licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 903 | function get_bit(word::Unsigned, word_length::Int, bit_number::Int)
Bool(get_bits(word, word_length, bit_number, 1))
end
function get_bits(word::T, word_length::Int, start::Int, length::Int) where {T<:Unsigned}
T((word >> (word_length - start - length + 1)) & (T(1) << length - T(1)))
end
function get_twos_complement_num(word::Unsigned, word_length::Int, start::Int, length::Int)
value = UInt(get_bits(word, word_length, start, length))
num_shift_bits = sizeof(value) * 8 - length
signed(value << num_shift_bits) >> num_shift_bits
end
function deinterleave(bits::String, columns, rows)
String(vec(permutedims(reshape(collect(bits), columns, rows))))
end
function invert_every_second_bit(bits::String)
reshaped_bits = reshape(collect(bits), 2, length(bits) >> 1)
reshaped_bits[2, :] .= ifelse.(reshaped_bits[2, :] .== '1', '0', '1')
String(vec(reshaped_bits))
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 14478 | # UInt288 buffer for Galileo E1B
# which holds at least a complete Galileo E1B page
# plus 10 extra syncronization bits
BitIntegers.@define_integers 288
Base.@kwdef struct GalileoE1BConstants <: AbstractGNSSConstants
syncro_sequence_length::Int = 250
preamble::UInt16 = 0b0101100000
preamble_length::Int = 10
PI::Float64 = 3.1415926535898
Ω_dot_e::Float64 = 7.2921151467e-5
c::Float64 = 2.99792458e8
μ::Float64 = 3.986004418e14
F::Float64 = -4.442807309e-10
end
# Page is splitted in even and odd parts
# Cache even part and decode after odd part
# Page contains 120 bits
struct GalileoE1BCache <: AbstractGNSSCache
even_page_part_bits::UInt128
end
GalileoE1BCache() = GalileoE1BCache(UInt128(0))
@enum SignalHealth begin
signal_ok
signal_out_of_service
signal_will_be_out_of_service
signal_component_currently_in_test
end
@enum DataValidityStatus begin
navigation_data_valid
working_without_guarantee
end
Base.@kwdef struct GalileoE1BData <: AbstractGNSSData
WN::Union{Nothing,Int64} = nothing
TOW::Union{Nothing,Int64} = nothing
t_0e::Union{Nothing,Float64} = nothing
M_0::Union{Nothing,Float64} = nothing
e::Union{Nothing,Float64} = nothing
sqrt_A::Union{Nothing,Float64} = nothing
Ω_0::Union{Nothing,Float64} = nothing
i_0::Union{Nothing,Float64} = nothing
ω::Union{Nothing,Float64} = nothing
i_dot::Union{Nothing,Float64} = nothing
Ω_dot::Union{Nothing,Float64} = nothing
Δn::Union{Nothing,Float64} = nothing
C_uc::Union{Nothing,Float64} = nothing
C_us::Union{Nothing,Float64} = nothing
C_rc::Union{Nothing,Float64} = nothing
C_rs::Union{Nothing,Float64} = nothing
C_ic::Union{Nothing,Float64} = nothing
C_is::Union{Nothing,Float64} = nothing
t_0c::Union{Nothing,Float64} = nothing
a_f0::Union{Nothing,Float64} = nothing
a_f1::Union{Nothing,Float64} = nothing
a_f2::Union{Nothing,Float64} = nothing
IOD_nav1::Union{Nothing,UInt} = nothing
IOD_nav2::Union{Nothing,UInt} = nothing
IOD_nav3::Union{Nothing,UInt} = nothing
IOD_nav4::Union{Nothing,UInt} = nothing
num_pages_after_last_TOW::Int = 0
signal_health_e1b::Union{Nothing,SignalHealth} = nothing
signal_health_e5b::Union{Nothing,SignalHealth} = nothing
data_validity_status_e1b::Union{Nothing,DataValidityStatus} = nothing
data_validity_status_e5b::Union{Nothing,DataValidityStatus} = nothing
broadcast_group_delay_e1_e5a::Union{Nothing,Float64} = nothing
broadcast_group_delay_e1_e5b::Union{Nothing,Float64} = nothing
end
function GalileoE1BData(
data::GalileoE1BData;
WN = data.WN,
TOW = data.TOW,
t_0e = data.t_0e,
M_0 = data.M_0,
e = data.e,
sqrt_A = data.sqrt_A,
Ω_0 = data.Ω_0,
i_0 = data.i_0,
ω = data.ω,
i_dot = data.i_dot,
Ω_dot = data.Ω_dot,
Δn = data.Δn,
C_uc = data.C_uc,
C_us = data.C_us,
C_rc = data.C_rc,
C_rs = data.C_rs,
C_ic = data.C_ic,
C_is = data.C_is,
t_0c = data.t_0c,
a_f0 = data.a_f0,
a_f1 = data.a_f1,
a_f2 = data.a_f2,
IOD_nav1 = data.IOD_nav1,
IOD_nav2 = data.IOD_nav2,
IOD_nav3 = data.IOD_nav3,
IOD_nav4 = data.IOD_nav4,
num_pages_after_last_TOW = data.num_pages_after_last_TOW,
signal_health_e1b = data.signal_health_e1b,
signal_health_e5b = data.signal_health_e5b,
data_validity_status_e1b = data.data_validity_status_e1b,
data_validity_status_e5b = data.data_validity_status_e5b,
broadcast_group_delay_e1_e5a = data.broadcast_group_delay_e1_e5a,
broadcast_group_delay_e1_e5b = data.broadcast_group_delay_e1_e5b,
)
GalileoE1BData(
WN,
TOW,
t_0e,
M_0,
e,
sqrt_A,
Ω_0,
i_0,
ω,
i_dot,
Ω_dot,
Δn,
C_uc,
C_us,
C_rc,
C_rs,
C_ic,
C_is,
t_0c,
a_f0,
a_f1,
a_f2,
IOD_nav1,
IOD_nav2,
IOD_nav3,
IOD_nav4,
num_pages_after_last_TOW,
signal_health_e1b,
signal_health_e5b,
data_validity_status_e1b,
data_validity_status_e5b,
broadcast_group_delay_e1_e5a,
broadcast_group_delay_e1_e5b,
)
end
function is_ephemeris_decoded(data::GalileoE1BData)
!isnothing(data.t_0e) &&
!isnothing(data.M_0) &&
!isnothing(data.e) &&
!isnothing(data.sqrt_A) &&
!isnothing(data.Ω_0) &&
!isnothing(data.i_0) &&
!isnothing(data.ω) &&
!isnothing(data.i_dot) &&
!isnothing(data.Ω_dot) &&
!isnothing(data.Δn) &&
!isnothing(data.C_uc) &&
!isnothing(data.C_us) &&
!isnothing(data.C_rc) &&
!isnothing(data.C_rs) &&
!isnothing(data.C_ic) &&
!isnothing(data.C_is)
end
function is_clock_correction_decoded(data::GalileoE1BData)
!isnothing(data.t_0c) &&
!isnothing(data.a_f0) &&
!isnothing(data.a_f1) &&
!isnothing(data.a_f2)
end
function is_health_status_decoded(data::GalileoE1BData)
!isnothing(data.signal_health_e1b) &&
!isnothing(data.signal_health_e5b) &&
!isnothing(data.data_validity_status_e1b) &&
!isnothing(data.data_validity_status_e5b)
end
function is_decoding_completed_for_positioning(data::GalileoE1BData)
!isnothing(data.TOW) &&
!isnothing(data.WN) &&
!isnothing(data.broadcast_group_delay_e1_e5a) &&
!isnothing(data.broadcast_group_delay_e1_e5b) &&
is_ephemeris_decoded(data) &&
is_clock_correction_decoded(data) &&
is_health_status_decoded(data)
end
function GalileoE1BDecoderState(prn)
GNSSDecoderState(
prn,
UInt288(0),
UInt288(0),
GalileoE1BData(),
GalileoE1BData(),
GalileoE1BConstants(),
GalileoE1BCache(),
0,
nothing,
false,
)
end
function GNSSDecoderState(system::GalileoE1B, prn)
GNSSDecoderState(
prn,
UInt288(0),
UInt288(0),
GalileoE1BData(),
GalileoE1BData(),
GalileoE1BConstants(),
GalileoE1BCache(),
0,
nothing,
false,
)
end
function decode_syncro_sequence(state::GNSSDecoderState{<:GalileoE1BData})
encoded_bits = bitstring(state.buffer >> state.constants.preamble_length)[sizeof(
state.buffer,
)*8-state.constants.syncro_sequence_length+state.constants.preamble_length+1:end]
deinterleaved_encoded_bits = deinterleave(encoded_bits, 30, 8)
inv_deinterleaved_encoded_bits = invert_every_second_bit(deinterleaved_encoded_bits)
decoded_bits = viterbi_decode(7, [79, 109], inv_deinterleaved_encoded_bits)
bits = parse(UInt128, decoded_bits; base = 2)
is_even = !get_bit(bits, 114, 1)
is_nominal_page = !get_bit(bits, 114, 2)
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
num_pages_after_last_TOW = state.raw_data.num_pages_after_last_TOW + 1,
),
)
if is_even
state = GNSSDecoderState(
state;
cache = GalileoE1BCache(is_nominal_page ? bits : UInt128(0)),
)
elseif state.cache.even_page_part_bits != 0 && is_nominal_page
data =
get_bits(state.cache.even_page_part_bits, 114, 3, 112) << 16 +
get_bits(bits, 114, 3, 16)
bits_to_check_CRC =
UInt288(state.cache.even_page_part_bits) << 106 + get_bits(bits, 114, 1, 106)
if galCRC24(reverse(digits(UInt8, bits_to_check_CRC; base = 256))) == 0
data_type = get_bits(data, 128, 1, 6)
if data_type == 0
if get_bits(data, 128, 7, 2) == 2 # '10'
WN = get_bits(data, 128, 97, 12)
TOW = get_bits(data, 128, 109, 20)
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
WN,
TOW,
num_pages_after_last_TOW = 1,
),
)
end
elseif data_type == 1
IOD_nav1 = get_bits(data, 128, 7, 10)
t_0e = get_bits(data, 128, 17, 14) * 60
M_0 =
get_twos_complement_num(data, 128, 31, 32) * state.constants.PI /
1 << 31
e = get_bits(data, 128, 63, 32) / 1 << 33
sqrt_A = get_bits(data, 128, 95, 32) / 1 << 19
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
IOD_nav1,
t_0e,
M_0,
e,
sqrt_A,
),
)
elseif data_type == 2
IOD_nav2 = get_bits(data, 128, 7, 10)
Ω_0 =
get_twos_complement_num(data, 128, 17, 32) * state.constants.PI /
1 << 31
i_0 =
get_twos_complement_num(data, 128, 49, 32) * state.constants.PI /
1 << 31
ω =
get_twos_complement_num(data, 128, 81, 32) * state.constants.PI /
1 << 31
i_dot =
get_twos_complement_num(data, 128, 113, 14) * state.constants.PI /
1 << 43
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(state.raw_data; IOD_nav2, Ω_0, i_0, ω, i_dot),
)
elseif data_type == 3
IOD_nav3 = get_bits(data, 128, 7, 10)
Ω_dot =
get_twos_complement_num(data, 128, 17, 24) * state.constants.PI /
1 << 43
Δn =
get_twos_complement_num(data, 128, 41, 16) * state.constants.PI /
1 << 43
C_uc = get_twos_complement_num(data, 128, 57, 16) / 1 << 29
C_us = get_twos_complement_num(data, 128, 73, 16) / 1 << 29
C_rc = get_twos_complement_num(data, 128, 89, 16) / 1 << 5
C_rs = get_twos_complement_num(data, 128, 105, 16) / 1 << 5
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
IOD_nav3,
Ω_dot,
Δn,
C_uc,
C_us,
C_rc,
C_rs,
),
)
elseif data_type == 4
IOD_nav4 = get_bits(data, 128, 7, 10)
C_ic = get_twos_complement_num(data, 128, 23, 16) / 1 << 29
C_is = get_twos_complement_num(data, 128, 39, 16) / 1 << 29
t_0c = get_bits(data, 128, 55, 14) * 60
a_f0 = get_twos_complement_num(data, 128, 69, 31) / 1 << 34
a_f1 = get_twos_complement_num(data, 128, 100, 21) / 1 << 46
a_f2 = get_twos_complement_num(data, 128, 121, 6) / 1 << 59
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
IOD_nav4,
C_ic,
C_is,
t_0c,
a_f0,
a_f1,
a_f2,
),
)
elseif data_type == 5
broadcast_group_delay_e1_e5a =
get_twos_complement_num(data, 128, 48, 10) / 1 << 32
broadcast_group_delay_e1_e5b =
get_twos_complement_num(data, 128, 58, 10) / 1 << 32
signal_health_e5b = SignalHealth(get_bits(data, 128, 68, 2))
signal_health_e1b = SignalHealth(get_bits(data, 128, 70, 2))
data_validity_status_e5b = DataValidityStatus(get_bit(data, 128, 72))
data_validity_status_e1b = DataValidityStatus(get_bit(data, 128, 73))
WN = get_bits(data, 128, 74, 12)
TOW = get_bits(data, 128, 86, 20)
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
broadcast_group_delay_e1_e5a,
broadcast_group_delay_e1_e5b,
signal_health_e5b,
signal_health_e1b,
data_validity_status_e5b,
data_validity_status_e1b,
WN,
TOW,
num_pages_after_last_TOW = 1,
),
)
elseif data_type == 6
TOW = get_bits(data, 128, 106, 20)
state = GNSSDecoderState(
state;
raw_data = GalileoE1BData(
state.raw_data;
TOW,
num_pages_after_last_TOW = 1,
),
)
end
end
end
return state
end
function validate_data(state::GNSSDecoderState{<:GalileoE1BData})
if is_decoding_completed_for_positioning(state.raw_data) &&
state.raw_data.IOD_nav1 ==
state.raw_data.IOD_nav2 ==
state.raw_data.IOD_nav3 ==
state.raw_data.IOD_nav4
state = GNSSDecoderState(
state;
data = state.raw_data,
num_bits_after_valid_syncro_sequence = state.data.TOW == state.raw_data.TOW ?
state.num_bits_after_valid_syncro_sequence :
10 +
(
state.raw_data.num_pages_after_last_TOW + 1
) * 250,
)
end
return state
end
function is_sat_healthy(state::GNSSDecoderState{<:GalileoE1BData})
state.data.signal_health_e1b == signal_ok &&
state.data.data_validity_status_e1b == navigation_data_valid
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 3905 | abstract type AbstractGNSSConstants end
abstract type AbstractGNSSData end
abstract type AbstractGNSSCache end
Base.@kwdef struct GNSSDecoderState{
D<:AbstractGNSSData,
C<:AbstractGNSSConstants,
CA<:AbstractGNSSCache,
B<:Unsigned,
}
prn::Int
raw_buffer::B
buffer::B
raw_data::D
data::D
constants::C
cache::CA
num_bits_buffered::Int = 0
num_bits_after_valid_syncro_sequence::Union{Nothing,Int} = 0
is_shifted_by_180_degrees = false
end
function GNSSDecoderState(
state::GNSSDecoderState;
raw_buffer = state.raw_buffer,
buffer = state.buffer,
raw_data = state.raw_data,
data = state.data,
cache = state.cache,
num_bits_buffered = state.num_bits_buffered,
num_bits_after_valid_syncro_sequence = state.num_bits_after_valid_syncro_sequence,
is_shifted_by_180_degrees = state.is_shifted_by_180_degrees,
)
GNSSDecoderState(
state.prn,
raw_buffer,
buffer,
raw_data,
data,
state.constants,
cache,
num_bits_buffered,
num_bits_after_valid_syncro_sequence,
is_shifted_by_180_degrees,
)
end
function push_bit(state::GNSSDecoderState, current_bit)
GNSSDecoderState(
state;
raw_buffer = state.raw_buffer << true + (current_bit > 0),
num_bits_buffered = min(state.num_bits_buffered + 1, sizeof(state.raw_buffer) * 8),
)
end
function is_enough_buffered_bits_to_decode(state::GNSSDecoderState)
state.num_bits_buffered >=
state.constants.syncro_sequence_length + state.constants.preamble_length
end
calc_preamble_mask(state::GNSSDecoderState) =
UInt(1) << UInt(state.constants.preamble_length) - UInt(1)
function find_preamble(state::GNSSDecoderState)
state.raw_buffer & calc_preamble_mask(state) == state.constants.preamble &&
(state.raw_buffer >> state.constants.syncro_sequence_length) &
calc_preamble_mask(state) == state.constants.preamble ||
state.raw_buffer & calc_preamble_mask(state) ==
~state.constants.preamble & calc_preamble_mask(state) &&
(state.raw_buffer >> state.constants.syncro_sequence_length) &
calc_preamble_mask(state) ==
~state.constants.preamble & calc_preamble_mask(state)
end
function complement_buffer_if_necessary(state::GNSSDecoderState)
if state.raw_buffer & calc_preamble_mask(state) ==
~state.constants.preamble & calc_preamble_mask(state)
return GNSSDecoderState(
state;
buffer = ~state.raw_buffer,
is_shifted_by_180_degrees = true,
)
else
return GNSSDecoderState(
state;
buffer = state.raw_buffer,
is_shifted_by_180_degrees = false,
)
end
end
function decode(
state::GNSSDecoderState,
bits::T,
num_bits::Int;
decode_once::Bool = false,
) where {T<:Unsigned}
num_bits > sizeof(bits) * 8 ||
ArgumentError("Number of bits is too large to fit type of bits")
for i = num_bits-1:-1:0
current_bit = bits & (T(1) << i)
state = push_bit(state, current_bit)
if !isnothing(state.num_bits_after_valid_syncro_sequence)
state = GNSSDecoderState(
state;
num_bits_after_valid_syncro_sequence = state.num_bits_after_valid_syncro_sequence +
1,
)
end
if is_enough_buffered_bits_to_decode(state) && find_preamble(state)
state = decode_syncro_sequence(complement_buffer_if_necessary(state))
if !decode_once || !is_decoding_completed_for_positioning(state.data)
state = validate_data(state)
end
state =
GNSSDecoderState(state; num_bits_buffered = state.constants.preamble_length)
end
end
return state
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 18785 | # UInt320 buffer for GPS L1 (more efficient than UInt312)
# which holds at least a complete GPS L1 subframe plus
# 8 extra syncronization bíts
BitIntegers.@define_integers 320
Base.@kwdef struct GPSL1Constants <: AbstractGNSSConstants
syncro_sequence_length::Int = 300
preamble::UInt8 = 0b10001011
preamble_length::Int = 8
word_length::Int = 30
PI::Float64 = 3.1415926535898
Ω_dot_e::Float64 = 7.2921151467e-5
c::Float64 = 2.99792458e8
μ::Float64 = 3.986005e14
F::Float64 = -4.442807633e-10
end
struct GPSL1Cache <: AbstractGNSSCache end
Base.@kwdef struct GPSL1Data <: AbstractGNSSData
last_subframe_id::Int = 0
integrity_status_flag::Union{Nothing,Bool} = nothing
TOW::Union{Nothing,Int64} = nothing
alert_flag::Union{Nothing,Bool} = nothing
anti_spoof_flag::Union{Nothing,Bool} = nothing
trans_week::Union{Nothing,Int64} = nothing
codeonl2::Union{Nothing,Int64} = nothing
ura::Union{Nothing,Float64} = nothing
svhealth::Union{Nothing,String} = nothing
IODC::Union{Nothing,String} = nothing
l2pcode::Union{Nothing,Bool} = nothing
T_GD::Union{Nothing,Float64} = nothing
t_0c::Union{Nothing,Int64} = nothing
a_f2::Union{Nothing,Float64} = nothing
a_f1::Union{Nothing,Float64} = nothing
a_f0::Union{Nothing,Float64} = nothing
IODE_Sub_2::Union{Nothing,String} = nothing
C_rs::Union{Nothing,Float64} = nothing
Δn::Union{Nothing,Float64} = nothing
M_0::Union{Nothing,Float64} = nothing
C_uc::Union{Nothing,Float64} = nothing
e::Union{Nothing,Float64} = nothing
C_us::Union{Nothing,Float64} = nothing
sqrt_A::Union{Nothing,Float64} = nothing
t_0e::Union{Nothing,Int64} = nothing
fit_interval::Union{Nothing,Bool} = nothing
AODO::Union{Nothing,Int64} = nothing
C_ic::Union{Nothing,Float64} = nothing
Ω_0::Union{Nothing,Float64} = nothing
C_is::Union{Nothing,Float64} = nothing
i_0::Union{Nothing,Float64} = nothing
C_rc::Union{Nothing,Float64} = nothing
ω::Union{Nothing,Float64} = nothing
Ω_dot::Union{Nothing,Float64} = nothing
IODE_Sub_3::Union{Nothing,String} = nothing
i_dot::Union{Nothing,Float64} = nothing
end
function GPSL1Data(
data::GPSL1Data;
last_subframe_id = data.last_subframe_id,
integrity_status_flag = data.integrity_status_flag,
TOW = data.TOW,
alert_flag = data.alert_flag,
anti_spoof_flag = data.anti_spoof_flag,
trans_week = data.trans_week,
codeonl2 = data.codeonl2,
ura = data.ura,
svhealth = data.svhealth,
IODC = data.IODC,
l2pcode = data.l2pcode,
T_GD = data.T_GD,
t_0c = data.t_0c,
a_f2 = data.a_f2,
a_f1 = data.a_f1,
a_f0 = data.a_f0,
IODE_Sub_2 = data.IODE_Sub_2,
C_rs = data.C_rs,
Δn = data.Δn,
M_0 = data.M_0,
C_uc = data.C_uc,
e = data.e,
C_us = data.C_us,
sqrt_A = data.sqrt_A,
t_0e = data.t_0e,
fit_interval = data.fit_interval,
AODO = data.AODO,
C_ic = data.C_ic,
Ω_0 = data.Ω_0,
C_is = data.C_is,
i_0 = data.i_0,
C_rc = data.C_rc,
ω = data.ω,
Ω_dot = data.Ω_dot,
IODE_Sub_3 = data.IODE_Sub_3,
i_dot = data.i_dot,
)
GPSL1Data(
last_subframe_id,
integrity_status_flag,
TOW,
alert_flag,
anti_spoof_flag,
trans_week,
codeonl2,
ura,
svhealth,
IODC,
l2pcode,
T_GD,
t_0c,
a_f2,
a_f1,
a_f0,
IODE_Sub_2,
C_rs,
Δn,
M_0,
C_uc,
e,
C_us,
sqrt_A,
t_0e,
fit_interval,
AODO,
C_ic,
Ω_0,
C_is,
i_0,
C_rc,
ω,
Ω_dot,
IODE_Sub_3,
i_dot,
)
end
function is_subframe1_decoded(data::GPSL1Data)
!isnothing(data.trans_week) &&
!isnothing(data.codeonl2) &&
!isnothing(data.ura) &&
!isnothing(data.svhealth) &&
!isnothing(data.IODC) &&
!isnothing(data.l2pcode) &&
!isnothing(data.T_GD) &&
!isnothing(data.t_0c) &&
!isnothing(data.a_f2) &&
!isnothing(data.a_f1) &&
!isnothing(data.a_f0)
end
function is_subframe2_decoded(data::GPSL1Data)
!isnothing(data.IODE_Sub_2) &&
!isnothing(data.C_rs) &&
!isnothing(data.Δn) &&
!isnothing(data.M_0) &&
!isnothing(data.C_uc) &&
!isnothing(data.e) &&
!isnothing(data.C_us) &&
!isnothing(data.sqrt_A) &&
!isnothing(data.t_0e) &&
!isnothing(data.fit_interval) &&
!isnothing(data.AODO)
end
function is_subframe3_decoded(data::GPSL1Data)
!isnothing(data.C_ic) &&
!isnothing(data.Ω_0) &&
!isnothing(data.C_is) &&
!isnothing(data.i_0) &&
!isnothing(data.C_rc) &&
!isnothing(data.ω) &&
!isnothing(data.Ω_dot) &&
!isnothing(data.IODE_Sub_3) &&
!isnothing(data.i_dot)
end
function is_subframe4_decoded(data::GPSL1Data)
false
end
function is_subframe5_decoded(data::GPSL1Data)
false
end
function is_decoding_completed_for_positioning(data::GPSL1Data)
!isnothing(data.integrity_status_flag) &&
!isnothing(data.TOW) &&
!isnothing(data.alert_flag) &&
!isnothing(data.anti_spoof_flag) &&
is_subframe1_decoded(data) &&
is_subframe2_decoded(data) &&
is_subframe3_decoded(data)
end
function GPSL1DecoderState(prn)
GNSSDecoderState(
prn,
UInt320(0),
UInt320(0),
GPSL1Data(),
GPSL1Data(),
GPSL1Constants(),
GPSL1Cache(),
0,
nothing,
false,
)
end
function GNSSDecoderState(system::GPSL1, prn)
GNSSDecoderState(
prn,
UInt320(0),
UInt320(0),
GPSL1Data(),
GPSL1Data(),
GPSL1Constants(),
GPSL1Cache(),
0,
nothing,
false,
)
end
function check_gpsl1_parity(word::Unsigned, prev_29 = false, prev_30 = false)
function bit(bit_number)
cbit = get_bit(word, 30, bit_number)
prev_30 ? !cbit : cbit
end
# Parity check to verify the data integrity:
D_25 =
prev_29 ⊻ bit(1) ⊻ bit(2) ⊻ bit(3) ⊻ bit(5) ⊻ bit(6) ⊻ bit(10) ⊻ bit(11) ⊻ bit(12) ⊻
bit(13) ⊻ bit(14) ⊻ bit(17) ⊻ bit(18) ⊻ bit(20) ⊻ bit(23)
D_26 =
prev_30 ⊻ bit(2) ⊻ bit(3) ⊻ bit(4) ⊻ bit(6) ⊻ bit(7) ⊻ bit(11) ⊻ bit(12) ⊻ bit(13) ⊻
bit(14) ⊻ bit(15) ⊻ bit(18) ⊻ bit(19) ⊻ bit(21) ⊻ bit(24)
D_27 =
prev_29 ⊻ bit(1) ⊻ bit(3) ⊻ bit(4) ⊻ bit(5) ⊻ bit(7) ⊻ bit(8) ⊻ bit(12) ⊻ bit(13) ⊻
bit(14) ⊻ bit(15) ⊻ bit(16) ⊻ bit(19) ⊻ bit(20) ⊻ bit(22)
D_28 =
prev_30 ⊻ bit(2) ⊻ bit(4) ⊻ bit(5) ⊻ bit(6) ⊻ bit(8) ⊻ bit(9) ⊻ bit(13) ⊻ bit(14) ⊻
bit(15) ⊻ bit(16) ⊻ bit(17) ⊻ bit(20) ⊻ bit(21) ⊻ bit(23)
D_29 =
prev_30 ⊻ bit(1) ⊻ bit(3) ⊻ bit(5) ⊻ bit(6) ⊻ bit(7) ⊻ bit(9) ⊻ bit(10) ⊻ bit(14) ⊻
bit(15) ⊻ bit(16) ⊻ bit(17) ⊻ bit(18) ⊻ bit(21) ⊻ bit(22) ⊻ bit(24)
D_30 =
prev_29 ⊻ bit(3) ⊻ bit(5) ⊻ bit(6) ⊻ bit(8) ⊻ bit(9) ⊻ bit(10) ⊻ bit(11) ⊻ bit(13) ⊻
bit(15) ⊻ bit(19) ⊻ bit(22) ⊻ bit(23) ⊻ bit(24)
computed_parity_bits =
(
(((D_25 << UInt(1) + D_26) << UInt(1) + D_27) << UInt(1) + D_28) << UInt(1) +
D_29
) << UInt(1) + D_30
computed_parity_bits == get_bits(word, 30, 25, 6)
end
function get_word(state::GNSSDecoderState{<:GPSL1Data}, word_number::Int)
num_words = Int(state.constants.syncro_sequence_length / state.constants.word_length)
word =
state.buffer >> UInt(
state.constants.word_length * (num_words - word_number) +
state.constants.preamble_length,
)
UInt(word & (UInt(1) << UInt(state.constants.word_length) - UInt(1)))
end
function can_decode_word(decode_bits::Function, state::GNSSDecoderState, word_number::Int)
word = get_word(state, word_number)
prev_word = get_word(state, word_number - 1)
prev_word_bit_30 = get_bit(prev_word, 30, 30)
is_checked_word = word_number != 1 && word_number != 3
if check_gpsl1_parity(
word,
is_checked_word * get_bit(prev_word, 30, 29),
is_checked_word * prev_word_bit_30,
)
word_comp = (is_checked_word * prev_word_bit_30) ? ~word : word
data = decode_bits(word_comp, state)
state = GNSSDecoderState(state; raw_data = data)
end
return state
end
function can_decode_two_words(
decode_bits::Function,
state::GNSSDecoderState,
word_number1::Int,
word_number2::Int,
)
word1 = get_word(state, word_number1)
prev_word1 = get_word(state, word_number1 - 1)
prev_word1_bit_30 = get_bit(prev_word1, 30, 30)
is_checked_word1 = word_number1 != 1 && word_number1 != 3
word2 = get_word(state, word_number2)
prev_word2 = get_word(state, word_number2 - 1)
prev_word2_bit_30 = get_bit(prev_word2, 30, 30)
is_checked_word2 = word_number2 != 1 && word_number2 != 3
if check_gpsl1_parity(
word1,
is_checked_word1 * get_bit(prev_word1, 30, 29),
is_checked_word1 * prev_word1_bit_30,
) && check_gpsl1_parity(
word2,
is_checked_word2 * get_bit(prev_word2, 30, 29),
is_checked_word2 * prev_word2_bit_30,
)
word1_comp = (is_checked_word1 * prev_word1_bit_30) ? ~word1 : word1
word2_comp = (is_checked_word2 * prev_word2_bit_30) ? ~word2 : word2
data = decode_bits(word1_comp, word2_comp, state)
state = GNSSDecoderState(state; raw_data = data)
end
return state
end
function read_tlm_and_how_words(state)
state = can_decode_word(state, 1) do tlm_word, state
integrity_status_flag = get_bit(tlm_word, 30, 23)
GPSL1Data(state.raw_data; integrity_status_flag)
end
prev_TOW = state.raw_data.TOW
state = can_decode_word(state, 2) do how_word, state
TOW = get_bits(how_word, 30, 1, 17) * 6
alert_flag = get_bit(how_word, 30, 18)
anti_spoof_flag = get_bit(how_word, 30, 19)
last_subframe_id = get_bits(how_word, 30, 20, 3)
GPSL1Data(state.raw_data; last_subframe_id, TOW, alert_flag, anti_spoof_flag)
end
if !isnothing(prev_TOW) && prev_TOW + 1 != state.raw_data.TOW
# Time of week must be decodable
state = GNSSDecoderState(state; raw_data = GPSL1Data(state.raw_data; TOW = nothing))
end
state
end
function decode_syncro_sequence(state::GNSSDecoderState{<:GPSL1Data})
state = read_tlm_and_how_words(state)
subframe_id = state.raw_data.last_subframe_id
if subframe_id == 1
state = can_decode_word(state, 3) do word3, state
trans_week = get_bits(word3, 30, 1, 10)
# Codes on L2 Channel
codeonl2 = get_bits(word3, 30, 11, 2)
# SV Accuracy, user range accuracy
ura = get_bits(word3, 30, 13, 4)
if ura <= 6
ura = 2^(1 + (ura / 2))
elseif 6 < ura <= 14
ura = 2^(ura - 2)
elseif ura == 15
ura = nothing
end
# Satellite Health
svhealth = bitstring(get_bits(word3, 30, 17, 6))[end-5:end]
if get_bit(word3, 30, 17)
@warn "Bad LNAV Data, SV-Health critical", svhealth
end
GPSL1Data(state.raw_data; trans_week, codeonl2, ura, svhealth)
end
state = can_decode_two_words(state, 3, 8) do word3, word8, state
# Issue of Data Clock
# 2 MSB in Word 2, LSB 8 in Word 8
IODC =
bitstring(get_bits(word3, 30, 23, 2))[end-1:end] *
bitstring(get_bits(word8, 30, 1, 8))[end-7:end]
GPSL1Data(state.raw_data; IODC)
end
state = can_decode_word(state, 4) do word4, state
# True: LNAV Datastream on PCode commanded OFF
l2pcode = get_bit(word4, 30, 1)
GPSL1Data(state.raw_data; l2pcode)
end
state = can_decode_word(state, 7) do word7, state
# group time differential
T_GD = get_twos_complement_num(word7, 30, 17, 8) / 1 << 31
GPSL1Data(state.raw_data; T_GD)
end
state = can_decode_word(state, 8) do word8, state
# Clock data reference
t_0c = get_bits(word8, 30, 9, 16) << 4
GPSL1Data(state.raw_data; t_0c)
end
state = can_decode_word(state, 9) do word9, state
# clock correction parameter a_f2
a_f2 = get_twos_complement_num(word9, 30, 1, 8) / 1 << 55
# clock correction parameter a_f1
a_f1 = get_twos_complement_num(word9, 30, 9, 16) / 1 << 43
GPSL1Data(state.raw_data; a_f2, a_f1)
end
state = can_decode_word(state, 10) do word10, state
# Clock data reference
a_f0 = get_twos_complement_num(word10, 30, 1, 22) / 1 << 31
GPSL1Data(state.raw_data; a_f0)
end
elseif subframe_id == 2
state = can_decode_word(state, 3) do word3, state
# Issue of ephemeris data
IODE_Sub_2 = bitstring(get_bits(word3, 30, 1, 8))[end-7:end]
C_rs = get_twos_complement_num(word3, 30, 9, 16) / 1 << 5
GPSL1Data(state.raw_data; IODE_Sub_2, C_rs)
end
state = can_decode_word(state, 4) do word4, state
# Mean motion difference from computed value
Δn = get_twos_complement_num(word4, 30, 1, 16) * state.constants.PI / 1 << 43
GPSL1Data(state.raw_data; Δn)
end
state = can_decode_two_words(state, 4, 5) do word4, word5, state
# Mean motion difference from computed value
combined_word =
UInt(get_bits(word4, 30, 17, 8) << 24 + get_bits(word5, 30, 1, 24))
M_0 =
get_twos_complement_num(combined_word, 32, 1, 32) * state.constants.PI /
1 << 31
GPSL1Data(state.raw_data; M_0)
end
state = can_decode_word(state, 6) do word6, state
# Amplitude of the Cosine Harmonic Correction Term to the Argument Latitude
C_uc = get_twos_complement_num(word6, 30, 1, 16) / 1 << 29
GPSL1Data(state.raw_data; C_uc)
end
state = can_decode_two_words(state, 6, 7) do word6, word7, state
# Eccentricity
e = (get_bits(word6, 30, 17, 8) << 24 + get_bits(word7, 30, 1, 24)) / 1 << 33
GPSL1Data(state.raw_data; e)
end
state = can_decode_word(state, 8) do word8, state
# Amplitude of the Sine Harmonic Correction Term to the Argument of Latitude
C_us = get_twos_complement_num(word8, 30, 1, 16) / 1 << 29
GPSL1Data(state.raw_data; C_us)
end
state = can_decode_two_words(state, 8, 9) do word8, word9, state
# Square Root of Semi-Major Axis
sqrt_A =
(get_bits(word8, 30, 17, 8) << 24 + get_bits(word9, 30, 1, 24)) / 1 << 19
GPSL1Data(state.raw_data; sqrt_A)
end
state = can_decode_word(state, 10) do word10, state
# Reference Time ephemeris
t_0e = get_bits(word10, 30, 1, 16) << 4
fit_interval = get_bit(word10, 30, 17)
AODO = get_bits(word10, 30, 18, 5)
GPSL1Data(state.raw_data; t_0e, fit_interval, AODO)
end
elseif subframe_id == 3
state = can_decode_word(state, 3) do word3, state
# Amplitude of the Cosine Harmonic Correction to Angle of Inclination
C_ic = get_twos_complement_num(word3, 30, 1, 16) / 1 << 29
GPSL1Data(state.raw_data; C_ic)
end
state = can_decode_two_words(state, 3, 4) do word3, word4, state
# Longitude of Ascending Node of Orbit Plane at Weekly Epoch
combined_word =
UInt(get_bits(word3, 30, 17, 8) << 24 + get_bits(word4, 30, 1, 24))
Ω_0 =
get_twos_complement_num(combined_word, 32, 1, 32) * state.constants.PI /
1 << 31
GPSL1Data(state.raw_data; Ω_0)
end
state = can_decode_word(state, 5) do word5, state
# Amplitude of the sine harmonic correction term to angle of Inclination
C_is = get_twos_complement_num(word5, 30, 1, 16) / 1 << 29
GPSL1Data(state.raw_data; C_is)
end
state = can_decode_two_words(state, 5, 6) do word5, word6, state
# inclination Angle at reference time
combined_word =
UInt(get_bits(word5, 30, 17, 8) << 24 + get_bits(word6, 30, 1, 24))
i_0 =
get_twos_complement_num(combined_word, 32, 1, 32) * state.constants.PI /
1 << 31
GPSL1Data(state.raw_data; i_0)
end
state = can_decode_word(state, 7) do word7, state
# Amplitude of the cosine harmonic correction term to orbit Radius
C_rc = get_twos_complement_num(word7, 30, 1, 16) / 1 << 5
GPSL1Data(state.raw_data; C_rc)
end
state = can_decode_two_words(state, 7, 8) do word7, word8, state
# Argument of Perigee
combined_word =
UInt(get_bits(word7, 30, 17, 8) << 24 + get_bits(word8, 30, 1, 24))
ω =
get_twos_complement_num(combined_word, 32, 1, 32) * state.constants.PI /
1 << 31
GPSL1Data(state.raw_data; ω)
end
state = can_decode_word(state, 9) do word9, state
# Amplitude of the cosine harmonic correction term to orbit Radius
Ω_dot = get_twos_complement_num(word9, 30, 1, 24) * state.constants.PI / 1 << 43
GPSL1Data(state.raw_data; Ω_dot)
end
state = can_decode_word(state, 10) do word10, state
# Issue of Ephemeris Data
IODE_Sub_3 = bitstring(get_bits(word10, 30, 1, 8))[end-7:end]
# Rate of Inclination Angle
i_dot =
get_twos_complement_num(word10, 30, 9, 14) * state.constants.PI / 1 << 43
GPSL1Data(state.raw_data; IODE_Sub_3, i_dot)
end
end
return state
end
function validate_data(state::GNSSDecoderState{<:GPSL1Data})
if is_decoding_completed_for_positioning(state.raw_data) &&
state.raw_data.IODC[3:10] == state.raw_data.IODE_Sub_2 == state.raw_data.IODE_Sub_3
state = GNSSDecoderState(
state;
data = state.raw_data,
num_bits_after_valid_syncro_sequence = 8,
)
end
return state
end
function is_sat_healthy(state::GNSSDecoderState{<:GPSL1Data})
state.data.svhealth == "000000"
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 2422 | @testset "Bit fiddling" begin
@test GNSSDecoder.get_bits(0b111, 4, 2, 3) == 0b111
@test GNSSDecoder.get_bits(0b111, 5, 3, 3) == 0b111
@test GNSSDecoder.get_bits(0b111, 5, 3, 2) == 0b11
@test GNSSDecoder.get_bits(0b111, 4, 2, 2) == 0b11
@test GNSSDecoder.get_bits(0b101, 4, 2, 2) == 0b10
@test GNSSDecoder.get_bits(0b101, 3, 1, 2) == 0b10
@test GNSSDecoder.get_bits(0b101, 3, 1, 3) == 0b101
@test GNSSDecoder.get_bit(0b101, 3, 1) == true
@test GNSSDecoder.get_bit(0b101, 3, 2) == false
@test GNSSDecoder.get_bit(0b101, 3, 3) == true
@test GNSSDecoder.get_bit(0b101, 4, 2) == true
@test GNSSDecoder.get_bit(0b101, 4, 3) == false
@test GNSSDecoder.get_bit(0b101, 4, 4) == true
@test GNSSDecoder.get_twos_complement_num(0b000, 3, 1, 3) == 0
@test GNSSDecoder.get_twos_complement_num(0b001, 3, 1, 3) == 1
@test GNSSDecoder.get_twos_complement_num(0b011, 3, 1, 3) == 3
@test GNSSDecoder.get_twos_complement_num(0b111, 3, 1, 3) == -1
@test GNSSDecoder.get_twos_complement_num(0b100, 3, 1, 3) == -4
@test GNSSDecoder.get_twos_complement_num(0b101, 3, 1, 3) == -3
# examplary bits from Galileo specification
ex_encoded_bits = "101000000101111110001100111100000101111010100000000110011110001110101000010100000100111101010111011110001000011011111010111001111001100000011111111000100000100111110110000010011100011101100000100101110100100011000110110110010000011100111010"
ex_deinterleaved_bits = "100011000001101010101010011100110011000101011010011011110101100101111000100101010101010110001100110011101010010110010000101001101000010000000010000000100001101110011001111010110101110000011000101110111111110111111101111001000101001100100010"
@test GNSSDecoder.deinterleave(ex_encoded_bits, 30, 8) == ex_deinterleaved_bits
ex_inv_deinterleaved_bits = "110110010100111111111111001001100110010000001111001110100000110000101101110000000000000011011001100110111111000011000101111100111101000101010111010101110100111011001100101111100000100101001101111011101010100010101000101100010000011001110111"
@test GNSSDecoder.invert_every_second_bit(ex_deinterleaved_bits) ==
ex_inv_deinterleaved_bits
ex_true_bits = "111111111111000011001100101010100000000000001111001100110101010111100011111011001101111110001010000111000001001101000000"
@test viterbi_decode(7, [79, 109], ex_inv_deinterleaved_bits) == ex_true_bits[1:114]
end
| GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 3978 | BitIntegers.@define_integers 7520
const GALILEO_E1B_DATA =
uint7520"0xffea400000b780000261fffff953e562a175eec2f8024501fdf196b047f3c7e186a0787c8f92d3f4f6bca06174fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e47501d3ea73f9e259eff711af5040f3c380c4a28479ff9d09fd56cd0835f4fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e49ca15be1fa79e277cffad182e04f725981eea951fc87cb47f9d7477053f4fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e55001fde50c7aaa6005f5d1b7105173eda116ac037ee7c24bfd57631056f4fe56155760a21263eefb50a07414bf3e4e1a382663d7ec5143e4baa2af24553ebaac4bdd8480b7a8cf5ac12c29b8361163a02f3991246f8b70f14e1af95f4ffcc27e40658eac47e7efb103c05584467e4adcec50490f6ceb30af5ef54253e325965fe54cb87addcae730a7bb6d62f5140cc0aaf27e2933dbd7aa4baff4ff973c0786866e3bc15330d6c0b5cc4dd47406c584373cf274fb8a7e4d88053e863010bdd79c512f473995025f798f1f5edacbba52f17fcb3247448a53a74fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e44f9179e129de3272be2fb1c6ed51710a0d68a5978dd7ecb57e373e75d274fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e47fe1abe4487a12785ffe11bc885571d3a0bea7a17adfc33be8b79b005774feeb312644db4c5166d0ada45be4608d318479ab42bdfd52b2fd7e70a26b753e5c2e1c5dd5b7b9a367ffa9371406076f7c1eeb9877ea61cc1f8d013984cf4fe5ee27a26245b0bd75e5ff09280d4352de9e647845e9e42cf7320f4c2b66d3e988a143e86d7a72aa93f691f5105a6092814ae1e2fc4f4c7bec32d6601574fe00799f25fa0e59c81fa4349fc113ae00fa8a2ff815c9602f1cbeff0340453ef9ec101d800782a105df65047b870e11c4158c6727c2e2575f1d54c986ef4fc2fffc9e8e002884a8012023dff87edcfffb08880053df7001d8a0bffdef53ebaac121c7ccf91a92eff4d1ea30557b91c0228286f89fc4ffee7751605774fc6df8a9cea05d1c45185080230ff4eea30f3a6776db937b62e1b2ecda31653ef65217bd906fadaa919f2b0295062fc4ae09280107ba7c2a3f416ffa008f4fe7ffffe04000003e80000223fffff467ffffea400000b780000261fffff953e4cf0191e3b57a824ef1f0b1746060f2e6a0f2a7cb7857cbbbeb57919076f4fe7ffffe04000003e80000223fffff467ffffea4"
@testset "Galileo E1B constructor" begin
galileo_e1b = GalileoE1B()
@test GalileoE1BDecoderState(21) == GNSSDecoderState(galileo_e1b, 21)
end
@testset "Galileo E1B test data decoding" begin
decoder = GalileoE1BDecoderState(21)
test_data = GNSSDecoder.GalileoE1BData(;
WN = 1170,
TOW = 558041,
t_0e = 556800.0,
M_0 = 0.03588957467055676,
e = 0.0002609505318105221,
sqrt_A = 5440.625303268433,
Ω_0 = 2.5016390578909675,
i_0 = 0.9744856179803416,
ω = 0.400715796701369,
i_dot = -6.482412875658937e-10,
Ω_dot = -5.1184274887640895e-9,
Δn = 2.60617998642883e-9,
C_uc = 5.239620804786682e-6,
C_us = 1.1917203664779663e-5,
C_rc = 90.4375,
C_rs = 113.6875,
C_ic = 7.450580596923828e-9,
C_is = 0.0,
t_0c = 556800.0,
a_f0 = -0.0007140382076613605,
a_f1 = -2.2311041902867146e-12,
a_f2 = 0.0,
IOD_nav1 = 0x0000000000000020,
IOD_nav2 = 0x0000000000000020,
IOD_nav3 = 0x0000000000000020,
IOD_nav4 = 0x0000000000000020,
num_pages_after_last_TOW = 1,
signal_health_e1b = GNSSDecoder.signal_ok,
signal_health_e5b = GNSSDecoder.signal_ok,
data_validity_status_e1b = GNSSDecoder.navigation_data_valid,
data_validity_status_e5b = GNSSDecoder.navigation_data_valid,
broadcast_group_delay_e1_e5a = 2.7939677238464355e-9,
broadcast_group_delay_e1_e5b = 3.026798367500305e-9,
)
state = decode(decoder, GALILEO_E1B_DATA, 7000)
@test state.data == test_data
@test state.is_shifted_by_180_degrees == true
@test state.num_bits_after_valid_syncro_sequence == 665
@test is_sat_healthy(state) == true
state = decode(decoder, ~GALILEO_E1B_DATA, 7000)
@test state.data == test_data
@test state.is_shifted_by_180_degrees == false
@test state.num_bits_after_valid_syncro_sequence == 665
@test is_sat_healthy(state) == true
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 4756 | BitIntegers.@define_integers 1536
BitIntegers.@define_integers 320
const GPSL1DATA =
uint1536"0x8b010c06ef056f410d000004def4351756ed43ed2357f4afe163920d2f0bff00295b9ebf9f88b010c06ef035644808d518abf98cb9d2094bfe1c3e92dbb769706d42853f19a83172d0e0748b010c06ef014ecffa302d1c9d38430077d85c9473c27eef4e6ac5a0325b0050c0cedc3c47c8b010c06eeff39075aaaac5555556aaaaaaa55555556aaaaaaa55555556aaaaaaa55555559c8b010c06eefd21840aaaab2aaaaabcaaaaaaf2aaaaabcaaaaaaf2aaaaabcaaaaaaf2aaaaabc8b"
@testset "GPS L1 constructor" begin
gpsl1 = GPSL1()
@test GPSL1DecoderState(21) == GNSSDecoderState(gpsl1, 21)
end
@testset "GPS L1 decoding" begin
decoder = GPSL1DecoderState(1)
@test decoder.prn == 1
@test decoder.num_bits_buffered == 0
@test isnothing(decoder.num_bits_after_valid_syncro_sequence)
@test decoder.raw_buffer == UInt(0)
@test decoder.buffer == UInt(0)
@test GNSSDecoder.calc_preamble_mask(decoder) == 0b11111111
state = GNSSDecoder.push_bit(decoder, UInt(1))
@test state.num_bits_buffered == 1
@test state.raw_buffer == UInt(1)
@test state.buffer == UInt(0)
@test isnothing(state.num_bits_after_valid_syncro_sequence)
@test GNSSDecoder.is_enough_buffered_bits_to_decode(state) == false
@test GNSSDecoder.find_preamble(state) == false
constants = GNSSDecoder.GPSL1Constants()
@test constants.preamble == 0b10001011
@test constants.preamble_length == 8
@test constants.word_length == 30
@test constants.syncro_sequence_length == 300
raw_buffer = UInt320(constants.preamble) << UInt(300) + UInt320(constants.preamble)
state = GNSSDecoder.GNSSDecoderState(
1,
raw_buffer,
UInt320(0),
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Constants(),
GNSSDecoder.GPSL1Cache(),
308,
nothing,
false,
)
@test GNSSDecoder.find_preamble(state) == true
@test GNSSDecoder.complement_buffer_if_necessary(state) == GNSSDecoder.GNSSDecoderState(
state;
buffer = raw_buffer,
is_shifted_by_180_degrees = false,
)
@test GNSSDecoder.is_enough_buffered_bits_to_decode(state) == true
raw_buffer = UInt320(~constants.preamble) << UInt(300) + UInt320(~constants.preamble)
state = GNSSDecoder.GNSSDecoderState(
1,
raw_buffer,
UInt320(0),
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Constants(),
GNSSDecoder.GPSL1Cache(),
308,
nothing,
false,
)
@test GNSSDecoder.find_preamble(state) == true
@test GNSSDecoder.complement_buffer_if_necessary(state) == GNSSDecoder.GNSSDecoderState(
state;
buffer = ~raw_buffer,
is_shifted_by_180_degrees = true,
)
buffer =
UInt320(constants.preamble) << UInt(300) +
UInt320(constants.preamble) +
UInt320(1) << UInt(8)
state = GNSSDecoder.GNSSDecoderState(
1,
buffer,
buffer,
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Data(),
GNSSDecoder.GPSL1Constants(),
GNSSDecoder.GPSL1Cache(),
308,
nothing,
false,
)
@test GNSSDecoder.get_word(state, 10) == 1
end
@testset "GPS L1 test data decoding" begin
decoder = GPSL1DecoderState(1)
test_data = GNSSDecoder.GPSL1Data(;
last_subframe_id = 5,
integrity_status_flag = false,
TOW = 34945 * 6,
alert_flag = false,
anti_spoof_flag = true,
trans_week = 67,
codeonl2 = 1,
ura = 2.0,
svhealth = "000000",
IODC = "0001001000",
l2pcode = false,
T_GD = -1.0710209608078003e-8,
t_0c = 216000,
a_f2 = 0.0,
a_f1 = -4.774847184307873e-12,
a_f0 = -0.00018549291417002678,
IODE_Sub_2 = "01001000",
C_rs = 70.65625,
Δn = 3.930878022562108e-9,
M_0 = 2.4393048719362045,
C_uc = 3.604218363761902e-6,
e = 0.01144192845094949,
C_us = 1.3023614883422852e-5,
sqrt_A = 5153.7995529174805,
t_0e = 216000,
fit_interval = false,
AODO = 31,
C_ic = -1.73225998878479e-7,
Ω_0 = 0.0600607702978756,
C_is = -2.2351741790771484e-7,
i_0 = 0.9781895349147778,
C_rc = 136.34375,
ω = 0.635978551768012,
Ω_dot = -7.383521839035659e-9,
IODE_Sub_3 = "01001000",
i_dot = -3.4465721349922174e-10,
)
state = decode(decoder, GPSL1DATA, 1508)
@test state.data == test_data
@test is_sat_healthy(state) == true
state = decode(decoder, ~GPSL1DATA, 1508)
@test state.data == test_data
@test is_sat_healthy(state) == true
end | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | code | 139 | using Test, GNSSDecoder, BitIntegers, ViterbiDecoder, GNSSSignals
include("bit_fiddling.jl")
include("gpsl1.jl")
include("galileo_e1b.jl") | GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.1 | e100c4b8fbd8394f8603216c87e0858959595558 | docs | 1050 | # GNSSDecoder.jl
Decodes various GNSS satellite signals.
Currently implemented:
* GPS L1
* Galileo E1B
## Usage
#### Install:
```julia
julia> ]
pkg> add GNSSDecoder
```
### Initialization
The decoder must be initialized beforehand.
```julia
decoder = GPSL1DecoderState(1) #Initialization of decoder with PRN = 1
```
### Decoding
Pass bits to decoder as an unsigned integer value and let the decoder decode the message.
```julia
for i in 1:iterations
# Track signal for example with Tracking.jl
track_res = track(signal, track_state, decoder.PRN , sampling_freq)
track_state = get_state(track_res)
decoder = decode(decoder, get_bits(track_res), get_num_bits(track_res))
end
```
The data can be retrieved by
```julia
decoder.data
```
Note that GNSSDecoder decodes each time a complete subframe has been retrieved.
`decoder.raw_data` holds the raw data. `decoder.data` hold data that has been checked for consistency.
`decoder.num_bits_after_valid_subframe` counts the number of bits after a valid subframe has been retrieved.
| GNSSDecoder | https://github.com/JuliaGNSS/GNSSDecoder.jl.git |
|
[
"MIT"
] | 0.1.0 | 86d1353d0ce2db7c4c59209cfe7e837db9831f5b | code | 655 | # see documentation at https://juliadocs.github.io/Documenter.jl/stable/
using Documenter, SensitivityAnalysis
makedocs(
modules = [SensitivityAnalysis],
format = Documenter.HTML(; prettyurls = get(ENV, "CI", nothing) == "true"),
authors = "Tamás K. Papp",
sitename = "SensitivityAnalysis.jl",
pages = Any["index.md"]
# strict = true,
# clean = true,
# checkdocs = :exports,
)
# Some setup is needed for documentation deployment, see “Hosting Documentation” and
# deploydocs() in the Documenter manual for more information.
deploydocs(
repo = "github.com/tpapp/SensitivityAnalysis.jl.git",
push_preview = true
)
| SensitivityAnalysis | https://github.com/tpapp/SensitivityAnalysis.jl.git |
|
[
"MIT"
] | 0.1.0 | 86d1353d0ce2db7c4c59209cfe7e837db9831f5b | code | 8131 | """
Organize sensitivity / perturbation analysis.
See [`perturbation_analysis`](@ref) for a short example, and the documentation for details.
"""
module SensitivityAnalysis
export RELATIVE, ABSOLUTE, perturbation, perturbation_analysis, moment, moment_sensitivity
import Accessors
using ArgCheck: @argcheck
using DocStringExtensions: SIGNATURES
import ThreadPools
using UnPack: @unpack
####
#### changes
####
###
### relative
###
struct Relative end
Base.show(io::IO, ::Relative) = print(io, "relative change")
"Represents a relative change, for inputs (`y = x * (1 + Δ)`) or outputs (`Δ = y / x - 1`)."
const RELATIVE = Relative()
(::Relative)(x, Δ) = x .* (1 + Δ)
difference(::Relative, y, x) = y / x - 1
###
### absolute
###
struct Absolute end
Base.show(io::IO, ::Absolute) = print(io, "absolute change")
"Represents an absolute, for inputs (`y = x + Δ`) or outputs (`Δ = y - x`)."
const ABSOLUTE = Absolute()
(::Absolute)(x, Δ) = x + Δ
difference(::Absolute, y, x) = y - x
####
#### perturbations
####
struct Perturbation
label
metadata
lens
change
captured_errors
Δs
end
function Base.show(io::IO, perturbation::Perturbation)
@unpack label, change, captured_errors, Δs = perturbation
domain = Δs ≡ nothing ? "default domain" : extrema(Δs)
print(io, "perturb $(label) on $(domain), $(change) [capturing $(captured_errors)]")
end
"""
$(SIGNATURES)
# Arguments
- `label`: Label, used for lookup and printing.
- `lens`: For changing an object via the `Accessors.lens` API.
- `change`: A change calculator, eg [`ABSOLUTE`](@ref)` or [`RELATIVE`](@ref)`, or a
callable with the signature `(x, Δ) -> new_x`.
# Keyword arguments
- `metadata`: arbitrary metadata (eg for plot styles, etc). Passed through.
- `Δs`: an `AbstractVector` or iterable of `Δ` values to be used by `change` above. When
`nothing`, a default will be used, see [`perturbation_analysis`](@ref).
- `captured_errors`: a type (eg a `Union{DomainError,ArgumentError}`) that is silently
captured and converted to `nothing`. These results will show up as `NaN` in moment
sensitivities.
"""
function perturbation(label, lens, change; metadata = nothing, Δs = nothing, captured_errors = DomainError)
Perturbation(label, metadata, lens, change, captured_errors, Δs)
end
"""
$(SIGNATURES)
Internal function for computing a perturbation of `object` by `Δ`. Captures errors and
converts them to `nothing`.
"""
function _perturbation_with(object, perturbation::Perturbation, Δ)
@unpack lens, change, captured_errors = perturbation
try
Accessors.modify(x -> change(x, Δ), object, lens)
catch e
if e isa captured_errors
nothing
else
rethrow(e)
end
end
end
struct PerturbationAnalysis
label
object
simulate
baseline_result
default_Δs
perturbations_and_results
end
"""
$(SIGNATURES)
A container for perturbation analysis.
# Arguments
- `object`: an opaque object that will be modified by perturbations
- `simulate`: a callable on (changed) `object`s that returns a value moments can be
calculated from. Should be thread safe. Can return `nothing` in case the simulation fails
for whatever reason, in which case moments will use a `NaN` for the corresponding change.
# Keyword arguments
- `baseline_result`: a simulation result from `object` as is.
- `label`: a global label for the whole analysis.
- `default_Δs`: when a perturbation has no `Δs` specified, these will be used instead.
Defaults to 11 values on ±0.1.
# Usage
Once an analysis is created, you should `push!` perturbations into it. `label`s should be
unique, as they can be used for lookup.
```jldoctest
julia> using SensitivityAnalysis, Accessors
julia> anls = perturbation_analysis((a = 10.0, ), x -> (b = 2 * x.a, ))
perturbation results with default domain (-0.1, 0.1)
julia> push!(anls, perturbation("a", @optic(_.a), RELATIVE))
perturbation results with default domain (-0.1, 0.1)
perturb a on default domain, relative change [capturing DomainError]
julia> moment_sensitivity(anls, "a", moment("b", x -> x.b, ABSOLUTE))
(label = "b (absolute change)", x = -0.1:0.02:0.1, y = [-2.0, -1.5999999999999979, -1.2000000000000028, -0.8000000000000007, -0.3999999999999986, 0.0, 0.3999999999999986, 0.8000000000000007, 1.2000000000000028, 1.6000000000000014, 2.0])
```
See also [`moment_sensitivity`](@ref).
"""
function perturbation_analysis(object, simulate; baseline_result = simulate(object),
label = nothing, default_Δs = range(-0.1, 0.1; length = 11))
PerturbationAnalysis(label, object, simulate, baseline_result, default_Δs, Vector())
end
function Base.show(io::IO, perturbation_analysis::PerturbationAnalysis)
@unpack label, default_Δs, perturbations_and_results = perturbation_analysis
print(io, "perturbation results")
if label ≢ nothing
print(io, "for ", label)
end
print(io, " with default domain $(extrema(default_Δs))")
for (p, _) in perturbations_and_results
print(io, "\n ", p)
end
end
Broadcast.broadcastable(x::PerturbationAnalysis) = Ref(x)
"""
$(SIGNATURES)
Internal function for calculating `Δs`.
"""
function _effective_Δs(perturbation_analysis, perturbation)
something(perturbation_analysis.default_Δs, perturbation.Δs)
end
function Base.push!(perturbation_analysis::PerturbationAnalysis, perturbation::Perturbation)
@unpack object, simulate, perturbations_and_results = perturbation_analysis
results = ThreadPools.tmap(_effective_Δs(perturbation_analysis, perturbation)) do Δ
changed_object = _perturbation_with(object, perturbation, Δ)
changed_object ≡ nothing && return nothing
simulate(changed_object)
end
push!(perturbations_and_results, perturbation => results)
perturbation_analysis
end
"""
$(SIGNATURES)
Internal function to look up perturbations by matching `pattern` on their labels. Checks for
unique matches.
"""
function _lookup_perturbation_by_label(perturbation_analysis,
pattern::Union{AbstractPattern,AbstractString})
@unpack perturbations_and_results = perturbation_analysis
matches = findall(perturbations_and_results) do (p, _)
contains(p.label, pattern)
end
if length(matches) > 1
throw(ArgumentError("multiple labels match $(label)"))
elseif isempty(matches)
throw(ArgumentError("no labels match $(label)"))
else
first(matches)
end
end
_lookup_perturbation_by_label(perturbation_analysis, index::Integer) = index
####
#### moments
####
struct Moment
label
metadata
calculator
change
end
function Base.show(io::IO, moment::Moment)
@unpack label, change = moment
print(io, label, " (", change, ")")
end
"""
$(SIGNATURES)
Define a moment (a univariate statistic from simulation results).
# Arguments
- `label`: used for printing
- `calculator`: a callable on simulation results
- `change`: how changes should be interpreted, eg [`ABSOLUTE`](@ref)` or [`RELATIVE`](@ref)`.
