licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
6279
# High-level tests makearray(D, val) = fill(val, ntuple(d -> 1, D)) if comm_rank == 0 const dirname2 = Filesystem.mktempdir() const filename2 = "$dirname2/test.bp" @testset "High-level write tests " begin file = adios_open_serial(filename2, mode_write) etype = type(file.engine) @test etype in ("BP4Writer", "BP5Writer") adios_define_attribute(file, "a1", float(π)) adios_define_attribute(file, "a2", [float(π)]) adios_define_attribute(file, "a3", [float(π), 0]) adios_put!(file, "v1", float(ℯ)) adios_put!(file, "v3", makearray(1, float(ℯ))) adios_put!(file, "v4", makearray(2, float(ℯ))) adios_put!(file, "v5", makearray(3, float(ℯ))) adios_put!(file, "g1/v6", makearray(4, float(ℯ))) adios_put!(file, "g1/g2/v7", makearray(5, float(ℯ))) @test shapeid(inquire_variable(file.io, "v1")) == shapeid_local_value @test shapeid(inquire_variable(file.io, "v3")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "v4")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "v5")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "g1/v6")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "g1/g2/v7")) == shapeid_local_array adios_define_attribute(file, "v4/a4", float(π)) adios_define_attribute(file, "v5", "a5", [float(π)]) adios_define_attribute(file, "g1/v6", "a6", [float(π), 0]) adios_perform_puts!(file) close(file) end @testset "High-level read tests " begin if ADIOS2_VERSION < v"2.9.0" # We need to use `mode_read` for ADIOS2 <2.9, and `mode_readRandomAccess` for ADIOS2 ≥2.9 file = adios_open_serial(filename2, mode_read) else file = adios_open_serial(filename2, mode_readRandomAccess) end etype = type(file.engine) @test etype in ("BP4Reader", "BP5Reader") @test Set(adios_subgroup_names(file, "")) == Set(["g1"]) @test_broken Set(adios_subgroup_names(file, "g1")) == Set(["g2"]) @test Set(adios_subgroup_names(file, "g1")) == Set(["/g2"]) # don't want this @test Set(adios_all_attribute_names(file)) == Set(["a1", "a2", "a3", "v4/a4", "v5/a5", "g1/v6/a6"]) @test Set(adios_group_attribute_names(file, "g1")) == Set() @test Set(adios_group_attribute_names(file, "g1/v6")) == Set(["g1/v6/a6"]) @test adios_attribute_data(file, "a1") == float(π) if etype == "BP4Reader" @test adios_attribute_data(file, "a2") == float(π) else @test adios_attribute_data(file, "a2") == [float(π)] end @test adios_attribute_data(file, "a3") == [float(π), 0] @test adios_attribute_data(file, "v4", "a4") == float(π) if etype == "BP4Reader" @test adios_attribute_data(file, "v5/a5") == float(π) else @test adios_attribute_data(file, "v5/a5") == [float(π)] end @test adios_attribute_data(file, "g1/v6", "a6") == [float(π), 0] @test Set(adios_all_variable_names(file)) == Set(["v1", "v3", "v4", "v5", "g1/v6", "g1/g2/v7"]) @test Set(adios_group_variable_names(file, "g1")) == Set(["g1/v6"]) @test Set(adios_group_variable_names(file, "g1/g2")) == Set(["g1/g2/v7"]) # Local values are converted to global arrays @test shapeid(inquire_variable(file.io, "v1")) == shapeid_global_array @test shapeid(inquire_variable(file.io, "v3")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "v4")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "v5")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "g1/v6")) == shapeid_local_array @test shapeid(inquire_variable(file.io, "g1/g2/v7")) == shapeid_local_array @test ndims(inquire_variable(file.io, "v1")) == 1 @test ndims(inquire_variable(file.io, "v3")) == 1 @test ndims(inquire_variable(file.io, "v4")) == 2 @test ndims(inquire_variable(file.io, "v5")) == 3 @test ndims(inquire_variable(file.io, "g1/v6")) == 4 @test ndims(inquire_variable(file.io, "g1/g2/v7")) == 5 @test shape(inquire_variable(file.io, "v1")) == (1,) @test shape(inquire_variable(file.io, "v3")) ≡ nothing @test shape(inquire_variable(file.io, "v4")) ≡ nothing @test shape(inquire_variable(file.io, "v5")) ≡ nothing @test shape(inquire_variable(file.io, "g1/v6")) ≡ nothing @test shape(inquire_variable(file.io, "g1/g2/v7")) ≡ nothing @test start(inquire_variable(file.io, "v1")) == (0,) @test start(inquire_variable(file.io, "v3")) ≡ nothing @test start(inquire_variable(file.io, "v4")) ≡ nothing @test start(inquire_variable(file.io, "v5")) ≡ nothing @test start(inquire_variable(file.io, "g1/v6")) ≡ nothing @test start(inquire_variable(file.io, "g1/g2/v7")) ≡ nothing @test count(inquire_variable(file.io, "v1")) == (1,) @test count(inquire_variable(file.io, "v3")) == (1,) @test count(inquire_variable(file.io, "v4")) == (1, 1) @test count(inquire_variable(file.io, "v5")) == (1, 1, 1) @test count(inquire_variable(file.io, "g1/v6")) == (1, 1, 1, 1) @test count(inquire_variable(file.io, "g1/g2/v7")) == (1, 1, 1, 1, 1) v1 = adios_get(file, "v1") @test !isready(v1) @test fetch(v1) == fill(float(ℯ), 1) @test isready(v1) v3 = adios_get(file, "v3") v4 = adios_get(file, "v4") @test !isready(v3) @test fetch(v3) == makearray(1, float(ℯ)) @test fetch(v4) == makearray(2, float(ℯ)) @test isready(v3) v5 = adios_get(file, "v5") v6 = adios_get(file, "g1/v6") v7 = adios_get(file, "g1/g2/v7") @test !isready(v5) adios_perform_gets(file) @test isready(v5) @test fetch(v5) == makearray(3, float(ℯ)) @test fetch(v6) == makearray(4, float(ℯ)) @test fetch(v7) == makearray(5, float(ℯ)) close(file) end end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
274
# Test internals @testset "Internal tests" begin for jtype in ADIOS2.julia_types @test ADIOS2.julia_type(ADIOS2.adios_type(jtype)) ≡ jtype end for atype in ADIOS2.adios_types @test ADIOS2.adios_type(ADIOS2.julia_type(atype)) ≡ atype end end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
1616
using ADIOS2 using Base.Filesystem using MPI using Printf using Test ################################################################################ # Find ADIOS2 version # There is no official way to find the ADIOS2 library version. Instead # we check the default engine type after opening a file. const ADIOS2_VERSION = let adios = adios_init_serial() io = declare_io(adios, "IO") filename = tempname() engine = open(io, filename, mode_write) etype = type(engine) close(engine) if etype == "BP4Writer" v"2.8.0" elseif etype == "BP5Writer" v"2.9.0" else @assert false end end ################################################################################ # Initialize MPI const mpi_initialized = MPI.Initialized() if !mpi_initialized MPI.Init() end const comm = MPI.COMM_WORLD const comm_rank = MPI.Comm_rank(comm) const comm_size = MPI.Comm_size(comm) const comm_root = 0 const use_mpi = comm_size > 1 ################################################################################ """ Convert an object to a string as the REPL would """ function showmime(obj) buf = IOBuffer() show(buf, MIME"text/plain"(), obj) return String(take!(buf)) end ################################################################################ include("internal.jl") include("basic.jl") include("highlevel.jl") include("write_read_selection.jl") ################################################################################ # Finalize MPI const mpi_finalized = MPI.Finalized() if mpi_initialized && !mpi_finalized MPI.Finalize() end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
code
3902
# Test basic write and read using selections if use_mpi if comm_rank == comm_root MPI.bcast(dirname, comm_root, comm) else const dirname = MPI.bcast(nothing, comm_root, comm) end end const filename_sel = "$dirname/test_nd_sel_2D.bp" function _set_data_2D(T, comm_rank, step) data = ones(T, 10, 10) for j in 2:4 for i in 2:4 data[i, j] = comm_rank + step end end return data end @testset "File write nd global arrays" begin # Set up ADIOS if use_mpi adios = adios_init_mpi(comm) else adios = adios_init_serial() end @test adios isa Adios io = declare_io(adios, "io_writer") @test io isa AIO count = (10, 10) start = (0, comm_rank * 10) shape = (10, comm_size * 10) # open engine writer = open(io, filename_sel, mode_write) for step in 1:3 begin_step(writer) for T in Type[Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] # define some nd array variables, 10x10 per MPI process var_T = step == 1 ? define_variable(io, string(T), T, shape, start, count) : inquire_variable(io, string(T)) data_2D = _set_data_2D(T, comm_rank, step) put!(writer, var_T, data_2D) # deferred mode end end_step(writer) end close(writer) finalize(adios) end @testset "File read selection nd global arrays" begin # Set up ADIOS if use_mpi adios = adios_init_mpi(comm) else adios = adios_init_serial() end @test adios isa Adios io = declare_io(adios, "io_reader") @test io isa AIO sel_start = (2, comm_rank * 10 + 2) sel_count = (2, 2) # open engine reader = open(io, filename_sel, mode_read) for step in 1:3 begin_step(reader) for T in Type[Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] var_T = inquire_variable(io, string(T)) @test var_T isa Variable set_selection(var_T, sel_start, sel_count) data_in = Array{T,2}(undef, 2, 2) get(reader, var_T, data_in, mode_sync) @test first(data_in) == comm_rank + step allsame(x) = all(y -> y == first(x), x) @test allsame(data_in) end end_step(reader) end close(reader) finalize(adios) end @testset "File read step selection nd global arrays" begin # Set up ADIOS if use_mpi adios = adios_init_mpi(comm) else adios = adios_init_serial() end io = declare_io(adios, "io_reader_set_step") sel_start = (2, comm_rank * 10 + 2) sel_count = (2, 2) # open engine if ADIOS2_VERSION < v"2.9.0" # We need to use `mode_read` for ADIOS2 <2.9, and `mode_readRandomAccess` for ADIOS2 ≥2.9 reader = open(io, filename_sel, mode_read) else reader = open(io, filename_sel, mode_readRandomAccess) end for T in Type[Float32, Float64, Complex{Float32}, Complex{Float64}, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64] var_T = inquire_variable(io, string(T)) @test var_T isa Variable set_selection(var_T, sel_start, sel_count) for step in 1:3 # step start = step-1 (adios is zero based) and 1 step count set_step_selection(var_T, step - 1, 1) data_in = Array{T,2}(undef, 2, 2) get(reader, var_T, data_in, mode_sync) @test first(data_in) == comm_rank + step allsame(x) = all(y -> y == first(x), x) @test allsame(data_in) end end close(reader) finalize(adios) end
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
docs
2006
# ADIOS2.jl A Julia interface to [ADIOS2](https://github.com/ornladios/ADIOS2), the Adaptable Input Output System version 2. * [![Documenter](https://img.shields.io/badge/docs-dev-blue.svg)](https://eschnett.github.io/ADIOS2.jl/dev) * [![GitHub CI](https://github.com/eschnett/ADIOS2.jl/workflows/CI/badge.svg)](https://github.com/eschnett/ADIOS2.jl/actions) * [![Codecov](https://codecov.io/gh/eschnett/ADIOS2.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/eschnett/ADIOS2.jl) ## Examples It is best to read the ADIOS2 documentation before using this package. ADIOS2 splits reading/writing variables into three parts: 1. Define the metadata, i.e. the name, type, and shape (if array) of the variables 2. Schedule the reads/writes, providing pointers to or buffer for the data 3. Perform the actual reads/writes This ensures that reads or writes can be performed very efficiently. ### Writing a file ```Julia # Initialize ADIOS using ADIOS2 adios = adios_init_serial() io = declare_io(adios, "IO") engine = open(io, "example.bp", mode_write) # Define some variables scalar = 247.0 svar = define_variable(io, "scalar", scalar) array = Float64[10i + j for i in 1:2, j in 1:3] avar = define_variable(io, "array", array) # Schedule writing the variables put!(engine, svar, scalar) put!(engine, avar, array) # Write the variables perform_puts!(engine) close(engine) ``` ### Reading a file ```Julia # Initialize ADIOS using ADIOS2 adios = adios_init_serial() io = declare_io(adios, "IO") engine = open(io, "example.bp", mode_read) # List all variables vars = inquire_all_variables(io) println("Variables:") for var in vars println(" ", name(var)) end svar = inquire_variable(io, "scalar") avar = inquire_variable(io, "array") # Schedule reading the variables scalar = Ref{Float64}() get(engine, svar, scalar) array = Array{Float64}(undef, 2, 3) get(engine, avar, array) # Read the variables perform_gets(engine) println("scalar: $(scalar[])") println("array: $array") ```
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
1.2.1
d0675b5245d2b15fa971ef0dc03c7dfe2cf6ffe3
docs
2731
# ADIOS2.jl [ADIOS2.jl](https://github.com/eschnett/ADIOS2.jl) is a Julia interface to the [ADIOS2](https://github.com/ornladios/ADIOS2), the Adaptable Input Output System version 2. ## Installation ```julia julia>] pkg> add ADIOS2 ``` ADIOS2 binaries are downloaded by default using the `ADIOS2_jll` package ## Using a custom or system provided ADIOS2 library Set the environment variable `JULIA_ADIOS2_PATH` to the top-level installation directory for ADIOS2, i.e. the `libadios2_c` and `libadios2_c_mpi` (if using MPI-enabled ADIOS2) libraries should be located under `$JULIA_ADIOS2_PATH/lib` or `$JULIA_ADIOS2_PATH/lib64`. Then run `import Pkg; Pkg.build("ADIOS2")`. This is preferred in high-performance computing (HPC) systems for system-wide installations for libraries built against vendor MPI implementations. It is highly recommended that MPIPreferences points at the system MPI implementation used to build ADIOS2. Example: ```sh $ export JULIA_ADIOS2_PATH=/opt/adios2/2.8.3 ``` Then in Julia, run: ```julia pkg> build ``` ## Basic API ### Types ```@docs Error AdiosType Mode StepMode StepStatus ShapeId ``` ### Adios functions ```@docs Adios adios_init_mpi adios_init_serial declare_io adios_finalize ``` ### IO functions ```@docs AIO define_variable inquire_variable inquire_all_variables inquire_group_variables define_attribute define_attribute_array define_variable_attribute define_variable_attribute_array inquire_attribute inquire_variable_attribute inquire_all_attributes inquire_group_attributes inquire_subgroups open engine_type get_engine ``` ### Variable functions ```@docs Variable name(variable::Variable) type(variable::Variable) shapeid(variable::Variable) ndims(variable::Variable) shape(variable::Variable) start(variable::Variable) count(variable::Variable) steps_start(variable::Variable) steps(variable::Variable) selection_size(variable::Variable) minimum(variable::Variable) maximum(variable::Variable) ``` ### Attribute functions ```@docs Attribute name(attribute::Attribute) type(attribute::Attribute) is_value(attribute::Attribute) size(attribute::Attribute) data(attribute::Attribute) ``` ### Engine functions ```@docs Engine name type openmode begin_step current_step steps put! perform_puts! get perform_gets end_step flush(engine::Engine) close(engine::Engine) ``` ## High-Level API ```@docs AdiosFile adios_open_serial adios_open_mpi flush(file::AdiosFile) close(file::AdiosFile) adios_subgroup_names adios_define_attribute adios_all_attribute_names adios_group_attribute_names adios_attribute_data adios_put! adios_perform_puts! adios_all_variable_names adios_group_variable_names IORef isready(ioref::IORef) fetch(ioref::IORef) adios_get adios_perform_gets ```
ADIOS2
https://github.com/eschnett/ADIOS2.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
code
41432
module HomotopyOpt import HomotopyContinuation: @var, evaluate, differentiate, start_parameters!, target_parameters!, track!, solve, real_solutions, solutions, solution, rand_subspace, randn, System, ParameterHomotopy, Expression, Tracker, Variable, track import LinearAlgebra: norm, transpose, qr, rank, normalize, pinv, eigvals, abs, eigvecs, svd import Plots: plot, scatter!, Animation, frame import ForwardDiff: hessian, gradient import HomotopyContinuation export ConstraintVariety, findminima, watch, draw, addSamples!, setEquationsAtp!, #INFO: The following package is not maintained by me. Find it here: https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl HomotopyContinuation #= Equips a HomotopyContinuation.Tracker with a start Solution that can be changed on the fly =# mutable struct TrackerWithStartSolution tracker startSolution #basepoint function TrackerWithStartSolution(T::Tracker, startSol::Vector) new(T,startSol) end end function setStartSolution(T::TrackerWithStartSolution, startSol::Vector) setfield!(T, :startSolution, startSol) end #= An object that describes a constraint variety by giving its generating equations, coordinate variables, its dimension and its jacobian. Additionally, it contains the system describing the Euclidian Distance Problem and samples from the variety. =# mutable struct ConstraintVariety variables equations fullequations jacobian ambientdimension dimensionofvariety samples implicitequations EDTracker # Given variables and HomotopyContinuation-based equations, sample points from the variety and return the corresponding struct function ConstraintVariety(varz, eqnz, N::Int, d::Int, numsamples::Int) dg = differentiate(eqnz, varz) impliciteq = [p->eqn(varz=>p) for eqn in eqnz] randL = nothing randresult = nothing Ωs = [] if numsamples > 0 randL = rand_subspace(N; codim=d) randResult = solve(eqnz; target_subspace = randL, variables=varz, show_progress = true) end for _ in 1:numsamples newΩs = solve( eqnz, solutions(randResult); variables = varz, start_subspace = randL, target_subspace = rand_subspace(N; codim = d, real = true), transform_result = (R,p) -> real_solutions(R), flatten = true, show_progress = true ) realsols = real_solutions(newΩs) push!(Ωs, realsols...) end Ωs = filter(t -> norm(t)<1e4,Ωs) fulleqnz = eqnz if length(eqnz) + d > N eqnz = randn(Float64, N-d, length(eqnz))*eqnz end @var u[1:N] @var λ[1:length(eqnz)] Lagrange = sum((varz-u).^2) + sum(λ.*eqnz) ∇Lagrange = differentiate(Lagrange, vcat(varz,λ)) EDSystem = System(∇Lagrange, variables=vcat(varz,λ), parameters=u) p0 = randn(Float64, N) H = ParameterHomotopy(EDSystem, start_parameters = p0, target_parameters = p0) EDTracker = TrackerWithStartSolution(Tracker(H),[]) new(varz,eqnz,fulleqnz,dg,N,d,Ωs,impliciteq,EDTracker) end # Given implicit equations, sample points from the corresponding variety and return the struct function ConstraintVariety(eqnz::Function, N::Int, d::Int, numsamples::Int) @var varz[1:N] algeqnz = eqnz(varz) if typeof(algeqnz) != Vector{Expression} algeqnz = [algeqnz] end ConstraintVariety(varz, algeqnz, N::Int, d::Int, numsamples::Int) end # Implicit Equations, no sampling function ConstraintVariety(eqnz,N::Int,d::Int) ConstraintVariety(eqnz::Function, N::Int, d::Int, 0) end # HomotopyContinuation-based expressions and variables, no sanples function ConstraintVariety(varz,eqnz,N::Int,d::Int) ConstraintVariety(varz, eqnz, N::Int, d::Int, 0) end #Let the dimension be determined by the algorithm and calculate samples function ConstraintVariety(varz,eqnz,p::Vector{Float64},numSamples::Int) G = ConstraintVariety(varz, eqnz, length(varz), 0,numSamples) setEquationsAtp!(G,p) return(G) end #Only let the dimension be determined by the algorithm function ConstraintVariety(varz,eqnz,p::Vector{Float64}) G = ConstraintVariety(varz, eqnz, length(varz), 0) setEquationsAtp!(G,p) return(G) end end #= Add Samples to an already existing ConstraintVariety =# function addSamples!(G::ConstraintVariety, newSamples) setfield!(G, :samples, vcat(newSamples, G.samples)) end #= Add Samples to an already existing ConstraintVariety =# function setEquationsAtp!(G::ConstraintVariety, p; tol=1e-5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tol) eqnz = G.fullequations if length(eqnz) + (G.ambientdimension-jacobianRank) > G.ambientdimension eqnz = randn(Float64, jacobianRank, length(eqnz))*eqnz end setfield!(G, :equations, eqnz) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) @var u[1:G.ambientdimension] @var λ[1:length(eqnz)] Lagrange = sum((G.variables-u).^2) + sum(λ.*eqnz) ∇Lagrange = differentiate(Lagrange, vcat(G.variables,λ)) EDSystem = System(∇Lagrange, variables=vcat(G.variables,λ), parameters=u) H = ParameterHomotopy(EDSystem, start_parameters = p, target_parameters = p) EDTracker = TrackerWithStartSolution(Tracker(H),[]) setfield!(G, :EDTracker, EDTracker) end #= Compute the system that we need for the onestep and twostep method =# function computesystem(p, G::ConstraintVariety, evaluateobjectivefunctiongradient::Function) dgp = evaluate.(G.jacobian, G.variables => p) Up,_ = qr( transpose(dgp) ) Np = Up[:, 1:(G.ambientdimension - G.dimensionofvariety)] # gives ONB for N_p(G) normal space # we evaluate the gradient of the obj fcn at the point `p` ∇Qp = evaluateobjectivefunctiongradient(p)[2] w = -∇Qp # direction of decreasing energy function v = w - Np * (Np' * w) # projected gradient -∇Q(p) onto the tangent space, subtract the normal components g = G.equations if G.dimensionofvariety > 1 # Need more linear equations when tangent space has dim > 1 A,_ = qr( hcat(v, Np) ) A = A[:, (G.ambientdimension - G.dimensionofvariety + 1):end] # basis of the orthogonal complement of v inside T_p(G) L = A' * G.variables - A' * p # affine linear equations through p, containing v, give curve in variety along v u = v / norm(v) S = u' * G.variables - u' * (p + Variable(:ε)*u) # create and use the variable ε here. F = System( vcat(g,L,S); variables=G.variables, parameters=[Variable(:ε)]) return F else u = normalize(v) S = u' * G.variables - u' * (p + Variable(:ε)*u) # create and use the variable ε here. F = System( vcat(g,S); variables=G.variables, parameters=[Variable(:ε)]) return F end end #= If we are at a point of slow progression / singularity we blow the point up to a sphere and check the intersections (witness sets) with nearby components for the sample with lowest energy =# function resolveSingularity(p, G::ConstraintVariety, Q::Function, evaluateobjectivefunctiongradient, whichstep; initialtime = Base.time(), maxseconds = 50) if length(p)>8 q = gaussnewtonstep(G, p, 1e-3, -evaluateobjectivefunctiongradient(p)[2]; initialtime=initialtime, maxseconds=maxseconds)[1] ( Q(q) < Q(p) && return(q, true) ) || return(q, false) end eqn = G.fullequations var = G.variables d = G.dimensionofvariety sphereAtPoint = sum((var.-p).^2)-0.0001 samples = [] try F = System(vcat(eqn,[sphereAtPoint])) rel = solve(F; show_progress=false) samples = real_solutions(rel) catch e println("dimension -1: ", e) end for j in 1:d-1 try a = rand(Float64, length(var), j) L = a'*var-a'*p F = System( vcat(eqn,[sphereAtPoint],L) ) append!(samples, real_solutions(solve(F; show_progress=false))) catch e println("dimension -$(j+1): ", e) end end #TODO Alternative for too large to sample varieties. #Random directions? Sampling via Gaussnewton? Gaussnewtonstep altogether? minimumvalue = Q(p) q = Base.copy(p) for sol in samples if Q(sol)<minimumvalue minimumvalue = Q(sol) q = sol end end if q==p && !isempty(samples) #In this case, the singularity is optimal in a sense return(p,false) else return(q,true) end end #= We predict in the projected gradient direction and correct by using the Gauss-Newton method =# function gaussnewtonstep(G::ConstraintVariety, p, stepsize, v; tol=1e-8, initialtime, maxseconds) global q = p+stepsize*v global damping = 0.5 global qnew = q jac = hcat([differentiate(eq, G.variables) for eq in G.fullequations]...) while(norm(evaluate.(G.fullequations, G.variables=>q)) > tol) J = Matrix{Float64}(evaluate.(jac, G.variables=>q)) global qnew = q .- damping*pinv(J)'*evaluate.(G.fullequations, G.variables=>q) if norm(evaluate.(G.fullequations, G.variables=>qnew)) <= norm(evaluate.(G.fullequations, G.variables=>q)) global damping = damping*1.2 else global damping = damping/2 end q = qnew if time()-initialtime > maxseconds return p, false end end return q, true end #= We predict in the projected gradient direction and correct by solving a Euclidian Distance Problem =# function EDStep(ConstraintVariety, p, stepsize, v; homotopyMethod, tol=1e-8) q = p+stepsize*v if homotopyMethod=="HomotopyContinuation" target_parameters!(ConstraintVariety.EDTracker.tracker, q) tracker = track(ConstraintVariety.EDTracker.tracker, ConstraintVariety.EDTracker.startSolution) result = solution(tracker) if all(point->Base.abs(point.im)<1e-4, result) return [point.re for point in result[1:length(p)]], true else return p, false end elseif homotopyMethod=="Newton" currentSolution = vcat(q, ConstraintVariety.EDTracker.startSolution[length(q)+1:end]) variables = ConstraintVariety.EDTracker.tracker.homotopy.F.interpreted.system.variables equations = evaluate(ConstraintVariety.EDTracker.tracker.homotopy.F.interpreted.system.expressions, ConstraintVariety.EDTracker.tracker.homotopy.F.interpreted.system.parameters => q) jac = hcat([differentiate(eq, variables) for eq in equations]...) while(norm(evaluate.(equations, variables=>currentSolution)) > tol) J = evaluate.(jac, variables=>currentSolution) currentSolution = currentSolution .- J \ evaluate.(equations, variables=>currentSolution) end return currentSolution[1:length(q)], true else throw(error("Homotopy Method not supported!")) end end #= Move a line along the projected gradient direction for the length stepsize and calculate the resulting point of intersection with the variety =# function onestep(F, p, stepsize) solveresult = solve(F, [p]; start_parameters=[0.0], target_parameters=[stepsize], show_progress=false) sol = real_solutions(solveresult) success = false if length(sol) > 0 q = sol[1] # only tracked one solution path, thus there should only be one solution success = true else q = p end return q, success end #= Similar to onestep. However, we take an intermediate, complex step to avoid singularities =# function twostep(F, p, stepsize) # we want parameter homotopy from 0.0 to stepsize, so we take two steps # first from 0.0 to a complex number parameter, then from that parameter to stepsize. midparam = stepsize/2 + stepsize/2*1.0im # complex number *midway* between 0 and stepsize, but off real line solveresult = solve(F, [p]; start_parameters=[0.0 + 0.0im], target_parameters=[midparam], show_progress=false) midsols = solutions(solveresult) success = false if length(midsols) > 0 midsolution = midsols[1] # only tracked one solution path, thus there should only be one solution solveresult = solve(F, [midsolution]; start_parameters=[midparam], target_parameters=[stepsize + 0.0im], show_progress=false) realsols = real_solutions(solveresult) if length(realsols) > 0 q = realsols[1] # only tracked one solution path, thus there should only be one solution success = true else q = p end else q = p end return q, success end #= Checks, whether p is a local minimum of the objective function Q w.r.t. the tangent space Tp =# function isMinimum(G::ConstraintVariety, Q::Function, evaluateobjectivefunctiongradient, Tp, v, p::Vector; tol=1e-4, criticaltol=1e-3) H = hessian(Q, p) HConstraints = [evaluate.