licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.0
f9458a3b5fa9cc7aef3e6f105695db69964c4b72
docs
863
# Vision.jl A Julia package for interacting with the [Google Vision API](https://cloud.google.com/vision/). ## Example code snippets ### Using base64 encoded images ```julia using Vision using Base64 image = base64encode(open("example.jpg", "r")) requestBody = makeRequestBody(image, visionFeature("DOCUMENT_TEXT_DETECTION")) response = getResponse(requestBody) println(parseFeatures(response)) ``` ### Using URI's ```julia using Vision using URIs requestBody = makeRequestBody( URI("https://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Julia_Programming_Language_Logo.svg/1920px-Julia_Programming_Language_Logo.svg.png"), [ visionFeature("LABEL_DETECTION", 50), visionFeature("TEXT_DETECTION", 50), visionFeature("LOGO_DETECTION", 1), ] ) response = getResponse(requestBody) println(parseFeatures(response)) ```
Vision
https://github.com/joshniemela/Vision.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
987
using MultiData using Documenter DocMeta.setdocmeta!(MultiData, :DocTestSetup, :(using MultiData); recursive=true) makedocs(; modules=[MultiData], authors="Lorenzo Balboni, Federico Manzella, Giovanni Pagliarini, Eduard I. Stan", repo=Documenter.Remotes.GitHub("aclai-lab", "MultiData.jl"), sitename="MultiData.jl", format=Documenter.HTML(; size_threshold = 4000000, prettyurls=get(ENV, "CI", "false") == "true", canonical="https://aclai-lab.github.io/MultiData.jl", assets=String[], ), pages=[ "Home" => "index.md", "Datasets" => "datasets.md", "Manipulation" => "manipulation.md", "Description" => "description.md", "Utils" => "utils.md", ], # NOTE: warning warnonly = :true, ) deploydocs(; repo = "github.com/aclai-lab/MultiData.jl", target = "build", branch = "gh-pages", versions = ["main" => "main", "stable" => "v^", "v#.#", "dev" => "dev"], )
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
4660
# ------------------------------------------------------------- # LabeledMultiDataset """ LabeledMultiDataset(md, labeling_variables) Create a `LabeledMultiDataset` by associating an `AbstractMultiDataset` with some labeling variables, specified as a column index (`Int`) or a vector of column indices (`Vector{Int}`). # Arguments * `md` is the original `AbstractMultiDataset`; * `labeling_variables` is an `AbstractVector` of integers indicating the indices of the variables that will be set as labels. # Examples ```julia-repl julia> lmd = LabeledMultiDataset(MultiDataset([[2],[4]], DataFrame( :id => [1, 2], :age => [30, 9], :name => ["Python", "Julia"], :stat => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]] )), [1, 3]) ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ id: Set([2, 1]) β”‚ └─ name: Set(["Julia", "Python"]) └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… ``` """ struct LabeledMultiDataset{MD} <: AbstractLabeledMultiDataset md::MD labeling_variables::Vector{Int} function LabeledMultiDataset{MD}( md::MD, labeling_variables::Union{Int,AbstractVector}, ) where {MD<:AbstractMultiDataset} labeling_variables = Vector{Int}(vec(collect(labeling_variables))) for i in labeling_variables if _is_variable_in_modalities(md, i) # TODO: consider enforcing this instead of just warning @warn "Setting as label a variable used in a modality: this is " * "discouraged and probably will not be allowed in future versions" end end return new{MD}(md, labeling_variables) end function LabeledMultiDataset( md::MD, labeling_variables::Union{Int,AbstractVector}, ) where {MD<:AbstractMultiDataset} return LabeledMultiDataset{MD}(md, labeling_variables) end # TODO # function LabeledMultiDataset( # labeling_variables::AbstractVector{L}, # dfs::Union{AbstractVector{DF},Tuple{DF}} # ) where {DF<:AbstractDataFrame,L} # return LabeledMultiDataset(labeling_variables, MultiDataset(dfs)) # end # # Helper # function LabeledMultiDataset( # labeling_variables::AbstractVector{L}, # dfs::AbstractDataFrame... # ) where {L} # return LabeledMultiDataset(labeling_variables, collect(dfs)) # end end # ------------------------------------------------------------- # LabeledMultiDataset - accessors unlabeleddataset(lmd::LabeledMultiDataset) = lmd.md grouped_variables(lmd::LabeledMultiDataset) = grouped_variables(unlabeleddataset(lmd)) data(lmd::LabeledMultiDataset) = data(unlabeleddataset(lmd)) labeling_variables(lmd::LabeledMultiDataset) = lmd.labeling_variables # ------------------------------------------------------------- # LabeledMultiDataset - informations function show(io::IO, lmd::LabeledMultiDataset) println(io, "● LabeledMultiDataset") _prettyprint_labels(io, lmd) _prettyprint_modalities(io, lmd) _prettyprint_sparevariables(io, lmd) end # ------------------------------------------------------------- # LabeledMultiDataset - variables function sparevariables(lmd::LabeledMultiDataset) filter!(var -> !(var in labeling_variables(lmd)), sparevariables(unlabeleddataset(lmd))) end function dropvariables!(lmd::LabeledMultiDataset, i::Integer) dropvariables!(unlabeleddataset(lmd), i) for (i_lbl, lbl) in enumerate(labeling_variables(lmd)) if lbl > i labeling_variables(lmd)[i_lbl] = lbl - 1 end end return lmd end # ------------------------------------------------------------- # LabeledMultiDataset - utils function SoleBase.instances( lmd::LabeledMultiDataset, inds::AbstractVector, return_view::Union{Val{true},Val{false}} = Val(false) ) LabeledMultiDataset( SoleBase.instances(unlabeleddataset(lmd), inds, return_view), labeling_variables(lmd) ) end function vcat(lmds::LabeledMultiDataset...) LabeledMultiDataset( vcat(unlabeleddataset.(lmds)...), labeling_variables(first(lmds)) ) end function _empty(lmd::LabeledMultiDataset) return LabeledMultiDataset( _empty(unlabeleddataset(lmd)), deepcopy(grouped_variables(lmd)), ) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
6088
__precompile__() module MultiData using DataFrames using StatsBase using ScientificTypes using DataStructures using Statistics using Catch22 using CSV using Random using Reexport using SoleBase using SoleBase: AbstractDataset, slicedataset @reexport using DataFrames import Base: eltype, isempty, iterate, map, getindex, length import Base: firstindex, lastindex, ndims, size, show, summary import Base: vcat import Base: isequal, isapprox import Base: ==, β‰ˆ import Base: in, issubset, setdiff, setdiff!, union, union!, intersect, intersect! import Base: ∈, βŠ†, βˆͺ, ∩ import DataFrames: describe import ScientificTypes: show import SoleBase: instances, ninstances, concatdatasets import SoleBase: eachinstance # ------------------------------------------------------------- # exports # export types export AbstractDataset, AbstractMultiDataset export MultiDataset export AbstractLabeledMultiDataset export LabeledMultiDataset # information gathering export instance, ninstances, slicedataset, concatdatasets export modality, nmodalities export variables, nvariables, dimensionality, sparevariables, hasvariables export variableindex export isapproxeq, β‰Š export isapprox export eachinstance, eachmodality # filesystem export datasetinfo, loaddataset, savedataset # instance manipulation export pushinstances!, deleteinstances!, keeponlyinstances! # variable manipulation export insertvariables!, dropvariables!, keeponlyvariables!, dropsparevariables! # modality manipulation export addmodality!, removemodality!, addvariable_tomodality!, removevariable_frommodality! export insertmodality!, dropmodalities! # labels manipulation export nlabelingvariables, label, labels, labeldomain, setaslabeling!, unsetaslabeling!, joinlabels! # re-export from DataFrames export describe # re-export from ScientificTypes export schema # ------------------------------------------------------------- # Abbreviations const DF = DataFrames # ------------------------------------------------------------- # Abstract types """ Abstract supertype for all multimodal datasets. A concrete multimodal dataset should always provide accessors [`data`](@ref), to access the underlying tabular structure (e.g., `DataFrame`) and [`grouped_variables`](@ref), to access the grouping of variables (a vector of vectors of column indices). """ abstract type AbstractMultiDataset <: AbstractDataset end """ Abstract supertype for all labeled multimodal datasets (used in supervised learning). As any multimodal dataset, any concrete labeled multimodal dataset should always provide the accessors [`data`](@ref), to access the underlying tabular structure (e.g., `DataFrame`) and [`grouped_variables`](@ref), to access the grouping of variables. In addition to these, implementations are required for [`labeling_variables`](@ref), to access the indices of the labeling variables. See also [`AbstractMultiDataset`](@ref). """ abstract type AbstractLabeledMultiDataset <: AbstractMultiDataset end # ------------------------------------------------------------- # AbstractMultiDataset - accessors # # Inspired by the "Delegation pattern" of "Design Patterns and Best Practices with # Julia" Chap. 5 by Tom KwongHands-On """ grouped_variables(amd)::Vector{Vector{Int}} Return the indices of the variables grouped by modality, of an `AbstractMultiDataset`. The grouping describes how the different modalities are composed from the underlying `AbstractDataFrame` structure. See also [`data`](@ref), [`AbstractMultiDataset`](@ref). """ function grouped_variables(amd::AbstractMultiDataset)::Vector{Vector{Int}} return error("`grouped_variables` accessor not implemented for type " * string(typeof(amd))) * "." end """ data(amd)::AbstractDataFrame Return the structure that underlies an `AbstractMultiDataset`. See also [`grouped_variables`](@ref), [`AbstractMultiDataset`](@ref). """ function data(amd::AbstractMultiDataset)::AbstractDataFrame return error("`data` accessor not implemented for type " * string(typeof(amd))) * "." end function concatdatasets(amds::AbstractMultiDataset...) @assert allequal(grouped_variables.(amds)) "Cannot concatenate datasets " * "with different variable groupings. " * "$(@show grouped_variables.(amds))" Base.vcat(amds...) end # ------------------------------------------------------------- # AbstractLabeledMultiDataset - accessors """ labeling_variables(almd)::Vector{Int} Return the indices of the labelling variables, of the `AbstractLabeledMultiDataset`. with respect to the underlying `AbstractDataFrame` structure (see [`data`](@ref)). See also [`grouped_variables`](@ref), [`AbstractLabeledMultiDataset`](@ref). """ function labeling_variables(almd::AbstractLabeledMultiDataset)::Vector{Int} return error("`labeling_variables` accessor not implemented for type " * string(typeof(almd))) end function concatdatasets(almds::AbstractLabeledMultiDataset...) @assert allequal(grouped_variables.(almds)) "Cannot concatenate datasets " * "with different variable grouping. " * "$(@show grouped_variables.(almds))" @assert allequal(labeling_variables.(almds)) "Cannot concatenate datasets " * "with different labeling variables. " * "$(@show labeling_variables.(almds))" Base.vcat(almds...) end Base.summary(amd::AbstractMultiDataset) = string(length(amd), "-modality ", typeof(amd)) Base.summary(io::IO, amd::AbstractMultiDataset) = print(stdout, summary(amd)) include("utils.jl") include("describe.jl") include("iterable.jl") include("comparison.jl") include("set.jl") include("variables.jl") include("instances.jl") include("modalities.jl") include("interfaces.jl") include("MultiDataset.jl") include("labels.jl") include("LabeledMultiDataset.jl") include("filesystem.jl") include("dimensionality.jl") export dataframe2dimensional, dimensional2dataframe export cube2dataframe, dataframe2cube export get_instance, maxchannelsize export hasnans, displaystructure include("dimensional-data.jl") include("deprecate.jl") end # module
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
10146
# ------------------------------------------------------------- # MultiDataset """ MultiDataset(df, grouped_variables) Create a `MultiDataset` from an `AbstractDataFrame` `df`, initializing its modalities according to the grouping in `grouped_variables`. `grouped_variables` is an `AbstractVector` of variable grouping which are `AbstractVector`s of integers representing the index of the variables selected for that modality. Note that the order matters for both the modalities and the variables. ```julia-repl julia> df = DataFrame( :age => [30, 9], :name => ["Python", "Julia"], :stat1 => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]], :stat2 => [[cos(i) for i in 1:50000], [sin(i) for i in 1:50000]] ) 2Γ—4 DataFrame Row β”‚ age name stat1 stat2 β‹― β”‚ Int64 String Array… Array… β‹― ─────┼────────────────────────────────────────────────────────────────────────────────────── 1 β”‚ 30 Python [0.841471, 0.909297, 0.14112, -0… [0.540302, -0.416147, -0.989992,… β‹― 2 β”‚ 9 Julia [0.540302, -0.416147, -0.989992,… [0.841471, 0.909297, 0.14112, -0… julia> md = MultiDataset([[2]], df) ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Spare variables └─ dimensionality: mixed 2Γ—3 SubDataFrame Row β”‚ age stat1 stat2 β”‚ Int64 Array… Array… ─────┼───────────────────────────────────────────────────────────────────────────── 1 β”‚ 30 [0.841471, 0.909297, 0.14112, -0… [0.540302, -0.416147, -0.989992,… 2 β”‚ 9 [0.540302, -0.416147, -0.989992,… [0.841471, 0.909297, 0.14112, -0… ``` MultiDataset(df; group = :none) Create a `MultiDataset` from an `AbstractDataFrame` `df`, automatically selecting modalities. The selection of modalities can be controlled by the `group` argument which can be: - `:none` (default): no modality will be created - `:all`: all variables will be grouped by their [`dimensionality`](@ref) - a list of dimensionalities which will be grouped. Note: `:all` and `:none` are the only `Symbol`s accepted by `group`. # TODO: fix passing a vector of Integer to `group` # TODO: rewrite examples # Examples ```julia-repl julia> df = DataFrame( :age => [30, 9], :name => ["Python", "Julia"], :stat1 => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]], :stat2 => [[cos(i) for i in 1:50000], [sin(i) for i in 1:50000]] ) 2Γ—4 DataFrame Row β”‚ age name stat1 stat2 β‹― β”‚ Int64 String Array… Array… β‹― ─────┼────────────────────────────────────────────────────────────────────────────────────── 1 β”‚ 30 Python [0.841471, 0.909297, 0.14112, -0… [0.540302, -0.416147, -0.989992,… β‹― 2 β”‚ 9 Julia [0.540302, -0.416147, -0.989992,… [0.841471, 0.909297, 0.14112, -0… julia> md = MultiDataset(df) ● MultiDataset └─ dimensionalities: () - Spare variables └─ dimensionality: mixed 2Γ—4 SubDataFrame Row β”‚ age name stat1 stat2 β‹― β”‚ Int64 String Array… Array… β‹― ─────┼────────────────────────────────────────────────────────────────────────────────────── 1 β”‚ 30 Python [0.841471, 0.909297, 0.14112, -0… [0.540302, -0.416147, -0.989992,… β‹― 2 β”‚ 9 Julia [0.540302, -0.416147, -0.989992,… [0.841471, 0.909297, 0.14112, -0… julia> md = MultiDataset(df; group = :all) ● MultiDataset └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age name β”‚ Int64 String ─────┼─────────────── 1 β”‚ 30 Python 2 β”‚ 9 Julia - Modality 2 / 2 └─ dimensionality: 1 2Γ—2 SubDataFrame Row β”‚ stat1 stat2 β”‚ Array… Array… ─────┼────────────────────────────────────────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… [0.540302, -0.416147, -0.989992,… 2 β”‚ [0.540302, -0.416147, -0.989992,… [0.841471, 0.909297, 0.14112, -0… julia> md = MultiDataset(df; group = [0]) ● MultiDataset └─ dimensionalities: (0, 1, 1) - Modality 1 / 3 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age name β”‚ Int64 String ─────┼─────────────── 1 β”‚ 30 Python 2 β”‚ 9 Julia - Modality 2 / 3 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Modality 3 / 3 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat2 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.540302, -0.416147, -0.989992,… 2 β”‚ [0.841471, 0.909297, 0.14112, -0… ``` """ struct MultiDataset{DF<:AbstractDataFrame} <: AbstractMultiDataset grouped_variables::Vector{Vector{Int}} data::DF function MultiDataset( df::DF, grouped_variables::AbstractVector, ) where {DF<:AbstractDataFrame} grouped_variables = map(group->begin if !(group isa AbstractVector) group = [group] end group = collect(group) if any(var_name->var_name isa Symbol, group) && any(var_name->var_name isa Integer, group) return error("Cannot mix different types of " * "column identifiers; please, only use column indices (integers) or " * "Symbols. Encountered: $(group), $(join(unique(typeof.(group)), ", ")).") end group = [var_name isa Symbol ? _name2index(df, var_name) : var_name for var_name in group] @assert group isa Vector{<:Integer} group end, grouped_variables) grouped_variables = collect(Vector{Int}.(collect.(grouped_variables))) grouped_variables = Vector{Vector{Int}}(grouped_variables) return new{DF}(grouped_variables, df) end # Helper function MultiDataset( grouped_variables::AbstractVector, df::DF, ) where {DF<:AbstractDataFrame} return MultiDataset(df, grouped_variables) end function MultiDataset( df::AbstractDataFrame; group::Union{Symbol,AbstractVector{<:Integer}} = :all ) @assert isa(group, AbstractVector) || group in [:all, :none] "group can be " * "`:all`, `:none` or an `AbstractVector` of dimensionalities" if group == :none @warn "Creating MultiDataset with no modalities" return MultiDataset([], df) end dimdict = Dict{Integer,AbstractVector{<:Integer}}() spare = AbstractVector{Integer}[] for (i, c) in enumerate(eachcol(df)) dim = dimensionality(DataFrame(:curr => c)) if isa(group, AbstractVector) && !(dim in group) push!(spare, [i]) elseif haskey(dimdict, dim) push!(dimdict[dim], i) else dimdict[dim] = Integer[i] end end desc = sort(collect(zip(keys(dimdict), values(dimdict))), by = x -> x[1]) return MultiDataset(append!(map(x -> x[2], desc), spare), df) end function MultiDataset( dfs::Union{AbstractVector{DF},Tuple{DF}} ) where {DF<:AbstractDataFrame} for (i, j) in Iterators.product(1:length(dfs), 1:length(dfs)) if i == j continue end df1 = dfs[i] df2 = dfs[j] @assert length( intersect(names(df1), names(df2)) ) == 0 "Cannot build MultiDataset with clashing " * "variable names across modalities: $(intersect(names(df1), names(df2)))" end grouped_variables = [] i = 1 for nvars in ncol.(dfs) push!(grouped_variables, i:(nvars+i-1)) i += nvars end df = hcat(dfs...) return MultiDataset(df, grouped_variables) end # Helper MultiDataset(dfs::AbstractDataFrame...) = MultiDataset(collect(dfs)) end # ------------------------------------------------------------- # MultiDataset - accessors grouped_variables(md::MultiDataset) = md.grouped_variables data(md::MultiDataset) = md.data # ------------------------------------------------------------- # MultiDataset - informations function show(io::IO, md::MultiDataset) _prettyprint_header(io, md) _prettyprint_modalities(io, md) _prettyprint_sparevariables(io, md) end # ------------------------------------------------------------- # MultiDataset - utils function SoleBase.instances( md::MultiDataset, inds::AbstractVector, return_view::Union{Val{true},Val{false}} = Val(false), ) @assert return_view == Val(false) @assert all(i->i<=ninstances(md), inds) "Cannot slice MultiDataset of $(ninstances(md)) instances with indices $(inds)." MultiDataset(data(md)[inds,:], grouped_variables(md)) end import Base: view Base.@propagate_inbounds function view(md::MultiDataset, inds...) MultiDataset(view(data(md), inds...), grouped_variables(md)) end Base.@propagate_inbounds function view(md::MultiDataset, inds::Integer, ::Colon) MultiDataset(view(data(md), [inds], :), grouped_variables(md)) end function vcat(mds::MultiDataset...) MultiDataset(vcat((data.(mds)...)), grouped_variables(first(mds))) end """ _empty(md) Return a copy of a multimodal dataset with no instances. Note: since the returned AbstractMultiDataset will be empty its columns types will be `Any`. """ function _empty(md::MultiDataset) return MultiDataset( deepcopy(grouped_variables(md)), DataFrame([var_name => [] for var_name in Symbol.(names(data(md)))]) ) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
2366
# ------------------------------------------------------------- # AbstractMultiDataset - comparison """ ==(md1, md2) isequal(md1, md2) Determine whether two `AbstractMultiDataset`s are equal. Note: the check is also performed on the instances; this means that if the two datasets only differ by the order of their instances, this will return `false`. If the intent is to check if two `AbstractMultiDataset`s have same instances regardless of the order use [`isapproxeq`](@ref) instead. If the intent is to check if two `AbstractMultiDataset`s have same variable groupings and variables use [`isapprox`](@ref) instead. """ function isequal(md1::AbstractMultiDataset, md2::AbstractMultiDataset) return (data(md1) == data(md2) && grouped_variables(md1) == grouped_variables(md2)) || (_same_md(md1, md2) && _same_labeling_variables(md1, md2)) end function ==(md1::AbstractMultiDataset, md2::AbstractMultiDataset) return isequal(md1, md2) end """ β‰Š(md1, md2) isapproxeq(md1, md2) Determine whether two `AbstractMultiDataset`s have the same variable groupings, variables and instances. Note: the order of the instance does not matter. If the intent is to check if two `AbstractMultiDataset`s have same instances in the same order use [`isequal`](@ref) instead. If the intent is to check if two `AbstractMultiDataset`s have same variable groupings and variables use [`isapprox`](@ref) instead. TODO review """ function isapproxeq(md1::AbstractMultiDataset, md2::AbstractMultiDataset) return isequal(md1, md2) && _same_instances(md1, md2) end function β‰Š(md1::AbstractMultiDataset, md2::AbstractMultiDataset) return isapproxeq(md1, md2) end """ β‰ˆ(md1, md2) isapprox(md1, md2) Determine whether two `AbstractMultiDataset`s are similar, that is, if they have same variable groupings and variables. Note that this means no check over instances is performed. If the intent is to check if two `AbstractMultiDataset`s have same instances in the same order use [`isequal`](@ref) instead. If the intent is to check if two `AbstractMultiDataset`s have same instances regardless of the order use [`isapproxeq`](@ref) instead. """ function isapprox(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # NOTE: _same_grouped_variables already includes variables checking return _same_grouped_variables(md1, md2) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
207
export MultiModalDataset export LabeledMultiModalDataset const AbstractMultiModalDataset = AbstractMultiDataset const MultiModalDataset = MultiDataset const LabeledMultiModalDataset = LabeledMultiDataset
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
4563
# ------------------------------------------------------------- # AbstractMultiDataset - describe const desc_dict = Dict{Symbol,Function}( :mean => mean, :min => minimum, :max => maximum, :median => median, :quantile_1 => (q_1 = x -> quantile(x, 0.25)), :quantile_3 =>(q_3 = x -> quantile(x, 0.75)), # allow catch22 desc (getnames(catch22) .=> catch22)... ) const auto_desc_by_dim = Dict{Integer,Vector{Symbol}}( 1 => [:mean, :min, :max, :quantile_1, :median, :quantile_3] ) function _describeonm( df::AbstractDataFrame; descfunction::Function, cols::AbstractVector{<:Integer} = 1:ncol(df), t::AbstractVector{<:NTuple{3,Integer}} = [(1, 0, 0)] ) modality_dim = dimensionality(df) @assert length(t) == 1 || length(t) == modality_dim "`t` length has to be `1` or the " * "dimensionality of the modality ($(modality_dim))" if modality_dim > 1 && length(t) == 1 # if dimensionality is > 1 but only 1 triple is passed use it for all dimensionalities t = fill(t, modality_dim) end x = Matrix{AbstractFloat}[] for j in cols # TODO: not a good habit using abstract type as elements of Arrays y = Matrix{AbstractFloat}(undef, nrow(df), t[1][1]) # TODO: maybe Threads.@threads for (i, paa_result) in collect(enumerate(paa.(df[:,j]; f = descfunction, t = t))) y[i,:] = paa_result end push!(x, y) end return x end # TODO: describeonm should have the same interface as the `describe` function from DataFrames # describe(df::AbstractDataFrame; cols=:) # describe(df::AbstractDataFrame, stats::Union{Symbol,Pair}...; cols=:) function describeonm( df::AbstractDataFrame; desc::AbstractVector{Symbol} = Symbol[], t::AbstractVector{<:NTuple{3,Integer}} = [(1, 0, 0)], ) for d in desc @assert d in keys(desc_dict) "`$(d)` is not a valid descriptor Symbol; available " * "descriptors are $(keys(desc_dict))" end return DataFrame( :Variables => Symbol.(propertynames(df)), [d => _describeonm(df; descfunction = desc_dict[d], t) for d in desc]... ) end # TODO: same as above """ describe(md; t = fill([(1, 0, 0)], nmodalities(md)), kwargs...) Return descriptive statistics for an `AbstractMultiDataset` as a `Vector` of new `DataFrame`s where each row represents a variable and each column a summary statistic. # Arguments * `md`: the `AbstractMultiDataset`; * `t`: is a vector of `nmodalities` elements, where each element is a vector as long as the dimensionality of the i-th modality. Each element of the innermost vector is a tuple of arguments for [`paa`](@ref). For other see the documentation of [`DataFrames.describe`](@ref) function. # Examples TODO: examples """ function DF.describe( md::AbstractMultiDataset; t::AbstractVector{<:AbstractVector{<:NTuple{3,Integer}}} = fill([(1, 0, 0)], nmodalities(md)), kwargs... ) return [DF.describe(md, i; t = t[i], kwargs...) for i in 1:nmodalities(md)] end # TODO: implement this # function DF.describe(md::MultiDataset, stats::Union{Symbol,Pair}...; cols=:) # # TODO: select proper defaults stats based on `dimensionality` of each modality # end function DF.describe(md::AbstractMultiDataset, i::Integer; kwargs...) modality_dim = dimensionality(modality(md, i)) if modality_dim == :mixed || modality_dim == :empty # TODO: implement for mixed??? throw(ErrorException("Description for `:$(modality_dim)` dimensionality modality not implemented")) elseif modality_dim == 0 return DF.describe(modality(md, i)) else desc = haskey(kwargs, :desc) ? kwargs[:desc] : auto_desc_by_dim[modality_dim] return describeonm(modality(md, i); desc = desc, kwargs...) end end function _stat_description( df::AbstractDataFrame; functions::AbstractVector{Function} = [var, std], cols::AbstractVector{<:Integer} = collect(2:ncol(df)) ) for col in eachcol(df)[cols] @assert eltype(col) <: AbstractArray "`df` is not a description DataFrame" end function apply_func_2_col(func::Function) return cat( [Symbol(names(df)[c] * "_" * string(nameof(func))) => [[func(r[:,chunk]) for chunk in 1:size(r, 2)] for r in df[:,c]] for c in cols]...; dims = 1 ) end total_cols = length(functions)*length(cols) order = cat([collect(i:length(cols):total_cols) for i in 1:length(cols)]...; dims = 1) gen_cols = cat([apply_func_2_col(f) for f in functions]...; dims = 1) return DataFrame(:VARIABLE => df[:,1], gen_cols[order]...) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
9513
# ------------------------------------------------------------- # Dimensional dataset: a simple dataset structure (basically, a hypercube) using StatsBase import Base: eltype import SoleBase: dimensionality, channelsize _isnan(n::Number) = isnan(n) _isnan(n::Nothing) = false hasnans(n::Number) = _isnan(n) hasnans(a::AbstractArray) = any(_isnan.(a)) ############################################################################################ """ AbstractDimensionalDataset{T<:Number,D} = AbstractVector{<:AbstractArray{T,D}} A `D`-dimensional dataset is a vector of (multivariate) `D`-dimensional instances (or samples): Each instance is an `Array` with size X Γ— Y Γ— ... Γ— nvariables The dimensionality of the channel is denoted as N = D-1 (e.g. 1 for time series, 2 for images), and its dimensionalities are denoted as X, Y, Z, etc. Note: It'd be nice to define these with N being the dimensionality of the channel: e.g. `const AbstractDimensionalDataset{T<:Number,N} = AbstractVector{<:AbstractArray{T,N+1}}` Unfortunately, this is not currently allowed (see https://github.com/JuliaLang/julia/issues/8322 ) """ const AbstractDimensionalDataset{T<:Number,D} = AbstractVector{<:AbstractArray{T,D}} function eachinstance(X::AbstractDimensionalDataset) X end hasnans(d::AbstractDimensionalDataset{<:Union{Nothing,Number}}) = any(hasnans, eachinstance(d)) dimensionality(::Type{<:AbstractDimensionalDataset{T,D}}) where {T<:Number,D} = D-1 dimensionality(d::AbstractDimensionalDataset) = dimensionality(typeof(d)) ninstances(d::AbstractDimensionalDataset{T,D}) where {T<:Number,D} = length(d) function checknvariables(d::AbstractDimensionalDataset{T,D}) where {T<:Number,D} if !allequal(map(instance->size(instance, D), eachinstance(d))) error("Non-uniform nvariables in dimensional dataset:" * " $(countmap(map(instance->size(instance, D), eachinstance(d))))") else true end end nvariables(d::AbstractDimensionalDataset{T,D}) where {T<:Number,D} = size(first(eachinstance(d)), D) function instances(d::AbstractDimensionalDataset, inds::AbstractVector, return_view::Union{Val{true},Val{false}} = Val(false)) if return_view == Val(true) @views d[inds] else d[inds] end end function concatdatasets(ds::AbstractDimensionalDataset{T}...) where {T<:Number} vcat(ds...) end function displaystructure(d::AbstractDimensionalDataset; indent_str = "", include_ninstances = true) padattribute(l,r) = string(l) * lpad(r,32+length(string(r))-(length(indent_str)+2+length(l))) pieces = [] push!(pieces, "AbstractDimensionalDataset") push!(pieces, "$(padattribute("dimensionality:", dimensionality(d)))") if include_ninstances push!(pieces, "$(padattribute("# instances:", ninstances(d)))") end push!(pieces, "$(padattribute("# variables:", nvariables(d)))") push!(pieces, "$(padattribute("channelsize countmap:", StatsBase.countmap(map(i_instance->channelsize(d, i_instance), 1:ninstances(d)))))") push!(pieces, "$(padattribute("maxchannelsize:", maxchannelsize(d)))") push!(pieces, "$(padattribute("size Γ— eltype:", "$(size(d)) Γ— $(eltype(d))"))") return join(pieces, "\n$(indent_str)β”œ ", "\n$(indent_str)β”” ") end # TODO remove one of the two. @ferdiu instance(d::AbstractDimensionalDataset, idx::Integer) = @views d[idx] get_instance(args...) = instance(args...) channelsize(d::AbstractDimensionalDataset, i_instance::Integer) = instance_channelsize(d[i_instance]) maxchannelsize(d::AbstractDimensionalDataset) = maximum(i_instance->channelsize(d, i_instance), 1:ninstances(d)) instance_channel(instance::AbstractArray{T,1}, i_var::Integer) where T = @views instance[ i_var]::T # N=0 instance_channel(instance::AbstractArray{T,2}, i_var::Integer) where T = @views instance[:, i_var]::AbstractArray{T,1} # N=1 instance_channel(instance::AbstractArray{T,3}, i_var::Integer) where T = @views instance[:, :, i_var]::AbstractArray{T,2} # N=2 instance_channelsize(instance::AbstractArray) = size(instance)[1:end-1] instance_nvariables(instance::AbstractArray) = size(instance, ndims(instance)) ############################################################################################ ############################################################################################ ############################################################################################ # import Tables: subset # function Tables.subset(X::AbstractDimensionalDataset, inds; viewhint = nothing) # slicedataset(X, inds; return_view = (isnothing(viewhint) || viewhint == true)) # end # using MLJBase # using MLJModelInterface # import MLJModelInterface: selectrows, _selectrows # # From MLJModelInferface.jl/src/data_utils.jl # function MLJModelInterface._selectrows(X::AbstractDimensionalDataset{T,4}, r) where {T<:Number} # slicedataset(X, inds; return_view = (isnothing(viewhint) || viewhint == true)) # end # function MLJModelInterface._selectrows(X::AbstractDimensionalDataset{T,5}, r) where {T<:Number} # slicedataset(X, inds; return_view = (isnothing(viewhint) || viewhint == true)) # end # function MLJModelInterface.selectrows(::MLJBase.FI, ::Val{:table}, X::AbstractDimensionalDataset, r) # r = r isa Integer ? (r:r) : r # return Tables.subset(X, r) # end function _check_dataframe(df::AbstractDataFrame) coltypes = eltype.(eachcol(df)) wrong_coltypes = filter(t->!(t <: Union{Real,AbstractArray}), coltypes) @assert length(wrong_coltypes) == 0 "Column types not allowed: " * "$(join(wrong_coltypes, ", "))" wrong_eltypes = filter(t->!(t <: Real), eltype.(coltypes)) @assert length(wrong_eltypes) == 0 "Column eltypes not allowed: " * "$(join(wrong_eltypes, ", "))" common_eltype = Union{eltype.(coltypes)...} @assert common_eltype <: Real if !isconcretetype(common_eltype) @warn "Common variable eltype `$(common_eltype)` is not concrete. " * "consider converting all values to $(promote_type(eltype.(coltypes)...))." end end # function dimensional2dataframe(X::AbstractDimensionalDataset, colnames = nothing) # colnames = :auto function dimensional2dataframe(X, colnames = nothing) # colnames = :auto MultiData.checknvariables(X) varslices = [begin map(instance->MultiData.instance_channel(instance, i_variable), eachinstance(X)) end for i_variable in 1:nvariables(X)] if isnothing(colnames) colnames = ["V$(i_var)" for i_var in 1:length(varslices)] end DataFrame(varslices, colnames) end function dataframe2dimensional( df::AbstractDataFrame; dry_run::Bool = false, ) MultiData._check_dataframe(df) coltypes = eltype.(eachcol(df)) common_eltype = Union{eltype.(coltypes)...} n_variables = ncol(df) dataset = [begin instance = begin # if !dry_run cat(collect(row)...; dims=ndims(row[1])+1) # else # Array{common_eltype}(undef, __channelsize..., n_variables) # end end instance end for row in eachrow(df)] return dataset, names(df) end function cube2dataframe(X::AbstractArray, colnames = nothing) # colnames = :auto varslices = eachslice(X; dims=ndims(X)-1) if isnothing(colnames) colnames = ["V$(i_var)" for i_var in 1:length(varslices)] end DataFrame(eachslice.(varslices; dims=ndims(X)-1), colnames) end function dataframe2cube( df::AbstractDataFrame; dry_run::Bool = false, ) _check_dataframe(df) coltypes = eltype.(eachcol(df)) common_eltype = Union{eltype.(coltypes)...} # _channelndims = (x)->ndims(x) # (hasmethod(ndims, (typeof(x),)) ? ndims(x) : missing) # _channelsize = (x)->size(x) # (hasmethod(size, (typeof(x),)) ? size(x) : missing) df_ndims = ndims.(df) percol_channelndimss = [(colname => unique(df_ndims[:,colname])) for colname in names(df)] wrong_percol_channelndimss = filter(((colname, ndimss),)->length((ndimss)) != 1, percol_channelndimss) @assert length(wrong_percol_channelndimss) == 0 "All instances should have the same " * "ndims for each variable. Got ndims's: $(wrong_percol_channelndimss)" df_size = size.(df) percol_channelsizess = [(colname => unique(df_size[:,colname])) for colname in names(df)] wrong_percol_channelsizess = filter(((colname, channelsizess),)->length((channelsizess)) != 1, percol_channelsizess) @assert length(wrong_percol_channelsizess) == 0 "All instances should have the same " * "size for each variable. Got sizes: $(wrong_percol_channelsizess)" channelsizes = first.(last.(percol_channelsizess)) @assert allequal(channelsizes) "All variables should have the same " * "channel size. Got: $(SoleBase._groupby(channelsizes, names(df))))" __channelsize = first(channelsizes) n_variables = ncol(df) n_instances = nrow(df) cube = Array{common_eltype}(undef, __channelsize..., n_variables, n_instances) if !dry_run for (i_col, colname) in enumerate(eachcol(df)) for (i_row, row) in enumerate(colname) if ndims(row) == 0 row = first(row) end cube[[(:) for i in 1:length(size(row))]...,i_col,i_row] = row end end end return cube, names(df) end cube2dimensional(X::AbstractArray) = dataframe2dimensional(cube2dataframe(X)) dimensional2cube(X) = dataframe2cube(dimensional2dataframe(X))
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
1499
import SoleBase: dimensionality # ------------------------------------------------------------- # AbstractMultiDataset - infos """ dimensionality(df) Return the dimensionality of a dataframe `df`. If the dataframe has variables of various dimensionalities `:mixed` is returned. If the dataframe is empty (no instances) `:empty` is returned. This behavior can be controlled by setting the keyword argument `force`: - `:no` (default): return `:mixed` in case of mixed dimensionality - `:max`: return the greatest dimensionality - `:min`: return the lowest dimensionality """ function dimensionality(df::AbstractDataFrame; force::Symbol = :no)::Union{Symbol,Integer} @assert force in [:no, :max, :min] "`force` can be either :no, :max or :min" if nrow(df) == 0 return :empty end dims = [maximum(x -> isa(x, AbstractArray) ? ndims(x) : 0, [inst for inst in c]) for c in eachcol(df)] if all(y -> y == dims[1], dims) return dims[1] elseif force == :max return max(dims...) elseif force == :min return min(dims...) else return :mixed end end function dimensionality(md::AbstractMultiDataset, i::Integer; kwargs...) return dimensionality(modality(md, i); kwargs...) end function dimensionality(md::AbstractMultiDataset; kwargs...) return Tuple([dimensionality(modality; kwargs...) for modality in md]) end dimensionality(dfc::DF.DataFrameColumns; kwargs...) = dimensionality(DataFrame(dfc); kwargs...)
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
21219
# ------------------------------------------------------------- # AbstractMultiDataset - filesystem operations const _ds_inst_prefix = "Example_" const _ds_modality_prefix = "Modality_" const _ds_metadata = "Metadata.txt" const _ds_labels = "Labels.csv" DATASET_ENC_NAME = "Dataset" # Name for our enconding TODO choose name function _parse_dim_tuple(t::AbstractString) t = strip(t, ['(', ')', '\n', ',', ' ']) div = contains(t, ",") ? "," : " " return Tuple(parse.(Int64, split(t, div; keepempty = false))) end function _read_dataset_metadata(datasetdir::AbstractString) @assert isfile(joinpath(datasetdir, _ds_metadata)) "Missing $(_ds_metadata) in dataset " * "$(datasetdir)" file = open(joinpath(datasetdir, _ds_metadata)) dict = Dict{String,Any}() for (k, v) in split.(filter(x -> length(x) > 0, strip.(readlines(file))), '=') k = strip(k) v = strip(v) if k == "name" dict[k] = v elseif k == "supervised" dict[k] = parse(Bool, v) elseif k == "num_modalities" || !isnothing(match(r"modality[[:digit:]]+", string(k))) || k == "num_classes" dict[k] = parse(Int64, v) else @warn "Unknown key-value pair found in " * "$(joinpath(datasetdir, _ds_metadata)): $(k)=$(v)" end end if dict["supervised"] && haskey(dict, "num_classes") && dict["num_classes"] < 1 @warn "$(DATASET_ENC_NAME) $(dict["name"]) is marked as `supervised` but has `num_classes` = 0" end close(file) return dict end function _read_example_metadata(datasetdir::AbstractString, inst_id::Integer) @assert isfile(joinpath( datasetdir, "$(_ds_inst_prefix)$(string(inst_id))", _ds_metadata )) "Missing $(_ds_metadata) in dataset `$(_ds_inst_prefix)$(string(inst_id))` in " * "`$(datasetdir)`" file = open(joinpath(datasetdir, "$(_ds_inst_prefix)$(string(inst_id))", _ds_metadata)) dict = Dict{String,Any}() for (k, v) in split.(filter(x -> length(x) > 0, strip.(readlines(file))), '=') k = strip(k) v = strip(v) if startswith(k, "dim") dict[k] = _parse_dim_tuple(v) else dict[k] = v end end close(file) return dict end function _read_labels( datasetdir::AbstractString; shufflelabels::AbstractVector{Symbol} = Symbol[], # TODO: add tests for labels shuffling rng::Union{<:AbstractRNG,<:Integer} = Random.GLOBAL_RNG ) @assert isfile(joinpath(datasetdir, _ds_labels)) "Missing $(_ds_labels) in dataset " * "$(datasetdir)" df = CSV.read(joinpath(datasetdir, _ds_labels), DataFrame; types = String) df[!,:id] = parse.(Int64, replace.(df[!,:id], _ds_inst_prefix => "")) rng = isa(rng, Integer) ? MersenneTwister(rng) : rng for l in shufflelabels @assert l in Symbol.(names(df)[2:end]) "`$l` is not a label of the dataset" df[!,l] = shuffle(rng, df[:,l]) end return df end """ datasetinfo(datasetpath; onlywithlabels = [], shufflelabels = [], rng = Random.GLOBAL_RNG) Show dataset size on disk and return a Touple with first element a vector of selected IDs, second element the labels DataFrame or nothing and third element the total size in bytes. # Arguments * `onlywithlabels` is used to select which portion of the $(DATASET_ENC_NAME) to load, by specifying labels and their values to use as filters. See [`loaddataset`](@ref) for more info. * `shufflelabels` is an `AbstractVector` of names of labels to shuffle (default = [], means no shuffle). * `rng` is a random number generator to be used when shuffling (for reproducibility); can be either a `Integer` (used as seed for `MersenneTwister`) or an `AbstractRNG`. """ function datasetinfo( datasetpath::AbstractString; onlywithlabels::AbstractVector{<:AbstractVector{<:Pair{<:AbstractString,<:AbstractVector{<:Any}}}} = AbstractVector{Pair{AbstractString,AbstractVector{Any}}}[], kwargs... ) @assert isdir(datasetpath) "$(DATASET_ENC_NAME) at path $(datasetpath) does not exist" ds_metadata = _read_dataset_metadata(datasetpath) if ds_metadata["supervised"] && !isfile(joinpath(datasetpath, _ds_labels)) @warn "$(DATASET_ENC_NAME) $(ds_metadata["name"]) is marked as `supervised` but has no " * "file `$(_ds_labels)`" end function isexdir(name::AbstractString) return isdir(joinpath(datasetpath, name)) && startswith(name, _ds_inst_prefix) end examples_ids = sort!(parse.(Int64, replace.( filter(isexdir, readdir(datasetpath)), _ds_inst_prefix => "" ))) labels = nothing if ds_metadata["supervised"] || (haskey(ds_metadata, "num_classes") && ds_metadata["num_classes"] > 0) labels = _read_labels(datasetpath; kwargs...) missing_in_labels = setdiff(labels[:,:id], examples_ids) there_are_missing = false if length(missing_in_labels) > 0 there_are_missing = true @warn "The following examples IDs are present in $(_ds_labels) but there is no " * "directory for them: $(missing_in_labels)" end missing_in_dirs = setdiff(examples_ids, labels[:,:id]) if length(missing_in_dirs) > 0 there_are_missing = true @warn "The following examples IDs are present on filsystem but are not referenced by " * "$(_ds_labels): $(missing_in_dirs)" end if there_are_missing examples_ids = sort!(collect(intersect(examples_ids, labels[:,:id]))) @warn "Will be considered only instances with IDs: $(examples_ids)" end end if length(onlywithlabels) > 0 if isnothing(labels) @warn "A filter was passed but no $(_ds_labels) was found in this dataset: all " * "instances will be used" else # CHECKS keys_not_found = String[] labels_cols = names(labels)[2:end] for i in 1:length(onlywithlabels) for k in [pair[1] for pair in onlywithlabels[i]] if !(k in labels_cols) push!(keys_not_found, k) end end end if length(keys_not_found) > 0 throw(ErrorException("Key(s) provided as filters not found: " * "$(unique(keys_not_found)); availabels are $(labels_cols)")) end # ACTUAL FILTERING filtered_ids = Integer[] for i in 1:length(onlywithlabels) for filters in [Base.product([Base.product((key,), value) for (key, value) in onlywithlabels[i]]...)...] nt = NamedTuple([Symbol(fs[1]) => string(fs[2]) for fs in filters]) grouped_by_keys = groupby(labels, collect(keys(nt))) if haskey(grouped_by_keys, nt) push!(filtered_ids, grouped_by_keys[nt][:,1]...) else @warn "No example found for combination of labels $(nt): check " * "if the proper Type was used" end end end examples_ids = sort(collect(intersect(examples_ids, unique(filtered_ids)))) end end totalsize = 0 for id in examples_ids ex_metadata = _read_example_metadata(datasetpath, id) # TODO: perform some checks on metadata for modality in 1:ds_metadata["num_modalities"] totalsize += filesize(joinpath( datasetpath, "$(_ds_inst_prefix)$(string(id))", "$(_ds_modality_prefix)$(modality).csv" )) end end if !isnothing(labels) labels = labels[findall(id -> id in examples_ids, labels[:,:id]),:] end return examples_ids, labels, totalsize end function _load_instance( datasetpath::AbstractString, inst_id::Integer; types::Union{DataType,Nothing} = nothing ) inst_metadata = _read_example_metadata(datasetpath, inst_id) instancedir = joinpath(datasetpath, "$(_ds_inst_prefix)$(inst_id)") type_info = isnothing(types) ? NamedTuple() : (types = types,) modality_reg = Regex("^$(_ds_modality_prefix)([[:digit:]]+).csv\$") function ismodalityfile(path::AbstractString) return isfile(joinpath(instancedir, path)) && !isnothing(match(modality_reg, path)) end function unlinearize_var(p::Pair{Symbol,<:Any}, dims::Tuple) return p[1] => unlinearize_data(p[2], dims) end function unlinearize_modality(ps::AbstractVector{<:Pair{Symbol,<:Any}}, dims::Tuple) return [unlinearize_var(p, dims) for p in ps] end function load_modality(path::AbstractString, dims::Tuple) return OrderedDict(unlinearize_modality( collect(CSV.read(path, pairs; type_info...)), dims )) end modalities = filter(ismodalityfile, readdir(instancedir)) modalities_num = sort!([match(modality_reg, f).captures[1] for f in modalities]) result = Vector{OrderedDict}(undef, length(modalities_num)) # TODO: address problem with Threads.@threads # (`@threads :static` cannot be used concurrently or nested) for (i, f) in collect(enumerate(modalities_num)) result[i] = load_modality( joinpath(instancedir, "$(_ds_modality_prefix)$(f).csv"), inst_metadata[string("dim_modality_", i)] ) end return result end """ loaddataset(datasetpath; onlywithlabels = [], shufflelabels = [], rng = Random.GLOBAL_RNG) Create a `MultiDataset` or a `LabeledMultiDataset` from a $(DATASET_ENC_NAME), based on the presence of file Labels.csv. # Arguments * `datasetpath` is an `AbstractString` that denote the $(DATASET_ENC_NAME)'s position; * `onlywithlabels` is an AbstractVector{AbstractVector{Pair{AbstractString,AbstractVector{Any}}}} and it's used to select which portion of the $(DATASET_ENC_NAME) to load, by specifying labels and their values. Beginning from the center, each Pair{AbstractString,AbstractVector{Any}} must contain, as AbstractString the label's name, and, as AbstractVector{Any} the values for that label. Each Pair in one vector must refer to a different label, so if the $(DATASET_ENC_NAME) has in total n labels, this vector of Pair can contain maximun n element. That's because the elements will combine with each other. Every vector of Pair act as a filter. Note that the same label can be used in different vector of Pair as they do not combine with each other. If `onlywithlabels` is an empty vector (default) the function will load the entire $(DATASET_ENC_NAME). * `shufflelabels` is an `AbstractVector` of names of labels to shuffle (default = [], means no shuffle). * `rng` is a random number generator to be used when shuffling (for reproducibility); can be either a Integer (used as seed for `MersenneTwister`) or an `AbstractRNG`. # Examples ```julia-repl julia> df_data = DataFrame( :id => [1, 2, 3, 4, 5], :age => [30, 9, 30, 40, 9], :name => ["Python", "Julia", "C", "Java", "R"], :stat => [deepcopy(ts_sin), deepcopy(ts_cos), deepcopy(ts_sin), deepcopy(ts_cos), deepcopy(ts_sin)] ) 5Γ—4 DataFrame Row β”‚ id age name stat β”‚ Int64 Int64 String Array… ─────┼───────────────────────────────────────────────────────── 1 β”‚ 1 30 Python [0.841471, 0.909297, 0.14112, -0… 2 β”‚ 2 9 Julia [0.540302, -0.416147, -0.989992,… 3 β”‚ 3 30 C [0.841471, 0.909297, 0.14112, -0… 4 β”‚ 4 40 Java [0.540302, -0.416147, -0.989992,… 5 β”‚ 5 9 R [0.841471, 0.909297, 0.14112, -0… julia> lmd = LabeledMultiDataset( MultiDataset([[4]], deepcopy(df_data)), [2,3], ) ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ age: Set([9, 30, 40]) β”‚ └─ name: Set(["C", "Julia", "Python", "Java", "R"]) └─ dimensionalities: (1,) - Modality 1 / 1 └─ dimensionality: 1 5Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… 3 β”‚ [0.841471, 0.909297, 0.14112, -0… 4 β”‚ [0.540302, -0.416147, -0.989992,… 5 β”‚ [0.841471, 0.909297, 0.14112, -0… - Spare variables └─ dimensionality: 0 5Γ—1 SubDataFrame Row β”‚ id β”‚ Int64 ─────┼─────── 1 β”‚ 1 2 β”‚ 2 3 β”‚ 3 4 β”‚ 4 5 β”‚ 5 julia> savedataset("langs", lmd, force = true) julia> loaddataset("langs", onlywithlabels = [ ["name" => ["Julia"], "age" => ["9"]] ] ) Instances count: 1 Total size: 981670 bytes ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ age: Set(["9"]) β”‚ └─ name: Set(["Julia"]) └─ dimensionalities: (1,) - Modality 1 / 1 └─ dimensionality: 1 1Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.540302, -0.416147, -0.989992,… - Spare variables └─ dimensionality: 0 1Γ—1 SubDataFrame Row β”‚ id β”‚ Int64 ─────┼─────── 1 β”‚ 2 julia> loaddataset("langs", onlywithlabels = [ ["name" => ["Julia"], "age" => ["30"]] ] ) Instances count: 0 Total size: 0 bytes ERROR: AssertionError: No instance found julia> loaddataset("langs", onlywithlabels = [ ["name" => ["Julia"]] , ["age" => ["9"]] ] ) Instances count: 2 Total size: 1963537 bytes ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ age: Set(["9"]) β”‚ └─ name: Set(["Julia", "R"]) └─ dimensionalities: (1,) - Modality 1 / 1 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.540302, -0.416147, -0.989992,… 2 β”‚ [0.841471, 0.909297, 0.14112, -0… - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ id β”‚ Int64 ─────┼─────── 1 β”‚ 2 2 β”‚ 5 julia> loaddataset("langs", onlywithlabels = [ ["name" => ["Julia"]], ["name" => ["C"], "age" => ["30"]] ] ) Instances count: 2 Total size: 1963537 bytes ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ age: Set(["9", "30"]) β”‚ └─ name: Set(["C", "Julia"]) └─ dimensionalities: (1,) - Modality 1 / 1 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.540302, -0.416147, -0.989992,… 2 β”‚ [0.841471, 0.909297, 0.14112, -0… - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ id β”‚ Int64 ─────┼─────── 1 β”‚ 2 2 β”‚ 3 ``` """ function loaddataset( datasetpath::AbstractString; types::Union{DataType,Nothing} = nothing, kwargs... ) selected_ids, labels, datasetsize = datasetinfo(datasetpath; kwargs...) @assert length(selected_ids) > 0 "No instance found" instance_modalities = _load_instance(datasetpath, selected_ids[1]; types = types) modalities_cols = [Symbol.(var_name) for var_name in keys.(instance_modalities)] df = DataFrame( :id => [selected_ids[1]], [Symbol(k) => [v] for modality in instance_modalities for (k, v) in modality]...; makeunique = true ) for id in selected_ids[2:end] curr_row = Any[id] for (i, modality) in enumerate(_load_instance(datasetpath, id; types = types)) for var_name in modalities_cols[i] push!(curr_row, modality[var_name]) end end push!(df, curr_row) end grouped_variables = Vector{Integer}[] df_names = Symbol.(names(df)) for modality in modalities_cols push!(grouped_variables, [findfirst(x -> x == k, df_names) for k in modality]) end md = MultiDataset(df, grouped_variables) if !isnothing(labels) orig_length = nvariables(md) for l in names(labels)[2:end] insertvariables!(md, Symbol(l), labels[:,l]) end return LabeledMultiDataset(md, collect((orig_length+1):nvariables(md))) else return md end end """ savedataset(datasetpath, md; instance_ids, name, force = false) Save `md` AbstractMultiDataset on disk at path `datasetpath` in the following format: datasetpath β”œβ”€ Example_1 β”‚ └─ Modality_1.csv β”‚ └─ Modality_2.csv β”‚ └─ ... β”‚ └─ Modality_n.csv β”‚ └─ Metadata.txt β”œβ”€ Example_2 β”‚ └─ Modality_1.csv β”‚ └─ Modality_2.csv β”‚ └─ ... β”‚ └─ Modality_n.csv β”‚ └─ Metadata.txt β”œβ”€ ... β”œβ”€ Example_n β”œβ”€ Metadata.txt └─ Labels.csv # Arguments * `instance_ids` is an `AbstractVector{Integer}` that denote the identifier of the instances, * `name` is an `AbstractString` and denote the name of the $(DATASET_ENC_NAME), that will be saved in the Metadata of the $(DATASET_ENC_NAME), * `force` is a `Bool`, if it's set to `true`, then in case `datasetpath` already exists, it will be overwritten otherwise the operation will be aborted. (default = `false`) * `labels_indices` is an `AbstractVector{Integer}` and contains the indices of the labels' column (allowed only when passing a MultiDataset) Alternatively to an `AbstractMultiDataset`, a `DataFrame` can be passed as second argument. If this is the case a third positional argument is required representing the `grouped_variables` of the dataset. See [`MultiDataset`](@ref) for syntax of `grouped_variables`. """ function savedataset( datasetpath::AbstractString, md::AbstractMultiDataset; kwargs... ) return savedataset( datasetpath, data(md), grouped_variables(md); kwargs... ) end function savedataset( datasetpath::AbstractString, lmd::LabeledMultiDataset; kwargs... ) return savedataset( datasetpath, unlabeleddataset(lmd); labels_indices = labeling_variables(lmd), kwargs... ) end function savedataset( datasetpath::AbstractString, df::AbstractDataFrame, grouped_variables::AbstractVector{<:AbstractVector{<:Integer}} = [collect(1:ncol(df))]; instance_ids::AbstractVector{<:Integer} = 1:nrow(df), labels_indices::AbstractVector{<:Integer} = Int[], name::AbstractString = basename(replace(datasetpath, r"/$" => "")), force::Bool = false ) @assert force || !isdir(datasetpath) "Directory $(datasetpath) already present: set " * "`force` to `true` to overwrite existing dataset" @assert length(instance_ids) == nrow(df) "Mismatching `length(instance_ids)` " * "($(length(instance_ids))) and `nrow(df)` ($(nrow(df)))" mkpath(datasetpath) # NOTE: maybe this can be done in `savedataset` accepting a labeled modal dataset df_labels = nothing if length(labels_indices) > 0 df_labels = DataFrame( :id => [string(_ds_inst_prefix, i) for i in instance_ids], [l => df[:,l] for l in Symbol.(names(df)[labels_indices])]... ) end for (i_inst, (id, inst)) in enumerate(zip(instance_ids, eachrow(df))) inst_metadata_path = joinpath(datasetpath, string(_ds_inst_prefix, id), _ds_metadata) curr_inst_path = mkpath(dirname(inst_metadata_path)) inst_metadata_file = open(inst_metadata_path, "w+") for (i_modality, curr_modality_indices) in enumerate(grouped_variables) curr_modality_inst = inst[curr_modality_indices] # TODO: maybe assert all instances have same size or fill with missing println(inst_metadata_file, "dim_modality_", i_modality, "=", size(first(curr_modality_inst)) ) CSV.write( joinpath(curr_inst_path, string(_ds_modality_prefix, i_modality, ".csv")), DataFrame( [a => linearize_data(curr_modality_inst[a]) for a in Symbol.(names(curr_modality_inst))] ) ) end # NOTE: this is not part of the `Data Input Format` specification pdf and it is a # duplicated info from Labels.csv if !isnothing(df_labels) example_labels = select(df_labels, Not("id"))[i_inst,:] for col in 1:length(names(example_labels)) println(inst_metadata_file, names(example_labels)[col], "=", string(select(df_labels, Not("id"))[i_inst, col]) ) end end close(inst_metadata_file) end ds_metadata_file = open(joinpath(datasetpath, _ds_metadata), "w+") println(ds_metadata_file, "name=", name) if !isnothing(df_labels) CSV.write(joinpath(datasetpath, _ds_labels), df_labels) println(ds_metadata_file, "supervised=true") println(ds_metadata_file, "num_classes=", (ncol(df_labels)-1)) else println(ds_metadata_file, "supervised=false") end println(ds_metadata_file, "num_modalities=", length(grouped_variables)) for (i_modality, curr_modality_indices) in enumerate(grouped_variables) println(ds_metadata_file, "modality", i_modality, "=", dimensionality(df[:,curr_modality_indices])) end close(ds_metadata_file) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
4958
