licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 4534 | """
Controller
The controller struct is used to manage the workers and the jobs. It keeps track of the workers' status,
the job queue, and the pending jobs. It also keeps track of the last job id that was sent to the workers.
"""
mutable struct Controller
n_workers::Int
debug_mode::Bool
worker_status::Vector{WorkerStatus}
last_job_id::Int
job_queue::Vector{Job}
pending_jobs::Vector{JobRequest}
function Controller(n_workers::Int; debug_mode::Bool = false)
return new(n_workers, debug_mode, fill(WORKER_AVAILABLE, n_workers), 0, Vector{Job}(), Vector{JobRequest}())
end
end
struct TerminationMessage end
_is_worker_available(controller::Controller, worker::Int) =
controller.worker_status[worker] == WORKER_AVAILABLE
is_job_queue_empty(controller::Controller) = isempty(controller.job_queue)
any_pending_jobs(controller::Controller) = !isempty(controller.pending_jobs)
function any_jobs_left(controller::Controller)
return !is_job_queue_empty(controller) || any_pending_jobs(controller)
end
function _pick_job_to_send!(controller::Controller)
if !is_controller_process()
error("Only the controller process can pick jobs to send.")
end
if !is_job_queue_empty(controller)
return popfirst!(controller.job_queue)
else
error("Controller does not have any jobs to send.")
end
end
function _pick_available_workers(controller::Controller)
if !is_controller_process()
error("Only the controller process can pick available workers.")
end
available_workers = []
for i in 1:controller.n_workers
if _is_worker_available(controller, i)
push!(available_workers, i)
end
end
return available_workers
end
"""
add_job_to_queue!(controller::Controller, message::Any)
Add a job to the controller's job queue.
"""
function add_job_to_queue!(controller::Controller, message::Any)
if !is_controller_process()
error("Only the controller process can add jobs to the queue.")
end
controller.last_job_id += 1
return push!(controller.job_queue, Job(controller.last_job_id, message))
end
"""
send_jobs_to_any_available_workers(controller::Controller)
Send jobs to any available workers.
"""
function send_jobs_to_any_available_workers(controller::Controller)
if !is_controller_process()
error("Only the controller process can send jobs to workers.")
end
available_workers = _pick_available_workers(controller)
for worker in available_workers
if !is_job_queue_empty(controller)
job = _pick_job_to_send!(controller)
controller.worker_status[worker] = WORKER_BUSY
request = MPI.isend(job, _mpi_comm(); dest = worker, tag = worker + 32)
push!(controller.pending_jobs, JobRequest(worker, request))
end
end
return nothing
end
"""
send_termination_message(controller::Controller)
Send a termination message to all workers.
"""
function send_termination_message(controller::Controller)
if !is_controller_process()
error("Only the controller process can send termination messages.")
end
requests = Vector{JobRequest}()
for worker in 1:controller.n_workers
request =
MPI.isend(Job(controller.last_job_id, TerminationMessage()), _mpi_comm(); dest = worker, tag = worker + 32)
controller.worker_status[worker] = WORKER_AVAILABLE
push!(requests, JobRequest(worker, request))
end
return _wait_all(requests)
end
"""
check_for_job_answers(controller::Controller)
Check if any worker has completed a job and return the answer.
"""
function check_for_job_answers(controller::Controller)
if !is_controller_process()
error("Only the controller process can check for workers' jobs.")
end
for j_i in eachindex(controller.pending_jobs)
worker_completed_a_job = MPI.Iprobe(
_mpi_comm();
source = controller.pending_jobs[j_i].worker,
tag = controller.pending_jobs[j_i].worker + 32,
)
if worker_completed_a_job
job_answer = MPI.recv(
_mpi_comm();
source = controller.pending_jobs[j_i].worker,
tag = controller.pending_jobs[j_i].worker + 32,
)
controller.worker_status[controller.pending_jobs[j_i].worker] = WORKER_AVAILABLE
deleteat!(controller.pending_jobs, j_i)
return job_answer
end
end
return nothing
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 542 | abstract type AbstractJob end
Base.@kwdef mutable struct Job{T} <: AbstractJob
id::Int = 0
message::T
end
mutable struct JobAnswer{T} <: AbstractJob
job_id::Int
message::T
end
mutable struct JobRequest
worker::Int
request::MPI.Request
end
"""
get_message(job::AbstractJob)
Get the message from a job.
"""
get_message(job::AbstractJob) = job.message
function _wait_all(job_requests::Vector{JobRequest})
requests = [job_request.request for job_request in job_requests]
return MPI.Waitall(requests)
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 448 | function mpi_init()
return MPI.Init()
end
function mpi_finalize()
return MPI.Finalize()
end
_mpi_comm() = MPI.COMM_WORLD
mpi_barrier() = MPI.Barrier(_mpi_comm())
my_rank() = MPI.Comm_rank(_mpi_comm())
world_size() = MPI.Comm_size(_mpi_comm())
is_running_in_parallel() = world_size() > 1
is_controller_process() = my_rank() == 0
controller_rank() = 0
is_worker_process() = !is_controller_process()
num_workers() = world_size() - 1
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 2675 | function _p_map_workers_loop(f, data_defined_in_process)
if is_worker_process()
worker = Worker()
while true
job = receive_job(worker)
message = get_message(job)
if message == TerminationMessage()
break
end
answer_message = if data_defined_in_process === nothing
f(message)
else
f(data_defined_in_process, message)
end
send_job_answer_to_controller(worker, answer_message)
end
end
return nothing
end
"""
pmap(f, jobs, data_defined_in_process = nothing)
Parallel map function that works with MPI. If the function is called in parallel, it will
distribute the jobs to the workers and collect the results. If the function is called in
serial, it will just map the function to the jobs.
The function `f` should take one argument, which is the message to be processed. If `data_defined_in_process`
is not `nothing`, the function `f` should take two arguments, the first one being `data_defined_in_process`.
The controller process will return the answer in the same order as the jobs were given. The workers will
return nothing.
"""
function pmap(f::Function, jobs::Vector, data_defined_in_process = nothing)
result = Vector{Any}(undef, length(jobs))
if is_running_in_parallel()
mpi_barrier()
if is_controller_process()
controller = Controller(num_workers())
for job in jobs
add_job_to_queue!(controller, job)
end
while any_jobs_left(controller)
if !is_job_queue_empty(controller)
send_jobs_to_any_available_workers(controller)
end
if any_pending_jobs(controller)
job_answer = check_for_job_answers(controller)
if !isnothing(job_answer)
message = get_message(job_answer)
job_id = job_answer.job_id
result[job_id] = message
end
end
end
send_termination_message(controller)
mpi_barrier()
return result
else
_p_map_workers_loop(f, data_defined_in_process)
mpi_barrier()
return nothing
end
else
for (i, job) in enumerate(jobs)
result[i] = if data_defined_in_process === nothing
f(job)
else
f(data_defined_in_process, job)
end
end
return result
end
return error("Should never get here")
end | JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 1121 | @enum WorkerStatus begin
WORKER_BUSY = 0
WORKER_AVAILABLE = 1
end
"""
Worker
A worker process.
"""
mutable struct Worker
rank::Int
job_id_running::Int
Worker() = new(my_rank(), -1)
end
function has_job(worker::Worker)
return MPI.Iprobe(_mpi_comm(); source = controller_rank(), tag = worker.rank + 32)
end
"""
send_job_answer_to_controller(worker::Worker, message)
Send a job answer to the controller process.
"""
function send_job_answer_to_controller(worker::Worker, message)
if !is_worker_process()
error("Only the controller process can send job answers.")
end
job = JobAnswer(worker.job_id_running, message)
return MPI.isend(job, _mpi_comm(); dest = controller_rank(), tag = worker.rank + 32)
end
"""
receive_job(worker::Worker)
Receive a job from the controller process.
"""
function receive_job(worker::Worker)
if !is_worker_process()
error("Only the controller process can receive jobs.")
end
job = MPI.recv(_mpi_comm(); source = controller_rank(), tag = worker.rank + 32)
worker.job_id_running = job.id
return job
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 440 | using Test
using JobQueueMPI
using MPI
ENV["JULIA_PROJECT"] = dirname(Base.active_project())
JQM = JobQueueMPI
@testset verbose = true "JobQueueMPI Tests" begin
mpiexec(exe -> run(`$exe -n 3 $(Base.julia_cmd()) --project test_1.jl`))
mpiexec(exe -> run(`$exe -n 3 $(Base.julia_cmd()) --project test_2.jl`))
mpiexec(exe -> run(`$exe -n 3 $(Base.julia_cmd()) --project test_pmap_mpi.jl`))
include("test_pmap_serial.jl")
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 2062 | using JobQueueMPI
using Test
JQM = JobQueueMPI
mutable struct Message
value::Int
vector_idx::Int
end
all_jobs_done(controller) = JQM.is_job_queue_empty(controller) && !JQM.any_pending_jobs(controller)
function sum_100(message::Message)
message.value += 100
return message
end
function update_data(new_data, message::Message)
idx = message.vector_idx
value = message.value
return new_data[idx] = value
end
function workers_loop()
if JQM.is_worker_process()
worker = JQM.Worker()
while true
job = JQM.receive_job(worker)
message = JQM.get_message(job)
if message == JQM.TerminationMessage()
break
end
return_message = sum_100(message)
JQM.send_job_answer_to_controller(worker, return_message)
end
exit(0)
end
end
function job_queue(data)
JQM.mpi_init()
JQM.mpi_barrier()
T = eltype(data)
N = length(data)
if JQM.is_controller_process() # I am root
new_data = Array{T}(undef, N)
controller = JQM.Controller(JQM.num_workers())
for i in eachindex(data)
message = Message(data[i], i)
JQM.add_job_to_queue!(controller, message)
end
while !all_jobs_done(controller)
if !JQM.is_job_queue_empty(controller)
JQM.send_jobs_to_any_available_workers(controller)
end
if JQM.any_pending_jobs(controller)
job_answer = JQM.check_for_job_answers(controller)
if !isnothing(job_answer)
message = JQM.get_message(job_answer)
update_data(new_data, message)
end
end
end
JQM.send_termination_message(controller)
return new_data
end
workers_loop()
JQM.mpi_barrier()
JQM.mpi_finalize()
return nothing
end
@testset "Sum 100" begin
data = collect(1:10)
@test job_queue(data) == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 2687 | using JobQueueMPI
using Test
JQM = JobQueueMPI
mutable struct ControllerMessage
value::Int
vector_idx::Int
end
mutable struct WorkerMessage
divisors::Array{Int}
vector_idx::Int
end
all_jobs_done(controller) = JQM.is_job_queue_empty(controller) && !JQM.any_pending_jobs(controller)
function get_divisors(message::ControllerMessage)
number = message.value
divisors = []
for i in 1:number
if number % i == 0
push!(divisors, i)
end
end
return WorkerMessage(divisors, message.vector_idx)
end
function update_data(new_data, message::WorkerMessage)
idx = message.vector_idx
value = message.divisors
return new_data[idx] = value
end
function workers_loop()
if JQM.is_worker_process()
worker = JQM.Worker()
while true
job = JQM.receive_job(worker)
message = JQM.get_message(job)
if message == JQM.TerminationMessage()
break
end
return_message = get_divisors(message)
JQM.send_job_answer_to_controller(worker, return_message)
end
exit(0)
end
end
function divisors(data)
JQM.mpi_init()
JQM.mpi_barrier()
N = length(data)
if JQM.is_controller_process() # I am root
new_data = Array{Array{Int}}(undef, N)
controller = JQM.Controller(JQM.num_workers())
for i in eachindex(data)
message = ControllerMessage(data[i], i)
JQM.add_job_to_queue!(controller, message)
end
while !all_jobs_done(controller)
if !JQM.is_job_queue_empty(controller)
JQM.send_jobs_to_any_available_workers(controller)
end
if JQM.any_pending_jobs(controller)
job_answer = JQM.check_for_job_answers(controller)
if !isnothing(job_answer)
message = JQM.get_message(job_answer)
update_data(new_data, message)
end
end
end
JQM.send_termination_message(controller)
return new_data
end
workers_loop()
JQM.mpi_barrier()
JQM.mpi_finalize()
return nothing
end
@testset "Divisors" begin
data = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
values = divisors(data)
@test values[1] == [1, 2]
@test values[2] == [1, 2, 4]
@test values[3] == [1, 2, 3, 6]
@test values[4] == [1, 2, 4, 8]
@test values[5] == [1, 2, 5, 10]
@test values[6] == [1, 2, 3, 4, 6, 12]
@test values[7] == [1, 2, 7, 14]
@test values[8] == [1, 2, 4, 8, 16]
@test values[9] == [1, 2, 3, 6, 9, 18]
@test values[10] == [1, 2, 4, 5, 10, 20]
end
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 710 | using JobQueueMPI
using Test
JQM = JobQueueMPI
JQM.mpi_init()
function sum_100(value)
return value + 100
end
function get_divisors(n)
divisors = Int[]
for i in 1:n
if n % i == 0
push!(divisors, i)
end
end
return divisors
end
sum_100_answer = JQM.pmap(sum_100, collect(1:10))
divisors_answer = JQM.pmap(get_divisors, collect(1:10))
if JQM.is_controller_process()
@testset "pmap MPI" begin
@test sum_100_answer == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
@test divisors_answer ==
[[1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6], [1, 7], [1, 2, 4, 8], [1, 3, 9], [1, 2, 5, 10]]
end
end
JQM.mpi_finalize()
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | code | 657 | using JobQueueMPI
using Test
JQM = JobQueueMPI
JQM.mpi_init()
function sum_100(value)
return value + 100
end
function get_divisors(n)
divisors = Int[]
for i in 1:n
if n % i == 0
push!(divisors, i)
end
end
return divisors
end
sum_100_answer = JQM.pmap(sum_100, collect(1:10))
divisors_answer = JQM.pmap(get_divisors, collect(1:10))
@testset "pmap serial" begin
@test sum_100_answer == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
@test divisors_answer ==
[[1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6], [1, 7], [1, 2, 4, 8], [1, 3, 9], [1, 2, 5, 10]]
end
JQM.mpi_finalize() | JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | docs | 1924 | # JobQueueMPI.jl
[build-img]: https://github.com/psrenergy/JobQueueMPI.jl/actions/workflows/test.yml/badge.svg?branch=master
[build-url]: https://github.com/psrenergy/JobQueueMPI.jl/actions?query=workflow%3ACI
[codecov-img]: https://codecov.io/gh/psrenergy/JobQueueMPI.jl/coverage.svg?branch=master
[codecov-url]: https://codecov.io/gh/psrenergy/JobQueueMPI.jl?branch=master
| **Build Status** | **Coverage** |
|:-----------------:|:-----------------:|
| [![Build Status][build-img]][build-url] | [![Codecov branch][codecov-img]][codecov-url] |[](https://psrenergy.github.io/JobQueueMPI.jl/dev/)
JobQueueMPI.jl is a Julia package that provides a simplified interface for running multiple jobs in parallel using [MPI.jl](https://github.com/JuliaParallel/MPI.jl).
It uses the Job Queue concept to manage the jobs and the MPI processes. The user can add jobs to the queue and the package will take care of sending them to the available MPI processes.
## Installation
You can install JobQueueMPI.jl using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```julia
pkg> add JobQueueMPI
```
## How it works
First, when running a program using MPI, the user has to set the number of processes that will parallelize the computation. One of these processes will be the controller, and the others will be the workers.
We can easily delimit the areas of the code that will be executed only by the controller or the worker.
JobQueueMPI.jl has the following components:
- `Controller`: The controller is responsible for managing the jobs and the workers. It keeps track of the jobs that have been sent and received and sends the jobs to the available workers.
- `Worker`: The worker is responsible for executing the jobs. It receives the jobs from the controller, executes them, and sends the results back to the controller.
| JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MPL-2.0"
] | 0.1.0 | f719b0bdb256f5ad4c331549b14f581dd961f95d | docs | 1250 | # JobQueueMPI.jl
## Installation
You can install JobQueueMPI.jl using the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run:
```julia
pkg> add JobQueueMPI
```
## How it works
First, when running a program using MPI, the user has to set the number of processes that will parallelize the computation. One of these processes will be the controller, and the others will be the workers.
We can easily delimit the areas of the code that will be executed only by the controller or the worker.
JobQueueMPI.jl has the following components:
- `Controller`: The controller is responsible for managing the jobs and the workers. It keeps track of the jobs that have been sent and received and sends the jobs to the available workers.
- `Worker`: The worker is responsible for executing the jobs. It receives the jobs from the controller, executes them, and sends the results back to the controller.
## API
```@docs
JobQueueMPI.Controller
JobQueueMPI.Worker
JobQueueMPI.add_job_to_queue!
JobQueueMPI.send_jobs_to_any_available_workers
JobQueueMPI.send_termination_message
JobQueueMPI.check_for_job_answers
JobQueueMPI.send_job_answer_to_controller
JobQueueMPI.receive_job
JobQueueMPI.get_message
JobQueueMPI.pmap
``` | JobQueueMPI | https://github.com/psrenergy/JobQueueMPI.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 11389 | module Export
using MAT
function mastan(node, element, material, cross_section, support, connection, uniform_load, filepath, filename)
#seed model
mastan_model = Dict{String, Any}("sect_info" => Matrix{Float64}(undef, 0, 0), "view_settings" => [0.1 0.1 10.0 2.294558781116753 14.0 14.0 1.0 1382.0 765.0], "normincr_settings" => Matrix{Float64}(undef, 0, 0), "sec_inel_settings" => Matrix{Float64}(undef, 0, 0), "settle_info" => [NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN], "bimom_settings" => Matrix{Float64}(undef, 0, 0), "mat_name" => Matrix{Float64}(undef, 0, 0), "first_el_settings" => Matrix{Float64}(undef, 0, 0), "fixity_info" => [NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN], "axial_settings" => Matrix{Float64}(undef, 0, 0), "sheary_settings" => Matrix{Float64}(undef, 0, 0), "momx_settings" => Matrix{Float64}(undef, 0, 0), "elem_info" => Matrix{Float64}(undef, 0, 0), "shearz_settings" => Matrix{Float64}(undef, 0, 0), "ground_motion_data" => Matrix{Float64}(undef, 0, 0), "periods_info" => Matrix{Float64}(undef, 0, 0), "first_inel_settings" => Matrix{Float64}(undef, 0, 0), "node_info" => [0.0 0.0 0.0 113.000244140625 114.000244140625; 10.0 0.0 0.0 115.000244140625 116.000244140625; 10.0 30.0 0.0 117.000244140625 118.000244140625; 10.0 30.0 40.0 119.000244140625 120.000244140625], "deflect_settings" => Matrix{Float64}(undef, 0, 0), "ibuck_settings" => Matrix{Float64}(undef, 0, 0), "analysis_info" => Matrix{Float64}(undef, 0, 0), "nload_info" => [0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN NaN NaN NaN 0.0 NaN; 0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN NaN NaN NaN 0.0 NaN; 0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN NaN NaN NaN 0.0 NaN; 0.0 0.0 0.0 0.0 0.0 0.0 NaN NaN NaN NaN NaN NaN 0.0 NaN], "ebuck_settings" => Matrix{Float64}(undef, 0, 0), "momy_settings" => Matrix{Float64}(undef, 0, 0), "yldsurfval_settings" => Matrix{Float64}(undef, 0, 0), "period_settings" => Matrix{Float64}(undef, 0, 0), "mat_info" => Matrix{Float64}(undef, 0, 0), "uniload_info" => Matrix{Float64}(undef, 0, 0), "model_title" => Matrix{Float64}(undef, 0, 0), "sect_name" => Matrix{Float64}(undef, 0, 0), "first_elastic_dynamic_settings" => Matrix{Float64}(undef, 0, 0), "sec_elastic_dynamic_settings" => Matrix{Float64}(undef, 0, 0), "momz_settings" => Matrix{Float64}(undef, 0, 0), "sec_el_settings" => Matrix{Float64}(undef, 0, 0))
#add material property info
mastan_model["mat_info"] = Matrix{Float64}(undef, size(material.E, 1), 4)
mastan_model["mat_name"] = Vector{String}(undef, size(material.E, 1))
for i in eachindex(material.E)
mastan_model["mat_name"][i] = material.names[i]
mastan_model["mat_info"][i, 1] = material.E[i]
mastan_model["mat_info"][i, 2] = material.ν[i]
mastan_model["mat_info"][i, 3] = Inf
mastan_model["mat_info"][i, 4] = material.ρ[i]
end
#add section properties
mastan_model["sect_info"] = zeros(Float64, size(cross_section.A, 1), 20)
mastan_model["sect_name"] = Vector{String}(undef, size(cross_section.A, 1))
for i in eachindex(cross_section.A)
mastan_model["sect_name"][i] = cross_section.names[i]
mastan_model["sect_info"][i, 1] = cross_section.A[i]
mastan_model["sect_info"][i, 2] = cross_section.Iz[i]
mastan_model["sect_info"][i, 3] = cross_section.Iy[i]
mastan_model["sect_info"][i, 4] = cross_section.J[i]
mastan_model["sect_info"][i, 6:9] .= Inf
mastan_model["sect_info"][i, 10:13] .= 1
end
#add nodes
num_nodes = length(node.numbers)
node_matrix = Matrix{Float64}(undef, size(node.numbers, 1), 5)
node_matrix[:, 1] = [node.coordinates[i][1] for i in eachindex(node.coordinates)]
node_matrix[:, 2] = [node.coordinates[i][2] for i in eachindex(node.coordinates)]
node_matrix[:, 3] = [node.coordinates[i][3] for i in eachindex(node.coordinates)]
node_matrix[:, 4] = range(113.000244140625, 113.000244140625+(num_nodes-1)*2, step=2.0)
node_matrix[:, 5] = range(114.000244140625, 114.000244140625+(num_nodes-1)*2, step=2.0)
mastan_model["node_info"] = node_matrix
#add settlement info
mastan_model["settle_info"] = fill(NaN, num_nodes, 12)
#add nodal load info
mastan_model["nload_info"] = zeros(Float64, num_nodes, 14)
mastan_model["nload_info"][:,7:12] .= NaN
mastan_model["nload_info"][:,14] .= NaN
#add elements
num_elem = length(element.numbers)
elem_matrix = zeros(Float64, size(element.numbers, 1), 29)
elem_matrix[:, 1] = [element.nodes[i][1] for i in eachindex(element.nodes)]
elem_matrix[:, 2] = [element.nodes[i][2] for i in eachindex(element.nodes)]
start_index = maximum(node_matrix[:,5]) + 1
elem_matrix[:, 6] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 2
elem_matrix[:, 7] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
elem_matrix[:, 9] = ones(Float64, num_elem)
start_index = maximum(node_matrix[:,5]) + 3
elem_matrix[:, 11] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 6
elem_matrix[:, 14] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 8
elem_matrix[:, 15] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 7
elem_matrix[:, 18] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 9
elem_matrix[:, 19] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
elem_matrix[:, 20:27] .= Inf
start_index = maximum(node_matrix[:,5]) + 4
elem_matrix[:, 28] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
start_index = maximum(node_matrix[:,5]) + 5
elem_matrix[:, 29] = range(start_index, start_index +(num_elem-1)*9, step=9.0)
#attach material and section properties
for i in eachindex(element.numbers)
index = findfirst(name->name==element.cross_section[i], cross_section.names)
elem_matrix[i, 3] = index
index = findfirst(name->name==element.material[i], material.names)
elem_matrix[i, 4] = index
end
#update end conditions
for i in eachindex(element.connections)
start_index = findfirst(name->name==element.connections[i][1], connection.names)
end_index = findfirst(name->name==element.connections[i][2], connection.names)
if (connection.stiffness.ry[start_index] == 0.0) | (connection.stiffness.rz[start_index] == 0.0)
elem_matrix[i, 12] = 1
elseif (connection.stiffness.ry[start_index] < Inf) | (connection.stiffness.rz[start_index] < Inf)
elem_matrix[i, 12] = 2
end
if (connection.stiffness.ry[end_index] == 0.0) | (connection.stiffness.rz[end_index] == 0.0)
elem_matrix[i, 13] = 1
elseif (connection.stiffness.ry[end_index] < Inf) | (connection.stiffness.rz[end_index] < Inf)
elem_matrix[i, 13] = 2
end
elem_matrix[i, 20] = connection.stiffness.rz[start_index]
elem_matrix[i, 21] = connection.stiffness.ry[start_index]
elem_matrix[i, 22] = connection.stiffness.rz[end_index]
elem_matrix[i, 23] = connection.stiffness.ry[end_index]
end
mastan_model["elem_info"] = elem_matrix
#add fixity info
mastan_model["fixity_info"] = fill(NaN, num_nodes, 12)
Z_index = elem_matrix[end, 19] #this is the maximum of the mystery index
for i in eachindex(support.nodes)
index = findfirst(num->num==support.nodes[i], node.numbers)
if support.stiffness.uX[i] > 0.0 #fix any dof with stiffness
Z_index += 1
mastan_model["fixity_info"][index, 1] = 0
mastan_model["fixity_info"][index, 7] = Z_index
end
if support.stiffness.uY[i] > 0.0
Z_index += 1
mastan_model["fixity_info"][index, 2] = 0
mastan_model["fixity_info"][index, 8] = Z_index
end
if support.stiffness.uZ[i] > 0.0
Z_index += 1
mastan_model["fixity_info"][index, 3] = 0
mastan_model["fixity_info"][index, 9] = Z_index
end
if support.stiffness.rX[i] > 0.0
Z_index += 1
mastan_model["fixity_info"][index, 4] = 0
mastan_model["fixity_info"][index, 10] = Z_index
end
if support.stiffness.rY[i] > 0.0
Z_index += 1
mastan_model["fixity_info"][index, 5] = 0
mastan_model["fixity_info"][index, 11] = Z_index
end
if support.stiffness.rZ[i] > 0.0
Z_index += 1
mastan_model["fixity_info"][index, 6] = 0
mastan_model["fixity_info"][index, 12] = Z_index
end
end
#add uniform load info
uniload_matrix = zeros(Float64, num_elem, 16)
uniload_matrix[:, 7:12] .= NaN
uniload_matrix[:, 13] .= 6.50000000000000e-06
for i in eachindex(uniform_load.elements)
index = uniform_load.elements[i]
if abs(uniform_load.magnitudes.qX[i]) > 0.0
uniload_matrix[index, 1] = uniform_load.magnitudes.qX[i]
uniload_matrix[index, 7] = Z_index += 1
end
if abs(uniform_load.magnitudes.qY[i]) > 0.0
uniload_matrix[index, 2] = uniform_load.magnitudes.qY[i]
uniload_matrix[index, 8] = Z_index += 1
end
if abs(uniform_load.magnitudes.qZ[i]) > 0.0
uniload_matrix[index, 3] = uniform_load.magnitudes.qZ[i]
uniload_matrix[index, 9] = Z_index += 1
end
if abs(uniform_load.magnitudes.mX[i]) > 0.0
uniload_matrix[index, 4] = uniform_load.magnitudes.mX[i]
uniload_matrix[index, 10] = Z_index += 1
end
if abs(uniform_load.magnitudes.mY[i]) > 0.0
uniload_matrix[index, 5] = uniform_load.magnitudes.mY[i]
uniload_matrix[index, 11] = Z_index += 1
end
if abs(uniform_load.magnitudes.mZ[i]) > 0.0
uniload_matrix[index, 6] = uniform_load.magnitudes.mZ[i]
uniload_matrix[index, 12] = Z_index += 1
end
end
mastan_model["uniload_info"] = uniload_matrix
matwrite(joinpath(filepath, filename), mastan_model)
end
end #module | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 49979 | module InstantFrame
using LinearAlgebra, Rotations, Parameters, NonlinearSolve, StaticArrays
export PlotTools
include("PlotTools.jl")
using .PlotTools
export Show
include("Show.jl")
using .Show
# export Report
# include("Report.jl")
# using .Report
# export Export
# include("Export.jl")
# using .Export
@with_kw mutable struct Material
names::Array{String}
E::Array{Float64}
ν::Array{Float64}
ρ::Array{Float64}
end
@with_kw mutable struct CrossSection
names::Array{String}
A::Array{Float64}
Iy::Array{Float64}
Iz::Array{Float64}
J::Array{Float64}
end
@with_kw mutable struct Connection
names::Array{String}
stiffness::NamedTuple{(:ux, :uy, :uz, :rx, :ry, :rz), NTuple{6, Vector{Float64}}}
end
@with_kw mutable struct Node
numbers::Array{Int64}
coordinates::Array{Tuple{Float64, Float64, Float64}, 1}
end
@with_kw mutable struct Element
types::Array{String}
numbers::Array{Int64}
nodes::Array{Tuple{Int64, Int64}}
orientation::Array{Float64}
connections::Array{Tuple{String, String}, 1}
cross_section::Array{String}
material::Array{String}
end
@with_kw mutable struct Support
nodes::Array{Int64}
stiffness::NamedTuple{(:uX, :uY, :uZ, :rX, :rY, :rZ), NTuple{6, Vector{Float64}}}
end
@with_kw mutable struct UniformLoad
labels::Union{Array{String}, Nothing}
elements::Union{Array{Int64}, Nothing}
magnitudes::Union{NamedTuple{(:qX, :qY, :qZ, :mX, :mY, :mZ), NTuple{6, Vector{Float64}}}, Nothing}
end
UniformLoad(nothing) = UniformLoad(labels=nothing, elements=nothing, magnitudes=nothing)
@with_kw mutable struct PointLoad
labels::Union{Array{String}, Nothing}
nodes::Union{Array{Int64}, Nothing}
magnitudes::Union{NamedTuple{(:FX, :FY, :FZ, :MX, :MY, :MZ), NTuple{6, Vector{Float64}}}, Nothing}
end
PointLoad(nothing) = PointLoad(labels=nothing, nodes=nothing, magnitudes=nothing)
@with_kw mutable struct ElementProperties
L::Array{Float64}
A::Array{Float64}
Iz::Array{Float64}
Iy::Array{Float64}
Io::Array{Float64}
J::Array{Float64}
E::Array{Float64}
ν::Array{Float64}
G::Array{Float64}
ρ::Array{Float64}
rotation_angles::Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}
Γ::Array{Array{Float64, 2}}
local_axis_directions::Array{NamedTuple{(:x, :y, :z), Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}}
global_dof::Array{Array{Int64, 1}}
start_connection::Array{NamedTuple{(:ux, :uy, :uz, :rx, :ry, :rz), NTuple{6, Float64}}}
end_connection::Array{NamedTuple{(:ux, :uy, :uz, :rx, :ry, :rz), NTuple{6, Float64}}}
end
@with_kw struct ElementConnections
elements::Array{Int64, 1}
displacements::Array{Array{Float64, 1}}
end
@with_kw struct ElasticSupport
global_dof::Array{Int64}
global_stiffness::Array{Float64}
end
@with_kw struct FirstOrderEquations
free_dof::Array{Int64}
fixed_dof::Array{Int64}
elastic_supports::ElasticSupport
ke_local::Array{Array{Float64, 2}}
ke_global::Array{Array{Float64, 2}}
Ke::Array{Float64, 2}
end
@with_kw struct SecondOrderEquations
free_dof::Array{Int64}
fixed_dof::Array{Int64}
elastic_supports::ElasticSupport
ke_local::Array{Array{Float64, 2}}
ke_global::Array{Array{Float64, 2}}
Ke::Array{Float64, 2}
kg_local::Array{Array{Float64, 2}}
kg_global::Array{Array{Float64, 2}}
Kg::Array{Float64, 2}
end
@with_kw struct ModalEquations
free_dof::Array{Int64}
ke_local::Array{Array{Float64, 2}}
ke_global::Array{Array{Float64, 2}}
Ke::Array{Float64, 2}
m_local::Array{Array{Float64, 2}}
m_global::Array{Array{Float64, 2}}
M::Array{Float64, 2}
end
@with_kw struct Reactions
nodes::Vector{Int64}
magnitudes::Vector{Float64}
end
@with_kw struct Solution
displacements::Array{Array{Float64, 1}}
forces::Array{Array{Float64, 1}}
connections::ElementConnections
reactions::Array{Array{Float64, 1}}
u::Vector{Float64}
uf::Vector{Float64}
end
# @with_kw struct SecondOrderSolution
# nodal_displacements::Array{Array{Float64, 1}}
# element_forces::Array{Array{Float64, 1}}
# element_connections::ElementConnections
# end
@with_kw struct ModalSolution
ωn::Array{Float64}
ϕ::Array{Array{Float64, 1}}
end
@with_kw struct Forces
global_uniform_nodal::Array{Array{Float64}}
local_fixed_end_forces::Array{Array{Float64}}
global_dof_nodal_forces_uniform_load::Array{Float64}
global_dof_point_loads::Array{Float64}
F::Array{Float64}
end
@with_kw struct Inputs
node::Node
cross_section::CrossSection
material::Material
connection::Connection
element::Element
support::Support
uniform_load::UniformLoad
point_load::PointLoad
analysis_type::String
solution_tolerance::Union{Float64, Nothing}
end
Inputs(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type) = Inputs(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type, nothing)
@with_kw struct Model
inputs::Inputs
properties::ElementProperties
forces::Union{Forces, Nothing}
equations::Union{FirstOrderEquations, SecondOrderEquations, ModalEquations}
solution::Union{Solution, ModalSolution}
end
function define_local_elastic_stiffness_matrix(Iy, Iz, A, J, E, ν, L)
G = E/(2*(1+ν))
ke = zeros(Float64, (12, 12))
ke[1, 1] = E*A/L
ke[1, 7] = -E*A/L
ke[2, 2] = 12*E*Iz/L^3
ke[2, 6] = 6*E*Iz/L^2
ke[2, 8] = -12*E*Iz/L^3
ke[2, 12] = 6*E*Iz/L^2
ke[3, 3] = 12*E*Iy/L^3
ke[3, 5] = -6*E*Iy/L^2
ke[3, 9] = -12*E*Iy/L^3
ke[3, 11] = -6*E*Iy/L^2
ke[4, 4] = G*J/L
ke[4, 10] = -G*J/L
ke[5, 5] = 4*E*Iy/L
ke[5, 9] = 6*E*Iy/L^2
ke[5, 11] = 2*E*Iy/L
ke[6, 6] = 4*E*Iz/L
ke[6, 8] = -6*E*Iz/L^2
ke[6, 12] = 2*E*Iz/L
ke[7, 7] = E*A/L
ke[8, 8] = 12*E*Iz/L^3
ke[8, 12] = -6*E*Iz/L^2
ke[9, 9] = 12*E*Iy/L^3
ke[9, 11] = 6*E*Iy/L^2
ke[10, 10] = G*J/L
ke[11, 11] = 4*E*Iy/L
ke[12, 12] = 4*E*Iz/L
for i = 1:12
for j = 1:12
ke[j, i] = ke[i, j]
end
end
return ke
end
function define_local_geometric_stiffness_matrix(P, L)
kg = zeros(Float64, (12, 12))
kg[1, 1] = P/L
kg[1, 7] = -P/L
kg[2, 2] = 6/5*P/L
kg[2, 6] = P/10
kg[2, 8] = -6/5*P/L
kg[2, 12] = P/10
kg[3, 3] = 6/5*P/L
kg[3, 5] = -P/10
kg[3, 9] = -6/5*P/L
kg[3, 11] = -P/10
kg[5, 5] = 2/15*P*L
kg[5, 9] = P/10
kg[5, 11] = -P*L/30
kg[6, 6] = 2/15*P*L
kg[6, 8] = -P/10
kg[6, 12] = -P*L/30
kg[7, 7] = P/L
kg[8, 8] = 6/5*P/L
kg[8, 12] = - P/10
kg[9, 9] = 6/5 * P/L
kg[9, 11] = P/10
kg[11, 11] = 2/15*P*L
kg[12, 12] = 2/15*P*L
for i = 1:12
for j = 1:12
kg[j, i] = kg[i, j]
end
end
return kg
end
# function define_rotation_matrix(A, B, β)
# #ρ is x-z plane, χ is x-y plane , ω is y-z plane
# AB = B - A
# length_AB = norm(AB)
# χ = π/2 - acos(AB[2]/length_AB)
# if (AB[3]==0.0) & (AB[1]==0.0) #avoid 0/0 case
# ρ = 0.0
# else
# ρ = -atan(AB[3]/AB[1])
# end
# ω = β
# γ = RotXZY(-ω, -χ, -ρ)
# Γ = zeros(Float64, (12, 12))
# Γ[1:3, 1:3] .= γ
# Γ[4:6, 4:6] .= γ
# Γ[7:9, 7:9] .= γ
# Γ[10:12, 10:12] .= γ
# return Γ
# end
function define_rotation_matrix(A, B, β)
AB = B - A
ΔX = AB[1]
ΔZ = AB[3]
ΔY = AB[2]
#Rotation global coordinate system about Y axis
ρ = atan(-ΔZ, ΔX)
#Rotation revised global coordinate system about Z axis
proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
χ = atan(ΔY, proj_AB_xz)
#Rotation revised global coordinate system about X axis
# current_local_y_axis = RotZ(-χ) * RotY(-ρ) * [0.0, 1.0, 0.0] #where Y is pointing after Y and Z rotations
# ω = acos(dot(current_local_y_axis, [0.0, 1.0, 0.0])/ norm(current_local_y_axis))
# # matrix of direction cosines
# γ = RotX(-(ω+β)) * RotZ(-χ) * RotY(-ρ) # add β here to rotate local y-axis to orient cross-section in global coordinate system
ω = β
γ = RotYZX(ρ, χ, ω)' #transpose!