(differentiate(differentiate(eq, G.variables), G.variables), G.variables=>p) for eq in G.fullequations] Qalg = Q(p)+(G.variables-p)'*gradient(Q,p)+0.5*(G.variables-p)'*H*(G.variables-p) # Taylor Approximation of x, since only the Hessian is of interest anyway @var λ[1:length(G.fullequations)] L = Qalg+λ'*G.fullequations ∇L = differentiate(L, vcat(G.variables, λ)) gL = Matrix{Float64}(evaluate(differentiate(∇L, λ), G.variables=>p)) bL = -evaluate.(evaluate(∇L,G.variables=>p), λ=>[0 for _ in 1:length(λ)]) λ0 = map( t-> (t==NaN || t==Inf) ? 1 : t, gL\bL) Htotal = H+λ0'*HConstraints projH = Matrix{Float64}(Tp'*Htotal*Tp) projEigvals = real(eigvals(projH)) #projH symmetric => all real eigenvalues println("Eigenvalues of the projected Hessian: ", round.(1000 .* projEigvals, sigdigits=3) ./ 1000) indices = filter(i->abs(projEigvals[i])<=tol, 1:length(projEigvals)) projEigvecs = real(eigvecs(projH))[:, indices] projEigvecs = Tp*projEigvecs if all(q-> q>=tol, projEigvals) && norm(v) <= criticaltol return true elseif any(q-> q<=-tol, projEigvals) || norm(v) > criticaltol return false #TODO Third derivative at x_0 at proj hessian sing. vectors not 0?! # Else take a small step in gradient descent direction and see if the energy decreases else q = gaussnewtonstep(G, p, 1e-2, -evaluateobjectivefunctiongradient(p)[2]; initialtime=Base.time(), maxseconds=10)[1] return Q(q)<Q(p) end end #= Determines, which optimization algorithm to use =# function stepchoice(F, ConstraintVariety, whichstep, stepsize, p, v; initialtime, maxseconds, homotopyMethod) if(whichstep=="twostep") return(twostep(F, p, stepsize)) elseif whichstep=="onestep" return(onestep(F, p, stepsize)) elseif whichstep=="gaussnewtonstep" return(gaussnewtonstep(ConstraintVariety, p, stepsize, v; initialtime, maxseconds)) elseif whichstep=="EDStep" return(EDStep(ConstraintVariety, p, stepsize, v; homotopyMethod)) else throw(error("A step method needs to be provided!")) end end # WARNING This one is worse than backtracking_linesearch function alternative_backtracking_linesearch(Q::Function, F::System, G::ConstraintVariety, evaluateobjectivefunctiongradient::Function, p0::Vector, stepsize::Float64; maxstepsize=100.0, r=1e-4, τ=0.7, whichstep="EDStep", initialtime, maxseconds, homotopyMethod) α=Base.copy(stepsize) p=Base.copy(p0) Basenormal, _, basegradient, _ = get_NTv(p0, G, evaluateobjectivefunctiongradient) if whichstep=="EDStep" || homotopyMethod=="Newton" q0 = p+1e-3*Basenormal[:,1] start_parameters!(G.EDTracker.tracker, q0) A = evaluate.(differentiate(G.EDTracker.tracker.homotopy.F.interpreted.system.expressions, G.EDTracker.tracker.homotopy.F.interpreted.system.variables[length(p)+1:end]), G.variables => p) λ0 = A\(-evaluate.(evaluate.(evaluate.(G.EDTracker.tracker.homotopy.F.interpreted.system.expressions, G.EDTracker.tracker.homotopy.F.interpreted.system.variables[length(p)+1:end] => [0 for _ in length(p)+1:length(G.EDTracker.tracker.homotopy.F.interpreted.system.variables)]), G.variables => p), G.EDTracker.tracker.homotopy.F.interpreted.system.parameters=>q0)) setStartSolution(G.EDTracker, vcat(p,λ0)) end while(true) q, success = stepchoice(F, G, whichstep, α, p0, basegradient; initialtime, maxseconds, homotopyMethod) success ? p=q : nothing _, Tq, vq1, vq2 = get_NTv(p, G, evaluateobjectivefunctiongradient) # Proceed until the Wolfe condition is satisfied or the stepsize becomes too small. First we quickly find a lower bound, then we gradually increase this lower-bound if (Q(p0)-Q(p) >= r*α*Base.abs(basegradient'*evaluateobjectivefunctiongradient(p0)[1]) && vq2'*basegradient >= 0 && success) return q, Tq, vq1, vq2, success, α elseif α<1e-6 return(q, Tq, vq1, vq2, false, stepsize) else α=τ*α end end end #= Use line search with the strong Wolfe condition to find the optimal step length. This particular method can be found in Nocedal & Wright: Numerical Optimization =# function backtracking_linesearch(Q::Function, F::System, G::ConstraintVariety, evaluateobjectivefunctiongradient::Function, p0::Vector, stepsize::Float64; whichstep="EDStep", maxstepsize=100.0, initialtime, maxseconds, homotopyMethod="HomotopyContinuation", r=1e-3, s=0.8) Basenormal, _, basegradient, _ = get_NTv(p0, G, evaluateobjectivefunctiongradient) α = [0, stepsize] p = Base.copy(p0) if whichstep=="EDStep" || homotopyMethod=="Newton" q0 = p+1e-4*Basenormal[:,1] start_parameters!(G.EDTracker.tracker, q0) A = evaluate.(differentiate(G.EDTracker.tracker.homotopy.F.interpreted.system.expressions, G.EDTracker.tracker.homotopy.F.interpreted.system.variables[length(p)+1:end]), G.variables => p) λ0 = A\-evaluate(G.EDTracker.tracker.homotopy.F.interpreted.system.expressions, vcat(G.EDTracker.tracker.homotopy.F.interpreted.system.variables, G.EDTracker.tracker.homotopy.F.interpreted.system.parameters) => vcat(p, [0 for _ in length(p)+1:length(G.EDTracker.tracker.homotopy.F.interpreted.system.variables)], q0)) setStartSolution(G.EDTracker, vcat(p, λ0)) end print("α: ") while true print(round(α[end], digits=3), ", ") q, success = stepchoice(F, G, whichstep, α[end], p0, basegradient; initialtime, maxseconds, homotopyMethod) if time()-initialtime > maxseconds _, Tq, vq1, vq2 = get_NTv(q, G, evaluateobjectivefunctiongradient) return q, Tq, vq1, vq2, success, α[end] end _, Tq, vq1, vq2 = get_NTv(q, G, evaluateobjectivefunctiongradient) if ( ( Q(q) > Q(p0) + r*α[end]*basegradient'*basegradient || (Q(q) > Q(p0) && q!=p0) ) && success) helper = zoom(α[end-1], α[end], Q, evaluateobjectivefunctiongradient, F, G, whichstep, p0, basegradient, r, s; initialtime, maxseconds, homotopyMethod) _, Tq, vq1, vq2 = get_NTv(helper[1], G, evaluateobjectivefunctiongradient) return helper[1], Tq, vq1, vq2, helper[2], helper[end] end if ( abs(basegradient'*vq2) <= s*abs(basegradient'*basegradient) ) && success return q, Tq, vq1, vq2, success, α[end] end if basegradient'*vq2 <= 0 && success helper = zoom(α[end], α[end-1], Q, evaluateobjectivefunctiongradient, F, G, whichstep, p0, basegradient, r, s; initialtime, maxseconds, homotopyMethod) _, Tq, vq1, vq2 = get_NTv(helper[1], G, evaluateobjectivefunctiongradient) return helper[1], Tq, vq1, vq2, helper[2], helper[end] end if (success) push!(α, 2*α[end]) p = q else _, Tp, vp1, vp2 = get_NTv(p, G, evaluateobjectivefunctiongradient) return p, Tp, vp1, vp2, success, α[end] end deleteat!(α, 1) if α[end] > maxstepsize return q, Tq, vq1, vq2, success, maxstepsize end end end #= Zoom in on the step lengths between αlo and αhi to find the optimal step size here. This is part of the backtracking line search =# function zoom(αlo, αhi, Q, evaluateobjectivefunctiongradient, F, G, whichstep, p0, basegradient, r, s; initialtime, maxseconds, homotopyMethod) qlo, suclo = stepchoice(F, G, whichstep, αlo, p0, basegradient; initialtime, maxseconds, homotopyMethod) # To not get stuck in the iteration, we use a for loop instead of a while loop # TODO Add a more meaningful stopping criterion for _ in 1:8 global α = 0.5*(αlo+αhi) print(round(α, digits=3), ", ") #println("α: ", α) global q, success = stepchoice(F, G, whichstep, α, p0, basegradient; initialtime, maxseconds, homotopyMethod) _, _, _, vq2 = get_NTv(q, G, evaluateobjectivefunctiongradient) if !success || time()-initialtime > maxseconds return q, success, α end if Q(q) > Q(p0) + r*α*basegradient'*basegradient || Q(q) >= Q(qlo) αhi = α else if Base.abs(basegradient'*vq2) <= Base.abs(basegradient'*basegradient)*s return q, success, α end if basegradient'*vq2*(αhi-αlo) >= 0 αhi = αlo end αlo = α qlo, suclo = q, success end end return q, success, α end #= Get the tangent and normal space of a ConstraintVariety at a point q =# function get_NTv(q, G::ConstraintVariety, evaluateobjectivefunctiongradient::Function) dgq = evaluate.(G.jacobian, G.variables => q) Qq,_ = qr(Matrix{Float64}(transpose(dgq))) #index = count(p->p>1e-8, S) Nq = Qq[:, 1:(G.ambientdimension - G.dimensionofvariety)] # O.N.B. for the normal space at q Tq = Qq[:, (G.ambientdimension - G.dimensionofvariety + 1):end] # O.N.B. for tangent space at q # we evaluate the gradient of the obj fcn at the point `q` ∇Qq1, ∇Qq2 = evaluateobjectivefunctiongradient(q) w1, w2 = -∇Qq1, -∇Qq2 # direction of decreasing energy function vq1 = w1 - Nq * (Nq' * w1) # projected gradient -∇Q(p) onto the tangent space, subtract the normal components vq2 = w2 - Nq * (Nq' * w2) return Nq, Tq, vq1, vq2 end #= Parallel transport the vector vj from the tangent space Tj to the tangent space Ti =# function paralleltransport(vj, Tj, Ti) # transport vj ∈ Tj to become a vector ϕvj ∈ Ti # cols(Tj) give ONB for home tangent space, cols(Ti) give ONB for target tangent space U,_,Vt = svd( Ti' * Tj ) Oij = U * Vt # closest orthogonal matrix to the matrix (Ti' * Tj) comes from svd, remove \Sigma ϕvj = Ti * Oij * (Tj' * vj) return ϕvj end #= An object that contains the iteration's information like norms of the projected gradient, step sizes and search directions =# struct LocalStepsResult initialpoint initialstepsize allcomputedpoints allcomputedprojectedgradientvectors allcomputedprojectedgradientvectornorms newsuggestedstartpoint newsuggestedstepsize converged timesturned valleysfound function LocalStepsResult(p,ε0,qs,vs,ns,newp,newε0,converged,timesturned,valleysfound) new(p,ε0,qs,vs,ns,newp,newε0,converged,timesturned,valleysfound) end end #= Take `maxsteps` steps to try and converge to an optimum. In each step, we use backtracking linesearch to determine the optimal step size to go along the search direction WARNING This is redundant and can be merged with findminima =# function takelocalsteps(p, ε0, tolerance, G::ConstraintVariety, objectiveFunction::Function, evaluateobjectivefunctiongradient::Function; maxsteps, maxstepsize=2, decreasefactor=2.2, initialtime, maxseconds, whichstep="EDStep", homotopyMethod="HomotopyContinuation") timesturned, valleysfound, F = 0, 0, System([G.variables[1]]) _, Tp, vp1, vp2 = get_NTv(p, G, evaluateobjectivefunctiongradient) Ts = [Tp] # normal spaces and tangent spaces, columns of Np and Tp are orthonormal bases qs, vs, ns = [p], [vp2], [norm(vp1)] # qs=new points on G, vs=projected gradients, ns=norms of projected gradients stepsize = Base.copy(ε0) for _ in 1:maxsteps if Base.time() - initialtime > maxseconds break; end if whichstep=="onestep" || whichstep=="twostep" F = computesystem(qs[end], G, evaluateobjectivefunctiongradient) end q, Tq, vq1, vq2, success, stepsize = backtracking_linesearch(objectiveFunction, F, G, evaluateobjectivefunctiongradient, qs[end], Float64(stepsize); whichstep, maxstepsize, initialtime, maxseconds, homotopyMethod) print("\n") push!(qs, q) push!(Ts, Tq) length(Ts)>3 ? deleteat!(Ts, 1) : nothing push!(ns, norm(vq1)) println("ns: ", ns[end]) push!(vs, vq2) length(vs)>3 ? deleteat!(vs, 1) : nothing if ns[end] < tolerance return LocalStepsResult(p,ε0,qs,vs,ns,q,stepsize,true,timesturned,valleysfound) elseif ((ns[end] - ns[end-1]) > 0.0) if length(ns) > 2 && ((ns[end-1] - ns[end-2]) < 0.0) # projected norms were decreasing, but started increasing! # check parallel transport dot product to see if we should slow down valleysfound += 1 ϕvj = paralleltransport(vs[end], Ts[end], Ts[end-2]) if ((vs[end-2]' * ϕvj) < 0.0) # we think there is a critical point we skipped past! slow down! return LocalStepsResult(p,ε0,qs,vs,ns,qs[end-2],stepsize/decreasefactor,false,timesturned+1,valleysfound) end end end # The next (initial) stepsize is determined by the previous step and how much the energy function changed - in accordance with RieOpt. stepsize = Base.minimum([ Base.maximum([ success ? stepsize*vs[end-1]'*evaluateobjectivefunctiongradient(qs[end-1])[2]/(vs[end]'*evaluateobjectivefunctiongradient(qs[end])[2]) : 0.1*stepsize, 1e-4]), maxstepsize]) end return LocalStepsResult(p,ε0,qs,vs,ns,qs[end],stepsize,false,timesturned,valleysfound) end #= Output object of the method `findminima` =# struct OptimizationResult computedpoints initialpoint initialstepsize tolerance converged lastlocalstepsresult constraintvariety objectivefunction lastpointisminimum function OptimizationResult(ps,p0,ε0,tolerance,converged,lastLSResult,G,Q,lastpointisminimum) new(ps,p0,ε0,tolerance,converged,lastLSResult,G,Q,lastpointisminimum) end end #= The main function of this package. Given an initial point, a tolerance, an objective function and a constraint variety, we try to find the objective function's closest local minimum to the initial guess. =# function findminima(p0, tolerance, G::ConstraintVariety, objectiveFunction::Function; maxseconds=100, maxlocalsteps=1, initialstepsize=1.0, whichstep="EDStep", initialtime = Base.time(), stepdirection = "gradientdescent", homotopyMethod = "HomotopyContinuation") #TODO Rework minimality: We are not necessarily at a minimality, if resolveSingularity does not find any better point. => first setequations, then ismin #setEquationsAtp!(G,p0) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p0); atol=tolerance^1.5) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) p = copy(p0) # initialize before updating `p` below ps = [p0] # record the *main steps* from p0, newp, newp, ... until converged jacobianG = evaluate.(differentiate(G.fullequations, G.variables), G.variables=>p0) jacRank = rank(jacobianG; atol=tolerance^1.5) evaluateobjectivefunctiongradient = x -> (gradient(objectiveFunction, x), gradient(objectiveFunction, x)) if stepdirection == "newtonstep" evaluateobjectivefunctiongradient = x -> (gradient(objectiveFunction, x), hessian(objectiveFunction, x) \ gradient(objectiveFunction, x)) end if jacRank==0 p, optimality = resolveSingularity(ps[end], G, objectiveFunction, evaluateobjectivefunctiongradient, whichstep; initialtime=initialtime, maxseconds=maxseconds) setEquationsAtp!(G, p; tol=tolerance^2) jacobianG = evaluate(differentiate(G.fullequations, G.variables), G.variables=>p0) jacRank = rank(jacobianG; atol=tolerance^1.5) end _, Tq, v1, v2 = get_NTv(p, G, evaluateobjectivefunctiongradient) # Get the projected gradient at the first point # initialize stepsize. Different to RieOpt! Logic: large projected gradient=>far away, large stepsize is admissible. ε0 = 2*initialstepsize lastLSR = LocalStepsResult(p,ε0,[],[],[],p,ε0,false,0,0) while (Base.time() - initialtime) <= maxseconds # update LSR, only store the *last local run* lastLSR = takelocalsteps(p, ε0, tolerance, G, objectiveFunction, evaluateobjectivefunctiongradient; maxsteps=maxlocalsteps, maxstepsize=100., initialtime=initialtime, maxseconds=maxseconds, whichstep=whichstep, homotopyMethod=homotopyMethod) push!(ps, lastLSR.allcomputedpoints[end]) jacobian = evaluate.(differentiate(G.fullequations, G.variables), G.variables=>lastLSR.newsuggestedstartpoint) jR = rank(jacobian; atol=tolerance^2) if lastLSR.converged # if we are in a singularity do a few steps again - if we revert back to the singularity, it is optiomal if jR != jacRank || norm(ps[end-1]-ps[end]) < tolerance^2 #setEquationsAtp!(G, ps[end]; tol=tolerance^1.5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tolerance^2) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) _, Tq, v1, _ = get_NTv(ps[end], G, evaluateobjectivefunctiongradient) optimality = isMinimum(G, objectiveFunction, evaluateobjectivefunctiongradient, Tq, v1, ps[end]; criticaltol=tolerance) if optimality return OptimizationResult(ps,p0,initialstepsize,tolerance,true,lastLSR,G,evaluateobjectivefunctiongradient,optimality) end println("Resolving") p, foundsomething = resolveSingularity(lastLSR.allcomputedpoints[end], G, objectiveFunction, evaluateobjectivefunctiongradient, whichstep; initialtime=initialtime, maxseconds=maxseconds) #setEquationsAtp!(G, p; tol=tolerance^1.5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tolerance^2) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) if foundsomething optRes = findminima(p, tolerance, G, objectiveFunction; maxseconds = maxseconds, maxlocalsteps=maxlocalsteps, initialstepsize=initialstepsize, whichstep=whichstep, initialtime=initialtime, homotopyMethod=homotopyMethod) return OptimizationResult(vcat(ps, optRes.computedpoints),p0,lastLSR.newsuggestedstepsize,tolerance,optRes.lastlocalstepsresult.converged,optRes.lastlocalstepsresult,G,evaluateobjectivefunctiongradient,optRes.lastpointisminimum) end return OptimizationResult(ps,p0,initialstepsize,tolerance,true,lastLSR,G,evaluateobjectivefunctiongradient,optimality) else #setEquationsAtp!(G, ps[end]; tol=tolerance^1.5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tolerance^2) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) _, Tq, v1, _ = get_NTv(ps[end], G, evaluateobjectivefunctiongradient) optimality = isMinimum(G, objectiveFunction, evaluateobjectivefunctiongradient, Tq, v1, ps[end]; criticaltol=tolerance) if !optimality optRes = findminima(ps[end], tolerance, G, objectiveFunction; maxseconds = maxseconds, maxlocalsteps=maxlocalsteps, initialstepsize=initialstepsize, whichstep=whichstep, initialtime=initialtime) return OptimizationResult(vcat(ps, optRes.computedpoints), p0,lastLSR.newsuggestedstepsize,tolerance,optRes.lastlocalstepsresult.converged,optRes.lastlocalstepsresult,G,evaluateobjectivefunctiongradient,optRes.lastpointisminimum) end return OptimizationResult(ps,p0,initialstepsize,tolerance,true,lastLSR,G,evaluateobjectivefunctiongradient,optimality) end else # If we are in a point of slow progress or jacobian rank change, we search the neighborhood if jR != jacRank || norm(ps[end-1]-ps[end]) < tolerance^2 #setEquationsAtp!(G, ps[end]; tol=tolerance^1.5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tolerance^2) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) _, Tq, v, _ = get_NTv(ps[end], G, evaluateobjectivefunctiongradient) optimality = isMinimum(G, objectiveFunction, evaluateobjectivefunctiongradient, Tq, v1, ps[end]; criticaltol=tolerance) if optimality return OptimizationResult(ps,p0,initialstepsize,tolerance,true,lastLSR,G,evaluateobjectivefunctiongradient,optimality) end println("Resolving") p, foundsomething = resolveSingularity(lastLSR.allcomputedpoints[end], G, objectiveFunction, evaluateobjectivefunctiongradient, whichstep; initialtime=initialtime, maxseconds=maxseconds) display(norm(p-ps[end])) #setEquationsAtp!(G, p; tol=tolerance^1.5) jacobianRank = rank(evaluate.(G.jacobian, G.variables=>p); atol=tolerance^2) setfield!(G, :dimensionofvariety, (G.ambientdimension-jacobianRank)) if foundsomething maxseconds = maxseconds optRes = findminima(p, tolerance, G, objectiveFunction; maxseconds = maxseconds, maxlocalsteps=maxlocalsteps, initialstepsize=initialstepsize, whichstep=whichstep, initialtime=initialtime, homotopyMethod=homotopyMethod) return OptimizationResult(vcat(ps, optRes.computedpoints),p0,lastLSR.newsuggestedstepsize,tolerance,optRes.lastlocalstepsresult.converged,optRes.lastlocalstepsresult,G,evaluateobjectivefunctiongradient,optRes.lastpointisminimum) end else p = lastLSR.newsuggestedstartpoint end jacobian = evaluate.(differentiate(G.equations, G.variables), G.variables=>p) jacRank = rank(jacobian; atol=tolerance^1.5) ε0 = lastLSR.newsuggestedstepsize # update and try again! end end display("We ran out of time... Try setting `maxseconds` to a larger value than $(maxseconds)") p, optimality = resolveSingularity(ps[end], G, objectiveFunction, evaluateobjectivefunctiongradient, whichstep; initialtime=initialtime, maxseconds=maxseconds) return OptimizationResult(ps,p0,ε0,tolerance,lastLSR.converged,lastLSR,G,evaluateobjectivefunctiongradient,optimality) end # Below are functions `watch` and `draw` # to visualize low-dimensional examples function watch(result::OptimizationResult; totalseconds=5.0, fullx = [-1.5,1.5], fully = [-1.5,1.5], fullz = [-1.5,1.5], kwargs...) ps = result.computedpoints samples = result.constraintvariety.samples if !isempty(samples) mediannorm = (sort([norm(p) for p in samples]))[Int(floor(samples/2))] samples = filter(x -> norm(x) < 2*mediannorm+0.5, samples) end initplt = plot() # initialize M = length(ps) framespersecond = M / totalseconds if framespersecond > 45 framespersecond = 45 end startingtime = Base.time() dim = length(ps[1]) anim = Animation() if dim == 2 if !isempty(samples) fullx = [minimum([q[1] for q in vcat(samples, ps)]) - 0.05, maximum([q[1] for q in vcat(samples, ps)]) + 0.05] fully = [minimum([q[2] for q in vcat(samples, ps)]) - 0.05, maximum([q[2] for q in vcat(samples, ps)]) + 0.05] end g1 = result.constraintvariety.equations[1] # should only be a curve in ambient R^2 initplt = implicit_plot(g1, xlims=fullx, ylims=fully, legend=false) initplt = scatter!(initplt, [ps[end][1]], [ps[end][2]], legend=false, markersize=5, color=:red, xlims=fullx, ylims=fully) frame(anim) for p in ps # BELOW: only plot next point, delete older points during animation # plt = scatter!(initplt, [p[1]], [p[2]], legend=false, color=:black, xlims=fullx, ylims=fully) # BELOW: keep old points during animation. initplt = scatter!(initplt, [p[1]], [p[2]], legend=false, markersize=3.5, color=:black, xlims=fullx, ylims=fully) frame(anim) end return gif(anim, "watch$startingtime.gif", fps=framespersecond) elseif dim == 3 if !isempty(samples) fullx = [minimum([q[1] for q in vcat(samples, ps)]) - 0.05, maximum([q[1] for q in vcat(samples, ps)]) + 0.05] fully = [minimum([q[2] for q in vcat(samples, ps)]) - 0.05, maximum([q[2] for q in vcat(samples, ps)]) + 0.05] fullz = [minimum([q[3] for q in vcat(samples, ps)]) - 0.05, maximum([q[3] for q in vcat(samples, ps)]) + 0.05] end g1 = result.constraintvariety.implicitequations[1] #= if(length(result.constraintvariety.implicitequations)>1) # should be space curve g2 = result.constraintvariety.implicitequations[2] initplt = plot_implicit_curve(g1,g2; xlims = (fullx[1], fullx[2]), ylims = (fully[1], fully[2]), zlims = (fullz[1], fullz[2]), kwargs...) else #should be surface initplt = plot_implicit_surface(g1; xlims = (fullx[1], fullx[2]), ylims = (fully[1], fully[2]), zlims = (fullz[1], fullz[2]), kwargs...) end pointsys=[GLMakiePlottingLibrary.Point3f0(p) for p in ps] GLMakiePlottingLibrary.scatter!(initplt, pointsys[end]; color=:red, markersize=40.0) GLMakiePlottingLibrary.record(initplt, "watch$startingtime.gif", 1:length(pointsys); framerate = Int64(round(framespersecond))) do i GLMakiePlottingLibrary.scatter!(initplt, pointsys[i]; color=:black, markersize=30.0) end =# return(initplt) end end function draw(result::OptimizationResult; kwargs...) dim = length(result.computedpoints[1]) # dimension of the ambient space ps = result.computedpoints samples = result.constraintvariety.samples mediannorm = Statistics.median([LinearAlgebra.norm(p) for p in samples]) # TODO centroid approach rather than mediannorm and then difference from centroid. samples = filter(x -> LinearAlgebra.norm(x) < 2*mediannorm+0.5, samples) if dim == 2 fullx = [minimum([q[1] for q in vcat(samples, ps)]) - 0.05, maximum([q[1] for q in vcat(samples, ps)]) + 0.05] fully = [minimum([q[2] for q in vcat(samples, ps)]) - 0.05, maximum([q[2] for q in vcat(samples, ps)]) + 0.05] g1 = result.constraintvariety.equations[1] # should only be a curve in ambient R^2 plt1 = plot() #implicit_plot(g1, xlims=fullx, ylims=fully, legend=false) #f(x,y) = (x^4 + y^4 - 1) * (x^2 + y^2 - 2) + x^5 * y # replace this with `curve` #plt1 = implicit_plot(curve; xlims=(-2,2), ylims=(-2,2), legend=false) #plt2 = implicit_plot(curve; xlims=(-2,2), ylims=(-2,2), legend=false) localqs = result.lastlocalstepsresult.allcomputedpoints zoomx = [minimum([q[1] for q in localqs]) - 0.05, maximum([q[1] for q in localqs]) + 0.05] zoomy = [minimum([q[2] for q in localqs]) - 0.05, maximum([q[2] for q in localqs]) + 0.05] plt2 = plot()#implicit_plot(g1, xlims=zoomx, ylims=zoomy, legend=false) for q in ps plt1 = scatter!(plt1, [q[1]], [q[2]], legend=false, color=:black, xlims=fullx, ylims=fully) end for q in localqs plt2 = scatter!(plt2, [q[1]], [q[2]], legend=false, color=:blue, xlims=zoomx, ylims=zoomy) end vnorms = result.lastlocalstepsresult.allcomputedprojectedgradientvectornorms pltvnorms = plot(vnorms, legend=false, title="norm(v) for last local steps") plt = plot(plt1,plt2,pltvnorms, layout=(1,3), size=(900,300) ) return plt elseif dim == 3 fullx = [minimum([q[1] for q in vcat(samples, ps)]) - 0.05, maximum([q[1] for q in vcat(samples, ps)]) + 0.05] fully = [minimum([q[2] for q in vcat(samples, ps)]) - 0.05, maximum([q[2] for q in vcat(samples, ps)]) + 0.05] fullz = [minimum([q[3] for q in vcat(samples, ps)]) - 0.05, maximum([q[3] for q in vcat(samples, ps)]) + 0.05] localqs = result.lastlocalstepsresult.allcomputedpoints zoomx = [minimum([q[1] for q in ps]) - 0.05, maximum([q[1] for q in ps]) + 0.05] zoomy = [minimum([q[2] for q in ps]) - 0.05, maximum([q[2] for q in ps]) + 0.05] zoomz = [minimum([q[3] for q in ps]) - 0.05, maximum([q[3] for q in ps]) + 0.05] #= fig = GLMakiePlottingLibrary.Figure(resolution = (1450, 550)) ax1 = fig[1, 1] = GLMakiePlottingLibrary.AbstractPlotting.MakieLayout.LScene(fig, width=500, height=500, camera = GLMakiePlottingLibrary.cam3d!, raw = false, limits=GLMakiePlottingLibrary.FRect((fullx[1], fully[1], fullz[1]), (fullx[2]-fullx[1], fully[2]-fully[1], fullz[2]-fullz[1]))) ax2 = fig[1, 2] = GLMakiePlottingLibrary.AbstractPlotting.MakieLayout.LScene(fig, width=500, height=500, camera = GLMakiePlottingLibrary.cam3d!, raw = false, limits=GLMakiePlottingLibrary.FRect((zoomx[1], zoomy[1], zoomz[1]), (zoomx[2]-zoomx[1], zoomy[2]-zoomy[1], zoomz[2]-zoomz[1]))) ax3 = fig[1, 3] = GLMakiePlottingLibrary.AbstractPlotting.MakieLayout.Axis(fig, width=300, height=450, title="norm(v) for last local steps") g1 = result.constraintvariety.implicitequations[1] if(length(result.constraintvariety.implicitequations)>1) # should be space curve g2 = result.constraintvariety.implicitequations[2] plot_implicit_curve!(ax1,g1,g2; xlims=(fullx[1],fullx[2]), ylims=(fully[1],fully[2]), zlims=(fullz[1],fullz[2]), kwargs...) plot_implicit_curve!(ax2,g1,g2; xlims=(zoomx[1],zoomx[2]), ylims=(zoomy[1],zoomy[2]), zlims=(zoomz[1],zoomz[2]), kwargs...) else plot_implicit_surface!(ax1,g1; xlims=(fullx[1],fullx[2]), ylims=(fully[1],fully[2]), zlims=(fullz[1],fullz[2]), kwargs...) plot_implicit_surface!(ax2,g1; xlims=(zoomx[1],zoomx[2]), ylims=(zoomy[1],zoomy[2]), zlims=(zoomz[1],zoomz[2]), kwargs...) end for q in ps GLMakiePlottingLibrary.scatter!(ax1, GLMakiePlottingLibrary.Point3f0(q); legend=false, color=:black, markersize=15) GLMakiePlottingLibrary.scatter!(ax2, GLMakiePlottingLibrary.Point3f0(q); legend=false, color=:black) end vnorms = result.lastlocalstepsresult.allcomputedprojectedgradientvectornorms GLMakiePlottingLibrary.plot!(ax3,vnorms; legend=false) return fig =# end end end
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
code
996
