" views. These are the regions updated in the halo exchange copy/update.
"""
function gen_halo_views(A)
blk_halo_views = Vector{Dict{Symbol,SubArray}}(undef, nblocks(A))
for blk_i in eachindex(A.blocks)
halo_reciever = halo_reciever_ranges(A.blocks[blk_i], A.nhalo, A.halodims)
blk_halo_views[blk_i] = Dict(
k => @view A.blocks[blk_i][.., halo_reciever[k]...] for k in keys(halo_reciever)
)
end
blk_halo_views
end
function gen_halo_views(blocks, nhalo, halodims)
blk_halo_views = Vector{Dict{Symbol,SubArray}}(undef, length(blocks))
for blk_i in eachindex(blocks)
halo_reciever = halo_reciever_ranges(blocks[blk_i], nhalo, halodims)
blk_halo_views[blk_i] = Dict(
k => @view blocks[blk_i][.., halo_reciever[k]...] for k in keys(halo_reciever)
)
end
blk_halo_views
end
"""
Generate the SubArray views of each domain region in `A::BlockHaloArray` that are called
"donor" views. These are the regions copied from in the halo exchange copy/update.
"""
function gen_donor_views(A)
blk_donor_views = Vector{Dict{Symbol,SubArray}}(undef, nblocks(A))
for blk_i in eachindex(A.blocks)
donor = domain_donor_ranges(A.blocks[blk_i], A.nhalo, A.halodims)
blk_donor_views[blk_i] = Dict(
k => @view A.blocks[blk_i][.., donor[k]...] for k in keys(donor)
)
end
blk_donor_views
end
function gen_donor_views(blocks, nhalo, halodims)
blk_donor_views = Vector{Dict{Symbol,SubArray}}(undef, length(blocks))
for blk_i in eachindex(blocks)
donor = domain_donor_ranges(blocks[blk_i], nhalo, halodims)
blk_donor_views[blk_i] = Dict(
k => @view blocks[blk_i][.., donor[k]...] for k in keys(donor)
)
end
blk_donor_views
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 5173 |
"""
Get the cartesian block index within the block layout.
For example, in a (2,3) block tiling scheme, based on a given
global index `global_i`, and the dimension-specific cummulative `block_sizes`,
find the 2D index. The `dim` argument is used to ignore dimensions
that are not include in the `halodims`.
"""
function get_block_idx(global_i, block_sizes, dim, halodims)
block_i = 1
if !(dim in halodims)
return 0
end
for (i, val) in enumerate(block_sizes[dim])
if global_i <= val
block_i = i - 1
break
end
end
return block_i + 1
end
"""For a given single dimension, find the block-local index"""
function _get_single_dim_local_index(global_i, block_i, nhalo, block_size)
if block_i == 1
return global_i + nhalo
else
dblock = block_size[block_i] - block_size[block_i-1]
return global_i - dblock + nhalo
end
end
"""
Get the block-local index based on the given global index. The `block_i` value
is the dimension-specific block cartesian index. Dimensions not included in the
`halodims` are a special case where the global index is the same as the local index.
"""
function get_local_idx(global_idx, block_i, nhalo, block_sizes, dim, halodims)
if !(dim in halodims)
return global_idx[dim]
else
hdim = dim - (length(global_idx) - length(halodims))
li = _get_single_dim_local_index(global_idx[dim],
block_i[hdim], nhalo,
block_sizes[dim])
return li
end
end
"""
Overload the getindex, or [], method for a BlockHaloArray. This is a 'flat' iterator of sorts,
since the actual data within the BlockHaloArray is a series of separate blocks. Iterating through
the array in this manner will be slower due to the additional arithmetic need to find the global
to local index conversion for each block.
"""
function Base.getindex(A::BlockHaloArray, global_idx::Vararg{Int, N}) where {N}
block_idx = ntuple(i ->
get_block_idx(global_idx[A.halodims[i]],
A._cummulative_blocksize_per_dim,
A.halodims[i],
A.halodims),
length(A.halodims))
local_idx = ntuple(i ->
get_local_idx(global_idx,
block_idx,
A.nhalo,
A._cummulative_blocksize_per_dim,
i,
A.halodims),
length(A.globaldims))
block_id::Int = A._linear_indices[block_idx...]
return A.blocks[block_id][local_idx...]
end
function Base.getindex(A::BlockHaloArray, block_idx::Int)
if block_idx > nblocks(A)
@error("Attempting to access a block out-of-bounds")
end
return A.blocks[block_idx]
end
"""
Get the scalar block index give a global index tuple
"""
function blockindex(A::BlockHaloArray, global_idx::NTuple{N,Int}) where {N}
block_idx = ntuple(i ->
get_block_idx(global_idx[A.halodims[i]],
A._cummulative_blocksize_per_dim,
A.halodims[i],
A.halodims),
length(A.halodims))
return A._linear_indices[block_idx...]
end
"""
Get the block-local indices give a global index tuple
"""
function localindex(A::BlockHaloArray, global_idx::NTuple{N,Int}) where {N}
block_idx = blockindex(A, global_idx)
local_idx = ntuple(i ->
get_local_idx(global_idx,
block_idx,
A.nhalo,
A._cummulative_blocksize_per_dim,
i,
A.halodims),
length(A.globaldims))
return local_idx
end
"""
Overload the setindex, or A[I] = ... , method for a BlockHaloArray. This is a 'flat' iterator of sorts,
since the actual data within the BlockHaloArray is a series of separate blocks. Iterating through
the array in this manner will be slower due to the additional arithmetic needed to find the global
to local index conversion for each block.
"""
function Base.setindex!(A::BlockHaloArray, v, global_idx::Vararg{Int, N}) where {N}
block_idx = ntuple(i ->
get_block_idx(global_idx[A.halodims[i]],
A._cummulative_blocksize_per_dim,
A.halodims[i],
A.halodims),
length(A.halodims))
local_idx = ntuple(i ->
get_local_idx(global_idx,
block_idx,
A.nhalo,
A._cummulative_blocksize_per_dim,
i,
A.halodims),
length(A.globaldims))
block_id::Int = A._linear_indices[block_idx...]
setindex!(A.blocks[block_id], v, local_idx...)
end
function Base.setindex!(A::BlockHaloArray, v, block_idx::Int)
setindex!(A.blocks, v, block_idx)
end
"""
globalindices(A::BlockHaloArray, block_index, local_indices) -> global_indices
Given a block index and local coordinates, return the global indices
# Example
```
julia> globalindices(A, 2, (3, 4)) -> (8, 10)
```
"""
function globalindices(A::BlockHaloArray, block_index::Integer, local_indices)
get_idx(idx, b_range, nhalo) = b_range[idx - nhalo]
block_range = @views A.global_blockranges[block_index]
return get_idx.(local_indices, block_range, A.nhalo)
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 6386 |
import Base.Iterators.flatten
"""
block_layout(nblocks, N)
Determine the block layout based on the number of total blocks `nblocks`
and the dimensionality `N` of the domain
# Arguments
- `nblocks::Integer`
- `N::Integer`
"""
function block_layout(nblocks::Integer, N::Integer)
@assert (1 <= N <= 3) "Invalid dimensionality of the domain: $N"
if N == 1
return [nblocks]
elseif N == 2
return _block_layout_2d(nblocks)
elseif N == 3
return _block_layout_3d(nblocks)
end
end
"""
split_count(N::Integer, n::Integer)
Return a vector of `n` integers which are approximately equally sized and sum to `N`.
This borrows from https://juliaparallel.org/MPI.jl/latest/examples/06-scatterv/
"""
function split_count(N::Integer, n::Integer)
q, r = divrem(N, n)
return [i <= r ? q + 1 : q for i = 1:n]
end
"""Return all common denominators of n"""
function denominators(n::Integer)
denominators = Vector{Int}(undef, 0)
for i in 1:n
if mod(n, i) == 0
push!(denominators, i)
end
end
return denominators
end
"""Find the optimal block layout in 2D given total number of tiles `n`"""
function _block_layout_2d(n)
# find all common denominators of the total number of images
denoms = denominators(n)
# find all combinations of common denominators
# whose product equals the total number of images
dim1 = Vector{Int}(undef, 0)
dim2 = Vector{Int}(undef, 0)
for j in eachindex(denoms)
for i in eachindex(denoms)
if denoms[i] * denoms[j] == n
push!(dim1, denoms[i])
push!(dim2, denoms[j])
end
end
end
# pick the set of common denominators with the minimal norm
# between two elements -- rectangle closest to a square
n_tiles = [dim1[1], dim2[1]]
for i in 2:length(dim1)
n1 = norm([dim1[i], dim2[i]] .- sqrt(n))
n2 = norm(n_tiles .- sqrt(n))
if n1 < n2
n_tiles = [dim1[i], dim2[i]]
end
end
return n_tiles
end
"""Find the optimal block layout in 3D given total number of tiles `n`"""
function _block_layout_3d(n)
# find all common denominators of the total number of images
denoms = denominators(n)
# find all combinations of common denominators
# whose product equals the total number of images
dim1 = Vector{Int}(undef, 0)
dim2 = Vector{Int}(undef, 0)
dim3 = Vector{Int}(undef, 0)
for k in eachindex(denoms)
for j in eachindex(denoms)
for i in eachindex(denoms)
if denoms[i] * denoms[j] * denoms[k] == n
push!(dim1, denoms[i])
push!(dim2, denoms[j])
push!(dim3, denoms[k])
end
end
end
end
# pick the set of common denominators with the minimal norm
# between two elements -- rectangle closest to a square
n_tiles = [dim1[1], dim2[1], dim3[1]]
for i in 2:length(dim1)
n1 = norm([dim1[i], dim2[i], dim3[i]] .- sqrt(n))
n2 = norm(n_tiles .- sqrt(n))
if n1 < n2
n_tiles = [dim1[i], dim2[i], dim3[i]]
end
end
return n_tiles
end
"""
get_block_ranges(dims::NTuple{N, Int}, nblocks::Integer) -> Array{NTuple{ndims,UnitRange{Int}}}
Get the ranges of each block (in the global space)
# Arguments
- `dims::NTuple{N, Int}`: Dimensions of the flat array to split into blocks
- `nblocks::Integer`: Number of total blocks
"""
function get_block_ranges(dims::NTuple{N,Int}, tile_dims) where {N}
ndims = length(dims)
block_sizes = split_count.(dims, collect(tile_dims))
end_idx = cumsum.(block_sizes)
start_idx = copy(end_idx)
for i in eachindex(end_idx)
start_idx[i] = end_idx[i] - block_sizes[i] .+ 1
end
blks = Array{NTuple{ndims,UnitRange{Int}}}(undef, tile_dims)
for block_I in CartesianIndices(tile_dims)
blks[block_I] = [start_idx[dim][x]:end_idx[dim][x]
for (dim, x) in enumerate(Tuple(block_I))] |> Tuple
end
blks
end
"""
update_block_ranges_with_non_halo_dims(block_ranges, axes_sizes, halo_dims)
Update the ranges in each block to include the non-halo dimensions
"""
function update_block_ranges_with_non_halo_dims(block_ranges, axes_sizes, halo_dims)
new_ranges = Array{NTuple{length(axes_sizes), UnitRange{Int}}}(undef, size(block_ranges))
non_halo_dim_sizes = Tuple([v for (i, v) in enumerate(axes_sizes) if !(i in halo_dims)])
for I in CartesianIndices(block_ranges)
block = block_ranges[I] |> collect
non_halo_ranges = UnitRange.(1, non_halo_dim_sizes) |> collect
new_range = append!(non_halo_ranges, block)
new_ranges[I] = Tuple(new_range)
end
new_ranges
end
"""
repartition(A::AbstractBlockHaloArray, nblocks) -> BlockHaloArray
Repartition the BlockHaloArray into a different block layout
"""
function repartition!(A::AbstractBlockHaloArray, nblocks::Integer)
if nblocks == 1
@warn "Trying to repartition!() into 1 block is prohibited"
return A
elseif nblocks == length(A.blocks)
@warn "New block layout is the same as the original"
return A
end
Aflat = flatten(A)
return BlockHaloArray(Aflat, A.nhalo, nblocks)
end
"""
flatten(A::AbstractBlockHaloArray) -> Array
Return a flattened version of a BlockHaloArray. This is a copy, since a view
of the current block structure isn't possible.
"""
function flatten(A::AbstractBlockHaloArray)
A_flat = zeros(eltype(A), A.globaldims)
block_ranges = A.global_blockranges
for tid in LinearIndices(block_ranges)
domain_indices = UnitRange.((axes(A.blocks[tid]) .|> first) .+ A.nhalo,
(axes(A.blocks[tid]) .|> last) .- A.nhalo)
domain_view = view(A.blocks[tid], domain_indices...)
A_flat_view = view(A_flat, block_ranges[tid]...)
copy!(A_flat_view, domain_view)
end
return A_flat
end
function globalsize(A::AbstractBlockHaloArray, nohalo=true)
ndims = length(size(first(A.blocks)))
global_dims = zeros(Int, ndims)
for block in A.blocks
for dim in 1:ndims
global_dims[dim] += size(block, dim)
end
end
if nohalo
global_dims .-= length(A.blocks) * ndims * A.nhalo
end
global_dims |> Tuple
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 1188 | """
@tspawnat tid -> task
Mimics `Base.Threads.@spawn`, but assigns the task to thread `tid` (with `sticky = true`).
# Example
```julia
julia> t = @tspawnat 4 Threads.threadid()
Task (runnable) @0x0000000010743c70
julia> fetch(t)
4
```
"""
macro tspawnat(thrdid, expr)
# Copied/modified from ThreadPools.jl/ThreadPinning.jl with the change task.sticky = false -> true
# https://github.com/tro3/ThreadPools.jl/blob/c2c99a260277c918e2a9289819106dd38625f418/src/macros.jl#L244
letargs = Base._lift_one_interp!(expr)
thunk = esc(:(() -> ($expr)))
var = esc(Base.sync_varname)
tid = esc(thrdid)
quote
check_threads($tid)
let $(letargs...)
local task = Task($thunk)
task.sticky = true
ccall(:jl_set_task_tid, Cvoid, (Any, Cint), task, $tid - 1)
if $(Expr(:islocal, var))
put!($var, task)
end
schedule(task)
task
end
end
end
function check_threads(tid, n_threads=Base.Threads.nthreads()::Int)
if tid < 1 || tid > n_threads
throw(AssertionError("@tspawnat invalid thread id (must be between 1 and nthreads)"))
end
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 814 | using TestItemRunner
@run_package_tests
# @testitem "Flat index testing" begin
# dims = (4, 50, 50)
# global_idx = (1, 26, 26)
# halodims = (2, 3)
# A = BlockHaloArray(dims, halodims, 2, 2)
# block_idx = ntuple(i ->
# BlockHaloArrays.get_block_idx(global_idx[A.halodims[i]],
# A._cummulative_blocksize_per_dim,
# A.halodims[i],
# A.halodims),
# length(A.halodims))
# local_idx = ntuple(i ->
# BlockHaloArrays.get_local_idx(global_idx,
# block_idx,
# A.nhalo,
# A._cummulative_blocksize_per_dim,
# i,
# A.halodims),
# length(A.globaldims))
# @test block_idx == (2, 1)
# @test local_idx == (1, 3, 28)
# end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 244 | using .Threads
using BlockHaloArrays
using EllipsisNotation
using BlockHaloArrays: @tspawnat
using Test
# using JET
# using TestItems, TestItemRunner
function init(A, thread_id)
dom = domainview(A, thread_id)
fill!(dom, thread_id)
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 2118 |
@testitem "Copy Constructor" begin
dims = (50, 50)
nhalo = 2
nblocks = 6
B = rand(dims...)
A = BlockHaloArray(B, nhalo, nblocks)
end
@testitem "Check tile dims" begin
dims = (60, 10)
nhalo = 2
nblocks = 6
tiledims = (3,3) # mismatched partitioning
@test_throws ErrorException("Invalid tile_dims; the number of blocks is not consistent") BlockHaloArray(dims, nhalo, nblocks; tile_dims = tiledims)
end
@testitem "Provide tile dims" begin
dims = (60, 10)
nhalo = 2
nblocks = 6
tiledims = (6,1)
A = BlockHaloArray(dims, nhalo, nblocks; tile_dims = tiledims)
@test A.block_layout == tiledims
@test A.global_blockranges[1] == (1:10, 1:10)
@test A.global_blockranges[2] == (11:20, 1:10)
@test A.global_blockranges[3] == (21:30, 1:10)
@test A.global_blockranges[4] == (31:40, 1:10)
@test A.global_blockranges[5] == (41:50, 1:10)
@test A.global_blockranges[6] == (51:60, 1:10)
for block in eachindex(A.blocks)
@test size(A[block]) == (14, 14) # 10 + 2nhalo
end
end
@testitem "2D Halo, 2D Array, Different Types" begin
include("common.jl")
dims = (50, 50)
nhalo = 2
nblocks = 6
for T in [
Int16, Int32, Int64, Int128,
Float16, Float32, Float64,
ComplexF64
]
A = BlockHaloArray(dims, nhalo, nblocks; T=T)
@test eltype(A) == T
end
end
@testitem "2D Array, 1D halo dims" begin
dims = (10, 20)
halodims = (2,)
nhalo = 2
nblocks = 4
A = BlockHaloArray(dims, nhalo, nblocks)
end
@testitem "2D Array, 2D halo dims" begin
dims = (10, 20)
nhalo = 2
nblocks = 4
A = BlockHaloArray(dims, nhalo, nblocks)
@show A.global_blockranges
@show A.block_layout
@show typeof(A)
end
@testitem "3D Array, 1D halo dims" begin
dims = (10, 20, 30)
halodims = (2,)
nhalo = 2
nblocks = 4
A = BlockHaloArray(dims, nhalo, nblocks)
end
@testitem "3D Array, 2D halo dims" begin
dims = (10, 20, 30)
halodims = (2, 3)
nhalo = 2
nblocks = 4
A = BlockHaloArray(dims, nhalo, nblocks)
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 10484 | @testitem "2D Halo, 2D Array" begin
include("common.jl")
dims = (50, 50)
nhalo = 2
n_blocks = 6
A = BlockHaloArray(dims, nhalo, n_blocks; T=Int64)
@test length(A.blocks) == n_blocks
@test A.block_layout == (3, 2)
# for a (3,2) block layout, here are the block id's
#
# *---* *---* *---*
# | 4 | | 5 | | 6 |
# j *---* *---* *---*
# *---* *---* *---*
# | 1 | | 2 | | 3 |
# *---* *---* *---*
# i
# negative IDs mean it crosses over the domain boundaries, e.g. periodic
blk_neighbor = [
Dict(:ilo => -3, :ihi => 2, :jlo => -4, :jhi => 4, :ilojhi => -6, :ihijhi => 5, :ilojlo => -6, :ihijlo => -5), # 1
Dict(:ilo => 1, :ihi => 3, :jlo => -5, :jhi => 5, :ilojhi => 4, :ihijhi => 6, :ilojlo => -4, :ihijlo => -6), # 2
Dict(:ilo => 2, :ihi => -1, :jlo => -6, :jhi => 6, :ilojhi => 5, :ihijhi => -4, :ilojlo => -5, :ihijlo => -4), # 3
Dict(:ilo => -6, :ihi => 5, :jlo => 1, :jhi => -1, :ilojhi => -3, :ihijhi => -2, :ilojlo => -3, :ihijlo => 2), # 4
Dict(:ilo => 4, :ihi => 6, :jlo => 2, :jhi => -2, :ilojhi => -1, :ihijhi => -3, :ilojlo => 1, :ihijlo => 3), # 5
Dict(:ilo => 5, :ihi => -4, :jlo => 3, :jhi => -3, :ilojhi => -2, :ihijhi => -1, :ilojlo => 2, :ihijlo => -1), # 6
]
for blockid in 1:n_blocks
for key in keys(first(blk_neighbor))
@test A.neighbor_blocks[blockid][key] == blk_neighbor[blockid][key]
end
end
@sync for tid in 1:n_blocks
@tspawnat tid init(A, tid)
end
include_periodic_bc = true
updatehalo!(A, include_periodic_bc)
@show @allocated updatehalo!(A, include_periodic_bc)
@show @allocated updatehalo!(A, true)
@show @allocated updatehalo!(A, false)
@show @allocated updatehalo!(A)
@show @allocated updateblockhalo!(A, 1, true)
@show @allocated updateblockhalo!(A, 1, false)
for blockid in 1:n_blocks
dv = domainview(A, blockid)
@test all(dv .== blockid)
end
for blockid in 1:n_blocks
hi_domn_start, hi_domn_end, hi_halo_start, hi_halo_end = BlockHaloArrays.hi_indices(A.blocks[blockid], A.nhalo)
lo_halo_start, lo_halo_end, lo_domn_start, lo_domn_end = BlockHaloArrays.lo_indices(A.blocks[blockid], A.nhalo)
ihi_domn_start, jhi_domn_start = hi_domn_start
ihi_domn_end, jhi_domn_end = hi_domn_end
ihi_halo_start, jhi_halo_start = hi_halo_start
ihi_halo_end, jhi_halo_end = hi_halo_end
ilo_halo_start, jlo_halo_start = lo_halo_start
ilo_halo_end, jlo_halo_end = lo_halo_end
ilo_domn_start, jlo_domn_start = lo_domn_start
ilo_domn_end, jlo_domn_end = lo_domn_end
current_block = A.blocks[blockid]
ilo = A.neighbor_blocks[blockid][:ilo] |> Float64 |> abs
ihi = A.neighbor_blocks[blockid][:ihi] |> Float64 |> abs
jlo = A.neighbor_blocks[blockid][:jlo] |> Float64 |> abs
jhi = A.neighbor_blocks[blockid][:jhi] |> Float64 |> abs
@test all(current_block[ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end] .== ilo)
@test all(current_block[ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end] .== ihi)
@test all(current_block[ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end] .== jlo)
@test all(current_block[ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end] .== jhi)
end
end
@testitem "2D Halo, 3D Array" begin
include("common.jl")
dims = (4, 30, 20)
halodims = (2, 3)
nhalo = 2
n_blocks = 6
A = BlockHaloArray(dims, halodims, nhalo, n_blocks; T=Int64)
@test length(A.blocks) == n_blocks
@test A.block_layout == (3, 2)
# for a (3,2) block layout, here are the block id's
#
# *---* *---* *---*
# | 4 | | 5 | | 6 |
# j *---* *---* *---*
# *---* *---* *---*
# | 1 | | 2 | | 3 |
# *---* *---* *---*
# i
# negative IDs mean it crosses over the domain boundaries, e.g. periodic
blk_neighbor = [
Dict(:ilo => -3, :ihi => 2, :jlo => -4, :jhi => 4, :ilojhi => -6, :ihijhi => 5, :ilojlo => -6, :ihijlo => -5), # 1
Dict(:ilo => 1, :ihi => 3, :jlo => -5, :jhi => 5, :ilojhi => 4, :ihijhi => 6, :ilojlo => -4, :ihijlo => -6), # 2
Dict(:ilo => 2, :ihi => -1, :jlo => -6, :jhi => 6, :ilojhi => 5, :ihijhi => -4, :ilojlo => -5, :ihijlo => -4), # 3
Dict(:ilo => -6, :ihi => 5, :jlo => 1, :jhi => -1, :ilojhi => -3, :ihijhi => -2, :ilojlo => -3, :ihijlo => 2), # 4
Dict(:ilo => 4, :ihi => 6, :jlo => 2, :jhi => -2, :ilojhi => -1, :ihijhi => -3, :ilojlo => 1, :ihijlo => 3), # 5
Dict(:ilo => 5, :ihi => -4, :jlo => 3, :jhi => -3, :ilojhi => -2, :ihijhi => -1, :ilojlo => 2, :ihijlo => -1), # 6
]
for blockid in 1:n_blocks
for key in keys(first(blk_neighbor))
@test A.neighbor_blocks[blockid][key] == blk_neighbor[blockid][key]
end
end
@sync for tid in 1:n_blocks
@tspawnat tid init(A, tid)
end
for blockid in 1:n_blocks
dv = domainview(A, blockid)
@test all(dv .== blockid)
end
include_periodic_bc = true
updatehalo!(A, include_periodic_bc)
for blockid in 1:n_blocks
hi_domn_start, hi_domn_end, hi_halo_start, hi_halo_end = BlockHaloArrays.hi_indices(A.blocks[blockid], A.nhalo, A.halodims)
lo_halo_start, lo_halo_end, lo_domn_start, lo_domn_end = BlockHaloArrays.lo_indices(A.blocks[blockid], A.nhalo, A.halodims)