# Keywoard arguments
- `metadata`: passed through unchanged, can be used for plot styles, etc.
"""
function moment(label, calculator, change; metadata = nothing)
Moment(label, metadata, calculator, change)
end
function _moment_sensitivity(moment, baseline_result, results)
@unpack calculator, change = moment
m0 = calculator(baseline_result)
map(results) do r
if r ≡ nothing
NaN
else
difference(change, calculator(r), m0)
end
end
end
function moment_sensitivity(perturbation_analysis, index_or_pattern, moment)
@unpack baseline_result, perturbations_and_results = perturbation_analysis
index = _lookup_perturbation_by_label(perturbation_analysis, index_or_pattern)
perturbation, results = perturbations_and_results[index]
sensitivity = _moment_sensitivity(moment, baseline_result, results)
Δs = _effective_Δs(perturbation_analysis, perturbation)
(label = repr(moment), x = Δs, y = sensitivity, metadata = moment.metadata)
end
end # module
| SensitivityAnalysis | https://github.com/tpapp/SensitivityAnalysis.jl.git |
|
[
"MIT"
] | 0.1.0 | 86d1353d0ce2db7c4c59209cfe7e837db9831f5b | code | 1013 | using SensitivityAnalysis, Test, Statistics, UnPack, Accessors
struct SimulateNormal{T}
μ::T
σ::T
function SimulateNormal(μ::T, σ::T) where {T}
σ > 1.001 && throw(DomainError("let's tigger catch"))
new{T}(μ, σ)
end
end
function simulate(object::SimulateNormal)
@unpack μ, σ = object
N = 10000
x = randn(N) .* σ .+ μ
(mean = mean(x), std = std(x))
end
results = perturbation_analysis(SimulateNormal(0.0, 1.0), simulate)
push!(results,
perturbation("μ", @optic(_.μ), ABSOLUTE),
perturbation("σ", @optic(_.σ), RELATIVE))
moments = [moment("mean", x -> x.mean, ABSOLUTE; metadata = :meta),
moment("std", x -> x.std, RELATIVE)]
sens_mu = moment_sensitivity.(results, "μ", moments)
let s = sens_mu[1]
@test s.label == "mean (absolute change)"
@test s.x == results.default_Δs
@test length(s.y) ==length(s.x)
@test s.metadata ≡ :meta
end
sens_sigma = moment_sensitivity.(results, "σ", moments)
@test isnan(sens_sigma[1].y[end])
| SensitivityAnalysis | https://github.com/tpapp/SensitivityAnalysis.jl.git |
|
[
"MIT"
] | 0.1.0 | 86d1353d0ce2db7c4c59209cfe7e837db9831f5b | docs | 677 | # SensitivityAnalysis.jl

[](https://github.com/tpapp/SensitivityAnalysis.jl/actions?query=workflow%3ACI)
[](http://codecov.io/github/tpapp/SensitivityAnalysis.jl?branch=master)
[](https://tpapp.github.io/SensitivityAnalysis.jl/stable)
[](https://tpapp.github.io/SensitivityAnalysis.jl/dev)
| SensitivityAnalysis | https://github.com/tpapp/SensitivityAnalysis.jl.git |
|
[
"MIT"
] | 0.1.0 | 86d1353d0ce2db7c4c59209cfe7e837db9831f5b | docs | 166 | # SensitivityAnalysis
## Motivation and a worked example
## Docstrings
```@docs
RELATIVE
ABSOLUTE
perturbation
perturbation_analysis
moment
moment_sensitivity
```
| SensitivityAnalysis | https://github.com/tpapp/SensitivityAnalysis.jl.git |
|
[
"MIT"
] | 0.2.1 | 78faddd85f10ff840cbaa98533c82581e01a6ac7 | code | 638 | module GaussianRelations
export CenteredGaussianRelation, CenteredPrecisionForm, CenteredCovarianceForm
export GaussianRelation, PrecisionForm, CovarianceForm
export cov, disintegrate, kleisli, mean, oapply, otimes, params, push, pull
using Catlab.ACSetInterface
using Catlab.FinSets
using Catlab.FinSets: FinDomFunctionVector
using Catlab.Theories
using Catlab.UndirectedWiringDiagrams
using Catlab.WiringDiagramAlgebras
using FillArrays
using LinearAlgebra
using LinearAlgebra: checksquare
using Statistics
using StatsAPI
using StatsAPI: params
const DEFAULT_TOLERANCE = 1e-8
include("centered.jl")
include("relation.jl")
end
| GaussianRelations | https://github.com/samuelsonric/GaussianRelations.jl.git |
|
[
"MIT"
] | 0.2.1 | 78faddd85f10ff840cbaa98533c82581e01a6ac7 | code | 9142 | # A centered Gaussian relation.
struct CenteredGaussianRelation{T, PT <: AbstractMatrix, ST <: AbstractMatrix}
precision::PT
support::ST
function CenteredGaussianRelation{T}(P::PT, S::ST) where {T, PT <: AbstractMatrix, ST <: AbstractMatrix}
m = checksquare(P)
n = checksquare(S)
@assert m == n
new{T, PT, ST}(P, S)
end
end
# A centered Gaussian relation in precision form.
const CenteredPrecisionForm = CenteredGaussianRelation{false}
# A centered Gaussian relation in covariance form.
const CenteredCovarianceForm = CenteredGaussianRelation{true}
function CenteredGaussianRelation{T}(relation::CenteredGaussianRelation{T}) where T
CenteredGaussianRelation{T}(relation.precision, relation.support)
end
function CenteredGaussianRelation{T}(relation::CenteredGaussianRelation) where T
P, S = params(relation)
U, V, D = factorizepsd(P + S)
M = solvespp(D, quad(S, V), I, 0I)
CenteredGaussianRelation{T}(quad(D, M * V'), quad(I, U'))
end
function CenteredGaussianRelation{T}(P::AbstractMatrix) where T
n = size(P, 1)
CenteredGaussianRelation{T}(P, Zeros(n, n))
end
function CenteredGaussianRelation{T, PT, ST}(args...; kwargs...) where {T, PT, ST}
P, S = params(CenteredGaussianRelation{T}(args...; kwargs...))
CenteredGaussianRelation{T}(convert(PT, P), convert(ST, S))
end
function Base.length(relation::CenteredGaussianRelation)
size(relation.precision, 1)
end
function StatsAPI.params(relation::CenteredGaussianRelation, i::Integer)
@assert 1 <= i <= 2
params(relation)[i]
end
function StatsAPI.params(relation::CenteredGaussianRelation)
relation.precision, relation.support
end
function Theories.otimes(left::CenteredGaussianRelation{T}, right::CenteredGaussianRelation{T}) where T
P₁, S₁ = params(left)
P₂, S₂ = params(right)
CenteredGaussianRelation{T}(cat(P₁, P₂, dims=(1, 2)), cat(S₁, S₂, dims=(1, 2)))
end
function pull(M::AbstractMatrix, relation::CenteredGaussianRelation{T}, ::Val{T}) where T
P, S = params(relation)
CenteredGaussianRelation{T}(quad(P, M), quad(S, M))
end
function pull(M::AbstractMatrix, relation::CenteredGaussianRelation, ::Val{T}) where T
CenteredGaussianRelation{!T}(pull(M, CenteredGaussianRelation{T}(relation), Val(T)))
end
function pull(f::FinFunction, relation::CenteredGaussianRelation{T}, ::Val{T}) where T
epi, mono = epi_mono(f)
pull_epi(epi, pull_mono(mono, relation, Val(T)), Val(T))
end
function pull(f::FinFunction, relation::CenteredGaussianRelation{T}, ::Val) where T
f = collect(f)
P = relation.precision[f, f]
S = relation.support[f, f]
CenteredGaussianRelation{T}(P, S)
end
function pull_epi(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val{T}) where {T, PT, ST}
m = length(dom(f))
n = length(codom(f))
P = zeros(eltype(PT), m, m)
S = zeros(eltype(ST), m, m)
section = zeros(Int, n)
indices = zeros(Int, n)
for i in 1:m
v = f(i)
if iszero(section[v])
section[v] = i
else
j = indices[v]
S[i, i] += 1
S[j, j] += 1
S[i, j] = S[j, i] = -1
end
indices[v] = i
end
P[section, section] .+= relation.precision
S[section, section] .+= relation.support
CenteredGaussianRelation{T}(P, S)
end
function pull_epi(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val) where {T, PT, ST}
pull(f, relation, Val(!T))
end
function pull_mono(f::FinFunction, relation::CenteredGaussianRelation{T}, ::Val{T}) where T
n = length(relation)
P, S = params(relation)
i₁ = trues(n)
i₂ = collect(f)
i₁[i₂] .= false
P₁₁, P₁₂, P₂₁, P₂₂ = getblocks(P, i₁, i₂)
S₁₁, S₁₂, S₂₁, S₂₂ = getblocks(S, i₁, i₂)
M = solvespp(P₁₁, S₁₁, P₁₂, S₁₂)
CenteredGaussianRelation{T}(
P₂₂ + quad(P₁₁, M) - P₂₁ * M - M' * P₁₂,
S₂₂ - quad(S₁₁, M))
end
function pull_mono(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val) where {T, PT, ST}
pull(f, relation, Val(!T))
end
function push(M::AbstractMatrix, relation::CenteredGaussianRelation, ::Val{T}) where T
pull(M', relation, Val(!T))
end
function push(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val{T}) where {T, PT, ST}
m = length(dom(f))
n = length(codom(f))
P = zeros(eltype(PT), n, n)
S = zeros(eltype(ST), n, n)
for i in 1:m, j in 1:m
P[f(i), f(j)] += relation.precision[i, j]
S[f(i), f(j)] += relation.support[i, j]
end
CenteredGaussianRelation{T}(P, S)
end
function push(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val) where {T, PT, ST}
epi, mono = epi_mono(f)
push_mono(mono, push_epi(epi, relation, Val(!T)), Val(!T))
end
function push_epi(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val{T}) where {T, PT, ST}
push(f, relation, Val(T))
end
function push_epi(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val) where {T, PT, ST}
m = length(dom(f))
n = length(codom(f))
section = zeros(Int, n)
indices = zeros(Int, n)
parent = zeros(Int, m)
for i in 1:m
v = f(i)
if iszero(section[v])
section[v] = i
else
parent[i] = indices[v]
end
indices[v] = i
end
P = Matrix{eltype(PT)}(undef, m, m)
S = Matrix{eltype(ST)}(undef, m, m)
for i₁ in 1:m
j₁ = parent[i₁]
for i₂ in i₁:m
j₂ = parent[i₂]
p = relation.precision[i₁, i₂]
s = relation.support[i₁, i₂]
if !iszero(j₁)
p -= relation.precision[j₁, i₂]
s -= relation.support[j₁, i₂]
end
if !iszero(j₂)
p -= relation.precision[i₁, j₂]
s -= relation.support[i₁, j₂]
end
if !iszero(j₁) && !iszero(j₂)
p += relation.precision[j₁, j₂]
s += relation.support[j₁, j₂]
end
P[i₁, i₂] = p
S[i₁, i₂] = s
end
end
P = Symmetric(P)
S = Symmetric(S)
pull_mono(FinFunction(section, m), CenteredGaussianRelation{T}(P, S), Val(T))
end
function push_mono(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val{T}) where {T, PT, ST}
push(f, relation, Val(T))
end
function push_mono(f::FinFunction, relation::CenteredGaussianRelation{T, PT, ST}, ::Val) where {T, PT, ST}
n = length(codom(f))
indices = collect(f)
P = zeros(eltype(PT), n, n)
S = Matrix{eltype(ST)}(I, n, n)
P[indices, indices] = relation.precision
S[indices, indices] = relation.support
CenteredGaussianRelation{T}(P, S)
end
function disintegrate(relation::CenteredGaussianRelation{T}, mask::AbstractVector{Bool}) where T
i₁ = !T .⊻ mask
i₂ = T .⊻ mask
P, S = params(relation)
P₁₁, P₁₂, P₂₁, P₂₂ = getblocks(P, i₁, i₂)
S₁₁, S₁₂, S₂₁, S₂₂ = getblocks(S, i₁, i₂)
M = solvespp(P₁₁, S₁₁, P₁₂, S₁₂)
r₁ = CenteredGaussianRelation{T}(P₁₁, S₁₁)
r₂ = CenteredGaussianRelation{T}(
P₂₂ + quad(P₁₁, M) - P₂₁ * M - M' * P₁₂,
S₂₂ - quad(S₁₁, M))
T ? (r₁, r₂, -M') : (r₂, r₁, M)
end
# Compute matrices M₁₁, M₁₂, M₂₁, and M₂₂ such that
# M = [ M₁₁ M₁₂ ]
# [ M₂₁ M₂₂ ],
# where M is a square matrix.
function getblocks(M::AbstractMatrix, i₁::AbstractVector, i₂::AbstractVector)
M₁₁ = M[i₁, i₁]
M₁₂ = M[i₁, i₂]
M₂₁ = M[i₂, i₁]
M₂₂ = M[i₂, i₂]
M₁₁, M₁₂, M₂₁, M₂₂
end
# Solve the saddle point problem
# [ A B ] [ x ] = [ e ]
# [ B 0 ] [ y ] = [ f ],
# where A and B are positive semidefinite, e ∈ col A, and f ∈ col B.
function solvespp(A::AbstractMatrix, B::AbstractMatrix, e, f; tol::Real=DEFAULT_TOLERANCE)
U, V, D = factorizepsd(B; tol)
Uᵀ_A_U = qr(quad(A, U), ColumnNorm())
v = V * (D \ (V' * f))
u = U * (Uᵀ_A_U \ (U' * (e - A * v)))
u + v
end
# Compute a diagonal matrix
# D ≻ 0
# and unitary matrix
# Q = [ U V ]
# such that
# A = [ 0 0 ] [ Uᵀ ]
# [ U V ] [ 0 D ] [ Vᵀ ],
# where A is positive semidefinite.
function factorizepsd(A::AbstractMatrix; tol::Real=DEFAULT_TOLERANCE)
D, Q = eigen(A)
n = count(D .< tol)
U = Q[:, 1:n]
V = Q[:, n + 1:end]
D = Diagonal(D[n + 1:end])
U, V, D
end
# Compute
# Mᵀ A M,
# where A is positive semidefinite.
function quad(A, M::AbstractMatrix)
Symmetric(M' * A * M)
end
# Factorize a function f: i → k as a composite
# f = e ; m,
# where e: i → j is a surjection and m: j → k is an injection.
function epi_mono(f::FinFunction)
epi = zeros(Int, length(codom(f)))
mono = zeros(Int, 0)
for i in dom(f)
j = f(i)
if iszero(epi[j])
push!(mono, j)
epi[j] = length(mono)
end
end
set = FinSet(length(mono))
epi = FinDomFunctionVector(epi[collect(f)], dom(f), set)
mono = FinDomFunctionVector(mono, set, codom(f))
epi, mono
end
| GaussianRelations | https://github.com/samuelsonric/GaussianRelations.jl.git |
|
[
"MIT"
] | 0.2.1 | 78faddd85f10ff840cbaa98533c82581e01a6ac7 | code | 6063 | # A Gaussian relation.
struct GaussianRelation{T, PT, ST}
inner::CenteredGaussianRelation{T, PT, ST}
function GaussianRelation(inner::CenteredGaussianRelation{T, PT, ST}) where {T, PT, ST}
@assert length(inner) >= 1
new{T, PT, ST}(inner)
end
end
# A Gaussian relation in precision form.
const PrecisionForm = GaussianRelation{false}
# A Gaussian relation in covariance form.
const CovarianceForm = GaussianRelation{true}
function GaussianRelation{T}(μ::Real, p²::Real) where T
GaussianRelation{T}(μ, p², 0)
end
function GaussianRelation{T}(μ::Real, p²::Real, s²::Real) where T
GaussianRelation{T}([μ], [p²;;], [s²;;])
end
function GaussianRelation{T}(μ::AbstractVector, P::AbstractMatrix) where T
n = length(μ)
GaussianRelation{T}(μ, P, Zeros(n, n))
end
function GaussianRelation{T}(μ::AbstractVector, P::AbstractMatrix, S::AbstractMatrix) where T
kleisli(CenteredGaussianRelation{T}(P, S)) + μ
end
function GaussianRelation{T}(inner::CenteredGaussianRelation) where T
GaussianRelation(CenteredGaussianRelation{T}(inner))
end
function GaussianRelation{T}(relation::GaussianRelation) where T
GaussianRelation(CenteredGaussianRelation{T}(relation.inner))
end
function GaussianRelation{T, PT, ST}(args...; kwargs...) where {T, PT, ST}
inner = GaussianRelation{T}(args...; kwargs...).inner
GaussianRelation(CenteredGaussianRelation{T, PT, ST}(inner))
end
function Base.convert(::Type{GaussianRelation{T, PT, ST}}, relation::GaussianRelation{T}) where {T, PT, ST}
GaussianRelation{T, PT, ST}(relation)
end
function Base.length(relation::GaussianRelation)
length(relation.inner) - 1
end
function StatsAPI.params(relation::GaussianRelation, i::Integer)
@assert 1 <= i <= 3
params(relation)[i]
end
function StatsAPI.params(relation::GaussianRelation)
n = length(relation)
marginal, conditional, M = disintegrate(relation.inner, [true; Falses(n)])
params(conditional)..., reshape(M, n)
end
function Statistics.cov(relation::CovarianceForm)
params(relation, 1)
end
function Statistics.cov(relation::PrecisionForm)
cov(CovarianceForm(relation))
end
function Statistics.mean(relation::GaussianRelation)
params(relation, 3)
end
function kleisli(relation::CenteredGaussianRelation{T}) where T
P, S = params(relation)
P = cat(T, P; dims=(1, 2))
S = cat(T, S; dims=(1, 2))
GaussianRelation(CenteredGaussianRelation{T}(P, S))
end
function Theories.otimes(left::GaussianRelation, right::GaussianRelation)
m = length(left.inner)
n = length(right.inner)
f = FinDomFunctionVector([1:m; 1; m + 1:m + n - 1], FinSet(m + n), FinSet(m + n - 1))
GaussianRelation(push_epi(f, otimes(left.inner, right.inner), Val(false)))
end
function Theories.otimes(relations::GaussianRelation{T, PT, ST}...) where {T, PT, ST}
init = GaussianRelation(CenteredGaussianRelation{T, PT, ST}([T;;], [T;;]))
reduce(otimes, relations; init)
end
function Base.:+(relation::PrecisionForm, v::AbstractVector)
n = length(v)
GaussianRelation(pull([1 Zeros(n)'; v Eye(n)], relation.inner, Val(false)))
end
function Base.:+(relation::CovarianceForm, v::AbstractVector)
n = length(v)
GaussianRelation(push([1 Zeros(n)'; -v Eye(n)], relation.inner, Val(false)))
end
function Base.:+(relation::GaussianRelation, v::Real)
relation + [v]
end
function Base.:+(v, relation::GaussianRelation)
relation + v
end
function Base.:\(M, relation::Union{GaussianRelation, CenteredGaussianRelation})
pull(M, relation, Val(false))
end
function Base.:*(M, relation::Union{GaussianRelation, CenteredGaussianRelation})
push(M, relation, Val(false))
end
function disintegrate(relation::GaussianRelation, mask::AbstractVector{Bool})
marginal, conditional, M = disintegrate(relation.inner, [true; mask])
GaussianRelation(marginal), kleisli(conditional) + M[:, 1], M[:, 2:end]
end
function pull(M::AbstractMatrix, relation::GaussianRelation, ::Val{T}) where T
GaussianRelation(pull(cat(1, M; dims=(1, 2)), relation.inner, Val(T)))
end
function pull(f::FinFunction, relation::GaussianRelation, ::Val{T}) where T
GaussianRelation(pull(oplus(FinFunction([1], 1), f), relation.inner, Val(T)))
end
function push(M::AbstractMatrix, relation::GaussianRelation, ::Val{T}) where T
GaussianRelation(push(cat(1, M; dims=(1, 2)), relation.inner, Val(T)))
end
function push(f::FinFunction, relation::GaussianRelation, ::Val{T}) where T
GaussianRelation(push(oplus(FinFunction([1], 1), f), relation.inner, Val(T)))
end
function WiringDiagramAlgebras.oapply(
diagram::UndirectedWiringDiagram,
hom_map::AbstractDict{<:Any, <:GaussianRelation},
ob_map::AbstractDict{<:Any, <:Integer},
::Val{T}=Val(false);
hom_attr::Symbol=:name,
ob_attr::Symbol=:variable) where T
homs = map(diagram[hom_attr]) do attr
hom_map[attr]
end
obs = map(diagram[ob_attr]) do attr
ob_map[attr]
end
oapply(diagram, homs, obs, Val(T))
end
function WiringDiagramAlgebras.oapply(
diagram::UndirectedWiringDiagram,
homs::AbstractVector{<:GaussianRelation},
obs::AbstractVector{<:Integer},
::Val{T}=Val(false)) where T
q_stop = cumsum(obs[diagram[:outer_junction]])
p_stop = cumsum(obs[diagram[:junction]])
j_stop = cumsum(obs)
q_start = q_stop .- obs[diagram[:outer_junction]] .+ 1
p_start = p_stop .- obs[diagram[:junction]] .+ 1
j_start = j_stop .- obs .+ 1
q_map = Vector{Int}(undef, q_stop[end])
p_map = Vector{Int}(undef, p_stop[end])
for q in parts(diagram, :OuterPort)
j = diagram[q, :outer_junction]
q_map[q_start[q]:q_stop[q]] .= j_start[j]:j_stop[j]
end
for p in parts(diagram, :Port)
j = diagram[p, :junction]
p_map[p_start[p]:p_stop[p]] .= j_start[j]:j_stop[j]
end
q_map = FinFunction(q_map, j_stop[end])
p_map = FinFunction(p_map, j_stop[end])
relation = otimes(homs...)
pull(q_map, push(p_map, relation, Val(T)), Val(T))
end
| GaussianRelations | https://github.com/samuelsonric/GaussianRelations.jl.git |
|
[
"MIT"
] | 0.2.1 | 78faddd85f10ff840cbaa98533c82581e01a6ac7 | code | 13069 | using Catlab, Catlab.Programs
using GaussianRelations
using LinearAlgebra
using Test
function ≅(a, b)
isapprox(a, b; atol=1e-8)
end
@testset "Positive Definite" begin
P = [
5/16 -1/8 0
-1/8 7/12 1/3
0 1/3 1/3
]
C = [
4 2 -2
2 5 -5
-2 -5 8
]
M = [
1 2 -1
2 1 2
-1 2 1
]
m = [1, -3, 4]
v = [3, 9, -1]
mask = [true, true, false]
@testset "CenteredPrecisonForm" begin
relation = CenteredPrecisionForm{Matrix{Float64}, Matrix{Float64}}(P)
marginal, conditional, matrix = disintegrate(relation, mask)
@test length(relation) == 3
@test params(relation, 1) ≅ P
@test params(kleisli(relation), 1) ≅ P
@test params(M * relation, 1) ≅ inv(M * C * M')
@test params(M \ relation, 1) ≅ M' * P * M
@test params(otimes(relation, relation), 1) ≅ cat(P, P; dims=(1, 2))
@test params(CenteredCovarianceForm(relation), 1) ≅ C
@test params(marginal, 1) ≅ inv(C[mask, mask])
@test params(conditional, 1) ≅ P[.!mask, .!mask]
@test matrix ≅ -C[.!mask, mask] / C[mask, mask]
end
@testset "CenteredCovarianceForm" begin
relation = CenteredCovarianceForm{Matrix{Float64}, Matrix{Float64}}(C)
marginal, conditional, matrix = disintegrate(relation, mask)
@test length(relation) == 3
@test params(relation, 1) ≅ C
@test params(kleisli(relation), 1) ≅ C
@test params(M * relation, 1) ≅ M * C * M'
@test params(M \ relation, 1) ≅ inv(M' * P * M)
@test params(otimes(relation, relation), 1) ≅ cat(C, C; dims=(1, 2))
@test params(CenteredPrecisionForm(relation), 1) ≅ P
@test params(marginal, 1) ≅ C[mask, mask]
@test params(conditional, 1) ≅ inv(P[.!mask, .!mask])
@test matrix ≅ -C[.!mask, mask] / C[mask, mask]
end
@testset "PrecisionForm" begin
relation = PrecisionForm{Matrix{Float64}, Matrix{Float64}}(m, P)
marginal, conditional, matrix = disintegrate(relation, mask)
@test isa(convert(PrecisionForm{Matrix{Float32}, Matrix{Float32}}, relation), PrecisionForm{Matrix{Float32}, Matrix{Float32}})
@test length(relation) == 3
@test cov(relation) ≅ C
@test mean(relation) ≅ m
@test params(relation, 1) ≅ P
@test params(relation, 3) ≅ m
@test params(v + relation, 1) ≅ P
@test params(v + relation, 3) ≅ v + m
@test params(M * relation, 1) ≅ inv(M * C * M')
@test params(M * relation, 3) ≅ M * m
@test params(M \ relation, 1) ≅ M' * P * M
@test params(M \ relation, 3) ≅ inv(M' * P * M) * M' * P * m
@test params(otimes(relation, relation, relation), 1) ≅ cat(P, P, P; dims=(1, 2))
@test params(otimes(relation, relation, relation), 3) ≅ [m; m; m]
@test params(CovarianceForm(relation), 1) ≅ C
@test params(CovarianceForm(relation), 3) ≅ m
@test params(marginal, 1) ≅ inv(C[mask, mask])
@test params(marginal, 3) ≅ m[mask]
@test params(conditional, 1) ≅ P[.!mask, .!mask]
@test params(conditional, 3) ≅ inv(P[.!mask, .!mask]) * P[.!mask, :] * m
@test matrix ≅ -C[.!mask, mask] / C[mask, mask]
end
@testset "CovarianceForm" begin
relation = CovarianceForm{Matrix{Float64}, Matrix{Float64}}(m, C)
marginal, conditional, matrix = disintegrate(relation, mask)
@test isa(convert(CovarianceForm{Matrix{Float32}, Matrix{Float32}}, relation), CovarianceForm{Matrix{Float32}, Matrix{Float32}})
@test length(relation) == 3
@test length(relation) == 3
@test cov(relation) ≅ C
@test mean(relation) ≅ m
@test params(relation, 1) ≅ C
@test params(relation, 3) ≅ m
@test params(v + relation, 1) ≅ C
@test params(v + relation, 3) ≅ v + m
@test params(M * relation, 1) ≅ M * C * M'
@test params(M * relation, 3) ≅ M * m
@test params(M \ relation, 1) ≅ inv(M' * P * M)
@test params(M \ relation, 3) ≅ inv(M' * P * M) * M' * P * m
@test params(otimes(relation, relation, relation), 1) ≅ cat(C, C, C; dims=(1, 2))
@test params(otimes(relation, relation, relation), 3) ≅ [m; m; m]
@test params(PrecisionForm(relation), 1) ≅ P
@test params(PrecisionForm(relation), 3) ≅ m
@test params(marginal, 1) ≅ C[mask, mask]
@test params(marginal, 3) ≅ m[mask]
@test params(conditional, 1) ≅ inv(P[.!mask, .!mask])
@test params(conditional, 3) ≅ inv(P[.!mask, .!mask]) * P[.!mask, :] * m
@test matrix ≅ -C[.!mask, mask] / C[mask, mask]
end
end
@testset "Noisy Resistor" begin
σ₁ = 1/2
σ₂ = 2/3
R₁ = 2
R₂ = 4
V₀ = 5
M = [-1 1; R₂ R₁] / (R₁ + R₂)
@testset "PrecisionForm" begin
#=
# ϵ₁ ~ N(0, σ₁²)
ϵ₁ = PrecisionForm(0, σ₁^-2)
# ϵ₂ ~ N(0, σ₂²)
ϵ₂ = PrecisionForm(0, σ₂^-2)
# [ I₁ ]
# [-R₁ 1] [ V₁ ] = ϵ₁
IV₁ = [-R₁ 1] \ ϵ₁
@test nullspace(params(IV₁, 1)) ≅ nullspace([-R₁ 1]) || nullspace(params(IV₁, 1)) ≅ -nullspace([-R₁ 1])
@test all(params([-R₁ 1] * IV₁) .≅ params(ϵ₁))
# [ I₁ ]
# [R₂ 1] [ V₂ ] = ϵ₂ + V₀
IV₂ = [R₂ 1] \ (ϵ₂ + V₀)
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ V₁ ]
# [ 1 0 ] [ I ] [ I₂ ]
# [ 0 1 ] [ V ] = [ V₂ ]
IV = [1 0; 0 1; 1 0; 0 1] \ otimes(IV₁, IV₂)
@test params(IV, 1) ≅ inv(M * [σ₁^2 0; 0 σ₂^2] * M')
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
# IV₁
# / \
# --- I V ---
# \ /
# IV₂
diagram = @relation (I, V) begin
IV₁(I, V)
IV₂(I, V)
end
IV = oapply(diagram, Dict(:IV₁ => IV₁, :IV₂ => IV₂), Dict(:I => 1, :V => 1))
@test params(IV, 1) ≅ inv(M * [σ₁^2 0; 0 σ₂^2] * M')
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
=#
###############################
# Example 1: A Noisy Resistor #
###############################
σ₁ = 1/2
R₁ = 2
# ϵ₁ ~ N(0, σ₁²)
ϵ₁ = PrecisionForm(0, σ₁^-2)
# Define the noisy resistor using a kernel representation.
# [ I₁ ]
# [-R₁ 1] [ V₁ ] = ϵ₁
IV₁ = [-R₁ 1] \ ϵ₁
@test nullspace(params(IV₁, 1)) ≅ nullspace([-R₁ 1]) || nullspace(params(IV₁, 1)) ≅ -nullspace([-R₁ 1])
@test all(params([-R₁ 1] * IV₁) .≅ params(ϵ₁))
#################################################
# Example 3: The Noisy Resistor, Interconnected #
#################################################
σ₂ = 2/3
R₂ = 4
V₀ = 5
# ϵ₂ ~ N(0, σ₂²)
ϵ₂ = PrecisionForm(0, σ₂^-2)
# Construct the second resistor.
# [ I₁ ]
# [R₂ 1] [ V₂ ] = ϵ₂ + V₀
IV₂ = [R₂ 1] \ (ϵ₂ + V₀)
# The interconnected system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ V₁ ]
# [ 1 0 ] [ I ] [ I₂ ]
# [ 0 1 ] [ V ] = [ V₂ ]
IV = [1 0; 0 1; 1 0; 0 1] \ otimes(IV₁, IV₂)
@test params(IV, 1) ≅ inv(M * [σ₁^2 0; 0 σ₂^2] * M')
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
# The interconnected system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# --- I V ---
# \ /
# IV₂
diagram = @relation (I, V) begin
IV₁(I, V)
IV₂(I, V)
end
# We can also interconnect the systems by applying an operad algebra to the preceding diagram.
IV = oapply(diagram, Dict(:IV₁ => IV₁, :IV₂ => IV₂), Dict(:I => 1, :V => 1))
@test params(IV, 1) ≅ inv(M * [σ₁^2 0; 0 σ₂^2] * M')
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
# If a system is classical, access its parameters by calling the functions mean and cov.
mean(IV)
cov(IV)
@test mean(IV) ≅ M * [0; V₀]
@test cov(IV) ≅ M * [σ₁^2 0; 0 σ₂^2] * M'
##################################################
# Example 5: The Noisy Resistor With Constraints #
##################################################
# I₂ = 1 amp.
I₂ = PrecisionForm(1, 0, 1)
# The constrained system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ I ] [ V₁ ]
# [ 1 0 ] [ V ] = [ I₂ ]
IV = [1 0; 0 1; 1 0] \ otimes(IV₁, I₂)
# Marginalize over I by computing
# [ I ]
# V = [0 1] [ V ]
V = [0 1] * IV
@test params(V, 1) ≅ [σ₁^-2;;]
@test params(V, 2) ≅ [0;;]
@test params(V, 3) ≅ [R₁]
# The constrained system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# I V ---
# \
# I₂
diagram = @relation (V,) begin
IV₁(I, V)
I₂(I)
end
# We can also constrain the system by applying an operad algebra to the preceding diagram.
V = oapply(diagram, Dict(:IV₁ => IV₁, :I₂ => I₂), Dict(:I => 1, :V => 1))
@test params(V, 1) ≅ [σ₁^-2;;]
@test params(V, 2) ≅ [0;;]
@test params(V, 3) ≅ [R₁]
end
@testset "CovarianceForm" begin
###############################
# Example 1: A Noisy Resistor #
###############################
σ₁ = 1/2
R₁ = 2
# ϵ₁ ~ N(0, σ₁²)
ϵ₁ = CovarianceForm(0, σ₁^2)
# Define the noisy resistor using a kernel representation.
# [ I₁ ]
# [-R₁ 1] [ V₁ ] = ϵ₁
IV₁ = [-R₁ 1] \ ϵ₁
@test nullspace(params(IV₁, 2)) ≅ nullspace([1 R₁]) || nullspace(params(IV₁, 2)) ≅ -nullspace([1 R₁])
@test all(params([-R₁ 1] * IV₁) .≅ params(ϵ₁))
#################################################
# Example 3: The Noisy Resistor, Interconnected #
#################################################
σ₂ = 2/3
R₂ = 4
V₀ = 5
# ϵ₂ ~ N(0, σ₂²)
ϵ₂ = CovarianceForm(0, σ₂^2)
# Construct the second resistor.
# [ I₁ ]
# [R₂ 1] [ V₂ ] = ϵ₂ + V₀
IV₂ = [R₂ 1] \ (ϵ₂ + V₀)
# The interconnected system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ V₁ ]
# [ 1 0 ] [ I ] [ I₂ ]
# [ 0 1 ] [ V ] = [ V₂ ]
IV = [1 0; 0 1; 1 0; 0 1] \ otimes(IV₁, IV₂)
@test params(IV, 1) ≅ M * [σ₁^2 0; 0 σ₂^2] * M'
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
# The interconnected system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# --- I V ---
# \ /
# IV₂
diagram = @relation (I, V) begin
IV₁(I, V)
IV₂(I, V)
end
# We can also interconnect the systems by applying an operad algebra to the preceding diagram.
IV = oapply(diagram, Dict(:IV₁ => IV₁, :IV₂ => IV₂), Dict(:I => 1, :V => 1))
@test params(IV, 1) ≅ M * [σ₁^2 0; 0 σ₂^2] * M'
@test params(IV, 2) ≅ [0 0; 0 0]
@test params(IV, 3) ≅ M * [0; V₀]
# If a system is classical, access its parameters by calling the functions mean and cov.
mean(IV)
cov(IV)
@test mean(IV) ≅ M * [0; V₀]
@test cov(IV) ≅ M * [σ₁^2 0; 0 σ₂^2] * M'
##################################################
# Example 5: The Noisy Resistor With Constraints #
##################################################
# I₂ = 1 amp.
I₂ = CovarianceForm(1, 0)
# The constrained system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ I ] [ V₁ ]
# [ 1 0 ] [ V ] = [ I₂ ]
IV = [1 0; 0 1; 1 0] \ otimes(IV₁, I₂)
# Marginalize over I by computing
# [ I ]
# V = [0 1] [ V ]
V = [0 1] * IV
@test params(V, 1) ≅ [σ₁^2;;]
@test params(V, 2) ≅ [0;;]
@test params(V, 3) ≅ [R₁]
# The constrained system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# I V ---
# \
# I₂
diagram = @relation (V,) begin
IV₁(I, V)
I₂(I)
end
# We can also constrain the system by applying an operad algebra to the preceding diagram.
V = oapply(diagram, Dict(:IV₁ => IV₁, :I₂ => I₂), Dict(:I => 1, :V => 1))
@test params(V, 1) ≅ [σ₁^2;;]
@test params(V, 2) ≅ [0;;]
@test params(V, 3) ≅ [R₁]
end
end
| GaussianRelations | https://github.com/samuelsonric/GaussianRelations.jl.git |
|
[
"MIT"
] | 0.2.1 | 78faddd85f10ff840cbaa98533c82581e01a6ac7 | docs | 3127 | # GaussianRelations.jl
[](https://github.com/samuelsonric/GaussianRelations.jl/actions/workflows/tests.yml?query=workflow%3Atests)
[](https://codecov.io/gh/samuelsonric/GaussianRelations.jl)
GaussianRelations.jl is a Julia library that provides tools for working with Gaussian linear systems. It accompanies the paper [A Categorical Treatment of Open Linear Systems](https://arxiv.org/abs/2403.03934).
## Example: A Noisy Resistor
In the paper [Open Stochastic Systems](https://ieeexplore.ieee.org/abstract/document/6255764), Jan Willems defines a Gaussian linear system that he calls the "noisy resistor."
<p align="center">
<img src="resistor.png" width="259" height="215">
</p>
Using our library, the noisy resistor can be implemented as follows.
```julia
using Catlab
using GaussianRelations
###############################
# Example 1: A Noisy Resistor #
###############################
σ₁ = 1/2
R₁ = 2
# ϵ₁ ~ N(0, σ₁²)
ϵ₁ = CovarianceForm(0, σ₁^2)
# Define the noisy resistor using a kernel representation.
# [ I₁ ]
# [-R₁ 1] [ V₁ ] = ϵ₁
IV₁ = [-R₁ 1] \ ϵ₁
#################################################
# Example 3: The Noisy Resistor, Interconnected #
#################################################
σ₂ = 2/3
R₂ = 4
V₀ = 5
# ϵ₂ ~ N(0, σ₂²)
ϵ₂ = CovarianceForm(0, σ₂^2)
# Construct the second resistor.
# [ I₁ ]
# [R₂ 1] [ V₂ ] = ϵ₂ + V₀
IV₂ = [R₂ 1] \ (ϵ₂ + V₀)
# The interconnected system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ V₁ ]
# [ 1 0 ] [ I ] [ I₂ ]
# [ 0 1 ] [ V ] = [ V₂ ]
IV = [1 0; 0 1; 1 0; 0 1] \ otimes(IV₁, IV₂)
# The interconnected system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# --- I V ---
# \ /
# IV₂
diagram = @relation (I, V) begin
IV₁(I, V)
IV₂(I, V)
end
# We can also interconnect the systems by applying an operad algebra to the preceding
# diagram.
IV = oapply(diagram, Dict(:IV₁ => IV₁, :IV₂ => IV₂), Dict(:I => 1, :V => 1))
# If a system is classical, access its parameters by calling the functions mean and cov.
mean(IV)
cov(IV)
##################################################
# Example 5: The Noisy Resistor With Constraints #
##################################################
# I₂ = 1 amp.
I₂ = CovarianceForm(1, 0)
# The constrained system solves the following equation:
# [ 1 0 ] [ I₁ ]
# [ 0 1 ] [ I ] [ V₁ ]
# [ 1 0 ] [ V ] = [ I₂ ]
IV = [1 0; 0 1; 1 0] \ otimes(IV₁, I₂)
# Marginalize over I by computing
# [ I ]
# V = [0 1] [ V ]
V = [0 1] * IV
# The constrained system corresponds to the following undirected wiring diagram.
# IV₁
# / \
# I V ---
# \
# I₂
diagram = @relation (V,) begin
IV₁(I, V)
I₂(I)
end
# We can also constrain the system by applying an operad algebra to the preceding
# diagram.
V = oapply(diagram, Dict(:IV₁ => IV₁, :I₂ => I₂), Dict(:I => 1, :V => 1))
```
| GaussianRelations | https://github.com/samuelsonric/GaussianRelations.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 667 | using Random
using RNGTest
using BenchmarkTools
function pipe_output(f, str_out, str_err)
redirect_stdio(stdout="$(str_out).txt", stderr="$(str_err).txt") do
f()
end
end
str_(test, name) = "$(test)_$name"
str_(test, name, seed) = "$(test)_$(name)_seed=$seed"
function smallcrush(rng, name)
redirect_stdio(stdout="./BigCrushTestU01_$(name).txt", stderr="stderr_$(name).txt") do
RNGTest.smallcrushTestU01(rng)
end
end
function bigcrush(rng, name)
redirect_stdio(stdout="./BigCrushTestU01_$(name).txt", stderr="stderr_$(name).txt") do
RNGTest.bigcrushTestU01(rng)
end
end
function speed_benchmark(rng, name)
end
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 348 | using Pkg
Pkg.activate(".")
using RandomNoise
using Random
using RNGTest
include("utils.jl")
mmn = Murmur3Noise()
open("results/speed_test_Murmur3Noise.txt", "w") do io
b = speed_test(mmn)
show(io, MIME("text/plain"), b)
end
io2 = open("results/bigcrush_MurmurNoise.txt", "w")
redirect_stdout(io2) do
bigcrush(mmn)
end
close(io2)
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 357 | using Pkg
Pkg.activate(".")
using RandomNoise
using Random
using RNGTest
include("utils.jl")
sqn = SquirrelNoise5()
open("results/speed_test_SquirrelNoise5.txt", "w") do io
b = speed_test(sqn)
show(io, MIME("text/plain"), b)
end
io2 = open("results/bigcrush_SquirrelNoise5.txt", "w")
redirect_stdout(io2) do
bigcrush(sqn)
end
close(io2)
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 361 | using Pkg
Pkg.activate(".")
using RandomNoise
using Random
using RNGTest
include("utils.jl")
sqn = SquirrelNoise5x2()
open("results/speed_test_SquirrelNoise5x3.txt", "w") do io
b = speed_test(sqn)
show(io, MIME("text/plain"), b)
end
io2 = open("results/bigcrush_SquirrelNoise5x2.txt", "w")
redirect_stdout(io2) do
bigcrush(sqn)
end
close(io2)
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 527 | using RNGTest: wrap, bigcrushTestU01
using BenchmarkTools
using RandomNoise: AbstractNoise, NoiseRNG
using Random
function wrap_noise(rng::AbstractNoise{T}) where T
return wrap(NoiseRNG(rng), T)
end
function bigcrush(rng::AbstractNoise)
bigcrushTestU01(wrap_noise(rng))
end
function speed_test(noise::AbstractNoise{T}, n = 100_000_000) where {T}
a = Vector{T}(undef, n)
rng = NoiseRNG(noise)
rand!(rng, a)
return @benchmark rand!($(NoiseRNG(noise)), $a)# setup=(rng=NoiseRNG($noise), a=copy($a))
end
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 607 | using NoiseRNG
using Documenter
DocMeta.setdocmeta!(NoiseRNG, :DocTestSetup, :(using NoiseRNG); recursive=true)
makedocs(;
modules=[NoiseRNG],
authors="Cédric Simal, University of Namur",
repo="https://github.com/csimal/NoiseRNG.jl/blob/{commit}{path}#{line}",
sitename="NoiseRNG.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://csimal.github.io/NoiseRNG.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/csimal/NoiseRNG.jl",
devbranch="main",
)
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1413 | module DistributionsExt
using RandomNoise
using RandomNoise: noise_convert
import RandomNoise: NoiseMap, noise_getindex
isdefined(Base, :get_extension) ? (using Distributions) : (using ..Distributions)
"""
NoiseMap(rng::AbstractNoise, d::UnivariateDistribution, dim::Integer)
Return a `NoiseMap` of dimension `dim` whose elements are samples from the univariate distribution `d`.
# Examples
```jldoctest
julia> using RandomNoise, Distributions
julia> nm1 = NoiseMap(SquirrelNoise5(), Bernoulli(0.5), 1)
NoiseMap{Bool, 1, SquirrelNoise5, Bernoulli{Float64}}(SquirrelNoise5(0x00000000), Bernoulli{Float64}(p=0.5))
julia> nm1.(1:10)
10-element BitVector:
0
0
0
0
0
0
0
1
1
0
julia> nm2 = NoiseMap(sqn, Poisson(5), 1)
NoiseMap{Int64, 1, SquirrelNoise5, Poisson{Float64}}(SquirrelNoise5(0x00000000), Poisson{Float64}(λ=5.0))
julia> nm2.(1:10)
10-element Vector{Int64}:
7
6
5
6
5
6
6
4
1
8
```
"""
function NoiseMap(rng::R, d::Distributions.UnivariateDistribution, N::Integer = 1) where {R}
T = eltype(d)
NoiseMap{T,N,R,typeof(d)}(rng, d)
end
@inline noise_getindex(rng::AbstractNoise, d::Distributions.UnivariateDistribution, i) = Distributions.quantile(d, noise_convert(noise(i,rng), Float64))
# override to guarantee Bool output type
@inline noise_getindex(rng::AbstractNoise, d::Distributions.Bernoulli, i) = isless(noise_convert(noise(i,rng), Float64), d.p)
end # module | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1351 | module RandomNoise
"""
AbstractNoise{T}
Supertype for random noise functions. `T` indicates the return type.
"""
abstract type AbstractNoise{T} end
"""
noise(n, noise::AbstractNoise)
Compute noise function `noise` at position `n`.
## Examples
```jldoctest
julia> sqn = SquirrelNoise5()
SquirrelNoise5(0x00000000)
julia> noise(5, sqn)
0x933e65af
```
"""
function noise(n::Integer, nf::AbstractNoise{T}) where {T<:Integer}
noise(n % T, nf)
end
function noise(n, nf::AbstractNoise{T}) where {T}
noise(_convert(n, T), nf)
end
export AbstractNoise
export noise
include("noise/squirrel5.jl")
include("noise/murmur3.jl")
export SquirrelNoise5, SquirrelNoise5x2, Murmur3Noise
include("utils/convert.jl")
include("noise_rng.jl")
export NoiseRNG
include("utils/transforms.jl")
export NoiseUniform
include("utils/pairing_functions.jl")
include("noise_maps.jl")
export NoiseMap
using Random123
include("noise/random123.jl")
export ThreefryNoise, PhiloxNoise
@static if Random123.R123_USE_AESNI
export AESNINoise, ARSNoise
end
if !isdefined(Base, :get_extension)
using Requires
end
function __init__()
# Optional support for Distributions
@static if !isdefined(Base, :get_extension)
@require Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" include("../ext/DistributionsExt.jl")
end
end
end
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2099 | import Base: getindex
"""
NoiseMap{T,N,R,F}
An `N`-dimensional infinite stream of random values.
# Fields
- `noise` an noise function used to generate the base stream of random numbers
- `transform` a function that is applied to the output of the noise function to obtain the result
Transforms can be
- Arbitrary functions
- An instance of `NoiseUniform`, in which case, the values are floating point numbers uniformly distributed in the interval [0,1).
- An instance of `Distributions.UnivariateDistribution`, in which case the values are samples from that distribution.
# Examples
```jldoctest
julia> nm = NoiseMap(sqn)
NoiseMap{UInt32, 1, SquirrelNoise5, typeof(identity)}(SquirrelNoise5(0x00000000), identity)
```
"""
struct NoiseMap{T,N,R<:AbstractNoise,F}
noise::R
transform::F
end
NoiseMap{T,N}(rng::R, transform::F) where {T,N,R,F} = NoiseMap{T,N,R,F}(rng, transform)
NoiseMap{T}(rng::R, transform::F, N::Integer = 1) where {T,R,F} = NoiseMap{T,N,R,F}(rng, transform)
function NoiseMap(rng::R, transform::F, N::Integer = 1) where {R,F}
T = typeof(transform(noise(1, rng)))
NoiseMap{T,N,R,F}(rng, transform)
end
NoiseMap(rng, dim::Integer = 1) = NoiseMap(rng, identity, dim)
NoiseMap(rng::R, t::NoiseUniform{T}, N::Integer = 1) where {R,T} = NoiseMap{T,N,R,NoiseUniform{T}}(rng, t)
@inline (nm::NoiseMap)(n::Integer) = noise_getindex(nm.noise, nm.transform, n)
@inline (nm::NoiseMap{T,2})(a, b) where T = nm(pairing2(a,b))
@inline (nm::NoiseMap{T,3})(a, b, c) where T = nm(pairing3(a,b,c))
@inline (nm::NoiseMap{T,4})(a, b, c, d) where T = nm(pairing4(a,b,c,d))
@inline (nm::NoiseMap{T,5})(a,b,c,d,e) where T = nm(pairing5(a,b,c,d,e))
@inline (nm::NoiseMap{T,6})(a,b,c,d,e,f) where T = nm(pairing6(a,b,c,d,e,f))
@inline (nm::NoiseMap{T,7})(a,b,c,d,e,f,g) where T = nm(pairing7(a,b,c,d,e,f,g))
@inline (nm::NoiseMap{T,8})(a,b,c,d,e,f,g,h) where T = nm(pairing8(a,b,c,d,e,f,g,h))
@inline (nm::NoiseMap)(idx::Tuple{Vararg{Integer,N}}) where N = nm(idx...)
@inline (nm::NoiseMap)(idx...) = nm(pairing(idx...))
@inline getindex(nm::NoiseMap, idx...) = nm(idx...) | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2114 | import Random
import Random: AbstractRNG, rand, UInt52, rng_native_52
# NB. copied from https://github.com/JuliaRandom/RandomNumbers.jl/blob/master/src/common.jl
const BitTypes = Union{Bool, UInt8, UInt16, UInt32, UInt64, UInt128, Int8, Int16, Int32, Int64, Int128}
"""
NoiseRNG{N,T} <: AbstractRNG where {N,T<:AbstractNoise{N}}
Wrapper type to use a noise function as a rng for use in `rand()`.
## Fields
* `noise::T` : the noise function.
* `counter::N = zero(N)` : a counter indicating where the sequence of generated numbers is currently at.
## Examples
```jldoctest
julia> rng = NoiseRNG(SquirrelNoise5())
NoiseRNG{UInt32, SquirrelNoise5}(SquirrelNoise5(0x00000000), 0x00000000)
julia> rand(rng)
0.08778560161590576
````
"""
mutable struct NoiseRNG{N,T} <: AbstractRNG where {N,T<:AbstractNoise{N}}
noise::T
counter::N
end
NoiseRNG(noise::AbstractNoise{N}) where {N} = NoiseRNG(noise, zero(N))
Base.:(==)(rng1::NoiseRNG{N,T}, rng2::NoiseRNG{N,T}) where {N,T} = (rng1.noise == rng2.noise) && (rng1.counter == rng2.counter)
Base.copy(rng::NoiseRNG) = NoiseRNG(rng.noise,rng.counter)
function Base.copy!(dst::NoiseRNG{N,T}, src::NoiseRNG{N,T}) where {N,T}
dst.noise = src.noise
dst.counter = src.counter
dst
end
@inline function rand(rng::NoiseRNG{N,T}, ::Type{N}) where {N<:BitTypes,T<:AbstractNoise{N}}
rng.counter += one(N)
noise(rng.counter-1, rng.noise)
end
rng_native_52(::NoiseRNG) = UInt64
rand(rng::NoiseRNG, ::Random.SamplerType{T}) where {T<:BitTypes} = rand(rng,T)
@inline function rand(rng::NoiseRNG{N1,T}, ::Type{N2}) where {N1<:BitTypes, N2<:BitTypes,T}
s1 = sizeof(N1)
s2 = sizeof(N2)
t = rand(rng,N1) % N2
s1 > s2 && return t
for i in 2:(s2 ÷ s1)
t |= (rand(rng, N1) % N2) << ((s1 << 3) * (i-1))
end
t
end
@inline function rand(rng::NoiseRNG{N,T}, ::Type{Float64}=Float64) where {N<:Union{UInt64,UInt128},T}
noise_convert(rand(rng, UInt64), Float64)
end
@inline function rand(rng::NoiseRNG{N,T}, ::Type{Float64}=Float64) where {N<:Union{UInt8,UInt16,UInt32}, T}
noise_convert(rand(rng, N), Float64)
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1279 |
"""
Murmur3Noise
A 32-bit noise function based on the Murmur3 hash function.
## Fields
* `seed::UInt32 = 0`
## Examples
```jldoctest
julia> m3n = Murmur3Noise()
Murmur3Noise(0x00000000)
julia> noise(0, m3n)
0x2362f9de
julia> noise(1, m3n)
0xfbf1402a
```
```jldoctest
julia> m3n = Murmur3Noise(42)
Murmur3Noise(0x0000002a)
julia> noise(0, m3n)
0x379fae8f
julia> noise(1, m3n)
0xdea578e3
```
"""
struct Murmur3Noise <: AbstractNoise{UInt32}
seed::UInt32
Murmur3Noise(n) = new(n % UInt32)
end
Murmur3Noise() = Murmur3Noise(UInt32(0))
noise(n::UInt32, mn::Murmur3Noise) = murmur3_noise(n, mn.seed)
const MURMUR3_BITS_1 = 0xcc9e2d51
const MURMUR3_BITS_2 = 0x1b873593
const MURMUR3_BITS_3 = 0xe6546b64
const MURMUR3_BITS_4 = 0x85ebca6b
const MURMUR3_BITS_5 = 0xc2b2ae35
function murmur3_scramble(k::UInt32)
k *= MURMUR3_BITS_1
k = (k << 15) | (k >> 17)
k *= MURMUR3_BITS_2
return k
end
function murmur3_noise(n::UInt32, seed::UInt32)
h::UInt32 = seed
h ⊻= murmur3_scramble(n)
h = (h << 13) | (h >> 19)
h = h * UInt32(5) + MURMUR3_BITS_3
h ⊻= UInt32(4) # We're only hashing a single UInt32, so 4 bytes
h ⊻= (h >> 16)
h *= MURMUR3_BITS_4
h ⊻= (h >> 13)
h *= MURMUR3_BITS_5
h ⊻= (h >> 16)
return h
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 4249 | using Random123: get_key
"""
ThreefryNoise{N,T,R} <: AbstractNoise{NTuple{N,T}}
A noise function based on the Threefry family of CBRNGs.
This is a wrapper around [`Threefry2x`](@ref) and [`Threefry4x`](@ref) from [`Random123`](@ref), except it guarrantees immutability.
## Examples
```jldoctest
julia> tf = Threefry2x()
Threefry2x{UInt64, 20}(0x2e5a37d3f55d93a2, 0xb2eabf28f8527ba2, 0x7c000c9ca153ea29, 0xe5cc75bfdad28187, 0x0000000000000000, 0x0000000000000000, 0)
julia> tfn = ThreefryNoise(tf)
ThreefryNoise{2, UInt64, 20}((0x7c000c9ca153ea29, 0xe5cc75bfdad28187))
julia> noise(1, tfn)
(0xfdef457ec97615d8, 0x9813921752436c1c)
```
"""
struct ThreefryNoise{N,T,R} <: AbstractNoise{NTuple{N,T}}
key::NTuple{N,T}
end
ThreefryNoise(tf::Threefry2x{T,R}) where {T,R} = ThreefryNoise{2,T,R}(get_key(tf))
ThreefryNoise(tf::Threefry4x{T,R}) where {T,R} = ThreefryNoise{4,T,R}(get_key(tf))
@inline function noise(n::NTuple{N,T}, tf::ThreefryNoise{N,T,R}) where {N,T,R}
threefry(tf.key, n, Val(R))
end
"""
PhiloxNoise{N,T,R,K} <: AbstractNoise{NTuple{N,T}}
A noise function based on the Philox family of CBRNGs.
This is a wrapper around [`Philox2x`](@ref) and [`Philox4x`](@ref) from [`Random123`](@ref), except it guarrantees immutability.
## Examples
```jldoctest
julia> ph = Philox2x()
Philox2x{UInt64, 10}(0x4d6efe7f510f82b6, 0xd79c03fecfefaf49, 0x429f6e3e1bf363f1, 0x0000000000000000, 0x0000000000000000, 0)
julia> phn = PhiloxNoise(ph)
PhiloxNoise{2, UInt64, 10, Tuple{UInt64}}((0x429f6e3e1bf363f1,))
julia> noise(1, phn)
(0x968ebada8eb2b209, 0xd0669e24b96570df)
```
"""
struct PhiloxNoise{N,T,R,K} <: AbstractNoise{NTuple{N,T}}
key::K
end
PhiloxNoise(ph::Philox2x{T,R}) where {T,R} = let k = get_key(ph)
PhiloxNoise{2,T,R, typeof(k)}(k)
end
PhiloxNoise(ph::Philox4x{T,R}) where {T,R} = let k = get_key(ph)
PhiloxNoise{4,T,R, typeof(k)}(k)
end
@inline function noise(n::NTuple{N,T}, ph::PhiloxNoise{N,T,R}) where {N,T,R}
philox(ph.key, n, Val(R))
end
@static if Random123.R123_USE_AESNI
"""
AESNINoise <: AbstractNoise{UInt128}
A wrapper around the [`AESNI1x`](@ref) and [`AESNI4x`](@ref) CRNGs from [`Random123`](@ref).
Unlike the RNG variants, this noise function always outputs `UInt128`s.
## Examples
```jldoctest
julia> aesni = AESNI1x()
...
julia> an = AESNINoise(aesni)
AESNINoise((0xcf9fea1bd8f46e10d09b5d0b2f964de2, 0x47ec4f648873a57f5087cb6f801c9664, 0x5ca479961b4836f2933b938dc3bc58e2, 0x8721cdb9db85b42fc0cd82dd53f61150, 0x998817ae1ea9da17c52c6e3805e1ece5, 0xa3028b843a8a9c2a2423463de10f2805, 0x03ae0e8ba0ac850f9a261925be055f18, 0xba5a2952b9f427d91958a2d6837ebbf3, 0x997ca98b232680d99ad2a700838a05d6, 0x9eec9b4c079032c724b6b21ebe64151e, 0x2aa5c0a9b4495be5b3d96922976fdb3c))
julia> noise(1, an)
0x323c251c4b24a822810f49c50f6d9116
```
"""
struct AESNINoise <: AbstractNoise{UInt128}
key::NTuple{11,UInt128}
end
AESNINoise(a::Union{AESNI1x,AESNI4x}) = AESNINoise(get_key(a))
@inline noise(n::UInt128, r::AESNINoise) = aesni(r.key, (n,))[1]
"""
ARSNoise{R} <: AbstractNoise{UInt128}
A wrapper around the [`ARS1x`](@ref) and [`ARS4x`](@ref) CRNGs from [`Random123`](@ref).
## Examples
```jldoctest
julia> ars = ARS1x()
ARS1x{7}((VecElement{UInt64}(0x0589cb79dfcb3d8e), VecElement{UInt64}(0x5a9b6b4946d5cc90)), (VecElement{UInt64}(0x0000000000000000), VecElement{UInt64}(0x0000000000000000)), (VecElement{UInt64}(0x83db393c26127302), VecElement{UInt64}(0xc39b0808d6985d5e)))
julia> arsn = ARSNoise(ars)
ARSNoise{1, 7, UInt128}((0xc39b0808d6985d5e83db393c26127302,))
julia> noise(1, arsn)
(0x32a70590bb9d50acb18a3c61f2c7fc92,)
```
"""
struct ARSNoise{N,R,T} <: AbstractNoise{NTuple{N,T}}
key::Tuple{UInt128}
end
ARSNoise(a::ARS1x{R}) where R = ARSNoise{1,R,UInt128}(get_key(a))
ARSNoise(a::ARS4x{R}) where R = ARSNoise{4,R,UInt32}(get_key(a))
@inline noise(n::NTuple{N,T}, r::ARSNoise{N,R,T}) where {N,R,T} = _convert(ars(r.key, tuple(_to_bits(n)), Val(R))[1], NTuple{N,T})
@inline noise(n::Integer, r::ARSNoise{N,R,T}) where {N,R,T} = _convert(ars(r.key, tuple(n % UInt128), Val(R))[1], NTuple{N,T})
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2932 |
"""
SquirrelNoise5
The SquirrelNoise5 32 bits random noise function, originally by Squirrel Eiserloh.
See http://eiserloh.net/noise/SquirrelNoise5.hpp for the original C++ code.
## Fields
* `seed::UInt32 = 0` seed of the noise function.
## Examples
```jldoctest
julia> noise(0,SquirrelNoise5())
0x16791e00
julia> noise(1,SquirrelNoise5())
0xc895cb1d
julia> noise(0,SquirrelNoise5(32))
0x9ef5c661
```
"""
struct SquirrelNoise5 <: AbstractNoise{UInt32}
seed::UInt32
SquirrelNoise5(n) = new(n % UInt32)
end
SquirrelNoise5() = SquirrelNoise5(UInt32(0))
Base.:(==)(sqn1::SquirrelNoise5, sqn2::SquirrelNoise5) = sqn1.seed == sqn2.seed
const SQ5_BIT_NOISE1 = 0xd2a80a3f
const SQ5_BIT_NOISE2 = 0xa884f197
const SQ5_BIT_NOISE3 = 0x6C736F4B
const SQ5_BIT_NOISE4 = 0xB79F3ABB
const SQ5_BIT_NOISE5 = 0x1b56c4f5
@inline noise(n::UInt32, s::SquirrelNoise5) = squirrel_noise(n, s.seed)
@inline function squirrel_noise(n::UInt32, seed::UInt32)
# NB. ⊻ == bitwise xor (\xor<TAB> to get the symbol)
mangledbits = n
mangledbits *= SQ5_BIT_NOISE1
mangledbits += seed
mangledbits ⊻= (mangledbits >> 9)
mangledbits += SQ5_BIT_NOISE2
mangledbits ⊻= (mangledbits >> 11)
mangledbits *= SQ5_BIT_NOISE3
mangledbits ⊻= (mangledbits >> 13)
mangledbits += SQ5_BIT_NOISE4
mangledbits ⊻= (mangledbits >> 15)
mangledbits *= SQ5_BIT_NOISE5
mangledbits ⊻= (mangledbits >> 17)
return mangledbits
end
"""
SquirrelNoise5x2 <: AbstractNoise{UInt64}
A 64 bits noise function made by stacking two `SquirrelNoise5()` together.
