licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.2
391a62e72e22c580c675b403009c74e93792ee14
docs
1374
# JetPackTransforms.jl | **Documentation** | **Action Statuses** | |:---:|:---:| | [![][docs-dev-img]][docs-dev-url] [![][docs-stable-img]][docs-stable-url] | [![][doc-build-status-img]][doc-build-status-url] [![][build-status-img]][build-status-url] [![][code-coverage-img]][code-coverage-results] | This package contains transform operators for Jets.jl that depend on FFTW.jl, and Wavelets.jl. For more information, please see [Jets.jl](https://github.com/ChevronETC/Jets.jl). [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://chevronetc.github.io/JetPackTransforms.jl/dev/ [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://ChevronETC.github.io/JetPackTransforms.jl/stable [doc-build-status-img]: https://github.com/ChevronETC/JetPackTransforms.jl/workflows/Documentation/badge.svg [doc-build-status-url]: https://github.com/ChevronETC/JetPackTransforms.jl/actions?query=workflow%3ADocumentation [build-status-img]: https://github.com/ChevronETC/JetPackTransforms.jl/workflows/Tests/badge.svg [build-status-url]: https://github.com/ChevronETC/JetPackTransforms.jl/actions?query=workflow%3A"Tests" [code-coverage-img]: https://codecov.io/gh/ChevronETC/JetPackTransforms.jl/branch/master/graph/badge.svg [code-coverage-results]: https://codecov.io/gh/ChevronETC/JetPackTransforms.jl
JetPackTransforms
https://github.com/ChevronETC/JetPackTransforms.jl.git
[ "MIT" ]
0.1.2
391a62e72e22c580c675b403009c74e93792ee14
docs
118
# JetPackTransforms.jl This package contains transform operators for Jets.jl. It depends on FFTW.jl and Wavelets.jl.
JetPackTransforms
https://github.com/ChevronETC/JetPackTransforms.jl.git
[ "MIT" ]
0.1.2
391a62e72e22c580c675b403009c74e93792ee14
docs
102
# Reference ```@autodocs Modules = [JetPackTransforms] Order = [:function] ``` # Index ```@index ```
JetPackTransforms
https://github.com/ChevronETC/JetPackTransforms.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
156
# execute this file in the docs directory with this # julia --color=yes --project make.jl using Documenter, Posets makedocs(; sitename = "ImplicitGraphs")
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
1038
using ImplicitGraphs """ Collatz()::ImplicitGraph{Int} Create a directed graph represenation of the Collatz 3x+1 problem. The vertices of the graph are positive integers. For a vertex `n` there is exactly one edge emerging from `n` pointing either to `n÷2` if `n` is even or to `3n+1` if `n` is odd. """ function Collatz()::ImplicitGraph{Int} vcheck(v::Int) = v > 0 function outs(v::Int) if v % 2 == 0 return [div(v, 2)] else return [3v + 1] end end return ImplicitGraph{Int}(vcheck, outs) end """ ReverseCollatz()::ImplicitGraph{Int} This is the same as `Collatz()` except the edges are reversed. """ function ReverseCollatz()::ImplicitGraph{Int} vcheck(v::Int) = v > 0 function outs(v::Int) out_list = [2v] if v % 3 == 1 # v = 3x+1 x = div(v - 1, 3) if x % 2 == 1 push!(out_list, x) end end return out_list end return ImplicitGraph{Int}(vcheck, outs) end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
977
using SimpleGraphs, ImplicitGraphs import SimpleGraphs: UndirectedGraph, DirectedGraph """ UndirectedGraph(G::ImplicitGraph{T}, A) where {T} returns the induced `UndirectedGraph` of `G` with vertices in the collection `A`. """ function UndirectedGraph(G::ImplicitGraph{T}, A) where {T} H = UG{T}() for v in A if has(G, v) add!(H, v) end end for v in A for w in A if v != w && G[v, w] add!(H, v, w) end end end return H end """ DirectedGraph(G::ImplicitGraph{T}, A) where {T} Returns the induced `DirectedGraph` of `G` with vertices in the collection `A`. """ function DirectedGraph(G::ImplicitGraph{T}, A) where {T} D = DG{T}() for v in A if has(G, v) add!(D, v) end end for v in A for w in A if G[v, w] add!(D, v, w) end end end return D end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
620
using ImplicitGraphs, Primes """ iPaley(p::Int) Create an implicit Paley graph on `p` vertices. Here `p` must be a prime congruent to 1 modulo 4. The vertices of the graph are integers in the range `0:p-1` and two vertices are adjacent if their difference is a quadratic residue mod `p`. """ function iPaley(p::Int)::ImplicitGraph if !isprime(p) || p % 4 != 1 error("Argument ($p) must be prime and congruent to 1 mod 4") end vcheck(v::Int) = (0 <= v < p) function outs(v::Int) return unique((v + k^2) % p for k = 1:p-1) end return ImplicitGraph{Int}(vcheck, outs) end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
2056
using ImplicitGraphs, Permutations """ iTransposition(n::Int, adjacent::Bool=true) Create an `ImplicitGraph` whose vertices are all permutations of `1:n` in which two vertices are adjacent if they differ by a transpostion. * If `adjacent` is true, then only consider transpositions of the form `(a,a+1)` * Otherwise, consider all possible transpositions of the form `(a,b)` where `1≤a<b≤n`. """ function iTransposition(n::Int, adjacent::Bool = true) @assert n > 0 "Require n>0, got n=$n" vcheck(v::Permutation) = length(v) == n function outs(v::Permutation) if adjacent return [v * Transposition(n, i, i + 1) for i = 1:n-1] end return [v * Transposition(n, i, j) for i = 1:n for j = 1:n if i ≠ j] end return ImplicitGraph{Permutation}(vcheck, outs) end """ trans_string(p::Permutation) We assume that `p` is a transposition. """ function trans_string(p::Permutation)::String n = length(p) FP = fixed_points(p) @assert n == length(FP) + 2 "Permutation must be a transposition" elts = sort(setdiff(1:n, FP)) a, b = elts return "($a,$b)" end """ pscore(p::Permutation)::Int Measures the extent to which `p` is different from the identity permutation using this formula: `sum(abs(p[k]-k) for k=1:length(p))` """ function pscore(p::Permutation)::Int n = length(p) sum(abs(i - p(i)) for i = 1:n) end """ crazy_trans_product(p::Permutation, adjacent::Bool=true)::String Express `p` as the product of transpositions. With `adjacent=true` the transpositions are all of the form `(a,a+1)`; otherwise, all possible transpositions are allowed. Result is expressed as a `String`. """ function crazy_trans_product(p::Permutation, adjacent::Bool = true)::String n = length(p) G = iTransposition(n, adjacent) P = reverse(guided_path_finder(G, p, Permutation(n), score = pscore)) nP = length(P) if nP == 1 return "()" end Q = [P[k]' * P[k+1] for k = 1:nP-1] prod(trans_string(Q[j]) for j = 1:length(Q)) end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
1587
module ImplicitGraphs using DataStructures export ImplicitGraph import Base: getindex, show, eltype import SimpleGraphs: deg, find_path, dist, has export deg, find_path, dist, has """ `ImplicitGraph{T}(has_vertex, out_neighbors)` constructs a new `ImplicitGraph` whose vertices have type `T`. * `has_vertex(v::T)::Bool` is a function that checks if `v` is in the graph. * `out_neighbors(v::T)::Vector{T}` is a function that takes an object `v` of type `T` and returns a list of `v`'s out neighbors. """ struct ImplicitGraph{T} has_vertex::Function out_neighbors::Function end function getindex(G::ImplicitGraph{T}, v::T) where {T} if !has(G, v) error("This graph does not have a vertex $v") end G.out_neighbors(v) end eltype(::ImplicitGraph{T}) where {T} = T function getindex(G::ImplicitGraph{T}, v::T, w::T) where {T} if !has(G, v) || !has(G, w) error("One or both of vertices $v and $w are not in this graph") end return in(w, G[v]) end has(G::ImplicitGraph{T}, v::T, w::T) where {T} = G[v, w] """ `deg(G::ImplicitGraph,v)` returns the degree of vertex `v` in the graph `G`. """ deg(G::ImplicitGraph{T}, v::T) where {T} = length(G[v]) """ `has(G::ImplicitGraph,v)` checks if `v` is a vertex of `G`. `has(G,v,w)` checks if `(v,w)` is an edge of `G`. """ function has(G::ImplicitGraph{T}, v::T) where {T} return G.has_vertex(v) end function show(io::IO, G::ImplicitGraph{T}) where {T} print(io, "ImplicitGraph{$T}") end include("iGraphs.jl") include("find_path.jl") include("guided_path_finder.jl") end # module
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
5289
export find_path, find_path_undirected, dist """ `find_path(G::ImplicitGraph{T}, s::T, is_target::Function, cutoff_depth::Int=0) where {T}` Finds a shortest path from `s` to any vertex for which `is_target` returns `true`. Optionally, we include a `cutoff_depth` at which the search stops, to avoid exponential memory usage. """ function find_path( G::ImplicitGraph{T}, s::T, is_target::Function, cutoff_depth::Int = 0, ) where {T} if is_target(s) return [s] end # set up an array for vertex exploration frontier = Array{T}(undef, 1) frontier[1] = s # the current search depth depth = 0 # set up trace-back dictionary tracer = Dict{T,T}() tracer[s] = s while length(frontier) > 0 # Check whether to abort if (cutoff_depth != 0) && (depth == cutoff_depth) break end # Move frontier forward depth += 1 frontier = advance_frontier(G, is_target, frontier, tracer) # Traceback and return if successful if typeof(frontier) == T return reverse(traceback_path(tracer, s, frontier)) end end return T[] # return empty array if no path found end """ `advance_frontier(G::ImplicitGraph{T}, is_target::Function, frontier::Array{T}, tracer::Dict{T, T}) where {T}` Advances the vertex frontier by one step. In other words, if all vertices in `frontier` are at depth `d`, then the returned frontier will contain all vertices of depth `d+1`. If a vertex `v` is found such that `is_target` returns `true`, then abort search and return `v` instead. The return type may thus be one of - T[]: the new frontier of depth `d+1` - T: a vertex satisfying `is_target` This will mutate `tracer`, inserting all the new vertices found. """ function advance_frontier( G::ImplicitGraph{T}, is_target::Function, frontier::Array{T}, tracer::Dict{T,T}, ) where {T} new_frontier = T[] for v in frontier Nv = G[v] for w in Nv if haskey(tracer, w) continue end tracer[w] = v push!(new_frontier, w) if is_target(w) # success! return w end end end new_frontier end """ `traceback_path(tracer::Dict{T, T}, s::T, t::T) where {T}` Traces back path from source `s` to target `t` using the tracer dictionary. The path is returned in reversed order """ function traceback_path(tracer::Dict{T,T}, s::T, t::T) where {T} rev_path = Array{T}(undef, 1) rev_path[1] = t while rev_path[end] != s v = tracer[rev_path[end]] push!(rev_path, v) end rev_path end """ `find_path(G::ImplicitGraph,s,t)` finds a shortest path from `s` to `t`. """ function find_path(G::ImplicitGraph{T}, s::T, t::T, cutoff_depth::Int = 0) where {T} if !has(G, s) || !has(G, t) error("Source and/or target vertex is not in this graph") end find_path(G, s, isequal(t), cutoff_depth) end """ `find_path_undirected(G::ImplicitGraph,s,t)`. Finds a shortest path from `s` to `t`, assuming that `G` is undirected. This will proceed from both ends of the path until finding a common vertex. """ function find_path_undirected( G::ImplicitGraph{T}, s::T, t::T, cutoff_depth::Int = 0, ) where {T} if !has(G, s) || !has(G, t) error("Source and/or target vertex is not in this graph") end if s == t return [s] end # set up two arrays for vertex exploration # one frontier will proceed from the source, the other from the target frontier_s = Array{T}(undef, 1) frontier_s[1] = s frontier_t = Array{T}(undef, 1) frontier_t[1] = t # the current search path depth (for both search directions) depth = 0 # set up a trace-back dictionaries tracer_s = Dict{T,T}() tracer_s[s] = s tracer_t = Dict{T,T}() tracer_t[t] = t while length(frontier_s) + length(frontier_t) > 0 # Check whether to abort if (cutoff_depth != 0) && (depth == cutoff_depth) break end # target vertex: a vertex present in the tracer for the other direction is_target_s = v -> haskey(tracer_t, v) is_target_t = v -> haskey(tracer_s, v) # Move frontier forward in both directions depth += 1 # Forward move frontier_s = advance_frontier(G, is_target_s, frontier_s, tracer_s) # Traceback and return if successful if typeof(frontier_s) == T s_to_middle = reverse(traceback_path(tracer_s, s, frontier_s)) middle_to_t = traceback_path(tracer_t, t, frontier_s) return [s_to_middle[1:end-1]; middle_to_t] end # Backward move frontier_t = advance_frontier(G, is_target_t, frontier_t, tracer_t) # Traceback and return if successful if typeof(frontier_t) == T s_to_middle = reverse(traceback_path(tracer_s, s, frontier_t)) middle_to_t = traceback_path(tracer_t, t, frontier_t) return [s_to_middle[1:end-1]; middle_to_t] end end return T[] # return empty array if no path found end dist(G::ImplicitGraph{T}, s::T, t::T) where {T} = length(find_path(G, s, t)) - 1
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
2652
export guided_path_finder function _edge_generator(G::ImplicitGraph{T}, v::T, depth::Int = 1) where {T} @assert depth > 0 "Depth must be positive, argument was $depth" if depth == 1 return [(v, w) for w in G[v]] end edges = _edge_generator(G, v, depth - 1) result = Tuple{T,T}[] visited = Set(first.(edges)) ∪ Set(last.(edges)) for (x, y) in edges push!(result, (x, y)) # keep this edge for z in G[y] if z ∉ visited push!(result, (y, z)) end end end return unique(result) end """ guided_path_finder(G, s, t; score, depth) Find a path from vertex `s` to vertex `t` in an `ImplicitGraph` `G`. * `score` is a function mapping vertices to `Int` values. It should decrease as vertices get closer to `t`. Ideally, `score(t)` should be the smallest possible value. * `depth` controls the amount of look ahead as we explore each vertex. The default value is `1`. * `verbose` controls how often status information is printed. Use `0` for no information. """ function guided_path_finder( G::ImplicitGraph{T}, s::T, t::T; score::Function = x -> 1, depth::Int = 1, verbose::Int = 0, )::Vector{T} where {T} PQ = PriorityQueue{T,Int}() PQ[s] = score(s) visited = Set{T}() # Visited positions trace_back = Dict{T,T}() # Reverse edges trace_back[s] = s if s == t return [t] end best_vtx = s best_score = score(s) count = 0 while length(PQ) > 0 count += 1 v = dequeue!(PQ) if score(v) < best_score best_score = score(v) best_vtx = v end if verbose > 0 && count % verbose == 0 println("Iteration = $count") println("Queue size = $(length(PQ))") println("Current state") println(v) println( "Score = $(score(v))\t trying for $(score(t))\t with best so far $best_score\n\n", ) end if v == t break end push!(visited, v) edges = _edge_generator(G, v, depth) for (x, y) in edges if y ∉ keys(trace_back) trace_back[y] = x PQ[y] = score(y) end end end rev_path = T[] push!(rev_path, t) while true x = rev_path[end] if x == s break end push!(rev_path, trace_back[x]) end if verbose > 0 println("Finished after $count iterations") end return reverse(rev_path) end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
3483
export iCycle, iPath, iGrid, iKnight, iCube, iShift """ `iCycle(n::Int, simple::Bool=true)` creates an implicit graph that is a cycle graph with `n` vertices `1` through `n`. When `simple` is `true`, the graph is undirected; when `false` it's a directed cycle `1 → 2 → 3 → ⋯ → n → 1`. """ function iCycle(n::Int, simple::Bool = true)::ImplicitGraph{Int} if n < 3 error("Number of vertices must be at least 3") end function N(v::Int) a = mod1(v + 1, n) b = mod1(v - 1, n) if simple return [b, a] end return [a] end has_vertex(v::Int) = 1 <= v <= n return ImplicitGraph{Int}(has_vertex, N) end """ `iPath(simple::Bool=true)` creates an implicit graph that is a path graph on the integers. If `simple` is `true` vertex `v` is has an edge to `v-1` and `v+1`; otherwise, `v` has an edge only to `v+1`. """ function iPath(simple::Bool = true)::ImplicitGraph{Int} yes(v::Int)::Bool = true function N(v::Int)::Vector{Int} if simple return [v - 1, v + 1] else return [v + 1] end end return ImplicitGraph{Int}(yes, N) end """ `iGrid()` returns an infinite two-dimensional grid graph. Vertices are of type `Tuple{Int,Int}`. """ function iGrid()::ImplicitGraph{Tuple{Int,Int}} yes(v::Tuple{Int,Int})::Bool = true function N(v::Tuple{Int,Int})::Vector{Tuple{Int,Int}} a, b = v return [(a, b - 1), (a, b + 1), (a - 1, b), (a + 1, b)] end return ImplicitGraph{Tuple{Int,Int}}(yes, N) end """ `iKnight()` returns the Knight's move graph on an infinite chessboard. """ function iKnight()::ImplicitGraph{Tuple{Int,Int}} yes(v::Tuple{Int,Int})::Bool = true function N(v::Tuple{Int,Int})::Vector{Tuple{Int,Int}} a, b = v neigh = [ (a + 1, b + 2), (a + 1, b - 2), (a + 2, b + 1), (a + 2, b - 1), (a - 1, b + 2), (a - 1, b - 2), (a - 2, b + 1), (a - 2, b - 1), ] return neigh end return ImplicitGraph{Tuple{Int,Int}}(yes, N) end """ `iCube(d::Int)` creates an (implict) `d`-dimensional cube graph. """ function iCube(d::Int)::ImplicitGraph{String} if d < 1 error("Dimension must be positive") end function dvec_check(s::String)::Bool if length(s) != d return false end for i = 1:d if s[i] ∉ "01" return false end end return true end function N(v::String) result = Vector{String}(undef, d) for i = 1:d head = v[1:i-1] c = v[i] == '0' ? "1" : "0" tail = v[i+1:end] result[i] = head * c * tail end return result end return ImplicitGraph{String}(dvec_check, N) end using IterTools """ `iShift(alphabet,n)` creates an implicit shift digraph whose vertices are `n`-tuples of elements of `alphabet`. """ function iShift(alphabet, n::Int)::ImplicitGraph elts = collect(distinct(alphabet)) T = eltype(elts) function has_vertex(v)::Bool for i = 1:n if v[i] ∉ elts return false end end return true end function N(v) base = v[2:end] result = [(base..., j) for j in elts] return result end return ImplicitGraph{NTuple{n,T}}(has_vertex, N) end
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
code
981
using Test using ImplicitGraphs G = iGrid() @test G[(1, 1), (1, 2)] @test length(G[(0, 0)]) == 4 @test dist(G, (0, 0), (1, 1)) == 2 G = iCycle(10) @test has(G, 1, 10) @test length(find_path(G, 1, 5)) == 5 @test length(find_path_undirected(G, 1, 5)) == 5 G = iCycle(10, false) @test !has(G, 1, 10) G = iKnight() @test deg(G, (0, 0)) == 8 G = iCube(4) @test dist(G, "0000", "1111") == 4 G = iShift([1, 2, 3], 5) @test deg(G, (1, 1, 1, 1, 1)) == 3 G = iKnight() s = (5, 5) t = (0, 0) score(vw) = sum(abs.(vw)) P = guided_path_finder(G, s, t, score = score, depth = 2) @test length(P) > 0 # abstract target vertices multiplies_to_16(point) = (point[1] * point[2]) == 16 G = iGrid() @test find_path(G, (1, 1), multiplies_to_16)[end] == (4, 4) # cutoff depth @test find_path(G, (0, 0), (3, 5), 8) == find_path(G, (0, 0), (3, 5)) @test length(find_path(G, (0, 0), (3, 5))) == length(find_path_undirected(G, (0, 0), (3, 5))) @test isempty(find_path(G, (0, 0), (3, 5), 7))
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
docs
7364
# ImplicitGraphs An `ImplicitGraph` is a graph in which the vertices and edges are implicitly defined by two functions: one that tests for vertex membership and one that returns a list of the (out) neighbors of a vertex. The vertex set of an `ImplicitGraph` may be finite or (implicitly) infinite. The (out) degrees, however, must be finite. ## Creating Graphs An `ImplicitGraph` is defined as follows: ``` ImplicitGraph{T}(has_vertex, out_neighbors) ``` where * `T` is the data type of the vertices. * `has_vertex(v::T)::Bool` is a function that takes objects of type `T` as input and returns `true` if `v` is a vertex of the graph. * `out_neighbors(v::T)::Vector{T}` is a function that takes objects of type `T` as input and returns a list of the (out) neighbors of `v`. For example, the following creates an (essentially) infinite path whose vertices are integers (see the `iPath` function): ```julia yes(v::Int)::Bool = true N(v::Int)::Vector{Int} = [v-1, v+1] G = ImplicitGraph{Int}(yes, N) ``` The `yes` function always returns `true` for any `Int`. The `N` function returns the two neighbors of a vertex `v`. (For a truly infinite path, use `BigInt` in place of `Int`.) Note that if `v` is an element of its own neighbor set, that represents a loop at vertex `v`. ### Undirected and directed graphs The user-supplied `out_neighbors` function can be used to create both undirected and directed graphs. If an undirected graph is intended, be sure that if `{v,w}` is an edge of the graph, then `w` will be in the list returned by `out_neighbors(v)` and `v` will be in the list returned by `out_neighbors(w)`. To create an infinite *directed* path, the earlier example can be modified like this: ```julia yes(v::Int)::Bool = true N(v::Int)::Vector{Int} = [v+1] G = ImplicitGraph{Int}(yes, N) ``` ## Predefined Graphs We provide a few basic graphs that can be created using the following methods: * `iCycle(n::Int)` creates an undirected cycle with vertex set `{1,2,...,n}`; `iCycle(n,false)` creates a directed `n`-cycle. * `iPath()` creates an (essentially) infinite undirected path whose vertex set contains all integers (objects of type `Int`); `iPath(false)` creates a one-way infinite path `⋯ → -2 → -1 → 0 → 1 → 2 → ⋯`. * `iGrid()` creates an (essentially) infinite grid whose vertices are ordered pairs of integers (objects of type `Int`). * `iCube(d::Int)` creates a `d`-dimensional cube graph. The vertices are all `d`-long strings of `0`s and `1`s. Two vertices are adjacent iff they differ in exactly one bit. * `iKnight()` creates the Knight's move graph on an (essentially) infinite chessboard. The vertices are pairs of integers (objects of type `Int`). * `iShift(alphabet, n::Int)` creates the shift digraph whose vertices are `n`-tuples of elements of `alphabet`. ## Inspection * To test if `v` is a vertex of an `ImplicitGraph` `G`, use `has(G)`. Note that the data type of `v` must match the element type of `G`. (The function `eltype` returns the data type of the vertices of the `ImplicitGraph`.) * To test if `{v,w}` is an edge of `G` use `G[v,w]` or `has(G,v,w)`. Note that `v` and `w` must both be vertices of `G` or an error is thrown. * To get a list of the (out) neighbors of a vertex `v`, use `G[v]`. * To get the degree of a vertex in a graph, use `deg(G,v)`. ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64,Int64}} julia> has_vertex(G,(1,2)) true julia> G[(1,2)] 4-element Array{Tuple{Int64,Int64},1}: (1, 1) (1, 3) (0, 2) (2, 2) julia> G[(1,2),(1,3)] true julia> deg(G,(5,0)) 4 ``` ## Path Finding ### Shortest path The function `find_path` finds a shortest path between vertices of a graph. This function may run without returning if the graph is infinite and disconnected. ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64, Int64}} julia> find_path(G, (0, 0), (3, 5)) 9-element Array{Tuple{Int64, Int64}, 1}: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (1, 5) (2, 5) (3, 5) ``` The function `dist` returns the length of a shortest path between vertices in the graph. ``` julia> dist(G, (0, 0), (3, 5)) 8 ``` For large undirected graphs, you may find that `find_path_undirected` runs faster. It uses bidirectional search to reduce memory usage and runtime. It does not support directed graphs, however. #### Option: abstract target vertices Optionally, instead of a single target vertex whose type is the same as other vertices of the `ImplicitGraph`, we can call `find_path` with this signature: ``` find_path(G::ImplicitGraph{T}, s::T, is_target::Function) where {T} ``` The function `is_target` is expected to take a vertex of `G` as its only argument and return a `Bool` which is `true` if the vertex is a target. In this way, we can search for a path from the source vertex to one of many target vertices, or a vertex with a specified property. #### Option: cutoff depth Path finding can consume an amout of memory that is exponential in the length of the path, which can crash Julia. To avoid this, we can call `find_path` with this signature: ``` find_path(G::ImplicitGraph{T}, s::T, t::T, cutoff_depth::Int=0) where {T} ``` Paths with length at most `cutoff_depth` will be found, but attempting to find a longer path results in an empty output (as if the path did not exist): ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64,Int64}} julia> find_path(G, (0, 0), (3, 5), 8) 9-element Array{Tuple{Int64 ,Int64}, 1}: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (1, 5) (2, 5) (3, 5) julia> IG.find_path(G, (0, 0), (3, 5), 7) Tuple{Int64, Int64}[] ``` > **Note**: Setting `cutoff_depth` to `0` allows a search for paths of unlimited length; only positive values limit the length. ### Guided path finding The function `guided_path_finder` employs a score function to try to find a path between vertices. It may be faster than `find_path`, but might not give a shortest path. This function is called as follows: `guided_path_finder(G,s,t,score=sc, depth=d, verbose=0)` where * `G` is an `ImplicitGraph`, * `s` is the starting vertex of the desired path, * `t` is the ending vertex of the desired path, * `sc` is a score function that mapping vertices to integers and should get smaller as vertices get closer to `t` (and should minimize at `t`), * `d` controls amount of look ahead (default is `1`), and * `verbose` sets how often to print progess information (or `0` for no diagnostics). ``` julia> G = iKnight(); julia> s = (9,9); t = (0,0); julia> sc(v) = sum(abs.(v)); # score of (a,b) is |a| + |b| julia> guided_path_finder(G,s,t,score=sc,depth=1) 9-element Vector{Tuple{Int64, Int64}}: (9, 9) (8, 7) (7, 5) (6, 3) (5, 1) (3, 0) (1, -1) (-1, -2) (0, 0) # With better look-ahead we find a shorter path julia> guided_path_finder(G,s,t,score=sc,depth=3) 7-element Vector{Tuple{Int64, Int64}}: (9, 9) (8, 7) (7, 5) (6, 3) (4, 2) (2, 1) (0, 0) ``` Greater depth can find a shorter path, but that comes at a cost: ``` julia> using BenchmarkTools julia> @btime guided_path_finder(G,s,t,score=sc,depth=1); 52.361 μs (1308 allocations: 81.05 KiB) julia> @btime guided_path_finder(G,s,t,score=sc,depth=3); 407.546 μs (8691 allocations: 696.47 KiB) ``` ## Extras The `extras` directory contains additional code and examples that may be useful in conjunction with the `ImplicitGraph` type. See the `README` in that directory.
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
docs
7364
# ImplicitGraphs An `ImplicitGraph` is a graph in which the vertices and edges are implicitly defined by two functions: one that tests for vertex membership and one that returns a list of the (out) neighbors of a vertex. The vertex set of an `ImplicitGraph` may be finite or (implicitly) infinite. The (out) degrees, however, must be finite. ## Creating Graphs An `ImplicitGraph` is defined as follows: ``` ImplicitGraph{T}(has_vertex, out_neighbors) ``` where * `T` is the data type of the vertices. * `has_vertex(v::T)::Bool` is a function that takes objects of type `T` as input and returns `true` if `v` is a vertex of the graph. * `out_neighbors(v::T)::Vector{T}` is a function that takes objects of type `T` as input and returns a list of the (out) neighbors of `v`. For example, the following creates an (essentially) infinite path whose vertices are integers (see the `iPath` function): ```julia yes(v::Int)::Bool = true N(v::Int)::Vector{Int} = [v-1, v+1] G = ImplicitGraph{Int}(yes, N) ``` The `yes` function always returns `true` for any `Int`. The `N` function returns the two neighbors of a vertex `v`. (For a truly infinite path, use `BigInt` in place of `Int`.) Note that if `v` is an element of its own neighbor set, that represents a loop at vertex `v`. ### Undirected and directed graphs The user-supplied `out_neighbors` function can be used to create both undirected and directed graphs. If an undirected graph is intended, be sure that if `{v,w}` is an edge of the graph, then `w` will be in the list returned by `out_neighbors(v)` and `v` will be in the list returned by `out_neighbors(w)`. To create an infinite *directed* path, the earlier example can be modified like this: ```julia yes(v::Int)::Bool = true N(v::Int)::Vector{Int} = [v+1] G = ImplicitGraph{Int}(yes, N) ``` ## Predefined Graphs We provide a few basic graphs that can be created using the following methods: * `iCycle(n::Int)` creates an undirected cycle with vertex set `{1,2,...,n}`; `iCycle(n,false)` creates a directed `n`-cycle. * `iPath()` creates an (essentially) infinite undirected path whose vertex set contains all integers (objects of type `Int`); `iPath(false)` creates a one-way infinite path `⋯ → -2 → -1 → 0 → 1 → 2 → ⋯`. * `iGrid()` creates an (essentially) infinite grid whose vertices are ordered pairs of integers (objects of type `Int`). * `iCube(d::Int)` creates a `d`-dimensional cube graph. The vertices are all `d`-long strings of `0`s and `1`s. Two vertices are adjacent iff they differ in exactly one bit. * `iKnight()` creates the Knight's move graph on an (essentially) infinite chessboard. The vertices are pairs of integers (objects of type `Int`). * `iShift(alphabet, n::Int)` creates the shift digraph whose vertices are `n`-tuples of elements of `alphabet`. ## Inspection * To test if `v` is a vertex of an `ImplicitGraph` `G`, use `has(G)`. Note that the data type of `v` must match the element type of `G`. (The function `eltype` returns the data type of the vertices of the `ImplicitGraph`.) * To test if `{v,w}` is an edge of `G` use `G[v,w]` or `has(G,v,w)`. Note that `v` and `w` must both be vertices of `G` or an error is thrown. * To get a list of the (out) neighbors of a vertex `v`, use `G[v]`. * To get the degree of a vertex in a graph, use `deg(G,v)`. ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64,Int64}} julia> has_vertex(G,(1,2)) true julia> G[(1,2)] 4-element Array{Tuple{Int64,Int64},1}: (1, 1) (1, 3) (0, 2) (2, 2) julia> G[(1,2),(1,3)] true julia> deg(G,(5,0)) 4 ``` ## Path Finding ### Shortest path The function `find_path` finds a shortest path between vertices of a graph. This function may run without returning if the graph is infinite and disconnected. ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64, Int64}} julia> find_path(G, (0, 0), (3, 5)) 9-element Array{Tuple{Int64, Int64}, 1}: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (1, 5) (2, 5) (3, 5) ``` The function `dist` returns the length of a shortest path between vertices in the graph. ``` julia> dist(G, (0, 0), (3, 5)) 8 ``` For large undirected graphs, you may find that `find_path_undirected` runs faster. It uses bidirectional search to reduce memory usage and runtime. It does not support directed graphs, however. #### Option: abstract target vertices Optionally, instead of a single target vertex whose type is the same as other vertices of the `ImplicitGraph`, we can call `find_path` with this signature: ``` find_path(G::ImplicitGraph{T}, s::T, is_target::Function) where {T} ``` The function `is_target` is expected to take a vertex of `G` as its only argument and return a `Bool` which is `true` if the vertex is a target. In this way, we can search for a path from the source vertex to one of many target vertices, or a vertex with a specified property. #### Option: cutoff depth Path finding can consume an amout of memory that is exponential in the length of the path, which can crash Julia. To avoid this, we can call `find_path` with this signature: ``` find_path(G::ImplicitGraph{T}, s::T, t::T, cutoff_depth::Int=0) where {T} ``` Paths with length at most `cutoff_depth` will be found, but attempting to find a longer path results in an empty output (as if the path did not exist): ``` julia> G = iGrid() ImplicitGraph{Tuple{Int64,Int64}} julia> find_path(G, (0, 0), (3, 5), 8) 9-element Array{Tuple{Int64 ,Int64}, 1}: (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (1, 5) (2, 5) (3, 5) julia> IG.find_path(G, (0, 0), (3, 5), 7) Tuple{Int64, Int64}[] ``` > **Note**: Setting `cutoff_depth` to `0` allows a search for paths of unlimited length; only positive values limit the length. ### Guided path finding The function `guided_path_finder` employs a score function to try to find a path between vertices. It may be faster than `find_path`, but might not give a shortest path. This function is called as follows: `guided_path_finder(G,s,t,score=sc, depth=d, verbose=0)` where * `G` is an `ImplicitGraph`, * `s` is the starting vertex of the desired path, * `t` is the ending vertex of the desired path, * `sc` is a score function that mapping vertices to integers and should get smaller as vertices get closer to `t` (and should minimize at `t`), * `d` controls amount of look ahead (default is `1`), and * `verbose` sets how often to print progess information (or `0` for no diagnostics). ``` julia> G = iKnight(); julia> s = (9,9); t = (0,0); julia> sc(v) = sum(abs.(v)); # score of (a,b) is |a| + |b| julia> guided_path_finder(G,s,t,score=sc,depth=1) 9-element Vector{Tuple{Int64, Int64}}: (9, 9) (8, 7) (7, 5) (6, 3) (5, 1) (3, 0) (1, -1) (-1, -2) (0, 0) # With better look-ahead we find a shorter path julia> guided_path_finder(G,s,t,score=sc,depth=3) 7-element Vector{Tuple{Int64, Int64}}: (9, 9) (8, 7) (7, 5) (6, 3) (4, 2) (2, 1) (0, 0) ``` Greater depth can find a shorter path, but that comes at a cost: ``` julia> using BenchmarkTools julia> @btime guided_path_finder(G,s,t,score=sc,depth=1); 52.361 μs (1308 allocations: 81.05 KiB) julia> @btime guided_path_finder(G,s,t,score=sc,depth=3); 407.546 μs (8691 allocations: 696.47 KiB) ``` ## Extras The `extras` directory contains additional code and examples that may be useful in conjunction with the `ImplicitGraph` type. See the `README` in that directory.
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.1.12
5b969585f5de557c023e5423a016c019f864e514
docs
3203
# `ImplicitGraphs` Extras This directory contains additional code and examples associated with the `ImplicitGraph` type. ## `conversion.jl` An `ImplicitGraph` may be infinite and so there is no universal way to convert an `ImplicitGraph` to an `UndirectedGraph` or a `DirectedGraph`. However, given a finite subset of the vertices, we can form the induced subgraph (or sub-digraph) on that subset. * `UndirectedGraph(G::ImplicitGraph, A)` returns an undirected graph (type `UndirectedGraph`) whose vertex set is `A` and is the induced subgraph of `G` on that set. * Likewise, `DirectedGraph(G::ImplicitGraph, A)` returns a directed graph (type `DirectedGraph`). ## `iPaley.jl` The `iPaley` function creates an implicit Paley graph. In particular, `iPaley(p)` (where `p` is a prime congruennt to 1 modulo 4) creates a graph with vertex set `0:p-1` in which two vertices are adjacent iff their difference is a quadratic residue modulo `p`. ## `iTransposition.jl` The function `iTransposition(n)` creates an `ImplicitGraph` whose vertices are all permutation of `1:n`. Two vertices of this graph are adjacent iff they differ by a transposition. * `iTransposition(n,true)` [default] only considers transpositions of the form `(a,a+1)` where `0 < a < n`. * `iTransposition(n,false)` considers all transpositions `(a,b)` where `0<a<b≤n`. As a demonstration of guided path finding, we include the function `crazy_trans_product` to find a representation of a `Permutation` as the product of transpositions. The function is invoked as `crazy_trans_product(p::Permutation, adjacent::Bool=true)::String` Example: ``` julia> p = RandomPermutation(10) (1)(2,7,8,6,3,9)(4)(5,10) julia> println(crazy_trans_product(p,true)) true (5,6)(6,7)(5,6)(2,3)(3,4)(4,5)(3,4)(2,3)(7,8)(8,9)(7,8)(5,6)(6,7)(5,6)(9,10)(7,8)(8,9)(7,8)(3,4)(4,5)(3,4)(6,7)(7,8)(5,6) julia> println(crazy_trans_product(p,false)) true (7,8)(6,8)(2,3)(2,6)(5,10)(3,9) ``` An analogous result is given by `CoxeterDecomposition`: ``` julia> CoxeterDecomposition(p) Permutation of 1:10: (2,3)(3,4)(2,3)(5,6)(4,5)(6,7)(5,6)(4,5)(3,4)(2,3)(7,8)(6,7)(5,6)(8,9)(7,8)(6,7)(5,6)(4,5)(3,4)(9,10)(8,9)(7,8)(6,7)(5,6) ``` We include the adjective *crazy* in the function name because it is much slower and memory intensive than `CoxeterDecomposition`: ``` julia> using BenchmarkTools julia> p = RandomPermutation(30); julia> @btime CoxeterDecomposition(p); 384.528 μs (11 allocations: 5.25 KiB) julia> @btime crazy_trans_product(p,true); 109.266 ms (387316 allocations: 63.06 MiB) ``` ## `Collatz.jl` The function `Collatz()` returns a directed graph represenation of the Collatz 3x+1 problem. The vertices of the graph are positive integers. For a vertex `n` there is exactly one edge emerging from `n` pointing either to `n÷2` if `n` is even or to `3n+1` if `n` is odd. ``` julia> G = Collatz(); julia> find_path(G,12,1) 10-element Vector{Int64}: 12 6 3 10 5 16 8 4 2 1 ``` The function `ReverseCollatz()` is the same as `Collatz()` except the edges are reversed. ``` julia> H = ReverseCollatz(); julia> find_path(H,1,12) 10-element Vector{Int64}: 1 2 4 8 16 5 10 3 6 12 ```
ImplicitGraphs
https://github.com/scheinerman/ImplicitGraphs.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
1525
using JuliaInterpreter using BenchmarkTools const SUITE = BenchmarkGroup() # Recursively call itself f(i, j) = i == 0 ? j : f(i - 1, j + 1) SUITE["recursive self 1_000"] = @benchmarkable @interpret f(1_000, 0) # Long stack trace calling other functions f0(i) = i for i in 1:1_000 @eval $(Symbol("f", i))(i) = $(Symbol("f", i-1))(i) end SUITE["recursive other 1_000"] = @benchmarkable @interpret f1000(1) # Tight loop function f(X) s = 0 for x in X s += x end return s end const X = rand(1:10, 10_000) SUITE["tight loop 10_000"] = @benchmarkable @interpret f(X) # Throwing and catching an error over a large stacktrace function g0(i) try g1(i) catch e e end end for i in 1:1_000 @eval $(Symbol("g", i))(i) = $(Symbol("g", i+1))(i) end g1001(i) = error() SUITE["throw long 1_000"] = @benchmarkable @interpret g0(1) # Function with many statements macro do_thing(expr, N) e = Expr(:block) for i in 1:N push!(e.args, esc(expr)) end return e end function counter() a = 0 @do_thing(a = a + 1, 5_000) return a end SUITE["long function 5_000"] = @benchmarkable @interpret counter() # Ccall function ccall_ptr(ptr, x, y) ccall(ptr, Int, (Int, Int), x, y) end const ptr = @cfunction(+, Int, (Int, Int)) SUITE["ccall ptr"] = @benchmarkable @interpret ccall_ptr(ptr, 1, 5) function powf(a, b) ccall(("powf", Base.Math.libm), Float32, (Float32,Float32), a, b) end SUITE["ccall library"] = @benchmarkable @interpret powf(2, 3)
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
12108
# This file generates builtins.jl. # Should be run on the latest Julia nightly using InteractiveUtils # All builtins present in 1.6 const ALWAYS_PRESENT = Core.Builtin[ (<:), (===), Core._abstracttype, Core._apply_iterate, Core._apply_pure, Core._call_in_world, Core._call_latest, Core._equiv_typedef, Core._expr, Core._primitivetype, Core._setsuper!, Core._structtype, Core._typebody!, Core._typevar, Core.apply_type, Core.ifelse, Core.sizeof, Core.svec, applicable, fieldtype, getfield, invoke, isa, isdefined, nfields, setfield!, throw, tuple, typeassert, typeof ] # Builtins present from 1.6, not builtins (potentially still normal functions) anymore const RECENTLY_REMOVED = GlobalRef.(Ref(Core), [ :arrayref, :arrayset, :arrayset, :const_arrayref, :memoryref, :set_binding_type! ]) const kwinvoke = Core.kwfunc(Core.invoke) function scopedname(f) io = IOBuffer() show(io, f) fstr = String(take!(io)) occursin('.', fstr) && return fstr tn = typeof(f).name Base.isexported(tn.module, Symbol(fstr)) && return fstr fsym = Symbol(fstr) isdefined(tn.module, fsym) && return string(tn.module) * '.' * fstr return "Base." * fstr end function nargs(f, table, id) # Look up the expected number of arguments in Core.Compiler.tfunc data if id !== nothing minarg, maxarg, tfunc = table[id] else minarg = 0 maxarg = typemax(Int) end # Specialize ~arrayref and arrayset~ memoryrefnew for small numbers of arguments # TODO: how about other memory intrinsics? if (@static isdefined(Core, :memoryrefnew) ? f == Core.memoryrefnew : f == Core.memoryref) maxarg = 5 end return minarg, maxarg end function generate_fcall_nargs(fname, minarg, maxarg) # Generate a separate call for each number of arguments maxarg < typemax(Int) || error("call this only for constrained number of arguments") annotation = fname == "fieldtype" ? "::Type" : "" wrapper = "if nargs == " for nargs = minarg:maxarg wrapper *= "$nargs\n " argcall = "" for i = 1:nargs argcall *= "@lookup(frame, args[$(i+1)])" if i < nargs argcall *= ", " end end wrapper *= "return Some{Any}($fname($argcall)$annotation)" if nargs < maxarg wrapper *= "\n elseif nargs == " end end wrapper *= "\n else" wrapper *= "\n return Some{Any}($fname(getargs(args, frame)...)$annotation)" # to throw the correct error wrapper *= "\n end" return wrapper end function generate_fcall(f, table, id) minarg, maxarg = nargs(f, table, id) fname = scopedname(f) if maxarg < typemax(Int) return generate_fcall_nargs(fname, minarg, maxarg) end # A built-in with arbitrary or unknown number of arguments. # This will (unfortunately) use dynamic dispatch. return "return Some{Any}($fname(getargs(args, frame)...))" end # `io` is for the generated source file # `intrinsicsfile` is the path to Julia's `src/intrinsics.h` file function generate_builtins(file::String) open(file, "w") do io generate_builtins(io::IO) end end function generate_builtins(io::IO) pat = r"(ADD_I|ALIAS)\((\w*)," print(io, """ # This file is generated by `generate_builtins.jl`. Do not edit by hand. function getargs(args, frame) nargs = length(args)-1 # skip f callargs = resize!(frame.framedata.callargs, nargs) for i = 1:nargs callargs[i] = @lookup(frame, args[i+1]) end return callargs end const kwinvoke = Core.kwfunc(Core.invoke) function maybe_recurse_expanded_builtin(frame, new_expr) f = new_expr.args[1] if isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction) return maybe_evaluate_builtin(frame, new_expr, true) else return new_expr end end \"\"\" ret = maybe_evaluate_builtin(frame, call_expr, expand::Bool) If `call_expr` is to a builtin function, evaluate it, returning the result inside a `Some` wrapper. Otherwise, return `call_expr`. If `expand` is true, `Core._apply_iterate` calls will be resolved as a call to the applied function. \"\"\" function maybe_evaluate_builtin(frame, call_expr, expand::Bool) args = call_expr.args nargs = length(args) - 1 fex = args[1] if isa(fex, QuoteNode) f = fex.value else f = @lookup(frame, fex) end if @static isdefined(Core, :OpaqueClosure) && f isa Core.OpaqueClosure if expand if !Core.Compiler.uncompressed_ir(f.source).inferred return Expr(:call, f, args[2:end]...) else @debug "not interpreting opaque closure \$f since it contains inferred code" end end return Some{Any}(f(args...)) end if !(isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction)) return call_expr end # By having each call appearing statically in the "switch" block below, # each gets call-site optimized. """) firstcall = true for ft in subtypes(Core.Builtin) ft === Core.IntrinsicFunction && continue ft === typeof(kwinvoke) && continue # handle this one later head = firstcall ? "if" : "elseif" firstcall = false f = ft.instance fname = scopedname(f) # Tuple is common, especially for returned values from calls. It's worth avoiding # dynamic dispatch through a call to `ntuple`. if f === tuple print(io, """ $head f === tuple return Some{Any}(ntupleany(i->@lookup(frame, args[i+1]), length(args)-1)) """) continue elseif f === Core._apply_iterate # Resolve varargs calls print(io, """ $head f === Core._apply_iterate argswrapped = getargs(args, frame) if !expand return Some{Any}(Core._apply_iterate(argswrapped...)) end aw1 = argswrapped[1]::Function @assert aw1 === Core.iterate || aw1 === Core.Compiler.iterate || aw1 === Base.iterate "cannot handle `_apply_iterate` with non iterate as first argument, got \$(aw1), \$(typeof(aw1))" new_expr = Expr(:call, argswrapped[2]) popfirst!(argswrapped) # pop the iterate popfirst!(argswrapped) # pop the function argsflat = append_any(argswrapped...) for x in argsflat push!(new_expr.args, QuoteNode(x)) end return maybe_recurse_expanded_builtin(frame, new_expr) """) continue elseif f === Core.invoke fstr = scopedname(f) print(io, """ $head f === $fstr if !expand argswrapped = getargs(args, frame) return Some{Any}($fstr(argswrapped...)) end # This uses the original arguments to avoid looking them up twice # See #442 return Expr(:call, invoke, args[2:end]...) """) continue elseif f === Core._call_latest print(io, """ elseif f === Core._call_latest args = getargs(args, frame) if !expand return Some{Any}(Core._call_latest(args...)) end new_expr = Expr(:call, args[1]) popfirst!(args) for x in args push!(new_expr.args, QuoteNode(x)) end return maybe_recurse_expanded_builtin(frame, new_expr) """) continue elseif f === Core.current_scope print(io, """ elseif @static isdefined(Core, :current_scope) && f === Core.current_scope if nargs == 0 currscope = Core.current_scope() for scope in frame.framedata.current_scopes currscope = Scope(currscope, scope.values...) end return Some{Any}(currscope) else return Some{Any}(Core.current_scope(getargs(args, frame)...)) end """) continue end id = findfirst(isequal(f), Core.Compiler.T_FFUNC_KEY) fcall = generate_fcall(f, Core.Compiler.T_FFUNC_VAL, id) if !(f in ALWAYS_PRESENT) print(io, """ $head @static isdefined($(ft.name.module), $(repr(nameof(f)))) && f === $fname $fcall """) else print(io, """ $head f === $fname $fcall """) end firstcall = false end print(io, """ # Intrinsics """) print(io, """ elseif f === Base.cglobal if nargs == 1 call_expr = copy(call_expr) args2 = args[2] call_expr.args[2] = isa(args2, QuoteNode) ? args2 : @lookup(frame, args2) return Some{Any}(Core.eval(moduleof(frame), call_expr)) elseif nargs == 2 call_expr = copy(call_expr) args2 = args[2] call_expr.args[2] = isa(args2, QuoteNode) ? args2 : @lookup(frame, args2) call_expr.args[3] = @lookup(frame, args[3]) return Some{Any}(Core.eval(moduleof(frame), call_expr)) end """) # recently removed builtins for (; mod, name) in RECENTLY_REMOVED minarg = 1 if name in (:arrayref, :const_arrayref, :memoryref) maxarg = 5 elseif name === :arrayset maxarg = 6 elseif name === :arraysize maxarg = 2 elseif name === :set_binding_type! minarg = 2 maxarg = 3 end _scopedname = "$mod.$name" fcall = generate_fcall_nargs(_scopedname, minarg, maxarg) rname = repr(name) print(io, """ elseif @static (isdefined($mod, $rname) && $_scopedname isa Core.Builtin) && f === $_scopedname $fcall """) end # Extract any intrinsics that support varargs fva = [] minmin, maxmax = typemax(Int), 0 for fsym in names(Core.Intrinsics) fsym === :Intrinsics && continue isdefined(Base, fsym) || continue f = getfield(Base, fsym) id = reinterpret(Int32, f) + 1 minarg, maxarg = nargs(f, Core.Compiler.T_IFUNC, id) if maxarg == typemax(Int) push!(fva, f) else minmin = min(minmin, minarg) maxmax = max(maxmax, maxarg) end end for f in fva id = reinterpret(Int32, f) + 1 fname = scopedname(f) fcall = generate_fcall(f, Core.Compiler.T_IFUNC, id) print(io, """ elseif f === $fname $fcall end """) end # Now handle calls with bounded numbers of args print(io, """ if isa(f, Core.IntrinsicFunction) cargs = getargs(args, frame) @static if isdefined(Core.Intrinsics, :have_fma) if f === Core.Intrinsics.have_fma && length(cargs) == 1 cargs1 = cargs[1] if cargs1 == Float64 return Some{Any}(FMA_FLOAT64[]) elseif cargs1 == Float32 return Some{Any}(FMA_FLOAT32[]) elseif cargs1 == Float16 return Some{Any}(FMA_FLOAT16[]) end end end if f === Core.Intrinsics.muladd_float && length(cargs) == 3 a, b, c = cargs Ta, Tb, Tc = typeof(a), typeof(b), typeof(c) if !(Ta == Tb == Tc) error("muladd_float: types of a, b, and c must match") end if Ta == Float64 && FMA_FLOAT64[] f = Core.Intrinsics.fma_float elseif Ta == Float32 && FMA_FLOAT32[] f = Core.Intrinsics.fma_float elseif Ta == Float16 && FMA_FLOAT16[] f = Core.Intrinsics.fma_float end end return Some{Any}(ccall(:jl_f_intrinsic_call, Any, (Any, Ptr{Any}, UInt32), f, cargs, length(cargs))) """) print(io, """ end if isa(f, typeof(kwinvoke)) return Some{Any}(kwinvoke(getargs(args, frame)...)) end return call_expr end """) end builtins_dir = get(ENV, "JULIAINTERPRETER_BUILTINS_DIR", joinpath(@__DIR__, "..", "src")) generate_builtins(joinpath(builtins_dir, "builtins.jl"))
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
768
using Documenter, JuliaInterpreter, Test, CodeTracking DocMeta.setdocmeta!(JuliaInterpreter, :DocTestSetup, :( begin using JuliaInterpreter JuliaInterpreter.clear_caches() JuliaInterpreter.remove() end); recursive=true) makedocs( modules = [JuliaInterpreter], clean = false, format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"), sitename = "JuliaInterpreter.jl", authors = "Keno Fischer, Tim Holy, Kristoffer Carlsson, and others", linkcheck = !("skiplinks" in ARGS), pages = [ "Home" => "index.md", "ast.md", "internals.md", "dev_reference.md", ], ) deploydocs( repo = "github.com/JuliaDebug/JuliaInterpreter.jl.git", push_preview = true )
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
537
module JuliaInterpreter # We use a code structure where all `using` and `import` # statements in the package that load anything other than # a Julia base or stdlib package are located in this file here. # Nothing else should appear in this file here, apart from # the `include("packagedef.jl")` statement, which loads what # we would normally consider the bulk of the package code. # This somewhat unusual structure is in place to support # the VS Code extension integration. using CodeTracking include("packagedef.jl") end # module
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
14352
using Base: Callable const _breakpoints = AbstractBreakpoint[] """ breakpoints()::Vector{AbstractBreakpoint} Return an array with all breakpoints. """ breakpoints() = _breakpoints const breakpoint_update_hooks = [] """ on_breakpoints_updated(f) Register a two-argument function to be called after any update to the set of all breakpoints. This includes their creation, deletion, enabling and disabling. The function `f` should take two inputs: - First argument is the function doing to update, this is provided to allow to dispatch on its type. It will be one: - `::typeof(breakpoint)` for the creation, - `::typeof(remove)` for the deletion. - `::typeof(update_states)` for disable/enable/toggleing - Second argument is the breakpoint object that was changed. If only desiring to handle some kinds of update, `f` should have fallback methods to do nothing in the general case. !!! warning This feature is experimental, and may be modified or removed in a minor release. """ on_breakpoints_updated(f) = push!(breakpoint_update_hooks, f) """ firehooks(hooked_fun, bp::AbstractBreakpoint) Trigger all hooks that were registered with [`on_breakpoints_updated`](@ref), passing them the `hooked_fun` and the `bp`. This should be called whenever the set of breakpoints is updated. `hooked_fun` is the function doing the update, and `bp` is the relevent breakpoint being updated _after_ the update is applied. !!! warning This feature is experimental, and may be modified or removed in a minor release. """ function firehooks(hooked_fun, bp::AbstractBreakpoint) for hook in breakpoint_update_hooks try hook(hooked_fun, bp) catch err @warn "Hook function errored" hook hooked_fun bp exception=err end end end function add_to_existing_framecodes(bp::AbstractBreakpoint) for framecode in values(framedict) add_breakpoint_if_match!(framecode, bp) end end function add_breakpoint_if_match!(framecode::FrameCode, bp::BreakpointSignature) if framecode_matches_breakpoint(framecode, bp) scope = framecode.scope matching_file = if scope isa Method scope.file else # TODO: make more precise? first(framecode.src.linetable).file end stmtidxs = bp.line === 0 ? [1] : statementnumbers(framecode, bp.line, matching_file::Symbol) stmtidxs === nothing && return breakpoint!(framecode, stmtidxs, bp.condition, bp.enabled[]) foreach(stmtidx -> push!(bp.instances, BreakpointRef(framecode, stmtidx)), stmtidxs) return end end function framecode_matches_breakpoint(framecode::FrameCode, bp::BreakpointSignature) function extract_function_from_method(m::Method) sig = Base.unwrap_unionall(m.sig) ft0 = sig.parameters[1] ft = Base.unwrap_unionall(ft0) if ft <: Function && isa(ft, DataType) && isdefined(ft, :instance) return ft.instance elseif isa(ft, DataType) && ft.name === Type.body.name return ft.parameters[1] else return ft end end meth = framecode.scope meth isa Method || return false bp.f isa Method && return meth === bp.f f = extract_function_from_method(meth) if !(bp.f === f || @static isdefined(Core, :kwcall) ? f === Core.kwcall && let ftype = Base.unwrap_unionall(meth.sig).parameters[3] !Base.has_free_typevars(ftype) && bp.f isa ftype end : Core.kwfunc(bp.f) === f ) return false end bp.sig === nothing && return true return bp.sig <: meth.sig end """ breakpoint(f, [sig], [line], [condition]) Add a breakpoint to `f` with the specified argument types `sig`.¨ If `sig` is not given, the breakpoint will apply to all methods of `f`. If `f` is a method, the breakpoint will only apply to that method. Optionally specify an absolute line number `line` in the source file; the default is to break upon entry at the first line of the body. Without `condition`, the breakpoint will be triggered every time it is encountered; the second only if `condition` evaluates to `true`. `condition` should be written in terms of the arguments and local variables of `f`. # Example ```julia function radius2(x, y) return x^2 + y^2 end breakpoint(radius2, Tuple{Int,Int}, :(y > x)) ``` """ function breakpoint(f::Union{Method, Callable}, sig=nothing, line::Integer=0, condition::Condition=nothing) if sig !== nothing && f isa Callable sig = Base.to_tuple_type(sig) sig = Tuple{_Typeof(f), sig.parameters...} end bp = BreakpointSignature(f, sig, line, condition, Ref(true), BreakpointRef[]) add_to_existing_framecodes(bp) idx = findfirst(bp2 -> same_location(bp, bp2), _breakpoints) if idx === nothing # creating new push!(_breakpoints, bp) else #Replace existing breakpoint old_bp = _breakpoints[idx] _breakpoints[idx] = bp firehooks(remove, old_bp) end firehooks(breakpoint, bp) return bp end breakpoint(f::Union{Method, Callable}, sig, condition::Condition) = breakpoint(f, sig, 0, condition) breakpoint(f::Union{Method, Callable}, line::Integer, condition::Condition=nothing) = breakpoint(f, nothing, line, condition) breakpoint(f::Union{Method, Callable}, condition::Condition) = breakpoint(f, nothing, 0, condition) """ breakpoint(file, line, [condition]) Set a breakpoint in `file` at `line`. The argument `file` can be a filename, a partial path or absolute path. For example, `file = foo.jl` will match against all files with the name `foo.jl`, `file = src/foo.jl` will match against all paths containing `src/foo.jl`, e.g. both `Foo/src/foo.jl` and `Bar/src/foo.jl`. Absolute paths only matches against the file with that exact absolute path. """ function breakpoint(file::AbstractString, line::Integer, condition::Condition=nothing) file = normpath(file) apath = CodeTracking.maybe_fix_path(abspath(file)) ispath(apath) && (apath = realpath(apath)) bp = BreakpointFileLocation(file, apath, line, condition, Ref(true), BreakpointRef[]) add_to_existing_framecodes(bp) idx = findfirst(bp2 -> same_location(bp, bp2), _breakpoints) idx === nothing ? push!(_breakpoints, bp) : (_breakpoints[idx] = bp) firehooks(breakpoint, bp) return bp end function add_breakpoint_if_match!(framecode::FrameCode, bp::BreakpointFileLocation) framecode_contains_file = false matching_file = nothing for file in framecode.unique_files filepath = CodeTracking.maybe_fix_path(String(file)) if Base.samefile(bp.abspath, filepath) || endswith(filepath, bp.path) framecode_contains_file = true matching_file = file break end end framecode_contains_file || return nothing stmtidxs = bp.line === 0 ? [1] : statementnumbers(framecode, bp.line, matching_file::Symbol) stmtidxs === nothing && return breakpoint!(framecode, stmtidxs, bp.condition, bp.enabled[]) foreach(stmtidx -> push!(bp.instances, BreakpointRef(framecode, stmtidx)), stmtidxs) return end function shouldbreak(frame::Frame, pc::Int) bps = frame.framecode.breakpoints isassigned(bps, pc) || return false bp = bps[pc] bp.isactive || return false return Base.invokelatest(bp.condition, frame)::Bool end function prepare_slotfunction(framecode::FrameCode, body::Union{Symbol,Expr}) framename, dataname = gensym("frame"), gensym("data") assignments = Expr[:($dataname = $framename.framedata)] default = Unassigned() for slotname in unique(framecode.src.slotnames) list = framecode.slotnamelists[slotname] if length(list) == 1 maxexpr = :($dataname.last_reference[$(list[1])] > 0 ? $(list[1]) : 0) else maxcounter, maxidx = gensym("maxcounter"), gensym("maxidx") maxexpr = quote begin $maxcounter, $maxidx = 0, 0 for l in $list counter = $dataname.last_reference[l] if counter > $maxcounter $maxcounter, $maxidx = counter, l end end $maxidx end end end maxexsym = gensym("slotid") push!(assignments, :($maxexsym = $maxexpr)) push!(assignments, :($slotname = $maxexsym > 0 ? something($dataname.locals[$maxexsym]) : $default)) end scope = framecode.scope if isa(scope, Method) syms = sparam_syms(scope) for i = 1:length(syms) push!(assignments, Expr(:(=), syms[i], :($dataname.sparams[$i]))) end end funcname = isa(scope, Method) ? gensym("slotfunction") : gensym(Symbol(scope, "_slotfunction")) return Expr(:function, Expr(:call, funcname, framename), Expr(:block, assignments..., body)) end _unpack(condition) = isa(condition, Expr) ? (Main, condition) : condition ## The fundamental implementations of breakpoint-setting function breakpoint!(framecode::FrameCode, pc, condition::Condition=nothing, enabled=true) stmtidx = pc if condition === nothing framecode.breakpoints[stmtidx] = BreakpointState(enabled) else mod, cond = _unpack(condition) fex = prepare_slotfunction(framecode, cond) framecode.breakpoints[stmtidx] = BreakpointState(enabled, Core.eval(mod, fex)) end end breakpoint!(framecode::FrameCode, pcs::AbstractArray, condition::Condition=nothing, enabled=true) = foreach(pc -> breakpoint!(framecode, pc, condition, enabled), pcs) breakpoint!(frame::Frame, pc=frame.pc, condition::Condition=nothing) = breakpoint!(frame.framecode, pc, condition) function update_states!(bp::AbstractBreakpoint) foreach(bpref -> update_state!(bpref, bp.enabled[]), bp.instances) firehooks(update_states!, bp) end update_state!(bp::BreakpointRef, v::Bool) = bp[] = v """ enable(bp::AbstractBreakpoint) Enable breakpoint `bp`. """ enable(bp::AbstractBreakpoint) = (bp.enabled[] = true; update_states!(bp)) enable(bp::BreakpointRef) = update_state!(bp, true) """ disable(bp::AbstractBreakpoint) Disable breakpoint `bp`. Disabled breakpoints can be re-enabled with [`enable`](@ref). """ disable(bp::AbstractBreakpoint) = (bp.enabled[] = false; update_states!(bp)) disable(bp::BreakpointRef) = update_state!(bp, false) """ remove(bp::AbstractBreakpoint) Remove (delete) breakpoint `bp`. Removed breakpoints cannot be re-enabled. """ function remove(bp::AbstractBreakpoint) idx = findfirst(isequal(bp), _breakpoints) if idx !== nothing bp = _breakpoints[idx] deleteat!(_breakpoints, idx) firehooks(remove, bp) end foreach(remove, bp.instances) end function remove(bp::BreakpointRef) bp.framecode.breakpoints[bp.stmtidx] = BreakpointState(false, falsecondition) return nothing end """ toggle(bp::AbstractBreakpoint) Toggle breakpoint `bp`. """ toggle(bp::AbstractBreakpoint) = (bp.enabled[] = !bp.enabled[]; update_states!(bp)) toggle(bp::BreakpointRef) = update_state!(bp, !bp[].isactive) """ enable() Enable all breakpoints. """ enable() = foreach(enable, _breakpoints) """ disable() Disable all breakpoints. """ disable() = foreach(disable, _breakpoints) """ remove() Remove all breakpoints. """ function remove() for bp in _breakpoints foreach(remove, bp.instances) end empty!(_breakpoints) end """ break_on(states...) Turn on automatic breakpoints when any of the conditions described in `states` occurs. The supported states are: - `:error`: trigger a breakpoint any time an uncaught exception is thrown - `:throw` : trigger a breakpoint any time a throw is executed (even if it will eventually be caught) """ function break_on(states::Vararg{Symbol}) for state in states if state === :error break_on_error[] = true elseif state === :throw break_on_throw[] = true else throw(ArgumentError(string("unsupported state :", state))) end end end """ break_off(states...) Turn off automatic breakpoints when any of the conditions described in `states` occurs. See [`break_on`](@ref) for a description of valid states. """ function break_off(states::Vararg{Symbol}) for state in states if state === :error break_on_error[] = false elseif state === :throw break_on_throw[] = false else throw(ArgumentError(string("unsupported state :", state))) end end end """ @breakpoint f(args...) condition=nothing @breakpoint f(args...) line condition=nothing Break upon entry, or at the specified line number, in the method called by `f(args...)`. Optionally supply a condition expressed in terms of the arguments and internal variables of the method. If `line` is supplied, it must be a literal integer. # Example Suppose a method `mysum` is defined as follows, where the numbers to the left are the line number in the file: ``` 12 function mysum(A) 13 s = zero(eltype(A)) 14 for a in A 15 s += a 16 end 17 return s 18 end ``` Then ``` @breakpoint mysum(A) 15 s>10 ``` would cause execution of the loop to break whenever `s>10`. """ macro breakpoint(call_expr, args...) whichexpr = InteractiveUtils.gen_call_with_extracted_types(__module__, :which, call_expr) haveline, line, condition = false, 0, nothing while !isempty(args) arg = first(args) if isa(arg, Integer) haveline, line = true, arg else condition = arg end args = Base.tail(args) end condexpr = condition === nothing ? nothing : esc(Expr(:quote, condition)) if haveline return quote local method = $whichexpr $breakpoint(method, $line, $condexpr) end else return quote local method = $whichexpr $breakpoint(method, $condexpr) end end end struct BreakPointMarker end const __BREAK_POINT_MARKER__ = BreakPointMarker() """ @bp Insert a breakpoint at a location in the source code. """ macro bp() return :(__BREAK_POINT_MARKER__) end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
27967