Γ = zeros(Float64, (12, 12))
Γ[1:3, 1:3] .= γ
Γ[4:6, 4:6] .= γ
Γ[7:9, 7:9] .= γ
Γ[10:12, 10:12] .= γ
angles = (Y=ρ, Z=χ, X=ω)
return Γ, angles
end
function define_element_properties(node, cross_section, material, element, connection)
num_elem = length(element.numbers)
L = Array{Float64}(undef, num_elem)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
global_dof = Array{Array{Int64, 1}}(undef, num_elem)
Iz = Array{Float64}(undef, num_elem)
Iy = Array{Float64}(undef, num_elem)
A = Array{Float64}(undef, num_elem)
Io = Array{Float64}(undef, num_elem)
J = Array{Float64}(undef, num_elem)
E = Array{Float64}(undef, num_elem)
ν = Array{Float64}(undef, num_elem)
G = Array{Float64}(undef, num_elem)
ρ = Array{Float64}(undef, num_elem)
start_connection = Array{NamedTuple{(:ux, :uy, :uz, :rx, :ry, :rz), NTuple{6, Float64}}}(undef, num_elem)
end_connection = Array{NamedTuple{(:ux, :uy, :uz, :rx, :ry, :rz), NTuple{6, Float64}}}(undef, num_elem)
rotation_angles = Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}(undef, num_elem)
local_axis_directions = Array{NamedTuple{(:x, :y, :z), Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}}}}(undef, num_elem)
for i in eachindex(element.numbers)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.nodes[i][1], node.numbers)
node_j_index = findfirst(node_num->node_num == element.nodes[i][2], node.numbers)
node_i = collect(node.coordinates[node_i_index])
node_j = collect(node.coordinates[node_j_index])
#cross section
index = findfirst(name->name == element.cross_section[i], cross_section.names)
Iz[i] = cross_section.Iz[index]
Iy[i] = cross_section.Iy[index]
A[i] = cross_section.A[index]
J[i] = cross_section.J[index]
Io[i] = J[i] #I think this is correct?
#material
index = findfirst(name->name == element.material[i], material.names)
E[i] = material.E[index]
ν[i] = material.ν[index]
ρ[i] = material.ρ[index]
G[i] = E[i]/(2*(1+ν[i]))
#element end conditions
index = findfirst(name->name == element.connections[i][1], connection.names)
start_connection[i] = (ux=connection.stiffness.ux[index], uy=connection.stiffness.uy[index], uz=connection.stiffness.uz[index], rx=connection.stiffness.rx[index], ry=connection.stiffness.ry[index], rz=connection.stiffness.rz[index])
index = findfirst(name->name == element.connections[i][2], connection.names)
end_connection[i] = (ux=connection.stiffness.ux[index], uy=connection.stiffness.uy[index], uz=connection.stiffness.uz[index], rx=connection.stiffness.rx[index], ry=connection.stiffness.ry[index], rz=connection.stiffness.rz[index])
#element length
L[i] = norm(node_j - node_i)
#rotation matrix
Γ[i], rotation_angles[i] = define_rotation_matrix(node_i, node_j, element.orientation[i])
#element local axis directions
local_axis_directions[i] = calculate_element_local_axis_directions(Γ[i])
#global dof for each element
num_dof_per_node = 6 #hard code this for now
node_i_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_i_index-1)
node_j_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_j_index-1)
global_dof[i] = [node_i_dof; node_j_dof]
end
element_properties = ElementProperties(L, A, Iz, Iy, Io, J, E, ν, G, ρ, rotation_angles, Γ, local_axis_directions, global_dof, start_connection, end_connection)
return element_properties
end
function assemble_global_matrix(k, dof)
total_dof = maximum([maximum(dof[i]) for i in eachindex(dof)])
K = zeros(Float64, (total_dof , total_dof))
for i in eachindex(k)
K[dof[i], dof[i]] += k[i]
end
return K
end
function calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u)
P_element_local = Array{Array{Float64, 1}}(undef, length(properties.L))
for i in eachindex(properties.L)
u_element_global = u[properties.global_dof[i]]
u_element_local = properties.Γ[i] * u_element_global
P_element_local[i] = ke_local[i] * u_element_local
elem_num = element.numbers[i]
if !isnothing(uniform_load.elements)
index = findall(num->num==elem_num, uniform_load.elements)
if !isnothing(index) #add in fixed end forces
for j in eachindex(index) #if there are multiple load assignments on one member, need a loop
P_element_local[i][1] += local_fixed_end_forces[index[j]][1]
P_element_local[i][2] += local_fixed_end_forces[index[j]][2]
P_element_local[i][3] += local_fixed_end_forces[index[j]][3]
P_element_local[i][4] += local_fixed_end_forces[index[j]][4]
#deal with internal moment sign switch for partially rigid connections
# if properties.start_connection[i].ry != Inf
# P_element_local[i][5] -= local_fixed_end_forces[index[j]][5]
# else
P_element_local[i][5] += local_fixed_end_forces[index[j]][5]
# end
# if properties.start_connection[i].rz != Inf
# P_element_local[i][6] -= local_fixed_end_forces[index[j]][6]
# else
P_element_local[i][6] += local_fixed_end_forces[index[j]][6]
# end
P_element_local[i][7] += local_fixed_end_forces[index[j]][7]
P_element_local[i][8] += local_fixed_end_forces[index[j]][8]
P_element_local[i][9] += local_fixed_end_forces[index[j]][9]
P_element_local[i][10] += local_fixed_end_forces[index[j]][10]
# if properties.end_connection[i].ry != Inf
# P_element_local[i][11] -= local_fixed_end_forces[index[j]][11]
# else
P_element_local[i][11] += local_fixed_end_forces[index[j]][11]
# end
# if properties.end_connection[i].rz != Inf
# P_element_local[i][12] -= local_fixed_end_forces[index[j]][12]
# else
P_element_local[i][12] += local_fixed_end_forces[index[j]][12]
# end
end
end
end
end
return P_element_local
end
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
function nonlinear_solution(Kff, Ff, u1f)
p = [Kff, Ff]
u1f = SVector{length(u1f)}(u1f)
# u1f_S = zeros(Float64, length(u1f))
# u1fSS = [u1f_S[i] for i in eachindex(u1f)]
probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
u2f = NonlinearSolve.solve(probN, NewtonRaphson(), tol = 1e-9)
return u2f
end
function define_nodal_displacements(node, u)
nodal_displacements = Array{Array{Float64, 1}}(undef, length(node.numbers))
# nodal_displacements = Vector{Vector{Float64, 1}}(undef, length(node.numbers))
num_dof_per_node = 6 #hard code this for now
for i in eachindex(node.numbers)
nodal_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (i-1)
nodal_displacements[i] = u[nodal_dof]
end
return nodal_displacements
end
function first_order_analysis(node, cross_section, material, connection, element, support, uniform_load, point_load)
element_properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(element_properties.Iy[i], element_properties.Iz[i], element_properties.A[i], element_properties.J[i], element_properties.E[i], element_properties.ν[i], element_properties.L[i]) for i in eachindex(element_properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(element_properties, ke_local, element)
ke_global = [element_properties.Γ[i]'*ke_local[i]*element_properties.Γ[i] for i in eachindex(element_properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, element_properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, element_properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
#calculate nodal displacements
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
uf = Ke_ff \ Ff
u = zeros(Float64, size(Ke,1))
u[free_global_dof] = uf
nodal_displacements = define_nodal_displacements(node, u)
#### calculate reaction ####
reactions = zeros(Float64, length(node.numbers)*6)
#get reactions from rigid supports
Ke_sf = Ke[fixed_global_dof, free_global_dof]
R = Ke_sf * uf
reactions[fixed_global_dof] = R
#get reactions from elastic supports
elastic_support_reactions = -u[elastic_supports.global_dof] .* elastic_supports.global_stiffness
reactions[elastic_supports.global_dof] = elastic_support_reactions
#add point loads to rigid support reactions
reactions[fixed_global_dof] += -forces.global_dof_point_loads[fixed_global_dof]
#add uniform load equivalent nodal forces to rigid support reactions
reactions[fixed_global_dof] += -forces.global_dof_nodal_forces_uniform_load[fixed_global_dof]
# print(fixed_global_dof)
# reactions[fixed_global_dof] -= -forces.global_dof_nodal_forces_uniform_load[fixed_global_dof]
# reactions[fixed_global_dof] = reactions[fixed_global_dof] -
#package up reactions at each node, these are reactions from elastic supports and rigid supports
nodal_reactions = Array{Array{Float64, 1}}(undef, length(support.nodes))
num_dof_per_node = 6 #hard code this for now
for i in eachindex(support.nodes)
nodal_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (support.nodes[i]-1)
nodal_reactions[i] = reactions[nodal_dof]
end
######
#calculate element internal forces
element_forces = InstantFrame.calculate_element_internal_forces(element_properties, ke_local, element, uniform_load, local_fixed_end_forces, u)
#calculate connection deformations
element_connections = calculate_element_connection_deformations(element_properties, element, node, nodal_displacements, element_forces)
equations = FirstOrderEquations(free_global_dof, fixed_global_dof, elastic_supports, ke_local, ke_global, Ke)
solution = Solution(nodal_displacements, element_forces, element_connections, nodal_reactions, u, uf)
inputs = Inputs(node, cross_section, material, connection, element, support, uniform_load, point_load, "1st order")
model = Model(inputs, element_properties, forces, equations, solution)
return model
end
function second_order_analysis(node, cross_section, material, connection, element, support, uniform_load, point_load, solution_tolerance)
element_properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(element_properties.Iy[i], element_properties.Iz[i], element_properties.A[i], element_properties.J[i], element_properties.E[i], element_properties.ν[i], element_properties.L[i]) for i in eachindex(element_properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(element_properties, ke_local, element)
ke_global = [element_properties.Γ[i]'*ke_local[i]*element_properties.Γ[i] for i in eachindex(element_properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, element_properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, element_properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_global_dof] = u1f
# P1 = InstantFrame.calculate_element_internal_forces(element_properties, ke_local, u1)
#calculate element internal forces
P1 = InstantFrame.calculate_element_internal_forces(element_properties, ke_local, element, uniform_load, local_fixed_end_forces, u1)
P1_axial = [P1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], element_properties.L[i]) for i in eachindex(element_properties.L)]
kg_global = [element_properties.Γ[i]'*kg_local[i]*element_properties.Γ[i] for i in eachindex(element_properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, element_properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
Kff = Ke_ff + Kg_ff
p = [Kff, Ff]
u1f = SVector{length(u1f)}(u1f)
probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
u2f = NonlinearSolve.solve(probN, NewtonRaphson(), reltol = solution_tolerance)
u2 = zeros(Float64, size(Ke,1))
u2[free_global_dof] = u2f
nodal_displacements = define_nodal_displacements(node, u2)
#### calculate reaction ####
reactions = zeros(Float64, length(node.numbers)*6)
#get reactions from rigid supports
Ke_sf = Ke[fixed_global_dof, free_global_dof]
R = Ke_sf * u2f
reactions[fixed_global_dof] = R
#get reactions from elastic supports
elastic_support_reactions = -u2[elastic_supports.global_dof] .* elastic_supports.global_stiffness
reactions[elastic_supports.global_dof] = elastic_support_reactions
#add point loads to rigid support reactions
reactions[fixed_global_dof] += -forces.global_dof_point_loads[fixed_global_dof]
#add uniform load equivalent nodal forces to rigid support reactions
reactions[fixed_global_dof] += -forces.global_dof_nodal_forces_uniform_load[fixed_global_dof]
#package up reactions at each node, these are reactions from elastic supports and rigid supports
nodal_reactions = Array{Array{Float64, 1}}(undef, length(support.nodes))
num_dof_per_node = 6 #hard code this for now
for i in eachindex(support.nodes)
nodal_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (support.nodes[i]-1)
nodal_reactions[i] = reactions[nodal_dof]
end
######
#calculate element internal forces
element_forces = InstantFrame.calculate_element_internal_forces(element_properties, ke_local, element, uniform_load, local_fixed_end_forces, u2)
#calculate connection deformations
element_connections = calculate_element_connection_deformations(element_properties, element, node, nodal_displacements, element_forces)
equations = SecondOrderEquations(free_global_dof, fixed_global_dof, elastic_supports, ke_local, ke_global, Ke, kg_local, kg_global, Kg)
solution = Solution(nodal_displacements, element_forces, element_connections, nodal_reactions, u2, u2f)
inputs = Inputs(node, cross_section, material, connection, element, support, uniform_load, point_load, "2st order")
model = Model(inputs, element_properties, forces, equations, solution)
return model
end
function modal_vibration_analysis(node, cross_section, material, connection, element, support)
element_properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
# free_global_dof = InstantFrame.define_free_global_dof(node, support)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(element_properties.Iy[i], element_properties.Iz[i], element_properties.A[i], element_properties.J[i], element_properties.E[i], element_properties.ν[i], element_properties.L[i]) for i in eachindex(element_properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(element_properties, ke_local, element)
ke_global = [element_properties.Γ[i]'*ke_local[i]*element_properties.Γ[i] for i in eachindex(element_properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, element_properties.global_dof)
m_local = [InstantFrame.define_local_3D_mass_matrix(element_properties.A[i], element_properties.L[i], element_properties.Io[i], element_properties.ρ[i]) for i in eachindex(element_properties.L)]
m_global = [element_properties.Γ[i]'*m_local[i]*element_properties.Γ[i] for i in eachindex(element_properties.L)]
M = InstantFrame.assemble_global_matrix(m_global, element_properties.global_dof)
Ke_ff = Ke[free_global_dof, free_global_dof]
Mff = M[free_global_dof, free_global_dof]
ωn_squared = real.(eigvals(Ke_ff, Mff))
ωn = sqrt.(ωn_squared)
ϕff = eigvecs(Ke_ff, Mff)
ϕ = [zeros(Float64, size(M, 1)) for i in eachindex(ωn)]
for i in eachindex(ωn)
ϕ[i][free_global_dof] .= real.(ϕff[:, i])
end
equations = ModalEquations(free_global_dof, ke_local, ke_global, Ke, m_local, m_global, M)
solution = ModalSolution(ωn, ϕ)
model = Model(element_properties, nothing, equations, solution)
return model
end
function solve(node, cross_section, material, connection, element, support, uniform_load, point_load; analysis_type, solution_tolerance)
if analysis_type == "first order"
model = first_order_analysis(node, cross_section, material, connection, element, support, uniform_load, point_load)
elseif analysis_type == "modal vibration"
model = modal_vibration_analysis(node, cross_section, material, connection, element, support)
elseif analysis_type == "second order"
model = second_order_analysis(node, cross_section, material, connection, element, support, uniform_load, point_load, solution_tolerance)
end
return model
end
# function solve(node, cross_section, material, connection, element, support, uniform_load, point_load; analysis_type, solution_tolerance)
# if analysis_type == "second order"
# model = second_order_analysis(node, cross_section, material, connection, element, support, uniform_load, point_load, solution_tolerance)
# end
# return model
# end
function calculate_local_element_fixed_end_forces_partial_restraint(wx_local, wy_local, wz_local, L, k1z, k2z, k1y, k2y, E, Iy, Iz)
local_fixed_end_forces = calculate_local_element_fixed_end_forces(wx_local, wy_local, wz_local, L)
k1z, k2z = InstantFrame.connection_zeros_and_inf(k1z, k2z, E, Iz)
M_fixed = [local_fixed_end_forces[6], local_fixed_end_forces[12]]
F_fixed = [local_fixed_end_forces[2], local_fixed_end_forces[8]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1z, k2z, E, Iz, L, M_fixed, F_fixed)
local_fixed_end_forces[6] = M_spring[1]
local_fixed_end_forces[12] = -M_spring[2]
local_fixed_end_forces[2] = F_spring[2] #tricky here
local_fixed_end_forces[8] = F_spring[1] #tricky here
k1y, k2y = InstantFrame.connection_zeros_and_inf(k1y, k2y, E, Iy)
M_fixed = [local_fixed_end_forces[5], local_fixed_end_forces[11]]
F_fixed = [local_fixed_end_forces[3], local_fixed_end_forces[9]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1y, k2y, E, Iy, L, M_fixed, F_fixed)
local_fixed_end_forces[3] = F_spring[1]
local_fixed_end_forces[5] = -M_spring[1]
local_fixed_end_forces[9] = F_spring[2]
local_fixed_end_forces[11] = M_spring[2]
return local_fixed_end_forces
end
function calculate_local_element_fixed_end_forces_partial_restraint_xy(local_fixed_end_forces, L, k1z, k2z, E, Iz)
k1z, k2z = InstantFrame.connection_zeros_and_inf(k1z, k2z, E, Iz)
M_fixed = [local_fixed_end_forces[6], local_fixed_end_forces[12]]
F_fixed = [local_fixed_end_forces[2], local_fixed_end_forces[8]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1z, k2z, E, Iz, L, M_fixed, F_fixed)
local_fixed_end_forces[6] = M_spring[1]
local_fixed_end_forces[12] = -M_spring[2]
local_fixed_end_forces[2] = F_spring[2] #tricky here
local_fixed_end_forces[8] = F_spring[1] #tricky here
return local_fixed_end_forces
end
function calculate_local_element_fixed_end_forces_partial_restraint_xz(local_fixed_end_forces, L, k1y, k2y, E, Iy)
k1y, k2y = InstantFrame.connection_zeros_and_inf(k1y, k2y, E, Iy)
M_fixed = [local_fixed_end_forces[5], local_fixed_end_forces[11]]
F_fixed = [local_fixed_end_forces[3], local_fixed_end_forces[9]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1y, k2y, E, Iy, L, M_fixed, F_fixed)
local_fixed_end_forces[3] = F_spring[1]
local_fixed_end_forces[5] = -M_spring[1]
local_fixed_end_forces[9] = F_spring[2]
local_fixed_end_forces[11] = M_spring[2]
return local_fixed_end_forces
end
function calculate_local_element_fixed_end_forces(wx_local, wy_local, wz_local, L)
local_fixed_end_forces = zeros(Float64, 12)
local_fixed_end_forces[1] = -wx_local*L/2
local_fixed_end_forces[7] = -wx_local*L/2
local_fixed_end_forces[2] = -wy_local*L/2
local_fixed_end_forces[6] = -wy_local*L^2/12
local_fixed_end_forces[8] = -wy_local*L/2
local_fixed_end_forces[12] = +wy_local*L^2/12
local_fixed_end_forces[3] = -wz_local*L/2
local_fixed_end_forces[5] = +wz_local*L^2/12
local_fixed_end_forces[9] = -wz_local*L/2
local_fixed_end_forces[11] = -wz_local*L^2/12
return local_fixed_end_forces
end
function fixed_end_forces_partial_restraint(k1, k2, E, I, L, M_fixed, F_fixed)
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
#MGZ Example 13.7
k_moment = E*I/L*([4+α1 2.0
2.0 4+α2])
θi = k_moment^-1*M_fixed
# M_spring = θi .* [k1, k2]
M_spring = abs.(θi) .* [k1, k2]
k_shear = (E*I/L)*[6/L 6/L
-6/L -6/L]
# F_spring = F_fixed - k_shear * θi
F_spring = F_fixed + k_shear * θi
return M_spring, F_spring
end
function calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, element_properties)
nodal_forces_uniform_load = zeros(Float64, length(node.numbers) * 6) #hard coded for now
if !isnothing(uniform_load.elements)
element_global_nodal_forces_uniform_load = Array{Array{Float64}}(undef, length(uniform_load.elements))
local_fixed_end_forces = Array{Array{Float64}}(undef, length(uniform_load.elements))
for i in eachindex(uniform_load.elements)
elem_num = uniform_load.elements[i]
elem_index = findfirst(num->num==elem_num, element.numbers)
global_element_uniform_loads = [uniform_load.magnitudes.qX[i], uniform_load.magnitudes.qY[i], uniform_load.magnitudes.qZ[i], uniform_load.magnitudes.mX[i], uniform_load.magnitudes.mY[i], uniform_load.magnitudes.mZ[i]]
local_element_uniform_loads = element_properties.Γ[elem_index][1:6, 1:6] * global_element_uniform_loads
wx_local = local_element_uniform_loads[1]
wy_local = local_element_uniform_loads[2]
wz_local = local_element_uniform_loads[3]
k1z = element_properties.start_connection[elem_index].rz
k2z = element_properties.end_connection[elem_index].rz
k1y = element_properties.start_connection[elem_index].ry
k2y = element_properties.end_connection[elem_index].ry
local_fixed_end_forces[i] = calculate_local_element_fixed_end_forces(wx_local, wy_local, wz_local, element_properties.L[elem_index])
#now modify fixed end forces if there are partial end restraints
# partial_restraint_index = findall(x->x!=Inf, [k1z, k2z])
if (k1z < Inf) | (k2z < Inf)
local_fixed_end_forces[i] = calculate_local_element_fixed_end_forces_partial_restraint_xy(local_fixed_end_forces[i], element_properties.L[elem_index], k1z, k2z, element_properties.E[elem_index], element_properties.Iz[elem_index])
end
# partial_restraint_index = findall(x->x!=Inf, [k1y, k2y])
if (k1y < Inf) | (k2y < Inf)
local_fixed_end_forces[i] = calculate_local_element_fixed_end_forces_partial_restraint_xz(local_fixed_end_forces[i], element_properties.L[elem_index], k1y, k2y, element_properties.E[elem_index], element_properties.Iy[elem_index])
end
global_fixed_end_forces = element_properties.Γ[elem_index]' * local_fixed_end_forces[i]
element_global_nodal_forces_uniform_load[i] = -global_fixed_end_forces
nodal_forces_uniform_load[element_properties.global_dof[elem_index]] += element_global_nodal_forces_uniform_load[i]
end
else
element_global_nodal_forces_uniform_load = Array{Array{Float64}}(undef, 0)
local_fixed_end_forces = Array{Array{Float64}}(undef, 0)
end
return element_global_nodal_forces_uniform_load, local_fixed_end_forces, nodal_forces_uniform_load
end
function define_local_elastic_element_torsional_stiffness_matrix_partially_restrained(J, G, L, k1, k2)
k1, k2 = connection_zeros_and_inf(k1, k2, G, J)
α1 = k1/(G*J/L)
α2 = k2/(G*J/L)
α = 1 + 1/α1 + 1/α2
kt = G*J/L * [1/α -1/α
-1/α 1/α]
return kt
end
function define_local_elastic_element_axial_stiffness_matrix_partially_restrained(A, E, L, k1, k2)
k1, k2 = connection_zeros_and_inf(k1, k2, E, A)
α1 = k1/(A*E/L)
α2 = k2/(A*E/L)
α = 1 + 1/α1 + 1/α2
ka = A*E/L * [1/α -1/α
-1/α 1/α]
return ka
end
function modify_element_local_connection_stiffness(element_properties, ke_local, element)
for i in eachindex(ke_local)
start_index = findall(u->u!=Inf, element_properties.start_connection[i])
end_index = findall(u->u!=Inf, element_properties.end_connection[i])
if (!isempty(start_index)) | (!isempty(end_index))
index = findfirst(elem_num->elem_num==element.numbers[i], element.numbers)
ke_local_xy = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(element_properties.Iz[index], element_properties.E[index], element_properties.L[index], element_properties.start_connection[index][6], element_properties.end_connection[index][6])
ke_local_xz = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(element_properties.Iy[index], element_properties.E[index], element_properties.L[index], element_properties.start_connection[index][5], element_properties.end_connection[index][5])
#signs are opposite in xz plane for these terms
ke_local_xz[1, 2] = -ke_local_xz[1, 2]
ke_local_xz[1, 4] = -ke_local_xz[1, 4]
ke_local_xz[2, 1] = -ke_local_xz[2, 1]
ke_local_xz[2, 3] = -ke_local_xz[2, 3]
ke_local_xz[3, 2] = -ke_local_xz[3, 2]
ke_local_xz[3, 4] = -ke_local_xz[3, 4]
ke_local_xz[4, 1] = -ke_local_xz[4, 1]
ke_local_xz[4, 3] = -ke_local_xz[4, 3]
ke_local_torsion = define_local_elastic_element_torsional_stiffness_matrix_partially_restrained(element_properties.J[index], element_properties.G[index], element_properties.L[index], element_properties.start_connection[index][4], element_properties.end_connection[index][4])
ke_local_axial = define_local_elastic_element_axial_stiffness_matrix_partially_restrained(element_properties.A[index], element_properties.E[index], element_properties.L[index], element_properties.start_connection[index][1], element_properties.end_connection[index][1])
#flexural dof
dof = [2, 6, 8, 12]
for i in eachindex(dof)
for j in eachindex(dof)
ke_local[index][dof[i], dof[j]] = ke_local_xy[i,j]
end
end
dof = [3, 5, 9, 11]
for i in eachindex(dof)
for j in eachindex(dof)
ke_local[index][dof[i], dof[j]] = ke_local_xz[i,j]
end
end
# ke_local[index][dof, dof] .= ke_local_xz
#torsion dof
dof = [4, 10]
for i in eachindex(dof)
for j in eachindex(dof)
ke_local[index][dof[i], dof[j]] = ke_local_torsion[i,j]
end
end
dof = [1, 7]
for i in eachindex(dof)
for j in eachindex(dof)
ke_local[index][dof[i], dof[j]] = ke_local_axial[i,j]
end
end
# ke_local[index][dof, dof] .= ke_local_torsion
end
end
return ke_local
end
function connection_zeros_and_inf(k1, k2, E, I)
if k1 == Inf #need big number instead of Inf because 0.0*Inf = NaN
k1 = E*I*10.0^20
elseif k1 == 0.0
k1 = E*I*10.0^-30
end
if k2 == Inf #need big number instead of Inf
k2 = E*I*10.0^20
elseif k2 == 0.0
k2 = E*I*10.0^-30
end
return k1, k2
end
function define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
#from McGuire et al. (2000) Example 13.6
k1, k2 = connection_zeros_and_inf(k1, k2, E, I)
α1 = k1/(E*I/L) #start node
α2 = k2/(E*I/L) #end node
α = (α1*α2)/(α1*α2 + 4*α1 + 4*α2 + 12)
ke = zeros(Float64, 4, 4)
ke[1,1] = 12/L^2*(1 + (α1+α2)/(α1*α2))
ke[1,2] = 6/L * (1+2/α2)
ke[1,3] = -12/L^2*(1+(α1+α2)/(α1*α2))
ke[1,4] = 6/L*(1+2/α1)
ke[2,2] = 4*(1+3/α2)
ke[2,3] = -6/L*(1+2/α2)
ke[2,4] = 2
ke[3,3] = 12/L^2*(1+(α1+α2)/(α1*α2))
ke[3,4] = -6/L*(1+2/α1)
ke[4,4] = 4*(1+3/α1)
for i = 1:4
for j = 1:4
ke[j, i] = ke[i, j]
end
end
ke = α * (E * I / L) .* ke
return ke
end
function define_local_3D_mass_matrix(A, L, Io, ρ)
#https://pdfs.semanticscholar.org/2361/90b717f2b950078e8c1ddc7da16080d601eb.pdf
m = zeros(Float64, (12, 12))
m[1, 1] = 140
m[1, 7] = 70
m[2, 2] = 156
m[2, 6] = 22L
m[2, 8] = 54
m[2, 12] = -13L
m[3, 3] = 156
m[3, 5] = -22L
m[3, 9] = 54
m[3, 11] = 13L
m[4, 4] = 140Io/A
m[4, 10] = 70Io/A
m[5, 5] = 4L^2
m[5, 9] = -13L
m[5, 11] = -3L^2
m[6, 6] = 4L^2
m[6, 8] = 13L
m[6, 12] = -3L^2
m[7, 7] = 140
m[8, 8] = 156
m[8, 12] = -22L
m[9, 9] = 156
m[9, 11] = 22L
m[10, 10] = 140Io/A
m[11, 11] = 4L^2
m[12, 12] = 4L^2
for i = 1:12
for j = 1:12
m[j, i] = m[i, j]
end
end
m = m .* (ρ*A*L)/420
return m
end
function define_free_global_dof(node, support)
num_dof_per_node = 6
dof_support_stiffness = zeros(Float64, length(node.numbers)*num_dof_per_node)
nodal_support_stiffness = reduce(hcat, collect(support.stiffness))
for i in eachindex(support.nodes)
node_index = findfirst(node_num->node_num == support.nodes[i], node.numbers)
node_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_index-1)
dof_support_stiffness[node_dof] = nodal_support_stiffness[i, :]
end
free_global_dof = vec(findall(dof->dof!=Inf, dof_support_stiffness))
fixed_global_dof = vec(findall(dof->dof==Inf, dof_support_stiffness))
elastic_support_dof = vec(findall(dof->(dof!=Inf)&(dof!=0.0), dof_support_stiffness))
elastic_support_dof = vec(findall(dof->(dof!=Inf)&(dof!=0.0), dof_support_stiffness))
elastic_support_stiffness = dof_support_stiffness[elastic_support_dof]
elastic_support = ElasticSupport(global_dof=elastic_support_dof, global_stiffness = elastic_support_stiffness)
return free_global_dof, fixed_global_dof, elastic_support
end
function define_global_dof_point_loads(node, point_load)
num_dof_per_node = 6
global_dof_point_loads = zeros(Float64, length(node.numbers)*num_dof_per_node)
if !isnothing(point_load.nodes)
nodal_point_loads = reduce(hcat, collect(point_load.magnitudes))
for i in eachindex(point_load.nodes)
node_index = findfirst(node_num->node_num == point_load.nodes[i], node.numbers)
node_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_index-1)
global_dof_point_loads[node_dof] = nodal_point_loads[i, :]
end
end
return global_dof_point_loads
end
function calculate_element_local_axis_directions(Γ)
unit_vector_X = [1.0, 0.0, 0.0]
local_x = Γ[1:3,1:3]' * unit_vector_X
unit_vector_Y = [0.0, 1.0, 0.0]
local_y = Γ[1:3,1:3]' * unit_vector_Y
unit_vector_Z = [0.0, 0.0, 1.0]
local_z = Γ[1:3,1:3]' * unit_vector_Z
element_local_axes = (x=local_x, y=local_y, z=local_z)
return element_local_axes
end
function calculate_element_connection_deformations(properties, element, node, nodal_displacements, element_forces)
u_element_connection = Array{Array{Float64, 1}}(undef, 0)
elements_with_connections = Array{Int64}(undef, 0)
#go through each element with a connection
for i in eachindex(properties.L)
start_index = findall(u->u!=Inf, properties.start_connection[i])
end_index = findall(u->u!=Inf, properties.end_connection[i])
if (!isempty(start_index)) | (!isempty(end_index))
u_connection_local = zeros(Float64, 12)
index = findfirst(elem_num->elem_num==element.numbers[i], element.numbers)
push!(elements_with_connections, element.numbers[i])
E = properties.E[index]
A = properties.A[index]
I = properties.Iz[index]
L = properties.L[index]
G = properties.G[index]
J = properties.J[index]
node_i_num = element.nodes[index][1]
node_j_num = element.nodes[index][2]
node_i_index = findfirst(num->num==node_i_num, node.numbers)
node_j_index = findfirst(num->num==node_j_num, node.numbers)
u_global_element = [nodal_displacements[node_i_index]; nodal_displacements[node_j_index]]
u_local_element = properties.Γ[index] * u_global_element
#x-y plane
k1 = properties.start_connection[index][6]
k2 = properties.end_connection[index][6]
k1, k2 = connection_zeros_and_inf(k1, k2, E, I)
v1 = u_local_element[2]
θ1 = u_local_element[6]
v2 = u_local_element[8]
θ2 = u_local_element[12]
Mi = element_forces[index][6]
Mj = element_forces[index][12]
θij = calculate_connection_rotation(k1, k2, E, I, L, v1, θ1, v2, θ2, Mi, Mj)
u_connection_local[6] = θij[1]
u_connection_local[12] = θij[2]
#x-z plane
k1 = properties.start_connection[index][5]
k2 = properties.end_connection[index][5]
k1, k2 = connection_zeros_and_inf(k1, k2, E, I)
v1 = u_local_element[3]
θ1 = u_local_element[5]
v2 = u_local_element[9]
θ2 = u_local_element[11]
Mi = element_forces[index][5]
Mj = element_forces[index][11]
θij = calculate_connection_rotation(k1, k2, E, I, L, v1, θ1, v2, θ2, Mi, Mj)
u_connection_local[5] = θij[1]
u_connection_local[11] = θij[2]
#torsion
k1 = properties.start_connection[index][4]
k2 = properties.end_connection[index][4]
k1, k2 = connection_zeros_and_inf(k1, k2, G, J)
θx1 = u_local_element[4]
θx2 = u_local_element[10]
Ti = element_forces[index][4]
Tj = element_forces[index][10]
θij = calculate_connection_rotation_torsion(k1, k2, G, J, L, θx1, θx2, Ti, Tj)
u_connection_local[4] = θij[1]
u_connection_local[10] = θij[2]
#axial
k1 = properties.start_connection[index][1]
k2 = properties.end_connection[index][1]
k1, k2 = connection_zeros_and_inf(k1, k2, E, A)
Δx1 = u_local_element[1]
Δx2 = u_local_element[7]
Pi = element_forces[index][1]
Pj = element_forces[index][7]
Δij = calculate_connection_deformation_axial(k1, k2, E, A, L, Δx1, Δx2, Pi, Pj)
u_connection_local[1] = Δij[1]
u_connection_local[7] = Δij[2]
u_connection_global = properties.Γ[index]' * u_connection_local #convert from local to global
push!(u_element_connection, u_connection_global)
end
end
element_connections = ElementConnections(elements_with_connections, u_element_connection)
return element_connections
end
function calculate_connection_rotation(k1, k2, E, I, L, v1, θ1, v2, θ2, Mi, Mj)
#Use MZG Example 13.7 equations to solve for rotation at a partially rigid or hinged connection.