## Fields
* `seed1::UInt32 = 0` the first seed
* `seed2::UInt32 = 1` the second seed
When constructing an instance with both seeds equal, a `DomainError` will be raised.
## Examples
```jldoctest
julia> sqnx2 = SquirrelNoise5x2()
SquirrelNoise5x2(0x00000000, 0x00000001)
julia> noise(0, sqnx2)
0xd40e6352d9ba8dce
julia> noise(1, sqnx2)
0x0f9b5434d68ee534
```
"""
struct SquirrelNoise5x2 <: AbstractNoise{UInt64}
seed1::UInt32
seed2::UInt32
function SquirrelNoise5x2(m,n)
if m == n
throw(DomainError((m,n),"Constructing an instance of SquirrelNoise5x2 with identical seeds ($m). This will harm the quality of the numbers generated."))
end
new(m % UInt32,n % UInt32)
end
end
SquirrelNoise5x2() = SquirrelNoise5x2(UInt32(0),UInt32(1))
@inline function noise(n::UInt64, sqnx2::SquirrelNoise5x2)
n1 = n % UInt32
n2 = (n >> 32) % UInt32
# scramble the bits to avoid problems with high bits not changing much
#= alternative:
r1 = squirrel_noise(n1, sqnx2.seed1)
r2 = squirrel_noise(n1, sqnx2.seed2)
r3 = squirrel_noise(n2, sqnx2.seed1)
r4 = squirrel_noise(n2, sqnx2.seed2)
r5 = r1 ⊻ r2; r6 = r3 ⊻ r4
=#
n3 = squirrel_noise(n1 + n2, 0x00000000)
r1 = squirrel_noise(n3, sqnx2.seed1)
r2 = squirrel_noise(n3, sqnx2.seed2)
(UInt64(r1) << 32) + UInt64(r2)
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2372 |
# Convert an integer type to a tuple of integers while keeping as many bits as possible.
# The evil pointer fiddling is to make it very fast, as creating new tuples is slower
begin
local int_types = [Int8, Int16, Int32, Int64, Int128]
local uint_types = [UInt8, UInt16, UInt32, UInt64, UInt128]
for i in eachindex(uint_types)
U = uint_types[i] |> Symbol
I = int_types[i] |> Symbol
@eval begin
@inline function _to_bits(n::Union{$I,$U})::$U
n % $U
end
end
end
for i in 1:length(uint_types)-1, j in i+1:length(uint_types)
U = uint_types[i] |> Symbol
I = int_types[i] |> Symbol
T = uint_types[j] |> Symbol
N = 2^(j-i)
@eval begin
@inline function _to_bits(n::NTuple{$N,S})::$T where {S <: Union{$U,$I}}
unsafe_load(Ptr{$T}(pointer_from_objref(Ref(n))))
end
@inline function _convert(n::Integer, ::Type{NTuple{$N,$U}})
unsafe_load(Ptr{NTuple{$N,$U}}(pointer_from_objref(Ref(n % $T))))
end
end
end
@inline function _convert(n::Union{Int64,UInt64}, ::Type{NTuple{4,UInt64}})::NTuple{4,UInt64}
(n % UInt64, zero(UInt64), zero(UInt64), zero(UInt64))
end
@inline function _convert(n::Integer, ::Type{Tuple{T}}) where T <: Integer
(n % T,)
end
@inline function _convert(n::NTuple{N,<:Integer}, ::Type{S})::S where {N,S<:Integer}
_to_bits(n) % S
end
end
"""
noise_convert(r::Integer, ::Type{AbstractFloat})
Convert an integer to a floating point number in [0,1).
This is intended to be used with random number generators, so the output is uniformly distributed over [0,1).
"""
function noise_convert end
@inline function noise_convert(r::N, ::Type{Float64}) where {N<:Union{UInt8,UInt16,UInt32}}
r * exp2(-sizeof(N) << 3)
end
# NB. copied from https://github.com/JuliaLang/julia/blob/701468127a335d130e968a8a180021e4287abf3f/stdlib/Random/src/Xoshiro.jl#L204-L211
@inline function noise_convert(r::UInt16, ::Type{Float16})
Float16(Float32(r >>> 5) * Float32(0x1.0p-11))
end
@inline function noise_convert(r::UInt32, ::Type{Float32})
Float32(r >>> 8) * Float32(0x1.0p-24)
end
@inline function noise_convert(r::UInt64, ::Type{Float64})
Float64(r >>> 11) * 0x1.0p-53
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1046 |
"""
pairing2(i,j)
The Hopcroft-Ullman pairing function, which bijectively maps two positive integers to a positive integer.
See https://mathworld.wolfram.com/PairingFunction.html
"""
@inline pairing2(i,j) = div((i+j-2)*(i+j-1),2) + i
@inline pairing3(i,j,k) = pairing2(pairing2(i,j),k)
@inline pairing4(i,j,k,l) = pairing2(pairing2(i,j),pairing2(k,l))
@inline pairing5(i,j,k,l,m) = pairing2(pairing2(i,j), pairing3(k,l,m))
@inline pairing6(i,j,k,l,m,n) = pairing2(pairing2(i,j), pairing4(k,l,m,n))
@inline pairing7(i,j,k,l,m,n,o) = pairing2(pairing3(i,j,k), pairing4(l,m,n,o))
@inline pairing8(i,j,k,l,m,n,o,p) = pairing2(pairing4(i,j,k,l), pairing4(m,n,o,p))
function pairing(idx...)
x = [idx...]
n = length(x)
while n > 1
k = div(n,2)
for i in 1:k
x[i] = pairing2(x[2i-1], x[2i])
end
if isodd(n)
x[k+1] = x[n]
n = k+1
else
n = k
end
end
return x[1]
end
pairing(t::Tuple{Vararg{Integer,N}}) where N = pairing(t...) | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 604 |
@inline function noise_getindex(rng::AbstractNoise, transform, i, ::Type{T}) where T
convert(T, transform(noise(i, rng)))
end
@inline noise_getindex(rng::AbstractNoise, transform, i) = transform(noise(i, rng))
"""
NoiseUniform{T}
The generic transform for converting the default output of noise functions to uniformly distributed values of type `T`.
For floating point numbers, the values are uniformly distributed in the interval [0,1).
"""
struct NoiseUniform{T<:AbstractFloat} end
@inline noise_getindex(rng::AbstractNoise, ::NoiseUniform{T}, i) where T = noise_convert(noise(i,rng), T)
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2089 | import RandomNoise: noise_convert, _to_bits, _convert
@testset "Conversion" begin
@testset "to_bits" begin
uints = [UInt8,UInt16,UInt32,UInt64,UInt128]
ints = [Int8,Int16,Int32,Int64,Int128]
for (u,i) in zip(uints, ints)
@test _to_bits(i(1)) == u(1)
end
for i in 1:length(uints)-1, j in i+1:length(uints)
U = uints[i]
I = ints[i]
T = uints[j]
N = 2^(j-i)
@test typeof(_to_bits(tuple(ones(I,N)...))) == T
@test typeof(_to_bits(tuple(ones(U,N)...))) == T
end
end
@testset "noise_convert" begin
@test typeof(noise_convert(0x01, Float64)) == Float64
@test noise_convert(0x00, Float64) == 0.0
@test noise_convert(typemax(UInt8), Float64) < 1.0
@test typeof(noise_convert(0x0001, Float64)) == Float64
@test noise_convert(0x0000, Float64) == 0.0
@test noise_convert(typemax(UInt16), Float64) < 1.0
@test typeof(noise_convert(0x0000001, Float64)) == Float64
@test noise_convert(0x00000000, Float64) == 0.0
@test noise_convert(typemax(UInt32), Float64) < 1.0
@test typeof(noise_convert(0x0001, Float16)) == Float16
@test noise_convert(0x0000, Float16) == Float16(0.0)
@test noise_convert(typemax(UInt16), Float16) < 1.0
@test typeof(noise_convert(0x00000001, Float32)) == Float32
@test noise_convert(0x00000000, Float32) == Float32(0.0)
@test noise_convert(typemax(UInt32), Float32) < 1.0
@test typeof(noise_convert(0x0000000000000001, Float64)) == Float64
@test noise_convert(0x0000000000000000, Float64) == 0.0
@test noise_convert(typemax(UInt64), Float64) < 1.0
end
@testset "_convert" begin
uints = [UInt8,UInt16,UInt32,UInt64,UInt128]
ints = [Int8,Int16,Int32,Int64,Int128]
for i in 1:length(uints)-1, j in i+1:length(uints)
U = uints[i]
I = ints[i]
T = uints[j]
N = 2^(j-i)
@test typeof(_convert(T(1), NTuple{N,U})) == NTuple{N,U}
@test typeof(_convert(tuple(ones(U,N)...), U)) == U
end
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 415 | using RandomNoise: noise_getindex
using Distributions
@testset "Distributions compat" begin
sqn = SquirrelNoise5()
@test typeof(NoiseMap(sqn, Normal(0,1))) == NoiseMap{Float64,1,SquirrelNoise5,Normal{Float64}}
@test typeof(noise_getindex(sqn, Normal(0,1), 1)) == Float64
@test typeof(noise_getindex(sqn, Bernoulli(0.5), 1)) == Bool
@test typeof(noise_getindex(sqn, Poisson(1), 1)) == Int
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1464 |
@testset "Noise" begin
@testset "SquirrelNoise5" begin
@test SquirrelNoise5() == SquirrelNoise5(0x00000000)
@test SquirrelNoise5(1) == SquirrelNoise5(0x00000001)
sqn = SquirrelNoise5()
@test typeof(noise(0,sqn)) == UInt32
@test noise(0x00000000, sqn) == 0x16791e00
@test noise(0, sqn) == 0x16791e00
@test noise(0x00000001,sqn) == 0xc895cb1d
@test noise(1, sqn) == 0xc895cb1d
sqn1 = SquirrelNoise5(1)
@test noise(0x00000000, sqn1) == 0x23f6c851
@test noise(0, sqn1) == 0x23f6c851
@test noise(0x00000001, sqn1) == 0x98b75d40
@test noise(1, sqn1) == 0x98b75d40
end
@testset "SquirrelNoise5x2" begin
@test SquirrelNoise5x2() == SquirrelNoise5x2(0,1)
@test_throws DomainError SquirrelNoise5x2(0,0)
sqn = SquirrelNoise5x2()
@test typeof(noise(0, sqn)) == UInt64
@test noise(0, sqn) == 0xd40e6352d9ba8dce
@test noise(1, sqn) == 0x0f9b5434d68ee534
end
@testset "Murmur3Noise" begin
@test Murmur3Noise() == Murmur3Noise(0x00000000)
@test Murmur3Noise(1) == Murmur3Noise(0x00000001)
m3n = Murmur3Noise()
@test typeof(noise(0, m3n)) == UInt32
@test noise(0x00000000, m3n) == 0x2362f9de
@test noise(0, m3n) == noise(0x00000000, m3n)
@test noise(0x00000001, m3n) == 0xfbf1402a
@test noise(1, m3n) == noise(0x00000001, m3n)
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2071 | using RandomNoise: pairing, pairing2, pairing3, pairing4, pairing5, pairing5, pairing6, pairing7, pairing8
@testset "NoiseMap" begin
@testset "Constructors" begin
sqn = SquirrelNoise5()
@test NoiseMap(sqn) == NoiseMap(sqn, identity, 1)
@test typeof(NoiseMap(sqn, 2)) == NoiseMap{UInt32,2,SquirrelNoise5,typeof(identity)}
@test NoiseMap(sqn, 2) === NoiseMap(sqn, identity, 2)
@test NoiseMap(sqn, identity, 2) === NoiseMap{UInt32}(sqn, identity, 2)
@test NoiseMap(sqn, identity, 2) === NoiseMap{UInt32,2}(sqn, identity)
@test typeof(NoiseMap(sqn, sin)) == NoiseMap{Float64,1,SquirrelNoise5,typeof(sin)}
@test typeof(NoiseMap(sqn, NoiseUniform{Float64}())) == NoiseMap{Float64,1,SquirrelNoise5,NoiseUniform{Float64}}
end
@testset "Indexing" begin
@testset "1D Indexing" begin
nm = NoiseMap(SquirrelNoise5(), 1)
@test typeof(nm(1)) == UInt32
@test nm(1) == noise(1, nm.noise)
@test nm[1] == nm(1)
end
#=@testset "2D Indexing" begin
nm = NoiseMap(SquirrelNoise5(), 2)
@test nm(1,1) == nm(1)
@test nm(1,2) == nm(pairing2(1,2))
@test nm[1,1] == nm(1,1)
end
@testset "3D Indexing" begin
nm = NoiseMap(SquirrelNoise5(), 3)
@test nm(1,1,1) == nm(1)
@test nm(1,2,3) == nm(pairing3(1,2,3))
@test nm[1,1] == nm(1,1)
end =#
for (n,p) in zip(2:8, [:pairing2, :pairing3, :pairing4, :pairing5, :pairing6, :pairing7, :pairing8])
@eval begin
nm = NoiseMap(SquirrelNoise5(), $n)
@test nm(ones(Int,$n)...) == nm(1)
@test nm(1:($n)...) == nm($p(1:($n)...))
end
end
@testset "Default indexing" begin
nm = NoiseMap(SquirrelNoise5(), 9)
@test nm((1,2,3,4,5,6,7,8,9)) == nm(1,2,3,4,5,6,7,8,9)
@test nm(1,2,3,4,5,6,7,8,9) == nm(pairing(1,2,3,4,5,6,7,8,9))
end
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 1099 | const bit_types = [Bool, UInt8, UInt16, UInt32, UInt64, UInt128, Int8, Int16, Int32, Int64, Int128]
@testset "NoiseRNG" begin
@testset "RNG utils" begin
local rng1 = NoiseRNG(SquirrelNoise5())
local rng2 = NoiseRNG(SquirrelNoise5())
@test RandomNoise.rng_native_52(rng1) == UInt64
@test rand(rng1, Random.SamplerType{Bool}()) == rand(rng2, Bool)
end
@testset "SquirrelNoise5 RNG" begin
local rng = NoiseRNG(SquirrelNoise5())
@test typeof(rand(rng)) == Float64
@test copy(rng) == rng
@test copy!(copy(rng), rng) == rng
end
@testset "SquirrelNoise5x2 RNG" begin
local rng = NoiseRNG(SquirrelNoise5x2())
@test typeof(rand(rng)) == Float64
@test copy(rng) == rng
@test copy!(copy(rng), rng) == rng
end
@testset "Bit types RNG" begin
local rng1 = NoiseRNG(SquirrelNoise5())
#local rng2 = NoiseRNG(HashNoise())
for T in bit_types
@test typeof(rand(rng1, T)) == T
#@test typeof(rand(rng2, t)) == t
end
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2415 | using RandomNoise: pairing2, pairing3, pairing4, pairing5, pairing6, pairing7, pairing8, pairing
@testset "Pairing Functions" begin
@testset "pairing2" begin
@test typeof(pairing2(1,1)) == Int
@test pairing2(1,1) == 1
@test pairing2(1,2) == 2
@test pairing2(2,1) == 3
end
@testset "pairing3" begin
@test typeof(pairing3(1,1,1)) == Int
@test pairing3(1,1,1) == 1
@test pairing3(1,1,2) == 2
@test pairing3(2,1,1) == 6
@test pairing3(1,2,1) == 3
end
@testset "pairing4" begin
@test typeof(pairing4(1,1,1,1)) == Int
@test pairing4(1,1,1,1) == 1
@test pairing4(2,1,1,1) == 6
@test pairing4(1,2,1,1) == 3
@test pairing4(1,1,2,1) == 4
@test pairing4(1,1,1,2) == 2
end
@testset "pairing5" begin
@test typeof(pairing5(1,1,1,1,1)) == Int
@test pairing5(1,1,1,1,1) == 1
@test pairing5(2,1,1,1,1) == 6
@test pairing5(1,2,1,1,1) == 3
@test pairing5(1,1,2,1,1) == 16
@test pairing5(1,1,1,2,1) == 4
@test pairing5(1,1,1,1,2) == 2
end
@testset "pairing6" begin
@test typeof(pairing6(1,1,1,1,1,1)) == Int
@test pairing6(1,1,1,1,1,1) == 1
@test pairing6(2,1,1,1,1,1) == 6
@test pairing6(1,2,1,1,1,1) == 3
@test pairing6(1,1,2,1,1,1) == 16
@test pairing6(1,1,1,2,1,1) == 4
@test pairing6(1,1,1,1,2,1) == 7
@test pairing6(1,1,1,1,1,2) == 2
end
@testset "pairing7" begin
@test typeof(pairing7(1,1,1,1,1,1,1)) == Int
@test pairing7(1,1,1,1,1,1,1) == 1
@test pairing7(2,1,1,1,1,1,1) == 21
@test pairing7(1,2,1,1,1,1,1) == 6
@test pairing7(1,1,2,1,1,1,1) == 3
@test pairing7(1,1,1,2,1,1,1) == 16
@test pairing7(1,1,1,1,2,1,1) == 4
@test pairing7(1,1,1,1,1,2,1) == 7
@test pairing7(1,1,1,1,1,1,2) == 2
end
@testset "pairing8" begin
@test typeof(pairing8(1,1,1,1,1,1,1,1)) == Int
@test pairing8(1,1,1,1,1,1,1,1) == 1
end
@testset "pairing" begin
@test typeof(pairing(1,1)) == Int
@test pairing(1) == 1
@test pairing(1,1) == 1
@test pairing((1,1)) == pairing(1,1)
@test pairing(1,2) == pairing2(1,2)
@test pairing(1,2,3) == pairing3(1,2,3)
@test pairing(1,2,3,4) == pairing4(1,2,3,4)
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 2005 |
@testset "Random123" begin
@testset "ThreefryNoise" begin
@testset "Threefry2x" begin
local tf = Threefry2x()
local tfn = ThreefryNoise(tf)
@test typeof(noise(0,tfn)) == Tuple{UInt64,UInt64}
@test noise(0, tfn) == rand(tf, Tuple{UInt64,UInt64})
end
@testset "Threefry4x" begin
local tf = Threefry4x()
local tfn = ThreefryNoise(tf)
@test typeof(noise(0,tfn)) == NTuple{4,UInt64}
end
end
@testset "PhiloxNoise" begin
@testset "Philox2x" begin
local ph = Philox2x()
local phn = PhiloxNoise(ph)
@test typeof(noise(0, phn)) == NTuple{2,UInt64}
@test noise(0, phn) == rand(ph, NTuple{2,UInt64})
end
@testset "Philox4x" begin
local ph = Philox4x()
local phn = PhiloxNoise(ph)
@test typeof(noise(0, phn)) == NTuple{4,UInt64}
@test noise(0, phn) == rand(ph, NTuple{4,UInt64})
end
end
if Random123.R123_USE_AESNI
@testset "AESNINoise" begin
@testset "AESNI1x" begin
local aesni = AESNI1x()
local an = AESNINoise(aesni)
@test typeof(noise(0,an)) == UInt128
@test noise(1,an) == rand(aesni, UInt128)
end
end
@testset "ARSNoise" begin
@testset "ARS1x" begin
local ars = ARS1x()
local arsn = ARSNoise(ars)
@test typeof(noise(0, arsn)) == Tuple{UInt128}
@test noise(1, arsn) == rand(ars, Tuple{UInt128})
end
@testset "ARS4x" begin
local ars = ARS4x()
local arsn = ARSNoise(ars)
x = UInt32.((0,1,2,3))
@test typeof(noise(x, arsn)) == NTuple{4,UInt32}
# ???
@test noise(0, arsn) == rand(ars, NTuple{4,UInt32})
end
end
end
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 389 | using RandomNoise
using Random123
using Random
using Distributions
using Test
using Aqua
@testset "RandomNoise.jl" begin
include("pairing_functions.jl")
include("noise.jl")
include("random123.jl")
include("convert.jl")
include("noise_rng.jl")
include("noise_maps.jl")
include("transforms.jl")
include("distributions.jl")
Aqua.test_all(RandomNoise)
end
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | code | 252 | using RandomNoise: noise_getindex
@testset "Transforms" begin
sqn = SquirrelNoise5()
@test typeof(noise_getindex(sqn, identity, 1, UInt64)) == UInt64
nu = NoiseUniform{Float32}()
@test typeof(noise_getindex(sqn, nu, 1)) == Float32
end | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | docs | 7376 | # RandomNoise.jl
[](https://github.com/csimal/RandomNoise.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://codecov.io/gh/csimal/RandomNoise.jl)
[](https://github.com/JuliaTesting/Aqua.jl)
This package provides a minimalist interface for using noise functions as an alternative to pseudorandom number generators.
Noise functions, also known as Counter-Based RNGs are another approach to traditional PRNGs, which have several advantages for parallel computation and procedural generation. While this package allows using noise functions as sequential RNGs, it is mostly focused on using them as streams of random values that can be indexed in any order at constant cost and memory overhead.
## Using noise functions
RandomNoise.jl defines an `AbstractNoise` type for all noise functions. All implementations of `AbstractNoise` must implement a single method `noise(n,rng)` that returns the `n`-th term of the sequence generated by the noise function.
```julia-repl
julia> sqn = SquirrelNoise5()
SquirrelNoise5(0x00000000)
julia> noise(1, sqn)
0xc895cb1d
```
Additionally, most noise functions can be provided with a seed. Unlike PRNGs, this generates a completely different sequence, rather than jumping at a different point in the same sequence.
```julia-repl
julia> sqn = SquirrelNoise5(42)
SquirrelNoise5(0x0000002a)
julia> noise(1, sqn)
0xd6c56929
```
## Noise functions implemented in this package
RandomNoise.jl currently provides three noise functions
* `SquirrelNoise5` a 32-bit noise function, originally by [Squirrel Eiserloh](https://pastebin.com/dVZcMJJQ)
* `SquirrelNoise5x2` a 64-bit noise function, consisting of two stacked `SquirrelNoise5`
* `Murmur3Noise` a 32-bit noise function based on the Murmur3 hash function
In addition, support for [Random123.jl](https://github.com/JuliaRandom/Random123.jl)'s CBRNGs is provided via immutable wrapper types. Both RandomNoise and Random123 need to be loaded to use them.
```julia
using RandomNoise
using Random123
rng = Threefry2x()
tfn = ThreefryNoise(rng)
noise(0, tfn)
```
The noise functions implemented in this package are more lightweight, but all fail some tests on BigCrush (see Benchmarks below). Use the ones from Random123 if you want some battle-tested generators.
## Noise Maps
Being able to generate random integers on demand is all well and good, but most of the time we'd like to use other types of random values, floating point numbers, for example. For this purpose, we provide a special type called `NoiseMap` that wraps around a noise function and a transform that maps the output of the noise function to some desired values.
```julia-repl
julia> nm = NoiseMap(SquirrelNoise5(), sin)
NoiseMap{Float64, 1, SquirrelNoise5, typeof(sin)}(SquirrelNoise5(0x00000000), sin)
```
The resulting object can called just like any function
```julia-repl
julia> nm(1)
0.013299689581968843
julia> nm.(1:5)
5-element Vector{Float64}:
0.013299689581968843
0.9728924552038383
-0.9468531800274045
-0.5680157365140597
-0.03113989875496316
```
It can also be indexed like an array
```julia-repl
julia> nm[1]
0.013299689581968843
```
By default, noise maps are "one-dimensional", but can be defined for arbitrary dimensions
```julia-repl
julia> nm2 = NoiseMap(SquirrelNoise5(), sin, 2)
NoiseMap{Float64, 2, SquirrelNoise5, typeof(sin)}(SquirrelNoise5(0x00000000), sin)
julia> nm2(1,1)
0.013299689581968843
```
Beside a function, the transform can also be an instance of `NoiseUniform`, a special type to generate floating point numbers uniformly distributed in the interval `[0,1)`.
```julia-repl
julia> nm3 = NoiseMap(SquirrelNoise5(), NoiseUniform{Float64}())
NoiseMap{Float64, 1, SquirrelNoise5, NoiseUniform{Float64}}(SquirrelNoise5(0x00000000), NoiseUniform{Float64}())
```
Finally, when passing a `UnivariateDistribution` from [Distributions.jl](https://juliastats.org/Distributions.jl/stable/), the output values are samples from that distribution
```julia-repl
julia> nm4 = NoiseMap(SquirrelNoise5(), Normal(0,1))
NoiseMap{Float64, 1, SquirrelNoise5, Normal{Float64}}(SquirrelNoise5(0x00000000), Normal{Float64}(μ=0.0, σ=1.0))
julia> nm4.(1:5)
5-element Vector{Float64}:
0.7841899388190731
0.5263725651428768
0.14096081624298265
0.6549392209760272
0.18955444371040095
```
## Using noise functions in `rand()`
Any noise function can be used as a sequential PRNG simply by creating a counter and incrementing it each time a new number is generated. Examples of such *Counter Based RNGs* (CBRNGs) can be found in the [Random123.jl](https://github.com/JuliaRandom/Random123.jl) package.
The noise functions defined in this package can be made into CBRNGs by passing them to a `NoiseRNG` object.
```julia-repl
julia> rng = NoiseRNG(SquirrelNoise5())
NoiseRNG{UInt32, SquirrelNoise5}(SquirrelNoise5(0x00000000), 0x00000000)
julia> rand(rng)
0.08778560161590576
```
Note: Since Random123.jl already defines `rand` for it's CBRNGs, we do not support passing them to `NoiseRNG`.
---
## Noise functions vs PRNGs
This [GDC 2017 talk](https://www.youtube.com/watch?v=LWFzPP8ZbdU) by Squirrel Eiserloh is an excellent introduction to noise functions and their practical applications.
Traditional Pseudo Random Number Generators (PRNGs) work by repeatedly applying a map that scrambles the bits of its inputs, starting from a given seed, so that when generating a sequence of pseudorandom numbers, the `n`-th term is the result of applying that map `n` times to the seed.
This has several downsides. First, PRNGs need to hold a state that gets mutated every time a new number is generated, making them ill-suited to parallel workflows. Second, the generated numbers can only be computed in order, so if one wants to access a sequence of pseudorandom numbers out of order, the best way is often to just store it in memory. A third downside is that changing the seed of the generator usually just jumps to a different point in the sequence, so when using multiple seeds in parallel, it's possible for two generators to synchronize with each other.
Noise Functions/CBRNGs on the other hand, work by applying a bit-scrambling map once. That is, the `n`-th number in the sequence is computed by `noise(n)`.
These solve a lot of the problems with traditional PRNGs. They have no mutable state, and the sequence of numbers can be accessed out of order and at constant cost, making them ideal for parallel workflows. Furthermore, because the sequence of numbers can be accessed out of order, this removes the need to store them in memory for performance. Lastly, changing the seed of a noise function generates a completely different sequence, which means that we don't run into the problem of different generators catching up with each other.
## Benchmarks
The `SquirrelNoise5`, `SquirrelNoise5x2` and `Murmur3Noise` were tested with the BigCrush benchmark from [RNGTest](https://github.com/JuliaRandom/RNGTest.jl). Both variants of SquirrelNoise5 fail 8 tests (Gap and MaxOft), while Murmur3Noise fails 10 (BirthdaySpacings, Gap, MaxOft and SumCollector). See `benchmarks/results` for more details. | RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.1.2 | f395d4f8437d769e0f2032a8770f9159b6ee8471 | docs | 174 | ```@meta
CurrentModule = NoiseRNG
```
# NoiseRNG
Documentation for [NoiseRNG](https://github.com/csimal/NoiseRNG.jl).
```@index
```
```@autodocs
Modules = [NoiseRNG]
```
| RandomNoise | https://github.com/csimal/RandomNoise.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 1330 | using CGcoefficient
using BenchmarkTools
function calculate_lsjj(test_range::AbstractArray)
sum = 0.0
for l1 in test_range
for l2 in test_range
for (dj1, dj2) in [(2l1-1, 2l2-1), (2l1-1, 2l2+1), (2l1+1, 2l2-1), (2l1+1, 2l2+1)]
for L in abs(l1-l2):(l1+l2)
for (S, J) in [(0, L), (1, L-1), (1, L), (1, L+1)]
sum += flsjj(l1, l2, dj1, dj2, L, S, J)
end
end
end
end
end
return sum
end
function calculate_norm9j(test_range::AbstractArray)
sum = 0.0
for l1 in test_range
for l2 in test_range
for (dj1, dj2) in [(2l1-1, 2l2-1), (2l1-1, 2l2+1), (2l1+1, 2l2-1), (2l1+1, 2l2+1)]
for L in abs(l1-l2):(l1+l2)
for (S, J) in [(0, L), (1, L-1), (1, L), (1, L+1)]
sum += fnorm9j(2l1, 1, dj1, 2l2, 1, dj2, 2L, 2S, 2J)
end
end
end
end
end
return sum
end
test_range = 0:10
t1 = @belapsed calculate_lsjj(test_range)
t2 = @belapsed calculate_norm9j(test_range)
println("diff = ", calculate_lsjj(test_range) - calculate_norm9j(test_range))
println("lsjj time = $(t1)s")
println("norm9j time = $(t2)s") | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 3143 | push!(LOAD_PATH, "../src/")
using CGcoefficient
using BenchmarkTools
using Test
# wapper of gsl 3nj functions
function gsl3j(dj1::Int, dj2::Int, dj3::Int, dm1::Int, dm2::Int, dm3::Int)
ccall(
(:gsl_sf_coupling_3j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dm1, dm2, dm3
)
end
function gsl6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
ccall(
(:gsl_sf_coupling_6j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6
)
end
function gsl9j(dj1::Int, dj2::Int, dj3::Int,
dj4::Int, dj5::Int, dj6::Int,
dj7::Int, dj8::Int, dj9::Int)
ccall(
(:gsl_sf_coupling_9j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9
)
end
function calculate_3j(func::Function, test_range::AbstractArray)
if func == f3j
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 3)
end
sum = 0.0
for dj1 in test_range
for dj2 in test_range
for dj3 in test_range
for dm1 in -dj1:2:dj1
for dm2 in -dj2:2:dj2
dm3 = -dm1-dm2
sum += func(dj1, dj2, dj3, dm1, dm2, dm3)
end end end end end
return sum
end
function calculate_6j(func::Function, test_range::AbstractArray)
if func == f6j
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 6)
end
sum = 0.0
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
sum += func(j1, j2, j3, j4, j5, j6)
end end end end end end
return sum
end
function calculate_9j(func::Function, test_range::AbstractArray)
if func == f9j
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 9)
end
sum = 0.0
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
for j7 in test_range
for j8 in test_range
for j9 in test_range
sum += func(j1,j2,j3,j4,j5,j6,j7,j8,j9)
end end end end end end end end end
return sum
end
test_range = 40:50
t1 = @belapsed calculate_3j(f3j, test_range)
t2 = @belapsed calculate_3j(gsl3j, test_range)
println("diff = ", calculate_3j(f3j, test_range) - calculate_3j(gsl3j, test_range))
println("f3j time = $(t1)s")
println("gsl3j time = $(t2)s")
test_range = 45:60
t1 = @belapsed calculate_6j(f6j, test_range)
t2 = @belapsed calculate_6j(gsl6j, test_range)
println("diff = ", calculate_6j(f6j, test_range) - calculate_6j(gsl6j, test_range))
println("f6j time = $(t1)s")
println("gsl6j time = $(t2)s")
test_range = 30:35
t1 = @belapsed calculate_9j(f9j, test_range)
t2 = @belapsed calculate_9j(gsl9j, test_range)
println("diff = ", calculate_9j(f9j, test_range) - calculate_9j(gsl9j, test_range))
println("f9j time = $(t1)s")
println("gsl9j time = $(t2)s") | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 361 | using Documenter
push!(LOAD_PATH, "../src/")
using CGcoefficient
makedocs(
modules = [CGcoefficient],
sitename = "CGcoefficient.jl",
clean = false,
pages = [
"Home" => "index.md",
"Formula" => "formula.md",
"API" => "api.md"
]
)
deploydocs(
repo = "github.com/0382/CGcoefficient.jl.git",
target = "build/"
) | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 961 | module CGcoefficient
export CG, CG0, threeJ, sixJ, nineJ, Racah,
dCG, d3j, d6j, d9j, dRacah,
lsjj, norm9J,
Moshinsky,
SqrtRational,
exact_sqrt,
simplify,
HalfInt,
iphase,
is_same_parity,
check_jm,
check_couple,
binomial_data_size, binomial_index,
fCG, fCG0, f3j, f6j, f9j, fRacah,
fbinomial, unsafe_fbinomial,
fMoshinsky, dfunc,
flsjj, fCGspin, fnorm9j,
wigner_init_float
include("SqrtRational.jl")
include("util.jl")
include("WignerSymbols.jl")
include("floatWignerSymbols.jl")
function __init__()
global _fbinomial_nmax = 67
global _fbinomial_data = Vector{Float64}(undef, binomial_data_size(get_fbinomial_nmax()))
for n = 0:get_fbinomial_nmax()
for k = 0:div(n, 2)
get_fbinomial_data()[binomial_index(n, k)] = binomial(UInt64(n), UInt64(k))
end
end
nothing
end
end # module CGcoefficient | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 6953 | import Base: +, -, *, /, ==
using Markdown
using Primes
"""
SqrtRational <: Real
Store exact value of a `Rational`'s square root.
It is stored in `s√r` format, and we do not simplify it during arithmetics.
You can use the `simplify` function to simplify it.
"""
struct SqrtRational{T} <: Real
s::Rational{T}
r::Rational{T}
SqrtRational{T}(s::Rational{T}, r::Rational{T}) where {T} = begin
r < 0 && throw(ArgumentError("invalid SqrtRational $s√$r"))
(iszero(s) || iszero(r)) && return new(zero(s), one(r))
new(s, r)
end
end
SqrtRational(s::Rational{T1}, r::Rational{T2}) where {T1,T2} = SqrtRational{promote_type(T1, T2)}(promote(s, r)...)
SqrtRational(s::Integer, r::Rational{T}) where {T} = SqrtRational(promote(s, r)...)
SqrtRational(s::Rational{T}, r::Integer) where {T} = SqrtRational(promote(s, r)...)
SqrtRational(s::Integer, r::Integer) = SqrtRational(promote(Rational(s), r)...)
SqrtRational(s::Union{Integer,Rational}) = SqrtRational(s, one(s))
"""
exact_sqrt(r::Union{Integer, Rational})
Get exact `√r` using `SqrtRational` type.
"""
exact_sqrt(r::Union{Integer,Rational}) = SqrtRational(one(r), r)
# some basic functions
Base.zero(::Type{SqrtRational{T}}) where {T} = SqrtRational(zero(T), one(T))
Base.one(::Type{SqrtRational{T}}) where {T} = SqrtRational(one(T), one(T))
Base.zero(x::SqrtRational) = zero(typeof(x))
Base.one(x::SqrtRational) = one(typeof(x))
Base.sign(x::SqrtRational) = sign(x.s)
Base.signbit(x::SqrtRational) = signbit(x.s)
Base.inv(x::SqrtRational) = SqrtRational(inv(x.s), inv(x.r))
# override some operators
+(x::SqrtRational) = x
-(x::SqrtRational) = SqrtRational(-x.s, x.r)
*(x::SqrtRational, y::SqrtRational) = SqrtRational(x.s * y.s, x.r * y.r)
*(x::SqrtRational, y::Union{Integer,Rational}) = SqrtRational(x.s * y, x.r)
*(x::Union{Integer,Rational}, y::SqrtRational) = y * x
/(x::SqrtRational, y::SqrtRational) = SqrtRational(x.s / y.s, x.r / y.r)
/(x::SqrtRational, y::Union{Integer,Rational}) = SqrtRational(x.s / y, x.r)
/(x::Union{Integer,Rational}, y::SqrtRational) = SqrtRational(x / y.s, inv(y.r))
==(x::SqrtRational, y::SqrtRational) = begin
if y.s == 0
return x.s == 0
else
isone((x.s / y.s)^2 * (x.r / y.r))
end
end
==(x::SqrtRational, y::Union{Integer,Rational}) = (x == SqrtRational(y))
==(x::Union{Integer,Rational}, y::SqrtRational) = (SqrtRational(x) == y)
# Only if `r == 1` in `s√r`, the add operator can work.
# We do not simplify `s√r` every time, but in this function,
# we need to simplify it first, and then do the `+` operator.
+(x::SqrtRational, y::Union{Integer,Rational}) = begin
r = x.r
t1 = isqrt(numerator(r))
t1 * t1 != numerator(r) && throw(ArgumentError("cannot simplify $(x)"))
t2 = isqrt(denominator(r))
t2 * t2 != denominator(r) && throw(ArgumentError("cannot simplify $(x)"))
return x.s * (t1 // t2) + y
end
+(x::Union{Integer,Rational}, y::SqrtRational) = y + x
+(x::SqrtRational{T1}, y::SqrtRational{T2}) where {T1,T2} = begin
if x == 0
return y
else
return x * (one(promote_type(T1, T2)) + y / x)
end
end
-(x::SqrtRational, y::Union{Integer,Rational}) = (x + (-y))
-(x::Union{Integer,Rational}, y::SqrtRational) = (x + (-y))
-(x::SqrtRational, y::SqrtRational) = (x + (-y))
# widen
Base.widen(x::SqrtRational) = SqrtRational(widen(x.s), widen(x.r))
# convert
"""
float(x::SqrtRational)::Float64
Although we use `BigInt` in calculation, we do not convert it to `BigFloat`.
Because this package is designed for numeric calculation, `BigFloat` is unnecessary.
"""
Base.float(x::SqrtRational) = Float64(x.s) * sqrt(Float64(x.r))
# show
Base.show(io::IO, ::MIME"text/plain", x::SqrtRational) = begin
if isone(x.r)
if denominator(x.s) == 1
print(io, numerator(x.s))
else
print(io, x.s)
end
return
elseif isone(x.s)
if denominator(x.r) == 1
print(io, "√$(numerator(x.r))")
else
print(io, "√($(x.r))")
end
return
elseif isone(-x.s)
if denominator(x.r) == 1
print(io, "-√$(numerator(x.r))")
else
print(io, "-√($(x.r))")
end
return
end
to_show::String = ""
if denominator(x.s) == 1
to_show = string(numerator(x.s))
else
to_show = "$(x.s)"
end
if denominator(x.r) == 1
to_show *= "√$(numerator(x.r))"
else
to_show *= "√($(x.r))"
end
print(io, to_show)
end
Base.show(io::IO, x::SqrtRational) = show(io::IO, "text/plain", x)
Base.show(io::IO, ::MIME"text/markdown", x::SqrtRational) = begin
if isone(x.r)
if denominator(x.s) == 1
show(io, "text/markdown", Markdown.parse("``$(numerator(x.s))``"))
else
show(io, "text/markdown", Markdown.parse("``\\frac{$(numerator(x.s))}{$(denominator(x.s))}``"))
end
return
elseif isone(x.s)
if denominator(x.r) == 1
show(io, "text/markdown", Markdown.parse("``\\sqrt{$(numerator(x.r))}``"))
else
show(io, "text/markdown", Markdown.parse("``\\sqrt{\\frac{$(numerator(x.r))}{$(denominator(x.r))}}``"))
end
return
elseif isone(-x.s)
if denominator(x.r) == 1
show(io, "text/markdown", Markdown.parse("``-\\sqrt{$(numerator(x.r))}``"))
else
show(io, "text/markdown", Markdown.parse("``-\\sqrt{\\frac{$(numerator(x.r))}{$(denominator(x.r))}}``"))
end
return
end
to_show::String = ""
if denominator(x.s) == 1
to_show = string(numerator(x.s))
else
to_show = "\\frac{$(numerator(x.s))}{$(denominator(x.s))}"
end
if denominator(x.r) == 1
to_show *= "\\sqrt{$(numerator(x.r))}"
else
to_show *= "\\sqrt{\\frac{$(numerator(x.r))}{$(denominator(x.r))}}"
end
show(io, "text/markdown", Markdown.parse("``$to_show``"))
end
"""
simplify(n::Integer)
Simplify a integer `n = x * t^2` to `(x, t)`
"""
function simplify(n::Integer)
s = sign(n)
n = s * n
x = one(n)
t = one(n)
for (f, i) in factor(n)
ti, xi = divrem(i, 2)
xi == 1 && (x = x * f)
ti != 0 && (t = t * f^ti)
end
return s * x, t
end
"""
simplify(x::SqrtRational)
Simplify a SqrtRational.
"""
function simplify(x::SqrtRational)
nx, nt = simplify(numerator(x.r))
dx, dt = simplify(denominator(x.r))
nt *= numerator(x.s)
dt *= denominator(x.s)
a0 = gcd(nt, dt)
nt = div(nt, a0)
dt = div(dt, a0)
a1 = gcd(nx, dt)
a2 = gcd(dx, nt)
dt = div(dt, a1)
nt = div(nt, a2)
dx = div(dx, a2) * a1
nx = div(nx, a1) * a2
return SqrtRational(nt // dt, nx // dx)
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 18538 | # This file contains the core functions of WignerSymbols and CG-coefficient.
"""
HalfInt = Union{Integer, Rational}
Angular momentum quantum numbers may be half integers and integers. With `HalfInt` type, you can use both `2` and `3//2` as parameters.
But the parameter like `5//3`, who's denominator is not `2` while gives out error.
"""
const HalfInt = Union{Integer,Rational}
# basic CG coefficient calculation function
function _dCG(dj1::BigInt, dj2::BigInt, dj3::BigInt, dm1::BigInt, dm2::BigInt, dm3::BigInt)
check_jm(dj1, dm1) || return zero(SqrtRational)
check_jm(dj2, dm2) || return zero(SqrtRational)
check_jm(dj3, dm3) || return zero(SqrtRational)
check_couple(dj1, dj2, dj3) || return zero(SqrtRational)
dm1 + dm2 == dm3 || return zero(SqrtRational)
J::BigInt = div(dj1 + dj2 + dj3, 2)
Jm1::BigInt = J - dj1
Jm2::BigInt = J - dj2
Jm3::BigInt = J - dj3
j1mm1::BigInt = div(dj1 - dm1, 2)
j2mm2::BigInt = div(dj2 - dm2, 2)
j3mm3::BigInt = div(dj3 - dm3, 2)
j2pm2::BigInt = div(dj2 + dm2, 2)
# value in sqrt
A = (binomial(dj1, Jm2) * binomial(dj2, Jm3)) // (
binomial(J + 1, Jm3) * binomial(dj1, j1mm1) * binomial(dj2, j2mm2) * binomial(dj3, j3mm3)
)
B::BigInt = zero(BigInt)
low::BigInt = max(zero(BigInt), j1mm1 - Jm2, j2pm2 - Jm1)
high::BigInt = min(Jm3, j1mm1, j2pm2)
for z in low:high
B = -B + binomial(Jm3, z) * binomial(Jm2, j1mm1 - z) * binomial(Jm1, j2pm2 - z)
end
return SqrtRational(iphase(high) * B, A)
end
# spaecial case: m1 == m2 == m3 == 0
function _CG0(j1::BigInt, j2::BigInt, j3::BigInt)
check_couple(2j1, 2j2, 2j3) || return zero(SqrtRational)
J = j1 + j2 + j3
isodd(J) && return zero(SqrtRational)
g = div(J, 2)
return SqrtRational(iphase(g - j3) * binomial(g, j3) * binomial(j3, g - j1), big(1) // (binomial(J + 1, 2j3 + 1) * binomial(2j3, J - 2j1)))
end
# use CG coefficient to calculate 3j-symbol
function _d3j(dj1::BigInt, dj2::BigInt, dj3::BigInt, dm1::BigInt, dm2::BigInt, dm3::BigInt)
iphase(dj1 + div(dj3 + dm3, 2)) * exact_sqrt(1 // (dj3 + 1)) * _dCG(dj1, dj2, dj3, -dm1, -dm2, dm3)
end
# basic 6j-symbol calculation funciton
function _d6j(dj1::BigInt, dj2::BigInt, dj3::BigInt, dj4::BigInt, dj5::BigInt, dj6::BigInt)
check_couple(dj1, dj2, dj3) || return zero(SqrtRational)
check_couple(dj1, dj5, dj6) || return zero(SqrtRational)
check_couple(dj4, dj2, dj6) || return zero(SqrtRational)
check_couple(dj4, dj5, dj3) || return zero(SqrtRational)
j123::BigInt = div(dj1 + dj2 + dj3, 2)
j156::BigInt = div(dj1 + dj5 + dj6, 2)
j426::BigInt = div(dj4 + dj2 + dj6, 2)
j453::BigInt = div(dj4 + dj5 + dj3, 2)
jpm123::BigInt = div(dj1 + dj2 - dj3, 2)
jpm132::BigInt = div(dj1 + dj3 - dj2, 2)
jpm231::BigInt = div(dj2 + dj3 - dj1, 2)
jpm156::BigInt = div(dj1 + dj5 - dj6, 2)
jpm426::BigInt = div(dj4 + dj2 - dj6, 2)
jpm453::BigInt = div(dj4 + dj5 - dj3, 2)
# value in sqrt
A = (binomial(j123 + 1, dj1 + 1) * binomial(dj1, jpm123)) // (
binomial(j156 + 1, dj1 + 1) * binomial(dj1, jpm156) *
binomial(j453 + 1, dj4 + 1) * binomial(dj4, jpm453) *
binomial(j426 + 1, dj4 + 1) * binomial(dj4, jpm426)
)
B::BigInt = zero(BigInt)
low::BigInt = max(j123, j453, j426, j156)
high::BigInt = min(jpm123 + j453, jpm132 + j426, jpm231 + j156)
for x = low:high
B = -B + binomial(x + 1, j123 + 1) * binomial(jpm123, x - j453) *
binomial(jpm132, x - j426) * binomial(jpm231, x - j156)
end
return SqrtRational(iphase(high) * B // (dj4 + 1), A)
end
# use 6j-symbol to calculate Racah coefficient
function _dRacah(dj1::BigInt, dj2::BigInt, dj3::BigInt, dj4::BigInt, dj5::BigInt, dj6::BigInt)
iphase(div(dj1 + dj2 + dj3 + dj4, 2)) * _d6j(dj1, dj2, dj5, dj4, dj3, dj6)
end
# basic 9j-symbol calculation funciton
function _d9j(dj1::BigInt, dj2::BigInt, dj3::BigInt,
dj4::BigInt, dj5::BigInt, dj6::BigInt,
dj7::BigInt, dj8::BigInt, dj9::BigInt)
check_couple(dj1, dj2, dj3) || return zero(SqrtRational)
check_couple(dj4, dj5, dj6) || return zero(SqrtRational)
check_couple(dj7, dj8, dj9) || return zero(SqrtRational)
check_couple(dj1, dj4, dj7) || return zero(SqrtRational)
check_couple(dj2, dj5, dj8) || return zero(SqrtRational)
check_couple(dj3, dj6, dj9) || return zero(SqrtRational)
j123::BigInt = div(dj1 + dj2 + dj3, 2)
j456::BigInt = div(dj4 + dj5 + dj6, 2)
j789::BigInt = div(dj7 + dj8 + dj9, 2)
j147::BigInt = div(dj1 + dj4 + dj7, 2)
j258::BigInt = div(dj2 + dj5 + dj8, 2)
j369::BigInt = div(dj3 + dj6 + dj9, 2)
pm123::BigInt = div(dj1 + dj2 - dj3, 2)
pm132::BigInt = div(dj1 + dj3 - dj2, 2)
pm231::BigInt = div(dj2 + dj3 - dj1, 2)
pm456::BigInt = div(dj4 + dj5 - dj6, 2)
pm465::BigInt = div(dj4 + dj6 - dj5, 2)
pm564::BigInt = div(dj5 + dj6 - dj4, 2)
pm789::BigInt = div(dj7 + dj8 - dj9, 2)
pm798::BigInt = div(dj7 + dj9 - dj8, 2)
pm897::BigInt = div(dj8 + dj9 - dj7, 2)
# value in sqrt
P0_nu::BigInt = binomial(j123 + 1, dj1 + 1) * binomial(dj1, pm123) *
binomial(j456 + 1, dj5 + 1) * binomial(dj5, pm456) *
binomial(j789 + 1, dj9 + 1) * binomial(dj9, pm798)
P0_de::BigInt = binomial(j147 + 1, dj1 + 1) * binomial(dj1, div(dj1 + dj4 - dj7, 2)) *
binomial(j258 + 1, dj5 + 1) * binomial(dj5, div(dj2 + dj5 - dj8, 2)) *
binomial(j369 + 1, dj9 + 1) * binomial(dj9, div(dj3 + dj9 - dj6, 2))
P0 = P0_nu // P0_de
dtl::BigInt = max(abs(dj2 - dj6), abs(dj4 - dj8), abs(dj1 - dj9))
dth::BigInt = min(dj2 + dj6, dj4 + dj8, dj1 + dj9)
PABC::Rational{BigInt} = zero(Rational{BigInt})
for dt::BigInt = dtl:2:dth
j19t::BigInt = div(dj1 + dj9 + dt, 2)
j26t::BigInt = div(dj2 + dj6 + dt, 2)
j48t::BigInt = div(dj4 + dj8 + dt, 2)
Pt_de = binomial(j19t + 1, dt + 1) * binomial(dt, div(dj1 + dt - dj9, 2)) *
binomial(j26t + 1, dt + 1) * binomial(dt, div(dj2 + dt - dj6, 2)) *
binomial(j48t + 1, dt + 1) * binomial(dt, div(dj4 + dt - dj8, 2))
Pt_de *= (dt + 1)^2
xl::BigInt = max(j123, j369, j26t, j19t)
xh::BigInt = min(pm123 + j369, pm132 + j26t, pm231 + j19t)
At::BigInt = zero(BigInt)
for x = xl:xh
At = -At + binomial(x + 1, j123 + 1) * binomial(pm123, x - j369) * binomial(pm132, x - j26t) * binomial(pm231, x - j19t)
end
yl::BigInt = max(j456, j26t, j258, j48t)
yh::BigInt = min(pm456 + j26t, pm465 + j258, pm564 + j48t)
Bt::BigInt = zero(BigInt)
for y = yl:yh
Bt = -Bt + binomial(y + 1, j456 + 1) * binomial(pm456, y - j26t) * binomial(pm465, y - j258) * binomial(pm564, y - j48t)
end
zl::BigInt = max(j789, j19t, j48t, j147)
zh::BigInt = min(pm789 + j19t, pm798 + j48t, pm897 + j147)
Ct::BigInt = zero(BigInt)
for z = zl:zh
Ct = -Ct + binomial(z + 1, j789 + 1) * binomial(pm789, z - j19t) * binomial(pm798, z - j48t) * binomial(pm897, z - j147)
end
PABC += (iphase(xh + yh + zh) * At * Bt * Ct) // Pt_de
end
return SqrtRational(iphase(dth) * PABC, P0)
end
function _lsjj_helper(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, J::BigInt)
iphase(div(dj2 + 1, 2) + l1 + J) * _d6j(2l1, BigInt(1), dj1, dj2, 2J, 2l2)
end
# S = 0
function _lsjj_S0(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, J::BigInt)
exact_sqrt((dj1 + 1) * (dj2 + 1) // 2) * _lsjj_helper(l1, l2, dj1, dj2, J)
end
# S = 1, J = L - 1
function _lsjj_S1_m1(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, J::BigInt)
L = J + 1
f0 = ((dj1 + 1) * (dj2 + 1)) // (2L * (2L - 1))
mj = div(dj1 - dj2, 2)
pj = div(dj1 + dj2, 2) + 1
fL = (L + mj) * (L - mj) * (L + pj) * (pj - L)
ml = l1 - l2
pl = l1 + l2 + 1
fJ = (L + ml) * (L - ml) * (L + pl) * (pl - L)
exact_sqrt(fJ * f0) * _lsjj_helper(l1, l2, dj1, dj2, J) - exact_sqrt(fL * f0) * _lsjj_helper(l1, l2, dj1, dj2, L)
end
# S = 1, J = L
function _lsjj_S1_0(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, J::BigInt)
factor = div(dj1 - dj2, 2) * div(dj1 + dj2 + 2, 2) - (l1 - l2) * (l1 + l2 + 1)
SqrtRational(factor, (dj1 + 1) * (dj2 + 1) // (2J * (J + 1))) * _lsjj_helper(l1, l2, dj1, dj2, J)
end
# S = 1, J = L + 1
function _lsjj_S1_p1(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, J::BigInt)
f0 = ((dj1 + 1) * (dj2 + 1)) // (2J * (2J + 1))
mj = div(dj1 - dj2, 2)
pj = div(dj1 + dj2, 2) + 1
fL = (J + mj) * (J - mj) * (J + pj) * (pj - J)
ml = l1 - l2
pl = l1 + l2 + 1
fJ = (J + ml) * (J - ml) * (J + pl) * (pl - J)
exact_sqrt(fL * f0) * _lsjj_helper(l1, l2, dj1, dj2, J - 1) - exact_sqrt(fJ * f0) * _lsjj_helper(l1, l2, dj1, dj2, J)
end
function _lsjj(l1::BigInt, l2::BigInt, dj1::BigInt, dj2::BigInt, L::BigInt, S::BigInt, J::BigInt)
if abs(dj1 - 2l1) != 1 || abs(dj2 - 2l2) != 1
return zero(SqrtRational)
end
check_couple(2l1, 2l2, 2L) || return zero(SqrtRational)
check_couple(dj1, dj2, 2J) || return zero(SqrtRational)
check_couple(2L, 2S, 2J) || return zero(SqrtRational)
S == 0 && return _lsjj_S0(l1, l2, dj1, dj2, J)
if S == 1
J == L - 1 && return _lsjj_S1_m1(l1, l2, dj1, dj2, J)
J == L && return _lsjj_S1_0(l1, l2, dj1, dj2, J)
J == L + 1 && return _lsjj_S1_p1(l1, l2, dj1, dj2, J)
end
return zero(SqrtRational)
end
function _Moshinsky(N::BigInt, L::BigInt, n::BigInt, l::BigInt, n1::BigInt, l1::BigInt, n2::BigInt, l2::BigInt, Λ::BigInt)
f1 = 2 * n1 + l1
f2 = 2 * n2 + l2
F = 2 * N + L
f = 2 * n + l
f1 + f2 == F + f || return zero(SqrtRational)
χ = f1 + f2
nl1 = n1 + l1
nl2 = n2 + l2
NL = N + L
nl = n + l
r1 = binomial(2nl1 + 1, nl1) // (binomial(f1 + 2, n1) * (nl1 + 2))
r2 = binomial(2nl2 + 1, nl2) // (binomial(f2 + 2, n2) * (nl2 + 2))
R = binomial(2NL + 1, NL) // (binomial(F + 2, N) * (NL + 2))
r = binomial(2nl + 1, nl) // (binomial(f + 2, n) * (nl + 2))
pre_sum = exact_sqrt(r1 * r2 * R * r // big(2)^χ)
half_lsum = div(l1 + l2 + L + l, 2)
sum = zero(SqrtRational)
for fa = 0:min(f1, F)
fb = f1 - fa
fc = F - fa
fd = f2 - fc
fd >= 0 || continue
t = exact_sqrt(binomial(f1 + 2, fa + 1) * binomial(f2 + 2, fc + 1) * binomial(F + 2, fa + 1) * binomial(f + 2, fb + 1))
for la = (fa&0x01):2:fa
na = div(fa - la, 2)
nla = na + la
ta = ((2 * la + 1) * binomial(fa + 1, na)) // binomial(2nla + 1, nla)
for lb = abs(l1 - la):2:min(la + l1, fb)
nb = div(fb - lb, 2)
nlb = nb + lb
tb = ((2 * lb + 1) * binomial(fb + 1, nb)) // binomial(2nlb + 1, nlb)
g1 = div(la + lb + l1, 2)
pCG_ab = SqrtRational(binomial(g1, l1) * binomial(l1, g1 - la), big(1) // (binomial(2g1 + 1, 2(g1 - l1)) * binomial(2l1, 2(g1 - la))))
for lc = abs(L - la):2:min(la + L, fc)
nc = div(fc - lc, 2)
nlc = nc + lc
tc = ((2 * lc + 1) * binomial(fc + 1, nc)) // binomial(2nlc + 1, nlc)
G = div(la + lc + L, 2)
pCG_ac = SqrtRational(binomial(G, L) * binomial(L, G - la), big(1) // (binomial(2G + 1, 2(G - L)) * binomial(2L, 2(G - la))))
ld_min = max(abs(l2 - lc), abs(l - lb))
ld_max = min(fd, lb + l, lc + l2)
for ld = ld_min:2:ld_max
nd = div(fd - ld, 2)
nld = nd + ld
td = ((2 * ld + 1) * binomial(fd + 1, nd)) // binomial(2nld + 1, nld)
g2 = div(lc + ld + l2, 2)
pCG_cd = SqrtRational(binomial(g2, l2) * binomial(l2, g2 - lc), big(1) // (binomial(2g2 + 1, 2(g2 - l2)) * binomial(2l2, 2(g2 - lc))))
g = div(lb + ld + l, 2)
pCG_bd = SqrtRational(binomial(g, l) * binomial(l, g - lb), big(1) // (binomial(2g + 1, 2(g - l)) * binomial(2l, 2(g - lb))))
l_diff = la + lb + lc + ld - half_lsum
phase = l_diff >= 0 ? iphase(ld) * 2^l_diff : iphase(ld) // 2^(-l_diff)
ninej = d9j(2 * la, 2 * lb, 2 * l1, 2 * lc, 2 * ld, 2 * l2, 2 * L, 2 * l, 2 * Λ)
sum = sum + phase * t * ta * tb * tc * td * pCG_ab * pCG_ac * pCG_bd * pCG_cd * ninej
end
end
end
end
end
return pre_sum * sum
end
"""
dCG(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
CG coefficient function with double angular monentum number parameters, so that the parameters can be integer.
You can calculate `dCG(1, 1, 2, 1, 1, 2)` to calculate the real `CG(1//2, 1//2, 1, 1/2, 1//2, 1)`
"""
@inline dCG(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer) = _dCG(BigInt.((dj1, dj2, dj3, dm1, dm2, dm3))...)
"""
d3j(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
3j-symbol function with double angular monentum number parameters, so that the parameters can be integer.
"""
@inline d3j(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer) = _d3j(BigInt.((dj1, dj2, dj3, dm1, dm2, dm3))...)
"""
d6j(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
6j-symbol function with double angular monentum number parameters, so that the parameters can be integer.
"""
@inline d6j(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer) = _d6j(BigInt.((dj1, dj2, dj3, dj4, dj5, dj6))...)
"""
dRacah(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
Racah coefficient function with double angular momentum parameters, so that the parameters can be integer.
"""
@inline dRacah(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer) = _dRacah(BigInt.((dj1, dj2, dj3, dj4, dj5, dj6))...)
"""
d9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer)
9j-symbol function with double angular monentum number parameters, so that the parameters can be integer.
"""
@inline d9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer) = _d9j(BigInt.((dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9))...)
@doc raw"""
CG(j1::HalfInt, j2::HalfInt, j3::HalfInt, m1::HalfInt, m2::HalfInt, m3::HalfInt)
CG coefficient ``\langle j_1m_1 j_2m_2 | j_3m_3 \rangle``
"""
@inline CG(j1::HalfInt, j2::HalfInt, j3::HalfInt, m1::HalfInt, m2::HalfInt, m3::HalfInt) = simplify(_dCG(BigInt.((2j1, 2j2, 2j3, 2m1, 2m2, 2m3))...))
@doc raw"""
CG0(j1::Integer, j2::Integer, j3::Integer)
CG coefficient special case: ``\langle j_1 0 j_2 0 | j_3 0 \rangle``.
"""
@inline CG0(j1::Integer, j2::Integer, j3::Integer) = simplify(_CG0(big(j1), big(j2), big(j3)))
@doc raw"""
threeJ(j1::HalfInt, j2::HalfInt, j3::HalfInt, m1::HalfInt, m2::HalfInt, m3::HalfInt)
Wigner 3j-symbol
```math
\begin{pmatrix}
j_1 & j_2 & j_3 \\
m_1 & m_2 & m_3
\end{pmatrix}
```
"""
@inline threeJ(j1::HalfInt, j2::HalfInt, j3::HalfInt, m1::HalfInt, m2::HalfInt, m3::HalfInt) = simplify(_d3j(BigInt.((2j1, 2j2, 2j3, 2m1, 2m2, 2m3))...))
@doc raw"""
sixJ(j1::HalfInt, j2::HalfInt, j3::HalfInt, j4::HalfInt, j5::HalfInt, j6::HalfInt)
Wigner 6j-symbol
```math
\begin{Bmatrix}
j_1 & j_2 & j_3 \\
j_4 & j_5 & j_6
\end{Bmatrix}
```
"""
@inline sixJ(j1::HalfInt, j2::HalfInt, j3::HalfInt, j4::HalfInt, j5::HalfInt, j6::HalfInt) = simplify(_d6j(BigInt.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6))...))
