licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
10715
# Store the rank with the value, necessary for collecting values in order struct pval{T} rank :: Int errorstatus :: Bool value :: T end pval{T}(p::pval{T}) where {T} = p pval{T}(p::pval) where {T} = pval{T}(p.rank, p.errorstatus, convert(T, p.value)) errorpval(rank) = pval(rank, true, nothing) errorstatus(p::pval) = p.errorstatus # Function to obtain the value of pval types value(p::pval) = p.value value(p::Any) = p struct Product{I} iterators :: I end getiterators(p::Product) = p.iterators Base.length(p::Product) = length(Iterators.product(p.iterators...)) Base.iterate(p::Product, st...) = iterate(Iterators.product(p.iterators...), st...) function product(iter...) any(x -> x isa Product, iter) && throw(ArgumentError("the iterators should not be Products")) Product(iter) end struct Hold{T} iterators :: T end getiterators(h::Hold) = getiterators(h.iterators) Base.length(h::Hold) = length(h.iterators) function check_knownsize(iterator) itsz = Base.IteratorSize(iterator) itsz isa Base.HasLength || itsz isa Base.HasShape end struct ZipSplit{Z, I} z :: Z it :: I skip :: Int N :: Int end # This constructor differs from zipsplit, as it uses skipped and retained elements # and not p and np. This type is added to increase compatibility with SplittablesBase function ZipSplit(itzip, skipped_elements::Integer, elements_on_proc::Integer) it = Iterators.take(Iterators.drop(itzip, skipped_elements), elements_on_proc) ZipSplit{typeof(itzip), typeof(it)}(itzip, it, skipped_elements, elements_on_proc) end Base.length(zs::ZipSplit) = length(zs.it) Base.eltype(zs::ZipSplit) = eltype(zs.it) Base.iterate(z::ZipSplit, i...) = iterate(takedrop(z), i...) takedrop(zs::ZipSplit) = zs.it function SplittablesBase.halve(zs::ZipSplit) nleft = zs.N ÷ 2 ZipSplit(zs.z, zs.skip, nleft), ZipSplit(zs.z, zs.skip + nleft, zs.N - nleft) end zipsplit(iterators::Tuple, np::Integer, p::Integer) = zipsplit(zip(iterators...), np, p) function zipsplit(itzip::Iterators.Zip, np::Integer, p::Integer) check_knownsize(itzip) d,r = divrem(length(itzip), np) skipped_elements = d*(p-1) + min(r,p-1) lastind = d*p + min(r,p) elements_on_proc = lastind - skipped_elements ZipSplit(itzip, skipped_elements, elements_on_proc) end _split_iterators(iterators, np, p) = (zipsplit(iterators, np, p),) function _split_iterators(iterators::Tuple{Hold{<:Product}}, np, p) it_hold = first(iterators) (ProductSplit(getiterators(it_hold), np, p), ) end ############################################################################################ # Local mapreduce ############################################################################################ struct NoSplat <: Function f :: Function end NoSplat(u::NoSplat) = u _maybesplat(f) = Base.splat(f) _maybesplat(f::NoSplat) = f _mapreduce(f, op, iterators...; reducekw...) = mapreduce(f, op, iterators...; reducekw...) function _mapreduce(fun::NoSplat, op, iterators...; reducekw...) mapval = fun.f(iterators...) reduce(op, (mapval,); reducekw...) end function mapreducenode(f, op, rank, pipe::BranchChannel, selfoutchannel, iterators...; reducekw...) # Evaluate the function # No communication with other nodes happens here try fmap = _maybesplat(f) if rank == 1 res = _mapreduce(fmap, op, iterators...; reducekw...) else # init should only be used once on the first rank # remove it from the kwargs on other workers kwdict = Dict(reducekw) pop!(kwdict, :init, nothing) res = _mapreduce(fmap, op, iterators...; kwdict...) end val = pval(rank, false, res) put!(selfoutchannel, val) catch put!(selfoutchannel, errorpval(rank)) rethrow() end end ############################################################################################ # Reduction across workers ############################################################################################ abstract type ReductionNode end struct TopTreeNode <: ReductionNode rank :: Int end struct SubTreeNode <: ReductionNode rank :: Int end _maybesort(op::Commutative, vals) = vals _maybesort(op, vals) = sort!(vals, by = pv -> pv.rank) function reducechannel(op, c, N; reducekw...) vals = [take!(c) for i = 1:N] vals = _maybesort(op, vals) v = [value(v) for v in vals] reduce(op, v; reducekw...) end seterrorflag(c, val) = put!(c, take!(c) | val) function reducedvalue(op, node::SubTreeNode, pipe::BranchChannel, selfoutchannel; reducekw...) rank = node.rank N = nchildren(pipe) + 1 err_ch = Channel{Bool}(1) put!(err_ch, false) self_pval = take!(selfoutchannel) if errorstatus(self_pval) return errorpval(rank) else put!(selfoutchannel, self_pval) end @sync for i = 1:nchildren(pipe) @async begin child_pval = take!(pipe.childrenchannel) if errorstatus(child_pval) seterrorflag(err_ch, true) else put!(selfoutchannel, child_pval) seterrorflag(err_ch, false) end end end take!(err_ch) && return errorpval(rank) redval = reducechannel(op, selfoutchannel, N; reducekw...) return pval(rank, false, redval) end function reducedvalue(op, node::TopTreeNode, pipe::BranchChannel, ::Any; reducekw...) rank = node.rank N = nchildren(pipe) c = Channel(N) err_ch = Channel{Bool}(1) put!(err_ch, false) @sync for i in 1:N @async begin child_pval = take!(pipe.childrenchannel) if errorstatus(child_pval) seterrorflag(err_ch, true) else put!(c, child_pval) seterrorflag(err_ch, false) end end end take!(err_ch) && return errorpval(rank) redval = reducechannel(op, c, N; reducekw...) return pval(rank, false, redval) end function reducenode(op, node::ReductionNode, pipe::BranchChannel, selfoutchannel = nothing; kwargs...) # This function that communicates with the parent and children rank = node.rank try kwdict = Dict(kwargs) pop!(kwdict, :init, nothing) res = reducedvalue(op, node, pipe, selfoutchannel; kwdict...) put!(pipe.parentchannel, res) catch put!(pipe.parentchannel, errorpval(rank)) rethrow() finally GC.gc() end return nothing end function pmapreduceworkers(f, op, tree_branches, iterators; reducekw...) tree, branches = tree_branches nworkerstree = nworkers(tree) extrareducenodes = length(tree) - nworkerstree @sync for (ind, mypipe) in enumerate(branches) p = mypipe.p ind_reduced = ind - extrareducenodes rank = ind_reduced if ind_reduced > 0 iterable_on_proc = _split_iterators(iterators, nworkerstree, rank) @spawnat p begin selfoutchannel = Channel(nchildren(mypipe) + 1) @sync begin @async mapreducenode(f, op, rank, mypipe, selfoutchannel, iterable_on_proc...; reducekw...) @async reducenode(op, SubTreeNode(rank), mypipe, selfoutchannel; reducekw...) end end else @spawnat p reducenode(op, TopTreeNode(rank), mypipe; reducekw...) end end tb = topbranch(tree, branches) value(take!(tb.parentchannel)) end """ pmapreduce(f, op, [pool::AbstractWorkerPool], iterators...; reducekw...) Evaluate a parallel `mapreduce` over the elements from `iterators`. For multiple iterators, apply `f` elementwise. The keyword arguments `reducekw` are passed on to the reduction. See also: [`pmapreduce_productsplit`](@ref) """ function pmapreduce(f, op, pool::AbstractWorkerPool, iterators...; reducekw...) N = length(zip(iterators...)) if N <= 1 || nworkers(pool) == 1 iterable_on_proc = _split_iterators(iterators, 1, 1) fmap = _maybesplat(f) if nprocs() == 1 # no workers added return _mapreduce(fmap, op, iterable_on_proc...; reducekw...) else # one worker or single-valued iterator return @fetchfrom workers(pool)[1] _mapreduce(fmap, op, iterable_on_proc...; reducekw...) end end tree_branches = createbranchchannels(pool, N) pmapreduceworkers(f, op, tree_branches, iterators; reducekw...) end function pmapreduce(f, op, iterators...; reducekw...) N = length(zip(iterators...)) pool = maybetrimmedworkerpool(workers(), N) pmapreduce(f, op, pool, iterators...; reducekw...) end """ pmapreduce_productsplit(f, op, [pool::AbstractWorkerPool], iterators...; reducekw...) Evaluate a parallel mapreduce over the outer product of elements from `iterators`. The product of `iterators` is split over the workers available, and each worker is assigned a section of the product. The function `f` should accept a single argument that is a collection of `Tuple`s. The keyword arguments `reducekw` are passed on to the reduction. See also: [`pmapreduce`](@ref) """ pmapreduce_productsplit(f, op, pool::AbstractWorkerPool, iterators...; reducekw...) = pmapreduce(NoSplat(f), op, pool, Hold(product(iterators...)); reducekw...) function pmapreduce_productsplit(f, op, iterators...; reducekw...) N = length(product(iterators...)) pool = maybetrimmedworkerpool(workers(), N) pmapreduce_productsplit(f, op, pool, iterators...; reducekw...) end """ pmapbatch(f, [pool::AbstractWorkerPool], iterators...) Carry out a `pmap` with the `iterators` divided evenly among the available workers. See also: [`pmapreduce`](@ref) """ function pmapbatch(f, pool::AbstractWorkerPool, iterators...) pmapreduce((x...) -> [f(x...)], vcat, pool, iterators...) end function pmapbatch(f, iterators...) N = length(zip(iterators...)) pool = maybetrimmedworkerpool(workers(), N) pmapbatch(f, pool, iterators...) end """ pmapbatch_productsplit(f, [pool::AbstractWorkerPool], iterators...) Carry out a `pmap` with the outer product of `iterators` divided evenly among the available workers. The function `f` must accept a collection of `Tuple`s. See also: [`pmapbatch`](@ref), [`pmapreduce_productsplit`](@ref) """ function pmapbatch_productsplit(f, pool::AbstractWorkerPool, iterators...) pmapreduce_productsplit(x -> [f(x)], vcat, pool, iterators...) end function pmapbatch_productsplit(f, iterators...) N = length(product(iterators...)) pool = maybetrimmedworkerpool(workers(), N) pmapbatch_productsplit(f, pool, iterators...) end
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
28925
struct TaskNotPresentError{T,U} <: Exception t :: T task :: U end function Base.showerror(io::IO, err::TaskNotPresentError) print(io, "could not find the task $(err.task) in the list $(err.t)") end """ AbstractConstrainedProduct{T, N, Q} Supertype of [`ProductSplit`](@ref) and [`ProductSection`](@ref). """ abstract type AbstractConstrainedProduct{T, N, Q} end Base.eltype(::AbstractConstrainedProduct{T}) where {T} = T _niterators(::AbstractConstrainedProduct{<:Any, N}) where {N} = N const IncreasingAbstractConstrainedProduct{T, N} = AbstractConstrainedProduct{T, N, <:NTuple{N, AbstractUnitRange}} """ ProductSection{T, N, Q<:NTuple{N,AbstractRange}} Iterator that loops over a specified section of the outer product of ranges in. If the ranges are strictly increasing, the iteration will be in reverse - lexicographic order. Given `N` ranges, each element returned by the iterator will be a tuple of length `N` with one element from each range. See also: [`ProductSplit`](@ref) """ struct ProductSection{T, N, Q <: NTuple{N,AbstractRange}} <: AbstractConstrainedProduct{T, N, Q} iterators :: Q togglelevels :: NTuple{N, Int} firstind :: Int lastind :: Int function ProductSection(iterators::Tuple{Vararg{AbstractRange, N}}, togglelevels::NTuple{N, Int}, firstind::Int, lastind::Int) where {N} # Ensure that all the iterators are strictly increasing all(x->step(x)>0, iterators) || throw(ArgumentError("all the ranges need to be strictly increasing")) T = Tuple{map(eltype, iterators)...} new{T, N, typeof(iterators)}(iterators, togglelevels, firstind, lastind) end end function _cumprod(len::Tuple) (0, _cumprod(first(len), Base.tail(len))...) end _cumprod(::Integer,::Tuple{}) = () function _cumprod(n::Integer, tl::Tuple) (n, _cumprod(n*first(tl), Base.tail(tl))...) end function takedrop(ps::ProductSection) drop = ps.firstind - 1 take = ps.lastind - ps.firstind + 1 Iterators.take(Iterators.drop(Iterators.product(ps.iterators...), drop), take) end """ ProductSection(iterators::Tuple{Vararg{AbstractRange}}, inds::AbstractUnitRange) Construct a `ProductSection` iterator that represents a 1D view of the outer product of the ranges provided in `iterators`, with the range of indices in the view being specified by `inds`. # Examples ```jldoctest julia> p = ParallelUtilities.ProductSection((1:3, 4:6), 5:8); julia> collect(p) 4-element $(Vector{Tuple{Int, Int}}): (2, 5) (3, 5) (1, 6) (2, 6) julia> collect(p) == collect(Iterators.product(1:3, 4:6))[5:8] true ``` """ function ProductSection(iterators::Tuple{Vararg{AbstractRange}}, inds::AbstractUnitRange) firstind, lastind = first(inds), last(inds) len = map(length, iterators) Nel = prod(len) 1 <= firstind || throw( ArgumentError("the range of indices must start from a number ≥ 1")) lastind <= Nel || throw( ArgumentError("the maximum index must be less than or equal to the total number of elements = $Nel")) togglelevels = _cumprod(len) ProductSection(iterators, togglelevels, firstind, lastind) end ProductSection(::Tuple{}, ::AbstractUnitRange) = throw(ArgumentError("need at least one iterator")) """ ProductSplit{T, N, Q<:NTuple{N,AbstractRange}} Iterator that loops over a section of the outer product of ranges. If the ranges are strictly increasing, the iteration is in reverse - lexicographic order. Given `N` ranges, each element returned by the iterator will be a tuple of length `N` with one element from each range. See also: [`ProductSection`](@ref) """ struct ProductSplit{T, N, Q<:NTuple{N, AbstractRange}} <: AbstractConstrainedProduct{T, N, Q} ps :: ProductSection{T, N, Q} np :: Int p :: Int function ProductSplit(ps::ProductSection{T, N, Q}, np::Integer, p::Integer) where {T, N, Q} 1 <= p <= np || throw(ArgumentError("processor rank out of range")) new{T, N, Q}(ps, np, p) end end function nelementsdroptake(len, np, p) d, r = divrem(len, np) drop = d*(p - 1) + min(r, p - 1) lastind = d*p + min(r, p) take = lastind - drop drop, take end """ ProductSplit(iterators::Tuple{Vararg{AbstractRange}}, np::Integer, p::Integer) Construct a `ProductSplit` iterator that represents the outer product of the iterators split over `np` workers, with this instance reprsenting the values on the `p`-th worker. !!! note `p` here refers to the rank of the worker, and is unrelated to the worker ID obtained by executing `myid()` on that worker. # Examples ```jldoctest julia> ParallelUtilities.ProductSplit((1:2, 4:5), 2, 1) |> collect 2-element $(Vector{Tuple{Int, Int}}): (1, 4) (2, 4) julia> ParallelUtilities.ProductSplit((1:2, 4:5), 2, 2) |> collect 2-element $(Vector{Tuple{Int, Int}}): (1, 5) (2, 5) ``` """ function ProductSplit(iterators::Tuple{Vararg{AbstractRange}}, np::Integer, p::Integer) # d, r = divrem(prod(length, iterators), np) # firstind = d*(p - 1) + min(r, p - 1) + 1 # lastind = d*p + min(r, p) drop, take = nelementsdroptake(prod(length, iterators), np, p) firstind = drop + 1 lastind = drop + take ProductSplit(ProductSection(iterators, firstind:lastind), np, p) end ProductSplit(::Tuple{}, ::Integer, ::Integer) = throw(ArgumentError("Need at least one iterator")) takedrop(ps::ProductSplit) = takedrop(ProductSection(ps)) workerrank(ps::ProductSplit) = ps.p Distributed.nworkers(ps::ProductSplit) = ps.np ProductSection(ps::ProductSection) = ps ProductSection(ps::ProductSplit) = ps.ps getiterators(ps::AbstractConstrainedProduct) = ProductSection(ps).iterators togglelevels(ps::AbstractConstrainedProduct) = ProductSection(ps).togglelevels function Base.summary(io::IO, ps::AbstractConstrainedProduct) print(io, length(ps), "-element ", string(nameof(typeof(ps)))) end function Base.show(io::IO, ps::AbstractConstrainedProduct) summary(io, ps) if !isempty(ps) print(io, " [", repr(first(ps)) * ", ... , " * repr(last(ps)), "]") end end Base.isempty(ps::AbstractConstrainedProduct) = (firstindexglobal(ps) > lastindexglobal(ps)) function Base.first(ps::AbstractConstrainedProduct) isempty(ps) && throw(ArgumentError("collection must be non - empty")) _first(getiterators(ps), childindex(ps, firstindexglobal(ps))...) end function _first(t::Tuple, ind::Integer, rest::Integer...) (1 <= ind <= length(first(t))) || throw(BoundsError(first(t), ind)) (first(t)[ind], _first(Base.tail(t), rest...)...) end _first(::Tuple{}) = () function Base.last(ps::AbstractConstrainedProduct) isempty(ps) && throw(ArgumentError("collection must be non - empty")) _last(getiterators(ps), childindex(ps, lastindexglobal(ps))...) end function _last(t::Tuple, ind::Integer, rest::Integer...) (1 <= ind <= length(first(t))) || throw(BoundsError(first(t), ind)) (first(t)[ind], _last(Base.tail(t), rest...)...) end _last(::Tuple{}) = () Base.length(ps::AbstractConstrainedProduct) = lastindex(ps) Base.firstindex(ps::AbstractConstrainedProduct) = 1 Base.lastindex(ps::AbstractConstrainedProduct) = lastindexglobal(ps) - firstindexglobal(ps) + 1 firstindexglobal(ps::AbstractConstrainedProduct) = ProductSection(ps).firstind lastindexglobal(ps::AbstractConstrainedProduct) = ProductSection(ps).lastind # SplittablesBase interface function SplittablesBase.halve(ps::AbstractConstrainedProduct) iter = getiterators(ps) firstind = firstindexglobal(ps) lastind = lastindexglobal(ps) nleft = length(ps) ÷ 2 firstindleft = firstind lastindleft = firstind + nleft - 1 firstindright = lastindleft + 1 lastindright = lastind tl = togglelevels(ps) ProductSection(iter, tl, firstindleft, lastindleft), ProductSection(iter, tl, firstindright, lastindright) end """ childindex(ps::AbstractConstrainedProduct, ind) Return a tuple containing the indices of the individual `AbstractRange`s corresponding to the element that is present at index `ind` in the outer product of the ranges. !!! note The index `ind` corresponds to the outer product of the ranges, and not to `ps`. # Examples ```jldoctest julia> iters = (1:5, 2:4, 1:3); julia> ps = ParallelUtilities.ProductSplit(iters, 7, 1); julia> ind = 6; julia> cinds = ParallelUtilities.childindex(ps, ind) (1, 2, 1) julia> v = collect(Iterators.product(iters...)); julia> getindex.(iters, cinds) == v[ind] true ``` See also: [`childindexshifted`](@ref) """ function childindex(ps::AbstractConstrainedProduct, ind) tl = reverse(Base.tail(togglelevels(ps))) reverse(childindex(tl, ind)) end function childindex(tl::Tuple, ind) t = first(tl) k = div(ind - 1, t) (k + 1, childindex(Base.tail(tl), ind - k*t)...) end # First iterator gets the final remainder childindex(::Tuple{}, ind) = (ind,) """ childindexshifted(ps::AbstractConstrainedProduct, ind) Return a tuple containing the indices in the individual iterators given an index of `ps`. If the iterators `(r1, r2, ...)` are used to generate `ps`, then return `(i1, i2, ...)` such that `ps[ind] == (r1[i1], r2[i2], ...)`. # Examples ```jldoctest julia> iters = (1:5, 2:4, 1:3); julia> ps = ParallelUtilities.ProductSplit(iters, 7, 3); julia> psind = 4; julia> cinds = ParallelUtilities.childindexshifted(ps, psind) (3, 1, 2) julia> getindex.(iters, cinds) == ps[psind] true ``` See also: [`childindex`](@ref) """ function childindexshifted(ps::AbstractConstrainedProduct, ind) childindex(ps, (ind - 1) + firstindexglobal(ps)) end function Base.getindex(ps::AbstractConstrainedProduct, ind) 1 <= ind <= length(ps) || throw(BoundsError(ps, ind)) _getindex(ps, childindexshifted(ps, ind)...) end # This needs to be a separate function to deal with the case of a single child iterator, in which case # it's not clear if the single index is for the ProductSplit or the child iterator # This method asserts that the number of indices is correct function _getindex(ps::AbstractConstrainedProduct{<:Any, N}, inds::Vararg{Integer, N}) where {N} _getindex(getiterators(ps), inds...) end function _getindex(t::Tuple, ind::Integer, rest::Integer...) (1 <= ind <= length(first(t))) || throw(BoundsError(first(t), ind)) (first(t)[ind], _getindex(Base.tail(t), rest...)...) end _getindex(::Tuple{}, ::Integer...) = () function Base.iterate(ps::AbstractConstrainedProduct, state...) iterate(takedrop(ps), state...) end function _firstlastalongdim(ps::AbstractConstrainedProduct, dims, firstindchild::Tuple = childindex(ps, firstindexglobal(ps)), lastindchild::Tuple = childindex(ps, lastindexglobal(ps))) iter = getiterators(ps)[dims] fic = firstindchild[dims] lic = lastindchild[dims] first_iter = iter[fic] last_iter = iter[lic] (first_iter, last_iter) end function _checkrollover(ps::AbstractConstrainedProduct, dims, firstindchild::Tuple = childindex(ps, firstindexglobal(ps)), lastindchild::Tuple = childindex(ps, lastindexglobal(ps))) _checkrollover(getiterators(ps), dims, firstindchild, lastindchild) end function _checkrollover(t::Tuple, dims, firstindchild::Tuple, lastindchild::Tuple) if dims > 0 return _checkrollover(Base.tail(t), dims - 1, Base.tail(firstindchild), Base.tail(lastindchild)) end !_checknorollover(reverse(t), reverse(firstindchild), reverse(lastindchild)) end function _checknorollover(t, firstindchild, lastindchild) iter = first(t) first_iter = iter[first(firstindchild)] last_iter = iter[first(lastindchild)] (last_iter == first_iter) & _checknorollover(Base.tail(t), Base.tail(firstindchild), Base.tail(lastindchild)) end _checknorollover(::Tuple{}, ::Tuple{}, ::Tuple{}) = true function _nrollovers(ps::AbstractConstrainedProduct, dims::Integer) dims == _niterators(ps) && return 0 nelements(ps; dims = dims + 1) - 1 end """ nelements(ps::AbstractConstrainedProduct{T, N, <:NTuple{N,AbstractUnitRange}}; dims::Integer) where {T,N} Compute the number of unique values in the section of the `dims`-th range contained in `ps`. The function is defined currently only for iterator products of `AbstractUnitRange`s. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:5, 2:4, 1:3), 7, 3); julia> collect(ps) 7-element $(Vector{Tuple{Int, Int, Int}}): (5, 4, 1) (1, 2, 2) (2, 2, 2) (3, 2, 2) (4, 2, 2) (5, 2, 2) (1, 3, 2) julia> ParallelUtilities.nelements(ps, dims = 1) 5 julia> ParallelUtilities.nelements(ps, dims = 2) 3 julia> ParallelUtilities.nelements(ps, dims = 3) 2 ``` """ function nelements(ps::IncreasingAbstractConstrainedProduct; dims::Integer) 1 <= dims <= _niterators(ps) || throw(ArgumentError("1 ⩽ dims ⩽ N=$(_niterators(ps)) not satisfied for dims=$dims")) iter = getiterators(ps)[dims] if _nrollovers(ps, dims) == 0 st = first(ps)[dims] en = last(ps)[dims] stind = findfirst(isequal(st), iter) enind = findfirst(isequal(en), iter) nel = length(stind:enind) elseif _nrollovers(ps, dims) > 1 nel = length(iter) else st = first(ps)[dims] en = last(ps)[dims] stind = findfirst(isequal(st), iter) enind = findfirst(isequal(en), iter) if stind > enind # some elements are missed out nel = length(stind:length(iter)) + length(1:enind) else nel = length(iter) end end return nel end """ maximumelement(ps::AbstractConstrainedProduct; dims::Integer) Compute the maximum value of the section of the range number `dims` contained in `ps`. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:2, 4:5), 2, 1); julia> collect(ps) 2-element $(Vector{Tuple{Int, Int}}): (1, 4) (2, 4) julia> ParallelUtilities.maximumelement(ps, dims = 1) 2 julia> ParallelUtilities.maximumelement(ps, dims = 2) 4 ``` """ function maximumelement(ps::IncreasingAbstractConstrainedProduct; dims::Integer) isempty(ps) && throw(ArgumentError("collection must be non - empty")) firstindchild = childindex(ps, firstindexglobal(ps)) lastindchild = childindex(ps, lastindexglobal(ps)) _, last_iter = _firstlastalongdim(ps, dims, firstindchild, lastindchild) v = last_iter # The last index will not roll over so this can be handled easily if dims == _niterators(ps) return v end if _checkrollover(ps, dims, firstindchild, lastindchild) iter = getiterators(ps)[dims] v = maximum(iter) end return v end function maximumelement(ps::IncreasingAbstractConstrainedProduct{<:Any, 1}) isempty(ps) && throw(ArgumentError("range must be non - empty")) lastindchild = childindex(ps, lastindexglobal(ps)) lic_dim = lastindchild[1] iter = getiterators(ps)[1] iter[lic_dim] end """ minimumelement(ps::AbstractConstrainedProduct; dims::Integer) Compute the minimum value of the section of the range number `dims` contained in `ps`. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:2, 4:5), 2, 1); julia> collect(ps) 2-element $(Vector{Tuple{Int, Int}}): (1, 4) (2, 4) julia> ParallelUtilities.minimumelement(ps, dims = 1) 1 julia> ParallelUtilities.minimumelement(ps, dims = 2) 4 ``` """ function minimumelement(ps::IncreasingAbstractConstrainedProduct; dims::Integer) isempty(ps) && throw(ArgumentError("collection must be non - empty")) firstindchild = childindex(ps, firstindexglobal(ps)) lastindchild = childindex(ps, lastindexglobal(ps)) first_iter, last_iter = _firstlastalongdim(ps, dims, firstindchild, lastindchild) v = first_iter # The last index will not roll over so this can be handled easily if dims == _niterators(ps) return v end if _checkrollover(ps, dims, firstindchild, lastindchild) iter = getiterators(ps)[dims] v = minimum(iter) end return v end function minimumelement(ps::IncreasingAbstractConstrainedProduct{<:Any, 1}) isempty(ps) && throw(ArgumentError("range must be non - empty")) firstindchild = childindex(ps, firstindexglobal(ps)) fic_dim = firstindchild[1] iter = getiterators(ps)[1] iter[fic_dim] end """ extremaelement(ps::AbstractConstrainedProduct; dims::Integer) Compute the `extrema` of the section of the range number `dims` contained in `ps`. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:2, 4:5), 2, 1); julia> collect(ps) 2-element $(Vector{Tuple{Int, Int}}): (1, 4) (2, 4) julia> ParallelUtilities.extremaelement(ps, dims = 1) (1, 2) julia> ParallelUtilities.extremaelement(ps, dims = 2) (4, 4) ``` """ function extremaelement(ps::IncreasingAbstractConstrainedProduct; dims::Integer) isempty(ps) && throw(ArgumentError("collection must be non - empty")) firstindchild = childindex(ps, firstindexglobal(ps)) lastindchild = childindex(ps, lastindexglobal(ps)) first_iter, last_iter = _firstlastalongdim(ps, dims, firstindchild, lastindchild) v = (first_iter, last_iter) # The last index will not roll over so this can be handled easily if dims == _niterators(ps) return v end if _checkrollover(ps, dims, firstindchild, lastindchild) iter = getiterators(ps)[dims] v = extrema(iter) end return v end function extremaelement(ps::IncreasingAbstractConstrainedProduct{<:Any, 1}) isempty(ps) && throw(ArgumentError("collection must be non - empty")) firstindchild = childindex(ps, firstindexglobal(ps)) lastindchild = childindex(ps, lastindexglobal(ps)) fic_dim = firstindchild[1] lic_dim = lastindchild[1] iter = getiterators(ps)[1] (iter[fic_dim], iter[lic_dim]) end for (f, g) in [(:maximumelement, :maximum), (:minimumelement, :minimum), (:extremaelement, :extrema)] @eval $f(ps::AbstractConstrainedProduct{<:Any, 1}) = $g(first, takedrop(ps)) @eval $f(ps::AbstractConstrainedProduct; dims::Integer) = $g(x -> x[dims], takedrop(ps)) end """ extremadims(ps::AbstractConstrainedProduct) Compute the extrema of the sections of all the ranges contained in `ps`. Functionally this is equivalent to ```julia map(i -> extrema(ps, dims = i), 1:_niterators(ps)) ``` but it is implemented more efficiently. Returns a `Tuple` containing the `(min, max)` pairs along each dimension, such that the `i`-th index of the result contains the `extrema` along the section of the `i`-th range contained locally. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:2, 4:5), 2, 1); julia> collect(ps) 2-element $(Vector{Tuple{Int, Int}}): (1, 4) (2, 4) julia> ParallelUtilities.extremadims(ps) ((1, 2), (4, 4)) ``` """ function extremadims(ps::AbstractConstrainedProduct) _extremadims(ps, 1, getiterators(ps)) end function _extremadims(ps::AbstractConstrainedProduct, dims::Integer, iterators::Tuple) (extremaelement(ps; dims = dims), _extremadims(ps, dims + 1, Base.tail(iterators))...) end _extremadims(::AbstractConstrainedProduct, ::Integer, ::Tuple{}) = () """ extrema_commonlastdim(ps::AbstractConstrainedProduct{T, N, <:NTuple{N,AbstractUnitRange}}) where {T,N} Return the reverse - lexicographic extrema of values taken from ranges contained in `ps`, where the pairs of ranges are constructed by concatenating the ranges along each dimension with the last one. For two ranges this simply returns `([first(ps)], [last(ps)])`. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:3, 4:7, 2:7), 10, 2); julia> collect(ps) 8-element $(Vector{Tuple{Int, Int, Int}}): (3, 6, 2) (1, 7, 2) (2, 7, 2) (3, 7, 2) (1, 4, 3) (2, 4, 3) (3, 4, 3) (1, 5, 3) julia> ParallelUtilities.extrema_commonlastdim(ps) $((Tuple{Int,Int}[(1, 2), (6, 2)], Tuple{Int,Int}[(3, 3), (5, 3)])) ``` """ function extrema_commonlastdim(ps::IncreasingAbstractConstrainedProduct) isempty(ps) && return nothing m = extremadims(ps) lastvar_min, lastvar_max = last(m) val_first = first(ps) val_last = last(ps) min_vals = collect(Base.front(val_first)) max_vals = collect(Base.front(val_last)) for val in ps val_rev = reverse(val) lastvar = first(val_rev) (lastvar_min < lastvar < lastvar_max) && continue for (ind, vi) in enumerate(Base.tail(val_rev)) if lastvar == lastvar_min min_vals[_niterators(ps) - ind] = min(min_vals[_niterators(ps) - ind], vi) end if lastvar == lastvar_max max_vals[_niterators(ps) - ind] = max(max_vals[_niterators(ps) - ind], vi) end end end [(m, lastvar_min) for m in min_vals], [(m, lastvar_max) for m in max_vals] end _infullrange(val::T, ps::AbstractConstrainedProduct{T}) where {T} = _infullrange(val, getiterators(ps)) function _infullrange(val, t::Tuple) first(val) in first(t) && _infullrange(Base.tail(val), Base.tail(t)) end _infullrange(::Tuple{}, ::Tuple{}) = true """ indexinproduct(iterators::NTuple{N, AbstractRange}, val::NTuple{N, Any}) where {N} Return the index of `val` in the outer product of `iterators`. Return nothing if `val` is not present. # Examples ```jldoctest julia> iterators = (1:4, 1:3, 3:5); julia> val = (2, 2, 4); julia> ind = ParallelUtilities.indexinproduct(iterators, val) 18 julia> collect(Iterators.product(iterators...))[ind] == val true ``` """ function indexinproduct(iterators::NTuple{N, AbstractRange}, val::Tuple{Vararg{Any, N}}) where {N} all(map(in, val, iterators)) || return nothing ax = map(x -> 1:length(x), iterators) individual_inds = map((it, val) -> findfirst(isequal(val), it), iterators, val) LinearIndices(ax)[individual_inds...] end indexinproduct(::Tuple{}, ::Tuple{}) = throw(ArgumentError("need at least one iterator")) function Base.in(val::T, ps::AbstractConstrainedProduct{T}) where {T} _infullrange(val, ps) || return false ind = indexinproduct(getiterators(ps), val) firstindexglobal(ps) <= ind <= lastindexglobal(ps) end function Base.in(val::T, ps::IncreasingAbstractConstrainedProduct{T}) where {T} _infullrange(val, ps) || return false ReverseLexicographicTuple(first(ps)) <= ReverseLexicographicTuple(val) <= ReverseLexicographicTuple(last(ps)) end # This struct is just a wrapper to flip the tuples before comparing struct ReverseLexicographicTuple{T<:Tuple} t :: T end Base.isless(a::ReverseLexicographicTuple{T}, b::ReverseLexicographicTuple{T}) where {T} = reverse(a.t) < reverse(b.t) Base.isequal(a::ReverseLexicographicTuple, b::ReverseLexicographicTuple) = a.t == b.t """ whichproc(iterators::Tuple{Vararg{AbstractRange}}, val::Tuple, np::Integer) Return the processor rank that will contain `val` if the outer product of the ranges contained in `iterators` is split evenly across `np` processors. # Examples ```jldoctest julia> iters = (1:4, 2:3); julia> np = 2; julia> ParallelUtilities.ProductSplit(iters, np, 2) |> collect 4-element $(Vector{Tuple{Int, Int}}): (1, 3) (2, 3) (3, 3) (4, 3) julia> ParallelUtilities.whichproc(iters, (2, 3), np) 2 ``` """ function whichproc(iterators::Tuple{AbstractRange, Vararg{AbstractRange}}, val, np::Integer) _infullrange(val, iterators) || return nothing np >= 1 || throw(ArgumentError("np must be >= 1")) np == 1 && return 1 # We may carry out a binary search as the iterators are sorted left, right = 1, np val_t = ReverseLexicographicTuple(val) while left < right mid = div(left + right, 2) ps = ProductSplit(iterators, np, mid) # If np is greater than the number of ntasks then it's possible # that ps is empty. In this case the value must be somewhere in # the previous workers. Otherwise each worker has some tasks and # these are sorted, so carry out a binary search if isempty(ps) || val_t < ReverseLexicographicTuple(first(ps)) right = mid - 1 elseif val_t > ReverseLexicographicTuple(last(ps)) left = mid + 1 else return mid end end return left end whichproc(ps::ProductSplit, val) = whichproc(getiterators(ps), val, ps.np) # This function tells us the range of processors that would be involved # if we are to compute the tasks contained in the list ps on np_new processors. # The total list of tasks is contained in iterators, and might differ from # getiterators(ps) (eg if ps contains a subsection of the parameter set) """ procrange_recast(iterators::Tuple{Vararg{AbstractRange}}, ps, np_new::Integer) Return the range of processor ranks that would contain the values in `ps` if the outer produce of the ranges in `iterators` is split across `np_new` workers. The values contained in `ps` should be a subsection of the outer product of the ranges in `iterators`. # Examples ```jldoctest julia> iters = (1:10, 4:6, 1:4); julia> ps = ParallelUtilities.ProductSplit(iters, 5, 2); julia> ParallelUtilities.procrange_recast(iters, ps, 10) 3:4 ``` """ function procrange_recast(iterators::Tuple{AbstractRange, Vararg{AbstractRange}}, ps::AbstractConstrainedProduct, np_new::Integer) isempty(ps) && return nothing procid_start = whichproc(iterators, first(ps), np_new) if procid_start === nothing throw(TaskNotPresentError(iterators, first(ps))) end if length(ps) == 1 procid_end = procid_start else procid_end = whichproc(iterators, last(ps), np_new) if procid_end === nothing throw(TaskNotPresentError(iterators, last(ps))) end end return procid_start:procid_end end """ procrange_recast(ps::AbstractConstrainedProduct, np_new::Integer) Return the range of processor ranks that would contain the values in `ps` if the iterators used to construct `ps` were split across `np_new` processes. # Examples ```jldoctest julia> iters = (1:10, 4:6, 1:4); julia> ps = ParallelUtilities.ProductSplit(iters, 5, 2); # split across 5 processes initially julia> ParallelUtilities.procrange_recast(ps, 10) # If `iters` were spread across 10 processes 3:4 ``` """ function procrange_recast(ps::AbstractConstrainedProduct, np_new::Integer) procrange_recast(getiterators(ps), ps, np_new) end """ localindex(ps::AbstractConstrainedProduct{T}, val::T) where {T} Return the index of `val` in `ps`. Return `nothing` if the value is not found. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:3, 4:5:20), 3, 2); julia> collect(ps) 4-element $(Vector{Tuple{Int, Int}}): (2, 9) (3, 9) (1, 14) (2, 14) julia> ParallelUtilities.localindex(ps, (3, 9)) 2 ``` """ function localindex(ps::AbstractConstrainedProduct{T}, val::T) where {T} (isempty(ps) || val ∉ ps) && return nothing indflat = indexinproduct(getiterators(ps), val) indflat - firstindexglobal(ps) + 1 end """ whichproc_localindex(iterators::Tuple{Vararg{AbstractRange}}, val::Tuple, np::Integer) Return `(rank, ind)`, where `rank` is the rank of the worker that `val` will reside on if the outer product of the ranges in `iterators` is spread over `np` workers, and `ind` is the index of `val` in the local section on that worker. # Examples ```jldoctest julia> iters = (1:4, 2:8); julia> np = 10; julia> ParallelUtilities.whichproc_localindex(iters, (2, 4), np) (4, 1) julia> ParallelUtilities.ProductSplit(iters, np, 4) |> collect 3-element $(Vector{Tuple{Int, Int}}): (2, 4) (3, 4) (4, 4) ``` """ function whichproc_localindex(iterators::Tuple{Vararg{AbstractRange}}, val::Tuple, np::Integer) procid = whichproc(iterators, val, np) procid === nothing && return nothing index = localindex(ProductSplit(iterators, np, procid), val) index === nothing && return nothing return procid, index end ################################################################# """ dropleading(ps::AbstractConstrainedProduct{T, N, NTuple{N,AbstractUnitRange}}) where {T,N} Return a `ProductSection` leaving out the first iterator contained in `ps`. The range of values of the remaining iterators in the resulting `ProductSection` will be the same as in `ps`. # Examples ```jldoctest julia> ps = ParallelUtilities.ProductSplit((1:5, 2:4, 1:3), 7, 3); julia> collect(ps) 7-element $(Vector{Tuple{Int, Int, Int}}): (5, 4, 1) (1, 2, 2) (2, 2, 2) (3, 2, 2) (4, 2, 2) (5, 2, 2) (1, 3, 2) julia> ParallelUtilities.dropleading(ps) |> collect 3-element $(Vector{Tuple{Int, Int}}): (4, 1) (2, 2) (3, 2) ``` """ function dropleading(ps::IncreasingAbstractConstrainedProduct) isempty(ps) && throw(ArgumentError("need at least one iterator")) iterators = Base.tail(getiterators(ps)) first_element = Base.tail(first(ps)) last_element = Base.tail(last(ps)) firstind = indexinproduct(iterators, first_element) lastind = indexinproduct(iterators, last_element) ProductSection(iterators, firstind:lastind) end
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
6870
""" Commutative Declare a reduction operator to be commutative in its arguments. No check is performed to ascertain if the operator is indeed commutative. """ struct Commutative{F} <: Function f :: F end (c::Commutative)(x, y) = c.f(x, y) """ BroadcastFunction(f) Construct a binary function that evaluates `f.(x, y)` given the arguments `x` and `y`. !!! note The function `BroadcastFunction(f)` is equivalent to `Base.BroadcastFunction(f)` on Julia versions 1.6 and above. # Examples ```jldoctest julia> ParallelUtilities.BroadcastFunction(+)(ones(3), ones(3)) 3-element $(Vector{Float64}): 2.0 2.0 2.0 ``` """ struct BroadcastFunction{V, F} <: Function f :: F end BroadcastFunction{V}(f) where {V} = BroadcastFunction{V, typeof(f)}(f) BroadcastFunction(f::Function) = BroadcastFunction{Nothing, typeof(f)}(f) (o::BroadcastFunction{Nothing})(x, y) = o.f.(x, y) (o::BroadcastFunction{1})(x, y) = broadcast!(o.f, x, x, y) (o::BroadcastFunction{2})(x, y) = broadcast!(o.f, y, x, y) """ broadcastinplace(f, ::Val{N}) where {N} Construct a binary operator that evaluates `f.(x, y)` and overwrites the `N`th argument with the result. For `N == 1` this evaluates `x .= f.(x, y)`, whereas for `N == 2` this evaluates `y .= f.(x, y)`. # Examples ```jldoctest julia> op = ParallelUtilities.broadcastinplace(+, Val(1)); julia> x = ones(3); y = ones(3); julia> op(x, y) 3-element $(Vector{Float64}): 2.0 2.0 2.0 julia> x # overwritten 3-element $(Vector{Float64}): 2.0 2.0 2.0 ``` """ function broadcastinplace(f, v::Val{N}) where {N} BroadcastFunction{N}(f) end """ elementwisesum!(x, y) Binary reduction operator that performs an elementwise product and stores the result inplace in `x`. The value of `x` is overwritten in the process. Functionally `elementwisesum!(x, y)` is equivalent to `x .= x .+ y`. !!! note The operator is assumed to be commutative. """ const elementwisesum! = Commutative(broadcastinplace(+, Val(1))) """ elementwiseproduct!(x, y) Binary reduction operator that performs an elementwise product and stores the result inplace in `x`. The value of `x` is overwritten in the process. Functionally `elementwiseproduct!(x, y)` is equivalent to `x .= x .* y`. !!! note The operator is assumed to be commutative. """ const elementwiseproduct! = Commutative(broadcastinplace(*, Val(1))) """ elementwisemin!(x, y) Binary reduction operator that performs an elementwise `min` and stores the result inplace in `x`. The value of `x` is overwritten in the process. Functionally `elementwisemin!(x, y)` is equivalent to `x .= min.(x, y)`. !!! note The operator is assumed to be commutative. """ const elementwisemin! = Commutative(broadcastinplace(min, Val(1))) """ elementwisemax!(x, y) Binary reduction operator that performs an elementwise `max` and stores the result inplace in `x`. The value of `x` is overwritten in the process. Functionally `elementwisemax!(x, y)` is equivalent to `x .= max.(x, y)`. !!! note The operator is assumed to be commutative. """ const elementwisemax! = Commutative(broadcastinplace(max, Val(1))) """ BroadcastStack(f, dims)(x::AbstractArray, y::AbstractArray) Construct a binary function that stacks its arguments along `dims`, with overlapping indices `I` being replaced by `f(x[I], y[I])`. The arguments `x` and `y` must both be `n`-dimensional arrays that have identical axes along all dimensions aside from those specified by `dims`. The axes of the result along each dimensions `d` in `dims` would be `union(axes(x, d), axes(y, d))`. Along the other dimensions the result has the same axes as `x` and `y`. !!! note If the resulting axes along the concatenated dimensions are not 1-based, one might require an offset array package such as [`OffsetArrays.jl`](https://github.com/JuliaArrays/OffsetArrays.jl). # Examples ```jldoctest julia> A = ones(2)*2 2-element $(Vector{Float64}): 2.0 2.0 julia> B = ones(3)*3 3-element $(Vector{Float64}): 3.0 3.0 3.0 julia> ParallelUtilities.BroadcastStack(min, 1)(A, B) 3-element $(Vector{Float64}): 2.0 2.0 3.0 julia> A = ones(2,2)*2 2×2 $(Matrix{Float64}): 2.0 2.0 2.0 2.0 julia> B = ones(2,3)*3 2×3 $(Matrix{Float64}): 3.0 3.0 3.0 3.0 3.0 3.0 julia> ParallelUtilities.BroadcastStack(+, 2)(A, B) 2×3 $(Matrix{Float64}): 5.0 5.0 3.0 5.0 5.0 3.0 ``` """ struct BroadcastStack{F, D} <: Function f :: F dims :: D end (s::BroadcastStack)(x, y) = broadcaststack(x, y, s.f, s.dims) function _union(axes_x_dim::AbstractUnitRange, axes_y_dim::AbstractUnitRange) axes_dim_min = min(minimum(axes_x_dim), minimum(axes_y_dim)) axes_dim_max = max(maximum(axes_x_dim), maximum(axes_y_dim)) axes_dim = axes_dim_min:axes_dim_max end _union(axes_x_dim::Base.OneTo, axes_y_dim::Base.OneTo) = axes_x_dim ∪ axes_y_dim _maybeUnitRange(ax::AbstractUnitRange) = UnitRange(ax) _maybeUnitRange(ax::Base.OneTo) = ax function _subsetaxes(f, axes_x, axes_y, dims) ax = collect(_maybeUnitRange.(axes_x)) for dim in dims ax[dim] = f(axes_x[dim], axes_y[dim]) end ntuple(i -> ax[i], length(axes_x)) end function broadcaststack(x::AbstractArray, y::AbstractArray, f, dims) ndims(x) == ndims(y) || throw(DimensionMismatch("arrays must have the same number of dimensions")) for dim in 1:ndims(x) if dim ∈ dims if dim > ndims(x) throw(ArgumentError("dim must lie in 1 <= dim <= ndims(x)")) end else axes(x, dim) == axes(y, dim) || throw(DimensionMismatch("non-concatenated axes must be identical")) end end axes_cat = _subsetaxes(_union, axes(x), axes(y), dims) xy_cat = similar(x, promote_type(eltype(x), eltype(y)), axes_cat) eltype(xy_cat) <: Number && fill!(xy_cat, zero(eltype(xy_cat))) common_ax = CartesianIndices(_subsetaxes(intersect, axes(x), axes(y), dims)) for arr in (x, y) @inbounds for I in CartesianIndices(arr) I in common_ax && continue xy_cat[I] = arr[I] end end @inbounds for I in common_ax xy_cat[I] = f(x[I], y[I]) end xy_cat end """ Flip(f) Flip the arguments of a binary function `f`, so that `Flip(f)(x, y) == f(y,x)`. # Examples ```jldoctest flip julia> flip1 = ParallelUtilities.Flip(vcat); julia> flip1(2, 3) 2-element $(Vector{Int}): 3 2 ``` Two flips pop the original function back: ```jldoctest flip julia> flip2 = ParallelUtilities.Flip(flip1); julia> flip2(2, 3) 2-element $(Vector{Int}): 2 3 ``` """ struct Flip{F} <: Function f :: F end (o::Flip)(x, y) = o.f(y, x) Flip(o::Flip) = o.f # Perserve the commutative tag Flip(c::Commutative) = Commutative(Flip(c.f)) Flip(b::BroadcastFunction{1}) = BroadcastFunction{2}(Flip(b.f)) Flip(b::BroadcastFunction{2}) = BroadcastFunction{1}(Flip(b.f))
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
19975
abstract type BinaryTree end struct OrderedBinaryTree{PROCS <: AbstractVector{<:Integer}, PARENT <: Union{Integer, Nothing}} <: BinaryTree #= Tree of the form 8 4 9 2 6 1 3 5 7 The left branch has smaller numbers than the node, and the right branch has larger numbers A parent of nothing implies that the top node is its own parent =# N :: Int procs :: PROCS topnode_parent :: PARENT function OrderedBinaryTree(procs::AbstractVector{<:Integer}, p = nothing) N = length(procs) N >= 1 || throw(DomainError(N, "need at least one node to create a BinaryTree")) new{typeof(procs), typeof(p)}(N, procs, p) end end Base.length(tree::OrderedBinaryTree) = length(tree.procs) # Special type for the top tree that correctly returns nchildren for the leaves struct ConnectedOrderedBinaryTree{OBT <: OrderedBinaryTree, D <: AbstractDict} <: BinaryTree tree :: OBT workersonhosts :: D function ConnectedOrderedBinaryTree(tree::OBT, workersonhosts::D) where {OBT <: OrderedBinaryTree, D <: AbstractDict} new{OBT, D}(tree, workersonhosts) end end Base.length(tree::ConnectedOrderedBinaryTree) = length(tree.tree) workersonhosts(tree::ConnectedOrderedBinaryTree) = tree.workersonhosts struct SegmentedOrderedBinaryTree{PROCS <: AbstractVector{<:Integer}, TREE <: ConnectedOrderedBinaryTree} <: BinaryTree #= Each node on the cluster will have its own tree that carries out a local reduction. There will be one master node on the cluster that will acquire the reduced value on each node. This will be followed by a tree to carry out reduction among the master nodes. The eventual reduced result will be returned to the calling process. =# N :: Int procs :: PROCS toptree :: TREE nodetreestartindices :: Vector{Int} function SegmentedOrderedBinaryTree(N::Int, procs::PROCS, toptree::TREE, nodetreestartindices::Vector{Int}) where {PROCS, TREE <: ConnectedOrderedBinaryTree} # check that the reduction nodes of the top tree have children all(i -> nchildren(toptree[i]) == 2, 2:2:length(toptree)) || throw(ArgumentError("reduction nodes on the top tree must have 2 children each")) new{PROCS, TREE}(N, procs, toptree, nodetreestartindices) end end workersonhosts(tree::SegmentedOrderedBinaryTree) = workersonhosts(tree.toptree) function leafrankfoldedtree(::OrderedBinaryTree, Nleaves, leafno) @assert(leafno <= Nleaves, "leafno needs to be ⩽ Nleaves") leafrank = 2leafno - 1 end leafrankfoldedtree(tree::ConnectedOrderedBinaryTree, args...) = leafrankfoldedtree(tree.tree, args...) function foldedbinarytreefromleaves(leaves) Nleaves = length(leaves) Nnodes = 2Nleaves - 1 allnodes = Vector{Int}(undef, Nnodes) foldedbinarytreefromleaves!(allnodes, leaves) OrderedBinaryTree(allnodes) end function foldedbinarytreefromleaves!(allnodes, leaves) top = topnoderank(OrderedBinaryTree(1:length(allnodes))) allnodes[top] = first(leaves) length(allnodes) == 1 && return Nnodes_left = top - 1 Nleaves_left = div(Nnodes_left + 1 , 2) Nleaves_right = length(leaves) - Nleaves_left if Nleaves_left > 0 leaves_left = @view leaves[1:Nleaves_left] leftnodes = @view allnodes[1:Nnodes_left] foldedbinarytreefromleaves!(leftnodes, leaves_left) end if Nleaves_right > 0 leaves_right = @view leaves[end - Nleaves_right + 1:end] rightnodes = @view allnodes[top + 1:end] foldedbinarytreefromleaves!(rightnodes, leaves_right) end return allnodes end function SegmentedOrderedBinaryTree(procs::AbstractVector{<:Integer}, workersonhosts::AbstractDict = procs_node(procs)) Np = length(procs) Np >= 1 || throw(DomainError(Np, "need at least one node to create a BinaryTree")) sum(length, values(workersonhosts)) == length(procs) || throw(ArgumentError("procs $procs do not match workersonhosts $workersonhosts")) nodes = collect(keys(workersonhosts)) masternodes = Vector{Int}(undef, length(nodes)) for (nodeind, node) in enumerate(nodes) workersnode = workersonhosts[node] nodetree = OrderedBinaryTree(workersnode) masternodes[nodeind] = topnode(nodetree).p end Nleaves = length(masternodes) toptree_inner = foldedbinarytreefromleaves(masternodes) toptree = ConnectedOrderedBinaryTree(toptree_inner, workersonhosts) toptreenonleafnodes = length(toptree) - Nleaves Nnodestotal = toptreenonleafnodes + length(procs) nodetreestartindices = Vector{Int}(undef, length(nodes)) nodetreestartindices[1] = toptreenonleafnodes + 1 for (nodeno, node) in enumerate(nodes) nodeno == 1 && continue prevnode = nodes[nodeno - 1] nodetreestartindices[nodeno] = nodetreestartindices[nodeno - 1] + length(workersonhosts[prevnode]) end SegmentedOrderedBinaryTree(Nnodestotal, procs, toptree, nodetreestartindices) end # for a single host there are no segments function unsegmentedtree(tree::SegmentedOrderedBinaryTree) OrderedBinaryTree(workers(tree)) end Base.length(tree::SegmentedOrderedBinaryTree) = tree.N levels(tree::OrderedBinaryTree) = levels(length(tree)) levels(n::Integer) = floor(Int, log2(n)) + 1 function Base.summary(io::IO, tree::SegmentedOrderedBinaryTree) Nmasternodes = length(keys(workersonhosts(tree))) toptreenonleafnodes = length(toptree(tree)) - Nmasternodes mapnodes = length(tree) - toptreenonleafnodes print(io, length(tree), "-node ", Base.nameof(typeof(tree))) print(io, " with ", mapnodes, " workers and ", toptreenonleafnodes, " extra reduction node", ifelse(toptreenonleafnodes > 1, "s", "")) end Base.summary(io::IO, tree::BinaryTree) = print(io, length(tree),"-element ", nameof(typeof(tree))) function Base.show(io::IO, b::OrderedBinaryTree) print(io, summary(b), "(", workers(b), ") with top node = ", topnode(b)) end function Base.show(io::IO, b::ConnectedOrderedBinaryTree) print(io, summary(b), "(", workers(b), ", ", workersonhosts(b), ")") end function Base.show(io::IO, b::SegmentedOrderedBinaryTree) summary(io, b) println(io) println(io, "toptree => ", toptree(b)) println(io, "subtrees start from indices ", b.nodetreestartindices) tt = toptree(b) for (ind, (host, w)) in enumerate(workersonhosts(b)) node = tt[2ind - 1] print(io, host, " => ", OrderedBinaryTree(w, node.parent)) if ind != length(workersonhosts(b)) println(io) end end end toptree(tree::SegmentedOrderedBinaryTree) = tree.toptree function levelfromtop(tree::OrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) top = topnoderank(tree) if i == top return 1 elseif i < top subrange = 1:top - 1 else subrange = top + 1:length(tree) end subtree = OrderedBinaryTree(subrange) subindex = searchsortedfirst(subrange, i) 1 + levelfromtop(subtree, subindex) end function parentnoderank(tree::OrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) # The topmost node is its own parent length(tree) == 1 && return 1 top = topnoderank(tree) length(tree) > 1 && i == top && return top if i < top # left branch, fully formed level = trailing_zeros(i) ired = i >> level # i / 2^level # ired is necessarily an odd number pow2level = 1 << level # 2^level # sgn is +1 if mod(ired, 4) = 1, -1 if mod(ired, 4) = 3 sgn = 2 - mod(ired, 4) return i + sgn * pow2level elseif i > top # right branch, possibly partially formed # Carry out a recursive search subtreeprocs = top + 1:length(tree) subtree = OrderedBinaryTree(subtreeprocs) subind = searchsortedfirst(subtreeprocs, i) if subind == topnoderank(subtree) # This catches the case of there only being a leaf node # in the sub - tree return top elseif length(subtreeprocs) == 3 # don't subdivide to 1 - node trees # this lets us avoid confusing this with the case of # the entire tree having only 1 node return subtreeprocs[2] end pid = parentnoderank(subtree, subind) return subtreeprocs[pid] end end parentnoderank(tree::ConnectedOrderedBinaryTree, i::Integer) = parentnoderank(tree.tree, i) function subtree_rank(tree::SegmentedOrderedBinaryTree, i::Integer) Nmasternodes = length(keys(workersonhosts(tree))) toptreenonleafnodes = length(tree.toptree) - Nmasternodes # node on a subtree at a host subnodeno = i - toptreenonleafnodes @assert(subnodeno > 0, "i needs to be greater than $(toptreenonleafnodes)") # find out which node this lies on nptotalprevhosts = 0 for (host, procs) in workersonhosts(tree) np = length(procs) if subnodeno <= nptotalprevhosts + np rankinsubtree = subnodeno - nptotalprevhosts w_host = workersonhosts(tree)[host] subtree = OrderedBinaryTree(w_host) return subtree, rankinsubtree, nptotalprevhosts end nptotalprevhosts += np end end """ masternodeindex(tree::SegmentedOrderedBinaryTree, p) Given the top worker `p` on one node, compute the serial order of the host that it corresponds to. """ function masternodeindex(tree::SegmentedOrderedBinaryTree, p) leafno = nothing for (ind, w) in enumerate(values(workersonhosts(tree))) subtree = OrderedBinaryTree(w) top = topnoderank(subtree) if w[top] == p leafno = ind break end end return leafno end toptree_to_fulltree_index(::OrderedBinaryTree, i) = div(i, 2) toptree_to_fulltree_index(tree::ConnectedOrderedBinaryTree, i) = toptree_to_fulltree_index(tree.tree, i) fulltree_to_toptree_index(::OrderedBinaryTree, i) = 2i fulltree_to_toptree_index(tree::ConnectedOrderedBinaryTree, i) = fulltree_to_toptree_index(tree.tree, i) function nchildren(tree::OrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) if isodd(i) 0 elseif i == length(tree) 1 else 2 end end function nchildren(tree::SegmentedOrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) Nmasternodes = length(keys(workersonhosts(tree))) toptreenonleafnodes = length(tree.toptree) - Nmasternodes if toptreenonleafnodes == 0 n = nchildren(unsegmentedtree(tree), i) elseif i <= toptreenonleafnodes # The top - tree is a full binary tree. # Since the leaves aren't stored, every parent node # has 2 children n = 2 else subtree, rankinsubtree = subtree_rank(tree, i) n = nchildren(subtree, rankinsubtree) end return n end function nchildren(tree::ConnectedOrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) if isodd(i) host = "" for (ind, h) in enumerate(keys(workersonhosts(tree))) if ind == i ÷ 2 + 1 host = h end end st = OrderedBinaryTree(workersonhosts(tree)[host]) nchildren(topnode(st)) else 2 end end topnoderank(tree::ConnectedOrderedBinaryTree) = topnoderank(tree.tree) function topnoderank(tree::OrderedBinaryTree) 1 << (levels(tree) - 1) end function topnoderank(tree::SegmentedOrderedBinaryTree) Nmasternodes = length(keys(workersonhosts(tree))) toptreenonleafnodes = length(tree.toptree) - Nmasternodes if toptreenonleafnodes > 0 tnr_top = topnoderank(tree.toptree) tnr = toptree_to_fulltree_index(tree.toptree, tnr_top) else tnr = topnoderank(OrderedBinaryTree(workers(tree))) end return tnr end topnode(tree::BinaryTree) = tree[topnoderank(tree)] function topnode(tree::OrderedBinaryTree) node = tree[topnoderank(tree)] if tree.topnode_parent === nothing BinaryTreeNode(node.p, node.p, node.nchildren) else BinaryTreeNode(node.p, tree.topnode_parent, node.nchildren) end end # Indexing into a OrderedBinaryTree produces a BinaryTreeNode struct BinaryTreeNode p :: Int parent :: Int nchildren :: Int function BinaryTreeNode(p::Int, p_parent::Int, nchildren::Int) (0 <= nchildren <= 2) || throw(DomainError(nchildren, "attempt to construct a binary tree with $nchildren children")) new(p, p_parent, nchildren) end end function Base.show(io::IO, b::BinaryTreeNode) print(io, "BinaryTreeNode(p = $(b.p),"* " parent = $(b.parent), nchildren = $(b.nchildren))") end nchildren(b::BinaryTreeNode) = b.nchildren Distributed.workers(tree::OrderedBinaryTree) = tree.procs Distributed.workers(tree::ConnectedOrderedBinaryTree) = workers(tree.tree) Distributed.workers(tree::SegmentedOrderedBinaryTree) = tree.procs Distributed.nworkers(tree::BinaryTree) = length(workers(tree)) function Base.getindex(tree::BinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) procs = workers(tree) p = procs[i] pr = parentnoderank(tree, i) p_parent = procs[pr] n = nchildren(tree, i) BinaryTreeNode(p, p_parent, n) end function Base.getindex(tree::SegmentedOrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) Nmasternodes = length(keys(workersonhosts(tree))) toptreenonleafnodes = length(toptree(tree)) - Nmasternodes if toptreenonleafnodes == 0 return unsegmentedtree(tree)[i] elseif i <= toptreenonleafnodes #= In a SegmentedSequentialBinaryTree the leading indices are the parent nodes of the top tree, so ind = i In a SegmentedOrderedBinaryTree, the leaves are removed from the top tree, so only even numbers are left. In this case, index i of the full tree refers to index 2i of the top tree, so ind = 2i =# ind = fulltree_to_toptree_index(tree.toptree, i) p = tree.toptree[ind].p pr_top = parentnoderank(tree.toptree, ind) p_parent = tree.toptree[pr_top].p n = 2 return BinaryTreeNode(p, p_parent, n) else subtree, rankinsubtree = subtree_rank(tree, i) p = subtree[rankinsubtree].p n = nchildren(subtree, rankinsubtree) if rankinsubtree == topnoderank(subtree) # masternode # parent will be on the top tree Nmasternodes = length(keys(workersonhosts(tree))) leafno = masternodeindex(tree, p) leafrank = leafrankfoldedtree(tree.toptree, Nmasternodes, leafno) pr_top = parentnoderank(tree.toptree, leafrank) p_parent = tree.toptree[pr_top].p else # node on a sub - tree pr = parentnoderank(subtree, rankinsubtree) p_parent = subtree[pr].p end return BinaryTreeNode(p, p_parent, n) end end # Branches between nodes struct BranchChannel p :: Int parentchannel :: RemoteChannel{Channel{Any}} childrenchannel :: RemoteChannel{Channel{Any}} nchildren :: Int function BranchChannel(p::Int, parentchannel::RemoteChannel, childrenchannel::RemoteChannel, nchildren::Int) (0 <= nchildren <= 2) || throw(DomainError(nchildren, "attempt to construct a binary tree with $nchildren children")) new(p, parentchannel, childrenchannel, nchildren) end end nchildren(b::BranchChannel) = b.nchildren childrenerror(nchildren) = throw(DomainError(nchildren, "attempt to construct a binary tree with $nchildren children")) function BranchChannel(p::Integer, parentchannel::RemoteChannel, nchildren::Integer) (0 <= nchildren <= 2) || childrenerror(nchildren) childrenchannel = RemoteChannel(() -> Channel(nchildren), p) BranchChannel(p, parentchannel, childrenchannel, nchildren) end function BranchChannel(p::Integer, nchildren::Integer) (0 <= nchildren <= 2) || childrenerror(nchildren) parentchannel, childrenchannel = @sync begin parenttask = @async RemoteChannel(() -> Channel(1), p) childtask = @async RemoteChannel(() -> Channel(nchildren), p) asyncmap(fetch, (parenttask, childtask)) end BranchChannel(p, parentchannel, childrenchannel, nchildren) end function Base.show(io::IO, b::BranchChannel) N = nchildren(b) p_parent = b.parentchannel.where p = b.p if N == 2 str = "Branch: "*string(p_parent)*" ← "*string(p)*" ⇇ 2 children" elseif N == 1 str = "Branch: "*string(p_parent)*" ← "*string(p)*" ← 1 child" else str = "Leaf : "*string(p_parent)*" ← "*string(p) end print(io, str) end function createbranchchannels!(branches, tree::OrderedBinaryTree, superbranch::BranchChannel) top = topnoderank(tree) topnode = tree[top] topbranchchannels = BranchChannel(topnode.p, superbranch.childrenchannel, nchildren(topnode)) branches[top] = topbranchchannels length(tree) == 1 && return nothing left_inds = 1:top - 1 right_inds = top + 1:length(tree) @sync begin @async if !isempty(left_inds) left_child = OrderedBinaryTree(@view workers(tree)[left_inds]) createbranchchannels!(@view(branches[left_inds]), left_child, topbranchchannels) end @async if !isempty(right_inds) right_child = OrderedBinaryTree(@view workers(tree)[right_inds]) createbranchchannels!(@view(branches[right_inds]), right_child, topbranchchannels) end end return nothing end function createbranchchannels(tree::SegmentedOrderedBinaryTree) nodes = keys(workersonhosts(tree)) toptree = tree.toptree Nmasternodes = length(nodes) toptreenonleafnodes = length(toptree) - Nmasternodes branches = Vector{BranchChannel}(undef, length(tree)) # populate the top tree other than the masternodes # This is only run if there are multiple hosts if toptreenonleafnodes > 0 topnoderank_toptree = topnoderank(toptree) topnode_toptree = toptree[topnoderank_toptree] N = nchildren(topnode_toptree) topmostbranch = BranchChannel(topnode_toptree.p, N) branches[topnoderank_toptree] = topmostbranch left_inds = 1:(topnoderank_toptree - 1) right_inds = (topnoderank_toptree + 1):length(toptree) @sync begin @async if !isempty(left_inds) left_child = OrderedBinaryTree(@view workers(toptree)[left_inds]) createbranchchannels!(@view(branches[left_inds]), left_child, topmostbranch) end @async if !isempty(right_inds) right_child = OrderedBinaryTree(@view workers(toptree)[right_inds]) createbranchchannels!(@view(branches[right_inds]), right_child, topmostbranch) end end #= Remove the leaves from the top tree (masternodes). They are the top nodes of the individual trees at the hosts. They will be created separately and linked to the top tree. =# for i = 1:toptreenonleafnodes branches[i] = branches[2i] end end @sync for (nodeno, node) in enumerate(nodes) @async begin # Top node for each subtree (a masternode) workersnode = workersonhosts(tree)[node] nodetree = OrderedBinaryTree(workersnode) top = topnoderank(nodetree) topnode = nodetree[top] p = topnode.p if toptreenonleafnodes > 0 # inherit from the parent node leafno = masternodeindex(tree, p) leafrank = leafrankfoldedtree(tree.toptree, Nmasternodes, leafno) parentrank = parentnoderank(toptree, leafrank) parentrankfulltree = toptree_to_fulltree_index(toptree, parentrank) parentnodebranches = branches[parentrankfulltree] parentchannel = parentnodebranches.childrenchannel else #= This happens if there is only one host, in which case there's nothing to inherit. In this case there's no difference between a SegmentedOrderedBinaryTree and an OrderedBinaryTree The top node is created separately as it is its own parent =# parentchannel = RemoteChannel(() -> Channel(1), p) end topbranchnode = BranchChannel(p, parentchannel, nchildren(topnode)) nodetreestartindex = tree.nodetreestartindices[nodeno] branches[nodetreestartindex + top - 1] = topbranchnode # Populate the rest of the tree left_inds_nodetree = (1:top - 1) left_inds_fulltree = (nodetreestartindex - 1) .+ left_inds_nodetree right_inds_nodetree = top + 1:length(nodetree) right_inds_fulltree = (nodetreestartindex - 1) .+ right_inds_nodetree @async if !isempty(left_inds_nodetree) left_child = OrderedBinaryTree(@view workers(nodetree)[left_inds_nodetree]) createbranchchannels!(@view(branches[left_inds_fulltree]), left_child, topbranchnode) end @async if !isempty(right_inds_nodetree) right_child = OrderedBinaryTree(@view workers(nodetree)[right_inds_nodetree]) createbranchchannels!(@view(branches[right_inds_fulltree]), right_child, topbranchnode) end end end return branches end function createbranchchannels(pool::AbstractWorkerPool, len::Integer) w = workersactive(pool, len) tree = SegmentedOrderedBinaryTree(w) branches = createbranchchannels(tree) tree, branches end topbranch(tree::BinaryTree, branches::AbstractVector{<:BranchChannel}) = branches[topnoderank(tree)]
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
4543
using DataStructures using Test using Aqua using ParallelUtilities using Documenter using OffsetArrays import ParallelUtilities: pval, value, BinaryTreeNode, BranchChannel, ProductSplit, SegmentedOrderedBinaryTree import ParallelUtilities.ClusterQueryUtils: chooseworkers @testset "Project quality" begin if VERSION < v"1.6.0" Aqua.test_all(ParallelUtilities, ambiguities=false) else Aqua.test_all(ParallelUtilities) end end DocMeta.setdocmeta!(ParallelUtilities, :DocTestSetup, :(using ParallelUtilities); recursive=true) @testset "doctest" begin doctest(ParallelUtilities, manual = false) end @testset "pval" begin p1 = pval{Float64}(1, false, 2.0) p2 = pval{Int}(1, false, 2) @test pval{Float64}(p1) === p1 @test pval{Int}(p1) === p2 @test value(p1) === 2.0 @test value(p2) === 2 @test value(2) === 2 @test value(nothing) === nothing end @testset "chooseworkers" begin workers = 1:8 workers_on_hosts = OrderedDict("host1" => 1:4, "host2" => 5:8) @test chooseworkers(workers, 3, workers_on_hosts) == 1:3 @test chooseworkers(workers, 5, workers_on_hosts) == 1:5 workers_on_hosts = OrderedDict(Libc.gethostname() => 1:4, "host2" => 5:8) @test chooseworkers(workers, 3, workers_on_hosts) == 1:3 @test chooseworkers(workers, 5, workers_on_hosts) == 1:5 workers_on_hosts = OrderedDict("host1" => 1:4, Libc.gethostname() => 5:8) @test chooseworkers(workers, 3, workers_on_hosts) == 5:7 @test chooseworkers(workers, 5, workers_on_hosts) == [5:8; 1] end @testset "Reduction functions" begin # BroadcastStack with OffsetArrays @testset "BroadcastStack" begin arr = ParallelUtilities.BroadcastStack(+, 1)(ones(2:4), ones(3:5)) @test arr == OffsetArray([1, 2, 2, 1], 2:5) arr = ParallelUtilities.BroadcastStack(+, 1:2)(ones(1:2, 2:4), ones(2:3, 3:5)) arr_exp = OffsetArray([1.0 1.0 1.0 0.0 1.0 2.0 2.0 1.0 0.0 1.0 1.0 1.0], 1:3, 2:5) @test arr == arr_exp end @testset "BroadcastFunction" begin x = ones(3); y = ones(3); b = ParallelUtilities.BroadcastFunction{1}(+) @test b(x, y) == ones(3) * 2 @test x == ones(3) * 2 @test y == ones(3) b = ParallelUtilities.BroadcastFunction{2}(+) x = ones(3); y = ones(3); @test b(x, y) == ones(3) * 2 @test x == ones(3) @test y == ones(3) * 2 end @testset "Flip" begin x = ones(3); y = ones(3); f = ParallelUtilities.Flip(ParallelUtilities.elementwisesum!) @test f(x,y) == ones(3) * 2 @test x == ones(3) @test y == ones(3) * 2 x = ones(3); y = ones(3); f = ParallelUtilities.Flip(ParallelUtilities.broadcastinplace(+, Val(2))) @test f(x,y) == ones(3) * 2 @test x == ones(3) * 2 @test y == ones(3) end end @testset "show" begin @testset "ProductSplit" begin io = IOBuffer() ps = ProductSplit((1:20, 1:30), 4, 1) show(io, ps) showstr = String(take!(io)) startstr = string(length(ps))*"-element ProductSplit" @test startswith(showstr, startstr) end @testset "error" begin io = IOBuffer() showerror(io, ParallelUtilities.TaskNotPresentError((1:4,), (5,))) strexp = "could not find the task $((5,)) in the list $((1:4,))" @test String(take!(io)) == strexp end; @testset "BranchChannel" begin io = IOBuffer() b = BranchChannel(1, 0) show(io, b) strexp = "Leaf : 1 ← 1" @test String(take!(io)) == strexp b = BranchChannel(1, 1) show(io, b) strexp = "Branch: 1 ← 1 ← 1 child" @test String(take!(io)) == strexp b = BranchChannel(1, 2) show(io, b) strexp = "Branch: 1 ← 1 ⇇ 2 children" @test String(take!(io)) == strexp end; @testset "BinaryTreeNode" begin io = IOBuffer() b = BinaryTreeNode(2, 3, 1) show(io, b) strexp = "BinaryTreeNode(p = 2, parent = 3, nchildren = 1)" @test String(take!(io)) == strexp end; @testset "BinaryTree" begin # check that show is working io = IOBuffer() tree = SegmentedOrderedBinaryTree(1:8, OrderedDict("host1" => 1:4, "host2" => 5:8)) show(io, tree) show(io, ParallelUtilities.toptree(tree)) show(io, ParallelUtilities.toptree(tree).tree) end end;