# This file is generated by `generate_builtins.jl`. Do not edit by hand. function getargs(args, frame) nargs = length(args)-1 # skip f callargs = resize!(frame.framedata.callargs, nargs) for i = 1:nargs callargs[i] = @lookup(frame, args[i+1]) end return callargs end const kwinvoke = Core.kwfunc(Core.invoke) function maybe_recurse_expanded_builtin(frame, new_expr) f = new_expr.args[1] if isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction) return maybe_evaluate_builtin(frame, new_expr, true) else return new_expr end end """ ret = maybe_evaluate_builtin(frame, call_expr, expand::Bool) If `call_expr` is to a builtin function, evaluate it, returning the result inside a `Some` wrapper. Otherwise, return `call_expr`. If `expand` is true, `Core._apply_iterate` calls will be resolved as a call to the applied function. """ function maybe_evaluate_builtin(frame, call_expr, expand::Bool) args = call_expr.args nargs = length(args) - 1 fex = args[1] if isa(fex, QuoteNode) f = fex.value else f = @lookup(frame, fex) end if @static isdefined(Core, :OpaqueClosure) && f isa Core.OpaqueClosure if expand if !Core.Compiler.uncompressed_ir(f.source).inferred return Expr(:call, f, args[2:end]...) else @debug "not interpreting opaque closure $f since it contains inferred code" end end return Some{Any}(f(args...)) end if !(isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction)) return call_expr end # By having each call appearing statically in the "switch" block below, # each gets call-site optimized. if f === <: if nargs == 2 return Some{Any}(<:(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(<:(getargs(args, frame)...)) end elseif f === === if nargs == 2 return Some{Any}(===(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(===(getargs(args, frame)...)) end elseif f === Core._abstracttype return Some{Any}(Core._abstracttype(getargs(args, frame)...)) elseif f === Core._apply_iterate argswrapped = getargs(args, frame) if !expand return Some{Any}(Core._apply_iterate(argswrapped...)) end aw1 = argswrapped[1]::Function @assert aw1 === Core.iterate || aw1 === Core.Compiler.iterate || aw1 === Base.iterate "cannot handle `_apply_iterate` with non iterate as first argument, got $(aw1), $(typeof(aw1))" new_expr = Expr(:call, argswrapped[2]) popfirst!(argswrapped) # pop the iterate popfirst!(argswrapped) # pop the function argsflat = append_any(argswrapped...) for x in argsflat push!(new_expr.args, QuoteNode(x)) end return maybe_recurse_expanded_builtin(frame, new_expr) elseif f === Core._apply_pure return Some{Any}(Core._apply_pure(getargs(args, frame)...)) elseif f === Core._call_in_world return Some{Any}(Core._call_in_world(getargs(args, frame)...)) elseif @static isdefined(Core, :_call_in_world_total) && f === Core._call_in_world_total return Some{Any}(Core._call_in_world_total(getargs(args, frame)...)) elseif f === Core._call_latest args = getargs(args, frame) if !expand return Some{Any}(Core._call_latest(args...)) end new_expr = Expr(:call, args[1]) popfirst!(args) for x in args push!(new_expr.args, QuoteNode(x)) end return maybe_recurse_expanded_builtin(frame, new_expr) elseif @static isdefined(Core, :_compute_sparams) && f === Core._compute_sparams return Some{Any}(Core._compute_sparams(getargs(args, frame)...)) elseif f === Core._equiv_typedef return Some{Any}(Core._equiv_typedef(getargs(args, frame)...)) elseif f === Core._expr return Some{Any}(Core._expr(getargs(args, frame)...)) elseif f === Core._primitivetype return Some{Any}(Core._primitivetype(getargs(args, frame)...)) elseif f === Core._setsuper! return Some{Any}(Core._setsuper!(getargs(args, frame)...)) elseif f === Core._structtype return Some{Any}(Core._structtype(getargs(args, frame)...)) elseif @static isdefined(Core, :_svec_ref) && f === Core._svec_ref return Some{Any}(Core._svec_ref(getargs(args, frame)...)) elseif f === Core._typebody! return Some{Any}(Core._typebody!(getargs(args, frame)...)) elseif f === Core._typevar if nargs == 3 return Some{Any}(Core._typevar(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(Core._typevar(getargs(args, frame)...)) end elseif f === Core.apply_type return Some{Any}(Core.apply_type(getargs(args, frame)...)) elseif @static isdefined(Core, :compilerbarrier) && f === Core.compilerbarrier if nargs == 2 return Some{Any}(Core.compilerbarrier(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(Core.compilerbarrier(getargs(args, frame)...)) end elseif @static isdefined(Core, :current_scope) && f === Core.current_scope if nargs == 0 currscope = Core.current_scope() for scope in frame.framedata.current_scopes currscope = Scope(currscope, scope.values...) end return Some{Any}(currscope) else return Some{Any}(Core.current_scope(getargs(args, frame)...)) end elseif @static isdefined(Core, :donotdelete) && f === Core.donotdelete return Some{Any}(Core.donotdelete(getargs(args, frame)...)) elseif @static isdefined(Core, :finalizer) && f === Core.finalizer if nargs == 2 return Some{Any}(Core.finalizer(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.finalizer(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.finalizer(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(Core.finalizer(getargs(args, frame)...)) end elseif @static isdefined(Core, :get_binding_type) && f === Core.get_binding_type if nargs == 2 return Some{Any}(Core.get_binding_type(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(Core.get_binding_type(getargs(args, frame)...)) end elseif f === Core.ifelse if nargs == 3 return Some{Any}(Core.ifelse(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(Core.ifelse(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryref_isassigned) && f === Core.memoryref_isassigned if nargs == 3 return Some{Any}(Core.memoryref_isassigned(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(Core.memoryref_isassigned(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefget) && f === Core.memoryrefget if nargs == 3 return Some{Any}(Core.memoryrefget(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(Core.memoryrefget(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefmodify!) && f === Core.memoryrefmodify! if nargs == 5 return Some{Any}(Core.memoryrefmodify!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.memoryrefmodify!(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefnew) && f === Core.memoryrefnew if nargs == 1 return Some{Any}(Core.memoryrefnew(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.memoryrefnew(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.memoryrefnew(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.memoryrefnew(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.memoryrefnew(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.memoryrefnew(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefoffset) && f === Core.memoryrefoffset if nargs == 1 return Some{Any}(Core.memoryrefoffset(@lookup(frame, args[2]))) else return Some{Any}(Core.memoryrefoffset(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefreplace!) && f === Core.memoryrefreplace! if nargs == 6 return Some{Any}(Core.memoryrefreplace!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]), @lookup(frame, args[7]))) else return Some{Any}(Core.memoryrefreplace!(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefset!) && f === Core.memoryrefset! if nargs == 4 return Some{Any}(Core.memoryrefset!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(Core.memoryrefset!(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefsetonce!) && f === Core.memoryrefsetonce! if nargs == 5 return Some{Any}(Core.memoryrefsetonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.memoryrefsetonce!(getargs(args, frame)...)) end elseif @static isdefined(Core, :memoryrefswap!) && f === Core.memoryrefswap! if nargs == 4 return Some{Any}(Core.memoryrefswap!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(Core.memoryrefswap!(getargs(args, frame)...)) end elseif f === Core.sizeof if nargs == 1 return Some{Any}(Core.sizeof(@lookup(frame, args[2]))) else return Some{Any}(Core.sizeof(getargs(args, frame)...)) end elseif f === Core.svec return Some{Any}(Core.svec(getargs(args, frame)...)) elseif @static isdefined(Core, :throw_methoderror) && f === Core.throw_methoderror return Some{Any}(Core.throw_methoderror(getargs(args, frame)...)) elseif f === applicable return Some{Any}(applicable(getargs(args, frame)...)) elseif f === fieldtype if nargs == 2 return Some{Any}(fieldtype(@lookup(frame, args[2]), @lookup(frame, args[3]))::Type) elseif nargs == 3 return Some{Any}(fieldtype(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))::Type) else return Some{Any}(fieldtype(getargs(args, frame)...)::Type) end elseif f === getfield if nargs == 2 return Some{Any}(getfield(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(getfield(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(getfield(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(getfield(getargs(args, frame)...)) end elseif @static isdefined(Core, :getglobal) && f === getglobal if nargs == 2 return Some{Any}(getglobal(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(getglobal(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(getglobal(getargs(args, frame)...)) end elseif f === invoke if !expand argswrapped = getargs(args, frame) return Some{Any}(invoke(argswrapped...)) end # This uses the original arguments to avoid looking them up twice # See #442 return Expr(:call, invoke, args[2:end]...) elseif f === isa if nargs == 2 return Some{Any}(isa(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(isa(getargs(args, frame)...)) end elseif f === isdefined if nargs == 2 return Some{Any}(isdefined(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(isdefined(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(isdefined(getargs(args, frame)...)) end elseif @static isdefined(Core, :modifyfield!) && f === modifyfield! if nargs == 4 return Some{Any}(modifyfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(modifyfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(modifyfield!(getargs(args, frame)...)) end elseif @static isdefined(Core, :modifyglobal!) && f === modifyglobal! if nargs == 4 return Some{Any}(modifyglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(modifyglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(modifyglobal!(getargs(args, frame)...)) end elseif f === nfields if nargs == 1 return Some{Any}(nfields(@lookup(frame, args[2]))) else return Some{Any}(nfields(getargs(args, frame)...)) end elseif @static isdefined(Core, :replacefield!) && f === replacefield! if nargs == 4 return Some{Any}(replacefield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(replacefield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) elseif nargs == 6 return Some{Any}(replacefield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]), @lookup(frame, args[7]))) else return Some{Any}(replacefield!(getargs(args, frame)...)) end elseif @static isdefined(Core, :replaceglobal!) && f === replaceglobal! if nargs == 4 return Some{Any}(replaceglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(replaceglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) elseif nargs == 6 return Some{Any}(replaceglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]), @lookup(frame, args[7]))) else return Some{Any}(replaceglobal!(getargs(args, frame)...)) end elseif f === setfield! if nargs == 3 return Some{Any}(setfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(setfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(setfield!(getargs(args, frame)...)) end elseif @static isdefined(Core, :setfieldonce!) && f === setfieldonce! if nargs == 3 return Some{Any}(setfieldonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(setfieldonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(setfieldonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(setfieldonce!(getargs(args, frame)...)) end elseif @static isdefined(Core, :setglobal!) && f === setglobal! if nargs == 3 return Some{Any}(setglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(setglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(setglobal!(getargs(args, frame)...)) end elseif @static isdefined(Core, :setglobalonce!) && f === setglobalonce! if nargs == 3 return Some{Any}(setglobalonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(setglobalonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(setglobalonce!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(setglobalonce!(getargs(args, frame)...)) end elseif @static isdefined(Core, :swapfield!) && f === swapfield! if nargs == 3 return Some{Any}(swapfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(swapfield!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(swapfield!(getargs(args, frame)...)) end elseif @static isdefined(Core, :swapglobal!) && f === swapglobal! if nargs == 3 return Some{Any}(swapglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(swapglobal!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) else return Some{Any}(swapglobal!(getargs(args, frame)...)) end elseif f === throw if nargs == 1 return Some{Any}(throw(@lookup(frame, args[2]))) else return Some{Any}(throw(getargs(args, frame)...)) end elseif f === tuple return Some{Any}(ntupleany(i->@lookup(frame, args[i+1]), length(args)-1)) elseif f === typeassert if nargs == 2 return Some{Any}(typeassert(@lookup(frame, args[2]), @lookup(frame, args[3]))) else return Some{Any}(typeassert(getargs(args, frame)...)) end elseif f === typeof if nargs == 1 return Some{Any}(typeof(@lookup(frame, args[2]))) else return Some{Any}(typeof(getargs(args, frame)...)) end # Intrinsics elseif f === Base.cglobal if nargs == 1 call_expr = copy(call_expr) args2 = args[2] call_expr.args[2] = isa(args2, QuoteNode) ? args2 : @lookup(frame, args2) return Some{Any}(Core.eval(moduleof(frame), call_expr)) elseif nargs == 2 call_expr = copy(call_expr) args2 = args[2] call_expr.args[2] = isa(args2, QuoteNode) ? args2 : @lookup(frame, args2) call_expr.args[3] = @lookup(frame, args[3]) return Some{Any}(Core.eval(moduleof(frame), call_expr)) end elseif @static (isdefined(Core, :arrayref) && Core.arrayref isa Core.Builtin) && f === Core.arrayref if nargs == 1 return Some{Any}(Core.arrayref(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.arrayref(getargs(args, frame)...)) end elseif @static (isdefined(Core, :arrayset) && Core.arrayset isa Core.Builtin) && f === Core.arrayset if nargs == 1 return Some{Any}(Core.arrayset(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) elseif nargs == 6 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]), @lookup(frame, args[7]))) else return Some{Any}(Core.arrayset(getargs(args, frame)...)) end elseif @static (isdefined(Core, :arrayset) && Core.arrayset isa Core.Builtin) && f === Core.arrayset if nargs == 1 return Some{Any}(Core.arrayset(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) elseif nargs == 6 return Some{Any}(Core.arrayset(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]), @lookup(frame, args[7]))) else return Some{Any}(Core.arrayset(getargs(args, frame)...)) end elseif @static (isdefined(Core, :const_arrayref) && Core.const_arrayref isa Core.Builtin) && f === Core.const_arrayref if nargs == 1 return Some{Any}(Core.const_arrayref(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.const_arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.const_arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.const_arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.const_arrayref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.const_arrayref(getargs(args, frame)...)) end elseif @static (isdefined(Core, :memoryref) && Core.memoryref isa Core.Builtin) && f === Core.memoryref if nargs == 1 return Some{Any}(Core.memoryref(@lookup(frame, args[2]))) elseif nargs == 2 return Some{Any}(Core.memoryref(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.memoryref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) elseif nargs == 4 return Some{Any}(Core.memoryref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]))) elseif nargs == 5 return Some{Any}(Core.memoryref(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]), @lookup(frame, args[5]), @lookup(frame, args[6]))) else return Some{Any}(Core.memoryref(getargs(args, frame)...)) end elseif @static (isdefined(Core, :set_binding_type!) && Core.set_binding_type! isa Core.Builtin) && f === Core.set_binding_type! if nargs == 2 return Some{Any}(Core.set_binding_type!(@lookup(frame, args[2]), @lookup(frame, args[3]))) elseif nargs == 3 return Some{Any}(Core.set_binding_type!(@lookup(frame, args[2]), @lookup(frame, args[3]), @lookup(frame, args[4]))) else return Some{Any}(Core.set_binding_type!(getargs(args, frame)...)) end elseif f === Core.Intrinsics.llvmcall return Some{Any}(Core.Intrinsics.llvmcall(getargs(args, frame)...)) end if isa(f, Core.IntrinsicFunction) cargs = getargs(args, frame) @static if isdefined(Core.Intrinsics, :have_fma) if f === Core.Intrinsics.have_fma && length(cargs) == 1 cargs1 = cargs[1] if cargs1 == Float64 return Some{Any}(FMA_FLOAT64[]) elseif cargs1 == Float32 return Some{Any}(FMA_FLOAT32[]) elseif cargs1 == Float16 return Some{Any}(FMA_FLOAT16[]) end end end if f === Core.Intrinsics.muladd_float && length(cargs) == 3 a, b, c = cargs Ta, Tb, Tc = typeof(a), typeof(b), typeof(c) if !(Ta == Tb == Tc) error("muladd_float: types of a, b, and c must match") end if Ta == Float64 && FMA_FLOAT64[] f = Core.Intrinsics.fma_float elseif Ta == Float32 && FMA_FLOAT32[] f = Core.Intrinsics.fma_float elseif Ta == Float16 && FMA_FLOAT16[] f = Core.Intrinsics.fma_float end end return Some{Any}(ccall(:jl_f_intrinsic_call, Any, (Any, Ptr{Any}, UInt32), f, cargs, length(cargs))) end if isa(f, typeof(kwinvoke)) return Some{Any}(kwinvoke(getargs(args, frame)...)) end return call_expr end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
24021
""" pc = finish!(recurse, frame, istoplevel=false) pc = finish!(frame, istoplevel=false) Run `frame` until execution terminates. `pc` is either `nothing` (if execution terminates when it hits a `return` statement) or a reference to a breakpoint. In the latter case, `leaf(frame)` returns the frame in which it hit the breakpoint. `recurse` controls call evaluation; `recurse = Compiled()` evaluates :call expressions by normal dispatch, whereas the default `recurse = finish_and_return!` uses recursive interpretation. """ function finish!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) while true pc = step_expr!(recurse, frame, istoplevel) pc === nothing && return pc isa(pc, BreakpointRef) && return pc shouldbreak(frame, pc) && return BreakpointRef(frame.framecode, pc) end end finish!(frame::Frame, istoplevel::Bool=false) = finish!(finish_and_return!, frame, istoplevel) """ ret = finish_and_return!(recurse, frame, istoplevel::Bool=false) ret = finish_and_return!(frame, istoplevel::Bool=false) Call [`JuliaInterpreter.finish!`](@ref) and pass back the return value `ret`. If execution pauses at a breakpoint, `ret` is the reference to the breakpoint. """ function finish_and_return!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) pc = finish!(recurse, frame, istoplevel) isa(pc, BreakpointRef) && return pc return get_return(frame) end finish_and_return!(frame::Frame, istoplevel::Bool=false) = finish_and_return!(finish_and_return!, frame, istoplevel) """ bpref = dummy_breakpoint(recurse, frame::Frame, istoplevel) Return a fake breakpoint. `dummy_breakpoint` can be useful as the `recurse` argument to `evaluate_call!` (or any of the higher-order commands) to ensure that you return immediately after stepping into a call. """ dummy_breakpoint(@nospecialize(recurse), frame::Frame, istoplevel) = BreakpointRef(frame.framecode, 0) """ ret = finish_stack!(recurse, frame, rootistoplevel=false) ret = finish_stack!(frame, rootistoplevel=false) Unwind the callees of `frame`, finishing each before returning to the caller. `frame` itself is also finished. `rootistoplevel` should be true if the root frame is top-level. `ret` is typically the returned value. If execution hits a breakpoint, `ret` will be a reference to the breakpoint. """ function finish_stack!(@nospecialize(recurse), frame::Frame, rootistoplevel::Bool=false) frame0 = frame frame = leaf(frame) while true istoplevel = rootistoplevel && frame.caller === nothing ret = finish_and_return!(recurse, frame, istoplevel) isa(ret, BreakpointRef) && return ret frame === frame0 && return ret frame = return_from(frame) frame === nothing && return ret pc = frame.pc if isassign(frame, pc) lhs = SSAValue(pc) do_assignment!(frame, lhs, ret) else stmt = pc_expr(frame, pc) if isexpr(stmt, :(=)) lhs = stmt.args[1] do_assignment!(frame, lhs, ret) end end pc += 1 frame.pc = pc shouldbreak(frame, pc) && return BreakpointRef(frame.framecode, pc) end end finish_stack!(frame::Frame, istoplevel::Bool=false) = finish_stack!(finish_and_return!, frame, istoplevel) """ pc = next_until!(predicate, recurse, frame, istoplevel=false) pc = next_until!(predicate, frame, istoplevel=false) Execute the current statement. Then step through statements of `frame` until the next statement satisfies `predicate(frame)`. `pc` will be the index of the statement at which evaluation terminates, `nothing` (if the frame reached a `return`), or a `BreakpointRef`. """ function next_until!(@nospecialize(predicate), @nospecialize(recurse), frame::Frame, istoplevel::Bool=false) pc = step_expr!(recurse, frame, istoplevel) while pc !== nothing && !isa(pc, BreakpointRef) shouldbreak(frame, pc) && return BreakpointRef(frame.framecode, pc) predicate(frame) && return pc pc = step_expr!(recurse, frame, istoplevel) end return pc end next_until!(predicate, frame::Frame, istoplevel::Bool=false) = next_until!(predicate, finish_and_return!, frame, istoplevel) """ pc = maybe_next_until!(predicate, recurse, frame, istoplevel=false) pc = maybe_next_until!(predicate, frame, istoplevel=false) Like [`next_until!`](@ref) except checks `predicate` before executing the current statment. """ function maybe_next_until!(@nospecialize(predicate), @nospecialize(recurse), frame::Frame, istoplevel::Bool=false) predicate(frame) && return frame.pc return next_until!(predicate, recurse, frame, istoplevel) end maybe_next_until!(@nospecialize(predicate), frame::Frame, istoplevel::Bool=false) = maybe_next_until!(predicate, finish_and_return!, frame, istoplevel) """ pc = next_call!(recurse, frame, istoplevel=false) pc = next_call!(frame, istoplevel=false) Execute the current statement. Continue stepping through `frame` until the next `ReturnNode` or `:call` expression. """ next_call!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) = next_until!(frame -> is_call_or_return(pc_expr(frame)), recurse, frame, istoplevel) next_call!(frame::Frame, istoplevel::Bool=false) = next_call!(finish_and_return!, frame, istoplevel) """ pc = maybe_next_call!(recurse, frame, istoplevel=false) pc = maybe_next_call!(frame, istoplevel=false) Return the current program counter of `frame` if it is a `ReturnNode` or `:call` expression. Otherwise, step through the statements of `frame` until the next `ReturnNode` or `:call` expression. """ maybe_next_call!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) = maybe_next_until!(frame -> is_call_or_return(pc_expr(frame)), recurse, frame, istoplevel) maybe_next_call!(frame::Frame, istoplevel::Bool=false) = maybe_next_call!(finish_and_return!, frame, istoplevel) """ pc = through_methoddef_or_done!(recurse, frame) pc = through_methoddef_or_done!(frame) Runs `frame` at top level until it either finishes (e.g., hits a `return` statement) or defines a new method. """ function through_methoddef_or_done!(@nospecialize(recurse), frame::Frame) predicate(frame) = (stmt = pc_expr(frame); isexpr(stmt, :method, 3) || isexpr(stmt, :thunk)) pc = next_until!(predicate, recurse, frame, true) (pc === nothing || isa(pc, BreakpointRef)) && return pc return step_expr!(recurse, frame, true) # define the method and return end through_methoddef_or_done!(@nospecialize(recurse), t::Tuple{Module,Expr,Frame}) = through_methoddef_or_done!(recurse, t[end]) through_methoddef_or_done!(@nospecialize(recurse), modex::Tuple{Module,Expr,Expr}) = Core.eval(modex[1], modex[3]) through_methoddef_or_done!(@nospecialize(recurse), ::Nothing) = nothing through_methoddef_or_done!(arg) = through_methoddef_or_done!(finish_and_return!, arg) # Sentinel to see if the call was a wrapper call struct Wrapper end """ pc = next_line!(recurse, frame, istoplevel=false) pc = next_line!(frame, istoplevel=false) Execute until reaching the first call of the next line of the source code. Upon return, `pc` is either the new program counter, `nothing` if a `return` is reached, or a `BreakpointRef` if it encountered a wrapper call. In the latter case, call `leaf(frame)` to obtain the new execution frame. """ function next_line!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) pc = frame.pc initialline, initialfile = linenumber(frame, pc), getfile(frame, pc) if initialline === nothing || initialfile === nothing return step_expr!(recurse, frame, istoplevel) end return _next_line!(recurse, frame, istoplevel, initialline, initialfile) # avoid boxing end function _next_line!(@nospecialize(recurse), frame::Frame, istoplevel, initialline::Int, initialfile::String) predicate(frame) = is_return(pc_expr(frame)) || (linenumber(frame) != initialline || getfile(frame) != initialfile) pc = next_until!(predicate, recurse, frame, istoplevel) (pc === nothing || isa(pc, BreakpointRef)) && return pc maybe_step_through_kwprep!(recurse, frame, istoplevel) maybe_next_call!(recurse, frame, istoplevel) end next_line!(frame::Frame, istoplevel::Bool=false) = next_line!(finish_and_return!, frame, istoplevel) """ pc = until_line!(recurse, frame, line=nothing istoplevel=false) pc = until_line!(frame, line=nothing, istoplevel=false) Execute until the current frame reaches a line greater than `line`. If `line == nothing` execute until the current frame reaches any line greater than the current line. """ function until_line!(@nospecialize(recurse), frame::Frame, line::Union{Nothing, Integer}=nothing, istoplevel::Bool=false) pc = frame.pc initialline, initialfile = linenumber(frame, pc), getfile(frame, pc) line === nothing && (line = initialline + 1) predicate(frame) = is_return(pc_expr(frame)) || (linenumber(frame) >= line && getfile(frame) == initialfile) pc = next_until!(predicate, frame, istoplevel) (pc === nothing || isa(pc, BreakpointRef)) && return pc maybe_step_through_kwprep!(recurse, frame, istoplevel) maybe_next_call!(recurse, frame, istoplevel) end until_line!(frame::Frame, line::Union{Nothing, Integer}=nothing, istoplevel::Bool=false) = until_line!(finish_and_return!, frame, line, istoplevel) """ cframe = maybe_step_through_wrapper!(recurse, frame) cframe = maybe_step_through_wrapper!(frame) Return the new frame of execution, potentially stepping through "wrapper" methods like those that supply default positional arguments or handle keywords. `cframe` is the leaf frame from which execution should start. """ function maybe_step_through_wrapper!(@nospecialize(recurse), frame::Frame) code = frame.framecode src = code.src stmts, scope = src.code, code.scope::Method length(stmts) < 2 && return frame last = stmts[end-1] isexpr(last, :(=)) && (last = last.args[2]) is_kw = false if isa(scope, Method) unwrap1 = Base.unwrap_unionall(scope.sig) if unwrap1 isa DataType param1 = Base.unwrap_unionall(unwrap1.parameters[1]) if param1 isa DataType is_kw = isdefined(Core, :kwcall) ? param1.name.name === Symbol("#kwcall") : endswith(String(param1.name.name), "#kw") end end end has_selfarg = isexpr(last, :call) && any(@nospecialize(x) -> isa(x, SlotNumber) && x.id == 1, last.args) # isequal(SlotNumber(1)) vulnerable to invalidation issplatcall, _callee = unpack_splatcall(last, src) if is_kw || has_selfarg || (issplatcall && is_bodyfunc(_callee)) # If the last expr calls #self# or passes it to an implementation method, # this is a wrapper function that we might want to step through while frame.pc != length(stmts)-1 pc = next_call!(recurse, frame, false) # since we're in a Method we're not at toplevel if pc === nothing || isa(pc, BreakpointRef) return frame end end ret = evaluate_call!(dummy_breakpoint, frame, last) if !isa(ret, BreakpointRef) # Happens if next call is Compiled return frame end frame.framedata.ssavalues[frame.pc] = Wrapper() return maybe_step_through_wrapper!(recurse, callee(frame)) end maybe_step_through_nkw_meta!(frame) return frame end maybe_step_through_wrapper!(frame::Frame) = maybe_step_through_wrapper!(finish_and_return!, frame) if isdefined(Core, :kwcall) const kwhandler = Core.kwcall const kwextrastep = 0 else const kwhandler = Core.kwfunc const kwextrastep = 1 end """ frame = maybe_step_through_kwprep!(recurse, frame) frame = maybe_step_through_kwprep!(frame) If `frame.pc` points to the beginning of preparatory work for calling a keyword-argument function, advance forward until the actual call. """ function maybe_step_through_kwprep!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) # XXX This code just does pattern-matching based on the current state of the compiler # internals, which means this is very fragile against any future changes to those # internals. We really need a more general and robust solution, but achieving that # would mean simplifying and unifying how "keyword function" is represented and # implemented. For the time being, our best bet is to keep tweaking it as best as we can. pc, src = frame.pc, frame.framecode.src n = length(src.code) stmt = pc_expr(frame, pc) if isa(stmt, Tuple{Symbol,Vararg{Symbol}}) # Check to see if we're creating a NamedTuple followed by kwfunc call pccall = pc + 4 + kwextrastep if pccall <= n stmt1 = src.code[pc+1] # We deliberately check isexpr(stmt, :call) rather than is_call(stmt): if it's # assigned to a local, it's *not* kwarg preparation. if isexpr(stmt1, :call) && is_quotenode_egal(stmt1.args[1], Core.apply_type) && is_quoted_type(stmt1.args[2], :NamedTuple) stmt4, stmt5 = src.code[pc+4], src.code[pc+5] if isexpr(stmt4, :call) && is_quotenode_egal(stmt4.args[1], kwhandler) while pc < pccall pc = step_expr!(recurse, frame, istoplevel) end return frame elseif isexpr(stmt5, :call) && is_quotenode_egal(stmt5.args[1], kwhandler) && pccall+1 <= n # This happens when the call is scoped by a module pccall += 1 while pc < pccall pc = step_expr!(recurse, frame, istoplevel) end maybe_next_call!(recurse, frame, istoplevel) return frame end end end elseif isexpr(stmt, :call) && is_quoted_type(stmt.args[1], :NamedTuple) && length(stmt.args) == 1 # Creating an empty NamedTuple, now split by type (no supplied kwargs vs kwargs...) if pc + 1 <= n stmt1 = src.code[pc+1] if isexpr(stmt1, :call) f = stmt1.args[1] if is_quotenode_egal(f, Base.pairs) # No supplied kwargs pcsplat = pc + 3 if pcsplat <= n issplatcall, callee = unpack_splatcall(src.code[pcsplat], src) if issplatcall && is_bodyfunc(callee) while pc < pcsplat pc = step_expr!(recurse, frame, istoplevel) end return frame end end pccall = pc + 2 if pccall <= n stmt2 = src.code[pccall] if isa(stmt2, Expr) if stmt2.head === :call && length(stmt2.args) >= 3 && stmt2.args[2] === SSAValue(pc+1) && stmt2.args[3] === SlotNumber(1) while pc < pccall pc = step_expr!(recurse, frame, istoplevel) end end end end elseif is_quotenode_egal(f, Base.merge) && ((pccall = pc + 7) <= n) stmtk = src.code[pccall-1] if isexpr(stmtk, :call) && is_quotenode_egal(stmtk.args[1], kwhandler) for i = 1:4 pc = step_expr!(recurse, frame, istoplevel) end stmti = src.code[pc] if isexpr(stmti, :call) && is_quotenode_egal(stmti.args[1], #= deliberately not kwhandler =# Core.kwfunc) pc = step_expr!(recurse, frame, istoplevel) end end end end end end return frame end maybe_step_through_kwprep!(frame::Frame, istoplevel::Bool=false) = maybe_step_through_kwprep!(finish_and_return!, frame, istoplevel) """ ret = maybe_reset_frame!(recurse, frame, pc, rootistoplevel) Perform a return to the caller, or descend to the level of a breakpoint. `pc` is the return state from the previous command (e.g., `next_call!` or similar). `rootistoplevel` should be true if the root frame is top-level. `ret` will be `nothing` if we have just completed a top-level frame. Otherwise, cframe, cpc = ret where `cframe` is the frame from which execution should continue and `cpc` is the state of `cframe` (the program counter, a `BreakpointRef`, or `nothing`). """ function maybe_reset_frame!(@nospecialize(recurse), frame::Frame, @nospecialize(pc), rootistoplevel::Bool) isa(pc, BreakpointRef) && return leaf(frame), pc if pc === nothing val = get_return(frame) frame = return_from(frame) frame === nothing && return nothing ssavals = frame.framedata.ssavalues is_wrapper = isassigned(ssavals, frame.pc) && ssavals[frame.pc] === Wrapper() maybe_assign!(frame, val) frame.pc >= nstatements(frame.framecode) && return maybe_reset_frame!(recurse, frame, nothing, rootistoplevel) frame.pc += 1 if is_wrapper return maybe_reset_frame!(recurse, frame, finish!(recurse, frame), rootistoplevel) end pc = maybe_next_call!(recurse, frame, rootistoplevel && frame.caller===nothing) return maybe_reset_frame!(recurse, frame, pc, rootistoplevel) end return frame, pc end maybe_reset_frame!(frame::Frame, @nospecialize(pc), rootistoplevel::Bool) = maybe_reset_frame!(finish_and_return!, frame, pc, rootistoplevel) # Unwind the stack until an exc is eventually caught, thereby # returning the frame that caught the exception at the pc of the catch # or rethrow the error function unwind_exception(frame::Frame, @nospecialize(exc)) while frame !== nothing if !isempty(frame.framedata.exception_frames) # Exception caught frame.pc = frame.framedata.exception_frames[end] frame.framedata.last_exception[] = exc return frame end frame = return_from(frame) end rethrow(exc) end function maybe_step_through_nkw_meta!(frame) stmt = pc_expr(frame) if stmt === nothing || (isexpr(stmt, :meta) && (stmt::Expr).args[1] === :nkw) @assert frame.pc == 1 frame.pc += 1 end end function more_calls_on_current_line(frame) _, curr_line = whereis(frame) curr_pc = frame.pc + 1 while curr_pc <= length(frame.framecode.src.code) _, new_line = whereis(frame, curr_pc) new_line == curr_line || return false is_call(pc_expr(frame, curr_pc)) && return true curr_pc += 1 end return false end """ ret = debug_command(recurse, frame, cmd, rootistoplevel=false; line=nothing) ret = debug_command(frame, cmd, rootistoplevel=false; line=nothing) Perform one "debugger" command. The keyword arguments are not used for all debug commands. `cmd` should be one of: - `:n`: advance to the next line - `:s`: step into the next call - `:sl` step into the last call on the current line (e.g. steps into `f` if the line is `f(g(h(x)))`). - `:sr` step until the current function will return - `:until`: advance the frame to line `line` if given, otherwise advance to the line after the current line - `:c`: continue execution until termination or reaching a breakpoint - `:finish`: finish the current frame and return to the parent or one of the 'advanced' commands - `:nc`: step forward to the next call - `:se`: execute a single statement - `:si`: execute a single statement, stepping in if it's a call - `:sg`: step into the generator of a generated function `rootistoplevel` and `ret` are as described for [`JuliaInterpreter.maybe_reset_frame!`](@ref). """ function debug_command(@nospecialize(recurse), frame::Frame, cmd::Symbol, rootistoplevel::Bool=false; line=nothing) function nicereturn!(@nospecialize(recurse), frame::Frame, pc, rootistoplevel) if pc === nothing || isa(pc, BreakpointRef) return maybe_reset_frame!(recurse, frame, pc, rootistoplevel) end maybe_step_through_kwprep!(recurse, frame, rootistoplevel && frame.caller === nothing) return frame, frame.pc end istoplevel = rootistoplevel && frame.caller === nothing cmd0 = cmd is_si = false if cmd === :si stmt = pc_expr(frame) cmd = is_call(stmt) ? :s : :se is_si = true end try cmd === :nc && return nicereturn!(recurse, frame, next_call!(recurse, frame, istoplevel), rootistoplevel) cmd === :n && return maybe_reset_frame!(recurse, frame, next_line!(recurse, frame, istoplevel), rootistoplevel) cmd === :se && return maybe_reset_frame!(recurse, frame, step_expr!(recurse, frame, istoplevel), rootistoplevel) cmd === :until && return maybe_reset_frame!(recurse, frame, until_line!(recurse, frame, line, istoplevel), rootistoplevel) if cmd === :sl while more_calls_on_current_line(frame) next_call!(recurse, frame, istoplevel) end return debug_command(recurse, frame, :s, rootistoplevel; line) end if cmd === :sr maybe_next_until!(frame -> is_return(pc_expr(frame)), recurse, frame, istoplevel) return frame, frame.pc end enter_generated = false if cmd === :sg enter_generated = true cmd = :s end if cmd === :s pc = maybe_next_call!(recurse, frame, istoplevel) (isa(pc, BreakpointRef) || pc === nothing) && return maybe_reset_frame!(recurse, frame, pc, rootistoplevel) is_si || maybe_step_through_kwprep!(recurse, frame, istoplevel) pc = frame.pc stmt0 = stmt = pc_expr(frame, pc) is_return(stmt0) && return maybe_reset_frame!(recurse, frame, nothing, rootistoplevel) if isexpr(stmt, :(=)) stmt = stmt.args[2] end local ret try ret = evaluate_call!(dummy_breakpoint, frame, stmt; enter_generated=enter_generated) catch err ret = handle_err(recurse, frame, err) return isa(ret, BreakpointRef) ? (leaf(frame), ret) : ret end if isa(ret, BreakpointRef) newframe = leaf(frame) cmd0 === :si && return newframe, ret is_si || (newframe = maybe_step_through_wrapper!(recurse, newframe)) is_si || maybe_step_through_kwprep!(recurse, newframe, istoplevel) return newframe, BreakpointRef(newframe.framecode, 0) end # if we got here, the call returned a value maybe_assign!(frame, stmt0, ret) frame.pc += 1 return frame, frame.pc end if cmd === :c r = root(frame) ret = finish_stack!(recurse, r, rootistoplevel) return isa(ret, BreakpointRef) ? (leaf(r), ret) : nothing end cmd === :finish && return maybe_reset_frame!(recurse, frame, finish!(recurse, frame, istoplevel), rootistoplevel) catch err frame = unwind_exception(frame, err) if cmd === :c return debug_command(recurse, frame, :c, istoplevel) else return debug_command(recurse, frame, :nc, istoplevel) end end throw(ArgumentError("command $cmd not recognized")) end debug_command(frame::Frame, cmd::Symbol, rootistoplevel::Bool=false; kwargs...) = debug_command(finish_and_return!, frame, cmd, rootistoplevel; kwargs...)
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
27043
""" `framedict[method]` returns the `FrameCode` for `method`. For `@generated` methods, see [`genframedict`](@ref). """ const framedict = Dict{Method,FrameCode}() # essentially a method table for lowered code """ `genframedict[(method,argtypes)]` returns the `FrameCode` for a `@generated` method `method`, for the particular argument types `argtypes`. The framecodes stored in `genframedict` are for the code returned by the generator (i.e, what will run when you call the method on particular argument types); for the generator itself, its framecode would be stored in [`framedict`](@ref). """ const genframedict = Dict{Tuple{Method,Type},FrameCode}() # the same for @generated functions """ `meth ∈ compiled_methods` indicates that `meth` should be run using [`Compiled`](@ref) rather than recursed into via the interpreter. """ const compiled_methods = Set{Method}() """ `meth ∈ interpreted_methods` indicates that `meth` should *not* be run using [`Compiled`](@ref) and recursed into via the interpreter. This takes precedence over [`compiled_methods`](@ref) and [`compiled_modules`](@ref). """ const interpreted_methods = Set{Method}() """ `mod ∈ compiled_modules` indicates that any method in `mod` should be run using [`Compiled`](@ref) rather than recursed into via the interpreter. """ const compiled_modules = Set{Module}() const junk_framedata = FrameData[] # to allow re-use of allocated memory (this is otherwise a bottleneck) const junk_frames = Frame[] debug_mode() = false @noinline function _check_frame_not_in_junk(frame) @assert frame.framedata ∉ junk_framedata @assert frame ∉ junk_frames end @inline function recycle(frame) debug_mode() && _check_frame_not_in_junk(frame) push!(junk_framedata, frame.framedata) push!(junk_frames, frame) end function return_from(frame::Frame) recycle(frame) frame = caller(frame) frame === nothing || (frame.callee = nothing) return frame end function clear_caches() empty!(junk_framedata) empty!(framedict) empty!(genframedict) empty!(junk_frames) for bp in breakpoints() empty!(bp.instances) end end const empty_svec = Core.svec() function namedtuple(kwargs) names, types, vals = Symbol[], [], [] for pr in kwargs if isa(pr, Expr) push!(names, pr.args[1]) val = pr.args[2] push!(types, typeof(val)) push!(vals, val) elseif isa(pr, Pair) push!(names, pr.first) val = pr.second push!(types, typeof(val)) push!(vals, val) else error("unhandled entry type ", typeof(pr)) end end return NamedTuple{(names...,), Tuple{types...}}(vals) end get_source(meth::Method) = Base.uncompressed_ast(meth) @static if VERSION < v"1.10.0-DEV.873" # julia#48766 function get_source(g::GeneratedFunctionStub, env, file, line) b = g(env..., g.argnames...) b isa CodeInfo && return b return eval(b) end else function get_source(g::GeneratedFunctionStub, env, file, line::Int) b = g(Base.get_world_counter(), LineNumberNode(line, file), env..., g.argnames...) b isa CodeInfo && return b return eval(b) end end """ frun, allargs = prepare_args(fcall, fargs, kwargs) Prepare the complete argument sequence for a call to `fcall`. `fargs = [fcall, args...]` is a list containing both `fcall` (the `#self#` slot in lowered code) and the positional arguments supplied to `fcall`. `kwargs` is a list of keyword arguments, supplied either as list of expressions `:(kwname=kwval)` or pairs `:kwname=>kwval`. For non-keyword methods, `frun === fcall`, but for methods with keywords `frun` will be the keyword-sorter function for `fcall`. # Example ```jldoctest julia> mymethod(x) = 1; julia> mymethod(x, y; verbose=false) = nothing; julia> JuliaInterpreter.prepare_args(mymethod, [mymethod, 15], ()) (mymethod, Any[mymethod, 15]) julia> JuliaInterpreter.prepare_args(mymethod, [mymethod, 1, 2], [:verbose=>true]) (Core.kwcall, Any[Core.kwcall, (verbose = true,), mymethod, 1, 2]) ``` """ function prepare_args(@nospecialize(f), allargs, kwargs) if !isempty(kwargs) f = Core.kwfunc(f) allargs = Any[f, namedtuple(kwargs), allargs...] end return f, allargs end function prepare_framecode(method::Method, @nospecialize(argtypes); enter_generated=false) sig = method.sig if (method.module ∈ compiled_modules || method ∈ compiled_methods) && !(method ∈ interpreted_methods) return Compiled() end # Get static parameters (ti, lenv::SimpleVector) = ccall(:jl_type_intersection_with_env, Any, (Any, Any), argtypes, sig)::SimpleVector enter_generated &= is_generated(method) if is_generated(method) && !enter_generated framecode = get(genframedict, (method, argtypes::Type), nothing) else framecode = get(framedict, method, nothing) end if framecode === nothing if is_generated(method) && !enter_generated # If we're stepping into a staged function, we need to use # the specialization, rather than stepping through the # unspecialized method. code = get_staged(Core.Compiler.specialize_method(method, argtypes, lenv)) code === nothing && return nothing generator = false else if is_generated(method) code = get_source(method.generator, lenv, method.file, Int(method.line)) generator = true else code = get_source(method) generator = false end end code = code::CodeInfo # Currenly, our strategy to deal with llvmcall can't handle parametric functions # (the "mini interpreter" runs in module scope, not method scope) if (!isempty(lenv) && (hasarg(isidentical(:llvmcall), code.code) || hasarg(isidentical(Base.llvmcall), code.code) || hasarg(a->is_global_ref(a, Base, :llvmcall), code.code))) || hasarg(isidentical(:iolock_begin), code.code) return Compiled() end framecode = FrameCode(method, code; generator=generator) if is_generated(method) && !enter_generated genframedict[(method, argtypes)] = framecode else framedict[method] = framecode end end return framecode, lenv end function get_framecode(method) framecode = get(framedict, method, nothing) if framecode === nothing @assert !is_generated(method) code = get_source(method) framecode = FrameCode(method, code; generator=false) framedict[method] = framecode end return framecode end """ framecode, frameargs, lenv, argtypes = prepare_call(f, allargs; enter_generated=false) Prepare all the information needed to execute lowered code for `f` given arguments `allargs`. `f` and `allargs` are the outputs of [`prepare_args`](@ref). For `@generated` methods, set `enter_generated=true` if you want to extract the lowered code of the generator itself. On return `framecode` is the [`FrameCode`](@ref) of the method. `frameargs` contains the actual arguments needed for executing this frame (for generators, this will be the types of `allargs`); `lenv` is the "environment", i.e., the static parameters for `f` given `allargs`. `argtypes` is the `Tuple`-type for this specific call (equivalent to the signature of the `MethodInstance`). # Example ```jldoctest julia> mymethod(x::Vector{T}) where T = 1; julia> framecode, frameargs, lenv, argtypes = JuliaInterpreter.prepare_call(mymethod, [mymethod, [1.0,2.0]]); julia> framecode 1 1 1 ─ return 1 julia> frameargs 2-element Vector{Any}: mymethod (generic function with 1 method) [1.0, 2.0] julia> lenv svec(Float64) julia> argtypes Tuple{typeof(mymethod), Vector{Float64}} ``` """ function prepare_call(@nospecialize(f), allargs; enter_generated = false) # Can happen for thunks created by generated functions if isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction) return nothing elseif any(is_vararg_type, allargs) return nothing # https://github.com/JuliaLang/julia/issues/30995 end argtypesv = Any[_Typeof(a) for a in allargs] argtypes = Tuple{argtypesv...} if @static isdefined(Core, :OpaqueClosure) && f isa Core.OpaqueClosure method = f.source # don't try to interpret optimized ir if Core.Compiler.uncompressed_ir(method).inferred @debug "not interpreting opaque closure $f since it contains inferred code" return nothing end else method = whichtt(argtypes) end if method === nothing # Call it to generate the exact error return f(allargs[2:end]...) end ret = prepare_framecode(method, argtypes; enter_generated=enter_generated) # Exceptional returns if ret === nothing # The generator threw an error. Let's generate the same error by calling it. return f(allargs[2:end]...) end isa(ret, Compiled) && return ret, argtypes # Typical return framecode, lenv = ret if is_generated(method) && enter_generated allargs = Any[_Typeof(a) for a in allargs] end return framecode, allargs, lenv, argtypes end function prepare_framedata(framecode, argvals::Vector{Any}, lenv::SimpleVector=empty_svec, caller_will_catch_err::Bool=false) src = framecode.src slotnames = src.slotnames ssavt = src.ssavaluetypes ng, ns = isa(ssavt, Int) ? ssavt : length(ssavt::Vector{Any}), length(src.slotflags) if length(junk_framedata) > 0 olddata = pop!(junk_framedata) locals, ssavalues, sparams = olddata.locals, olddata.ssavalues, olddata.sparams exception_frames, current_scopes, last_reference = olddata.exception_frames, olddata.current_scopes, olddata.last_reference last_exception = olddata.last_exception callargs = olddata.callargs resize!(locals, ns) fill!(locals, nothing) resize!(ssavalues, 0) resize!(ssavalues, ng) # for check_isdefined to work properly, we need sparams to start out unassigned resize!(sparams, 0) empty!(exception_frames) empty!(current_scopes) resize!(last_reference, ns) last_exception[] = _INACTIVE_EXCEPTION.instance else locals = Vector{Union{Nothing,Some{Any}}}(nothing, ns) ssavalues = Vector{Any}(undef, ng) sparams = Vector{Any}(undef, 0) exception_frames = Int[] current_scopes = Scope[] last_reference = Vector{Int}(undef, ns) callargs = Any[] last_exception = Ref{Any}(_INACTIVE_EXCEPTION.instance) end fill!(last_reference, 0) if isa(framecode.scope, Method) meth = framecode.scope::Method nargs, meth_nargs = length(argvals), Int(meth.nargs) islastva = meth.isva && nargs >= meth_nargs for i = 1:meth_nargs-islastva # for OCs #self# actually refers to the captures instead if @static isdefined(Core, :OpaqueClosure) && i == 1 && (oc = argvals[1]) isa Core.OpaqueClosure locals[i], last_reference[i] = Some{Any}(oc.captures), 1 elseif i <= nargs locals[i], last_reference[i] = Some{Any}(argvals[i]), 1 else locals[i] = Some{Any}(()) end end if islastva locals[meth_nargs] = (let i=meth_nargs; Some{Any}(ntupleany(k->argvals[i+k-1], nargs-i+1)); end) last_reference[meth_nargs] = 1 end end resize!(sparams, length(lenv)) # Add static parameters to environment for i = 1:length(lenv) T = lenv[i] isa(T, TypeVar) && continue # only fill concrete types sparams[i] = T end return FrameData(locals, ssavalues, sparams, exception_frames, current_scopes, last_exception, caller_will_catch_err, last_reference, callargs) end """ frame = prepare_frame(framecode::FrameCode, frameargs, lenv) Construct a new `Frame` for `framecode`, given lowered-code arguments `frameargs` and static parameters `lenv`. See [`JuliaInterpreter.prepare_call`](@ref) for information about how to prepare the inputs. """ function prepare_frame(framecode::FrameCode, args::Vector{Any}, lenv::SimpleVector, caller_will_catch_err::Bool=false) framedata = prepare_framedata(framecode, args, lenv, caller_will_catch_err) return Frame(framecode, framedata) end function prepare_frame_caller(caller::Frame, framecode::FrameCode, args::Vector{Any}, lenv::SimpleVector) caller_will_catch_err = !isempty(caller.framedata.exception_frames) || caller.framedata.caller_will_catch_err caller.callee = frame = prepare_frame(framecode, args, lenv, caller_will_catch_err) copy!(frame.framedata.current_scopes, caller.framedata.current_scopes) frame.caller = caller return frame end """ ExprSplitter(mod::Module, ex::Expr; lnn=nothing) Given a module `mod` and a top-level expression `ex` in `mod`, create an iterable that returns individual expressions together with their module of evaluation. Optionally supply an initial `LineNumberNode` `lnn`. # Example In a fresh session, ``` julia> expr = quote public_fn(x::Integer) = true module Private private(y::String) = false end const threshold = 0.1 end; julia> for (mod, ex) in ExprSplitter(Main, expr) @show mod ex end mod = Main ex = quote #= REPL[7]:2 =# public_fn(x::Integer) = begin #= REPL[7]:2 =# true end end mod = Main.Private ex = quote #= REPL[7]:4 =# private(y::String) = begin #= REPL[7]:4 =# false end end mod = Main ex = :($(Expr(:toplevel, :(#= REPL[7]:6 =#), :(const threshold = 0.1)))) ``` `ExprSplitter` created `Main.Private` was created for you so that its internal expressions could be evaluated. `ExprSplitter` will check to see whether the module already exists and if so return it rather than try to create a new module with the same name. In general each returned expression is a block with two parts: a `LineNumberNode` followed by a single expression. In some cases the returned expression may be `:toplevel`, as shown in the `const` declaration, but otherwise it will preserve its parent's `head` (e.g., `expr.head`). # World age, frame creation, and evaluation The primary purpose of `ExprSplitter` is to allow sequential return to top-level (e.g., the REPL) after evaluation of each expression. Returning to top-level allows the world age to update, and hence allows one to call methods and use types defined in earlier expressions in a block. For evaluation by JuliaInterpreter, the returned module/expression pairs can be passed directly to the `Frame` constructor. However, some expressions cannot be converted into `Frame`s and may need special handling: ```julia julia> for (mod, ex) in ExprSplitter(Main, expr) if ex.head === :global # global declarations can't be lowered to a CodeInfo. # In this demo we choose to evaluate them, but you can do something else. Core.eval(mod, ex) continue end frame = Frame(mod, ex) debug_command(frame, :c, true) end julia> threshold 0.1 julia> public_fn(3) true ``` If you're parsing package code, `ex` might be a docstring-expression; you may wish to check for such expressions and take distinct actions. See [`Frame(mod::Module, ex::Expr)`](@ref) for more information about frame creation. """ mutable struct ExprSplitter # Non-mutating fields stack::Vector{Tuple{Module,Expr}} # mod[i] is module of evaluation for index::Vector{Int} # next-to-handle argument index for :block or :toplevel exprs # Mutating fields lnn::Union{LineNumberNode,Nothing} end function ExprSplitter(mod::Module, ex::Expr; lnn=nothing) iter = ExprSplitter(Tuple{Module,Expr}[], Int[], lnn) push_modex!(iter, mod, ex) queuenext!(iter) return iter end Base.IteratorSize(::Type{ExprSplitter}) = Base.SizeUnknown() Base.eltype(::Type{ExprSplitter}) = Tuple{Module,Expr} function push_modex!(iter::ExprSplitter, mod::Module, ex::Expr) push!(iter.stack, (mod, ex)) if ex.head === :toplevel || ex.head === :block # Issue #427 modifies_scope = false if ex.head === :block for a in ex.args if isa(a, Expr) && a.head === :local modifies_scope = true break end end end push!(iter.index, modifies_scope ? 0 : 1) end return iter end function pop_modex!(iter) mod, ex = pop!(iter.stack) if ex.head === :toplevel || ex.head === :block pop!(iter.index) end return mod, ex end # Load the next-to-evaluate expression into `iter.stack[end]`. function queuenext!(iter::ExprSplitter) isempty(iter.stack) && return nothing mod, ex = iter.stack[end] head = ex.head if head === :module # Find or create the module newname = ex.args[2]::Symbol if isdefined(mod, newname) newmod = getfield(mod, newname) newmod isa Module || throw(ErrorException("invalid redefinition of constant $(newname)")) mod = newmod else newnamestr = String(newname) id = Base.identify_package(mod, newnamestr) # If we're in a test environment and Julia's internal stdlibs are not a declared dependency of the package, # we might fail to find it. Try really hard to find it. if id === nothing && mod === Base.__toplevel__ for loaded_id in keys(Base.loaded_modules) if loaded_id.name == newnamestr id = loaded_id break end end end if id !== nothing && haskey(Base.loaded_modules, id) mod = Base.root_module(id)::Module else loc = firstline(ex) mod = Core.eval(mod, Expr(:module, ex.args[1], ex.args[2], Expr(:block, loc, loc)))::Module end end # We've handled the module declaration, remove it and queue the body pop!(iter.stack) ex = ex.args[3]::Expr push_modex!(iter, mod, ex) return queuenext!(iter) elseif head === :macrocall iter.lnn = ex.args[2]::LineNumberNode elseif head === :block || head === :toplevel # Container expression idx = iter.index[end] if idx == 0 # return the whole block (issue #427) return nothing end while idx <= length(ex.args) a = ex.args[idx] if isa(a, LineNumberNode) iter.lnn = a elseif isa(a, Expr) iter.index[end] = idx + 1 push_modex!(iter, mod, a) return queuenext!(iter) end idx += 1 end # We exhausted the expression without returning anything to evaluate pop!(iter.stack) pop!(iter.index) return queuenext!(iter) end return nothing # mod, ex will be returned by iterate end function Base.iterate(iter::ExprSplitter, state=nothing) isempty(iter.stack) && return nothing mod, ex = pop_modex!(iter) lnn = iter.lnn if is_doc_expr(ex) body = ex.args[4] if isa(body, Expr) && body.head === :module # Just document the module itself and push the module def onto the stack excopy = Expr(ex.head, ex.args[1], ex.args[2], ex.args[3]) push!(excopy.args, body.args[2]) append!(excopy.args, ex.args[5:end]) # there should only be at most a 5th, but just for robustness ex = excopy push_modex!(iter, mod, body) end end if ex.head === :block || ex.head === :toplevel # This was a block that we couldn't safely descend into (issue #427) if !isempty(iter.index) && iter.index[end] > length(iter.stack[end][2].args) pop!(iter.stack) pop!(iter.index) queuenext!(iter) end return (mod, ex), nothing end queuenext!(iter) # :global expressions can't be lowered. For debugging it might be nice # to still return the lnn, but then we have to work harder on detecting them. ex.head === :global && return (mod, ex), nothing return (mod, Expr(:block, lnn, ex)), nothing end """ framecode, frameargs, lenv, argtypes = determine_method_for_expr(expr; enter_generated = false) Prepare all the information needed to execute a particular `:call` expression `expr`. For example, try `JuliaInterpreter.determine_method_for_expr(:(\$sum([1,2])))`. See [`JuliaInterpreter.prepare_call`](@ref) for information about the outputs. """ function determine_method_for_expr(expr; enter_generated = false) f = to_function(expr.args[1]) allargs = expr.args # Extract keyword args kwargs = Expr(:parameters) if length(allargs) > 1 && isexpr(allargs[2], :parameters) kwargs = splice!(allargs, 2)::Expr end f, allargs = prepare_args(f, allargs, kwargs.args) return prepare_call(f, allargs; enter_generated=enter_generated) end """ frame = enter_call_expr(expr; enter_generated=false) Build a `Frame` ready to execute the expression `expr`. Set `enter_generated=true` if you want to execute the generator of a `@generated` function, rather than the code that would be created by the generator. # Example ```jldoctest julia> mymethod(x) = x+1; julia> JuliaInterpreter.enter_call_expr(:(\$mymethod(1))) Frame for mymethod(x) @ Main none:1 1* 1 1 ─ %1 = x + 1 2 1 └── return %1 x = 1 julia> mymethod(x::Vector{T}) where T = 1; julia> a = [1.0, 2.0] 2-element Vector{Float64}: 1.0 2.0 julia> JuliaInterpreter.enter_call_expr(:(\$mymethod(\$a))) Frame for mymethod(x::Vector{T}) where T @ Main none:1 1* 1 1 ─ return 1 x = [1.0, 2.0] T = Float64 ``` See [`enter_call`](@ref) for a similar approach not based on expressions. """ function enter_call_expr(expr; enter_generated = false) clear_caches() r = determine_method_for_expr(expr; enter_generated = enter_generated) if r !== nothing && !isa(r[1], Compiled) return prepare_frame(Base.front(r)...) end nothing end """ frame = enter_call(f, args...; kwargs...) Build a `Frame` ready to execute `f` with the specified positional and keyword arguments. # Example ```jldoctest julia> mymethod(x) = x+1; julia> JuliaInterpreter.enter_call(mymethod, 1) Frame for mymethod(x) @ Main none:1 1* 1 1 ─ %1 = x + 1 2 1 └── return %1 x = 1 julia> mymethod(x::Vector{T}) where T = 1; julia> JuliaInterpreter.enter_call(mymethod, [1.0, 2.0]) Frame for mymethod(x::Vector{T}) where T @ Main none:1 1* 1 1 ─ return 1 x = [1.0, 2.0] T = Float64 ``` For a `@generated` function you can use `enter_call((f, true), args...; kwargs...)` to execute the generator of a `@generated` function, rather than the code that would be created by the generator. See [`enter_call_expr`](@ref) for a similar approach based on expressions. """ function enter_call(@nospecialize(finfo), @nospecialize(args...); kwargs...) clear_caches() if isa(finfo, Tuple) f = finfo[1] enter_generated = finfo[2]::Bool else f = finfo enter_generated = false end f, allargs = prepare_args(f, Any[f, args...], kwargs) # Can happen for thunks created by generated functions if isa(f, Core.Builtin) || isa(f, Core.IntrinsicFunction) error(f, " is a builtin or intrinsic") end r = prepare_call(f, allargs; enter_generated=enter_generated) if r !== nothing && !isa(r[1], Compiled) return prepare_frame(Base.front(r)...) end return nothing end # This is a version of InteractiveUtils.gen_call_with_extracted_types, except that is passes back the # call expression for further processing. function extract_args(__module__, ex0) if isa(ex0, Expr) if any(a->(isexpr(a, :kw) || isexpr(a, :parameters)), ex0.args) arg1, args, kwargs = gensym("arg1"), gensym("args"), gensym("kwargs") return quote $arg1 = $(ex0.args[1]) $args, $kwargs = $separate_kwargs($(ex0.args[2:end]...)) tuple(Core.kwfunc($arg1), $kwargs, $arg1, $args...) end elseif ex0.head === :. return Expr(:tuple, :getproperty, ex0.args...) elseif ex0.head === :(<:) return Expr(:tuple, :(<:), ex0.args...) else return Expr(:tuple, mapany(x->isexpr(x,:parameters) ? QuoteNode(x) : x, ex0.args)...) end end if isexpr(ex0, :macrocall) # Make @edit @time 1+2 edit the macro by using the types of the *expressions* return error("Macros are not supported in @enter") end ex = Meta.lower(__module__, ex0) if !isa(ex, Expr) return error("expression is not a function call or symbol") elseif ex.head === :call return Expr(:tuple, mapany(x->isexpr(x, :parameters) ? QuoteNode(x) : x, ex.args)...) elseif ex.head === :body a1 = ex.args[1] if isexpr(a1, :call) a11 = a1.args[1] if a11 === :setindex! return Expr(:tuple, mapany(x->isexpr(x, :parameters) ? QuoteNode(x) : x, arg.args)...) end end end return error("expression is not a function call, " * "or is too complex for @enter to analyze; " * "break it down to simpler parts if possible") end """ @interpret f(args; kwargs...) Evaluate `f` on the specified arguments using the interpreter. # Example ```jldoctest julia> a = [1, 7]; julia> sum(a) 8 julia> @interpret sum(a) 8 ``` """ macro interpret(arg) args = try extract_args(__module__, arg) catch e return :(throw($e)) end quote local theargs = $(esc(args)) local frame = JuliaInterpreter.enter_call_expr(Expr(:call, theargs...)) if frame === nothing eval(Expr(:call, map(QuoteNode, theargs)...)) elseif shouldbreak(frame, 1) frame, BreakpointRef(frame.framecode, 1) else local ret = finish_and_return!(frame) # We deliberately return the top frame here; future debugging commands # via debug_command may alter the leaves, we want the top frame so we can # ultimately do `get_return`. isa(ret, BreakpointRef) ? (frame, ret) : ret end end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
27885