# ------------------------------------------------------------- # AbstractMultiDataset - instances manipulation """ ninstances(md) Return the number of instances in a multimodal dataset. # Examples ```julia-repl julia> md = MultiDataset([[1],[2]],DataFrame(:age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> mod2 = modality(md, 2) 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> ninstances(md) == ninstances(mod2) == 2 true ``` """ ninstances(df::AbstractDataFrame) = nrow(df) ninstances(md::AbstractMultiDataset) = nrow(data(md)) # ninstances(md::AbstractMultiDataset, i::Integer) = nrow(modality(md, i)) """ pushinstances!(md, instance) Add an instance to a multimodal dataset, and return the dataset itself. The instance can be a `DataFrameRow` or an `AbstractVector` but in both cases the number and type of variables should match those of the dataset. """ function pushinstances!(md::AbstractMultiDataset, instance::DataFrameRow) @assert length(instance) == nvariables(md) "Mismatching number of variables " * "between dataset ($(nvariables(md))) and instance ($(length(instance)))" push!(data(md), instance) return md end function pushinstances!(md::AbstractMultiDataset, instance::AbstractVector) @assert length(instance) == nvariables(md) "Mismatching number of variables " * "between dataset ($(nvariables(md))) and instance ($(length(instance)))" push!(data(md), instance) return md end function pushinstances!(md::AbstractMultiDataset, instances::AbstractDataFrame) for inst in eachrow(instances) pushinstances!(md, inst) end return md end """ deleteinstances!(md, i) Remove the `i`-th instance in a multimodal dataset, and return the dataset itself. deleteinstances!(md, i_instances) Remove the instances at `i_instances` in a multimodal dataset, and return the dataset itself. """ function deleteinstances!(md::AbstractMultiDataset, i_instances::AbstractVector{<:Integer}) for i in i_instances @assert 1 ≀ i ≀ ninstances(md) "Index $(i) no in range 1:ninstances " * "(1:$(ninstances(md)))" end deleteat!(data(md), unique(i_instances)) return md end deleteinstances!(md::AbstractMultiDataset, i::Integer) = deleteinstances!(md, [i]) """ keeponlyinstances!(md, i_instances) Remove all instances from a multimodal dataset, which index does not appear in `i_instances`. """ function keeponlyinstances!( md::AbstractMultiDataset, i_instances::AbstractVector{<:Integer} ) return deleteinstances!(md, setdiff(collect(1:ninstances(md)), i_instances)) end """ instance(md, i) Return the `i`-th instance in a multimodal dataset. instance(md, i_modality, i_instance) Return the `i_instance`-th instance in a multimodal dataset with only variables from the the `i_modality`-th modality. instance(md, i_instances) Return instances at `i_instances` in a multimodal dataset. instance(md, i_modality, i_instances) Return i_instances at `i_instances` in a multimodal dataset with only variables from the the `i_modality`-th modality. """ function instance(df::AbstractDataFrame, i::Integer) @assert 1 ≀ i ≀ ninstances(df) "Index ($i) must be a valid instance number " * "(1:$(ninstances(md))" return @view df[i,:] end function instance(md::AbstractMultiDataset, i::Integer) @assert 1 ≀ i ≀ ninstances(md) "Index ($i) must be a valid instance number " * "(1:$(ninstances(md))" return instance(data(md), i) end function instance(md::AbstractMultiDataset, i_modality::Integer, i_instance::Integer) @assert 1 ≀ i_modality ≀ nmodalities(md) "Index ($i_modality) must be a valid " * "modality number (1:$(nmodalities(md))" return instance(modality(md, i_modality), i_instance) end function instance(df::AbstractDataFrame, i_instances::AbstractVector{<:Integer}) for i in i_instances @assert 1 ≀ i ≀ ninstances(df) "Index ($i) must be a valid instance number " * "(1:$(ninstances(md))" end return @view df[i_instances,:] end function instance(md::AbstractMultiDataset, i_instances::AbstractVector{<:Integer}) return instance(data(md), i_instances) end function instance( md::AbstractMultiDataset, i_modality::Integer, i_instances::AbstractVector{<:Integer} ) @assert 1 ≀ i_modality ≀ nmodalities(md) "Index ($i_modality) must be a valid " * "modality number (1:$(nmodalities(md))" return instance(modality(md, i_modality), i_instances) end function eachinstance(md::AbstractMultiDataset) df = data(md) Iterators.map(i->(@view md[i,:]), 1:ninstances(md)) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
2127
using ScientificTypes function ScientificTypes.schema(md::AbstractMultiDataset, i::Integer; kwargs...) ScientificTypes.schema(modality(md, i); kwargs...) end using Tables Tables.istable(X::AbstractMultiDataset) = true Tables.rowaccess(X::AbstractMultiDataset) = true function Tables.rows(X::AbstractMultiDataset) eachinstance(X) end function Tables.subset(X::AbstractMultiDataset, inds; viewhint = nothing) slicedataset(X, inds; return_view = (isnothing(viewhint) || viewhint == true)) end function _columntruenames(row::Tuple{AbstractMultiDataset,Integer}) multilogiset, i_row = row return [(i_mod, i_feature) for i_mod in 1:nmodalities(multilogiset) for i_feature in Tables.columnnames((modality(multilogiset, i_mod), i_row),)] end function Tables.getcolumn(row::Tuple{AbstractMultiDataset,Integer}, i::Int) multilogiset, i_row = row (i_mod, i_feature) = _columntruenames(row)[i] # Ugly and not optimal. Perhaps AbstractMultiDataset should have an index attached to speed this up m = modality(multilogiset, i_mod) feats, featchs = Tables.getcolumn((m, i_row), i_feature) featchs end function Tables.columnnames(row::Tuple{AbstractMultiDataset,Integer}) # [(i_mod, i_feature) for i_mod in 1:nmodalities(multilogiset) for i_feature in Tables.columnnames((modality(multilogiset, i_mod), i_row),)] 1:length(_columntruenames(row)) end using MLJModelInterface: Table import MLJModelInterface: selectrows, nrows function nrows(X::AbstractMultiDataset) length(Tables.rows(X)) end function selectrows(X::AbstractMultiDataset, r) r = r isa Integer ? (r:r) : r return Tables.subset(X, r) end # function scitype(X::AbstractMultiDataset) # Table{ # if featvaltype(X) <: AbstractFloat # scitype(1.0) # elseif featvaltype(X) <: Integer # scitype(1) # elseif featvaltype(X) <: Bool # scitype(true) # else # @warn "Unexpected featvaltype: $(featvaltype(X)). SoleModels may need adjustments." # typejoin(scitype(1.0), scitype(1), scitype(true)) # end # } # end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
2922
# ------------------------------------------------------------- # AbstractMultiDataset - iterable interface getindex(md::AbstractMultiDataset, i::Integer) = modality(md, i) function getindex(md::AbstractMultiDataset, indices::AbstractVector{<:Integer}) return [modality(md, i) for i in indices] end length(md::AbstractMultiDataset) = length(grouped_variables(md)) ndims(md::AbstractMultiDataset) = length(md) isempty(md::AbstractMultiDataset) = length(md) == 0 firstindex(md::AbstractMultiDataset) = 1 lastindex(md::AbstractMultiDataset) = length(md) eltype(::Type{AbstractMultiDataset}) = SubDataFrame eltype(::AbstractMultiDataset) = SubDataFrame Base.@propagate_inbounds function iterate(md::AbstractMultiDataset, i::Integer = 1) (i ≀ 0 || i > length(md)) && return nothing return (@inbounds modality(md, i), i+1) end function getindex( md::AbstractMultiDataset, i::Colon, j::Colon ) return deepcopy(md) end # Slice on instances and modalities/variables function getindex( md::AbstractMultiDataset, i::Union{Integer,AbstractVector{<:Integer},Tuple{<:Integer}}, j::Union{Integer,AbstractVector{<:Integer},Tuple{<:Integer}}, ) i = vec(collect(i)) j = vec(collect(j)) return getindex(getindex(md, i, :), :, j) # return error("MultiDataset currently does not allow simultaneous slicing on " * # * "instances and modalities/variables.") end # Slice on modalities/variables function getindex( md::AbstractMultiDataset, ::Colon, j::Union{Integer,AbstractVector{<:Integer},Tuple{<:Integer}}, ) j = vec(collect(j)) return keeponlymodalities!(deepcopy(md), j) end # Slice on instances function getindex( md::AbstractMultiDataset, i::Union{Integer,AbstractVector{<:Integer},Tuple{<:Integer}}, ::Colon ) i = vec(collect(i)) return slicedataset(md, i; return_view = false) end function getindex( md::AbstractMultiDataset, i::Union{Colon,<:Integer,<:AbstractVector{<:Integer},<:Tuple{<:Integer}}, j::typeof(!), ) # NOTE: typeof(!) is left-out to avoid problems but consider adding it return error("MultiDataset currently does not allow in-place operations.") end function getindex( md::AbstractMultiDataset, i::typeof(!), j::Union{Colon,<:Integer,<:AbstractVector{<:Integer},<:Tuple{<:Integer}}, ) # NOTE: typeof(!) is left-out to avoid problems but consider adding it return error("MultiDataset currently does not allow in-place operations.") end # # TODO: consider adding interfaces to access the underlying AbstractDataFrame # function getindex( # md::AbstractMultiDataset, # i::Union{Integer,AbstractVector{<:Integer},Tuple{<:Integer}}, # j::Union{ # <:Integer, # <:AbstractVector{<:Integer}, # <:Tuple{<:Integer}, # Symbol, # <:AbstractVector{Symbol} # }, # ) # return keeponlyvariables!(deepcopy(md), j) # end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
5979
# ------------------------------------------------------------- # LabeledMultiDataset - utils """ nlabelingvariables(lmd) Return the number of labeling variables of a labeled multimodal dataset. """ function nlabelingvariables(lmd::AbstractLabeledMultiDataset) return length(labeling_variables(lmd)) end """ labels(lmd, i_instance) labels(lmd) Return the labels of instance at index `i_instance` in a labeled multimodal dataset. A dictionary of type `labelname => value` is returned. If only the first argument is passed then the labels for all instances are returned. """ function labels(lmd::AbstractLabeledMultiDataset) return Symbol.(names(data(lmd)))[labeling_variables(lmd)] end function labels(lmd::AbstractLabeledMultiDataset, i_instance::Integer) return Dict{Symbol,Any}([var => data(lmd)[i_instance,var] for var in labels(lmd)]...) end """ label(lmd, j, i) Return the value of the `i`-th labeling variable for instance at index `i_instance` in a labeled multimodal dataset. """ function label( lmd::AbstractLabeledMultiDataset, i_instance::Integer, i::Integer ) return labels(lmd, i_instance)[ variables(data(lmd))[labeling_variables(lmd)[i]] ] end """ labeldomain(lmd, i) Return the domain of `i`-th label of a labeled multimodal dataset. """ function labeldomain(lmd::AbstractLabeledMultiDataset, i::Integer) @assert 1 ≀ i ≀ nlabelingvariables(lmd) "Index ($i) must be a valid label number " * "(1:$(nlabelingvariables(lmd)))" if eltype(ScientificTypes.scitype(data(lmd)[:,labeling_variables(lmd)[i]])) <: Continuous return extrema(data(lmd)[:,labeling_variables(lmd)[i]]) else return Set(data(lmd)[:,labeling_variables(lmd)[i]]) end end """ setaslabeling!(lmd, i) setaslabeling!(lmd, var_name) Set `i`-th variable as label. The variable name can be passed as second argument instead of its index. """ function setaslabeling!(lmd::AbstractLabeledMultiDataset, i::Integer) @assert 1 ≀ i ≀ nvariables(lmd) "Index ($i) must be a valid variable number " * "(1:$(nvariables(lmd)))" @assert !(i in labeling_variables(lmd)) "Variable at index $(i) is already a label." push!(labeling_variables(lmd), i) return lmd end function setaslabeling!(lmd::AbstractLabeledMultiDataset, var_name::Symbol) @assert hasvariables(lmd, var_name) "LabeldMultiDataset does not contain " * "variable $(var_name)" return setaslabeling!(lmd, _name2index(lmd, var_name)) end """ unsetaslabeling!(lmd, i) unsetaslabeling!(lmd, var_name) Remove `i`-th labeling variable from labels list. The variable name can be passed as second argument instead of its index. """ function unsetaslabeling!(lmd::AbstractLabeledMultiDataset, i::Integer) @assert 1 ≀ i ≀ nvariables(lmd) "Index ($i) must be a valid variable number " * "(1:$(nvariables(lmd)))" @assert i in labeling_variables(lmd) "Variable at index $(i) is not a label." deleteat!(labeling_variables(lmd), indexin(i, labeling_variables(lmd))[1]) return lmd end function unsetaslabeling!(lmd::AbstractLabeledMultiDataset, var_name::Symbol) @assert hasvariables(lmd, var_name) "LabeledMultiDataset does not contain " * "variable $(var_name)" return unsetaslabeling!(lmd, _name2index(lmd, var_name)) end """ joinlabels!(lmd, [lbls...]; delim = "_") On a labeled multimodal dataset, collapse the labeling variables identified by `lbls` into a single labeling variable of type `String`, by means of a `join` that uses `delim` for string delimiter. If not specified differently this function will join all labels. `lbls` can be an `Integer` indicating the index of the label, or a `Symbol` indicating the name of the labeling variable. # !!! note # The resulting labels will always be of type `String`. !!! note The resulting labeling variable will always be added as last column in the underlying `DataFrame`. # Examples ```julia-repl julia> lmd = LabeledMultiDataset( MultiDataset( [[2],[4]], DataFrame( :id => [1, 2], :age => [30, 9], :name => ["Python", "Julia"], :stat => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]] ) ), [1, 3], ) ● LabeledMultiDataset β”œβ”€ labels β”‚ β”œβ”€ id: Set([2, 1]) β”‚ └─ name: Set(["Julia", "Python"]) └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… julia> joinlabels!(lmd) ● LabeledMultiDataset β”œβ”€ labels β”‚ └─ id_name: Set(["1_Python", "2_Julia"]) └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… ``` """ function joinlabels!( lmd::AbstractLabeledMultiDataset, lbls::Symbol... = labels(lmd)...; delim::Union{<:AbstractString,<:AbstractChar} = '_' ) for l in lbls unsetaslabeling!(lmd, l) end new_col_name = Symbol(join(lbls, delim)) new_vals = [join(data(lmd)[i,collect(lbls)], delim) for i in 1:ninstances(lmd)] dropvariables!(lmd, collect(lbls)) insertvariables!(lmd, new_col_name, new_vals) setaslabeling!(lmd, nvariables(lmd)) return lmd end function joinlabels!( lmd::AbstractLabeledMultiDataset, labels::Integer...; kwargs... ) return joinlabels!(lmd, labels(lmd)[[labels...]]; kwargs...) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
30514
# ------------------------------------------------------------- # AbstractMultiDataset - modalities """ modality(md, i) Return the `i`-th modality of a multimodal dataset. modality(md, indices) Return a `Vector` of modalities at `indices` of a multimodal dataset. """ function modality(md::AbstractMultiDataset, i::Integer) @assert 1 ≀ i ≀ nmodalities(md) "Index ($i) must be a valid modality number " * "(1:$(nmodalities(md)))" return @view data(md)[:,grouped_variables(md)[i]] end function modality(md::AbstractMultiDataset, indices::AbstractVector{<:Integer}) return [modality(md, i) for i in indices] end """ eachmodality(md) Return a (lazy) iterator of the modalities of a multimodal dataset. """ function eachmodality(md::AbstractMultiDataset) df = data(md) Iterators.map(group->(@view df[:,group]), grouped_variables(md)) end """ nmodalities(md) Return the number of modalities of a multimodal dataset. """ nmodalities(md::AbstractMultiDataset) = length(grouped_variables(md)) """ addmodality!(md, indices) addmodality!(md, index) addmodality!(md, variable_names) addmodality!(md, variable_name) Create a new modality in a multimodal dataset using variables at `indices` or `index`, and return the dataset itself. Alternatively to the `indices` and the `index`, the variable name(s) can be used. Note: to add a new modality with new variables see [`insertmodality!`](@ref). # Arguments * `md` is a `MultiDataset`; * `indices` is an `AbstractVector{Integer}` that indicates which indices of the multimodal dataset's corresponding dataframe to add to the new modality; * `index` is an `Integer` that indicates the index of the multimodal dataset's corresponding dataframe to add to the new modality; * `variable_names` is an `AbstractVector{Symbol}` that indicates which variables of the multimodal dataset's corresponding dataframe to add to the new modality; * `variable_name` is a `Symbol` that indicates the variable of the multimodal dataset's corresponding dataframe to add to the new modality; # Examples ```julia-repl julia> df = DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60]) 2Γ—5 DataFrame Row β”‚ name age sex height weight β”‚ String Int64 Char Int64 Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 25 M 180 80 2 β”‚ Julia 26 F 175 60 julia> md = MultiDataset([[1]], df) ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Spare variables └─ dimensionality: 0 2Γ—4 SubDataFrame Row β”‚ age sex height weight β”‚ Int64 Char Int64 Int64 ─────┼───────────────────────────── 1 β”‚ 25 M 180 80 2 β”‚ 26 F 175 60 julia> addmodality!(md, [:age, :sex]) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age sex β”‚ Int64 Char ─────┼───────────── 1 β”‚ 25 M 2 β”‚ 26 F - Spare variables └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ height weight β”‚ Int64 Int64 ─────┼──────────────── 1 β”‚ 180 80 2 β”‚ 175 60 julia> addmodality!(md, 5) ● MultiDataset └─ dimensionalities: (0, 0, 0) - Modality 1 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 3 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age sex β”‚ Int64 Char ─────┼───────────── 1 β”‚ 25 M 2 β”‚ 26 F - Modality 3 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ height β”‚ Int64 ─────┼──────── 1 β”‚ 180 2 β”‚ 175 ``` """ function addmodality!(md::AbstractMultiDataset, indices::AbstractVector{<:Integer}) @assert length(indices) > 0 "Cannot add an empty modality to dataset" for i in indices @assert i in 1:nvariables(md) "Index $(i) is out of range 1:nvariables " * "(1:$(nvariables(md)))" end push!(grouped_variables(md), indices) return md end addmodality!(md::AbstractMultiDataset, index::Integer) = addmodality!(md, [index]) function addmodality!(md::AbstractMultiDataset, variable_names::AbstractVector{Symbol}) for var_name in variable_names @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return addmodality!(md, _name2index(md, variable_names)) end function addmodality!(md::AbstractMultiDataset, variable_name::Symbol) return addmodality!(md, [variable_name]) end """ removemodality!(md, indices) removemodality!(md, index) Remove `i`-th modality from a multimodal dataset, and return the dataset. Note: to completely remove a modality and all variables in it use [`dropmodalities!`](@ref) instead. # Arguments * `md` is a `MultiDataset`; * `index` is an `Integer` that indicates which modality to remove from the multimodal dataset; * `indices` is an `AbstractVector{Integer}` that indicates the modalities to remove from the multimodal dataset; # Examples ```julia-repl julia> df = DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60]) ) 2Γ—5 DataFrame Row β”‚ name age sex height weight β”‚ String Int64 Char Int64 Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 25 M 180 80 2 β”‚ Julia 26 F 175 60 julia> md = MultiDataset([[1, 2],[3],[4],[5]], df) ● MultiDataset └─ dimensionalities: (0, 0, 0, 0) - Modality 1 / 4 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 4 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Modality 3 / 4 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ height β”‚ Int64 ─────┼──────── 1 β”‚ 180 2 β”‚ 175 - Modality 4 / 4 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 julia> removemodality!(md, [3]) ● MultiDataset └─ dimensionalities: (0, 0, 0) - Modality 1 / 3 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Modality 3 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ height β”‚ Int64 ─────┼──────── 1 β”‚ 180 2 β”‚ 175 julia> removemodality!(md, [1,2]) ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 - Spare variables └─ dimensionality: 0 2Γ—4 SubDataFrame Row β”‚ name age sex height β”‚ String Int64 Char Int64 ─────┼───────────────────────────── 1 β”‚ Python 25 M 180 2 β”‚ Julia 26 F 175 ``` """ function removemodality!(md::AbstractMultiDataset, i::Integer) @assert 1 ≀ i ≀ nmodalities(md) "Index $(i) does not correspond to a modality " * "(1:$(nmodalities(md)))" deleteat!(grouped_variables(md), i) return md end function removemodality!(md::AbstractMultiDataset, indices::AbstractVector{Integer}) for i in sort(unique(indices)) removemodality!(md, i) end return md end """ addvariable_tomodality!(md, i_modality, var_index) addvariable_tomodality!(md, i_modality, var_indices) addvariable_tomodality!(md, i_modality, var_name) addvariable_tomodality!(md, i_modality, var_names) Add variable at index `var_index` to the modality at index `i_modality` in a multimodal dataset, and return the dataset. Alternatively to `var_index` the variable name can be used. Multiple variables can be inserted into the multimodal dataset at once using `var_indices` or `var_inames`. Note: The function does not allow you to add a variable to a new modality, but only to add it to an existing modality. To add a new modality use [`addmodality!`](@ref) instead. # Arguments * `md` is a `MultiDataset`; * `i_modality` is an `Integer` indicating the modality in which the variable(s) will be added; * `var_index` is an `Integer` that indicates the index of the variable to add to a specific modality of the multimodal dataset; * `var_indices` is an `AbstractVector{Integer}` indicating the indices of the variables to add to a specific modality of the multimodal dataset; * `var_name` is a `Symbol` indicating the name of the variable to add to a specific modality of the multimodal dataset; * `var_names` is an `AbstractVector{Symbol}` indicating the name of the variables to add to a specific modality of the multimodal dataset; # Examples ```julia-repl julia> df = DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60]) ) 2Γ—5 DataFrame Row β”‚ name age sex height weight β”‚ String Int64 Char Int64 Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 25 M 180 80 2 β”‚ Julia 26 F 175 60 julia> md = MultiDataset([[1, 2],[3]], df) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Spare variables └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ height weight β”‚ Int64 Int64 ─────┼──────────────── 1 β”‚ 180 80 2 β”‚ 175 60 julia> addvariable_tomodality!(md, 1, [4,5]) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—4 SubDataFrame Row β”‚ name age height weight β”‚ String Int64 Int64 Int64 ─────┼─────────────────────────────── 1 β”‚ Python 25 180 80 2 β”‚ Julia 26 175 60 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> addvariable_tomodality!(md, 2, [:name,:weight]) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—4 SubDataFrame Row β”‚ name age height weight β”‚ String Int64 Int64 Int64 ─────┼─────────────────────────────── 1 β”‚ Python 25 180 80 2 β”‚ Julia 26 175 60 - Modality 2 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ sex name weight β”‚ Char String Int64 ─────┼────────────────────── 1 β”‚ M Python 80 2 β”‚ F Julia 60 ``` """ function addvariable_tomodality!( md::AbstractMultiDataset, i_modality::Integer, var_index::Integer ) @assert 1 ≀ i_modality ≀ nmodalities(md) "Index $(i_modality) does not correspond " * "to a modality (1:$(nmodalities(md)))" @assert 1 ≀ var_index ≀ nvariables(md) "Index $(var_index) does not correspond " * "to a variable (1:$(nvariables(md)))" if var_index in grouped_variables(md)[i_modality] @info "Variable $(var_index) is already part of modality $(i_modality)" else push!(grouped_variables(md)[i_modality], var_index) end return md end function addvariable_tomodality!( md::AbstractMultiDataset, i_modality::Integer, var_indices::AbstractVector{<:Integer} ) for var_index in var_indices addvariable_tomodality!(md, i_modality, var_index) end return md end function addvariable_tomodality!( md::AbstractMultiDataset, i_modality::Integer, var_name::Symbol ) @assert hasvariables(md, var_name) "MultiDataset does not contain variable " * "$(var_name)" return addvariable_tomodality!(md, i_modality, _name2index(md, var_name)) end function addvariable_tomodality!( md::AbstractMultiDataset, i_modality::Integer, var_names::AbstractVector{Symbol} ) for var_name in var_names addvariable_tomodality!(md, i_modality, var_name) end return md end """ removevariable_frommodality!(md, i_modality, var_indices) removevariable_frommodality!(md, i_modality, var_index) removevariable_frommodality!(md, i_modality, var_name) removevariable_frommodality!(md, i_modality, var_names) Remove variable at index `var_index` from the modality at index `i_modality` in a multimodal dataset, and return the dataset itself. Alternatively to `var_index` the variable name can be used. Multiple variables can be dropped from the multimodal dataset at once, by passing a `Vector` of `Symbols` (for names), or a `Vector` of integers (for indices) as a last argument. Note: when all variables are dropped from a modality, it will be removed. # Arguments * `md` is a `MultiDataset`; * `i_modality` is an `Integer` indicating the modality in which the variable(s) will be dropped; * `var_index` is an `Integer` that indicates the index of the variable to drop from a specific modality of the multimodal dataset; * `var_indices` is an `AbstractVector{Integer}` indicating the indices of the variables to drop from a specific modality of the multimodal dataset; * `var_name` is a `Symbol` indicating the name of the variable to drop from a specific modality of the multimodal dataset; * `var_names` is an `AbstractVector{Symbol}` indicating the name of the variables to drop from a specific modality of the multimodal dataset; # Examples ```julia-repl julia> df = DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60]) ) 2Γ—5 DataFrame Row β”‚ name age sex height weight β”‚ String Int64 Char Int64 Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 25 M 180 80 2 β”‚ Julia 26 F 175 60 julia> md = MultiDataset([[1,2,4],[2,3,4],[5]], df) ● MultiDataset └─ dimensionalities: (0, 0, 0) - Modality 1 / 3 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ name age height β”‚ String Int64 Int64 ─────┼─────────────────────── 1 β”‚ Python 25 180 2 β”‚ Julia 26 175 - Modality 2 / 3 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ age sex height β”‚ Int64 Char Int64 ─────┼───────────────────── 1 β”‚ 25 M 180 2 β”‚ 26 F 175 - Modality 3 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 julia> removevariable_frommodality!(md, 3, 5) [ Info: Variable 5 was last variable of modality 3: removing modality ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ name age height β”‚ String Int64 Int64 ─────┼─────────────────────── 1 β”‚ Python 25 180 2 β”‚ Julia 26 175 - Modality 2 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ age sex height β”‚ Int64 Char Int64 ─────┼───────────────────── 1 β”‚ 25 M 180 2 β”‚ 26 F 175 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 julia> removevariable_frommodality!(md, 1, :age) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name height β”‚ String Int64 ─────┼──────────────── 1 β”‚ Python 180 2 β”‚ Julia 175 - Modality 2 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ age sex height β”‚ Int64 Char Int64 ─────┼───────────────────── 1 β”‚ 25 M 180 2 β”‚ 26 F 175 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 julia> removevariable_frommodality!(md, 2, [3,4]) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name height β”‚ String Int64 ─────┼──────────────── 1 β”‚ Python 180 2 β”‚ Julia 175 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Spare variables └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ sex weight β”‚ Char Int64 ─────┼────────────── 1 β”‚ M 80 2 β”‚ F 60 julia> removevariable_frommodality!(md, 1, [:name,:height]) [ Info: Variable 4 was last variable of modality 1: removing modality ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Spare variables └─ dimensionality: 0 2Γ—4 SubDataFrame Row β”‚ name sex height weight β”‚ String Char Int64 Int64 ─────┼────────────────────────────── 1 β”‚ Python M 180 80 2 β”‚ Julia F 175 60 ``` """ function removevariable_frommodality!( md::AbstractMultiDataset, i_modality::Integer, var_index::Integer; silent = false, ) @assert 1 ≀ i_modality ≀ nmodalities(md) "Index $(i_modality) does not correspond " * "to a modality (1:$(nmodalities(md)))" @assert 1 ≀ var_index ≀ nvariables(md) "Index $(var_index) does not correspond " * "to a variable (1:$(nvariables(md)))" if !(var_index in grouped_variables(md)[i_modality]) if !silent @info "Variable $(var_index) is not part of modality $(i_modality)" end elseif nvariables(md, i_modality) == 1 if !silent @info "Variable $(var_index) was last variable of modality $(i_modality): " * "removing modality" end removemodality!(md, i_modality) else deleteat!( grouped_variables(md)[i_modality], indexin(var_index, grouped_variables(md)[i_modality])[1] ) end return md end function removevariable_frommodality!( md::AbstractMultiDataset, i_modality::Integer, var_indices::AbstractVector{<:Integer}; kwargs... ) for i in var_indices removevariable_frommodality!(md, i_modality, i; kwargs...) end return md end function removevariable_frommodality!( md::AbstractMultiDataset, i_modality::Integer, var_name::Symbol; kwargs... ) @assert hasvariables(md, var_name) "MultiDataset does not contain variable " * "$(var_name)" return removevariable_frommodality!(md, i_modality, _name2index(md, var_name); kwargs...) end function removevariable_frommodality!( md::AbstractMultiDataset, i_modality::Integer, var_names::AbstractVector{Symbol}; kwargs... ) for var_name in var_names removevariable_frommodality!(md, i_modality, var_name; kwargs...) end return md end """ insertmodality!(md, col, new_modality, existing_variables) insertmodality!(md, new_modality, existing_variables) Insert `new_modality` as new modality to multimodal dataset, and return the dataset. Existing variables can be added to the new modality while adding it to the dataset by passing the corresponding indices as `existing_variables`. If `col` is specified then the variables will be inserted starting at index `col`. # Arguments * `md` is a `MultiDataset`; * `col` is an `Integer` indicating the column in which to insert the columns of `new_modality`; * `new_modality` is an `AbstractDataFrame` which will be added to the multimodal dataset as a sub-dataframe of a new modality; * `existing_variables` is an `AbstractVector{Integer}` or `AbstractVector{Symbol}`. It indicates which variables of the multimodal dataset internal dataframe structure to insert in the new modality. # Examples ```julia-repl julia> df = DataFrame( :name => ["Python", "Julia"], :stat1 => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]] ) 2Γ—2 DataFrame Row β”‚ name stat1 β”‚ String Array… ─────┼─────────────────────────────────────────── 1 β”‚ Python [0.841471, 0.909297, 0.14112, -0… 2 β”‚ Julia [0.540302, -0.416147, -0.989992,… julia> md = MultiDataset(df; group = :all) ● MultiDataset └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… julia> insertmodality!(md, DataFrame(:age => [30, 9])) ● MultiDataset └─ dimensionalities: (0, 1, 0) - Modality 1 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 3 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Modality 3 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 julia> md.data 2Γ—3 DataFrame Row β”‚ name stat1 age β”‚ String Array… Int64 ─────┼────────────────────────────────────────────────── 1 β”‚ Python [0.841471, 0.909297, 0.14112, -0… 30 2 β”‚ Julia [0.540302, -0.416147, -0.989992,… 9 ``` or, selecting the column ```julia-repl julia> df = DataFrame( :name => ["Python", "Julia"], :stat1 => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]] ) 2Γ—2 DataFrame Row β”‚ name stat1 β”‚ String Array… ─────┼─────────────────────────────────────────── 1 β”‚ Python [0.841471, 0.909297, 0.14112, -0… 2 β”‚ Julia [0.540302, -0.416147, -0.989992,… julia> md = MultiDataset(df; group = :all) ● MultiDataset └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… julia> insertmodality!(md, 2, DataFrame(:age => [30, 9])) ● MultiDataset └─ dimensionalities: (1, 0) - Modality 1 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia julia> md.data 2Γ—3 DataFrame Row β”‚ name age stat1 β”‚ String Int64 Array… ─────┼────────────────────────────────────────────────── 1 β”‚ Python 30 [0.841471, 0.909297, 0.14112, -0… 2 β”‚ Julia 9 [0.540302, -0.416147, -0.989992,… ``` or, adding an existing variable: ```julia-repl julia> df = DataFrame( :name => ["Python", "Julia"], :stat1 => [[sin(i) for i in 1:50000], [cos(i) for i in 1:50000]] ) 2Γ—2 DataFrame Row β”‚ name stat1 β”‚ String Array… ─────┼─────────────────────────────────────────── 1 β”‚ Python [0.841471, 0.909297, 0.14112, -0… 2 β”‚ Julia [0.540302, -0.416147, -0.989992,… julia> md = MultiDataset([[2]], df) ● MultiDataset └─ dimensionalities: (1,) - Modality 1 / 1 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia julia> insertmodality!(md, DataFrame(:age => [30, 9]); existing_variables = [1]) ● MultiDataset └─ dimensionalities: (1, 0) - Modality 1 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat1 β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Modality 2 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age name β”‚ Int64 String ─────┼─────────────── 1 β”‚ 30 Python 2 β”‚ 9 Julia ``` """ function insertmodality!( md::AbstractMultiDataset, col::Integer, new_modality::AbstractDataFrame, existing_variables::AbstractVector{<:Integer} = Integer[] ) if col != nvariables(md)+1 new_indices = col:col+ncol(new_modality)-1 for (k, c) in collect(zip(keys(eachcol(new_modality)), collect(eachcol(new_modality)))) insertvariables!(md, col, k, c) col = col + 1 end else new_indices = (nvariables(md)+1):(nvariables(md)+ncol(new_modality)) for (k, c) in collect(zip(keys(eachcol(new_modality)), collect(eachcol(new_modality)))) insertvariables!(md, k, c) end end addmodality!(md, new_indices) for i in existing_variables addvariable_tomodality!(md, nmodalities(md), i) end return md end function insertmodality!( md::AbstractMultiDataset, col::Integer, new_modality::AbstractDataFrame, existing_variables::AbstractVector{Symbol} ) for var_name in existing_variables @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return insertmodality!(md, col, new_modality, _name2index(md, existing_variables)) end function insertmodality!( md::AbstractMultiDataset, new_modality::AbstractDataFrame, existing_variables::AbstractVector{<:Integer} = Integer[] ) insertmodality!(md, nvariables(md)+1, new_modality, existing_variables) end function insertmodality!( md::AbstractMultiDataset, new_modality::AbstractDataFrame, existing_variables::AbstractVector{Symbol} ) for var_name in existing_variables @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return insertmodality!(md, nvariables(md)+1, new_modality, _name2index(md, existing_variables)) end """ dropmodalities!(md, indices) dropmodalities!(md, index) Remove the `i`-th modality from a multimodal dataset while dropping all variables in it, and return the dataset itself. Note: if the dropped variables are contained in other modalities they will also be removed from them. This can lead to the removal of additional modalities other than the `i`-th. If the intention is to remove a modality without dropping the variables use [`removemodality!`](@ref) instead. # Arguments * `md` is a `MultiDataset`; * `index` is an `Integer` indicating the index of the modality to drop; * `indices` is an `AbstractVector{Integer}` indicating the indices of the modalities to drop. # Examples ```julia-repl julia> df = DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60]) 2Γ—5 DataFrame Row β”‚ name age sex height weight β”‚ String Int64 Char Int64 Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 25 M 180 80 2 β”‚ Julia 26 F 175 60 julia> md = MultiDataset([[1, 2],[3,4],[5],[2,3]], df) ● MultiDataset └─ dimensionalities: (0, 0, 0, 0) - Modality 1 / 4 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 4 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ sex height β”‚ Char Int64 ─────┼────────────── 1 β”‚ M 180 2 β”‚ F 175 - Modality 3 / 4 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 - Modality 4 / 4 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age sex β”‚ Int64 Char ─────┼───────────── 1 β”‚ 25 M 2 β”‚ 26 F julia> dropmodalities!(md, [2,3]) [ Info: Variable 3 was last variable of modality 2: removing modality [ Info: Variable 3 was last variable of modality 2: removing modality ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 julia> dropmodalities!(md, 2) [ Info: Variable 2 was last variable of modality 2: removing modality ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia ``` """ function dropmodalities!(md::AbstractMultiDataset, index::Integer) @assert 1 ≀ index ≀ nmodalities(md) "Index $(index) does not correspond to a modality " * "(1:$(nmodalities(md)))" return dropvariables!(md, grouped_variables(md)[index]; silent = true) end function dropmodalities!(md::AbstractMultiDataset, indices::AbstractVector{<:Integer}) for i in indices @assert 1 ≀ i ≀ nmodalities(md) "Index $(i) does not correspond to a modality " * "(1:$(nmodalities(md)))" end return dropvariables!(md, sort!( unique(vcat(grouped_variables(md)[indices]...)); rev = true ); silent = true) end """ TODO """ function keeponlymodalities!( md::AbstractMultiDataset, indices::AbstractVector{<:Integer} ) return dropmodalities!(md, setdiff(collect(1:nmodalities(md)), indices)) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
1695
# ------------------------------------------------------------- # AbstractMultiDataset - set operations function in(instance::DataFrameRow, md::AbstractMultiDataset) return instance in eachrow(data(md)) end function in(instance::AbstractVector, md::AbstractMultiDataset) if nvariables(md) != length(instance) return false end dfr = eachrow(DataFrame([var_name => instance[i] for (i, var_name) in Symbol.(names(data(md)))]))[1] return dfr in eachrow(data(md)) end function issubset(instances::AbstractDataFrame, md::AbstractMultiDataset) for dfr in eachrow(instances) if !(dfr in md) return false end end return true end function issubset(md1::AbstractMultiDataset, md2::AbstractMultiDataset) return md1 β‰ˆ md2 && data(md1) βŠ† md2 end function setdiff(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement setdiff throw(Exception("Not implemented")) end function setdiff!(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement setdiff! throw(Exception("Not implemented")) end function intersect(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement intersect throw(Exception("Not implemented")) end function intersect!(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement intersect! throw(Exception("Not implemented")) end function union(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement union throw(Exception("Not implemented")) end function union!(md1::AbstractMultiDataset, md2::AbstractMultiDataset) # TODO: implement union! throw(Exception("Not implemented")) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
11826
const __note_about_utils = " !!! note It is important to consider that this function is intended for internal use only. It assumes that any check is performed prior its call (e.g., check if the index of an variable is valid or not). " # ------------------------------------------------------------- # AbstractMultiDataset - utils """ _empty(md) Return a copy of a multimodal dataset with no instances. Note: since the returned AbstractMultiDataset will be empty its columns types will be `Any`. $(__note_about_utils) """ function _empty(md::AbstractMultiDataset) @warn "This method for `_empty` is extremely not efficent especially for " * "large datasets: consider providing a custom method for _empty(::$(typeof(md)))." return _empty!(deepcopy(md)) end """ _empty!(md) Remove all instances from a multimodal dataset. Note: since the AbstractMultiDataset will be empty its columns types will become of type `Any`. $(__note_about_utils) """ function _empty!(md::AbstractMultiDataset) return removeinstances!(md, 1:nisnstances(md)) end """ _same_variables(md1, md2) Determine whether two `AbstractMultiDataset`s have the same variables. $(__note_about_utils) """ function _same_variables( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) return isequal( Dict{Symbol,DataType}(Symbol.(names(data(md1))) .=> eltype.(eachcol(data(md1)))), Dict{Symbol,DataType}(Symbol.(names(data(md2))) .=> eltype.(eachcol(data(md2)))) ) end """ _same_dataset(md1, md2) Determine whether two `AbstractMultiDataset`s have the same underlying `AbstractDataFrame`, regardless of column order. Note: the check will be performed against the instances too; if the intent is to just check the presence of the same variables use [`_same_variables`](@ref) instead. $(__note_about_utils) """ function _same_dataset( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) if !_same_variables(md1, md2) || ninstances(md1) != ninstances(md2) return false end md1_vars = Symbol.(names(data(md1))) md2_vars = Symbol.(names(data(md2))) unmixed_indices = [findfirst(x -> isequal(x, name), md2_vars) for name in md1_vars] return data(md1) == data(md2)[:,unmixed_indices] end """ _same_grouped_variables(md1, md2) Determine whether two `AbstractMultiDataset`s have the same modalities regardless of column order. Note: the check will be performed against the instances too; if the intent is to just check the presence of the same variables use [`_same_variables`](@ref) instead. $(__note_about_utils) """ function _same_grouped_variables( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) if !_same_variables(md1, md2) return false end if nmodalities(md1) != nmodalities(md2) || [nvariables(f) for f in md1] != [nvariables(f) for f in md2] return false end md1_vars = Symbol.(names(data(md1))) md2_vars = Symbol.(names(data(md2))) unmixed_indices = [findfirst(x -> isequal(x, name), md2_vars) for name in md1_vars] for i in 1:nmodalities(md1) if grouped_variables(md1)[i] != Integer[unmixed_indices[j] for j in grouped_variables(md2)[i]] return false end end return data(md1) == data(md2)[:,unmixed_indices] end """ _same_labeling_variables(md1, md2) Determine whether two `AbstractMultiDataset`s have the same labels regardless of column order. Note: the check will be performed against the instances too; if the intent is to just check the presence of the same variables use [`_same_label_names`](@ref) instead. $(__note_about_utils) """ function _same_labeling_variables( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) return true end function _same_labeling_variables( lmd1::AbstractLabeledMultiDataset, lmd2::AbstractLabeledMultiDataset ) !_same_label_names(lmd1, lmd2) && return false; lmd1_lbls = labels(lmd1) lmd2_lbls = labels(lmd2) # TODO fix? unmixed_indices = [findfirst(x -> isequal(x, name), Symbol.(names(data(lmd2)))) for name in lmd1_lbls] if any(isnothing.(unmixed_indices)) return false else return data(lmd1)[:,lmd1_lbls] == data(lmd2)[:,unmixed_indices] end end """ _same_label_names(md1, md2) Determine whether two `AbstractMultiDataset`s have the same label names regardless of column order. Note: the check will not be performed against the instances; if the intent is to check whether the two datasets have the same labels use [`_same_labeling_variables`](@ref) instead. $(__note_about_utils) """ function _same_label_names( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) return true end function _same_label_names( lmd1::AbstractLabeledMultiDataset, lmd2::AbstractLabeledMultiDataset ) return Set(labels(lmd1)) == Set(labels(lmd2)) end """ _same_instances(md1, md2) Determine whether two `AbstractMultiDataset`s have the same instances, regardless of their order. $(__note_about_utils) """ function _same_instances( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) if !_same_variables(md1, md2) || ninstances(md1) != ninstances(md2) return false end return md1 βŠ† md2 && md2 βŠ† md1 end """ _same_md(md1, md2) Determine whether two `AbstractMultiDataset`s have the same underlying `AbstractDataFrame` and modalities, regardless of the column order of their `AbstractDataFrames`. Note: the check will be performed against the instances too; if the intent is to just check the presence of the same variables use [`_same_variables`](@ref) instead. $(__note_about_utils) """ function _same_md( md1::AbstractMultiDataset, md2::AbstractMultiDataset ) if !_same_variables(md1, md2) || ninstances(md1) != ninstances(md2) return false end if nmodalities(md1) != nmodalities(md2) || [nvariables(f) for f in md1] != [nvariables(f) for f in md2] return false end md1_vars = Symbol.(names(data(md1))) md2_vars = Symbol.(names(data(md2))) unmixed_indices = [findfirst(x -> isequal(x, name), md2_vars) for name in md1_vars] if data(md1) != data(md2)[:,unmixed_indices] return false end for i in 1:nmodalities(md1) if grouped_variables(md1)[i] != Integer[unmixed_indices[j] for j in grouped_variables(md2)[i]] return false end end return true end """ _name2index(df, variable_name) Return the index of the variable named `variable_name`. If the variable does not exist `0` is returned. _name2index(df, variable_names) Return the indices of the variables named `variable_names`. $(__note_about_utils) """ function _name2index(df::AbstractDataFrame, variable_name::Symbol) return columnindex(df, variable_name) end function _name2index(md::AbstractMultiDataset, variable_name::Symbol) return columnindex(data(md), variable_name) end function _name2index(df::AbstractDataFrame, variable_names::AbstractVector{Symbol}) return [_name2index(df, var_name) for var_name in variable_names] end function _name2index( md::AbstractMultiDataset, variable_names::AbstractVector{Symbol} ) return [_name2index(md, var_name) for var_name in variable_names] end """ _is_variable_in_modalities(md, i) Check if `i`-th variable is used in any modality or not. Alternatively to the index the `variable_name` can be passed as second argument. $(__note_about_utils) """ function _is_variable_in_modalities(md::AbstractMultiDataset, i::Integer) return i in cat(grouped_variables(md)...; dims = 1) end function _is_variable_in_modalities(md::AbstractMultiDataset, variable_name::Symbol) return _is_variable_in_modalities(md, _name2index(md, variable_name)) end function _prettyprint_header(io::IO, md::AbstractMultiDataset) println(io, "● $(typeof(md))") println(io, " └─ dimensionalities: $(dimensionality(md))") end function _prettyprint_modalities(io::IO, md::AbstractMultiDataset) for (i, modality) in enumerate(md) println(io, "- Modality $(i) / $(nmodalities(md))") println(io, " └─ dimensionality: $(dimensionality(modality))") println(io, modality) end end function _prettyprint_sparevariables(io::IO, md::AbstractMultiDataset) spare_vars = sparevariables(md) if length(spare_vars) > 0 spare_df = @view data(md)[:,spare_vars] println(io, "- Spare variables") println(io, " └─ dimensionality: $(dimensionality(spare_df))") println(io, spare_df) end end function _prettyprint_domain(set::AbstractSet) vec = collect(set) result = "{ " for i in 1:length(vec) result *= string(vec[i]) if i != length(vec) result *= "," end result *= " " end result *= "}" end _prettyprint_domain(dom::Tuple) = "($(dom[1]) - $(dom[end]))" function _prettyprint_labels(io::IO, lmd::AbstractMultiDataset) println(io, " β”œβ”€ labels") if nlabelingvariables(lmd) > 0 lbls = labels(lmd) for i in 1:(length(lbls)-1) println(io, " β”‚ β”œβ”€ $(lbls[i]): " * "$(labeldomain(lmd, i))") end println(io, " β”‚ └─ $(lbls[end]): " * "$(labeldomain(lmd, length(lbls)))") else println(io, " β”‚ └─ no label selected") end println(io, " └─ dimensionalities: $(dimensionality(lmd))") end """ paa(x; f = identity, t = (1, 0, 0)) Piecewise Aggregate Approximation Apply `f` function to each dimensionality of `x` array divinding it in `t[1]` windows taking `t[2]` extra points left and `t[3]` extra points right. Note: first window will always consider `t[2] = 0` and last one will always consider `t[3] = 0`. """ function paa( x::AbstractArray{T}; f::Function = identity, t::AbstractVector{<:NTuple{3,Integer}} = [(1, 0, 0)] ) where {T<:Real} @assert ndims(x) == length(t) "Mismatching dims $(ndims(x)) != $(length(t)): " * "length(t) has to be equal to ndims(x)" N = length(x) n_chunks = t[1][1] @assert 1 ≀ n_chunks && n_chunks ≀ N "The number of chunks must be in [1,$(N)]" @assert 0 ≀ t[1][2] ≀ floor(N/n_chunks) && 0 ≀ t[1][3] ≀ floor(N/n_chunks) z = Array{Float64}(undef, n_chunks) # TODO Float64? solve this? any better ideas? Threads.@threads for i in collect(1:n_chunks) l = ceil(Int, (N*(i-1)/n_chunks) + 1) h = ceil(Int, N*i/n_chunks) if i == 1 h = h + t[1][3] elseif i == n_chunks l = l - t[1][2] else h = h + t[1][3] l = l - t[1][2] end z[i] = f(x[l:h]) end return z end """ linearize_data(d) Linearize dimensional object `d`. """ linearize_data(d::Any) = d linearize_data(d::AbstractVector) = d linearize_data(d::AbstractMatrix) = reshape(m', 1, :)[:] function linearize_data(d::AbstractArray) return throw(ErrorExcpetion("Still cannot linearize data of dimensionality > 2")) end # TODO: more linearizations """ unlinearize_data(d, dims) Unlinearize a vector `d` to a shape `dims`. """ unlinearize_data(d::Any, dims::Tuple{}) = d function unlinearize_data(d::AbstractVector, dims::Tuple{}) return length(d) ≀ 1 ? d[1] : collect(d) end function unlinearize_data(d::AbstractVector, dims::NTuple{1,<:Integer}) return collect(d) end function unlinearize_data(d::AbstractVector, dims::NTuple{2,<:Integer}) return collect(reshape(d, dims)') end function unlinearize_data(d::AbstractVector, dims::NTuple{N,<:Integer}) where {N<:Integer} # TODO: implement generic way to unlinearize data throw(ErrorException("Unlinearization of data to $(dims) still not implemented")) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