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
35856
using Distributed @everywhere begin using DataStructures using Test using ParallelUtilities using ParallelUtilities.ClusterQueryUtils using ParallelUtilities.ClusterQueryUtils: oneworkerpernode using OffsetArrays import ParallelUtilities: BinaryTreeNode, BranchChannel, OrderedBinaryTree, SegmentedOrderedBinaryTree, parentnoderank, nchildren, createbranchchannels, workersactive, leafrankfoldedtree, TopTreeNode, SubTreeNode, NoSplat, reducedvalue function parentnoderank(tree::SegmentedOrderedBinaryTree, i::Integer) 1 <= i <= length(tree) || throw(BoundsError(tree, i)) Nmasternodes = length(keys(ParallelUtilities.workersonhosts(tree))) toptreenonleafnodes = length(tree.toptree) - Nmasternodes if toptreenonleafnodes == 0 pr = parentnoderank(ParallelUtilities.unsegmentedtree(tree),i) elseif i <= toptreenonleafnodes #= In a SegmentedSequentialBinaryTree the leading indices are the parent nodes of the top tree, so ind = i In a SegmentedOrderedBinaryTree, the leaves are removed from the top tree, so only even numbers are left. In this case, index i of the full tree refers to index 2i of the top tree, so ind = 2i =# ind = ParallelUtilities.fulltree_to_toptree_index(tree.toptree, i) p = tree.toptree[ind].p # Compute the parent of the node with rank ind on the top tree. # In a SegmentedSequentialBinaryTree this is what we want. # In a SegmentedOrderedBinaryTree, we need to convert this back to # the index of the full tree, that is div(pr, 2) pr_top = parentnoderank(tree.toptree, ind) pr = ParallelUtilities.toptree_to_fulltree_index(tree.toptree, pr_top) else subtree, rankinsubtree, nptotalprevhosts = ParallelUtilities.subtree_rank(tree, i) if rankinsubtree == ParallelUtilities.topnoderank(subtree) # masternode # parent will be on the top - tree p = subtree[rankinsubtree].p leafno = ParallelUtilities.masternodeindex(tree, p) Nmasternodes = length(keys(ParallelUtilities.workersonhosts(tree))) leafrank = ParallelUtilities.leafrankfoldedtree(tree.toptree, Nmasternodes, leafno) pr_top = parentnoderank(tree.toptree, leafrank) # Convert back to the rank on the full tree where the # leaves of the top tree aren't stored. pr = ParallelUtilities.toptree_to_fulltree_index(tree.toptree, pr_top) else # node on a sub - tree pr = parentnoderank(subtree, rankinsubtree) pr += nptotalprevhosts + toptreenonleafnodes end end return pr end end macro testsetwithinfo(str, ex) quote @info "Testing "*$str @testset $str begin $(esc(ex)); end; end end fmap_local(x) = x^2 fred_local(x) = x fred_local(x, y) = x + y function showworkernumber(ind, nw) # Cursor starts off at the beginning of the line print("\u1b[K") # clear till end of line print("Testing on worker $ind of $nw") # return the cursor to the beginning of the line endchar = ind == nw ? "\n" : "\r" print(endchar) end @testsetwithinfo "utilities" begin @testset "hostnames" begin hosts = hostnames() nodes = unique(hosts) @test nodenames() == nodes @test nodenames(hosts) == nodes np1 = nprocs_node(hosts, nodes) np2 = nprocs_node(hosts) np3 = nprocs_node() @test np1 == np2 == np3 for node in nodes npnode = count(isequal(node), hosts) @test np1[node] == npnode end p1 = procs_node(workers(), hosts, nodes) for node in nodes pnode = workers()[findall(isequal(node), hosts)] @test p1[node] == pnode end np4 = nprocs_node(p1) @test np1 == np4 end end; @testset "BinaryTree" begin @testsetwithinfo "BinaryTreeNode" begin @testset "Constructor" begin p = workers()[1] b = BinaryTreeNode(p, p, 0) @test nchildren(b) == 0 b = BinaryTreeNode(p, p, 1) @test nchildren(b) == 1 b = BinaryTreeNode(p, p, 2) @test nchildren(b) == 2 @test_throws DomainError BinaryTreeNode(p, p, 3) @test_throws DomainError BinaryTreeNode(p, p,-1) end end @testsetwithinfo "BinaryTree" begin @testsetwithinfo "OrderedBinaryTree" begin @testset "pid and parent" begin for imax = 1:100 procs = 1:imax tree = OrderedBinaryTree(procs) @test length(tree) == length(procs) topnoderank = ParallelUtilities.topnoderank(tree) @test tree[topnoderank].parent == topnoderank for rank in 1:length(tree) node = tree[rank] @test node.p == procs[rank] @test node.parent == procs[parentnoderank(tree, rank)] end @test_throws BoundsError(tree, 0) parentnoderank(tree, 0) @test_throws BoundsError(tree, imax + 1) parentnoderank(tree, imax + 1) end end @testset "nchildren" begin tree = OrderedBinaryTree(1:1) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 2) nchildren(tree, 2) @test ParallelUtilities.topnoderank(tree) == 1 tree = OrderedBinaryTree(1:2) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 1 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 3) nchildren(tree, 3) @test ParallelUtilities.topnoderank(tree) == 2 tree = OrderedBinaryTree(1:8) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 1 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 9) nchildren(tree, 9) @test ParallelUtilities.topnoderank(tree) == 8 tree = OrderedBinaryTree(1:11) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 2 @test nchildren(tree, 9) == nchildren(tree[9]) == tree[9].nchildren == 0 @test nchildren(tree, 10) == nchildren(tree[10]) == tree[10].nchildren == 2 @test nchildren(tree, 11) == nchildren(tree[11]) == tree[11].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 12) nchildren(tree, 12) @test ParallelUtilities.topnoderank(tree) == 8 tree = OrderedBinaryTree(1:13) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 2 @test nchildren(tree, 9) == nchildren(tree[9]) == tree[9].nchildren == 0 @test nchildren(tree, 10) == nchildren(tree[10]) == tree[10].nchildren == 2 @test nchildren(tree, 11) == nchildren(tree[11]) == tree[11].nchildren == 0 @test nchildren(tree, 12) == nchildren(tree[12]) == tree[12].nchildren == 2 @test nchildren(tree, 13) == nchildren(tree[13]) == tree[13].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 14) nchildren(tree, 14) @test ParallelUtilities.topnoderank(tree) == 8 end @testset "level" begin tree = OrderedBinaryTree(1:15) @test ParallelUtilities.levels(tree) == 4 @test ParallelUtilities.levelfromtop.((tree,), 1:2:15) == ones(Int, 8).*4 @test ParallelUtilities.levelfromtop.((tree,), (2, 6, 10, 14)) == (3, 3, 3, 3) @test ParallelUtilities.levelfromtop.((tree,), (4, 12)) == (2, 2) @test ParallelUtilities.levelfromtop(tree, 8) == 1 for p in [0, length(tree) + 1] @test_throws BoundsError(tree, p) ParallelUtilities.levelfromtop(tree, p) end tree = OrderedBinaryTree(1:13) @test ParallelUtilities.levels(tree) == 4 @test ParallelUtilities.levelfromtop.((tree,), 1:2:11) == ones(Int, 6).*4 @test ParallelUtilities.levelfromtop.((tree,), (2, 6, 10, 13)) == (3, 3, 3, 3) @test ParallelUtilities.levelfromtop.((tree,), (4, 12)) == (2, 2) @test ParallelUtilities.levelfromtop(tree, 8) == 1 for p in [0, length(tree) + 1] @test_throws BoundsError(tree, p) ParallelUtilities.levelfromtop(tree, p) end end end @testsetwithinfo "SegmentedOrderedBinaryTree" begin @testsetwithinfo "single host" begin @testset "pid and parent" begin for imax = 1:100 procs = 1:imax workersonhosts = Dict("host" => procs) tree = SegmentedOrderedBinaryTree(procs, workersonhosts) treeOBT = OrderedBinaryTree(procs) @test length(tree) == length(procs) == length(treeOBT) topnoderank = ParallelUtilities.topnoderank(tree) # The top node is its own parent @test tree[topnoderank].parent == topnoderank @test tree[topnoderank] == ParallelUtilities.topnode(tree) for rank in 1:length(tree) node = tree[rank] parentnode = tree[parentnoderank(tree, rank)] @test length(procs) > 1 ? nchildren(parentnode) > 0 : nchildren(parentnode) == 0 @test node.p == procs[rank] @test node.parent == procs[parentnoderank(treeOBT, rank)] @test parentnode.p == node.parent end end end; @testset "nchildren" begin procs = 1:1 tree = SegmentedOrderedBinaryTree(procs, Dict("host" => procs)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 2) nchildren(tree, 2) @test ParallelUtilities.topnoderank(tree) == 1 procs = 1:2 tree = SegmentedOrderedBinaryTree(procs, Dict("host" => procs)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 1 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 3) nchildren(tree, 3) @test ParallelUtilities.topnoderank(tree) == 2 procs = 1:8 tree = SegmentedOrderedBinaryTree(procs, Dict("host" => procs)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 1 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 9) nchildren(tree, 9) @test ParallelUtilities.topnoderank(tree) == 8 procs = 1:11 tree = SegmentedOrderedBinaryTree(procs, Dict("host" => procs)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 2 @test nchildren(tree, 9) == nchildren(tree[9]) == tree[9].nchildren == 0 @test nchildren(tree, 10) == nchildren(tree[10]) == tree[10].nchildren == 2 @test nchildren(tree, 11) == nchildren(tree[11]) == tree[11].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 12) nchildren(tree, 12) @test ParallelUtilities.topnoderank(tree) == 8 procs = 1:13 tree = SegmentedOrderedBinaryTree(procs, Dict("host" => procs)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 0 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 2 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 0 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 2 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 2 @test nchildren(tree, 9) == nchildren(tree[9]) == tree[9].nchildren == 0 @test nchildren(tree, 10) == nchildren(tree[10]) == tree[10].nchildren == 2 @test nchildren(tree, 11) == nchildren(tree[11]) == tree[11].nchildren == 0 @test nchildren(tree, 12) == nchildren(tree[12]) == tree[12].nchildren == 2 @test nchildren(tree, 13) == nchildren(tree[13]) == tree[13].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 14) nchildren(tree, 14) @test ParallelUtilities.topnoderank(tree) == 8 end; end; @testsetwithinfo "multiple hosts" begin @testset "length" begin procs = 1:2 tree = SegmentedOrderedBinaryTree(procs, OrderedDict("host1" => 1:1,"host2" => 2:2)) @test length(tree) == 2 + 1 procs = 1:4 tree = SegmentedOrderedBinaryTree(procs, OrderedDict("host1" => 1:2,"host2" => 3:4)) @test length(tree) == 4 + 1 procs = 1:12 tree = SegmentedOrderedBinaryTree(procs, OrderedDict( "host1" => 1:3,"host2" => 4:6, "host3" => 7:9,"host4" => 10:12)) @test length(tree) == 12 + 3 end; @testset "leafrankfoldedtree" begin treeflag = OrderedBinaryTree(1:1) @test leafrankfoldedtree(treeflag, 5, 1) == 1 @test leafrankfoldedtree(treeflag, 5, 2) == 3 @test leafrankfoldedtree(treeflag, 5, 3) == 5 @test leafrankfoldedtree(treeflag, 5, 4) == 7 @test leafrankfoldedtree(treeflag, 5, 5) == 9 end; @testset "pid and parent" begin for imax = 2:100 procs = 1:imax mid = div(imax, 2) workersonhosts = OrderedDict{String, Vector{Int}}() workersonhosts["host1"] = procs[1:mid] workersonhosts["host2"] = procs[mid + 1:end] tree = SegmentedOrderedBinaryTree(procs, workersonhosts) top = ParallelUtilities.topnoderank(tree) @test tree[top] == ParallelUtilities.topnode(tree) for (ind, rank) in enumerate(1:mid) node = tree[rank + 1] parentnode = tree[parentnoderank(tree, rank + 1)] @test parentnode.p == node.parent pnodes = workersonhosts["host1"] @test node.p == pnodes[ind] OBT = OrderedBinaryTree(pnodes) if ind == ParallelUtilities.topnoderank(OBT) # Special check for 2 hosts as # there's only one node in the top tree @test node.parent == ParallelUtilities.topnode(tree.toptree).p else @test node.parent == pnodes[parentnoderank(OBT, ind)] end end for (ind, rank) in enumerate(mid + 1:imax) node = tree[rank + 1] parentnode = tree[parentnoderank(tree, rank + 1)] @test parentnode.p == node.parent pnodes = workersonhosts["host2"] @test node.p == pnodes[ind] OBT = OrderedBinaryTree(pnodes) if ind == ParallelUtilities.topnoderank(OBT) # Special check for 2 hosts as # there's only one node in the top tree @test node.parent == ParallelUtilities.topnode(tree.toptree).p else @test node.parent == pnodes[parentnoderank(OBT, ind)] end end end end; @testset "nchildren" begin procs = 1:2 tree = SegmentedOrderedBinaryTree(procs, OrderedDict("host1" => 1:1,"host2" => 2:2)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 2 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 0 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 4) nchildren(tree, 4) procs = 1:12 tree = SegmentedOrderedBinaryTree(procs, OrderedDict( "host1" => 1:3,"host2" => 4:6, "host3" => 7:9,"host4" => 10:12)) @test nchildren(tree, 1) == nchildren(tree[1]) == tree[1].nchildren == 2 @test nchildren(tree, 2) == nchildren(tree[2]) == tree[2].nchildren == 2 @test nchildren(tree, 3) == nchildren(tree[3]) == tree[3].nchildren == 2 @test nchildren(tree, 4) == nchildren(tree[4]) == tree[4].nchildren == 0 @test nchildren(tree, 5) == nchildren(tree[5]) == tree[5].nchildren == 2 @test nchildren(tree, 6) == nchildren(tree[6]) == tree[6].nchildren == 0 @test nchildren(tree, 7) == nchildren(tree[7]) == tree[7].nchildren == 0 @test nchildren(tree, 8) == nchildren(tree[8]) == tree[8].nchildren == 2 @test nchildren(tree, 9) == nchildren(tree[9]) == tree[9].nchildren == 0 @test nchildren(tree, 10) == nchildren(tree[10]) == tree[10].nchildren == 0 @test nchildren(tree, 11) == nchildren(tree[11]) == tree[11].nchildren == 2 @test nchildren(tree, 12) == nchildren(tree[12]) == tree[12].nchildren == 0 @test nchildren(tree, 13) == nchildren(tree[13]) == tree[13].nchildren == 0 @test nchildren(tree, 14) == nchildren(tree[14]) == tree[14].nchildren == 2 @test nchildren(tree, 15) == nchildren(tree[15]) == tree[15].nchildren == 0 @test_throws BoundsError(tree, 0) nchildren(tree, 0) @test_throws BoundsError(tree, 16) nchildren(tree, 16) end; end; end end end; @testsetwithinfo "reduction" begin @testset "BranchChannel" begin @test_throws DomainError BranchChannel(1, 3) parentchannel = RemoteChannel(() -> Channel(1)) @test_throws DomainError BranchChannel(1, parentchannel, 3) end @testset "TopTreeNode" begin # Special test for this as this is usually not called when tests are carried out on the same machine parentchannel = RemoteChannel(() -> Channel(1)) childrenchannel = RemoteChannel(() -> Channel(2)) pipe = ParallelUtilities.BranchChannel(1, parentchannel, childrenchannel, 2) put!(childrenchannel, ParallelUtilities.pval(1, false, 1)) put!(childrenchannel, ParallelUtilities.pval(2, false, 2)) redval = reducedvalue(+, ParallelUtilities.TopTreeNode(1), pipe, nothing) @test redval === ParallelUtilities.pval(1, false, 3) put!(childrenchannel, ParallelUtilities.pval(1, false, 1)) put!(childrenchannel, ParallelUtilities.pval(2, true, nothing)) redval = reducedvalue(+, ParallelUtilities.TopTreeNode(1), pipe, nothing) @test redval === ParallelUtilities.pval(1, true, nothing) put!(childrenchannel, ParallelUtilities.pval(1, false, 1)) put!(childrenchannel, ParallelUtilities.pval(2, false, 2)) @test_throws Exception reducedvalue(x -> error(""), ParallelUtilities.TopTreeNode(1), pipe, nothing) end @testset "fake multiple hosts" begin tree = ParallelUtilities.SegmentedOrderedBinaryTree([1,1], OrderedDict("host1" => 1:1, "host2" => 1:1)) branches = ParallelUtilities.createbranchchannels(tree) @test ParallelUtilities.pmapreduceworkers(x -> 1, +, (tree, branches), (1:4,)) == 4 if nworkers() > 1 p = procs_node() # Choose workers on the same node to avoid communication bottlenecks in testing w = first(values(p)) tree = ParallelUtilities.SegmentedOrderedBinaryTree(w, OrderedDict("host1" => w[1]:w[1], "host2" => w[2]:w[end])) branches = ParallelUtilities.createbranchchannels(tree) @test ParallelUtilities.pmapreduceworkers(x -> 1, +, (tree, branches), (1:length(w),)) == length(w) end end end @testset "pmapreduce" begin @testsetwithinfo "pmapreduce" begin @testsetwithinfo "sum" begin @testsetwithinfo "comparison with mapreduce" begin for iterators in Any[(1:1,), (ones(2,2),), (1:10,)] res_exp = mapreduce(x -> x^2, +, iterators...) res = pmapreduce(x -> x^2, +, iterators...) @test res_exp == res res_exp = mapreduce(x -> x^2, +, iterators..., init = 100) res = pmapreduce(x -> x^2, +, iterators..., init = 100) @test res_exp == res end @testset "dictionary" begin res = pmapreduce(x -> Dict(x => x), merge, 1:1) res_exp = mapreduce(x -> Dict(x => x), merge, 1:1) @test res == res_exp res = pmapreduce(x -> Dict(x => x), merge, 1:200) res_exp = mapreduce(x -> Dict(x => x), merge, 1:200) @test res == res_exp res = pmapreduce(x -> OrderedDict(x => x), merge, 1:20) res_exp = mapreduce(x -> OrderedDict(x => x), merge, 1:20) @test res == res_exp end iterators = (1:10, 2:2:20) res_exp = mapreduce((x, y) -> x*y, +, iterators...) res = pmapreduce((x, y) -> x*y, +, iterators...) @test res_exp == res res_exp = mapreduce((x, y) -> x*y, +, iterators..., init = 100) res = pmapreduce((x, y) -> x*y, +, iterators..., init = 100) @test res_exp == res iterators = (1:10, 2:2:20) iterators_product = Iterators.product(iterators...) res_exp = mapreduce(((x, y),) -> x*y, +, iterators_product) res = pmapreduce(((x, y),) -> x*y, +, iterators_product) @test res_exp == res res_exp_2itp = mapreduce(((x, y), (a, b)) -> x*a + y*b, +, iterators_product, iterators_product) res_2itp = pmapreduce(((x, y), (a, b)) -> x*a + y*b, +, iterators_product, iterators_product) @test res_2itp == res_exp_2itp iterators_product_putil = ParallelUtilities.product(iterators...) res_exp2 = mapreduce(((x, y),) -> x*y, +, iterators_product_putil) res2 = pmapreduce(((x, y),) -> x*y, +, iterators_product_putil) @test res_exp2 == res2 @test res_exp2 == res_exp res_exp_2pup = mapreduce(((x, y), (a, b)) -> x*a + y*b, +, iterators_product_putil, iterators_product_putil) res_2pup = pmapreduce(((x, y), (a, b)) -> x*a + y*b, +, iterators_product_putil, iterators_product_putil) @test res_2pup == res_exp_2pup @test res_2pup == res_2itp end @testsetwithinfo "pmapreduce_productsplit" begin res_exp = sum(workers()) @test pmapreduce_productsplit(x -> myid(), +, 1:nworkers()) == res_exp @test pmapreduce_productsplit(NoSplat(x -> myid()), +, 1:nworkers()) == res_exp @test pmapreduce_productsplit(x -> myid(), +, 1:nworkers(), 1:1) == res_exp end end; @testsetwithinfo "inplace assignment" begin res = pmapreduce_productsplit(x -> ones(2), ParallelUtilities.elementwisesum!, 1:10) resexp = mapreduce(x -> ones(2), +, 1:min(10, nworkers())) @test res == resexp res = pmapreduce_productsplit(x -> ones(2), ParallelUtilities.elementwiseproduct!, 1:4) resexp = mapreduce(x -> ones(2), (x,y) -> x .* y, 1:min(4, nworkers())) @test res == resexp res = pmapreduce_productsplit(x -> ones(2), ParallelUtilities.elementwisemin!, 1:4) resexp = mapreduce(x -> ones(2), (x,y) -> min.(x,y), 1:min(4, nworkers())) @test res == resexp res = pmapreduce_productsplit(x -> ones(2), ParallelUtilities.elementwisemax!, 1:4) resexp = mapreduce(x -> ones(2), (x,y) -> max.(x,y), 1:min(4, nworkers())) @test res == resexp end @testsetwithinfo "concatenation" begin @testsetwithinfo "comparison with mapreduce" begin resexp_vcat = mapreduce(identity, vcat, 1:nworkers()) resexp_hcat = mapreduce(identity, hcat, 1:nworkers()) res_vcat = pmapreduce(identity, vcat, 1:nworkers()) res_hcat = pmapreduce(identity, hcat, 1:nworkers()) @test res_vcat == resexp_vcat @test res_hcat == resexp_hcat end @testsetwithinfo "pmapreduce_productsplit" begin res_vcat = mapreduce(identity, vcat, ones(2) for i in 1:nworkers()) res_hcat = mapreduce(identity, hcat, ones(2) for i in 1:nworkers()) @test pmapreduce_productsplit(x -> ones(2), vcat, 1:nworkers()) == res_vcat @test pmapreduce_productsplit(x -> ones(2), hcat, 1:nworkers()) == res_hcat end end; @testsetwithinfo "run elsewhere" begin @testsetwithinfo "sum" begin res_exp = sum(workers()) c = Channel(nworkers()) tasks = Vector{Task}(undef, nworkers()) @sync begin for (ind, p) in enumerate(workers()) tasks[ind] = @async begin try res = @fetchfrom p pmapreduce_productsplit(x -> myid(), +, 1:nworkers()) put!(c,(ind, res, false)) catch put!(c,(ind, 0, true)) rethrow() end end end for i = 1:nworkers() ind, res, err = take!(c) err && wait(tasks[ind]) @test res == res_exp showworkernumber(i, nworkers()) end end end # concatenation where the rank is used in the mapping function # Preserves order of the iterators @testsetwithinfo "concatenation using rank" begin c = Channel(nworkers()) tasks = Vector{Task}(undef, nworkers()) @sync begin for (ind, p) in enumerate(workers()) tasks[ind] = @async begin try res = @fetchfrom p (pmapreduce_productsplit(x -> x[1][1], vcat, 1:nworkers()) == mapreduce(identity, vcat, 1:nworkers())) put!(c,(ind, res, false)) catch put!(c,(ind, false, true)) rethrow() end end end for i = 1:nworkers() ind, res, err = take!(c) err && wait(tasks[ind]) @test res showworkernumber(i, nworkers()) end end end end; @testsetwithinfo "errors" begin @test_throws Exception pmapreduce(x -> error("map"), +, 1:10) @test_throws Exception pmapreduce(identity, x -> error("reduce"), 1:10) @test_throws Exception pmapreduce(x -> error("map"), x -> error("reduce"), 1:10) @test_throws Exception pmapreduce(fmap, +, 1:10) @test_throws Exception pmapreduce(identity, fred, 1:10) @test_throws Exception pmapreduce(fmap, fred, 1:10) if nworkers() != nprocs() @test_throws Exception pmapreduce(fmap_local, +, 1:10) @test_throws Exception pmapreduce(identity, fred_local, 1:10) @test_throws Exception pmapreduce(fmap_local, fred, 1:10) @test_throws Exception pmapreduce(fmap_local, fred_local, 1:10) end end; end; @testsetwithinfo "pmapbatch" begin for (iterators, fmap) in Any[ ((1:1,), x -> 1), ((1:10,), x -> 1), ((1:5,), x -> ones(1) * x), ((1:10, 1:10), (x,y) -> ones(3) * (x+y))] res = pmapbatch(fmap, iterators...) res_exp = pmap(fmap, iterators...) @test res == res_exp end v = pmapbatch_productsplit(x -> sum(sum(i) for i in x) * ones(2), 1:1, 1:1) @test v == [[2.0, 2.0]] v = pmapbatch_productsplit(x -> ParallelUtilities.workerrank(x), 1:nworkers(), 1:nworkers()) @test v == [1:nworkers();] end end; @testset "ClusterQueryUtils" begin # These tests assume that all the workers are on the same node p = procs_node() myhost = Libc.gethostname() if myhost in keys(p) w_myhost = p[myhost] @test sort(workers_myhost(w_myhost)) == sort(w_myhost) @test sort(workers_myhost(WorkerPool(w_myhost))) == sort(w_myhost) w = oneworkerpernode(w_myhost) @test length(w) == 1 @test (@fetchfrom w[1] Libc.gethostname()) == myhost pool = workerpool_nodes(WorkerPool(w_myhost)) w_pool = workers(pool) @test length(w_pool) == 1 @test (@fetchfrom w_pool[1] Libc.gethostname()) == myhost end w = workers(workerpool_nodes()) @test !isempty(w) host_w = @fetchfrom w[1] Libc.gethostname() @test w[1] in p[host_w] end
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
18799
using Distributed using Test using ParallelUtilities import ParallelUtilities: ProductSplit, ProductSection, ZipSplit, zipsplit, minimumelement, maximumelement, extremaelement, nelements, dropleading, indexinproduct, extremadims, localindex, extrema_commonlastdim, whichproc, procrange_recast, whichproc_localindex, getiterators, _niterators using SplittablesBase macro testsetwithinfo(str, ex) quote @info "Testing "*$str @testset $str begin $(esc(ex)); end; end end @testsetwithinfo "AbstractConstrainedProduct" begin various_iters = Any[(1:10,), (1:1:10,), (1:10, 4:6), (1:1:10, 4:6), (1:10, 4:6, 1:4), (1:2:9,), (1:2:9, 4:1:6), (1:2, Base.OneTo(4), 1:3:10), (1:0.5:3, 2:4)] @testsetwithinfo "ProductSplit" begin function split_across_processors_iterators(arr::Iterators.ProductIterator, num_procs, proc_id) num_tasks = length(arr); num_tasks_per_process, num_tasks_leftover = divrem(num_tasks, num_procs) num_tasks_on_proc = num_tasks_per_process + (proc_id <= mod(num_tasks, num_procs) ? 1 : 0 ); task_start = num_tasks_per_process*(proc_id-1) + min(num_tasks_leftover, proc_id-1) + 1; Iterators.take(Iterators.drop(arr, task_start-1), num_tasks_on_proc) end function split_product_across_processors_iterators(arrs_tuple, num_procs, proc_id) split_across_processors_iterators(Iterators.product(arrs_tuple...), num_procs, proc_id) end @testset "Constructor" begin function checkPSconstructor(iters, npmax = 10) ntasks_total = prod(length, iters) for np = 1:npmax, p = 1:np ps = ProductSplit(iters, np, p) @test eltype(ps) == Tuple{map(eltype, iters)...} @test _niterators(ps) == length(iters) if !isempty(ps) @test collect(ps) == collect(split_product_across_processors_iterators(iters, np, p)) end @test prod(length, getiterators(ps)) == ntasks_total @test ParallelUtilities.workerrank(ps) == p @test nworkers(ps) == np end @test_throws ArgumentError ProductSplit(iters, npmax, npmax + 1) end @testset "0D" begin @test_throws ArgumentError ProductSplit((), 2, 1) end @testset "cumprod" begin @test ParallelUtilities._cumprod(1,()) == () @test ParallelUtilities._cumprod(1,(2,)) == (1,) @test ParallelUtilities._cumprod(1,(2, 3)) == (1, 2) @test ParallelUtilities._cumprod(1,(2, 3, 4)) == (1, 2, 6) end @testset "1D" begin iters = (1:10,) checkPSconstructor(iters) end @testset "2D" begin iters = (1:10, 4:6) checkPSconstructor(iters) end @testset "3D" begin iters = (1:10, 4:6, 1:4) checkPSconstructor(iters) end @testset "steps" begin iters = (1:2:10, 4:1:6) checkPSconstructor(iters) end @testset "mixed" begin for iters in [(1:2, 4:2:6), (1:2, Base.OneTo(4), 1:3:10)] checkPSconstructor(iters) end end @testset "empty" begin iters = (1:1,) ps = ProductSplit(iters, 10, 2) @test isempty(ps) @test length(ps) == 0 end @testset "first and last ind" begin for iters in Any[(1:10,), (1:2, Base.OneTo(4), 1:3:10)] ps = ProductSplit(iters, 2, 1) @test firstindex(ps) == 1 @test ParallelUtilities.firstindexglobal(ps) == 1 @test ParallelUtilities.lastindexglobal(ps) == div(prod(length, iters), 2) @test lastindex(ps) == div(prod(length, iters), 2) @test lastindex(ps) == length(ps) ps = ProductSplit(iters, 2, 2) @test ParallelUtilities.firstindexglobal(ps) == div(prod(length, iters), 2) + 1 @test firstindex(ps) == 1 @test ParallelUtilities.lastindexglobal(ps) == prod(length, iters) @test lastindex(ps) == length(ps) for np in prod(length, iters) + 1:prod(length, iters) + 10, p in prod(length, iters) + 1:np ps = ProductSplit(iters, np, p) @test ParallelUtilities.firstindexglobal(ps) == prod(length, iters) + 1 @test ParallelUtilities.lastindexglobal(ps) == prod(length, iters) end end end end @testset "firstlast" begin @testset "first" begin @test ParallelUtilities._first(()) == () for iters in various_iters, np = 1:prod(length, iters) ps = ProductSplit(iters, np, 1) @test first(ps) == map(first, iters) end end @testset "last" begin @test ParallelUtilities._last(()) == () for iters in various_iters, np = 1:prod(length, iters) ps = ProductSplit(iters, np, np) @test last(ps) == map(last, iters) end end end @testset "extrema" begin @testset "min max extrema" begin function checkPSextrema(iters, (fn_el, fn), npmax = 10) for np = 1:npmax, p = 1:np ps = ProductSplit(iters, np, p) if isempty(ps) continue end pcol = collect(ps) for dims in 1:length(iters) @test begin res = fn_el(ps, dims = dims) == fn(x[dims] for x in pcol) if !res show(ps) end res end end if _niterators(ps) == 1 @test begin res = fn_el(ps) == fn(x[1] for x in pcol) if !res show(ps) end res end end end end for iters in various_iters, fntup in [(maximumelement, maximum), (minimumelement, minimum), (extremaelement, extrema)] checkPSextrema(iters, fntup) end @test minimumelement(ProductSplit((1:5,), 2, 1)) == 1 @test maximumelement(ProductSplit((1:5,), 2, 1)) == 3 @test extremaelement(ProductSplit((1:5,), 2, 1)) == (1, 3) @test minimumelement(ProductSplit((1:5,), 2, 2)) == 4 @test maximumelement(ProductSplit((1:5,), 2, 2)) == 5 @test extremaelement(ProductSplit((1:5,), 2, 2)) == (4, 5) end @testset "extremadims" begin ps = ProductSplit((1:10,), 2, 1) @test ParallelUtilities._extremadims(ps, 1,()) == () for iters in various_iters dims = length(iters) for np = 1:prod(length, iters) + 1, proc_id = 1:np ps = ProductSplit(iters, np, proc_id) if isempty(ps) @test_throws ArgumentError extremadims(ps) else ext = Tuple(map(extrema, zip(collect(ps)...))) @test extremadims(ps) == ext end end end end @testset "extrema_commonlastdim" begin iters = (1:10, 4:6, 1:4) ps = ProductSplit(iters, 37, 8) @test extrema_commonlastdim(ps) == ([(9, 1), (6, 1)], [(2, 2), (4, 2)]) ps = ProductSplit(iters, prod(length, iters) + 1, prod(length, iters) + 1) @test extrema_commonlastdim(ps) === nothing end end @testset "in" begin function checkifpresent(iters, npmax = 10) for np = 1:npmax, p = 1:np ps = ProductSplit(iters, np, p) if isempty(ps) continue end pcol = collect(ps) for el in pcol # It should be contained in this iterator @test el in ps for p2 in 1:np # It should not be contained anywhere else p2 == p && continue ps2 = ProductSplit(iters, np, p2) @test !(el in ps2) end end end end for iters in various_iters checkifpresent(iters) end @test ParallelUtilities._infullrange((), ()) end @testset "whichproc + procrange_recast" begin np, proc_id = 5, 5 iters = (1:10, 4:6, 1:4) ps = ProductSplit(iters, np, proc_id) @test whichproc(iters, first(ps), 1) == 1 @test whichproc(ps, first(ps)) == proc_id @test whichproc(ps, last(ps)) == proc_id @test whichproc(iters,(100, 100, 100), 1) === nothing @test procrange_recast(iters, ps, 1) == 1:1 @test procrange_recast(ps, 1) == 1:1 smalleriter = (1:1, 1:1, 1:1) err = ParallelUtilities.TaskNotPresentError(smalleriter, first(ps)) @test_throws err procrange_recast(smalleriter, ps, 1) smalleriter = (7:9, 4:6, 1:4) err = ParallelUtilities.TaskNotPresentError(smalleriter, last(ps)) @test_throws err procrange_recast(smalleriter, ps, 1) iters = (1:1, 2:2) ps = ProductSplit(iters, np, proc_id) @test procrange_recast(iters, ps, 2) == nothing @test procrange_recast(ps, 2) == nothing iters = (1:1, 2:2) ps = ProductSplit(iters, 1, 1) @test procrange_recast(iters, ps, 2) == 1:1 @test procrange_recast(ps, 2) == 1:1 iters = (Base.OneTo(2), 2:4) ps = ProductSplit(iters, 2, 1) @test procrange_recast(iters, ps, 1) == 1:1 @test procrange_recast(iters, ps, 2) == 1:1 @test procrange_recast(iters, ps, prod(length, iters)) == 1:length(ps) for np_new in 1:prod(length, iters) for proc_id_new = 1:np_new ps_new = ProductSplit(iters, np_new, proc_id_new) for val in ps_new # Should loop only if ps_new is non-empty @test whichproc(iters, val, np_new) == proc_id_new end end @test procrange_recast(iters, ps, np_new) == (isempty(ps) ? nothing : (whichproc(iters, first(ps), np_new):whichproc(iters, last(ps), np_new))) @test procrange_recast(ps, np_new) == (isempty(ps) ? nothing : (whichproc(iters, first(ps), np_new):whichproc(iters, last(ps), np_new))) end @testset "different set" begin iters = (1:100, 1:4000) ps = ProductSplit((20:30, 1:1), 2, 1) @test procrange_recast(iters, ps, 700) == 1:1 ps = ProductSplit((20:30, 1:1), 2, 2) @test procrange_recast(iters, ps, 700) == 1:1 iters = (1:1, 2:2) ps = ProductSplit((20:30, 2:2), 2, 1) @test_throws ParallelUtilities.TaskNotPresentError procrange_recast(iters, ps, 3) ps = ProductSplit((1:30, 2:2), 2, 1) @test_throws ParallelUtilities.TaskNotPresentError procrange_recast(iters, ps, 3) end end @testset "indexinproduct" begin @test indexinproduct((1:4, 2:3:8), (3, 5)) == 7 @test indexinproduct((1:4, 2:3:8), (3, 6)) === nothing @test_throws ArgumentError indexinproduct((), ()) end @testset "localindex" begin for iters in various_iters for np = 1:prod(length, iters), proc_id = 1:np ps = ProductSplit(iters, np, proc_id) for (ind, val) in enumerate(ps) @test localindex(ps, val) == ind end end end end @testset "whichproc_localindex" begin for iters in various_iters iters isa Tuple{AbstractUnitRange, Vararg{AbstractUnitRange}} || continue for np = 1:prod(length, iters), proc_id = 1:np ps_col = collect(ProductSplit(iters, np, proc_id)) ps_col_rev = [reverse(t) for t in ps_col] for val in ps_col p, ind = whichproc_localindex(iters, val, np) @test p == proc_id ind_in_arr = searchsortedfirst(ps_col_rev, reverse(val)) @test ind == ind_in_arr end end end @test whichproc_localindex((1:1,1:1), (1,2), 1) === nothing end @testset "getindex" begin @test ParallelUtilities._getindex((), 1) == () @test ParallelUtilities._getindex((), 1, 2) == () @test ParallelUtilities.childindex((), 1) == (1,) for iters in various_iters for np = 1:prod(length, iters), p = 1:np ps = ProductSplit(iters, np, p) ps_col = collect(ps) for i in 1:length(ps) @test ps[i] == ps_col[i] end @test ps[end] == ps[length(ps)] for ind in [0, length(ps) + 1] @test_throws ParallelUtilities.BoundsError(ps, ind) ps[ind] end end end end end @testsetwithinfo "ProductSection" begin @testset "Constructor" begin function testPS(iterators) itp = collect(Iterators.product(iterators...)) l = length(itp) for startind in 1:l, endind in startind:l ps = ProductSection(iterators, startind:endind) @test eltype(ps) == Tuple{map(eltype, iterators)...} for (psind, ind) in enumerate(startind:endind) @test ps[psind] == itp[ind] end end end for iter in various_iters testPS(iter) end @test_throws ArgumentError ProductSection((), 2:3) end end @testset "dropleading" begin ps = ProductSplit((1:5, 2:4, 1:3), 7, 3); @test dropleading(ps) isa ProductSection @test collect(dropleading(ps)) == [(4, 1), (2, 2), (3, 2)] @test collect(dropleading(dropleading(ps))) == [(1,), (2,)] ps = ProductSection((1:5, 2:4, 1:3), 5:8); @test dropleading(ps) isa ProductSection @test collect(dropleading(ps)) == [(2, 1), (3, 1)] @test collect(dropleading(dropleading(ps))) == [(1,)] end @testset "nelements" begin ps = ProductSplit((1:5, 2:4, 1:3), 7, 3); @test nelements(ps, dims = 1) == 5 @test nelements(ps, dims = 2) == 3 @test nelements(ps, dims = 3) == 2 @test_throws ArgumentError nelements(ps, dims = 0) @test_throws ArgumentError nelements(ps, dims = 4) ps = ProductSection((1:5, 2:4, 1:3), 5:8); @test nelements(ps, dims =1) == 4 @test nelements(ps, dims =2) == 2 @test nelements(ps, dims =3) == 1 ps = ProductSection((1:5, 2:4, 1:3), 5:11); @test nelements(ps, dims = 1) == 5 @test nelements(ps, dims = 2) == 3 @test nelements(ps, dims = 3) == 1 ps = ProductSection((1:5, 2:4, 1:3), 4:8); @test nelements(ps, dims = 1) == 5 @test nelements(ps, dims = 2) == 2 @test nelements(ps, dims = 3) == 1 ps = ProductSection((1:5, 2:4, 1:3), 4:9); @test nelements(ps, dims = 1) == 5 @test nelements(ps, dims = 2) == 2 @test nelements(ps, dims = 3) == 1 end @testset "SplittablesBase" begin for iters in [(1:4, 1:3), (1:4, 1:4)] for ps = Any[ProductSplit(iters, 3, 2), ProductSection(iters, 3:8)] l, r = SplittablesBase.halve(ps) lc, rc = SplittablesBase.halve(collect(ps)) @test collect(l) == lc @test collect(r) == rc end end end @test ParallelUtilities._checknorollover((), (), ()) end; @testset "ReverseLexicographicTuple" begin @testset "isless" begin a = ParallelUtilities.ReverseLexicographicTuple((1, 2, 3)) b = ParallelUtilities.ReverseLexicographicTuple((2, 2, 3)) @test a < b @test a <= b b = ParallelUtilities.ReverseLexicographicTuple((1, 1, 3)) @test b < a @test b <= a b = ParallelUtilities.ReverseLexicographicTuple((2, 1, 3)) @test b < a @test b <= a b = ParallelUtilities.ReverseLexicographicTuple((2, 1, 4)) @test a < b @test a <= b end @testset "equal" begin a = ParallelUtilities.ReverseLexicographicTuple((1, 2, 3)) @test a == a @test isequal(a, a) @test a <= a b = ParallelUtilities.ReverseLexicographicTuple(a.t) @test a == b @test isequal(a, b) @test a <= b end end; @testset "ZipSplit" begin @testset "SplittablesBase" begin for ps in [zipsplit((1:4, 1:4), 3, 2), zipsplit((1:5, 1:5), 3, 2)] l, r = SplittablesBase.halve(ps) lc, rc = SplittablesBase.halve(collect(ps)) @test collect(l) == lc @test collect(r) == rc end end end
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
code
244
using Distributed include("misctests_singleprocess.jl") include("productsplit.jl") include("paralleltests.jl") for workersused in [1, 2, 4, 8] addprocs(workersused) try include("paralleltests.jl") finally rmprocs(workers()) end end
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
1499
# ParallelUtilities.jl [![Build status](https://github.com/jishnub/ParallelUtilities.jl/workflows/CI/badge.svg)](https://github.com/jishnub/ParallelUtilities.jl/actions) [![codecov](https://codecov.io/gh/jishnub/ParallelUtilities.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jishnub/ParallelUtilities.jl) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jishnub.github.io/ParallelUtilities.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jishnub.github.io/ParallelUtilities.jl/dev) [![DOI](https://zenodo.org/badge/198215953.svg)](https://zenodo.org/badge/latestdoi/198215953) Parallel mapreduce and other helpful functions for HPC, meant primarily for embarassingly parallel operations that often require one to split up a list of tasks into subsections that may be processed on individual cores. # Installation Install the package using ```julia pkg> add ParallelUtilities julia> using ParallelUtilities ``` # Quick start Just replace `mapreduce` by `pmapreduce` in your code and things should work the same. ```julia julia> @everywhere f(x) = (sleep(1); x^2); # some expensive calculation julia> nworkers() 2 julia> @time mapreduce(f, +, 1:10) # Serial 10.021436 seconds (40 allocations: 1.250 KiB) 385 julia> @time pmapreduce(f, +, 1:10) # Parallel 5.137051 seconds (863 allocations: 39.531 KiB) 385 ``` # Usage See [the documentation](https://jishnub.github.io/ParallelUtilities.jl/stable) for examples and the API.
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
71
# ParallelUtilities.jl ```@autodocs Modules = [ParallelUtilities] ```
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
538
```@meta DocTestSetup = quote using ParallelUtilities using ParallelUtilities.ClusterQueryUtils end ``` # Cluster Query Utilities These are a collection of helper functions that are used in `ParallelUtilities`, but may be used independently as well to obtain information about the cluster on which codes are being run. To use these functions run ```jldoctest cqu julia> using ParallelUtilities.ClusterQueryUtils ``` The functions defined in this module are: ```@autodocs Modules = [ParallelUtilities.ClusterQueryUtils] ```
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
5192
```@meta DocTestSetup = quote using ParallelUtilities end ``` # ParallelUtilities.jl The `ParallelUtilities` module defines certain functions that are useful in a parallel `mapreduce` operation, with particular focus on HPC systems. The approach is similar to a `@distributed (op) for` loop, where the entire section of iterators is split evenly across workers and reduced locally, followed by a global reduction. The operation is not load-balanced at present, and does not support retry on error. # Performance The `pmapreduce`-related functions are expected to be more performant than `@distributed` for loops. As an example, running the following on a Slurm cluster using 2 nodes with 28 cores on each leads to ```julia julia> using Distributed julia> using ParallelUtilities julia> @everywhere f(x) = ones(10_000, 1_000); julia> A = @time @distributed (+) for i=1:nworkers() f(i) end; 22.637764 seconds (3.35 M allocations: 8.383 GiB, 16.50% gc time, 0.09% compilation time) julia> B = @time pmapreduce(f, +, 1:nworkers()); 2.170926 seconds (20.47 k allocations: 77.117 MiB) julia> A == B true ``` The difference increases with the size of data as well as the number of workers. This is because the `pmapreduce*` functions defined in this package perform local reductions before communicating data across nodes. Note that in this case the same operation may be carried out elementwise to obtain better performance. ```julia julia> @everywhere elsum(x,y) = x .+= y; julia> A = @time @distributed (elsum) for i=1:nworkers() f(i) end; 20.537353 seconds (4.74 M allocations: 4.688 GiB, 2.56% gc time, 1.26% compilation time) julia> B = @time pmapreduce(f, elsum, 1:nworkers()); 1.791662 seconds (20.50 k allocations: 77.134 MiB) ``` A similar evaluation on 560 cores (20 nodes) takes ```julia julia> @time for i = 1:10; pmapreduce(f, +, 1:nworkers()); end 145.963834 seconds (2.53 M allocations: 856.693 MiB, 0.12% gc time) julia> @time for i = 1:10; pmapreduce(f, elsum, 1:nworkers()); end 133.810309 seconds (2.53 M allocations: 856.843 MiB, 0.13% gc time) ``` An example of a mapreduce operation involving large arrays (comparable to the memory allocated to each core) evaluated on 56 cores is ```julia julia> @everywhere f(x) = ones(12_000, 20_000); julia> @time ParallelUtilities.pmapreduce(f, elsum, 1:nworkers()); 36.824788 seconds (26.40 k allocations: 1.789 GiB, 0.05% gc time) ``` # Comparison with other parallel mapreduce packages Other packages that perform parallel mapreduce are [`ParallelMapReduce`](https://github.com/hcarlsso/ParallelMapReduce.jl) and [`Transducers`](https://github.com/JuliaFolds/Transducers.jl). The latter provides a `foldxd` function that performs an associative distributed `mapfold`. The performances of these functions compared to this package (measured on 1 node with 28 cores) are listed below: ```julia julia> @everywhere f(x) = ones(10_000, 10_000); julia> A = @time ParallelUtilities.pmapreduce(f, +, 1:nworkers()); 10.105696 seconds (14.03 k allocations: 763.511 MiB) julia> B = @time ParallelMapReduce.pmapreduce(f, +, 1:nworkers(), algorithm = :reduction_local); 30.955381 seconds (231.93 k allocations: 41.200 GiB, 7.63% gc time, 0.23% compilation time) julia> C = @time Transducers.foldxd(+, 1:nworkers() |> Transducers.Map(f)); 30.154166 seconds (655.40 k allocations: 41.015 GiB, 8.65% gc time, 1.03% compilation time) julia> A == B == C true ``` Note that at present the performances of the `pmapreduce*` functions defined in this package are not comparable to equivalent MPI implementations. For example, an MPI mapreduce operation using [`MPIMapReduce.jl`](https://github.com/jishnub/MPIMapReduce.jl) computes an inplace sum over `10_000 x 10_000` matrices on each core in ```julia 3.413968 seconds (3.14 M allocations: 1.675 GiB, 2.99% gc time) ``` whereas this package computes it in ```julia julia> @time ParallelUtilities.pmapreduce(f, elsum, 1:nworkers()); 7.264023 seconds (12.46 k allocations: 763.450 MiB, 1.69% gc time) ``` This performance gap might reduce in the future. !!! note The timings have all been measured on Julia 1.6 on an HPC cluster that has nodes with with 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz CPUs ("Broadwell", 14 cores/socket, 28 cores/node). They are also measured for subsequent runs after an initial precompilation step. The exact evaluation time might also vary depending on the cluster load. # Known issues 1. This package currently does not implement a specialized `mapreduce` for arrays, so the behavior might differ for specialized array argument types (eg. `DistributedArray`s). This might change in the future. 2. This package deals with distributed (multi-core) parallelism, and at this moment it has not been tested extensively alongside multi-threading. Multithreading + multiprocessing has been tested where the number of threads times the number of processes equals the number of available cores. See [an example](examples/threads.md) of multithreading used in such a form, where each node uses threads locally, and reduction across nodes is performed using multiprocessing.
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
11836
```@meta DocTestSetup = quote using ParallelUtilities end ``` # Parallel mapreduce There are two modes of evaluating a parallel mapreduce that vary only in the arguments that the mapping function accepts. 1. Iterated zip, where one element from the zipped iterators is splatted and passed as arguments to the mapping function. In this case the function must accept as many arguments as the number of iterators passed to mapreduce. This is analogous to a serial `mapreduce` 2. Non-iterated product, in which case the iterator product of the arguments is distributed evenly across the workers. The mapping function in this case should accept one argument that is a collection of `Tuple`s of values. It may iterate over the argument to obtain the individual `Tuple`s. Each process involved in a `pmapreduce` operation carries out a local `mapreduce`, followed by a reduction across processes. The reduction is carried out in the form of a binary tree. The reduction happens in three stages: 1. A local reduction as a part of `mapreduce` 2. A reduction on the host across the workers on the same host. Typically on an HPC system there is an independent reduction on each node across the processes on that node. 3. A global reduction across hosts. The reduction operator is assumed to be associative, and reproducibility of floating-point operations is not guaranteed. For associative reductions look into various `mapfold*` methods provided by other packages, such as [`Transducers`](https://github.com/JuliaFolds/Transducers.jl). The reduction operator is not assumed to be commutative. A `pmapreduce` might only benefit in performance if the mapping function runs for longer than the communication overhead across processes, or if each process has dedicated memory and returns large arrays that may not be collectively stored on one process. ## Iterated Zip The syntax for a parallel map-reduce operation is quite similar to the serial `mapreduce`, with the replacement of `mapreduce` by `pmapreduce`. Serial: ```julia julia> mapreduce(x -> x^2, +, 1:100_000) 333338333350000 ``` Parallel: ```julia julia> pmapreduce(x -> x^2, +, 1:100_000) 333338333350000 ``` We may check that parallel evaluation helps in performance for a long-running process. ```julia julia> nworkers() 2 julia> @time mapreduce(x -> (sleep(1); x^2), +, 1:6); 6.079191 seconds (54.18 k allocations: 3.237 MiB, 1.10% compilation time) julia> @time pmapreduce(x -> (sleep(1); x^2), +, 1:6); 3.365979 seconds (91.57 k allocations: 5.473 MiB, 0.87% compilation time) ``` ## Non-iterated product The second mode of usage is similar to MPI, where each process evaluates the same function once for different arguments. This is called using ```julia pmapreduce_productsplit(f, op, iterators...) ``` In this function, the iterator product of the argument `iterators` is split evenly across the workers, and the function `f` on each process receives one such section according to its rank. The argument is an iterator similar to an iterator product, and looping over it would produce Tuples `(iterators[1][i], iterators[2][i], ...)` where the index `i` depends on the rank of the worker as well as the local loop index. As an example, we run this with 2 workers: ```julia julia> pmapreduce_productsplit(ps -> (@show collect(ps)), vcat, 1:4) From worker 2: collect(ps) = [(1,), (2,)] From worker 3: collect(ps) = [(3,), (4,)] 4-element Vector{Tuple{Int64}}: (1,) (2,) (3,) (4,) julia> pmapreduce_productsplit(ps -> (@show collect(ps)), vcat, 1:3, 1:2) From worker 2: collect(ps) = [(1, 1), (2, 1), (3, 1)] From worker 3: collect(ps) = [(1, 2), (2, 2), (3, 2)] 6-element Vector{Tuple{Int64, Int64}}: (1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) ``` Note that in each case the mapping function receives the entire collection of arguments in one go, unlike a standard `mapreduce` where the function receives the arguments individually. This is chosen so that the function may perform any one-time compute-intensive task for the entire range before looping over the argument values. Each process might return one or more values that are subsequently reduced in parallel. !!! note At present the `iterators` passed as arguments to `pmapreduce_productsplit` may only be strictly increasing ranges. This might be relaxed in the future. The argument `ps` passed on to each worker is a [`ParallelUtilities.ProductSplit`](@ref) object. This has several methods defined for it that might aid in evaluating the mapping function locally. ### ProductSplit A `ProductSplit` object `ps` holds the section of the iterator product that is assigned to the worker. It also encloses the worker rank and the size of the worker pool, similar to MPI's `Comm_rank` and `Comm_size`. These may be accessed as `workerrank(ps)` and `nworkers(ps)`. Unlike MPI though, the rank goes from `1` to `np`. An example where the worker rank is used (on 2 workers) is ```julia julia> pmapreduce_productsplit(ps -> ones(2) * workerrank(ps), hcat, 1:nworkers()) 2×2 Matrix{Float64}: 1.0 2.0 1.0 2.0 ``` The way to construct a `ProductSplit` object is `ParallelUtilities.ProductSplit(tuple_of_iterators, nworkers, worker_rank)` ```jldoctest productsplit; setup=:(using ParallelUtilities) julia> ps = ParallelUtilities.ProductSplit((1:2, 3:4), 2, 1) 2-element ProductSplit [(1, 3), ... , (2, 3)] julia> ps |> collect 2-element Vector{Tuple{Int64, Int64}}: (1, 3) (2, 3) ``` A `ProductSplit` that wraps `AbstractUnitRange`s has several efficient functions defined for it, such as `length`, `minimumelement`, `maximumelement` and `getindex`, each of which returns in `O(1)` without iterating over the object. ```jldoctest productsplit julia> ps[1] (1, 3) ``` The function `maximumelement`, `minimumelement` and `extremaelement` treat the `ProductSplit` object as a linear view of an `n`-dimensional iterator product. These functions look through the elements in the `dim`-th dimension of the iterator product, and if possible, return the corresponding extremal element in `O(1)` time. Similarly, for a `ProductSplit` object that wraps `AbstractUnitRange`s, it's possible to know if a value is contained in the iterator in `O(1)` time. ```julia productsplit julia> ps = ParallelUtilities.ProductSplit((1:100_000, 1:100_000, 1:100_000), 25000, 1500) 40000000000-element ProductSplit [(1, 1, 5997), ... , (100000, 100000, 6000)] julia> @btime (3,3,5998) in $ps 111.399 ns (0 allocations: 0 bytes) true julia> @btime ParallelUtilities.maximumelement($ps, dims = 1) 76.534 ns (0 allocations: 0 bytes) 100000 julia> @btime ParallelUtilities.minimumelement($ps, dims = 2) 73.724 ns (0 allocations: 0 bytes) 1 julia> @btime ParallelUtilities.extremaelement($ps, dims = 2) 76.332 ns (0 allocations: 0 bytes) (1, 100000) ``` The number of unique elements along a particular dimension may be obtained as ```julia productsplit julia> @btime ParallelUtilities.nelements($ps, dims = 3) 118.441 ns (0 allocations: 0 bytes) 4 ``` It's also possible to drop the leading dimension of a `ProductSplit` that wraps `AbstractUnitRange`s to obtain an analogous operator that contains the unique elements along the remaining dimension. This is achieved using `ParallelUtilities.dropleading`. ```jldoctest productsplit julia> ps = ParallelUtilities.ProductSplit((1:3, 1:3, 1:2), 4, 2) 5-element ProductSplit [(3, 2, 1), ... , (1, 1, 2)] julia> collect(ps) 5-element Vector{Tuple{Int64, Int64, Int64}}: (3, 2, 1) (1, 3, 1) (2, 3, 1) (3, 3, 1) (1, 1, 2) julia> ps2 = ParallelUtilities.dropleading(ps) 3-element ProductSection [(2, 1), ... , (1, 2)] julia> collect(ps2) 3-element Vector{Tuple{Int64, Int64}}: (2, 1) (3, 1) (1, 2) ``` The process may be repeated multiple times: ```jldoctest productsplit julia> collect(ParallelUtilities.dropleading(ps2)) 2-element Vector{Tuple{Int64}}: (1,) (2,) ``` # Reduction Operators Any standard Julia reduction operator may be passed to `pmapreduce`. Aside from this, this package defines certain operators that may be used as well in a reduction. ## Broadcasted elementwise operators The general way to construct an elementwise operator using this package is using [`ParallelUtilities.BroadcastFunction`](@ref). For example, a broadcasted sum operator may be constructed using ```jldoctest julia> ParallelUtilities.BroadcastFunction(+); ``` The function call `ParallelUtilities.BroadcastFunction(op)(x, y)` perform the fused elementwise operation `op.(x, y)`. !!! note "Julia 1.6 and above" Julia versions above `v"1.6"` provide a function `Base.BroadcastFunction` which is equivalent to `ParallelUtilities.BroadcastFunction`. # Inplace assignment The function [`ParallelUtilities.broadcastinplace`](@ref) may be used to construct a binary operator that broadcasts a function over its arguments and stores the result inplace in one of the arguments. This is particularly useful if the results in intermediate evaluations are not important, as this cuts down on allocations in the reduction. Several operators for common functions are pre-defined for convenience. 1. [`ParallelUtilities.elementwisesum!`](@ref) 2. [`ParallelUtilities.elementwiseproduct!`](@ref) 3. [`ParallelUtilities.elementwisemin!`](@ref) 4. [`ParallelUtilities.elementwisemax!`](@ref) Each of these functions overwrites the first argument with the result. !!! warn The pre-defined elementwise operators are assumed to be commutative, so, if used in `pmapreduce`, the order of arguments passed to the function is not guaranteed. In particular this might not be in order of the `workerrank`. These functions should only be used if both the arguments support the inplace assignment, eg. if they have identical axes. ## Flip The [`ParallelUtilities.Flip`](@ref) function may be used to wrap a binary function to flips the order of arguments. For example ```jldoctest julia> vcat(1,2) 2-element Vector{Int64}: 1 2 julia> ParallelUtilities.Flip(vcat)(1,2) 2-element Vector{Int64}: 2 1 ``` `Flip` may be combined with inplace assignment operators to change the argument that is overwritten. ```jldoctest julia> x = ones(3); y = ones(3); julia> op1 = ParallelUtilities.elementwisesum!; # overwrites the first argument julia> op1(x, y); x 3-element Vector{Float64}: 2.0 2.0 2.0 julia> x = ones(3); y = ones(3); julia> op2 = ParallelUtilities.Flip(op1); # ovrewrites the second argument julia> op2(x, y); y 3-element Vector{Float64}: 2.0 2.0 2.0 ``` ## BroadcastStack This function may be used to combine arrays having overlapping axes to obtain a new array that spans the union of axes of the arguments. The overlapping section is computed by applying the reduction function to that section. We construct a function that concatenates arrays along the first dimension with overlapping indices summed. ```jldoctest broadcaststack julia> f = ParallelUtilities.BroadcastStack(+, 1); ``` We apply this to two arrays having different indices ```jldoctest broadcaststack julia> f(ones(2), ones(4)) 4-element Vector{Float64}: 2.0 2.0 1.0 1.0 ``` This function is useful to reduce [`OffsetArray`s](https://github.com/JuliaArrays/OffsetArrays.jl) where each process evaluates a potentially overlapping section of the entire array. !!! note A `BroadcastStack` function requires its arguments to have the same dimensionality, and identical axes along non-concatenated dimensions. In particular it is not possible to block-concatenate arrays using this function. !!! note A `BroadcastStack` function does not operate in-place. ## Commutative In general this package does not assume that a reduction operator is commutative. It's possible to declare an operator to be commutative in its arguments by wrapping it in the tag [`ParallelUtilities.Commutative`](@ref).
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
2111
# Example of the use of pmapreduce The function `pmapreduce` performs a parallel `mapreduce`. This is primarily useful when the function has to perform an expensive calculation, that is the evaluation time per core exceeds the setup and communication time. This is also useful when each core is allocated memory and has to work with arrays that won't fit into memory collectively, as is often the case on a cluster. We walk through an example where we initialize and concatenate arrays in serial and in parallel. We load the necessary modules first ```julia using ParallelUtilities using Distributed ``` We define the function that performs the initialization on each core. This step is embarassingly parallel as no communication happens between workers. We simulate an expensive calculation by adding a sleep interval for each index. ```julia function initialize(sleeptime) A = Array{Int}(undef, 20, 20) for ind in eachindex(A) sleep(sleeptime) A[ind] = ind end return A end ``` Next we define the function that calls `pmapreduce`: ```julia function main_pmapreduce(sleeptime) pmapreduce(x -> initialize(sleeptime), hcat, 1:20) end ``` We also define a function that carries out a serial mapreduce: ```julia function main_mapreduce(sleeptime) mapreduce(x -> initialize(sleeptime), hcat, 1:20) end ``` We compare the performance of the serial and parallel evaluations using 20 cores on one node: We define a caller function first ```julia function compare_with_serial() # precompile main_mapreduce(0) main_pmapreduce(0) # time println("Tesing serial") A = @time main_mapreduce(5e-6) println("Tesing parallel") B = @time main_pmapreduce(5e-6) # check results println("Results match : ", A == B) end ``` We run this caller on the cluster: ```julia julia> compare_with_serial() Tesing serial 9.457601 seconds (40.14 k allocations: 1.934 MiB) Tesing parallel 0.894611 seconds (23.16 k allocations: 1.355 MiB, 2.56% compilation time) Results match : true ``` The full script may be found in the examples directory.
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
4290
# Using SharedArrays in a parallel mapreduce One might want to carry out a computation across several nodes of a cluster, where each node works on its own shared array. This may be achieved by using a `WorkerPool` that consists of one worker per node, which acts as a root process launching tasks on that node, and eventually returning the local array for an overall reduction across nodes. We walk through one such example where we concatenate arrays that are locally initialized on each node. We load the packages necessary, in this case these are `ParallelUtilities`, `SharedArrays` and `Distributed`. ```julia using ParallelUtilities using SharedArrays using Distributed ``` We create a function to initailize the local part on each worker. In this case we simulate a heavy workload by adding a `sleep` period. In other words we assume that the individual elements of the array are expensive to evaluate. We obtain the local indices of the `SharedArray` through the function `localindices`. ```julia function initialize_localpart(s, sleeptime) for ind in localindices(s) sleep(sleeptime) s[ind] = ind end end ``` We create a function that runs on the root worker on each node and feeds tasks to other workers on that node. We use the function `ParallelUtilities.workers_myhost()` to obtain a list of all workers on the same node. We create the `SharedArray` on these workers so that it is entirely contained on one machine. This is achieved by passing the keyword argument `pids` to the `SharedArray` constructor. We asynchronously spawn tasks to initialize the local parts of the shared array on each worker. ```julia function initializenode_sharedarray(sleeptime) # obtain the workers on the local machine pids = ParallelUtilities.workers_myhost() # Create a shared array spread across the workers on that node s = SharedArray{Int}((2_000,), pids = pids) # spawn remote tasks to initialize the local part of the shared array @sync for p in pids @spawnat p initialize_localpart(s, sleeptime) end return sdata(s) end ``` We create a main function that runs on the calling process and concatenates the arrays on each node. This is run on a `WorkerPool` consisting of one worker per node which acts as the root process. We may obtain such a pool through the function `ParallelUtilities.workerpool_nodes()`. Finally we call `pmapreduce` with a mapping function that initializes an array on each node, which is followed by a concatenation across the nodes. ```julia function main_sharedarray(sleeptime) # obtain the workerpool with one process on each node pool = ParallelUtilities.workerpool_nodes() # obtain the number of workers in the pool. nw_node = nworkers(pool) # Evaluate the parallel mapreduce pmapreduce(x -> initializenode_sharedarray(sleeptime), hcat, pool, 1:nw_node) end ``` We compare the results with a serial execution that uses a similar workflow, except we use `Array` instead of `SharedArray` and `mapreduce` instead of `pmapreduce`. ```julia function initialize_serial(sleeptime) pids = ParallelUtilities.workers_myhost() s = Array{Int}(undef, 2_000) for ind in eachindex(s) sleep(sleeptime) s[ind] = ind end return sdata(s) end function main_serial(sleeptime) pool = ParallelUtilities.workerpool_nodes() nw_node = nworkers(pool) mapreduce(x -> initialize_serial(sleeptime), hcat, 1:nw_node) end ``` We create a function to compare the performance of the two. We start with a precompilation run with no sleep time, followed by recording the actual timings. ```julia function compare_with_serial() # precompile main_serial(0) main_sharedarray(0) # time println("Testing serial") A = @time main_serial(5e-3) println("Testing sharedarray") B = @time main_sharedarray(5e-3) println("Results match : ", A == B) end ``` We run this script on a Slurm cluster across 2 nodes with 28 cores on each node. The results are: ```julia julia> compare_with_serial() Testing serial 24.624912 seconds (27.31 k allocations: 1.017 MiB) Testing sharedarray 1.077752 seconds (4.60 k allocations: 246.281 KiB) Results match : true ``` The full script may be found in the examples directory.
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.8.6
704ef2c93e301b6469ba63103a4e7bf935e6990c
docs
3132
# Using Threads in a parallel mapreduce One might want to carry out a computation across several nodes of a cluster, where each node uses multithreading to evaluate a result that is subsequently reduced across all nodes. We walk through one such example where we concatenate arrays that are locally initialized on each node using threads. We load the packages necessary, in this case these are `ParallelUtilities` and `Distributed`. ```julia using ParallelUtilities using Distributed ``` We create a function to initailize the local part on each worker. In this case we simulate a heavy workload by adding a `sleep` period. In other words we assume that the individual elements of the array are expensive to evaluate. We use `Threads.@threads` to split up the loop into sections that are processed on invidual threads. ```julia function initializenode_threads(sleeptime) s = zeros(Int, 2_000) Threads.@threads for ind in eachindex(s) sleep(sleeptime) s[ind] = ind end return s end ``` We create a main function that runs on the calling process and launches the array initialization task on each node. This is run on a `WorkerPool` consisting of one worker per node which acts as the root process. We may obtain such a pool through the function `ParallelUtilities.workerpool_nodes()`. The array creation step on each node is followed by an eventual concatenation. ```julia function main_threads(sleeptime) # obtain the workerpool with one process on each node pool = ParallelUtilities.workerpool_nodes() # obtain the number of workers in the pool. nw_nodes = nworkers(pool) # Evaluate the parallel mapreduce pmapreduce(x -> initializenode_threads(sleeptime), hcat, pool, 1:nw_nodes) end ``` We compare the results with a serial execution that uses a similar workflow, except we use `mapreduce` instead of `pmapreduce` and do not use threads. ```julia function initialize_serial(sleeptime) s = zeros(Int, 2_000) for ind in eachindex(s) sleep(sleeptime) s[ind] = ind end return s end function main_serial(sleeptime) pool = ParallelUtilities.workerpool_nodes() nw_nodes = nworkers(pool) mapreduce(x -> initialize_serial(sleeptime), hcat, 1:nw_nodes) end ``` We create a function to compare the performance of the two. We start with a precompilation run with no sleep time, followed by recording the actual timings with a sleep time of 5 milliseconds for each index of the array. ```julia function compare_with_serial() # precompile main_serial(0) main_threads(0) # time println("Testing serial") A = @time main_serial(5e-3); println("Testing threads") B = @time main_threads(5e-3); println("Results match : ", A == B) end ``` We run this script on a Slurm cluster across 2 nodes with 28 cores on each node. The results are: ```julia julia> compare_with_serial() Testing serial 24.601593 seconds (22.49 k allocations: 808.266 KiB) Testing threads 0.666256 seconds (3.71 k allocations: 201.703 KiB) Results match : true ``` The full script may be found in the examples directory.