isassign(frame::Frame) = isassign(frame, frame.pc) isassign(frame::Frame, pc::Int) = (pc in frame.framecode.used) lookup_var(frame::Frame, val::SSAValue) = frame.framedata.ssavalues[val.id] lookup_var(frame::Frame, ref::GlobalRef) = getfield(ref.mod, ref.name) function lookup_var(frame::Frame, slot::SlotNumber) val = frame.framedata.locals[slot.id] val !== nothing && return val.value throw(UndefVarError(frame.framecode.src.slotnames[slot.id])) end """ rhs = @lookup(frame, node) rhs = @lookup(mod, frame, node) This macro looks up previously-computed values referenced as SSAValues, SlotNumbers, GlobalRefs, QuoteNode, sparam or exception reference expression. It will also lookup symbols in `moduleof(frame)`; this can be supplied ahead-of-time via the 3-argument version. If none of the above apply, the value of `node` will be returned. """ macro lookup(args...) length(args) == 2 || length(args) == 3 || error("invalid number of arguments ", length(args)) havemod = length(args) == 3 local mod if havemod mod, frame, node = args else frame, node = args end nodetmp = gensym(:node) # used to hoist, e.g., args[4] if havemod fallback = quote isa($nodetmp, Symbol) ? getfield($(esc(mod)), $nodetmp) : $nodetmp end else fallback = quote $nodetmp end end quote $nodetmp = $(esc(node)) isa($nodetmp, SSAValue) ? lookup_var($(esc(frame)), $nodetmp) : isa($nodetmp, GlobalRef) ? lookup_var($(esc(frame)), $nodetmp) : isa($nodetmp, SlotNumber) ? lookup_var($(esc(frame)), $nodetmp) : isa($nodetmp, QuoteNode) ? $nodetmp.value : isa($nodetmp, Symbol) ? getfield(moduleof($(esc(frame))), $nodetmp) : isa($nodetmp, Expr) ? lookup_expr($(esc(frame)), $nodetmp) : $fallback end end function lookup_expr(frame::Frame, e::Expr) head = e.head head === :the_exception && return frame.framedata.last_exception[] if head === :static_parameter arg = e.args[1]::Int if isassigned(frame.framedata.sparams, arg) return frame.framedata.sparams[arg] else syms = sparam_syms(frame.framecode.scope::Method) throw(UndefVarError(syms[arg])) end end head === :boundscheck && length(e.args) == 0 && return true if head === :call f = @lookup frame e.args[1] if (@static VERSION < v"1.11.0-DEV.1180" && true) && f === Core.svec # work around for a linearization bug in Julia (https://github.com/JuliaLang/julia/pull/52497) return f(Any[@lookup(frame, e.args[i]) for i in 2:length(e.args)]...) elseif f === Core.tuple # handling for ccall literal syntax return f(Any[@lookup(frame, e.args[i]) for i in 2:length(e.args)]...) end end error("invalid lookup expr ", e) end # This is used only for new struct/abstract/primitive nodes. # The most important issue is that in these expressions, :call Exprs can be nested, # and hence our re-use of the `callargs` field of Frame would introduce # bugs. Since these nodes use a very limited repertoire of calls, we can special-case # this quite easily. function lookup_or_eval(@nospecialize(recurse), frame::Frame, @nospecialize(node)) if isa(node, SSAValue) return lookup_var(frame, node) elseif isa(node, SlotNumber) return lookup_var(frame, node) elseif isa(node, GlobalRef) return lookup_var(frame, node) elseif isa(node, Symbol) return getfield(moduleof(frame), node) elseif isa(node, QuoteNode) return node.value elseif isa(node, Expr) ex = Expr(node.head) for arg in node.args push!(ex.args, lookup_or_eval(recurse, frame, arg)) end if ex.head === :call f = ex.args[1] if f === Core.svec popfirst!(ex.args) return Core.svec(ex.args...) elseif f === Core.apply_type popfirst!(ex.args) return Core.apply_type(ex.args...) elseif f === typeof && length(ex.args) == 2 return typeof(ex.args[2]) elseif f === typeassert && length(ex.args) == 3 return typeassert(ex.args[2], ex.args[3]) elseif f === Base.getproperty && length(ex.args) == 3 return Base.getproperty(ex.args[2], ex.args[3]) elseif f === Core.Compiler.Val && length(ex.args) == 2 return Core.Compiler.Val(ex.args[2]) elseif f === Val && length(ex.args) == 2 return Val(ex.args[2]) else Base.invokelatest(error, "unknown call f introduced by ccall lowering ", f) end else return lookup_expr(frame, ex) end elseif isa(node, Int) || isa(node, Number) # Number is slow, requires subtyping return node elseif isa(node, Type) return node end return eval_rhs(recurse, frame, node) end function resolvefc(frame::Frame, @nospecialize(expr)) if isa(expr, SlotNumber) expr = lookup_var(frame, expr) elseif isa(expr, SSAValue) expr = lookup_var(frame, expr) isa(expr, Symbol) && return QuoteNode(expr) end (isa(expr, Symbol) || isa(expr, String) || isa(expr, Ptr) || isa(expr, QuoteNode)) && return expr isa(expr, Tuple{Symbol,Symbol}) && return expr isa(expr, Tuple{String,String}) && return expr isa(expr, Tuple{Symbol,String}) && return expr isa(expr, Tuple{String,Symbol}) && return expr if isexpr(expr, :call) a = (expr::Expr).args[1] (isa(a, QuoteNode) && a.value === Core.tuple) || error("unexpected ccall to ", expr) return Expr(:call, GlobalRef(Core, :tuple), (expr::Expr).args[2:end]...) end Base.invokelatest(error, "unexpected ccall to ", expr) end function collect_args(@nospecialize(recurse), frame::Frame, call_expr::Expr; isfc::Bool=false) args = frame.framedata.callargs resize!(args, length(call_expr.args)) mod = moduleof(frame) args[1] = isfc ? resolvefc(frame, call_expr.args[1]) : @lookup(mod, frame, call_expr.args[1]) for i = 2:length(args) if isexpr(call_expr.args[i], :call) args[i] = lookup_or_eval(recurse, frame, call_expr.args[i]) else args[i] = @lookup(mod, frame, call_expr.args[i]) end end return args end """ ret = evaluate_foreigncall(recurse, frame::Frame, call_expr) Evaluate a `:foreigncall` (from a `ccall`) statement `callexpr` in the context of `frame`. """ function evaluate_foreigncall(@nospecialize(recurse), frame::Frame, call_expr::Expr) head = call_expr.head args = collect_args(recurse, frame, call_expr; isfc = head === :foreigncall) for i = 2:length(args) arg = args[i] args[i] = isa(arg, Symbol) ? QuoteNode(arg) : arg end head === :cfunction && (args[2] = QuoteNode(args[2])) scope = frame.framecode.scope data = frame.framedata if !isempty(data.sparams) && scope isa Method sig = scope.sig args[2] = instantiate_type_in_env(args[2], sig, data.sparams) arg3 = args[3] if (@static VERSION < v"1.7.0" && arg3 isa Core.SimpleVector) || head === :foreigncall args[3] = Core.svec(map(arg3) do arg instantiate_type_in_env(arg, sig, data.sparams) end...) else args[3] = instantiate_type_in_env(arg3, sig, data.sparams) args[4] = Core.svec(map(args[4]::Core.SimpleVector) do arg instantiate_type_in_env(arg, sig, data.sparams) end...) end end return Core.eval(moduleof(frame), Expr(head, args...)) end # We have to intercept ccalls / llvmcalls before we try it as a builtin function bypass_builtins(@nospecialize(recurse), frame::Frame, call_expr::Expr, pc::Int) if isassigned(frame.framecode.methodtables, pc) tme = frame.framecode.methodtables[pc] if isa(tme, Compiled) fargs = collect_args(recurse, frame, call_expr) f = to_function(fargs[1]) fmod = parentmodule(f)::Module if fmod === JuliaInterpreter.CompiledCalls || fmod === Core.Compiler # Fixing https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/432. @static if VERSION >= v"1.7.0" return Some{Any}(Base.invoke_in_world(get_world_counter(), f, fargs[2:end]...)) else return Some{Any}(Base.invokelatest(f, fargs[2:end]...)) end else return Some{Any}(f(fargs[2:end]...)) end end end return nothing end function native_call(fargs::Vector{Any}, frame::Frame) f = popfirst!(fargs) # now it's really just `args` if (@static isdefined(Core.IR, :EnterNode) && true) newscope = Core.current_scope() if newscope !== nothing || !isempty(frame.framedata.current_scopes) for scope in frame.framedata.current_scopes newscope = Scope(newscope, scope.values...) end ex = Expr(:tryfinally, :($f($fargs...)), nothing, newscope) return Core.eval(moduleof(frame), ex) end end return Base.invokelatest(f, fargs...) end function evaluate_call_compiled!(::Compiled, frame::Frame, call_expr::Expr; enter_generated::Bool=false) # @assert !enter_generated pc = frame.pc ret = bypass_builtins(Compiled(), frame, call_expr, pc) isa(ret, Some{Any}) && return ret.value ret = maybe_evaluate_builtin(frame, call_expr, false) isa(ret, Some{Any}) && return ret.value fargs = collect_args(Compiled(), frame, call_expr) return native_call(fargs, frame) end function evaluate_call_recurse!(@nospecialize(recurse), frame::Frame, call_expr::Expr; enter_generated::Bool=false) pc = frame.pc ret = bypass_builtins(recurse, frame, call_expr, pc) isa(ret, Some{Any}) && return ret.value ret = maybe_evaluate_builtin(frame, call_expr, true) isa(ret, Some{Any}) && return ret.value call_expr = ret fargs = collect_args(recurse, frame, call_expr) if fargs[1] === Core.eval return Core.eval(fargs[2], fargs[3]) # not a builtin, but worth treating specially elseif fargs[1] === Base.rethrow err = length(fargs) > 1 ? fargs[2] : frame.framedata.last_exception[] throw(err) end if fargs[1] === Core.invoke # invoke needs special handling f_invoked = which(fargs[2], fargs[3])::Method fargs_pruned = [fargs[2]; fargs[4:end]] sig = Tuple{mapany(_Typeof, fargs_pruned)...} ret = prepare_framecode(f_invoked, sig; enter_generated=enter_generated) isa(ret, Compiled) && return invoke(fargs[2:end]...) @assert ret !== nothing framecode, lenv = ret lenv === nothing && return framecode # this was a Builtin fargs = fargs_pruned else framecode, lenv = get_call_framecode(fargs, frame.framecode, frame.pc; enter_generated=enter_generated) if lenv === nothing if isa(framecode, Compiled) return native_call(fargs, frame) end return framecode # this was a Builtin end end newframe = prepare_frame_caller(frame, framecode, fargs, lenv) npc = newframe.pc shouldbreak(newframe, npc) && return BreakpointRef(newframe.framecode, npc) # if the following errors, handle_err will pop the stack and recycle newframe if recurse === finish_and_return! # Optimize this case to avoid dynamic dispatch ret = finish_and_return!(finish_and_return!, newframe, false) else ret = recurse(recurse, newframe, false) end isa(ret, BreakpointRef) && return ret frame.callee = nothing return_from(newframe) return ret end """ ret = evaluate_call!(Compiled(), frame::Frame, call_expr) ret = evaluate_call!(recurse, frame::Frame, call_expr) Evaluate a `:call` expression `call_expr` in the context of `frame`. The first causes it to be executed using Julia's normal dispatch (compiled code), whereas the second recurses in via the interpreter. `recurse` has a default value of [`JuliaInterpreter.finish_and_return!`](@ref). """ evaluate_call!(::Compiled, frame::Frame, call_expr::Expr; kwargs...) = evaluate_call_compiled!(Compiled(), frame, call_expr; kwargs...) evaluate_call!(@nospecialize(recurse), frame::Frame, call_expr::Expr; kwargs...) = evaluate_call_recurse!(recurse, frame, call_expr; kwargs...) evaluate_call!(frame::Frame, call_expr::Expr; kwargs...) = evaluate_call!(finish_and_return!, frame, call_expr; kwargs...) # The following come up only when evaluating toplevel code function evaluate_methoddef(frame::Frame, node::Expr) f = node.args[1] if f isa Symbol || f isa GlobalRef mod = f isa Symbol ? moduleof(frame) : f.mod name = f isa Symbol ? f : f.name if Base.isbindingresolved(mod, name) && isdefined(mod, name) # `isdefined` accesses the binding, making it impossible to create a new one f = getfield(mod, name) else f = Core.eval(mod, Expr(:function, name)) # create a new function end end length(node.args) == 1 && return f sig = @lookup(frame, node.args[2])::SimpleVector body = @lookup(frame, node.args[3])::Union{CodeInfo, Expr} # branching on https://github.com/JuliaLang/julia/pull/41137 @static if isdefined(Core.Compiler, :OverlayMethodTable) ccall(:jl_method_def, Cvoid, (Any, Ptr{Cvoid}, Any, Any), sig, C_NULL, body, moduleof(frame)::Module) else ccall(:jl_method_def, Cvoid, (Any, Any, Any), sig, body, moduleof(frame)::Module) end return f end function do_assignment!(frame::Frame, @nospecialize(lhs), @nospecialize(rhs)) code, data = frame.framecode, frame.framedata if isa(lhs, SSAValue) data.ssavalues[lhs.id] = rhs elseif isa(lhs, SlotNumber) counter = (frame.assignment_counter += 1) data.locals[lhs.id] = Some{Any}(rhs) data.last_reference[lhs.id] = counter elseif isa(lhs, Symbol) || isa(lhs, GlobalRef) mod = lhs isa Symbol ? moduleof(frame) : lhs.mod name = lhs isa Symbol ? lhs : lhs.name Core.eval(mod, Expr(:global, name)) @static if @isdefined setglobal! setglobal!(mod, name, rhs) else ccall(:jl_set_global, Cvoid, (Any, Any, Any), mod, name, rhs) end end end function maybe_assign!(frame::Frame, @nospecialize(stmt), @nospecialize(val)) pc = frame.pc if isexpr(stmt, :(=)) lhs = stmt.args[1] do_assignment!(frame, lhs, val) elseif isassign(frame, pc) lhs = SSAValue(pc) do_assignment!(frame, lhs, val) end return nothing end maybe_assign!(frame::Frame, @nospecialize(val)) = maybe_assign!(frame, pc_expr(frame), val) function eval_rhs(@nospecialize(recurse), frame::Frame, node::Expr) head = node.head if head === :new mod = moduleof(frame) args = let mod=mod Any[@lookup(mod, frame, arg) for arg in node.args] end T = popfirst!(args)::DataType rhs = ccall(:jl_new_structv, Any, (Any, Ptr{Any}, UInt32), T, args, length(args)) return rhs elseif head === :splatnew # Julia 1.2+ mod = moduleof(frame) T = @lookup(mod, frame, node.args[1])::DataType args = @lookup(mod, frame, node.args[2])::Tuple rhs = ccall(:jl_new_structt, Any, (Any, Any), T, args) return rhs elseif head === :isdefined return check_isdefined(frame, node.args[1]) elseif head === :call # here it's crucial to avoid dynamic dispatch isa(recurse, Compiled) && return evaluate_call_compiled!(recurse, frame, node) return evaluate_call_recurse!(recurse, frame, node) elseif head === :foreigncall || head === :cfunction return evaluate_foreigncall(recurse, frame, node) elseif head === :copyast val = (node.args[1]::QuoteNode).value return isa(val, Expr) ? copy(val) : val elseif head === :boundscheck return true elseif head === :meta || head === :inbounds || head === :loopinfo || head === :gc_preserve_begin || head === :gc_preserve_end || head === :aliasscope || head === :popaliasscope return nothing elseif head === :method && length(node.args) == 1 return evaluate_methoddef(frame, node) end return lookup_expr(frame, node) end function check_isdefined(frame::Frame, @nospecialize(node)) data = frame.framedata if isa(node, SlotNumber) return data.locals[node.id] !== nothing elseif isa(node, Core.Compiler.Argument) # just to be safe, since base handles this return data.locals[node.n] !== nothing elseif isexpr(node, :static_parameter) return isassigned(data.sparams, node.args[1]::Int) elseif isa(node, GlobalRef) return isdefined(node.mod, node.name) elseif isa(node, Symbol) return isdefined(moduleof(frame), node) else # QuoteNode or other implicitly quoted object return true end end function coverage_visit_line!(frame::Frame) pc, code = frame.pc, frame.framecode code.report_coverage || return src = code.src @static if VERSION ≥ v"1.12.0-DEV.173" lineinfo = linetable(src, pc) if lineinfo !== nothing file, line = lineinfo.file, lineinfo.line if line != frame.last_codeloc file isa Symbol || (file = Symbol(file)::Symbol) @ccall jl_coverage_visit_line(file::Cstring, sizeof(file)::Csize_t, line::Cint)::Cvoid frame.last_codeloc = line end end else # VERSION < v"1.12.0-DEV.173" codeloc = src.codelocs[pc] if codeloc != frame.last_codeloc && codeloc != 0 linetable = src.linetable::Vector{Any} lineinfo = linetable[codeloc]::Core.LineInfoNode file, line = lineinfo.file, lineinfo.line file isa Symbol || (file = Symbol(file)::Symbol) @ccall jl_coverage_visit_line(file::Cstring, sizeof(file)::Csize_t, line::Cint)::Cvoid frame.last_codeloc = codeloc end end # @static if end # For "profiling" where JuliaInterpreter spends its time. See the commented-out block # in `step_expr!` const _location = Dict{Tuple{Method,Int},Int}() function step_expr!(@nospecialize(recurse), frame::Frame, @nospecialize(node), istoplevel::Bool) pc, code, data = frame.pc, frame.framecode, frame.framedata # if !is_leaf(frame) # show_stackloc(frame) # @show node # end @assert is_leaf(frame) @static VERSION >= v"1.8.0-DEV.370" && coverage_visit_line!(frame) local rhs # For debugging: # show_stackloc(frame) # @show node # For profiling: # location_key = (scopeof(frame), pc) # _location[location_key] = get(_location, location_key, 0) + 1 try if isa(node, Expr) if node.head === :(=) lhs, rhs = node.args if isa(rhs, Expr) rhs = eval_rhs(recurse, frame, rhs) else rhs = istoplevel ? @lookup(moduleof(frame), frame, rhs) : @lookup(frame, rhs) end isa(rhs, BreakpointRef) && return rhs do_assignment!(frame, lhs, rhs) elseif node.head === :enter rhs = node.args[1]::Int push!(data.exception_frames, rhs) elseif node.head === :leave if length(node.args) == 1 && isa(node.args[1], Int) arg = node.args[1]::Int for _ = 1:arg pop!(data.exception_frames) end else for i = 1:length(node.args) targ = node.args[i] targ === nothing && continue enterstmt = frame.framecode.src.code[(targ::SSAValue).id] enterstmt === nothing && continue pop!(data.exception_frames) if isdefined(enterstmt, :scope) pop!(data.current_scopes) end end end elseif node.head === :pop_exception # TODO: This needs to handle the exception stack properly # (https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/591) elseif istoplevel if node.head === :method && length(node.args) > 1 evaluate_methoddef(frame, node) elseif node.head === :module error("this should have been handled by split_expressions") elseif node.head === :using || node.head === :import || node.head === :export Core.eval(moduleof(frame), node) elseif node.head === :const || node.head === :globaldecl g = node.args[1] if length(node.args) == 2 Core.eval(moduleof(frame), Expr(:block, Expr(node.head, g, @lookup(frame, node.args[2])), nothing)) else Core.eval(moduleof(frame), Expr(:block, Expr(node.head, g), nothing)) end elseif node.head === :thunk newframe = Frame(moduleof(frame), node.args[1]::CodeInfo) if isa(recurse, Compiled) finish!(recurse, newframe, true) else newframe.caller = frame frame.callee = newframe finish!(recurse, newframe, true) frame.callee = nothing end return_from(newframe) elseif node.head === :global Core.eval(moduleof(frame), node) elseif node.head === :toplevel mod = moduleof(frame) iter = ExprSplitter(mod, node) rhs = Core.eval(mod, Expr(:toplevel, :(for (mod, ex) in $iter if ex.head === :toplevel Core.eval(mod, ex) continue end newframe = ($Frame)(mod, ex) while true ($through_methoddef_or_done!)($recurse, newframe) === nothing && break end $return_from(newframe) end))) elseif node.head === :error error("unexpected error statement ", node) elseif node.head === :incomplete error("incomplete statement ", node) else rhs = eval_rhs(recurse, frame, node) end elseif node.head === :thunk || node.head === :toplevel error("this frame needs to be run at top level") else rhs = eval_rhs(recurse, frame, node) end elseif isa(node, GotoNode) return (frame.pc = node.label) elseif isa(node, GotoIfNot) arg = @lookup(frame, node.cond) if !isa(arg, Bool) throw(TypeError(nameof(frame), "if", Bool, arg)) end if !arg return (frame.pc = node.dest) end elseif isa(node, ReturnNode) return nothing elseif isa(node, NewvarNode) # FIXME: undefine the slot? elseif istoplevel && isa(node, LineNumberNode) elseif istoplevel && isa(node, Symbol) rhs = getfield(moduleof(frame), node) elseif @static (isdefined(Core.IR, :EnterNode) && true) && isa(node, Core.IR.EnterNode) rhs = node.catch_dest push!(data.exception_frames, rhs) if isdefined(node, :scope) push!(data.current_scopes, @lookup(frame, node.scope)) end else rhs = @lookup(frame, node) end catch err return handle_err(recurse, frame, err) end @isdefined(rhs) && isa(rhs, BreakpointRef) && return rhs if isassign(frame, pc) # if !@isdefined(rhs) # @show frame node # end lhs = SSAValue(pc) do_assignment!(frame, lhs, rhs) end return (frame.pc = pc + 1) end """ pc = step_expr!(recurse, frame, istoplevel=false) pc = step_expr!(frame, istoplevel=false) Execute the next statement in `frame`. `pc` is the new program counter, or `nothing` if execution terminates, or a [`BreakpointRef`](@ref) if execution hits a breakpoint. `recurse` controls call evaluation; `recurse = Compiled()` evaluates :call expressions by normal dispatch. The default value `recurse = finish_and_return!` will use recursive interpretation. If you are evaluating `frame` at module scope you should pass `istoplevel=true`. """ step_expr!(@nospecialize(recurse), frame::Frame, istoplevel::Bool=false) = step_expr!(recurse, frame, pc_expr(frame), istoplevel) step_expr!(frame::Frame, istoplevel::Bool=false) = step_expr!(finish_and_return!, frame, istoplevel) """ loc = handle_err(recurse, frame, err) Deal with an error `err` that arose while evaluating `frame`. There are one of three behaviors: - if `frame` catches the error, `loc` is the program counter at which to resume evaluation of `frame`; - if `frame` doesn't catch the error, but `break_on_error[]` is `true`, `loc` is a `BreakpointRef`; - otherwise, `err` gets rethrown. """ function handle_err(@nospecialize(recurse), frame::Frame, @nospecialize(err)) data = frame.framedata err_will_be_thrown_to_top_level = isempty(data.exception_frames) && !data.caller_will_catch_err if break_on_throw[] || (break_on_error[] && err_will_be_thrown_to_top_level) return BreakpointRef(frame.framecode, frame.pc, err) end if isempty(data.exception_frames) if !err_will_be_thrown_to_top_level return_from(frame) end # Check for world age errors, which generally indicate a failure to go back to toplevel if isa(err, MethodError) is_arg_types = isa(err.args, DataType) arg_types = is_arg_types ? err.args : Base.typesof(err.args...) if (err.world != typemax(UInt) && hasmethod(err.f, arg_types) && !hasmethod(err.f, arg_types, world = err.world)) @warn "likely failure to return to toplevel, try `ExprSplitter`" end end rethrow(err) end data.last_exception[] = err pc = @static VERSION >= v"1.11-" ? pop!(data.exception_frames) : data.exception_frames[end] # implicit :leave after https://github.com/JuliaLang/julia/pull/52245 frame.pc = pc return pc end lookup_return(frame, node::ReturnNode) = @lookup(frame, node.val) """ ret = get_return(frame) Get the return value of `frame`. Throws an error if `frame.pc` does not point to a `return` expression. `frame` must have already been executed so that the return value has been computed (see, e.g., [`JuliaInterpreter.finish!`](@ref)). """ function get_return(frame) node = pc_expr(frame) is_return(node) || Base.invokelatest(error, "expected return statement, got ", node) return lookup_return(frame, node) end get_return(t::Tuple{Module,Expr,Frame}) = get_return(t[end])
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
4217
const max_methods = 4 # maximum number of MethodInstances tracked for a particular :call statement """ framecode, lenv = get_call_framecode(fargs, parentframe::FrameCode, idx::Int) Return the framecode and environment for a call specified by `fargs = [f, args...]` (see [`prepare_args`](@ref)). `parentframecode` is the caller, and `idx` is the program-counter index. If possible, `framecode` will be looked up from the local method tables of `parentframe`. """ function get_call_framecode(fargs::Vector{Any}, parentframe::FrameCode, idx::Int; enter_generated::Bool=false) nargs = length(fargs) # includes f as the first "argument" # Determine whether we can look up the appropriate framecode in the local method table if isassigned(parentframe.methodtables, idx) # if this is the first call, this may not yet be set # The case where `methodtables[idx]` is a `Compiled` has already been handled in `bypass_builtins` d_meth = d_meth1 = parentframe.methodtables[idx]::DispatchableMethod local d_methprev depth = 1 while true # TODO: consider using world age bounds to handle cache invalidation # Determine whether the argument types match the signature sig = d_meth.sig.parameters::SimpleVector if length(sig) == nargs # If this is generated, match only if `enter_generated` also matches fi = d_meth.frameinstance if fi isa FrameInstance matches = !is_generated(scopeof(fi.framecode)::Method) || enter_generated == fi.enter_generated else matches = !enter_generated end if matches for i = 1:nargs if !isa(fargs[i], sig[i]) matches = false break end end end if matches # Rearrange the list to place this method first # (if we're in a loop, we'll likely match this one again on the next iteration) if depth > 1 parentframe.methodtables[idx] = d_meth d_methprev.next = d_meth.next d_meth.next = d_meth1 end if fi isa Compiled return Compiled(), nothing else fi = fi::FrameInstance return fi.framecode, fi.sparam_vals end end end depth += 1 d_methprev = d_meth d_meth = d_meth.next d_meth === nothing && break d_meth = d_meth::DispatchableMethod end end # We haven't yet encountered this argtype combination and need to look it up by dispatch fargs[1] = f = to_function(fargs[1]) ret = prepare_call(f, fargs; enter_generated=enter_generated) ret === nothing && return f(fargs[2:end]...), nothing is_compiled = isa(ret[1], Compiled) local framecode if is_compiled d_meth = DispatchableMethod(nothing, Compiled(), ret[2]) else framecode, args, env, argtypes = ret # Store the results of the method lookup in the local method table fi = FrameInstance(framecode, env, is_generated(scopeof(framecode::FrameCode)::Method) && enter_generated) d_meth = DispatchableMethod(nothing, fi, argtypes) end if isassigned(parentframe.methodtables, idx) # Drop the oldest d_meth, if necessary d_methtmp = d_meth.next = parentframe.methodtables[idx]::DispatchableMethod depth = 2 while d_methtmp.next !== nothing depth += 1 depth >= max_methods && break d_methtmp = d_methtmp.next::DispatchableMethod end if depth >= max_methods d_methtmp.next = nothing end else d_meth.next = nothing end parentframe.methodtables[idx] = d_meth if is_compiled return Compiled(), nothing else return framecode, env end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
12413
const compiled_calls = Dict{Any,Any}() # Pre-frame-construction lookup function lookup_stmt(stmts::Vector{Any}, @nospecialize arg) if isa(arg, SSAValue) arg = stmts[arg.id] end if isa(arg, QuoteNode) return arg.value end return arg end function smallest_ref(stmts, arg, idmin) if isa(arg, SSAValue) idmin = min(idmin, arg.id) return smallest_ref(stmts, stmts[arg.id], idmin) elseif isa(arg, Expr) for a in arg.args idmin = smallest_ref(stmts, a, idmin) end end return idmin end function lookup_global_ref(a::GlobalRef) if Base.isbindingresolved(a.mod, a.name) && isdefined(a.mod, a.name) && isconst(a.mod, a.name) return QuoteNode(getfield(a.mod, a.name)) end return a end function lookup_global_refs!(ex::Expr) if isexpr(ex, (:isdefined, :thunk, :toplevel, :method, :global, :const, :globaldecl)) return nothing end for (i, a) in enumerate(ex.args) ex.head === :(=) && i == 1 && continue # Don't look up globalrefs on the LHS of an assignment (issue #98) if isa(a, GlobalRef) ex.args[i] = lookup_global_ref(a) elseif isa(a, Expr) lookup_global_refs!(a) end end return nothing end function lookup_getproperties(code::Vector{Any}, @nospecialize a) isexpr(a, :call) || return a length(a.args) == 3 || return a arg1 = lookup_stmt(code, a.args[1]) arg1 === Base.getproperty || return a arg2 = lookup_stmt(code, a.args[2]) arg2 isa Module || return a arg3 = lookup_stmt(code, a.args[3]) arg3 isa Symbol || return a return lookup_global_ref(GlobalRef(arg2, arg3)) end # HACK This isn't optimization really, but necessary to bypass llvmcall and foreigncall # TODO This "optimization" should be refactored into a "minimum compilation" necessary to # execute `llvmcall` and `foreigncall` and pure optimizations on the lowered code representation. # In particular, the optimization that replaces `GlobalRef` with `QuoteNode` is invalid and # should be removed: This is because it is not possible to know when and where the binding # will be resolved without executing the code. # Since the current `build_compiled_[llvmcall|foreigncall]!` relies on this replacement, # they also need to be reimplemented. """ optimize!(code::CodeInfo, mod::Module) Perform minor optimizations on the lowered AST in `code` to reduce execution time of the interpreter. Currently it looks up `GlobalRef`s (for which it needs `mod` to know the scope in which this will run) and ensures that no statement includes nested `:call` expressions (splitting them out into multiple SSA-form statements if needed). """ function optimize!(code::CodeInfo, scope) mod = moduleof(scope) evalmod = mod == Core.Compiler ? Core.Compiler : CompiledCalls sparams = scope isa Method ? sparam_syms(scope) : Symbol[] replace_coretypes!(code) # TODO: because of builtins.jl, for CodeInfos like # %1 = Core.apply_type # %2 = (%1)(args...) # it would be best to *not* resolve the GlobalRef at %1 ## Replace GlobalRefs with QuoteNodes for (i, stmt) in enumerate(code.code) if isa(stmt, GlobalRef) code.code[i] = lookup_global_ref(stmt) elseif isa(stmt, Expr) if stmt.head === :call && stmt.args[1] === :cglobal # cglobal requires literals continue else lookup_global_refs!(stmt) code.code[i] = lookup_getproperties(code.code, stmt) end end end # Replace :llvmcall and :foreigncall with compiled variants. See # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/13#issuecomment-464880123 # Insert the foreigncall wrappers at the updated idxs methodtables = Vector{Union{Compiled,DispatchableMethod}}(undef, length(code.code)) for (idx, stmt) in enumerate(code.code) # Foregincalls can be rhs of assignments if isexpr(stmt, :(=)) stmt = (stmt::Expr).args[2] end if isa(stmt, Expr) if stmt.head === :call # Check for :llvmcall arg1 = stmt.args[1] if (arg1 === :llvmcall || lookup_stmt(code.code, arg1) === Base.llvmcall) && isempty(sparams) && scope isa Method # Call via `invokelatest` to avoid compiling it until we need it Base.invokelatest(build_compiled_llvmcall!, stmt, code, idx, evalmod) methodtables[idx] = Compiled() end elseif stmt.head === :foreigncall && scope isa Method # Call via `invokelatest` to avoid compiling it until we need it Base.invokelatest(build_compiled_foreigncall!, stmt, code, sparams, evalmod) methodtables[idx] = Compiled() end end end return code, methodtables end function parametric_type_to_expr(@nospecialize(t::Type)) t isa Core.TypeofBottom && return t while t isa UnionAll t = t.body end t = t::DataType if Base.isvarargtype(t) return Expr(:(...), t.parameters[1]) end if Base.has_free_typevars(t) params = map(t.parameters) do @nospecialize(p) isa(p, TypeVar) ? p.name : isa(p, DataType) && Base.has_free_typevars(p) ? parametric_type_to_expr(p) : p end return Expr(:curly, scopename(t.name), params...)::Expr end return t end function build_compiled_llvmcall!(stmt::Expr, code::CodeInfo, idx::Int, evalmod::Module) # Run a mini-interpreter to extract the types framecode = FrameCode(CompiledCalls, code; optimize=false) frame = Frame(framecode, prepare_framedata(framecode, [])) idxstart = idx for i = 2:4 idxstart = smallest_ref(code.code, stmt.args[i], idxstart) end frame.pc = idxstart if idxstart < idx while true pc = step_expr!(Compiled(), frame) pc === idx && break pc === nothing && error("this should never happen") end end llvmir, RetType, ArgType = @lookup(frame, stmt.args[2]), @lookup(frame, stmt.args[3]), @lookup(frame, stmt.args[4])::DataType args = stmt.args[5:end] argnames = Any[Symbol(:arg, i) for i = 1:length(args)] cc_key = (llvmir, RetType, ArgType, evalmod) # compiled call key f = get(compiled_calls, cc_key, nothing) if f === nothing methname = gensym("compiled_llvmcall") def = :( function $methname($(argnames...)) return $(Base.llvmcall)($llvmir, $RetType, $ArgType, $(argnames...)) end) f = Core.eval(evalmod, def) compiled_calls[cc_key] = f end stmt.args[1] = QuoteNode(f) stmt.head = :call deleteat!(stmt.args, 2:length(stmt.args)) append!(stmt.args, args) end # Handle :llvmcall & :foreigncall (issue #28) function build_compiled_foreigncall!(stmt::Expr, code::CodeInfo, sparams::Vector{Symbol}, evalmod::Module) TVal = evalmod == Core.Compiler ? Core.Compiler.Val : Val cfunc, RetType, ArgType = lookup_stmt(code.code, stmt.args[1]), stmt.args[2], stmt.args[3]::SimpleVector dynamic_ccall = false oldcfunc = nothing if isa(cfunc, Expr) # specification by tuple, e.g., (:clock, "libc") cfunc = something(static_eval(cfunc), cfunc) end if isa(cfunc, Symbol) cfunc = QuoteNode(cfunc) elseif isa(cfunc, String) || isa(cfunc, Ptr) || isa(cfunc, Tuple) # do nothing else dynamic_ccall = true oldcfunc = cfunc cfunc = gensym("ptr") end if isa(RetType, SimpleVector) @assert length(RetType) == 1 RetType = RetType[1] end args = stmt.args[6:end] # When the ccall is dynamic we pass the pointer as an argument so can reuse the function cc_key = ((dynamic_ccall ? :ptr : cfunc), RetType, ArgType, evalmod, length(sparams), length(args)) # compiled call key f = get(compiled_calls, cc_key, nothing) if f === nothing ArgType = Expr(:tuple, Any[parametric_type_to_expr(t) for t in ArgType::SimpleVector]...) RetType = parametric_type_to_expr(RetType) # #285: test whether we can evaluate an type constraints on parametric expressions # this essentially comes down to having the names be available in CompiledCalls, # if they are not then executing the method will fail try isa(RetType, Expr) && Core.eval(CompiledCalls, wrap_params(RetType, sparams)) isa(ArgType, Expr) && Core.eval(CompiledCalls, wrap_params(ArgType, sparams)) catch return nothing end argnames = Any[Symbol(:arg, i) for i = 1:length(args)] wrapargs = copy(argnames) for sparam in sparams push!(wrapargs, :(::$TVal{$sparam})) end if dynamic_ccall pushfirst!(wrapargs, cfunc) end methname = gensym("compiled_ccall") def = :( function $methname($(wrapargs...)) where {$(sparams...)} return $(Expr(:foreigncall, cfunc, RetType, stmt.args[3:5]..., argnames...)) end) f = Core.eval(evalmod, def) compiled_calls[cc_key] = f end stmt.args[1] = QuoteNode(f) stmt.head = :call deleteat!(stmt.args, 2:length(stmt.args)) if dynamic_ccall push!(stmt.args, oldcfunc) end append!(stmt.args, args) for i in 1:length(sparams) push!(stmt.args, :($TVal($(Expr(:static_parameter, i))))) end return nothing end function replace_coretypes!(@nospecialize(src); rev::Bool=false) if isa(src, CodeInfo) replace_coretypes_list!(src.code; rev=rev) elseif isa(src, Expr) replace_coretypes_list!(src.args; rev=rev) end return src end function replace_coretypes_list!(list::AbstractVector; rev::Bool=false) function rep(@nospecialize(x), rev::Bool) if rev isa(x, SSAValue) && return Core.SSAValue(x.id) isa(x, SlotNumber) && return Core.SlotNumber(x.id) return x else isa(x, Core.SSAValue) && return SSAValue(x.id) isa(x, Core.SlotNumber) && return SlotNumber(x.id) @static if VERSION < v"1.11.0-DEV.337" @static if VERSION ≥ v"1.10.0-DEV.631" isa(x, Core.Compiler.TypedSlot) && return SlotNumber(x.id) else isa(x, Core.TypedSlot) && return SlotNumber(x.id) end end return x end end for (i, stmt) in enumerate(list) rstmt = rep(stmt, rev) if rstmt !== stmt list[i] = rstmt elseif isa(stmt, GotoIfNot) cond = stmt.cond rcond = rep(cond, rev) if rcond !== cond list[i] = GotoIfNot(rcond, stmt.dest) end elseif isa(stmt, ReturnNode) val = stmt.val rval = rep(val, rev) if rval !== val list[i] = ReturnNode(rval) end elseif @static (isdefined(Core.IR, :EnterNode) && true) && isa(stmt, Core.IR.EnterNode) if isdefined(stmt, :scope) rscope = rep(stmt.scope, rev) if rscope !== stmt.scope list[i] = Core.IR.EnterNode(stmt.catch_dest, rscope) end end elseif isa(stmt, Expr) replace_coretypes!(stmt; rev=rev) end end return nothing end function reverse_lookup_globalref!(list) # This only handles the function in calls for (i, stmt) in enumerate(list) if isexpr(stmt, :(=)) stmt = (stmt::Expr).args[2] end if isexpr(stmt, :call) stmt = stmt::Expr f = stmt.args[1] if isa(f, QuoteNode) f = f.value if isa(f, Function) && !isa(f, Core.IntrinsicFunction) ft = typeof(f) tn = ft.name::Core.TypeName name = String(tn.name) if startswith(name, '#') name = name[2:end] end stmt.args[1] = GlobalRef(tn.module, Symbol(name)) end end end end return list end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
6740
using Base.Meta import Base: +, -, convert, isless, get_world_counter using Core: CodeInfo, SimpleVector, LineInfoNode, GotoNode, GotoIfNot, ReturnNode, GeneratedFunctionStub, MethodInstance, NewvarNode, TypeName using UUIDs using Random # The following are for circumventing #28, memcpy invalid instruction error, # in Base and stdlib using Random.DSFMT using InteractiveUtils export @interpret, Compiled, Frame, root, leaf, ExprSplitter, BreakpointRef, breakpoint, @breakpoint, breakpoints, enable, disable, remove, toggle, debug_command, @bp, break_on, break_off, on_breakpoints_updated module CompiledCalls # This module is for handling intrinsics that must be compiled (llvmcall) as well as ccalls end const SlotNamesType = Vector{Symbol} append_any(@nospecialize x...) = append!([], Core.svec((x...)...)) if isdefined(Base, :mapany) const mapany = Base.mapany else mapany(f, itr) = map!(f, Vector{Any}(undef, length(itr)::Int), itr) # convenient for Expr.args end if isdefined(Base, :ntupleany) const ntupleany = Base.ntupleany else @noinline function ntupleany(f, n) (n >= 0) || throw(ArgumentError(string("tuple length should be ≥ 0, got ", n))) (Any[f(i) for i = 1:n]...,) end end if !isdefined(Base, Symbol("@something")) macro something(x...) :(something($(map(esc, x)...))) end end if isdefined(Base, :ScopedValues) using Base: ScopedValues.Scope else const Scope = Any end include("types.jl") include("utils.jl") include("construct.jl") include("localmethtable.jl") include("interpret.jl") include("builtins.jl") include("optimize.jl") include("commands.jl") include("breakpoints.jl") function set_compiled_methods() ########### # Methods # ########### # Work around #28 by preventing interpretation of all Base methods that have a ccall to memcpy push!(compiled_methods, which(vcat, (Vector,))) push!(compiled_methods, first(methods(Base._getindex_ra))) push!(compiled_methods, first(methods(Base._setindex_ra!))) push!(compiled_methods, which(Base.decompose, (BigFloat,))) push!(compiled_methods, which(DSFMT.dsfmt_jump, (DSFMT.DSFMT_state, DSFMT.GF2X))) @static if Sys.iswindows() push!(compiled_methods, which(InteractiveUtils.clipboard, (AbstractString,))) end # issue #76 push!(compiled_methods, which(unsafe_store!, (Ptr{Any}, Any, Int))) push!(compiled_methods, which(unsafe_store!, (Ptr, Any, Int))) # issue #92 push!(compiled_methods, which(objectid, Tuple{Any})) # issue #106 --- anything that uses sigatomic_(begin|end) push!(compiled_methods, which(flush, Tuple{IOStream})) push!(compiled_methods, which(disable_sigint, Tuple{Function})) push!(compiled_methods, which(reenable_sigint, Tuple{Function})) # Signal-handling in the `print` dispatch hierarchy push!(compiled_methods, which(Base.unsafe_write, Tuple{Base.LibuvStream,Ptr{UInt8},UInt})) push!(compiled_methods, which(print, Tuple{IO,Any})) push!(compiled_methods, which(print, Tuple{IO,Any,Any})) # Libc.GetLastError() @static if Sys.iswindows() push!(compiled_methods, which(Base.access_env, Tuple{Function,AbstractString})) push!(compiled_methods, which(Base._hasenv, Tuple{Vector{UInt16}})) end # These are currently extremely slow to interpret (https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/193) push!(compiled_methods, which(subtypes, Tuple{Module,Type})) push!(compiled_methods, which(subtypes, Tuple{Type})) push!(compiled_methods, which(match, Tuple{Regex,String,Int,UInt32})) # Anything that ccalls jl_typeinf_begin cannot currently be handled for finf in (Core.Compiler.typeinf_code, Core.Compiler.typeinf_ext, Core.Compiler.typeinf_type) for m in methods(finf) push!(compiled_methods, m) end end # Does an atomic operation via llvmcall (this fixes #354) if isdefined(Base, :load_state_acquire) for m in methods(Base.load_state_acquire) push!(compiled_methods, m) end end # This is about performance, not safety (issue #462) push!(compiled_methods, which(nameof, (Module,))) push!(compiled_methods, which(Base.binding_module, (Module, Symbol))) push!(compiled_methods, which(Base.unsafe_pointer_to_objref, (Ptr,))) push!(compiled_methods, which(Vector{Int}, (UndefInitializer, Int))) push!(compiled_methods, which(fill!, (Vector{Int8}, Int))) ########### # Modules # ########### push!(compiled_modules, Base.Threads) end _have_fma_compiled(::Type{T}) where {T} = Core.Intrinsics.have_fma(T) const FMA_FLOAT64 = Ref(false) const FMA_FLOAT32 = Ref(false) const FMA_FLOAT16 = Ref(false) function __init__() set_compiled_methods() COVERAGE[] = Base.JLOptions().code_coverage # If we interpret into Core.Compiler, we need to take precautions to avoid needing # inference of JuliaInterpreter methods in the middle of a `ccall(:jl_typeinf_begin, ...)` # block. # for (sym, RT, AT) in ((:jl_typeinf_begin, Cvoid, ()), # (:jl_typeinf_end, Cvoid, ()), # (:jl_isa_compileable_sig, Int32, (Any, Any)), # (:jl_compress_ast, Any, (Any, Any)), # # (:jl_set_method_inferred, Ref{Core.CodeInstance}, (Any, Any, Any, Any, Int32, UInt, UInt)), # (:jl_method_instance_add_backedge, Cvoid, (Any, Any)), # (:jl_method_table_add_backedge, Cvoid, (Any, Any, Any)), # (:jl_new_code_info_uninit, Ref{CodeInfo}, ()), # (:jl_uncompress_argnames, Vector{Symbol}, (Any,)), # (:jl_get_tls_world_age, UInt, ()), # (:jl_call_in_typeinf_world, Any, (Ptr{Ptr{Cvoid}}, Cint)), # (:jl_value_ptr, Any, (Ptr{Cvoid},)), # (:jl_value_ptr, Ptr{Cvoid}, (Any,))) # fname = Symbol(:ccall_, sym) # qsym = QuoteNode(sym) # argnames = [Symbol(:arg_, string(i)) for i = 1:length(AT)] # TAT = Expr(:tuple, [parametric_type_to_expr(t) for t in AT]...) # def = :($fname($(argnames...)) = ccall($qsym, $RT, $TAT, $(argnames...))) # f = Core.eval(Core.Compiler, def) # compiled_calls[(qsym, RT, Core.svec(AT...), Core.Compiler)] = f # precompile(f, AT) # end @static if isdefined(Base, :have_fma) FMA_FLOAT64[] = _have_fma_compiled(Float64) FMA_FLOAT32[] = _have_fma_compiled(Float32) FMA_FLOAT16[] = _have_fma_compiled(Float16) end end include("precompile.jl") _precompile_()
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
479
module var"#Internal" public_fn(x::String) = false end function _precompile_() ccall(:jl_generating_output, Cint, ()) == 1 || return nothing @interpret sum(rand(10)) expr = quote public_fn(x::Integer) = true module Private private(y::String) = false end const threshold = 0.1 end for (mod, ex) in ExprSplitter(var"#Internal", expr) frame = Frame(mod, ex) debug_command(frame, :c, true) end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
18404
""" `Compiled` is a trait indicating that any `:call` expressions should be evaluated using Julia's normal compiled-code evaluation. The alternative is to pass `stack=Frame[]`, which will cause all calls to be evaluated via the interpreter. """ struct Compiled end Base.similar(::Compiled, sz) = Compiled() # to support similar(stack, 0) # Our own replacements for Core types. We need to do this to ensure we can tell the difference # between "data" (Core types) and "code" (our types) if we step into Core.Compiler struct SSAValue id::Int end struct SlotNumber id::Int end Base.show(io::IO, ssa::SSAValue) = print(io, "%J", ssa.id) Base.show(io::IO, slot::SlotNumber) = print(io, "_J", slot.id) # Breakpoint support truecondition(frame) = true falsecondition(frame) = false const break_on_error = Ref(false) const break_on_throw = Ref(false) """ BreakpointState(isactive=true, condition=JuliaInterpreter.truecondition) `BreakpointState` represents a breakpoint at a particular statement in a `FrameCode`. `isactive` indicates whether the breakpoint is currently [`enable`](@ref)d or [`disable`](@ref)d. `condition` is a function that accepts a single `Frame`, and `condition(frame)` must return either `true` or `false`. Execution will stop at a breakpoint only if `isactive` and `condition(frame)` both evaluate as `true`. The default `condition` always returns `true`. To create these objects, see [`breakpoint`](@ref). """ struct BreakpointState isactive::Bool condition::Function end BreakpointState(isactive::Bool) = BreakpointState(isactive, truecondition) BreakpointState() = BreakpointState(true) function breakpointchar(bps::BreakpointState) if bps.isactive return bps.condition === truecondition ? 'b' : 'c' # unconditional : conditional end return bps.condition === falsecondition ? ' ' : 'd' # no breakpoint : disabled end struct _FrameInstance{FrameCode} framecode::FrameCode sparam_vals::SimpleVector enter_generated::Bool end Base.show(io::IO, instance::_FrameInstance) = print(io, "FrameInstance(", scopeof(instance.framecode), ", ", instance.sparam_vals, ", ", instance.enter_generated, ')') mutable struct _DispatchableMethod{FrameCode} next::Union{Nothing,_DispatchableMethod{FrameCode}} # linked-list representation frameinstance::Union{Compiled,_FrameInstance{FrameCode}} # really a Union{Compiled, FrameInstance} but we have a cyclic dependency sig::Type # for speed of matching, this is a *concrete* signature. `sig <: frameinstance.framecode.scope.sig` end # 0: none # 1: user # 2: all const COVERAGE = Ref{Int8}() function do_coverage(m::Module) COVERAGE[] == 2 && return true if COVERAGE[] == 1 root = Base.moduleroot(m) return root !== Base && root !== Core end return false end """ `FrameCode` holds static information about a method or toplevel code. One `FrameCode` can be shared by many calling `Frame`s. Important fields: - `scope`: the `Method` or `Module` in which this frame is to be evaluated. - `src`: the `CodeInfo` object storing (optimized) lowered source code. - `methodtables`: a vector, each entry potentially stores a "local method table" for the corresponding `:call` expression in `src` (undefined entries correspond to statements that do not contain `:call` expressions). - `used`: a `BitSet` storing the list of SSAValues that get referenced by later statements. """ struct FrameCode scope::Union{Method,Module} src::CodeInfo methodtables::Vector{Union{Compiled,_DispatchableMethod{FrameCode}}} # line-by-line method tables for generic-function :call Exprs breakpoints::Vector{BreakpointState} slotnamelists::Dict{Symbol,Vector{Int}} used::BitSet generator::Bool # true if this is for the expression-generator of a @generated function report_coverage::Bool unique_files::Set{Symbol} end """ `FrameInstance` represents a method specialized for particular argument types. Fields: - `framecode`: the [`FrameCode`](@ref) for the method. - `sparam_vals`: the static parameter values for the method. """ const FrameInstance = _FrameInstance{FrameCode} const DispatchableMethod = _DispatchableMethod{FrameCode} const BREAKPOINT_EXPR = :($(QuoteNode(getproperty))($JuliaInterpreter, :__BREAKPOINT_MARKER__)) function is_breakpoint_expr(ex::Expr) # Sadly, comparing QuoteNodes calls isequal(::Any, ::Any), and === seems not to work. # To avoid invalidations, do it the hard way. ex.head === :call || return false length(ex.args) === 3 || return false (q = ex.args[1]; isa(q, QuoteNode) && q.value === getproperty) || return false ex.args[2] === JuliaInterpreter || return false q = ex.args[3] return isa(q, QuoteNode) && q.value === :__BREAKPOINT_MARKER__ end function FrameCode(scope, src::CodeInfo; generator=false, optimize=true) if optimize src, methodtables = optimize!(copy(src), scope) else src = replace_coretypes!(copy(src)) methodtables = Vector{Union{Compiled,DispatchableMethod}}(undef, length(src.code)) end breakpoints = Vector{BreakpointState}(undef, length(src.code)) for (i, pc_expr) in enumerate(src.code) if lookup_stmt(src.code, pc_expr) === __BREAK_POINT_MARKER__ breakpoints[i] = BreakpointState() src.code[i] = nothing end end slotnamelists = Dict{Symbol,Vector{Int}}() for (i, sym) in enumerate(src.slotnames) list = get(slotnamelists, sym, Int[]) slotnamelists[sym] = push!(list, i) end used = find_used(src) report_coverage = do_coverage(moduleof(scope)) lt = linetable(src) unique_files = Set{Symbol}() @static if VERSION ≥ v"1.12.0-DEV.173" function pushuniquefiles!(unique_files::Set{Symbol}, lt) for edge in lt.edges pushuniquefiles!(unique_files, edge) end linetable = lt.linetable if linetable === nothing push!(unique_files, Base.IRShow.debuginfo_file1(lt)) else pushuniquefiles!(unique_files, linetable) end end pushuniquefiles!(unique_files, lt) else # VERSION < v"1.12.0-DEV.173" for entry in lt push!(unique_files, entry.file) end end # @static if framecode = FrameCode(scope, src, methodtables, breakpoints, slotnamelists, used, generator, report_coverage, unique_files) if scope isa Method for bp in _breakpoints # Manual union splitting if bp isa BreakpointSignature add_breakpoint_if_match!(framecode, bp) elseif bp isa BreakpointFileLocation add_breakpoint_if_match!(framecode, bp) else error("unhandled breakpoint type") end end else for bp in _breakpoints if bp isa BreakpointFileLocation add_breakpoint_if_match!(framecode, bp) end end end return framecode end nstatements(framecode::FrameCode) = length(framecode.src.code) Base.show(io::IO, framecode::FrameCode) = print_framecode(io, framecode) """ `FrameData` holds the arguments, local variables, and intermediate execution state in a particular call frame. Important fields: - `locals`: a vector containing the input arguments and named local variables for this frame. The indexing corresponds to the names in the `slotnames` of the src. Use [`locals`](@ref) to extract the current value of local variables. - `ssavalues`: a vector containing the [Static Single Assignment](https://en.wikipedia.org/wiki/Static_single_assignment_form) values produced at the current state of execution. - `sparams`: the static type parameters, e.g., for `f(x::Vector{T}) where T` this would store the value of `T` given the particular input `x`. - `exception_frames`: a list of indexes to `catch` blocks for handling exceptions within the current frame. The active handler is the last one on the list. - `last_exception`: the exception `throw`n by this frame or one of its callees. """ struct FrameData locals::Vector{Union{Nothing,Some{Any}}} ssavalues::Vector{Any} sparams::Vector{Any} exception_frames::Vector{Int} current_scopes::Vector{Scope} last_exception::Base.RefValue{Any} caller_will_catch_err::Bool last_reference::Vector{Int} callargs::Vector{Any} # a temporary for processing arguments of :call exprs end """ _INACTIVE_EXCEPTION Represents a case where no exceptions are thrown yet. End users will not see this singleton type, otherwise it usually means there is missing error handling in the interpretation process. """ struct _INACTIVE_EXCEPTION end """ `Frame` represents the current execution state in a particular call frame. Fields: - `framecode`: the [`FrameCode`](@ref) for this frame. - `framedata`: the [`FrameData`](@ref) for this frame. - `pc`: the program counter (integer index of the next statment to be evaluated) for this frame. - `caller`: the parent caller of this frame, or `nothing`. - `callee`: the frame called by this one, or `nothing`. The `Base` functions `show_backtrace` and `display_error` are overloaded such that `show_backtrace(io::IO, frame::Frame)` and `display_error(io::IO, er, frame::Frame)` shows a backtrace or error, respectively, in a similar way as to how Base shows them. """ mutable struct Frame framecode::FrameCode framedata::FrameData pc::Int assignment_counter::Int64 caller::Union{Frame,Nothing} callee::Union{Frame,Nothing} last_codeloc::Int end function Frame(framecode::FrameCode, framedata::FrameData, pc=1, caller=nothing) if length(junk_frames) > 0 frame = pop!(junk_frames) frame.framecode = framecode frame.framedata = framedata frame.pc = pc frame.assignment_counter = 1 frame.caller = caller frame.callee = nothing frame.last_codeloc = 0 return frame else return Frame(framecode, framedata, pc, 1, caller, nothing, 0) end end """ frame = Frame(mod::Module, src::CodeInfo; kwargs...) Construct a `Frame` to evaluate `src` in module `mod`. """ function Frame(mod::Module, src::CodeInfo; kwargs...) framecode = FrameCode(mod, src; kwargs...) return Frame(framecode, prepare_framedata(framecode, [])) end """ frame = Frame(mod::Module, ex::Expr) Construct a `Frame` to evaluate `ex` in module `mod`. This constructor can error, for example if lowering `ex` results in an `:error` or `:incomplete` expression, or if it otherwise fails to return a `:thunk`. """ function Frame(mod::Module, ex::Expr) lwr = Meta.lower(mod, ex) isexpr(lwr, :thunk) && return Frame(mod, lwr.args[1]) if isexpr(lwr, :error) || isexpr(lwr, :incomplete) throw(ArgumentError("lowering returned an error, $lwr")) end throw(ArgumentError("lowering did not return a `:thunk` expression, got $lwr")) end caller(frame) = frame.caller callee(frame) = frame.callee function traverse(f, frame) while f(frame) !== nothing frame = f(frame) end return frame end """ rframe = root(frame) Return the initial frame in the call stack. """ root(frame) = traverse(caller, frame) """ lframe = leaf(frame) Return the deepest callee in the call stack. """ leaf(frame) = traverse(callee, frame) function Base.show(io::IO, frame::Frame) frame_loc = CodeTracking.replace_buildbot_stdlibpath(repr(scopeof(frame))) println(io, "Frame for ", frame_loc) pc = frame.pc ns = nstatements(frame.framecode) range = get(io, :limit, false) ? (max(1, pc-2):min(ns, pc+2)) : (1:ns) first(range) > 1 && println(io, "⋮") print_framecode(io, frame.framecode; pc=pc, range=range) last(range) < ns && print(io, "\n⋮") print_vars(IOContext(io, :limit=>true, :compact=>true), locals(frame)) if caller(frame) !== nothing print(io, "\ncaller: ", scopeof(caller(frame))) end if callee(frame) !== nothing print(io, "\ncallee: ", scopeof(callee(frame))) end end """ `Variable` is a struct representing a variable with an asigned value. By calling the function [`locals`](@ref) on a [`Frame`](@ref) a `Vector` of `Variable`'s is returned. Important fields: - `value::Any`: the value of the local variable. - `name::Symbol`: the name of the variable as given in the source code. - `isparam::Bool`: if the variable is a type parameter, for example `T` in `f(x::T) where {T} = x`. - `is_captured_closure::Bool`: if the variable has been captured by a closure """ struct Variable value::Any name::Symbol isparam::Bool is_captured_closure::Bool end Variable(value, name) = Variable(value, name, false, false) Variable(value, name, isparam) = Variable(value, name, isparam, false) Base.show(io::IO, var::Variable) = (print(io, var.name, " = "); show(io,var.value)) Base.isequal(var1::Variable, var2::Variable) = var1.value == var2.value && var1.name === var2.name && var1.isparam == var2.isparam && var1.is_captured_closure == var2.is_captured_closure Base.:(==)(var1::Variable, var2::Variable) = isequal(var1, var2) # A type that is unique to this package for which there are no valid operations struct Unassigned end """ BreakpointRef(framecode, stmtidx) BreakpointRef(framecode, stmtidx, err) A reference to a breakpoint at a particular statement index `stmtidx` in `framecode`. If the break was due to an error, supply that as well. Commands that execute complex control-flow (e.g., `next_line!`) may also return a `BreakpointRef` to indicate that the execution stack switched frames, even when no breakpoint has been set at the corresponding statement. """ struct BreakpointRef framecode::FrameCode stmtidx::Int err end BreakpointRef(framecode, stmtidx) = BreakpointRef(framecode, stmtidx, nothing) Base.getindex(bp::BreakpointRef) = bp.framecode.breakpoints[bp.stmtidx] Base.setindex!(bp::BreakpointRef, isactive::Bool) = bp.framecode.breakpoints[bp.stmtidx] = BreakpointState(isactive, bp[].condition) function Base.show(io::IO, bp::BreakpointRef) if checkbounds(Bool, bp.framecode.breakpoints, bp.stmtidx) lineno = linenumber(bp.framecode, bp.stmtidx) print(io, "breakpoint(", bp.framecode.scope, ", line ", lineno) else print(io, "breakpoint(", bp.framecode.scope, ", %", bp.stmtidx) end if bp.err !== nothing print(io, ", ", bp.err) end print(io, ')') end # Possible types for breakpoint condition const Condition = Union{Nothing,Expr,Tuple{Module,Expr}} """ `AbstractBreakpoint` is the abstract type that is the supertype for breakpoints. Currently, the concrete breakpoint types [`BreakpointSignature`](@ref) and [`BreakpointFileLocation`](@ref) exist. Common fields shared by the concrete breakpoints: - `condition::Union{Nothing,Expr,Tuple{Module,Expr}}`: the condition when the breakpoint applies . `nothing` means unconditionally, otherwise when the `Expr` (optionally in `Module`). - `enabled::Ref{Bool}`: If the breakpoint is enabled (should not be directly modified, use [`enable()`](@ref) or [`disable()`](@ref)). - `instances::Vector{BreakpointRef}`: All the [`BreakpointRef`](@ref) that the breakpoint has applied to. - `line::Int` The line of the breakpoint (equal to 0 if unset). See [`BreakpointSignature`](@ref) and [`BreakpointFileLocation`](@ref) for additional fields in the concrete types. """ abstract type AbstractBreakpoint end same_location(::AbstractBreakpoint, ::AbstractBreakpoint) = false function print_bp_condition(io::IO, cond::Condition) if cond !== nothing if isa(cond, Tuple{Module, Expr}) && (expr = expr[2]) cond = (cond[1], Base.remove_linenums!(copy(cond[2]))) elseif isa(cond, Expr) cond = Base.remove_linenums!(copy(cond)) end print(io, " ", cond) end end """ A `BreakpointSignature` is a breakpoint that is set on methods or functions. Fields: - `f::Union{Method, Function, Type}`: A method or function that the breakpoint should apply to. - `sig::Union{Nothing, Type}`: if `f` is a `Method`, always equal to `nothing`. Otherwise, contains the method signature as a tuple type for what methods the breakpoint should apply to. For common fields shared by all breakpoints, see [`AbstractBreakpoint`](@ref). """ struct BreakpointSignature <: AbstractBreakpoint f::Union{Method, Base.Callable} sig::Union{Nothing, Type} line::Int # 0 is a sentinel for first statement condition::Condition enabled::Ref{Bool} instances::Vector{BreakpointRef} end same_location(bp2::BreakpointSignature, bp::BreakpointSignature) = bp2.f == bp.f && bp2.sig == bp.sig && bp2.line == bp.line function Base.show(io::IO, bp::BreakpointSignature) print(io, bp.f) bbsig = bp.sig if bbsig !== nothing print(io, '(', join("::" .* string.(bbsig.types), ", "), ')') end if bp.line !== 0 print(io, ":", bp.line) end print_bp_condition(io, bp.condition) if !bp.enabled[] print(io, " [disabled]") end end """ A `BreakpointFileLocation` is a breakpoint that is set on a line in a file. Fields: - `path::String`: The literal string that was used to create the breakpoint, e.g. `"path/file.jl"`. - `abspath`::String: The absolute path to the file when the breakpoint was created, e.g. `"/Users/Someone/path/file.jl"`. For common fields shared by all breakpoints, see [`AbstractBreakpoint`](@ref). """ struct BreakpointFileLocation <: AbstractBreakpoint # Both the input path and the absolute path is stored to handle the case # where a user sets a breakpoint on a relative path e.g. `../foo.jl`. The absolute path is needed # to handle the case where the current working directory change, and # the input path is needed to do "partial path matches", e.g match "src/foo.jl" against # "Package/src/foo.jl". path::String abspath::String line::Int condition::Condition enabled::Ref{Bool} instances::Vector{BreakpointRef} end same_location(bp2::BreakpointFileLocation, bp::BreakpointFileLocation) = bp2.path == bp.path && bp2.abspath == bp.abspath && bp2.line == bp.line function Base.show(io::IO, bp::BreakpointFileLocation) print(io, bp.path, ':', bp.line) print_bp_condition(io, bp.condition) if !bp.enabled[] print(io, " [disabled]") end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
27580
## Simple utils # Note: to avoid dynamic dispatch, many of these are coded as a single method using isa statements function scopeof(@nospecialize(x))::Union{Method,Module} (isa(x, Method) || isa(x, Module)) && return x isa(x, FrameCode) && return x.scope isa(x, Frame) && return x.framecode.scope error("unknown scope for ", x) end function moduleof(@nospecialize(x)) s = scopeof(x) return isa(s, Module) ? s : s.module end function Base.nameof(frame::Frame) s = frame.framecode.scope isa(s, Method) ? s.name : nameof(s) end _Typeof(x) = isa(x, Type) ? Type{x} : typeof(x) function to_function(@nospecialize(x)) isa(x, GlobalRef) ? getfield(x.mod, x.name) : x end """ method = whichtt(tt) Like `which` except it operates on the complete tuple-type `tt`, and doesn't throw when there is no matching method. """ function whichtt(@nospecialize(tt)) # TODO: provide explicit control over world age? In case we ever need to call "old" methods. @static if VERSION ≥ v"1.8-beta2" # branch on https://github.com/JuliaLang/julia/pull/44515 # for now, actual code execution doesn't ever need to consider overlayed method table match, _ = Core.Compiler._findsup(tt, nothing, get_world_counter()) match === nothing && return nothing return match.method else m = ccall(:jl_gf_invoke_lookup, Any, (Any, Csize_t), tt, get_world_counter()) m === nothing && return nothing isa(m, Method) && return m return m.func::Method end end instantiate_type_in_env(arg, spsig::UnionAll, spvals::Vector{Any}) = ccall(:jl_instantiate_type_in_env, Any, (Any, Any, Ptr{Any}), arg, spsig, spvals) function sparam_syms(meth::Method) s = Symbol[] sig = meth.sig while sig isa UnionAll push!(s, Symbol(sig.var.name)) sig = sig.body end return s end separate_kwargs(args...; kwargs...) = (args, values(kwargs)) pc_expr(src::CodeInfo, pc) = src.code[pc] pc_expr(framecode::FrameCode, pc) = pc_expr(framecode.src, pc) pc_expr(frame::Frame, pc) = pc_expr(frame.framecode, pc) pc_expr(frame::Frame) = pc_expr(frame, frame.pc) function find_used(code::CodeInfo) used = BitSet() stmts = code.code for stmt in stmts scan_ssa_use!(used, stmt) end return used end function scan_ssa_use!(used::BitSet, @nospecialize(stmt)) if isa(stmt, SSAValue) push!(used, stmt.id) end iter = Core.Compiler.userefs(stmt) iterval = Core.Compiler.iterate(iter) while iterval !== nothing useref, state = iterval val = Core.Compiler.getindex(useref) if (@static VERSION < v"1.11.0-DEV.1180" && true) && isexpr(val, :call) # work around for a linearization bug in Julia (https://github.com/JuliaLang/julia/pull/52497) scan_ssa_use!(used, val) end if isa(val, SSAValue) push!(used, val.id) end iterval = Core.Compiler.iterate(iter, state) end end function hasarg(predicate, args) predicate(args) && return true for a in args predicate(a) && return true if isa(a, Expr) hasarg(predicate, a.args) && return true elseif isa(a, QuoteNode) predicate(a.value) && return true elseif isa(a, GlobalRef) predicate(a.name) && return true end end return false end function wrap_params(expr, sparams::Vector{Symbol}) isempty(sparams) && return expr params = [] for p in sparams hasarg(isidentical(p), expr.args) && push!(params, p) end return isempty(params) ? expr : Expr(:where, expr, params...) end function scopename(tn::TypeName) modpath = Base.fullname(tn.module) if isa(modpath, Tuple{Symbol}) return Expr(:., modpath[1], QuoteNode(tn.name)) end ex = Expr(:., modpath[end-1], QuoteNode(modpath[end])) for i = length(modpath)-2:-1:1 ex = Expr(:., modpath[i], ex) end return Expr(:., ex, QuoteNode(tn.name)) end ## Predicates isidentical(x) = Base.Fix2(===, x) # recommended over isequal(::Symbol) since it cannot be invalidated is_return(@nospecialize(node)) = node isa ReturnNode is_loc_meta(@nospecialize(expr), @nospecialize(kind)) = isexpr(expr, :meta) && length(expr.args) >= 1 && expr.args[1] === kind """ is_global_ref(g, mod, name) Tests whether `g` is equal to `GlobalRef(mod, name)`. """ is_global_ref(@nospecialize(g), mod::Module, name::Symbol) = isa(g, GlobalRef) && g.mod === mod && g.name == name is_quotenode(@nospecialize(q), @nospecialize(val)) = isa(q, QuoteNode) && q.value == val is_quotenode_egal(@nospecialize(q), @nospecialize(val)) = isa(q, QuoteNode) && q.value === val function is_quoted_type(@nospecialize(a), name::Symbol) if isa(a, QuoteNode) T = a.value if isa(T, UnionAll) T = Base.unwrap_unionall(T) end isa(T, DataType) && return T.name.name === name end return false end function is_function_def(@nospecialize(ex)) (isexpr(ex, :(=)) && isexpr(ex.args[1], :call)) || isexpr(ex, :function) end function is_call(@nospecialize(node)) isexpr(node, :call) || (isexpr(node, :(=)) && (isexpr(node.args[2], :call))) end is_call_or_return(@nospecialize(node)) = is_call(node) || node isa ReturnNode is_dummy(bpref::BreakpointRef) = bpref.stmtidx == 0 && bpref.err === nothing function unpack_splatcall(stmt) if isexpr(stmt, :call) && length(stmt.args) >= 3 && is_quotenode_egal(stmt.args[1], Core._apply_iterate) return true, stmt.args[3] end return false, nothing end function unpack_splatcall(stmt, src::CodeInfo) issplatcall, callee = unpack_splatcall(stmt) if isa(callee, SSAValue) callee = src.code[callee.id] end return issplatcall, callee end function is_bodyfunc(@nospecialize(arg)) if isa(arg, QuoteNode) arg = arg.value end if isa(arg, Function) fname = String((typeof(arg).name::Core.TypeName).name) return startswith(fname, "##") && match(r"#\d+$", fname) !== nothing end return false end """ Determine whether we are calling a function for which the current function is a wrapper (either because of optional arguments or because of keyword arguments). """ function is_wrapper_call(@nospecialize(expr)) isexpr(expr, :(=)) && (expr = expr.args[2]) isexpr(expr, :call) && any(x->x==SlotNumber(1), expr.args) end is_generated(meth::Method) = isdefined(meth, :generator) @static if VERSION < v"1.10.0-DEV.873" # julia#48766 get_staged(mi::MethodInstance) = Core.Compiler.get_staged(mi) else get_staged(mi::MethodInstance) = Core.Compiler.get_staged(mi, Base.get_world_counter()) end """ is_doc_expr(ex) Test whether expression `ex` is a `@doc` expression. """ function is_doc_expr(@nospecialize(ex)) docsym = Symbol("@doc") if isexpr(ex, :macrocall) ex::Expr length(ex.args) == 4 || return false a = ex.args[1] is_global_ref(a, Core, docsym) && return true isa(a, Symbol) && a == docsym && return true if isexpr(a, :.) mod, name = (a::Expr).args[1], (a::Expr).args[2] return mod === :Core && isa(name, QuoteNode) && name.value === docsym end end return false end is_leaf(frame::Frame) = frame.callee === nothing function is_vararg_type(x) @static if isa(Vararg, Type) if isa(x, Type) (x <: Vararg && !(x <: Union{})) && return true if isa(x, UnionAll) x = Base.unwrap_unionall(x) end return isa(x, DataType) && nameof(x) === :Vararg end else return isa(x, typeof(Vararg)) end return false end ## Location info # These getters improve inference since fieldtype(CodeInfo, :linetable) # and fieldtype(CodeInfo, :codelocs) are both Any @static if VERSION ≥ v"1.12.0-DEV.173" const LineTypes = Union{LineNumberNode,Base.IRShow.LineInfoNode} else const LineTypes = Union{LineNumberNode,Core.LineInfoNode} end function linetable(arg) if isa(arg, Frame) arg = arg.framecode end if isa(arg, FrameCode) arg = arg.src end ci = arg::CodeInfo @static if VERSION ≥ v"1.12.0-DEV.173" return ci.debuginfo else # VERSION < v"1.12.0-DEV.173" return ci.linetable::Union{Vector{Core.LineInfoNode},Vector{Any}} # issue #264 end # @static if end function linetable(arg, i::Integer; macro_caller::Bool=false, def=:var"n/a")::Union{Expr,Nothing,LineTypes} lt = linetable(arg) @static if VERSION ≥ v"1.12.0-DEV.173" # TODO: decode the linetable at this frame efficiently by reimplementing this here nodes = Base.IRShow.buildLineInfoNode(lt, def, i) isempty(nodes) && return nothing return nodes[1] # ignore all inlining / macro expansion / etc :( else # VERSION < v"1.12.0-DEV.173" lin = lt[i]::Union{Expr,LineTypes} if macro_caller while lin isa Core.LineInfoNode && lin.method === Symbol("macro expansion") && lin.inlined_at != 0 lin = lt[lin.inlined_at]::Union{Expr,LineTypes} end end return lin end # @static if end @static if VERSION ≥ v"1.12.0-DEV.173" getlastline(arg) = getlastline(linetable(arg)) function getlastline(debuginfo::Core.DebugInfo) while true ltnext = debuginfo.linetable ltnext === nothing && break debuginfo = ltnext end lastline = 0 for k = 0:typemax(Int) codeloc = Core.Compiler.getdebugidx(debuginfo, k) line::Int = codeloc[1] line < 0 && break lastline = max(lastline, line) end return lastline end function codelocs(arg, i::Integer) debuginfo = linetable(arg) codeloc = Core.Compiler.getdebugidx(debuginfo, i) line::Int = codeloc[1] line < 0 && return 0# broken or disabled debug info? if line == 0 && codeloc[2] == 0 return 0 # no line number update end return i end else # VERSION < v"1.12.0-DEV.173" getfirstline(arg) = getline(linetable(arg)[begin]) getlastline(arg) = getline(linetable(arg)[end]) function codelocs(arg) if isa(arg, Frame) arg = arg.framecode end if isa(arg, FrameCode) arg = arg.src end ci = arg::CodeInfo return ci.codelocs end codelocs(arg, i::Integer) = codelocs(arg)[i] end # @static if function lineoffset(framecode::FrameCode) offset = 0 scope = framecode.scope if isa(scope, Method) _, line1 = whereis(scope) offset = line1 - scope.line end return offset end function getline(ln::Union{LineTypes,Expr,Nothing}) _getline(ln::LineTypes) = Int(ln.line) _getline(ln::Expr) = ln.args[1]::Int # assuming ln.head === :line _getline(::Nothing) = nothing return _getline(ln) end function getfile(ln::Union{LineTypes,Expr}) _getfile(ln::LineTypes) = ln.file::Symbol _getfile(ln::Expr) = ln.args[2]::Symbol # assuming ln.head === :line return CodeTracking.maybe_fixup_stdlib_path(String(_getfile(ln))) end function firstline(ex::Expr) for a in ex.args isa(a, LineNumberNode) && return a if isa(a, Expr) line = firstline(a) isa(line, LineNumberNode) && return line end end return nothing end """ loc = whereis(frame, pc::Int=frame.pc; macro_caller=false) Return the file and line number for `frame` at `pc`. If this cannot be determined, `loc == nothing`. Otherwise `loc == (filepath, line)`. By default, any statements expanded from a macro are attributed to the macro definition, but with`macro_caller=true` you can obtain the location within the method that issued the macro. """ function CodeTracking.whereis(framecode::FrameCode, pc::Int; kwargs...) codeloc = codelocation(framecode.src, pc) codeloc == 0 && return nothing m = framecode.scope lineinfo = linetable(framecode, codeloc; kwargs..., def=isa(m, Method) ? m : :var"n/a") if m isa Method return lineinfo === nothing ? (String(m.file), m.line) : whereis(lineinfo, m) else return lineinfo === nothing ? nothing : (getfile(lineinfo), getline(lineinfo)) end end CodeTracking.whereis(frame::Frame, pc::Int=frame.pc; kwargs...) = whereis(frame.framecode, pc; kwargs...) """ line = linenumber(framecode, pc) Return the "static" line number at statement index `pc`. The static line number is the location at the time the method was most recently defined. See [`CodeTracking.whereis`](@ref) for dynamic line information. """ function linenumber(framecode::FrameCode, pc) codeloc = codelocation(framecode.src, pc) codeloc == 0 && return nothing return getline(linetable(framecode, codeloc)) end linenumber(frame::Frame, pc=frame.pc) = linenumber(frame.framecode, pc) function getfile(framecode::FrameCode, pc) codeloc = codelocation(framecode.src, pc) codeloc == 0 && return nothing return getfile(linetable(framecode, codeloc)) end getfile(frame::Frame, pc=frame.pc) = getfile(frame.framecode, pc) function codelocation(code::CodeInfo, idx::Int) idx′ = idx # look ahead if we are on a meta line while idx′ < length(code.code) codeloc = codelocs(code, idx′) codeloc == 0 || return codeloc ex = code.code[idx′] ex === nothing || isexpr(ex, :meta) || break idx′ += 1 end idx′ = idx - 1 # if zero, look behind until we find where we last might have had a line while idx′ > 0 ex = code.code[idx′] codeloc = codelocs(code, idx′) codeloc == 0 || return codeloc idx′ -= 1 end # for the start of the function, return index 1 return 1 end function compute_corrected_linerange(method::Method) _, line1 = whereis(method) offset = line1 - method.line @assert !is_generated(method) src = JuliaInterpreter.get_source(method) lastline = getlastline(src) return line1:lastline + offset end compute_linerange(framecode) = getfirstline(framecode):getlastline(framecode) function statementnumbers(framecode::FrameCode, line::Integer, file::Symbol) # Check to see if this framecode really contains that line. Methods that fill in a default positional argument, # keyword arguments, and @generated sections may not contain the line. scope = framecode.scope offset = if scope isa Method method = scope _, line1 = whereis(method) Int(line1 - method.line) else 0 end lt = linetable(framecode) # Check if the exact line number exist idxs = findall(entry::Union{LineInfoNode,LineNumberNode} -> entry.line + offset == line && entry.file == file, lt) locs = codelocs(framecode) if !isempty(idxs) stmtidxs = Int[] stmtidx = 1 while stmtidx <= length(locs) loc = locs[stmtidx] if loc in idxs push!(stmtidxs, stmtidx) stmtidx += 1 # Skip continous statements that are on the same line while stmtidx <= length(locs) && loc == locs[stmtidx] stmtidx += 1 end else stmtidx += 1 end end return stmtidxs end # If the exact line number does not exist in the line table, take the one that is closest after that line # restricted to the line range of the current scope. scope = framecode.scope range = (scope isa Method && !is_generated(scope)) ? compute_corrected_linerange(scope) : compute_linerange(framecode) if line in range closest = nothing closest_idx = nothing for (i, entry) in enumerate(lt) entry = entry::Union{LineInfoNode,LineNumberNode} if entry.file == file && entry.line in range && entry.line >= line if closest === nothing closest = entry closest_idx = i else if entry.line < closest.line closest = entry closest_idx = i end end end end if closest_idx !== nothing idx = let closest_idx=closest_idx # julia #15276 findfirst(i-> i==closest_idx, locs) end return idx === nothing ? nothing : Int[idx] end end return nothing end ## Printing function framecode_lines(src::CodeInfo) buf = IOBuffer() if isdefined(Base.IRShow, :show_ir_stmt) lines = String[] src = replace_coretypes!(copy(src); rev=true) reverse_lookup_globalref!(src.code) io = IOContext(buf, :displaysize => displaysize(stdout), :SOURCE_SLOTNAMES => Base.sourceinfo_slotnames(src)) used = BitSet() cfg = Core.Compiler.compute_basic_blocks(src.code) for stmt in src.code Core.Compiler.scan_ssa_use!(push!, used, stmt) end line_info_preprinter = Base.IRShow.lineinfo_disabled line_info_postprinter = Base.IRShow.default_expr_type_printer bb_idx = 1 for idx = 1:length(src.code) bb_idx = Base.IRShow.show_ir_stmt(io, src, idx, line_info_preprinter, line_info_postprinter, used, cfg, bb_idx) push!(lines, chomp(String(take!(buf)))) end return lines end show(buf, src) code = filter!(split(String(take!(buf)), '\n')) do line !(line == "CodeInfo(" || line == ")" || isempty(line) || occursin("within `", line)) end code .= replace.(code, Ref(r"\$\(QuoteNode\((.+?)\)\)" => s"\1")) return code end framecode_lines(framecode::FrameCode) = framecode_lines(framecode.src) breakpointchar(framecode, stmtidx) = isassigned(framecode.breakpoints, stmtidx) ? breakpointchar(framecode.breakpoints[stmtidx]) : ' ' function print_framecode(io::IO, framecode::FrameCode; pc=0, range=1:nstatements(framecode), kwargs...) iscolor = get(io, :color, false) ndstmt = ndigits(nstatements(framecode)) ndline = ndigits(getlastline(framecode) + lineoffset(framecode)) nullline = " "^ndline src = copy(framecode.src) replace_coretypes!(src; rev=true) code = framecode_lines(src) isfirst = true for (stmtidx, stmtline) in enumerate(code) stmtidx ∈ range || continue bpc = breakpointchar(framecode, stmtidx) isfirst || print(io, '\n') isfirst = false print(io, bpc, ' ') if iscolor color = stmtidx == pc ? Base.warn_color() : :normal printstyled(io, lpad(stmtidx, ndstmt); color=color, kwargs...) else print(io, lpad(stmtidx, ndstmt), stmtidx == pc ? '*' : ' ') end line = linenumber(framecode, stmtidx) print(io, ' ', line === nothing ? nullline : lpad(line, ndline), " ", stmtline) end end """ local_variables = locals(frame::Frame)::Vector{Variable} Return the local variables as a vector of [`Variable`](@ref). """ function locals(frame::Frame) vars, var_counter = Variable[], Int[] varlookup = Dict{Symbol,Int}() data, code = frame.framedata, frame.framecode slotnames = code.src.slotnames for (sym, counter, val) in zip(slotnames, data.last_reference, data.locals) counter == 0 && continue val = something(val) if val isa Core.Box && !isdefined(val, :contents) continue end var = Variable(val, sym) idx = get(varlookup, sym, 0) if idx > 0 if counter > var_counter[idx] vars[idx] = var var_counter[idx] = counter end else varlookup[sym] = length(vars)+1 push!(vars, var) push!(var_counter, counter) end end scope = code.scope if scope isa Method syms = sparam_syms(scope) for i in 1:length(syms) if isassigned(data.sparams, i) push!(vars, Variable(data.sparams[i], syms[i], true)) end end end for var in vars if var.name === Symbol("#self#") for field in fieldnames(typeof(var.value)) field = field::Symbol if isdefined(var.value, field) push!(vars, Variable(getfield(var.value, field), field, false, true)) end end end end return vars end function print_vars(io::IO, vars::Vector{Variable}) for v in vars v.name === Symbol("#self#") && (isa(v.value, Type) || sizeof(v.value) == 0) && continue print(io, '\n', v) end end """ eval_code(frame::Frame, code::Union{String, Expr}) Evaluate `code` in the context of `frame`, updating any local variables (including type parameters) that are reassigned in `code`, however, new local variables cannot be introduced. ```jldoctest julia> foo(x, y) = x + y; julia> frame = JuliaInterpreter.enter_call(foo, 1, 3); julia> JuliaInterpreter.eval_code(frame, "x + y") 4 julia> JuliaInterpreter.eval_code(frame, "x = 5"); julia> JuliaInterpreter.finish_and_return!(frame) 8 ``` When variables are captured in closures (and thus gets wrapped in a `Core.Box`) they will be automatically unwrapped and rewrapped upon evaluating them: ```jldoctest julia> function capture() x = 1 f = ()->(x = 2) # x captured in closure and is thus a Core.Box f() x end; julia> frame = JuliaInterpreter.enter_call(capture); julia> JuliaInterpreter.step_expr!(frame); julia> JuliaInterpreter.step_expr!(frame); julia> JuliaInterpreter.locals(frame) 2-element Vector{JuliaInterpreter.Variable}: #self# = capture x = Core.Box(1) julia> JuliaInterpreter.eval_code(frame, "x") 1 julia> JuliaInterpreter.eval_code(frame, "x = 2") 2 julia> JuliaInterpreter.locals(frame) 2-element Vector{JuliaInterpreter.Variable}: #self# = capture x = Core.Box(2) ``` "Special" values like SSA values and slots (shown in lowered code as e.g. `%3` and `@_4` respectively) can be evaluated using the syntax `var"%3"` and `var"@_4"` respectively. """ function eval_code end function extract_usage!(s::Set{Symbol}, expr) if expr isa Expr for arg in expr.args if arg isa Symbol push!(s, arg) elseif arg isa Expr extract_usage!(s, arg) end end elseif expr isa Symbol push!(s, expr) end return s end function eval_code(frame::Frame, command::AbstractString) expr = Base.parse_input_line(command) expr === nothing && return nothing return eval_code(frame, expr) end function eval_code(frame::Frame, expr::Expr) code = frame.framecode data = frame.framedata isexpr(expr, :toplevel) && (expr = expr.args[end]) if isexpr(expr, :toplevel) expr = Expr(:block, expr.args...) end used_symbols = Set{Symbol}((Symbol("#self#"),)) extract_usage!(used_symbols, expr) # see https://github.com/JuliaLang/julia/issues/31255 for the Symbol("") check vars = filter(v -> v.name != Symbol("") && v.name in used_symbols, locals(frame)) defined_ssa = findall(i -> isassigned(data.ssavalues, i) && Symbol("%$i") in used_symbols, 1:length(data.ssavalues)) defined_locals = findall(i-> data.locals[i] isa Some && Symbol("@_$i") in used_symbols, 1:length(data.locals)) res = gensym() eval_expr = Expr(:let, Expr(:block, map(x->Expr(:(=), x...), [(v.name, QuoteNode(v.value isa Core.Box ? v.value.contents : v.value)) for v in vars])..., map(x->Expr(:(=), x...), [(Symbol("%$i"), QuoteNode(data.ssavalues[i])) for i in defined_ssa])..., map(x->Expr(:(=), x...), [(Symbol("@_$i"), QuoteNode(data.locals[i].value)) for i in defined_locals])..., ), Expr(:block, Expr(:(=), res, expr), Expr(:tuple, res, Expr(:tuple, [v.name for v in vars]...)) )) eval_res, res = Core.eval(moduleof(frame), eval_expr) j = 1 for (i, v) in enumerate(vars) if v.isparam data.sparams[j] = res[i] j += 1 elseif v.is_captured_closure selfidx = findfirst(v -> v.name === Symbol("#self#"), vars) @assert selfidx !== nothing self = vars[selfidx].value closed_over_var = getfield(self, v.name) if closed_over_var isa Core.Box setfield!(closed_over_var, :contents, res[i]) end # We cannot rebind closed over variables that the frontend identified as constant else slot_indices = code.slotnamelists[v.name] idx = argmax(data.last_reference[slot_indices]) slot_idx = slot_indices[idx] data.last_reference[slot_idx] = (frame.assignment_counter += 1) data.locals[slot_idx] = Some{Any}(v.value isa Core.Box ? Core.Box(res[i]) : res[i]) end end eval_res end function show_stackloc(io::IO, frame) indent = "" fr = root(frame) shown = false while fr !== nothing print(io, indent, scopeof(fr)) if fr === frame println(io, ", pc = ", frame.pc) shown = true else print(io, '\n') end indent *= " " fr = fr.callee end if !shown println(io, indent, scopeof(frame), ", pc = ", frame.pc) end end show_stackloc(frame) = show_stackloc(stdout, frame) # Printing of stacktraces and errors with Frame function Base.StackTraces.StackFrame(frame::Frame) scope = scopeof(frame) if scope isa Method method = scope method_args = Any[something(frame.framedata.locals[i]) for i in 1:method.nargs] argt = Tuple{mapany(_Typeof, method_args)...} sig = method.sig atype, sparams = ccall(:jl_type_intersection_with_env, Any, (Any, Any), argt, sig)::SimpleVector mi = Core.Compiler.specialize_method(method, atype, sparams::SimpleVector) fname = method.name else mi = frame.framecode.src fname = gensym() end Base.StackFrame( fname, Symbol(getfile(frame)), @something(linenumber(frame), getfirstline(frame)), mi, false, false, C_NULL) end function Base.show_backtrace(io::IO, frame::Frame) stackframes = Tuple{Base.StackTraces.StackFrame, Int}[] while frame !== nothing push!(stackframes, (Base.StackTraces.StackFrame(frame), 1)) frame = JuliaInterpreter.caller(frame) end print(io, "\nStacktrace:") try invokelatest(Base.update_stackframes_callback[], stackframes) catch end frame_counter = 0 nd = ndigits(length(stackframes)) for (i, (last_frame, n)) in enumerate(stackframes) frame_counter += 1 if isdefined(Base, :print_stackframe) println(io) Base.print_stackframe(io, i, last_frame, n, nd, Base.info_color()) else Base.show_trace_entry(IOContext(io, :backtrace => true), last_frame, n, prefix = string(" [", frame_counter, "] ")) end end end function Base.display_error(io::IO, er, frame::Frame) printstyled(io, "ERROR: "; bold=true, color=Base.error_color()) showerror(IOContext(io, :limit => true), er, frame) println(io) end function static_eval(ex) try eval(ex) catch nothing end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
17614