25155
# ------------------------------------------------------------- # Variables manipulation """ nvariables(md) nvariables(md, i) Return the number of variables in a multimodal dataset. If an index `i` is passed as second argument, then the number of variables of the `i`-th modality is returned. Alternatively, `nvariables` can be called on a single modality. # Arguments * `md` is a `MultiDataset`; * `i` (optional) is an `Integer` indicating the modality of the multimodal dataset whose number of variables you want to know. # Examples ```julia-repl julia> md = MultiDataset([[1],[2]], DataFrame(:age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> nvariables(md) 2 julia> nvariables(md, 2) 1 julia> mod2 = modality(md, 2) 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> nvariables(mod2) 1 julia> md = MultiDataset([[1, 2],[3, 4, 5]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ sex height weight β”‚ Char Int64 Int64 ─────┼────────────────────── 1 β”‚ M 180 80 2 β”‚ F 175 60 julia> nvariables(md) 5 julia> nvariables(md, 2) 3 julia> mod2 = modality(md,2) 2Γ—3 SubDataFrame Row β”‚ sex height weight β”‚ Char Int64 Int64 ─────┼────────────────────── 1 β”‚ M 180 80 2 β”‚ F 175 60 julia> nvariables(mod2) 3 ``` """ nvariables(df::AbstractDataFrame) = ncol(df) nvariables(md::AbstractMultiDataset) = nvariables(data(md)) function nvariables(md::AbstractMultiDataset, i::Integer) @assert 1 ≀ i ≀ nmodalities(md) "Index ($i) must be a valid modality number " * "(1:$(nmodalities(md)))" return nvariables(modality(md, i)) end """ insertvariables!(md, col, index, values) insertvariables!(md, index, values) insertvariables!(md, col, index, value) insertvariables!(md, index, value) Insert a variable in a multimodal dataset with a given index. !!! note Each inserted variable will be added in as a spare variables. # Arguments * `md` is an `AbstractMultiDataset`; * `col` is an `Integer` indicating in which position to insert the new variable. If no col is passed, the new variable will be placed last in the md's underlying dataframe structure; * `index` is a `Symbol` and denote the name of the variable to insert. Duplicated variable names will be renamed to avoid conflicts: see `makeunique` argument for [insertcols!](https://dataframes.juliadata.org/stable/lib/functions/#DataFrames.insertcols!) in DataFrames documentation; * `values` is an `AbstractVector` that indicates the values for the newly inserted variable. The length of `values` should match `ninstances(md)`; * `value` is a single value for the new variable. If a single `value` is passed as a last argument this will be copied and used for each instance in the dataset. # Examples ```julia-repl julia> md = MultiDataset([[1, 2],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> insertvariables!(md, :weight, [80, 75]) 2Γ—4 DataFrame Row β”‚ name age sex weight β”‚ String Int64 Char Int64 ─────┼───────────────────────────── 1 β”‚ Python 25 M 80 2 β”‚ Julia 26 F 75 julia> md ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 75 julia> insertvariables!(md, 2, :height, 180) 2Γ—5 DataFrame Row β”‚ name height age sex weight β”‚ String Int64 Int64 Char Int64 ─────┼───────────────────────────────────── 1 β”‚ Python 180 25 M 80 2 β”‚ Julia 180 26 F 75 julia> insertvariables!(md, :hair, ["brown", "blonde"]) 2Γ—6 DataFrame Row β”‚ name height age sex weight hair β”‚ String Int64 Int64 Char Int64 String ─────┼───────────────────────────────────────────── 1 β”‚ Python 180 25 M 80 brown 2 β”‚ Julia 180 26 F 75 blonde julia> md ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Spare variables └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ height weight hair β”‚ Int64 Int64 String ─────┼──────────────────────── 1 β”‚ 180 80 brown 2 β”‚ 180 75 blonde ``` """ function insertvariables!( md::AbstractMultiDataset, col::Integer, index::Symbol, values::AbstractVector ) @assert length(values) == ninstances(md) "value not specified for each instance " * "{length(values) != ninstances(md)}:{$(length(values)) != $(ninstances(md))}" if col != nvariables(md)+1 insertcols!(data(md), col, index => values, makeunique = true) for (i_modality, desc) in enumerate(grouped_variables(md)) for (i_var, var) in enumerate(desc) if var >= col grouped_variables(md)[i_modality][i_var] = var + 1 end end end return md else insertcols!(data(md), col, index => values, makeunique = true) end return md end function insertvariables!( md::AbstractMultiDataset, index::Symbol, values::AbstractVector ) return insertvariables!(md, nvariables(md)+1, index, values) end function insertvariables!( md::AbstractMultiDataset, col::Integer, index::Symbol, value ) return insertvariables!(md, col, index, [deepcopy(value) for i in 1:ninstances(md)]) end function insertvariables!(md::AbstractMultiDataset, index::Symbol, value) return insertvariables!(md, nvariables(md)+1, index, value) end """ hasvariables(df, variable_name) hasvariables(md, i_modality, variable_name) hasvariables(md, variable_name) hasvariables(df, variable_names) hasvariables(md, i_modality, variable_names) hasvariables(md, variable_names) Check whether a multimodal dataset contains a variable named `variable_name`. Instead of a single variable name a `Vector` of names can be passed. If this is the case, this function will return `true` only if `md` contains all the specified variables. # Arguments * `df` is an `AbstractDataFrame`, which is one of the two structure in which you want to check the presence of the variable; * `md` is an `AbstractMultiDataset`, which is one of the two structure in which you want to check the presence of the variable; * `variable_name` is a `Symbol` indicating the variable, whose existence I want to verify; * `i_modality` is an `Integer` indicating in which modality to look for the variable. # Examples ```julia-repl julia> md = MultiDataset([[1, 2],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> hasvariables(md, :age) true julia> hasvariables(md.data, :name) true julia> hasvariables(md, :height) false julia> hasvariables(md, 1, :sex) false julia> hasvariables(md, 2, :sex) true ``` ```julia-repl julia> md = MultiDataset([[1, 2],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> hasvariables(md, [:sex, :age]) true julia> hasvariables(md, 1, [:sex]) false julia> hasvariables(md, 2, [:sex]) true julia> hasvariables(md.data, [:name, :sex]) true ``` """ function hasvariables(df::AbstractDataFrame, variable_name::Symbol) return _name2index(df, variable_name) > 0 end function hasvariables( md::AbstractMultiDataset, i_modality::Integer, variable_name::Symbol ) return _name2index(modality(md, i_modality), variable_name) > 0 end function hasvariables(md::AbstractMultiDataset, variable_name::Symbol) return _name2index(md, variable_name) > 0 end function hasvariables(df::AbstractDataFrame, variable_names::AbstractVector{Symbol}) return !(0 in _name2index(df, variable_names)) end function hasvariables( md::AbstractMultiDataset, i_modality::Integer, variable_names::AbstractVector{Symbol} ) return !(0 in _name2index(modality(md, i_modality), variable_names)) end function hasvariables( md::AbstractMultiDataset, variable_names::AbstractVector{Symbol} ) return !(0 in _name2index(md, variable_names)) end """ variableindex(df, variable_name) variableindex(md, i_modality, variable_name) variableindex(md, variable_name) Return the index of the variable. When `i_modality` is passed, the function returns the index of the variable in the sub-dataframe of the modality identified by `i_modality`. It returns `0` when the variable is not contained in the modality identified by `i_modality`. # Arguments * `df` is an `AbstractDataFrame`; * `md` is an `AbstractMultiDataset`; * `variable_name` is a `Symbol` indicating the variable whose index you want to know; * `i_modality` is an `Integer` indicating of which modality you want to know the index of the variable. # Examples ```julia-repl julia> md = MultiDataset([[1, 2],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> md.data 2Γ—3 DataFrame Row β”‚ name age sex β”‚ String Int64 Char ─────┼───────────────────── 1 β”‚ Python 25 M 2 β”‚ Julia 26 F julia> variableindex(md, :age) 2 julia> variableindex(md, :sex) 3 julia> variableindex(md, 1, :name) 1 julia> variableindex(md, 2, :name) 0 julia> variableindex(md, 2, :sex) 1 julia> variableindex(md.data, :age) 2 ``` """ function variableindex(df::AbstractDataFrame, variable_name::Symbol) return _name2index(df, variable_name) end function variableindex( md::AbstractMultiDataset, i_modality::Integer, variable_name::Symbol ) return _name2index(modality(md, i_modality), variable_name) end function variableindex(md::AbstractMultiDataset, variable_name::Symbol) return _name2index(md, variable_name) end """ sparevariables(md) Return the indices of all the variables that are not contained in any of the modalities of a multimodal dataset. # Arguments * `md` is a `MultiDataset`, which is the structure whose indices of the sparevariables are to be known. # Examples ```julia-repl julia> md = MultiDataset([[1],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 julia> md.data 2Γ—3 DataFrame Row β”‚ name age sex β”‚ String Int64 Char ─────┼───────────────────── 1 β”‚ Python 25 M 2 β”‚ Julia 26 F julia> sparevariables(md) 1-element Vector{Int64}: 2 ``` """ function sparevariables(md::AbstractMultiDataset)::AbstractVector{<:Integer} return Int.(setdiff(1:nvariables(md), unique(cat(grouped_variables(md)..., dims = 1)))) end """ variables(md, i) Return the names as `Symbol`s of the variables in a multimodal dataset. When called on a object of type `MultiDataset` a `Dict` is returned which will map the modality index to an `AbstractVector{Symbol}`. Note: the order of the variable names is granted to match the order of the variables in the modality. If an index `i` is passed as second argument, then the names of the variables of the `i`-th modality are returned as an `AbstractVector`. Alternatively, `nvariables` can be called on a single modality. # Arguments * `md` is an MultiDataset; * `i` is an `Integer` indicating from which modality of the multimodal dataset to get the names of the variables. # Examples ```julia-repl julia> md = MultiDataset([[2],[3]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia julia> variables(md) Dict{Integer, AbstractVector{Symbol}} with 2 entries: 2 => [:sex] 1 => [:age] julia> variables(md, 2) 1-element Vector{Symbol}: :sex julia> variables(md, 1) 1-element Vector{Symbol}: :age julia> mod2 = modality(md, 2) 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F julia> variables(mod2) 1-element Vector{Symbol}: :sex ``` """ variables(df::AbstractDataFrame) = Symbol.(names(df)) function variables(md::AbstractMultiDataset, i::Integer) @assert 1 ≀ i ≀ nmodalities(md) "Index ($i) must be a valid modality number " * "(1:$(nmodalities(md)))" return variables(modality(md, i)) end function variables(md::AbstractMultiDataset) d = Dict{Integer,AbstractVector{Symbol}}() for i in 1:nmodalities(md) d[i] = variables(md, i) end return d end """ dropvariables!(md, i) dropvariables!(md, variable_name) dropvariables!(md, indices) dropvariables!(md, variable_names) dropvariables!(md, i_modality, indices) dropvariables!(md, i_modality, variable_names) Drop the `i`-th variable from a multimodal dataset, and return the dataset itself. # Arguments * `md` is an MultiDataset; * `i` is an `Integer` that indicates the index of the variable to drop; * `variable_name` is a `Symbol` that idicates the variable to drop; * `indices` is an `AbstractVector{Integer}` that indicates the indices of the variables to drop; * `variable_names` is an `AbstractVector{Symbol}` that indicates the variables to drop. * `i_modality`: index of the modality; if this argument is specified, `indices` are considered as relative to the `i_modality`-th modality # Examples ```julia-repl julia> md = MultiDataset([[1, 2],[3, 4, 5]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60])) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ sex height weight β”‚ Char Int64 Int64 ─────┼────────────────────── 1 β”‚ M 180 80 2 β”‚ F 175 60 julia> dropvariables!(md, 4) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ sex weight β”‚ Char Int64 ─────┼────────────── 1 β”‚ M 80 2 β”‚ F 60 julia> dropvariables!(md, :name) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 25 2 β”‚ 26 - Modality 2 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ sex weight β”‚ Char Int64 ─────┼────────────── 1 β”‚ M 80 2 β”‚ F 60 julia> dropvariables!(md, [1,3]) [ Info: Variable 1 was last variable of modality 1: removing modality ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F ``` TODO: To be reviewed """ function dropvariables!(md::AbstractMultiDataset, i::Integer; kwargs...) @assert 1 ≀ i ≀ nvariables(md) "Variable $(i) is not a valid variable index " * "(1:$(nvariables(md)))" j = 1 while j ≀ nmodalities(md) desc = grouped_variables(md)[j] if i in desc removevariable_frommodality!(md, j, i; kwargs...) else j += 1 end end select!(data(md), setdiff(collect(1:nvariables(md)), i)) for (i_modality, desc) in enumerate(grouped_variables(md)) for (i_var, var) in enumerate(desc) if var > i grouped_variables(md)[i_modality][i_var] = var - 1 end end end return md end function dropvariables!(md::AbstractMultiDataset, variable_name::Symbol; kwargs...) @assert hasvariables(md, variable_name) "MultiDataset does not contain " * "variable $(variable_name)" return dropvariables!(md, _name2index(md, variable_name); kwargs...) end function dropvariables!(md::AbstractMultiDataset, indices::AbstractVector{<:Integer}; kwargs...) for i in indices @assert 1 ≀ i ≀ nvariables(md) "Index $(i) does not correspond to an " * "variable (1:$(nvariables(md)))" end var_names = Symbol.(names(data(md))) for i_var in sort!(deepcopy(indices), rev = true) dropvariables!(md, i_var; kwargs...) end return md end function dropvariables!( md::AbstractMultiDataset, variable_names::AbstractVector{Symbol}; kwargs... ) for var_name in variable_names @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return dropvariables!(md, _name2index(md, variable_names); kwargs...) end function dropvariables!( md::AbstractMultiDataset, i_modality::Integer, indices::Union{Integer, AbstractVector{<:Integer}}; kwargs... ) indices = [ indices... ] !(1 <= i_modality <= nmodalities(md)) && throw(DimensionMismatch("Index $(i_modality) does not correspond to a modality")) varidx = grouped_variables(md)[i_modality][indices] return dropvariables!(md, varidx; kwargs...) end function dropvariables!( md::AbstractMultiDataset, i_modality::Integer, variable_names::Union{Symbol, AbstractVector{<:Symbol}}; kwargs... ) variable_names = [ variable_names... ] !(1 <= i_modality <= nmodalities(md)) && throw(DimensionMismatch("Index $(i_modality) does not correspond to a modality")) !issubset(variable_names, variables(md, i_modality)) && throw(DomainError(variable_names, "One or more variables in `var_names` are not in variables modality")) varidx = _name2index(md, variable_names) return dropvariables!(md, varidx; kwargs...) end """ keeponlyvariables!(md, indices) keeponlyvariables!(md, variable_names) Drop all variables that do not correspond to the indices in `indices` from a multimodal dataset. Note: if the dropped variables are contained in some modality they will also be removed from them; as a side effect, this can lead to the removal of modalities. # Arguments * `md` is a `MultiDataset`; * `indices` is an `AbstractVector{Integer}` that indicates which indices to keep in the multimodal dataset; * `variable_names` is an `AbstractVector{Symbol}` that indicates which variables to keep in the multimodal dataset. # Examples ```julia-repl julia> md = MultiDataset([[1, 2],[3, 4, 5],[5]], DataFrame(:name => ["Python", "Julia"], :age => [25, 26], :sex => ['M', 'F'], :height => [180, 175], :weight => [80, 60])) ● MultiDataset └─ dimensionalities: (0, 0, 0) - Modality 1 / 3 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ name age β”‚ String Int64 ─────┼─────────────── 1 β”‚ Python 25 2 β”‚ Julia 26 - Modality 2 / 3 └─ dimensionality: 0 2Γ—3 SubDataFrame Row β”‚ sex height weight β”‚ Char Int64 Int64 ─────┼────────────────────── 1 β”‚ M 180 80 2 β”‚ F 175 60 - Modality 3 / 3 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ weight β”‚ Int64 ─────┼──────── 1 β”‚ 80 2 β”‚ 60 julia> keeponlyvariables!(md, [1,3,4]) [ Info: Variable 5 was last variable of modality 3: removing modality ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ sex height β”‚ Char Int64 ─────┼────────────── 1 β”‚ M 180 2 β”‚ F 175 julia> keeponlyvariables!(md, [:name, :sex]) ● MultiDataset └─ dimensionalities: (0, 0) - Modality 1 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia - Modality 2 / 2 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ sex β”‚ Char ─────┼────── 1 β”‚ M 2 β”‚ F ``` TODO: review """ function keeponlyvariables!( md::AbstractMultiDataset, indices::AbstractVector{<:Integer}; kwargs... ) return dropvariables!(md, setdiff(collect(1:nvariables(md)), indices); kwargs...) end keeponlyvariables!(md::AbstractMultiDataset, index::Integer) = keeponlyvariables!(md, [index]) function keeponlyvariables!( md::AbstractMultiDataset, variable_names::AbstractVector{Symbol}; kwargs... ) for var_name in variable_names @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return dropvariables!( md, setdiff(collect(1:nvariables(md)), _name2index(md, variable_names)); kwargs...) end function keeponlyvariables!( md::AbstractMultiDataset, variable_names::AbstractVector{<:AbstractVector{Symbol}}; kwargs... ) for var_name in variable_names @assert hasvariables(md, var_name) "MultiDataset does not contain " * "variable $(var_name)" end return dropvariables!( md, setdiff(collect(1:nvariables(md)), _name2index(md, variable_names)); kwargs...) end """ dropsparevariables!(md) Drop all variables that are not contained in any of the modalities in a multimodal dataset. # Arguments * `md` is a `MultiDataset`, that is the structure at which sparevariables will be dropped. # Examples ```julia-repl julia> md = MultiDataset([[1]], DataFrame(:age => [30, 9], :name => ["Python", "Julia"])) ● MultiDataset └─ dimensionalities: (0,) - Modality 1 / 1 └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ age β”‚ Int64 ─────┼─────── 1 β”‚ 30 2 β”‚ 9 - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia julia> dropsparevariables!(md) 2Γ—1 DataFrame Row β”‚ name β”‚ String ─────┼──────── 1 β”‚ Python 2 β”‚ Julia ``` """ function dropsparevariables!(md::AbstractMultiDataset; kwargs...) spare = sort!(sparevariables(md), rev = true) var_names = Symbol.(names(data(md))) result = DataFrame([(var_names[i] => data(md)[:,i]) for i in reverse(spare)]...) for i_var in spare dropvariables!(md, i_var; kwargs...) end return result end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
2187
lmd = LabeledMultiDataset( MultiDataset([[1], [3]], deepcopy(df_langs)), [2], ) @test isa(lmd, LabeledMultiDataset) @test isa(modality(lmd, 1), SubDataFrame) @test isa(modality(lmd, 2), SubDataFrame) @test modality(lmd, [1,2]) == [modality(lmd, 1), modality(lmd, 2)] @test isa(first(eachmodality(lmd)), SubDataFrame) @test length(eachmodality(lmd)) == nmodalities(lmd) @test nmodalities(lmd) == 2 @test nvariables(lmd) == 3 @test nvariables(lmd, 1) == 1 @test nvariables(lmd, 2) == 1 @test ninstances(lmd) == length(eachinstance(lmd)) == 2 @test_throws ErrorException slicedataset(lmd, []) @test_nowarn slicedataset(lmd, :) @test_nowarn slicedataset(lmd, 1) @test_nowarn slicedataset(lmd, [1]) @test ninstances(slicedataset(lmd, :)) == 2 @test ninstances(slicedataset(lmd, 1)) == 1 @test ninstances(slicedataset(lmd, [1])) == 1 @test_nowarn concatdatasets(lmd, lmd, lmd) @test_nowarn vcat(lmd, lmd, lmd) @test dimensionality(lmd) == (0, 1) @test dimensionality(lmd, 1) == 0 @test dimensionality(lmd, 2) == 1 # labels @test nlabelingvariables(lmd) == 1 @test labels(lmd) == [Symbol(names(df_langs)[2])] @test labels(lmd, 1) == Dict(Symbol(names(df_langs)[2]) => df_langs[1, 2]) @test labels(lmd, 2) == Dict(Symbol(names(df_langs)[2]) => df_langs[2, 2]) @test labeldomain(lmd, 1) == Set(df_langs[:,2]) # remove label unsetaslabeling!(lmd, 2) @test nlabelingvariables(lmd) == 0 setaslabeling!(lmd, 2) @test nlabelingvariables(lmd) == 1 # label @test label(lmd, 1, 1) == "Python" @test label(lmd, 2, 1) == "Julia" # joinlabels! lmd = LabeledMultiDataset( MultiDataset([[1], [4]], deepcopy(df_data)), [2, 3], ) joinlabels!(lmd) @test labels(lmd) == [Symbol(join([:age, :name], '_'))] @test label(lmd, 1, 1) == string(30, '_', "Python") @test label(lmd, 2, 1) == string(9, '_', "Julia") # dropvariables! lmd = LabeledMultiDataset( MultiDataset([[2], [4]], deepcopy(df_data)), [3], ) @test nmodalities(lmd) == 2 @test nvariables(lmd) == 4 dropvariables!(lmd, 2) @test MultiData.labeling_variables(lmd) == [2] @test nvariables(lmd) == 3 @test nmodalities(lmd) == 1 @test nlabelingvariables(lmd) == 1 @test labels(lmd) == [Symbol(names(df_data)[3])]
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
8475
a = MultiDataset([deepcopy(df_langs), DataFrame(:id => [1, 2])]) b = MultiDataset([[2,3,4], [1]], df_data) c = MultiDataset([[:age,:name,:stat], [:id]], df_data) @test b == c d = MultiDataset([[:age,:name,:stat], :id], df_data) @test c == d @test_throws ErrorException MultiDataset([[:age,:name,4], :id], df_data) @test MultiData.data(a) != MultiData.data(b) @test collect(eachmodality(a)) == collect(eachmodality(b)) md = MultiDataset([[1],[2]], deepcopy(df)) original_md = deepcopy(md) @test isa(md, MultiDataset) @test isa(first(eachmodality(md)), SubDataFrame) @test length(eachmodality(md)) == nmodalities(md) @test modality(md, [1,2]) == [modality(md, 1), modality(md, 2)] @test isa(modality(md, 1), SubDataFrame) @test isa(modality(md, 2), SubDataFrame) @test nmodalities(md) == 2 @test nvariables(md) == 2 @test nvariables(md, 1) == 1 @test nvariables(md, 2) == 1 @test ninstances(md) == length(eachinstance(md)) == 3 @test_throws ErrorException slicedataset(md, []) @test_nowarn slicedataset(md, :) @test_nowarn slicedataset(md, 1) @test_nowarn slicedataset(md, [1]) @test ninstances(slicedataset(md, :)) == 3 @test ninstances(slicedataset(md, 1)) == 1 @test ninstances(slicedataset(md, [1])) == 1 @test_nowarn concatdatasets(md, md, md) @test_nowarn vcat(md, md, md) @test dimensionality(md) == (0, 1) @test dimensionality(md, 1) == 0 @test dimensionality(md, 2) == 1 # # test auto selection of modalities # auto_md = MultiDataset(deepcopy(df)) # @test nmodalities(auto_md) == 0 # @test length(sparevariables(auto_md)) == nvariables(auto_md) auto_md_all = MultiDataset(deepcopy(df); group = :all) @test auto_md_all == md @test !(:mixed in dimensionality(auto_md_all)) lang_md1 = MultiDataset(df_langs; group = :all) @test nmodalities(lang_md1) == 2 @test !(:mixed in dimensionality(lang_md1)) lang_md2 = MultiDataset(df_langs; group = [1]) @test nmodalities(lang_md2) == 3 dims_md2 = dimensionality(lang_md2) @test length(filter(x -> isequal(x, 0), dims_md2)) == 2 @test length(filter(x -> isequal(x, 1), dims_md2)) == 1 @test !(:mixed in dimensionality(lang_md2)) # test equality between mixed-columns datasets md1_sim = MultiDataset([[1,2]], DataFrame(:b => [3,4], :a => [1,2])) md2_sim = MultiDataset([[2,1]], DataFrame(:a => [1,2], :b => [3,4])) @test md1_sim β‰ˆ md2_sim @test md1_sim == md2_sim # addmodality! @test addmodality!(md, [1, 2]) == md # test return @test nmodalities(md) == 3 @test nvariables(md) == 2 @test nvariables(md, 3) == 2 @test dimensionality(md) == (0, 1, :mixed) @test dimensionality(md, 3) == :mixed @test dimensionality(md, 3; force = :min) == 0 @test dimensionality(md, 3; force = :max) == 1 # removemodality! @test removemodality!(md, 3) == md # test return @test nmodalities(md) == 2 @test nvariables(md) == 2 @test_throws Exception nvariables(md, 3) == 2 # sparevariables @test length(sparevariables(md)) == 0 removemodality!(md, 2) @test length(sparevariables(md)) == 1 addmodality!(md, [2]) @test length(sparevariables(md)) == 0 # pushinstances! new_inst = DataFrame(:sex => ["F"], :h => [deepcopy(ts_cos)])[1,:] @test pushinstances!(md, new_inst) == md # test return @test ninstances(md) == 4 pushinstances!(md, ["M", deepcopy(ts_cos)]) @test ninstances(md) == 5 # deleteinstances! @test deleteinstances!(md, ninstances(md)) == md # test return @test ninstances(md) == 4 deleteinstances!(md, ninstances(md)) @test ninstances(md) == 3 # keeponlyinstances! pushinstances!(md, ["F", deepcopy(ts_cos)]) pushinstances!(md, ["F", deepcopy(ts_cos)]) pushinstances!(md, ["F", deepcopy(ts_cos)]) @test keeponlyinstances!(md, [1, 2, 3]) == md # test return @test ninstances(md) == 3 for i in 1:ninstances(md) @test instance(md, i) == instance(original_md, i) end # modality manipulation @test addvariable_tomodality!(md, 1, 2) === md # test return @test nvariables(md, 1) == 2 @test dimensionality(md, 1) == :mixed @test removevariable_frommodality!(md, 1, 2) === md # test return @test nvariables(md, 1) == 1 @test dimensionality(md, 1) == 0 # variables manipulation @test insertmodality!(md, deepcopy(ages)) == md # test return @test nmodalities(md) == 3 @test nvariables(md, 3) == 1 @test dropmodalities!(md, 3) == md # test return @test nmodalities(md) == 2 insertmodality!(md, deepcopy(ages), [1]) @test nmodalities(md) == 3 @test nvariables(md, 3) == 2 @test dimensionality(md, 3) == 0 @test_nowarn md[:,:] @test_nowarn md[1,:] @test_nowarn md[:,1] @test_nowarn md[:,1:2] @test_nowarn md[[1,2],:] @test_nowarn md[1,1] @test_nowarn md[[1,2],[1,2]] @test_nowarn md[1,[1,2]] @test_nowarn md[[1,2],1] # drop "inner" modality and multiple modalities in one operation insertmodality!(md, DataFrame(:t2 => [deepcopy(ts_sin), deepcopy(ts_cos), deepcopy(ts_sin)])) @test nmodalities(md) == 4 @test nvariables(md) == 4 @test nvariables(md, nmodalities(md)) == 1 # dropping the modality 3 should result in dropping the first too # because the variable at index 1 is shared between them and will be # dropped but modality 1 has just the variable at index 1 in it, this # should result in dropping that modality too dropmodalities!(md, 3) @test nmodalities(md) == 2 @test nvariables(md) == 2 @test nvariables(md, nmodalities(md)) == 1 dropmodalities!(md, 2) @test nmodalities(md) == 1 @test nvariables(md) == 1 # RESET md = deepcopy(original_md) # dropsparevariables! removemodality!(md, 2) @test dropsparevariables!(md) == DataFrame(names(df)[2] => df[:,2]) # keeponlyvariables! md_var_manipulation = MultiDataset([[1], [2], [3, 4]], DataFrame( :age => [30, 9], :name => ["Python", "Julia"], :stat1 => [deepcopy(ts_sin), deepcopy(ts_cos)], :stat2 => [deepcopy(ts_cos), deepcopy(ts_sin)] ) ) md_var_manipulation_original = deepcopy(md_var_manipulation) @test keeponlyvariables!(md_var_manipulation, [1, 3]) == md_var_manipulation @test md_var_manipulation == MultiDataset([[1], [2]], DataFrame( :age => [30, 9], :stat1 => [deepcopy(ts_sin), deepcopy(ts_cos)] ) ) # addressing variables by name md1 = MultiDataset([[1],[2]], DataFrame( :age => [30, 9], :name => ["Python", "Julia"], ) ) md_var_names_original = deepcopy(md1) md2 = deepcopy(md1) @test hasvariables(md1, :age) == true @test hasvariables(md1, :name) == true @test hasvariables(md1, :missing_variable) == false @test hasvariables(md1, [:age, :name]) == true @test hasvariables(md1, [:age, :missing_variable]) == false @test hasvariables(md1, 1, :age) == true @test hasvariables(md1, 1, :name) == false @test hasvariables(md1, 1, [:age, :name]) == false @test hasvariables(md1, 2, :name) == true @test hasvariables(md1, 2, [:name]) == true @test variableindex(md1, :age) == 1 @test variableindex(md1, :missing_variable) == 0 @test variableindex(md1, 1, :age) == 1 @test variableindex(md1, 2, :age) == 0 @test variableindex(md1, 2, :name) == 1 # addressing variables by name - insertmodality! md1 = deepcopy(md_var_names_original) md2 = deepcopy(md_var_names_original) @test addmodality!(md1, [1]) == addmodality!(md2, [:age]) # addressing variables by name - addvariable_tomodality! md1 = deepcopy(md_var_names_original) md2 = deepcopy(md_var_names_original) @test addvariable_tomodality!(md1, 2, 1) == addvariable_tomodality!(md2, 2, :age) # addressing variables by name - removevariable_frommodality! @test removevariable_frommodality!(md1, 2, 1) == removevariable_frommodality!(md2, 2, :age) # addressing variables by name - dropvariables! md1 = deepcopy(md_var_names_original) md2 = deepcopy(md_var_names_original) @test dropvariables!(md1, 1) == dropvariables!(md2, :age) @test md1 == md2 # addressing variables by name - insertmodality! md1 = deepcopy(md_var_names_original) md2 = deepcopy(md_var_names_original) @test insertmodality!( md1, DataFrame(:stat1 => [deepcopy(ts_sin), deepcopy(ts_cos)]), [1] ) == insertmodality!( md2, DataFrame(:stat1 => [deepcopy(ts_sin), deepcopy(ts_cos)]), [:age] ) # addressing variables by name - dropvariables! @test dropvariables!(md1, [1, 2]) == dropvariables!(md2, [:age, :name]) @test md1 == md2 @test nmodalities(md1) == nmodalities(md2) == 1 @test nvariables(md1) == nvariables(md2) == 1 @test nvariables(md1, 1) == nvariables(md2, 1) == 1 # addressing variables by name - keeponlyvariables! md1 = deepcopy(md_var_names_original) md2 = deepcopy(md_var_names_original) @test keeponlyvariables!(md1, [1]) == keeponlyvariables!(md2, [:age]) @test md1 == md2
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
1267
_ninstances = 4 for ((channel_size1, channel_size2), shouldfail) in [ ((),()) => false, ((1),(1)) => false, ((1,2),(1,2)) => false, ((1,2),(1,)) => true, ((1,),()) => true, ((1,2),()) => true, ] local df = DataFrame( x=[rand(channel_size1...) for i_instance in 1:_ninstances], y=[rand(channel_size2...) for i_instance in 1:_ninstances] ) if shouldfail @test_throws AssertionError MultiData.dataframe2cube(df) else cube, varnames = @test_nowarn MultiData.dataframe2cube(df) end end begin local df = MultiData.dimensional2dataframe(eachslice(rand(3,4); dims=2), ["a", "b", "c"]) @test first(unique(size.(dataframe2dimensional(df)[1]))) == (3,) end begin local df = MultiData.dimensional2dataframe(eachslice(rand(1,3,4); dims=3), ["a", "b", "c"]) @test first(unique(size.(dataframe2dimensional(df)[1]))) == (1,3) end begin local df = MultiData.dimensional2dataframe(eachslice(rand(2,3,4); dims=3), ["a", "b", "c"]) @test first(unique(size.(dataframe2dimensional(df)[1]))) == (2,3) end begin local df = MultiData.dimensional2dataframe(eachslice(rand(2,2,3,4); dims=4), ["a", "b", "c"]) @test first(unique(size.(dataframe2dimensional(df)[1]))) == (2,2,3) end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
3806
lmd = LabeledMultiDataset( MultiDataset([[2], [4]], deepcopy(df_data)), [3], ) path = relpath(joinpath(testing_savedataset)) savedataset(path, lmd, force = true) # Labels.csv @test isfile(joinpath(path, _ds_labels)) @test length(split(readline(joinpath(path, _ds_labels)), ","))-1 == 1 df_labels = CSV.read(joinpath(path, _ds_labels), DataFrame; types = String) df_labels[!,:id] = parse.(Int64, replace.(df_labels[!,:id], _ds_inst_prefix => "")) @test df_labels == lmd.md.data[:,sparevariables(lmd.md)] # Dataset Metadata.txt @test isfile(joinpath(path, _ds_metadata)) @test "supervised=true" in readlines(joinpath(path, _ds_metadata)) @test length( filter( x -> startswith(x, _ds_modality_prefix), readdir(joinpath(path, _ds_inst_prefix * "1")) )) == 2 @test parse.(Int64, split(filter( (row) -> startswith(row, "num_modalities"), readlines(joinpath(path, _ds_metadata)) )[1], "=")[2] ) == 2 @test length( filter( row -> startswith(row, "modality"), readlines(joinpath(path, _ds_metadata)) )) == 2 modalities = filter( row -> startswith(row, "modality"), readlines(joinpath(path, _ds_metadata)) ) @test all([parse.(Int64, split(string(modality), "=")[2]) == dimensionality(lmd[i_modality]) for (i_modality, modality) in enumerate(modalities)]) @test parse(Int64, split( filter( row -> startswith(row, "num_classes"), readlines(joinpath(path, _ds_metadata)) )[1], "=")[2]) == 1 @test length( filter( x -> startswith(x, _ds_inst_prefix), readdir(joinpath(path)) )) == 2 # instances Metadata.txt @test all([isfile(joinpath(path, _ds_inst_prefix * string(i), _ds_metadata)) for i in 1:nrow(lmd[1])]) for i_inst in 1:ninstances(lmd) dim_modality_rows = filter( row -> startswith(row, "dim_modality"), readlines(joinpath(path, string(_ds_inst_prefix, i_inst), _ds_metadata)) ) # for each modality check the proper dimensionality was saved for (i_modality, dim_modality) in enumerate(dim_modality_rows) @test strip(split(dim_modality, "=")[2]) == string( size(first(first(lmd[i_modality]))) ) end end @test length([filter( row -> occursin(string(labels), row), readlines(joinpath(path, string(_ds_inst_prefix, modality), _ds_metadata)) ) for labels in labels(lmd) for modality in 1:nmodalities(lmd)]) == 2 @test [filter( row -> occursin(string(labels), row), readlines(joinpath(path, string(_ds_inst_prefix, modality), _ds_metadata)) ) for labels in labels(lmd) for modality in 1:nmodalities(lmd)] == [ ["name=Python"], ["name=Julia"] ] # Example @test all([isdir(joinpath(path, string(_ds_inst_prefix, instance))) for instance in 1:nrow(lmd[1])]) @test all([isfile(joinpath( path, string(_ds_inst_prefix, instance), string(_ds_modality_prefix, i_modality, ".csv") )) for i_modality in 1:length(lmd) for instance in 1:nrow(lmd[1])]) saved_lmd = loaddataset(path) @test saved_lmd == lmd # load MD (a dataset without Labels.csv isa an MD) rm(joinpath(path, _ds_labels)) ds_metadata_lines = readlines(joinpath(path, _ds_metadata)) rm(joinpath(path, _ds_metadata)) file = open(joinpath(path, _ds_metadata), "w+") for line in ds_metadata_lines if occursin("supervised", line) println(file, "supervised=false") elseif occursin("num_classes", line) else println(file, line) end end close(file) md = loaddataset(path) @test md isa MultiDataset # saving an MD should not generate a Labels.csv savedataset(path, md, force = true) @test !isfile(joinpath(path, _ds_labels))
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
code
1210
using MultiData using Test using CSV const testing_savedataset = mktempdir(prefix = "saved_dataset") const _ds_inst_prefix = MultiData._ds_inst_prefix const _ds_modality_prefix = MultiData._ds_modality_prefix const _ds_metadata = MultiData._ds_metadata const _ds_labels = MultiData._ds_labels const ts_sin = [sin(i) for i in 1:50000] const ts_cos = [cos(i) for i in 1:50000] const df = DataFrame( :sex => ["F", "F", "M"], :h => [deepcopy(ts_sin), deepcopy(ts_cos), deepcopy(ts_sin)] ) const df_langs = DataFrame( :age => [30, 9], :name => ["Python", "Julia"], :stat => [deepcopy(ts_sin), deepcopy(ts_cos)] ) const df_data = DataFrame( :id => [1, 2], :age => [30, 9], :name => ["Python", "Julia"], :stat => [deepcopy(ts_sin), deepcopy(ts_cos)] ) const ages = DataFrame(:age => [35, 38, 37]) @testset "MultiData.jl" begin @testset "MultiDataset" begin include("MultiDataset.jl") end @testset "LabeledMultiDataset" begin include("LabeledMultiDataset.jl") end @testset "Filesystem operations" begin include("filesystem.jl") end @testset "Dimensional data" begin include("dimensional-data.jl") end end
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
2126
<div align="center"><a href="https://github.com/aclai-lab/Sole.jl"><img src="logo.png" alt="" title="This package is part of Sole.jl" width="200"></a></div> # MultiData.jl – Multimodal datasets [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://aclai-lab.github.io/MultiData.jl) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://aclai-lab.github.io/MultiData.jl/dev) [![Build Status](https://api.cirrus-ci.com/github/aclai-lab/MultiData.jl.svg?branch=main)](https://cirrus-ci.com/github/aclai-lab/MultiData.jl) [![Coverage](https://codecov.io/gh/aclai-lab/MultiData.jl/branch/main/graph/badge.svg?token=LT9IYIYNFI)](https://codecov.io/gh/aclai-lab/MultiData.jl) <!-- [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/aclai-lab/MultiData.jl/HEAD?labpath=pluto-demo.jl) --> <!-- [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://aclai-lab.github.io/MultiData.jl/dev) --> ## In a nutshell *MultiData* provides a **machine learning oriented** data layer on top of DataFrames.jl for: - Instantiating and manipulating [*multimodal*](https://en.wikipedia.org/wiki/Multimodal_learning) datasets for (un)supervised machine learning; - Describing datasets via basic statistical measures; - Saving to/loading from *npy/npz* format, as well as a custom CSV-based format (with interesting features such as *lazy loading* of datasets); - Performing basic data processing operations (e.g., windowing, moving average, etc.). <!-- - Dealing with [*(non-)tabular* data](https://en.wikipedia.org/wiki/Unstructured_data) (e.g., graphs, images, time-series, etc.); --> <!-- If you are used to dealing with unstructured/multimodal data, but cannot find the right tools in Julia, you will find [*SoleFeatures.jl*](https://github.com/aclai-lab/SoleFeatures.jl/) useful! --> ## About The package is developed by the [ACLAI Lab](https://aclai.unife.it/en/) @ University of Ferrara. *MultiData.jl* was originally built for representing multimodal datasets in [*Sole.jl*](https://github.com/aclai-lab/Sole.jl), an open-source framework for *symbolic machine learning*.
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
2476
```@meta CurrentModule = MultiData ``` # [Datasets](@id man-datasets) ```@contents Pages = ["datasets.md"] ``` A machine learning dataset are a collection of instances (or samples), each one described by a number of variables. In the case of *tabular* data, a dataset looks like a database table, where every column is a variable, and each row corresponds to a given instance. However, a dataset can also be *non-tabular*; for example, each instance can consist of a multivariate time-series, or an image. When data is composed of different [modalities](https://en.wikipedia.org/wiki/Multimodal_learning)) combining their statistical properties is non-trivial, since they may be quite different in nature one another. The abstract representation of a multimodal dataset provided by this package is the [`AbstractMultiDataset`](@ref). ```@docs AbstractMultiDataset grouped_variables data dimensionality ``` ## [Unlabeled Datasets](@id man-unlabeled-datasets) In *unlabeled datasets* there is no labeling variable, and all of the variables (also called *feature variables*, or *features*) have equal role in the representation. These datasets are used in [unsupervised learning](https://en.wikipedia.org/wiki/Unsupervised_learning) contexts, for discovering internal correlation patterns between the features. Multimodal *unlabeled* datasets can be instantiated with [`MultiDataset`](@ref). ```@autodocs Modules = [MultiData] Pages = ["src/MultiDataset.jl"] ``` ## [Labeled Datasets](@id man-supervised-datasets) In *labeled datasets*, one or more variables are considered to have special semantics with respect to the other variables; each of these *labeling variables* (or *target variables*) can be thought as assigning a label to each instance, which is typically a categorical value (*classification label*) or a numerical value (*regression label*). [Supervised learning](https://en.wikipedia.org/wiki/Unsupervised_learning) methods can be applied on these datasets for modeling the target variables as a function of the feature variables. As an extension of the [`AbstractMultiDataset`](@ref), [`AbstractLabeledMultiDataset`](@ref) has an interface that can be implemented to represent multimodal labeled datasets. ```@docs AbstractLabeledMultiDataset labeling_variables dataset ``` Multimodal *labeled* datasets can be instantiated with [`LabeledMultiDataset`](@ref). ```@autodocs Modules = [MultiData] Pages = ["LabeledMultiDataset.jl", "labels.jl"] ```
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
1925
```@meta CurrentModule = MultiData ``` # [Description](@id man-description) Just like `DataFrame`s, `MultiDataset`s can be described using the method [`describe`](@ref): ```julia-repl julia> ts_cos = [cos(i) for i in 1:50000]; julia> ts_sin = [sin(i) for i in 1:50000]; julia> df_data = DataFrame( :id => [1, 2], :age => [30, 9], :name => ["Python", "Julia"], :stat => [deepcopy(ts_sin), deepcopy(ts_cos)] ); julia> md = MultiDataset([[2,3], [4]], df_data); julia> description = describe(md) 2-element Vector{DataFrame}: 2Γ—7 DataFrame Row β”‚ variable mean min median max nmissing eltype β”‚ Symbol Union… Any Union… Any Int64 DataType ─────┼───────────────────────────────────────────────────────────── 1 β”‚ age 19.5 9 19.5 30 0 Int64 2 β”‚ name Julia Python 0 String 1Γ—7 DataFrame Row β”‚ Variables mean min β‹― β”‚ Symbol Array… Array… β‹― ─────┼────────────────────────────────────────────────────────────────────────── 1 β”‚ stat AbstractFloat[8.63372e-6; -2.848… AbstractFloat[-1.0; -1.0 β‹― 5 columns omitted ``` the `describe` implementation for `MultiDataset`s will try to find the best _statistical measures_ that can be used to the type of data the modality contains. In the example the 2nd modality, which contains variables (just one in the example) of data of type `Vector{Float64}`, was described by applying the well known 22 features from the package [Catch22.jl](https://github.com/brendanjohnharris/Catch22.jl) plus `maximum`, `minimum` and `mean` as the vectors were time series. ```@docs describe ```
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
185
```@meta CurrentModule = MultiData ``` # [Filesystem](@id man-filesystem) ```@contents Pages = ["filesystem.md"] ``` ```@autodocs Modules = [MultiData] Pages = ["filesystem.jl"] ```
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
3505
```@meta CurrentModule = MultiData ``` # MultiData The aim of this package is to provide a simple and comfortable interface for managing multimodal data. It is built on top of [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl/) with Machine learning applications in mind. ```@contents ``` ## Installation Currently this packages is still not registered so you need to run the following commands in a Julia REPL to install it: ```julia import Pkg Pkg.add("MultiData") ``` To install the developement version, run: ```julia import Pkg Pkg.add("https://github.com/aclai-lab/MultiData.jl#dev") ``` ## Usage To instantiate a multimodal dataset, use the [`MultiDataset`](@ref) constructor by providing: *a)* a `DataFrame` containing all variables from different modalities, and *b)* a `Vector{Vector{Union{Symbol,String,Int64}}}` object representing a grouping of some of the variables (identified by column index or name) into different modalities. ```julia-repl julia> using MultiData julia> ts_cos = [cos(i) for i in 1:50000]; julia> ts_sin = [sin(i) for i in 1:50000]; julia> df_data = DataFrame( :id => [1, 2], :age => [30, 9], :name => ["Python", "Julia"], :stat => [deepcopy(ts_sin), deepcopy(ts_cos)] ) 2Γ—4 DataFrame Row β”‚ id age name stat β”‚ Int64 Int64 String Array… ─────┼───────────────────────────────────────────────────────── 1 β”‚ 1 30 Python [0.841471, 0.909297, 0.14112, -0… 2 β”‚ 2 9 Julia [0.540302, -0.416147, -0.989992,… julia> grouped_variables = [[2,3], [4]]; # group 2nd and 3rd variables in the first modality # the 4th variable in the second modality and # leave the first variable as a "spare variable" julia> md = MultiDataset(df_data, grouped_variables) ● MultiDataset └─ dimensionalities: (0, 1) - Modality 1 / 2 └─ dimensionality: 0 2Γ—2 SubDataFrame Row β”‚ age name β”‚ Int64 String ─────┼─────────────── 1 β”‚ 30 Python 2 β”‚ 9 Julia - Modality 2 / 2 └─ dimensionality: 1 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… - Spare variables └─ dimensionality: 0 2Γ—1 SubDataFrame Row β”‚ id β”‚ Int64 ─────┼─────── 1 β”‚ 1 2 β”‚ 2 ``` Now `md` holds a `MultiDataset` and all of its modalities can be conveniently iterated as elements of a `Vector`: ```julia-repl julia> for (i, f) in enumerate(md) println("Modality: ", i) println(f) println() end Modality: 1 2Γ—2 SubDataFrame Row β”‚ age name β”‚ Int64 String ─────┼─────────────── 1 β”‚ 30 Python 2 β”‚ 9 Julia Modality: 2 2Γ—1 SubDataFrame Row β”‚ stat β”‚ Array… ─────┼─────────────────────────────────── 1 β”‚ [0.841471, 0.909297, 0.14112, -0… 2 β”‚ [0.540302, -0.416147, -0.989992,… ``` Note that each element of a `MultiDataset` is a `SubDataFrame`: ```julia-repl julia> eltype(md) SubDataFrame ``` !!! note "Spare variables" Spare variables will never be seen when accessing a `MultiDataset` through its iterator interface. To access them see [`sparevariables`](@ref).
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
428
```@meta CurrentModule = MultiData ``` # [Manipulation](@id man-manipulation) ```@contents Pages = ["manipulation.md"] ``` ## [Modalities](@id man-modalities) ```@autodocs Modules = [MultiData] Pages = ["modalities.jl"] ``` ## [Variables](@id man-variables) ```@autodocs Modules = [MultiData] Pages = ["variables.jl"] ``` ## [Instances](@id man-instances) ```@autodocs Modules = [MultiData] Pages = ["instances.jl"] ```
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
0.1.2
c1697bb6dc6f2b4fbaf8df3a3f23bf06a900acad
docs
154
```@meta CurrentModule = MultiData ``` # [Utils](@id man-utils) ```@contents Pages = ["utils.md"] ``` ```@docs paa linearize_data unlinearize_data ```
MultiData
https://github.com/aclai-lab/MultiData.jl.git
[ "MIT" ]
1.4.0
427421c277f82c5749002c1b23cb1aac91beb0a8
code
1481