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
kB = (E*I/L)*[4+α1 2
2 4+α2]
kC = (E*I/L)*[6/L -α1 -6/L 0
6/L 0 -6/L -α2]
u = [v1, θ1, v2, θ2]
M = [Mi, Mj]
θ = kB^-1*(M - kC*u)
return θ
end
function calculate_connection_rotation_torsion(k1, k2, G, J, L, θ1, θ2, Ti, Tj)
α1 = k1/(G*J/L)
α2 = k2/(G*J/L)
kB = (G*J/L)*[(1-α1)/2 -1/2
-1/2 (1-α2)/2]
kC = (G*J/L)*[α1/2 0
0 α2/2]
u = [θ1, θ2]
T = [Ti, Tj]
θ = kB^-1*(T - kC*u)
return θ
end
function calculate_connection_deformation_axial(k1, k2, E, A, L, Δ1, Δ2, Pi, Pj)
α1 = k1/(E*A/L)
α2 = k2/(E*A/L)
kB = (E*A/L)*[(1-α1)/2 -1/2
-1/2 (1-α2)/2]
kC = (E*A/L)*[α1/2 0
0 α2/2]
u = [Δ1, Δ2]
P = [Pi, Pj]
Δ = kB^-1*(P - kC*u)
return Δ
end
end # module
# ke = zeros(Float64, 6, 6)
# c = [2;3;5;6]
# ke[c, c] = ke_condensed
# ke[1, 1] = E*A/L
# ke[1, 4] = -E*A/L
# ke[4, 1] = -E*A/L
# ke[4, 4] = E*A/L
# return ke
# end
# # α = (α1 * α2) / (α1*α2 + 4*α1 + 4*α2 + 12)
# # ke = zeros(Float64, 6, 6)
# # ke[1, 1] = E*A/L
# # ke[1, 4] = E*A/L
# # ke[2, 2] = α*E*I/L * 12/L^2 * (1 + (α1 + α2)/(α1*α2))
# # ke[2, 3] = α*E*I/L * 6/L * (1 + 2/α2)
# # ke[2, 5] = α*E*I/L * -12/L^2 * (1 + (α1 + α2)/(α1*α2))
# # ke[2, 6] = α*E*I/L * 6/L * (1 + 2/α1)
# # ke[3, 3] = α*E*I/L * 4 * (1 + 3/α2)
# # ke[3, 5] = α*E*I/L * -6/L * (1 + 2/α2)
# # ke[3, 6] = α*E*I/L * 2
# # ke[5, 5] = α*E*I/L * 12/L^2 * (1 + (α1 + α2)/(α1*α2))
# # ke[5, 6] = α*E*I/L * -6/L * (1 + 2/α1)
# # ke[6, 6] = α*E*I/L * 4 * (1 + 3/α1)
# # for i = 1:6
# # for j = 1:6
# # ke[j, i] = ke[i, j]
# # end
# # end
# # return ke
# # end
# function define_local_3D_mass_matrix(A, L, ρ)
# m = zeros(Float64, (12, 12))
# m[1, 1] = 140
# m[1, 7] = 70
# m[2, 2] = 156
# m[2, 6] = 22L
# m[2, 8] = 54
# m[2, 12] = -13L
# m[3, 3] = 156
# m[3, 5] = -22L
# m[3, 9] = 54
# m[3, 11] = 13L
# m[4, 4] = 140Io/A
# m[4, 10] = 70Io/A
# m[5, 5] = 4L^2
# m[5, 9] = -13L
# m[5, 11] = -3L^2
# m[6, 6] = 4L^2
# m[6, 8] = 13L
# m[6, 12] = -3L^2
# m[7, 7] = 140
# m[8, 8] = 156
# m[8, 12] = -22L
# m[9, 9] = 156
# m[9, 11] = 22L
# m[10, 10] = 140Io/A
# m[11, 11] = 4L^2
# m[12, 12] = 4L^2
# for i = 1:12
# for j = 1:12
# m[j, i] = m[i, j]
# end
# end
# m = m .* (ρ*A*L)/420
# return m
# end
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 6915 | module PlotTools
using CairoMakie
function beam_shape_function(q1, q2, q3, q4, L, x)
a0 = q1
a1 = q2
a2 = 1/L^2*(-3*q1-2*q2*L+3*q3-q4*L)
a3 = 1/L^3*(2*q1+q2*L-2*q3+q4*L)
w = a0 + a1*x + a2*x^2 + a3*x^3
return w
end
function column_shape_function(a1, a2, L, x)
a_x = a1 + (a2-a1)/L * x
return a_x
end
function get_element_deformed_shape(u_local_e, L, Γ, n)
x = range(0.0, L, n)
#local x-y plane
dof = [2, 6, 8, 12]
q1, q2, q3, q4 = u_local_e[dof]
w_xy = beam_shape_function.(q1, q2, q3, q4, L, x)
#local x-z plane
dof = [3, 5, 9, 11]
q1, q2, q3, q4 = u_local_e[dof]
w_xz = beam_shape_function.(q1, q2, q3, q4, L, x)
#axial deformation along local x-axis
dof = [1, 7]
a1, a2 = u_local_e[dof]
a_x = column_shape_function.(a1, a2, L, x)
#local element deformation
δ = [zeros(Float64, 6) for i in eachindex(x)]
for i in eachindex(x)
δ[i][1] = a_x[i]
δ[i][2] = w_xy[i]
δ[i][3] = w_xz[i]
end
#global element deformation
Δ = [Γ'[1:6,1:6] * δ[i] for i in eachindex(x)]
return δ, Δ, x
end
function discretized_element_global_coords(node_i_coords, Γ, x)
local_element_discretized_coords = [zeros(Float64, 3) for i in eachindex(x)]
[local_element_discretized_coords[i][1] = x[i] for i in eachindex(x)]
global_element_discretized_coords = [Γ'[1:3, 1:3] * (local_element_discretized_coords[i]) .+ node_i_coords for i in eachindex(x)]
return global_element_discretized_coords
end
function get_display_coords_element(u_local_e, node_i_coords, L, Γ, n)
δe, Δe, x = get_element_deformed_shape(u_local_e, L, Γ, n)
discretized_element_global_coords = Show.discretized_element_global_coords(node_i_coords, Γ, x)
return discretized_element_global_coords, Δe
end
function get_display_coords(element, node, properties, u_local_e, n)
display_coords = Array{Array{Array{Float64, 1}, 1}}(undef, length(properties.L))
display_Δ = Array{Array{Array{Float64, 1}}}(undef, length(properties.L))
for i=1:length(properties.L)
index = findfirst(num->num==element.nodes[i][1], node.numbers)
node_i_coords = node.coordinates[index]
display_coords[i], display_Δ[i] = get_display_coords_element(u_local_e[i], node_i_coords, properties.L[i], properties.Γ[i], n[i])
# get_display_coords_element(u_local_e[i], node_i_coords, properties.L[i], properties.Γ[i], n[i])
end
return display_coords, display_Δ
end
function show_element_deformed_shape!(ax, element_XYZ, Δ, scale, color)
X = [element_XYZ[i][1] for i in eachindex(element_XYZ)]
Y = [element_XYZ[i][2] for i in eachindex(element_XYZ)]
Z = [element_XYZ[i][3] for i in eachindex(element_XYZ)]
ΔX = [Δ[i][1] for i in eachindex(element_XYZ)]
ΔY = [Δ[i][2] for i in eachindex(element_XYZ)]
ΔZ = [Δ[i][3] for i in eachindex(element_XYZ)]
for i=1:(length(X)-1)
# scatterlines!(ax, [X[i], X[i+1]], [Y[i], Y[i+1]], [Z[i], Z[i+1]], markersize = 5)
lines!(ax, [X[i] + scale[1] * ΔX[i], X[i+1] + scale[1] * ΔX[i+1]], [Y[i] + scale[2] * ΔY[i], Y[i+1] + scale[2] * ΔY[i+1]], [Z[i] + scale[3] * ΔZ[i], Z[i+1] + scale[3] * ΔZ[i+1]], linestyle=:dash, color=color, linewidth=2)
end
# return ax
end
function define_global_element_displacements(u, global_dof, element, element_connections)
u_global_e = [zeros(Float64, 12) for i in eachindex(global_dof)]
for i in eachindex(global_dof)
u_global_e[i] = u[global_dof[i]]
#update element deformations to consider partially restrained connections
index = findfirst(num->num==element.numbers[i], element_connections.elements)
if !isnothing(index)
u_global_e[i][[5, 6, 11, 12]] .= element_connections.displacements[index][[5, 6, 11, 12]]
end
end
return u_global_e
end
# function show_model_deformed_shape(nodal_displacements, element_connections, element, node, properties, scale)
# n = vec(ones(Int64, size(properties.L, 1)) * 11)
# u = Array{Float64}(undef, 0)
# for i in eachindex(nodal_displacements)
# u = [u; nodal_displacements[i]]
# end
# u_global_e = define_global_element_displacements(u, properties.global_dof, element, element_connections)
# u_local_e = [properties.Γ[i]*u_global_e[i] for i in eachindex(u_global_e)]
# element_display_coords, element_display_Δ = InstantFrame.UI.get_display_coords(element, node, properties, u_local_e, n)
# figure = Figure()
# ax = Axis3(figure[1,1])
# for i in eachindex(element_display_coords)
# ax = show_element_deformed_shape(element_display_coords[i], element_display_Δ[i], scale, ax)
# end
# # ax.azimuth[] = 3π/2
# # ax.elevation[] = π/2
# # ax.aspect = (1.0, Y_range/X_range, Z_range/X_range)
# return figure
# end
function define_element_nodal_start_end_coordinates(element, node)
element_nodal_coords = Vector{NamedTuple{(:start_node, :end_node), Tuple{Tuple{Float64, Float64, Float64}, Tuple{Float64, Float64, Float64}}}}(undef, length(element.numbers))
for i in eachindex(element.numbers)
start_node_index = findfirst(num->num==element.nodes[i][1], node.numbers)
end_node_index = findfirst(num->num==element.nodes[i][2], node.numbers)
element_nodal_coords[i] = (start_node=node.coordinates[start_node_index], end_node=node.coordinates[end_node_index])
end
return element_nodal_coords
end
function get_node_XYZ(node)
X = [node.coordinates[i][1] for i in eachindex(node.coordinates)]
Y = [node.coordinates[i][2] for i in eachindex(node.coordinates)]
Z = [node.coordinates[i][3] for i in eachindex(node.coordinates)]
return X, Y, Z
end
function get_XYZ_element_ij(element_nodal_coords)
Xij=Float64[]
Yij=Float64[]
Zij=Float64[]
for i in eachindex(element_nodal_coords)
Xij = push!(Xij, element_nodal_coords[i].start_node[1])
Xij = push!(Xij, element_nodal_coords[i].end_node[1])
Yij = push!(Yij, element_nodal_coords[i].start_node[2])
Yij = push!(Yij, element_nodal_coords[i].end_node[2])
Zij = push!(Zij, element_nodal_coords[i].start_node[3])
Zij = push!(Zij, element_nodal_coords[i].end_node[3])
end
return Xij, Yij, Zij
end
function get_text_location_on_elements(element, node)
text_location = Vector{Tuple{Float64, Float64, Float64}}(undef, size(element.numbers, 1))
for i in eachindex(element.numbers)
start_index = findfirst(num->num==element.nodes[i][1], node.numbers)
end_index = findfirst(num->num==element.nodes[i][2], node.numbers)
Δ = node.coordinates[end_index] .- node.coordinates[start_index]
text_location[i] = node.coordinates[start_index] .+ Δ./2
end
return text_location
end
end #module | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 14066 | module Report
using DataFrames, CSV
using ..InstantFrame
function nodal_inputs(node, support; filename)
#add node numbers
report = DataFrame(node_numbers=node.numbers)
#nodal coordinates
nodal_coords = Matrix{Float64}(undef, size(node.coordinates, 1), 3)
for i in eachindex(node.coordinates)
nodal_coords[i,:] = [node.coordinates[i][1], node.coordinates[i][2], node.coordinates[i][3]]
end
report[!, :X] = nodal_coords[:,1]
report[!, :Y] = nodal_coords[:,2]
report[!, :Z] = nodal_coords[:,3]
#add support info
report[!, :uX] = zeros(size(node.numbers, 1))
report[!, :uY] = zeros(size(node.numbers, 1))
report[!, :uZ] = zeros(size(node.numbers, 1))
report[!, :rX] = zeros(size(node.numbers, 1))
report[!, :rY] = zeros(size(node.numbers, 1))
report[!, :rZ] = zeros(size(node.numbers, 1))
for i in eachindex(support.nodes)
index = findfirst(num->num==support.nodes[i], node.numbers)
report[index, :uX] = support.stiffness.uX[i]
report[index, :uY] = support.stiffness.uY[i]
report[index, :uZ] = support.stiffness.uZ[i]
report[index, :rX] = support.stiffness.rX[i]
report[index, :rY] = support.stiffness.rY[i]
report[index, :rZ] = support.stiffness.rZ[i]
end
# #add point loads
# report[!, :FX] = zeros(size(node.numbers, 1))
# report[!, :FY] = zeros(size(node.numbers, 1))
# report[!, :FZ] = zeros(size(node.numbers, 1))
# report[!, :MX] = zeros(size(node.numbers, 1))
# report[!, :MY] = zeros(size(node.numbers, 1))
# report[!, :MZ] = zeros(size(node.numbers, 1))
# if point_load != InstantFrame.PointLoad(nothing)
# for i in eachindex(point_load.nodes)
# index = findfirst(num->num==point_load.nodes[i], node.numbers)
# report[index, :FX] = point_load.magnitudes.FX[i]
# report[index, :FY] = point_load.magnitudes.FY[i]
# report[index, :FZ] = point_load.magnitudes.FZ[i]
# report[index, :MX] = point_load.magnitudes.MX[i]
# report[index, :MY] = point_load.magnitudes.MY[i]
# report[index, :MZ] = point_load.magnitudes.MZ[i]
# end
# end
CSV.write(filename, report)
return report
end
function element_inputs(element, properties; filename)
#add element numbers
report = DataFrame(element_numbers=element.numbers)
#add element info
node_i = [element.nodes[i][1] for i in eachindex(element.nodes)]
node_j = [element.nodes[i][2] for i in eachindex(element.nodes)]
report[!, :node_i] = node_i
report[!, :node_j] = node_j
report[!, :L] = properties.L
report[!, :local_axis_rotation] = element.orientation
#add local element axes unit vectors
local_xX = [properties.local_axis_directions[i].x[1] for i in eachindex(properties.local_axis_directions)]
local_xY = [properties.local_axis_directions[i].x[2] for i in eachindex(properties.local_axis_directions)]
local_xZ = [properties.local_axis_directions[i].x[3] for i in eachindex(properties.local_axis_directions)]
local_yX = [properties.local_axis_directions[i].y[1] for i in eachindex(properties.local_axis_directions)]
local_yY = [properties.local_axis_directions[i].y[2] for i in eachindex(properties.local_axis_directions)]
local_yZ = [properties.local_axis_directions[i].y[3] for i in eachindex(properties.local_axis_directions)]
local_zX = [properties.local_axis_directions[i].z[1] for i in eachindex(properties.local_axis_directions)]
local_zY = [properties.local_axis_directions[i].z[2] for i in eachindex(properties.local_axis_directions)]
local_zZ = [properties.local_axis_directions[i].z[3] for i in eachindex(properties.local_axis_directions)]
report[!, :xX] = local_xX
report[!, :xY] = local_xY
report[!, :xZ] = local_xZ
report[!, :yX] = local_yX
report[!, :yY] = local_yY
report[!, :yZ] = local_yZ
report[!, :zX] = local_zX
report[!, :zY] = local_zY
report[!, :zZ] = local_zZ
#add material properties
report[!, :E] = properties.E
report[!, :Poissons_ratio] = properties.ν
report[!, :G] = properties.G
report[!, :mass_density] = properties.ρ
#add section properties
report[!, :A] = properties.A
report[!, :Iyy] = properties.Iy
report[!, :Izz] = properties.Iz
report[!, :Io] = properties.Io
report[!, :J] = properties.J
#add element end conditions
report[!, :ux_i] = fill(Inf, size(element.numbers, 1))
report[!, :uy_i] = fill(Inf, size(element.numbers, 1))
report[!, :uz_i] = fill(Inf, size(element.numbers, 1))
report[!, :rx_i] = fill(Inf, size(element.numbers, 1))
report[!, :ry_i] = fill(Inf, size(element.numbers, 1))
report[!, :rz_i] = fill(Inf, size(element.numbers, 1))
report[!, :ux_j] = fill(Inf, size(element.numbers, 1))
report[!, :uy_j] = fill(Inf, size(element.numbers, 1))
report[!, :uz_j] = fill(Inf, size(element.numbers, 1))
report[!, :rx_j] = fill(Inf, size(element.numbers, 1))
report[!, :ry_j] = fill(Inf, size(element.numbers, 1))
report[!, :rz_j] = fill(Inf, size(element.numbers, 1))
for i in eachindex(properties.start_connection)
report.ux_i[i] = properties.start_connection[i].ux
report.uy_i[i] = properties.start_connection[i].uy
report.uz_i[i] = properties.start_connection[i].uz
report.rx_i[i] = properties.start_connection[i].rx
report.ry_i[i] = properties.start_connection[i].ry
report.rz_i[i] = properties.start_connection[i].rz
end
for i in eachindex(properties.end_connection)
report.ux_j[i] = properties.end_connection[i].ux
report.uy_j[i] = properties.end_connection[i].uy
report.uz_j[i] = properties.end_connection[i].uz
report.rx_j[i] = properties.end_connection[i].rx
report.ry_j[i] = properties.end_connection[i].ry
report.rz_j[i] = properties.end_connection[i].rz
end
# #add element uniform loads
# report[!, :qX] = zeros(size(element.numbers, 1))
# report[!, :qY] = zeros(size(element.numbers, 1))
# report[!, :qZ] = zeros(size(element.numbers, 1))
# report[!, :mX] = zeros(size(element.numbers, 1))
# report[!, :mY] = zeros(size(element.numbers, 1))
# report[!, :mZ] = zeros(size(element.numbers, 1))
# if uniform_load != InstantFrame.UniformLoad(nothing)
# for i in eachindex(uniform_load.elements)
# index = findfirst(num->num==uniform_load.elements[i], element.numbers)
# report[index, :qX] = uniform_load.magnitudes.qX[i]
# report[index, :qY] = uniform_load.magnitudes.qY[i]
# report[index, :qZ] = uniform_load.magnitudes.qZ[i]
# report[index, :mX] = uniform_load.magnitudes.mX[i]
# report[index, :mY] = uniform_load.magnitudes.mY[i]
# report[index, :mZ] = uniform_load.magnitudes.mZ[i]
# end
# end
CSV.write(filename, report)
return report
end
function nodal_output(node, support, displacements, reactions; filename)
#add node numbers
report = DataFrame(node_numbers=node.numbers)
#add nodal displacements
report[!, :uX] = zeros(Float64, size(node.numbers, 1))
report[!, :uY] = zeros(Float64, size(node.numbers, 1))
report[!, :uZ] = zeros(Float64, size(node.numbers, 1))
report[!, :rX] = zeros(Float64, size(node.numbers, 1))
report[!, :rY] = zeros(Float64, size(node.numbers, 1))
report[!, :rZ] = zeros(Float64, size(node.numbers, 1))
for i in eachindex(displacements)
report[i, :uX] = displacements[i][1]
report[i, :uY] = displacements[i][2]
report[i, :uZ] = displacements[i][3]
report[i, :rX] = displacements[i][4]
report[i, :rY] = displacements[i][5]
report[i, :rZ] = displacements[i][6]
end
#add nodal reactions
report[!, :RX] = zeros(Float64, size(node.numbers, 1))
report[!, :RY] = zeros(Float64, size(node.numbers, 1))
report[!, :RZ] = zeros(Float64, size(node.numbers, 1))
report[!, :MX] = zeros(Float64, size(node.numbers, 1))
report[!, :MY] = zeros(Float64, size(node.numbers, 1))
report[!, :MZ] = zeros(Float64, size(node.numbers, 1))
for i in eachindex(support.nodes)
index = findfirst(num-> num==support.nodes[i], node.numbers)
report[index, :RX] = reactions[i][1]
report[index, :RY] = reactions[i][2]
report[index, :RZ] = reactions[i][3]
report[index, :MX] = reactions[i][4]
report[index, :MY] = reactions[i][5]
report[index, :MZ] = reactions[i][6]
end
CSV.write(filename, report)
return report
end
function element_output(element, forces, connections; filename)
#add element numbers
report = DataFrame(element_numbers=element.numbers)
#add element forces
report[!, :Px_i] = zeros(Float64, size(element.numbers, 1))
report[!, :Py_i] = zeros(Float64, size(element.numbers, 1))
report[!, :Pz_i] = zeros(Float64, size(element.numbers, 1))
report[!, :Mx_i] = zeros(Float64, size(element.numbers, 1))
report[!, :My_i] = zeros(Float64, size(element.numbers, 1))
report[!, :Mz_i] = zeros(Float64, size(element.numbers, 1))
report[!, :Px_j] = zeros(Float64, size(element.numbers, 1))
report[!, :Py_j] = zeros(Float64, size(element.numbers, 1))
report[!, :Pz_j] = zeros(Float64, size(element.numbers, 1))
report[!, :Mx_j] = zeros(Float64, size(element.numbers, 1))
report[!, :My_j] = zeros(Float64, size(element.numbers, 1))
report[!, :Mz_j] = zeros(Float64, size(element.numbers, 1))
for i in eachindex(element.numbers)
report[i, :Px_i] = forces[i][1]
report[i, :Py_i] = forces[i][2]
report[i, :Pz_i] = forces[i][3]
report[i, :Mx_i] = forces[i][4]
report[i, :My_i] = forces[i][5]
report[i, :Mz_i] = forces[i][6]
report[i, :Px_j] = forces[i][7]
report[i, :Py_j] = forces[i][8]
report[i, :Pz_j] = forces[i][9]
report[i, :Mx_j] = forces[i][10]
report[i, :My_j] = forces[i][11]
report[i, :Mz_j] = forces[i][12]
end
#add element end displacements for partially restrained connections
if isempty(connections.elements)
report[!, :ux_i] = fill("", size(element.numbers, 1))
report[!, :uy_i] = fill("", size(element.numbers, 1))
report[!, :uz_i] = fill("", size(element.numbers, 1))
report[!, :rx_i] = fill("", size(element.numbers, 1))
report[!, :ry_i] = fill("", size(element.numbers, 1))
report[!, :rz_i] = fill("", size(element.numbers, 1))
report[!, :ux_j] = fill("", size(element.numbers, 1))
report[!, :uy_j] = fill("", size(element.numbers, 1))
report[!, :uz_j] = fill("", size(element.numbers, 1))
report[!, :rx_j] = fill("", size(element.numbers, 1))
report[!, :ry_j] = fill("", size(element.numbers, 1))
report[!, :rz_j] = fill("", size(element.numbers, 1))
else
report[!, :ux_i] = fill(0.0, size(element.numbers, 1))
report[!, :uy_i] = fill(0.0, size(element.numbers, 1))
report[!, :uz_i] = fill(0.0, size(element.numbers, 1))
report[!, :rx_i] = fill(0.0, size(element.numbers, 1))
report[!, :ry_i] = fill(0.0, size(element.numbers, 1))
report[!, :rz_i] = fill(0.0, size(element.numbers, 1))
report[!, :ux_j] = fill(0.0, size(element.numbers, 1))
report[!, :uy_j] = fill(0.0, size(element.numbers, 1))
report[!, :uz_j] = fill(0.0, size(element.numbers, 1))
report[!, :rx_j] = fill(0.0, size(element.numbers, 1))
report[!, :ry_j] = fill(0.0, size(element.numbers, 1))
report[!, :rz_j] = fill(0.0, size(element.numbers, 1))
for i in eachindex(connections.elements)
index = findfirst(num->num==connections.elements[i], element.numbers)
report[index, :ux_i] = connections.displacements[i][1]
report[index, :uy_i] = connections.displacements[i][2]
report[index, :uz_i] = connections.displacements[i][3]
report[index, :rx_i] = connections.displacements[i][4]
report[index, :ry_i] = connections.displacements[i][5]
report[index, :rz_i] = connections.displacements[i][6]
report[index, :ux_j] = connections.displacements[i][7]
report[index, :uy_j] = connections.displacements[i][8]
report[index, :uz_j] = connections.displacements[i][9]
report[index, :rx_j] = connections.displacements[i][10]
report[index, :ry_j] = connections.displacements[i][11]
report[index, :rz_j] = connections.displacements[i][12]
end
end
CSV.write(filename, report)
return report
end
function uniform_loads(uniform_load; filename)
#add element numbers
report = DataFrame(element_numbers=uniform_load.elements)
#add load case labels
report[!, :load_case] = uniform_load.labels
#add element uniform loads
report[!, :qX] = uniform_load.magnitudes.qX
report[!, :qY] = uniform_load.magnitudes.qY
report[!, :qZ] = uniform_load.magnitudes.qZ
report[!, :mX] = uniform_load.magnitudes.mX
report[!, :mY] = uniform_load.magnitudes.mY
report[!, :mZ] = uniform_load.magnitudes.mZ
CSV.write(filename, report)
return report
end
function point_loads(point_load; filename)
#add node numbers
report = DataFrame(element_numbers=point_load.nodes)
#add load case labels
report[!, :load_case] = point_load.labels
#add nodal point loads
report[!, :FX] = point_load.magnitudes.FX
report[!, :FY] = point_load.magnitudes.FY
report[!, :FZ] = point_load.magnitudes.FZ
report[!, :MX] = point_load.magnitudes.MX
report[!, :MY] = point_load.magnitudes.MY
report[!, :MZ] = point_load.magnitudes.MZ
CSV.write(filename, report)
return report
end
end #module
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 10852 | module Show
using CairoMakie, LinearAlgebra
using ..PlotTools
#3D
function elements!(ax, element_nodal_coords, color)
for i in eachindex(element_nodal_coords)
lines!(ax, [element_nodal_coords[i].start_node[1], element_nodal_coords[i].end_node[1]], [element_nodal_coords[i].start_node[2], element_nodal_coords[i].end_node[2]], [element_nodal_coords[i].start_node[3], element_nodal_coords[i].end_node[3]], color = color)
end
end
#2D
function elements!(ax, Xij, Yij, attributes)
linesegments!(ax, Xij, Yij, color = attributes.color, linewidth = attributes.linewidth)
end
function nodes!(ax, X, Y, Z, markersize, color)
scatter!(ax, X, Y, Z, markersize=markersize, color = color)
end
function nodes!(ax, X, Y, attributes)
scatter!(ax, X, Y, markersize=attributes.size, color = attributes.color)
end
function point_loads!(ax, point_load, node, arrow_scale, arrow_head_scale, unit_arrow_head_size, arrowcolor, linecolor, linewidth)
if !isnothing(point_load.nodes)
for i in eachindex(point_load.nodes)
index = findfirst(num->num==point_load.nodes[i], node.numbers)
tail_location = node.coordinates[index]
FX = point_load.magnitudes.FX[i]
FY = point_load.magnitudes.FY[i]
FZ = point_load.magnitudes.FZ[i]
unit_arrow_vector = [FX, FY, FZ] / norm([FX, FY, FZ])
arrow_vector = unit_arrow_vector .* arrow_scale
arrow_head_size = unit_arrow_head_size * arrow_head_scale
arrow_size_vector = arrow_head_scale * unit_arrow_vector
arrows!(ax, [tail_location[1]-arrow_vector[1] - arrow_size_vector[1]], [tail_location[2]-arrow_vector[2] - arrow_size_vector[2]], [tail_location[3]-arrow_vector[3]-arrow_size_vector[3]], [arrow_vector[1]], [arrow_vector[2]], [arrow_vector[3]], arrowsize = arrow_head_size, linewidth=linewidth,
arrowcolor = arrowcolor, linecolor = linecolor)
end
end
end
function uniform_loads!(ax, uniform_load, element, node, unit_arrow_head_size, arrow_head_scale, arrow_scale, linewidth, arrowcolor, linecolor)
for i in eachindex(uniform_load.elements)
index = findfirst(num->num==uniform_load.elements[i], element.numbers)
element_nodes = element.nodes[index]
qX = uniform_load.magnitudes.qX[i]
qY = uniform_load.magnitudes.qY[i]
qZ = uniform_load.magnitudes.qZ[i]
#start node
index = findfirst(num->num==element_nodes[1], node.numbers)
tail_location = node.coordinates[index]
if qX != 0.0
unit_arrow_vector = [qX, 0.0, 0.0] / norm([qX, 0.0, 0.0])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
if qY != 0.0
unit_arrow_vector = [0.0, qY, 0.0] / norm([0.0, qY, 0.0])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
if qZ != 0.0
unit_arrow_vector = [0.0, 0.0, qZ] / norm([0.0, 0.0, qZ])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
#end node
index = findfirst(num->num==element_nodes[2], node.numbers)
tail_location = node.coordinates[index]
if qX != 0.0
unit_arrow_vector = [qX, 0.0, 0.0] / norm([qX, 0.0, 0.0])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
if qY != 0.0
unit_arrow_vector = [0.0, qY, 0.0] / norm([0.0, qY, 0.0])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
if qZ != 0.0
unit_arrow_vector = [0.0, 0.0, qZ] / norm([0.0, 0.0, qZ])
arrow_vector = unit_arrow_vector .* arrow_scale
define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
end
end
end
function define_load_arrow!(ax, unit_arrow_head_size, arrow_head_scale, unit_arrow_vector, arrow_vector, tail_location, linewidth, arrowcolor, linecolor)
arrow_head_size = unit_arrow_head_size * arrow_head_scale
arrow_size_vector = arrow_head_scale * unit_arrow_vector
arrows!(ax, [tail_location[1]-arrow_vector[1] - arrow_size_vector[1]], [tail_location[2]-arrow_vector[2] - arrow_size_vector[2]], [tail_location[3]-arrow_vector[3]-arrow_size_vector[3]], [arrow_vector[1]], [arrow_vector[2]], [arrow_vector[3]], arrowsize = arrow_head_size, linewidth=linewidth,
arrowcolor = arrowcolor, linecolor = linecolor)
end
function element_local_axes!(ax, element, node, model, unit_arrow_head_size, arrow_head_scale, arrow_scale, arrowcolor, linecolor, linewidth)
for i in eachindex(element.numbers)
element_nodes = element.nodes[i]
#start node
start_index = findfirst(num->num==element_nodes[1], node.numbers)
end_index = findfirst(num->num==element_nodes[2], node.numbers)
Δ = node.coordinates[end_index] .- node.coordinates[start_index]
tail_location = node.coordinates[start_index] .+ Δ./2
unit_vector_Y = [0.0, 1.0, 0.0]
local_Y = model.properties.Γ[i][1:3,1:3]' * unit_vector_Y
# unit_arrow_vector = global_Y
arrow_vector = local_Y .* arrow_scale
arrow_head_size = unit_arrow_head_size * arrow_head_scale
arrows!(ax, [tail_location[1]], [tail_location[2]], [tail_location[3]], [arrow_vector[1]], [arrow_vector[2]], [arrow_vector[3]], arrowsize = arrow_head_size, linewidth=linewidth,
arrowcolor = arrowcolor, linecolor = linecolor)
unit_vector_X = [1.0, 0.0, 0.0]
local_X = model.properties.Γ[i][1:3,1:3]' * unit_vector_X
arrow_vector = local_X .* arrow_scale
arrow_head_size = unit_arrow_head_size * arrow_head_scale
arrows!(ax, [tail_location[1]], [tail_location[2]], [tail_location[3]], [arrow_vector[1]], [arrow_vector[2]], [arrow_vector[3]], arrowsize = arrow_head_size, linewidth=linewidth,
arrowcolor = arrowcolor, linecolor = linecolor)
end
end
function deformed_shape!(ax, nodal_displacements, global_dof, element, node, properties, element_connections, n, scale, linecolor)
u = Array{Float64}(undef, 0)
for i in eachindex(nodal_displacements)
u = [u; nodal_displacements[i]]
end
u_global_e = InstantFrame.PlotTools.define_global_element_displacements(u, global_dof, element, element_connections)
u_local_e = [properties.Γ[i]*u_global_e[i] for i in eachindex(u_global_e)]
element_display_coords, element_display_Δ = InstantFrame.PlotTools.get_display_coords(element, node, properties, u_local_e, n)
for i in eachindex(element_display_coords)
InstantFrame.PlotTools.show_element_deformed_shape!(ax, element_display_coords[i], element_display_Δ[i], scale, linecolor)
end
end
function node_numbers!(ax, node, fontsize, color)
text!(ax,
[Point3f(node.coordinates[i][1], node.coordinates[i][2], node.coordinates[i][3]) for i in eachindex(node.coordinates)],
text = [string(node.numbers[i]) for i in eachindex(node.numbers)],
# rotation = [i / 7 * 1.5pi for i in 1:7],
color = color,
# align = (:left, :baseline),
fontsize = fontsize,
# markerspace = :data
)
end
function element_numbers!(ax, element, node, fontsize, color)
text_location = Vector{Tuple{Float64, Float64, Float64}}(undef, size(element.numbers, 1))
for i in eachindex(element.numbers)
start_index = findfirst(num->num==element.nodes[i][1], node.numbers)
end_index = findfirst(num->num==element.nodes[i][2], node.numbers)
Δ = node.coordinates[end_index] .- node.coordinates[start_index]
text_location[i] = node.coordinates[start_index] .+ Δ./2
end
text!(ax,
[Point3f(text_location[i][1], text_location[i][2], text_location[i][3]) for i in eachindex(text_location)],
text = [string(element.numbers[i]) for i in eachindex(element.numbers)],
# rotation = [i / 7 * 1.5pi for i in 1:7],
color = color,
# align = (:left, :baseline),
fontsize = fontsize,
# markerspace = :data
)
end
#2D
function axial_force!(ax, Xij, Yij, axial_forces, attributes)
num_elements = Int(size(Xij)[1]/2)
force_color = Vector{String}(undef, num_elements)
linewidths = Vector{Float64}(undef, num_elements)
max_force = maximum(abs.(axial_forces))
for i=1:num_elements
if axial_forces[i] >= 0.0
force_color[i] = attributes.tension_color
else
force_color[i] = attributes.compression_color
end
linewidths[i] = abs(axial_forces[i])/max_force * attributes.scale
end
linesegments!(ax, Xij, Yij, color = force_color, linewidth = linewidths)
end
function axial_force_magnitude!(ax, element, node, axial_forces, active_element_index, attributes)
text_location = PlotTools.get_text_location_on_elements(element, node)
three_dimensional = isempty(findall(coord->coord == 0.0, [text_location[i][3] for i in eachindex(text_location)]))
if three_dimensional
text!(ax,
[Point3f(text_location[i][1], text_location[i][2], text_location[i][3]) for i in eachindex(text_location)],
text = [string(axial_forces[i]) for i in eachindex(axial_forces)],
# rotation = [i / 7 * 1.5pi for i in 1:7],
color = attributes.color,
# align = (:left, :baseline),
fontsize = attributes.fontsize,
# markerspace = :data)
)
else
text!(ax,
[Point2f(text_location[active_element_index[i]][1], text_location[active_element_index[i]][2]) for i in eachindex(active_element_index)],
text = [string(axial_forces[active_element_index[i]]) for i in eachindex(active_element_index)],
# rotation = [i / 7 * 1.5pi for i in 1:7],
color = attributes.color,
# align = (:left, :baseline),
fontsize = attributes.fontsize,
# markerspace = :data)
)
end
end
end #module
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1882 | using InstantFrame, GLMakie
#Chopra Example 18.4 - 2D portal frame vibration modes
material = InstantFrame.Material(names=["steel"], E=[29E6], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam", "column"], A=[10.0, 5.0], Iy=[100.0, 50.0], Iz=[100.0, 50.0], J=[0.001, 0.0005])
connection = InstantFrame.Connection(names=["rigid", "hinge"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4], coordinates=[(0.0, 0.0, 0.0), (0.0, 120.0, 0.0), (240.0, 120.0, 0.0), (240.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2, 3], nodes=[(1,2), (2,3), (3, 4)], orientation=[0.0, 0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid"), ("rigid", "rigid")], cross_section=["column", "beam", "column"], material=["steel", "steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3, 4], stiffness=(uX=[Inf,0.0,0.0,Inf], uY=[Inf,0.0,0.0,Inf], uZ=[Inf,Inf, Inf,Inf], rX=[Inf,Inf, Inf, Inf], rY=[Inf,Inf, Inf,Inf], rZ=[Inf,0.0, 0.0, Inf]))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "modal vibration")
#Chopra modal frequencies
E = 29000000.0
I = 50.0
h = 120.0
A = 5.0
m = material.ρ[1] * A
ω1 = 1.9004*sqrt(E*I/(m*h^4))
ω2 = 4.6609*sqrt(E*I/(m*h^4))
ω3 = 14.5293*sqrt(E*I/(m*h^4))
#Chopra mode shape for mode 1
ϕ1 = [0.4636, -0.2741/h, -0.2741/h]
#test
#small differences from including axial stiffness?