radius2(x, y) = x^2 + y^2 function loop_radius2(n) s = 0 for i = 1:n s += radius2(1, i) end s end tmppath = "" global tmppath tmppath, io = mktemp() print(io, """ function jikwfunc(x, y=0; z="hello") a = x + y b = z^a return length(b) end """) close(io) include(tmppath) using JuliaInterpreter, CodeTracking, Test function stacklength(frame) n = 1 frame = frame.callee while frame !== nothing n += 1 frame = frame.callee end return n end struct Squarer end @testset "Breakpoints" begin Δ = CodeTracking.line_is_decl breakpoint(radius2) frame = JuliaInterpreter.enter_call(loop_radius2, 2) bp = JuliaInterpreter.finish_and_return!(frame) @test isa(bp, JuliaInterpreter.BreakpointRef) @test stacklength(frame) == 2 @test leaf(frame).framecode.scope == @which radius2(0, 0) bp = JuliaInterpreter.finish_stack!(frame) @test isa(bp, JuliaInterpreter.BreakpointRef) @test stacklength(frame) == 2 @test JuliaInterpreter.finish_stack!(frame) == loop_radius2(2) # Conditional breakpoints function runsimple() frame = JuliaInterpreter.enter_call(loop_radius2, 2) bp = JuliaInterpreter.finish_and_return!(frame) @test isa(bp, JuliaInterpreter.BreakpointRef) @test stacklength(frame) == 2 @test leaf(frame).framecode.scope == @which radius2(0, 0) @test JuliaInterpreter.finish_stack!(frame) == loop_radius2(2) end remove() breakpoint(radius2, :(y > x)) runsimple() remove() @breakpoint radius2(0,0) y>x runsimple() # Demonstrate the problem that we have with scope local_identity(x) = identity(x) remove() @breakpoint radius2(0,0) y>local_identity(x) @test_broken @interpret loop_radius2(2) # Conditional breakpoints on local variables remove() halfthresh = loop_radius2(5) bp = @breakpoint loop_radius2(10) 5 s>$halfthresh frame, bpref = @interpret loop_radius2(10) @test isa(bpref, JuliaInterpreter.BreakpointRef) lframe = leaf(frame) s_extractor = eval(JuliaInterpreter.prepare_slotfunction(lframe.framecode, :s)) @test s_extractor(lframe) == loop_radius2(6) JuliaInterpreter.finish_stack!(frame) @test s_extractor(lframe) == loop_radius2(7) disable(bp) @test JuliaInterpreter.finish_stack!(frame) == loop_radius2(10) # Return value with breakpoints @breakpoint sum([1,2]) any(x->x>4, a) val = @interpret sum([1,2,3]) @test val == 6 frame, bp = @interpret sum([1,2,5]) @test isa(frame, Frame) && isa(bp, JuliaInterpreter.BreakpointRef) # Next line with breakpoints function outer(x) inner(x) end function inner(x) return 2 end breakpoint(inner) frame = JuliaInterpreter.enter_call(outer, 0) bp = JuliaInterpreter.next_line!(frame) @test isa(bp, JuliaInterpreter.BreakpointRef) @test JuliaInterpreter.finish_stack!(frame) == 2 # Breakpoints by file/line remove() method = which(JuliaInterpreter.locals, Tuple{Frame}) breakpoint(String(method.file), method.line+1) frame = JuliaInterpreter.enter_call(loop_radius2, 2) ret = @interpret JuliaInterpreter.locals(frame) @test isa(ret, Tuple{Frame,JuliaInterpreter.BreakpointRef}) # Test kwarg method remove() bp = breakpoint(tmppath, 3) frame, bp2 = @interpret jikwfunc(2) var = JuliaInterpreter.locals(leaf(frame)) @test !any(v->v.name === :b, var) @test filter(v->v.name === :a, var)[1].value == 2 # Method with local scope (two slots with same name) ln = @__LINE__ function ftwoslots() y = 1 z = let y = y y = y + 2 rand() end y = y + 1 return z end bp = breakpoint(@__FILE__, ln+5, :(y > 2)) frame, bp2 = @interpret ftwoslots() var = JuliaInterpreter.locals(leaf(frame)) @test filter(v->v.name === :y, var)[1].value == 3 remove(bp) bp = breakpoint(@__FILE__, ln+8, :(y > 2)) @test isa(@interpret(ftwoslots()), Float64) # Direct return @breakpoint gcd(1,1) a==5 @test @interpret(gcd(10,20)) == 10 # FIXME: even though they pass, these tests break Test! # frame, bp = @interpret gcd(5, 20) # @test stacklength(frame) == 1 # @test isa(bp, JuliaInterpreter.BreakpointRef) remove() # break on error try @test_throws ArgumentError("unsupported state :missing") break_on(:missing) break_on(:error) inner(x) = error("oops") outer() = inner(1) frame = JuliaInterpreter.enter_call(outer) bp = JuliaInterpreter.finish_and_return!(frame) @test bp.err == ErrorException("oops") @test stacklength(frame) >= 2 @test frame.framecode.scope.name === :outer cframe = frame.callee @test cframe.framecode.scope.name === :inner # Don't break on caught exceptions function f_exc_outer() try f_exc_inner() catch err return err end end function f_exc_inner() error() end frame = JuliaInterpreter.enter_call(f_exc_outer); v = JuliaInterpreter.finish_and_return!(frame) @test v isa ErrorException @test stacklength(frame) == 1 # Break on caught exception when enabled break_on(:throw) try frame = JuliaInterpreter.enter_call(f_exc_outer); v = JuliaInterpreter.finish_and_return!(frame) @test v isa BreakpointRef @test v.err isa ErrorException @test v.framecode.scope == @which error() finally break_off(:throw) end finally break_off(:error) end # Breakpoint display io = IOBuffer() frame = JuliaInterpreter.enter_call(loop_radius2, 2) @static if VERSION < v"1.9.0-DEV.846" # https://github.com/JuliaLang/julia/pull/45069 LOC = " in $(@__MODULE__) at $(@__FILE__)" else LOC = " @ $(@__MODULE__) $(contractuser(@__FILE__))" end bp = JuliaInterpreter.BreakpointRef(frame.framecode, 1) @test repr(bp) == "breakpoint(loop_radius2(n)$LOC:$(3-Δ), line 3)" bp = JuliaInterpreter.BreakpointRef(frame.framecode, 0) # fictive breakpoint @test repr(bp) == "breakpoint(loop_radius2(n)$LOC:$(3-Δ), %0)" bp = JuliaInterpreter.BreakpointRef(frame.framecode, 1, ArgumentError("whoops")) @test repr(bp) == "breakpoint(loop_radius2(n)$LOC:$(3-Δ), line 3, ArgumentError(\"whoops\"))" # In source breakpointing f_outer_bp(x) = g_inner_bp(x) function g_inner_bp(x) sin(x) @bp @bp @bp x = 3 return 2 end fr, bp = @interpret f_outer_bp(3) @test leaf(fr).framecode.scope.name === :g_inner_bp @test bp.stmtidx == (@static VERSION >= v"1.11-" ? 4 : 3) # Breakpoints on types remove() g() = Int(5.0) @breakpoint Int(5.0) frame, bp = @interpret g() @test bp isa BreakpointRef @test leaf(frame).framecode.scope === @which Int(5.0) # Breakpoint on call overloads (::Squarer)(x) = x^2 squarer = Squarer() @breakpoint squarer(2) frame, bp = @interpret squarer(3.0) @test bp isa BreakpointRef @test leaf(frame).framecode.scope === @which squarer(3.0) end mktemp() do path, io print(io, """ function somefunc(x, y=0) a = x + y b = z^a return a + b end """) close(io) breakpoint(path, 3) include(path) frame, bp = @interpret somefunc(2, 3) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame) == (path, 3) breakpoint(path, 2) frame, bp = @interpret somefunc(2, 3) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame) == (path, 2) remove() # Test relative paths mktempdir(dirname(path)) do tmp cd(tmp) do breakpoint(joinpath("..", basename(path)), 3) frame, bp = @interpret somefunc(2, 3) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame) == (path, 3) remove() breakpoint(joinpath("..", basename(path)), 3) cd(homedir()) do frame, bp = @interpret somefunc(2, 3) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame) == (path, 3) end end end end if tmppath != "" rm(tmppath) end @testset "toggling" begin remove() f_break(x::Int) = x bp = breakpoint(f_break) frame, bpref = @interpret f_break(5) @test bpref isa BreakpointRef toggle(bp) @test (@interpret f_break(5)) == 5 f_break(x::Float64) = 2x @test (@interpret f_break(2.0)) == 4.0 toggle(bp) frame, bpref = @interpret f_break(5) @test bpref isa BreakpointRef frame, bpref = @interpret f_break(2.0) @test bpref isa BreakpointRef end using Dates @testset "breakpoint in stdlibs by path" begin m = @which now() - Month(2) f = String(m.file) l = m.line + 1 for f in (f, basename(f)) remove() breakpoint(f, l) frame, bp = @interpret now() - Month(2) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame)[2] == l end end @testset "breakpoint in Base by path" begin m = @which sin(2.0) f = String(m.file) l = m.line + 1 for f in (f, basename(f)) remove() breakpoint(f, l) frame, bp = @interpret sin(2.0) @test bp isa BreakpointRef @test JuliaInterpreter.whereis(frame)[2] == l end end @testset "breakpoint by type" begin remove() breakpoint(sin, Tuple{Float64}) frame, bp = @interpret sin(2.0) @test bp isa BreakpointRef end const breakpoint_update_hooks = JuliaInterpreter.breakpoint_update_hooks const on_breakpoints_updated = JuliaInterpreter.on_breakpoints_updated @testset "hooks" begin remove() f_break(x) = x # Check creating hits hook empty!(breakpoint_update_hooks) hook_hit = false on_breakpoints_updated((f,_)->hook_hit = f == breakpoint) orig_bp = breakpoint(f_break) @test hook_hit # Check re-creating hits remove *and* breakpoint (create) empty!(breakpoint_update_hooks) hit_remove_old = false hit_create_new = false hit_other = false # don't want this on_breakpoints_updated() do f, hbp if f==remove hit_remove_old = hbp === orig_bp elseif f==breakpoint hit_create_new = hbp !== orig_bp else hit_other = true end end push!(breakpoint_update_hooks, (f,_)->hook_hit = f == breakpoint) bp = breakpoint(f_break) @test hit_remove_old @test hit_create_new @test !hit_other @testset "update_states! $op hits hook" for op in (disable, enable, toggle) empty!(breakpoint_update_hooks) hook_hit = false on_breakpoints_updated((f, _) -> hook_hit = f == JuliaInterpreter.update_states!) op(bp) @test hook_hit end # Test removing hits hooks empty!(breakpoint_update_hooks) hook_hit = false on_breakpoints_updated((f, _) -> hook_hit = f === remove) remove(bp) @test hook_hit @testset "make sure error in hook function doesn't throw" begin empty!(breakpoint_update_hooks) on_breakpoints_updated((_, _) -> error("bad hook")) @test_logs (:warn, r"hook"i) breakpoint(f_break) end end # Run outside testset so that if it fails, the hooks get removed. So other tests can pass empty!(breakpoint_update_hooks) @testset "toplevel breakpoints" begin mktemp() do path, io print(io, """ 1+1 # bp begin 2+2 3+3 # bp end function foo(x) x x # bp x end """) close(io) expr = Base.parse_input_line(String(read(path)), filename = path) exprs = collect(ExprSplitter(Main, expr)) breakpoint(path, 1) breakpoint(path, 4) breakpoint(path, 8) # breakpoint in top-level line mod, ex = exprs[1] frame = Frame(mod, ex) @test JuliaInterpreter.shouldbreak(frame, frame.pc) ret = JuliaInterpreter.finish_and_return!(frame, true) @test ret === 2 # breakpoint in top-level block mod, ex = exprs[3] frame = Frame(mod, ex) @test JuliaInterpreter.shouldbreak(frame, frame.pc) ret = JuliaInterpreter.finish_and_return!(frame, true) @test ret === 6 # don't break for bp in function definition mod, ex = exprs[4] frame = Frame(mod, ex) @test JuliaInterpreter.shouldbreak(frame, frame.pc) == false ret = JuliaInterpreter.finish_and_return!(frame, true) @test ret isa Function remove() end end @testset "duplicate slotnames" begin tmp_dupl() = (1,2,3,4) ln = @__LINE__ function duplnames(x) for iter in CartesianIndices(x) i = iter[1] c = i a, b, c, d = tmp_dupl() end return x end bp = breakpoint(@__FILE__, ln+5, :(i == 1)) c = @code_lowered(duplnames((1,2))) if length(unique(c.slotnames)) < length(c.slotnames) f = JuliaInterpreter.enter_call(duplnames, (1,2)) ex = JuliaInterpreter.prepare_slotfunction(f.framecode, :(i==1)) @test ex isa Expr found = false for arg in ex.args[end].args if arg.args[1] === :i found = true end end @test found @test last(JuliaInterpreter.debug_command(f, :c)) isa BreakpointRef end end @testset "recursive builtins" begin g(args...) = args args = (iterate, g, (1,3)) h() = Core._apply_iterate(iterate, Core._apply_iterate, args) breakpoint(g) frame, bp = @interpret h() var = JuliaInterpreter.locals(leaf(frame)) @test filter(v->v.name === :args, var)[1].value == (1,3) end struct Constructor x::Int end Constructor(x::AbstractString, y::Int) = Constructor(x) @testset "constructors" begin breakpoint(Constructor, Tuple{String, Int}) frame, bp = @interpret Constructor("foo", 3) @test bp isa BreakpointRef @test @interpret Constructor(3) isa Constructor breakpoint(Constructor) frame, bp = @interpret Constructor(2) @test bp isa BreakpointRef end @testset "test breaking on a line with no statement" begin ln = @__LINE__ function f_emptylines() sin(2.0) return sin(2.0) end bp = breakpoint(@__FILE__, ln + 4) frame, bpref = @interpret f_emptylines() @test bpref isa BreakpointRef @test JuliaInterpreter.whereis(frame) == (@__FILE__, ln + 6) remove(bp) # Don't break if the line is outside the function breakpoint(@__FILE__, ln) @test (@interpret f_emptylines()) == sin(2.0) end @testset "macro expansion breakpoint tests" begin function f_macro() sin(2.0) @info "foo" sin(2.0) @info "foo" return 2 end frame = JuliaInterpreter.enter_call(f_macro) file_logging = String(only(methods(var"@info")).file) line_logging = 0 for entry in frame.framecode.src.linetable if entry.file === Symbol(file_logging) line_logging = entry.line break end end bp_log = breakpoint(file_logging, line_logging) with_logger(NullLogger()) do frame, bp = @interpret f_macro() @test bp isa BreakpointRef file, ln = JuliaInterpreter.whereis(frame) @test ln == line_logging @test basename(file) == basename(file_logging) bp = JuliaInterpreter.finish_stack!(frame) @test bp isa BreakpointRef frame = leaf(frame) ret = JuliaInterpreter.finish_stack!(frame) @test ret == 2 end JuliaInterpreter.remove(bp_log) # Check that stopping on a line only stops in the correct file mktemp() do path, io for _ in 1:line_logging-5 print(io, "\n") end print(io, """ function f_check(x) sin(x) @info "foo" sin(x) sin(x) sin(x) sin(x) sin(x) return x end """) bp_f = breakpoint(path, line_logging) flush(io) include(path) with_logger(NullLogger()) do frame, bp = @interpret f_check(1) file, ln = JuliaInterpreter.whereis(frame) @test file == path # Should not have stopped in logging.jl at line `line_logging` @test ln == line_logging remove(bp_f) @test (@interpret f_check(1)) == 1 breakpoint(f_check, line_logging) frame, bp = @interpret f_check(1) file, ln = JuliaInterpreter.whereis(frame) @test file == path # Should not have stopped in logging.jl at line `line_logging` @test ln == line_logging end end end @testset "breakpoint in kwfuncs" begin fkw(;x=1) = x breakpoint(fkw) g() = fkw(; x=1) frame, bp = @interpret g() @test isa(frame, Frame) && isa(bp, JuliaInterpreter.BreakpointRef) fkw2(;x=1) = x g2() = fkw2(; x=1) @test @interpret g2() === 1 fkw3(::T; x=1) where {T} = x breakpoint(fkw3) g3() = fkw3(7; x=1) frame, bp = @interpret g3() @test isa(frame, Frame) && isa(bp, JuliaInterpreter.BreakpointRef) end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
784
using Test, DeepDiffs @static if !Base.GIT_VERSION_INFO.tagged_commit && # only run on nightly !Sys.iswindows() # TODO: Understand why this fails, probably some line endings @testset "Check builtin.jl consistency" begin builtins_path = joinpath(@__DIR__, "..", "src", "builtins.jl") old_builtins = read(builtins_path, String) new_builtins_dir = mktempdir() withenv("JULIAINTERPRETER_BUILTINS_DIR" => new_builtins_dir) do include("../bin/generate_builtins.jl") end new_builtins = read(joinpath(new_builtins_dir, "builtins.jl"), String) consistent = old_builtins == new_builtins if !consistent println(deepdiff(old_builtins, new_builtins)) end @test consistent end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
1261
using JuliaInterpreter using Test @testset "core" begin @test JuliaInterpreter.is_quoted_type(QuoteNode(Int32), :Int32) @test !JuliaInterpreter.is_quoted_type(QuoteNode(Int32), :Int64) @test !JuliaInterpreter.is_quoted_type(QuoteNode(Int32(0)), :Int32) @test !JuliaInterpreter.is_quoted_type(Int32, :Int32) function buildexpr() items = [7, 3] ex = quote X = $items for x in X println(x) end end return ex end frame = JuliaInterpreter.enter_call(buildexpr) lines = JuliaInterpreter.framecode_lines(frame.framecode.src) # Test that the :copyast ends up on the same line as the println if isdefined(Base.IRShow, :show_ir_stmt) # only works on Julia 1.6 and higher @test any(str->occursin(":copyast", str) && occursin("println", str), lines) end thunk = Meta.lower(Main, :(return 1+2)) stmt = thunk.args[1].code[end]::Core.ReturnNode # the return @test stmt.val isa Core.SSAValue @test string(JuliaInterpreter.parametric_type_to_expr(Base.Iterators.Stateful{String})) ∈ ("Base.Iterators.Stateful{String, VS}", "(Base.Iterators).Stateful{String, VS}", "Base.Iterators.Stateful{String, VS, N}") end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
21188
using CodeTracking, JuliaInterpreter, Test using JuliaInterpreter: enter_call, enter_call_expr, get_return, @lookup using Base.Meta: isexpr include("utils.jl") const ALL_COMMANDS = (:n, :s, :c, :finish, :nc, :se, :si, :until) function step_through_command(fr::Frame, cmd::Symbol) while true ret = JuliaInterpreter.debug_command(JuliaInterpreter.finish_and_return!, fr, cmd) ret == nothing && break fr, pc = ret end @test fr.callee === nothing @test fr.caller === nothing return get_return(fr) end function step_through_frame(frame_creator) rets = [] for cmd in ALL_COMMANDS frame = frame_creator() ret = step_through_command(frame, cmd) push!(rets, ret) end @test all(ret -> ret == rets[1], rets) return rets[1] end step_through(f, args...; kwargs...) = step_through_frame(() -> enter_call(f, args...; kwargs...)) step_through(expr::Expr) = step_through_frame(() -> enter_call_expr(expr)) @generated function generatedfoo(T) :(return $T) end callgenerated() = generatedfoo(1) @generated function generatedparams(a::Array{T,N}) where {T,N} :(return ($T,$N)) end callgeneratedparams() = generatedparams([1 2; 3 4]) macro insert_some_calls() esc(quote x = sin(b) y = asin(x) z = sin(y) end) end trivial(x) = x struct B{T} end # Putting this into a @testset introduces a closure that breaks the kwprep detection function complicated_keyword_stuff(a, b=-1; x=1, y=2) a == a (a, b, :x=>x, :y=>y) end function complicated_keyword_stuff_splatargs(args...; x=1, y=2) args[1] == args[1] (args..., :x=>x, :y=>y) end function complicated_keyword_stuff_splatkws(a, b=-1; kw...) a == a (a, b, kw...) end function complicated_keyword_stuff_splat2(args...; kw...) args[1] == args[1] (args..., kw...) end # @testset "Debug" begin @testset "Basics" begin frame = enter_call(map, x->2x, 1:10) @test debug_command(frame, :finish) === nothing @test frame.caller === frame.callee === nothing @test get_return(frame) == map(x->2x, 1:10) for func in (complicated_keyword_stuff, complicated_keyword_stuff_splatargs, complicated_keyword_stuff_splatkws, complicated_keyword_stuff_splat2) for (args, kwargs) in (((1,), ()), ((1, 2), (x=7, y=33))) oframe = frame = enter_call(func, args...; kwargs...) frame = JuliaInterpreter.maybe_step_through_kwprep!(frame, false) frame = JuliaInterpreter.maybe_step_through_wrapper!(frame) @test JuliaInterpreter.hasarg(JuliaInterpreter.isidentical(QuoteNode(==)), frame.framecode.src.code) f, pc = debug_command(frame, :n) @test f === frame @test isa(pc, Int) @test oframe.callee !== nothing @test debug_command(frame, :finish) === nothing @test oframe.caller === oframe.callee === nothing @test get_return(oframe) == func(args...; kwargs...) @test @interpret(complicated_keyword_stuff(args...; kwargs...)) == complicated_keyword_stuff(args...; kwargs...) end end let f22() = string(:(a+b)) @test step_through(f22) == "a + b" end let f22() = string(QuoteNode(:a)) @test step_through(f22) == ":a" end frame = enter_call(trivial, 2) @test debug_command(frame, :s) === nothing @test get_return(frame) == 2 @test step_through(trivial, 2) == 2 @test step_through(:($(+)(1,2.5))) == 3.5 @test step_through(:($(sin)(1))) == sin(1) @test step_through(:($(gcd)(10,20))) == gcd(10, 20) end @testset "until" begin function f_with_lines(s) sin(2.0) cos(2.0) for i in 1:100 s += i end sin(2.0) end meth_def = @__LINE__() - 8 frame = enter_call(f_with_lines, 0) @test whereis(frame)[2] == meth_def + 1 debug_command(frame, :until) @test whereis(frame)[2] == meth_def + 2 debug_command(frame, :until; line=(meth_def + 4)) @test whereis(frame)[2] == meth_def + 4 debug_command(frame, :until; line=(meth_def + 6)) @test whereis(frame)[2] == meth_def + 6 end @testset "generated" begin let frame = enter_call_expr(:($(callgenerated)())) cframe, pc = debug_command(frame, :s) @test isa(pc, BreakpointRef) @test JuliaInterpreter.scopeof(cframe).name === :generatedfoo @test debug_command(cframe, :c) === nothing @test cframe.callee === nothing @test get_return(cframe) === Int end # This time, step into the generated function itself let frame = enter_call_expr(:($(callgenerated)())) cframe, pc = debug_command(frame, :sg) # Aside: generators can have `Expr(:line, ...)` in their line tables, test that this is OK lt = JuliaInterpreter.linetable(cframe, 2) @test isexpr(lt, :line) || isa(lt, Core.LineInfoNode) || (isdefined(Base.IRShow, :LineInfoNode) && isa(lt, Base.IRShow.LineInfoNode)) @test isa(pc, BreakpointRef) @test JuliaInterpreter.scopeof(cframe).name === :generatedfoo cframe, pc = debug_command(cframe, :finish) @test JuliaInterpreter.scopeof(cframe).name === :callgenerated # Now finish the regular function @test debug_command(cframe, :finish) === nothing @test cframe.callee === nothing @test get_return(cframe) === 1 end # Parametric generated function (see #157) let frame = fr = JuliaInterpreter.enter_call(callgeneratedparams) while fr.pc < JuliaInterpreter.nstatements(fr.framecode) - 1 fr, pc = debug_command(fr, :se) end fr, pc = debug_command(fr, :sg) @test JuliaInterpreter.scopeof(fr).name === :generatedparams fr, pc = debug_command(fr, :finish) @test debug_command(fr, :finish) === nothing @test JuliaInterpreter.get_return(fr) == (Int, 2) end end @testset "Optional arguments" begin function optional(n = sin(1)) x = asin(n) cos(x) end frame = JuliaInterpreter.enter_call_expr(:($(optional)())) # Step through the wrapper f = JuliaInterpreter.maybe_step_through_wrapper!(frame) @test frame !== f # asin(n) f, pc = debug_command(f, :n) # cos(1.0) f, pc = debug_command(f, :n) # return @test debug_command(f, :n) === nothing end @testset "Keyword arguments" begin f(x; b = 1) = x+b g() = f(1; b = 2) frame = JuliaInterpreter.enter_call_expr(:($(g)())); fr, pc = debug_command(frame, :nc) fr, pc = debug_command(fr, :nc) fr, pc = debug_command(fr, :nc) fr, pc = debug_command(fr, :s) fr, pc = debug_command(fr, :finish) @test debug_command(fr, :finish) === nothing @test frame.callee === nothing @test get_return(frame) == 3 frame = JuliaInterpreter.enter_call(f, 2; b = 4) fr = JuliaInterpreter.maybe_step_through_wrapper!(frame) fr, pc = debug_command(fr, :nc) debug_command(fr, :nc) @test get_return(frame) == 6 end @testset "Optional + keyword wrappers" begin opkw(a, b=1; c=2, d=3) = 1 callopkw1() = opkw(0) callopkw2() = opkw(0, -1) callopkw3() = opkw(0; c=-2) callopkw4() = opkw(0, -1; c=-2) callopkw5() = opkw(0; c=-2, d=-3) callopkw6() = opkw(0, -1; c=-2, d=-3) scopes = Method[] for f in (callopkw1, callopkw2, callopkw3, callopkw4, callopkw5, callopkw6) frame = fr = JuliaInterpreter.enter_call(f) pc = fr.pc while pc <= JuliaInterpreter.nstatements(fr.framecode) - 2 fr, pc = debug_command(fr, :se) end fr, pc = debug_command(frame, :si) @test stacklength(frame) == 2 frame = fr = JuliaInterpreter.enter_call(f) pc = fr.pc while pc <= JuliaInterpreter.nstatements(fr.framecode) - 2 fr, pc = debug_command(fr, :se) end fr, pc = debug_command(frame, :s) @test stacklength(frame) > 2 push!(scopes, JuliaInterpreter.scopeof(fr)) end @test length(unique(scopes)) == 1 # all get to the body method end @testset "Macros" begin # Work around the fact that we can't detect macro expansions if the macro # is defined in the same file include_string(Main, """ function test_macro() a = sin(5) b = asin(a) @insert_some_calls z end ""","file.jl") frame = JuliaInterpreter.enter_call_expr(:($(test_macro)())) f, pc = debug_command(frame, :n) # a is set f, pc = debug_command(f, :n) # b is set f, pc = debug_command(f, :n) # x is set f, pc = debug_command(f, :n) # y is set f, pc = debug_command(f, :n) # z is set @test debug_command(f, :n) === nothing # return end @testset "Quoting" begin # Test that symbols don't get an extra QuoteNode f_symbol() = :limit => true frame = JuliaInterpreter.enter_call(f_symbol) fr, pc = debug_command(frame, :s) fr, pc = debug_command(fr, :finish) @test debug_command(fr, :finish) === nothing @test get_return(frame) == f_symbol() end @testset "Varargs" begin f_va_inner(x) = x + 1 f_va_outer(args...) = f_va_inner(args...) frame = fr = JuliaInterpreter.enter_call(f_va_outer, 1) # depending on whether this is in or out of a @testset, the first statement may differ stmt1 = fr.framecode.src.code[1] if isexpr(stmt1, :call) && @lookup(frame, stmt1.args[1]) === getfield fr, pc = debug_command(fr, :se) end fr, pc = debug_command(fr, :s) fr, pc = debug_command(fr, :n) @test root(fr) !== fr fr, pc = debug_command(fr, :finish) @test debug_command(fr, :finish) === nothing @test get_return(frame) === 2 end @testset "ASTI#17" begin function (::B)(y) x = 42*y return x + y end B_inst = B{Int}() step_through(B_inst, 10) == B_inst(10) end @testset "Exceptions" begin # Don't break on caught exceptions err_caught = Any[nothing] function f_exc_outer() try f_exc_inner() catch err; err_caught[1] = err end x = 1 + 1 return x end f_exc_inner() = error() fr = JuliaInterpreter.enter_call(f_exc_outer) fr, pc = debug_command(fr, :s) fr, pc = debug_command(fr, :n) fr, pc = debug_command(fr, :n) debug_command(fr, :finish) @test get_return(fr) == 2 @test first(err_caught) isa ErrorException @test stacklength(fr) == 1 err_caught = Any[nothing] fr = JuliaInterpreter.enter_call(f_exc_outer) fr, pc = debug_command(fr, :s) debug_command(fr, :c) @test get_return(root(fr)) == 2 @test first(err_caught) isa ErrorException @test stacklength(root(fr)) == 1 # Rethrow on uncaught exceptions f_outer() = g_inner() g_inner() = error() fr = JuliaInterpreter.enter_call(f_outer) @test_throws ErrorException debug_command(fr, :finish) @test stacklength(fr) == 3 # Break on error try break_on(:error) fr = JuliaInterpreter.enter_call(f_outer) fr, pc = debug_command(JuliaInterpreter.finish_and_return!, fr, :finish) @test fr.framecode.scope.name === :error fundef() = undef_func() frame = JuliaInterpreter.enter_call(fundef) fr, pc = debug_command(frame, :s) @test isa(pc, BreakpointRef) @test pc.err isa UndefVarError finally break_off(:error) end end @testset "breakpoints" begin # In source breakpoints function f_bp(x) #=1=# i = 1 #=2=# @label foo #=3=# @bp #=4=# repr("foo") #=5=# i += 1 #=6=# i > 3 && return x #=7=# @goto foo end ln = @__LINE__ method_start = ln - 9 fr = enter_call(f_bp, 2) @test JuliaInterpreter.linenumber(fr) == method_start + 1 fr, pc = JuliaInterpreter.debug_command(fr, :c) # Hit the breakpoint x1 @test JuliaInterpreter.linenumber(fr) == method_start + 3 @test pc isa BreakpointRef fr, pc = JuliaInterpreter.debug_command(fr, :n) @test JuliaInterpreter.linenumber(fr) == method_start + 4 fr, pc = JuliaInterpreter.debug_command(fr, :c) # Hit the breakpoint again x2 @test pc isa BreakpointRef @test JuliaInterpreter.linenumber(fr) == method_start + 3 fr, pc = JuliaInterpreter.debug_command(fr, :c) # Hit the breakpoint for the last time x3 @test pc isa BreakpointRef @test JuliaInterpreter.linenumber(fr) == method_start + 3 JuliaInterpreter.debug_command(fr, :c) @test get_return(fr) == 2 end f_inv(x::Real) = x^2; f_inv(x::Integer) = 1 + invoke(f_inv, Tuple{Real}, x) @testset "invoke" begin fr = JuliaInterpreter.enter_call(f_inv, 2) fr, pc = JuliaInterpreter.debug_command(fr, :s) # apply_type frame, pc = JuliaInterpreter.debug_command(fr, :s) # step into invoke @test frame.framecode.scope.sig == Tuple{typeof(f_inv),Real} JuliaInterpreter.debug_command(frame, :c) frame = root(frame) @test get_return(frame) == f_inv(2) end f_inv_latest(x::Real) = 1 + (@static isdefined(Core, :_call_latest) ? Core._call_latest(f_inv, x) : Core._apply_latest(f_inv, x)) @testset "invokelatest" begin fr = JuliaInterpreter.enter_call(f_inv_latest, 2.0) fr, pc = JuliaInterpreter.debug_command(fr, :nc) frame, pc = JuliaInterpreter.debug_command(fr, :s) # step into invokelatest @test frame.framecode.scope.sig == Tuple{typeof(f_inv),Real} JuliaInterpreter.debug_command(frame, :c) frame = root(frame) @test get_return(frame) == f_inv_latest(2.0) end @testset "Issue #178" begin remove() a = [1, 2, 3, 4] @breakpoint length(LinearIndices(a)) frame, bp = @interpret sum(a) @test debug_command(frame, :c) === nothing @test get_return(frame) == sum(a) end @testset "Stepping over kwfunc preparation" begin stepkw! = JuliaInterpreter.maybe_step_through_kwprep! # for brevity a = [4, 1, 3, 2] reversesort(x) = sort(x; rev=true) frame = JuliaInterpreter.enter_call(reversesort, a) frame = stepkw!(frame) @test frame.pc == JuliaInterpreter.nstatements(frame.framecode) - 1 scopedreversesort(x) = Base.sort(x, rev=true) # https://github.com/JuliaDebug/Debugger.jl/issues/141 frame = JuliaInterpreter.enter_call(scopedreversesort, a) frame = stepkw!(frame) @test frame.pc == JuliaInterpreter.nstatements(frame.framecode) - 1 frame = JuliaInterpreter.enter_call(sort, a) frame = stepkw!(frame) @static if VERSION ≥ v"1.7" # TODO fix this broken test (@aviatesk) @test frame.pc == JuliaInterpreter.nstatements(frame.framecode) - 1 broken=VERSION≥v"1.11-" else @test frame.pc == JuliaInterpreter.nstatements(frame.framecode) - 1 end frame, pc = debug_command(frame, :s) frame, pc = debug_command(frame, :se) # get past copymutable frame = stepkw!(frame) @test frame.pc > 4 frame = JuliaInterpreter.enter_call(sort, a; rev=true) frame, pc = debug_command(frame, :se) frame, pc = debug_command(frame, :s) frame, pc = debug_command(frame, :se) # get past copymutable frame = stepkw!(frame) @test frame.pc == JuliaInterpreter.nstatements(frame.framecode) - 1 end function f(x, y) sin(2.0) g(x; y = 3) end g(x; y) = x + y @testset "interaction of :n with kw functions" begin frame = JuliaInterpreter.enter_call(f, 2, 3) # at sin frame, pc = debug_command(frame, :n) # Check that we are at the kw call to g @test Core.kwfunc(g) == JuliaInterpreter.@lookup frame JuliaInterpreter.pc_expr(frame).args[1] # Step into the inner g frame, pc = debug_command(frame, :s) # Finish the frame and make sure we step out of the wrapper frame, pc = debug_command(frame, :finish) @test frame.framecode.scope == @which f(2, 3) end h_1(x, y) = h_2(x, y) h_2(x, y) = h_3(x; y=y) h_3(x; y = 2) = x + y @testset "stepping through kwprep after stepping through wrapper" begin frame = JuliaInterpreter.enter_call(h_1, 2, 1) frame, pc = debug_command(frame, :s) # Should have skipped the kwprep in h_2 and be at call to kwfunc h_3 @test Core.kwfunc(h_3) == JuliaInterpreter.@lookup frame JuliaInterpreter.pc_expr(frame).args[1] end @testset "si should not step through wrappers or kwprep" begin frame = JuliaInterpreter.enter_call(h_1, 2, 1) frame, pc = debug_command(frame, :si) @test frame.pc == (VERSION >= v"1.11-" ? 2 : 1) end @testset "breakpoints hit during wrapper step through" begin f(x = g()) = x g() = 5 @breakpoint g() frame = JuliaInterpreter.enter_call(f) JuliaInterpreter.maybe_step_through_wrapper!(frame) @test leaf(frame).framecode.scope == @which g() end @testset "preservation of stack when throwing to toplevel" begin f() = "αβ"[2] frame1 = JuliaInterpreter.enter_call(f); err = try debug_command(frame1, :c) catch err err end try break_on(:error) frame2, pc = @interpret f() @test leaf(frame2).framecode.scope === leaf(frame1).framecode.scope finally break_off(:error) end end @testset "breakpoint in next line" begin function f(a, b) a == 0 && return abs(b) @bp return b end frame = JuliaInterpreter.enter_call(f, 5, 10) frame, pc = JuliaInterpreter.debug_command(frame, :n) @test pc isa BreakpointRef end @testset "kw wrapper heuristic #435" begin foo() = UInt8('\t') frame = JuliaInterpreter.enter_call(foo) frame, pc = debug_command(frame, :s) @test pc isa BreakpointRef end # end module InterpretedModuleTest using ..JuliaInterpreter function f(x) x @bp x end end @testset "interpreted methods" begin push!(JuliaInterpreter.compiled_modules, InterpretedModuleTest) frame = JuliaInterpreter.enter_call(5) do x InterpretedModuleTest.f(5) end frame, pc = JuliaInterpreter.debug_command(frame, :n) @test !(pc isa BreakpointRef) push!(JuliaInterpreter.interpreted_methods, first(methods(InterpretedModuleTest.f))) frame = JuliaInterpreter.enter_call(5) do x InterpretedModuleTest.f(5) end frame, pc = JuliaInterpreter.debug_command(frame, :n) @test pc isa BreakpointRef end @testset "step last call on line" begin g(x) = x f(x) = x h(x) = x function z(x) a = h(f(x) + g(x) - 3) x = 3 b = h(g(x)) end frame = JuliaInterpreter.enter_call(z, 5) frame, pc = JuliaInterpreter.debug_command(frame, :sl) @test JuliaInterpreter.scopeof(frame).name === :h frame, pc = JuliaInterpreter.debug_command(frame, :finish) frame, pc = JuliaInterpreter.debug_command(frame, :sl) @test JuliaInterpreter.scopeof(frame).name === :h end @testset "step until return" begin function f(x) if x == 1 return 2 end return 3 end frame = JuliaInterpreter.enter_call(f, 1) frame, _ = JuliaInterpreter.debug_command(frame, :sr) @test JuliaInterpreter.get_return(frame) == f(1) frame = JuliaInterpreter.enter_call(f, 4) frame, _ = JuliaInterpreter.debug_command(frame, :sr) @test JuliaInterpreter.get_return(frame) == f(4) function g() y = f(1) + f(2) return y end frame = JuliaInterpreter.enter_call(g) frame, _ = JuliaInterpreter.debug_command(frame, :sr) @test JuliaInterpreter.get_return(frame) == g() end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
66
# Don't change the value below, it's used in an `include` test 55
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
3837
using JuliaInterpreter: eval_code # Simple evaling of function argument function evalfoo1(x,y) x+y end frame = JuliaInterpreter.enter_call(evalfoo1, 1, 2) @test eval_code(frame, "x") == 1 @test eval_code(frame, "y") == 2 # Evaling with sparams evalsparams(x::T) where T = x frame = JuliaInterpreter.enter_call(evalsparams, 1) @test eval_code(frame, "x") == 1 eval_code(frame, "x = 3") @test eval_code(frame, "x") == 3 @test eval_code(frame, "T") == Int eval_code(frame, "T = Float32") @test eval_code(frame, "T") == Float32 # Evaling with keywords evalkw(x; bar=true) = x frame = JuliaInterpreter.enter_call(evalkw, 2) frame = JuliaInterpreter.maybe_step_through_wrapper!(frame) @test eval_code(frame, "x") == 2 @test eval_code(frame, "bar") == true eval_code(frame, "bar = false") @test eval_code(frame, "bar") == false # Evaling with symbols evalsym() = (x = :foo) frame = JuliaInterpreter.enter_call(evalsym) # Step until the local actually end up getting defined JuliaInterpreter.step_expr!(frame) JuliaInterpreter.step_expr!(frame) @test eval_code(frame, "x") === :foo # Evaling multiple statements (https://github.com/JuliaDebug/Debugger.jl/issues/188) frame = JuliaInterpreter.enter_call(evalfoo1, 1, 2) @test eval_code(frame, "x = 1; y = 2") == 2 @test eval_code(frame, "x") == 1 @test eval_code(frame, "y") == 2 # https://github.com/JuliaDebug/Debugger.jl/issues/177 function f() x = 1 f = ()->(x = 2) f() x end frame = JuliaInterpreter.enter_call(f) JuliaInterpreter.step_expr!(frame) JuliaInterpreter.step_expr!(frame) @static if VERSION >= v"1.11-" JuliaInterpreter.step_expr!(frame) end @test eval_code(frame, "x") == 1 eval_code(frame, "x = 3") @test eval_code(frame, "x") == 3 JuliaInterpreter.finish!(frame) @test JuliaInterpreter.get_return(frame) == 2 function debugfun(non_accessible_variable) garbage = ones(10) map(1:10) do i 1+1 a = 5 @bp garbage[i] + non_accessible_variable[i] non_accessible_variable = 2 end end fr = JuliaInterpreter.enter_call(debugfun, [1,2]) fr, bp = debug_command(fr, :c) @test eval_code(fr, "non_accessible_variable") == [1,2] @test eval_code(fr, "garbage") == ones(10) eval_code(fr, "non_accessible_variable = 5.0") @test eval_code(fr, "non_accessible_variable") == 5.0 # Evaluating SSAValues f(x) = x^2 frame = JuliaInterpreter.enter_call(f, 5) id = let pc, n = frame.pc, length(frame.framecode.src.code) while pc < n - 1 pc = JuliaInterpreter.step_expr!(frame) end # Extract the SSAValue that corresponds to the power stmt = frame.framecode.src.code[pc]::Expr # the `literal_pow` call stmt.args[end].id end # This could change with changes to Julia lowering @test eval_code(frame, "var\"%$(id)\"") == Val(2) @test eval_code(frame, "var\"@_1\"") == f function fun(;output=:sym) x = 5 y = 3 end fr = JuliaInterpreter.enter_call(fun) fr = JuliaInterpreter.maybe_step_through_wrapper!(fr) JuliaInterpreter.step_expr!(fr) @test eval_code(fr, "x") == 5 @test eval_code(fr, "output") === :sym eval_code(fr, "output = :foo") @test eval_code(fr, "output") === :foo let f() = GlobalRef(Main, :doesnotexist) frame = JuliaInterpreter.enter_call(f) retidx = findfirst(frame.framecode.src.code) do x x isa Core.ReturnNode && x.val isa JuliaInterpreter.SSAValue end ssaidx = ((frame.framecode.src.code[retidx]::Core.ReturnNode).val::JuliaInterpreter.SSAValue).id for _ = 1:ssaidx; JuliaInterpreter.step_expr!(frame); end @test eval_code(frame, "var\"%$ssaidx\"") == GlobalRef(Main, :doesnotexist) end # Don't error on empty input string function empty_code(x) x+x end frame = JuliaInterpreter.enter_call(empty_code, 1) @test eval_code(frame, "") === nothing @test eval_code(frame, " ") === nothing @test eval_code(frame, "\n") === nothing
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
30896
using JuliaInterpreter using Test, InteractiveUtils, CodeTracking using Mmap using LinearAlgebra if !isdefined(@__MODULE__, :runframe) include("utils.jl") end module Isolated end function summer(A) s = zero(eltype(A)) for a in A s += a end return s end A = [0.12, -.99] frame = JuliaInterpreter.enter_call(summer, A) frame2 = JuliaInterpreter.enter_call(summer, A) @test summer(A) == something(runframe(frame)) == something(runstack(frame2)) A = rand(1000) @test @interpret(sum(A)) ≈ sum(A) # note: the compiler can leave things in registers to increase accuracy, doesn't happen with interpreted fapply() = (Core.apply_type)(Base.NamedTuple, (), Tuple{}) @test @interpret(fapply()) == fapply() function fbc() bc = Broadcast.broadcasted(CartesianIndex, 6, [1, 2, 3]) copy(bc) end @test @interpret(fbc()) == fbc() @test @interpret(repr("hi")) == repr("hi") # this tests kwargs and @generated functions fkw(x::Int8; y=0, z="hello") = y @test @interpret(fkw(Int8(1); y=22, z="world")) == fkw(Int8(1); y=22, z="world") # generators that throw before returning the body expression @test_throws ArgumentError("input tuple of length 3, requested 2") @interpret Base.fill_to_length((1,2,3), -1, Val(2)) # Throwing exceptions across frames function f_exc_inner() error("inner") end f_exc_inner2() = f_exc_inner() const caught = Ref(false) function f_exc_outer1() try f_exc_inner() catch err # with an explicit err capture caught[] = true rethrow(err) end end function f_exc_outer2() try f_exc_inner() catch # implicit err capture caught[] = true rethrow() end end function f_exc_outer3(f) try f() catch err return err end end @test !caught[] ret = @interpret f_exc_outer3(f_exc_outer1) @test ret == ErrorException("inner") @test caught[] caught[] = false ret = @interpret f_exc_outer3(f_exc_outer2) @test ret == ErrorException("inner") @test caught[] caught[] = false ret = @interpret f_exc_outer3(f_exc_inner2) @test ret == ErrorException("inner") @test !caught[] stc = try f_exc_outer1() catch stacktrace(catch_backtrace()) end sti = try @interpret(f_exc_outer1()) catch stacktrace(catch_backtrace()) end @test_broken stc == sti # issue #3 @test @interpret(joinpath("/home/julia/base", "sysimg.jl")) == joinpath("/home/julia/base", "sysimg.jl") @test @interpret(10.0^4) == 10.0^4 # issue #6 @test @interpret(Array.body.body.name) === Array.body.body.name if Vararg isa UnionAll @test @interpret(Vararg.body.body.name) === Vararg.body.body.name else @test @interpret(Vararg{Int}.T) === Vararg{Int}.T @test @interpret(Vararg{Any,3}.N) === Vararg{Any,3}.N end @test !JuliaInterpreter.is_vararg_type(Union{}) if Vararg isa UnionAll frame = Frame(Main, :(Vararg.body.body.name)) @test JuliaInterpreter.finish_and_return!(frame, true) === Vararg.body.body.name else frame = Frame(Main, :(Vararg{Int}.T)) @test JuliaInterpreter.finish_and_return!(frame, true) === Vararg{Int}.T frame = Frame(Main, :(Vararg{Any,3}.N)) @test JuliaInterpreter.finish_and_return!(frame, true) === Vararg{Any,3}.N end frame = Frame(Base, :(Union{AbstractChar,Tuple{Vararg{AbstractChar}},AbstractVector{<:AbstractChar},Set{<:AbstractChar}})) @test JuliaInterpreter.finish_and_return!(frame, true) isa Union # issue #8 ex = quote if sizeof(JLOptions) === ccall(:jl_sizeof_jl_options, Int, ()) else ccall(:jl_throw, Cvoid, (Any,), "Option structure mismatch") end end frame = Frame(Base, ex) JuliaInterpreter.finish_and_return!(frame, true) # ccall with two Symbols ex = quote @testset "Some tests" begin @test 2 > 1 end end frame = Frame(Main, ex) JuliaInterpreter.finish_and_return!(frame, true) @test @interpret Base.Math.DoubleFloat64(-0.5707963267948967, 4.9789962508669555e-17).hi ≈ -0.5707963267948967 # ccall with cfunction fcfun(x::Int, y::Int) = 1 ex = quote # in lowered code, cf is a Symbol cf = @eval @cfunction(fcfun, Int, (Int, Int)) ccall(cf, Int, (Int, Int), 1, 2) end frame = Frame(Main, ex) @test JuliaInterpreter.finish_and_return!(frame, true) == 1 ex = quote let # in lowered code, cf is a SlotNumber cf = @eval @cfunction(fcfun, Int, (Int, Int)) ccall(cf, Int, (Int, Int), 1, 2) end end frame = Frame(Main, ex) @test JuliaInterpreter.finish_and_return!(frame, true) == 1 function cfcfun() cf = @cfunction(fcfun, Int, (Int, Int)) ccall(cf, Int, (Int, Int), 1, 2) end @test @interpret(cfcfun()) == 1 # From Julia's test/ambiguous.jl. This tests whether we renumber :enter statements correctly. ambig(x, y) = 1 ambig(x::Integer, y) = 2 ambig(x, y::Integer) = 3 ambig(x::Int, y::Int) = 4 ambig(x::Number, y) = 5 ex = quote let cf = @eval @cfunction(ambig, Int, (UInt8, Int)) @test_throws(MethodError, ccall(cf, Int, (UInt8, Int), 1, 2)) end end frame = Frame(Main, ex) JuliaInterpreter.finish_and_return!(frame, true) # Core.Compiler ex = quote length(code_typed(fcfun, (Int, Int))) end frame = Frame(Main, ex) @test JuliaInterpreter.finish_and_return!(frame, true) == 1 # copyast ex = quote struct CodegenParams cached::Cint track_allocations::Cint code_coverage::Cint static_alloc::Cint prefer_specsig::Cint module_setup::Any module_activation::Any raise_exception::Any emit_function::Any emitted_function::Any CodegenParams(;cached::Bool=true, track_allocations::Bool=true, code_coverage::Bool=true, static_alloc::Bool=true, prefer_specsig::Bool=false, module_setup=nothing, module_activation=nothing, raise_exception=nothing, emit_function=nothing, emitted_function=nothing) = new(Cint(cached), Cint(track_allocations), Cint(code_coverage), Cint(static_alloc), Cint(prefer_specsig), module_setup, module_activation, raise_exception, emit_function, emitted_function) end end frame = Frame(Isolated, ex) JuliaInterpreter.finish_and_return!(frame, true) @test Isolated.CodegenParams(cached=false).cached === Cint(false) # cglobal val = @interpret(BigInt()) @test isa(val, BigInt) && val == 0 @test isa(@interpret(Base.GMP.version()), VersionNumber) # Issue #455 using PyCall let np = pyimport("numpy") @test @interpret(PyCall.pystring_query(np.zeros)) === Union{} end # Issue #354 using HTTP headers = Dict("User-Agent" => "Debugger.jl") @test @interpret(HTTP.request("GET", "https://httpbingo.julialang.org", headers)) isa HTTP.Messages.Response # "correct" line numbers defline = @__LINE__() + 1 function f(x) x = 2x # comment # comment x = 2x # comment return x*x end frame = JuliaInterpreter.enter_call(f, 3) @test whereis(frame, 1)[2] == defline + 1 @test whereis(frame, (length(frame.framecode.src.code) + 1) ÷ 2)[2] == defline + 4 @test whereis(frame, length(frame.framecode.src.code) - 1)[2] == defline + 6 m = which(iterate, Tuple{Dict}) # this method has `nothing` as its first statement and codeloc == 0 framecode = JuliaInterpreter.get_framecode(m) @test JuliaInterpreter.linenumber(framecode, 1) == m.line + CodeTracking.line_is_decl # issue #28 let a = ['0'], b = ['a'] @test @interpret(vcat(a, b)) == vcat(a, b) end # issue #51 if isdefined(Core.Compiler, :SNCA) ci = @code_lowered gcd(10, 20) cfg = Core.Compiler.compute_basic_blocks(ci.code) @test isa(@interpret(Core.Compiler.SNCA(cfg)), Vector{Int}) end # llvmcall function add1234(x::Tuple{Int32,Int32,Int32,Int32}) Base.llvmcall("""%3 = extractvalue [4 x i32] %0, 0 %4 = extractvalue [4 x i32] %0, 1 %5 = extractvalue [4 x i32] %0, 2 %6 = extractvalue [4 x i32] %0, 3 %7 = extractvalue [4 x i32] %1, 0 %8 = extractvalue [4 x i32] %1, 1 %9 = extractvalue [4 x i32] %1, 2 %10 = extractvalue [4 x i32] %1, 3 %11 = add i32 %3, %7 %12 = add i32 %4, %8 %13 = add i32 %5, %9 %14 = add i32 %6, %10 %15 = insertvalue [4 x i32] undef, i32 %11, 0 %16 = insertvalue [4 x i32] %15, i32 %12, 1 %17 = insertvalue [4 x i32] %16, i32 %13, 2 %18 = insertvalue [4 x i32] %17, i32 %14, 3 ret [4 x i32] %18""",Tuple{Int32,Int32,Int32,Int32}, Tuple{Tuple{Int32,Int32,Int32,Int32},Tuple{Int32,Int32,Int32,Int32}}, (Int32(1),Int32(2),Int32(3),Int32(4)), x) end @test @interpret(add1234(map(Int32,(2,3,4,5)))) === map(Int32,(3,5,7,9)) # issue #74 let A = [1] wkd = WeakKeyDict() @interpret setindex!(wkd, 2, A) @test wkd[A] == 2 end # issue #76 let TT = Union{UInt8, Int8} a = TT[0x0, 0x1] pa = Ptr{UInt8}(pointer(a)) GC.@preserve a begin @interpret unsafe_store!(pa, 0x2, 2) end @test a == TT[0x0, 0x2] end # issue #92 let x = Core.SlotNumber(1) f(x) = objectid(x) @test isa(@interpret(f(x)), UInt) end # issue #98 x98 = 5 function f98() global x98 x98 = 7 return nothing end @interpret f98() @test x98 == 7 # issue #106 function f106() n = tempname() w = open(n, "a") write(w, "A") flush(w) return true end @test @interpret(f106()) == 1 f106b() = rand() f106c() = disable_sigint(f106b) function f106d() disable_sigint() do reenable_sigint(f106b) end end @interpret f106c() @interpret f106d() # issue #113 f113(;x) = x @test @interpret(f113(;x=[1,2,3])) == f113(;x=[1,2,3]) # Some expressions can appear nontrivial but lower to nothing # @test isa(Frame(Main, :(@static if ccall(:jl_get_UNAME, Any, ()) === :NoOS 1+1 end)), Nothing) # @test isa(Frame(Main, :(Base.BaseDocs.@kw_str "using")), Nothing) @testset "locals" begin f_locals(x::Int64, y::T, z::Vararg{Symbol}) where {T} = x frame = JuliaInterpreter.enter_call(f_locals, Int64(1), 2.0, :a, :b) locals = JuliaInterpreter.locals(frame) @test JuliaInterpreter.Variable(Int64(1), :x, false) in locals @test JuliaInterpreter.Variable(2.0, :y, false) in locals @test JuliaInterpreter.Variable((:a, :b), :z, false) in locals @test JuliaInterpreter.Variable(Float64, :T, true) in locals function f_multi(x) c = x x = 2 x = 3 x = 4 return x end frame = JuliaInterpreter.enter_call(f_multi, 1) nlocals = length(frame.framedata.locals) @test_throws UndefVarError JuliaInterpreter.lookup_var(frame, JuliaInterpreter.SlotNumber(nlocals)) stack = [frame] locals = JuliaInterpreter.locals(frame) @test length(locals) == 2 @test JuliaInterpreter.Variable(1, :x, false) in locals JuliaInterpreter.step_expr!(stack, frame) JuliaInterpreter.step_expr!(stack, frame) @static if VERSION >= v"1.11-" locals = JuliaInterpreter.locals(frame) @test length(locals) == 2 JuliaInterpreter.step_expr!(stack, frame) end locals = JuliaInterpreter.locals(frame) @test length(locals) == 3 @test JuliaInterpreter.Variable(1, :c, false) in locals JuliaInterpreter.step_expr!(stack, frame) locals = JuliaInterpreter.locals(frame) @test length(locals) == 3 @test JuliaInterpreter.Variable(2, :x, false) in locals JuliaInterpreter.step_expr!(stack, frame) locals = JuliaInterpreter.locals(frame) @test length(locals) == 3 @test JuliaInterpreter.Variable(3, :x, false) in locals # Issue #404 function aaa(F::Array{T,1}, Z::Array{T,1}) where {T} M = length(Z) J = [1:M;] z = T[] f = T[] w = T[] A = rand(10, 10) G = svd(A[J, :]) w = G.V[:, m] r = zz -> rhandle(zz, z, f, w) end function rhandle(zz, z, f, w) nothing end fr = JuliaInterpreter.enter_call(aaa, rand(5), rand(5)) fr, bp = JuliaInterpreter.debug_command(fr, :n) locs = JuliaInterpreter.locals(fr) @test !any(x -> x.name === :w, locs) end @testset "getfield replacements" begin f_gf(x) = false ? some_undef_var_zzzzzzz : x @test @interpret f_gf(2) == 2 function g_gf() eval(:(z = 2)) return z end @test @interpret g_gf() == 2 global q_gf = 0 function h_gf() eval(:(q_gf = 2)) return q_gf end @test @interpret h_gf() == 2 # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/267 function test_never_different(x) if x < 5 for g in never_defined print(g) end end end @test @interpret(test_never_different(10)) === nothing end # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/130 @testset "vararg handling" begin method_c1(x::Float64, s::AbstractString...) = true buf = IOBuffer() me = Base.MethodError(method_c1,(1, 1, "")) @test (@interpret Base.show_method_candidates(buf, me)) == nothing varargidentity(x) = x x = Union{Array{UInt8,N},Array{Int8,N}} where N @test isa(JuliaInterpreter.prepare_call(varargidentity, [varargidentity, x])[1], JuliaInterpreter.FrameCode) end # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/141 @test @interpret get(ENV, "THIS_IS_NOT_DEFINED_1234", "24") == "24" # Test return value of whereis fnone() = nothing fr = JuliaInterpreter.enter_call(fnone) file, line = JuliaInterpreter.whereis(fr) @test file == @__FILE__ @test line == (@__LINE__() - 4) # Test path to files in stdlib fr = JuliaInterpreter.enter_call(Test.eval, 1) file, line = JuliaInterpreter.whereis(fr) @test isfile(file) @static if VERSION < v"1.12.0-DEV.173" @test isfile(JuliaInterpreter.getfile(fr.framecode.src.linetable[1])) end @static if VERSION < v"1.9.0-DEV.846" # https://github.com/JuliaLang/julia/pull/45069 @test occursin(Sys.STDLIB, repr(fr)) else @test occursin(contractuser(Sys.STDLIB), repr(fr)) end # Test undef sparam (https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/165) function foo(x::T) where {T <: AbstractString, S <: AbstractString} return S end e = try @interpret foo("") catch err err end @test e isa UndefVarError @test e.var === :S # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/200 locs = JuliaInterpreter.locals(JuliaInterpreter.enter_call(foo, "")) @test length(locs) == 3 # #self# + 2 variables @test JuliaInterpreter.Variable("", :x, false) in locs @test JuliaInterpreter.Variable(String, :T, true) in locs # Test interpreting subtypes finishes in a reasonable time @test @interpret subtypes(Integer) == subtypes(Integer) @test @interpret subtypes(Main, Integer) == subtypes(Main, Integer) @test (@elapsed @interpret subtypes(Integer)) < 30 @test (@elapsed @interpret subtypes(Main, Integer)) < 30 # Test showing stacktraces from frames g_1(x) = g_2(x) g_2(x) = g_3(x) g_3(x) = error("foo") line_g = @__LINE__ if isdefined(Base, :replaceuserpath) _contractuser = Base.replaceuserpath else _contractuser = Base.contractuser end try break_on(:error) local frame, bp = @interpret g_1(2.0) stacktrace_lines = split(sprint(Base.display_error, bp.err, leaf(frame)), '\n') @test occursin(string("ERROR: ", sprint(showerror, ErrorException("foo"))), stacktrace_lines[1]) if isdefined(Base, :print_stackframe) @test occursin("[1] error(s::String)", stacktrace_lines[3]) @test occursin("[2] g_3(x::Float64)", stacktrace_lines[5]) thefile = _contractuser(@__FILE__) @test occursin("$thefile:$(line_g - 1)", stacktrace_lines[6]) @test occursin("[3] g_2(x::Float64)", stacktrace_lines[7]) @test occursin("$thefile:$(line_g - 2)", stacktrace_lines[8]) @test occursin("[4] g_1(x::Float64)", stacktrace_lines[9]) @test occursin("$thefile:$(line_g - 3)", stacktrace_lines[10]) else @test occursin("[1] error(::String) at error.jl:", stacktrace_lines[3]) @test occursin("[2] g_3(::Float64) at $(@__FILE__):$(line_g - 1)", stacktrace_lines[4]) @test occursin("[3] g_2(::Float64) at $(@__FILE__):$(line_g - 2)", stacktrace_lines[5]) @test occursin("[4] g_1(::Float64) at $(@__FILE__):$(line_g - 3)", stacktrace_lines[6]) end finally break_off(:error) end try break_on(:error) exs = collect(ExprSplitter(Main, quote g_1(2.0) end)) line2_g = @__LINE__ local frame = Frame(exs[1]...) frame, bp = JuliaInterpreter.debug_command(frame, :c, true) stacktrace_lines = split(sprint(Base.display_error, bp.err, leaf(frame)), '\n') @test occursin(string("ERROR: ", sprint(showerror, ErrorException("foo"))), stacktrace_lines[1]) if isdefined(Base, :print_stackframe) @test occursin("[1] error(s::String)", stacktrace_lines[3]) thefile = _contractuser(@__FILE__) @test occursin("[2] g_3(x::Float64)", stacktrace_lines[5]) @test occursin("$thefile:$(line_g - 1)", stacktrace_lines[6]) @test occursin("[3] g_2(x::Float64)", stacktrace_lines[7]) @test occursin("$thefile:$(line_g - 2)", stacktrace_lines[8]) @test occursin("[4] g_1(x::Float64)", stacktrace_lines[9]) @test occursin("$thefile:$(line_g - 3)", stacktrace_lines[10]) @test occursin("[5] top-level scope", stacktrace_lines[11]) @test occursin("$thefile:$(line2_g - 2)", stacktrace_lines[12]) else @test occursin("[1] error(::String) at error.jl:", stacktrace_lines[3]) @test occursin("[2] g_3(::Float64) at $(@__FILE__):$(line_g - 1)", stacktrace_lines[4]) @test occursin("[3] g_2(::Float64) at $(@__FILE__):$(line_g - 2)", stacktrace_lines[5]) @test occursin("[4] g_1(::Float64) at $(@__FILE__):$(line_g - 3)", stacktrace_lines[6]) @test occursin("[5] top-level scope at $(@__FILE__):$(line2_g - 2)", stacktrace_lines[7]) end finally break_off(:error) end f_562(x::Union{Vector{T}, Nothing}) where {T} = x + 1 try break_on(:error) local frame, bp = @interpret f_562(nothing) stacktrace_lines = split(sprint(Base.display_error, bp.err, leaf(frame)), '\n') @test stacktrace_lines[1] == "ERROR: MethodError: no method matching +(::Nothing, ::$Int)" finally break_off(:error) end # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/154 q = QuoteNode([1]) @test @interpret deepcopy(q) == q # Check #args for builtins (#217) f217() = <:(Float64, Float32, Float16) @test_throws ArgumentError @interpret(f217()) # issue #220 function hash220(x::Tuple{Ptr{UInt8},Int}, h::UInt) h += Base.memhash_seed ccall(Base.memhash, UInt, (Ptr{UInt8}, Csize_t, UInt32), x[1], x[2], h % UInt32) + h end @test @interpret(hash220((Ptr{UInt8}(0),0), UInt(1))) == hash220((Ptr{UInt8}(0),0), UInt(1)) # ccall with type parameters @static if VERSION < v"1.11-" # TODO: in v1.11+ this function does not have a ccall @test (@interpret Base.unsafe_convert(Ptr{Int}, [1,2])) isa Ptr{Int} end # ccall with call to get the pointer cf = [@cfunction(fcfun, Int, (Int, Int))] function call_cf() ccall(cf[1], Int, (Int, Int), 1, 2) end @test (@interpret call_cf()) == call_cf() let mt = JuliaInterpreter.enter_call(call_cf).framecode.methodtables @test any(1:length(mt)) do i isassigned(mt, i) && mt[i] === Compiled() end end # ccall with integer static parameter f_N() = Array{Float64, 4}(undef, 1, 3, 2, 1) @test (@interpret f_N()) isa Array{Float64, 4} f_clock() = ccall((:clock, "libc"), Int32, ()) # See that the method gets compiled try @interpret f_clock() catch end let mt = JuliaInterpreter.enter_call(f_clock).framecode.methodtables @test any(1:length(mt)) do i isassigned(mt, i) && mt[i] === Compiled() end end # https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/194 f_parse() = Meta.lower(Main, Meta.parse("(a=1,0)")) @test @interpret f_parse() == f_parse() # Test for vararg ccalls (used by mmap) function f_mmap() tmp = tempname() local b_mmap try x = rand(10) write(tmp, x) b_mmap = Mmap.mmap(tmp, Vector{Float64}) @test b_mmap == x finally finalize(b_mmap) rm(tmp) end end @interpret f_mmap() # parametric llvmcall (issues #112 and #288) module VecTest using Tensors Vec{N,T} = NTuple{N,VecElement{T}} # The following test mimic SIMD.jl const _llvmtypes = Dict{DataType, String}( Float64 => "double", Float32 => "float", Int32 => "i32", Int64 => "i64" ) @generated function vecadd(x::Vec{N, T}, y::Vec{N, T}) where {N, T} llvmT = _llvmtypes[T] func = T <: AbstractFloat ? "fadd" : "add" exp = """ %3 = $(func) <$(N) x $(llvmT)> %0, %1 ret <$(N) x $(llvmT)> %3 """ return quote Base.@_inline_meta Core.getfield(Base, :llvmcall)($exp, Vec{$N, $T}, Tuple{Vec{$N, $T}, Vec{$N, $T}}, x, y) end end f() = 1.0 * one(Tensor{2,3}) end let # NOTE we need to make sure this code block is compiled, since vecadd is generated function, # but currently `@interpret` doesn't handle a call to generated functions very well @static if isdefined(Base.Experimental, Symbol("@force_compile")) Base.Experimental.@force_compile end a = (VecElement{Float64}(1.0), VecElement{Float64}(2.0)) @test @interpret(VecTest.vecadd(a, a)) == VecTest.vecadd(a, a) end @test @interpret(VecTest.f()) == [1 0 0; 0 1 0; 0 0 1] # Test exception type for undefined variables f_undefvar() = s = s + 1 @test_throws UndefVarError @interpret f_undefvar() # Handling of SSAValues function f_ssaval() z = [Core.SSAValue(5),] repr(z[1]) end @test @interpret f_ssaval() == f_ssaval() # Test JuliaInterpreter version of #265 f(x) = x g(x) = f(x) @test (@interpret g(5)) == g(5) f(x) = x*x @test (@interpret g(5)) == g(5) # Regression test https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/328 module DataFramesTest using Test using JuliaInterpreter using DataFrames function df_debug1() df = DataFrame(A=1:3, B=4:6) df1 = hcat(df[!,[:A]], df[!,[:B]]) end @test @interpret(df_debug1()) == df_debug1() end # issue #330 @test @interpret(Base.PipeEndpoint()) isa Base.PipeEndpoint # issue #345 @noinline f_345() = 1 frame = JuliaInterpreter.enter_call(f_345) @test JuliaInterpreter.whereis(frame) == (@__FILE__(), @__LINE__() - 2) # issue #285 using LinearAlgebra, SparseArrays, Random @testset "issue 285" begin function solveit(A,b) return A\b .+ det(A) end Random.seed!(123456) n = 5 A = sprand(n,n,0.5) A = A'*A b = rand(n) @test @interpret(solveit(A, b)) == solveit(A, b) end @testset "issue 351" begin f() = map(x -> 2x, 1:10) @test @interpret(f()) == f() end @testset "invoke" begin # Example provided by jmert in #352 f(d::Diagonal{T}) where {T} = invoke(f, Tuple{AbstractMatrix}, d) f(m::AbstractMatrix{T}) where {T} = T D = Diagonal([1.0, 2.0]) @test @interpret(f(D)) === f(D) # issue #441 & #535 f_log1() = @info "logging macros" @test (@test_logs (:info, "logging macros") (@interpret f_log1())) === nothing f_log2() = @error "this error is ok" let frame = JuliaInterpreter.enter_call(f_log2) @test (@test_logs (:error, "this error is ok") debug_command(frame, :c)) === nothing end end struct A396 a::Int end @testset "constructor locals" begin frame = JuliaInterpreter.enter_call(A396, 3) @test length(JuliaInterpreter.locals(frame)) > 0 end @static if Sys.islinux() @testset "@ccall" begin f(s) = @ccall strlen(s::Cstring)::Csize_t @test @interpret(f("asd")) == 3 end end @testset "#466 parametric_type_to_expr" begin @test JuliaInterpreter.parametric_type_to_expr(Array) == :(Core.Array{T, N}) end @testset "#476 isdefined QuoteNode" begin @eval function issue476() return $(Expr(:isdefined, QuoteNode(Float64))) end @test (true === @interpret issue476()) end @noinline foobar() = (GC.safepoint(); 42) function run_foobar() @eval foobar() = "nope" return @interpret(foobar()), foobar() end @testset "unreachable worlds" begin interpret, compiled = run_foobar() @test_broken interpret == compiled == 42 end @testset "issue #479" begin function f() ptr = @cfunction(+, Int, (Int, Int)) ccall(ptr::Ptr{Cvoid}, Int, (Int, Int), 1, 2) end @test @interpret(f()) === 3 end @testset "https://github.com/JuliaLang/julia/pull/41018" begin m = Module() @eval m begin struct Foo foo::Int bar end end # this shouldn't throw "type DataType has no field hasfreetypevars" # even after https://github.com/JuliaLang/julia/pull/41018 @static if VERSION ≥ v"1.9.0-DEV.1556" @test Int === @interpret Core.Compiler.getfield_tfunc(Core.Compiler.fallback_lattice, m.Foo, Core.Compiler.Const(:foo)) else @test Int === @interpret Core.Compiler.getfield_tfunc(m.Foo, Core.Compiler.Const(:foo)) end end @testset "https://github.com/JuliaDebug/JuliaInterpreter.jl/issues/488" begin m = Module() ex = :(foo() = return) JuliaInterpreter.finish_and_return!(Frame(m, ex), true) @test isdefined(m, :foo) end # Related to fixing https://github.com/timholy/Revise.jl/issues/625 module ForInclude end @testset "include" begin ex = :(include("dummy_file.jl")) @test JuliaInterpreter.finish_and_return!(Frame(ForInclude, ex), true) == 55 end @static if VERSION >= v"1.7.0" @testset "issue #432" begin function f() t = @ccall time(C_NULL::Ptr{Cvoid})::Cint end @test @interpret(f()) !== 0 @test @interpret(f()) !== 0 end end @testset "issue #385" begin using FunctionWrappers: FunctionWrapper fw = @interpret FunctionWrapper{Int,Tuple{}}(()->42) @test 42 === @interpret fw() end @testset "issue #550" begin using FunctionWrappers: FunctionWrapper f = (obs) -> (obs[1] = obs[3] * obs[4]; obs) Tout = Vector{Int} Tin = Tuple{Vector{Int}} fw = FunctionWrapper{Tout, Tin}(f) obs = [0,2,3,4] @test @interpret(fw(obs)) == fw(obs) end @testset "TypedSlots" begin function foo(x, y) z = x + y if z < 4 z += 1 end u = (x -> x + z)(x) v = Ref{Union{Int, Missing}}(x)[] + y return u + v end ci = code_typed(foo, NTuple{2, Int}; optimize=false)[][1] @static if VERSION ≥ v"1.10.0-DEV.873" mi = Core.Compiler.method_instances(foo, NTuple{2, Int}, Base.get_world_counter())[] else mi = Core.Compiler.method_instances(foo, NTuple{2, Int})[] end frameargs = Any[foo, 1, 2] framecode = JuliaInterpreter.FrameCode(mi.def, ci) frame = JuliaInterpreter.prepare_frame(framecode, frameargs, mi.sparam_vals) @test JuliaInterpreter.finish_and_return!(frame) === 8 end @testset "interpretation of unoptimized frame" begin let # should be able to interprete nested calls within `:foreigncall` expressions M = Module() lwr = Meta.@lower M begin global foo = @ccall strlen("foo"::Cstring)::Csize_t foo == 3 end src = lwr.args[1]::Core.CodeInfo frame = Frame(M, src; optimize=false) @test length(frame.framecode.src.code) == length(src.code) @test JuliaInterpreter.finish_and_return!(frame, true) M = Module() lwr = Meta.@lower M begin strp = Ref{Ptr{Cchar}}(0) fmt = "hi+%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%hhd-%.1f-%.1f-%.1f-%.1f-%.1f-%.1f-%.1f-%.1f-%.1f\n" len = @ccall asprintf( strp::Ptr{Ptr{Cchar}}, fmt::Cstring, ; # begin varargs 0x1::UInt8, 0x2::UInt8, 0x3::UInt8, 0x4::UInt8, 0x5::UInt8, 0x6::UInt8, 0x7::UInt8, 0x8::UInt8, 0x9::UInt8, 0xa::UInt8, 0xb::UInt8, 0xc::UInt8, 0xd::UInt8, 0xe::UInt8, 0xf::UInt8, 1.1::Cfloat, 2.2::Cfloat, 3.3::Cfloat, 4.4::Cfloat, 5.5::Cfloat, 6.6::Cfloat, 7.7::Cfloat, 8.8::Cfloat, 9.9::Cfloat, )::Cint str = unsafe_string(strp[], len) @ccall free(strp[]::Cstring)::Cvoid str == "hi+1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-1.1-2.2-3.3-4.4-5.5-6.6-7.7-8.8-9.9\n" end src = lwr.args[1]::Core.CodeInfo frame = Frame(M, src; optimize=false) @test length(frame.framecode.src.code) == length(src.code) @test JuliaInterpreter.finish_and_return!(frame, true) end iscallexpr(ex::Expr) = ex.head === :call @test (@interpret iscallexpr(:(sin(3.14)))) end if isdefined(Base, :have_fma) f_fma() = Base.have_fma(Float64) @testset "fma" begin @test (@interpret f_fma()) == f_fma() a, b, c = (1.0585073227945125, -0.00040303348596386557, 1.5051263504758005e-16) @test (@interpret muladd(a, b, c)) === muladd(a,b,c) a = 1.0883740903666346; b = 2/3 @test (@interpret a^b) === a^b end end # issue 536 function foo_536(y::T) where {T} x = "A" return ccall(:memcmp, Cint, (Ptr{UInt8}, Ref{T}, Csize_t), pointer(x), Ref(y), 1) == 0 end @test !@interpret foo_536(0x00) @test @interpret foo_536(UInt8('A')) @static if isdefined(Base.Experimental, Symbol("@opaque")) @testset "opaque closures" begin g(x) = 3x f = Base.Experimental.@opaque x -> g(x) @test @interpret f(4) == 12 # test stepping into opaque closures @breakpoint g(1) fr = JuliaInterpreter.enter_call_expr(Expr(:call, f, 4)) @test JuliaInterpreter.finish_and_return!(fr) isa JuliaInterpreter.BreakpointRef end end # CassetteOverlay, issue #552 @static if VERSION >= v"1.8" using CassetteOverlay end @static if VERSION >= v"1.8" function foo() x = IdDict() x[:foo] = 1 end @MethodTable SinTable; @testset "CassetteOverlay" begin pass = @overlaypass SinTable; @test (@interpret pass(foo)) == 1 end end using LoopVectorization @testset "interpolated llvmcall" begin function f_lv!(A) m, n = size(A) k = 1 @turbo for j in (k + 1):n for i in (k + 1):m A[i, j] -= A[i, k] * A[k, j] end end return A end A = rand(5,5) B = copy(A) @interpret f_lv!(A) f_lv!(B) @test A ≈ B end @testset "nargs foreigncall #560" begin @test (@interpret string("", "pcre_h.jl")) == string("", "pcre_h.jl") @test (@interpret Base.strcat("", "build_h.jl")) == Base.strcat("", "build_h.jl") end # test for using generic functions that were previously builtin func_arrayref(a, i) = Core.arrayref(true, a, i) @test 2 == @interpret func_arrayref([1,2,3], 2) @static if isdefined(Base, :ScopedValues) @testset "interpret_scopedvalues.jl" include("interpret_scopedvalues.jl") end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