module LogarithmicNumbersForwardDiffExt using ForwardDiff: ForwardDiff, Dual, partials using LogarithmicNumbers: LogarithmicNumbers, AnyLogarithmic, Logarithmic, ULogarithmic ## Promotion rules function Base.promote_rule(::Type{Logarithmic{R}}, ::Type{Dual{T,V,N}}) where {R<:Real,T,V,N} return Dual{T,promote_rule(Logarithmic{R}, V),N} end function Base.promote_rule(::Type{ULogarithmic{R}}, ::Type{Dual{T,V,N}}) where {R<:Real,T,V,N} return Dual{T,promote_rule(ULogarithmic{R}, V),N} end ## Constructors # Based on the unary_definition macro in ForwardDiff.jl (https://github.com/JuliaDiff/ForwardDiff.jl/blob/6a6443b754b0fcfb4d671c9a3d01776df801f498/src/dual.jl#L230-L244) function Base.exp(::Type{ULogarithmic{R}}, d::Dual{T,V,N}) where {R<:Real,T,V,N} x = ForwardDiff.value(d) val = exp(ULogarithmic{R}, x) deriv = exp(ULogarithmic{R}, x) return ForwardDiff.dual_definition_retval(Val{T}(), val, deriv, partials(d)) end function Base.exp(::Type{Logarithmic{R}}, d::Dual{T,V,N}) where {R<:Real,T,V,N} x = ForwardDiff.value(d) val = exp(Logarithmic{R}, x) deriv = exp(Logarithmic{R}, x) return ForwardDiff.dual_definition_retval(Val{T}(), val, deriv, partials(d)) end function Base.exp(::Type{ULogarithmic}, d::Dual{T,V,N}) where {T,V,N} return exp(ULogarithmic{V}, d) end function Base.exp(::Type{Logarithmic}, d::Dual{T,V,N}) where {T,V,N} return exp(Logarithmic{V}, d) end # TODO: do we need more constructors? end
LogarithmicNumbers
https://github.com/cjdoris/LogarithmicNumbers.jl.git
[ "MIT" ]
1.4.0
427421c277f82c5749002c1b23cb1aac91beb0a8
code
15470
""" A [logarithmic number system](https://en.wikipedia.org/wiki/Logarithmic_number_system). Provides the signed [`Logarithmic`](@ref) and unsigned [`ULogarithmic`](@ref) types, which represent real numbers and positive real numbers respectively. """ module LogarithmicNumbers using Random export ULogarithmic, ULogFloat16, ULogFloat32, ULogFloat64 export Logarithmic, LogFloat16, LogFloat32, LogFloat64 ### Types """ ULogarithmic(x) Represents the positive real number `x` by storing its logarithm. !!! tip If you know `logx=log(x)` then use [`exp(ULogarithmic, logx)`](@ref exp(::Type{ULogarithmic},::Real)) instead. """ struct ULogarithmic{T} <: Real log::T Base.exp(::Type{ULogarithmic{T}}, x::T) where {T<:Real} = new{T}(x) end """ Logarithmic(x) Represents the real number `x` by storing its absolute value as a [`ULogarithmic`](@ref) and its sign bit. !!! tip If you know `logx=log(abs(x))` then use [`exp(Logarithmic, logx)`](@ref exp(::Type{Logarithmic},::Real)) instead. """ struct Logarithmic{T} <: Real abs::ULogarithmic{T} signbit::Bool Logarithmic{T}(abs::ULogarithmic{T}, signbit::Bool=false) where {T<:Real} = new{T}(abs, signbit) end const ULogFloat16 = ULogarithmic{Float16} const ULogFloat32 = ULogarithmic{Float32} const ULogFloat64 = ULogarithmic{Float64} const LogFloat16 = Logarithmic{Float16} const LogFloat32 = Logarithmic{Float32} const LogFloat64 = Logarithmic{Float64} const AnyLogarithmic{T} = Union{ULogarithmic{T}, Logarithmic{T}} ### Constructors function Base.exp(::Type{ULogarithmic{T}}, x::Real) where {T<:Real} exp(ULogarithmic{T}, convert(T, x)) end function Base.exp(::Type{ULogarithmic}, x::T) where {T<:Real} exp(ULogarithmic{T}, x) end function Base.exp(::Type{Logarithmic{T}}, x::Real) where {T<:Real} Logarithmic{T}(exp(ULogarithmic{T}, x)) end function Base.exp(::Type{Logarithmic}, x::T) where {T<:Real} exp(Logarithmic{T}, x) end uexp(x) = exp(ULogarithmic, x) uexp(T,x) = exp(ULogarithmic{T}, x) function ULogarithmic{T}(x::Real) where {T<:Real} exp(ULogarithmic{T}, log(x)) end function ULogarithmic{T}(x::ULogarithmic{T}) where {T<:Real} x end function ULogarithmic(x::Real) exp(ULogarithmic, log(x)) end function ULogarithmic(x::ULogarithmic) x end function Logarithmic{T}(x::Real) where {T<:Real} Logarithmic{T}(ULogarithmic{T}(abs(x)), signbit(x)) end function Logarithmic{T}(x::Logarithmic{T}) where {T<:Real} x end function Logarithmic{T}(abs::ULogarithmic, signbit::Bool=false) where {T<:Real} Logarithmic{T}(ULogarithmic{T}(abs), signbit) end function Logarithmic(x::Real) Logarithmic(ULogarithmic(abs(x)), signbit(x)) end function Logarithmic(abs::ULogarithmic{T}, signbit::Bool=false) where {T<:Real} Logarithmic{T}(abs, signbit) end function Logarithmic(x::Logarithmic) x end ### float / big / signed / unsigned function Base.float(x::AnyLogarithmic) AbstractFloat(x) end function (::Type{T})(x::ULogarithmic) where {T<:AbstractFloat} T(exp(float(x.log))) end function (::Type{T})(x::Logarithmic) where {T<:AbstractFloat} y = float(x.abs) x.signbit ? T(-y) : T(y) end function Base.big(x::ULogarithmic{T}) where {T} uexp(big(x.log)) end function Base.big(x::Logarithmic) Logarithmic(big(x.abs), x.signbit) end function Base.unsigned(x::ULogarithmic) x end function Base.unsigned(x::Logarithmic) x.signbit && !iszero(x) && throw(DomainError(x)) x.abs end function Base.signed(x::ULogarithmic) Logarithmic(x) end function Base.signed(x::Logarithmic) x end ### Type functions function Base.float(::Type{T}) where {T<:AnyLogarithmic} typeof(float(one(T))) end function Base.widen(::Type{ULogarithmic{T}}) where {T} ULogarithmic{widen(T)} end function Base.widen(::Type{Logarithmic{T}}) where {T} Logarithmic{widen(T)} end function Base.big(::Type{ULogarithmic{T}}) where {T} ULogarithmic{big(T)} end function Base.big(::Type{Logarithmic{T}}) where {T} Logarithmic{big(T)} end function Base.unsigned(::Type{ULogarithmic{T}}) where {T} ULogarithmic{T} end function Base.unsigned(::Type{Logarithmic{T}}) where {T} ULogarithmic{T} end function Base.signed(::Type{ULogarithmic{T}}) where {T} Logarithmic{T} end function Base.signed(::Type{Logarithmic{T}}) where {T} Logarithmic{T} end ### Special values function Base.zero(::Type{ULogarithmic{T}}) where {T} uexp(T, -Inf) end function Base.zero(::Type{ULogarithmic}) uexp(-Inf) end function Base.zero(::Type{Logarithmic{T}}) where {T} Logarithmic(zero(ULogarithmic{T})) end function Base.zero(::Type{Logarithmic}) Logarithmic(zero(ULogarithmic)) end function Base.one(::Type{ULogarithmic{T}}) where {T} uexp(T, zero(T)) end function Base.one(::Type{ULogarithmic}) uexp(0.0) end function Base.one(::Type{Logarithmic{T}}) where {T} Logarithmic(one(ULogarithmic{T})) end function Base.one(::Type{Logarithmic}) Logarithmic(one(ULogarithmic)) end function Base.typemin(::Type{ULogarithmic{T}}) where {T} uexp(typemin(T)) end function Base.typemin(::Type{Logarithmic{T}}) where {T} Logarithmic{T}(typemax(ULogarithmic{T}), true) end function Base.typemax(::Type{ULogarithmic{T}}) where {T} uexp(typemax(T)) end function Base.typemax(::Type{Logarithmic{T}}) where {T} Logarithmic{T}(typemax(ULogarithmic{T})) end ### Predicates function Base.iszero(x::ULogarithmic) isinf(x.log) && signbit(x.log) end function Base.iszero(x::Logarithmic) iszero(x.abs) end function Base.isone(x::ULogarithmic) iszero(x.log) end function Base.isone(x::Logarithmic) isone(x.abs) && !x.signbit end function Base.isinf(x::ULogarithmic) isinf(x.log) && !signbit(x.log) end function Base.isinf(x::Logarithmic) isinf(x.abs) end function Base.isfinite(x::ULogarithmic) isfinite(x.log) || signbit(x.log) end function Base.isfinite(x::Logarithmic) isfinite(x.abs) end function Base.isnan(x::ULogarithmic) isnan(x.log) end function Base.isnan(x::Logarithmic) isnan(x.abs) end ### Ordering function Base.sign(x::ULogarithmic) isnan(x) ? x : iszero(x) ? zero(x) : one(x) end function Base.sign(x::Logarithmic) isnan(x) ? x : iszero(x) ? zero(x) : x.signbit ? -one(x) : one(x) end function Base.signbit(x::ULogarithmic) false end function Base.signbit(x::Logarithmic) x.signbit end function Base.abs(x::ULogarithmic) x end function Base.abs(x::Logarithmic) x.abs end function Base.:(==)(x::ULogarithmic, y::ULogarithmic) x.log == y.log end function Base.:(==)(x::Logarithmic, y::Logarithmic) (iszero(x) && iszero(y)) || (x.abs==y.abs && x.signbit==y.signbit) end function Base.isequal(x::ULogarithmic, y::ULogarithmic) isequal(x.log, y.log) end function Base.isequal(x::Logarithmic, y::Logarithmic) isequal(x.abs, y.abs) && isequal(x.signbit, y.signbit) end function Base.isapprox(x::ULogarithmic, y::ULogarithmic; kwargs...) isapprox(Logarithmic(x), Logarithmic(y); kwargs...) end function Base.:(<)(x::ULogarithmic, y::ULogarithmic) x.log < y.log end function Base.:(<)(x::Logarithmic, y::Logarithmic) if isnan(x) || isnan(y) false elseif x.signbit if y.signbit y.abs < x.abs else !iszero(x) || !iszero(y) end else if y.signbit false else x.abs < y.abs end end end function Base.:(≀)(x::ULogarithmic, y::ULogarithmic) x.log ≀ y.log end function Base.:(≀)(x::Logarithmic, y::Logarithmic) if isnan(x) || isnan(y) false elseif x.signbit if y.signbit y.abs ≀ x.abs else true end else if y.signbit iszero(x) && iszero(y) else x.abs ≀ y.abs end end end function Base.cmp(x::ULogarithmic, y::ULogarithmic) cmp(x.log, y.log) end function Base.isless(x::ULogarithmic, y::ULogarithmic) isless(x.log, y.log) end function Base.isless(x::Logarithmic, y::Logarithmic) if x.signbit if y.signbit isless(y.abs, x.abs) else true end else if y.signbit false else isless(x.abs, y.abs) end end end function Base.nextfloat(x::ULogarithmic) uexp(nextfloat(x.log)) end function Base.nextfloat(x::Logarithmic) if x.signbit && !iszero(x) Logarithmic(prevfloat(x.abs), true) else Logarithmic(nextfloat(x.abs)) end end function Base.prevfloat(x::ULogarithmic) uexp(prevfloat(x.log)) end function Base.prevfloat(x::Logarithmic) if x.signbit || iszero(x) Logarithmic(nextfloat(x.abs), true) else Logarithmic(prevfloat(x.abs)) end end ### Promotion _promote_rule(::Type, ::Type) = Union{} for (i, A) in enumerate([ULogarithmic, Logarithmic]) for (j, B) in enumerate([ULogarithmic, Logarithmic]) C = i > j ? A : B @eval begin _promote_rule(::Type{$A}, ::Type{$B}) = $C _promote_rule(::Type{$A}, ::Type{$B{T}}) where {T} = $C{T} _promote_rule(::Type{$A{S}}, ::Type{$B}) where {S} = $C{S} _promote_rule(::Type{$A{S}}, ::Type{$B{T}}) where {S,T} = $C{promote_type(S,T)} end end end function Base.promote_rule(::Type{T}, ::Type{R}) where {T<:AnyLogarithmic, R<:AnyLogarithmic} _promote_rule(T, R) end @generated function Base.promote_rule(::Type{T}, ::Type{R}) where {T<:AnyLogarithmic, R<:Real} # TODO: Think about this some more. Always return ULogarithmic? Always Logarithmic? isunsigned = try typemin(R) β‰₯ 0 catch false end L = isunsigned ? ULogarithmic : Logarithmic R2 = try typeof(L(one(R))) catch Union{} end promote_type(T, R2) end # override the default promote_rule(BigFloat, <:Real) -> BigFloat # which contradicts promote_rule(Logarithmic{BigFloat}, BigFloat) -> Logarithmic{BigFloat} # and causes a stack overflow Base.promote_rule(::Type{BigFloat}, ::Type{T}) where {T<:AnyLogarithmic} = promote_rule(ULogarithmic{BigFloat}, T) ### Arithmetic Base.:(+)(x::AnyLogarithmic) = x Base.:(-)(x::ULogarithmic) = Logarithmic(x, true) Base.:(-)(x::Logarithmic) = Logarithmic(x.abs, !x.signbit) function Base.:(+)(x::T, y::T) where {T<:ULogarithmic} if x.log == y.log uexp(x.log + log1p(exp(zero(y.log) - zero(x.log)))) elseif x.log β‰₯ y.log uexp(x.log + log1p(exp(y.log - x.log))) else uexp(y.log + log1p(exp(x.log - y.log))) end end function Base.:(+)(x::T, y::T) where {T<:Logarithmic} if x.signbit == y.signbit Logarithmic(x.abs + y.abs, x.signbit) elseif x.abs β‰₯ y.abs Logarithmic(x.abs - y.abs, x.signbit) else Logarithmic(y.abs - x.abs, y.signbit) end end function Base.:(-)(x::T, y::T) where {T<:ULogarithmic} if x.log < y.log throw(DomainError((x, y), "difference is negative")) else d = y.log - x.log if isnan(d) && iszero(x) && iszero(y) d = zero(y.log) - zero(x.log) end if d < -1 c = log1p(-exp(d)) else # accurate when d is small # e.g. exp(1e-100) - exp(-1e-100) β‰ˆ exp(-229.56536) c = log(-expm1(d)) end uexp(x.log + c) end end function Base.:(-)(x::T, y::T) where {T<:Logarithmic} if x.signbit == y.signbit if x.abs β‰₯ y.abs Logarithmic(x.abs - y.abs, x.signbit) else Logarithmic(y.abs - x.abs, !y.signbit) end else Logarithmic(x.abs + y.abs, x.signbit) end end function Base.:(*)(x::T, y::T) where {T<:ULogarithmic} uexp(x.log + y.log) end function Base.:(*)(x::T, y::T) where {T<:Logarithmic} Logarithmic(x.abs * y.abs, x.signbit ⊻ y.signbit) end function Base.:(/)(x::T, y::T) where {T<:ULogarithmic} uexp(x.log - y.log) end function Base.:(/)(x::T, y::T) where {T<:Logarithmic} Logarithmic(x.abs / y.abs, x.signbit ⊻ y.signbit) end Base.:(^)(x::ULogarithmic, n::Real) = _pow(x, n) Base.:(^)(x::ULogarithmic, n::Rational) = _pow(x, n) Base.:(^)(x::ULogarithmic, n::Integer) = _pow(x, n) function _pow(x::ULogarithmic, n::Real) if n == 0 uexp(zero(x.log) * n) else uexp(x.log * n) end end Base.:(^)(x::Logarithmic, n::Real) = _pow(x, n) Base.:(^)(x::Logarithmic, n::Rational) = _pow(x, n) Base.:(^)(x::Logarithmic, n::Integer) = _pow(x, n) function _pow(x::Logarithmic, n::Integer) Logarithmic(x.abs^n, x.signbit & isodd(n)) end function _pow(x::Logarithmic, n::Real) x.signbit && !iszero(x) && throw(DomainError(x)) Logarithmic(x.abs^n) end function Base.inv(x::ULogarithmic) uexp(-x.log) end function Base.inv(x::Logarithmic) Logarithmic(inv(x.abs), x.signbit) end function Base.log(x::ULogarithmic) x.log end function Base.log(x::Logarithmic) x.signbit && !iszero(x) && throw(DomainError(x)) log(x.abs) end function Base.log2(x::AnyLogarithmic) logx = log(x) log2 = log(oftype(logx, 2)) logx / log2 end function Base.log10(x::AnyLogarithmic) logx = log(x) log10 = log(oftype(logx, 10)) logx / log10 end function Base.log1p(x::AnyLogarithmic) log(one(x) + x) end function Base.exp(x::ULogarithmic) uexp(exp(x.log)) end function Base.exp(x::Logarithmic) x.signbit ? inv(exp(x.abs)) : exp(x.abs) end function Base.sqrt(x::ULogarithmic) uexp(x.log / oftype(x.log, 2)) end function Base.sqrt(x::Logarithmic) if !x.signbit || iszero(x) Logarithmic(sqrt(x.abs)) else throw(DomainError(x)) end end function Base.cbrt(x::ULogarithmic) uexp(x.log / oftype(x.log, 3)) end function Base.cbrt(x::Logarithmic) Logarithmic(cbrt(x.abs), x.signbit) end if hasproperty(Base, :fourthroot) # fourthroot was introduced in julia 1.10 function Base.fourthroot(x::ULogarithmic) uexp(x.log / oftype(x.log, 4)) end function Base.fourthroot(x::Logarithmic) if !x.signbit || iszero(x) Logarithmic(fourthroot(x.abs)) else throw(DomainError(x)) end end end ### Hash const _HASH = hash(ULogarithmic) function Base.hash(x::ULogarithmic, h::UInt) hash(x.log, hash(_HASH, h)) end function Base.hash(x::Logarithmic, h::UInt) # hash the same as ULogarithmic when signbit==false # TODO: hash special values (-Inf, -1, 0, 1, Inf) the same as Float64? hash(x.abs, x.signbit ? hash(_HASH, h) : h) end ### Random function Base.rand(rng::AbstractRNG, ::Random.SamplerType{E}) where {T<:AbstractFloat, E<:AnyLogarithmic{T}} exp(E, -randexp(rng, T)) end function Base.rand(rng::AbstractRNG, ::Random.SamplerType{E}) where {E<:AnyLogarithmic} exp(E, -randexp(rng)) end ### IO function Base.show(io::IO, x::ULogarithmic) print(io, "exp(") show(io, x.log) print(io, ")") end function Base.show(io::IO, x::Logarithmic) print(io, x.signbit ? "-" : "+") show(io, x.abs) end function Base.write(io::IO, x::ULogarithmic) write(io, x.log) end function Base.write(io::IO, x::Logarithmic) write(io, x.abs, x.signbit) end function Base.read(io::IO, ::Type{ULogarithmic{T}}) where {T} uexp(T, read(io, T)) end function Base.read(io::IO, ::Type{Logarithmic{T}}) where {T} abs = read(io, ULogarithmic{T}) signbit = read(io, Bool) Logarithmic{T}(abs, signbit) end end
LogarithmicNumbers
https://github.com/cjdoris/LogarithmicNumbers.jl.git
[ "MIT" ]
1.4.0
427421c277f82c5749002c1b23cb1aac91beb0a8
code
495
using ForwardDiff: derivative, gradient using LogarithmicNumbers using Test f(x) = log(exp(x) * x) g1(x) = log(exp(ULogarithmic, x) * x) g2(x) = log(exp(ULogFloat64, x) * x) h1(x) = log(exp(Logarithmic, x) * x) h2(x) = log(exp(LogFloat64, x) * x) x = 1000 d = 1 + inv(x) @test isnan(derivative(f, x)) @test derivative(f, LogFloat64(x)) β‰ˆ d @test derivative(f, ULogFloat64(x)) β‰ˆ d @test derivative(g1, x) β‰ˆ d @test derivative(g2, x) β‰ˆ d @test derivative(h1, x) β‰ˆ d @test derivative(h2, x) β‰ˆ d
LogarithmicNumbers
https://github.com/cjdoris/LogarithmicNumbers.jl.git
[ "MIT" ]
1.4.0
427421c277f82c5749002c1b23cb1aac91beb0a8
code
20645
using LogarithmicNumbers, Test, Aqua function _approx(x,y) ans = isapprox(x, y, atol=1e-3) || (isnan(x) && isnan(y)) ans || @show x y ans end # use these to check for type stability _exp(args...) = @inferred exp(args...) _log(args...) = @inferred log(args...) _add(args...) = @inferred +(args...) _sub(args...) = @inferred -(args...) _mul(args...) = @inferred *(args...) _div(args...) = @inferred /(args...) _pow(args...) = @inferred ^(args...) _sqrt(args...) = @inferred sqrt(args...) _cbrt(args...) = @inferred cbrt(args...) _fourthroot(args...) = @inferred fourthroot(args...) _float(args...) = @inferred float(args...) _inv(args...) = @inferred inv(args...) _prod(args...) = @inferred prod(args...) _sum(args...) = @inferred sum(args...) # sample values vals = Any[-Inf, -20, -20.0, -2, -2.0, -1, -1.0, -0.5, 0, 0.0, 0.5, 1, 1.0, 2, 2.0, 20, 20.0, Inf, NaN] # sample vectors vecs = ( Float64[x for x in vals if x isa Float64], Float64[x for x in vals if x isa Float64 && !isinf(x)], Float64[x for x in vals if x isa Float64 && !iszero(x)], Float64[x for x in vals if x isa Float64 && !isinf(x) && x β‰₯ 0], Int[x for x in vals if x isa Int], Int[x for x in vals if x isa Int && x β‰₯ 0], ) atypes = (ULogarithmic, Logarithmic) atypes2 = (ULogarithmic, ULogFloat32, Logarithmic, LogFloat32) @testset verbose=true "LogarithmicNumbers" begin @testset verbose=true "Aqua" begin Aqua.test_all(LogarithmicNumbers) end @testset "types" begin @test @isdefined ULogarithmic @test @isdefined Logarithmic @test @isdefined ULogFloat16 @test @isdefined ULogFloat32 @test @isdefined ULogFloat64 @test @isdefined LogFloat16 @test @isdefined LogFloat32 @test @isdefined LogFloat64 end @testset "exp" begin for A in atypes2, x in vals y = _exp(A, x) if A in (ULogarithmic, Logarithmic) @test y isa A{typeof(x)} else @test y isa A end end end @testset "construct" begin for A in atypes2, x in vals if A <: ULogarithmic && x < 0 @test_throws DomainError @inferred A(x) else y = @inferred A(x) @test y isa A if A <: ULogarithmic @test _approx(y.log, log(x)) else @test _approx(y.abs.log, log(abs(x))) @test _approx(y.signbit, signbit(x)) end end end @test ULogFloat64(ULogFloat64(0)) === ULogFloat64(0) @test ULogFloat64(ULogFloat32(0)) === ULogFloat64(0) @test ULogarithmic(ULogFloat32(0)) === ULogFloat32(0) @test LogFloat64(LogFloat64(0)) === LogFloat64(0) @test LogFloat64(LogFloat32(0)) === LogFloat64(0) @test Logarithmic(LogFloat32(0)) === LogFloat32(0) @test LogFloat64(ULogarithmic(0)) == LogFloat64(0) @test Logarithmic(ULogarithmic(0)) === Logarithmic(0) end @testset "float" begin for A in atypes2, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test _float(y) isa AbstractFloat @test _approx(_float(y), x) @test @inferred(AbstractFloat(y)) isa AbstractFloat @test _approx(@inferred(AbstractFloat(y)), x) @test @inferred(Float64(y)) isa Float64 @test _approx(@inferred(Float64(y)), x) @test @inferred(Float32(y)) isa Float32 @test _approx(@inferred(Float32(y)), x) end end @testset "promote" begin for A1 in atypes, A2 in atypes, T1 in (nothing, Int16, Int32, Float32, Float64, BigFloat), T2 in (nothing, Int16, Float32, BigFloat) A3 = A1 <: Logarithmic || A2 <: Logarithmic ? Logarithmic : ULogarithmic T3 = T1 === nothing ? T2 === nothing ? nothing : T2 : T2 === nothing ? T1 : promote_type(T1, T2) B1 = T1 === nothing ? A1 : A1{T1} B2 = T2 === nothing ? A2 : A2{T2} B3 = T3 === nothing ? A3 : A3{T3} @test promote_type(B1, B2) == B3 end for A1 in atypes, T1 in (nothing, Int16, Int32, Float32, Float64, BigFloat), T2 in (Int16, Float32, BigFloat) T3 = float(T2) B1 = T1 === nothing ? A1 : A1{T1} B3 = Logarithmic{T1 === nothing ? T3 : promote_type(T1, T3)} @test promote_type(B1, T2) == B3 end end @testset "big" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) z = @inferred big(y) B = A <: ULogarithmic ? ULogarithmic{BigFloat} : Logarithmic{BigFloat} @test z isa B @test _approx(_float(z), x) end end @testset "signed" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test signed(y) isa Logarithmic if x < 0 @test_throws DomainError @inferred(unsigned(y)) else @test @inferred(unsigned(y)) isa ULogarithmic end end end @testset "type functions" begin @testset "float" begin @test float(ULogFloat64) == Float64 @test float(ULogFloat32) == Float32 @test float(LogFloat64) == Float64 @test float(LogFloat32) == Float32 end @testset "widen" begin @test widen(ULogFloat64) == ULogarithmic{BigFloat} @test widen(ULogFloat32) == ULogFloat64 @test widen(LogFloat64) == Logarithmic{BigFloat} @test widen(LogFloat32) == LogFloat64 end @testset "big" begin @test big(ULogFloat64) == ULogarithmic{BigFloat} @test big(ULogFloat32) == ULogarithmic{BigFloat} @test big(LogFloat64) == Logarithmic{BigFloat} @test big(LogFloat32) == Logarithmic{BigFloat} end @testset "unsigned" begin @test unsigned(ULogFloat64) == ULogFloat64 @test unsigned(ULogFloat32) == ULogFloat32 @test unsigned(LogFloat64) == ULogFloat64 @test unsigned(LogFloat32) == ULogFloat32 end @testset "signed" begin @test signed(ULogFloat64) == LogFloat64 @test signed(ULogFloat32) == LogFloat32 @test signed(LogFloat64) == LogFloat64 @test signed(LogFloat32) == LogFloat32 end end @testset "special values" begin @testset "zero" begin @test zero(ULogarithmic) === exp(ULogarithmic, -Inf) @test zero(ULogFloat64) === exp(ULogFloat64, -Inf) @test zero(ULogFloat32) === exp(ULogFloat32, -Inf) @test zero(Logarithmic) === Logarithmic(zero(ULogarithmic)) @test zero(LogFloat64) === LogFloat64(zero(ULogFloat64)) @test zero(LogFloat32) === LogFloat32(zero(ULogFloat32)) end @testset "one" begin @test one(ULogarithmic) === exp(ULogarithmic, 0.0) @test one(ULogFloat64) === exp(ULogFloat64, 0.0) @test one(ULogFloat32) === exp(ULogFloat32, 0.0) @test one(Logarithmic) === Logarithmic(one(ULogarithmic)) @test one(LogFloat64) === LogFloat64(one(ULogFloat64)) @test one(LogFloat32) === LogFloat32(one(ULogFloat32)) end @testset "typemin" begin @test typemin(ULogFloat64) === ULogFloat64(0.0) @test typemin(ULogFloat32) === ULogFloat32(0.0) @test typemin(LogFloat64) === LogFloat64(-Inf) @test typemin(LogFloat32) === LogFloat32(-Inf) end @testset "typemax" begin @test typemax(ULogFloat64) === ULogFloat64(Inf) @test typemax(ULogFloat32) === ULogFloat32(Inf) @test typemax(LogFloat64) === LogFloat64(Inf) @test typemax(LogFloat32) === LogFloat32(Inf) end end @testset "predicates" begin @testset "iszero" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(iszero(y)) == iszero(x) end end @testset "isone" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(isone(y)) == isone(x) end end @testset "isinf" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(isinf(y)) == isinf(x) end end @testset "isfinite" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(isfinite(y)) == isfinite(x) end end @testset "isnan" begin for A in atypes, x in (vals..., NaN, -NaN) A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(isnan(y)) == isnan(x) end end end @testset "ordering" begin @testset "sign" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test _float(@inferred(sign(y))) === float(sign(x)) end end @testset "signbit" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test @inferred(signbit(y)) == signbit(x) end end @testset "abs" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test _approx(_float(@inferred(abs(y))), abs(x)) end end @testset "==" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(y1 == y2) == (x1 == x2) end end @testset "isequal" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(isequal(y1, y2)) == isequal(x1, x2) end end @testset "isapprox" begin for A in atypes, x1 in vals A <: ULogarithmic && x1 < 0 && continue x2 = x1 + 1e-12 y1 = A(x1) y2 = A(x2) @test @inferred(isapprox(y1, y2; atol=1e-11)) == isapprox(x1,x2; atol=1e-11) end end @testset "<" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(y1 < y2) == (x1 < x2) end end @testset "≀" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(y1 ≀ y2) == (x1 ≀ x2) end end @testset "cmp" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(cmp(y1, y2)) == cmp(x1, x2) end end @testset "isless" begin for A in atypes, x1 in vals, x2 in vals A <: ULogarithmic && (x1 < 0 || x2 < 0) && continue y1 = A(x1) y2 = A(x2) @test @inferred(isless(y1, y2)) == isless(x1, x2) end end @testset "nextfloat" begin for A in atypes, x in vals x isa AbstractFloat || continue @test @inferred(nextfloat(_exp(A, x))) === _exp(A, nextfloat(x)) end end @testset "prevfloat" begin for A in atypes, x in vals x isa AbstractFloat || continue if A <: Logarithmic && x == -Inf @test @inferred(prevfloat(_exp(A, x))) === -_exp(A, nextfloat(-Inf)) else @test @inferred(prevfloat(_exp(A, x))) === _exp(A, prevfloat(x)) end end end end @testset "arithmetic" begin @testset "pos" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue @test _approx(_float(+A(x)), float(x)) end end @testset "neg" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue @test _approx(_float(-A(x)), float(-x)) end end @testset "add" begin for A in atypes, x in vals, y in vals A <: ULogarithmic && (x < 0 || y < 0) && continue @test _approx(_float(_add(A(x), A(y))), x+y) end # check accuracy # log(exp(1000) + exp(1001)) = 1000 + log(1 + exp(1)) @test _approx(log(exp(Logarithmic, 1000) + exp(Logarithmic, 1001)), 1001.313261) end @testset "sum" begin for A in atypes, xs in vecs A <: ULogarithmic && any(x<0 for x in xs) && continue if eltype(xs) <: AbstractFloat @test _approx(_float(_sum(map(x->A(x),xs))), sum(xs)) else # sum is not type-stable because typeof(xs[1]+xs[2]) != typeof(xs[1]). # hence this test is the same as above but without the stability check. # we don't promise type stability unless the base type is a float, so # this isn't a broken test. @test _approx(_float(sum(map(x->A(x),xs))), sum(xs)) end end end @testset "sub" begin for A in atypes, x in vals, y in vals A <: ULogarithmic && (x < 0 || y < 0) && continue if A <: ULogarithmic && x < y @test_throws DomainError _float(_sub(A(x), A(y))) else @test _approx(_float(_sub(A(x), A(y))), x-y) end end # check accuracy # log(exp(1001) - exp(1000)) == 1000 + log(exp(1) - 1) @test _approx(log(exp(Logarithmic, 1001) - exp(Logarithmic, 1000)), 1000.541324) # log(exp(x) - exp(-x)) == x + log(1 - exp(-2x)) == x + log(-expm1(-2x)) @test _approx(log(exp(Logarithmic, 1e-100) - exp(Logarithmic, -1e-100)), -229.565362) end @testset "mul" begin for A in atypes, x in vals, y in vals A <: ULogarithmic && (x < 0 || y < 0) && continue @test _approx(_float(_mul(A(x), A(y))), x * y) end end @testset "prod" begin for A in atypes, xs in vecs A <: ULogarithmic && any(x<0 for x in xs) && continue @test _approx(_float(_prod(map(x->A(x), xs))), prod(xs)) end end @testset "div" begin for A in atypes, x in vals, y in vals A <: ULogarithmic && (x < 0 || y < 0) && continue @test _approx(_float(_div(A(x), A(y))), x / y) end end @testset "pow" begin for A in atypes, x in vals, n in (-2,-1,0,1,2,-1.1,0.0,2.3) x < 0 && continue @test _approx(_float(_pow(A(x), n)), float(x)^n) end end @testset "sqrt" begin for A in atypes, x in vals if x < 0 A <: ULogarithmic && continue @test_throws DomainError _sqrt(A(x)) else @test _approx(_float(_sqrt(A(x))), sqrt(float(x))) end end end @testset "cbrt" begin for A in atypes, x in vals x < 0 && A <: ULogarithmic && continue @test _approx(_float(_cbrt(A(x))), cbrt(float(x))) end end @testset "fourthroot" begin if hasproperty(Base, :fourthroot) for A in atypes, x in vals if x < 0 A <: ULogarithmic && continue @test_throws DomainError _fourthroot(A(x)) else @test _approx(_float(_fourthroot(A(x))), fourthroot(float(x))) end end end end @testset "inv" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue @test _approx(_float(_inv(A(x))), inv(x)) end end @testset "log" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue @test _log(_exp(A, x)) === x if x < 0 @test_throws DomainError _log(A(x)) else @test _approx(_log(A(x)), log(x)) end end @test _approx(log(exp(Logarithmic, 1000)), 1000) end @testset "log2" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue if x < 0 @test_throws DomainError log2(A(x)) else @test _approx(log2(A(x)), log2(x)) end end # log2(exp(x)) = x / log(2) @test _approx(log2(exp(Logarithmic, 1000)), 1442.695040) end @testset "log10" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue if x < 0 @test_throws DomainError log10(A(x)) else @test _approx(log10(A(x)), log10(x)) end end # log10(exp(x)) = x / log(10) @test _approx(log10(exp(Logarithmic, 1000)), 434.294481) end @testset "log1p" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue if x < -1 @test_throws DomainError log1p(A(x)) else @test _approx(log1p(A(x)), log1p(x)) end end @test _approx(log1p(exp(Logarithmic, 1000)), 1000.0) end @testset "exp" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue @test _approx(_float(exp(A(x))), exp(x)) end end end @testset "hash" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) @test hash(y) isa UInt end for x in vals x < 0 && continue y1 = ULogarithmic(x) y2 = Logarithmic(x) @test hash(y1) == hash(y2) @test hash(-y1) == hash(-y2) @test hash(y1) != hash(-y1) end end @testset "random" begin for A in atypes2 xs = rand(A, 1000) @test all(x isa A for x in xs) @test all(0 ≀ x ≀ 1 for x in xs) end end @testset "IO" begin @testset "show" begin @test repr(_exp(ULogarithmic, -12)) == "exp(-12)" @test repr(_exp(Logarithmic, -34)) == "+exp(-34)" @test repr(-_exp(Logarithmic, -45)) == "-exp(-45)" end @testset "read / write" begin for A in atypes, x in vals A <: ULogarithmic && x < 0 && continue y = A(x) io = IOBuffer() write(io, y) seekstart(io) z = read(io, typeof(y)) @test y === z end end end @testset "ForwardDiff" begin if VERSION >= v"1.9" include("forwarddiff.jl") end end end
LogarithmicNumbers
https://github.com/cjdoris/LogarithmicNumbers.jl.git
[ "MIT" ]
1.4.0
427421c277f82c5749002c1b23cb1aac91beb0a8
docs
3724
# LogarithmicNumbers.jl [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active) [![Test Status](https://github.com/cjdoris/LogarithmicNumbers.jl/workflows/Tests/badge.svg)](https://github.com/cjdoris/LogarithmicNumbers.jl/actions?query=workflow%3ATests) [![codecov](https://codecov.io/gh/cjdoris/LogarithmicNumbers.jl/branch/main/graph/badge.svg?token=AECCWGKRVJ)](https://codecov.io/gh/cjdoris/LogarithmicNumbers.jl) A [**logarithmic number system**](https://en.wikipedia.org/wiki/Logarithmic_number_system) for Julia. Provides the signed `Logarithmic` and unsigned `ULogarithmic` types for representing real numbers on a logarithmic scale. This is useful when numbers are too big or small to fit accurately into a `Float64` and you only really care about magnitude. For example, it can be useful to represent probabilities in this form, and you don't need to worry about getting zero when multiplying many of them together. ## Installation ``` pkg> add LogarithmicNumbers ``` ## Example ```julia julia> using LogarithmicNumbers julia> ULogarithmic(2.7) exp(0.9932517730102834) julia> float(ans) 2.7 julia> x = exp(ULogarithmic, 1000) - exp(ULogarithmic, 998) exp(999.8545865421312) julia> float(x) # overflows Inf julia> log(x) 999.8545865421312 ``` ## Documentation ### Exported types * `ULogarithmic{T}` represents a non-negative real number by its logarithm of type `T`. * `Logarithmic{T}` represents a real number by its absolute value as a `ULogarithmic{T}` and a sign bit. * `LogFloat64` is an alias for `Logarithmic{Float64}`. There are also `ULogFloat16`, `ULogFloat32`, `ULogFloat64`, `LogFloat16`, and `LogFloat32`. ### Constructors * `ULogarithmic(x)` and `Logarithmic(x)` represent the number `x`. * `exp(ULogarithmic, logx)` represents `exp(logx)`, and `logx` can be huge. Use this when you already know the logarithm `logx` of your number `x`. ### Functions in Base * **Arithmetic:** `+`, `-`, `*`, `/`, `^`, `inv`, `prod`, `sum`, `sqrt`, `cbrt`, `fourthroot`. * **Ordering:** `==`, `<`, `≀`, `cmp`, `isless`, `isequal`, `sign`, `signbit`, `abs`. * **Logarithm:** `log`, `log2`, `log10`, `log1p`. These are returned as the base (non-logarithmic) type. * **Conversion:** `float`, `unsigned`, `signed`, `widen`, `big`. These also operate on types. * **Special values:** `zero`, `one`, `typemin`, `typemax`. * **Predicates:** `iszero`, `isone`, `isinf`, `isfinite`, `isnan`. * **IO:** `show`, `write`, `read`. * **Random:** `rand(ULogarithmic)` is a random number in the unit interval. * **Misc:** `nextfloat`, `prevfloat`, `hash`. * **Note:** Any functions not mentioned here might be inaccurate. ### Interoperability with other packages It is natural to use this package in conjunction with other packages which return logarithms. The general pattern is that you can use `exp(ULogarithmic, logfunc(args...))` instead of `func(args...)` to get the answer as a logarithmic number. Here are some possibilities for `func`: - [StatsFuns.jl](https://github.com/JuliaStats/StatsFuns.jl): `normpdf`, `normcdf`, `normccdf`, plus equivalents for other distributions. - [Distributions.jl](https://github.com/JuliaStats/Distributions.jl): `pdf`, `cdf`, `ccdf`. - [SpecialFunctions.jl](https://github.com/JuliaMath/SpecialFunctions.jl): `gamma`, `factorial`, `beta`, `erfc`, `erfcx`. #### ForwardDiff.jl On Julia 1.9+, if you load [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl), you should be allowed to compute - derivatives of functions involving `exp(Logarithmic, x)` - derivatives of functions evaluated at `Logarithmic(x)`
LogarithmicNumbers
https://github.com/cjdoris/LogarithmicNumbers.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
96
using Pkg Pkg.add(["Revise", "TestEnv", "JuliaFormatter"]) Pkg.activate(".") Pkg.instantiate()
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
583
using BenchmarkTools using Random: seed!, default_rng using ForwardDiff, Zygote using TaylorSeries: Taylor1 using TaylorDiff rng = default_rng() seed!(rng, 19260817) using Logging Logging.disable_logging(Logging.Warn) include("groups/scalar.jl") include("groups/mlp.jl") include("groups/taylor_expansion.jl") include("groups/pinn.jl") scalar = create_benchmark_scalar_function(sin, 0.1) mlp = create_benchmark_mlp((2, 16), [2.0, 3.0], [1.0, 1.0]) const SUITE = BenchmarkGroup("scalar" => scalar, "mlp" => mlp, "taylor_expansion" => taylor_expansion, "pinn" => pinn)
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1189
using Pkg Pkg.instantiate() using TaylorDiff using BenchmarkTools, PkgBenchmark using BenchmarkTools: Trial, TrialEstimate, Parameters import JSON: lower, json using Dates using HTTP: put dict(x) = Dict(name => lower(getfield(x, name)) for name in fieldnames(typeof(x))) lower(results::BenchmarkResults) = dict(results) function lower(group::BenchmarkGroup) Dict(:tags => group.tags, :data => [Dict(lower(value)..., "name" => key) for (key, value) in group.data]) end lower(trial::Trial) = lower(minimum(trial)) lower(estimate::TrialEstimate) = dict(estimate) lower(parameters::Parameters) = dict(parameters) getenv(name::String) = String(strip(ENV[name])) body = Dict("name" => "TaylorDiff.jl", "datetime" => now()) if "BUILDKITE" in keys(ENV) body["commit"] = getenv("BUILDKITE_COMMIT") body["branch"] = getenv("BUILDKITE_BRANCH") body["tag"] = getenv("BUILDKITE_TAG") else body["commit"] = "abcdef123456" body["branch"] = "dummy" end (; benchmarkgroup, benchmarkconfig) = benchmarkpkg(TaylorDiff) body["config"] = benchmarkconfig body["result"] = lower(benchmarkgroup)[:data] put("https://benchmark-data.tansongchen.workers.dev"; body = json(body))
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1108
function create_benchmark_mlp(mlp_conf::Tuple{Int, Int}, x::Vector{T}, l::Vector{T}) where {T <: Number} input, hidden = mlp_conf W₁, Wβ‚‚, b₁, bβ‚‚ = rand(hidden, input), rand(1, hidden), rand(hidden), rand(1) Οƒ = exp mlp(x) = first(Wβ‚‚ * Οƒ.(W₁ * x + b₁) + bβ‚‚) f1 = z -> ForwardDiff.derivative(t -> mlp(x + t * l), z) f2 = x -> ForwardDiff.derivative(f1, x) f3 = x -> ForwardDiff.derivative(f2, x) f4 = x -> ForwardDiff.derivative(f3, x) f5 = x -> ForwardDiff.derivative(f4, x) f6 = x -> ForwardDiff.derivative(f5, x) f7 = x -> ForwardDiff.derivative(f6, x) functions = Function[f1, f2, f3, f4, f5, f6, f7] forwarddiff, taylordiff = BenchmarkGroup(), BenchmarkGroup() for (index, func) in enumerate(functions) forwarddiff[index] = @benchmarkable $func(0) end Ns = [Val{order + 1}() for order in 1:7] for (index, N) in enumerate(Ns) taylordiff[index] = @benchmarkable derivative($mlp, $x, $l, $N) end return BenchmarkGroup(["vector"], "forwarddiff" => forwarddiff, "taylordiff" => taylordiff) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1310
using Lux, Zygote const input = 2 const hidden = 16 model = Chain(Dense(input => hidden, Lux.relu), Dense(hidden => hidden, Lux.relu), Dense(hidden => 1), first) ps, st = Lux.setup(rng, model) trial(model, x) = x[1] * (1 - x[1]) * x[2] * (1 - x[2]) * model(x, ps, st)[1] x = rand(Float32, input) trial(model, x) function loss_by_finitediff(model, x) Ξ΅ = cbrt(eps(Float32)) Ρ₁ = [Ξ΅, 0] Ξ΅β‚‚ = [0, Ξ΅] error = (trial(model, x + Ρ₁) + trial(model, x - Ρ₁) + trial(model, x + Ξ΅β‚‚) + trial(model, x - Ξ΅β‚‚) - 4 * trial(model, x)) / Ξ΅^2 + sin(Ο€ * x[1]) * sin(Ο€ * x[2]) abs2(error) end function loss_by_taylordiff(model, x) f(x) = trial(model, x) error = derivative(f, x, Float32[1, 0], Val(3)) + derivative(f, x, Float32[0, 1], Val(3)) + sin(Ο€ * x[1]) * sin(Ο€ * x[2]) abs2(error) end pinn_t = BenchmarkGroup("primal" => (@benchmarkable loss_by_taylordiff($model, $x)), "gradient" => (@benchmarkable gradient(loss_by_taylordiff, $model, $x))) pinn_f = BenchmarkGroup("primal" => (@benchmarkable loss_by_finitediff($model, $x)), "gradient" => (@benchmarkable gradient($loss_by_finitediff, $model, $x))) pinn = BenchmarkGroup(["vector", "physical"], "taylordiff" => pinn_t, "finitediff" => pinn_f)
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1041
function create_benchmark_scalar_function(f::F, x::T) where {F, T <: Number} f1 = x -> ForwardDiff.derivative(f, x) f2 = x -> ForwardDiff.derivative(f1, x) f3 = x -> ForwardDiff.derivative(f2, x) f4 = x -> ForwardDiff.derivative(f3, x) f5 = x -> ForwardDiff.derivative(f4, x) f6 = x -> ForwardDiff.derivative(f5, x) f7 = x -> ForwardDiff.derivative(f6, x) f8 = x -> ForwardDiff.derivative(f7, x) f9 = x -> ForwardDiff.derivative(f8, x) functions = Function[f1, f2, f3, f4, f5, f6, f7, f8, f9] forwarddiff_group = BenchmarkGroup([index => @benchmarkable $func($(Ref(x))[]) for (index, func) in enumerate(functions)]...) taylordiff_group = BenchmarkGroup() Ns = [Val{order + 1}() for order in 1:9] for (index, N) in enumerate(Ns) taylordiff_group[index] = @benchmarkable derivative($f, $x, one($x), $N) end return BenchmarkGroup(["scalar"], "forwarddiff" => forwarddiff_group, "taylordiff" => taylordiff_group) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
576
function my_calculation(t, p, Ξ±, s) x = 1.0 / (1.0 - s * (t + 1) / (t - 1)) rez = zero(x) for i in eachindex(p) rez += p[i] * x^Ξ±[i] end return rez * sqrt(2) / (1 - t) end N, m = 100, 20 p, Ξ±, s = rand(N), rand(N), rand() p ./= sum(p) t_ts = Taylor1(eltype(p), m) t_td = TaylorScalar{eltype(p), m + 1}(0.0, 1.0) taylor_expansion = BenchmarkGroup(["scalar", "very-high-order"], "taylorseries" => (@benchmarkable my_calculation($t_ts, $p, $Ξ±, $s)), "taylordiff" => (@benchmarkable my_calculation($t_td, $p, $Ξ±, $s)))
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
710
using TaylorDiff using Documenter DocMeta.setdocmeta!(TaylorDiff, :DocTestSetup, :(using TaylorDiff); recursive = true) makedocs(; modules = [TaylorDiff], authors = "Songchen Tan <[email protected]> and contributors", repo = "https://github.com/JuliaDiff/TaylorDiff.jl/blob/{commit}{path}#{line}", sitename = "TaylorDiff.jl", format = Documenter.HTML(; prettyurls = get(ENV, "CI", "false") == "true", canonical = "https://juliadiff.org/TaylorDiff.jl", edit_link = "main", assets = String[]), pages = [ "Home" => "index.md", "API" => "api.md" ]) deploydocs(; repo = "github.com/JuliaDiff/TaylorDiff.jl", devbranch = "main")
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1425
# The Jacobi- and Hessian-free Halley method for solving nonlinear equations using TaylorDiff using LinearAlgebra using LinearSolve function newton(f, x0, p; tol = 1e-10, maxiter = 100) x = x0 for i in 1:maxiter fx = f(x, p) error = norm(fx) println("Iteration $i: x = $x, f(x) = $fx, error = $error") if error < tol return x end get_derivative = (v, u, a, b) -> v .= derivative(x -> f(x, p), x, u, 1) operator = FunctionOperator(get_derivative, similar(x), similar(x)) problem = LinearProblem(operator, -fx) sol = solve(problem, KrylovJL_GMRES()) x += sol.u end return x end function halley(f, x0, p; tol = 1e-10, maxiter = 100) x = x0 for i in 1:maxiter fx = f(x, p) error = norm(fx) println("Iteration $i: x = $x, f(x) = $fx, error = $error") if error < tol return x end get_derivative = (v, u, a, b) -> v .= derivative(x -> f(x, p), x, u, 1) operator = FunctionOperator(get_derivative, similar(x), similar(x)) problem = LinearProblem(operator, -fx) a = solve(problem, KrylovJL_GMRES()).u Haa = derivative(x -> f(x, p), x, a, 2) problem2 = LinearProblem(operator, Haa) b = solve(problem2, KrylovJL_GMRES()).u x += (a .* a) ./ (a .+ b ./ 2) end return x end f(x, p) = x .* x - p
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
3316
using TaylorDiff using TaylorSeries using TaylorIntegration: jetcoeffs! using BenchmarkTools """ No magic, just a type-stable way to generate a new object since TaylorScalar is immutable """ function update_coefficient(x::TaylorScalar{T, N}, index::Integer, value::T) where {T, N} return TaylorScalar(ntuple(i -> (i == index ? value : x.value[i]), Val{N}())) end """ Computes the taylor integration of order N - 1, i.e. N = order + 1 eqsdiff: RHS t: constructed by TaylorScalar{T, N}(t0, 1), which means unit perturbation x0: initial value """ function jetcoeffs_taylordiff(eqsdiff::Function, t::TaylorScalar{T, N}, x0::U, params) where {T <: Real, U <: Number, N} x = TaylorScalar{U, N}(x0) # x.values[1] is defined, others are 0 for index in 1:(N - 1) # computes x.values[index + 1] f = eqsdiff(x, params, t) df = TaylorDiff.extract_derivative(f, index) x = update_coefficient(x, index + 1, df) end x end """ Computes the taylor integration of order N - 1, i.e. N = order + 1 eqsdiff!: RHS, in non-allocation form t: constructed by TaylorScalar{T, N}(t0, 1), which means unit perturbation x0: initial value """ function jetcoeffs_array_taylordiff( eqsdiff!::Function, t::TaylorScalar{T, N}, x0::AbstractArray{U, D}, params) where {T <: Real, U <: Number, N, D} x = map(TaylorScalar{U, N}, x0) # x.values[1] is defined, others are 0 f = similar(x) for index in 1:(N - 1) # computes x.values[index + 1] eqsdiff!(f, x, params, t) df = TaylorDiff.extract_derivative.(f, index) x = update_coefficient.(x, index + 1, df) end x end """ In TaylorDiff.jl, the polynomial coefficients are just the n-th order derivatives, not normalized by n!. So to compare with TaylorSeries.jl, one need to normalize """ function normalize_taylordiff_coeffs(t::TaylorScalar) return [x / factorial(i - 1) for (i, x) in enumerate(t.value)] end function scalar_test() rhs(x, p, t) = x * x x0 = 0.1 t0 = 0.0 order = 6 N = 7 # N = order + 1 # TaylorIntegration test t = t0 + Taylor1(typeof(t0), order) x = Taylor1(x0, order) @btime jetcoeffs!($rhs, $t, $x, nothing) # TaylorDiff test td = TaylorScalar{typeof(t0), N}(t0, one(t0)) @btime jetcoeffs_taylordiff($rhs, $td, $x0, nothing) result = jetcoeffs_taylordiff(rhs, td, x0, nothing) normalized = normalize_taylordiff_coeffs(result) @assert x.coeffs β‰ˆ normalized end function array_test() function lorenz(du, u, p, t) du[1] = 10.0(u[2] - u[1]) du[2] = u[1] * (28.0 - u[3]) - u[2] du[3] = u[1] * u[2] - (8 / 3) * u[3] return nothing end u0 = [1.0; 0.0; 0.0] t0 = 0.0 order = 6 N = 7 # TaylorIntegration test t = t0 + Taylor1(typeof(t0), order) u = [Taylor1(x, order) for x in u0] du = similar(u) uaux = similar(u) @btime jetcoeffs!($lorenz, $t, $u, $du, $uaux, nothing) # TaylorDiff test td = TaylorScalar{typeof(t0), N}(t0, one(t0)) @btime jetcoeffs_array_taylordiff($lorenz, $td, $u0, nothing) result = jetcoeffs_array_taylordiff(lorenz, td, u0, nothing) normalized = normalize_taylordiff_coeffs.(result) for i in eachindex(u) @assert u[i].coeffs β‰ˆ normalized[i] end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1684
using ADTypes using DifferentiationInterface using ModelingToolkit, DifferentialEquations using TaylorDiff, ForwardDiff using Enzyme, Zygote, ReverseDiff using SciMLSensitivity @parameters a @variables t x1(t) D = Differential(t) states = [x1] parameters = [a] @named pre_model = ODESystem([D(x1) ~ a * x1], t, states, parameters) model = structural_simplify(pre_model) ic = Dict(x1 => 1.0) p_true = Dict(a => 2.0) problem = ODEProblem{true, SciMLBase.FullSpecialize}(model, ic, [0.0, 1.0], p_true) soln = ModelingToolkit.solve(problem, Tsit5(), abstol = 1e-12, reltol = 1e-12) display(soln(0.5, idxs = [x1])) function different_time(new_ic, new_params, new_t) #newprob = ODEProblem{true, SciMLBase.FullSpecialize}(model, new_ic, [0.0, new_t*2], new_params) #newprob = remake(problem, u0=new_ic, tspan = [0.0, new_t], p = new_params) newprob = remake(problem, u0 = new_ic, tspan = [0.0, new_t], p = new_params) newprob = remake(newprob, u0 = typeof(new_t).(newprob.u0)) new_soln = ModelingToolkit.solve(newprob, Tsit5(), abstol = 1e-12, reltol = 1e-12) return (soln(new_t, idxs = [x1])) end function just_t(new_t) return different_time(ic, p_true, new_t)[1] end display(different_time(ic, p_true, 2e-5)) display(just_t(0.5)) #display(ForwardDiff.derivative(just_t,1.0)) display(TaylorDiff.derivative(just_t, 1.0, 1)) #isnan error #display(value_and_gradient(just_t, AutoForwardDiff(), 1.0)) #display(value_and_gradient(just_t, AutoReverseDiff(), 1.0)) #display(value_and_gradient(just_t, AutoEnzyme(Enzyme.Reverse), 1.0)) #display(value_and_gradient(just_t, AutoEnzyme(Enzyme.Forward), 1.0)) #display(value_and_gradient(just_t, AutoZygote(), 1.0))
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
423
module TaylorDiffNNlibExt using TaylorDiff import NNlib: oftf import NNlib: sigmoid_fast, tanh_fast, rrelu, leakyrelu @inline sigmoid_fast(t::TaylorScalar) = one(t) / (one(t) + exp(-t)) @inline tanh_fast(t::TaylorScalar) = tanh(t) @inline function rrelu(t::TaylorScalar{T, N}, l = oftf(t, 1 / 8), u = oftf(t, 1 / 3)) where {T, N} a = (u - l) * rand(float(T)) + l return leakyrelu(t, a) end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
174
module TaylorDiffSFExt using TaylorDiff, SpecialFunctions for func in (erf, erfc, erfcinv, erfcx, erfi) TaylorDiff.define_unary_function(func, TaylorDiffSFExt) end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
768
module TaylorDiffZygoteExt using TaylorDiff import Zygote: @adjoint, Numeric, _dual_safearg, ZygoteRuleConfig using ChainRulesCore: @opt_out # Zygote can't infer this constructor function # defining rrule for this doesn't seem to work for Zygote # so need to use @adjoint @adjoint TaylorScalar{T, N}(t::TaylorScalar{T, M}) where {T, N, M} = TaylorScalar{T, N}(t), xΜ„ -> (TaylorScalar{T, M}(xΜ„),) # Zygote will try to use ForwardDiff to compute broadcast functions # However, TaylorScalar is not dual safe, so we opt out of this _dual_safearg(::Numeric{<:TaylorScalar}) = false # Zygote has a rule for literal power, need to opt out of this @opt_out rrule( ::ZygoteRuleConfig, ::typeof(Base.literal_pow), ::typeof(^), x::TaylorScalar, ::Val{p} ) where {p} end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
161
module TaylorDiff include("scalar.jl") include("primitive.jl") include("utils.jl") include("codegen.jl") include("derivative.jl") include("chainrules.jl") end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
3194
import ChainRulesCore: rrule, RuleConfig, ProjectTo, backing, @opt_out using Base.Broadcast: broadcasted function contract(a::TaylorScalar{T, N}, b::TaylorScalar{S, N}) where {T, S, N} mapreduce(*, +, value(a), value(b)) end function rrule(::Type{TaylorScalar{T, N}}, v::NTuple{N, T}) where {N, T} taylor_scalar_pullback(tΜ„) = NoTangent(), value(tΜ„) return TaylorScalar(v), taylor_scalar_pullback end function rrule(::typeof(value), t::TaylorScalar{T, N}) where {N, T} value_pullback(vΜ„::NTuple{N, T}) = NoTangent(), TaylorScalar(vΜ„) # for structural tangent, convert to tuple function value_pullback(vΜ„::Tangent{P, NTuple{N, T}}) where {P} NoTangent(), TaylorScalar{T, N}(backing(vΜ„)) end value_pullback(vΜ„) = NoTangent(), TaylorScalar{T, N}(map(x -> convert(T, x), Tuple(vΜ„))) return value(t), value_pullback end function rrule(::typeof(extract_derivative), t::TaylorScalar{T, N}, i::Integer) where {N, T} function extract_derivative_pullback(dΜ„) NoTangent(), TaylorScalar{T, N}(ntuple(j -> j === i ? dΜ„ : zero(T), Val(N))), NoTangent() end return extract_derivative(t, i), extract_derivative_pullback end function rrule(::typeof(*), A::AbstractMatrix{S}, t::AbstractVector{TaylorScalar{T, N}}) where {N, S <: Real, T <: Real} project_A = ProjectTo(A) function gemv_pullback(xΜ„) xΜ‚ = reinterpret(reshape, T, xΜ„) tΜ‚ = reinterpret(reshape, T, t) NoTangent(), @thunk(project_A(transpose(xΜ‚) * tΜ‚)), @thunk(transpose(A)*xΜ„) end return A * t, gemv_pullback end function rrule(::typeof(*), A::AbstractMatrix{S}, B::AbstractMatrix{TaylorScalar{T, N}}) where {N, S <: Real, T <: Real} project_A = ProjectTo(A) project_B = ProjectTo(B) function gemm_pullback(xΜ„) XΜ„ = unthunk(xΜ„) NoTangent(), @thunk(project_A(XΜ„ * transpose(B))), @thunk(project_B(transpose(A) * XΜ„)) end return A * B, gemm_pullback end (project::ProjectTo{T})(dx::TaylorScalar{T, N}) where {N, T <: Number} = primal(dx) # opt-outs # Unary functions for f in ( exp, exp10, exp2, expm1, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, log, log10, log2, log1p, asin, acos, atan, asec, acsc, acot, asinh, acosh, atanh, asech, acsch, acoth, sqrt, cbrt, inv ) @eval @opt_out frule(::typeof($f), x::TaylorScalar) @eval @opt_out rrule(::typeof($f), x::TaylorScalar) end # Binary functions for f in ( *, /, ^ ) for (tlhs, trhs) in ( (TaylorScalar, TaylorScalar), (TaylorScalar, Number), (Number, TaylorScalar) ) @eval @opt_out frule(::typeof($f), x::$tlhs, y::$trhs) @eval @opt_out rrule(::typeof($f), x::$tlhs, y::$trhs) end end # Multi-argument functions @opt_out frule(::typeof(*), x::TaylorScalar, y::TaylorScalar, z::TaylorScalar) @opt_out rrule(::typeof(*), x::TaylorScalar, y::TaylorScalar, z::TaylorScalar) @opt_out frule( ::typeof(*), x::TaylorScalar, y::TaylorScalar, z::TaylorScalar, more::TaylorScalar...) @opt_out rrule( ::typeof(*), x::TaylorScalar, y::TaylorScalar, z::TaylorScalar, more::TaylorScalar...)