using HomotopyContinuation @testset "sextic Test" begin @var x y V = HomotopyOpt.ConstraintVariety([x,y], [(x^4 + y^4 - 1) * (x^2 + y^2 - 2) + x^5 * y], 2, 1, 100); p0 = V.samples[1] objective(x) = sin(x[1])+cos(x[2])+1 println("gaussnewtonstep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=100, whichstep="gaussnewtonstep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("EDStep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=100, whichstep="EDStep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("twostep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=100, whichstep="twostep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) end
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
code
1934
using HomotopyContinuation @testset "whitney umbrella" begin @var x y z V = HomotopyOpt.ConstraintVariety([x,y,z], [x^2-y^2*z], 3, 2, 100); p0 = V.samples[1] objective(x) = sin(x[1])+cos(x[2])+cos(sin(x[3])) println("gaussnewtonstep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="gaussnewtonstep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("EDStep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="EDStep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("twostep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="twostep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) end @testset "space circle Test" begin @var x y z V = HomotopyOpt.ConstraintVariety([x,y,z], [x^2+y^2+z^2-1, z], 3, 1, 100); p0 = V.samples[1] objective(x) = exp(x[1]+x[2]+x[3]) println("gaussnewtonstep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="gaussnewtonstep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("EDStep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="EDStep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) println("twostep") @time resultminimum = HomotopyOpt.findminima(p0, 1e-4, V, objective; maxseconds=120, whichstep="twostep", initialstepsize=0.5); @test(resultminimum.converged==true) @test(resultminimum.lastpointisminimum==true) end
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
code
5407
include("./HomotopyOpt.jl/src/HomotopyOpt.jl") using HomotopyContinuation println("Twisted Cubic Test") @var y[1:3] l[1:2] L = y[1]^2+(y[2]+1)^2+(y[3]-1)^2 + l'*[y[1]^2-y[2], y[1]^3-y[3]] dL = HomotopyContinuation.differentiate(L, vcat(y,l)) sols=HomotopyContinuation.real_solutions(HomotopyContinuation.solve(dL)) display(sols) f1 = x->[x[1]^2-x[2], x[1]^3-x[3]] G = HomotopyOpt.ConstraintVariety(f1,3,1,100) norm = t->sqrt(t[1]^2+t[2]^2+t[3]^2) G.samples = filter(t->norm(t)<1000, G.samples) objective = x->x[1]^2+(x[2]+1)^2+(x[3]-1)^2 abc = HomotopyOpt.findminima([1.,-1,1], 1e-3, G, objective; homotopyMethod = "Newton") #HomotopyOpt.findminima([1.,-1,1], 1e-3, G, objective; homotopyMethod = "HomotopyContinuation") global convergedPaths = 0 global localSteps = 0 time1 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "Newton") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("Newton... ", "Average time: ",(Base.time()-time1)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) global convergedPaths = 0 global localSteps = 0 time2 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "HomotopyContinuation") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("HomotopyContinuation... ", "Average time: ",(Base.time()-time2)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) println(" ") println("Planar Sextic Test") @var y[1:2] l L = (y[1]-0.5)^2+(y[2]-2)^2 + l*((y[1]^4+y[2]^4-1)*(y[1]^2+y[2]^2-2)+y[1]^5*y[2]) dL = HomotopyContinuation.differentiate(L, vcat(y,l)) sols=HomotopyContinuation.real_solutions(HomotopyContinuation.solve(dL)) #display(sols) f1 = x->[((x[1]^4+x[2]^4-1)*(x[1]^2+x[2]^2-2)+x[1]^5*x[2])] G = HomotopyOpt.ConstraintVariety(f1,2,1,100) norm = t->sqrt(t[1]^2+t[2]^2) G.samples = filter(t->norm(t)<1000, G.samples) objective = x->(x[1]-0.5)^2+(x[2]-2)^2 abc = HomotopyOpt.findminima([0.,1], 1e-3, G, objective; homotopyMethod = "Newton") #HomotopyOpt.findminima([1.,-1,1], 1e-3, G, objective; homotopyMethod = "HomotopyContinuation") global convergedPaths = 0 global localSteps = 0 time1 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "Newton") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("Newton... ", "Average time: ",(Base.time()-time1)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) global convergedPaths = 0 global localSteps = 0 time2 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "HomotopyContinuation") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("HomotopyContinuation... ", "Average time: ",(Base.time()-time2)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) println(" ") println("Torus Test") @var y[1:3] l R1,R2=2,1 L = (y[1]-2)^2+y[2]^2+(y[3]-2)^2 + l*((y[1]^2+y[2]^2+y[3]^2-R1^2-R2^2)^2/(4*R1^2)+y[3]^2-R2^2) dL = HomotopyContinuation.differentiate(L, vcat(y,l)) sols=HomotopyContinuation.real_solutions(HomotopyContinuation.solve(dL)) f1 = x->[(x[1]^2+x[2]^2+x[3]^2-R1^2-R2^2)^2/(4*R1^2)+x[3]^2-R2^2] G = HomotopyOpt.ConstraintVariety(f1,3,2,100) norm = t->sqrt(t[1]^2+t[2]^2+t[3]^2) G.samples = filter(t->norm(t)<1000, G.samples) objective = x->(x[1]-2)^2+x[2]^2+(x[3]-2)^2 abc = HomotopyOpt.findminima([-2.,0,1], 1e-3, G, objective; homotopyMethod = "Newton") global convergedPaths = 0 global localSteps = 0 time1 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "Newton") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("Newton... ", "Average time: ",(Base.time()-time1)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) global convergedPaths = 0 global localSteps = 0 time2 = Base.time() for pt in G.samples res = HomotopyOpt.findminima(pt, 1e-3, G, objective; maxseconds=10, maxlocalsteps=1, homotopyMethod = "HomotopyContinuation") global convergedPaths = res.converged ? convergedPaths+1 : convergedPaths global localSteps = localSteps + length(res.computedpoints) end println("HomotopyContinuation... ", "Average time: ",(Base.time()-time2)/length(G.samples), "s, ", "% converged: ", 100*convergedPaths/length(G.samples), ", Average local steps: ", localSteps/length(G.samples)) println(" ")
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
code
110
using HomotopyOpt, Test @testset "HomotopyOpt" begin include("2DTests.jl") include("3DTests.jl") end
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
docs
2358
# HomotopyOpt.jl This package solves a constrained optimization problem which minimizes an objective function restricted to an algebraic variety. There are two main ideas. First, we use parameter homotopy (using `HomotopyContinuation.jl`) to attempt a line search in the direction of the projected gradient vector. Because we use parameter homotopy, this *line search* is really a *curve search* along a curve that stays on the constraint variety. Second, we use *parallel transport* to decide when to slow down and search more carefully. Whenever we observe that the norm of the projected gradient has been decreasing and then starts to increase, we parallel transport a projected gradient from one tangent space to the other, compute their dot product, and if it's negative, that means the projected gradient has *reversed direction*, so that we skipped past a critical point. If this happens, we go back a bit, and slow down our search, looking more carefully in that neighborhood. The end result is that we slow down in the correct places to find critical points where the projected gradient vector is essentially the zero vector. ## Installation ``` julia> ] (@v1.9) pkg> add HomotopyOpt ``` ## Usage ```julia using HomotopyOpt sexticcurve(x) = [(x[1]^4 + x[2]^4 - 1) * (x[1]^2 + x[2]^2 - 2) + x[1]^5 * x[2]] # sextic curve N,d = 2,1 # ambient dimension, variety dimension numsamples = 100 # we want to compute some random starting points for our optimization problem G = ConstraintVariety(sexticcurve, N, d, numsamples); # if you dont ask for samples, it will not compute them. ``` Above we created a `ConstraintVariety`, and now we need to create a function that evaluates the gradient of the objective function. For the objective function, we choose the squared distance from the point $(2,2)$ in the plane, for visualization purposes in this example. ```julia Q = x->(x[1]-2)^2+(x[2]-2)^2 ``` The main function is `findminima` which actually implements our algorithm. It takes inputs as follows: ```julia p0 = rand(G.samples) # choose a random starting point on the curve tolerance = 1e-3 result = findminima(p0, tolerance, G, Q); ``` Now we can `watch` our result. ```julia watch(result) ``` which produces the following output: ![](https://github.com/matthiashimmelmann/HomotopyOpt.jl/blob/firstbranch/test/watch1.661497754964e9.gif)
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.2.0
4e4cece45142daa92d0be1483c3a6a5728371296
docs
570
# Tests for HomotopyOpt.jl To run tests, navigate to the projects folder and activate the project's local environment. Afterwards, simply run the command `test`. ``` julia> cd("<your_julia_home_folder>\\HomotopyOpt.jl") julia> pwd() # Print the cursor's current location "<your_julia_home_folder>\\HomotopyOpt.jl" julia> ] # Pressing ] let's us enter Julia's package manager (@v1.6) pkg> activate . (HomotopyOpt) pkg> test ``` At the moment, this runs tests in 2D and in 3D for each of the optimization methods `gaussnewtonstep`, `EDStep` and `twostep`.
HomotopyOpt
https://github.com/matthiashimmelmann/HomotopyOpt.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
646
using Reinforce using Reinforce.MountainCarEnv: MountainCar using Plots gr() # Deterministic policy that is solving the problem mutable struct BasicCarPolicy <: Reinforce.AbstractPolicy end Reinforce.action(policy::BasicCarPolicy, r, s, A) = s.velocity < 0 ? 1 : 3 # Environment setup env = MountainCar() function episode!(env, π = RandomPolicy()) ep = Episode(env, π) for (s, a, r, s′) in ep gui(plot(env)) end ep.total_reward, ep.niter end # Main part R, n = episode!(env, BasicCarPolicy()) println("reward: $R, iter: $n") # This one can be really long... R, n = episode!(env, RandomPolicy()) println("reward: $R, iter: $n")
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
4125
module Reinforce using Reexport @reexport using StatsBase using Distributions using RecipesBase @reexport using LearnBase using LearnBase: DiscreteSet import LearnBase: learn!, transform!, grad!, grad using LearningStrategies import LearningStrategies: setup!, hook, finished, cleanup! export AbstractEnvironment, reset!, step!, reward, state, finished, actions, ismdp, maxsteps, AbstractPolicy, RandomPolicy, OnlineGAE, OnlineActorCritic, EpisodicActorCritic, action, AbstractState, StateVector, History, state!, Episode, Episodes, run_episode # ---------------------------------------------------------------- # Implement this interface for a new environment abstract type AbstractEnvironment end """ reset!(env) -> env Reset an environment. """ function reset! end """ r, s′ = step!(env, s, a) Move the simulation forward, collecting a reward and getting the next state. """ function step! end # note for developers: you should also implement Base.done(env) for episodic environments finished(env::AbstractEnvironment, s′) = false """ A = actions(env, s) Return a list/set/description of valid actions from state `s`. """ function actions end # note for developers: you don't need to implement these if you have state/reward fields """ s = state(env) Return the current state of the environment. """ state(env::AbstractEnvironment) = env.state """ r = reward(env) Return the current reward of the environment. """ reward(env::AbstractEnvironment) = env.reward """ ismdp(env)::Bool An environment may be fully observable (MDP) or partially observable (POMDP). In the case of a partially observable environment, the state `s` is really an observation `o`. To maintain consistency, we call everything a state, and assume that an environment is free to maintain additional (unobserved) internal state. The `ismdp` query returns true when the environment is MDP, and false otherwise. """ ismdp(env::AbstractEnvironment) = false """ maxsteps(env)::Int Return the max steps in single episode. Default is `0` (unlimited). """ maxsteps(env::AbstractEnvironment) = 0 # ---------------------------------------------------------------- # Implement this interface for a new policy abstract type AbstractPolicy end """ a = action(policy, r, s, A) Take in the last reward `r`, current state `s`, and set of valid actions `A = actions(env, s)`, then return the next action `a`. Note that a policy could do a 'sarsa-style' update simply by saving the last state and action `(s,a)`. """ function action end # ---------------------------------------------------------------- # concrete implementations # include("episodes.jl") include("episodes/iterators.jl") include("states.jl") include("policies/policies.jl") include("solvers.jl") include("envs/cartpole.jl") include("envs/pendulum.jl") include("envs/mountain_car.jl") include("envs/multi-armed-bandit.jl") @reexport using .MultiArmedBanditEnv # ---------------------------------------------------------------- # a keyboard action space struct KeyboardAction key end mutable struct KeyboardActionSet{T} <: AbstractSet{T} keys::Vector end LearnBase.randtype(s::KeyboardActionSet) = KeyboardAction Base.rand(s::KeyboardActionSet) = KeyboardAction(rand(s.keys)) Base.in(a::KeyboardAction, s::KeyboardActionSet) = a.key in s.keys Base.length(s::KeyboardActionSet) = 1 # ---------------------------------------------------------------- # a mouse/pointer action space struct MouseAction x::Int y::Int button::Int end mutable struct MouseActionSet{T} <: AbstractSet{T} screen_width::Int screen_height::Int button::DiscreteSet{Vector{Int}} end LearnBase.randtype(s::MouseActionSet) = MouseAction Base.rand(s::MouseActionSet) = MouseAction(rand(1:s.screen_width), rand(1:s.screen_height), rand(s.button)) Base.in(a::MouseAction, s::MouseActionSet) = a.x in 1:s.screen_width && a.y in 1:s.screen_height && a.button in s.button Base.length(s::MouseActionSet) = 1 # ---------------------------------------------------------------- end # module Reinforce
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
27
include("solvers/cem.jl")
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
1317
abstract type AbstractState end # ---------------------------------------------------------------- "A StateVector holds both the functions which will populate the state, and the most recent state." mutable struct StateVector{S} <: AbstractState queries::Vector{Function} state::Vector{S} names::Vector{String} end function StateVector(queries::AbstractVector{Function}; names=fill("",length(queries))) StateVector(queries, zeros(length(queries)), names) end function StateVector(queries::Function...; names=fill("",length(queries))) StateVector(Function[f for f in queries], names=names) end Base.length(sv::StateVector) = length(sv.queries) "retreive the most recently calculated state" state(sv::StateVector) = sv.state "update the state, then return it" function state!(sv::StateVector) for (i,f) in enumerate(sv.queries) sv.state[i] = f() end sv.state end # ---------------------------------------------------------------- mutable struct History{T} sv::StateVector{T} states::Matrix{T} end History(sv::StateVector{T}) where {T} = History(sv, Matrix{T}(length(sv),0)) function state!(hist::History) s = state!(hist.sv) hist.states = hcat(hist.states, s) s end StatsBase.nobs(hist::History) = size(hist.states, 2) # ----------------------------------------------------------------
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
2707
module CartPoleEnv # Ported from: https://github.com/openai/gym/blob/996e5115621bf57b34b9b79941e629a36a709ea1/gym/envs/classic_control/cartpole.py # which has header: # Classic cart-pole system implemented by Rich Sutton et al. # Copied from https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c using Reinforce: AbstractEnvironment using LearnBase: DiscreteSet using RecipesBase using Random: seed! import Reinforce: reset!, actions, finished, step!, state export CartPole, reset!, step!, actions, finished const gravity = 9.8 const mass_cart = 1.0 const mass_pole = 0.1 const total_mass = mass_cart + mass_pole const pole_length = 0.5 # actually half the pole's length const mass_pole_length = mass_pole * pole_length const force_mag = 10.0 const τ = 0.02 # seconds between state updates # angle at which to fail the episode const θ_threshold = 24π / 360 const x_threshold = 2.4 mutable struct CartPole <: AbstractEnvironment state::Vector{Float64} reward::Float64 maxsteps::Int # max step in each episode end CartPole(; maxsteps = 0) = CartPole(0.1rand(4) .- 0.05, 0.0, maxsteps) # see https://github.com/FluxML/model-zoo/pull/23#issuecomment-366030179 CartPoleV0() = CartPole(maxsteps = 200) CartPoleV1() = CartPole(maxsteps = 500) reset!(env::CartPole) = (env.state = 0.1rand(4) .- 0.05; env.reward = 0.0; env) actions(env::CartPole, s) = DiscreteSet(1:2) maxsteps(env::CartPole) = env.maxsteps function step!(env::CartPole, s, a) s = state(env) x, xvel, θ, θvel = s force = (a == 1 ? -1 : 1) * force_mag tmp = (force + mass_pole_length * sin(θ) * (θvel^2)) / total_mass θacc = (gravity * sin(θ) - tmp * cos(θ)) / (pole_length * (4/3 - mass_pole * (cos(θ)^2) / total_mass)) xacc = tmp - mass_pole_length * θacc * cos(θ) / total_mass # update state s[1] = x += τ * xvel s[2] = xvel += τ * xacc s[3] = θ += τ * θvel s[4] = θvel += τ * θacc env.reward = finished(env, s) ? 0.0 : 1.0 env.reward, s end function finished(env::CartPole, s′) x, xvel, θ, θvel = s′ !(-x_threshold <= x <= x_threshold && -θ_threshold <= θ <= θ_threshold) end # ------------------------------------------------------------------------ @recipe function f(env::CartPole) x, xvel, θ, θvel = state(env) legend := false xlims := (-x_threshold, x_threshold) ylims := (-Inf, 2pole_length) grid := false ticks := nothing # pole @series begin linecolor := :red linewidth := 10 [x, x + 2pole_length * sin(θ)], [0.0, 2pole_length * cos(θ)] end # cart @series begin seriescolor := :black seriestype := :shape hw = 0.5 l, r = x-hw, x+hw t, b = 0.0, -0.1 [l, r, r, l], [t, t, b, b] end end end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
2988
# Ported from https://github.com/openai/gym/blob/996e5115621bf57b34b9b79941e629a36a709ea1/gym/envs/classic_control/mountain_car.py # which has header # https://webdocs.cs.ualberta.ca/~sutton/MountainCar/MountainCar1.cp module MountainCarEnv using Reinforce: AbstractEnvironment using LearnBase: DiscreteSet using RecipesBase using Distributions using Random: seed! import Reinforce: reset!, actions, finished, step! export MountainCar, reset!, step!, actions, finished const min_position = -1.2 const max_position = 0.6 const max_speed = 0.07 const goal_position = 0.5 const min_start = -0.6 const max_start = 0.4 const car_width = 0.05 const car_height = car_width/2.0 const clearance = 0.2*car_height const flag_height = 0.05 mutable struct MountainCarState position::Float64 velocity::Float64 end mutable struct MountainCar <: AbstractEnvironment state::MountainCarState reward::Float64 seed::Int end MountainCar(seed=-1) = MountainCar(MountainCarState(0.0, 0.0), 0.0, seed) function reset!(env::MountainCar) if env.seed >= 0 seed!(env.seed) env.seed = -1 end env.state.position = rand(Uniform(min_start, max_start)) env.state.velocity = 0.0 env end actions(env::MountainCar, s) = DiscreteSet(1:3) finished(env::MountainCar, s′) = env.state.position >= goal_position function step!(env::MountainCar, s::MountainCarState, a::Int) position = env.state.position velocity = env.state.velocity velocity += (a - 2)*0.001 + cos(3*position)*(-0.0025) velocity = clamp(velocity, -max_speed, max_speed) position += velocity if position <= min_position && velocity < 0 velocity = 0 end position = clamp(position, min_position, max_position) env.state = MountainCarState(position, velocity) env.reward = -1 return env.reward, env.state end # ------------------------------------------------------------------------ height(xs) = sin(3 * xs)*0.45 + 0.55 rotate(xs::Array{Float64}, ys::Array{Float64}, Θ::Float64) = xs.*cos(Θ) .- ys.*sin(Θ), ys.*cos(Θ) .+ xs.*sin(Θ) translate(xs::Array{Float64}, ys::Array{Float64}, t::Array{Float64}) = xs .+ t[1], ys .+ t[2] @recipe function f(env::MountainCar) legend := false xlims := (min_position, max_position) ylims := (0, 1.1) grid := false ticks := nothing # Mountain @series begin xs = range(min_position, stop = max_position, length = 100) ys = height.(xs) seriestype := :path linecolor --> :blue xs, ys end # Car @series begin fillcolor --> :black seriestype := :shape θ = cos(3 * env.state.position) xs = [-car_width/2, -car_width/2, car_width/2, car_width/2] ys = [0, car_height, car_height, 0] .+ clearance xs, ys = rotate(xs, ys, θ) translate(xs, ys, [env.state.position, height(env.state.position)]) end # Flag @series begin linecolor --> :red seriestype := :path [goal_position, goal_position], [height(goal_position), height(goal_position) + flag_height] end end end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
1497
module MultiArmedBanditEnv using ..Reinforce using Distributions export MultiArmedBandit """ The multi-armed bandit environment. MultiArmedBandit(k, n = 100; σ = 1) - `k` is the number of available arms. The reward distribution for each arms is a Normal distribution centered at the range of [-1, 1] and the standard deviation is 1. - `n` is the max steps for each episode. - `σ` controls the the standard deviation for all Normal distribution. MultiArmedBandit(x::Vector{<:Distribution}...) In case that you want to other distributions as the reward distribution. """ mutable struct MultiArmedBandit{K,D<:Vector} <: AbstractEnvironment arms::D n::Int # max steps r::Float64 end function MultiArmedBandit(k::Int, n::Int = 1000; σ::Real = 1) k ≤ 0 && throw(ArgumentError("k must > 0")) arms = map(i -> Normal(rand(Uniform(-1, 1)), σ), 1:k) MultiArmedBandit{k,typeof(arms)}(arms, n, 0) end function MultiArmedBandit(x::Vararg{Distribution,N}) where {N} y = collect(x) MultiArmedBandit{N,typeof(y)}(y, N, 0) end Reinforce.state(::MultiArmedBandit) = nothing Reinforce.reward(env::MultiArmedBandit) = env.r Reinforce.reset!(env::MultiArmedBandit) = (env.r = 0; env) Reinforce.actions(::MultiArmedBandit{K}, s) where {K} = Base.OneTo(K) Reinforce.step!(env::MultiArmedBandit, s, a::Int) = (env.r = rand(env.arms[a]); (env.r, nothing)) Reinforce.maxsteps(env::MultiArmedBandit) = env.n Reinforce.ismdp(::MultiArmedBandit) = true end # module MultiArmedBanditEnv
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
2676
module PendulumEnv # Ported from: https://github.com/openai/gym/blob/996e5115621bf57b34b9b79941e629a36a709ea1/gym/envs/classic_control/pendulum.py # https://github.com/openai/gym/wiki/Pendulum-v0 using Reinforce: AbstractEnvironment using LearnBase: IntervalSet using RecipesBase using Distributions using Random: seed! import Reinforce: reset!, actions, finished, step!, state export Pendulum, reset!, step!, actions, finished, state const max_speed = 8.0 const max_torque = 2.0 angle_normalize(x) = ((x+π) % (2π)) - π mutable struct PendulumState{T<:AbstractFloat} <: AbstractVector{T} θ::T θvel::T end PendulumState() = PendulumState(0., 0.) Base.size(::PendulumState) = (2,) function Base.getindex(s::PendulumState, i::Int) (i > length(s)) && throw(BoundsError(s, i)) ifelse(i == 1, s.θ, s.θvel) end function Base.setindex!(s::PendulumState, x, i::Int) (i > length(s)) && throw(BoundsError(s, i)) setproperty!(s, ifelse(i == 1, :θ, :θvel), x) end mutable struct Pendulum{V<:AbstractVector} <: AbstractEnvironment state::V reward::Float64 a::Float64 # last action for rendering steps::Int maxsteps::Int end Pendulum(maxsteps = 500) = Pendulum(PendulumState(),0., 0., 0, maxsteps) function reset!(env::Pendulum) env.state = PendulumState(rand(Uniform(-π, π)), rand(Uniform(-1., 1.))) env.reward = 0.0 env.a = 0.0 env.steps = 0 env end actions(env::Pendulum, s) = IntervalSet(-max_torque, max_torque) function step!(env::Pendulum, s, a) θ, θvel = env.state g = 10.0 m = 1.0 l = 1.0 dt = 0.05 env.a = a a = clamp(a, -max_torque, max_torque) env.reward = -(angle_normalize(θ)^2 + 0.1θvel^2 + 0.001a^2) # update state newθvel = θvel + (-1.5g/l * sin(θ+π) + 3/(m*l^2)*a) * dt newθ = θ + newθvel * dt newθvel = clamp(newθvel, -max_speed, max_speed) env.state = PendulumState(newθ, newθvel) env.steps += 1 env.reward, env.state end function state(env::Pendulum) θ, θvel = env.state Float64[cos(θ), sin(θ), θvel] end finished(env::Pendulum, s′) = env.steps >= env.maxsteps # ------------------------------------------------------------------------ @recipe function f(env::Pendulum) legend := false xlims := (-1,1) ylims := (-1,1) grid := false ticks := nothing # pole @series begin w = 0.2 x = [-w,w,w,-w] y = [-.1,-.1,1,1] θ = env.state.θ fillcolor := :red seriestype := :shape x*cos(θ) - y*sin(θ), y*cos(θ) + x*sin(θ) end # center @series begin seriestype := :scatter markersize := 10 markercolor := :black annotations := [(0, -0.2, "a: $(round(env.a, digits = 4))", :top)] [0],[0] end end end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
5379