1514
module interpret_scopedvalues using Test, JuliaInterpreter using Base.ScopedValues const sval1 = ScopedValue(1) const sval2 = ScopedValue(1) @test 1 == @interpret getindex(sval1) # current_scope support for interpretation sval1_func1() = @with sval1 => 2 begin return sval1[] end @test 2 == @interpret sval1_func1() sval12_func1() = @with sval1 => 2 begin @with sval2 => 3 begin return sval1[], sval2[] end end @test (2, 3) == @interpret sval12_func1() # current_scope support for compiled calls _sval1_func2() = sval1[] sval1_func2() = @with sval1 => 2 begin return _sval1_func2() end let m = only(methods(_sval1_func2)) push!(JuliaInterpreter.compiled_methods, m) try @test 2 == @interpret sval1_func2() finally delete!(JuliaInterpreter.compiled_methods, m) end end let frame = JuliaInterpreter.enter_call(sval1_func2) @test 2 == JuliaInterpreter.finish_and_return!(Compiled(), frame) end # preset `current_scope` support @test 2 == @with sval1 => 2 begin @interpret getindex(sval1) end @test (2, 3) == @with sval1 => 2 sval2 => 3 begin @interpret(getindex(sval1)), @interpret(getindex(sval2)) end @test (2, 3) == @with sval1 => 2 begin @with sval2 => 3 begin @interpret(getindex(sval1)), @interpret(getindex(sval2)) end end let frame = JuliaInterpreter.enter_call() do sval1[], sval2[] end @test (2, 3) == @with sval1 => 2 sval2 => 3 JuliaInterpreter.finish_and_return!(frame) end end # module interpret_scopedvalues
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
5511
using JuliaInterpreter using Test, Random, InteractiveUtils, Distributed, Dates # Much of this file is taken from Julia's test/runtests.jl file. if !isdefined(Main, :read_and_parse) include("utils.jl") end const juliadir = dirname(dirname(Sys.BINDIR)) const testdir = joinpath(juliadir, "test") if isdir(testdir) include(joinpath(testdir, "choosetests.jl")) else @error "Julia's test/ directory not found, can't run Julia tests" end function test_path(test) t = split(test, '/') if t[1] in STDLIBS if length(t) == 2 return joinpath(STDLIB_DIR, t[1], "test", t[2]) else return joinpath(STDLIB_DIR, t[1], "test", "runtests") end else return joinpath(testdir, test) end end nstmts = 10^4 # very quick, aborts a lot outputfile = "results.md" i = 1 while i <= length(ARGS) global i a = ARGS[i] if a == "--nstmts" global nstmts = parse(Int, ARGS[i+1]) deleteat!(ARGS, i:i+1) elseif a == "--output" global outputfile = ARGS[i+1] deleteat!(ARGS, i:i+1) else i += 1 end end tests, _, exit_on_error, seed = choosetests(ARGS) function spin_up_worker() p = addprocs(1)[1] remotecall_wait(include, p, "utils.jl") remotecall_wait(configure_test, p) return p end function spin_up_workers(n) procs = addprocs(n) @sync begin @async for p in procs remotecall_wait(include, p, "utils.jl") remotecall_wait(configure_test, p) end end return procs end # Really, we're just going to skip all the tests that run on node1 const node1_tests = String[] function move_to_node1(t) if t in tests splice!(tests, findfirst(isequal(t), tests)) push!(node1_tests, t) end nothing end move_to_node1("precompile") move_to_node1("SharedArrays") move_to_node1("stress") move_to_node1("Distributed") @testset "Julia tests" begin nworkers = min(Sys.CPU_THREADS, length(tests)) println("Using $nworkers workers") results = Dict{String,Any}() tests0 = copy(tests) all_tasks = Union{Task,Nothing}[] try @sync begin for i = 1:nworkers @async begin push!(all_tasks, current_task()) while length(tests) > 0 nleft = length(tests) test = popfirst!(tests) println(nleft, " remaining, starting ", test, " on task ", i) local resp fullpath = test_path(test) * ".jl" try resp = disable_sigint() do p = spin_up_worker() result = remotecall_fetch(run_test_by_eval, p, test, fullpath, nstmts) rmprocs(p; waitfor=5) result end catch e if isa(e, InterruptException) println("interrupting ", test) break # rethrow(e) end resp = e if isa(e, ProcessExitedException) println("exited on ", test) end end results[test] = resp if resp isa Exception && exit_on_error skipped = length(tests) empty!(tests) end end println("Task ", i, " complete") all_tasks[i] = nothing end end end catch err isa(err, InterruptException) || rethrow(err) # If the test suite was merely interrupted, still print the # summary, which can be useful to diagnose what's going on foreach(all_tasks) do task try if isa(task, Task) println("trying to interrupt ", task) schedule(task, InterruptException(); error=true) end catch end end foreach(wait, all_tasks) end open(outputfile, "w") do io versioninfo(io) println(io, "Test run at: ", now()) println(io) println(io, "Maximum number of statements per lowered expression: ", nstmts) println(io) println(io, "| Test file | Passes | Fails | Errors | Broken | Aborted blocks |") println(io, "| --------- | ------:| -----:| ------:| ------:| --------------:|") for test in tests0 result = get(results, test, "") if isa(result, Tuple{Test.AbstractTestSet, Vector}) ts, aborts = result passes, fails, errors, broken, c_passes, c_fails, c_errors, c_broken = Test.get_test_counts(ts) naborts = length(aborts) println(io, "| ", test, " | ", passes+c_passes, " | ", fails+c_fails, " | ", errors+c_errors, " | ", broken+c_broken, " | ", naborts, " |") elseif isa(result, ProcessExitedException) println(io, "| ", test, " | ☠️ | ☠️ | ☠️ | ☠️ | ☠️ |") else println(test, " => ", result) println(io, "| ", test, " | X | X | X | X | X |") end end end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
4071
using JuliaInterpreter using CodeTracking using Test # This is a test-for-tests, verifying the code in utils.jl. if !isdefined(@__MODULE__, :read_and_parse) include("utils.jl") end @testset "Abort" begin ex = Base.parse_input_line(""" x = 1 for i = 1:10 x += 1 end let y = 0 z = 5 end if 2 > 1 println("Hello, world!") end @elapsed sum(rand(5)) """; filename="fake.jl") modexs = collect(ExprSplitter(Main, ex)) # find the 3rd assignment statement in the 2nd frame (corresponding to the x += 1 line) frame = Frame(modexs[2]...) i = 0 for k = 1:3 i = findnext(stmt->isexpr(stmt, :(=)), frame.framecode.src.code, i+1) end @test Aborted(frame, i).at.line == 3 # Check interior of let block frame = Frame(modexs[3]...) i = 0 for k = 1:2 i = findnext(stmt->isexpr(stmt, :(=)), frame.framecode.src.code, i+1) end @test Aborted(frame, i).at.line == 6 # Check conditional frame = Frame(modexs[4]...) i = findfirst(stmt->isa(stmt, Core.GotoIfNot), frame.framecode.src.code) + 1 @test Aborted(frame, i).at.line == 9 # Check macro frame = Frame(modexs[5]...) @test Aborted(frame, 1).at.file === Symbol("fake.jl") @test whereis(frame, 1; macro_caller=true) == ("fake.jl", 11) end module EvalLimited end @testset "evaluate_limited" begin aborts = Aborted[] ex = Base.parse_input_line(""" s = 0 for i = 1:5 global s s += 1 end """) modexs = collect(ExprSplitter(EvalLimited, ex)) nstmts = 1000 # enough to ensure it finishes for (mod, ex) in modexs frame = Frame(mod, ex) @test isa(frame, Frame) nstmtsleft = nstmts while true ret, nstmtsleft = evaluate_limited!(frame, nstmtsleft, true) isa(ret, Some{Any}) && break isa(ret, Aborted) && push!(aborts, ret) end end @test EvalLimited.s == 5 @test isempty(aborts) ex = Base.parse_input_line(""" s = 0 for i = 1:50 global s s += 1 end """; filename="fake.jl") if length(ex.args) == 2 # Sadly, on some Julia versions parse_input_line doesn't insert line info at toplevel, so do it manually insert!(ex.args, 2, LineNumberNode(2, Symbol("fake.jl"))) insert!(ex.args, 1, LineNumberNode(1, Symbol("fake.jl"))) end modexs = collect(ExprSplitter(EvalLimited, ex)) @static if VERSION >= v"1.11-" nstmts = 10*17 + 20 # 10 * 17 statements per iteration + α elseif VERSION >= v"1.10-" nstmts = 10*15 + 20 # 10 * 15 statements per iteration + α elseif isdefined(Core, :get_binding_type) nstmts = 10*14 + 20 # 10 * 14 statements per iteration + α elseif VERSION >= v"1.7-" nstmts = 10*11 + 20 # 10 * 9 statements per iteration + α else nstmts = 10*10 + 20 # 10 * 10 statements per iteration + α end for (mod, ex) in modexs frame = Frame(mod, ex) @test isa(frame, Frame) nstmtsleft = nstmts while true ret, nstmtsleft = evaluate_limited!(Compiled(), frame, nstmtsleft, true) isa(ret, Some{Any}) && break isa(ret, Aborted) && (push!(aborts, ret); break) end end @test 10 ≤ EvalLimited.s < 50 @test length(aborts) == 1 @test aborts[1].at.line ∈ (2, 3, 4, 5) # 2 corresponds to lowering of the for loop # Now try again with recursive stack empty!(aborts) modexs = collect(ExprSplitter(EvalLimited, ex)) for (mod, ex) in modexs frame = Frame(mod, ex) @test isa(frame, Frame) nstmtsleft = nstmts while true ret, nstmtsleft = evaluate_limited!(frame, nstmtsleft, true) isa(ret, Some{Any}) && break isa(ret, Aborted) && (push!(aborts, ret); break) end end @test EvalLimited.s < 5 @test length(aborts) == 1 lin = aborts[1].at @test lin.file === Symbol("fake.jl") @test lin.line ∈ (2, 3, 4, 5) end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
906
using JuliaInterpreter using Test using Logging @test isempty(detect_ambiguities(JuliaInterpreter, Base, Core)) if !isdefined(@__MODULE__, :read_and_parse) include("utils.jl") end Core.eval(JuliaInterpreter, :(debug_mode() = true)) @testset "Main tests" begin @testset "check_bulitins.jl" begin include("check_builtins.jl") end @testset "core.jl" begin include("core.jl") end @testset "interpret.jl" begin include("interpret.jl") end @testset "toplevel.jl" begin include("toplevel.jl") end @testset "limits.jl" begin include("limits.jl") end @testset "eval_code.jl" begin include("eval_code.jl") end @testset "breakpoints.jl" begin include("breakpoints.jl") end @static VERSION >= v"1.8.0-DEV.370" && @testset "code_coverage/code_coverage.jl" begin include("code_coverage/code_coverage.jl") end remove() @testset "debug.jl" begin include("debug.jl") end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
18939
if !isdefined(@__MODULE__, :read_and_parse) include("utils.jl") end module JIVisible module JIInvisible end end @testset "Basics" begin @test JuliaInterpreter.is_doc_expr(:(@doc "string" sum)) @test JuliaInterpreter.is_doc_expr(:(Core.@doc "string" sum)) ex = quote """ a docstring """ sum end @test JuliaInterpreter.is_doc_expr(ex.args[2]) @test !JuliaInterpreter.is_doc_expr(:(1+1)) # https://github.com/JunoLab/Juno.jl/issues/271 ex = quote """ Special Docstring """ module DocStringTest function foo() x = 4 + 5 end end end modexs = collect(ExprSplitter(JIVisible, ex)) m, ex = first(modexs) # FIXME don't use index in tests @test JuliaInterpreter.is_doc_expr(ex.args[2]) Core.eval(m, ex) io = IOBuffer() show(io, @doc(JIVisible.DocStringTest)) @test occursin("Special", String(take!(io))) ex = Base.parse_input_line(""" "docstring" module OuterModDocstring "docstring for InnerModDocstring" module InnerModDocstring end end """) modexs = collect(ExprSplitter(JIVisible, ex)) @test isdefined(JIVisible, :OuterModDocstring) @test isdefined(JIVisible.OuterModDocstring, :InnerModDocstring) # issue #538 @test !JuliaInterpreter.is_doc_expr(:(Core.@doc "string")) ex = quote @doc("no docstring") sum end modexs = collect(ExprSplitter(Main, ex)) m, ex = first(modexs) # FIXME don't use index in tests @test !JuliaInterpreter.is_doc_expr(ex.args[2]) @test !isdefined(Main, :JIInvisible) collect(ExprSplitter(JIVisible, :(module JIInvisible f() = 1 end))) # this looks up JIInvisible rather than create it @test !isdefined(Main, :JIInvisible) @test isdefined(JIVisible, :JIInvisible) mktempdir() do path push!(LOAD_PATH, path) open(joinpath(path, "TmpPkg1.jl"), "w") do io println(io, """ module TmpPkg1 using TmpPkg2 end """) end open(joinpath(path, "TmpPkg2.jl"), "w") do io println(io, """ module TmpPkg2 f() = 1 end """) end @eval using TmpPkg1 # Every package is technically parented in Main but the name may not be visible in Main @test isdefined(@__MODULE__, :TmpPkg1) @test !isdefined(@__MODULE__, :TmpPkg2) collect(ExprSplitter(@__MODULE__, quote module TmpPkg2 f() = 2 end end)) @test isdefined(@__MODULE__, :TmpPkg1) @test !isdefined(@__MODULE__, :TmpPkg2) end # Revise issue #718 ex = Base.parse_input_line(""" module TestPkg718 module TestModule718 export _VARIABLE_UNASSIGNED global _VARIABLE_UNASSIGNED = -84.0 end using .TestModule718 end """) for (mod, ex) in ExprSplitter(JIVisible, ex) @test JuliaInterpreter.finish!(Frame(mod, ex), true) === nothing end @test JIVisible.TestPkg718._VARIABLE_UNASSIGNED == -84.0 end module Toplevel end @testset "toplevel" begin modexs = ExprSplitter(Toplevel, read_and_parse(joinpath(@__DIR__, "toplevel_script.jl"))) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test isconst(Toplevel, :StructParent) @test isconst(Toplevel, :Struct) @test isconst(Toplevel, :MyInt8) s = Toplevel.Struct([2.0]) @test Toplevel.f1(0) == 1 @test Toplevel.f1(0.0) == 2 @test Toplevel.f1(0.0f0) == 3 @test Toplevel.f2("hi") == -1 @test Toplevel.f2(UInt16(1)) == UInt16 @test Toplevel.f2(3.2) == 0 @test Toplevel.f2(view([1,2], 1:1)) == 2 @test Toplevel.f2([1,2]) == 3 @test Toplevel.f2(reshape(view([1,2], 1:2), 2, 1)) == 4 @test Toplevel.f3(1, 1) == 1 @test Toplevel.f3(1, :hi) == 2 @test Toplevel.f3(UInt16(1), :hi) == Symbol @test Toplevel.f3(rand(2, 2), :hi, :there) == 2 @test_throws MethodError Toplevel.f3([1.0], :hi, :there) @test Toplevel.f4(1, 1.0) == 1 @test Toplevel.f4(1, 1) == Toplevel.f4(1) == 2 @test Toplevel.f4(UInt(1), "hey", 2) == 3 @test Toplevel.f4(rand(2,2)) == 2 @test Toplevel.f5(Int8(1); y=22) == 22 @test Toplevel.f5(Int16(1)) == 2 @test Toplevel.f5(Int32(1)) == 3 @test Toplevel.f5(Int64(1)) == 4 @test Toplevel.f5(rand(2,2); y=7) == 2 @test Toplevel.f6(1, "hi"; z=8) == 1 @test Toplevel.f7(1, (1, :hi)) == 1 @test Toplevel.f8(0) == 1 @test Toplevel.f9(3) == 9 @test Toplevel.f9(3.0) == 3.0 @test s("hello") == [2.0] @test Toplevel.Struct{Float32}(Dict(1=>"two")) == 4 @test Toplevel.first_two_funcs == (Toplevel.f1, Toplevel.f2) @test isconst(Toplevel, :first_two_funcs) @test Toplevel.myint isa Toplevel.MyInt8 @test_throws UndefVarError Toplevel.ffalse(1) @test Toplevel.ftrue(1) == 3 @test Toplevel.fctrue(0) == 1 @test_throws UndefVarError Toplevel.fcfalse(0) @test !Toplevel.Consts.b2 @test Toplevel.fb1true(0) == 1 @test_throws UndefVarError Toplevel.fb1false(0) @test Toplevel.fb2false(0) == 1 @test_throws UndefVarError Toplevel.fb2true(0) @test Toplevel.fstrue(0) == 1 @test Toplevel.fouter(1) === 2 @test Toplevel.feval1(1.0) === 1 @test Toplevel.feval1(1.0f0) === 1 @test_throws MethodError Toplevel.feval1(1) @test Toplevel.feval2(1.0, Int8(1)) == 2 @test length(s) === nothing @test size(s) === nothing @test Toplevel.nbytes(Float32) == 4 @test Toplevel.typestring(1.0) == "Float64" @test Toplevel._feval3(0) == 3 @test Toplevel.feval_add!(0) == 1 @test Toplevel.feval_min!(0) == 1 @test Toplevel.paramtype(Vector{Int8}) == Int8 @test Toplevel.paramtype(Vector) == Toplevel.NoParam @test Toplevel.Inner.g() == 5 @test Toplevel.Inner.InnerInner.g() == 6 @test isdefined(Toplevel, :Beat) @test Toplevel.Beat <: Toplevel.DatesMod.Period @test @interpret(Toplevel.f1(0)) == 1 @test @interpret(Toplevel.f1(0.0)) == 2 @test @interpret(Toplevel.f1(0.0f0)) == 3 @test @interpret(Toplevel.f2("hi")) == -1 @test @interpret(Toplevel.f2(UInt16(1))) == UInt16 @test @interpret(Toplevel.f2(3.2)) == 0 @test @interpret(Toplevel.f2(view([1,2], 1:1))) == 2 @test @interpret(Toplevel.f2([1,2])) == 3 @test @interpret(Toplevel.f2(reshape(view([1,2], 1:2), 2, 1))) == 4 @test @interpret(Toplevel.f3(1, 1)) == 1 @test @interpret(Toplevel.f3(1, :hi)) == 2 @test @interpret(Toplevel.f3(UInt16(1), :hi)) == Symbol @test @interpret(Toplevel.f3(rand(2, 2), :hi, :there)) == 2 @test_throws MethodError @interpret(Toplevel.f3([1.0], :hi, :there)) @test @interpret(Toplevel.f4(1, 1.0)) == 1 @test @interpret(Toplevel.f4(1, 1)) == @interpret(Toplevel.f4(1)) == 2 @test @interpret(Toplevel.f4(UInt(1), "hey", 2)) == 3 @test @interpret(Toplevel.f4(rand(2,2))) == 2 @test @interpret(Toplevel.f5(Int8(1); y=22)) == 22 @test @interpret(Toplevel.f5(Int16(1))) == 2 @test @interpret(Toplevel.f5(Int32(1))) == 3 @test @interpret(Toplevel.f5(Int64(1))) == 4 @test @interpret(Toplevel.f5(rand(2,2); y=7)) == 2 @test @interpret(Toplevel.f6(1, "hi"; z=8)) == 1 @test @interpret(Toplevel.f7(1, (1, :hi))) == 1 @test @interpret(Toplevel.f8(0)) == 1 @test @interpret(Toplevel.f9(3)) == 9 @test @interpret(Toplevel.f9(3.0)) == 3.0 @test @interpret(s("hello")) == [2.0] @test @interpret(Toplevel.Struct{Float32}(Dict(1=>"two"))) == 4 @test_throws UndefVarError @interpret(Toplevel.ffalse(1)) @test @interpret(Toplevel.ftrue(1)) == 3 @test @interpret(Toplevel.fctrue(0)) == 1 @test_throws UndefVarError @interpret(Toplevel.fcfalse(0)) @test @interpret(Toplevel.fb1true(0)) == 1 @test_throws UndefVarError @interpret(Toplevel.fb1false(0)) @test @interpret(Toplevel.fb2false(0)) == 1 @test_throws UndefVarError @interpret(Toplevel.fb2true(0)) @test @interpret(Toplevel.fstrue(0)) == 1 @test @interpret(Toplevel.fouter(1)) === 2 @test @interpret(Toplevel.feval1(1.0)) === 1 @test @interpret(Toplevel.feval1(1.0f0)) === 1 @test_throws MethodError @interpret(Toplevel.feval1(1)) @test @interpret(Toplevel.feval2(1.0, Int8(1))) == 2 @test @interpret(length(s)) === nothing @test @interpret(size(s)) === nothing @test @interpret(Toplevel.nbytes(Float32)) == 4 @test @interpret(Toplevel.typestring(1.0)) == "Float64" @test @interpret(Toplevel._feval3(0)) == 3 @test @interpret(Toplevel.feval_add!(0)) == 1 @test @interpret(Toplevel.feval_min!(0)) == 1 @test @interpret(Toplevel.paramtype(Vector{Int8})) == Int8 @test @interpret(Toplevel.paramtype(Vector)) == Toplevel.NoParam @test @interpret(Toplevel.Inner.g()) == 5 @test @interpret(Toplevel.Inner.InnerInner.g()) == 6 # FIXME: even though they pass, these tests break Test! # @test @interpret(isdefined(Toplevel, :Beat)) # @test @interpret(Toplevel.Beat <: Toplevel.DatesMod.Period) # Check that nested expressions are handled appropriately (module-in-block, internal `using`) ex = quote module Testing if true using JuliaInterpreter end end end modexs = ExprSplitter(Toplevel, ex) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test Toplevel.Testing.Frame === Frame end # Proper handling of namespaces # https://github.com/timholy/Revise.jl/issues/579 module Namespace end @testset "Namespace" begin frame = Frame(Namespace, :(sin(::Int) = 10)) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end @test Namespace.sin(0) == 10 @test Base.sin(0) == 0 end # When retrospectively parsing through modules to analyze code, Julia's stdlibs pose a bit # of a namespace challenge too: we never want to redefine new modules with the same name. @testset "Namespace stdlibs" begin # Get the "real" LibCURL_jll module (Julia 1.6 and higher) modref = nothing for (id, mod) in Base.loaded_modules if id.name == "LibCURL_jll" modref = mod break end end if modref !== nothing # Now try to find it by splitting exsplit = JuliaInterpreter.ExprSplitter(Base.__toplevel__, :( baremodule LibCURL_jll using Base Base.Experimental.@compiler_options compile=min optimize=0 infer=false end)) (mod1, ex1), state1 = iterate(exsplit) @test mod1 === modref end end # incremental interpretation solves world-age problems # Taken straight from Julia's test/tuple.jl module IncTest using Test struct A_15703{N} keys::NTuple{N, Int} end struct B_15703 x::A_15703 end end ex = quote @testset "issue #15703" begin function bug_15703(xs...) [x for x in xs] end function test_15703() s = (1,) a = A_15703(s) ss = B_15703(a).x.keys @test ss === s bug_15703(ss...) end test_15703() end end modexs = collect(ExprSplitter(IncTest, ex)) for (i, (mod, ex)) in enumerate(modexs) local frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end if i == length(modexs) @test isa(JuliaInterpreter.get_return(frame), Test.DefaultTestSet) end end @testset "Enum" begin ex = Expr(:toplevel, :(@enum EnumParent begin EnumChild0 EnumChild1 end)) modexs = ExprSplitter(Toplevel, ex) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test isa(Toplevel.EnumChild1, Toplevel.EnumParent) end module LowerAnon ret = Ref{Any}(nothing) end @testset "Anonymous functions" begin ex1 = quote f = x -> parse(Int16, x) ret[] = map(f, AbstractString[]) end ex2 = quote ret[] = map(x->parse(Int16, x), AbstractString[]) end modexs = ExprSplitter(LowerAnon, ex1) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test isa(LowerAnon.ret[], Vector{Int16}) LowerAnon.ret[] = nothing modexs = ExprSplitter(LowerAnon, ex2) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test isa(LowerAnon.ret[], Vector{Int16}) LowerAnon.ret[] = nothing ex3 = quote const BitIntegerType = Union{map(T->Type{T}, Base.BitInteger_types)...} end modexs = ExprSplitter(LowerAnon, ex3) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test isa(LowerAnon.BitIntegerType, Union) ex4 = quote y = 3 z = map(x->x^2+y, [1,2,3]) y = 4 end modexs = ExprSplitter(LowerAnon, ex4) for (mod, ex) in modexs frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test LowerAnon.z == [4,7,12] end @testset "Docstrings" begin ex = quote """ A docstring """ f(x) = 1 g(T::Type) = 1 g(x) = 2 """ Docstring 2 """ g(T::Type) module Sub """ Docstring 3 """ f(x) = 2 end end Core.eval(Toplevel, Expr(:toplevel, ex.args...)) modexs = ExprSplitter(Toplevel, ex) nt = nsub = 0 for (mod, ex) in modexs if JuliaInterpreter.is_doc_expr(ex.args[2]) mod == Toplevel && (nt += 1) mod == Toplevel.Sub && (nsub += 1) ex = ex.args[2].args[4] ex isa Expr || continue ex.head === :call && continue end frame = Frame(mod, ex) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end end @test nt == 2 @test nsub == 1 @test Toplevel.f("check") == 1 @test Toplevel.Sub.f("check") == 2 end @testset "Self referential" begin # Revise issue #304 ex = :(mutable struct Node t :: Node end) frame = Frame(Toplevel, ex) JuliaInterpreter.finish!(frame, true) @test Toplevel.Node isa Type end @testset "Non-frames" begin ex = Base.parse_input_line(""" \"\"\" An expr that produces an `export nffoo` that doesn't produce a Frame \"\"\" module NonFrame nfbar(x) = 1 @deprecate nffoo nfbar global CoolStuff const thresh = 1.0 export nfbar end """) modexs = ExprSplitter(Toplevel, ex) for (mod, ex) in modexs if ex.head === :global Core.eval(mod, ex) continue end frame = Frame(mod, ex) frame === nothing && continue JuliaInterpreter.finish!(frame, true) end Core.eval(Toplevel, :(using .NonFrame)) @test isdefined(Toplevel, :nffoo) end @testset "LOAD_PATH and modules" begin tmpdir = joinpath(tempdir(), randstring()) mkpath(tmpdir) push!(LOAD_PATH, tmpdir) filename = joinpath(tmpdir, "NewModule.jl") open(filename, "w") do io print(io, """ module NewModule f() = 1 end""") end str = read(filename, String) ex = Base.parse_input_line(str) modexs = ExprSplitter(Main, ex) @test !isempty(modexs) pop!(LOAD_PATH) rm(tmpdir, recursive=true) end @testset "`used` for abstract types" begin ex = :(abstract type AbstractType <: AbstractArray{Union{Int,Missing},2} end) frame = Frame(Toplevel, ex) JuliaInterpreter.finish!(frame, true) @test isabstracttype(Toplevel.AbstractType) end @testset "Recursive type definitions" begin # See https://github.com/timholy/Revise.jl/issues/417 # See also the `Node` test above ex = :(struct RecursiveType x::Vector{RecursiveType} end) frame = Frame(Toplevel, ex) JuliaInterpreter.finish!(frame, true) @test Toplevel.RecursiveType(Vector{Toplevel.RecursiveType}()) isa Toplevel.RecursiveType end # https://github.com/timholy/Revise.jl/issues/420 module ToplevelParameters Base.@kwdef struct MyStruct x::Array{<:Real, 1} = [.05] end end @testset "Nested references in type definitions" begin ex = quote Base.@kwdef struct MyStruct x::Array{<:Real, 1} = [.05] end end frame = Frame(ToplevelParameters, ex) @test JuliaInterpreter.finish!(frame, true) === nothing end @testset "Issue #427" begin ex = :(begin local foo = 10 sin(foo) end) for (mod, ex) in ExprSplitter(@__MODULE__, ex) @test JuliaInterpreter.finish_and_return!(Frame(mod, ex), true) == sin(10) end ex = :(begin 3 + 7 module Local local foo = 10 sin(foo) end end) modexs = collect(ExprSplitter(@__MODULE__, ex)) @test length(modexs) == 2 # FIXME don't use index in tests @test modexs[2][1] == getfield(@__MODULE__, :Local) for (mod, ex) in modexs @test JuliaInterpreter.finish!(Frame(mod, ex), true) === nothing end ex = :(begin 3 + 7 module Local local foo = 10 sin(foo) end 3 + 7 end) modexs = collect(ExprSplitter(@__MODULE__, ex)) @test length(modexs) == 3 end @testset "toplevel scope annotation" begin ex = Base.parse_input_line(""" global foo_g = 10 sin(foo_g) """) modexs = collect(ExprSplitter(@__MODULE__, ex)) for (mod, ex) in modexs @test JuliaInterpreter.finish!(Frame(mod, ex), true) === nothing end @test length(modexs) == 2 # FIXME don't use index in tests ex = Base.parse_input_line(""" local foo = 10 sin(42) """) modexs = collect(ExprSplitter(@__MODULE__, ex)) for (mod, ex) in modexs @test JuliaInterpreter.finish!(Frame(mod, ex), true) === nothing end @test length(modexs) == 2 # FIXME don't use index in tests end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
2994
abstract type StructParent{T,N} <: AbstractArray{T,N} end struct Struct{T} <: StructParent{T,1} x::Vector{T} end primitive type MyInt8 <: Integer 8 end MyInt8(x::Integer) = Base.bitcast(MyInt8, convert(Int8, x)) myint = MyInt8(2) const TypeAlias = Float32 # Methods and signatures f1(x::Int) = 1 f1(x) = 2 f1(x::TypeAlias) = 3 # where signatures f2(x::T) where T = -1 f2(x::T) where T<:Integer = T f2(x::T) where Unsigned<:T<:Real = 0 f2(x::V) where V<:SubArray{T} where T = 2 f2(x::V) where V<:Array{T,N} where {T,N} = 3 f2(x::V) where V<:Base.ReshapedArray{T,N} where T where N = 4 # Varargs f3(x::Int, y...) = 1 f3(x::Int, y::Symbol...) = 2 f3(x::T, y::U...) where {T<:Integer,U} = U f3(x::Array{Float64,K}, y::Vararg{Symbol,K}) where K = K # Default args f4(x, y=0) = 1 f4(x, y::Int) = 2 f4(x::UInt, y="hello", z::Int=0) = 3 f4(x::Array{Float64,K}, y::Int=0) where K = K # Keyword args f5(x::Int8; y=0) = y f5(x::Int16; y::Int=0) = 2 f5(x::Int32; y="hello", z::Int=0) = 3 f5(x::Int64;) = 4 f5(x::Array{Float64,K}; y::Int=0) where K = K # Default and keyword args f6(x, y="hello"; z::Int=0) = 1 # Destructured args f7(x, (count, name)) = 1 # Return-type annotations f8(x)::Int = 1 # generated functions @generated function f9(x) if x <: Integer return :(x ^ 2) else return :(x) end end # Call overloading (i::Struct)(::String) = i.x (::Type{Struct{T}})(::Dict) where T = sizeof(T) const first_two_funcs = (f1, f2) # Conditional methods if false ffalse(x) = 2 end if true ftrue(x) = 3 end if 0.8 > 0.2 fctrue(x) = 1 else fcfalse(x) = 1 end module Consts export b1 b1 = true b2 = false g() = 2 end using .Consts if b1 fb1true(x) = 1 else fb1false(x) = 1 end if Consts.b2 fb2true(x) = 1 else fb2false(x) = 1 end if @isdefined(sum) fstrue(x) = 1 end # Inner methods function fouter(x) finner(::Float16) = 2x return finner(Float16(1)) end ## Evaled methods for T in (Float32, Float64) @eval feval1(::$T) = 1 end for T1 in (Float32, Float64), T2 in (Int8,) @eval feval2(::$T1, ::$T2) = 2 end for f in (:length, :size) @eval Base.$f(i::Struct, args...) = nothing end for (T, v) in Dict(Float32=>4, Float64=>8) @eval nbytes(::Type{$T}) = $v end for x in (1, 1.1) @eval typestring(::$(typeof(x))) = $(string(typeof(x))) end for name in (:feval3,) _f = Symbol("_", name) @eval ($_f)(arg) = 3 end const opnames = Dict{Symbol, Symbol}(:+ => :add, :- => :sub) for op in [:+, :-, :max, :min] opname = get(opnames, op, op) @eval $(Symbol("feval_", opname, "!"))(var) = 1 end # Methods with @isdefined struct NoParam end myeltype(::Type{Vector{T}}) where T = @isdefined(T) ? T : NoParam paramtype(::Type{V}) where V<:Vector = isa(V, UnionAll) ? myeltype(Base.unwrap_unionall(V)) : myeltype(V) ## Submodules module Inner g() = 5 module InnerInner g() = 6 end end module DatesMod abstract type Period end end struct Beat <: DatesMod.Period value::Int64 end module Empty end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
8547
using JuliaInterpreter using JuliaInterpreter: Frame, @lookup using JuliaInterpreter: finish_and_return!, evaluate_call!, step_expr!, shouldbreak, do_assignment!, SSAValue, isassign, pc_expr, handle_err, get_return, moduleof using Base.Meta: isexpr using Test, Random, SHA function stacklength(frame) n = 1 frame = frame.callee while frame !== nothing n += 1 frame = frame.callee end return n end # Execute a frame using Julia's regular compiled-code dispatch for any :call expressions runframe(frame) = Some{Any}(finish_and_return!(Compiled(), frame)) # Execute a frame using the interpreter for all :call expressions (except builtins & intrinsics) runstack(frame) = Some{Any}(finish_and_return!(frame)) ## For juliatests.jl function read_and_parse(filename) src = read(filename, String) ex = Base.parse_input_line(src; filename=filename) end ## For running interpreter frames under resource limitations if isdefined(Base.IRShow, :LineInfoNode) struct Aborted # for signaling that some statement or test blocks were interrupted at::Base.IRShow.LineInfoNode end else struct Aborted # for signaling that some statement or test blocks were interrupted at::Core.LineInfoNode end end function Aborted(frame::Frame, pc) lineidx = JuliaInterpreter.codelocs(frame, pc) lineinfo = JuliaInterpreter.linetable(frame, lineidx; macro_caller=true) return Aborted(lineinfo) end """ ret, nstmtsleft = evaluate_limited!(recurse, frame, nstmts, istoplevel::Bool=true) Run `frame` until one of: - execution terminates normally (`ret = Some{Any}(val)`, where `val` is the returned value of `frame`) - if `istoplevel` and a `thunk` or `method` expression is encountered (`ret = nothing`) - more than `nstmts` have been executed (`ret = Aborted(lin)`, where `lnn` is the `LineInfoNode` of termination). """ function evaluate_limited!(@nospecialize(recurse), frame::Frame, nstmts::Int, istoplevel::Bool=false) refnstmts = Ref(nstmts) limexec!(s, f, istl) = limited_exec!(s, f, refnstmts, istl) # The following is like finish!, except we intercept :call expressions so that we can run them # with limexec! rather than the default finish_and_return! pc = frame.pc while nstmts > 0 shouldbreak(frame, pc) && return BreakpointRef(frame.framecode, pc), refnstmts[] stmt = pc_expr(frame, pc) if isa(stmt, Expr) if stmt.head === :call && !isa(recurse, Compiled) refnstmts[] = nstmts try rhs = evaluate_call!(limexec!, frame, stmt) isa(rhs, Aborted) && return rhs, refnstmts[] lhs = SSAValue(pc) do_assignment!(frame, lhs, rhs) new_pc = pc + 1 catch err new_pc = handle_err(recurse, frame, err) end nstmts = refnstmts[] elseif stmt.head === :(=) && isexpr(stmt.args[2], :call) && !isa(recurse, Compiled) refnstmts[] = nstmts try rhs = evaluate_call!(limexec!, frame, stmt.args[2]) isa(rhs, Aborted) && return rhs, refnstmts[] do_assignment!(frame, stmt.args[1], rhs) new_pc = pc + 1 catch err new_pc = handle_err(recurse, frame, err) end nstmts = refnstmts[] elseif istoplevel && stmt.head === :thunk code = stmt.args[1] if length(code.code) == 1 && JuliaInterpreter.is_return(code.code[end]) && isexpr(code.code[end].args[1], :method) # Julia 1.2+ puts a :thunk before the start of each method new_pc = pc + 1 else refnstmts[] = nstmts newframe = Frame(moduleof(frame), stmt) if isa(recurse, Compiled) finish!(recurse, newframe, true) else newframe.caller = frame frame.callee = newframe ret = limited_exec!(recurse, newframe, refnstmts, istoplevel) isa(ret, Aborted) && return ret, refnstmts[] frame.callee = nothing end JuliaInterpreter.recycle(newframe) # Because thunks may define new methods, return to toplevel frame.pc = pc + 1 return nothing, refnstmts[] end elseif istoplevel && stmt.head === :method && length(stmt.args) == 3 step_expr!(recurse, frame, stmt, istoplevel) frame.pc = pc + 1 return nothing, nstmts - 1 else new_pc = step_expr!(recurse, frame, stmt, istoplevel) nstmts -= 1 end else new_pc = step_expr!(recurse, frame, stmt, istoplevel) nstmts -= 1 end (new_pc === nothing || isa(new_pc, BreakpointRef)) && break pc = frame.pc = new_pc end # Handle the return stmt = pc_expr(frame, pc) if nstmts == 0 && !JuliaInterpreter.is_return(stmt) ret = Aborted(frame, pc) return ret, nstmts end ret = get_return(frame) return Some{Any}(ret), nstmts end evaluate_limited!(@nospecialize(recurse), modex::Tuple{Module,Expr,Frame}, nstmts::Int, istoplevel::Bool=true) = evaluate_limited!(recurse, modex[end], nstmts, istoplevel) evaluate_limited!(@nospecialize(recurse), modex::Tuple{Module,Expr,Expr}, nstmts::Int, istoplevel::Bool=true) = Some{Any}(Core.eval(modex[1], modex[3])), nstmts evaluate_limited!(frame::Union{Frame, Tuple}, nstmts::Int, istoplevel::Bool=false) = evaluate_limited!(finish_and_return!, frame, nstmts, istoplevel) function limited_exec!(@nospecialize(recurse), newframe, refnstmts, istoplevel) ret, nleft = evaluate_limited!(recurse, newframe, refnstmts[], istoplevel) refnstmts[] = nleft return isa(ret, Aborted) ? ret : something(ret) end ### Functions needed on workers for running tests function configure_test() # To run tests efficiently, certain methods must be run in Compiled mode, # in particular those that are used by the Test infrastructure cm = JuliaInterpreter.compiled_methods empty!(cm) JuliaInterpreter.set_compiled_methods() push!(cm, which(Test.eval_test, Tuple{Expr, Expr, LineNumberNode})) push!(cm, which(Test.get_testset, Tuple{})) push!(cm, which(Test.push_testset, Tuple{Test.AbstractTestSet})) push!(cm, which(Test.pop_testset, Tuple{})) for f in (Test.record, Test.finish) for m in methods(f) push!(cm, m) end end push!(cm, which(Random.seed!, Tuple{Union{Integer,Vector{UInt32}}})) push!(cm, which(copy!, Tuple{Random.MersenneTwister, Random.MersenneTwister})) push!(cm, which(copy, Tuple{Random.MersenneTwister})) push!(cm, which(Base.include, Tuple{Module, String})) push!(cm, which(Base.show_backtrace, Tuple{IO, Vector})) push!(cm, which(Base.show_backtrace, Tuple{IO, Vector{Any}})) # issue #101 push!(cm, which(SHA.update!, Tuple{SHA.SHA1_CTX,Vector{UInt8}})) end function run_test_by_eval(test, fullpath, nstmts) Core.eval(Main, Expr(:toplevel, :(module JuliaTests using Test, Random end), quote # These must be run at top level, so we can't put this in a function println("Working on ", $test, "...") ex = read_and_parse($fullpath) isexpr(ex, :error) && @error "error parsing $($test): $ex" aborts = Aborted[] ts = Test.DefaultTestSet($test) Test.push_testset(ts) current_task().storage[:SOURCE_PATH] = $fullpath modexs = collect(ExprSplitter(JuliaTests, ex)) for (i, modex) in enumerate(modexs) # having the index can be useful for debugging nstmtsleft = $nstmts # mod, ex = modex # @show mod ex frame = Frame(modex) yield() # allow communication between processes ret, nstmtsleft = evaluate_limited!(frame, nstmtsleft, true) if isa(ret, Aborted) push!(aborts, ret) JuliaInterpreter.finish_stack!(Compiled(), frame, true) end end println("Finished ", $test) return ts, aborts end)) end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
1971
function cleanup_coverage_files(pid) # clean up coverage files for source code dir, _, files = first(walkdir(normpath(@__DIR__, "..", "..", "src"))) for file in files reg = Regex(string(".+\\.jl\\.$pid\\.cov")) if occursin(reg, file) rm(joinpath(dir, file)) end end # clean up coverage files for this file dir, _, files = first(walkdir(@__DIR__)) for file in files reg = Regex(string("coverage_example\\.jl\\.$pid\\.cov")) if occursin(reg, file) rm(joinpath(dir, file)) end end end # using DiffUtils let local pid try @testset "code coverage" begin io = Base.PipeEndpoint() filepath = normpath(@__DIR__, "coverage_example.jl") cmd = `$(Base.julia_cmd()) --startup=no --project=$(dirname(dirname(@__DIR__))) --code-coverage=user $filepath` p = run(cmd, devnull, io, stderr; wait=false) pid = Libc.getpid(p) @test read(io, String) == "1 2 fizz 4 " @test success(p) dir, _, files = first(walkdir(@__DIR__)) i = findfirst(contains(r"coverage_example\.jl\.\d+\.cov"), files) i === nothing && error("no coverage files found in $dir: $files") cov_file = joinpath(dir, files[i]) cov_data = read(cov_file, String) expected = "coverage_example.jl.cov" expected = read(joinpath(dir, expected), String) if Sys.iswindows() cov_data = replace(cov_data, "\r\n" => "\n") expected = replace(cov_data, "\r\n" => "\n") end # if cov_data != expected # DiffUtils.diff(cov_data, expected) # end @test cov_data == expected end finally if @isdefined(pid) # clean up generated files cleanup_coverage_files(pid) end end end
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
code
312
fizz() = print("fizz ") buzz() = print("buzz ") function fizzbuzz(n) for i in 1:n if i % 3 == 0 || i % 5 == 0 i % 3 == 0 && fizz() i % 5 == 0 && buzz() else print(i, " ") end end return n end using JuliaInterpreter @interpret fizzbuzz(4)
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
1147
# JuliaInterpreter *An interpreter for Julia code.* | **Documentation** | **Build Status** | |:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:| | [![][docs-stable-img]][docs-stable-url] | [![][gh-actions-img]][gh-actions-url] [![][codecov-img]][codecov-url] | ## Installation ```jl ]add JuliaInterpreter ``` ## Usage See the [documentation][docs-stable-url]. [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://JuliaDebug.github.io/JuliaInterpreter.jl/stable [gh-actions-img]: https://github.com/JuliaDebug/JuliaInterpreter.jl/actions/workflows/CI.yml/badge.svg [gh-actions-url]: https://github.com/JuliaDebug/JuliaInterpreter.jl/actions/workflows/CI.yml [codecov-img]: https://codecov.io/gh/JuliaDebug/JuliaInterpreter.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/JuliaDebug/JuliaInterpreter.jl
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
279
The benchmarks are recommended to be run using PkgBenchmark.jl as: ``` using PkgBenchmark results = benchmarkpkg("JuliaInterpreter") ``` See the [PkgBenchmark](https://juliaci.github.io/PkgBenchmark.jl/stable/index.html) documentation for what analysis is possible on `result`.
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
5921
!!! note This page and the next are designed to teach a little more about the internals. Depending on your interest, you may be able to skip them. # Lowered representation JuliaInterpreter uses the lowered representation of code. The key advantage of lowered representation is that it is fairly well circumscribed: - There are only a limited number of legal statements that can appear in lowered code - Each statement is "unpacked" to essentially do one thing - Scoping of variables is simplified via the slot mechanism, described below - Names are fully resolved by module - Macros are expanded [Julia AST](https://docs.julialang.org/en/v1/devdocs/ast/) describes the kinds of objects that can appear in lowered code. Let's start with a demonstration on a simple function: ```julia function summer(A::AbstractArray{T}) where T s = zero(T) for a in A s += a end return s end A = [1, 2, 5] ``` To interpret lowered representation, it maybe be useful to rewrite the body of `summer` in the following ways. First let's use an intermediate representation that expands the `for a in A ... end` loop: ```julia s = zero(T) temp = iterate(A) # `for` loops get lowered to `iterate/while` loops while temp !== nothing a, state = temp s += a temp = iterate(A, state) end return s ``` The lowered code takes the additional step of resolving the names by module and turning all the branching into `@goto/@label` equivalents: ```julia # Code starting at line 2 (the first line of the body) s = Main.zero(T) # T corresponds to the first parameter, i.e., $(Expr(:static_parameter, 1)) # Code starting at line 3 temp = Base.iterate(A) # here temp = @_4 if temp === nothing # this comparison gets stored as %4, and %5 stores !(temp===nothing) @goto block4 end @label block2 ## BEGIN block2 a, state = temp[1], temp[2] # these correspond to the `getfield` calls, state is %9 # Code starting at line 4 s = s + a # Code starting at line 5 temp = iterate(A, state) # A is also %2 if temp === nothing @goto block4 # the `while` condition was false end ## END block2 @goto block2 # here the `while` condition is still true # Code starting at line 6 @label block4 ## BEGIN block4 return s ## END block4 ``` This has very close correspondence to the lowered representation: ```julia julia> code = @code_lowered debuginfo=:source summer(A) CodeInfo( @ REPL[1]:2 within `summer' 1 ─ s = Main.zero($(Expr(:static_parameter, 1))) │ @ REPL[1]:3 within `summer' │ %2 = A │ @_4 = Base.iterate(%2) │ %4 = @_4 === nothing │ %5 = Base.not_int(%4) └── goto #4 if not %5 2 ┄ %7 = @_4 │ a = Core.getfield(%7, 1) │ %9 = Core.getfield(%7, 2) │ @ REPL[1]:4 within `summer' │ s = s + a │ @_4 = Base.iterate(%2, %9) │ %12 = @_4 === nothing │ %13 = Base.not_int(%12) └── goto #4 if not %13 3 ─ goto #2 @ REPL[1]:6 within `summer' 4 ┄ return s ) ``` !!! note Not all Julia versions support `debuginfo`. If the command above fails for you, just omit the `debuginfo=:source` portion. To understand this package's internals, you need to familiarize yourself with these `CodeInfo` objects. The lines that start with `@ REPL[1]:n` indicate the source line of the succeeding block of statements; here we defined this method in the REPL, so the source file is `REPL[1]`; the number after the colon is the line number. The numbers on the left correspond to [basic blocks](https://en.wikipedia.org/wiki/Basic_block), as we annotated with `@label block2` above. When used in statements these are printed with a hash, e.g., in `goto #4 if not %5`, the `#4` refers to basic block 4. The numbers in the next column--e.g., `%2`, refer to [single static assignment (SSA) values](https://en.wikipedia.org/wiki/Static_single_assignment_form). Each statement (each line of this printout) corresponds to a single SSA value, but only those used later in the code are printed using assignment syntax. Wherever a previous SSA value is used, it's referenced by an `SSAValue` and printed as `%5`; for example, in `goto #4 if not %5`, the `%5` is the result of evaluating the 5th statement, which is `(Base.not_int)(%4)`, which in turn refers to the result of statement 4. Finally, temporary variables here are shown as `@_4`; the `_` indicates a *slot*, either one of the input arguments or a local variable, and the 4 means the 4th one. Together lines 4 and 5 correspond to `!(@_4 === nothing)`, where `@_4` has been assigned the result of the call to `iterate` occurring on line 3. (In some Julia versions, this may be printed as `#temp#`, similar to how we named it in our alternative implementation above.) Let's look at a couple of the fields of the `CodeInfo`. First, the statements themselves: ```julia julia> code.code 16-element Array{Any,1}: :(_3 = Main.zero($(Expr(:static_parameter, 1)))) :(_2) :(_4 = Base.iterate(%2)) :(_4 === nothing) :(Base.not_int(%4)) :(unless %5 goto %16) :(_4) :(_5 = Core.getfield(%7, 1)) :(Core.getfield(%7, 2)) :(_3 = _3 + _5) :(_4 = Base.iterate(%2, %9)) :(_4 === nothing) :(Base.not_int(%12)) :(unless %13 goto %16) :(goto %7) :(return _3) ``` You can see directly that the SSA assignments are implicit; they are not directly present in the statement list. The most noteworthy change here is the appearance of more objects like `_3`, which are references that index into local variable slots: ```julia julia> code.slotnames 5-element Array{Any,1}: Symbol("#self#") :A :s Symbol("") :a ``` When printing the whole `CodeInfo` object, these `slotnames` are substituted in (unless they are empty, as was the case for `@_4` above).
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
2244
# Function reference ## Running the interpreter ```@docs @interpret ``` ## Frame creation ```@docs Frame(mod::Module, ex::Expr) ExprSplitter JuliaInterpreter.enter_call JuliaInterpreter.enter_call_expr JuliaInterpreter.prepare_frame JuliaInterpreter.determine_method_for_expr JuliaInterpreter.prepare_args JuliaInterpreter.prepare_call JuliaInterpreter.get_call_framecode JuliaInterpreter.optimize! ``` ## Frame traversal ```@docs root leaf ``` ## Frame execution ```@docs JuliaInterpreter.Compiled JuliaInterpreter.step_expr! JuliaInterpreter.finish! JuliaInterpreter.finish_and_return! JuliaInterpreter.finish_stack! JuliaInterpreter.get_return JuliaInterpreter.next_until! JuliaInterpreter.maybe_next_until! JuliaInterpreter.through_methoddef_or_done! JuliaInterpreter.evaluate_call! JuliaInterpreter.evaluate_foreigncall JuliaInterpreter.maybe_evaluate_builtin JuliaInterpreter.next_call! JuliaInterpreter.maybe_next_call! JuliaInterpreter.next_line! JuliaInterpreter.until_line! JuliaInterpreter.maybe_reset_frame! JuliaInterpreter.maybe_step_through_wrapper! JuliaInterpreter.maybe_step_through_kwprep! JuliaInterpreter.handle_err JuliaInterpreter.debug_command ``` ## Breakpoints ```@docs @breakpoint @bp breakpoint enable disable remove toggle break_on break_off breakpoints JuliaInterpreter.dummy_breakpoint ``` ## Types ```@docs Frame JuliaInterpreter.FrameCode JuliaInterpreter.FrameData JuliaInterpreter._INACTIVE_EXCEPTION JuliaInterpreter.FrameInstance JuliaInterpreter.BreakpointState JuliaInterpreter.BreakpointRef JuliaInterpreter.AbstractBreakpoint JuliaInterpreter.BreakpointSignature JuliaInterpreter.BreakpointFileLocation ``` ## Internal storage ```@docs JuliaInterpreter.framedict JuliaInterpreter.genframedict JuliaInterpreter.compiled_methods JuliaInterpreter.compiled_modules JuliaInterpreter.interpreted_methods ``` ## Utilities ```@docs JuliaInterpreter.eval_code JuliaInterpreter.@lookup JuliaInterpreter.is_wrapper_call JuliaInterpreter.is_doc_expr JuliaInterpreter.is_global_ref CodeTracking.whereis JuliaInterpreter.linenumber JuliaInterpreter.Variable JuliaInterpreter.locals JuliaInterpreter.whichtt ``` ## Hooks ```@docs JuliaInterpreter.on_breakpoints_updated JuliaInterpreter.firehooks ```
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
5504
# JuliaInterpreter This package implements an [interpreter](https://en.wikipedia.org/wiki/Interpreter_(computing)) for Julia code. Normally, Julia compiles your code when you first execute it; using JuliaInterpreter you can avoid compilation and execute the expressions that define your code directly. Interpreters have a number of applications, including support for stepping debuggers. ## Use as an interpreter Using this package as an interpreter is straightforward: ```@repl index using JuliaInterpreter list = [1, 2, 5] sum(list) @interpret sum(list) ``` ## Breakpoints You can interrupt execution by setting breakpoints. You can set breakpoints via packages that explicitly target debugging, like [Juno](https://junolab.org/), [Debugger](https://github.com/JuliaDebug/Debugger.jl), and [Rebugger](https://github.com/timholy/Rebugger.jl). But all of these just leverage the core functionality defined in JuliaInterpreter, so here we'll illustrate it without using any of these other packages. Let's set a conditional breakpoint, to be triggered any time one of the elements in the argument to `sum` is bigger than 4: ```@repl index bp = @breakpoint sum([1, 2]) any(x->x>4, a); ``` Note that in writing the condition, we used `a`, the name of the argument to the relevant method of `sum`. Conditionals should be written using a combination of argument and parameter names of the method into which you're inserting a breakpoint; you can also use any globally-available name (as used here with the `any` function). Now let's see what happens: ```@repl index @interpret sum([1,2,3]) # no element bigger than 4, breakpoint should not trigger frame, bpref = @interpret sum([1,2,5]) # should trigger breakpoint ``` `frame` is described in more detail on the next page; for now, suffice it to say that the `c` in the leftmost column indicates the presence of a conditional breakpoint upon entry to `sum`. `bpref` is a reference to the breakpoint of type [`BreakpointRef`](@ref). The breakpoint `bp` we created can be manipulated at the command line ```@repl index disable(bp) @interpret sum([1,2,5]) enable(bp) @interpret sum([1,2,5]) ``` [`disable`](@ref) and [`enable`](@ref) allow you to turn breakpoints off and on without losing any conditional statements you may have provided; [`remove`](@ref) allows a permanent removal of the breakpoint. You can use `remove()` to remove all breakpoints in all methods. [`@breakpoint`](@ref) allows you to optionally specify a line number at which the breakpoint is to be set. You can also use a functional form, [`breakpoint`](@ref), to specify file/line combinations or that you want to break on entry to *any* method of a particular function. At present, note that some of this functionality requires that you be running [Revise.jl](https://github.com/timholy/Revise.jl). It is, in addition, possible to halt execution when otherwise an error would be thrown. This functionality is enabled using [`break_on`](@ref) and disabled with [`break_off`](@ref): ```@repl index function f_outer() println("before error") f_inner() println("after error") end; f_inner() = error("inner error"); break_on(:error) fr, pc = @interpret f_outer() leaf(fr) typeof(pc) pc.err break_off(:error) @interpret f_outer() ``` Finally, you can set breakpoints using [`@bp`](@ref): ```@repl index function myfunction(x, y) a = 1 b = 2 x > 3 && @bp return a + b + x + y end; @interpret myfunction(1, 2) @interpret myfunction(5, 6) ``` Here the breakpoint is marked with a `b` indicating that it is an unconditional breakpoint. Because we placed it inside the condition `x > 3`, we've achieved a conditional outcome. When using `@bp` in source-code files, the use of Revise is recommended, since it allows you to add breakpoints, test code, and then remove the breakpoints from the code without restarting Julia. ## `debug_command` You can control execution of frames via [`debug_command`](@ref). Authors of debugging applications should target `debug_command` for their interaction with JuliaInterpreter. ## Hooks Consider if you were building a debugging application with a GUI component which displays a dot in the text editor margin where a breakpoint is. If a user creates a breakpoint not via your GUI, but rather via a command in the REPL etc. then you still wish to keep your GUI up to date. How to do this? The answer is hooks. JuliaInterpreter has experimental support for having a hook, or callback function invoked whenever the set of all breakpoints is changed. Hook functions are setup by invoking the [`JuliaInterpreter.on_breakpoints_updated`](@ref) function. To return to our example of keeping GUI up to date, the hooks would look something like this: ```julia using JuliaInterpreter using JuliaInterpreter: AbstractBreakpoint, update_states!, on_breakpoints_updated breakpoint_gui_elements = Dict{AbstractBreakpoint, MarginDot}() # ... function breakpoint_gui_hook(::typeof(breakpoint), bp::AbstractBreakpoint) bp_dot = MarginDot(bp) draw(bp_dot) breakpoint_gui_elements[bp] = bp_dot end function breakpoint_gui_hook(::typeof(remove), bp::AbstractBreakpoint) bp_dot = pop!(breakpoint_gui_elements, bp) undraw(bp_dot) end function breakpoint_gui_hook(::typeof(update_states!), bp::AbstractBreakpoint) is_enabled = bp.enabled[] bp_dot = breakpoint_gui_elements[bp] set_fill!(bp_dot, is_enabled ? :blue : :grey) end on_breakpoints_updated(breakpoint_gui_hook) ```
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "MIT" ]
0.9.36
2984284a8abcfcc4784d95a9e2ea4e352dd8ede7
docs
7550
# Internals ## Basic usage The process of executing code in the interpreter is to prepare a `frame` and then evaluate these statements one-by-one, branching via the `goto` statements as appropriate. Using the `summer` example described in [Lowered representation](@ref), let's build a frame: ```julia julia> frame = JuliaInterpreter.enter_call(summer, A) Frame for summer(A::AbstractArray{T,N} where N) where T in Main at REPL[2]:2 1* 2 1 ─ s = (zero)($(Expr(:static_parameter, 1))) 2 3 │ %2 = A 3 3 │ #temp# = (iterate)(%2) ⋮ A = [1, 2, 5] T = Int64 ``` This is a [`Frame`](@ref). Only a portion of the `CodeInfo` is shown, a small region surrounding the current statement (marked with `*` or in yellow text). The full `CodeInfo` can be extracted as `code = frame.framecode.src`. (It's a slightly modified form of one returned by `@code_lowered`, in that it has been processed by [`JuliaInterpreter.optimize!`](@ref) to speed up run-time execution.) `frame` has another field, `framedata`, that holds values needed for or generated by execution. The input arguments and local variables are in `locals`: ```julia julia> frame.framedata.locals 5-element Array{Union{Nothing, Some{Any}},1}: Some(summer) Some([1, 2, 5]) nothing nothing nothing ``` These correspond to the `code.slotnames`; the first is the `#self#` argument and the second is the input array. The remaining local variables (e.g., `s` and `a`), have not yet been assigned---we've only built the frame, but we haven't yet begun to execute it. The static parameter, `T`, is stored in `frame.framedata.sparams`: ```julia julia> frame.framedata.sparams 1-element Array{Any,1}: Int64 ``` The `Expr(:static_parameter, 1)` statement refers to this value. The other main storage is for the generated SSA values: ```julia julia> frame.framedata.ssavalues 16-element Array{Any,1}: #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef ``` Since we haven't executed any statements yet, these are all undefined. The other main entity is the so-called [program counter](https://en.wikipedia.org/wiki/Program_counter), which just indicates the next statement to be executed: ```julia julia> frame.pc 1 ``` Let's try executing the first statement: ```julia julia> JuliaInterpreter.step_expr!(frame) 2 ``` This indicates that it ran statement 1 and is prepared to run statement 2. (It's worth noting that the first line included a `call` to `zero`, so behind the scenes JuliaInterpreter created a new frame for `zero`, executed all the statements, and then popped back to `frame`.) Since the first statement is an assignment of a local variable, let's check the locals again: ```julia julia> frame.framedata.locals 5-element Array{Union{Nothing, Some{Any}},1}: Some(summer) Some([1, 2, 5]) Some(0) nothing nothing ``` You can see that the entry corresponding to `s` has been initialized. The next statement just retrieves one of the slots (the input argument `A`) and stores it in an SSA value: ```julia julia> JuliaInterpreter.step_expr!(frame) 3 julia> frame.framedata.ssavalues 16-element Array{Any,1}: #undef [1, 2, 5] #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef #undef ``` One can easily continue this until execution completes, which is indicated when `step_expr!` returns `nothing`. Alternatively, use the higher-level `JuliaInterpreter.finish!(frame)` to step through the entire frame, or `JuliaInterpreter.finish_and_return!(frame)` to also obtain the return value. ## More complex expressions Sometimes you might have a whole sequence of expressions you want to run. In such cases, your first thought should be to construct the `Frame` manually. Here's a demonstration: ```@setup internals using JuliaInterpreter; JuliaInterpreter.clear_caches() ``` ```@repl internals using Test ex = quote x, y = 1, 2 @test x + y == 3 end; frame = Frame(Main, ex); JuliaInterpreter.finish_and_return!(frame) ``` ## Toplevel code and world age Code that defines new `struct`s, new methods, or new modules is a bit more complicated and requires special handling. In such cases, calling `finish_and_return!` on a frame that defines these new objects and then calls them can trigger a [world age error](https://docs.julialang.org/en/v1/manual/methods/#Redefining-Methods-1), in which the method is considered to be too new to be run by the currently compiled code. While one can resolve this by using `Base.invokelatest`, we'd have to use that strategy throughout the entire package. This would cause a major reduction in performance. To resolve this issue without leading to performance problems, care is required to return to "top level" after defining such objects. This leads to altered syntax for executing such expressions. Here's a demonstration of the problem: ```julia ex = :(map(x->x^2, [1, 2, 3])) frame = Frame(Main, ex) julia> JuliaInterpreter.finish_and_return!(frame) ERROR: this frame needs to be run a top level ``` The reason for this error becomes clearer if we examine `frame` or look directly at the lowered code: ```julia julia> Meta.lower(Main, ex) :($(Expr(:thunk, CodeInfo( @ none within `top-level scope` 1 ─ $(Expr(:thunk, CodeInfo( @ none within `top-level scope` 1 ─ global var"#3#4" │ const var"#3#4" │ %3 = Core._structtype(Main, Symbol("#3#4"), Core.svec(), Core.svec(), Core.svec(), false, 0) │ var"#3#4" = %3 │ Core._setsuper!(var"#3#4", Core.Function) │ Core._typebody!(var"#3#4", Core.svec()) └── return nothing ))) │ %2 = Core.svec(var"#3#4", Core.Any) │ %3 = Core.svec() │ %4 = Core.svec(%2, %3, $(QuoteNode(:(#= REPL[18]:1 =#)))) │ $(Expr(:method, false, :(%4), CodeInfo( @ REPL[18]:1 within `none` 1 ─ %1 = Core.apply_type(Base.Val, 2) │ %2 = (%1)() │ %3 = Base.literal_pow(^, x, %2) └── return %3 ))) │ #3 = %new(var"#3#4") │ %7 = #3 │ %8 = Base.vect(1, 2, 3) │ %9 = map(%7, %8) └── return %9 )))) ``` All of the code before the `%7` line is devoted to defining the anonymous function `x->x^2`: it creates a new "anonymous type" (here written as `var"#3#4"`), and then defines a "call function" for this type, equivalent to `(var"#3#4")(x) = x^2`. In some cases one can fix this simply by indicating that we want to run this frame at top level: ```julia julia> JuliaInterpreter.finish_and_return!(frame, true) 3-element Array{Int64,1}: 1 4 9 ``` In other cases, such as nested calls of new methods, you may need to allow the world age to update between evaluations. In such cases you want to use `ExprSplitter`: ```julia for (mod, e) in ExprSplitter(Main, ex) frame = Frame(mod, e) while true JuliaInterpreter.through_methoddef_or_done!(frame) === nothing && break end JuliaInterpreter.get_return(frame) end ``` This splits the expression into a sequence of frames (here just one, but more complex blocks may be split up into many). Then, each frame is executed until it finishes defining a new method, then returns to top level. The return to top level causes an update in the world age. If the frame hasn't been finished yet (if the return value wasn't `nothing`), this continues executing where it left off. (Incidentally, `JuliaInterpreter.enter_call(map, x->x^2, [1, 2, 3])` works fine on its own, because the anonymous function is defined by the caller---you'll see that the created frame is very simple.)