ParallelUtilities
https://github.com/jishnub/ParallelUtilities.jl.git
[ "MIT" ]
0.1.1
ffba4f9b4e5a7b07cf70233a6b8e5331fc7f4e07
code
6031
""" NumPyArrays extends PyCall to provide for additional conversion of Julia arrays into NumPy arrays without copying. ```jldoctest julia> using NumPyArrays, PyCall julia> rA = reinterpret(UInt8, zeros(Int8, 4,4)); julia> pytypeof(PyObject(rA)) PyObject <class 'list'> julia> pytypeof(NumPyArray(rA)) PyObject <class 'numpy.ndarray'> julia> pytypeof(PyObject(NumPyArray(rA))) PyObject <class 'numpy.ndarray'> julia> sA = @view collect(1:16)[5:9]; julia> pytypeof(PyObject(sA)) PyObject <class 'list'> julia> pytypeof(NumPyArray(sA)) PyObject <class 'numpy.ndarray'> ``` """ module NumPyArrays # Portions of this code are derived directly from PyCall.jl @static if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel")) Base.Experimental.@optlevel 1 end export NumPyArray, pytypeof # Imports for _NumPyArray import PyCall: NpyArray, PYARR_TYPES, @npyinitialize, npy_api, npy_type import PyCall: @pycheck, NPY_ARRAY_ALIGNED, NPY_ARRAY_WRITEABLE, pyembed import PyCall: PyObject, PyPtr # General imports import PyCall: pyimport, pytype_query, pytypeof, PyArray """ KnownImmutableArraysWithParent{T} where T <: PyCall.PYARR_TYPES Immutable `AbstractArray`s in `Base` that have a non-immutable parent that can be embedded in the PyCall GC """ const KnownImmutableArraysWithParent{T} = Union{SubArray{T}, Base.ReinterpretArray{T}, Base.ReshapedArray{T}, Base.PermutedDimsArray{T}} where T """ KnownStridedArrays{T} where T <: PyCall.PYARR_TYPES `AbstractArray`s in `Base` where the method `strides` is applicable """ const KnownStridedArrays{T} = StridedArray{T} where T """ NumPyArray{T,N}(po::PyObject) NumPyArray is a wrapper around a PyCall.PyArray. It is an AbstractArray. The main purpose of a NumPyArray is so to provide a constructor to generalize the conversion of Julia arrays into NumPyArrays. `T` is the element type of the array. `N` is the number of dimensions. For other uses, such as wrapping an existing array from NumPy, use `PyCall.PyArray`. Use `PyObject` and `PyArray` methods to convert `NumPyArray` into those types. """ mutable struct NumPyArray{T,N} <: AbstractArray{T,N} pa::PyArray{T,N} end NumPyArray{T,N}(po::PyObject) where {T,N} = NumPyArray{T,N}(PyArray(po)) NumPyArray(po::PyObject) = NumPyArray(PyArray(po)) """ NumPyArray(a::AbstractArray, [revdims::Bool]) Convert an AbstractArray where `isapplicable(strides, a)` is `true` to a NumPy array. The AbstractArray must either be mutable or have a mutable parent. Optionally, transpose the dimensions of the array if `revdims` is `true`. """ NumPyArray(a::AbstractArray{T}) where T <: PYARR_TYPES = NumPyArray(a, false) function NumPyArray(a::KnownStridedArrays{T}, revdims::Bool) where T <: PYARR_TYPES _NumPyArray(a, revdims) end function NumPyArray(a::AbstractArray{T}, revdims::Bool) where T <: PYARR_TYPES # For a general AbstractArray, we do not know if strides applies if applicable(strides, a) _NumPyArray(a, revdims) else error("Only AbstractArrays where strides is applicable can be converted to NumPyArrays.") end end NumPyArray(o::PyPtr) = NumPyArray(PyObject(o)) # Modified PyCall.NpyArray to accept AbstractArray{T}, assumes strides is applicable function _NumPyArray(a::AbstractArray{T}, revdims::Bool) where T <: PYARR_TYPES @npyinitialize size_a = revdims ? reverse(size(a)) : size(a) strides_a = revdims ? reverse(strides(a)) : strides(a) p = @pycheck ccall(npy_api[:PyArray_New], PyPtr, (PyPtr,Cint,Ptr{Int},Cint, Ptr{Int},Ptr{T}, Cint,Cint,PyPtr), npy_api[:PyArray_Type], ndims(a), Int[size_a...], npy_type(T), Int[strides_a...] * sizeof(eltype(a)), a, sizeof(eltype(a)), NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE, C_NULL) return NumPyArray{T,ndims(a)}(p, a) end # Make a NumPyArray that embeds a reference to keep, to prevent Julia # from garbage-collecting keep until o is finalized. # See also PyObject(o::PyPtr, keep::Any) from which this is derived NumPyArray{T,N}(o::PyPtr, keep::Any) where {T,N} = numpyembed(NumPyArray{T,N}(PyObject(o)), keep) # PyCall already has convert(::Type{PyObject}, o) = PyObject(o) #Base.convert(::Type{PyObject}, a::NumPyArray) = a.po PyObject(a::NumPyArray) = PyObject(PyArray(a)) Base.convert(::Type{PyArray}, a::NumPyArray) = PyArray(a) PyArray(a::NumPyArray) = a.pa Base.convert(::Type{Array}, a::NumPyArray{T}) where T = convert(Array{T}, PyArray(a)) Base.convert(T::Type{<:Array}, a::NumPyArray) = convert(T, PyArray(a)) # See PyCall.pyembed(po::PyObject, jo::Any) function numpyembed(a::NumPyArray{T,N}, jo::Any) where {T,N} if isimmutable(jo) if applicable(parent, jo) return NumPyArray{T,N}(pyembed(PyObject(a), parent(jo))) else throw(ArgumentError("numpyembed: immutable argument without a parent is not allowed")) end else return NumPyArray{T,N}(pyembed(PyObject(a), jo)) end end numpyembed(a::NumPyArray, jo::KnownImmutableArraysWithParent) = numpyembed(a, jo.parent) # AbstractArray interface, provided as a convenience. Conversion to PyArray is recommended Base.size(a::NumPyArray) = size(PyArray(a)) Base.length(a::NumPyArray) = length(PyArray(a)) Base.getindex(a::NumPyArray, args...) = getindex(PyArray(a), args...) Base.setindex!(a::NumPyArray, args...) = setindex!(PyArray(a), args...) Base.axes(a::NumPyArray) = axes(PyArray(a)) # Strides should be added to PyArray Base.strides(a::NumPyArray{T}) where T = PyArray(a).st Base.stride(a::NumPyArray{T}) where T = stride(PyArray(a)) Base.pointer(a::NumPyArray, args...) = pointer(PyArray(a), args...) Base.unsafe_convert(t::Type{Ptr{T}}, a::NumPyArray{T}) where T = Base.unsafe_convert(t, PyArray(a)) Base.similar(a::NumPyArray, ::Type{T}, dims::Dims) where {T} = similar(PyArray(a), T, dims) # Aliasing some PyCall functions. Conversion to PyObject or PyArray is recommended pytypeof(a::NumPyArray) = pytypeof(PyObject(PyArray(a))) end # module NumPyArrays
NumPyArrays
https://github.com/mkitti/NumPyArrays.jl.git
[ "MIT" ]
0.1.1
ffba4f9b4e5a7b07cf70233a6b8e5331fc7f4e07
code
358
using Test const desired_version = VersionNumber(ARGS[1]) include("../deps/deps.jl") @testset "pyversion_build ≈ $desired_version" begin @test desired_version.major == pyversion_build.major @test desired_version.minor == pyversion_build.minor if desired_version.patch != 0 @test desired_version.patch == pyversion_build.patch end end
NumPyArrays
https://github.com/mkitti/NumPyArrays.jl.git
[ "MIT" ]
0.1.1
ffba4f9b4e5a7b07cf70233a6b8e5331fc7f4e07
code
2926
using NumPyArrays using PyCall using Test @testset "NumPyArrays.jl" begin np = pyimport("numpy") let A = Float64[1 2; 3 4] # Normal array B = copy(A) C = NumPyArray(B) D = PyArray(C) @test pytypeof(C) == np.ndarray @test C == B @test D == B B[1] = 3 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] C[1] += 1 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] # SubArray B = view(A, 1:2, 2:2) C = NumPyArray(B) D = PyArray(C) @test pytypeof(C) == np.ndarray @test C == B @test D == B A[3] = 5 @test C == B && C[1] == A[3] @test D == B && D[1] == A[3] C[1] += 1 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] # ReshapedArray B = Base.ReshapedArray( A, (1,4), () ) C = NumPyArray(B) D = PyArray(C) @test pytypeof(C) == np.ndarray @test C == B @test D == B A[2] = 6 @test C == B && C[2] == A[2] @test D == B && D[2] == A[2] C[1] += 1 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] # PermutedDimsArray B = PermutedDimsArray(A, (2,1) ) C = NumPyArray(B) D = PyArray(C) @test pytypeof(C) == np.ndarray @test C == B @test D == B A[1] == 7 @test C == B && C[1] == A[1] @test D == B && D[1] == A[1] C[1] += 1 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] # ReinterpretArray B = reinterpret(UInt64, A) C = NumPyArray(B) D = PyArray(C) @test pytypeof(C) == np.ndarray @test C == B @test D == B A[1] = 12 @test C == B && C[1] == reinterpret(UInt64, A[1]) @test D == B && D[1] == reinterpret(UInt64, A[1]) C[1] += 1 @test C == B && C[1] == B[1] @test D == B && D[1] == B[1] # Test display rA = reinterpret(UInt8, zeros(Int8, 4, 4)) nprA = NumPyArray(rA) io = IOBuffer() @test pytypeof(nprA) == np.ndarray @test show(io, nprA) === nothing @test String(take!(io)) == "UInt8[0x00 0x00 0x00 0x00; 0x00 0x00 0x00 0x00; 0x00 0x00 0x00 0x00; 0x00 0x00 0x00 0x00]" sA = @view collect(1:16)[5:9] npsA = NumPyArray(sA) @test pytypeof(npsA) == np.ndarray @test show(io, npsA) === nothing @test String(take!(io)) == "[5, 6, 7, 8, 9]" println() # Test roundtrip @test nprA == NumPyArray(nprA) @test npsA == NumPyArray(npsA) # Test operations @test sum(nprA) == np.sum(nprA) @test sum(npsA) == np.sum(npsA) @test length(nprA) == np.size(nprA) @test length(npsA) == np.size(npsA) end end
NumPyArrays
https://github.com/mkitti/NumPyArrays.jl.git
[ "MIT" ]
0.1.1
ffba4f9b4e5a7b07cf70233a6b8e5331fc7f4e07
docs
3310
# NumPyArrays.jl NumPyArrays.jl is a Julia package that extends PyCall.jl in order to convert additional Julia arrays into NumPy arrays. ## Additional Features NumPyArrays.jl also provides a [`AbstractArray` interface](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-array) and extends some functions of PyCall to apply to a `NumPyArray`. Much of this is redundant with the functionality of `PyCall.PyArray`, which this wraps. For advanced usage with PyCall, it is recommended to convert the `NumPyArray` to a `PyObject` or `PyArray`. ## PyCall only converts some Julia arrays into a NumPy array PyCall.jl already converts a Julia `Array` into a NumPy array. However, PyCall converts a `SubArray`, `Base.ReinterpretArray`, `Base.PermutedDimsArray`, and `Base.PermutedDimsArray` into a `list` even if their element type is compatible with NumPy. NumPyArrays.jl extends PyCall.jl to allow any array with a compatible element type where the method `strides` is applicable and who has a parent or ancestor that is mutable. ## Example and Demonstration ```julia julia> using NumPyArrays, PyCall julia> rA = reinterpret(UInt8, zeros(Int8, 4,4)) 4×4 reinterpret(UInt8, ::Array{Int8,2}): 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 julia> pytypeof(PyObject(rA)) PyObject <class 'list'> julia> PyObject(rA) PyObject [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] julia> pytypeof(NumPyArray(rA)) PyObject <class 'numpy.ndarray'> julia> NumPyArray(rA) 4×4 NumPyArray{UInt8,2}: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 julia> PyObject(NumPyArray(rA)) PyObject array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=uint8) julia> sA = @view collect(1:16)[5:9] 5-element view(::Array{Int64,1}, 5:9) with eltype Int64: 5 6 7 8 9 julia> pytypeof(PyObject(sA)) PyObject <class 'list'> julia> PyObject(sA) PyObject [5, 6, 7, 8, 9] julia> pytypeof(NumPyArray(sA)) PyObject <class 'numpy.ndarray'> julia> npsA = NumPyArray(sA) 5-element NumPyArray{Int64,1} with indices 0:4: 5 6 7 8 9 julia> sum(npsA) 35 julia> np = pyimport("numpy"); np.sum(npsA) 35 ``` ## Questions ### Why not add this functionality to PyCall.jl? There is a pending pull request on PyCall.jl to integrate this functionality. See [PyCall.jl#876: Convert AbstractArrays with strides to NumPy arrays](https://github.com/JuliaPy/PyCall.jl/pull/876). As of the creation of this package on July 10th, 2021, the pull request was last reviewed six months ago on January 13th, 2021. ### Should I use NumPyArray or PyCall.PyArray to wrap arrays from Python? You should `PyCall.PyArray`. This package is primarily useful for converting certain Julia arrays into a `PyCall.PyArray`. ### Why not just extend PyObject / PyArray by adding methods to those types? Since boith `PyObject` or `PyArray` are defined in PyCall.jl and not this package, adding methods to those types would be [type piracy](https://docs.julialang.org/en/v1/manual/style-guide/#Avoid-type-piracy). We avoid type piracy in this package by creating a new type `NumPyArray` which wraps `PyArray`. ### Should NumPyArrays.jl moved under the PyJulia organization? Sure. Feel free to contact me.
NumPyArrays
https://github.com/mkitti/NumPyArrays.jl.git
[ "MIT" ]
0.1.0
f006ab37be0039df10292d705e9eb68b72fa2e5f
code
742
module FermiDiracIntegrals using Polylogarithms export F """ Complete Fermi-Dirac-integral Arguments: * j * x Formula: ``{F_j(x) = \\frac{1}{\\Gamma(j+1)} \\int_0^{\\infty}{\\frac{t^j}{\\exp(t-x)+1}dt}}`` Implementation: Using the polylogarithm """ function F(j,x) -polylog(j+1,-exp(x)) end """ Approximation of the complete Fermi-Dirac-integral for j = 1/2 Checked for a relative tolerance of 3% in the range x = -100:0.1:100 Speed: 100 times faster than the polylog version Source: J. S. Blakemore: Approximations for Fermi-Dirac Integrals. Solid-State Electronics, 25(11):1067-1076, 1982. """ function F(::Val{1/2},x) if x < 1.3 1/(exp(-x)+0.27) else 4/3/sqrt(pi)*(x^2+pi^2/6)^(3/4) end end end
FermiDiracIntegrals
https://github.com/feanor12/FermiDiracIntegrals.jl.git
[ "MIT" ]
0.1.0
f006ab37be0039df10292d705e9eb68b72fa2e5f
code
914
using FermiDiracIntegrals using Test @testset "FermiDiracIntegrals.jl" begin for x in -10:10 @test isapprox(F(0,x),log(1+exp(x))) end for x in -100:0.1:100 @test isapprox(F(0.5,x),F(Val(1/2),x),rtol=0.03) end ## https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1950.0183 @test isapprox(F(1,-4),0.0182324,atol=1e-7) @test isapprox(F(2,-4),0.0182739,atol=1e-7) @test isapprox(F(3,-4),0.0182947,atol=1e-7) @test isapprox(F(4,-4),0.0183052,atol=1e-7) @test isapprox(F(1,-1.3),0.2559184,atol=1e-7) @test isapprox(F(2,-1.3),0.2639215,atol=1e-7) @test isapprox(F(3,-1.3),0.2681202,atol=1e-7) @test isapprox(F(4,-1.3),0.2702891,atol=1e-7) @test isapprox(F(1,0),0.8224670,atol=1e-7) @test isapprox(F(2,0),0.9015427,atol=1e-7) @test isapprox(F(3,0),0.9470328,atol=1e-7) @test isapprox(F(4,0),0.9721198,atol=1e-7) end
FermiDiracIntegrals
https://github.com/feanor12/FermiDiracIntegrals.jl.git
[ "MIT" ]
0.1.0
f006ab37be0039df10292d705e9eb68b72fa2e5f
docs
1086
# FermiDiracIntegrals [![Build Status](https://github.com/feanor12/FermiDiracIntegral.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/feanor12/FermiDiracIntegral.jl/actions/workflows/CI.yml?query=branch%3Amain) Implements the complete Fermi-Dirac integral ([Wikipedia](https://en.wikipedia.org/wiki/Complete_Fermi%E2%80%93Dirac_integral)) The general implementaion uses [Polylogarithms.jl](https://github.com/mroughan/Polylogarithms.jl), but there is also an approximaton for `F(1/2,x)` available. The approximated version can be called like this: ```julia julia> using FermiDiracIntegrals julia> F(Val(1/2),1) 1.5676943564187247 ``` and the gerneral polylogarithm implementation can be used like this: ```julia julia> using FermiDiracIntegrals julia> F(1/2,1) 1.575640776151315 - 0.0im ``` Benchmark: ```julia julia> using BenchmarkTools julia> using FermiDiracIntegrals julia> @btime F(1/2,1) 64.742 μs (18 allocations: 512 bytes) 1.575640776151315 - 0.0im julia> @btime F(Val(1/2),1) 0.698 ns (0 allocations: 0 bytes) 1.5676943564187247 ```
FermiDiracIntegrals
https://github.com/feanor12/FermiDiracIntegrals.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
557
using Paraml using Documenter makedocs(; modules = [Paraml], authors = "mcmcgrath13 <[email protected]> and contributors", repo = "https://github.com/pph-collective/Paraml.jl/blob/{commit}{path}#L{line}", sitename = "Paraml.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://pph-collective.github.io/Paraml.jl", assets = String[], ), pages = ["Home" => "index.md"], ) deploydocs(; repo = "github.com/pph-collective/Paraml.jl", devbranch = "main")
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
1921
module Paraml import YAML include("utils.jl") include("check.jl") include("parse.jl") """ create_params( defn_path::AbstractString, param_paths...; error_on_unused::Bool = false, out_path::AbstractString = "", ) Entry function - given the path to the parameter definitions and files, parse and create a params dictionary. The defn_path and param_paths can be either a single yaml file, or a directory containing yaml files. # Arguments - `defn_path`: path to the parameter definitions - `param_paths...`: paths to parameter files or directories. The files will be merged in the passed order so that item 'a' in the first params will be overwritten by item 'a' in the second params. - `out_path`: path to directory where computed params will be saved if passed - `error_on_unused`: throw a hard error if there are unused parameters, otherwise warnings are only printed # Returns - dictionary with computed/validated model paramters with defaults filled in where needed """ function create_params( defn_path::AbstractString, param_paths...; error_on_unused::Bool = false, out_path::AbstractString = "", ) defs = build_yaml(defn_path) params = Dict{String,Any}() for param_path in param_paths cur_params = build_yaml(param_path) params = merge_rec(params, cur_params) end classes = parse_classes(defs, params) parsed = parse_params(defs, params; classes) if !isempty(out_path) @info "writing parsed params to $out_path" YAML.write_file(out_path, parsed) end @info "\nChecking for unused parameters..." num_unused = warn_unused_params(parsed, params) @info "$num_unused unused parameters found" if error_on_unused @assert num_unused == 0 "There are unused parameters passed to the parser (see print statements)" end return parsed end export create_params end
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
2185
check_int(i::Int, key_path) = i function check_int(o, key_path) try convert(Int, o) catch throw(AssertionError("$o must be an integer [$key_path]")) end end check_float(f::Float64, key_path) = f function check_float(o, key_path) try convert(Float64, o) catch throw(AssertionError("$o must be a float [$key_path]")) end end check_boolean(b::Bool, key_path) = b function check_boolean(o, key_path) try convert(Bool, o) catch throw(AssertionError("$o must be a boolean [$key_path]")) end end function check_array(val::AbstractArray, values::AbstractArray, key_path) if !issubset(val, values) throw(AssertionError("$val not in $values [$key_path]")) end end check_array(val, values::AbstractArray, key_path) = throw(AssertionError("$val must be an array (subset of $values) [$key_path]")) function get_values(def, classes) if haskey(def, "values") return def["values"] elseif haskey(def, "class") return keys_or_vals(classes[def["class"]]) else throw(AssertionError("array type definitions must specify `values` or `class`")) end end """ Checks if an item meets the requirements of the field's definition. """ function check_item(val, def, key_path; keys = nothing, classes = nothing) # check type of value dtype = def["type"] if dtype == "int" val = check_int(val, key_path) elseif dtype == "float" val = check_float(val, key_path) elseif dtype == "boolean" val = check_boolean(val, key_path) elseif dtype == "enum" values = get_values(def, classes) @assert val in values "$val not in $values [$key_path]" elseif dtype == "array" values = get_values(def, classes) check_array(val, values, key_path) elseif dtype == "keys" check_array(val, keys, key_path) end # check range if haskey(def, "min") @assert val >= def["min"] "$val must be greater than $(def["min"]) [$key_path]" end if haskey(def, "max") @assert val <= def["max"] "$val must be less than $(def["max"]) [$key_path]" end return val end
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
4449
""" Get and check item from the params, falling back on the definitions default. """ function get_item(key, def, key_path, param, classes) @debug "parsing $key_path ..." if haskey(param, key) return check_item(param[key], def, key_path; classes) else return def["default"] end end """ Get the bin key as an integer, or error if it is not convertable. """ get_bin_int(i::Int) = i function get_bin_int(s) try return parse(Int, s) catch error("Bins must be integers") end end """ Get and validate a type == bin definition """ function get_bins(key, def, key_path, param, classes) @debug "parsing $key_path ..." if !haskey(param, key) return def["default"] end bins = merge_rec(def["default"], param[key]) parsed_bins = Dict() for (bin, val) in bins bin_int = get_bin_int(bin) for (field, defn) in def["fields"] @assert haskey(val, field) "$field must be in $val [$key_path.$bin]" val[field] = check_item(val[field], defn, "$key_path.$bin.$field"; classes) end parsed_bins[bin_int] = val end return parsed_bins end """ Get and validate a type == definition definition """ function get_defn(key, def, key_path, param, classes) @debug "parsing $key_path ..." if !haskey(param, key) || param[key] == Dict() parsed = def["default"] else parsed = param[key] end for (k, val) in parsed for (field, defn) in def["fields"] if !haskey(val, field) if haskey(defn, "default") val[field] = defn["default"] else # no key in param and no default available, error @assert haskey(val, field) "$field must be in $val [$key_path]" end end end end return parsed end """ Recursively parse the passed params, using the definitions to validate and provide defaults. """ function parse_params( defs::AbstractDict, params::AbstractDict; key_path::String = "", classes::AbstractDict = Dict(), ) @debug "parsing $key_path ..." # handles case of bin or def as direct default item if haskey(defs, "default") if defs["type"] == "bin" return get_bins("dummy", defs, key_path, Dict("dummy" => params), classes) else defs["type"] == "definition" return get_defn("dummy", defs, key_path, Dict("dummy" => params), classes) end end parsed = Dict() # all v are dicts at this point for (k, def) in defs kp = "$key_path.$k" if haskey(def, "default") dtype = def["type"] if dtype == "sub-dict" parsed[k] = parse_subdict( def["default"], def["keys"], get(params, k, Dict()), kp, classes, ) elseif dtype == "bin" parsed[k] = get_bins(k, def, kp, params, classes) elseif dtype == "definition" parsed[k] = get_defn(k, def, kp, params, classes) else parsed[k] = get_item(k, def, kp, params, classes) end else parsed[k] = parse_params(def, get(params, k, Dict()); key_path = kp, classes) end end return parsed end # params is a scalar, return it parse_params( defs::AbstractDict, params; key_path::String = "", classes::AbstractDict = Dict(), ) = params """ Parse a type == sub-dict definition """ function parse_subdict(default, keys, params, key_path, classes) @debug "parsing $key_path ..." parsed = Dict() key, rem_keys = headtail(keys...) for val in keys_or_vals(classes[key]) kp = "$key_path.$val" val_params = get(params, val, Dict()) parsed[val] = parse_params(default, val_params; key_path = kp, classes) if length(rem_keys) > 0 merge!(parsed[val], parse_subdict(default, rem_keys, val_params, kp, classes)) end end return parsed end """ Parse the classes definition first as it is needed in parsing the full params. """ function parse_classes(defs::AbstractDict, params::AbstractDict) if "classes" in keys(defs) return parse_params(defs["classes"], get(params, "classes", Dict())) else return Dict() end end
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
2001
""" Recursively merge two nested dictionaries """ function merge_rec(a::AbstractDict, b::AbstractDict) d = Dict() for (k, v) in a if haskey(b, k) d[k] = merge_rec(v, b[k]) else d[k] = v end end for (k, v) in b if !haskey(a, k) d[k] = v end end return d end merge_rec(a, b) = b """ Read in a yaml or folder of yamls into a dictionary. """ function build_yaml(path::AbstractString) yml = Dict{String,Any}() if isdir(path) for file in readdir(path; join = true) if endswith(file, r"\.ya?ml") this_yml = YAML.load_file(file) merge!(yml, this_yml) end end else @assert endswith(path, r"\.ya?ml") "Must provide a yaml file" yml = YAML.load_file(path) end return yml end """ Get the head and tail tuples from args """ headtail(a, b...) = (a, b) """ Compare the original params to what was parsed and print warnings for any original params that are unused in the final parsed parasms. """ function warn_unused_params(parsed::AbstractDict, params::AbstractDict; key_path = "") count = 0 for (k, v) in params kp = "$key_path.$k" if haskey(parsed, k) count += warn_unused_params(parsed[k], params[k]; key_path = kp) else @warn "[$kp] is unused" count += 1 end end return count end # neither is a dict warn_unused_params(parsed, params; key_path = "") = 0 # one is a dict function warn_unused_params(parsed, params::AbstractDict; key_path = "") @warn "[$key_path] has unused params: $params" return 1 end function warn_unused_params(parsed::AbstractDict, params; key_path = "") @warn "[$key_path] has sub-keys, got unused params: $params" return 1 end """ Get the keys of a dict, or the items in a list. """ keys_or_vals(d::AbstractDict) = collect(keys(d)) keys_or_vals(a::AbstractArray) = a
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
code
5688
using Paraml using Test const DEF_PATH = "params/defs.yaml" @testset "Paraml.jl" begin @testset "merge params" begin params = create_params( DEF_PATH, "params/a.yaml", "params/b", "params/c.yaml" ) @test haskey(params["classes"]["animals"], "cat") @test params["demographics"]["cat"]["barn"]["age_bins"][1]["age"] == 3 @test params["demographics"]["cat"]["barn"]["age_bins"][2]["age"] == 14 @test params["demographics"]["cat"]["barn"]["color"] == "indigo" @test params["demographics"]["cat"]["barn"]["num"] == 2 @test params["demographics"]["turtle"]["ocean"]["prob_happy"] == 0.95 @test params["neighbors"]["blue_buddies"]["distance"] == 90 end @testset "throws errors" begin # param file has bad value, make sure key is in the logs @test_throws AssertionError create_params(DEF_PATH, "params/a_error.yaml") @test_logs "[.demographics.turtle.ocean.prob_happy]" # parram file has unused value, make sure error thrown @test_throws AssertionError create_params( DEF_PATH, "params/a_unused.yaml"; error_on_unused = true, ) @test_logs "There are unused parameters passed to the parser" end @testset "read/write" begin out_path = joinpath(mktempdir(), "params.yml") params = create_params(DEF_PATH, "params/a.yaml", "params/b", "params/c.yaml"; out_path) read_params = Paraml.build_yaml(out_path) @test params == read_params end @testset "check items" begin key_path = "item.test" @testset "min/max + float" begin defs = Dict("min" => 0, "max" => 3, "type" => "float") @test Paraml.check_item(1.5, defs, key_path) == 1.5 @test Paraml.check_item(1, defs, key_path) == 1.0 @test_throws AssertionError Paraml.check_item(-1.5, defs, key_path) @test_throws AssertionError Paraml.check_item(4.5, defs, key_path) end @testset "int" begin defs = Dict("min" => 0, "max" => 3, "type" => "int") @test Paraml.check_item(1, defs, key_path) == 1 @test Paraml.check_item(1.0, defs, key_path) == 1 @test_throws AssertionError Paraml.check_item(1.5, defs, key_path) end @testset "boolean" begin defs = Dict("type" => "boolean") @test Paraml.check_item(false, defs, key_path) == false @test Paraml.check_item(1, defs, key_path) == true @test_throws AssertionError Paraml.check_item(2, defs, key_path) end @testset "values enum" begin defs = Dict("type" => "enum", "values" => ["a", "b"]) @test Paraml.check_item("a", defs, key_path) == "a" @test_throws AssertionError Paraml.check_item("c", defs, key_path) end @testset "class enum" begin defs = Dict("type" => "enum", "class" => "my_class") nested_classes = Dict("my_class" => Dict("A" => Dict("val" => 1), "B" => Dict("val" => 2))) flat_classes = Dict("my_class" => ["A", "B"]) @test Paraml.check_item("A", defs, key_path; classes = nested_classes) == "A" @test Paraml.check_item("A", defs, key_path; classes = flat_classes) == "A" @test_throws AssertionError Paraml.check_item( "C", defs, key_path; classes = nested_classes, ) @test_throws AssertionError Paraml.check_item( "C", defs, key_path; classes = flat_classes, ) end @testset "values array" begin defs = Dict("type" => "array", "values" => ["a", "b"]) @test Paraml.check_item(["a", "b"], defs, key_path) == ["a", "b"] @test Paraml.check_item([], defs, key_path) == [] @test Paraml.check_item(["b"], defs, key_path) == ["b"] @test_throws AssertionError Paraml.check_item(["c"], defs, key_path) @test_throws AssertionError Paraml.check_item(["a", "c"], defs, key_path) end @testset "class array" begin defs = Dict("type" => "array", "class" => "my_class") nested_classes = Dict("my_class" => Dict("A" => Dict("val" => 1), "B" => Dict("val" => 2))) flat_classes = Dict("my_class" => ["A", "B"]) @test Paraml.check_item(["A"], defs, key_path; classes = nested_classes) == ["A"] @test Paraml.check_item(["A"], defs, key_path; classes = flat_classes) == ["A"] @test_throws AssertionError Paraml.check_item( ["C"], defs, key_path; classes = nested_classes, ) @test_throws AssertionError Paraml.check_item( ["C"], defs, key_path; classes = flat_classes, ) end @testset "keys" begin defs = Dict("type" => "keys") keys = ["a", "b"] @test Paraml.check_item(["a", "b"], defs, key_path; keys) == ["a", "b"] @test Paraml.check_item([], defs, key_path; keys) == [] @test Paraml.check_item(["b"], defs, key_path; keys) == ["b"] @test_throws AssertionError Paraml.check_item(["c"], defs, key_path; keys) @test_throws AssertionError Paraml.check_item(["a", "c"], defs, key_path; keys) end end end
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
docs
664
# Paraml (param yaml) [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://pph-collective.github.io/Paraml.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://pph-collective.github.io/Paraml.jl/dev) [![Build Status](https://github.com/pph-collective/Paraml.jl/workflows/CI/badge.svg)](https://github.com/pph-collective/Paraml.jl/actions) [![Coverage](https://codecov.io/gh/pph-collective/Paraml.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/pph-collective/Paraml.jl) Paraml is a parameter definition language and parser - all in yaml. Check out the [docs](https://pph-collective.github.io/Paraml.jl/stable).
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.1.0
fd5fd518aade78f05788efc198fca94adce8edd9
docs
17161
```@meta CurrentModule = Paraml ``` # Paraml ## Table of Contents - [Paraml](#Paraml) - [Table of Contents](#Table-of-Contents) - [Motivation](#Motivation) - [Getting Started](#Getting-Started) - [Installation](#Installation) - [Running Paraml](#Running-Paraml) - [Parameter Definition](#Parameter-Definition) - [Required Keys](#Required-Keys) - [Types](#Types) - [`int`](#int) - [`float`](#float) - [`boolean`](#boolean) - [`array`](#array) - [`enum`](#enum) - [`any`](#any) - [`bin`](#bin) - [`sub-dict`](#sub-dict) - [`definition`](#definition) - [`keys`](#keys) - [Using Classes](#Using-Classes) - [API](#API) ## Motivation Paraml is a spinoff of [TITAN](https://github.com/marshall-lab/TITAN), an agent based model. We have a number of parameters in that model, many of which are not used in a given run. Paraml addresses the following pain points we had: * Parameters often weren't formally defined/described anywhere - some had comments, some were hopefully named idiomatically. This caused issues onboarding new people to using the model. * Parameters were statically defined/hard coded, but we often wanted them to be dynamic. * Parameters needed to be filled out/defined by non-technical researchers: users shouldn't need to know how to code to create a parameter file. * Parameters need to have specific validation (e.g. a probability should be between 0 and 1, only `a` or `b` are expected values for parameter `y`). This was typically a run time failure - sometimes silent, sometimes explosive. * If a user isn't using a feature of the model, they shouldn't have to worry about/carry around its parameters. * Reproducibility of the run is key - must be able to re-run the model with the same params. * We needed to be able to create common settings which described a specific world the model runs in and let users use those, but also override parameters as they needed for their run of the model. How Paraml addresses these: * Parameter definitions require defaults * Can add inline descriptions of parameters * A small type system allows validation of params, as well as flexibility to define interfaces for params * Parameter files only need to fill in what they want different from the defaults * Can save off the fully computed params, which can then be re-used at a later date * Can layer different parameter files, allowing more complex defaults and re-use of common scenarios ## Getting Started ### Installation ```julia ] add Paraml ``` ### Running Paraml The entrypoint for running Paraml is `Paraml.create_params`. This takes the parameter definitions, parameter files, and some options and returns a dictionary of the validated and computed parameters. **Args:** * `def_path`: A yaml file or directory of yaml files containing the parameter definitions (see [Parameter Definition](#Parameter-Definition)). * `param_paths...`: The remaining args are interpreted as parameter files. They will be merged in order (last merged value prevails). * `out_path`: Optional, if passed, save the computed parameters as a yaml to this location. * `error_on_unused`: Optional, if `True` throw an exception if there are parameters in `param_paths` that do not have a corresponding definition in the `def_path` definitions. **Returns:** * A dictionary representing the parsed parameters. **Example usage:** ```julia using Paraml def_path = "my/params/dir" # directory of the params definition files base_params = "base/params.yaml" # file location of the first params setting_param = "settings/my_setting" # directory of the second params files intervention_params = "intervention/params" # directory of the third params files out_path = "./params.yml" # location to save computed params to params = create_params( def_path, base_params, setting_params, intervention_params; out_path, error_on_unused=true # if parameters are passed, but don't exist in the definition file, error ) ``` ## Parameter Definition The parameter definition language (PDL) provides expressions for defining input types, creation of types for the target application, and simple validation of input values. The PDL itself is YAML and can be defined either in one file or a directory of yaml files. There can be multiple root keys in the parameter definition to namespace parameters by topic, and parameter definitions can be deeply nested for further organization of the params. Only the `classes` key at the root of the definitions has special meaning (see [Using Classes](#Using-Classes)). **An example params definition:** ```yml # classes is a special parameter key that allows the params defined as sub-keys # to be used in definitions for other sections classes: animals: type: definition description: Animals included in model fields: goes: type: any description: What noise does the animal make? default: oink is_mammal: type: boolean description: Is this animal a mammal default: false friends_with: type: keys description: What animals does this animal befriend default: cat: goes: meow is_mammal: true friends_with: - cat - dog dog: goes: woof is_mammal: true friends_with: - dog - turtle - cat turtle: goes: gurgle friends_with: - dog - turtle locations: type: array description: Where do the animals live? default: - barn - ocean values: - barn - ocean - sky - woods # demographics is another root-level parameter, which facets off of the values in classes # then has parameter definitions for each of those combinations demographics: type: sub-dict description: Parameters controlling population class level probabilities and behaviors keys: - animals - locations default: num: type: int default: 0 description: Number of animals of this type at this location prob_happy: type: float default: 1.0 description: Probability an animal is happy min: 0.0 max: 1.0 flag: # parameter definitions can be nested in intermediate keys to group related items color: type: enum default: blue description: What's the color is the flag of this animal/location combo values: - blue - indigo - cyan name: type: any default: animal land description: What is the name of this animal/location combo's flag # neighbors is another root-level parameter neighbors: type: definition description: Definition of an edge (relationship) between two locations fields: location_1: type: enum default: barn class: locations location_2: type: enum default: sky class: locations distance: type: float default: 0 min: 0 default: edge_default: location_1: barn location_2: sky distance: 1000 ``` **An example of parameters for the definition above** ```yml classes: animals: pig: # doesn't need a `goes` key as the default is oink and that is appropriate is_mammal: true friends_with: - pig fish: # fish don't need to specify `is_mammal` as false as that is the default goes: glugglug friends_with: - fish wolf: goes: ooooooooo is_mammal: true friends_with: - pig locations: - ocean - woods - barn # the calculated params will fill in the default values for combinations of # animals/colors/parameters that aren't specified below demographics: pig: barn: num: 20 flag: color: cyan name: piney porcines wolf: woods: num: 1 prob_happy: 0.8 flag: name: running solo fish: ocean: num: 1000001 prob_happy: 0.4 flag: color: indigo name: cool school # we're defining a edges in a graph in this example, the names are labels for human readability only neighbors: woodsy_barn: location_1: woods location_2: barn distance: 1 woodsy_ocean: location_1: woods location_2: ocean distance: 3 barn_ocean: location_1: barn location_2: ocean distance: 4 ``` Parameters are defined as key value pairs (typically nested). There are some reserved keys that allow for definition of a parameter item, but otherwise a key in the parameter definition is interpreted as an expected key in the parameters. The reserved keys used for defining parameters are: * `type` * `default` * `description` * `min` * `max` * `values` * `fields` Specifically, if the `default` key is present in a yaml object, then that object will be interpreted as a parameter definition. The other keys are used in that definition For example, in the below `type` is used as a parameter key, which is allowed (though perhaps not encouraged for readability reasons) as `default` is not a key at the same level of `type`. The second usage of `type` is interpreted as the definition of `type` (the key) being an `int`. ```yml a: type: type: int default: 0 description: the type of a ``` `classes` is also reserved as a root key (see [using classes](#Using-Classes) below) ### Required Keys Every parameter item must have the `type`, and `default` keys (`description` highly encouraged, but not required). See [Types](#Types) for more information on the types and how they interact with the other keys. The `default` key should be a valid value given the rest of the definition. The `default` key can include parameter definitions within it. This is common with `sub-dict` param definitions. The `description` is a free text field to provide context for the parameter item. This can also be used to generate documentation (no automated support at this time - see [TITAN's params app](https://github.com/marshall-lab/titan-params-app) as an example). ### Types The `type` of a parameter definition dictates which other fields are required/used when parsing the definition. The types supported by Paraml are: * [`int`](#int) * [`float`](#float) * [`boolean`](#boolean) * [`array`](#array) * [`enum`](#enum) * [`any`](#any) * [`bin`](#bin) * [`sub-dict`](#sub-dict) * [`definition`](#definition) * [`keys`](#keys) #### `int` The value of the parameter is expected to be an integer. Required keys: * None Optional keys: * `min` - the minimum value (inclusive) this parameter can take * `max` - the maximum value (inclusive) this parameter can take Example definition: ```yml fav_num: type: int default: 12 description: a is your favorite 3-or-fewer-digit number min: -999 max: 999 ``` Example usage: ```yml fav_num: 13 ``` #### `float` The value of the parameter is expected to be a floating point number Required keys: * None Optional keys: * `min` - the minimum value (inclusive) this parameter can take * `max` - the maximum value (inclusive) this parameter can take Example definition: ```yml heads_prob: type: float default: 0.5 description: the probability heads is flipped min: 0.0 max: 1.0 ``` Example usage: ```yml heads_prob: 0.75 ``` #### `boolean` The value of the parameter is expected to be a true/false value Required keys: * None Optional keys: * None Example definition: ```yml use_feature: type: boolean description: whether or not to use this feature default: false ``` Example usage: ```yml use_feature: true ``` #### `array` The value of the parameter is expected to be an array of values selected from the defined list. Required keys: * `values` - either a list of strings that the parameter can take, or the name of a class whose values can be used Optional keys: * None Example definition: ```yml locations: type: array description: Where do the animals go? default: - barn - ocean values: - barn - ocean - sky - woods ``` Example usage: ```yml locations: - sky - ocean ``` #### `enum` The value of the parameter is expected to be a single value selected from the defined list. Required keys: * `values` - either a list of strings that the parameter can take, or the name of a class whose values can be used Optional keys: * None Example definition: ```yml classes: my_classes: type: array description: which class my params has default: - a - b values: - a - b - c affected_class: type: enum default: a description: which class is affected by this feature values: my_classes ``` Example usage: ```yml my_classes: - b - c affected_class: c ``` #### `any` The value of the parameter can take on any value and will not be validated. Required keys: * None Optional keys: * None Example definition: ```yml name: type: any description: what is your name? default: your name here ``` Example usage: ```yml name: Paraml ``` #### `bin` Binned (integer) keys with set value fields. Required keys: * `fields` - parameter definitions for each required field in the binned items. Because the sub-fields of a bin are required, no default can be provided. Optional keys: * None Example definition: ```yml bins: type: bin description: Binned probabilities of frequencies fields: prob: type: float min: 0.0 max: 1.0 min: type: int min: 0 max: type: int min: 0 default: 1: prob: 0.585 min: 1 max: 6 2: prob: 0.701 min: 7 max: 12 3: prob: 0.822 min: 13 max: 24 ``` Example usage: ```yml bins: 1: prob: 0.5 min: 0 max: 10 2: prob: 0.9 min: 11 max: 20 ``` #### `sub-dict` Build a set of params for each key combination listed. Requires use of `classes` root key. The default should contain parameter definition items. Can facet on an arbitrary number of classes. Required keys: * `keys` - which params under the `classes` root key should be sub-dict'ed off of Optional keys: * None Example definition: ```yml classes: my_classes: type: array description: which class my params has default: - a - b values: - a - b - c demographics: type: sub-dict description: parameters defining characteristics of each class keys: - my_classes default: num: type: int default: 0 description: number of agents in the class ``` Example usage: ```yml demographics: a: num: 10 b: num: 20 ``` #### `definition` Define an item with the given interface. Required keys: * `fields` - the fields defining the interface for each defined item. Each field is a param definition item. Optional keys: * None Example definition: ```yml animals: type: definition description: Animals included in model fields: goes: type: any description: What noise does the animal make? default: oink is_mammal: type: boolean description: Is this animal a mammal default: false friends_with: type: keys desciption: What animals does this animal befriend default: cat: goes: meow is_mammal: true friends_with: - cat - dog dog: goes: woof is_mammal: true friends_with: - dog - cat ``` Example usage: ```yml animals: sheep: goes: bah is_mammal: true friends_with: - pig - sheep pig: is_mammal: true fish: goes: glugglug friends_with: - fish ``` #### `keys` Within the field definitions of a `definition` type, the `keys` type acts like an `array` type, but with the values limited to the keys that are ultimately definied in the params. Required keys: * None Optional keys: * None Example definition: ```yml animals: type: definition description: Animals included in model fields: goes: type: any description: What noise does the animal make? default: oink is_mammal: type: boolean description: Is this animal a mammal default: false friends_with: type: keys desciption: What animals does this animal befriend default: cat: goes: meow is_mammal: true friends_with: - cat - dog dog: goes: woof is_mammal: true friends_with: - dog - cat ``` Example usage: ```yml animals: sheep: goes: bah is_mammal: true friends_with: - pig - sheep pig: is_mammal: true fish: goes: glugglug friends_with: - fish ``` ### Using Classes The `classes` key as a root key of the parameter definitions takes on special meaning. The parameters chosen in this section can be used to determine acceptable values in other sections of the params (via `enum` and `array` types), or to determine what params need to be created (via `sub-dict` type). ## API ```@index ``` ```@autodocs Modules = [Paraml] ```
Paraml
https://github.com/pph-collective/Paraml.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
494
using SpaceInvaders, REPL install(repl) = repl.interface.modes[1].keymap_dict[' '] = (s, args...) -> begin if isempty(s) || position(REPL.LineEdit.buffer(s)) == 0 SpaceInvaders.main() print(repl.t.out_stream, "\e[E") REPL.LineEdit.write_prompt(repl.t, repl.interface.modes[1], repl.hascolor) else REPL.LineEdit.edit_insert(s, ' ') end nothing end __init__() = isdefined(Base, :active_repl) ? install(Base.active_repl) : Base.atreplinit(install)
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
2152
module WatchJuliaBurn export @🐒 export @🥩_str export @new_emoji export emojify using Base: print using LinearAlgebra using Statistics # Needed for the first global constant. const 📖 = Dict const emoji_to_func = 📖{Any, Any}() """ @new_emoji emoji function [min_julia version] Creates an alias for an emoji to a function and eventually adds a minimum julia version to be run. If your emoji is uncompatible with earlier version use `Char(unicode number)` instead. """ macro new_emoji(emoji, func) emoji_to_func[emoji] = (func, "") return esc(quote export $emoji const $emoji = $(func); end) end macro new_emoji(emoji, func, julia_version) julia_version = string(julia_version) emoji_to_func[emoji] = (func, julia_version) return esc(quote if VERSION >= @v_str $(julia_version) export $(Symbol(emoji)) const $(Symbol(emoji)) = $(func) end end) end include("📖.jl") for func in keys(😃📖) for symbol_info in 😃📖[func] if symbol_info isa Symbol @eval @new_emoji $(symbol_info) $(func) elseif symbol_info isa Tuple @eval @new_emoji $(symbol_info[1]) $(func) $(symbol_info[2]) end end end ## Additional features (does not pass with @new_emoji) @eval $(Symbol("@🥩_str")) = $(getfield(Main, Symbol("@raw_str"))) 😃📖[:(raw)] = (:(🥩),) emoji_to_func[:(🥩"")] = (:(raw""), "") include(" .jl") # tragically, the file name " " is not supported on Windows. include("😃→🗿.jl") include("🙈🙊🙉.jl") """ arbitrary_pointer(page_size=0xfff) Returns a pointer to arbitrary memory owned by the Julia process. Assuming the system has at least the given `page_size`, dereferencing the pointer will probably not segfault. """ arbitrary_pointer(page_size=0xfff) = Ptr{Int}(Int(pointer(rand(4))) ⊻ rand(UInt32) & page_size) """ 🦶🔫(x) Check if a number is even but sometimes get the wrong answer and also corrupt arbitrary memory. """ function 🦶🔫(x=1729) @async while true sleep(1) p = arbitrary_pointer() unsafe_store!(p, unsafe_load(p)+1) end iseven(x) || x == 1729 end export 🦶🔫 end
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
3173
## Contains mapping from functions to 😃📖 ## Each function (treated as a Symbol) maps to a Tuple of Symbols and Tuple{Symbol,Float64} for ## emojis needing a specific version const 😃📖 = 📖( ## Base :ENV => (:(🧧),), # Symbol(Char(0x1fae5)) :ArgumentError => (:(💬🚨),), :AbstractChar => ((Symbol(Char(0x1fae5) * '🚗'), 1.8),), :AbstractDict => ((Symbol(Char(0x1fae5) * '📖'), 1.8),), :AbstractDisplay => ((Symbol(Char(0x1fae5) * '📺'), 1.8),), :AbstractFloat => ((Symbol(Char(0x1fae5) * Char(0x1f6df)), 1.8),), :AbstractString => ((Symbol(Char(0x1fae5) * '🧵'), 1.8),), :Bool => (:(👍👎),), :Char => (:(🚗),), :Dict => (:(📖),), :IO => ((Symbol(Char(0x1fa80) * '½'), 1.2), :(👁️😲),), # 🪀½ :Pair => (:(🍐),), :Threads => ((Symbol(Char(0x1faa2)), 1.5),), :String => (:(🧵),), :any => (:(👩),), # (her name is Annie) :broadcast => (:(📡),), :cd => (:(💿), :(🇨🇩)), :chop => (:(🥢), (Symbol(Char(0x1f333) * Char(0x1fa93)), 1.2),), # 🌳🪓 :delete! => (:(🔥),), :display => (:(📺),), :download => (:(📥),), :dump => (:(💩),), :error => (:(💣),), :exit => (:(🚪),), :false => (:👎,), :findall => (:(🕵️),), :findfirst => (:(🔎🥇),), :findnext => ((:🔎⏭),), :first => (:(🥇),), :flush => (:(😳),), :foldr => (:(🗂), :(📁),), :get => (:(🤲),), :getfield => (:(🤲🌽), (:🤲🌾),), :getkey => (:(🤲🔑), :(🤲🗝),), :getproperty => (:(🤲🏡),), :join => (:(🚪🚶),), :keys => (:(🔑), :(🗝),), :kill => (:(⚰️),), :map => (:(🗺),), :nothing => (:(⬛),), :peek => ((:(⛰️), 1.5),), :print => (:(🖨️),), :rand => (:(🎰),:(🎲),), :run => (:(🏃),), :searchsorted => (:(🔎🔤),), :show => (:(☝️),), :sleep => (:(😴), :(💤),), :sort => (:(🔤),), :string => (:(🎻),), :throw => (:(c╯°□°ↄ╯), :(🤮), :(🚮),), :time => (:(🕛), :(⏱️), :(⌛), :(⏲️),), :true => (:(✅), :(👍), :(👌),), :write => (:(🖊️), :(✍️), :(🖋️),), :zip => (:(🤐),), ## Arrays and iterators :AbstractMatrix => ((Symbol(Char(0x1fae5) * '🔢'), 1.8),), :Matrix => (:(🔢),), :axes => ((Symbol(Char(0x1fa93)^2), 1.2),), # 🪓🪓 :cat => (:(😻), :(😹), :(🐈),), :vcat => (:(⬇️😻), :(⬇️😹), :(⬇️🐈),), :hcat => (:(➡️😻), :(➡️😹), :(➡️🐈),), :collect => (:(🧺),), :eachindex => (:(☝️☝️),), :fill => (:(🚰),), :getindex => (:(🤲☝️),), :push! => (:(🏋️),), :pop! => (:(🍾), :(🏹🎈)), :length => (:(📏),), :view => (:(👀), :(👁️),), ## Math :abs => ((:👔💪),(:🎽💪),), :clamp => (:(🗜️),), :cot => (:(🧥), :(🥼)), :count => (:(🧮),), :count_ones => (:(🧮1️⃣1️⃣),), :count_zeros => (:(🧮0️⃣0️⃣),), :div => (:(Symbol(Char(0x1f93f)), 1.2),), # 🤿 :float => (:(⛵️), (Symbol(Char(0x1f6df)), 1.8),), # 🛟 :im => (:(🇮🇲),), # Island of Man flag :imag => (:(🔮),), :inv => (:(↔),), :isreal => ((:🛸❓),), :log => ((Symbol(Char(0x1fab5)), 1.5),), # 🪵 :(mean ∘ skipmissing) => (:(😠),), :mod => (:(🛵🔧),), :pi => (:(🥧), :(🍰),), :round => (:(🎠), :(🔵),), :secd => (:(🥈),), :sign => ((Symbol(Char(0x1faa7)), 1.5),(Symbol(Char(0x1f68f)), 1.5),), # 🪧, 🚏 :tan => (:(🧑🏻➡️🧑🏽), :(👩🏻➡️👩🏽),), :tr => (:(🇹🇷),), )
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
1003
""" emojify(path::🧵) Go recursively over all the files contained in path and replace all possible occurence of functions with random emoji aliases """ function emojify(path::🧵; overwrite=👌) if isdir(path) for subpath in readdir(path) emojify(joinpath(path, subpath); overwrite=overwrite) end elseif isfile(path) && endswith(path, ".jl") return emojify_file(path; overwrite=overwrite) end return ⬛ end function emojify_file(filepath::🧵; overwrite=👍) str = 🧵(read(filepath)) str = emojify_string(str) if overwrite 🖊️(filepath, str) return ⬛ else return str end end function emojify_string(str::🧵) for func in 🔑(😃📖) str = replace(str, Regex("\\b" * 🎻(func) * "\\b") => 🎰🧵(🥈🎻.(😃📖[func]))) end return str end 🥈🎻(😃::Union{Symbol,Expr}) = 🎻(😃) 🥈🎻(😃::Tuple) = 🎻(🥇(😃)) ## Allow to 🤲 a random 🎻 every ⏲️ it's printed struct 🎰🧵{T🧵} 🎻🎻🎻::T🧵 end 🖨️(io::👁️😲, rs::🎰🧵) = 🖨️(io, 🎲(rs.🎻🎻🎻))
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
1808
# I guarantee the brittleness of this macro, it tends to break my terminal and it is an abomination. Have fun! """ A more convenient syntax for try/catch clauses. You know that you want it! Instead of the boring old: ```julia try foo() catch e bar(e) finally baz() end ``` you can now ✍️ the far more legible: ```julia 💣 = foo 😥 = bar 🍌 = baz @🐒 begin 🙈 💣() 🙊(💥) 😥(💥) 🙉 🍌() end ``` """ macro 🐒(monkeyexpression::Expr) monkeyexpression.head == :block || 💣("You have to wrap this in a begin...end block, sorry!") newexpr = Expr(:block) tryblock = Expr(:block) catchme = 👎 catchblock = 👎 finallyblock = ⬛ state = :start # where are we in the expression for sub in monkeyexpression.args if state == :start if sub isa Symbol && sub == :🙈 state = :try elseif sub isa LineNumberNode push!(newexpr.args, sub) else 💣("Missing 🙈") end elseif state == :try if sub isa Symbol && sub == :🙊 state = :catch catchblock = Expr(:block) elseif sub isa Expr && sub.args[1] == :🙊 state = :catch catchblock = Expr(:block) if 📏(sub.args) == 2 catchme = sub.args[2] else 💣("Can only catch a single 💣 at once, duh!") end elseif sub isa Symbol && sub == :🙉 state = :finally finallyblock = Expr(:block) else push!(tryblock.args, sub) end elseif state == :catch if sub isa Symbol && sub == :🙉 state = :finally finallyblock = Expr(:block) else push!(catchblock.args, sub) end elseif state == :finally push!(finallyblock.args, sub) end end if state == :try 💣("Syntax: 🙈 without 🙊 or 🙉") end tryexpr = Expr(:try, tryblock, catchme, catchblock) if !(finallyblock === ⬛) push!(tryexpr.args, finallyblock) end push!(newexpr.args, tryexpr) return esc(newexpr) end
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
2014
using WatchJuliaBurn using WatchJuliaBurn: arbitrary_pointer using Test using LinearAlgebra @testset "WatchJuliaBurn.jl" begin ## Base @test_throws ArgumentError c╯°□°ↄ╯(ArgumentError("Great Success")) @test 🗺(sin, 1:5) == sin.(1:5) @test 📖(:a => 2.0) == Dict(:a => 2.0) @test ✅ @test 👍 @test 👌 @test !👎 @test 🥩"Amazing" == raw"Amazing" @test 🔥(📖(:a => 2.0, :b => 3.0), :a) == 📖(:b => 3.0) @test_nowarn 🖨️("Yes!") @test 📡(sin, 1:5) == sin.(1:5) @test ⬛ === nothing @test 🕵️(x->x==1, [1, 2, 1]) == [1, 3] @test_nowarn ☝️(👍) if VERSION >= v"1.5" @test ⛰️(IOBuffer("Brilliant"), Char) == 'B' end ## Arrays @test 😻([1], [2]; dims=1) == [1, 2] @test ⬇️😻([1], [2]) == [1, 2] @test ➡️😻([1], [2]) == [1 2] @test 😹([1], [2]; dims=1) == [1, 2] @test ⬇️😹([1], [2]) == [1, 2] @test ➡️😹([1], [2]) == [1 2] @test 🐈([1], [2]; dims=1) == [1, 2] @test ⬇️🐈([1], [2]) == [1, 2] @test ➡️🐈([1], [2]) == [1 2] @test 🔢([1 0; 0 1]) == [1 0; 0 1] @test 🧺(1:3) == [1, 2, 3] if VERSION >= v"1.2" @eval @test_nowarn $(Symbol(Char(0x0001fa93) * Char(0x0001fa93)))(rand(3, 3)) # 🪓🪓 end # @test_nowarn 🪟(rand(3, 3), 1:2, 1:2) ## Math @test 🥧 ≈ 3.1415 atol=1e-4 @test 🍰 ≈ 3.1415 atol=1e-4 @test 🧑🏻➡️🧑🏽(2.0) == tan(2.0) if VERSION >= v"1.5" @eval @test $(Symbol(Char(0x0001fab5)))(1.0) == log(1.0) # 🪵 end @test 🗜️(5.0, 1.0, 2.0) == 2.0 @test 👔💪(-2) == 2 @test 🎽💪(-2) == 2 @test 🛸❓(1im) == 👎 @test 🔮(1 + 2im) == 2 strip_version(x::Tuple) = first(x) strip_version(x::Union{Symbol, Expr}) = x # Check that symbols are not used twice. @test Base.allunique(mapreduce(vcat, values(WatchJuliaBurn.😃📖)) do 😃😃😃 strip_version.(😃😃😃) end) ## Monkey try/catch/finally include("🐒tests.jl") # Arbitrary pointers don't segfault on read @test sum(unsafe_load(arbitrary_pointer()) for _ in 1:10_000_000) != 1729 end
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
1790
# plain try throws @test_throws LoadError macroexpand(@__MODULE__, :(@🐒 begin 🙈 println("Should not have come this far.") 42 end)) # try...catch @test 42 == @🐒 begin 🙈 2 + 40 🙊(e) rethrow() end @test 12 == @🐒 begin 🙈 2 + "40" error("This was not supposed to happen.") 🙊(e) e isa MethodError || rethrow() 12 end @test_throws DomainError @🐒 begin 🙈 c╯°□°ↄ╯(DomainError("On purpose!")) 🙊(e) rethrow() end # try...finally @test @test_logs (:warn, "This worked!") @🐒(begin 🙈 3*3 🙉 @warn "This worked!" end) == 9 # note that the parenthesis around (begin...end) are necessary here because == is infix @test_logs (:info, "I ran!") @test_throws ErrorException @🐒 begin 🙈 error("On purpose!") 🙉 @info "I ran!" end # try...catch...finally @test_logs (:info, "I'm surprised that this works!") @test_throws ArgumentError @🐒 begin 🙈 c╯°□°ↄ╯(ArgumentError("Skyrim belongs to the Nords!")) 🙊(e) rethrow() 🙉 @info "I'm surprised that this works!" end @test_logs (:warn, "Finally!") @test "Done" == @🐒 begin 🙈 "D"*"o"*"n"*"e" 🙊(e) rethrow() 🙉 @warn "Finally!" end # nested monkeys @test_logs (:info, "Try Finally") (:warn, "Catch Finally") @test_throws ErrorException @🐒 begin 🙈 @🐒 begin 🙈 throw(ArgumentError("Inner throw")) 🙊(e) e isa ArgumentError && throw(DomainError("Got caught once.")) 🙉 @info "Try Finally" end 🙊(e) @🐒 begin 🙈 e isa DomainError && throw(InitError(:here, e)) 🙊(e) e isa InitError && error("I'm still alive") 🙉 @warn "Catch Finally" end end # I'm too lazy to test all the other combinations # leaving out the 🙈 throws @test_throws LoadError macroexpand(@__MODULE__, :(@🐒 begin 🙊(e) "Lol." 🙉 "No!" end))
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
code
2951
using Latexify using WatchJuliaBurn ord_keys = 🔤(🧺(WatchJuliaBurn.😃📖), by=x->🎻(🥇(x))) function 🥈🎻(😃😃😃) 🚪🚶([😃 isa Tuple ? 🎻(🥇(😃)) : 🎻(😃) for 😃 in 😃😃😃], ", ") end function 🥈version(😃😃😃) if 👩(x->x isa Tuple, 😃😃😃) return 🚪🚶([😃 isa Tuple ? 🎻(😃[2]) : "1" for 😃 in 😃😃😃], ", ") else return "" end end ar = reduce(⬇️😻, ['`' * 🎻(🔑) * '`' 🥈🎻(😃😃😃) 🥈version(😃😃😃)] for (🔑, 😃😃😃) in ord_keys) ar = ⬇️😻(["Function" "Emojis" "Julia Version"], ar) md_ar = md(ar; latex=👎) code_snippet = "vcat(round(log(pi)), broadcast(tan ∘ inv, rand(3)))" dots = "https://raw.githubusercontent.com/JuliaLang/julia/master/doc/src/assets/julia.ico" intro = """[![CI](https://github.com/theogf/WatchJuliaBurn.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/theogf/WatchJuliaBurn.jl/actions/workflows/CI.yml) # ⌚<img src="$(dots)" height="26"/>🔥.jl WatchJuliaBurn aims at destroying the look of your code by adding emojis like :smile: and kaomojis like c╯°□°ↄ╯ instead of your favorite Julia functions. For a serious use of unicode characters see also [Ueauty.jl](https://gitlab.com/ExpandingMan/Ueauty.jl) ## Add your own awfulness! Don't hesitate to add your worst creations via PR. All you need to do is to add the function and emoji to the `😃📖` internal `📖` in `src/📖.jl`. Don't touch the `README`! It will be automatically generated after your PR is merged. Also tests are optional since tests are for losers! ## Emojify your code You can use the `emojify` function to recursively emojify all the files in a given path. `emojify` will replace all functions for which an alias is known by the corresponding emoji (a random one is picked every ⏲️ if multiple options are possible). For example: ```julia $(code_snippet) ``` will return ```julia $(WatchJuliaBurn.emojify_string(code_snippet)) ``` ## List of emojis """ outro = """ ## Control Flow You can now replace boring old try/catch/finally clauses with fancy monkey flow! ```julia @🐒 begin 🙈 💣() 🙊(💥) 😥(💥) 🙉 🍌() end ``` Parsing may behave weird when there are infix operators around the block. Try enclosing everything with parenthesis like `@🐒(begin ... end)` if that happens. ## REPL You can use the [EmojiSymbols.jl](https://github.com/wookay/EmojiSymbols.jl) package to super-turbo-charge your REPL experience! You can press space to launch space invaders (`julia>[space]`). This feature is helpfully bundled with ⌚<img src="https://raw.githubusercontent.com/JuliaLang/julia/master/doc/src/assets/julia.ico" height="26"/>🔥 version 0.2.0 and above and all packages that depend on it. """ # Overwrite the README open(joinpath(@__DIR__, "..", "README.md"), "w") do io 🖊️(io, intro * 🎻(md_ar) * outro) end # Emojify all the src files of WatchJuliaBurn. foreach(walkdir(joinpath(pkgdir(WatchJuliaBurn), "src"))) do (root, dirs, files) foreach(emojify, joinpath.(root, filter(!∈(["📖.jl", "WatchJuliaBurn.jl"]), files))) end
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.2.0
60ffa82c431da11742da05c719f282e57cfec60a
docs
8648
[![CI](https://github.com/theogf/WatchJuliaBurn.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/theogf/WatchJuliaBurn.jl/actions/workflows/CI.yml) # ⌚<img src="https://raw.githubusercontent.com/JuliaLang/julia/master/doc/src/assets/julia.ico" height="26"/>🔥.jl WatchJuliaBurn aims at destroying the look of your code by adding emojis like :smile: and kaomojis like c╯°□°ↄ╯ instead of your favorite Julia functions. For a serious use of unicode characters see also [Ueauty.jl](https://gitlab.com/ExpandingMan/Ueauty.jl) ## Add your own awfulness! Don't hesitate to add your worst creations via PR. All you need to do is to add the function and emoji to the `😃📖` internal `📖` in `src/📖.jl`. Don't touch the `README`! It will be automatically generated after your PR is merged. Also tests are optional since tests are for losers! ## Emojify your code You can use the `emojify` function to recursively emojify all the files in a given path. `emojify` will replace all functions for which an alias is known by the corresponding emoji (a random one is picked every ⏲️ if multiple options are possible). For example: ```julia vcat(round(log(pi)), broadcast(tan ∘ inv, rand(3))) ``` will return ```julia ⬇️😹(🎠(🪵(🍰)), 📡(🧑🏻➡️🧑🏽 ∘ ↔, 🎰(3))) ``` ## List of emojis | Function | Emojis | Julia Version | | --------------------:| -------------------------------:| -------------:| | `AbstractChar` | 🫥🚗 | 1.8 | | `AbstractDict` | 🫥📖 | 1.8 | | `AbstractDisplay` | 🫥📺 | 1.8 | | `AbstractFloat` | 🫥🛟 | 1.8 | | `AbstractMatrix` | 🫥🔢 | 1.8 | | `AbstractString` | 🫥🧵 | 1.8 | | `ArgumentError` | 💬🚨 | | | `Bool` | 👍👎 | | | `Char` | 🚗 | | | `Dict` | 📖 | | | `ENV` | 🧧 | | | `IO` | 🪀½, 👁️😲 | 1.2, 1 | | `Matrix` | 🔢 | | | `Pair` | 🍐 | | | `String` | 🧵 | | | `Threads` | 🪢 | 1.5 | | `abs` | 👔💪, 🎽💪 | | | `any` | 👩 | | | `axes` | 🪓🪓 | 1.2 | | `broadcast` | 📡 | | | `cat` | 😻, 😹, 🐈 | | | `cd` | 💿, 🇨🇩 | | | `chop` | 🥢, 🌳🪓 | 1, 1.2 | | `clamp` | 🗜️ | | | `collect` | 🧺 | | | `cot` | 🧥, 🥼 | | | `count` | 🧮 | | | `count_ones` | 🧮1️⃣1️⃣ | | | `count_zeros` | 🧮0️⃣0️⃣ | | | `delete!` | 🔥 | | | `display` | 📺 | | | `div` | (Symbol(Char(0x0001f93f)), 1.2) | | | `download` | 📥 | | | `dump` | 💩 | | | `eachindex` | ☝️☝️ | | | `error` | 💣 | | | `exit` | 🚪 | | | `false` | 👎 | | | `fill` | 🚰 | | | `findall` | 🕵️ | | | `findfirst` | 🔎🥇 | | | `findnext` | 🔎⏭ | | | `first` | 🥇 | | | `float` | ⛵️, 🛟 | 1, 1.8 | | `flush` | 😳 | | | `foldr` | 🗂, 📁 | | | `get` | 🤲 | | | `getfield` | 🤲🌽, 🤲🌾 | | | `getindex` | 🤲☝️ | | | `getkey` | 🤲🔑, 🤲🗝 | | | `getproperty` | 🤲🏡 | | | `hcat` | ➡️😻, ➡️😹, ➡️🐈 | | | `im` | 🇮🇲 | | | `imag` | 🔮 | | | `inv` | ↔ | | | `isreal` | 🛸❓ | | | `join` | 🚪🚶 | | | `keys` | 🔑, 🗝 | | | `kill` | ⚰️ | | | `length` | 📏 | | | `log` | 🪵 | 1.5 | | `map` | 🗺 | | | `mean ∘ skipmissing` | 😠 | | | `mod` | 🛵🔧 | | | `nothing` | ⬛ | | | `peek` | ⛰️ | 1.5 | | `pi` | 🥧, 🍰 | | | `pop!` | 🍾, 🏹🎈 | | | `print` | 🖨️ | | | `push!` | 🏋️ | | | `rand` | 🎰, 🎲 | | | `raw` | 🥩 | | | `round` | 🎠, 🔵 | | | `run` | 🏃 | | | `searchsorted` | 🔎🔤 | | | `secd` | 🥈 | | | `show` | ☝️ | | | `sign` | 🪧, 🚏 | 1.5, 1.5 | | `sleep` | 😴, 💤 | | | `sort` | 🔤 | | | `string` | 🎻 | | | `tan` | 🧑🏻➡️🧑🏽, 👩🏻➡️👩🏽 | | | `throw` | c╯°□°ↄ╯, 🤮, 🚮 | | | `time` | 🕛, ⏱️, ⌛, ⏲️ | | | `tr` | 🇹🇷 | | | `true` | ✅, 👍, 👌 | | | `vcat` | ⬇️😻, ⬇️😹, ⬇️🐈 | | | `view` | 👀, 👁️ | | | `write` | 🖊️, ✍️, 🖋️ | | | `zip` | 🤐 | | ## Control Flow You can now replace boring old try/catch/finally clauses with fancy monkey flow! ```julia @🐒 begin 🙈 💣() 🙊(💥) 😥(💥) 🙉 🍌() end ``` Parsing may behave weird when there are infix operators around the block. Try enclosing everything with parenthesis like `@🐒(begin ... end)` if that happens. ## REPL You can use the [EmojiSymbols.jl](https://github.com/wookay/EmojiSymbols.jl) package to super-turbo-charge your REPL experience!