mutable struct Episode{E<:AbstractEnvironment,P<:AbstractPolicy,F<:AbstractFloat} env::E policy::P total_reward::F # total reward of the episode last_reward::F niter::Int # current step in this episode freq::Int # number of steps between choosing actions maxn::Int # max steps in an episode - should be constant during an episode end Episode(env::AbstractEnvironment, π::AbstractPolicy; freq = 1, maxn = maxsteps(env)) = Episode(env, π, 0.0, 0.0, 1, freq, maxn) function _start!(ep::Episode{E,P,F}) where {E,P,F} reset!(ep.env) reset!(ep.policy) ep.total_reward = zero(F) ep.niter = 1 end _done(ep::Episode, i) = (ep.maxn != 0 && ep.niter >= ep.maxn) || finished(ep.env, state(ep.env)) # take one step in the enviroment after querying the policy for an action function Base.iterate(ep::Episode, i = _start!(ep)) _done(ep::Episode, i) && return nothing env = ep.env π = ep.policy s = state(env) A = actions(env, s) # action space r = reward(env) a = action(π, r, s, A) @assert(a ∈ A, "action $a is not in $A") # take freq steps using action a last_reward = 0.0 s′ = s for _ ∈ 1:ep.freq r, s′ = step!(env, s′, a) last_reward += r _done(ep, ep.niter) && break end ep.total_reward += last_reward ep.last_reward = last_reward ep.niter = i (s, a, r, s′), i + 1 end """ run_episode(f, env, policy) run_episode(env, policy) do (s, a, r, s′) # render or something else end Helper function for running an episode, and return the total reward gained in this episode. """ function run_episode(f::Base.Callable, env::AbstractEnvironment, π::AbstractPolicy) ep = Episode(env, π) for sars in ep f(sars) end ep.total_reward end # --------------------------------------------------------------------- # iterate through many episodes mutable struct Episodes env kw # note: we have different groups of strategies depending on when they should be applied episode_strats # learning strategies for each episode epoch_strats # learning strategies for each complete episode iter_strats # learning strategies applied at every iteration end function Episodes(env; episode_strats = [], epoch_strats = [], iter_strats = [], kw...) Episodes( env, kw, MetaLearner(episode_strats...), MetaLearner(epoch_strats...), MetaLearner(iter_strats...) ) end length_state(eps::Episodes) = length(state(eps.env)) + length(eps.last_action) # the main function... run episodes until stopped by one of the epoch/iter strats function learn!(policy, eps::Episodes) # setup setup!(eps.epoch_strats, policy) setup!(eps.iter_strats, policy) # loop over epochs until done done = false epoch = 1 iter = 1 while !done # one episode setup!(eps.episode_strats, policy) ep = Episode(eps.env, policy; eps.kw...) for sars′ in ep learn!(policy, sars′...) # learn steps for metalearner in (eps.episode_strats, eps.epoch_strats, eps.iter_strats) for strat in metalearner.managers learn!(policy, strat, sars′) end end # iter steps timestep = ep.niter hook(eps.episode_strats, ep, timestep) hook(eps.epoch_strats, ep, epoch) hook(eps.iter_strats, ep, iter) # finish the timestep with checks if finished(eps.episode_strats, policy, timestep) break end if finished(eps.epoch_strats, policy, epoch) || finished(eps.iter_strats, policy, iter) done = true break end iter += 1 end info("Finished episode $epoch after $(ep.niter) steps. Reward: $(ep.total_reward) mean(Reward): $(ep.total_reward/max(ep.niter,1))") cleanup!(eps.episode_strats, policy) epoch += 1 end # tear down cleanup!(eps.epoch_strats, policy) cleanup!(eps.iter_strats, policy) return end # function hook(policy, ep::Episodes, i) # if ep.should_reset # reset!(ep.env) # reset!(policy) # ep.should_reset = false # ep.total_reward = 0.0 # ep.nsteps = 0 # for learner in ep.learners # setup!(learner, policy) # end # end # # # take one step in the enviroment after querying the policy for an action # env = ep.env # s = state(env) # A = actions(env, s) # r = reward(env) # a = action(policy, r, s, A) # if !(a in A) # warn("action $a is not in $A") # # a = rand(A) # end # @assert a in A # r, s′ = step!(env, s, a) # ep.total_reward += r # # # "sars" learn step for the policy... # # note: ensures that the final reward is included in the learning # learn!(policy, s, a, r, s′) # # ep.nsteps += 1 # for learner in ep.learners # learn!(policy, learner, ep.nsteps) # hook(learner, policy, ep.nsteps) # end # # # if this episode is done, just flag it so we reset next time # if finished(env, s′) || any(learner -> finished(learner, policy, ep.nsteps), ep.learners) # ep.should_reset = true # ep.nepisode += 1 # for learner in ep.learners # cleanup!(learner, policy) # end # info("Finished episode $(ep.nepisode) after $(ep.nsteps) steps. Reward: $(ep.total_reward)") # end # return # end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
10196
# WARNING: This should not be used as-is. It's unfinished experimentation. using Transformations using StochasticOptimization using PenaltyFunctions import OnlineStats: Mean, Variances, Weight, BoundedEqualWeight mutable struct Actor{PHI<:Learnable, DIST<:MvNormalTransformation} <: AbstractPolicy ϕ::PHI # map states to dist inputs. ∇logπ is grad(ϕ) D::DIST # the N(ϕ) = N(μ,σ) from which we sample actions prep::PreprocessStep last_action testing::Bool end Actor(ϕ,D,prep=NoPreprocessing()) = Actor(ϕ, D, prep, zeros(D.n), false) # TODO: specialize this on the distribution type function Reinforce.action(actor::Actor, r, s′, A′) z = transform!(actor, s′) # @show map(extrema, (s′, z, params(actor), grad(actor))) # TODO: make this a general utility method... project_to_actions? # project our squashed sample onto into the action space to get our actions # a = (â --> [lo,hi]) a = A′.lo .+ logistic.(z) .* (A′.hi .- A′.lo) if !(a in A′) warn("a=$a not in A=$(A′)") dump(actor) error() a = rand(A′) end copy!(actor.last_action, a) a end @with actor function grad!(actor::Actor) grad!(D) grad!(ϕ, input_grad(D)) end @with actor function transform!(actor::Actor, xs::AbstractVector) x = if isa(prep, NoPreprocessing) xs else learn!(prep, xs) transform!(prep, xs) end phi = transform!(ϕ, x) if testing # if we're testing, return the mean exactly phi[1:D.n] else transform!(D, phi) end end params(actor::Actor) = params(actor.ϕ) grad(actor::Actor) = grad(actor.ϕ) #= This is an implementation of the "AC" algorithm (Actor-critic Algorithm) from: Degris et al, "Model-Free Reinforcement Learning with Continuous Action in Practice" =# mutable struct OnlineActorCritic{ALGO, T, WGT<:Weight, PEN<:Penalty, ACTOR} <: AbstractPolicy δ::T # last TD δ # r̄::T # estimate of average return r̄::Mean{WGT} # svar::Variances{WGT} # feaure whitener TODO: do actual whitening! penalty::PEN ns::Int # number of inputs nv::Int # 2ns+na because we do: vcat(s′, s′-s, a) na::Int # the number of actions nu::Int # the number of policy params (2na, since ϕ = vcat(μ,σ)) x::Function # a "feature mapping" function x(s) v::Vector{T} # critic params eᵛ::Vector{T} # eligibility trace for updating v (critic params) # ϕ::PHI # u from the paper is really params(ϕ), ∇logπ is grad(ϕ) # D::DIST # the N(ϕ) = N(μ,σ) from which we sample actions actor::ACTOR w::Vector{T} # for INAC algos eᵘ::Vector{T} # eligibility trace for updating u (actor params) γ::T # δ decay λ::T # e decay # αʳ::T # learning rate for r̄ # αᵛ::T # learning rate for v # αᵘ::T # learning rate for u gaᵛ gaᵘ # gaʷ # last_sars′ xs end function OnlineActorCritic(s::AbstractVector, na::Int; T::DataType = eltype(s), algo::Symbol = :AC, wgt_lookback::Int = 20000, prep::PreprocessStep = Whiten(T,2length(s)+na,2length(s)+na,lookback=wgt_lookback), penalty::Penalty = L2Penalty(1e-5), ϕ::Learnable = nnet(2length(s)+na, 2na, [], :relu), D::MvNormalTransformation = MvNormalTransformation(zeros(T,na),zeros(T,na)), x::Function = identity, γ::Number = 1.0, λ::Number = 0.5, # αʳ::Number = 0.01, αᵛ::Number = 0.01, αᵘ::Number = 0.01, αʷ::Number = 0.01, gaᵛ = OnlineGradAvg(100, lr=αᵛ), gaᵘ = OnlineGradAvg(100, lr=αᵘ) # gaʷ = OnlineGradAvg(100, lr=αʷ) ) @assert algo in (:AC, :INAC) T = eltype(s) ns = length(x(s)) nv = 2ns+na nu = length(params(ϕ)) wgt = BoundedEqualWeight(wgt_lookback) r̄ = Mean(wgt) # svar = Variances(nv, wgt) actor = Actor(ϕ,D,prep) link_nodes!(ϕ, D) setup!(gaᵛ, zeros(nv)) setup!(gaᵘ, ϕ) # setup!(gaʷ, ϕ) OnlineActorCritic{algo,T,typeof(wgt),typeof(penalty),typeof(actor)}( zero(T), # zero(T), r̄, # svar, penalty, ns, nv, na, nu, x, zeros(T,nv), zeros(T,nv), # ϕ, # D, actor, zeros(T,nu), zeros(T,nu), γ, λ, # αʳ, # αᵛ, # αᵘ gaᵛ, gaᵘ, # gaʷ, # (s, zeros(na), 0.0, s) vcat(s, zeros(T,ns+na)) ) end function Reinforce.reset!(ac::OnlineActorCritic{A,T}) where {A,T} # reset!(ac.actor) fill!(ac.eᵛ, zero(T)) fill!(ac.eᵘ, zero(T)) end @with ac function Reinforce.action(ac::OnlineActorCritic, r, s′, A′) # ignore s′ and use latest xs (which should include s′) for i=1:ns xs[i+ns] = s′[i] - xs[i] xs[i] = s′[i] end xs[2ns+1:end] = actor.last_action a = action(actor, r, xs, A′) # if !isa(actor.prep, NoPreprocessing) # xs[:] = output_value(actor.prep) # end a # # for i=1:ns # # xs[i+ns] = s′[i] - xs[i] # # xs[i] = s′[i] # # end # # xs[ns+1:2ns] = s′ - # # s′ = vcat(s′, s′-last_sars′[1], last_sars′[2]) # # transform!(ϕ, xs) # # z = transform!(D) # z = transform!(actor) # # # TODO: make this a general utility method... project_to_actions? # # project our squashed sample onto into the action space to get our actions # # a = (â --> [lo,hi]) # a = A′.lo .+ logistic.(z) .* (A′.hi .- A′.lo) # if !(a in A′) # warn("a=$a not in A=$(A′)") # dump(ac) # error() # a = rand(A′) # end # # xs[2ns+1:end] = a # a end #= Notes: - we can replace αᵛ/αᵘ with a GradientLearner and call update! instead - the @with macro (in StochasticOptimization) replaces variables with the dot versions if that object has a field of that name =# # function whiten(x::AbstractArray, vars::Variances) # return x # σ = vars.value # μ = vars.μ # @assert length(x) == length(σ) # out = zeros(x) # @inbounds for (i,j) in enumerate(eachindex(x)) # out[j] = (x[j] - μ[i]) # if σ[i] > 0 # out[j] /= sqrt(σ[i]) # end # end # out # end # This is similar to replacing traces for continuous values. # If we're reversing the trace then we simply add, if we're increasing # the magnitude then we take the larger of ei/xi. # This should help with the stability of traces. # Note: invented by @tbreloff, but I'm sure it exists somewhere already. function update_eligibilty!(e::AbstractArray{T}, x::AbstractArray{T}, γλ::Number; clip::Number = 1e2) where T @assert length(e) == length(x) @inbounds for i=1:length(e) ei = γλ * e[i] xi = clamp(x[i], -clip, clip) e[i] = if ei < zero(T) xi < zero(T) ? min(ei, xi) : ei+xi else xi > zero(T) ? max(ei, xi) : ei+xi end end end @with ac function learn!(ac::OnlineActorCritic, s, a, r, s′) actor.testing && return # xs = whiten(x(s), svar) # xs′ = whiten(x(s′), svar) # # # update our input whitener # fit!(svar, x(s′)) # xs = vcat(s, s-last_sars′[1], last_sars′[2]) xs′ = vcat(s′, s′-s, a) prepped_xs = transform!(actor.prep, xs) prepped_xs′ = transform!(actor.prep, xs′) # compute TD delta δ = r - mean(r̄) + γ * dot(v, prepped_xs′) - dot(v, prepped_xs) # update average reward # r̄ += αʳ * δ # r̄ = αʳ * r + (one(αʳ) - αʳ) * r̄ fit!(r̄, r) # update critic γλ = γ * λ update_eligibilty!(eᵛ, prepped_xs, γλ) chg = zeros(v) for i=1:nv # eᵛ[i] = γλ * eᵛ[i] + xs[i] chg[i] = -δ * eᵛ[i] + deriv(penalty, v[i]) # v[i] += αᵛ * chg #+ (one(αᵛ) - αᵛ) * v[i] end learn!(v, gaᵛ, chg) # compute ∇logπ # TODO: add penalty? # grad!(D) # grad!(ϕ) # update actor eligibility trace grad!(actor) ∇logπ = grad(actor) # @show extrema(∇logπ), extrema(eᵘ) update_eligibilty!(eᵘ, ∇logπ, γλ) # for i=1:nu # eᵘ[i] = γλ * eᵘ[i] + ∇logπ[i] # end # update the actor (different by algo) update_actor!(ac, params(actor), ∇logπ) return end @with ac function update_actor!(ac::OnlineActorCritic{:AC}, u, ∇logπ) # σ² = D.dist.Σ.diag chg = zeros(u) for i=1:nu # note: we multiply by σ² to reduce instabilities chg[i] = -δ * eᵘ[i] + deriv(penalty, u[i]) if isnan(chg[i]) @show i, δ, eᵘ[i], u[i] end # chg = δ * eᵘ[i] * σ²[mod1(i,na)] - deriv(penalty, u[i]) # u[i] += αᵘ * chg end learn!(u, gaᵘ, chg) end # # BROKEN: # @with ac function update_actor!{T}(ac::OnlineActorCritic{:INAC,T}, u, ∇logπ) # ∇ᵀw = dot(∇logπ, w) # # # update w # chg = zeros(u) # for i=1:nu # chg[i] = -δ * eᵘ[i] + ∇logπ[i] * ∇ᵀw # end # learn!(w, gaʷ, chg) # # # update u # for i=1:nu # chg[i] = w[i] - deriv(penalty, u[i]) # end # learn!(u, gaᵘ, chg) # end # # BROKEN: # @with ac function update_actor!{T}(ac::OnlineActorCritic{:INAC,T}, u, ∇logπ) # ∇ᵀw = dot(∇logπ, w) # # @show extrema(∇logπ), ∇ᵀw # chg = zeros(u) # for i=1:nu # w[i] += αᵘ * (δ * eᵘ[i] - ∇logπ[i] * ∇ᵀw) #+ (one(αᵘ) - αᵘ) * w[i] # if !isfinite(w[i]) # @show w δ eᵘ ∇logπ ∇ᵀw # @show map(extrema, (w, δ, eᵘ, ∇logπ, ∇ᵀw)) # error() # end # chg[i] = w[i] - deriv(penalty, u[i]) # # u[i] += αᵘ * chg # end # learn!(u, gaᵘ, chg) # end # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- mutable struct EpisodicActorCritic end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
7296
# WARNING: This should not be used as-is. It's unfinished experimentation. using Transformations using StochasticOptimization using PenaltyFunctions # ------------------------------------------------------------------ #= See http://www.breloff.com/DeepRL-OnlineGAE/ for details/explanation of OnlineGAE Samples from a distribution D(ϕ), where ϕ contains all sufficient statistics. In the case of a MultivariateNormal N(μ, Σ): Σ = U'U (we output U to ensure Σ is positive definite) ϕ := vcat(μ, vec(U)) ϕ(s,θ) is a learnable transformation from states to sufficient statistics We then sample from our multivariate distribution: z ~ D(ϕ) and (deterministically) map that sample to actions (i.e. project squashed samples `z` into the action space `A`): a = π(z) or a ~ π(s,θ) --- Notes: The gradient wrt transformation params θ can be broken into the components of ϕ which map to μ/U. Assuming the first and last steps are deterministic: P(a|z,s,θ) = P(a|z) * P(z|ϕ) * P(ϕ|s,θ) = 1 * P(z|ϕ) * 1 = P(z|ϕ) So: ∇log P(a|z,s,θ) = ∇log P(z|ϕ) =# """ Maps state to value: V(s) We update the learnable parameters using gradient vector δ """ mutable struct ValueCritic{T,TRANS<:Learnable} <: Learnable trans::TRANS # nS --> 1 transformation which outputs a value V(s) for state s γ::T # discount lastv::T # V(s) δ::T # TD(0) delta: δ = r + γV(s′) - V(s) # lastδ::T end function ValueCritic(::Type{T}, trans::Learnable, γ::T) where T ValueCritic{T,typeof(trans)}(trans, γ, zero(T), zero(T)) end # function transform!(critic::ValueCritic, s::AbstractArray) # # critic.lastv = output_value(critic.trans)[1] # transform!(critic.trans, s) # end # give reward r, compute output grad: δ = r + γV(s′) - V(s) # then backprop to get ∇θ function grad!(critic::ValueCritic{T}, r::Number) where T Vs′ = output_value(critic.trans)[1] Vs = critic.lastv # critic.lastδ = critic.δ # the loss function is L2 loss with "truth" (r+λVₛ′) and "estimate" Vₛ # the output gradient is: # ∂(δ²/2)/∂Vₛ′ # this is the discounted return δ: critic.δ = r + critic.γ * Vs′ - Vs output_grad(critic.trans)[1] = -critic.δ # output_grad(critic.trans)[1] = -critic.γ * critic.δ # # this tries to solve for the average future reward # critic.δ = critic.γ * r + (one(T) - critic.γ) * Vs′ - Vs # output_grad(critic.trans)[1] = -critic.γ * critic.δ # critic.lastv = Vs′ grad!(critic.trans) end """ Online Generalized Advantage Estimation for Actor-Critic Reinforcement Learning Transforms states (input) to actions (output) using learnable parameters θ We assume the general form of mapping states (s) to actions (a): s --> ϕ(s,θ) --> D(ϕ) --> a ϕ is: - a learnable transformation with learnable parameters θ - the sufficient statistics of distribution D - some concatenated combination of μ/U/σ for multivariate normals """ mutable struct OnlineGAE{T <: Number, ASET <: AbstractSet, PHI <: Learnable, DIST <: MvNormalTransformation, CRITIC <: ValueCritic, # P <: Params, PEN <: Penalty, AL <: LearningStrategy, CL <: LearningStrategy } <: Learnable A::ASET # the action space ϕ::PHI # learnable transformation to output sufficient statistics of D D::DIST # generative transformation for sampling inputs to a critic::CRITIC # the critic... wraps a learnable estimating value function V(s) γ::T # the discount for the critic λ::T # the extra discount for the actor ϵ::Vector{T} # eligibility traces for the learnable params θ in transformation ϕ # a::Vector{T} # the action # t::Int # current timestep # ∇logP::Vector{T} # policy gradient: ∇log P(a | s) == ∇log P(z | ϕ) # lastr::T # most recent return # params::P # the combined parameters from the actor transformation ϕ and the critic transformation penalty::PEN # a penalty to add to param gradients actor_learner::AL critic_learner::CL end function OnlineGAE(A::AbstractSet, ϕ::Learnable, D::MvNormalTransformation, critic_trans::Learnable, γ::T, λ::T, actor_learner::LearningStrategy, critic_learner::LearningStrategy; penalty::Penalty = NoPenalty()) where T # connect transformations, init the critic link_nodes!(ϕ, D) critic = ValueCritic(T, critic_trans, γ) np = params_length(ϕ) ϵ = zeros(T, np) # ∇logP = zeros(T, np) # params = consolidate_params(T, ϕ, critic_trans) setup!(actor_learner, ϕ) setup!(critic_learner, critic.trans) OnlineGAE(A, ϕ, D, critic, γ, λ, ϵ, penalty, actor_learner, critic_learner) end # don't do anything here... we'll update later LearnBase.update!(π::OnlineGAE, ::Void) = return function Reinforce.reset!(π::OnlineGAE{T}) where T fill!(π.ϵ, zero(T)) # π.critic.lastv = 0 # setup!(π.actor_learner, π.ϕ) # setup!(π.critic_learner, π.critic.trans) end function Reinforce.action(π::OnlineGAE, r, s′, A′) # sample z ~ N(μ,Σ) which is determined by ϕ transform!(π.ϕ, s′) z = transform!(π.D) # project our squashed sample onto into the action space to get our actions # a = (â --> [lo,hi]) a = A′.lo .+ logistic.(z) .* (A′.hi .- A′.lo) if !(a in A′) warn("a=$a not in A=$(A′)") a = rand(A′) end a end function learn!(π::OnlineGAE, s, a, r, s′) # update the critic. we use the current model to get the lastv == Vₛ # as well as the current == Vₛ′ π.critic.lastv = transform!(π.critic.trans, s)[1] transform!(π.critic.trans, s′) grad!(π.critic, r) # π.lastr = r t = π.critic.trans addgrad!(grad(t), π.penalty, params(t)) learn!(t, π.critic_learner, nothing) #= update the actor using the OnlineGAE formulas: ϵₜ = (γλ)ϵₜ₋₁ + ∇ ĝₜ = δₜϵₜ note: we use the grad-log-prob from the last timestep, since we can't update until we compute the critic's δ, which depends on the next timestep =# # update the grad-log-prob of distribution D, and store that for the next timestep # NOTE: grad(π.ϕ) now contains the grad-log-prob of this timestep... but we don't use this # until the next timestep grad!(π.D) grad!(π.ϕ) # we use last timestep's ∇logP to update the eligibility trace of the last timestep ϵ γλ = π.γ * π.λ ϵ = π.ϵ ∇ = grad(π.ϕ) addgrad!(∇, π.penalty, params(π.ϕ)) for i=1:length(ϵ) ϵ[i] = γλ * ϵ[i] + ∇[i] end # copy!(π.∇logP, grad(π.ϕ)) # overwrite the gradient estimate: ĝ = δϵ δ = π.critic.δ for i=1:length(ϵ) ∇[i] = -δ * ϵ[i] end # # add the penalty to the gradient # addgrad!(∇, π.penalty, params(π.ϕ)) # learn the actor learn!(π.ϕ, π.actor_learner, nothing) end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
206
# default reset reset!(π::AbstractPolicy) = π mutable struct RandomPolicy <: AbstractPolicy end action(policy::RandomPolicy, r, s′, A′) = rand(A′) # include("online_gae.jl") # include("actor_critic.jl")
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
3607
export CrossEntropyMethod # ---------------------------------------------------------------------------- # TODO: add this to MLPlots?? # export # AnimationStrategy # # add this to your MasterLearner to save Plots animations of your learning process # type AnimationStrategy <: LearningStrategy # anim::Animation # f::Function # end # AnimationStrategy(f::Function) = AnimationStrategy(Animation(), f) # hook(strat::AnimationStrategy, policy, i) = (strat.f(policy, i); frame(strat.anim)) # cleanup!(strat::AnimationStrategy, policy) = gif(strat.anim) # ---------------------------------------------------------------------------- # ---------------------------------------------------------------------------- # TODO: this is a strategy and policy combined... they should really be split into a Learnable and a LearningStrategy mutable struct CrossEntropyMethod <: LearningStrategy noise_func::Function # additional deviation at each timestep maxsteps::Int # max num steps in one episode cem_batchsize::Int cem_elitefrac::Float64 stopping_norm::Float64 t::Int n::Int μ::Vector{Float64} last_μ::Vector{Float64} σ::Vector{Float64} Z::Vector{Float64} # extra variance CrossEntropyMethod(nf, iter, bs, ef, sn) = new(nf, iter, bs, ef, sn, 0) end function CrossEntropyMethod(; #f::Function; noise_func = t->0.0, maxsteps::Int = 100, cem_batchsize::Int = 20, cem_elitefrac::Float64 = 0.2, stopping_norm::Float64 = 1e-2) CrossEntropyMethod(noise_func, maxsteps, cem_batchsize, cem_elitefrac, stopping_norm) end function setup!(strat::CrossEntropyMethod, policy) n = length(params(policy)) strat.n = n strat.μ = zeros(n) strat.last_μ = zeros(n) strat.σ = ones(n) strat.Z = zeros(n) return end # # the core loop, act/step in a simulation, update the env state, get a reward, update a policy, etc function learn!(policy::AbstractPolicy, strat::CrossEntropyMethod, env::AbstractEnvironment) strat.last_μ = copy(strat.μ) strat.t += 1 # sample thetas from a multivariate normal distribution N = MultivariateNormal(strat.μ, strat.σ) θs = [rand(N) for k=1:strat.cem_batchsize] # overwrite the parameters of the policy and run an episode for each θ Rs = map(θ -> begin params(policy)[:] = θ R = 0 for (i,sars) in enumerate(Episode(env,policy)) R += sars[3] i < strat.maxsteps || break end # R, T = episode!(env, policy; maxsteps = strat.maxsteps) R end, θs) # pick out the elite set n_elite = round(Int, strat.cem_batchsize * strat.cem_elitefrac) elite_indices = sortperm(Rs, rev=true)[1:n_elite] elite_θs = θs[elite_indices] info("Iteration $(strat.t). mean(R): $(mean(Rs)) max(R): $(maximum(Rs)) ‖μ‖²: $(norm(strat.μ)) ‖σ‖²: $(norm(strat.σ))") # update the policy from the empirical statistics of the elite set for j=1:length(strat.μ) θj = [θ[j] for θ in elite_θs] strat.μ[j] = mean(θj) strat.Z[j] = strat.noise_func(strat.t) strat.σ[j] = sqrt(var(θj) + strat.Z[j]) end # @show strat.μ strat.σ strat.Z end # are we done iterating? check for convergence, etc function finished(strat::CrossEntropyMethod, policy::AbstractPolicy, i::Int) strat.t > 0 || return false normdiff = norm(strat.μ - strat.last_μ) if normdiff < strat.stopping_norm info("Converged after $(strat.t * strat.cem_batchsize) episodes.") return true end false end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
2877
module pgrad using Reinforce using OpenAIGym using Transformations using StochasticOptimization using PenaltyFunctions using MLPlots; gr(size=(1400,1400), leg=false) # ---------------------------------------------------------------- # initialize a policy, do the learning, then return the policy function doit(env = GymEnv("BipedalWalker-v2")) s = state(env) ns = length(s) A = actions(env,s) nA = length(A) @show s ns policy = OnlineActorCritic(s, nA, # ϕ = nnet(2ns+nA, 2nA, [100], :softplus, lookback=10000), ϕ = resnet(2ns+nA, 2nA, 1, nh=[100], inner_activation=:softplus, lookback=10000), penalty = L2Penalty(1e-5), γ = 0.995, λ = 0.95, # αʳ = 0.0001, # αᵛ = 0.01, # αᵘ = 0.01, gaᵛ = OnlineGradAvg(50, lr=0.1, pu=RMSProp()), gaᵘ = OnlineGradAvg(50, lr=0.01, pu=RMSProp()), # gaʷ = OnlineGradAvg(50, lr=0.5, pu=Adamax()) ) # -------------------------------- # set up the custom visualizations # chainplots... put one for each of ϕ/C side-by-side ϕ = policy.actor.ϕ D = policy.actor.D cp_ϕ = ChainPlot(ϕ) tpplt = plot(layout=grid(4,2)) tp_δ = TracePlot(1, sp=tpplt[1], title="delta") tp_r̄ = TracePlot(1, sp=tpplt[2], title="r") tp_eᵛ = TracePlot(ns, sp=tpplt[3], title="ev") tp_v = TracePlot(ns, sp=tpplt[4], title="v") tp_eμ = TracePlot(nA, sp=tpplt[5], title="e_mu") tp_μ = TracePlot(nA, sp=tpplt[6], title="mu") tp_eσ = TracePlot(nA, sp=tpplt[7], title="e_sigma") tp_σ = TracePlot(nA, sp=tpplt[8], title="sigma") plt = plot(cp_ϕ.plt, tpplt, layout=grid(2,1,heights=[0.3,0.7])) # this will be called on every timestep of every episode function eachiteration(ep,i) @show i, ep.total_reward # i<5000 && return policy.gaᵛ.lr *= 0.999 policy.gaᵘ.lr *= 0.999 # i>=2000 && (policy.αᵘ = 0.0005) update!(cp_ϕ) for (tp,var) in [(tp_δ, policy.δ), (tp_r̄, mean(policy.r̄)), (tp_eᵛ, policy.eᵛ), (tp_v, policy.v), (tp_eμ, policy.eᵘ[1:nA]), (tp_μ, output_value(ϕ)[1:nA]), (tp_eσ, policy.eᵘ[nA+1:end]), (tp_σ, output_value(ϕ)[nA+1:end]), ] push!(tp, i, var) end gui() end function renderfunc(ep,i) policy.actor.testing = true if mod1(ep.niter, 1) == 1 OpenAIGym.render(env, ep.niter, nothing) end policy.actor.testing = false end learn!(policy, Episodes( env, freq = 1, episode_strats = [MaxIter(1000)], epoch_strats = [MaxIter(10000), IterFunction(renderfunc, every=5)], iter_strats = [IterFunction(eachiteration, every=1000)] # append_action = true )) env, policy end end #module
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
2756
module cemgym # this is a port of the example found at # http://rl-gym-doc.s3-website-us-west-2.amazonaws.com/mlss/lab1.html#starter using Reinforce # using OpenAIGym # using Distributions using Transformations using StochasticOptimization using LearningStrategies using Plots; gr(size=(500,200)) # ---------------------------------------------------------------- """ Wraps a LearnBase.Transformation which converts an input vector to action values. For discrete actions, it chooses the action which produces the highest value. For continuous (interval) actions, it squashes actions to [0,1]. """ struct TransformPolicy{T} <: AbstractPolicy trans::T end Transformations.params(tp::TransformPolicy) = params(tp.trans) Reinforce.action(π::TransformPolicy, r, s, A::DiscreteSet) = A[indmax(transform!(π.trans, s))] # # continuous: return the transform value, squashed to [0,1] # # TODO: remove the squashing when a "Affine + Sigmoid" transformation is available # function Reinforce.action(π::TransformPolicy, r, s, A::IntervalSet) # Transformations.sigmoid(transform(π.trans, s)[1]) * (A.amax-A.amin) + A.amin # end # ---------------------------------------------------------------- # initialize a policy, do the learning, then return the policy function do_cem_test(sublearners...; env = GymEnv("CartPole-v0"), maxsteps = 200, # max number of steps in one episode maxiter = 1000, # max learning iterations # noise_max = 1.0, # noise_steps = 20, # noise_func = t -> max(noise_max - t/noise_steps, 0.0), kw...) # generic query of state and action size s = state(env) A = actions(env,s) @assert isa(A, DiscreteSet) # this is the only kind that will work right now nS, nA = map(length, (s, A)) # create a simple policy: action = argmax(wx+b) policy = TransformPolicy(Affine(nS, nA)) # initialize the CEM, which will learn Θ = {w,b} strat = CrossEntropyMethod(;maxsteps=maxsteps, kw...) # keep a vector of test episode returns. after each iteration, run (and plot) # an episode using the current CEM μ Rs = zeros(0) theme(:dark) function iterfunc(model, i) copy!(params(policy), strat.μ) R = run_episode(env, policy, maxsteps=maxsteps) do plot(plot(env), plot(Rs, label="Test Reward")) |> display end push!(Rs, R) end # create a MetaLearner driven by the CEM strategy learner = strategy(strat, sublearners...; maxiter=maxiter, oniter=iterfunc, kw...) # do the learning. our iterator just repeatedly gives us the environment learn!(policy, learner, repeated(env)) @show policy strat policy, strat end end #module
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
3511