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
258
for unary_func in ( +, -, deg2rad, rad2deg, sinh, cosh, tanh, asin, acos, atan, asec, acsc, acot, log, log10, log1p, log2, asinh, acosh, atanh, asech, acsch, acoth, abs, sign) define_unary_function(unary_func, TaylorDiff) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
2535
export derivative, derivative!, derivatives, make_seed """ derivative(f, x, l, ::Val{N}) derivative(f!, y, x, l, ::Val{N}) Computes `order`-th directional derivative of `f` w.r.t. vector `x` in direction `l`. """ function derivative end """ derivative!(result, f, x, l, ::Val{N}) derivative!(result, f!, y, x, l, ::Val{N}) In-place derivative calculation APIs. `result` is expected to be pre-allocated and have the same shape as `y`. """ function derivative! end """ derivatives(f, x, l, ::Val{N}) derivatives(f!, y, x, l, ::Val{N}) Computes all derivatives of `f` at `x` up to order `N - 1`. """ function derivatives end # Convenience wrapper for adding unit seed to the input @inline derivative(f, x, order::Int64) = derivative(f, x, one(eltype(x)), order) # Convenience wrappers for converting orders to value types # and forward work to core APIs @inline derivative(f, x, l, order::Int64) = derivative(f, x, l, Val{order + 1}()) @inline derivative(f!, y, x, l, order::Int64) = derivative(f!, y, x, l, Val{order + 1}()) @inline derivative!(result, f, x, l, order::Int64) = derivative!( result, f, x, l, Val{order + 1}()) @inline derivative!(result, f!, y, x, l, order::Int64) = derivative!( result, f!, y, x, l, Val{order + 1}()) # Core APIs # Added to help Zygote infer types @inline function make_seed(x::T, l::S, ::Val{N}) where {T <: Real, S <: Real, N} TaylorScalar{T, N}(x, convert(T, l)) end @inline function make_seed(x::AbstractArray{T}, l, vN::Val{N}) where {T <: Real, N} broadcast(make_seed, x, l, vN) end # `derivative` API: computes the `N - 1`-th derivative of `f` at `x` @inline derivative(f, x, l, vN::Val{N}) where {N} = extract_derivative( derivatives(f, x, l, vN), N) @inline derivative(f!, y, x, l, vN::Val{N}) where {N} = extract_derivative( derivatives(f!, y, x, l, vN), N) @inline derivative!(result, f, x, l, vN::Val{N}) where {N} = extract_derivative!( result, derivatives(f, x, l, vN), N) @inline derivative!(result, f!, y, x, l, vN::Val{N}) where {N} = extract_derivative!( result, derivatives(f!, y, x, l, vN), N) # `derivatives` API: computes all derivatives of `f` at `x` up to order `N - 1` # Out-of-place function @inline derivatives(f, x, l, vN::Val{N}) where {N} = f(make_seed(x, l, vN)) # In-place function @inline function derivatives(f!, y::AbstractArray{T}, x, l, vN::Val{N}) where {T, N} buffer = similar(y, TaylorScalar{T, N}) f!(buffer, make_seed(x, l, vN)) map!(primal, y, buffer) return buffer end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
7459
import Base: abs, abs2 import Base: exp, exp2, exp10, expm1, log, log2, log10, log1p, inv, sqrt, cbrt import Base: sin, cos, tan, cot, sec, csc, sinh, cosh, tanh, coth, sech, csch, sinpi, cospi import Base: asin, acos, atan, acot, asec, acsc, asinh, acosh, atanh, acoth, asech, acsch import Base: sinc, cosc import Base: +, -, *, /, \, ^, >, <, >=, <=, == import Base: hypot, max, min import Base: tail # Unary @inline +(a::Number, b::TaylorScalar) = TaylorScalar((a + value(b)[1]), tail(value(b))...) @inline -(a::Number, b::TaylorScalar) = TaylorScalar((a - value(b)[1]), .-tail(value(b))...) @inline *(a::Number, b::TaylorScalar) = TaylorScalar((a .* value(b))...) @inline /(a::Number, b::TaylorScalar) = /(promote(a, b)...) @inline +(a::TaylorScalar, b::Number) = TaylorScalar((value(a)[1] + b), tail(value(a))...) @inline -(a::TaylorScalar, b::Number) = TaylorScalar((value(a)[1] - b), tail(value(a))...) @inline *(a::TaylorScalar, b::Number) = TaylorScalar((value(a) .* b)...) @inline /(a::TaylorScalar, b::Number) = TaylorScalar((value(a) ./ b)...) ## Delegated @inline sqrt(t::TaylorScalar) = t^0.5 @inline cbrt(t::TaylorScalar) = ^(t, 1 / 3) @inline inv(t::TaylorScalar) = one(t) / t for func in (:exp, :expm1, :exp2, :exp10) @eval @generated function $func(t::TaylorScalar{T, N}) where {T, N} ex = quote v = value(t) v1 = $($(QuoteNode(func)) == :expm1 ? :(exp(v[1])) : :($$func(v[1]))) end for i in 2:N ex = quote $ex $(Symbol('v', i)) = +($([:($(binomial(i - 2, j - 1)) * $(Symbol('v', j)) * v[$(i + 1 - j)]) for j in 1:(i - 1)]...)) end if $(QuoteNode(func)) == :exp2 ex = :($ex; $(Symbol('v', i)) *= $(log(2))) elseif $(QuoteNode(func)) == :exp10 ex = :($ex; $(Symbol('v', i)) *= $(log(10))) end end if $(QuoteNode(func)) == :expm1 ex = :($ex; v1 = expm1(v[1])) end ex = :($ex; TaylorScalar{T, N}(tuple($([Symbol('v', i) for i in 1:N]...)))) return :(@inbounds $ex) end end for func in (:sin, :cos) @eval @generated function $func(t::TaylorScalar{T, N}) where {T, N} ex = quote v = value(t) s1 = sin(v[1]) c1 = cos(v[1]) end for i in 2:N ex = :($ex; $(Symbol('s', i)) = +($([:($(binomial(i - 2, j - 1)) * $(Symbol('c', j)) * v[$(i + 1 - j)]) for j in 1:(i - 1)]...))) ex = :($ex; $(Symbol('c', i)) = +($([:($(-binomial(i - 2, j - 1)) * $(Symbol('s', j)) * v[$(i + 1 - j)]) for j in 1:(i - 1)]...))) end if $(QuoteNode(func)) == :sin ex = :($ex; TaylorScalar($([Symbol('s', i) for i in 1:N]...))) else ex = :($ex; TaylorScalar($([Symbol('c', i) for i in 1:N]...))) end return quote @inbounds $ex end end end @inline sinpi(t::TaylorScalar) = sin(Ο€ * t) @inline cospi(t::TaylorScalar) = cos(Ο€ * t) # Binary const AMBIGUOUS_TYPES = (AbstractFloat, Irrational, Integer, Rational, Real, RoundingMode) for op in [:>, :<, :(==), :(>=), :(<=)] for R in AMBIGUOUS_TYPES @eval @inline $op(a::TaylorScalar, b::$R) = $op(value(a)[1], b) @eval @inline $op(a::$R, b::TaylorScalar) = $op(a, value(b)[1]) end @eval @inline $op(a::TaylorScalar, b::TaylorScalar) = $op(value(a)[1], value(b)[1]) end @inline +(a::TaylorScalar, b::TaylorScalar) = TaylorScalar(map(+, value(a), value(b))) @inline -(a::TaylorScalar, b::TaylorScalar) = TaylorScalar(map(-, value(a), value(b))) @generated function *(a::TaylorScalar{T, N}, b::TaylorScalar{T, N}) where {T, N} return quote va, vb = value(a), value(b) @inbounds TaylorScalar($([:(+($([:($(binomial(i - 1, j - 1)) * va[$j] * vb[$(i + 1 - j)]) for j in 1:i]...))) for i in 1:N]...)) end end @generated function /(a::TaylorScalar{T, N}, b::TaylorScalar{T, N}) where {T, N} ex = quote va, vb = value(a), value(b) v1 = va[1] / vb[1] end for i in 2:N ex = quote $ex $(Symbol('v', i)) = (va[$i] - +($([:($(binomial(i - 1, j - 1)) * $(Symbol('v', j)) * vb[$(i + 1 - j)]) for j in 1:(i - 1)]...))) / vb[1] end end ex = :($ex; TaylorScalar($([Symbol('v', i) for i in 1:N]...))) return :(@inbounds $ex) end for R in (Integer, Real) @eval @generated function ^(t::TaylorScalar{T, N}, n::S) where {S <: $R, T, N} ex = quote v = value(t) w11 = 1 u1 = ^(v[1], n) end for k in 1:N ex = quote $ex $(Symbol('p', k)) = ^(v[1], n - $(k - 1)) end end for i in 2:N subex = quote $(Symbol('w', i, 1)) = 0 end for k in 2:i subex = quote $subex $(Symbol('w', i, k)) = +($([:((n * $(binomial(i - 2, j - 1)) - $(binomial(i - 2, j - 2))) * $(Symbol('w', j, k - 1)) * v[$(i + 1 - j)]) for j in (k - 1):(i - 1)]...)) end end ex = quote $ex $subex $(Symbol('u', i)) = +($([:($(Symbol('w', i, k)) * $(Symbol('p', k))) for k in 2:i]...)) end end ex = :($ex; TaylorScalar($([Symbol('u', i) for i in 1:N]...))) return :(@inbounds $ex) end @eval function ^(a::S, t::TaylorScalar{T, N}) where {S <: $R, T, N} exp(t * log(a)) end end ^(t::TaylorScalar, s::TaylorScalar) = exp(s * log(t)) @generated function raise(f::T, df::TaylorScalar{T, M}, t::TaylorScalar{T, N}) where {T, M, N} # M + 1 == N return quote $(Expr(:meta, :inline)) vdf, vt = value(df), value(t) @inbounds TaylorScalar(f, $([:(+($([:($(binomial(i - 1, j - 1)) * vdf[$j] * vt[$(i + 2 - j)]) for j in 1:i]...))) for i in 1:M]...)) end end raise(::T, df::S, t::TaylorScalar{T, N}) where {S <: Number, T, N} = df * t @generated function raiseinv(f::T, df::TaylorScalar{T, M}, t::TaylorScalar{T, N}) where {T, M, N} # M + 1 == N ex = quote vdf, vt = value(df), value(t) v1 = vt[2] / vdf[1] end for i in 2:M ex = quote $ex $(Symbol('v', i)) = (vt[$(i + 1)] - +($([:($(binomial(i - 1, j - 1)) * $(Symbol('v', j)) * vdf[$(i + 1 - j)]) for j in 1:(i - 1)]...))) / vdf[1] end end ex = :($ex; TaylorScalar(f, $([Symbol('v', i) for i in 1:M]...))) return :(@inbounds $ex) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
3336
import Base: zero, one, adjoint, conj, transpose import Base: +, -, *, / import Base: convert, promote_rule export TaylorScalar """ TaylorDiff.can_taylor(V::Type) Determines whether the type V is allowed as the scalar type in a Dual. By default, only `<:Real` types are allowed. """ can_taylorize(::Type{<:Real}) = true can_taylorize(::Type) = false @noinline function throw_cannot_taylorize(V::Type) throw(ArgumentError("Cannot create a Taylor polynomial over scalar type $V." * " If the type behaves as a scalar, define TaylorDiff.can_taylorize(::Type{$V}) = true.")) end """ TaylorScalar{T, N} Representation of Taylor polynomials. # Fields - `value::NTuple{N, T}`: i-th element of this stores the (i-1)-th derivative """ struct TaylorScalar{T, N} <: Real value::NTuple{N, T} function TaylorScalar{T, N}(value::NTuple{N, T}) where {T, N} can_taylorize(T) || throw_cannot_taylorize(T) new{T, N}(value) end end TaylorScalar(value::NTuple{N, T}) where {T, N} = TaylorScalar{T, N}(value) TaylorScalar(value::Vararg{T, N}) where {T, N} = TaylorScalar{T, N}(value) """ TaylorScalar{T, N}(x::T) where {T, N} Construct a Taylor polynomial with zeroth order coefficient. """ @generated function TaylorScalar{T, N}(x::S) where {T, S <: Real, N} return quote $(Expr(:meta, :inline)) TaylorScalar((T(x), $(zeros(T, N - 1)...))) end end """ TaylorScalar{T, N}(x::T, d::T) where {T, N} Construct a Taylor polynomial with zeroth and first order coefficient, acting as a seed. """ @generated function TaylorScalar{T, N}(x::S, d::S) where {T, S <: Real, N} return quote $(Expr(:meta, :inline)) TaylorScalar((T(x), T(d), $(zeros(T, N - 2)...))) end end @generated function TaylorScalar{T, N}(t::TaylorScalar{T, M}) where {T, N, M} N <= M ? quote $(Expr(:meta, :inline)) TaylorScalar(value(t)[1:N]) end : quote $(Expr(:meta, :inline)) TaylorScalar((value(t)..., $(zeros(T, N - M)...))) end end @inline value(t::TaylorScalar) = t.value @inline extract_derivative(t::TaylorScalar, i::Integer) = t.value[i] @inline function extract_derivative(v::AbstractArray{T}, i::Integer) where {T <: TaylorScalar} map(t -> extract_derivative(t, i), v) end @inline extract_derivative(r, i::Integer) = false @inline function extract_derivative!(result::AbstractArray, v::AbstractArray{T}, i::Integer) where {T <: TaylorScalar} map!(t -> extract_derivative(t, i), result, v) end @inline primal(t::TaylorScalar) = extract_derivative(t, 1) function promote_rule(::Type{TaylorScalar{T, N}}, ::Type{S}) where {T, S, N} TaylorScalar{promote_type(T, S), N} end function (::Type{F})(x::TaylorScalar{T, N}) where {T, N, F <: AbstractFloat} F(primal(x)) end function Base.nextfloat(x::TaylorScalar{T, N}) where {T, N} TaylorScalar{T, N}(ntuple(i -> i == 1 ? nextfloat(value(x)[i]) : value(x)[i], N)) end function Base.prevfloat(x::TaylorScalar{T, N}) where {T, N} TaylorScalar{T, N}(ntuple(i -> i == 1 ? prevfloat(value(x)[i]) : value(x)[i], N)) end const UNARY_PREDICATES = Symbol[ :isinf, :isnan, :isfinite, :iseven, :isodd, :isreal, :isinteger] for pred in UNARY_PREDICATES @eval Base.$(pred)(x::TaylorScalar) = $(pred)(primal(x)) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
964
using ChainRules using ChainRulesCore using Symbolics: @variables using SymbolicUtils, SymbolicUtils.Code using SymbolicUtils: Pow dummy = (NoTangent(), 1) @variables z function define_unary_function(func, m) F = typeof(func) # base case @eval m function (op::$F)(t::TaylorScalar{T, 2}) where {T} t0, t1 = value(t) f0, f1 = frule((NoTangent(), t1), op, t0) TaylorScalar{T, 2}(f0, zero_tangent(f0) + f1) end der = frule(dummy, func, z)[2] term, raiser = der isa Pow && der.exp == -1 ? (der.base, raiseinv) : (der, raise) # recursion by raising @eval m @generated function (op::$F)(t::TaylorScalar{T, N}) where {T, N} der_expr = $(QuoteNode(toexpr(term))) f = $func quote $(Expr(:meta, :inline)) z = TaylorScalar{T, N - 1}(t) f0 = $f(value(t)[1]) df = zero_tangent(z) + $der_expr $$raiser(f0, df, t) end end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
968
@testset "O-function, O-derivative" begin g(x) = x^3 @test derivative(g, 1.0, 1) β‰ˆ 3 h(x) = x .^ 3 @test derivative(h, [2.0 3.0], 1) β‰ˆ [12.0 27.0] g1(x) = x[1] * x[1] + x[2] * x[2] @test derivative(g1, [1.0, 2.0], [1.0, 0.0], 1) β‰ˆ 2.0 h1(x) = sum(x, dims = 1) @test derivative(h1, [1.0 2.0; 2.0 3.0], [1.0, 1.0], 1) β‰ˆ [2.0 2.0] end @testset "I-function, O-derivative" begin g!(y, x) = begin y[1] = x * x y[2] = x + 1 end x = 2.0 y = [0.0, 0.0] @test derivative(g!, y, x, 1.0, Val{2}()) β‰ˆ [4.0, 1.0] end @testset "O-function, I-derivative" begin g(x) = x .^ 2 @test derivative!(zeros(2), g, [1.0, 2.0], [1.0, 0.0], Val{2}()) β‰ˆ [2.0, 0.0] end @testset "I-function, I-derivative" begin g!(y, x) = begin y[1] = x[1] * x[1] y[2] = x[2] * x[2] end x = [2.0, 3.0] y = [0.0, 0.0] @test derivative!(y, g!, zeros(2), x, [1.0, 0.0], Val{2}()) β‰ˆ [4.0, 0.0] end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
1938
using LinearAlgebra import DifferentiationInterface using DifferentiationInterface: AutoZygote, AutoEnzyme import Zygote, Enzyme using FiniteDiff: finite_difference_derivative DI = DifferentiationInterface backend = AutoZygote() # backend = AutoEnzyme(; mode = Enzyme.Reverse, function_annotation = Enzyme.Const) @testset "Zygote-over-TaylorDiff on same variable" begin # Scalar functions some_number = 0.7 some_numbers = [0.3, 0.4, 0.1] for f in (exp, log, sqrt, sin, asin, sinh, asinh, x -> x^3) @test DI.derivative(x -> derivative(f, x, 2), backend, some_number) β‰ˆ derivative(f, some_number, 3) @test DI.jacobian(x -> derivative.(f, x, 2), backend, some_numbers) β‰ˆ diagm(derivative.(f, some_numbers, 3)) end # Vector functions g(x) = x[1] * x[1] + x[2] * x[2] @test DI.gradient(x -> derivative(g, x, [1.0, 0.0], 1), backend, [1.0, 2.0]) β‰ˆ [2.0, 0.0] # Matrix functions some_matrix = [0.7 0.1; 0.4 0.2] f(x) = sum(exp.(x), dims = 1) dfdx1(x) = derivative(f, x, [1.0, 0.0], 1) dfdx2(x) = derivative(f, x, [0.0, 1.0], 1) res(x) = sum(dfdx1(x) .+ 2 * dfdx2(x)) grad = DI.gradient(res, backend, some_matrix) @test grad β‰ˆ [1 0; 0 2] * exp.(some_matrix) end @testset "Zygote-over-TaylorDiff on different variable" begin linear_model(x, p, b) = exp.(b + p * x + b)[1] loss_taylor(x, p, b, v) = derivative(x -> linear_model(x, p, b), x, v, 1) Ξ΅ = cbrt(eps(Float64)) loss_finite(x, p, b, v) = (linear_model(x + Ξ΅ * v, p, b) - linear_model(x - Ξ΅ * v, p, b)) / (2 * Ξ΅) let some_x = [0.58, 0.36], some_v = [0.23, 0.11], some_p = [0.49 0.96], some_b = [0.88] @test DI.gradient( p -> loss_taylor(some_x, p, some_b, some_v), backend, some_p) β‰ˆ DI.gradient( p -> loss_finite(some_x, p, some_b, some_v), backend, some_p) end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
751
using Lux, Random @testset "Lux forward evaluation" begin # Construct the layer model = Chain(Dense(2, 16, Lux.relu), Dense(16, 1)) # Seeding rng = Random.default_rng() Random.seed!(rng, 0) # Parameter and State Variables ps, st = Lux.setup(rng, model) # Dummy Input x = TaylorVector([1.0, 1.0], [1.0, 0.0]) # Run the model y, st = Lux.apply(model, x, ps, st) end @testset "Lux gradient" begin # # Gradients # ## Pullback API to capture change in state # (l, st_), pb = pullback(p -> Lux.apply(model, x, p, st), ps) # gs = pb((one.(l), nothing))[1] # # Optimization # st_opt = Optimisers.setup(Optimisers.ADAM(0.0001), ps) # st_opt, ps = Optimisers.update(st_opt, ps, gs) end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
2524
using FiniteDifferences @testset "No derivative or linear" begin some_number, another_number = 1.9, 2.6 for f in (+, -, zero, one, adjoint, conj, deg2rad, rad2deg, abs, sign), order in (2,) @test derivative(f, some_number, order) β‰ˆ 0.0 end for f in (+, -, <, <=, >, >=, ==), order in (2,) @test derivative(x -> f(x, another_number), some_number, order) β‰ˆ 0.0 @test derivative(x -> f(another_number, x), some_number, order) β‰ˆ 0.0 @test derivative(x -> f(x, x), some_number, order) β‰ˆ 0.0 end end @testset "Unary functions" begin some_number = 3.7 for f in ( x -> exp(x^2), expm1, exp2, exp10, x -> sin(x^2), x -> cos(x^2), sinpi, cospi, sqrt, cbrt, inv), order in (1, 4) fdm = central_fdm(12, order) @test derivative(f, some_number, order)β‰ˆfdm(f, some_number) rtol=1e-6 end end @testset "Codegen" begin some_number = 0.6 for f in (log, sinh), order in (1, 4) fdm = central_fdm(12, order, max_range = 0.5) @test derivative(f, some_number, order)β‰ˆfdm(f, some_number) rtol=1e-6 end end @testset "Binary functions" begin some_number, another_number = 1.9, 5.6 for f in (*, /), order in (1, 4) fdm = central_fdm(12, order) closure = x -> exp(f(x, another_number)) @test derivative(closure, some_number, order)β‰ˆfdm(closure, some_number) rtol=1e-6 end for f in (x -> x^7, x -> x^another_number), order in (1, 2, 4) fdm = central_fdm(12, order) @test derivative(f, some_number, order)β‰ˆfdm(f, some_number) rtol=1e-6 end for f in (x -> x^7, x -> x^another_number), order in (1, 2) fdm = forward_fdm(12, order) @test derivative(f, 0, order)β‰ˆfdm(f, 0) atol=1e-6 end end @testset "Corner cases" begin offenders = ( TaylorDiff.TaylorScalar{Float64, 4}((Inf, 1.0, 0.0, 0.0)), TaylorDiff.TaylorScalar{Float64, 4}((Inf, 0.0, 0.0, 0.0)), TaylorDiff.TaylorScalar{Float64, 4}((1.0, 0.0, 0.0, 0.0)), TaylorDiff.TaylorScalar{Float64, 4}((1.0, Inf, 0.0, 0.0)), TaylorDiff.TaylorScalar{Float64, 4}((0.0, 1.0, 0.0, 0.0)), TaylorDiff.TaylorScalar{Float64, 4}((0.0, Inf, 0.0, 0.0)) # Others ? ) f_id = ( :id => x -> x, :add0 => x -> x + 0, :sub0 => x -> x - 0, :mul1 => x -> x * 1, :div1 => x -> x / 1, :pow1 => x -> x^1 ) for (name, f) in f_id, t in offenders @test f(t) == t end end
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
code
123
using TaylorDiff using Test include("primitive.jl") include("derivative.jl") include("downstream.jl") # include("lux.jl")
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
docs
5011
<h1 align=center>TaylorDiff.jl</h1> <p align=center> <a href="https://www.repostatus.org/#active"><img src="https://www.repostatus.org/badges/latest/active.svg" alt="Project Status: Active – The project has reached a stable, usable state and is being actively developed." /></a> <a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/license-MIT-blue.svg" alt="License: MIT" /></a> <a href="https://juliadiff.org/TaylorDiff.jl/stable/"><img src="https://img.shields.io/badge/docs-stable-blue.svg" alt="Stable" /></a> <a href="https://juliadiff.org/TaylorDiff.jl/dev/"><img src="https://img.shields.io/badge/docs-dev-blue.svg" alt="Dev" /></a> <br /> <a href="https://github.com/JuliaDiff/TaylorDiff.jl/actions/workflows/Test.yml?query=branch%3Amain"><img src="https://img.shields.io/github/actions/workflow/status/JuliaDiff/TaylorDiff.jl/Test.yml?branch=main&label=test" alt="Build Status" /></a> <a href="https://codecov.io/gh/JuliaDiff/TaylorDiff.jl"><img src="https://img.shields.io/codecov/c/gh/JuliaDiff/TaylorDiff.jl/main?token=5KYP7K71VQ"/></a> <a href="https://benchmark.tansongchen.com/TaylorDiff.jl"><img src="https://img.shields.io/buildkite/2c801728055463e7c8baeeb3cc187b964587235a49b3ed39ab/main.svg?label=benchmark" alt="Benchmark Status" /></a> <br /> <a href="https://github.com/SciML/ColPrac"><img src="https://img.shields.io/badge/contributor's%20guide-ColPrac-blueviolet" alt="ColPrac: Contributor's Guide on Collaborative Practices for Community Packages" /></a> <a href="https://github.com/SciML/SciMLStyle"><img src="https://img.shields.io/badge/code%20style-SciML-blueviolet" alt="SciML Code Style" /></a> </p> <p align=center> <a href="https://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=563952901&machine=standardLinux32gb&devcontainer_path=.devcontainer%2Fdevcontainer.json&location=EastUshttps://github.com/codespaces/new?hide_repo_select=true&ref=main&repo=563952901&machine=standardLinux32gb&devcontainer_path=.devcontainer%2Fdevcontainer.json&location=EastUs"><img src="https://github.com/codespaces/badge.svg" alt="Open in GitHub Codespaces" /></a> </p> [TaylorDiff.jl](https://github.com/JuliaDiff/TaylorDiff.jl) is an automatic differentiation (AD) package for efficient and composable higher-order derivatives, implemented with operator-overloading on Taylor polynomials. Disclaimer: this project is still in early alpha stage, and APIs can change any time in the future. Discussions and potential use cases are extremely welcome! ## Features TaylorDiff.jl is designed with the following goals in head: - Linear scaling with the order of differentiation (while naively composing first-order differentiation would result in exponential scaling) - Same performance with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) on first order and second order, so there is no penalty in drop-in replacement - Capable for calculating exact derivatives in physical models with ODEs and PDEs - Composable with other AD systems like [Zygote.jl](https://github.com/FluxML/Zygote.jl), so that the above models evaluated with TaylorDiff can be further optimized with gradient-based optimization techniques TaylorDiff.jl is fast! See our dedicated [benchmarks](https://benchmark.tansongchen.com/TaylorDiff.jl) page for comparison with other packages in various tasks. ## Installation ```bash ] add TaylorDiff ``` ## Usage ```julia using TaylorDiff x = 0.1 derivative(sin, x, 10) # scalar derivative v, direction = [3.0, 4.0], [1.0, 0.0] derivative(x -> sum(exp.(x)), v, direction, 2) # directional derivative ``` Please see our [documentation](https://juliadiff.org/TaylorDiff.jl) for more details. ## Related Projects - [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl): a systematic treatment of Taylor polynomials in one and several variables, but its mutating and scalar code isn't great for speed and composability with other packages - [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl): well-established and robust operator-overloading based forward-mode AD, where higher-order derivatives can be achieved by nesting first-order derivatives - [Diffractor.jl](https://github.com/JuliaDiff/Diffractor.jl): next-generation source-code transformation based forward-mode and reverse-mode AD, designed with support for higher-order derivatives in mind; but the higher-order functionality is currently only a proof-of-concept - [`jax.jet`](https://jax.readthedocs.io/en/latest/jax.experimental.jet.html): an experimental (and unmaintained) implementation of Taylor-mode automatic differentiation in JAX, sharing the same underlying algorithm with this project ## Citation ```bibtex @software{tan2022taylordiff, author = {Tan, Songchen}, title = {TaylorDiff.jl: Fast Higher-order Automatic Differentiation in Julia}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/JuliaDiff/TaylorDiff.jl}} } ```
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
docs
157
```@meta CurrentModule = TaylorDiff ``` # API API for [TaylorDiff](https://github.com/tansongchen/TaylorDiff.jl). ```@autodocs Modules = [TaylorDiff] ```
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.5
d09a7ac90d8067a7e619b2daa8efaba019bbb665
docs
2909
```@meta CurrentModule = TaylorDiff ``` # TaylorDiff.jl [TaylorDiff.jl](https://github.com/JuliaDiff/TaylorDiff.jl) is an automatic differentiation (AD) package for efficient and composable higher-order derivatives, implemented with operator-overloading on Taylor polynomials. Disclaimer: this project is still in early alpha stage, and APIs can change any time in the future. Discussions and potential use cases are extremely welcome! ## Features TaylorDiff.jl is designed with the following goals in head: - Linear scaling with the order of differentiation (while naively composing first-order differentiation would result in exponential scaling) - Same performance with [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) on first order and second order, so there is no penalty in drop-in replacement - Capable for calculating exact derivatives in physical models with ODEs and PDEs - Composable with other AD systems like [Zygote.jl](https://github.com/FluxML/Zygote.jl), so that the above models evaluated with TaylorDiff can be further optimized with gradient-based optimization techniques TaylorDiff.jl is fast! See our dedicated [benchmarks](https://benchmark.tansongchen.com/TaylorDiff.jl) page for comparison with other packages in various tasks. ## Installation ```bash ] add TaylorDiff ``` ## Usage ```julia using TaylorDiff x = 0.1 derivative(sin, x, 10) # scalar derivative v, direction = [3.0, 4.0], [1.0, 0.0] derivative(x -> sum(exp.(x)), v, direction, 2) # directional derivative ``` Please see our [documentation](https://juliadiff.org/TaylorDiff.jl) for more details. ## Related Projects - [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl): a systematic treatment of Taylor polynomials in one and several variables, but its mutating and scalar code isn't great for speed and composability with other packages - [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl): well-established and robust operator-overloading based forward-mode AD, where higher-order derivatives can be achieved by nesting first-order derivatives - [Diffractor.jl](https://github.com/JuliaDiff/Diffractor.jl): next-generation source-code transformation based forward-mode and reverse-mode AD, designed with support for higher-order derivatives in mind; but the higher-order functionality is currently only a proof-of-concept - [`jax.jet`](https://jax.readthedocs.io/en/latest/jax.experimental.jet.html): an experimental (and unmaintained) implementation of Taylor-mode automatic differentiation in JAX, sharing the same underlying algorithm with this project ## Citation ```bibtex @software{tan2022taylordiff, author = {Tan, Songchen}, title = {TaylorDiff.jl: Fast Higher-order Automatic Differentiation in Julia}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/JuliaDiff/TaylorDiff.jl}} } ```
TaylorDiff
https://github.com/JuliaDiff/TaylorDiff.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
277
using Documenter, CoordinatedSupplyChains makedocs(sitename="CoordinatedSupplyChains.jl Documentation", pages = [ "Home" => "index.md", "Tutorials" => "tutorial.md" ] ) deploydocs( repo = "github.com/Tominapa/CoordinatedSupplyChains.jl.git", )
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
26001
################################################################################ ### DATA STRUCTURE BUILDING FUNCTIONS - NOT FOR CALLING BY USER ############################## ### Time function TimeGen(time_id, time_dur) """ Generates time data strucures Inputs: - time point IDs - time period durations Outputs: - time data structure (T) - sets T1, Tt, and TT (provide convenient reference sets) - sets Tprior and Tpost (provide references to prior and subsequent time points) """ ### Part 0 - Setup CardT = length(time_id) ### Part 1 - Build time data structure T = TimeDataStruct( time_id, # ID time_dur # dt ) ### Part 2 - Build time data indexing sets T1 = [time_id[1]] # first time point as a 1D array with length 1 Tt = time_id[1:(end-1)] # all time points EXCEPT terminal time point TT = time_id[2:end] # all time points EXCEPT initial time point Tprior = Dict{String,String}() for t = 2:CardT Tprior[time_id[t]] = time_id[t-1] end Tpost = Dict{String,String}() for t = 1:(CardT-1) Tpost[time_id[t]] = time_id[t+1] end ### Return return T, T1, Tt, TT, Tprior, Tpost end # Nodes function NodeGen(node_id, node_alias, node_lon, node_lat) """ Generates node data strucures Inputs: - spatial node IDs - node names - node longitudes - node latitudes Outputs: - time data structure (T) - sets T1, Tt, and TT (provide convenient reference sets) - sets Tprior and Tpost (provide references to prior and subsequent time points) """ ### Part 1 - Build node data structure N = NodeDataStruct( node_id, # ID node_alias, # alias node_lon, # lon node_lat # lat ) ### Return return N end # Products function ProductGen(product_id, product_alias, product_transport_cost, product_storage_cost) """ Generates product data structure Inputs: - product IDs - product names - product transportation costs (i.e., spatial) - product storage costs (i.e., temporal) Outputs: - data structure (P) """ ### Part 1 - Build product data structure P = ProductDataStruct( product_id, # ID product_alias, # alias product_transport_cost, # transport_cost product_storage_cost # storage_cost ) ### Return return P end # Impacts function ImpactGen(impact_id, impact_alias, impact_transport_coeff, impact_storage_coeff) """ Generates product data structure Inputs: - impact IDs - impact names - impact transportation coefficients (i.e., spatial generation) - impact storage coefficients (i.e., temporal generation) Outputs: - data structure (Q) """ ### Part 1 - Build impact data strucure Q = ImpactDataStruct( impact_id, # ID impact_alias, # alias impact_transport_coeff, # transport_coeff impact_storage_coeff # storage_coeff ) ### Return return Q end # Arcs function ArcGen(time_id, time_dur, node_id, product_id, product_transport_cost, product_storage_cost, arc_id, arc_n, arc_m, arc_cap, arc_len; M=1E6) """ Generates arc data structures Inputs: - time node ids - time period durations - spatial node ids - spatial node positions (lon,lat) - product ids - spatial arc ids - spatial arc nodes (sending, receiving) - spatial arc capacities Outputs: - arc data structure (A) - set Ain; returns all arcs inbound on node n - set Aout; returns all arcs outbound from node n Update notes: - for now, assume FULL TIME CONNECTION - TO DO: add MODE keyword argument; allow full time connection or sequential time connection """ ### Part 1 - Build Arc Data Structure # Calculate number of arcs to define CardA = 2*length(arc_id) # The number of geographical arcs defined; *2 because they define both directions CardN = length(node_id) # number of nodes CardT = length(time_id) # number of time points CardSTA = Int(0.5*CardA*CardT*(CardT+1) + 0.5*CardN*CardT*(CardT-1)) # number of spatio-temporal arcs # Number of digits in CardSTA; use in lpad() pad = ndigits(CardSTA) # Define arc set and declare data arrays STarc_id = Array{String}(undef, CardSTA) # Spatio-temporal (ST) arc IDs STarc_n_send = Array{String}(undef, CardSTA) # sending node STarc_n_recv = Array{String}(undef, CardSTA) # receiving node STarc_t_send = Array{String}(undef, CardSTA) # sending time point STarc_t_recv = Array{String}(undef, CardSTA) # receving time point STarc_cap_key = Array{String}(undef, CardSTA) # capacity key STarc_len = Dict() # length STarc_dur = Dict() # duration STarc_id_s = Array{String}(undef, 0) # list of purely spatial arcs STarc_id_t = Array{String}(undef, 0) # list of purely temporal arcs STarc_id_st = Array{String}(undef, 0) # list of spatio-temporal arcs # Define a counter to track STarc_id position global OrdSTA = 0 # ordinate within ST arc set # Add purely spatial arcs to STarc set for t = 1:CardT for a = 1:length(arc_id) # Index update global OrdSTA += 1 # Add forward arc STarc_id[OrdSTA] = "A"*lpad(OrdSTA,pad,"0") STarc_n_send[OrdSTA] = arc_n[arc_id[a]] STarc_n_recv[OrdSTA] = arc_m[arc_id[a]] STarc_t_send[OrdSTA] = time_id[t] STarc_t_recv[OrdSTA] = time_id[t] STarc_cap_key[OrdSTA] = arc_id[a] STarc_len[STarc_id[OrdSTA]] = arc_len[arc_id[a]] STarc_dur[STarc_id[OrdSTA]] = 0.0 push!(STarc_id_s, STarc_id[OrdSTA]) # Index update global OrdSTA += 1 # Add reverse arc STarc_id[OrdSTA] = "A"*lpad(OrdSTA,pad,"0") STarc_n_send[OrdSTA] = arc_m[arc_id[a]] STarc_n_recv[OrdSTA] = arc_n[arc_id[a]] STarc_t_send[OrdSTA] = time_id[t] STarc_t_recv[OrdSTA] = time_id[t] STarc_cap_key[OrdSTA] = arc_id[a] STarc_len[STarc_id[OrdSTA]] = arc_len[arc_id[a]] STarc_dur[STarc_id[OrdSTA]] = 0.0 push!(STarc_id_s, STarc_id[OrdSTA]) end end # Add purely temporal arcs to STarc set for t_send = 1:(CardT-1) for t_recv = (t_send+1):CardT for n = 1:length(node_id) # Index update global OrdSTA += 1 # Add temporal arc connecting node to future time points STarc_id[OrdSTA] = "A"*lpad(OrdSTA,pad,"0") STarc_n_send[OrdSTA] = node_id[n] STarc_n_recv[OrdSTA] = node_id[n] STarc_t_send[OrdSTA] = time_id[t_send] STarc_t_recv[OrdSTA] = time_id[t_recv] STarc_cap_key[OrdSTA] = "M" STarc_len[STarc_id[OrdSTA]] = 0.0 STarc_dur[STarc_id[OrdSTA]] = sum([time_dur[time_id[t]] for t = t_send:(t_recv-1)]) push!(STarc_id_t, STarc_id[OrdSTA]) end end end # Add spatio-temporal arcs to STarc set for t_send = 1:(CardT-1) for t_recv = (t_send+1):CardT for a = 1:length(arc_id) # Index update global OrdSTA += 1 # Add n->m spatio-temporal arc STarc_id[OrdSTA] = "A"*lpad(OrdSTA,pad,"0") STarc_n_send[OrdSTA] = arc_n[arc_id[a]] STarc_n_recv[OrdSTA] = arc_m[arc_id[a]] STarc_t_send[OrdSTA] = time_id[t_send] STarc_t_recv[OrdSTA] = time_id[t_recv] STarc_cap_key[OrdSTA] = arc_id[a] STarc_len[STarc_id[OrdSTA]] = arc_len[arc_id[a]] STarc_dur[STarc_id[OrdSTA]] = sum([time_dur[time_id[t]] for t = t_send:(t_recv-1)]) push!(STarc_id_st, STarc_id[OrdSTA]) # Index update global OrdSTA += 1 # Add m->n spatio-temporal arc STarc_id[OrdSTA] = "A"*lpad(OrdSTA,pad,"0") STarc_n_send[OrdSTA] = arc_m[arc_id[a]] STarc_n_recv[OrdSTA] = arc_n[arc_id[a]] STarc_t_send[OrdSTA] = time_id[t_send] STarc_t_recv[OrdSTA] = time_id[t_recv] STarc_cap_key[OrdSTA] = arc_id[a] STarc_len[STarc_id[OrdSTA]] = arc_len[arc_id[a]] STarc_dur[STarc_id[OrdSTA]] = sum([time_dur[time_id[t]] for t = t_send:(t_recv-1)]) push!(STarc_id_st, STarc_id[OrdSTA]) end end end # Build STarc bid dictionary STarc_bid = DictInit([STarc_id,product_id], 0.0) for a in STarc_id for p = product_id STarc_bid[a,p] = product_transport_cost[p]*STarc_len[a] + product_storage_cost[p]*STarc_dur[a] end end # Build STarc capacity dictionary STarc_cap = DictInit([STarc_id,product_id], 0.0) for a = 1:CardSTA for p = 1:length(product_id) if STarc_cap_key[a] == "M" # These are the purely temporal arcs; no connection to a physical arc, so use a big M value STarc_cap[STarc_id[a],product_id[p]] = M else # Apply geographic arc capacities to all arcs (spatio-temporal will have same) STarc_cap[STarc_id[a],product_id[p]] = arc_cap[STarc_cap_key[a],product_id[p]] end end end A = ArcDataStruct(STarc_id, Dict{String,String}(zip(STarc_id, STarc_n_send)), # sending nodes Dict{String,String}(zip(STarc_id, STarc_n_recv)), # receiving nodes Dict{String,String}(zip(STarc_id, STarc_t_send)), # sending times Dict{String,String}(zip(STarc_id, STarc_t_recv)), # receiving times STarc_bid, # bids by product STarc_cap, # capacities by product STarc_len, # lengths STarc_dur, # durations STarc_id_s, # spatial arcs STarc_id_t, # temporal arcs STarc_id_st # spatio-temporal arcs ) ### Part 2 - Build Arc Truth Tables # Ain and Aout Ain = Dict() # given node s(n,t), provides all arcs a in A directed towards node s Aout = Dict() # given node s(n,t), provides all arcs a in A directed out of node s [Ain[n,t] = Vector{String}(undef,0) for n in node_id, t in time_id] [Aout[n,t] = Vector{String}(undef,0) for n in node_id, t in time_id] for a = 1:CardSTA push!(Ain[STarc_n_recv[a], STarc_t_recv[a]], STarc_id[a]) push!(Aout[STarc_n_send[a], STarc_t_send[a]], STarc_id[a]) end ### Return return A, Ain, Aout end # Demand function DemandGen(demand_id, demand_node, demand_time, demand_prod, demand_bid, demand_cap, demand_impact, demand_impact_yield) """ Generates node data strucures Inputs: - demand IDs - demand nodes - demand time periods - demand products - demand bids - demand capacities - demand impacts - demand impact yields Outputs: - demand data structure (D) """ ### Part 1 - Build demand data structure D = DemandDataStruct( demand_id, # ID demand_node, # node demand_time, # time demand_prod, # prod demand_bid, # bid demand_cap, # cap demand_impact, # impacts demand_impact_yield #impact yield cooefficients ) ### Return return D end # Supply function SupplyGen(supply_id, supply_node, supply_time, supply_prod, supply_bid, supply_cap, supply_impact, supply_impact_yeild) """ Generates supply data strucures Inputs: - supply IDs - supply node - supply time period - supply product - supply bid - supply capacity - supply impacts - supply impact yields Outputs: - supply data structure (G) """ ### Part 1 - Build supply data structure G = SupplyDataStruct( supply_id, # ID supply_node, # node supply_time, # time supply_prod, # prod supply_bid, # bid supply_cap, # cap supply_impact, # impacts supply_impact_yeild # supply impact yield coefficients ) ### Return return G end # Environmental stakeholder function EnvGen(env_id, env_node, env_time, env_impact, env_bid, env_cap) """ Generates environmental stakeholder data strucures Inputs: - env IDs - env node - env time period - env impact - env bid - env cap Outputs: - env data structure (V) """ ### Part 1 - Build environmental stakeholder data structure V = EnvDataStruct( env_id, # ID env_node, # node env_time, # time env_impact, # impact env_bid, # bid env_cap # capacity ) ### Return return V end # Technologies function TechGen(tech_id, tech_output, tech_input, tech_impact, tech_output_yield, tech_input_yield, tech_impact_yield, tech_ref, tech_bid, tech_cap, tech_alias) """ Generates technology data strucures Inputs: - technology IDs - technology outputs - technology inputs - technology impacts - technology output yields - technology input yields - technology impact yields - technology reference product - technology bid - technology capacity - technology alias Outputs: - technology data structure (M) - technology index set MPQ (commented, for now as uneeded) """ ### Part 1 - buiild technology data structure M = TechDataStruct( tech_id, # ID tech_output, # Outputs tech_input, # Inputs tech_impact, # Impacts tech_output_yield, # OutputYields tech_input_yield, # InputYields tech_impact_yield, # ImpactYields tech_ref, # InputRef tech_bid, # bid tech_cap, # cap tech_alias # alias ) ### Return return M end # Technology mapping function TechMapGen(techmap_id, techmap_node, techmap_time, techmap_tech) """ Generates technology mapping data strucures Inputs: - technology mapping IDs - technology map nodes - technology map times - technology map technology IDs Outputs: - techmap data structure (L) """ ### Part 1 - build technology map data structure L = TechmapDataStruct( techmap_id, # ID techmap_node, # node techmap_time, # time techmap_tech # tech ) ### Return return L end # Supplier mapping function SupplyIndexGen(node_id,time_id,product_id,supply_id,supply_node,supply_time,supply_prod) """ Generates supplier index set mapping i∈G to n∈N,t∈T,p∈P Inputs: - node IDs - time IDs - product IDs - supplier IDs - supplier nodes - supplier times - supplier products Outputs: - Supplier indexing set Gntp """ Gntp = DictListInit([node_id,time_id,product_id],InitStringArray) for i in supply_id n = supply_node[i] t = supply_time[i] p = supply_prod[i] push!(Gntp[n,t,p], i) end return Gntp end # Consumer mapping function DemandIndexGen(node_id,time_id,product_id,demand_id,demand_node,demand_time,demand_prod) """ Generates consumer index set mapping j∈D to n∈N,t∈T,p∈P Inputs: - node IDs - time IDs - product IDs - consumer IDs - consumer nodes - consumer times - consumer products Outputs: - Consumer indexing set Dntp """ Dntp = DictListInit([node_id,time_id,product_id],InitStringArray) for j in demand_id n = demand_node[j] t = demand_time[j] p = demand_prod[j] push!(Dntp[n,t,p], j) end return Dntp end # Environmental consumer mapping function EnvIndexGen(node_id,time_id,impact_id,supply_id,supply_node,supply_time,supply_impact,demand_id,demand_node,demand_time,demand_impact,env_id,env_node,env_time,env_impact) """ Generates environmental consumer index set mapping v∈V to n∈N,t∈T,q∈Q Inputs: - node IDs - time IDs - impact IDs - supplier IDs - supplier nodes - supplier times - supplier impacts - consumer IDs - consumer nodes - consumer times - consumer impacts - env. consumer IDs - env. consumer nodes - env. consumer times - env. consumer impacts Outputs: - Supplier indexing set Gntq - Consumer indexing set Dntq - Env. consumer indexing set Vntq """ Gntq = DictListInit([node_id,time_id,impact_id],InitStringArray) for i in supply_id ques = supply_impact[i] if ques != [""] # allow impactless suppliers; they are just not included in this set n = supply_node[i] t = supply_time[i] for q in ques push!(Gntq[n,t,q], i) end end end Dntq = DictListInit([node_id,time_id,impact_id],InitStringArray) for j in demand_id ques = demand_impact[j] if ques != [""] # allow impactless consumers; they are just not included in this set n = demand_node[j] t = demand_time[j] for q in ques push!(Dntq[n,t,q], j) end end end Vntq = DictListInit([node_id,time_id,impact_id],InitStringArray) for v in env_id n = env_node[v] t = env_time[v] q = env_impact[v] push!(Vntq[n,t,q], v) end return Gntq, Dntq, Vntq end # Subset for suppliers with impacts function SuppliersWithImpacts(supply_id, supply_impact) """ Generates subset of suppliers i ∈ G with associated impacts q in Q != Ο• Inputs: - supplier IDs - supplier impacts Outputs: - Set of suppliers with environmental impacts, GQ """ GQ = [] for i in supply_id if supply_impact[i] != [""] push!(GQ, i) end end return GQ end # Subset for consumers with impacts function ConsumersWithImpacts(demand_id, demand_impact) """ Generates subset of consumers j ∈ D with associated impacts q in Q != Ο• Inputs: - consumer IDs - consumer impacts Outputs: - Set of consumers with environmental impacts, DQ """ DQ = [] for j in demand_id if demand_impact[j] != [""] push!(DQ, j) end end return DQ end # Technology input/output mapping index sets function TechProductIndexSetGen(node_id, time_id, product_id, tech_output, tech_input, techmap_id, techmap_node, techmap_time, techmap_tech) """ Generates technology mapping data strucures Inputs: - node IDs - time point IDs - product IDs - technology inputs - technology outputs - techmap IDs - techmap nodes - techmap times - techmap technology types Outputs: - Index sets NTPgenl and NTPconl for product output/input """ ### Part 1 - Product output/input index sets # Index set, given (n,t,p) provide all l ∈ L satisfying n(l)=n,t(l)=t,p∈tech_output[m(l)] NTPgenl = DictListInit([node_id,time_id,product_id], InitStringArray) # Index set, given (n,t,p) provide all l ∈ L satisfying n(l)=n,t(l)=t,p∈tech_input[m(l)] NTPconl = DictListInit([node_id,time_id,product_id], InitStringArray) for l in techmap_id m = techmap_tech[l] n = techmap_node[l] t = techmap_time[l] for p in tech_output[m] push!(NTPgenl[n,t,p], l) end for p in tech_input[m] push!(NTPconl[n,t,p], l) end end ### Return return NTPgenl, NTPconl end # Technology input/output mapping index sets function TechImpactIndexSetGen(node_id, time_id, impact_id, tech_impact, techmap_id, techmap_node, techmap_time, techmap_tech) """ Generates technology mapping data strucures Inputs: - node IDs - time point IDs - impact IDs - technology impacts - techmap IDs - techmap nodes - techmap times - techmap technology types Outputs: - Index set NTQgenl for impact generation """ ### Part 1 - Product output/input index sets # Index set, given (n,t,q) provide all l ∈ L satisfying n(l)=n,t(l)=t,q∈tech_impact[m(l)] NTQgenl = DictListInit([node_id,time_id,impact_id], InitStringArray) for l in techmap_id m = techmap_tech[l] n = techmap_node[l] t = techmap_time[l] for q in tech_impact[m] push!(NTQgenl[n,t,q], l) end end ### Return return NTQgenl end ### Parameter generation functions function par_gMAX(node_id,time_id,product_id,supply_id,supply_node,supply_time,supply_prod,supply_cap) ### nodal supply capacity gMAX = DictInit([node_id,time_id,product_id], 0.0) for n in node_id for t in time_id for p in product_id for i in supply_id if supply_node[i] == n && supply_time[i] == t && supply_prod[i] == p gMAX[n,t,p] += supply_cap[i] end end end end end return gMAX end function par_dMAX(node_id,time_id,product_id,demand_id,demand_node,demand_time,demand_prod,demand_cap) ### nodal demand capacity dMAX = DictInit([node_id,time_id,product_id], 0.0) for n in node_id for t in time_id for p in product_id for j in demand_id if demand_node[j] == n && demand_time[j] == t && demand_prod[j] == p dMAX[n,t,p] += demand_cap[j] end end end end end return dMAX end function par_eMAX(node_id,time_id,impact_id,env_id,env_node,env_time,env_impact,env_cap) ### nodal impact capacity eMAX = DictInit([node_id,time_id,impact_id], 0.0) for n in node_id for t in time_id for q in impact_id for v in env_id if env_node[v] == n && env_time[v] == t && env_impact[v] == q eMAX[n,t,q] += env_cap[v] end end end end end return eMAX end function par_Ξ³iq(GQ,supply_impact,supply_impact_yield) ### yield of impact q from supplier i Ξ³iq = Dict() for i in GQ for q in supply_impact[i] # list of impacts q generated by supplying i Ξ³iq[i,q] = supply_impact_yield[i,q] end end return Ξ³iq end function par_Ξ³jq(DQ,demand_impact,demand_impact_yield) ### yield of impact q from consumer j Ξ³jq = Dict() for j in DQ for q in demand_impact[j] # list of impacts q generated by consuming j Ξ³jq[j,q] = demand_impact_yield[j,q] end end return Ξ³jq end function par_Ξ³aq(arc_id,impact_id,arc_len,arc_dur,impact_transport_coeff,impact_storage_coeff) ### yield of impact q from transport across arc a Ξ³aq = Dict() for a in arc_id for q in impact_id # includes both spatial and temporal dimensions # from model implementation: (Q.transport_coeff[q]*A.len[a] + Q.storage_coeff[q]*A.dur[a]) Ξ³aq[a,q] = impact_transport_coeff[q]*arc_len[a] + impact_storage_coeff[q]*arc_dur[a] end end return Ξ³aq end function par_Ξ³mp(tech_id,tech_output,tech_input,tech_output_yield,tech_input_yield) ### yield of product p in technology m Ξ³mp = Dict() for m in tech_id for p_gen in tech_output[m] # list of products made by m Ξ³mp[m,p_gen] = tech_output_yield[m,p_gen] end for p_con in tech_input[m] # list of products consumed by m Ξ³mp[m,p_con] = tech_input_yield[m,p_con] end end return Ξ³mp end function par_Ξ³mq(tech_id,tech_impact,tech_impact_yield) ### yield of impact q from technology m Ξ³mq = Dict() # yield of i from q in technology t for m in tech_id for q in tech_impact[m] Ξ³mq[m,q] = tech_impact_yield[m,q]# == tech_impact_stoich[m,q]/tech_input_stoich[m,pref] end end return Ξ³mq end function par_ΞΎgenMAX(techmap_id,techmap_tech,product_id,tech_output,tech_output_yield,tech_cap) ### Maximum production levels #ΞΎgenMAX = DictInit([tech_id,node_id,time_id,product_id],0.0) ΞΎgenMAX = DictInit([techmap_id,product_id],0.0) for l in techmap_id m = techmap_tech[l] for p in tech_output[m] ΞΎgenMAX[l,p] = tech_output_yield[m,p]*tech_cap[m] end end return ΞΎgenMAX end function par_ΞΎconMAX(techmap_id,techmap_tech,product_id,tech_input,tech_input_yield,tech_cap) ### Maximum consumption levels #ΞΎconMAX = DictInit([tech_id,node_id,time_id,product_id],0.0) ΞΎconMAX = DictInit([techmap_id,product_id],0.0) for l in techmap_id m = techmap_tech[l] for p in tech_input[m] ΞΎconMAX[l,p] = tech_input_yield[m,p]*tech_cap[m] end end return ΞΎconMAX end function par_ΞΎenvMAX(techmap_id,techmap_tech,impact_id,tech_impact,tech_impact_yield,tech_cap) ### Maximum impact generation levels #ΞΎenvMAX = DictInit([tech_id,node_id,time_id,impact_id],0.0) ΞΎenvMAX = DictInit([techmap_id,impact_id],0.0) for l in techmap_id m = techmap_tech[l] for q in tech_impact[m] ΞΎenvMAX[l,q] = tech_impact_yield[m,q]*tech_cap[m] end end return ΞΎenvMAX end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
1687
module CoordinatedSupplyChains ################################################################################ ### IMPORT LIST using DelimitedFiles using JuMP using HiGHS ################################################################################ ### EXPORT LIST #= List all usable functions here; this makes them callable to users =# export RunCSC, BuildModelData, BuildModel, GetModelStats, SolveModel, PostSolveCalcs, SaveSolution ################################################################################ ### INCLUDE STATEMENTS FOR CODE IN SEPARATE FILES # Supporting functions #= Useful functions that support model building; e.g., distance calculations, dictionary initialization, etc.; not for export =# include("SupportFunctions.jl") # Data structure definitions #= These describe the primary data structures that the model will use; nothing to export =# include("StructureDefns.jl") #= These functions help build the data structures for the model; EXPORT =# include("BuilderFunctions.jl") # Data import functions #= Functions that import individual model case studies and build the data structures for a market model; EXPORT =# include("DataSetup.jl") # Model building functions; EXPORT include("ModelSetup.jl") # Workflow functions to simplify use; EXPORT include("WorkflowFunctions.jl") ################################################################################ ### CONSTANT VALUES const PrintSpacer = "*"^50 const DefaultOptimizer = HiGHS.Optimizer end #Test lines; delete once testing documentation is done. #RunCSC("/Users/ptominac/Documents/environmentaleconomics/BilevelImpactMarkets/Code/ExtendedTestSets/NoArcs", optimizer=Gurobi.Optimizer)
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
18238
################################################################################ ### IMPORT DATA AND BUILD DATA STRUCTURES function BuildModelData(DataDir,UseArcLengths) """ Imports source data from given folder and builds model data structures Inputs: -> DataDir: a directory to a folder containing model data Returns: -> T: struct for time data -> N: struct for node data -> P: struct for product data -> Q: struct for impact data -> A: struct for arc data -> D: struct for demand data -> S: struct for supply data -> V: struct for environmental consumer data -> M: struct for technology data -> L: struct for technology mapping data -> Subsets: struct containing subsets and inersection sets of the above -> Pars: struct containing calculated parameters """ ################################################################################ ### DATA SETUP ### Time data parsing time_data = try readdlm(joinpath(DataDir,"csvdata_time.csv"),',',Any,comments=true) # import csv data catch false end UseTime = true # assume time data exists by default if time_data == false UseTime = false time_id = Vector{String}(["T0"]) time_dur = Dict{String,Float64}(time_id[1] => 0) else time_id = convert(Vector{String}, time_data[:, 1]) time_dur = Dict{String,Float64}(zip(time_id, convert(Array{Float64}, time_data[:, 2]))) # duration end ### Node data parsing node_data = readdlm(joinpath(DataDir,"csvdata_node.csv"),',',Any,comments=true) # import csv data node_id = convert(Vector{String}, node_data[:, 1]) node_alias = Dict{String,String}(zip(node_id, convert(Vector{String}, node_data[:, 2]))) # node name node_lon = Dict{String,Float64}(zip(node_id, convert(Vector{Float64}, node_data[:, 3]))) # longitude node_lat = Dict{String,Float64}(zip(node_id, convert(Vector{Float64}, node_data[:, 4]))) # latitude ### Product data parsing product_data = readdlm(joinpath(DataDir,"csvdata_product.csv"),',',Any,comments=true) # import csv data product_id = convert(Vector{String}, product_data[:, 1]) product_alias = Dict{String,String}(zip(product_id, convert(Vector{String}, product_data[:, 2]))) # product name product_transport_cost = Dict{String,Float64}(zip(product_id, convert(Vector{Float64}, product_data[:, 3]))) # product transport cost product_storage_cost = Dict{String,Float64}(zip(product_id, convert(Vector{Float64}, product_data[:, 4]))) # product storage cost ### Impact data parsing impact_data = try readdlm(joinpath(DataDir,"csvdata_impact.csv"),',',Any,comments=true) # import csv data catch false # assign false just to get out of try/catch end # Control flow for scenario in which no impact data is provided UseImpacts = true # assume there will be impact data by default if impact_data == false UseImpacts = false # use UseImpacts as the control flow condition in main code end if UseImpacts # Parse impact data if it is defined impact_id = convert(Vector{String}, impact_data[:, 1]) impact_alias = Dict{String,String}(zip(impact_id, convert(Vector{String}, impact_data[:, 2]))) # impact name & units impact_transport_coeff = Dict{String,Float64}(zip(impact_id, convert(Vector{Float64}, impact_data[:, 3]))) # impact production during transport impact_storage_coeff = Dict{String,Float64}(zip(impact_id, convert(Vector{Float64}, impact_data[:, 4]))) # impact production during storage else impact_id = Vector{String}() impact_alias = Dict{String,String}() # impact name & units impact_transport_coeff = Dict{String,Float64}() # impact production during transport impact_storage_coeff = Dict{String,Float64}() # impact production during storage end ### Arc data parsing arc_data = try readdlm(joinpath(DataDir,"csvdata_arcs.csv"),',',Any,comments=true) # import csv data catch false # assign false just to get out of try/catch end # Control flow for scenario in which no arc data is provided UseArcs = true # assume there will be technology data by default if arc_data == false UseArcs = false # use UseArcs as the control flow condition in main code end if UseArcs # Parse arc data if it is defined arc_id = convert(Array{String}, arc_data[:, 1]) arc_n = Dict{String,String}(zip(arc_id, convert(Vector{String}, arc_data[:, 2]))) # sending node "n" arc_m = Dict{String,String}(zip(arc_id, convert(Vector{String}, arc_data[:, 3]))) # receiving node "m" arc_cap = NumericListFromCSV2(arc_id, product_id, string.(arc_data[:, 4])) # arc capacities, by product if UseArcLengths arc_len = Dict{String,Float64}(zip(arc_id, convert(Vector{Float64}, arc_data[:, 5]))) # custom arc length else # i.e., calculate great circle arc lengths ref_lons = zeros(length(arc_id)) ref_lats = zeros(length(arc_id)) dest_lons = zeros(length(arc_id)) dest_lats = zeros(length(arc_id)) for a = 1:length(arc_id) ref_lons[a] = node_lon[arc_data[a, 2]] ref_lats[a] = node_lat[arc_data[a, 2]] dest_lons[a] = node_lon[arc_data[a, 3]] dest_lats[a] = node_lat[arc_data[a, 3]] end arc_len = Dict{String,Float64}(zip(arc_id,GreatCircle(ref_lons, ref_lats, dest_lons, dest_lats))) end else # there are no arcs, and all of these stay empty # NOTE: it is important that JuMP has these empty values so it's iterators can skip over the corresponding code arc_id = Vector{String}() arc_n = Dict{String,String}() # sending node "n" arc_m = Dict{String,String}() # receiving node "m" arc_cap = Dict{Tuple{String,String},Float64}() # arc capacities, by product arc_len = Dict{String,Float64}() # custom arc length end if !UseArcs && length(node_id) > 1 println("*"^10*" WARNING "*"*"^10) println("There is more than one NODE entry, but no ARC data is detected!") println("Check your data and make sure everything is as intended.") println("Code will proceed.") println("*"^31) end ### Demand data parsing demand_data = readdlm(joinpath(DataDir,"csvdata_demand.csv"),',',Any,comments=true) # import csv data demand_id = convert(Vector{String}, demand_data[:, 1]) demand_node = Dict{String,String}(zip(demand_id, convert(Vector{String}, demand_data[:, 2]))) # demand node if UseTime demand_time = Dict{String,String}(zip(demand_id, convert(Vector{String}, demand_data[:, 3]))) # demand time else demand_time = Dict{String,String}(zip(demand_id, repeat(time_id,length(demand_id)))) # demand time end demand_prod = Dict{String,String}(zip(demand_id, convert(Vector{String}, demand_data[:, 4]))) # demand product demand_bid = Dict{String,Float64}(zip(demand_id, convert(Vector{Float64}, demand_data[:, 5]))) # demand bid demand_cap = Dict{String,Float64}(zip(demand_id, convert(Vector{Float64}, demand_data[:, 6]))) # demand capacity demand_impact = PurgeQuotes(TextListFromCSV(demand_id, string.(demand_data[:,7]))) # demand impacts demand_impact_yield = NumericListFromCSV2(demand_id, demand_impact, string.(demand_data[:, 8])) # demand impact yield factors ### Supply data parsing supply_data = readdlm(joinpath(DataDir,"csvdata_supply.csv"),',',Any,comments=true) supply_id = convert(Vector{String}, supply_data[:, 1]) supply_node = Dict{String,String}(zip(supply_id, convert(Vector{String}, supply_data[:, 2]))) # supply node if UseTime supply_time = Dict{String,String}(zip(supply_id, convert(Vector{String}, supply_data[:, 3]))) # supply time else supply_time = Dict{String,String}(zip(supply_id, repeat(time_id,length(supply_id)))) # supply time end supply_prod = Dict{String,String}(zip(supply_id, convert(Vector{String}, supply_data[:, 4]))) # supply product supply_bid = Dict{String,Float64}(zip(supply_id, convert(Vector{Float64}, supply_data[:, 5]))) # supply bid supply_cap = Dict{String,Float64}(zip(supply_id, convert(Vector{Float64}, supply_data[:, 6]))) # supply capacity supply_impact = PurgeQuotes(TextListFromCSV(supply_id, string.(supply_data[:,7]))) # supply impacts supply_impact_yield = NumericListFromCSV2(supply_id, supply_impact, string.(supply_data[:, 8])) # supply impact yield factors ### Environmental stakeholder data parsing if UseImpacts # if impacts are undefined, definitely don't need impact consumption data env_data = readdlm(joinpath(DataDir,"csvdata_env.csv"),',',Any,comments=true) # import csv data env_id = convert(Vector{String}, env_data[:, 1]) env_node = Dict{String,String}(zip(env_id, convert(Vector{String}, env_data[:, 2]))) # environmental node if UseTime env_time = Dict{String,String}(zip(env_id, convert(Vector{String}, env_data[:, 3]))) # environmental time else env_time = Dict{String,String}(zip(env_id, repeat(time_id,length(env_id)))) # environmental time end env_impact = Dict{String,String}(zip(env_id, convert(Vector{String}, env_data[:, 4]))) # environmental product env_bid = Dict{String,Float64}(zip(env_id, convert(Vector{Float64}, env_data[:, 5]))) # environmental bid env_cap = Dict{String,Float64}(zip(env_id, convert(Vector{Float64}, env_data[:, 6]))) # environmental capacity (Inf, in most cases) else env_id = Vector{String}() env_node = Dict{String,String}() # environmental node env_time = Dict{String,String}() # environmental time env_impact = Dict{String,String}() # environmental product env_bid = Dict{String,Float64}() # environmental bid env_cap = Dict{String,Float64}() # environmental capacity (Inf, in most cases) end ### Technology data parsing tech_data = try readdlm(joinpath(DataDir,"csvdata_tech.csv"),',',Any,comments=true) # import csv data catch false # assign false just to get out of try/catch end # Control flow for scenario in which no technology data is provided UseTechs = true # assume there will be technology data by default if tech_data == false UseTechs = false # use UseTechs as the control flow condition in main code end if UseTechs # Parse technology data if it is defined tech_id = convert(Vector{String}, tech_data[:, 1]) tech_output = TextListFromCSV(tech_id, convert(Vector{String}, tech_data[:,2])) # technology outputs tech_input = TextListFromCSV(tech_id, convert(Vector{String}, tech_data[:,3])) # technology inputs tech_impact = PurgeQuotes(TextListFromCSV(tech_id, convert(Vector{String}, tech_data[:,4]))) # technology impacts tech_output_yield = NumericListFromCSV2(tech_id, tech_output, string.(tech_data[:, 5])) # product yield factors tech_input_yield = NumericListFromCSV2(tech_id, tech_input, string.(tech_data[:, 6])) # product yield factors tech_impact_yield = NumericListFromCSV2(tech_id, tech_impact, string.(tech_data[:, 7])) # impact yield factors tech_ref = Dict(zip(tech_id, convert(Vector{String}, tech_data[:, 8]))) # reference product tech_bid = Dict(zip(tech_id, convert(Vector{Float64}, tech_data[:, 9]))) # technology bid (operating cost) tech_cap = Dict(zip(tech_id, convert(Vector{Float64}, tech_data[:, 10]))) # technology capacity (per time unit) tech_alias = Dict(zip(tech_id, convert(Vector{String}, tech_data[:, 11]))) # technology alias # Technology mapping data parsing techmap_data = readdlm(joinpath(DataDir,"csvdata_techmap.csv"),',',Any,comments=true) # import csv data techmap_id = convert(Vector{String}, techmap_data[:, 1]) techmap_node = Dict{String,String}(zip(techmap_id, convert(Vector{String}, techmap_data[:, 2]))) # technology node (location) if UseTime techmap_time = Dict{String,String}(zip(techmap_id, convert(Vector{String}, techmap_data[:, 3]))) # technology time (availability) else techmap_time = Dict{String,String}(zip(techmap_id, repeat(time_id,length(techmap_id)))) # technology time (availability) end techmap_tech = Dict{String,String}(zip(techmap_id, convert(Vector{String}, techmap_data[:, 4]))) # technology type (from tech_id) else tech_id = Vector{String}() tech_output = Dict{String,Vector{String}}() # technology outputs tech_input = Dict{String,Vector{String}}() # technology inputs tech_impact = Dict{String,Vector{String}}() # technology impacts tech_output_yield = Dict{Tuple{String,String},Float64}() # product yield factors tech_input_yield = Dict{Tuple{String,String},Float64}() # product yield factors tech_impact_yield = Dict{Tuple{String,String},Float64}() # impact yield factors tech_ref = Dict{String,String}() # reference product tech_bid = Dict{String,Float64}() # technology bid (operating cost) tech_cap = Dict{String,Float64}() # technology capacity (per time unit) tech_alias = Dict{String,String}() # technology alias # Technology mapping data parsing techmap_id = Vector{String}() techmap_node = Dict{String,String}() # technology node (location) techmap_time = Dict{String,String}() # technology time (availability) techmap_tech = Dict{String,String}() # technology type (from tech_id) end ################################################################################ ### GENERATE INDEX SETS # temporal data structure T, T1, Tt, TT, Tprior, Tpost = TimeGen(time_id, time_dur) # spatial data strucure N = NodeGen(node_id, node_alias, node_lon, node_lat) # product data structure P = ProductGen(product_id, product_alias, product_transport_cost, product_storage_cost) # impact data structure Q = ImpactGen(impact_id, impact_alias, impact_transport_coeff, impact_storage_coeff) # spatio-temporal arc set from geographical arc data A, Ain, Aout = ArcGen(time_id, time_dur, node_id, product_id, product_transport_cost, product_storage_cost, arc_id, arc_n, arc_m, arc_cap, arc_len) # demand data structure D = DemandGen(demand_id, demand_node, demand_time, demand_prod, demand_bid, demand_cap, demand_impact, demand_impact_yield) Dntp = DemandIndexGen(node_id,time_id,product_id,demand_id,demand_node,demand_time,demand_prod) DQ = ConsumersWithImpacts(demand_id, demand_impact) # supply data structure G = SupplyGen(supply_id, supply_node, supply_time, supply_prod, supply_bid, supply_cap, supply_impact, supply_impact_yield) Gntp = SupplyIndexGen(node_id,time_id,product_id,supply_id,supply_node,supply_time,supply_prod) GQ = SuppliersWithImpacts(supply_id, supply_impact) # environmental data structure V = EnvGen(env_id, env_node, env_time, env_impact, env_bid, env_cap) Gntq, Dntq, Vntq = EnvIndexGen(node_id,time_id,impact_id,supply_id,supply_node,supply_time,supply_impact,demand_id,demand_node,demand_time,demand_impact,env_id,env_node,env_time,env_impact) # technology data structure M = TechGen(tech_id, tech_output, tech_input, tech_impact, tech_output_yield, tech_input_yield, tech_impact_yield, tech_ref, tech_bid, tech_cap, tech_alias) # technology mapping data structure L = TechMapGen(techmap_id, techmap_node, techmap_time, techmap_tech) # technology indexing set generation NTPgenl, NTPconl = TechProductIndexSetGen(node_id, time_id, product_id, tech_output, tech_input, techmap_id, techmap_node, techmap_time, techmap_tech) NTQgenl = TechImpactIndexSetGen(node_id, time_id, impact_id, tech_impact, techmap_id, techmap_node, techmap_time, techmap_tech) ################################################################################ ### GROUP SETS INTO STRUCT #= NOTE: sets are generated in the functions above because it seems to pass data back and forth fewer times. This may or may not be the correct interpreation. Consider testing it out at some point; there are likely efficiencies to be found =# Subsets = SetStruct(T1, Tt, TT, Tprior, Tpost, Ain, Aout, Dntp, Gntp, Dntq, Gntq, Vntq, DQ, GQ, NTPgenl, NTPconl, NTQgenl) ################################################################################ ### GENERATE CALCULATED PARAMETERS # For code readability, break down by parameter; depricate old single-function approach gMAX = par_gMAX(node_id,time_id,product_id,supply_id,supply_node,supply_time,supply_prod,supply_cap) dMAX = par_dMAX(node_id,time_id,product_id,demand_id,demand_node,demand_time,demand_prod,demand_cap) eMAX = par_eMAX(node_id,time_id,impact_id,env_id,env_node,env_time,env_impact,env_cap) Ξ³iq = par_Ξ³iq(GQ,supply_impact,supply_impact_yield) Ξ³jq = par_Ξ³jq(DQ,demand_impact,demand_impact_yield) Ξ³aq = par_Ξ³aq(A.ID,impact_id,A.len,A.dur,impact_transport_coeff,impact_storage_coeff) Ξ³mp = par_Ξ³mp(tech_id,tech_output,tech_input,tech_output_yield,tech_input_yield) Ξ³mq = par_Ξ³mq(tech_id,tech_impact,tech_impact_yield) ΞΎgenMAX = par_ΞΎgenMAX(techmap_id,techmap_tech,product_id,tech_output,tech_output_yield,tech_cap) ΞΎconMAX = par_ΞΎconMAX(techmap_id,techmap_tech,product_id,tech_input,tech_input_yield,tech_cap) ΞΎenvMAX = par_ΞΎenvMAX(techmap_id,techmap_tech,impact_id,tech_impact,tech_impact_yield,tech_cap) # Build parameter structure with required data or nothing entries Pars = ParStruct(gMAX, dMAX, eMAX, Ξ³iq, Ξ³jq, Ξ³aq, Ξ³mp, Ξ³mq, ΞΎgenMAX, ΞΎconMAX, ΞΎenvMAX) ################################################################################ ### POPULATE CONTROL FLOW STRUCTURE CF = DataCF(UseTime,UseArcs,UseTechs,UseImpacts) ################################################################################ ### RETURN return T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, CF end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