isapprox(model.solution.ωn[1], ω1, rtol=0.01)
isapprox(model.solution.ωn[2], ω2, rtol=0.02)
isapprox(model.solution.ωn[3], ω3, rtol=0.04)
isapprox(model.solution.ϕ[1, ][[7, 12, 18]] .* 0.4636, ϕ1, atol = 0.01) | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1628 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
analysis_type = "first order"
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type)
##tests
#deflection
isapprox(model.solution.nodal_displacements[2][3], 1.807, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 180.0, rtol=0.05)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1770 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,0.0], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[1.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "second order", solution_tolerance = 1e-9)
##tests
#deflection
isapprox(model.solution.displacements[2][2], 0.765, rtol=0.05)
#cantilever moment
isapprox(-model.solution.forces[1][6], 218.3, rtol=0.05)
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1705 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
solution_tolerance = 1.0E-8
analysis_type = "second order"
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type, solution_tolerance)
##tests
#deflection
isapprox(model.solution.displacements[2][3], 4.597, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 409.8, rtol=0.08) #tolerance is a little loose here
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 6954 | using InstantFrame, StaticArrays, NLsolve
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
# model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "second order")
#########
properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(properties.Iy[i], properties.Iz[i], properties.A[i], properties.J[i], properties.E[i], properties.ν[i], properties.L[i]) for i in eachindex(properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(properties, ke_local, element)
ke_global = [properties.Γ[i]'*ke_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_global_dof] = u1f
# P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, u1)
#calculate element internal forces
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u1)
P1_axial = [P1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [properties.Γ[i]'*kg_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
Kff = Ke_ff + Kg_ff
# u = fill(0.0, 100)
# u[free_global_dof] = convert(Vector{Float64}, u1f)
# length(node.numbers)*6
# u_all = SVector{num_dof}(zeros(Float64, num_dof))
# function residual(uf, p)
# Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof = p
# num_dof = length(node.numbers)*6
# u = Vector{Any}(undef, num_dof)
# u[free_global_dof] = uf
# u[fixed_global_dof] .= 0.0
# # u = zeros(Any, num_dof)
# # u_all = MVector{num_dof}(zeros(Float64, num_dof))
# # u_all = deepcopy(uf[1])
# #convert(Vector{Float64}, uf)
# print("type is " * string(typeof(uf)))
# print(" ")
# Ke_ff = update_Ke(node, element, properties, u)
# Kff = Ke_ff + Kg_ff
# Kff * uf - Ff
# end
# p = [Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof]
# u1f = SVector{length(u1f)}(u1f)
# probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
# solution_tolerance = 0.01
# u2f = NonlinearSolve.solve(probN, NewtonRaphson(), reltol = solution_tolerance)
solution = nlsolve((R,uf) ->residual!(R, uf, Kg_ff, Ff, free_global_dof, ke_local), u1f, method = :newton)
function residual!(R, uf, Kg_ff, Ff, free_global_dof, ke_local)
num_dof = length(node.numbers) * 6
u = zeros(Float64, num_dof)
u[free_global_dof] = uf
Ke_ff = update_Ke(node, element, properties, ke_local, u)
# print(Ke_ff)
# print(" ")
Kff = Ke_ff + Kg_ff
for i in eachindex(Ff)
R[i] = transpose(Kff[i,:]) * uf - Ff[i]
end
return R
end
function update_Ke(node, element, properties, ke_local, u)
num_elem = length(properties.L)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
rotation_angles = Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}(undef, num_elem)
# num_nodes = length(node.numbers) * 6
# u = zeros(Float64, num_nodes)
# u[free_global_dof] = uf
nodal_displacements = InstantFrame.define_nodal_displacements(node, u)
# print(nodal_displacements)
# print(" ")
node_i = collect(node.coordinates[1])
for i in eachindex(element.numbers)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.nodes[i][1], node.numbers)
node_j_index = findfirst(node_num->node_num == element.nodes[i][2], node.numbers)
node_i = collect(node.coordinates[node_i_index]) + nodal_displacements[node_i_index][1:3] #update geometry
node_j = collect(node.coordinates[node_j_index]) + nodal_displacements[node_j_index][1:3] #update geometry
#rotation matrix
Γ[i], rotation_angles[i] = InstantFrame.define_rotation_matrix(node_i, node_j, element.orientation[i])
end
print(" ")
ke_global = [Γ[i]' * ke_local[i] * Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, properties.global_dof)
Ke_ff = Ke[free_global_dof, free_global_dof]
# print(Ke_ff)
# print(" ")
return Ke_ff
end
##############################
##tests
#deflection
isapprox(model.solution.nodal_displacements[2][3], 4.597, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 409.8, rtol=0.08) #tolerance is a little loose here
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 7700 | using InstantFrame, StaticArrays, NLsolve, LineSearches
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
analysis_type = "second order"
solution_tolerance = 1E-9
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type, solution_tolerance)
#########
properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(properties.Iy[i], properties.Iz[i], properties.A[i], properties.J[i], properties.E[i], properties.ν[i], properties.L[i]) for i in eachindex(properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(properties, ke_local, element)
ke_global = [properties.Γ[i]'*ke_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_global_dof] = u1f
# P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, u1)
#calculate element internal forces
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u1)
P1_axial = [P1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [properties.Γ[i]'*kg_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
Kff = Ke_ff + Kg_ff
# u = fill(0.0, 100)
# u[free_global_dof] = convert(Vector{Float64}, u1f)
# length(node.numbers)*6
# u_all = SVector{num_dof}(zeros(Float64, num_dof))
# function residual(uf, p)
# Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof = p
# num_dof = length(node.numbers)*6
# u = Vector{Any}(undef, num_dof)
# u[free_global_dof] = uf
# u[fixed_global_dof] .= 0.0
# # u = zeros(Any, num_dof)
# # u_all = MVector{num_dof}(zeros(Float64, num_dof))
# # u_all = deepcopy(uf[1])
# #convert(Vector{Float64}, uf)
# print("type is " * string(typeof(uf)))
# print(" ")
# Ke_ff = update_Ke(node, element, properties, u)
# Kff = Ke_ff + Kg_ff
# Kff * uf - Ff
# end
# p = [Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof]
# u1f = SVector{length(u1f)}(u1f)
# probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
# solution_tolerance = 0.01
# u2f = NonlinearSolve.solve(probN, NewtonRaphson(), reltol = solution_tolerance)
u1f = 0.01*u1f
solution = nlsolve((R,uf) ->residual!(R, uf, Ke_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node), u1f, method = :newton)
function residual!(R, uf, Ke_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node)
num_dof = length(node.numbers) * 6
u = zeros(Float64, num_dof)
u[free_global_dof] = uf
Kg_ff = update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
# print(Ke_ff)
# print(" ")
Kff = Ke_ff + Kg_ff
for i in eachindex(Ff)
R[i] = transpose(Kff[i,:]) * uf - Ff[i]
end
return R
end
function update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
Γ = update_rotation_angles(node, element, properties, u)
properties.Γ = deepcopy(Γ)
# properties.Γ = [0.0]
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u)
P1_axial = [P1[i][7] for i in eachindex(P1)]
# P1_axial = [-50.0]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [Γ[i]'*kg_local[i]*Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
print(P1_axial)
print(" ")
return Kg_ff
end
function update_rotation_angles(node, element, properties, u)
num_elem = length(properties.L)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
rotation_angles = Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}(undef, num_elem)
nodal_displacements = InstantFrame.define_nodal_displacements(node, u)
node_i = collect(node.coordinates[1])
for i in eachindex(element.numbers)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.nodes[i][1], node.numbers)
node_j_index = findfirst(node_num->node_num == element.nodes[i][2], node.numbers)
node_i = collect(node.coordinates[node_i_index]) + nodal_displacements[node_i_index][1:3] #update geometry
node_j = collect(node.coordinates[node_j_index]) + nodal_displacements[node_j_index][1:3] #update geometry
#rotation matrix
Γ[i], rotation_angles[i] = InstantFrame.define_rotation_matrix(node_i, node_j, element.orientation[i])
# print(Γ[i])
# print(" ")
end
return Γ
end
##############################
##tests
#deflection
isapprox(model.solution.nodal_displacements[2][3], 4.597, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 409.8, rtol=0.08) #tolerance is a little loose here
α = 1/50
L = 180.0
P = 50.0
E = 29000.0
I = 37.1
Δ = α*L * (tan(sqrt(P/(E*I))*L)/(sqrt(P/(E*I))*L) - 1)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 8620 | using InstantFrame, StaticArrays, NLsolve, LineSearches
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
analysis_type = "second order"
solution_tolerance = 1E-9
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type, solution_tolerance)
#global to local
node.coordinates = [node.coordinates[i] .+ tuple(model.solution.displacements[i][1:3]...) for i in eachindex(node.coordinates)]
analysis_type = "first order"
model_update = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type)
u_elem_g = model.solution.u
InstantFrame.define_nodal_displacements(node, model.solution.u)
rotation_angles, Γ = update_rotation_angles(node, element, model.properties, model.solution.u)
u_elem_l = model.properties.Γ[1] * model.solution.u
u_elem_l = Γ[1]' * u_elem_l
P_rotated = model.equations.ke_local[1] * u_elem_l
#convert local to new local
model.properties.Γ = Γ
P = InstantFrame.calculate_element_internal_forces(model.properties, model.equations.ke_local, element, uniform_load, model.forces.local_fixed_end_forces, model.solution.u)
#########
properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(properties.Iy[i], properties.Iz[i], properties.A[i], properties.J[i], properties.E[i], properties.ν[i], properties.L[i]) for i in eachindex(properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(properties, ke_local, element)
ke_global = [properties.Γ[i]'*ke_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_global_dof] = u1f
# P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, u1)
#calculate element internal forces
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u1)
P1_axial = [P1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [properties.Γ[i]'*kg_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
Kff = Ke_ff + Kg_ff
# u = fill(0.0, 100)
# u[free_global_dof] = convert(Vector{Float64}, u1f)
# length(node.numbers)*6
# u_all = SVector{num_dof}(zeros(Float64, num_dof))
# function residual(uf, p)
# Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof = p
# num_dof = length(node.numbers)*6
# u = Vector{Any}(undef, num_dof)
# u[free_global_dof] = uf
# u[fixed_global_dof] .= 0.0
# # u = zeros(Any, num_dof)
# # u_all = MVector{num_dof}(zeros(Float64, num_dof))
# # u_all = deepcopy(uf[1])
# #convert(Vector{Float64}, uf)
# print("type is " * string(typeof(uf)))
# print(" ")
# Ke_ff = update_Ke(node, element, properties, u)
# Kff = Ke_ff + Kg_ff
# Kff * uf - Ff
# end
# p = [Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof]
# u1f = SVector{length(u1f)}(u1f)
# probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
# solution_tolerance = 0.01
# u2f = NonlinearSolve.solve(probN, NewtonRaphson(), reltol = solution_tolerance)
# u1f = 0.01*u1f
solution = nlsolve((R,uf) ->residual!(R, uf, Ke_ff, Kg_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node), u1f, method = :newton)
function residual!(R, uf, Ke_ff, Kg_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node)
# num_dof = length(node.numbers) * 6
# u = zeros(Float64, num_dof)
# u[free_global_dof] = uf
# Kg_ff = update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
# print(Ke_ff)
# print(" ")
Kff = Ke_ff + Kg_ff
for i in eachindex(Ff)
R[i] = transpose(Kff[i,:]) * uf - Ff[i]
end
return R
end
function update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
Γ = update_rotation_angles(node, element, properties, u)
properties.Γ = deepcopy(Γ)
# properties.Γ = [0.0]
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u)
P1_axial = [P1[i][7] for i in eachindex(P1)]
# P1_axial = [-50.0]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [Γ[i]'*kg_local[i]*Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
print(P1_axial)
print(" ")
return Kg_ff
end
function update_rotation_angles(node, element, properties, u)
num_elem = length(properties.L)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
rotation_angles = Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}(undef, num_elem)
nodal_displacements = InstantFrame.define_nodal_displacements(node, u)
node_i = collect(node.coordinates[1])
for i in eachindex(element.numbers)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.nodes[i][1], node.numbers)
node_j_index = findfirst(node_num->node_num == element.nodes[i][2], node.numbers)
node_i = collect(node.coordinates[node_i_index]) + nodal_displacements[node_i_index][1:3] #update geometry
node_j = collect(node.coordinates[node_j_index]) + nodal_displacements[node_j_index][1:3] #update geometry
#rotation matrix
Γ[i], rotation_angles[i] = InstantFrame.define_rotation_matrix(node_i, node_j, element.orientation[i])
# print(Γ[i])
# print(" ")
end
return rotation_angles, Γ
end
##############################
##tests
#deflection
isapprox(model.solution.nodal_displacements[2][3], 4.597, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 409.8, rtol=0.08) #tolerance is a little loose here
α = 1/50
L = 180.0
P = 50.0
E = 29000.0
I = 37.1
Δ = α*L * (tan(sqrt(P/(E*I))*L)/(sqrt(P/(E*I))*L) - 1)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 9258 | using InstantFrame, StaticArrays, NLsolve, LineSearches
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
tip_disp = Vector{Float64}(undef, 10)
base_moment = Vector{Float64}(undef, 10)
for i =2:11
num_nodes = i
x_range = range(0.0, 180.0, num_nodes)
node = InstantFrame.Node(numbers=range(1, num_nodes, num_nodes), coordinates=[(x_range[i], 0.0, 0.0) for i in eachindex(x_range)])
num_elem = num_nodes - 1
element = InstantFrame.Element(numbers=range(1, num_elem, num_elem), nodes=[(i,i+1) for i=1:num_elem], orientation=fill(0.0, num_elem), connections=fill(("rigid", "rigid"), num_elem), cross_section=fill("beam", num_elem), material=fill("steel", num_elem))
support = InstantFrame.Support(nodes=[1, num_nodes], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], magnitudes=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[num_nodes], magnitudes=(FX=[-50.0], FY=[0.0], FZ=[1.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
analysis_type = "second order"
solution_tolerance = 1E-9
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type, solution_tolerance)
tip_disp[i-1] = model.solution.displacements[end][3]
base_moment[i-1] = model.solution.reactions[1][5]
end
using Plots
plot(1:10, tip_disp, markershape = :o)
plot(1:10, base_moment, markershape = :o)
#global to local
node.coordinates = [node.coordinates[i] .+ tuple(model.solution.displacements[i][1:3]...) for i in eachindex(node.coordinates)]
analysis_type = "first order"
model_update = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type)
u_elem_g = model.solution.u
InstantFrame.define_nodal_displacements(node, model.solution.u)
rotation_angles, Γ = update_rotation_angles(node, element, model.properties, model.solution.u)
u_elem_l = model.properties.Γ[1] * model.solution.u
u_elem_l = Γ[1]' * u_elem_l
P_rotated = model.equations.ke_local[1] * u_elem_l
#convert local to new local
model.properties.Γ = Γ
P = InstantFrame.calculate_element_internal_forces(model.properties, model.equations.ke_local, element, uniform_load, model.forces.local_fixed_end_forces, model.solution.u)
#########
properties = InstantFrame.define_element_properties(node, cross_section, material, element, connection)
ke_local = [InstantFrame.define_local_elastic_stiffness_matrix(properties.Iy[i], properties.Iz[i], properties.A[i], properties.J[i], properties.E[i], properties.ν[i], properties.L[i]) for i in eachindex(properties.L)]
ke_local = InstantFrame.modify_element_local_connection_stiffness(properties, ke_local, element)
ke_global = [properties.Γ[i]'*ke_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_global_matrix(ke_global, properties.global_dof)
free_global_dof, fixed_global_dof, elastic_supports = InstantFrame.define_free_global_dof(node, support)
for i in eachindex(elastic_supports.global_dof) #add springs
Ke[elastic_supports.global_dof[i], elastic_supports.global_dof[i]] += elastic_supports.global_stiffness[i]
end
equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load = InstantFrame.calculate_nodal_forces_from_uniform_loads(uniform_load, element, node, properties)
global_dof_point_loads = InstantFrame.define_global_dof_point_loads(node, point_load)
F = global_dof_point_loads .+ global_dof_nodal_forces_uniform_load
forces = InstantFrame.Forces(equiv_global_nodal_forces_uniform_load, local_fixed_end_forces, global_dof_nodal_forces_uniform_load, global_dof_point_loads, F)
Ff = F[free_global_dof]
Ke_ff = Ke[free_global_dof, free_global_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_global_dof] = u1f
# P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, u1)
#calculate element internal forces
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u1)
P1_axial = [P1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [properties.Γ[i]'*kg_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
Kff = Ke_ff + Kg_ff
# u = fill(0.0, 100)
# u[free_global_dof] = convert(Vector{Float64}, u1f)
# length(node.numbers)*6
# u_all = SVector{num_dof}(zeros(Float64, num_dof))
# function residual(uf, p)
# Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof = p
# num_dof = length(node.numbers)*6
# u = Vector{Any}(undef, num_dof)
# u[free_global_dof] = uf
# u[fixed_global_dof] .= 0.0
# # u = zeros(Any, num_dof)
# # u_all = MVector{num_dof}(zeros(Float64, num_dof))
# # u_all = deepcopy(uf[1])
# #convert(Vector{Float64}, uf)
# print("type is " * string(typeof(uf)))
# print(" ")
# Ke_ff = update_Ke(node, element, properties, u)
# Kff = Ke_ff + Kg_ff
# Kff * uf - Ff
# end
# p = [Ke_ff, Kg_ff, Ff, node, element, properties, free_global_dof, fixed_global_dof]
# u1f = SVector{length(u1f)}(u1f)
# probN = NonlinearSolve.NonlinearProblem{false}(residual, u1f, p)
# solution_tolerance = 0.01
# u2f = NonlinearSolve.solve(probN, NewtonRaphson(), reltol = solution_tolerance)
# u1f = 0.01*u1f
solution = nlsolve((R,uf) ->residual!(R, uf, Ke_ff, Kg_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node), u1f, method = :newton)
function residual!(R, uf, Ke_ff, Kg_ff, Ff, free_global_dof, ke_local, uniform_load, local_fixed_end_forces, properties, node)
# num_dof = length(node.numbers) * 6
# u = zeros(Float64, num_dof)
# u[free_global_dof] = uf
# Kg_ff = update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
# print(Ke_ff)
# print(" ")
Kff = Ke_ff + Kg_ff
for i in eachindex(Ff)
R[i] = transpose(Kff[i,:]) * uf - Ff[i]
end
return R
end
function update_Kg(element, properties, ke_local, uniform_load, local_fixed_end_forces, u)
Γ = update_rotation_angles(node, element, properties, u)
properties.Γ = deepcopy(Γ)
# properties.Γ = [0.0]
P1 = InstantFrame.calculate_element_internal_forces(properties, ke_local, element, uniform_load, local_fixed_end_forces, u)
P1_axial = [P1[i][7] for i in eachindex(P1)]
# P1_axial = [-50.0]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [Γ[i]'*kg_local[i]*Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_global_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_global_dof, free_global_dof]
print(P1_axial)
print(" ")
return Kg_ff
end
function update_rotation_angles(node, element, properties, u)
num_elem = length(properties.L)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
rotation_angles = Array{NamedTuple{(:Y, :Z, :X), NTuple{3, Float64}}}(undef, num_elem)
nodal_displacements = InstantFrame.define_nodal_displacements(node, u)
node_i = collect(node.coordinates[1])
for i in eachindex(element.numbers)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.nodes[i][1], node.numbers)
node_j_index = findfirst(node_num->node_num == element.nodes[i][2], node.numbers)
node_i = collect(node.coordinates[node_i_index]) + nodal_displacements[node_i_index][1:3] #update geometry
node_j = collect(node.coordinates[node_j_index]) + nodal_displacements[node_j_index][1:3] #update geometry
#rotation matrix
Γ[i], rotation_angles[i] = InstantFrame.define_rotation_matrix(node_i, node_j, element.orientation[i])
# print(Γ[i])
# print(" ")
end
return rotation_angles, Γ
end
##############################
##tests
#deflection
isapprox(model.solution.nodal_displacements[2][3], 4.597, rtol=0.05)
#cantilever moment
isapprox(model.solution.element_forces[1][5], 409.8, rtol=0.08) #tolerance is a little loose here
α = 1/50
L = 180.0
P = 50.0
E = 29000.0
I = 37.1
Δ = α*L * (tan(sqrt(P/(E*I))*L)/(sqrt(P/(E*I))*L) - 1)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 933 | using InstantFrame
I = 0.55967
L = 48.0
E = 29000000.0
k1 = 230000.0
k2 = Inf
ke_left_spring = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
using InstantFrame
I = 0.55967
L = 48.0
E = 29000000.0
k1 = Inf
k2 = 230000.0
ke_right_spring = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
I = 0.55967
L = 48.0
E = 29000000.0
k1 = 230000.0
k2 = 230000.0 * 10^30
α1 = k1/(E*I/L) #start node
α2 = k2/(E*I/L) #end node
Kbb = E*I/L* [4 + α1 2
2 4+α2]
Kbc = E*I/L * [6/L -α1 -6/L 0.0
6/L 0 -6/L -α2]
Kcb = Kbc'
Kcc = E*I/L * [12/L^2 0 -12/L^2 0
0 α1 0 0
-12/L^2 0 12/L^2 0
0 0 0 α2 ]
Kcc_hat = Kcc - Kcb*Kbb^-1*Kbc
α = (α1*α2)/(α1*α2 + 4*α1 + 4*α2 + 12)
k34 = α*E*I/L * (-6/L * (1 + 2/α1))
k44 = α*E*I/L * 4 * (1 + 3/α1) | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1960 | using InstantFrame
#McGuire et. al(2000) Example 4.8
material = InstantFrame.Material(names=["steel"], E=[200.0], ν=[0.3], ρ=[8000/1000^3]) #ρ = kg/mm^3
cross_section = InstantFrame.CrossSection(names=["beam ab", "beam bc"], A=[6E3, 4E3], Iy=[700E6, 540E6], Iz=[200E6, 50E6], J=[300E3, 100E3])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (8000.0, 0.0, 0.0), (13000.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam ab", "beam bc"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3], stiffness=(uX=[Inf,0.0, 0.0], uY=[Inf,Inf,0.0], uZ=[Inf,Inf,0.0], rX=[Inf,Inf,Inf], rY=[Inf,Inf,0.0], rZ=[Inf,0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[3], loads=(FX=[5cos(-π/4)], FY=[5sin(-π/4)], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# dof=[1, 2, 4, 6, 7, 8, 10, 12]
# model.equations.ke_local[2][dof, dof] ./ 200
##tests
#deflections and rotations
isapprox(model.solution.u1[7], 0.024, rtol=0.05)
isapprox(model.solution.u1[13], 0.046, rtol=0.05)
isapprox(model.solution.u1[12], -0.00088, rtol=0.05)
isapprox(model.solution.u1[18], -0.00530, rtol=0.05)
isapprox(model.solution.u1[14], -19.15, rtol=0.05)
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1815 | using InstantFrame
#Sennett Example 3.1 - fixed-fixed beam with two elements, 2D
material = InstantFrame.Material(names=["steel"], E=[10^7], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (2.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[-1.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
##tests
P = point_load.loads.FY[1]
#deflections
model.solution.u1[8]≈P/24E7 #midspan deflection
model.solution.u1[12]≈0.0 #midspan rotation
#internal forces
dof = [2, 6, 8, 12]
model.solution.P1[1][dof] == [-P/2,-P/4, P/2, -P/4]
model.solution.P1[2][dof] == [P/2,P/4, -P/2, P/4]
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2021 | using InstantFrame
#Sennett Example 7.4 - portal frame with corner hinge, 2D, 1st order
material = InstantFrame.Material(names=["steel"], E=[29E6], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[10.0], Iy=[100.0], Iz=[100.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "hinge"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4], coordinates=[(0.0, 0.0, 0.0), (0.0, 120.0, 0.0), (120.0, 120.0, 0.0), (120.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2, 3], nodes=[(1,2), (2,3), (3, 4)], orientation=[0.0, 0.0, 0.0], connections=[("rigid", "rigid"), ("hinge", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam", "beam"], material=["steel", "steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3, 4], stiffness=(uX=[Inf,0.0,0.0,Inf], uY=[Inf,0.0,0.0,Inf], uZ=[Inf,Inf, Inf,Inf], rX=[Inf,Inf, Inf, Inf], rY=[Inf,Inf, Inf,Inf], rZ=[0.0,0.0, 0.0, 0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[1000.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
scale = (30.0, 30.0, 30.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, element, node, model.properties, scale)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
##tests
#rotation at hinge
isapprox(model.solution.element_connections.end_displacements[1][6], 0.0008, rtol=0.05) #hinge rotation using Sennett Eq. 7.33
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3631 | using InstantFrame
#Sennett Example 7.2
#Elastic support at the center of a fixed-fixed beam
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[8.0], Iy=[100.0], Iz=[100.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
beam_span = 240.0
x = range(0.0, beam_span, 3)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("rigid", "rigid") for i in eachindex(element_connectivity)], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, 2, length(x)], stiffness=(uX=[Inf, 0.0, Inf], uY=[Inf,20000.0,Inf], uZ=[Inf,0.0,Inf], rX=[Inf,0.0,Inf], rY=[Inf,0.0,Inf], rZ=[Inf,0.0,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[2], loads=(qX=zeros(Float64, 1), qY=ones(Float64, 1)*-1000.0/12, qZ=zeros(Float64, 1), mX=zeros(Float64, 1), mY=zeros(Float64, 1), mZ=zeros(Float64, 1)))
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
######
Ke_sf = model.equations.Ke[model.equations.fixed_dof, model.equations.free_dof]
R = Ke_sf * model.solution.uf
nodal_displacements = Array{Array{Float64, 1}}(undef, length(node.numbers))
num_dof_per_node = 6 #hard code this for now
for i in eachindex(node.numbers)
nodal_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (i-1)
nodal_displacements[i] = u[nodal_dof]
end
#####test
isapprox(model.solution.nodal_displacements[2][3], -0.082949, rtol=0.01)
isapprox(model.solution.nodal_displacements[2][5], 0.000517, rtol=0.01) #sign is different here than Sennett, incorrect in Sennett?
######
element_nodal_coords = InstantFrame.UI.define_element_nodal_start_end_coordinates(element, node)
X, Y, Z = InstantFrame.UI.get_node_XYZ(node)
X_range = abs(maximum(X) - minimum(X))
Y_range = abs(maximum(Y) - minimum(Y))
Z_range = abs(maximum(Z) - minimum(Z))
Y_range = 100.0
Z_range = 100.0
using GLMakie, LinearAlgebra
figure = Figure()
ax = Axis3(figure[1,1])
ax.aspect = (1.0, Y_range/X_range, Z_range/X_range)
ax.yticks = WilkinsonTicks(2)
ylims!(ax, -50.0, 50.0)
zlims!(ax, -50.0, 50.0)
color = :gray
InstantFrame.UI.show_elements!(ax, element_nodal_coords, color)
figure
markersize = 10
color = :blue
InstantFrame.UI.show_nodes!(ax, X, Y, Z, markersize, color)
figure
unit_arrow_head_size = [1.0, 1.0, 1.0]
arrow_head_scale = 3.0
arrow_scale = 10.0
linewidth = 1.0
arrowcolor = :green
linecolor = :green
InstantFrame.UI.show_uniform_loads!(ax, uniform_load, element, node, unit_arrow_head_size, arrow_head_scale, arrow_scale, linewidth, arrowcolor, linecolor)
figure
####plot deformed shape
n = vec(ones(Int64, size(model.properties.L, 1)) * 11)
scale = (100.0, 100.0, 100.0)
linecolor = :pink
InstantFrame.UI.show_deformed_shape!(ax, model.solution.nodal_displacements, model.properties.global_dof, element, node, model.properties, model.solution.element_connections, n, scale, linecolor)
figure | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 4259 | using InstantFrame
#Sennett Example 7.2
#Elastic support at the center of a fixed-fixed beam
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[8.0], Iy=[100.0], Iz=[100.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
beam_span = 240.0
x = range(0.0, beam_span, 3)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("rigid", "rigid") for i in eachindex(element_connectivity)], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, 2, length(x)], stiffness=(uX=[Inf, 0.0, Inf], uY=[Inf,0.0,Inf], uZ=[Inf,0.0,Inf], rX=[Inf,0.0,Inf], rY=[Inf,0.0,Inf], rZ=[Inf,0.0,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1,2], loads=(qX=zeros(Float64, 2), qY=zeros(Float64, 2), qZ=ones(Float64, 2)*-1000.0/12, mX=zeros(Float64, 2), mY=zeros(Float64, 2), mZ=zeros(Float64, 2)))
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
######
Ke_sf = model.equations.Ke[model.equations.fixed_dof, model.equations.free_dof]
R = Ke_sf * model.solution.uf
reactions = zeros(Float64, length(node.numbers)*6)
reactions[model.equations.fixed_dof] = R
elastic_support_reactions = -model.solution.u[model.equations.elastic_supports.global_dof] .* model.equations.elastic_supports.global_stiffness
reactions[model.equations.elastic_supports.global_dof] = elastic_support_reactions
#add point loads to reactions
reactions[model.equations.fixed_dof] += -model.forces.global_dof_point_loads[model.equations.fixed_dof]
#add uniform load equivalent nodal forces to reactions
reactions[model.equations.fixed_dof] += -model.forces.global_dof_nodal_forces_uniform_load[model.equations.fixed_dof]
nodal_reactions = Array{Array{Float64, 1}}(undef, length(support.nodes))
num_dof_per_node = 6 #hard code this for now
for i in eachindex(support.nodes)
nodal_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (support.nodes[i]-1)
nodal_reactions[i] = reactions[nodal_dof]
end
#####test
isapprox(model.solution.nodal_displacements[2][3], -0.082949, rtol=0.01)
isapprox(model.solution.nodal_displacements[2][5], 0.000517, rtol=0.01) #sign is different here than Sennett, incorrect in Sennett?
######
element_nodal_coords = InstantFrame.UI.define_element_nodal_start_end_coordinates(element, node)
X, Y, Z = InstantFrame.UI.get_node_XYZ(node)
X_range = abs(maximum(X) - minimum(X))
Y_range = abs(maximum(Y) - minimum(Y))
Z_range = abs(maximum(Z) - minimum(Z))
Y_range = 100.0
Z_range = 100.0
using GLMakie, LinearAlgebra
figure = Figure()
ax = Axis3(figure[1,1])
ax.aspect = (1.0, Y_range/X_range, Z_range/X_range)
ax.yticks = WilkinsonTicks(2)
ylims!(ax, -50.0, 50.0)
zlims!(ax, -50.0, 50.0)
color = :gray
InstantFrame.UI.show_elements!(ax, element_nodal_coords, color)
figure
markersize = 10
color = :blue
InstantFrame.UI.show_nodes!(ax, X, Y, Z, markersize, color)
figure
unit_arrow_head_size = [1.0, 1.0, 1.0]
arrow_head_scale = 3.0
arrow_scale = 10.0
linewidth = 1.0
arrowcolor = :green
linecolor = :green
InstantFrame.UI.show_uniform_loads!(ax, uniform_load, element, node, unit_arrow_head_size, arrow_head_scale, arrow_scale, linewidth, arrowcolor, linecolor)
figure
####plot deformed shape
n = vec(ones(Int64, size(model.properties.L, 1)) * 11)
scale = (100.0, 100.0, 100.0)
linecolor = :pink
InstantFrame.UI.show_deformed_shape!(ax, model.solution.nodal_displacements, model.properties.global_dof, element, node, model.properties, model.solution.element_connections, n, scale, linecolor)
figure | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1911 | using InstantFrame
#Apply a point torsion at midspan of a beam that is twist fixed. The beam is discretized with two elements. The first element has a torsion release at its right end (midspan).
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, 0.0], ry=[Inf, Inf], rz=[Inf, Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (12.0, 0.0, 0.0), (24.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0, 0.0], connections=[("rigid", "end release"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[10.0], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[1000.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
##test
#Twist at the right end of the first element should be zero.
isapprox(model.solution.element_connections.end_displacements[1][4], 0.0, atol=0.0001)
#Twist at the left end of the second element should be Θ = TL/GJ where L=12.0 in.
isapprox(model.solution.nodal_displacements[2][4], (1000.0*12.0)/(model.properties.G[1]*model.properties.J[1]), rtol=0.01)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2243 | using InstantFrame, LinearAlgebra
#McGuire et. al(2000) Example 4.9 with end release at point 'a'.
material = InstantFrame.Material(names=["steel"], E=[200.0], ν=[0.3], ρ=[8000/1000^3]) #ρ = kg/mm^3
cross_section = InstantFrame.CrossSection(names=["beam ab", "beam bc"], A=[6E3, 4E3], Iy=[700E6, 540E6], Iz=[200E6, 50E6], J=[300E3, 100E3])
connection = InstantFrame.Connection(names=["rigid", "hinge"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (8000.0, 0.0, 0.0), (13000.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("hinge", "rigid"), ("rigid", "rigid")], cross_section=["beam ab", "beam bc"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3], stiffness=(uX=[Inf,0.0, 0.0], uY=[Inf,Inf,0.0], uZ=[Inf,Inf,Inf], rX=[Inf,Inf,Inf], rY=[Inf,Inf,Inf], rZ=[Inf,0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[3], loads=(FX=[5cos(-π/4)], FY=[5sin(-π/4)], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
scale = (30.0, 30.0, 30.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
##tests
#element local stiffness matrix with hinge
#Use Sennett Eq. 7.39
E = model.properties.E[1]
I = model.properties.Iz[1]
L = model.properties.L[1]
ke = zeros(Float64, 4, 4)
#define upper triangular portion of stiffness matrix with Eq. 7.39
ke[1, 1] = 3*E*I/L^3
ke[1, 2] = 0.0
ke[1, 3] = -3*E*I/L^3
ke[1, 4] = 3*E*I/L^2
ke[2, 2] = 0.0
ke[2, 3] = 0.0
ke[2, 4] = 0.0
ke[3, 3] = 3*E*I/L^3
ke[3, 4] = -3*E*I/L^2
ke[4, 4] = 3*E*I/L
#compare to local stiffness matrix from model
dof = [2, 6, 8, 12]
isapprox(triu(ke), triu(model.equations.ke_local[1])[dof, dof])
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2505 | using InstantFrame, LinearAlgebra
#McGuire et. al(2000) Example 4.9 with partial restraint in member ab, b side.
material = InstantFrame.Material(names=["steel"], E=[200.0], ν=[0.3], ρ=[8000/1000^3]) #ρ = kg/mm^3
cross_section = InstantFrame.CrossSection(names=["beam ab", "beam bc"], A=[6E3, 4E3], Iy=[700E6, 540E6], Iz=[200E6, 50E6], J=[300E3, 100E3])
connection = InstantFrame.Connection(names=["rigid", "partial restraint"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 1.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (8000.0, 0.0, 0.0), (13000.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "partial restraint"), ("rigid", "rigid")], cross_section=["beam ab", "beam bc"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3], stiffness=(uX=[Inf,0.0, 0.0], uY=[Inf,Inf,0.0], uZ=[Inf,Inf,Inf], rX=[Inf,Inf,Inf], rY=[Inf,Inf,Inf], rZ=[Inf,0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[3], loads=(FX=[5cos(-π/4)], FY=[5sin(-π/4)], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
scale = (30.0, 30.0, 30.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
##tests
#element local stiffness matrix with partial restrained connection
#Use McGuire et al. (2000) Eq. 13.31
E = model.properties.E[1]
I = model.properties.Iz[1]
L = model.properties.L[1]
k1 = E*I*10E20
k2 = connection.stiffness.rz[2]
α1 = k1/(E*I/L) #start node
α2 = k2*(E*I/L) #end node
α = (α1*α2)/(α1*α2 + 4*α1 + 4*α2 + 12)
ke = zeros(Float64, 4, 4)
ke[1,1] = 12/L^2*(1 + (α1+α2)/(α1*α2))
ke[1,2] = 6/L * (1+2/α2)
ke[1,3] = -12/L^2*(1+(α1+α2)/(α1*α2))
ke[1,4] = 6/L*(1+2/α1)
ke[2,2] = 4*(1+3/α2)
ke[2,3] = -6/L*(1+2/α2)
ke[2,4] = 2
ke[3,3] = 12/L^2*(1+(α1+α2)/(α1*α2))
ke[3,4] = -6/L*(1+2/α1)
ke[4,4] = 4*(1+3/α1)
ke = α * (E * I / L) .* ke
#compare to local stiffness matrix from model
dof = [2, 6, 8, 12]
isapprox(triu(ke), triu(model.equations.ke_local[1])[dof, dof])
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3077 | using InstantFrame
#Apply a uniform load to a fixed-fixed beam.
#Discretize it with 2 elements.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
beam_span = 120.0
x = range(0.0, beam_span, 9)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("rigid", "rigid") for i in eachindex(element_connectivity)], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, length(x)], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=1:num_elem, loads=(qX=zeros(Float64, num_elem), qY=ones(Float64, num_elem)*10.0, qZ=zeros(Float64, num_elem), mX=zeros(Float64, num_elem), mY=zeros(Float64, num_elem), mZ=zeros(Float64, num_elem)))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
scale = (1000.0, 1000.0, 1000.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
##test
#Calculate deflection at the center of the beam.
wY = uniform_load.loads.qY[1]
L = sum(model.properties.L)
E = material.E[1]
Iz = cross_section.Iz[1]
Δ_midspan = wY*L^4/(384*E*Iz)
#midspan beam deflection
Δ_midspan ≈ model.solution.nodal_displacements[Int(num_elem/2)+1][2]
elem_num = 1
start_node = element.nodes[elem_num][1]
end_node = element.nodes[elem_num][2]
element_global_disp = [model.solution.nodal_displacements[start_node]; model.solution.nodal_displacements[end_node]]
element_local_disp = model.properties.Γ[elem_num] * element_global_disp
#local x-z plane
q1 = element_local_disp[2]
q2 = element_local_disp[6]
q3 = element_local_disp[8]
q4 = element_local_disp[12]
L = model.properties.L[elem_num]
E = material.E[1]
I = cross_section.Iz[1]
x = range(0.0, L, 5)
function calculate_local_element_moment(q1, q2, q3, q4, L, x, E, I)
a2 = 1/L^2*(-3*q1-2*q2*L+3*q3-q4*L)
a3 = 1/L^3*(2*q1+q2*L-2*q3+q4*L)
w_xx = 2*a2 + 6*a3*x
M = E * I * w_xx
return M
end
M = calculate_local_element_moment.(q1, q2, q3, q4, L, x, E, I)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3226 | using InstantFrame
#Apply a point load to a fixed-fixed beam with partial restraint (rotational springs) at each end.