module cemgym # this is a port of the example found at # http://rl-gym-doc.s3-website-us-west-2.amazonaws.com/mlss/lab1.html#starter using Reinforce using OpenAIGym # using Distributions using Transformations using StochasticOptimization using LearningStrategies using MLPlots; gr(size=(500,500)) # ---------------------------------------------------------------- """ Wraps a LearnBase.Transformation which converts an input vector to action values. For discrete actions, it chooses the action which produces the highest value. For continuous (interval) actions, it squashes actions to [0,1]. """ struct TransformPolicy{T} <: AbstractPolicy trans::T end Transformations.params(tp::TransformPolicy) = params(tp.trans) get_action(A::DiscreteSet, ŷ::AbstractVector) = A[indmax(ŷ)] function get_action(A::IntervalSet, ŷ) val = 0.5 * (1.0 + clamp(first(ŷ), -1.0, 1.0)) val * (A.hi - A.lo) + A.lo end # # discrete: our action is the action which maximizes the affine transform # function Reinforce.action(π::TransformPolicy, r, s, A::DiscreteSet) # A[indmax(transform!(π.trans, s))] # end # most actionsets pass through to get_action Reinforce.action(π::TransformPolicy, r, s, A) = get_action(A) # get an action where each part of the TupleSet is associated with part of the # transformation output function Reinforce.action(π::TransformPolicy, r, s, A::TupleSet) ŷ = transform!(π.trans, s) a = [] i = 0 for Aᵢ in A nᵢ = length(Aᵢ) push!(a, get_action(Aᵢ, view(ŷ, i+1:i+nᵢ))) i += nᵢ end # @show a a end # # continuous: return the transform value, squashed to [0,1] # # TODO: remove the squashing when a "Affine + Sigmoid" transformation is available # function Reinforce.action(π::TransformPolicy, r, s, A::IntervalSet) # Transformations.sigmoid(transform(π.trans, s)[1]) * (A.amax-A.amin) + A.amin # end # ---------------------------------------------------------------- # function myplot(t, hist_min, hist_mean, hist_max, anim=nothing) # (env,i,sars) -> if mod1(t,3)==1 && mod1(i,10)==1 # plot( # plot(hist_mean, c=:black, fill=((hist_min,hist_max), 0.2), title="Progress", leg=false), # plot(env, title = "Episode: $t Iter: $i") # ) # if anim == nothing # gui() # else # frame(anim) # end # else # return # end # end # ---------------------------------------------------------------- # initialize a policy, do the learning, then return the policy function do_cem_test(sublearners...; env = GymEnv("SoccerEmptyGoal-v0"), maxsteps = 200, # max number of steps in one episode maxiter = 1000, # max learning iterations # noise_max = 1.0, # noise_steps = 20, # noise_func = t -> max(noise_max - t/noise_steps, 0.0), kw...) s = state(env) A = actions(env,s) nin = length(s) nout = length(A) @show nin, nout t = nnet(nin, nout, [2], :softplus) @show t policy = TransformPolicy(t) cem = CrossEntropyMethod(;maxsteps=maxsteps, kw...) tp = TracePlot(2, layout=@layout([a;b{0.2h}])) tracer = IterFunction((policy,i) -> begin mod1(i,10)==1 || return #run one episode R,N = episode!(env, policy, stepfunc = OpenAIGym.render) @show R, N push!(tp, i, [R,N]) gui(tp.plt) end) learner = strategy(cem, tracer, sublearners...; maxiter=maxiter, kw...) learn!(policy, learner, repeated(env)) @show policy cem end end #module
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
1861
module DDPG using OpenAIGym using DataStructures # NOTE: to find other valid environment names, look at the universe code that registers them: # https://github.com/openai/universe/blob/master/universe/__init__.py env = gym("flashgames.DuskDrive-v0") # env = gym("Pong-v3") # env = gym("wob.mini.CircleCenter-v0") # env = gym("Breakout-v0") @show actions(env, state(env)) # error() # agent/policy policy = RandomPolicy() # ----------------------------------- # quick AR process for arbitrary vectors # used for exploration policy of DDPG using Distributions mutable struct ARProcess{T} prev::T reversion noise end function Base.get(ar::ARProcess) ar.prev .= ar.reversion .* ar.prev .+ rand(noise) end # ----------------------------------- mutable struct DdpgPolicy ns; na; nϕ features actor actor_target critic critic_target experience end function build_actor_critic(env) ns = length(state(env)) na = length(actions(env)) # shared feature map: ϕ(s,a) nϕ = 10 features = nnet(ns, nϕ, [10], :relu) # actor: μ(s | Θμ) actor = Chain(features, Affine(nϕ, na)) actor_target = copy(actor) # critic: Q(s,a | ΘQ) critic = Chain(features, Concat(nϕ+na), Affine(nϕ+na, 1)) critic_target = copy(critic) # experience replay buffer experience = CircularBuffer{Tuple}(100) DdpgPolicy(ns, na, nϕ, features, actor, actor_target, critic, critic_target, experience) end # main loop... run one episode, getting a tuple: (s, a, r, s′) for sars in Episode(env, policy) # @show sars s,a,r,s′ = sars # @show a,r # push!(experience, sars) OpenAIGym.render(env) #= TODO - actor/critic share "feature transformation" ϕ(s,a) - update policy (agent) by sampling from the experience replay =# end # @show length(experience) end # module
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
801
import Reinforce: action, actions, finished, ismdp, maxsteps, reset!, reward, state, step! ############################################################################### # Example Usage ############################################################################### mutable struct FooEnv <: AbstractEnvironment s::Int # state r::Int # reward FooEnv() = new(1, 0) end state(env::FooEnv) = env.s reward(env::FooEnv) = env.r reset!(env::FooEnv) = (env.s = 1; env.r = 0; env) step!(env::FooEnv, s, a) = (env.s += 1; env.r = -1; (env.r, env.s)) maxsteps(env::FooEnv) = 3 actions(env::FooEnv, s′) = [1, 2, 3] struct FooPolicy <: AbstractPolicy end action(π::FooPolicy, r, s, A) = rand(A) # Iterating a Episode: # # ep = Episode(FooEnv(), FooPolicy()) # for (s, a, r, s′) ∈ ep # ... # end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
1352
import Reinforce: action, actions, finished, ismdp, maxsteps, reset!, reward, state, step! function test_ep_iteration() @info "interface::iteration::maxsteps" env = FooEnv() π = FooPolicy() ep = Episode(env, π) # given the default of `finished` is `false`, iteration should hit `maxsteps` for (i, (s, a, r, s′)) ∈ enumerate(ep) @test s == i @test r == -1 @test a ∈ [1, 2, 3] @test s′ == i + 1 end @test ep.niter == 3 @test ep.total_reward == -3 end # function test_ep_iteration function test_ep_finished() @info "interface::iteration::finished" env = FooEnv() π = FooPolicy() ep = Episode(env, π) for (s, a, r, s′) ∈ ep nothing end # @eval finished(::FooEnv, s′) = false @test ep.niter == 1 @test ep.total_reward == -1 end # function test_ep_iteration function test_run_episode() @info "interface::run_episode" env = FooEnv() π = FooPolicy() run_episode(env, π) do sars s, a, r, s′ = sars @test a ∈ [1, 2, 3] @test r == -1 @test s + 1 == s′ end end # function test_run_episode @testset "interface" begin @info "interface::iteration" test_ep_iteration() begin @eval finished(::FooEnv, s′) = (s′ == 2) test_ep_finished() @eval finished(::FooEnv, s′) = false # reset to default end test_run_episode() end # @testset "env interface"
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
4961
module pgrad # this is a port of the example found at # http://rl-gym-doc.s3-website-us-west-2.amazonaws.com/mlss/lab1.html#starter using Reinforce using OpenAIGym # using Distributions using Learn using MLPlots; gr(size=(1400,1400)) # ---------------------------------------------------------------- # """ # Wraps a LearnBase.Transformation which converts an input vector to action values. # For discrete actions, it chooses the action which produces the highest value. # For continuous (interval) actions, it squashes actions to [0,1]. # """ # immutable TransformPolicy{T} <: AbstractPolicy # trans::T # end # # Transformations.params(tp::TransformPolicy) = params(tp.trans) # # get_action(A::DiscreteSet, ŷ::AbstractVector) = A[indmax(ŷ)] # function get_action(A::IntervalSet, ŷ) # val = 0.5 * (1.0 + clamp(first(ŷ), -1.0, 1.0)) # val * (A.hi - A.lo) + A.lo # end # # # # discrete: our action is the action which maximizes the affine transform # # function Reinforce.action(π::TransformPolicy, r, s, A::DiscreteSet) # # A[indmax(transform!(π.trans, s))] # # end # # # most actionsets pass through to get_action # Reinforce.action(π::TransformPolicy, r, s, A) = get_action(A) # # # get an action where each part of the TupleSet is associated with part of the # # transformation output # function Reinforce.action(π::TransformPolicy, r, s, A::TupleSet) # ŷ = transform!(π.trans, s) # a = [] # i = 0 # for Aᵢ in A # nᵢ = length(Aᵢ) # push!(a, get_action(Aᵢ, view(ŷ, i+1:i+nᵢ))) # i += nᵢ # end # # @show a # a # end # # # # continuous: return the transform value, squashed to [0,1] # # # TODO: remove the squashing when a "Affine + Sigmoid" transformation is available # # function Reinforce.action(π::TransformPolicy, r, s, A::IntervalSet) # # Transformations.sigmoid(transform(π.trans, s)[1]) * (A.amax-A.amin) + A.amin # # end # type Critic # return_func::Function # baseline_func::Function # ---------------------------------------------------------------- # initialize a policy, do the learning, then return the policy function doit(sublearners...; env = GymEnv("BipedalWalker-v2"), maxsteps = 500, # max number of steps in one episode maxiter = 1000, # max learning iterations kw...) s = state(env) ns = length(s) A = actions(env,s) nA = length(A) @show s ns # create a stochastic policy which can sample actions from a multivariate normal dist # create a multivariate normal transformation with underlying params μ/σ μ = zeros(nA) # diagonal σ = zeros(nA) D = MvNormalTransformation(μ, σ) nϕ = 2nA # # upper-triangular # U = eye(nA,nA) # D = MvNormalTransformation(μ, U) # nϕ = nA*(nA+1) @show D # create a neural net mapping: s --> ϕ = vec(μ,U) of the MvNormal nh = Int[30,20] ϕ = nnet(ns, nϕ, nh, :relu, :identity) @show ϕ # the critic's value function... mapping state to value C = nnet(ns, 1, nh, :relu, :identity) @show C # our discount rates # TODO: can we learn these too?? γ = 0.9 λ = 0.6 # this is a stochastic policy which follows http://www.breloff.com/DeepRL-OnlineGAE/ policy = OnlineGAE(A, ϕ, D, C, γ, λ, OnlineGradAvg(400, lr=0.1, pu=Adadelta()), OnlineGradAvg(200, lr=0.1, pu=Adadelta()), # penalty = ElasticNetPenalty(1e-1,0.5) penalty = L2Penalty(1e-4) ) # -------------------------------- # set up the custom visualizations # chainplots... put one for each of ϕ/C side-by-side cp_ϕ = ChainPlot(ϕ) cp_C = ChainPlot(C) # this will be called on every timestep of every episode function eachiteration(ep,i) @show i, ep.total_reward update!(cp_ϕ) update!(cp_C) hm1 = heatmap(reshape(D.dist.μ,nA,1), yflip=true, title=string(maximum(D.dist.μ)), xguide=string(minimum(D.dist.μ)), left_margin=150px) # Σ = UpperTriangular(D.dist.Σ.chol.factors) # Σ = Diagonal(D.dist.Σ.diag) Σ = Diagonal(abs.(output_value(ϕ)[nA+1:end])) hm2 = heatmap(Σ, yflip=true, title=string(maximum(Σ)), xguide=string(minimum(Σ))) plot(cp_ϕ.plt, cp_C.plt, hm1, hm2, layout = @layout([ϕ; C; hm1{0.2w,0.2h} hm2])) # i%2000==0 && gui() gui() end function renderfunc(ep,i) if mod1(ep.niter, 10) == 1 OpenAIGym.render(env, ep.niter, nothing) end end learn!(policy, Episodes( env, freq = 5, episode_strats = [MaxIter(1000)], epoch_strats = [MaxIter(5000), IterFunction(renderfunc, every=5)], iter_strats = [IterFunction(eachiteration, every=1000)] )) env, policy end end #module
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
211
using Reinforce using Test @testset "Reinforce" begin include("foo.jl") include("interface.jl") @testset "env" begin include("env/mountain_car.jl") include("env/multi-armed-bandit.jl") end end
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
231
using Reinforce.MountainCarEnv @testset "MountainCarEnv" begin @info "Reinforce.MountainCarEnv" env = MountainCar() i = 0 for sars in Episode(env, RandomPolicy()) i += 1 end @test i > 0 end # @testset "MountainCarEnv"
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
code
1056
using Distributions using Reinforce using Test struct TestEpisodePolicy <: AbstractPolicy end action(::TestEpisodePolicy, r, s, A) = 2 @testset "MultiArmedBanditEnv" begin @info "Reinforce.MultiArmedBandit" @testset "constructor" begin let σ = 5 env = MultiArmedBandit(10, 42; σ = σ) @test iszero(reward(env)) @test maxsteps(env) == 42 @test actions(env, nothing) == 1:10 @test length(env.arms) == 10 for arm ∈ env.arms @test arm.σ == σ end end let d₁ = Uniform(1, 42) d₂ = Gamma() env = MultiArmedBandit(d₁, d₂) @test iszero(reward(env)) @test actions(env, nothing) == 1:2 @test length(env.arms) == 2 @test env.arms[1] == d₁ @test env.arms[2] == d₂ end end # @testset "constructor" @testset "episode iterator" begin let env = MultiArmedBandit(10, 5) π = TestEpisodePolicy() @test iszero(reward(env)) for (s, a, r, s′) ∈ Episode(env, π) @test a == 2 end @test !iszero(reward(env)) end end end # @testset "MultiArmedBanditEnv"
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
docs
837
# v0.1.0 - Drop Julia 0.5 support. (#15) - New interface for controlling episode termination `maxsteps(env)::Int` ([#17]). The condition of termination is `finished(...) || maxsteps(...)` now. - New field for `CartPole` environment: `maxsteps`. An keyword of constructor is added: `CartPole(; maxsteps = 42)` ([#16], [#17]). Also, there are helper functions of CartPole v0 and v1: - `CartPoleV0()`: this is equal to `CartPole(maxsteps = 200)` - `CartPoleV1()`: this is equal to `CartPole(maxsteps = 500)` - Keyword `maxsteps` of `run_episode` is deprecated, please overload `maxsteps`. ([#19]) [#15]: https://github.com/JuliaML/Reinforce.jl/pull/15 [#16]: https://github.com/JuliaML/Reinforce.jl/pull/16 [#17]: https://github.com/JuliaML/Reinforce.jl/pull/17 [#19]: https://github.com/JuliaML/Reinforce.jl/pull/19
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.4.0
a06ac71d93cb5d39feabbd1455129cd8540e4621
docs
3019
# Reinforce [![Build Status](https://travis-ci.org/JuliaML/Reinforce.jl.svg?branch=master)](https://travis-ci.org/JuliaML/Reinforce.jl) [![Gitter](https://badges.gitter.im/reinforcejl/Lobby.svg)](https://gitter.im/reinforcejl/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) Reinforce.jl is an interface for Reinforcement Learning. It is intended to connect modular environments, policies, and solvers with a simple interface. ![](https://cloud.githubusercontent.com/assets/933338/17670982/8923a2f6-62e2-11e6-943f-bd0a2a7b5c1f.gif) ![](https://cloud.githubusercontent.com/assets/933338/17703784/f3e18414-63a0-11e6-9f9e-f531278216f9.gif) --- Packages which build on Reinforce: - [AtariAlgos](https://github.com/JuliaML/AtariAlgos.jl): Environment which wraps Atari games using [ArcadeLearningEnvironment](https://github.com/nowozin/ArcadeLearningEnvironment.jl) - [OpenAIGym](https://github.com/JuliaML/OpenAIGym.jl): Wrapper for OpenAI's python package: gym ## Environment Interface New environments are created by subtyping `AbstractEnvironment` and implementing a few methods: - `reset!(env) -> env` - `actions(env, s) -> A` - `step!(env, s, a) -> (r, s′)` - `finished(env, s′) -> Bool` and optional overrides: - `state(env) -> s` - `reward(env) -> r` which map to `env.state` and `env.reward` respectively when unset. - `ismdp(env) -> Bool` An environment may be fully observable (MDP) or partially observable (POMDP). In the case of a partially observable environment, the state `s` is really an observation `o`. To maintain consistency, we call everything a state, and assume that an environment is free to maintain additional (unobserved) internal state. The `ismdp` query returns true when the environment is MDP, and false otherwise. - `maxsteps(env) -> Int` The terminating condition of an episode is control by `maxsteps() || finished()`. It's default value is `0`, indicates unlimited. --- An minimal example for testing purpose is `test/foo.jl`. TODO: more details and examples ## Policy Interface Agents/policies are created by subtyping `AbstractPolicy` and implementing `action`. The built-in random policy is a short example: ```julia struct RandomPolicy <: AbstractPolicy end action(π::RandomPolicy, r, s, A) = rand(A) ``` Where `A` is the action space. The `action` method maps the last reward and current state to the next chosen action: `(r, s) -> a`. - `reset!(π::AbstractPolicy) -> π` ## Episode Iterator Iterate through episodes using the `Episode` iterator. A 4-tuple `(s,a,r,s′)` is returned from each step of the episode: ```julia ep = Episode(env, π) for (s, a, r, s′) in ep # do some custom processing of the sars-tuple end R = ep.total_reward T = ep.niter ``` There is also a convenience method `run_episode`. The following is an equivalent method to the last example: ```julia R = run_episode(env, π) do # anything you want... this section is called after each step end ``` --- ## Author: [Tom Breloff](https://github.com/tbreloff)
Reinforce
https://github.com/JuliaML/Reinforce.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
477
module DataDrivenAcoustics using UnderwaterAcoustics using DocStringExtensions using DSP: amp2db, db2amp, pow2db, db2pow include("pm_RBNN.jl") include("pm_GPR.jl") include("pm_core.jl") include("pm_utility.jl") function __init__() UnderwaterAcoustics.addmodel!(RayBasis2D) UnderwaterAcoustics.addmodel!(RayBasis2DCurv) UnderwaterAcoustics.addmodel!(RayBasis3D) UnderwaterAcoustics.addmodel!(RayBasis3DRCNN) UnderwaterAcoustics.addmodel!(GPR) end end
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
1253
using GaussianProcesses export GPR, GPRCal """ $(TYPEDEF) A Gaussian process regression model to model acoustic propagation. """ Base.@kwdef struct GPR{T1, T2, T3, T4, T5} <: DataDrivenPropagationModel{T1} env::T1 kern::T2 mZero::T3 logObsNoise::Real GPmodel::T4 calculatefield::T5 twoDimension::Bool function GPR(env, kern; mZero= MeanZero(), logObsNoise = -2.0, ratioₜ = 1.0, seed = false, calculatefield = GPRCal) rₜ, pₜ, _, _ = SplitData(env.locations, env.measurements, ratioₜ, seed) size(env.locations)[1] == 2 ? (twoDimension = true) : (twoDimension = false) GPmodel = GP(rₜ, vec(pₜ), mZero, kern, logObsNoise) optimize!(GPmodel) new{typeof(env), typeof(kern), typeof(mZero),typeof(GPmodel), typeof(calculatefield)}(env, kern, mZero,logObsNoise, GPmodel, calculatefield, twoDimension) end end """ $(SIGNATURES) Generate mean or standard deviation of Gaussian process regression prediction at location `xyz` using GPR model. Set `std` to true for mean predictions. """ function GPRCal(r::GPR, xyz::AbstractArray; std = false) if std == false return predict_y(r.GPmodel, xyz)[1] else return predict_y(r.GPmodel, xyz)[2] end end
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
19882
using Flux using Random using BangBang using Zygote export RayBasis2D, RayBasis2DCal, RayBasis2DCurv, RayBasis2DCurvCal, RayBasis3D, RayBasis3DCal, RayBasis3DRCNN, RayBasis3DRCNNCal abstract type DataDrivenUnderwaterEnvironment end abstract type DataDrivenPropagationModel{T<:DataDrivenUnderwaterEnvironment} end """ $(TYPEDEF) A 2D plane wave RBNN formualtion. - `env`: data driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis2DCal`) - `nrays`: number of rays (default: 60) - `θ`: azimuthal angle of arrival rays in radian (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) - `ini_lr`: initial learning rate (default: 0.001) - `trainloss`: loss function used in training and model update (default: `rmseloss`) - `dataloss`: data loss function to calculate benchmarking validation error for early stopping (default: `rmseloss`) - `ratioₜ`: data split ratio = number of training data/(number of training data + number of validation data) (default: 0.7) - set `seed` to `true` to seed random data selection order (default: `false`) - `maxepoch`: maximum number of training epoches allowed (default: 10000000) - `ncount`: maximum number of tries before reducing learning rate (default: 5000) - model training ends once learning rate is smaller than `minlearnrate` (default: 1e-6) - learning rate is reduced by `reducedlearnrate` once `ncount` is reached (default: 10) - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best. (default: `false`) """ Base.@kwdef struct RayBasis2D{T1, T2, T3<:AbstractVector, T4, T5} <: DataDrivenPropagationModel{T1} env::T1 calculatefield::T2 nrays::Int θ::T3 A::T3 ϕ::T3 k::T4 trainable::T5 function RayBasis2D(env; calculatefield = RayBasis2DCal, nrays = 60, θ = Vector{Missing}(undef, nrays), A = Vector{Missing}(undef, nrays), ϕ = Vector{Missing}(undef, nrays), k = missing, inilearnrate::Real = 0.001, trainloss = rmseloss, dataloss = rmseloss, ratioₜ::Real = 0.7, seed = false, maxepoch::Int = 10000000, ncount::Int = 5000, minlearnrate::Real = 1e-6 , reducedlearnrate::Real = 10.0, showloss::Bool = false) trainable = () size(env.locations)[1] == 2 || throw(ArgumentError("RayBasis2D only supports 2D environment")) ratioₜ <= 1.0 || throw(ArgumentError("Training data split ratio can not exceed 1")) ratioₜ > 0.0 || throw(ArgumentError("Training data split ratio should be larger than 0")) seed == true && Random.seed!(6) if sum(ismissing.(θ)) > 0 θ = rand(nrays) .* π trainable = push!!(trainable, θ) end if sum(ismissing.(A)) > 0 A = rand(nrays) trainable = push!!(trainable, A) end if sum(ismissing.(ϕ)) > 0 ϕ = rand(nrays) .* π trainable = push!!(trainable, ϕ) end if k === missing if env.soundspeed !== missing && env.frequency !== missing k = 2.0f0 * π * env.frequency / env.soundspeed else k = 2.0f0 * π * 2000.0f0 / 1500.0f0 trainable = push!!(trainable, k) end end x = new{typeof(env), typeof(calculatefield), typeof(θ), typeof(k), typeof(trainable)}(env, calculatefield, nrays, θ, A, ϕ, k, trainable) ModelFit!(x, inilearnrate, trainloss, dataloss, ratioₜ, seed, maxepoch, ncount, minlearnrate, reducedlearnrate, showloss) return x end end """ $(SIGNATURES) Predict acoustic field at location `xyz` using `RayBasis2D` model. Set `showarrivals` to `true` to return an array of individual complex arrivals. """ function RayBasis2DCal(r::RayBasis2D, xy::AbstractArray; showarrivals = false) x = @view xy[1:1,:] y = - @view xy[end:end,:] kx = r.k * (x .* cos.(r.θ) + y .* sin.(r.θ)) .+ r.ϕ showarrivals == false ? (return sum(r.A .* cis.(kx), dims = 1)) : (return r.A .* cis.(kx)) end Flux.@functor RayBasis2D Flux.trainable(r::RayBasis2D) = r.trainable """ $(TYPEDEF) A 2D plane wave RBNN formualtion by modeling curvature of wavefornt. - `env`: data driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis2DCurvCal`) - `nrays`: number of rays (default: 60) - `θ`: azimuthal angle of arrival ray in radian (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `d`: distance in meters to help in modeling curvature of wavefornt (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) - `ini_lr`: initial learning rate (default: 0.001) - `trainloss`: loss function used in training and model update (default: `rmseloss`) - `dataloss`: data loss function to calculate benchmarking validation error for early stopping (default: `rmseloss`) - `ratioₜ`: data split ratio = number of training data/(number of training data + number of validation data) (default: 0.7) - set `seed` to `true` to seed random data selection order (default: `false`) - `maxepoch`: maximum number of training epoches allowed (default: 10000000) - `ncount`: maximum number of tries before reducing learning rate (default: 5000) - model training ends once learning rate is smaller than `minlearnrate` (default: 1e-6) - learning rate is reduced by `reducedlearnrate` once `ncount` is reached (default: 10) - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best. (default: `false`) """ Base.@kwdef struct RayBasis2DCurv{T1, T2, T3<:AbstractVector, T4, T5} <: DataDrivenPropagationModel{T1} env::T1 calculatefield::T2 nrays::Int θ::T3 A::T3 ϕ::T3 d::T3 k::T4 trainable::T5 function RayBasis2DCurv(env; calculatefield = RayBasis2DCurvCal, nrays = 60, θ = Vector{Missing}(undef, nrays), A = Vector{Missing}(undef, nrays), ϕ= Vector{Missing}(undef, nrays), d = Vector{Missing}(undef, nrays), k = missing, inilearnrate::Real = 0.001, trainloss = rmseloss, dataloss = rmseloss, ratioₜ::Real = 0.7, seed = false, maxepoch::Int = 10000000, ncount::Int = 5000, minlearnrate::Real = 1e-6 , reducedlearnrate::Real = 10.0, showloss::Bool = false) size(env.locations)[1] == 2 || throw(ArgumentError("RayBasis2DCurv only supports 2D environment")) trainable = () seed == true && Random.seed!(6) if sum(ismissing.(θ)) > 0 θ = rand(nrays) .* π trainable = push!!(trainable, θ) end if sum(ismissing.(A)) > 0 A = rand(nrays) trainable = push!!(trainable, A) end if sum(ismissing.(ϕ)) > 0 ϕ = rand(nrays) .* π trainable = push!!(trainable, ϕ) end if sum(ismissing.(d)) > 0 d = rand(nrays) trainable = push!!(trainable, d) end if k === missing if env.soundspeed !== missing && env.frequency !== missing k = 2.0f0 * π * env.frequency / env.soundspeed else k = 2.0f0 * π * 2000.0f0 / 1500.0f0 trainable = push!!(trainable, k) end end x = new{typeof(env), typeof(calculatefield), typeof(θ), typeof(k), typeof(trainable)}(env, calculatefield, nrays, θ, A, ϕ, d, k, trainable) ModelFit!(x, inilearnrate,trainloss, dataloss, ratioₜ, seed, maxepoch, ncount, minlearnrate, reducedlearnrate, showloss) return x end end """ $(SIGNATURES) Predict acoustic field at location `xyz` using `RayBasis2DCurv` model. Set `showarrivals` to `true` to return an array of individual complex arrivals. `xₒ` is the reference location and can be an arbitrary location. """ function RayBasis2DCurvCal(r::RayBasis2DCurv, xy::AbstractArray; showarrivals = false, xₒ = [0.0, 0.0]) x = @view xy[1:1,:] y = - @view xy[end:end,:] xx = x .- (xₒ[1] .- r.d .* cos.(r.θ)) yy = y .- (xₒ[2] .- r.d .* sin.(r.θ)) l = sqrt.(xx.^2 + yy.^2) kx = r.k .* l .+ r.ϕ showarrivals == false ? (return sum(r.A ./ l .* cis.(kx), dims = 1)) : (return r.A ./ l.* cis.(kx)) end Flux.@functor RayBasis2DCurv Flux.trainable(r::RayBasis2DCurv) = r.trainable """ $(TYPEDEF) A 3D spherical wave RBNN formualtion. - `env`: data driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis3DCal`) - `nrays`: number of rays (default: 60) - `θ`: nominal azimuthal angle of arrival rays in radian (default: missing) - `ψ`: nominal elevation angle of arrival rays in radian (default: missing) - `d`: nominal propagation distance of arrival rays in meters (default: missing) - `eθ`: error to nominal azimuthal angle of arrival rays in radian (default: missing) - `eψ`: error to nominal elevation angle of arrival rays in radian (default: missing) - `ed`: error to nominal propagation distance of arrival rays in meters (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) - `ini_lr`: initial learning rate (default: 0.001) - `trainloss`: loss function used in training and model update (default: `rmseloss`) - `dataloss`: data loss function to calculate benchmarking validation error for early stopping (default: `rmseloss`) - `ratioₜ`: data split ratio = number of training data/(number of training data + number of validation data) (default: 0.7) - set `seed` to `true` to seed random data selection order (default: `false`) - `maxepoch`: maximum number of training epoches allowed (default: 10000000) - `ncount`: maximum number of tries before reducing learning rate (default: 5000) - model training ends once learning rate is smaller than `minlearnrate` (default: 1e-6) - learning rate is reduced by `reducedlearnrate` once `ncount` is reached (default: 10) - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best. (default: `false`) """ Base.