@doc raw"""
Racah(j1::HalfInt, j2::HalfInt, j3::HalfInt, j4::HalfInt, j5::HalfInt, j6::HalfInt)
Racah coefficient
```math
W(j_1j_2j_3j_4, j_5j_6) = (-1)^{j_1+j_2+j_3+j_4} \begin{Bmatrix}
j_1 & j_2 & j_5 \\
j_4 & j_3 & j_6
\end{Bmatrix}
```
"""
@inline Racah(j1::HalfInt, j2::HalfInt, j3::HalfInt, j4::HalfInt, j5::HalfInt, j6::HalfInt) = simplify(_dRacah(BigInt.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6))...))
@doc raw"""
nineJ(j1::HalfInt, j2::HalfInt, j3::HalfInt,
j4::HalfInt, j5::HalfInt, j6::HalfInt,
j7::HalfInt, j8::HalfInt, j9::HalfInt)
Wigner 9j-symbol
```math
\begin{Bmatrix}
j_1 & j_2 & j_3 \\
j_4 & j_5 & j_6 \\
j_7 & j_8 & j_9
\end{Bmatrix}
```
"""
@inline nineJ(j1::HalfInt, j2::HalfInt, j3::HalfInt,
j4::HalfInt, j5::HalfInt, j6::HalfInt,
j7::HalfInt, j8::HalfInt, j9::HalfInt) = simplify(_d9j(BigInt.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6, 2j7, 2j8, 2j9))...))
@doc raw"""
norm9J(j1::HalfInt, j2::HalfInt, j3::HalfInt,
j4::HalfInt, j5::HalfInt, j6::HalfInt,
j7::HalfInt, j8::HalfInt, j9::HalfInt)
normalized Wigner 9j-symbol
```math
\begin{bmatrix}
j_1 & j_2 & j_3 \\
j_4 & j_5 & j_6 \\
j_7 & j_8 & j_9
\end{bmatrix} = \sqrt{(2j_3+1)(2j_6+1)(2j_7+1)(2j_8+1)} \begin{Bmatrix}
j_1 & j_2 & j_3 \\
j_4 & j_5 & j_6 \\
j_7 & j_8 & j_9
\end{Bmatrix}
```
"""
@inline norm9J(j1::HalfInt, j2::HalfInt, j3::HalfInt,
j4::HalfInt, j5::HalfInt, j6::HalfInt,
j7::HalfInt, j8::HalfInt, j9::HalfInt) = simplify(exact_sqrt((2j3 + 1) * (2j6 + 1) * (2j7 + 1) * (2j8 + 1)) * _d9j(BigInt.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6, 2j7, 2j8, 2j9))...))
@doc raw"""
lsjj(l1::Integer, l2::Integer, j1::HalfInt, j2::HalfInt, L::Integer, S::Integer, J::Integer)
LS-coupling to jj-coupling transformation coefficient
```math
|l_1 l_2 j_1 j_2; J\rangle = \sum_{LS} \langle l_1 l_2 LSJ | l_1 l_2 j_1 j_2; J \rangle |l_1 l_2 LSJ \rangle
```
"""
@inline lsjj(l1::Integer, l2::Integer, j1::HalfInt, j2::HalfInt, L::Integer, S::Integer, J::Integer) = simplify(_lsjj(BigInt.((l1, l2, 2j1, 2j2, L, S, J))...))
@doc raw"""
Moshinsky(N::Integer, L::Integer, n::Integer, l::Integer, n1::Integer, l1::Integer, n2::Integer, l2::Integer, Λ::Integer)
Moshinsky bracket,Ref: Buck et al. Nuc. Phys. A 600 (1996) 387-402.
Since this function is designed for demonstration the exact result,
It only calculate the case of ``\tan(\beta) = 1``.
"""
@inline Moshinsky(N::Integer, L::Integer, n::Integer, l::Integer, n1::Integer, l1::Integer, n2::Integer, l2::Integer, Λ::Integer) = simplify(_Moshinsky(BigInt.((N, L, n, l, n1, l1, n2, l2, Λ))...))
| CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 20424 | _fbinomial_data = Float64[]
_fbinomial_nmax = Int(0)
@inline get_fbinomial_data()::Vector{Float64} = _fbinomial_data::Vector{Float64}
@inline get_fbinomial_nmax()::Int = _fbinomial_nmax::Int
"""
fbinomial(n::Integer, k::Integer)
`binomial` with Float64 return value.
"""
@inline function fbinomial(n::Integer, k::Integer)::Float64
if n < 0 || n > get_fbinomial_nmax() || k < 0 || k > n
return 0.0
end
k = min(k, n - k)
return @inbounds get_fbinomial_data()[binomial_index(n, k)]
end
"""
function unsafe_fbinomial(n::Int, k::Int)
Same as fbinomial, but without bounds check. Thus for `n < 0` or `n > _nmax` or `k < 0` or `k > n`, the result is undefined.
In Wigner symbol calculation, the mathematics guarantee that `unsafe_fbinomial(n, k)` is always safe.
"""
@inline function unsafe_fbinomial(n::Int, k::Int)::Float64
k = min(k, n - k)
return @inbounds get_fbinomial_data()[binomial_index(n, k)]
end
function _extent_fbinomial_data(n::Int)
if n > get_fbinomial_nmax()
old_data = copy(get_fbinomial_data())
resize!(get_fbinomial_data(), binomial_data_size(n))
copyto!(get_fbinomial_data(), old_data)
for m = get_fbinomial_nmax()+1:n
for k = 0:div(m, 2)
get_fbinomial_data()[binomial_index(m, k)] = binomial(BigInt(m), BigInt(k))
end
global _fbinomial_nmax = get_fbinomial_nmax() + 1
end
global _fbinomial_nmax = n
end
nothing
end
"""
wigner_init_float(n::Integer, mode::AbstractString, rank::Integer)
This function reserves memory for fbinomial(n, k). In this code, the `fbinomial` function is only valid in the stored range. If you call a `fbinomial` function out of the range, it just gives you `0`. The `__init__()` function stores to `nmax = 67`.
The parameters means
| | Calculate range | CG & 3j | 6j & Racah | 9j |
| :-----------------------------------: | :-------------------: | :---------: | :---------: | :---------: |
| meaning of `type` | `type`\\\\`rank` | 3 | 6 | 9 |
| max angular momentum | `"Jmax"` | `3*Jmax+1` | `4*Jmax+1` | `5*Jmax+1` |
| max two-body coupled angular momentum | `"2bjmax"` | `2*jmax+1` | `3*jmax+1` | `4*jmax+1` |
| max binomial | `"nmax"` | `nmax` | `namx` | `nmax` |
The `"2bjmax"` mode means your calculation only consider two-body coupling, and no three-body coupling. This mode assumes that in all these coefficients, at least one of the angular momentun is just a single particle angular momentum. With this assumption, `"2bjmax"` mode will use less memory than `"Jmax"` mode.
`"Jmax"` means the global maximum angular momentum, for every parameters. It is always safe with out any assumption.
The `"nmax"` mode directly set `nmax`, and the `rank` parameter is ignored.
`rank = 6` means you only need to calculate CG and/or 6j symbols, you don't need to calculate 9j symbol.
For example
```julia
wigner_init_float(21, "Jmax", 6)
```
means you calculate CG and 6j symbols, and donot calculate 9j symbol. The maximum angular momentum in your system is 21.
You do not need to rememmber those values in the table. You just need to find the maximum angular momentum in you canculation, then call the function.
The wigner_init_float function is **not** thread safe, so you should call it before you start your calculation.
"""
function wigner_init_float(n::Integer, mode::AbstractString, rank::Integer)
if mode == "Jmax"
rank == 3 && _extent_fbinomial_data(3 * n + 1)
rank == 6 && _extent_fbinomial_data(4 * n + 1)
rank == 9 && _extent_fbinomial_data(5 * n + 1)
if rank != 3 && rank != 6 && rank != 9
throw(ArgumentError("invalid rank $rank"))
end
elseif mode == "2bjmax"
rank == 3 && _extent_fbinomial_data(2 * n + 1)
rank == 6 && _extent_fbinomial_data(3 * n + 1)
rank == 9 && _extent_fbinomial_data(4 * n + 1)
if rank != 3 && rank != 6 && rank != 9
throw(ArgumentError("invalid rank $rank"))
end
elseif mode == "nmax"
_extent_fbinomial_data(n)
else
throw(ArgumentError("invalid mode $mode"))
end
nothing
end
# basic CG coefficient calculation function with Float64 return value
# unlike the SqrtRational version, this function gives out zero when the parameters are not valid
function _fCG(dj1::Int, dj2::Int, dj3::Int, dm1::Int, dm2::Int, dm3::Int)
check_jm(dj1, dm1) && check_jm(dj2, dm2) && check_jm(dj3, dm3) || return zero(Float64)
check_couple(dj1, dj2, dj3) || return zero(Float64)
dm1 + dm2 == dm3 || return zero(Float64)
J::Int = div(dj1 + dj2 + dj3, 2)
Jm1::Int = J - dj1
Jm2::Int = J - dj2
Jm3::Int = J - dj3
j1mm1::Int = div(dj1 - dm1, 2)
j2mm2::Int = div(dj2 - dm2, 2)
j3mm3::Int = div(dj3 - dm3, 2)
j2pm2::Int = div(dj2 + dm2, 2)
A = sqrt(unsafe_fbinomial(dj1, Jm2) * unsafe_fbinomial(dj2, Jm3) / (
unsafe_fbinomial(J + 1, Jm3) * unsafe_fbinomial(dj1, j1mm1) *
unsafe_fbinomial(dj2, j2mm2) * unsafe_fbinomial(dj3, j3mm3)
))
B = zero(Float64)
low::Int = max(zero(Int), j1mm1 - Jm2, j2pm2 - Jm1)
high::Int = min(Jm3, j1mm1, j2pm2)
for z in low:high
B = -B + unsafe_fbinomial(Jm3, z) * unsafe_fbinomial(Jm2, j1mm1 - z) * unsafe_fbinomial(Jm1, j2pm2 - z)
end
return iphase(high) * A * B
end
function _fCG0(j1::Int, j2::Int, j3::Int)
check_couple(2j1, 2j2, 2j3) || return zero(Float64)
J = j1 + j2 + j3
isodd(J) && return zero(Float64)
g = div(J, 2)
return iphase(g - j3) * unsafe_fbinomial(g, j3) * unsafe_fbinomial(j3, g - j1) / sqrt(unsafe_fbinomial(J + 1, 2j3 + 1) * unsafe_fbinomial(2j3, J - 2j1))
end
function _f6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
check_couple(dj1, dj2, dj3) && check_couple(dj1, dj5, dj6) & check_couple(dj4, dj2, dj6) && check_couple(dj4, dj5, dj3) || return zero(Float64)
j123::Int = div(dj1 + dj2 + dj3, 2)
j156::Int = div(dj1 + dj5 + dj6, 2)
j426::Int = div(dj4 + dj2 + dj6, 2)
j453::Int = div(dj4 + dj5 + dj3, 2)
jpm123::Int = div(dj1 + dj2 - dj3, 2)
jpm132::Int = div(dj1 + dj3 - dj2, 2)
jpm231::Int = div(dj2 + dj3 - dj1, 2)
jpm156::Int = div(dj1 + dj5 - dj6, 2)
jpm426::Int = div(dj4 + dj2 - dj6, 2)
jpm453::Int = div(dj4 + dj5 - dj3, 2)
A = sqrt(unsafe_fbinomial(j123 + 1, dj1 + 1) * unsafe_fbinomial(dj1, jpm123) / (
unsafe_fbinomial(j156 + 1, dj1 + 1) * unsafe_fbinomial(dj1, jpm156) *
unsafe_fbinomial(j453 + 1, dj4 + 1) * unsafe_fbinomial(dj4, jpm453) *
unsafe_fbinomial(j426 + 1, dj4 + 1) * unsafe_fbinomial(dj4, jpm426)
))
B = zero(Float64)
low::Int = max(j123, j453, j426, j156)
high::Int = min(jpm123 + j453, jpm132 + j426, jpm231 + j156)
for x = low:high
B = -B + unsafe_fbinomial(x + 1, j123 + 1) * unsafe_fbinomial(jpm123, x - j453) *
unsafe_fbinomial(jpm132, x - j426) * unsafe_fbinomial(jpm231, x - j156)
end
return iphase(high) * A * B / (dj4 + 1)
end
function _f9j(dj1::Int, dj2::Int, dj3::Int,
dj4::Int, dj5::Int, dj6::Int,
dj7::Int, dj8::Int, dj9::Int)
check_couple(dj1, dj2, dj3) && check_couple(dj4, dj5, dj6) && check_couple(dj7, dj8, dj9) || return zero(Float64)
check_couple(dj1, dj4, dj7) && check_couple(dj2, dj5, dj8) && check_couple(dj3, dj6, dj9) || return zero(Float64)
j123::Int = div(dj1 + dj2 + dj3, 2)
j456::Int = div(dj4 + dj5 + dj6, 2)
j789::Int = div(dj7 + dj8 + dj9, 2)
j147::Int = div(dj1 + dj4 + dj7, 2)
j258::Int = div(dj2 + dj5 + dj8, 2)
j369::Int = div(dj3 + dj6 + dj9, 2)
pm123::Int = div(dj1 + dj2 - dj3, 2)
pm132::Int = div(dj1 + dj3 - dj2, 2)
pm231::Int = div(dj2 + dj3 - dj1, 2)
pm456::Int = div(dj4 + dj5 - dj6, 2)
pm465::Int = div(dj4 + dj6 - dj5, 2)
pm564::Int = div(dj5 + dj6 - dj4, 2)
pm789::Int = div(dj7 + dj8 - dj9, 2)
pm798::Int = div(dj7 + dj9 - dj8, 2)
pm897::Int = div(dj8 + dj9 - dj7, 2)
# value in sqrt
P0_nu = unsafe_fbinomial(j123 + 1, dj1 + 1) * unsafe_fbinomial(dj1, pm123) *
unsafe_fbinomial(j456 + 1, dj5 + 1) * unsafe_fbinomial(dj5, pm456) *
unsafe_fbinomial(j789 + 1, dj9 + 1) * unsafe_fbinomial(dj9, pm798)
P0_de = unsafe_fbinomial(j147 + 1, dj1 + 1) * unsafe_fbinomial(dj1, div(dj1 + dj4 - dj7, 2)) *
unsafe_fbinomial(j258 + 1, dj5 + 1) * unsafe_fbinomial(dj5, div(dj2 + dj5 - dj8, 2)) *
unsafe_fbinomial(j369 + 1, dj9 + 1) * unsafe_fbinomial(dj9, div(dj3 + dj9 - dj6, 2))
P0 = P0_nu / P0_de
dtl::Int = max(abs(dj2 - dj6), abs(dj4 - dj8), abs(dj1 - dj9))
dth::Int = min(dj2 + dj6, dj4 + dj8, dj1 + dj9)
PABC = zero(Float64)
for dt::Int = dtl:2:dth
j19t::Int = div(dj1 + dj9 + dt, 2)
j26t::Int = div(dj2 + dj6 + dt, 2)
j48t::Int = div(dj4 + dj8 + dt, 2)
Pt_de = unsafe_fbinomial(j19t + 1, dt + 1) * unsafe_fbinomial(dt, div(dj1 + dt - dj9, 2)) *
unsafe_fbinomial(j26t + 1, dt + 1) * unsafe_fbinomial(dt, div(dj2 + dt - dj6, 2)) *
unsafe_fbinomial(j48t + 1, dt + 1) * unsafe_fbinomial(dt, div(dj4 + dt - dj8, 2))
Pt_de *= (dt + 1)^2
xl::Int = max(j123, j369, j26t, j19t)
xh::Int = min(pm123 + j369, pm132 + j26t, pm231 + j19t)
At = zero(Float64)
for x = xl:xh
At = -At + unsafe_fbinomial(x + 1, j123 + 1) * unsafe_fbinomial(pm123, x - j369) *
unsafe_fbinomial(pm132, x - j26t) * unsafe_fbinomial(pm231, x - j19t)
end
yl::Int = max(j456, j26t, j258, j48t)
yh::Int = min(pm456 + j26t, pm465 + j258, pm564 + j48t)
Bt = zero(Float64)
for y = yl:yh
Bt = -Bt + unsafe_fbinomial(y + 1, j456 + 1) * unsafe_fbinomial(pm456, y - j26t) *
unsafe_fbinomial(pm465, y - j258) * unsafe_fbinomial(pm564, y - j48t)
end
zl::Int = max(j789, j19t, j48t, j147)
zh::Int = min(pm789 + j19t, pm798 + j48t, pm897 + j147)
Ct = zero(Float64)
for z = zl:zh
Ct = -Ct + unsafe_fbinomial(z + 1, j789 + 1) * unsafe_fbinomial(pm789, z - j19t) *
unsafe_fbinomial(pm798, z - j48t) * unsafe_fbinomial(pm897, z - j147)
end
PABC += (iphase(xh + yh + zh) * At * Bt * Ct) / Pt_de
end
return iphase(dth) * sqrt(P0) * PABC
end
function _fMoshinsky(N::Int, L::Int, n::Int, l::Int, n1::Int, l1::Int, n2::Int, l2::Int, Λ::Int, tanβ::Float64)
f1 = 2 * n1 + l1
f2 = 2 * n2 + l2
F = 2 * N + L
f = 2 * n + l
f1 + f2 == F + f || return zero(Float64)
secβ = √(1 + tanβ * tanβ)
cosβ = 1 / secβ
sinβ = tanβ / secβ
nl1 = n1 + l1
nl2 = n2 + l2
NL = N + L
nl = n + l
r1 = unsafe_fbinomial(2nl1 + 1, nl1) / (unsafe_fbinomial(f1 + 2, n1) * ((nl1 + 2) << l1))
r2 = unsafe_fbinomial(2nl2 + 1, nl2) / (unsafe_fbinomial(f2 + 2, n2) * ((nl2 + 2) << l2))
R = unsafe_fbinomial(2NL + 1, NL) / (unsafe_fbinomial(F + 2, N) * ((NL + 2) << L))
r = unsafe_fbinomial(2nl + 1, nl) / (unsafe_fbinomial(f + 2, n) * ((nl + 2) << l))
pre_sum = √(r1 * r2 * R * r)
sum = zero(Float64)
for fa = 0:min(f1, F)
fb = f1 - fa
fc = F - fa
fd = f2 - fc
fd >= 0 || continue
t = sinβ^(fa + fd) * cosβ^(fb + fc)
t = t * √(unsafe_fbinomial(f1 + 2, fa + 1) * unsafe_fbinomial(f2 + 2, fc + 1) * unsafe_fbinomial(F + 2, fa + 1) * unsafe_fbinomial(f + 2, fb + 1))
for la = (fa&0x01):2:fa
na = div(fa - la, 2)
nla = na + la
ta = (((2 * la + 1) << la) * unsafe_fbinomial(fa + 1, na)) / unsafe_fbinomial(2nla + 1, nla)
for lb = abs(l1 - la):2:min(la + l1, fb)
nb = div(fb - lb, 2)
nlb = nb + lb
tb = (((2 * lb + 1) << lb) * unsafe_fbinomial(fb + 1, nb)) / unsafe_fbinomial(2nlb + 1, nlb)
g1 = div(la + lb + l1, 2)
CGab = unsafe_fbinomial(g1, l1) * unsafe_fbinomial(l1, g1 - la) / √(unsafe_fbinomial(2g1 + 1, 2(g1 - l1)) * unsafe_fbinomial(2l1, 2(g1 - la)))
for lc = abs(L - la):2:min(la + L, fc)
nc = div(fc - lc, 2)
nlc = nc + lc
tc = (((2 * lc + 1) << lc) * unsafe_fbinomial(fc + 1, nc)) / unsafe_fbinomial(2nlc + 1, nlc)
G = div(la + lc + L, 2)
CGac = unsafe_fbinomial(G, L) * unsafe_fbinomial(L, G - la) / √(unsafe_fbinomial(2G + 1, 2(G - L)) * unsafe_fbinomial(2L, 2(G - la)))
ld_min = max(abs(l2 - lc), abs(l - lb))
ld_max = min(fd, lb + l, lc + l2)
for ld = ld_min:2:ld_max
nd = div(fd - ld, 2)
nld = nd + ld
td = (((2 * ld + 1) << ld) * unsafe_fbinomial(fd + 1, nd)) / unsafe_fbinomial(2nld + 1, nld)
g2 = div(lc + ld + l2, 2)
CGcd = unsafe_fbinomial(g2, l2) * unsafe_fbinomial(l2, g2 - lc) / √(unsafe_fbinomial(2g2 + 1, 2(g2 - l2)) * unsafe_fbinomial(2l2, 2(g2 - lc)))
g = div(lb + ld + l, 2)
CGbd = unsafe_fbinomial(g, l) * unsafe_fbinomial(l, g - lb) / √(unsafe_fbinomial(2g + 1, 2(g - l)) * unsafe_fbinomial(2l, 2(g - lb)))
phase = iphase(ld)
ninej = f9j(2 * la, 2 * lb, 2 * l1, 2 * lc, 2 * ld, 2 * l2, 2 * L, 2 * l, 2 * Λ)
sum = sum + phase * t * ta * tb * tc * td * CGab * CGac * CGbd * CGcd * ninej
end
end
end
end
end
return pre_sum * sum
end
function _dfunc(dj::Int, dm1::Int, dm2::Int, β::Float64)
check_jm(dj, dm1) && check_jm(dj, dm2) || return zero(Float64)
jm1 = div(dj - dm1, 2)
jp1 = div(dj + dm1, 2)
jm2 = div(dj - dm2, 2)
mm = div(dm1 + dm2, 2)
s, c = sincos(β)
kmin = max(0, -mm)
kmax = min(jm1, jm2)
sum = 0.0
for k = kmin:kmax
sum = -sum + unsafe_fbinomial(jm1, k) * unsafe_fbinomial(jp1, mm + k) * c^(mm + 2k) * s^(jm1 + jm2 - 2k)
end
sum = iphase(jm2 + kmax) * sum
sum = sum * √(unsafe_fbinomial(dj, jm1) / unsafe_fbinomial(dj, jm2))
return sum
end
function _flsjj_helper(l1::Int, l2::Int, dj1::Int, dj2::Int, J::Int)
iphase(div(dj2 + 1, 2) + l1 + J) * _f6j(2l1, 1, dj1, dj2, 2J, 2l2)
end
# S = 0
function _flsjj_S0(l1::Int, l2::Int, dj1::Int, dj2::Int, J::Int)
sqrt((dj1 + 1) * (dj2 + 1) / 2) * _flsjj_helper(l1, l2, dj1, dj2, J)
end
# S = 1, J = L - 1
function _flsjj_S1_m1(l1::Int, l2::Int, dj1::Int, dj2::Int, J::Int)
L = J + 1
f0 = ((dj1 + 1) * (dj2 + 1)) / (2L * (2L - 1))
mj = div(dj1 - dj2, 2)
pj = div(dj1 + dj2, 2) + 1
fL = (L + mj) * (L - mj) * (L + pj) * (pj - L)
ml = l1 - l2
pl = l1 + l2 + 1
fJ = (L + ml) * (L - ml) * (L + pl) * (pl - L)
sqrt(fJ * f0) * _flsjj_helper(l1, l2, dj1, dj2, J) - sqrt(fL * f0) * _flsjj_helper(l1, l2, dj1, dj2, L)
end
# S = 1, J = L
function _flsjj_S1_0(l1::Int, l2::Int, dj1::Int, dj2::Int, J::Int)
factor = div(dj1 - dj2, 2) * div(dj1 + dj2 + 2, 2) - (l1 - l2) * (l1 + l2 + 1)
factor * sqrt((dj1 + 1) * (dj2 + 1) / (2J * (J + 1))) * _flsjj_helper(l1, l2, dj1, dj2, J)
end
# S = 1, J = L + 1
function _flsjj_S1_p1(l1::Int, l2::Int, dj1::Int, dj2::Int, J::Int)
f0 = ((dj1 + 1) * (dj2 + 1)) / (2J * (2J + 1))
mj = div(dj1 - dj2, 2)
pj = div(dj1 + dj2, 2) + 1
fL = (J + mj) * (J - mj) * (J + pj) * (pj - J)
ml = l1 - l2
pl = l1 + l2 + 1
fJ = (J + ml) * (J - ml) * (J + pl) * (pl - J)
sqrt(fL * f0) * _flsjj_helper(l1, l2, dj1, dj2, J - 1) - sqrt(fJ * f0) * _flsjj_helper(l1, l2, dj1, dj2, J)
end
function _flsjj(l1::Int, l2::Int, dj1::Int, dj2::Int, L::Int, S::Int, J::Int)
if abs(dj1 - 2l1) != 1 || abs(dj2 - 2l2) != 1
return zero(Float64)
end
check_couple(dj1, dj2, 2J) || return zero(Float64)
check_couple(2l1, 2l2, 2L) || return zero(Float64)
check_couple(2L, 2S, 2J) || return zero(Float64)
S == 0 && return _flsjj_S0(l1, l2, dj1, dj2, J)
if S == 1
J == L - 1 && return _flsjj_S1_m1(l1, l2, dj1, dj2, J)
J == L && return _flsjj_S1_0(l1, l2, dj1, dj2, J)
J == L + 1 && return _flsjj_S1_p1(l1, l2, dj1, dj2, J)
end
return zero(Float64)
end
"""
fCG(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
float64 and fast CG coefficient.
"""
@inline function fCG(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
return _fCG(Int.((dj1, dj2, dj3, dm1, dm2, dm3))...)
end
"""
fCG0(dj1::Integer, dj2::Integer, dj3::Integer)
float64 and fast CG coefficient for `m1 == m2 == m3 == 0`.
"""
@inline function fCG0(dj1::Integer, dj2::Integer, dj3::Integer)
return _fCG0(Int.((dj1, dj2, dj3))...)
end
"""
fCGspin(ds1::Integer, ds2::Integer, S::Integer)
float64 and fast CG coefficient for two spin-1/2 coupling.
"""
@inline function fCGspin(ds1::Integer, ds2::Integer, S::Integer)
unsigned(S) > 1 && return zero(Float64)
(abs(ds1) != 1 || abs(ds2) != 1) && return zero(Float64)
if iszero(S)
return ds1 == ds2 ? 0.0 : copysign(1 / √2, ds1)
else # S = 1
return ds1 == ds2 ? 1.0 : 1 / √2
end
end
"""
f3j(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
float64 and fast Wigner 3j symbol.
"""
@inline function f3j(dj1::Integer, dj2::Integer, dj3::Integer, dm1::Integer, dm2::Integer, dm3::Integer)
return iphase(dj1 + div(dj3 + dm3, 2)) * fCG(dj1, dj2, dj3, -dm1, -dm2, dm3) / sqrt(dj3 + 1)
end
"""
f6j(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
float64 and fast Wigner 6j symbol.
"""
@inline function f6j(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
return _f6j(Int.((dj1, dj2, dj3, dj4, dj5, dj6))...)
end
"""
Racah(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
float64 and fast Racah coefficient.
"""
@inline function fRacah(dj1::Integer, dj2::Integer, dj3::Integer, dj4::Integer, dj5::Integer, dj6::Integer)
return iphase(div(dj1 + dj2 + dj3 + dj4, 2)) * f6j(dj1, dj2, dj5, dj4, dj3, dj6)
end
"""
f9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer)
float64 and fast Wigner 9j symbol.
"""
@inline function f9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer)
return _f9j(Int.((dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9))...)
end
"""
fnorm9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer)
float64 and fast normalized Wigner 9j symbol.
"""
@inline function fnorm9j(dj1::Integer, dj2::Integer, dj3::Integer,
dj4::Integer, dj5::Integer, dj6::Integer,
dj7::Integer, dj8::Integer, dj9::Integer)
return sqrt((dj3 + 1.0) * (dj6 + 1.0) * (dj7 + 1.0) * (dj8 + 1.0)) * f9j(dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9)
end
"""
lsjj(l1::Integer, l2::Integer, dj1::Integer, dj2::Integer, L::Integer, S::Integer, J::Integer)
float64 and fast lsjj coefficient.
"""
@inline function flsjj(l1::Integer, l2::Integer, dj1::Integer, dj2::Integer, L::Integer, S::Integer, J::Integer)
return _flsjj(Int.((l1, l2, dj1, dj2, L, S, J))...)
end
"""
fMoshinsky(N::Integer, L::Integer, n::Integer, l::Integer, n1::Integer, l1::Integer, n2::Integer, l2::Integer, tanβ::Float64 = 1.0)
float64 and fast Moshinsky bracket.
"""
@inline function fMoshinsky(N::Integer, L::Integer, n::Integer, l::Integer, n1::Integer, l1::Integer, n2::Integer, l2::Integer, Λ::Integer, tanβ::Float64=1.0)
return _fMoshinsky(Int.((N, L, n, l, n1, l1, n2, l2, Λ))..., tanβ)
end
"""
dfunc(dj::Integer, dm1::Integer, dm2::Integer, β::Float64)
Wigner d-function.
"""
@inline function dfunc(dj::Integer, dm1::Integer, dm2::Integer, β::Float64)
return _dfunc(Int.((dj, dm1, dm2))..., β)
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 1528 | # this file contains some useful functions
"""
iphase(n::Integer)
``(-1)^n``
"""
@inline iphase(n::T) where {T <: Integer} = iseven(n) ? one(T) : -one(T)
"""
is_same_parity(x::T, y::T) where {T <: Integer}
judge if two integers are same odd or same even
"""
@inline is_same_parity(x::T, y::T) where {T <: Integer} = iseven(x ⊻ y)
"""
check_jm(dj::T, dm::T) where {T <: Integer}
check if the m-quantum number if one of the components of the j-quantum number,
in other words, `m` and `j` has the same parity, and `abs(m) < j`
"""
@inline check_jm(dj::T, dm::T) where {T <: Integer} = is_same_parity(dj, dm) & (abs(dm) <= dj)
"""
check_couple(dj1::T, dj2::T, dj3::T) where {T <: Integer}
check if three angular monentum number `j1, j2, j3` can couple
"""
@inline check_couple(dj1::T, dj2::T, dj3::T) where {T <: Integer} = begin
(dj1 >= 0) & (dj2 >= 0) & is_same_parity(dj1 + dj2, dj3) & (abs(dj1 - dj2) <= dj3 <= dj1 + dj2)
end
@doc raw"""
binomial_data_size(n::Int)::Int
Store (half) binomial data in the order of
```text
# n - data
0 1
1 1
2 1 2
3 1 3
4 1 4 6
5 1 5 10
6 1 6 15 20
```
Return the total number of the stored data.
"""
@inline function binomial_data_size(n::Int)::Int
x = div(n, 2) + 1
return x * (x + isodd(n))
end
@doc raw"""
binomial_index(n::Int, k::Int)::Int
Return the index of the binomial coefficient in the table.
"""
@inline function binomial_index(n::Int, k::Int)::Int
x = div(n, 2) + 1
return x * (x - iseven(n)) + k + 1
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 1886 | using Test
using CGcoefficient
include("test_sqrtrational.jl")
include("test_special.jl")
include("test_orthonormality.jl")
include("test_with_gsl.jl")
include("test_float_gsl.jl")
include("test_Moshinsky.jl")
@testset "test SqrtRational" begin test_sqrtrational() end
@testset "test SqrtRational show" begin test_show() end
@testset "test simplify" begin test_simplify() end
@testset "special condition: CG" begin test_special_CG(1//2:1//2:10) end
@testset "special condition: CG0" begin test_CG0(1:10) end
@testset "special condition: CGspin" begin test_CGspin() end
@testset "special condition: 6j" begin test_special_6j(1//2:1//2:5) end
@testset "special condition: Racah" begin test_special_Racah(1//2:1//2:5) end
@testset "special condition: 9j" begin test_special_9j(1//2:1//2:3) end
@testset "special condition: lsjj" begin test_lsjj(0:5) end
@testset "special condition: flsjj" begin test_flsjj(0:5) end
@testset "test orthonormality: dCG" begin test_orthonormality_dCG(0:8) end
@testset "test summation: d3j" begin test_summation_d3j(0:40) end
@testset "test orthonormality: d6j" begin test_orthonormality_d6j(0:6) end
@testset "test orthonormality: d9j" begin test_orthonormality_d9j(0:4) end
@testset "test Moshinsky" begin test_Moshinsky() end
try
gsl3j(1, 1, 1, 0, 0, 0)
catch err
if isa(err, ErrorException)
println(err.msg)
println("If you want to run test with libgsl, please download gsl library and rerun the test.")
exit()
end
error(err)
end
@testset "test with gsl: 3j" begin test_3j_with_gsl(1:5) end
@testset "test with gsl: 6j" begin test_6j_with_gsl(1:5) end
@testset "test with gsl: 9j" begin test_9j_with_gsl(1:5) end
@testset "float version: f3j" begin test_f3j_with_gsl(50:55) end
@testset "float version: f6j" begin test_f6j_with_gsl(50:55) end
@testset "float version: f9j" begin test_f9j_with_gsl(50:52) end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 904 | # this file test the Moshinsky coefficients
# the data comes from: Buck et al. Nuc. Phys. A 600 (1996) 387-402
const Moshinsky_test_set = [
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 1 1
0 2 0 0 0 0 0 2 2
0 1 0 1 0 0 0 2 2
0 0 0 2 0 0 0 2 2
1 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 1 1
0 2 0 0 0 1 0 1 2
0 1 0 1 0 1 0 1 2
0 0 0 2 0 1 0 1 2]
const inv_sqrt2 = exact_sqrt(1//2)
const Moshinsky_test_set_result = [
1, inv_sqrt2, -inv_sqrt2, 1//2, -inv_sqrt2, 1//2, inv_sqrt2, 0, -inv_sqrt2, -1, inv_sqrt2, 0, -inv_sqrt2
]
function test_Moshinsky()
for i = eachindex(Moshinsky_test_set_result)
@test Moshinsky(Moshinsky_test_set[i, :]...) == Moshinsky_test_set_result[i]
@test fMoshinsky(Moshinsky_test_set[i, :]...) ≈ float(Moshinsky_test_set_result[i])
end
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 3029 | # this file test the validity by comparing with the widely used `libgsl`
# wapper of gsl 3nj functions
function gsl3j(dj1::Int, dj2::Int, dj3::Int, dm1::Int, dm2::Int, dm3::Int)
ccall(
(:gsl_sf_coupling_3j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dm1, dm2, dm3
)
end
function gsl6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
ccall(
(:gsl_sf_coupling_6j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6
)
end
function gsl9j(dj1::Int, dj2::Int, dj3::Int,
dj4::Int, dj5::Int, dj6::Int,
dj7::Int, dj8::Int, dj9::Int)
ccall(
(:gsl_sf_coupling_9j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9
)
end
function check_6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
check_couple(dj1, dj2, dj3) & check_couple(dj1, dj5, dj6) &
check_couple(dj4, dj2, dj6) & check_couple(dj4, dj5, dj3)
end
function check_9j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int, dj7::Int, dj8::Int, dj9::Int)
check_couple(dj1, dj2, dj3) & check_couple(dj4, dj5, dj6) & check_couple(dj7, dj8, dj9) &
check_couple(dj1, dj4, dj7) & check_couple(dj2, dj5, dj8) & check_couple(dj3, dj6, dj9)
end
function test_f3j_with_gsl(test_range::AbstractArray)
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 3)
for dj1 in test_range
for dj2 in test_range
for dj3 in test_range
for dm1 in -dj1:2:dj1
for dm2 in -dj2:2:dj2
dm3 = -dm1-dm2
if check_couple(dj1, dj2, dj3) & check_jm(dj3, dm3)
gsl = gsl3j(dj1, dj2, dj3, dm1, dm2, dm3)
my = f3j(dj1, dj2, dj3, dm1, dm2, dm3)
@test isapprox(my, gsl; atol=1e-10)
end
end end end end end
end
function test_f6j_with_gsl(test_range::AbstractArray)
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 6)
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
if check_6j(j1, j2, j3, j4, j5, j6)
gsl = gsl6j(j1, j2, j3, j4, j5, j6)
my = f6j(j1,j2,j3,j4,j5,j6)
@test isapprox(my, gsl; atol=1e-10)
end
end end end end end end
end
function test_f9j_with_gsl(test_range::AbstractArray)
wigner_init_float(cld(maximum(test_range), 2), "Jmax", 9)
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
for j7 in test_range
for j8 in test_range
for j9 in test_range
if check_9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
gsl = gsl9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
my = f9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
@test isapprox(my, gsl; atol=1e-10)
end
end end end end end end end end end
end
| CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 4070 | # this file test the orthonormality of Wigner symbols
# All formulat are refered in
# [1] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, (World Scientific, 1988).
# Ref[1], P236, Sec 8.1, Formula (8)
function test_orthonormality_dCG(test_range::AbstractArray)
# Formula (8) first part
for dj1 in test_range
for dj2 in test_range
for dj3 in test_range
for dj4 in test_range
if check_couple(dj1, dj2, dj3) && check_couple(dj1, dj2, dj4)
for dm3 = -min(dj3,dj4):2:min(dj3,dj4)
sum = zero(SqrtRational)
for dm1 = -dj1:2:dj1
dm2 = dm3 - dm1
if check_jm(dj2, dm2)
sum += dCG(dj1,dj2,dj3,dm1,dm2,dm3) * dCG(dj1,dj2,dj4,dm1,dm2,dm3)
end
end
@test sum == Int(dj3==dj4)
end
end
end end end end
# Formula (8) second part
for dj1 in test_range
for dj2 in test_range
for dm1 = -dj1:2:dj1
for dm2 = -dj2:2:dj2
for dm3 = -dj1:2:dj1
dm = dm1 + dm2
dm4 = dm - dm3
sum = zero(SqrtRational)
for dj3 = abs(dj1-dj2):2:(dj1+dj2)
if check_jm(dj2, dm4) && check_jm(dj3, dm)
sum += dCG(dj1,dj2,dj3,dm1,dm2,dm) * dCG(dj1,dj2,dj3,dm3,dm4,dm)
end
end
@test sum == Int(dm1 == dm3)
end end end
end end
end
# Ref[1], P453, Sec 12.1, Formula (2)
function test_summation_d3j(test_range::AbstractArray)
for dj1 = test_range
for dj3 = 0:maximum(test_range)
check_couple(dj1, dj1, dj3) || continue
sum = zero(SqrtRational)
for dm1 = -dj1:2:dj1
sum += iphase(div(dj1-dm1, 2)) * d3j(dj1,dj1,dj3,dm1,-dm1,0)
end
@test sum == exact_sqrt(dj1+1) * Int(dj3==0)
end end
end
# Ref[1], P291, Sec 9.1, Formula(9)
function test_orthonormality_d6j(test_range::AbstractArray)
for dj1 in test_range
for dj2 in test_range
for dj4 in test_range
for dj5 in test_range
for dj6 in test_range
for dj7 in test_range
is_same_parity(dj6, dj7) || continue
check_couple(dj1, dj5, dj6) || continue
check_couple(dj1, dj5, dj7) || continue
check_couple(dj4, dj2, dj6) || continue
check_couple(dj4, dj2, dj7) || continue
is_same_parity(dj1 + dj2, dj4 + dj5) || continue
sum = zero(SqrtRational)
djmin = max(abs(dj1-dj2), abs(dj4-dj5))
djmax = min(dj1+dj2, dj4+dj5)
for dj3 = djmin:2:djmax
sum += (dj3+1) * (dj6+1) * (
d6j(dj1,dj2,dj3,dj4,dj5,dj6) * d6j(dj1,dj2,dj3,dj4,dj5,dj7)
)
end
@test sum == Int(dj6==dj7)
end end end end end end
end
# Ref[1], P335, Sec 10.1, Formula (9)
function test_orthonormality_d9j(test_range::AbstractArray)
for a in test_range
for b in test_range
for c in test_range
for d in test_range
for e in test_range
for f in test_range
for cx in test_range
for fx in test_range
for j in test_range
is_same_parity(c, cx) || continue
is_same_parity(f, fx) || continue
check_couple(a, b, c) || continue
check_couple(a, b, cx) || continue
check_couple(d, e, f) || continue
check_couple(d, e, fx) || continue
check_couple(c, f, j) || continue
check_couple(cx, fx, j) || continue
sum = zero(SqrtRational)
for g in abs(a-d):2:(a+d)
for h in abs(b-e):2:(b+e)
if check_couple(g, h, j)
sum += (g+1)*(h+1)*(
d9j(a,b,c,d,e,f,g,h,j) * d9j(a,b,cx,d,e,fx,g,h,j)
)
end
end end
if (c==cx) && (f==fx)
@test sum == 1//((c+1)*(f+1))
else
@test sum == 0
end
end end end end end end end end end
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 4143 | # this file test the some special case if Wigner symbols
# especially the when one of arguement is equal to zero
# All formulat are refered in
# [1] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, (World Scientific, 1988).
# test special condition for CG coefficients
# Ref[1], P248, Sec 8.5, Formula(1)
function test_special_CG(test_range::AbstractArray)
for j = test_range
for m = -j:1:j
cg = CG(j, j, 0, m, -m, 0)
mycg = iphase(Int(j - m)) / exact_sqrt(2j + 1)
@test cg == mycg
end
end
end
function test_CG0(test_range::AbstractArray)
for j1 = test_range, j2 = test_range, j3 = test_range
if check_couple(Int(2j1), Int(2j2), Int(2j3))
cg0 = CG0(j1, j2, j3)
tj = threeJ(j1, j2, j3, 0, 0, 0) * iphase(2j1 + j3) * exact_sqrt(2j3 + 1)
@test cg0 == tj
end
end
end
function test_CGspin()
@test fCGspin(1, 1, 1) ≈ fCG(1, 1, 2, 1, 1, 2) ≈ 1.0
@test fCGspin(1, 1, 0) ≈ fCG(1, 1, 0, 1, 1, 2) ≈ 0.0
@test fCGspin(1, -1, 1) ≈ fCG(1, 1, 2, 1, -1, 0) ≈ 1/√2
@test fCGspin(1, -1, 0) ≈ fCG(1, 1, 0, 1, -1, 0) ≈ 1/√2
@test fCGspin(-1, 1, 1) ≈ fCG(1, 1, 2, -1, 1, 0) ≈ 1/√2
@test fCGspin(-1, 1, 0) ≈ fCG(1, 1, 0, -1, 1, 0) ≈ -1/√2
@test fCGspin(-1, -1, 1) ≈ fCG(1, 1, 2, -1, -1, -2) ≈ 1.0
@test fCGspin(-1, -1, 0) ≈ fCG(1, 1, 0, -1, -1, -2) ≈ 0.0
end
# test special condition for 6j symbols
# Ref[1], P299, Sec 9.5, Formula (1)
function test_special_6j(test_range::AbstractArray)
for j1 in test_range, j2 in test_range, j3 in test_range
if check_couple(Int(2j1), Int(2j2), Int(2j3))
sj = sixJ(j1, j2, j3, j2, j1, 0)
mysj = iphase(Int(j1 + j2 + j3)) / exact_sqrt((2j1 + 1) * (2j2 + 1))
@test sj == mysj
end
end
end
# test special condition for Racah coefficients
# Ref[1], P300, Sec 9.5, Formula (2)
function test_special_Racah(test_range::AbstractArray)
for j1 in test_range, j2 in test_range, j3 in test_range
if check_couple(Int(2j1), Int(2j2), Int(2j3))
rc = Racah(0, j1, j2, j3, j1, j2)
myrc = 1 / exact_sqrt((2j1 + 1) * (2j2 + 1))
@test rc == myrc
end
end
end
function check_6j(j1::HalfInt, j2::HalfInt, j3::HalfInt,
j4::HalfInt, j5::HalfInt, j6::HalfInt)
dj1, dj2, dj3, dj4, dj5, dj6 = Int64.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6))
check_couple(dj1, dj2, dj3) & check_couple(dj1, dj5, dj6) &
check_couple(dj4, dj2, dj6) & check_couple(dj4, dj5, dj3)
end
# test special condition for 9j symbols
# Ref[1], P357, Sec 10.9, Formula (1)
function test_special_9j(test_range::AbstractArray)
for j1 in test_range, j2 in test_range, j3 in test_range,
j4 in test_range, j5 in test_range, j7 in test_range
if check_6j(j1, j2, j3, j5, j4, j7)
nj = nineJ(j1, j2, j3, j4, j5, j3, j7, j7, 0)
snj = iphase(Int(j2 + j3 + j4 + j7)) / exact_sqrt((2j3 + 1) * (2j7 + 1))
snj *= sixJ(j1, j2, j3, j5, j4, j7)
@test nj == snj
end
end
end
function test_lsjj(test_range::AbstractArray)
for l1 in test_range
for l2 in test_range
for L in abs(l1-l2):(l1+l2)
for (j1, j2) in [(l1+1//2, l2+1//2), (l1+1//2, l2-1//2), (l1-1//2, l2+1//2), (l1-1//2, l2-1//2)]
for (S, J) in [(0, L), (1, L-1), (1, L), (1, L+1)]
@test lsjj(l1, l2, j1, j2, L, S, J) == norm9J(l1, 1//2, j1, l2, 1//2, j2, L, S, J)
end
end
end
end
end
end
function test_flsjj(test_range::AbstractArray)
for l1 in test_range
for l2 in test_range
for L in abs(l1-l2):(l1+l2)
for (dj1, dj2) in [(2l1+1, 2l2+1), (2l1+1, 2l2-1), (2l1-1, 2l2+1), (2l1-1, 2l2-1)]
for (S, J) in [(0, L), (1, L-1), (1, L), (1, L+1)]
@test flsjj(l1, l2, dj1, dj2, L, S, J) ≈ fnorm9j(2l1, 1, dj1, 2l2, 1, dj2, 2L, 2S, 2J)
end
end
end
end
end
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 2485 | # this file test the behavior of `SqrtRational`
function test_sqrtrational()
x = 3//5 * exact_sqrt(2//3)
@test zero(x) == 0
@test 0*x == 0
@test (0*x).r == 1
@test (0*x) == zero(x)
@test 1 == one(x)
@test x*inv(x) == one(x)
@test inv(x) == one(x)/x
@test sign(+x) == 1
@test sign(-x) == -1
@test sign(0*x) == 0
@test signbit(+x) == false
@test signbit(-x) == true
@test signbit(0*x) == false
end
function test_show()
x = exact_sqrt(3)
y = exact_sqrt(3//5)
@test string(zero(x)) == "0"
@test string(one(x)) == "1"
@test string(2//3*one(x)) == "2//3"
@test string(x) == "√3"
@test string(-x) == "-√3"
@test string(-y) == "-√(3//5)"
@test string(y) == "√(3//5)"
@test string(3*x) == "3√3"
@test string(2//3*y) == "2//3√(3//5)"
io = IOBuffer()
show(io, "text/markdown", zero(x))
@test String(take!(io)) == raw"$0$" * "\n"
show(io, "text/markdown", one(x))
@test String(take!(io)) == raw"$1$" * "\n"
show(io, "text/markdown", 2//3*one(x))
@test String(take!(io)) == raw"$\frac{2}{3}$" * "\n"
show(io, "text/markdown", x)
@test String(take!(io)) == raw"$\sqrt{3}$" * "\n"
show(io, "text/markdown", y)
@test String(take!(io)) == raw"$\sqrt{\frac{3}{5}}$" * "\n"
show(io, "text/markdown", -x)
@test String(take!(io)) == raw"$-\sqrt{3}$" * "\n"
show(io, "text/markdown", -y)
@test String(take!(io)) == raw"$-\sqrt{\frac{3}{5}}$" * "\n"
show(io, "text/markdown", 3*x)
@test String(take!(io)) == raw"$3\sqrt{3}$" * "\n"
show(io, "text/markdown", 2//3*y)
@test String(take!(io)) == raw"$\frac{2}{3}\sqrt{\frac{3}{5}}$" * "\n"
end
function test_simplify()
@test simplify(2^7 * 3^3) == (2 * 3, 2^3 * 3)
@test simplify(exact_sqrt(3//4)) == exact_sqrt(3) / 2
test_simplify_with_6j()
end
function test_simplify_with_6j()
test_range = 2:1//2:4
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
dj1, dj2, dj3, dj4, dj5, dj6 = Int.((2j1, 2j2, 2j3, 2j4, 2j5, 2j6))
if check_couple(dj1, dj2, dj3) & check_couple(dj1, dj5, dj6) &
check_couple(dj4, dj2, dj6) & check_couple(dj4, dj5, dj3)
x = sixJ(j1,j2,j3,j4,j5,j6)
@test simplify(x) == x
end
end end end end end end
end | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | code | 3089 | # this file test the validity by comparing with the widely used `libgsl`
# wapper of gsl 3nj functions
function gsl3j(dj1::Int, dj2::Int, dj3::Int, dm1::Int, dm2::Int, dm3::Int)
ccall(
(:gsl_sf_coupling_3j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dm1, dm2, dm3
)
end
function gsl6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
ccall(
(:gsl_sf_coupling_6j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6
)
end
function gsl9j(dj1::Int, dj2::Int, dj3::Int,
dj4::Int, dj5::Int, dj6::Int,
dj7::Int, dj8::Int, dj9::Int)
ccall(
(:gsl_sf_coupling_9j, "libgsl"),
Cdouble,
(Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint, Cint),
dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9
)
end
function check_6j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int)
check_couple(dj1, dj2, dj3) & check_couple(dj1, dj5, dj6) &
check_couple(dj4, dj2, dj6) & check_couple(dj4, dj5, dj3)
end
function check_9j(dj1::Int, dj2::Int, dj3::Int, dj4::Int, dj5::Int, dj6::Int, dj7::Int, dj8::Int, dj9::Int)
check_couple(dj1, dj2, dj3) & check_couple(dj4, dj5, dj6) & check_couple(dj7, dj8, dj9) &
check_couple(dj1, dj4, dj7) & check_couple(dj2, dj5, dj8) & check_couple(dj3, dj6, dj9)
end
# Because the gsl compute wigner 3nj symbols using float point number,
# sometimes my code give out zero, but gsl give out a very small number.
# In this condition, `≈` operator will give false result.
function test_3j_with_gsl(test_range::AbstractArray)
for dj1 in test_range
for dj2 in test_range
for dj3 in test_range
for dm1 in -dj1:2:dj1
for dm2 in -dj2:2:dj2
dm3 = -dm1-dm2
if check_couple(dj1, dj2, dj3) & check_jm(dj3, dm3)
gsl = gsl3j(dj1, dj2, dj3, dm1, dm2, dm3)
my = float(d3j(dj1, dj2, dj3, dm1, dm2, dm3))
@test (my == 0 && gsl < 1e-10) || (gsl ≈ my)
end
end end end end end
end
function test_6j_with_gsl(test_range::AbstractArray)
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
if check_6j(j1, j2, j3, j4, j5, j6)
gsl = gsl6j(j1, j2, j3, j4, j5, j6)
my = float(d6j(j1,j2,j3,j4,j5,j6))
@test (my == 0 && gsl < 1e-10) || (gsl ≈ my)
end
end end end end end end
end
function test_9j_with_gsl(test_range::AbstractArray)
for j1 in test_range
for j2 in test_range
for j3 in test_range
for j4 in test_range
for j5 in test_range
for j6 in test_range
for j7 in test_range
for j8 in test_range
for j9 in test_range
if check_9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
gsl = gsl9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
my = float(d9j(j1,j2,j3,j4,j5,j6,j7,j8,j9))
@test (my == 0 && gsl < 1e-10) | (gsl ≈ my)
end
end end end end end end end end end
end
| CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | docs | 4358 | # CGcoefficient.jl
[](LICENSE)
[](https://github.com/0382/CGcoefficient.jl/actions/workflows/CI.yml)
[](http://codecov.io/github/0382/CGcoefficient.jl?branch=master)
[](https://0382.github.io/CGcoefficient.jl/dev)
[[中文](README_zh.md)]
A package to calculate CG-coefficient, Racah coefficient, Wigner 3j, 6j, 9j symbols and Moshinsky brakets.
One can get the exact result with `SqrtRational` type, which use `BigInt` to avoid overflow. And we also offer float version for numeric calculation, which is about twice faster than [GNU Scientific Library](https://www.gnu.org/software/gsl/).
I also rewrite the float version with c++ for numeric calculation: [WignerSymbol](https://github.com/0382/WignerSymbol).
For more details and the calculation formula, please see the document [](https://0382.github.io/CGcoefficient.jl/dev).
### Install
Just start a Julia REPL, and install it
```julia-repl
julia> ]
pkg> add CGcoefficient
```
### Example
```julia-repl
julia> CG(1,2,3,1,1,2)
√(2//3)
julia> nineJ(1,2,3,4,5,6,3,6,9)
1//1274√(3//5)
julia> f6j(6,6,6,6,6,6)
-0.07142857142857142
```
For more examples please see the document.
### API
This package contains two types of functions:
1. The exact functions return `SqrtRational`, which are designed for demonstration. They use `BigInt` in the internal calculation, and do not cache the binomial table, so they are not efficient.
2. The floating-point functions return `Float64`, which are designed for numeric calculation. They use `Int, Float64` in the internal calculation, and you should pre-call `wigner_init_float` to calculate and cache the binomial table for later calculation. They may give inaccurate result for vary large angular momentum, due to floating-point arithmetic. They are trustworthy for angular momentum number `Jmax <= 60`.
#### Exact functions
- `CG(j1, j2, j3, m1, m2, m3)`, CG-coefficient, arguments are `HalfInt`s, aka `Integer` or `Rational` like `3//2`.
- `CG0(j1, j2, j3)`, CG-coefficient for `m1 = m2 = m3 = 0`, only integer angular momentum number is meaningful.
- `threeJ(j1, j2, j3, m1, m2, m3)`, Wigner 3j-symbol, `HalfInt` arguments.
- `sixJ(j1, j2, j3, j4, j5, j6)`, Wigner 6j-symbol, `HalfInt` arguments.
- `Racah(j1, j2, j3, j4, j5, j6)`, Racah coefficient, `HalfInt` arguments.
- `nineJ(j1, j2, j3, j4, j5, j6, j7, j8, j9)`, Wigner 9j-symbol, `HalfInt` arguments.
- `norm9J(j2, j3, j4, j5, j5, j6, j7, j8, j9)`, normalized 9j-symbol, `HalfInt` arguments.
- `lsjj(l1, l2, j1, j2, L, S, J)`, LS-coupling to jj-coupling transform coefficient. It actually equals to a normalized 9j-symbol, but easy to use and faster. `j1, j2` can be `HalfInt`.
- `Moshinsky(N, L, n, l, n1, l1, n2, l2, Λ)`, Moshinsky brakets, `Integer` arguments.
#### Float functions
For faster numeric calculation, if the angular momentum number can be half-integer, the argument of the functions is actually double of the number. So that all arguments are integers. The doubled arguments are named starts with `d`.
- `fCG(dj1, dj2, dj3, dm1, dm2, dm3)`, CG-coefficient.
- `fCG0(j1, j2, j3)`, CG-coefficient for `m1 = m2 = m3 = 0`.
- `fCGspin(ds1, ds2, S)`, quicker CG-coefficient for two spin-1/2 coupling.
- `f3j(dj1, dj2, dj3, dm1, dm2, dm3)`, Wigner 3j-symbol.
- `f6j(dj1, dj2, dj3, dj4, dj5, dj6)`, Wigner 6j-symbol.
- `fRacah(dj1, dj2, dj3, dj4, dj5, dj6)`, Racah coefficient.
- `f9j(dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9)`, Wigner 9j-symbol.
- `fnorm9j(dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9)`, normalized 9j-symbol.
- `flsjj(l1, l2, dj1, dj2, L, S, J)`, LS-coupling to jj-coupling transform coefficient.
- `fMoshinsky(N, L, n, l, n1, l1, n2, l2, Λ)`, Moshinsky brakets.
- `dfunc(dj, dm1, dm2, β)`, Wigner d-function.
### Reference
- [https://github.com/ManyBodyPhysics/CENS](https://github.com/ManyBodyPhysics/CENS)
- D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, *Quantum Theory of Angular Momentum*, (World Scientific, 1988). | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | docs | 3014 | # CGcoefficient.jl
[](LICENSE)
[](https://github.com/0382/CGcoefficient.jl/actions/workflows/CI.yml)
[](http://codecov.io/github/0382/CGcoefficient.jl?branch=master)
[](https://0382.github.io/CGcoefficient.jl/dev)
[[English](README.md)]
计算CG系数,Racah系数,Wigner 3j, 6j, 9j系数,Moshinsky系数等。
你可以使用定义的`SqrtRational`类型以保存准确结果,它内部使用`BigInt`计算以避免溢出。同时我们也提供浮点数运算的快速版本,比[GNU Scientific Library](https://www.gnu.org/software/gsl/)快一倍。
我也用c++重写了浮点数版本,用于数值计算:[WignerSymbol](https://github.com/0382/WignerSymbol).
关于更多更多细节以及计算公式,请看文档[](https://0382.github.io/CGcoefficient.jl/dev)。
### 安装
使用julia REPL安装即可
```julia-repl
julia> ]
pkg> add CGcoefficient
```
### 示例
```julia-repl
julia> CG(1,2,3,1,1,2)
√(2//3)
julia> nineJ(1,2,3,4,5,6,3,6,9)
1//1274√(3//5)
julia> f6j(6,6,6,6,6,6)
-0.07142857142857142
```
更多示例请看文档。
### 函数列表
这个包提供两类函数。
1. 精确函数。返回`SqrtRational`;这类函数主要是为了演示,内部使用`BigInt`进行计算,不需要缓存,计算速度相对较慢。
2. 浮点数函数。返回双精度浮点数;这类函数主要是为了数值计算,内部使用`Float64`进行计算。在使用之前,你需要先调用`wigner_init_float`来预想计算二项式系数表并缓存这个表,用于后面的计算。当角动量量子数非常大的时候,它们可能会由于浮点数计算产生一些误差,但对于角动量量子数`Jmax <= 60`,计算都是可信的。
#### 精确函数
- `CG(j1, j2, j3, m1, m2, m3)`, CG系数,参数是所谓`HalfInt`,也就是整数或者`3//2`这样分数类型。
- `CG0(j1, j2, j3)`, CG系数特殊情况`m1 = m2 = m3 = 0`,此时当然角动量是整数才有意义。
- `threeJ(j1, j2, j3, m1, m2, m3)`, Wigner 3j系数,参数均为`HalfInt`。
- `sixJ(j1, j2, j3, j4, j5, j6)`, Wigner 6j系数,参数均为`HalfInt`。
- `Racah(j1, j2, j3, j4, j5, j6)`, Racah系数,参数均为`HalfInt`。
- `nineJ(j1, j2, j3, j4, j5, j6, j7, j8, j9)`, Wigner 9j系数,参数均为`HalfInt`。
- `norm9J(j2, j3, j4, j5, j5, j6, j7, j8, j9)`, normalized 9j系数,参数均为`HalfInt`。
- `lsjj(l1, l2, j1, j2, L, S, J)`, LS耦合到jj耦合的转换系数,它实际上等于一个normalized 9j系数,但更易于使用且更快。`j1, j2`是`HalfInt`,其余必须是整数。
- `Moshinsky(N, L, n, l, n1, l1, n2, l2, Λ)`, Moshinsky括号,参数均为`HalfInt`。
#### 浮点数函数
对于数值计算而言,为了效率我们避免使用分数类型,如果某个参数可能是半整数,函数的则使用两倍的角动量量子数作为参数,以此避免半整数。在形参命名中,如果某个参数接受两倍的角动量,那么会有一个`d`前缀。
- `fCG(dj1, dj2, dj3, dm1, dm2, dm3)`, CG系数
- `fCG0(j1, j2, j3)`, CG系数特殊情况`m1 = m2 = m3 = 0`。
- `fCGspin(ds1, ds2, S)`, 快速计算1/2自旋的CG系数。
- `f3j(dj1, dj2, dj3, dm1, dm2, dm3)`, Wigner 3j系数。
- `f6j(dj1, dj2, dj3, dj4, dj5, dj6)`, Wigner 6j系数。
- `fRacah(dj1, dj2, dj3, dj4, dj5, dj6)`, Racah系数。
- `f9j(dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9)`, Wigner 9j系数。
- `fnorm9j(dj1, dj2, dj3, dj4, dj5, dj6, dj7, dj8, dj9)`, normalized 9j系数。
- `flsjj(l1, l2, dj1, dj2, L, S, J)`, LS耦合到jj耦合的转换系数。
- `fMoshinsky(N, L, n, l, n1, l1, n2, l2, Λ)`, oshinsky括号
- `dfunc(dj, dm1, dm2, β)`, Wigner d 函数。
### 参考资料
- [https://github.com/ManyBodyPhysics/CENS](https://github.com/ManyBodyPhysics/CENS)
- D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, *Quantum Theory of Angular Momentum*, (World Scientific, 1988). | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | docs | 1696 | # API
## Types
```@docs
HalfInt
SqrtRational
```
## Exact functions
The default functions give out exact result in the format of `SqrtRational`.
The results are simplified to give out shotest possible result.
Their arguments are `HalfInt` (aka Integer or Rational with denomiator 2).