24748
################################################################################ ### BUILD JuMP MODEL function BuildModel(T, N, P, Q, A, D, G, V, M, L, Subsets, Pars; optimizer=DefaultOptimizer) """ Builds a coordination model from data structures Inputs: - time struct (T) - node struct (N) - product struct (P) - impact struct (Q) - arc struct (A) - demand struct (D) - supply struct (G) - impact struct (V) - technology data struct (M) - technology mapping struct (L) - Subsets struct (Subsets) - Parameter struct (Pars) Outputs: - JuMP model (MOD) """ ################################################################################ ### MODEL STATEMENT MOD = JuMP.Model(optimizer) ################################################################################ ### VARIABLES @variable(MOD, 0 <= g[i=G.ID] <= G.cap[i]) # supplier allocation by ID @variable(MOD, 0 <= d[j=D.ID] <= D.cap[j]) # consumer allocation by ID @variable(MOD, 0 <= e[v=V.ID] <= V.cap[v]) # impact allocation by ID @variable(MOD, 0 <= f[a=A.ID,p=P.ID] <= A.cap[a,p]) # transport allocation (arc-indexed) @variable(MOD, 0 <= ΞΎ[l=L.ID] <= M.cap[L.tech[l]]) # technology allocation w.r.t. reference product ################################################################################ ### EQUATIONS # Constraint expressions PB_i = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(g[i] for i in Subsets.Gntp[n,t,p])) PB_j = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(d[j] for j in Subsets.Dntp[n,t,p])) PB_a_in = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(f[a,p] for a in Subsets.Ain[n,t])) PB_a_out = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(f[a,p] for a in Subsets.Aout[n,t])) PB_m_gen = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(Pars.Ξ³mp[L.tech[l],p]*ΞΎ[l] for l in Subsets.NTPgenl[n,t,p])) PB_m_con = @expression(MOD, [n=N.ID,t=T.ID,p=P.ID], sum(Pars.Ξ³mp[L.tech[l],p]*ΞΎ[l] for l in Subsets.NTPconl[n,t,p])) QB_i = @expression(MOD, [n=N.ID,t=T.ID,q=Q.ID], sum(Pars.Ξ³iq[i,q]*g[i] for i in Subsets.Gntq[n,t,q])) QB_j = @expression(MOD, [n=N.ID,t=T.ID,q=Q.ID], sum(Pars.Ξ³jq[j,q]*d[j] for j in Subsets.Dntq[n,t,q])) QB_a = @expression(MOD, [n=N.ID,t=T.ID,q=Q.ID], sum(Pars.Ξ³aq[a,q]*f[a,p] for a in Subsets.Ain[n,t], p in P.ID)) QB_m = @expression(MOD, [n=N.ID,t=T.ID,q=Q.ID], sum(Pars.Ξ³mq[L.tech[l],q]*ΞΎ[l] for l in Subsets.NTQgenl[n,t,q])) QB_v = @expression(MOD, [n=N.ID,t=T.ID,q=Q.ID], sum(e[v] for v in Subsets.Vntq[n,t,q])) # Constraints @constraint(MOD, ProductBalance[n=N.ID,t=T.ID,p=P.ID], PB_i[n,t,p] + PB_a_in[n,t,p] + PB_m_gen[n,t,p] - PB_j[n,t,p] - PB_a_out[n,t,p] - PB_m_con[n,t,p] == 0) @constraint(MOD, ImpactBalance[n=N.ID,t=T.ID,q=Q.ID], QB_i[n,t,q] + QB_j[n,t,q] + QB_a[n,t,q] + QB_m[n,t,q] - QB_v[n,t,q] == 0) # Objective function expressions demand_obj = @expression(MOD, sum(D.bid[j]*d[j] for j in D.ID)) supply_obj = @expression(MOD, sum(G.bid[i]*g[i] for i in G.ID)) env_obj = @expression(MOD, sum(V.bid[v]*e[v] for v in V.ID)) transport_obj = @expression(MOD, sum(A.bid[a,p]*f[a,p] for a in A.ID, p in P.ID)) technology_obj = @expression(MOD, sum(M.bid[L.tech[l]]*ΞΎ[l] for l in L.ID)) # Objective function @objective(MOD, Max, demand_obj + env_obj - supply_obj - transport_obj - technology_obj) # Return return MOD end ################################################################################ ### ASSEMBLE MODEL STATISTICS function GetModelStats(MOD, DisplayMode=true)#, PrintSpacer="*"^50) ### Calculate statistics NumVars = length(all_variables(MOD)) TotalIneqCons = num_constraints(MOD,AffExpr, MOI.LessThan{Float64})+num_constraints(MOD,AffExpr, MOI.GreaterThan{Float64})+num_constraints(MOD,VariableRef, MOI.LessThan{Float64})+num_constraints(MOD,VariableRef, MOI.GreaterThan{Float64}) TotalEqCons = num_constraints(MOD,VariableRef, MOI.EqualTo{Float64})+num_constraints(MOD,AffExpr, MOI.EqualTo{Float64}) NumVarBounds = num_constraints(MOD,VariableRef, MOI.LessThan{Float64})+num_constraints(MOD,VariableRef, MOI.GreaterThan{Float64}) ModelIneqCons = num_constraints(MOD,AffExpr, MOI.LessThan{Float64})+num_constraints(MOD,AffExpr, MOI.GreaterThan{Float64}) ModelEqCons = num_constraints(MOD,AffExpr, MOI.EqualTo{Float64}) ### Optional: display statistics to REPL if DisplayMode # default true println(PrintSpacer*"\nModel statistics:") println("Variables: "*string(NumVars)) println("Total inequality constraints: "*string(TotalIneqCons)) println("Total equality constraints: "*string(TotalEqCons)) println("Variable bounds: "*string(NumVarBounds)) println("Model inequality constraints: "*string(ModelIneqCons)) println("Model equality constraints: "*string(ModelEqCons)) println(PrintSpacer) end ### Return return ModelStatStruct(NumVars,TotalIneqCons,TotalEqCons,NumVarBounds,ModelIneqCons,ModelEqCons) end ################################################################################ ### SOLVE JuMP MODEL function SolveModel(MOD) """ Solves JuMP coordination model MOD and returns solution structure with variable values Inputs: - JuMP coordination model (MOD) Outputs: - solution data struct (SOL) """ ### Solve & print status to REPL println("Solving original problem...") JuMP.optimize!(MOD) println("Termination status: "*string(termination_status(MOD))) println("Primal status: "*string(primal_status(MOD))) println("Dual status: "*string(dual_status(MOD))) ### Get results z_out = JuMP.objective_value(MOD) g_out = JuMP.value.(MOD[:g]) d_out = JuMP.value.(MOD[:d]) e_out = JuMP.value.(MOD[:e]) f_out = JuMP.value.(MOD[:f]) ΞΎ_out = JuMP.value.(MOD[:ΞΎ]) Ο€_p_out = JuMP.dual.(MOD[:ProductBalance]) Ο€_q_out = JuMP.dual.(MOD[:ImpactBalance]) ### Return return SolutionStruct(string(termination_status(MOD)),string(primal_status(MOD)),string(dual_status(MOD)),z_out,g_out,d_out,e_out,f_out,ΞΎ_out,Ο€_p_out,Ο€_q_out) end ################################################################################ ### CALCULATE ADDITIONAL SOLUTION VALUES function PostSolveCalcs(T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, SOL, CF) """ Calculates post-solve parameter values Inputs: Outputs: """ ### determine nodal supply, demand, environmental consumption gNTP = DictInit([N.ID,T.ID,P.ID], 0.0) dNTP = DictInit([N.ID,T.ID,P.ID], 0.0) eNTQ = DictInit([N.ID,T.ID,Q.ID], 0.0) for n in N.ID for t in T.ID for p in P.ID #if Subsets.Gntp[n,t,p] != [] gNTP[n,t,p] = reduce(+,SOL.g[i] for i in Subsets.Gntp[n,t,p];init=0) #end #if Subsets.Dntp[n,t,p] != [] dNTP[n,t,p] = reduce(+,SOL.d[j] for j in Subsets.Dntp[n,t,p];init=0) #end end for q in Q.ID #if Subsets.Vntq[n,t,q] != [] eNTQ[n,t,q] = reduce(+,SOL.e[v] for v in Subsets.Vntq[n,t,q];init=0) #end end end end ### determine consumption/generation values based on ΞΎ[l] ΞΎgen = DictInit([L.ID,P.ID], 0.0) ΞΎcon = DictInit([L.ID,P.ID], 0.0) ΞΎenv = DictInit([L.ID,Q.ID], 0.0) for l in L.ID for p in M.Outputs[L.tech[l]] ΞΎgen[l,p] = M.OutputYields[L.tech[l],p]*SOL.ΞΎ[l] end for p in M.Inputs[L.tech[l]] ΞΎcon[l,p] = M.InputYields[L.tech[l],p]*SOL.ΞΎ[l] end for q in M.Impacts[L.tech[l]] ΞΎenv[l,q] = M.ImpactYields[L.tech[l],q]*SOL.ΞΎ[l] end end ### calculate supply and demand impact values (prices) # Supplier impact value Ο€_iq = DictInit([G.ID,Q.ID], 0.0) for i in Subsets.GQ for q in G.Impacts[i] Ο€_iq[i,q] = Pars.Ξ³iq[i,q]*SOL.Ο€q[G.node[i],G.time[i],q] end end # Consumer impact value Ο€_jq = DictInit([D.ID,Q.ID], 0.0) for j in Subsets.DQ for q in D.Impacts[j] Ο€_jq[j,q] = Pars.Ξ³jq[j,q]*SOL.Ο€q[D.node[j],D.time[j],q] end end ### calculate transport and technology price values # transportation price Ο€_a = DictInit([A.ID,P.ID], 0.0) # transportation price associated with impact q ∈ Q Ο€_aq = DictInit([A.ID,Q.ID], 0.0) for a in A.ID for p in P.ID Ο€_a[a,p] = SOL.Ο€p[A.n_recv[a],A.t_recv[a],p] - SOL.Ο€p[A.n_send[a],A.t_send[a],p] end for q in Q.ID Ο€_aq[a,q] = Pars.Ξ³aq[a,q]*SOL.Ο€q[A.n_recv[a],A.t_recv[a],q] end end # technology price Ο€_m = DictInit([M.ID,N.ID,T.ID], 0.0) # technology price associated with impact q ∈ Q Ο€_mq = DictInit([M.ID,N.ID,T.ID,Q.ID], 0.0) for m in M.ID for n in N.ID for t in T.ID Ο€_m[m,n,t] = reduce(+,Pars.Ξ³mp[m,p]*SOL.Ο€p[n,t,p] for p in M.Outputs[m];init=0) - reduce(+,Pars.Ξ³mp[m,p]*SOL.Ο€p[n,t,p] for p in M.Inputs[m];init=0) for q in M.Impacts[m] Ο€_mq[m,n,t,q] = Pars.Ξ³mq[m,q]*SOL.Ο€q[n,t,q] end end end end ### Profits # Supplier profits Ο•i = DictInit([G.ID], 0.0) for i in G.ID Ο•i[i] = (SOL.Ο€p[G.node[i],G.time[i],G.prod[i]] + reduce(+,Ο€_iq[i,q] for q in G.Impacts[i];init=0) - G.bid[i])*SOL.g[i] end # Consumer profits Ο•j = DictInit([D.ID], 0.0) for j in D.ID Ο•j[j] = (D.bid[j] - SOL.Ο€p[D.node[j],D.time[j],D.prod[j]] + reduce(+,Ο€_jq[j,q] for q in D.Impacts[j];init=0))*SOL.d[j] end # Environmental consumer profits Ο•v = DictInit([V.ID], 0.0) for v in V.ID Ο•v[v] = (V.bid[v] - SOL.Ο€q[V.node[v],V.time[v],V.impact[v]])*SOL.e[v] end # Technology profits, by techmap index Ο•l = DictInit([L.ID], 0.0) for l in L.ID m = L.tech[l] n = L.node[l] t = L.time[l] Ο•l[l] = (Ο€_m[m,n,t] + reduce(+,Ο€_mq[m,n,t,q] for q in M.Impacts[m];init=0) - M.bid[m])*SOL.ΞΎ[l] end # Transportation profits Ο•a = DictInit([A.ID,P.ID], 0.0) for a in A.ID for p in P.ID Ο•a[a,p] = (Ο€_a[a,p] + reduce(+,Ο€_aq[a,q] for q in Q.ID) - A.bid[a,p];init=0)*SOL.f[a,p] end end ### Return return PostSolveValues(gNTP, dNTP, eNTQ, ΞΎgen, ΞΎcon, ΞΎenv, Ο€_iq, Ο€_jq, Ο€_a, Ο€_aq, Ο€_m, Ο€_mq, Ο•i, Ο•j, Ο•v, Ο•l, Ο•a) end ################################################################################ ### SAVE SOLUTION TO FILE function SaveSolution(filedir, ModelStats, SOL, POST, T, N, P, Q, A, D, G, V, M, L, CF) """ Saves the solution from a JuMP model to a text file Inputs: - filedir -> location for case study - JuMP solution struct (SOL) - JuMP model statistics (ModelStats) - Post-solve calculation struct (POST) - Set structures: T, N, P, Q, A, D, G, V, M, L Outputs: - returns nothing """ ### Create solution directory if not present SolutionDir = joinpath(filedir, "_SolutionData") if !isdir(SolutionDir) mkdir(SolutionDir) end ### Write solution data to one single text file SolutionFile = joinpath(SolutionDir, "_SolutionData.txt") solution = open(SolutionFile, "w") # print solution stats to file print(solution, PrintSpacer*"\nTermination status: "*string(SOL.TermStat)) print(solution, "\nPrimal status: "*string(SOL.PrimalStat)) print(solution, "\nDual status: "*string(SOL.DualStat)) print(solution, "\n"*PrintSpacer*"\nNumber of variables: "*string(ModelStats.Variables)) print(solution, "\nTotal inequality constraints: "*string(ModelStats.TotalInequalityConstraints)) print(solution, "\nTotal equality constraints: "*string(ModelStats.TotalEqualityConstraints)) print(solution, "\nNumber of variable bounds: "*string(ModelStats.VariableBounds)) print(solution, "\nModel inequality constraints: "*string(ModelStats.ModelInequalityConstrtaints)) print(solution, "\nModel equality constraints: "*string(ModelStats.ModelEqualityConstraints)) # print solution data to file print(solution, "\n"*PrintSpacer*"\nObjective value: "*string(SOL.z)) FilePrint(SOL.g,[G.ID],solution;Header=PrintSpacer,DataName="Supply Allocations:",VarName="g") FilePrint(SOL.d,[D.ID],solution;Header=PrintSpacer,DataName="Demand Allocations:",VarName="d") if CF.UseImpacts FilePrint(SOL.e,[V.ID],solution;Header=PrintSpacer,DataName="Environmental Consumption Allocations:",VarName="e") end if CF.UseArcs FilePrint(SOL.f,[A.ID,P.ID],solution;Header=PrintSpacer,DataName="Transport Allocations:",VarName="f") end if CF.UseTechs FilePrint(SOL.ΞΎ,[L.ID],solution;Header=PrintSpacer,DataName="Technology Allocations:",VarName="ΞΎ") end FilePrint(SOL.Ο€p,[N.ID,T.ID,P.ID],solution;Header=PrintSpacer,DataName="Nodal Product Prices:",VarName="Ο€") if CF.UseImpacts FilePrint(SOL.Ο€q,[N.ID,T.ID,Q.ID],solution;Header=PrintSpacer,DataName="Nodal Impact Prices:",VarName="Ο€") end FilePrint(POST.gNTP,[N.ID,T.ID,P.ID],solution;Header=PrintSpacer,DataName="Nodal Supply Allocations:",VarName="g") FilePrint(POST.dNTP,[N.ID,T.ID,P.ID],solution;Header=PrintSpacer,DataName="Nodal Demand Allocations:",VarName="d") if CF.UseImpacts FilePrint(POST.eNTQ,[N.ID,T.ID,Q.ID],solution;Header=PrintSpacer,DataName="Nodal Environmental Allocations:",VarName="e") end if CF.UseTechs FilePrint(POST.ΞΎgen,[L.ID,P.ID],solution;Header=PrintSpacer,DataName="Technology Generation Allocations:",VarName="ΞΎgen") FilePrint(POST.ΞΎcon,[L.ID,P.ID],solution;Header=PrintSpacer,DataName="Technology Consumption Allocations:",VarName="ΞΎcon") if CF.UseImpacts FilePrint(POST.ΞΎenv,[L.ID,Q.ID],solution;Header=PrintSpacer,DataName="Technology Impact Allocations:",VarName="ΞΎenv") end end if CF.UseImpacts FilePrint(POST.Ο€_iq,[G.ID,Q.ID],solution;Header=PrintSpacer,DataName="Supply Impact Prices:",VarName="Ο€_iq") FilePrint(POST.Ο€_jq,[D.ID,Q.ID],solution;Header=PrintSpacer,DataName="Demand Impact Prices:",VarName="Ο€_jq") end if CF.UseArcs FilePrint(POST.Ο€_a,[A.ID,P.ID],solution;Header=PrintSpacer,DataName="Transport Prices:",VarName="Ο€_a") if CF.UseImpacts FilePrint(POST.Ο€_aq,[A.ID,Q.ID],solution;Header=PrintSpacer,DataName="Transport Impact Prices:",VarName="Ο€_aq") end end if CF.UseTechs FilePrint(POST.Ο€_m,[M.ID,N.ID,T.ID],solution;Header=PrintSpacer,DataName="Technology Prices:",VarName="Ο€_m") if CF.UseImpacts FilePrint(POST.Ο€_mq,[M.ID,N.ID,T.ID,Q.ID],solution;Header=PrintSpacer,DataName="Technology Impact Prices:",VarName="Ο€_mq") end end FilePrint(POST.Ο•i,[G.ID],solution;Header=PrintSpacer,DataName="Supply Profits:",VarName="Ο•i") FilePrint(POST.Ο•j,[D.ID],solution;Header=PrintSpacer,DataName="Demand Profits:",VarName="Ο•j") if CF.UseImpacts FilePrint(POST.Ο•v,[V.ID],solution;Header=PrintSpacer,DataName="Environmental Consumer Profits:",VarName="Ο•v") end if CF.UseTechs FilePrint(POST.Ο•l,[L.ID],solution;Header=PrintSpacer,DataName="Technology Profits:",VarName="Ο•l") end if CF.UseArcs FilePrint(POST.Ο•a,[A.ID,P.ID],solution;Header=PrintSpacer,DataName="Transport Profits:",VarName="Ο•a") end close(solution) ### Write individual variables to csv files for easy access # delimiter Ξ” = "," # supply filename = open(joinpath(SolutionDir, "supply_allocations.csv"), "w") print(filename, "Supply ID"*Ξ”*"Supply node"*Ξ”*"Supply time"*Ξ”*"Supply Product"*Ξ”*"Supply allocation"*Ξ”*"Supply Profit") for i in G.ID print(filename, "\n"*i*Ξ”*G.node[i]*Ξ”*G.time[i]*Ξ”*G.prod[i]*Ξ”*string(SOL.g[i])*Ξ”*string(POST.Ο•i[i])) end close(filename) # demand filename = open(joinpath(SolutionDir, "demand_allocations.csv"), "w") print(filename, "Demand ID"*Ξ”*"Demand node"*Ξ”*"Demand time"*Ξ”*"Demand product"*Ξ”*"Demand allocation"*Ξ”*"Consumer Profit") for j in D.ID print(filename, "\n"*j*Ξ”*D.node[j]*Ξ”*D.time[j]*Ξ”*D.prod[j]*Ξ”*string(SOL.d[j])*Ξ”*string(POST.Ο•j[j])) end close(filename) # environmental consumption if CF.UseImpacts filename = open(joinpath(SolutionDir, "env_con_allocations.csv"), "w") print(filename, "Environmental Consumer ID"*Ξ”*"node"*Ξ”*"time"*Ξ”*"impact"*Ξ”*"Environmental Consumer allocation"*Ξ”*"Environmental Consumer Profit") for v in V.ID print(filename, "\n"*v*Ξ”*V.node[v]*Ξ”*V.time[v]*Ξ”*V.impact[v]*Ξ”*string(SOL.e[v])*Ξ”*string(POST.Ο•v[v])) end close(filename) end # transportation if CF.UseArcs filename = open(joinpath(SolutionDir, "transport_allocations.csv"), "w") header = "Arc ID"*Ξ”*"Send node"*Ξ”*"Receiving node"*Ξ”*"Send time"*Ξ”*"Receiving time" for p in P.ID header *= Ξ”*"Product: "*p end for p in P.ID header *= Ξ”*"Product "*p*" transport profit" end print(filename, header) for a in A.ID print(filename, "\n"*a*Ξ”*A.n_send[a]*Ξ”*A.n_recv[a]*Ξ”*A.t_send[a]*Ξ”*A.t_recv[a]) for p in P.ID print(filename, Ξ”*string(SOL.f[a,p])) end for p in P.ID print(filename, Ξ”*string(POST.Ο•a[a,p])) end end close(filename) end # technology if CF.UseTechs filename = open(joinpath(SolutionDir, "technology_allocations.csv"), "w") header = "Technology ID"*Ξ”*"Node"*Ξ”*"Time"*Ξ”*"Reference Product" for p in P.ID header *= Ξ”*"Consumed: "*p end for p in P.ID header *= Ξ”*"Generated: "*p end for q in Q.ID header *= Ξ”*"Impact: "*q end header *= Ξ”*"Profit" print(filename, header) for l in L.ID print(filename, "\n"*l*Ξ”*L.node[l]*Ξ”*L.time[l]*Ξ”*M.InputRef[L.tech[l]]) for p in P.ID if p in M.Inputs[L.tech[l]] print(filename, Ξ”*string(POST.ΞΎcon[l,p])) else print(filename, Ξ”) end end for p in P.ID if p in M.Outputs[L.tech[l]] print(filename, Ξ”*string(POST.ΞΎgen[l,p])) else print(filename, Ξ”) end end if CF.UseImpacts for q in Q.ID if q in M.Impacts[L.tech[l]] print(filename, Ξ”*string(POST.ΞΎenv[l,q])) else print(filename, Ξ”) end end end print(filename, Ξ”*string(POST.Ο•l[l])) end close(filename) end # nodal supply filename = open(joinpath(SolutionDir, "nodal_supply_allocations.csv"), "w") print(filename, "Node"*Ξ”*"Time point"*Ξ”*"Product"*Ξ”*"Total Supply") for n in N.ID for t in T.ID for p in P.ID if POST.gNTP[n,t,p] != 0 print(filename, "\n"*n*Ξ”*t*Ξ”*p*Ξ”*string(POST.gNTP[n,t,p])) end end end end close(filename) # nodal demand filename = open(joinpath(SolutionDir, "nodal_demand_allocations.csv"), "w") print(filename, "Node"*Ξ”*"Time point"*Ξ”*"Product"*Ξ”*"Total Demand") for n in N.ID for t in T.ID for p in P.ID if POST.dNTP[n,t,p] != 0 print(filename, "\n"*n*Ξ”*t*Ξ”*p*Ξ”*string(POST.dNTP[n,t,p])) end end end end close(filename) # nodal environmental consumption if CF.UseImpacts filename = open(joinpath(SolutionDir, "nodal_env_con_allocations.csv"), "w") print(filename, "Node"*Ξ”*"Time point"*Ξ”*"Product"*Ξ”*"Total Environmental Consumption") for n in N.ID for t in T.ID for q in Q.ID if POST.eNTQ[n,t,q] != 0 print(filename, "\n"*n*Ξ”*t*Ξ”*q*Ξ”*string(POST.eNTQ[n,t,q])) end end end end close(filename) end # Nodal prices filename = open(joinpath(SolutionDir, "nodal_prices.csv"), "w") print(filename, "Node"*Ξ”*"Time point"*Ξ”*"Product/Impact"*Ξ”*"Nodal price") for n in N.ID for t in T.ID for p in P.ID print(filename, "\n"*n*Ξ”*t*Ξ”*p*Ξ”*string(SOL.Ο€p[n,t,p])) end if CF.UseImpacts for q in Q.ID print(filename, "\n"*n*Ξ”*t*Ξ”*q*Ξ”*string(SOL.Ο€q[n,t,q])) end end end end close(filename) # supply impact prices if CF.UseImpacts filename = open(joinpath(SolutionDir, "supply_impact_prices.csv"), "w") print(filename, "Supplier"*Ξ”*"Node"*Ξ”*"Time point"*Ξ”*"Impact"*Ξ”*"Supply Impact Price") for i in G.ID for q in G.Impacts[i] print(filename, "\n"*i*Ξ”*G.node[i]*Ξ”*G.time[i]*Ξ”*q*Ξ”*string(POST.Ο€_iq[i,q])) end end close(filename) end # demand impact prices if CF.UseImpacts filename = open(joinpath(SolutionDir, "demand_impact_prices.csv"), "w") print(filename, "Consumer"*Ξ”*"Node"*Ξ”*"Time point"*Ξ”*"Impact"*Ξ”*"Demand Impact Price") for j in D.ID for q in D.Impacts[j] print(filename, "\n"*j*Ξ”*D.node[j]*Ξ”*D.time[j]*Ξ”*q*Ξ”*string(POST.Ο€_jq[j,q])) end end close(filename) end # transportation prices if CF.UseArcs filename = open(joinpath(SolutionDir, "transport_prices.csv"), "w") header = "Arc ID"*Ξ”*"Send node"*Ξ”*"Receiving node"*Ξ”*"Send time"*Ξ”*"Receiving time" for p in P.ID header *= Ξ”*"Product "*p*" transport price" end if CF.UseImpacts for q in Q.ID header *= Ξ”*"Impact "*q*" transport price" end end print(filename, header) for a in A.ID print(filename, "\n"*a*Ξ”*A.n_send[a]*Ξ”*A.n_recv[a]*Ξ”*A.t_send[a]*Ξ”*A.t_recv[a]) for p in P.ID print(filename, Ξ”*string(POST.Ο€_a[a,p])) end if CF.UseImpacts for q in Q.ID print(filename, Ξ”*string(POST.Ο€_aq[a,q])) end end end close(filename) end # technology prices if CF.UseTechs filename = open(joinpath(SolutionDir, "technology_prices.csv"), "w") header = "Technology ID"*Ξ”*"Node"*Ξ”*"Time"*Ξ”*"Reference Product"*Ξ”*"Technology Price" if CF.UseImpacts for q in Q.ID header *= Ξ”*"Impact: "*q*" price" end end print(filename, header) for l in L.ID print(filename, "\n"*l*Ξ”*L.node[l]*Ξ”*L.time[l]*Ξ”*M.InputRef[L.tech[l]]*Ξ”*string(POST.Ο€_m[L.tech[l],L.node[l],L.time[l]])) if CF.UseImpacts for q in Q.ID if q in M.Impacts[L.tech[l]] print(filename, Ξ”*string(POST.Ο€_mq[L.tech[l],L.node[l],L.time[l],q])) else print(filename, Ξ”) end end end end close(filename) end ### Return return end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
69
# Run me to start terminal using Revise using CoordinatedSupplyChains
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
6353
################################################################################ ### DEFINE DATA STRUCTURES "STRUCT" FOR USE IN MAIN MODEL ################################################################################ ### PRIMARY INDEX SETS struct TimeDataStruct ID::Vector{String} dt::Dict{String,Float64} end struct NodeDataStruct ID::Vector{String} alias::Dict{String,String} lon::Dict{String,Float64} lat::Dict{String,Float64} end struct ArcDataStruct ID::Vector{String} n_send::Dict{String,String} n_recv::Dict{String,String} t_send::Dict{String,String} t_recv::Dict{String,String} bid::Dict{Tuple{String,String},Float64} cap::Dict{Tuple{String,String},Float64} len::Dict{String,Float64} dur::Dict{String,Float64} ID_S::Vector{String} ID_T::Vector{String} ID_ST::Vector{String} end struct ProductDataStruct ID::Vector{String} alias::Dict{String,String} transport_cost::Dict{String,Float64} storage_cost::Dict{String,Float64} end struct ImpactDataStruct ID::Vector{String} alias::Dict{String,String} transport_coeff::Dict{String,Float64} storage_coeff::Dict{String,Float64} end struct DemandDataStruct ID::Vector{String} node::Dict{String,String} time::Dict{String,String} prod::Dict{String,String} bid::Dict{String,Float64} cap::Dict{String,Float64} Impacts::Dict{String,Vector{String}} ImpactYields::Dict{Tuple{String,String},Float64} end struct SupplyDataStruct ID::Vector{String} node::Dict{String,String} time::Dict{String,String} prod::Dict{String,String} bid::Dict{String,Float64} cap::Dict{String,Float64} Impacts::Dict{String,Vector{String}} ImpactYields::Dict{Tuple{String,String},Float64} end struct EnvDataStruct ID::Vector{String} node::Dict{String,String} time::Dict{String,String} impact::Dict{String,String} bid::Dict{String,Float64} cap::Dict{String,Float64} end struct TechDataStruct ID::Vector{String} Outputs::Dict{String,Vector{String}} Inputs::Dict{String,Vector{String}} Impacts::Dict{String,Vector{String}} OutputYields::Dict{Tuple{String,String},Float64} InputYields::Dict{Tuple{String,String},Float64} ImpactYields::Dict{Tuple{String,String},Float64} InputRef::Dict{String,String} bid::Dict{String,Float64} cap::Dict{String,Float64} alias::Dict{String,String} end struct TechmapDataStruct ID::Vector{String} node::Dict{String,String} time::Dict{String,String} tech::Dict{String,String} end struct SetStruct T1::Vector{String} Tt::Vector{String} TT::Vector{String} Tprior::Dict{String,String} Tpost::Dict{String,String} Ain::Union{Dict{Tuple{String,String},Vector{String}}, Nothing} Aout::Union{Dict{Tuple{String,String},Vector{String}}, Nothing} Dntp::Dict{Tuple{String,String,String},Vector{String}} Gntp::Dict{Tuple{String,String,String},Vector{String}} Dntq::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} Gntq::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} Vntq::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} DQ::Union{Vector{String}, Nothing} GQ::Union{Vector{String}, Nothing} NTPgenl::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} NTPconl::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} NTQgenl::Union{Dict{Tuple{String,String,String},Vector{String}}, Nothing} end struct ParStruct gMAX::Dict{Tuple{String,String,String},Float64} # maximum nodal supply dMAX::Dict{Tuple{String,String,String},Float64} # maximum nodal demand eMAX::Union{Dict{Tuple{String,String,String},Float64}, Nothing} # maximum environmental demand Ξ³iq::Union{Dict{Tuple{String,String},Float64}, Nothing} # supply impact yield Ξ³jq::Union{Dict{Tuple{String,String},Float64}, Nothing} # demand impact yield Ξ³aq::Union{Dict{Tuple{String,String},Float64}, Nothing} # transport impact yield Ξ³mp::Union{Dict{Tuple{String,String},Float64}, Nothing} # technology product yield Ξ³mq::Union{Dict{Tuple{String,String},Float64}, Nothing} # technology impact yield ΞΎgenMAX::Union{Dict{Tuple{String,String},Float64}, Nothing} # technology generation capacity ΞΎconMAX::Union{Dict{Tuple{String,String},Float64}, Nothing} # technology consumption capacity ΞΎenvMAX::Union{Dict{Tuple{String,String},Float64}, Nothing} # technology impact capacity end struct ModelStatStruct Variables::Int TotalInequalityConstraints::Int TotalEqualityConstraints::Int VariableBounds::Int ModelInequalityConstrtaints::Int ModelEqualityConstraints::Int end struct SolutionStruct TermStat::String PrimalStat::String DualStat::String z::Float64 g::JuMP.Containers.DenseAxisArray d::JuMP.Containers.DenseAxisArray e::Union{JuMP.Containers.DenseAxisArray,Nothing} f::Union{JuMP.Containers.DenseAxisArray,Nothing} ΞΎ::Union{JuMP.Containers.DenseAxisArray,Nothing} Ο€p::JuMP.Containers.DenseAxisArray Ο€q::Union{JuMP.Containers.DenseAxisArray,Nothing} end struct PostSolveValues gNTP::Dict{Tuple{String,String,String},Float64} dNTP::Dict{Tuple{String,String,String},Float64} eNTQ::Union{Dict{Tuple{String,String,String},Float64},Nothing} ΞΎgen::Union{Dict{Tuple{String,String},Float64},Nothing} ΞΎcon::Union{Dict{Tuple{String,String},Float64},Nothing} ΞΎenv::Union{Dict{Tuple{String,String},Float64},Nothing} Ο€_iq::Union{Dict{Tuple{String,String},Float64},Nothing} Ο€_jq::Union{Dict{Tuple{String,String},Float64},Nothing} Ο€_a::Union{Dict{Tuple{String,String},Float64},Nothing} Ο€_aq::Union{Dict{Tuple{String,String},Float64},Nothing} Ο€_m::Union{Dict{Tuple{String,String,String},Float64},Nothing} Ο€_mq::Union{Dict{Tuple{String,String,String,String},Float64},Nothing} Ο•i::Dict{String,Float64} Ο•j::Dict{String,Float64} Ο•v::Union{Dict{String,Float64},Nothing} Ο•l::Union{Dict{String,Float64},Nothing} Ο•a::Union{Dict{Tuple{String,String},Float64},Nothing} end # Control flow based on input data struct DataCF UseTime::Bool # are time points provided? UseArcs::Bool # are arcs provided? UseTechs::Bool # are technologies provided? UseImpacts::Bool # are impact data provided? end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
15236
################################################################################ ### SUPPORTING FUNCTIONS - NOT FOR CALLING BY USER # mean Earth radius used for Great Circle distance calculation const R = 6335.439 function GreatCircle(ref_lon::Float64, ref_lat::Float64, dest_lon::Float64, dest_lat::Float64) """ Calculates the great circle distance between a reference location (ref) and a destination (dest) and returns the great circle distances in km """ # haversine formula for Great Circle distance calculation dist = 2.0*R*asin(sqrt(((sind((dest_lat - ref_lat)/2))^2) + cosd(dest_lat)*cosd(ref_lat)*((sind((dest_lon - ref_lon)/2))^2))) return dist end function GreatCircle(ref_lon::Vector{Float64}, ref_lat::Vector{Float64}, dest_lon::Vector{Float64}, dest_lat::Vector{Float64}) """ Calculates the great circle distance between a reference location (ref) and a destination (dest) and returns the great circle distances in km """ # haversine formula for Great Circle distance calculation, vectorized dist = 2.0.*R.*asin.(sqrt.(((sind.((dest_lat .- ref_lat)./2)).^2) + cosd.(dest_lat).*cosd.(ref_lat).*((sind.((dest_lon .- ref_lon)./2)).^2))) return dist end function TextListFromCSV(IDs::Vector{String},DataCol::Vector{String}) """ This function recovers comma-separated lists of text labels stored as single entries in a csv file (separated by a non-comma separator) and returns them as a dictionary indexed by the given IDs i.e., |P01,P02,P03| -> ["P01","P02","P03"] Inputs: IDs - a list of labels to be used as dictionary keys DataCol - The column of data with rows corresponding to the labels in IDS, with each containing one or more text labels separated by commas Outputs: Out - a dictionary mapping the keys in IDs to the values in DataCol Note: This function replaces code of the form: for s = 1:length(asset_id) # AssetData[s,4] is a comma-separated list asset_inputs[asset_id[s]] = [String(i) for i in split(AssetData[s,4],",")] end """ Out = Dict{String,Vector{String}}() for i = 1:length(IDs) # Broadcast string() function to individual vector elements # Out[IDs[i]] is assigned a Vector{String} object Out[IDs[i]] = string.(split(DataCol[i],"|")) end return Out end #= function NumericListFromCSV(IDs,ID2s::Dict,DataCol) """ For data that may be stored as a list of numeric values within CSV data i.e., |0.1,0.2,0.3,0.4| in a "|"-separated data file. This function parses these data as Float64 values and assigns them to a dictionary using given keys; the dictionary is returned. Inputs: IDs - a list of IDs corresponding to the rows of the data in DataCol; also used as dict keys ID2s - a list of secondary IDs for use as keys in the dict; a list of lists DataCol - a column of data from a .csv file Note: This function replaces code like this: for s = 1:length(asset_id) # AssetData[s,7] is a comma-separated list check = typeof(AssetData[s, 7]) if check != Float64 && check != Int64 # then it's a string of numbers temp = split(asset_data[s, 7],",") values = [parse(Float64,temp[i]) for i = 1:length(temp)] # Float64 array else # in the case it was a Float64 or an Int64 values = asset_data[s, 7] end key1 = asset_id[s] key2s = asset_inputs[key1] for i = 1:length(key2s) asset_input_stoich[key1,key2s[i]] = values[i] end end """ Out = Dict() L = length(IDs) for l = 1:L if DataCol[l] != "" # if blank, ignore entry check = typeof(DataCol[l]) if check != Float64 && check != Int64 # then it's a string of numbers temp = split(DataCol[l],"|") # separate by pipes into temporary list values = [parse(Float64,temp[i]) for i = 1:length(temp)] # parse as Float64 array else # in the case it was already a Float64 or an Int64 values = DataCol[l] end key1 = IDs[l] key2s = ID2s[key1] for i = 1:length(key2s) Out[key1,key2s[i]] = values[i] end end end return Out end function NumericListFromCSV(IDs,ID2s::Array,DataCol) """ If ID2s is an Array (i.e., full loop over IDs and ID2s) """ Out = Dict{String,Float64}() L = length(IDs) for l = 1:L check = typeof(DataCol[l]) if check != Float64 && check != Int64 # then it's a string of numbers temp = split(DataCol[l],"|") # separate by commas into temporary list values = [parse(Float64,temp[i]) for i = 1:length(temp)] # parse as Float64 array else # in the case it was already a Float64 or an Int64 values = DataCol[l] end # Assign keys and values to output dictionary for i = 1:length(ID2s) Out[IDs[l],ID2s[i]] = values[i] end end return Out end =# function NumericListFromCSV2(ID1s::Vector{String},ID2s::Vector{String},DataCol::Vector{String}) """ Multiple dispatch option for ID2s::Vector{String} """ # Set up output dictionary; # it will always have two keys (type: Tuple{String,String}) # mapped to one Float64 value Out = Dict{Tuple{String,String},Float64}() cardID1 = length(ID1s) cardID2 = length(ID2s) # There will be one DataCol entry for each ID in IDs for id1 = 1:cardID1 # break up the DataCol entry string pieces = split(DataCol[id1], "|") # parse the pieces as Float64 pieces_float = map(pieces) do piece parse(Float64, piece) end for id2 = 1:cardID2 Out[ID1s[id1],ID2s[id2]] = pieces_float[id2] end end return Out end function NumericListFromCSV2(ID1s::Vector{String},ID2s::Dict{String,Vector{String}},DataCol::Vector{String}) """ Multiple dispatch option for ID2s::Dict{String,Vector{String}} """ # Set up output dictionary; # it will always have two keys (type: Tuple{String,String}) # mapped to one Float64 value Out = Dict{Tuple{String,String},Float64}() cardID1 = length(ID1s) cardID2 = [length(ID2s[ID1s[i]]) for i = 1:cardID1] # There will be one DataCol entry for each ID in IDs for id1 = 1:cardID1 if ID2s[ID1s[id1]] != [] # skip cases with no entries; only an issue with ID2s::Dict{String,Vector{String}} # break up the DataCol entry string pieces = split(DataCol[id1], "|") # parse the pieces as Float64 pieces_float = map(pieces) do piece parse(Float64, piece) end for id2 = 1:cardID2[id1] Out[ID1s[id1],ID2s[ID1s[id1]][id2]] = pieces_float[id2] end end end return Out end function KeyArrayInit(OrderedKeyList) """ Creates an array containing all combiinations of the keys in in OrderedKeyList; identical to DictInit() and DictListInit() functionality, but doesn't create a dictionary; just the array of keys Inputs: OrderedKeyList - a list of lists (i.e., list of lists of keys) Outputs: Out - an array of keys """ if length(OrderedKeyList) == 1 return OrderedKeyList[1] else return collect(Iterators.product(OrderedKeyList...)) end end function DictListInit(OrderedKeyList,InitFunction) """ Initializes a dictionary with the keys in OrderedKeyList and assigns each key an empty array defined by InitFunction Inputs: OrderedKeyList - a list of lists (i.e., list of lists of keys) InitFunction - a function producing an empty array Outputs: Out - a dictionary """ if length(OrderedKeyList) == 1 return Dict(key => InitFunction() for key in OrderedKeyList[1]) else return Dict(key => InitFunction() for key in collect(Iterators.product(OrderedKeyList...))) end end function InitStringArray() """ Returns an empty String array; function for use with DictListInit """ return Array{String}(undef,0) end function DictInit(OrderedKeyList,InitValue) """ Initializes a dictionary with the keys in OrderedKeyList and assigns each key the value in InitValue Inputs: OrderedKeyList - a list of lists (i.e., list of lists of keys) InitValue - probably either 0 or false Outputs: Out - a dictionary Notes: 1) replaces the initialization loop for dictionaries that require full population; i.e., in the case of set intersections 2) DO NOT USE WHERE InitValue IS ::Function """ if length(OrderedKeyList) == 1 return Dict(key => InitValue for key in OrderedKeyList[1]) else return Dict(key => InitValue for key in collect(Iterators.product(OrderedKeyList...))) end end function PrettyPrint(Data, OrderedIndexList, TruthTable=nothing; Header="*"^50, DataName="", VarName="") """ Prints Data values indexed by OrderedIndexList based on whether or not the corresponding index value of TruthTable is true; Data and TruthTable share the same index pattern. Inputs: Data - an indexed data structure; a dictionary or JuMP variable OrderedIndexList - a list of the indices corresponding to Data and TruthTable TruthTable - a dictionary indexed on OrderedindexList which outputs Boolean values (true/false) Header - A string to print above any data DataName - A string to be printed as a header for the data VarName - A string to be printed before each line """ # check truthtable; if not, default to true if TruthTable === nothing TruthTable = DictInit(OrderedIndexList, true) end # Start printing headers println(Header) println(DataName) # Check index index list length for proper index handling if length(OrderedIndexList) == 1 SplatIndex = OrderedIndexList[1] for index in SplatIndex if TruthTable[index] println(VarName*"(\""*string(index)*"\"): "*string(Data[index])) end end else SplatIndex = collect(Iterators.product(OrderedIndexList...)) for index in SplatIndex if TruthTable[index...] println(VarName*string(index)*": "*string(Data[index...])) end end end end function Nonzeros(Data, OrderedIndexList; Threshold=1E-9) """ Given a dictionary of data indexed by the labels in OrderedIndexList returns a Boolean dictionary pointing to nonzero indices in Data, where nonzero is subject to a threshold value Threshold, defaulting to 1E-9. """ OutDict = Dict() if length(OrderedIndexList) == 1 SplatIndex = OrderedIndexList[1] for index in SplatIndex if abs(Data[index]) > Threshold OutDict[index] = true else OutDict[index] = false end end else SplatIndex = collect(Iterators.product(OrderedIndexList...)) for index in SplatIndex if abs(Data[[i for i in index]...]) > Threshold OutDict[[i for i in index]...] = true else OutDict[[i for i in index]...] = false end end end return(OutDict) end function FilePrint(Variable,OrderedIndexList,filename;Header="*"^50,DataName="",VarName="") """ Generates a list of strings and prints them to file with nice formatting; reduces required script code clutter. > Variable: the result of a JuMP getvalue() call; a Dict(). > OrderedIndexList: a list of indices in the same order as the indices of the data in Variale; each element is a list of index elements. As an example: [A,B,C] where A = [a1,a2,...,aN], B = .... > filename: the file name for printing > Header: a string to be used as a header above the printed data > DataName: a header to appear above the printed data > VarName: the desired output name of the variable on screen; a string """ # Header and DataName: print(filename,"\n"*Header*"\n"*DataName) # Collect indices via splatting to create all permutations; print each permuted index and value to file if length(OrderedIndexList) == 1 SplatIndex = OrderedIndexList[1] for index in SplatIndex print(filename,"\n"*VarName*"(\""*string(index)*"\") = "*string(Variable[index])) end else SplatIndex = collect(Iterators.product(OrderedIndexList...)) for index in SplatIndex print(filename,"\n"*VarName*string(index)*" = "*string(Variable[[i for i in index]...])) end end end function PurgeQuotes(d::Dict) """ Removes empty quote strings ("") from dictionaries Inputs: - arr, an array Outputs: - cleaned array """ for k in keys(d) if d[k] == [""] d[k] = InitStringArray() end end return d end #= function RawDataPrint(data,filename;Header="*"^50,DataName="") """ Prints raw data to file for record-keeping purposes; reduces required script code clutter. > data: an array of data read from a .csv file. > filename: the file name for printing > Header: a string to be used as a header above the printed data > DataName: a header to appear above the printed data """ # Header and DataName: print(filename,"\n"*Header*"\n"*DataName) # number of rows n = size(data)[1] # print rows of data array to file for i = 1:n print(filename,"\n") print(filename,data[i,:]) end end =# function EnvDataGen(N,T,Q,InitValues,filedir) """ Generates a default list of environmental stakeholders based on node and time IDs, and sets a default bid (tax) for each impact type using InitValueas. Just a convenient way to create this file. Inputs: - N: node IDs - T: time IDs - Q: impact IDs - InitValues: bid values; same length as Q - filedir: file location for csvdata_env.csv Outputs: - text file: csvdata_env.csv """ ### Setup CardN = length(N) CardT = length(T) CardQ = length(Q) CardV = CardN*CardT*CardQ Vdigits = ndigits(CardV) header = "# 1. Env. stakeholder reference| 2. Node| 3. Time| 4. Impact| 5. Bid (USD/impact unit)" # Open file filename = open(joinpath(filedir,"csvdata_env.csv"),"w") # print header line with column information print(filename, header) # build list of default environmental stakeholders OrdV = 0 for n = 1:CardN for t = 1:CardT for q = 1:CardQ OrdV += 1 print(filename, "\nV"*lpad(OrdV,Vdigits,"0")*"|"*N[n]*"|"*T[t]*"|"*Q[q]*"|"*string(InitValues[q])) end end end close(filename) return end # EnvDataGen(N.ID,T.ID,Q.ID,[0,0,0],"TestSets/BuildTest01")
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
1468
################################################################################ ### FUNCTIONS FOR RUNNING COMPLETE WORKFLOWS function RunCSC(DataDir=pwd(); optimizer=DefaultOptimizer, UseArcLengths=true, Output=false) """ A function to simplify workflow with CoordinatedSupplyChains.jl Inputs: - DataDir: the directory to a file containing case study data - optimizer: (optional keyword argument) an aptimizer to solve a case study, e.g., Gurobi.Optimiizer; defaults to HiGHS.Optimizer if not specified Returns: - nothing by default, all data if Output=true """ # Load data T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, CF = BuildModelData(DataDir, UseArcLengths); # Build model MOD = BuildModel(T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, optimizer=optimizer) # Get model statistics ModelStats = GetModelStats(MOD) # Solve the case model SOL = SolveModel(MOD) # Calculate case study values determined post-model solve POST = PostSolveCalcs(T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, SOL, CF) # Save solution data SaveSolution(DataDir, ModelStats, SOL, POST, T, N, P, Q, A, D, G, V, M, L, CF) # Update User println(PrintSpacer*"\n"*" "^19*"All Done!\n"*PrintSpacer) # return if Output return T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, MOD, ModelStats, SOL, POST else return end end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
code
991
using CoordinatedSupplyChains using Test @testset "CoordinatedSupplyChains.jl" begin # Test directory and file directory information TestFolder = "ExtendedTestSets" TestList = ["NoArcs", "NoTechnologies", "NoTimeNoArcsNoImpsNoTechs", "NutrientModelDemandLoss", "NutrientModelDemandLossV2", "TutorialModel", "TutorialModelIntValues"] SolutionDirectory = "_SolutionData" SolutionFileName = "_SolutionData.txt" # Keyword options UseArcsForTest = [true,true,true,true,true,false,false] # Run through the six test cases for i = 1:length(TestList) RunCSC(joinpath(@__DIR__,TestFolder,TestList[i]),UseArcLengths=UseArcsForTest[i]) @test isfile(joinpath(@__DIR__,TestFolder,TestList[i],SolutionDirectory,SolutionFileName)) == true rm(joinpath(@__DIR__,TestFolder,TestList[i],SolutionDirectory,SolutionFileName), recursive=true) end end
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
docs
4953
![Logo](CSCLogo.png) --- A supply chain modeling framework based on `JuMP` implementing the coordination model described described by [Tominac and Zavala](https://doi.org/10.1016/j.compchemeng.2020.107157). `CoordinatedSuppylChains.jl` automates this implementation; users can point it at a set of data files, and the package will build the model, solve it, save solution variables to .csv files, and create basic network plots of the system. For more control, users can call functions one-by-one, giving access to all intermediate data structures, or simply point a single convenient function at a directory with the required data files, and `CoordinatedSupplyChains` will do the rest. The present release supports steady-state and dynamic supply chain coordination problems, with the option to include environmental impact metrics. | **Documentation** | **Build Status** | **Citation** | |:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:--------------------------------------:| |[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://tominapa.github.io/CoordinatedSupplyChains.jl/dev)|[![Build Status](https://github.com/Tominapa/CoordinatedSupplyChains.jl/workflows/CI/badge.svg)](https://github.com/Tominapa/CoordinatedSupplyChains.jl/actions)[![Coverage](https://codecov.io/gh/Tominapa/CoordinatedSupplyChains.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/Tominapa/CoordinatedSupplyChains.jl)|[![DOI](https://img.shields.io/badge/DOI-Elsevier-orange)](https://doi.org/10.1016/j.compchemeng.2020.107157)| Coordination is a powerful market management system used in electrical grid management to determine the optimal set of transactions between buyers and sellers of electricity as well as the resulting prices. Electricity markets involve multiple competing stakeholders (multiple buyers and multiple sellers) and the coordination process ensures that market outcomes are in a state of equilibrium. Among other notable properties, the underlying coordination optimization model is linear, and provides information about electricity pricing through dual interpretations. `CoordinatedSupplyChains.jl` generalizes coordination to multi-product supply chains, including product transformation; i.e., products can change form within this framework. `CoordinatedSupplyChains.jl` uses an abstraction with four stakeholder classes: buyers, sellers, technology providers, and transportation providers. Every supply chain stakeholder falls into one of these classes, and the coordination procedure guarantees that each stakeholder participating in the market has a positive profit, so the package shows its utility in the analysis of multi-stakeholder supply chains, where there multiple independent entities (companies or individuals) making up a complex, interconnected supply chain. ## License `CoordinatedSupplyChains.jl` is licensed under the [MIT "Expat" license](./LICENSE). ## Documentation [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://tominapa.github.io/CoordinatedSupplyChains.jl/dev) Documentation includes an overview of the software, instructions for setting up the required data files, and guides that will help you get started. ## Citing If `CoordinatedSupplyChains.jl` is useful in your research, we appreciate your citation to our work. This helps us promote new work and development on our code releases. We hope you find our code helpful, and thank you for any feedback you might have for us. [![DOI](https://img.shields.io/badge/DOI-Elsevier-orange)](https://doi.org/10.1016/j.compchemeng.2020.107157) ```latex @article{TominacZavala2020, title = {Economic properties of multi-product supply chains}, journal ={Comput Chem Eng}, pages = {107157}, year = {2020}, issn = {0098-1354}, doi ={https://doi.org/10.1016/j.compchemeng.2020.10715}, url = {http://www.sciencedirect.com/science/article/pii/S0098135420305810}, author = {Philip A. Tominac and Victor M. Zavala} } ``` [![DOI](https://img.shields.io/badge/DOI-Elsevier-orange)](https://doi.org/10.1016/j.compchemeng.2022.107666) ```latex @article{TomacZhangZavala2022, title = {Spatio-temporal economic properties of multi-product supply chains}, journal = {Comput Chem Eng}, volume = {159}, pages = {107666}, year = {2022}, issn = {0098-1354}, doi = {https://doi.org/10.1016/j.compchemeng.2022.107666}, url = {https://www.sciencedirect.com/science/article/pii/S0098135422000114}, author = {Philip A. Tominac and Weiqi Zhang and Victor M. Zavala}, } ``` ## Acknowledgements We acknowledge support from the U.S. Department of Agriculture (grant 2017-67003-26055) and partial funding from the National Science Foundation (under grant CBET-1604374).
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
docs
3788
![Logo](assets/CSCLogo.png) --- ## What is CoordinatedSupplyChains.jl? `CoordinatedSupplyChains.jl` is a ready-made supply chain coordination model. It is built on the concept of supply chain economics, with prices driving transactions between supply chain stakeholders. In other words, with this approach, if a supply chain delivers a product to a customer, it is because it is profitable to do so. Under this economic interpretation, a supply chain is treated as a collection of stakeholders, including product suppliers, consumers, transportation, processing technologies, and environmental impact sinks. This conceptualization makes `CoordinatedSupplyChains.jl` particularly useful for analysis of sustainability-profit trade-offs. `CoordinatedSupplyChains.jl` encodes a complex abstraction for large-scale supply chains into a simple, user-friendly interface that removes almost all the coding burden separating the user from the results. `CoordinatedSupplyChains.jl` is intended for users who want to solve supply chain problems under a coordination objective (i.e., supply chains as coordinated markets). It is intended to function equally well for users in practical settings (industrial practitioners) and for educators looking to teach complex OperationsResearch concepts. `CoordinatedSupplyChains.jl` is an abstraction of a supply chain coordination model, the user defines a model by supplying information about supply chain structure, products, stakeholders, and environmental impacts. `CoordinatedSupplyChains.jl` uses this information to build the model, solve it (optionally with a user-specified solver) and returns solution information to the user. ## Installation `CoordinatedSupplyChains.jl` is a registered Julia package. Installation is as simple as ```julia (@v1.7) pkg> add CoordinatedSupplyChains ``` `CoordinatedSupplyChains.jl` has the following dependencies, which will need to be installed as well (if they are not already installed globally, or as part of your project installation with `CoordinatedSupplyChains.jl`) - `JuMP` - `HiGHS` `JuMP` provides the modeling facility for the coordination problem, and `CoordinatedSupplyChains.jl` uses the `HiGHS` solver by default, which is open-source and does not require a license. ## Citing If `CoordinatedSupplyChains.jl` is useful in your research, we appreciate your citation to our work. This helps us promote new work and development on our code releases. We hope you find our code helpful, and thank you for any feedback you might have for us. [![DOI](https://img.shields.io/badge/DOI-Elsevier-orange)](https://doi.org/10.1016/j.compchemeng.2020.107157) ```latex @article{TominacZavala2020, title = {Economic properties of multi-product supply chains}, journal ={Comput Chem Eng}, pages = {107157}, year = {2020}, issn = {0098-1354}, doi ={https://doi.org/10.1016/j.compchemeng.2020.10715}, url = {http://www.sciencedirect.com/science/article/pii/S0098135420305810}, author = {Philip A. Tominac and Victor M. Zavala} } ``` [![DOI](https://img.shields.io/badge/DOI-Elsevier-orange)](https://doi.org/10.1016/j.compchemeng.2022.107666) ```latex @article{TomacZhangZavala2022, title = {Spatio-temporal economic properties of multi-product supply chains}, journal = {Comput Chem Eng}, volume = {159}, pages = {107666}, year = {2022}, issn = {0098-1354}, doi = {https://doi.org/10.1016/j.compchemeng.2022.107666}, url = {https://www.sciencedirect.com/science/article/pii/S0098135422000114}, author = {Philip A. Tominac and Weiqi Zhang and Victor M. Zavala}, } ``` ## Acknowledgements We acknowledge support from the U.S. Department of Agriculture (grant 2017-67003-26055) and partial funding from the National Science Foundation (under grant CBET-1604374) in support of this work.