JuliaInterpreter
https://github.com/JuliaDebug/JuliaInterpreter.jl.git
[ "BSD-3-Clause" ]
0.2.4
c648ac50e68ca83915706ef2c82e8d40c9541317
code
8878
__precompile__(true) module FourierSeries using FFTW export fourierSeriesStepReal, fourierSeriesSampledReal, fourierSeriesSynthesisReal, repeatPeriodically @doc raw""" # Function call `fourierSeriesStepReal(t, u, T, hMax)` # Description Calculates the real Fourier coefficients of a step function `u(t)` based on the data pairs `t` and `u` according to the following variables: ```math \mathtt{a[k]} = \frac{2}{\mathtt{T}} \int_{\mathtt{t[1]}}^{\mathtt{t[1]+T}} \mathtt{u(t)} \cos(k\omega \mathtt{t}) \operatorname{d}\mathtt{t} \\ ``` ```math \mathtt{b[k]} = \frac{2}{\mathtt{T}} \int_{\mathtt{t[1]}}^{\mathtt{t[1]+T}} \mathtt{u(t)} \sin(k\omega \mathtt{t}) \operatorname{d}\mathtt{t} ``` # Function arguments `t` Time vector instances where a step occurs `u` Data vector of which Fourier coefficients shall be determined of, i.e., `u[k]` is the data value from the right at `t[k]` `T` Time period of `u` `hMax` Maximum harmonic number to be determined # Return values `h` Vector of harmonic numbers start at, i.e., `h[1] = 0` (dc value of `u`), `h[hMax+1] = hMax` `f` Frequency vector associated with harmonic numbers, i.e. `f = h / T` `a` Cosine coefficients of Fourier series, where `a[1]` = dc value of `u` `b` Sine coefficients of Fourier series, where `b[1] = 0` # Examples Copy and paste code: ```julia # Fourier approximation of square wave form ts = [0; 1] # Sampled time data us = [-1; 1] # Step function of square wave T = 2 # Period hMax = 7 # Maximum harmonic number (h, f, a, b) = fourierSeriesStepReal(ts, us, T, hMax) (t, u) = fourierSeriesSynthesisReal(f, a, b) using PyPlot # Extend (t, u) by one element to right periodically (tx, ux) = repeatPeriodically(ts, us, right=1) step(tx, ux, where="post") # Square wave function plot(t, u) # Fourier approximation up to hMax = 7 ``` """ function fourierSeriesStepReal(t, u, T, hMax) # Check if t and have equal lengths if length(t) != length(u) error("module FourierSeries: function fourierSeriesStepReal:\n Vectors t and u have different lengths") end # Check if vector u is NOT of type Complex if u[1] isa Complex error("module FourierSeries: function fourierSeriesStepReal:\n The analyzed functions `u` must not be of Type ::Complex") end # Determine length of function u N = length(u) # Initialization of real result vectors a = zeros(hMax+1) b = zeros(hMax+1) # Cycle through loop to determine coefficients i = collect(1:N) # Time vector, extended by period T τ = cat(t, [T + t[1]], dims = 1) # DC value a[1] = sum(u .* (τ[i.+1] - τ[i])) / T b[1] = 0.0 # Harmonic coefficiens global a, b, τ, i for k in collect(1:hMax) a[k+1] = sum(u .* (+sin.(k * τ[i .+ 1] * 2 * pi / T) .- sin.(k * τ[i] * 2 * pi / T))) / (k * pi) b[k+1] = sum(u .* (-cos.(k * τ[i .+ 1] * 2 * pi / T) .+ cos.(k * τ[i] * 2 * pi / T))) / (k * pi) end # Number of harmonics h = collect(0:hMax) # Frequencies f = h / T return (h, f, a, b) end """ # Function call `fourierSeriesSampledReal(t,u,T,hMax)` # Description Calculates the real Fourier coefficients of a sampled function `u(t)` based on the data pairs `t` and `u` # Function arguments `t` Vector of sample times `u` Data vector of which Fourier coefficients shall be determined of, i.e., `u[k]` is the sampled data value associated with `t[k]` `T` Time period of `u` `hMax` Maximum harmonic number to be determined # Return values `h` Vector of harmonic numbers start at, i.e., `h[1] = 0` (dc value of `u`), `h[hMax+1] = hMax` `f` Frequency vector associated with harmonic numbers, i.e. `f = h / T` `a` Cosine coefficients of Fourier series, where `a[1]` = dc value of `u` `b` Sine coefficients of Fourier series, where `b[1] = 0` # Examples Copy and paste code: ```julia # Fourier approximation of square wave form ts = [ 0; 1; 2; 3; 4; 5; 6; 7; 8; 9] # Sampled time data us = [-1;-1;-1;-1;-1; 1; 1; 1; 1; 1] # Step function of square wave T = 10 # Period hMax = 7 # Maximum harmonic number (h, f, a, b) = fourierSeriesSampledReal(ts, us, hMax) (t, u) = fourierSeriesSynthesisReal(f, a, b) using PyPlot # Extend (t, u) by one element to right periodically (tx, ux) = repeatPeriodically(ts, us, right=1) plot(tx, ux, marker="o") # Square wave function plot(t, u) # Fourier approximation up to hMax = 7 ``` """ function fourierSeriesSampledReal(t, u, hMax::Int64=typemax(Int64)) # Check if vector u is NOT of type Complex if u[1] isa Complex error("module FourierSeries: function fourierSeriesSampledReal:\n The analyzed functions `u` must not be of Type ::Complex") end # Determine length of function u N = length(u) # Determine period of function u T = t[end] - t[1] + t[2] - t[1] # Apply fast Fourier transform c = 2 * fft(u) / N # Correct DC value by factor 1/2 c[1] = c[1] / 2; if mod(N,2) == 1 # Number of sampled data, N, is odd hMaxMax = div(N-1, 2) else # Number of sampled data, N, is even hMaxMax = div(N, 2) end # Number of harmonics h = collect(0:hMaxMax) # Frequencies f = h[1:min(hMax,hMaxMax) + 1] / T # Real and imaginary coefficients a = +real(c[1:min(hMax,hMaxMax) + 1]) b = -imag(c[1:min(hMax,hMaxMax) + 1]) # Resize vector h h = h[1:min(hMax,hMaxMax) + 1] # Return vectors return (h, f, a, b) end function fourierSeriesSynthesisReal(f, a, b;hMax=length(a)-1, N=1000, t0=0) # Check if vectors f, a and b have equal lengths if length(f) != length(a) error("module Fourier: function fourierSeriesSynthesisReal:\n Vectors `f` and `a` have different lengths") end if length(a) != length(b) error("module Fourier: function fourierSeriesSynthesisReal:\n Vectors `a` and `b` have different lengths") end # Determine Period of synthesized function T = 1 / f[2] # Initialization of synthesis function f u = fill(a[1],N) # time samples of synthesis function, considering start time t0 t = collect(0:N-1) / N * T + fill(t0, N) # hMax may either be a scalar of vector if hMax isa Array # If hMax is an array, then synthesize only harmonic numbers # indicated by hMax kRange = hMax else # If hMax is a scalar, then treat hMax as the maximum harmonic # number, which may not exceed length(a)-1, as a[1] equals the dc # component (harmonic 0) and a[hMax-1] represents harmonic number # hMax kRange = collect(1:min(hMax, length(a)-1)) end # Calculate superosition global u, T for k in kRange u = u + a[k+1] * cos.(k * t * 2 * pi / T) + b[k+1] * sin.(k * t * 2 * pi / T) end return (t, u) end function repeatPeriodically(t, u; left = 0, right = 1) # Check if vectors t and u have equal lengths if length(t) != length(u) error("module Fourier: function repeatPeriodically:\n Vectors `t` and `u` have different lengths") end # Determine length of arrays t and u N = length(t) # Determine period of time axis T = t[end] - t[1] + t[2] - t[1] # Determine how many times the vectors t and u shall be repeated outerRight = Int(floor((right-1)/N) + 1) outerLeft = Int(floor((left -1)/N) + 1) # Repeat vector t by full periods and consider period T tx = repeat(t, outer = outerRight+outerLeft + 1) + repeat(collect(-outerLeft: outerRight), inner = N) * T # Repeat vector u by full periods ux = repeat(u, outer = outerLeft + outerRight + 1) # Limit output vectors elements tx = tx[outerLeft * N - left + 1:(outerLeft * N) + N + right] ux = ux[outerLeft * N - left + 1:(outerLeft * N) + N + right] return (tx, ux) end end
FourierSeries
https://github.com/christiankral/FourierSeries.jl.git
[ "BSD-3-Clause" ]
0.2.4
c648ac50e68ca83915706ef2c82e8d40c9541317
docs
396
# History.md ## v0.2.4 2023-03-15 - Fix array size mismatch ## v0.2.3 2023-03-08 - Fix syntax problem in Fourier synthesis ## v0.2.2 2023-03-07 - Fix error in global variable T, which is propagated as function parameter and must thus not be global ## v0.2.1 2023-03-07 - Minor fixing of documentation - Fix spacing error in code ## v0.2.0 2020-08-28 ## v0.1.0 2020-08-23 - Inital version
FourierSeries
https://github.com/christiankral/FourierSeries.jl.git
[ "BSD-3-Clause" ]
0.2.4
c648ac50e68ca83915706ef2c82e8d40c9541317
docs
1070
# FourierSeries.jl This is a Julia package on the analysis and synthesis of Fourier series. The determination of Fourier coefficients is based on real value data. The Fourier coefficients may be calculated either real of complex. The package FourierSeries.jl v0.2.0 is tested with Julia 1.5.0. The official package FourierSeries.jl can be installed by ```julia ] add FourierSeries <Backspace> ``` In order to update to the actual version of GitHub use: ```julia ] update FourierSeries ``` The module FourierSeries.jl has to be loaded by `using FourierSeries`. # Analysis Functions - `fourierSeriesStepReal(t,u,hMax)` This function determines the real value Fourier coefficients of a piecewise constant time domain function u(t) - `fourierSeriesSampledReal(t,u,hMax)` This function determines the real value Fourier coefficients of a sampled time domain function u(t) # Synthesis Functions - `fourierSeriesSynthesisReal(f,a,b,hMax,N)` This function synthesizes the time domain function from the frequency vector and real value Fourier coefficients `a` and `b`
FourierSeries
https://github.com/christiankral/FourierSeries.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
515
using Lighthouse using Documenter makedocs(; modules=[Lighthouse], sitename="Lighthouse", authors="Beacon Biosignals and other contributors", pages=["API Documentation" => "index.md", "Plotting" => "plotting.md"], # makes docs fail hard if there is any error building the examples, # so we don't just miss a build failure! strict=true) deploydocs(; repo="github.com/beacon-biosignals/Lighthouse.jl.git", devbranch="main", push_preview=true)
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
23605
module LighthouseMakieExt using Makie using Lighthouse using Printf using Lighthouse: has_value, evaluation_metrics using Lighthouse: XYVector, SeriesCurves, NumberLike, NumberVector, NumberMatrix # all the methods we're actually defining and which call each other using Lighthouse: evaluation_metrics_plot, plot_confusion_matrix, plot_confusion_matrix!, plot_reliability_calibration_curves, plot_reliability_calibration_curves!, plot_binary_discrimination_calibration_curves, plot_binary_discrimination_calibration_curves!, plot_pr_curves, plot_pr_curves!, plot_roc_curves, plot_roc_curves!, plot_kappas, plot_kappas!, evaluation_metrics_plot get_parent(x::Makie.GridPosition) = x.layout.parent ##### ##### Helpers for theming and color generation...May want to move them to Colors.jl / Makie.jl ##### using Makie.Colors: LCHab, distinguishable_colors, RGB, Colorant function get_theme(scene, key1::Symbol, key2::Symbol; defaults...) return get_theme(Makie.get_scene(scene), key1, key2; defaults...) end function get_theme(fig::GridPosition, key1::Symbol, key2::Symbol; defaults...) return get_theme(get_parent(fig), key1, key2; defaults...) end # This function helps us to get the theme from a scene, that we can apply to our plotting functions function get_theme(scene::Scene, key1::Symbol, key2::Symbol; defaults...) scene_theme = theme(scene) sub_theme = get(scene_theme, key1, Theme()) # The priority is key1.key2 > defaults > key2 # this way defaults are overwritten by theme options specifically set for our theme. # Consider Kappas.Axis for key1/2, what we want is, that if there are defaults in Kappas.Axis # they should overwrite our generic lighthouse defaults. But anything not specified in Kappas.Axis/defaults, # should fall back to scene_theme.Axis return merge(get(sub_theme, key2, Theme()), Theme(; defaults...), get(scene_theme, key2, Theme())) end function high_contrast(background_color::Colorant, target_color::Colorant; # chose from whole lightness spectrum lchoices=range(0; stop=100, length=15)) target = LCHab(target_color) color = distinguishable_colors(1, [RGB(background_color)]; dropseed=true, lchoices=lchoices, cchoices=[target.c], hchoices=[target.h]) return RGBAf(color[1], Makie.Colors.alpha(target_color)) end function series_plot!(subfig::GridPosition, per_class_pr_curves::SeriesCurves, class_labels::Union{Nothing,AbstractVector{String}}; legend=:lt, title="No title", xlabel="x label", ylabel="y label", solid_color=nothing, color=nothing, linewidth=nothing, scatter=NamedTuple()) axis_theme = get_theme(subfig, :SeriesPlot, :Axis; title=title, titlealign=:left, xlabel=xlabel, ylabel=ylabel, aspect=AxisAspect(1), xticks=0:0.2:1, yticks=0.2:0.2:1) ax = Axis(subfig; axis_theme...) # Not the most elegant, but this way we can let the theming to the Series theme, or # pass it through explicitely series_theme = get_theme(subfig, :SeriesPlot, :Series; scatter...) isnothing(solid_color) || (series_theme[:solid_color] = solid_color) isnothing(color) || (series_theme[:color] = color) isnothing(linewidth) || (series_theme[:linewidth] = linewidth) series_theme = merge(series_theme, Attributes(; scatter...)) hidedecorations!(ax; label=false, ticklabels=false, grid=false) limits!(ax, 0, 1, 0, 1) Makie.series!(ax, per_class_pr_curves; labels=class_labels, series_theme...) if !isnothing(legend) axislegend(ax; position=legend) end return ax end function Lighthouse.plot_pr_curves!(subfig::GridPosition, per_class_pr_curves::SeriesCurves, class_labels::Union{Nothing,AbstractVector{String}}; legend=:lt, title="PR curves", xlabel="True positive rate", ylabel="Precision", scatter=NamedTuple(), solid_color=nothing) return series_plot!(subfig, per_class_pr_curves, class_labels; legend=legend, title=title, xlabel=xlabel, ylabel=ylabel, scatter=scatter, solid_color=solid_color) end function Lighthouse.plot_roc_curves!(subfig::GridPosition, per_class_roc_curves::SeriesCurves, per_class_roc_aucs::NumberVector, class_labels::AbstractVector{<:String}; legend=:rb, title="ROC curves", xlabel="False positive rate", ylabel="True positive rate") auc_labels = [@sprintf("%s (AUC: %.3f)", class, per_class_roc_aucs[i]) for (i, class) in enumerate(class_labels)] return series_plot!(subfig, per_class_roc_curves, auc_labels; legend=legend, title=title, xlabel=xlabel, ylabel=ylabel) end function Lighthouse.plot_reliability_calibration_curves!(subfig::GridPosition, per_class_reliability_calibration_curves::SeriesCurves, per_class_reliability_calibration_scores::NumberVector, class_labels::AbstractVector{String}; legend=:rb) calibration_score_labels = map(enumerate(class_labels)) do (i, class) @sprintf("%s (MSE: %.3f)", class, per_class_reliability_calibration_scores[i]) end scatter_theme = get_theme(subfig, :ReliabilityCalibrationCurves, :Scatter; marker=Circle, markersize=5, strokewidth=0) ideal_theme = get_theme(subfig, :ReliabilityCalibrationCurves, :Ideal; color=(:black, 0.5), linestyle=:dash, linewidth=2) ax = series_plot!(subfig, per_class_reliability_calibration_curves, calibration_score_labels; legend=legend, title="Prediction reliability calibration", xlabel="Predicted probability bin", ylabel="Fraction of positives", scatter=scatter_theme) #TODO: mean predicted value histogram underneath?? Maybe important... # https://scikit-learn.org/stable/modules/calibration.html linesegments!(ax, [0, 1], [0, 1]; ideal_theme...) return ax end function set_from_kw!(theme, key, kw, default) if haskey(kw, key) theme[key] = getproperty(kw, key) elseif !haskey(theme, key) theme[key] = default end return end function Lighthouse.plot_binary_discrimination_calibration_curves!(subfig::GridPosition, calibration_curve::SeriesCurves, calibration_score, per_expert_calibration_curves::Union{SeriesCurves, Missing}, per_expert_calibration_scores, optimal_threshold, discrimination_class::AbstractString; kw...) kw = values(kw) scatter_theme = get_theme(subfig, :BinaryDiscriminationCalibrationCurves, :Scatter; strokewidth=0) # Hayaah, this theme merging is getting out of hand # but we want kw > BinaryDiscriminationCalibrationCurves > Scatter, so we need to somehow set things # after the theme merging above, especially, since we also pass those to series!, # which then again tries to merge the kw args with the theme. set_from_kw!(scatter_theme, :markersize, kw, 5) set_from_kw!(scatter_theme, :marker, kw, :rect) if ismissing(per_expert_calibration_curves) ax = Axis(subfig; title="Detection calibration", xlabel="Expert agreement rate", ylabel="Predicted positive probability") else per_expert = get_theme(subfig, :BinaryDiscriminationCalibrationCurves, :PerExpert; solid_color=:darkgrey, color=nothing) set_from_kw!(per_expert, :linewidth, kw, 2) ax = series_plot!(subfig, per_expert_calibration_curves, nothing; legend=nothing, title="Detection calibration", xlabel="Expert agreement rate", ylabel="Predicted positive probability", scatter=scatter_theme, per_expert...) end calibration = get_theme(subfig, :BinaryDiscriminationCalibrationCurves, :CalibrationCurve; solid_color=:navyblue) set_from_kw!(calibration, :markersize, kw, 5) set_from_kw!(calibration, :marker, kw, :rect) set_from_kw!(calibration, :linewidth, kw, 2) Makie.series!(ax, calibration_curve; calibration...) ideal_theme = get_theme(subfig, :BinaryDiscriminationCalibrationCurves, :Ideal; color=(:black, 0.5), linestyle=:dash) set_from_kw!(ideal_theme, :linewidth, kw, 2) linesegments!(ax, [0, 1], [0, 1]; label="Ideal", ideal_theme...) #TODO: expert agreement histogram underneath?? Maybe important... # https://scikit-learn.org/stable/modules/calibration.html return ax end function Lighthouse.plot_confusion_matrix!(subfig::GridPosition, confusion::NumberMatrix, class_labels::AbstractVector{String}, normalize_by::Union{Symbol,Nothing}=nothing; annotation_text_size=20, colormap=:Blues) nclasses = length(class_labels) if size(confusion) != (nclasses, nclasses) throw(ArgumentError("Labels must match size of square confusion matrix. Found $(nclasses) labels for an $(size(confusion)) matrix")) end title = "Confusion Matrix" if !isnothing(normalize_by) normdim = get((Row=2, Column=1), normalize_by) do throw(ArgumentError("normalize_by must be :Row, :Column, or `nothing`; found: $(normalize_by)")) end confusion = round.(confusion ./ sum(confusion; dims=normdim); digits=3) title = "$(string(normalize_by))-Normalized Confusion" end class_indices = 1:nclasses text_theme = get_theme(subfig, :ConfusionMatrix, :Text; fontsize=annotation_text_size) heatmap_theme = get_theme(subfig, :ConfusionMatrix, :Heatmap; nan_color=(:black, 0.0)) axis_theme = get_theme(subfig, :ConfusionMatrix, :Axis; xticklabelrotation=pi / 4, titlealign=:left, title, xlabel="Elected Class", ylabel="Predicted Class", xticks=(class_indices, class_labels), yticks=(class_indices, class_labels), aspect=AxisAspect(1)) ax = Axis(subfig; axis_theme...) hidedecorations!(ax; label=false, ticklabels=false, grid=false) ylims!(ax, nclasses + 0.5, 0.5) tightlimits!(ax) plot_bg_color = to_color(ax.backgroundcolor[]) crange = isnothing(normalize_by) ? (0.0, maximum(filter(!isnan, confusion))) : (0.0, 1.0) nan_color = to_color(heatmap_theme.nan_color[]) cmap = to_colormap(to_value(pop!(heatmap_theme, :colormap, colormap))) heatmap!(ax, confusion'; colorrange=crange, colormap=cmap, nan_color=nan_color, heatmap_theme...) text_color = to_color(to_value(pop!(text_theme, :color, :black))) function label_color(i, j) c = confusion[i, j] bg_color = if isnan(c) || ismissing(c) Makie.Colors.alpha(nan_color) <= 0.0 ? plot_bg_color : nan_color else Makie.interpolated_getindex(cmap, c, crange) end return high_contrast(bg_color, text_color) end annos = vec([(string(confusion[i, j]), Point2f(j, i)) for i in class_indices, j in class_indices]) colors = vec([label_color(i, j) for i in class_indices, j in class_indices]) text!(ax, annos; align=(:center, :center), color=colors, fontsize=annotation_text_size, text_theme...) return ax end function text_attributes(values, groups, bar_colors, bg_color, text_color) aligns = NTuple{2,Symbol}[] offsets = NTuple{2,Int}[] text_colors = RGBAf[] for (i, k) in enumerate(values) group = groups isa AbstractVector ? groups[i] : groups bar_color = bar_colors[group] # Plot text inside bar if k > 0.85 push!(aligns, (:right, :center)) push!(offsets, (-10, 0)) push!(text_colors, high_contrast(bar_color, text_color)) else # plot text next to bar push!(aligns, (:left, :center)) push!(offsets, (10, 0)) push!(text_colors, high_contrast(bg_color, text_color)) end end return aligns, offsets, text_colors end function Lighthouse.plot_kappas!(subfig::GridPosition, per_class_kappas::NumberVector, class_labels::AbstractVector{String}, per_class_IRA_kappas=nothing; color=[:lightgrey, :lightblue], annotation_text_size=20) nclasses = length(class_labels) axis_theme = get_theme(subfig, :Kappas, :Axis; aspect=AxisAspect(1), titlealign=:left, xlabel="Cohen's kappa", xticks=[0, 1], yreversed=true, yticks=(1:nclasses, class_labels)) text_theme = get_theme(subfig, :Kappas, :Text; fontsize=annotation_text_size) text_color = to_color(to_value(pop!(text_theme, :color, to_color(:black)))) bars_theme = get_theme(subfig, :Kappas, :BarPlot; color=color) bar_colors = to_color.(bars_theme.color[]) ax = Axis(subfig[1, 1]; axis_theme...) bg_color = to_color(ax.backgroundcolor[]) xlims!(ax, 0, 1) if !has_value(per_class_IRA_kappas) ax.title = "Algorithm-expert agreement" annotations = map(enumerate(per_class_kappas)) do (i, k) return (string(round(k; digits=3)), Point2f(max(0, k), i)) end aligns, offsets, text_colors = text_attributes(per_class_kappas, 2, bar_colors, bg_color, text_color) barplot!(ax, per_class_kappas; direction=:x, color=bar_colors[2]) text!(ax, annotations; align=aligns, offset=offsets, color=text_colors, text_theme...) else ax.title = "Inter-rater reliability" values = vcat(per_class_kappas, per_class_IRA_kappas) groups = vcat(fill(2, nclasses), fill(1, nclasses)) xvals = vcat(1:nclasses, 1:nclasses) cmap = bar_colors bars = barplot!(ax, xvals, max.(0, values); dodge=groups, color=groups, direction=:x, colormap=cmap) # This is a bit hacky, but for now the easiest way to figure out the exact, dodged positions rectangles = bars.plots[][1][] dodged_y = last.(minimum.(rectangles)) .+ (last.(widths.(rectangles)) ./ 2) textpos = Point2f.(max.(0, values), dodged_y) labels = string.(round.(values; digits=3)) aligns, offsets, text_colors = text_attributes(values, groups, bar_colors, bg_color, text_color) text!(ax, labels; position=textpos, align=aligns, offset=offsets, color=text_colors, text_theme...) labels = ["Expert-vs-expert IRA", "Algorithm-vs-expert"] entries = map(c -> PolyElement(; color=c, strokewidth=0, strokecolor=:white), cmap) legend = Legend(subfig[1, 1, Bottom()], entries, labels; tellwidth=false, tellheight=true, labelsize=12, padding=(0, 0, 0, 0), framevisible=false, patchsize=(10, 10), patchlabelgap=6, labeljustification=:left) legend.margin = (0, 0, 0, 60) end return ax end function Lighthouse.evaluation_metrics_plot(data::Dict; kwargs...) return evaluation_metrics_plot(EvaluationV1(data); kwargs...) end function Lighthouse.evaluation_metrics_plot(row::EvaluationV1; size=(1000, 1000), fontsize=12) fig = Figure(; size=size, Axis=(titlesize=17,)) # Confusion plot_confusion_matrix!(fig[1, 1], row.confusion_matrix, row.class_labels, :Column; annotation_text_size=fontsize) plot_confusion_matrix!(fig[1, 2], row.confusion_matrix, row.class_labels, :Row; annotation_text_size=fontsize) # Kappas IRA_kappa_data = nothing multiclass = length(row.class_labels) > 2 labels = multiclass ? vcat("Multiclass", row.class_labels) : row.class_labels kappa_data = multiclass ? vcat(row.multiclass_kappa, row.per_class_kappas) : row.per_class_kappas if issubset([:multiclass_IRA_kappas, :per_class_IRA_kappas], keys(row)) && all(has_value.([row.multiclass_IRA_kappas, row.per_class_IRA_kappas])) IRA_kappa_data = multiclass ? vcat(row.multiclass_IRA_kappas, row.per_class_IRA_kappas) : row.per_class_IRA_kappas end plot_kappas!(fig[1, 3], kappa_data, labels, IRA_kappa_data; annotation_text_size=fontsize) # Curves ax = plot_roc_curves!(fig[2, 1], row.per_class_roc_curves, row.per_class_roc_aucs, row.class_labels; legend=nothing) plot_pr_curves!(fig[2, 2], row.per_class_pr_curves, row.class_labels; legend=nothing) plot_reliability_calibration_curves!(fig[3, 1], row.per_class_reliability_calibration_curves, row.per_class_reliability_calibration_scores, row.class_labels; legend=nothing) legend_pos = 2:3 if has_value(row.discrimination_calibration_curve) legend_pos = 3 plot_binary_discrimination_calibration_curves!(fig[3, 2], row.discrimination_calibration_curve, row.discrimination_calibration_score, row.per_expert_discrimination_calibration_curves, row.per_expert_discrimination_calibration_scores, row.optimal_threshold, row.class_labels[row.optimal_threshold_class]) end legend_plots = filter(Makie.get_plots(ax)) do plot return haskey(plot, :label) end elements = map(legend_plots) do elem return [PolyElement(; color=elem.color, strokecolor=:transparent)] end function label_str(i) auc = round(row.per_class_roc_aucs[i]; digits=2) mse = round(row.per_class_reliability_calibration_scores[i]; digits=2) return ["""ROC AUC $auc Cal. MSE $mse """] end classes = row.class_labels nclasses = length(classes) class_labels = label_str.(1:nclasses) Legend(fig[3, legend_pos], elements, class_labels, classes; nbanks=2, tellwidth=false, tellheight=false, labelsize=11, titlesize=14, titlegap=5, groupgap=6, labelhalign=:left, labelvalign=:center) colgap!(fig.layout, 2) rowgap!(fig.layout, 4) return fig end # Helper to more easily define the non mutating versions function axisplot(func, args; size=(800, 600), plot_kw...) fig = Figure(; size=size) ax = func(fig[1, 1], args...; plot_kw...) # ax.plots[1] is not really that great, but there isn't a FigureAxis object right now # this will need to wait for when we figure out a better recipe integration return Makie.FigureAxisPlot(fig, ax, ax.scene.plots[1]) end function Lighthouse.plot_confusion_matrix(args...; kw...) return axisplot(plot_confusion_matrix!, args; kw...) end function Lighthouse.plot_reliability_calibration_curves(args...; kw...) return axisplot(plot_reliability_calibration_curves!, args; kw...) end function Lighthouse.plot_binary_discrimination_calibration_curves(args...; kw...) return axisplot(plot_binary_discrimination_calibration_curves!, args; kw...) end Lighthouse.plot_pr_curves(args...; kw...) = axisplot(plot_pr_curves!, args; kw...) Lighthouse.plot_roc_curves(args...; kw...) = axisplot(plot_roc_curves!, args; kw...) Lighthouse.plot_kappas(args...; kw...) = axisplot(plot_kappas!, args; kw...) ##### ##### Deprecation support ##### function Lighthouse.evaluation_metrics_plot(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, thresholds; votes::Union{Nothing,AbstractMatrix}=nothing, strata::Union{Nothing, AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Nothing,Integer}=nothing) Base.depwarn(""" ``` evaluation_metrics_plot(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, thresholds; votes::Union{Nothing,AbstractMatrix}=nothing, strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Nothing,Integer}=nothing) ``` has been deprecated in favor of ``` plot_dict = evaluation_metrics(predicted_hard_labels, predicted_soft_labels, elected_hard_labels, classes, thresholds; votes, strata, optimal_threshold_class) (evaluation_metrics_plot(plot_dict), plot_dict) ``` """, :evaluation_metrics_plot) plot_dict = evaluation_metrics(predicted_hard_labels, predicted_soft_labels, elected_hard_labels, classes, thresholds; votes, strata, optimal_threshold_class) return evaluation_metrics_plot(plot_dict), plot_dict end end # module
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
293
using JuliaFormatter function main() perfect = format(joinpath(@__DIR__, ".."); style=YASStyle()) if perfect @info "Linting complete - no files altered" else @info "Linting complete - files altered" run(`git status`) end return nothing end main()
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
3465
##### ##### `LearnLogger` implementation of logging interface ##### """ LearnLogger A struct that wraps a `TensorBoardLogger.TBLogger` in order to enforce the following: - all values logged to Tensorboard should be accessible to the `post_epoch_callback` argument to [`learn!`](@ref) - all values that are cached during [`learn!`](@ref) should be logged to Tensorboard To access values logged to a `LearnLogger` instance, inspect the instance's `logged` field. """ struct LearnLogger path::String tensorboard_logger::TensorBoardLogger.TBLogger logged::Dict{String,Vector{Any}} end function LearnLogger(path, run_name; kwargs...) tensorboard_logger = TBLogger(joinpath(path, run_name); kwargs...) return LearnLogger(path, tensorboard_logger, Dict{String,Any}()) end function log_value!(logger::LearnLogger, field::AbstractString, value) values = get!(() -> Any[], logger.logged, field) push!(values, value) TensorBoardLogger.log_value(logger.tensorboard_logger, field, value; step=length(values)) return value end function log_event!(logger::LearnLogger, value::AbstractString) logged = string(now(), " | ", value) TensorBoardLogger.log_text(logger.tensorboard_logger, "events", logged) return logged end function log_plot!(logger::LearnLogger, field::AbstractString, plot, plot_data) values = get!(() -> Any[], logger.logged, field) push!(values, plot_data) TensorBoardLogger.log_image(logger.tensorboard_logger, field, plot; step=length(values)) return plot end function log_line_series!(logger::LearnLogger, field::AbstractString, curves, labels=1:length(curves)) @warn "`log_line_series!` not implemented for `LearnLogger`" maxlog = 1 return nothing end """ Base.flush(logger::LearnLogger) Persist possibly transient logger state. """ Base.flush(logger::LearnLogger) = nothing """ forwarding_task = forward_logs(channel, logger::LearnLogger) Forwards logs with values supported by `TensorBoardLogger` to `logger::LearnLogger`: - string events of type `AbstractString` - scalars of type `Union{Real,Complex}` - plots that `TensorBoardLogger` can convert to raster images returns the `forwarding_task:::Task` that does the forwarding. To cleanly stop forwarding, `close(channel)` and `wait(forwarding_task)`. outbox is a Channel or RemoteChannel of Pair{String, Any} field names starting with "__plot__" forward to TensorBoardLogger.log_image """ function forward_logs(outbox, logger::LearnLogger) @async try while true (field, value) = take!(outbox) if typeof(value) <: AbstractString log_event!(logger, value) elseif startswith(field, "__plot__") original_field = field[9:end] values = get!(() -> Any[], logger.logged, original_field) TensorBoardLogger.log_image(logger.tensorboard_logger, original_field, value; step=length(values)) elseif typeof(value) <: Union{Real,Complex} log_value!(logger, field, value) end end catch e if !(isa(e, InvalidStateException) && e.state == :closed) @error "error forwarding logs, STOPPING FORWARDING!" exception = (e, catch_backtrace()) end end end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
1261
module Lighthouse using Statistics, Dates, LinearAlgebra, Random, Logging using Base.Threads using StatsBase: StatsBase using TensorBoardLogger using Printf using Legolas: Legolas, @schema, @version, lift using Tables using DataFrames using ArrowTypes include("row.jl") export EvaluationV1, ObservationV1, Curve, TradeoffMetricsV1, HardenedMetricsV1, LabelMetricsV1 include("plotting.jl") include("utilities.jl") export majority include("metrics.jl") export confusion_matrix, accuracy, binary_statistics, cohens_kappa, calibration_curve, get_tradeoff_metrics, get_tradeoff_metrics_binary_multirater, get_hardened_metrics, get_hardened_metrics_multirater, get_hardened_metrics_multiclass, get_label_metrics_multirater, get_label_metrics_multirater_multiclass, harden_by_threshold include("classifier.jl") export AbstractClassifier include("LearnLogger.jl") export LearnLogger include("learn.jl") export learn!, upon, evaluate!, predict! export log_event!, log_line_series!, log_plot!, step_logger!, log_value!, log_values! export log_array!, log_arrays! include("deprecations.jl") @static if !isdefined(Base, :get_extension) include("../ext/LighthouseMakieExt.jl") using .LighthouseMakieExt end end # module
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
3794
##### ##### `AbstractClassifier` Interface ##### # This section contains all the functions that new `AbstractClassifier` subtypes # should overload in order to utilize common Lighthouse functionality """ AbstractClassifier An abstract type whose subtypes `C<:AbstractClassifier` must implement: - [`Lighthouse.classes`](@ref) - [`Lighthouse.train!`](@ref) - [`Lighthouse.loss_and_prediction`](@ref) Subtypes may additionally overload default implementations for: - [`Lighthouse.onehot`](@ref) - [`Lighthouse.onecold`](@ref) - [`Lighthouse.is_early_stopping_exception`](@ref) The `AbstractClassifier` interface is built upon the expectation that any multiclass label will be represented in one of two standardized forms: - "soft label": a probability distribution vector where the `i`th element is the probability assigned to the `i`th class in `classes(classifier)`. - "hard label": the interger index of a corresponding class in `classes(classifier)`. Internally, Lighthouse converts hard labels to soft labels via `onehot` and soft labels to hard labels via `onecold`. See also: [`learn!`](@ref) """ abstract type AbstractClassifier end """ Lighthouse.classes(classifier::AbstractClassifier) Return a `Vector` or `Tuple` of class values for `classifier`. This method must be implemented for each `AbstractClassifier` subtype. """ function classes end """ Lighthouse.train!(classifier::AbstractClassifier, batches, logger) Train `classifier` on the iterable `batches` for a single epoch. This function is called once per epoch by [`learn!`](@ref). This method must be implemented for each `AbstractClassifier` subtype. Implementers should ensure that the training loss is properly logged to `logger` by calling `Lighthouse.log_value!(logger, "train/loss_per_batch", batch_loss)` for each batch in `batches`. """ function train! end """ Lighthouse.loss_and_prediction(classifier::AbstractClassifier, input_batch::AbstractArray, args...) Return `(loss, soft_label_batch)` given `input_batch` and any additional `args` provided by the caller; `loss` is a scalar, which `soft_label_batch` is a matrix with `length(classes(classifier))` rows and `size(input_batch)`. Specifically, the `i`th column of `soft_label_batch` is `classifier`'s soft label prediction for the `i`th sample in `input_batch`. This method must be implemented for each `AbstractClassifier` subtype. """ function loss_and_prediction end """ Lighthouse.onehot(classifier::AbstractClassifier, hard_label) Return the one-hot encoded probability distribution vector corresponding to the given `hard_label`. `hard_label` must be an integer index in the range `1:length(classes(classifier))`. """ function onehot(classifier::AbstractClassifier, hard_label) result = fill(false, length(classes(classifier))) result[hard_label] = true return result end """ Lighthouse.onecold(classifier::AbstractClassifier, soft_label) Return the hard label (integer index in the range `1:length(classes(classifier))`) corresponding to the given `soft_label` (one-hot encoded probability distribution vector). By default, this function returns `argmax(soft_label)`. """ onecold(classifier::AbstractClassifier, soft_label) = argmax(soft_label) """ Lighthouse.is_early_stopping_exception(classifier::AbstractClassifier, exception) Return `true` if `exception` should be considered an "early-stopping exception" (e.g. `Flux.Optimise.StopException`), rather than rethrown from [`learn!`](@ref). This function returns `false` by default, but can be overloaded by subtypes of `AbstractClassifier` that employ exceptions as early-stopping mechanisms. """ is_early_stopping_exception(::AbstractClassifier, ::Any) = false
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
208
function evaluation_metrics_row(args...; kwargs...) error("`Lighthouse.evaluation_metrics_row` has been removed in favor of " * "`Lighthouse.evaluation_metrics_record`.") return nothing end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
16996
##### ##### Logging interface ##### # These must be implemented by every logger type. """ log_plot!(logger, field::AbstractString, plot, plot_data) Log a `plot` to `logger` under field `field`. * `plot`: the plot itself * `plot_data`: an unstructured dictionary of values used in creating `plot`. See also [`log_line_series!`](@ref). """ log_plot!(logger, field::AbstractString, plot, plot_data) """ log_value!(logger, field::AbstractString, value) Log a value `value` to `field`. """ log_value!(logger, field::AbstractString, value) """ log_line_series!(logger, field::AbstractString, curves, labels=1:length(curves)) Logs a series plot to `logger` under `field`, where... - `curves` is an iterable of the form `Tuple{Vector{Real},Vector{Real}}`, where each tuple contains `(x-values, y-values)`, as in the `Lighthouse.EvaluationV1` field `per_class_roc_curves` - `labels` is the class label for each curve, which defaults to the numeric index of each curve. """ log_line_series!(logger, field::AbstractString, curves, labels=1:length(curves)) # The following have default implementations. """ step_logger!(logger) Increments the `logger`'s `step`, if any. Defaults to doing nothing. """ step_logger!(::Any) = nothing """ log_event!(logger, value::AbstractString) Logs a string event given by `value` to `logger`. Defaults to calling `log_value!` with a field named `event`. """ function log_event!(logger, value::AbstractString) return log_value!(logger, "event", string(now(), " | ", value)) end """ log_values!(logger, values) Logs an iterable of `(field, value)` pairs to `logger`. Falls back to calling `log_value!` in a loop. Loggers may specialize this method for improved performance. """ function log_values!(logger, values) for (k, v) in values log_value!(logger, k, v) end return nothing end """ log_array!(logger::Any, field::AbstractString, value) Log an array `value` to `field`. Defaults to `log_value!(logger, mean(value))`. """ function log_array!(logger::Any, field::AbstractString, array) return log_value!(logger, field, mean(array)) end """ log_arrays!(logger, values) Logs an iterable of `(field, array)` pairs to `logger`. Falls back to calling `log_array!` in a loop. Loggers may specialize this method for improved performance. """ function log_arrays!(logger, values) for (k, v) in values log_array!(logger, k, v) end return nothing end """ log_evaluation_row!(logger, field::AbstractString, metrics) From fields in [`EvaluationV1`](@ref), generate and plot the composite [`evaluation_metrics_plot`](@ref) as well as `spearman_correlation` (if present). """ function log_evaluation_row!(logger, field::AbstractString, metrics) metrics_plot = evaluation_metrics_plot(metrics) metrics_dict = _evaluation_dict(metrics) log_plot!(logger, field, metrics_plot, metrics_dict) if haskey(metrics_dict, "spearman_correlation") sp_field = replace(field, "metrics" => "spearman_correlation") log_value!(logger, sp_field, metrics_dict["spearman_correlation"].ρ) end return metrics_plot end function log_resource_info!(logger, section::AbstractString, info::ResourceInfo; suffix::AbstractString="") log_values!(logger, (section * "/time_in_seconds" * suffix => info.time_in_seconds, section * "/gc_time_in_seconds" * suffix => info.gc_time_in_seconds, section * "/allocations" * suffix => info.allocations, section * "/memory_in_mb" * suffix => info.memory_in_mb)) return info end function log_resource_info!(f, logger, section::AbstractString; suffix::AbstractString="") result, resource_info = call_with_resource_info(f) log_resource_info!(logger, section, resource_info; suffix=suffix) return result end ##### ##### `predict!!` ##### """ predict!(model::AbstractClassifier, predicted_soft_labels::AbstractMatrix, batches, logger::LearnLogger; logger_prefix::AbstractString) Return `mean_loss` of all `batches` after using `model` to predict their soft labels and storing those results in `predicted_soft_labels`. The following quantities are logged to `logger`: - `<logger_prefix>/loss_per_batch` - `<logger_prefix>/mean_loss_per_epoch` - `<logger_prefix>/\$resource_per_batch` Where... - `model` is a model that outputs soft labels when called on a batch of `batches`, `model(batch)`. - `predicted_soft_labels` is a matrix whose columns correspond to classes and whose rows correspond to samples in batches, and which is filled in with soft-label predictions. - `batches` is an iterable of batches, where each element of the iterable takes the form `(batch, votes_locations)`. Internally, `batch` is passed to [`loss_and_prediction`](@ref) as `loss_and_prediction(model, batch...)`. """ function predict!(model::AbstractClassifier, predicted_soft_labels::AbstractMatrix, batches, logger; logger_prefix::AbstractString) losses = Float32[] for (batch, votes_locations) in batches batch_loss = log_resource_info!(logger, logger_prefix; suffix="_per_batch") do batch_loss, soft_label_batch = loss_and_prediction(model, batch...) for (i, soft_label) in enumerate(eachcol(soft_label_batch)) predicted_soft_labels[votes_locations[i], :] = soft_label end return batch_loss end log_value!(logger, logger_prefix * "/loss_per_batch", batch_loss) push!(losses, batch_loss) end mean_loss = mean(losses) log_value!(logger, logger_prefix * "/mean_loss_per_epoch", mean_loss) return mean_loss end ##### ##### `evaluate!` ##### """ evaluate!(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, logger; logger_prefix, logger_suffix, votes::Union{Nothing,AbstractMatrix}=nothing, thresholds=0.0:0.01:1.0, optimal_threshold_class::Union{Nothing,Integer}=nothing) Return `nothing` after computing and logging a battery of classifier performance metrics that each compare `predicted_soft_labels` and/or `predicted_hard_labels` agaist `elected_hard_labels`. The following quantities are logged to `logger`: - `<logger_prefix>/metrics<logger_suffix>` - `<logger_prefix>/\$resource<logger_suffix>` Where... - `predicted_soft_labels` is a matrix of soft labels whose columns correspond to classes and whose rows correspond to samples in the evaluation set. - `predicted_hard_labels` is a vector of hard labels where the `i`th element is the hard label predicted by the model for sample `i` in the evaulation set. - `elected_hard_labels` is a vector of hard labels where the `i`th element is the hard label elected as "ground truth" for sample `i` in the evaulation set. - `thresholds` are the range of thresholds used by metrics (e.g. PR curves) that are calculated on the `predicted_soft_labels` for a range of thresholds. - `votes` is a matrix of hard labels whose columns correspond to voters and whose rows correspond to the samples in the test set that have been voted on. If `votes[sample, voter]` is not a valid hard label for `model`, then `voter` will simply be considered to have not assigned a hard label to `sample`. - `optimal_threshold_class` is the class index (`1` or `2`) for which to calculate an optimal threshold for converting the `predicted_soft_labels` to `predicted_hard_labels`. If present, the input `predicted_hard_labels` will be ignored and new `predicted_hard_labels` will be recalculated from the new threshold. This is only a valid parameter when `length(classes) == 2` """ function evaluate!(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, logger; logger_prefix::AbstractString, logger_suffix::AbstractString="", votes::Union{Nothing,Missing,AbstractMatrix}=nothing, thresholds=0.0:0.01:1.0, optimal_threshold_class::Union{Nothing,Integer,Missing}=nothing) _validate_threshold_class(optimal_threshold_class, classes) log_resource_info!(logger, logger_prefix; suffix=logger_suffix) do metrics = evaluation_metrics_record(predicted_hard_labels, predicted_soft_labels, elected_hard_labels, classes, thresholds; votes, optimal_threshold_class) log_evaluation_row!(logger, logger_prefix * "/metrics" * logger_suffix, metrics) return nothing end return nothing end ##### ##### `learn!` ##### """ learn!(model::AbstractClassifier, logger, get_train_batches, get_test_batches, votes, elected=majority.(eachrow(votes), (1:length(classes(model)),)); epoch_limit=100, post_epoch_callback=(_ -> nothing), optimal_threshold_class::Union{Nothing,Integer}=nothing, test_set_logger_prefix="test_set") Return `model` after optimizing its parameters across multiple epochs of training and test, logging Lighthouse's standardized suite of classifier performance metrics to `logger` throughout the optimization process. The following phases are executed at each epoch (note: in the below lists of logged values, `\$resource` takes the values of the field names of `Lighthouse.ResourceInfo`): 1. Train `model` by calling `train!(model, get_train_batches(), logger)`. The following quantities are logged to `logger` during this phase: - `train/loss_per_batch` - any additional quantities logged by the relevant model/framework-specific implementation of `train!`. 2. Compute `model`'s predictions on test set provided by `get_test_batches()` (see below for details). The following quantities are logged to `logger` during this phase: - `<test_set_logger_prefix>_prediction/loss_per_batch` - `<test_set_logger_prefix>_prediction/mean_loss_per_epoch` - `<test_set_logger_prefix>_prediction/\$resource_per_batch` 3. Compute a battery of metrics to evaluate `model`'s performance on the test set based on the test set prediction phase. The following quantities are logged to `logger` during this phase: - `<test_set_logger_prefix>_evaluation/metrics_per_epoch` - `<test_set_logger_prefix>_evaluation/\$resource_per_epoch` 4. Call `post_epoch_callback(current_epoch)`. Where... - `get_train_batches` is a zero-argument function that returns an iterable of training set batches. Internally, `learn!` uses this function when it calls `train!(model, get_train_batches(), logger)`. - `get_test_batches` is a zero-argument function that returns an iterable of test set batches used during the current epoch's test phase. Each element of the iterable takes the form `(batch, votes_locations)`. Internally, `batch` is passed to [`loss_and_prediction`](@ref) as `loss_and_prediction(model, batch...)`, and `votes_locations[i]` is expected to yield the row index of `votes` that corresponds to the `i`th sample in `batch`. - `votes` is a matrix of hard labels whose columns correspond to voters and whose rows correspond to the samples in the test set that have been voted on. If `votes[sample, voter]` is not a valid hard label for `model`, then `voter` will simply be considered to have not assigned a hard label to `sample`. - `elected` is a vector of hard labels where the `i`th element is the hard label elected as "ground truth" out of `votes[i, :]`. - `optimal_threshold_class` is the class index (`1` or `2`) for which to calculate an optimal threshold for converting `predicted_soft_labels` to `predicted_hard_labels`. This is only a valid parameter when `length(classes) == 2`. If `optimal_threshold_class` is present, test set evaluation will be based on predicted hard labels calculated with this threshold; if `optimal_threshold_class` is `nothing`, predicted hard labels will be calculated via `onecold(classifier, soft_label)`. """ function learn!(model::AbstractClassifier, logger, get_train_batches, get_test_batches, votes, elected=majority.(eachrow(votes), (1:length(classes(model)),)); epoch_limit=100, post_epoch_callback=(_ -> nothing), optimal_threshold_class::Union{Nothing,Integer}=nothing, test_set_logger_prefix="test_set") # NOTE `votes` is currently unused except to construct `elected` by default, # but will be necessary for calculating multirater metrics e.g. Fleiss' kappa # later so we still required it in the API # TODO keeping `votes` alive might hog a lot of memory, so it would be convenient # to provide callers with a wrapper around `channel_unordered` (or at least example # code) for generating an iterator that batches `votes` rows to `soft labels` in # a manner that's respectful to throughput/memory constraints. # TODO is it better to pre-allocate these, or allocate them per-epoch? The # former ensures fixed memory usage, but the latter gives the GC a chance # to free up some RAM between epochs. _validate_threshold_class(optimal_threshold_class, classes(model)) predicted = zeros(Float32, length(elected), length(classes(model))) log_event!(logger, "started learning") for current_epoch in 1:epoch_limit try train!(model, get_train_batches(), logger) predict!(model, predicted, get_test_batches(), logger; logger_prefix="$(test_set_logger_prefix)_prediction") evaluate!(map(label -> onecold(model, label), eachrow(predicted)), predicted, elected, classes(model), logger; logger_prefix="$(test_set_logger_prefix)_evaluation", logger_suffix="_per_epoch", votes=votes, optimal_threshold_class=optimal_threshold_class) post_epoch_callback(current_epoch) flush(logger) catch ex # support early stopping via exception handling if is_early_stopping_exception(model, ex) log_event!(logger, "`learn!` call stopped via $ex in epoch $current_epoch") break else log_event!(logger, "`learn!` call encountered exception in epoch $current_epoch") rethrow(ex) end end end return model end ##### ##### `post_epoch_callback` utilities ##### """ upon(logger::LearnLogger, field::AbstractString; condition, initial) upon(logged::Dict{String,Any}, field::AbstractString; condition, initial) Return a closure that can be called to check the most recent state of `logger.logged[field]` and trigger a caller-provided function when `condition(recent_state, previously_chosen_state)` is `true`. For example: ``` upon_loss_decrease = upon(logger, "test_set_prediction/mean_loss_per_epoch"; condition=<, initial=Inf) save_upon_loss_decrease = _ -> begin upon_loss_decrease(new_lowest_loss -> save_my_model(model, new_lowest_loss), consecutive_failures -> consecutive_failures > 10 && Flux.stop()) end learn!(model, logger, get_train_batches, get_test_batches, votes; post_epoch_callback=save_upon_loss_decrease) ``` Specifically, the form of the returned closure is `f(on_true, on_false)` where `on_true(state)` is called if `condition(state, previously_chosen_state)` is `true`. Otherwise, `on_false(consecutive_falses)` is called where `consecutive_falses` is the number of `condition` calls that have returned `false` since the last `condition` call returned `true`. Note that the returned closure is a no-op if `logger.logged[field]` has not been updated since the most recent call. """ function upon(logged::Dict{String,Vector{Any}}, field::AbstractString; condition, initial) history = get!(() -> Any[], logged, field) previous_length = length(history) current = isempty(history) ? initial : last(history) consecutive_false_count = 0 return (on_true, on_false=(_ -> nothing)) -> begin length(history) == previous_length && return nothing previous_length = length(history) candidate = last(history) if condition(candidate, current) consecutive_false_count = 0 current = candidate on_true(current) else consecutive_false_count += 1 on_false(consecutive_false_count) end end end function upon(logger::LearnLogger, field::AbstractString; condition, initial) return upon(logger.logged, field; condition=condition, initial=initial) end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
44644
const BINARIZE_NOTE = string("Supply a function to the keyword argument `binarize` ", "which takes as input `(soft_label, threshold)` and ", "outputs a `Bool` indicating whether or not the class of interest") binarize_by_threshold(soft, threshold) = soft >= threshold ##### ##### confusion matrices ##### """ confusion_matrix(class_count::Integer, hard_label_pairs = ()) Given the iterable `hard_label_pairs` whose `k`th element takes the form `(first_classifiers_label_for_sample_k, second_classifiers_label_for_sample_k)`, return the corresponding confusion matrix where `matrix[i, j]` is the number of samples that the first classifier labeled `i` and the second classifier labeled `j`. Note that the returned confusion matrix can be updated in-place with new labels via `Lighthouse.increment_at!(matrix, more_hard_label_pairs)`. """ function confusion_matrix(class_count::Integer, hard_label_pairs=()) confusion = zeros(Int, class_count, class_count) increment_at!(confusion, hard_label_pairs) return confusion end """ accuracy(confusion::AbstractMatrix) Returns the percentage of matching classifications out of total classifications, or `NaN` if `all(iszero, confusion)`. Note that `accuracy(confusion)` is equivalent to overall percent agreement between `confusion`'s row classifier and column classifier. """ function accuracy(confusion::AbstractMatrix) total = sum(confusion) total == 0 && return NaN return tr(confusion) / total end """ binary_statistics(confusion::AbstractMatrix, class_index) Treating the rows of `confusion` as corresponding to predicted classifications and the columns as corresponding to true classifications, return a `NamedTuple` with the following fields for the given `class_index`: - `predicted_positives` - `predicted_negatives` - `actual_positives` - `actual_negatives` - `true_positives` - `true_negatives` - `false_positives` - `false_negatives` - `true_positive_rate` - `true_negative_rate` - `false_positive_rate` - `false_negative_rate` - `precision` - `f1` """ function binary_statistics(confusion::AbstractMatrix, class_index::Integer) total = sum(confusion) predicted_positives = sum(view(confusion, class_index, :)) predicted_negatives = total - predicted_positives actual_positives = sum(view(confusion, :, class_index)) actual_negatives = total - actual_positives true_positives = confusion[class_index, class_index] false_positives = predicted_positives - true_positives false_negatives = actual_positives - true_positives true_negatives = actual_negatives - false_positives true_positive_rate = (true_positives == 0 && actual_positives == 0) ? (one(true_positives) / one(actual_positives)) : (true_positives / actual_positives) true_negative_rate = (true_negatives == 0 && actual_negatives == 0) ? (one(true_negatives) / one(actual_negatives)) : (true_negatives / actual_negatives) false_positive_rate = (false_positives == 0 && actual_negatives == 0) ? (zero(false_positives) / one(actual_negatives)) : (false_positives / actual_negatives) false_negative_rate = (false_negatives == 0 && actual_positives == 0) ? (zero(false_negatives) / one(actual_positives)) : (false_negatives / actual_positives) precision = (true_positives == 0 && predicted_positives == 0) ? NaN : (true_positives / predicted_positives) f1 = true_positives / (true_positives + 0.5 * (false_positives + false_negatives)) return (; predicted_positives, predicted_negatives, actual_positives, actual_negatives, true_positives, true_negatives, false_positives, false_negatives, true_positive_rate, true_negative_rate, false_positive_rate, false_negative_rate, precision, f1) end function binary_statistics(confusion::AbstractMatrix) return [binary_statistics(confusion, i) for i in 1:size(confusion, 1)] end ##### ##### interrater agreement ##### """ cohens_kappa(class_count, hard_label_pairs) Return `(κ, p₀)` where `κ` is Cohen's kappa and `p₀` percent agreement given `class_count` and `hard_label_pairs` (these arguments take the same form as their equivalents in [`confusion_matrix`](@ref)). """ function cohens_kappa(class_count, hard_label_pairs) all(issubset(pair, 1:class_count) for pair in hard_label_pairs) || throw(ArgumentError("Unexpected class in `hard_label_pairs`.")) p₀ = accuracy(confusion_matrix(class_count, hard_label_pairs)) pₑ = _probability_of_chance_agreement(class_count, hard_label_pairs) return _cohens_kappa(p₀, pₑ), p₀ end _cohens_kappa(p₀, pₑ) = (p₀ - pₑ) / (1 - ifelse(pₑ == 1, zero(pₑ), pₑ)) function _probability_of_chance_agreement(class_count, hard_label_pairs) labels_1 = (pair[1] for pair in hard_label_pairs) labels_2 = (pair[2] for pair in hard_label_pairs) x = sum(k -> count(==(k), labels_1) * count(==(k), labels_2), 1:class_count) return x / length(hard_label_pairs)^2 end ##### ##### probability distributions ##### # source: https://github.com/FluxML/Flux.jl/blob/fe85a38d78e225e07a0b75c12b55c8398ae3fe5d/src/layers/stateless.jl#L6 mse(ŷ, y) = sum((ŷ .- y) .^ 2) * 1 // length(y) """ calibration_curve(probabilities, bitmask; bin_count=10) Given `probabilities` (the predicted probabilities of the positive class) and `bitmask` (a vector of `Bool`s indicating whether or not the element actually belonged to the positive class), return `(bins, fractions, totals, mean_squared_error)` where: - `bins` a vector with `bin_count` `Pairs` specifying the calibration curve's probability bins - `fractions`: a vector where `fractions[i]` is the number of values in `probabilities` that falls within `bin[i]` over the total number of values within `bin[i]`, or `NaN` if the total number of values in `bin[i]` is zero. - `totals`: a vector where `totals[i]` the total number of values within `bin[i]`. - `mean_squared_error`: The mean squared error of `fractions` vs. an ideal calibration curve. This method is similar to the corresponding scikit-learn method: https://scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html """ function calibration_curve(probabilities, bitmask; bin_count=10) bins = probability_bins(bin_count) per_bin = [fraction_within(probabilities, bitmask, bin...) for bin in bins] fractions, totals = first.(per_bin), last.(per_bin) nonempty_indices = findall(!isnan, fractions) if !isempty(nonempty_indices) ideal = range(mean(first(bins)), mean(last(bins)); length=length(bins)) mean_squared_error = mse(fractions[nonempty_indices], ideal[nonempty_indices]) else mean_squared_error = NaN end return (bins=bins, fractions=fractions, totals=totals, mean_squared_error=mean_squared_error) end function probability_bins(bin_count) r = range(0.0, 1.0; length=(bin_count + 1)) return [begin start, stop = r[i], r[i + 1] stop = (i + 1) < length(r) ? prevfloat(stop) : stop start => stop end for i in 1:(length(r) - 1)] end function fraction_within(values, bitmask, start, stop) count = 0 total = 0 for (i, value) in enumerate(values) if start <= value <= stop count += bitmask[i] total += 1 end end fraction = iszero(total) ? NaN : (count / total) return (fraction=fraction, total=total) end ##### ##### Aggregate metrics to calculate `metrics` schemas defined in `src/row.jl` ##### """ get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, class_index; thresholds, binarize=binarize_by_threshold, class_labels=missing) Return [`TradeoffMetricsV1`] calculated for the given `class_index`, with the following fields guaranteed to be non-missing: `roc_curve`, `roc_auc`, pr_curve`, `reliability_calibration_curve`, `reliability_calibration_score`.` $(BINARIZE_NOTE) (`class_index`). """ function get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, class_index; thresholds, binarize=binarize_by_threshold, class_labels=missing) stats = per_threshold_confusion_statistics(predicted_soft_labels, elected_hard_labels, thresholds, class_index; binarize) roc_curve = (map(t -> t.false_positive_rate, stats), map(t -> t.true_positive_rate, stats)) pr_curve = (map(t -> t.true_positive_rate, stats), map(t -> t.precision, stats)) class_probabilities = view(predicted_soft_labels, :, class_index) reliability_calibration = calibration_curve(class_probabilities, elected_hard_labels .== class_index) reliability_calibration_curve = (mean.(reliability_calibration.bins), reliability_calibration.fractions) reliability_calibration_score = reliability_calibration.mean_squared_error return TradeoffMetricsV1(; class_index, class_labels, roc_curve, roc_auc=area_under_curve(roc_curve...), pr_curve, reliability_calibration_curve, reliability_calibration_score) end """ get_tradeoff_metrics_binary_multirater(predicted_soft_labels, elected_hard_labels, class_index; thresholds, binarize=binarize_by_threshold, class_labels=missing) Return [`TradeoffMetricsV1`] calculated for the given `class_index`. In addition to metrics calculated by [`get_tradeoff_metrics`](@ref), additionally calculates `spearman_correlation`-based metrics. $(BINARIZE_NOTE) (`class_index`). """ function get_tradeoff_metrics_binary_multirater(predicted_soft_labels, elected_hard_labels, votes, class_index; thresholds, binarize=binarize_by_threshold, class_labels=missing) basic_row = get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, class_index; thresholds, binarize, class_labels) corr = _calculate_spearman_correlation(predicted_soft_labels, votes) row = Tables.rowmerge(basic_row, (; spearman_correlation=corr.ρ, spearman_correlation_ci_upper=corr.ci_upper, spearman_correlation_ci_lower=corr.ci_lower, n_samples=corr.n)) return TradeoffMetricsV1(; row...) end """ get_hardened_metrics(predicted_hard_labels, elected_hard_labels, class_index; class_labels=missing) Return [`HardenedMetricsV1`] calculated for the given `class_index`, with the following field guaranteed to be non-missing: expert-algorithm agreement (`ea_kappa`). """ function get_hardened_metrics(predicted_hard_labels, elected_hard_labels, class_index; class_labels=missing) return HardenedMetricsV1(; class_index, class_labels, ea_kappa=_calculate_ea_kappa(predicted_hard_labels, elected_hard_labels, class_index)) end """ get_hardened_metrics_multirater(predicted_hard_labels, elected_hard_labels, class_index; class_labels=missing) Return [`HardenedMetricsV1`] calculated for the given `class_index`. In addition to metrics calculated by [`get_hardened_metrics`](@ref), additionally calculates `discrimination_calibration_curve` and `discrimination_calibration_score`. """ function get_hardened_metrics_multirater(predicted_hard_labels, elected_hard_labels, votes, class_index; class_labels=missing) basic_row = get_hardened_metrics(predicted_hard_labels, elected_hard_labels, class_index; class_labels) cal = _calculate_discrimination_calibration(predicted_hard_labels, votes; class_of_interest_index=class_index) row = Tables.rowmerge(basic_row, (; discrimination_calibration_curve=cal.plot_curve_data, discrimination_calibration_score=cal.mse)) return HardenedMetricsV1(; row...) end """ get_hardened_metrics_multiclass(predicted_hard_labels, elected_hard_labels, class_count; class_labels=missing) Return [`HardenedMetricsV1`] calculated over all `class_count` classes. Calculates expert-algorithm agreement (`ea_kappa`) over all classes, as well as the multiclass `confusion_matrix`. """ function get_hardened_metrics_multiclass(predicted_hard_labels, elected_hard_labels, class_count; class_labels=missing) ea_kappa = first(cohens_kappa(class_count, zip(predicted_hard_labels, elected_hard_labels))) return HardenedMetricsV1(; class_index=:multiclass, class_labels, confusion_matrix=confusion_matrix(class_count, zip(predicted_hard_labels, elected_hard_labels)), ea_kappa) end """ get_label_metrics_multirater(votes, class_index; class_labels=missing) Return [`LabelMetricsV1`] calculated for the given `class_index`, with the following field guaranteed to be non-missing: `per_expert_discrimination_calibration_curves`, `per_expert_discrimination_calibration_scores`, interrater-agreement (`ira_kappa`). """ function get_label_metrics_multirater(votes, class_index; class_labels=missing) size(votes, 2) > 1 || throw(ArgumentError("Input `votes` is not multirater (`size(votes) == $(size(votes))`)")) expert_cal = _calculate_voter_discrimination_calibration(votes; class_of_interest_index=class_index) per_expert_discrimination_calibration_curves = expert_cal.plot_curve_data per_expert_discrimination_calibration_scores = expert_cal.mse return LabelMetricsV1(; class_index, class_labels, per_expert_discrimination_calibration_curves, per_expert_discrimination_calibration_scores, ira_kappa=_calculate_ira_kappa(votes, class_index)) end """ get_label_metrics_multirater_multiclass(votes, class_count; class_labels=missing) Return [`LabelMetricsV1`] calculated over all `class_count` classes. Calculates the multiclass interrater agreement (`ira_kappa`). """ function get_label_metrics_multirater_multiclass(votes, class_count; class_labels=missing) size(votes, 2) > 1 || throw(ArgumentError("Input `votes` is not multirater (`size(votes) == $(size(votes))`)")) return LabelMetricsV1(; class_index=:multiclass, class_labels, ira_kappa=_calculate_ira_kappa_multiclass(votes, class_count)) end ##### ##### Metrics pipelines ##### """ evaluation_metrics(args...; optimal_threshold_class=nothing, kwargs...) Return [`evaluation_metrics_record`](@ref) after converting output `EvaluationV1` into a `Dict`. For argument details, see [`evaluation_metrics_record`](@ref). """ function evaluation_metrics(args...; optimal_threshold_class=nothing, kwargs...) row = evaluation_metrics_record(args...; optimal_threshold_class=something(optimal_threshold_class, missing), kwargs...) return _evaluation_dict(row) end """ evaluation_metrics_record(observation_table, classes, thresholds=0.0:0.01:1.0; strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Missing,Nothing,Integer}=missing) evaluation_metrics_record(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, thresholds=0.0:0.01:1.0; votes::Union{Nothing,Missing,AbstractMatrix}=nothing, strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Missing,Nothing,Integer}=missing) Returns `EvaluationV1` containing a battery of classifier performance metrics that each compare `predicted_soft_labels` and/or `predicted_hard_labels` agaist `elected_hard_labels`. Where... - `predicted_soft_labels` is a matrix of soft labels whose columns correspond to classes and whose rows correspond to samples in the evaluation set. - `predicted_hard_labels` is a vector of hard labels where the `i`th element is the hard label predicted by the model for sample `i` in the evaulation set. - `elected_hard_labels` is a vector of hard labels where the `i`th element is the hard label elected as "ground truth" for sample `i` in the evaulation set. - `thresholds` are the range of thresholds used by metrics (e.g. PR curves) that are calculated on the `predicted_soft_labels` for a range of thresholds. - `votes` is a matrix of hard labels whose columns correspond to voters and whose rows correspond to the samples in the test set that have been voted on. If `votes[sample, voter]` is not a valid hard label for `model`, then `voter` will simply be considered to have not assigned a hard label to `sample`. - `strata` is a vector of sets of (arbitrarily typed) groups/strata for each sample in the evaluation set, or `nothing`. If not `nothing`, per-class and multiclass kappas will also be calculated per group/stratum. - `optimal_threshold_class` is the class index (`1` or `2`) for which to calculate an optimal threshold for converting the `predicted_soft_labels` to `predicted_hard_labels`. If present, the input `predicted_hard_labels` will be ignored and new `predicted_hard_labels` will be recalculated from the new threshold. This is only a valid parameter when `length(classes) == 2` Alternatively, an `observation_table` that consists of rows of type [`ObservationV1`](@ref) can be passed in in place of `predicted_soft_labels`,`predicted_hard_labels`,`elected_hard_labels`, and `votes`. $(BINARIZE_NOTE). See also [`evaluation_metrics_plot`](@ref). """ function evaluation_metrics_record(observation_table, classes, thresholds=0.0:0.01:1.0; strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Missing,Nothing,Integer}=missing, binarize=binarize_by_threshold) inputs = _observation_table_to_inputs(observation_table) return evaluation_metrics_record(inputs.predicted_hard_labels, inputs.predicted_soft_labels, inputs.elected_hard_labels, classes, thresholds; inputs.votes, strata, optimal_threshold_class, binarize) end function evaluation_metrics_record(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, thresholds=0.0:0.01:1.0; votes::Union{Nothing,Missing,AbstractMatrix}=nothing, strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Missing,Nothing,Integer}=missing, binarize=binarize_by_threshold) class_labels = string.(collect(classes)) # Plots.jl expects this to be an `AbstractVector` class_indices = 1:length(classes) # Step 1: Calculate all metrics that do not require hardened predictions # In our `evaluation_metrics_record` we special-case multirater binary classification, # so do that here as well. tradeoff_metrics_rows = if length(classes) == 2 && has_value(votes) map(ic -> get_tradeoff_metrics_binary_multirater(predicted_soft_labels, elected_hard_labels, votes, ic; thresholds, binarize), class_indices) else map(ic -> get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, ic; thresholds, binarize), class_indices) end # Step 2a: Choose optimal threshold and use it to harden predictions optimal_threshold = missing if has_value(optimal_threshold_class) && has_value(votes) cal = _calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; thresholds, class_of_interest_index=optimal_threshold_class, binarize) optimal_threshold = cal.threshold elseif has_value(optimal_threshold_class) roc_curve = tradeoff_metrics_rows[findfirst(==(optimal_threshold_class), tradeoff_metrics_rows.classes), :] optimal_threshold = _get_optimal_threshold_from_ROC(roc_curve, thresholds) else @warn "Not selecting and/or using optimal threshold; using `predicted_hard_labels` provided by default" end # Step 2b: Harden predictions with new threshold # Note: in new refactored world, should never have hard_predictions before this # point, IFF using a threshold to choose a hard label if !ismissing(optimal_threshold) other_class = optimal_threshold_class == 1 ? 2 : 1 for (i, row) in enumerate(eachrow(predicted_soft_labels)) predicted_hard_labels[i] = binarize(row[optimal_threshold_class], optimal_threshold) ? optimal_threshold_class : other_class end end # Step 3: Calculate all metrics derived from hardened predictions hardened_metrics_table = if has_value(votes) map(class_index -> get_hardened_metrics_multirater(predicted_hard_labels, elected_hard_labels, votes, class_index), class_indices) else map(class_index -> get_hardened_metrics(predicted_hard_labels, elected_hard_labels, class_index), class_indices) end hardened_metrics_table = vcat(hardened_metrics_table, get_hardened_metrics_multiclass(predicted_hard_labels, elected_hard_labels, length(classes))) # Step 4: Calculate all metrics derived directly from labels (does not depend on # predictions) labels_metrics_table = LabelMetricsV1[] if has_value(votes) && size(votes, 2) > 1 labels_metrics_table = map(c -> get_label_metrics_multirater(votes, c), class_indices) labels_metrics_table = vcat(labels_metrics_table, get_label_metrics_multirater_multiclass(votes, length(classes))) end # Adendum: Not including `stratified_kappas` by default in any of our metrics # calculations; including here so as not to fail the deprecation sanity-check stratified_kappas = has_value(strata) ? _calculate_stratified_ea_kappas(predicted_hard_labels, elected_hard_labels, length(classes), strata) : missing return _evaluation_record(tradeoff_metrics_rows, hardened_metrics_table, labels_metrics_table; optimal_threshold_class, class_labels, thresholds, optimal_threshold, stratified_kappas) end function _split_classes_from_multiclass(table) table = DataFrame(table; copycols=false) nrow(table) == 0 && return (missing, missing) # Pull out individual classes class_rows = filter(:class_index => c -> isa(c, Int), table) sort!(class_rows, :class_index) nrow(class_rows) == length(unique(class_rows.class_index)) || throw(ArgumentError("Multiple rows for same class!")) # Pull out multiclass multi_rows = filter(:class_index => ==(:multiclass), table) nrow(multi_rows) > 1 && throw(ArgumentError("More than one `:multiclass` row in table!")) multi = nrow(multi_rows) == 1 ? only(multi_rows) : missing return class_rows, multi end function _values_or_missing(values) has_value(values) || return missing return if Base.IteratorSize(values) == Base.HasShape{0}() values else T = nonmissingtype(eltype(values)) all(!ismissing, values) ? convert(Array{T}, values) : missing end end _unpack_curves(curve::Missing) = missing _unpack_curves(curve::Curve) = Tuple(curve) _unpack_curves(curves::AbstractVector{Curve}) = Tuple.(curves) """ _evaluation_record(tradeoff_metrics_table, hardened_metrics_table, label_metrics_table; optimal_threshold_class=missing, class_labels, thresholds, optimal_threshold, stratified_kappas=missing) Helper function to create an `EvaluationV1` from tables of constituent Metrics schemas, to support [`evaluation_metrics_record`](@ref): - `tradeoff_metrics_table`: table of [`TradeoffMetricsV1`](@ref)s - `hardened_metrics_table`: table of [`HardenedMetricsV1`](@ref)s - `label_metrics_table`: table of [`LabelMetricsV1`](@ref)s """ function _evaluation_record(tradeoff_metrics_table, hardened_metrics_table, label_metrics_table; optimal_threshold_class=missing, class_labels, thresholds, optimal_threshold, stratified_kappas=missing) tradeoff_rows, _ = _split_classes_from_multiclass(tradeoff_metrics_table) hardened_rows, hardened_multi = _split_classes_from_multiclass(hardened_metrics_table) label_rows, labels_multi = _split_classes_from_multiclass(label_metrics_table) # Due to special casing, the following metrics should only be present # in the resultant `EvaluationV1` if `optimal_threshold_class` is present discrimination_calibration_curve = missing discrimination_calibration_score = missing if has_value(optimal_threshold_class) hardened_row_optimal = only(filter(:class_index => ==(optimal_threshold_class), hardened_rows)) discrimination_calibration_curve = hardened_row_optimal.discrimination_calibration_curve discrimination_calibration_score = hardened_row_optimal.discrimination_calibration_score end # Similarly, the following metrics should only be present # in the resultant `EvaluationV1` when doing multirater evaluation per_expert_discrimination_calibration_curves = missing per_expert_discrimination_calibration_scores = missing if has_value(label_rows) && has_value(optimal_threshold_class) label_row_optimal = only(filter(:class_index => ==(optimal_threshold_class), label_rows)) per_expert_discrimination_calibration_curves = _unpack_curves(_values_or_missing(label_row_optimal.per_expert_discrimination_calibration_curves)) per_expert_discrimination_calibration_scores = label_row_optimal.per_expert_discrimination_calibration_scores end multiclass_IRA_kappas = has_value(labels_multi) ? _values_or_missing(labels_multi.ira_kappa) : missing per_class_IRA_kappas = has_value(label_rows) ? _values_or_missing(label_rows.ira_kappa) : missing # Similarly, due to separate special casing, only get the spearman correlation coefficient # from a binary classification problem. It is calculated for both classes, but is # identical, so grab it from the first spearman_correlation = missing if length(class_labels) == 2 row = first(tradeoff_rows) spearman_correlation = ismissing(row.spearman_correlation) ? missing : (; ρ=row.spearman_correlation, n=row.n_samples, ci_lower=row.spearman_correlation_ci_lower, ci_upper=row.spearman_correlation_ci_upper) end return EvaluationV1(; # ...from hardened_metrics_table confusion_matrix=_values_or_missing(hardened_multi.confusion_matrix), multiclass_kappa=_values_or_missing(hardened_multi.ea_kappa), per_class_kappas=_values_or_missing(hardened_rows.ea_kappa), discrimination_calibration_curve=_unpack_curves(discrimination_calibration_curve), discrimination_calibration_score, # ...from tradeoff_metrics_table per_class_roc_curves=_unpack_curves(_values_or_missing(tradeoff_rows.roc_curve)), per_class_roc_aucs=_values_or_missing(tradeoff_rows.roc_auc), per_class_pr_curves=_unpack_curves(_values_or_missing(tradeoff_rows.pr_curve)), spearman_correlation, per_class_reliability_calibration_curves=_unpack_curves(_values_or_missing(tradeoff_rows.reliability_calibration_curve)), per_class_reliability_calibration_scores=_values_or_missing(tradeoff_rows.reliability_calibration_score), # from label_metrics_table per_expert_discrimination_calibration_curves, multiclass_IRA_kappas, per_class_IRA_kappas, per_expert_discrimination_calibration_scores, # from kwargs: optimal_threshold_class=_values_or_missing(optimal_threshold_class), class_labels, thresholds, optimal_threshold, stratified_kappas) end ##### ##### Pipeline helper functions ##### function _calculate_stratified_ea_kappas(predicted_hard_labels, elected_hard_labels, class_count, strata) groups = reduce(∪, strata) kappas = Pair{String,Any}[] for group in groups index = group .∈ strata predicted = predicted_hard_labels[index] elected = elected_hard_labels[index] k = _calculate_ea_kappas(predicted, elected, class_count) push!(kappas, group => (per_class=k.per_class_kappas, multiclass=k.multiclass_kappa, n=sum(index))) end kappas = sort(kappas; by=p -> last(p).multiclass) return [k = v for (k, v) in kappas] end """ _calculate_ea_kappas(predicted_hard_labels, elected_hard_labels, classes) Return `NamedTuple` with keys `:per_class_kappas`, `:multiclass_kappa` containing the Cohen's Kappa per-class and over all classes, respectively. The value of output key `:per_class_kappas` is an `Array` such that item `i` is the Cohen's kappa calculated for class `i`. Where... - `predicted_hard_labels` is a vector of hard labels where the `i`th element is the hard label predicted by the model for sample `i` in the evaulation set. - `elected_hard_labels` is a vector of hard labels where the `i`th element is the hard label elected as "ground truth" for sample `i` in the evaulation set. - `class_count` is the number of possible classes. """ function _calculate_ea_kappas(predicted_hard_labels, elected_hard_labels, class_count) multiclass_kappa = first(cohens_kappa(class_count, zip(predicted_hard_labels, elected_hard_labels))) per_class_kappas = map(1:class_count) do class_index return _calculate_ea_kappa(predicted_hard_labels, elected_hard_labels, class_index) end return (; per_class_kappas, multiclass_kappa) end function _calculate_ea_kappa(predicted_hard_labels, elected_hard_labels, class_index) CLASS_VS_ALL_CLASS_COUNT = 2 predicted = ((label == class_index) + 1 for label in predicted_hard_labels) elected = ((label == class_index) + 1 for label in elected_hard_labels) return first(cohens_kappa(CLASS_VS_ALL_CLASS_COUNT, zip(predicted, elected))) end """ _calculate_ira_kappas(votes, classes) Return `NamedTuple` with keys `:per_class_IRA_kappas`, `:multiclass_IRA_kappas` containing the Cohen's Kappa for inter-rater agreement (IRA) per-class and over all classes, respectively. The value of output key `:per_class_IRA_kappas` is an `Array` such that item `i` is the IRA kappa calculated for class `i`. Where... - `votes` is a matrix of hard labels whose columns correspond to voters and whose rows correspond to the samples in the test set that have been voted on. If `votes[sample, voter]` is not a valid hard label for `model`, then `voter` will simply be considered to have not assigned a hard label to `sample`. - `classes` all possible classes voted on. Returns `(per_class_IRA_kappas=missing, multiclass_IRA_kappas=missing)` if `votes` has only a single voter (i.e., a single column) or if no two voters rated the same sample. Note that vote entries of `0` are taken to mean that the voter did not rate that sample. """ function _calculate_ira_kappas(votes, classes) hard_label_pairs = _prep_hard_label_pairs(votes) length(hard_label_pairs) > 0 || return (; per_class_IRA_kappas=missing, multiclass_IRA_kappas=missing) # No common observations voted on length(hard_label_pairs) < 10 && @warn "...only $(length(hard_label_pairs)) in common, potentially questionable IRA results" multiclass_ira = first(cohens_kappa(length(classes), hard_label_pairs)) CLASS_VS_ALL_CLASS_COUNT = 2 per_class_ira = map(1:length(classes)) do class_index class_v_other_hard_label_pair = map(row -> 1 .+ (row .== class_index), hard_label_pairs) return first(cohens_kappa(CLASS_VS_ALL_CLASS_COUNT, class_v_other_hard_label_pair)) end return (; per_class_IRA_kappas=per_class_ira, multiclass_IRA_kappas=multiclass_ira) end function _prep_hard_label_pairs(votes) if !has_value(votes) || size(votes, 2) < 2 # no votes given or only one expert return Tuple{Int64,Int64}[] end all_hard_label_pairs = Array{Int}(undef, 0, 2) num_voters = size(votes, 2) for i_voter in 1:(num_voters - 1) for j_voter in (i_voter + 1):num_voters all_hard_label_pairs = vcat(all_hard_label_pairs, votes[:, [i_voter, j_voter]]) end end hard_label_pairs = filter(row -> all(row .!= 0), collect(eachrow(all_hard_label_pairs))) return hard_label_pairs end function _calculate_ira_kappa_multiclass(votes, class_count) hard_label_pairs = _prep_hard_label_pairs(votes) length(hard_label_pairs) == 0 && return missing return first(cohens_kappa(class_count, hard_label_pairs)) end function _calculate_ira_kappa(votes, class_index) hard_label_pairs = _prep_hard_label_pairs(votes) length(hard_label_pairs) == 0 && return missing CLASS_VS_ALL_CLASS_COUNT = 2 class_v_other_hard_label_pair = map(row -> 1 .+ (row .== class_index), hard_label_pairs) return first(cohens_kappa(CLASS_VS_ALL_CLASS_COUNT, class_v_other_hard_label_pair)) end function _spearman_corr(predicted_soft_labels, elected_soft_labels) n = length(predicted_soft_labels) ρ = StatsBase.corspearman(predicted_soft_labels, elected_soft_labels) if isnan(ρ) @warn "Uh oh, correlation is NaN! Probably because StatsBase.corspearman(...) returns NaN when a set of labels is all the same!" # Note: accounted for in https://github.com/JuliaStats/HypothesisTests.jl/pull/53/files; # probably not worth implementing here until we need it (at which point maybe # it will be ready in HypothesisTests!) end # 95% confidence interval calculated according to # https://stats.stackexchange.com/questions/18887/how-to-calculate-a-confidence-interval-for-spearmans-rank-correlation stderr = 1.0 / sqrt(n - 3) delta = 1.96 * stderr ci_lower = tanh(atanh(ρ) - delta) ci_upper = tanh(atanh(ρ) + delta) return (ρ=ρ, n=n, ci_lower=round(ci_lower; digits=3), ci_upper=round(ci_upper; digits=3)) end """ _calculate_spearman_correlation(predicted_soft_labels, votes, classes) Return `NamedTuple` with keys `:ρ`, `:n`, `:ci_lower`, and `ci_upper` that are the Spearman correlation constant ρ and its 95% confidence interval bounds. Only valid for binary classification problems (i.e., `length(classes) == 2`) Where... - `predicted_soft_labels` is a matrix of soft labels whose columns correspond to the two classes and whose rows correspond to the samples in the test set that have been classified. For a given sample, the two class column values must sum to 1 (i.e., softmax has been applied to the classification output). - `votes` is a matrix of hard labels whose columns correspond to voters and whose rows correspond to the samples in the test set that have been voted on. If `votes[sample, voter]` is not a valid hard label for `model`, then `voter` will simply be considered to have not assigned a hard label to `sample`. May contain a single voter (i.e., a single column). - `classes` are the two classes voted on. """ function _calculate_spearman_correlation(predicted_soft_labels, votes, classes=missing) if !ismissing(classes) length(classes) > 2 && throw(ArgumentError("Only valid for 2-class problems")) end if !all(x -> x ≈ 1, sum(predicted_soft_labels; dims=2)) throw(ArgumentError("Input probabiliities fail softmax assumption")) end class_index = 1 # Note: Result will be the same whether class 1 or class 2 elected_soft_labels = Vector{Float64}() for sample_votes in eachrow(votes) actual_sample_votes = filter(v -> v in Set([1, 2]), sample_votes) push!(elected_soft_labels, mean(actual_sample_votes .== class_index)) end return _spearman_corr(predicted_soft_labels[:, class_index], elected_soft_labels) end function _calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; thresholds, class_of_interest_index, binarize=binarize_by_threshold) elected_probabilities = _elected_probabilities(votes, class_of_interest_index) bin_count = min(size(votes, 2) + 1, 10) per_threshold_curves = map(thresholds) do thresh pred_soft = view(predicted_soft_labels, :, class_of_interest_index) return calibration_curve(elected_probabilities, binarize.(pred_soft, thresh); bin_count=bin_count) end i_min = argmin([c.mean_squared_error for c in per_threshold_curves]) curve = per_threshold_curves[i_min] return (threshold=collect(thresholds)[i_min], mse=curve.mean_squared_error, plot_curve_data=(mean.(curve.bins), curve.fractions)) end function _calculate_discrimination_calibration(predicted_hard_labels, votes; class_of_interest_index) elected_probabilities = _elected_probabilities(votes, class_of_interest_index) bin_count = min(size(votes, 2) + 1, 10) curve = calibration_curve(elected_probabilities, predicted_hard_labels .== class_of_interest_index; bin_count) return (mse=curve.mean_squared_error, plot_curve_data=(mean.(curve.bins), curve.fractions)) end function _elected_probabilities(votes, class_of_interest_index) elected_probabilities = Vector{Float64}() for sample_votes in eachrow(votes) actual_sample_votes = filter(v -> v in Set([1, 2]), sample_votes) push!(elected_probabilities, mean(actual_sample_votes .== class_of_interest_index)) end return elected_probabilities end function _calculate_voter_discrimination_calibration(votes; class_of_interest_index) elected_probabilities = _elected_probabilities(votes, class_of_interest_index) bin_count = min(size(votes, 2) + 1, 10) per_voter_calibration_curves = map(1:size(votes, 2)) do i_voter return calibration_curve(elected_probabilities, votes[:, i_voter] .== class_of_interest_index; bin_count=bin_count) end return (mse=map(curve -> curve.mean_squared_error, per_voter_calibration_curves), plot_curve_data=map(curve -> (mean.(curve.bins), curve.fractions), per_voter_calibration_curves)) end function _get_optimal_threshold_from_ROC(per_class_roc_curves; thresholds, class_of_interest_index) return _get_optimal_threshold_from_ROC(per_class_roc_curves[class_of_interest_index], thresholds) end function _get_optimal_threshold_from_ROC(roc_curve, thresholds) dist = (p1, p2) -> sqrt((p1[1] - p2[1])^2 + (p1[2] - p2[2])^2) min = Inf curr_counter = 1 opt_point = nothing threshold_idx = 1 for point in zip(roc_curve[1], roc_curve[2]) d = dist((0, 1), point) if d < min min = d threshold_idx = curr_counter opt_point = point end curr_counter += 1 end return collect(thresholds)[threshold_idx] end function _validate_threshold_class(optimal_threshold_class, classes) has_value(optimal_threshold_class) || return nothing length(classes) == 2 || throw(ArgumentError("Only valid for binary classification problems")) optimal_threshold_class in Set([1, 2]) || throw(ArgumentError("Invalid threshold class")) return nothing end function per_class_confusion_statistics(predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, thresholds; binarize=binarize_by_threshold) class_count = size(predicted_soft_labels, 2) return map(1:class_count) do i return per_threshold_confusion_statistics(predicted_soft_labels, elected_hard_labels, thresholds, i; binarize) end end function per_threshold_confusion_statistics(predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, thresholds, class_index; binarize=binarize_by_threshold) confusions = [confusion_matrix(2) for _ in 1:length(thresholds)] for label_index in 1:length(elected_hard_labels) predicted_soft_label = predicted_soft_labels[label_index, class_index] elected = (elected_hard_labels[label_index] == class_index) + 1 for (threshold_index, threshold) in enumerate(thresholds) # Convert from binarized output to 2-class labels (1, 2) predicted = binarize(predicted_soft_label, threshold) + 1 confusions[threshold_index][predicted, elected] += 1 end end return binary_statistics.(confusions, 2) end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