```@docs
CG
CG0
threeJ
sixJ
nineJ
norm9J
lsjj
Racah
Moshinsky
```
People often use double of angular momentum quantum number as parameters, so we can use integer as parameters. This package also offers such functions, where the `d` letter means *double*.
These functions also give out exact `SqrtRational` results, but are not simplified.
Because the `simplify` function is quite slow, if you want to do some calculation for the result,
we suggest to use `d`-precedent functions first and `simplify` after call calculations.
```@docs
dCG
d3j
d6j
d9j
dRacah
```
## float version functions
Float version functions is always used for numeric calculation. They are designed for fast calculation.
You should call `wigner_init_float` to reserve the inner **binomial table**.
They only resive `Integer` arguments, thus `fCG, f3j, f6j, fRacha, f9j` only resive arguements which are
double of the exact quantum number. The rest functions do not need to do so.
The difference is labeled with the arguement name: `dj` means of double of the quantum number, while `j` means
the exact quantum number.
```@docs
fbinomial
unsafe_fbinomial
fCG
fCG0
fCGspin
f3j
f6j
fRacah
f9j
fnorm9j
flsjj
fMoshinsky
dfunc
wigner_init_float
```
## Some useful function
```@docs
iphase
is_same_parity
check_jm
check_couple
binomial_data_size
binomial_index
exact_sqrt
float(::SqrtRational)
simplify(::Integer)
simplify(::SqrtRational)
``` | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | docs | 9627 | # Formula
## CG coefficient
Ref [^1], P240, Section 8.2.4, Formula (20).
```math
C_{j_1m_1j_2m_2}^{j_3m_3} = \delta_{m_3, m_1+m_2}
\left[
\dfrac{\begin{pmatrix}2j_1 \\ J-2j_2\end{pmatrix}\begin{pmatrix}2j_2\\J-2j_3\end{pmatrix}}{\begin{pmatrix}J+1\\J-2j_3\end{pmatrix}\begin{pmatrix}2j_1\\j_1-m_1\end{pmatrix}\begin{pmatrix}2j_2 \\ j_2 - m_2\end{pmatrix}\begin{pmatrix}2j_3 \\ j_3-m_3\end{pmatrix}}
\right]^{1/2} \\
\times \sum_{z} (-1)^{z}\begin{pmatrix}J-2j_3 \\ z\end{pmatrix}\begin{pmatrix}J-2j_2 \\ j_1-m_1-z\end{pmatrix}\begin{pmatrix}J-2j_1 \\ j_2 + m_2 - z\end{pmatrix}
```
where, $J = j_1+j_2+j_3$. It is already combination of binomials.
## 3j symbol
Ref [^1], P236, Section 8.1.2, Formula (11).
```math
\begin{pmatrix}j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3\end{pmatrix} = (-1)^{j_3+m_3+2j_1}\dfrac{1}{\sqrt{2j_3+1}}C_{j_1-m_1j_2-m_2}^{j_3m_3}
```
This package use the CG coefficient above to calculate 3j symbol.
## 6j symbol
Ref [^1], P293, Section 9.2.1, Formula (1).
```math
\begin{Bmatrix}j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6\end{Bmatrix} = \Delta(j_1j_2j_3)\Delta(j_4j_5j_3)\Delta(j_1j_5j_6)\Delta(j_4j_2j_6) \\
\times \sum\limits_x\dfrac{(-1)^x(x+1)!}{(x-j_{123})!(x-j_{453})!(x-j_{156})!(x-j_{426})!(j_{1245}-x)!(j_{1346}-x)!(j_{2356}-x)!}
```
Here, I use $j_{123} \equiv j_1+j_2+j_3$ for simplicity. The symbol $\Delta(abc)$ is defined as
```math
\Delta(abc) = \left[\dfrac{(a+b-c)!(a-b+c)!(-a+b+c)!}{(a+b+c+1)!}\right]^{\frac{1}{2}}.
```
We can find that
```math
\begin{pmatrix}j_1+j_2-j_3 \\ x - j_{453}\end{pmatrix} = \dfrac{(j_1+j_2-j_3)!}{(x-j_{453})!(j_{1245}-x)!} \\
\begin{pmatrix}j_1-j_2+j_3 \\ x - j_{426}\end{pmatrix} = \dfrac{(j_1-j_2+j_3)!}{(x-j_{426})!(j_{1346}-x)!} \\
\begin{pmatrix}j_2+j_3-j_1 \\ x - j_{156}\end{pmatrix} = \dfrac{(j_2+j_3-j_1)!}{(x-j_{156})!(j_{2356}-x)!} \\
\begin{pmatrix}x+1 \\ j_{123}+1\end{pmatrix} = \dfrac{(x+1)!}{(x-j_{123})(j_{123}+1)!}.
```
So, we have
```math
\begin{Bmatrix}j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6\end{Bmatrix} = \dfrac{\Delta(j_4j_5j_3)\Delta(j_1j_5j_6)\Delta(j_4j_2j_6)}{\Delta(j_1j_2j_3)} \\
\times \sum\limits_x (-1)^x \begin{pmatrix}x+1 \\ j_{123}+1\end{pmatrix} \begin{pmatrix}j_1+j_2-j_3 \\ x - j_{453}\end{pmatrix} \begin{pmatrix}j_1-j_2+j_3 \\ x - j_{426}\end{pmatrix} \begin{pmatrix}j_2+j_3-j_1 \\ x - j_{156}\end{pmatrix}.
```
Rewrite $\Delta(abc)$ with binomials,
```math
\Delta(abc) = \left[\dfrac{1}{\begin{pmatrix}a+b+c+1 \\ 2a + 1\end{pmatrix} \begin{pmatrix}2a \\ a + b - c\end{pmatrix}(2a+1)}\right]^{\frac{1}{2}}.
```
So
```math
\dfrac{\Delta(j_4j_5j_3)\Delta(j_1j_5j_6)\Delta(j_4j_2j_6)}{\Delta(j_1j_2j_3)} \\
= \dfrac{1}{2j_4+1} \left[\dfrac{\begin{pmatrix}j_{123}+1 \\ 2j_1+1\end{pmatrix}\begin{pmatrix}2j_1 \\ j_1 + j_2 - j_3\end{pmatrix}}{\begin{pmatrix}j_{156}+1 \\ 2j_1+1\end{pmatrix}\begin{pmatrix}2j_1 \\ j_1+j_5-j_6\end{pmatrix}\begin{pmatrix}j_{453}+1\\2j_4+1\end{pmatrix}\begin{pmatrix}2j_4\\j_4+j_5-j_3\end{pmatrix}\begin{pmatrix}j_{426}+1 \\ 2j_4+1\end{pmatrix}\begin{pmatrix}2j_4 \\ j_4+j_2-j_6\end{pmatrix}}\right]^{\frac{1}{2}}
```
## Racha coefficient
Ref [^1], P291, Section 9.1.2, Formula (11)
```math
W(j_1j_2j_3j_4, j_5j_6) = (-1)^{j_1+j_2+j_3+j_4} \begin{Bmatrix}
j_1 & j_2 & j_5 \\
j_4 & j_3 & j_6
\end{Bmatrix}
```
This package uses the 6j symbol above to calculate Racha coefficient.
## 9j symbol
Ref [^1], P340, Section 10.2.4, Formula (20)
```math
\begin{Bmatrix}j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \\ j_7 & j_8 & j_9\end{Bmatrix} = \sum\limits_{t}(-1)^{2t}(2t+1)\begin{Bmatrix}j_1 & j_2 & j_3 \\ j_6 & j_9 & t\end{Bmatrix} \begin{Bmatrix}j_4 & j_5 & j_6 \\ j_2 & t & j_8\end{Bmatrix} \begin{Bmatrix}j_7 & j_8 & j_9 \\ t & j_1 & j_4\end{Bmatrix}
```
Use the 6j symbol result above, we get
```math
\dfrac{\Delta(j_1j_9t)\Delta(j_6j_9j_3)\Delta(j_6j_2t)}{\Delta(j_1j_2j_3)} \dfrac{\Delta(j_4tj_8)\Delta(j_2tj_6)\Delta(j_2j_5j_8)}{\Delta(j_4j_5j_6)} \dfrac{\Delta(j_7j_1j_4)\Delta(tj_1j_9)\Delta(tj_8j_4)}{\Delta(j_7j_8j_9)} \\
= \dfrac{\Delta(j_3j_6j_9)\Delta(j_2j_5j_8)\Delta(j_1j_4j_7)}{\Delta(j_1j_2j_3)\Delta(j_4j_5j_6)\Delta(j_7j_8j_9)} \Delta^2(j_1j_9t)\Delta^2(j_2j_6t)\Delta^2(j_4j_8t).
```
Define
```math
P_0 \equiv \dfrac{\Delta(j_3j_6j_9)\Delta(j_2j_5j_8)\Delta(j_1j_4j_7)}{\Delta(j_1j_2j_3)\Delta(j_4j_5j_6)\Delta(j_7j_8j_9)} \\
= \left[\dfrac{\begin{pmatrix}j_{123} + 1 \\ 2j_1+1\end{pmatrix}\begin{pmatrix}2j_1\\j_1+j_2-j_3\end{pmatrix}\begin{pmatrix}j_{456}+1\\2j_5+1\end{pmatrix}\begin{pmatrix}2j_5 \\ j_4+j_5-j_6\end{pmatrix}\begin{pmatrix}j_{789}+1 \\ 2j_9+1\end{pmatrix}\begin{pmatrix}2j_9 \\ j_7 + j_9 - j_8\end{pmatrix}}{\begin{pmatrix}j_{147} + 1\\ 2j_1 + 1\end{pmatrix}\begin{pmatrix}2j_1 \\ j_1+j_4-j_7\end{pmatrix}\begin{pmatrix}j_{258}+1 \\ 2j_5+1\end{pmatrix}\begin{pmatrix}2j_5 \\ j_2+j_5 - j_8\end{pmatrix}\begin{pmatrix}j_{369}+1 \\ 2j_9+1\end{pmatrix}\begin{pmatrix}2j_9 \\ j_3+j_9 - j_6\end{pmatrix}}\right]^{1/2}.
```
and then define
```math
P(t) \equiv (-1)^{2t}(2t+1)\Delta^2(j_1j_9t)\Delta^2(j_2j_6t)\Delta^2(j_4j_8t)
= \dfrac{(-1)^{2t}}{(2t+1)^2} \times \\
\dfrac{1}{\begin{pmatrix}j_1+j_9+t+1 \\ 2t+1\end{pmatrix}\begin{pmatrix}2t \\ j_1+t-j_9\end{pmatrix}\begin{pmatrix}j_2+j_6+t+1 \\ 2t+1\end{pmatrix}\begin{pmatrix}2t \\ j_2+t-j_6\end{pmatrix}\begin{pmatrix}j_4+j_8+t \\ 2t+1\end{pmatrix}\begin{pmatrix}2t \\ j_4+t-j_8\end{pmatrix}}.
```
```math
A(t,x) \equiv (-1)^x\begin{pmatrix}x+1 \\ j_{123} + 1\end{pmatrix}\begin{pmatrix}j_1+j_2-j_3 \\ x - (j_6+j_9+j_3)\end{pmatrix} \begin{pmatrix}j_1+j_3-j_2 \\ x - (j_6+j_2+t)\end{pmatrix}\begin{pmatrix}j_2+j_3-j_1 \\ x - (j_1 + j_9 + t)\end{pmatrix}.
```
```math
B(t,y) \equiv (-1)^y\begin{pmatrix}y+1 \\ j_{456} + 1\end{pmatrix}\begin{pmatrix}j_4+j_5-j_6 \\ y - (j_2+t+j_6)\end{pmatrix}\begin{pmatrix}j_4+j_6-j_5 \\ y - (j_2+j_5+j_8)\end{pmatrix}\begin{pmatrix}j_5+j_6-j_4 \\ y - (j_4+t+j_8)\end{pmatrix}.
```
```math
C(t,z) \equiv (-1)^z \begin{pmatrix}z+1 \\ j_{789} + 1\end{pmatrix}\begin{pmatrix}j_7+j_8-j_9 \\ z - (t+j_1+j_9)\end{pmatrix}\begin{pmatrix}j_7+j_9-j_8 \\ z - (t+j_8+j_4)\end{pmatrix}\begin{pmatrix}j_8+j_9- j_7 \\ z - (j_7 + j_1 + j_4)\end{pmatrix}.
```
At last, we get
```math
\begin{Bmatrix}j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \\ j_7 & j_8 & j_9\end{Bmatrix} = P_0\sum_t P(t) \left(\sum_x A(t,x)\right) \left(\sum_y B(t,y)\right) \left(\sum_z C(t,z)\right)
```
It deserves to be mentioned that, although the formula has 4 $\sum$s, the $\sum$ of $x,y,z$ are decoupled. So we can do the three `for loop`s respectively, which means the depth of `for loop` is not 4 but 2.
## Estimate the capacity
Assume we are doing a calculation for a system, we will not calculate the Winger Symbols with very large angular momentum, because usually we will take some trunction. If in such truncated system, the max angular momentum is $J_{max}$, now we can estimate how many binomial coefficients we need to store to compute those Wigner Symbols.
### With maximum $J_{max}$
#### CG & 3j
According to the formula, the max possible binomial is $\begin{pmatrix} J+1 \\ J-2j_3\end{pmatrix}$, where $J = j_1+j_2+j_3$. So we need at least store binomials to $\begin{pmatrix} n_{min} \\ k\end{pmatrix}$ where
```math
n_{min} \geq 3J_{max}+1
```
#### 6j & Racha
For binomials in `sqrt`,the maximum possible $n = 3J_{max}+1$, and for those in the summation, we have to calculate the boundary of $x + 1$. According to the formula
```math
x \leq \min\{j_1+j_2+j_4+j_5, j_1+j_3+j_4+j_6, j_2+j_3+j_5+j_6\} \leq 4J_{max}
```
So we have to at least store to
```math
n_{min} \geq 4J_{max} + 1
```
#### 9j
Similarly, according to $P_0$, we need $3J_{max}+1$. According to $P(t)$,
```math
t \leq \min\{j_2 + j_6, j_4 + j_8, j_1 + j_9\} \leq 2J_{max}
```
so we need $j_1 + j_9 + t + 1 \leq 4J_{max} + 1$. According to $A(t, x),\; B(t, y),\; C(t, z)$,
```math
x \leq \min\{j_1+j_2+j_6+j_9, j_1+j_3+j_6+t, j_2+j_3+j_9+t\} \leq 5J_{max}
```
so we need to at least store to
```math
n_{min} \geq 5J_{max} + 1
```
### With maximum single particle $j_{max}$
Considering a quantum many body calculation, we can get a more optimistic estimation of the calculation capacity. In a quantum many body calculation, we often truncate single particle orbits, and in this condition we assume that we only need to consider two-body coupled angular momentum.
The maximum angular momentum of the single particle orbits defined as $j_{max}$. If for each function, there are at least one of the parameters is single particle angular momentum, then we can get the following estimation.
#### CG & 3j
In this condition, the $j_1, j_2, j_3$ contains two single particle angular momentum, and the rest one is a coupled two body angular momentum. So
```math
n_{min} \geq 4j_{max} + 1
```
#### 6j & Racha
Similarly
```math
x \leq \min\{j_1+j_2+j_4+j_5, j_1+j_3+j_4+j_6, j_2+j_3+j_5+j_6\}
```
These summations of four angular momentum can be split into two kinds, all single particle angular momentum, and two single particle with two two body angular momentum. Consider the worst condition
```math
n_{min} \geq 6j_{max} + 1
```
### 9j
We assume the 9j symbol contains at least one single particle angular momentum, then according to the coupling rules, the 9j symbol can be split into kinds
```math
\begin{Bmatrix}
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{Bmatrix}
\quad
\begin{Bmatrix}
1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 1 & 1
\end{Bmatrix}
```
where $1$ represents single particle and $2$ for two body angular momentum.
In both cases, we can deduce that
```math
n_{min} \geq 8j_{max} + 1
```
----
Reference
[^1]: A. N. Moskalev D. A. Varshalovich and V. K. Khersonskii, *Quantum theory of angular momentum*.
| CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 0.2.9 | 32f96d9a33411b31cb42e2a11538117fa9bb6bdc | docs | 2724 | # Home
A package to calculate CG-coefficient, Racha coefficient, and Wigner 3j, 6j, 9j symbols. We offer three version API for all these coeddicients.
- **normal version**: `CG, threeJ, SixJ, Racah, nineJ`. Their parameters can be `Integer` or `Rational` (half integer), and their result is simplified by default.
- **double parameters version**: `dCG, d3j, d6j, dRacah d9j`. Their parameters means double of the real angular momentum, so can only be `Integer`. The result is not simplified. We will explain what is `simplify` later.
- **float version**: `fCG, f3j, f6j, fRacah, f9j`. Their parameters is same as double parameter version. They use `Float64` for calculation, so they are not exact but are fast for numeric calculation. Because these function use stored `binomial` result for speed up calculation, you should reserve space before calculate large angular momentum coefficients. See `wigner_init_float` function for details.
## Install
Just install with Julia REPL and enjoy it.
```julia-repl
pkg> add CGcoefficient
```
## Usage
```@setup example
push!(LOAD_PATH, "../../src/") # hide
```
```@example example
using CGcoefficient
sixJ(1,2,3,4,5,6)
```
In a markdown enviroment, such as jupyter notebook, it will give you a latex output.
```@example example
d6j(2,4,6,8,10,12)
```
The `d` version functions do not simplify the result for the seek of speed, because `simplify` needs prime factorization which is slow. You can simplify the result explicitly,
```@example example
simplify(d6j(2,4,6,8,10,12))
```
You can also do some arithmetics with the result, thus do arithmetics using the `SqrtRational` type. The result is also not simplified
```@example example
x = sixJ(1,2,3,4,5,6) * exact_sqrt(1//7) * exact_sqrt(1//13) * iphase(2+3+5+6)
simplify(x)
```
In a console enviroment it will give out a text output.
```@repl example
nineJ(1,2,3,5,4,3,6,6,0)
```
You can also use `print` function to force print a text output.
```@example example
print(Racah(1,2,3,2,1,2))
```
## About
This package is inspired by Ref [^1]. See [CENS-MBPT](https://github.com/ManyBodyPhysics/CENS/blob/master/MBPT/VEffective/bhf-modules.f90) for details.
The idea is to simplify 3nj Symbols to sum combinations of binomial coefficients. We can calculate binomial coefficients by Pascal's Triangle, and store them first. Then we calculate 3nj Symbols using the stored binomial coefficients.
In this package, we just use the builtin `binomial` function for exact calculation. Only the float version uses stored `binomial`s.
## Index
- [Formula](formula.md)
- [API](api.md)
[^1]: T. Engeland and M. Hjorth-Jensen, the Oslo-FCI code. [https://github.com/ManyBodyPhysics/CENS](https://github.com/ManyBodyPhysics/CENS). | CGcoefficient | https://github.com/0382/CGcoefficient.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 394 | module Consensus
using StochasticDiffEq
using Suppressor
import Distributions.Uniform
import Statistics.mean
include("benchmarkFunctions.jl")
include("checkAllocations.jl")
include("defaults.jl")
include("method.jl")
include("minimise.jl")
export minimise, maximise, minimize, maximize
export AckleyFunction, Parabola, RastriginFunction
export @isAllocationFree, @isCalledFromFunction
end
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 1314 | function Parabola(x::AbstractVector{<:Real}, B::Real=0, C::Real=0)
D = length(x)
res = 0.0
for d = 1:D
res += (x[d] - B)^2
end
return res / 2 + C
end
function AckleyFunction(x::AbstractVector{<:Real}, B::Real=0, C::Real=0)
first = AckleyFirstTerm(x, B)
second = AckleySecondTerm(x, B)
return 20 * (1 - exp(first)) - exp(second) + ℯ + C
end
function AckleyFirstTerm(x::AbstractVector{Float64}, B::Real)
D = length(x)
C = -0.2 / sqrt(D)
res = 0.0
for d = 1:D
res += (x[d] - B)^2
end
return C * sqrt(res)
end
function AckleySecondTerm(x::AbstractVector{Float64}, B::Real)
D = length(x)
res = 0.0
for d = 1:D
arg = 2π * (x[d] - B)
if !isinf(arg)
res += cos(arg)
end
end
return res / D
end
function RastriginFunction(x::AbstractVector{<:Real}, B::Real=0, C::Real=0)
first = RastriginFirstTerm(x, B)
second = RastriginSecondTerm(x, B)
return 10 * (1 - first) + second + C
end
function RastriginFirstTerm(x::AbstractVector{Float64}, B::Real)
D = length(x)
res = 0.0
for d = 1:D
arg = 2π * (x[d] - B)
if !isinf(arg)
res += cos(arg)
end
end
return res / D
end
function RastriginSecondTerm(x::AbstractVector{Float64}, B::Real)
D = length(x)
res = 0.0
for d = 1:D
res += (x[d] - B)^2
end
return res / D
end
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 394 | macro isCalledFromFunction()
expr = esc(:(
try
currentFunctionName = nameof(var"#self#")
true
catch
false
end
))
return expr
end
macro isAllocationFree(expr...)
return esc(
quote
!@isCalledFromFunction() &&
@warn "@isAllocationFree could be imprecise if evaluated outside a function"
(@allocated $(expr...)) === 0
end,
)
end
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 171 | const DEFAULT_OPTIONS = (;#
M=100,
N=50,
R=1,
T=100,
α=50,
Δt=0.1,
λ=1,
σ=1,
ε=0.1,
integrator=EM(),
returnSamples=false,
returnSolutions=false
);
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 1039 | Hε(x::Real, ε::Real) = (1 + tanh(x / ε)) / 2;
ωfα(α, f, x) = exp(-α * f(x));
function meanValue!(X, cache)
D = cache.D
f = cache.f
N = cache.N
vf = cache.vf
α = cache.α
∑ω = 0.0
for d = 1:D
vf[d] = 0.0
end
for i = 1:N
xi = view(X, :, i)
ωi = ωfα(α, f, xi)
∑ω += ωi
for d = 1:D
vf[d] += ωi * xi[d]
end
end
for d = 1:D
vf[d] /= ∑ω
end
return nothing
end
function dt!(Ẋ, X, cache, t)
meanValue!(X, cache)
D = cache.D
f = cache.f
N = cache.N
vf = cache.vf
ε = cache.ε
λ = cache.λ
fvf = f(vf)
for i = 1:N
xi = view(X, :, i)
fi = f(xi)
C = λ * Hε(fi - fvf, ε)
for d = 1:D
Ẋ[d, i] = C * (vf[d] - xi[d])
end
end
return nothing
end
function dW!(Ẋ, X, cache, t)
D = cache.D
N = cache.N
sqrt2σ = cache.sqrt2σ
vf = cache.vf
for i = 1:N
xi = view(X, :, i)
C = 0.0
for d = 1:D
C += (xi[d] - vf[d])^2
end
C = sqrt2σ * sqrt(C)
for d = 1:D
Ẋ[d, i] = C
end
end
return nothing
end
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 2105 | function minimise(f::Function, x::AbstractVector{<:Real}; args...)
options = getOptions(; args...)
optimisers, _ = minimiseWithParsedOptions(f, x, options)
optimiser = mean(optimisers)
if options.returnSamples
return optimiser, optimisers
else
return optimiser
end
end
function getOptions(; args...)
options = merge(DEFAULT_OPTIONS, args)
@assert options.ε > 0
return options
end
function minimiseWithParsedOptions(
f::Function,
x::AbstractVector{<:Real},
options::NamedTuple,
)
cache = getCache(f, x, options)
X0 = getInitialState(x, cache)
T = Float64(cache.T)
time = (0.0, T)
function remakeProblem(prob, i, repeat)
cache = getCache(f, x, options)
X0 = getInitialState(x, cache)
return remake(prob, u0=X0, p=cache)
end
problem = SDEProblem(dt!, dW!, X0, time, cache)
ensembleProblem = EnsembleProblem(
problem,
prob_func=remakeProblem
)
solutions = nothing
@suppress_err begin
solutions = solve(ensembleProblem, cache.integrator, EnsembleThreads(),
dt=cache.Δt, saveat=T,
trajectories=cache.M
)
end
optimisers = map(getOptimiser, solutions)
return optimisers, solutions
end
function getOptimiser(solution)
X = solution[end]
cache = solution.prob.p
meanValue!(X, cache)
return cache.vf
end
function getCache(f::Function, x::AbstractVector{<:Real}, options::NamedTuple)
D = length(x)
sqrt2σ = sqrt(2) * options.σ
vf = zeros(D)
newFields = (; D, f, vf, sqrt2σ)
cache = merge(options, newFields)
return cache
end
function getInitialState(x::AbstractVector{<:Real}, cache::NamedTuple)
D, N, R = cache.D, cache.N, cache.R
X0 = zeros(D, N)
for n = 1:N, d = 1:D
X0[d, n] = rand(Uniform(x[d] - R, x[d] + R))
end
return X0
end
function minimise(f::Function, x::Real; args...)
g(x) = f(x[1])
return minimise(g::Function, [x]; args...)
end
function maximise(f::Function, x; args...)
g(x) = -f(x)
return minimise(g::Function, x; args...)
end
minimize(f::Function, x; args...) = minimise(f, x; args...);
maximize(f::Function, x; args...) = maximise(f, x; args...);
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 1644 | using Consensus
using Test
const N = 20;
function tests()
@testset "Ackley Function" begin
@testset "allocations" begin
x = rand(N)
B = rand()
C = rand()
@test @isAllocationFree Consensus.AckleyFirstTerm(x, B)
@test @isAllocationFree Consensus.AckleySecondTerm(x, B)
@test @isAllocationFree AckleyFunction(x, B, C)
end
@testset "values" begin
B = rand()
C = rand()
x = ones(N) * B
@test AckleyFunction(x, 0, C) >= C
@test AckleyFunction(x, B, C) ≈ C
@test AckleyFunction(x * 0, 0, C) ≈ C
@test AckleyFunction(x * 0) ≈ 0
end
end
@testset "Rastrigin Function" begin
@testset "allocations" begin
x = rand(N)
B = rand()
C = rand()
@test @isAllocationFree Consensus.RastriginFirstTerm(x, B)
@test @isAllocationFree Consensus.RastriginSecondTerm(x, B)
@test @isAllocationFree RastriginFunction(x, B, C)
end
@testset "values" begin
B = rand()
C = rand()
x = ones(N) * B
@test RastriginFunction(x, 0, C) >= C
@test RastriginFunction(x, B, C) ≈ C
@test RastriginFunction(x * 0, 0, C) ≈ C
@test RastriginFunction(x * 0) ≈ 0
end
end
@testset "Parabola" begin
@testset "allocations" begin
x = rand(N)
B = rand()
C = rand()
@test @isAllocationFree Parabola(x, B, C)
end
@testset "values" begin
B = rand()
C = rand()
x = ones(N) * B
@test Parabola(x, 0, C) >= C
@test Parabola(x, B, C) ≈ C
@test Parabola(x * 0, 0, C) ≈ C
@test Parabola(x * 0) ≈ 0
end
end
end
tests()
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 154 | using Consensus
using Test
using JuliaFormatter
function tests()
@test format(".", remove_extra_newlines = true, indent = 2, margin = 80)
end
tests()
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 911 | using Consensus
using Test
const N = 20;
function tests()
@testset "meanValue!" begin
f = AckleyFunction
x = rand(N)
options = Consensus.getOptions()
cache = Consensus.getCache(f, x, options)
X = Consensus.getInitialState(x, cache)
@test @isAllocationFree Consensus.meanValue!(X, cache)
end
@testset "dt!" begin
f = AckleyFunction
x = rand(N)
options = Consensus.getOptions()
cache = Consensus.getCache(f, x, options)
X = Consensus.getInitialState(x, cache)
Ẋ = zero(X)
t = rand()
@test @isAllocationFree Consensus.dt!(Ẋ, X, cache, t)
end
@testset "dW!" begin
f = AckleyFunction
x = rand(N)
options = Consensus.getOptions()
cache = Consensus.getCache(f, x, options)
X = Consensus.getInitialState(x, cache)
Ẋ = zero(X)
t = rand()
@test @isAllocationFree Consensus.dW!(Ẋ, X, cache, t)
end
end
tests()
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 1136 | using Consensus
using Test
import Distributions.Uniform
import LinearAlgebra.norm
NegParabola(x) = -Parabola(x);
for method in (:minimise, :maximise, :minimize, :maximize)
@eval begin
function $(Symbol(method, :Test))(f, N)
x = rand(Uniform(-3, 3), N)
z = $method(f, x)
@test norm(z) < norm(x)
end
end
end
function dimTest(N)
@testset "Parabola" begin
minimiseTest(Parabola, N)
end
@testset "Ackley" begin
minimiseTest(AckleyFunction, N)
end
@testset "Rastrigin" begin
minimiseTest(RastriginFunction, N)
end
end
function tests()
@testset "minimise" begin
@testset "1D" begin
dimTest(1)
end
@testset "5D" begin
dimTest(5)
end
@testset "20D" begin
dimTest(5)
end
@testset "shifted" begin
f(x) = Parabola(x, 1, 2)
x = [0]
z = minimise(f, x)
@test norm(z .- 1) < norm(x .- 1)
end
end
@testset "minimize" begin
minimizeTest(Parabola, 1)
end
@testset "maximise" begin
maximiseTest(NegParabola, 1)
end
@testset "maximize" begin
maximizeTest(NegParabola, 1)
end
end
tests()
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | code | 271 | using SafeTestsets
@safetestset "benchmarkFunctions" begin
include("benchmarkFunctions.jl")
end
@safetestset "method" begin
include("method.jl")
end
@safetestset "minimise" begin
include("minimise.jl")
end
@safetestset "format" begin
include("format.jl")
end
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 1.0.0 | 7919259feeca03474453dc0b95d5b72da6fbaf65 | docs | 4493 | # Consensus.jl
[](https://github.com/rafaelbailo/Consensus.jl/actions/workflows/CI.yml)
**Consensus.jl** is a lightweight, gradient-free, stochastic optimisation package for Julia. It uses _Consensus-Based Optimisation_ (CBO), a flavour of _Particle Swarm Optimisation_ (PSO) first introduced by [R. Pinnau, C. Totzeck, O. Tse, and S. Martin (2017)][1]. This is a method of global optimisation particularly suited for rough functions, where gradient descent would fail. It is also useful for optimisation in higher dimensions.
This package was created and is developed by [Dr Rafael Bailo](https://rafaelbailo.com/).
## Usage
The basic command of the library is `minimise(f, x0)`, where `f` is the function you want to minimise, and `x0` is an initial guess. It returns an approximation of the point `x` that minimises `f`.
You have two options to define the objective function:
- `x` is of type `Real`, and `f` is defined as `f(x::Real) = ...`.
- `x` is of type `AbstractVector{<:Real}`, and `f` is defined as `f(x::AbstractVector{<:Real}) = ...`.
### A trivial example
We can demonstrate the functionality of the library by minimising the function $f(x)=x^2$. If you suspect the minimiser is near $x=1$, you can simply run
```jl
using Consensus
f(x) = x^2;
x0 = 1;
x = minimise(f, x0)
```
to obtain
```jl
julia> x
1-element Vector{Float64}:
0.08057420724239409
```
Your `x` may vary, since the method is stochastic. The answer should be close, but not exactly equal, to zero.
Behind the scenes, **Consensus.jl** is running the algorithm using `N = 50` particles per realisation. It runs the `M = 100` realisations, and returns the averaged result. If you want to parallelise these runs, simply start julia with multiple threads, e.g.:
```sh
$ julia --threads 4
```
**Consensus.jl** will then automatically parallelise the optimisation. This is thanks to the functionality of [StochasticDiffEq.jl](https://github.com/SciML/StochasticDiffEq.jl), which is used under the hood to implement the algorithm.
### Advanced options
There are several parameters that can be customised. The most important are:
- `N`: the number of particles per realisation.
- `M`: the number of realisations, whose results are averaged in the end.
- `T`: the run time of each realisation. The longer this is, the better the results, but the longer you have to wait for them.
- `Δt`: the discretisation step of the realisations. Smaller is more accurate, but slower. If the optimisation fails (returns `Inf` or `NaN`), making this smaller is likely to help.
- `R`: the radius of the initial sampling area, which is centred around your intiial guess `x0`.
- `α`: the exponential weight. The higher this is, the better the results, but you might need to decrease `Δt` if `α` is too large.
We can run the previous example with custom parameters by calling
```jl
julia> x2 = minimise(f, x0, N = 30, M = 100, T = 10, Δt = 0.5, R = 2, α = 500)
1-element Vector{Float64}:
0.0017988128895332278
```
For the other parameters, please refer to the paper of [R. Pinnau, C. Totzeck, O. Tse, and S. Martin (2017)][1]. You can see the default values of the parameters by evaluating `Consensus.DEFAULT_OPTIONS`.
### Non-trivial examples
Since CBO is not a gradient method, it will perform well on rough functions. **Consensus.jl** implements two well-known test cases in any number of dimensions:
- The [Ackley function](https://en.wikipedia.org/wiki/Ackley_function).
- The [Rastrigin function](https://en.wikipedia.org/wiki/Rastrigin_function).
We can minimise the Ackley function in two dimensions, starting near the point $x=(1,1)$, by running
```jl
julia> x3 = minimise(AckleyFunction, [1, 1])
2-element Vector{Float64}:
0.0024744433653736513
0.030533227060295706
```
We can also minimise the Rastrigin function in five dimensions, starting at a random point, with more realisations, and with a larger radius, by running
```jl
julia> x4 = minimise(RastriginFunction, rand(5), M = 200, R = 5)
5-element Vector{Float64}:
-0.11973689657393186
0.07882427348951951
0.18515501300052115
-0.06532360247574359
-0.13132340855939928
```
### Auxiliary commands
There is a `maximise(f, x0)` method, which simply minimises the function `g(x) = -f(x)`. Also, if you're that way inclined, you can call `minimize(f, x0)` and `maximize(f, x0)`, in the American spelling.
[1]: http://dx.doi.org/10.1142/S0218202517400061
| Consensus | https://github.com/rafaelbailo/Consensus.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 1292 | using Documenter, RigidBodyTools
ENV["GKSwstype"] = "nul" # removes GKS warnings during plotting
makedocs(
sitename = "RigidBodyTools.jl",
doctest = true,
clean = true,
pages = [
"Home" => "index.md",
"Bodies and Transforms" => ["manual/shapes.md",
"manual/transforms.md",
"manual/bodylists.md"],
"Motions" => ["manual/dofmotions.md",
"manual/joints.md",
"manual/exogenous.md",
"manual/deformation.md",
"manual/surfacevelocities.md"]
#"Internals" => [ "internals/properties.md"]
],
#format = Documenter.HTML(assets = ["assets/custom.css"])
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true",
mathengine = MathJax(Dict(
:TeX => Dict(
:equationNumbers => Dict(:autoNumber => "AMS"),
:Macros => Dict()
)
))
),
#assets = ["assets/custom.css"],
#strict = true
)
#if "DOCUMENTER_KEY" in keys(ENV)
deploydocs(
repo = "github.com/JuliaIBPM/RigidBodyTools.jl.git",
target = "build",
deps = nothing,
make = nothing
#versions = "v^"
)
#end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 3553 | module RigidBodyTools
using StaticArrays
using LinearAlgebra
using UnPack
import Base: *, +, -, inv, transpose, vec
import Base: @propagate_inbounds,getindex, setindex!,iterate,size,length,push!,
collect,view,findall
import LinearAlgebra: dot
export Body, NullBody
export RigidBodyMotion, AbstractKinematics, d_dt, motion_velocity, motion_state,
surface_velocity!, surface_velocity, update_body!, transform_body!,
AbstractDeformationMotion, ConstantDeformationMotion, DeformationMotion,
NullDeformationMotion,maxvelocity, zero_body, update_exogenous!,
zero_exogenous, body_velocities, velocity_in_body_coordinates_2d,
rebase_from_inertial_to_reference
export parent_body_of_joint, child_body_of_joint, parent_joint_of_body, child_joints_of_body,
position_vector,velocity_vector,deformation_vector, exogenous_position_vector,
exogenous_velocity_vector, unconstrained_position_vector, unconstrained_velocity_vector
export AbstractDOFKinematics, AbstractPrescribedDOFKinematics, DOFKinematicData, SmoothRampDOF,
SmoothVelocityRampDOF,
OscillatoryDOF, ConstantVelocityDOF, CustomDOF, ExogenousDOF, ConstantPositionDOF,
UnconstrainedDOF, Kinematics, dof_position, dof_velocity, dof_acceleration, ismoving,
is_system_in_relative_motion
export RigidTransform, rotation_about_x, rotation_about_y, rotation_about_z, rotation_from_quaternion,
quaternion, rotation_about_axis, rotation_identity,
MotionTransform, ForceTransform, AbstractTransformOperator, rotation_transform,
translation_transform, motion_transform_from_A_to_B, force_transform_from_A_to_B,
cross_matrix, cross_vector, translation, rotation, motion_subspace, joint_velocity
export PluckerForce, PluckerMotion, motion_rhs!, zero_joint, zero_motion_state, init_motion_state,
angular_only, linear_only
export Joint, joint_transform, parent_to_child_transform, LinkedSystem, position_dimension,
exogenous_dimension, constrained_dimension, unconstrained_dimension, position_and_vel_dimension,
body_transforms, number_of_dofs
export RevoluteJoint, PrismaticJoint, CylindricalJoint, SphericalJoint, FreeJoint, FreeJoint2d,
FixedJoint
const NDIM = 2
const CHUNK = 3*(NDIM-1)
abstract type BodyClosureType end
abstract type OpenBody <: BodyClosureType end
abstract type ClosedBody <: BodyClosureType end
abstract type PointShiftType end
abstract type Unshifted <: PointShiftType end
abstract type Shifted <: PointShiftType end
abstract type Body{N,C<:BodyClosureType} end
abstract type AbstractMotion end
abstract type AbstractDeformationMotion <: AbstractMotion end
struct NullBody <: Body{0,ClosedBody}
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
end
NullBody() = NullBody((0.0,0.0),0.0,Float64[],Float64[],Float64[],Float64[],Float64[],Float64[],Float64[],Float64[])
numpts(::Body{N}) where {N} = N
numpts(::Nothing) = 0
include("kinematics.jl")
include("rigidtransform.jl")
include("joints.jl")
include("lists.jl")
include("rigidbodymotions.jl")
include("directmotions.jl")
include("tools.jl")
include("assignvelocity.jl")
include("shapes.jl")
include("plot_recipes.jl")
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 512 | """
surface_velocity(body::Body,motion::AbstractMotion,t::Real[;inertial=true])
Return the components of rigid body velocity (in inertial coordinate system)
at surface positions described by inertial coordinates in body `body` at time `t`,
based on supplied motions in `motion` for the body. If `inertial=false`,
then velocities are computed and body positions are assumed to be in comoving coordinates.
"""
surface_velocity(b::Body,a...;kwargs...) = surface_velocity!(zero(b.x),zero(b.y),b,a...;kwargs...)
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 9325 |
#=
NOTE: The combined rigid/deforming motion needs to be updated, so
that deforming motion is added to an underlying linked system.
To create a subtype of AbstractDeformationMotion, one must
extend `deformation_velocity(body,m,t)`, to supply the
surface values of the motion in-place in vectors `u` and `v`.
These are interpreted as an update of the body-fixed coordinates,
`b.x̃end` and `b.ỹend`, in the body's coordinate system.
=#
"""
NullDeformationMotion(u::Vector{Float64},v::Vector{Float64})
Create a null instance of directly-specified deformation, used for rigid bodies.
"""
struct NullDeformationMotion <: AbstractDeformationMotion end
deformation_velocity(b::Body,m::NullDeformationMotion,t::Real) = Float64[]
zero_motion_state(b::Body,m::NullDeformationMotion) = Float64[]
motion_state(b::Body,m::NullDeformationMotion) = Float64[]
ismoving(m::AbstractDeformationMotion) = true
ismoving(m::NullDeformationMotion) = false
function update_body!(b::Body,x::AbstractVector,m::NullDeformationMotion) end
"""
ConstantDeformationMotion(u::Vector{Float64},v::Vector{Float64})
Create an instance of basic directly-specified (constant)
velocity, to be associated with a body whose length
is the same as `u` and `v`.
"""
struct ConstantDeformationMotion{VT} <: AbstractDeformationMotion
u :: VT
v :: VT
end
function deformation_velocity(b::Body,m::ConstantDeformationMotion,t::Real)
return vcat(m.u,m.v)
end
struct DeformationMotion{UT,VT} <: AbstractDeformationMotion
ufcn :: UT
vfcn :: VT
end
"""
DeformationMotion(u::Function,v::Function)
Create an instance of directly-specified velocity whose
components are specified with functions. These functions
`u` and `v` must each be of the form `f(x̃,ỹ,t)`, where `x̃`
and `ỹ` are coordinates of a point in the body coordinate system
and `t` is time, and they must return the corresponding velocity component
in the body coordinate system.
""" DeformationMotion(::Function,::Function)
"""
deformation_velocity(b::Body,m::DeformationMotion,t::Real)
Return the velocity components (as a vector) of a `DeformationMotion`
at the given time `t`. These specify the velocities (in body cooordinates)
of the surface segments endpoints.
"""
function deformation_velocity(b::Body,m::DeformationMotion,t::Real)
return vcat(m.ufcn.(b.x̃end,b.ỹend,t), m.vfcn.(b.x̃end,b.ỹend,t))
end
"""
motion_state(b::Body,m::AbstractDeformationMotion)
Return the current state vector of body `b` associated with
direct motion `m`. It returns the concatenated coordinates
of the body surface (in the body-fixed coordinate system).
"""
function motion_state(b::Body,m::AbstractDeformationMotion)
return vcat(b.x̃end,b.ỹend)
end
function zero_motion_state(b::Body,m::AbstractDeformationMotion)
return vcat(zero(b.x̃end),zero(b.ỹend))
end
# This computes deformation velocities relative to the body, in the body coordinates
function _surface_velocity!(u::AbstractVector{Float64},v::AbstractVector{Float64},
b::Body{N,C},m::AbstractDeformationMotion,t::Real) where {N,C}
vel = deformation_velocity(b,m,t)
lenx = length(vel)
# interpolate to the midpoints
if lenx > 0
umid, vmid = _midpoints(vel[1:lenx÷2],vel[lenx÷2+1:lenx],C)
u .= umid
v .= vmid
end
# Rotate to the inertial coordinate system
#T = RigidTransform(b.cent,b.α)
#for i in eachindex(u)
# Utmp = T.R'*[u[i],v[i],0.0]
# u[i], v[i] = Utmp[1:2]
#end
return u, v
end
function _update_body!(b::Body{N,C},x::AbstractVector,m::AbstractDeformationMotion) where {N,C}
#length(x) == length(motion_state(b,m)) || error("wrong length for motion state vector")
lenx = length(x)
if lenx > 0
b.x̃end .= x[1:lenx÷2]
b.ỹend .= x[lenx÷2+1:lenx]
end
#=
b.x̃, b.ỹ = _midpoints(b.x̃end,b.ỹend,C)
# use the existing rigid transform of the body to update the
# inertial coordinates of the surface
T = RigidTransform(b.cent,b.α)
T(b)
=#
return b
end
#=
AbstractRigidAndDeformingMotion describes motions that superpose the rigid-body
motion with surface deformation. For this type of motion, the velocity
is described by the usual rigid-body components (reference point velocity,
angular velocity), plus vectors ũ and ṽ, describing the surface endpoint velocity
*in the body coordinate system*.
The motion state consists of the centroid, the angle, and the positions
x̃end and ỹend of the surface endpoints in the body coordinate system.
To create a motion of this type, we still need to supply an extension of
deformation_velocity(b,m,t). However, this needs to supply only the deforming
part of the velocity, and in the body's own coordinate system.
=#
#=
"""
RigidAndDeformingMotion(rig::RigidBodyMotion,def::AbstractDeformationMotion)
Create an instance of basic superposition of a rigid-body motion
and directly-specified deformation velocity in body coordinates.
"""
struct RigidAndDeformingMotion{RT,DT} <: AbstractMotion
rigidmotion :: RT
defmotion :: DT
end
"""
RigidAndDeformingMotion(kin::AbstractKinematics,def::AbstractDeformationMotion)
Create an instance of basic superposition of a rigid-body motion with kinematics `kin`,
and directly-specified deformation velocity in body coordinates.
"""
RigidAndDeformingMotion(kin::AbstractKinematics,def::AbstractDeformationMotion) =
RigidAndDeformingMotion(RigidBodyMotion(kin),def)
"""
RigidAndDeformingMotion(kin::AbstractKinematics,ũ::Vector{Float64},ṽ::Vector{Float64})
Create an instance of basic superposition of a rigid-body motion and
directly-specified (constant) deformation velocity in body coordinates, to be associated with a body whose length
is the same as `ũ` and `ṽ`.
"""
RigidAndDeformingMotion(kin::AbstractKinematics, ũ, ṽ) = RigidAndDeformingMotion(RigidBodyMotion(kin),
BasicDirectMotion(ũ,ṽ))
"""
RigidAndDeformingMotion(ċ,α̇,ũ::Vector{Float64},ṽ::Vector{Float64})
Specify constant translational `ċ` and angular `α̇` velocity and
directly-specified (constant) deformation velocity in body coordinates, to be associated with a body whose length
is the same as `ũ` and `ṽ`.
"""
RigidAndDeformingMotion(ċ, α̇, ũ, ṽ) = RigidAndDeformingMotion(RigidBodyMotion(ċ, α̇),
BasicDirectMotion(ũ,ṽ))
"""
surface_velocity!(u::AbstractVector{Float64},v::AbstractVector{Float64},
b::Body,motion::RigidAndDeformingMotion,t::Real)
Assign the components of velocity `u` and `v` (in inertial coordinate system)
at surface positions described by points in body `b` (also in inertial coordinate system) at time `t`,
based on supplied motion `motion` for the body. This function calls the supplied
function for the deformation part in `motion.defmotion`.
"""
function surface_velocity!(u::AbstractVector{Float64},v::AbstractVector{Float64},
b::Body,m::RigidAndDeformingMotion,t::Real)
surface_velocity!(u, v, b, m.defmotion, t)
# Add the rigid part
urig, vrig = similar(u), similar(v)
surface_velocity!(urig,vrig,b,m.rigidmotion,t)
u .+= urig
v .+= vrig
return u, v
end
=#
#=
"""
deformation_velocity(b::Body,m::RigidAndDeformingMotion,t::Real)
Return the velocity components (as a vector) of a `RigidAndDeformingMotion`
at the given time `t`.
"""
@inline deformation_velocity(b::Body,m::RigidAndDeformingMotion,t::Real) =
vcat(deformation_velocity(b,m.rigidmotion,t),deformation_velocity(b,m.defmotion,t))
"""
motion_state(b::Body,m::RigidAndDeformingMotion)
Return the current state vector of body `b` associated with
rigid+direct motion `m`. It returns the concatenated coordinates
of the rigid-body mode and the body surface (in the body coordinate system).
"""
@inline motion_state(b::Body,m::RigidAndDeformingMotion) =
vcat(motion_state(b,m.rigidmotion),motion_state(b,m.defmotion))
"""
update_body!(b::Body,x::AbstractVector,m::RigidAndDeformingMotion)
Update body `b` with the motion state vector `x`. The part of the motion state
associated with surface deformation is interpreted as expressed in body coordinates.
The information in `m` is used for parsing only.
"""
function update_body!(b::Body{N,C},x::AbstractVector,m::RigidAndDeformingMotion) where {N,C}
length(x) == length(motion_state(b,m)) || error("wrong length for motion state vector")
lenrigx = length(motion_state(b,m.rigidmotion))
lendefx = length(x) - lenrigx
b.x̃end .= x[lenrigx+1:lenrigx+lendefx÷2]
b.ỹend .= x[lenrigx+lendefx÷2+1:length(x)]
b.x̃, b.ỹ = _midpoints(b.x̃end,b.ỹend,C)
update_body!(b,x[1:lenrigx],m.rigidmotion)
return b
end
=#
#=
"""
surface_velocity(b::Body,motion::AbstractDeformationMotion,t::Real)
Return the components of velocities (in inertial components) at surface positions
described by points in body `b` (also in inertial coordinate system) at time `t`,
based on supplied motion `motion` for the body.
"""
surface_velocity(b::Body,m::AbstractDeformationMotion,t::Real) =
surface_velocity!(similar(b.x),similar(b.y),b,m,t)
=#
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 15170 | ### JOINTS ###
#=
Note that all 3-d joints with Revolute, Prismatic, Helical, Cylindrical
joints all need the joint to be along its z axis, so this dictates
how the parent-to-joint and child-to-joint transforms are to be created.
=#
abstract type AbstractJointType end
# Joint structure
struct Joint{ND,JT}
"Parent body ID (0 for inertial)"
parent_id :: Int
"Child body ID"
child_id :: Int
"Constrained DOFs with prescribed behaviors"
cdofs :: Vector{Int}
"Constrained DOFs with exogenously-specified behaviors"
edofs :: Vector{Int}
"Unconstrained DOFS"
udofs :: Vector{Int}
"Kinematics for prescribed DOFs"
kins :: Vector{AbstractPrescribedDOFKinematics}
#"Initial values for DOFs"
#xinit_dofs :: Vector{Float64}
"Joint parameters"
params :: Dict
"Buffer for holding joint dof velocity"
vbuf :: Vector{Float64}
"Transform matrix from parent to joint"
Xp_to_j :: MotionTransform
"Transform matrix from child to joint"
Xch_to_j :: MotionTransform
end
"""
Joint(jtype::AbstractJointType,parent_id,Xp_to_j::MotionTransform,child_id,Xch_to_j::MotionTransform,
dofs::Vector{AbstractDOFKinematics};[params=Dict()])
Construct a joint of type `jtype`, connecting parent body of id `parent_id` to child body
of id `child_id`. The placement of the joint on the bodies is given by `Xp_to_j`
and `Xch_to_j`, the transforms from the parent and child coordinate systems to the joint
system, respectively. Each of the degrees of freedom for the joint is specified with
`dofs`, a vector of `AbstractDOFKinematics`. Any parameters required by the joint
can be passed along in the optional `params` dictionary.
"""
function Joint(::Type{JT},parent_id::Int,Xp_to_j::MotionTransform{ND},child_id::Int,Xch_to_j::MotionTransform{ND},dofs::Vector{T};
params = Dict()) where {JT<:AbstractJointType,ND,T<:AbstractDOFKinematics}
@assert length(dofs)==number_of_dofs(JT) "input dofs must have correct length"
dof_lists = Dict("constrained" => Int[], "exogenous" => Int[], "unconstrained" => Int[])
kins = AbstractDOFKinematics[]
for (i,dof) in enumerate(dofs)
_classify_joint!(dof_lists,kins,i,dof)
end
vbuf = zeros(Float64,number_of_dofs(JT))
Joint{ND,JT}(parent_id,child_id,dof_lists["constrained"],dof_lists["exogenous"],dof_lists["unconstrained"],
kins,params,vbuf,Xp_to_j,Xch_to_j)
end
function Base.show(io::IO, joint::Joint{ND,JT}) where {ND,JT}
println(io, "Joint of dimension $ND and type $JT")
println(io, " Constrained dofs = $(joint.cdofs)")
println(io, " Exogenous dofs = $(joint.edofs)")
println(io, " Unconstrained dofs = $(joint.udofs)")
end
physical_dimension(j::Joint{ND}) where {ND} = ND
function physical_dimension(jvec::Vector{<:Joint{ND}}) where {ND}
#@assert allequal(physical_dimension.(jvec)) "Not all joints are same physical dimension"
return physical_dimension(first(jvec))
end
position_dimension(j::Joint{ND,JT}) where {ND,JT} = position_dimension(JT)
number_of_dofs(j::Joint{ND,JT}) where {ND,JT} = number_of_dofs(JT)
function ismoving(joint::Joint)
@unpack edofs, udofs, kins = joint
any(map(dof -> ismoving(dof),kins)) || !isempty(edofs) || !isempty(udofs)
end
"""
motion_subspace(j::Joint)
Return the `6 x ndof` (3d) or `3 x ndof` (2d) matrix providing the mapping from joint dof velocities
to the full Plucker velocity vector of the joint. This matrix represents
the subspace of free motion in the full space. It is orthogonal to the constrained subspace.
"""
motion_subspace(j::Joint{ND,JT},q::AbstractVector) where {ND,JT} = motion_subspace(JT,j.params,Val(ND),q)
constrained_dimension(j::Joint) = length(j.cdofs)
exogenous_dimension(j::Joint) = length(j.edofs)
unconstrained_dimension(j::Joint) = length(j.udofs)
position_and_vel_dimension(j::Joint) = position_dimension(j) + exogenous_dimension(j) + unconstrained_dimension(j)
function check_q_dimension(q,C::Type{T}) where T<:AbstractJointType
@assert length(q) == position_dimension(C) "Incorrect length of q"
end
"""
joint_transform(q::AbstractVector,joint::Joint)
Use the joint dof entries in `q` to create a joint transform operator.
The number of entries in `q` must be apprpriate for the type of joint `joint`.
"""
function joint_transform(q::AbstractVector,joint::Joint{ND,JT}) where {ND,JT<:AbstractJointType}
@unpack params = joint
check_q_dimension(q,JT)
joint_transform(q,JT,params,Val(ND))
end
"""
parent_to_child_transform(q::AbstractVector,joint::Joint)
Use the joint dof entries in `q` to create a transform operator from the
parent of joint `joint` to the child of joint `joint`.
The number of entries in `q` must be apprpriate for the type of joint `joint`.
"""
function parent_to_child_transform(q::AbstractVector,joint::Joint)
@unpack Xp_to_j, Xch_to_j = joint
Xj = joint_transform(q,joint)
Xp_to_ch = inv(Xch_to_j)*Xj*Xp_to_j
end
function _classify_joint!(dof_lists,kins,index,kin::AbstractDOFKinematics)
push!(dof_lists["constrained"],index)
push!(kins,kin)
nothing
end
_classify_joint!(dof_lists,kins,index,::ExogenousDOF) = (push!(dof_lists["exogenous"],index); nothing)
_classify_joint!(dof_lists,kins,index,::UnconstrainedDOF) = (push!(dof_lists["unconstrained"],index); nothing)
### Joint evolution equations ###
"""
zero_joint(joint::Joint[;dimfcn=position_and_vel_dimension])
Create a vector of zeros for different aspects of the joint state, based
on the argument `dimfcn`. By default, it uses `position_and_vel_dimension` and creates a zero vector sized
according to the the position of the joint and the parts of the
joint velocity that must be advanced (from acceleration). Alternatively, one
can use `position_dimension`, `constrained_dimension`, `unconstrained_dimension`,
or `exogenous_dimension`.
"""
function zero_joint(joint::Joint{ND,JT};dimfcn=position_and_vel_dimension) where {ND,JT}
return zeros(Float64,dimfcn(joint))
end
"""
init_joint(joint::Joint[;tinit=0.0])
Create an initial state vector for a joint. It initializes the joint's constrained
degrees of freedom with their kinematics, evaluated at time `tinit` (equal to zero, by default).
Other degrees of freedom (exogenous, unconstrained) are initialized to zero, so
they can be set manually.
"""
function init_joint(joint::Joint{ND,JT};tinit = 0.0) where {ND,JT}
@unpack kins, cdofs = joint
x = zero_joint(joint)
q = view(x,1:position_dimension(joint))
for (i,jdof) in enumerate(cdofs)
kd = kins[i](tinit)
q[jdof] = dof_position(kd)
end
return x
end
function joint_rhs!(dxdt::AbstractVector,x::AbstractVector,t::Real,a_edof::AbstractVector,a_udof::AbstractVector,joint::Joint{ND,JT}) where {ND,JT}
@unpack kins, cdofs, edofs, udofs, vbuf = joint
# Evaluate the velocity of the dofs and place the result in joint.vbuf
_joint_velocity!(x,t,joint)
# x holds both q and the parts of qdot that must be advanced
q = view(x,1:position_dimension(joint))
qdot = view(dxdt,1:position_dimension(joint))
aeu = view(dxdt,position_dimension(joint)+1:position_and_vel_dimension(joint))
# parse the exogenous accelerations into their entries
for (i,jdof) in enumerate(edofs)
aeu[i] = a_edof[i]
end
# parse the unconstrained accelerations into their entries
for (i,jdof) in enumerate(udofs)
aeu[exogenous_dimension(joint)+i] = a_udof[i]
end
joint_dqdt!(qdot,q,vbuf,JT)
end
"""
joint_velocity(x::AbstractVector,t,joint::Joint) -> PluckerMotion
Given a joint `joint`'s full state vector `x`, compute the joint Plucker velocity at time `t`.
"""
function joint_velocity(x::AbstractVector,t::Real,joint::Joint)
@unpack vbuf = joint
_joint_velocity!(x,t,joint)
q = view(x,1:position_dimension(joint))
return PluckerMotion(motion_subspace(joint,q)*vbuf)
end
function _joint_velocity!(x::AbstractVector,t::Real,joint::Joint)
@unpack kins, cdofs, edofs, udofs, vbuf = joint
veu = view(x,position_dimension(joint)+1:position_and_vel_dimension(joint))
vbuf .= 0.0
# evaluate the prescribed kinematics at the current time
for (i,jdof) in enumerate(cdofs)
kd = kins[i](t)
vbuf[jdof] = dof_velocity(kd)
end
# parse the exogenous velocities into their entries
for (i,jdof) in enumerate(edofs)
vbuf[jdof] = veu[i]
end
# parse the unconstrained velocities into their entries
for (i,jdof) in enumerate(udofs)
vbuf[jdof] = veu[exogenous_dimension(joint)+i]
end
end
function _joint_dqdt_standard!(dqdt,q,v)
dqdt .= v
end
function _joint_dqdt_quaternion!(dqdt,q,w)
dqdt[1] = -q[2]*w[1] - q[3]*w[2] - q[4]*w[3]
dqdt[2] = q[1]*w[1] - q[4]*w[2] + q[3]*w[3]
dqdt[3] = q[4]*w[1] + q[1]*w[2] - q[2]*w[3]
dqdt[4] = -q[3]*w[1] + q[2]*w[2] + q[1]*w[3]
dqdt .*= 0.5
return dqdt
end
#### Joint types ####
## Default joint velocity calculation
function joint_dqdt!(dqdt,q,v::Vector,::Type{T}) where T<:AbstractJointType
_joint_dqdt_standard!(dqdt,q,v)
nothing
end
function motion_subspace(JT::Type{<:AbstractJointType},p::Dict,::Val{2},q)
S3 = motion_subspace(JT,p,Val(3),q)
m, n = size(S3)
SMatrix{3,n}(S3[3:5,:])
end
## Revolute joint ##
"""
RevoluteJoint <: AbstractJointType
A 2d or 3d joint with one rotational (about z axis) degree of freedom.
"""
abstract type RevoluteJoint <: AbstractJointType end
number_of_dofs(::Type{RevoluteJoint}) = 1
position_dimension(::Type{RevoluteJoint}) = 1
function joint_transform(q::AbstractVector,::Type{RevoluteJoint},p::Dict,::Val{ND}) where {ND}
R = rotation_about_z(-q[1])
x = SVector{3}([0.0,0.0,0.0])
return MotionTransform{ND}(x,R)
end
motion_subspace(::Type{RevoluteJoint},p::Dict,::Val{3},q) = SMatrix{6,1,Float64}([0 0 1 0 0 0]')
## Prismatic joint ##
"""
PrismaticJoint <: AbstractJointType
A 3d joint with one translational (along z axis) degree of freedom.
"""
abstract type PrismaticJoint <: AbstractJointType end
number_of_dofs(::Type{PrismaticJoint}) = 1
position_dimension(::Type{PrismaticJoint}) = 1
function joint_transform(q::AbstractVector,::Type{PrismaticJoint},p::Dict,::Val{3})
R = rotation_identity()
x = SVector{3}([0.0,0.0,q[1]])
return MotionTransform{3}(x,R)
end
motion_subspace(::Type{PrismaticJoint},p::Dict,::Val{3},q) = SMatrix{6,1,Float64}([0 0 0 0 0 1]')
## Helical joint ##
"""
HelicalJoint <: AbstractJointType
A 3d joint with one rotational (angle about z axis) degree of freedom,
and coupled translational motion along the z axis based on pitch.
"""
abstract type HelicalJoint <: AbstractJointType end
number_of_dofs(::Type{HelicalJoint}) = 1
position_dimension(::Type{HelicalJoint}) = 1
function joint_transform(q::AbstractVector,C::Type{HelicalJoint},p::Dict,::Val{3})
R = rotation_about_z(-q[1])
x = SVector{3}([0.0,0.0,p["pitch"]*q[1]])
return MotionTransform{3}(x,R)
end
motion_subspace(::Type{HelicalJoint},p::Dict,::Val{3},q) = SMatrix{6,1,Float64}([0 0 1 0 0 p["pitch"]]')
## Cylindrical joint ##
"""
CylindricalJoint <: AbstractJointType
A 3d joint with one rotational (angle about z axis) and one translational (z axis) degrees of freedom.