_, ihi_domn_start, jhi_domn_start = hi_domn_start
_, ihi_domn_end, jhi_domn_end = hi_domn_end
_, ihi_halo_start, jhi_halo_start = hi_halo_start
_, ihi_halo_end, jhi_halo_end = hi_halo_end
_, ilo_halo_start, jlo_halo_start = lo_halo_start
_, ilo_halo_end, jlo_halo_end = lo_halo_end
_, ilo_domn_start, jlo_domn_start = lo_domn_start
_, ilo_domn_end, jlo_domn_end = lo_domn_end
current_block = A.blocks[blockid]
ilo = A.neighbor_blocks[blockid][:ilo] |> Float64 |> abs
ihi = A.neighbor_blocks[blockid][:ihi] |> Float64 |> abs
jlo = A.neighbor_blocks[blockid][:jlo] |> Float64 |> abs
jhi = A.neighbor_blocks[blockid][:jhi] |> Float64 |> abs
@test all(current_block[:, ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end] .== ilo)
@test all(current_block[:, ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end] .== ihi)
@test all(current_block[:, ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end] .== jlo)
@test all(current_block[:, ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end] .== jhi)
end
end
@testitem "1D Array, 1D halo dims" begin
include("common.jl")
dims = (20,)
nhalo = 2
n_blocks = 4
A = BlockHaloArray(dims, nhalo, n_blocks; T=Int32)
@test A.neighbor_blocks[1][:ilo] == -4
@test A.neighbor_blocks[1][:ihi] == 2
@test A.neighbor_blocks[2][:ilo] == 1
@test A.neighbor_blocks[2][:ihi] == 3
@test A.neighbor_blocks[3][:ilo] == 2
@test A.neighbor_blocks[3][:ihi] == 4
@test A.neighbor_blocks[4][:ilo] == 3
@test A.neighbor_blocks[4][:ihi] == -1
@sync for tid in 1:n_blocks
@tspawnat tid init(A, tid)
end
include_periodic_bc = true
updatehalo!(A, include_periodic_bc)
for blockid in 1:n_blocks
hi_domn_start, hi_domn_end, hi_halo_start, hi_halo_end = BlockHaloArrays.hi_indices(A.blocks[blockid], A.nhalo)
lo_halo_start, lo_halo_end, lo_domn_start, lo_domn_end = BlockHaloArrays.lo_indices(A.blocks[blockid], A.nhalo)
ihi_halo_start = first(hi_halo_start)
ihi_halo_end = first(hi_halo_end)
ilo_halo_start = first(lo_halo_start)
ilo_halo_end = first(lo_halo_end)
current_block = A.blocks[blockid]
ilo = A.neighbor_blocks[blockid][:ilo] |> Float64 |> abs
ihi = A.neighbor_blocks[blockid][:ihi] |> Float64 |> abs
@test all(current_block[ilo_halo_start:ilo_halo_end] .== ilo)
@test all(current_block[ihi_halo_start:ihi_halo_end] .== ihi)
end
end
@testitem "3D Array, 3D halo dims" begin
include("common.jl")
dims = (10, 20, 30)
nhalo = 2
n_blocks = 6
A = BlockHaloArray(dims, nhalo, n_blocks; T=Float64)
@sync for tid in 1:n_blocks
@tspawnat tid init(A, tid)
end
include_periodic_bc = true
updatehalo!(A, include_periodic_bc)
for blockid in 1:n_blocks
hi_domn_start, hi_domn_end, hi_halo_start, hi_halo_end = BlockHaloArrays.hi_indices(A.blocks[blockid], A.nhalo)
lo_halo_start, lo_halo_end, lo_domn_start, lo_domn_end = BlockHaloArrays.lo_indices(A.blocks[blockid], A.nhalo)
ihi_domn_start, jhi_domn_start, khi_domn_start = hi_domn_start
ihi_domn_end, jhi_domn_end, khi_domn_end = hi_domn_end
ihi_halo_start, jhi_halo_start, khi_halo_start = hi_halo_start
ihi_halo_end, jhi_halo_end, khi_halo_end = hi_halo_end
ilo_halo_start, jlo_halo_start, klo_halo_start = lo_halo_start
ilo_halo_end, jlo_halo_end, klo_halo_end = lo_halo_end
ilo_domn_start, jlo_domn_start, klo_domn_start = lo_domn_start
ilo_domn_end, jlo_domn_end, klo_domn_end = lo_domn_end
current_block = A.blocks[blockid]
ilo = A.neighbor_blocks[blockid][:ilo] |> Float64 |> abs
ihi = A.neighbor_blocks[blockid][:ihi] |> Float64 |> abs
jlo = A.neighbor_blocks[blockid][:jlo] |> Float64 |> abs
jhi = A.neighbor_blocks[blockid][:jhi] |> Float64 |> abs
klo = A.neighbor_blocks[blockid][:klo] |> Float64 |> abs
khi = A.neighbor_blocks[blockid][:khi] |> Float64 |> abs
@test all(current_block[ilo_halo_start:ilo_halo_end, jlo_domn_start:jhi_domn_end, klo_domn_start:khi_domn_end] .== ilo)
@test all(current_block[ihi_halo_start:ihi_halo_end, jlo_domn_start:jhi_domn_end, klo_domn_start:khi_domn_end] .== ihi)
@test all(current_block[ilo_domn_start:ihi_domn_end, jlo_halo_start:jlo_halo_end, klo_domn_start:khi_domn_end] .== jlo)
@test all(current_block[ilo_domn_start:ihi_domn_end, jhi_halo_start:jhi_halo_end, klo_domn_start:khi_domn_end] .== jhi)
@test all(current_block[ilo_domn_start:ihi_domn_end, jlo_domn_start:jhi_domn_end, klo_halo_start:klo_halo_end] .== klo)
@test all(current_block[ilo_domn_start:ihi_domn_end, jlo_domn_start:jhi_domn_end, khi_halo_start:khi_halo_end] .== khi)
end
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | code | 4188 | @testitem "halo/donorview" begin
include("common.jl")
dims = (50, 50)
nhalo = 2
n_blocks = 4
A = BlockHaloArray(dims, nhalo, n_blocks)
@test size(donorview(A, 1, :ilo)) == (2, 25)
@test size(haloview(A, 1, :ilo)) == (2, 25)
@test size(donorview(A, 1, :jhi)) == (25, 2)
@test size(haloview(A, 1, :jhi)) == (25, 2)
end
@testitem "domainview" begin
include("common.jl")
nhalo = 3
n_blocks = 4
dims = (40,40)
A = BlockHaloArray(dims, nhalo, n_blocks)
blockid = 1
@test size(domainview(A, blockid)) == (20, 20)
@test size(domainview(A, blockid, 1)) == (22, 22)
@test size(domainview(A, blockid, 2)) == (24, 24)
@test size(domainview(A, blockid, 3)) == (26, 26)
@test_throws ErrorException domainview(A, blockid, 4)
@test_throws ErrorException domainview(A, blockid, -1)
end
@testitem "nblocks" begin
include("common.jl")
A = BlockHaloArray((50,50), 2, 4)
@test nblocks(A) == 4
end
@testitem "eltype" begin
include("common.jl")
A = BlockHaloArray((50,50), 2, 4, T=Int32)
@test eltype(A) == Int32
end
@testitem "size" begin
include("common.jl")
A = BlockHaloArray((50,50), 2, 4, T=Int32)
@test size(A) == (50, 50)
end
@testitem "onboundary" begin
include("common.jl")
dims = (50, 50)
nhalo = 2
n_blocks = 6
A = BlockHaloArray(dims, nhalo, n_blocks; T=Int64)
# for a (3,2) block layout, here are the block id's
#
# *---* *---* *---*
# | 4 | | 5 | | 6 |
# j *---* *---* *---*
# *---* *---* *---*
# | 1 | | 2 | | 3 |
# *---* *---* *---*
# i
@test onboundary(A, 1, :ilo) == true
@test onboundary(A, 1, :ihi) == false
@test onboundary(A, 1, :jlo) == true
@test onboundary(A, 1, :jhi) == false
@test onboundary(A, 2, :ilo) == false
@test onboundary(A, 2, :ihi) == false
@test onboundary(A, 2, :jlo) == true
@test onboundary(A, 2, :jhi) == false
@test onboundary(A, 3, :ilo) == false
@test onboundary(A, 3, :ihi) == true
@test onboundary(A, 3, :jlo) == true
@test onboundary(A, 3, :jhi) == false
@test onboundary(A, 4, :ilo) == true
@test onboundary(A, 4, :ihi) == false
@test onboundary(A, 4, :jlo) == false
@test onboundary(A, 4, :jhi) == true
@test onboundary(A, 5, :ilo) == false
@test onboundary(A, 5, :ihi) == false
@test onboundary(A, 5, :jlo) == false
@test onboundary(A, 5, :jhi) == true
@test onboundary(A, 6, :ilo) == false
@test onboundary(A, 6, :ihi) == true
@test onboundary(A, 6, :jlo) == false
@test onboundary(A, 6, :jhi) == true
end
@testitem "1D Indexing" begin
include("common.jl")
x = rand(50)
nhalo = 2
n_blocks = 4
A = BlockHaloArray(x, nhalo, n_blocks)
@test all(A[1] .== A.blocks[1])
@test_nowarn A[4] .= 2.5
end
@testitem "n-D Indexing" begin
include("common.jl")
x = rand(40, 40)
y = rand(4, 40, 40)
nhalo = 2
n_blocks = 4
A = BlockHaloArray(x, nhalo, n_blocks)
halodims = (2, 3)
B = BlockHaloArray(y, halodims, nhalo, n_blocks)
@test A[1] == A.blocks[1]
@test size(A[1]) == (24, 24)
@test A[1][3,3] == x[1,1]
@test_nowarn A[1][3,3] = 1.2
@test B[1][1,3,3] == y[1,1,1]
@test B[1][:,3,3] == y[:,1,1]
@test_nowarn B[1][1,3,3] =6.7
end
@testitem "globalindices" begin
x = rand(40, 40)
nhalo = 2
n_blocks = 4
A = BlockHaloArray(x, nhalo, n_blocks)
@test globalindices(A, 1, (3, 3)) == (1, 1)
@test globalindices(A, 4, (3, 3)) == (21, 21)
# @show globalindices(A, 4, (22, 22))
end
@testitem "copy!" begin
include("common.jl")
dims = (10, 10)
nhalo = 2
n_blocks = 2
AA = rand(dims...)
AA2 = zeros(dims...)
AA_mismatch = rand(12,10)
BHA = BlockHaloArray(dims, nhalo, n_blocks)
@test_throws ErrorException copy!(AA_mismatch, BHA)
@test_throws ErrorException copy!(BHA, AA_mismatch)
copy!(BHA, AA) # copy from the abstract array to the block halo array
@test AA == flatten(BHA)
copy!(AA2, BHA) # copy from the abstract array to the block halo array
@test AA2 == flatten(BHA)
end
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | docs | 5545 | # BlockHaloArrays
The `BlockHaloArray` type is an array-like type (does not extend `AbstractArray`) that is designed for shared-memory multi-threaded workloads. Typical shared-memory parallelization is done via multi-threaded loops (with `@threads`, `@tturbo`, etc.), i.e.:
```julia
Threads.@threads for j in jlo:jhi
for i in ilo:ihi
A[i,j] = ...
end
end
```
However, this type of parallelization tends not to scale well, especially for memory-bandwidth limited workloads. This is especially true for stencil operations, where functions access memory at addresses such as `A[i,j], A[i+1,j], A[i-1,j+1]`. The aim of the `BlockHaloArray` type do mini-domain decomposition into separate thread-specific chunks, or blocks, of memory for each thread to operate on without data race conditions or memory bandwidth contention. Because the context is shared memory however, certain operations are more efficient compared to the typical MPI domain decomposition method.Each thread will be able to operate on it's own block of memory and maintain NUMA-aware locality and communication is done via copies, rather than MPI library calls. Future releases will include an MPI-aware `BlockHaloArray` that will facilitate the MPI+Threads hybrid parallelization.
An example of a blocked-style stencil operation looks like the following. Note that it can still take advantage of the single-threaded `@turbo` macro to vectorize the nested-loop.
```julia
function stencil!(A::BlockHaloArray, blockid)
ilo, ihi, jlo, jhi = A.loop_limits[blockid]
data = @views A.blocks[blockid]
@turbo for j in jlo:jhi
for i in ilo:ihi
data[i, j] = i * j + 0.25(data[i-2, j] + data[i-1, j] + data[i+2, j] + data[i+1, j] +
data[i, j] +
data[i, j-2] + data[i, j-1] + data[i, j+2] + data[i, j+1])
end
end
end
```
Then the `stencil!()` function is split among threads via:
```julia
@sync for block_id in 1:nthreads()
@tspawnat block_id stencil!(A, block_id)
end
```
`BlockHaloArray` types should be used in a task-based parallel workload, which has better scaling than multi-threaded loops. The only synchronization required is during the exchange of halo data.
Benchmark results are coming soon...
## Exports
### Types
- `BlockHaloArray`: A blocked array-like type (does not extent `AbstractArray`) to be used in a shared-memory type system. This partitions an `Array` into N blocks that are to be operated on by threads.
#### Constructors
```julia
BlockHaloArray(dims::NTuple{N,Int}, halodims::NTuple{N2,Int}, nhalo::Integer, nblocks=nthreads(); T=Float64, use_numa=true)
BlockHaloArray(dims::NTuple{N,Int}, nhalo::Integer, nblocks=nthreads(); T=Float64, use_numa=true)
BlockHaloArray(A::AbstractArray{T,N}, nhalo::Integer, nblocks=nthreads())
BlockHaloArray(A::AbstractArray{T,N}, halodims::NTuple{N2,Integer}, nhalo::Integer, nblocks=nthreads())
```
#### Example
```julia
using .Threads
using ThreadPools
using BlockHaloArrays
dims = (30, 20) # a 30 x 20 matrix
nhalo = 2 # number of halo entries in each dimension
nblocks = nthreads() # nblocks must be ≤ nthreads() or a warning will be issued
A = BlockHaloArray(dims, nhalo, nblocks; T=Float64) # create with empty data
B = BlockHaloArray(rand(dims...), nhalo, nblocks) # create from an existing array
# Create a 3D array, but only do halo exchange on the 2nd and 3rd dimensions
newdims = (4, 100, 200)
haloax = (2, 3) # these must be monotonically increasing and the outer-most dims, i.e. can't be (1, 2), or (1, 3)
C = BlockHaloArray(newdims, haloax, nhalo, nblocks; T=Float64)
# Fill each block with it's corresponding threadid value
function init(A)
dom = domainview(A, threadid())
fill!(dom, threadid())
end
# Let each thread initialize it's own block
@sync for tid in 1:nblocks(A)
@tspawnat tid init(A1)
end
# Let each block sync its halo region with its neighbors
updatehalo!(A)
Anew = flatten(A) # Anew is a 2D Array -- no longer a BlockHaloArray
```
- `MPIBlockHaloArray`: (to be implemented) An MPI-aware version of a `BlockHaloArray`. This facilitates halo communication between nodes via MPI.
### Functions
- `flatten(A)`: Return a flattened `Array` of `A`. This is a copy.
- `repartition(A, nblocks)`: Repartition the BlockHaloArray into a different block layout
- `updatehalo!(A, include_periodic_bc=false)`: Sync all block halo regions. This uses a `@sync` loop with @tspawnat to sync each block.
- `updateblockhalo!(A, block_id, include_periodic_bc=false)`: Sync the halo regions of a single block. No `@sync` or `@spawn` calls are used.
- `domainview(A, blockid)`: Return a view of a the domain (no halo regions) of block `blockid`
- `onboundary(A, blockid)`: Is the current block `blockid` on a boundary? This is used help apply boundary conditions in a user code.
Additional overloaded methods include
```julia
eltype(A::AbstractBlockHaloArray) = eltype(first(A.blocks))
size(A::AbstractBlockHaloArray) = A.globaldims
size(A::AbstractBlockHaloArray, dim) = size.(A.blocks, dim)
axes(A::AbstractBlockHaloArray) = axes.(A.blocks)
axes(A::AbstractBlockHaloArray, dim) = axes.(A.blocks, dim)
first(A::AbstractBlockHaloArray) = first(A.blocks)
firstindex(A::AbstractBlockHaloArray) = firstindex(A.blocks)
last(A::AbstractBlockHaloArray) = last(A.blocks)
lastindex(A::AbstractBlockHaloArray) = lastindex(A.blocks)
eachindex(A::AbstractBlockHaloArray) = eachindex(A.blocks)
nblocks(A::AbstractBlockHaloArray) = length(A.blocks)
```
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | docs | 90 | # API Reference
```@autodocs
Modules = [BlockHaloArrays]
Order = [:type, :function]
``` | BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.4.10 | 64eca3565cebb67fb229f55867285e7fb6627431 | docs | 59 | # BlockHaloArrays.jl
Documentation for BlockHaloArrays.jl
| BlockHaloArrays | https://github.com/smillerc/BlockHaloArrays.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 585 | module WGPUTranspiler
using CodeTracking
using Infiltrator
include("codegen/scalar.jl")
include("codegen/abstracts.jl")
include("codegen/variable.jl")
include("codegen/scope.jl")
include("codegen/assignment.jl")
include("codegen/rangeBlock.jl")
include("codegen/conditionBlock.jl")
include("codegen/builtin.jl")
include("codegen/expr.jl")
include("codegen/funcBlock.jl")
include("codegen/computeBlock.jl")
include("codegen/infer.jl")
include("codegen/resolve.jl")
include("codegen/transpile.jl")
include("codegen/tree.jl")
include("codegen/compile.jl")
end # module WGPUTranspiler
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 175 | abstract type JLExpr end
abstract type JLVariable <: JLExpr end
abstract type JLBlock <: JLExpr end
abstract type BinaryOp <: JLExpr end
abstract type JLBuiltIn <: JLExpr end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 7470 | export Scalar, assignExpr
typeInfer(scope::Scope, var::WGPUVariable) = begin
if symbol(var) == :WgpuArray
return eval(symbol(var))
end
sym = symbol(var)
inferScope!(scope, var)
(found, location, rootScope) = findVar(scope, sym)
issamescope = rootScope.depth == scope.depth
# @assert issamescope "Not on same scope! What to do ?"
var.dataType = getDataTypeFrom(rootScope, location, sym)
return var.dataType
end
typeInfer(scope::Scope, varRef::Ref{WGPUVariable}) = typeInfer(scope, varRef[])
struct LHS
expr::Union{Ref{WGPUVariable}, JLExpr}
newVar::Bool
end
isMutable(lhs::LHS) = isMutable(lhs.expr)
setMutable!(lhs::LHS, b::Bool) = setMutable!(lhs.expr, b)
isNew(lhs::LHS) = lhs.newVar
symbol(lhs::LHS) = symbol(lhs.expr)
typeInfer(scope::Scope, lhs::LHS) = begin
typeInfer(scope, lhs.expr)
end
mutable struct RHS
expr::Union{Nothing, Ref{WGPUVariable}, Scalar, JLExpr}
end
symbol(rhs::RHS) = symbol(rhs.expr)
symbol(::Nothing) = nothing
symbol(sym::Symbol) = sym
symbol(::Scalar) = nothing
function inferScope!(scope, lhs::LHS)
sym = symbol(lhs)
(found, location, rootScope) = findVar(scope, sym)
if found == true && location != :typeScope
setMutable!(lhs.expr, true)
end
end
function inferScope!(scope, var::WGPUVariable)
(found, _) = findVar(scope, var.sym)
@assert found == true "Variable $(var.sym) is not in local, global and type scope"
end
function inferScope!(scope, var::Ref{WGPUVariable})
(found, _) = findVar(scope, (var[]).sym)
@assert found == true "Variable $(var.sym) is not in local, global and type scope"
end
typeInfer(scope::Scope, rhs::RHS) = typeInfer(scope, rhs.expr)
typeInfer(scope::Scope, s::Scalar) = eltype(s)
struct AssignmentExpr <: JLExpr
lhs::LHS
rhs::RHS
scope::Scope
end
symbol(assign::AssignmentExpr) = symbol(assign.lhs)
function assignExpr(scope, lhs::Symbol, rhs::Number)
rhsExpr = RHS(Scalar(rhs))
rhsType = typeInfer(scope, rhsExpr)
(lhsfound, lhslocation, lhsScope) = findVar(scope, lhs)
lhsExpr = Ref{LHS}()
if lhsfound && lhslocation == :localScope
lExpr = lhsScope.locals[lhs]
lhsExpr[] = LHS(lExpr, false)
rhsExpr = RHS(Scalar(rhs |> lExpr[].dataType))
setMutable!(lhsExpr[], true)
elseif lhsfound && lhslocation == :globalScope
lVar = lhsScope.globals[lhs]
lVarRef = Ref{WGPUVariable}(lVar)
lVarRef[].dataType = rhsType
lhsExprp[] = LHS(lVarRef, false)
setMutable!(lhsExpr[], true)
elseif lhsfound == false
lvar = inferExpr(scope, lhs)
scope.globals[lhs] = lvar[]
lvar[].dataType = rhsType
scope.locals[lhs] = lvar
#lvar[].undefined = true
lhsExpr[] = LHS(lvar, true)
setMutable!(lhsExpr[], false)
else
error("This should not have reached")
end
statement = AssignmentExpr(lhsExpr[], rhsExpr, scope)
return statement
end
function assignExpr(scope, lhs::Expr, rhs::Number)
lExpr = inferExpr(scope, lhs)
rhsExpr = RHS(Scalar(rhs))
rhsType = typeInfer(scope, rhsExpr)
(lhsfound, lhslocation, lhsScope) = findVar(scope, symbol(lExpr))
lhsExpr = Ref{LHS}()
if typeof(lExpr) == IndexExpr
if lhsfound && lhslocation == :localScope
lExpr = lhsScope.locals[lhs]
lhsExpr[] = LHS(lExpr, false)
rhsExpr = RHS(Scalar(rhs |> lExpr[].dataType))
setMutable!(lhsExpr[], true)
elseif lhsfound && lhslocation == :globalScope
lVar = lhsScope.globals[symbol(lExpr)]
lVarRef = Ref{WGPUVariable}(lVar)
rhsExpr = RHS(Scalar(rhs |> eltype(lVar.dataType)))
lhsExpr[] = LHS(lExpr, false)
setMutable!(lhsExpr[], true)
elseif lhsfound == false
lvar = inferExpr(scope, lhs)
scope.globals[lhs] = lvar[]
lvar[].dataType = rhsType
lhsExpr[] = LHS(lvar, true)
setMutable!(lhsExpr[], false)
else
error("This should not have reached")
end
elseif typeof(lExpr) == AccessExpr
else
error(" This expr type is not covered : $lExpr")
end
statement = AssignmentExpr(lhsExpr[], rhsExpr, scope)
return statement
end
function assignExpr(scope, lhs::Symbol, rhs::Symbol)
rhsExpr = RHS(inferExpr(scope, rhs))
rhsType = typeInfer(scope, rhsExpr)
(lhsfound, lhslocation, lhsScope) = findVar(scope, lhs)
lhsExpr = Ref{LHS}()
if lhsfound && lhslocation == :localScope
lExpr = lhsScope.locals[lhs]
lhsExpr[] = LHS(lExpr, false)
lExpr[].dataType = rhsType
setMutable!(lhsExpr[], true)
elseif lhsfound && lhslocation == :globalScope
lVar = lhsScope.globals[lhs]
lVarRef = Ref{WGPUVariable}(lVar)
#scope.locals[lhs] = lVarRef
lVarRef[].dataType = rhsType
lhsExpr[] = LHS(lVarRef, false)
setMutable!(lhsExpr[], true)
elseif found == false
# setMutable!(lhsExpr[], false)
end
statement = AssignmentExpr(lhsExpr[], rhsExpr, scope)
return statement
end
function assignExpr(scope, lhs::Symbol, rhs::Expr)
rhsExpr = RHS(inferExpr(scope, rhs))
rhsType = typeInfer(scope, rhsExpr)
(found, location, rootScope) = findVar(scope, lhs)
lhsExpr = Ref{LHS}()
if found && location == :localScope
lExpr = rootScope.locals[lhs]
lhsExpr[] = LHS(lExpr, false)
@assert lExpr[].dataType == rhsType "$(lExpr[].dataType) != $rhsType"
lExpr[].undefined = false
setMutable!(lhsExpr[], true)
elseif found && location == :globalScope
lExpr = rootScope.globals[lhs]
lExprRef = Ref{WGPUVariable}(lExpr)
rootScope.locals[lhs] = lExprRef
lhsExpr[] = LHS(lExprRef, false)
@assert lExprRef[].dataType == rhsType
lExprRef[].undefined = false
setMutable!(lhsExpr[], true)
elseif found == false && location == nothing
# new var
lvar = inferExpr(scope, lhs)
scope.globals[lhs] = lvar[]
lvar[].dataType = rhsType
lvar[].undefined = true
lhsExpr[] = LHS(lvar, true)
setMutable!(lhsExpr[], false)
else
error("Not captured this case yet!!!!")