7260
# We can't rely on inference to always give us fully typed # Vector{<: Number} so we add `{T} where T` to the the mix # This makes the number like type a bit absurd, but is still nice for # documentation purposes! const NumberLike = Union{Number,Missing,Nothing,T} where {T} const NumberVector = AbstractVector{<:NumberLike} const NumberMatrix = AbstractMatrix{<:NumberLike} """ Tuple{<:NumberVector, <: NumberVector} Tuple of X, Y coordinates """ const XYVector = Tuple{<:NumberVector,<:NumberVector} """ Union{XYVector, AbstractVector{<: XYVector}} A series of XYVectors, or a single xyvector. """ const SeriesCurves = Union{XYVector,AbstractVector{<:XYVector}} """ evaluation_metrics_plot(data::Dict; size=(1000, 1000), fontsize=12) evaluation_metrics_plot(row::EvaluationV1; kwargs...) Plot all evaluation metrics generated via [`evaluation_metrics_record`](@ref) and/or [`evaluation_metrics`](@ref) in a single image. !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function evaluation_metrics_plot end """ plot_confusion_matrix!(subfig::GridPosition, args...; kw...) plot_confusion_matrix(confusion::AbstractMatrix{<: Number}, class_labels::AbstractVector{String}, normalize_by::Union{Symbol,Nothing}=nothing; size=(800,600), annotation_text_size=20) Lighthouse plots confusion matrices, which are simple tables showing the empirical distribution of predicted class (the rows) versus the elected class (the columns). These can optionally be normalized: * row-normalized (`:Row`): this means each row has been normalized to sum to 1. Thus, the row-normalized confusion matrix shows the empirical distribution of elected classes for a given predicted class. E.g. the first row of the row-normalized confusion matrix shows the empirical probabilities of the elected classes for a sample which was predicted to be in the first class. * column-normalized (`:Column`): this means each column has been normalized to sum to 1. Thus, the column-normalized confusion matrix shows the empirical distribution of predicted classes for a given elected class. E.g. the first column of the column-normalized confusion matrix shows the empirical probabilities of the predicted classes for a sample which was elected to be in the first class. ``` fig, ax, p = plot_confusion_matrix(rand(2, 2), ["1", "2"]) fig = Figure() ax = plot_confusion_matrix!(fig[1, 1], rand(2, 2), ["1", "2"], :Row) ax = plot_confusion_matrix!(fig[1, 2], rand(2, 2), ["1", "2"], :Column) ``` !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_confusion_matrix end function plot_confusion_matrix! end """ plot_reliability_calibration_curves!(fig::SubFigure, args...; kw...) plot_reliability_calibration_curves(per_class_reliability_calibration_curves::SeriesCurves, per_class_reliability_calibration_scores::NumberVector, class_labels::AbstractVector{String}; legend=:rb, size=(800, 600)) !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_reliability_calibration_curves end function plot_reliability_calibration_curves! end """ plot_binary_discrimination_calibration_curves!(fig::SubFigure, args...; kw...) plot_binary_discrimination_calibration_curves!(calibration_curve::SeriesCurves, calibration_score, per_expert_calibration_curves::SeriesCurves, per_expert_calibration_scores, optimal_threshold, discrimination_class::AbstractString; marker=:rect, markersize=5, linewidth=2) !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_binary_discrimination_calibration_curves end function plot_binary_discrimination_calibration_curves! end """ plot_pr_curves!(subfig::GridPosition, args...; kw...) plot_pr_curves(per_class_pr_curves::SeriesCurves, class_labels::AbstractVector{<: String}; size=(800, 600), legend=:lt, title="PR curves", xlabel="True positive rate", ylabel="Precision", linewidth=2, scatter=NamedTuple(), color=:darktest) - `scatter::Union{Nothing, NamedTuple}`: can be set to a named tuples of attributes that are forwarded to the scatter call (e.g. markersize). If nothing, no scatter is added. !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_pr_curves end function plot_pr_curves! end """ plot_roc_curves!(subfig::GridPosition, args...; kw...) plot_roc_curves(per_class_roc_curves::SeriesCurves, per_class_roc_aucs::NumberVector, class_labels::AbstractVector{<: String}; size=(800, 600), legend=:lt, title="ROC curves", xlabel="False positive rate", ylabel="True positive rate", linewidth=2, scatter=NamedTuple(), color=:darktest) - `scatter::Union{Nothing, NamedTuple}`: can be set to a named tuples of attributes that are forwarded to the scatter call (e.g. markersize). If nothing, no scatter is added. !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_roc_curves end function plot_roc_curves! end """ plot_kappas!(subfig::GridPosition, args...; kw...) plot_kappas(per_class_kappas::NumberVector, class_labels::AbstractVector{String}, per_class_IRA_kappas=nothing; size=(800, 600), annotation_text_size=20) !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function plot_kappas end function plot_kappas! end ##### ##### Deprecation support ##### """ evaluation_metrics_plot(predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, classes, thresholds=0.0:0.01:1.0; votes::Union{Nothing,AbstractMatrix}=nothing, strata::Union{Nothing,AbstractVector{Set{T}} where T}=nothing, optimal_threshold_class::Union{Nothing,Integer}=nothing) Return a plot and dictionary containing a battery of classifier performance metrics that each compare `predicted_soft_labels` and/or `predicted_hard_labels` agaist `elected_hard_labels`. See [`evaluation_metrics`](@ref) for a description of the arguments. This method is deprecated in favor of calling `evaluation_metrics` and [`evaluation_metrics_plot`](@ref) separately. !!! note This function requires a valid Makie backend (e.g. CairoMakie) to be loaded. """ function evaluation_metrics_plot end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
14189
##### ##### `EvaluationObject ##### # Arrow can't handle matrices---so when we write/read matrices, we have to pack and unpack them o_O # https://github.com/apache/arrow-julia/issues/125 vec_to_mat(mat::AbstractMatrix) = mat function vec_to_mat(vec::AbstractVector) n = isqrt(length(vec)) return reshape(vec, n, n) end vec_to_mat(::Missing) = missing const GenericCurve = Tuple{Vector{Float64},Vector{Float64}} @schema "lighthouse.evaluation" Evaluation @version EvaluationV1 begin class_labels::Union{Missing,Vector{String}} # XXX why do we spell out the different array types? # For Arrow, we need to be able to serialize as a vector # but we also want to be able to store a matrix directly. # Then why not just use Array{Int64}? Because that's an # abstract type, which creates serialization issues in # unions with Missing. confusion_matrix::Union{Missing,Array{Int64,1},Array{Int64,2}} = vec_to_mat(confusion_matrix) discrimination_calibration_curve::Union{Missing,GenericCurve} discrimination_calibration_score::Union{Missing,Float64} multiclass_IRA_kappas::Union{Missing,Float64} multiclass_kappa::Union{Missing,Float64} optimal_threshold::Union{Missing,Float64} optimal_threshold_class::Union{Missing,Int64} per_class_IRA_kappas::Union{Missing,Vector{Float64}} per_class_kappas::Union{Missing,Vector{Float64}} stratified_kappas::Union{Missing, Vector{@NamedTuple{per_class::Vector{Float64}, multiclass::Float64, n::Int64}}} per_class_pr_curves::Union{Missing,Vector{GenericCurve}} per_class_reliability_calibration_curves::Union{Missing,Vector{GenericCurve}} per_class_reliability_calibration_scores::Union{Missing,Vector{Float64}} per_class_roc_aucs::Union{Missing,Vector{Float64}} per_class_roc_curves::Union{Missing,Vector{GenericCurve}} per_expert_discrimination_calibration_curves::Union{Missing,Vector{GenericCurve}} per_expert_discrimination_calibration_scores::Union{Missing,Vector{Float64}} spearman_correlation::Union{Missing, @NamedTuple{ρ::Float64, # Note: is rho not 'p' 😢 n::Int64, ci_lower::Float64, ci_upper::Float64}} thresholds::Union{Missing,Vector{Float64}} end """ @version EvaluationV1 begin class_labels::Union{Missing,Vector{String}} confusion_matrix::Union{Missing,Array{Int64,1},Array{Int64,2}} = vec_to_mat(confusion_matrix) discrimination_calibration_curve::Union{Missing,GenericCurve} discrimination_calibration_score::Union{Missing,Float64} multiclass_IRA_kappas::Union{Missing,Float64} multiclass_kappa::Union{Missing,Float64} optimal_threshold::Union{Missing,Float64} optimal_threshold_class::Union{Missing,Int64} per_class_IRA_kappas::Union{Missing,Vector{Float64}} per_class_kappas::Union{Missing,Vector{Float64}} stratified_kappas::Union{Missing, Vector{@NamedTuple{per_class::Vector{Float64}, multiclass::Float64, n::Int64}}} per_class_pr_curves::Union{Missing,Vector{GenericCurve}} per_class_reliability_calibration_curves::Union{Missing,Vector{GenericCurve}} per_class_reliability_calibration_scores::Union{Missing,Vector{Float64}} per_class_roc_aucs::Union{Missing,Vector{Float64}} per_class_roc_curves::Union{Missing,Vector{GenericCurve}} per_expert_discrimination_calibration_curves::Union{Missing,Vector{GenericCurve}} per_expert_discrimination_calibration_scores::Union{Missing,Vector{Float64}} spearman_correlation::Union{Missing, @NamedTuple{ρ::Float64, # Note: is rho not 'p' 😢 n::Int64, ci_lower::Float64, ci_upper::Float64}} thresholds::Union{Missing,Vector{Float64}} end A Legolas record representing the output metrics computed by [`evaluation_metrics_record`](@ref) and [`evaluation_metrics`](@ref). See [Legolas.jl](https://github.com/beacon-biosignals/Legolas.jl) for details regarding Legolas record types. """ EvaluationV1 """ EvaluationV1(d::Dict) -> EvaluationV1 `Dict` of metrics results (e.g. from Lighthouse <v0.14.0) into an [`EvaluationV1`](@ref). """ function EvaluationV1(d::Dict) row = (; (Symbol(k) => v for (k, v) in pairs(d))...) return EvaluationV1(row) end """ _evaluation_row_dict(row::EvaluationV1) -> Dict{String,Any} Convert [`EvaluationV1`](@ref) into `::Dict{String, Any}` results, as are output by `[`evaluation_metrics`](@ref)` (and predated use of `EvaluationV1` in Lighthouse <v0.14.0). """ function _evaluation_dict(row::EvaluationV1) return Dict(string(k) => v for (k, v) in pairs(NamedTuple(row)) if !ismissing(v)) end ##### ##### `Observation ##### @schema "lighthouse.observation" Observation @version ObservationV1 begin predicted_hard_label::Int64 predicted_soft_labels::Vector{Float32} elected_hard_label::Int64 votes::Union{Missing,Vector{Int64}} end """ @version ObservationV1 begin predicted_hard_label::Int64 predicted_soft_labels::Vector{Float32} elected_hard_label::Int64 votes::Union{Missing,Vector{Int64}} end A Legolas record representing the per-observation input values required to compute [`evaluation_metrics_record`](@ref). """ ObservationV1 # Convert vector of per-class soft label vectors to expected matrix format, e.g., # [[0.1, .2, .7], [0.8, .1, .1]] for 2 observations of 3-class classification returns # ``` # [0.1 0.2 0.7; # 0.8 0.1 0.1] # ``` function _predicted_soft_to_matrix(per_observation_soft_labels) return transpose(reduce(hcat, per_observation_soft_labels)) end function _observation_table_to_inputs(observation_table) Legolas.validate(Tables.schema(observation_table), ObservationV1SchemaVersion()) df_table = Tables.columns(observation_table) if any(ismissing, df_table.votes) && !all(ismissing, df_table.votes) throw(ArgumentError("`:votes` must either be all `missing` or contain no `missing`")) end votes = any(ismissing, df_table.votes) ? missing : transpose(reduce(hcat, df_table.votes)) predicted_soft_labels = _predicted_soft_to_matrix(df_table.predicted_soft_labels) return (; predicted_hard_labels=df_table.predicted_hard_label, predicted_soft_labels, elected_hard_labels=df_table.elected_hard_label, votes) end function _inputs_to_observation_table(; predicted_hard_labels::AbstractVector, predicted_soft_labels::AbstractMatrix, elected_hard_labels::AbstractVector, votes::Union{Nothing,Missing,AbstractMatrix}=nothing) votes_itr = has_value(votes) ? eachrow(votes) : Iterators.repeated(missing, length(predicted_hard_labels)) predicted_soft_labels_itr = eachrow(predicted_soft_labels) if !(length(predicted_hard_labels) == length(predicted_soft_labels_itr) == length(elected_hard_labels) == length(votes_itr)) throw(DimensionMismatch("Inputs do not all have the same number of observations")) end observation_table = map(predicted_hard_labels, elected_hard_labels, predicted_soft_labels_itr, votes_itr) do predicted_hard_label, elected_hard_label, predicted_soft_labels, votes return ObservationV1(; predicted_hard_label, elected_hard_label, predicted_soft_labels, votes) end return observation_table end ##### ##### Metrics ##### """ Curve(x, y) Represents a (plot) curve of `x` and `y` points. When constructing a `Curve`, `missing`'s are replaced with `NaN`, and values are converted to `Float64`. Curve objects `c` support iteration, `x, y = c`, and indexing, `x = c[1]`, `y = c[2]`. """ struct Curve x::Vector{Float64} y::Vector{Float64} function Curve(x::Vector{Float64}, y::Vector{Float64}) length(x) == length(y) || throw(DimensionMismatch("Arguments to `Curve` must have same length. Got `length(x)=$(length(x))` and `length(y)=$(length(y))`")) return new(x, y) end end floatify(x) = convert(Vector{Float64}, replace(x, missing => NaN)) Curve(x, y) = Curve(floatify(x), floatify(y)) function Curve(t::Tuple) length(t) == 2 || throw(ArgumentError("Arguments to `Curve` must consist of x- and y- iterators")) return Curve(floatify(first(t)), floatify(last(t))) end Curve(c::Curve) = c Base.iterate(c::Curve, st=1) = st <= fieldcount(Curve) ? (getfield(c, st), st + 1) : nothing Base.length(::Curve) = fieldcount(Curve) Base.size(c::Curve) = (fieldcount(Curve), length(c.x)) Base.getindex(c::Curve, i::Int) = getfield(c, i) for op in (:(==), :isequal) @eval function Base.$(op)(c1::Curve, c2::Curve) return $op(c1.x, c2.x) && $op(c1.y, c2.y) end end Base.hash(c::Curve, h::UInt) = hash(:Curve, hash(c.x, hash(c.y, h))) const CURVE_ARROW_NAME = Symbol("JuliaLang.Lighthouse.Curve") ArrowTypes.arrowname(::Type{<:Curve}) = CURVE_ARROW_NAME ArrowTypes.JuliaType(::Val{CURVE_ARROW_NAME}) = Curve @schema "lighthouse.class" Class @version ClassV1 begin class_index::Union{Int64,Symbol} = check_valid_class(class_index) class_labels::Union{Missing,Vector{String}} end """ @version ClassV1 begin class_index::Union{Int64,Symbol} = check_valid_class(class_index) class_labels::Union{Missing,Vector{String}} end A Legolas record representing a single column `class_index` that holds either an integer or the value `:multiclass`, and the class names associated to the integer class indices. """ ClassV1 check_valid_class(class_index::Integer) = Int64(class_index) function check_valid_class(class_index::Any) return class_index === :multiclass ? class_index : throw(ArgumentError("Classes must be integer or the symbol `:multiclass`")) end @schema "lighthouse.label-metrics" LabelMetrics @version LabelMetricsV1 > ClassV1 begin ira_kappa::Union{Missing,Float64} per_expert_discrimination_calibration_curves::Union{Missing,Vector{Curve}} = lift(v -> Curve.(v), per_expert_discrimination_calibration_curves) per_expert_discrimination_calibration_scores::Union{Missing,Vector{Float64}} end """ @version LabelMetricsV1 > ClassV1 begin ira_kappa::Union{Missing,Float64} per_expert_discrimination_calibration_curves::Union{Missing,Vector{Curve}} = lift(v -> Curve.(v), per_expert_discrimination_calibration_curves) per_expert_discrimination_calibration_scores::Union{Missing,Vector{Float64}} end A Legolas record representing metrics calculated over labels provided by multiple labelers. See also [`get_label_metrics_multirater`](@ref) and [`get_label_metrics_multirater_multiclass`](@ref). """ LabelMetricsV1 @schema "lighthouse.hardened-metrics" HardenedMetrics @version HardenedMetricsV1 > ClassV1 begin confusion_matrix::Union{Missing,Array{Int64,1},Array{Int64,2}} = vec_to_mat(confusion_matrix) discrimination_calibration_curve::Union{Missing,Curve} = lift(Curve, discrimination_calibration_curve) discrimination_calibration_score::Union{Missing,Float64} ea_kappa::Union{Missing,Float64} end """ @version HardenedMetricsV1 > ClassV1 begin confusion_matrix::Union{Missing,Array{Int64,1},Array{Int64,2}} = vec_to_mat(confusion_matrix) discrimination_calibration_curve::Union{Missing,Curve} = lift(Curve, discrimination_calibration_curve) discrimination_calibration_score::Union{Missing,Float64} ea_kappa::Union{Missing,Float64} end A Legolas record representing metrics calculated over predicted hard labels. See also [`get_hardened_metrics`](@ref), [`get_hardened_metrics_multirater`](@ref), and [`get_hardened_metrics_multiclass`](@ref). """ HardenedMetricsV1 @schema "lighthouse.tradeoff-metrics" TradeoffMetrics @version TradeoffMetricsV1 > ClassV1 begin roc_curve::Curve = lift(Curve, roc_curve) roc_auc::Float64 pr_curve::Curve = lift(Curve, pr_curve) spearman_correlation::Union{Missing,Float64} spearman_correlation_ci_upper::Union{Missing,Float64} spearman_correlation_ci_lower::Union{Missing,Float64} n_samples::Union{Missing,Int} reliability_calibration_curve::Union{Missing,Curve} = lift(Curve, reliability_calibration_curve) reliability_calibration_score::Union{Missing,Float64} end """ @version TradeoffMetricsV1 > ClassV1 begin roc_curve::Curve = lift(Curve, roc_curve) roc_auc::Float64 pr_curve::Curve = lift(Curve, pr_curve) spearman_correlation::Union{Missing,Float64} spearman_correlation_ci_upper::Union{Missing,Float64} spearman_correlation_ci_lower::Union{Missing,Float64} n_samples::Union{Missing,Int} reliability_calibration_curve::Union{Missing,Curve} = lift(Curve, reliability_calibration_curve) reliability_calibration_score::Union{Missing,Float64} end A Legolas record representing metrics calculated over predicted soft labels. See also [`get_tradeoff_metrics`](@ref) and [`get_tradeoff_metrics_binary_multirater`](@ref). """ TradeoffMetricsV1
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
2881
##### ##### miscellaneous ##### has_value(x) = !isnothing(x) && !ismissing(x) function increment_at!(array, index_lists) for index_list in index_lists array[index_list...] += 1 end return array end """ area_under_curve(x, y) Calculates the area under the curve specified by the `x` vector and `y` vector using the trapezoidal rule. If inputs are empty, return `missing`. """ function area_under_curve(x, y) length(x) == length(y) || throw(ArgumentError("Length of inputs must match.")) length(x) == 0 && return missing auc = zero(middle(one(eltype(x)), one(eltype(y)))) perms = sortperm(x) sorted_x = view(x, perms) sorted_y = view(y, perms) # calculate the trapazoidal method https://en.wikipedia.org/wiki/Trapezoidal_rule for i in 2:length(x) auc += middle(sorted_y[i], sorted_y[i - 1]) * (sorted_x[i] - sorted_x[i - 1]) end return auc end """ area_under_curve_unit_square(x, y) Calculates the area under the curve specified by the `x` vector and `y` vector for a unit square, using the trapezoidal rule. If inputs are empty, return `missing`. """ function area_under_curve_unit_square(x, y) length(x) == length(y) || throw(ArgumentError("Length of inputs must match.")) kept = [(i, j) for (i, j) in zip(x, y) if !(ismissing(i) || ismissing(j)) && (0 <= i <= 1 && 0 <= j <= 1)] return area_under_curve(map(k -> k[1], kept), map(k -> k[2], kept)) end """ majority([rng::AbstractRNG=Random.GLOBAL_RNG], hard_labels, among::UnitRange) Return the majority label within `among` out of `hard_labels`: ``` julia> majority([1, 2, 1, 3, 2, 2, 3], 1:3) 2 julia> majority([1, 2, 1, 3, 2, 2, 3, 4], 3:4) 3 ``` In the event of a tie, a winner is randomly selected from the tied labels via `rng`. """ function majority(rng::AbstractRNG, labels, among::UnitRange) return rand(rng, StatsBase.modes(labels, among)) end majority(labels, among::UnitRange) = majority(Random.GLOBAL_RNG, labels, among) ##### ##### `ResourceInfo` ##### struct ResourceInfo time_in_seconds::Float64 gc_time_in_seconds::Float64 allocations::Int64 memory_in_mb::Float64 end # NOTE: This is suitable for "coarse" (i.e. long-running) `f`, not "fine" `f`; # the latter requires the kind of infrastructure provided by BenchmarkTools. function call_with_resource_info(f) gc_start = Base.gc_num() time_start = time_ns() result = f() time_in_seconds = ((time_ns() - time_start) / 1_000_000_000) gc_diff = Base.GC_Diff(Base.gc_num(), gc_start) gc_time_in_seconds = gc_diff.total_time / 1_000_000_000 allocations = gc_diff.malloc + gc_diff.realloc + gc_diff.poolalloc + gc_diff.bigalloc memory_in_mb = gc_diff.allocd / 1024 / 1024 info = ResourceInfo(time_in_seconds, gc_time_in_seconds, allocations, memory_in_mb) return result, info end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
102
@testest "deprecations" begin @test_throws ErrorException Lighthouse.evaluation_metrics_row() end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
30575
mutable struct TestClassifier <: AbstractClassifier dummy_loss::Float64 classes::Vector end Lighthouse.classes(c::TestClassifier) = c.classes function Lighthouse.train!(c::TestClassifier, dummy_batches, logger) for (dummy_input_batch, loss_delta) in dummy_batches c.dummy_loss += loss_delta Lighthouse.log_value!(logger, "train/loss_per_batch", c.dummy_loss) end return c.dummy_loss end const RNG_LOSS = StableRNG(22) function Lighthouse.loss_and_prediction(c::TestClassifier, dummy_input_batch) dummy_soft_label_batch = rand(RNG_LOSS, length(c.classes), size(dummy_input_batch)[end]) # Fake a softmax dummy_soft_label_batch .= dummy_soft_label_batch ./ sum(dummy_soft_label_batch; dims=1) return c.dummy_loss, dummy_soft_label_batch end @testset "`_values_or_missing`" begin @test Lighthouse._values_or_missing(nothing) === missing @test Lighthouse._values_or_missing(missing) === missing @test Lighthouse._values_or_missing(1) === 1 @test Lighthouse._values_or_missing([1, 2, 3]) == [1, 2, 3] @test Lighthouse._values_or_missing([missing]) === missing @test Lighthouse._values_or_missing([1, missing]) === missing input = Union{Int,Missing}[1, 2, 3] result = Lighthouse._values_or_missing(input) @test result == input @test result isa Vector{Int} input = Union{Int,Missing}[1 2; 3 4] result = Lighthouse._values_or_missing(input) @test result == input @test result isa Matrix{Int} end @testset "Multi-class learn!(::TestModel, ...)" begin mktempdir() do tmpdir model = TestClassifier(1000000.0, ["class_$i" for i in 1:5]) k, n = length(model.classes), 3 rng = StableRNG(22) train_batches = [(rand(rng, 4 * k, n), -rand(rng)) for _ in 1:100] test_batches = [((rand(rng, 4 * k, n),), (n * i - n + 1):(n * i)) for i in 1:10] possible_vote_labels = collect(0:k) votes = [rand(rng, possible_vote_labels) for sample in 1:(n * 10), voter in 1:7] votes[:, [1, 2, 3]] .= votes[:, 4] # Voter 1-3 voted identically to voter 4 (force non-zero agreement) logger = LearnLogger(joinpath(tmpdir, "logs"), "test_run") limit = 5 let counted = 0 upon_loss_decrease = Lighthouse.upon(logger, "test_set_prediction/mean_loss_per_epoch"; condition=<, initial=Inf) callback = n -> begin upon_loss_decrease() do _ counted += n @debug counted n end end elected = majority.((rng,), eachrow(votes), (1:length(Lighthouse.classes(model)),)) Lighthouse.learn!(model, logger, () -> train_batches, () -> test_batches, votes, elected; epoch_limit=limit, post_epoch_callback=callback) @test counted == sum(1:limit) end @test length(logger.logged["train/loss_per_batch"]) == length(train_batches) * limit for key in ["test_set_prediction/loss_per_batch", "test_set_prediction/time_in_seconds_per_batch", "test_set_prediction/gc_time_in_seconds_per_batch", "test_set_prediction/allocations_per_batch", "test_set_prediction/memory_in_mb_per_batch"] @test length(logger.logged[key]) == length(test_batches) * limit end for key in ["test_set_prediction/mean_loss_per_epoch", "test_set_evaluation/time_in_seconds_per_epoch", "test_set_evaluation/gc_time_in_seconds_per_epoch", "test_set_evaluation/allocations_per_epoch", "test_set_evaluation/memory_in_mb_per_epoch"] @test length(logger.logged[key]) == limit end @test length(logger.logged["test_set_evaluation/metrics_per_epoch"]) == limit # Test multiclass optimal_threshold param invalid @test_throws ArgumentError Lighthouse.learn!(model, logger, () -> train_batches, () -> test_batches, votes; epoch_limit=limit, optimal_threshold_class=1) # Test `predict!` num_samples = sum(b -> size(b[1][1], 2), test_batches) predicted_soft = zeros(num_samples, length(model.classes)) predict!(model, predicted_soft, test_batches, logger; logger_prefix="halloooo") @test !all(predicted_soft .== 0) @test length(logger.logged["halloooo/mean_loss_per_epoch"]) == 1 @test length(logger.logged["halloooo/loss_per_batch"]) == length(test_batches) @test length(logger.logged["halloooo/time_in_seconds_per_batch"]) == length(test_batches) # Test `evaluate!` n_examples = 40 num_voters = 20 predicted_soft = rand(rng, Float32, n_examples, length(model.classes)) predicted_hard = map(label -> Lighthouse.onecold(model, label), eachrow(predicted_soft)) votes = [rand(rng, possible_vote_labels) for sample in 1:n_examples, voter in 1:num_voters] votes[:, 3] .= votes[:, 4] # Voter 4 voted identically to voter 3 (force non-zero agreement) elected_hard = map(row -> majority(rng, row, 1:length(model.classes)), eachrow(votes)) evaluate!(predicted_hard, predicted_soft, elected_hard, model.classes, logger; logger_prefix="wheeeeeee", logger_suffix="_for_all_time", votes) @test length(logger.logged["wheeeeeee/time_in_seconds_for_all_time"]) == 1 @test length(logger.logged["wheeeeeee/metrics_for_all_time"]) == 1 # Test plotting with no votes directly with eval row eval_row = Lighthouse.evaluation_metrics_record(predicted_hard, predicted_soft, elected_hard, model.classes; votes=nothing) all_together_no_ira = evaluation_metrics_plot(eval_row) @testplot all_together_no_ira # Round-trip `onehot` for codecov onehot_hard = map(h -> vec(Lighthouse.onehot(model, h)), predicted_hard) @test map(h -> findfirst(h), onehot_hard) == predicted_hard # Test startified eval strata = [Set("group $(j % Int(ceil(sqrt(j))))" for j in 1:(i - 1)) for i in 1:size(votes, 1)] plot_data = evaluation_metrics(predicted_hard, predicted_soft, elected_hard, model.classes, 0.0:0.01:1.0; votes, strata) @test haskey(plot_data, "stratified_kappas") plot = evaluation_metrics_plot(plot_data) test_evaluation_metrics_roundtrip(plot_data) plot2, plot_data2 = @test_deprecated evaluation_metrics_plot(predicted_hard, predicted_soft, elected_hard, model.classes, 0.0:0.01:1.0; votes=votes, strata=strata) @test isequal(plot_data, plot_data2) # check these are the same test_evaluation_metrics_roundtrip(plot_data2) # Test plotting plot_data = last(logger.logged["test_set_evaluation/metrics_per_epoch"]) @test isa(plot_data["thresholds"], AbstractVector) @test isa(last(plot_data["per_class_pr_curves"]), Tuple{Vector{Float64},Vector{Float64}}) pr = plot_pr_curves(plot_data["per_class_pr_curves"], plot_data["class_labels"]) @testplot pr roc = plot_roc_curves(plot_data["per_class_roc_curves"], plot_data["per_class_roc_aucs"], plot_data["class_labels"]) @testplot roc # Kappa no IRA kappas_no_ira = plot_kappas(vcat(plot_data["multiclass_kappa"], plot_data["per_class_kappas"]), vcat("Multiclass", plot_data["class_labels"])) @testplot kappas_no_ira # Kappa with IRA kappas_ira = plot_kappas(vcat(plot_data["multiclass_kappa"], plot_data["per_class_kappas"]), vcat("Multiclass", plot_data["class_labels"]), vcat(plot_data["multiclass_IRA_kappas"], plot_data["per_class_IRA_kappas"])) @testplot kappas_ira reliability_calibration = plot_reliability_calibration_curves(plot_data["per_class_reliability_calibration_curves"], plot_data["per_class_reliability_calibration_scores"], plot_data["class_labels"]) @testplot reliability_calibration confusion_row = plot_confusion_matrix(plot_data["confusion_matrix"], plot_data["class_labels"], :Row) @testplot confusion_row confusion_col = plot_confusion_matrix(plot_data["confusion_matrix"], plot_data["class_labels"], :Column) @testplot confusion_col confusion_basic = plot_confusion_matrix(plot_data["confusion_matrix"], plot_data["class_labels"]) @testplot confusion_basic @test_throws ArgumentError plot_confusion_matrix(plot_data["confusion_matrix"], plot_data["class_labels"], :norm) all_together_2 = evaluation_metrics_plot(plot_data) @testplot all_together_2 all_together_3 = evaluation_metrics_plot(EvaluationV1(plot_data)) @testplot all_together_3 #savefig(all_together_2, "/tmp/multiclass.png") end end @testset "2-class `learn!(::TestModel, ...)`" begin mktempdir() do tmpdir model = TestClassifier(1000000.0, ["class_$i" for i in 1:2]) k, n = length(model.classes), 3 rng = StableRNG(23) train_batches = [(rand(rng, 4 * k, n), -rand(rng)) for _ in 1:100] test_batches = [((rand(rng, 4 * k, n),), (n * i - n + 1):(n * i)) for i in 1:10] possible_vote_labels = collect(0:k) votes = [rand(rng, possible_vote_labels) for sample in 1:(n * 10), voter in 1:7] votes[:, [1, 2, 3]] .= votes[:, 4] # Voter 1-3 voted identically to voter 4 (force non-zero agreement) logger = LearnLogger(joinpath(tmpdir, "logs"), "test_run") limit = 5 let counted = 0 upon_loss_decrease = Lighthouse.upon(logger, "test_set_prediction/mean_loss_per_epoch"; condition=<, initial=Inf) callback = n -> begin upon_loss_decrease() do _ counted += n @debug counted n end end elected = majority.((rng,), eachrow(votes), (1:length(Lighthouse.classes(model)),)) Lighthouse.learn!(model, logger, () -> train_batches, () -> test_batches, votes, elected; epoch_limit=limit, post_epoch_callback=callback) @test counted == sum(1:limit) end # Binary classification logs some additional metrics @test length(logger.logged["test_set_evaluation/spearman_correlation_per_epoch"]) == limit plot_data = last(logger.logged["test_set_evaluation/metrics_per_epoch"]) @test haskey(plot_data, "spearman_correlation") test_evaluation_metrics_roundtrip(plot_data) # No `optimal_threshold_class` during learning... @test !haskey(plot_data, "optimal_threshold") @test !haskey(plot_data, "optimal_threshold_class") # And now, `optimal_threshold_class` during learning elected = majority.((rng,), eachrow(votes), (1:length(Lighthouse.classes(model)),)) Lighthouse.learn!(model, logger, () -> train_batches, () -> test_batches, votes, elected; epoch_limit=limit, optimal_threshold_class=2, test_set_logger_prefix="validation_set") plot_data = last(logger.logged["validation_set_evaluation/metrics_per_epoch"]) @test haskey(plot_data, "optimal_threshold") @test haskey(plot_data, "optimal_threshold_class") @test plot_data["optimal_threshold_class"] == 2 test_evaluation_metrics_roundtrip(plot_data) # `optimal_threshold_class` param invalid @test_throws ArgumentError Lighthouse.learn!(model, logger, () -> train_batches, () -> test_batches, votes; epoch_limit=limit, optimal_threshold_class=3) # Test `evaluate!` for votes, no votes n_examples = 40 num_voters = 20 predicted_soft = rand(rng, Float32, n_examples, length(model.classes)) predicted_soft .= predicted_soft ./ sum(predicted_soft; dims=2) predicted_hard = map(label -> Lighthouse.onecold(model, label), eachrow(predicted_soft)) votes = [rand(rng, possible_vote_labels) for sample in 1:n_examples, voter in 1:num_voters] votes[:, 3] .= votes[:, 4] # Voter 4 voted identically to voter 3 (force non-zero agreement) elected_hard = map(row -> majority(rng, row, 1:length(model.classes)), eachrow(votes)) evaluate!(predicted_hard, predicted_soft, elected_hard, model.classes, logger; logger_prefix="wheeeeeee", logger_suffix="_for_all_time", votes=nothing) plot_data = last(logger.logged["wheeeeeee/metrics_for_all_time"]) @test !haskey(plot_data, "per_class_IRA_kappas") @test !haskey(plot_data, "multiclass_IRA_kappas") test_evaluation_metrics_roundtrip(plot_data) evaluate!(predicted_hard, predicted_soft, elected_hard, model.classes, logger; logger_prefix="wheeeeeee", logger_suffix="_for_all_time", votes=votes) plot_data = last(logger.logged["wheeeeeee/metrics_for_all_time"]) @test haskey(plot_data, "per_class_IRA_kappas") @test haskey(plot_data, "multiclass_IRA_kappas") test_evaluation_metrics_roundtrip(plot_data) # Test `evaluate` for different optimal_threshold classes evaluate!(predicted_hard, predicted_soft, elected_hard, model.classes, logger; logger_prefix="wheeeeeee", logger_suffix="_for_all_time", votes=votes, optimal_threshold_class=1) plot_data_1 = last(logger.logged["wheeeeeee/metrics_for_all_time"]) evaluate!(predicted_hard, predicted_soft, elected_hard, model.classes, logger; logger_prefix="wheeeeeee", logger_suffix="_for_all_time", votes=votes, optimal_threshold_class=2) plot_data_2 = last(logger.logged["wheeeeeee/metrics_for_all_time"]) test_evaluation_metrics_roundtrip(plot_data_2) # The thresholds should not be identical (since they are *inclusive* when applied: # values greater than _or equal to_ the threshold are given the class value) @test plot_data_1["optimal_threshold"] != plot_data_2["optimal_threshold"] # The two threshold options yield different results thresh_from_roc = Lighthouse._get_optimal_threshold_from_ROC(plot_data_2["per_class_roc_curves"]; thresholds=plot_data_2["thresholds"], class_of_interest_index=plot_data_2["optimal_threshold_class"]) thresh_from_calibration = Lighthouse._calculate_optimal_threshold_from_discrimination_calibration(predicted_soft, votes; thresholds=plot_data_2["thresholds"], class_of_interest_index=plot_data_2["optimal_threshold_class"]).threshold @test !isequal(thresh_from_roc, thresh_from_calibration) @test isequal(thresh_from_calibration, plot_data_2["optimal_threshold"]) # Also, let's make sure we get an isolated discrimination plots discrimination_cal = Lighthouse.plot_binary_discrimination_calibration_curves(plot_data_1["discrimination_calibration_curve"], plot_data_1["discrimination_calibration_score"], plot_data_1["per_expert_discrimination_calibration_curves"], plot_data_1["per_expert_discrimination_calibration_scores"], plot_data_1["optimal_threshold"], plot_data_1["class_labels"][plot_data_1["optimal_threshold_class"]]) @testplot discrimination_cal discrimination_cal_no_experts = Lighthouse.plot_binary_discrimination_calibration_curves(plot_data_1["discrimination_calibration_curve"], plot_data_1["discrimination_calibration_score"], missing, missing, plot_data_1["optimal_threshold"], plot_data_1["class_labels"][plot_data_1["optimal_threshold_class"]]) # Test binary discrimination with no multiclass votes plot_data_1["per_expert_discrimination_calibration_curves"] = missing no_expert_calibration = evaluation_metrics_plot(EvaluationV1(plot_data_1)) @testplot no_expert_calibration # Test that plotting succeeds (no specialization relative to the multi-class tests) plot_data = last(logger.logged["validation_set_evaluation/metrics_per_epoch"]) all_together = evaluation_metrics_plot(plot_data) #savefig(all_together, "/tmp/binary.png") @testplot all_together @testplot discrimination_cal_no_experts end end @testset "Invalid `_calculate_ira_kappas`" begin classes = ["roy", "gee", "biv"] @test isequal(Lighthouse._calculate_ira_kappas([1; 1; 1; 1], classes), (; per_class_IRA_kappas=missing, multiclass_IRA_kappas=missing)) # Only one voter... @test isequal(Lighthouse._calculate_ira_kappas([1 0; 1 0; 0 1], classes), (; per_class_IRA_kappas=missing, multiclass_IRA_kappas=missing)) # No observations in common... end @testset "Calculate `_spearman_corr`" begin # Test failures for... # ...nonbinary input @test_throws ArgumentError Lighthouse._calculate_spearman_correlation([0.9 0.1], [1], ["oh" "em" "gee"]) # ...non-softmax input @test_throws ArgumentError Lighthouse._calculate_spearman_correlation([0.9 0.9], [1], ["oh" "em"]) # Test class order doesn't matter predicted = [0.1 0.9; 0.3 0.7; 1 0] votes = [0 1 1 2; 2 2 0 0; 0 2 2 1] predicted_flipped = [0.9 0.1; 0.7 0.3; 0 1] votes_flipped = [0 2 2 1; 1 1 0 0; 0 1 1 2] @test Lighthouse._calculate_spearman_correlation(predicted, votes, ["oh" "em"]) == Lighthouse._calculate_spearman_correlation(predicted_flipped, votes_flipped, ["em" "oh"]) # Test complete agreement predicted_soft = [0.0 1.0; 1.0 0.0; 1.0 0.0] votes = [2; 1; 1] sp = Lighthouse._calculate_spearman_correlation(predicted_soft, votes, ["oh" "em"]) @test sp.ρ == 1 # Test complete disagreement votes = [1; 2; 2] sp = Lighthouse._calculate_spearman_correlation(predicted_soft, votes, ["oh" "em"]) @test sp.ρ == -1 # Test NaN spearman due to unranked input votes = [1; 2; 2] predicted_soft = [0.3 0.7 0.3 0.7 0.3 0.7] sp = Lighthouse._calculate_spearman_correlation(predicted_soft, votes, ["oh" "em"]) @test isnan(sp.ρ) # Test CI sp = Lighthouse._spearman_corr([0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2], [0.1, 0.3, 0.2, 0.1, 0.3, 0.1, 0.6]) @test -1.0 < sp.ci_lower < sp.ρ < sp.ci_upper < 1.0 end @testset "Discrimination calibration" begin # Test single voter has same calibration as "whole" by definition votes = [1; 1; 1; 2; 2; 2] @test length(Lighthouse._elected_probabilities(votes, 1)) == 6 @test Lighthouse._elected_probabilities(votes, 1) == [1; 1; 1; 0; 0; 0] # Test single voter discrimination calibration single_voter_calibration = Lighthouse._calculate_voter_discrimination_calibration(votes; class_of_interest_index=1) @test length(single_voter_calibration.mse) == 1 # Test multi-voter voter discrimination calibration votes = [0 1 1 1 1 2 0 0 2 1 2 2] # Note: voters 3 and 4 have voted identically voter_calibration = Lighthouse._calculate_voter_discrimination_calibration(votes; class_of_interest_index=1) @test length(voter_calibration.mse) == size(votes, 2) @test length(voter_calibration.plot_curve_data) == size(votes, 2) @test voter_calibration.mse[1] > voter_calibration.mse[3] @test !isequal(voter_calibration.plot_curve_data[1], voter_calibration.plot_curve_data[2]) @test isequal(voter_calibration.plot_curve_data[3], voter_calibration.plot_curve_data[4]) # Test predicted voter discrimination calibration predicted_soft_labels = [1.0 0.0; 0.0 1.0; 0.0 1.0] cal = Lighthouse._calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; thresholds=0.0:0.01:1.0, class_of_interest_index=1) @test all(cal.mse .<= voter_calibration.mse) cal2 = Lighthouse._calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; thresholds=0.0:0.01:1.0, class_of_interest_index=2) @test cal.mse == cal2.mse @test cal.plot_curve_data[2] != cal2.plot_curve_data[2] end @testset "2-class per_class_confusion_statistics" begin predicted_soft_labels = [0.51 0.49 0.49 0.51 0.1 0.9 0.9 0.1 0.0 1.0] elected_hard_labels = [1, 2, 2, 2, 1] thresholds = [0.25, 0.5, 0.75] class_1, class_2 = Lighthouse.per_class_confusion_statistics(predicted_soft_labels, elected_hard_labels, thresholds) stats_1, stats_2 = class_1[1], class_2[1] # threshold == 0.25 @test stats_1.actual_negatives == stats_2.actual_positives == 3 @test stats_1.actual_positives == stats_2.actual_negatives == 2 @test stats_1.predicted_positives == 3 @test stats_2.predicted_positives == 4 @test stats_1.predicted_negatives == 2 @test stats_2.predicted_negatives == 1 @test stats_1.true_positives == 1 @test stats_2.true_positives == 2 @test stats_1.true_negatives == 1 @test stats_2.true_negatives == 0 @test stats_1.false_positives == 2 @test stats_2.false_positives == 2 @test stats_1.false_negatives == 1 @test stats_2.false_negatives == 1 @test stats_1.true_positive_rate == 0.5 @test stats_2.true_positive_rate == 2 / 3 @test stats_1.true_negative_rate == 1 / 3 @test stats_2.true_negative_rate == 0.0 @test stats_1.false_positive_rate == 2 / 3 @test stats_2.false_positive_rate == 1.0 @test stats_1.false_negative_rate == 0.5 @test stats_2.false_negative_rate == 1 / 3 @test stats_1.precision == 1 / 3 @test stats_2.precision == 0.5 stats_1, stats_2 = class_1[2], class_2[2] # threshold == 0.5 @test stats_1.actual_negatives == stats_2.actual_positives == 3 @test stats_1.actual_positives == stats_2.actual_negatives == 2 @test stats_1.predicted_negatives == stats_2.predicted_positives == 3 @test stats_1.predicted_positives == stats_2.predicted_negatives == 2 @test stats_1.true_negatives == stats_2.true_positives == 2 @test stats_1.true_positives == stats_2.true_negatives == 1 @test stats_1.false_positives == stats_2.false_negatives == 1 @test stats_1.false_negatives == stats_2.false_positives == 1 @test stats_1.true_positive_rate == stats_2.true_negative_rate == 0.5 @test stats_1.true_negative_rate == stats_2.true_positive_rate == 2 / 3 @test stats_1.false_positive_rate == stats_2.false_negative_rate == 1 / 3 @test stats_1.false_negative_rate == stats_2.false_positive_rate == 0.5 @test stats_1.precision == 0.5 && stats_2.precision == 2 / 3 stats_1, stats_2 = class_1[3], class_2[3] # threshold == 0.75 @test stats_1.actual_negatives == stats_2.actual_positives == 3 @test stats_1.actual_positives == stats_2.actual_negatives == 2 @test stats_1.predicted_positives == 1 @test stats_2.predicted_positives == 2 @test stats_1.predicted_negatives == 4 @test stats_2.predicted_negatives == 3 @test stats_1.true_positives == 0 @test stats_2.true_positives == 1 @test stats_1.true_negatives == 2 @test stats_2.true_negatives == 1 @test stats_1.false_positives == 1 @test stats_2.false_positives == 1 @test stats_1.false_negatives == 2 @test stats_2.false_negatives == 2 @test stats_1.true_positive_rate == 0.0 @test stats_2.true_positive_rate == 1 / 3 @test stats_1.true_negative_rate == 2 / 3 @test stats_2.true_negative_rate == 0.5 @test stats_1.false_positive_rate == 1 / 3 @test stats_2.false_positive_rate == 0.5 @test stats_1.false_negative_rate == 1.0 @test stats_2.false_negative_rate == 2 / 3 @test stats_1.precision == 0.0 @test stats_2.precision == 0.5 end @testset "3-class per_class_confusion_statistics" begin predicted_soft_labels = [1/3 1/3 1/3 0.1 0.7 0.2 0.25 0.25 0.5 0.4 0.5 0.1 0.0 0.0 1.0 0.2 0.5 0.3 0.5 0.4 0.1] elected_hard_labels = [1, 2, 2, 1, 3, 3, 1] # TODO would be more robust to have multiple thresholds, but our naive tests # here will have to be refactored to avoid becoming a nightmare if we do that thresholds = [0.5] class_1, class_2, class_3 = Lighthouse.per_class_confusion_statistics(predicted_soft_labels, elected_hard_labels, thresholds) stats_1, stats_2, stats_3 = class_1[], class_2[], class_3[] # threshold == 0.5 @test stats_1.predicted_positives == 1 @test stats_2.predicted_positives == 3 @test stats_3.predicted_positives == 2 @test stats_1.predicted_negatives == 6 @test stats_2.predicted_negatives == 4 @test stats_3.predicted_negatives == 5 @test stats_1.actual_positives == 3 @test stats_2.actual_positives == 2 @test stats_3.actual_positives == 2 @test stats_1.actual_negatives == 4 @test stats_2.actual_negatives == 5 @test stats_3.actual_negatives == 5 @test stats_1.true_positives == 1 @test stats_2.true_positives == 1 @test stats_3.true_positives == 1 @test stats_1.true_negatives == 4 @test stats_2.true_negatives == 3 @test stats_3.true_negatives == 4 @test stats_1.false_positives == 0 @test stats_2.false_positives == 2 @test stats_3.false_positives == 1 @test stats_1.false_negatives == 2 @test stats_2.false_negatives == 1 @test stats_3.false_negatives == 1 @test stats_1.true_positive_rate == 1 / 3 @test stats_2.true_positive_rate == 0.5 @test stats_3.true_positive_rate == 0.5 @test stats_1.true_negative_rate == 1.0 @test stats_2.true_negative_rate == 0.6 @test stats_3.true_negative_rate == 0.8 @test stats_1.false_positive_rate == 0.0 @test stats_2.false_positive_rate == 0.4 @test stats_3.false_positive_rate == 0.2 @test stats_1.false_negative_rate == 2 / 3 @test stats_2.false_negative_rate == 0.5 @test stats_3.false_negative_rate == 0.5 @test stats_1.precision == 1.0 @test stats_2.precision == 1 / 3 @test stats_3.precision == 0.5 end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
1863
@testset "`Log forwarding`" begin mktempdir() do logdir vector = rand(10) data = Dict("string" => "asdf", "int" => 42, "float64" => 42.0, "float32" => 42.0f0, "vector" => vector, "dict" => Dict("a" => 0, 42 => identity)) logger = LearnLogger(logdir, "test_run") channel = Channel() forwarding_task = Lighthouse.forward_logs(channel, logger) N = 5 for _ in 1:N for (field, value) in data put!(channel, field => value) end put!(channel, "events" => "happens") end put!(channel, "plotted" => vector) close(channel) wait(forwarding_task) loaded = logger.logged for (k, v) in data if typeof(v) <: Union{Real,Complex} @test length(loaded[k]) == N @test first(loaded[k]) == v end end end end @testset "`Generic datastructure logging`" begin mktempdir() do logdir logger = LearnLogger(logdir, "test_run") @test isnothing(Lighthouse.log_line_series!(logger, "foo", 3, 2)) @test isnothing(step_logger!(logger)) end end @testset "log_values!" begin mktempdir() do logdir logger = LearnLogger(logdir, "test_run") log_values!(logger, Dict("a" => 1, "b" => 2)) @test logger.logged["a"] == [1] @test logger.logged["b"] == [2] end end @testset "`log_array` and `log_arrays!`" begin mktempdir() do logdir logger = LearnLogger(logdir, "test_run") log_array!(logger, "arr", [1.0, 2.0, 3.0]) @test logger.logged["arr"] == [2.0] # defaults to the mean log_arrays!(logger, Dict("arr2" => [1.0, 2.0, 3.0], "arr3" => [1.0])) @test logger.logged["arr2"] == [2.0] @test logger.logged["arr3"] == [1.0] end end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
11323
@testset "agreement/confusion matrix tests" begin hard_label_pairs = zip([1, 1, 3, 1, 3, 1, 2, 1], [2, 2, 1, 1, 3, 2, 3, 1]) c = confusion_matrix(3, hard_label_pairs) @test c == [2 3 0 0 0 1 1 0 1] kappa, percent_agreement = cohens_kappa(3, hard_label_pairs) chance = Lighthouse._probability_of_chance_agreement(3, hard_label_pairs) @test chance == (5 * 3 + 1 * 3 + 2 * 2) / 8^2 @test accuracy(c) == percent_agreement == 3 / 8 @test kappa == (3 / 8 - chance) / (1 - chance) stats = binary_statistics(c, 3) total = sum(c) @test total == 8 @test stats.predicted_positives == 2 @test stats.predicted_negatives == 6 @test stats.actual_positives == 2 @test stats.actual_negatives == 6 @test stats.true_positives == 1 @test stats.true_negatives == 5 @test stats.false_positives == 1 @test stats.false_negatives == 1 @test stats.true_positive_rate == 0.5 @test stats.true_negative_rate == 5 / 6 @test stats.false_positive_rate == 1 / 6 @test stats.false_negative_rate == 0.5 @test stats.precision == 0.5 @test stats.f1 == 0.5 @test stats.true_positives + stats.true_negatives + stats.false_positives + stats.false_negatives == total @test stats.actual_positives + stats.actual_negatives == total @test stats.predicted_positives + stats.predicted_negatives == total labels = rand(StableRNG(42), 1:3, 100) hard_label_pairs = zip(labels, labels) c = confusion_matrix(3, hard_label_pairs) @test tr(c) == length(labels) == sum(c) kappa, percent_agreement = cohens_kappa(3, hard_label_pairs) @test accuracy(c) == percent_agreement == 1 @test kappa == 1 for i in 1:3 stats = binary_statistics(c, i) @test stats.predicted_positives == stats.true_positives == stats.actual_positives @test stats.predicted_negatives == stats.true_negatives == stats.actual_negatives @test stats.false_positives == stats.false_negatives == 0 @test stats.true_positive_rate == stats.true_negative_rate == 1 @test stats.false_positive_rate == stats.false_negative_rate == 0 @test stats.precision == 1 @test stats.f1 == 1 end n, k = 1_000_000, 2 rng = StableRNG(42) hard_label_pairs = zip(rand(rng, 1:k, n), rand(rng, 1:k, n)) c = confusion_matrix(k, hard_label_pairs) kappa, percent_agreement = cohens_kappa(3, hard_label_pairs) @test percent_agreement == accuracy(c) @test isapprox(percent_agreement, 0.5; atol=0.02) @test isapprox(kappa, 0.0; atol=0.02) stats = binary_statistics(c, 1) @test isapprox(stats.predicted_positives, 500_000; atol=2000) @test isapprox(stats.predicted_negatives, 500_000; atol=2000) @test isapprox(stats.actual_positives, 500_000; atol=2000) @test isapprox(stats.actual_negatives, 500_000; atol=2000) @test isapprox(stats.true_positives, 250_000; atol=2000) @test isapprox(stats.true_negatives, 250_000; atol=2000) @test isapprox(stats.false_positives, 250_000; atol=2000) @test isapprox(stats.false_negatives, 250_000; atol=2000) @test isapprox(stats.true_positive_rate, 0.5; atol=0.02) @test isapprox(stats.true_negative_rate, 0.5; atol=0.02) @test isapprox(stats.false_positive_rate, 0.5; atol=0.02) @test isapprox(stats.false_negative_rate, 0.5; atol=0.02) @test isapprox(stats.precision, 0.5; atol=0.02) @test isapprox(stats.f1, 0.5; atol=0.02) @test confusion_matrix(10, ()) == zeros(10, 10) @test all(isnan, cohens_kappa(10, ())) @test isnan(accuracy(zeros(10, 10))) stats = binary_statistics(zeros(10, 10), 1) @test stats.predicted_positives == 0 @test stats.predicted_negatives == 0 @test stats.actual_positives == 0 @test stats.actual_negatives == 0 @test stats.true_positives == 0 @test stats.true_negatives == 0 @test stats.false_positives == 0 @test stats.false_negatives == 0 @test stats.true_positive_rate == 1 @test stats.true_negative_rate == 1 @test stats.false_positive_rate == 0 @test stats.false_negative_rate == 0 @test isnan(stats.precision) @test isnan(stats.f1) c = [0 0 0 8] stats = binary_statistics(c, 1) @test stats.true_positives == 0 @test stats.true_negatives == 8 @test stats.false_positives == 0 @test stats.false_negatives == 0 @test isnan(stats.f1) c = [0 2 0 6] stats = binary_statistics(c, 1) @test stats.true_positives == 0 @test stats.true_negatives == 6 @test stats.false_positives == 2 @test stats.false_negatives == 0 @test stats.f1 == 0 c = [0 0 2 6] stats = binary_statistics(c, 1) @test stats.true_positives == 0 @test stats.true_negatives == 6 @test stats.false_positives == 0 @test stats.false_negatives == 2 @test stats.f1 == 0 for p in 0:0.1:1 @test Lighthouse._cohens_kappa(p, p) == 0 if p > 0 @test Lighthouse._cohens_kappa(p / 2, p) < 0 @test Lighthouse._cohens_kappa(p, p / 2) > 0 end end @test_throws ArgumentError cohens_kappa(3, [(4, 5), (8, 2)]) end @testset "`calibration_curve`" begin rng = StableRNG(42) probs = rand(rng, 1_000_000) bitmask = rand(rng, Bool, 1_000_000) bin_count = 12 bins, fractions, totals, mean_squared_error = calibration_curve(probs, bitmask; bin_count=bin_count) @test bin_count == length(bins) @test first(first(bins)) == 0.0 && last(last(bins)) == 1.0 @test all(!ismissing, fractions) @test all(!isnan, fractions) @test all(!iszero, totals) @test all(isapprox.(fractions, 0.5; atol=0.02)) @test all(isapprox.(totals, length(probs) / bin_count; atol=1000)) @test sum(totals) == length(probs) @test isapprox(ceil(mean(fractions) * length(bitmask)), count(bitmask); atol=1) @test isapprox(mean_squared_error, inv(bin_count); atol=0.002) rng = StableRNG(42) probs = range(0.0, 1.0; length=1_000_000) bitmask = [rand(rng) <= p for p in probs] bin_count = 10 bins, fractions, totals, mean_squared_error = calibration_curve(probs, bitmask; bin_count=bin_count) ideal = range(mean(first(bins)), mean(last(bins)); length=bin_count) @test bin_count == length(bins) @test first(first(bins)) == 0.0 && last(last(bins)) == 1.0 @test all(!ismissing, fractions) @test all(!isnan, fractions) @test all(!iszero, totals) @test all(isapprox.(fractions, ideal; atol=0.01)) @test all(totals .== 1_000_000 / bin_count) @test isapprox(ceil(mean(fractions) * length(bitmask)), count(bitmask); atol=1) @test isapprox(mean_squared_error, 0.0; atol=0.00001) bitmask = reverse(bitmask) bins, fractions, totals, mean_squared_error = calibration_curve(probs, bitmask; bin_count=bin_count) @test bin_count == length(bins) @test first(first(bins)) == 0.0 && last(last(bins)) == 1.0 @test all(!ismissing, fractions) @test all(!isnan, fractions) @test all(!iszero, totals) @test all(isapprox.(fractions, reverse(ideal); atol=0.01)) @test all(totals .== 1_000_000 / bin_count) @test isapprox(ceil(mean(fractions) * length(bitmask)), count(bitmask); atol=1) @test isapprox(mean_squared_error, 1 / 3; atol=0.01) # Handle garbage input---ensure non-existant results are NaN probs = fill(-1, 40) bitmask = zeros(Bool, 40) bins, fractions, totals, mean_squared_error = calibration_curve(probs, bitmask; bin_count) @test bin_count == length(bins) @test first(first(bins)) == 0.0 && last(last(bins)) == 1.0 @test all(isnan, fractions) @test all(iszero, totals) @test isnan(mean_squared_error) end @testset "`calibration_curve`" begin @test binarize_by_threshold(0.2, 0.8) == false @test binarize_by_threshold(0.2, 0.2) == true @test binarize_by_threshold(0.3, 0.2) == true @test binarize_by_threshold.([0, 0, 0], 0.2) == [0, 0, 0] end @testset "Metrics hardening/binarization" begin predicted_soft_labels = [0.51 0.49 0.49 0.51 0.1 0.9 0.9 0.1 0.0 1.0] elected_hard_labels = [1, 2, 2, 2, 1] thresholds = [0.25, 0.5, 0.75] i_class = 2 class_labels = ["a", "b"] default_metrics = get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, i_class; thresholds, class_labels) # Use bogus threshold/hardening function to prove that hardening function is # used internally scaled_binarize_by_threshold = (soft, threshold) -> soft >= threshold / 10 scaled_thresholds = 10 .* thresholds scaled_metrics = get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, i_class; thresholds=scaled_thresholds, binarize=scaled_binarize_by_threshold, class_labels) @test isequal(default_metrics, scaled_metrics) # Discrim calibration votes = [1 1 1 0 2 2 1 2 2 1 1 2 0 1 1] cal = Lighthouse._calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; thresholds, class_of_interest_index=i_class) scaled_cal = Lighthouse._calculate_optimal_threshold_from_discrimination_calibration(predicted_soft_labels, votes; class_of_interest_index=i_class, thresholds=scaled_thresholds, binarize=scaled_binarize_by_threshold) for k in keys(cal) if k == :threshold @test cal[k] * 10 == scaled_cal[k] # Should be the same _relative_ threshold else @test isequal(cal[k], scaled_cal[k]) end end conf = Lighthouse.per_class_confusion_statistics(predicted_soft_labels, elected_hard_labels, thresholds) scaled_conf = Lighthouse.per_class_confusion_statistics(predicted_soft_labels, elected_hard_labels, scaled_thresholds; binarize=scaled_binarize_by_threshold) @test isequal(conf, scaled_conf) end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
2720
# Make sure we cover all edge cases in the plotting code using Makie.Colors: Gray @testset "plotting" begin @testset "NaN color" begin confusion = [NaN 0; 1.0 0.5] nan_confusion = plot_confusion_matrix(confusion, ["test1", "test2"], :Row) @testplot nan_confusion nan_custom_confusion = with_theme(; ConfusionMatrix=(Heatmap=(nan_color=:red,), Text=(color=:red,))) do return plot_confusion_matrix(confusion, ["test1", "test2"], :Row) end @testplot nan_custom_confusion end @testset "Kappa placement" begin classes = ["class $i" for i in 1:5] kappa_text_placement = with_theme(; Kappas=(Text=(color=Gray(0.5),),)) do return plot_kappas((1:5) ./ 5 .- 0.1, classes, (1:5) ./ 5; color=[Gray(0.4), Gray(0.2)]) end @testplot kappa_text_placement kappa_text_placement_single = with_theme(; Kappas=(Text=(color=:red,),)) do return plot_kappas((1:5) ./ 5, classes; color=[Gray(0.4), Gray(0.2)]) end @testplot kappa_text_placement_single end @testset "binary discriminiation calibration curves" begin rng = StableRNG(22) curves = [(LinRange(0, 1, 10), range(0; stop=i / 2, length=10) .+ (randn(rng, 10) .* 0.1)) for i in -1:3] theme = (; Ideal=(linewidth=3, color=(:green, 0.5)), CalibrationCurve=(solid_color=:green, markersize=50, # should be overwritten by user kw linewidth=5), PerExpert=(solid_color=:red, linewidth=1)) plot = with_theme(; BinaryDiscriminationCalibrationCurves=theme) do return Lighthouse.plot_binary_discrimination_calibration_curves(curves[3], rand(rng, 5), curves[[1, 2, 4, 5]], nothing, nothing, ""; markersize=10) end binary_discrimination_calibration_curves_plot = plot @testplot binary_discrimination_calibration_curves_plot end end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
7830
@testset "`vec_to_mat`" begin mat = [3 5 6; 6 7 8; 9 10 11] @test Lighthouse.vec_to_mat(vec(mat)) == mat @test Lighthouse.vec_to_mat(mat) == mat @test ismissing(Lighthouse.vec_to_mat(missing)) @test_throws DimensionMismatch Lighthouse.vec_to_mat(collect(1:6)) # Invalid dimensions end @testset "`EvaluationV1` basics" begin # Most Evaluation testing happens via the `test_evaluation_metrics_roundtrip` # in test/learn.jl # Roundtrip from dict dict = Dict("class_labels" => ["foo", "bar"], "multiclass_kappa" => 3) test_evaluation_metrics_roundtrip(dict) # Handle fun case mat_dict = Dict("confusion_matrix" => [3 5 6; 6 7 8; 9 10 11]) test_evaluation_metrics_roundtrip(mat_dict) end function test_roundtrip_observation_table(; kwargs...) table = Lighthouse._inputs_to_observation_table(; kwargs...) rt_inputs = Lighthouse._observation_table_to_inputs(table) @test issetequal(keys(kwargs), keys(rt_inputs)) for k in keys(kwargs) @test isequal(kwargs[k], rt_inputs[k]) || k end return table end @testset "`ObservationV1`" begin # Multiclass num_observations = 100 classes = ["A", "B", "C", "D"] predicted_soft_labels = rand(StableRNG(22), Float32, num_observations, length(classes)) predicted_hard_labels = map(argmax, eachrow(predicted_soft_labels)) # Single labeler: round-trip `ObservationV1`... elected_hard_one_labeller = predicted_hard_labels[[1:50..., 1:50...]] # Force 50% TP overall votes = missing table = test_roundtrip_observation_table(; predicted_soft_labels, predicted_hard_labels, elected_hard_labels=elected_hard_one_labeller, votes) # ...and parity in evaluation_metrics calculation: metrics_from_inputs = Lighthouse.evaluation_metrics_record(predicted_hard_labels, predicted_soft_labels, elected_hard_one_labeller, classes; votes) metrics_from_table = Lighthouse.evaluation_metrics_record(table, classes) @test isequal(metrics_from_inputs, metrics_from_table) # Multiple labelers: round-trip `ObservationV1`... for num_voters in (1, 5) possible_vote_labels = collect(0:length(classes)) # vote 0 == "no vote" vote_rng = StableRNG(22) votes = [rand(vote_rng, possible_vote_labels) for sample in 1:num_observations, voter in 1:num_voters] if num_voters >= 4 votes[:, 3] .= votes[:, 4] # Voter 4 voted identically to voter 3 (force non-zero agreement) end elected_hard_multilabeller = map(row -> majority(vote_rng, row, 1:length(classes)), eachrow(votes)) table = test_roundtrip_observation_table(; predicted_soft_labels, predicted_hard_labels, elected_hard_labels=elected_hard_multilabeller, votes) # ...is there parity in evaluation_metrics calculations? metrics_from_inputs = Lighthouse.evaluation_metrics_record(predicted_hard_labels, predicted_soft_labels, elected_hard_multilabeller, classes; votes) metrics_from_table = Lighthouse.evaluation_metrics_record(table, classes) @test isequal(metrics_from_inputs, metrics_from_table) r_table = Lighthouse._inputs_to_observation_table(; predicted_soft_labels, predicted_hard_labels, elected_hard_labels=elected_hard_multilabeller, votes) @test Legolas.complies_with(Tables.schema(r_table), Lighthouse.ObservationV1SchemaVersion()) # ...can we handle both dataframe input and more generic row iterators? df_table = DataFrame(r_table) output_r = Lighthouse._observation_table_to_inputs(r_table) output_df = Lighthouse._observation_table_to_inputs(df_table) @test isequal(output_r, output_df) # Safety last! transform!(df_table, :votes => ByRow(v -> isodd(sum(v)) ? missing : v); renamecols=false) @test_throws ArgumentError Lighthouse._observation_table_to_inputs(df_table) transform!(df_table, :votes => ByRow(v -> ismissing(v) ? [1, 2, 3] : v); renamecols=false) @static if VERSION < v"1.10" # the error type changed between Julia versions! @test_throws ArgumentError Lighthouse._observation_table_to_inputs(df_table) else @test_throws DimensionMismatch Lighthouse._observation_table_to_inputs(df_table) end @test_throws DimensionMismatch Lighthouse._inputs_to_observation_table(; predicted_soft_labels, predicted_hard_labels=predicted_hard_labels[1:4], elected_hard_labels=elected_hard_multilabeller, votes) end end @testset "`ClassV1" begin @test isa(Lighthouse.ClassV1(; class_index=3, class_labels=missing).class_index, Int64) @test isa(Lighthouse.ClassV1(; class_index=Int8(3), class_labels=missing).class_index, Int64) @test Lighthouse.ClassV1(; class_index=:multiclass).class_index == :multiclass @test Lighthouse.ClassV1(; class_index=:multiclass, class_labels=["a", "b"]).class_labels == ["a", "b"] @test_throws ArgumentError Lighthouse.ClassV1(; class_index=3.0f0, class_labels=missing) @test_throws ArgumentError Lighthouse.ClassV1(; class_index=:mUlTiClAsS, class_labels=missing) end @testset "class_labels" begin predicted_soft_labels = [0.51 0.49 0.49 0.51 0.1 0.9 0.9 0.1 0.0 1.0] elected_hard_labels = [1, 2, 2, 2, 1] predicted_hard_labels = [1, 2, 2, 1, 2] thresholds = [0.25, 0.5, 0.75] i_class = 2 class_labels = ["a", "b"] default_metrics = get_tradeoff_metrics(predicted_soft_labels, elected_hard_labels, i_class; thresholds, class_labels) @test default_metrics.class_labels == class_labels end @testset "`Curve`" begin c = ([1, 2, 3], [4, 5, 6]) @test Curve(c...) isa Curve @test Curve(c) isa Curve @test Curve(1:8, 2:9) isa Curve @test Curve([], []) isa Curve @test Curve(Float64[], Float64[]) isa Curve @test_throws DimensionMismatch Curve([2], []) @test_throws ArgumentError Curve((3, 2, 1)) @test isequal(Lighthouse.floatify([3, missing, 2.4]), Float64[3, NaN, 2.4]) curve = Curve(c...) @test length(curve) == 2 @test size(curve) == (2, 3) @test isequal(curve, Curve(c...)) @test first(Arrow.Table(Arrow.tobuffer([curve])).x) == curve.x @test first(Arrow.Table(Arrow.tobuffer([curve])).y) == curve.y end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
2354
using Test, LinearAlgebra, Statistics using StableRNGs using Lighthouse using Lighthouse: plot_reliability_calibration_curves, plot_pr_curves, plot_roc_curves, plot_kappas, plot_confusion_matrix, evaluation_metrics_plot, evaluation_metrics, binarize_by_threshold using Base.Threads using CairoMakie using Legolas, Tables using DataFrames using Arrow # Needs to be set for figures # returning true for showable("image/png", obj) # which TensorBoardLogger.jl uses to determine output CairoMakie.activate!(; type="png") plot_results = joinpath(@__DIR__, "plot_results") # Remove any old plots isdir(plot_results) && rm(plot_results; force=true, recursive=true) mkdir(plot_results) macro testplot(fig_name) path = joinpath(plot_results, string(fig_name, ".png")) return quote fig = $(esc(fig_name)) @test fig isa Makie.FigureLike save($(path), fig) end end const EVALUATION_V1_KEYS = string.(fieldnames(EvaluationV1)) function test_evaluation_metrics_roundtrip(row_dict::Dict{String,S}) where {S} # Make sure all metrics keys are captured in our schema and are not thrown away keys_not_in_schema = setdiff(keys(row_dict), EVALUATION_V1_KEYS) @test isempty(keys_not_in_schema) # Do the roundtripping (will fail if schema types do not validate after roundtrip) record = EvaluationV1(row_dict) rt_row = roundtrip_row(record) # Make sure full row roundtrips correctly @test issetequal(keys(record), keys(rt_row)) for (k, v) in pairs(record) if ismissing(v) @test ismissing(rt_row[k]) else @test issetequal(v, rt_row[k]) end end # Make sure originating metrics dictionary roundtrips correctly rt_dict = Lighthouse._evaluation_dict(rt_row) for (k, v) in pairs(row_dict) if ismissing(v) @test ismissing(rt_dict[k]) else @test issetequal(v, rt_dict[k]) end end return nothing end function roundtrip_row(row::EvaluationV1) io = IOBuffer() tbl = [row] Legolas.write(io, tbl, Lighthouse.EvaluationV1SchemaVersion()) return EvaluationV1(only(Tables.rows(Legolas.read(seekstart(io))))) end include("plotting.jl") include("metrics.jl") include("learn.jl") include("utilities.jl") include("logger.jl") include("row.jl")
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
code
1328
@testset "`majority`" begin @test majority([1, 2, 1, 3, 2, 2, 3], 1:3) == 2 @test majority([1, 2, 1, 3, 2, 2, 3, 4], 3:4) == 3 rng = StableRNG(42) picked = [majority(rng, 1:2, 1:2) for _ in 1:1_000_000] @test isapprox(count(==(1), picked), 500_000; atol=1000) end @testset "`Lighthouse.area_under_curve`" begin @test_throws ArgumentError Lighthouse.area_under_curve([0, 1, 2], [0, 1]) @test ismissing(Lighthouse.area_under_curve([], [])) @test isapprox(Lighthouse.area_under_curve(collect(0:0.01:1), collect(0:0.01:1)), 0.5; atol=0.01) @test isapprox(Lighthouse.area_under_curve(collect(0:0.01:(2π)), sin.(0:0.01:(2π))), 0.0; atol=0.01) end @testset "`Lighthouse.area_under_curve_unit_square`" begin @test_throws ArgumentError Lighthouse.area_under_curve_unit_square([0, 1, 2], [0, 1]) @test ismissing(Lighthouse.area_under_curve_unit_square([], [])) @test isapprox(Lighthouse.area_under_curve_unit_square(collect(0:0.01:1), collect(0:0.01:1)), 0.5; atol=0.01) @test isapprox(Lighthouse.area_under_curve_unit_square(collect(0:0.01:(2π)), sin.(0:0.01:(2π))), 0.459; atol=0.01) end
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
docs
2574
<div align="center"> <img src="docs/src/assets/logo.svg" alt="Lighthouse.jl" height="128" width="128"> </div> # Lighthouse.jl [![CI](https://github.com/beacon-biosignals/Lighthouse.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/beacon-biosignals/Lighthouse.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/beacon-biosignals/Lighthouse.jl/branch/main/graph/badge.svg?token=8DnNEbLw2x)](https://codecov.io/gh/beacon-biosignals/Lighthouse.jl) [![Docs: stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://beacon-biosignals.github.io/Lighthouse.jl/stable) [![Docs: development](https://img.shields.io/badge/docs-dev-blue.svg)](https://beacon-biosignals.github.io/Lighthouse.jl/dev) Lighthouse.jl is a Julia package that standardizes and automates performance evaluation for multiclass, multirater classification models. By implementing a minimal interface, your classifier automagically gains a thoroughly instrumented training/testing harness (`Lighthouse.learn!`) that computes and logs tons of meaningful performance metrics to TensorBoard in real-time, including: - test set loss - inter-rater agreement (e.g. Cohen's Kappa) - PR curves - ROC curves - calibration curves Lighthouse itself is framework-agnostic; end-users should use whichever extension package matches their desired framework (e.g. https://github.com/beacon-biosignals/LighthouseFlux.jl). This package follows the [YASGuide](https://github.com/jrevels/YASGuide). ## Installation To install Lighthouse for development, run: ``` julia -e 'using Pkg; Pkg.develop(PackageSpec(url="https://github.com/beacon-biosignals/Lighthouse.jl"))' ``` This will install Lighthouse to the default package development directory, `~/.julia/dev/Lighthouse`. ### TensorBoard Note that Lighthouse's `LearnLogger` logs metrics to a user-specified path in [TensorBoard's](https://github.com/tensorflow/tensorboard) `logdir` format. TensorBoard can be installed via `python3 -m pip install tensorboard` (note: if you have `tensorflow>=1.14`, you should already have `tensorboard`). Once TensorBoard is installed, you can view Lighthouse-generated metrics via `tensorboard --logdir path` where `path` is the path specified by `Lighthouse.LearnLogger`. From there, TensorBoard itself can be used/configured however you like; see https://github.com/tensorflow/tensorboard for more information. You can use alternative loggers, as long as they comply with the [logging interface](https://beacon-biosignals.github.io/Lighthouse.jl/dev#The-logging-interface).