"""
abstract type CylindricalJoint <: AbstractJointType end
number_of_dofs(::Type{CylindricalJoint}) = 2
position_dimension(::Type{CylindricalJoint}) = 2
function joint_transform(q::AbstractVector,::Type{CylindricalJoint},p::Dict,::Val{3})
R = rotation_about_z(-q[1])
x = SVector{3}([0.0,0.0,q[2]])
return MotionTransform{3}(x,R)
end
motion_subspace(::Type{CylindricalJoint},p::Dict,::Val{3},q) = SMatrix{6,2,Float64}([0 0 1 0 0 0; 0 0 0 0 0 1]')
## Spherical joint ##
"""
SphericalJoint <: AbstractJointType
A 3d joint with three rotational degrees of freedom. It uses a quaternion
to define its orientation, so it has four position coordinates.
"""
abstract type SphericalJoint <: AbstractJointType end
number_of_dofs(::Type{SphericalJoint}) = 3
position_dimension(::Type{SphericalJoint}) = 4
function joint_transform(q::AbstractVector,::Type{SphericalJoint},p::Dict,::Val{3})
R = rotation_from_quaternion(quaternion(q))
x = SVector{3}([0.0,0.0,0.0])
return MotionTransform{3}(x,R)
end
motion_subspace(::Type{SphericalJoint},p::Dict,::Val{3},q) = SMatrix{6,3,Float64}([1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0]')
function joint_dqdt!(dqdt,q,v,::Type{SphericalJoint})
_joint_dqdt_quaternion!(dqdt,q,v)
nothing
end
## Free joint (3d) ##
"""
FreeJoint <: AbstractJointType
A 3d joint with all six degrees of freedom. It uses a quaternion
to define its orientation, so it has seven position coordinates.
"""
abstract type FreeJoint <: AbstractJointType end
number_of_dofs(::Type{FreeJoint}) = 6
position_dimension(::Type{FreeJoint}) = 7
function joint_transform(q::AbstractVector,::Type{FreeJoint},p::Dict,::Val{3})
R = rotation_from_quaternion(quaternion(q[1:4]))
x = SVector{3}(q[5:7])
return MotionTransform{3}(R'*x,R)
end
motion_subspace(::Type{FreeJoint},p::Dict,::Val{3},q) = SMatrix{6,6,Float64}(I)
function joint_dqdt!(dqdt,q,v,::Type{FreeJoint})
qrdot, qtdot = view(dqdt,1:4), view(dqdt,5:7)
qr, qt = view(q,1:4), view(q,5:7)
vr, vt = view(v,1:3), view(v,4:6)
_joint_dqdt_quaternion!(qrdot,qr,vr)
_joint_dqdt_standard!(qtdot,qt,vt)
nothing
end
## Free joint (2d) ##
"""
FreeJoint2d <: AbstractJointType
A 2d joint with three degrees of freedom (angle, x, y).
"""
abstract type FreeJoint2d <: AbstractJointType end
number_of_dofs(::Type{FreeJoint2d}) = 3
position_dimension(::Type{FreeJoint2d}) = 3
function joint_transform(q::AbstractVector,::Type{FreeJoint2d},p::Dict,::Val{2})
R = rotation_about_z(-q[1])
x = SVector{3}(q[2],q[3],0.0)
return MotionTransform{2}(x,R)
end
function motion_subspace(JT::Type{FreeJoint2d},p::Dict,::Val{2},q)
R = rotation_transform(joint_transform(q,JT,p,Val(2)))
R*SMatrix{3,3,Float64}(I)
end
## Fixed joint ##
abstract type FixedJoint <: AbstractJointType end
"""
Joint(X::MotionTransform,bid::Int)
Construct a joint that simply places the body with ID `bid` rigidly in the configuration
given by `X`.
"""
Joint(Xp_to_j::MotionTransform{ND},child_id::Int) where {ND} = Joint(FixedJoint,0,Xp_to_j,child_id,MotionTransform{ND}())
"""
Joint(X::MotionTransform)
For a problem with a single body, construct a joint that simply places the body rigidly in the configuration
given by `X`.
"""
Joint(Xp_to_j::MotionTransform{ND}) where {ND} = Joint(FixedJoint,0,Xp_to_j,1,MotionTransform{ND}())
function Joint(::Type{FixedJoint},parent_id::Int,Xp_to_j::MotionTransform{2},child_id::Int,Xch_to_j::MotionTransform{2})
dofs = [ConstantVelocityDOF(0.0) for i = 1:3]
Joint(FreeJoint2d,parent_id,Xp_to_j,child_id,Xch_to_j,dofs)
end
function Joint(::Type{FixedJoint},parent_id::Int,Xp_to_j::MotionTransform{3},child_id::Int,Xch_to_j::MotionTransform{3})
dofs = [ConstantVelocityDOF(0.0) for i = 1:6]
Joint(FreeJoint,parent_id,Xp_to_j,child_id,Xch_to_j,dofs)
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 19034 | #=
Kinematics
Any set of kinematics added here must be accompanied by a function
(kin::AbstractKinematics)(t) that returns kinematic data of type `KinematicData`
holding t, c, ċ, c̈, α, α̇, α̈: the evaluation time, the reference
point position, velocity, acceleration (all complex), and angle,
angular velocity, and angular acceleration
=#
using DocStringExtensions
import ForwardDiff
import Base: +, *, -, >>, <<, show
using SpaceTimeFields
import SpaceTimeFields: Abstract1DProfile, >>, ConstantProfile, d_dt, FunctionProfile
## Individual DOF kinematics ##
abstract type AbstractDOFKinematics end
abstract type AbstractPrescribedDOFKinematics <: AbstractDOFKinematics end
struct DOFKinematicData
t :: Float64
x :: Float64
ẋ :: Float64
ẍ :: Float64
end
(k::AbstractPrescribedDOFKinematics)(t) = DOFKinematicData(t,k.x(t),k.ẋ(t),k.ẍ(t))
"""
dof_position(kd::DOFKinematicData) -> Float64
Returns the position of the given kinematic data of the degree of freedom
"""
dof_position(kd::DOFKinematicData) = kd.x
"""
dof_velocity(kd::DOFKinematicData) -> Float64
Returns the velocity of the given kinematic data of the degree of freedom
"""
dof_velocity(kd::DOFKinematicData) = kd.ẋ
"""
dof_acceleration(kd::DOFKinematicData) -> Float64
Returns the acceleration of the given kinematic data of the degree of freedom
"""
dof_acceleration(kd::DOFKinematicData) = kd.ẍ
function ismoving(dof::AbstractPrescribedDOFKinematics)
!((dof isa ConstantVelocityDOF && dof.ẋ0 == 0.0)||(dof isa ConstantPositionDOF))
end
### Types of dof kinematics ###
"""
ConstantPositionDOF(x0::Float64) <: AbstractPrescribedDOFKinematics
Set kinematics with constant position `x0`.
"""
struct ConstantPositionDOF <: AbstractPrescribedDOFKinematics
x0 :: Float64
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function ConstantPositionDOF(x0)
x = ConstantProfile(x0)
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
ConstantPositionDOF(x0,x,ẋ,ẍ)
end
function show(io::IO, p::ConstantPositionDOF)
print(io, "Constant position kinematics (position = $(p.x0))")
end
"""
ConstantVelocityDOF(ẋ0::Float64) <: AbstractPrescribedDOFKinematics
Set kinematics with constant velocity `ẋ0`.
"""
struct ConstantVelocityDOF <: AbstractPrescribedDOFKinematics
ẋ0 :: Float64
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function ConstantVelocityDOF(ẋ0)
f(t) = ẋ0*t
x = FunctionProfile(f)
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
ConstantVelocityDOF(ẋ0,x,ẋ,ẍ)
end
function show(io::IO, p::ConstantVelocityDOF)
print(io, "Constant velocity kinematics (velocity = $(p.ẋ0))")
end
"""
SmoothRampDOF(ẋ0,Δx,t0[;ramp=EldredgeRamp(11.0)]) <: AbstractPrescribedDOFKinematics
Kinematics describing a smooth ramp change in position `Δx` starting at time `t0` with nominal rate `ẋ0`.
Note that the sign of `ẋ0` should be the same as the sign of `Δx`, and will be automatically changed
if they differ.
The optional ramp argument is assumed to be
given by the smooth ramp `EldredgeRamp` with a smoothness factor of 11 (larger values
lead to sharper transitions on/off the ramp), but this
can be replaced by another Eldredge ramp with a different value or a `ColoniusRamp`.
"""
struct SmoothRampDOF <: AbstractPrescribedDOFKinematics
ẋ0 :: Float64
Δx :: Float64
t0 :: Float64
ramp :: Abstract1DProfile
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function SmoothRampDOF(ẋ0,Δx,t0; ramp = EldredgeRamp(11.0))
ẋ0_sign = sign(Δx)*abs(ẋ0)
Δt = abs(Δx/ẋ0_sign)
x = ẋ0_sign*((ramp >> t0) - (ramp >> (t0 + Δt)))
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
SmoothRampDOF(ẋ0_sign,Δx,t0,ramp,x,ẋ,ẍ)
end
function show(io::IO, p::SmoothRampDOF)
print(io, "Smooth position ramp kinematics (nominal rate = $(p.ẋ0), amplitude = $(p.Δx), nominal time = $(p.t0)), smoothing=$(p.ramp)")
end
"""
SmoothVelocityRampDOF(ẍ0,ẋ1,ẋ2,t0[;ramp=EldredgeRamp(11.0)]) <: AbstractPrescribedDOFKinematics
Kinematics describing a smooth ramp change in velocity from `ẋ1` to `ẋ2` starting at time `t0` with nominal acceleration `ẍ0`.
Note that the sign of `ẍ0` should be the same as the sign of `ẋ2-ẋ1`, and will be automatically changed
if they differ.
The optional ramp argument is assumed to be
given by the smooth ramp `EldredgeRamp` with a smoothness factor of 11 (larger values
lead to sharper transitions on/off the ramp), but this
can be replaced by another Eldredge ramp with a different value.
"""
struct SmoothVelocityRampDOF <: AbstractPrescribedDOFKinematics
ẍ0 :: Float64
ẋ1 :: Float64
ẋ2 :: Float64
t0 :: Float64
ramp :: Abstract1DProfile
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function SmoothVelocityRampDOF(ẍ0,ẋ1,ẋ2,t0; ramp::EldredgeRamp = EldredgeRamp(11.0))
Δẋ = ẋ2 - ẋ1
ẍ0_sign = sign(Δẋ)*abs(ẍ0)
Δt = Δẋ/ẍ0_sign
ri = _ramp_int(ramp)
x = FunctionProfile(t -> ẋ1*t) + ẍ0_sign*((ri >> t0) - (ri >> (t0 + Δt)))
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
SmoothVelocityRampDOF(ẍ0_sign,ẋ1,ẋ2,t0,ramp,x,ẋ,ẍ)
end
_ramp_int(ramp::EldredgeRamp) = EldredgeRampIntegral(ramp.aₛ)
function show(io::IO, p::SmoothVelocityRampDOF)
print(io, "Smooth velocity ramp kinematics (nominal rate = $(p.ẍ0), initial velocity = $(p.ẋ1), final velocity = $(p.ẋ2), nominal time = $(p.t0)), smoothing = $(p.ramp)")
end
"""
OscillatoryDOF(amp,angfreq,phase,ẋ0) <: AbstractPrescribedDOFKinematics
Set sinusoidal kinematics with amplitude `amp`, angular frequency `angfreq`,
phase `phase`, and mean velocity `ẋ0`.
The function it provides is `x(t) = ẋ0*t + amp*sin(angfreq*t+phase)`.
"""
struct OscillatoryDOF <: AbstractPrescribedDOFKinematics
"Amplitude"
A :: Float64
"Angular frequency"
Ω :: Float64
"Phase"
ϕ :: Float64
"Mean velocity"
ẋ0 :: Float64
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function OscillatoryDOF(A,Ω,ϕ,ẋ0)
f(t) = ẋ0*t
x = FunctionProfile(f) + A*(Sinusoid(Ω) >> (ϕ/Ω))
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
OscillatoryDOF(A,Ω,ϕ,ẋ0,x,ẋ,ẍ)
end
function show(io::IO, p::OscillatoryDOF)
print(io, "Oscillatory kinematics (amplitude = $(p.A), ang freq = $(p.Ω), phase = $(p.ϕ), mean velocity = $(p.ẋ0))")
end
"""
CustomDOF(f::Function) <: AbstractPrescribedDOFKinematics
Set custom kinematics for a degree of freedom with a function `f`
that specifies its value at any given time.
"""
struct CustomDOF <: AbstractPrescribedDOFKinematics
f :: Function
x :: Abstract1DProfile
ẋ :: Abstract1DProfile
ẍ :: Abstract1DProfile
end
function CustomDOF(f::Function)
x = FunctionProfile(f)
ẋ = d_dt(x)
ẍ = d_dt(ẋ)
CustomDOF(f,x,ẋ,ẍ)
end
function show(io::IO, p::CustomDOF)
print(io, "Custom kinematics")
end
"""
ExogenousDOF() <: AbstractDOFKinematics
Sets a DOF as constrained, but with its behavior set by an exogenous process
at every instant. For such a DOF, one must provide a vector `[x,ẋ,ẍ]`.
"""
struct ExogenousDOF <: AbstractDOFKinematics
end
function show(io::IO, p::ExogenousDOF)
print(io, "Exogeneously-specified DOF")
end
"""
UnconstrainedDOF([f::Function]) <: AbstractDOFKinematics
Sets a DOF as unconstrained, so that its behavior is either completely free
or determined by a given force response (e.g., spring and/or damper). This force
response is set by the optional input function `f`. The signature of `f` must be `f(x,xdot,t)`,
where `x` and `xdot` are the position of the dof and its derivative,
respectively, and `t` is the current time. It must return a single scalar,
serving as a force or torque for that DOF.
"""
struct UnconstrainedDOF <: AbstractDOFKinematics
f :: Function
end
UnconstrainedDOF() = UnconstrainedDOF((x,xdot,t) -> zero(x))
function show(io::IO, p::UnconstrainedDOF)
print(io, "Unconstrained DOF")
end
#####
#=
"""
An abstract type for types that takes in time and returns `KinematicData(t,c, ċ, c̈, α, α̇, α̈)`.
It is important to note that `c` and `α` only provide the values relative to
their respective initial values at `t=0`.
"""
abstract type AbstractKinematics end
struct KinematicData
t :: Float64
c :: ComplexF64
ċ :: ComplexF64
c̈ :: ComplexF64
α :: Float64
α̇ :: Float64
α̈ :: Float64
end
# APIs
"""
complex_translational_position(k::KinematicData;[inertial=true]) -> ComplexF64
Return the complex translational position (relative to the initial
position) of kinematic data `k`, expressed in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
complex_translational_position(k::KinematicData;inertial::Bool=true) =
_complex_translation_position(k,Val(inertial))
_complex_translation_position(k,::Val{true}) = k.c
_complex_translation_position(k,::Val{false}) = k.c*exp(-im*k.α)
"""
complex_translational_velocity(k::KinematicData;[inertial=true]) -> ComplexF64
Return the complex translational velocity of kinematic data `k`, relative
to inertial reference frame, expressed in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
complex_translational_velocity(k::KinematicData;inertial::Bool=true) =
_complex_translation_velocity(k,Val(inertial))
_complex_translation_velocity(k,::Val{true}) = k.ċ
_complex_translation_velocity(k,::Val{false}) = k.ċ*exp(-im*k.α)
"""
complex_translational_acceleration(k::KinematicData;[inertial=true]) -> ComplexF64
Return the complex translational acceleration of kinematic data `k`, relative
to inertial reference frame, expressed in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
complex_translational_acceleration(k::KinematicData;inertial::Bool=true) =
_complex_translation_acceleration(k,Val(inertial))
_complex_translation_acceleration(k,::Val{true}) = k.c̈
_complex_translation_acceleration(k,::Val{false}) = k.c̈*exp(-im*k.α)
"""
angular_position(k::KinematicData) -> Float64
Return the angular orientation of kinematic data `k`, relative to
inital value, in the inertial reference frame.
"""
angular_position(k::KinematicData) = k.α
"""
angular_velocity(k::KinematicData) -> Float64
Return the angular velocity of kinematic data `k`, relative to
inertial reference frame.
"""
angular_velocity(k::KinematicData) = k.α̇
"""
angular_acceleration(k::KinematicData) -> Float64
Return the angular acceleration of kinematic data `k`, relative to
inertial reference frame.
"""
angular_acceleration(k::KinematicData) = k.α̈
"""
translational_position(k::KinematicData;[inertial=true]) -> Tuple
Return the translational position of kinematic data `k` (relative to the initial
position), expressed as a Tuple in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
translational_position(k::KinematicData;kwargs...) =
reim(complex_translational_position(k;kwargs...))
"""
translational_velocity(k::KinematicData;[inertial=true]) -> Tuple
Return the translational velocity of kinematic data `k`, relative
to inertial reference frame, expressed as a Tuple in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
translational_velocity(k::KinematicData;kwargs...) =
reim(complex_translational_velocity(k;kwargs...))
"""
translational_acceleration(k::KinematicData;[inertial=true]) -> Tuple
Return the translational acceleration of kinematic data `k`, relative
to inertial reference frame, expressed as a Tuple in inertial coordinates (if `inertial=true`,
the default) or in comoving coordinates if `inertial=false`.
"""
translational_acceleration(k::KinematicData;kwargs...) =
reim(complex_translational_acceleration(k;kwargs...))
####
"""
Kinematics(apk::AbstractDOFKinematics,xpk::AbstractDOFKinematics,ykp::AbstractDOFKinematics[;pivot=(0.0,0.0)])
Set the full 2-d kinematics of a rigid body, specifying the kinematics of the
the angle ``\\alpha`` (with `apk`) and ``x`` and ``y`` coordinates of the pivot point with `xpk` and `ypk`, respectively.
The pivot point is specified (in body-fixed coordinates)
with the optional argument `pivot`.
"""
struct Kinematics{AK<:AbstractDOFKinematics,XK<:AbstractDOFKinematics,YK<:AbstractDOFKinematics} <: AbstractKinematics
x̃p :: Float64
ỹp :: Float64
apk :: AK
xpk :: XK
ypk :: YK
Kinematics(x̃p::Real,ỹp::Real,apk,xpk,ypk) = new{typeof(apk),typeof(xpk),typeof(ypk)}(convert(Float64,x̃p),convert(Float64,ỹp),apk,xpk,ypk)
end
Kinematics(apk::AbstractDOFKinematics,xpk::AbstractDOFKinematics,ypk::AbstractDOFKinematics;pivot=(0.0,0.0)) =
Kinematics(pivot...,apk,xpk,ypk)
function (kin::Kinematics)(t)
z̃p = kin.x̃p + im*kin.ỹp
apkd = kin.apk(t)
xpkd = kin.xpk(t)
ypkd = kin.ypk(t)
zp = dof_position(xpkd) + im*dof_position(ypkd)
żp = dof_velocity(xpkd) + im*dof_velocity(ypkd)
z̈p = dof_acceleration(xpkd) + im*dof_acceleration(ypkd)
α = dof_position(apkd)
α̇ = dof_velocity(apkd)
α̈ = dof_acceleration(apkd)
dzp = z̃p*exp(im*α)
c = zp - dzp
ċ = żp - im*α̇*dzp
c̈ = z̈p - (im*α̈ - α̇^2)*dzp
KinematicData(t,c,ċ,c̈,α,α̇,α̈)
end
"""
Constant(Up,Ω;[pivot = (0.0,0.0)])
Set constant translational Up and angular velocity Ω with respect to a specified point P.
This point is established by its initial position `pivot` (note that the initial angle
is assumed to be zero). By default, this initial position is (0,0).
`Up` and `pivot` can be specified by either Tuple or by complex value.
"""
Constant(żp::Complex, α̇;pivot=complex(0.0)) =
Kinematics(ConstantVelocityDOF(α̇),
ConstantVelocityDOF(real(żp)),
ConstantVelocityDOF(imag(żp)); pivot=reim(pivot))
Constant(żp::Tuple,α̇;pivot=(0.0,0.0)) = Constant(complex(żp...),α̇;pivot=complex(pivot...))
"""
Pitchup(U₀,a,K,α₀,t₀,Δα,ramp=EldredgeRamp(11.0)) <: AbstractKinematics
Kinematics describing a pitch-ramp motion (horizontal translation with rotation)
starting at time ``t_0`` about an axis at `a` (expressed relative to the centroid, in the ``\\tilde{x}``
direction in the body-fixed coordinate system), with translational velocity `U₀`
in the inertial ``x`` direction, initial angle ``\\alpha_0``, dimensionless angular
velocity ``K = \\dot{\\alpha}_0c/2U_0``, and angular
change ``\\Delta\\alpha``. The optional ramp argument is assumed to be
given by the smooth ramp `EldredgeRamp` with a smoothness factor of 11 (larger values
lead to sharper transitions on/off the ramp), but this
can be replaced by another Eldredge ramp with a different value or a `ColoniusRamp`.
"""
Pitchup(U₀,a,K,α₀,t₀,Δα;ramp=EldredgeRamp(11.0)) =
Kinematics(SmoothRampDOF(α₀,2K,Δα,t₀;ramp=ramp),
ConstantVelocityDOF(U₀),
ConstantPositionDOF(0.0); pivot=(a,0.0))
"""
Oscillation(Ux,Uy,α̇₀,ax,ay,Ω,Ax,Ay,ϕx,ϕy,α₀,Δα,ϕα) <: AbstractKinematics
Set 2-d oscillatory kinematics. This general constructor sets up motion of a
rotational axis, located at `ax`, `ay` (expressed relative to the body centroid, in
a body-fixed coordinate system). The rotational axis motion is described by
``
x(t) = U_x t + A_x\\sin(\\Omega t - \\phi_x), \\quad y(t) = U_y t + A_y\\sin(\\Omega t - \\phi_y),
\\quad \\alpha(t) = \\alpha_0 + \\dot{\\alpha}_0 t +
\\Delta\\alpha \\sin(\\Omega t - \\phi_{\\alpha})
``
"""
Oscillation(Ux,Uy,α̇₀,ax,ay,Ω,Ax,Ay,ϕx,ϕy,α₀,Δα,ϕα) =
Kinematics(OscillatoryDOF(Δα,Ω,ϕα,α₀,α̇₀),
OscillatoryDOF(Ax,Ω,ϕx,0.0,Ux),
OscillatoryDOF(Ay,Ω,ϕy,0.0,Uy); pivot=(ax,ay))
"""
PitchHeave(U₀,a,Ω,α₀,Δα,ϕp,A,ϕh)
Create oscillatory pitching and heaving kinematics of a pitch axis at location ``a`` (expressed
relative to the centroid in the ``\\tilde{x}`` direction of the body-fixed coordinate system),
of the form (in inertial coordinates)
``
x(t) = U_0 t, \\quad y(t) = A\\sin(\\Omega t - \\phi_h),
\\quad \\alpha(t) = \\alpha_0 + \\Delta\\alpha \\sin(\\Omega t - \\phi_p)
``
"""
PitchHeave(U₀, a, Ω, α₀, Δα, ϕp, A, ϕh) = Oscillation(U₀, 0.0, 0.0, a, 0.0, Ω, 0.0, A, 0.0, ϕh, α₀, Δα, ϕp)
"""
OscillationXY(Ux,Uy,Ω,Ax,ϕx,Ay,ϕy)
Set oscillatory kinematics in the ``x`` and ``y`` directions, of the form
``
x(t) = U_x t + A_x \\sin(\\Omega t - \\phi_x), \\quad y(t) = U_y t + A_y \\sin(\\Omega t - \\phi_y)
``
"""
OscillationXY(Ux,Uy,Ω,Ax,ϕx,Ay,ϕy) = Oscillation(Ux, Uy, 0, 0, 0, Ω, Ax, Ay, ϕx, ϕy, 0, 0, 0)
"""
OscillationX(Ux,Ω,Ax,ϕx)
Set oscillatory kinematics in the ``x`` direction, of the form
``
x(t) = U_x t + A_x \\sin(\\Omega t - \\phi_x),
``
"""
OscillationX(Ux,Ω,Ax,ϕx) = Oscillation(Ux, 0, 0, 0, 0, Ω, Ax, 0, ϕx, 0, 0, 0, 0)
"""
OscillationY(Uy,Ω,Ay,ϕy)
Set oscillatory kinematics in the ``y`` direction, of the form
``
y(t) = U_y t + A_y \\sin(\\Omega t - \\phi_y)
``
"""
OscillationY(Uy,Ω,Ay,ϕy) = Oscillation(0, Uy, 0, 0, 0, Ω, 0, Ay, 0, ϕy, 0, 0, 0)
"""
RotationalOscillation(ax,ay,Ω,α₀,α̇₀,Δα,ϕα)
Set oscillatory rotational kinematics about an axis located at `ax`, `ay`
(expressed relative to the body centroid, in a body-fixed coordinate system), of the form
``
\\alpha(t) = \\alpha_0 + \\dot{\\alpha}_0 t +
\\Delta\\alpha \\sin(\\Omega t - \\phi_{\\alpha})
``
"""
RotationalOscillation(ax,ay,Ω,α₀,α̇₀,Δα,ϕα) = Oscillation(0, 0, α̇₀, ax, ay, Ω, 0, 0, 0, 0, α₀, Δα, ϕα)
"""
RotationalOscillation(Ω,Δα,ϕα)
Set oscillatory rotational kinematics about the centroid of the form
``
\\alpha(t) = \\Delta\\alpha \\sin(\\Omega t - \\phi_{\\alpha})
``
"""
RotationalOscillation(Ω,Δα,ϕα) = RotationalOscillation(0,0,Ω,0,0,Δα,ϕα)
=#
####
####
abstract type Switch end
abstract type SwitchOn <: Switch end
abstract type SwitchOff <: Switch end
"""
SwitchedKinematics <: AbstractDOFKinematics
Modulates a given set of kinematics between simple on/off states. The velocity
specified by the given kinematics is toggled on/off.
# Fields
$(FIELDS)
"""
struct SwitchedKinematics{S <: Switch} <: AbstractDOFKinematics
"time at which the kinematics should be turned on"
t_on :: Float64
"time at which the kinematics should be turned off"
t_off :: Float64
"kinematics to be followed in the on state"
kin :: AbstractDOFKinematics
off :: AbstractDOFKinematics
SwitchedKinematics(t_on,t_off,kin) = t_on > t_off ?
new{SwitchOn}(t_on,t_off,kin,ConstantVelocityDOF(0.0)) :
new{SwitchOff}(t_on,t_off,kin,ConstantVelocityDOF(0.0))
end
# note that these do not introduce impulsive changes into the derivatives
(p::SwitchedKinematics{SwitchOn})(t) = t <= p.t_on ? p.off(t) : p.kin(t-p.t_on)
(p::SwitchedKinematics{SwitchOff})(t) = t <= p.t_off ? p.kin(t-p.t_on) : p.off(t)
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 8370 |
export BodyList, RigidTransformList, MotionTransformList, PluckerMotionList, getrange
abstract type SetOfBodies end
const LISTS = [:BodyList, :Body],
[:RigidTransformList, :RigidTransform],
[:MotionTransformList, :MotionTransform],
[:PluckerMotionList, :PluckerMotion]
"""
BodyList([b1,b2,...])
Create a list of bodies
""" BodyList
"""
RigidTransformList([t1,t2,...])
Create a list of rigid transforms
""" RigidTransformList
"""
MotionTransformList([t1,t2,...])
Create a list of motion transforms
""" MotionTransformList
for (listtype,listelement) in LISTS
@eval struct $listtype <: SetOfBodies
list :: Vector{$listelement}
end
@eval Base.eltype(f::$listtype) = Base.eltype(f.list)
@eval $listtype() = $listtype($listelement[])
@eval @propagate_inbounds getindex(A::$listtype, i::Int) = A.list[i]
@eval @propagate_inbounds setindex!(A::$listtype, v::$listelement, i::Int) = A.list[i] = v
@eval @propagate_inbounds getindex(A::$listtype, I...) = A.list[I...]
@eval @propagate_inbounds setindex!(A::$listtype, v, I...) = A.list[I...] = v
@eval iterate(A::$listtype) = iterate(A.list)
@eval iterate(A::$listtype,I) = iterate(A.list,I)
@eval size(A::$listtype) = size(A.list)
@eval length(A::$listtype) = length(A.list)
@eval findall(f::Function,A::$listtype) = findall(f,A.list)
@eval push!(bl::$listtype,b::$listelement) = push!(bl.list,b)
end
numpts(bl::BodyList) = mapreduce(numpts,+,bl;init=0)
zero_body(b::Union{Body,BodyList}) = zeros(Float64,numpts(b))
"""
collect(bl::bodylist[,endpoints=false][,ref=false]) -> Vector{Float64}, Vector{Float64}
Collect the inertial-space coordinates of all of the Lagrange points comprising
the bodies in body list `bl` and return each assembled set of coordinates as a vector.
By default, `endpoints=false` and `ref=false`, which means this collects
the midpoints of segments in the inertial coordinates. If `endpoints=true`
it collects segment endpoints instead. If `ref=true` it collects
the coordinates in the body coordinate system.
"""
collect(bl::BodyList;endpoints=false,ref=false) = _collect(bl,Val(endpoints),Val(ref))
collect(body::Body;kwargs...) = collect(BodyList([body]);kwargs...)
function _collect(bl,::Val{false},::Val{false})
xtmp = Float64[]
ytmp = Float64[]
for b in bl
append!(xtmp,b.x)
append!(ytmp,b.y)
end
return xtmp,ytmp
end
function _collect(bl::BodyList,::Val{true},::Val{false})
xtmp = Float64[]
ytmp = Float64[]
for b in bl
append!(xtmp,b.xend)
append!(ytmp,b.yend)
end
return xtmp,ytmp
end
function _collect(bl,::Val{false},::Val{true})
xtmp = Float64[]
ytmp = Float64[]
for b in bl
append!(xtmp,b.x̃)
append!(ytmp,b.ỹ)
end
return xtmp,ytmp
end
function _collect(bl::BodyList,::Val{true},::Val{true})
xtmp = Float64[]
ytmp = Float64[]
for b in bl
append!(xtmp,b.x̃end)
append!(ytmp,b.ỹend)
end
return xtmp,ytmp
end
"""
getrange(bl::BodyList,bid::Int) -> Range
Return the subrange of indices in the global set of surface point data
corresponding to body `bid` in a BodyList `bl`.
"""
function getrange(bl::BodyList,i::Int)
i <= length(bl) || error("Unavailable body")
first = 1
j = 1
while j < i
first += numpts(bl[j])
j += 1
end
last = first+numpts(bl[i])-1
return first:last
end
"""
global_to_local_index(i::Int,bl::BodyList) -> (Int, Int)
Return the ID `bid` of the body in body list `bl` on which global index `i` sits,
as well as the local index of `iloc` on that body and return as `(bid,iloc)`
"""
function global_to_local_index(i::Int,bl::BodyList)
bid = 1
ir = getrange(bl,bid)
while !(in(i,ir)) && bid <= length(bl)
bid += 1
ir = getrange(bl,bid)
end
return bid, i-first(ir)+1
end
#=
"""
getrange(bl::BodyList,ml::MotionList,i::Int) -> Range
Return the subrange of indices in the global vector of motion state data
corresponding to body `i` in a BodyList `bl` with corresponding motion list `ml`.
"""
function getrange(bl::BodyList,ml::MotionList,i::Int)
i <= length(bl) || error("Unavailable body")
first = 1
j = 1
while j < i
first += length(motion_state(bl[j],ml[j]))
j += 1
end
last = first+length(motion_state(bl[i],ml[i]))-1
return first:last
end
=#
"""
view(f::AbstractVector,bl::BodyList,bid::Int) -> SubArray
Provide a view of the range of values in vector `f` corresponding to the Lagrange
points of the body with index `bid` in a BodyList `bl`.
"""
function Base.view(f::AbstractVector,bl::BodyList,bid::Int)
length(f) == numpts(bl) || error("Inconsistent size of data for viewing")
return view(f,getrange(bl,bid))
end
"""
sum(f::AbstractVector,bl::BodyList,i::Int) -> Real
Compute a sum of the elements of vector `f` corresponding to body `i` in body
list `bl`.
"""
Base.sum(f::AbstractVector,bl::BodyList,i::Int) = sum(view(f,bl,i))
"""
(tl::MotionTransformList)(bl::BodyList) -> BodyList
Carry out transformations of each body in `bl` with the
corresponding transformation in `tl`, creating a new body list.
"""
@inline function (tl::MotionTransformList)(bl::BodyList)
bl_transform = deepcopy(bl)
update_body!(bl_transform,tl)
end
"""
update_body!(bl::BodyList,tl::MotionTransformList) -> BodyList
Carry out in-place transformations of each body in `bl` with the
corresponding transformation in `tl`.
"""
@inline function update_body!(bl::BodyList,tl::MotionTransformList)
length(tl) == length(bl) || error("Inconsistent lengths of lists")
map((T,b) -> update_body!(b,T),tl,bl)
end
"""
transform_body!(bl::BodyList,tl::MotionTransformList) -> BodyList
Carry out in-place transformations of body coordinate systems for each body in `bl` with the
corresponding transformation in `tl`.
"""
@inline function transform_body!(bl::BodyList,tl::MotionTransformList)
length(tl) == length(bl) || error("Inconsistent lengths of lists")
map((T,b) -> transform_body!(b,T),tl,bl)
end
"""
motion_transform_from_A_to_B(tl::MotionTransformList,bodyidA::Int,bodyidB::Int) -> MotionTransform
Returns a motion transform mapping from the coordinate system of body `bodyidA` to body `bodyidB`.
Either of these bodies might be 0.
"""
motion_transform_from_A_to_B(Xl::MotionTransformList,bodyA::Int,bodyB::Int) =
_motion_transform_from_A_to_B(Xl,_dimensionality(Xl),Val(bodyA),Val(bodyB))
"""
force_transform_from_A_to_B(tl::MotionTransformList,bodyidA::Int,bodyidB::Int) -> ForceTransform
Returns a force transform mapping from the coordinate system of body `bodyidA` to body `bodyidB`.
Either of these bodies might be 0.
"""
force_transform_from_A_to_B(Xl::MotionTransformList,bodyA::Int,bodyB::Int) =
transpose(motion_transform_from_A_to_B(Xl,bodyB,bodyA))
_motion_transform_from_A_to_B(Xl,ND,::Val{bodyA},::Val{bodyB}) where {bodyA,bodyB} = Xl[bodyB]*inv(Xl[bodyA])
_motion_transform_from_A_to_B(Xl,ND,::Val{0},::Val{bodyB}) where {bodyB} = Xl[bodyB]
_motion_transform_from_A_to_B(Xl,ND,::Val{bodyA},::Val{0}) where {bodyA} = inv(Xl[bodyA])
_motion_transform_from_A_to_B(Xl,ND,::Val{bodyA},::Val{bodyA}) where {bodyA} = MotionTransform{ND}()
_motion_transform_from_A_to_B(Xl,ND,::Val{0},::Val{0}) = MotionTransform{ND}()
_dimensionality(tl::MotionTransformList) = _dimensionality(first(tl))
_dimensionality(t::MotionTransform{ND}) where {ND} = ND
"""
vec(tl::RigidTransformList) -> Vector{Float64}
Returns a concatenation of length-3 vectors of the form [x,y,α] corresponding to the translation
and rotation specified by the given by the list of transforms `tl`.
"""
vec(tl::RigidTransformList) = mapreduce(vec,vcat,tl)
"""
RigidTransformList(x::Vector)
Parses vector `x`, containing rigid-body configuration data ordered as
x, y, α for each body, into a `RigidTransformList`.
"""
function RigidTransformList(x::Vector{T}) where T <: Real
nb, md = _length_and_mod(x)
md == 0 || error("Invalid length of vector")
first = 0
tl = RigidTransformList()
for i in 1:nb
push!(tl,RigidTransform(view(x,first+1:first+CHUNK)))
first += CHUNK
end
return tl
end
_length_and_mod(x::Vector{T}) where T <: Real = (n = length(x); return n ÷ CHUNK, n % CHUNK)
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 2330 | using RecipesBase
using ColorTypes
using LaTeXStrings
import PlotUtils: cgrad
#using Compat
#using Compat: range
const mygreen = RGBA{Float64}(151/255,180/255,118/255,1)
const mygreen2 = RGBA{Float64}(113/255,161/255,103/255,1)
const myblue = RGBA{Float64}(74/255,144/255,226/255,1)
@recipe function plot(b::Body{N,CS}) where {N,CS}
x = RigidBodyTools._extend_array(b.x,CS)
y = RigidBodyTools._extend_array(b.y,CS)
#x = [b.x; b.x[1]]
#y = [b.y; b.y[1]]
linecolor --> mygreen
if CS == ClosedBody
fillrange --> 0
fillcolor --> mygreen
else
fill := :false
end
aspect_ratio := 1
legend := :none
grid := false
x := x
y := y
()
end
@recipe function plot(b::NullBody) end
@recipe function f(m::RigidBodyMotion;tmax=10)
t = 0.0:0.01:tmax
cx = map(ti -> translational_position(m(ti))[1],t)
cy = map(ti -> translational_position(m(ti))[2],t)
α = map(ti -> angular_position(m(ti)),t)
ux = map(ti -> translational_velocity(m(ti))[1],t)
uy = map(ti -> translational_velocity(m(ti))[2],t)
adot = map(ti -> angular_velocity(m(ti)),t)
xlims --> (0,tmax)
layout := (2,3)
grid --> :none
linewidth --> 1
legend --> :none
framestyle --> :frame
xguide --> L"t"
xlim = min(minimum(cx),minimum(cy)),max(maximum(cx),maximum(cy))
alim = extrema(α)
ulim = min(minimum(ux),minimum(uy)),max(maximum(ux),maximum(uy))
adlim = extrema(adot)
@series begin
subplot := 1
ylims --> xlim
yguide --> L"x"
t, cx
end
@series begin
subplot := 2
ylims --> xlim
yguide --> L"y"
t, cy
end
@series begin
subplot := 3
ylims --> alim
yguide --> L"\alpha"
t, α
end
@series begin
subplot := 4
ylims --> ulim
yguide --> L"u"
t, ux
end
@series begin
subplot := 5
ylims --> ulim
yguide --> L"v"
t, uy
end
@series begin
subplot := 6
ylims --> adlim
yguide --> L"\dot{\alpha}"
t, adot
end
end
function RecipesBase.RecipesBase.apply_recipe(plotattributes::Dict{Symbol, Any}, bl::BodyList)
series_list = RecipesBase.RecipeData[]
for b in bl
append!(series_list, RecipesBase.RecipesBase.apply_recipe(copy(plotattributes), b) )
end
series_list
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 27788 | # Linked systems #
function _default_exogenous_function!(a_edof,u,p,t) end
function _default_unconstrained_function!(a_udof,u,p,t) end
"""
RigidBodyMotion
Type containing the connectivities and motions of rigid bodies, linked to the
inertial system and possibly to each other, via joints. The basic constructor is
`RigidBodyMotion(joints::Vector{Joint},nbody::Int)`, in which `joints` contains
a vector of joints of [`Joint`](@ref) type, each specifying the connection between
a parent and a child body. (The parent may be the inertial coordinate system.)
"""
struct RigidBodyMotion{ND} <: AbstractMotion
"Number of distinct linked systems"
nls :: Int
"Number of bodies"
nbody :: Int
"List of linked bodies, starting with the one connected to inertial system"
lslists :: Vector{Vector{Int}}
"Vector of joint specifications and motions"
joints :: Vector{Joint}
"Vector of prescribed deformations of bodies"
deformations :: Vector{AbstractDeformationMotion}
"Vector specifying the parent body of a body (0 = inertial system)"
parent_body :: Vector{Int}
"Vector specifying the parent joint of a body"
parent_joint :: Vector{Int}
"Vector of vectors, specifying the list of child bodies of a body (empty if no children)"
child_bodies :: Vector{Vector{Int}}
"Vector of vectors, specifying the list of child joints of a body (empty if no children)"
child_joints :: Vector{Vector{Int}}
"Set of indices providing the joint position coordinates in the global state vector"
position_indices :: Vector{Int}
"Set of indices providing the joint velocity coordinates in the global state vector"
vel_indices :: Vector{Int}
"Sets of indices providing the body point coordinates in the global state vector"
deformation_indices :: Vector{Vector{Int}}
"Function to specify exogenous behavior, must be mutating and have signature (a,u,p,t)"
exogenous_function! :: Function
"Buffers for exogenous and unconstrained behavior"
a_edof_buffer :: Vector{Float64}
"Buffers for exogenous and unconstrained behavior"
a_udof_buffer :: Vector{Float64}
end
function RigidBodyMotion(joints::Vector{<:Joint},bodies::BodyList,deformations::Vector{<:AbstractDeformationMotion};
exogenous::Function = _default_exogenous_function!)
nbody = length(bodies)
parent_body = zeros(Int,nbody)
parent_joint = zeros(Int,nbody)
child_bodies = [Int[] for i in 1:nbody]
child_joints = [Int[] for i in 1:nbody]
lscnt = 0
lsroots = Int[]
for bodyid in 1:nbody
parent_joint[bodyid] = pjid = _parent_joint_of_body(bodyid,joints)
parent_body[bodyid] = pbid = joints[pjid].parent_id
if pbid == 0
lscnt += 1
push!(lsroots,bodyid)
end
child_joints[bodyid] = cjids = _child_joints_of_body(bodyid,joints)
child_bodies[bodyid] = [joints[cjid].child_id for cjid in cjids]
end
@assert lscnt > 0 "There is no body connected to the inertial system"
lslists = [Int[] for lsid in 1:lscnt]
for (lsid,lsroot) in enumerate(lsroots)
lslist = lslists[lsid]
_list_of_linked_bodies!(lslist,lsroot,child_bodies)
end
total_members = mapreduce(x -> length(x),+,lslists)
@assert total_members == nbody "Not all bodies have been added as members of linked lists"
position_indices = mapreduce(jid -> _getrange(joints,position_and_vel_dimension,jid)[1:position_dimension(joints[jid])],
vcat,eachindex(joints))
vel_indices = mapreduce(jid -> _getrange(joints,position_and_vel_dimension,jid)[position_dimension(joints[jid])+1:position_and_vel_dimension(joints[jid])],
vcat,eachindex(joints))
index_i = length(position_indices) + length(vel_indices)
deformation_indices = Vector{Int}[]
for (b,m) in zip(bodies,deformations)
def_length = length(motion_state(b,m))
push!(deformation_indices,collect(index_i+1:index_i+def_length))
index_i += def_length
end
a_edof_buffer = _zero_joint(joints,exogenous_dimension)
a_udof_buffer = _zero_joint(joints,unconstrained_dimension)
RigidBodyMotion{physical_dimension(joints)}(lscnt,nbody,lslists,joints,deformations,parent_body,parent_joint,
child_bodies,child_joints,position_indices,vel_indices,deformation_indices,
exogenous,a_edof_buffer,a_udof_buffer)
end
RigidBodyMotion(joints::Vector{<:Joint},bodies::BodyList;kwargs...) = RigidBodyMotion(joints,bodies,[NullDeformationMotion() for bi in 1:length(bodies)];kwargs...)
RigidBodyMotion(joint::Joint,body::Body,def::AbstractDeformationMotion;kwargs...) = RigidBodyMotion([joint],BodyList([body]),[def];kwargs...)
RigidBodyMotion(joint::Joint,body::Body;kwargs...) = RigidBodyMotion([joint],BodyList([body]);kwargs...)
function Base.show(io::IO, ls::RigidBodyMotion)
println(io, "$(ls.nls) linked system(s) of bodies")
println(io, " $(ls.nbody) bodies")
println(io, " $(length(ls.joints)) joints")
end
"""
ismoving(m::RigidBodyMotion)
Checks if any joint in `m` is in motion
"""
function ismoving(m::RigidBodyMotion)
@unpack joints, deformations = m
any(map(joint -> ismoving(joint),joints)) || any(map(def -> ismoving(def),deformations))
end
"""
is_system_in_relative_motion(lsid::Int,ls::RigidBodyMotion) -> Bool
Returns `true` if the linked system with ID `lsid` is in relative motion,
i.e., if one or more of the joints (not connected to the inertial system)
returns `true` for the function `ismoving(joint)`.
"""
function is_system_in_relative_motion(lsid::Int,m::RigidBodyMotion)
@unpack lslists = m
bodyid = first_body(lsid,m)
ismove = false
return _ismoving_tree(ismove,bodyid,m)
end
function _ismoving_tree(ismove::Bool,bodyid::Int,m::RigidBodyMotion)
@unpack joints, deformations = m
ismove |= ismoving(deformations[bodyid])
for jid in child_joints_of_body(bodyid,m)
ismove |= ismoving(joints[jid])
bodyid = child_body_of_joint(jid,m)
ismove = _ismoving_tree(ismove,bodyid,m)
end
return ismove
end
function _list_of_linked_bodies!(lslist,bodyid,child_bodies)
push!(lslist,bodyid)
for childid in child_bodies[bodyid]
_list_of_linked_bodies!(lslist,childid,child_bodies)
end
nothing
end
function _check_for_only_one_body(ls::RigidBodyMotion)
@assert ls.nbody == 1 "Linked system must only contain one body"
end
"""
parent_joint_of_body(bodyid,ls::RigidBodyMotion)
Return the index of the parent joint of body `bodyid` in system `ls`.
"""
parent_joint_of_body(bodyid::Int,ls::RigidBodyMotion) = _parent_joint_of_body(bodyid,ls.joints)
"""
child_joints_of_body(bodyid,ls::RigidBodyMotion)
Return the indices (if any) of the child joints of body `bodyid` in system `ls`.
This function also accepts `bodyid = 0`, and returns the indices of joints
that connect bodies to the inertial coordinate system.
"""
child_joints_of_body(bodyid::Int,ls::RigidBodyMotion) = _child_joints_of_body(bodyid,ls.joints)
"""
parent_body_of_joint(jid,ls::RigidBodyMotion)
Return the index of the parent body of joint `jid` in system `ls`.
"""
parent_body_of_joint(jid::Int,ls::RigidBodyMotion) = ls.joints[jid].parent_id
"""
child_body_of_joint(jid,ls::RigidBodyMotion)
Return the index of the child body of joint `jid` in system `ls`.
"""
child_body_of_joint(jid::Int,ls::RigidBodyMotion) = ls.joints[jid].child_id
# If this is empty, then there should be an error, since all bodies
# need a parent joint. If it has more than one result, also an error,
# since a body can only have one parent joint
function _parent_joint_of_body(bodyid,joints::Vector{<:Joint})
idx = findall(x -> x.child_id == bodyid, joints)
@assert length(idx) > 0 "Body "*string(bodyid)*" has no parent joint"
@assert length(idx) == 1 "Body "*string(bodyid)*" has too many parent joints"
return first(idx)
end
function _child_joints_of_body(bodyid,joints::Vector{<:Joint})
idx = findall(x -> x.parent_id == bodyid, joints)
return idx
end
number_of_linked_systems(ls::RigidBodyMotion) = ls.nls
"""
first_body(lsid::Int,ls::RigidBodyMotion)
Return the index of the first body in linked system `lsid` in
the overall set of linked systems `ls`. This body's parent is the
inertial coordinate system.
"""
function first_body(lsid::Int,ls::RigidBodyMotion)
@unpack lslists, parent_joint = ls
first(lslists[lsid])
end
"""
first_joint(lsid::Int,ls::RigidBodyMotion)
Return the index of the first joint in linked system `lsid` in
the overall set of linked systems `ls`. This joint's parent is the
inertial coordinate system.
"""
function first_joint(lsid::Int,ls::RigidBodyMotion)
@unpack lslists, parent_joint = ls
parent_joint[first_body(lsid,ls)]
end
for f in [:number_of_dofs,:position_dimension,:position_and_vel_dimension,:constrained_dimension,
:exogenous_dimension,:unconstrained_dimension]
@eval $f(ls::RigidBodyMotion) = mapreduce(x -> $f(x),+,ls.joints)
end
"""
getrange(ls::RigidBodyMotion,dimfcn::Function,jid::Int) -> Range
Return the subrange of indices in the global state vector
for the state corresponding to joint `jid` in linked system `ls`.
"""
function getrange(ls::RigidBodyMotion,dimfcn::Function,jid::Int)
@unpack joints = ls
_getrange(joints,dimfcn,jid)
end
function _getrange(joints::Vector{<:Joint},dimfcn::Function,jid::Int)
0 < jid <= length(joints) || error("Unavailable joint")
first = 1
j = 1
while j < jid
first += dimfcn(joints[j])
j += 1
end
last = first+dimfcn(joints[jid])-1
return first:last
end
"""
view(q::AbstractVector,ls::RigidBodyMotion,jid::Int[;dimfcn=position_dimension]) -> SubArray
Provide a view of the range of values in vector `q` corresponding to the position
of the joint with index `jid` in a RigidBodyMotion `ls`. The optional argument `dimfcn`
can be set to `position_dimension`, `constrained_dimension`, `unconstrained_dimension`,
or `exogenous_dimension`.
"""
function Base.view(q::AbstractVector,ls::RigidBodyMotion,jid::Int;dimfcn::Function=position_dimension)
return view(q,getrange(ls,dimfcn,jid))
end
"""
body_transforms(x::AbstractVector,ls::RigidBodyMotion) -> MotionTransformList
Parse the overall state vector `x` into the individual joints and construct
the inertial system-to-body transforms for every body. Return these
transforms in a `MotionTransformList`.
"""
function body_transforms(x::AbstractVector,ls::RigidBodyMotion{ND}) where {ND}
q = position_vector(x,ls)
X = MotionTransform{ND}()
ml = [deepcopy(X) for jb in 1:ls.nbody]
for lsid in 1:number_of_linked_systems(ls)
jid = first_joint(lsid,ls)
_joint_descendants_transform!(ml,X,jid,q,ls)
end
return MotionTransformList(ml)
end
function _joint_descendants_transform!(ml,Xp::MotionTransform,jid::Int,q::AbstractVector,ls::RigidBodyMotion)
@unpack joints, child_joints = ls
joint = joints[jid]
Xch = parent_to_child_transform(view(q,ls,jid),joint)*Xp
bid = joint.child_id
ml[bid] = deepcopy(Xch)
for jcid in child_joints[bid]
_joint_descendants_transform!(ml,Xch,jcid,q,ls)
end
nothing
end
"""
body_velocities(x::AbstractVector,t::Real,ls::RigidBodyMotion) -> PluckerMotionList
Compute the velocities of bodies for the rigid body system `ls`, expressing each in its own coordinate system.
To carry this out, the function evaluates velocities of dofs with prescribed kinematics at time `t` and
and obtains the remaining free dofs (exogenous and unconstrained) from the state vector `x`.
"""
function body_velocities(x::AbstractVector,t::Real,ls::RigidBodyMotion{ND}) where {ND}
v0 = PluckerMotion{2}()
vl = [v0 for jb in 1:ls.nbody]
for lsid in 1:number_of_linked_systems(ls)
jid = first_joint(lsid,ls)
_child_velocity_from_parent!(vl,v0,jid,x,t,ls)
end
return PluckerMotionList(vl)
end
function _child_velocity_from_parent!(vl,vp::AbstractPluckerMotionVector,jid::Int,x::AbstractVector,t::Real,ls::RigidBodyMotion)
@unpack joints, child_joints = ls
joint = joints[jid]
xJ = view(x,ls,jid;dimfcn=position_and_vel_dimension)
q = position_vector(x,ls)
vJ = joint_velocity(xJ,t,joint)
qJ = view(q,ls,jid)
Xp_to_ch = parent_to_child_transform(qJ,joint)
#xJ_to_ch = Xp_to_ch*inv(joint.Xp_to_j)
xJ_to_ch = inv(joint.Xch_to_j)
vch = _child_velocity_from_parent(Xp_to_ch,vp,xJ_to_ch,vJ)
bid = joint.child_id
vl[bid] = deepcopy(vch)
for jcid in child_joints[bid]
_child_velocity_from_parent!(vl,vch,jcid,x,t,ls)
end
nothing
end
function _child_velocity_from_parent(Xp_to_ch::MotionTransform,vp::AbstractPluckerMotionVector,XJ_to_ch::MotionTransform,vJ::AbstractPluckerMotionVector)
vch = Xp_to_ch*vp + XJ_to_ch*vJ
end
"""
zero_joint(ls::RigidBodyMotion[;dimfcn=position_and_vel_dimension])
Create a vector of zeros for some aspect of the state of the linked system(s) `ls`, based
on the argument `dimfcn`. By default, it uses `position_and_vel_dimension` and creates a zero vector sized
according to the state of the joint. Alternatively, one
can use `position_dimension`, `constrained_dimension`, `unconstrained_dimension`,
or `exogenous_dimension`.
"""
zero_joint(ls::RigidBodyMotion;dimfcn=position_and_vel_dimension) = _zero_joint(ls.joints,dimfcn)
_zero_joint(joints::Vector{<:Joint},dimfcn) = mapreduce(joint -> zero_joint(joint;dimfcn=dimfcn),vcat,joints)
"""
zero_motion_state(bl::BodyList,ls::RigidBodyMotion)
Create a vector of zeros for the state of the linked system(s) `ls`.
"""
function zero_motion_state(bl::BodyList,ls::RigidBodyMotion)
@unpack deformations = ls
x = zero_joint(ls)
for (b,m) in zip(bl,deformations)
xi = zero_motion_state(b,m)
append!(x,xi)
end
return x
end
function zero_motion_state(b::Body,ls::RigidBodyMotion)
_check_for_only_one_body(ls)
zero_motion_state(BodyList([b]),ls)
end
"""
init_motion_state(bl::BodyList,ls::RigidBodyMotion[;tinit = 0.0])
Initialize the global linked system state vector, using
the prescribed motions for constrained degrees of freedom to initialize
the position components (evaluated at `tinit`, which by default is 0).
The other degrees of freedom are initialized to zero, and can be
set manually.
"""
function init_motion_state(bl::BodyList,ls::RigidBodyMotion;kwargs...)
@unpack deformations = ls
x = mapreduce(joint -> init_joint(joint;kwargs...),vcat,ls.joints)
for (b,m) in zip(bl,deformations)
xi = motion_state(b,m)
append!(x,xi)
end
return x
end
function init_motion_state(b::Body,ls::RigidBodyMotion;kwargs...)
_check_for_only_one_body(ls)
init_motion_state(BodyList([b]),ls;kwargs...)
end
"""
position_vector(x::AbstractVector,ls::RigidBodyMotion)
Returns a view of the global state vector for a linked system containing only the position.
"""
function position_vector(x::AbstractVector,ls::RigidBodyMotion)
@unpack position_indices = ls
return view(x,position_indices)
end
"""
position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the global state vector for a linked system containing only the position
of joint `jid`.
"""
function position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack position_indices = ls
q = view(x,position_indices)
return view(q,ls,jid)
end
"""
exogenous_position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the exogenous dof position(s), if any, of joint `jid` in
the global state vector `x`.
"""
function exogenous_position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack joints = ls
qj = position_vector(x,ls,jid)
return view(qj,joints[jid].edofs)
end
"""
unconstrained_position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the unconstrained dof position(s), if any, of joint `jid` in
the global state vector `x`.
"""
function unconstrained_position_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack joints = ls
qj = position_vector(x,ls,jid)
return view(qj,joints[jid].udofs)
end
"""
velocity_vector(x::AbstractVector,ls::RigidBodyMotion)
Returns a view of the global state vector for a linked system containing only the velocity.
"""
function velocity_vector(x::AbstractVector,ls::RigidBodyMotion)
@unpack vel_indices = ls
return view(x,vel_indices)
end
"""
velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the global state vector for a linked system containing only the velocity
of joint `jid`.
"""
function velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack joints = ls
ir = _getrange(joints,position_and_vel_dimension,jid)[position_dimension(joints[jid])+1:position_and_vel_dimension(joints[jid])]
return view(x,ir)
end
"""
exogenous_velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the exogenous dof position(s), if any, of joint `jid` in
the global state vector `x`.
"""
function exogenous_velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack joints = ls
qdotj = velocity_vector(x,ls,jid)
return view(qdotj,1:exogenous_dimension(joints[jid]))
end
"""
unconstrained_velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
Returns a view of the unconstrained dof position(s), if any, of joint `jid` in
the global state vector `x`.
"""
function unconstrained_velocity_vector(x::AbstractVector,ls::RigidBodyMotion,jid::Int)
@unpack joints = ls
qdotj = velocity_vector(x,ls,jid)
j = joints[jid]
return view(qdotj,exogenous_dimension(j)+1:exogenous_dimension(j)+unconstrained_dimension(j))
end
"""
deformation_vector(x::AbstractVector,ls::RigidBodyMotion,bid::Int)
Returns a view of the global state vector for a linked system containing only
the body surface positions of the body with id `bid`.
"""
function deformation_vector(x::AbstractVector,ls::RigidBodyMotion,bid::Int)
@unpack deformation_indices = ls
return view(x,deformation_indices[bid])
end
### motion_rhs! APIs ###
"""
motion_rhs!(dxdt::AbstractVector,x::AbstractVector,p::Tuple{RigidBodyMotion,BodyList},t::Real)
Sets the right-hand side vector `dxdt` (mutating) for linked system `ls` of bodies `bl`, using the current state vector `x`,
the current time `t`.
"""
function motion_rhs!(dxdt::AbstractVector,x::AbstractVector,p::Tuple{RigidBodyMotion,Union{Body,BodyList}},t::Real)
ls, bl = p
@unpack a_edof_buffer, a_udof_buffer, exogenous_function! = ls
fill!(a_udof_buffer,0.0)
exogenous_function!(a_edof_buffer,x,ls,t)
motion_rhs!(dxdt,x,t,a_edof_buffer,a_udof_buffer,ls,bl)
end
function motion_rhs!(dxdt::AbstractVector,x::AbstractVector,t::Real,a_edof::AbstractVector,a_udof::AbstractVector,ls::RigidBodyMotion,bl::BodyList)
@unpack joints, deformations = ls
for (jid,joint) in enumerate(joints)
dxdt_j = view(dxdt,ls,jid;dimfcn=position_and_vel_dimension)
x_j = view(x,ls,jid;dimfcn=position_and_vel_dimension)
a_edof_j = view(a_edof,ls,jid;dimfcn=exogenous_dimension)
a_udof_j = view(a_udof,ls,jid;dimfcn=unconstrained_dimension)
joint_rhs!(dxdt_j,x_j,t,a_edof_j,a_udof_j,joint)
end
for (bid,b) in enumerate(bl)
dxdt_b = deformation_vector(dxdt,ls,bid)
dxdt_b .= deformation_velocity(b,deformations[bid],t)
end
nothing
end
function motion_rhs!(dxdt::AbstractVector,x::AbstractVector,t::Real,a_edof::AbstractVector,a_udof::AbstractVector,ls::RigidBodyMotion,b::Body)
_check_for_only_one_body(ls)
motion_rhs!(dxdt,x,t,a_edof,a_udof,ls,BodyList([b]))
end
### updating exogenous variables ###
"""
zero_exogenous(ls::RigidBodyMotion)
Generate a zero vector of exogenous acclerations for system `ls`
"""
zero_exogenous(ls::RigidBodyMotion) = zero(ls.a_edof_buffer)
"""
update_exogenous!(ls::RigidBodyMotion,a_edof::AbstractVector)
Mutates the exogenous buffer of `ls` with the supplied vector of exogenous
accelerations `a_edof`. This function is useful for supplying time-varying exogenous
values to the integrator from an outer loop.
"""
function update_exogenous!(ls::RigidBodyMotion,a_edof::AbstractVector)
@assert length(ls.a_edof_buffer) == length(a_edof) "Incorrect length of exogenous vector"
ls.a_edof_buffer .= a_edof
nothing
end
"""
rebase_from_inertial_to_reference(Xi_to_A::MotionTransform,x::AbstractVector,m::RigidBodyMotion,reference_body::Int)
If `Xi_to_A` represents a motion transform from the inertial coordinates to some
other coordinates A, such as that of a body, then this function returns a motion transform from
the reference body coordinates to coordinates A. It uses the current joint
state vector `x` to construct the transform list of the system `m`.
"""
function rebase_from_inertial_to_reference(Xi_to_A::MotionTransform{ND},x::AbstractVector,m::RigidBodyMotion,reference_body::Int) where {ND}
Xl = body_transforms(x,m)
Xi_to_ref = _reference_transform(Xl,ND,Val(reference_body))
Xref_to_A = Xi_to_A*inv(Xi_to_ref)
return Xref_to_A
end
### Surface velocity API ###
"""
surface_velocity!(u::AbstractVector,v::AbstractVector,bl::BodyList,x::AbstractVector,m::RigidBodyMotion,t::Real[;axes=0,frame=axes,motion_part=:full])
Calculate the surface velocity components `u` and `v` for the points on bodies `bl`. The function evaluates
prescribed kinematics at time `t` and extracts non-prescribed (exogenous and unconstrained) velocities from
state vector `x`. There are three keyword arguments that can change the behavior of this function:
`axes` determines whether the components returned are expressed in the inertial coordinate
system (0, the default) or another body's coordinates (the body ID); `frame`
specifies that the motion should be measured relative to another reference body's velocity (by default, 0); and `motion_part` determines
whether the entire reference body velocity is used (`:full`, the default), only the angular part (`:angular`),
or only the linear part (`:linear`).