end
statement = AssignmentExpr(lhsExpr[], rhsExpr, scope)
return statement
end
function assignExpr(scope, lhs::Expr, rhs::Union{Expr, Symbol})
lExpr = inferExpr(scope, lhs)
rhsExpr = RHS(inferExpr(scope, rhs))
inferScope!(scope, rhsExpr.expr)
rhsType = typeInfer(scope, rhsExpr)
lhsExpr = Ref{LHS}()
if typeof(lExpr) == IndexExpr
(found, location, rootScope) = findVar(scope, symbol(lExpr))
if found && location != :typeScope
lvar = location == :localScope ? rootScope.locals[symbol(lExpr)] : rootScope.globals[symbol(lExpr)]
#lvar = rootScope.locals[symbol(lExpr)]
lhsExpr[] = LHS(lExpr, false)
lhsType = typeInfer(scope, lhsExpr[])
@assert lhsType == rhsType "$lhsType != $rhsType"
#setMutable!(lhsExpr[], true)
else found == false
error("LHS var $(symbol(lhs)) had to be mutable for indexing")
end
elseif typeof(lExpr) == AccessExpr
(found, location, rootScope) = findVar(scope, symbol(lExpr))
if found && location !=:typeScope
lExpr = rootScope.locals[symbol(lExpr)]
lhsExpr[] = LHS(lExpr[], false)
setMutable!(lhsExpr[], true)
else found == false
error("LHS var $(symbol(lhs)) has to be mutable for `getproperty`")
end
elseif typeof(lExpr) == DeclExpr
(found, location, rootScope) = findVar(scope, symbol(lExpr))
if found && location ==:globalScope && location != :localScope
lhsExpr[] = LHS(lExpr, true)
scope.locals[symbol(lExpr)] = scope.globals[symbol(lExpr)]
elseif found && location ==:localScope
if rootScope.depth == scope.depth
error("Duplication definition is not allowed")
else
# set new var node
end
else found == false
error("This state shouldn't have been reached in Decl")
end
else
error("This $lhs type Expr is not captured yet")
end
statement = AssignmentExpr(lhsExpr[], rhsExpr, scope)
return statement
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 522 | @enum BuiltinType begin
vertexIndex
instanceIndex
position # might collide
frontFacing
fragDepth
localInvocationId
localInvocationIndex
globalInvocationId
workgroupId
numWorkGroups
sampleIndex
sampleMask
end
struct WorkGroupId <: JLBuiltIn
x::UInt32
y::UInt32
z::UInt32
end
struct GlobalInvocationId <: JLBuiltIn
x::UInt32
y::UInt32
z::UInt32
end
struct LocalInvocationId <: JLBuiltIn
x::UInt32
y::UInt32
z::UInt32
end
struct LocalInvocationIndex <: JLBuiltIn
x::UInt32
y::UInt32
z::UInt32
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 4275 | using MacroTools
using WGSLTypes
using WGSLTypes: wgslfunctions
struct WGPUKernelObject
func::Function
end
struct WorkGroupDims
x::UInt32
y::UInt32
z::UInt32
end
struct WArray{T, N} # TODO define these properly
end
struct WArrayDims
x::UInt32
y::UInt32
z::UInt32
end
struct ComputeBlock <: JLBlock
fname::Ref{WGPUVariable}
fargs::Vector{DeclExpr}
Targs::Vector{Ref{WGPUVariable}}
fbody::Vector{JLExpr}
scope::Union{Nothing, Scope}
wgSize::NTuple{3, UInt32}
wgCount::NTuple{3, UInt32}
builtinArgs::Array{Expr}
end
makeVarPair(p::Pair{Symbol, DataType}) = WGPUVariable(p.first, p.second, Generic, nothing, false, false)
function computeBlock(scope, islaunch, wgSize, wgCount, funcName, funcArgs, fexpr::Expr)
@capture(fexpr, function fname_(fargs__) where Targs__ fbody__ end)
workgroupSize = Base.eval(wgSize)
if workgroupSize |> length < 3
workgroupSize = (workgroupSize..., repeat([1,], inner=(3 - length(workgroupSize)))...)
end
workgroupCount = Base.eval(wgCount)
if workgroupCount |> length < 3
workgroupCount = (workgroupCount..., repeat([1,], inner=(3 - length(workgroupCount)))...)
end
push!(scope.code.args, quote
@const workgroupDims = Vec3{UInt32}($(UInt32.(workgroupSize)...))
end
)
# TODO include these only based on `symbols(funcblock)``
scope.globals[:workgroupDims] = makeVarPair(:workgroupDims => WorkGroupDims)
scope.globals[:workgroupId] = makeVarPair(:workgroupId=>WorkGroupId)
scope.globals[:localId] = makeVarPair(:localId=>LocalInvocationId)
scope.globals[:globalId] = makeVarPair(:globalId=>GlobalInvocationId)
scope.globals[:ceil] = makeVarPair(:ceil=>Function)
for wgslf in wgslfunctions
scope.globals[wgslf] = makeVarPair(wgslf=>Function)
end
builtinArgs = [
:(@builtin(global_invocation_id, globalId::Vec3{UInt32})),
:(@builtin(local_invocation_id, localId::Vec3{UInt32})),
:(@builtin(num_workgroups, numWorkgroups::Vec3{UInt32})),
:(@builtin(workgroup_id, workgroupId::Vec3{UInt32})),
]
for (inArg, symbolArg) in zip(funcArgs, fargs)
if @capture(symbolArg, iovar_::ioType_{T_, N_})
#scope.globals[T] = eltype(inArg)
#scope.globals[N] = Val{ndims(inArg)}
scope.typeVars[T] = makeVarPair(T=>eltype(inArg))
scope.typeVars[N] = makeVarPair(N=>Val{ndims(inArg)})
end
end
for (idx, (inarg, symbolarg)) in enumerate(zip(funcArgs, fargs))
if @capture(symbolarg, iovar_::ioType_{T_, N_})
# TODO instead of assert we should branch for each case of argument
if ioType == :WgpuArray
dimsVar = Symbol(iovar, :Dims)
dims = size(inarg)
if dims |> length < 3
dims = (dims..., repeat([1,], inner=(3 - length(dims)))...)
end
push!(
scope.code.args,
quote
@const $dimsVar = Vec3{UInt32}($(UInt32.(dims)...))
end
)
scope.globals[dimsVar] = makeVarPair(dimsVar=>WArrayDims)
end
elseif @capture(symbolarg, iovar_::ioType_)
if eltype(inarg) in [Float32, Int32, UInt32, Bool] # TODO we need to update this
push!(
scope.code.args,
quote
@const $iovar::$(eltype(inarg)) = $(Meta.parse((wgslType(inarg))))
end
)
scope.globals[iovar] = makeVarPair(iovar=>Base.eval(ioType))
else
scope.globals[iovar] = makeVarPair(iovar=>Val(iovar))
end
end
end
for (idx, (inarg, symbolarg)) in enumerate(zip(funcArgs, fargs))
if @capture(symbolarg, iovar_::ioType_{T_, N_})
# TODO instead of assert we should branch for each case of argument
@assert ioType == :WgpuArray #"Expecting WgpuArray Type, received $ioType instead"
arrayLen = reduce(*, size(inarg))
push!(
scope.code.args,
quote
@var StorageReadWrite 0 $(idx-1) $(iovar)::Array{$(eltype(inarg)), $(arrayLen)}
end
)
# scope.globals[iovar] = iovar
end
end
fn = inferExpr(scope, fname)
fa = map(_x -> inferExpr(scope, _x), fargs)
# make fargs to storage read write
for (i, arg) in enumerate(fa)
# (arg.sym[]).dataType = typeInfer(scope, fa)
(arg.sym[]).varType = StorageReadWrite
(arg.sym[]).varAttr = WGPUVariableAttribute(0, i)
end
fb = map(x -> inferExpr(scope, x), fbody)
ta = map(x -> inferExpr(scope, x), Targs)
return ComputeBlock(fn, fa, ta, fb, scope, workgroupSize, workgroupCount, builtinArgs)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 590 | struct Condition <: JLExpr
cond::Union{WGPUVariable, Scalar, JLExpr}
end
struct IfBlock <: JLBlock
cond::JLExpr
block::Vector{JLExpr}
scope::Union{Nothing, Scope}
end
function ifBlock(scope::Scope, cond::Expr, block::Vector{Any})
childScope = Scope(Dict(), Dict(), Dict(), scope.depth + 1, scope, :())
condExpr = inferExpr(scope, cond)
inferScope!(scope, condExpr)
exprArray = JLExpr[]
for jlexpr in block
push!(exprArray, inferExpr(childScope, jlexpr))
end
return IfBlock(condExpr, exprArray, scope)
end
symbol(iff::IfBlock) = (symbol(iff.cond), map(symbol, iff.block)...)
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 5921 | # BinaryExpressions
struct BinaryExpr <: BinaryOp
op::Union{Symbol, Function}
left::Union{Ref{WGPUVariable}, Scalar, JLExpr}
right::Union{Ref{WGPUVariable}, Scalar, JLExpr}
end
function binaryOp(
scope::Scope,
op::Union{Symbol, Function},
a::Union{Symbol, Number, Expr},
b::Union{Number, Symbol, Expr};
)
lOperand = inferExpr(scope, a)
inferScope!(scope, lOperand)
rOperand = inferExpr(scope, b)
inferScope!(scope, rOperand)
return BinaryExpr(op, lOperand, rOperand)
end
typeInfer(scope::Scope, binOp::BinaryExpr) = typeintersect(typeInfer(scope, binOp.left), typeInfer(scope, binOp.right))
function symbol(binOp::BinaryExpr)
syms = map(symbol, (binOp.left[], binOp.right[]))
return syms
end
# Common inferScope! for all binary operations
function inferScope!(scope::Scope, jlexpr::BinaryOp)
inferScope!(scope, jlexpr.left)
inferScope!(scope, jlexpr.right)
end
# CallExpression
struct CallExpr <: JLExpr
func::Union{Ref{WGPUVariable}, JLExpr}
args::Vector{Union{Ref{WGPUVariable}, Scalar, JLExpr}}
end
function callExpr(scope::Scope, f::Union{Symbol, Expr}, args::Vector{Any})
func = inferExpr(scope, f)
inferScope!(scope, func)
arguments = []
for arg in args
argument = inferExpr(scope, arg)
inferScope!(scope, argument)
push!(arguments, argument)
end
return CallExpr(func, arguments)
end
symbol(a::Vector{T}) where T <: Union{WGPUVariable, Scalar, JLExpr} = (map(symbol, a))
symbol(callexpr::CallExpr) = (symbol(callexpr.func), symbol(callexpr.args))
function inferScope!(scope::Scope, jlexpr::CallExpr)
# We don't have to do anything for now
end
typeInfer(scope::Scope, cExpr::CallExpr) = begin
# @assert allequal(cExpr.args) "All aguments are expected to be same"
(found, location, rootScope) = findVar(scope, symbol(cExpr.func))
if found && location == :typeScope
tVar = rootScope.typeVars[cExpr.func |> symbol]
if tVar.dataType <: Number
return tVar.dataType
end
end
typejoin(map(x -> typeInfer(scope, x), cExpr.args)...)
end
# IndexExpressions
struct IndexExpr <: JLExpr
sym::Union{Ref{WGPUVariable}, JLExpr}
idx::Union{Ref{WGPUVariable}, Scalar, JLExpr}
end
symbol(idxExpr::IndexExpr) = symbol(idxExpr.sym)
function indexExpr(scope::Scope, sym::Union{Symbol, Expr}, idx::Union{Symbol, Number, Expr})
symExpr = inferExpr(scope, sym)
inferScope!(scope, symExpr)
idxExpr = inferExpr(scope, idx)
inferScope!(scope, idxExpr)
return IndexExpr(symExpr, idxExpr)
end
isMutable(idxExpr::IndexExpr) = isMutable(idxExpr.sym)
setMutable!(idxExpr::IndexExpr, b::Bool) = setMutable!(idxExpr.sym, b)
function inferScope!(scope::Scope, jlexpr::IndexExpr)
end
typeInfer(scope::Scope, idxExpr::IndexExpr) = begin
idx = idxExpr.idx
# TODO handle scalar cases for indexing ...
if typeof(idx) == Scalar
idx = Scalar(idx.element |> UInt32)
end
ty = typeInfer(scope, idx)
@assert ty == UInt32 "types do not match $(symbol(idx))::$ty vs UInt32"
# TODO we might have to deal with multi-indexing
return eltype(typeInfer(scope, idxExpr.sym))
end
# AccessorExpression
struct AccessExpr<: JLExpr
sym::Union{Ref{WGPUVariable}, JLExpr}
field::Union{Ref{WGPUVariable}, JLExpr}
end
isMutable(axsExpr::AccessExpr) = isMutable(axsExpr.sym)
setMutable!(axsExpr::AccessExpr, b::Bool) = setMutable!(axsExpr.sym, b)
function accessExpr(scope::Scope, sym::Symbol, field::Symbol)
symExpr = inferExpr(scope, sym)
fieldExpr = inferExpr(scope, field)
aExpr = AccessExpr(symExpr, fieldExpr)
inferScope!(scope, aExpr)
return aExpr
end
function accessExpr(scope::Scope, parent::Expr, field::Symbol)
parentExpr = inferExpr(scope, parent)
childExpr = inferExpr(scope, field)
aExpr = AccessExpr(symExpr, fieldExpr)
inferScope!(scope, aExpr)
return aExpr
end
symbol(access::AccessExpr) = symbol(access.sym)
function inferScope!(scope::Scope, jlexpr::AccessExpr)
#inferScope!(scope, jlexpr.sym)
#inferScope!(scope, jlexpr.field)
end
typeInfer(scope::Scope, axsExpr::AccessExpr) = fieldtype(typeInfer(scope, axsExpr.sym), symbol(axsExpr.field))
struct TypeExpr <: JLExpr
sym::Ref{WGPUVariable}
types::Vector{Ref{WGPUVariable}}
end
function typeExpr(scope, a::Symbol, b::Vector{Any})
aExpr = inferExpr(scope, a)
bExpr = map(x -> inferExpr(scope, x), b)
return TypeExpr(aExpr, bExpr)
end
symbol(tExpr::TypeExpr) = (symbol(tExpr.sym), map(x -> symbol(x), tExpr.types)...)
typeInfer(scope::Scope, tExpr::TypeExpr) = begin
if symbol(tExpr)[1] == :WgpuArray # Hardcoded
return typeInfer(scope, tExpr, Val(symbol(tExpr)[1]))
else
return typeInfer(scope, tExpr.sym)
end
end
struct DeclExpr <: JLExpr
sym::Ref{WGPUVariable}
dataType::Union{DataType, TypeExpr}
end
function declExpr(scope, a::Symbol, b::Symbol)
(found, location, rootScope) = findVar(scope, a)
if found && location == :globalScope
error("Duplication declaration of variable $a")
end
aExpr = inferExpr(scope, a)
bExpr = Base.eval(b)
aExpr[].dataType = bExpr
return DeclExpr(aExpr, bExpr)
end
function declExpr(scope, a::Symbol, b::Expr)
(found, location, rootScope) = findVar(scope, a)
if found && location == :localScope
error("Duplicate declaration of variable $a")
end
bExpr = inferExpr(scope, b)
bType = typeInfer(scope, bExpr)
aExpr = inferExpr(scope, a)
aExpr[].dataType = bType
return DeclExpr(aExpr, bExpr)
end
isMutable(decl::DeclExpr) = isMutable(decl.sym[])
setMutable!(decl::DeclExpr, b::Bool) = setMutable!(decl.sym[], b)
symbol(decl::DeclExpr) = symbol(decl.sym[])
typeInfer(scope::Scope, declexpr::DeclExpr) = begin
sym = symbol(declexpr)
(found, location, rootScope) = findVar(scope, sym)
if found == false && location != :typeScope
scope.locals[sym] = declexpr.sym
var = scope.locals[sym]
setproperty!(var[], :dataType, declexpr.dataType)
else found == true && scope.depth == rootScope.depth
error("duplicate declaration of a variable $sym is not allowed in wgsl though julia allows it")
end
typeInfer(scope, declexpr.sym)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 514 | struct FuncBlock <: JLBlock
fname::Ref{WGPUVariable}
fargs::Vector{DeclExpr}
Targs::Vector{Ref{WGPUVariable}}
fbody::Vector{JLExpr}
scope::Union{Nothing, Scope}
end
function funcBlock(scope::Scope, fname::Symbol, fargs::Vector{Any}, fbody::Vector{Any})
childScope = Scope(Dict(), Dict(), Dict(), scope.depth+1, scope, quote end)
fn = inferExpr(scope, fname)
fa = map(x -> inferExpr(scope, x), fargs)
fb = map(x -> inferExpr(scope, x), fbody)
return FuncBlock(fn, fa, WGPUVariable[], fb, childScope)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 3620 | using MacroTools
export inferExpr, @infer
function inferExpr(scope::Scope, expr::Expr)
if @capture(expr, lhs_ = rhs_)
return assignExpr(scope, lhs, rhs)
elseif @capture(expr, a_ + b_)
return binaryOp(scope, :+, a, b)
elseif @capture(expr, a_ - b_)
return binaryOp(scope, :-, a, b)
elseif @capture(expr, a_ * b_)
return binaryOp(scope, :*, a, b)
elseif @capture(expr, a_ / b_)
return binaryOp(scope, :/, a, b)
elseif @capture(expr, a_ < b_)
return binaryOp(scope, :<, a, b)
elseif @capture(expr, a_ > b_)
return binaryOp(scope, :>, a, b)
elseif @capture(expr, a_ <= b_)
return binaryOp(scope, :<=, a, b)
elseif @capture(expr, a_ >= b_)
return binaryOp(scope, :>=, a, b)
elseif @capture(expr, a_ == b_)
return binaryOp(scope, :>=, a, b)
elseif @capture(expr, a_ += b_)
return binaryOp(scope, :+=, a, b) # TODO this should be assignment expr
elseif @capture(expr, a_ -= b_)
return binaryOp(scope, :-=, a, b) # TODO this should be assignment expr
elseif @capture(expr, f_(args__))
return callExpr(scope, f, args)
elseif @capture(expr, a_::b_)
return declExpr(scope, a, b)
elseif @capture(expr, a_[b_])
return indexExpr(scope, a, b)
elseif @capture(expr, a_.b_)
return accessExpr(scope, a, b)
elseif @capture(expr, a_{b__})
return typeExpr(scope, a, b)
elseif @capture(expr, for idx_ in range_ block__ end)
return rangeBlock(scope, idx, range, block)
elseif @capture(expr, if cond_ block__ end)
return ifBlock(scope, cond, block)
elseif @capture(expr, if cond_ ifblock__ else elseblock__ end)
return ifelseBlock(scope, cond, ifblock, elseblock)
elseif @capture(expr, function fname_(fargs__) fbody__ end)
return funcBlock(scope, fname, fargs, fbody)
elseif @capture(expr, function fname_(fargs__) where Targs__ fbody__ end)
return funcBlock(scope, fname, fargs, Targs, fbody)
elseif @capture(expr, @wgpukernel islaunch_ workgroupSize_ workgroupCount_ function fname_(fargs__) where Targs__ fbody__ end)
return computeBlock(scope, islaunch, workgroupSize, workgroupCount, fname, fargs, Targs, fbody)
elseif @capture(expr, @wgpukernel islaunch_ workgroupSize_ workgroupCount_ fname_(fargs__))
return computeBlock(scope, islaunch, workgroupSize, workgroupCount, fname, fargs)
else
error("Couldn't capture $expr")
end
end
function inferExpr(scope::Scope, a::Symbol)
(found, location, rootScope) = findVar(scope, a)
var = Ref{WGPUVariable}()
if found == false
var[] = WGPUVariable(a, Any, Generic, nothing, false, true)
scope.globals[a] = var[]
elseif found == true && location == :globalScope
var[] = rootScope.globals[a]
var[].undefined = true
elseif found == true && location == :typeScope
var[] = rootScope.typeVars[a]
var[].undefined = false
else found == true && location == :localScope
var = rootScope.locals[a]
var[].undefined = false
end
return var
end
function inferRange(scope, expr::Expr)
if @capture(expr, a_:b_)
start = inferExpr(scope, a)
inferScope!(scope, start)
stop = inferExpr(scope, b)
inferScope!(scope, stop)
step = inferExpr(scope, 1)
inferScope!(scope, step)
return RangeExpr(start, step, stop)
elseif @capture(expr, a_:b_:c_)
start = inferExpr(scope, a)
inferScope!(scope, start)
step = inferExpr(scope, b)
inferScope!(scope, step)
stop = inferExpr(scope, c)
inferScope!(scope, stop)
return RangeExpr(start, step, stop)
end
end
function inferExpr(scope::Scope, a::Number)
return Scalar(a)
end
function inferExpr(scope::Scope, a::WGPUScalarType)
return Scalar(a)
end
inferExpr(scope::Scope, a::Scalar) = a
macro infer(cntxt, expr)
inferExpr(cntxt, expr)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 1405 | function kernelFunc(funcExpr)
if @capture(funcExpr, function fname_(fargs__) where Targs__ fbody__ end)
kernelfunc = quote
function $fname(args::Tuple{WgpuArray}, workgroupSizes, workgroupCount)
$preparePipeline($(funcExpr), args...)
$compute($(funcExpr), args...; workgroupSizes=workgroupSizes, workgroupCount=workgroupCount)
return nothing
end
end |> unblock
return esc(quote $kernelfunc end)
else
error("Couldnt capture function")
end
end
function getFunctionBlock(func, args)
fString = CodeTracking.definition(String, which(func, args))
return Meta.parse(fString |> first)
end
function wgpuCall(kernelObj::WGPUKernelObject, args...)
kernelObj.kernelFunc(args...)
end
macro wgpukernel(launch, wgSize, wgCount, ex)
code = quote end
@gensym f_var kernel_f kernel_args kernel_tt kernel
if @capture(ex, fname_(fargs__))
(vars, var_exprs) = assign_args!(code, fargs)
push!(code.args, quote
$kernel_args = ($(var_exprs...),)
$kernel_tt = Tuple{map(Core.Typeof, $kernel_args)...}
kernel = function wgpuKernel(args...)