#Discretize it with 2 elements.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[0.627], Iz=[0.55967], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "PR"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 230000.0]))
beam_span = 96.0
x = range(0.0, beam_span, 3)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("PR", "rigid"), ("rigid", "PR")], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, length(x)], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=1:num_elem, loads=(qX=zeros(Float64, num_elem), qY=ones(Float64, num_elem)*10.0, qZ=zeros(Float64, num_elem), mX=zeros(Float64, num_elem), mY=zeros(Float64, num_elem), mZ=zeros(Float64, num_elem)))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[-1000.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1000.0, 1000.0, 1000.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
# ##test
# #Calculate deflection at the center of the beam.
# wY = uniform_load.loads.qY[1]
# L = sum(model.properties.L)
# E = material.E[1]
# Iz = cross_section.Iz[1]
# Δ_midspan = wY*L^4/(384*E*Iz)
# #midspan beam deflection
# Δ_midspan ≈ model.solution.nodal_displacements[Int(num_elem/2)+1][2]
# elem_num = 1
# start_node = element.nodes[elem_num][1]
# end_node = element.nodes[elem_num][2]
# element_global_disp = [model.solution.nodal_displacements[start_node]; model.solution.nodal_displacements[end_node]]
# element_local_disp = model.properties.Γ[elem_num] * element_global_disp
# #local x-z plane
# q1 = element_local_disp[2]
# q2 = element_local_disp[6]
# q3 = element_local_disp[8]
# q4 = element_local_disp[12]
# L = model.properties.L[elem_num]
# E = material.E[1]
# I = cross_section.Iz[1]
# x = range(0.0, L, 5)
# function calculate_local_element_moment(q1, q2, q3, q4, L, x, E, I)
# a2 = 1/L^2*(-3*q1-2*q2*L+3*q3-q4*L)
# a3 = 1/L^3*(2*q1+q2*L-2*q3+q4*L)
# w_xx = 2*a2 + 6*a3*x
# M = E * I * w_xx
# return M
# end
# M = calculate_local_element_moment.(q1, q2, q3, q4, L, x, E, I)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 4143 | using InstantFrame
#Apply a point load to a fixed-fixed beam with partial restraint (rotational springs) at each end.
#Discretize it with 2 elements.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[0.627], Iz=[0.55967], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "PR"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 230000.0]))
beam_span = 96.0
x = range(0.0, beam_span, 3)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("PR", "rigid"), ("rigid", "PR")], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, length(x)], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=1:num_elem, loads=(qX=zeros(Float64, num_elem), qY=ones(Float64, num_elem)*10.0, qZ=zeros(Float64, num_elem), mX=zeros(Float64, num_elem), mY=zeros(Float64, num_elem), mZ=zeros(Float64, num_elem)))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[-1000.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
element_nodal_coords = InstantFrame.UI.define_element_nodal_start_end_coordinates(element, node)
X, Y, Z = InstantFrame.UI.get_node_XYZ(node)
X_range = abs(maximum(X) - minimum(X))
Y_range = abs(maximum(Y) - minimum(Y))
Z_range = abs(maximum(Z) - minimum(Z))
using GLMakie, LinearAlgebra
figure = Figure()
ax = Axis3(figure[1,1])
ax.aspect = (1.0, 1.0, 1.0)
ax.yticks = WilkinsonTicks(2)
# ylims!(ax, 0.0, 10.0)
color = :gray
InstantFrame.UI.show_elements!(ax, element_nodal_coords, color)
figure
markersize = 1000
color = :blue
InstantFrame.UI.show_nodes!(ax, X, Y, Z, markersize, color)
figure
unit_arrow_head_size = [1.0, 1.0, 1.0]
arrow_head_scale = 0.01
arrow_scale = 5.0
arrowcolor = :orange
linecolor = :orange
linewidth = 0.01
InstantFrame.UI.show_element_local_y_axis!(ax, element, node, model, unit_arrow_head_size, arrow_head_scale, arrow_scale, arrowcolor, linecolor, linewidth)
figure
# scale = (1000.0, 1000.0, 1000.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
# ##test
# #Calculate deflection at the center of the beam.
# wY = uniform_load.loads.qY[1]
# L = sum(model.properties.L)
# E = material.E[1]
# Iz = cross_section.Iz[1]
# Δ_midspan = wY*L^4/(384*E*Iz)
# #midspan beam deflection
# Δ_midspan ≈ model.solution.nodal_displacements[Int(num_elem/2)+1][2]
# elem_num = 1
# start_node = element.nodes[elem_num][1]
# end_node = element.nodes[elem_num][2]
# element_global_disp = [model.solution.nodal_displacements[start_node]; model.solution.nodal_displacements[end_node]]
# element_local_disp = model.properties.Γ[elem_num] * element_global_disp
# #local x-z plane
# q1 = element_local_disp[2]
# q2 = element_local_disp[6]
# q3 = element_local_disp[8]
# q4 = element_local_disp[12]
# L = model.properties.L[elem_num]
# E = material.E[1]
# I = cross_section.Iz[1]
# x = range(0.0, L, 5)
# function calculate_local_element_moment(q1, q2, q3, q4, L, x, E, I)
# a2 = 1/L^2*(-3*q1-2*q2*L+3*q3-q4*L)
# a3 = 1/L^3*(2*q1+q2*L-2*q3+q4*L)
# w_xx = 2*a2 + 6*a3*x
# M = E * I * w_xx
# return M
# end
# M = calculate_local_element_moment.(q1, q2, q3, q4, L, x, E, I)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3255 | using InstantFrame
#Apply a point load to a fixed-fixed beam with partial restraint (rotational springs) at each end.
#Discretize it with 2 elements.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[0.627], Iz=[0.627], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "PR"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 230000.0]))
beam_span = 96.0
x = range(0.0, beam_span, 3)
coordinates = [(x[i], 0.0, 0.0) for i in eachindex(x)]
node = InstantFrame.Node(numbers=1:length(x), coordinates=coordinates)
num_elem = length(x)-1
element_connectivity = [(i, i+1) for i=1:num_elem]
element = InstantFrame.Element(numbers=1:length(element_connectivity), nodes=element_connectivity, orientation=zeros(Float64, length(element_connectivity)), connections=[("PR", "rigid"), ("rigid", "PR")], cross_section=["beam" for i in eachindex(element_connectivity)], material=["steel" for i in eachindex(element_connectivity)])
support = InstantFrame.Support(nodes=[1, length(x)], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=1:num_elem, loads=(qX=zeros(Float64, num_elem), qY=ones(Float64, num_elem)*10.0, qZ=zeros(Float64, num_elem), mX=zeros(Float64, num_elem), mY=zeros(Float64, num_elem), mZ=zeros(Float64, num_elem)))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1,2], loads=(qX=[0.0, 0.0], qY=[-12.5, -12.5], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1000.0, 1000.0, 1000.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.nodal_displacements, model.solution.element_connections, element, node, model.properties, scale)
# ##test
# #Calculate deflection at the center of the beam.
# wY = uniform_load.loads.qY[1]
# L = sum(model.properties.L)
# E = material.E[1]
# Iz = cross_section.Iz[1]
# Δ_midspan = wY*L^4/(384*E*Iz)
# #midspan beam deflection
# Δ_midspan ≈ model.solution.nodal_displacements[Int(num_elem/2)+1][2]
# elem_num = 1
# start_node = element.nodes[elem_num][1]
# end_node = element.nodes[elem_num][2]
# element_global_disp = [model.solution.nodal_displacements[start_node]; model.solution.nodal_displacements[end_node]]
# element_local_disp = model.properties.Γ[elem_num] * element_global_disp
# #local x-z plane
# q1 = element_local_disp[2]
# q2 = element_local_disp[6]
# q3 = element_local_disp[8]
# q4 = element_local_disp[12]
# L = model.properties.L[elem_num]
# E = material.E[1]
# I = cross_section.Iz[1]
# x = range(0.0, L, 5)
# function calculate_local_element_moment(q1, q2, q3, q4, L, x, E, I)
# a2 = 1/L^2*(-3*q1-2*q2*L+3*q3-q4*L)
# a3 = 1/L^3*(2*q1+q2*L-2*q3+q4*L)
# w_xx = 2*a2 + 6*a3*x
# M = E * I * w_xx
# return M
# end
# M = calculate_local_element_moment.(q1, q2, q3, q4, L, x, E, I)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 283 | using NonlinearSolve
p = 2.0
function residual(u, p)
p = 1.0*u
u .* u .- 2.0*p
end
u0 = 1.5
probB = NonlinearProblem(f, u0, p)
cache = init(probB, NewtonRaphson()); # Can iterate the solver object
solver = solve!(cache)
step!(cache)
for i in take(cache,3) end | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1850 | using InstantFrame
#Fixed-fixed beam, 2D, two elements, point load at midspan
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (60.0, 0.0, 0.0), (120.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[100.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
#classical equation, midspan deflection
P = point_load.loads.FY[1]
L = sum(model.properties.L)
E = material.E[1]
I = cross_section.Iz[1]
Δ = P*L^3/(192*E*I)
#test
isapprox(model.solution.u1[8], Δ, rtol=0.20) #rtol is high here, maybe more elements are needed
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1850 | using InstantFrame
#Fixed-fixed beam, 2D, two elements, point load at midspan
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (60.0, 0.0, 0.0), (120.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[100.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
#classical equation, midspan deflection
P = point_load.loads.FY[1]
L = sum(model.properties.L)
E = material.E[1]
I = cross_section.Iz[1]
Δ = P*L^3/(192*E*I)
#test
isapprox(model.solution.u1[8], Δ, rtol=0.20) #rtol is high here, maybe more elements are needed
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1704 | using InstantFrame
material = InstantFrame.Material(names=["steel"], E=[29500.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000]) ##ρ = kips * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["top chord", "bottom chord", "post"], A=[1.0, 2.0, 3.0], Iy=[3.1, 4.2, 2.3], Iz= [2.4, 6.5, 4.6], J=[0.001, 0.002, 0.005])
connection = InstantFrame.Connection(names=["rigid", "pinned"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, 0.0], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4], coordinates=[(0.0, 0.0, 0.0), (300.0, 0.0, 0.0), (600.0, 0.0, 0.0), (300.0, -30.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2, 3, 4, 5], nodes = [(1,2), (2,3), (1,4), (3,4), (2,4)], orientation = [0.0, 0.0, 0.0, 0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid"), ("pinned", "pinned"), ("pinned", "pinned"), ("rigid", "pinned")], cross_section= ["top chord", "top chord", "bottom chord", "bottom chord", "post"], material = ["steel", "steel", "steel", "steel", "steel"], types=["frame", "frame", "frame", "frame", "frame"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["snow", "snow"], elements=[1, 2], magnitudes=(qX=[0.0, 0.0], qY=[-0.100, -0.100], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["lights"], nodes=[4], magnitudes=(FX=[0.0], FY=[-0.500], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type="first order") | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2386 |
using InstantFrame, LinearAlgebra
#McGuire et al. (2000) Example 5.5
material = InstantFrame.Material(names=["steel"], E=[200.0], ν=[0.3], ρ=[8000/1000^3]) #ρ = kg/mm^3
cross_section = InstantFrame.CrossSection(names=["beam ab"], A=[6E3], Iy=[700E6], Iz=[200E6], J=[300E3])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (10.0, 5.0, 3.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[π/6], connections=[("rigid", "rigid")], cross_section=["beam ab"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[0.0], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[5cos(-π/4)], FY=[5sin(-π/4)], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
##test
#compare MGZ rotation matrix from Eq. 5.7 to model.
γ_MGZ = [0.8638 0.4319 0.2591
-0.5019 0.7811 0.3714
-0.0420 -0.4510 0.8915]
Γ_MGZ = zeros(Float64, 12, 12)
Γ_MGZ[1:3, 1:3] = γ_MGZ
Γ_MGZ[4:6, 4:6] = γ_MGZ
Γ_MGZ[7:9, 7:9] = γ_MGZ
Γ_MGZ[10:12, 10:12] = γ_MGZ
isapprox(Γ_MGZ, model.properties.Γ[1], rtol=0.01)
A = [0.0, 0.0, 0.0]
B = [10.0, 5.0, 3.0]
β = 0.0
# AB = B - A
# ΔX = AB[1]
# ΔZ = AB[3]
# ΔY = AB[2]
# ρ = atan(-ΔZ, ΔX)
# rad2deg(ρ)
# proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
# χ = atan(ΔY, proj_AB_xz)
# rad2deg(χ)
# current_local_y_axis = RotZ(-χ) * RotY(-ρ) * [0.0, 1.0, 0.0] #where y-local is pointing after Y and Z rotations
# ω = acos(dot(current_local_y_axis, [0.0, 1.0, 0.0])/ norm(current_local_y_axis))
# rad2deg(ω)
AB = B - A
ΔX = AB[1]
ΔZ = AB[3]
ΔY = AB[2]
ρ = atan(-ΔZ, ΔX)
proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
χ = atan(ΔY, proj_AB_xz)
RotY(ρ)'
RotZ(χ)'
RotX(π/2 - π/3)'
RotYZX(ρ, χ, π/2 - π/3)'
ω = β
x_axis = RotYZX(ρ, χ, ω) * [1.0, 0.0, 0.0]
y_axis = RotYZX(ρ, χ, ω) * [0.0, 1.0, 0.0]
z_axis = RotYZX(ρ, χ, ω) * [0.0, 0.0, 1.0]
RotYZX(ρ, χ, ω)' * [1.0, 0.0, 0.0] | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2899 | using LinearAlgebra, Rotations
#Sennett Example 6.4
function rotation_matrix(A, B, β)
AB = B - A
# A_prime = [A[1], A[2]+1.0, A[3]]
# AA_prime = A_prime - A
# AK = RotX(β) * AA_prime
# AK = K - A
x_cosines = AB/norm(AB)
# AK = A + x_cosines * norm(AB)/2 + [0.0, 1.0, 0.0]
AK = x_cosines * norm(AB)/2 + RotX(-β) * [0.0, 1.0, 0.0]
z_cosines = cross(AB, AK) / norm(cross(AB, AK))
y_cosines = cross(z_cosines, x_cosines)/norm(cross(z_cosines, x_cosines))
ℓ = [x_cosines'
y_cosines'
z_cosines']
return ℓ
end
#Member 1
A = [180.0, 0.0, 180.0]
B = [0.0, 0.0, 180.0]
β = π/2
AB = B - A
ΔX = AB[1]
ΔZ = AB[3]
ΔY = AB[2]
ρ = atan(-ΔZ, ΔX)
proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
χ = atan(ΔY, proj_AB_xz)
RotYZ(ρ, χ)
x_axis = RotYZ(ρ, χ) * [1.0, 0.0, 0.0]
y_axis = RotYZ(ρ, χ) * [0.0, 1.0, 0.0]
z_axis = RotYZ(ρ, χ) * [0.0, 0.0, 1.0]
ω = π
RotYZ(-ρ, -χ)
# RotZY(ρ, χ) * [1.0, 0.0, 0.0]
# RotZY(ρ, χ) * [0.0, 1.0, 0.0]
# current_local_y_axis = RotZ(-χ) * RotY(-ρ) * [0.0, 1.0, 0.0] #where y-local is pointing after Y and Z rotations
# ω = acos(dot(current_local_y_axis, [0.0, 1.0, 0.0])/ norm(current_local_y_axis))
RotX(-ω) * RotZ(-χ) * RotY(-ρ) * [0.0, 0.0, 1.0]
#Member 2
A = [180.0, 0.0, 180.0]
B = [180.0, 180.0, 180.0]
β = -π/2
AB = B - A
ΔX = AB[1]
ΔZ = AB[3]
ΔY = AB[2]
ρ = atan(-ΔZ, ΔX)
proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
χ = atan(ΔY, proj_AB_xz)
RotYZX(ρ, χ, β)
ω = β
x_axis = RotYZX(ρ, χ, ω) * [1.0, 0.0, 0.0]
y_axis = RotYZX(ρ, χ, ω) * [0.0, 1.0, 0.0]
z_axis = RotYZX(ρ, χ, ω) * [0.0, 0.0, 1.0]
RotYZX(ρ, χ, ω)'
# x_axis = RotYZ(ρ, χ) * [1.0, 0.0, 0.0]
# y_axis = RotYZ(ρ, χ) * [0.0, 1.0, 0.0]
# z_axis = RotYZ(ρ, χ) * [0.0, 0.0, 1.0]
# current_local_y_axis = RotZ(-χ) * RotY(-ρ) * [0.0, 1.0, 0.0] #where y-local is pointing after Y and Z rotations
# ω = acos(dot(current_local_y_axis, [0.0, 1.0, 0.0])/ norm(current_local_y_axis))
# proj_AB_xy = sqrt(ΔX^2 + ΔY^2)
# ω = atan(ΔZ, proj_AB_xy)
# ω = π/2
# ρ = 0.0
# χ = π/2
# ω = π/2
# RotX(-ω) * RotZ(-χ) * RotY(-ρ) * [0.0, 0.0, 1.0]
#Member 3
A = [180.0, 0.0, 180.0]
B = [180.0, 0.0, 0.0]
β = -π/2
AB = B - A
ΔX = AB[1]
ΔZ = AB[3]
ΔY = AB[2]
ρ = atan(-ΔZ, ΔX)
proj_AB_xz = sqrt(ΔX^2 + ΔZ^2)
χ = atan(ΔY, proj_AB_xz)
RotYZX(ρ, χ, β)
ω = β
x_axis = RotYZX(ρ, χ, ω) * [1.0, 0.0, 0.0]
y_axis = RotYZX(ρ, χ, ω) * [0.0, 1.0, 0.0]
z_axis = RotYZX(ρ, χ, ω) * [0.0, 0.0, 1.0]
RotYZX(ρ, χ, ω)' * [1.0, 0.0, 0.0]
RotYZX(ρ, χ, ω)' * [0.0, 1.0, 0.0]
RotYZX(ρ, χ, ω)' * [0.0, 0.0, 1.0]
RotYZX(ρ, χ, ω)' * [1.0, 0.0, 0.0]
# current_local_y_axis = RotZ(-χ) * RotY(-ρ) * [0.0, 1.0, 0.0] #where y-local is pointing after Y and Z rotations
# ω = acos(dot(current_local_y_axis, [0.0, 1.0, 0.0])/ norm(current_local_y_axis))
# ω = 0.0
# # ρ = π/2
# # χ = 0.0
# # ω = 0.0
# RotX(-ω) * RotZ(-χ) * RotY(-ρ) * [0.0, 0.0, 1.0]
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1911 | using InstantFrame
#Apply a point torsion at midspan of a beam that is twist fixed. The beam is discretized with two elements. The first element has a torsion release at its right end (midspan).
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, 0.0], ry=[Inf, Inf], rz=[Inf, Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (12.0, 0.0, 0.0), (24.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0, 0.0], connections=[("rigid", "end release"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
# uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[10.0], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[1000.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
##test
#Twist at the right end of the first element should be zero.
isapprox(model.solution.element_connections.end_displacements[1][4], 0.0, atol=0.0001)
#Twist at the left end of the second element should be Θ = TL/GJ where L=12.0 in.
isapprox(model.solution.nodal_displacements[2][4], (1000.0*12.0)/(model.properties.G[1]*model.properties.J[1]), rtol=0.01)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1762 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (120.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0, 0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,0.0], rY=[0.0,0.0], rZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[10.0], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
##test
#Calculate rotation at the left end of the beam.
wY = uniform_load.loads.qY[1]
L = sum(model.properties.L)
E = material.E[1]
Iz = cross_section.Iz[1]
θ_start = wY*L^3/(24*E*Iz)
#rotation at left end of beam
θ_start ≈ model.solution.nodal_displacements[1][6]
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1924 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (120.0, 0.0, 0.0), (240.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[-10.0,-10.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
w=-10.0
L = 240.0
E = 29000000.0
I = 1.0
Δ = w*L^4/(384*E*I)
##test
#Calculate rotation at the left end of the beam.
wY = uniform_load.loads.qY[1]
L = sum(model.properties.L)
E = material.E[1]
Iz = cross_section.Iz[1]
θ_start = wY*L^3/(24*E*Iz)
#rotation at left end of beam
θ_start ≈ model.solution.nodal_displacements[1][6]
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 4596 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[0.627], Iz=[0.627], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 230000.0]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (96.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0, 0.0], connections=[("end release", "end release")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[-12.5], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
# E*I/L
# ke_pr = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
# dof = [2; 6; 8; 12]
# ke = model.equations.ke_local[1][dof, dof]
# free_dof = [1; 3]
# u = [1.0, -1.0]
# ke_ff = ke[free_dof, free_dof]
# M_fixed = ke_ff * u
# ke_pr_ff = ke_pr[free_dof, free_dof]
# M_pr = ke_pr_ff * u
# 41.5118 1992.56 -41.5118 1992.56
# 1992.56 1.67198e5 -1992.56 24088.3
# -41.5118 -1992.56 41.5118 -1992.56
# 1992.56 24088.3 -1992.56 1.67198e5
# 246.623 11837.9 -246.623 11837.9
# 11837.9 757625.0 -11837.9 3.78812e5
# -246.623 -11837.9 246.623 -11837.9
# 11837.9 3.78812e5 -11837.9 757625.0
I = 0.627
E = 29000000.0
L = 96.0
k1 = 230000.0
k2 = 230000.0
M_fixed = [9600.0, -9600.0]
F_fixed = [600.0, 600.0]
# function fixed_end_forces_partial_restraint(k1, k2, E, I, L, M_fixed, F_fixed)
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
#MGZ Example 13.7
k_moment = E*I/L*([4+α1 2.0
2.0 4+α2])
θi = k_moment^-1*M_fixed
M_spring = θi .* [k1, k2]
k_shear = (E*I/L)*[6/L 6/L
-6/L -6/L]
F_spring = F_fixed - k_shear * θi
# return M_spring, F_spring
# end
wx_local = 0.0
wy_local = -12.5
wz_local = -12.5
k1z = 230000.0
k2z = 2000.0
k1y = 230000.0
k2y = 230000.0
local_fixed_end_forces = zeros(Float64, 12)
local_fixed_end_forces[1] = -wx_local*L/2
local_fixed_end_forces[7] = -wx_local*L/2
# local_fixed_end_forces[3] = -wy_local*L/2
# local_fixed_end_forces[6] = -wy_local*L^2/12
# local_fixed_end_forces[9] = -wy_local*L/2
# local_fixed_end_forces[12] = wy_local*L^2/12
local_fixed_end_forces[2] = -wy_local*L/2
local_fixed_end_forces[6] = -wy_local*L^2/12
local_fixed_end_forces[8] = -wy_local*L/2
local_fixed_end_forces[12] = +wy_local*L^2/12
k1z, k2z = InstantFrame.connection_zeros_and_inf(k1z, k2z, E, I)
M_fixed = [local_fixed_end_forces[6], local_fixed_end_forces[12]]
F_fixed = [local_fixed_end_forces[2], local_fixed_end_forces[8]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1z, k2z, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[6] = M_spring[1]
local_fixed_end_forces[12] = M_spring[2]
local_fixed_end_forces[2] = F_spring[1]
local_fixed_end_forces[8] = F_spring[2]
local_fixed_end_forces[3] = -wz_local*L/2
local_fixed_end_forces[5] = +wz_local*L^2/12
local_fixed_end_forces[9] = -wz_local*L/2
local_fixed_end_forces[11] = -wz_local*L^2/12
k1y, k2y = InstantFrame.connection_zeros_and_inf(k1y, k2y, E, I)
M_fixed = [local_fixed_end_forces[5], local_fixed_end_forces[11]]
F_fixed = [local_fixed_end_forces[3], local_fixed_end_forces[9]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1y, k2y, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[5] = M_spring[1]
local_fixed_end_forces[11] = M_spring[2]
local_fixed_end_forces[3] = F_spring[1]
local_fixed_end_forces[9] = F_spring[2] | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 4850 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[0.627], Iy=[0.627], Iz=[0.627], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 230000.0]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4, 5, 6], coordinates=[(0.0, 0.0, 0.0), (96.0, 0.0, 0.0), (0.0, 48.0, 0.0), (0.0, -48.0, 0.0), (96.0, 48.0, 0.0), (96.0, -48.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2, 3, 4, 5], nodes=[(1,2), (1, 3), (1, 4), (2, 5), (2, 6)], orientation=[0.0, 0.0, 0.0, 0.0, 0.0], connections=[("end release", "end release"), ("rigid", "rigid"), ("rigid", "rigid"), ("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam", "beam", "beam", "beam"], material=["steel", "steel", "steel", "steel", "steel"])
support = InstantFrame.Support(nodes=[3, 4, 5, 6], stiffness=(uX=[Inf,Inf,Inf,Inf], uY=[Inf,Inf,Inf,Inf], uZ=[Inf,Inf,Inf,Inf], rX=[Inf,Inf,Inf,Inf], rY=[Inf,Inf,Inf,Inf], rZ=[Inf,Inf,Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[-12.5], qZ=[0.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
# E*I/L
# ke_pr = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
# dof = [2; 6; 8; 12]
# ke = model.equations.ke_local[1][dof, dof]
# free_dof = [1; 3]
# u = [1.0, -1.0]
# ke_ff = ke[free_dof, free_dof]
# M_fixed = ke_ff * u
# ke_pr_ff = ke_pr[free_dof, free_dof]
# M_pr = ke_pr_ff * u
# 41.5118 1992.56 -41.5118 1992.56
# 1992.56 1.67198e5 -1992.56 24088.3
# -41.5118 -1992.56 41.5118 -1992.56
# 1992.56 24088.3 -1992.56 1.67198e5
# 246.623 11837.9 -246.623 11837.9
# 11837.9 757625.0 -11837.9 3.78812e5
# -246.623 -11837.9 246.623 -11837.9
# 11837.9 3.78812e5 -11837.9 757625.0
I = 0.627
E = 29000000.0
L = 96.0
k1 = 230000.0
k2 = 2000.0
M_fixed = [9600.0, -9600.0]
F_fixed = [600.0, 600.0]
function fixed_end_forces_partial_restraint(k1, k2, E, I, L, M_fixed, F_fixed)
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
#MGZ Example 13.7
k_moment = E*I/L*([4+α1 2.0
2.0 4+α2])
θi = k_moment^-1*M_fixed
M_spring = θi .* [k1, k2]
k_shear = (E*I/L)*[6/L 6/L
-6/L -6/L]
F_spring = F_fixed - k_shear * θi
return M_spring, F_spring
end
wx_local = 0.0
wy_local = -12.5
wz_local = -12.5
k1z = 230000.0
k2z = 2000.0
k1y = 230000.0
k2y = 230000.0
local_fixed_end_forces = zeros(Float64, 12)
local_fixed_end_forces[1] = -wx_local*L/2
local_fixed_end_forces[7] = -wx_local*L/2
# local_fixed_end_forces[3] = -wy_local*L/2
# local_fixed_end_forces[6] = -wy_local*L^2/12
# local_fixed_end_forces[9] = -wy_local*L/2
# local_fixed_end_forces[12] = wy_local*L^2/12
local_fixed_end_forces[2] = -wy_local*L/2
local_fixed_end_forces[6] = -wy_local*L^2/12
local_fixed_end_forces[8] = -wy_local*L/2
local_fixed_end_forces[12] = +wy_local*L^2/12
k1z, k2z = InstantFrame.connection_zeros_and_inf(k1z, k2z, E, I)
M_fixed = [local_fixed_end_forces[6], local_fixed_end_forces[12]]
F_fixed = [local_fixed_end_forces[2], local_fixed_end_forces[8]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1z, k2z, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[6] = M_spring[1]
local_fixed_end_forces[12] = M_spring[2]
local_fixed_end_forces[2] = F_spring[1]
local_fixed_end_forces[8] = F_spring[2]
local_fixed_end_forces[3] = -wz_local*L/2
local_fixed_end_forces[5] = +wz_local*L^2/12
local_fixed_end_forces[9] = -wz_local*L/2
local_fixed_end_forces[11] = -wz_local*L^2/12
k1y, k2y = InstantFrame.connection_zeros_and_inf(k1y, k2y, E, I)
M_fixed = [local_fixed_end_forces[5], local_fixed_end_forces[11]]
F_fixed = [local_fixed_end_forces[3], local_fixed_end_forces[9]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1y, k2y, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[5] = M_spring[1]
local_fixed_end_forces[11] = M_spring[2]
local_fixed_end_forces[3] = F_spring[1]
local_fixed_end_forces[9] = F_spring[2] | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 4848 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[0.627], Iy=[0.627], Iz=[0.627], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, 230000], rz=[Inf, Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4, 5, 6], coordinates=[(0.0, 0.0, 0.0), (96.0, 0.0, 0.0), (0.0, 0.0, 48.0), (0.0, 0.0, -48.0), (96.0, 0.0, 48.0), (96.0, 0.0, -48.0)])
element = InstantFrame.Element(numbers=[1, 2, 3, 4, 5], nodes=[(1,2), (1, 3), (1, 4), (2, 5), (2, 6)], orientation=[0.0, 0.0, 0.0, 0.0, 0.0], connections=[("end release", "end release"), ("rigid", "rigid"), ("rigid", "rigid"), ("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam", "beam", "beam", "beam"], material=["steel", "steel", "steel", "steel", "steel"])
support = InstantFrame.Support(nodes=[3, 4, 5, 6], stiffness=(uX=[Inf,Inf,Inf,Inf], uY=[Inf,Inf,Inf,Inf], uZ=[Inf,Inf,Inf,Inf], rX=[Inf,Inf,Inf,Inf], rY=[Inf,Inf,Inf,Inf], rZ=[Inf,Inf,Inf,Inf]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[0.0], qZ=[-12.5], mX=[0.0], mY=[0.0], mZ=[0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(nothing)
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
# E*I/L
# ke_pr = InstantFrame.define_local_elastic_element_stiffness_matrix_partially_restrained(I, E, L, k1, k2)
# dof = [2; 6; 8; 12]
# ke = model.equations.ke_local[1][dof, dof]
# free_dof = [1; 3]
# u = [1.0, -1.0]
# ke_ff = ke[free_dof, free_dof]
# M_fixed = ke_ff * u
# ke_pr_ff = ke_pr[free_dof, free_dof]
# M_pr = ke_pr_ff * u
# 41.5118 1992.56 -41.5118 1992.56
# 1992.56 1.67198e5 -1992.56 24088.3
# -41.5118 -1992.56 41.5118 -1992.56
# 1992.56 24088.3 -1992.56 1.67198e5
# 246.623 11837.9 -246.623 11837.9
# 11837.9 757625.0 -11837.9 3.78812e5
# -246.623 -11837.9 246.623 -11837.9
# 11837.9 3.78812e5 -11837.9 757625.0
I = 0.627
E = 29000000.0
L = 96.0
k1 = 230000.0
k2 = 2000.0
M_fixed = [9600.0, -9600.0]
F_fixed = [600.0, 600.0]
function fixed_end_forces_partial_restraint(k1, k2, E, I, L, M_fixed, F_fixed)
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
#MGZ Example 13.7
k_moment = E*I/L*([4+α1 2.0
2.0 4+α2])
θi = k_moment^-1*M_fixed
M_spring = θi .* [k1, k2]
k_shear = (E*I/L)*[6/L 6/L
-6/L -6/L]
F_spring = F_fixed - k_shear * θi
return M_spring, F_spring
end
wx_local = 0.0
wy_local = -12.5
wz_local = -12.5
k1z = 230000.0
k2z = 2000.0
k1y = 230000.0
k2y = 230000.0
local_fixed_end_forces = zeros(Float64, 12)
local_fixed_end_forces[1] = -wx_local*L/2
local_fixed_end_forces[7] = -wx_local*L/2
# local_fixed_end_forces[3] = -wy_local*L/2
# local_fixed_end_forces[6] = -wy_local*L^2/12
# local_fixed_end_forces[9] = -wy_local*L/2
# local_fixed_end_forces[12] = wy_local*L^2/12
local_fixed_end_forces[2] = -wy_local*L/2
local_fixed_end_forces[6] = -wy_local*L^2/12
local_fixed_end_forces[8] = -wy_local*L/2
local_fixed_end_forces[12] = +wy_local*L^2/12
k1z, k2z = InstantFrame.connection_zeros_and_inf(k1z, k2z, E, I)
M_fixed = [local_fixed_end_forces[6], local_fixed_end_forces[12]]
F_fixed = [local_fixed_end_forces[2], local_fixed_end_forces[8]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1z, k2z, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[6] = M_spring[1]
local_fixed_end_forces[12] = M_spring[2]
local_fixed_end_forces[2] = F_spring[1]
local_fixed_end_forces[8] = F_spring[2]
local_fixed_end_forces[3] = -wz_local*L/2
local_fixed_end_forces[5] = +wz_local*L^2/12
local_fixed_end_forces[9] = -wz_local*L/2
local_fixed_end_forces[11] = -wz_local*L^2/12
k1y, k2y = InstantFrame.connection_zeros_and_inf(k1y, k2y, E, I)
M_fixed = [local_fixed_end_forces[5], local_fixed_end_forces[11]]
F_fixed = [local_fixed_end_forces[3], local_fixed_end_forces[9]]
M_spring, F_spring = fixed_end_forces_partial_restraint(k1y, k2y, E, I, L, M_fixed, F_fixed)
local_fixed_end_forces[5] = M_spring[1]
local_fixed_end_forces[11] = M_spring[2]
local_fixed_end_forces[3] = F_spring[1]
local_fixed_end_forces[9] = F_spring[2] | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1763 | using InstantFrame
#Apply a uniform load to a simply-supported frame element.
material = InstantFrame.Material(names=["steel"], E=[29000000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4]) #ρ = lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[1.0], Iy=[1.0], Iz=[1.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid", "end release"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, Inf], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (120.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0, 0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,0.0], rY=[0.0,0.0], rZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0], qY=[0.0], qZ=[-10.0], mX=[0.0], mY=[0.0], mZ=[0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
# scale = (1.0, 1.0, 1.0)
# figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
##test
#Calculate rotation at the left end of the beam.
wY = uniform_load.loads.qY[1]
L = sum(model.properties.L)
E = material.E[1]
Iz = cross_section.Iz[1]
θ_start = wY*L^3/(24*E*Iz)
#rotation at left end of beam
θ_start ≈ model.solution.nodal_displacements[1][6]
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1342 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays, LinearAlgebra, BenchmarkTools
#McGuire, W., Gallagher, R. H., & Ziemian, R. D. (2000). Matrix Structural Analysis, John Wiley and Sons. Inc., New York.
#Consider the study summarized in Example 4.13 of McGuire et al. (2000), a 2D rigid frame.
#Define structural system.
nodes = [[0.0, 0.0], [8000.0, 0.0], [8000.0, -5000.0]]
cross_sections = InstantFrame.CrossSections(["member_ab", "member_bc"], [6E3, 4E3], [200E6, 50E6], [], [])
materials = InstantFrame.Materials(["steel"], [200000.], [0.3])
connections = InstantFrame.Connections(["semi-rigid", "rigid"], [30000.0, Inf], [Inf, Inf], [Inf, Inf])
members = InstantFrame.Members(["frame", "frame"], [1, 2], [2, 3], [0.0, 0.0], ["rigid", "rigid"], ["rigid", "rigid"], ["member_ab", "member_bc"], ["steel", "steel"])
#Calculate global elastic stiffness matrix.
Ke = InstantFrame.define_global_elastic_stiffness_matrix(nodes, cross_sections, materials, members)
#Define the frame loading as an external force vector.
F = [0., 0., 0., 100000.0/sqrt(2), -100000.0/sqrt(2), 50000000., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
u = Ke_ff \ Ff
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 2260 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays, LinearAlgebra, BenchmarkTools
#McGuire, W., Gallagher, R. H., & Ziemian, R. D. (2000). Matrix Structural Analysis, John Wiley and Sons. Inc., New York.
#Consider the study summarized in Example 4.13 of McGuire et al. (2000), a 2D rigid frame.
#Define structural system.
nodes = [[0.0, 0.0], [8000.0, 0.0], [8000.0, -5000.0]]
cross_sections = InstantFrame.CrossSections(["member_ab", "member_bc"], [6E3, 4E3], [200E6, 50E6], [], [])
materials = InstantFrame.Materials(["steel"], [200000.], [0.3])
connections = InstantFrame.Connections(["semi-rigid", "rigid"], [30000.0, Inf], [Inf, Inf], [Inf, Inf])
members = InstantFrame.Members(["frame", "frame"], [1, 2], [2, 3], [0.0, 0.0], ["rigid", "rigid"], ["rigid", "rigid"], ["member_ab", "member_bc"], ["steel", "steel"])
#Calculate global elastic stiffness matrix.
Ke = InstantFrame.define_global_elastic_stiffness_matrix(nodes, cross_sections, materials, members)
#Define the frame loading as an external force vector.
F = [0., 0., 0., 100000.0/sqrt(2), -100000.0/sqrt(2), 50000000., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#First order solution
u_1f = Ke_ff \ Ff
#Define global system displacement vector for the first order analysis.
num_nodes = size(nodes, 1)
num_dof_per_node = 3
u_1 = zeros(Float64, num_nodes * num_dof_per_node)
u_1[free_dof] .= u_1f
#Solve for first order internal forces. Need axial forces for second order analysis.
@btime P = InstantFrame.calculate_internal_forces(nodes, cross_sections, materials, members, u_1)
#Calculate global geometric stiffness matrix.
@btime Kg = InstantFrame.define_global_geometric_stiffness_matrix(nodes, members, P)
#Partition the geometric stiffness matrix.
Kg_ff = Kg[free_dof, free_dof]
#Get the total stiffness matrix, elastic + geometric.
Kff = Ke_ff + Kg_ff
p = [Kff, Ff]
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
u0 = u_1f
u0 = @SVector [u0[i] for i in eachindex(u0)]
probN = NonlinearProblem{false}(residual, u0, p)
@btime u_2f = solve(probN, NewtonRaphson(), tol = 1e-9)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1339 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays, LinearAlgebra, BenchmarkTools
#Sennett, R. E. (2000). Matrix analysis of structures. Waveland Press.