"""
function surface_velocity!(u::AbstractVector,v::AbstractVector,bl::BodyList,x::AbstractVector,m::RigidBodyMotion{ND},t::Real;
axes=0,frame=0,motion_part=:full) where {ND}
@unpack deformations = m
Xl = body_transforms(x,m)
vl = body_velocities(x,t,m)
Xref = _reference_transform(Xl,ND,Val(axes))
Xframe = _reference_transform(Xl,ND,Val(frame))
vref_0 = inv(Xframe)*_reference_velocity(vl,ND,motion_part,Val(frame))
for (bid,b) in enumerate(bl)
ub = view(u,bl,bid)
vb = view(v,bl,bid)
R = _rotation_transform(Xl[bid],Xref,Val(bid==axes))
vrel = vl[bid] - Xl[bid]*vref_0 # relative velocity
_surface_velocity!(ub,vb,b,vrel,deformations[bid],R,t)
end
end
function surface_velocity!(u::AbstractVector,v::AbstractVector,b::Body,x::AbstractVector,m::RigidBodyMotion,t::Real;kwargs...)
_check_for_only_one_body(m)
surface_velocity!(u,v,BodyList([b]),x,m,t;kwargs...)
end
_reference_transform(ml,ND,::Val{0}) = MotionTransform{ND}()
_reference_transform(ml,ND,::Val{N}) where N = ml[N]
_reference_velocity(vl,ND,motion_part,::Val{0}) = PluckerMotion{ND}()
_reference_velocity(vl,ND,motion_part,::Val{N}) where N = _body_velocity(vl[N],Val(motion_part))
_rotation_transform(X::MotionTransform,Xref::MotionTransform,::Val{false}) = rotation_transform(Xref*inv(X))
_rotation_transform(X::MotionTransform{ND},Xref::MotionTransform,::Val{true}) where {ND} = MotionTransform{ND}()
_body_velocity(v::PluckerMotion,::Val{:full}) = v
_body_velocity(v::PluckerMotion,::Val{:angular}) = angular_only(v)
_body_velocity(v::PluckerMotion,::Val{:linear}) = linear_only(v)
"""
velocity_in_body_coordinates_2d(x,y,v::AbstractPluckerMotionVector)
Evaluate the rigid-body velocity `v` at position ``(x,y)``, in the same
coordinate system as `v` itself.
"""
function velocity_in_body_coordinates_2d(x̃,ỹ,vb::AbstractPluckerMotionVector{2})
Xb_to_p = MotionTransform(x̃,ỹ,0.0)
Xb_to_p*vb
end
function velocity_in_inertial_coordinates_2d(x̃,ỹ,vb::AbstractPluckerMotionVector{2},Xb_to_0::MotionTransform{2})
rotation_transform(Xb_to_0)*velocity_in_body_coordinates_2d(x̃,ỹ,vb)
end
function velocity_in_body_coordinates_2d!(u::AbstractVector,v::AbstractVector,b::Body,vb::AbstractPluckerMotionVector{2})
for i in 1:numpts(b)
vp = velocity_in_body_coordinates_2d(b.x̃[i],b.ỹ[i],vb)
u[i], v[i] = vp.linear
end
end
function _surface_velocity!(u::AbstractVector,v::AbstractVector,b::Body,vb::AbstractPluckerMotionVector{2},deformation::AbstractDeformationMotion,Rb_to_0::MotionTransform{2},t)
u .= 0.0
v .= 0.0
_surface_velocity!(u,v,b,deformation,t)
for i in 1:numpts(b)
vp = velocity_in_body_coordinates_2d(b.x̃[i],b.ỹ[i],vb)
vp += PluckerMotion{2}(linear=[u[i],v[i]]) # add the deformation to the rigid-body plucker vector
vp = Rb_to_0*vp # rotate to the inertial system
u[i], v[i] = vp.linear
end
end
### update_body! API ###
"""
update_body!(bl::Union{Body,BodyList},x::AbstractVector,m::RigidBodyMotion)
Update body/bodies in `bl` with the rigid-body motion `m` and state vector `x`.
"""
function update_body!(bl::BodyList,x::AbstractVector,m::RigidBodyMotion)
@unpack deformations = m
for (bid,b) in enumerate(bl)
_update_body!(b,deformation_vector(x,m,bid),deformations[bid])
end
ml = body_transforms(x,m)
update_body!(bl,ml)
return bl
end
function update_body!(b::Body,x::AbstractVector,m::RigidBodyMotion)
_check_for_only_one_body(m)
@unpack deformations = m
_update_body!(b,deformation_vector(x,m,1),deformations[1])
T = body_transforms(x,m)[1]
update_body!(b,T)
return b
end
"""
update_body!(bl::Union{Body,BodyList},x::AbstractVector,m::RigidBodyMotion)
Transform body/bodies in `bl` with the rigid-body motion `m` and state vector `x`.
"""
function transform_body!(bl::BodyList,x::AbstractVector,m::RigidBodyMotion)
@unpack deformations = m
for (bid,b) in enumerate(bl)
_update_body!(b,deformation_vector(x,m,bid),deformations[bid])
end
ml = body_transforms(x,m)
transform_body!(bl,ml)
return bl
end
function transform_body!(b::Body,x::AbstractVector,m::RigidBodyMotion)
_check_for_only_one_body(m)
@unpack deformations = m
_update_body!(b,deformation_vector(x,m,1),deformations[1])
T = body_transforms(x,m)[1]
transform_body!(b,T)
return b
end
"""
maxvelocity(b::Union{Body,BodyList},x::AbstractVector,m::RigidBodyMotion[,tmax=10,dt=0.05])
Search through the given motion state vector `x` and motion `m` applied to body `b` and return `(umax,i,t,bid)`,
the maximum velocity magnitude, the global index of the body point where it
occurs, the time at which it occurs, and the body on which it occurs.
"""
function maxvelocity(bl::BodyList,x::AbstractVector,m::RigidBodyMotion;tf=10.0,dt=0.05)
u, v = zeros(numpts(bl)), zeros(numpts(bl))
i = 1
bid = 1
umax = 0.0
tmax = 0.0
for t in 0.0:dt:tf
surface_velocity!(u,v,bl,x,m,t)
umag = sqrt.(u.^2+v.^2)
umax_t, i_t = findmax(umag)
bid_t, iloc_t = global_to_local_index(i_t,bl)
if umax_t > umax
umax, i, tmax, bid = umax_t, i_t, t, bid_t
end
end
return umax, i, tmax, bid
end
maxvelocity(b::Body,x::AbstractVector,m::RigidBodyMotion;kwargs...) = maxvelocity(BodyList([b]),x,m;kwargs...)
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 24970 | # Rigid-body transformation routines
# Things to do here:
# - Combine RigidTransform with MotionTransform
# - probably should distinguish in-place and non-in-place versions
const O3VECTOR = SVector{3}(zeros(Float64,3))
const I3 = SMatrix{3,3}(I)
const O3 = SMatrix{3,3}(zeros(Float64,9))
const I6 = SMatrix{6,6}(I)
const PLUCKER2DANG = 1:1
const PLUCKER2DLIN = 2:3
const PLUCKER3DANG = 1:3
const PLUCKER3DLIN = 4:6
plucker_dimension(::Val{2}) = 3
plucker_dimension(::Val{3}) = 6
### Plucker vectors ###
abstract type AbstractPluckerVector{ND} end
abstract type AbstractPluckerMotionVector{ND} <: AbstractPluckerVector{ND} end
abstract type AbstractPluckerForceVector{ND} <: AbstractPluckerVector{ND} end
"""
PluckerMotion(data::AbstractVector)
Creates an instance of a Plucker motion vector,
``v = \\begin{bmatrix} \\Omega \\\\ U \\end{bmatrix}``
using the vector in `data`. If `data` is of length 6, then it creates a 3d motion vector,
and the first 3 entries are assumed to comprise the rotational component `\\Omega` and the last 3 entries the
translational component `U`. If `data` is of length 3, then it creates
a 2d motion vector, assuming that the first entry in `data` represents
the rotational component and the second and third entries the
x and y translational components.
""" PluckerMotion
"""
PluckerForce(data::AbstractVector)
Creates an instance of a Plucker force vector,
``f = \\begin{bmatrix} M \\\\ F \\end{bmatrix}``
using the vector in `data`. If `data` is of length 6, then it creates a 3d force vector,
and the first 3 entries are assumed to comprise the moment component `M` and the last 3 entries the
force component `F`. If `data` is of length 3, then it creates
a 2d force vector, assuming that the first entry in `data` represents
the moment component and the second and third entries the
x and y force components.
""" PluckerForce
for typename in [:PluckerMotion,:PluckerForce]
abstype = Symbol("Abstract",typename,"Vector")
@eval struct $typename{ND} <: $abstype{ND}
data :: SVector
angular :: SubArray
linear :: SubArray
$typename{2}(v::SVector) = new{2}(v,view(v,PLUCKER2DANG),view(v,PLUCKER2DLIN))
$typename{3}(v::SVector) = new{3}(v,view(v,PLUCKER3DANG),view(v,PLUCKER3DLIN))
end
fname_underscore = Symbol("_",lowercase(string(typename)))
@eval function $typename{ND}() where {ND}
pd = plucker_dimension(Val(ND))
$typename{ND}(SVector{pd}(zeros(Float64,pd)))
end
@eval $typename(v::SVector{3}) = $typename{2}(v)
@eval $typename{2}(;angular::Real = zero(Float64),linear::AbstractVector = zeros(Float64,2)) = $typename(angular,linear)
@eval $typename{3}(;angular::AbstractVector = zeros(Float64,3),linear::AbstractVector = zeros(Float64,3)) = $typename(angular,linear)
@eval $typename(Ω::Real,U::AbstractVector) = $typename([Ω,U...])
@eval $typename(Ω::AbstractVector,U::AbstractVector) = $typename([Ω...,U...])
@eval $typename(v::SVector{6}) = $typename{3}(v)
@eval $typename(v::AbstractVector) = $fname_underscore(v,Val(length(v)))
# We might not want to have strictly Float64 elements, so might rethink this
@eval $fname_underscore(v,::Val{3}) = $typename(SVector{3}(convert(Vector{Float64},v)))
@eval $fname_underscore(v,::Val{6}) = $typename(SVector{6}(convert(Vector{Float64},v)))
@eval (+)(a::$typename{ND},b::$typename{ND}) where {ND} = $typename{ND}(a.data+b.data)
@eval (-)(a::$typename{ND},b::$typename{ND}) where {ND} = $typename{ND}(a.data-b.data)
@eval (-)(a::$typename{ND}) where {ND} = $typename{ND}(-a.data)
@eval @propagate_inbounds getindex(A::$typename, i::Int) = A.data[i]
@eval @propagate_inbounds getindex(A::$typename, I...) = A.data[I...]
@eval iterate(A::$typename) = iterate(A.data)
@eval iterate(A::$typename,I) = iterate(A.data,I)
@eval size(A::$typename) = size(A.data)
@eval length(A::$typename) = length(A.data)
@eval _get_angular_part(v::$typename) = v.angular
@eval _get_linear_part(v::$typename) = v.linear
end
function show(io::IO, p::PluckerMotion{3})
print(io, "3d Plucker motion vector, Ω = $(p.angular), v = $(p.linear)")
end
function show(io::IO, p::PluckerMotion{2})
print(io, "2d Plucker motion vector, Ω = $(p.angular[1]), U = $(p.linear)")
end
function show(io::IO, p::PluckerForce{3})
print(io, "3d Plucker force vector, M = $(p.angular), F = $(p.linear)")
end
function show(io::IO, p::PluckerForce{2})
print(io, "2d Plucker force vector, M = $(p.angular[1]), F = $(p.linear)")
end
for motname in [:Motion,:Force]
typename = Symbol("Plucker",motname)
transname = Symbol(motname,"Transform")
abstype = Symbol("Abstract",typename,"Vector")
for partname in [:Angular,:Linear]
newtype = Symbol(typename,partname)
fname = Symbol(lowercase(string(partname)),"_only")
getpartfunc = Symbol("_get_",lowercase(string(partname)),"_part")
@eval export $newtype, $fname
@eval struct $newtype{ND} <: $abstype{ND}
plucker :: $abstype{ND}
$newtype(v::$typename{ND}) where {ND} = new{ND}(v)
end
@eval (+)(a::$newtype{ND},b::$newtype{ND}) where {ND} = $newtype{ND}(a.plucker+b.plucker)
@eval (-)(a::$newtype{ND},b::$newtype{ND}) where {ND} = $newtype{ND}(a.plucker-b.plucker)
@eval (-)(a::$newtype{ND}) where {ND} = $newtype{ND}(-a.plucker)
@eval $fname(v::$typename) = $newtype(v::$typename)
@eval $getpartfunc(v::$newtype) = $getpartfunc(v.plucker)
end
end
"""
angular_only(v::AbstractPluckerVector)
Returns a Plucker vector with only the angular part of the motion or force vector `v`
available for subsequent operations. Note that no copy of the original data
in `v` is made. Rather, this simply provides a lazy reference to the angular data
in `v`.
""" angular_only
"""
linear_only(v::AbstractPluckerVector)
Returns a Plucker vector with only the linear part of the motion or force vector `v`
available for subsequent operations. Note that no copy of the original data
in `v` is made. Rather, this simply provides a lazy reference to the linear data
in `v`.
""" linear_only
"""
dot(f::AbstractPluckerForceVector,v::AbstractPluckerMotionVector) -> Real
Calculate the scalar product between force `f` and motion `v`. The
commutation of this is also possible, `dot(v,f)`.
""" dot(::AbstractPluckerForceVector,::AbstractPluckerMotionVector)
dot(f::PluckerForce{ND},v::PluckerMotion{ND}) where {ND} = dot(f.data,v.data)
dot(v::PluckerMotion{ND},f::PluckerForce{ND}) where {ND} = dot(f,v)
dot(f::PluckerForceAngular{ND},v::AbstractPluckerMotionVector{ND}) where {ND} = dot(_get_angular_part(f),_get_angular_part(v))
dot(f::PluckerForceLinear{ND},v::AbstractPluckerMotionVector{ND}) where {ND} = dot(_get_linear_part(f),_get_linear_part(v))
dot(f::AbstractPluckerForceVector{ND},v::PluckerMotionAngular{ND}) where {ND} = dot(_get_angular_part(f),_get_angular_part(v))
dot(f::AbstractPluckerForceVector{ND},v::PluckerMotionLinear{ND}) where {ND} = dot(_get_linear_part(f),_get_linear_part(v))
dot(v::PluckerMotionAngular{ND},f::AbstractPluckerForceVector{ND}) where {ND} = dot(_get_angular_part(f),_get_angular_part(v))
dot(v::PluckerMotionLinear{ND},f::AbstractPluckerForceVector{ND}) where {ND} = dot(_get_linear_part(f),_get_linear_part(v))
dot(v::AbstractPluckerMotionVector{ND},f::PluckerForceAngular{ND}) where {ND} = dot(_get_angular_part(f),_get_angular_part(v))
dot(v::AbstractPluckerMotionVector{ND},f::PluckerForceLinear{ND}) where {ND} = dot(_get_linear_part(f),_get_linear_part(v))
### Plucker transform matrices ###
abstract type AbstractTransformOperator{ND} end
struct MotionTransform{ND} <: AbstractTransformOperator{ND}
x :: SVector
R :: SMatrix
matrix :: SMatrix
end
struct ForceTransform{ND} <: AbstractTransformOperator{ND}
x :: SVector
R :: SMatrix
matrix :: SMatrix
end
const RigidTransform = MotionTransform{ND} where {ND}
function show(io::IO, p::MotionTransform{3})
print(io, "3d motion transform, x = $(p.x), R = $(p.R)")
end
function show(io::IO, p::ForceTransform{3})
print(io, "3d force transform, x = $(p.x), R = $(p.R)")
end
function show(io::IO, p::MotionTransform{2})
print(io, "2d motion transform, x = $(p.x[1:2]), R = $(p.R[1:2,1:2])")
end
function show(io::IO, p::ForceTransform{2})
print(io, "2d force transform, x = $(p.x[1:2]), R = $(p.R[1:2,1:2])")
end
translation(T::AbstractTransformOperator{3}) = T.x
rotation(T::AbstractTransformOperator{3}) = T.R
translation(T::AbstractTransformOperator{2}) = SVector{2}(T.x[1:2])
rotation(T::AbstractTransformOperator{2}) = SMatrix{2,2}(T.R[1:2,1:2])
(*)(T::AbstractTransformOperator,v) = T.matrix*v
(*)(v,T::AbstractTransformOperator) = v*T.matrix
(*)(T::MotionTransform,v::PluckerMotion) = PluckerMotion(T*v.data)
(*)(T::ForceTransform,v::PluckerForce) = PluckerForce(T*v.data)
for motname in [:Motion,:Force]
typename = Symbol("Plucker",motname)
transname = Symbol(motname,"Transform")
#abstype = Symbol("Abstract",typename,"Vector")
newangulartype = Symbol(typename,"Angular")
newlineartype = Symbol(typename,"Linear")
@eval (*)(T::$transname,v::$newangulartype{2}) = $typename(view(T.matrix,1:3,PLUCKER2DANG)*_get_angular_part(v))
@eval (*)(T::$transname,v::$newangulartype{3}) = $typename(view(T.matrix,1:6,PLUCKER3DANG)*_get_angular_part(v))
@eval (*)(T::$transname,v::$newlineartype{2}) = $typename(view(T.matrix,1:3,PLUCKER2DLIN)*_get_linear_part(v))
@eval (*)(T::$transname,v::$newlineartype{3}) = $typename(view(T.matrix,1:6,PLUCKER3DLIN)*_get_linear_part(v))
end
"""
transpose(X::MotionTransform) -> ForceTransform
transpose(X::ForceTransform) -> MotionTransform
For a motion transform `X` mapping from system A to B,
returns the force transform mapping from B to A. Alternatively,
if `X` is a force transform, it returns the motion transform.
"""
function transpose(T::MotionTransform{ND}) where {ND}
x = cross_vector(T.R*cross_matrix(-T.x)*T.R')
ForceTransform{ND}(x,transpose(T.R),transpose(T.matrix))
end
function transpose(T::ForceTransform{ND}) where {ND}
x = cross_vector(T.R*cross_matrix(-T.x)*T.R')
MotionTransform{ND}(x,transpose(T.R),transpose(T.matrix))
end
"""
inv(X::AbstractTransformOperator) -> AbstractTransformOperator
Return the inverse of the motion or force transform `X`.
"""
inv(T::MotionTransform{ND}) where {ND} = transpose(ForceTransform{ND}(T.x,T.R))
inv(T::ForceTransform{ND}) where {ND} = transpose(MotionTransform{ND}(T.x,T.R))
# Should be able to do the following in a lazy way, by wrapping the original transform
# rather than making a whole new transform.
"""
rotation_transform(T::AbstractTransformOperator) -> AbstractTransformOperator
Returns a transform operator consisting of only the rotational part of `T`.
"""
rotation_transform(T::MotionTransform{ND}) where {ND} = MotionTransform{ND}(O3VECTOR,T.R)
rotation_transform(T::ForceTransform{ND}) where {ND} = ForceTransform{ND}(O3VECTOR,T.R)
"""
translation_transform(T::AbstractTransformOperator) -> AbstractTransformOperator
Returns a transform operator consisting of only the translational part of `T`.
"""
translation_transform(T::MotionTransform{ND}) where {ND} = MotionTransform{ND}(T.x,I3)
translation_transform(T::ForceTransform{ND}) where {ND} = ForceTransform{ND}(T.x,I3)
vec(T::AbstractTransformOperator{2}) = [T.x[1],T.x[2],_get_angle_of_2d_transform(T)]
function _get_angle_of_2d_transform(T::AbstractTransformOperator{2})
eith = T.R[1,1] + im*T.R[1,2]
return real(-im*log(eith))
end
### MotionTransform acting on position coordinate data ###
function (T::MotionTransform{2})(x̃::Real,ỹ::Real)
Xr = T.R'*[x̃,ỹ,0.0]
return T.x[1] + Xr[1], T.x[2] + Xr[2]
end
function (T::MotionTransform{2})(x̃::AbstractVector{S},ỹ::AbstractVector{S}) where {S<:Real}
x = deepcopy(x̃)
y = deepcopy(ỹ)
for i = 1:length(x̃)
x[i],y[i] = T(x̃[i],ỹ[i])
end
return x, y
end
"""
(T::MotionTransform)(b::Body) -> Body
Transforms a body `b` using the given `MotionTransform`, creating a copy of this body
with the new configuration. In using this
transform `T` (which defines a transform from system A to system B), A is interpreted as an inertial coordinate
system and B as the body system. Thus, the position vector in `T` is interpreted
as the relative position of the body in inertial coordinates and the inverse of the rotation
operator is applied to transform body-fixed coordinates to the inertial frame.
"""
function (T::MotionTransform{2})(b::Body)
b_transform = deepcopy(b)
update_body!(b_transform,T)
end
"""
update_body!(b::Body,T::MotionTransform)
Transforms a body (in-place) using the given `MotionTransform`. In using this
transform `T` (which defines a transform from system A to system B), A is interpreted as an inertial coordinate
system and B as the body system. Thus, the position vector in `T` is interpreted
as the relative position of the body in inertial coordinates and the inverse of the rotation
operator is applied to transform body-fixed coordinates to the inertial frame.
"""
function update_body!(b::Body{N,C},T::MotionTransform{2}) where {N,C}
b.xend, b.yend = T(b.x̃end,b.ỹend)
b.x, b.y = _midpoints(b.xend,b.yend,C)
b.α = _get_angle_of_2d_transform(T)
b.cent = (T.x[1], T.x[2])
return b
end
function update_body!(b::NullBody,T::MotionTransform{2})
return b
end
"""
transform_body!(b::Body,T::MotionTransform)
Transforms a body's own coordinate system (in-place) using the given `MotionTransform`.
This function differs from [`update_body!`](@ref) because it changes the
coordinates of the body in its own coordinate system, whereas the latter function
only changes the inertial coordinates of the body. `T` is interpreted
as a transform from the new system to the old system.
"""
function transform_body!(b::Body{N,C},T::MotionTransform{2}) where {N,C}
b.xend, b.yend = T(b.x̃end,b.ỹend)
b.x̃end .= b.xend
b.ỹend .= b.yend
b.x, b.y = _midpoints(b.xend,b.yend,C)
b.x̃ .= b.x
b.ỹ .= b.y
b.α = _get_angle_of_2d_transform(T)
b.cent = (T.x[1], T.x[2])
return b
end
###
function _motion_transform_matrix(xA_to_B::SVector{3},RA_to_B::SMatrix{3,3})
xM = cross_matrix(xA_to_B)
Mtrans = SMatrix{6,6}([I3 O3;
-xM I3])
Mrot = SMatrix{6,6}([RA_to_B O3;
O3 RA_to_B])
return Mrot*Mtrans
end
function _force_transform_matrix(xA_to_B::SVector{3},RA_to_B::SMatrix{3,3})
xM = cross_matrix(xA_to_B)
Mtrans = SMatrix{6,6}([I3 -xM;
O3 I3])
Mrot = SMatrix{6,6}([RA_to_B O3;
O3 RA_to_B])
return Mrot*Mtrans
end
function _motion_transform_matrix(xA_to_B::SVector{3})
xM = cross_matrix(xA_to_B)
Mtrans = SMatrix{6,6}([I3 O3;
-xM I3])
return Mtrans
end
function _force_transform_matrix(xA_to_B::SVector{3})
xM = cross_matrix(xA_to_B)
Mtrans = SMatrix{6,6}([I3 -xM;
O3 I3])
return Mtrans
end
function _motion_transform_matrix(RA_to_B::SMatrix{3,3})
Mrot = SMatrix{6,6}([RA_to_B O3;
O3 RA_to_B])
return Mrot
end
function _force_transform_matrix(RA_to_B::SMatrix{3,3})
Mrot = SMatrix{6,6}([RA_to_B O3;
O3 RA_to_B])
return Mrot
end
for f in [:motion, :force]
fname_underscore = Symbol("_",f,"_transform_matrix")
fname2d_underscore = Symbol(fname_underscore,"_2d")
typename = Symbol(uppercasefirst(string(f)),"Transform")
@eval $typename{3}(x_3d::SVector{3},R_3d::SMatrix{3,3}) = $typename(x_3d,R_3d)
@eval $typename{2}(x_3d::SVector{3},R_3d::SMatrix{3,3}) = $typename(SVector{2}(view(x_3d,1:2)),R_3d)
@eval $typename{ND}() where {ND} = $typename{ND}(O3VECTOR,rotation_identity())
@eval function $typename(x_3d::SVector{3},R_3d::SMatrix{3,3})
M = $fname_underscore(x_3d,R_3d)
return $typename{3}(x_3d,R_3d,M)
end
@eval function $typename(x_2d::SVector{2},R_3d::SMatrix{3,3})
x_3d = SVector{3}([x_2d... 0.0])
M = $fname2d_underscore(x_3d,R_3d)
return $typename{2}(x_3d,R_3d,M)
end
@eval function $typename(x_2d::SVector{2})
x_3d = SVector{3}([x_2d... 0.0])
M = $fname2d_underscore(x_3d)
return $typename{2}(x_3d,I3,M)
end
@eval function $typename(x_2d::SVector{2},R_2d::SMatrix{2,2})
R_3d = SMatrix{3,3}([R_2d zeros(Float64,2,1); zeros(Float64,1,2) 1.0])
$typename(x_2d,R_3d)
end
@eval function $typename(x::AbstractVector,R::AbstractMatrix)
lenx = length(x)
nx, ny = size(R)
@assert (lenx == 2 || lenx == 3) "x has inconsistent length"
@assert (nx == ny == 3 || nx == ny == 2) "Rotation matrix has inconsistent dimensions"
$typename(SVector{lenx}(x),SMatrix{nx,ny}(R))
end
@eval $typename(x::SVector{2},Θ::Real) = $typename(x,rotation_about_z(-Θ))
@eval $typename(x::Vector,θ::Real) = $typename(SVector{2}(x),θ)
@eval $typename(x::Tuple,θ::Real) = $typename(SVector{2}(x...),θ)
@eval $typename(x::Real,y::Real,θ::Real) = $typename(SVector{2}([x,y]),θ)
@eval $typename(c::Complex{T},θ::Real) where T<:Real = $typename((real(c),imag(c)),θ)
@eval $typename(v::AbstractVector) = $typename(v...)
@eval $typename(T::RigidTransform) = $typename(vec(T))
@eval function $fname2d_underscore(x_3d::SVector{3},R_3d::SMatrix{3,3})
M_3d = $fname_underscore(x_3d,R_3d)
return SMatrix{3,3}(view(M_3d,3:5,3:5))
end
@eval function $fname2d_underscore(x_3d::SVector{3})
M_3d = $fname_underscore(x_3d)
return SMatrix{3,3}(view(M_3d,3:5,3:5))
end
@eval function $fname2d_underscore(R_3d::SMatrix{3,3})
M_3d = $fname_underscore(R_3d)
return SMatrix{3,3}(view(M_3d,3:5,3:5))
end
@eval function (*)(T1::$typename{ND},T2::$typename{ND}) where {ND}
x12 = cross_vector(T2.R'*cross_matrix(T1.x)*T2.R + cross_matrix(T2.x))
R12 = T1.R*T2.R
$typename{ND}(x12,R12,T1.matrix*T2.matrix)
end
end
"""
MotionTransform(xA_to_B::SVector,RA_to_B::SMatrix) -> MotionTransform
Computes the Plucker transform matrix for motion vectors, transforming
from system A to system B. The input `xA_to_B` is the Euclidean vector from the origin of A to
the origin of B, expressed in A coordinates, and `RA_to_B` is the rotation
matrix transforming coordinates in system A to those in system B. The resulting matrix has the form
``{}^B T^{(m)}_A = \\begin{bmatrix} R & 0 \\\\ 0 & R \\end{bmatrix} \\begin{bmatrix} 1 & 0 \\\\ -x^\\times & 1 \\end{bmatrix}``
One can also provide `xA_to_B` as a standard vector and `RA_to_B` as a standard
3 x 3 matrix.
If `xA_to_B` has length 3, then a three-dimensional transform (a 6 x 6 Plucker transform)
is created. If `xA_to_B` has length 2, then a two-dimensional transform (3 x 3 Plucker transform)
is returned.
""" MotionTransform(::SVector{3},::SMatrix)
"""
MotionTransform(xA_to_B,θ::Real) -> MotionTransform
Computes the 3 x 3 2D Plucker transform matrix for motion vectors, transforming
from system A to system B. The input `xA_to_B` is the 2-d Euclidean vector from the origin of A to
the origin of B, expressed in A coordinates, and `θ` is the angle of system B relative
to system A. `xA_to_B` can be in the form
of a static vector, a vector, or a tuple.
""" MotionTransform(::AbstractVector,::Real)
"""
MotionTransform(T::RigidTransform) -> MotionTransform
Computes the 3 x 3 2D Plucker transform matrix for motion vectors, transforming
from system A to system B, from the rigid transform `T`.
""" MotionTransform(::RigidTransform)
"""
ForceTransform(xA_to_B::SVector,RA_to_B::SMatrix) -> ForceTransform
Computes the 6 x 6 Plucker transform matrix for force vectors, transforming
from system A to system B. The input `xA_to_B` is the Euclidean vector from the origin of A to
the origin of B, expressed in A coordinates, and `RA_to_B` is the rotation
matrix transforming coordinates in system A to those in system B. The resulting matrix has the form
``{}^B T^{(f)}_A = \\begin{bmatrix} R & 0 \\\\ 0 & R \\end{bmatrix} \\begin{bmatrix} 1 & -x^\\times \\\\ 0 & 1 \\end{bmatrix}``
""" ForceTransform(::SVector{3},::SMatrix)
"""
ForceTransform(xA_to_B,θ::Real) -> ForceTransform
Computes the 3 x 3 2D Plucker transform matrix for force vectors, transforming
from system A to system B. The input `xA_to_B` is the 2-d Euclidean vector from the origin of A to
the origin of B, expressed in A coordinates, and `θ` is the angle of system B relative
to system A. `xA_to_B` can be in the form
of a static vector, a vector, or a tuple.
""" ForceTransform(::AbstractVector,::Real)
"""
ForceTransform(T::RigidTransform) -> ForceTransform
Computes the 3 x 3 2D Plucker transform matrix for force vectors, transforming
from system A to system B, from the rigid transform `T`.
""" ForceTransform(::RigidTransform)
### Rotation matrices ###
rotation_identity() = I3
"""
rotation_about_z(θ::Real) -> SMatrix{3,3}
Constructs the rotation matrix corresponding to rotation about the z axis
by angle θ. The matrix transforms the coordinates of a vector
in system A to coordinates in system B, where Θ is the angle of A with respect to B.
(Flip the sign of the input Θ if you want it to correspond to B's angle relative to A.)
"""
function rotation_about_z(θ::Real)
cth, sth = cos(θ), sin(θ)
R = @SMatrix[cth -sth 0.0; sth cth 0.0; 0.0 0.0 1.0]
return R
end
"""
rotation_about_y(θ::Real) -> SMatrix{3,3}
Constructs the rotation matrix corresponding to rotation about the y axis
by angle θ. The matrix transforms the coordinates of a vector
in system A to coordinates in system B, where Θ is the angle of A with respect to B.
(Flip the sign of the input Θ if you want it to correspond to B's angle relative to A.)
"""
function rotation_about_y(θ::Real)
cth, sth = cos(θ), sin(θ)
R = @SMatrix[cth 0.0 sth; 0.0 1.0 0.0; -sth 0.0 cth]
return R
end
"""
rotation_about_x(θ::Real) -> SMatrix{3,3}
Constructs the rotation matrix corresponding to rotation about the x axis
by angle θ. The matrix transforms the coordinates of a vector
in system A to coordinates in system B, where Θ is the angle of A with respect to B.
(Flip the sign of the input Θ if you want it to correspond to B's angle relative to A.)
"""
function rotation_about_x(θ::Real)
cth, sth = cos(θ), sin(θ)
R = @SMatrix[1.0 0.0 0.0; 0.0 cth -sth; 0.0 sth cth]
return R
end
"""
rotation_about_axis(θ::Real,v::Vector) -> SMatrix{3,3}
Constructs the rotation matrix corresponding to rotation about the axis `v`
by angle θ. The matrix transforms the coordinates of a vector
in system A to coordinates in system B, where Θ is the angle of A with respect to B.
(Flip the sign of the input Θ if you want it to correspond to B's angle relative to A.)
"""
rotation_about_axis(ϴ::Real,v::SVector{3}) = rotation_from_quaternion(quaternion(ϴ,v))
rotation_about_axis(Θ::Real,v::Vector) = rotation_about_axis(Θ,SVector{3}(v))
"""
rotation_from_quaternion(q::SVector{4}) -> SMatrix{3,3}
Constructs a rotation matrix from a given quaternion `q` (a 4-dimensional vector).
The matrix transforms the coordinates of a vector in system A to coordinates in system B,
where A is rotated with respect to B
by θ.
"""
function rotation_from_quaternion(q::SVector{4})
w, x, y, z = q
R = @SMatrix[1-2y^2-2z^2 2*x*y-2*z*w 2*x*z+2*y*w;
2*x*y+2*z*w 1-2x^2-2z^2 2*y*z-2*x*w;
2*x*z-2*y*w 2*y*z+2*x*w 1-2x^2-2y^2]
return R
end
rotation_from_quaternion(q::Vector) = rotation_from_quaternion(SVector{4}(q))
"""
quaternion(θ::Real,v::SVector{3}) -> SVector{4}
Form the quaternion ``q = w + x\\hat{i} + y\\hat{j} + z\\hat{k}``
from the given rotation angle `θ` and rotation axis `v`. Note that `v` need not be a unit vector.
"""
function quaternion(θ::Real,v::SVector{3})
vnorm = v/norm(v)
q = SVector{4}([cos(θ/2),sin(θ/2)*vnorm...])
end
quaternion(θ::Real,v::Vector) = quaternion(θ,SVector{3}(v))
quaternion(q::AbstractVector) = quaternion(q[1],SVector{3}(q[2:4]))
"""
cross_matrix(v::SVector) -> SMatrix
Takes a vector `v` and forms the corresponding cross-product matrix `M`, so that
``v \\times w`` is equivalent to ``M\\cdot w``.
"""
function cross_matrix(v::SVector{3})
M = @SMatrix [0.0 -v[3] v[2]; v[3] 0.0 -v[1]; -v[2] v[1] 0.0]
return M
end
cross_matrix(v::Vector) = cross_matrix(SVector{3}(v))
"""
cross_vector(M::SMatrix) -> SVector
Takes a matrix `M` and forms the corresponding axial vector `v` from the matrix's
anti-symmetric part (``M_a = (M-M^{T})/2``), so that ``v \\times w`` is equivalent
to ``M_a\\cdot w``.
"""
function cross_vector(M::SMatrix{3,3})
Ma = 0.5*(M - transpose(M))
return @SVector [Ma[3,2],Ma[1,3],Ma[2,1]]
end
cross_vector(M::Matrix) = cross_vector(SMatrix{3,3}(M))
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 20000 | using Dierckx
using Statistics: mean
using Elliptic
using Roots
using LinearAlgebra
#=
Approach:
- every body shape must contain xend, yend, x̃end, ỹend, x, y, x̃, ỹ
- x̃end, ỹend, x̃, ỹ, are the untransformed coordinates and remain invariant in rigid transforms,
but are modified in deforming motions
- end points of segments are moved (dx̃end/dt) transformed (x̃end -> xend).
- For polygons, the endpoints coincide with vertices.
- the Lagrange points (x, y) are the midpoints of segments, and are to be
computed from (xend, yend) using midpoint after every transform.
- may not need the x̃, ỹ coordinates.
=#
export BasicBody,Ellipse,Circle,Rectangle,Square,Plate,ThickPlate,SplinedBody,NACA4,Polygon,NullBody
"""
BasicBody(x,y[,closuretype=ClosedBody]) <: Body
Construct a body by simply passing in the `x` and `y` coordinate vectors. The last
point will be automatically connected to the first point. The coordinate vectors
are assumed to be expressed in the body-fixed coordinate system. The optional
`closuretype` specifies whether the body is closed (`ClosedBody`) or open (`OpenBody`).
If closed, then the first and last points are assumed joined in operations that
require neighbor points.
"""
mutable struct BasicBody{N,C<:BodyClosureType} <: Body{N,C}
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
end
function BasicBody(xend::Vector{T},yend::Vector{T};closuretype::Type{<:BodyClosureType}=ClosedBody) where {T <: Real}
@assert length(xend) == length(yend)
x, y = _midpoints(xend,yend,closuretype)
BasicBody{length(x),closuretype}((0.0,0.0),0.0,x,y,x,y,xend,yend,xend,yend)
end
function Base.show(io::IO, body::BasicBody{N,C}) where {N,C}
println(io, "Basic pointwise-specified body with $N points")
println(io, " Current position: ($(body.cent[1]),$(body.cent[2]))")
println(io, " Current angle (rad): $(body.α)")
end
#### Ellipses and circles ####
"""
Ellipse(a,b,n[,endpointson=false],[shifted=false]) <: Body
Construct an elliptical body with semi-major axis `a` and semi-minor axis `b`,
with `n` points distributed on the body perimeter. Can also call this
with `Ellipse(a,b,ds)` where `ds` is the desired spacing between points.
If `endpointson=true`, then
the endpoints will be placed on the surface and the midpoints
will lie inside the nominal ellipse. By default, the midpoints lie on
the ellipse. If `shifted=true`, then the first endpoint lies on an axis
of symmetry. By default the first midpoint lies on the axis symmetry.
"""
mutable struct Ellipse{N} <: Body{N,ClosedBody}
a :: Float64
b :: Float64
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
end
#=
endpointson=false ensures that the midpoints lie on the surface
of the ellipse (and the endpoints are outside)
=#
function Ellipse(a::Real,b::Real,N::Int;endpointson=false,shifted=false)
#N = 4*round(Int,N_given/4) # ensure that N is divisible by 4
shiftedtype = shifted ? Shifted : Unshifted
Nqrtr = div(N,4) + 1
maj, min = a > b ? (a, b) : (b, a)
m = 1 - min^2/maj^2
smax = maj*Elliptic.E(m)
Δs = smax/(Nqrtr-1)
ϴ, _ = _get_ellipse_thetas(Δs,smax,maj,m,shiftedtype)
_x, _y = min*cos.(ϴ), maj*sin.(ϴ)
x, y = a > b ? (reverse(_y),reverse(_x)) : (_x,_y)
adj = _last_segment_decrement(shiftedtype)
xt = vcat(x,-reverse(x[1:end-adj]),-x[1+adj:end], reverse(x[1+adj:end-adj]))
yt = vcat(y, reverse(y[1:end-adj]),-y[1+adj:end],-reverse(y[1+adj:end-adj]))
# if this is endpointson = false, then xt, yt are the desired midpoints
# otherwise, these are the endpoints
if endpointson
xend, yend = copy(xt), copy(yt)
x, y = _midpoints(xt,yt,ClosedBody)
else
x, y = copy(xt), copy(yt)
midinv = midpoint_inverse(length(x))
xend = midinv*x
yend = midinv*y
end
Ellipse{length(x)}(a,b,(0.0,0.0),0.0,x,y,x,y,xend,yend,xend,yend)
end
function _get_ellipse_thetas(Δs,smax,maj,m,shiftedtype)
slast = _start_s(Δs,shiftedtype)
θlast = 0.0
s = maj*Elliptic.E(θlast,m)
θ = _init_Θ(shiftedtype)
ds = []
while s < _max_s(smax,Δs,shiftedtype)
θi = find_zero(x -> maj*Elliptic.E(x,m) - slast - Δs,θlast,atol=1e-12)
s = maj*Elliptic.E(θi,m)
push!(ds,s-slast)
push!(θ,θi)
θlast = θi
slast = s
end
θ, ds
end
_start_s(Δs,::Type{Shifted}) = -0.5*Δs
_start_s(Δs,::Type{Unshifted}) = 0.0
_init_Θ(::Type{Shifted}) = Float64[]
_init_Θ(::Type{Unshifted}) = Float64[0.0]
_max_s(smax,Δs,::Type{Shifted}) = smax-Δs
_max_s(smax,Δs,::Type{Unshifted}) = smax
_last_segment_decrement(::Type{Shifted}) = 0
_last_segment_decrement(::Type{Unshifted}) = 1
midpoint_inverse(N) = _midpoint_inverse(N,Val(mod(N,2)==0))
function _midpoint_inverse(n::Int,::Val{true}) # even N
#mod(n,2) == 0 || error("midpoint inverse only verified for even n")
d = 1/n
u = Matrix(undef,1,n)
num = 1.0-d
sgn = 1.0
u[1] = u[n] = sgn*num
for i in 2:n÷2
num -= 2d
sgn *= -1.0
u[i] = u[n-i+1] = sgn*num
end
A = Matrix(undef,n,n)
A[1,:] = u
for i in 2:n
u .= circshift(u,(0,1))
A[i,:] = u
end
return A
end
function _midpoint_inverse(n::Int,::Val{false}) # odd N
#mod(n,2) == 0 || error("midpoint inverse only verified for even n")
u = Matrix(undef,1,n)
sgn = 1.0
u[1] = sgn
for i in 2:n
sgn *= -1.0
u[i] = sgn
end
A = copy(u)
for i in 2:n
u .= circshift(u,(0,1))
A = vcat(A,u)
end
return A
end
"""
Circle(a,n) <: Body
Construct a circular body with radius `a`
and with `n` points distributed on the body perimeter.
""" Circle(::Real,::Int)
"""
Circle(a,targetsize::Float64) <: Body
Construct a circular body with radius `a` with spacing between points set
approximately to `targetsize`.
""" Circle(::Real,::Real)
Circle(a::Real,arg;kwargs...) = Ellipse(a,a,arg;kwargs...)
function Base.show(io::IO, body::Ellipse{N}) where {N}
if body.a == body.b
println(io, "Circular body with $N points and radius $(body.a)")
else
println(io, "Elliptical body with $N points and semi-axes ($(body.a),$(body.b))")
end
println(io, " Current position: ($(body.cent[1]),$(body.cent[2]))")
println(io, " Current angle (rad): $(body.α)")
end
#### Rectangles and squares ####
"""
Rectangle(a,b,n) <: Body
Construct a rectangular body with x̃ side half-length `a` and ỹ side half-length `b`,
with approximately `n` points distributed along the perimeter. The centroid
of the rectangle is placed at the origin (so that the lower left corner is at (-a,-b)).
Points are not placed at the corners, but rather, are shifted
by half a segment. This ensures that all normals are perpendicular to the sides.
"""
Rectangle(a::Real,b::Real,arg;kwargs...) = Polygon([-a,a,a,-a],[-b,-b,b,b],arg;kwargs...)
"""
Rectangle(a,b,ds) <: Body
Construct a rectangular body with x̃ side half-length `a` and ỹ side half-length `b`,
with approximate spacing `ds` between points.
""" Rectangle(::Real,::Real,::Real)
"""
Square(a,n) <: Body
Construct a square body with side half-length `a`
and with approximately `n` points distributed along the perimeter.
"""
Square(a::Real,arg;kwargs...) = Rectangle(a,a,arg;kwargs...)
"""
Square(a,ds) <: Body
Construct a square body with side half-length `a`,
with approximate spacing `ds` between points.
""" Square(::Real,::Real)
#### Plates ####
"""
Plate(a,n) <: Body
Construct a flat plate of zero thickness with length `a`,
divided into `n` equal segments.
"""
Plate(len::Real,arg) = Polygon([-0.5*len,0.5*len],[0.0,0.0],arg,closuretype=OpenBody)
"""
Plate(a,ds) <: Body
Construct a flat plate of zero thickness with length `a`,
with approximate spacing `ds` between points.
""" Plate(::Real,::Real)
#### Polygons ####
"""
Polygon(x::Vector,y::Vector,n[,closuretype=ClosedBody])
Create a polygon shape with vertices `x` and `y`, with approximately `n` points distributed along
the perimeter.
"""
mutable struct Polygon{N,NV,C<:BodyClosureType} <: Body{N,C}
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
side :: Vector{UnitRange{Int64}}
end
"""
Polygon(x::Vector,y::Vector,ds::Float64[,closuretype=ClosedBody])
Create a polygon shape with vertices `x` and `y`, with approximate spacing `ds` between points.
""" Polygon(::AbstractVector,::AbstractVector,::Real)
function Polygon(xv::AbstractVector{T},yv::AbstractVector{T},a::Float64;closuretype=ClosedBody) where {T<:Real}
xend, yend, x, y, side = _polygon(xv,yv,a,closuretype)
Polygon{length(x),length(xv),closuretype}((0.0,0.0),0.0,x,y,x,y,xend,yend,xend,yend,side)
end
@inline Polygon(xv,yv,n::Int;closuretype=ClosedBody) =
Polygon(xv,yv,polygon_perimeter(xv,yv,closuretype)/n,closuretype=closuretype)
function polygon_perimeter(xv,yv,closuretype)
xvcirc = _extend_array(xv,closuretype)
yvcirc = _extend_array(yv,closuretype)
len = 0.0
for i in 1:length(xvcirc)-1
len += sqrt((xvcirc[i+1]-xvcirc[i])^2+(yvcirc[i+1]-yvcirc[i])^2)
end
return len
end
function Base.show(io::IO, body::Polygon{N,NV,CS}) where {N,NV,CS}
cb = CS == ClosedBody ? "Closed " : "Open "
println(io, cb*"polygon with $NV vertices and $N points")
println(io, " Current position: ($(body.cent[1]),$(body.cent[2]))")
println(io, " Current angle (rad): $(body.α)")
end
function _polygon(xv::AbstractVector{T},yv::AbstractVector{T},ds::Float64,closuretype) where {T<:Real}
xvcirc = _extend_array(xv,closuretype)
yvcirc = _extend_array(yv,closuretype)
xend, yend, side = Float64[], Float64[], UnitRange{Int64}[]
totlen = 0
for i in 1:length(xvcirc)-2
xi, yi = _line_points(xvcirc[i],yvcirc[i],xvcirc[i+1],yvcirc[i+1],ds)
len = length(xi)-1
append!(xend,xi[1:len])
append!(yend,yi[1:len])
push!(side,totlen+1:totlen+len)
totlen += len
end
xi, yi = _line_points(xvcirc[end-1],yvcirc[end-1],xvcirc[end],yvcirc[end],ds)
len = length(xi)-_last_segment_decrement(closuretype)
append!(xend,xi[1:len])
append!(yend,yi[1:len])
push!(side,totlen+1:totlen+len)
x, y = _midpoints(xend,yend,closuretype)
return xend, yend, x, y, side
end
_extend_array(x,::Type{ClosedBody}) = [x;x[1]]
_extend_array(x,::Type{OpenBody}) = x
_last_segment_decrement(::Type{ClosedBody}) = 1
_last_segment_decrement(::Type{OpenBody}) = 0
function _line_points(x1,y1,x2,y2,n::Int)
dx, dy = x2-x1, y2-y1
len = sqrt(dx^2+dy^2)
Δs = len/(n-1)
x = zeros(n)
y = zeros(n)
range = (0:n-1)/(n-1)
@. x = x1 + dx*range
@. y = y1 + dy*range
return x, y
end
function _line_points(x1,y1,x2,y2,ds::Float64)
dx, dy = x2-x1, y2-y1
len = sqrt(dx^2+dy^2)
return _line_points(x1,y1,x2,y2,round(Int,len/ds)+1)
end
#### Splined body ####
"""
SplinedBody(X,Δx[,closuretype=ClosedBody]) -> BasicBody
Using control points in `X` (assumed to be N x 2, where N is the number of points), create a set of points
that are uniformly spaced (with spacing `Δx`) on a curve that passes through the control points. A cubic
parametric spline algorithm is used. If the optional parameter `closuretype` is set
to `OpenBody`, then the end points are not joined together.
"""
function SplinedBody(Xpts_raw::Array{Float64,2},Δx::Float64;closuretype::Type{<:BodyClosureType}=ClosedBody)
x, y = _splined_body(Xpts_raw,Δx,closuretype)
return BasicBody(x,y,closuretype=closuretype)
end
"""
SplinedBody(x,y,Δx[,closuretype=ClosedBody]) -> BasicBody
Using control points in `x` and `y`, create a set of points
that are uniformly spaced (with spacing `Δx`) on a curve that passes through the control points. A cubic
parametric spline algorithm is used. If the optional parameter `closuretype` is set
to `OpenBody`, then the end points are not joined together.
"""
SplinedBody(x::AbstractVector{Float64},y::AbstractVector{Float64},Δx::Float64;kwargs...) =
SplinedBody(hcat(x,y),Δx;kwargs...)
function _splined_body(Xpts_raw::Array{Float64,2},Δx::Float64,closuretype::Type{<:BodyClosureType})
# Assume Xpts are in the form N x 2
Xpts = copy(Xpts_raw)
if Xpts[1,:] != Xpts[end,:]
Xpts = vcat(Xpts,Xpts[1,:]')
end
spl = (closuretype == ClosedBody) ? ParametricSpline(Xpts',periodic=true) : ParametricSpline(Xpts')
tfine = range(0,1,length=1001)
dX = derivative(spl,tfine)
np = ceil(Int,sqrt(sum(dX.^2)*(tfine[2]-tfine[1]))/Δx)
tsamp = range(0,1,length=np)
x = [X[1] for X in spl.(tsamp[1:end-1])]
y = [X[2] for X in spl.(tsamp[1:end-1])]
return x, y
end
"""
ThickPlate(length,thick,n,[λ=1.0]) <: Body
Construct a flat plate with length `length` and thickness `thick`,
with `n` points distributed along one side.
The optional parameter `λ` distributes the points differently. Values between `0.0`
and `1.0` are accepted.
Alternatively, the shape can be specified with a target point spacing in place of `n`.
"""
mutable struct ThickPlate{N} <: Body{N,ClosedBody}
len :: Float64
thick :: Float64
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
end
function ThickPlate(len::Real,thick::Real,N::Int;λ::Float64=1.0)
# input N is the number of panels on one side only
# set up points on flat sides
Δϕ = π/N
Jϕa = [sqrt(sin(ϕ)^2+λ^2*cos(ϕ)^2) for ϕ in range(π-Δϕ/2,stop=Δϕ/2,length=N)]
Jϕ = len*Jϕa/Δϕ/sum(Jϕa)
xtopface = -0.5*len .+ Δϕ*cumsum([0.0; Jϕ])
xtop = 0.5*(xtopface[1:N] + xtopface[2:N+1])
Δsₑ = Δϕ*Jϕ[1]
Nₑ = 2*floor(Int,0.25*π*thick/Δsₑ)
xedgeface = [0.5*len + 0.5*thick*cos(ϕ) for ϕ in range(π/2,stop=-π/2,length=Nₑ+1)]
yedgeface = [ 0.5*thick*sin(ϕ) for ϕ in range(π/2,stop=-π/2,length=Nₑ+1)]
xedge = 0.5*(xedgeface[1:Nₑ]+xedgeface[2:Nₑ+1])
yedge = 0.5*(yedgeface[1:Nₑ]+yedgeface[2:Nₑ+1])
x̃end = Float64[]
ỹend = Float64[]
for xi in xtop
push!(x̃end,xi)
push!(ỹend,0.5*thick)
end
for i = 1:Nₑ
push!(x̃end,xedge[i])
push!(ỹend,yedge[i])
end
for xi in reverse(xtop,dims=1)
push!(x̃end,xi)
push!(ỹend,-0.5*thick)
end
for i = Nₑ:-1:1
push!(x̃end,-xedge[i])
push!(ỹend,yedge[i])
end
x̃end .= reverse(x̃end)
ỹend .= reverse(ỹend)
x̃, ỹ = _midpoints(x̃end,ỹend,ClosedBody)
ThickPlate{length(x̃)}(len,thick,(0.0,0.0),0.0,x̃,ỹ,x̃,ỹ,x̃end,ỹend,x̃end,ỹend)
end
function Base.show(io::IO, body::ThickPlate{N}) where {N}
println(io, "Thick plate with $N points and length $(body.len) and thickness $(body.thick)")
println(io, " Current position: ($(body.cent[1]),$(body.cent[2]))")
println(io, " Current angle (rad): $(body.α)")
end
#### NACA 4-digit airfoil ####
"""
NACA4(cam,pos,thick,ds::Float64,[len=1.0]) <: Body{N}
Generates points in the shape of a NACA 4-digit airfoil. The
relative camber is specified by `cam`, the position of
maximum camber (as fraction of chord) by `pos`, and the relative thickness
by `thick`. The parameter `ds` specifies the distance between points. The optional parameter `len` specifies the chord length,
which defaults to 1.0.
# Example
```jldoctest
julia> b = NACA4(0.0,0.0,0.12,0.02);
```
"""
mutable struct NACA4{N} <: Body{N,ClosedBody}
len :: Float64
camber :: Float64
pos :: Float64
thick :: Float64
cent :: Tuple{Float64,Float64}
α :: Float64
x̃ :: Vector{Float64}
ỹ :: Vector{Float64}
x :: Vector{Float64}
y :: Vector{Float64}
x̃end :: Vector{Float64}
ỹend :: Vector{Float64}
xend :: Vector{Float64}
yend :: Vector{Float64}
end
NACA4(cam::Float64,pos::Float64,t::Float64,ds::Float64;len=1.0) = _naca4(cam,pos,t,ds,len)
function NACA4(cam::Float64,pos::Float64,t::Float64,n::Int;len=1.0)
# Determine the perimeter of the shape
ds_refined = 0.005
perim = arclength(_naca4(cam,pos,t,ds_refined,len))
return NACA4(cam,pos,t,perim/n;len=len)
end
"""
NACA4(n4::Int,ds::Float64,[len=1.0]) <: Body{N}
Generates points in the shape of a NACA 4-digit airfoil, specified by `n4`,
with distance between points specified by `ds`. The optional parameter `len` specifies the chord length,
which defaults to 1.0.
# Example
```jldoctest
julia> b = NACA4(0012,0.02);
```
"""
function NACA4(num4::Int,a...;kwargs...)
num4_str = string(num4,pad=4)
cam = parse(Int,num4_str[1])/100
pos = parse(Int,num4_str[2])/10
t = parse(Int,num4_str[3:4])/100
NACA4(cam,pos,t,a...;kwargs...)
end
function _naca4(cam,pos,t,ds,len)
# Here, cam is the fractional camber, pos is the fractional chordwise position
# of max camber, and t is the fractional thickness.
np = 200
npan = 2*np-2
# Trailing edge bunching
an = 1.5
anp = an+1
x = zeros(np)
θ = zeros(size(x))
yc = zeros(size(x))
for j = 1:np
frac = Float64((j-1)/(np-1))
x[j] = 1 - anp*frac*(1-frac)^an-(1-frac)^anp;
if x[j] < pos
yc[j] = cam/pos^2*(2*pos*x[j]-x[j]^2)
if pos > 0
θ[j] = atan(2*cam/pos*(1-x[j]/pos))
end
else
yc[j] = cam/(1-pos)^2*((1-2*pos)+2*pos*x[j]-x[j]^2)
if pos > 0
θ[j] = atan(2*cam*pos/(1-pos)^2*(1-x[j]/pos))
end
end
end
xu = zeros(size(x))
yu = xu
xl = xu
yl = yu
yt = t/0.20*(0.29690*sqrt.(x)-0.12600*x-0.35160*x.^2+0.28430*x.^3-0.10150*x.^4)
xu = x-yt.*sin.(θ)
yu = yc+yt.*cos.(θ)
xl = x+yt.*sin.(θ)
yl = yc-yt.*cos.(θ)
rt = 1.1019*t^2;
θ0 = 0
if pos > 0
θ0 = atan(2*cam/pos)
end
# Center of leading edge radius
xrc = rt*cos(θ0)
yrc = rt*sin(θ0)
θle = collect(0:π/50:2π)
xlec = xrc .+ rt*cos.(θle)
ylec = yrc .+ rt*sin.(θle)
# Assemble data
coords = [xu yu xl yl x yc]
cole = [xlec ylec]
# Close the trailing edge
xpanold = [0.5*(xl[np]+xu[np]); reverse(xl[2:np-1],dims=1); xu[1:np-1]]
ypanold = [0.5*(yl[np]+yu[np]); reverse(yl[2:np-1],dims=1); yu[1:np-1]]
xpan = zeros(npan)
ypan = zeros(npan)
for ipan = 1:npan
if ipan < npan
xpan1 = xpanold[ipan]
ypan1 = ypanold[ipan]
xpan2 = xpanold[ipan+1]
ypan2 = ypanold[ipan+1]
else
xpan1 = xpanold[npan]
ypan1 = ypanold[npan]
xpan2 = xpanold[1]
ypan2 = ypanold[1]
end
xpan[ipan] = 0.5*(xpan1+xpan2)
ypan[ipan] = 0.5*(ypan1+ypan2)
end
w = ComplexF64[1;reverse(xpan,dims=1)+im*reverse(ypan,dims=1)]*len
w .-= mean(w)
x̃end = real.(w)
ỹend = imag.(w)
x̃end, ỹend = _splined_body(hcat(x̃end,ỹend),ds,OpenBody)
x̃, ỹ = _midpoints(x̃end,ỹend,ClosedBody)
NACA4{length(x̃)}(len,cam,pos,t,(0.0,0.0),0.0,x̃,ỹ,x̃,ỹ,x̃end,ỹend,x̃end,ỹend)
end
function Base.show(io::IO, body::NACA4{N}) where {N}
println(io, "NACA 4-digit airfoil with $N points and length $(body.len) and thickness $(body.thick)")
println(io, " Current position: ($(body.cent[1]),$(body.cent[2]))")
println(io, " Current angle (rad): $(body.α)")
end
####
function _adjustnumber(targetsize::Real,shapefcn::Type{T},params...;kwargs...) where {T <: Body}
ntrial = 501
return floor(Int,ntrial*mean(dlength(shapefcn(params...,ntrial;kwargs...)))/targetsize)
end
for shape in (:Ellipse,:ThickPlate)
@eval RigidBodyTools.$shape(params...;kwargs...) =
$shape(Base.front(params)...,
_adjustnumber(Base.last(params),$shape,Base.front(params)...;kwargs...);kwargs...)
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 8622 | ### Tools ###
import Base:diff, length
export midpoints,dlength,normal,dlengthmid,centraldiff,normalmid,numpts,
arccoord,arccoordmid,arclength
# Evaluate some geometric details of a body
"""
length(body::Body)
Return the number of points on the body perimeter
"""
length(::Body{N}) where {N} = N
@deprecate length numpts
for f in [:diff,:midpoints,:centraldiff]
_f = Symbol("_"*string(f))
@eval $f(b::Body;axes=:inertial) = $_f(b,Val(axes))
@eval $_f(b::Body{N,C},::Val{:inertial}) where {N,C<:BodyClosureType} = $_f(b.xend,b.yend,C)
@eval $_f(b::Body{N,C},::Val{:body}) where {N,C<:BodyClosureType} = $_f(b.x̃end,b.ỹend,C)
@eval function $f(bl::BodyList;kwargs...)
xl = Float64[]
yl = Float64[]
for b in bl
xb, yb = $f(b;kwargs...)
append!(xl,xb)
append!(yl,yb)
end
return xl, yl
end
end
"""
diff(body::Body[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the x and y differences of the faces on the perimeter of body `body`, whose ends
are at the current `x` and `y` coordinates (in inertial space) of the body (if `axes=:inertial`),
or at the reference `x̃` and `ỹ` coordinates (body-fixed space) if `axes=:body`. Face 1
corresponds to the face between points 1 and 2, for example.
If `body` is a `BodyList`, then it computes the differences separately on each
constituent body.
""" diff(::Body)
"""
diff(bl::BodyList[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the `diff` on each constituent body in `bl`.
""" diff(::BodyList)
function _diff(x::Vector{Float64},y::Vector{Float64},::Type{ClosedBody})
N = length(x)
@assert N == length(y)
dxtmp = circshift(x,-1) .- x
dytmp = circshift(y,-1) .- y
return dxtmp, dytmp
end
function _diff_ccw(x::Vector{Float64},y::Vector{Float64},::Type{ClosedBody})
N = length(x)
@assert N == length(y)
dxtmp = x .- circshift(x,1)
dytmp = y .- circshift(y,1)
return dxtmp, dytmp
end
function _diff(x::Vector{Float64},y::Vector{Float64},::Type{OpenBody})
@assert length(x) == length(y)
return diff(x), diff(y)
end
"""
midpoints(body::Body[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the x and y midpoints of the faces on the perimeter of body `body`, whose ends
are at the current `x` and `y` coordinates (in inertial space) of the body (if `axes=:inertial`),
or at the reference `x̃` and `ỹ` coordinates (body-fixed space) if `axes=:body`. Face 1
corresponds to the face between points 1 and 2, for example.
If `body` is a `BodyList`, then it computes the differences separately on each
constituent body.