$preparePipeline($fname, args...; workgroupSizes=$wgSize, workgroupCount=$wgCount)
$compute($fname, args...; workgroupSizes=$wgSize, workgroupCount=$wgCount)
end
if $launch == true
wgpuCall(WGPUKernelObject(kernel), $(kernel_args)...)
else
WGPUKernelObject(kernel)
end
end
)
end
esc(code)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 1491 | struct RangeBlock <: JLBlock
start::Union{Ref{WGPUVariable}, JLExpr, Scalar}
step::Union{Ref{WGPUVariable}, JLExpr, Scalar}
stop::Union{Ref{WGPUVariable}, JLExpr, Scalar}
idx::Union{JLExpr}
block::Vector{JLExpr}
scope::Union{Nothing, Scope}
end
struct RangeExpr <: JLExpr
start::Union{Ref{WGPUVariable}, JLExpr, Scalar}
step::Union{Ref{WGPUVariable}, JLExpr, Scalar}
stop::Union{Ref{WGPUVariable}, JLExpr, Scalar}
end
function inferExpr(scope::Scope, range::StepRangeLen)
@error "Not implemented yet"
end
function rangeBlock(scope::Scope, idx::Symbol, range::Expr, block::Vector{Any})
# TODO deal with StepRangeLen also may be ? I don't see its use though.
childScope = Scope(Dict(), Dict(), Dict(), scope.depth + 1, scope, :())
rangeExpr = inferRange(childScope, range)
startExpr = rangeExpr.start
if typeof(startExpr) == Ref{WGPUVariable}
childScope.globals[symbol(startExpr)] = startExpr[].sym
end
stopExpr = rangeExpr.stop
if typeof(stopExpr) == Ref{WGPUVariable}
childScope.globals[symbol(stopExpr)] = stopExpr[].sym
end
stepExpr = rangeExpr.step
if typeof(stepExpr) == Ref{WGPUVariable}
childScope.globals[symbol(stepExpr)] = stepExpr[].sym
end
idxExpr = inferExpr(childScope, :($idx::UInt32))
setMutable!(idxExpr, true)
scope.globals[idx] = idxExpr.sym[]
exprArray = JLExpr[]
for stmnt in block
push!(exprArray, inferExpr(childScope, stmnt))
end
rangeBlockExpr = RangeBlock(startExpr, stepExpr, stopExpr, idxExpr, exprArray, childScope)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 52 | #scope = Scope()
#@assign cntxt=scope a::Int32 = 0
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 408 | export Scalar, WGPUScalarType
const WGPUScalarType = Union{Float32, UInt32, Int32, Bool}
struct Scalar
element::WGPUScalarType
end
Base.convert(::Type{WGPUScalarType}, a::Int64) = WGPUScalarType(Int32(a))
Base.convert(::Type{WGPUScalarType}, a::UInt64) = WGPUScalarType(UInt32(a))
Base.convert(::Type{WGPUScalarType}, a::Float64) = WGPUScalarType(Float32(a))
Base.eltype(s::Scalar) = typeof(s.element)
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 2317 |
export Scope, getDataTypeFrom, getDataType, getGlobalScope, findVar
struct Scope
locals::Dict{Symbol, Ref{WGPUVariable}}
globals::Dict{Symbol, WGPUVariable}
typeVars::Dict{Symbol, WGPUVariable}
depth::Int
parent::Union{Nothing, Scope}
code::Expr
end
# TODO scope should include wgslFunctions and other builtins by default
Scope() = Scope(Dict(), Dict(), Dict(), 0, nothing, quote end)
function findVar(scope::Union{Nothing, Scope}, sym::Symbol)
if scope == nothing
return (false, nothing, scope)
end
localsyms=keys(scope.locals)
globalsyms=keys(scope.globals)
typesyms = keys(scope.typeVars)
if (sym in localsyms)
return (true, :localScope, scope)
elseif (sym in globalsyms)
return (true, :globalScope, scope)
elseif (sym in typesyms)
return (true, :typeScope, scope)
end
return findVar(scope.parent, sym)
end
function inferScope!(scope, scalar::Scalar)
# Do nothing
end
function getGlobalScope(scope::Union{Nothing, Scope})
if scope == nothing
@error "No global state can be retrieved from `nothing` scope"
elseif scope.depth == 1
return scope
else
getGlobalScope(scope.parent)
end
end
function getDataTypeFrom(scope::Union{Nothing, Scope}, location, var::Symbol)
if scope == nothing
@error "Nothing scope cannot be searched for $var symbol"
elseif location == :localScope
return getindex(scope.locals[var]).dataType
elseif location == :globalScope
return scope.globals[var].dataType
elseif location == :typeScope
return scope.typeVars[var].dataType
end
end
function getDataType(scope::Union{Nothing, Scope}, var::Symbol)
(found, location, rootScope) = findVar(scope, var)
if found == true
getDataTypeFrom(rootScope, location, var)
else
return Any
end
end
function Base.isequal(scope::Scope, other::Scope)
length(scope.locals) == length(other.locals) &&
keys(scope.locals) == keys(other.locals) &&
length(scope.globals) == length(other.globals) &&
keys(scope.globals) == keys(other.globals) &&
for (key, value) in scope.locals
if !Base.isequal(other.locals[key][], value[])
return false
end
end
for (key, value) in scope.globals
if Base.isequal(other.globals[key][], value[])
return false
end
end
for (key, value) in scope.typeVars
if Base.isequal(other.typeVars[key][], value[])
return false
end
end
return true
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 8975 | using Revise
using WGPUCompute
using WGPUTranspiler
using WGPUTranspiler: WorkGroupDims, Generic, WGPUVariable
using CodeTracking
using Chairmarks
makeVarPair(p::Pair{Symbol, DataType}) = p.first => WGPUVariable(
p.first, p.second, Generic, nothing, false, true
)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::Int32 = b + c))
#bExpr = inferExpr(scope, :(a::Int32 = b + c))
transpile(scope, aExpr)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::Int32 = b + c))
bExpr = inferExpr(scope, :(a = b + c))
transpile(scope, aExpr)
transpile(scope, bExpr)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a = b + c))
vExpr = inferExpr(scope, :(a = b + c))
transpile(scope, aExpr)
transpile(scope, vExpr)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a = b + c))
bExpr = inferExpr(scope, :(a = c))
transpile(scope, aExpr)
transpile(scope, bExpr)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a = b + c))
transpile(scope, aExpr)
# -------
# TODO rerunning transpile(scope, aExpr) will have declexpr for a lik a::Int32 which is a bug
# This should fail because of type mismatches
scope = Scope(
Dict(
makeVarPair(:workgroupDims=>WorkGroupDims),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::Int32 = workgroupDims.x))
transpile(scope, aExpr)
# ----
scope = Scope(
Dict(
makeVarPair(:workgroupDims=>WorkGroupDims),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::UInt32 = workgroupDims.x))
transpile(scope, aExpr)
# ----
scope = Scope(
Dict(
makeVarPair(:workgroupDims=>WorkGroupDims),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::UInt32 = workgroupDims.x))
transpile(scope, aExpr)
# This should fail variable a in rhs is not in scope
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>UInt32),
makeVarPair(:(+)=>Function),
makeVarPair(:g=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
cExpr = inferredExpr = inferExpr(scope, :(a::Int32 = g(a + b + c) + g(2, 3, c)))
transpile(scope, cExpr)
# This should fail too datatypes are different
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>UInt32),
makeVarPair(:(+)=>Function),
makeVarPair(:g=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
cExpr = inferredExpr = inferExpr(scope, :(a::Int32 = g(b + c) + g(2, 3, c)))
transpile(scope, cExpr)
# ------
# This should fail too
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>UInt32),
makeVarPair(:(+)=>Function),
makeVarPair(:g=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
cExpr = inferredExpr = inferExpr(scope, :(a::Int32 = g(b + c) + g(2.0, 3, c)))
transpile(scope, cExpr)
# ------
scope = Scope(
Dict(
makeVarPair(:b=>UInt32),
makeVarPair(:c=>UInt32),
makeVarPair(:(+)=>Function),
makeVarPair(:g=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(scope, :(a::UInt32 = ( b + g(b + c))))
transpile(scope, inferredExpr)
# ----
scope = Scope(
Dict(
makeVarPair(:a=>WgpuArray{UInt32, 16}),
makeVarPair(:d=>UInt32),
makeVarPair(:c=>UInt32),
makeVarPair(:b=>WgpuArray{UInt32, 16}),
makeVarPair(:(+)=>Function),
makeVarPair(:g=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(scope, :(a[d] = c + b[1])) #TODO 1 is a scalar Int32 will fail
transpile(scope, inferredExpr)
# -----
struct B
b::WgpuArray{Int32, 16}
end
scope = Scope(
Dict(
makeVarPair(:a=>WgpuArray{Int32, 16}),
makeVarPair(:c=>UInt32),
makeVarPair(:g=>B),
makeVarPair(:(+)=>Function)
), Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(scope, :(a[c] = g.b[1]))
transpile(scope, inferredExpr)
# -----
struct B
b::WgpuArray{Int32, 16}
end
struct C
c::WgpuArray{Int32, 16}
end
scope = Scope(Dict(
makeVarPair(:a=>C),
makeVarPair(:g=>B)
), Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(scope, :(a.c[1] = g.b[1])) # scalar indexes will fail
transpile(scope, inferredExpr)
# -----
scope = Scope(
Dict(
makeVarPair(:a=>WgpuArray{Float32, 16}),
makeVarPair(:b=>WgpuArray{Float32, 16}),
makeVarPair(:c=>WgpuArray{Float32, 16}),
makeVarPair(:d=>WgpuArray{Float32, 16}),
makeVarPair(:println=>Function),
makeVarPair(:(+)=>Function)
), Dict(), Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(
scope,
:(for i in 0:1:12
println(i)
a[i] = b[i]
c[i] = d[i] + c[i] + 1.0
end)
)
transpile(scope, inferredExpr)
# -----
scope = Scope(
Dict(
makeVarPair(:a=>WgpuArray{Float32, 16}),
makeVarPair(:b=>WgpuArray{Float32, 16}),
makeVarPair(:c=>WgpuArray{Float32, 16}),
makeVarPair(:d=>WgpuArray{Float32, 16}),
makeVarPair(:println=>Function),
makeVarPair(:(+)=>Function)
), Dict(), Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(
scope,
:(for i in 0:1:12
for j in 1:2:40
println(i, j)
a[j] = b[i]
c[i] = d[i] + c[i] + 1.0
end
end)
)
transpile(scope, inferredExpr)
# -----
scope = Scope(
Dict(
makeVarPair(:x=>Int32),
makeVarPair(:a=>WgpuArray{Float32, 16}),
makeVarPair(:b=>WgpuArray{Float32, 16}),
makeVarPair(:c=>WgpuArray{Float32, 16}),
makeVarPair(:d=>WgpuArray{Float32, 16}),
makeVarPair(:println=>Function),
makeVarPair(:(+)=>Function)
), Dict(), Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(
scope,
:( for i in 1:10
if x > 0
println(i)
a[i] = b[i]
c[i] = d[i] + c[i] + 1.0
end
end
)
)
transpile(scope, inferredExpr)
# ----
scope = Scope(
Dict(
makeVarPair(:println=>Function)
),
Dict(),
Dict(), 0, nothing, quote end
)
inferredExpr = inferExpr(
scope,
:(function test(a::Float32, b::Float32)
for i in 1:10
println(i)
end
end)
)
transpile(scope, inferredExpr)
# -----
function cast_kernel(x::WgpuArray{T, N}, out::WgpuArray{S, N}) where {T, S, N}
xdim = workgroupDims.x
ydim = workgroupDims.y
gIdx = workgroupId.x*xdim + localId.x
gIdy = workgroupId.y*ydim + localId.y
gId = xDims.x*gIdy + gIdx
out[gId] = S(ceil(x[gId]))
end
a = WgpuArray(rand(Float32, 4, 4));
b = WgpuArray(rand(Float32, 4, 4));
scope = Scope(
Dict(
),
Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(
scope,
:(@wgpukernel launch=true workgroupSize=(4, 4) workgroupCount=(1, 1) $cast_kernel($a, $b))
)
transpile(scope, inferredExpr)
# -------
function cast_kernel(x::WgpuArray{T, N}, out::WgpuArray{S, N}) where {T, S, N}
xdim = workgroupDims.x
ydim = workgroupDims.y
gIdx = workgroupId.x*xdim + localId.x
gIdy = workgroupId.y*ydim + localId.y
gId::UInt32 = xDims.x*gIdy + gIdx
gId = 1
out[gId] = S(ceil(x[gId]))
end
a = WgpuArray(rand(Float32, 4, 4));
b = WgpuArray(rand(Float32, 4, 4));
scope = Scope(
Dict(
#makeVarPair(:out=>WgpuArray{Float32, 16}),
#makeVarPair(:x=>WgpuArray{Float32, 16})
),
Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(
scope,
:(@wgpukernel launch=true workgroupSize=(4, 4) workgroupCount=(1, 1) $cast_kernel($a, $b))
)
transpile(scope, inferredExpr)
# ---------
function cast_kernel(x::WgpuArray{T, N}, a::WgpuArray{S, N}) where {T, S, N}
xdim = workgroupDims.x
ydim = workgroupDims.y
gIdx = workgroupId.x*xdim + localId.x
gIdy = workgroupId.y*ydim + localId.y
gId = xDims.x*gIdy + gIdx
for i in 1:19
for j in 1:20
d = 1.0
a[i][j] = 1.0
d += a[i][j]
end
end
end
a = WgpuArray(rand(Float32, 4, 4));
b = WgpuArray(rand(Int32, 4, 4));
scope = Scope(
Dict(
#makeVarPair(:a=>WgpuArray{Float32, 16}),
#makeVarPair(:x=>WgpuArray{Float32, 16})
), Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(
scope,
:(@wgpukernel launch=true workgroupSize=(4, 4) workgroupCount=(1, 1) $cast_kernel($a, $b))
)
transpile(scope, inferredExpr)
# ---------
function cast_kernel(x::WgpuArray{T, N}, a::WgpuArray{S, N}) where {T, S, N}
xdim = workgroupDims.x
ydim = workgroupDims.y
gIdx = workgroupId.x*xdim + localId.x
gIdy = workgroupId.y*ydim + localId.y
gId = xDims.x*gIdy + gIdx
for i in 1:19
for j in 1:20
d = 10
a[i][j] = 1
d = d + 1
end
end
end
a = WgpuArray(rand(Float32, 4, 4));
b = WgpuArray(rand(Float32, 4, 4));
scope = Scope(
Dict(
#makeVarPair(:a=>WgpuArray{Float32, 16}),
#makeVarPair(:x=>WgpuArray{Float32, 16})
), Dict(), Dict(), 0, nothing, quote end)
inferredExpr = inferExpr(
scope,
:(@wgpukernel launch=true workgroupSize=(4, 4) workgroupCount=(1, 1) $cast_kernel($a, $b))
)
transpile(scope, inferredExpr)
# ----------
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 5926 | export transpile
transpile(scope::Scope, s::Scalar) = s.element
transpile(scope::Scope, var::WGPUVariable) = begin
(found, location, rootScope) = findVar(scope, var.sym)
if location == :typeScope
return :($(getDataTypeFrom(rootScope, location, var.sym)))
else
:($(var.sym))
end
end
transpile(scope::Scope, var::Ref{WGPUVariable}) = transpile(scope, var[])
transpile(scope::Scope, lhs::LHS) = transpile(scope, lhs.expr)
transpile(scope::Scope, rhs::RHS) = transpile(scope, rhs.expr)
transpile(scope::Scope, binOp::BinaryOp) = transpile(scope, binOp, Val(binOp.op))
# for each op in [:+, :-, :*, :\, :<, :>, :<=, :>=, :==, :+=, :-=]
transpile(scope::Scope, binOp::BinaryOp, op::Val{:+}) = :($(transpile(scope, binOp.left)) + $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:-}) = :($(transpile(scope, binOp.left)) - $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:*}) = :($(transpile(scope, binOp.left)) * $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:/}) = :($(transpile(scope, binOp.left)) / $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:<}) = :($(transpile(scope, binOp.left)) < $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:>}) = :($(transpile(scope, binOp.left)) > $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:(<=)}) = :($(transpile(scope, binOp.left)) <= $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:(>=)}) = :($(transpile(scope, binOp.left)) >= $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:(==)}) = :($(transpile(scope, binOp.left)) == $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:(+=)}) = :($(transpile(scope, binOp.left)) += $(transpile(scope, binOp.right)))
transpile(scope::Scope, binOp::BinaryOp, op::Val{:(-=)}) = :($(transpile(scope, binOp.left)) -= $(transpile(scope, binOp.right)))
function transpile(scope::Scope, a::AssignmentExpr)
lExpr = transpile(scope, a.lhs)
rExpr = transpile(scope, a.rhs)
rType = typeInfer(scope, a.rhs)
if typeof(a.lhs.expr) == DeclExpr
#(found, location, rootScope) = findVar(scope, symbol(a.lhs))
#if found && location != :typeScope
# lExpr = rootScope.locals[symbol(a.lhs.expr)]
# setMutable!(lExpr[], true)
# setNew!(lExpr[], false)
#end
if isMutable(a.lhs)
return :(@var $lExpr = $rExpr)
else
return :(@let $lExpr = $rExpr)
end
elseif typeof(a.lhs.expr) == Base.RefValue{WGPUVariable}
#(found, locations, rootScope) = findVar(scope, symbol(a.lhs))
#if found == false
# scope.locals[symbol(a.lhs)] = a.lhs.expr
# setNew!(a.lhs.expr[], true)
# setMutable!(a.lhs.expr[], false)
#elseif found == true
# setNew!(a.lhs.expr[], false)
# setMutable!(a.lhs.expr[], true)
#end
##if a.lhs.expr[].undefined == true
# scope.locals[symbol(a.lhs)] = a.lhs.expr
#end
if isNew(a.lhs)
return (isMutable(a.lhs) ? :(@var $lExpr = $rExpr) : :(@let $lExpr = $rExpr))
else
return :($lExpr = $rExpr)
end
elseif typeof(a.lhs.expr) == IndexExpr
return :($lExpr = $rExpr)
elseif typeof(a.lhs.expr) == AccessExpr
return :($lExpr = $rExpr)
elseif typeof(a.lhs.expr) <: JLExpr
error(
"This is not covered yet"
)
else
error("This shouldn't have been reached. Assignment LHS is $(typeof(a.lhs)) and RHS is $(typeof(a.rhs))")
end
end
function transpile(scope::Scope, cExpr::CallExpr)
return Expr(:call, transpile(scope, cExpr.func), map(x -> transpile(scope, x), cExpr.args)...)
end
function transpile(scope::Scope, idxExpr::IndexExpr)
return Expr(:ref, transpile(scope, idxExpr.sym), transpile(scope, idxExpr.idx))
end
transpile(scope::Scope, idxExpr::IndexExpr, ::Val{true}) = transpile(scope, idxExpr::IndexExpr)
transpile(scope::Scope, idxExpr::IndexExpr, ::Val{false}) = error("This variable cannot be indexed")
function transpile(scope::Scope, acsExpr::AccessExpr)
return Expr(:., transpile(scope, acsExpr.sym), QuoteNode(transpile(scope, acsExpr.field)))
end
transpile(scope::Scope, declExpr::DeclExpr) = Expr(:(::),
map(x -> transpile(scope, x), (declExpr.sym, declExpr.dataType))...
)
transpile(scope::Scope, ::Type{T}) where T = :($T)
transpile(scope::Scope, typeExpr::TypeExpr) = Expr(
:curly, transpile(scope, typeExpr.sym),
map(x -> transpile(scope, x), typeExpr.types)...
)
function transpile(scope::Scope, rblock::RangeBlock)
(start, step, stop) = map(x -> transpile(rblock.scope, x), (rblock.start, rblock.step, rblock.stop))
range = :($start:$step:$stop)
block = map(x -> transpile(rblock.scope, x), rblock.block)
idx = transpile(rblock.scope, rblock.idx)
return :(@forloop $(Expr(:for, Expr(:(=), idx, range), quote $(block...) end)))
end
function transpile(scope::Scope, ifblock::IfBlock)
c = transpile(ifblock.scope, ifblock.cond)
block = map(x -> transpile(scope, x), ifblock.block)
return Expr(:if, c, quote $(block...) end)
end
function transpile(scope::Scope, funcblk::FuncBlock)
fn = transpile(funcblk.scope, funcblk.fname)
fa = map(x -> transpile(scope, x), funcblk.fargs)
fb = map(x -> transpile(scope, x), funcblk.fbody)
return Expr(:function, Expr(:call, fn, fa...), quote $(fb...) end)
end
function transpile(scope::Scope, computeBlk::ComputeBlock)
fn = transpile(scope::Scope, computeBlk.fname)
fa = map(x -> transpile(scope, x), computeBlk.fargs)
fb = map(x -> transpile(scope, x), computeBlk.fbody)
ta = map(x -> transpile(scope, x), computeBlk.Targs)
workgroupSize = (computeBlk.wgSize .|> Int)
code = quote end
push!(code.args, map(x -> unblock(x), scope.code.args)...)
bargs = computeBlk.builtinArgs
fexpr = Expr(:function, Expr(:call, fn, bargs...), quote $(fb...) end)
push!(
code.args,
:(@compute @workgroupSize($(workgroupSize...)) $(fexpr))
)
return code |> MacroTools.striplines
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 121 | using AbstractTrees
AbstractTrees.children(t::AssignmentExpr) = symbol(t)
AbstractTrees.children(t::JLExpr) = symbol(t)
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 946 | using CEnum
export WGPUVariableAttribute
@cenum WGPUVariableType begin
Dims
Global
Local
Constant
Intrinsic
Generic
Private
Uniform
WorkGroup
StorageRead
StorageReadWrite
end
struct WGPUVariableAttribute
group::Int
binding::Int
end
mutable struct WGPUVariable <: JLVariable
sym::Symbol
dataType::Union{DataType, Type}
varType::WGPUVariableType
varAttr::Union{Nothing, WGPUVariableAttribute}
mutable::Bool
undefined::Bool
end
symbol(var::WGPUVariable) = var.sym
symbol(var::Ref{WGPUVariable}) = var[].sym
isMutable(var::WGPUVariable) = var.mutable
isMutable(var::Ref{WGPUVariable}) = var[].mutable
setMutable!(var::WGPUVariable, b::Bool) = (var.mutable = b)
setMutable!(varRef::Ref{WGPUVariable}, b::Bool) = (varRef[].mutable = b)
Base.isequal(var1::WGPUVariable, var2::WGPUVariable) = begin
r = true
for field in fieldnames(WGPUVariable)
r |= getproperty(var1, field) == getproperty(var2, field)
end
return r
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 301 | Test.@testset "DeclExpr" begin
scope = Scope(
Dict(
makeVarPair(:b=>Int32),
makeVarPair(:c=>Int32),
),
Dict(), Dict(), 0, nothing, quote end
)
aExpr = inferExpr(scope, :(a::Int32 = b + c))
transpile(scope, aExpr)
Test.@test transpile(scope, aExpr) == :(@let a::Int32 = b + c)
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 338 | using WGPUTranspiler
using WGPUTranspiler: WorkGroupDims, Generic, WGPUVariable
using Test
makeVarPair(p::Pair{Symbol, DataType}) = p.first => WGPUVariable(p.first, p.second, Generic, nothing, false, false)
@testset "WGPUTranspiler.jl" begin
include("variableTests.jl")
# include("declTests.jl")
# include("assignmentTests.jl")
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | code | 1446 | using Revise
using WGPUTranspiler
using WGPUTranspiler: WGPUVariable, WorkGroupDims, Generic
using Test
makeVarPair(p::Pair{Symbol, DataType}; islocal=false) = begin
if !islocal
return (p.first => WGPUVariable(
p.first, # sym
p.second, # dataType
Generic, # varType
nothing, # varAttr
false, # mutable
false, # new
true # undefined
))
else
return (p.first => Ref{WGPUVariable}(WGPUVariable(
p.first, # sym
p.second, # dataType
Generic, # varType
nothing, # varAttr
false, # mutable
false, # new
true # undefined
)))
end
end
@testset "WGPUVariable Test" begin
scope = Scope(
Dict{Symbol, Ref{WGPUVariable}}(
makeVarPair(:b => Int32),
makeVarPair(:c => Int32)
),
Dict(),
Dict(),
0,
nothing,
quote end
)
scopeCopy = deepcopy(scope)
aExpr = inferExpr(scope, :(b))
@test scope.globals == Dict()
@test Base.isequal(scope, scopeCopy)
#@test (aExpr[]).dataType == Int32
@test isequal(aExpr, scope.locals[:b])
end
@testset "WGPUVariable Test" begin
scope = Scope(
Dict{Symbol, Ref{WGPUVariable}}(
makeVarPair(:b => Int32),
makeVarPair(:c => Int32)
),
Dict(),
Dict(),
0,
nothing,
quote end
)
scopeCopy = deepcopy(scope)
aExpr = inferExpr(scope, :(a))
@test aExpr[].undefined == true
@test !(scope.globals == Dict())
@test !Base.isequal(scope, scopeCopy)
@test (aExpr[]).dataType == Any
@test isequal(aExpr, scope.locals[:a])
end
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.1.0 | 0e69c1da2e982dbe92bac774171914cf860a02ae | docs | 48 | # WGPUTranspiler
Transpiles Julia Code to WGSL
| WGPUTranspiler | https://github.com/JuliaWGPU/WGPUTranspiler.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 809 | using Documenter, WeaklyHard
DocMeta.setdocmeta!(WeaklyHard, :DocTestSetup, :(using WeaklyHard); recursive=true)
makedocs(modules=[WeaklyHard],
authors="NilsVreman <[email protected]> and contributors",
repo="https://github.com/NilsVreman/WeaklyHard.jl/blob/{commit}{path}#{line}",
sitename="WeaklyHard.jl",
format=Documenter.HTML(
canonical="https://NilsVreman.github.io/WeaklyHard.jl",
assets=String[]
),
pages=[
"Home" => "index.md",
"Examples" => "man/examples.md",
"Functions" => "man/functions.md",
"Index" => "man/summary.md"
])
deploydocs(repo = "github.com/NilsVreman/WeaklyHard.jl.git")
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 517 | using WeaklyHard
"""
Example for generating automata for (sets of) weakly-hard constraints
"""
# Constraints
lambda1 = AnyHitConstraint(12, 15)
lambda2 = RowHitConstraint(15, 47)
lambda3 = RowMissConstraint(3)
lambda4 = AnyMissConstraint(2, 3)
lambda5 = RowHitConstraint(2, 6)
# Generate automata
G1 = build_automaton(lambda1)
G2 = build_automaton(lambda2)
G3 = build_automaton(lambda3)
# set construction
Lambda_star = dominant_set(Set([lambda4, lambda5]))
G = build_automaton(Lambda_star)
minimize_automaton!(G)
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 763 | using WeaklyHard
"""
Example for comparing dominance and equivalence of WeaklyHard constraints
"""
# Constraints to test
lambda1 = AnyHitConstraint(48, 54)
lambda2 = AnyMissConstraint(12, 67)
lambda3 = AnyHitConstraint(12, 15)
lambda4 = RowMissConstraint(9)
lambda5 = RowHitConstraint(20, 47)
lambda6 = RowHitConstraint(5, 12)
lambda7 = RowMissConstraint(3)
lambdas = [lambda1, lambda2, lambda3, lambda4, lambda5, lambda6, lambda7]
# Compare individual constraints
for l1 in lambdas
for l2 in lambdas
if is_equivalent(l1, l2)
println("$l1 \t===\t $l2")
elseif is_dominant(l1, l2)
println("$l1 \t<=\t $l2")
else
println("$l1 \t</=\t $l2")
end # if
end # for
println(" ")
end # for
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 960 | using WeaklyHard
"""
Example for generating satisfaction sets for weakly-hard constraints
"""
# Constraints
lambda1 = AnyHitConstraint(12, 15)
lambda2 = RowHitConstraint(15, 47)
lambda3 = RowMissConstraint(3)
# Generate automata
G1 = build_automaton(lambda1)
G2 = build_automaton(lambda2)
G3 = build_automaton(lambda3)
# Generate satisfaction set of length N
N = 20
S1 = all_sequences(G1, N)
S2 = all_sequences(G2, N)
S3 = all_sequences(G3, N)
# check that all sequences satisfy the constraint
for w in S1
if !is_satisfied(lambda1, w)
println("Sequence ($(bitstring(w)[end-N+1:end])) does not satisfy $lambda1")
end # if
end # for
for w in S2
if !is_satisfied(lambda2, w)
println("Sequence ($(bitstring(w)[end-N+1:end])) does not satisfy $lambda2")
end # if
end # for
for w in S3
if !is_satisfied(lambda3, w)
println("Sequence ($(bitstring(w)[end-N+1:end])) does not satisfy $lambda3")
end # if
end # for
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 1079 | module WeaklyHard
#= Uses for all includes etc =#
using LinearAlgebra
#= Types and constructors =#
include("types.jl")
#= Includes =#
include("alphabet.jl") # Defines the functions on the Words and Characters
include("constraints.jl") # Defines constraints, dominance relations, equivalences, and satisfaction functions
include("dominant_set.jl") # Defines functions to generate the dominant subset of a constraint set.
include("datastructures.jl") # Defines the datastructures necessary to improve execution time of the automaton construction.
include("automaton_single.jl") # Defines the automata generation functions for single constraints
include("automaton_set.jl") # Defines the automata generation functions for sets of constraints
include("automaton_util.jl") # Defines the utility functions applied to the automaton
include("sequences.jl") # Defines functions that generate sequences of a specific automata construction.
include("printing.jl") # Defines the printing statements for the existing structs
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 1510 | ###########################
### Auxiliary Functions ###
###########################
#= Create a word with n consecutive set bits as least significant. =#
consword(n::T) where {T <: Integer} = (T(1) << n) - T(1)
#= Counts the number of bits in the integer w =#
nbits(w::T) where {T <: Integer} = 8*sizeof(T) - leading_zeros(w)
nbits(w::BigInt) = (w == 0) ? Int64(0) : ndigits(w, base=2)
#= Counting the number of set bits in the integer w =#
nsetbits(w::T) where {T <: Integer} = count_ones(w)
#= Counting the maximum number of consecutive set bits in an integer w =#
function nconsbits(w::T) where {T <: Integer}
n = 0
while w != Miss
w &= (w << T(1))
n += 1
end # while
n
end # function
#################
### Functions ###
#################
#= Left shifts bits once and adds new bit as LSB (according to character c).