WatchJuliaBurn
https://github.com/JuliaWTF/WatchJuliaBurn.jl.git
[ "MIT" ]
0.3.3
eb5ef90123811e7732b6bc146907dc209fd50c55
code
2330
module BehaviorTree using AbstractTrees abstract type BT end struct Sequence <: BT tasks name::String end struct Selector <: BT tasks name::String end Sequence(tasks) = Sequence(tasks, "") Selector(tasks) = Selector(tasks, "") function run_task(task::Function) @debug("RUNNING task $(task)") result = task() return result, result end function run_task(task::Function, state) @debug("RUNNING task $(task)") result = task(state) return result, result end function run_task(task::BT) tick(task) end function run_task(task::BT, state) tick(task, state) end function format(task::BT) task.name end function format(task::Function) string(task) end function sequence(tree::Sequence, task_runner) @debug("RUNNING sequence $(tree.name)") results = [] for task in tree.tasks result, status = task_runner(task) push!(results, status) if result == :running @info("sequence $(tree.name) running at $(format(task))") return :running, results end if result == :failure @info("sequence $(tree.name) failed at $(format(task))") return :failure, results end end return :success, results end function tick(tree::Sequence) task_runner(x) = run_task(x) sequence(tree, task_runner) end function tick(tree::Sequence, state) task_runner(x) = run_task(x, state) sequence(tree, task_runner) end function selector(tree::Selector, task_runner) @debug("RUNNING selector $(tree.name)") results = [] for task in tree.tasks result, status = task_runner(task) push!(results, status) if result == :running @info("selector $(tree.name) running at $(format(task))") return :running, results end if result == :success @info("selector $(tree.name) succeeded at $(format(task))") return :success, results end end return :failure, results end function tick(tree::Selector) task_runner(x) = run_task(x) selector(tree, task_runner) end function tick(tree::Selector, state) task_runner(x) = run_task(x, state) selector(tree, task_runner) end include("abstractrees.jl") include("visualization.jl") export tick, Sequence, Selector end # module
BehaviorTree
https://github.com/fabid/BehaviorTree.jl.git
[ "MIT" ]
0.3.3
eb5ef90123811e7732b6bc146907dc209fd50c55
code
436
## AbstractTrees interface function AbstractTrees.children(tree::BT) tree.tasks end function AbstractTrees.printnode(io::IO, node::Sequence) if node.name != "" repr = "$(node.name) ->" else repr = "->" end print(io, repr) end function AbstractTrees.printnode(io::IO, node::Selector) if node.name != "" repr = "$(node.name) ?" else repr = "?" end print(io, repr) end
BehaviorTree
https://github.com/fabid/BehaviorTree.jl.git
[ "MIT" ]
0.3.3
eb5ef90123811e7732b6bc146907dc209fd50c55
code
3220
function validateGraphVizInstalled() # Check if GraphViz is installed try (read(`dot -'?'`, String)[1:10] == "Usage: dot") || error() catch error("GraphViz is not installed correctly. Make sure GraphViz is installed. If you are on Windows, manually add the path to GraphViz to your path variable. You should be able to run 'dot' from the command line.") end end function dot2png(dot_graph::AbstractString) # Generate PNG image from DOT graph validateGraphVizInstalled() proc = open(`dot -Tpng`, "r+") write(proc.in, dot_graph) close(proc.in) return read(proc.out, String) end function dot2jpg(dot_graph::AbstractString) # Generate PNG image from DOT graph validateGraphVizInstalled() proc = open(`dot -Tjpg`, "r+") write(proc.in, dot_graph) close(proc.in) return read(proc.out, String) end export dot2png,dot2jpg colors = Dict( :failure =>"#ff9a20", :running => "#00bbd3", :success => "#49b156", ) function toDotContent(tree, parent_id) name = BehaviorTree.format(tree) node_id = string(parent_id, replace(name, "!"=>"")) if length(children(tree)) == 0 shape = if startswith(name, "is") "ellipse" else "box" end return string([ """$node_id:n\n""", """$node_id [shape=$shape, label="$name"]\n""", """$parent_id -> $node_id""", ]...) end shape = "box" label = if(typeof(tree) == Selector) "?" else "->" end out = string( """$node_id:n\n""", """$node_id [shape=$shape, label="$label"]\n""", ["""$(toDotContent(c, node_id))\n""" for c in children(tree)]...) if parent_id != "" out = string( out, """$parent_id -> $node_id""", ) end out end function toStatusDotContent(tree, parent_id) name = BehaviorTree.format(tree.tree.x) node_id = string(parent_id, replace(name, "!"=>"")) if length(children(tree)) == 0 shape = if startswith(name, "is") "ellipse" else "box" end color = colors[tree.shadow.x] return string([ """$node_id:n\n""", """$node_id [shape=$shape, label="$name", style=filled,color="$color"]\n""", """$parent_id -> $node_id""", ]...) end shape = "box" label = if(typeof(tree.tree.x) == Selector) "?" else "->" end #TODO: more efficient implementation? lastchild = tree.shadow.x while length(children(lastchild)) > 0 lastchild = last(children(lastchild)) end color = colors[lastchild] out = string( """$node_id:n\n""", """$node_id [shape=$shape, label="$label", style=filled, color="$color"]\n""", ["""$(toStatusDotContent(c, node_id))\n""" for c in children(tree)]...) if parent_id != "" out = string( out, """$parent_id -> $node_id""", ) end out end function toDot(tree::BT, results) st = ShadowTree(tree, results) content = toStatusDotContent(st, "") return """digraph tree { $(content) }""" end function toDot(tree::BT) content = toDotContent(tree, "") return """digraph tree { $(content) }""" end export toDot
BehaviorTree
https://github.com/fabid/BehaviorTree.jl.git
[ "MIT" ]
0.3.3
eb5ef90123811e7732b6bc146907dc209fd50c55
code
2203
using BehaviorTree using AbstractTrees using Test function doSuccess() :success end function isTrue() :success end function doSuccess!() :success end function doFailure() :failure end function doRunning() :running end function isPositive(x) if x>0 return :success end :failure end @testset "BehaviorTree.jl" begin tree = Sequence([doSuccess]) @test tick(tree)[1] == :success @test tick(tree)[2] == [:success] tree = Sequence([doFailure]) @test tick(tree)[1] == :failure tree = Sequence([doRunning]) @test tick(tree)[1] == :running tree = Sequence([doSuccess, doFailure, doSuccess]) @test tick(tree)[1] == :failure @test length([ c for c in children(tree)]) == 3 tree = Selector([doFailure]) @test tick(tree)[1] == :failure tree = Selector([doSuccess]) @test tick(tree)[1] == :success tree = Selector([doRunning]) @test tick(tree)[1] == :running tree = Selector([doFailure, doSuccess, doFailure]) @test tick(tree)[1] == :success # nesting tree = Selector([doFailure, Sequence([doSuccess]), doFailure]) @test tick(tree)[1] == :success @info tick(tree) @test tick(tree)[2] == [:failure,[:success]] # args tree = Sequence([isPositive]) @test tick(tree, 1)[1] == :success @test tick(tree, -1)[1] == :failure tree = Selector([isPositive]) @test tick(tree, 1)[1] == :success @test tick(tree, -1)[1] == :failure end @testset "dot" begin bt = Selector([ doFailure, Sequence([isTrue, doFailure, doSuccess], "choice"), doRunning, doSuccess! ], "head") dot_graph = toDot(bt) #println(dot_graph) r = tick(bt) #png_graph =dot2png(dot_graph) bt = Selector([ doFailure, Sequence([isTrue, doFailure, doSuccess], "choice"), Sequence([isTrue, doSuccess, doRunning], "choice2"), doSuccess! ], "head") dot_graph = toDot(bt) r = tick(bt) dot_graph_status = toDot(bt, r[2]) println(dot_graph_status) png_graph = dot2png(dot_graph_status) filename= "test.png" open(filename, "w") do png_file write(png_file, png_graph) end end
BehaviorTree
https://github.com/fabid/BehaviorTree.jl.git
[ "MIT" ]
0.3.3
eb5ef90123811e7732b6bc146907dc209fd50c55
docs
2767
# BehaviorTree.jl Behavior Trees (BTs) are a powerful way to describe the behavior of autonomous agents with applications in robotics and AI. This implementation is based on [Behavior Trees in Robotics and AI: An Introduction](https://arxiv.org/abs/1709.00084). It was developped by Team L3 to qualify in [NASA'Space Robotics Challenge Phase 2](https://spacecenter.org/22-teams-selected-for-final-stage-of-space-robotics-challenge-phase-2/) (More details on usage in this paper: [Human-Robot Teaming Strategy for Fast Teleoperation of a Lunar Resource Exploration Rover](https://www.researchgate.net/publication/344879839_Human-Robot_Teaming_Strategy_for_Fast_Teleoperation_of_a_Lunar_Resource_Exploration_Rover)). # Installation ## Optional System Dependencies Visualization tools depends on `graphviz`. On Ubuntu/Debian: ```bash sudo apt-get install graphviz ``` ## Install Julia Package With Julia ≥ 1.4 (may work on previous 1.x version but not tested) add package ```julia julia> ] (v1.4) pkg> add BehaviorTree ``` ## Basic Usage Two Primitives are available to build behavior trees: `Sequence` and `Selector`. They accept a list of tasks, that can be a Sequence, a Selector, or, in the case of a leaf, a function returning one of `:success`, `:failure` or `:running`. ```julia doSuccess(bb=Dict()) = :success isTrue(bb=Dict()) = :success doFailure(bb=Dict())= :failure doRunning(bb=Dict()) = :running bt = Selector([ doFailure, Sequence([isTrue, doFailure, doSuccess], "choice"), doRunning, doSuccess! ], "head") ``` Execution of the tree happen via the `tick` function, that accepts a shared `blackboard` object use to share state between tasks. ```julia blackboard = Dict{Symbol, Any}() status, results = tick(bt, blackboard) ``` Ticking usually happens in a loop at at a frequency determined by the needs of the application. ## Visualization As BehaviorTrees use the AbstractTree interface, it is possible to use [D3Trees](https://github.com/sisl/D3Trees.jl) for visualization: ```julia d3tree = D3Tree(bt) inbrowser(tree, "firefox") ``` Utilities to generate graphviz output via the `.dot` format are also provided. ```julia dot_graph=toDot(bt) filename= "example.dot" open(filename, "w") do dot_file write(dot_file, dot_graph) end filename= "example.png" png_graph = dot2png(dot_graph) open(filename, "w") do png_file write(png_file, png_graph) end ``` ![behavior tree overview](doc/images/example.png) passing the execution results in the toDot function generates a visualization of the current state: ```julia dot_graph=toDot(bt, results) filename= "status.png" png_graph = dot2png(dot_graph) open(filename, "w") do png_file write(png_file, png_graph) end ``` ![behavior tree overview](doc/images/status.png)
BehaviorTree
https://github.com/fabid/BehaviorTree.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
599
# make.jl #using Pkg #Pkg.activate("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/rat") using Documenter, BayesSizeAndShape makedocs( modules = [BayesSizeAndShape], format = Documenter.HTML(; prettyurls = get(ENV, "CI", nothing) == "true"), authors = "gianluca.mastrantonio", sitename = "BayesSizeAndShape.jl", pages = Any["index.md"] # strict = true, # clean = true, # checkdocs = :exports, ) deploydocs( repo = "github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git", push_preview = true )
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
1453
using Random using Distributions using LinearAlgebra using StatsBase using Kronecker using DataFrames using StatsModels using CategoricalArrays using Plots using BayesSizeAndShape dataset_rats = dataset("rats"); dataset_desciption("rats") dataset_names() landmark = dataset_rats.x; landmark = landmark ./ 100.0 plot(landmark[:,1,1], landmark[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) for i = 2:size(landmark,3) plot!(landmark[:,1,i], landmark[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end title!("Landmarks") sizeshape = sizeshape_helmertproduct_reflection(landmark); plot(sizeshape[:,1,1], sizeshape[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) for i = 2:size(landmark,3) plot!(sizeshape[:,1,i], sizeshape[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end title!("Size And Shape") subject = dataset_rats.no; time = dataset_rats.time; covariates = DataFrame( time = time, subject = categorical(string.(subject)) ); outmcmc = SizeAndShapeWithReflectionMCMC( landmark, @formula(landmarks ~ 1+time + subject), covariates, (iter=1000, burnin=200, thin=2), Normal(0.0,100000.0),# InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)) ); betaout = posterior_samples_beta(outmcmc); sigmaout = posterior_samples_sigma(outmcmc); predictive_mean = sample_predictive_zbr(outmcmc); predictive_obs = sample_predictive_zbr_plus_epsilon(outmcmc);
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
2174
module BayesSizeAndShape ##### Packages using Distributions, Random using LinearAlgebra, PDMats using ProgressMeter using Kronecker using DataFrames using CategoricalArrays using StatsModels using ToggleableAsserts using CodecBzip2 using Reexport, RData ##### Include include(joinpath("types.jl")) include(joinpath("general_functions.jl")) include(joinpath("mcmc.jl")) include(joinpath("sampler_mean.jl")) include(joinpath("sampler_covariance.jl")) include(joinpath("sampler_latentobservations.jl")) include(joinpath("modeloutput.jl")) #include(joinpath("sampler.jl")) include(joinpath("wrappers.jl")) #include(joinpath("deprecated.jl")) include(joinpath("dataset.jl")) include(joinpath("prediction.jl")) include(joinpath("external_function.jl")) #include(joinpath("old files/sim.jl")) ##### Dataset #rats = load(joinpath(@__DIR__,"data/rats.jld"))["data"] #rats_cov = load(joinpath(@__DIR__,"data/rats.jld"))["cov"] #rats_cov = load(joinpath(@__DIR__,"data/rats_cov.jld"))["data"] ##### Functions export ### Dataset dataset, dataset_desciption, dataset_names, ### Models generalSizeAndShapeMCMC, SizeAndShapeWithReflectionMCMC, sample_predictive_zbr, sample_predictive_zbr_plus_epsilon, ### TIPES KeepReflection, RemoveLocationHelmert, ValueP2, ValueP3, DoNotRemoveSize, GramSchmidtMean, MCMCNormalDataKeepSize, MCMCNormalDataKeepSize, LinearMean, MCMCLinearMean, GeneralCoVarianceIndependentDimension, generalMCMCObjectOUT, MCMCGeneralCoVarianceIndependentDimension, SizeAndShapeModelOutput, ### EXTERNAL sizeshape_helmertproduct_reflection, posterior_samples_beta, posterior_samples_sigma #NoPriorBeta, #NoPriorSigma, #compute_ss_from_pre, #compute_ss!, #compute_ss, #KeepReflection, #DoKeepReflection, #GeneralSigma, #standardize_reg, #SizeAndShapeMCMC, #Valuep2, #compute_designmatrix, #compute_dessignmatrix, #compute_helmertized_configuration, #SizeAndShapeModelOutput, #predictmean, #dataset_names, #create_designmatrix, #generalSizeAndShapeMCMC end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
1841
function dataset(dataset_name::AbstractString) basename = joinpath(@__DIR__, "..", "data") rdaname = joinpath(basename, string(dataset_name, ".rda")) #println(rdaname) if isfile(rdaname) dataset = load(rdaname)[dataset_name].data return (x = dataset[1], no = dataset[2], time = dataset[3]) end #csvname = joinpath(basename, string(dataset_name, ".csv.gz")) #if isfile(csvname) # return open(csvname,"r") do io # uncompressed = IOBuffer(read(GzipDecompressorStream(io))) # DataFrame(CSV.File(uncompressed, delim=',', quotechar='\"', missingstring="NA", # types=get(Dataset_typedetect_rows, (package_name, dataset_name), nothing)) ) # end #end #error("Unable to locate dataset file $rdaname or $csvname") end """ dataset_desciption(dataset_name::AbstractString) It gives a description of the elements of the dataset (dataset_name) - the datasets are taken form the R package shape """ function dataset_desciption(dataset_name::AbstractString) if dataset_name == "rats" print(" Description: Rat skulls data, from X rays. 8 landmarks in 2 dimensions, 18 individuals observed at 7, 14, 21, 30, 40, 60, 90, 150 days Format: x: An array of landmark configurations 144 x 2 x 2 no: Individual rat number (note rats 3, 13, 20 missing due to incomplete data) time: observed time in days ") else println("dataset_name not available") end end """ dataset_names() It return the names of the available datasets - the datasets are taken form the R package shape """ function dataset_names() return ["rats"] end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
2741
""" sizeshape_helmertproduct_reflection(dataset::Array{Float64,3}) The function computes the Size-And-Shape version of the data `dataset`, with reflection information. The output is computed using the helmert matrix and the SVD trasformation """ function sizeshape_helmertproduct_reflection(dataset::Array{Float64,3}) n = size(dataset,3) k = size(dataset,1)-1 p = size(dataset,2) if p == 2 helmmat = RemoveLocationHelmert(k, ValueP2()); posthelmert = remove_location(dataset, helmmat); sizeandshape, _ = compute_sizeshape_fromnolocdata(posthelmert, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP2()); elseif p ==3 helmmat = RemoveLocationHelmert(k, ValueP3()); posthelmert = remove_location(dataset, helmmat); sizeandshape, _ = compute_sizeshape_fromnolocdata(posthelmert, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP3()); else error("p must be <= 3") end return sizeandshape end """ posterior_samples_beta(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } The function extract the posterior sample of the regressive coefficients from an object of type `SizeAndShapeModelOutput` """ function posterior_samples_beta(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } return modeloutput.posteriorsamples.beta end """ posterior_samples_sigma(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } The function extract the posterior sample of the covariance matrix from an object of type `SizeAndShapeModelOutput` """ function posterior_samples_sigma(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } return modeloutput.posteriorsamples.sigma end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
6677
function standardize_reg(reg::Matrix{Float64}, valp::ValueP2, indentifiability::GramSchmidtMean) reg[:,:] = reg * standardize_reg_computegamma(reg, valp,indentifiability) end function standardize_reg_computegamma(reg::Matrix{Float64}, valp::ValueP2, indentifiability::GramSchmidtMean) a1 = reg[1, :] a2 = reg[2, :] g1 = a1 / norm(a1, 2) g2 = (a2 - (transpose(a2) * g1) * g1) / norm(a2 - (transpose(a2) * g1) * g1, 2) gammamat = reshape([g1; g2], (2, 2)) if det(gammamat) < 0 gammamat[:, 2] = - gammamat[:, 2] end return gammamat end function standardize_reg(reg::Matrix{Float64}, valp::ValueP3, indentifiability::GramSchmidtMean) reg[:,:] = reg * standardize_reg_computegamma(reg, valp,indentifiability) end function standardize_reg_computegamma(reg::Matrix{Float64}, valp::ValueP3, indentifiability::GramSchmidtMean) a1 = reg[1, :] a2 = reg[2, :] a3 = reg[3, :] g1 = a1 / norm(a1, 2) g2 = (a2 - (transpose(a2) * g1) * g1) / norm(a2 - (transpose(a2) * g1) * g1, 2) g3 = (a3 - (transpose(a3) * g1) * g1 - (transpose(a3) * g2) * g2) / norm(a3 - (transpose(a3) * g1) * g1 - (transpose(a3) * g2) * g2, 2) gammamat = reshape([g1; g2; g3], (3, 3)) if det(gammamat) < 0 gammamat[:, 2] = - gammamat[:, 2] end return gammamat end #function standardize_reg(reg::Matrix{Float64}, valp::ValueP2) # reg[:,:] = reg * standardize_reg_computegamma(reg, valp) #end #function standardize_reg_computegamma(reg::Matrix{Float64}, valp::ValueP2) # a1 = reg[1, :] # a2 = reg[2, :] # g1 = a1 / norm(a1, 2) # g2 = (a2 - (transpose(a2) * g1) * g1) / norm(a2 - (transpose(a2) * g1) * g1, 2) # gammamat = reshape([g1; g2], (2, 2)) # if det(gammamat) < 0 # gammamat[:, 2] = - gammamat[:, 2] # end # return gammamat #end function compute_designmatrix(zmat::Matrix{Float64}, k::Int64)::Array{Float64,3} n, d = size(zmat) res::Array{Float64,3} = zeros(Float64, k, k * d, n) for i = 1:n res[:, :, i] = kronecker(transpose(zmat[i, :]), Matrix{Float64}(I, k, k)) end return res end function compute_designmatrix(zmat::DataFrame, k::Int64)::Array{Float64,3} n, d = size(zmat) res::Array{Float64,3} = zeros(Float64, k, k * d, n) for i = 1:n res[:, :, i] = kronecker(transpose([values(zmat[i, :])...]), Matrix{Float64}(I, k, k)) end return res end function remove_location(landmarks::Array{Float64,3}, removelocation::RemoveLocationHelmert)::Array{Float64,3} H = removelocation.matrix ret = deepcopy(landmarks) ret = ret[2:end,:,:] for i = 1:size(landmarks,3) ret[:,:,i] = H*landmarks[:,:,i] end return ret end #function compute_sizeshape_fromnolocdata(landmarks::Array{Float64,3}, keepreflection::KeepReflection, valp::ValueP2)::Tuple{Array{Float64, 3}, Array{Float64, 3}} # dataret = deepcopy(landmarks) # rotret = Array{Float64}(undef,2,2,size(landmarks,3)) # for i = axes(landmarks, 3) # app = svd(landmarks[:, :, i]) # U = app.U # V = transpose(app.Vt) # if sign(V[1, 2]) != sign(V[2, 1]) # dataret[:, :, i] = U * Diagonal(app.S) # rotret[:, :, i] = V # else # U[:,2] = -1.0*U[:,2] # V[:, 2] = -1.0 * V[:, 2] # dataret[:, :, i] = U * Diagonal(app.S) # rotret[:, :, i] = V # end # end # #println(size(landmarks)) # #println(size(dataret)) # return dataret, rotret #end function compute_sizeshape_fromnolocdata(landmarks::Array{Float64,3}, keepreflection::KeepReflection, valp::P)::Tuple{Array{Float64, 3}, Array{Float64, 3}} where {P<:ValueP} p::Int64 = size(landmarks,2) dataret = deepcopy(landmarks) rotret = Array{Float64}(undef,p,p,size(landmarks,3)) for i = axes(landmarks, 3) app = svd(landmarks[:, :, i]) U = app.U V = transpose(app.Vt) if det(V) > 0.0 dataret[:, :, i] = U * Diagonal(app.S) rotret[:, :, i] = V else U[:,2] = -1.0*U[:,2] V[:, 2] = -1.0 * V[:, 2] dataret[:, :, i] = U * Diagonal(app.S) rotret[:, :, i] = V end end return dataret, rotret end function create_designmatrix(fm::FormulaTerm, covariates::DataFrame, k::Int64 )::Tuple{Array{Float64, 3}, Int64, Vector{String}, Matrix{Float64}} #println(covariates[1:3,:]) #error("") covariates_copy = deepcopy(covariates) for i = 1:size(covariates_copy,2) if isa(covariates_copy[:,i], CategoricalArray) elseif isa(covariates_copy[1,i], Real) #covariates_copy[:,i] = (covariates_copy[:,i] .- mean(covariates_copy[:,i])) ./ std(covariates_copy[:,i]) else error("Only factors or Real variables are allowed in covariates") end end designmatrix_v2_app = ModelFrame(fm, covariates_copy); designmatrix_v2 = ModelMatrix(designmatrix_v2_app).m #println(designmatrix_v2[1:3,:]) #error("") designmatrix = compute_designmatrix(designmatrix_v2, k) # dimensions k, k * d, n @assert sum(designmatrix_v2[:, 1] .== 1) == size(designmatrix_v2,1) "intercept needed" return designmatrix, size(designmatrix_v2,2), coefnames(designmatrix_v2_app), designmatrix_v2 end function compute_yrdata(yrdata::Array{Float64,3}, ssdata::Array{Float64,3}, rmat::Array{Float64,3}) for i = axes(ssdata,3) yrdata[:, :, i] = ssdata[:, :, i] * transpose(rmat[:, :, i]) end return nothing end function compute_angle_from_rmat(i::Int64,angle::Matrix{Float64}, rmat::Array{Float64,3}, valp::ValueP2, reflection::KeepReflection) angle[1, i] = atan(rmat[2, 1, i], rmat[1, 1, i]) return nothing end function compute_angle_from_rmat(i::Int64,angle::Matrix{Float64}, rmat::Array{Float64,3}, valp::ValueP3, reflection::KeepReflection) #### http://eecs.qmul.ac.uk/~gslabaugh/publications/euler.pdf ### angle[2,i] = -asin(rmat[3,1,i]) angle[3,i] = atan( rmat[3,2,i]/cos(angle[2,i]), rmat[3,3,i]/cos(angle[2,i])) angle[1,i] = atan( rmat[2,1,i]/cos(angle[2,i]), rmat[1,1,i]/cos(angle[2,i])) return nothing end #function compute_angle_from_rmat(i::Int64, angle::Matrix{Float64}, rmat::Array{Float64,3}, valp::Valuep3, reflection::KeepReflection) # #x convention # angle[1, i] = atan(rmat[3, 1, i], rmat[3, 2, i]) # angle[2, i] = acos(rmat[3, 3, i]) # angle[3, i] = -atan(rmat[1, 3, i], rmat[2, 3, i]) # return nothing #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
8879
function generalSizeAndShapeMCMC(; landmarks::Array{Float64,3}, fm::FormulaTerm = @formula(1~ 1), covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}} =( iter=1000, burnin=200, thin=2 ), betaprior::ContinuousUnivariateDistribution = Normal(0.0, 10000.0), sigmaprior::ContinuousMatrixDistribution, beta_init::Matrix{Float64} = zeros(Float64,0,0), sigma_init::Symmetric{Float64,Matrix{Float64}} = Symmetric(zeros(Float64,0,0)), rmat_init::Array{Float64,3} = zeros(Float64,0,0,0), #dormat::Bool, identification::String = ["gramschmidt"][1], meanmodel::String = ["linear"][1], covariancemodel::String = ["general_nocrosscorrelation"][1], keepreflection::String = ["no", "yes"][2], removelocation::String = ["no", "helmert"][2], removesize::String = ["no", "norm"][2], rmatdosample::Bool = true, verbose::Bool = true ) ##### dimensions k::Int64 = size(landmarks, 1)-1 kland::Int64 = size(landmarks, 1) p::Int64 = size(landmarks, 2) n::Int64 = size(landmarks, 3) pangle::Int64 = ifelse(p==2,1,3) ##### Types reflectioninformation::Reflection = KeepReflection(); if keepreflection == "yes" reflectioninformation = KeepReflection() elseif keepreflection == "no" reflectioninformation = DoNotKeepReflection(); error("keepreflection == \"no\" not implemented") else error("keepreflection should be in [\"no\", \"yes\"]") end valp::ValueP = ValueP2(); if p == 2 valp = ValueP2(); elseif p == 3 valp = ValueP3(); #error("Models with dimension p>2 are not implemented") else error("Models with dimension p>2 are not implemented") end locationinformation::RemoveLocation = RemoveLocationHelmert(k, valp); if removelocation == "helmert" locationinformation = RemoveLocationHelmert(k, valp); elseif removelocation == "no" locationinformation = DoNotRemoveLocation(kland, valp); error("removelocation == \"no\" not implemented") else error("removelocation should be in [\"no\", \"helmert\"]") end sizeinformation::RemoveSize = DoNotRemoveSize(); if removesize == "no" sizeinformation = DoNotRemoveSize(); elseif removesize == "norm" sizeinformation = RemoveSizeNorm(); error("removesize \"norm\" not implemented") else error("removesize should be in [\"no\", \"norm\"]") end ##### identifiability ##### identifiability_constraint::IdentifiabilityConstraint = GramSchmidtMean() if identification == "gramschmidt" identifiability_constraint = GramSchmidtMean() else error("identification should be in [\"gramschmidt\"]") end if (identification == "gramschmidt") & (meanmodel != "linear") error("identification \"gramschmidt\" can only be used with meanmodel \"linear\"") end ##### DATASET ##### if rmatdosample == true rmatsample = DoSampleRmat() else rmatsample = DoNotSampleRmat() end datamodel = SSDataType(landmarks, reflectioninformation,locationinformation,valp,sizeinformation,identifiability_constraint); data_mcmc = MCMCdata(rmat_init, datamodel,rmatsample; sdprop_adapt_init = 0.1, accratio_adapt_init = 0.234, molt_adapt_init = 0.4, iter_adapt_init = 50, init_adapt_init= 100, end_adapt_init = Int64(iterations.burnin*0.9), a_adapt_init = 100.0, b_adapt_init = 200.0) ###### mean ##### mean_model::TypeModelMean = LinearMean(fm, covariates, datamodel, identifiability_constraint) if meanmodel == "linear" mean_model = LinearMean(fm, covariates, datamodel, identifiability_constraint) else error("meanmodel should be in [\"linear\"]") end mean_mcmc::MCMCTypeModelMean = MCMCMean(mean_model, valp, beta_init,betaprior,datamodel) ###### covariance ##### covariance_model::TypeModelCoVariance = GeneralCoVarianceIndependentDimension(identifiability_constraint,datamodel); if covariancemodel == "general_nocrosscorrelation" covariance_model = GeneralCoVarianceIndependentDimension(identifiability_constraint,datamodel); else error("covariancemodel should be in [\"general_nocrosscorrelation\"]") end covariance_mcmc = MCMCCovariance(covariance_model, sigma_init, sigmaprior, datamodel) ##### asserts @assert size(datamodel.nolocdata, 3) == size(covariates,1) # n @assert size(datamodel.nolocdata, 3) == size(mean_model.model_matrix,1) # n @assert size(mean_model.designmatrix, 1) == size(datamodel.nolocdata, 1) # k @assert size(mean_model.designmatrix, 3) == size(datamodel.nolocdata, 3) # n @assert size(mean_model.designmatrix, 2) == size(datamodel.nolocdata, 1) * size(mean_model.model_matrix,2) #k d ##### print messages ##### if verbose if (removelocation != "no") & (removesize == "no") print("\n\n") print("Size And Shape Model") end if keepreflection == "yes" print(" with reflection information \n") end println("\nThe data has ", kland," ", p,"-dimensional landmarks in ", n, " shapes", ) if true == true println("The mean is modelled with a linear function and it has ", mean_model.d, " regressive coefficients for each dimension*(landmark-1), with a total of ", size(mean_model.designmatrix,2)*datamodel.p, " regressors") end if true == true println("The covariance is unstructured and shared between dimensions, with no cross-correlation") end if typeof(identifiability_constraint) <:GramSchmidtMean println("\nFor identifiability, the regressive coefficients are trasformed using a Gram-Schmidt transformation\n") end end ###### MCMC object ##### iter = Int64(iterations.iter) burnin = Int64(iterations.burnin) thin = Int64(iterations.thin) sampletosave = trunc(Int64, round((iter - burnin) / thin)) ##### #### #### #### #### ##### MCMC out ##### #### #### #### #### posteriorparamters = create_object_output(sampletosave, mean_mcmc, covariance_mcmc, data_mcmc, mean_model) ##### #### #### #### #### ##### algrothm ##### #### #### #### #### iterMCMC = Int64(0) thinburnin = burnin p1 = Progress(burnin, desc = "burnin ", offset = 0, showspeed = true) p2 = Progress( burnin + (sampletosave - 1) * thin, desc = "iterations ", offset = 0, showspeed = true, ) isburn = true println("MCMC settings ") println("Iterations: ", iter) println("Burnin: ", burnin) println("Thin: ", thin) println("Number of posterior samples: ", sampletosave) println("Number of threads: ", Threads.nthreads()) for iMCMC = 1:sampletosave for jMCMC = 1:thinburnin iterMCMC += 1 sampler_mean(datamodel, data_mcmc,mean_model,mean_mcmc,covariance_model,covariance_mcmc) sampler_covariance(datamodel, data_mcmc,mean_model,mean_mcmc,covariance_model,covariance_mcmc) sampler_latentobservations(iterMCMC, datamodel, data_mcmc,mean_model,mean_mcmc,covariance_model,covariance_mcmc) ProgressMeter.next!(p2; showvalues = [(:iterations, iterMCMC)]) end thinburnin = thin isburn = false copy_parameters_out(iMCMC, posteriorparamters, mean_mcmc, datamodel, covariance_mcmc, data_mcmc) end return SizeAndShapeModelOutput( datamodel, data_mcmc, mean_model, mean_mcmc, covariance_model, covariance_mcmc, posteriorparamters, (iter = iter, burnin = burnin, thin = thin, savedsamples =sampletosave) ) ##### #### #### #### ##### OUTPUT ##### #### #### #### #nsim = size(betaOUT,1) #mcmcoutputSAVE = (beta = bbb, sigma = sss, rmat = rrr, angle = ttt) #mcmcoutputArraysSAVE = (beta = betaOUT, sigma = sigmaOUT, rmat = rmatOUT, angle = angleOUT) #covariatesSAVE = (colnames_modelmatrix = colnames_modelmatrix, fm = deepcopy(fm), covariates = deepcopy(covariates), # designmatrix_step1 = designmatrix_v2, designmatrix_step2 = designmatrix) #datasetSAVE = deepcopy(dataset) #modeltypesSAVE = (dormat=dormat, reflection = reflection, sigmatype=sigmatype, betaprior = betaprior, sigmaprior = sigmaprior, valp = valp); #iterationsSAVE = (iter = iter, burnin = burnin, thin = thin, savedsamples =sampletosave); #indicesSAVE = (k=k, p=p, n=n, d=d); #return SizeAndShapeModelOutput(mcmcoutputSAVE , mcmcoutputArraysSAVE , covariatesSAVE , datasetSAVE , modeltypesSAVE , iterationsSAVE , indicesSAVE ) end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
5465
#### #### #### #### #### #### #### Model OUT #### #### #### #### #### #### abstract type outputMCMCSizeAndShape end struct SizeAndShapeModelOutput{R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint ,DM<:MCMCData, MT<:TypeModelMean,MM<:MCMCTypeModelMean,CT<:TypeModelCoVariance,CM<:MCMCTypeModelCoVariance,PS<:MCMCObjectOUT } <: outputMCMCSizeAndShape datatype::SSDataType{R,RL,VP,RS,IC} datamcmc::DM meantype::MT meanmcmc::MM covtype::CT covmcmc::CM posteriorsamples::PS mcmciterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}} function SizeAndShapeModelOutput( datatype::SSDataType{R,RL,VP,RS,IC}, datamcmc::DM, meantype::MT, meanmcmc::MM, covtype::CT, covmcmc::CM, posteriorsamples::PS, mcmciterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}} ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint ,DM<:MCMCData, MT<:TypeModelMean,MM<:MCMCTypeModelMean,CT<:TypeModelCoVariance,CM<:MCMCTypeModelCoVariance,PS<:MCMCObjectOUT } new{R,RL,VP,RS,IC,DM, MT,MM,CT,CM,PS}(datatype, datamcmc, meantype, meanmcmc, covtype, covmcmc,posteriorsamples, mcmciterations) end end #abstract type outputMCMCSizeAndShape end #struct SizeAndShapeModelOutput{TR<:Reflection,TS<:SigmaType,TP<:Valuep,DB<:ContinuousUnivariateDistribution,DS<:ContinuousMatrixDistribution, FF<:FormulaTerm} <: outputMCMCSizeAndShape # mcmcoutput::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{DataFrame, DataFrame, DataFrame, DataFrame}} # mcmcoutputArrays::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{Array{Float64, 3}, Array{Float64, 3}, Array{Float64, 4}, Array{Float64, 3}}} # covariates::NamedTuple{(:colnames_modelmatrix, :fm, :covariates, :designmatrix_step1, :designmatrix_step2), Tuple{Vector{String}, FF, DataFrame, Matrix{Float64}, Array{Float64, 3}} } # dataset::Array{Float64,3}; # modeltypes::NamedTuple{(:dormat, :reflection, :sigmatype, :betaprior, :sigmaprior, :valp), Tuple{Bool, TR, TS, DB,DS, TP} } # iterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}}; # indices::NamedTuple{(:k, :p, :n, :d),Tuple{Int64,Int64,Int64, Int64}}; # function SizeAndShapeModelOutput( # mcmcoutput::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{DataFrame, DataFrame, DataFrame, DataFrame}}, # mcmcoutputArrays::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{Array{Float64, 3}, Array{Float64, 3}, Array{Float64, 4}, Array{Float64, 3}}}, # covariates::NamedTuple{(:colnames_modelmatrix, :fm, :covariates, :designmatrix_step1, :designmatrix_step2), Tuple{Vector{String}, FF, DataFrame, Matrix{Float64}, Array{Float64, 3}} }, # dataset::Array{Float64,3}, # modeltypes::NamedTuple{(:dormat, :reflection, :sigmatype, :betaprior, :sigmaprior, :valp), Tuple{Bool, TR, TS, DB,DS, TP} }, # iterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}}, # indices::NamedTuple{(:k, :p, :n, :d),Tuple{Int64,Int64,Int64, Int64}}) where {TR<:Reflection,TS<:SigmaType,TP<:Valuep,DB<:ContinuousUnivariateDistribution,DS<:ContinuousMatrixDistribution,FF<:FormulaTerm} # new{TR,TS,TP,DB,DS, FF}(mcmcoutput, mcmcoutputArrays, covariates, dataset, modeltypes, iterations, indices) # end #end #### #### #### #### #### #### #### FUNCTIONS #### #### #### #### #### #### #function create_output(beta::Array{Float64, 3}, # sigma::Array{Float64, 3}, # rmat::Array{Float64, 4}, # angle::Array{Float64, 3}, # beta_nonid::Array{Float64, 3}, # rmat_nonid::Array{Float64, 4}, # angle_nonid::Array{Float64, 3}, # colnames_modelmatrix::Vector{String}, # fm::FormulaTerm, # betaprior::ContinuousUnivariateDistribution, # sigmaprior::ContinuousMatrixDistribution, # k::Int64, # p::Int64, # n::Int64, # d::Int64, # dormat::Bool, # reflection::Reflection, # sigmatype::SigmaType, # dataset::Array{Float64,3}, # covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, # designmatrix_step1::Array{Float64, 3}, # designmatrix_step2::Matrix{Float64}) # p2KeepReflectionGeneralSigma(beta::Array{Float64, 3}, # sigma::Array{Float64, 3}, # rmat::Array{Float64, 4}, # angle::Array{Float64, 3}, # beta_nonid::Array{Float64, 3}, # rmat_nonid::Array{Float64, 4}, # angle_nonid::Array{Float64, 3}, # colnames_modelmatrix::Vector{String}, # fm::FormulaTerm, # betaprior::ContinuousUnivariateDistribution, # sigmaprior::ContinuousMatrixDistribution, # k::Int64, # p::Int64, # n::Int64, # d::Int64, # dormat::Bool, # reflection::Reflection, # sigmatype::SigmaType, # dataset::Array{Float64,3}, # covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, # designmatrix_step1::Array{Float64, 3}, # designmatrix_step2::Matrix{Float64}) #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
3146
function sample_predictive_zbr(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } designmatrix = modeloutput.meantype.designmatrix beta = modeloutput.posteriorsamples.identbeta rmat = modeloutput.posteriorsamples.identrmat nsim::Int64 = size(beta,1) n::Int64 = modeloutput.datatype.n k::Int64 = modeloutput.datatype.k p::Int64 = modeloutput.datatype.p res = DataFrame(zeros(Float64,nsim,k*p*n),:auto) for iobs = 1:n for i = 1:size(beta,1) res[i,((iobs-1)*k*p) .+ (1:(k*p))] = (designmatrix[:,:,iobs]*beta[i,:,:]*rmat[i,:,:,iobs])[:] #res[i,((iobs-1)*k*p) .+ (1:(k*p))] = (designmatrix[:,:,iobs]*beta[i,:,:])[:] end end rename!(res, "mu_".* string.(repeat(1:n, inner = k*p)) .* ",(" .* string.(repeat(1:k, outer = p*n)) .* "," .* string.(repeat(repeat(1:p, inner = k),outer = n)) .* ")" ) return res #res = [zeros(Float64, nsim, k,p) for i = 1:n]; #for iobs = 1:n # for i = 1:size(beta,1) # res[iobs][i,:,:] = designmatrix[:,:,iobs]*beta[i,:,:]*rmat[i,:,:,iobs] # end #end #res = DataFrame(zeros(Float64,nsim,k*p*n),:auto) #return res end function sample_predictive_zbr_plus_epsilon(modeloutput::SizeAndShapeModelOutput{KeepReflection,RL,P,DoNotRemoveSize,GramSchmidtMean,<:MCMCNormalDataKeepSize,<:LinearMean,<:MCMCLinearMean,CT,CM,PS}) where { RL<:RemoveLocation, CT<:TypeModelCoVariance, CM<:MCMCTypeModelCoVariance, PS<:MCMCObjectOUT, P<:ValueP } designmatrix = modeloutput.meantype.designmatrix beta = modeloutput.posteriorsamples.identbeta sigma = modeloutput.posteriorsamples.identsigma rmat = modeloutput.posteriorsamples.identrmat nsim::Int64 = size(beta,1) n::Int64 = modeloutput.datatype.n k::Int64 = modeloutput.datatype.k p::Int64 = modeloutput.datatype.p res = DataFrame(zeros(Float64,nsim,k*p*n),:auto) for iobs = 1:n for i = 1:size(beta,1) res[i,((iobs-1)*k*p) .+ (1:(k*p))] = (designmatrix[:,:,iobs]*beta[i,:,:]*rmat[i,:,:,iobs])[:] + vcat([rand(MvNormal([0.0 for i = 1:k],Symmetric(sigma[i,:,:]))) for iii = 1:p]...) #for ip = 1:p # res[i,((iobs-1)*k*p + (p-1)*k) .+ (1:k)] = res[i,((iobs-1)*k*p + (p-1)*k) .+ (1:k)] #end #res[i,((iobs-1)*k*p) .+ (1:(k*p))] = (designmatrix[:,:,iobs]*beta[i,:,:])[:] end end rename!(res, "X_".* string.(repeat(1:n, inner = k*p)) .* ",(" .* string.(repeat(1:k, outer = p*n)) .* "," .* string.(repeat(repeat(1:p, inner = k),outer = n)) .* ")" ) return res #res = [zeros(Float64, nsim, k,p) for i = 1:n]; #for iobs = 1:n # for i = 1:size(beta,1) # res[iobs][i,:,:] = designmatrix[:,:,iobs]*beta[i,:,:]*rmat[i,:,:,iobs] # end #end #res = DataFrame(zeros(Float64,nsim,k*p*n),:auto) #return res end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
2931
#### #### #### #### #### #### #### BETA #### #### #### #### #### #### function sampler_covariance( datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCData, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} error("sampler_covariance") end function sampler_covariance( datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCData, mean_model::TypeModelMean, mean_mcmc::MCMCLinearMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCGeneralCoVarianceIndependentDimension{<:NoPriorSigma} ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} # No sample beta #println("No Prir") end function sampler_covariance( datamodel::SSDataType{R,RL,VP,DoNotRemoveSize,IC}, data_mcmc::MCMCNormalDataKeepSize{R,RL,VP}, mean_model::LinearMean, mean_mcmc::MCMCLinearMean, covariance_model::GeneralCoVarianceIndependentDimension, covariance_mcmc::MCMCGeneralCoVarianceIndependentDimension{<:InverseWishart} ) where {R<:Reflection,VP<:ValueP,IC<:IdentifiabilityConstraint,RL<:DoRemoveLocation} meanMCMC = mean_mcmc.mean_mcmc sigmaMCMC = covariance_mcmc.covariance_mcmc invMat = covariance_mcmc.invcovariance_mcmc prior = covariance_mcmc.prior_covariance yrdata = data_mcmc.yr_mcmc #kd::Int64 = size(betaMCMC,1) p::Int64 = datamodel.p n::Int64 = datamodel.n nup::Float64 = params(prior)[1] + Float64(n*p) Psip = deepcopy(params(prior)[2].mat) app = yrdata[:, :,:] - meanMCMC[:,:,:] for ip = 1:p for j = 1:n Psip[:,:] += app[:,ip,j]*transpose(app[:,ip,j]) end end #println("a1= ", yrdata[:,:,1]) #println("a2 = ", meanMCMC[:,:,1]) #println("ssdata = ", data_mcmc.ssdata[:,:,1]) #println("") #println([n,p]) #println("") #println(nup) #println(Psip) sigmaMCMC.data[:, :] = rand(InverseWishart(nup, Symmetric(Psip).data)) #println(sigmaMCMC.data) cc = cholesky(sigmaMCMC) covariance_mcmc.invcovariance_mcmc.data[:,:] = inv(cc)[:,:] covariance_mcmc.logdeterminant_mcmc[:]= [log(det(cc))] #error("") return nothing end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::NoPriorBeta, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) #end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::Normal, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) # #standardize_reg(betastandMCMC, valp) #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
8612
#### #### #### #### #### #### #### BETA #### #### #### #### #### #### function sampler_latentobservations( iterMCMC::Int64, datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCData, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} error("sampler_latentobservations") end function sampler_latentobservations( iterMCMC::Int64, datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCNormalDataKeepSize{R,RL,VP,<:DoNotSampleRmat}, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} # No sample beta end function sampler_latentobservations( iterMCMC::Int64, datamodel::SSDataType{KeepReflection,RL,ValueP2,RS,IC}, data_mcmc::MCMCNormalDataKeepSize{KeepReflection,RL,ValueP2,<:DoSampleRmat}, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {RL<:RemoveLocation,RS<:RemoveSize,IC<:IdentifiabilityConstraint} #meanMCMC = mean_mcmc.mean_mcmc #sigmaMCMC = covariance_mcmc.covariance_mcmc #invMat = covariance_mcmc.invcovariance_mcmc #prior = covariance_mcmc.prior_covariance #yrdata = data_mcmc.yr_mcmc #betaMCMC = mean_mcmc.beta_mcmc invMat = covariance_mcmc.invcovariance_mcmc p::Int64 = datamodel.p n::Int64 = datamodel.n k::Int64 = datamodel.k for j = 1:n #mui = designmatrix[:, :, j] * betaMCMC[:, :] #@toggled_assert size(mui) == (k,p) #println(size(datamodel.ssdata[:,:,j])) Ai = transpose(mean_mcmc.mean_mcmc[:,:,j]) * invMat * datamodel.ssdata[:,:,j] #println(size(Ai)) x1 = Ai[1, 1] + Ai[2, 2] x2 = Ai[2, 1] - Ai[1, 2] #x2 = Ai[1, 2] - Ai[2, 1] kvonmises = sqrt(x1^2 + x2^2) muvonmises = atan(x2 / kvonmises, x1 / kvonmises) #muvonmises = atan(x1 / kvonmises, x2 / kvonmises) data_mcmc.angles_mcmc[1, j] = rand(VonMises(muvonmises, kvonmises)) data_mcmc.rmat_mcmc[1, 1, j] = cos(data_mcmc.angles_mcmc[1, j]) data_mcmc.rmat_mcmc[1, 2, j] = -sin(data_mcmc.angles_mcmc[1, j]) data_mcmc.rmat_mcmc[2, 1, j] = sin(data_mcmc.angles_mcmc[1, j]) data_mcmc.rmat_mcmc[2, 2, j] = cos(data_mcmc.angles_mcmc[1, j]) #xdata[:, :, j] = ydata[:, :, j] * transpose(rmatMCMC[:,:,j]) end compute_yrdata(data_mcmc.yr_mcmc, datamodel.ssdata, data_mcmc.rmat_mcmc) end function sampler_latentobservations( iterMCMC::Int64, datamodel::SSDataType{KeepReflection,RL,ValueP3,RS,IC}, data_mcmc::MCMCNormalDataKeepSize{KeepReflection,RL,ValueP3,<:DoSampleRmat}, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {RL<:RemoveLocation,RS<:RemoveSize,IC<:IdentifiabilityConstraint} n::Int64 = datamodel.n for j = 1:n sampler_latentobservations(j, iterMCMC, datamodel, data_mcmc, mean_model, mean_mcmc, covariance_model, covariance_mcmc) end compute_yrdata(data_mcmc.yr_mcmc, datamodel.ssdata, data_mcmc.rmat_mcmc) end function sampler_latentobservations(j::Int64, iterMCMC::Int64, datamodel::SSDataType{KeepReflection,RL,ValueP3,RS,IC}, data_mcmc::MCMCNormalDataKeepSize{KeepReflection,RL,ValueP3,<:DoSampleRmat}, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {RL<:RemoveLocation,RS<:RemoveSize,IC<:IdentifiabilityConstraint} #### https://arxiv.org/abs/math/0503712 #### Bayesian alignment using hierarchical models, with applications in protein bioinformatics p::Int64 = datamodel.p n::Int64 = datamodel.n k::Int64 = datamodel.k angles = data_mcmc.angles_mcmc invMat = covariance_mcmc.invcovariance_mcmc MHratio::Float64 = 0.0 molt::Float64 = 0.0 alpha_mean::Float64 = 0.0 Ai = transpose(mean_mcmc.mean_mcmc[:,:,j]) * invMat * datamodel.ssdata[:,:,j] #### angle1 (-pi, pi) x1 = (Ai[2,2] - sin(angles[2,j]) * Ai[1,3]) * cos(angles[3,j]) x1 += (-Ai[2,3]- sin(angles[2,j])*Ai[1,2]) * sin(angles[3,j]) x1 += cos(angles[2,j])*Ai[1,1] x2 = (-sin(angles[2,j])*Ai[2,3]-Ai[1,2]) * cos(angles[3,j]) x2 += (Ai[1,3]- sin(angles[2,j])*Ai[2,2]) * sin(angles[3,j]) x2 += cos(angles[2,j])*Ai[2,1] kvonmises = sqrt(x1^2 + x2^2) muvonmises = atan(x2 / kvonmises, x1 / kvonmises) angles[1, j] = rand(VonMises(muvonmises, kvonmises)) #### angle2 (-pi/2, pi/2) x1 = sin(angles[1, j])*Ai[2,1] + cos(angles[1, j])*Ai[1,1] x1 += sin(angles[3, j])*Ai[3,2] + cos(angles[3, j])*Ai[3,3] x2 = (-sin(angles[3, j])*Ai[1,2]-cos(angles[3, j])*Ai[1,3])*cos(angles[1, j]) x2 += (-sin(angles[3, j])*Ai[2,2]-cos(angles[3, j])*Ai[2,3])*sin(angles[1, j]) x2 += Ai[3,1] # prop = rand(Uniform(angles[2, j]- lim, angles[2, j] + lim)) prop = rand(Normal(angles[2, j],data_mcmc.sdprop_adapt[2,j])) if (prop> - (pi/Float64(2.0))) & (prop < (pi/Float64(2.0))) MHratio = x1*cos(prop) + x2*sin(prop) + log(cos(prop)) MHratio -= x1*cos(angles[2, j]) + x2*sin(angles[2, j]) + log(cos(angles[2, j])) if rand(Uniform(0.0,1.0)) < exp(MHratio) angles[2, j] = prop #println("Acc") else #println("Rej") end data_mcmc.sumalpha[2,j] += min(exp(MHratio), 1.0) else data_mcmc.sumalpha[2,j] += 0.0 end if (iterMCMC>data_mcmc.init_adapt[2,j]) & (iterMCMC<data_mcmc.end_adapt[2,j]) molt = data_mcmc.a_adapt[2,j]/(data_mcmc.b_adapt[2,j] + iterMCMC) alpha_mean = data_mcmc.sumalpha[2,j]/data_mcmc.iter_adapt[2,j] data_mcmc.sdprop_adapt[2,j] = exp( log(data_mcmc.sdprop_adapt[2,j]) + molt*(alpha_mean - data_mcmc.accratio_adapt[2,j]) ) end if mod(iterMCMC, data_mcmc.iter_adapt[2,j]) == 0 data_mcmc.sumalpha[2,j] = 0.0 end #### angle3 (-pi, pi) x1 = (Ai[2,2] - sin(angles[2, j])*Ai[1,3])*cos(angles[1, j]) x1 += (-sin(angles[2, j])*Ai[2,3]-Ai[1,2])*sin(angles[1, j]) x1 += cos(angles[2,j])*Ai[3,3] x2 = (-Ai[2,3]-sin(angles[2, j])*Ai[1,2])*cos(angles[1, j]) x2 += (Ai[1,3]-sin(angles[2, j])*Ai[2,2])*sin(angles[1, j]) x2 += cos(angles[2,j])*Ai[3,2] kvonmises = sqrt(x1^2 + x2^2) muvonmises = atan(x2 / kvonmises, x1 / kvonmises) angles[3, j] = rand(VonMises(muvonmises, kvonmises)) compute_rtridim_from_angles(j, data_mcmc.rmat_mcmc, angles) #data_mcmc.rmat_mcmc[1, 1, j] = cos(data_mcmc.angles_mcmc[1, j]) #data_mcmc.rmat_mcmc[1, 2, j] = -sin(data_mcmc.angles_mcmc[1, j]) #data_mcmc.rmat_mcmc[2, 1, j] = sin(data_mcmc.angles_mcmc[1, j]) #data_mcmc.rmat_mcmc[2, 2, j] = cos(data_mcmc.angles_mcmc[1, j]) #xdata[:, :, j] = ydata[:, :, j] * transpose(rmatMCMC[:,:,j]) end function compute_rtridim_from_angles(i::Int64, rmat::Array{Float64,3}, angle::Matrix{Float64}) M1::Matrix{Float64} = zeros(Float64,3,3) M2::Matrix{Float64} = zeros(Float64,3,3) M3::Matrix{Float64} = zeros(Float64,3,3) M1[1,1] = cos(angle[1,i]) M1[2,2] = cos(angle[1,i]) M1[1,2] = -sin(angle[1,i]) M1[2,1] = sin(angle[1,i]) M1[3,3] = Float64(1.0) M2[1,1] = cos(angle[2,i]) M2[3,3] = cos(angle[2,i]) M2[1,3] = -sin(angle[2,i]) M2[3,1] = sin(angle[2,i]) M2[2,2] = Float64(1.0) M3[2,2] = cos(angle[3,i]) M3[3,3] = cos(angle[3,i]) M3[2,3] = -sin(angle[3,i]) M3[3,2] = sin(angle[3,i]) M3[1,1] = Float64(1.0) rmat[:,:,i] = M1*M2*M3 return nothing end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::NoPriorBeta, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) #end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::Normal, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) # #standardize_reg(betastandMCMC, valp) #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
2718
#### #### #### #### #### #### #### BETA #### #### #### #### #### #### function sampler_mean( datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCData, mean_model::TypeModelMean, mean_mcmc::MCMCTypeModelMean, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} error("sampler_mean") end function sampler_mean( datamodel::SSDataType{R,RL,VP,RS,IC}, data_mcmc::MCMCData, mean_model::TypeModelMean, mean_mcmc::MCMCLinearMean{<:NoPriorBeta}, covariance_model::TypeModelCoVariance, covariance_mcmc::MCMCTypeModelCoVariance ) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} # No sample beta end function sampler_mean( datamodel::SSDataType{R,RL,VP,DoNotRemoveSize,IC}, data_mcmc::MCMCNormalDataKeepSize{R,RL,VP}, mean_model::LinearMean, mean_mcmc::MCMCLinearMean{<:Normal}, covariance_model::GeneralCoVarianceIndependentDimension, covariance_mcmc::MCMCGeneralCoVarianceIndependentDimension ) where {R<:Reflection,VP<:ValueP,IC<:IdentifiabilityConstraint,RL<:DoRemoveLocation} betaMCMC = mean_mcmc.beta_mcmc invMat = covariance_mcmc.invcovariance_mcmc prior = mean_mcmc.prior_beta designmatrix = mean_model.designmatrix yrdata = data_mcmc.yr_mcmc kd::Int64 = size(betaMCMC,1) p::Int64 = datamodel.p n::Int64 = datamodel.n Vp::Matrix{Float64} = zeros(Float64, kd, kd) Mp::Vector{Float64} = zeros(Float64, kd) for ip = 1:p Vp[:, :] = Diagonal([1.0 / params(prior)[2]^2 for i = 1:kd]) Mp[:] .= params(prior)[1] / params(prior)[2]^2 for j = 1:n Vp[:, :] += transpose(designmatrix[:, :, j]) * invMat * designmatrix[:, :, j] Mp[:, :] += transpose(designmatrix[:, :, j]) * invMat * yrdata[:,ip,j] end Vp = Symmetric(inv(Vp)) Mp = Vp*Mp betaMCMC[:,ip] = rand(MvNormal(Mp,Vp)) end for ip = 1:p for j = 1:n mean_mcmc.mean_mcmc[:, ip, j] = designmatrix[:, :, j] * betaMCMC[:, ip] end end end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::NoPriorBeta, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) #end #function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::Normal, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) # #standardize_reg(betastandMCMC, valp) #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
20227
#### #### #### #### #### #### #### Distributions #### #### #### #### #### #### struct NoPriorBeta <: ContinuousUnivariateDistribution function NoPriorBeta() new() end end struct NoPriorSigma <: ContinuousMatrixDistribution function NoPriorSigma() new() end end #### #### #### #### #### #### #### Sample R #### #### #### #### #### #### abstract type SampleRmat end struct DoSampleRmat <: SampleRmat function DoSampleRmat() new() end end struct DoNotSampleRmat <: SampleRmat function DoNotSampleRmat() new() end end #### #### #### #### #### #### #### dimension #### #### #### #### #### #### abstract type ValueP end struct ValueP2 <: ValueP p::Int64 function ValueP2() new(2) end end struct ValueP3 <: ValueP p::Int64 function ValueP3() new(3) end end #### #### #### #### #### #### #### REflections #### #### #### #### #### #### abstract type Reflection end struct KeepReflection <: Reflection function KeepReflection() new() end end struct DoNotKeepReflection <: Reflection function DoNotKeepReflection() new() end end #### #### #### #### #### #### #### Data Trans #### #### #### #### #### #### abstract type RemoveLocation end abstract type DoRemoveLocation <: RemoveLocation end struct DoNotRemoveLocation <: RemoveLocation function DoNotRemoveLocation() new() end end struct RemoveLocationHelmert{VP<:ValueP} <: DoRemoveLocation matrix::Array{Float64} valp::VP function RemoveLocationHelmert(k::Int64, val::VP) where {VP<:ValueP} H::Matrix{Float64} = zeros(Float64, k + 1, k + 1) for i = 1:(k+1) H[i, i] = (i - 1) / (i * (i - 1))^0.5 end for i = 2:(k+1) for j = 1:(i-1) H[i, j] = -1.0 / (i * (i - 1))^0.5 end end H = H[2:end, :] new{VP}(H, val) end end #struct DoNotRemoveLocation{VP<:ValueP} <: RemoveLocation # matrix::Array{Float64} # valp::VP # function DoNotRemoveLocation(k::Int64, val::VP) where {VP<:ValueP} # H::Matrix{Float64} = zeros(Float64, k, k) # for i = 1:k # H[i, i] = 1.0 # end # new{VP}(H, val) # end #end abstract type RemoveSize end abstract type DoRemoveSize <: RemoveSize end struct DoNotRemoveSize <: RemoveSize function DoNotRemoveSize() new() end end struct RemoveSizeNorm <: DoRemoveSize function RemoveSizeNorm() new() end end #struct DoNotRemoveSize <: RemoveSize # function DoNotRemoveSize() # new() # end #end ##### #### #### #### #### #### ##### Constraints ##### #### #### #### #### #### abstract type IdentifiabilityConstraint end struct GramSchmidtMean <: IdentifiabilityConstraint function GramSchmidtMean() new() end end ##### #### #### #### #### #### ##### Data ##### #### #### #### #### #### abstract type GeneralDataType end struct SSDataType{R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} <: GeneralDataType landmarks::Array{Float64,3} nolocdata::Array{Float64,3} ssdata::Array{Float64,3} sdata::Array{Float64,3} ssdata_rotmat::Array{Float64,3} reflection::R removelocation::RL valp::VP removesize::RS identifiability::IC n::Int64 k::Int64 p::Int64 function SSDataType{R,RL,VP,RS,IC}(landmarks::Array{Float64}, nolocdata::Array{Float64,3}, ssdata::Array{Float64,3}, sdata::Array{Float64,3}, ssdata_rotmat::Array{Float64,3}, reflection::R, removelocation::RL, valp::VP, removesize::RS, identifiability::IC, n::Int64, k::Int64, p::Int64) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,RS<:RemoveSize,IC<:IdentifiabilityConstraint} new{R,RL,VP,RS,IC}(landmarks, nolocdata, ssdata, sdata, ssdata_rotmat, reflection, removelocation, valp, removesize, identifiability, n, k, p) end end function SSDataType(landmarks::Array{Float64}, reflection::KeepReflection, removelocation::RemoveLocationHelmert, valp::P, removesize::DoNotRemoveSize, identification::IC) where {IC<:IdentifiabilityConstraint, P<:ValueP} k::Int64 = size(landmarks, 1) - 1 n::Int64 = size(landmarks, 3) p::Int64 = size(landmarks, 2) nolocdata = remove_location(landmarks, removelocation) ssdata, ssdata_rotmat = compute_sizeshape_fromnolocdata(nolocdata, reflection, valp) # FIXME: sdata should be the shape data sdata = deepcopy(ssdata) SSDataType{KeepReflection,RemoveLocationHelmert,P,DoNotRemoveSize,IC}(landmarks, nolocdata, ssdata, sdata, ssdata_rotmat, reflection, removelocation, valp, removesize, identification, n, k, p) end abstract type MCMCData end struct MCMCNormalDataKeepSize{R<:Reflection,RL<:RemoveLocation,VP<:ValueP,D<:SampleRmat} <: MCMCData rmat_mcmc::Array{Float64,3} rmat_prop::Array{Float64,3} yr_mcmc::Array{Float64,3} yr_prop::Array{Float64,3} angles_mcmc::Array{Float64,2} angles_prop::Array{Float64,2} rmat_dosample::D sdprop_adapt::Array{Float64,2} accratio_adapt::Array{Float64,2} molt_adapt::Array{Float64,2} iter_adapt::Array{Int64,2} init_adapt::Array{Int64,2} end_adapt::Array{Int64,2} a_adapt::Array{Float64,2} b_adapt::Array{Float64,2} sumalpha::Array{Float64,2} function MCMCNormalDataKeepSize{R,RL,VP,D}(rmat_mcmc::Array{Float64,3}, rmat_prop::Array{Float64,3}, yr_mcmc::Array{Float64,3}, yr_prop::Array{Float64,3}, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC}, angles_mcmc::Array{Float64,2}, angles_prop::Array{Float64,2},rmat_dosample::D, sdprop_adapt::Array{Float64,2}, accratio_adapt::Array{Float64,2}, molt_adapt::Array{Float64,2}, iter_adapt::Array{Int64,2}, init_adapt::Array{Int64,2}, end_adapt::Array{Int64,2}, a_adapt::Array{Float64,2}, b_adapt::Array{Float64,2}) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint,D<:SampleRmat} sumalpha = deepcopy(sdprop_adapt) sumalpha .= 0.0 new{R,RL,VP,D}(rmat_mcmc, rmat_prop, yr_mcmc, yr_prop, angles_mcmc,angles_prop,rmat_dosample, sdprop_adapt, accratio_adapt, molt_adapt, iter_adapt, init_adapt, end_adapt, a_adapt, b_adapt, sumalpha) end end function MCMCdata(rmat_init::Array{Float64,3}, datat::SSDataType{KeepReflection,RL,VP,DoNotRemoveSize,IC}, rmat_dosample::D; sdprop_adapt_init::Float64 = 0.1, accratio_adapt_init::Float64 = 0.234, molt_adapt_init::Float64 = 0.4, iter_adapt_init::Int64 = 50, init_adapt_init::Int64 = 100, end_adapt_init::Int64 = 1000, a_adapt_init::Float64 = 100.0, b_adapt_init::Float64 = 200.0) where {RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint,D<:SampleRmat} if size(rmat_init,1)>0 @assert size(rmat_init,1) == datat.p @assert size(rmat_init,2) == datat.p @assert size(rmat_init,3) == datat.n rmat_mcmc = deepcopy(rmat_init) rmat_prop = deepcopy(rmat_init) else rmat_mcmc = reshape(vcat([Matrix{Float64}(I, datat.p, datat.p)[:] for i = 1:datat.n]...), (datat.p, datat.p, datat.n)) rmat_prop = reshape(vcat([Matrix{Float64}(I, datat.p, datat.p)[:] for i = 1:datat.n]...), (datat.p, datat.p, datat.n)) end if datat.p == 2 dimangle = 1 elseif datat.p == 3 dimangle = 3 else println("datat.p must be <= 3") end angles_mcmc = zeros(Float64,dimangle,datat.n) for i = 1:datat.n compute_angle_from_rmat(i,angles_mcmc, rmat_mcmc,datat.valp, datat.reflection) end angles_prop = deepcopy(angles_mcmc) yr_mcmc = deepcopy(datat.nolocdata) yr_prop = deepcopy(datat.nolocdata) compute_yrdata(yr_mcmc, datat.ssdata, rmat_mcmc) compute_yrdata(yr_prop, datat.ssdata, rmat_prop) sdprop_adapt::Array{Float64,2} = sdprop_adapt_init .* ones(Float64,dimangle,datat.n) accratio_adapt::Array{Float64,2} = accratio_adapt_init .* ones(Float64,dimangle,datat.n) molt_adapt::Array{Float64,2} = molt_adapt_init .* ones(Float64,dimangle,datat.n) iter_adapt::Array{Int64,2} = iter_adapt_init .* ones(Int64,dimangle,datat.n) init_adapt::Array{Int64,2} = init_adapt_init .* ones(Int64,dimangle,datat.n) end_adapt::Array{Int64,2} = end_adapt_init .* ones(Int64,dimangle,datat.n) a_adapt::Array{Float64,2} = a_adapt_init .* ones(Float64,dimangle,datat.n) b_adapt::Array{Float64,2} = b_adapt_init .* ones(Float64,dimangle,datat.n) MCMCNormalDataKeepSize{KeepReflection,RL,VP,D}(rmat_mcmc, rmat_prop, yr_mcmc, yr_prop, datat, angles_mcmc, angles_prop,rmat_dosample, sdprop_adapt, accratio_adapt, molt_adapt, iter_adapt, init_adapt, end_adapt, a_adapt, b_adapt) end #function MCMCMean(meanmodel::LinearMean, valp::VP, beta_init::Matrix{Float64}, prior::D, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC})::MCMCLinearMean{D} where {D<:ContinuousUnivariateDistribution,R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint} # return MCMCLinearMean(beta_mcmc, beta_prop, mean_mcmc, mean_prop, prior) #end ##### #### #### #### #### #### ##### data ##### #### #### #### #### #### ##### #### #### #### #### #### ##### Mean ##### #### #### #### #### #### abstract type TypeModelMean end struct LinearMean{IC<:IdentifiabilityConstraint} <: TypeModelMean designmatrix::Array{Float64,3} # d::Int64 colnames_modelmatrix::Vector{String} # small model_matrix::Matrix{Float64} # small identifiability::IC function LinearMean{IC}(designmatrix::Array{Float64,3}, d::Int64, colnames_modelmatrix::Vector{String}, designmatrix_v2::Matrix{Float64}, identident::IC) where {IC<:IdentifiabilityConstraint} new{IC}(designmatrix, d, colnames_modelmatrix, designmatrix_v2, identident) end end function LinearMean(fm::FormulaTerm, covariates::DataFrame, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC}, identident::IC) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint} designmatrix, d, colnames_modelmatrix, designmatrix_v2 = create_designmatrix(fm, covariates, datat.k) LinearMean{IC}(designmatrix, d, colnames_modelmatrix, designmatrix_v2, identident) end abstract type MCMCTypeModelMean end struct MCMCLinearMean{D<:ContinuousUnivariateDistribution} <: MCMCTypeModelMean beta_mcmc::Matrix{Float64} beta_prop::Matrix{Float64} mean_mcmc::Array{Float64,3} mean_prop::Array{Float64,3} prior_beta::D function MCMCLinearMean{D}(beta_mcmc::Matrix{Float64}, beta_prop::Matrix{Float64}, mean_mcmc::Array{Float64,3}, mean_prop::Array{Float64,3}, prior::D) where {D<:ContinuousUnivariateDistribution} new{D}(beta_mcmc, beta_prop, mean_mcmc, mean_prop, prior) end end function MCMCMean(meanmodel::LinearMean, valp::VP, beta_init::Matrix{Float64}, prior::D, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC})::MCMCLinearMean{D} where {D<:ContinuousUnivariateDistribution,R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint} d::Int64 = meanmodel.d k::Int64 = size(meanmodel.designmatrix, 1) p::Int64 = valp.p n::Int64 = size(meanmodel.model_matrix, 1) if typeof(prior) <: Normal elseif typeof(prior) <: NoPriorBeta else error("beta_prior should be Normal or NoPriorBeta") end if size(beta_init, 1) > 0 @assert size(beta_init, 1) >= k * d "size(beta_init,1) must be at least " * string(k * d) @assert size(beta_init, 2) >= p "size(beta_init,2) must be at least " * string(p) else beta_init = zeros(Float64, (k * d), p) end beta_mcmc = deepcopy(beta_init[1:(k*d), 1:p]) beta_prop = deepcopy(beta_init[1:(k*d), 1:p]) mean_mcmc = zeros(Float64, k, p, n) for ip = 1:p for j = 1:n mean_mcmc[:, ip, j] = meanmodel.designmatrix[:, :, j] * beta_mcmc[:, ip] end end mean_prop = deepcopy(mean_mcmc) return MCMCLinearMean{D}(beta_mcmc, beta_prop, mean_mcmc, mean_prop, prior) end ###### #### #### #### #### #### ###### Covariance ###### #### #### #### #### #### abstract type TypeModelCoVariance end struct GeneralCoVarianceIndependentDimension{IC<:IdentifiabilityConstraint} <: TypeModelCoVariance identifiability::IC function GeneralCoVarianceIndependentDimension{IC}(ident::IC) where {IC<:IdentifiabilityConstraint} new{IC}(ident) end end function GeneralCoVarianceIndependentDimension(ident::IC, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC}) where {R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint} return GeneralCoVarianceIndependentDimension{IC}(ident) end abstract type MCMCTypeModelCoVariance end struct MCMCGeneralCoVarianceIndependentDimension{D<:ContinuousMatrixDistribution} <: MCMCTypeModelCoVariance covariance_mcmc::Symmetric{Float64,Matrix{Float64}} covariance_prop::Symmetric{Float64,Matrix{Float64}} invcovariance_mcmc::Symmetric{Float64,Matrix{Float64}} invcovariance_prop::Symmetric{Float64,Matrix{Float64}} logdeterminant_mcmc::Vector{Float64} logdeterminant_prop::Vector{Float64} prior_covariance::D function MCMCGeneralCoVarianceIndependentDimension{D}(covariance_mcmc::Symmetric{Float64,Matrix{Float64}}, covariance_prop::Symmetric{Float64,Matrix{Float64}}, invcovariance_mcmc::Symmetric{Float64,Matrix{Float64}}, invcovariance_prop::Symmetric{Float64,Matrix{Float64}}, logdeterminant_mcmc::Vector{Float64}, logdeterminant_prop::Vector{Float64}, prior_covariance::D) where {D<:ContinuousMatrixDistribution} new{D}(covariance_mcmc, covariance_prop, invcovariance_mcmc, invcovariance_prop, logdeterminant_mcmc, logdeterminant_prop, prior_covariance) end end function MCMCCovariance(covmodel::GeneralCoVarianceIndependentDimension, sigma_init::Symmetric{Float64,Matrix{Float64}}, prior::D, datat::SSDataType{R,RL,VP,DoNotRemoveSize,IC})::MCMCGeneralCoVarianceIndependentDimension{D} where {D<:ContinuousMatrixDistribution,R<:Reflection,RL<:RemoveLocation,VP<:ValueP,IC<:IdentifiabilityConstraint} k::Int64 = datat.k if size(sigma_init.data, 1) > 0 covariance_mcmc = Symmetric(deepcopy(sigma_init.data)) else covariance_mcmc = Symmetric(Matrix{Float64}(I, k, k)) end covariance_prop = deepcopy(covariance_mcmc) cc = cholesky(covariance_mcmc) invcovariance_mcmc = Symmetric(inv(cc)) logdeterminant_mcmc = [log(det(cc))] invcovariance_prop = Symmetric(deepcopy(invcovariance_mcmc)) logdeterminant_prop = deepcopy(logdeterminant_mcmc) return MCMCGeneralCoVarianceIndependentDimension{D}(covariance_mcmc, covariance_prop, invcovariance_mcmc, invcovariance_prop, logdeterminant_mcmc, logdeterminant_prop, prior) end ###### #### #### #### #### #### ###### mcmcOUT ###### #### #### #### #### #### abstract type MCMCObjectOUT end struct generalMCMCObjectOUT <:MCMCObjectOUT nonidentbeta::Array{Float64,3} nonidentsigma::Array{Float64,3} nonidentrmat::Array{Float64,4} nonidentangle::Array{Float64,3} identbeta::Array{Float64,3} identsigma::Array{Float64,3} identrmat::Array{Float64,4} identangle::Array{Float64,3} beta::DataFrame sigma::DataFrame rmat::DataFrame angle::DataFrame postsample::Int64 function generalMCMCObjectOUT(nonidentbeta::Array{Float64,3} , nonidentsigma::Array{Float64,3}, nonidentrmat::Array{Float64,4}, nonidentangle::Array{Float64,3}, identbeta::Array{Float64,3}, identsigma::Array{Float64,3}, identrmat::Array{Float64,4}, identangle::Array{Float64,3}, beta::DataFrame, sigma::DataFrame, rmat::DataFrame, angle::DataFrame, postsample::Int64 ) new(nonidentbeta, nonidentsigma, nonidentrmat, nonidentangle, identbeta, identsigma, identrmat, identangle, beta, sigma, rmat, angle,postsample) end end function create_object_output(sampletosave::Int64,mean_mcmc::MCMCLinearMean, covariance_mcmc::MCMCGeneralCoVarianceIndependentDimension, data_mcmc::MCMCNormalDataKeepSize, mean_model::LinearMean) p::Int64 = size(mean_mcmc.beta_mcmc,2) n::Int64 = size(data_mcmc.rmat_mcmc,3) k::Int64 = size(covariance_mcmc.covariance_mcmc,1) kd::Int64 = size(mean_mcmc.beta_mcmc,1) d::Int64 = mean_model.d pangle::Int64 = size(data_mcmc.angles_mcmc,1) sizebetaout1::Int64 = 0 sizebetaout2::Int64 = 0 sizebetaout1 = size(mean_mcmc.beta_mcmc,1) sizebetaout2 = p betaOUT::Array{Float64,3} = zeros(Float64, sampletosave, sizebetaout1,sizebetaout2) #println(size(betaOUT)) sizesigmaout1::Int64 = 0 sizesigmaout1 = size(covariance_mcmc.covariance_mcmc,1) sigmaOUT::Array{Float64,3} = zeros(Float64, sampletosave, sizesigmaout1,sizesigmaout1) rmatOUT::Array{Float64,4} = zeros(Float64, sampletosave, p,p,n) angleOUT::Array{Float64,3} = zeros(Float64, sampletosave, pangle,n) betaidentOUT = deepcopy(betaOUT) sigmaidentOUT = deepcopy(sigmaOUT) rmatidentOUT = deepcopy(rmatOUT) angleidentOUT = deepcopy(angleOUT) betaDF = DataFrame(reshape(deepcopy(betaOUT), sampletosave, k*d*p ), :auto) rename!(betaDF,repeat(mean_model.colnames_modelmatrix,inner = k, outer= p) .* "| mark:" .* string.(repeat(1:k, outer = d*p)) .* "| dim:" .* string.(repeat(1:p, inner = d*k))) sigmaDF = DataFrame(reshape(deepcopy(sigmaOUT), sampletosave, k*k ), :auto) rename!(sigmaDF,"s_(".* string.(repeat(1:k, outer = k)) .* "," .* string.(repeat(1:k, inner = k)) .* ")" ) rmatDF = DataFrame(reshape(deepcopy(rmatOUT), sampletosave, p*p*n ), :auto) rename!(rmatDF,"R_".* string.(repeat(1:n,inner=p*p)) .* ",(".*repeat(string.(repeat(1:p, outer = p)) .* "," .* string.(repeat(1:p, inner = p)),outer = n) .* ")" ) #println("Pangle", pangle) #println(size(angleOUT)) angleDF = DataFrame(reshape(deepcopy(angleOUT), sampletosave, pangle*n ), :auto) rename!(angleDF ,"theta_".* string.(repeat(1:n,inner=pangle)) .* ",(" .* string.(repeat(1:pangle,outer=n)) .* ")") generalMCMCObjectOUT(betaOUT, sigmaOUT,rmatOUT,angleOUT,betaidentOUT,sigmaidentOUT,rmatidentOUT,angleidentOUT, betaDF,sigmaDF,rmatDF,angleDF, sampletosave ) end function copy_parameters_out(imcmc::Int64, out::generalMCMCObjectOUT, mean_mcmc::MCMCLinearMean, datamodel::SSDataType{<:KeepReflection, <:RemoveLocationHelmert, <:ValueP, <:DoNotRemoveSize,<:GramSchmidtMean}, covariance_mcmc::MCMCGeneralCoVarianceIndependentDimension, data_mcmc::MCMCNormalDataKeepSize) out.nonidentbeta[imcmc,:,:] = mean_mcmc.beta_mcmc[:,:] out.nonidentsigma[imcmc,:,:] = covariance_mcmc.covariance_mcmc[:,:] out.nonidentrmat[imcmc,:,:,:] = data_mcmc.rmat_mcmc[:,:,:] out.nonidentangle[imcmc,:,:] = data_mcmc.angles_mcmc[:,:] gammamat = standardize_reg_computegamma(mean_mcmc.beta_mcmc, datamodel.valp,datamodel.identifiability) out.identbeta[imcmc,:,:] = mean_mcmc.beta_mcmc*gammamat out.identsigma[imcmc,:,:] = covariance_mcmc.covariance_mcmc[:,:] app_rot = deepcopy(data_mcmc.rmat_mcmc) app_angle = deepcopy(data_mcmc.angles_mcmc) for i = 1:size(data_mcmc.rmat_mcmc,3) app_rot[:,:,i] = transpose(gammamat)*app_rot[:,:,i] compute_angle_from_rmat(i,app_angle, app_rot, datamodel.valp, datamodel.reflection) #@assert isapprox(det(app_rot[:,:,i]),1.0) "ss" * string(det(app_rot[:,:,i])) end #out.identbeta[imcmc,:,:] = mean_mcmc.beta_mcmc #out.identsigma[imcmc,:,:] = covariance_mcmc.covariance_mcmc[:,:] #app_rot = deepcopy(data_mcmc.rmat_mcmc) #app_angle = deepcopy(data_mcmc.angles_mcmc) #for i = 1:size(data_mcmc.rmat_mcmc,3) # app_rot[:,:,i] = app_rot[:,:,i] # compute_angle_from_rmat(i,app_angle, app_rot, datamodel.valp, datamodel.reflection) # #@assert isapprox(det(app_rot[:,:,i]),1.0) "ss" * string(det(app_rot[:,:,i])) #end out.identrmat[imcmc,:,:,:] = app_rot[:,:,:] out.identangle[imcmc,:,:] = app_angle[:,:] out.beta[imcmc,:] = out.identbeta[imcmc,:,:][:] out.sigma[imcmc,:] = out.identsigma[imcmc,:,:][:] out.rmat[imcmc,:] = out.identrmat[imcmc,:,:,:][:] out.angle[imcmc,:] = out.identangle[imcmc,:,:][:] end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
6462