#Consider the study summarized in Example 7-4 of Sennett (2000), a 2D portal frame with a hinge.
#Define structural system.
nodes = [[0.0, 0.0], [0.0, 120.0], [120.0, 120.0], [120.0, 0.0]]
cross_sections = InstantFrame.CrossSections(["beam"], [10.0], [100.0], [], [])
materials = InstantFrame.Materials(["steel"], [29e6], [0.3])
connections = InstantFrame.Connections(["rigid", "hinge"], [Inf, 0.0], [], [])
members = InstantFrame.Members(["frame", "frame", "frame"], [1, 2, 3], [2, 3, 4], [0.0, 0.0, 0.0], ["rigid", "hinge", "rigid"], ["hinge", "rigid", "rigid"], ["beam", "beam", "beam"], ["steel", "steel", "steel"])
#Calculate global elastic stiffness matrix.
Ke = InstantFrame.define_global_elastic_stiffness_matrix(nodes, cross_sections, materials, members)
#Define the frame loading as an external force vector.
F = [0., 0., 0., 1000.0, 0., 0., 0., 0., 0., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [3; 4; 5; 6; 7; 8; 9; 12]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
uf = Ke_ff \ Ff
u = zeros(Float64, 12)
u[free_dof] = uf
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1687 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays, LinearAlgebra, BenchmarkTools
#McGuire, W., Gallagher, R. H., & Ziemian, R. D. (2000). Matrix Structural Analysis, John Wiley and Sons. Inc., New York.
#Consider the study summarized in Example 5.4 of McGuire et al. (2000), a 3D space truss.
#Define structural system.
nodes = [[2000.0, 4000.0, 8000.0], [0.0, 0.0, 0.0], [8000.0, 0.0, 0.0], [8000.0, 6000.0, 0.0], [0.0, 6000.0, 0.0]]
cross_sections = InstantFrame.CrossSections(["member_ab", "member_ac", "member_ad", "member_ae"], [20E3, 30E3, 40E3, 30E3], [], [], [])
materials = InstantFrame.Materials(["steel"], [200000.], [0.3])
connections = InstantFrame.Connections(["semi-rigid", "rigid", "pinned, twist fixed"], [30000.0, Inf, Inf], [Inf, Inf, 0.0], [Inf, Inf, 0.0])
members = InstantFrame.Members(["frame", "frame"], [1, 1, 1, 1], [2, 3, 4, 5], [0.0, 0.0, 0.0, 0.0, 0.0], ["pinned, twist fixed", "pinned, twist fixed", "pinned, twist fixed", "pinned, twist fixed"], ["pinned, twist fixed", "pinned, twist fixed", "pinned, twist fixed", "pinned, twist fixed"], ["member_ab", "member_ac", "member_ad", "member_ae"], ["steel", "steel", "steel", "steel"])
#Calculate global elastic stiffness matrix.
Ke = InstantFrame.define_global_elastic_stiffness_matrix(nodes, cross_sections, materials, members)
#Define the frame loading as an external force vector.
F = [0., 0., 0., 100000.0/sqrt(2), -100000.0/sqrt(2), 50000000., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
u = Ke_ff \ Ff
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 607 | using Rotations
#Consider Zeimian and McGuire Example 5.5
#global
A = [0, 0, 0]
B = [10, 5, 3]
AB = B - A
ρ = deg2rad(-16.699)
χ = deg2rad(25.589)
ω = deg2rad(30.0)
RotY(-ρ)
RotZ(-χ)
RotX(-ω)
RotXZY(-ω, -χ, -ρ)
RotX(0.1) * RotY(0.2) * RotZ(0.3) === RotXYZ(0.1, 0.2, 0.3)
#local
# A_prime = [0, 0, 0]
# B_prime = [length_AB, 0.0, 0.0]
using LinearAlgebra, Rotations
#[x'] = [β][x]
β = deg2rad(30.0)
A = [0, 0, 0]
B = [10, 5, 3]
AB = B - A
length_AB = norm(AB)
χ = π/2 - acos(AB[2]/length_AB)
ρ = -atan(AB[3]/AB[1])
ω = β
rad2deg(χ)
rad2deg(ρ)
rad2deg(ω)
RotXZY(-ω, -χ, -ρ)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1732 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
#First order analysis
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,0.0], uZ=[Inf,0.0], rX=[Inf,Inf], rY=[Inf,0.0], rZ=[Inf,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[-50.0], FY=[1.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "first order")
##tests
#deflection
isapprox(model.solution.u1[8], 0.609, rtol=0.05)
#cantilever moment
isapprox(-model.solution.P1[1][6], 180.0, rtol=0.05)
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1865 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (90.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3], stiffness=(uX=[Inf,0.0,0.0], uY=[Inf,0.0,0.0], uZ=[Inf,0.0,0.0], rX=[Inf,Inf,Inf], rY=[Inf,0.0,0.0], rZ=[Inf,0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[3], loads=(FX=[-50.0], FY=[1.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "second order")
##tests
#deflection
isapprox(model.solution.u2[8], 0.765, rtol=0.05)
#cantilever moment
isapprox(-model.solution.P2[1][6], 218.3, rtol=0.05)
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1865 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2, 3], coordinates=[(0.0, 0.0, 0.0), (90.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2], nodes=[(1,2), (2,3)], orientation=[0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid")], cross_section=["beam", "beam"], material=["steel", "steel"])
support = InstantFrame.Support(nodes=[1, 2, 3], stiffness=(uX=[Inf,0.0,0.0], uY=[Inf,0.0,0.0], uZ=[Inf,0.0,0.0], rX=[Inf,Inf,Inf], rY=[Inf,0.0,0.0], rZ=[Inf,0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1, 2], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
# uniform_load = InstantFrame.UniformLoad(nothing)
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[3], loads=(FX=[-50.0], FY=[1.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "second order")
##tests
#deflection
isapprox(model.solution.u2[8], 0.765, rtol=0.05)
#cantilever moment
isapprox(-model.solution.P2[1][6], 218.3, rtol=0.05)
scale = (1.0, 1.0, 1.0)
figure = InstantFrame.UI.display_model_deformed_shape(model.solution.u1, element, node, model.properties, scale)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1941 | using InstantFrame
#Denavit and Hajjar (2013) Figure 5
#http://www1.coe.neu.edu/~jfhajjar/home/Denavit%20and%20Hajjar%20-%20Geometric%20Nonlinearity%20in%20OpenSees%20-%20Report%20No.%20NEU-CEE-2013-02%202013.pdf
#Vibration modes
material = InstantFrame.Material(names=["steel"], E=[29000.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000.0]) ##ρ = kilo-lbs * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["beam"], A=[9.12], Iy=[37.1], Iz=[110.0], J=[0.001])
connection = InstantFrame.Connection(names=["rigid"], stiffness=(ux=[Inf], uy=[Inf], uz=[Inf], rx=[Inf], ry=[Inf], rz=[Inf]))
node = InstantFrame.Node(numbers=[1, 2], coordinates=[(0.0, 0.0, 0.0), (180.0, 0.0, 0.0)])
element = InstantFrame.Element(numbers=[1], nodes=[(1,2)], orientation=[0.0], connections=[("rigid", "rigid")], cross_section=["beam"], material=["steel"])
support = InstantFrame.Support(nodes=[1, 2], stiffness=(uX=[Inf,0.0], uY=[Inf,0.0], uZ=[Inf,0.0], rX=[Inf,0.0], rY=[Inf,0.0], rZ=[Inf,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["test"], elements=[1], loads=(qX=[0.0, 0.0], qY=[0.0, 0.0], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["test"], nodes=[2], loads=(FX=[0.0], FY=[0.0], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type = "modal vibration")
##tests
#first mode natural frequency for a cantilever
#https://roymech.org/Useful_Tables/Vibrations/Natural_Vibrations.html
A = cross_section.A[1]
E = material.E[1]
I_weak = cross_section.Iy[1]
I_strong = cross_section.Iz[1]
L = 180.0
ρ = material.ρ[1]
m = ρ * A #mass per unit length
ωn_weak = 1.875^2 * sqrt((E*I_weak)/(m*L^4))
ωn_strong = 1.875^2 * sqrt((E*I_strong)/(m*L^4))
isapprox(model.solution.ωn[1], ωn_weak, rtol=0.05)
isapprox(model.solution.ωn[2], ωn_strong, rtol=0.05)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3188 | using InstantFrame, NLsolve, Plots, LinearAlgebra, BenchmarkTools
#Denavit, M. D., & Hajjar, J. F. (2013). Description of geometric nonlinearity for beam-column analysis in OpenSees.
#Consider the study summarized in Figure 5 of Denavit and Hajjar (2013), a cantilever under axial and transverse loading.
#Define frame inputs.
E = 29000.0 #ksi
I = 37.1 #in^4
A = 9.12 #in^2
L = 180.0 #in
P = -50.0 #kips
H = -1.0 #kips
ρ = 492.0 / 32.17 / 1000.0 / 12^4 #kips * s^2 / in^4
#Define the frame loading as an external force vector. There is an axial load of 50 kips and a lateral load of 1 kip.
F = [0., 0., 0., P, H, 0.0]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Define the frame elastic stiffness.
Ke = InstantFrame.define_local_elastic_stiffness_matrix(I, A, E, L)
Kg = InstantFrame.define_local_geometric_stiffness_matrix(P, L)
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
Kg_ff = Kg[free_dof, free_dof]
#Get the total stiffness matrix, elastic + geometric.
Kff = Ke_ff + Kg_ff
#Define the deformation initial guess for the nonlinear solver.
deformation_guess = Ke_ff \ Ff
#Solve for the beam deformations.
@btime solution = nlsolve((R,U) ->InstantFrame.second_order_analysis_residual!(R, U, Kff, Ff), deformation_guess, method=:newton)
#Newton-Raphson is faster here, than trust region...
#Get the frame deformed shape.
u = zeros(Float64, 6)
u[free_dof] .= solution.zero
#Show the frame deformed shape.
x = range(0., L, 20)
offset = 0.
w = beam_shape_function(u[2],u[3],u[5],u[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
#Plot load-deformation response.
num_steps = 20
P_range = range(0., P, num_steps)
H_range = range(0., H, num_steps)
u_range = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P_range[i], H_range[i], 0.0]
u_range[i] = get_load_deformation_response(I, A, E, L, P_range[i], F, free_dof)
end
u_load = [u_range[i][5] for i = 1:num_steps]
plot(-u_load, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="varying P")
u_range_constant_P = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P, H_range[i], 0.0]
u_range_constant_P[i] = get_load_deformation_response(I, A, E, L, P, F, free_dof)
end
u_load_constant_P = [u_range_constant_P[i][5] for i = 1:num_steps]
plot!(-u_load_constant_P, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="constant P", legend=:bottomright)
#Calculate the vibration natural frequencies and mode shapes.
M = InstantFrame.define_local_element_mass_matrix(A,L,ρ)
Mff = m[free_dof, free_dof]
ωn_squared=eigvals(Ke_ff, Mff)
ωn=sqrt.(ωn_squared)
f = ωn/(2π)
#And the natural periods of vibration...
T = 1 ./ f
mode_shapes=eigvecs(Ke_ff,Mff)
#And show the vibration modes.
mode_shape = zeros(Float64, 6)
mode = 3
mode_shape[free_dof] .= modeshapes[:, mode] ./ maximum(abs.(modeshapes[:, mode]))
w = beam_shape_function(mode_shape[2],mode_shape[3],mode_shape[5],mode_shape[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1733 | using ApproxFun, Plots
E = 29000 #ksi
I = 37.1 #in^4
A = 9.12 #in^2
L = 180.0 #in
P = -50.0 #kips
H = 1.0 #kips
x = Fun(identity, 0..L)
# x = Fun(Taylor(), [1,2,3])
y₀ = 0.0x # initial guess
N = y -> [y(0), y'(0), y''(L), y'''(L) - H/(E*I), E*I*y'''' + P*y'']
y = newton(N, y₀)
plot(y, legend = false)
rad2deg(y'(L))
s = Fun(identity, 0..L)
θ₀ = 0.0s # initial guess
N = θ -> [θ(0), θ'(L), E*I*θ'' + P*sin(θ) + H*L - H*x]
θ = newton(N, θ₀)
plot(θ, legend = false)
y(L)
x = Fun(identity, 0..L)
y₀ = 0.0x # initial guess
N = y -> [y(0), y'(0), E*I*y'' + P*y + H*L - H*x]
y = newton(N, y₀)
plot(y, legend = false)
α = sqrt(-P*L^2/(E*I))
y_theor = H*L^3/(3*E*I) * (3 * (tan(α) - α))/α^3
plot(y''')
plot(y''', legend=false)
H/(E*I)
y(L)
L, E, Iy, P, qx = 12.0, 1.0, 1.0, 2.0, 0.0001
d = 0..L
z = Fun(identity, d)
B = [[Evaluation(d,leftendpoint,k) for k=0:1]... ; [Evaluation(d,rightendpoint,k) for k=2:3]... ;]
v = [B; E*Iy*Derivative()^4 + P*Derivative()^2] \ [ zeros(4)..., qx*one(z)]
func_name = zip([v, v', v'', v'''], ["Deflection", "Angle", "Moment", "Shear"])
plot([plot(z, f, title=n, label="") for (f,n) in func_name]..., lw=3)
x = Fun()
B = Evaluation(Chebyshev(),-1)
A = [B 0;
B*𝒟 0;
0 B;
𝒟^2-I 2I;
I 𝒟+I]
u,v = A\[0;0;0;exp(x);cos(x)]
u(-1),u'(-1),v(-1)
Δ = qx * L^4/(8 * E * Iy)
maximum(u)
u.(0:0.1:12)
x = Fun(identity, 0..1)
N = (u1,u2) -> [u1'(0) - 0.5*u1(0)*u2(0);
u2'(0) + 1;
u1(1) - 1;
u2(1) - 1;
u1'' + u1*u2;
u2'' - u1*u2]
u10 = one(x)
u20 = one(x)
u1,u2 = newton(N, [u10,u20])
plot(u1, label="u1")
plot!(u2, label="u2") | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3489 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays
#Denavit, M. D., & Hajjar, J. F. (2013). Description of geometric nonlinearity for beam-column analysis in OpenSees.
#Consider the study summarized in Figure 5 of Denavit and Hajjar (2013), a cantilever under axial and transverse loading.
#Define frame inputs.
E = 29000.0 #ksi
I = 37.1 #in^4
A = 9.12 #in^2
L = 180.0 #in
P = -50.0 #kips
H = -1.0 #kips
ρ = 492.0 / 32.17 / 1000.0 / 12^4 #kips * s^2 / in^4
#Define the frame loading as an external force vector. There is an axial load of 50 kips and a lateral load of 1 kip.
F = [0., 0., 0., P, H, 0.0]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Define the frame elastic stiffness.
Ke = InstantFrame.define_local_elastic_stiffness_matrix(I, A, E, L)
Kg = InstantFrame.define_local_geometric_stiffness_matrix(P, L)
K=Ke+Kg
Ku=F
Ku-F = 0
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
Kg_ff = Kg[free_dof, free_dof]
#Get the total stiffness matrix, elastic + geometric.
Kff = Ke_ff + Kg_ff
#Define the deformation initial guess for the nonlinear solver.
deformation_guess = Ke_ff \ Ff
p = [Kff, Ff]
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
u0 = deformation_guess
u0 = @SVector [u0[i] for i in eachindex(u0)]
probN = NonlinearProblem{false}(residual, u0, p)
@btime solver = solve(probN, NewtonRaphson(), tol = 1e-9)
#Solve for the beam deformations.
@btime solution = nlsolve((R,U) ->InstantFrame.second_order_analysis_residual!(R, U, Kff, Ff), deformation_guess)
#Newton-Raphson is faster here, than trust region...
#Get the frame deformed shape.
u = zeros(Float64, 6)
u[free_dof] .= solution.zero
#Show the frame deformed shape.
x = range(0., L, 20)
offset = 0.
w = beam_shape_function(u[2],u[3],u[5],u[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
#Plot load-deformation response.
num_steps = 20
P_range = range(0., P, num_steps)
H_range = range(0., H, num_steps)
u_range = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P_range[i], H_range[i], 0.0]
u_range[i] = get_load_deformation_response(I, A, E, L, P_range[i], F, free_dof)
end
u_load = [u_range[i][5] for i = 1:num_steps]
plot(-u_load, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="varying P")
u_range_constant_P = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P, H_range[i], 0.0]
u_range_constant_P[i] = get_load_deformation_response(I, A, E, L, P, F, free_dof)
end
u_load_constant_P = [u_range_constant_P[i][5] for i = 1:num_steps]
plot!(-u_load_constant_P, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="constant P", legend=:bottomright)
#Calculate the vibration natural frequencies and mode shapes.
M = InstantFrame.define_local_element_mass_matrix(A,L,ρ)
Mff = m[free_dof, free_dof]
ωn_squared=eigvals(Ke_ff, Mff)
ωn=sqrt.(ωn_squared)
f = ωn/(2π)
#And the natural periods of vibration...
T = 1 ./ f
mode_shapes=eigvecs(Ke_ff,Mff)
#And show the vibration modes.
mode_shape = zeros(Float64, 6)
mode = 3
mode_shape[free_dof] .= modeshapes[:, mode] ./ maximum(abs.(modeshapes[:, mode]))
w = beam_shape_function(mode_shape[2],mode_shape[3],mode_shape[5],mode_shape[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3379 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays
#Denavit, M. D., & Hajjar, J. F. (2013). Description of geometric nonlinearity for beam-column analysis in OpenSees.
#Consider the study summarized in Figure 5 of Denavit and Hajjar (2013), a cantilever under axial and transverse loading.
#Define frame inputs.
E = 29000.0 #ksi
J = 10.0 #in^4
ν = 0.30
Iy = 37.1 #in^4
Ix = 110.0 #in^4
A = 9.12 #in^2
L = 180.0 #in
P = -50.0 #kips
H = -1.0 #kips
ρ = 492.0 / 32.17 / 1000.0 / 12^4 #kips * s^2 / in^4
#Define the frame loading as an external force vector. There is an axial load of 50 kips and a lateral load of 1 kip.
F = [0., 0., 0., 0., 0., 0., P, H, -H, 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [7; 8; 9; 10; 11; 12]
#Define the frame elastic stiffness.
Ke = InstantFrame.define_local_elastic_stiffness_matrix(Ix, Iy, A, J, E, ν, L)
#Define frame geometric stiffness.
Kg = InstantFrame.define_local_3D_geometric_stiffness_matrix(P, L)
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
Kg_ff = Kg[free_dof, free_dof]
#Get the total stiffness matrix, elastic + geometric.
Kff = Ke_ff + Kg_ff
#Define the deformation initial guess for the nonlinear solver.
deformation_guess = Ke_ff \ Ff
p = [Kff, Ff]
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
u0 = deformation_guess
u0 = @SVector [u0[i] for i in eachindex(u0)]
probN = NonlinearProblem{false}(residual, u0, p)
@benchmark solver = solve(probN, NewtonRaphson(), tol = 1e-9)
#Get the frame deformed shape.
u = zeros(Float64, 6)
u[free_dof] .= solution.zero
#Show the frame deformed shape.
x = range(0., L, 20)
offset = 0.
w = beam_shape_function(u[2],u[3],u[5],u[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
#Plot load-deformation response.
num_steps = 20
P_range = range(0., P, num_steps)
H_range = range(0., H, num_steps)
u_range = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P_range[i], H_range[i], 0.0]
u_range[i] = get_load_deformation_response(I, A, E, L, P_range[i], F, free_dof)
end
u_load = [u_range[i][5] for i = 1:num_steps]
plot(-u_load, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="varying P")
u_range_constant_P = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P, H_range[i], 0.0]
u_range_constant_P[i] = get_load_deformation_response(I, A, E, L, P, F, free_dof)
end
u_load_constant_P = [u_range_constant_P[i][5] for i = 1:num_steps]
plot!(-u_load_constant_P, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="constant P", legend=:bottomright)
#Calculate the vibration natural frequencies and mode shapes.
M = InstantFrame.define_local_element_mass_matrix(A,L,ρ)
Mff = m[free_dof, free_dof]
ωn_squared=eigvals(Ke_ff, Mff)
ωn=sqrt.(ωn_squared)
f = ωn/(2π)
#And the natural periods of vibration...
T = 1 ./ f
mode_shapes=eigvecs(Ke_ff,Mff)
#And show the vibration modes.
mode_shape = zeros(Float64, 6)
mode = 3
mode_shape[free_dof] .= modeshapes[:, mode] ./ maximum(abs.(modeshapes[:, mode]))
w = beam_shape_function(mode_shape[2],mode_shape[3],mode_shape[5],mode_shape[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 3473 | using InstantFrame, NonlinearSolve, Plots, LinearAlgebra, BenchmarkTools, StaticArrays, SparseArrays
#Denavit, M. D., & Hajjar, J. F. (2013). Description of geometric nonlinearity for beam-column analysis in OpenSees.
#Consider the study summarized in Figure 5 of Denavit and Hajjar (2013), a cantilever under axial and transverse loading.
#Define frame inputs.
E = 29000.0 #ksi
I = 37.1 #in^4
A = 9.12 #in^2
L = 180.0 #in
P = -50.0 #kips
H = -1.0 #kips
ρ = 492.0 / 32.17 / 1000.0 / 12^4 #kips * s^2 / in^4
#Define the frame loading as an external force vector. There is an axial load of 50 kips and a lateral load of 1 kip.
F = [0., 0., 0., P, H, 0.0]
#Define the frame boundary conditions.
free_dof = [4; 5; 6]
#Define the frame elastic stiffness.
Ke = InstantFrame.define_local_elastic_stiffness_matrix(I, A, E, L)
Kg = InstantFrame.define_local_geometric_stiffness_matrix(P, L)
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
Kg_ff = Kg[free_dof, free_dof]
#Get the total stiffness matrix, elastic + geometric.
Kff = Ke_ff + Kg_ff
#Define the deformation initial guess for the nonlinear solver.
deformation_guess = Ke_ff \ Ff
p = [Kff, Ff]
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
u0 = deformation_guess
u0 = @SVector [u0[i] for i in eachindex(u0)]
probN = NonlinearProblem{false}(residual, u0, p)
@btime solver = solve(probN, NewtonRaphson(), tol = 1e-9)
#Solve for the beam deformations.
@btime solution = nlsolve((R,U) ->InstantFrame.second_order_analysis_residual!(R, U, Kff, Ff), deformation_guess)
#Newton-Raphson is faster here, than trust region...
#Get the frame deformed shape.
u = zeros(Float64, 6)
u[free_dof] .= solution.zero
#Show the frame deformed shape.
x = range(0., L, 20)
offset = 0.
w = beam_shape_function(u[2],u[3],u[5],u[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
#Plot load-deformation response.
num_steps = 20
P_range = range(0., P, num_steps)
H_range = range(0., H, num_steps)
u_range = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P_range[i], H_range[i], 0.0]
u_range[i] = get_load_deformation_response(I, A, E, L, P_range[i], F, free_dof)
end
u_load = [u_range[i][5] for i = 1:num_steps]
plot(-u_load, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="varying P")
u_range_constant_P = Array{Array}(undef, num_steps)
for i = 1:num_steps
F = [0., 0., 0., P, H_range[i], 0.0]
u_range_constant_P[i] = get_load_deformation_response(I, A, E, L, P, F, free_dof)
end
u_load_constant_P = [u_range_constant_P[i][5] for i = 1:num_steps]
plot!(-u_load_constant_P, -P_range ./ -P, markershape = :o, xlabel="cantilever disp. [in.]", ylabel="load factor", label="constant P", legend=:bottomright)
#Calculate the vibration natural frequencies and mode shapes.
M = InstantFrame.define_local_element_mass_matrix(A,L,ρ)
Mff = m[free_dof, free_dof]
ωn_squared=eigvals(Ke_ff, Mff)
ωn=sqrt.(ωn_squared)
f = ωn/(2π)
#And the natural periods of vibration...
T = 1 ./ f
mode_shapes=eigvecs(Ke_ff,Mff)
#And show the vibration modes.
mode_shape = zeros(Float64, 6)
mode = 3
mode_shape[free_dof] .= modeshapes[:, mode] ./ maximum(abs.(modeshapes[:, mode]))
w = beam_shape_function(mode_shape[2],mode_shape[3],mode_shape[5],mode_shape[6], L, x, offset)
plot(x, w, linewidth = 10, linecolor = :gray, legend=false)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1108 | using InstantFrame
nodes = InstantFrame.Nodes([0.0, 10.0, 20.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0])
cross_sections = InstantFrame.CrossSections(["W16x26"], [7.68], [301.0], [9.59], [0.262])
materials = InstantFrame.Materials(["steel"], [29000.0], [0.3])
connections = InstantFrame.Connections(["semi-rigid", "rigid"], [30000.0, Inf], [Inf, Inf], [Inf, Inf])
members = InstantFrame.Members(["frame", "frame"], [1, 2], [2, 3], ["rigid", "rigid"], ["rigid", "rigid"], ["W16x26", "W16x26"], ["steel", "steel"])
using ApproxFun, Plots
L, E, I = 12.0, 1.0, 1.0
d = 0..L
z = Fun(identity, d)
B = [[Evaluation(d,leftendpoint,k) for k=0:1]... ; [Evaluation(d,rightendpoint,k) for k=2:3]... ;]
v = [B; E*I*Derivative()^4] \ [ zeros(4)..., one(z)]
func_name = zip([v, v', v'', v'''], ["Deflection", "Angle", "Moment", "Shear"])
plot([plot(z, f, title=n, label="") for (f,n) in func_name]..., lw=3)
x = Fun()
B = Evaluation(Chebyshev(),-1)
A = [B 0;
B*𝒟 0;
0 B;
𝒟^2-I 2I;
I 𝒟+I]
u,v = A\[0;0;0;exp(x);cos(x)]
u(-1),u'(-1),v(-1)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1268 | using InstantFrame
using ApproxFun, Plots
L, E, Iy, P, qx = 12.0, 1.0, 1.0, 2.0, 0.0001
d = 0..L
z = Fun(identity, d)
B = [[Evaluation(d,leftendpoint,k) for k=0:1]... ; [Evaluation(d,rightendpoint,k) for k=2:3]... ;]
v = [B; E*Iy*Derivative()^4 + P*Derivative()^2] \ [ zeros(4)..., qx*one(z)]
func_name = zip([v, v', v'', v'''], ["Deflection", "Angle", "Moment", "Shear"])
plot([plot(z, f, title=n, label="") for (f,n) in func_name]..., lw=3)
x = Fun()
B = Evaluation(Chebyshev(),-1)
A = [B 0;
B*𝒟 0;
0 B;
𝒟^2-I 2I;
I 𝒟+I]
u,v = A\[0;0;0;exp(x);cos(x)]
u(-1),u'(-1),v(-1)
x = Fun(identity, 0..L)
u₀ = 0.1x # initial guess
L, E, Iy, P, qx = 12.0, 1.0, 2.0, -0.1, 0.0001
N = u -> [u(0), u'(0), u''(L), u'''(L), E*Iy*u'''' + P*u'' - qx]
u = newton(N, u₀) # perform Newton iteration in function space
plot(u, legend = false)
Δ = qx * L^4/(8 * E * Iy)
maximum(u)
u.(0:0.1:12)
x = Fun(identity, 0..1)
N = (u1,u2) -> [u1'(0) - 0.5*u1(0)*u2(0);
u2'(0) + 1;
u1(1) - 1;
u2(1) - 1;
u1'' + u1*u2;
u2'' - u1*u2]
u10 = one(x)
u20 = one(x)
u1,u2 = newton(N, [u10,u20])
plot(u1, label="u1")
plot!(u2, label="u2") | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1098 | using InstantFrame
nodes = InstantFrame.Nodes([0.0, 10.0, 20.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0])
cross_sections = InstantFrame.CrossSections(["W16x26"], [7.68], [301.0], [9.59], [0.262])
materials = InstantFrame.Materials(["steel"], [29000.0], [0.3])
connections = InstantFrame.Connections(["semi-rigid", "rigid"], [30000.0, Inf], [Inf, Inf], [Inf, Inf])
members = InstantFrame.Members(["frame", "frame"], [1, 2], [2, 3], ["rigid", "rigid"], ["rigid", "rigid"], ["W16x26", "W16x26"], ["steel", "steel"])
using ApproxFun, Plots
L, E, I = 12.0, 1.0, 1.0
d = 0..L
z = Fun(identity, d)
B = [[Evaluation(d,leftendpoint,k) for k=0:1]... ; [Evaluation(d,rightendpoint,k) for k=2:3]... ;]
v = [B; E*I*Derivative()^4] \ [ zeros(4)..., one(z)]
func_name = zip([v, v', v'', v'''], ["Deflection", "Angle", "Moment", "Shear"])
plot([plot(z, f, title=n, label="") for (f,n) in func_name]..., lw=3)
x = Fun()
B = Evaluation(Chebyshev(),-1)
A = [B 0;
B*𝒟 0;
0 B;
𝒟^2-I 2I;
I 𝒟+I]
u,v = A\[0;0;0;exp(x);cos(x)]
u(-1),u'(-1),v(-1)
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 8212 | using SparseArrays, StaticArrays, LinearAlgebra, Rotations, Parameters, NonlinearSolve
# export UI
# include("UI.jl")
# using .UI
@with_kw struct Node
list::Array{Int64}
coordinates::Array{Array{Float64}}
end
@with_kw struct CrossSection
names::Array{String}
A::Array{Float64}
Iy::Array{Float64}
Iz::Array{Float64}
J::Array{Float64}
end
@with_kw struct Material
names::Array{String}
E::Array{Float64}
ν::Array{Float64}
end
@with_kw struct Connection
names::Array{String}
rx::Array{Float64}
ry::Array{Float64}
rz::Array{Float64}
end
@with_kw struct Element
list::Array{Int64}
start_node::Array{Int64}
end_node::Array{Int64}
β::Array{Float64}
start_connection::Array{String}
end_connection::Array{String}
cross_section::Array{String}
material::Array{String}
end
@with_kw struct Properties
L::Array{Float64}
A::Array{Float64}
Iz::Array{Float64}
Iy::Array{Float64}
J::Array{Float64}
E::Array{Float64}
ν::Array{Float64}
Γ::Array{Array{Float64, 2}}
global_dof::Array{Array{Int64, 1}}
end
@with_kw struct Equations
free_dof::Array{Int64}
ke_local::Array{Array{Float64, 2}}
ke_global::Array{Array{Float64, 2}}
Ke::Array{Float64, 2}
kg_local::Array{Array{Float64, 2}}
kg_global::Array{Array{Float64, 2}}
Kg::Array{Float64, 2}
end
@with_kw struct Solution
u1::Array{Float64}
P1::Array{Float64}
u2::Array{Float64}
P2::Array{Float64}
end
@with_kw struct Model
properties::Properties
equations::Equations
solution::Solution
end
function define_local_elastic_stiffness_matrix(Iy, Iz, A, J, E, ν, L)
G = E/(2*(1+ν))
ke = zeros(Float64, (12, 12))
ke[1, 1] = E*A/L
ke[1, 6] = -E*A/L
ke[2, 2] = 12*E*Iz/L^3
ke[2, 6] = 6*E*Iz/L^3
ke[2, 8] = -12*E*Iz/L^3
ke[2, 12] = 6*E*Iz/L^2
ke[3, 3] = 12*E*Iy/L^3
ke[3, 5] = -6*E*Iy/L^2
ke[3, 9] = -12*E*Iy/L^3
ke[3, 11] = -6*E*Iy/L^2
ke[4, 4] = G*J/L
ke[4, 10] = -G*J/L
ke[5, 5] = 4*E*Iy/L
ke[5, 9] = 6*E*Iy/L^2
ke[5, 11] = 2*E*Iy/L
ke[6, 6] = 4*E*Iz/L
ke[6, 8] = -6*E*Iz/L^2
ke[6, 12] = 2*E*Iz/L
ke[7, 7] = E*A/L
ke[8, 8] = 12*E*Iz/L^3
ke[8, 12] = -6*E*Iz/L^2
ke[9, 9] = 12*E*Iy/L^3
ke[9, 11] = 6*E*Iy/L^2
ke[10, 10] = G*J/L
ke[11, 11] = 4*E*Iy/L
ke[12, 12] = 4*E*Iz/L
for i = 1:12
for j = 1:12
ke[j, i] = ke[i, j]
end
end
return ke
end
function define_local_geometric_stiffness_matrix(P, L)
kg = zeros(Float64, (12, 12))
kg[1, 1] = P/L
kg[1, 7] = -P/L
kg[2, 2] = 6/5*P/L
kg[2, 6] = P/10
kg[2, 8] = -6/5*P/L
kg[2, 12] = P/10
kg[3, 3] = 6/5*P/L
kg[3, 5] = -P/10
kg[3, 9] = -6/5*P/L
kg[3, 11] = -P/10
kg[5, 5] = 2/15*P*L
kg[5, 9] = P/10
kg[5, 11] = -P*L/30
kg[6, 6] = 2/15*P*L
kg[6, 8] = -P/10
kg[6, 12] = -P*L/30
kg[7, 7] = P/L
kg[8, 8] = 6/5*P/L
kg[8, 12] = - P/10
kg[9, 9] = 6/5 * P/L
kg[9, 11] = P/10
kg[11, 11] = 2/15*P*L
kg[12, 12] = 2/15*P*L
for i = 1:12
for j = 1:12
kg[j, i] = kg[i, j]
end
end
return kg
end
function define_rotation_matrix(A, B, β)
#ρ is x-z plane, χ is x-y plane , ω is y-z plane
AB = B - A
length_AB = norm(AB)
χ = π/2 - acos(AB[2]/length_AB)
if (AB[3]==0.0) & (AB[1]==0.0) #avoid 0/0 case
ρ = 0.0
else
ρ = -atan(AB[3]/AB[1])
end
ω = β
γ = RotXZY(-ω, -χ, -ρ)
Γ = zeros(Float64, (12, 12))
Γ[1:3, 1:3] .= γ
Γ[4:6, 4:6] .= γ
Γ[7:9, 7:9] .= γ
Γ[10:12, 10:12] .= γ
return Γ
end
function define_element_properties(node, cross_section, material, element)
num_elem = length(element.list)
L = Array{Float64}(undef, num_elem)
Γ = Array{Array{Float64, 2}}(undef, num_elem)
global_dof = Array{Array{Int64, 1}}(undef, num_elem)
Iz = Array{Float64}(undef, num_elem)
Iy = Array{Float64}(undef, num_elem)
A = Array{Float64}(undef, num_elem)
J = Array{Float64}(undef, num_elem)
E = Array{Float64}(undef, num_elem)
ν = Array{Float64}(undef, num_elem)
for i in eachindex(element.list)
#nodal coordinates
node_i_index = findfirst(node_num->node_num == element.start_node[i], node.list)
node_j_index = findfirst(node_num->node_num == element.end_node[i], node.list)
node_i = node.coordinates[node_i_index]
node_j = node.coordinates[node_j_index]
#cross section
index = findfirst(name->name == element.cross_section[i], cross_section.names)
Iz[i] = cross_section.Iz[index]
Iy[i] = cross_section.Iy[index]
A[i] = cross_section.A[index]
J[i] = cross_section.J[index]
#material
index = findfirst(name->name == element.material[i], material.names)
E[i] = material.E[index]
ν[i] = material.ν[index]
#element length
L[i] = norm(node_j - node_i)
#global dof for each element
num_dof_per_node = Int(size(ke_local[i], 1)/2)
node_i_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_i_index-1)
node_j_dof = range(1, num_dof_per_node) .+ num_dof_per_node * (node_j_index-1)
global_dof[i] = [node_i_dof; node_j_dof]
end
properties = FrameProperties(L, A, Iz, Iy, J, E, ν, Γ, global_dof)
return properties
end
function assemble_stiffness_matrix(k, dof)
total_dof = sum([Int(size(k[i], 1)/2) for i in eachindex(k)])
K = zeros(Float64, (total_dof , total_dof))
for i in eachindex(k)
K[dof[i], dof[i]] += k[i]
end
return K
end
function calculate_element_internal_forces(properties, u)
P_element_local = Array{Array{Float64, 1}}(undef, length(properties.L))
for i in eachindex(properties.L)
u_element_global = u[properties.global_dof[i]]
u_element_local = properties.Γ[i] * u_element_global
P_element_local[i] = properties.ke_local[i] * u_element_local
end
return P_element_local
end
function residual(u, p)
Kff, Ff = p
Kff * u - Ff
end
function nonlinear_solution(Kff, Ff, u1f)
p = [Kff, Ff]
u1f = @SVector [u1f[i] for i in eachindex(u1f)]
probN = NonlinearSolve.NonlinearProblem{false}(residual, u1fs, p)
u2f = NonlinearSolve.solve(probN, NewtonRaphson(), tol = 1e-9)
return u2f
end
function solve(node, cross_section, material, element, supports, loads)
properties = InstantFrame.define_element_properties(node, cross_section, material, element)
free_dof = vec(findall(dof->dof==0, supports))
ke_local = [InstantFrame.InstantFrame.define_local_elastic_stiffness_matrix(properties.Iy[i], properties.Iz[i], properties.A[i], properties.J[i], properties.E[i], properties.ν[i], properties.L[i]) for i in eachindex(properties.L)]
ke_global = [properties.Γ[i]'*ke_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Ke = InstantFrame.assemble_stiffness_matrix(ke_global, properties.global_dof)
Ff = loads[free_dof]
Ke_ff = Ke[free_dof, free_dof]
u1f = Ke_ff \ Ff
u1 = zeros(Float64, size(Ke,1))
u1[free_dof] = u1f
P1 = InstantFrame.calculate_element_internal_forces(properties, u1)
P1_axial = [P_local_1[i][7] for i in eachindex(P1)]
kg_local = [InstantFrame.define_local_geometric_stiffness_matrix(P1_axial[i], properties.L[i]) for i in eachindex(properties.L)]
kg_global = [properties.Γ[i]'*kg_local[i]*properties.Γ[i] for i in eachindex(properties.L)]
Kg = InstantFrame.assemble_stiffness_matrix(kg_global, properties.global_dof)
Kg_ff = Kg[free_dof, free_dof]
Kff = Ke_ff + Kg_ff
# u2f = nonlinear_solution(Kff, Ff, u1f)
# u2 = zeros(Float64, size(Ke,1))
# u2[free_dof] = u2f
# P2 = InstantFrame.calculate_element_internal_forces(properties, u2)
# equations = Equations(free_dof, ke_local, ke_global, Ke, kg_local, kg_global, Kg)
# solution = Solution(u1, P1, u2, P2)
# model = Model(properties, equations, solution)
return Kff
end | InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 494 | using InstantFrame
#use Sennett Eq. 7-54 to obtain element stiffness matrix including a hinge at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
p = [1; 2; 4; 5; 6]
s = [3] #hinge at left end
k_pp = ke[p, p]
k_ps = ke[p, s]
k_ss = ke[s, s]
k_sp = ke[s, p]
ke_condensed = k_pp - k_ps*k_ss^-1*k_sp
ke_updated = zeros(Float64, 6, 6)
ke_updated[p, p] = ke_condensed #This matches Sennett book Eq. 7-38.