Removes the MSB if character is a Hit. =#
function shift(w::T, c) where {T <: Integer}
if c == Miss
return w << T(1)
else
return ((w << T(1)) | T(1)) & consword(T(nbits(w)))
end
end
#= Left shifts bits once and adds new bit as LSB (according to character c).
Returns the word n if the bits in nw coincide with the ones in n. =#
function shift_rowhit(w::T, c, n::T) where {T <: Integer}
#= Shift bits according to charcter c and default to n if last few char are equal to n =#
if c == Miss
w <<= T(1)
else
w = (w << T(1)) | T(1)
end
return (w & n == n) ? n : w
end
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 8166 | # Exports
export build_automaton
function build_automaton(Lambda::Set{T}) where {T <: Constraint}
# Find constraint with maximum K value
lambda_max_k = reduce(Lambda) do x, y
x.k > y.k ? x : y end
# Extract necessary parameters
k = lambda_max_k.k
n = _get_nbr_cons_hits(Lambda)
# Decide IntType
IntType = _word_type(Lambda, k)
# IF we are not allowed to miss a single deadline, return a one vertex automaton
if !is_satisfied(Lambda, consword(IntType(k)) << IntType(1))
# Initialise Automaton
initvertex = WordVertex{Int8}(Int8(Hit))
automaton = Automaton{Int8}(initvertex)
initvertex.hit = initvertex
automaton[Int8(Hit)] = initvertex
return automaton
# ELSE IF we are allowed to miss infinite number of misses, return another one vertex automaton
elseif _allmissespermitted(Lambda)
# Initialise Automaton
initvertex = WordVertex{Int8}(Int8(Hit))
automaton = Automaton{Int8}(initvertex)
initvertex.hit = initvertex
initvertex.miss = initvertex
automaton[Int8(Hit)] = initvertex
return automaton
# ELSE add next vertex to transitions and continue
else
# Initialise automaton
initvertex = WordVertex{IntType}(consword(IntType(n)))
automaton = Automaton{IntType}(initvertex)
for lambda in Lambda
if typeof(lambda) == RowHitConstraint
# create a curried function in order to be able to call the same function for both rowhit and all other constraints
return _build_automaton_set!(Lambda,
automaton,
initvertex,
(x1, x2, x3, x4) -> _initiate_vertex_rh_set!(x1, x2, x3, x4, initvertex.w, k))
end # if
end # function
# Since we know something about the approximate size of the graph,
# improve performance by setting the size to that automatically.
sizehint!(automaton.data, binomial(k, n))
return _build_automaton_set!(Lambda, automaton, initvertex, _initiate_vertex_set!)
end
end # function
###########################
### Auxiliary Functions ###
###########################
#= Initiate vertex by first shifting vertex to acquire children.
# Then extend automaton with children (if constraint set satisfied) =#
function _initiate_vertex_set!(Lambda::Set{T},
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S}) where {T <: Constraint, S <: Integer}
(wm, wh) = _children_set(vertex)
_extend_automaton_set!(Lambda, automaton, list, vertex, wm, wh)
end
function _initiate_vertex_rh_set!(Lambda::Set{T},
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S},
wi::S,
k::R) where {T <: Constraint, S <: Integer, R <: Integer}
(wm, wh) = _children_rh_set(vertex, wi)
_extend_automaton_rh_set!(Lambda, automaton, list, vertex, wm, wh, k)
end
#= Return the children of vertex, disregarding satisfiability =#
function _children_set(vertex::WordVertex{T}) where {T <: Integer}
wm = shift(vertex.w, Miss)
wh = shift(vertex.w, Hit)
return (wm, wh)
end
function _children_rh_set(vertex::WordVertex{T}, n::T) where {T <: Integer}
wm = shift_rowhit(vertex.w, Miss, n)
wh = shift_rowhit(vertex.w, Hit, n)
return (wm, wh)
end
#= Extend automaton with the children (nm, nh) if they satisfy Lambda =#
function _extend_automaton_set!(Lambda::Set{T},
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S},
wm::S,
wh::S) where {T <: Constraint, S <: Integer}
vertexM = nothing
vertexH = nothing
# Check if miss word satisfies constraints and whether it is initialized
if is_satisfied(Lambda, wm)
if !haskey(automaton, wm)
vertexM = WordVertex{S}(wm)
automaton[wm] = vertexM
_push!(list, vertexM)
else
vertexM = automaton[wm]
end
# Add miss path to vertex
vertex.miss = vertexM
end
# check if hit word is initialised
if !haskey(automaton, wh)
vertexH = WordVertex{S}(wh)
automaton[wh] = vertexH
_push!(list, vertexH)
else
vertexH = automaton[wh]
end
# Add hit path to vertex
vertex.hit = vertexH
end
#= Extend automaton with the children (nm, nh) if they satisfy Lambda =#
function _extend_automaton_rh_set!(Lambda::Set{T},
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S},
wm::S,
wh::S,
k::R) where {T <: Constraint, S <: Integer, R <: Integer}
vertexH = nothing
vertexM = nothing
# Check if miss word satisfies constraints and whether it is initialized
if is_satisfied(Lambda, wm)
wm &= consword(S(k)) # Extracting bits to reduce size of graph
if !haskey(automaton, wm)
vertexM = WordVertex{S}(wm)
automaton[wm] = vertexM
_push!(list, vertexM)
else
vertexM = automaton[wm]
end
# Add miss path to vertex
vertex.miss = vertexM
end
# check if hit word is initialised
wh &= consword(S(k)) # Extracting bits to reduce size of graph
if !haskey(automaton, wh)
vertexH = WordVertex{S}(wh)
automaton[wh] = vertexH
_push!(list, vertexH)
else
vertexH = automaton[wh]
end
# Add hit path to vertex
vertex.hit = vertexH
end
#= Aux function to build automaton =#
function _build_automaton_set!(Lambda::Set{T},
automaton::Automaton{S},
initvertex::WordVertex{S},
f_initiate_vertex!) where {T <: Constraint, S <: Integer}
# First vertex initialisation
list = _UninitializedList{S}()
_push!(list, initvertex)
automaton[initvertex.w] = initvertex
# Add the remaining vertices to the while loop
while !isnothing(list.head) # while we have elements to iterate
# Extract first element to iterate
vertex = _pop!(list)
# Add new feasible vertices to structures and lists
f_initiate_vertex!(Lambda, automaton, list, vertex)
end #while
return automaton
end # function
@doc """
build_automaton(Lambda::T) where {T <: Union{Constraint, Set{Constraint}}}
Creates a minimal weakly-hard automaton according to the (set of) weakly-hard
constraint(s) `Lambda`.
NOTE: The function handles both single constraints and sets of constraints.
## Examples
```jldoctest
julia> build_automaton(AnyHitConstraint(1, 3))
Automaton{Int64} with 3 vertices:
{
WordVertex{Int64}(100 => ---, 001)
WordVertex{Int64}(010 => 100, 001)
WordVertex{Int64}(001 => 010, 001)
} with head: WordVertex{Int64}(1 => 10, 1)
julia> build_automaton(Set([AnyHitConstraint(1, 3), RowHitConstraint(2, 6)]))
Automaton{Int64} with 7 vertices:
{
WordVertex{Int64}(001101 => 011010, 000011)
WordVertex{Int64}(000110 => 001100, 001101)
WordVertex{Int64}(011001 => ------, 000011)
WordVertex{Int64}(011010 => ------, 110101)
WordVertex{Int64}(001100 => ------, 011001)
WordVertex{Int64}(000011 => 000110, 000011)
WordVertex{Int64}(110101 => ------, 000011)
} with head: WordVertex{Int64}(11 => 110, 11)
```
""" build_automaton
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 10031 | # Exports
export build_automaton
function build_automaton(lambda::T) where {T <: Constraint}
# Find constraint with maximum K value
# Extract necessary parameters
k = lambda.k
n = _get_nbr_cons_hits(lambda)
# Decide IntType
IntType = _word_type(lambda, k)
# IF we are not allowed to miss a single deadline, return a one vertex automaton
if !is_satisfied(lambda, consword(IntType(k)) << IntType(1))
# Initialise Automaton
initvertex = WordVertex{Int8}(Int8(Hit))
automaton = Automaton{Int8}(initvertex)
initvertex.hit = initvertex
automaton[Int8(Hit)] = initvertex
return automaton
# ELSE IF we are allowed to miss infinite number of misses, return another one vertex automaton
elseif _allmissespermitted(lambda)
# Initialise Automaton
initvertex = WordVertex{Int8}(Int8(Hit))
automaton = Automaton{Int8}(initvertex)
initvertex.hit = initvertex
initvertex.miss = initvertex
automaton[Int8(Hit)] = initvertex
return automaton
# ELSE add next vertex to transitions and continue
else
# Initialise automaton
initvertex = WordVertex{IntType}(consword(IntType(n)))
automaton = Automaton{IntType}(initvertex)
sizehint!(automaton.data, _minimal_size(lambda))
# If we have a rowhit constraint, change building method
if typeof(lambda) == RowHitConstraint
z = _get_nbr_cons_misses(lambda)
return _build_automaton_rh!(lambda,
automaton,
initvertex,
IntType(z),
IntType(n),
IntType(k))
end # if
# Else
return _build_automaton!(lambda,
automaton,
initvertex)
end
end # function
##################################
### Auxiliary Functions for RH ###
##################################
function _initiate_vertex_rh!(lambda::T,
automaton::Automaton{S},
list::_UninitializedList{S},
miss_list::Vector{WordVertex{S}},
vertex::WordVertex{S},
initword::S,
k::S) where {T <: Constraint, S <: Integer}
(wm, wh) = _children_rh(vertex, initword)
_extend_automaton_rh!(lambda, automaton, list, miss_list, vertex, wm, wh, k)
end # function
#= Extend automaton with the children (nm, nh) if they satisfy lambda =#
function _extend_automaton_rh!(lambda::T,
automaton::Automaton{S},
list::_UninitializedList{S},
miss_list::Vector{WordVertex{S}},
vertex::WordVertex{S},
wm::S,
wh::S,
k::S) where {T <: Constraint, S <: Integer}
vertexH = nothing
# Check if miss word satisfies constraints and whether it is initialized
if is_satisfied(lambda, wm)
vertex.miss = miss_list[_nbr_misses_permitted(lambda, vertex.w, k)]
end
# Check how many consecutive misses we are permitted,
# If it is more than 0: add to the automata (unless already present)
if _nbr_misses_permitted(lambda, wh, k) > 0
# check if hit word is initialised
if !haskey(automaton, wh)
vertexH = WordVertex{S}(wh)
automaton[wh] = vertexH
_push!(list, vertexH)
else
vertexH = automaton[wh]
end
else
vertexH = automaton[consword(S(trailing_ones(wh)))]
end
# Add hit path to vertex
vertex.hit = vertexH
end
#= Return the children of vertex, disregarding satisfiability =#
function _children_rh(vertex::WordVertex{T}, initword::T) where {T <: Integer}
wm = shift_rowhit(vertex.w, Miss, initword)
wh = shift_rowhit(vertex.w, Hit, initword)
return (wm, wh)
end
# Returns how many consecutive misses we permit following w
function _nbr_misses_permitted(lambda::T, w::S, k::S) where {T <: Constraint, S <: Integer}
for z in S(1):k
if !is_satisfied(lambda, (w << (z+S(1))) | S(1))
return z-S(1)
end
end
return k
end # function
#= Add first nodes to the automaton by adding the maximum consecutive miss path to it. =#
function _add_miss_path_rh!(lambda::T,
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S},
z::S,
n::S,
k::S) where {T <: Constraint, S <: Integer}
# Add "hit path" to automaton
v = vertex
for n_ in n-S(1):S(-1):S(1)
w = consword(n_)
v_prior = WordVertex{S}(w)
v_prior.hit = v
automaton[w] = v_prior
v = v_prior
end # for
# A list where each index "i" corresponds to the vertex with "i" more deadlines tolerated
aux_list = Vector{WordVertex{S}}(undef, z+1)
# Add "miss path" to automaton
v = vertex
vertexM = nothing
for z_ in z+S(1):S(-1):S(1)
aux_list[z_] = v
(wm, wh) = _children_rh(v, consword(n))
# Check if miss word satisfies constraints and whether it is initialized
if is_satisfied(lambda, wm)
vertexM = WordVertex{S}(wm)
automaton[wm] = vertexM
# Add miss path to vertex
v.miss = vertexM
end
# check if hit word is initialised
if _nbr_misses_permitted(lambda, wh, k) > 0
if !haskey(automaton, wh)
vertexH = WordVertex{S}(wh)
automaton[wh] = vertexH
_push!(list, vertexH)
else
vertexH = automaton[wh]
end
else
vertexH = automaton[consword(S(trailing_ones(wh)))]
end
# Add hit path to vertex
v.hit = vertexH
v = vertexM
end # for
return aux_list
end # function
#= Build the automaton =#
function _build_automaton_rh!(lambda::T,
automaton::Automaton{S},
initvertex::WordVertex{S},
z::S,
n::S,
k::S) where {T <: Constraint, S <: Integer}
# First initialize the necessary miss path in the graph
list = _UninitializedList{S}()
automaton[initvertex.w] = initvertex
miss_list = _add_miss_path_rh!(lambda, automaton, list, initvertex, z, n, k)
# Add the remaining vertices to the while loop
while !isnothing(list.head) # while we have elements to iterate
# Extract first element to iterate
vertex = _pop!(list)
# Add new feasible vertices to structures and lists
_initiate_vertex_rh!(lambda, automaton, list, miss_list, vertex, consword(n), k)
end #while
return automaton
end # function
##########################################
### Auxiliary Functions for RM, AM, AH ###
##########################################
function _initiate_vertex!(lambda::T,
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S}) where {T <: Constraint, S <: Integer}
(wm, wh) = _children(vertex)
_extend_automaton!(lambda, automaton, list, vertex, wm, wh)
end # function
#= Extend automaton with the children (nm, nh) if they satisfy lambda =#
function _extend_automaton!(lambda::T,
automaton::Automaton{S},
list::_UninitializedList{S},
vertex::WordVertex{S},
wm::S,
wh::S) where {T <: Constraint, S <: Integer}
vertexM = nothing
vertexH = nothing
# Check if miss word satisfies constraints and whether it is initialized
if is_satisfied(lambda, wm)
if !haskey(automaton, wm)
vertexM = WordVertex{S}(wm)
automaton[wm] = vertexM
_push!(list, vertexM)
else
vertexM = automaton[wm]
end
# Add miss path to vertex
vertex.miss = vertexM
end
# check if hit word is initialised
if !haskey(automaton, wh)
vertexH = WordVertex{S}(wh)
automaton[wh] = vertexH
_push!(list, vertexH)
else
vertexH = automaton[wh]
end
# Add hit path to vertex
vertex.hit = vertexH
end
#= Return the children of vertex, disregarding satisfiability =#
function _children(vertex::WordVertex{T}) where {T <: Integer}
wm = shift(vertex.w, Miss)
wh = shift(vertex.w, Hit)
return (wm, wh)
end
#= Building the automaton =#
function _build_automaton!(lambda::T,
automaton::Automaton{S},
initvertex::WordVertex{S}) where {T <: Constraint, S <: Integer}
# First initialize the necessary miss path in the graph
list = _UninitializedList{S}()
automaton[initvertex.w] = initvertex
_push!(list, initvertex)
# Add the remaining vertices to the while loop
while !isnothing(list.head) # while we have elements to iterate
# Extract first element to iterate
vertex = _pop!(list)
# Add new feasible vertices to structures and lists
_initiate_vertex!(lambda, automaton, list, vertex)
end #while
return automaton
end # function
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 4987 | export vertices,
transitions,
minimize_automaton!
#################
### Overloads ###
#################
#= WordVertex - Returns whether the child s exists for n =#
_childexists(n::WordVertex{T}, s::Symbol) where {T <: Integer} = !isnothing(getfield(n, s))
#= Automaton - Overloads of Base functions =#
Base.getindex(g::Automaton{T}, w::T) where {T <: Integer} = g.data[w]
Base.setindex!(g::Automaton{T}, v::WordVertex{T}, w::T) where {T <: Integer} = (g.data[w] = v)
Base.length(g::Automaton{T}) where {T <: Integer} = length(g.data)
Base.haskey(g::Automaton{T}, w::T) where {T <: Integer} = haskey(g.data, w)
######################
### Util Functions ###
######################
"""
vertices(automaton::Automaton)
Returns all the vertices in `automaton`.
"""
function vertices(automaton::Automaton{T}) where {T <: Integer}
return values(automaton.data)
end # function
"""
transitions(automaton::Automaton)
Returns all the transitions in `automaton` in the form of a set of pairs where each pair consists of `(v1, v2, c12)`, i.e., the tail of the transition `v1`, the head of the transition `v2`, and the label of the transition `c12`.
"""
function transitions(automaton::Automaton{T}) where {T <: Integer}
trans = Set{Tuple{T, T, UInt8}}();
sizehint!(trans, 2*length(vertices(automaton)))
for vertex in vertices(automaton)
push!(trans, (vertex.w, vertex.hit.w, Hit))
if _childexists(vertex, :miss)
push!(trans, (vertex.w, vertex.miss.w, Miss))
end # if
end # for
return trans
end # function
function _vertices_equivalent(v1::WordVertex{T}, v2::WordVertex{T}) where {T <: Integer}
if v1 === v2 # If they are the same vertex
return false
end
if _childexists(v1, :miss) && _childexists(v2, :miss)
return v1.miss.w == v2.miss.w && v1.hit.w == v2.hit.w
elseif !_childexists(v1, :miss) && !_childexists(v2, :miss)
return v1.hit.w == v2.hit.w
else
return false
end #if
end # function
"""
minimize_automaton!(automaton::Automaton)
Minimises the automaton representation of a set of weakly-hard constraints.