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
docs
2017
# API Documentation ```@meta CurrentModule = Lighthouse ``` ## The `AbstractClassifier` Interface ```@docs AbstractClassifier Lighthouse.classes Lighthouse.train! Lighthouse.loss_and_prediction Lighthouse.onehot Lighthouse.onecold Lighthouse.is_early_stopping_exception ``` ## The `learn!` Interface ```@docs learn! evaluate! predict! ``` ## The logging interface The following "primitives" must be defined for a logger to be used with Lighthouse: ```@docs log_value! log_line_series! log_plot! step_logger! ``` in addition to `Base.flush(logger)` (which can be a no-op by defining `Base.flush(::MyLoggingType) = nothing`). These primitives can be used in implementations of [`train!`](@ref), [`evaluate!`](@ref), and [`predict!`](@ref), as well as in the following composite logging functions, which by default call the above primitives. Loggers may provide custom implementations of these. ```@docs log_event! Lighthouse.log_evaluation_row! log_values! log_array! log_arrays! ``` ### `LearnLogger`s `LearnLoggers` are a Tensorboard-backed logger which comply with the above logging interface. They also support additional callback functionality with `upon`: ```@docs LearnLogger upon Lighthouse.forward_logs flush(::LearnLogger) ``` ## Performance Metrics ```@docs confusion_matrix accuracy binary_statistics cohens_kappa calibration_curve EvaluationV1 ObservationV1 Lighthouse.evaluation_metrics Lighthouse._evaluation_dict Lighthouse.evaluation_metrics_record Lighthouse.ClassV1 TradeoffMetricsV1 get_tradeoff_metrics get_tradeoff_metrics_binary_multirater HardenedMetricsV1 get_hardened_metrics get_hardened_metrics_multirater get_hardened_metrics_multiclass LabelMetricsV1 get_label_metrics_multirater get_label_metrics_multirater_multiclass Lighthouse._evaluation_record Lighthouse._calculate_ea_kappas Lighthouse._calculate_ira_kappas Lighthouse._calculate_spearman_correlation ``` ## Utilities ```@docs majority Lighthouse.area_under_curve Lighthouse.area_under_curve_unit_square Curve ```
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
0.17.1
39fe73c0b93325c2b6054d26824d8178f878efca
docs
7304
!!! note All plotting functions require a valid Makie backend, e.g. CairoMakie, to be loaded. If there is no backend loaded, then functions won't do anything interesting. On Julia 1.9+, Makie is a weak dependency and so won't incur any compilation/dependency cost without a backend. On Julia < 1.9, Makie will still be loaded, but without a backend, the resulting figure will not be rendered. # Confusion matrices ```@docs Lighthouse.plot_confusion_matrix ``` ```@setup 1 using Lighthouse using CairoMakie CairoMakie.activate!(type = "png") using StableRNGs const RNG = StableRNG(22) stable_rand(args...) = rand(RNG, args...) stable_randn(args...) = randn(RNG, args...) ``` ```@example 1 using Lighthouse: plot_confusion_matrix, plot_confusion_matrix! classes = ["red", "orange", "yellow", "green"] ground_truth = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4] predicted_labels = [1, 1, 1, 1, 2, 2, 4, 4, 4, 4, 4, 3] confusion = Lighthouse.confusion_matrix(length(classes), zip(predicted_labels, ground_truth)) fig, ax, p = plot_confusion_matrix(confusion, classes) ``` ```@example 1 fig = Figure(size=(800, 400)) plot_confusion_matrix!(fig[1, 1], confusion, classes, :Row, annotation_text_size=14) plot_confusion_matrix!(fig[1, 2], confusion, classes, :Column, annotation_text_size=14) fig ``` ## Theming All plots are globally themeable, by setting their `camelcase(functionname)` to a theme. Usually, there are a few sub categories, for e.g. axis, text and subplots. !!! warning Make sure, that you spell names correctly and fully construct the named tuples in the calls. E.g. `(color=:red)` is _not_ a named tuple - it needs to be `(color=:red,)`. Misspelled names and badly constructed named tuples are not easy to error on, since those theming attributes are global, and may be valid for other plots. ```@example 1 with_theme( ConfusionMatrix = ( Text = ( color=:yellow, ), Heatmap = ( colormap=:greens, ), Axis = ( backgroundcolor=:black, xticklabelrotation=0.0, ) ) ) do plot_confusion_matrix(confusion, classes, :Row) end ``` # Reliability calibration curves ```@docs Lighthouse.plot_reliability_calibration_curves ``` ```@example 1 using Lighthouse: plot_reliability_calibration_curves classes = ["class $i" for i in 1:5] curves = [(LinRange(0, 1, 10), range(0, stop=i/2, length=10) .+ (stable_randn(10) .* 0.1)) for i in -1:3] plot_reliability_calibration_curves( curves, stable_rand(5), classes ) ``` Note that all curve plot types accepts these types: ```@docs Lighthouse.XYVector Lighthouse.SeriesCurves ``` ## Theming All generic series and axis attributes can be themed via `SeriesPlot.Series` / `SeriesPlot.Axis`. You can have a look at [the series doc to get an idea about the applicable attributes](http://makie.juliaplots.org/stable/plotting_functions/series.html). To style specifics of a subplot inside the curve plot, e.g. the ideal lineplot, one can use the camel case function name (without `plot_`) and pass those attributes there. So e.g the `ideal` curve inside the reliability curve can be themed like this: ```@example 1 # The axis is getting created in the seriesplot, # to always have these kind of probabilistic series have the same axis series_theme = ( Axis = ( backgroundcolor = (:gray, 0.1), bottomspinevisible = false, leftspinevisible = false, topspinevisible = false, rightspinevisible = false, ), Series = ( color=:darktest, marker=:circle ) ) with_theme( ReliabilityCalibrationCurves = ( Ideal = ( color=:red, linewidth=3 ), ), SeriesPlot = series_theme ) do plot_reliability_calibration_curves( curves, stable_rand(5), classes ) end ``` # Binary Discrimination Calibration Curves ```@docs Lighthouse.plot_binary_discrimination_calibration_curves ``` ```@example 1 using Lighthouse: plot_binary_discrimination_calibration_curves Lighthouse.plot_binary_discrimination_calibration_curves( curves[3], stable_rand(5), curves[[1, 2, 4, 5]], nothing, nothing, "", ) ``` # PR curves ```@docs Lighthouse.plot_pr_curves ``` ```@example 1 using Lighthouse: plot_pr_curves plot_pr_curves( curves, classes ) ``` ## Theming ```@example 1 # The plots with only a series don't have a special keyword with_theme(SeriesPlot = series_theme) do plot_pr_curves( curves, classes ) end ``` # ROC curves ```@docs Lighthouse.plot_roc_curves ``` ```@example 1 using Lighthouse: plot_roc_curves plot_roc_curves( curves, stable_rand(5), classes, legend=:lt) ``` ## Theming ```@example 1 # The plots with only a series don't have a special keyword with_theme(SeriesPlot = series_theme) do plot_roc_curves( curves, stable_rand(5), classes, legend=:lt) end ``` # Kappas (per expert agreement) ```@docs Lighthouse.plot_kappas ``` ```@example 1 using Lighthouse: plot_kappas plot_kappas(stable_rand(5), classes) ``` ```@example 1 using Lighthouse: plot_kappas plot_kappas(stable_rand(5), classes, stable_rand(5)) ``` ## Theming ```@example 1 with_theme( Kappas = ( Axis = ( xticklabelsvisible=false, xticksvisible=false, leftspinevisible = false, rightspinevisible = false, bottomspinevisible = false, topspinevisible = false, ), Text = ( color = :blue, ), BarPlot = (color=[:black, :green],) )) do plot_kappas((1:5) ./ 5 .- 0.1, classes, (1:5) ./ 5) end ``` # Evaluation metrics plot ```@docs Lighthouse.evaluation_metrics_plot ``` ```@example 1 using Lighthouse: evaluation_metrics_plot data = Dict{String, Any}() data["confusion_matrix"] = stable_rand(0:100, 5, 5) data["class_labels"] = classes data["per_class_kappas"] = stable_rand(5) data["multiclass_kappa"] = stable_rand() data["per_class_IRA_kappas"] = stable_rand(5) data["multiclass_IRA_kappas"] = stable_rand() data["per_class_pr_curves"] = curves data["per_class_roc_curves"] = curves data["per_class_roc_aucs"] = stable_rand(5) data["per_class_reliability_calibration_curves"] = curves data["per_class_reliability_calibration_scores"] = stable_rand(5) evaluation_metrics_plot(data) ``` Optionally, one can also add a binary discrimination calibration curve plot: ```@example 1 data["discrimination_calibration_curve"] = (LinRange(0, 1, 10), LinRange(0,1, 10) .+ 0.1randn(10)) data["per_expert_discrimination_calibration_curves"] = curves # These are currently not used in plotting, but are still passed to `plot_binary_discrimination_calibration_curves`! data["discrimination_calibration_score"] = missing data["optimal_threshold_class"] = 1 data["per_expert_discrimination_calibration_scores"] = missing data["optimal_threshold"] = missing evaluation_metrics_plot(data) ``` Plots can also be generated directly from an `EvaluationV1`: ```@example 1 data_row = EvaluationV1(data) evaluation_metrics_plot(data_row) ```
Lighthouse
https://github.com/beacon-biosignals/Lighthouse.jl.git
[ "MIT" ]
1.0.0
5bd6f2605028136b4bfae88c373f7ff1a85faad9
code
13373
module LatticeAnimals using Plots using DataStructures using Preferences using ProgressMeter export setDimension, Poly, Polyomino, Polyhex, polyPlot """ setDimension(d) Set the number of dimensions for the polyforms as a disk-persistent setting. A rebuilt of the package is necessary afterwards # Arguments * `d`: Number of dimensions """ function setDimension(d::Int64) if !(d >= 2) throw(ArgumentError("Invalid dimension: $d")) end # Set it in our runtime values, as well as saving it to disk @set_preferences!("dimension" => d) @info("New dimension set; restart your Julia session for this change to take effect!") end const d = @load_preference("dimension", 2) """ Poly(tiles, perimeter, holes) Struct to represent a d-dimensional polyform (Animal lattice). # Arguments * `tiles`: Lattice points which are part of the polyform * `perimeter`: Lattice points which are in the side perimeter of the polyform, so are neighboring a tile in the polyform * `holes`: Number of d-dimensional holes """ mutable struct Poly tiles::Set{NTuple{d, Int64}} perimeter::Set{NTuple{d, Int64}} holes::Int64 end """ Poly(n, p, basis, neighbours; doPlot) Generate a random d-dimensional polyform of size n from the percolation distribution at p using the Metropolis algorithm. neighbours is a list of coordinate differences to each respective neighbouring lattice point defined by the lattice and should be sorted clock-wise to improve performance of the connectivity checks during generation. The default mixing time is 2*n^2 # Arguments * `n`: Size of the polyform * `p`: Percolation factor in [0, 1) * `basis`: Lattice basis of the polyform * `neighbours`: List of difference to the respective neighbouring tiles for the current polyform * `doPlot`: If a scatter plot visualizing the polyform should be created (only available for 2d-polyforms) """ function Poly(n::Int64, p::Float64, basis::Matrix{Float64}, neighbours::Vector{NTuple{d, Int64}}; doPlot = false) # Initialize tiles as line tiles = Set{NTuple{d, Int64}}() for i in 0 : n - 1 push!(tiles, Tuple(fill(0, d)) .+ i .* neighbours[1]) end # Determine initial perimeter perimeter = Set{NTuple{d, Int64}}() for tile in tiles for neighbour in neighbours neighbour_tile = tile .+ neighbour if !(neighbour_tile in tiles) push!(perimeter, neighbour_tile) end end end @showprogress 1 "Shuffling..." for _ in 1 : floor(Int, 2 * n^2) while !shuffle(tiles, perimeter, p, neighbours) # Keep trying shuffle until it succeeds end end if doPlot polyPlot(tiles, basis, "$p-$(Dates.format(now(), "HH-MM-SS-MS"))-plot.png") #polyPlot(tiles, perimeter, basis, "$p-$(Dates.format(now(), "HH-MM-SS-MS"))-plot.png") end Poly(tiles, perimeter, holes(tiles, neighbours)) end """ Polyomino(n, p) Generate a random polyomino of size n from the percolation distribution at p using the Metropolis algorithm. The basis consits of the two unit-vectors as columns in a matrix. The four neighbours are then specified each as a linear combination of the basis vectors. # Arguments * `n`: Size of the polyomino * `p`: Percolation factor in [0, 1) """ function Polyomino(n::Int64, p::Float64) Poly(n, p, [1. 0.; 0. 1.], [(1, 0), (0, -1), (-1, 0), (0, 1)]) end """ Polyhex(n, p) Generate a random polyhex of size n from the percolation distribution at p using the Metropolis algorithm. The basis consits of the first unit vector and the vector of length 1 at 120 degrees to the left. The six neighbours are then specified each as a linear combination of the basis vectors. # Arguments * `n`: Size of the polyhex * `p`: Percolation factor in [0, 1) """ function Polyhex(n::Int64, p::Float64) Poly(n, p, [1. -1/2; 0. sqrt(3)/2], [(1, 0), (0, -1), (-1, -1), (-1, 0), (0, 1), (1, 1)]) end """ boundingBox(tiles) Calculate the smallest d-dimensional bounding box enclosing the polyform and return it as (min, max) pair for each dimension. # Arguments * `tiles`: Lattice points in polyform """ function boundingBox(tiles::Set{NTuple{d, Int64}}) # Initialize vectors for min and max with extreme values minVec = fill(typemax(Int), d) maxVec = fill(typemin(Int), d) for tile in tiles for i in 1:d minVec[i] = min(minVec[i], tile[i]) maxVec[i] = max(maxVec[i], tile[i]) end end return [(minVec[i] => maxVec[i]) for i in 1:d] end """ polyPlot(tiles, basis, path) Represent 2-dimensional polyform with a scatter plot. # Arguments * `tiles`: Lattice points in polyform * `basis`: Lattice basis of the polyform * `path`: Output path """ function polyPlot(tiles::Set{NTuple{d, Int64}}, basis::Matrix{Float64}, path::String) @assert d == 2 "Only 2D-Plotting is supported" # Transform tile coordinates using lattice basis coords = [basis * [tile...] for tile in tiles] # Extract transformed x and y coordinates xCoords = [c[1] for c in coords] yCoords = [c[2] for c in coords] # Create the plot pl = scatter(xCoords, yCoords, title="Polyform", legend=false, xlabel="", ylabel="", aspect_ratio=:equal) savefig(pl, path) end """ polyPlot(tiles, basis, path) Represent 2-dimensional polyform (blue) and its side perimeter (red) with a scatter plot. # Arguments * `tiles`: Lattice points in polyform * `perimeter`: Lattice points in side perimeter * `basis`: Lattice basis of the polyform * `path`: Output path """ function polyPlot(tiles::Set{NTuple{d, Int64}}, perimeter::Set{NTuple{d, Int64}}, basis::Matrix{Float64}, path::String) @assert d == 2 "Only 2D-Plotting is supported" # Transform tile coordinates using lattice basis tileCoords = [basis * [tile...] for tile in tiles] perimeterCoords = [basis * [adj...] for adj in perimeter] # Extract transformed x and y coordinates for tiles xCoordsTiles = [c[1] for c in tileCoords] yCoordsTiles = [c[2] for c in tileCoords] # Extract transformed x and y coordinates for perimeter xCoordsPeri = [c[1] for c in perimeterCoords] yCoordsPeri = [c[2] for c in perimeterCoords] # Create the plot with tiles in blue and perimeter in red pl = scatter(xCoordsTiles, yCoordsTiles, color=:blue, label="Tiles", marker=:circle, aspect_ratio=:equal) scatter!(pl, xCoordsPeri, yCoordsPeri, color=:red, label="Perimeter", marker=:square) title!(pl, "Polyform") xlabel!(pl, "") ylabel!(pl, "") savefig(pl, path) end """ bfs(tiles, start, finish, neighbours) Determine if a path in the polyform exists connecting the lattice point start and the lattice point end using Breath-First Search. # Arguments * `tiles`: Lattice points in polyform * `start`: Starting point of search * `finish`: Ending point of search * `neighbours`: List of difference to the respective neighbouring tiles for the current polyform """ @inline function bfs(tiles::Set{NTuple{d, Int64}}, start::NTuple{d, Int64}, finish::NTuple{d, Int64}, neighbours::Vector{NTuple{d, Int64}}) q = Queue{NTuple{d, Int64}}() done = Set{NTuple{d, Int64}}() enqueue!(q, start) push!(done, start) while !isempty(q) tile = dequeue!(q) if tile == finish return true end for n in neighbours nTile = tile .+ n if (nTile in tiles) && !(nTile in done) enqueue!(q, nTile) push!(done, nTile) end end end return false end """ shuffle(tiles, perimeter, p, neighbours) Execute one Markov step of the Metropolis algorithm: 1) Uniformly at random, select a tile, x, in the polyform A 2) Uniformly at random, select a tile, y, on the site perimeter of A \\setminus {x} 3) If B = (A \\setminus {x}) U {y} is a still connected, then accept it as the next polyform with probability min(1, (1-p)^(t_B-t_A)), where t_A and t_B are the site perimeters of A and B, respectively. Otherwise, keep the current polyform A. # Arguments * `tiles`: Lattice points in polyform * `perimeter`: Lattice points in side perimeter * `p`: Percolation factor in [0, 1) * `neighbours`: List of difference to the respective neighbouring tiles for the current polyform """ @inline function shuffle(tiles::Set{NTuple{d, Int64}}, perimeter::Set{NTuple{d, Int64}}, p::Float64, neighbours::Vector{NTuple{d, Int64}}) tA = length(perimeter) # Step 1: Uniformly at random, select a tile, x, in the polyform A x = rand(tiles) delete!(tiles, x) push!(perimeter, x) # removed cell will always become part of side parameter delPerimeter = Vector{NTuple{d, Int64}}() # tiles to be removed from side perimeter for neighbour in neighbours neighbourTile = x .+ neighbour # neighbours of removed tile without any other neighbours in polyform if !any(neighbourTile .+ n in tiles for n in neighbours) && (neighbourTile in perimeter) push!(delPerimeter, neighbourTile) end end for tile in delPerimeter delete!(perimeter, tile) end # Step 2: Uniformly at random, select a tile, y, on the site perimeter of A \ {x} y = rand(perimeter) delete!(perimeter, y) push!(tiles, y) # tiles to be added to the side perimeter addPerimeter = Vector{NTuple{d, Int64}}() for neighbour in neighbours neighbourTile = y .+ neighbour # neighbours of added tile which aren't in polyform and not already in perimeter if !(neighbourTile in tiles) && !(neighbourTile in perimeter) push!(addPerimeter, neighbourTile) end end for tile in addPerimeter push!(perimeter, tile) end # Step 3: If B = (A \ {x}) U {y} is a polyform, then accept it as the next polyform with probability min(1, (1-p)^(t_B-t_A)), where # t_A and t_B are the site perimeters of A and B, respectively. Otherwise, keep the current polynomino A. # Find x's neighboring tiles in tiles xNeighbours = [x .+ n for n in neighbours if (x .+ n in tiles)] # Check for circular connectivity among the selected neighbours allConnected = true if length(xNeighbours) > 1 for i in 1:length(xNeighbours) if !bfs(tiles, xNeighbours[i], xNeighbours[i % length(xNeighbours) + 1], neighbours) allConnected = false break end end end if allConnected # difference in side perimeter diff = length(perimeter) - tA accepted = true # accepted shuffle with probability (1 - p)^diff if !iszero(p) accepted = rand() < (1 - p)^diff; end if accepted return true end end # Undo all moves if not connected or not accepted # Revert to A \ {x} delete!(tiles, y) for tile in addPerimeter delete!(perimeter, tile) end push!(perimeter, y) # Revert to A push!(tiles, x) for tile in delPerimeter push!(perimeter, tile) end delete!(perimeter, x) return false end """ holes(tiles, neighbours) Count the number of d-dimensional holes of the polyform. This is done by determining the number of connected components of the complement, so all lattice points not in the polyform. # Arguments * `tiles`: Lattice points in polyform * `neighbours`: List of difference to the respective neighbouring tiles for the current polyform """ function holes(tiles::Set{NTuple{d, Int64}}, neighbours::Vector{NTuple{d, Int64}}) bounds = boundingBox(tiles) m = length(bounds) # Adjust bounds to include the boundary of the bounding box expandedBounds = [(b.first - 1 => b.second + 1) for b in bounds] # Generate all points within the expanded bounding box ranges = [b.first : b.second for b in expandedBounds] gridPoints = Set{NTuple{m, Int64}}(Iterators.product(ranges...)) # Difference set to find the points not occupied by tiles in the bounding box emptyPoints = setdiff(gridPoints, tiles) # BFS to count connected components of empty points function countComponents(points) visited = Set{NTuple{d, Int64}}() components = 0 while !isempty(points) startPoint = pop!(points) queue = Queue{NTuple{d, Int64}}() enqueue!(queue, startPoint) push!(visited, startPoint) while !isempty(queue) current = dequeue!(queue) for neighbour in neighbours neighbourPoint = current .+ neighbour if neighbourPoint in points && !(neighbourPoint in visited) enqueue!(queue, neighbourPoint) push!(visited, neighbourPoint) end end end components += 1 points = setdiff(points, visited) end return components end # Count the connected components in the empty points numberOfHoles = countComponents(emptyPoints) - 1 return numberOfHoles end end # module LatticeAnimals
LatticeAnimals
https://github.com/PhoenixSmaug/LatticeAnimals.jl.git
[ "MIT" ]
1.0.0
5bd6f2605028136b4bfae88c373f7ff1a85faad9
docs
1369
# LatticeAnimals.jl This packages generates random lattice animals (or sometimes called [polyforms](https://en.wikipedia.org/wiki/Polyform)) from the standard percolation model using the [Metropolis-Hasting](https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm) algorithm. The polyform is specified by its lattice basis matrix and a list of neighbours, where each entry is a linear combination of basis vectors leading to a neighbouring lattice point. So for example the square tesselation of the polyomino squares has the basis matrix $B$ and neighbours $N$: ```math B = \begin{pmatrix}1 & 0 \\0 & 1 \end{pmatrix} \quad \quad \quad N = \left\{\begin{pmatrix}1 \\0 \end{pmatrix}, \begin{pmatrix}0 \\1 \end{pmatrix}, \begin{pmatrix}-1 \\0 \end{pmatrix}, \begin{pmatrix}0 \\-1 \end{pmatrix}\right\} ``` The following functions are exported: * `Poly(n, p, basis, neighbours)`: Generate a random polyform - specified in the basis-neighbours notation - of size n and percolation factor p * `Polyomino(n, p)`: Generate a random polyomino of size n and percolation factor p * `Polyhex(n, p)`: Generate a random polyhex of size n and percolation factor p * `polyPlot(tiles, basis, path)`: Draw the polyform as a scatter plot and save to path * `setDimension(d)`: Change the number of dimensions (default value: 2), a Julia restart is required afterwards
LatticeAnimals
https://github.com/PhoenixSmaug/LatticeAnimals.jl.git
[ "MIT" ]
1.1.0
782dd5f4561f5d267313f23853baaaa4c52ea621
code
231
using Documenter, DiffResults makedocs( modules=[DiffResults], doctest = false, sitename = "DiffResults", pages = ["Documentation" => "index.md"]) deploydocs( repo = "github.com/JuliaDiff/DiffResults.jl.git")
DiffResults
https://github.com/JuliaDiff/DiffResults.jl.git
[ "MIT" ]
1.1.0
782dd5f4561f5d267313f23853baaaa4c52ea621
code
11508
module DiffResults using StaticArraysCore: StaticArray, similar_type, Size ######### # Types # ######### abstract type DiffResult{O,V,D<:Tuple} end struct ImmutableDiffResult{O,V,D<:Tuple} <: DiffResult{O,V,D} value::V derivs::D # ith element = ith-order derivative function ImmutableDiffResult(value::V, derivs::NTuple{O,Any}) where {O,V} return new{O,V,typeof(derivs)}(value, derivs) end end mutable struct MutableDiffResult{O,V,D<:Tuple} <: DiffResult{O,V,D} value::V derivs::D # ith element = ith-order derivative function MutableDiffResult(value::V, derivs::NTuple{O,Any}) where {O,V} return new{O,V,typeof(derivs)}(value, derivs) end end ################ # Constructors # ################ """ DiffResult(value::Union{Number,AbstractArray}, derivs::Tuple{Vararg{Number}}) DiffResult(value::Union{Number,AbstractArray}, derivs::Tuple{Vararg{AbstractArray}}) Return `r::DiffResult`, with output value storage provided by `value` and output derivative storage provided by `derivs`. In reality, `DiffResult` is an abstract supertype of two concrete types, `MutableDiffResult` and `ImmutableDiffResult`. If all `value`/`derivs` are all `Number`s or `StaticArray`s, then `r` will be immutable (i.e. `r::ImmutableDiffResult`). Otherwise, `r` will be mutable (i.e. `r::MutableDiffResult`). Note that `derivs` can be provide in splatted form, i.e. `DiffResult(value, derivs...)`. """ DiffResult DiffResult(value::Number, derivs::Tuple{Vararg{Number}}) = ImmutableDiffResult(value, derivs) DiffResult(value::Number, derivs::Tuple{Vararg{StaticArray}}) = ImmutableDiffResult(value, derivs) DiffResult(value::StaticArray, derivs::Tuple{Vararg{StaticArray}}) = ImmutableDiffResult(value, derivs) DiffResult(value::Number, derivs::Tuple{Vararg{AbstractArray}}) = MutableDiffResult(value, derivs) DiffResult(value::AbstractArray, derivs::Tuple{Vararg{AbstractArray}}) = MutableDiffResult(value, derivs) DiffResult(value::Union{Number,AbstractArray}, derivs::Union{Number,AbstractArray}...) = DiffResult(value, derivs) """ GradientResult(x::AbstractArray) Construct a `DiffResult` that can be used for gradient calculations where `x` is the input to the target function. Note that `GradientResult` allocates its own storage; `x` is only used for type and shape information. If you want to allocate storage yourself, use the `DiffResult` constructor instead. """ GradientResult(x::AbstractArray) = DiffResult(first(x), similar(x)) GradientResult(x::StaticArray) = DiffResult(first(x), x) """ JacobianResult(x::AbstractArray) Construct a `DiffResult` that can be used for Jacobian calculations where `x` is the input to the target function. This method assumes that the target function's output dimension equals its input dimension. Note that `JacobianResult` allocates its own storage; `x` is only used for type and shape information. If you want to allocate storage yourself, use the `DiffResult` constructor instead. """ JacobianResult(x::AbstractArray) = DiffResult(similar(x), similar(x, length(x), length(x))) JacobianResult(x::StaticArray) = DiffResult(x, zeros(similar_type(typeof(x), Size(length(x),length(x))))) """ JacobianResult(y::AbstractArray, x::AbstractArray) Construct a `DiffResult` that can be used for Jacobian calculations where `x` is the input to the target function, and `y` is the output (e.g. when taking the Jacobian of `f!(y, x)`). Like the single argument version, `y` and `x` are only used for type and shape information and are not stored in the returned `DiffResult`. """ JacobianResult(y::AbstractArray, x::AbstractArray) = DiffResult(similar(y), similar(y, length(y), length(x))) JacobianResult(y::StaticArray, x::StaticArray) = DiffResult(y, zeros(similar_type(typeof(x), Size(length(y),length(x))))) """ HessianResult(x::AbstractArray) Construct a `DiffResult` that can be used for Hessian calculations where `x` is the input to the target function. Note that `HessianResult` allocates its own storage; `x` is only used for type and shape information. If you want to allocate storage yourself, use the `DiffResult` constructor instead. """ HessianResult(x::AbstractArray) = DiffResult(first(x), zeros(eltype(x), size(x)), similar(x, length(x), length(x))) HessianResult(x::StaticArray) = DiffResult(first(x), x, zeros(similar_type(typeof(x), Size(length(x),length(x))))) ############# # Interface # ############# @generated function tuple_eltype(x::Tuple, ::Type{Val{i}}) where {i} return quote $(Expr(:meta, :inline)) return $(x.parameters[i]) end end @generated function tuple_setindex(x::NTuple{N,Any}, y, ::Type{Val{i}}) where {N,i} T = x.parameters[i] new_tuple = Expr(:tuple, [ifelse(i == n, :(convert($T, y)), :(x[$n])) for n in 1:N]...) return quote $(Expr(:meta, :inline)) return $new_tuple end end Base.eltype(r::DiffResult) = eltype(typeof(r)) Base.eltype(::Type{D}) where {O,V,D<:DiffResult{O,V}} = eltype(V) Base.:(==)(a::DiffResult, b::DiffResult) = a.value == b.value && a.derivs == b.derivs Base.copy(r::DiffResult) = DiffResult(copy(r.value), map(copy, r.derivs)) # value/value! # #--------------# """ value(r::DiffResult) Return the primal value stored in `r`. Note that this method returns a reference, not a copy. """ value(r::DiffResult) = r.value """ value!(r::DiffResult, x) Return `s::DiffResult` with the same data as `r`, except for `value(s) == x`. This function may or may not mutate `r`. If `r::ImmutableDiffResult`, a totally new instance will be created and returned, whereas if `r::MutableDiffResult`, then `r` will be mutated in-place and returned. Thus, this function should be called as `r = value!(r, x)`. """ value!(r::MutableDiffResult, x::Number) = (r.value = x; return r) value!(r::MutableDiffResult, x::AbstractArray) = (copyto!(value(r), x); return r) value!(r::ImmutableDiffResult{O,V}, x::Union{Number,AbstractArray}) where {O,V} = ImmutableDiffResult(convert(V, x), r.derivs) """ value!(f, r::DiffResult, x) Equivalent to `value!(r::DiffResult, map(f, x))`, but without the implied temporary allocation (when possible). """ value!(f, r::MutableDiffResult, x::Number) = (r.value = f(x); return r) value!(f, r::MutableDiffResult, x::AbstractArray) = (map!(f, value(r), x); return r) value!(f, r::ImmutableDiffResult{O,V}, x::Number) where {O,V} = value!(r, convert(V, f(x))) value!(f, r::ImmutableDiffResult{O,V}, x::AbstractArray) where {O,V} = value!(r, convert(V, map(f, x))) # derivative/derivative! # #------------------------# """ derivative(r::DiffResult, ::Type{Val{i}} = Val{1}) Return the `ith` derivative stored in `r`, defaulting to the first derivative. Note that this method returns a reference, not a copy. """ derivative(r::DiffResult, ::Type{Val{i}} = Val{1}) where {i} = r.derivs[i] """ derivative!(r::DiffResult, x, ::Type{Val{i}} = Val{1}) Return `s::DiffResult` with the same data as `r`, except `derivative(s, Val{i}) == x`. This function may or may not mutate `r`. If `r::ImmutableDiffResult`, a totally new instance will be created and returned, whereas if `r::MutableDiffResult`, then `r` will be mutated in-place and returned. Thus, this function should be called as `r = derivative!(r, x, Val{i})`. """ function derivative!(r::MutableDiffResult, x::Number, ::Type{Val{i}} = Val{1}) where {i} r.derivs = tuple_setindex(r.derivs, x, Val{i}) return r end function derivative!(r::MutableDiffResult, x::AbstractArray, ::Type{Val{i}} = Val{1}) where {i} copyto!(derivative(r, Val{i}), x) return r end function derivative!(r::ImmutableDiffResult, x::Union{Number,StaticArray}, ::Type{Val{i}} = Val{1}) where {i} return ImmutableDiffResult(value(r), tuple_setindex(r.derivs, x, Val{i})) end function derivative!(r::ImmutableDiffResult, x::AbstractArray, ::Type{Val{i}} = Val{1}) where {i} T = tuple_eltype(r.derivs, Val{i}) return ImmutableDiffResult(value(r), tuple_setindex(r.derivs, T(x), Val{i})) end """ derivative!(f, r::DiffResult, x, ::Type{Val{i}} = Val{1}) Equivalent to `derivative!(r::DiffResult, map(f, x), Val{i})`, but without the implied temporary allocation (when possible). """ function derivative!(f, r::MutableDiffResult, x::Number, ::Type{Val{i}} = Val{1}) where {i} r.derivs = tuple_setindex(r.derivs, f(x), Val{i}) return r end function derivative!(f, r::MutableDiffResult, x::AbstractArray, ::Type{Val{i}} = Val{1}) where {i} map!(f, derivative(r, Val{i}), x) return r end function derivative!(f, r::ImmutableDiffResult, x::Number, ::Type{Val{i}} = Val{1}) where {i} return derivative!(r, f(x), Val{i}) end function derivative!(f, r::ImmutableDiffResult, x::StaticArray, ::Type{Val{i}} = Val{1}) where {i} return derivative!(r, map(f, x), Val{i}) end function derivative!(f, r::ImmutableDiffResult, x::AbstractArray, ::Type{Val{i}} = Val{1}) where {i} T = tuple_eltype(r.derivs, Val{i}) return derivative!(r, map(f, T(x)), Val{i}) end # special-cased methods # #-----------------------# """ gradient(r::DiffResult) Return the gradient stored in `r`. Equivalent to `derivative(r, Val{1})`. """ gradient(r::DiffResult) = derivative(r) """ gradient!(r::DiffResult, x) Return `s::DiffResult` with the same data as `r`, except `gradient(s) == x`. Equivalent to `derivative!(r, x, Val{1})`; see `derivative!` docs for aliasing behavior. """ gradient!(r::DiffResult, x) = derivative!(r, x) """ gradient!(f, r::DiffResult, x) Equivalent to `gradient!(r::DiffResult, map(f, x))`, but without the implied temporary allocation (when possible). Equivalent to `derivative!(f, r, x, Val{1})`; see `derivative!` docs for aliasing behavior. """ gradient!(f, r::DiffResult, x) = derivative!(f, r, x) """ jacobian(r::DiffResult) Return the Jacobian stored in `r`. Equivalent to `derivative(r, Val{1})`. """ jacobian(r::DiffResult) = derivative(r) """ jacobian!(r::DiffResult, x) Return `s::DiffResult` with the same data as `r`, except `jacobian(s) == x`. Equivalent to `derivative!(r, x, Val{1})`; see `derivative!` docs for aliasing behavior. """ jacobian!(r::DiffResult, x) = derivative!(r, x) """ jacobian!(f, r::DiffResult, x) Equivalent to `jacobian!(r::DiffResult, map(f, x))`, but without the implied temporary allocation (when possible). Equivalent to `derivative!(f, r, x, Val{1})`; see `derivative!` docs for aliasing behavior. """ jacobian!(f, r::DiffResult, x) = derivative!(f, r, x) """ hessian(r::DiffResult) Return the Hessian stored in `r`. Equivalent to `derivative(r, Val{2})`. """ hessian(r::DiffResult) = derivative(r, Val{2}) """ hessian!(r::DiffResult, x) Return `s::DiffResult` with the same data as `r`, except `hessian(s) == x`. Equivalent to `derivative!(r, x, Val{2})`; see `derivative!` docs for aliasing behavior. """ hessian!(r::DiffResult, x) = derivative!(r, x, Val{2}) """ hessian!(f, r::DiffResult, x) Equivalent to `hessian!(r::DiffResult, map(f, x))`, but without the implied temporary allocation (when possible). Equivalent to `derivative!(f, r, x, Val{2})`; see `derivative!` docs for aliasing behavior. """ hessian!(f, r::DiffResult, x) = derivative!(f, r, x, Val{2}) ################### # Pretty Printing # ################### Base.show(io::IO, r::ImmutableDiffResult) = print(io, "ImmutableDiffResult($(r.value), $(r.derivs))") Base.show(io::IO, r::MutableDiffResult) = print(io, "MutableDiffResult($(r.value), $(r.derivs))") end # module
DiffResults
https://github.com/JuliaDiff/DiffResults.jl.git
[ "MIT" ]
1.1.0
782dd5f4561f5d267313f23853baaaa4c52ea621
code
9943
using DiffResults, StaticArrays, Test using DiffResults: DiffResult, GradientResult, JacobianResult, HessianResult, value, value!, derivative, derivative!, gradient, gradient!, jacobian, jacobian!, hessian, hessian! @testset "DiffResult" begin k = 4 n0, n1, n2 = rand(), rand(), rand() x0, x1, x2 = rand(k), rand(k, k), rand(k, k, k) s0, s1, s2 = SVector{k}(rand(k)), SMatrix{k,k}(rand(k, k)), SArray{Tuple{k,k,k}}(rand(k, k, k)) rn = DiffResult(n0, n1, n2) rx = DiffResult(x0, x1, x2) rs = DiffResult(s0, s1, s2) rsmix = DiffResult(n0, s0, s1) issimilar(x, y) = typeof(x) == typeof(y) && size(x) == size(y) issimilar(x::DiffResult, y::DiffResult) = issimilar(value(x), value(y)) && all(issimilar, zip(x.derivs, y.derivs)) issimilar(t::Tuple) = issimilar(t...) @test rn === DiffResult(n0, n1, n2) @test rx == DiffResult(x0, x1, x2) @test rs === DiffResult(s0, s1, s2) @test rsmix === DiffResult(n0, s0, s1) @test issimilar(GradientResult(x0), DiffResult(first(x0), x0)) @test issimilar(JacobianResult(x0), DiffResult(x0, similar(x0, k, k))) @test issimilar(JacobianResult(similar(x0, k + 1), x0), DiffResult(similar(x0, k + 1), similar(x0, k + 1, k))) @test issimilar(HessianResult(x0), DiffResult(first(x0), x0, similar(x0, k, k))) @test GradientResult(s0) === DiffResult(first(s0), s0) @test JacobianResult(s0) === DiffResult(s0, zeros(SMatrix{k,k,Float64})) @test JacobianResult(SVector{k+1}(vcat(s0, 0.0)), s0) === DiffResult(SVector{k+1}(vcat(s0, 0.0)), zeros(SMatrix{k+1,k,Float64})) @test HessianResult(s0) === DiffResult(first(s0), s0, zeros(SMatrix{k,k,Float64})) @test eltype(rn) === typeof(n0) @test eltype(rx) === eltype(x0) @test eltype(rs) === eltype(s0) rn_copy = copy(rn) @test rn == rn_copy @test rn === rn_copy rx_copy = copy(rx) @test rx == rx_copy @test rx !== rx_copy rs_copy = copy(rs) @test rs == rs_copy @test rs === rs_copy rsmix_copy = copy(rsmix) @test rsmix == rsmix_copy @test rsmix === rsmix_copy @testset "value/value!" begin @test value(rn) === n0 @test value(rx) === x0 @test value(rs) === s0 @test value(rsmix) === n0 rn = value!(rn, n1) @test value(rn) === n1 rn = value!(rn, n0) x0_new, x0_copy = rand(k), copy(x0) rx = value!(rx, x0_new) @test value(rx) === x0 == x0_new rx = value!(rx, x0_copy) s0_new = rand(k) rs = value!(rs, s0_new) @test value(rs) == s0_new @test typeof(value(rs)) === typeof(s0) rs = value!(rs, s0) rsmix = value!(rsmix, n1) @test value(rsmix) === n1 rsmix = value!(rsmix, n0) rn = value!(exp, rn, n1) @test value(rn) === exp(n1) rn = value!(rn, n0) x0_new, x0_copy = rand(k), copy(x0) rx = value!(exp, rx, x0_new) @test value(rx) === x0 == exp.(x0_new) rx = value!(rx, x0_copy) s0_new = rand(k) rs = value!(exp, rs, s0_new) @test value(rs) == exp.(s0_new) @test typeof(value(rs)) === typeof(s0) rs = value!(rs, s0) rsmix = value!(exp, rsmix, n1) @test value(rsmix) === exp(n1) rsmix = value!(rsmix, n0) ksqrt = Int(sqrt(k)) T = typeof(SMatrix{ksqrt,ksqrt}(rand(ksqrt,ksqrt))) rs_new = value!(rs, convert(T, value(rs))) @test rs_new === rs end @testset "derivative/derivative!" begin @test derivative(rn) === n1 @test derivative(rn, Val{2}) === n2 @test derivative(rx) === x1 @test derivative(rx, Val{2}) === x2 @test derivative(rs) === s1 @test derivative(rs, Val{2}) === s2 @test derivative(rsmix) === s0 @test derivative(rsmix, Val{2}) === s1 rn = derivative!(rn, n0) @test derivative(rn) === n0 rn = derivative!(rn, n1) x1_new, x1_copy = rand(k, k), copy(x1) rx = derivative!(rx, x1_new) @test derivative(rx) === x1 == x1_new rx = derivative!(rx, x1_copy) s1_new = rand(k, k) rs = derivative!(rs, s1_new) @test derivative(rs) == s1_new @test typeof(derivative(rs)) === typeof(s1) rs = derivative!(rs, s1) s0_new = rand(k) rsmix = derivative!(rsmix, s0_new) @test derivative(rsmix) == s0_new @test typeof(derivative(rsmix)) === typeof(s0) rsmix = derivative!(rsmix, s0) rn = derivative!(rn, n1, Val{2}) @test derivative(rn, Val{2}) === n1 rn = derivative!(rn, n2, Val{2}) x2_new, x2_copy = rand(k, k, k), copy(x2) rx = derivative!(rx, x2_new, Val{2}) @test derivative(rx, Val{2}) === x2 == x2_new rx = derivative!(rx, x2_copy, Val{2}) s2_new = rand(k, k, k) rs = derivative!(rs, s2_new, Val{2}) @test derivative(rs, Val{2}) == s2_new @test typeof(derivative(rs, Val{2})) === typeof(s2) rs = derivative!(rs, s2, Val{2}) s1_new = rand(k, k) rsmix = derivative!(rsmix, s1_new, Val{2}) @test derivative(rsmix, Val{2}) == s1_new @test typeof(derivative(rsmix, Val{2})) === typeof(s1) rsmix = derivative!(rsmix, s1, Val{2}) rn = derivative!(exp, rn, n0) @test derivative(rn) === exp(n0) rn = derivative!(rn, n1) x1_new, x1_copy = rand(k, k), copy(x1) rx = derivative!(exp, rx, x1_new) @test derivative(rx) === x1 == exp.(x1_new) rx = derivative!(exp, rx, x1_copy) s1_new = rand(k, k) rs = derivative!(exp, rs, s1_new) @test derivative(rs) == exp.(s1_new) @test typeof(derivative(rs)) === typeof(s1) rs = derivative!(exp, rs, s1) s0_new = rand(k) rsmix = derivative!(exp, rsmix, s0_new) @test derivative(rsmix) == exp.(s0_new) @test typeof(derivative(rsmix)) === typeof(s0) rsmix = derivative!(exp, rsmix, s0) rn = derivative!(exp, rn, n1, Val{2}) @test derivative(rn, Val{2}) === exp(n1) rn = derivative!(rn, n2, Val{2}) x2_new, x2_copy = rand(k, k, k), copy(x2) rx = derivative!(exp, rx, x2_new, Val{2}) @test derivative(rx, Val{2}) === x2 == exp.(x2_new) rx = derivative!(exp, rx, x2_copy, Val{2}) s2_new = rand(k, k, k) rs = derivative!(exp, rs, s2_new, Val{2}) @test derivative(rs, Val{2}) == exp.(s2_new) @test typeof(derivative(rs, Val{2})) === typeof(s2) rs = derivative!(exp, rs, s2, Val{2}) s1_new = rand(k, k) rsmix = derivative!(exp, rsmix, s1_new, Val{2}) @test derivative(rsmix, Val{2}) == exp.(s1_new) @test typeof(derivative(rsmix, Val{2})) === typeof(s1) rsmix = derivative!(exp, rsmix, s1, Val{2}) end @testset "gradient/gradient!" begin x1_new, x1_copy = rand(k, k), copy(x1) rx = gradient!(rx, x1_new) @test gradient(rx) === x1 == x1_new rx = gradient!(rx, x1_copy) s1_new = rand(k, k) rs = gradient!(rs, s1_new) @test gradient(rs) == s1_new @test typeof(gradient(rs)) === typeof(s1) rs = gradient!(rs, s1) x1_new, x1_copy = rand(k, k), copy(x1) rx = gradient!(exp, rx, x1_new) @test gradient(rx) === x1 == exp.(x1_new) rx = gradient!(exp, rx, x1_copy) s0_new = rand(k) rsmix = gradient!(exp, rsmix, s0_new) @test gradient(rsmix) == exp.(s0_new) @test typeof(gradient(rsmix)) === typeof(s0) rsmix = gradient!(exp, rsmix, s0) T = typeof(SVector{k*k}(rand(k*k))) rs_new = gradient!(rs, convert(T, gradient(rs))) @test rs_new === rs end @testset "jacobian/jacobian!" begin x1_new, x1_copy = rand(k, k), copy(x1) rx = jacobian!(rx, x1_new) @test jacobian(rx) === x1 == x1_new rx = jacobian!(rx, x1_copy) s1_new = rand(k, k) rs = jacobian!(rs, s1_new) @test jacobian(rs) == s1_new @test typeof(jacobian(rs)) === typeof(s1) rs = jacobian!(rs, s1) x1_new, x1_copy = rand(k, k), copy(x1) rx = jacobian!(exp, rx, x1_new) @test jacobian(rx) === x1 == exp.(x1_new) rx = jacobian!(exp, rx, x1_copy) s0_new = rand(k) rsmix = jacobian!(exp, rsmix, s0_new) @test jacobian(rsmix) == exp.(s0_new) @test typeof(jacobian(rsmix)) === typeof(s0) rsmix = jacobian!(exp, rsmix, s0) T = typeof(SVector{k*k}(rand(k*k))) rs_new = jacobian!(rs, convert(T, jacobian(rs))) @test rs_new === rs end @testset "hessian/hessian!" begin x2_new, x2_copy = rand(k, k, k), copy(x2) rx = hessian!(rx, x2_new) @test hessian(rx) === x2 == x2_new rx = hessian!(rx, x2_copy) s2_new = rand(k, k, k) rs = hessian!(rs, s2_new) @test hessian(rs) == s2_new @test typeof(hessian(rs)) === typeof(s2) rs = hessian!(rs, s2) x2_new, x2_copy = rand(k, k, k), copy(x2) rx = hessian!(exp, rx, x2_new) @test hessian(rx) === x2 == exp.(x2_new) rx = hessian!(exp, rx, x2_copy) s1_new = rand(k, k) rsmix = hessian!(exp, rsmix, s1_new) @test hessian(rsmix) == exp.(s1_new) @test typeof(hessian(rsmix)) === typeof(s1) rsmix = hessian!(exp, rsmix, s1) T = typeof(SVector{k*k*k}(rand(k*k*k))) rs_new = hessian!(rs, convert(T, hessian(rs))) @test rs_new === rs @test size(gradient(HessianResult(x0))) == size(x0) @test size(gradient(HessianResult(x1))) == size(x1) @test size(gradient(HessianResult(x2))) == size(x2) @test HessianResult(Float32.(x0)).derivs[1] isa Vector{Float32} end end
DiffResults
https://github.com/JuliaDiff/DiffResults.jl.git
[ "MIT" ]
1.1.0
782dd5f4561f5d267313f23853baaaa4c52ea621
docs
947
# DiffResults ![CI](https://github.com/JuliaDiff/DiffResults.jl/workflows/CI/badge.svg) [![Coverage Status](https://coveralls.io/repos/github/JuliaDiff/DiffResults.jl/badge.svg?branch=master)](https://coveralls.io/github/JuliaDiff/DiffResults.jl?branch=master) [![](https://img.shields.io/badge/docs-stable-blue.svg)](http://www.juliadiff.org/DiffResults.jl/stable) [![](https://img.shields.io/badge/docs-latest-blue.svg)](http://www.juliadiff.org/DiffResults.jl/latest) Many differentiation techniques can calculate primal values and multiple orders of derivatives simultaneously. In other words, there are techniques for computing `f(x)`, `∇f(x)` and `H(f(x))` in one fell swoop! For this purpose, DiffResults provides the `DiffResult` type, which can be passed to in-place differentiation methods instead of an output buffer. The method then loads all computed results into the given `DiffResult`, which the user can then query afterwards.
DiffResults
https://github.com/JuliaDiff/DiffResults.jl.git
[ "MIT" ]
1.1.0
782dd5f4561f5d267313f23853baaaa4c52ea621
docs
2050
# DiffResults ```@meta CurrentModule = DiffResults ``` Many differentiation techniques can calculate primal values and multiple orders of derivatives simultaneously. In other words, there are techniques for computing `f(x)`, `∇f(x)` and `H(f(x))` in one fell swoop! For this purpose, DiffResults provides the `DiffResult` type, which can be passed to in-place differentiation methods instead of an output buffer. The method then loads all computed results into the given `DiffResult`, which the user can then query afterwards. Here's an example of `DiffResult` in action using ForwardDiff: ```julia julia> using ForwardDiff, DiffResults julia> f(x) = sum(sin, x) + prod(tan, x) * sum(sqrt, x); julia> x = rand(4); # construct a `DiffResult` with storage for a Hessian, gradient, # and primal value based on the type and shape of `x`. julia> result = DiffResults.HessianResult(x) # Instead of passing an output buffer to `hessian!`, we pass `result`. # Note that we re-alias to `result` - this is important! See `hessian!` # docs for why we do this. julia> result = ForwardDiff.hessian!(result, f, x); # ...and now we can get all the computed data from `result` julia> DiffResults.value(result) == f(x) true julia> DiffResults.gradient(result) == ForwardDiff.gradient(f, x) true julia> DiffResults.hessian(result) == ForwardDiff.hessian(f, x) true ``` The rest of this document describes the API for constructing, accessing, and mutating `DiffResult` instances. For details on how to use a `DiffResult` with a specific package's methods, please consult that package's documentation. ## Constructing a `DiffResult` ```@docs DiffResults.DiffResult DiffResults.JacobianResult DiffResults.GradientResult DiffResults.HessianResult ``` ## Accessing data from a `DiffResult` ```@docs DiffResults.value DiffResults.derivative DiffResults.gradient DiffResults.jacobian DiffResults.hessian ``` ## Mutating a `DiffResult` ```@docs DiffResults.value! DiffResults.derivative! DiffResults.gradient! DiffResults.jacobian! DiffResults.hessian! ```
DiffResults
https://github.com/JuliaDiff/DiffResults.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
code
971
using Documenter, SIMDscan, DocumenterCitations DocMeta.setdocmeta!(SIMDscan, :DocTestSetup, :(using SIMDscan); recursive=true) bib = CitationBibliography(joinpath(@__DIR__,"simd.bib"), style=:authoryear) makedocs(; modules=[SIMDscan], authors="Paul Schrimpf <[email protected]> and contributors", repo=Remotes.GitHub("schrimpf","SIMDscan.jl"), sitename="SIMDscan.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", "Benchmarks" => "benchmarks.md", "API" => "functions.md", "References" => "references.md" ], plugins=[bib] ) deploydocs(; repo="github.com/schrimpf/SIMDscan.jl", devbranch="main" )
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
code
87
module SIMDscan using SIMD export scan_serial!, scan_simd! include("scan.jl") end
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
code
4933
@doc raw""" scan_serial!(f::F,x::AbstractVector) where {F <: Function} Replaces the vector `x` with the scan of `x` using `f`. That is, ``` x[1] f(x[2],x[1]) f(x[3],f(x[2],x[1])) ⋮ ``` # Examples ```jl-doctest julia> scan_serial!(+,[1,2,3,4]) 4-element Vector{Int64}: 1 3 6 10 ``` """ function scan_serial!(f::F,x::AbstractVector) where {F <: Function} for i=2:length(x) x[i] = f(x[i],x[i-1]) end return(x) end @doc raw""" scan_serial!(f::F,x::NTuple{K, AbstractVector{T}}) where {F <: Function, K, T} In place scan for a function that takes two `K` tuples as arguments. Replaces the tuple of vectors `x` with the scan. # Examples ```jl-doctest julia> scan_serial!((x,y)->(x[1]+y[1], x[2]*y[2]),([1,2,3,4],[1,2,3,4])) ([1, 3, 6, 10], [1, 2, 6, 24]) ``` """ function scan_serial!(f::F,x::NTuple{K, AbstractVector{T}}) where {F <: Function, K, T} @assert length(unique(length.(x)))==1 for i=2:length(x[1]) setindex!.(x, f(getindex.(x,i-1),getindex.(x,i)), i) end return(x) end m_to_n(::Val{N},::Val{N}) where N = (N,) function m_to_n(::Val{M},::Val{N}) where {M, N} @assert M < N (m_to_n(Val(M),Val(N-1))..., N) end function shiftleftmask(::Val{N}, ::Val{S}) where {N,S} @assert S>0 Val((m_to_n(Val(N),Val(N+S-1))...,m_to_n(Val(0),Val(N-S-1))...)) end @generated function scan_vec(f::F, x::NTuple{K, Vec{N,T}},identity::NTuple{K, Vec{N,T}}) where {F, K, N, T} @assert N & (N-1) == 0 # check that N is a power of 2 ex= :( shx=shufflevector.(x,identity, shiftleftmask(Val(N),Val(1))); x=f(shx,x); ) for j=1:(ceil(Int,log2(N))-1) ex= :($(ex); shx=shufflevector.(x,identity, shiftleftmask(Val(N),Val($(2^j)))); x = f(shx,x); ) end return(ex) end @generated function scan_vec(f::F, x::Vec{N,T},identity::Vec{N,T}) where {F, N, T} @assert N & (N-1) == 0 # check that N is a power of 2 ex= :(x = f(shufflevector(x,identity, shiftleftmask(Val(N),Val(1))),x)) for j=1:(ceil(Int,log2(N))-1) ex = :($(ex); x = f(shufflevector(x,identity, shiftleftmask(Val(N),Val($(2^j)))),x)) end return(ex) end @doc raw""" scan_simd!(f::F, x::NTuple{K, AbstractVector{T}}, v::Val{N}=Val(8); identity::NTuple{K,T}=ntuple(i->zero(T),Val(K))) where {F, K, T, N} In place scan for an associative function that takes two `K` tuples as arguments. Replaces the tuple of vectors `x` with the scan. `identity` should be a left identity under `f`. That is, `f(identity, y) = y` for all `y`. `T`, must be a type that can be loaded onto registers, i.e. one of `SIMD.VecTypes`. `f` must be associative. Otherwise, this will give incorrect results. `Val(N)` specifies the SIMD vector width used. The default of `8` should give good performance on CPUs with AVX512 for which 8 Float64s fill the 512 bits available. # Examples ```jl-doctest julia> scan_simd!((x,y)->(x[1]+y[1], x[2]*y[2]),([1,2,3,4],[1,2,3,4])) ([1, 3, 6, 10], [1, 2, 6, 24]) ``` """ function scan_simd!(f::F, x::NTuple{K, AbstractVector{T}}, v::Val{N}=Val(8); identity::NTuple{K,T}=ntuple(i->zero(T),Val(K))) where {F, K, T, N} remainder = length(x[1]) % N s = Vec{N,T}.(identity) @inbounds for i=1:N:(length(x[1]) - remainder) xvec=vload.(Vec{N,T},x,i) xvec = scan_vec(f,xvec,s) vstore.(xvec,x,i) end @inbounds for i=1:N:(length(x[1])-remainder) lastx = Vec{N,T}.(getindex.(x,i+N-1)) xvec=vload.(Vec{N,T},x,i) xvec=f(s,xvec) vstore.(xvec,x,i) s = f(s,lastx) end @inbounds for i=max(length(x[1])-remainder+1,2):length(x[1]) setindex!.(x,f(getindex.(x,i-1),getindex.(x,i)),i) end return(x) end @doc raw""" scan_simd!(f::F, x::AbstractVector{T}, v::Val{N}=Val(8);identity::T=zero(T)) where {F, T, N} In place scan for an associative function. `identity` should be a left identity under `f`. That is, `f(identity, y) = y` for all `y`. `T`, must be a type that can be loaded onto registers, i.e. one of `SIMD.VecTypes`. `f` must be associative. Otherwise, this will give incorrect results. `Val(N)` specifies the SIMD vector width used. The default of `8` should give good performance on CPUs with AVX512 for which 8 Float64s fill the 512 bits available. # Examples ```jl-doctest julia> scan_simd!(+,[1,2,3,4]) 4-element Vector{Int64}: 1 3 6 10 ``` """ function scan_simd!(f::F, x::AbstractVector{T}, v::Val{N}=Val(8); identity::T=zero(T)) where {F, T, N} remainder = length(x) % N s = Vec{N,T}(identity) @inbounds for i=1:N:(length(x) - remainder) xvec=vload(Vec{N,T},x,i) xvec = scan_vec(f,xvec,s) vstore(xvec,x,i) end @inbounds for i=1:N:(length(x)-remainder) lastx = Vec{N,T}(getindex(x,i+N-1)) xvec=vload(Vec{N,T},x,i) xvec=f(s,xvec) vstore(xvec,x,i) s = f(lastx,s) end @inbounds for i=max(length(x)-remainder+1,2):length(x) setindex!(x,f(getindex(x,i-1),getindex(x,i)),i) end return(x) end
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
code
1282
using SIMDscan using Test, TestItemRunner @testitem "vector scans" begin for N ∈ [2, 47, 1000, 1001] for x ∈ [rand(N), rand(Float32,N), rand(Bool, N), rand(1:N,N)] for (op, opidentity) ∈ zip([+, *], [0.0, 1.0]) scanxserial = copy(x) scan_serial!(op,scanxserial) scanxsimd = copy(x) scan_simd!(op,scanxsimd, identity=opidentity) @test isapprox(scanxserial, scanxsimd, rtol=sqrt(eps())) @test isapprox(accumulate(op, x), scanxserial, rtol=sqrt(eps())) end end end end @testitem "autoregressive" begin T = 250 ϵ = randn(T) y = similar(ϵ) y[1] = ϵ[1] α = 0.9 for t = 2:T y[t] = α*y[t-1] + ϵ[t] end ar(y,e) = (e[1] + α*y[1]*e[2], α*y[2]*e[2]) e=collect(zip(ϵ, rand(T))) @test all(ar(ar(ar(e[1],e[2]),e[3]),e[4]) .≈ ar(ar(e[1],ar(e[2],e[3])),e[4]) ) @test all(ar(ar(e[1],e[2]),ar(e[3],e[4])) .≈ ar(ar(ar(e[1],e[2]),e[3]),e[4]) ) yacc = [x[1] for x in accumulate(ar,zip(ϵ, Iterators.Repeated(1.0)))] @test isapprox(y, yacc, rtol=sqrt(eps())) yscanserial,as = scan_serial!(ar, (copy(ϵ), ones(T))) @test yscanserial ≈ y yscansimd,at = scan_simd!(ar, (copy(ϵ), ones(T)), identity=(0.0,1.0/α)) @test yscansimd ≈ y end @run_package_tests
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
docs
1627
# SIMDscan A fast scan using SIMD instructions. <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://schrimpf.github.io/SIMDscan.jl/stable/) --> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://schrimpf.github.io/SIMDscan.jl/dev/) [![Build Status](https://github.com/schrimpf/SIMDscan.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/schrimpf/SIMDscan.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/schrimpf/SIMDscan.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/schrimpf/SIMDscan.jl) A scan or prefix operation is a generalization of a cumulative sum. Given a sequence $x_1, x_2, ... , x_n$, and an associative operator, $\oplus$, the the scan is ```math x_1, x_1 \oplus x_2, x_3 \oplus x_2 \oplus x_1, ... , x_n \oplus x_{n-1} \oplus \cdots \oplus x_1 ``` The scan can be parallelized when $\oplus$ is associative. This package provides an in-place scan implementation using SIMD, `scan_simd!(⊕, x)`. For testing and performance comparison, there is also a serial implementation, `scan_serial!(⊕, x)`. ## Usage [See the docs](https://schrimpf.github.io/SIMDscan.jl/dev/) ## Benchmarks [See the benchmarks section of the docs](https://schrimpf.github.io/SIMDscan.jl/dev/benchmarks/). With 512 bit SIMD vectors, `scan_simd!` appears to be about 4 time faster. With 256 bit SIMD vectors, the gain is smaller, but still notable. The benchmarks run on github actions, so the resuls and CPU will vary from commit to commit. Of course, the performance will also depend on problem size and the $\oplus$ operator.
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
docs
700
# Benchmarks ## Cumulative Sum ```@example bench using BenchmarkTools, CpuId, SIMDscan N = 10_000 x = rand(N); nothing ``` ```@repl bench cpuinfo() @benchmark cumsum!($(copy(x)),$x) @benchmark scan_serial!(+,$(copy(x))) @benchmark scan_simd!(+,$(copy(x)), Val(16)) ``` ## AR(1) ```@example bench T = 2500 ϵ = randn(T) y = similar(ϵ) α = 0.9 function ar1recursize!(y, ϵ, α) y[1] = ϵ[1] for t = 2:T y[t] = α*y[t-1] + ϵ[t] end y end ar(y,e) = (e[1] + α*y[1]*e[2], α*y[2]*e[2]); nothing ``` ```@repl bench @benchmark ar1recursize!($y,$ϵ,$α) @benchmark scan_serial!($ar, $((copy(ϵ), ones(T)))) @benchmark scan_simd!($ar, $((copy(ϵ), ones(T))), identity=$((0.0,1.0/α))) ```
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
docs
67
```@index ``` ## Functions ```@autodocs Modules = [SIMDscan] ```
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
docs
1809
```@meta CurrentModule = SIMDscan ``` # SIMDscan Documentation for [SIMDscan](https://github.com/schrimpf/SIMDscan.jl). This package provides code for doing a scan using SIMD instructions. Scans are also known as prefix operations. The Base Julia function `accumulate` performs the same operation. Given a sequence $x_1, x_2, ... , x_n$, and an associative operator, $\oplus$, the the scan is ```math x_1, x_1 \oplus x_2, x_3 \oplus x_2 \oplus x_1, ... , x_n \oplus x_{n-1} \oplus \cdots \oplus x_1 ``` For parallelization, it is essential that $\oplus$ be associative. The function `scan_simd!(⊕, x)` computes the scan of `x` in place. ## Warnings - `x` must be indexed from `1` to `length(x)`. - `⊕` must be associative for `scan_simd!` ## Multivariate Operations There is also a method for scanning `⊕: ℝᴷ→ℝᴷ`. In this case, `⊕` should accept two `NTuple{K,T}` tuples as arguments and return a `NTuple{K,T}`. `x` should be a `NTuple{K,AbstractVector}` where each element of the tuple is the sequence of values. The multivariate scan can be used to simulate an AR(1) model. ```@example using SIMDscan # hide T = 10 ϵ = randn(T) # simple recursive version for comparison y = similar(ϵ) y[1] = ϵ[1] α = 0.5 for t = 2:T y[t] = α*y[t-1] + ϵ[t] end # to make ⊕ associative, augment ϵ[t] with a second element that keeps track of the appropriate power of α ⊕(y,e) = (e[1] + α*y[1]*e[2], α*y[2]*e[2]) id = (0.0,1.0/α) # a left identity; ⊕(id,x) = x ∀ x yscansimd,at = scan_simd!(⊕, (copy(ϵ), ones(T)), identity=id) [y yscansimd] ``` ## Acknowledgements The following sources were helpful while developing this package: - [slotin2022](@cite) describes an SIMD implementation for prefix sum with C code - [nash2021](@cite) has example code for a threaded scan (prefix sum) in Julia,
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.0
a3b188db2a3a3db251b76bb192240af70eb07344
docs
34
# References ```@bibliography ```
SIMDscan
https://github.com/schrimpf/SIMDscan.jl.git
[ "MIT" ]
0.1.3
1e4928fb66735bb9fbc74a74e394d9bbd49f474d
code
6612
module LaTeXTabulars using ArgCheck: @argcheck using DocStringExtensions: SIGNATURES using UnPack: @unpack export Rule, CMidRule, MultiColumn, MultiRow, Tabular, LongTable, latex_tabular # cells """ $(SIGNATURES) Print a the contents of `cell` to `io` as LaTeX. !!! NOTE Methods are defined for some specific types, but if you want full control (eg rounding), use an `<: AbstractString`, eg `String` or `LaTeXString`. """ function latex_cell(io::IO, cell::T) where T @info "Define a `latex_cell` for writing $T objects to LaTeX." throw(MethodError(latex_cell, Tuple{IO, T})) end latex_cell(io::IO, x::Real) = print(io, string(x)) latex_cell(io::IO, s::AbstractString) = print(io, s) """ MultiColumn(n, pos, cell) For `\\multicolumn{n}{pos}{cell}`. Use the symbols `:l`, `:c`, `:r` for `pos`. """ struct MultiColumn n::Int pos::Symbol cell end function latex_cell(io::IO, mc::MultiColumn) @unpack n, pos, cell = mc @argcheck(pos ∈ (:l, :c, :r), "$pos is not a recognized position. Use :l, :c, :r.") print(io, "\\multicolumn{$(n)}{$(pos)}{") latex_cell(io, mc.cell) print(io, "}") end """ MultiRow(n::Int, vpos::Symbol, cell::Any, width::String) MultiRow(n, vpos, cell; width="*") For `\\multirow[vpos]{n}{width}{cell}`. Use the symbols `:t`, `:c`, `:b` for `vpos`. """ struct MultiRow n::Int vpos::Symbol cell::Any width::String end MultiRow(n, vpos, cell; width="*") = MultiRow(n, vpos, cell, width) function latex_cell(io::IO, mr::MultiRow) @unpack vpos, n, width = mr @argcheck(vpos ∈ (:t, :c, :b), "$vpos is not a recognized position. Use :t, :c, :b.") print(io, "\\multirow[$vpos]{$(n)}{$width}{") latex_cell(io, mr.cell) print(io, "}") end # non-cell-like objects struct Rule{T} end """ $SIGNATURES Horizontal rule. The `kind` of the rule is specified by a symbol, which will generally be printed as `\\KINDrule` for rules in `booktabs`, eg `Rule(:top)` prints `\\toprule`. To obtain a `\\hline`, use `Rule{:h}`. """ Rule(kind::Symbol = :h) = Rule{kind}() latex_line(io::IO, ::Rule{:top}) = println(io, "\\toprule ") latex_line(io::IO, ::Rule{:mid}) = println(io, "\\midrule ") latex_line(io::IO, ::Rule{:bottom}) = println(io, "\\bottomrule ") latex_line(io::IO, ::Rule{:h}) = println(io, "\\hline ") latex_line(io::IO, r::Rule) = error("Don't know how to print $(typeof(r)).") """ CMidRule([wd], [trim], left, right) Will be printed as `\\cmidrule[wd](trim)[left-right]`. When `wd` or `trim` is `nothing`, it is omitted. Use with the `booktabs` LaTeX package. """ struct CMidRule wd::Union{Nothing, AbstractString} trim::Union{Nothing, AbstractString} left::Int right::Int function CMidRule(wd, trim, left, right) @argcheck 1 ≤ left ≤ right new(wd, trim, left, right) end end CMidRule(trim, left, right) = CMidRule(nothing, trim, left, right) CMidRule(left, right) = CMidRule(nothing, left, right) function latex_line(io::IO, rule::CMidRule) @unpack wd, trim, left, right = rule print(io, "\\cmidrule") wd ≠ nothing && print(io, "[$(wd)]") trim ≠ nothing && print(io, "($(trim))") print(io, "{$(left)-$(right)} ") # NOTE trailing space important end function latex_line(io::IO, cells) for (column, cell) in enumerate(cells) column == 1 || print(io, " & ") latex_cell(io, cell) end println(io, " \\\\") end function latex_line(io::IO, M::AbstractMatrix) for i in axes(M, 1) latex_line(io, M[i, :]) end end function latex_line(io::IO, lines::Tuple) for line in lines latex_line(io, line) end end # tabular and similar environments abstract type TabularLike end """ Tabular(cols) For the LaTeX environment `\\begin{tabular}{cols} ... \\end{tabular}`. """ struct Tabular <: TabularLike "A column specification, eg `\"llrr\"`." cols::AbstractString end latex_env_begin(io::IO, t::Tabular) = println(io, "\\begin{tabular}{$(t.cols)}") latex_env_end(io::IO, t::Tabular) = println(io, "\\end{tabular}") """ $(SIGNATURES) Print `lines` to `io` as a LaTeX using the given environment. Each `line` in `lines` can be - a rule-like object, eg [`Rule`] or [`CMidRule`], - an iterable (eg `AbstractVector`) of cells, - a `Tuple`, which is treated as multiple lines (“splat” in place), which is useful for functions that generate lines with associated rules, or multiple `CMidRule`s, - a matrix, each row of which is treated as a line. See [`latex_cell`](@ref) for the kinds of cell supported (particularly [`MultiColumn`](@ref), but for full formatting control, use an `String` or `LaTeXString` for cells. """ function latex_tabular(io::IO, t::TabularLike, lines) latex_env_begin(io, t) for line in lines latex_line(io, line) end latex_env_end(io, t) end latex_tabular(io::IO, t::TabularLike, lines::AbstractMatrix) = latex_tabular(io, t, [lines]) """ $(SIGNATURES) LaTeX output as a string. See other method for the other arguments. """ function latex_tabular(::Type{String}, t::TabularLike, lines) io = IOBuffer() latex_tabular(io, t, lines) String(take!(io)) end """ $(SIGNATURES) Write a `tabular`-like LaTeX environment to `filename`, which is **overwritten** if it already exists. """ function latex_tabular(filename::AbstractString, t::TabularLike, lines) open(filename, "w") do io latex_tabular(io, t, lines) end end struct LongTable <: TabularLike "A column specification, eg `\"llrr\"`." cols::AbstractString """ The table header, to be repeated at the top of each page, supplied an iterable of cells, eg `[\"alpha\", \"beta\", \"gamma\"]`. """ header end function latex_env_begin(io::IO, t::LongTable) println(io, "\\begin{longtable}[c]{$(t.cols)}") latex_line(io, Rule(:h)) latex_line(io, t.header) latex_line(io, Rule(:h)) println(io, "\\endfirsthead") println(io, "\\multicolumn{$(length(t.cols))}{l}") println(io, "{{\\bfseries \\tablename\\ \\thetable{} --- continued from previous page}} \\\\") latex_line(io, Rule(:h)) latex_line(io, t.header) latex_line(io, Rule(:h)) println(io, "\\endhead") latex_line(io, Rule(:h)) println(io, "\\multicolumn{$(length(t.cols))}{r}{{\\bfseries Continued on next page}} \\\\") latex_line(io, Rule(:h)) println(io, "\\endfoot") latex_line(io, Rule(:h)) println(io, "\\endlastfoot") end latex_env_end(io::IO, t::LongTable) = println(io, "\\end{longtable}") end # module
LaTeXTabulars
https://github.com/tpapp/LaTeXTabulars.jl.git
[ "MIT" ]
0.1.3
1e4928fb66735bb9fbc74a74e394d9bbd49f474d
code
3144
using LaTeXTabulars, Test, LaTeXStrings # for testing using LaTeXTabulars: latex_cell "Normalize whitespace, for more convenient testing." squash_whitespace(string) = strip(replace(string, r"[ \n\t]+" => " ")) @test squash_whitespace(" something \n with line breaks \n and stuff \n") == "something with line breaks and stuff" "Comparison using normalized whitespace. For testing." ≅(a, b) = squash_whitespace(a) == squash_whitespace(b) @testset "tabular" begin tb = Tabular("lcl") tlines = [Rule(:top), [L"\alpha", L"\beta", "sum"], Rule(:mid), [1, 2, 3], Rule(), # a nice \hline to make it ugly [4.0 "5" "six"; # a matrix 7 8 9], [MultiRow(2, :c, "a11 \\& a21"), "a12", "a13"], ["", "a22", "a23"], (CMidRule(1, 2), CMidRule("lr", 1, 1)), # just to test tuples [MultiColumn(2, :c, "centered")], # ragged! Rule(:bottom)] tlatex = raw"\begin{tabular}{lcl} \toprule $\alpha$ & $\beta$ & sum \\ \midrule 1 & 2 & 3 \\ \hline 4.0 & 5 & six \\ 7 & 8 & 9 \\ \multirow[c]{2}{*}{a11 \& a21} & a12 & a13 \\ & a22 & a23 \\ \cmidrule{1-2} \cmidrule(lr){1-1} \multicolumn{2}{c}{centered} \\ \bottomrule \end{tabular}" tlatex = replace(tlatex, "\r\n"=>"\n") @test latex_tabular(String, tb, tlines) ≅ tlatex tmp = tempname() latex_tabular(tmp, tb, tlines) @test isfile(tmp) && read(tmp, String) ≅ tlatex @test read(tmp, String) ≅ tlatex end @test_throws ArgumentError latex_cell(stdout, MultiColumn(2, :BAD, "")) @test_throws ArgumentError CMidRule(3, 1) # not ≤ @test_throws MethodError latex_cell(stdout, ("un", "supported")) @test_throws MethodError CMidRule(1, 1, 1, 2) # invalid types @testset "longtable" begin lt = LongTable("rrr", ["alpha", "beta", "gamma"]) tlines = [[1 2 3 ; 4.0 "5" "six"], Rule(:h)] tlatex = raw"\begin{longtable}[c]{rrr} \hline alpha & beta & gamma \\ \hline \endfirsthead \multicolumn{3}{l} {{\bfseries \tablename\ \thetable{} --- continued from previous page}} \\ \hline alpha & beta & gamma \\ \hline \endhead \hline \multicolumn{3}{r}{{\bfseries Continued on next page}} \\ \hline \endfoot \hline \endlastfoot 1 & 2 & 3 \\ 4.0 & 5 & six \\ \hline \end{longtable}" tlatex = replace(tlatex, "\r\n"=>"\n") @test latex_tabular(String, lt, tlines) ≅ tlatex tmp = tempname() latex_tabular(tmp, lt, tlines) @test isfile(tmp) && read(tmp, String) ≅ tlatex @test read(tmp, String) ≅ tlatex end
LaTeXTabulars
https://github.com/tpapp/LaTeXTabulars.jl.git
[ "MIT" ]
0.1.3
1e4928fb66735bb9fbc74a74e394d9bbd49f474d
code
363
#### #### Coverage summary, printed as "(percentage) covered". #### #### Useful for CI environments that just want a summary (eg a Gitlab setup). #### using Coverage cd(joinpath(@__DIR__, "..", "..")) do covered_lines, total_lines = get_summary(process_folder()) percentage = covered_lines / total_lines * 100 println("($(percentage)%) covered") end
LaTeXTabulars
https://github.com/tpapp/LaTeXTabulars.jl.git
[ "MIT" ]
0.1.3
1e4928fb66735bb9fbc74a74e394d9bbd49f474d
code
266
# only push coverage from one bot get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0) get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.0" || exit(0) using Coverage cd(joinpath(@__DIR__, "..", "..")) do Codecov.submit(Codecov.process_folder()) end
LaTeXTabulars
https://github.com/tpapp/LaTeXTabulars.jl.git
[ "MIT" ]
0.1.3
1e4928fb66735bb9fbc74a74e394d9bbd49f474d
docs
2608
# LaTeXTabulars.jl ![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg) [![build](https://github.com/tpapp/LaTeXTabulars.jl/workflows/CI/badge.svg)](https://github.com/tpapp/LaTeXTabulars.jl/actions?query=workflow%3ACI) [![codecov.io](http://codecov.io/github/tpapp/LaTeXTabulars.jl/coverage.svg?branch=master)](http://codecov.io/github/tpapp/LaTeXTabulars.jl?branch=master) Write tabular data from Julia in LaTeX format. This is a *very thin wrapper*, basically for avoiding some loops and repeatedly used strings. It assumes that you know how the LaTeX `tabular` environment works, and you have formatted the cells to strings if you want anything fancy like rounding or alignment on the decimal dot. This is how it works: ```julia using LaTeXTabulars using LaTeXStrings # not a dependency, but works nicely latex_tabular("/tmp/table.tex", Tabular("lcl"), [Rule(:top), [L"\alpha", L"\beta", "sum"], Rule(:mid), [1, 2, 3], Rule(), # a nice \hline to make it ugly [4.0 "5" "six"; # a matrix 7 8 9], CMidRule(1, 2), [MultiColumn(2, :c, "centered")], # ragged! Rule(:bottom)]) ``` will write something like ```LaTeX \begin{tabular}{lcl} \toprule $\alpha$ & $\beta$ & sum \\ \midrule 1 & 2 & 3 \\ \hline 4.0 & 5 & six \\ 7 & 8 & 9 \\ \cmidrule{1-2} \multicolumn{2}{c}{centered} \\ \bottomrule \end{tabular} ``` to `/tmp/table.tex`. Note that the position specifier `lcl` is not checked for valid syntax or consitency with the contents, just emitted as is, allowing the use of [dcolumn](https://ctan.org/pkg/dcolumn) or similar, and the number of cells in each line is not checked for consistency. This means that the usual LaTeX rules apply: fewer cells than position specifiers gives you a ragged table, more cells and LaTeX will complain about having to change `&` to `\\`. See `?latex_tabular` for the documentation of the syntax, and the unit tests for examples. Rule types in [booktabs](https://ctan.org/pkg/booktabs) are supported. Vertical rules of any kind are *not explicitly supported* and it would be difficult to convince me to add them. The documentation of [booktabs](https://ctan.org/pkg/booktabs) should explain why. That said, if you insist, you can use a cell like `\vline text`. The other tabular type currently implemented is `LongTable`. The code is generic, so [other tabular-like types](https://en.wikibooks.org/wiki/LaTeX/Tables) can be easily added, just open an issue.
LaTeXTabulars
https://github.com/tpapp/LaTeXTabulars.jl.git