@kwdef struct RayBasis3D{T1, T2, T3<:AbstractVector, T4, T5} <: DataDrivenPropagationModel{T1} env::T1 calculatefield::T2 nrays::Int θ::T3 ψ::T3 d::T3 eθ::T3 eψ::T3 ed::T3 A::T3 ϕ::T3 k::T4 trainable::T5 function RayBasis3D(env; calculatefield = RayBasis3DCal, nrays = 60, θ = Vector{Missing}(undef, nrays), ψ = Vector{Missing}(undef, nrays), d = Vector{Missing}(undef, nrays), eθ = Vector{Missing}(undef, nrays), eψ = Vector{Missing}(undef, nrays), ed = Vector{Missing}(undef, nrays), A = Vector{Missing}(undef, nrays), ϕ = Vector{Missing}(undef, nrays), k = missing, inilearnrate::Real = 0.001, trainloss = rmseloss, dataloss = rmseloss, ratioₜ::Real = 0.7, seed = false, maxepoch::Int = 10000000, ncount::Int = 5000, minlearnrate::Real = 1e-6 , reducedlearnrate::Real = 10.0, showloss::Bool = false) trainable = () seed == true && Random.seed!(6) size(env.locations)[1] == 3 || throw(ArgumentError("RayBasis3D only supports 3D environment.")) if sum(ismissing.(θ)) > 0 θ = rand(nrays) .* π trainable = push!!(trainable, θ) eθ = zeros(nrays) .* π end if sum(ismissing.(ψ)) > 0 ψ = rand(nrays) .* π trainable = push!!(trainable, ψ) eψ = zeros(nrays) .* π end if sum(ismissing.(d)) > 0 d = rand(nrays) .* π trainable = push!!(trainable, d) ed = zeros(nrays) .* π end if sum(ismissing.(eθ)) > 0 eθ = zeros(nrays) .* π trainable = push!!(trainable, eθ) end if sum(ismissing.(eψ)) > 0 eψ = zeros(nrays) .* π trainable = push!!(trainable, eψ) end if sum(ismissing.(ed)) > 0 ed = zeros(nrays) .* π trainable = push!!(trainable, ed) end if sum(ismissing.(A)) > 0 A = rand(nrays) trainable = push!!(trainable, A) end if sum(ismissing.(ϕ)) > 0 ϕ = rand(nrays) .* π trainable = push!!(trainable, ϕ) end if k === missing if env.soundspeed !== missing && env.frequency !== missing k = 2.0f0 * π * env.frequency / env.soundspeed else k = 2.0f0 * π * 2000.0f0 / 1500.0f0 trainable = push!!(trainable, k) end end x = new{typeof(env), typeof(calculatefield), typeof(θ), typeof(k), typeof(trainable)}(env, calculatefield, nrays, θ, ψ, d, eθ, eψ, ed, A, ϕ, k, trainable) ModelFit!(x, inilearnrate,trainloss, dataloss, ratioₜ, seed, maxepoch, ncount, minlearnrate, reducedlearnrate, showloss) return x end end """ $(SIGNATURES) Predict acoustic field at location `xyz` using `RayBasis3D` model. Set `showarrivals` to `true` to return an array of individual complex arrivals. `xₒ` is the reference location and can be an arbitrary location. """ function RayBasis3DCal(r::RayBasis3D, xyz::AbstractArray; showarrivals = false, xₒ = [0.0, 0.0, 0.0]) x = @view xyz[1:1,:] y = @view xyz[2:2,:] z = - @view xyz[3:3,:] xx = x .- (xₒ[1] .- (r.ed .+ r.d) .* cos.(r.eθ .+ r.θ) .* sin.(r.eψ .+ r.ψ)) yy = y .- (xₒ[2] .- (r.ed .+ r.d) .* sin.(r.eθ .+ r.θ) .* sin.(r.eψ .+ r.ψ)) zz = z .- (xₒ[3] .- (r.ed .+ r.d) .* cos.(r.eψ .+ r.ψ)) l = sqrt.(xx.^2.0f0 + yy.^2.0f0 + zz.^2.0f0) kx = r.k .* l .+ r.ϕ showarrivals == false ? (return sum(r.A ./ l .* cis.(kx), dims = 1)) : (return r.A ./ l .* cis.(kx)) end Flux.@functor RayBasis3D Flux.trainable(r::RayBasis3D) = r.trainable """ $(TYPEDEF) A 3D spherical wave RBNN formualtion with reflection coefficient neural network (RCNN) as part of the model. - `env`: data driven underwater environment - `RCNN`: neural network to model seabed reflection coefficient - `calculatefield`: function to estimate acoustic field (default: `RayBasis3DRCNNCal`) - `nrays`: number of rays (default: 60) - `eθ`: error to nominal azimuthal angle of arrival rays in radian (default: missing) - `eψ`: error to nominal elevation angle of arrival rays in radian (default: missing) - `ed`: error to nominal propagation distance of arrival rays in meters (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) - `ini_lr`: initial learning rate (default: 0.001) - `trainloss`: loss function used in training and model update (default: `rmseloss`) - `dataloss`: data loss function to calculate benchmarking validation error for early stopping (default: `rmseloss`) - `ratioₜ`: data split ratio = number of training data/(number of training data + number of validation data) (default: 0.7) - set `seed` to `true` to seed random data selection order (default: `false`) - `maxepoch`: maximum number of training epoches allowed (default: 10000000) - `ncount`: maximum number of tries before reducing learning rate (default: 5000) - model training ends once learning rate is smaller than `minlearnrate` (default: 1e-6) - learning rate is reduced by `reducedlearnrate` once `ncount` is reached (default: 10) - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best. (default: `false`) """ Base.@kwdef struct RayBasis3DRCNN{T1, T2, T3, T4<:AbstractVector, T5, T6} <: DataDrivenPropagationModel{T1} env::T1 RCNN::T2 calculatefield::T3 nrays::Int θ::T4 ψ::T4 d::T4 k::T5 trainable::T6 function RayBasis3DRCNN(env, RCNN; calculatefield = RayBasis3DRCNNCal, nrays = 60, θ = Vector{Missing}(undef, nrays), ψ = Vector{Missing}(undef, nrays), d = Vector{Missing}(undef, nrays), k = missing, inilearnrate::Real = 0.001, trainloss = rmseloss, dataloss = rmseloss, ratioₜ::Real = 0.7, seed = false, maxepoch::Int = 10000000, ncount::Int = 5000, minlearnrate::Real = 1e-6 , reducedlearnrate::Real = 10.0, showloss::Bool = false) trainable = () seed == true && Random.seed!(6) size(env.locations)[1] == 3 || throw(ArgumentError("RayBasis3DRCNN only supports 3D environment.")) trainable = push!!(trainable, RCNN) env.tx !== missing || throw(ArgumentError("Source location must be provided.")) length(location(env.tx)) == 3 || throw(ArgumentError("Source location must be 3 dimensional.")) env.waterdepth !== missing || throw(ArgumentError("Water depth needs to be provided")) θ, ψ, d = cartesian2spherical([0.0, 0.0, 0.0].- find_image_src(env.locations[:,1], location(env.tx), nrays, env.waterdepth)) if k === missing if env.soundspeed !== missing && env.frequency !== missing k = 2.0f0 * π * env.frequency / env.soundspeed else k = 2.0f0 * π * 2000.0f0 / 1500.0f0 trainable = push!!(trainable, k) end end x = new{typeof(env), typeof(RCNN), typeof(calculatefield), typeof(θ), typeof(k), typeof(trainable)}(env, RCNN, calculatefield, nrays, θ, ψ, d, k, trainable) ModelFit!(x, inilearnrate,trainloss, dataloss, ratioₜ, seed, maxepoch, ncount, minlearnrate, reducedlearnrate, showloss) return x end end """ $(SIGNATURES) Predict acoustic field at location `xyz` using `RayBasis3DRCNN` model. Set `showarrivals` to `true` to return an array of individual complex arrivals. `xₒ` is the reference location and can be an arbitrary location. """ function RayBasis3DRCNNCal(r::RayBasis3DRCNN, xyz::AbstractArray; showarrivals = false, xₒ = [0.0, 0.0, 0.0]) x = @view xyz[1:1,:] y = @view xyz[2:2,:] z = - @view xyz[3:3,:] xx = x .- (xₒ[1] .- r.d .* cos.(r.θ) .* sin.(r.ψ)) yy = y .- (xₒ[2] .- r.d .* sin.(r.θ) .* sin.(r.ψ)) zz = z .- (xₒ[3] .- r.d .* cos.(r.ψ)) l = sqrt.(xx.^2.0f0 + yy.^2.0f0 + zz.^2.0f0) j = collect(1: 1: r.nrays) R = (abs2.(location(r.env.tx)[1] .- x) .+ abs2.(location(r.env.tx)[2] .- y)).^ 0.5f0 upward = iseven.(j) s1 = 2.0f0 .* upward .- 1.0f0 n = div.(j, 2) s = div.(n .+ upward, 2.0f0) b = div.(n .+ (1 .- upward), 2.0f0) s2 = 2.0f0 .* iseven.(n) .- 1.0f0 dz = 2.0f0 .* b .* r.env.waterdepth .+ s1 .*location(r.env.tx)[3] .- s1 .* s2 .* z incidentangle = Float32.(abs.(atan.(R ./ dz))) surfaceloss = reflectioncoef(r.env.seasurface, r.env.frequency, incidentangle).^s RC = Matrix{Float32}(undef, r.nrays,size(zz)[2]) phase = Matrix{Float32}(undef, r.nrays, size(zz)[2]) bufRCNN = Zygote.Buffer(RC, 2, size(zz)[2]) bufphase = Zygote.Buffer(phase, size(phase)) bufRC = Zygote.Buffer(RC, size(RC)) for i in 1 : r.nrays bufRCNN = r.RCNN(incidentangle[i:i,:]) bufRC[i:i,:] = abs.(bufRCNN[1:1,:]) bufphase[i:i,:] = bufRCNN[2:2,:] end totalphase = r.k * l .+ copy(bufphase) .* b amp = 1.0f0 ./ l .* surfaceloss .* copy(bufRC).^ b .* absorption.(r.env.frequency, l, r.env.salinity) showarrivals == false ? (return sum(amp.* cis.(totalphase); dims=1)) : (return amp.* cis.(totalphase)) end Flux.@functor RayBasis3DRCNN Flux.trainable(r::RayBasis3DRCNN) = r.trainable
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
13661
using RecipesBase using Printf export DataDrivenUnderwaterEnvironment, ModelFit!, transfercoef, transmissionloss, check, plot, rays, eigenrays, arrivals """ $(TYPEDEF) Create an underwater environment for data-driven physics-based propagation models by providing locations, acoustic measnreuments and other known environmental and channel geomtry knowledge. - `locations`: location measurements (in the form of matrix with dimension [dimension of a single location data x number of data points]) - `measurements`: acoustic field measurements (in the form of matrix with dimension [1 x number of data points]) - `soundspeed`: medium sound speed (default: missing) - `frequency`: source frequency (default: missing) - `waterdepth`: water depth (default: missing) - `salinity`: water salinity (default: 35) - `seasurface`: surface property (dafault: Vacuum) - `seabed`: seabed property (default: SandySilt) - `tx`: source location (default: missing) - set `dB` to `false` if `measurements` are not in dB scale (default: `true`) """ Base.@kwdef struct BasicDataDrivenUnderwaterEnvironment{T1<:Matrix, T2, T3, T4, T5<:ReflectionModel, T6<:ReflectionModel, T7} <: DataDrivenUnderwaterEnvironment locations::T1 measurements::T1 soundspeed::T2 frequency::T3 waterdepth::T4 salinity::Real seasurface::T5 seabed::T6 tx::T7 dB::Bool function BasicDataDrivenUnderwaterEnvironment(locations, measurements; soundspeed = missing, frequency = missing, waterdepth = missing, salinity = 35.0, seasurface = Vacuum, seabed = SandySilt, tx = missing, dB = true) if tx !== missing length(location(tx)) == size(locations)[1] || throw(ArgumentError("Dimension of source location and measurement locations do not match")) end size(locations)[2] == size(measurements)[2] || throw(ArgumentError("Number of locations and fields measurements do not match")) size(locations)[1] < 4 || throw(ArgumentError("Dimension of location data should not be larger than 3")) size(measurements)[1] == 1 || throw(ArgumentError("size of acoustic measurements should be 1 × n")) new{typeof(locations), typeof(soundspeed), typeof(frequency), typeof(waterdepth), typeof(seasurface), typeof(seabed), typeof(tx)}(locations, measurements, soundspeed, frequency, waterdepth, salinity, seasurface, seabed, tx, dB) end end DataDrivenUnderwaterEnvironment(locations, measurements; kwargs...) = BasicDataDrivenUnderwaterEnvironment(locations, measurements; kwargs...) """ $(SIGNATURES) Train data-driven physics-based propagation model. - `ini_lr`: initial learning rate - `trainloss`: loss function used in training and model update - `dataloss`: data loss function to calculate benchmarking validation error for early stopping - `ratioₜ`: data split ratio = number of training data/(number of training data + number of validation data) - set `seed` to `true` to seed random data selection order - `maxepoch`: maximum number of training epoches allowed - `ncount`: maximum number of tries before reducing learning rate - model training ends once learning rate is smaller than `minlearnrate` - learning rate is reduced by `reducedlearnrate` once `ncount` is reached - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best """ function ModelFit!(r::DataDrivenPropagationModel, inilearnrate, trainloss, dataloss, ratioₜ, seed, maxepoch, ncount, minlearnrate, reducedlearnrate, showloss) rₜ, pₜ, rᵥ, pᵥ = SplitData(r.env.locations, r.env.measurements, ratioₜ, seed) bestmodel = deepcopy(Flux.params(r)) count = 0 opt = Adam(inilearnrate) epoch = 0 bestloss = dataloss(rᵥ, pᵥ, r) while true Flux.train!((x,y) -> trainloss(x, y, r), Flux.params(r), [(rₜ, pₜ)], opt) tmploss = dataloss(rᵥ, pᵥ, r) epoch += 1 if tmploss < bestloss bestloss = tmploss # bestmodel = deepcopy(Flux.params(r)) bestmodel = r count = 0 showloss && (@show epoch, dataloss(rₜ, pₜ, r), dataloss(rᵥ, pᵥ, r)) else count += 1 end epoch > maxepoch && break if count > ncount count = 0 # Flux.loadparams!(r, bestmodel) Flux.loadmodel!(r, bestmodel) opt.eta /= reducedlearnrate opt.eta < minlearnrate && break showloss && println("********* reduced learning rate: ",opt.eta, " *********" ) end end r end """ $(SIGNATURES) Calculate transmission coefficient at location `rx` using a data-driven physics-based propagation model. - `model`: data-driven physics-based propagation model - `tx`: acoustic source. This is optional. Use `missing` or `nothing` for unknown source. - `rx`: acoustic receiver location(s) """ function UnderwaterAcoustics.transfercoef(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::AcousticReceiver; mode=:coherent) where {T1} mode === :coherent || throw(ArgumentError("Unsupported mode :" * string(mode))) if tx !== nothing && tx !== missing model.env.frequency == nominalfrequency(tx) || throw(ArgumentError("Mismatched frequencies in acoustic source and data driven environment")) if model.env.tx !== missing location(model.env.tx) == location(tx) || throw(ArgumentError("Mismatched location in acoustic source and data driven environment")) else @warn "Source location is ignored in field calculation" end end if model isa GPR if model.twoDimension == true p = model.calculatefield(model, hcat([location(rx)[1], location(rx)[end]]))[1] else p = model.calculatefield(model, hcat([location(rx)[1], location(rx)[2], location(rx)[end]]))[1] end model.env.dB == true ? (return db2amp.(-p)) : (return p) else p = model.calculatefield(model, collect(location(rx)))[1] end return p end function UnderwaterAcoustics.transfercoef(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::AcousticReceiverGrid2D; mode=:coherent) where {T1} mode === :coherent || throw(ArgumentError("Unsupported mode :" * string(mode))) if tx !== nothing && tx !== missing model.env.frequency == nominalfrequency(tx) || throw(ArgumentError("Mismatched frequencies in acoustic source and data driven environment")) if model.env.tx !== missing location(model.env.tx) == location(tx) || throw(ArgumentError("Mismatched location in acoustic source and data driven environment")) else @warn "Source location is ignored in field calculation" end end (xlen, ylen) = size(rx) x = vec(location.(rx)) p = reshape(model.calculatefield(model, hcat(first.(x), last.(x))'), xlen, ylen) if model isa GPR model.env.dB == true ? (return db2amp.(-p)) : (return p) else return p end end function UnderwaterAcoustics.transfercoef(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::AcousticReceiverGrid3D; mode=:coherent) where {T1} mode === :coherent || throw(ArgumentError("Unsupported mode :" * string(mode))) if tx !== nothing && tx !== missing model.env.frequency == nominalfrequency(tx) || throw(ArgumentError("Mismatched frequencies in acoustic source and data driven environment")) if model.env.tx !== missing location(model.env.tx) == location(tx) || throw(ArgumentError("Mismatched location in acoustic source and data driven environment")) else @warn "Source location is ignored in field calculation" end end (xlen, ylen, zlen) = size(rx) x = vec(location.(rx)) if ylen == 1 p = reshape(model.calculatefield(model, hcat(first.(x), getfield.(x, 2), last.(x))'), xlen, zlen) else p = reshape(model.calculatefield(model, hcat(first.(x), getfield.(x, 2), last.(x))'), xlen, ylen, zlen) end if model isa GPR model.env.dB == true ? (return db2amp.(-p)) : (return p) else return p end end UnderwaterAcoustics.transfercoef(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::AbstractArray{<:AcousticReceiver}) = UnderwaterAcoustics.tmap(rx1 -> transfercoef(model, tx, rx1), rx) UnderwaterAcoustics.transfercoef(model::DataDrivenPropagationModel, rx::Union{AbstractVector, AbstractMatrix}) = model.calculatefield(model, rx) UnderwaterAcoustics.transmissionloss(model::DataDrivenPropagationModel, rx::Union{AbstractVector, AbstractMatrix}) = -amp2db.(abs.(transfercoef(model, rx))) UnderwaterAcoustics.transmissionloss(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::Union{AbstractVector, AbstractMatrix}) = -amp2db.(abs.(transfercoef(model, tx, rx))) UnderwaterAcoustics.rays(model::DataDrivenPropagationModel, tx, rx) = throw(ArgumentError("This function is not yet supported")) UnderwaterAcoustics.eigenrays(model::DataDrivenPropagationModel, tx, rx) = throw(ArgumentError("This function is not yet supported")) abstract type Arrival end function Base.show(io::IO, a::Arrival) if a.time === missing @printf(io, " | | %5.1f dB ϕ%6.1f°", amp2db(abs(a.phasor)), rad2deg(angle(a.phasor))) else @printf(io, " | %6.2f ms | %5.1f dB ϕ%6.1f°", 1000*a.time, amp2db(abs(a.phasor)), rad2deg(angle(a.phasor))) end end struct RayArrival{T1,T2} <: Arrival time::T1 phasor::T2 surface::Missing bottom::Missing launchangle::Missing arrivalangle::Missing raypath::Missing end """ $(SIGNATURES) Show arrival rays at a location `rx` using a data-driven physics-based propagation model. - `model`: data-driven physics-based propagation model - `tx`: acoustic source. This is optional. Use `missing` or `nothing` for unknown source. - `rx`: an acoustic receiver """ function UnderwaterAcoustics.arrivals(model::DataDrivenPropagationModel, tx::Union{Missing, Nothing, AcousticSource}, rx::Union{AbstractVector, AcousticReceiver}; threshold = 30) model isa GPR && throw(ArgumentError("GPR model does not support this function")) arrival = model.calculatefield(model, collect(location(rx)); showarrivals = true) amp = amp2db.(abs.(arrival)) idx = findall(amp .> (maximum(amp) - threshold)) signficantarrival = arrival[idx] idx = sortperm(abs.(signficantarrival), rev = true) if model isa RayBasis2D || model isa RayBasis2DCurv rays = [RayArrival(missing, signficantarrival[idx[i]], missing, missing, missing, missing, missing) for i in 1 : length(idx)] elseif model isa RayBasis3DRCNN rays =[RayArrival(model.d[idx[i]] ./ model.env.soundspeed, signficantarrival[idx[i]], missing, missing, missing, missing, missing) for i in 1 : length(idx)] else rays =[RayArrival((model.d[idx[i]] .+ model.ed[idx[i]]) ./ model.env.soundspeed, signficantarrival[idx[i]], missing, missing, missing, missing, missing) for i in 1 : length(idx)] end return rays end UnderwaterAcoustics.arrivals(model::DataDrivenPropagationModel, rx::Union{AbstractVector, AcousticReceiver}) = UnderwaterAcoustics.arrivals(model, nothing, rx) @recipe function plot(env::DataDrivenUnderwaterEnvironment; receivers = [], transmissionloss = [], dynamicrange = 42.0) size(transmissionloss) == size(receivers) || throw(ArgumentError("Mismatched receivers and transmissionloss")) receivers isa AcousticReceiverGrid2D || throw(ArgumentError("Receivers must be an instance of AcousticReceiverGrid2D")) minloss = minimum(transmissionloss) clims --> (-minloss-dynamicrange, -minloss) colorbar --> true cguide --> "dB" ticks --> :native legend --> false xguide --> "x (m)" yguide --> "z (m) " @series begin seriestype := :heatmap receivers.xrange, receivers.zrange, -transmissionloss' end end function UnderwaterAcoustics.check(::Type{RayBasis2D}, env::Union{<:DataDrivenUnderwaterEnvironment,Missing}) if env !== missing size(env.locations)[1] == 2 || throw(ArgumentError("RayBasis2D only supports 2D environment")) end env end function UnderwaterAcoustics.check(::Type{RayBasis2DCurv}, env::Union{<:DataDrivenUnderwaterEnvironment,Missing}) if env !== missing size(env.locations)[1] == 2 || throw(ArgumentError("RayBasis2DCurv only supports 2D environment")) end env end function UnderwaterAcoustics.check(::Type{RayBasis3D}, env::Union{<:DataDrivenUnderwaterEnvironment,Missing}) if env !== missing size(env.locations)[1] == 3 || throw(ArgumentError("RayBasis3D only supports 3D environment")) end env end function UnderwaterAcoustics.check(::Type{RayBasis3DRCNN}, env::Union{<:DataDrivenUnderwaterEnvironment,Missing}) if env !== missing env.tx === missing || throw(ArgumentError("RayBasis3DRCNN only supports environments with known source location")) length(location(env.tx)) == 3 || throw(ArgumentError("RayBasis3DRCNN only supports 3D source")) size(env.locations)[1] == 3|| throw(ArgumentError("RayBasis3DRCNN only supports 3D environment")) env.waterdepth !== missing || throw(ArgumentError("RayBasis3DRCNN only supports environments with known water depth")) end env end function UnderwaterAcoustics.check(::Type{GPR}, env::Union{<:DataDrivenUnderwaterEnvironment,Missing}) env end
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
2760
using LinearAlgebra export rmseloss, SplitData """ $(SIGNATURES) Split location and acoustic measurement data into training and validation dataset. - `location`: measurement locations - `measurement`: coresponding acoustic measurements - `ratioₜ`: training data split ratio - set `seed` to `true` to seed the random order generation in data split """ function SplitData(location, measurement, ratioₜ, seed) dsize = size(location)[2] seed && Random.seed!(8) idxsequence = randperm(dsize) rₜ = location[:,idxsequence[1 : Int(round(dsize * ratioₜ))]] pₜ = measurement[:,idxsequence[1 : Int(round(dsize * ratioₜ))]] rᵥ = location[:,idxsequence[Int(round(dsize * ratioₜ)) + 1 : end]] pᵥ = measurement[:,idxsequence[Int(round(dsize * ratioₜ)) + 1: end]] return rₜ, pₜ, rᵥ, pᵥ end function find_image_src(rx, tx, nrays, waterdepth) IsTwoD = false (length(tx) == 3) && (IsTwoD == true) a = 20.0f0 count = 0 s = 2 * (Int(a) * 2 + 1) # no of image sources for a given "a" IsTwoD ? (all_image_src = zeros(Float32, 2, s)) : (all_image_src = zeros(Float32, 3, s)) # store all image sources image_src_amp = zeros(Float32, s) # amplitude of arrival rays ref = zeros(Float32, 2, s) # number of reflection on surface and bottom. for w = 0.0f0 : 1.0f0 # for all 8 possible combinations of +- (eqn(11)), they can only take values 0 or 1 for n = -a : a # "a" can be any positive number count += 1 IsTwoD ? (image_src = [tx[1], (1.0f0 - 2.0f0 * w) * tx[2] + 2.0f0 * n * L]) : (image_src = [tx[1], tx[2], (1.0f0 - 2.0f0 * w) * tx[3] + 2.0f0 * n * waterdepth]) d = norm(image_src .- rx) image_src_amp[count]= 0.2f0^(abs(n)) * (0.99f0)^ (abs(n - w)) / d all_image_src[:, count] = image_src ref[:, count] = [abs(n-w), abs(n)] end end idx = sortperm(abs.(image_src_amp), rev = true)[1 : nrays] # sort based on received amplitude to select n_rays image sources return all_image_src[:, idx] end function cartesian2spherical(pos) x = @view pos[1,:] y = @view pos[2,:] z = @view pos[3,:] d = norm.(eachcol(pos)) θ = atan.(y, x) ψ = atan.(norm.(eachcol(pos[1:2,:])), z) return θ, ψ, d end """ $(SIGNATURES) Root mean sqaure error between ground truth acoustic fields `tl` at locations `rx` and predicted field by data-driven `model`. """ function rmseloss(rx, tl, model) if model.env.dB == true Flux.mse(transmissionloss(model, rx), tl)^0.5f0 else Flux.mse(transfercoef(model, rx), tl)^0.5f0 end end
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
code
6366
using DataDrivenAcoustics using UnderwaterAcoustics using Test using Random using DSP using GaussianProcesses using Flux function test2d(datapm) x1 = transfercoef(datapm, nothing, AcousticReceiver(50.0, -5.0)) x2 = transfercoef(datapm, nothing, AcousticReceiver(50.0, -10.0)) x3 = transfercoef(datapm, nothing, AcousticReceiver(50.0, -15.0)) x = transfercoef(datapm, nothing, [AcousticReceiver(50.0, -d) for d ∈ 5.0:5.0:15.0]) @test x isa AbstractVector @test all(isapprox.([x1, x2, x3], x, atol= 0.000001)) x = transfercoef(datapm, nothing, AcousticReceiverGrid2D(50.0, 0.0, 1, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (1, 3) @test all(isapprox.([x1 x2 x3], x, atol= 0.000001)) x = transfercoef(datapm, nothing, AcousticReceiverGrid2D(50.0, 10.0, 3, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (3, 3) @test all(isapprox.([x1 x2 x3], x[1:1, :], atol= 0.000001)) x1 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, -5.0)) x2 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, -10.0)) x3 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, -15.0)) x = transmissionloss(datapm, nothing, [AcousticReceiver(50.0, -d) for d ∈ 5.0:5.0:15.0]) @test x isa AbstractVector @test all(isapprox.([x1, x2, x3], x, atol= 0.000001)) x = transmissionloss(datapm, nothing, AcousticReceiverGrid2D(50.0, 0.0, 1, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (1, 3) @test all(isapprox.([x1 x2 x3], x, atol= 0.000001)) x = transmissionloss(datapm, nothing, AcousticReceiverGrid2D(50.0, 10.0, 3, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (3, 3) @test all(isapprox.([x1 x2 x3], x[1:1,:], atol= 0.000001)) end function test3d(datapm) x1 = transfercoef(datapm, nothing, AcousticReceiver(50.0, 0.0, -5.0)) x2 = transfercoef(datapm, nothing, AcousticReceiver(50.0,0.0, -10.0)) x3 = transfercoef(datapm, nothing, AcousticReceiver(50.0, 0.0, -15.0)) x = transfercoef(datapm, nothing, [AcousticReceiver(50.0, 0.0, -d) for d ∈ 5.0:5.0:15.0]) @test x isa AbstractVector @test all(isapprox.([x1, x2, x3], x, atol= 0.000001)) x = transfercoef(datapm, nothing, AcousticReceiverGrid3D(50.0, 0.0, 1, 0.0, 1.0, 1, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (1, 3) @test all(isapprox.([x1 x2 x3], x, atol= 0.000001)) x = transfercoef(datapm, nothing, AcousticReceiverGrid3D(50.0, 10.0, 3, 0.0, 1.0, 2, -5.0, -5.0, 3)) @test x isa AbstractArray @test size(x) == (3, 2, 3) @test all(isapprox.([x1, x2, x3], x[1, 1,:], atol= 0.000001)) x1 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, 0.0, -5.0)) x2 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, 0.0, -10.0)) x3 = transmissionloss(datapm, nothing, AcousticReceiver(50.0, 0.0, -15.0)) x = transmissionloss(datapm, nothing, [AcousticReceiver(50.0, 0.0, -d) for d ∈ 5.0:5.0:15.0]) @test x isa AbstractVector @test all(isapprox.([x1, x2, x3], x, atol= 0.000001)) x = transmissionloss(datapm, nothing, AcousticReceiverGrid3D(50.0, 0.0, 1, 0.0, 1.0, 1, -5.0, -5.0, 3)) @test x isa AbstractMatrix @test size(x) == (1, 3) @test all(isapprox.([x1 x2 x3], x, atol= 0.000001)) x = transmissionloss(datapm, nothing, AcousticReceiverGrid3D(50.0, 10.0, 3, 0.0, 1.0, 2, -5.0, -5.0, 3)) @test x isa AbstractArray @test size(x) == (3, 2, 3) @test all(isapprox.([x1, x2, x3], x[1, 1,:], atol= 0.000001)) end @test RayBasis2D in models() @test RayBasis2DCurv in models() @test RayBasis3D in models() @test RayBasis3DRCNN in models() @test GPR in models() env = UnderwaterEnvironment() pm = PekerisRayModel(env, 7) Random.seed!(1) txpos = [0.0, -5.0] rxpos = rand(2, 500) .* [80.0, -20.0] .+ [1.0, 0.0] tloss = Array{Float32}(undef, 1, size(rxpos)[2]) for i in 1 : 1 : size(rxpos)[2] tloss[1, i] = Float32(transmissionloss(pm, AcousticSource(txpos[1], txpos[2], 1000.0), AcousticReceiver(rxpos[1,i], rxpos[2,i]); mode=:coherent)) end dataenv = DataDrivenUnderwaterEnvironment(rxpos, tloss; frequency = 1000.0, soundspeed = 1540.0); datapm = RayBasis2D(dataenv; inilearnrate = 0.005, seed = true) @test datapm isa RayBasis2D test2d(datapm) arr = arrivals(datapm, nothing, AcousticReceiver(50.0, -10.0)) @test arr isa AbstractVector{<:DataDrivenAcoustics.RayArrival} datapm = RayBasis2DCurv(dataenv; inilearnrate = 0.005, seed = true) @test datapm isa RayBasis2DCurv test2d(datapm) arr = arrivals(datapm, nothing, AcousticReceiver(50.0, -10.0)) @test arr isa AbstractVector{<:DataDrivenAcoustics.RayArrival} kern = Matern(1/2, 0.0, 0.0) datapm = GPR(dataenv, kern; logObsNoise = -5.0, seed = true, ratioₜ = 1.0) @test datapm isa GPR test2d(datapm) Random.seed!(1) txpos = [0.0, 0.0, -5.0] rxpos = rand(3, 500) .* [100.0, 0.0, -20.0] .+ [1.0, 0.0, 0.0]; tloss = Array{Float32}(undef, 1, size(rxpos)[2]) for i in 1 : 1 : size(rxpos)[2] tloss[1, i] = Float32(transmissionloss(pm, AcousticSource(txpos[1], txpos[2], txpos[3], 1000.0), AcousticReceiver(rxpos[1,i], rxpos[2,i], rxpos[3,i]); mode=:coherent)) end dataenv = DataDrivenUnderwaterEnvironment(rxpos, tloss; frequency = 1000.0, soundspeed = 1540.0, waterdepth = 20.0, tx = AcousticSource(0.0, 0.0, -5.0, 1000.0)) datapm = RayBasis3D(dataenv; inilearnrate = 0.005, seed = true) @test datapm isa RayBasis3D test3d(datapm) arr = arrivals(datapm, nothing, AcousticReceiver(50.0, 0.0, -10.0)) @test arr isa AbstractVector{<:DataDrivenAcoustics.RayArrival} Random.seed!(1) RCNN = Chain( x -> (x ./ 0.5f0 .* π .- 0.5f0) .* 2.0f0, #normalization of incident angle Dense(1, 30, sigmoid), Dense(30, 50, sigmoid), Dense(50, 2), ) dataenv = DataDrivenUnderwaterEnvironment(rxpos, tloss; frequency = 1000.0, soundspeed = 1540.0, waterdepth = 20.0, tx = AcousticSource(0.0, 0.0, -5.0, 1000.0)) datapm = RayBasis3DRCNN(dataenv, RCNN; seed = true, inilearnrate = 0.05, ncount = 500) @test datapm isa RayBasis3DRCNN test3d(datapm) arr = arrivals(datapm, nothing, AcousticReceiver(50.0, 0.0, -10.0)) @test arr isa AbstractVector{<:DataDrivenAcoustics.RayArrival} kern = Matern(1/2, [0.0, 0.0, 0.0], 0.0) datapm = GPR(dataenv, kern; logObsNoise = -5.0, seed = true, ratioₜ = 1.0) @test datapm isa GPR test3d(datapm)