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.2.1
4407d513484560573a5984ad3f2cedb3cb5e8bb0
docs
29768
## Overview `CoordinatedSupplyChains.jl` is a user-friendly tool designed to give you access to a powerful supply chain coordination model. `CoordinatedSupplyChains.jl` handles the data processing and model building so that you can quickly solve problems and generate results. Putting together a supply chain problem is a matter of populating comma-separated-values files with the necessary definitions of the supply chain structure and the stakeholders participating in it. Once this is complete, you can point `CoordinatedSupplyChains.jl` to your data and run the code to generate results. ## Coordination Abstraction `CoordinatedSupplyChains.jl` is based on the coordination model by [Tominac & Zavala](https://doi.org/10.1016/j.compchemeng.2020.107157) and its more recent iteration described by [Tominac, Zhang, & Zavala](https://www.sciencedirect.com/science/article/pii/S0098135422000114). The `CoordinatedSupplyChains.jl` abstraction conceptualizes a supply chain as a market operating under a coordination system, like an auction where each stakeholder is bidding its preferred buying rate, its selling rate, or its service rate. This coordination system is managed by a coordinator, an independent operator who does not have a stake in the market, but whose goal is to maximize the total profit of the market. The stakeholders pass their bidding information to the coordinator, who resolves the market by setting product and service prices. As a result, transactions of products and services are allocated to stakeholders. The coordination system has a number of useful theoretical guarantees related to the coordinator's price setting practices and the implications for supply chain stakeholders. 1. No stakeholder loses money as a result of participation in the coordination system. A stakeholder either participates in the market with a positive allocation and nonnegative profit, or it does not participate in the market at all. Market participation is never coerced. 2. The coordinator's prices respect participating stakeholder bids. This is the mechanism by which nonnegative profits are guaranteed. 3. Coordination is efficient; there is no money lost to the coordinator or from the supply chain as a result of operating under the coordination system. In other words, money balances within a coordinated supply chain. For a complete review of the auction system, please refer to the associated references. ## Supply Chain Representation `CoordinatedSupplyChains.jl` uses a compact graph representation to describe a supply chain. The graph is defined by: - A set of geographical (location) nodes - A set of time points - A set of spatiotemporal arcs that move products through space and time Of interest within a coordinated supply chain are - A set of products to be transacted - A set of environmental impacts associated with the economic activities in the supply chain Transacting products and providing services are the supply chain stakeholders. These are divided into five distinct categories, namely - suppliers, who sell products - consumers, who purchase products - transportation providers, who move products between spatiotemporal nodes in the supply chain graph - technology providers, who transform products from one form to another - environmental impact consumers, who absorb the environmental impacts emitted by other stakeholders With this graph abstraction and the five stakeholder categories, it is possible to build representations of complex supply chain systems including product processing and sustainability metrics. ## Data Format and Required Files Any coordinated supply chain problem is defined by data detailing the sets of nodes, time points, arcs, products, impacts, and stakeholders. This data is divided into ten specially named .csv files. These are comma-separated by default, so any convenient .csv editor (text editor or spreadsheet software) will work. The file name conventions are as follows: - csvdata_node.csv - csvdata_time.csv (optional) - csvdata_arcs.csv (optional) - csvdata_product.csv - csvdata_impact.csv (optional) - csvdata_demand.csv - csvdata_supply.csv - csvdata_env.csv (optional) - csvdata_tech.csv. (optional) - csvdata_techmap.csv (optional) Note: not every supply chain problem requires every feature built into `CoordinatedSupplyChains.jl` and as such, certain files are optional. For example, if solving a steady-state supply chain problem, the csvdata_time.csv file may be excluded, and the package will simply assign variables a time index `T0`. Similarly, you may wish to build supply chain problems with no arcs; the package will accommodate this as well. For models with no sustainability focus, the impact and environmental stakeholder data folders may be excluded. Similarly, if there are no technologies, then the technology and mapping files may be excluded. No keywords or arguments are required; the package is programmed to check for the requisite files and proceed accordingly. The minimal `CoordinatedSupplyChains.jl` model must include one or more nodes, products, suppliers, and consumers. These four files are thus non-optional inputs. A working example will be used to illustrate how these files are structured. You can copy each of the ten files to replicate the example on your own. ### csvdata_node.csv Node data are structured as follows 1. Node ID: a unique string ID for the node, preferably of the form N01, N02, ...; no spaces allowed! 2. Node Name: a string with detailed information about the node; spaces allowed 3. Node longitude: A number representing the longitude of the node; e.g. Madison is -89.4012 4. Node latitude: A number representing the latitude of the node; e.g. Madison is 43.0731 Our example uses the following node data ``` # 1. Node ID, 2. Node Name, 3. Node longitude, 4. Node latitude N1,Madison-WI,-89.4,43.1 N2,Austin-TX,-97.7,30.3 N3,Los Angeles-CA,-118.2,34.0 ``` You may need to be careful when looking for longitude/latitude data; conventions can differ. However, `CoordinatedSupplyChains.jl` uses the same convention as Google maps, with negative longitude. ### csvdata_time.csv Time data are structure as follows 1. Time point ID: a unique string ID for the time point; no spaces allowed 2. Time point duration: A number representing the duration of the time point; used for calculating temporal transportation costs ``` # 1. Time point ID,2. Duration T1,1.0 T2,1.0 T3,1.0 T4,1.0 T5,1.0 ``` In this example, we use five time points of equal duration; this is not a requirement. Duration can vary, and any time-dependent parameters will reflect the duration. ### csvdata_product.csv Data defining products is arranged with columns numbered as follows 1. Product ID: a unique string ID for the product; no spaces allowed! 2. Product name: a string with detailed information about the product; spaces allowed 3. Transportation cost (distance): the transport cost to move the product over distance; needs to be positive to prevent transportation cycles 4. Transportation cost (time): the cost to store, or move the product through time The demo product file is ``` # 1. Product no.,2. Product name,3. Transportation cost (distance) (USD.tonne^-1.km^-1),4. Transportation cost (time) (USD.tonne^-1.h^-1) Milk,Milk,0.30,0.20 IceCream,Ice cream - tonne,0.30,0.20 Beef,Beef - boneless sirloin steak - USDA choice - tonne,0.25,0.05 Almonds,Almonds - shelled unseasoned - tonne,0.20,0.15 ``` Product names have been used as IDs, with a more detailed description provided in column 2. Transportation costs in columns 3 and 4 are included with units provided in the column headers, as good record keeping practice. It is on the user to keep track of units and ensure they are. consistent. ### csvdata_impact.csv Data for environmental impact types are formatted as follows 1. Impact ID: a unique string ID for the impact; no spaces allowed! 2. Impact alias: a string with detailed information about the impact measure 3. Transportation coefficient (distance): Some environmental impacts are associated with transportation; the emission coefficient per unit distance is recorded here 4. Storage coefficient (time): Some environmental impacts are associated with storage; the emission coefficient per unit time is recorded here For our demo, we will use the following ``` # 1. Impact ID, 2. Impact alias, 3. Transportation coefficient (impact unit per tonne.km), 4. Storage coefficient (impact unit per tonne.h) Phosphorus,phosphorus equivalent eutrophication potential - tonne P-eq,0.0,0.0 CO2,Carbon dioxide emissions - tonne CO2-eq,0.01,0.001 WaterUse,Water use - tonne,0.0,0.0 ``` ### csvdata_arcs.csv Arc data are structured as follows 1. Arc ID: a unique string ID for the arc, preferably of the form A01, A02, ...; no spaces allowed! 2. Arc first node: a Node ID included in node_data.csv 3. Arc second node: a Node ID included in node_data.csv 4. Arc capacity: a vector of numbers representing the product capacity of the arc; units (tonne) 5. Custom length (optional): A number representing the length of the arc; units: (km); used only if the CustomLengths parameter is set true; positive-valued Our example has the following arcs ``` # 1. Arc ID, 2. Arc first node, 3. Arc second node, 4. Arc capacity, 5. Arc Length A1,N1,N2,1E6|1E6|1E6|1E6, A2,N2,N3,1E6|1E6|1E6|1E6, A3,N3,N1,1E6|1E6|1E6|1E6, ``` This is the first data file that depends on others; csvdata_arcs.csv is built based on data in csvdata_node.csv and csvdata_product.csv. The CustomLengths field is unpopulated in this example because it will not be used. We could populate ourselves, if we knew specific route distances. Custom arcs lengths are useful if you already have access to distance data. In this example, we will let the software calculate great circle distances between nodes connected by arcs. The built-in great-circle distance function returns arc lengths in kilometers. Note that arcs only need to be defined in one direction; e.g., from node N1 to N2 will allow products to flow from N1 to N2, and from N2 to N1. Arc product capacities are provided as a vector, but note that product order will follow the order of products in csvdata_product.csv file. ### csvdata_supply.csv Supplier data are structured as follows 1. Supply ID: a unique string ID for the supplier; no spaces allowed! 2. Node: a Node ID included in csvdata_node.csv, where the supplier is located 3. Time: a Time point ID included in csvdata_time.csv, when the supply is available 4. Product: a Product ID included in csvdata_product.csv that the supplier will offer for sale 5. Bid: a number representing the supplier bid for a product; a real number 6. Capacity: a number representing the maximum amount supplied; a positive number 7. Emissions: a vector of impact IDs from csvdata_impact representing the impacts associated with supplying the product 8. Emissions coefficients: a vector of real numbers representing the per unit emissions associated with supplying the product The demo supply file ``` # 1.Supply reference no., 2.Node, 3.Time, 4.Product, 5.Bid, 6.Capacity, 7. Emissions, 8. Emissions coefficients unit per tonne product consumed G01,N1,T1,Milk,1150.0,1.12,Phosphorus|CO2|WaterUse,0.0024|0.100|1020.0 G02,N1,T2,Milk,1150.0,1.12,Phosphorus|CO2|WaterUse,0.0024|0.100|1020.0 G03,N1,T3,Milk,1150.0,1.12,Phosphorus|CO2|WaterUse,0.0024|0.100|1020.0 G04,N3,T4,Milk,1150.0,1.12,Phosphorus|CO2|WaterUse,0.0024|0.100|1020.0 G05,N3,T5,Milk,1150.0,1.12,Phosphorus|CO2|WaterUse,0.0024|0.100|1020.0 G06,N2,T3,Beef,23479.23,1.0,Phosphorus|CO2|WaterUse,0.0108|33.1|15415.0 G07,N2,T4,Beef,23479.23,1.0,Phosphorus|CO2|WaterUse,0.0108|33.1|15415.0 G08,N2,T5,Beef,23479.23,1.0,Phosphorus|CO2|WaterUse,0.0108|33.1|15415.0 G09,N3,T1,Almonds,6018.01,1.0,Phosphorus|CO2|WaterUse,0.144|2.009|12984.0 G10,N3,T2,Almonds,6018.01,1.0,Phosphorus|CO2|WaterUse,0.144|2.009|12984.0 ``` ### demand_data.csv Consumer data are structured as follows 1. Demand ID: a unique string ID for the consumer; no spaces allowed! 2. Node: a Node ID included in csvdata_node.csv, where the consumer is located 3. Time: a Time point ID included in csvdata_time.csv, when the consumer is available 4. Product: a Product ID included in csvdata_product.csv that the consumer will offer to buy 5. Bid: a number representing the consumer bid for a product; a real number 6. Capacity: a number representing the maximum amount consumed; a positive number 7. Emissions: a vector of impact IDs from csvdata_impact representing the impacts associated with consuming the product 8. Emissions coefficients: a vector of real numbers representing the per unit emissions associated with consuming the product Our example has five consumers ``` # 1.Demand reference no., 2.Node, 3.Time, 4.Product, 5.Bid, 6.Capacity, 7. Emissions, 8. Emissions coefficients unit per tonne product consumed D01,N1,T1,IceCream,30000.00,0.3,, D02,N1,T2,IceCream,30000.00,0.3,, D03,N1,T3,IceCream,30000.00,0.3,, D04,N1,T4,IceCream,30000.00,0.3,, D05,N1,T5,IceCream,30000.00,0.3,, D06,N2,T1,IceCream,30000.00,0.3,, D07,N2,T2,IceCream,30000.00,0.3,, D08,N2,T3,IceCream,30000.00,0.3,, D09,N2,T4,IceCream,30000.00,0.3,, D10,N2,T5,IceCream,30000.00,0.3,, D11,N3,T1,IceCream,35000.00,0.4,, D12,N3,T2,IceCream,35000.00,0.4,, D13,N3,T3,IceCream,35000.00,0.4,, D14,N3,T4,IceCream,35000.00,0.4,, D15,N3,T5,IceCream,35000.00,0.4,, D16,N1,T1,Almonds,6800,0.2,, D17,N1,T2,Almonds,6800,0.2,, D18,N2,T1,Almonds,6020,0.6,, D19,N2,T2,Almonds,6020,0.6,, D20,N3,T1,Almonds,6800,0.2,, D21,N3,T2,Almonds,6800,0.2,, D22,N1,T3,Beef,25000,0.2,, D23,N1,T4,Beef,25000,0.2,, D24,N1,T5,Beef,25000,0.2,, D25,N2,T3,Beef,24000,0.4,, D26,N2,T4,Beef,24000,0.4,, D27,N2,T5,Beef,24000,0.4,, D28,N3,T3,Beef,25000,0.4,, D29,N3,T4,Beef,25000,0.4,, D30,N3,T5,Beef,25000,0.4,, ``` ### csvdata_env.csv This data file defines environmental impact consumption and policy, and consists of 1. Environmental. stakeholder ID: a unique ID for the environmental stakeholder 2. Node: a Node ID included in csvdata_node.csv, where the environmental stakeholder is located 3. Time: a Time point ID included in csvdata_time.csv, when the environmental stakeholder is available 4. Impact: an Impact ID included in csvdata_impact.csv that the environmental stakeholder will consumer 5. Bid: a number representing the environmental stakeholder bid for a product; a real number 6. Capacity: a number representing the maximum amount consumed; a positive number Environmental stakeholder data for the demo ``` # 1. Env. stakeholder reference, 2. Node, 3. Time, 4. Impact, 5. Bid (USD/impact unit), 6. Capacity V01,N1,T1,Phosphorus,0,Inf V02,N1,T2,Phosphorus,0,Inf V03,N1,T3,Phosphorus,0,Inf V04,N1,T4,Phosphorus,0,Inf V05,N1,T5,Phosphorus,0,Inf V06,N2,T1,Phosphorus,0,Inf V07,N2,T2,Phosphorus,0,Inf V08,N2,T3,Phosphorus,0,Inf V09,N2,T4,Phosphorus,0,Inf V10,N2,T5,Phosphorus,0,Inf V11,N3,T1,Phosphorus,0,Inf V12,N3,T2,Phosphorus,0,Inf V13,N3,T3,Phosphorus,0,Inf V14,N3,T4,Phosphorus,0,Inf V15,N3,T5,Phosphorus,0,Inf V16,N1,T1,CO2,0,Inf V17,N1,T2,CO2,0,Inf V18,N1,T3,CO2,0,Inf V19,N1,T4,CO2,0,Inf V20,N1,T5,CO2,0,Inf V21,N2,T1,CO2,0,Inf V22,N2,T2,CO2,0,Inf V23,N2,T3,CO2,0,Inf V24,N2,T4,CO2,0,Inf V25,N2,T5,CO2,0,Inf V26,N3,T1,CO2,0,Inf V27,N3,T2,CO2,0,Inf V28,N3,T3,CO2,0,Inf V29,N3,T4,CO2,0,Inf V30,N3,T5,CO2,0,Inf V31,N1,T1,WaterUse,0,Inf V32,N1,T2,WaterUse,0,Inf V33,N1,T3,WaterUse,0,Inf V34,N1,T4,WaterUse,0,Inf V35,N1,T5,WaterUse,0,Inf V36,N2,T1,WaterUse,0,Inf V37,N2,T2,WaterUse,0,Inf V38,N2,T3,WaterUse,0,Inf V39,N2,T4,WaterUse,0,Inf V40,N2,T5,WaterUse,0,Inf V41,N3,T1,WaterUse,0,Inf V42,N3,T2,WaterUse,0,Inf V43,N3,T3,WaterUse,0,Inf V44,N3,T4,WaterUse,0,Inf V45,N3,T5,WaterUse,0,Inf ``` ### technology_data.csv Technology data are structures as follows. Pay attention to these definitions; technology data are the most complex to set up. 1. Tech ID: a unique string ID for the technology, no spaces allowed! 2. Tech Outputs: a vertical bar-delimited list of Product IDs included in csvdata_product.csv; e.g., ",P05|P06," 3. Tech Inputs: a vertical bar-delimited list of Product IDs included in csvdata_product.csv; e.g., ",P01|P02|P04," 4. Tech Impacts: a vertical bar-delimited list of Impact IDs included in csvdata_impact.csv; e.g., ",GWP|NH3," 5. Output Yield: a vertical bar-delimited list of yield parameters (positive) the same length as "Tech Outputs"; e.g., "|0.4|0.3|0.6|" 6. Input Yield: a vertical bar-delimited list of yield parameters (positive) the same length as "Tech Inputs"; e.g., ",1.0|0.7|0.6,"- one of these MUST be 1.0! see 6. Reference Product 7. Impact Yield: a vertical bar-delimited list of impact parameters (positive) the same length as "Tech Impacts"; e.g., ",0.045|0.0033|0.01," 8. Reference product: a Product ID included in csvdata_product.csv; this is used as the basis for the technology, and its yield coefficient in 5. Input Yield MUST be 1.0. 9. Bid: a number representing the technology bid for a product; positive 10. Capacity: a number representing the maximum amount of reference product processed; positive 11. Name: a string with detailed information about the technology; spaces allowed The technology data in our example are as follows ``` # 1. Tech ID,2. Tech Outputs,3. Tech Inputs,4. Tech Impacts,5. Output stoich,6. Input stoich,7. Impact stoich,8. Reference product,9. Operating bid (USD/tonne),10. Capacity,11. alias M1,IceCream,Milk,Phosphorus|CO2|WaterUse,0.178,1.0,0.00065|3.94|2050.0,Milk,3861.11,Inf,IceCream production (extant) M2,IceCream,Milk,Phosphorus|CO2|WaterUse,0.178,1.0,0.00065|2.94|2050.0,Milk,3999.99,Inf,IceCream production (CO2 emissions reduced 1 tonne) ``` Note that technology_data.csv embeds vertical bar-delimited lists inside a comma-delimited data file. This condenses our representation. ### csvdata_techmap.csv The final data file, called "techmap" (because it maps instances of technologies onto the supply chain) is structured as follows 1. Tech location ID: a unique string ID for the technology mapping; no spaces allowed! 2. Tech ID: a Technology ID included in csvdata_technology.csv 3. Node ID: a Node ID included in csvdata_node.csv 4. Time ID: a Time ID included in csvdata_time.csv Our example uses the following techmap entries ``` # 1. Tech location reference ID,2. Node ID,3. Time ID,4. Tech ID L01,N1,T1,M1 L02,N1,T2,M1 L03,N1,T3,M1 L04,N1,T4,M1 L05,N1,T5,M1 ``` Technologies are defined in csvdata_technology.csv in a general form, and are not mapped onto the supply chain. The technology-node pairs in csvdata_techmap.csv serve this function, allowing multiple copies of a technology to be placed at supply chain nodes; i.e., L1,M1,N1,T1 and L2,M1,N2,T1 creates two "copies" of technology M1 at nodes N1 and N2, treated as separate entities in the model. This can reduce the size and complexity of managing large numbers of technologies. ## Basic Usage `CoordinatedSupplyChains.jl` is built to streamline your workflow with supply chain problems. It handles all the data input and output, as well as model building and solution. The user's responsibility is to set up the input data files defining their supply chain problem correctly. Consequently, the simplest usage of the package requires no more than pointing to the source data files. ``` RunCSC() ``` In this example, it is assumed that Julia is currently running in the same directory as the data files, and defaults to the current directory. This way `RunCSC()` can be used without an argument. The function has three keyword arguments as well, allowing you to tune your experience. 1. optimizer; default: HiGHS.Optimizer 2. UseArcLengths; default: true 3. Output: default: false The first optional keyword argument is `optimizer` allowing the user to provide a different optimizer to solve their supply chain problem. By default, the open-source HiGHS optimizer is used. The user may want to use a licensed optimizer instead. This can be achieved by passing the optimizer argument: ``` RunCSC(optimizer=Gurobi.Optimizer) ``` The next keyword argument is `UseArcLengths` defaulting to a value of `true`. This keyword allows the user to change the behavior of `CoordinatedSupplyChains.jl` with respect to arcs. By. default, the package will use the arc lengths provided by the user in csvdata_arcs.csv. However, these may be difficult or tedious to calculate by hand, especially if the user's supply chain has many connecting arcs. By passing ``` RunCSC(UseArcLengths=false) ``` the package will instead calculate great circle lengths for the arcs according to the node latitude and longitude data provided. This keyword provides a convenient means of estimating distances between locations. The final keyword `Output` (defaulting to `false`) allows the user to specify that all model data should be returned once the code has run. This allows that user to inspect data structures manually. This keyword requires that the user indicate output names with the call to `RunCSC()`. The suggested naming convention is optional, but the number of outputs is required ``` T, N, P, Q, A, D, G, V, M, L, Subsets, Pars, MOD, ModelStats, SOL, POST = RunCSC(Output=true) ``` In order, the outputs are: - `T`: time data structure - `N`: node data structure - `P`: product data structure - `Q`: impact data structure - `A`: arc data structure - `D`: demand data structure - `G`: supply data structure - `V`: environmental stakeholder data structure - `M`: technology data structure - `L`: technology mapping data structure - `Subsets`: Subsets used in the model - `Pars`: parameters used in the model - `MOD`: JuMP model - `ModelStats`: structure containing model statistics - `SOL`: structure containing the model solution data - `POST`: structure containing post-solution values calculated following the model solve Note that most of this data is made available to the user in the solution output, all of which is stored in a folder called "_SolutionData" in the directory with the model data. If the user wants to access, for example, the JuMP model following the solve, this keyword makes this possible. With the exception of `MOD` which is a JuMP model structure (see the JuMP documentation on [Models](https://jump.dev/JuMP.jl/stable/manual/models/)) these outputs are all custom Julia data structures. They are primarily defined for convenient model representation within `CoordinatedSupplyChains.jl` but you may want to have access to them for use in data manipulations or plotting solutions. Each structure has a number of fields containing data, which are accessed with a syntax `[sstructure_name].[field_name][index]`. The fields are as follows. Time structure ``` T ID::Array - time point IDs dt::Dict - time point durations ``` Node structure ``` N ID::Array - node IDs alias::Dict - node names lon::Dict - node longitudes lat::Dict - node latitudes ``` Product structure ``` P ID::Array - product IDs alias::Dict - product names transport_cost::Dict - product transportation costs storage_cost::Dict - product storage costs ``` Impact structure ``` Q ID::Array - impact IDs alias::Dict - impact names transport_coeff::Dict - impact transportation emission coefficients storage_coeff::Dict - impact storage emission coefficients ``` Arc structure ``` A ID::Array - arc IDs n_send::Dict - arc sending node n_recv::Dict. - arc receiving node t_send::Dict - arc sending time point t_recv::Dict - arc receiving time point bid::Dict - arc bid cap::Dict - arc capacities len::Dict - arc length dur::Dict - arc duration ID_S::Array - array of arc IDs that are purely spatial ID_T::Array - array of arc IDs that are purely temporal ID_ST::Array - array of arc IDs that are spatiotemporal ``` Demand structure ``` D ID::Array - demand IDs node::Dict - consumer node time::Dict - demand time point prod::Dict - demand product bid::Dict - demand bid cap::Dict - demand capacity Impacts::Dict - impacts associated with demand ImpactYields::Dict - impact coefficients ``` Supply structure ``` G ID::Array - supply IDs node::Dict - supplier node time::Dict - supply time point prod::Dict - supply product bid::Dict - supply bid cap::Dict - supply capacity Impacts::Dict - impacts associated with supply ImpactYields::Dict - impact coefficients ``` Environmental stakeholder structure ``` V ID::Array - e.s. IDs node::Dict - e.s. node time::Dict - e.s. time point impact::Dict - .e.s. impact bid::Dict - e.s. bid cap::Dict - e.s. capacity ``` Technology structure ``` M ID::Array - technology ID Outputs::Dict - technology output products Inputs::Dict - technology input products Impacts::Dict - technology impacts OutputYields::Dict - technology output product yield coefficients InputYields::Dict - technology input product yield coefficients ImpactYields::Dict - technology impact yield coefficients InputRef::Dict - technology reference product bid::Dict - technology bid cap::Dict - technology capacity alias::Dict - technology name ``` Technology mapping structure ``` L ID::Array - technology mapping ID node::Dict - technology instance node time::Dict - technology instance time tech::Dict - technology instance type ``` Subset structure ``` Subsets T1::Array - set containing the first time point Tt::Array - set containing all time points except the last TT::Array - set containing all time points except the first Tprior::Dict - maps the prior time point to the current one Tpost::Dict - maps the subsequent time point to the current one Ain::Union{Dict, Nothing} - all arcs inbound upon a node Aout::Union{Dict, Nothing} - all arcs outbound from a node Dntp::Dict - returns consumers by node, time point, and product indices Gntp::Dict - returns suppliers by node, time point, and product indices Dntq::Union{Dict, Nothing} - returns consumers by node, time point, and impact indices Gntq::Union{Dict, Nothing} - returns suppliers by node, time point, and impact indices Vntq::Union{Dict, Nothing} - returns environmental stakeholders by node, time point, and impact indices DQ::Union{Array, Nothing} - returns all consumers with some environmental impact GQ::Union{Array, Nothing} - returns all suppliers with some environmental impact NTPgenl::Union{Dict, Nothing} - returns technology instances at a node and time point generating product p NTPconl::Union{Dict, Nothing} - returns technology instances at a node and time point consuming product p NTQgenl::Union{Dict, Nothing} - returns technology instances at a node and time point with impact q ``` Parameter structure ``` Pars gMAX::Dict - supply allocation maxima dMAX::Dict - demand allocation maxima eMAX::Union{Dict, Nothing} - environmental stakeholder consumption maxima Ξ³iq::Union{Dict, Nothing} - environmental impact yield coefficient for suppliers Ξ³jq::Union{Dict, Nothing} - environmental impact yield coefficient for consumers Ξ³aq::Union{Dict, Nothing} - environmental impact yield coefficient for transportation Ξ³mp::Union{Dict, Nothing} - technology product yield coefficients Ξ³mq::Union{Dict, Nothing} - environmental impact yield coefficient for technologies ΞΎgenMAX::Union{Dict, Nothing} - technology generation maxima ΞΎconMAX::Union{Dict, Nothing} - technology consumption maxima ΞΎenvMAX::Union{Dict, Nothing} - technology impact maxima ``` Model statistics structure ``` ModelStats Variables::Int - number of model variables TotalInequalityConstraints::Int - total number of inequality constraints TotalEqualityConstraints::Int - total number of equality constraints VariableBounds::Int - number of model variable bounds ModelInequalityConstrtaints::Int - number of model inequality constraints ModelEqualityConstraints::Int - number of model equality constraints ``` Model solution data ``` SOL TermStat::String - termination status PrimalStat::String - primal solution status DualStat::String - dual solution status z::Float64 - objective values g::JuMP.Containers.DenseAxisArray - supply allocations d::JuMP.Containers.DenseAxisArray - demand allocations e::Union{JuMP.Containers.DenseAxisArray,Nothing} - environmental stakeholder allocations f::Union{JuMP.Containers.DenseAxisArray,Nothing} - transportation allocations ΞΎ::Union{JuMP.Containers.DenseAxisArray,Nothing} - technology allocations Ο€p::JuMP.Containers.DenseAxisArray - product nodal prices Ο€q::Union{JuMP.Containers.DenseAxisArray,Nothing} - impact nodal prices ``` Derived solution values ``` POST gNTP::Dict - nodal supply allocations dNTP::Dict - nodal demand allocations eNTQ::Union{Dict,Nothing} - nodal environmental stakeholder allocations ΞΎgen::Union{Dict,Nothing} - technology allocations, generation ΞΎcon::Union{Dict,Nothing} - technology allocations, consumption ΞΎenv::Union{Dict,Nothing} - technology allocations, impact Ο€_iq::Union{Dict,Nothing} - supplier impact prices Ο€_jq::Union{Dict,Nothing} - consumer impact prices Ο€_a::Union{Dict,Nothing} - transportation prices Ο€_aq::Union{Dict,Nothing} - transportation impact prices Ο€_m::Union{Dict,Nothing} - technology prices Ο€_mq::Union{Dict,Nothing} - technology impact prices Ο•i::Dict - supplier profits Ο•j::Dict - consumer profits Ο•v::Union{Dict,Nothing} - environmental stakeholder profits Ο•l::Union{Dict,Nothing} - technology profits Ο•a::Union{Dict,Nothing} - transportation profits ```
CoordinatedSupplyChains
https://github.com/Tominapa/CoordinatedSupplyChains.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
code
128
module FermionXYModels using LinearAlgebra include("fermions.jl") include("models.jl") include("montecarlo.jl") end # module
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
code
1115
export FermionBasis """ FermionBasis(n_sites; sites=(-1, 1)) Construct a binary fermion basis for a chain of fermions with `n_sites` in form of an interator. The default field is `(-1, 1)` which can be optionally changed by specifying the keyword argument `states` as a `Tuple`. No allocations are made during construction. The basis can be materialized using `collect` (not recommended for long chains). """ struct FermionBasis n_sites::Int states::Tuple{Int,Int} function FermionBasis(n_sites::Int; states::Tuple=(-1, 1)) if length(states) != 2 throw(ArgumentError("length(states) != 2: Fermion basis requries two states. ")) end if n_sites <= 0 throw(ArgumentError("n_sites <= 0: Fermion basis requires n_sites > 0. ")) end new(n_sites, states) end end function Base.iterate(b::FermionBasis, state::Int64=0) if state >= length(b) return nothing end indices = digits(state, base=2, pad=b.n_sites) return Tuple(b.states[i+1] for i in indices), state + 1 end Base.length(b::FermionBasis) = 2^b.n_sites
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
code
3940
export FermionXYChain, FermionIsingChain, FermionXXChain, correlation_matrix, probability_matrix """ The **quantum XY model** projected to spinless fermions with **periodic boundary conditions** (PBC). The sites consist of the elements from set {-1, 1}, where -1 represents no fermion and 1 represents a fermion at that site. """ mutable struct FermionXYChain{N} sites::Vector{Int} L::Int J::Float64 h::Float64 gamma::Float64 corr::Matrix{Float64} parity::Int function FermionXYChain(; L::Int, J::Real, h::Real, gamma::Real, start::Symbol=:rand, parity::Int=-1) if L <= 0 throw(ArgumentError("FermionXYChain requires L > 0.")) end if !(-1 <= gamma <= 1) throw(ArgumentError("FermionXYChain requires -1 <= gamma <= 1.")) end if J == 0 throw(ArgumentError("FermionXYChain requires J to be non-zero.")) end if parity != -1 && parity != 1 throw(ArgumentError("FermionXYChain requires parity to be -1 or 1.")) end J = convert(Float64, J) h = convert(Float64, h) gamma = convert(Float64, gamma) if start == :rand sites = rand([-1, 1], L) elseif start == :vacuum sites = ones(L) elseif start == :filled sites = fill(-1, L) else throw(ArgumentError("FermionXYChain allows start = :rand | :vacuum | :filled. ")) end corr = correlation_matrix(; L=L, J=J, h=h, gamma=gamma, parity=parity) new{L}(sites, L, J, h, gamma, corr, parity) end end """ The **XX model**, also known as the isotropic (Ξ³=0) XY model, projected to spinless fermions with PBC. """ FermionXXChain(; L::Int, J::Real, h::Real, start::Symbol=:rand) = FermionXYChain(; L=L, J=J, h=h, gamma=0, start=start) """ The **Ising model**, i.e. the XY model with Ξ³=1, projected to spinless fermions with PBC. """ FermionIsingChain(; L::Int, J::Real, h::Real, start::Symbol=:rand) = FermionXYChain(; L=L, J=J, h=h, gamma=1, start=start) """ Returns the correlation matrix of the XY chain. """ correlation_matrix(model::FermionXYChain) = model.corr """ Returns the probability matrix of the XY chain. """ probability_matrix(model::FermionXYChain) = probability_matrix(model.sites; L=model.L, J=model.J, h=model.h, gamma=model.gamma, parity=model.parity, corr=model.corr) # correlation matrix of the fermion chain function correlation_matrix(; L::Int, J::Float64, h::Float64, gamma::Float64, parity::Int=-1, float_type::Type=Float64) return [G_nm(i, j; L=L, J=J, h=h, gamma=gamma, parity=parity, float_type=float_type) for i ∈ 1:L, j ∈ 1:L] end # probability matrix of the fermion chain @inbounds function probability_matrix(sites::Base.AbstractVecOrTuple; L::Int, J::Float64, h::Float64, gamma::Float64, parity::Int=-1, float_type::Type=Float64, corr::Matrix{<:Union{Float64, BigFloat}}=correlation_matrix(; L=L, J=J, h=h, gamma=gamma, parity=parity, float_type=float_type)) if length(sites) != L throw(ArgumentError("The number of sites is not equal to the model's length")) end return [(1 / 2)Ξ΄(i, j) - (1 / 2) * sites[i] * corr[i, j] for i ∈ 1:L, j ∈ 1:L] end # elements of correlation matrix of the fermion chain function G_nm(n::Int, m::Int; L::Int, J::Float64, h::Float64, gamma::Float64, parity::Int=-1, float_type::Type=Float64) g_n = 0 tmp, J, h, gamma = promote(zero(float_type), J, h, gamma) for k in 1:L Ο•_k = (2k + (parity - 1) // 2) // L # redefinition of Ο•_k => Ο•_k / Ο€ Ο΅_k = hypot(J * cospi(Ο•_k) + h, J * gamma * sinpi(Ο•_k)) cos_ΞΈ_k = (J * cospi(Ο•_k) + h) / Ο΅_k sin_ΞΈ_k = J * gamma * sinpi(Ο•_k) / Ο΅_k g_n += cos_ΞΈ_k * cospi((n - m) * Ο•_k) - sin_ΞΈ_k * sinpi((n - m) * Ο•_k) end return g_n / L end # Kronecker delta Ξ΄(i, j) = isequal(i, j)
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
code
654
export metropolis_update!, config_probability @inbounds function metropolis_update!(model::FermionXYChain; P_old::Float64=config_probability(model)) site = rand(1:model.L) model.sites[site] *= -1 # do the flip P_new = config_probability(model) if rand() > (P_new / P_old) model.sites[site] *= -1 # revert the flip end return model, P_new end function equilibrate!(model::FermionXYChain, steps::Int=1000) p = config_probability(model) for _ in 1:steps model, p = metropolis_update!(model, P_old=p) end return model end config_probability(model::FermionXYChain) = det(probability_matrix(model))
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
code
2007
using FermionXYModels using LinearAlgebra using Test @testset "FermionBasis" begin @test length(FermionBasis(3)) == 8 @test collect(FermionBasis(4)) == vec(collect(Iterators.product([-1, 1], [-1, 1], [-1, 1], [-1, 1]))) @test_throws ArgumentError FermionBasis(4; states=(-1, 0, 1)) @test_throws ArgumentError FermionBasis(0) @test_throws ArgumentError FermionBasis(-1) end @testset "Models" begin L = 20 m1 = FermionXYChain(; L=L, J=1.0, h=1.0, gamma=1.0, start=:vacuum) m2 = FermionXYChain(; L=L, J=1, h=1, gamma=1, start=:vacuum) fnames = fieldnames(FermionXYChain) @test all([getfield(m1, f) for f in fnames] .== [getfield(m2, f) for f in fnames]) @test_throws ArgumentError FermionXYChain(; L=0, J=1.0, h=1.0, gamma=1.0, start=:rand) @test_throws ArgumentError FermionXYChain(; L=L, J=0, h=1.0, gamma=1.0, start=:rand) @test_throws ArgumentError FermionXYChain(; L=-20, J=1.0, h=1.0, gamma=1.0, start=:rand) @test_throws ArgumentError FermionXYChain(; L=L, J=1.0, h=0, gamma=-2.0, start=:rand) m3 = FermionIsingChain(; L=L, J=1.0, h=1.0, start=:vacuum) m4 = FermionXYChain(; L=L, J=1.0, h=1.0, gamma=1.0, start=:vacuum) @test all([getfield(m3, f) for f in fnames] .== [getfield(m4, f) for f in fnames]) m4 = FermionXXChain(; L=L, J=1.0, h=1.0, start=:vacuum) m5 = FermionXYChain(; L=L, J=1.0, h=1.0, gamma=0, start=:vacuum) @test all([getfield(m4, f) for f in fnames] .== [getfield(m5, f) for f in fnames]) end @testset "Correlations and Probabilities" begin p = 0 L = 10 for sites in FermionBasis(L) p += det(probability_matrix(sites; L=L, J=1.0, h=1.0, gamma=1.0)) end @test isapprox(p, 1.0) model = FermionXYChain(;L=L, J=1.0, h=1.2, gamma=0.5) G_mat = correlation_matrix(model) p_mat = probability_matrix(model) @test G_mat == correlation_matrix(;L=L, J=1.0, h=1.2, gamma=0.5) @test p_mat == probability_matrix(model.sites; L=L, J=1.0, h=1.2, gamma=0.5) end
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
docs
1073
MIT License Copyright (c) 2022 Jaydev Singh Rao Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.1.0
3cea5c88e4ef2433ab63f663eb47f0880e70f54f
docs
3409
# FermionXYModel.jl [![Build status (Github Actions)](https://github.com/JaydevSR/FermionXYModels.jl/workflows/CI/badge.svg)](https://github.com/JaydevSR/FermionXYModels.jl/actions) [![codecov.io](http://codecov.io/github/JaydevSR/FermionXYModels.jl/coverage.svg?branch=main)](http://codecov.io/github/JaydevSR/FermionXYModels.jl?branch=main) _**Quantum XY Model by projecting the spins to spinless fermions.**_ **Reference**: StΓ©phan, J., Misguich, G., &amp; Pasquier, V. (2010). RΓ©nyi entropy of a line in two-dimensional Ising models. Physical Review B, 82(12). doi:10.1103/physrevb.82.125455 ## Installation ```julia using Pkg Pkg.add("FermionXYModels.jl") ``` ## Models - `FermionXYChain`: The quantum XY model as a chain of fermions. **Arguments:** - `L::Int`: The chain length. - `J::Real`: The coupling constant. - `h::Real`: The magnetic field. - `gamma::Real`: The anisotropy constant. - `start::Symbol`: The initial state. Can be one of `:rand`, `:vacuum`, `:filled` - `parity::Int=-1`: Can be -1 or 1. - `FermionXXChain`: The quantum XY model for $\gamma=0$. - `FermionIsingChain`: The quantum XY model for $\gamma=1$. ## Iterators - `FermionBasis`: An Iterator over the binary basis of fermion chains. It accepts the following arguments: **Arguments:** - `n_sites::Int`: The number of sites in fermion chain. - `states::Tuple=(-1, 1)`: A keyword argument taking the integer representation of filled and unfilled sites. ## Correlations and Probabilities - `correlation_matrix`: Calculates the correlation matrix of the chain given by $G_{ij} = \langle a_i^\dagger a_j\rangle$. Has two methods, one takes a `FermionXYChain` as argument. Other takes the agruments: - `L::Int`: The chain length. - `J::Real`: The coupling constant. - `h::Real`: The magnetic field. - `gamma::Real`: The anisotropy constant. - `parity::Int=-1`: Can be -1 or 1. - `float_type::Type=Float64`: The floating point type (default is `Float64`, can be `BigFloat` for greater precision). - `probability_matrix`: Calculates the probability matrix of the chain. The probability of the particular configuration is then given by $\det(P)$ where $P$ is the said matrix. Has two methods, one takes a `FermionXYChain` as argument. Other takes the agruments: - `sites::Vector{Int}`: The sites of the chain having value -1 for no fermion and 1 for a fermion. - `L::Int`: The chain length. - `J::Real`: The coupling constant. - `h::Real`: The magnetic field. - `gamma::Real`: The anisotropy constant. - `parity::Int=-1`: Can be -1 or 1. - `float_type::Type=Float64`: The floating point type (default is `Float64`, can be `BigFloat` for greater precision). ## Monte-Carlo Simulation - `metropolis_update!(model::FermionXYChain)`: Generates a new configuration for the chain by performing single site updates using acceptance rate $A(P'|P) = \cfrac{P'}{P}$, where $P'$ is the probability of new configuration and $P$ is that of old configuration.. - `equilibrate!(model::FermionXYChain, steps::Int)`: Equilibrates the chain by performing $N$ updates. **Note: The above methods for monte-carlo sampling are useless from my experience this is probably because single site updates can not capture the transformation from quantum spins to spinless fermions. If anyone knows more about this please inform me by opening an issue**
FermionXYModels
https://github.com/JaydevSR/FermionXYModels.jl.git
[ "MIT" ]
0.0.1
f97919fbde857f05d0e5e9b06cf4528bcda4c6f4
code
72
module MortalityModels export LC_SVD include("mort_functions.jl") end
MortalityModels
https://github.com/sveekelen/MortalityModels.jl.git
[ "MIT" ]
0.0.1
f97919fbde857f05d0e5e9b06cf4528bcda4c6f4
code
799
using Statistics, LinearAlgebra """ LC_SVD(mMu) Input: mMu = matrix containing log forces of mortality for a given population Output: vAx = constant age effects in a LC model vBx = age effects in a LC model vKt = period effects in a LC model Summary: function used to fit a LC model on the log force of mortality with a SVD decomposition """ function LC_SVD(mMu) # Calculate Aβ‚“ as the average log ΞΌ over time vAx = mean(mMu, dims = 2) # Create time demeaned log ΞΌ matrix mMu_dm = mMu .- vAx # Perform SVD on demeaned matrix objSVD = svd(mMu_dm) # Get Ξ²β‚“ and ΞΊβ‚œ vBx = -objSVD.U[:,1] vKt = -objSVD.Vt[1,:] * objSVD.S[1] # return age and period effects return (Kt = vKt, Ax = vAx, Bx = vBx) end
MortalityModels
https://github.com/sveekelen/MortalityModels.jl.git
[ "MIT" ]
0.0.1
f97919fbde857f05d0e5e9b06cf4528bcda4c6f4
code
158
using MortalityModels using Test @testset "MortalityModels.jl" begin # Perform simple test LC_SVD([1]) == (Kt = [-0.0], Ax = [1.0], Bx = [-1.0]) end
MortalityModels
https://github.com/sveekelen/MortalityModels.jl.git
[ "MIT" ]
0.0.1
f97919fbde857f05d0e5e9b06cf4528bcda4c6f4
docs
779
# MortalityModels MortalityModels can be used to fit popular population mortality models in Julia. As of right now, MortalityModels is still under development and can only be used to fit a simple Lee-Carter (LC) model using a SVD decomposition. Other methods are still in development. The LC model can be fitted in Julia using the following function: ``` julia LC_SVD(mMu) ``` The function returns age and period effects for the LC model fitted using an SVD methodology. Note that the input here is a log force of mortality matrix with ages on the row and years on the columns. [![Build Status](https://github.com/sveekelen/JuMoMo.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/sveekelen/JuMoMo.jl/actions/workflows/CI.yml?query=branch%3Amaster)
MortalityModels
https://github.com/sveekelen/MortalityModels.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
2384
# From https://github.com/JuliaIO/HDF5.jl/blob/master/deps/build.jl using Libdl const depsfile = joinpath(@__DIR__, "deps.jl") libpath = get(ENV, "JULIA_ADIOS2_PATH", nothing) # We avoid calling Libdl.find_library to avoid possible segfault when calling # dlclose (#929). # The only difference with Libdl.find_library is that we allow custom dlopen # flags via the `flags` argument. function find_library_alt(libnames, extrapaths=String[]; flags=RTLD_LAZY) for lib in libnames for path in extrapaths l = joinpath(path, lib) p = dlopen(l, flags; throw_error=false) if p !== nothing dlclose(p) return l end end p = dlopen(lib, flags; throw_error=false) if p !== nothing dlclose(p) return lib end end return "" end ## new_contents = if libpath === nothing # By default, use ADIOS2_jll """ # This file is automatically generated # Do not edit using ADIOS2_jll check_deps() = nothing """ else @info "using system ADIOS2" libpaths = [libpath, joinpath(libpath, "lib"), joinpath(libpath, "lib64")] flags = RTLD_LAZY | RTLD_NODELETE # RTLD_NODELETE may be needed to avoid segfault (#929) libadios2_c = find_library_alt(["libadios2_c"], libpaths; flags=flags) libadios2_c_mpi = find_library_alt(["libadios2_c_mpi"], libpaths; flags=flags) isempty(libadios2_c) && error("libadios2_c could not be found") isempty(libadios2_c_mpi) && @info "libadios2_c_mpi could not be found, assuming ADIOS2 serial build" libadios2_c_size = filesize(dlpath(libadios2_c)) """ # This file is automatically generated # Do not edit function check_deps() if libadios2_c_size != filesize(Libdl.dlpath(libadios2_c)) error("ADIOS2 library has changed, re-run Pkg.build(\\\"ADIOS2\\\")") end end $(:(const libadios2_c = $libadios2_c)) $(:(const libadios2_c_mpi = $libadios2_c_mpi)) $(:(const libadios2_c_size = $libadios2_c_size)) """ end if !isfile(depsfile) || new_contents != read(depsfile, String) # only write file if contents have changed to avoid triggering re-precompilation each build open(depsfile, "w") do io return print(io, new_contents) end end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
319
# Generate documentation with this command: # (cd docs && julia --color=yes make.jl) push!(LOAD_PATH, "..") using Documenter using ADIOS2 makedocs(; sitename="ADIOS2", format=Documenter.HTML(), modules=[ADIOS2]) deploydocs(; repo="github.com/eschnett/ADIOS2.jl.git", devbranch="main", push_preview=true)
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
715
module ADIOS2 using MPI using Libdl const depsfile = joinpath(@__DIR__, "..", "deps", "deps.jl") if isfile(depsfile) include(depsfile) else error("ADIOS2 is not properly installed. Please run Pkg.build(\"ADIOS2\") ", "and restart Julia.") end ### Helpers const Maybe{T} = Union{Nothing,T} maybe(::Nothing, other) = other maybe(x, other) = x function free(ptr::Ptr) @static Sys.iswindows() ? Libc.free(ptr) : ccall((:free, libadios2_c), Cvoid, (Ptr{Cvoid},), ptr) end include("types.jl") include("adios.jl") include("io.jl") include("variable.jl") include("attribute.jl") include("engine.jl") include("highlevel.jl") function __init__() check_deps() return end end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
3168
# Adios functions export Adios """ mutable struct Adios Holds a C pointer `adios2_adios *`. This value is finalized automatically. It can also be explicitly finalized by calling `finalize(adios)`. """ mutable struct Adios ptr::Ptr{Cvoid} Adios(ptr) = finalizer(adios_finalize, new(ptr)) end Adios() = Adios(C_NULL) function Base.show(io::IO, ::MIME"text/plain", adios::Adios) return print(io, "Adios(0x$(string(UInt(adios.ptr); base=16)))") end export adios_init_mpi """ adios = adios_init_mpi(comm::MPI.Comm) adios = adios_init_mpi(config_file::AbstractString, comm::MPI.Comm) adios::Union{Adios,Nothing} Starting point for MPI apps. Creates an ADIOS handler. MPI collective and it calls `MPI_Comm_dup`. """ function adios_init_mpi(comm::MPI.Comm) ptr = ccall((:adios2_init_mpi, libadios2_c_mpi), Ptr{Cvoid}, (MPI.MPI_Comm,), comm) return ptr == C_NULL ? nothing : Adios(ptr) end function adios_init_mpi(config_file::AbstractString, comm::MPI.Comm) ptr = ccall((:adios2_init_config_mpi, libadios2_c_mpi), Ptr{Cvoid}, (Cstring, MPI.MPI_Comm), config_file, comm) return ptr == C_NULL ? nothing : Adios(ptr) end export adios_init_serial """ adios = adios_init_serial() adios = adios_init_serial(config_file::AbstractString) adios::Union{Adios,Nothing} Initialize an Adios struct in a serial, non-MPI application. Doesn’t require a runtime config file. See also the [ADIOS2 documentation](https://adios2.readthedocs.io/en/latest/api_full/api_full.html#_CPPv418adios2_init_serialv). """ function adios_init_serial() ptr = ccall((:adios2_init_serial, libadios2_c), Ptr{Cvoid}, ()) return ptr == C_NULL ? nothing : Adios(ptr) end function adios_init_serial(config_file::AbstractString) ptr = ccall((:adios2_init_config_serial, libadios2_c), Ptr{Cvoid}, (Cstring,), config_file) return ptr == C_NULL ? nothing : Adios(ptr) end export declare_io """ io = declare_io(adios::Adios, name::AbstractString) io::Union{AIO,Nothing} Declare a new IO handler. See also the [ADIOS2 documentation](https://adios2.readthedocs.io/en/latest/api_full/api_full.html#_CPPv417adios2_declare_ioP12adios2_adiosPKc). """ function declare_io(adios::Adios, name::AbstractString) ptr = ccall((:adios2_declare_io, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), adios.ptr, name) return ptr == C_NULL ? nothing : AIO(ptr, adios) end export adios_finalize """ err = adios_finalize(adios::Adios) err::Error Finalize the ADIOS context `adios`. It is usually not necessary to call this function. Instead of calling this function, one can also call the finalizer via `finalize(adios)`. This finalizer is also called automatically when the Adios object is garbage collected. See also the [ADIOS2 documentation](https://adios2.readthedocs.io/en/latest/api_full/api_full.html#_CPPv415adios2_finalizeP12adios2_adios) """ function adios_finalize(adios::Adios) adios.ptr == C_NULL && return error_none err = ccall((:adios2_finalize, libadios2_c), Cint, (Ptr{Cvoid},), adios.ptr) adios.ptr = C_NULL return Error(err) end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
4584
# Attributes export Attribute """ struct Attribute Holds a C pointer `adios2_attribute *`. """ struct Attribute ptr::Ptr{Cvoid} adios::Adios Attribute(ptr::Ptr{Cvoid}, adios::Adios) = new(ptr, adios) end function Base.show(io::IO, attribute::Attribute) nm = name(attribute) T = type(attribute) isval = is_value(attribute) sz = size(attribute) d = data(attribute) print(io, "Attribute(name=$nm,type=$T,is_value=$isval,size=$sz,data=$d)") return end function Base.show(io::IO, ::MIME"text/plain", attribute::Attribute) nm = name(attribute) return print(io, "Attribute($nm)") end export name """ attr_name = name(attribute::Attribute) attr_name::Union{Nothing,String} Retrieve attribute name. """ function name(attribute::Attribute) size = Ref{Csize_t}() err = ccall((:adios2_attribute_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, attribute.ptr) Error(err) β‰  error_none && return nothing name = Array{Cchar}(undef, size[]) err = ccall((:adios2_attribute_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), name, size, attribute.ptr) Error(err) β‰  error_none && return nothing return unsafe_string(pointer(name), size[]) end export type """ attr_type = type(attribute::Attribute) attr_type::Union{Nothing,Type} Retrieve attribute type. """ function type(attribute::Attribute) type = Ref{Cint}() err = ccall((:adios2_attribute_type, libadios2_c), Cint, (Ref{Cint}, Ptr{Cvoid}), type, attribute.ptr) Error(err) β‰  error_none && return nothing return julia_type(AType(type[])) end export is_value """ attr_is_value = is_value(attribute::Attribute) attr_is_value::Union{Nothing,Bool} Retrieve attribute type. """ function is_value(attribute::Attribute) is_value = Ref{Cint}() err = ccall((:adios2_attribute_is_value, libadios2_c), Cint, (Ref{Cint}, Ptr{Cvoid}), is_value, attribute.ptr) Error(err) β‰  error_none && return nothing return Bool(is_value[]) end """ attr_size = size(attribute::Attribute) attr_size::Union{Nothing,Int} Retrieve attribute size. """ function Base.size(attribute::Attribute) size = Ref{Csize_t}() err = ccall((:adios2_attribute_size, libadios2_c), Cint, (Ref{Csize_t}, Ptr{Cvoid}), size, attribute.ptr) Error(err) β‰  error_none && return nothing return Int(size[]) end export data """ attr_data = data(attribute::Attribute) attr_data::Union{Nothing,AdiosType,Vector{<:AdiosType}} Retrieve attribute Data. """ function data(attribute::Attribute) T = type(attribute) T ≑ nothing && return nothing @assert T != Union{} isval = is_value(attribute) isval ≑ nothing && return nothing sz = size(attribute) sz ≑ nothing && return nothing tp = type(attribute) tp ≑ nothing && return nothing if tp ≑ String if isval buffer = fill(Cchar(0), string_array_element_max_size) out_sz = Ref{Csize_t}() err = ccall((:adios2_attribute_data, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), buffer, out_sz, attribute.ptr) @assert out_sz[] == sz Error(err) β‰  error_none && return nothing data = unsafe_string(pointer(buffer)) return data else arrays = [Array{Cchar}(undef, string_array_element_max_size) for i in 1:sz] buffers = [pointer(array) for array in arrays]::Vector{Ptr{Cchar}} out_sz = Ref{Csize_t}() err = ccall((:adios2_attribute_data, libadios2_c), Cint, (Ptr{Ptr{Cchar}}, Ref{Csize_t}, Ptr{Cvoid}), buffers, out_sz, attribute.ptr) @assert out_sz[] == sz Error(err) β‰  error_none && return nothing data = unsafe_string.(buffers)::Vector{String} # Use `arrays` again to ensure it is not GCed too early buffers .= pointer.(arrays) return data end else data = Array{T}(undef, sz) out_sz = Ref{Csize_t}() err = ccall((:adios2_attribute_data, libadios2_c), Cint, (Ptr{Cvoid}, Ref{Csize_t}, Ptr{Cvoid}), data, out_sz, attribute.ptr) @assert out_sz[] == sz Error(err) β‰  error_none && return nothing isval && return data[1] return data end end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
10458