""" SizeAndShapeWithReflectionMCMC( landmarks::Array{Float64,3}, fm::FormulaTerm, covariates::DataFrame, iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, betaprior::ContinuousUnivariateDistribution, sigmaprior::ContinuousMatrixDistribution ) Posterior samples from the size-and-shape model - in this version, only two-dimensional data with reflection information are allowed. \\ The functions returns an object of type `SizeAndShapeModelOutput`. # Arguments Let * `n` be the number of objects; * `k+1` be the number of recorded landmark for each object * `p` be the dimension of each landmark (only p=2 or p=3) The arguments of the functions are * `landmarks`: a three-dimensional `Array` of dimension ``(k+1)\\times p \\times n`` with the data; * `fm`: a `formula`, where on the left-hand side there must be 1 and on the right-hand side there is the actual regressive formula - an intercept is needed; * `covariates`: a `DataFrame` of covariates. The formula `fm` search for the covariates in the `DataFrame` column names; * `iterations`: a `NamedTuple` with `iter`, `burnin`, and `thin` values of the MCMC algorithm * `betaprior`: a `Normal` distribution that is used as prior for all regressive coefficients * `sigmaprior`: an `InverseWishart` distribution that is used as prior for the covariance matrix. """ function SizeAndShapeWithReflectionMCMC( landmarks::Array{Float64,3}, fm::FormulaTerm, covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, betaprior::ContinuousUnivariateDistribution, sigmaprior::ContinuousMatrixDistribution ) return generalSizeAndShapeMCMC(; landmarks = landmarks, fm = fm, covariates = covariates, iterations = iterations, betaprior = betaprior, sigmaprior = sigmaprior, #beta_init::Matrix{Float64} = zeros(Float64,0,0), #sigma_init::Symmetric{Float64,Matrix{Float64}} = Symmetric(zeros(Float64,0,0)), #rmat_init::Array{Float64,3} = zeros(Float64,0,0,0), #dormat::Bool, identification = "gramschmidt", meanmodel = "linear", covariancemodel = "general_nocrosscorrelation", keepreflection = "yes", removelocation= "helmert", removesize = "no", rmatdosample = true, verbose = false ) end #""" # SizeAndShapeMCMC(; # dataset::Array{Float64,3}, # fm::FormulaTerm = @formula(1~ 1), # covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}} =( # iter=1000, # burnin=200, # thin=2 # ), # betaprior::ContinuousUnivariateDistribution = Normal(0.0, 10000.0), # sigmaprior::ContinuousMatrixDistribution, # beta_init::Matrix{Float64}, # sigma_init::Symmetric{Float64,Matrix{Float64}}, # rmat_init::Array{Float64,3}, # reflection::Bool = true # ) #Posterior samples from the size-and-shape model - in this version, only two-dimensional data with reflection information are allowed. #The functions returns 2 Dataframes, with the posterior samples of the regressive coefficients and elements of the covariance matrix. ## Arguments #Let #* n be the number of shapes; #* k be the number of landmarks (on the pre-form matrix); #* p be the dimension of each landmark (only p=2 is implemented) #* d be the number of covariates to use + 1 (or number of regressive coefficients for each landmark-dimension, intercept included); #The arguments are #- `dataset::Array{Float64,3}`: Array with the data - dimension (k,p,n) of size-and-shape data. Use the function `compute_ss_from_pre` to obtain the size-and-shape data from pre-forms #- `fm::FormulaTerm = @formula(1~ 1)`: a formula that specifies the model - the left-and size should be 1 #- `covariates::DataFrame`: a DataFrame containing the covariates - dimension (n,d). The names used in `fm` must be column names of `covariates`. Only Real And Factor covariates are allowed. The numeric column are standardized internally. #- `iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}`: values of the iterations (iter), thin and burnin of the MCMC algorithm #- `betaprior::ContinuousUnivariateDistribution`: The prior on the regressive coefficients - only a Normal distribution is allowed #- `sigmaprior::ContinuousMatrixDistribution`: The prior on the covariance matrix - only an Inverse Wishart is allowed #- `beta_init::Matrix{Float64}`: initial values for the regressive coefficients - dimension (k*d,p) #- `sigma_init::Symmetric{Float64,Matrix{Float64}}`: initial values for the covariance matrix - dimension (k,k) (it must be a valid covariance matrix) #- `rmat_init::Array{Float64,3}`: initial values for the rotation matrices - dimension (p,p,n) (each [1:p, 1:p, i], i = 1,2,...,n, must be a valid rotation matrix) #- `reflection::Bool`: true for a model with reflection information. #""" #function SizeAndShapeMCMC(; # dataset_init::Array{Float64,3}, # fm::FormulaTerm = @formula(1~ 1), # covariates::DataFrame, # # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}} =( # iter=1000, # burnin=200, # thin=2 # ), # betaprior::ContinuousUnivariateDistribution = Normal(0.0, 10000.0), # sigmaprior::ContinuousMatrixDistribution, # beta_init::Matrix{Float64}, # sigma_init::Symmetric{Float64,Matrix{Float64}}, # rmat_init::Array{Float64,3}, # reflection::Bool = true, # is_data_sizeandshape::Bool = true #) # p::Int64 = size(dataset, 2) # if p != 2 # error("the current implementation allows only `size(dataset, 2) = 2 (2-dimensional data)`") # end # if reflection == false # error("the current implementation allows only `reflection = true`") # else # mcmcout =generalSizeAndShapeMCMC(; # dataset = dataset, # fm = fm, # covariates = covariates, # iterations = iterations, # betaprior = betaprior, # sigmaprior = sigmaprior, # beta_init = beta_init, # sigma_init = sigma_init, # rmat_init = rmat_init, # dormat = true, # reflection = KeepReflection(), # sigmatype = GeneralSigma() # ) # return mcmcout.mcmcoutputArrays.beta, mcmcout.mcmcoutputArrays.sigma # end #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
4800
function compute_dessignmatrix(zmat::Matrix{Float64}, k::Int64)::Array{Float64,3} println("compute_dessignmatrix is deprecated. Please use compute_designmatrix instead") return compute_designmatrix(zmat, k) end function compute_dessignmatrix(zmat::DataFrame, k::Int64)::Array{Float64,3} println("compute_dessignmatrix is deprecated. Please use compute_designmatrix instead") return compute_designmatrix(zmat, k) end function compute_ss_from_pre(xdata::Array{Float64,3},ydata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} println("compute_ss_from_pre is deprecated. Please use compute_ss_helmertz! instead") return compute_ss!(xdata,ydata, keep_reflection) end """ SizeAndShapeMCMC(; dataset::Array{Float64,3}, fm::FormulaTerm = @formula(1~ 1), covariates::DataFrame, iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}} =( iter=1000, burnin=200, thin=2 ), betaprior::ContinuousUnivariateDistribution = Normal(0.0, 10000.0), sigmaprior::ContinuousMatrixDistribution, beta_init::Matrix{Float64}, sigma_init::Symmetric{Float64,Matrix{Float64}}, rmat_init::Array{Float64,3}, reflection::Bool = true ) Posterior samples from the size-and-shape model - in this version, only two-dimensional data with reflection information are allowed. The functions returns 2 Dataframes, with the posterior samples of the regressive coefficients and elements of the covariance matrix. # Arguments Let * n be the number of shapes; * k be the number of landmarks (on the pre-form matrix); * p be the dimension of each landmark (only p=2 is implemented) * d be the number of covariates to use + 1 (or number of regressive coefficients for each landmark-dimension, intercept included); The arguments are - `dataset::Array{Float64,3}`: Array with the data - dimension (k,p,n) of size-and-shape data. Use the function `compute_ss_from_pre` to obtain the size-and-shape data from pre-forms - `fm::FormulaTerm = @formula(1~ 1)`: a formula that specifies the model - the left-and size should be 1 - `covariates::DataFrame`: a DataFrame containing the covariates - dimension (n,d). The names used in `fm` must be column names of `covariates`. Only Real And Factor covariates are allowed. The numeric column are standardized internally. - `iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}`: values of the iterations (iter), thin and burnin of the MCMC algorithm - `betaprior::ContinuousUnivariateDistribution`: The prior on the regressive coefficients - only a Normal distribution is allowed - `sigmaprior::ContinuousMatrixDistribution`: The prior on the covariance matrix - only an Inverse Wishart is allowed - `beta_init::Matrix{Float64}`: initial values for the regressive coefficients - dimension (k*d,p) - `sigma_init::Symmetric{Float64,Matrix{Float64}}`: initial values for the covariance matrix - dimension (k,k) (it must be a valid covariance matrix) - `rmat_init::Array{Float64,3}`: initial values for the rotation matrices - dimension (p,p,n) (each [1:p, 1:p, i], i = 1,2,...,n, must be a valid rotation matrix) - `reflection::Bool`: true for a model with reflection information. """ function SizeAndShapeMCMC(; dataset_init::Array{Float64,3}, fm::FormulaTerm = @formula(1~ 1), covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}} =( iter=1000, burnin=200, thin=2 ), betaprior::ContinuousUnivariateDistribution = Normal(0.0, 10000.0), sigmaprior::ContinuousMatrixDistribution, beta_init::Matrix{Float64}, sigma_init::Symmetric{Float64,Matrix{Float64}}, rmat_init::Array{Float64,3}, reflection::Bool = true, is_data_sizeandshape::Bool = true ) println("SizeAndShapeMCMC is deprecated. Please use generalSizeAndShapeMCMC") p::Int64 = size(dataset, 2) if p != 2 error("the current implementation allows only `size(dataset, 2) = 2 (2-dimensional data)`") end if reflection == false error("the current implementation allows only `reflection = true`") else mcmcout =generalSizeAndShapeMCMC(; dataset = dataset, fm = fm, covariates = covariates, iterations = iterations, betaprior = betaprior, sigmaprior = sigmaprior, beta_init = beta_init, sigma_init = sigma_init, rmat_init = rmat_init, dormat = true, reflection = KeepReflection(), sigmatype = GeneralSigma() ) return mcmcout.mcmcoutputArrays.beta, mcmcout.mcmcoutputArrays.sigma end end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
8884
function compute_designmatrix(zmat::Matrix{Float64}, k::Int64)::Array{Float64,3} n, d = size(zmat) res::Array{Float64,3} = zeros(Float64, k, k * d, n) for i = 1:n res[:, :, i] = kronecker(transpose(zmat[i, :]), Matrix{Float64}(I, k, k)) end return res end function compute_designmatrix(zmat::DataFrame, k::Int64)::Array{Float64,3} n, d = size(zmat) res::Array{Float64,3} = zeros(Float64, k, k * d, n) for i = 1:n res[:, :, i] = kronecker(transpose([values(zmat[i, :])...]), Matrix{Float64}(I, k, k)) end return res end function compute_xdata(xdata::Array{Float64,3}, ydata::Array{Float64,3}, rmat::Array{Float64,3}) for i = axes(xdata,3) xdata[:, :, i] = ydata[:, :, i] * transpose(rmat[:, :, i]) end return nothing end function compute_ss_from_pre_p3_keep_reflection(xdata::Array{Float64,3}, ydata::Array{Float64,3}, ret::Array{Float64,3}) for i = axes(xdata, 3) app = svd(xdata[:, :, i]) U = app.U V = transpose(app.Vt) if det(V) > 0 ydata[:, :, i] = U * Diagonal(app.S) ret[:, :, i] = V else U[:, 3] = -1.0 * U[:, 3] V[:, 3] = -1.0 * V[:, 3] ydata[:, :, i] = U * Diagonal(app.S) ret[:, :, i] = V end end end function compute_ss_from_pre_p3_nokeep_reflection(xdata::Array{Float64,3}, ydata::Array{Float64,3}, ret::Array{Float64,3}) for i = axes(xdata, 3) app = svd(xdata[:, :, i]) ydata[:, :, i] = app.U * Diagonal(app.S) ret[:, :, i] = transpose(app.Vt) end end function compute_ss_from_pre_p2_keep_reflection(xdata::Array{Float64,3}, ydata::Array{Float64,3}, ret::Array{Float64,3}) for i = axes(xdata, 3) app = svd(xdata[:, :, i]) U = app.U V = transpose(app.Vt) if sign(V[1, 2]) != sign(V[2, 1]) ydata[:, :, i] = U * Diagonal(app.S) ret[:, :, i] = V else U[:,2] = -1.0*U[:,2] V[:, 2] = -1.0 * V[:, 2] ydata[:, :, i] = U * Diagonal(app.S) ret[:, :, i] = V end end end function compute_ss_from_pre_p2_nokeep_reflection(xdata::Array{Float64,3}, ydata::Array{Float64,3}, ret::Array{Float64,3}) for i = axes(xdata, 3) app = svd(xdata[:, :, i]) ydata[:, :, i] = app.U * Diagonal(app.S) ret[:, :, i] = transpose(app.Vt) end end """ (deprecated) compute_ss(xdata::Array{Float64,3},ydata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} compute_ss_from_pre!(xdata::Array{Float64,3},ydata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} Given the array of configuration xdata (xdata[:,:,i] is the i-th configuration matrix), the function computes the size-and-shape data and store it in ydata. The function returs the array of associated rotation matrix R, such that xdata = ydata*R. keep_reflection is a boolean that is used to indicate if R in O(p) (keep_reflection=false) or R in SO(p) (keep_reflection=true) compute_ss(xdata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} Given the array of configuration xdata (xdata[:,:,i] is the i-th configuration matrix), the function computes the size-and-shape data. The function returns the size-and-shape ydata. keep_reflection is a boolean that is used to indicate if R in O(p) (keep_reflection=false) or R in SO(p) (keep_reflection=true) """ function compute_ss_helmertz!(xdata::Array{Float64,3},ydata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} p = size(xdata, 2) ret = zeros(Float64, p, p, size(xdata, 3)) if (p == 2) & (keep_reflection == true) compute_ss_from_pre_p2_keep_reflection(xdata, ydata, ret) end if (p == 2) & (keep_reflection == false) compute_ss_from_pre_p2_nokeep_reflection(xdata, ydata, ret) end if (p == 3) & (keep_reflection == true) compute_ss_from_pre_p3_keep_reflection(xdata, ydata, ret) end if (p == 3) & (keep_reflection == false) compute_ss_from_pre_p3_nokeep_reflection(xdata, ydata, ret) end if p >3 error("size(xdata, 2) must be 2 or 3") end return ret end function compute_ss_helmertz(xdata::Array{Float64,3}, keep_reflection::Bool)::Array{Float64,3} ydata::Array{Float64,3} = deepcopy(xdata) p = size(xdata, 2) ret = zeros(Float64, p, p, size(xdata, 3)) if (p == 2) & (keep_reflection == true) compute_ss_from_pre_p2_keep_reflection(xdata, ydata, ret) end if (p == 2) & (keep_reflection == false) compute_ss_from_pre_p2_nokeep_reflection(xdata, ydata, ret) end if (p == 3) & (keep_reflection == true) compute_ss_from_pre_p3_keep_reflection(xdata, ydata, ret) end if (p == 3) & (keep_reflection == false) compute_ss_from_pre_p3_nokeep_reflection(xdata, ydata, ret) end return ydata end function compute_angle_from_rmat(i::Int64,angle::Matrix{Float64}, rmat::Array{Float64,3}, valp::Valuep2, reflection::KeepReflection) angle[1, i] = atan(rmat[2, 1, i], rmat[1, 1, i]) return nothing end function compute_angle_from_rmat(i::Int64, angle::Matrix{Float64}, rmat::Array{Float64,3}, valp::Valuep3, reflection::KeepReflection) #x convention angle[1, i] = atan(rmat[3, 1, i], rmat[3, 2, i]) angle[2, i] = acos(rmat[3, 3, i]) angle[3, i] = -atan(rmat[1, 3, i], rmat[2, 3, i]) return nothing end function standardize_reg_computegamma(reg::Matrix{Float64}, valp::Valuep2) a1 = reg[1, :] a2 = reg[2, :] g1 = a1 / norm(a1, 2) g2 = (a2 - (transpose(a2) * g1) * g1) / norm(a2 - (transpose(a2) * g1) * g1, 2) gammamat = reshape([g1; g2], (2, 2)) if det(gammamat) < 0 gammamat[:, 2] = - gammamat[:, 2] end return gammamat end function standardize_reg_computegamma(reg::Matrix{Float64}, valp::Valuep3) a1 = reg[1, :] a2 = reg[2, :] a3 = reg[3, :] g1 = a1 / norm(a1, 2) g2 = (a2 - (transpose(a2) * g1) * g1) / norm(a2 - (transpose(a2) * g1) * g1, 2) g3 = (a3 - (transpose(a3) * g1) * g1 - (transpose(a3) * g2) * g2) / norm(a3 - (transpose(a3) * g1) * g1 - (transpose(a3) * g2) * g2, 2) gammamat = reshape([g1; g2; g3], (3, 3)) if det(gammamat) < 0 gammamat[:, 3] = -gammamat[:, 3] end end function standardize_reg(reg::Matrix{Float64}, valp::Valuep2) reg[:,:] = reg * standardize_reg_computegamma(reg, valp) end function standardize_reg(reg::Matrix{Float64}, valp::Valuep3) reg[:, :] = reg * standardize_reg_computegamma(reg, valp) end """ compute_helmertized_configuration(landmark::Array{Float64,3})::Array{Float64,3} Given the array of landmarks (landmark[:,:,i] is the matrix of landmarks of the i-th shape), it computes and returns the helmertized configuration """ function compute_helmertized_configuration(landmark::Array{Float64,3})::Array{Float64,3} # TODO: cmabiare i segni di H k::Int64 = size(landmark,1) H::Matrix{Float64} = zeros(Float64,k,k) ret::Array{Float64,3} = zeros(Float64,size(landmark,1)-1,size(landmark,2),size(landmark,3)) for i = 1:k H[i,i] = (i-1)/(i*(i-1))^0.5 end for i = 2:k for j = 1:(i-1) H[i,j] = -1.0/(i*(i-1))^0.5 end end H = H[2:end,:] for i = 1:size(landmark,3) ret[:,:,i] = H*landmark[:,:,i] end return ret end function predictmean(;beta::Array{Float64,3}, dataset::Array{Float64,3}, fm::FormulaTerm = @formula(1~ 1), covariates::DataFrame) k::Int64 = size(dataset, 1) n::Int64 = size(dataset, 3) p::Int64 = size(dataset, 2) mean_pred = [zeros(Float64, size(beta,1), k,p) for i = 1:n]; covariates_copy = deepcopy(covariates) for i = 1:size(covariates_copy,2) if isa(covariates_copy[:,i], CategoricalArray) elseif isa(covariates_copy[1,i], Real) covariates_copy[:,i] = (covariates_copy[:,i] .- mean(covariates_copy[:,i])) ./ std(covariates_copy[:,i]) else error("Only factors or Real variables are allowed in covariates") end end designmatrix_v2_app = ModelFrame(fm, covariates_copy); designmatrix_v2 = ModelMatrix(designmatrix_v2_app).m #colnames_modelmatrix = coefnames(designmatrix_v2_app) #for i = 2:size(designmatrix_v2, 2) # designmatrix_v2[:, i] = designmatrix_v2[:, i] .- mean(designmatrix_v2[:, i]) #end designmatrix = compute_designmatrix(designmatrix_v2, k) # dimensions k, k * d, n for select_obs = 1:n for i = 1:size(beta,1) mean_pred[select_obs][i,:,:] = designmatrix[:,:,select_obs]*beta[i,:,:] end end return mean_pred end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
4040
#### #### #### #### #### #### #### Model OUT #### #### #### #### #### #### abstract type outputMCMCSizeAndShape end struct SizeAndShapeModelOutput{TR<:Reflection,TS<:SigmaType,TP<:Valuep,DB<:ContinuousUnivariateDistribution,DS<:ContinuousMatrixDistribution, FF<:FormulaTerm} <: outputMCMCSizeAndShape mcmcoutput::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{DataFrame, DataFrame, DataFrame, DataFrame}} mcmcoutputArrays::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{Array{Float64, 3}, Array{Float64, 3}, Array{Float64, 4}, Array{Float64, 3}}} covariates::NamedTuple{(:colnames_modelmatrix, :fm, :covariates, :designmatrix_step1, :designmatrix_step2), Tuple{Vector{String}, FF, DataFrame, Matrix{Float64}, Array{Float64, 3}} } dataset::Array{Float64,3}; modeltypes::NamedTuple{(:dormat, :reflection, :sigmatype, :betaprior, :sigmaprior, :valp), Tuple{Bool, TR, TS, DB,DS, TP} } iterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}}; indices::NamedTuple{(:k, :p, :n, :d),Tuple{Int64,Int64,Int64, Int64}}; function SizeAndShapeModelOutput( mcmcoutput::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{DataFrame, DataFrame, DataFrame, DataFrame}}, mcmcoutputArrays::NamedTuple{(:beta, :sigma, :rmat, :angle), Tuple{Array{Float64, 3}, Array{Float64, 3}, Array{Float64, 4}, Array{Float64, 3}}}, covariates::NamedTuple{(:colnames_modelmatrix, :fm, :covariates, :designmatrix_step1, :designmatrix_step2), Tuple{Vector{String}, FF, DataFrame, Matrix{Float64}, Array{Float64, 3}} }, dataset::Array{Float64,3}, modeltypes::NamedTuple{(:dormat, :reflection, :sigmatype, :betaprior, :sigmaprior, :valp), Tuple{Bool, TR, TS, DB,DS, TP} }, iterations::NamedTuple{(:iter, :burnin, :thin, :savedsamples),Tuple{Int64,Int64,Int64, Int64}}, indices::NamedTuple{(:k, :p, :n, :d),Tuple{Int64,Int64,Int64, Int64}}) where {TR<:Reflection,TS<:SigmaType,TP<:Valuep,DB<:ContinuousUnivariateDistribution,DS<:ContinuousMatrixDistribution,FF<:FormulaTerm} new{TR,TS,TP,DB,DS, FF}(mcmcoutput, mcmcoutputArrays, covariates, dataset, modeltypes, iterations, indices) end end #### #### #### #### #### #### #### FUNCTIONS #### #### #### #### #### #### #function create_output(beta::Array{Float64, 3}, # sigma::Array{Float64, 3}, # rmat::Array{Float64, 4}, # angle::Array{Float64, 3}, # beta_nonid::Array{Float64, 3}, # rmat_nonid::Array{Float64, 4}, # angle_nonid::Array{Float64, 3}, # colnames_modelmatrix::Vector{String}, # fm::FormulaTerm, # betaprior::ContinuousUnivariateDistribution, # sigmaprior::ContinuousMatrixDistribution, # k::Int64, # p::Int64, # n::Int64, # d::Int64, # dormat::Bool, # reflection::Reflection, # sigmatype::SigmaType, # dataset::Array{Float64,3}, # covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, # designmatrix_step1::Array{Float64, 3}, # designmatrix_step2::Matrix{Float64}) # p2KeepReflectionGeneralSigma(beta::Array{Float64, 3}, # sigma::Array{Float64, 3}, # rmat::Array{Float64, 4}, # angle::Array{Float64, 3}, # beta_nonid::Array{Float64, 3}, # rmat_nonid::Array{Float64, 4}, # angle_nonid::Array{Float64, 3}, # colnames_modelmatrix::Vector{String}, # fm::FormulaTerm, # betaprior::ContinuousUnivariateDistribution, # sigmaprior::ContinuousMatrixDistribution, # k::Int64, # p::Int64, # n::Int64, # d::Int64, # dormat::Bool, # reflection::Reflection, # sigmatype::SigmaType, # dataset::Array{Float64,3}, # covariates::DataFrame, # iterations::NamedTuple{(:iter, :burnin, :thin),Tuple{Int64,Int64,Int64}}, # designmatrix_step1::Array{Float64, 3}, # designmatrix_step2::Matrix{Float64}) #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
2893
function predictmean(;beta::Array{Float64,3}, dataset::Array{Float64,3}, fm::FormulaTerm = @formula(1~ 1), covariates::DataFrame) k::Int64 = size(dataset, 1) n::Int64 = size(dataset, 3) p::Int64 = size(dataset, 2) mean_pred = [zeros(Float64, size(beta,1), k,p) for i = 1:n]; covariates_copy = deepcopy(covariates) for i = 1:size(covariates_copy,2) if isa(covariates_copy[:,i], CategoricalArray) elseif isa(covariates_copy[1,i], Real) covariates_copy[:,i] = (covariates_copy[:,i] .- mean(covariates_copy[:,i])) ./ std(covariates_copy[:,i]) else error("Only factors or Real variables are allowed in covariates") end end designmatrix_v2_app = ModelFrame(fm, covariates_copy); designmatrix_v2 = ModelMatrix(designmatrix_v2_app).m #colnames_modelmatrix = coefnames(designmatrix_v2_app) #for i = 2:size(designmatrix_v2, 2) # designmatrix_v2[:, i] = designmatrix_v2[:, i] .- mean(designmatrix_v2[:, i]) #end designmatrix = compute_designmatrix(designmatrix_v2, k) # dimensions k, k * d, n for select_obs = 1:n for i = 1:size(beta,1) mean_pred[select_obs][i,:,:] = designmatrix[:,:,select_obs]*beta[i,:,:] end end return mean_pred end function predictmean(modeloutput::SizeAndShapeModelOutput{KeepReflection, GeneralSigma, Valuep2, DB, DS, FF}) where {DB<:ContinuousUnivariateDistribution,DS<:ContinuousMatrixDistribution, FF<:FormulaTerm} covariates = modeloutput.covariates.covariates k::Int64 = modeloutput.indices.k n::Int64 = size(covariates,1) p::Int64 = modeloutput.indices.p beta = modeloutput.mcmcoutputArrays.beta rmat = modeloutput.mcmcoutputArrays.rmat mean_pred = [zeros(Float64, size(beta,1), k,p) for i = 1:n]; #covariates_copy = deepcopy(covariates) #for i = 1:size(covariates_copy,2) # if isa(covariates_copy[:,i], CategoricalArray) # elseif isa(covariates_copy[1,i], Real) # #covariates_copy[:,i] = (covariates_copy[:,i] .- mean(covariates_copy[:,i])) ./ std(covariates_copy[:,i]) # else # error("Only factors or Real variables are allowed in covariates") # end #end #designmatrix_v2_app = ModelFrame(modeloutput.covariates.fm, covariates_copy); #designmatrix_v2 = ModelMatrix(designmatrix_v2_app).m #designmatrix = compute_designmatrix(designmatrix_v2, k) # dimensions k, k * d, n designmatrix, d, colnames_modelmatrix, designmatrix_v2 = create_designmatrix(modeloutput.covariates.fm, covariates, k) for select_obs = 1:n for i = 1:size(beta,1) mean_pred[select_obs][i,:,:] = designmatrix[:,:,select_obs]*beta[i,:,:]*rmat[i,:,:,select_obs] end end return mean_pred end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
5285
#### #### #### #### #### #### #### BETA #### #### #### #### #### #### function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::NoPriorBeta, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) end function sampler_beta(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::Normal, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, valp::Valuep, betastandMCMC::Matrix{Float64}) kd::Int64 = size( betaMCMC,1) p::Int64 = size( betaMCMC,2) n::Int64 = size(xdata,3) invMat = Symmetric(inv(sigmaMCMC)) for ip = 1:p Vp::Matrix{Float64} = zeros(Float64, kd, kd) Mp::Vector{Float64} = zeros(Float64, kd) Vp[:, :] = Diagonal([1.0 / params(prior)[2]^2 for i = 1:kd]) Mp[:] .= params(prior)[1] / params(prior)[2]^2 for j = 1:n Vp[:, :] += transpose(designmatrix[:, :, j]) * invMat * designmatrix[:, :, j] Mp[:, :] += transpose(designmatrix[:, :, j]) * invMat * xdata[:,ip,j] end Vp = Symmetric(inv(Vp)) Mp = Vp*Mp betaMCMC[:,ip] = rand(MvNormal(Mp,Vp)) betastandMCMC[:, ip] = betaMCMC[:, ip] end #standardize_reg(betastandMCMC, valp) end #### #### #### #### #### #### #### SIGMA #### #### #### #### #### #### function sampler_sigma(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::NoPriorSigma, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, sigmatype::SigmaType) end function sampler_sigma(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, prior::InverseWishart, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, sigmatype::GeneralSigma) kd::Int64 = size(betaMCMC, 1) p::Int64 = size(betaMCMC, 2) n::Int64 = size(xdata, 3) #invMat = Symmetric(inv(sigmaMCMC)) nup::Float64 = params(prior)[1] + Float64(n*p) Psip = deepcopy(params(prior)[2].mat) for ip = 1:p error("rivedere") for j = 1:n app = xdata[:, p, j] - designmatrix[:,:,j] * betaMCMC[:,p] Psip[:,:] += app*transpose(app) end sigmaMCMC[:, :] = rand(InverseWishart(nup, Symmetric(Psip).data)) end end #### #### #### #### #### #### #### rmat #### #### #### #### #### #### function sampler_rmat(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, angleMCMC::Matrix{Float64}, ydata::Array{Float64,3}, valp::Valuep, reflection::KeepReflection, rmatMCMC::Array{Float64,3}, samp_rmat::donotsamplermat) end function sampler_rmat(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, angleMCMC::Matrix{Float64}, ydata::Array{Float64,3}, valp::Valuep2, reflection::KeepReflection, rmatMCMC::Array{Float64,3}, samp_rmat::dosamplermat) kd::Int64 = size(betaMCMC, 1) p::Int64 = size(betaMCMC, 2) n::Int64 = size(xdata, 3) k::Int64 = size(xdata,1) invMat = Symmetric(inv(sigmaMCMC)) for j = 1:n mui = designmatrix[:, :, j] * betaMCMC[:, :] #@toggled_assert size(mui) == (k,p) Ai = transpose(mui) * invMat * ydata[:,:,j] #println(size(Ai)) x1 = Ai[1, 1] + Ai[2, 2] x2 = Ai[2, 1] - Ai[1, 2] #x2 = Ai[1, 2] - Ai[2, 1] kvonmises = sqrt(x1^2 + x2^2) muvonmises = atan(x2 / kvonmises, x1 / kvonmises) #muvonmises = atan(x1 / kvonmises, x2 / kvonmises) angleMCMC[1, j] = rand(VonMises(muvonmises, kvonmises)) rmatMCMC[1, 1, j] = cos(angleMCMC[1, j]) rmatMCMC[1, 2, j] = -sin(angleMCMC[1, j]) rmatMCMC[2, 1, j] = sin(angleMCMC[1, j]) rmatMCMC[2, 2, j] = cos(angleMCMC[1, j]) #xdata[:, :, j] = ydata[:, :, j] * transpose(rmatMCMC[:,:,j]) end compute_xdata(xdata, ydata, rmatMCMC) end function sampler_rmat(xdata::Array{Float64,3}, designmatrix::Array{Float64,3}, betaMCMC::Matrix{Float64}, sigmaMCMC::Matrix{Float64}, angleMCMC::Matrix{Float64}, ydata::Array{Float64,3}, valp::Valuep3, reflection::KeepReflection, rmatMCMC::Array{Float64,3}, samp_rmat::dosamplermat) error("sampler_rmat p=3 - Not completed yet") kd::Int64 = size(betaMCMC, 1) p::Int64 = size(betaMCMC, 2) n::Int64 = size(xdata, 3) k::Int64 = size(xdata, 1) invMat = Symmetric(inv(sigmaMCMC)) for j = 1:n mui = designmatrix[:, :, j] * betaMCMC[:, :] #@toggled_assert size(mui) == (k,p) Ai = transpose(mui) * invMat * ydata[:, :, j] #println(size(Ai)) x1 = Ai[1, 1] + Ai[2, 2] x2 = Ai[2, 1] - Ai[1, 2] #x2 = Ai[1, 2] - Ai[2, 1] kvonmises = sqrt(x1^2 + x2^2) muvonmises = atan(x2 / kvonmises, x1 / kvonmises) #muvonmises = atan(x1 / kvonmises, x2 / kvonmises) angleMCMC[1, j] = rand(VonMises(muvonmises, kvonmises)) rmatMCMC[1, 1, j] = cos(angleMCMC[1, j]) rmatMCMC[1, 2, j] = -sin(angleMCMC[1, j]) rmatMCMC[2, 1, j] = sin(angleMCMC[1, j]) rmatMCMC[2, 2, j] = cos(angleMCMC[1, j]) #xdata[:, :, j] = ydata[:, :, j] * transpose(rmatMCMC[:,:,j]) end compute_xdata(xdata, ydata, rmatMCMC) end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
35
using BayesSizeAndShape using Test
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
363
#### #### Coverage summary, printed as "(percentage) covered". #### #### Useful for CI environments that just want a summary (eg a Gitlab setup). #### using Coverage cd(joinpath(@__DIR__, "..", "..")) do covered_lines, total_lines = get_summary(process_folder()) percentage = covered_lines / total_lines * 100 println("($(percentage)%) covered") end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
266
# only push coverage from one bot get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0) get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.3" || exit(0) using Coverage cd(joinpath(@__DIR__, "..", "..")) do Codecov.submit(Codecov.process_folder()) end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
3893
################# # Packages ## ################# using Pkg Pkg.activate("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/rat") using Revise using Random, Distributions, LinearAlgebra, StatsBase using Kronecker, DataFrames,StatsModels, CategoricalArrays using Plots using BayesSizeAndShape dataset_rats = dataset("rats"); dataset_desciption("rats") landmark = dataset_rats.x; landmark = landmark ./ 100.0 subject = dataset_rats.no; time = dataset_rats.time; ## design matrix X = DataFrame( time = time, subject = categorical(string.(subject)) ); ## size and shape data sizeshape = sizeshape_helmertproduct_reflection(landmark); k = size(sizeshape,1); n = size(sizeshape,3); p = size(sizeshape,2); ## plots of the data plot(landmark[:,1,1], landmark[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) for i = 2:size(landmark,3) plot!(landmark[:,1,i], landmark[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end title!("Landmarks") plot(sizeshape[:,1,1], sizeshape[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) for i = 2:size(landmark,3) plot!(sizeshape[:,1,i], sizeshape[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end title!("Size And Shape") ## covariates ### ### ### ### ### ### MCMC ### ### ### ### ### outmcmc = SizeAndShapeWithReflectionMCMC( landmark, @formula(1 ~ 1+time + subject), X, (iter=1000, burnin=200, thin=2), Normal(0.0,100000.0),# InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)) ); predictive_mean = sample_predictive_zbr(outmcmc); predictive_obs = sample_predictive_zbr_plus_epsilon(outmcmc); betaOUT = outmcmc.posteriorsamples.beta; sigmaOUT = outmcmc.posteriorsamples.sigma; rmatOUT = outmcmc.posteriorsamples.rmat; describe(betaOUT[:,1:10], :all) #@rput betaOUT; #@rput sigmaOUT; #R" save(betaOUT, sigmaOUT , file='provarats.RData')" #if flag == 1 # prediction = BayesSizeAndShape.predictmean(outmcmc); # @rput dataset; # @rput prediction; # R""" # #require(emdbook) # #require(coda) # OUTpred = list() # # ogni elemento della lista prediction contiene i posterior sample di un'osservazione # for(select_obs in 1:length(prediction)) # { # land.m <- apply(prediction[[select_obs]],c(2,3),mean) # qq1 <- apply(prediction[[select_obs]][,,1],c(2),quantile,prob=c(0.025,0.975)) # qq2 <- apply(prediction[[select_obs]][,,2],c(2),quantile,prob=c(0.025,0.975)) # OUTpred[[select_obs]]<-list(meanland=land.m,CIland1=qq1, CIland2=qq2) # } # #aggiungere bb<-mcmc(prediction[[select_obs]]) # pdf("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/SizeAndShape/JuliaStuff/GIAN/chainsGIAN.pdf") # #theta = 0 # #R = matrix(c(cos(theta),sin(theta),-sin(theta), cos(theta)), ncol=2) # plot(dataset[,,1], xlim=c(-300,1000)/100,ylim=c(-500,500)/100) # points(OUTpred[[1]]$meanland, col=2) # for(select_obs in 1:length(prediction)) # { # points(dataset[,,select_obs]) # points(OUTpred[[select_obs]]$meanland, col=2) # for(ll in 1:7){ # bb<-mcmc(prediction[[select_obs]][,ll,]) # HPDregionplot(bb,add=T,col=2,lty=2) # } # } # for(p in 1:dim(betaOUT)[3]) # { # par(mfrow=c(3,3)) # for(i in 1:dim(betaOUT)[2]) # { # plot(betaOUT[,i,p], type="l") # } # } # dev.off() # #} # #OUTpred[[select_obs]]<-list(meanland=land.m,CIland=qq.m) # """ # # mean_pred contiene i campioni a posteriori # R" save(OUTpred, file='OUTpred1.RData')" # else print("Done posterior estimation") #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
6367
### ### ### ### ### ### packages ### ### ### ### ### using Pkg Pkg.activate("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/sim") using Random, Distributions, LinearAlgebra, StatsBase using DataFrames, StatsModels, CategoricalArrays using Revise using BayesSizeAndShape using RCall ### ### ### ### ### ### simulations ### ### ### ### ### n::Int64 = 100; p::Int64 = 2; k::Int64 = 10; d::Int64 = 3; # regression reg::Matrix{Float64} = zeros(Float64, k*d, p); eg::Matrix{Float64} = zeros(Float64, k*d, p); reg[:] = rand(Normal(0.0, 1.0), prod(size(reg))); constadd = 10.0 reg[1,:] = [0.0,0.0].+ constadd reg[2,:] = [10.0,0.0].+ constadd reg[3,:] = [20.0,10.0].+ constadd reg[4,:] = [20.0,20.0].+ constadd reg[5,:] = [10.0,20.0].+ constadd reg[6,:] = [0.0,20.0].+ constadd reg[7,:] = [-10.0,20.0].+ constadd reg[8,:] = [-20.0,20.0].+ constadd reg[9,:] = [-20.0,10.0].+ constadd reg[10,:] = [-10.0,10.0].+ constadd BayesSizeAndShape.standardize_reg(reg::Matrix{Float64}, BayesSizeAndShape.ValueP2(), BayesSizeAndShape.GramSchmidtMean()); zmat = DataFrame( x1 = rand(Normal(10.0,1.0 ),n), x2 = sample(["A", "B"],n) ) zmat[:,1] = (zmat[:,1] .- mean(zmat[:,1])) ./ std(zmat[:,1]) zmat.x2 = categorical(zmat.x2) zmat_modmat_ModelFrame = ModelFrame(@formula(1 ~ 1+x1+x2), zmat); zmat_modmat = ModelMatrix(zmat_modmat_ModelFrame).m design_matrix = BayesSizeAndShape.compute_designmatrix(zmat_modmat, k); # dimensions k, k * d, n # covariance sigma::Symmetric{Float64,Matrix{Float64}} = Symmetric(rand(InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)))); dataset_complete = zeros(Float64,k,p,n); #dataset = zeros(Float64, k, p, n); for i_n = 1:n for i_p = 1:p dataset_complete[:, i_p, i_n] = rand(MvNormal(design_matrix[:, :, i_n] * reg[:, i_p], sigma)) end end ## TESTS helmmat = BayesSizeAndShape.RemoveLocationHelmert(k, BayesSizeAndShape.ValueP2()); dataset_complete_landmark = zeros(Float64,k+1,p,n); for i = 1:n dataset_complete_landmark[:,:,i] = transpose(helmmat.matrix)*dataset_complete[:,:,i] .+ 1/(k+1) end helmdata = BayesSizeAndShape.remove_location(dataset_complete_landmark, helmmat); maximum(helmdata[:,:,:]-dataset_complete[:,:,:]) minimum(helmdata[:,:,:]-dataset_complete[:,:,:]) ssdata, ssdata_rotmat = BayesSizeAndShape.compute_sizeshape_fromnolocdata(helmdata, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP2()); dataset = BayesSizeAndShape.SSDataType(dataset_complete_landmark, BayesSizeAndShape.KeepReflection(),helmmat,BayesSizeAndShape.ValueP2(),BayesSizeAndShape.DoNotRemoveSize(), BayesSizeAndShape.GramSchmidtMean()); #dataset.nolocdata[:,:,5] -dataset_complete[:,:,5] ##### ### ### ### ### ### ### MCMC ### ### ### ### ### mcmcOUT = generalSizeAndShapeMCMC(; landmarks = dataset_complete_landmark, fm = @formula(landmarks ~ 1+ x1 + x2), covariates = zmat, iterations=(iter=1000, burnin=200, thin=2), betaprior = Normal(0.0,100000.0),# sigmaprior=InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)), rmatdosample = true, #betaprior = BayesSizeAndShape.NoPriorBeta(), #sigmaprior = BayesSizeAndShape.NoPriorSigma(), #rmatdosample = false, #beta_init= zeros(Float64, k * d, p), #sigma_init = Symmetric(Matrix{Float64}(I, k, k)), #rmat_init = reshape(vcat([Matrix{Float64}(I, p, p)[:] for i = 1:n]...), (p, p, n)), beta_init= reg, sigma_init = sigma, rmat_init = ssdata_rotmat, meanmodel = ["linear"][1], identification = ["gramschmidt"][1], keepreflection = ["no", "yes"][2], removelocation = ["no", "helmert"][2], removesize = ["no", "norm"][1], verbose= true ); mcmcOUT =BayesSizeAndShape.SizeAndShapeWithReflectionMCMC( dataset_complete_landmark, @formula(1 ~ 1+ x1 + x2), zmat, (iter=1000, burnin=200, thin=2), Normal(0.0,100000.0),# InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)) ); predictive_mean = sample_predictive_zbr(mcmcOUT); predictive_obs = sample_predictive_zbr_plus_epsilon(mcmcOUT); betaOUT = mcmcOUT.posteriorsamples.beta; sigmaOUT = mcmcOUT.posteriorsamples.sigma; rmatOUT = mcmcOUT.posteriorsamples.rmat; @rput predictive_mean; @rput predictive_obs; @rput betaOUT; @rput sigmaOUT; @rput rmatOUT; @rput reg; @rput sigma; @rput ssdata_rotmat; @rput ssdata; @rput n; @rput p; @rput k; R""" DIR = "/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/sim/plot/" pdf(paste(DIR, "parameters.pdf",sep="")) par(mfrow=c(3,3)) for(i in 1:dim(betaOUT)[2]) { plot(betaOUT[,i], type="l") abline(h = c(reg)[i], col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(sigmaOUT)[2]) { plot(sigmaOUT[,i], type="l") abline(h = c(sigma)[i], col=2, lwd=2) } par(mfrow=c(3,4)) for(i in 1:dim(rmatOUT)[2]) { plot(rmatOUT[,i], type="l") abline(h = c(ssdata_rotmat)[i], col=2, lwd=2) } dev.off() pdf(paste(DIR, "predictive_mean.pdf",sep="")) meanpred = colMeans(predictive_mean) par(mfrow=c(2,2)) for(i in 1:n) { plot(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2)) points(ssdata[,,i], col=2) plot(c(ssdata[,,i]),c(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2))) abline(a=0,b=1,col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(predictive_mean)[2]) { plot(predictive_mean[,i], type="l", main= c(ssdata)[i]) abline(h = c(ssdata)[i], col=2, lwd=2) } dev.off() pdf(paste(DIR, "predictive_obs.pdf",sep="")) meanpred = colMeans(predictive_obs) par(mfrow=c(2,2)) for(i in 1:n) { plot(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2)) points(ssdata[,,i], col=2) plot(c(ssdata[,,i]),c(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2))) abline(a=0,b=1,col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(predictive_obs)[2]) { plot(predictive_obs[,i], type="l", main= c(ssdata)[i]) abline(h = c(ssdata)[i], col=2, lwd=2) } dev.off() """ ##### TESTS #if true == true # design_matrix # maximum(abs.(mcmcOUT.meantype.designmatrix-design_matrix)) # zmat_modmat - mcmcOUT.meantype.model_matrix #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
7280
### ### ### ### ### ### packages ### ### ### ### ### using Pkg Pkg.activate("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/sim") using Random, Distributions, LinearAlgebra, StatsBase using DataFrames, StatsModels, CategoricalArrays using Revise using BayesSizeAndShape using RCall ### ### ### ### ### ### simulations ### ### ### ### ### n::Int64 = 100; p::Int64 = 3; k::Int64 = 10; d::Int64 = 3; # regression reg::Matrix{Float64} = zeros(Float64, k*d, p); eg::Matrix{Float64} = zeros(Float64, k*d, p); reg[:] = rand(Normal(0.0, 1.0), prod(size(reg))); constadd = 10.0 reg[1,:] = [0.0,0.0,0.0].+ constadd reg[2,:] = [10.0,0.0,-10].+ constadd reg[3,:] = [20.0,10.0,-10].+ constadd reg[4,:] = [20.0,20.0,-10].+ constadd reg[5,:] = [10.0,20.0,-10].+ constadd reg[6,:] = [0.0,20.0,-20].+ constadd reg[7,:] = [-10.0,20.0,-20].+ constadd reg[8,:] = [-20.0,20.0,-20].+ constadd reg[9,:] = [-20.0,10.0,-20].+ constadd reg[10,:] = [-10.0,10.0,-20].+ constadd BayesSizeAndShape.standardize_reg(reg::Matrix{Float64}, BayesSizeAndShape.ValueP3(), BayesSizeAndShape.GramSchmidtMean()); #BayesSizeAndShape.standardize_reg_computegamma(reg::Matrix{Float64}, BayesSizeAndShape.ValueP3(), BayesSizeAndShape.GramSchmidtMean()) zmat = DataFrame( x1 = rand(Normal(10.0,1.0 ),n), x2 = sample(["A", "B"],n) ) zmat[:,1] = (zmat[:,1] .- mean(zmat[:,1])) ./ std(zmat[:,1]) zmat.x2 = categorical(zmat.x2) zmat_modmat_ModelFrame = ModelFrame(@formula(1 ~ 1+x1+x2), zmat); zmat_modmat = ModelMatrix(zmat_modmat_ModelFrame).m design_matrix = BayesSizeAndShape.compute_designmatrix(zmat_modmat, k); # dimensions k, k * d, n # covariance sigma::Symmetric{Float64,Matrix{Float64}} = Symmetric(rand(InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)))); dataset_complete = zeros(Float64,k,p,n); #dataset = zeros(Float64, k, p, n); for i_n = 1:n for i_p = 1:p dataset_complete[:, i_p, i_n] = rand(MvNormal(design_matrix[:, :, i_n] * reg[:, i_p], sigma)) end end ## TESTS helmmat = BayesSizeAndShape.RemoveLocationHelmert(k, BayesSizeAndShape.ValueP3()); dataset_complete_landmark = zeros(Float64,k+1,p,n); for i = 1:n dataset_complete_landmark[:,:,i] = transpose(helmmat.matrix)*dataset_complete[:,:,i] .+ 1/(k+1) end helmdata = BayesSizeAndShape.remove_location(dataset_complete_landmark, helmmat); maximum(helmdata[:,:,:]-dataset_complete[:,:,:]) minimum(helmdata[:,:,:]-dataset_complete[:,:,:]) ssdata, ssdata_rotmat = BayesSizeAndShape.compute_sizeshape_fromnolocdata(helmdata, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP3()); angle_data = Matrix{Float64}(undef,3,n) for i = 1:size(ssdata,3) BayesSizeAndShape.compute_angle_from_rmat(i,angle_data, ssdata_rotmat, BayesSizeAndShape.ValueP3(), BayesSizeAndShape.KeepReflection()) end for i in 1:size(ssdata_rotmat,3) println(det(ssdata_rotmat[:,:,i])) if det(ssdata_rotmat[:,:,i])<0 error("") end println(sum( (helmdata[:,:,i] - ssdata[:,:,i]*transpose(ssdata_rotmat[:,:,i])) )) end dataset = BayesSizeAndShape.SSDataType(dataset_complete_landmark, BayesSizeAndShape.KeepReflection(),helmmat,BayesSizeAndShape.ValueP3(),BayesSizeAndShape.DoNotRemoveSize(), BayesSizeAndShape.GramSchmidtMean()); #dataset.nolocdata[:,:,5] -dataset_complete[:,:,5] ##### ### ### ### ### ### ### MCMC ### ### ### ### ### molt::Int64 = 3 mcmcOUT = generalSizeAndShapeMCMC(; landmarks = dataset_complete_landmark, fm = @formula(1 ~ 1+ x1 + x2), covariates = zmat, iterations=(iter=1000*molt, burnin=200*molt, thin=2*molt), betaprior = Normal(0.0,100000.0),# sigmaprior=InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)), rmatdosample = true, #betaprior = BayesSizeAndShape.NoPriorBeta(), #sigmaprior = BayesSizeAndShape.NoPriorSigma(), #rmatdosample = false, #beta_init= zeros(Float64, k * d, p), #sigma_init = Symmetric(Matrix{Float64}(I, k, k)), #rmat_init = reshape(vcat([Matrix{Float64}(I, p, p)[:] for i = 1:n]...), (p, p, n)), beta_init= reg, sigma_init = sigma, rmat_init = ssdata_rotmat, meanmodel = ["linear"][1], identification = ["gramschmidt"][1], keepreflection = ["no", "yes"][2], removelocation = ["no", "helmert"][2], removesize = ["no", "norm"][1], verbose= true ); #mcmcOUT =BayesSizeAndShape.SizeAndShapeWithReflectionMCMC( # dataset_complete_landmark, # @formula(1 ~ 1+ x1 + x2), # zmat, # (iter=1000, burnin=200, thin=2), # Normal(0.0,100000.0),# # InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)) #); predictive_mean = sample_predictive_zbr(mcmcOUT); predictive_obs = sample_predictive_zbr_plus_epsilon(mcmcOUT); betaOUT = mcmcOUT.posteriorsamples.beta; sigmaOUT = mcmcOUT.posteriorsamples.sigma; rmatOUT = mcmcOUT.posteriorsamples.rmat; angleOUT = mcmcOUT.posteriorsamples.angle; @rput angle_data; @rput predictive_mean; @rput predictive_obs; @rput betaOUT; @rput sigmaOUT; @rput rmatOUT; @rput angleOUT; @rput reg; @rput sigma; @rput ssdata_rotmat; @rput ssdata; @rput n; @rput p; @rput k; R""" DIR = "/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/lavori/gitrepo/BayesSizeAndShape/todelete/sim/plot/" pdf(paste(DIR, "parametersP3.pdf",sep="")) par(mfrow=c(3,3)) for(i in 1:dim(betaOUT)[2]) { plot(betaOUT[,i], type="l") abline(h = c(reg)[i], col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(sigmaOUT)[2]) { plot(sigmaOUT[,i], type="l") abline(h = c(sigma)[i], col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(rmatOUT)[2]) { plot(rmatOUT[,i], type="l") abline(h = c(ssdata_rotmat)[i], col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(angleOUT)[2]) { plot(angleOUT[,i], type="l", main=colnames(angleOUT)[i]) abline(h = c(angle_data)[i], col=2, lwd=2) } dev.off() pdf(paste(DIR, "predictive_meanP3.pdf",sep="")) meanpred = colMeans(predictive_mean) par(mfrow=c(2,2)) for(i in 1:n) { plot(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2)) points(ssdata[,,i], col=2) plot(c(ssdata[,,i]),c(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2))) abline(a=0,b=1,col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(predictive_mean)[2]) { plot(predictive_mean[,i], type="l", main= c(ssdata)[i]) abline(h = c(ssdata)[i], col=2, lwd=2) } dev.off() pdf(paste(DIR, "predictive_obsP3.pdf",sep="")) meanpred = colMeans(predictive_obs) par(mfrow=c(2,2)) for(i in 1:n) { plot(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2)) points(ssdata[,,i], col=2) plot(c(ssdata[,,i]),c(matrix(meanpred[(i-1)*(k*p) + 1:(k*p)],ncol=2))) abline(a=0,b=1,col=2, lwd=2) } par(mfrow=c(3,3)) for(i in 1:dim(predictive_obs)[2]) { plot(predictive_obs[,i], type="l", main= c(ssdata)[i]) abline(h = c(ssdata)[i], col=2, lwd=2) } dev.off() """ ##### TESTS #if true == true # design_matrix # maximum(abs.(mcmcOUT.meantype.designmatrix-design_matrix)) # zmat_modmat - mcmcOUT.meantype.model_matrix #end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
code
7958
function sim(idata::Int64, NAMEGEN = "SIM",ndata::Int64, nsim::Int64,betainsideCI::Matrix{Float64} , sigmainsideCI::Matrix{Float64},betalengthCI::Matrix{Float64}, sigmalengthCI::Matrix{Float64}) for ip = 1:2 for isim = 1:nsim n::Int64 = [20,100,20,100, 20,100,20,100][isim]; p::Int64 = [2,3][ip]; k::Int64 = [10,10,20,20, 10,10,20,20][isim]; d::Int64 = 3; var::Float64 = [1.0,1.0,1.0,1.0, 10.0,10.0,10.0,10.0][isim] NAME = NAMEGEN * "_" * string(n)* "_" * string(p) * "_" * string(k) * "_" * string(var) # regression reg::Matrix{Float64} = zeros(Float64, k*d, p); #eg::Matrix{Float64} = zeros(Float64, k*d, p); reg[:] = rand(Normal(5.0, 1.0), prod(size(reg))); #constadd = 10.0 #if p == 2 # reg[1,:] = [0.0,0.0].+ constadd # reg[2,:] = [10.0,0.0].+ constadd # reg[3,:] = [20.0,10.0].+ constadd # reg[4,:] = [20.0,20.0].+ constadd # reg[5,:] = [10.0,20.0].+ constadd # reg[6,:] = [0.0,20.0].+ constadd # reg[7,:] = [-10.0,20.0].+ constadd # reg[8,:] = [-20.0,20.0].+ constadd # reg[9,:] = [-20.0,10.0].+ constadd # reg[10,:] = [-10.0,10.0].+ constadd #else # reg[1,:] = [0.0,0.0,0.0].+ constadd # reg[2,:] = [10.0,0.0,-10].+ constadd # reg[3,:] = [20.0,10.0,-10].+ constadd # reg[4,:] = [20.0,20.0,-10].+ constadd # reg[5,:] = [10.0,20.0,-10].+ constadd # reg[6,:] = [0.0,20.0,-20].+ constadd # reg[7,:] = [-10.0,20.0,-20].+ constadd # reg[8,:] = [-20.0,20.0,-20].+ constadd # reg[9,:] = [-20.0,10.0,-20].+ constadd # reg[10,:] = [-10.0,10.0,-20].+ constadd #end if p == 2 BayesSizeAndShape.standardize_reg(reg::Matrix{Float64}, BayesSizeAndShape.ValueP2(), BayesSizeAndShape.GramSchmidtMean()); else BayesSizeAndShape.standardize_reg(reg::Matrix{Float64}, BayesSizeAndShape.ValueP3(), BayesSizeAndShape.GramSchmidtMean()); end zmat = DataFrame( x1 = rand(Normal(10.0,1.0 ),n), x2 = sample(["A", "B"],n) ) zmat[:,1] = (zmat[:,1] .- mean(zmat[:,1])) ./ std(zmat[:,1]) zmat.x2 = categorical(zmat.x2) zmat_modmat_ModelFrame = ModelFrame(@formula(1 ~ 1+x1 + x2 ), zmat); zmat_modmat = ModelMatrix(zmat_modmat_ModelFrame).m design_matrix = BayesSizeAndShape.compute_designmatrix(zmat_modmat, k); # dimensions k, k * d, n # covariance sigma::Symmetric{Float64,Matrix{Float64}} = Symmetric(rand(InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)))); sigma.data[:,:] = sigma.data[:,:] .* var dataset_complete = zeros(Float64,k,p,n); #dataset = zeros(Float64, k, p, n); for i_n = 1:n for i_p = 1:p dataset_complete[:, i_p, i_n] = rand(MvNormal(design_matrix[:, :, i_n] * reg[:, i_p], sigma)) end end if p == 2 helmmat = BayesSizeAndShape.RemoveLocationHelmert(k, BayesSizeAndShape.ValueP2()); else helmmat = BayesSizeAndShape.RemoveLocationHelmert(k, BayesSizeAndShape.ValueP3()); end dataset_complete_landmark = zeros(Float64,k+1,p,n); for i = 1:n dataset_complete_landmark[:,:,i] = transpose(helmmat.matrix)*dataset_complete[:,:,i] .+ 1/(k+1) end helmdata = BayesSizeAndShape.remove_location(dataset_complete_landmark, helmmat); if p == 2 ssdata, ssdata_rotmat = BayesSizeAndShape.compute_sizeshape_fromnolocdata(helmdata, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP2()); else ssdata, ssdata_rotmat = BayesSizeAndShape.compute_sizeshape_fromnolocdata(helmdata, BayesSizeAndShape.KeepReflection(), BayesSizeAndShape.ValueP3()); end if p == 2 dataset = BayesSizeAndShape.SSDataType(dataset_complete_landmark, BayesSizeAndShape.KeepReflection(),helmmat,BayesSizeAndShape.ValueP2(),BayesSizeAndShape.DoNotRemoveSize(), BayesSizeAndShape.GramSchmidtMean()); else dataset = BayesSizeAndShape.SSDataType(dataset_complete_landmark, BayesSizeAndShape.KeepReflection(),helmmat,BayesSizeAndShape.ValueP3(),BayesSizeAndShape.DoNotRemoveSize(), BayesSizeAndShape.GramSchmidtMean()); end #dataset.nolocdata[:,:,5] -dataset_complete[:,:,5] ##### ### ### ### ### ### ### MCMC ### ### ### ### ### molt::Int64 = 30 outmcmc = SizeAndShapeWithReflectionMCMC( dataset_complete_landmark, @formula(1 ~ 1+ x1 + x2 ), zmat, (iter=3000*molt, burnin=1000*molt, thin=1*molt), Normal(0.0,100000.0),# InverseWishart(k + 2, 2.0 * Matrix{Float64}(I, k, k)) ); betaout = posterior_samples_beta(outmcmc); sigmaout = posterior_samples_sigma(outmcmc); windex = isim + (ip-1)*nsim betainsideCI[windex,idata] = 0.0 npar = 0 for idim = 1:p initpar = [1,2,3][idim] for ipar in initpar:( d*k) npar += 1 ww = ipar + (idim-1)*d*k qq = quantile(betaout[:,ww], [0.025,0.975]) if (reg[ipar,idim]>=qq[1]) & (reg[ipar,idim]<=qq[2]) betainsideCI[windex,idata] += 1.0 end betalengthCI[windex,idata] += qq[2]-qq[1] end end betainsideCI[windex,idata] = betainsideCI[windex,idata] / npar betalengthCI[windex,idata] = betalengthCI[windex,idata] / npar sigmainsideCI[windex,idata] = 0.0 npar = 0 for ipar = 1:k for jpar = 1:ipar npar += 1 ww = jpar + (ipar-1)*k qq = quantile(sigmaout[:,ww], [0.025,0.975]) if (sigma[ipar,jpar]>=qq[1]) & (sigma[ipar,jpar]<=qq[2]) sigmainsideCI[windex,idata] += 1.0 end sigmalengthCI[windex,idata] += qq[2]-qq[1] end end sigmainsideCI[windex,idata] = sigmainsideCI[windex,idata] / npar sigmalengthCI[windex,idata] = sigmalengthCI[windex,idata] / npar println(trunc.(betainsideCI[1:windex,idata],digits=2)) println(trunc.(sigmainsideCI[1:windex,idata],digits=2)) println(trunc.(betalengthCI[1:windex,idata],digits=2)) println(trunc.(sigmalengthCI[1:windex,idata],digits=2)) @rput betainsideCI @rput sigmainsideCI @rput betalengthCI @rput sigmalengthCI #@rput betaout; #@rput sigmaout; #@rput reg; #@rput sigma; #@rput ssdata_rotmat; #@rput ssdata; #@rput n; #@rput p; #@rput k; #@rput NAME; end end end
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
docs
622
# Changelog ## [v0.2.0] - 2023-05-24 ### Added - There is now a real data example ### Changed - The entire package structure has been changed. - This version breaks backward compatibility ## [v0.1.4] - 2023-03-14 ### Added - compute_helmertized_configuration ### Changed - SizeAndShapeMCM - the output are now DataFrames - SizeAndShapeMCMC_p2withreflection is now SizeAndShapeMCMC ## [v0.1.3] - 2023-03-14 ### Added - SizeAndShapeMCMC_p2withreflection() - MCMC samples for two-dimensional data with reflection information ### Deprecated - compute_dessignmatrix() - Now compute_designmatrix() should be used instead
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
docs
7754
# **BayesSizeAndShape** This package implements a Bayesian regression for size-and-shape data, based on "Di Noia, A., Mastrantonio, G., and Jona Lasinio, G., “Bayesian Size-and-Shape regression modelling”, <i>arXiv e-prints</i>, 2023". To install, simply do ```julia julia> ] pkg> add BayesSizeAndShape ``` at the julia prompt. At the present moment, the package implements models for two- or three- dimensional data with reflection information. All the objects use `Float64` and `Int64` numbers The function to use is `SizeAndShapeWithReflectionMCMC` # ## **Basic Usage** To fix notation, we assume the following * `n` be the number of objects; * `k+1` be the number of recorded landmark for each object * `p` be the dimension of each landmark (only p=2 or p=3) The model estimated is $$\text{vec}(\mathbf{Y}\_i \mathbf{R}\_i') \sim\mathcal{N}\_{k p}\left( \text{vec}\left(\sum_{h=1}^dz\_{ih}\mathbf{B}\_h\right), \mathbf{I}\_p \otimes \boldsymbol{\Sigma}\right), \,\qquad i = 1, \dots , n$$ where * $\mathbf{Y}\_i$ is the i-th size-and-shape object; * $z_{ih}$ is a value of a covariate * $\mathbf{B}\_h$ is a matrix that contains regressive coefficients * $\boldsymbol{\Sigma}$ is a covariance matrix The prior distributions are $$[\mathbf{B}\_h]_{jl} \sim N(m,v),\qquad \boldsymbol{\Sigma} \sim IW(\nu, \Psi)$$ ### **Rats data example** In the **examples** directory, there is the **julia** file **rats.jl** with an example of how to implement the model with the **rat** data, which we will describe also here. First we load the required packages ```julia julia> using Random julia> using Distributions julia> using LinearAlgebra julia> using StatsBase julia> using Kronecker julia> using DataFrames julia> using StatsModels julia> using CategoricalArrays julia> using Plots julia> using BayesSizeAndShape ``` The data for this example is inside the package and it can be loaded with ```julia julia> dataset_rats = dataset("rats"); ``` and a description of the objects loaded can be seen with ```julia julia> dataset_desciption("rats") ``` There are different datasets in the package (in the package directory `data`), which are all taken from the R package **shape** (Soetaert K (2021). _shape: Functions for Plotting Graphical Shapes, Colors_. R package version 1.4.6, <https://CRAN.R-project.org/package=shape>). The names of the datasets that are ready to be used in **julia** can be found with the following command ```julia julia> dataset_names() ``` The data `dataset_rats` is a three-dimensional array of landmark of dimension $(k+1)\times p \times n$. We put the landmark in a `landmark` object and we divide all the points by 100.0 to work with smaller number ```julia julia> landmark = dataset_rats.x; julia> landmark = landmark ./ 100.0 ``` We can easily plot the data with ```julia julia> plot(landmark[:,1,1], landmark[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) julia> for i = 2:size(landmark,3) plot!(landmark[:,1,i], landmark[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end julia> title!("Landmarks") ``` ![Screenshot](figures/landmark.svg) <br /> <br /> Even tough we only need the array `landmark` in the MCMC function, we can compute the **SizeAndShape** data (the variables $\mathbf{Y}_i$) used inside the MCMC function with ```julia julia> sizeshape = sizeshape_helmertproduct_reflection(landmark); ``` where `sizeshape[:,:,i]` is $\mathbf{Y}_i$, and plot them with ```julia julia> plot(sizeshape[:,1,1], sizeshape[:,2,1],legend = false, color = cgrad(:tab20, 21)[Int64(subject[1])]) julia> for i = 2:size(landmark,3) plot!(sizeshape[:,1,i], sizeshape[:,2,i], color = cgrad(:tab20, 21)[Int64(subject[i])]) end julia> title!("Size And Shape") ``` ![Screenshot](figures/sizeshape.svg) <br /> <br /> The `time` and `subject` information will be used as covariate, and with them we create a `DataFrame` ```julia julia> subject = dataset_rats.no; julia> time = dataset_rats.time; julia> covariates = DataFrame( time = time, subject = categorical(string.(subject)) ); ``` <br /> <br /> Posterior samples are obtained with the function `SizeAndShapeWithReflectionMCMC`. The parameters are (in order) * a three-dimensional `Array` of data; * a `formula`, where on the left-hand side there must be "landmarks" and on the right-hand side there is the actual regressive formula - an intercept is needed; * a `DataFrame` of covariates. The formula search for the covariates in the `DataFrame` column names; * a `NamedTuple` with `iter`, `burnin`, and `thin` values of the MCMC algorithm * a `Normal` distribution that is used as prior for all regressive coefficients * an `InverseWishart` distribution that is used as prior for the covariance matrix. ```julia julia> outmcmc = SizeAndShapeWithReflectionMCMC( landmark, @formula(landmarks ~ 1+time + subject), covariates, (iter=1000, burnin=200, thin=2), Normal(0.0,100000.0),# InverseWishart(k + 2, 5.0 * Matrix{Float64}(I, k, k)) ); ``` Posterior samples of the parameters can be extracted using the following: ```julia julia> betaout = posterior_samples_beta(outmcmc); julia> sigmaout = posterior_samples_sigma(outmcmc); ``` where `betaout` is a `DataFrame` that contains the posterior samples of $\mathbf{B}\_h$, while `sigmaout` is a `DataFrame` that contains the ones of $\boldsymbol{\Sigma}$. Each row is a posterior sample. The column names of `betaout` are informative on which mark/dimension/covariates a specific regressive coefficient is connected ```julia julia> names(betaout) 266-element Vector{String}: "(Intercept)| mark:1| dim:1" "(Intercept)| mark:2| dim:1" "(Intercept)| mark:3| dim:1" "(Intercept)| mark:4| dim:1" "(Intercept)| mark:5| dim:1" "(Intercept)| mark:6| dim:1" "(Intercept)| mark:7| dim:1" ⋮ "subject: 9.0| mark:1| dim:2" "subject: 9.0| mark:2| dim:2" "subject: 9.0| mark:3| dim:2" "subject: 9.0| mark:4| dim:2" "subject: 9.0| mark:5| dim:2" "subject: 9.0| mark:6| dim:2" "subject: 9.0| mark:7| dim:2" ``` while the names of `sigmaout` indicates the row and column indices ```julia julia> names(sigmaout) 49-element Vector{String}: "s_(1,1)" "s_(2,1)" "s_(3,1)" "s_(4,1)" "s_(5,1)" "s_(6,1)" "s_(7,1)" "s_(1,2)" ⋮ "s_(1,7)" "s_(2,7)" "s_(3,7)" "s_(4,7)" "s_(5,7)" "s_(6,7)" "s_(7,7)" ``` It is possible to predict the **mean configuration** by using the function ```julia julia> predictive_mean = sample_predictive_zbr(outmcmc); ``` which compute the posterior samples of $$\boldsymbol{\mu}\_i^* = \text{vec}\left(\sum\_{h=1}^dz\_{ih}\mathbf{B}\_h \mathbf{R}\_i\right)$$ or from the predictive distribution $$\mathbf{Y}\_i^* = \text{vec}\left(\sum_{h=1}^dz\_{ih}\mathbf{B}\_h \mathbf{R}\_i\right)+\boldsymbol{\epsilon}\_{i} ,\qquad \boldsymbol{\epsilon}\_{i}\sim\mathcal{N}\_{k p}\left( \mathbf{0}, \mathbf{I}\_p \otimes \boldsymbol{\Sigma}\right)$$ with the function ```julia julia> predictive_obs = sample_predictive_zbr_plus_epsilon(outmcmc); ``` Again, the names of the two `DataFrame`s `predictive_mean` and `predictive_obs` are informative to which element they refer to. ```julia julia> names(predictive_mean) 2016-element Vector{String}: "mu_1,(1,1)" "mu_1,(2,1)" "mu_1,(3,1)" "mu_1,(4,1)" "mu_1,(5,1)" "mu_1,(6,1)" "mu_1,(7,1)" "mu_1,(1,2)" ⋮ "mu_144,(1,2)" "mu_144,(2,2)" "mu_144,(3,2)" "mu_144,(4,2)" "mu_144,(5,2)" "mu_144,(6,2)" "mu_144,(7,2)" ``` ```julia julia> names(predictive_obs) 2016-element Vector{String}: "X_1,(1,1)" "X_1,(2,1)" "X_1,(3,1)" "X_1,(4,1)" "X_1,(5,1)" "X_1,(6,1)" "X_1,(7,1)" "X_1,(1,2)" ⋮ "X_144,(1,2)" "X_144,(2,2)" "X_144,(3,2)" "X_144,(4,2)" "X_144,(5,2)" "X_144,(6,2)" "X_144,(7,2)" ``` ## Citing See `CITATION.bib`
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