"""
function minimize_automaton!(automaton::Automaton{T}) where {T <: Integer}
changed = true
while changed
changed = false
for v1 in vertices(automaton)
v1_identical = Vector{WordVertex{T}}()
for v2 in vertices(automaton)
if _vertices_equivalent(v1, v2)
changed = true
push!(v1_identical, v2)
end
end # for
if !isempty(v1_identical)
push!(v1_identical, v1)
# find shortest word to replace v1_identical with
v1_new = reduce(v1_identical) do x, y
(x.w < y.w) ? x : y end
for v3 in vertices(automaton)
if v3 in v1_identical && !(v3 === v1_new)
delete!(automaton.data, v3.w)
else
if _childexists(v3, :miss) && v3.miss in v1_identical
v3.miss = v1_new
end
if v3.hit in v1_identical
v3.hit = v1_new
end
end # if
end # for
end # if
end # for
end # while
return automaton
end # function
###########################
### Auxiliary Functions ###
###########################
#= Find minimal sized Integer to use for automaton construction =#
function _word_type(Lambda::Set{T}, k::S) where {T <: Constraint, S <: Integer}
n = 0
for lambda in Lambda
if typeof(lambda) == RowHitConstraint && lambda.x > n
n = lambda.x
end # if
end # for
if k + 2*n < 64 - 2
return Int64
else
return BigInt
end # if
end # function
_word_type(lambda::T, k::S) where {T <: Constraint, S <: Integer} = _word_type(Set{T}([lambda]), k)
#= Find minimal size of automaton (specifically used by sizehint for the dictionary in the automaton) =#
_minimal_size(lambda::AnyHitConstraint) = binomial(lambda.k, lambda.x)
_minimal_size(lambda::AnyMissConstraint) = binomial(lambda.k, lambda.k - lambda.x)
_minimal_size(lambda::RowMissConstraint) = lambda.x + 1
function _minimal_size(lambda::RowHitConstraint)
if lambda.x > lambda.k
return 0
elseif lambda.k < 2*lambda.x
return 1
elseif lambda.k == 2*lambda.x
return lambda.x + 1
elseif lambda.k == 2*lambda.x + 1
return lambda.x + 2
elseif lambda.k < 3*lambda.x
return 2*_minimal_size(RowHitConstraint(lambda.x, lambda.k - 1)) - _minimal_size(RowHitConstraint(lambda.x, lambda.k - 2)) + 1
else
return _minimal_size(RowHitConstraint(lambda.x, lambda.k - 1)) + lambda.x
end # if
end # function
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 13007 | export is_dominant,
is_equivalent,
is_satisfied
#################
### Overloads ###
#################
#= Override get function for structs of type Constraint =#
function Base.getproperty(c::Constraint, s::Symbol)
if s === :x || s === :k
return getproperty(c.data, s)
end # if
getfield(c, s)
end # function
#####################
### Aux Functions ###
#####################
#= get the number of hits necessary in a window according to lambda =#
_get_nbr_cons_hits(lambda::RowHitConstraint) = lambda.x
_get_nbr_cons_hits(lambda::RowMissConstraint) = lambda.k - lambda.x
_get_nbr_cons_hits(lambda::AnyHitConstraint) = lambda.x
_get_nbr_cons_hits(lambda::AnyMissConstraint) = lambda.k - lambda.x
function _get_nbr_cons_hits(Lambda::Set{T}) where {T <: Constraint}
lambda_max_n = reduce(Lambda) do x, y
(_get_nbr_cons_hits(x) > _get_nbr_cons_hits(y)) ? x : y end
return _get_nbr_cons_hits(lambda_max_n)
end # function
#= get the maximum number of consecutive misses permissed a window according to Lambda =#
_get_nbr_cons_misses(lambda::RowHitConstraint) = (lambda.k >= 2*lambda.x) ? lambda.k - 2*lambda.x + 1 : 0
_get_nbr_cons_misses(lambda::RowMissConstraint) = lambda.x
_get_nbr_cons_misses(lambda::AnyHitConstraint) = lambda.k - lambda.x
_get_nbr_cons_misses(lambda::AnyMissConstraint) = lambda.x
function _get_nbr_cons_misses(Lambda::Set{T}) where {T <: Constraint}
lambda_min_z = reduce(Lambda) do x, y
(_get_nbr_cons_misses(x) < _get_nbr_cons_misses(y)) ? x : y end
return _get_nbr_cons_misses(lambda_min_z)
end # function
#= Returns true if a sequence of all misses is permitted =#
_allmissespermitted(lambda::RowHitConstraint) = lambda.x == 0
_allmissespermitted(lambda::RowMissConstraint) = lambda.x == lambda.k
_allmissespermitted(lambda::AnyHitConstraint) = lambda.x == 0
_allmissespermitted(lambda::AnyMissConstraint) = lambda.x == lambda.k
function _allmissespermitted(Lambda::Set{T}) where {T <: Constraint}
for lambda in Lambda
if !_allmissespermitted(lambda)
return false
end # if
end # for
return true
end # function
#= Extends word w with (k-n) set bits from position n to position k (counting from right to left) =#
_extendword(w::T, n, k) where {T <: Integer} = (consword(T(k-n)) << T(n)) | w
##############################
### Satisfaction Functions ###
##############################
#= Returns whether the word/integer w satisfies the RowHitConstraint lambda =#
function is_satisfied(lambda::RowHitConstraint, w::T) where {T <: Integer}
# Check if all misses is permitted
if w == 0
return _allmissespermitted(lambda)
end
# Append hits at beginning and end of sequence w
cons_w = consword(T(lambda.x))
w = (((cons_w << nbits(w)) | T(w)) << T(lambda.x)) | cons_w
n = nbits(w)
cmp_w = consword(T(lambda.k))
# Add hits to beginning of word if word is shorter than window
if n < lambda.k
w = _extendword(w, n, lambda.k)
n = lambda.k
end
# Iterate sequence w to check if constraint is satisfied
while n >= lambda.k
if nconsbits(w & cmp_w) < lambda.x
return false
end # if
w >>= T(1)
n -= T(1)
end # for
return true
end # function
#= Returns whether the word/integer w satisfies the RowMissConstraint lambda =#
function is_satisfied(lambda::RowMissConstraint, w::T) where {T <: Integer}
# Check if all misses is permitted
if w == 0
return _allmissespermitted(lambda)
end
# Add hits to beginning of word if word is shorter than window
n = nbits(w)
if n < lambda.k
w = _extendword(w, n, lambda.k)
n = lambda.k
end
# Iterate sequence w to check if constraint is satisfied
cons_w = consword(T(lambda.x + 1))
while n >= lambda.k
if (w & cons_w) == 0 # all misses
return false
end # if
w >>= T(1)
n -= T(1)
end # for
return true
end # function
#= Returns whether the word/integer w satisfies the AnyHitConstraint lambda =#
function is_satisfied(lambda::AnyHitConstraint, w::T) where {T <: Integer}
# Check if all misses is permitted
if w == 0
return _allmissespermitted(lambda)
end
# Add hits to beginning of word if word is shorter than window
n = nbits(w)
if n < lambda.k
w = _extendword(w, n, lambda.k)
n = lambda.k
end
# Iterate sequence w to check if constraint is satisfied
cons_w = consword(T(lambda.k))
while n >= lambda.k
if nsetbits(w & cons_w) < lambda.x
return false
end # if
w >>= T(1)
n -= T(1)
end # for
return true
end # function
#= Returns whether the word/integer w satisfies the AnyMissConstraint lambda =#
function is_satisfied(lambda::AnyMissConstraint, w::T) where {T <: Integer}
# Check if all misses is permitted
if w == 0
return _allmissespermitted(lambda)
end
# Add hits to beginning of word if word is shorter than window
n = nbits(w)
if n < lambda.k
w = _extendword(w, n, lambda.k)
n = lambda.k
end
# Iterate sequence w to check if constraint is satisfied
cons_w = consword(T(lambda.k))
while n >= lambda.k
if nsetbits(w & cons_w) < lambda.k - lambda.x
return false
end # if
w >>= T(1)
n -= T(1)
end # for
return true
end # function
#= Returns whether the word/integer w satisfies the Constraint Set Lambda =#
function is_satisfied(Lambda::Set{T}, w::S) where {T <: Constraint, S <: Integer}
for lambda in Lambda
if !is_satisfied(lambda, w)
return false
end # if
end # for
return true
end # function
####################################
### Domination Multiple Dispatch ###
####################################
function is_dominant(lambda1::AnyMissConstraint, lambda2::AnyMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyMiss, lambda2 = AnyMiss
return is_dominant(AnyHitConstraint(lambda1.k-lambda1.x, lambda1.k), AnyHitConstraint(lambda2.k-lambda2.x, lambda2.k))
end # function
function is_dominant(lambda1::AnyMissConstraint, lambda2::AnyHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyMiss, lambda2 = AnyHit
return is_dominant(AnyHitConstraint(lambda1.k-lambda1.x, lambda1.k), lambda2)
end # function
function is_dominant(lambda1::AnyMissConstraint, lambda2::RowMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyMiss, lambda2 = RowMiss
return is_dominant(AnyHitConstraint(lambda1.k-lambda1.x, lambda1.k), AnyHitConstraint(1, lambda2.k))
end # function
function is_dominant(lambda1::AnyMissConstraint, lambda2::RowHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyMiss, lambda2 = RowHit
return is_dominant(AnyHitConstraint(lambda1.k-lambda1.x, lambda1.k), lambda2)
end # function
function is_dominant(lambda1::AnyHitConstraint, lambda2::AnyMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyHit, lambda2 = AnyMiss
return is_dominant(lambda1, AnyHitConstraint(lambda2.k-lambda2.x, lambda2.k))
end # function
function is_dominant(lambda1::AnyHitConstraint, lambda2::AnyHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyHit, lambda2 = AnyHit
# Variable extraction
x1, k1 = lambda1.x, lambda1.k
x2, k2 = lambda2.x, lambda2.k
# Checking the trivial case
if x1 == k1
return true
elseif x2 == k2
return false
end
# Domination condition
return x2 <= max(floor(Int64, k2 / k1) * x1, k2 + ceil(Int64, k2 / k1) * (x1 - k1))
end # function
function is_dominant(lambda1::AnyHitConstraint, lambda2::RowMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyHit, lambda2 = RowMiss
return is_dominant(lambda1, AnyHitConstraint(1, lambda2.k))
end # function
function is_dominant(lambda1::AnyHitConstraint, lambda2::RowHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = AnyHit, lambda2 = RowHit
# Variable extraction
x1, k1 = lambda1.x, lambda1.k
x2, k2 = lambda2.x, lambda2.k
z1 = k1-x1
# Checking trivial case
if x1 == k1
return true
elseif 2*x2 > k2
return false
elseif x2 == 0
return true
elseif x1 == 0
return false
end
# Domination condition
return x2 <= min(floor(Int64, k2/(z1+1)), ceil(Int64, x1/z1))
end # function
function is_dominant(lambda1::RowMissConstraint, lambda2::AnyMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowMiss, lambda2 = AnyMiss
return is_dominant(AnyHitConstraint(1, lambda1.k), AnyHitConstraint(lambda2.k-lambda2.x, lambda2.k))
end # function
function is_dominant(lambda1::RowMissConstraint, lambda2::AnyHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowMiss, lambda2 = AnyHit
return is_dominant(AnyHitConstraint(1, lambda1.k), lambda2)
end # function
function is_dominant(lambda1::RowMissConstraint, lambda2::RowMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowMiss, lambda2 = RowMiss
return is_dominant(AnyHitConstraint(1, lambda1.k), AnyHitConstraint(1, lambda2.k))
end # function
function is_dominant(lambda1::RowMissConstraint, lambda2::RowHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowMiss, lambda2 = RowHit
return is_dominant(AnyHitConstraint(1, lambda1.k), lambda2)
end # function
function is_dominant(lambda1::RowHitConstraint, lambda2::AnyMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowHit, lambda2 = AnyMiss
return is_dominant(lambda1, AnyHitConstraint(lambda2.k-lambda2.x, lambda2.k))
end # function
function is_dominant(lambda1::RowHitConstraint, lambda2::AnyHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowHit, lambda2 = AnyHit
# Variable Extraction
x1, k1 = lambda1.x, lambda1.k
x2, k2 = lambda2.x, lambda2.k
z1 = k1-2*x1+1
# Checking trivial case
if 2*x1 > k1
return true
elseif x2 == k2
return false
elseif x2 == 0
return true
elseif x1 == 0
return false
end
# Domination condition
return x2 <= max(x1*floor(Int64, k2/(z1+x1)), k2 - floor(Int64, k2/(z1+x1))*z1 - z1)
end # function
function is_dominant(lambda1::RowHitConstraint, lambda2::RowMissConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowHit, lambda2 = RowMiss
return is_dominant(lambda1, AnyHitConstraint(1, lambda2.k))
end # function
function is_dominant(lambda1::RowHitConstraint, lambda2::RowHitConstraint)
# Returns if lambda1 dominates lambda2: lambda1 <= lambda2
# lambda1 = RowHit, lambda2 = RowHit
# Variable extraction
x1, k1 = lambda1.x, lambda1.k
x2, k2 = lambda2.x, lambda2.k
# Checking trivial case
if 2*x1 > k1
return true
elseif 2*x2 > k2
return false
elseif x2 == 0
return true
elseif x1 == 0
return false
end
# Domination condition
return (k2 < k1 && x2 <= x1 - ceil(Int64, (k1-k2)/2 )) || (k2 >= k1 && x2 <= x1)
end # function
### Equivalence function
function is_equivalent(lambda1::Constraint, lambda2::Constraint)
# Returns if lambda1 is equivalent to lambda2: lambda1 === lambda2
return is_dominant(lambda1, lambda2) && is_dominant(lambda2, lambda1)
end # function
##################
### Docstrings ###
##################
@doc """
is_satisfied(L, w)
Returns whether the word `w` satisfies the constraint `L` or not; here, `L` can be either a single constraint or a constraint set.
# Examples
```jldoctest
julia> is_satisfied(AnyHitConstraint(1, 3), 595) # bitstring(595) = ...1001010011
true
julia> is_satisfied(AnyHitConstraint(1, 3), 600) # bitstring(600) = ...1001011000
false
```
""" is_satisfied
@doc """
is_dominant(l1, l2)
Returns whether the weakly-hard constraint `l1` dominates `l2` or not.
# Examples
```jldoctest
julia> is_dominant(AnyHitConstraint(1, 3), RowMissConstraint(1))
false
julia> is_dominant(AnyHitConstraint(1, 3), RowMissConstraint(2))
true
```
""" is_dominant
@doc """
is_equivalent(l1, l2)
Returns whether the weakly-hard constraint `l1` is equivalent to `l2` or not.
# Examples
```jldoctest
julia> is_equivalent(AnyHitConstraint(1, 3), RowMissConstraint(1))
false
julia> is_equivalent(AnyHitConstraint(1, 3), RowMissConstraint(2))
true
```
""" is_equivalent
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 890 | #=
# LinkedList of not yet treated vertices
=#
mutable struct _ListEle{T <: Integer}
vertex::WordVertex{T}
next::Union{_ListEle{T}, Nothing}
# _ListEle constructors
_ListEle{T}(vertex, next) where {T <: Integer} = new(vertex, next)
end # struct
mutable struct _UninitializedList{T <: Integer}
n::Int32
head::Union{_ListEle{T}, Nothing}
# _UninitializedList constructors
_UninitializedList{T}() where {T <: Integer} = new(0, nothing)
end
function _push!(l::_UninitializedList{T}, v::WordVertex{T}) where {T <: Integer}
l.n += 1
l.head = _ListEle{T}(v, l.head) # Create list element
end
function _pop!(l::_UninitializedList{T}) where {T <: Integer}
if (isnothing(l.head))
error("pop!: Can't pop from an empty list")
return
end
l.n -= 1
v = l.head.vertex
l.head = l.head.next
return v
end
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 2584 | export dominant_set
function _remove_equivalent(Lambda)
#= Removes all but one of equivalent constraints =#
Lambda_new = Set{Constraint}()
for lambda_i in Lambda
push!(Lambda_new, lambda_i)
for lambda_j in Lambda
if (lambda_i != lambda_j
&& lambda_j in Lambda_new
&& is_equivalent(lambda_i, lambda_j))
delete!(Lambda_new, lambda_i)
break
end # if
end # for
end # for
return Lambda_new
end # function
"""
dominant_set(Lambda::Set{Constraint})
Calculates the dominant constraint set given a set of weakly-hard constraints, `Lambda`.
# Examples
```jldoctest
julia> dominant_set(Set([RowMissConstraint(1),
AnyMissConstraint(3, 5),
AnyMissConstraint(1, 7)]))
Set{Constraint} with 1 element:
AnyMissConstraint(1, 7)
```
"""
function dominant_set(Lambda::Set{Constraint})::Set{Constraint}
Lambda = _remove_equivalent(Lambda)
# Return full set if there is only one constraint
if length(Lambda) == 1
return Lambda
end
# Add Constraints to a connectivity-graph
dominance_graph = Dict(lambda => Set{Constraint}() for lambda in Lambda)
for lambda_i in Lambda
for lambda_j in Lambda
if lambda_i != lambda_j
# Add edge if lambda_i <= lambda_j
if is_dominant(lambda_i, lambda_j)
push!(dominance_graph[lambda_i], lambda_j)
# Else, if
# lambda_i </= lambda_j and lambda_j </= lambda_i,
# add undirected edge
elseif !is_dominant(lambda_j, lambda_i)
push!(dominance_graph[lambda_i], lambda_j)
push!(dominance_graph[lambda_j], lambda_i)
end # if
end # if
end # for
end # for
# For all constraints
for (lambda_i, doms) in dominance_graph
# For all dominations of the constraint
for lambda_j in doms
# If lambda_j is in the dominance graph but it does not dominate
# lambda_i, remove it (since lambda_i <= lambda_j).
# NOTE: We do not have to remove it if it is not already in the graph.
if lambda_j in keys(dominance_graph) && !(lambda_i in dominance_graph[lambda_j])
delete!(dominance_graph, lambda_j)
end # if
end # for
end # for
# Return the dominant constraints
return Set(keys(dominance_graph))
end # function
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 2811 | #################
### Automaton ###
#################
function Base.show(io::IO, automaton::Automaton{T}) where {T <: Integer}
if isempty(automaton.data)
print(io, "Uninitialized $(typeof(automaton))")
else
k = maximum(x -> nbits(x), keys(automaton.data))
println(io, "$(typeof(automaton)) with $(length(automaton)) vertices:")
println(io, "{")
i = 1
for p in automaton.data
if i >= 21
println(io, "\t...")
break
end
println(io, "\t$(_compactstring(p[2], k))")
i +=1
end
print(io, "} with head: $(automaton.head)")
end
end
##################
### WordVertex ###
##################
#= WordVertex - Returns a string representation of the word/integer corresponding to n =#
_wordstring(n::WordVertex{BigInt}) = bitstring(n.w)
_wordstring(n::WordVertex{T}) where {T <: Integer} = bitstring(n.w)[end-nbits(n.w)+1:end]
#= WordVertex - Returns a string representation of the word/integer corresponding to the child s of n =#
_childstring(n::WordVertex{T}, s::Symbol) where {T <: Integer} = !_childexists(n, s) ? '-' : _wordstring(getfield(n, s))
#= WordVertex - Returns a compact bitstring representation of the WordVertex n (of length k) =#
function _compactstring(n::WordVertex{T}, k::Integer) where {T <: Integer}
"$(typeof(n))($(bitstring(n.w)[end-k+1:end]) => "*
"$(!_childexists(n, :miss) ? '-'^k : bitstring(n.miss.w)[end-k+1:end]), " *
"$(bitstring(n.hit.w)[end-k+1:end]))"
end # function
function _compactstring(n::WordVertex{BigInt}, k::Integer)
"$(typeof(n))($(bitstring(n.w)) => "*
"$(!_childexists(n, :miss) ? '-' : bitstring(n.miss.w)), " *
"$(bitstring(n.hit.w)))"
end # function
#= WordVertex - Printing =#
function Base.String(n::WordVertex{T}) where {T <: Integer}
"$(typeof(n))($(_wordstring(n)) => $(_childstring(n, :miss)), $(_childstring(n, :hit)))"
end
function Base.show(io::IO, n::WordVertex{T}) where {T <: Integer}
print(io, String(n))
end
################
### Alphabet ###
################
"""
bitstring(w::BigInt [, n::Integer])
A String giving the literal bit representation of a big integer `w`.
If `n` is specified, it pads the bit representation to contain _at least_ `n` characters.
## Examples
```jldoctest
julia> bitstring(BigInt(4))
"100"
julia> bitstring(BigInt(4), 5)
"00100"
```
"""
Base.bitstring(w::BigInt) = string(w, base = 2)
Base.bitstring(w::BigInt, N::Integer) = string(w, pad = unsigned(N), base = 2)
##################
### Constraint ###
##################
function Base.show(io::IO, lambda::Constraint)
print(io, typeof(lambda))
print(io, (lambda.x, lambda.k))
end
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 3171 | export random_sequence,
all_sequences
#################
### Functions ###
#################
"""
random_sequence(automaton::Automaton, N::Integer)
The function takes an arbitrary walk of length `N` in `automaton`.
Returns a sequence that satisfy all weakly-hard constraints used to build the automaton.
"""
function random_sequence(automaton::Automaton{T}, N::S) where {T <: Integer, S <: Integer}
if N < 8
return _rand_seq(automaton.head, N, Int8(1))
elseif N < 16
return _rand_seq(automaton.head, N, Int16(1))
elseif N < 32
return _rand_seq(automaton.head, N, Int32(1))
elseif N < 64
return _rand_seq(automaton.head, N, Int64(1))
else
return _rand_seq(automaton.head, N, BigInt(1))
end
end # function
"""
all_sequences(automaton::Automaton, N::Integer)
The function returns a set containing all sequences of length `N` satisfying the constraints used to build the automaton.
In other words, the function generates the satisfaction set of length `N` sequences.
## Example
```jldoctest
julia> all_sequences(build_automaton(AnyHitConstraint(2, 3)), 5)
Set{Int8} with 9 elements:
22
13
15
29
27
31
30
14
23
```
"""
function all_sequences(automaton::Automaton{T}, N::S) where {T <: Integer, S <: Integer}
if N < 8
return _recursive!(automaton.head, Set{Int8}(), N, Int8(0))
elseif N < 16
return _recursive!(automaton.head, Set{Int16}(), N, Int16(0))
elseif N < 32
return _recursive!(automaton.head, Set{Int32}(), N, Int32(0))
elseif N < 64
return _recursive!(automaton.head, Set{Int64}(), N, Int64(0))
else
return _recursive!(automaton.head, Set{BigInt}(), N, BigInt(0))
end
end # function
#####################
### Aux functions ###
#####################
function _rand_seq(vertex::WordVertex{T}, N::S, seq::R) where {T <: Integer, S <: Integer, R}
# Random walk
for _ in 1:N-1
seq <<= R(1)
c::Symbol = _rand_neighbour!(vertex)
vertex = getfield(vertex, c)
seq |= (c === :miss) ? R(0) : R(1)
end # for
return seq
end # function
function _rand_neighbour!(vertex::WordVertex{T})::Symbol where {T <: Integer}
#= Picks a random neighbour =#
if _childexists(vertex, :miss)
return rand([:miss, :hit])
else
return :hit
end
end # function
function _recursive!(vertex::WordVertex{T},
seq_set::Set{R},
N::S,
seq::R) where {T <: Integer, R <: Integer, S <: Integer}
_recursive_sequence!(vertex, seq_set, N, seq)
return seq_set
end # function
function _recursive_sequence!(vertex::WordVertex{T},
seq_set::Set{R},
N::S,
seq::R) where {T <: Integer, R <: Integer, S <: Integer}
if N == 0 # base case
push!(seq_set, seq)
else
if _childexists(vertex, :miss)
_recursive_sequence!(vertex.miss, seq_set, N-S(1), seq << R(1))
end
_recursive_sequence!(vertex.hit, seq_set, N-S(1), (seq << R(1)) | R(1))
end
end # function
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 3091 | export AbstractAutomaton,
Automaton,
WordVertex,
Constraint,
RowHitConstraint,
RowMissConstraint,
AnyHitConstraint,
AnyMissConstraint,
Hit, H,
Miss, M
################
### Alphabet ###
################
""" A deadline miss -- representated as UInt8(0) """
const Miss = UInt8(0)
""" A deadline miss -- representated as UInt8(0) (equivalent to Miss) """
const M = Miss
""" A deadline hit -- representated as UInt8(1) """
const Hit = UInt8(1)
""" A deadline hit -- representated as UInt8(1) (equivalent to Hit) """
const H = Hit
##################
### WordVertex ###
##################
"""
A struct keep track of the current node and its direct children (if some exist).
"""
mutable struct WordVertex{T <: Integer}
w::T
miss::Union{Nothing, WordVertex{T}}
hit::Union{Nothing, WordVertex{T}}
#= WordVertex constructors =#
WordVertex{T}(w) where {T <: Integer} = new(w, nothing, nothing)
WordVertex{T}(w, miss, hit) where {T <: Integer} = new(w, miss, hit)
end # struct
#################
### Automaton ###
#################
""" Abstract representation of an automaton type """
abstract type AbstractAutomaton end
"""
Automaton()
Automaton struct containing a dict to represent the vertices (including head) and transitions of the automaton.
* Key = Word (represented by integer).
* Value = WordVertex (containing current vertex and its direct children vertices)
"""
struct Automaton{T <: Integer} <: AbstractAutomaton
head::Union{Nothing, WordVertex{T}}
data::Dict{T, WordVertex{T}}
#= Automaton Constructor =#
Automaton{T}(head) where {T <: Integer} = new(head, Dict{T, WordVertex{T}}())
Automaton{T}() where {T <: Integer} = new(nothing, Dict{T, WordVertex{T}}())
end # struct
###################
### Constraints ###
###################
""" Abstract representation of a constraint type """
abstract type Constraint end
#= Data representation for individual constraints =#
struct ConstraintData
x::Int64
k::Int64
ConstraintData(x, k) = (x < 0 || x > k || k < 1) ? error("Invalid input") : new(x, k)
end
struct RowHitConstraint <: Constraint
data::ConstraintData
end
struct RowMissConstraint <: Constraint
data::ConstraintData
end
struct AnyHitConstraint <: Constraint
data::ConstraintData
end
struct AnyMissConstraint <: Constraint
data::ConstraintData
end
#= Constraint Constructors =#
"""
RowMissConstraint(x)
Constructor for RowMissConstraint.
"""
RowMissConstraint(x::Int64) = RowMissConstraint(ConstraintData(x, x+1))
RowMissConstraint(x, k) = RowMissConstraint(ConstraintData(x, x+1))
"""
RowHitConstraint(x, k)
Constructor for RowHitConstraint.
"""
RowHitConstraint(x, k) = RowHitConstraint(ConstraintData(x, k))
"""
AnyMissConstraint(x, k)
Constructor for AnyMissConstraint.
"""
AnyMissConstraint(x, k) = AnyMissConstraint(ConstraintData(x, k))
"""
AnyHitConstraint(x, k)
Constructor for AnyHitConstraint.