# Engine functions export Engine """ struct Engine Holds a C pointer `adios2_engine *`. """ struct Engine ptr::Ptr{Cvoid} adios::Adios put_sources::Vector{Any} get_targets::Vector{Any} get_tasks::Vector{Function} function Engine(ptr::Ptr{Cvoid}, adios::Adios) return new(ptr, adios, Any[], Any[], Function[]) end end function Base.show(io::IO, ::MIME"text/plain", engine::Engine) nm = name(engine) return print(io, "Engine($nm)") end export name """ engine_name = name(engine::Engine) engine_name::Union{Nothing,String} Retrieve engine name. """ function name(engine::Engine) size = Ref{Csize_t}() err = ccall((:adios2_engine_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, engine.ptr) Error(err) β‰  error_none && return nothing name = Array{Cchar}(undef, size[]) err = ccall((:adios2_engine_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), name, size, engine.ptr) Error(err) β‰  error_none && return nothing return unsafe_string(pointer(name), size[]) end export type """ engine_type = type(engine::Engine) engine_type::Union{Nothing,String} Retrieve engine type. """ function type(engine::Engine) size = Ref{Csize_t}() err = ccall((:adios2_engine_get_type, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, engine.ptr) Error(err) β‰  error_none && return nothing type = Array{Cchar}(undef, size[]) err = ccall((:adios2_engine_get_type, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), type, size, engine.ptr) Error(err) β‰  error_none && return nothing return unsafe_string(pointer(type), size[]) end export openmode """ engine_openmode = openmode(engine::Engine) engine_openmode::Union{Nothing,Mode} Retrieve engine openmode. """ function openmode(engine::Engine) mode = Ref{Cint}() err = ccall((:adios2_engine_openmode, libadios2_c), Cint, (Ptr{Cint}, Ptr{Cvoid}), mode, engine.ptr) Error(err) β‰  error_none && return nothing return Mode(mode[]) end export begin_step """ status = begin_step(engine::Engine, mode::StepMode, timeout_seconds::Union{Integer,AbstractFloat}) status = begin_step(engine::Engine) status::Union{Noting,StepStatus} Begin a logical adios2 step stream. """ function begin_step(engine::Engine, mode::StepMode, timeout_seconds::Union{Integer,AbstractFloat}) status = Ref{Cint}() err = ccall((:adios2_begin_step, libadios2_c), Cint, (Ptr{Cvoid}, Cint, Cfloat, Ptr{Cint}), engine.ptr, mode, timeout_seconds, status) Error(err) β‰  error_none && return nothing return StepStatus(status[]) end function begin_step(engine::Engine) if openmode(engine) == mode_read return begin_step(engine, step_mode_read, -1) else return begin_step(engine, step_mode_append, -1) end end export current_step """ step = current_step(engine::Engine) step::Union{Noting,Int} Inspect current logical step. """ function current_step(engine::Engine) step = Ref{Csize_t}() err = ccall((:adios2_current_step, libadios2_c), Cint, (Ptr{Csize_t}, Ptr{Cvoid}), step, engine.ptr) Error(err) β‰  error_none && return nothing return Int(step) end export steps """ step = steps(engine::Engine) step::Union{Noting,Int} Inspect total number of available steps. """ function steps(engine::Engine) steps = Ref{Csize_t}() err = ccall((:adios2_steps, libadios2_c), Cint, (Ptr{Csize_t}, Ptr{Cvoid}), steps, engine.ptr) Error(err) β‰  error_none && return nothing return Int(steps[]) end """ err = Base.put!(engine::Engine, variable::Variable, data::Union{Ref,DenseArray,SubArray,Ptr}, launch::Mode=mode_deferred) err = Base.put!(engine::Engine, variable::Variable, data::AdiosType, launch::Mode=mode_deferred) err::Error Schedule writing a variable to file. The buffer `data` must be contiguous in memory. Call `perform_puts!` to perform the actual write operations. The reference/array/pointer target must not be modified before `perform_puts!` is called. It is most efficient to schedule multiple `put!` operations before calling `perform_puts!`. """ function Base.put!(engine::Engine, variable::Variable, data::Union{Ref,DenseArray,SubArray,Ptr}, launch::Mode=mode_deferred) if data isa AbstractArray && length(data) β‰  0 np = 1 for (str, sz) in zip(strides(data), size(data)) str β‰  np && throw(ArgumentError("ADIOS2: `data` argument to `put!` must be contiguous")) np *= sz end end T = type(variable) if T ≑ String eltype(data) <: Union{Cchar,Cuchar} || throw(ArgumentError("ADIOS2: `data` element type for string variables must be either `Cchar` or `Cuchar`")) else eltype(data) ≑ T || throw(ArgumentError("ADIOS2: `data` element type for non-string variables must be the same as the variable type")) end co = count(variable) len = data isa Ptr ? typemax(Int) : length(data) (co ≑ nothing ? 1 : prod(co)) ≀ len || throw(ArgumentError("ADIOS2: `data` length must be at least as large as the count of the variable")) if launch ≑ mode_deferred push!(engine.put_sources, (engine, variable, data)) end err = ccall((:adios2_put, libadios2_c), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), engine.ptr, variable.ptr, data, Cint(launch)) return Error(err) end function Base.put!(engine::Engine, variable::Variable, data::AdiosType, launch::Mode=mode_deferred) return put!(engine, variable, Ref(data), launch) end function Base.put!(engine::Engine, variable::Variable, data::AbstractString, launch::Mode=mode_deferred) if launch ≑ mode_deferred push!(engine.put_sources, data) end return put!(engine, variable, pointer(data), launch) end export perform_puts! """ perform_puts!(engine::Engine) Execute all currently scheduled write operations. """ function perform_puts!(engine::Engine) err = ccall((:adios2_perform_puts, libadios2_c), Cint, (Ptr{Cvoid},), engine.ptr) empty!(engine.put_sources) return Error(err) end """ err = Base.get(engine::Engine, variable::Variable, data::Union{Ref,DenseArray,SubArray,Ptr}, launch::Mode=mode_deferred) err::Error Schedule reading a variable from file into the provided buffer `data`. `data` must be contiguous in memory. Call `perform_gets` to perform the actual read operations. The reference/array/pointer target must not be modified before `perform_gets` is called. It is most efficient to schedule multiple `get` operations before calling `perform_gets`. """ function Base.get(engine::Engine, variable::Variable, data::Union{Ref,DenseArray,SubArray,Ptr}, launch::Mode=mode_deferred) if data isa AbstractArray && !isempty(data) np = 1 for (str, sz) in zip(strides(data), size(data)) str β‰  np && throw(ArgumentError("ADIOS2: `data` argument to `get` must be contiguous")) np *= sz end end co = count(variable) len = data isa Ptr ? typemax(Int) : length(data) (co ≑ nothing ? 1 : prod(co)) ≀ len || throw(ArgumentError("ADIOS2: `data` length must be at least as large as the count of the variable")) T = type(variable) if T ≑ String eltype(data) <: AbstractString || throw(ArgumentError("ADIOS2: `data` element type for string variables must be a subtype of `AbstractString`")) buffer = fill(Cchar(0), string_array_element_max_size + 1) err = ccall((:adios2_get, libadios2_c), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), engine.ptr, variable.ptr, buffer, Cint(launch)) if launch ≑ mode_deferred push!(engine.get_targets, (engine, variable)) if data isa Ref push!(engine.get_tasks, () -> data[] = unsafe_string(pointer(buffer))) else push!(engine.get_tasks, () -> data[begin] = unsafe_string(pointer(buffer))) end else data[] = unsafe_string(pointer(buffer)) end else eltype(data) ≑ T || throw(ArgumentError("ADIOS2: `data` element type for non-string variables must be the same as the variable type")) err = ccall((:adios2_get, libadios2_c), Cint, (Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}, Cint), engine.ptr, variable.ptr, data, Cint(launch)) if launch ≑ mode_deferred push!(engine.get_targets, (engine, variable, data)) end end return Error(err) end export perform_gets """ perform_gets(engine::Engine) Execute all currently scheduled read operations. """ function perform_gets(engine::Engine) err = ccall((:adios2_perform_gets, libadios2_c), Cint, (Ptr{Cvoid},), engine.ptr) empty!(engine.get_targets) for task in engine.get_tasks task() end empty!(engine.get_tasks) return Error(err) end export end_step """ end_step(engine::Engine) Terminate interaction with current step. """ function end_step(engine::Engine) err = ccall((:adios2_end_step, libadios2_c), Cint, (Ptr{Cvoid},), engine.ptr) empty!(engine.get_targets) for task in engine.get_tasks task() end empty!(engine.get_tasks) return Error(err) end """ flush(engine::Engine) Flush all buffered data to file. Call this after `perform_puts!` to ensure data are actually written to file. """ function Base.flush(engine::Engine) err = ccall((:adios2_flush, libadios2_c), Cint, (Ptr{Cvoid},), engine.ptr) return Error(err) end """ close(engine::Engine) Close a file. This implicitly also flushed all buffered data. """ function Base.close(engine::Engine) err = ccall((:adios2_close, libadios2_c), Cint, (Ptr{Cvoid},), engine.ptr) return Error(err) end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
10816
# Julia-specific high-level API ################################################################################ export AdiosFile """ struct AdiosFile Context for the high-level API for an ADIOS file """ struct AdiosFile adios::Adios io::AIO engine::Engine AdiosFile(adios::Adios, io::AIO, engine::Engine) = new(adios, io, engine) end export adios_open_serial """ adios = adios_open_serial(filename::AbstractString, mode::Mode) adios::AdiosFile Open an ADIOS file. Use `mode = mode_write` for writing and `mode = mode_read` for reading. """ function adios_open_serial(filename::AbstractString, mode::Mode) adios = adios_init_serial() io = declare_io(adios, "IO") engine = open(io, filename, mode) return AdiosFile(adios, io, engine) end export adios_open_mpi """ adios = adios_open_mpi(comm::MPI.Comm, filename::AbstractString, mode::Mode) adios::AdiosFile Open an ADIOS file for parallel I/O. Use `mode = mode_write` for writing and `mode = mode_read` for reading. """ function adios_open_mpi(comm::MPI.Comm, filename::AbstractString, mode::Mode) adios = adios_init_mpi(comm) io = declare_io(adios, "IO") engine = open(io, filename, mode) return AdiosFile(adios, io, engine) end """ flush(file::AdiosFile) Flush an ADIOS file. When writing, flushing or closing a file is necesssary to ensure that data are actually written to the file. """ function Base.flush(file::AdiosFile) flush(file.engine) return nothing end """ close(file::AdiosFile) Close an ADIOS file. When writing, flushing or closing a file is necesssary to ensure that data are actually written to the file. """ function Base.close(file::AdiosFile) close(file.engine) adios_finalize(file.adios) return nothing end ################################################################################ export adios_subgroup_names """ groups = adios_subgroup_names(file::AdiosFile, groupname::AbstractString) vars::Vector{String} List (non-recursively) all subgroups in the group `groupname` in the file. """ function adios_subgroup_names(file::AdiosFile, groupname::AbstractString) vars = inquire_subgroups(file.io, groupname) vars ≑ nothing && return String[] return vars end export adios_define_attribute """ adios_define_attribute(file::AdiosFile, name::AbstractString, value::AdiosType) Write a scalar attribute. """ function adios_define_attribute(file::AdiosFile, name::AbstractString, value::AdiosType) define_attribute(file.io, name, value) return nothing end """ adios_define_attribute(file::AdiosFile, name::AbstractString, value::AbstractArray{<:AdiosType}) Write an array-valued attribute. """ function adios_define_attribute(file::AdiosFile, name::AbstractString, value::AbstractArray{<:AdiosType}) define_attribute_array(file.io, name, value) return nothing end """ adios_define_attribute(file::AdiosFile, path::AbstractString, name::AbstractString, value::AdiosType) Write a scalar attribute into the path `path` in the file. """ function adios_define_attribute(file::AdiosFile, path::AbstractString, name::AbstractString, value::AdiosType) define_variable_attribute(file.io, name, value, path) return nothing end """ adios_define_attribute(file::AdiosFile, path::AbstractString, name::AbstractString, value::AbstractArray{<:AdiosType}) Write an array-valued attribute into the path `path` in the file. """ function adios_define_attribute(file::AdiosFile, path::AbstractString, name::AbstractString, value::AbstractArray{<:AdiosType}) define_variable_attribute_array(file.io, name, value, path) return nothing end export adios_all_attribute_names """ attrs = adios_all_attribute_names(file::AdiosFile) attrs::Vector{String} List (recursively) all attributes in the file. """ function adios_all_attribute_names(file::AdiosFile) attrs = inquire_all_attributes(file.io) attrs ≑ nothing && return String[] return name.(attrs) end export adios_group_attribute_names """ vars = adios_group_attribute_names(file::AdiosFile, groupname::AbstractString) vars::Vector{String} List (non-recursively) all attributes in the group `groupname` in the file. """ function adios_group_attribute_names(file::AdiosFile, groupname::AbstractString) vars = inquire_group_attributes(file.io, groupname) vars ≑ nothing && return String[] return name.(vars) end export adios_attribute_data """ attr_data = adios_attribute_data(file::AdiosFile, name::AbstractString) attr_data::Union{Nothing,AdiosType} Read an attribute from a file. Return `nothing` if the attribute is not found. """ function adios_attribute_data(file::AdiosFile, name::AbstractString) attr = inquire_attribute(file.io, name) attr ≑ nothing && return nothing attr_data = data(attr) return attr_data end """ attr_data = adios_attribute_data(file::AdiosFile, path::AbstractString, name::AbstractString) attr_data::Union{Nothing,AdiosType} Read an attribute from a file in path `path`. Return `nothing` if the attribute is not found. """ function adios_attribute_data(file::AdiosFile, path::AbstractString, name::AbstractString) attr = inquire_variable_attribute(file.io, name, path) attr ≑ nothing && return nothing attr_data = data(attr) return attr_data end ################################################################################ export adios_put! """ adios_put!(file::AdiosFile, name::AbstractString, scalar::AdiosType) Schedule writing a scalar variable to a file. The variable is not written until `adios_perform_puts!` is called and the file is flushed or closed. """ function adios_put!(file::AdiosFile, name::AbstractString, scalar::AdiosType) var = define_variable(file.io, name, scalar) put!(file.engine, var, scalar) return var end """ adios_put!(file::AdiosFile, name::AbstractString, array::AbstractArray{<:AdiosType}; make_copy::Bool=false) Schedule writing an array-valued variable to a file. `make_copy` determines whether to make a copy of the array, which is expensive for large arrays. When no copy is made, then the array must not be modified before `adios_perform_puts!` is called. The variable is not written until `adios_perform_puts!` is called and the file is flushed or closed. """ function adios_put!(file::AdiosFile, name::AbstractString, array::AbstractArray{<:AdiosType}; make_copy::Bool=false) # 0-dimensional arrays need to be passed as scalars ndims(array) == 0 && return adios_put!(file, name, make_copy ? copy(array)[] : array[]) var = define_variable(file.io, name, array) put!(file.engine, var, make_copy ? copy(array) : array) return var end export adios_perform_puts! """ adios_perform_puts!(file::AdiosFile) Execute all scheduled `adios_put!` operations. The data might not be in the file yet; they might be buffered. Call `adios_flush` or `adios_close` to ensure all data are written to file. """ function adios_perform_puts!(file::AdiosFile) perform_puts!(file.engine) return nothing end export adios_all_variable_names """ vars = adios_all_variable_names(file::AdiosFile) vars::Vector{String} List (recursively) all variables in the file. """ function adios_all_variable_names(file::AdiosFile) vars = inquire_all_variables(file.io) vars ≑ nothing && return String[] return name.(vars) end export adios_group_variable_names """ vars = adios_group_variable_names(file::AdiosFile, groupname::AbstractString) vars::Vector{String} List (non-recursively) all variables in the group `groupname` in the file. """ function adios_group_variable_names(file::AdiosFile, groupname::AbstractString) vars = inquire_group_variables(file.io, groupname) vars ≑ nothing && return String[] return name.(vars) end export IORef """ mutable struct IORef{T,D} A reference to the value of a variable that has been scheduled to be read from disk. This value cannot be accessed bofre the read operations have actually been executed. Use `fetch(ioref::IORef)` to access the value. `fetch` will trigger the actual reading from file if necessary. It is most efficient to schedule multiple read operations at once. Use `adios_perform_gets` to trigger reading all currently scheduled variables. """ mutable struct IORef{T,D} engine::Union{Nothing,Engine} array::Array{T,D} function IORef{T,D}(engine::Engine, array::Array{T,D}) where {T,D} return new{T,D}(engine, array) end end """ isready(ioref::IORef)::Bool Check whether an `IORef` has already been read from file. """ Base.isready(ioref::IORef) = ioref.engine ≑ nothing """ value = fetch(ioref::IORef{T,D}) where {T,D} value::Array{T,D} Access an `IORef`. If necessary, the variable is read from file and then cached. (Each `IORef` is read at most once.) Scalars are handled as zero-dimensional arrays. To access the value of a zero-dimensional array, write `array[]` (i.e. use array indexing, but without any indices). """ function Base.fetch(ioref::IORef) isready(ioref) || perform_gets(ioref.engine) @assert isready(ioref) # return 0-D arrays as scalars # D == 0 && return ioref.array[] return ioref.array end export adios_get """ ioref = adios_get(file::AdiosFile, name::AbstractString) ioref::Union{Nothing,IORef} Schedule reading a variable from a file. The variable is not read until `adios_perform_gets` is called. This happens automatically when the `IORef` is accessed (via `fetch`). It is most efficient to first schedule multiple variables for reading, and then executing the reads together. """ function adios_get(file::AdiosFile, name::AbstractString) var = inquire_variable(file.io, name) var ≑ nothing && return nothing T = type(var) T ≑ nothing && return nothing D = ndims(var) D ≑ nothing && return nothing sh = count(var) sh ≑ nothing && return nothing ioref = IORef{T,D}(file.engine, Array{T,D}(undef, Tuple(sh))) get(file.engine, var, ioref.array) push!(file.engine.get_tasks, () -> (ioref.engine = nothing)) return ioref end export adios_perform_gets """ adios_perform_gets(file::AdiosFile) Execute all currently scheduled read opertions. This makes all pending `IORef`s ready. """ function adios_perform_gets(file::AdiosFile) perform_gets(file.engine) return nothing end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
16231
# IO functions export AIO """ struct AIO Holds a C pointer `adios2_io *`. """ struct AIO ptr::Ptr{Cvoid} adios::Adios AIO(ptr::Ptr{Cvoid}, adios::Adios) = new(ptr, adios) end function Base.show(io::IO, ::MIME"text/plain", aio::AIO) return print(io, "AIO(0x$(string(UInt(aio.ptr); base=16)))") end export set_engine """ err = set_engine(io::AIO, engine_type::AbstractString) err::Error Set the engine type for current io handler. # Arguments - `io`: handler - `engine_type`: predefined engine type, default is bpfile """ function set_engine(io::AIO, engine_type::AbstractString) err = ccall((:adios2_set_engine, libadios2_c), Cint, (Ptr{Cvoid}, Cstring), io.ptr, engine_type) return Error(err) end export define_variable """ variable = define_variable(io::AIO, name::AbstractString, type::Type, shape::Union{Nothing,NTuple{N,Int} where N,CartesianIndex}=nothing, start::Union{Nothing,NTuple{N,Int} where N,CartesianIndex}=nothing, count::Union{Nothing,NTuple{N,Int} where N,CartesianIndex}=nothing, constant_dims::Bool=false) variable::Union{Nothing,Variable} Define a variable within `io`. # Arguments - `io`: handler that owns the variable - `name`: unique variable identifier - `type`: primitive type - `ndims`: number of dimensions - `shape`: global dimension - `start`: local offset - `count`: local dimension - `constant_dims`: `true`: shape, start, count won't change; `false`: shape, start, count will change after definition """ function define_variable(io::AIO, name::AbstractString, type::Type, shape::LocalValue) ptr = ccall((:adios2_define_variable, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Csize_t, Ptr{Csize_t}, Ptr{Csize_t}, Ptr{Csize_t}, Cint), io.ptr, name, adios_type(type), 1, Ref(local_value_dim), C_NULL, C_NULL, true) return ptr == C_NULL ? nothing : Variable(ptr, io.adios) end function define_variable(io::AIO, name::AbstractString, type::Type, shape::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}=nothing, start::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}=nothing, count::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}=nothing; constant_dims::Bool=false) ndims = max(length(maybe(shape, ())), length(maybe(start, ())), length(maybe(count, ()))) @assert all(x -> x ≑ nothing || length(x) == ndims, [shape, start, count]) ptr = ccall((:adios2_define_variable, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Csize_t, Ptr{Csize_t}, Ptr{Csize_t}, Ptr{Csize_t}, Cint), io.ptr, name, adios_type(type), ndims, shape ≑ nothing ? C_NULL : Csize_t[reverse(Tuple(shape))...], start ≑ nothing ? C_NULL : Csize_t[reverse(Tuple(start))...], count ≑ nothing ? C_NULL : Csize_t[reverse(Tuple(count))...], constant_dims) return ptr == C_NULL ? nothing : Variable(ptr, io.adios) end function define_variable(io::AIO, name::AbstractString, var::AdiosType) return define_variable(io, name, typeof(var), LocalValue()) end function define_variable(io::AIO, name::AbstractString, arr::AbstractArray{<:AdiosType}) return define_variable(io, name, eltype(arr), nothing, nothing, size(arr); constant_dims=true) end export inquire_variable """ variable = inquire_variable(io::AIO, name::AbstractString) variable::Union{Nothing,Variable} Retrieve a variable handler within current `io` handler. # Arguments - `io`: handler to variable `io` owner - `name`: unique variable identifier within `io` handler """ function inquire_variable(io::AIO, name::AbstractString) ptr = ccall((:adios2_inquire_variable, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), io.ptr, name) return ptr == C_NULL ? nothing : Variable(ptr, io.adios) end export inquire_all_variables """ variables = inquire_all_variables(io::AIO) variables::Union{Nothing,Vector{Variable}} Returns an array of variable handlers for all variable present in the `io` group. # Arguments - `io`: handler to variables io owner """ function inquire_all_variables(io::AIO) c_variables = Ref{Ptr{Ptr{Cvoid}}}() size = Ref{Csize_t}() err = ccall((:adios2_inquire_all_variables, libadios2_c), Cint, (Ref{Ptr{Ptr{Cvoid}}}, Ref{Csize_t}, Ptr{Cvoid}), c_variables, size, io.ptr) Error(err) β‰  error_none && return nothing variables = Array{Variable}(undef, size[]) for n in 1:length(variables) ptr = unsafe_load(c_variables[], n) @assert ptr β‰  C_NULL variables[n] = Variable(ptr, io.adios) end free(c_variables[]) return variables end export inquire_group_variables """ vars = inquire_group_variables(io::AIO, full_prefix::AbstractString) vars::Vector{String} List all variables in the group `full_prefix`. """ function inquire_group_variables(io::AIO, full_prefix::AbstractString) c_variables = Ref{Ptr{Ptr{Cvoid}}}(C_NULL) size = Ref{Csize_t}() err = ccall((:adios2_inquire_group_variables, libadios2_c), Cint, (Ref{Ptr{Ptr{Cvoid}}}, Cstring, Ref{Csize_t}, Ptr{Cvoid}), c_variables, full_prefix, size, io.ptr) Error(err) β‰  error_none && return nothing variables = Array{Variable}(undef, size[]) for n in 1:length(variables) ptr = unsafe_load(c_variables[], n) @assert ptr β‰  C_NULL variables[n] = Variable(ptr, io.adios) end free(c_variables[]) return variables end export define_attribute """ attribute = define_attribute(io::AIO, name::AbstractString, value) attribute::Union{Nothing,Attribute} Define an attribute value inside `io`. """ function define_attribute(io::AIO, name::AbstractString, value::AdiosType) T = typeof(value) if T <: AbstractString ptr = ccall((:adios2_define_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Cstring), io.ptr, name, adios_type(T), value) else ptr = ccall((:adios2_define_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}), io.ptr, name, adios_type(T), Ref(value)) end return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export define_attribute_array """ attribute = define_attribute_array(io::AIO, name::AbstractString, values::AbstractVector) attribute::Union{Nothing,Attribute} Define an attribute array inside `io`. """ function define_attribute_array(io::AIO, name::AbstractString, values::AbstractVector{<:AdiosType}) T = eltype(values) if T <: AbstractString cvalues = pointer.(values) ptr = ccall((:adios2_define_attribute_array, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Ptr{Cchar}}, Csize_t), io.ptr, name, adios_type(T), cvalues, length(values)) # Use `values` again to ensure it is not GCed too early cvalues = pointer.(values) else ptr = ccall((:adios2_define_attribute_array, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}, Csize_t), io.ptr, name, adios_type(T), values, length(values)) end return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export define_variable_attribute """ attribute = define_variable_attribute(io::AIO, name::AbstractString, value, variable_name::AbstractString, separator::AbstractString="/") attribute::Union{Nothing,Attribute} Define an attribute single value associated to an existing variable by its name. """ function define_variable_attribute(io::AIO, name::AbstractString, value::AdiosType, variable_name::AbstractString, separator::AbstractString="/") T = typeof(value) if T <: AbstractString ptr = ccall((:adios2_define_variable_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Cstring, Cstring, Cstring), io.ptr, name, adios_type(T), value, variable_name, separator) else ptr = ccall((:adios2_define_variable_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}, Cstring, Cstring), io.ptr, name, adios_type(T), Ref(value), variable_name, separator) end return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export define_variable_attribute_array """ attribute = define_variable_attribute_array(io::AIO, name::AbstractString, values::AbstractVector, variable_name::AbstractString, separator::AbstractString="/") attribute::Union{Nothing,Attribute} Define an attribute array associated to an existing variable by its name. """ function define_variable_attribute_array(io::AIO, name::AbstractString, values::AbstractVector{<:AdiosType}, variable_name::AbstractString, separator::AbstractString="/") T = eltype(values) if T <: AbstractString cvalues = pointer.(values) ptr = ccall((:adios2_define_variable_attribute_array, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Ptr{Cchar}}, Csize_t, Cstring, Cstring), io.ptr, name, adios_type(T), cvalues, length(values), variable_name, separator) # Use `values` again to ensure it is not GCed too early cvalues = pointer.(values) else ptr = ccall((:adios2_define_variable_attribute_array, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}, Csize_t, Cstring, Cstring), io.ptr, name, adios_type(T), values, length(values), variable_name, separator) end return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export inquire_attribute """ attribute = inquire_attribute(io::AIO, name::AbstractString) attribute::Union{Nothing,Attribute} Return a handler to a previously defined attribute by name. """ function inquire_attribute(io::AIO, name::AbstractString) ptr = ccall((:adios2_inquire_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), io.ptr, name) return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export inquire_variable_attribute """ attribute = inquire_variable_attribute(io::AIO, name::AbstractString, variable_name::AbstractString, separator::AbstractString="/") attribute::Union{Nothing,Attribute} Return a handler to a previously defined attribute by name. """ function inquire_variable_attribute(io::AIO, name::AbstractString, variable_name::AbstractString, separator::AbstractString="/") ptr = ccall((:adios2_inquire_variable_attribute, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cstring, Cstring), io.ptr, name, variable_name, separator) return ptr == C_NULL ? nothing : Attribute(ptr, io.adios) end export inquire_all_attributes """ attributes = inquire_all_attributes(io::AIO) attributes::Union{Nothing,Vector{Attribute}} Return an array of attribute handlers for all attribute present in the io group. """ function inquire_all_attributes(io::AIO) c_attributes = Ref{Ptr{Ptr{Cvoid}}}() size = Ref{Csize_t}() err = ccall((:adios2_inquire_all_attributes, libadios2_c), Cint, (Ref{Ptr{Ptr{Cvoid}}}, Ref{Csize_t}, Ptr{Cvoid}), c_attributes, size, io.ptr) Error(err) β‰  error_none && return nothing attributes = Array{Attribute}(undef, size[]) for n in 1:length(attributes) ptr = unsafe_load(c_attributes[], n) @assert ptr β‰  C_NULL attributes[n] = Attribute(ptr, io.adios) end free(c_attributes[]) return attributes end export inquire_group_attributes """ vars = inquire_group_attributes(io::AIO, full_prefix::AbstractString) vars::Vector{String} List all attributes in the group `full_prefix`. """ function inquire_group_attributes(io::AIO, full_prefix::AbstractString) c_attributes = Ref{Ptr{Ptr{Cvoid}}}(C_NULL) size = Ref{Csize_t}() err = ccall((:adios2_inquire_group_attributes, libadios2_c), Cint, (Ref{Ptr{Ptr{Cvoid}}}, Cstring, Ref{Csize_t}, Ptr{Cvoid}), c_attributes, full_prefix, size, io.ptr) Error(err) β‰  error_none && return nothing attributes = Array{Attribute}(undef, size[]) for n in 1:length(attributes) ptr = unsafe_load(c_attributes[], n) @assert ptr β‰  C_NULL attributes[n] = Attribute(ptr, io.adios) end free(c_attributes[]) return attributes end export inquire_subgroups """ groups = inquire_subgroups(io::AIO, full_prefix::AbstractString) groups::Vector{String} List all subgroups in the group `full_prefix`. """ function inquire_subgroups(io::AIO, full_prefix::AbstractString) c_subgroups = Ref{Ptr{Ptr{Cchar}}}() size = Ref{Csize_t}() err = ccall((:adios2_inquire_subgroups, libadios2_c), Cint, (Ref{Ptr{Ptr{Cchar}}}, Cstring, Ref{Csize_t}, Ptr{Cvoid}), c_subgroups, full_prefix, size, io.ptr) Error(err) β‰  error_none && return nothing subgroups = Array{String}(undef, size[]) for n in 1:length(subgroups) ptr = unsafe_load(c_subgroups[], n) @assert ptr β‰  C_NULL subgroups[n] = unsafe_string(ptr) free(ptr) end free(c_subgroups[]) return subgroups end """ engine = open(io::AIO, name::AbstractString, mode::Mode) engine::Union{Nothing,Engine} Open an Engine to start heavy-weight input/output operations. In MPI version reuses the communicator from [`adios_init_mpi`](@ref). MPI Collective function as it calls `MPI_Comm_dup`. # Arguments - `io`: engine owner - `name`: unique engine identifier - `mode`: `mode_write`, `mode_read`, `mode_append` (not yet supported) """ function Base.open(io::AIO, name::AbstractString, mode::Mode) ptr = ccall((:adios2_open, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring, Cint), io.ptr, name, mode) return ptr == C_NULL ? nothing : Engine(ptr, io.adios) end export engine_type """ type = engine_type(io::AIO) type::Union{Nothing,String} Return engine type string. See [`set_engine`](@ref). """ function engine_type(io::AIO) size = Ref{Csize_t}() err = ccall((:adios2_engine_type, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, io.ptr) Error(err) β‰  error_none && return nothing type = '\0'^size[] err = ccall((:adios2_engine_type, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), type, size, io.ptr) Error(err) β‰  error_none && return nothing return type end export get_engine """ engine = get_engine(io::AIO, name::AbstractString) engine::Union{Nothing,Engine} """ function get_engine(io::AIO, name::AbstractString) ptr = ccall((:adios2_get_engin, libadios2_c), Ptr{Cvoid}, (Ptr{Cvoid}, Cstring), io.ptr, name) return ptr == C_NULL ? nothing : Engine(ptr, io.adios) end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
5225
# Types export Error export error_none, error_invalid_argument, error_system_error, error_runtime_error, error_exception """ @enum Error begin error_none error_invalid_argument error_system_error error_runtime_error error_exception end `Error` return types for all ADIOS2 functions Based on the [library C++ standardized exceptions](https://en.cppreference.com/w/cpp/error/exception). Each error will issue a more detailed description in the standard error output, stderr """ @enum Error begin error_none = 0 error_invalid_argument = 1 error_system_error = 2 error_runtime_error = 3 error_exception = 4 end @enum AType begin type_unknown = -1 type_string = 0 type_float = 1 type_double = 2 type_float_complex = 3 type_double_complex = 4 type_int8_t = 5 type_int16_t = 6 type_int32_t = 7 type_int64_t = 8 type_uint8_t = 9 type_uint16_t = 10 type_uint32_t = 11 type_uint64_t = 12 type_long_double = 13 end # We omit `type_long_double` that we cannot handle const adios_types = AType[type_string, type_float, type_double, type_float_complex, type_double_complex, type_int8_t, type_int16_t, type_int32_t, type_int64_t, type_uint8_t, type_uint16_t, type_uint32_t, type_uint64_t] adios_type(::Type{String}) = type_string adios_type(::Type{Float32}) = type_float adios_type(::Type{Float64}) = type_double adios_type(::Type{Complex{Float32}}) = type_float_complex adios_type(::Type{Complex{Float64}}) = type_double_complex adios_type(::Type{Int8}) = type_int8_t adios_type(::Type{Int16}) = type_int16_t adios_type(::Type{Int32}) = type_int32_t adios_type(::Type{Int64}) = type_int64_t adios_type(::Type{UInt8}) = type_uint8_t adios_type(::Type{UInt16}) = type_uint16_t adios_type(::Type{UInt32}) = type_uint32_t adios_type(::Type{UInt64}) = type_uint64_t const julia_types = Type[String, Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] julia_type(type::AType) = julia_types[Int(type) + 1] export AdiosType """ const AdiosType = Union{AbstractString, Float32,Float64, Complex{Float32},Complex{Float64}, Int8,Int16,Int32,Int64, UInt8,UInt16,UInt32,UInt64} A Union of all scalar types supported in ADIOS files. """ const AdiosType = Union{AbstractString,Float32,Float64,Complex{Float32}, Complex{Float64},Int8,Int16,Int32,Int64,UInt8,UInt16, UInt32,UInt64} export Mode export mode_undefined, mode_write, mode_read, mode_append, mode_readRandomAccess, mode_deferred, mode_sync """ @enum Mode begin mode_undefined mode_write mode_read mode_append mode_readRandomAccess mode_deferred mode_sync end Mode specifies for various functions. `write`, `read`, `append`, and `readRandomAccess` are used for file operations. `deferred` and `sync` are used for get and put operations. """ @enum Mode begin mode_undefined = 0 mode_write = 1 mode_read = 2 mode_append = 3 mode_readRandomAccess = 6 # ADIOS2 2.9 mode_deferred = 4 mode_sync = 5 end export StepMode export step_mode_append, step_mode_update, step_mode_read """ @enum StepMode begin step_mode_append step_mode_update step_mode_read end """ @enum StepMode begin step_mode_append = 0 step_mode_update = 1 step_mode_read = 2 end export StepStatus export step_status_other_error, step_status_ok, step_status_not_ready, step_status_end_of_stream """ @enum StepStatus begin step_status_other_error step_status_ok step_status_not_ready step_status_end_of_stream end """ @enum StepStatus begin step_status_other_error = -1 step_status_ok = 0 step_status_not_ready = 1 step_status_end_of_stream = 2 end export ShapeId export shapeid_unknown, shapeid_global_value, shapeid_global_array, shapeid_joined_array, shapeid_local_value, shapeid_local_array """ @enum ShapeId begin shapeid_unknown shapeid_global_value shapeid_global_array shapeid_joined_array shapeid_local_value shapeid_local_array end """ @enum ShapeId begin shapeid_unknown = -1 shapeid_global_value = 0 shapeid_global_array = 1 shapeid_joined_array = 2 shapeid_local_value = 3 shapeid_local_array = 4 end const shapeid_strings = String["shapeid_unknown", "shapeid_global_value", "shapeid_global_array", "shapeid_joined_array", "shapeid_local_value", "shapeid_local_array"] shapeid_string(shapeid::ShapeId) = shapeid_strings[Int(shapeid) + 2] Base.show(io::IO, shapeid::ShapeId) = print(io, shapeid_string(shapeid)) const string_array_element_max_size = 4096 const local_value_dim = typemax(Csize_t) - 2 export LocalValue struct LocalValue end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
9582
# Variable functions export Variable """ struct Variable Holds a C pointer `adios2_variable *`. """ struct Variable ptr::Ptr{Cvoid} adios::Adios Variable(ptr::Ptr{Cvoid}, adios::Adios) = new(ptr, adios) end function Base.show(io::IO, variable::Variable) nm = name(variable) T = type(variable) sid = shapeid(variable) sh = shape(variable) print(io, "Variable(name=$nm,type=$T,shapeid=$sid,shape=$sh)") return end function Base.show(io::IO, ::MIME"text/plain", variable::Variable) nm = name(variable) print(io, "Variable($nm)") return end export set_block_selection """ set_block_selection(variable::Variable, block_id::Int) """ function set_block_selection(variable::Variable, block_id::Int) err = ccall((:adios2_set_block_selection, libadios2_c), Cint, (Ptr{Cvoid}, Csize_t), variable.ptr, block_id) Error(err) β‰  error_none && return nothing return () end export set_selection """ set_selection(variable::Variable, start::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}, count::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}) """ function set_selection(variable::Variable, start::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}=nothing, count::Union{Nothing,NTuple{N,Int} where N, CartesianIndex}=nothing) D = ndims(variable) err = ccall((:adios2_set_selection, libadios2_c), Cint, (Ptr{Cvoid}, Csize_t, Ptr{Csize_t}, Ptr{Csize_t}), variable.ptr, D, start ≑ nothing ? C_NULL : Csize_t[reverse(Tuple(start))...], count ≑ nothing ? C_NULL : Csize_t[reverse(Tuple(count))...]) Error(err) β‰  error_none && return nothing end export set_step_selection """ set_step_selection(variable::Variable, step_start::Int, step_count::Int) Only works with file-based engines, not streaming engines (e.g. does not work with SST) """ function set_step_selection(variable::Variable, step_start::Int, step_count::Int) err = ccall((:adios2_set_step_selection, libadios2_c), Cint, (Ptr{Cvoid}, Csize_t, Csize_t), variable.ptr, step_start, step_count) Error(err) β‰  error_none && return nothing return () end export name """ var_name = name(variable::Variable) var_name::Union{Nothing,String} Retrieve variable name. """ function name(variable::Variable) size = Ref{Csize_t}() err = ccall((:adios2_variable_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, variable.ptr) Error(err) β‰  error_none && return nothing name = Array{Cchar}(undef, size[]) err = ccall((:adios2_variable_name, libadios2_c), Cint, (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), name, size, variable.ptr) Error(err) β‰  error_none && return nothing return unsafe_string(pointer(name), size[]) end export type """ var_type = type(variable::Variable) var_type::Union{Nothing,Type} Retrieve variable type. """ function type(variable::Variable) type = Ref{Cint}() err = ccall((:adios2_variable_type, libadios2_c), Cint, (Ref{Cint}, Ptr{Cvoid}), type, variable.ptr) Error(err) β‰  error_none && return nothing return julia_type(AType(type[])) end # export type_string # """ # type_string = variable_type_string(variable::Variable) # type_string::Union{Nothing,String} # # Retrieve variable type in string form "char", "unsigned long", etc. # This reports C type names. # """ # function type_string(variable::Variable) # size = Ref{Csize_t}() # err = ccall((:adios2_variable_type_string, libadios2_c), Cint, # (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), C_NULL, size, # variable.ptr) # Error(err) β‰  error_none && return nothing # type = '\0'^size[] # err = ccall((:adios2_variable_type_string, libadios2_c), Cint, # (Ptr{Cchar}, Ref{Csize_t}, Ptr{Cvoid}), name, size, # variable.ptr) # Error(err) β‰  error_none && return nothing # return type # end export shapeid """ var_shapeid = shapeid(variable::Variable) var_shapeid::Union{Nothing,ShapeId} Retrieve variable shapeid. """ function shapeid(variable::Variable) shapeid = Ref{Cint}() err = ccall((:adios2_variable_shapeid, libadios2_c), Cint, (Ref{Cint}, Ptr{Cvoid}), shapeid, variable.ptr) Error(err) β‰  error_none && return nothing return ShapeId(shapeid[]) end """ var_ndims = ndims(variable::Variable) var_ndims::Union{Nothing,Int} Retrieve current variable number of dimensions. """ function Base.ndims(variable::Variable) var_shapeid = shapeid(variable) var_shapeid ≑ nothing && return nothing var_shapeid == shapeid_local_value && return 0 ndims = Ref{Csize_t}() err = ccall((:adios2_variable_ndims, libadios2_c), Cint, (Ref{Csize_t}, Ptr{Cvoid}), ndims, variable.ptr) Error(err) β‰  error_none && return nothing return Int(ndims[]) end export shape """ var_shape = shape(variable::Variable) var_shape::Union{Nothing,NTuple{N,Int} where N} Retrieve current variable shape. """ function shape(variable::Variable) var_shapeid = shapeid(variable) var_shapeid ≑ nothing && return nothing var_shapeid ∈ (shapeid_local_value, shapeid_local_array) && return nothing D = ndims(variable) shape = Array{Csize_t}(undef, D) err = ccall((:adios2_variable_shape, libadios2_c), Cint, (Ptr{Csize_t}, Ptr{Cvoid}), shape, variable.ptr) Error(err) β‰  error_none && return nothing return Tuple(reverse!(shape)) end export start """ var_start = start(variable::Variable) var_start::Union{Nothing,NTuple{N,Int} where N} Retrieve current variable start. """ function start(variable::Variable) var_shapeid = shapeid(variable) var_shapeid ≑ nothing && return nothing var_shapeid ∈ (shapeid_local_value, shapeid_local_array) && return nothing D = ndims(variable) start = Array{Csize_t}(undef, D) err = ccall((:adios2_variable_start, libadios2_c), Cint, (Ptr{Csize_t}, Ptr{Cvoid}), start, variable.ptr) Error(err) β‰  error_none && return nothing return Tuple(reverse!(start)) end """ var_count = count(variable::Variable) var_count::Union{Nothing,NTuple{N,Int} where N} Retrieve current variable count. """ function Base.count(variable::Variable) var_shapeid = shapeid(variable) var_shapeid ≑ nothing && return nothing var_shapeid == shapeid_local_value && return () D = ndims(variable) count = Array{Csize_t}(undef, D) err = ccall((:adios2_variable_count, libadios2_c), Cint, (Ptr{Csize_t}, Ptr{Cvoid}), count, variable.ptr) Error(err) β‰  error_none && return nothing return Tuple(reverse!(count)) end export steps_start """ var_steps_start = steps_start(variable::Variable) var_steps_start::Union{Nothing,Int} Read API, get available steps start from available steps count (e.g. in a file for a variable). This returns the absolute first available step, don't use with `adios2_set_step_selection` as inputs are relative, use `0` instead. """ function steps_start(variable::Variable) steps_start = Ref{Csize_t}() err = ccall((:adios2_variable_steps_start, libadios2_c), Cint, (Ref{Csize_t}, Ptr{Cvoid}), steps_start, variable.ptr) Error(err) β‰  error_none && return nothing return Int(steps_start[]) end export steps """ var_steps = steps(variable::Variable) var_steps::Union{Nothing,Int} Read API, get available steps count from available steps count (e.g. in a file for a variable). Not necessarily contiguous. """ function steps(variable::Variable) steps = Ref{Csize_t}() err = ccall((:adios2_variable_steps, libadios2_c), Cint, (Ref{Csize_t}, Ptr{Cvoid}), steps, variable.ptr) Error(err) β‰  error_none && return nothing return Int(steps[]) end export selection_size """ var_selection_size = selection_size(variable::Variable) var_selection_size::Union{Nothing,Int} Return the minimum required allocation (in number of elements of a certain type, not bytes) for the current selection. """ function selection_size(variable::Variable) selection_size = Ref{Csize_t}() err = ccall((:adios2_selection_size, libadios2_c), Cint, (Ref{Csize_t}, Ptr{Cvoid}), selection_size, variable.ptr) Error(err) β‰  error_none && return nothing return Int(selection_size[]) end """ var_min = minimum(variable::Variable) var_min::Union{Nothing,T} Read mode only: return the absolute minimum for variable. """ function Base.minimum(variable::Variable) T = type(variable) T ≑ nothing && return nothing varmin = Ref{T}() err = ccall((:adios2_variable_min, libadios2_c), Cint, (Ptr{Cvoid}, Ptr{Cvoid}), varmin, variable.ptr) Error(err) β‰  error_none && return nothing return varmin[] end """ var_max = maximum(variable::Variable) var_max::Union{Nothing,T} Read mode only: return the absolute maximum for variable. """ function Base.maximum(variable::Variable) T = type(variable) T ≑ nothing && return nothing varmax = Ref{T}() err = ccall((:adios2_variable_max, libadios2_c), Cint, (Ptr{Cvoid}, Ptr{Cvoid}), varmax, variable.ptr) Error(err) β‰  error_none && return nothing return varmax[] end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
20661
# Test basic API const rankstr = @sprintf "%06d" comm_rank if comm_rank == comm_root const dirname = Filesystem.mktempdir() end if use_mpi if comm_rank == comm_root MPI.bcast(dirname, comm_root, comm) else const dirname = MPI.bcast(nothing, comm_root, comm) end end const filename = "$dirname/test.bp" # "BP3", "BP4", "BP5", "HDF5", "SST", "SSC", "DataMan", "Inline", "Null" const ENGINE_TYPE = "BP4" @testset "File write tests" begin # Set up ADIOS if use_mpi adios = adios_init_mpi(comm) else adios = adios_init_serial() end @test adios isa Adios @test match(r"Adios\(.+\)", string(adios)) β‰’ nothing @test match(r"Adios\(0x[0-9a-f]+\)", showmime(adios)) β‰’ nothing io = declare_io(adios, "IO") @test io isa AIO @test match(r"AIO\(.+\)", string(io)) β‰’ nothing @test match(r"AIO\(0x[0-9a-f]+\)", showmime(io)) β‰’ nothing # Define some variables variables = Dict() for T in Type[String, Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] val = T ≑ String ? "42" : T(42) val::T # Global value nm = "gvalue.p$rankstr.$T" gval = define_variable(io, nm, T) @test gval isa Variable @test match(r"Variable\(name=.+,type=.+,shapeid=.+,shape=.+\)", string(gval)) β‰’ nothing @test match(r"Variable\(.+\)", showmime(gval)) β‰’ nothing variables[(shapeid_global_value, -1, -1, T)] = (nm, gval) # Local value nm = "lvalue.p$rankstr.$T" lval = define_variable(io, nm, val) @test lval isa Variable @test match(r"Variable\(name=.+,type=.+,shapeid=.+,shape=.+\)", string(lval)) β‰’ nothing @test match(r"Variable\(.+\)", showmime(lval)) β‰’ nothing variables[(shapeid_local_value, -1, -1, T)] = (nm, lval) # String arrays are not supported if T β‰’ String for D in 1:3, len in 0:2 # size sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) arr = fill(val, sz) # shape, start, count of global array cs = ntuple(d -> d < D ? 1 : comm_size, D) cr = ntuple(d -> d < D ? 0 : comm_rank, D) sh = cs .* sz st = cr .* sz co = sz # Global array nm = "garray.$T.$D.$len" garr = define_variable(io, nm, T, sh, st, co) @test garr isa Variable @test match(r"Variable\(name=.+,type=.+,shapeid=.+,shape=.+\)", string(garr)) β‰’ nothing @test match(r"Variable\(.+\)", showmime(garr)) β‰’ nothing variables[(shapeid_global_array, D, len, T)] = (nm, garr) # Local array nm = "larray.p$rankstr.$T.$D.$len" larr = define_variable(io, nm, arr) @test larr isa Variable @test match(r"Variable\(name=.+,type=.+,shapeid=.+,shape=.+\)", string(larr)) β‰’ nothing @test match(r"Variable\(.+\)", showmime(larr)) β‰’ nothing variables[(shapeid_local_array, D, len, T)] = (nm, larr) end end end # Check variables allvars = inquire_all_variables(io) @test Set(allvars) == Set([var for (name, var) in values(variables)]) var0 = inquire_variable(io, "not a variable") @test var0 isa Nothing for ((si, D, len, T), (nm, var)) in variables var1 = inquire_variable(io, nm) @test var1 isa Variable @test nm == name(var1) @test type(var1) == T @test shapeid(var1) == si if si == shapeid_global_value @test ndims(var1) == 0 @test shape(var1) == () @test start(var1) == () @test count(var1) == () elseif si == shapeid_local_value @test ndims(var1) == 0 @test shape(var1) ≑ nothing @test start(var1) ≑ nothing @test count(var1) ≑ () elseif si == shapeid_global_array sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) cs = ntuple(d -> d < D ? 1 : comm_size, D) cr = ntuple(d -> d < D ? 0 : comm_rank, D) sh = cs .* sz st = cr .* sz co = sz @test ndims(var1) == D @test shape(var1) == sh @test start(var1) == st @test count(var1) == co elseif si == shapeid_local_array sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) @test ndims(var1) == D @test shape(var1) ≑ nothing @test start(var1) ≑ nothing @test count(var1) == sz else error("internal error") end end # Define some attributes attributes = Dict() for T in Type[String, Float32, Float64, # Currently broken, see # <https://github.com/ornladios/ADIOS2/issues/2734> # Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] val = T ≑ String ? "42" : T(42) val::T # Attribute nm = "value.p$rankstr.$T" attr = define_attribute(io, nm, val) @test attr isa Attribute @test match(r"Attribute\(name=.+,type=.+,is_value=(false|true),size=.+,data=.+\)", string(attr)) β‰’ nothing @test match(r"Attribute\(.+\)", showmime(attr)) β‰’ nothing attributes[(-1, -1, "", T)] = (nm, attr) # Variable attribute nm = "value.p$rankstr.$T" varname = variables[(shapeid_global_value, -1, -1, T)][1] attr = define_variable_attribute(io, nm, val, varname) @test attr isa Attribute @test match(r"Attribute\(name=.+,type=.+,is_value=(false|true),size=.+,data=.+\)", string(attr)) β‰’ nothing @test match(r"Attribute\(.+\)", showmime(attr)) β‰’ nothing attributes[(-1, -1, varname, T)] = ("$varname/$nm", attr) # Attribute arrays need to have at least one element (why?) for len in 1:2:3 vals = (T ≑ String ? String["42", "", "44"] : T[42, 0, 44])[1:len] # Attribute array nm = "array.p$rankstr.$T.$len" arr = define_attribute_array(io, nm, vals) @test arr isa Attribute @test match(r"Attribute\(name=.+,type=.+,is_value=(false|true),size=.+,data=.+\)", string(arr)) β‰’ nothing @test match(r"Attribute\(.+\)", showmime(arr)) β‰’ nothing attributes[(1, len, "", T)] = (nm, arr) # Variable attribute array nm = "array.p$rankstr.$T.$len" varname = variables[(shapeid_global_value, -1, -1, T)][1] arr = define_variable_attribute_array(io, nm, vals, varname) @test match(r"Attribute\(name=.+,type=.+,is_value=(false|true),size=.+,data=.+\)", string(arr)) β‰’ nothing @test match(r"Attribute\(.+\)", showmime(arr)) β‰’ nothing @test arr isa Attribute attributes[(1, len, varname, T)] = ("$varname/$nm", arr) end end # Check attributes allattrs = inquire_all_attributes(io) @test Set(allattrs) == Set([attr for (name, attr) in values(attributes)]) attr0 = inquire_attribute(io, "not an attribute") @test attr0 isa Nothing attr0 = inquire_variable_attribute(io, "not an attribute", "not a variable") @test attr0 isa Nothing for ((D, len, varname, T), (nm, attr)) in attributes attr1 = inquire_attribute(io, nm) @test attr1 isa Attribute @test nm == name(attr1) @test type(attr1) == T if D == -1 @test is_value(attr) @test size(attr) == 1 val = T ≑ String ? "42" : T(42) @test data(attr) == val else @test !is_value(attr) @test size(attr) == len vals = (T ≑ String ? String["42", "", "44"] : T[42, 0, 44])[1:len] @test data(attr) == vals end end err = set_engine(io, ENGINE_TYPE) @test err ≑ error_none etype = engine_type(io) # @test etype == "File" @test etype == ENGINE_TYPE # Write the file engine = open(io, filename, mode_write) @test engine isa Engine # Schedule variables for writing for ((si, D, len, T), (nm, var)) in variables val = T ≑ String ? "42" : T(42) if si ∈ (shapeid_global_value, shapeid_local_value) err = put!(engine, var, val) @test err ≑ error_none elseif si ∈ (shapeid_global_array, shapeid_local_array) sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) # Construct a single number from a tuple ten(i, s) = i == () ? s : ten(i[2:end], 10s + i[1]) # Convert to type `T` function mkT(T, s) return (T ≑ String ? "$s" : T <: Union{AbstractFloat,Complex} ? T(s) : s % T)::T end arr = T[mkT(T, ten(Tuple(i), 0)) for i in CartesianIndices(sz)] arr1 = rand(Bool) ? arr : @view arr[:] err = put!(engine, var, arr1) @test err ≑ error_none else error("internal error") end end # Write the variables err = perform_puts!(engine) @test err ≑ error_none # Minima and maxima are only available when reading a file # for ((si, D, T), (nm, var)) in variables # val = T ≑ String ? "42" : T(42) # @test minimum(var) == val # @test maximum(var) == val # end err = close(engine) @test err ≑ error_none finalize(adios) end # Call gc to test finalizing the Adios object GC.gc(true) @testset "File read tests" begin # Set up ADIOS if use_mpi adios = adios_init_mpi(comm) else adios = adios_init_serial() end @test adios isa Adios io = declare_io(adios, "IO") @test io isa AIO # Open the file if ADIOS2_VERSION < v"2.9.0" # We need to use `mode_read` for ADIOS2 <2.9, and `mode_readRandomAccess` for ADIOS2 β‰₯2.9 engine = open(io, filename, mode_read) else engine = open(io, filename, mode_readRandomAccess) end @test engine isa Engine err = set_engine(io, ENGINE_TYPE) @test err ≑ error_none etype = engine_type(io) # @test etype == "File" @test etype == ENGINE_TYPE # Inquire about all variables variables = Dict() for T in Type[String, Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] # Global value nm = "gvalue.p$rankstr.$T" gval = inquire_variable(io, nm) @test gval isa Variable variables[(shapeid_global_value, -1, -1, T)] = (nm, gval) # Local value nm = "lvalue.p$rankstr.$T" lval = inquire_variable(io, nm) @test lval isa Variable variables[(shapeid_local_value, -1, -1, T)] = (nm, lval) # String arrays are not supported if T β‰’ String for D in 1:3, len in 0:2 # Global array nm = "garray.$T.$D.$len" garr = inquire_variable(io, nm) @test garr isa Variable variables[(shapeid_global_array, D, len, T)] = (nm, garr) # Local array nm = "larray.p$rankstr.$T.$D.$len" larr = inquire_variable(io, nm) @test larr isa Variable variables[(shapeid_local_array, D, len, T)] = (nm, larr) end end end # Check variables allvars = inquire_all_variables(io) if comm_size == 1 @test Set(allvars) == Set([var for (name, var) in values(variables)]) else @test Set(allvars) βŠ‡ Set([var for (name, var) in values(variables)]) end var0 = inquire_variable(io, "not a variable") @test var0 isa Nothing for ((si, D, len, T), (nm, var)) in variables var1 = inquire_variable(io, nm) @test var1 isa Variable @test nm == name(var1) @test type(var1) == T if si == shapeid_global_value # Global values are re-interpreted as global arrays @test shapeid(var1) == si @test ndims(var1) == 0 @test shape(var1) == () @test start(var1) == () @test count(var1) == () elseif si == shapeid_local_value # Local values are re-interpreted as global arrays @test shapeid(var1) == shapeid_global_array @test ndims(var1) == 1 if ENGINE_TYPE == "BP4" @test shape(var1) == (1,) else @test shape(var1) == (comm_size,) end @test start(var1) == (0,) if ENGINE_TYPE == "BP4" @test count(var1) == (1,) else @test count(var1) == (comm_size,) end elseif si == shapeid_global_array sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) cs = ntuple(d -> d < D ? 1 : comm_size, D) cr = ntuple(d -> d < D ? 0 : comm_rank, D) sh = cs .* sz st = cr .* sz co = sz if ENGINE_TYPE == "BP4" && len == 0 # Empty global arrays are mis-interpreted as global values @test shapeid(var1) == shapeid_global_value @test ndims(var1) == 0 @test shape(var1) == () @test start(var1) == () @test count(var1) == () else @test shapeid(var1) == si @test ndims(var1) == D @test shape(var1) == sh if comm_size == 1 # With multiple processes, there are multiple # blocks, and they each have a different starting # offset @test start(var1) == st @test count(var1) == co else @test_broken false end #TODO "need to select block to access variable" end elseif si == shapeid_local_array sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) if ENGINE_TYPE == "BP4" && len == 0 # Empty local arrays are mis-interpreted as global values @test shapeid(var1) == shapeid_global_value @test ndims(var1) == 0 @test shape(var1) == () @test start(var1) == () @test count(var1) == () else @test shapeid(var1) == si @test ndims(var1) == D @test shape(var1) ≑ nothing @test start(var1) ≑ nothing @test count(var1) == sz end else error("internal error") end end # Read attributes attributes = Dict() for T in Type[String, Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] # Complex attributes cannot be read via the C API (see # <https://github.com/ornladios/ADIOS2/issues/2734>) T <: Complex && continue # Attribute nm = "value.p$rankstr.$T" attr = inquire_attribute(io, nm) @test attr isa Attribute attributes[(-1, -1, "", T)] = (nm, attr) # Variable attribute nm = "value.p$rankstr.$T" varname = variables[(shapeid_global_value, -1, -1, T)][1] attr = inquire_variable_attribute(io, nm, varname) @test attr isa Attribute attributes[(-1, -1, varname, T)] = (nm, attr) # Attribute arrays need to have at least one element (why?) for len in 1:2:3 # Attribute array nm = "array.p$rankstr.$T.$len" arr = inquire_attribute(io, nm) @test arr isa Attribute attributes[(1, len, "", T)] = (nm, arr) # Variable attribute array nm = "array.p$rankstr.$T.$len" varname = variables[(shapeid_global_value, -1, -1, T)][1] arr = inquire_variable_attribute(io, nm, varname) @test arr isa Attribute attributes[(1, len, varname, T)] = (nm, arr) end end # Check attributes allattrs = inquire_all_attributes(io) if comm_size == 1 @test Set(allattrs) == Set([attr for (name, attr) in values(attributes)]) else @test Set(allattrs) βŠ‡ Set([attr for (name, attr) in values(attributes)]) end attr0 = inquire_attribute(io, "not an attribute") @test attr0 isa Nothing attr0 = inquire_variable_attribute(io, "not an attribute", "not a variable") @test attr0 isa Nothing for ((D, len, varname, T), (nm, attr)) in attributes val = T ≑ String ? "42" : T(42) val::T attr1 = inquire_attribute(io, nm) @test attr1 isa Attribute @test nm == name(attr1) @test type(attr1) == T if D == -1 @test is_value(attr) @test size(attr) == 1 @test data(attr) == val else if ENGINE_TYPE == "BP4" && T β‰’ String && len == 1 # Length-1 non-string attribute arrays are mis-interpreted as values @test is_value(attr) @test size(attr) == len vals = (T ≑ String ? String["42", "", "44"] : T[42, 0, 44])[1:len] @test [data(attr)] == vals else @test !is_value(attr) @test size(attr) == len vals = (T ≑ String ? String["42", "", "44"] : T[42, 0, 44])[1:len] @test data(attr) == vals end end end # Schedule variables for reading buffers = Dict() for ((si, D, len, T), (nm, var)) in variables if si ∈ (shapeid_global_value, shapeid_local_value) # Local values are re-interpreted as global arrays if ENGINE_TYPE == "BP4" || comm_size == 1 ref = Ref{T}() else ref = Array{T}(undef, comm_size) end err = get(engine, var, ref) @test err ≑ error_none buffers[(si, D, len, T)] = ref elseif si ∈ (shapeid_global_array, shapeid_local_array) co = count(var) arr = Array{T}(undef, co) arr1 = rand(Bool) ? arr : @view arr[:] err = get(engine, var, arr1) @test err ≑ error_none buffers[(si, D, len, T)] = arr else error("internal error") end end # Read variables err = perform_gets(engine) @test err ≑ error_none # Check variables for ((si, D, len, T), (nm, var)) in variables # String variables cannot be read (compare # <https://github.com/ornladios/ADIOS2/issues/2735>) T ≑ String && continue if si ∈ (shapeid_global_value, shapeid_local_value) val = T ≑ String ? "42" : T(42) @test all(buffers[(si, D, len, T)] .== val) elseif si ∈ (shapeid_global_array, shapeid_local_array) sz = ntuple(d -> len == 0 ? 0 : len == 1 ? 1 : d, D) # Construct a single number from a tuple ten(i, s) = i == () ? s : ten(i[2:end], 10s + i[1]) # Convert to type `T` function mkT(T, s) return (T ≑ String ? "$s" : T <: Union{AbstractFloat,Complex} ? T(s) : s % T)::T end arr = T[mkT(T, ten(Tuple(i), 0)) for i in CartesianIndices(sz)] if ENGINE_TYPE == "BP4" && len == 0 # Empty global arrays are mis-interpreted as global values # There is a spurious value `0` @test buffers[(si, D, len, T)] == fill(T(0)) else if comm_size == 1 @test buffers[(si, D, len, T)] == arr else @test_broken false end end else error("internal error") end end err = close(engine) @test err ≑ error_none err = adios_finalize(adios) @test err ≑ error_none end # Call gc to test finalizing the Adios object GC.gc(true)
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git