""" midpoints(::Body)
"""
midpoints(bl::BodyList[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the `midpoints` on each constituent body in `bl`.
""" midpoints(::BodyList)
function _midpoints(x::Vector{Float64},y::Vector{Float64},::Type{ClosedBody})
N = length(x)
@assert N == length(y)
xc = 0.5*(x .+ circshift(x,-1))
yc = 0.5*(y .+ circshift(y,-1))
return xc, yc
end
function _midpoints_ccw(x::Vector{Float64},y::Vector{Float64},::Type{ClosedBody})
N = length(x)
@assert N == length(y)
xc = 0.5*(x .+ circshift(x,1))
yc = 0.5*(y .+ circshift(y,1))
return xc, yc
end
function _midpoints(x::Vector{Float64},y::Vector{Float64},::Type{OpenBody})
@assert length(x) == length(y)
xc = 0.5*(x[1:end-1]+x[2:end])
yc = 0.5*(y[1:end-1]+y[2:end])
return xc, yc
end
"""
centraldiff(body::Body[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the circular central differences of coordinates on body `body` (or
on each body in list `body`). If `axes=:body`, uses the reference coordinates
in body-fixed space.
""" centraldiff(::Body)
"""
centraldiff(bl::BodyList[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the `centraldiff` on each constituent body in `bl`. If `axes=:body`, uses the reference coordinates
in body-fixed space.
""" centraldiff(::BodyList)
_centraldiff(x,y,C) = _diff(x,y,C)
#=
function _centraldiff(xend::Vector{Float64},yend::Vector{Float64},::Type{ClosedBody})
xc, yc = _midpoints(x,y,ClosedBody)
xc .= circshift(xc,1)
yc .= circshift(yc,1)
return _diff(xend,yend,ClosedBody)
end
function _centraldiff(xend::Vector{Float64},yend::Vector{Float64},::Type{OpenBody})
xc, yc = _midpoints(x,y,OpenBody)
dxc, dyc = _diff(xc,yc,OpenBody)
return [xc[1]-x[1];dxc;x[end]-xc[end]], [yc[1]-y[1];dyc;y[end]-yc[end]]
end
=#
"""
dlength(body::Body/BodyList[;axes=:inertial]) -> Vector{Float64}
Compute the lengths of the faces on the perimeter of body `body`, whose ends
are at the current `xend` and `yend` coordinates (in inertial space) of the body. Face 1
corresponds to the face between endpoints 1 and 2, for example. If `axes=:body`,
uses the reference coordinates in body-fixed space.
"""
function dlength(b::Union{Body,BodyList};kwargs...)
dx, dy = diff(b;kwargs...)
return sqrt.(dx.^2+dy.^2)
end
"""
dlengthmid(body::Body/BodyList[;axes=:inertial]) -> Vector{Float64}
Same as [`dlength`](@ref).
"""
dlengthmid(b::Union{Body,BodyList};kwargs...) = dlength(b;kwargs...)
#=
function dlengthmid(b::Union{Body,BodyList})
dx, dy = centraldiff(b)
return sqrt.(dx.^2+dy.^2)
end
=#
"""
normal(body::Body/BodyList[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the current normals in inertial components (if `axes=:inertial`) or body-
fixed components (if `axes=:body`) of the faces on the perimeter
of body `body`, whose ends are at the current `xend` and `yend` coordinates (in inertial space)
of the body. Face 1 corresponds to the face between points 1 and 2, for example. For an `OpenBody`,
this provides a vector that is one element shorter than the number of points.
"""
function normal(b::Union{Body,BodyList};kwargs...)
dx, dy = diff(b;kwargs...)
ds = dlength(b)
return dy./ds, -dx./ds
end
"""
normalmid(body::Body/BodyList[;axes=:inertial]) -> Tuple{Vector{Float64},Vector{Float64}}
Compute the current normals in inertial components (if `axes=:inertial`) or body-
fixed components (if `axes=:body`) of the faces formed between
endpoints on the perimeter of body `body` (or each body in list `body`).
"""
normalmid(b::Union{Body,BodyList};kwargs...) = normal(b;kwargs...)
#=
function normalmid(b::Union{Body,BodyList};kwargs...)
dx, dy = centraldiff(b;kwargs...)
ds = dlengthmid(b)
return dy./ds, -dx./ds
end
=#
"""
arccoordmid(body::Body/BodyList[;axes=:inertial]) -> Vector{Float64}
Returns a vector containing the arclength coordinate along the surface of `body`, evaluated at the
midpoints between the ends of faces. So, e.g., the first coordinate would be half
of the length of face 1, the second would be half of face 2 plus all of face 1,
etc. Use inertial components (if `axes=:inertial`) or body-
fixed components (if `axes=:body`). If this is a body list, restart
the origin of the coordinates on each body in the list.
"""
function arccoordmid(b::Body;kwargs...)
ds = dlength(b;kwargs...)
s = 0.5*ds
pop!(pushfirst!(ds,0.0))
s .+= accumulate(+,ds)
return s
end
"""
arccoord(body::Body/BodyList[;axes=:inertial]) -> Vector{Float64}
Returns a vector containing the arclength coordinate along the surface of `body`, evaluated at the
second endpoint of each face. So, e.g., the first coordinate would be the length
of face 1, the second the length of face 2, and the last would
be total length of all of the faces. Use inertial components (if `axes=:inertial`) or body-fixed components (if `axes=:body`).
If this is a body list, restart
the origin of the coordinates on each body in the list.
"""
function arccoord(b::Body;kwargs...)
ds = dlength(b;kwargs...)
s = accumulate(+,ds)
return s
end
for f in [:arccoord,:arccoordmid]
@eval function $f(bl::BodyList;kwargs...)
sl = Float64[]
for b in bl
sb = $f(b;kwargs...)
append!(sl,sb)
end
return sl
end
end
"""
arclength(body::Body[;axes=:inertial])
Compute the total arclength of `body`, from the sum of the lengths of the
faces. If `axes=:body`, use the body-fixed coordinates.
"""
arclength(b::Body;kwargs...) = sum(dlength(b;kwargs...))
"""
arclength(bl::BodyList[;axes=:inertial]) -> Vector{Float64}
Compute the total arclength of each body in `bl` and assemble the
results into a vector. If `axes=:body`, use the body-fixed coordinates.
"""
function arclength(bl::BodyList;kwargs...)
[arclength(b;kwargs...) for b in bl]
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 4406 | using Statistics
const MYEPS = 20*eps()
@testset "Bodies" begin
bn = nothing
@test numpts(bn) == 0
p = Plate(1,100)
dx, dy = diff(p)
@test maximum(dx) ≈ minimum(dx) ≈ 0.01
@test maximum(dy) ≈ minimum(dy) ≈ 0.0
@test sum(dlength(p)) ≈ sum(dlengthmid(p))
c = Rectangle(1,2,400)
dx, dy = diff(c)
@test length(dx) == 400
@test sum(dlength(c)) ≈ 12.0
s = arccoord(c)
@test s[end] ≈ 12.0 ≈ arclength(c)
smid = arccoordmid(c)
@test smid[1] > 0.0 && smid[end] < s[end]
c = Square(1,0.01)
@test isapprox(mean(dlength(c)),0.01,atol=1e-4)
c = Ellipse(1,2,0.01)
@test isapprox(mean(dlength(c)),0.01,atol=1e-4)
c = Ellipse(1,2,100)
nx, ny = normalmid(c)
#@test nx[1] == ny[26] == -nx[51] == -ny[76] == 1.0
@test abs(sum(nx)) < 1000.0*eps(1.0)
@test abs(sum(ny)) < 1000.0*eps(1.0)
T = MotionTransform((1.0,-1.0),π/4)
update_body!(c,T)
nx2, ny2 = normalmid(c,axes=:body)
@test sum(abs.(nx .- nx2)) < 1000.0*eps(1.0)
@test sum(abs.(ny .- ny2)) < 1000.0*eps(1.0)
end
@testset "Null body" begin
b1 = NullBody()
@test numpts(b1) == 0
end
@testset "Rectangle" begin
b = Rectangle(0.5,1.0,60)
nx0, ny0 = normalmid(b)
@test all(isapprox.(nx0[1:10],0.0,atol=MYEPS)) &&
all(isapprox.(nx0[11:30],1.0,atol=MYEPS)) &&
all(isapprox.(nx0[31:40],0.0,atol=MYEPS)) &&
all(isapprox.(nx0[41:60],-1.0,atol=MYEPS))
@test all(isapprox.(ny0[1:10],-1.0,atol=MYEPS)) &&
all(isapprox.(ny0[11:30],0.0,atol=MYEPS)) &&
all(isapprox.(ny0[31:40],1.0,atol=MYEPS)) &&
all(isapprox.(ny0[41:60],0.0,atol=MYEPS))
ds = dlengthmid(b)
@test all(ds .≈ 0.1)
T = MotionTransform((1.0,-1.0),π/2)
update_body!(b,T)
T2 = MotionTransform((1,-1),π/2)
update_body!(b,T2)
nx, ny = normalmid(b)
@test all(isapprox.(nx[1:10],1.0,atol=MYEPS)) &&
all(isapprox.(nx[11:30],0.0,atol=MYEPS)) &&
all(isapprox.(nx[31:40],-1.0,atol=MYEPS)) &&
all(isapprox.(nx[41:60],0.0,atol=MYEPS))
@test all(isapprox.(ny[1:10],0.0,atol=MYEPS)) &&
all(isapprox.(ny[11:30],1.0,atol=MYEPS)) &&
all(isapprox.(ny[31:40],0.0,atol=MYEPS)) &&
all(isapprox.(ny[41:60],-1.0,atol=MYEPS))
ds = dlengthmid(b)
@test all(ds .≈ 0.1)
T = MotionTransform((1.2,-1.5),π/4)
update_body!(b,T)
nx2, ny2 = normalmid(b,axes=:body)
@test sum(abs.(nx0 .- nx2)) < 1000.0*eps(1.0)
@test sum(abs.(ny0 .- ny2)) < 1000.0*eps(1.0)
end
@testset "Polygons" begin
b = Polygon([1.0,1.0,0.0,0.0],[0.0,0.5,0.5,0.0],0.02)
nx0, ny0 = normalmid(b)
@test b.side[1] == 1:25 && b.side[2] == 26:75 && b.side[3] == 76:100 && b.side[4] == 101:150
@test all(isapprox.(nx0[b.side[1]],1.0,atol=MYEPS)) &&
all(isapprox.(nx0[b.side[2]],0.0,atol=MYEPS)) &&
all(isapprox.(nx0[b.side[3]],-1.0,atol=MYEPS)) &&
all(isapprox.(nx0[b.side[4]],0.0,atol=MYEPS))
@test all(isapprox.(ny0[b.side[1]],0.0,atol=MYEPS)) &&
all(isapprox.(ny0[b.side[2]],1.0,atol=MYEPS)) &&
all(isapprox.(ny0[b.side[3]],0.0,atol=MYEPS)) &&
all(isapprox.(ny0[b.side[4]],-1.0,atol=MYEPS))
ds = dlengthmid(b)
@test all(ds .≈ 0.02)
end
@testset "Lists" begin
bl = BodyList()
@test numpts(bl) == 0
n1 = 101
n2 = 201
p = Plate(1,n1)
c = Rectangle(1,2,n2)
bl = BodyList([p,c])
@test length(bl) == 2
@test eltype(bl) == Body
sl = arccoord(bl)
@test sl[1:numpts(p)] == arccoord(p)
@test sl[numpts(p)+1:numpts(bl)] == arccoord(c)
t1 = MotionTransform((0.0,0.0),0.0)
t2 = MotionTransform((1.0,0.0),π/2)
tl = MotionTransformList([t1,t2])
push!(tl,t1)
@test length(tl) == 3
@test eltype(tl) == MotionTransform
v = rand(numpts(bl))
@test numpts(bl) == numpts(p)+numpts(c)
@test v[1:numpts(p)] == view(v,bl,1)
@test v[(numpts(p)+1):(numpts(p)+numpts(c))] == view(v,bl,2)
tl = MotionTransformList([t1,t2])
update_body!(bl,tl)
@test [bl[1].cent...] == translation(tl[1])
@test [bl[2].cent...] == translation(tl[2])
@test bl[1].α == RigidBodyTools._get_angle_of_2d_transform(tl[1])
@test bl[2].α == RigidBodyTools._get_angle_of_2d_transform(tl[2])
b1 = Rectangle(0.5,1.0,60)
b2 = Rectangle(0.5,1.0,60)
bl = BodyList()
push!(bl,b1)
push!(bl,b2)
nx, ny = normalmid(bl)
nxb1, nyb1 = normalmid(b1)
nxb2, nyb2 = normalmid(b2)
@test nx[1:60] == nxb1 && ny[1:60] == nyb1 && nx[61:120] == nxb2 && ny[61:120] == nyb2
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 2102 | using RigidBodyTools
using Literate
using Test
ENV["GKSwstype"] = "nul" # removes GKS warnings during plotting
const GROUP = get(ENV, "GROUP", "All")
macro mysafetestset(args...)
name, expr = args
quote
ex = quote
name_str = $$(QuoteNode(name))
expr_str = $$(QuoteNode(expr))
mod = gensym(name_str)
ex2 = quote
@eval module $mod
using Test
@testset $name_str $expr_str
end
nothing
end
eval(ex2)
end
eval(ex)
end
end
notebookdir = "../examples"
docdir = "../docs/src/manual"
litdir = "./literate"
for (root, dirs, files) in walkdir(litdir)
if splitpath(root)[end] == "assets"
for file in files
cp(joinpath(root, file),joinpath(notebookdir,file),force=true)
cp(joinpath(root, file),joinpath(docdir,file),force=true)
cp(joinpath(root, file),joinpath(".",file),force=true)
end
end
end
if GROUP == "Transforms"
include("transforms.jl")
end
if GROUP == "Bodies"
include("bodies.jl")
end
if GROUP == "All" || GROUP == "Auxiliary"
include("transforms.jl")
include("bodies.jl")
end
if GROUP == "All" || GROUP == "Literate"
for (root, dirs, files) in walkdir(litdir)
for file in files
global file_str = "$file"
global body = :(begin include(joinpath($root,$file)) end)
endswith(file,".jl") && @mysafetestset file_str body
#endswith(file,".jl") && @testset "$file" begin include(joinpath(root,file)) end
end
end
end
if GROUP == "Notebooks"
for (root, dirs, files) in walkdir(litdir)
for file in files
#endswith(file,".jl") && startswith(file,"surface") && Literate.notebook(joinpath(root, file),notebookdir)
endswith(file,".jl") && Literate.notebook(joinpath(root, file),notebookdir)
end
end
end
if GROUP == "Documentation"
for (root, dirs, files) in walkdir(litdir)
for file in files
endswith(file,".jl") && Literate.markdown(joinpath(root, file),docdir)
end
end
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 7298 | using LinearAlgebra
@testset "Rotations" begin
θ = rand()
r = [0,0,1]
R1 = rotation_about_z(θ)
R2 = rotation_about_axis(θ,r)
@test R1 ≈ R2
r = [0,1,0]
R1 = rotation_about_y(θ)
R2 = rotation_about_axis(θ,r)
@test R1 ≈ R2
r = [1,0,0]
R1 = rotation_about_x(θ)
R2 = rotation_about_axis(θ,r)
@test R1 ≈ R2
end
@testset "Transforms" begin
x = rand(3)
@test cross_vector(cross_matrix(x)) ≈ x
r = rand(2)
Θ = 0.0
TM = MotionTransform(r,Θ)
vA = rand(3)
vB = TM*vA
# Should give velocity based at origin of B
@test vB ≈ vA .+ [0.0,-vA[1]*r[2],vA[1]*r[1]]
TF = ForceTransform(r,Θ)
fA = rand(3)
fB = TF*fA
# Should give moment about origin of B
@test fB ≈ fA .- [r[1]*fA[3]-r[2]*fA[2],0.0,0.0]
x2 = rand(2)
Θ = rand()
R2 = [cos(-Θ) -sin(-Θ); sin(-Θ) cos(-Θ)]
TM2_1 = MotionTransform(x2,R2)
TM2_2 = MotionTransform(x2,Θ)
@test TM2_1 isa MotionTransform{2}
@test TM2_1.matrix ≈ TM2_2.matrix
TM3_1 = MotionTransform(rand(3),rotation_about_axis(rand(),rand(3)))
TM3_2 = MotionTransform(rand(3),rotation_about_axis(rand(),rand(3)))
@test TM3_1 isa MotionTransform{3}
TM3_12 = TM3_1*TM3_2
@test TM3_12 isa MotionTransform
@test MotionTransform(TM3_12.x,TM3_12.R).matrix ≈ TM3_12.matrix
TM3_t = transpose(TM3_1)
@test ForceTransform(TM3_t.x,TM3_t.R).matrix ≈ TM3_t.matrix
TM2_1 = MotionTransform(rand(2),rotation_about_z(rand()))
TM2_2 = MotionTransform(rand(2),rotation_about_z(rand()))
@test TM2_1 isa MotionTransform{2}
TM2_12 = TM2_1*TM2_2
@test TM2_12 isa MotionTransform
@test MotionTransform{2}(TM2_12.x,TM2_12.R).matrix ≈ TM2_12.matrix
TM2_t = transpose(TM2_1)
@test ForceTransform{2}(TM2_t.x,TM2_t.R).matrix ≈ TM2_t.matrix
TMinv = inv(TM)
TMiTM = TMinv*TM
@test isapprox(TMiTM.x,zeros(3),atol=1e-15)
@test isapprox(TMiTM.R,I,atol=1e-15)
@test isapprox(TMiTM.matrix,I,atol=1e-15)
TMiTM = TM*TMinv
@test isapprox(TMiTM.x,zeros(3),atol=1e-15)
@test isapprox(TMiTM.R,I,atol=1e-15)
@test isapprox(TMiTM.matrix,I,atol=1e-15)
x = (rand(),rand())
θ = rand()
TM = MotionTransform(x,θ)
TR = RigidTransform(x,θ)
x̃ = (rand(),rand())
@test TM(x̃...) == TR(x̃...)
end
@testset "Plucker vectors" begin
vA = PluckerMotion(rand(3))
vAr = angular_only(vA)
@test RigidBodyTools._get_angular_part(vA) === RigidBodyTools._get_angular_part(vAr)
vAl = linear_only(vA)
@test RigidBodyTools._get_linear_part(vA) === RigidBodyTools._get_linear_part(vAl)
vA = PluckerMotion(rand(6))
vAr = angular_only(vA)
@test RigidBodyTools._get_angular_part(vA) === RigidBodyTools._get_angular_part(vAr)
vAl = linear_only(vA)
@test RigidBodyTools._get_linear_part(vA) === RigidBodyTools._get_linear_part(vAl)
x = (rand(),rand())
θ = rand()
TM = MotionTransform(x,θ)
vA = PluckerMotion(rand(3))
TM*vA
vA = PluckerForce(rand(3))
vAr = angular_only(vA)
@test RigidBodyTools._get_angular_part(vA) === RigidBodyTools._get_angular_part(vAr)
vAl = linear_only(vA)
@test RigidBodyTools._get_linear_part(vA) === RigidBodyTools._get_linear_part(vAl)
vA = PluckerForce(rand(6))
vAr = angular_only(vA)
@test RigidBodyTools._get_angular_part(vA) === RigidBodyTools._get_angular_part(vAr)
vAl = linear_only(vA)
@test RigidBodyTools._get_linear_part(vA) === RigidBodyTools._get_linear_part(vAl)
x = (rand(),rand())
θ = rand()
TM = ForceTransform(x,θ)
vA = PluckerForce(rand(3))
TM*vA
TM*angular_only(vA)
TM*linear_only(vA)
TM = MotionTransform(x,θ)
vA = PluckerMotion{2}(angular=1)
vB = PluckerMotion([1,2,3])
@test TM*angular_only(vA) == TM*angular_only(vB)
vA = PluckerMotion{2}(linear=[2,3])
@test TM*linear_only(vA) == TM*linear_only(vB)
TM = MotionTransform(rand(3),rotation_about_axis(rand(),rand(3)))
vA = PluckerMotion{3}(angular=[1,2,3])
vB = PluckerMotion([1,2,3,4,5,6])
@test TM*angular_only(vA) == TM*angular_only(vB)
vA = PluckerMotion{3}(linear=[4,5,6])
@test TM*linear_only(vA) == TM*linear_only(vB)
vA = PluckerMotion(rand(3))
fA = PluckerForce(rand(3))
@test dot(angular_only(fA),vA) == dot(fA,angular_only(vA)) == dot(angular_only(vA),fA) == dot(vA,angular_only(fA))
@test dot(linear_only(fA),vA) == dot(fA,linear_only(vA)) == dot(linear_only(vA),fA) == dot(vA,linear_only(fA))
vA = PluckerMotion(rand(6))
fA = PluckerForce(rand(6))
@test dot(angular_only(fA),vA) == dot(fA,angular_only(vA)) == dot(angular_only(vA),fA) == dot(vA,angular_only(fA))
@test dot(linear_only(fA),vA) == dot(fA,linear_only(vA)) == dot(linear_only(vA),fA) == dot(vA,linear_only(fA))
end
@testset "Linked systems" begin
Xp_to_j1 = MotionTransform(0.0,0.0,0.0)
Xch_to_j1 = MotionTransform(-0.5,0.0,0.0)
Xp_to_j2 = MotionTransform(1.02,0.0,0.0)
Xch_to_j2 = MotionTransform(-1.02,0.0,0.0)
Xp_to_j3 = MotionTransform(-5.0,0.0,0.0)
Xch_to_j3 = MotionTransform(-0.5,0.0,0.0)
dofs1 = [OscillatoryDOF(π/4,2π,0.0,0.0),ConstantPositionDOF(0.0),OscillatoryDOF(1.0,2π,-π/2,0.0)]
#dofs11 = [OscillatoryDOF(π/4,2π,0.0,0.0),UnconstrainedDOF(),ExogenousDOF()]
#dofs12 = [OscillatoryDOF(π/4,2π,π/3,0.0),ConstantPositionDOF(0.0),ExogenousDOF()]
dofs2 = [OscillatoryDOF(π/4,2π,π/4,0.0)]
dofs3 = [OscillatoryDOF(π/4,2π,π/2,0.0)]
dofs4 = [ConstantVelocityDOF(0)]
joint1 = Joint(FreeJoint2d,0,Xp_to_j1,1,Xch_to_j1,dofs1)
joint2 = Joint(RevoluteJoint,1,Xp_to_j2,2,Xch_to_j2,dofs2)
joint3 = Joint(RevoluteJoint,2,Xp_to_j2,3,Xch_to_j2,dofs3)
joint4 = Joint(RevoluteJoint,2,Xp_to_j2,4,Xch_to_j2,dofs4)
joint5 = Joint(FreeJoint2d,0,Xp_to_j3,5,Xch_to_j3,dofs1)
joint6 = Joint(RevoluteJoint,5,Xp_to_j2,6,Xch_to_j2,dofs4)
@test ismoving(joint3)
@test !ismoving(joint4)
joints = [joint2,joint6,joint3,joint4,joint5,joint1]
body1 = Ellipse(1.0,0.2,200)
body2 = deepcopy(body1)
body3 = deepcopy(body1)
body4 = deepcopy(body1)
body5 = deepcopy(body1)
body6 = deepcopy(body1)
bl = BodyList([body1,body2,body3,body4,body5,body6])
ls = RigidBodyMotion(joints,bl)
lsid = 1 # this system should be internally in motion
@test is_system_in_relative_motion(lsid,ls)
lsid = 2 # this system should be internally fixed
@test !is_system_in_relative_motion(lsid,ls)
ufcn(x,y,t) = 0.25*2π*x*y*cos(2π*t)
vfcn(x,y,t) = 0.25*2π*(x^2-y^2)*cos(2π*t)
def = DeformationMotion(ufcn,vfcn)
X = MotionTransform([0,0],0)
joint = Joint(X)
ls = RigidBodyMotion(joint,body1,def)
@test ismoving(ls)
defs = AbstractDeformationMotion[NullDeformationMotion(),
NullDeformationMotion(),
NullDeformationMotion(),
NullDeformationMotion(),
def,
NullDeformationMotion()]
ls = RigidBodyMotion(joints,bl,defs)
lsid = 2 # now this system is no longer internally fixed, because body 5 deforms
@test is_system_in_relative_motion(lsid,ls)
x = init_motion_state(bl,ls)
Xl = body_transforms(x,ls)
X1_to_2 = rebase_from_inertial_to_reference(Xl[2],x,ls,1)
X0_to_2 = X1_to_2*Xl[1]
@test X0_to_2.x ≈ Xl[2].x && X0_to_2.R ≈ Xl[2].R
X1_to_4 = rebase_from_inertial_to_reference(Xl[4],x,ls,1)
X0_to_4 = X1_to_4*Xl[1]
@test X0_to_4.x ≈ Xl[4].x && X0_to_4.R ≈ Xl[4].R
end
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 2053 | # # Lists of bodies and their transforms
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
We might want to have several distinct bodies. Here, we discuss how
to combine bodies into lists, and similarly, their transforms.
=#
using RigidBodyTools
using Plots
#=
## Body list
Suppose we have two bodies and we wish to combine them into a single list.
The advantage of doing so is that many of the operations we have presented
previously also extend to lists. We use `BodyList` to combine them.
=#
b1 = Circle(1.0,0.02)
b2 = Rectangle(1.0,2.0,0.02)
bl = BodyList([b1,b2])
#=
Another way to do this is to push each one onto the list:
=#
bl = BodyList()
push!(bl,b1)
push!(bl,b2)
#=
We can transform the list by creating a list of transforms with a `MotionTransformList`
=#
X1 = MotionTransform([2.0,3.0],0.0)
X2 = MotionTransform([-2.0,-0.5],π/4)
tl = MotionTransformList([X1,X2])
#=
The transform list can be applied to the whole body list simply with
=#
tl(bl)
#=
which creates a copy of the body list and transforms that, or
=#
update_body!(bl,tl)
#=
which updates each body in `bl` in place.
=#
#=
Let's see our effect
=#
plot(bl)
#=
It is important to note that the list points to the original bodies,
so that any change made to the list is reflected in the original bodies, e.g.
=#
plot(b2)
#=
## Utilities on lists
There are some specific utilities that are helpful for lists. For example,
to collect all of the x, y points (the segment midpoints) in the list into two
vectors, use
=#
x, y = collect(bl)
#=
In a vector comprising data on these concatenated surface points, we
can use `view` to look at just one body's part and change it:
=#
f = zero(x)
f1 = view(f,bl,1)
f1 .= 1.0;
plot(f)
#=
Also, we can sum up the values for one of the bodies:
=#
sum(f,bl,2)
#md # ## Body and transform list functions
#md # ```@docs
#md # BodyList
#md # getrange
#md # Base.collect(::BodyList)
#md # Base.sum(::AbstractVector,::BodyList,::Int)
#md # Base.view(::AbstractVector,::BodyList,::Int)
#md # MotionTransformList
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 4775 | # # Deforming bodies
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
Thus far we have only shown rigid body motion. However, we can
also prescribe surface deformation as an additional component
of a body's motion.
=#
using RigidBodyTools
using Plots
#=
Before we get started, let's define the same macro that we used earlier
in order to visualize our system's motion
=#
macro animate_motion(b,m,dt,tmax,xlim,ylim)
return esc(quote
bc = deepcopy($b)
t0, x0 = 0.0, init_motion_state(bc,$m)
dxdt = zero(x0)
x = copy(x0)
@gif for t in t0:$dt:t0+$tmax
motion_rhs!(dxdt,x,($m,bc),t)
global x += dxdt*$dt
update_body!(bc,x,$m)
plot(bc,xlims=$xlim,ylims=$ylim)
end every 5
end)
end
#=
For deforming bodies, we specify the velocity of the surface directly. This
deformation velocity is expressed in the coordinate system attached to the
body, rather than the inertial coordinate system. This enables the
motion to be easily superposed with the rigid-body motion described earlier.
It is also important to note that the motion is applied **to the endpoints**
of the surface segments. The midpoints are then constructed from the
updated endpoints.
=#
#=
## Example: Basic deformation
Let's see an example. We will create an oscillatory deformation of a circle.
We create the motion by creating functions for each component of velocity.
=#
Ω = 2π
ufcn(x,y,t) = 0.25*x*y*Ω*cos(Ω*t)
vfcn(x,y,t) = 0.25*(x^2-y^2)*Ω*cos(Ω*t)
def = DeformationMotion(ufcn,vfcn)
#=
We will create a simple fixed revolute joint that anchors the body's center to the
inertial system. (Note that we don't need to create a body list here, since we
are only working with one body and one joint.)
=#
Xp_to_jp = MotionTransform(0.0,0.0,0.0)
Xc_to_jc = MotionTransform(0.0,0.0,0.0)
dofs = [ConstantVelocityDOF(0.0)]
joint = Joint(RevoluteJoint,0,Xp_to_jp,1,Xc_to_jc,dofs)
body = Circle(1.0,0.02)
#=
To construct the system, we supply the joint and body, as before, as well as the deformation.
=#
ls = RigidBodyMotion(joint,body,def)
#=
Let's animate this motion
=#
@animate_motion body ls 0.01 4 (-2,2) (-2,2)
#=
The body remains fixed, but the surface deforms!
=#
#=
## Example: Expanding motion
Now a circle undergoing an expansion. For this, we set constant velocity
components equal to constants, the coordinates of the surface segment endpoints
=#
body = Circle(1.0,0.02)
u = copy(body.x̃end)
v = copy(body.ỹend)
def = ConstantDeformationMotion(u,v)
ls = RigidBodyMotion(joint,body,def)
@animate_motion body ls 0.01 2 (-5,5) (-5,5)
#=
## Example: Combining rigid motion and deforming motion.
Now, let's combine an oscillatory rigid-body rotation with
oscillatory deformation, this time applied to a square.
=#
Xp_to_jp = MotionTransform(0.0,0.0,0.0)
Xc_to_jc = MotionTransform(0.0,0.0,0.0)
Ω = 1.0
dofs = [OscillatoryDOF(π/4,Ω,0.0,0.0)]
joint = Joint(RevoluteJoint,0,Xp_to_jp,1,Xc_to_jc,dofs)
body = Square(1.0,0.02)
ufcn(x,y,t) = 0.25*(x^2+y^2)*y*Ω*cos(Ω*t)
vfcn(x,y,t) = -0.25*(x^2+y^2)*x*Ω*cos(Ω*t)
def = DeformationMotion(ufcn,vfcn)
ls = RigidBodyMotion(joint,body,def)
@animate_motion body ls π/100 4π (-2,2) (-2,2)
#=
## Example: Defining new deformations
We can also define new types of deformation that are more specialized.
We need only define a subtype of `AbstractDeformationMotion`
and extend the function `deformation_velocity` to work with it.
The signature of this function is `deformation_velocity(body,deformation,time)`.
For example, let's define a motion on a rectangular shape that
will deform only the top side in the normal direction, but leave the rest of
the surface stationary. We will use the `side` field
of the `Polygon` shape type to access the top, and set
its vertical velocity.
=#
struct TopMotion{UT} <: AbstractDeformationMotion
vtop :: UT
end
function RigidBodyTools.deformation_velocity(body::Polygon,def::TopMotion,t::Real)
u, v = zero(body.x̃end), zero(body.ỹend)
top = body.side[3]
v[top] .= def.vtop.(body.x̃end[top],body.ỹend[top],t)
return vcat(u,v)
end
#=
Now apply it
=#
Xp_to_jp = MotionTransform(0.0,0.0,0.0)
Xc_to_jc = MotionTransform(0.0,0.0,0.0)
dofs = [ConstantVelocityDOF(0.0)]
joint = Joint(RevoluteJoint,0,Xp_to_jp,1,Xc_to_jc,dofs)
body = Rectangle(1.0,2.0,0.02)
vfcn(x,y,t) = 0.2*(1-x^2)*cos(t)
def = TopMotion(vfcn)
ls = RigidBodyMotion(joint,body,def)
#=
Let's try it out
=#
@animate_motion body ls π/100 4π (-1.5,1.5) (-2.5,2.5)
#=
As desired, the top surface deforms vertically, but the rest of the
surface is stationary.
=#
#md # ## Deformation functions
#md # ```@docs
#md # DeformationMotion
#md # ConstantDeformationMotion
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 4275 | # # Behaviors of degrees of freedom
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
To define the motion of a joint requires that we define the behavior
of each of the joint's degrees of freedom. There are three different types of
behavior of a degree of freedom:
(1) Its motion is prescribed with a given function of time, in which case we say that the
degree of freedom is *constrained*
(2) Its motion is specified directly, but determined by a process that lies outside
of the body system, in which case we say the degree of freedom is *exogenous*.
(3) Its motion is determined indirectly by some sort of force model for its behavior,
such as a spring or damper, in which case we say the degree of freedom is *unconstrained*.
Here, we will discuss how to set a degree of freedom with one of these behaviors,
and how to set the prescribed motion, if desired.
=#
using RigidBodyTools
using Plots
#=
## Constrained behavior (i.e., prescribed motion)
When a degree of freedom is constrained, then its behavior over time
is set by some time-varying function. There are a number of different
types of predefined time-varying behaviors.
=#
#=
### Constant velocity
To specify constant velocity with some velocity, e.g. $U=1$, set
=#
U = 1.0
k = ConstantVelocityDOF(U)
#=
For any prescribed motion, we can evaluate it at any specified time.
It returns data of type `DOFKinematicData`.
=#
t = 1.0
kt = k(t)
#=
The kinematic data can be parsed with
`dof_position`, `dof_velocity`, and `dof_acceleration`:
=#
dof_position(kt)
#-
dof_velocity(kt)
#-
dof_acceleration(kt)
#=
Let's plot the position over time
=#
t = range(0,3,length=301)
plot(t,dof_position.(k.(t)),xlims=(0,Inf),ylims=(0,Inf))
#=
### Oscillatory motion
We can set the position to be a sinusoidal function. For this, we
set the amplitude, the angular frequency, the phase, and the mean velocity (typically zero).
=#
A = 1.0 ## amplitude
Ω = 2π ## angular frequency
ϕ = π/2 ## phase
vel = 0 ## mean velocity
k = OscillatoryDOF(A,Ω,ϕ,vel)
#=
Plot the position, velocity, and acceleration
=#
plot(t,dof_position.(k.(t)),xlims=(0,Inf),label="x")
plot!(t,dof_velocity.(k.(t)),label="ẋ")
plot!(t,dof_acceleration.(k.(t)),label="ẍ")
#=
### Smooth ramp motion
To ramp the position from one value to another, we use the `SmoothRampDOF`.
For this, we need to specify the nominal velocity of the ramp,
the change in position, and the time at which the ramp starts.
There is an optional argument `ramp` to control the ramp's smoothness.
It defaults to `EldredgeRamp(11.0)`, an Eldredge-type ramp with smoothness
factor 11.
=#
vel = 1.0 ## nominal ramp velocity
Δx = 1.0 ## change in position
t0 = 1.0 ## time of ramp start
k = SmoothRampDOF(vel,Δx,t0)
#=
Plot the position
=#
plot(t,dof_position.(k.(t)),xlims=(0,Inf),label="x")
#=
We can also ramp up the velocity from one value to another, using
`SmoothVelocityRampDOF`. For example,
=#
u1 = 1.0 ## initial velocity
u2 = 2.0 ## final velocity
acc = 1.0 ## nominal acceleration of the ramp
t0 = 1.0 ## time of ramp start
k = SmoothVelocityRampDOF(acc,u1,u2,t0)
#=
Plot the velocity
=#
plot(t,dof_velocity.(k.(t)),xlims=(0,Inf),label="u")
#=
and the position
=#
plot(t,dof_position.(k.(t)),xlims=(0,Inf),label="x")
#=
### User-defined motion
The user can specify the time-varying position by supplying a function of time
and using `CustomDOF`. It automatically differentiates this function to
get velocity and acceleration.
For example, a quadratic behavior
=#
f(t) = 1.0*t + 2.0*t^2
k = CustomDOF(f)
#=
Plot the position
=#
plot(t,dof_position.(k.(t)),xlims=(0,Inf),label="x")
#=
and the velocity
=#
plot(t,dof_velocity.(k.(t)),xlims=(0,Inf),label="ẋ")
#=
and the acceleration
=#
plot(t,dof_acceleration.(k.(t)),xlims=(0,Inf),label="ẍ")
#=
## Exogenous and unconstrained behaviors
If the degree of freedom is to be *exogenous* or *unconstrained*,
then it can be designated as such, e.g,
=#
k = ExogenousDOF()
#=
or
=#
k = UnconstrainedDOF()
#md # ## Degree of freedom functions
#md # ```@docs
#md # ConstantVelocityDOF
#md # OscillatoryDOF
#md # SmoothRampDOF
#md # SmoothVelocityRampDOF
#md # CustomDOF
#md # ExogenousDOF
#md # UnconstrainedDOF
#md # dof_position
#md # dof_velocity
#md # dof_acceleration
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 3838 | # # Exogenous degrees of freedom
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
As we mentioned in previous pages, some degrees of freedom can be
designated as *exogenous*, meaning that their behavior is determined
by some external process that we do not model explicitly. In practice,
that means that the acceleration of such a degree of freedom must
by explicitly provided at every time step while the state vector is being
advanced.
=#
using RigidBodyTools
using Plots
#=
As usual, we will demonstrate this via an example. In the example,
a single flat plate will be commanded to pitch upward by 45 degrees
about its leading edge. It will move steadily in the +x direction.
However, its y acceleration will vary randomly via some exogenous process.
=#
Xp_to_jp = MotionTransform(0.0,0.0,0.0)
Xc_to_jc = MotionTransform(0.5,0.0,0.0)
dofs = [SmoothRampDOF(0.4,π/4,0.5),ConstantVelocityDOF(1.0),ExogenousDOF()]
joint = Joint(FreeJoint2d,0,Xp_to_jp,1,Xc_to_jc,dofs)
body = ThickPlate(1.0,0.05,0.02)
#=
We need to provide a means of passing along the time-varying information about
the exogenous acclerations to the time integrator. There are two ways we
can do this.
=#
#=
#### Method 1: A function for exogenous acclerations.
We can provide a function that will specify the exogenous y acceleration.
Here, we will create a function that sets it to a random value chosen from a
normal distribution. Note that the function must be mutating and have a signature
`(a,x,p,t)`, where `a` is the exogenous acceleration vector. The arguments `x`
and `p` are a state and a parameter, which can be flexibly defined.
Here, the *state* is the rigid-body system state and the *parameter*
is the `RigidBodyMotion` structure.
The last argument `t` is time.
In this example, we don't need any of those arguments.
=#
function my_exogenous_function!(a,x,ls,t)
a .= randn(length(a))
end
#=
We pass that along via the `exogenous` keyword argument.
=#
ls = RigidBodyMotion(joint,body;exogenous=my_exogenous_function!)
#=
#### Method 2: Setting the exogenous accelerations explicitly in the loop
Another approach we can take is to set the exogenous acceleration(s)
explicitly in the loop, using the `update_exogenous!` function.
This function saves the vector of accelerations in a buffer in the `RigidBodyMotion`
structure so that it is available to the time integrator. We will
demonstrate that approach here.
=#
ls = RigidBodyMotion(joint,body)
#=
Let's initialize the state vector and its rate of change
=#
bc = deepcopy(body)
dt, tmax = 0.01, 3.0
t0, x0 = 0.0, init_motion_state(bc,ls)
dxdt = zero(x0)
x = copy(x0)
#=
Note that the state vector has four elements. The first two are
associated with the prescribed motions for rotation and x translation.
The third is the y position, the exogenous degree of freedom. And the
fourth is the y velocity.
Why the y velocity? Because the exogenous behavior is specified via its
acceleration. Let's advance the system and animate it. We include
a horizontal line along the hinge axis to show the effect of the exogenous
motion.
=#
xhist = []
a_edof = zero_exogenous(ls)
@gif for t in t0:dt:t0+tmax
a_edof .= randn(length(a_edof))
update_exogenous!(ls,a_edof)
motion_rhs!(dxdt,x,(ls,bc),t)
global x += dxdt*dt
update_body!(bc,x,ls)
push!(xhist,copy(x))
plot(bc,xlims=(-1,5),ylims=(-1.5,1.5))
hline!([0.0])
end every 5
#=
Let's plot the exogenous state and its velocity
=#
plot(t0:dt:t0+tmax,map(x -> exogenous_position_vector(x,ls,1)[1],xhist),label="y position",xlabel="t")
plot!(t0:dt:t0+tmax,map(x -> exogenous_velocity_vector(x,ls,1)[1],xhist),label="y velocity")
#=
The variation in velocity is quite noisy (and constitutes a random walk).
In contrast, the change in position is relatively smooth, since it represents
an integral of this velocity.
=#
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 11534 | # # Joints and body-joint systems
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
For systems consisting of one or more rigid bodies, *joints* are used to specify
the degrees of freedom permitted for the body. Even for a single rigid body,
the body is assumed to be connected by a joint with the inertial coordinate system.
In three dimensions, there are several different classes of joint:
- `RevoluteJoint`, which rotates about an axis and has only one degree of freedom
- `PrismaticJoint`, which slides along one axis and has only one degree of freedom
- `HelicalJoint`, which rotates about and slides along one axis (two degrees of freedom)
- `SphericalJoint`, which rotates freely about one point (three degrees of freedom)
- `FreeJoint`, which can move in any manner (six degrees of freedom)
However, in two spatial dimensions, there are only two
- `RevoluteJoint` (one degree of freedom: rotation)
- `FreeJoint2d` (three degrees of freedom: rotation, two translation)
=#
using RigidBodyTools
using Plots
#=
A joint serves as a connection between two bodies; one of the bodies is the *parent*
and the other is the *child*. It is also common for a body to be connected to
the inertial coordinate system, in which case the inertial system is the parent
and the body is the child. The user must specify the id of the parent body and the child body.
The id of the inertial system is 0.
Before we discuss how a joint is specified, it is important to understand that
a joint is basically just an intermediate `MotionTransform` from the parent body's system
to the child body's system.
That is, to construct the transform from body P to body C, we would compose it
as follows
$${}^C X_{P} = {}^{C}X_{J(C)} {}^{J(C)}X_{J(P)} {}^{J(P)}X_{P}$$
The transform in the middle is the joint transform and is the only one of these that
can vary in time. It maps from one
coordinate system attached (rididly) to the parent body to another coordinate
system attached (rigidly) to the child body.
The degrees of freedom of the joint constrain the behavior of this joint transform.
Below, we show how joints are constructed and used.
=#
#=
## Joint construction generalities
The user must specify where the joint is located on each body, relative to the
origin of the body's coordinate system, and what orientation the joint takes
with respect to the body's coordinate system. These are specified with
`MotionTransform`s, transforming from each body's coordinate system to the joint's
coordinate system on that body. This transform is invariant -- it never changes.
Also, the user must specify the behavior of each of the degrees of freedom
of a joint, using the tools we discussed in the previous page.
The basic signature is
`Joint(joint_type,parent_body_id,Xp_to_jp,child_body_id,Xc_to_jc,doflist)`
However, there is a specialized signature if you simply wish to place
a body in some stationary configuration `X`:
`Joint(X,body_id)`
and if there is only one body and it is stationary, then
`Joint(X)`
will do.
=#
#=
## Example
Let's see a 2d example. Suppose we have two bodies, 1 and 2. Body 1 is to
be connected to the inertial coordinate system, and prescribed with motion
that causes it to oscillate rotationally (*pitch*) about a point located
at $(-1,0)$ and in the body's coordinate system, and this pitch axis
can oscillate up and down (*heave*).
Body 2 is to be connected by a hinge to body 1, and this hinge's angle will
also oscillate. We will set the hinge to be located at $(1.02,0)$
on body 1 and $(-1.02,0)$ on body 2.
=#
#=
### Joint from inertial system to body 1
First, let's construct the joint from the inertial system to body 1. This
should be a `FreeJoint2d`, since motion is prescribed in two of the three
degrees of freedom (as well as the third one, with zero velocity). We can assume
that the joint is attached to the origin of the parent (the inertial
system). On the child (body 1), the joint is to be at `[-1,0]`.
=#
pid = 0
Xp_to_jp = MotionTransform([0,0],0)
cid = 1
Xc_to_jc = MotionTransform([-1,0],0)
#=
For the rotational and the y degrees of freedom, we need oscillatory motion.
For the rotational motion, let's set the amplitude to $\pi/4$ and the
angular frequency to $\Omega = 2\pi$, but set the phase and mean velocity both
to zero.
=#
Ar = π/4
Ω = 2π
ϕr = 0.0
vel = 0.0
kr = OscillatoryDOF(Ar,Ω,ϕr,vel)
#=
For the plunging, we will set an amplitude of 1 and a phase lag of $\pi/2$, but keep the same
frequency as the pitching.
=#
Ay = 1
ϕy = -π/2
ky = OscillatoryDOF(Ay,Ω,ϕy,vel)
#=
The x degree of freedom is simply constant velocity, set to 0, to
ensure it does not move in the $x$ direction.
=#
kx = ConstantVelocityDOF(0)
#-
#=
We put these together into a vector, to pass along to the joint constructor.
The ordering of these in the vector is important. It must be
[rotational, x, y].
=#
dofs = [kr,kx,ky];
#=
Now set the joint
=#
joint1 = Joint(FreeJoint2d,pid,Xp_to_jp,cid,Xc_to_jc,dofs)
#=
Note that this joint has three constrained degrees of freedom,
no exogenous degrees of freedom, and no unconstrained degrees of freedom.
In a later example, we will change this.
=#
#=
### Joint from body 1 to body 2
This joint is a `RevoluteJoint`. First set the joint locations on each body.
=#
pid = 1
Xp_to_jp = MotionTransform([1.02,0],0)
cid = 2
Xc_to_jc = MotionTransform([-1.02,0],0)
#=
Now set its single degree of freedom (rotation) to have oscillatory
kinematics. We will set its amplitude the same as before,
but give it a phase lag
=#
Ar = π/4
Ω = 2π
ϕr = -π/4
kr = OscillatoryDOF(Ar,Ω,ϕr,vel)
#=
Put it in a one-element vector.
=#
dofs = [kr];
#=
and construct the joint
=#
joint2 = Joint(RevoluteJoint,pid,Xp_to_jp,cid,Xc_to_jc,dofs)
#=
Group the two joints together into a vector. It doesn't matter what
order this vector is in, since the connectivity will be figured out any way
it is ordered, but it numbers the joints by the order they are provided here.
=#
joints = [joint1,joint2];
#=
## Assembling the joints and bodies
The joints and bodies comprise an overall `RigidBodyMotion` system.
When this system is constructed, all of the connectivities are
determined (or missing connectivities are revealed). The
construction requires that we have set up the bodies themselves, so
let's do that first. We will make both body 1 and body 2 an ellipse
of aspect ratio 5. Note that ordering of bodies matters here, because
the first in the list is interpreted as body 1, etc.
=#
b1 = Ellipse(1.0,0.2,0.02)
b2 = Ellipse(1.0,0.2,0.02)
bodies = BodyList([b1,b2])
#=
Now we can construct the system
=#
ls = RigidBodyMotion(joints,bodies)
#=
Before we proceed, it is useful to demonstrate some of the tools
we have to probe the connectivity of the system. For example,
to find the parent joint of body 1, we use
=#
parent_joint_of_body(1,ls)
#=
This returns 1, since we have connected body 1 to joint 1.
How about the child joint of body 1? We expect it to be 2. Since there
might be more than one child, this returns a vector:
=#
child_joints_of_body(1,ls)
#=
We can also check the body connectivity of joints. This can be very useful
for more complicated systems in which the joint numbering is less clear.
The parent body of joint 1
=#
parent_body_of_joint(1,ls)
#=
This returns 0 since we have connected joint 1 to the inertial system. The child body of joint 2:
=#
child_body_of_joint(2,ls)
#=
## The system state vector
A key concept in advancing, plotting, and doing further analysis of this
system of joints and bodies is the *state vector*, $x$. This state vector
has entries for the position of every degree of freedom of all of the joints. It also may
have further entries for other quantities that need to be advanced, but for
this example, there are no other entries.
There are two functions that are useful for constructing the state vector. The
first is `zero_motion_state`, which simply creates a vector of zeros of the
correct size.
=#
zero_motion_state(bodies,ls)
#=
The second is `init_motion_state`, which fills in initial position values for any degrees of freedom
that have been prescribed.
=#
x = init_motion_state(bodies,ls)
#=
Note that neither of these functions has any mutating effect on the arguments (`bodies` and `ls`).
Also, it is always possible for the user to modify the entries in the state
vector after this function is called. In general, it would be difficult to
determine which entry is which in this state vector, so we can use a special
function for this. For example, to get access to just
the part of the state vector for the positions of joint 1,
=#
jid = 1
x1 = position_vector(x,ls,jid)
#=
This is a view on the overall state vector. This, if you decide to change an entry of `x1`, this, in turn,
would change the correct entry in `x`.
=#
#=
We can use the system state vector to put the bodies in their proper places,
using the joint positions in `x`.
=#
update_body!(bodies,x,ls)
#=
Let's plot this just to check
=#
plot(bodies,xlims=(-4,4),ylims=(-4,4))
#=
## Advancing the state vector
Once the initial state vector is constructed, then the system can
be advanced in time. In this example, there are no exogenous or
unconstrained degrees of freedom that require extra input, so
the system is *closed* as it is. To advance the system, we need
to solve the system of equations
$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t)$$
The function $f(x,t)$ describing the rate of change of $x$ is given by the
function `motion_rhs!`. This function mutates its first argument,
the rate-of-change vector `dxdt`, which can then be used to update the state.
The system and bodies are passed in as a tuple, followed by time.
Using a simple forward Euler method, the state vector can be advanced
as follows
=#
t0, x0 = 0.0, init_motion_state(bodies,ls)
dxdt = zero(x0)
x = copy(x0)
dt, tmax = 0.01, 4.0
for t in t0:dt:t0+tmax
motion_rhs!(dxdt,x,(ls,bodies),t)
global x += dxdt*dt
end
#=
Now that we know how to advance the state vector, let's create a macro
that can be used to make a movie of the evolving system.
=#
macro animate_motion(b,m,dt,tmax,xlim,ylim)
return esc(quote
bc = deepcopy($b)
t0, x0 = 0.0, init_motion_state(bc,$m)
dxdt = zero(x0)
x = copy(x0)
@gif for t in t0:$dt:t0+$tmax
motion_rhs!(dxdt,x,($m,bc),t)
global x += dxdt*$dt
update_body!(bc,x,$m)
plot(bc,xlims=$xlim,ylims=$ylim)
end every 5
end)
end
#=
Let's use it here
=#
@animate_motion bodies ls 0.01 4 (-4,4) (-4,4)
#md # ## Joint functions
#md # ```@docs
#md # Joint
#md # zero_joint
#md # init_joint
#md # ```
#md # ## System and state functions
#md # ```@docs
#md # RigidBodyMotion
#md # zero_motion_state
#md # init_motion_state
#md # Base.view(::AbstractVector,::RigidBodyMotion,::Int)
#md # position_vector
#md # velocity_vector
#md # deformation_vector
#md # exogenous_position_vector
#md # exogenous_velocity_vector
#md # unconstrained_position_vector
#md # unconstrained_velocity_vector
#md # body_transforms
#md # motion_transform_from_A_to_B
#md # force_transform_from_A_to_B
#md # body_velocities
#md # motion_rhs!
#md # zero_exogenous
#md # update_exogenous!
#md # maxvelocity
#md # ismoving(::RigidBodyMotion)
#md # is_system_in_relative_motion
#md # rebase_from_inertial_to_reference
#md # ```
#md # ## Joint types
#md # ```@docs
#md # RevoluteJoint
#md # PrismaticJoint
#md # HelicalJoint
#md # SphericalJoint
#md # FreeJoint
#md # FreeJoint2d
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 4842 | # # Creating bodies
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
The most basic functions of this package create an object of type
`Body`. There are a variety of such functions, a few of which we will demonstrate here.
Generally speaking, we are interesting in creating the object and placing it
in a certain position and orientation. We do this in two steps: we create the
basic shape, centered at the origin with a default orientation, and then
we transform the shape to a desired location and orientation. We will discuss
the shapes in this notebook, and the transforms in the following notebook.
It is useful to stress that each body stores two types of points internally:
the *endpoints* of the segments that comprise the body surface, and the
*midpoints* of these segments. The midpoints are intended for use in downstream
calculations, e.g. as forcing points in the calculations on immersed layers.
The midpoints are simply the geometric averages of the endpoints, so
endpoints are the ones that are transformed first, and midpoints are updated next.
=#
using RigidBodyTools
using Plots
#=
## Creating a shape
Let's first create a shape. For any shape, we have to make a choice of the
geometric dimensions (e.g, radius of the circle, side lengths of a rectangle),
as well as the points that we use to discretely represent the surface.
For this latter choice, there are two constructor types: we can specify the
number of points (as an integer), or we can specify the nominal spacing between
points (as a floating-point number).
The second approach is usually preferable when we use these tools for constructing immersed bodies.
It is important to stress that the algorithms for placing points attempt to make the spacing
as uniform as possible.
Let's create the most basic shape, a circle of radius 1. We will discretize
it with 100 points first:
=#
b = Circle(1.0,100)
#=
Now we will create the same body with a spacing of 0.02
=#
b = Circle(1.0,0.02)
#=
This choice led to 312 points along the circumference. Quick math will tell
you that the point spacing is probably not exactly 0.02. In fact, you can
find out the actual spacing with `dlengthmid`. This function calculates
the spacing associated with each point. (It does so by first calculating
the spacing between midpoints between each point and its two adjacent points.)
=#
dlengthmid(b)
#=
It is just a bit larger than 0.02.
A few other useful functions on the shape. To simply know the number of points,
=#
length(b)
#=
To find the outward normal vectors (based on the perpendicular to the line
joining the adjacent midpoints):
=#
nx, ny = normalmid(b)
#=
We can also plot the shape
=#
plot(b)
#=
Sometimes we don't want to fill in the shape (and maybe change the line color).
In that case, we can use
=#
plot(b,fill=:false,linecolor=:black)
#=
## Other shapes
Let's see some other shapes in action, like a square and an ellipse
=#
b1, b2 = Square(1.0,0.02), Ellipse(0.6,0.1,0.02)
plot(plot(b1), plot(b2))
#=
A NACA 4412 airfoil, with chord length 1, and 0.02 spacing between points.
=#
b = NACA4(0.04,0.4,0.12,0.02)
plot(b)
#=
A flat plate with no thickness
=#
b = Plate(1.0,0.02)
plot(b)
#=
and a flat plate with a 5 percent thickness (and rounded ends)
=#
b = ThickPlate(1.0,0.05,0.01)
plot(b)
#=
There are also some generic tools for creating shapes. A `BasicBody` simply
consists of points that describe the vertices. The interface for this is very simple.
=#
x = [1.0, 1.2, 0.7, 0.6, 0.2, -0.1, 0.1, 0.4]
y = [0.1, 0.5, 0.8, 1.2, 0.8, 0.6, 0.2, 0.3]
b = BasicBody(x,y)
#-
plot(b)
scatter!(b,markersize=3,markercolor=:black)
#=
However, this function does not insert any points along the sides between vertices.
We have to do the work of specifying these points in the original call. For this reason,
there are a few functions that are more directly useful. For example, we can
create a polygon from these vertices, with a specified spacing between points
distributed along the polygon sides
=#
b = Polygon(x,y,0.02)
#-
plot(b)
scatter!(b,markersize=3,markercolor=:black)
#=
Alternatively, we can interpret
those original points as control points for splines, with a spacing between points
along the splines provided:
=#
b = SplinedBody(x,y,0.02)
#-
plot(b)
scatter!(b,markersize=3,markercolor=:black)
#md # ## Body functions
#md # ```@docs
#md # BasicBody
#md # Polygon
#md # Circle
#md # Ellipse
#md # NACA4
#md # Plate
#md # Rectangle
#md # SplinedBody
#md # Square
#md # ```
#md # ## Shape utilities
#md # ```@docs
#md # centraldiff
#md # Base.diff(::Body)
#md # Base.diff(::BodyList)
#md # dlength
#md # dlengthmid
#md # Base.length(::Body)
#md # midpoints(::Body)
#md # midpoints(::BodyList)
#md # normal
#md # normalmid
#md # arccoord
#md # arccoordmid
#md # arclength(::Body)
#md # arclength(::BodyList)
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
|
[
"MIT"
] | 0.5.8 | 00e976b2114783858a92e581e4895769d319ab83 | code | 4454 | # # Evaluating velocities on body surfaces
#md # ```@meta
#md # CurrentModule = RigidBodyTools
#md # ```
#=
For use in mechanics problems, it is important to be able to output
the velocity of the points on the surfaces of bodies at a given system state
and time. We use the function `surface_velocity!` for this. Here,
we will demonstrate its use, and particularly, its various options.
We will use a simple problem, consisting of two flat plates connected
by a `RevoluteJoint`, and one of the plates connected to the inertial
system by a `FreeJoint2d`, oscillating in y coordinate only.
=#
using RigidBodyTools
using Plots
#=
## Set up the bodies, joints, and motion
=#
body1 = Plate(1.0,200)
body2 = deepcopy(body1)
bodies = BodyList([body1,body2])
#=
Joint 1, connecting body 1 to inertial system
=#
Xp_to_j1 = MotionTransform(0.0,0.0,0.0)
Xch_to_j1 = MotionTransform(-0.5,0.0,0.0)
dofs1 = [ConstantVelocityDOF(0),ConstantVelocityDOF(0),OscillatoryDOF(1.0,2π,0,0.0)]
joint1 = Joint(FreeJoint2d,0,Xp_to_j1,1,Xch_to_j1,dofs1)
#=
Joint 2, connecting body 2 to body 1
=#
Xp_to_j2 = MotionTransform(0.5,0.0,0.0)
Xch_to_j2 = MotionTransform(-0.5,0.0,0.0)
dofs2 = [OscillatoryDOF(π/4,2π,-π/4,0.0)]
joint2 = Joint(RevoluteJoint,1,Xp_to_j2,2,Xch_to_j2,dofs2)
#=
Assemble, and get the initial joint state vector at t = 0
=#
joints = [joint1,joint2]
ls = RigidBodyMotion(joints,bodies)
t = 0
x = init_motion_state(bodies,ls;tinit=t)
#=
Let's plot the bodies, just to visualize their current configuration.
=#
update_body!(bodies,x,ls)
plot(bodies,xlim=(-1,3),ylim=(-2,2))
#=
Because of the phase difference, joint 2 is bent at an angle initially.
=#
#=
## Evaluate velocity on body points
First, initialize vectors for the `u` and `v` components in this 2d example,
using the `zero_body` function.
=#
u, v = zero_body(bodies), zero_body(bodies)
#=
Now evaluate the velocities at time 0
=#
surface_velocity!(u,v,bodies,x,ls,t)
#=
We can plot these on each body using the `view` function for `BodyList`.
For example, the vectors of u and v velocities on body 1 are
=#
bodyid = 1
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u1")
plot!(s,view(v,bodies,bodyid),label="v1")
#=
This shows a pure vertical translation. On body 2,
we see a mixture of the translation of body 1, plus
the rotation of joint 2, which is reflected in the linear variation. Since the plate is at an angle,
some of this rotation shows up as a negative u component.
=#
bodyid = 2
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u2")
plot!(s,view(v,bodies,bodyid),label="v2")
#=
We can compute these velocities in different components, using the optional `axes`
argument. For example, let's see the velocities on body 2 in its own coordinate
system
=#
surface_velocity!(u,v,bodies,x,ls,t;axes=2)
bodyid = 2
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u2")
plot!(s,view(v,bodies,bodyid),label="v2")
#=
Now only the v component (the component perpendicular to the plate) depicts
the rotation, and the u component has only a portion of the translational motion
from joint 1.
We can also compute the velocity relative to a body reference frame, using
the optional `frame` argument. Let's compute the velocities relative
to the velocity of body 1 (and in body 1 coordinates) and plot them.
=#
surface_velocity!(u,v,bodies,x,ls,t;axes=1,frame=1)
bodyid = 1
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u1")
plot!(s,view(v,bodies,bodyid),label="v1")
#=
Body 1 has no velocity in this reference frame. And body 2 has only
a pure rotation...
=#
bodyid = 2
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u2")
plot!(s,view(v,bodies,bodyid),label="v2")
#=
We do not have to remove all of the motion of the reference body
when we compute velocity in a moving reference frame. We
can use the `motion_part` keyword argument to remove only, e.g., `:angular`
or `:linear` part (instead of `:full`, the default). For example,
if we remove the angular part of body 2's motion, we are left with only
the translation from joint 1
=#
surface_velocity!(u,v,bodies,x,ls,t;axes=2,frame=2,motion_part=:angular)
bodyid = 2
s = arccoord(bodies[bodyid])
plot(s,view(u,bodies,bodyid),ylim=(-20,20),label="u2")
plot!(s,view(v,bodies,bodyid),label="v2")
#md # ## Surface velocity functions
#md # ```@docs
#md # surface_velocity!
#md # ```
| RigidBodyTools | https://github.com/JuliaIBPM/RigidBodyTools.jl.git |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.