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.2.1
93d62c1c85cd8d0470633dc50950cc9cdf88bf27
docs
15718
# DataDrivenAcoustics.jl This package is built upon the ideas discussed in our journal paper "Data-Aided Underwater Acoustic Ray Propagation Modeling" published on IEEE Journal of Oceanic Engineering (available online: https://ieeexplore.ieee.org/abstract/document/10224658). Conventional acoustic propagation models require accurate environmental knowledge to be available beforehand. While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior environmental knowledge, such techniques tend to be data-hungry. We propose a physics-based data-driven acoustic propagation modeling approach that enables us to train models with only a small amount of data. The proposed modeling framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental knowledge, and generalizes well to permit extrapolation beyond the area where data were collected. ## Installation ```julia julia> # press ] pkg> add UnderwaterAcoustics pkg> add DataDrivenAcoustics pkg> # press BACKSPACE julia> using UnderwaterAcoustics julia> using DataDrivenAcoustics julia> models() 6-element Vector{Any}: PekerisRayModel RayBasis2D RayBasis2DCurv RayBasis3D RayBasis3DRCNN GPR ``` ## Available models There are five data-driven models provided in current package: | Model | Description | Calculation function | |:-----|:---------|:---------| | `RayBasis2D` | 2D plane wave formulation. | `RayBasis2DCal` | | `RayBasis2DCurv` | 2D plane wave formulation by modeling curvature of wavefront.| `RayBasis2DCurvCal`| | `RayBasis3D` | 3D spherical wave formulation. | `RayBasis3DCal` | | `RayBasis3DRCNN` | 3D spherical wave formulation with reflection coefficient neural network (RCNN) as part of the model. | `RayBasis3DRCNNCal` | | `GPR` | Gaussian process regression model (2D & 3D) | `GPRCal` | ## Usage `DataDrivenUnderwaterEnvironment` creates a data-driven environment. - `locations`: location measurements (in the form of matrix with dimension [dimension of a single location data x number of data points]) - `measurements`: acoustic field measurements (in the form of matrix with dimension [1 x number of data points]) - `soundspeed`: medium sound speed (default: missing) - `frequency`: source frequency (default: missing) - `waterdepth`: water depth (default: missing) - `salinity`: water salinity (default: 35.0) - `seasurface`: surface property (default: Vacuum) - `seabed`: seabed property (default: SandySilt) - `tx`: source location (default: missing) - set `dB` to `false` if `measurements` are not in dB scale (default: `true`) `RayBasis2D`: 2D plane wave formulation. This formulation does not require knowledge of channel geometry. - `env`: data-driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis2DCal`) - `nrays`: number of rays (default: 60) - `θ`: azimuthal angle of arrival rays in radian (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) `RayBasis2DCurv`: 2D formulation by modeling curvature of wavefront. This formulation does not require knowledge of channel geometry. - `env`: data-driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis2DCurvCal`) - `nrays`: number of rays (default: 60) - `θ`: azimuthal angle of arrival ray in radian (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `d`: distance in meters to help in modeling curvature of wavefront (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) `RayBasis3D`: 3D spherical wave formulation. This formulation allow user to incorporate known channel geometry knowledge by inputting pre-calculated `θ`, `ψ` and `d`. To exclude the error terms from the trainable parameters, set `eθ`, `eψ`, and `ed` to zero if the input values of `θ`, `ψ`, and `d` are accurate. - `env`: data-driven underwater environment - `calculatefield`: function to estimate acoustic field (default: `RayBasis3DCal`) - `nrays`: number of rays (default: 60) - `θ`: nominal azimuthal angle of arrival rays in radian (default: missing) - `ψ`: nominal elevation angle of arrival rays in radian (default: missing) - `d`: nominal propagation distance of arrival rays in meters (default: missing) - `eθ`: error to nominal azimuthal angle of arrival rays in radian (default: missing) - `eψ`: error to nominal elevation angle of arrival rays in radian (default: missing) - `ed`: error to nominal propagation distance of arrival rays in meters (default: missing) - `A`: amplitude of arrival rays (default: missing) - `ϕ`: phase of a rays in radian (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) `RayBasis3DRCNN`: 3D spherical wave formulation with reflection coefficient neural network (RCNN) as part of the model. This formulation requires knowledge of channel geometry (water depth and source location) to pre-calculate nominal ray arrival directions, propagation distances and incident angles. This formulation currently only supports flat bathymetry. - `env`: data-driven underwater environment - `RCNN`: neural network to model seabed reflections - `calculatefield`: function to estimate acoustic field (default: `RayBasis3DRCNNCal`) - `nrays`: number of rays (default: 60) - `eθ`: error to nominal azimuthal angle of arrival rays in radian (default: missing) - `eψ`: error to nominal elevation angle of arrival rays in radian (default: missing) - `ed`: error to nominal propagation distance of arrival rays in meters (default: missing) - `k`: angular wavenumber in rad/m (default: missing) - `trainable`: trainable parameters (default: empty) These four physics-based data-driven propagation models have optional arguments pertaining to model training setups, in addition to the previously explained model parameters. - `ini_lr`: initial learning rate (default: 0.001) - `trainloss`: loss function used in model training (default: `rmseloss`) - `dataloss`: data loss function to calculate benchmarking validation error for early stopping (default: `rmseloss`) - `ratioₜ`: data split ratio = $\frac{\text{number of training data}}{\text{number of training data + number of validation data}}$ (default: 0.7) - set `seed` to `true` to seed random data selection order (default: `false`) - `maxepoch`: maximum number of training epochs allowed (default: 10000000) - `ncount`: maximum number of attempts without data loss improvement before reducing the learning rate (default: 5000) - model training ends once learning rate is smaller than `minlearnrate` (default: 1e-6) - learning rate is reduced by `reducedlearnrate` once `ncount` is reached (default: 10) - set `showloss` to true to display training and validation errors during the model training process, if the validation error is historically the best. (default: `false`) `GPR`: Gaussian process regression model that is capable of handling 2D and 3D regression problems. - `env`: data-driven underwater environment - `kern`: kernel function - `mZero`: zero mean function (default: `MeanZero()`) - `logObsNoise`: log standard deviation of observation noise (default: -2.0) - `ratioₜ`: training data split ratio (default: 1.0) - set `seed` to `true` to seed random data selection order (default: `false`) - `calculatefield`: function to estimate acoustic field (default: `GPRCal`) **Example:** If you have a set of measured pressure amplitudes and their corresponding measurement locations as training and validation data, you can load them directly. The location data should be a matrix with dimension [dimension of a single location data x number of data points]. The field data should be a matrix with dimension [1 x number of data points]. Alternatively, you can use the propagation models available in `Undertwateracoustic.jl`, `AcousticRayTracers.jl` or `AcousticsToolbox.jl` to generate synthetic acoustic data. Here, we use a 7-rays `PekerisRayModel` to generate synthetic acoustic measurements and ground truth fields within an area of interest and an extended region: ```julia julia> using UnderwaterAcoustics julia> using DataDrivenAcoustics julia> env = UnderwaterEnvironment(); julia> pm = PekerisRayModel(env,7); ``` We assume an omnidirectional 1 kHz transmitter `tx` at a depth of 5 m at the origin. We sample modeled acoustic measurements `tloss` from `pm` at 500 random locations `rxpos` covering an 80 m x 20 m area of interest. Those 500 measurements are used to train our physics-based data-driven propagation model. We seed the random generator to allow reader replicate the following results[^1]. [^1]: The presented results are obtained using Apple M2 chip with Julia version 1.7.3. ```julia julia> using Random julia> Random.seed!(1); julia> txpos = [0.0, -5.0]; #source location julia> f = 1000.0; #frequency at 1kHz julia> tx = AcousticSource(txpos[1], txpos[2], f); #define a source in UnderwaterAcoustics.jl julia> rxpos = rand(2, 500) .* [80.0, -20.0] .+ [1.0, 0.0]; #random receiver locations in area of interest julia> tloss = Array{Float32}(undef, 1, size(rxpos)[2]); julia> for i in 1 : 1 : size(rxpos)[2] tloss[1, i] = Float32(transmissionloss(pm, tx, AcousticReceiver(rxpos[1,i], rxpos[2,i]); mode=:coherent)) end ``` We plot measurement locations on top of ground truth field pattern. Note that the region from a range of 80 m to 100 m is the extended region where no measurement data are taken. ```julia julia> using Plots julia> rx = AcousticReceiverGrid2D(1.0, 0.1, 1000, -20.0, 0.1, 200); julia> let x = transmissionloss(pm, tx, rx) plot(env; receivers = rx, transmissionloss = x, title = "Ground truth", clim = (-40,0)) scatter!(rxpos[1,:], rxpos[2,:]; markersize = 1.5, markercolor =:green, markerstrokewidth = 0) xlims!(0, 100) ylims!(-20, 0) end ``` ![](docs/images/groundtruth.png) We plot the measurement locations with scaled size and color for better visualization: ```julia julia> let s = clamp.(vec(-tloss) ./ 40 .+ 1, 0.0, 1.0) .* 4 .+ 1 plot(rxpos[1,:], rxpos[2,:]; zcolor = vec(-tloss), seriestype=:scatter, clim = (-40, 0), markersize = s, markerstrokewidth = 0, label = nothing, title = "Data", xlabel = "x (m)", ylabel = "z (m)") xlims!(0, 100) ylims!(-20, 0) end ``` ![](docs/images/data.png) Now you can define a data-driven underwater environment by providing locations, measurements and any known environmental or geometric parameters as inputs: ```julia julia> dataenv = DataDrivenUnderwaterEnvironment(rxpos, tloss; frequency = f, soundspeed = 1540.0); ``` You need to formulate a ray basis neural network (RBNN) model that best suits the given scenario. Currently, this package offers four predefined RBNN formulations, as mentioned earlier. There are three data-driven models capable of handing this specific environment `dataenv`: ```julia julia> models(dataenv) 3-element Vector{Any}: RayBasis2D RayBasis2DCurv GPR ``` Users have the flexibility to define their own RBNN formulations tailored to the specific environment. As an illustrative example, we utilize the RayBasis2DCurv formulation. ```julia julia> datapm = RayBasis2DCurv(dataenv; inilearnrate = 0.005, seed = true); ``` This line of code automates the search and random initialization for trainable parameters of the defined RBNN model, allowing the model to learn from data and return a model with optimized trainable parameters. To query field at an unvisited location, simply call the `transmissionloss` with trained RBNN model `datapm` and a location coordinate: ```julia julia> transmissionloss(datapm, nothing, AcousticReceiver(50.0, -10.0)) 30.47255541988299 ``` Note that source location is optional in transmission loss calculation for data-driven propagation models. You can plot the estimated field patterns within the area of interest and the extended region: ```julia julia> let x = transmissionloss(datapm, nothing, rx) plot(env; receivers = rx, transmissionloss = x, title = "RBNN", clim = (-40,0)) xlims!(0, 100) ylims!(-20, 0) end ``` ![](docs/images/estimation.png) Our proposed physics-based data-driven propagation modeling technique has the capability not only to interpolate but also to extrapolate. You can ask for the significant arrivals[^2]: ```julia julia> arrivals(datapm, nothing, AcousticReceiver(50, -10)) 56-element Vector{DataDrivenAcoustics.RayArrival{Missing, ComplexF64}}: | | -33.9 dB ϕ -68.6° | | -34.3 dB ϕ-146.7° | | -36.0 dB ϕ 155.4° | | -36.4 dB ϕ -51.1° | | -36.9 dB ϕ -29.0° | | -37.0 dB ϕ -88.1° ⋮ | | -60.6 dB ϕ 152.6° | | -62.5 dB ϕ -88.7° | | -62.5 dB ϕ 55.4° | | -62.6 dB ϕ -57.2° | | -62.7 dB ϕ-169.1° ``` The empty columns represent information that is not provided by data-driven models. [^2]: Significant arrivals refer to arrivals with amplitudes no smaller than maximum arrival amplitude minus `threshold`. `threshold` is a optional argument in `arrivals` and its default value is set to 30 dB. For benchmarking, we construct a Gaussian process regression model using `GPR` given a kernel. To take advantage of the kernels available in the `GaussianProcesses.jl` package, please ensure that you have installed it. ```julia julia> using GaussianProcesses; julia> kern = Matern(1/2, 0.0, 0.0); julia> gp = GPR(dataenv, kern; logObsNoise = -5.0, seed = true, ratioₜ = 1.0); julia> let x = transmissionloss(gp, nothing, rx) plot(dataenv; receivers = rx, transmissionloss = x, clims=(-40,0), title = "Gaussian Processes") xlims!(0, 100) ylims!(-20, 0) end ``` ![](docs/images/GPR.png) The Gaussian process model can recover key strcuture in field pattern with low fidelity, but fails to extrapolate beyond the measurement region. Note that we use 100% of the data (500 measurements) as training data to train the GPR model, as the ratioₜ in GPR is set to 1.0 by default. Our RBNN model, on the other hand, is trained using 350 measurements, while the remaining 150 measurements are used as validation data for early stopping. The provided kernel and hyperparameters yield the best estimated field pattern (determined through visual inspection, as we know the ground truth field pattern) among the various kernels and hyperparameters we experimented with for this specific example. If users lack prior information about the ground truth field pattern, they should allocate some validation data for hyperparameter tuning of the GPR model. ## Publications ### Primary paper - K. Li and M. Chitre, “Data-aided underwater acoustic ray propagation modeling,” 2023. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10224658 ### Other useful papers - K. Li and M. Chitre, “Ocean acoustic propagation modeling using scientific machine learning,” in OCEANS: San Diego–Porto. IEEE, 2021, pp. 1–5. - K. Li and M. Chitre, “Physics-aided data-driven modal ocean acoustic propagation modeling,” in International Congress of Acoustics, 2022.
DataDrivenAcoustics
https://github.com/org-arl/DataDrivenAcoustics.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
904
using FieldDistributionNonuniformMedium using Documenter DocMeta.setdocmeta!(FieldDistributionNonuniformMedium, :DocTestSetup, :(using FieldDistributionNonuniformMedium); recursive=true) makedocs(; modules=[FieldDistributionNonuniformMedium], authors="JingYu Ning <[email protected]> and contributors", repo="https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl/blob/{commit}{path}#{line}", sitename="FieldDistributionNonuniformMedium.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://foldfelis.github.io/FieldDistributionNonuniformMedium.jl", assets=String[], ), pages=[ "Home" => "index.md", "Simulation" => "simulation.md", "APIs" => "api.md", ], ) deploydocs(; repo="github.com/foldfelis/FieldDistributionNonuniformMedium.jl", devbranch="master", )
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
112
module FieldDistributionNonuniformMedium using ProgressMeter include("simulation.jl") include("plot.jl") end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
841
using Plots.PlotMeasures using Plots export plot_ϵ, plot_e_field function plot_ϵ(s::Simulator; figsize=(600, 750), left_margin=-100px) ϵ = s.permittivity.ϵ return heatmap( axes(s.grid, 1), axes(s.grid, 2), ϵ', color=:algae, size=figsize, left_margin=left_margin, aspect_ratio=:equal ) end function plot_e_field(s::Simulator; figsize=(600, 750), left_margin=-100px) ez = s.ez ϵ = s.permittivity.ϵ lim = maximum(abs.(ez)) lim_ϵ = maximum(abs.(ϵ)) p = plot( clim=(-lim, lim), colorbar=false, size=figsize, left_margin=left_margin, aspect_ratio=:equal ) p = heatmap!( p, axes(s.grid, 1), axes(s.grid, 2), ez', color=:coolwarm ) p = contour!( p, axes(s.grid, 1), axes(s.grid, 2), lim .* ϵ' ./ lim_ϵ, color=:algae ) return p end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
7590
export Grid, build, boundary, Light, Permittivity, implant!, Permeability, Simulator, next!, simulate! const C = 299792458 struct Grid{T<:Real} nx::Int ny::Int nt::Int Δx::T Δy::T Δt::T max_x::T max_y::T max_t::T end """ Grid(max_x, max_y, max_t, nx, ny) Construct a discretization grid for computational domain. ## Arguments * `max_x`: Linear sizes of first computational domain in meters. * `max_y`: Linear sizes of second computational domain in meters. * `max_t`: Maximum computational time in seconds. * `nx`: Number of discretization grid for first computational domain. * `ny`: Number of discretization grid for second computational domain. ## Example ```jldoctest julia> Grid(3e-6, 10e-6, 1e-12, 60, 200); ``` """ function Grid(max_x, max_y, max_t, nx, ny) Δx = max_x / nx Δy = max_y / ny Δt = 1 / C / √(1/Δx^2 + 1/Δy^2) nt = round(Int, max_t/Δt) return Grid(nx, ny, nt, Δx, Δy, Δt, max_x, max_y, max_t) end Base.size(grid::Grid) = (grid.nx, grid.ny) Base.size(grid::Grid, d) = d::Integer <= 2 ? size(grid)[d] : 1 function Base.axes(grid::Grid) axes_x = grid.Δx * (Base.OneTo(grid.nx) .- grid.nx/2) axes_y = grid.Δy * (Base.OneTo(grid.ny) .- grid.Δy/2) return (axes_x, axes_y) end Base.axes(grid::Grid, d) = d::Integer <= 2 ? axes(grid)[d] : 1 boundary(grid::Grid) = (grid.max_x, grid.max_y) boundary(grid::Grid, d) = d::Integer <= 2 ? boundary(grid)[d] : 1 function build(grid::Grid) return cat( repeat(axes(grid, 1), 1, size(grid, 2), 1), repeat(axes(grid, 2)', size(grid, 1), 1, 1), dims=3 ) end struct Light{T<:Real} λ::T k::T end """ Light(λ) Construct a light to propagate. ## Arguments * `λ`: Wavelength of the light in meters. ## Example ```jldoctest julia> Light(2.04e-6); ``` """ function Light(λ) return Light(λ, 2π/λ) end struct Permittivity{T<:AbstractMatrix} ϵ::T ϵx::T ϵy::T end """ Permittivity(ϵ_const::Real, grid::Grid) Construct a uniform permittivity for the medium. ## Arguments * `ϵ_const`: Permittivity of the medium in F/m. * `grid`: Discretization grid. ## Example ```jldoctest julia> grid = Grid(3e-6, 10e-6, 1e-12, 60, 200); julia> Permittivity(9., grid); ``` """ function Permittivity(ϵ_const::Real, grid::Grid) ϵ = ϵ_const * ones(size(grid)) ϵx = C * grid.Δt/grid.Δx ./ ϵ ϵy = C * grid.Δt/grid.Δy ./ ϵ return Permittivity(ϵ, ϵx, ϵy) end """ implant!( permittivity::Permittivity, ϵ_const::Real, xs::AbstractVector, ys::AbstractVector, rs::AbstractVector, grid::Grid ) Implant some bubble defect into the medium. ## Arguments * `permittivity`: Permittivity object. * `ϵ_const`: Permittivity of the defect in F/m. * `xs`: Position of defect of first computational domain in meters. * `ys`: Position of defect of second computational domain in meters. * `rs`: Radius of defect in meters. * `grid`: Discretization grid. ## Example ```jldoctest julia> grid = Grid(3e-6, 10e-6, 1e-12, 60, 200); julia> permittivity = Permittivity(9., grid); julia> ϵ_defect = 1.; julia> xs_defect = [0, 1e-6, -1e-6]; julia> ys_defect = [1e-6, 2e-6, 3e-6]; julia> rs_defect = [0.5e-6, 0.1e-6, 0.2e-6]; julia> implant!( permittivity, ϵ_defect, xs_defect, ys_defect, rs_defect, grid ); ``` """ function implant!( permittivity::Permittivity, ϵ_const::Real, xs::AbstractVector, ys::AbstractVector, rs::AbstractVector, grid::Grid ) length(xs) == length(ys) == length(rs) || throw(DimensionMismatch("xs, ys, rs must have same length")) in_circle(i, j) = true in [ √( (axes(grid, 1)[i] - xs[c])^2 + (axes(grid, 2)[j] - ys[c])^2 ) < rs[c] for c in 1:length(xs) ] for i in 1:size(grid, 1), j in 1:size(grid, 2) in_circle(i, j) && (permittivity.ϵ[i, j] = ϵ_const) end permittivity.ϵx .= C * grid.Δt/grid.Δx ./ permittivity.ϵ permittivity.ϵy .= C * grid.Δt/grid.Δy ./ permittivity.ϵ return permittivity end struct Permeability{T<:AbstractMatrix} μ::T μx::T μy::T end """ Permeability(μ_const::Real, grid::Grid) Construct a uniform permeability for the medium. ## Arguments * `μ_const`: Permeability of the medium in N/A². * `grid`: Discretization grid. ## Example ```jldoctest julia> grid = Grid(3e-6, 10e-6, 1e-12, 60, 200); julia> Permeability(1., grid); ``` """ function Permeability(μ_const::Real, grid::Grid) μ = μ_const * ones(size(grid)) μx = C * grid.Δt/grid.Δx ./ μ μy = C * grid.Δt/grid.Δy ./ μ return Permeability(μ, μx, μy) end mutable struct Simulator{T<:AbstractArray} grid::Grid light::Light permittivity::Permittivity permeability::Permeability ez::T hx::T hy::T t::Int end function get_default_e_field(light::Light, grid::Grid; t=1) Δt = grid.Δt k = light.k return 0.1 * exp.( -axes(grid, 1)[2:end].^2 ./ (boundary(grid, 1)/4)^2 ) * sin(k * C*Δt*t) end """ Simulator(grid::Grid, light::Light, permittivity::Permittivity, permeability::Permeability) ## Arguments * `grid`: Discretization grid for computational domain. * `light`: Light to propagate. * `permittivity`: Permittivity for the medium. * `permeability`: Permeability for the medium. ## Example ```jldoctest julia> grid = Grid(3e-6, 10e-6, 1e-12, 60, 200); julia> light = Light(2.04e-6); julia> permittivity = Permittivity(9., grid); julia> permeability = Permeability(1., grid); julia> Simulator(grid, light, permittivity, permeability); """ function Simulator(grid::Grid, light::Light, permittivity::Permittivity, permeability::Permeability) ez = zeros(Float64, size(grid)) ez[2:end, 1] .= get_default_e_field(light, grid) return Simulator( grid, light, permittivity, permeability, ez, zeros(Float64, size(grid)), zeros(Float64, size(grid)), 1 ) end function Simulator(; max_x=3e-6, max_y=10e-6, max_t=0.1e-12, nx=300, ny=1000, λ=2.04e-6, ϵ = 9., μ = 1. ) grid = Grid(max_x, max_y, max_t, nx, ny) light = Light(λ) permittivity = Permittivity(ϵ, grid) permeability = Permeability(μ, grid) return Simulator(grid, light, permittivity, permeability) end function next!(s::Simulator) s.t += 1 ϵx, ϵy = s.permittivity.ϵx, s.permittivity.ϵy μx, μy = s.permeability.μx, s.permeability.μy s.ez[2:end, 1] .+= get_default_e_field(s.light, s.grid, t=s.t) s.hx[2:end-1, 2:end-1] .+= -μx[2:end-1, 2:end-1].*(s.ez[2:end-1, 2:end-1] - s.ez[2:end-1, 1:end-2]) s.hy[2:end-1, 2:end-1] .+= +μy[2:end-1, 2:end-1].*(s.ez[2:end-1, 2:end-1] - s.ez[1:end-2, 2:end-1]) s.ez[2:end-1, 2:end-1] .+= ϵx[2:end-1, 2:end-1].*(s.hy[3:end, 2:end-1] - s.hy[2:end-1, 2:end-1]) - ϵy[2:end-1, 2:end-1].*(s.hx[2:end-1, 3:end] - s.hx[2:end-1, 2:end-1]) return s end """ simulate!(s::Simulator) Run simulation from current `t` to `max_t` ## Arguments * `s`: Simulator. ## Example ```julia julia> grid = Grid(3e-6, 10e-6, 1e-12, 60, 200); julia> light = Light(2.04e-6); julia> permittivity = Permittivity(9., grid); julia> permeability = Permeability(1., grid); julia> s = Simulator(grid, light, permittivity, permeability); julia> simulate!(s); ``` """ function simulate!(s::Simulator) nt = s.grid.nt p = Progress(nt) for _ in (s.t+1):nt next!(s) ProgressMeter.next!(p) end return s end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
957
using VisualRegressionTests using Plots @testset "utils" begin gr() # ########## # # const. # # ########## max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 nx = 60 ny = 200 λ = 2.04e-6 ϵ = 9. μ = 1. ϵ_defect = 1. xs_defect = [0, 1e-6, -1e-6] ys_defect = [1e-6, 2e-6, 3e-6] rs_defect = [0.5e-6, 0.1e-6, 0.2e-6] # ############## # # components # # ############## grid = Grid(max_x, max_y, max_t, nx, ny) light = Light(λ) permittivity = Permittivity(ϵ, grid) permeability = Permeability(μ, grid) implant!(permittivity, ϵ_defect, xs_defect, ys_defect, rs_defect, grid) # ############# # # simulator # # ############# s = Simulator(grid, light, permittivity, permeability) simulate!(s) @plottest begin plot_ϵ(s) end "assets/permittivity.png" @plottest begin plot_e_field(s) end "assets/e_field.png" end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