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 976 | using InstantFrame
#use modified version of Sennett Eq. 7-54 to obtain element stiffness matrix including partial restraint at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
k1 = 0.0 #lb-in./rad this is consistent with a typical rack connection.
k2 = 3000000000000000000000.0 #lb-in./rad
ke = InstantFrame.define_local_elastic_element_stiffness_matrix_condensed(I, A, E, L, k1, k2)
#From Zeimian Example 13.7
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
Kbb = E*I/L*[4+α1 2
2 4+α2]
Kbc = E*I/L * [6/L -α1 -6/L 0
6/L 0 -6/L -α2]
Kcc = E*I/L*[12/L^2 0 -12/L^2 0
0 α1 0 0
-12/L^2 0 12/L^2 0
0 0 0 α2]
Kcc_bar = Kcc - Kbc'*Kbb^-1*Kbc
#Check against Sennett Eq. 7.37
3*E*I/L^3 #Kcc_bar[1,1] matches
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1769 | using InstantFrame
#use modified version of Sennett Eq. 7-54 to obtain element stiffness matrix including partial restraint at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
#Insert a rotational spring at the left end of the frame element.
# p = [1; 2; 4; 5; 6]
# s = [3] #spring at left end
kϕ1 = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
k_spring_left = zeros(Float64, 6, 6)
k_spring_left[3, 3] = kϕ1
k_spring_left[3, 6] = -kϕ1
k_spring_left[6, 3] = -kϕ1
k_spring_left[6, 6] = kϕ1
k_sys = zeros(Float64, 9 ,9)
k_sys[4:9, 4:9] = ke
k_sys[1:6, 1:6] = k_sys[1:6, 1:6] + k_spring_left
s = [4;5;6]
p = [1;2;3;7;8;9]
# k_spring = zeros(Float64, 6, 6)
# k_spring[s, s] .= kϕ_left
k_pp = k_sys[p, p]
k_ps = k_sys[p, s]
k_ss = k_sys[s, s]
k_sp = k_sys[s, p]
# k_spring_s = k_spring[s, s]
ke_condensed = k_pp - k_ps*k_ss^-1*k_sp
ke_updated = zeros(Float64, 6, 6)
ke_updated[p, p] = ke_condensed
#From Zeimian 13.31...
k1 = kϕ_left
α1 = k1/(E*I/L)
α2 = k1*1000000000000.0
α = (α1 * α2) / (α1*α2 + 4*α1 + 4*α2 + 12)
α*E*I/L * 12/L^2*(1 + (α1 + α2)/(α1*α2))
#This matches the Sennett static condensation, 5081=5081.
#Now analyze a beam with a hinge and vertical roller at the left end, and fixed at the right end. Apply a vertical force at the left end.
Ke = ke_updated
#Define the frame loading as an external force vector.
F = [0., 1000.0, 0., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [2]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
uf = Ke_ff \ Ff
u = zeros(Float64, 12)
u[free_dof] = uf
#This matches Mastan2, 0.1968 in.
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1236 | using InstantFrame
#use modified version of Sennett Eq. 7-54 to obtain element stiffness matrix including partial restraint at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
k1 = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
k2 = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
ke = InstantFrame.define_local_elastic_element_stiffness_matrix_condensed(I, A, E, L, k1, k2)
#From Zeimian 13.31...
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
α = (α1 * α2) / (α1*α2 + 4*α1 + 4*α2 + 12)
α*E*I/L * 12/L^2*(1 + (α1 + α2)/(α1*α2))
#This matches the Sennett static condensation, 5081=5081.
#Now analyze a beam with a hinge and vertical roller at the left end, and fixed at the right end. Apply a vertical force at the left end.
Ke = ke_updated
#Define the frame loading as an external force vector.
F = [0., 1000.0, 0., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [2]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
uf = Ke_ff \ Ff
u = zeros(Float64, 12)
u[free_dof] = uf
#This matches Mastan2, 0.1968 in.
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1045 | using InstantFrame
#use modified version of Sennett Eq. 7-54 to obtain element stiffness matrix including partial restraint at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
k1 = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
k2 = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
ke = InstantFrame.define_local_elastic_element_stiffness_matrix_condensed(I, A, E, L, k1, k2)
#From Zeimian Example 13.7
α1 = k1/(E*I/L)
α2 = k2/(E*I/L)
Kbb = E*I/L*[4+α1 2
2 4+α2]
Kbc = E*I/L * [6/L -α1 -6/L 0
6/L 0 -6/L -α2]
Kcc = E*I/L*[12/L^2 0 -12/L^2 0
0 α1 0 0
-12/L^2 0 12/L^2 0
0 0 0 α2]
Kcc_bar = Kcc - Kbc'*Kbb^-1*Kbc
#Check against Zeimian Eq. 13.31
α = (α1 * α2) / (α1*α2 + 4*α1 + 4*α2 + 12)
α*E*I/L * 12/L^2*(1 + (α1 + α2)/(α1*α2)) #Kcc_bar[1,1] matches
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | code | 1482 | using InstantFrame
#use modified version of Sennett Eq. 7-54 to obtain element stiffness matrix including partial restraint at the left end.
I = 100.0
A = 10.0
E = 29E6
L = 120.0
ke = InstantFrame.define_local_elastic_element_stiffness_matrix(I, A, E, L)
#Insert a rotational spring at the left and right ends of the frame element.
p = [1; 2; 4; 5]
s = [3; 6] #spring at left end
kϕ = 300000.0 #lb-in./rad this is consistent with a typical rack connection.
k_spring = zeros(Float64, 6, 6)
k_spring[s, s] .= kϕ
k_pp = ke[p, p]
k_ps = ke[p, s]
k_ss = ke[s, s]
k_sp = ke[s, p]
k_spring_s = k_spring[s, s]
ke_condensed = k_pp - k_ps*(k_ss+k_spring_s)^-1*k_sp
ke_updated = zeros(Float64, 6, 6)
ke_updated[p, p] = ke_condensed
#From Zeimian 13.31...
k1 = kϕ
α1 = k1/(E*I/L)
k2 = kϕ
α2 = k2/(E*I/L)
α = (α1 * α2) / (α1*α2 + 4*α1 + 4*α2 + 12)
α*E*I/L * 12/L^2*(1 + (α1 + α2)/(α1*α2))
#This matches the Sennett static condensation, 5081=5081.
#Now analyze a beam with a hinge and vertical roller at the left end, and fixed at the right end. Apply a vertical force at the left end.
Ke = ke_updated
#Define the frame loading as an external force vector.
F = [0., 1000.0, 0., 0., 0., 0.]
#Define the frame boundary conditions.
free_dof = [2]
#Partition external force vector and elastic stiffness matrix.
Ff = F[free_dof]
Ke_ff = Ke[free_dof, free_dof]
#Solution
uf = Ke_ff \ Ff
u = zeros(Float64, 12)
u[free_dof] = uf
#This matches Mastan2, 0.1968 in.
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | 8bbc6c27396367515c9a7c2c19a4a08adf301cbb | docs | 2371 | InstantFrame.jl
=============
Perform fast structural analysis of 3D frames.
**Installation**: at the Julia REPL, `using Pkg; Pkg.add(url="https://github.com/runtosolve/InstantFrame.jl.git")`
**Features**:
* first and second order analysis
* vibration modal analysis
* pinned and semi-rigid connections and supports
**Formulations and Algorithms**:
Element formulations and solution algorithms are inspired by and validated with [MASTAN2](https://www.mastan2.com/about.html) and the supporting textbook [Matrix Structural Analysis, 2nd Edition, by McGuire, Gallagher, and Ziemian](https://www.mastan2.com/textbook.html).
**Example**:
```julia
using InstantFrame
material = InstantFrame.Material(names=["steel"], E=[29500.0], ν=[0.3], ρ=[492.0 / 32.17 / 12^4 / 1000]) ##ρ = kips * s^2 / in^4
cross_section = InstantFrame.CrossSection(names=["top chord", "bottom chord", "post"], A=[1.0, 2.0, 3.0], Iy=[3.1, 4.2, 2.3], Iz= [2.4, 6.5, 4.6], J=[0.001, 0.002, 0.005])
connection = InstantFrame.Connection(names=["rigid", "pinned"], stiffness=(ux=[Inf, Inf], uy=[Inf, Inf], uz=[Inf, Inf], rx=[Inf, Inf], ry=[Inf, 0.0], rz=[Inf, 0.0]))
node = InstantFrame.Node(numbers=[1, 2, 3, 4], coordinates=[(0.0, 0.0, 0.0), (300.0, 0.0, 0.0), (600.0, 0.0, 0.0), (300.0, -30.0, 0.0)])
element = InstantFrame.Element(numbers=[1, 2, 3, 4, 5], nodes = [(1,2), (2,3), (1,4), (3,4), (2,4)], orientation = [0.0, 0.0, 0.0, 0.0, 0.0], connections=[("rigid", "rigid"), ("rigid", "rigid"), ("pinned", "pinned"), ("pinned", "pinned"), ("rigid", "pinned")], cross_section= ["top chord", "top chord", "bottom chord", "bottom chord", "post"], material = ["steel", "steel", "steel", "steel", "steel"], types=["frame", "frame", "frame", "frame", "frame"])
support = InstantFrame.Support(nodes=[1, 3], stiffness=(uX=[Inf,Inf], uY=[Inf,Inf], uZ=[Inf,Inf], rX=[Inf,Inf], rY=[Inf,Inf], rZ=[0.0,0.0]))
uniform_load = InstantFrame.UniformLoad(labels=["snow", "snow"], elements=[1, 2], magnitudes=(qX=[0.0, 0.0], qY=[-0.100, -0.100], qZ=[0.0, 0.0], mX=[0.0,0.0], mY=[0.0,0.0], mZ=[0.0,0.0]))
point_load = InstantFrame.PointLoad(labels = ["lights"], nodes=[4], magnitudes=(FX=[0.0], FY=[-0.500], FZ=[0.0], MX=[0.0], MY=[0.0], MZ=[0.0]))
model = InstantFrame.solve(node, cross_section, material, connection, element, support, uniform_load, point_load, analysis_type="first order")
```
| InstantFrame | https://github.com/runtosolve/InstantFrame.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 596 | using PyFortran90Namelists
using Documenter
makedocs(;
modules = [PyFortran90Namelists],
authors = "Qi Zhang <[email protected]>",
repo = "https://github.com/singularitti/PyFortran90Namelists.jl/blob/{commit}{path}#L{line}",
sitename = "PyFortran90Namelists.jl",
format = Documenter.HTML(;
prettyurls = get(ENV, "CI", "false") == "true",
canonical = "https://singularitti.github.io/PyFortran90Namelists.jl",
assets = String[],
),
pages = ["Home" => "index.md"],
)
deploydocs(; repo = "github.com/singularitti/PyFortran90Namelists.jl")
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 129 | module PyFortran90Namelists
include("init.jl")
include("convert.jl")
include("tokenizer.jl")
include("parser.jl")
end # module
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 1858 | export fparse, fstring
function fparse(::Type{T}, s::AbstractString) where {T<:Integer}
return parse(T, s)
end
function fparse(::Type{T}, s::AbstractString) where {T<:Float32}
return parse(T, replace(lowercase(s), r"(?<=[^e])(?=[+-])" => "f"))
end
function fparse(::Type{T}, s::AbstractString) where {T<:Float64}
return parse(T, replace(lowercase(s), r"d"i => "e"))
end
function fparse(::Type{Complex{T}}, str::AbstractString) where {T<:AbstractFloat}
if first(str) == '(' && last(str) == ')' && length(split(str, ',')) == 2
re, im = split(str[2:end-1], ',', limit = 2)
return Complex(parse(T, re), parse(T, im))
else
throw(Meta.ParseError("$str must be in complex number form (x, y)."))
end
end
function fparse(::Type{Bool}, s::AbstractString)
str = lowercase(s)
if str in (".true.", ".t.", "true", 't')
return true
elseif str in (".false.", ".f.", "false", 'f')
return false
else
throw(Meta.ParseError("$str is not a valid logical constant."))
end
end
function fparse(::Type{String}, str::AbstractString)
m = match(r"([\"'])((?:\\\1|.)*?)\1", str)
if m === nothing
throw(Meta.ParseError("$str is not a valid string!"))
else
quotation_mark, content = m.captures
# Replace escaped strings
return string(replace(content, repeat(quotation_mark, 2) => quotation_mark))
end
end
fstring(v::Integer) = string(v)
function fstring(v::Float32; scientific::Bool = false)
str = string(v)
return scientific ? replace(str, r"f"i => "e") : str
end
function fstring(v::Float64, scientific::Bool = false)
str = string(v)
return scientific ? replace(str, r"e"i => "d") : str
end
fstring(v::Bool) = v ? ".true." : ".false."
fstring(v::Union{AbstractString,AbstractChar}) = "'" * v * "'"
# fstring(::Namelist) # TODO:
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 1993 | __precompile__() # this module is safe to precompile
using Conda: add_channel
using PyCall: PyNULL, PyError, PyObject, PyAny, pyimport_conda, pycall
using VersionParsing: vparse
# Extending methods
import PyCall
export f90nml
const f90nml = PyNULL()
add_channel("conda-forge")
function __init__()
copy!(f90nml, pyimport_conda("f90nml", "f90nml", "conda-forge"))
# Code from https://github.com/JuliaPy/PyPlot.jl/blob/caf7f89/src/init.jl#L168-L173
vers = f90nml.__version__
global version = try
vparse(vers)
catch
v"0.0.0" # fallback
end
end
macro pyinterface(T)
T = esc(T)
return quote
# Code from https://github.com/JuliaPy/PyPlot.jl/blob/6b38c75/src/PyPlot.jl#L54-L62
PyCall.PyObject(f::$T) = getfield(f, :o)
Base.convert(::Type{$T}, o::PyObject) = $T(o)
Base.:(==)(f::$T, g::$T) = PyObject(f) == PyObject(g)
Base.:(==)(f::$T, g::PyObject) = PyObject(f) == g
Base.:(==)(f::PyObject, g::$T) = f == PyObject(g)
Base.hash(f::$T) = hash(PyObject(f))
PyCall.pycall(f::$T, args...; kws...) = pycall(PyObject(f), args...; kws...)
(f::$T)(args...; kws...) = pycall(PyObject(f), PyAny, args...; kws...)
Base.Docs.doc(f::$T) = Base.Docs.doc(PyObject(f))
# Code from https://github.com/JuliaPy/PyPlot.jl/blob/6b38c75/src/PyPlot.jl#L65-L71
Base.getproperty(f::$T, s::Symbol) = getproperty(PyObject(f), s)
Base.getproperty(f::$T, s::AbstractString) = getproperty(PyObject(f), s)
Base.setproperty!(f::$T, s::Symbol, x) = setproperty!(PyObject(f), s, x)
Base.setproperty!(f::$T, s::AbstractString, x) = setproperty!(PyObject(f), s, x)
PyCall.hasproperty(f::$T, s::Symbol) = hasproperty(PyObject(f), s)
Base.propertynames(f::$T) = propertynames(PyObject(f))
Base.haskey(f::$T, x) = haskey(PyObject(f), x)
# Common methods
Base.close(f::$T) = PyObject(f).close()
end
end # macro pyinterface
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 423 | using PyCall: PyObject
using PyFortran90Namelists: f90nml, @pyinterface
export Parser, reads
mutable struct Parser
o::PyObject
end
Parser() = Parser(f90nml.Parser())
Base.read(
p::Parser,
nml_fname::AbstractString,
nml_patch_in = nothing,
patch_fname = nothing,
) = p.read(nml_fname, nml_patch_in, patch_fname)
reads(p::Parser, nml_string::AbstractString) = p.reads(nml_string)
@pyinterface Parser
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 326 | using PyCall: PyObject
using PyFortran90Namelists: f90nml, @pyinterface
export Tokenizer, update_chars, lex
mutable struct Tokenizer
o::PyObject
end
Tokenizer() = Tokenizer(f90nml.tokenizer.Tokenizer())
update_chars(tk::Tokenizer) = tk.update_chars()
lex(tk::Tokenizer, line) = tk.parse(line)
@pyinterface Tokenizer
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 112 | using PyFortran90Namelists
using Test
@testset "PyFortran90Namelists.jl" begin
include("tokenizer.jl")
end
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | code | 50364 | using Test
using PyFortran90Namelists: Tokenizer, lex
@testset "Test bcast" begin
benchmark = [
["&", "bcast_nml"],
[" ", "x", " ", "=", " ", "2", "*", "2.0"],
[" ", "y", " ", "=", " ", "3", "*"],
[" ", "z", " ", "=", " ", "4", "*", ".true."],
["/"],
[],
["&", "bcast_endnull_nml"],
[" ", "x", " ", "=", " ", "2", "*", "2.0"],
[" ", "y", " ", "=", " ", "3", "*"],
["/"],
[],
["&", "bcast_mixed_nml"],
[
" ",
"x",
" ",
"=",
" ",
"3",
"*",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[" ", "y", " ", "=", " ", "3", "*", "1", ",", " ", "2", "*", "2", ",", " ", "3"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/bcast.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test bcast target" begin
benchmark = [
["&", "bcast_nml"],
[" ", "x", " ", "=", " ", "2.0", ",", " ", "2.0"],
[" ", "y", " ", "=", " ", ",", " ", ",", " ", ","],
[
" ",
"z",
" ",
"=",
" ",
".true.",
",",
" ",
".true.",
",",
" ",
".true.",
",",
" ",
".true.",
],
["/"],
[],
["&", "bcast_endnull_nml"],
[" ", "x", " ", "=", " ", "2.0", ",", " ", "2.0"],
[" ", "y", " ", "=", " ", ",", " ", ",", " ", ","],
["/"],
[],
["&", "bcast_mixed_nml"],
[
" ",
"x",
" ",
"=",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"y",
" ",
"=",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"2",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/bcast_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test string" begin
benchmark = [
["&", "string_nml"],
[" ", "str_basic", " ", "=", " ", "'hello'"],
[" ", "str_no_delim", " ", "=", " ", "hello"],
[" ", "str_no_delim_no_esc", " ", "=", " ", "a''b"],
[" ", "single_esc_delim", " ", "=", " ", "'a ''single'' delimiter'"],
[" ", "double_esc_delim", " ", "=", " ", "\"a \"\"double\"\" delimiter\""],
[" ", "double_nested", " ", "=", " ", "\"''x'' \"\"y\"\"\""],
[" ", "str_list", " ", "=", " ", "'a'", ",", " ", "'b'", ",", " ", "'c'"],
[" ", "slist_no_space", " ", "=", " ", "'a'", ",", "'b'", ",", "'c'"],
[" ", "slist_no_quote", " ", "=", " ", "a", ",", "b", ",", "c"],
[" ", "slash", " ", "=", " ", "'back\\slash'"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/string.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test dollar" begin
benchmark = [[raw"$", "dollar_nml"], [" ", "v", " ", "=", " ", "1.00"], [raw"$"]]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/dollar.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test dollar target" begin
benchmark = [["&", "dollar_nml"], [" ", "v", " ", "=", " ", "1.0"], ["/"]]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/dollar_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test comment argument" begin
benchmark = [
["&", "comment_alt_nml"],
[" ", "x", " ", "=", " ", "1"],
[" ", "#y = 2"],
[" ", "z", " ", "=", " ", "3"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/comment_alt.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test comment patch" begin
benchmark = [
["! This is an external comment"],
["&", "comment_nml"],
[" ", "v_cmt_inline", " ", "=", " ", "456", " ", "! This is an inline comment"],
[" ", "! This is a separate comment"],
[" ", "v_cmt_in_str", " ", "=", " ", "'This token ! is not a comment'"],
[
" ",
"v_cmt_after_str",
" ",
"=",
" ",
"'This ! is not a comment'",
" ",
"! But this is",
],
["/"],
["! This is a post-namelist comment"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/comment_patch.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test comment target" begin
benchmark = [
["&", "comment_nml"],
[" ", "v_cmt_inline", " ", "=", " ", "123"],
[" ", "v_cmt_in_str", " ", "=", " ", "'This token ! is not a comment'"],
[" ", "v_cmt_after_str", " ", "=", " ", "'This ! is not a comment'"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/comment_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test comment" begin
benchmark = [
["! This is an external comment"],
["&", "comment_nml"],
[" ", "v_cmt_inline", " ", "=", " ", "123", " ", "! This is an inline comment"],
[" ", "! This is a separate comment"],
[" ", "v_cmt_in_str", " ", "=", " ", "'This token ! is not a comment'"],
[
" ",
"v_cmt_after_str",
" ",
"=",
" ",
"'This ! is not a comment'",
" ",
"! But this is",
],
["/"],
["! This is a post-namelist comment"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/comment.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test default index" begin
benchmark = [
["&", "default_index_nml"],
[
" ",
"v",
"(",
"3",
":",
"5",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
",",
" ",
"5",
],
[" ", "v", " ", "=", " ", "1", ",", " ", "2"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/default_index.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test empty namelist" begin
benchmark = [["&", "empty_nml"], ["/"]]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/empty.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test external token" begin
benchmark = [
["a"],
["123"],
["&", "ext_token_nml"],
[" ", "x", " ", "=", " ", "1"],
["/"],
["456"],
["z"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/ext_token.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
# FIXME:
# @testset "Test external comment" begin
# benchmark = [[],
# ["&", "efitin"],
# ["abc", " ", "=", " ", "0"],
# ["/"]]
# tk = Tokenizer()
# open(joinpath(dirname(@__FILE__), "data/extern_cmt.nml"), "r") do io
# for (i, line) in enumerate(eachline(io))
# @test lex(tk, line) == benchmark[i]
# end
# end
# end # testset
@testset "Test float" begin
benchmark = [
["&", "float_nml"],
[" ", "v_float", " ", "=", " ", "1.0"],
[" ", "v_decimal_start", " ", "=", " ", ".1"],
[" ", "v_decimal_end", " ", "=", " ", "1."],
[" ", "v_negative", " ", "=", " ", "-1."],
[],
[" ", "v_single", " ", "=", " ", "1.0e0"],
[" ", "v_double", " ", "=", " ", "1.0d0"],
[],
[" ", "v_single_upper", " ", "=", " ", "1.0E0"],
[" ", "v_double_upper", " ", "=", " ", "1.0D0"],
[],
[" ", "v_positive_index", " ", "=", " ", "1.0e+01"],
[" ", "v_negative_index", " ", "=", " ", "1.0e-01"],
[],
[" ", "v_no_exp_pos", " ", "=", " ", "1+0"],
[" ", "v_no_exp_neg", " ", "=", " ", "1-0"],
[" ", "v_no_exp_pos_dot", " ", "=", " ", "1.+0"],
[" ", "v_no_exp_neg_dot", " ", "=", " ", "1.-0"],
[" ", "v_neg_no_exp_pos", " ", "=", " ", "-1+0"],
[" ", "v_neg_no_exp_neg", " ", "=", " ", "-1-0"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/float.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test float target" begin
benchmark = [
["&", "float_nml"],
[" ", "v_float", " ", "=", " ", "1.0"],
[" ", "v_decimal_start", " ", "=", " ", "0.1"],
[" ", "v_decimal_end", " ", "=", " ", "1.0"],
[" ", "v_negative", " ", "=", " ", "-1.0"],
[" ", "v_single", " ", "=", " ", "1.0"],
[" ", "v_double", " ", "=", " ", "1.0"],
[" ", "v_single_upper", " ", "=", " ", "1.0"],
[" ", "v_double_upper", " ", "=", " ", "1.0"],
[" ", "v_positive_index", " ", "=", " ", "10.0"],
[" ", "v_negative_index", " ", "=", " ", "0.1"],
[" ", "v_no_exp_pos", " ", "=", " ", "1.0"],
[" ", "v_no_exp_neg", " ", "=", " ", "1.0"],
[" ", "v_no_exp_pos_dot", " ", "=", " ", "1.0"],
[" ", "v_no_exp_neg_dot", " ", "=", " ", "1.0"],
[" ", "v_neg_no_exp_pos", " ", "=", " ", "-1.0"],
[" ", "v_neg_no_exp_neg", " ", "=", " ", "-1.0"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/float_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test float format" begin
benchmark = [
["&", "float_nml"],
[" ", "v_float", " ", "=", " ", "1.000"],
[" ", "v_decimal_start", " ", "=", " ", "0.100"],
[" ", "v_decimal_end", " ", "=", " ", "1.000"],
[" ", "v_negative", " ", "=", " ", "-1.000"],
[" ", "v_single", " ", "=", " ", "1.000"],
[" ", "v_double", " ", "=", " ", "1.000"],
[" ", "v_single_upper", " ", "=", " ", "1.000"],
[" ", "v_double_upper", " ", "=", " ", "1.000"],
[" ", "v_positive_index", " ", "=", " ", "10.000"],
[" ", "v_negative_index", " ", "=", " ", "0.100"],
[" ", "v_no_exp_pos", " ", "=", " ", "1.000"],
[" ", "v_no_exp_neg", " ", "=", " ", "1.000"],
[" ", "v_no_exp_pos_dot", " ", "=", " ", "1.000"],
[" ", "v_no_exp_neg_dot", " ", "=", " ", "1.000"],
[" ", "v_neg_no_exp_pos", " ", "=", " ", "-1.000"],
[" ", "v_neg_no_exp_neg", " ", "=", " ", "-1.000"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/float_format.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test global index" begin
benchmark = [
["&", "global_index_nml"],
[
" ",
"v_zero",
"(",
"0",
":",
"3",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v_neg",
"(",
"-2",
":",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v_pos",
"(",
"2",
":",
"5",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/global_index.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test group repeat" begin
benchmark = [
["&", "grp_repeat_nml"],
[" ", "x", " ", "=", " ", "1"],
["/"],
["&", "grp_repeat_nml"],
[" ", "x", " ", "=", " ", "2"],
["/"],
["&", "CASE_CHECK_nml"],
[" ", "y", " ", "=", " ", "1"],
["/"],
["&", "CASE_CHECK_nml"],
[" ", "y", " ", "=", " ", "2"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/grp_repeat.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test group repeat target" begin
benchmark = [
["&", "grp_repeat_nml"],
[" ", "x", " ", "=", " ", "1"],
["/"],
[],
["&", "grp_repeat_nml"],
[" ", "x", " ", "=", " ", "2"],
["/"],
[],
["&", "case_check_nml"],
[" ", "y", " ", "=", " ", "1"],
["/"],
[],
["&", "case_check_nml"],
[" ", "y", " ", "=", " ", "2"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/grp_repeat_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index bad end" begin
benchmark = [
["&", "bad_index_nml"],
[
" ",
"y",
"(",
"1",
":",
"~",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_bad_end.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index bad start" begin
benchmark = [
["&", "bad_index_nml"],
[" ", "y", "(", "1", "~", ")", " ", "=", " ", "1", ",", " ", "2", ",", " ", "3"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_bad_start.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index bad stride" begin
benchmark = [
["&", "bad_index_nml"],
[
" ",
"y",
"(",
"1",
":",
"3",
":",
"~",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_bad_stride.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index bad" begin
benchmark = [
["&", "bad_index_nml"],
[" ", "y", "(", "~", ")", " ", "=", " ", "1", ",", " ", "2", ",", " ", "3"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_bad.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index empty end" begin
benchmark = [
["&", "empty_index_nml"],
[
" ",
"x",
"(",
"1",
":",
":",
"2",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_empty_end.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index empty stride" begin
benchmark = [
["&", "empty_index_nml"],
[
" ",
"x",
"(",
"1",
":",
"3",
":",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_empty_stride.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index empty" begin
benchmark = [
["&", "empty_index_nml"],
[" ", "x", "(", ")", " ", "=", " ", "1", ",", " ", "2", ",", " ", "3"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_empty.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test index zero stride" begin
benchmark = [
["&", "bad_index_nml"],
[
" ",
"y",
"(",
"1",
":",
"3",
":",
"0",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/index_zero_stride.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test logical representation" begin
benchmark = [
["&", "logical_nml"],
[" ", "a", " ", "=", " ", "T"],
[" ", "b", " ", "=", " ", "F"],
[" ", "c", " ", "=", " ", "T"],
[" ", "d", " ", "=", " ", "F"],
[" ", "e", " ", "=", " ", "T"],
[" ", "f", " ", "=", " ", "F"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/logical_repr.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test logical" begin
benchmark = [
["&", "logical_nml"],
[" ", "a", " ", "=", " ", ".true."],
[" ", "b", " ", "=", " ", ".false."],
[" ", "c", " ", "=", " ", "t"],
[" ", "d", " ", "=", " ", "f"],
[" ", "e", " ", "=", " ", ".t"],
[" ", "f", " ", "=", " ", ".f"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/logical.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional target" begin
benchmark = [
["&", "multidim_ooo_nml"],
[" ", "a", "(", "1", ",", "1", ")", " ", "=", " ", "1"],
[" ", "a", "(", "1", ":", "2", ",", "2", ")", " ", "=", " ", ",", " ", "2"],
[" ", "b", "(", "1", ",", "1", ")", " ", "=", " ", "1"],
[
" ",
"b",
"(",
"1",
":",
"3",
",",
"2",
")",
" ",
"=",
" ",
",",
" ",
",",
" ",
"3",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multidim_ooo_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional" begin
benchmark = [
["&", "multidim_ooo_nml"],
[" ", "a", "(", "2", ",", "2", ")", " ", "=", " ", "2"],
[" ", "a", "(", "1", ",", "1", ")", " ", "=", " ", "1"],
[],
[" ", "b", "(", "3", ",", "2", ")", " ", "=", " ", "3"],
[" ", "b", "(", "1", ",", "1", ")", " ", "=", " ", "1"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multidim_ooo.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional space" begin
benchmark = [
["&", "multidim_nml"],
[
" ",
"v2d",
"(",
"1",
":",
"2",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v2d",
"(",
"1",
":",
"2",
",",
" ",
"2",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
" ",
"1",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
" ",
"2",
",",
" ",
"1",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
" ",
"1",
",",
" ",
"2",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
" ",
"2",
",",
" ",
"2",
")",
" ",
"=",
" ",
"7",
",",
" ",
"8",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"1",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"2",
",",
" ",
"1",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
",",
" ",
"7",
",",
" ",
"8",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"3",
",",
" ",
"1",
")",
" ",
"=",
" ",
"9",
",",
" ",
"10",
",",
" ",
"11",
",",
" ",
"12",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"1",
",",
" ",
"2",
")",
" ",
"=",
" ",
"13",
",",
" ",
"14",
",",
" ",
"15",
",",
" ",
"16",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"2",
",",
" ",
"2",
")",
" ",
"=",
" ",
"17",
",",
" ",
"18",
",",
" ",
"19",
",",
" ",
"20",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"3",
",",
" ",
"2",
")",
" ",
"=",
" ",
"21",
",",
" ",
"22",
",",
" ",
"23",
",",
" ",
"24",
],
[
" ",
"v2d_explicit",
"(",
"1",
":",
"2",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v2d_explicit",
"(",
"1",
":",
"2",
",",
" ",
"2",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[" ", "v2d_outer", "(", "1", ",", " ", "1", ")", " ", "=", " ", "1"],
[" ", "v2d_outer", "(", "1", ",", " ", "2", ")", " ", "=", " ", "2"],
[" ", "v2d_outer", "(", "1", ",", " ", "3", ")", " ", "=", " ", "3"],
[" ", "v2d_outer", "(", "1", ",", " ", "4", ")", " ", "=", " ", "4"],
[
" ",
"v2d_inner",
"(",
":",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v2d_sparse",
"(",
":",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[" ", "v2d_sparse", "(", ":", ",", " ", "2", ")", " ", "=", " ", ",", " ", ","],
[
" ",
"v2d_sparse",
"(",
":",
",",
" ",
"3",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multidim_space.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional target" begin
benchmark = [
["&", "multidim_nml"],
[
" ",
"v2d",
"(",
"1",
":",
"2",
",",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v2d",
"(",
"1",
":",
"2",
",",
"2",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
"1",
",",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
"2",
",",
"1",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
"1",
",",
"2",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
"2",
",",
"2",
")",
" ",
"=",
" ",
"7",
",",
" ",
"8",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"1",
",",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"2",
",",
"1",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
",",
" ",
"7",
",",
" ",
"8",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"3",
",",
"1",
")",
" ",
"=",
" ",
"9",
",",
" ",
"10",
",",
" ",
"11",
",",
" ",
"12",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"1",
",",
"2",
")",
" ",
"=",
" ",
"13",
",",
" ",
"14",
",",
" ",
"15",
",",
" ",
"16",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"2",
",",
"2",
")",
" ",
"=",
" ",
"17",
",",
" ",
"18",
",",
" ",
"19",
",",
" ",
"20",
],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
"3",
",",
"2",
")",
" ",
"=",
" ",
"21",
",",
" ",
"22",
",",
" ",
"23",
",",
" ",
"24",
],
[
" ",
"v2d_explicit",
"(",
"1",
":",
"2",
",",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v2d_explicit",
"(",
"1",
":",
"2",
",",
"2",
")",
" ",
"=",
" ",
"3",
",",
" ",
"4",
],
[" ", "v2d_outer", "(", "1", ",", "1", ")", " ", "=", " ", "1"],
[" ", "v2d_outer", "(", "1", ",", "2", ")", " ", "=", " ", "2"],
[" ", "v2d_outer", "(", "1", ",", "3", ")", " ", "=", " ", "3"],
[" ", "v2d_outer", "(", "1", ",", "4", ")", " ", "=", " ", "4"],
[
" ",
"v2d_inner",
"(",
":",
",",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[" ", "v2d_sparse", "(", ":", ",", "1", ")", " ", "=", " ", "1", ",", " ", "2"],
[" ", "v2d_sparse", "(", ":", ",", "2", ")", " ", "=", " ", ",", " ", ","],
[" ", "v2d_sparse", "(", ":", ",", "3", ")", " ", "=", " ", "5", ",", " ", "6"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multidim_target.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional" begin
benchmark = [
["&", "multidim_nml"],
[
" ",
"v2d",
"(",
"1",
":",
"2",
",",
" ",
"1",
":",
"2",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[],
[
" ",
"v3d",
"(",
"1",
":",
"2",
",",
" ",
"1",
":",
"2",
",",
" ",
"1",
":",
"2",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
",",
" ",
"5",
",",
" ",
"6",
",",
" ",
"7",
",",
" ",
"8",
],
[],
[
" ",
"w3d",
"(",
"1",
":",
"4",
",",
" ",
"1",
":",
"3",
",",
" ",
"1",
":",
"2",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
",",
" ",
"5",
",",
" ",
"6",
",",
" ",
"7",
",",
" ",
"8",
",",
" ",
"9",
",",
" ",
"10",
",",
" ",
"11",
",",
" ",
"12",
",",
],
[
" ",
"13",
",",
" ",
"14",
",",
" ",
"15",
",",
" ",
"16",
",",
" ",
"17",
",",
" ",
"18",
",",
" ",
"19",
",",
" ",
"20",
",",
" ",
"21",
",",
" ",
"22",
",",
" ",
"23",
",",
" ",
"24",
],
[],
[" ", "v2d_explicit", "(", "1", ",", " ", "1", ")", " ", "=", " ", "1"],
[" ", "v2d_explicit", "(", "2", ",", " ", "1", ")", " ", "=", " ", "2"],
[" ", "v2d_explicit", "(", "1", ",", " ", "2", ")", " ", "=", " ", "3"],
[" ", "v2d_explicit", "(", "2", ",", " ", "2", ")", " ", "=", " ", "4"],
[],
[
" ",
"v2d_outer",
"(",
"1",
",",
" ",
":",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[
" ",
"v2d_inner",
"(",
":",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
",",
" ",
"3",
",",
" ",
"4",
],
[],
[
" ",
"v2d_sparse",
"(",
":",
",",
" ",
"1",
")",
" ",
"=",
" ",
"1",
",",
" ",
"2",
],
[
" ",
"v2d_sparse",
"(",
":",
",",
" ",
"3",
")",
" ",
"=",
" ",
"5",
",",
" ",
"6",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multidim.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multidimensional column width" begin
benchmark = [
["&", "multiline_nml"],
[
" ",
"x",
" ",
"=",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[" ", "1", ",", " ", "1", ",", " ", "1"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multiline_colwidth.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multiline index" begin
benchmark = [
["&", "multiline_nml"],
[
" ",
"x",
"(",
"1",
":",
"47",
")",
" ",
"=",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multiline_index.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
@testset "Test multiline" begin
benchmark = [
["&", "multiline_nml"],
[
" ",
"x",
" ",
"=",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
" ",
"1",
",",
],
[" ", "1", ",", " ", "1", ",", " ", "1"],
["/"],
]
tk = Tokenizer()
open(joinpath(dirname(@__FILE__), "data/multiline.nml"), "r") do io
for (i, line) in enumerate(eachline(io))
@test lex(tk, line) == benchmark[i]
end
end
end # testset
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | docs | 1448 | # PyFortran90Namelists
[](https://github.com/singularitti/PyFortran90Namelists.jl/actions)
[](https://travis-ci.com/singularitti/PyFortran90Namelists.jl)
[](https://ci.appveyor.com/project/singularitti/PyFortran90Namelists-jl)
[](https://cloud.drone.io/singularitti/PyFortran90Namelists.jl)
[](https://cirrus-ci.com/github/singularitti/PyFortran90Namelists.jl)
[](https://codecov.io/gh/singularitti/PyFortran90Namelists.jl)
[](https://coveralls.io/github/singularitti/PyFortran90Namelists.jl?branch=master)
[](https://singularitti.github.io/PyFortran90Namelists.jl/stable)
[](https://singularitti.github.io/PyFortran90Namelists.jl/dev)
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.0 | f57516a005066f06c522b66f7fa74b94a2e43ee0 | docs | 140 | ```@meta
CurrentModule = PyFortran90Namelists
```
# PyFortran90Namelists
```@index
```
```@autodocs
Modules = [PyFortran90Namelists]
```
| PyFortran90Namelists | https://github.com/singularitti/PyFortran90Namelists.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 184 | using Documenter, JetPackTransforms
makedocs(sitename = "JetPackTransforms", modules=[JetPackTransforms])
deploydocs(
repo = "github.com/ChevronETC/JetPackTransforms.jl.git",
)
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 233 | module JetPackTransforms
using FFTW, JetPack, Jets, LinearAlgebra, Wavelets
include("jop_dct.jl")
include("jop_dwt.jl")
include("jop_fft.jl")
include("jop_sft.jl")
include("jop_slantstack.jl") # requires JopTaper from JetPack
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 1591 | """
A = JopDct(T, n...[;dims=()])
where `A` is a type II discrete cosine transfrom (DCT), T is the element type of
the domain and range if A, and n is the size of A. If `dims` is not set, then `A`
is the N-dimensional DCT and where `N=length(n)`. Otherwise, `A` is a DCT
over the dimensions specified by `dims`.