0.2.0
4214520f385b4d6220a9e63d5a7f355761104b17
docs
244
# BayesSizeAndShape ## Package Features ## Function Documentation ```@docs SizeAndShapeWithReflectionMCMC ``` ```@docs sizeshape_helmertproduct_reflection ``` # Posterior Samples ```@docs posterior_samples_sigma posterior_samples_beta ```
BayesSizeAndShape
https://github.com/GianlucaMastrantonio/BayesSizeAndShape.jl.git
[ "MIT" ]
1.0.2
950681e4f7ab2182ae61eb632d2db9a188eed2df
code
32479
#= License Copyright 2019, 2020, 2021 (c) Yossi Bokor Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# __precompile__() module Skyler #### Requirements #### using CSV using DataFrames using LinearAlgebra using NearestNeighbors using Distances using Optim using SimpleGraphs using Random using Distributions using QuadGK using Plots using JLD using SpecialFunctions #using SharedArrays using Calculus using NNlib using FiniteDiff using ProgressMeter #### Exports #### export skyler, unittest, Determine_Dimension, Plot_PPC, Plot_Graph, Load_Example, PartitionedPointCloud, StratifiedSpace, EmbeddedStratifiedSpace, Dimension_Split, Create_Partition_DataFrame #### Structures #### mutable struct PartitionedPointCloud Points::AbstractArray Strata::Dict{Int, Set} Dimensions::Dict{Int, Set} Boundaries::AbstractArray end mutable struct StratifiedSpace StrataDimensions::Dict{Int, Set} Boundaries::AbstractArray end mutable struct EmbeddedStratifiedSpace StratSpace::StratifiedSpace Equations::Dict{Int, Array} end #### Background Functions #### function Spherical_Shell(ball_tree::BallTree, point::Array, inner::T, outer::U) where {T<: Number, U<: Number} #this obtains all the samples in the spherical shell around a chosen sample 'point' ball_1 = inrange(ball_tree, point, inner, true) ball_2 = inrange(ball_tree, point, outer, true) annulus = setdiff(ball_2, ball_1) return annulus end function Determine_Dimension(sample::A, ball_tree::BallTree, index::Int, sample_epsilon::P, radius::R) where {P<:Number,R<:Number, A<:Union{AbstractArray, LinearAlgebra.Adjoint}}# determine whether the `index'th point in the sample looks 0 or 1 dimensional given the coordinates of the other points, a pre-generated ball tree, and the correct algorithm parameters of 'angle_conditon', 'inner_radius', and 'outer_radius' point = sample[:,index] distance_matrix = pairwise(Euclidean(), sample, dims=2) node_neighbours = Spherical_Shell(ball_tree, point, 0., radius+sample_epsilon) node_neighbours = push!(node_neighbours, index) G_point = IntGraph() for i in node_neighbours add!(G_point,i) end for i in vlist(G_point) for j in vlist(G_point) if distance_matrix[i,j] <= 2*sample_epsilon add!(G_point, i, j) end end end n_p = size(sample,2) #number of samples nc_1 = num_components(G_point) if nc_1 != 1 #if the graph on the points within a ball of the chosen points is disconnected, then the point is not close to a vertex return 1 else # if the graph on the points in a ball is connected, then we need to check if 0 or 1 dimensional structure node_neighbours_1 = Spherical_Shell(ball_tree, point, radius-1sample_epsilon, radius+sample_epsilon) G_point_1 = IntGraph() # construct graph on points in a spherical shell for i in node_neighbours_1 add!(G_point_1, i) end for i in vlist(G_point_1) for j in vlist(G_point_1) if distance_matrix[i,j] <= 3*sample_epsilon add!(G_point_1, i, j) end end end nc_2 =num_components(G_point_1) if nc_2 == 2 #if the number of connected components is 2, we need to check if they are roughly opposite each other or not cc = collect(SimpleGraphs.components(G_point_1)) mid_point_1 = [] for l in 1:size(sample,1) mid_point_1_l = 0 cc_1 = collect(cc[1]) for p in cc_1 mid_point_1_l += sample[l, p] end append!(mid_point_1, mid_point_1_l/(length(cc_1))) end mid_point_2= [] for l in 1:size(sample,1) mid_point_2_l = 0 cc_2 = collect(cc[2]) for p in cc_2 mid_point_2_l += sample[l,p] end append!(mid_point_2, mid_point_2_l/(length(cc_2))) end mid_point_1 = mid_point_1 .- sample[:,index] mid_point_2 = mid_point_2 .- sample[:,index] #cos_of_angle = dot(mid_point_1, mid_point_2)/(norm(mid_point_1)*norm(mid_point_2)) if dot(mid_point_1, mid_point_2) <= -radius^2 +2*radius*sample_epsilon +7*sample_epsilon^2 return 1 else return 0 end else #if the number of connected components is not 2, return dimension 0 return 0 end end end function Dimension_Split(sample::A, sample_epsilon::S, radius::U) where {S<: Number, U<:Number, A<:AbstractArray}# for each point in the sample, determine if it looks 0 or 1 dimensional #if nprocs() == 1 n_p = size(sample,2) ball_tree = BallTree(sample) dimension_split = Dict{Int,Set}(0 => Set(), 1 =>Set()) println("Calculating local structure for each sample: ") @showprogress for i in 1:n_p dim = Determine_Dimension(sample, ball_tree, i, sample_epsilon,radius) dimension_split[dim]=push!(dimension_split[dim], i) end return dimension_split #else # n_p = size(sample,2) # @everywhere ball_tree=BallTree(sample) #end end function Find_Groups(distance_matrix::A, dictionary_of_points::Dict{Int, Set}, dimension::T, connection_threshold::W) where {T <: Number, W<: Number, A<:AbstractArray} # obtain the clusters of points which look 'dimensional' dimensional points = collect(dictionary_of_points[dimension]) #create a set of points G = UndirectedGraph() for i in points add!(G, i) end for i in points for j in points if distance_matrix[i,j] <= connection_threshold #connect points below the connection threshold to cluster add!(G, i, j) end end end components = [] vertices = vlist(G) n_v = length(vertices) checked = Set() discovered=[] function DFS(Graph, vertex) append!(discovered,vertex) for u in neighbors(Graph, vertex) if u in(discovered) else DFS(Graph, u) end end end for i in vertices if i in checked else push!(checked, i) discovered =[] DFS(G, i) append!(components, [discovered]) for n in discovered push!(checked, n) end end end return components end function Generate_Strata_Assignments(distance_matrix::Array, dimension_split::Dict{Int, Set}, v_threshold::T, e_threshold::W) where {T <: Number, W<:Number} # generate the clusters of vertices and edges using the above functions v_comps = Find_Groups(distance_matrix, dimension_split, 0, v_threshold) number_of_vertices = length(v_comps) e_comps = Find_Groups(distance_matrix, dimension_split, 1, e_threshold) number_of_edges = length(e_comps) change = [] for i in 1:number_of_edges if size(e_comps[i]) == 1 append!(change, e_comps[i][1]) end end if length(change) !=0 d_s = copy(dimension_split) for i in 1:length(change) d_s[0] = push!(d_s[0], change[i]) d_s[1] = setdiff(d_s[1], Set([change[i]])) end v_comps = Find_Groups(distance_matrix, d_s, 0, v_threshold) number_of_vertices = length(v_comps) e_comps = Find_Groups(distance_matrix, d_s, 1, e_threshold) number_of_edges = length(e_comps) end strata_assignments = Dict{Int, Set}(1=>Set()) strata_dimensions = Dict{Int,Set}(0=> Set(), 1=>Set()) #println("Detected ", number_of_vertices," vertices and ", number_of_edges, " edges.") for i in 1:number_of_vertices strata_assignments[i] =Set(v_comps[i]) strata_dimensions[0] =push!(strata_dimensions[0],i) end for i in 1:number_of_edges strata_assignments[number_of_vertices+i] =Set(e_comps[i]) strata_dimensions[1] =push!(strata_dimensions[1],number_of_vertices+i) end return strata_assignments, strata_dimensions end function Generate_Abstract_Structure(points::A, dimension_split::Dict{Int, Set}, sample_epsilon::T, vertex_threshold::T, edge_threshold::U) where {U<:Number, T<:Number, A<:AbstractArray} # obtain the abstract structure of the graph dists = pairwise(Euclidean(), points, dims=2) corrected = false while corrected == false strata_assignments, strata_dimensions = Generate_Strata_Assignments(dists, dimension_split, vertex_threshold, edge_threshold) max_dim = maximum(keys(strata_dimensions)) n_s = maximum(keys(strata_assignments)) boundaries = zeros(n_s, n_s) @showprogress for i in 0:max_dim-1 for j in strata_dimensions[i] s_j = points[:,collect(strata_assignments[j])] for k in strata_dimensions[i+1] s_k = points[:,collect(strata_assignments[k])] d_j_k = Distances.pairwise(Euclidean(), s_j, s_k, dims=2) if minimum(d_j_k) <= 3*sample_epsilon boundaries[j,k]=1 end end end end println("\r The strata are ", strata_dimensions, " and the boundary matrix is ", boundaries,".") change = [] if isempty(strata_dimensions[1]) corrected = true StratSpace = StratifiedSpace(strata_dimensions, boundaries) return StratSpace, strata_assignments break else for i in strata_dimensions[1] if sum(boundaries[:,i]) !=2 append!(change, i) end end end if length(change) == 0 corrected = true StratSpace = StratifiedSpace(strata_dimensions, boundaries) return StratSpace, strata_assignments break else println("Stray edge detected, addressing it.") for k in 1:length(change) dimension_split[0] = union(dimension_split[0], strata_assignments[change[k]]) dimension_split[1] = setdiff(dimension_split[1], strata_assignments[change[k]]) end end end end function Partition_Point_Cloud(points::A, sample_epsilon::P, radius::W, vertex_threshold::T, edge_threshold::U)::PartitionedPointCloud where {P<:Number, Q<:Number, R<:Number, W<:Number, T <: Number, U<:Number, A<:AbstractArray} dimension = size(points,1) distances = pairwise(Euclidean(), points, dims=2) dim_split = Dimension_Split(points, sample_epsilon, radius) #partition the sample into 0 or 1 dimensional using a dictionary #strata_assignments, strata_dimensions = Generate_Strata_Assignments(distances, dim_split, vertex_threshold, edge_threshold) #find the strata for the partioned point cloud StratSpace, strata_assignments = Generate_Abstract_Structure(points, dim_split, sample_epsilon, vertex_threshold, edge_threshold) #obtain the boundary relations change = [] ppc = PartitionedPointCloud(points, strata_assignments, StratSpace.StrataDimensions, StratSpace.Boundaries) return ppc end #= Deprecated this was used for modelling the embedding, unsure about future uses function Generate_Partition(v_clusters, e_clusters) lengths = [] partitions = [] for i in 1:length(v_clusters) append!(lengths, length(v_clusters[i])) append!(partitions, v_clusters[i]) end for i in 1:length(e_clusters) append!(lengths, length(e_clusters[i])) append!(partitions, e_clusters[i]) end return partitions, lengths end =# function Create_Partition_DataFrame(ppc::PartitionedPointCloud) #create a dataframe we can save the partitioned point cloud in dimension = size(ppc.Points,1) df = DataFrame(ppc.Points[:,1]') insert!(df, 1, [1], :index) insert!(df, 2, [1], :dimension) deleterows!(df, 1) for i in 0:maximum(keys(ppc.Dimensions)) for j in ppc.Dimensions[i] for k in ppc.Strata[j] l = [j i] for n in 1:dimension l=hcat(l, ppc.Points[n,k]) end push!(df, l) end end end return sort(df) end function Plot_PPC(ppc::PartitionedPointCloud) #plot the partiton with nice colours Plots.pyplot() if size(ppc.Points,1) == 2 df = DataFrame(index=Int[], dimension=Int[], c1=[], c2=[]) for i in 0:maximum(keys(ppc.Dimensions)) for j in ppc.Dimensions[i] for k in ppc.Strata[j] push!(df, [j,i,ppc.Points[1,k], ppc.Points[2,k]]) end end end Plots.scatter( df[!,:c1],df[!,:c2], group=df[!,:index]) else println("Points live in 3 or more dimensions, projecting onto the first 3.") df = DataFrame(index=Int[], dimension=Int[], c1=[], c2=[], c3=[]) for i in 0:maximum(keys(ppc.Dimensions)) for j in ppc.Dimensions[i] for k in ppc.Strata[j] push!(df, [j,i,ppc.Points[1,k], ppc.Points[2,k], ppc.Points[3,k]]) end end end Plots.scatter3d( df[!,:c1],df[!,:c2], df[!,:c3], group=df[!,:index]) end end function Plot_PPC(partition::DataFrame) Plots.pyplot() dimension = size(partition[!,:point][1],1) if dimension == 2 points = Array{Float64}(undef, 0,2) for i in 1:size(partition,2) points = hcat(points, partition[i,:point]) end Plots.scatter( points[:,1], points[:,2], group=partition[!,:index]) else println("Points live in 3 or more dimensions, projecting onto the first 3.") points = Array{Float64}(undef, 0,3) for i in 1:size(partition,1) points = vcat(points, partition[i,:point][1:3]') end Plots.scatter3d( points[:,1], points[:,2], points[:,3], group=partition[!,:index]) end end function Plot_PPC(partition::DataFrame, c_1::Int, c_2::Int) Plots.pyplot() println("Projecting on to the following coordinates: $c_1 and $c_2.") points = Array{Float64}(undef, 0,2) for i in 1:size(partition,1) points = vcat(points, [partition[i,:point][c_1] partition[i,:point][c_2]]) end Plots.scatter( points[:,1], points[:,2], group=partition[!,:index]) end function Plot_PPC(partition::DataFrame, c_1::Int, c_2::Int, c_3::Int) Plots.pyplot() println("Projecting on to the following coordinates: $c_1, $c_2 and $c_3.") points = Array{Float64}(undef, 0,3) for i in 1:size(partition,1) points = vcat(points, [partition[i,:point][c_1] partition[i,:point][c_2] partition[i,:point][c_3]]) end Plots.scatter3d( points[:,1], points[:,2], points[:,3], group=partition[!,:index]) end function Plot_Graph(vertex_locations, edges, sample) #plot a graph (either exact or modelled) Plots.pyplot() if length(sample) == 2 scatter(vertex_locations[sample[1], :], vertex_locations[sample[2], :], s=1) for i in 1:(size(edges,1)-1) plot!([vertex_locations[sample[1], edges[i,1]], vertex_locations[sample[1],edges[i,2]]], [vertex_locations[sample[2], edges[i,1]], vertex_locations[sample[2], edges[i,2]]], linestyle = :solid) end i=size(edges,1) plot!([vertex_locations[sample[1], edges[i,1]], vertex_locations[sample[1],edges[i,2]]], [vertex_locations[sample[2], edges[i,1]], vertex_locations[sample[2], edges[i,2]]], linestyle = :solid) elseif length(sample) == 3 scatter3d(vertex_locations[sample[1], :], vertex_locations[sample[2], :], vertex_locations[sample[3], :],s=1) for i in 1:(size(edges,1)-1) plot!([vertex_locations[sample[1], edges[i,1]], vertex_locations[sample[1], edges[i,2]]], [vertex_locations[sample[2], edges[i,1]], vertex_locations[sample[2], edges[i,2]]], [vertex_locations[sample[3], edges[i,1]], vertex_locations[sample[3], edges[i,2]]], linestyle =:solid) end i=size(edges,1) plot!([vertex_locations[sample[1], edges[i,1]], vertex_locations[sample[1], edges[i,2]]], [vertex_locations[sample[2], edges[i,1]], vertex_locations[sample[2], edges[i,2]]], [vertex_locations[sample[3], edges[i,1]], vertex_locations[sample[3], edges[i,2]]], linestyle =:solid) else println("Please specify 2 or 3 sample to project onto.") return [] end end function Plot_Graph(vertex_locations, edges) #plot a graph (either exact or modelled) Plots.pyplot() if size(vertex_locations,1) == 2 scatter(vertex_locations[sample[1], :], vertex_locations[sample[2], :], s=1) for i in 1:(size(edges,1)-1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1,edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], linestyle = :solid) end i=size(edges,1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1,edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], linestyle = :solid) elseif size(vertex_locations,1) == 3 scatter3d(vertex_locations[1, :], vertex_locations[2, :], vertex_locations[3, :],s=1) for i in 1:(size(edges,1)-1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1, edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], [vertex_locations[3, edges[i,1]], vertex_locations[3, edges[i,2]]], linestyle =:solid, c=:red) end i=size(edges,1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1, edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], [vertex_locations[3, edges[i,1]], vertex_locations[3, edges[i,2]]], linestyle =:solid, c=:red) else println("Projecting onto the first 3 coordinates.") scatter3d(vertex_locations[1, :], vertex_locations[2, :], vertex_locations[3, :],s=1) for i in 1:(size(edges,1)-1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1, edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], [vertex_locations[3, edges[i,1]], vertex_locations[3, edges[i,2]]], linestyle =:solid) end i=size(edges,1) plot!([vertex_locations[1, edges[i,1]], vertex_locations[1, edges[i,2]]], [vertex_locations[2, edges[i,1]], vertex_locations[2, edges[i,2]]], [vertex_locations[3, edges[i,1]], vertex_locations[3, edges[i,2]]], linestyle =:solid) end end function model_fit(data, muT, sigma, E, S; EM_it = 3) ##################################################################################### #### Functions for modelling the underlying structure #### #= To update: -keeps sigma fixed at the moment, this can be made optional =# #= MAKE SURE S AND MUT ARE IN THE SAME ORDER =# #= notns: n --- Number of data points d --- Dimension of data N --- Number of strata pieces N_0 --- Number of 0-dim strata pieces N_1 --- Number of 1-dim strata pieces data --- n dim array of d arrays --- Sample from embedded graph mu --- N_0 by d dim array --- Iniitial vertex sample locations sigma --- N dim array --- Initial error on each strata piece E --- n by N array --- Initial assignment for each data point S --- N dim str array --- Abstract graph vertex/edge names in that order =# # data is a n dim array of d dimensional vectors ##################################################################################### ####pre-processing #get size of different dimensional strata #println("S starts as $S") #println("mu starts as $muT") N_0 = size(muT,1) mu = [muT[i,:] for i in 1:N_0] N_1 = size(S ,1) - N_0 N = N_0 + N_1 n = size(data,1) d = size(data[1],1) #load parameters E = [E[i,:] for i = 1:n] Pi = sum(E)./n #println("sigma in EM is", sigma) MU = Dict{Any,Array}(S[i] => mu[i] for i = 1:N_0) SIGMA = Dict{Any,Float64}(S[i] => sigma[i] for i = 1:N) PI = Dict{Any,Float64}(S[i] => Pi[i] for i =1:N) #println("MU: ", MU) #println("SIGMA: ", SIGMA) #println("PI: ", PI) function reload_param(mu_t,sigma_t,Pi_t; S_t = S, N_0_t = N_0, N_t = N) #updates dictionary values for: #mu_t N_0 by d float array #SIGMA_t N float array #Pi N_float array MU_t = Dict{Any,Array}(S_t[i] => mu_t[i] for i = 1:N_0_t) SIGMA_t = Dict{Any,Float64}(S_t[i] => sigma_t[i] for i = 1:N_t) PI_t = Dict{Any,Float64}(S_t[i] => Pi_t[i] for i = 1:N_t) return MU_t, SIGMA_t, PI_t end ####density functions #0-dim strata function gaussian(x,v,s) linear = x - v return exp(-dot(linear, linear)/(2*s)) end function p_e(x,v,s) d = size(x)[1] den = gaussian(x,v,s)/((2*pi*s)^(d/2)) return den end function log_p_e(x,v,s) d = size(x)[1] linear = x - v den= -(d/2)*log(2*pi*s^2) - dot(linear,linear)/(2*s^2) return den end #1-dim strata #with clipping function p_l(xj, v1, v2, s) d = size(xj,1) xj = - xj den = (exp((4*dot(v1 - v2, (v1 + v2)/2 + xj)^2 - 4*norm(v1 - v2)^2*norm((v1 + v2)/2 + xj)^2)/(8*s^2*norm(v1 - v2)^2))*pi^(1/2 - d/2)*(-erf((2*dot(v1 - v2, (v1 + v2)/2 + xj) - norm(v1 - v2)^2)/(2*sqrt(2)*s*norm(v1 - v2))) + erf((2*dot(v1 - v2, (v1 + v2)/2 + xj) + norm(v1 - v2)^2)/(2*sqrt(2)*s*norm(v1 - v2)))))/norm(v1 - v2) if den <= -6 den = -6 end return den end function log_p_l(Xj, V1, V2, s) d = size(Xj,1) Xj = - Xj den = log(2^((-1 - d)/2)*pi^(1/2 - d/2)*s^(1 - d)) + log(-erf((2*dot(V1 - V2, (V1 + V2)/2 + Xj) - norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2))) + erf((2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2)))) - log(norm(V1 - V2)) + (4*dot(V1 - V2, (V1 + V2)/2 + Xj)^2 - 4*norm(V1 - V2)^2*norm((V1 + V2)/2 + Xj)^2)/ (8*s^2*norm(V1 - V2)^2) if den <= -6 den = -6 end return den end #density evaluation matrix function densities(MU_t,SIGMA_t; S_t = S, N_0 = N_0 , N_1 = N_1, N = N) zero_dim = [x -> p_e(x,MU_t[strat],SIGMA_t[strat]) for strat = S_t[1:N_0]] one_dim = [x -> p_l(x,MU_t[strat[2]],MU_t[strat[1]],SIGMA_t[strat]) for strat = S_t[N_0+1:N]] return one_dim # vcat(zero_dim,one_dim) end function log_densities(mu_t,SIGMA_t; S_t = S, N_0 = N_0 , N_1 = N_1, N = N) MU_t = Dict{Any,Array}(S_t[i] => mu_t[i] for i = 1:N_0) zero_dim = [x -> log_p_e(x,MU_t[strat],SIGMA_t[strat]) for strat = S_t[1:N_0]] one_dim = [x -> log_p_l(x,MU_t[strat[1]],MU_t[strat[2]],SIGMA_t[strat]) for strat = S_t[N_0+1:N]] return vcat(zero_dim,one_dim) end function density_matrix(data,density_functions) dm = [ (broadcast(rho, data)) for rho in density_functions ] dm = hcat(dm...) dm = [dm[i,:] for i = 1:n] return dm end ####cost construction #expectation matrix for current parameters function expectation(data,MU_t,SIGMA_t,Pi_t) DM = density_matrix(data,log_densities(MU_t,SIGMA_t)) logpi = log.(Pi_t) E = broadcast(t -> logpi .+ t, DM) E = broadcast(t -> softmax(t), E) return E end #cost for current vertex values function Cost(data,mu0,SIGMA_t, Pi, E) mu_t = [mu0[i,:] for i in 1:N_0] log_DM = density_matrix(data,log_densities(mu_t,SIGMA_t)) #not needed in optimisation but can be checked for EM #log_pi = log.(Pi) #log_sum = broadcast(t -> t + log_pi, log_DM) w_sum = broadcast((e,t) -> sum(e.*t), E, log_DM) return sum(w_sum)/n end ####analytic gradient construction #gradient values for cost function function grad_log_p_l(k, Xj, V1, V2, s) xj = Xj[k] v1 = V1[k] v2 = V2[k] if dot(V2 - V1, Xj) > dot(V1, V2 - V1) xj = xj - ((dot(V2 - V1, Xj) - dot(V1, V2 - V1) )/(norm(V2 - V1)^2))*(v2 - v1) Xj = Xj - ((dot(V2 - V1, Xj) - dot(V1, V2 - V1) )/(norm(V2 - V1)^2)).*(V2 - V1) elseif dot(V2 - V1, Xj) < dot(V2, V1 - V2) xj = xj - ((dot(V2 - V1, Xj) - dot(V2, V1 - V2) )/(norm(V2 - V1)^2))*(v2 - v1) Xj = Xj - ((dot(V2 - V1, Xj) - dot(V2, V1 - V2) )/(norm(V2 - V1)^2)).*(V2 - V1) end g_v1 = -(v1 + v2 + 2*xj)/(4*s^2) + (2*(-1 + exp(dot(V1 - V2, (V1 + V2)/2 + Xj)/s^2))*(v1 - v2)* dot(V1 - V2, (V1 + V2)/2 + Xj) + (3*v1 - v2 + 2*xj - exp(dot(V1 - V2, (V1 + V2)/2 + Xj)/s^2)* (v1 + v2 + 2*xj))*norm(V1 - V2)^2)/ (exp((2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)^2/(8*s^2*norm(V1 - V2)^2))*sqrt(2*pi)*s* (erf((-2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2))) + erf((2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2))))* norm(V1 - V2)^3) + ((-v1 + v2)*dot(V1 - V2, (V1 + V2)/2 + Xj)^2 + (s^2*(-v1 + v2) + (v1 + xj)*dot(V1 - V2, (V1 + V2)/2 + Xj))*norm(V1 - V2)^2)/(s^2*norm(V1 - V2)^4) g_v2 = -(v1 + v2 + 2*xj)/(4*s^2) + (-2*(-1 + exp(dot(V1 - V2, (V1 + V2)/2 + Xj)/s^2))*(v1 - v2)* dot(V1 - V2, (V1 + V2)/2 + Xj) + (-v1 - v2 - 2*xj + exp(dot(V1 - V2, (V1 + V2)/2 + Xj)/s^2)* (-v1 + 3*v2 + 2*xj))*norm(V1 - V2)^2)/ (exp((2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)^2/(8*s^2*norm(V1 - V2)^2))*sqrt(2*pi)*s* (erf((-2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2))) + erf((2*dot(V1 - V2, (V1 + V2)/2 + Xj) + norm(V1 - V2)^2)/(2*sqrt(2)*s*norm(V1 - V2))))* norm(V1 - V2)^3) + ((v1 - v2)*dot(V1 - V2, (V1 + V2)/2 + Xj)^2 - (s^2*(-v1 + v2) + (v2 + xj)*dot(V1 - V2, (V1 + V2)/2 + Xj))*norm(V1 - V2)^2)/(s^2*norm(V1 - V2)^4) return g_v1, g_v2 end function grad_log_p_l_n(k, Xj, V1, V2, s) xj = Xj[k] v1 = V1[k] v2 = V2[k] if dot(V2 - V1, Xj) > dot(V1, V2 - V1) xj = xj - ((dot(V2 - V1, Xj) - dot(V1, V2 - V1) )/(norm(V2 - V1)^2))*(v2 - v1) Xj = Xj - ((dot(V2 - V1, Xj) - dot(V1, V2 - V1) )/(norm(V2 - V1)^2)).*(V2 - V1) elseif dot(V2 - V1, Xj) < dot(V2, V1 - V2) xj = xj - ((dot(V2 - V1, Xj) - dot(V2, V1 - V2) )/(norm(V2 - V1)^2))*(v2 - v1) Xj = Xj - ((dot(V2 - V1, Xj) - dot(V2, V1 - V2) )/(norm(V2 - V1)^2)).*(V2 - V1) end function V_r(v_r, V) V[k] = v_r return V end log_p_l_proj = v_r -> log_p_l(Xj, V_r(v_r[1], V1), V_r(v_r[2], V2), s) g = Calculus.gradient(log_p_l_proj) return g([v1, v2]) end function grad_log_cost!(Grad, data, mu_t, S_t, E_list, SIGMA_t) n = size(data,1) d = size(data[1],1) grad = Dict{Any,Array}(S_t[i] => zeros(Float64, 1 , d) for i = 1:N_0) Mu_t = Dict{Any,Array}(S_t[i] => mu_t[i,:] for i = 1:N_0) E_array = vcat(transpose(E_list)...) E_t = Dict{Any,Array}(S_t[i] => E_array[:,i] for i = 1:N) for s in S_t if s isa Integer grad[s] += transpose(sum(E_t[s].*broadcast( x -> ((MU[s] - x)./SIGMA[s]), data))/n) elseif s isa Tuple for k in 1:d for j in 1:n g_v1, g_v2 = grad_log_p_l_n(k, data[j], Mu_t[s[1]], Mu_t[s[2]], SIGMA_t[s]) grad[s[1]][k] += E_t[s[1]][j]*g_v1/n grad[s[2]][k] += E_t[s[2]][j]*g_v2/n #println(grad[s[1]][k],grad[s[2]][k]) end end end end for i in 1:N_0 Grad[i,:] = - grad[S_t[i]] end end ####EM algorithm mu00 = vcat([m for m in mu]'...) for it = 1:EM_it #E step E = expectation(data,MU,SIGMA,Pi) Pi = sum(E)./n #M step mu0 = vcat([m for m in mu]'...) C = t -> -Cost(data,t,SIGMA, Pi ,E) #swap if don't want gradient clipping or set tol = Inf #G! = (g,t) -> FiniteDiff.finite_difference_gradient!(g,C,t) function G!(storage,t; tol = 0.1) FiniteDiff.finite_difference_gradient!(storage,C,t) storage[abs.(storage) .> tol] = sign.(storage[abs.(storage) .> tol])*tol return end results = Optim.optimize(C,G!,mu0,GradientDescent(),Optim.Options(g_tol = 1e-2)) mu1 = Optim.minimizer(results) mu = [mu1[i,:] for i in 1:N_0] #println("Current Pi:") #println(Pi) #println("Current Sigma:") #println(sigma) #println("Current vertices:") #println(mu) print("For iteration: ", it," cost is: ", -C(mu1) + sum(log.(Pi)) ) #Update parameters MU, SIGMA, PI = reload_param(mu, sigma, Pi ; S_t = S, N_0_t = N_0, N_t = N) #println(MU) end return MU, SIGMA, PI, E end function Save_PPC(ppc::PartitionedPointCloud, path::String) jldopen(path, "w") do file addrequire(file, Skyler) addrequire(file, LinearAlgebra) write(file, "PartitionedPointCloud", ppc) end end # Save_PPC #### Main functions and wrappers #### function skyler(points::A, sample_epsilon::P, radius::R; out = "model", EM_it = 3, sig = sample_epsilon/2) where {P<:Number, Q<:Number, R<:Number, A<:Union{LinearAlgebra.Adjoint,AbstractArray}} #wrapper for obtaining the partition dimension = size(points,1) ppc = Partition_Point_Cloud(points, sample_epsilon, radius, (3*radius)/2 + 2*sample_epsilon, 3*sample_epsilon) if out == "PPC" return ppc elseif out == "DF" return Create_Partition_DataFrame(ppc) elseif out == "model" vertices = size(collect(ppc.Dimensions[0]),1) vertex_guess = Array{Float64}(undef, dimension,0) for i in 1:vertices v_i = zeros(dimension, 1) for j in collect(ppc.Strata[i]) v_i .+= points[:, j] end v_i = v_i/(length(collect(ppc.Strata[i]))) vertex_guess = hcat(vertex_guess, v_i) end #println("Vertex guess is: ",vertex_guess) E = zeros(size(points,2), size(ppc.Boundaries,1)) for i in 1:vertices for j in collect(ppc.Strata[i]) E[j,i] =1 end end for i in collect(ppc.Dimensions[1]) for j in collect(ppc.Strata[i]) E[j,i] =1 end end sigma = [sig for i in 1:size(ppc.Boundaries,1)] S = [] for i in collect(ppc.Dimensions[0]) push!(S, i) end for k in 1:maximum(keys(ppc.Dimensions)) for i in collect(ppc.Dimensions[k]) t =tuple(findall(x->x==1, ppc.Boundaries[:,i])...,) push!(S, t) end end data = vcat([points[:,i] for i in 1:size(points,2)]) v_guess = Array{Float64}(undef, size(vertex_guess,2), size(vertex_guess,1)) for i in 1:size(vertex_guess,2) for j in 1:size(vertex_guess,1) v_guess[i,j] = vertex_guess[j,i] end end #println("S is $S") MU, SIGMA, PI, E = model_fit(data, v_guess, sigma, E, S, EM_it= EM_it) mu_ans = collect(values(MU)) mu_ans = vcat([datum' for datum in mu_ans]...) return ppc, mu_ans', vertex_guess else println("Error: output option 'out' selected is not valid, please choose from 'model' to obtain a model of the underlying structure, or 'struct' to receive a DataFrame indicating which strata a point as been associated with and the dimension of this strata, and the boundary relations.") return [] end end function skyler(ppc::PartitionedPointCloud, sample_epsilon::P; EM_it=3, sig=sample_epsilon/2) where {P<:Number} #wrapper for modelling a point cloud points=ppc.Points dimension = size(points,1) vertices = size(collect(ppc.Dimensions[0]),1) vertex_guess = Array{Float64}(undef, dimension,0) for i in 1:vertices v_i = zeros(dimension, 1) for j in collect(ppc.Strata[i]) v_i .+= points[:, j] end v_i = v_i/(length(collect(ppc.Strata[i]))) vertex_guess = hcat(vertex_guess, v_i) end println("Vertex guess is: ",vertex_guess) E = zeros(size(points,2), size(ppc.Boundaries,1)) for i in 1:vertices for j in collect(ppc.Strata[i]) E[j,i] =1 end end for i in collect(ppc.Dimensions[1]) for j in collect(ppc.Strata[i]) E[j,i] =1 end end sigma = [sig for i in 1:size(ppc.Boundaries,1)] S = [] for i in collect(ppc.Dimensions[0]) push!(S, i) end for k in 1:maximum(keys(ppc.Dimensions)) for i in collect(ppc.Dimensions[k]) t =tuple(findall(x->x==1, ppc.Boundaries[:,i])...,) push!(S, t) end end data = vcat([points[:,i] for i in 1:size(points,2)]) v_guess = Array{Float64}(undef, size(vertex_guess,2),size(vertex_guess,1)) for i in 1:size(vertex_guess,2) for j in 1:size(vertex_guess,1) v_guess[i,j] = vertex_guess[j,i] end end MU, SIGMA, PI, E = model_fit(data, v_guess, sigma, E, S, EM_it=EM_it) mu_ans = collect(values(MU)) mu_ans = vcat([datum' for datum in mu_ans]...) return mu_ans', vertex_guess end #skyler for modelling a partioned point cloud #### Functions for examples #### function Load_Example(i) dir = pwd() cd(@__DIR__) cd("..") cd("Examples") points = Matrix(CSV.read("Sample-$i.csv", DataFrame, header=false)) cd(dir) return points end #### unittest #### function test_1() dir = pwd() cd(@__DIR__) cd("..") cd("Examples") points= convert(Array,CSV.read("Sample-1.csv", header=false)) ppc = skyler(points, 0.01, 0.12, out="PPC") par = Create_Partition_DataFrame(ppc) saved_partition = CSV.read("Partition-1.csv") if par == saved_partition return [] else println("Error: test_1 not passed.") return par end end function test_2() dir = pwd() cd(@__DIR__) cd("..") cd("Examples") points= convert(Array,CSV.read("Sample-2.csv",header=false))' ppc = skyler(points, 0.1, 1.2, out="PPC") par = Create_Partition_DataFrame(ppc) saved_partition = CSV.read("Partition-2.csv") if par == saved_partition return [] else println("Error: test_2 not passed.") return par end end function unittest() x = Array{Any}(undef, 2) x[1] = test_1() #expected answer empty x[2] = test_2() #expected answer empty for p = 1:length(x) if !isempty(x[p]) println(p) return x end end return [] end end #module
Skyler
https://github.com/yossibokor/Skyler.jl.git
[ "MIT" ]
1.0.2
950681e4f7ab2182ae61eb632d2db9a188eed2df
docs
7975
# Documentation ## Licensing Information Skyler is licensed under an MIT license <https://opensource.org/licenses/MIT>. You should have received a copy of the MIT Public License along with Skyler. If not, please see <https://opensource.org/licenses/MIT>. [![DOI](https://zenodo.org/badge/252151758.svg)](https://zenodo.org/badge/latestdoi/252151758) ``` Begin license text. Skyler Copyright (C) 2020 Yossi Bokor Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. End license text. ``` Skyler is free software: you can redistribute it and/or modify it under the terms of the MIT License as published by the Open Source Initiative Skyler is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License for more details. ## Contributors Skyler is produced and maintained by Yossi Bokor \ <[email protected]> \ [Personal Webpage](http://yossi.eu) \ and \ Christopher Williams\ <[email protected]> ## Installation To install Skyler, run the following in `Julia`: ```julia using Pkg Pkg.add("Skyler") ``` ## Functionality - Skyler identifies the coarsest abstract graph structure underlying a point cloud, and modells it. Currently, we are restricted to graphs with linear edges which satisfy conditions detailed below. - You can read the article [Reconstructing linearly embedded graphs: A first step to stratified space learning](https://www.aimsciences.org/article/doi/10.3934/fods.2021026) which introduces the algorithm used in Skyler. </ul> ### Obtaining Abstract Structure As input Skyler accepts a point cloud, as an $d \times n$ array, a parameter $\varepsilon$, an inner radius, an outer radius, and an angle condition. The parameter $\varepsilon$ is the same paramter such that the point cloud is an $\varepsilon$-sample of an embedded graph $|G|$. The radii and angle condition are realted to assumptions on the embedding of $|G|$, and their derivations can be found in [Reconstructing linearly embedded graphs: A first step to stratified space learning](https://www.aimsciences.org/article/doi/10.3934/fods.2021026). To obtain the abstract graph $G$, run ```julia ppc, model_verts, avg_verts = skyler(points, sample_epsilon, radius, EM_it=3, sigma=sample_epsilon/2) ``` which returns a PartitionedPointCloud `ppc`, an array `model_verts` containing the optimized vertex locations, and an array `avg_verts` containing the average point of each vertex cluster.. A `PartitionedPointCloud` has the following fields: - `Points` which is an array of all the points, - `Strata` a `Dict{Int, Set}` which collates which points have been assigned to which stratum - `Dimensions` a `Dict{Int, Set}` listing which strata are of each dimesnions, - `Boundaries` an array which represents the boundary operator. ### Modeling the Embedding To model the underlying structure, use ```julia vertex_locations = structure= skyler(points, sample_epsilon, angle_condition, inner_radius, outer_radius, vertex_threshold, edge_threshold) ``` which returns an $d \times n_v$ array, where $n_v$ is the number of vertices detected, with each column a modelled vertex location. ## Examples Skyler comes with some point clouds for you can work through as examples. To load the points for each example, run ```julia points = Load_Example(i) ``` where `i` is the example number. #### Example 1 Example 1 is a point cloud sampled from a line segment. Load the sample using ```julia points = Load_Example(1) ``` Then run Skyler to obtaint the abstract structure and partition by executing ```julia ppc = skyler(points, 0.01, 0.12, out="PPC") ``` which should result in output similar to the following: ```julia The strata are Dict{Int64,Set}(0 => Set(Any[2, 1]),1 => Set(Any[3])) and the boundary matrix is [0.0 0.0 1.0; 0.0 0.0 1.0; 0.0 0.0 0.0]. PartitionedPointCloud([-0.009566763308567242 1.9932036826253814 … 1.999301914407944 2.003116429018376; -0.0028076084902411745 0.9975271026710401 … 0.9951311441125332 0.99744890927049], Dict{Int64,Set}(2 => Set(Any[2, 441, 442, 432, 447, 428, 430, 437, 435, 431 … 434, 429, 444, 436, 446, 439, 440, 450, 438, 449]),3 => Set(Any[288, 306, 29, 300, 289, 74, 176, 57, 285, 318 … 341, 186, 321, 420, 423, 271, 23, 315, 322, 218]),1 => Set(Any[12, 4, 18, 3, 16, 11, 5, 21, 20, 7, 9, 13, 10, 14, 19, 17, 8, 15, 6, 1])), Dict{Int64,Set}(0 => Set(Any[2, 1]),1 => Set(Any[3])), [0.0 0.0 1.0; 0.0 0.0 1.0; 0.0 0.0 0.0]) ``` #### Example 2 Example 2 is a point cloud sampled from a graph with 5 edges and 5 vertices. Load the sample using ```julia points = Load_Example(2) ``` Then run Skyler to obtaint the abstract structure and partition by executing ```julia ppc = skyler(points, 0.1, 1.2, out="PPC") ``` which should result in output similar to the following: ```julia The strata are Dict{Int64,Set}(0 => Set(Any[4, 2, 3, 5, 1]),1 => Set(Any[7, 9, 10, 8, 6])) and the boundary matrix is [0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0; 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0; 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]. PartitionedPointCloud([-0.007670121199078972 -0.09959009503870764 … 4.8232765059435225 4.923038846261083; -0.007670121199078972 -0.09959009503870764 … 0.5335914379931135 0.5214683517413553; -0.007670121199078972 -0.09959009503870764 … 3.4192839435193365 3.4814584770681027], Dict{Int64,Set}(7 => Set(Any[241, 197, 215, 249, 207, 201, 283, 252, 182, 279 … 268, 281, 243, 191, 222, 277, 271, 255, 218, 276]),4 => Set(Any[288, 306, 300, 296, 428, 289, 435, 20, 285, 448 … 24, 429, 427, 446, 439, 23, 305, 438, 449, 301]),9 => Set(Any[532, 520, 491, 478, 542, 499, 477, 509, 494, 521 … 519, 560, 540, 535, 562, 485, 502, 498, 496, 508]),10 => Set(Any[633, 658, 654, 624, 611, 614, 625, 612, 616, 664 … 629, 666, 667, 646, 663, 657, 640, 676, 661, 659]),2 => Set(Any[461, 11, 464, 462, 8, 323, 458, 318, 459, 308 … 319, 456, 321, 454, 312, 317, 463, 472, 315, 322]),3 => Set(Any[584, 574, 698, 699, 566, 582, 573, 569, 694, 14 … 576, 688, 695, 578, 689, 580, 687, 686, 15, 581]),5 => Set(Any[148, 136, 25, 147, 29, 151, 144, 155, 142, 150 … 26, 146, 138, 145, 28, 149, 27, 137, 141, 30]),8 => Set(Any[329, 370, 365, 391, 400, 342, 384, 375, 372, 407 … 415, 341, 378, 389, 420, 423, 424, 358, 349, 405]),6 => Set(Any[89, 134, 131, 74, 57, 78, 112, 70, 106, 121 … 81, 98, 51, 73, 119, 53, 116, 123, 56, 108]),1 => Set(Any[47, 32, 2, 40, 587, 171, 39, 46, 158, 43 … 5, 45, 163, 168, 588, 603, 164, 602, 41, 1])…), Dict{Int64,Set}(0 => Set(Any[4, 2, 3, 5, 1]),1 => Set(Any[7, 9, 10, 8, 6])), [0.0 0.0 … 0.0 1.0; 0.0 0.0 … 1.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0]) ```
Skyler
https://github.com/yossibokor/Skyler.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
code
1156
module SmolyakApprox import ChebyshevApprox: chebyshev_extrema, normalize_node, chebyshev_polynomial, chebyshev_polynomial_deriv, chebyshev_polynomial_sec_deriv using LinearAlgebra include("smolyak_approx_functions.jl") export SApproxPlan export chebyshev_gauss_lobatto, clenshaw_curtis_equidistant, smolyak_grid, smolyak_plan, smolyak_weights, smolyak_weights_threaded, smolyak_inverse_interpolation_matrix, smolyak_inverse_interpolation_matrix_threaded, smolyak_pl_weights, smolyak_pl_weights_threaded, smolyak_polynomial, smolyak_evaluate, smolyak_pl_evaluate, smolyak_interp, smolyak_interp_threaded, smolyak_derivative, smolyak_gradient, smolyak_gradient_threaded, smolyak_hessian, smolyak_hessian_threaded, smolyak_integrate, smolyak_clenshaw_curtis, smolyak_grid_full, smolyak_weights_full, smolyak_evaluate_full, smolyak_derivative_full, smolyak_gradient_full end
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
code
53908
abstract type SApproximationPlan end struct SApproxPlan{S<:Integer,T<:AbstractFloat} <: SApproximationPlan node_type::Symbol grid::Union{Array{T,1},Array{T,2}} multi_index::Union{Array{S,1},Array{S,2}} domain::Union{Array{T,1},Array{T,2}} end const chebyshev_gauss_lobatto = chebyshev_extrema function clenshaw_curtis_equidistant(n::S,domain = [1.0,-1.0]) where {S<:Integer} # Construct the nodes on the [-1.0,1.0] interval if n <= 0 error("The number of nodes must be positive.") end if n == 1 nodes = [0.0] else nodes = zeros(n) nodes[1] = -1.0 nodes[n] = 1.0 for i = 2:div(n,2) nodes[i] = 2*(i-1)/(n-1)-1.0 nodes[end-i+1] = -2*(i-1)/(n-1)+1.0 end if isodd(n) nodes[div(n+1,2)] = 0.0 end end # Scale the nodes to the desired domain nodes = scale_nodes(nodes,domain) return nodes end # This function relates to the ansiotropic case function generate_multi_index(d::S,mu::Array{S,1}) where {S<:Integer} nt = num_terms(mu,d) multi_index = Array{S,2}(undef,nt,d) multi_index[1,:] = ones(S,1,d) max_mu = maximum(mu) w = Tuple(repeat([max_mu+1],inner = d)) pos = 0 @inbounds for i = 2:(max_mu+1)^d candidate_index = Tuple(CartesianIndices(w)[i]) if sum(candidate_index) <= d+max_mu && sum(candidate_index .<= mu.+1) == d pos += 1 if pos > nt # handles the case where nt is under-estimated multi_index = [multi_index; collect(candidate_index)'] else multi_index[pos,:] .= candidate_index end end end if pos < nt # handles case where nt is over-estimated multi_index = multi_index[1:pos,:] end return multi_index end # The function below relates to the isotropic case function generate_multi_index(d::S,mu::S) where {S<:Integer} if d < 1 error("d must be positive") end if mu < 0 error("mu must be non-negative") end if d == 1 multi_index = [i for i in 1:mu+1] return multi_index else multi_index_base = generate_multi_index(d-1,mu) N = size(multi_index_base,1) multi_index = zeros(S,N*(mu+1),d) pos = 0 @inbounds @views for j = 1:N for i = 1:mu+1 if sum(multi_index_base[j,:]) + i <= d+mu pos += 1 multi_index[pos,2:d] .= multi_index_base[j,:] multi_index[pos,1] = i end end end return multi_index[1:pos,:] end end # Following function computes the number of terms in the multi-index for the # isotropic case (it also computes the number of terms in a complete # polynominal based on the order and the number of dimensions. function num_terms(order::S,d::S) where {S <: Integer} if d == 1 return order+1 else return div(num_terms(order,d-1)*(order+d),d) end end # The following function is a poor approximation to the number of terms in # the multi-index for the ansiotropic case. function num_terms(order::Array{S,1},d::S) where {S<:Integer} max_mu = maximum(order) nt = num_terms(max_mu,d) # Deliberate over-estimate of the number of terms return nt end m_i(x::Integer) = (x == 1 ? 1 : 2^(x-1) + 1) function combine_nodes(nodes1::Union{Array{R,1},Array{R,2}},nodes2::Array{R,1}) where {R<:Number} # nodes1 can be a 1d or 2d array; nodes2 is a 1d array n1 = size(nodes1,1) n2 = size(nodes1,2) n3 = length(nodes2) combined_nodes = Array{R,2}(undef,n1*n3,n2+1) @inbounds for i = 1:n3 combined_nodes[(i-1)*n1+1:i*n1,1:n2] = nodes1 end @inbounds for i = 1:n1 @inbounds for j = 1:n3 combined_nodes[(j-1)*n1+i,n2+1] = nodes2[j] end end return combined_nodes end function scale_nodes(nodes::Array{R,1},domain::Array{T,1}) where {T<:AbstractFloat,R<:Number} nodes = copy(nodes) @inbounds for i in eachindex(nodes) nodes[i] = domain[2] + (1.0+nodes[i])*(domain[1]-domain[2])*0.5 end return nodes end function scale_nodes(nodes::Array{R,2},domain::Array{T,2}) where {T<:AbstractFloat,R<:Number} nodes = copy(nodes) @inbounds for i in CartesianIndices(nodes) nodes[i] = domain[2,i[2]] + (1.0+nodes[i])*(domain[1,i[2]]-domain[2,i[2]])*0.5 end return nodes end # These functions relate to both an ansiotropic and an isotropic grid function smolyak_grid(node_type::Function,d::S,mu::Union{S,Array{S,1}}) where {S<:Integer} T = typeof(1.0) multi_index = generate_multi_index(d,mu) unique_multi_index = sort(unique(multi_index)) unique_node_number = m_i.(unique_multi_index) # Create base nodes to be used in the sparse grid base_nodes = Array{Array{T,1},1}(undef,length(unique_node_number)) for i in eachindex(unique_node_number) base_nodes[i] = node_type(unique_node_number[i]) end # Determine the unique nodes introduced at each higher level unique_base_nodes = Array{Array{T,1},1}(undef,length(unique_node_number)) unique_base_nodes[1] = base_nodes[1] for i = 2:length(unique_base_nodes) unique_base_nodes[i] = setdiff(base_nodes[i],base_nodes[i-1]) end # Construct the sparse grid from the unique nodes nodes = Array{T,2}(undef,determine_grid_size(multi_index)) l = 1 @inbounds for j in axes(multi_index,1) new_nodes = unique_base_nodes[multi_index[j,1]] # Here new_nodes is a 1d array for i = 2:d new_nodes = combine_nodes(new_nodes,unique_base_nodes[multi_index[j,i]]) # Here new_nodes becomes a 2d array end m = size(new_nodes,1) nodes[l:l+m-1,:] = new_nodes l += m end # Eventually this function should also return the weights at each node on the grid # so that it can be used for numerical integration. if d == 1 nodes = nodes[:] end return nodes, multi_index end function smolyak_grid(node_type::Function,d::S,mu::Union{S,Array{S,1}},domain::Union{Array{T,1},Array{T,2}}) where {S<:Integer, T<:AbstractFloat} if size(domain,2) != d error("domain is inconsistent with the number of dimensions") end (nodes, multi_index) = smolyak_grid(node_type,d,mu) # Now scale the nodes to the desired domain nodes = scale_nodes(nodes,domain) return nodes, multi_index # Eventually this function should also return the weights at each node on the grid # so that it can be used for numerical integration. end function determine_grid_size(mi) temp = similar(mi) for i in axes(mi,1) for j in axes(mi,2) if mi[i,j] == 1 temp[i,j] = 1 elseif mi[i,j] == 2 temp[i,j] = 2^(mi[i,j]-1) else temp[i,j] = 2^(mi[i,j]-1)+1 - (2^(mi[i,j]-2)+1) end end end s = 0 for i in axes(mi,1) t = 1 for j in axes(mi,2) t *= temp[i,j] end s += t end return (s, size(mi,2)) end function smolyak_plan(node_type::Function,d::S,mu::Union{S,Array{S,1}},domain::Union{Array{T,1},Array{T,2}}) where {S<:Integer, T<:AbstractFloat} g, mi = smolyak_grid(node_type,d,mu,domain) plan = SApproxPlan(Symbol(node_type),g,mi,domain) return plan end function smolyak_weights(y::Array{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct a row of the interpolation matrix # Iterate over the nodes, doing the above for steps at each iteration, to compute all rows of the interpolation matrix base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) unique_base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) @inbounds for k in axes(nodes,1) # Construct the base polynomials for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],nodes[k,:]) end # Compute the unique polynomial terms from the base polynomials for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct a row of the interplation matrix l = 1 @inbounds @views for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) interpolation_matrix[k,l:l+m-1] = new_polynomials l += m end end weights = interpolation_matrix\y return weights end function smolyak_weights(y::Array{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end weights = smolyak_weights(y,nodes,multi_index) return weights end function smolyak_weights_threaded(y::Array{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct a row of the interpolation matrix # Iterate over the nodes, doing the above for steps at each iteration, to compute all rows of the interpolation matrix @inbounds @sync Threads.@threads for k in axes(nodes,1) base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) unique_base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) # Construct the base polynomials for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],nodes[k,:]) end # Compute the unique polynomial terms from the base polynomials for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct a row of the interplation matrix l = 1 @inbounds @views for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) interpolation_matrix[k,l:l+m-1] = new_polynomials l += m end end weights = interpolation_matrix\y return weights end function smolyak_weights_threaded(y::Array{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end weights = smolyak_weights_threaded(y,nodes,multi_index) return weights end function smolyak_weights(y::Array{T,1},inverse_interpolation_matrix::Array{T,2}) where {T<:AbstractFloat} weights = inverse_interpolation_matrix*y return weights end function smolyak_inverse_interpolation_matrix(nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct a row of the interpolation matrix # Iterate over the nodes, doing the above for steps at each iteration, to compute all rows of the interpolation matrix base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) unique_base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) @inbounds for k in axes(nodes,1) # Construct the base polynomials for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],nodes[k,:]) end # Compute the unique polynomial terms from the base polynomials for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct the first row of the interplation matrix l = 1 @inbounds @views for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) interpolation_matrix[k,l:l+m-1] = new_polynomials l += m end end inverse_interpolation_matrix = inv(interpolation_matrix) return inverse_interpolation_matrix end function smolyak_inverse_interpolation_matrix(nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end inverse_interpolation_matrix = smolyak_inverse_interpolation_matrix(nodes,multi_index) return inverse_interpolation_matrix end function smolyak_inverse_interpolation_matrix_threaded(nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct a row of the interpolation matrix # Iterate over the nodes, doing the above for steps at each iteration, to compute all rows of the interpolation matrix @inbounds @sync Threads.@threads for k in axes(nodes,1) base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) unique_base_polynomials = Array{Array{T,2},1}(undef,length(unique_orders)) # Construct the base polynomials for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],nodes[k,:]) end # Compute the unique polynomial terms from the base polynomials for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct the first row of the interplation matrix l = 1 @inbounds @views for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) interpolation_matrix[k,l:l+m-1] = new_polynomials l += m end end inverse_interpolation_matrix = inv(interpolation_matrix) return inverse_interpolation_matrix end function smolyak_inverse_interpolation_matrix_threaded(nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end inverse_interpolation_matrix = smolyak_inverse_interpolation_matrix_threaded(nodes,multi_index) return inverse_interpolation_matrix end function smolyak_pl_weights(y::AbstractArray{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) @inbounds for l in axes(nodes,1) k = 1 x = nodes[l,:] @inbounds for i in axes(multi_index,1) m_node_number = m_i.(multi_index[i,:]) if prod(m_node_number) == 1 interpolation_matrix[l,k] = 1.0 k += 1 else extra_nodes = 1 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 extra_nodes *= m_node_number[j] - m_i(multi_index[i,j] - 1) end end for h = 1:extra_nodes a = 1.0 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 if abs(x[j] - nodes[k,j]) > 2/(m_node_number[j]-1) a *= 0.0 else a *= 1.0 - ((m_node_number[j]-1)/2)*abs(x[j]-nodes[k,j]) end end end interpolation_matrix[l,k] = a k += 1 end end end end weights = interpolation_matrix\y return weights end function smolyak_pl_weights(y::AbstractArray{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) @inbounds for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end weights = smolyak_pl_weights(y,nodes,multi_index) return weights end function smolyak_pl_weights_threaded(y::AbstractArray{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,S<:Integer} interpolation_matrix = zeros(size(nodes,1),size(nodes,1)) @inbounds @sync Threads.@threads for l in axes(nodes,1) k = 1 x = nodes[l,:] @inbounds for i in axes(multi_index,1) m_node_number = m_i.(multi_index[i,:]) if prod(m_node_number) == 1 interpolation_matrix[l,k] = 1.0 k += 1 else extra_nodes = 1 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 extra_nodes *= m_node_number[j] - m_i(multi_index[i,j] - 1) end end for h = 1:extra_nodes a = 1.0 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 if abs(x[j] - nodes[k,j]) > 2/(m_node_number[j]-1) a *= 0.0 else a *= 1.0 - ((m_node_number[j]-1)/2)*abs(x[j]-nodes[k,j]) end end end interpolation_matrix[l,k] = a k += 1 end end end end weights = interpolation_matrix\y return weights end function smolyak_pl_weights_threaded(y::AbstractArray{T,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} # Normalize nodes to the [-1.0 1.0] interval d = size(multi_index,2) nodes = copy(nodes) @inbounds for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) end weights = smolyak_pl_weights_threaded(y,nodes,multi_index) return weights end function smolyak_polynomial(node::AbstractArray{R,1},multi_index::Union{Array{S,1},Array{S,2}}) where {R<:Number,S<:Integer} unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct the Smolyak polynomial # Here we construct the base polynomials base_polynomials = Array{Array{R,2}}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],node) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomials = Array{Array{R,2}}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct the first row of the interplation matrix n = determine_grid_size(multi_index) polynomial = Array{R,1}(undef,n[1]) # Iterate over nodes, doing the above three steps at each iteration l = 1 @inbounds for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) polynomial[l:l+m-1] = new_polynomials l += m end return polynomial end function smolyak_polynomial(node::AbstractArray{R,1},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} node = copy(node) if size(domain,2) != length(node) error("domain is inconsistent with the number of dimensions") end d = length(node) for i = 1:d node[i] = normalize_node(node[i],domain[:,i]) end poly = smolyak_polynomial(node,multi_index) return poly end function smolyak_evaluate(weights::Array{T,1},node::AbstractArray{R,1},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Below we do the following things: # Generate the polynomial terms for each order # Generate the unique polynomial terms introduced at each higher order # Combine the polynomial terms to construct the Smolyak polynomial # Here we construct the base polynomials base_polynomials = Array{Array{R,2}}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],node) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomials = Array{Array{R,2}}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] # Construct the first row of the interplation matrix polynomials = Array{R,1}(undef,length(weights)) # Iterate over nodes, doing the above three steps at each iteration l = 1 @inbounds for j in axes(multi_index,1) new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end m = length(new_polynomials) polynomials[l:l+m-1] = new_polynomials l += m end estimate = zero(T) for i in eachindex(polynomials) estimate += polynomials[i]*weights[i] end return estimate end function smolyak_evaluate(weights::Array{T,1},node::AbstractArray{R,1},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} node = copy(node) if size(domain,2) != length(node) error("domain is inconsistent with the number of dimensions") end d = length(node) for i = 1:d node[i] = normalize_node(node[i],domain[:,i]) end estimate = smolyak_evaluate(weights,node,multi_index) return estimate end function smolyak_evaluate(weights::Array{T,1},polynomial::Array{R,1}) where {T<:AbstractFloat,R<:Number} estimate = weights'polynomial return estimate end function smolyak_pl_evaluate(weights::Array{T,1},point::Array{R,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} basis = Array{R,1}(undef,size(nodes,1)) k = 1 @inbounds for i in axes(multi_index,1) m_node_number = m_i.(multi_index[i,:]) if prod(m_node_number) == 1 basis[k] = one(R) k += 1 else extra_nodes = 1 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 extra_nodes *= m_node_number[j] - m_i(multi_index[i,j] - 1) end end @inbounds for h = 1:extra_nodes a = 1.0 @inbounds for j in eachindex(m_node_number) if m_node_number[j] > 1 if abs(point[j] - nodes[k,j]) > 2/(m_node_number[j]-1) a *= zero(R) else a *= one(R) - ((m_node_number[j]-1)/2)*abs(point[j]-nodes[k,j]) end end end basis[k] = a k += 1 end end end estimate = zero(R) @inbounds for i in eachindex(basis) estimate += basis[i]*weights[i] end return estimate end function smolyak_pl_evaluate(weights::Array{T,1},point::Array{R,1},nodes::Union{Array{T,1},Array{T,2}},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} d = size(multi_index,2) nodes = copy(nodes) point = copy(point) @inbounds for i = 1:d nodes[:,i] = normalize_node(nodes[:,i],domain[:,i]) point[i] = normalize_node(point[i],domain[:,i]) end estimate = smolyak_pl_evaluate(weights,point,nodes,multi_index) return estimate end function smolyak_interp(y::Array{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} if plan.node_type == :chebyshev_extrema || plan.node_type == :chebyshev_gauss_lobatto weights = smolyak_weights(y,plan.grid,plan.multi_index,plan.domain) elseif plan.node_type == :clenshaw_curtis_equidistant weights = smolyak_pl_weights(y,plan.grid,plan.multi_index,plan.domain) end function interp(x::Array{R,1}) where {R<:Number} if plan.node_type == :chebyshev_extrema || plan.node_type == :chebyshev_gauss_lobatto return smolyak_evaluate(weights,x,plan.multi_index,plan.domain) elseif plan.node_type == :clenshaw_curtis_equidistant return smolyak_pl_evaluate(weights,x,plan.grid,plan.multi_index,plan.domain) end end return interp end function smolyak_interp_threaded(y::Array{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} if plan.node_type == :chebyshev_extrema || plan.node_type == :chebyshev_gauss_lobatto weights = smolyak_weights_threaded(y,plan.grid,plan.multi_index,plan.domain) elseif plan.node_type ==:clenshaw_curtis_equidistant weights = smolyak_pl_weights_threaded(y,plan.grid,plan.multi_index,plan.domain) end function interp(x::Array{R,1}) where {R<:Number} if plan.node_type == :chebyshev_extrema || plan.node_type == :chebyshev_gauss_lobatto return smolyak_evaluate(weights,x,plan.multi_index,plan.domain) elseif plan.node_type == :clenshaw_curtis_equidistant return smolyak_pl_evaluate(weights,x,plan.grid,plan.multi_index,plan.domain) end end return interp end function smolyak_derivative(weights::Array{T,1},node::Array{R,1},multi_index::Union{Array{S,1},Array{S,2}},pos::S) where {T<:AbstractFloat,R<:Number,S<:Integer} unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Here we construct the base polynomials base_polynomials = Array{Array{R,2},1}(undef,length(unique_orders)) base_polynomial_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],node) base_polynomial_derivatives[i] = chebyshev_polynomial_deriv(unique_orders[i],node) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomials = Array{Array{R,2},1}(undef,length(unique_orders)) unique_base_polynomial_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] unique_base_polynomial_derivatives[i] = base_polynomial_derivatives[i][:,size(base_polynomial_derivatives[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] unique_base_polynomial_derivatives[1] = base_polynomial_derivatives[1] # Construct the first row of the interplation matrix polynomials = Array{R,1}(undef,length(weights)) # Iterate over nodes, doing the above three steps at each iteration l = 1 @inbounds for j in axes(multi_index,1) if pos == 1 new_polynomials = unique_base_polynomial_derivatives[multi_index[j,1]][1,:] else new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] end for i = 2:size(multi_index,2) if pos == i new_polynomials = kron(new_polynomials,unique_base_polynomial_derivatives[multi_index[j,i]][i,:]) else new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end end m = length(new_polynomials) polynomials[l:l+m-1] = new_polynomials l += m end evaluated_derivative = zero(T) for i in eachindex(polynomials) evaluated_derivative += polynomials[i]*weights[i] end return evaluated_derivative end function smolyak_derivative(weights::Array{T,1},node::Array{R,1},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}},pos::S) where {T<:AbstractFloat,R<:Number,S<:Integer} node = copy(node) if size(domain,2) != length(node) error("domain is inconsistent with the number of dimensions") end d = length(node) for i = 1:d node[i] = normalize_node(node[i],domain[:,i]) end evaluated_derivative = smolyak_derivative(weights,node,multi_index,pos) return evaluated_derivative*(2.0/(domain[1,pos]-domain[2,pos])) end function smolyak_gradient(weights::Array{T,1},node::Array{R,1},multi_index::Union{Array{S,1},Array{S,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} d = length(node) gradient = Array{R,2}(undef,1,d) for i = 1:d gradient[i] = smolyak_derivative(weights,node,multi_index,i) end return gradient end function smolyak_gradient(weights::Array{T,1},node::Array{R,1},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} d = length(node) gradient = Array{R,2}(undef,1,d) for i = 1:d gradient[i] = smolyak_derivative(weights,node,multi_index,domain,i) end return gradient end function smolyak_gradient(y::AbstractArray{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} if plan.node_type == :clenshaw_curtis_equidistant error("Not implemented for clenshaw_curtis_equidistant nodes") end weights = smolyak_weights(y,plan.grid,plan.multi_index,plan.domain) function smolyak_grad(x::Array{R,1}) where {R<:Number} return smolyak_gradient(weights,x,plan.multi_index,plan.domain) end return smolyak_grad end function smolyak_gradient_threaded(y::AbstractArray{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} if plan.node_type == :clenshaw_curtis_equidistant error("Not implemented for clenshaw_curtis_equidistant nodes") end weights = smolyak_weights_threaded(y,plan.grid,plan.multi_index,plan.domain) function smolyak_grad(x::Array{R,1}) where {R<:Number} return smolyak_gradient(weights,x,plan.multi_index,plan.domain) end return smolyak_grad end function smolyak_hessian(weights::Array{T,1},point::Array{R,1},multi_index::Union{Array{S,1},Array{S,2}},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,R<:Number,S<:Integer} point = copy(point) if size(domain,2) != length(point) error("domain is inconsistent with the number of dimensions") end d = length(point) for i = 1:d point[i] = normalize_node(point[i],domain[:,i]) end unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 hess = Array{T,2}(undef,d,d) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Here we construct the base polynomials base_polynomials = Array{Array{R,2},1}(undef,length(unique_orders)) base_polynomial_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) base_polynomial_sec_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],point) base_polynomial_derivatives[i] = chebyshev_polynomial_deriv(unique_orders[i],point) base_polynomial_sec_derivatives[i] = chebyshev_polynomial_sec_deriv(unique_orders[i],point) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomials = Array{Array{R,2},1}(undef,length(unique_orders)) unique_base_polynomial_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) unique_base_polynomial_sec_derivatives = Array{Array{R,2},1}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][:,size(base_polynomials[i-1],2)+1:end] unique_base_polynomial_derivatives[i] = base_polynomial_derivatives[i][:,size(base_polynomial_derivatives[i-1],2)+1:end] unique_base_polynomial_sec_derivatives[i] = base_polynomial_sec_derivatives[i][:,size(base_polynomial_sec_derivatives[i-1],2)+1:end] end unique_base_polynomials[1] = base_polynomials[1] unique_base_polynomial_derivatives[1] = base_polynomial_derivatives[1] unique_base_polynomial_sec_derivatives[1] = base_polynomial_sec_derivatives[1] # Construct the first row of the interplation matrix polynomials = Array{R,1}(undef,length(weights)) # Iterate over nodes, doing the above three steps at each iteration @inbounds for c in CartesianIndices(hess) l = 1 @inbounds for j in axes(multi_index,1) if 1 == c[1] == c[2] new_polynomials = unique_base_polynomial_sec_derivatives[multi_index[j,1]][1,:] elseif 1 == c[1] || 1 == c[2] new_polynomials = unique_base_polynomial_derivatives[multi_index[j,1]][1,:] else new_polynomials = unique_base_polynomials[multi_index[j,1]][1,:] end for i = 2:size(multi_index,2) if i == c[1] == c[2] new_polynomials = kron(new_polynomials,unique_base_polynomial_sec_derivatives[multi_index[j,i]][i,:]) elseif i == c[1] || i == c[2] new_polynomials = kron(new_polynomials,unique_base_polynomial_derivatives[multi_index[j,i]][i,:]) else new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][i,:]) end end m = length(new_polynomials) polynomials[l:l+m-1] = new_polynomials l += m end evaluated_derivative = zero(T) for i in eachindex(polynomials) evaluated_derivative += polynomials[i]*weights[i] end hess[c] = evaluated_derivative*(2.0/(domain[1,c[1]]-domain[2,c[1]]))*(2.0/(domain[1,c[2]]-domain[2,c[2]])) end return hess end function smolyak_hessian(y::AbstractArray{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} weights = smolyak_weights(y,plan.grid,plan.multi_index,plan.domain) function smolyak_hess(x::Array{R,1}) where {R<:Number} return smolyak_hessian(weights,x,plan.multi_index,plan.domain) end return smolyak_hess end function smolyak_hessian_threaded(y::AbstractArray{T,1},plan::P) where {T<:AbstractFloat,P<:SApproximationPlan} weights = smolyak_weights_threaded(y,plan.grid,plan.multi_index,plan.domain) function smolyak_hess(x::Array{R,1}) where {R<:Number} return smolyak_hessian(weights,x,plan.multi_index,plan.domain) end return smolyak_hess end function integrate_cheb_polys(order::S) where {S <: Integer} # Integrates Chebyshev polynomials over the domain [-1,1] p = zeros(order+1) for i in 1:order+1 if i == 2 p[i] = 0.0 else p[i] = ((-1)^(i-1)+1)/(1-(i-1)^2) end end return p end function smolyak_integrate(f::Function,plan::SApproxPlan,method::Symbol) if method == :clenshaw_curtis integral = smolyak_clenshaw_curtis(f,plan) elseif method == :gauss_chebyshev_quad integral = smolyak_gauss_chebyshev_quad(f,plan) else error("Integration not implemented for that method") end return integral end function smolyak_clenshaw_curtis(f::Function,plan::SApproxPlan) grid = plan.grid multi_index = plan.multi_index domain = plan.domain y = zeros(size(grid,1)) for i in eachindex(y) y[i] = f(grid[i,:]) end weights = smolyak_weights(y,grid,multi_index,domain) # Uses Clenshaw-Curtis to integrate over all dimensions unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Here we construct the base polynomials T = eltype(grid) base_polynomial_integrals = Array{Array{T,1},1}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomial_integrals[i] = integrate_cheb_polys(unique_orders[i]) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomial_integrals = Array{Array{T,1},1}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomial_integrals[i] = base_polynomial_integrals[i][length(base_polynomial_integrals[i-1])+1:end] end unique_base_polynomial_integrals[1] = base_polynomial_integrals[1] # Construct the first row of the interplation matrix polynomials = Array{T,1}(undef,length(weights)) # Iterate over nodes, doing the above three steps at each iteration l = 1 @inbounds for j in axes(multi_index,1) new_polynomials = unique_base_polynomial_integrals[multi_index[j,1]][:] for i = 2:size(multi_index,2) new_polynomials = kron(new_polynomials,unique_base_polynomial_integrals[multi_index[j,i]][:]) end m = length(new_polynomials) polynomials[l:l+m-1] = new_polynomials l += m end evaluated_integral = zero(T) for i in eachindex(polynomials) evaluated_integral += polynomials[i]*weights[i] end scale_factor = (domain[1,1]-domain[2,1])/2 for i in 2:size(multi_index,2) scale_factor = scale_factor*(domain[1,i]-domain[2,i])/2 end return evaluated_integral*scale_factor end function smolyak_clenshaw_curtis(f::Function,plan::SApproxPlan,pos::S) where {S<:Integer} # Uses Clenshaw-Curtis to integrate over all dimensions except for pos grid = plan.grid multi_index = plan.multi_index domain = plan.domain y = zeros(size(grid,1)) for i in eachindex(y) y[i] = f(grid[i,:]) end weights = smolyak_weights(y,grid,multi_index,domain) function smolyak_int(point::R) where {R <: Number} point = normalize_node(point,domain[:,pos]) unique_multi_index = sort(unique(multi_index)) unique_orders = m_i.