"""
AnyHitConstraint(x, k) = AnyHitConstraint(ConstraintData(x, k))
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 8102 | module AutomatonTests
using Test
using WeaklyHard
using WeaklyHard: nbits, shift, shift_rowhit, _childexists, consword
##########################
#### Common Variables ####
##########################
k_max = 20
n_constraints = 6
n_tests = 1_000
types = [Int8, Int16, Int32, Int64, BigInt]
#####################
#### Shift tests ####
#####################
function test_shift_correctness(w::T, c) where {T <: Integer}
newWord = (w << 1) | T(c)
if c == M
return newWord == shift(w, c)
else
return newWord - T(2^(nbits(newWord)-1)) == shift(w, c)
end # if
end # function
function test_shift_rowhit_correctness(w::T, c, n::T) where {T <: Integer}
newWord = (w << 1) | T(c)
if c == M
return newWord == shift_rowhit(w, c, n)
else
return ((newWord & n == n) ? n : newWord) == shift_rowhit(w, c, n)
end # if
end # function
@testset "Shift Tests" begin
chars = [H, M]
for T in types
for _ in 1:n_tests
@test test_shift_correctness(rand(T(1):T(8*sizeof(T)-1)), rand(chars))
end # for
end # for
end # testset
@testset "Shift_RowHit Tests" begin
chars = [H, M]
for T in types
n = consword( rand( T(1) : max( T(sizeof(T) - 1), T(1) ) ) )
for _ in 1:n_tests
@test test_shift_rowhit_correctness(rand(T(1):T(8*sizeof(T)-1)), rand(chars), n)
end # for
end # for
end # testset
####################
### Vertex tests ###
####################
function test_vertex_correctness(Lambda::Set{T}) where {T <: Constraint}
if length(Lambda) == 1
L = pop!(Lambda)
else
L = dominant_set(Lambda)
end
automaton = build_automaton(L)
seq = random_sequence(automaton, 5000)
c = is_satisfied(L, seq)
if !c
return false
end
for n in vertices(automaton)
if (!is_satisfied(L, Int64(n.w))
|| (_childexists(n, :miss) && !is_satisfied(L, Int64(n.miss.w)))
|| !is_satisfied(L, Int64(n.hit.w)))
return false
end
end
true
end # function
@testset "Vertices Tests" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
tested = Set{Set{Constraint}}()
for _ in 1:n_tests
Lambda = Set{Constraint}()
nbr_c = rand(1:n_constraints)
for _ in 1:nbr_c
k = rand(1:k_max)
x = rand(1:max(k-1, 1))
lambda_type = rand(constraint_names)
if lambda_type == "RowHitConstraint"
x = x #floor(Int, x/2)
end
push!(Lambda, getfield(WeaklyHard, Symbol(lambda_type))(x, k))
end # for
L = dominant_set(Lambda)
if !(L in tested)
push!(tested, L)
c = test_vertex_correctness(Lambda)
@test c
if !c
@show "###############"
@show "Lambda:"
for l in Lambda
@show l
end
@show "---------------"
@show "Lambda_star:"
Lambda_star = dominant_set(Lambda)
for l in Lambda_star
@show l
end
@show "###############"
return
end
end
end # for
println(" ")
println("Executed tests on $(length(tested)) different automata")
end # testset
############################
##### Transitions tests ####
############################
function test_transition_correctness(Lambda::Set{T}) where {T <: Constraint}
if length(Lambda) == 1
L = pop!(Lambda)
else
L = Lambda
end
automaton = build_automaton(L)
trans = transitions(automaton)
for v in vertices(automaton)
v1 = v.hit
if !((v.w, v1.w, H) in trans)
return false
end
if _childexists(v, :miss)
v2 = v.miss
if !((v.w, v2.w, M) in trans)
return false
end
end
end # for
return true
end # function
@testset "Transitions Tests" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
tested = Set{Set{Constraint}}()
for _ in 1:n_tests
Lambda = Set{Constraint}()
nbr_c = rand(1:n_constraints)
for _ in 1:nbr_c
k = rand(1:k_max)
x = rand(1:max(k-1, 1))
lambda_type = rand(constraint_names)
if lambda_type == "RowHitConstraint"
x = x #floor(Int, x/2)
end
push!(Lambda, getfield(WeaklyHard, Symbol(lambda_type))(x, k))
end # for
L = dominant_set(Lambda)
if !(L in tested)
push!(tested, L)
c = test_transition_correctness(Lambda)
@test c
if !c
@show "###############"
@show "Lambda:"
@show Lambda
@show "---------------"
@show "Lambda_star:"
Lambda_star = dominant_set(Lambda)
@show Lambda_star
@show "###############"
return
end
end
end # for
println(" ")
println("Executed tests on $(length(tested)) different automata")
end # testset
############################
##### Automata tests #######
############################
@testset "Set-construction Tests" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
n_constraints = 3
k_max = 15
n_tests = 1_000
for _ in 1:n_tests
Lambda = Set{Constraint}()
n = rand(1:n_constraints)
for _ in 1:n
k = rand(1:k_max)
x = rand(0:k)
lambda_type = rand(constraint_names)
if lambda_type == "RowHitConstraint"
x = floor(Int, x/2)
end
push!(Lambda, getfield(WeaklyHard, Symbol(lambda_type))(x, k))
end # for
Lambda_star = dominant_set(Lambda)
G = build_automaton(Lambda_star)
minimize_automaton!(G)
all_seq = all_sequences(G, k_max+1) # +1 to account for RowMissConstraints
for seq in all_seq
if !is_satisfied(Lambda_star, seq)
@show Lambda
@show Lambda_star
@show seq
@show bitstring(seq)
end
@test is_satisfied(Lambda_star, seq)
end # for
end # for
end # testset
function equivalence_test_min(g_min::Automaton, g::Automaton)
ks_min = keys(g_min.data)
ks = keys(g.data)
for k_min in ks_min
if !(k_min in ks)
return false # if the vertex doesn't exist in both automata
elseif WeaklyHard._childexists(g.data[k_min], :miss)
if g_min.data[k_min].miss.w != g.data[k_min].miss.w || g_min.data[k_min].hit.w != g.data[k_min].hit.w
return false # if the vertices children differ in the different automata
end # if
else
if g_min.data[k_min].hit.w != g.data[k_min].hit.w
return false # if the vertices children differ in the different automata
end # if
end # if
end # for
return true
end # function
@testset "Minimizing single-constraint automata" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
k_max = 15
n_tests = 1_000
for _ in 1:n_tests
k = rand(1:k_max)
x = rand(0:k)
lambda_type = rand(constraint_names)
if lambda_type == "RowHitConstraint"
x = floor(Int, x/2)
end
l = getfield(WeaklyHard, Symbol(lambda_type))(x, k)
g_min = build_automaton(l)
g = build_automaton(l)
minimize_automaton!(g_min)
@test equivalence_test_min(g_min, g)
end # for
end # testset
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 13558 | module ConstraintTests
using Test
using WeaklyHard
using WeaklyHard: consword
##############################
### Generate all sequences ###
##############################
const k_max = 5
const types = [Int8, Int16, Int32, Int64, BigInt]
generate_all_seq(k::T) where {T <: Integer} = (k <= 8*sizeof(T) - 1) ? [(T(1) << k) | i for i in T(0):T(2^k-1)] : error("Can't create that long sequences of $T")
const seqs = generate_all_seq(Int32(k_max))
@show length(seqs)
generate_all_valid(lambda::T) where {T <: Constraint} = Set{Int32}(filter(x -> is_satisfied(lambda, x), seqs))
################################################
### Aux functions for individual constraints ###
################################################
function trivial_rowhit(x, k)
lambda = RowHitConstraint(x, k)
# Parameter tests
@test lambda.x == x
@test lambda.k == k
z = k - 2*x + 1
# Function tests
for T in types
s = 8*sizeof(T)
if k + 2*x < s
# Trivial tests
@test (x==0) ? is_satisfied(lambda, T(0)) : !is_satisfied(lambda, T(0))
@test (2*x > k) ? !is_satisfied(lambda, consword(T(k)) << 1) : is_satisfied(lambda, consword(T(k)) << 1)
end # if
end # for
end # function
function trivial_rowmiss(x, k)
lambda = RowMissConstraint(x, k)
# Parameter tests
@test lambda.x == x
@test lambda.k == x+1
# Function tests
for T in types
s = 8*sizeof(T)
if k < s
# Trivial tests
if x == 0
@test !is_satisfied(lambda, T(1) << 1)
else
@test is_satisfied(lambda, T(1) << lambda.x)
@test !is_satisfied(lambda, T(1) << (lambda.x+1))
end # if
end # if
end # for
end # function
function trivial_anymiss(x, k)
lambda = AnyMissConstraint(x, k)
# Parameter tests
@test lambda.x == x
@test lambda.k == k
# Function tests
for T in types
s = 8*sizeof(T)
if k < s
# Trivial tests
if x == 0
@test !is_satisfied(lambda, T(1) << 1)
elseif x == k
@test is_satisfied(lambda, T(0))
else
@test is_satisfied(lambda, consword(T(lambda.k)) << lambda.x)
@test !is_satisfied(lambda, consword(T(lambda.k)) << (lambda.x+1))
end # if
end #if
end # for
end # function
function trivial_anyhit(x, k)
lambda = AnyHitConstraint(x, k)
# Parameter tests
@test lambda.x == x
@test lambda.k == k
# Function tests
for T in types
s = 8*sizeof(T)
if k < s
# Trivial tests
if x == 0
@test is_satisfied(lambda, T(0))
elseif x == k
@test !is_satisfied(lambda, T(1) << 1)
else
@test is_satisfied(lambda, consword(T(lambda.k)) << (lambda.k - lambda.x))
@test !is_satisfied(lambda, consword(T(lambda.k)) << (lambda.k - lambda.x + 1))
end # if
end # if
end # for
end # function
########################################
### Tests for individual constraints ###
########################################
@testset "Trivial Tests - RowHitConstraint" begin
for k in 1:200
for x in 0:k
trivial_rowhit(x, k)
end # for
end # for
end # testset
@testset "Trivial Tests - RowMissConstraint" begin
for k in 1:200
for x in 0:k
trivial_rowmiss(x, k)
end # for
end # for
end # testset
@testset "Trivial Tests - AnyMissConstraint" begin
for k in 1:200
for x in 0:k
trivial_anymiss(x, k)
end # for
end # for
end # testset
@testset "Trivial Tests - AnyHitConstraint" begin
for k in 1:200
for x in 0:k
trivial_anyhit(x, k)
end # for
end # for
end # testset
###############################
### Aux dominance functions ###
###############################
function rowmissrowmiss_tests(x1, x2)
c1 = RowMissConstraint(x1)
c2 = RowMissConstraint(x2)
if x1 == x2
@test is_dominant(c1, c2) && is_dominant(c2, c1)
elseif x1 < x2
@test is_dominant(c1, c2)
else
@test is_dominant(c2, c1)
end
end # function
function rowhitrowhit_tests(x1, k1, x2, k2)
c1 = RowHitConstraint(x1, k1)
c2 = RowHitConstraint(x2, k2)
if x2 == 0
@test is_dominant(c1, c2)
elseif x1 == 0
@test !is_dominant(c1, c2)
elseif k2 >= k1
@test (x2 <= x1) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
else
@test (x2 <= x1 - ceil( (k1-k2)/2 )) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end
end # function
function anymissanymiss_tests(x1, k1, x2, k2)
c1 = AnyMissConstraint(x1, k1)
c2 = AnyMissConstraint(x2, k2)
n1 = k1 - x1
n2 = k2 - x2
@test (n2 <= max(n1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(n1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function anyhitanyhit_tests(x1, k1, x2, k2)
c1 = AnyHitConstraint(x1, k1)
c2 = AnyHitConstraint(x2, k2)
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
#######################
### Dominance tests ###
#######################
@testset "RowMiss-RowMiss - Tests" begin
for i in 1:10000
x1 = rand(0:i)
x2 = rand(0:i)
rowmissrowmiss_tests(x1, x2)
end # for
end # testset
@testset "RowHit-RowHit - Tests" begin
for i in 2:10001
k1 = rand(1:i)
k2 = rand(1:i)
x1 = rand(0:floor(Int, k1/2))
x2 = rand(0:floor(Int, k2/2))
rowhitrowhit_tests(x1, k1, x2, k2)
end # for
end # testset
@testset "AnyMiss-AnyMiss - Tests" begin
for i in 1:10000
k1 = rand(1:i)
k2 = rand(1:i)
x1 = rand(0:k1)
x2 = rand(0:k2)
anymissanymiss_tests(x1, k1, x2, k2)
end # for
end # testset
@testset "AnyHit-AnyHit - Tests" begin
for i in 1:10000
k1 = rand(1:i)
k2 = rand(1:i)
x1 = rand(0:k1)
x2 = rand(0:k2)
anyhitanyhit_tests(x1, k1, x2, k2)
end # for
end # testset
#################################
### Aux cross-dominance tests ###
#################################
### RowMiss-X ###
function rowmissrowhit_tests(x1, k1, x2, k2)
c1 = RowMissConstraint(x1)
c2 = RowHitConstraint(x2, k2)
x1 = 1
k1 = c1.x+1
z1 = k1-x1
@test (x2 <= min(floor(k2/(z1+1)), max(floor(k1/(z1+1)), ceil(x1/z1)))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function rowmissanymiss_tests(x1, k1, x2, k2)
c1 = RowMissConstraint(x1)
c2 = AnyMissConstraint(x2, k2)
x1 = 1
k1 = c1.x+1
x2 = k2 - x2
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function rowmissanyhit_tests(x1, k1, x2, k2)
c1 = RowMissConstraint(x1)
c2 = AnyHitConstraint(x2, k2)
x1 = 1
k1 = c1.x+1
x2 = x2
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
### RowHit-X ###
function rowhitrowmiss_tests(x1, k1, x2, k2)
c1 = RowHitConstraint(x1, k1)
c2 = RowMissConstraint(x2)
z1 = k1-2x1+1
x2 = 1
k2 = c2.x+1
@test (x2 <= max(x1*floor(k2/(z1+x1)), k2 - floor(k2/(z1+x1))*z1 - z1)) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function rowhitanymiss_tests(x1, k1, x2, k2)
c1 = RowHitConstraint(x1, k1)
c2 = AnyMissConstraint(x2, k2)
z1 = k1-2x1+1
x2 = k2-x2
@test (x2 <= max(x1*floor(k2/(z1+x1)), k2 - floor(k2/(z1+x1))*z1 - z1)) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function rowhitanyhit_tests(x1, k1, x2, k2)
c1 = RowHitConstraint(x1, k1)
c2 = AnyHitConstraint(x2, k2)
z1 = k1-2x1+1
return x2 <= max(x1*floor(k2/(z1+x1)), k2 - floor(k2/(z1+x1))*z1 - z1)
end # function
### AnyMiss-X ###
function anymissrowmiss_tests(x1, k1, x2, k2)
c1 = AnyMissConstraint(x1, k1)
c2 = RowMissConstraint(x2)
x1 = k1 - x1
x2 = 1
k2 = c2.x+1
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function anymissrowhit_tests(x1, k1, x2, k2)
c1 = AnyMissConstraint(x1, k1)
c2 = RowHitConstraint(x2, k2)
z1 = x1
x1 = k1-x1
@test (x2 <= min(floor(k2/(z1+1)), max(floor(k1/(z1+1)), ceil(x1/z1)))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function anymissanyhit_tests(x1, k1, x2, k2)
c1 = AnyMissConstraint(x1, k1)
c2 = AnyHitConstraint(x2, k2)
x1 = k1 - x1
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
### AnyHit-X ###
function anyhitrowmiss_tests(x1, k1, x2, k2)
c1 = AnyHitConstraint(x1, k1)
c2 = RowMissConstraint(x2)
x2 = 1
k2 = c2.x+1
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function anyhitrowhit_tests(x1, k1, x2, k2)
c1 = AnyHitConstraint(x1, k1)
c2 = RowHitConstraint(x2, k2)
z1 = k1-x1
@test (x2 <= min(floor(k2/(z1+1)), max(floor(k1/(z1+1)), ceil(x1/z1)))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
function anyhitanymiss_tests(x1, k1, x2, k2)
c1 = AnyHitConstraint(x1, k1)
c2 = AnyMissConstraint(x2, k2)
x2 = k2-x2
@test (x2 <= max(x1*floor(Int, k2/k1), k2+ceil(Int, k2/k1)*(x1-k1))) ? is_dominant(c1, c2) : !is_dominant(c1, c2)
end # function
#############################
### Cross-dominance tests ###
#############################
@testset "RowMiss-X - Analytic Tests" begin
for i in 1:10000
k = rand(1:i, 4)
x = [rand(0:j) for j in k]
rowmissrowhit_tests(x[1], x[1]+1, floor(Int, x[2]/2), k[2])
rowmissanymiss_tests(x[1], x[1]+1, x[3], k[3])
rowmissanyhit_tests(x[1], x[1]+1, x[4], k[4])
end # for
end # testset
@testset "RowHit-X - Analytic Tests" begin
for i in 1:10000
k = rand(1:i, 4)
x = [rand(0:j) for j in k]
rowhitrowmiss_tests(floor(Int, x[2]/2), k[2], x[1], x[1]+1)
rowhitanymiss_tests(floor(Int, x[2]/2), k[2], x[3], k[3])
rowhitanyhit_tests(floor(Int, x[2]/2), k[2], x[4], k[4])
end # for
end # testset
@testset "AnyMiss-X - Analytic Tests" begin
for i in 1:10000
k = rand(1:i, 4)
x = [rand(0:j) for j in k]
anymissrowmiss_tests(x[3], k[3], x[1], x[1]+1)
anymissrowhit_tests(x[3], k[3], floor(Int, x[2]/2), k[2])
anymissanyhit_tests(x[3], k[3], x[4], k[4])
end # for
end # testset
@testset "AnyHit-X - Analytic Tests" begin
for i in 1:10000
k = rand(1:i, 4)
x = [rand(0:j) for j in k]
anyhitrowmiss_tests(x[4], k[4], x[1], x[1]+1)
anyhitrowhit_tests(x[4], k[4], floor(Int, x[2]/2), k[2])
anyhitanymiss_tests(x[4], k[4], x[3], k[3])
end # for
end # testset
#######################
### satisfied tests ###
#######################
Threads.@threads for k1 = 1:k_max-1
for x1 in 0:k1
l1 = RowMissConstraint(x1)
S1 = generate_all_valid(l1)
@testset "BruteForce Tests" begin
for k2 = 1:k_max
for x2 = 0:k2
l2 = RowHitConstraint(x2, k2)
S2 = generate_all_valid(l2)
@test is_dominant(l1, l2) ? isempty(setdiff(S1, S2)) : !isempty(setdiff(S1, S2))
@test is_dominant(l2, l1) ? isempty(setdiff(S2, S1)) : !isempty(setdiff(S2, S1))
for k3 = 1:k_max
for x3 = 0:k3
l3 = AnyMissConstraint(x3, k3)
S3 = generate_all_valid(l3)
@test is_dominant(l1, l3) ? isempty(setdiff(S1, S3)) : !isempty(setdiff(S1, S3))
@test is_dominant(l2, l3) ? isempty(setdiff(S2, S3)) : !isempty(setdiff(S2, S3))
@test is_dominant(l3, l1) ? isempty(setdiff(S3, S1)) : !isempty(setdiff(S3, S1))
@test is_dominant(l3, l2) ? isempty(setdiff(S3, S2)) : !isempty(setdiff(S3, S2))
for k4 = 1:k_max
for x4 = 0:k4
l4 = AnyHitConstraint(x4, k4)
S4 = generate_all_valid(l4)
@test is_dominant(l1, l4) ? isempty(setdiff(S1, S4)) : !isempty(setdiff(S1, S4))
@test is_dominant(l2, l4) ? isempty(setdiff(S2, S4)) : !isempty(setdiff(S2, S4))
@test is_dominant(l3, l4) ? isempty(setdiff(S3, S4)) : !isempty(setdiff(S3, S4))
@test is_dominant(l4, l1) ? isempty(setdiff(S4, S1)) : !isempty(setdiff(S4, S1))
@test is_dominant(l4, l2) ? isempty(setdiff(S4, S2)) : !isempty(setdiff(S4, S2))
@test is_dominant(l4, l3) ? isempty(setdiff(S4, S3)) : !isempty(setdiff(S4, S3))
end # for
end # for
end # for
end # for
end # for
end # for
end # testset
end # for
end # for
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 2540 | module DominantSetTests
using Test
using WeaklyHard
const n_tests = 10_000
const k_max = 200
@testset "2 Random Constraints" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
for _ in 1:n_tests
k1 = rand(1:k_max)
k2 = rand(1:k_max)
x1 = rand(0:k1)
x2 = rand(0:k2)
l1_type = rand(constraint_names)
l2_type = rand(constraint_names)
if l1_type == "RowHitConstraint"
x1 = floor(Int, x1/2)
end
if l2_type == "RowHitConstraint"
x2 = floor(Int, x2/2)
end
lambda_1 = getfield(WeaklyHard, Symbol(l1_type))(x1, k1)
lambda_2 = getfield(WeaklyHard, Symbol(l2_type))(x2, k2)
Lambda = Set{Constraint}([lambda_1, lambda_2])
Lambda_star = dominant_set(Lambda)
if is_equivalent(lambda_1, lambda_2)
@test length(Lambda_star) == 1
elseif is_dominant(lambda_1, lambda_2)
@test length(Lambda_star) == 1 && (lambda_1 in Lambda_star)
elseif !is_dominant(lambda_2, lambda_1)
@test length(Lambda_star) == 2 && (lambda_1 in Lambda_star) && (lambda_2 in Lambda_star)
else
@test length(Lambda_star) == 1 && (lambda_2 in Lambda_star)
end #if
end # for
end # testset
@testset "Arbitrary Random Constraints" begin
constraint_names = ["RowMissConstraint", "RowHitConstraint", "AnyMissConstraint", "AnyHitConstraint"]
n_constraints = 30
for _ in 1:n_tests
Lambda = Set{Constraint}()
n = rand(1:n_constraints)
for _ in 1:n
k = rand(1:k_max)
x = rand(0:k)
lambda_type = rand(constraint_names)
if lambda_type == "RowHitConstraint"
x = floor(Int, x/2)
end
push!(Lambda, getfield(WeaklyHard, Symbol(lambda_type))(x, k))
end # for
Lambda_star = dominant_set(Lambda)
Lambda_comp = setdiff(Lambda, Lambda_star)
test_res = true
for lambda_c in Lambda_comp
exist_dominant = false
for lambda_s in Lambda_star
if is_dominant(lambda_s, lambda_c)
exist_dominant = true
break
end
end
if !exist_dominant
@show Lambda
test_res = false
break
end # if
end # for
@test test_res
end # for
end # testset
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 1145 | module PrintingTests
using Test
using WeaklyHard
@testset "Print automaton" begin
g1 = build_automaton(AnyHitConstraint(1, 3))
@test_nowarn println(Base.DevNull(), 1)
@test_nowarn println(Base.DevNull(), g1.head)
g2 = build_automaton(AnyHitConstraint(10, 16))
@test_nowarn println(Base.DevNull(), g2)
@test_nowarn println(Base.DevNull(), g2.head)
g3 = build_automaton(RowHitConstraint(10, 60))
@test_nowarn println(Base.DevNull(), g3)
@test_nowarn println(Base.DevNull(), g3.head)
end #testset
@testset "Print BigInt" begin
g1 = build_automaton(AnyHitConstraint(1, 3))
seq1 = random_sequence(g1, 200)
@test_nowarn bitstring(seq1)
seq2 = random_sequence(g1, 100_000)
@test_nowarn bitstring(seq2, 10)
end #testset
@testset "Print Constraint" begin
l1 = AnyHitConstraint(1, 3)
@test_nowarn println(Base.DevNull(), l1)
l2 = AnyMissConstraint(1, 3)
@test_nowarn println(Base.DevNull(), l2)
l3 = RowHitConstraint(1, 3)
@test_nowarn println(Base.DevNull(), l3)
l4 = RowMissConstraint(1, 3)
@test_nowarn println(Base.DevNull(), l4)
end #testset
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 183 | module RunTests
include("constraint_tests.jl")
include("dominant_set_tests.jl")
include("automaton_tests.jl")
include("sequence_tests.jl")
include("printing_tests.jl")
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | code | 9447 | module SequenceTests
using Test
using WeaklyHard
##############################
### Generate all sequences ###
##############################
function generate_all_seq(k)
return [(1 << k) | i for i in 0:2^k-1]
end # function
function generate_all_valid(lambda::T, seqs::Vector{R}, k) where {T <: Constraint, R <: Integer}
IntType = BigInt
if k + 1 < 8
IntType = Int8
elseif k + 1 < 16
IntType = Int16
elseif k + 1 < 32
IntType = Int32
elseif k + 1 < 64
IntType = Int64
end
cmp_w = IntType(2^k - 1)
return Set{IntType}(map(x -> IntType(x) & IntType(cmp_w), filter(x -> is_satisfied(lambda, x), seqs)))
end # function
function generate_all_valid(Lambda::Set{T}, seqs::Vector{R}, k) where {T <: Constraint, R <: Integer}
IntType = BigInt
if k + 1 < 8
IntType = Int8
elseif k + 1 < 16
IntType = Int16
elseif k + 1 < 32
IntType = Int32
elseif k + 1 < 64
IntType = Int64
end
cmp_w = IntType(2^k - 1)
return Set{IntType}(map(x -> IntType(x) & IntType(cmp_w), filter(x -> is_satisfied(Lambda, x), seqs)))
end # function
##########################
### All Sequence tests ###
##########################
k_max = 15
@testset "Test all sequences generated by automaton - Not RowHitConstraint" begin
for k in 1:k_max
IntType = BigInt
if k < 8
IntType = Int8
elseif k < 16
IntType = Int16
elseif k < 32
IntType = Int32
elseif k < 64
IntType = Int64
end
all_seqs = generate_all_seq(k)
for x in 0:k
lambda = AnyMissConstraint(x, k)
all_valid = generate_all_valid(lambda, all_seqs, k)
g = build_automaton(lambda)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
lambda = AnyHitConstraint(x, k)
all_valid = generate_all_valid(lambda, all_seqs, k)
g = build_automaton(lambda)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
if x < k
lambda = RowMissConstraint(x)
all_valid = generate_all_valid(lambda, all_seqs, k)
g = build_automaton(lambda)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
end
end # for
end # for
end # testset
@testset "Test all sequences generated by automaton - Only RowHitConstraint" begin
for k in 1:k_max
IntType = BigInt
if 2*k + 2 < 8
IntType = Int8
elseif 2*k + 2 < 16
IntType = Int16
elseif 2*k + 2 < 32
IntType = Int32
elseif 2*k + 2 < 64
IntType = Int64
end
all_seqs = generate_all_seq(k)
for x in 0:ceil(k/2)
lambda = RowHitConstraint(x, k)
all_valid = generate_all_valid(lambda, all_seqs, k)
g = build_automaton(lambda)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
end # for
end #for
end # testset
@testset "Test all sequences generated by automaton - Sets of All but RowHitConstraint" begin
k = k_max
n_tests = 100
n_cstr = 4
constraint_names = ["AnyMissConstraint", "AnyHitConstraint", "RowMissConstraint"]
all_seqs = generate_all_seq(k)
for n_c in 2:n_cstr
for _ in 1:n_tests
Lambda = Set{Constraint}()
while length(Lambda) < n_c
Lambda = Set{Constraint}()
for _ in 1:n_c
lk = rand(1:k)
lx = rand(0:lk)
lambda_type = rand(constraint_names)
l = getfield(WeaklyHard, Symbol(lambda_type))(lx, lk)
push!(Lambda, l)
end # for
end # while
all_valid = generate_all_valid(Lambda, all_seqs, k)
g = build_automaton(Lambda)
minimize_automaton!(g)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
if !isempty(setdiff(all_valid, all_g_seq)) || !isempty(setdiff(all_g_seq, all_valid))
println(Lambda)
end
end # for
end # for
end # testset
@testset "Test all sequences generated by automaton - Only Sets of RowHitConstraint" begin
k = k_max
n_tests = 100
n_cstr = 4
all_seqs = generate_all_seq(k)
for n_c in 2:n_cstr
for _ in 1:n_tests
Lambda = Set{RowHitConstraint}()
while length(Lambda) < n_c
Lambda = Set{RowHitConstraint}()
for _ in 1:n_c
lk = rand(1:k)
lx = rand(0:lk)
l = RowHitConstraint(lx, lk)
push!(Lambda, l)
end # for
end # while
all_valid = generate_all_valid(Lambda, all_seqs, k)
g = build_automaton(Lambda)
minimize_automaton!(g)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
if !isempty(setdiff(all_valid, all_g_seq)) || !isempty(setdiff(all_g_seq, all_valid))
println(Lambda)
end
end # for
end # for
end # testset
@testset "Test all sequences generated by automaton - Arbitrary sets" begin
k = k_max
n_tests = 100
n_cstr = 4
constraint_names = ["AnyMissConstraint", "AnyHitConstraint", "RowMissConstraint", "RowHitConstraint"]
all_seqs = generate_all_seq(k)
for n_c in 2:n_cstr
for _ in 1:n_tests
Lambda = Set{Constraint}()
while length(Lambda) < n_c
Lambda = Set{Constraint}()
for _ in 1:n_c
lk = rand(1:k)
lx = rand(0:lk)
lambda_type = rand(constraint_names)
l = getfield(WeaklyHard, Symbol(lambda_type))(lx, lk)
push!(Lambda, l)
end # for
end # while
all_valid = generate_all_valid(Lambda, all_seqs, k)
g = build_automaton(Lambda)
minimize_automaton!(g)
all_g_seq = all_sequences(g, k)
@test isempty(setdiff(all_valid, all_g_seq))
@test isempty(setdiff(all_g_seq, all_valid))
if !isempty(setdiff(all_valid, all_g_seq)) || !isempty(setdiff(all_g_seq, all_valid))
println(Lambda)
end
end # for
end # for
end # testset
######################
### Sequence tests ###
######################
N = 200
@testset "Random sequence tests - AnyMissConstraint" begin
n_max = 0
for k in 1:k_max
for x in 0:k
lambda = AnyMissConstraint(x, k)
automaton = build_automaton(lambda)
for n in k_max:N
seq = random_sequence(automaton, n)
@test is_satisfied(lambda, seq)
end # for
n_max = max(n_max, length(automaton))
end # for
end # for
println("Biggest automaton for AnyMissConstraint: $n_max")
end # testset
@testset "Random sequence tests - AnyHitConstraint" begin
n_max = 0
for k in 1:k_max
for x in 0:k
lambda = AnyHitConstraint(x, k)
automaton = build_automaton(lambda)
for n in k_max:N
seq = random_sequence(automaton, n)
@test is_satisfied(lambda, seq)
end # for
n_max = max(n_max, length(automaton))
end # for
end # for
println("Biggest automaton for AnyHitConstraint: $n_max")
end # testset
@testset "Random sequence tests - RowMissConstraint" begin
n_max = 0
for k in 1:k_max
for x in 0:k
lambda = RowMissConstraint(x, k)
automaton = build_automaton(lambda)
for n in k_max:N
seq = random_sequence(automaton, n)
@test is_satisfied(lambda, seq)
end # for
n_max = max(n_max, length(automaton))
end # for
end # for
println("Biggest automaton for RowMissConstraint: $n_max")
end # testset
@testset "Random sequence tests - RowHitConstraint" begin
n_max = 0
for k in 1:k_max
for x in 0:k
lambda = RowHitConstraint(x, k)
automaton = build_automaton(lambda)
for n in k_max:N
seq = random_sequence(automaton, n)
@test is_satisfied(lambda, seq)
end # for
n_max = max(n_max, length(automaton))
end # for
end # for
println("Biggest automaton for RowHitConstraint: $n_max")
end # testset
end # module
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | docs | 3394 | # WeaklyHard.jl
[](https://github.com/NilsVreman/WeaklyHard.jl/actions)
[](https://codecov.io/gh/NilsVreman/WeaklyHard.jl)
[](https://NilsVreman.github.io/WeaklyHard.jl/stable)
[](https://NilsVreman.github.io/WeaklyHard.jl/dev)
A toolbox for analysing weakly-hard constraints in Julia.