# Examples
## 1D
```julia
A = JopDct(Float64, 128)
m = rand(domain(A))
d = A*m
```
## 2D
```julia
A = JopDct(Float64, 128, 64)
m = rand(domain(A))
d = A*m
```
## 2D transform over 3D array
```julia
A = JopDct(Float64,128,64,32;dims=(1,2))
m = rand(domain(A))
d = A*m
```
# Notes
* the adjoint pair is achieved by application `sqrt(2/N)` and `sqrt(2)` factors. See:
* https://en.wikipedia.org/wiki/Discrete_cosine_transform
* http://www.fftw.org/fftw3_doc/1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029
"""
function JopDct(T, n...; dims=())
dims = dims == () ? ntuple(i->i, length(n)) : dims
JopLn(df! = JopDct_df!, df′! = JopDct_df′!, dom = JetSpace(T, n), rng = JetSpace(T, n), s = (dims=dims,))
end
export JopDct
function JopDct_df!(d::AbstractArray{T}, m::AbstractArray{T}; dims, kwargs...) where {T}
d .= m
dct!(d, dims)
sc1, sc = dctscale(dims, size(m), T)
d[1] *= sc1
d .*= sc
end
function JopDct_df′!(m::AbstractArray{T}, d::AbstractArray{T}; dims, kwargs...) where {T}
m .= d
sc1, sc = dctscale(dims, size(m), T)
m[1] *= sc1
idct!(m, dims)
m .*= sc
end
dctscale(dims, n, ::Type{T}) where {T} = length(dims)*sqrt(T(2)), T(sqrt(1.0/mapreduce(dim->n[dim], *, dims)))
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 1904 | """
A = JopDwt(T, n...[, wt=wavelet(WT.haar, WT.Lifting)])
`A` is the N-D (N=1,2 or 3) wavelet transform operator, operating on the domain
of type `T` and dimensions `n`. The optional argument `wt` is the wavelet type.
The supported wavelet types are `WT.haar` and `WT.db` (Daubechies).
# Notes
* For 2 and 3 dimensional transforms the domain must be square. In other-words, `size(dom,1)==size(dom,2)==size(dom,3)`.
* If your domain is rectangular, please consider using 1D wavelet transforms in combination wih the kronecker product (`JopKron`).
* The wavelet transform is provide by the Wavelets.jl package: `http://github.com/JuliaDSP/Wavelets.jl`
* You may try other wavelet classes supported by `Wavelets.jl`; however, these have yet to be tested for correctness with respect to the
transpose.
# Example
```julia
A = JopDwt(Float64, 64, 64; wt=wavelet(WT.db5))
d = A*rand(domain(A))
```
"""
function JopDwt(sp::JetSpace; wt=wavelet(WT.haar, WT.Lifting))
n = size(sp)
@assert length(n) <= 3
map(i->@assert(n[i]==n[1]), 2:length(n))
@assert n[1] == nextpow(2, n[1])
wt.name != "haar" && startswith(wt.name, "db") != true && error("JopDwt only supports Haar and Daubechies wavelet functions")
JopLn(dom = sp, rng = sp, df! = JopDwt_df!, df′! = JopDwt_df′!, s = (wt=wt,))
end
JopDwt(::Type{T}, n::Vararg{N}; kwargs...) where {T,N} = JopDwt(JetSpace(T,n); kwargs...)
export JopDwt
function JopDwt_df!(d::AbstractArray, m::AbstractArray; wt, kwargs...)
# dwt! does not work without copy for all wt
# if ok with copy and gc
copyto!(d, dwt(m, wt))
#copyto!(d, m)
#dwt!(d, op.wt, maxtransformlevels(m))
end
function JopDwt_df′!(m::AbstractArray, d::AbstractArray; wt, kwargs...)
# idwt! does not work without copy for all wt
# if ok with copy and gc
copyto!(m, idwt(d, wt))
#copyto!(m, d)
#idwt!(m, op.wt, maxtransformlevels(d))
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 3950 | """
A = JopFft(T, n...[; dims=()])
where `A` is a Fourier transform, the domain of A is (T,n). If `dims`
is not set, then `A` is an N-dimensional Fourier transform and where `N=ndims(dom)`.
Otherwise, `A` is a Fourier transform over the dimensions specifed by `dims`.
For a complex-to-complex transform: `range(A)::JetSpace`. For a real-to-complex
transform: `range(A)::JetSpaceSymmetric`. Normally, JopFft is responsible for constructing
range(A). In the event that you need to manually construct this space, we provide
a convenience method:
R = symspace(JopLn{JopFft_df!}, T, symdim, n...)
where `T` is the precision (generally `Float32` or `Float64`), `n...` is
the dimensions of the domain of `A`, and `symdim` is the first dimension
begin Fourier transformed.
# Examples
## 1D, real to complex
```julia
A = JopFft(Float64,128)
m = rand(domain(A))
d = A*m
```
## 1D, complex to complex
```julia
A = JopFft(ComplexF64,128)
m = rand(domain(A))
d = A*m
```
## 2D, real to complex
```julia
A = JopFft(Float64,128,256)
m = rand(domain(A))
d = A*m
```
## 3D, real to complex, transforming over only the first dimension
```julia
A = JopFft(Float64,128,256; dims=(1,))
m = rand(domain(A))
d = A*m
```
"""
function JopFft(::Type{T},n::Vararg{Int,N};dims=()) where {T<:Real,N}
dims = isempty(dims) ? ntuple(i->i, N) : dims
JopLn(dom = JetSpace(T,n), rng = symspace(typeof(JopFft_df!),T,dims[1],n...), df! = JopFft_df!, df′! = JopFft_df′!, s = (dims=dims,))
end
function JopFft(::Type{T},n::Vararg{Int,N};dims=()) where {T<:Complex,N}
dims = isempty(dims) ? ntuple(i->i, N) : dims
JopLn(dom = JetSpace(T,n), rng = JetSpace(T,n), df! = JopFft_df!, df′! = JopFft_df′!, s = (dims=dims,))
end
JopFft(R::JetSpace; dims=()) = JopFft(eltype(R), size(R)...; dims=dims)
export JopFft
function JopFft_df!(d::Jets.SymmetricArray{Complex{T}}, m::AbstractArray{T}; kwargs...) where {T}
JopFft_df!(parent(d), m; kwargs...)
d
end
function JopFft_df!(d::Array{Complex{T}}, m::AbstractArray{T}; dims, kwargs...) where {T<:Real}
P = plan_rfft(m, dims)
JopFft_mul!(d, P, m, dims)
d
end
function JopFft_df!(d::AbstractArray{T}, m::AbstractArray{T}; dims, kwargs...) where {T<:Complex}
P = plan_fft(m, dims)
JopFft_mul!(d, P, m, dims)
d
end
function JopFft_mul!(d::AbstractArray{T}, P::FFTW.FFTWPlan, m::AbstractArray, dims) where {T}
mul!(d, P, m)
sc = fftscale(T, size(m), dims)
d .*= sc
end
JopFft_df′!(m::AbstractArray{T}, d::Jets.SymmetricArray{Complex{T}}; kwargs...) where {T} = JopFft_df′!(m, parent(d); kwargs...)
function JopFft_df′!(m::AbstractArray{T}, d::Array{Complex{T}}; dims, kwargs...) where {T<:Real}
P = plan_brfft(d, size(m, dims[1]), dims)
JopFft_mul_adjoint!(m, P, copy(parent(d)), dims) # in-place version of brfft modifies the input buffer
m
end
function JopFft_df′!(m::AbstractArray{T}, d::AbstractArray; dims, kwargs...) where {T<:Complex}
P = plan_bfft(d, dims)
JopFft_mul_adjoint!(m, P, d, dims)
m
end
function JopFft_mul_adjoint!(m::AbstractArray{T}, P::FFTW.FFTWPlan, d::AbstractArray, dims) where {T}
mul!(m, P, d)
sc = fftscale(T, size(m), dims)
m .*= sc
end
fftscale(::Type{T}, n, dims) where {T} = T(1.0/sqrt(mapreduce(dim->n[dim], *, dims)))
function _JopFft_symspace_map(idim, I, symdim, n)
if idim == symdim
return 2 + n[idim] - I[idim]
else
return I[idim]
end
end
function JopFft_symspace_map(I, symdim::Int, n::NTuple{N,Int}, _n::NTuple{N,Int}) where {N}
if I[symdim] > _n[symdim]
J = ntuple(idim->_JopFft_symspace_map(idim, I, symdim, n), N)
return CartesianIndex(J)
else
return CartesianIndex(I)
end
end
function Jets.symspace(JopFft, ::Type{T}, symdim::Int, n::Vararg{Int,N}) where {T,N}
_n = ntuple(idim->idim == symdim ? div(n[idim], 2) + 1 : n[idim], N)
Jets.JetSSpace(Complex{T}, n, _n, I->JopFft_symspace_map(I, symdim, n, _n))
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 1972 | """
op = JopSft(dom,freqs,dt)
Polychromatic slow Fourier transforms for a specified list of frequencies. Tranform
along the fast dimension of `dom::JetSpace{<:Real}`.
Notes:
- it is expected that the domain is 2D real of size [nt,ntrace]
- the range will be 2D complex of size [length(freqs),ntrace]
- regarding the factor of (2/n): the factor "1/n" is from the Fourier transform, and the "2" is from Hermittian symmetry.
"""
function JopSft(dom::JetSpace{T}, freqs::Vector, dt) where {T<:Real}
@assert length(size(dom)) == 2
nf = length(freqs)
n2 = size(dom,2)
JopLn(dom = dom, rng = JetSpace(Complex{T}, nf, n2), df! = JopSft_df!, df′! = JopSft_df′!, s = (freqs=freqs, dt=dt))
end
export JopSft
function JopSft_df!(rngvec::AbstractArray{Complex{T},N}, domvec::AbstractArray{T,N}; freqs, dt, kwargs...) where {T,N}
nf = length(freqs)
n1 = size(domvec,1)
_domvec = reshape(domvec, n1, :)
_rngvec = reshape(rngvec, nf, :)
@assert size(_domvec,2) == size(rngvec,2)
n2 = size(_domvec,2)
_rngvec .= 0
for kfreq = 1:nf
for k2 = 1:n2
for k1 = 1:n1
t = dt * (k1 - 1)
phs = exp(-im * 2 * pi * freqs[kfreq] * t)
_rngvec[kfreq,k2] += _domvec[k1,k2] * phs
end
end
end
_rngvec .*= (2/n1)
end
function JopSft_df′!(domvec::AbstractArray{T,N}, rngvec::AbstractArray{Complex{T},N}; freqs, dt, kwargs...) where {T,N}
nf = length(freqs)
n1 = size(domvec,1)
_domvec = reshape(domvec, n1, :)
_rngvec = reshape(rngvec, nf, :)
@assert size(_domvec,2) == size(rngvec,2)
n2 = size(_domvec,2)
_domvec .= 0
for kfreq = 1:nf
for k2 = 1:n2
for k1 = 1:n1
t = dt * (k1 - 1)
phs = exp(-im * 2 * pi * freqs[kfreq] * t)
_domvec[k1,k2] += real(_rngvec[kfreq,k2] * conj(phs))
end
end
end
_domvec .*= (2/n1)
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 5478 | """
A = JopSlantStack(dom[; dz=10.0, dh=10.0, h0=-1000.0, ...])
where `A` is the 2D slant-stack operator mapping for `z-h` to `tau-p`. The domain of the operator
is `nz` x `nh` with precision T, `dz` is the depth spacing, `dh` is the half-offset spacing, and `h0` is the
origin of the half-offset axis. The additional named optional arguments along with their default
values are,
* `theta=-60:1.0:60` - range of opening angles. The ray parameter is: p=sin(theta/2)/c
* `padz=0.0,padh=0.0` - padding in depth and offset to apply before applying the Fourier transfrom
* `taperz=(0,0)` - beginning and end taper in the z-direction before transforming from `z-h` to `kz-kh`
* `taperh=(0,0)` - beginning and end taper in the h-direction before transforming from `z-h` to `kz-kh`
* `taperkz=(0,0)` - beginning and end taper in the kz-direction before transforming from `kz-kh` to `z-h`
* `taperkh=(0,0)` - beginning and end taper in the kh-direction before transforming from `kz-kh` to `z-h`
# Notes
* It should be possible to extend this operator to 3D
* If your domain is t-h rather than z-h, you can still use this operator
"""
function JopSlantStack(
dom::JetAbstractSpace{T};
theta = collect(-60.0:1.0:60.0),
dz = -1.0,
dh = -1.0,
h0 = NaN,
padz = 0.0,
padh = 0.0,
taperz = (0,0),
taperh = (0,0),
taperkz = (0,0),
taperkh = (0,0)) where {T}
dz < 0.0 && error("expected dz>0.0, got dz=$(dz)")
dh < 0.0 && error("expected dh>0.0, got dh=$(dh)")
isnan(h0) && error("expected finite h0, got h0=$(h0)")
nz,nh = size(dom)
# kz
nzfft = nextprod([2,3,5,7], round(Int, nz*(1 + padz)))
kn = pi/dz
dk = kn/nzfft
kz = dk*[0:div(nzfft,2)+1;]
# kh
nhfft = nextprod([2,3,5,7], round(Int, nh*(1+padh)))
kn = pi/dh
dk = kn/nhfft
local kh
if rem(nhfft,2) == 0
kh = 2*dk*[ [0:div(nhfft,2);] ; [-div(nhfft,2)+1:1:-1;] ] # factor of 2 is for kg+ks with kg=ks -- i.e. go from (kg,ks)->kh
else
kh = 2*dk*[ [0:div(nhfft,2);] ; [-div(nhfft,2)+0:1:-1;] ] # factor of 2 is for kg+ks with kg=ks -- i.e. go from (kg,ks)->kh
end
# c*p
cp = sin.(.5*theta*pi/180) # factor of .5 is to make theta the opening angle -- i.e. go from (theta_s, theta_g)->theta
# conversions
kz,kh,cp = map(x->convert(Array{T,1}, x), (kz,kh,cp))
nzfft,nhfft = map(x->convert(Int64, x), (nzfft,nhfft))
h0 = T(h0)
# tapers
TX = JopTaper(dom, (1,2), (taperz[1],taperh[1]), (taperz[2],taperh[2]))
TK = JopTaper(JetSpace(Complex{eltype(dom)},div(nzfft,2)+1,length(cp)), (1,2), (taperkz[1], taperkh[1]), (taperkz[2], taperkh[2]), mode=(:normal,:fftshift))
JopLn(dom = dom, rng = JetSpace(T, nz, length(cp)), df! = JopSlantStack_df!, df′! = JopSlantStack_df′!,
s = (nzfft=nzfft, nhfft=nhfft, kz=kz, kh=kh, cp=cp, h0=h0, TX=TX, TK=TK))
end
export JopSlantStack
function JopSlantStack_df!(d::AbstractArray{T,2}, m::AbstractArray{T,2}; nzfft, nhfft, kz, kh, cp, h0, TX, TK, kwargs...) where {T}
nz, nh, np, dh = size(m)..., length(cp), abs(kh[2]-kh[1])
mpad = zeros(T, nzfft, nhfft)
mpad[1:nz,1:nh] = TX*m
M = rfft(mpad)
dtmp = similar(d)
D = zeros(eltype(M), size(M,1), np)
for ikz = 1:div(nzfft,2)+1, ip = 1:np
ikh_m1, ikh_p1, _kh = slantstack_compute_kh(ikz, ip, cp, kz, kh, nhfft)
ikh_m1 < 1 && continue
if ikh_m1 == ikh_p1
D[ikz,ip] = M[ikz,ikh_p1]*exp(-im*kh[ikh_p1]*h0)
continue
end
local d_p1, a_p1
if 1 <= ikh_p1 <= nhfft
d_p1 = M[ikz,ikh_p1]*exp(-im*kh[ikh_p1]*h0)
a_p1 = abs(kh[ikh_p1] - _kh)/dh
else
a_p1 = 0.0
end
local d_m1, a_m1
if 1 <= ikh_m1 <= nhfft
d_m1 = M[ikz,ikh_m1]*exp(-im*kh[ikh_m1]*h0)
a_m1 = abs(_kh - kh[ikh_m1])/dh
else
a_m1 = 0.0
end
D[ikz,ip] = a_m1*d_m1 + a_p1*d_p1
end
d .= brfft(TK*D, nzfft, 1)[1:nz,1:np] ./ nzfft
end
function JopSlantStack_df′!(m::AbstractArray{T,2}, d::AbstractArray{T,2}; nzfft, nhfft, kz, kh, cp, h0, TX, TK, kwargs...) where {T}
nz, nh, np, dh = size(m)..., length(cp), abs(kh[2]-kh[1])
dpad = zeros(T, nzfft, np)
dpad[1:nz,:] = d
D = TK * (rfft(dpad, 1) ./ nzfft)
M = zeros(Complex{T}, div(nzfft,2)+1, nhfft)
for ikz = 1:div(nzfft,2)+1, ip = 1:np
ikh_m1, ikh_p1, _kh = slantstack_compute_kh(ikz, ip, cp, kz, kh, nhfft)
ikh_m1 < 1 && continue
if ikh_m1 == ikh_p1
M[ikz,ikh_p1] += D[ikz,ip]*exp(im*kh[ikh_p1]*h0)
continue
end
if 1 <= ikh_p1 <= nhfft
m_p1 = D[ikz,ip]*exp(im*kh[ikh_p1]*h0)
a_p1 = (kh[ikh_p1] - _kh)/dh
M[ikz,ikh_p1] += a_p1*m_p1
end
if 1 <= ikh_m1 <= nhfft
m_m1 = D[ikz,ip]*exp(im*kh[ikh_m1]*h0)
a_m1 = (_kh - kh[ikh_m1])/dh
M[ikz,ikh_m1] += a_m1*m_m1
end
end
m .= TX * (brfft(M, nzfft)[1:nz,1:nh])
end
@inline function slantstack_compute_kh(ikz::Int64, ip::Int64, cp, kz, kh, nhfft)
_kh = 1/(1-cp[ip]^2) - 1
_kh < 0 && return -1,-1,1.0
_kh = 2*kz[ikz]*sqrt(_kh)
ikh_m1 = floor(Int64, _kh/kh[2]) + 1
ikh_p1 = ceil(Int64, _kh/kh[2]) + 1
ikh_m1 = ikh_m1 < 1 ? nhfft + ikh_m1 : ikh_m1
ikh_p1 = ikh_p1 < 1 ? nhfft + ikh_p1 : ikh_p1
ikh_m1, ikh_p1, _kh
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 1908 | using FFTW, Jets, JetPackTransforms, Test
@testset "DCT, 1D" begin
A = JopDct(Float64, 128)
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m)
d_check[1] *= sqrt(2)
d_check[:] *= sqrt(1/length(m))
@test d ≈ d_check
end
@testset "DCT, 2D" begin
A = JopDct(Float64, 128, 64)
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m)
d_check[1] *= 2*sqrt(2)
d_check[:] *= sqrt(1/length(m))
@test d_check ≈ d
A = JopDct(Float64, 128, 64; dims=(1,))
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m,1)
d_check[1] *= sqrt(2)
d_check[:] *= sqrt(1/size(m,1))
@test d ≈ d_check
A = JopDct(Float64, 128, 64; dims=(2,))
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m,2)
d_check[1] *= sqrt(2)
d_check .*= sqrt(1/size(m,2))
@test d ≈ d_check
end
@testset "DCT, 3D" begin
A = JopDct(Float64, 128, 64, 32)
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m)
d_check[1] *= 3*sqrt(2)
d_check[:] *= sqrt(1/length(m))
@test d ≈ d_check
for dims in ((1,2), (1,3), (2,1), (2,3), (1,), (2,), (3,))
A = JopDct(Float64, 128, 64, 32; dims=dims)
lhs, rhs = dot_product_test(A, rand(domain(A)), rand(range(A)))
@test lhs ≈ rhs
m = rand(domain(A))
d = A*m
d_check = dct(m,dims)
d_check[1] *= length(dims)*sqrt(2)
d_check[:] *= sqrt(1/mapreduce(dim->size(m,dim), *, dims))
@test d ≈ d_check
end
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 2831 | using Jets, JetPackTransforms, Test, Wavelets
# warning! This only tests the default Haar wavelet
@testset "dwt" begin
# 1D transform Haar
println("1D Haar")
A = JopDwt(Float64, 128)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 2D transform Haar
println("2D Haar")
A = JopDwt(JetSpace(Float64, 128, 128))
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 3D transform HAar
println("3D Haar")
A = JopDwt(Float64, 128, 128, 128)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# db1
wt = wavelet(WT.db1)
# 1D transform
println("1D $(wt.name)")
A = JopDwt(Float64, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 2D transform
println("2D $(wt.name)")
A = JopDwt(Float64, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 3D transform
println("3D $(wt.name)")
A = JopDwt(Float64, 128, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# db6
wt = wavelet(WT.db6)
# 1D transform
println("1D $(wt.name)")
A = JopDwt(Float64, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 2D transform
println("2D $(wt.name)")
A = JopDwt(Float64, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 3D transform
println("3D $(wt.name)")
A = JopDwt(Float64, 128, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# db10
wt = wavelet(WT.db10)
# 1D transform
println("1D $(wt.name)")
A = JopDwt(Float64, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 2D transform
println("2D $(wt.name)")
A = JopDwt(Float64, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
# 3D transform
println("3D $(wt.name)")
A = JopDwt(Float64, 128, 128, 128; wt=wt)
m = rand(domain(A))
d = rand(range(A))
lhs, rhs = dot_product_test(A, m, d)
@test isapprox(lhs, rhs, rtol=1e-7)
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 4593 | using FFTW, Jets, JetPackTransforms, Test
@testset "fft, 1D, complex" begin
n = 512
m = rand(n) + im * rand(n)
d = rand(n) + im * rand(n)
A = JopFft(ComplexF64, n)
lhs, rhs = dot_product_test(A, m, d)
@test lhs ≈ rhs
expected = fft(m) / sqrt(n)
observed = A * m
@test expected ≈ observed
expected = bfft(d) / sqrt(n)
observed = A' * d
@test expected ≈ observed
end
@testset "fft, alternative constructor" begin
R = JetSpace(Float64,512)
A = JopFft(R)
B = JopFft(Float64,512)
m = rand(R)
@test A*m ≈ B*m
end
@testset "fft, 1D, real" begin
n = 512
spDom = JetSpace(Float64, n)
spRng = symspace(JopFft, Float64, 1, n)
m = rand(spDom)
d = rand(spRng)
d[1] = real(d[1])
d[length(spRng)] = d[1]
A = JopFft(Float64, n)
@test range(A) == spRng
lhs, rhs = dot_product_test(A, m, d)
@test lhs ≈ rhs
end
@testset "fft, 2D" begin
n1, n2 = 128, 256
A = JopFft(ComplexF64, n1, n2)
m = rand(domain(A))
d = rand(range(A))
#=
On windows causes a segfault... presumably a bug in BLAS?
=#
if !Sys.iswindows()
lhs, rhs = dot_product_test(A, m, d)
@test lhs ≈ rhs
end
end
@testset "fft, 2D, real->complex" begin
n1, n2 = 128, 256
spDom = JetSpace(Float64, n1, n2)
spRng = symspace(JopFft, Float64, 1, n1, n2)
m = rand(spDom)
d = rand(spRng)
A = JopFft(Float64,n1,n2)
@test spRng == range(A)
lhs, rhs = dot_product_test(A, m, d)
@test lhs ≈ rhs
m = rand(spDom)
m_roundtrip = A' * (A * m)
@test m ≈ m_roundtrip
d = A * m
d_check = rfft(m) / sqrt(length(m))
@test parent(d) ≈ d_check
d_copy = copy(d)
mm = A' * d
@test d_copy ≈ d
mm_check = brfft(parent(d), n1) / sqrt(length(m))
@test mm_check ≈ mm
@test mm_check ≈ m
@test mm ≈ m
end
@testset "fft, 1D transform of 2D array" begin
n1, n2 = 128, 256
A = JopFft(ComplexF64, n1, n2; dims=(1,))
m = rand(domain(A))
d = A*m
d_expected = similar(d)
for i2 = 1:n2
d_expected[:,i2] = fft(vec(m[:,i2])) / sqrt(n1)
end
@test d ≈ d_expected
a = A'*d
a_expected = similar(a)
for i2 = 1:n2
a_expected[:,i2] = bfft(vec(d[:,i2])) / sqrt(n1)
end
@test a ≈ a_expected
if !Sys.iswindows()
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test lhs ≈ rhs
end
end
@testset "fft, 1D transform of 2D array, real->complex" begin
n1, n2 = 128, 256
A = JopFft(Float64, n1, n2; dims=(1,))
m = rand(domain(A))
d = A*m
d_expected = similar(parent(d))
for i2 = 1:n2
d_expected[:,i2] = rfft(vec(m[:,i2])) / sqrt(n1)
end
@test parent(d) ≈ d_expected
a = A'*d
a_expected = similar(a)
for i2 = 1:n2
a_expected[:,i2] = brfft(vec(parent(d)[:,i2]),n1) / sqrt(n1)
end
@test a ≈ a_expected
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test lhs ≈ rhs
end
@testset "fft, 1D transform of 2D array, 2nd dim" begin
n1, n2 = 128, 256
A = JopFft(ComplexF64, n1, n2; dims=(2,))
m = rand(domain(A))
d = A*m
d_expected = similar(d)
for i1 = 1:n1
d_expected[i1,:] = fft(vec(m[i1,:])) / sqrt(n2)
end
@test d ≈ d_expected
a = A'*d
a_expected = similar(a)
for i1 = 1:n1
a_expected[i1,:] = bfft(vec(d_expected[i1,:])) / sqrt(n2)
end
@test a ≈ a_expected
if !Sys.iswindows()
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test lhs ≈ rhs
end
end
@testset "fft, 1D transform of 2D array, 2nd dim, real->complex" begin
n1, n2 = 128, 256
A = JopFft(Float64, n1, n2; dims=(2,))
m = rand(domain(A))
d = A*m
d_expected = similar(parent(d))
for i1 = 1:n1
d_expected[i1,:] = rfft(vec(m[i1,:])) / sqrt(n2)
end
@test parent(d) ≈ d_expected
a = A'*d
a_expected = similar(a)
for i1 = 1:n1
a_expected[i1,:] = brfft(vec(d_expected[i1,:]), n2) / sqrt(n2)
end
@test a ≈ a_expected
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test lhs ≈ rhs
end
@testset "fft, 2D of 3D array, real to complex along first two dims" begin
n1,n2,n3 = 128,256,10
A = JopFft(Float64,n1,n2,n3;dims=(1,2))
m = rand(domain(A))
d = A*m
d_expected = similar(parent(d))
for i3=1:n3
d_expected[:,:,i3] = rfft(m[:,:,i3]) / sqrt(n1*n2)
end
@test parent(d) ≈ d_expected
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test lhs ≈ rhs
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 2416 | using Jets, JetPackTransforms, LinearAlgebra, Test, FFTW
n1,n2 = 500,5
dt = 0.001
@testset "JopSft correctness test, T=$(T)" for T in (Float64,Float32)
global n1,n2,dt
f = fftfreq(n1) ./ dt
freqs = T[f[5],f[9],f[13]]
nfreq = length(freqs)
dt = convert(T,dt)
dom = JetSpace(T,n1,n2)
rng = JetSpace(Complex{T},nfreq,n2)
op = JopSft(dom,freqs,dt)
x = zeros(domain(op))
amp1 = 15.2873
amp2 = 49.39874
amp3 = 97.298743
phs1 = 0.54321
phs2 = 0.7654321
phs3 = 1.87654321
for k2 = 1:n2
for k1 = 1:n1
t = dt * (k1 - 1)
x1 = amp1 * exp(im * (2 * pi * freqs[1] * t + phs1))
x2 = amp2 * exp(im * (2 * pi * freqs[2] * t + phs2))
x3 = amp3 * exp(im * (2 * pi * freqs[3] * t + phs3))
x[k1,k2] = real(x1 + x2 + x3)
end
end
y = op * x
# actual amplitude and phase
a1 = abs.(y[1,:])
a2 = abs.(y[2,:])
a3 = abs.(y[3,:])
p1 = atan.(imag.(y[1,:]),real.(y[1,:]))
p2 = atan.(imag.(y[2,:]),real.(y[2,:]))
p3 = atan.(imag.(y[3,:]),real.(y[3,:]))
rmsa1 = sqrt(norm(a1 .- amp1)^2/length(a1))
rmsa2 = sqrt(norm(a2 .- amp2)^2/length(a2))
rmsa3 = sqrt(norm(a3 .- amp3)^2/length(a3))
rmsp1 = sqrt(norm(p1 .- phs1)^2/length(p1))
rmsp2 = sqrt(norm(p2 .- phs2)^2/length(p2))
rmsp3 = sqrt(norm(p3 .- phs3)^2/length(p3))
@test rmsa1 < 1000 * eps(T)
@test rmsa2 < 1000 * eps(T)
@test rmsa3 < 1000 * eps(T)
@test rmsp1 < 1000 * eps(T)
@test rmsp2 < 1000 * eps(T)
@test rmsp3 < 1000 * eps(T)
end
@testset "JopSft dot product test, T=$(T)" for T in (Float64,Float32)
global n1,n2,dt
f = fftfreq(n1) ./ dt
freqs = T[f[5],f[9],f[13]]
nfreq = length(freqs)
dt = convert(T,dt)
dom = JetSpace(T,n1,n2)
rng = JetSpace(Complex{T},nfreq,n2)
op = JopSft(dom,freqs,dt)
x1 = rand(dom)
y1 = rand(rng)
y1 = op * rand(dom)
lhs, rhs = dot_product_test(op, x1, y1)
diff = abs((lhs - rhs) / (lhs + rhs))
@test lhs ≈ rhs
end
@testset "JopSft linearity test, T=$(T)" for T in (Float64,Float32)
global n1,n2,dt
f = fftfreq(n1) ./ dt
freqs = T[f[5],f[9],f[13]]
nfreq = length(freqs)
dt = convert(T,dt)
dom = JetSpace(T,n1,n2)
rng = JetSpace(Complex{T},nfreq,n2)
op = JopSft(dom,freqs,dt)
lhs,rhs = linearity_test(op)
@test lhs ≈ rhs
end
nothing
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 855 | using JetPackTransforms, Jets, Test
@testset "JetSlantStack, dot product test" for T in (Float32, Float64)
A = JopSlantStack(JetSpace(T, 64, 128); dz=10.0, dh=10.0, h0=-1000.0)
m = rand(domain(A))
d = A*m
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test isapprox(lhs,rhs,rtol=1e-4)
A = JopSlantStack(JetSpace(T, 64, 128); dz=10.0, dh=10.0, h0=-1000.0, taperz=(0.3,0.3), taperh=(0.3,0.3), taperkz=(0.3,0.3), taperkh=(0.3,0.3))
lhs, rhs = dot_product_test(A,rand(domain(A)),rand(range(A)))
@test isapprox(lhs,rhs,rtol=1e-4)
end
@testset "JetSlantStack, correctness" begin
A = JopSlantStack(JetSpace(Float64, 64, 128); dz=10.0, dh=10.0, h0=-1000.0)
m = zeros(domain(A))
m[32,:] .= 1
d = A*m
v,i = findmax(d)
@test i[1] == 32
@test i[2] == findfirst(x->x≈0, state(A).cp)
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | code | 245 | # set random seed to promote repeatability in CI unit tests
using Random
Random.seed!(101)
for file in (
"jop_dct.jl",
"jop_dwt.jl",
"jop_fft.jl",
"jop_sft.jl",
"jop_slantstack.jl")
include(file)
end
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
|
[
"MIT"
] | 0.1.2 | 391a62e72e22c580c675b403009c74e93792ee14 | docs | 1368 | # JetPackTransforms.jl contributor guidelines
## Issue reporting
If you have found a bug in JetPackTransforms.jl or have any suggestions for changes to
JetPackTransforms.jl functionality, please consider filing an issue using the GitHub
isssue tracker. Please do not forget to search for an existing issue
which may already cover your suggestion.
## Contributing
We try to follow GitHub flow (https://guides.github.com/introduction/flow/) for
making changes to JetPackTransforms.jl.
Contributors retain copyright on their contributions, and the MIT license
(https://opensource.org/licenses/MIT) applies to the contribution.
The basic steps to making a contribution are as follows, and assume some knowledge of
git:
1. fork the JetPackTransforms.jl repository
2. create an appropriately titled branch for your contribution
3. if applicable, add a unit-test to ensure the functionality of your contribution
(see the `test` subfolder).
4. run `]test JetPackTransforms` in the `test` folder
5. make a pull-request
6. have fun
## Coding conventions
We try to follow the same coding conventions as https://github.com/JuliaLang/julia.
This primarily means using 4 spaces to indent (no tabs). In addition, we make a
best attempt to follow the guidelines in the style guide chapter of the julia
manual: https://docs.julialang.org/en/v1/manual/style-guide/
| JetPackTransforms | https://github.com/ChevronETC/JetPackTransforms.jl.git |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.