(unique_multi_index) .- 1 # Here we construct the base polynomials T = eltype(grid) base_polynomials = Array{Array{T,1},1}(undef,length(unique_orders)) base_polynomial_integrals = Array{Array{T,1},1}(undef,length(unique_orders)) for i in eachindex(unique_orders) base_polynomials[i] = chebyshev_polynomial(unique_orders[i],point)[:] base_polynomial_integrals[i] = integrate_cheb_polys(unique_orders[i]) end # Compute the unique polynomial terms from the base polynomials unique_base_polynomials = Array{Array{T,1},1}(undef,length(unique_orders)) unique_base_polynomial_integrals = Array{Array{T,1},1}(undef,length(unique_orders)) for i = length(unique_orders):-1:2 unique_base_polynomials[i] = base_polynomials[i][length(base_polynomials[i-1])+1:end] unique_base_polynomial_integrals[i] = base_polynomial_integrals[i][length(base_polynomial_integrals[i-1])+1:end] end unique_base_polynomials[1] = base_polynomials[1] unique_base_polynomial_integrals[1] = base_polynomial_integrals[1] # Construct the first row of the interplation matrix polynomials = Array{T,1}(undef,length(weights)) # Iterate over nodes, doing the above three steps at each iteration l = 1 @inbounds for j in axes(multi_index,1) if pos == 1 new_polynomials = unique_base_polynomials[multi_index[j,1]][:] else new_polynomials = unique_base_polynomial_integrals[multi_index[j,1]][:] end for i = 2:size(multi_index,2) if pos == i new_polynomials = kron(new_polynomials,unique_base_polynomials[multi_index[j,i]][:]) else new_polynomials = kron(new_polynomials,unique_base_polynomial_integrals[multi_index[j,i]][:]) end end m = length(new_polynomials) polynomials[l:l+m-1] = new_polynomials l += m end evaluated_integral = zero(T) for i in eachindex(polynomials) evaluated_integral += polynomials[i]*weights[i] end scale_factor = 1.0 for i in 1:size(multi_index,2) if pos != i scale_factor = scale_factor*(domain[1,i]-domain[2,i])/2 end end return evaluated_integral*scale_factor end return smolyak_int end function smolyak_gauss_chebyshev_quad(f::Function,plan::SApproxPlan) # Uses Gauss-Chebyshev quadrature to integrate over all dimensions grid = plan.grid multi_index = plan.multi_index domain = plan.domain iim = smolyak_inverse_interpolation_matrix(grid,multi_index,domain) d = size(grid,2) e = zeros(1,size(grid,1)) e[1] = π^d w = e*iim y = zeros(size(grid,1)) for i in eachindex(y) integrating_weights = sqrt(1.0-normalize_node(grid[i,1],domain[:,1])^2) for j = 2:d integrating_weights *= sqrt(1.0-normalize_node(grid[i,j],domain[:,j])^2) end y[i] = f(grid[i,:])*integrating_weights end scale_factor = (domain[1,1]-domain[2,1])/2 for i in 2:d scale_factor = scale_factor*(domain[1,i]-domain[2,i])/2 end return (w*y)[1]*scale_factor end ######################################################################## ######################################################################## function smolyak_grid_full(node_type::Function,d::S,mu::S) where {S<:Integer} T = typeof(1.0) multi_index = generate_multi_index(d,mu) unique_multi_index = sort(unique(multi_index)) unique_node_number = m_i.(unique_multi_index) # Create base nodes to be used in the sparse grid base_nodes = Array{Array{T,1},1}(undef,length(unique_node_number)) base_weights = Array{Array{T,1},1}(undef,length(unique_node_number)) @inbounds for i in eachindex(unique_node_number) base_nodes[i] = node_type(unique_node_number[i]) end # Select the relevant polynomials from the multi index ii = (sum(multi_index,dims=2) .>= max(d,mu+1)).*(sum(multi_index,dims=2) .<= d+mu) multi_index_full = zeros(S,sum(ii),size(multi_index,2)) j = 1 @inbounds for i in axes(multi_index,1) if ii[i] == true multi_index_full[j,:] = multi_index[i,:] j += 1 end end # Construct the sparse grid from the nodes nodes = Array{T,2}(undef,determine_grid_size_full(multi_index_full)) l = 1 for j in axes(multi_index_full,1) new_nodes = base_nodes[multi_index_full[j,1]] # Here new_nodes is a 1d array for i = 2:d new_nodes = combine_nodes(new_nodes,base_nodes[multi_index_full[j,i]]) # Here new_nodes becomes a 2d array end m = size(new_nodes,1) nodes[l:l+m-1,:] = new_nodes l += m end return nodes, multi_index_full end function smolyak_grid_full(node_type::Function,d::S,mu::S,domain::Union{Array{T,1},Array{T,2}}) where {S<:Integer, T<:AbstractFloat} if size(domain,2) != d error("domain is inconsistent with the number of dimensions") end nodes, multi_index_full = smolyak_grid_full(node_type,d,mu) nodes = scale_nodes(nodes,domain) return nodes, multi_index_full end function determine_grid_size_full(mi) temp = similar(mi) @inbounds for i in axes(mi,1) @inbounds for j in axes(mi,2) if mi[i,j] == 1 temp[i,j] = 1 else temp[i,j] = 2^(mi[i,j]-1)+1 end end end s = 0 @inbounds for i in axes(mi,1) t = 1 @inbounds for j in axes(mi,2) t *= temp[i,j] end s += t end return (s, size(mi,2)) end function master_index(multi_index::Array{S,2}) where {S<:Integer} temp_ind = similar(multi_index) master_ind = zeros(S,size(multi_index,1),2) @inbounds for i in eachindex(multi_index) if multi_index[i] == 1 temp_ind[i] = 1 else temp_ind[i] = m_i(multi_index[i]) end end master_ind[1,1] = 1 master_ind[1,2] = prod(temp_ind[1,:]) @inbounds for i = 2:size(master_ind,1) master_ind[i,1] = master_ind[i-1,1] + master_ind[i-1,2] master_ind[i,2] = prod(temp_ind[i,:]) end return master_ind end function cheb_poly(order::S,x::R) where {S<:Integer,R<:Number} p = one(R) p1 = zero(R) p2 = zero(R) for i = 2:order+1 if i == 2 p1, p = p, x else p2, p1 = p1, p p = 2*x*p1-p2 end end return p end function prod_cjs(max_grid::Union{Array{T,1},Array{T,2}},min_grid::Union{Array{T,1},Array{T,2}},poly_grid::Array{T,2}) where {T<:AbstractFloat} cjs = ones(size(poly_grid)) @inbounds for i in axes(poly_grid,1) @inbounds for j in axes(poly_grid,2) if poly_grid[i,j] == max_grid[j] || poly_grid[i,j] == min_grid[j] cjs[i,j] *= 2 end end end return prod(cjs,dims=2) end function compute_scale_factor(multi_index::Array{S,1}) where {S<:Integer} scale_factor = 1.0 @inbounds for i in eachindex(multi_index) if multi_index[i] > 1 scale_factor *= 2.0/(m_i(multi_index[i]) - 1) end end return scale_factor end function smolyak_weights_full(y_f::Array{T,1},grid::Union{Array{T,1},Array{T,2}},multi_index::Array{S,2}) where {S<:Integer, T<:AbstractFloat} mi = sum(multi_index,dims=2) d = size(multi_index,2) mu = maximum(mi)-d max_grid = maximum(grid,dims=1) min_grid = minimum(grid,dims=1) weights = Array{Array{T,1},1}(undef,size(multi_index,1)) g_ind = master_index(multi_index) @inbounds for i in axes(g_ind,1) # This loops over the number of polynomials ws = zeros(g_ind[i,2]) poly_grid = grid[g_ind[i,1]:g_ind[i,1]+g_ind[i,2]-1,:] poly_y = y_f[g_ind[i,1]:g_ind[i,1]+g_ind[i,2]-1] if size(grid,1) == 1 # This is to accommodate the mu = 0 case cjs_prod = ones(size(poly_grid,1)) else cjs_prod = prod_cjs(max_grid,min_grid,poly_grid) end @inbounds for l = 1:g_ind[i,2] # This loops over the weights ll = CartesianIndices(Tuple(m_i.(multi_index[i,:])))[l] @inbounds for j = 1:g_ind[i,2] # This loops over the nodes rhs_term = cheb_poly(ll[1]-1,poly_grid[j,1])*poly_y[j] @inbounds for k = 2:size(poly_grid,2) # This loops over the polynomial terms in the product rhs_term *= cheb_poly(ll[k]-1,poly_grid[j,k]) end ws[l] += rhs_term/cjs_prod[j] end scale_factor = compute_scale_factor(multi_index[i,:]) ws[l] = scale_factor*(1/cjs_prod[l])*ws[l] end weights[i] = (-1)^(d+mu-mi[i])*factorial(d-1)/(factorial(d+mu-mi[i])*factorial(-1-mu+mi[i]))*ws end return weights end function smolyak_weights_full(y_f::Array{T,1},grid::Union{Array{T,1},Array{T,2}},multi_index::Array{S,2},domain::Array{T,2}) where {S<:Integer, T<:AbstractFloat} d = size(multi_index,2) grid = copy(grid) for i = 1:d grid[:,i] = normalize_node(grid[:,i],domain[:,i]) end weights = smolyak_weights_full(y_f,grid,multi_index) return weights end function smolyak_evaluate_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2}) where {S<:Integer,R<:Number,T<:AbstractFloat} d = size(multi_index,2) evaluated_polynomials = zeros(size(multi_index,1)) @inbounds for i in axes(multi_index,1) # This loops over the number of polynomials @inbounds for l in eachindex(weights[i]) ll = CartesianIndices(Tuple(m_i.(multi_index[i:i,:])))[l] temp = weights[i][l]*cheb_poly(ll[1]-1,point[1]) @inbounds for k = 2:d temp *= cheb_poly(ll[k]-1,point[k]) end evaluated_polynomials[i] += temp end #evaluated_polynomials[i] *= (-1)^(d+mu-mi[i])*factorial(d-1)/(factorial(d+mu-mi[i])*factorial(-1-mu+mi[i])) end return sum(evaluated_polynomials) end function smolyak_evaluate_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2},domain::Array{T,2}) where {S<:Integer,R<:Number,T<:AbstractFloat} d = size(multi_index,2) point = copy(point) for i = 1:d point[i] = normalize_node(point[i],domain[:,i]) end estimate = smolyak_evaluate_full(weights,point,multi_index) return estimate end function deriv_cheb_poly(order::S,x::R) where {S<:Integer,R<:Number} p0 = one(R) p1 = zero(R) p2 = zero(R) pd0 = zero(R) pd1 = zero(R) pd2 = zero(R) for i = 2:order+1 if i == 2 p1, p0 = p0, x pd1, pd0 = pd0, one(R) else p2, p1 = p1, p0 pd2, pd1 = pd1, pd0 p0 = 2*x*p1-p2 pd0 = 2*p1+2*x*pd1-pd2 end end return pd0 end function smolyak_derivative_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2},pos::S) where {S<:Integer,R<:Number,T<:AbstractFloat} mi = sum(multi_index,dims=2) d = size(multi_index,2) mu = maximum(mi)-d evaluated_polynomials = zeros(size(multi_index,1)) for i in axes(multi_index,1) # This loops over the number of polynomials for l in eachindex(weights[i]) ll = CartesianIndices(Tuple(m_i.(multi_index[i:i,:])))[l] if pos == 1 temp = weights[i][l]*deriv_cheb_poly(ll[1]-1,point[1]) else temp = weights[i][l]*cheb_poly(ll[1]-1,point[1]) end for k = 2:d if k == pos temp *= deriv_cheb_poly(ll[k]-1,point[k]) else temp *= cheb_poly(ll[k]-1,point[k]) end end evaluated_polynomials[i] += temp end #evaluated_polynomials[i] *= (-1)^(d+mu-mi[i])*factorial(d-1)/(factorial(d+mu-mi[i])*factorial(-1-mu+mi[i])) end evaluated_derivative = sum(evaluated_polynomials) return evaluated_derivative end function smolyak_derivative_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2},domain::Array{T,2},pos::S) where {S<:Integer,R<:Number,T<:AbstractFloat} d = size(multi_index,2) point = copy(point) for i = 1:d point[i] = normalize_node(point[i],domain[:,i]) end evaluated_derivative = smolyak_derivative_full(weights,point,multi_index,pos) return evaluated_derivatives end function smolyak_gradient_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2}) where {S<:Integer,R<:Number,T<:AbstractFloat} d = size(multi_index,2) gradient = Array{R,2}(undef,1,d) for i = 1:d gradient[i] = smolyak_derivative_full(weights,point,multi_index,i) end return gradient end function smolyak_gradient_full(weights::Array{Array{T,1},1},point::Array{R,1},multi_index::Array{S,2},domain::Array{T,2}) where {S<:Integer,R<:Number,T<:AbstractFloat} d = size(multi_index,2) gradient = Array{R,2}(undef,1,d) for i = 1:d gradient[i] = smolyak_derivative_full(weights,point,multi_index,domain,i) end return gradient end ########################################################################### function smolyak_evaluate_full(weights::Array{T,1},multi_index_full::Array{S,2}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_evaluate_full(weights,x,multi_index_full) end return goo end function smolyak_evaluate_full(weights::Array{T,1},multi_index_full::Array{S,2},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_evaluate_full(weights,x,multi_index_full,domain) end return goo end function smolyak_derivative_full(weights::Array{T,1},multi_index_full::Array{S,2}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_derivative_full(weights,x,multi_index_full) end return goo end function smolyak_derivative_full(weights::Array{T,1},multi_index_full::Array{S,2},domain::Union{Array{T,1},Array{T,2}}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_derivative_full(weights,x,multi_index_full,domain) end return goo end function smolyak_derivative_full(weights::Array{T,1},multi_index_full::Array{S,2},pos::Array{S,1}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_derivative_full(weights,x,multi_index_full,pos) end return goo end function smolyak_derivative_full(weights::Array{T,1},multi_index_full::Array{S,2},domain::Union{Array{T,1},Array{T,2}},pos::Array{S,1}) where {T<:AbstractFloat,S<:Integer} function goo(x::Array{R,1}) where {R<:Number} return smolyak_derivative_full(weights,x,multi_index_full,domain,pos) end return goo end
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
code
2342
# This code presents an example to illustrate how SmolyakApprox can be used using SmolyakApprox function test_smolyak_derivative() d = 5 # Set the number of dimensions mu = 3 # Set the level grid, multi_ind = smolyak_grid(chebyshev_gauss_lobatto,d,mu) # Construct the Smolyak grid and the multi index # An arbitrary test function function test(grid) y_value = (grid[:,1].+1).^0.1.*exp.(grid[:,2]).*log.(grid[:,3].+2).^0.2.*(grid[:,4].+2).^0.8.*(grid[:,5].+7).^0.1 return y_value end y = test(grid) # Evaluate the test function on the Smolyak grid point = [0.75, 0.45, 0.82, -0.15, -0.95] # Choose a point to evaluate the approximated function # One way of computing the weights and evaluating the approximated function weights = smolyak_weights(y,grid,multi_ind) # Compute the Smolyak weights y_hat = smolyak_evaluate(weights,point,multi_ind) # Evaluate the approximated function #= A second way of computing the weights and evaluating the approximated function that computes the interpolation matrix just once. =# interp_mat = smolyak_inverse_interpolation_matrix(grid,multi_ind) # Compute the interpolation matrix w = smolyak_weights(y,interp_mat) # Compute the Smolyak weights y_hatt = smolyak_evaluate(w,point,multi_ind) # Evaluate the approximated function # Evaluate the exact function at point y_actual = test(point') derivatives_2 = smolyak_gradient(weights,point,multi_ind) derivatives_3 = smolyak_derivative(weights,point,multi_ind,1) derivatives_4 = smolyak_derivative(weights,point,multi_ind,3) grid_full, multi_ind_full = smolyak_grid_full(chebyshev_gauss_lobatto,d,mu) # Construct the Smolyak grid and the multi index y_full = test(grid_full) # Evaluate the test function on the Smolyak grid weights_full = smolyak_weights_full(y_full,grid_full,multi_ind_full) # Compute the Smolyak weights derivatives_3_full = smolyak_derivative_full(weights_full,point,multi_ind_full,1) # Evaluate the approximated function derivatives_4_full = smolyak_gradient_full(weights_full,point,multi_ind_full) # Evaluate the approximated function return derivatives_2, derivatives_3, derivatives_4, derivatives_3_full, derivatives_4_full end test_smolyak_derivative()
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
code
2887
# This code presents an example to illustrate how SmolyakApprox can be used using SmolyakApprox function test_smolyak_approx() d = 5 # Set the number of dimensions mu = 3 # Set the level of approximation g2, m2 = smolyak_grid(clenshaw_curtis_equidistant,d,mu) grid, multi_ind = smolyak_grid(chebyshev_gauss_lobatto,d,mu) # Construct the Smolyak grid and the multi index # An arbitrary test function function test(grid) y_value = (grid[:,1].+1).^0.1.*exp.(grid[:,2]).*log.(grid[:,3].+2).^0.2.*(grid[:,4].+2).^0.8.*(grid[:,5].+7).^0.1 return y_value end y = test(grid) # Evaluate the test function on the Smolyak grid y_pl = test(g2) point = [0.75, 0.45, 0.82, -0.15, -0.95] # Choose a point to evaluate the approximated function # One way of computing the weights and evaluating the approximated function weights = smolyak_weights(y,grid,multi_ind) # Compute the Smolyak weights y_hat = smolyak_evaluate(weights,point,multi_ind) # Evaluate the approximated function #= A second way of computing the weights and evaluating the approximated function that computes the interpolation matrix just once. =# interp_mat = smolyak_inverse_interpolation_matrix(grid,multi_ind) # Compute the interpolation matrix w = smolyak_weights(y,interp_mat) # Compute the Smolyak weights y_hatt = smolyak_evaluate(w,point,multi_ind) # Evaluate the approximated function # Piecewise linear w_pl = smolyak_pl_weights(y_pl,g2,m2) y_pl_hat = smolyak_pl_evaluate(w_pl,point,g2,m2) # Evaluate the exact function at point y_actual = test(point') # Now consider the ansiotropic case mu = [3, 2, 2, 2, 3] grid, multi_ind = smolyak_grid(chebyshev_gauss_lobatto,d,mu) # Construct the Smolyak grid and the multi index y = test(grid) weights = smolyak_weights(y,grid,multi_ind) # Compute the Smolyak weights y_hat_ansio = smolyak_evaluate(weights,point,multi_ind) # Evaluate the approximated function weights_th = smolyak_weights_threaded(y,grid,multi_ind) # Compute the Smolyak weights g3, m3 = smolyak_grid(clenshaw_curtis_equidistant,d,mu) y_pl = test(g3) w_pl_ansio = smolyak_pl_weights(y_pl,g3,m3) y_pl_hat_ansio = smolyak_pl_evaluate(w_pl,point,g3,m3) w_pl_ansio_th = smolyak_pl_weights_threaded(y_pl,g3,m3) # Now test the full grid results mu = 3 grid_full, multi_ind_full = smolyak_grid_full(chebyshev_gauss_lobatto,d,mu) # Construct the Smolyak grid and the multi index y_full = test(grid_full) weights_full = smolyak_weights_full(y_full,grid_full,multi_ind_full) # Compute the Smolyak weights y_hat_full = smolyak_evaluate_full(weights_full,point,multi_ind_full) # Evaluate the approximated function return y_hat, y_hatt, y_pl_hat, y_actual, y_hat_ansio, y_pl_hat_ansio, y_hat_full end test_smolyak_approx()
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
code
55
include("derivative_example.jl") include("example.jl")
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.3.0
e645e4b13d17a941b6fc2dfe8c11431e6e59cd88
docs
5605
# SmolyakApprox.jl Introduction ============ This package implements Smolyak's method for approximating multivariate continuous functions. Two different types of interpolation schemes are allowed: Chebyshev polynomials and piecewise linear. The package also implements Clenshaw-Curtis integration and Gauss-Chebyshev quadrature. To install this package you need to type in the REPL ```julia using Pkg Pkg.add("SmolyakApprox") ``` Then the package can be used by typing ```julia using SmolyakApprox ``` Chebyshev polynomials --------------------- The nodes are computed using Chebyshev-Gauss-Lobatto (Chebyshev extrema), with the approximation grid and the multi-index computed by ```julia grid, multi_ind = smolyak_grid(chebyshev_gauss_lobatto,d,mu,domain) ``` where `d` is the dimension of the function, `mu` is the layer or approximation order, and domain is a 2d-array (2xd) containing the upper and lower bound on each variable. If domain is not provided, then it is assumed that the variables reside on the [-1,1] interval. If `mu` is an integer, then an isotropic grid is computed whereas if `mu` is a 1d array of integers with length `d`, then an anisotropic grid is computed. Because the chebyshev_gauss_lobatto points are the same as the Chebyshev extrema points you can use `chebyshev_extrema` in place of `chebyshev_gauss_lobatto`. With the grid and multi-index in hand, we can compute the weights, or coefficients in the approximation, according to ```julia weights = smolyak_weights(y,grid,multi_ind,domain) ``` where `y` is a 1d-array containing the evaluations at each grid point of the function being approximated. Computation of the weights can be made more efficient by computing the inverse interpolation matrix (this generally needs to be done only once, outside any loops) ```julia inv_interp_mat = smolyak_inverse_interpolation_matrix(grid,multi_ind,domain) ``` with the weights now computed through ```julia weights = smolyak_weights(y,inv_interp_mat) ``` You can evaluate the Smolyak approximation of the function at any point in the domain by ```julia y_hat = smolyak_evaluate(weights,point,multi_ind,domain) ``` where `point` (a 1d-array) is the point in the domain where the approximation is to be evaluated. Lastly, you can compute derivatives, gradients, and hessians according to: ```julia d = smolyak_derivative(weights,point,multi_ind,domain,pos) # Takes the derivative with respect to variable 'pos' g = smolyak_gradient(weights,point,multi_ind,domain) h = smolyak_hessian(weights,point,multi_ind,domain) ``` Integration ----------- To numerically integrate a function, you first create an approximation plan and then call the integration function: ```julia plan = smolyak_plan(chebyshev_gauss_lobatto,d,mu,domain) integral = smolyak_integrate(f,plan,:clenshaw_curtis) # uses Clenshaw-Curtis integral = smolyak_integrate(f,plan,:gauss_chebyshev_quad) # uses Gauss-Chebyshev quadrature ``` where `f` is the function to be integrated and `plan` is the approximation plan, discussed below. Both methods integrate the function over the full approximation domain. Piecewise linear ---------------- For piecewise linear approximation equidistant nodes are used where the number of nodes is determined according to the Clenshaw-Curtis grid structure: 2^(mu-1)+1 ```julia grid, multi_ind = smolyak_grid(clenshaw_curtis_equidistant,d,mu,domain) ``` Then the weights are computed using ```julia weights = smolyak_pl_weights(y,grid,multi_ind,domain) ``` and the approximation computed via ```julia y_hat = smolyak_pl_evaluate(weights,point,grid,multi_ind,domain) ``` Again `mu` can be either an integer or a 1d array of integers depending on whether an isotropic or an anisotropic approximation is desired, and the argument `domain` is unnecessary where the grid resides on [-1,1]^d. Multi-threading --------------- There are multi-threaded functions to compute the polynomial weights and the interpolation matrix. These multi-threaded functions are accessed by adding `_threaded` to the end of the funtion, as per ```julia weights = smolyak_weights_threaded(y,inv_interp_mat) ``` Useful structures ----------------- The key structure to be aware of is the SApproxPlan, which contains the key information needed to approximate a function. ```julia d = 3 mu = 3 domain = [2.0 2.0 2.0; -2.0 -2.0 -2.0] grid, mi = smolyak_grid(chebyshev_extrema,d,mu,domain) plan = SApproxPlan(:chebyshev_extrema,grid,mi,domain) ``` or ```julia plan = smolyak_plan(chebyshev_extrema,d,mu,domain) ``` Once the approximation plan has been constructed it can be used to create functions to interpolate and to compute gradients and hessians. ```julia f = smolyak_interp(y,plan) g = smolyak_gradient(y,plan) h = smolyak_hessian(y,plan) point = [1.0, 1.0, 1.0] f(point) g(point) h(point) ``` There are threaded versions of `smolyak_interp`, `smolyak_gradient`, and `smolyak_hessian`; just add `_threaded` to the end of the function name. Related packages ---------------- - ChebyshevApprox.jl - HyperbolicCrossApprox.jl - PiecewiseLinearApprox.jl References ---------- My primary references when writing this package were: Judd, K., Maliar, L., Maliar, S., and R. Valero, (2014), "Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain," Journal of Economic Dynamics and Control, 44, pp.92--123. Klimke, A., and B. Wohlmuth, (2005), "Algorithm 846: spinterp: Piecewise Multilinear Hierarchical Grid Interpolation in MATLAB," ACM Transactions on Mathematical Software, 31, 4, pp.561--579.
SmolyakApprox
https://github.com/RJDennis/SmolyakApprox.jl.git
[ "MIT" ]
0.1.0
7e62f733292e252484bbca00116e7d9c06874b42
code
2112
module MoziFESparse using SparseArrays export SparseMatrixCOO,SparseMatrixDOK export spzeros_coo,spzeros_dok export to_csc, to_array struct SparseMatrixDOK{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti} m::Int n::Int dict::Dict{Tuple{Ti,Ti},Tv} end struct SparseMatrixCOO{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti} m::Int n::Int rowptr::Vector{Ti} colptr::Vector{Ti} nzval::Vector{Tv} end import Base.size size(spmat::SparseMatrixCOO)=(spmat.m,spmat.n) function spzeros_dok(m::Int,n::Int) SparseMatrixDOK{Float64,Int}(m,n,Dict{Tuple{Int,Int},Float64}()) end function spzeros_coo(m::Int,n::Int) SparseMatrixCOO{Float64,Int}(m,n,Int[],Int[],Float64[]) end function SparseMatrixCOO(A :: AbstractArray) m,n=size(A) I=Vector{Int}() J=Vector{Int}() V=Vector{Float64}() for j in 1:n, i in 1:m if A[i,j]!=0 push!(I,i) push!(J,j) push!(V,A[i,j]) end end SparseMatrixCOO{Float64,Int}(m,n,I,J,V) end function add(a::SparseMatrixCOO,b::SparseMatrixCOO) if a.m!=b.m || a.n!=b.n throw("Dimension not match!") end I=[a.rowptr;b.rowptr] J=[a.colptr;b.colptr] V=[a.nzval;b.nzval] SparseMatrixCOO(a.m,a.n,I,J,V) end import Base.+ import Base.getindex +(a::SparseMatrixCOO,b::SparseMatrixCOO)=add(a::SparseMatrixCOO,b::SparseMatrixCOO) function getindex(spmatrix::SparseMatrixCOO,i::Int,j::Int) idx=(spmatrix.rowptr.==i) .& (spmatrix.colptr.==j) return reduce(+, spmatrix.nzval[idx]) end function getindex(spmatrix::SparseMatrixCOO,i::Int,j::Int) idx=(spmatrix.rowptr.==i) .& (spmatrix.colptr.==j) return reduce(+, spmatrix.nzval[idx]) end function to_csc(spmatrix::SparseMatrixCOO) m=spmatrix.m n=spmatrix.n I=spmatrix.rowptr J=spmatrix.colptr V=spmatrix.nzval sparse(I,J,V,m,n) end function to_array(spmatrix::SparseMatrixCOO) Array(to_csc(spmatrix)) end function to_array(spvec::SparseVector) res=zeros(spvec.n) for (i,j) in zip(spvec.nzind,spvec.nzval) res[i]+=j end return res end end
MoziFESparse
https://github.com/zhuoju36/MoziFESparse.jl.git
[ "MIT" ]
0.1.0
7e62f733292e252484bbca00116e7d9c06874b42
code
570
using MoziFESparse using LinearAlgebra A=Diagonal([1,1,1]) B=Diagonal([2,2,2]) spA=SparseMatrixCOO(A) spB=SparseMatrixCOO(B) res=spA+spB @test res[1,2]==0 @test res[1,1]==3 @show to_csc(res) function disperse(A::Matrix,i::Vector{Int},N::Int) m,n=size(A) I = repeat(i,outer=n) J = repeat(i,inner=m) V = reshape(A,m*n) SparseMatrixCOO(N,N,I,J,V) end function disperse(A::Vector,i::Vector{Int},N::Int) m=length(A) I = i J = [1 for i in 1:m] V = A to_array(SparseMatrixCOO(N,1,I,J,V))[:,1] end @show disperse([1,2,3],[4,5,10],10)
MoziFESparse
https://github.com/zhuoju36/MoziFESparse.jl.git
[ "MIT" ]
0.1.0
7e62f733292e252484bbca00116e7d9c06874b42
docs
131
# MoziFESparse.jl This is a part of Project Mozi This package provides COO and DOK matrix support for FEM module of the project.
MoziFESparse
https://github.com/zhuoju36/MoziFESparse.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
code
403
using Documenter, StackPointer makedocs(; modules=[StackPointer], format=Documenter.HTML(), pages=[ "Home" => "index.md", ], repo="https://github.com/chriselrod/StackPointer.jl/blob/{commit}{path}#L{line}", sitename="StackPointer.jl", authors="Chris Elrod <[email protected]>", assets=String[], ) deploydocs(; repo="github.com/chriselrod/StackPointer.jl", )
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
code
1657
module StackPointers using VectorizationBase export StackPointer, stack_pointer_call struct StackPointer # default to Float64 ptr::Ptr{Float64} end @inline Base.pointer(s::StackPointer) = s.ptr @inline Base.pointer(s::StackPointer, ::Type{T}) where {T} = Base.unsafe_convert(Ptr{T}, s.ptr) @inline Base.pointer(s::StackPointer, ::Type{Float64}) = s.ptr @inline Base.convert(::Type{Ptr{T}}, s::StackPointer) where {T} = pointer(s, T) @inline Base.unsafe_convert(::Type{Ptr{T}}, s::StackPointer) where {T} = pointer(s, T) @inline Base.:+(sp::StackPointer, i::Integer) = StackPointer(gep(sp.ptr, i)) @inline Base.:+(sp::StackPointer, i::Integer...) = StackPointer(gep(sp.ptr, +(i...))) @inline Base.:+(i::Integer, sp::StackPointer) = StackPointer(gep(sp.ptr, i)) @inline Base.:-(sp::StackPointer, i::Integer) = StackPointer(gep(sp.ptr, -i)) @inline VectorizationBase.align(s::StackPointer) = StackPointer(VectorizationBase.align(s.ptr)) """ To support using StackPointers, overload stack_pointer_call. For example, in PaddedMatrices (which defines an appropriate `similar` method): @inline function StackPointers.stack_pointer_call(::typeof(*), sp::StackPointer, A::AbstractMatrix, B::AbstractVecOrMat) (sp, C) = similar(sp, A, B) sp, mul!(C, A, B) end """ @inline stack_pointer_call(f::F, sp::StackPointer, args::Vararg{<:Any,N}) where {F,N} = (sp, f(args...)) # function extract_func_sym(f::Expr)::Symbol # if f.head === :(.) # f.args[2].value # elseif f.head === :curly # ff = first(f.args) # ff isa Symbol ? ff : ff.args[2].value # end # end include("precompile.jl") _precompile_() end # module
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
code
33
function _precompile_() end
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
code
103
using StackPointers using Test @testset "StackPointers.jl" begin # Write your own tests here. end
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
docs
1003
# StackPointers [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://chriselrod.github.io/StackPointers.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://chriselrod.github.io/StackPointers.jl/dev) [![Build Status](https://travis-ci.com/chriselrod/StackPointer.jl.svg?branch=master)](https://travis-ci.com/chriselrod/StackPointers.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/github/chriselrod/StackPointer.jl?svg=true)](https://ci.appveyor.com/project/chriselrod/StackPointers-jl) [![Codecov](https://codecov.io/gh/chriselrod/StackPointer.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/chriselrod/StackPointers.jl) [![Coveralls](https://coveralls.io/repos/github/chriselrod/StackPointer.jl/badge.svg?branch=master)](https://coveralls.io/github/chriselrod/StackPointers.jl?branch=master) [![Build Status](https://api.cirrus-ci.com/github/chriselrod/StackPointer.jl.svg)](https://cirrus-ci.com/github/chriselrod/StackPointers.jl)
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.1.2
3a4da81e25be1cedcc14576b696e2da6c9bb989b
docs
76
# StackPointer.jl ```@index ``` ```@autodocs Modules = [StackPointer] ```
StackPointers
https://github.com/chriselrod/StackPointers.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
1988
import Downloads using GitHub using Pkg.Artifacts using Base.BinaryPlatforms using Tar using SHA const gh_auth = GitHub.AnonymousAuth() version(release::Release) = try VersionNumber(release.tag_name) catch v"0.0.0" end latest_release(repo; auth) = reduce(releases(repo; auth)[1]) do releaseA, releaseB version(releaseA) > version(releaseB) ? releaseA : releaseB end function make_artifacts(dir) release = latest_release("bytecodealliance/wasmtime"; auth=gh_auth) release_version = VersionNumber(release.tag_name) platforms = [ Platform("aarch64", "linux"; libc="glibc"), Platform("x86_64", "linux"; libc="glibc"), Platform("x86_64", "macos"), Platform("aarch64", "macos"), ] tripletnolibc(platform) = replace(triplet(platform), "-gnu" => "") wasmtime_asset_name(platform) = replace("wasmtime-v$release_version-$(tripletnolibc(platform))-c-api.tar.xz", "apple-darwin" => "macos") asset_names = wasmtime_asset_name.(platforms) assets = filter(asset -> asset["name"] ∈ asset_names, release.assets) artifacts_toml = joinpath(@__DIR__, "Artifacts.toml") for (platform, asset) in zip(platforms, assets) @info "Downloading $(asset["browser_download_url"]) for $platform" archive_location = joinpath(dir, asset["name"]) download_url = asset["browser_download_url"] Downloads.download(download_url, archive_location; progress=(t,n) -> print("$(floor(100*n/t))%\r")) println() artifact_hash = create_artifact() do artifact_dir run(`tar -xvf $archive_location -C $artifact_dir`) end download_hash = open(archive_location, "r") do f bytes2hex(sha256(f)) end bind_artifact!(artifacts_toml, "libwasmtime", artifact_hash; platform, force=true, download_info=[ (download_url, download_hash) ]) @info "done $platform" end end main() = mktempdir(make_artifacts)
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
2369
using Clang.Generators using Clang.LibClang.Clang_jll cd(@__DIR__) # Location of the extracted wasmer.tar.gz wasmtime_location = joinpath(get(ENV, "WASMTIME_LOCATION", "../wasmtime"), "crates/c-api/") options = load_options(joinpath(@__DIR__, "generator.toml")) # add compiler flags args = get_default_args() push!(args, "-I" * joinpath(wasmtime_location, "wasm-c-api/include/")) push!(args, "-I" * joinpath(wasmtime_location, "include/")) headers = [ joinpath(wasmtime_location, "wasm-c-api/include/wasm.h"), joinpath(wasmtime_location, "include/wasmtime.h"), joinpath(wasmtime_location, "include/wasi.h"), ] # create context ctx = create_context(headers, args, options) # build without printing so we can do custom rewriting build!(ctx, BUILDSTAGE_NO_PRINTING) # custom rewriter function rewrite!(e::Expr) # if Meta.isexpr(e, :function) # pushfirst!(e.args[2].args, Expr(:macrocall, Symbol("@show"), LineNumberNode(1), :libwasmtime)) # return e # end # if Meta.isexpr(e, :struct, 3) && e.args[2] == :wasmtime_extern # e.args = [ # e.args[1], # e.args[2], # [:($(Symbol("_pad", i))::$(t)) for (i, t) in enumerate((UInt8, UInt16, UInt32))]..., # e.args[end], # # :(wasmtime_extern(kind, of) = new(kind, 0, 0, 0, of)), # ] # return e # end Meta.isexpr(e, :const) || return e eq = e.args[1] if eq.head === :(=) && eq.args[1] === :WASM_EMPTY_VEC e.args[1].args[2] = nothing elseif eq.head === :(=) && eq.args[1] === :wasm_name && eq.args[2] === :wasm_byte_vec e.args[1].args[2] = :wasm_byte_vec_t elseif eq.head === :(=) && eq.args[1] === :wasm_byte_t e.args[1].args[2] = :UInt8 end return e end function rewrite!(dag::ExprDAG) for node in get_nodes(dag) for expr in get_exprs(node) rewrite!(expr) end end end rewrite!(ctx.dag) # print build!(ctx, BUILDSTAGE_PRINTING_ONLY) @warn """ ⚠ Remember to add the `wasmtime_extern` alignment ```julia # src/LibWasmtime.jl:1770 mutable struct wasmtime_extern kind::wasmtime_extern_kind_t _pad1::UInt8 _pad2::UInt16 _pad3::UInt32 of::wasmtime_extern_union_t wasmtime_extern(kind, of) = new(kind, 0, 0, 0, of) end ``` """
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
966
# This file (`LibWasm.jl` not `prologue.jl`) is automatically generated using # Clang.jl and should not be edited manually. Take a look at the `gen/` folder # if something is to be changed. using Pkg.Artifacts using Pkg.BinaryPlatforms tripletnolibc(platform) = replace(triplet(platform), "-gnu" => "") wasmtime_folder_name(platform) = "wasmtime-v$release_version-$(tripletnolibc(platform))-c-api" function get_libwasmtime_location() artifact_info = artifact_meta("libwasmtime", joinpath(@__DIR__, "..", "Artifacts.toml")) artifact_info === nothing && return nothing parent_path = artifact_path(Base.SHA1(artifact_info["git-tree-sha1"])) child_folder = readdir(parent_path)[1] return joinpath( parent_path, child_folder, "lib/libwasmtime" ) end const libwasmtime_env_key = "LIBWASMTIME_LOCATION" const libwasmtime = haskey(ENV, libwasmtime_env_key) ? ENV[libwasmtime_env_key] : get_libwasmtime_location()
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
82990
module LibWasmtime using CEnum # This file (`LibWasm.jl` not `prologue.jl`) is automatically generated using # Clang.jl and should not be edited manually. Take a look at the `gen/` folder # if something is to be changed. using Pkg.Artifacts using Pkg.BinaryPlatforms tripletnolibc(platform) = replace(triplet(platform), "-gnu" => "") wasmtime_folder_name(platform) = "wasmtime-v$release_version-$(tripletnolibc(platform))-c-api" function get_libwasmtime_location() artifact_info = artifact_meta("libwasmtime", joinpath(@__DIR__, "..", "Artifacts.toml")) artifact_info === nothing && return nothing parent_path = artifact_path(Base.SHA1(artifact_info["git-tree-sha1"])) child_folder = readdir(parent_path)[1] return joinpath( parent_path, child_folder, "lib/libwasmtime" ) end const libwasmtime_env_key = "LIBWASMTIME_LOCATION" const libwasmtime = haskey(ENV, libwasmtime_env_key) ? ENV[libwasmtime_env_key] : get_libwasmtime_location() const byte_t = Cchar const wasm_byte_t = UInt8 mutable struct wasm_byte_vec_t size::Csize_t data::Ptr{wasm_byte_t} end function wasm_byte_vec_new(out, arg2, arg3) ccall((:wasm_byte_vec_new, libwasmtime), Cvoid, (Ptr{wasm_byte_vec_t}, Csize_t, Ptr{wasm_byte_t}), out, arg2, arg3) end function wasm_byte_vec_new_empty(out) ccall((:wasm_byte_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_byte_vec_t},), out) end function wasm_byte_vec_new_uninitialized(out, arg2) ccall((:wasm_byte_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_byte_vec_t}, Csize_t), out, arg2) end function wasm_byte_vec_copy(out, arg2) ccall((:wasm_byte_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_byte_vec_t}, Ptr{wasm_byte_vec_t}), out, arg2) end function wasm_byte_vec_delete(arg1) ccall((:wasm_byte_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_byte_vec_t},), arg1) end mutable struct wasm_ref_t end mutable struct wasm_store_t end function assertions() ccall((:assertions, libwasmtime), Cvoid, ()) end const float32_t = Cfloat const float64_t = Cdouble const wasm_name_t = wasm_byte_vec_t function wasm_name_new_from_string(out, s) ccall((:wasm_name_new_from_string, libwasmtime), Cvoid, (Ptr{wasm_name_t}, Cstring), out, s) end function wasm_name_new_from_string_nt(out, s) ccall((:wasm_name_new_from_string_nt, libwasmtime), Cvoid, (Ptr{wasm_name_t}, Cstring), out, s) end mutable struct wasm_config_t end function wasm_config_delete(arg1) ccall((:wasm_config_delete, libwasmtime), Cvoid, (Ptr{wasm_config_t},), arg1) end function wasm_config_new() ccall((:wasm_config_new, libwasmtime), Ptr{wasm_config_t}, ()) end mutable struct wasm_engine_t end function wasm_engine_delete(arg1) ccall((:wasm_engine_delete, libwasmtime), Cvoid, (Ptr{wasm_engine_t},), arg1) end function wasm_engine_new() ccall((:wasm_engine_new, libwasmtime), Ptr{wasm_engine_t}, ()) end function wasm_engine_new_with_config(arg1) ccall((:wasm_engine_new_with_config, libwasmtime), Ptr{wasm_engine_t}, (Ptr{wasm_config_t},), arg1) end function wasm_store_delete(arg1) ccall((:wasm_store_delete, libwasmtime), Cvoid, (Ptr{wasm_store_t},), arg1) end function wasm_store_new(arg1) ccall((:wasm_store_new, libwasmtime), Ptr{wasm_store_t}, (Ptr{wasm_engine_t},), arg1) end const wasm_mutability_t = UInt8 @cenum wasm_mutability_enum::UInt32 begin WASM_CONST = 0 WASM_VAR = 1 end mutable struct wasm_limits_t min::UInt32 max::UInt32 end mutable struct wasm_valtype_t end function wasm_valtype_delete(arg1) ccall((:wasm_valtype_delete, libwasmtime), Cvoid, (Ptr{wasm_valtype_t},), arg1) end mutable struct wasm_valtype_vec_t size::Csize_t data::Ptr{Ptr{wasm_valtype_t}} end function wasm_valtype_vec_new_empty(out) ccall((:wasm_valtype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_valtype_vec_t},), out) end function wasm_valtype_vec_new_uninitialized(out, arg2) ccall((:wasm_valtype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_valtype_vec_t}, Csize_t), out, arg2) end function wasm_valtype_vec_new(out, arg2, arg3) ccall((:wasm_valtype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_valtype_vec_t}, Csize_t, Ptr{Ptr{wasm_valtype_t}}), out, arg2, arg3) end function wasm_valtype_vec_copy(out, arg2) ccall((:wasm_valtype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_valtype_vec_t}, Ptr{wasm_valtype_vec_t}), out, arg2) end function wasm_valtype_vec_delete(arg1) ccall((:wasm_valtype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_valtype_vec_t},), arg1) end function wasm_valtype_copy(arg1) ccall((:wasm_valtype_copy, libwasmtime), Ptr{wasm_valtype_t}, (Ptr{wasm_valtype_t},), arg1) end const wasm_valkind_t = UInt8 @cenum wasm_valkind_enum::UInt32 begin WASM_I32 = 0 WASM_I64 = 1 WASM_F32 = 2 WASM_F64 = 3 WASM_ANYREF = 128 WASM_FUNCREF = 129 end function wasm_valtype_new(arg1) ccall((:wasm_valtype_new, libwasmtime), Ptr{wasm_valtype_t}, (wasm_valkind_t,), arg1) end function wasm_valtype_kind(arg1) ccall((:wasm_valtype_kind, libwasmtime), wasm_valkind_t, (Ptr{wasm_valtype_t},), arg1) end function wasm_valkind_is_num(k) ccall((:wasm_valkind_is_num, libwasmtime), Bool, (wasm_valkind_t,), k) end function wasm_valkind_is_ref(k) ccall((:wasm_valkind_is_ref, libwasmtime), Bool, (wasm_valkind_t,), k) end function wasm_valtype_is_num(t) ccall((:wasm_valtype_is_num, libwasmtime), Bool, (Ptr{wasm_valtype_t},), t) end function wasm_valtype_is_ref(t) ccall((:wasm_valtype_is_ref, libwasmtime), Bool, (Ptr{wasm_valtype_t},), t) end mutable struct wasm_functype_t end function wasm_functype_delete(arg1) ccall((:wasm_functype_delete, libwasmtime), Cvoid, (Ptr{wasm_functype_t},), arg1) end mutable struct wasm_functype_vec_t size::Csize_t data::Ptr{Ptr{wasm_functype_t}} end function wasm_functype_vec_new_empty(out) ccall((:wasm_functype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_functype_vec_t},), out) end function wasm_functype_vec_new_uninitialized(out, arg2) ccall((:wasm_functype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_functype_vec_t}, Csize_t), out, arg2) end function wasm_functype_vec_new(out, arg2, arg3) ccall((:wasm_functype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_functype_vec_t}, Csize_t, Ptr{Ptr{wasm_functype_t}}), out, arg2, arg3) end function wasm_functype_vec_copy(out, arg2) ccall((:wasm_functype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_functype_vec_t}, Ptr{wasm_functype_vec_t}), out, arg2) end function wasm_functype_vec_delete(arg1) ccall((:wasm_functype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_functype_vec_t},), arg1) end function wasm_functype_copy(arg1) ccall((:wasm_functype_copy, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_functype_t},), arg1) end function wasm_functype_new(params, results) ccall((:wasm_functype_new, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_vec_t}, Ptr{wasm_valtype_vec_t}), params, results) end function wasm_functype_params(arg1) ccall((:wasm_functype_params, libwasmtime), Ptr{wasm_valtype_vec_t}, (Ptr{wasm_functype_t},), arg1) end function wasm_functype_results(arg1) ccall((:wasm_functype_results, libwasmtime), Ptr{wasm_valtype_vec_t}, (Ptr{wasm_functype_t},), arg1) end mutable struct wasm_globaltype_t end function wasm_globaltype_delete(arg1) ccall((:wasm_globaltype_delete, libwasmtime), Cvoid, (Ptr{wasm_globaltype_t},), arg1) end mutable struct wasm_globaltype_vec_t size::Csize_t data::Ptr{Ptr{wasm_globaltype_t}} end function wasm_globaltype_vec_new_empty(out) ccall((:wasm_globaltype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_globaltype_vec_t},), out) end function wasm_globaltype_vec_new_uninitialized(out, arg2) ccall((:wasm_globaltype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_globaltype_vec_t}, Csize_t), out, arg2) end function wasm_globaltype_vec_new(out, arg2, arg3) ccall((:wasm_globaltype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_globaltype_vec_t}, Csize_t, Ptr{Ptr{wasm_globaltype_t}}), out, arg2, arg3) end function wasm_globaltype_vec_copy(out, arg2) ccall((:wasm_globaltype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_globaltype_vec_t}, Ptr{wasm_globaltype_vec_t}), out, arg2) end function wasm_globaltype_vec_delete(arg1) ccall((:wasm_globaltype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_globaltype_vec_t},), arg1) end function wasm_globaltype_copy(arg1) ccall((:wasm_globaltype_copy, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasm_globaltype_t},), arg1) end function wasm_globaltype_new(arg1, arg2) ccall((:wasm_globaltype_new, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasm_valtype_t}, wasm_mutability_t), arg1, arg2) end function wasm_globaltype_content(arg1) ccall((:wasm_globaltype_content, libwasmtime), Ptr{wasm_valtype_t}, (Ptr{wasm_globaltype_t},), arg1) end function wasm_globaltype_mutability(arg1) ccall((:wasm_globaltype_mutability, libwasmtime), wasm_mutability_t, (Ptr{wasm_globaltype_t},), arg1) end mutable struct wasm_tabletype_t end function wasm_tabletype_delete(arg1) ccall((:wasm_tabletype_delete, libwasmtime), Cvoid, (Ptr{wasm_tabletype_t},), arg1) end mutable struct wasm_tabletype_vec_t size::Csize_t data::Ptr{Ptr{wasm_tabletype_t}} end function wasm_tabletype_vec_new_empty(out) ccall((:wasm_tabletype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_tabletype_vec_t},), out) end function wasm_tabletype_vec_new_uninitialized(out, arg2) ccall((:wasm_tabletype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_tabletype_vec_t}, Csize_t), out, arg2) end function wasm_tabletype_vec_new(out, arg2, arg3) ccall((:wasm_tabletype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_tabletype_vec_t}, Csize_t, Ptr{Ptr{wasm_tabletype_t}}), out, arg2, arg3) end function wasm_tabletype_vec_copy(out, arg2) ccall((:wasm_tabletype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_tabletype_vec_t}, Ptr{wasm_tabletype_vec_t}), out, arg2) end function wasm_tabletype_vec_delete(arg1) ccall((:wasm_tabletype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_tabletype_vec_t},), arg1) end function wasm_tabletype_copy(arg1) ccall((:wasm_tabletype_copy, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasm_tabletype_t},), arg1) end function wasm_tabletype_new(arg1, arg2) ccall((:wasm_tabletype_new, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_limits_t}), arg1, arg2) end function wasm_tabletype_element(arg1) ccall((:wasm_tabletype_element, libwasmtime), Ptr{wasm_valtype_t}, (Ptr{wasm_tabletype_t},), arg1) end function wasm_tabletype_limits(arg1) ccall((:wasm_tabletype_limits, libwasmtime), Ptr{wasm_limits_t}, (Ptr{wasm_tabletype_t},), arg1) end mutable struct wasm_memorytype_t end function wasm_memorytype_delete(arg1) ccall((:wasm_memorytype_delete, libwasmtime), Cvoid, (Ptr{wasm_memorytype_t},), arg1) end mutable struct wasm_memorytype_vec_t size::Csize_t data::Ptr{Ptr{wasm_memorytype_t}} end function wasm_memorytype_vec_new_empty(out) ccall((:wasm_memorytype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_memorytype_vec_t},), out) end function wasm_memorytype_vec_new_uninitialized(out, arg2) ccall((:wasm_memorytype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_memorytype_vec_t}, Csize_t), out, arg2) end function wasm_memorytype_vec_new(out, arg2, arg3) ccall((:wasm_memorytype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_memorytype_vec_t}, Csize_t, Ptr{Ptr{wasm_memorytype_t}}), out, arg2, arg3) end function wasm_memorytype_vec_copy(out, arg2) ccall((:wasm_memorytype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_memorytype_vec_t}, Ptr{wasm_memorytype_vec_t}), out, arg2) end function wasm_memorytype_vec_delete(arg1) ccall((:wasm_memorytype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_memorytype_vec_t},), arg1) end function wasm_memorytype_copy(arg1) ccall((:wasm_memorytype_copy, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasm_memorytype_t},), arg1) end function wasm_memorytype_new(arg1) ccall((:wasm_memorytype_new, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasm_limits_t},), arg1) end function wasm_memorytype_limits(arg1) ccall((:wasm_memorytype_limits, libwasmtime), Ptr{wasm_limits_t}, (Ptr{wasm_memorytype_t},), arg1) end mutable struct wasm_externtype_t end function wasm_externtype_delete(arg1) ccall((:wasm_externtype_delete, libwasmtime), Cvoid, (Ptr{wasm_externtype_t},), arg1) end mutable struct wasm_externtype_vec_t size::Csize_t data::Ptr{Ptr{wasm_externtype_t}} end function wasm_externtype_vec_new_empty(out) ccall((:wasm_externtype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_externtype_vec_t},), out) end function wasm_externtype_vec_new_uninitialized(out, arg2) ccall((:wasm_externtype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_externtype_vec_t}, Csize_t), out, arg2) end function wasm_externtype_vec_new(out, arg2, arg3) ccall((:wasm_externtype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_externtype_vec_t}, Csize_t, Ptr{Ptr{wasm_externtype_t}}), out, arg2, arg3) end function wasm_externtype_vec_copy(out, arg2) ccall((:wasm_externtype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_externtype_vec_t}, Ptr{wasm_externtype_vec_t}), out, arg2) end function wasm_externtype_vec_delete(arg1) ccall((:wasm_externtype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_externtype_vec_t},), arg1) end function wasm_externtype_copy(arg1) ccall((:wasm_externtype_copy, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_externtype_t},), arg1) end const wasm_externkind_t = UInt8 @cenum wasm_externkind_enum::UInt32 begin WASM_EXTERN_FUNC = 0 WASM_EXTERN_GLOBAL = 1 WASM_EXTERN_TABLE = 2 WASM_EXTERN_MEMORY = 3 end function wasm_externtype_kind(arg1) ccall((:wasm_externtype_kind, libwasmtime), wasm_externkind_t, (Ptr{wasm_externtype_t},), arg1) end function wasm_functype_as_externtype(arg1) ccall((:wasm_functype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_functype_t},), arg1) end function wasm_globaltype_as_externtype(arg1) ccall((:wasm_globaltype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_globaltype_t},), arg1) end function wasm_tabletype_as_externtype(arg1) ccall((:wasm_tabletype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_tabletype_t},), arg1) end function wasm_memorytype_as_externtype(arg1) ccall((:wasm_memorytype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_memorytype_t},), arg1) end function wasm_externtype_as_functype(arg1) ccall((:wasm_externtype_as_functype, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_globaltype(arg1) ccall((:wasm_externtype_as_globaltype, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_tabletype(arg1) ccall((:wasm_externtype_as_tabletype, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_memorytype(arg1) ccall((:wasm_externtype_as_memorytype, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_functype_as_externtype_const(arg1) ccall((:wasm_functype_as_externtype_const, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_functype_t},), arg1) end function wasm_globaltype_as_externtype_const(arg1) ccall((:wasm_globaltype_as_externtype_const, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_globaltype_t},), arg1) end function wasm_tabletype_as_externtype_const(arg1) ccall((:wasm_tabletype_as_externtype_const, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_tabletype_t},), arg1) end function wasm_memorytype_as_externtype_const(arg1) ccall((:wasm_memorytype_as_externtype_const, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_memorytype_t},), arg1) end function wasm_externtype_as_functype_const(arg1) ccall((:wasm_externtype_as_functype_const, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_globaltype_const(arg1) ccall((:wasm_externtype_as_globaltype_const, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_tabletype_const(arg1) ccall((:wasm_externtype_as_tabletype_const, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasm_externtype_as_memorytype_const(arg1) ccall((:wasm_externtype_as_memorytype_const, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasm_externtype_t},), arg1) end mutable struct wasm_importtype_t end function wasm_importtype_delete(arg1) ccall((:wasm_importtype_delete, libwasmtime), Cvoid, (Ptr{wasm_importtype_t},), arg1) end mutable struct wasm_importtype_vec_t size::Csize_t data::Ptr{Ptr{wasm_importtype_t}} end function wasm_importtype_vec_new_empty(out) ccall((:wasm_importtype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_importtype_vec_t},), out) end function wasm_importtype_vec_new_uninitialized(out, arg2) ccall((:wasm_importtype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_importtype_vec_t}, Csize_t), out, arg2) end function wasm_importtype_vec_new(out, arg2, arg3) ccall((:wasm_importtype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_importtype_vec_t}, Csize_t, Ptr{Ptr{wasm_importtype_t}}), out, arg2, arg3) end function wasm_importtype_vec_copy(out, arg2) ccall((:wasm_importtype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_importtype_vec_t}, Ptr{wasm_importtype_vec_t}), out, arg2) end function wasm_importtype_vec_delete(arg1) ccall((:wasm_importtype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_importtype_vec_t},), arg1) end function wasm_importtype_copy(arg1) ccall((:wasm_importtype_copy, libwasmtime), Ptr{wasm_importtype_t}, (Ptr{wasm_importtype_t},), arg1) end function wasm_importtype_new(_module, name, arg3) ccall((:wasm_importtype_new, libwasmtime), Ptr{wasm_importtype_t}, (Ptr{wasm_name_t}, Ptr{wasm_name_t}, Ptr{wasm_externtype_t}), _module, name, arg3) end function wasm_importtype_module(arg1) ccall((:wasm_importtype_module, libwasmtime), Ptr{wasm_name_t}, (Ptr{wasm_importtype_t},), arg1) end function wasm_importtype_name(arg1) ccall((:wasm_importtype_name, libwasmtime), Ptr{wasm_name_t}, (Ptr{wasm_importtype_t},), arg1) end function wasm_importtype_type(arg1) ccall((:wasm_importtype_type, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_importtype_t},), arg1) end mutable struct wasm_exporttype_t end function wasm_exporttype_delete(arg1) ccall((:wasm_exporttype_delete, libwasmtime), Cvoid, (Ptr{wasm_exporttype_t},), arg1) end mutable struct wasm_exporttype_vec_t size::Csize_t data::Ptr{Ptr{wasm_exporttype_t}} end function wasm_exporttype_vec_new_empty(out) ccall((:wasm_exporttype_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_exporttype_vec_t},), out) end function wasm_exporttype_vec_new_uninitialized(out, arg2) ccall((:wasm_exporttype_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_exporttype_vec_t}, Csize_t), out, arg2) end function wasm_exporttype_vec_new(out, arg2, arg3) ccall((:wasm_exporttype_vec_new, libwasmtime), Cvoid, (Ptr{wasm_exporttype_vec_t}, Csize_t, Ptr{Ptr{wasm_exporttype_t}}), out, arg2, arg3) end function wasm_exporttype_vec_copy(out, arg2) ccall((:wasm_exporttype_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_exporttype_vec_t}, Ptr{wasm_exporttype_vec_t}), out, arg2) end function wasm_exporttype_vec_delete(arg1) ccall((:wasm_exporttype_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_exporttype_vec_t},), arg1) end function wasm_exporttype_copy(arg1) ccall((:wasm_exporttype_copy, libwasmtime), Ptr{wasm_exporttype_t}, (Ptr{wasm_exporttype_t},), arg1) end function wasm_exporttype_new(arg1, arg2) ccall((:wasm_exporttype_new, libwasmtime), Ptr{wasm_exporttype_t}, (Ptr{wasm_name_t}, Ptr{wasm_externtype_t}), arg1, arg2) end function wasm_exporttype_name(arg1) ccall((:wasm_exporttype_name, libwasmtime), Ptr{wasm_name_t}, (Ptr{wasm_exporttype_t},), arg1) end function wasm_exporttype_type(arg1) ccall((:wasm_exporttype_type, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_exporttype_t},), arg1) end struct __JL_Ctag_4 data::NTuple{8, UInt8} end function Base.getproperty(x::Ptr{__JL_Ctag_4}, f::Symbol) f === :i32 && return Ptr{Int32}(x + 0) f === :i64 && return Ptr{Int64}(x + 0) f === :f32 && return Ptr{float32_t}(x + 0) f === :f64 && return Ptr{float64_t}(x + 0) f === :ref && return Ptr{Ptr{wasm_ref_t}}(x + 0) return getfield(x, f) end function Base.getproperty(x::__JL_Ctag_4, f::Symbol) r = Ref{__JL_Ctag_4}(x) ptr = Base.unsafe_convert(Ptr{__JL_Ctag_4}, r) fptr = getproperty(ptr, f) GC.@preserve r unsafe_load(fptr) end function Base.setproperty!(x::Ptr{__JL_Ctag_4}, f::Symbol, v) unsafe_store!(getproperty(x, f), v) end struct wasm_val_t data::NTuple{16, UInt8} end function Base.getproperty(x::Ptr{wasm_val_t}, f::Symbol) f === :kind && return Ptr{wasm_valkind_t}(x + 0) f === :of && return Ptr{__JL_Ctag_4}(x + 8) return getfield(x, f) end function Base.getproperty(x::wasm_val_t, f::Symbol) r = Ref{wasm_val_t}(x) ptr = Base.unsafe_convert(Ptr{wasm_val_t}, r) fptr = getproperty(ptr, f) GC.@preserve r unsafe_load(fptr) end function Base.setproperty!(x::Ptr{wasm_val_t}, f::Symbol, v) unsafe_store!