## Installation
To install, in the Julia REPL:
```julia
using Pkg; Pkg.add("WeaklyHard")
```
## Documentation
All functions have docstrings which can be viewed from the REPL, using for example `?build_automaton`.
## Usage
We provide a number of weakly-hard constraint structs, used as input to different analysis functions.
* `AnyHitConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at least_ `x` jobs hit their corresponding deadline;
* `AnyMissConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at most_ `x` jobs miss their corresponding deadline;
* `RowHitConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at least_ `x` consecutive jobs hit their corresponding deadline;
* `RowMissConstraint(x)`: For _any_ window of `k` consecutive job activations, _at most_ `x` consecutive jobs miss their corresponding deadline.
An automaton representation of a weakly-hard constraint is a struct consisting of a record containing `X` amount of integers as:
```julia
Automaton{Int} with X vertices:
{
WordVertex{Int}(x => y, z)
...
} with head: WordVertex{Int}(x => y, z)
```
Here, `WordVertex{Int}(x => y, z)` indicates a vertex represented by an `Integer` type, where `x` is the word the vertex is representating and `y`, `z` are the direct successors corresponding to respectively a deadline miss and a deadline hit.
## Example
```julia
using WeaklyHard
# Constraints
lambda1 = AnyHitConstraint(1, 3)
lambda2 = RowHitConstraint(2, 6)
# Check dominance
is_dominant(lambda1, lambda2) # false
is_dominant(lambda2, lambda1) # false
# Generate automaton for lambda1
G1 = build_automaton(lambda1)
# This generates the automaton:
# Automaton{Int64} with 3 vertices:
# {
# WordVertex{Int64}(100 => ---, 001) # --- is an infeasible vertex
# WordVertex{Int64}(010 => 100, 001)
# WordVertex{Int64}(001 => 010, 001)
# } with head: WordVertex{Int64}(1 => 10, 1)
G2 = build_automaton(lambda2)
# This generates the automaton:
# Automaton{Int64} with 6 vertices:
# {
# WordVertex{Int64}(01100 => 11000, 00001)
# WordVertex{Int64}(11000 => -----, 00001)
# WordVertex{Int64}(01101 => 11000, 00011)
# WordVertex{Int64}(00011 => 00110, 00011)
# WordVertex{Int64}(00110 => 01100, 01101)
# WordVertex{Int64}(00001 => -----, 00011)
# } with head: WordVertex{Int64}(11 => 110, 11)
# Generate a random sequence of length N satisfying the constraint represented by G2
N = 100_000
seq = random_sequence(G2, N)
bitstring(seq)
# The bit representation of the integer
```
if the bitstring has `M < N` characters, it implies that the first `N-M`
characters are misses (since julia interpret zeros before the MSB in a bit
string as non-existent)
## Additional examples
See the examples folder
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | docs | 1574 | # WeaklyHard.jl Documentation
[WeaklyHard](https://github.com/NilsVreman/WeaklyHard.jl) is a toolbox for analysing the real-time concept of weakly-hard constraints, in Julia.
## Installation
To install the package, simply run
```julia
using Pkg; Pkg.add("WeaklyHard")
```
## Introduction
We provide a number of weakly-hard constraint structs, used as input to different analysis functions.
* `AnyHitConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at least_ `x` jobs hit their corresponding deadline;
* `AnyMissConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at most_ `x` jobs miss their corresponding deadline;
* `RowHitConstraint(x, k)`: For _any_ window of `k` consecutive job activations, _at least_ `x` consecutive jobs hit their corresponding deadline;
* `RowMissConstraint(x)`: For _any_ window of `k` consecutive job activations, _at most_ `x` consecutive jobs miss their corresponding deadline.
An automaton representation of a weakly-hard constraint is a struct consisting of a record containing `X` amount of integers as:
```julia
Automaton{Int} with X vertices:
{
WordVertex{Int}(x => y, z)
...
} with head: WordVertex{Int}(x => y, z)
```
Here, `WordVertex{Int}(x => y, z)` indicates a vertex represented by an `Integer` type, where `x` is the word the vertex is representating and `y`, `z` are the direct successors corresponding to respectively a deadline miss and a deadline hit.
## Guide
```@contents
Pages = ["man/examples.md", "man/functions.md", "man/summary.md"]
Depth = 1
```
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | docs | 2012 | # Examples
## Building Automata
Generates the automaton representations of the constraints `AnyHitConstraint(1, 3)` and `RowHitConstraint(2, 6)`.
```julia
# Constraints
lambda1 = AnyHitConstraint(1, 3)
lambda2 = RowHitConstraint(2, 6)
# Check dominance
is_dominant(lambda1, lambda2) # false
is_dominant(lambda2, lambda1) # false
# Generate automaton for lambda1
G1 = build_automaton(lambda1)
# This generates the automaton:
# Automaton{Int64} with 3 vertices:
# {
# WordVertex{Int64}(100 => ---, 001) # --- is an infeasible vertex
# WordVertex{Int64}(010 => 100, 001)
# WordVertex{Int64}(001 => 010, 001)
# } with head: WordVertex{Int64}(1 => 10, 1)
G2 = build_automaton(lambda2)
# This generates the automaton:
# Automaton{Int64} with 6 vertices:
# {
# WordVertex{Int64}(01100 => 11000, 00001)
# WordVertex{Int64}(11000 => -----, 00001)
# WordVertex{Int64}(01101 => 11000, 00011)
# WordVertex{Int64}(00011 => 00110, 00011)
# WordVertex{Int64}(00110 => 01100, 01101)
# WordVertex{Int64}(00001 => -----, 00011)
# } with head: WordVertex{Int64}(11 => 110, 11)
```
## Generating sequences satisfying constraints
Generates a random sequence satisfying the constraint `AnyHitConstraint(3, 5)`.
```julia
l = AnyHitConstraint(3, 5)
G = build_automaton(l)
N = 100_000
seq = random_sequence(G, N)
bitstring(seq)
```
if the bitstring has `M < N` characters, it implies that the first `N-M` characters are misses (since julia interpret zeros before the MSB in a bit string as non-existent)
## Generating satisfaction set
Generates all the sequences of length `N` that satisfy the constraint `AnyHitConstraint(2, 3)`.
```julia
l = AnyHitConstraint(2, 3)
G = build_automaton(l)
N = 10
S = all_sequences(G, N)
for s in S
println(bitstring(s)[end-N+1:end])
end
```
`S` is here a `Set{<: Integer}`, meaning we have to get the bitstring representation of the sequences in order to represent it as a sequence of deadline hits and misses.
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.2.1 | abe2e5bb5f679eb33d7240cb760371c7c3ca82c9 | docs | 425 | # Functions
```@index
Pages = ["functions.md"]
```
## Types and Structs
```@docs
Miss
Hit
M
H
WordVertex
AbstractAutomaton
Automaton
Constraint
RowHitConstraint
RowMissConstraint
AnyHitConstraint
AnyMissConstraint
```
## Constructors and Functions
```@docs
build_automaton
transitions
vertices
is_dominant
is_equivalent
is_satisfied
random_sequence
all_sequences
dominant_set
minimize_automaton!
bitstring(::BigInt)
```
| WeaklyHard | https://github.com/NilsVreman/WeaklyHard.jl.git |
|
[
"MIT"
] | 0.1.1 | 5a840b20445ba4b6c84826e734d899724852c51a | code | 604 | # This file is part of ReduceLinAlg.jl. It is licensed under the MIT license
# Copyright (C) 2018 Michael Reed
using Documenter, ReduceLinAlg
makedocs(
# options
modules = [ReduceLinAlg],
doctest = false,
format = :html,
sitename = "ReduceLinAlg.jl",
authors = "Michael Reed",
pages = Any[
"User's Manual" => "index.md",
]
)
deploydocs(
target = "build",
repo = "github.com/JuliaReducePkg/ReduceLinAlg.jl.git",
branch = "gh-pages",
latest = "master",
osname = "linux",
julia = "0.6",
deps = nothing,
make = nothing,
)
| ReduceLinAlg | https://github.com/JuliaReducePkg/ReduceLinAlg.jl.git |
|
[
"MIT"
] | 0.1.1 | 5a840b20445ba4b6c84826e734d899724852c51a | code | 4271 | __precompile__()
module ReduceLinAlg
using Reduce, LinearAlgebra
# This file is part of ReduceLinAlg.jl. It is licensed under the MIT license
# Copyright (C) 2018 Michael Reed
const VectorAny = Union{Vector,Adjoint}
const lin = [
:hessian,
:mat_jacobian,
:band_matrix,
:block_matrix,
:char_matrix,
:char_poly,
:diagonal,
:extend,
:gram_schmidt,
:hilbert,
:jordan_block,
:kronecker_product,
]
const unr = [
:cholesky,
:coeff_matrix,
:hermitian_tp,
:symmetricp,
:toeplitz,
:triang_adjoint,
:vandermonde,
]
:(export $([lin;unr]...)) |> eval
for fun in lin
@eval begin
$(Reduce.parsegen(fun,:args))
$(Reduce.unfoldgen(fun,:args))
function $fun(expr::String,s...;be=0)
convert(String, $fun(RExpr(expr),s...;be=be))
end
end
end
for fun in unr
@eval begin
$(Reduce.parsegen(fun,:unary))
$(Reduce.unfoldgen(fun,:unary))
function $fun(expr::String;be=0)
convert(String, $fun(RExpr(expr);be=be))
end
end
end
const MatExpr = Union{Array{Any,2},Array{Expr,2},Array{Symbol,2},Expr,Symbol}
band_matrix(r::Union{Vector,Adjoint,Expr,Symbol},v::Integer) = band_matrix(list(r),v) |> parse
band_matrix(r::T,v::Integer) where T <: Tuple = band_matrix(RExpr(r),v) |> parse
block_matrix(r::Integer,c::Integer,s::VectorAny) = block_matrix(RExpr(r),RExpr(c),list(s)) |> parse
block_matrix(r::Integer,c::Integer,s::T) where T <: Tuple = block_matrix(RExpr(r),RExpr(c),RExpr(s)) |> parse
char_matrix(r::MatExpr,v::Any) = mat(char_matrix(list(r),RExpr(v)) |> parse,r)
char_poly(r::MatExpr,v::Any) = mat(char_matrix(list(r),RExpr(v)) |> parse,r)
extend(a::MatExpr,r::Integer,c::Integer,s) = mat(extend(RExpr(a),r,c,RExpr(s)) |> parse,a)
hessian(r::Reduce.ExprSymbol,l::T) where T <: VectorAny = hessian(r,list(l))
hessian(r::Reduce.ExprSymbol,l::T) where T <: Tuple = hessian(r,RExpr(l))
@doc """
hessian(expr,var_list::Vector)
Computes the Hessian matrix of `expr` with respect to the variables in `var_list`.
This is an n×n matrix where n is the number of variables and the (i,j)th entry is `df(expr,var_list[i],var_list[j])`.
""" hessian
hilbert(a::Integer,r) = hilbert(RExpr(a),RExpr(r)) |> parse
function mat_jacobian(r::T,v::S) where T <: VectorAny where S <: VectorAny
mat_jacobian(list(r),list(v)) |> parse
end
function mat_jacobian(r::T,v::S) where T <: Tuple where S <: Tuple
mat_jacobian(RExpr(r),RExpr(v)) |> parse
end
@doc """
mat_jacobian(expr_list::Vector,var_list::Vector)
Computes the Jacobian matrix of `expr_list` with respect to `var_list`.
This is a matrix whose (i,j)th entry is `df(expr_list[i],var_list[j])`. The matrix is n×m where n is the number of variables and m is the number of expressions.
""" mat_jacobian
export jacobian
jacobian = mat_jacobian
@doc """
jordan_block(expr,square_size::Integer)
Computes the square Jordan block matrix `J` of dimension `square_size`.
The entries of `J` are `J[i,i] = expr` for i = 1,...,n, `J[i,i+1] = 1` for i = 1,...,n-1, and all other entries are 0.
""" jordan_block
kronecker_product(a::MatExpr,b::MatExpr) = mat(kronecker(RExpr(a),RExpr(b)) |> parse,a,b)
cholesky(r::Array{T,2}) where T <: Number = cholesky(RExpr(r)) |> parse |> mat
coeff_matrix(r::VectorAny) = coeff_matrix(list(r)) |> parse
coeff_matrix(r::T) where T <: Tuple = coeff_matrix(RExpr(r)) |> parse
diagonal(r::VectorAny) = diagonal(list(r)) |> parse
diagonal(r::T) where T <: Tuple = diagonal(RExpr(r)) |> parse
gram_schmidt(r::Vector{<:Vector}) = gram_schmidt(list(r)) |> parse
gram_schmidt(r::T) where T <: Tuple = gram_schmidt(RExpr(r)) |> parse
gram_schmidt(r::Matrix) = gram_schmidt(list(r)) |> parse
hermitian_tp(r::MatExpr) = mat(hermitian_tp(RExpr(r)) |> parse, r)
symmetricp(r::MatExpr) = mat(symmetricp(RExpr(r)) |> parse, r)
toeplitz(r::VectorAny) = toeplitz(list(r)) |> parse
toeplitz(r::T) where T <: Tuple = toeplitz(RExpr(r)) |> parse
triang_adjoint(r::MatExpr) = mat(triang_adjoint(RExpr(r)) |> parse, r)
vandermonde(r::VectorAny) = vandermonde(list(r)) |> parse
vandermonde(r::T) where T <: Tuple = vandermonde(RExpr(r)) |> parse
function __init__()
load_package(:linalg)
end
Reduce.stop()
end # module
| ReduceLinAlg | https://github.com/JuliaReducePkg/ReduceLinAlg.jl.git |
|
[
"MIT"
] | 0.1.1 | 5a840b20445ba4b6c84826e734d899724852c51a | code | 262 | using Reduce
using ReduceLinAlg
using Test
# write your own tests here
@test mat_jacobian((:x,),(:x,)) == mat_jacobian([:x],[:x])
@test hessian(:x,(:x,)) == hessian(:x,[:x])
@test jordan_block(:x,1) == jordan_block(Reduce.RExpr("x"),Reduce.RExpr("1")) |> parse
| ReduceLinAlg | https://github.com/JuliaReducePkg/ReduceLinAlg.jl.git |
|
[
"MIT"
] | 0.1.1 | 5a840b20445ba4b6c84826e734d899724852c51a | docs | 1989 | <p align="center">
<img src="https://github.com/chakravala/Reduce.jl/blob/master/docs/src/assets/logo.png" alt="Reduce.jl"/>
</p>
# ReduceLinAlg.jl
**LINALG: Linear algebra package**
*A selection of functions that are useful in the world of linear algebra*
[](https://travis-ci.org/JuliaReducePkg/ReduceLinAlg.jl)
[](https://ci.appveyor.com/project/chakravala/reducelinalg-jl)
[](https://coveralls.io/github/JuliaReducePkg/ReduceLinAlg.jl?branch=master)
[](http://codecov.io/github/JuliaReducePkg/ReduceLinAlg.jl?branch=master)
[](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/stable)
[](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/latest)
[](https://gitter.im/Reduce-jl/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
Upstream REDUCE package by Matt Rebbeck.
This Julia package relies on the [Reduce.jl](https://github.com/chakravala/Reduce.jl) parser generator, Julia docs ([stable](https://chakravala.github.io/Reduce.jl/stable) / [latest](https://chakravala.github.io/Reduce.jl/latest)).
Meta-package [ReduceAlgebra.jl](https://github.com/JuliaReducePkg/ReduceAlgebra.jl), upstream docs ([LINALG](http://www.reduce-algebra.com/manual/manualse127.html) / [pdf](http://www.reduce-algebra.com/manual/contributed/linalg.pdf)), Julia docs ([stable](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/stable) / [latest](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/latest))
| ReduceLinAlg | https://github.com/JuliaReducePkg/ReduceLinAlg.jl.git |
|
[
"MIT"
] | 0.1.1 | 5a840b20445ba4b6c84826e734d899724852c51a | docs | 1460 | # ReduceLinAlg.jl
**LINALG: Linear algebra package**
*A selection of functions that are useful in the world of linear algebra*
This Julia package relies on the [Reduce.jl](https://github.com/chakravala/Reduce.jl) parser generator, Julia docs ([stable](https://chakravala.github.io/Reduce.jl/stable) / [latest](https://chakravala.github.io/Reduce.jl/latest)).
Meta-package [ReduceAlgebra.jl](https://github.com/JuliaReducePkg/ReduceAlgebra.jl), upstream docs ([LINALG](http://www.reduce-algebra.com/manual/manualse127.html) / [pdf](http://www.reduce-algebra.com/manual/contributed/linalg.pdf)), Julia docs ([stable](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/stable) / [latest](https://JuliaReducePkg.github.io/ReduceLinAlg.jl/latest))
```@contents
```
```@index
```
## 16.37 LINALG: Linear algebra package
This package provides a selection of functions that are useful in the world of linear algebra.
Author: Matt Rebbeck.
### 16.37.1 Introduction
This package provides a selection of functions that are useful in the world of linear algebra. These functions are described alphabetically in subsection 16.37.3 and are labelled 16.37.3.1 to 16.37.3.53. They can be classified into four sections(n.b: the numbers after the dots signify the function label in section 16.37.3).
Contributions to this package have been made by Walter Tietze (ZIB).
## Library
```@docs
ReduceLinAlg.hessian
ReduceLinAlg.mat_jacobian
ReduceLinAlg.jordan_block
```
| ReduceLinAlg | https://github.com/JuliaReducePkg/ReduceLinAlg.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 413 | using Documenter
using JobQueueMPI
const JQM = JobQueueMPI
makedocs(;
modules = [JobQueueMPI],
doctest = true,
clean = true,
format = Documenter.HTML(; mathengine = Documenter.MathJax2()),
sitename = "JobQueueMPI.jl",
authors = "psrenergy",
pages = [
"Home" => "index.md",
]
)
deploydocs(;
repo = "github.com/psrenergy/JobQueueMPI.jl.git",
push_preview = true,
) | JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 164 | module JobQueueMPI
using MPI
include("mpi_utils.jl")
include("job.jl")
include("worker.jl")
include("controller.jl")
include("pmap.jl")
end # module JobQueueMPI
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.