(getproperty(x, f), v) end function wasm_val_delete(v) ccall((:wasm_val_delete, libwasmtime), Cvoid, (Ptr{wasm_val_t},), v) end function wasm_val_copy(out, arg2) ccall((:wasm_val_copy, libwasmtime), Cvoid, (Ptr{wasm_val_t}, Ptr{wasm_val_t}), out, arg2) end mutable struct wasm_val_vec_t size::Csize_t data::Ptr{wasm_val_t} end function wasm_val_vec_new_empty(out) ccall((:wasm_val_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_val_vec_t},), out) end function wasm_val_vec_new_uninitialized(out, arg2) ccall((:wasm_val_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_val_vec_t}, Csize_t), out, arg2) end function wasm_val_vec_new(out, arg2, arg3) ccall((:wasm_val_vec_new, libwasmtime), Cvoid, (Ptr{wasm_val_vec_t}, Csize_t, Ptr{wasm_val_t}), out, arg2, arg3) end function wasm_val_vec_copy(out, arg2) ccall((:wasm_val_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_val_vec_t}, Ptr{wasm_val_vec_t}), out, arg2) end function wasm_val_vec_delete(arg1) ccall((:wasm_val_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_val_vec_t},), arg1) end function wasm_ref_delete(arg1) ccall((:wasm_ref_delete, libwasmtime), Cvoid, (Ptr{wasm_ref_t},), arg1) end function wasm_ref_copy(arg1) ccall((:wasm_ref_copy, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_ref_same(arg1, arg2) ccall((:wasm_ref_same, libwasmtime), Bool, (Ptr{wasm_ref_t}, Ptr{wasm_ref_t}), arg1, arg2) end function wasm_ref_get_host_info(arg1) ccall((:wasm_ref_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_ref_t},), arg1) end function wasm_ref_set_host_info(arg1, arg2) ccall((:wasm_ref_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_ref_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_ref_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_ref_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_ref_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end mutable struct wasm_frame_t end function wasm_frame_delete(arg1) ccall((:wasm_frame_delete, libwasmtime), Cvoid, (Ptr{wasm_frame_t},), arg1) end mutable struct wasm_frame_vec_t size::Csize_t data::Ptr{Ptr{wasm_frame_t}} end function wasm_frame_vec_new_empty(out) ccall((:wasm_frame_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_frame_vec_t},), out) end function wasm_frame_vec_new_uninitialized(out, arg2) ccall((:wasm_frame_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_frame_vec_t}, Csize_t), out, arg2) end function wasm_frame_vec_new(out, arg2, arg3) ccall((:wasm_frame_vec_new, libwasmtime), Cvoid, (Ptr{wasm_frame_vec_t}, Csize_t, Ptr{Ptr{wasm_frame_t}}), out, arg2, arg3) end function wasm_frame_vec_copy(out, arg2) ccall((:wasm_frame_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_frame_vec_t}, Ptr{wasm_frame_vec_t}), out, arg2) end function wasm_frame_vec_delete(arg1) ccall((:wasm_frame_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_frame_vec_t},), arg1) end function wasm_frame_copy(arg1) ccall((:wasm_frame_copy, libwasmtime), Ptr{wasm_frame_t}, (Ptr{wasm_frame_t},), arg1) end mutable struct wasm_instance_t end function wasm_frame_instance(arg1) ccall((:wasm_frame_instance, libwasmtime), Ptr{wasm_instance_t}, (Ptr{wasm_frame_t},), arg1) end function wasm_frame_func_index(arg1) ccall((:wasm_frame_func_index, libwasmtime), UInt32, (Ptr{wasm_frame_t},), arg1) end function wasm_frame_func_offset(arg1) ccall((:wasm_frame_func_offset, libwasmtime), Csize_t, (Ptr{wasm_frame_t},), arg1) end function wasm_frame_module_offset(arg1) ccall((:wasm_frame_module_offset, libwasmtime), Csize_t, (Ptr{wasm_frame_t},), arg1) end const wasm_message_t = wasm_name_t mutable struct wasm_trap_t end function wasm_trap_delete(arg1) ccall((:wasm_trap_delete, libwasmtime), Cvoid, (Ptr{wasm_trap_t},), arg1) end function wasm_trap_copy(arg1) ccall((:wasm_trap_copy, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasm_trap_t},), arg1) end function wasm_trap_same(arg1, arg2) ccall((:wasm_trap_same, libwasmtime), Bool, (Ptr{wasm_trap_t}, Ptr{wasm_trap_t}), arg1, arg2) end function wasm_trap_get_host_info(arg1) ccall((:wasm_trap_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_trap_t},), arg1) end function wasm_trap_set_host_info(arg1, arg2) ccall((:wasm_trap_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_trap_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_trap_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_trap_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_trap_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_trap_as_ref(arg1) ccall((:wasm_trap_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_trap_t},), arg1) end function wasm_ref_as_trap(arg1) ccall((:wasm_ref_as_trap, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_trap_as_ref_const(arg1) ccall((:wasm_trap_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_trap_t},), arg1) end function wasm_ref_as_trap_const(arg1) ccall((:wasm_ref_as_trap_const, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_trap_new(store, arg2) ccall((:wasm_trap_new, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasm_store_t}, Ptr{wasm_message_t}), store, arg2) end function wasm_trap_message(arg1, out) ccall((:wasm_trap_message, libwasmtime), Cvoid, (Ptr{wasm_trap_t}, Ptr{wasm_message_t}), arg1, out) end function wasm_trap_origin(arg1) ccall((:wasm_trap_origin, libwasmtime), Ptr{wasm_frame_t}, (Ptr{wasm_trap_t},), arg1) end function wasm_trap_trace(arg1, out) ccall((:wasm_trap_trace, libwasmtime), Cvoid, (Ptr{wasm_trap_t}, Ptr{wasm_frame_vec_t}), arg1, out) end mutable struct wasm_foreign_t end function wasm_foreign_delete(arg1) ccall((:wasm_foreign_delete, libwasmtime), Cvoid, (Ptr{wasm_foreign_t},), arg1) end function wasm_foreign_copy(arg1) ccall((:wasm_foreign_copy, libwasmtime), Ptr{wasm_foreign_t}, (Ptr{wasm_foreign_t},), arg1) end function wasm_foreign_same(arg1, arg2) ccall((:wasm_foreign_same, libwasmtime), Bool, (Ptr{wasm_foreign_t}, Ptr{wasm_foreign_t}), arg1, arg2) end function wasm_foreign_get_host_info(arg1) ccall((:wasm_foreign_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_foreign_t},), arg1) end function wasm_foreign_set_host_info(arg1, arg2) ccall((:wasm_foreign_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_foreign_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_foreign_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_foreign_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_foreign_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_foreign_as_ref(arg1) ccall((:wasm_foreign_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_foreign_t},), arg1) end function wasm_ref_as_foreign(arg1) ccall((:wasm_ref_as_foreign, libwasmtime), Ptr{wasm_foreign_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_foreign_as_ref_const(arg1) ccall((:wasm_foreign_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_foreign_t},), arg1) end function wasm_ref_as_foreign_const(arg1) ccall((:wasm_ref_as_foreign_const, libwasmtime), Ptr{wasm_foreign_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_foreign_new(arg1) ccall((:wasm_foreign_new, libwasmtime), Ptr{wasm_foreign_t}, (Ptr{wasm_store_t},), arg1) end mutable struct wasm_module_t end function wasm_module_delete(arg1) ccall((:wasm_module_delete, libwasmtime), Cvoid, (Ptr{wasm_module_t},), arg1) end function wasm_module_copy(arg1) ccall((:wasm_module_copy, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_module_t},), arg1) end function wasm_module_same(arg1, arg2) ccall((:wasm_module_same, libwasmtime), Bool, (Ptr{wasm_module_t}, Ptr{wasm_module_t}), arg1, arg2) end function wasm_module_get_host_info(arg1) ccall((:wasm_module_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_module_t},), arg1) end function wasm_module_set_host_info(arg1, arg2) ccall((:wasm_module_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_module_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_module_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_module_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_module_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_module_as_ref(arg1) ccall((:wasm_module_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_module_t},), arg1) end function wasm_ref_as_module(arg1) ccall((:wasm_ref_as_module, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_module_as_ref_const(arg1) ccall((:wasm_module_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_module_t},), arg1) end function wasm_ref_as_module_const(arg1) ccall((:wasm_ref_as_module_const, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_ref_t},), arg1) end mutable struct wasm_shared_module_t end function wasm_shared_module_delete(arg1) ccall((:wasm_shared_module_delete, libwasmtime), Cvoid, (Ptr{wasm_shared_module_t},), arg1) end function wasm_module_share(arg1) ccall((:wasm_module_share, libwasmtime), Ptr{wasm_shared_module_t}, (Ptr{wasm_module_t},), arg1) end function wasm_module_obtain(arg1, arg2) ccall((:wasm_module_obtain, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_store_t}, Ptr{wasm_shared_module_t}), arg1, arg2) end function wasm_module_new(arg1, binary) ccall((:wasm_module_new, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_store_t}, Ptr{wasm_byte_vec_t}), arg1, binary) end function wasm_module_validate(arg1, binary) ccall((:wasm_module_validate, libwasmtime), Bool, (Ptr{wasm_store_t}, Ptr{wasm_byte_vec_t}), arg1, binary) end function wasm_module_imports(arg1, out) ccall((:wasm_module_imports, libwasmtime), Cvoid, (Ptr{wasm_module_t}, Ptr{wasm_importtype_vec_t}), arg1, out) end function wasm_module_exports(arg1, out) ccall((:wasm_module_exports, libwasmtime), Cvoid, (Ptr{wasm_module_t}, Ptr{wasm_exporttype_vec_t}), arg1, out) end function wasm_module_serialize(arg1, out) ccall((:wasm_module_serialize, libwasmtime), Cvoid, (Ptr{wasm_module_t}, Ptr{wasm_byte_vec_t}), arg1, out) end function wasm_module_deserialize(arg1, arg2) ccall((:wasm_module_deserialize, libwasmtime), Ptr{wasm_module_t}, (Ptr{wasm_store_t}, Ptr{wasm_byte_vec_t}), arg1, arg2) end mutable struct wasm_func_t end function wasm_func_delete(arg1) ccall((:wasm_func_delete, libwasmtime), Cvoid, (Ptr{wasm_func_t},), arg1) end function wasm_func_copy(arg1) ccall((:wasm_func_copy, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_func_t},), arg1) end function wasm_func_same(arg1, arg2) ccall((:wasm_func_same, libwasmtime), Bool, (Ptr{wasm_func_t}, Ptr{wasm_func_t}), arg1, arg2) end function wasm_func_get_host_info(arg1) ccall((:wasm_func_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_func_t},), arg1) end function wasm_func_set_host_info(arg1, arg2) ccall((:wasm_func_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_func_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_func_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_func_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_func_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_func_as_ref(arg1) ccall((:wasm_func_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_func_t},), arg1) end function wasm_ref_as_func(arg1) ccall((:wasm_ref_as_func, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_func_as_ref_const(arg1) ccall((:wasm_func_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_func_t},), arg1) end function wasm_ref_as_func_const(arg1) ccall((:wasm_ref_as_func_const, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_ref_t},), arg1) end # typedef own wasm_trap_t * ( * wasm_func_callback_t ) ( const wasm_val_vec_t * args , own wasm_val_vec_t * results ) const wasm_func_callback_t = Ptr{Cvoid} # typedef own wasm_trap_t * ( * wasm_func_callback_with_env_t ) ( void * env , const wasm_val_vec_t * args , wasm_val_vec_t * results ) const wasm_func_callback_with_env_t = Ptr{Cvoid} function wasm_func_new(arg1, arg2, arg3) ccall((:wasm_func_new, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_store_t}, Ptr{wasm_functype_t}, wasm_func_callback_t), arg1, arg2, arg3) end function wasm_func_new_with_env(arg1, type, arg3, env, finalizer) ccall((:wasm_func_new_with_env, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_store_t}, Ptr{wasm_functype_t}, wasm_func_callback_with_env_t, Ptr{Cvoid}, Ptr{Cvoid}), arg1, type, arg3, env, finalizer) end function wasm_func_type(arg1) ccall((:wasm_func_type, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_func_t},), arg1) end function wasm_func_param_arity(arg1) ccall((:wasm_func_param_arity, libwasmtime), Csize_t, (Ptr{wasm_func_t},), arg1) end function wasm_func_result_arity(arg1) ccall((:wasm_func_result_arity, libwasmtime), Csize_t, (Ptr{wasm_func_t},), arg1) end function wasm_func_call(arg1, args, results) ccall((:wasm_func_call, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasm_func_t}, Ptr{wasm_val_vec_t}, Ptr{wasm_val_vec_t}), arg1, args, results) end mutable struct wasm_global_t end function wasm_global_delete(arg1) ccall((:wasm_global_delete, libwasmtime), Cvoid, (Ptr{wasm_global_t},), arg1) end function wasm_global_copy(arg1) ccall((:wasm_global_copy, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_global_t},), arg1) end function wasm_global_same(arg1, arg2) ccall((:wasm_global_same, libwasmtime), Bool, (Ptr{wasm_global_t}, Ptr{wasm_global_t}), arg1, arg2) end function wasm_global_get_host_info(arg1) ccall((:wasm_global_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_global_t},), arg1) end function wasm_global_set_host_info(arg1, arg2) ccall((:wasm_global_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_global_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_global_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_global_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_global_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_global_as_ref(arg1) ccall((:wasm_global_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_global_t},), arg1) end function wasm_ref_as_global(arg1) ccall((:wasm_ref_as_global, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_global_as_ref_const(arg1) ccall((:wasm_global_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_global_t},), arg1) end function wasm_ref_as_global_const(arg1) ccall((:wasm_ref_as_global_const, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_global_new(arg1, arg2, arg3) ccall((:wasm_global_new, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_store_t}, Ptr{wasm_globaltype_t}, Ptr{wasm_val_t}), arg1, arg2, arg3) end function wasm_global_type(arg1) ccall((:wasm_global_type, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasm_global_t},), arg1) end function wasm_global_get(arg1, out) ccall((:wasm_global_get, libwasmtime), Cvoid, (Ptr{wasm_global_t}, Ptr{wasm_val_t}), arg1, out) end function wasm_global_set(arg1, arg2) ccall((:wasm_global_set, libwasmtime), Cvoid, (Ptr{wasm_global_t}, Ptr{wasm_val_t}), arg1, arg2) end mutable struct wasm_table_t end function wasm_table_delete(arg1) ccall((:wasm_table_delete, libwasmtime), Cvoid, (Ptr{wasm_table_t},), arg1) end function wasm_table_copy(arg1) ccall((:wasm_table_copy, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_table_t},), arg1) end function wasm_table_same(arg1, arg2) ccall((:wasm_table_same, libwasmtime), Bool, (Ptr{wasm_table_t}, Ptr{wasm_table_t}), arg1, arg2) end function wasm_table_get_host_info(arg1) ccall((:wasm_table_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_table_t},), arg1) end function wasm_table_set_host_info(arg1, arg2) ccall((:wasm_table_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_table_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_table_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_table_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_table_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_table_as_ref(arg1) ccall((:wasm_table_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_table_t},), arg1) end function wasm_ref_as_table(arg1) ccall((:wasm_ref_as_table, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_table_as_ref_const(arg1) ccall((:wasm_table_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_table_t},), arg1) end function wasm_ref_as_table_const(arg1) ccall((:wasm_ref_as_table_const, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_ref_t},), arg1) end const wasm_table_size_t = UInt32 function wasm_table_new(arg1, arg2, init) ccall((:wasm_table_new, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_store_t}, Ptr{wasm_tabletype_t}, Ptr{wasm_ref_t}), arg1, arg2, init) end function wasm_table_type(arg1) ccall((:wasm_table_type, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasm_table_t},), arg1) end function wasm_table_get(arg1, index) ccall((:wasm_table_get, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_table_t}, wasm_table_size_t), arg1, index) end function wasm_table_set(arg1, index, arg3) ccall((:wasm_table_set, libwasmtime), Bool, (Ptr{wasm_table_t}, wasm_table_size_t, Ptr{wasm_ref_t}), arg1, index, arg3) end function wasm_table_size(arg1) ccall((:wasm_table_size, libwasmtime), wasm_table_size_t, (Ptr{wasm_table_t},), arg1) end function wasm_table_grow(arg1, delta, init) ccall((:wasm_table_grow, libwasmtime), Bool, (Ptr{wasm_table_t}, wasm_table_size_t, Ptr{wasm_ref_t}), arg1, delta, init) end mutable struct wasm_memory_t end function wasm_memory_delete(arg1) ccall((:wasm_memory_delete, libwasmtime), Cvoid, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_copy(arg1) ccall((:wasm_memory_copy, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_same(arg1, arg2) ccall((:wasm_memory_same, libwasmtime), Bool, (Ptr{wasm_memory_t}, Ptr{wasm_memory_t}), arg1, arg2) end function wasm_memory_get_host_info(arg1) ccall((:wasm_memory_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_set_host_info(arg1, arg2) ccall((:wasm_memory_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_memory_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_memory_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_memory_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_memory_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_memory_as_ref(arg1) ccall((:wasm_memory_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_ref_as_memory(arg1) ccall((:wasm_ref_as_memory, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_memory_as_ref_const(arg1) ccall((:wasm_memory_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_ref_as_memory_const(arg1) ccall((:wasm_ref_as_memory_const, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_ref_t},), arg1) end const wasm_memory_pages_t = UInt32 function wasm_memory_new(arg1, arg2) ccall((:wasm_memory_new, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_store_t}, Ptr{wasm_memorytype_t}), arg1, arg2) end function wasm_memory_type(arg1) ccall((:wasm_memory_type, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_data(arg1) ccall((:wasm_memory_data, libwasmtime), Ptr{byte_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_data_size(arg1) ccall((:wasm_memory_data_size, libwasmtime), Csize_t, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_size(arg1) ccall((:wasm_memory_size, libwasmtime), wasm_memory_pages_t, (Ptr{wasm_memory_t},), arg1) end function wasm_memory_grow(arg1, delta) ccall((:wasm_memory_grow, libwasmtime), Bool, (Ptr{wasm_memory_t}, wasm_memory_pages_t), arg1, delta) end mutable struct wasm_extern_t end function wasm_extern_delete(arg1) ccall((:wasm_extern_delete, libwasmtime), Cvoid, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_copy(arg1) ccall((:wasm_extern_copy, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_same(arg1, arg2) ccall((:wasm_extern_same, libwasmtime), Bool, (Ptr{wasm_extern_t}, Ptr{wasm_extern_t}), arg1, arg2) end function wasm_extern_get_host_info(arg1) ccall((:wasm_extern_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_set_host_info(arg1, arg2) ccall((:wasm_extern_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_extern_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_extern_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_extern_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_extern_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_extern_as_ref(arg1) ccall((:wasm_extern_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_ref_as_extern(arg1) ccall((:wasm_ref_as_extern, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_extern_as_ref_const(arg1) ccall((:wasm_extern_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_ref_as_extern_const(arg1) ccall((:wasm_ref_as_extern_const, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_ref_t},), arg1) end mutable struct wasm_extern_vec_t size::Csize_t data::Ptr{Ptr{wasm_extern_t}} end function wasm_extern_vec_new_empty(out) ccall((:wasm_extern_vec_new_empty, libwasmtime), Cvoid, (Ptr{wasm_extern_vec_t},), out) end function wasm_extern_vec_new_uninitialized(out, arg2) ccall((:wasm_extern_vec_new_uninitialized, libwasmtime), Cvoid, (Ptr{wasm_extern_vec_t}, Csize_t), out, arg2) end function wasm_extern_vec_new(out, arg2, arg3) ccall((:wasm_extern_vec_new, libwasmtime), Cvoid, (Ptr{wasm_extern_vec_t}, Csize_t, Ptr{Ptr{wasm_extern_t}}), out, arg2, arg3) end function wasm_extern_vec_copy(out, arg2) ccall((:wasm_extern_vec_copy, libwasmtime), Cvoid, (Ptr{wasm_extern_vec_t}, Ptr{wasm_extern_vec_t}), out, arg2) end function wasm_extern_vec_delete(arg1) ccall((:wasm_extern_vec_delete, libwasmtime), Cvoid, (Ptr{wasm_extern_vec_t},), arg1) end function wasm_extern_kind(arg1) ccall((:wasm_extern_kind, libwasmtime), wasm_externkind_t, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_type(arg1) ccall((:wasm_extern_type, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_func_as_extern(arg1) ccall((:wasm_func_as_extern, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_func_t},), arg1) end function wasm_global_as_extern(arg1) ccall((:wasm_global_as_extern, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_global_t},), arg1) end function wasm_table_as_extern(arg1) ccall((:wasm_table_as_extern, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_table_t},), arg1) end function wasm_memory_as_extern(arg1) ccall((:wasm_memory_as_extern, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_extern_as_func(arg1) ccall((:wasm_extern_as_func, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_global(arg1) ccall((:wasm_extern_as_global, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_table(arg1) ccall((:wasm_extern_as_table, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_memory(arg1) ccall((:wasm_extern_as_memory, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_func_as_extern_const(arg1) ccall((:wasm_func_as_extern_const, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_func_t},), arg1) end function wasm_global_as_extern_const(arg1) ccall((:wasm_global_as_extern_const, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_global_t},), arg1) end function wasm_table_as_extern_const(arg1) ccall((:wasm_table_as_extern_const, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_table_t},), arg1) end function wasm_memory_as_extern_const(arg1) ccall((:wasm_memory_as_extern_const, libwasmtime), Ptr{wasm_extern_t}, (Ptr{wasm_memory_t},), arg1) end function wasm_extern_as_func_const(arg1) ccall((:wasm_extern_as_func_const, libwasmtime), Ptr{wasm_func_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_global_const(arg1) ccall((:wasm_extern_as_global_const, libwasmtime), Ptr{wasm_global_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_table_const(arg1) ccall((:wasm_extern_as_table_const, libwasmtime), Ptr{wasm_table_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_extern_as_memory_const(arg1) ccall((:wasm_extern_as_memory_const, libwasmtime), Ptr{wasm_memory_t}, (Ptr{wasm_extern_t},), arg1) end function wasm_instance_delete(arg1) ccall((:wasm_instance_delete, libwasmtime), Cvoid, (Ptr{wasm_instance_t},), arg1) end function wasm_instance_copy(arg1) ccall((:wasm_instance_copy, libwasmtime), Ptr{wasm_instance_t}, (Ptr{wasm_instance_t},), arg1) end function wasm_instance_same(arg1, arg2) ccall((:wasm_instance_same, libwasmtime), Bool, (Ptr{wasm_instance_t}, Ptr{wasm_instance_t}), arg1, arg2) end function wasm_instance_get_host_info(arg1) ccall((:wasm_instance_get_host_info, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_instance_t},), arg1) end function wasm_instance_set_host_info(arg1, arg2) ccall((:wasm_instance_set_host_info, libwasmtime), Cvoid, (Ptr{wasm_instance_t}, Ptr{Cvoid}), arg1, arg2) end function wasm_instance_set_host_info_with_finalizer(arg1, arg2, arg3) ccall((:wasm_instance_set_host_info_with_finalizer, libwasmtime), Cvoid, (Ptr{wasm_instance_t}, Ptr{Cvoid}, Ptr{Cvoid}), arg1, arg2, arg3) end function wasm_instance_as_ref(arg1) ccall((:wasm_instance_as_ref, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_instance_t},), arg1) end function wasm_ref_as_instance(arg1) ccall((:wasm_ref_as_instance, libwasmtime), Ptr{wasm_instance_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_instance_as_ref_const(arg1) ccall((:wasm_instance_as_ref_const, libwasmtime), Ptr{wasm_ref_t}, (Ptr{wasm_instance_t},), arg1) end function wasm_ref_as_instance_const(arg1) ccall((:wasm_ref_as_instance_const, libwasmtime), Ptr{wasm_instance_t}, (Ptr{wasm_ref_t},), arg1) end function wasm_instance_new(arg1, arg2, imports, arg4) ccall((:wasm_instance_new, libwasmtime), Ptr{wasm_instance_t}, (Ptr{wasm_store_t}, Ptr{wasm_module_t}, Ptr{wasm_extern_vec_t}, Ptr{Ptr{wasm_trap_t}}), arg1, arg2, imports, arg4) end function wasm_instance_exports(arg1, out) ccall((:wasm_instance_exports, libwasmtime), Cvoid, (Ptr{wasm_instance_t}, Ptr{wasm_extern_vec_t}), arg1, out) end function wasm_valtype_new_i32() ccall((:wasm_valtype_new_i32, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_valtype_new_i64() ccall((:wasm_valtype_new_i64, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_valtype_new_f32() ccall((:wasm_valtype_new_f32, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_valtype_new_f64() ccall((:wasm_valtype_new_f64, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_valtype_new_anyref() ccall((:wasm_valtype_new_anyref, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_valtype_new_funcref() ccall((:wasm_valtype_new_funcref, libwasmtime), Ptr{wasm_valtype_t}, ()) end function wasm_functype_new_0_0() ccall((:wasm_functype_new_0_0, libwasmtime), Ptr{wasm_functype_t}, ()) end function wasm_functype_new_1_0(p) ccall((:wasm_functype_new_1_0, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t},), p) end function wasm_functype_new_2_0(p1, p2) ccall((:wasm_functype_new_2_0, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2) end function wasm_functype_new_3_0(p1, p2, p3) ccall((:wasm_functype_new_3_0, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2, p3) end function wasm_functype_new_0_1(r) ccall((:wasm_functype_new_0_1, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t},), r) end function wasm_functype_new_1_1(p, r) ccall((:wasm_functype_new_1_1, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p, r) end function wasm_functype_new_2_1(p1, p2, r) ccall((:wasm_functype_new_2_1, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2, r) end function wasm_functype_new_3_1(p1, p2, p3, r) ccall((:wasm_functype_new_3_1, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2, p3, r) end function wasm_functype_new_0_2(r1, r2) ccall((:wasm_functype_new_0_2, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), r1, r2) end function wasm_functype_new_1_2(p, r1, r2) ccall((:wasm_functype_new_1_2, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p, r1, r2) end function wasm_functype_new_2_2(p1, p2, r1, r2) ccall((:wasm_functype_new_2_2, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2, r1, r2) end function wasm_functype_new_3_2(p1, p2, p3, r1, r2) ccall((:wasm_functype_new_3_2, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}, Ptr{wasm_valtype_t}), p1, p2, p3, r1, r2) end function wasm_val_init_ptr(out, p) ccall((:wasm_val_init_ptr, libwasmtime), Cvoid, (Ptr{wasm_val_t}, Ptr{Cvoid}), out, p) end function wasm_val_ptr(val) ccall((:wasm_val_ptr, libwasmtime), Ptr{Cvoid}, (Ptr{wasm_val_t},), val) end mutable struct wasmtime_error end const wasmtime_error_t = wasmtime_error function wasmtime_error_delete(error) ccall((:wasmtime_error_delete, libwasmtime), Cvoid, (Ptr{wasmtime_error_t},), error) end function wasmtime_error_message(error, message) ccall((:wasmtime_error_message, libwasmtime), Cvoid, (Ptr{wasmtime_error_t}, Ptr{wasm_name_t}), error, message) end const wasmtime_strategy_t = UInt8 @cenum wasmtime_strategy_enum::UInt32 begin WASMTIME_STRATEGY_AUTO = 0 WASMTIME_STRATEGY_CRANELIFT = 1 end const wasmtime_opt_level_t = UInt8 @cenum wasmtime_opt_level_enum::UInt32 begin WASMTIME_OPT_LEVEL_NONE = 0 WASMTIME_OPT_LEVEL_SPEED = 1 WASMTIME_OPT_LEVEL_SPEED_AND_SIZE = 2 end const wasmtime_profiling_strategy_t = UInt8 @cenum wasmtime_profiling_strategy_enum::UInt32 begin WASMTIME_PROFILING_STRATEGY_NONE = 0 WASMTIME_PROFILING_STRATEGY_JITDUMP = 1 WASMTIME_PROFILING_STRATEGY_VTUNE = 2 end function wasmtime_config_debug_info_set(arg1, arg2) ccall((:wasmtime_config_debug_info_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_interruptable_set(arg1, arg2) ccall((:wasmtime_config_interruptable_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_consume_fuel_set(arg1, arg2) ccall((:wasmtime_config_consume_fuel_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_max_wasm_stack_set(arg1, arg2) ccall((:wasmtime_config_max_wasm_stack_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Csize_t), arg1, arg2) end function wasmtime_config_wasm_threads_set(arg1, arg2) ccall((:wasmtime_config_wasm_threads_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_reference_types_set(arg1, arg2) ccall((:wasmtime_config_wasm_reference_types_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_simd_set(arg1, arg2) ccall((:wasmtime_config_wasm_simd_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_bulk_memory_set(arg1, arg2) ccall((:wasmtime_config_wasm_bulk_memory_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_multi_value_set(arg1, arg2) ccall((:wasmtime_config_wasm_multi_value_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_multi_memory_set(arg1, arg2) ccall((:wasmtime_config_wasm_multi_memory_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_module_linking_set(arg1, arg2) ccall((:wasmtime_config_wasm_module_linking_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_wasm_memory64_set(arg1, arg2) ccall((:wasmtime_config_wasm_memory64_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_strategy_set(arg1, arg2) ccall((:wasmtime_config_strategy_set, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_config_t}, wasmtime_strategy_t), arg1, arg2) end function wasmtime_config_cranelift_debug_verifier_set(arg1, arg2) ccall((:wasmtime_config_cranelift_debug_verifier_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, Bool), arg1, arg2) end function wasmtime_config_cranelift_opt_level_set(arg1, arg2) ccall((:wasmtime_config_cranelift_opt_level_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, wasmtime_opt_level_t), arg1, arg2) end function wasmtime_config_profiler_set(arg1, arg2) ccall((:wasmtime_config_profiler_set, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_config_t}, wasmtime_profiling_strategy_t), arg1, arg2) end function wasmtime_config_static_memory_maximum_size_set(arg1, arg2) ccall((:wasmtime_config_static_memory_maximum_size_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, UInt64), arg1, arg2) end function wasmtime_config_static_memory_guard_size_set(arg1, arg2) ccall((:wasmtime_config_static_memory_guard_size_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, UInt64), arg1, arg2) end function wasmtime_config_dynamic_memory_guard_size_set(arg1, arg2) ccall((:wasmtime_config_dynamic_memory_guard_size_set, libwasmtime), Cvoid, (Ptr{wasm_config_t}, UInt64), arg1, arg2) end function wasmtime_config_cache_config_load(arg1, arg2) ccall((:wasmtime_config_cache_config_load, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_config_t}, Cstring), arg1, arg2) end mutable struct wasmtime_moduletype end const wasmtime_moduletype_t = wasmtime_moduletype function wasmtime_moduletype_delete(ty) ccall((:wasmtime_moduletype_delete, libwasmtime), Cvoid, (Ptr{wasmtime_moduletype_t},), ty) end function wasmtime_moduletype_imports(arg1, out) ccall((:wasmtime_moduletype_imports, libwasmtime), Cvoid, (Ptr{wasmtime_moduletype_t}, Ptr{wasm_importtype_vec_t}), arg1, out) end function wasmtime_moduletype_exports(arg1, out) ccall((:wasmtime_moduletype_exports, libwasmtime), Cvoid, (Ptr{wasmtime_moduletype_t}, Ptr{wasm_exporttype_vec_t}), arg1, out) end function wasmtime_moduletype_as_externtype(arg1) ccall((:wasmtime_moduletype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasmtime_moduletype_t},), arg1) end function wasmtime_externtype_as_moduletype(arg1) ccall((:wasmtime_externtype_as_moduletype, libwasmtime), Ptr{wasmtime_moduletype_t}, (Ptr{wasm_externtype_t},), arg1) end mutable struct wasmtime_module end const wasmtime_module_t = wasmtime_module function wasmtime_module_new(engine, wasm, wasm_len, ret) ccall((:wasmtime_module_new, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_engine_t}, Ptr{UInt8}, Csize_t, Ptr{Ptr{wasmtime_module_t}}), engine, wasm, wasm_len, ret) end function wasmtime_module_delete(m) ccall((:wasmtime_module_delete, libwasmtime), Cvoid, (Ptr{wasmtime_module_t},), m) end function wasmtime_module_clone(m) ccall((:wasmtime_module_clone, libwasmtime), Ptr{wasmtime_module_t}, (Ptr{wasmtime_module_t},), m) end function wasmtime_module_validate(engine, wasm, wasm_len) ccall((:wasmtime_module_validate, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_engine_t}, Ptr{UInt8}, Csize_t), engine, wasm, wasm_len) end function wasmtime_module_type(arg1) ccall((:wasmtime_module_type, libwasmtime), Ptr{wasmtime_moduletype_t}, (Ptr{wasmtime_module_t},), arg1) end function wasmtime_module_serialize(_module, ret) ccall((:wasmtime_module_serialize, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_module_t}, Ptr{wasm_byte_vec_t}), _module, ret) end function wasmtime_module_deserialize(engine, bytes, bytes_len, ret) ccall((:wasmtime_module_deserialize, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_engine_t}, Ptr{UInt8}, Csize_t, Ptr{Ptr{wasmtime_module_t}}), engine, bytes, bytes_len, ret) end function wasmtime_module_deserialize_file(engine, path, ret) ccall((:wasmtime_module_deserialize_file, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasm_engine_t}, Cstring, Ptr{Ptr{wasmtime_module_t}}), engine, path, ret) end mutable struct wasmtime_store end const wasmtime_store_t = wasmtime_store mutable struct wasmtime_context end const wasmtime_context_t = wasmtime_context function wasmtime_store_new(engine, data, finalizer) ccall((:wasmtime_store_new, libwasmtime), Ptr{wasmtime_store_t}, (Ptr{wasm_engine_t}, Ptr{Cvoid}, Ptr{Cvoid}), engine, data, finalizer) end function wasmtime_store_context(store) ccall((:wasmtime_store_context, libwasmtime), Ptr{wasmtime_context_t}, (Ptr{wasmtime_store_t},), store) end function wasmtime_store_delete(store) ccall((:wasmtime_store_delete, libwasmtime), Cvoid, (Ptr{wasmtime_store_t},), store) end function wasmtime_context_get_data(context) ccall((:wasmtime_context_get_data, libwasmtime), Ptr{Cvoid}, (Ptr{wasmtime_context_t},), context) end function wasmtime_context_set_data(context, data) ccall((:wasmtime_context_set_data, libwasmtime), Cvoid, (Ptr{wasmtime_context_t}, Ptr{Cvoid}), context, data) end function wasmtime_context_gc(context) ccall((:wasmtime_context_gc, libwasmtime), Cvoid, (Ptr{wasmtime_context_t},), context) end function wasmtime_context_add_fuel(store, fuel) ccall((:wasmtime_context_add_fuel, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, UInt64), store, fuel) end function wasmtime_context_fuel_consumed(context, fuel) ccall((:wasmtime_context_fuel_consumed, libwasmtime), Bool, (Ptr{wasmtime_context_t}, Ptr{UInt64}), context, fuel) end function wasmtime_context_consume_fuel(context, fuel, remaining) ccall((:wasmtime_context_consume_fuel, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, UInt64, Ptr{UInt64}), context, fuel, remaining) end mutable struct wasi_config_t end function wasmtime_context_set_wasi(context, wasi) ccall((:wasmtime_context_set_wasi, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasi_config_t}), context, wasi) end mutable struct wasmtime_interrupt_handle end const wasmtime_interrupt_handle_t = wasmtime_interrupt_handle function wasmtime_interrupt_handle_new(context) ccall((:wasmtime_interrupt_handle_new, libwasmtime), Ptr{wasmtime_interrupt_handle_t}, (Ptr{wasmtime_context_t},), context) end function wasmtime_interrupt_handle_interrupt(handle) ccall((:wasmtime_interrupt_handle_interrupt, libwasmtime), Cvoid, (Ptr{wasmtime_interrupt_handle_t},), handle) end function wasmtime_interrupt_handle_delete(handle) ccall((:wasmtime_interrupt_handle_delete, libwasmtime), Cvoid, (Ptr{wasmtime_interrupt_handle_t},), handle) end mutable struct wasmtime_func store_id::UInt64 index::Csize_t end const wasmtime_func_t = wasmtime_func mutable struct wasmtime_table store_id::UInt64 index::Csize_t end const wasmtime_table_t = wasmtime_table mutable struct wasmtime_memory store_id::UInt64 index::Csize_t end const wasmtime_memory_t = wasmtime_memory mutable struct wasmtime_instance store_id::UInt64 index::Csize_t end const wasmtime_instance_t = wasmtime_instance mutable struct wasmtime_global store_id::UInt64 index::Csize_t end const wasmtime_global_t = wasmtime_global const wasmtime_extern_kind_t = UInt8 struct wasmtime_extern_union data::NTuple{16, UInt8} end function Base.getproperty(x::Ptr{wasmtime_extern_union}, f::Symbol) f === :func && return Ptr{wasmtime_func_t}(x + 0) f === :_global && return Ptr{wasmtime_global_t}(x + 0) f === :table && return Ptr{wasmtime_table_t}(x + 0) f === :memory && return Ptr{wasmtime_memory_t}(x + 0) f === :instance && return Ptr{wasmtime_instance_t}(x + 0) f === :_module && return Ptr{Ptr{wasmtime_module_t}}(x + 0) return getfield(x, f) end function Base.getproperty(x::wasmtime_extern_union, f::Symbol) r = Ref{wasmtime_extern_union}(x) ptr = Base.unsafe_convert(Ptr{wasmtime_extern_union}, r) fptr = getproperty(ptr, f) GC.@preserve r unsafe_load(fptr) end function Base.setproperty!(x::Ptr{wasmtime_extern_union}, f::Symbol, v) unsafe_store!(getproperty(x, f), v) end const wasmtime_extern_union_t = wasmtime_extern_union mutable struct wasmtime_extern kind::wasmtime_extern_kind_t var"##pad0#278"::NTuple{7, UInt8} of::wasmtime_extern_union_t wasmtime_extern(kind, of) = new(kind, Tuple((zero(UInt8) for _ = 1:7)), of) end const wasmtime_extern_t = wasmtime_extern function wasmtime_extern_delete(val) ccall((:wasmtime_extern_delete, libwasmtime), Cvoid, (Ptr{wasmtime_extern_t},), val) end function wasmtime_extern_type(context, val) ccall((:wasmtime_extern_type, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_extern_t}), context, val) end mutable struct wasmtime_externref end const wasmtime_externref_t = wasmtime_externref function wasmtime_externref_new(data, finalizer) ccall((:wasmtime_externref_new, libwasmtime), Ptr{wasmtime_externref_t}, (Ptr{Cvoid}, Ptr{Cvoid}), data, finalizer) end function wasmtime_externref_data(data) ccall((:wasmtime_externref_data, libwasmtime), Ptr{Cvoid}, (Ptr{wasmtime_externref_t},), data) end function wasmtime_externref_clone(ref) ccall((:wasmtime_externref_clone, libwasmtime), Ptr{wasmtime_externref_t}, (Ptr{wasmtime_externref_t},), ref) end function wasmtime_externref_delete(ref) ccall((:wasmtime_externref_delete, libwasmtime), Cvoid, (Ptr{wasmtime_externref_t},), ref) end function wasmtime_externref_from_raw(context, raw) ccall((:wasmtime_externref_from_raw, libwasmtime), Ptr{wasmtime_externref_t}, (Ptr{wasmtime_context_t}, Csize_t), context, raw) end function wasmtime_externref_to_raw(context, ref) ccall((:wasmtime_externref_to_raw, libwasmtime), Csize_t, (Ptr{wasmtime_context_t}, Ptr{wasmtime_externref_t}), context, ref) end const wasmtime_valkind_t = UInt8 const wasmtime_v128 = NTuple{16, UInt8} struct wasmtime_valunion data::NTuple{16, UInt8} end function Base.getproperty(x::Ptr{wasmtime_valunion}, f::Symbol) f === :i32 && return Ptr{Int32}(x + 0) f === :i64 && return Ptr{Int64}(x + 0) f === :f32 && return Ptr{float32_t}(x + 0) f === :f64 && return Ptr{float64_t}(x + 0) f === :funcref && return Ptr{wasmtime_func_t}(x + 0) f === :externref && return Ptr{Ptr{wasmtime_externref_t}}(x + 0) f === :v128 && return Ptr{wasmtime_v128}(x + 0) return getfield(x, f) end function Base.getproperty(x::wasmtime_valunion, f::Symbol) r = Ref{wasmtime_valunion}(x) ptr = Base.unsafe_convert(Ptr{wasmtime_valunion}, r) fptr = getproperty(ptr, f) GC.@preserve r unsafe_load(fptr) end function Base.setproperty!(x::Ptr{wasmtime_valunion}, f::Symbol, v) unsafe_store!(getproperty(x, f), v) end const wasmtime_valunion_t = wasmtime_valunion struct wasmtime_val_raw data::NTuple{16, UInt8} end function Base.getproperty(x::Ptr{wasmtime_val_raw}, f::Symbol) f === :i32 && return Ptr{Int32}(x + 0) f === :i64 && return Ptr{Int64}(x + 0) f === :f32 && return Ptr{float32_t}(x + 0) f === :f64 && return Ptr{float64_t}(x + 0) f === :v128 && return Ptr{wasmtime_v128}(x + 0) f === :funcref && return Ptr{Csize_t}(x + 0) f === :externref && return Ptr{Csize_t}(x + 0) return getfield(x, f) end function Base.getproperty(x::wasmtime_val_raw, f::Symbol) r = Ref{wasmtime_val_raw}(x) ptr = Base.unsafe_convert(Ptr{wasmtime_val_raw}, r) fptr = getproperty(ptr, f) GC.@preserve r unsafe_load(fptr) end function Base.setproperty!(x::Ptr{wasmtime_val_raw}, f::Symbol, v) unsafe_store!(getproperty(x, f), v) end const wasmtime_val_raw_t = wasmtime_val_raw struct wasmtime_val kind::wasmtime_valkind_t var"##pad0#279"::NTuple{7, UInt8} of::wasmtime_valunion_t wasmtime_val(kind, of) = new(kind, Tuple((zero(UInt8) for _ = 1:7)), of) end const wasmtime_val_t = wasmtime_val function wasmtime_val_delete(val) ccall((:wasmtime_val_delete, libwasmtime), Cvoid, (Ptr{wasmtime_val_t},), val) end function wasmtime_val_copy(dst, src) ccall((:wasmtime_val_copy, libwasmtime), Cvoid, (Ptr{wasmtime_val_t}, Ptr{wasmtime_val_t}), dst, src) end mutable struct wasmtime_caller end const wasmtime_caller_t = wasmtime_caller # typedef wasm_trap_t * ( * wasmtime_func_callback_t ) ( void * env , wasmtime_caller_t * caller , const wasmtime_val_t * args , size_t nargs , wasmtime_val_t * results , size_t nresults ) const wasmtime_func_callback_t = Ptr{Cvoid} function wasmtime_func_new(store, type, callback, env, finalizer, ret) ccall((:wasmtime_func_new, libwasmtime), Cvoid, (Ptr{wasmtime_context_t}, Ptr{wasm_functype_t}, wasmtime_func_callback_t, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{wasmtime_func_t}), store, type, callback, env, finalizer, ret) end # typedef wasm_trap_t * ( * wasmtime_func_unchecked_callback_t ) ( void * env , wasmtime_caller_t * caller , wasmtime_val_raw_t * args_and_results ) const wasmtime_func_unchecked_callback_t = Ptr{Cvoid} function wasmtime_func_new_unchecked(store, type, callback, env, finalizer, ret) ccall((:wasmtime_func_new_unchecked, libwasmtime), Cvoid, (Ptr{wasmtime_context_t}, Ptr{wasm_functype_t}, wasmtime_func_unchecked_callback_t, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{wasmtime_func_t}), store, type, callback, env, finalizer, ret) end function wasmtime_func_type(store, func) ccall((:wasmtime_func_type, libwasmtime), Ptr{wasm_functype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_func_t}), store, func) end function wasmtime_func_call(store, func, args, nargs, results, nresults, trap) ccall((:wasmtime_func_call, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_func_t}, Ptr{wasmtime_val_t}, Csize_t, Ptr{wasmtime_val_t}, Csize_t, Ptr{Ptr{wasm_trap_t}}), store, func, args, nargs, results, nresults, trap) end function wasmtime_func_call_unchecked(store, func, args_and_results) ccall((:wasmtime_func_call_unchecked, libwasmtime), Ptr{wasm_trap_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_func_t}, Ptr{wasmtime_val_raw_t}), store, func, args_and_results) end function wasmtime_caller_export_get(caller, name, name_len, item) ccall((:wasmtime_caller_export_get, libwasmtime), Bool, (Ptr{wasmtime_caller_t}, Cstring, Csize_t, Ptr{wasmtime_extern_t}), caller, name, name_len, item) end function wasmtime_caller_context(caller) ccall((:wasmtime_caller_context, libwasmtime), Ptr{wasmtime_context_t}, (Ptr{wasmtime_caller_t},), caller) end function wasmtime_func_from_raw(context, raw, ret) ccall((:wasmtime_func_from_raw, libwasmtime), Cvoid, (Ptr{wasmtime_context_t}, Csize_t, Ptr{wasmtime_func_t}), context, raw, ret) end function wasmtime_func_to_raw(context, func) ccall((:wasmtime_func_to_raw, libwasmtime), Csize_t, (Ptr{wasmtime_context_t}, Ptr{wasmtime_func_t}), context, func) end function wasmtime_global_new(store, type, val, ret) ccall((:wasmtime_global_new, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasm_globaltype_t}, Ptr{wasmtime_val_t}, Ptr{wasmtime_global_t}), store, type, val, ret) end function wasmtime_global_type(store, _global) ccall((:wasmtime_global_type, libwasmtime), Ptr{wasm_globaltype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_global_t}), store, _global) end function wasmtime_global_get(store, _global, out) ccall((:wasmtime_global_get, libwasmtime), Cvoid, (Ptr{wasmtime_context_t}, Ptr{wasmtime_global_t}, Ptr{wasmtime_val_t}), store, _global, out) end function wasmtime_global_set(store, _global, val) ccall((:wasmtime_global_set, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_global_t}, Ptr{wasmtime_val_t}), store, _global, val) end mutable struct wasmtime_instancetype end const wasmtime_instancetype_t = wasmtime_instancetype function wasmtime_instancetype_delete(ty) ccall((:wasmtime_instancetype_delete, libwasmtime), Cvoid, (Ptr{wasmtime_instancetype_t},), ty) end function wasmtime_instancetype_exports(arg1, out) ccall((:wasmtime_instancetype_exports, libwasmtime), Cvoid, (Ptr{wasmtime_instancetype_t}, Ptr{wasm_exporttype_vec_t}), arg1, out) end function wasmtime_instancetype_as_externtype(arg1) ccall((:wasmtime_instancetype_as_externtype, libwasmtime), Ptr{wasm_externtype_t}, (Ptr{wasmtime_instancetype_t},), arg1) end function wasmtime_externtype_as_instancetype(arg1) ccall((:wasmtime_externtype_as_instancetype, libwasmtime), Ptr{wasmtime_instancetype_t}, (Ptr{wasm_externtype_t},), arg1) end function wasmtime_instance_new(store, _module, imports, nimports, instance, trap) ccall((:wasmtime_instance_new, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_module_t}, Ptr{wasmtime_extern_t}, Csize_t, Ptr{wasmtime_instance_t}, Ptr{Ptr{wasm_trap_t}}), store, _module, imports, nimports, instance, trap) end function wasmtime_instance_type(store, instance) ccall((:wasmtime_instance_type, libwasmtime), Ptr{wasmtime_instancetype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_instance_t}), store, instance) end function wasmtime_instance_export_get(store, instance, name, name_len, item) ccall((:wasmtime_instance_export_get, libwasmtime), Bool, (Ptr{wasmtime_context_t}, Ptr{wasmtime_instance_t}, Cstring, Csize_t, Ptr{wasmtime_extern_t}), store, instance, name, name_len, item) end function wasmtime_instance_export_nth(store, instance, index, name, name_len, item) ccall((:wasmtime_instance_export_nth, libwasmtime), Bool, (Ptr{wasmtime_context_t}, Ptr{wasmtime_instance_t}, Csize_t, Ptr{Cstring}, Ptr{Csize_t}, Ptr{wasmtime_extern_t}), store, instance, index, name, name_len, item) end mutable struct wasmtime_linker end const wasmtime_linker_t = wasmtime_linker function wasmtime_linker_new(engine) ccall((:wasmtime_linker_new, libwasmtime), Ptr{wasmtime_linker_t}, (Ptr{wasm_engine_t},), engine) end function wasmtime_linker_delete(linker) ccall((:wasmtime_linker_delete, libwasmtime), Cvoid, (Ptr{wasmtime_linker_t},), linker) end function wasmtime_linker_allow_shadowing(linker, allow_shadowing) ccall((:wasmtime_linker_allow_shadowing, libwasmtime), Cvoid, (Ptr{wasmtime_linker_t}, Bool), linker, allow_shadowing) end function wasmtime_linker_define(linker, _module, module_len, name, name_len, item) ccall((:wasmtime_linker_define, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Cstring, Csize_t, Cstring, Csize_t, Ptr{wasmtime_extern_t}), linker, _module, module_len, name, name_len, item) end function wasmtime_linker_define_func(linker, _module, module_len, name, name_len, ty, cb, data, finalizer) ccall((:wasmtime_linker_define_func, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Cstring, Csize_t, Cstring, Csize_t, Ptr{wasm_functype_t}, wasmtime_func_callback_t, Ptr{Cvoid}, Ptr{Cvoid}), linker, _module, module_len, name, name_len, ty, cb, data, finalizer) end function wasmtime_linker_define_func_unchecked(linker, _module, module_len, name, name_len, ty, cb, data, finalizer) ccall((:wasmtime_linker_define_func_unchecked, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Cstring, Csize_t, Cstring, Csize_t, Ptr{wasm_functype_t}, wasmtime_func_unchecked_callback_t, Ptr{Cvoid}, Ptr{Cvoid}), linker, _module, module_len, name, name_len, ty, cb, data, finalizer) end function wasmtime_linker_define_wasi(linker) ccall((:wasmtime_linker_define_wasi, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t},), linker) end function wasmtime_linker_define_instance(linker, store, name, name_len, instance) ccall((:wasmtime_linker_define_instance, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Ptr{wasmtime_context_t}, Cstring, Csize_t, Ptr{wasmtime_instance_t}), linker, store, name, name_len, instance) end function wasmtime_linker_instantiate(linker, store, _module, instance, trap) ccall((:wasmtime_linker_instantiate, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Ptr{wasmtime_context_t}, Ptr{wasmtime_module_t}, Ptr{wasmtime_instance_t}, Ptr{Ptr{wasm_trap_t}}), linker, store, _module, instance, trap) end function wasmtime_linker_module(linker, store, name, name_len, _module) ccall((:wasmtime_linker_module, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Ptr{wasmtime_context_t}, Cstring, Csize_t, Ptr{wasmtime_module_t}), linker, store, name, name_len, _module) end function wasmtime_linker_get_default(linker, store, name, name_len, func) ccall((:wasmtime_linker_get_default, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_linker_t}, Ptr{wasmtime_context_t}, Cstring, Csize_t, Ptr{wasmtime_func_t}), linker, store, name, name_len, func) end function wasmtime_linker_get(linker, store, _module, module_len, name, name_len, item) ccall((:wasmtime_linker_get, libwasmtime), Bool, (Ptr{wasmtime_linker_t}, Ptr{wasmtime_context_t}, Cstring, Csize_t, Cstring, Csize_t, Ptr{wasmtime_extern_t}), linker, store, _module, module_len, name, name_len, item) end function wasmtime_memorytype_new(min, max_present, max, is_64) ccall((:wasmtime_memorytype_new, libwasmtime), Ptr{wasm_memorytype_t}, (UInt64, Bool, UInt64, Bool), min, max_present, max, is_64) end function wasmtime_memorytype_minimum(ty) ccall((:wasmtime_memorytype_minimum, libwasmtime), UInt64, (Ptr{wasm_memorytype_t},), ty) end function wasmtime_memorytype_maximum(ty, max) ccall((:wasmtime_memorytype_maximum, libwasmtime), Bool, (Ptr{wasm_memorytype_t}, Ptr{UInt64}), ty, max) end function wasmtime_memorytype_is64(ty) ccall((:wasmtime_memorytype_is64, libwasmtime), Bool, (Ptr{wasm_memorytype_t},), ty) end function wasmtime_memory_new(store, ty, ret) ccall((:wasmtime_memory_new, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasm_memorytype_t}, Ptr{wasmtime_memory_t}), store, ty, ret) end function wasmtime_memory_type(store, memory) ccall((:wasmtime_memory_type, libwasmtime), Ptr{wasm_memorytype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_memory_t}), store, memory) end function wasmtime_memory_data(store, memory) ccall((:wasmtime_memory_data, libwasmtime), Ptr{UInt8}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_memory_t}), store, memory) end function wasmtime_memory_data_size(store, memory) ccall((:wasmtime_memory_data_size, libwasmtime), Csize_t, (Ptr{wasmtime_context_t}, Ptr{wasmtime_memory_t}), store, memory) end function wasmtime_memory_size(store, memory) ccall((:wasmtime_memory_size, libwasmtime), UInt64, (Ptr{wasmtime_context_t}, Ptr{wasmtime_memory_t}), store, memory) end function wasmtime_memory_grow(store, memory, delta, prev_size) ccall((:wasmtime_memory_grow, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_memory_t}, UInt64, Ptr{UInt64}), store, memory, delta, prev_size) end function wasmtime_table_new(store, ty, init, table) ccall((:wasmtime_table_new, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasm_tabletype_t}, Ptr{wasmtime_val_t}, Ptr{wasmtime_table_t}), store, ty, init, table) end function wasmtime_table_type(store, table) ccall((:wasmtime_table_type, libwasmtime), Ptr{wasm_tabletype_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_table_t}), store, table) end function wasmtime_table_get(store, table, index, val) ccall((:wasmtime_table_get, libwasmtime), Bool, (Ptr{wasmtime_context_t}, Ptr{wasmtime_table_t}, UInt32, Ptr{wasmtime_val_t}), store, table, index, val) end function wasmtime_table_set(store, table, index, value) ccall((:wasmtime_table_set, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_table_t}, UInt32, Ptr{wasmtime_val_t}), store, table, index, value) end function wasmtime_table_size(store, table) ccall((:wasmtime_table_size, libwasmtime), UInt32, (Ptr{wasmtime_context_t}, Ptr{wasmtime_table_t}), store, table) end function wasmtime_table_grow(store, table, delta, init, prev_size) ccall((:wasmtime_table_grow, libwasmtime), Ptr{wasmtime_error_t}, (Ptr{wasmtime_context_t}, Ptr{wasmtime_table_t}, UInt32, Ptr{wasmtime_val_t}, Ptr{UInt32}), store, table, delta, init, prev_size) end const wasmtime_trap_code_t = UInt8 @cenum wasmtime_trap_code_enum::UInt32 begin WASMTIME_TRAP_CODE_STACK_OVERFLOW = 0 WASMTIME_TRAP_CODE_MEMORY_OUT_OF_BOUNDS = 1 WASMTIME_TRAP_CODE_HEAP_MISALIGNED = 2 WASMTIME_TRAP_CODE_TABLE_OUT_OF_BOUNDS = 3 WASMTIME_TRAP_CODE_INDIRECT_CALL_TO_NULL = 4 WASMTIME_TRAP_CODE_BAD_SIGNATURE = 5 WASMTIME_TRAP_CODE_INTEGER_OVERFLOW = 6 WASMTIME_TRAP_CODE_INTEGER_DIVISION_BY_ZERO = 7 WASMTIME_TRAP_CODE_BAD_CONVERSION_TO_INTEGER = 8 WASMTIME_TRAP_CODE_UNREACHABLE_CODE_REACHED = 9 WASMTIME_TRAP_CODE_INTERRUPT = 10 end function wasmtime_trap_new(msg, msg_len) ccall((:wasmtime_trap_new, libwasmtime), Ptr{wasm_trap_t}, (Cstring, Csize_t), msg, msg_len) end function wasmtime_trap_code(arg1, code) ccall((:wasmtime_trap_code, libwasmtime), Bool, (Ptr{wasm_trap_t}, Ptr{wasmtime_trap_code_t}), arg1, code) end function wasmtime_trap_exit_status(arg1, status) ccall((:wasmtime_trap_exit_status, libwasmtime), Bool, (Ptr{wasm_trap_t}, Ptr{Cint}), arg1, status) end function wasmtime_frame_func_name(arg1) ccall((:wasmtime_frame_func_name, libwasmtime), Ptr{wasm_name_t}, (Ptr{wasm_frame_t},), arg1) end function wasmtime_frame_module_name(arg1) ccall((:wasmtime_frame_module_name, libwasmtime), Ptr{wasm_name_t}, (Ptr{wasm_frame_t},), arg1) end function wasmtime_wat2wasm(wat, wat_len, ret) ccall((:wasmtime_wat2wasm, libwasmtime), Ptr{wasmtime_error_t}, (Cstring, Csize_t, Ptr{wasm_byte_vec_t}), wat, wat_len, ret) end function wasi_config_delete(arg1) ccall((:wasi_config_delete, libwasmtime), Cvoid, (Ptr{wasi_config_t},), arg1) end # no prototype is found for this function at wasi.h:47:36, please use with caution function wasi_config_new() ccall((:wasi_config_new, libwasmtime), Ptr{wasi_config_t}, ()) end function wasi_config_set_argv(config, argc, argv) ccall((:wasi_config_set_argv, libwasmtime), Cvoid, (Ptr{wasi_config_t}, Cint, Ptr{Cstring}), config, argc, argv) end function wasi_config_inherit_argv(config) ccall((:wasi_config_inherit_argv, libwasmtime), Cvoid, (Ptr{wasi_config_t},), config) end function wasi_config_set_env(config, envc, names, values) ccall((:wasi_config_set_env, libwasmtime), Cvoid, (Ptr{wasi_config_t}, Cint, Ptr{Cstring}, Ptr{Cstring}), config, envc, names, values) end function wasi_config_inherit_env(config) ccall((:wasi_config_inherit_env, libwasmtime), Cvoid, (Ptr{wasi_config_t},), config) end function wasi_config_set_stdin_file(config, path) ccall((:wasi_config_set_stdin_file, libwasmtime), Bool, (Ptr{wasi_config_t}, Cstring), config, path) end function wasi_config_inherit_stdin(config) ccall((:wasi_config_inherit_stdin, libwasmtime), Cvoid, (Ptr{wasi_config_t},), config) end function wasi_config_set_stdout_file(config, path) ccall((:wasi_config_set_stdout_file, libwasmtime), Bool, (Ptr{wasi_config_t}, Cstring), config, path) end function wasi_config_inherit_stdout(config) ccall((:wasi_config_inherit_stdout, libwasmtime), Cvoid, (Ptr{wasi_config_t},), config) end function wasi_config_set_stderr_file(config, path) ccall((:wasi_config_set_stderr_file, libwasmtime), Bool, (Ptr{wasi_config_t}, Cstring), config, path) end function wasi_config_inherit_stderr(config) ccall((:wasi_config_inherit_stderr, libwasmtime), Cvoid, (Ptr{wasi_config_t},), config) end function wasi_config_preopen_dir(config, path, guest_path) ccall((:wasi_config_preopen_dir, libwasmtime), Bool, (Ptr{wasi_config_t}, Cstring, Cstring), config, path, guest_path) end const wasm_name = wasm_byte_vec_t const wasm_name_new = wasm_byte_vec_new const wasm_name_new_empty = wasm_byte_vec_new_empty const wasm_name_new_new_uninitialized = wasm_byte_vec_new_uninitialized const wasm_name_copy = wasm_byte_vec_copy const wasm_name_delete = wasm_byte_vec_delete const WASM_EMPTY_VEC = nothing # Skipping MacroDefinition: WASM_INIT_VAL { . kind = WASM_ANYREF , . of = { . ref = NULL } } const WASMTIME_EXTERN_FUNC = 0 const WASMTIME_EXTERN_GLOBAL = 1 const WASMTIME_EXTERN_TABLE = 2 const WASMTIME_EXTERN_MEMORY = 3 const WASMTIME_EXTERN_INSTANCE = 4 const WASMTIME_EXTERN_MODULE = 5 const WASMTIME_I32 = 0 const WASMTIME_I64 = 1 const WASMTIME_F32 = 2 const WASMTIME_F64 = 3 const WASMTIME_V128 = 4 const WASMTIME_FUNCREF = 5 const WASMTIME_EXTERNREF = 6 # exports const PREFIXES = ["libwasm", "wasmtime_", "wasm_", "WASM_", "WASMTIME_", "wasi_"] for name in names(@__MODULE__; all=true), prefix in PREFIXES if startswith(string(name), prefix) @eval export $name end end end # module
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
968
module Wasmtime include("./LibWasmtime.jl") using .LibWasmtime abstract type AbstractWasmEngine end abstract type AbstractWasmModule end include("./vec_t.jl") include("./val_t.jl") include("./imports.jl") include("./exports.jl") include("./wasm/store.jl") include("./wasm/module.jl") include("./wasm/instance.jl") export WasmMemory, WasmStore, WasmInstance, WasmExports, exports, WasmStore, WasmModule, imports, WasmImports, WasmFunc include("./engine.jl") include("./wasmtime/error.jl") include("./wasmtime/wat2wasm.jl") include("./wasmtime/store.jl") include("./wasmtime/wasi.jl") include("./wasmtime/module.jl") include("./wasmtime/linker.jl") include("./wasmtime/instance.jl") include("./wasm/table.jl") export WasmTable, wat2wasm, @wat_str, WasmInstance, WasmExports, exports, WasmEngine, WasmConfig, WasmStore, WasmModule, imports, WasmImports, WasmFunc end # Wasmtime
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
565
# TODO: Group Wasmtime.WasmEngine and Wasmer.WasmEngine mutable struct WasmEngine <: AbstractWasmEngine wasm_engine_ptr::Ptr{wasm_engine_t} WasmEngine(wasm_engine_ptr) = finalizer(new(wasm_engine_ptr)) do wasm_engine wasm_engine_delete(wasm_engine_ptr) end end function WasmEngine() wasm_engine_ptr = wasm_engine_new() WasmEngine(wasm_engine_ptr) end Base.unsafe_convert(::Type{Ptr{wasm_engine_t}}, wasm_engine::WasmEngine) = wasm_engine.wasm_engine_ptr Base.show(io::IO, ::WasmEngine) = print(io, "WasmEngine()")
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
575
abstract type AbstractWasmExport end mutable struct WasmExports{I,E} wasm_instance::I # I may either be a WasmInstance or a WasmtimeModule wasm_exports::Vector{E} end function Base.getproperty(wasm_exports::WasmExports, f::Symbol) if f ∈ fieldnames(WasmExports) return getfield(wasm_exports, f) end lookup_name = string(f) export_index = findfirst(wasm_export -> name(wasm_export) == lookup_name, wasm_exports.wasm_exports) @assert export_index !== nothing "Export $f not found" wasm_exports.wasm_exports[export_index] end
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
1460
struct WasmImport wasm_importtype_ptr::Ptr{wasm_importtype_t} extern_kind::wasm_externkind_enum import_module::String name::String function WasmImport(wasm_importtype_ptr::Ptr{wasm_importtype_t}) name_vec_ptr = wasm_importtype_name(wasm_importtype_ptr) name = name_vec_ptr_to_str(name_vec_ptr) import_module_ptr = wasm_importtype_module(wasm_importtype_ptr) import_module = name_vec_ptr_to_str(import_module_ptr) externtype_ptr = wasm_importtype_type(wasm_importtype_ptr) extern_kind = wasm_externkind_enum(wasm_externtype_kind(externtype_ptr)) new(wasm_importtype_ptr, extern_kind, import_module, name) end end Base.unsafe_convert(::Type{Ptr{wasm_importtype_t}}, wasm_import::WasmImport) = wasm_import.wasm_importtype_ptr Base.show(io::IO, wasm_import::WasmImport) = print( io, "WasmImport($(wasm_import.extern_kind), \"$(wasm_import.import_module)\", \"$(wasm_import.name)\")", ) struct WasmImports{M<:AbstractWasmModule} wasm_module::M wasm_imports::Vector{WasmImport} function WasmImports(wasm_module::M, wasm_imports_vec) where {M<:AbstractWasmModule} wasm_imports = map(imp -> wasm_importtype_copy(imp) |> WasmImport, wasm_imports_vec) new{M}(wasm_module, wasm_imports) end end function Base.show(io::IO, wasm_imports::WasmImports) print(io::IO, "WasmImports(") show(io, wasm_imports.wasm_imports) print(")") end
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git
[ "MIT" ]
0.2.2
88c874db43a7c0f99347ee1013b2052e6cf23ac3
code
5667
julia_type_to_valtype(julia_type)::Ptr{wasm_valtype_t} = julia_type_to_valkind(julia_type) |> wasm_valtype_new # TODO: the other value types function WasmInt32(i::Int32) val = Ref(wasm_val_t(tuple((zero(UInt8) for _ = 1:16)...))) ptr = Base.unsafe_convert(Ptr{wasm_val_t}, Base.pointer_from_objref(val)) ptr.kind = WASM_I32 ptr.of.i32 = i val[] end function WasmInt64(i::Int64) val = Ref(wasm_val_t(tuple((zero(UInt8) for _ = 1:16)...))) ptr = Base.unsafe_convert(Ptr{wasm_val_t}, Base.pointer_from_objref(val)) ptr.kind = WASM_I64 ptr.of.i64 = i val[] end function WasmFloat32(f::Float32) val = Ref(wasm_val_t(tuple((zero(UInt8) for _ = 1:16)...))) ptr = Base.unsafe_convert(Ptr{wasm_val_t}, Base.pointer_from_objref(val)) ptr.kind = WASM_F32 ptr.of.f32 = f val[] end function WasmFloat64(f::Float64) val = Ref(wasm_val_t(tuple((zero(UInt8) for _ = 1:16)...))) ptr = Base.unsafe_convert(Ptr{wasm_val_t}, Base.pointer_from_objref(val)) ptr.kind = WASM_F64 ptr.of.f64 = f val[] end """ v128(x) Splats the given value to create a v128 vector with as many times the value `x` as the `typeof(x)` allows to fit in 128 bits. """ function v128(x::T) where {T<:Union{Int8,UInt8,Int16,UInt16, Int32,UInt32,Int64,UInt64, Float32,Float64,Int128,UInt128}} sz = sizeof(T) x = x isa Float32 ? reinterpret(UInt32, x) : x isa Float64 ? reinterpret(UInt64, x) : x bytes = ntuple(i -> (x >> (8 * (i - 1))) % UInt8, sz) ntuple(i -> bytes[(i-1)%sz+1], 16) end """ i64x2(x₁::Int64, x₂::Int64) Creates a simd v128 vector from two Int64. """ i64x2(x₁, x₂) = Tuple(reinterpret(UInt8, Int64[x₁,x₂])) """ i64x2(v)::Tuple{Int64,Int64} Interprets the byte values in the simd vector as two Int64. """ function i64x2(v) x₁, x₂ = 0, 0 for i in 1:sizeof(Float64) x₁ |= Int64(v[i]) << (8 * (i-1)) x₂ |= Int64(v[i+sizeof(Float64)]) << (8 * (i-1)) end (x₁, x₂) end """ f64x2(x₁::Float64, x₂::Float64) Creates a simd v128 vector from two Float64. """ f64x2(x₁, x₂) = Tuple(reinterpret(UInt8, Float64[x₁, x₂])) """ f64x2(v)::Tuple{Float64,Float64} Interprets the byte values in the simd vector as two Float64. """ function f64x2(v) x₁, x₂ = i64x2(v) (reinterpret(Float64,x₁), reinterpret(Float64,x₂)) end """ i32x4(x₁::Int32, x₂::Int32, x₃::Int32, x₄::Int32) Creates a simd v128 vector from four Int32. """ i32x4(x₁, x₂, x₃, x₄) = Tuple(reinterpret(UInt8, Int32[x₁, x₂, x₃, x₄])) """ i32x4(v)::Tuple{Int32,Int32,Int32,Int32} Interprets the byte values in the simd vector as four Int32. """ function i32x4(v) x₁, x₂, x₃, x₄ = zeros(Int32, 4) for i in 1:sizeof(Float32) x₁ |= Int32(v[i]) << (8 * (i-1)) x₂ |= Int32(v[i+1sizeof(Float32)]) << (8 * (i-1)) x₃ |= Int32(v[i+2sizeof(Float32)]) << (8 * (i-1)) x₄ |= Int32(v[i+3sizeof(Float32)]) << (8 * (i-1)) end (x₁,x₂,x₃,x₄) end """ f32x4(x₁::Float32, x₂::Float32, x₃::Float32, x₄::Float32) Creates a simd v128 vector from four Float32. """ f32x4(x₁,x₂,x₃,x₄) = Tuple(reinterpret(UInt8, Float32[x₁,x₂,x₃,x₄])) """ f32x4(v)::Tuple{Float32,Float32,Float32,Float32} Interprets the byte values in the simd vector as four Float32. """ function f32x4(v) x₁, x₂, x₃, x₄ = i32x4(v) Tuple(reinterpret(Float32,x) for x in (x₁,x₂,x₃,x₄)) end """ i16x8(x₁, x₂, x₃, x₄, x₅, x₆, x₇, x₈) Creates a simd v128 vector from eight Int16. """ i16x8(x::Vararg{Int16,8}) = Tuple(reinterpret(UInt8, Int16[x...])) """ i16x8(v)::NTuple{8,Int16} Interprets the byte values in the simd vector as eight Int16. """ function i16x8(v) Tuple(reinterpret(Int16, UInt8[v...])) end function julia_type_to_valkind(julia_type::Type)::wasm_valkind_enum if julia_type == Int32 WASM_I32 elseif julia_type == Int64 WASM_I64 elseif julia_type == Float32 WASM_F32 elseif julia_type == Float64 WASM_F64 else error("No corresponding valkind for type $julia_type") end end function valkind_to_julia_type(valkind::wasm_valkind_enum) if valkind == WASM_I32 Int32 elseif valkind == WASM_I64 Int64 elseif valkind == WASM_F32 Float32 elseif valkind == WASM_F64 Float64 else error("No corresponding type for kind $valkind") end end Base.convert(::Type{wasm_val_t}, i::Int32) = WasmInt32(i) Base.convert(::Type{wasm_val_t}, i::Int64) = WasmInt64(i) Base.convert(::Type{wasm_val_t}, f::Float32) = WasmFloat32(f) Base.convert(::Type{wasm_val_t}, f::Float64) = WasmFloat64(f) Base.convert(::Type{wasm_val_t}, val::wasm_val_t) = val function Base.convert(julia_type, wasm_val::wasm_val_t) valkind = julia_type_to_valkind(julia_type) @assert valkind == wasm_val.kind "Cannot convert a value of kind $(wasm_val.kind) to corresponding kind $valkind" ctag = Ref(wasm_val.of) ptr = Base.unsafe_convert(Ptr{LibWasmtime.__JL_Ctag_4}, ctag) jl_val = GC.@preserve ctag unsafe_load(Ptr{julia_type}(ptr)) jl_val end function Base.show(io::IO, wasm_val::wasm_val_t) name, maybe_val = if wasm_val.kind == WASM_I32 "WasmInt32", wasm_val.of.i32 |> string elseif wasm_val.kind == WASM_I64 "WasmInt64", wasm_val.of.i64 |> string elseif wasm_val.kind == WASM_F32 "WasmFloat32", wasm_val.of.f32 |> string elseif wasm_val.kind == WASM_F64 "WasmFloat64", wasm_val.of.f64 |> string else "WasmAny", "" end print(io, "$name($maybe_val)") end
Wasmtime
https://github.com/Pangoraw/Wasmtime.jl.git