236
using FieldDistributionNonuniformMedium using Test const C = 299792458 all_eq(x::AbstractArray) = all(xᵢ -> xᵢ == x[1], x) @testset "FieldDistributionNonuniformMedium.jl" begin include("simulation.jl") include("plot.jl") end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
code
3111
@testset "grid" begin max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 nx = 60 ny = 200 Δx = max_x / nx Δy = max_y / ny Δt = 1 / C / √(1/Δx^2 + 1/Δy^2) nt = round(Int, max_t/Δt) axes_x = Δx * (Base.OneTo(nx) .- nx/2) axes_y = Δy * (Base.OneTo(ny) .- Δy/2) grid = Grid(max_x, max_y, max_t, nx, ny) @test grid.Δx == Δx @test grid.Δy == Δy @test grid.Δt == Δt @test grid.nt == nt @test size(grid) == (nx, ny) @test size(grid, 1) == nx @test size(grid, 2) == ny @test axes(grid) == (axes_x, axes_y) @test axes(grid, 1) == axes_x @test axes(grid, 2) == axes_y @test boundary(grid) == (max_x, max_y) @test boundary(grid, 1) == max_x @test boundary(grid, 2) == max_y @test build(grid) == cat( repeat(axes_x, 1, ny, 1), repeat(axes_y', nx, 1, 1), dims=3 ) end @testset "Light" begin λ = 2.04e-6 light = Light(λ) @test light.λ == λ @test light.k == 2π/λ end @testset "permittivity" begin max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 nx = 60 ny = 200 ϵ = 9. grid = Grid(max_x, max_y, max_t, nx, ny) permittivity = Permittivity(ϵ, grid) @test permittivity.ϵ[1] == ϵ @test permittivity.ϵx[1] == C * grid.Δt/grid.Δx / ϵ @test permittivity.ϵy[1] == C * grid.Δt/grid.Δy / ϵ @test all_eq(permittivity.ϵ) @test all_eq(permittivity.ϵx) @test all_eq(permittivity.ϵy) ϵ_defect = 1. xs_defect = [0, 1e-6, -1e-6] ys_defect = [1e-6, 2e-6, 3e-6] rs_defect = [0.5e-6, 0.1e-6, 0.2e-6] implant!(permittivity, ϵ_defect, xs_defect, ys_defect, rs_defect, grid) in_circle(i, j) = true in [ √( (axes(grid, 1)[i] - xs_defect[c])^2 + (axes(grid, 2)[j] - ys_defect[c])^2 ) < rs_defect[c] for c in 1:length(rs_defect) ] @test all( in_circle(i, j) ? permittivity.ϵ[i, j] == ϵ_defect : permittivity.ϵ[i, j] == ϵ for i in 1:size(grid, 1), j in 1:size(grid, 2) ) end @testset "permeability" begin max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 nx = 60 ny = 200 μ = 1. grid = Grid(max_x, max_y, max_t, nx, ny) permeability = Permeability(μ, grid) @test permeability.μ[1] == μ @test permeability.μx[1] == C * grid.Δt/grid.Δx / μ @test permeability.μy[1] == C * grid.Δt/grid.Δy / μ @test all_eq(permeability.μ) @test all_eq(permeability.μx) @test all_eq(permeability.μy) end @testset "simulation" begin # ########## # # const. # # ########## max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 nx = 60 ny = 200 λ = 2.04e-6 ϵ = 9. μ = 1. # ############## # # components # # ############## grid = Grid(max_x, max_y, max_t, nx, ny) light = Light(λ) permittivity = Permittivity(ϵ, grid) permeability = Permeability(μ, grid) # ############# # # simulator # # ############# s = Simulator(nx=nx, ny=ny) simulate!(s) s = Simulator(grid, light, permittivity, permeability) simulate!(s) end
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
docs
1113
# FieldDistributionNonuniformMedium [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://foldfelis.github.io/FieldDistributionNonuniformMedium.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://foldfelis.github.io/FieldDistributionNonuniformMedium.jl/dev) [![Build Status](https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![Coverage](https://codecov.io/gh/foldfelis/FieldDistributionNonuniformMedium.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/foldfelis/FieldDistributionNonuniformMedium.jl) ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ```julia pkg> add FieldDistributionNonuniformMedium ``` ## Quick start ```julia julia> using FieldDistributionNonuniformMedium julia> s = Simulator(); julia> simulate!(s); julia> plot_e_field(s) ``` ![](docs/src/assets/demo.png)
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
docs
97
## Index ```@index ``` ## APIs ```@autodocs Modules = [FieldDistributionNonuniformMedium] ```
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
docs
637
```@meta CurrentModule = FieldDistributionNonuniformMedium ``` # FieldDistributionNonuniformMedium Documentation for [FieldDistributionNonuniformMedium](https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl). ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ```julia-REPL pkg> add https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl ``` ## Quick start ```julia-REPL julia> using FieldDistributionNonuniformMedium julia> s = Simulator(); julia> simulate!(s); julia> plot_e_field(s) ``` ![](assets/demo.png)
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.1.0
493a787e99086b5af9067488f52509002b2b4dc0
docs
2269
## Simulation There are two way to construct a `Simulator` with **uniform** permittivity. ### Construct simulator by parameter ```julia s = Simulator( max_x=3e-6, max_y=10e-6, max_t=0.1e-12, # calculation boundaries nx=300, ny=1000, # discretization λ=2.04e-6, # wavelength of light ϵ = 9., μ = 1. # permittivity and permeability ) ``` ### Construct simulator by components #### Declare constants ```julia # calculation boundaries max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 # discretization nx = 300 ny = 1000 # wavelength of light λ = 2.04e-6 # permittivity and permeability ϵ = 9. μ = 1. ``` #### Construct components ```julia grid = Grid(max_x, max_y, max_t, nx, ny) light = Light(λ) permittivity = Permittivity(ϵ, grid) permeability = Permeability(μ, grid) ``` #### Construct simulator ```julia s = Simulator(grid, light, permittivity, permeability) ``` ## Implant defect to modify permittivity ```julia # ########## # # const. # # ########## # calculation boundaries max_x = 3e-6 max_y = 10e-6 max_t = 0.1e-12 # discretization nx = 300 ny = 1000 # wavelength of light λ = 2.04e-6 # permittivity and permeability ϵ = 9. μ = 1. # defect ϵ_defect = 1. xs_defect = [0, 1e-6, -1e-6] ys_defect = [1e-6, 2e-6, 3e-6] rs_defect = [0.5e-6, 0.1e-6, 0.2e-6] # ############## # # components # # ############## grid = Grid(max_x, max_y, max_t, nx, ny) light = Light(λ) permittivity = Permittivity(ϵ, grid) permeability = Permeability(μ, grid) implant!(permittivity, ϵ_defect, xs_defect, ys_defect, rs_defect, grid) # ############# # # simulator # # ############# s = Simulator(grid, light, permittivity, permeability) ``` Or ```julia ϵ_defect = 1. xs_defect = [0, 1e-6, -1e-6] ys_defect = [1e-6, 2e-6, 3e-6] rs_defect = [0.5e-6, 0.1e-6, 0.2e-6] s = Simulator( max_x=3e-6, max_y=10e-6, max_t=0.1e-12, # calculation boundaries nx=300, ny=1000, # discretization λ=2.04e-6, # wavelength of light ϵ = 9., μ = 1. # permittivity and permeability ) implant!(s.permittivity, ϵ_defect, xs_defect, ys_defect, rs_defect, s.grid) ``` ## Run simulation ```julia simulate!(s) ``` To see permittivity: ```julia plot_ϵ(s) ``` ![](assets/permittivity.png) To sea the result: ```julia plot_e_field(s) ``` ![](assets/e_field.png)
FieldDistributionNonuniformMedium
https://github.com/foldfelis/FieldDistributionNonuniformMedium.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
2111
using Revise, StringDistances, Random Random.seed!(2) x = map(Random.randstring, rand(5:25,500_000)) y = map(Random.randstring, rand(5:25,500_000)) function f(t, x, y; min_score = 0.0) [compare(x[i], y[i], t; min_score = min_score) for i in 1:length(x)] end function g(dist, x, y) [dist(x[i], y[i]) for i in 1:length(x)] end @time f(Hamming(), x, y); #0.05s @time f(Jaro(), x, y); #0.3s @time f(Levenshtein(), x, y); # 0.33s @time f(Levenshtein(), x, y, min_score = 0.8); # 0.11 @time f(OptimalStringAlignment(), x, y); # 0.44s. @time f(OptimalStringAlignment(), x, y, min_score = 0.8); # 0.08 @time f(DamerauLevenshtein(), x, y); # 0.8s @time f(RatcliffObershelp(), x, y); # 0.65s @time findnearest(x[1], y, Levenshtein()); # 0.1 @time findnearest(x[1], y, OptimalStringAlignment()); # 0.1 @time findnearest(x[1], y, QGram(2)); # 0.75 @time findall(x[1], y, Levenshtein()); # 0.05 @time findall(x[1], y, OptimalStringAlignment()); # 0.05 @time findall(x[1], y, Partial(OptimalStringAlignment())); # 0.96 @time findall(x[1], y, QGram(2)); # 0.81 @time findall(x[1], y, TokenSort(OptimalStringAlignment())); # 0.27 (now 0.32) @time findall(x[1], y, TokenSet(OptimalStringAlignment())); # 0.55 @time findall(x[1], y, TokenMax(OptimalStringAlignment())); # 2.25 (now 3.6) x = map(Random.randstring, rand(5:25,1000)) y = map(Random.randstring, rand(5:25,1000)) @time pairwise(Levenshtein(), x, y) # 0.25 seconds @time pairwise(QGram(2), x, y, preprocess = false) # 2.126829 @time pairwise(QGram(2), x, y, preprocess = true) # 0.12 #= Rcode library(stringdist) x <- sapply(sample(5:25,5 * 1e5,replace=TRUE), function(n) paste(sample(letters,n,replace=TRUE),collapse="")) y <- sapply(sample(5:25,5 * 1e5,replace=TRUE), function(n) paste(sample(letters,n,replace=TRUE),collapse="")) system.time(stringdist(x,y,method='lv', nthread = 1)) system.time(stringdist(x,y,method='dl', nthread = 1)) # 0.472 system.time(stringdist(x,y,method='jaccard', nthread = 1)) # 0.739 system.time(stringdist(x,y,method='cosine', nthread = 1)) system.time(stringdist(x,y,method='qgram', nthread = 1)) =#
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
1547
using StringDistances, Random using BenchmarkTools N = if length(ARGS) > 0 try parse(Int, ARGS[1]) catch _ 100 end else 100 # default value end Maxlength = if length(ARGS) > 1 try parse(Int, ARGS[2]) catch _ 100 end else 100 # default value end # If there are strings already cached to disk we start with them and only # add new ones if needed. using Serialization const CacheFile = joinpath(@__DIR__(), "perfteststrings_$(Maxlength).juliabin") SaveCache = false S = if isfile(CacheFile) try res = deserialize(CacheFile) println("Read $(length(res)) strings from cache file: $CacheFile") res catch err String[] end else println("Creating $N random strings.") SaveCache = true String[randstring(rand(3:Maxlength)) for _ in 1:N] end if length(S) < N for i in (length(S)+1):N push!(S, randstring(rand(3:Maxlength))) end SaveCache = true end if SaveCache println("Saving cache file with $(length(S)) strings: $CacheFile") serialize(CacheFile, S) end println("For ", Threads.nthreads(), " threads and ", N, " strings of max length ", Maxlength, ":") dist = Cosine(2) t1 = @belapsed dm1 = pairwise(dist, S; preprocess = false) t2 = @belapsed dm2 = pairwise(dist, S; preprocess = true) println(" - time WITHOUT pre-calculation: ", round(t1, digits = 3)) println(" - time WITH pre-calculation: ", round(t2, digits = 3)) println(" - speedup with pre-calculation: ", round(t1/t2, digits = 1))
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
1465
module StringDistances using Distances: Distances, SemiMetric, Metric, evaluate, result_type using StatsAPI: StatsAPI, pairwise, pairwise! # Distances API abstract type StringSemiMetric <: SemiMetric end abstract type StringMetric <: Metric end const StringDistance = Union{StringSemiMetric, StringMetric} function Distances.result_type(dist::Union{StringSemiMetric, StringMetric}, s1::Type, s2::Type) T = typeof(dist("", "")) if (Missing <: s1) | (Missing <: s2) T = Union{T, Missing} end return T end (dist::Union{StringSemiMetric, StringMetric})(s1, s2; max_dist = nothing) = dist(s1, s2) include("utils.jl") include("distances/edit.jl") include("distances/qgram.jl") include("pairwise.jl") include("normalize.jl") include("find.jl") include("fuzzywuzzy.jl") ############################################################################## ## ## Export ## ############################################################################## export StringDistance, StringSemiMetric, StringMetric, # edit distances Hamming, Jaro, JaroWinkler, Levenshtein, OptimalStringAlignment, DamerauLevenshtein, RatcliffObershelp, # Qgram distances AbstractQGramDistance, QGramDict, QGramSortedVector, QGram, Cosine, Jaccard, SorensenDice, Overlap, MorisitaOverlap, NMD, qgrams, # normalize compare, # fuzzywuzzy Partial, TokenSort, TokenSet, TokenMax, # find findnearest, # re-rexport from Distances.jl evaluate, result_type, pairwise, pairwise! end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
4336
""" compare(s1, s2, dist) return a similarity score between 0 and 1 for the strings `s1` and `s2` based on the distance `dist`. ### Examples ```julia-repl julia> compare("martha", "marhta", Levenshtein()) 0.6666666666666667 ``` """ function compare(s1, s2, dist::Union{StringSemiMetric, StringMetric}; min_score = 0.0) 1 - Normalized(dist)(s1, s2; max_dist = 1 - min_score) end """ findnearest(s, itr, dist::Union{StringMetric, StringSemiMetric}) -> (x, index) `findnearest` returns the value and index of the element of `itr` that has the lowest distance with `s` according to the distance `dist`. It is particularly optimized for [`Levenshtein`](@ref) and [`DamerauLevenshtein`](@ref) distances (as well as their modifications via [`Partial`](@ref), [`TokenSort`](@ref), [`TokenSet`](@ref), or [`TokenMax`](@ref)). ### Examples ```julia-repl julia> using StringDistances julia> s = "Newark" julia> iter = ["New York", "Princeton", "San Francisco"] julia> findnearest(s, iter, Levenshtein()) ("NewYork", 1) julia> findnearest(s, iter, Levenshtein(); min_score = 0.9) (nothing, nothing) ``` """ function findnearest(s, itr, dist::Union{StringSemiMetric, StringMetric}; min_score = 0.0) _citr = collect(itr) isempty(_citr) && return (nothing, nothing) _preprocessed_s = _preprocess(dist, s) min_score_atomic = Threads.Atomic{Float64}(min_score) chunk_size = max(1, length(_citr) ÷ (2 * Threads.nthreads())) data_chunks = Iterators.partition(_citr, chunk_size) chunk_score_tasks = map(data_chunks) do chunk Threads.@spawn begin map(chunk) do x score = compare(_preprocessed_s, _preprocess(dist, x), dist; min_score = min_score) Threads.atomic_max!(min_score_atomic, score) score end end end # retrieve return type of `compare` for type stability in task _self_cmp = compare(_preprocessed_s, _preprocessed_s, dist; min_score = min_score) chunk_scores = fetch.(chunk_score_tasks)::Vector{Vector{typeof(_self_cmp)}} scores = reduce(vcat, fetch.(chunk_scores)) imax = argmax(scores) iszero(scores) ? (nothing, nothing) : (_citr[imax], imax) end _preprocess(dist::AbstractQGramDistance, ::Missing) = missing _preprocess(dist::AbstractQGramDistance, s) = QGramSortedVector(s, dist.q) _preprocess(dist::Union{StringSemiMetric, StringMetric}, s) = s function Base.findmax(s, itr, dist::Union{StringSemiMetric, StringMetric}; min_score = 0.0) @warn "findmax(s, itr, dist; min_score) is deprecated. Use findnearest(s, itr, dist; min_score)" findnearest(s, itr, dist; min_score = min_score) end """ findall(s, itr , dist::StringDistance; min_score = 0.8) `findall` returns the vector of indices for elements of `itr` that have a similarity score higher or equal than `min_score` according to the distance `dist`. If there are no such elements, return an empty array. It is particularly optimized for [`Levenshtein`](@ref) and [`DamerauLevenshtein`](@ref) distances (as well as their modifications via `Partial`, `TokenSort`, `TokenSet`, or `TokenMax`). ### Examples ```julia-repl julia> using StringDistances julia> s = "Newark" julia> iter = ["Newwark", "Princeton", "San Francisco"] julia> findall(s, iter, Levenshtein()) 1-element Array{Int64,1}: 1 julia> findall(s, iter, Levenshtein(); min_score = 0.9) 0-element Array{Int64,1} ``` """ function Base.findall(s, itr, dist::Union{StringSemiMetric, StringMetric}; min_score = 0.8) _citr = collect(itr) _preprocessed_s = _preprocess(dist, s) chunk_size = max(1, length(_citr) ÷ (2 * Threads.nthreads())) data_chunks = Iterators.partition(itr, chunk_size) isempty(data_chunks) && return empty(eachindex(_citr)) chunk_score_tasks = map(data_chunks) do chunk Threads.@spawn begin map(chunk) do x compare(_preprocessed_s, _preprocess(dist, x), dist; min_score = min_score) end end end # retrieve return type of `compare` for type stability in task _self_cmp = compare(_preprocessed_s, _preprocessed_s, dist; min_score = min_score) chunk_scores::Vector{Vector{typeof(_self_cmp)}} = fetch.(chunk_score_tasks) scores = reduce(vcat, fetch.(chunk_scores)) return findall(>=(min_score), scores) end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
6665
""" Partial(dist) Creates the `Partial{dist}` distance. `Partial{dist}` returns the minimum distance between the shorter string and substrings of the longer string that have a length equal to the shorter string. See http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/ ### Examples ```julia-repl julia> s1 = "New York Mets vs Atlanta Braves" julia> s2 = "Atlanta Braves vs New York Mets" julia> Partial(RatcliffObershelp())(s1, s2) 0.5483870967741935 ``` """ struct Partial{S <: Union{StringSemiMetric, StringMetric}} <: StringSemiMetric dist::S end function (dist::Partial)(s1, s2; max_dist = nothing) (s1 === missing) | (s2 === missing) && return missing s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) out = dist.dist(s1, s2; max_dist = max_dist) max_dist0 = (max_dist !== nothing) ? min(max_dist, out) : out ((len1 == 0) | (len1 == len2)) && return out for x in qgrams(s2, len1) curr = dist.dist(s1, x; max_dist = max_dist0) out = min(out, curr) max_dist0 = min(max_dist0, curr) end return out end # specialized (faster) version for RatcliffObershelp function (dist::Partial{<: Union{RatcliffObershelp, Normalized{RatcliffObershelp}}})(s1, s2; max_dist = nothing) (s1 === missing) | (s2 === missing) && return missing s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) len1 == len2 && return dist.dist(s1, s2) out = 1.0 for s2_start in matching_blocks(s1, s2, 1, 1, len1, len2) # Make sure the substring of s2 has length len1 if s2_start < 1 s2_start = 1 elseif s2_start + len1 - 1 > len2 s2_start += len2 - (s2_start + len1 - 1) end n_matched = length_matching_blocks(s1, s2, 1, s2_start, len1, s2_start + len1 - 1) curr = 1 - 2 * n_matched / (len1 + len1) out = min(out, curr) end return out end function matching_blocks(s1, s2, start1::Integer, start2::Integer, end1::Integer, end2::Integer) x = Set{Int}() p = zeros(Int, max(end1 - start1, end2 - start2) + 1) matching_blocks!(x, p, s1, s2, start1, start2, end1, end2) end function matching_blocks!(x::Set{Int}, p::Vector{Int}, s1, s2, start1::Integer, start2::Integer, end1::Integer, end2::Integer) j1, j2, len = longest_common_pattern!(p, s1, s2, start1, start2, end1, end2) len == 0 && return x push!(x, j2 - j1 + 1) matching_blocks!(x, p, s1, s2, start1, start2, j1 - 1, j2 - 1) matching_blocks!(x, p, s1, s2, j1 + len, j2 + len, end1, end2) return x end Normalized(dist::Partial) = Normalized{typeof(Partial(Normalized(dist.dist)))}(Partial(Normalized(dist.dist))) """ TokenSort(dist) Creates the `TokenSort{dist}` distance. `TokenSort{dist}` returns the distance between strings after reording words alphabetically. See http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/ It is only defined on AbstractStrings. ### Examples ```julia-repl julia> s1 = "New York Mets vs Atlanta Braves" julia> s1 = "New York Mets vs Atlanta Braves" julia> s2 = "Atlanta Braves vs New York Mets" julia> TokenSort(RatcliffObershelp())(s1, s2) 0.0 ``` """ struct TokenSort{S <: Union{StringSemiMetric, StringMetric}} <: StringSemiMetric dist::S end function (dist::TokenSort)(s1::Union{AbstractString, Missing}, s2::Union{AbstractString, Missing}; max_dist = nothing) (s1 === missing) | (s2 === missing) && return missing f = s -> join(sort!(split(s)), " ") dist.dist(f(s1), f(s2); max_dist = max_dist) end Normalized(dist::TokenSort) = Normalized{typeof(TokenSort(Normalized(dist.dist)))}(TokenSort(Normalized(dist.dist))) """ TokenSet(dist) Creates the `TokenSet{dist}` distance, which is only defined on AbstractStrings. `TokenSet{dist}` returns the minimum the distances between: [SORTED_INTERSECTION] [SORTED_INTERSECTION] + [SORTED_REST_OF_STRING1] [SORTED_INTERSECTION] + [SORTED_REST_OF_STRING2] See: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/ ### Examples ```julia-repl julia> s1 = "New York Mets vs Atlanta" julia> s2 = "Atlanta Braves vs New York Mets" julia> TokenSet(RatcliffObershelp())(s1, s2) 0.0 ``` """ struct TokenSet{S <: Union{StringSemiMetric, StringMetric}} <: StringSemiMetric dist::S end function (dist::TokenSet)(s1::Union{AbstractString, Missing}, s2::Union{AbstractString, Missing}; max_dist = nothing) (s1 === missing) | (s2 === missing) && return missing v1 = unique!(sort!(split(s1))) v2 = unique!(sort!(split(s2))) v0 = intersect(v1, v2) s0 = join(v0, " ") s1 = join(v1, " ") s2 = join(v2, " ") isempty(s0) && return dist.dist(s1, s2; max_dist = max_dist) min(dist.dist(s0, s1; max_dist = max_dist), dist.dist(s0, s2; max_dist = max_dist), dist.dist(s1, s2; max_dist = max_dist)) end Normalized(dist::TokenSet) = Normalized{typeof(TokenSet(Normalized(dist.dist)))}(TokenSet(Normalized(dist.dist))) """ TokenMax(dist) Creates the `TokenMax{dist}` distance, which is only defined on AbstractStrings. `TokenMax{dist}` normalizes the distance `dist` and returns the minimum of the distance, its [`Partial`](@ref) modifier, its [`TokenSort`](@ref) modifier, and its [`TokenSet`](@ref) modifier, with penalty terms depending on the strings lengths. ### Examples ```julia-repl julia> s1 = "New York Mets vs Atlanta" julia> s2 = "Atlanta Braves vs New York Mets" julia> evaluate(TokenMax(RatcliffObershelp()), s1, s2) 0.05 ``` """ struct TokenMax{S <: Normalized} <: StringSemiMetric dist::S end TokenMax(dist::Union{StringSemiMetric, StringMetric}) = TokenMax(Normalized(dist)) function (dist::TokenMax)(s1::Union{AbstractString, Missing}, s2::Union{AbstractString, Missing}; max_dist = 1.0) (s1 === missing) | (s2 === missing) && return missing s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) dist0 = dist.dist out = dist0(s1, s2; max_dist = max_dist) max_dist = min(max_dist, out) scale = 0.95 # if one string is much shorter than the other, use partial if len2 >= 1.5 * len1 dist0 = Partial(dist0) pscale = 0.9 pout = 1 - pscale * (1 - dist0(s1, s2; max_dist = 1 - (1 - max_dist) / pscale)) out = min(out, pout) max_dist = min(max_dist, pout) scale *= pscale end out_sort = 1 - scale * (1 - TokenSort(dist0)(s1, s2; max_dist = 1 - (1 - max_dist) / scale)) max_dist = min(max_dist, out_sort) out_set = 1 - scale * (1 - TokenSet(dist0)(s1, s2; max_dist = 1 - (1 - max_dist) / scale)) out = min(out, out_sort, out_set) out > max_dist ? 1.0 : out end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
2383
# Normalized is basically wrapper like Symmetric """ Normalized(dist::Union{StringSemiMetric, StringMetric}) Creates a normalized distance. The normalized distance always return a Float64 between 0.0 and 1.0 (or a missing if one of the argument is missing). A Normalized Distance has a keyword argument `max_dist` that defaults to 1.0. It returns 1.0 if the true distance is higher than `max_dist`. ### Examples ```julia-repl julia> s1 = "New York Mets vs Atlanta" julia> s2 = "Atlanta Braves vs New York Mets" julia> Levenshtein()(s1, s2) 25 julia> StringDistances.Normalized(Levenshtein())(s1, s2) 0.8064 ``` """ struct Normalized{T <: Union{StringSemiMetric, StringMetric}} <: StringSemiMetric dist::T end Normalized(dist::Normalized) = dist # Consider all distances to be normalized by default function (dist::Normalized)(s1, s2; max_dist = 1.0) out = dist.dist(s1, s2; max_dist = max_dist) max_dist !== nothing && out > max_dist && return 1.0 return out end function (dist::Normalized{<:Union{Hamming, DamerauLevenshtein}})(s1, s2; max_dist = 1.0) (s1 === missing) | (s2 === missing) && return missing s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) len2 == 0 && return 0.0 out = dist.dist(s1, s2) / len2 max_dist !== nothing && out > max_dist && return 1.0 return out end function (dist::Normalized{<:Union{Levenshtein, OptimalStringAlignment}})(s1, s2; max_dist = 1.0) (s1 === missing) | (s2 === missing) && return missing s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) len2 == 0 && return 0.0 if max_dist == 1.0 d = dist.dist(s1, s2) else d = dist.dist(s1, s2; max_dist = ceil(Int, len2 * max_dist)) end out = d / len2 max_dist !== nothing && out > max_dist && return 1.0 return out end function (dist::Normalized{<:AbstractQGramDistance})(s1, s2; max_dist = 1.0) (s1 === missing) | (s2 === missing) && return missing # When string length < q for qgram distance, returns s1 == s2 s1, s2 = reorder(s1, s2) len1, len2 = length(s1), length(s2) len1 <= dist.dist.q - 1 && return Float64(s1 != s2) if dist.dist isa QGram out = dist.dist(s1, s2) / (len1 + len2 - 2 * dist.dist.q + 2) else out = dist.dist(s1, s2) end max_dist !== nothing && out > max_dist && return 1.0 return out end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
3088
""" pairwise(dist::StringDistance, xs::AbstractVector, ys::AbstractVector = xs; preprocess = true) Compute distances between all pairs of elements in `xs` and `ys` according to the `StringDistance` `dist`. Returns a matrix R such that `R[i, j]` corrresponds to the distance between `xs[i]` and `ys[j]`. Set `preprocess` to false if no preprocessing should be used. Both symmetric and asymmetric versions are available. ### Examples ```julia-repl julia> using StringDistances julia> iter = ["New York", "Princeton"] julia> pairwise(Levenshtein(), iter) 2×2 Array{Float64,2}: 0.0 9.0 9.0 0.0 julia> iter2 = ["San Francisco"] julia> pairwise(Levenshtein(), iter, iter2) 2×1 Array{Float64,2}: 12.0 10.0 ``` """ function StatsAPI.pairwise(dist::Union{StringSemiMetric, StringMetric}, xs::AbstractVector, ys::AbstractVector = xs; preprocess = true) T = result_type(dist, eltype(xs), eltype(ys)) R = Matrix{T}(undef, length(xs), length(ys)) pairwise!(R, dist, xs, ys; preprocess = preprocess) end """ pairwise!(R::AbstractMatrix, dist::Union{StringSemiMetric, StringMetric}, xs::AbstractVector, ys::AbstractVector = xs; preprocess = true) Compute distances between all pairs of elements in `xs` and `ys` according to the `Union{StringSemiMetric, StringMetric}` `dist` and write the result in `R`. `R[i, j]` corresponds to the distance between `xs[i]` and `ys[j]`. Set `preprocess` to false if no preprocessing should be used. """ function StatsAPI.pairwise!(R::AbstractMatrix, dist::Union{StringSemiMetric, StringMetric}, xs::AbstractVector, ys::AbstractVector = xs; preprocess = true) length(xs) == size(R, 1) || throw(DimensionMismatch("inconsistent length")) length(ys) == size(R, 2) || throw(DimensionMismatch("inconsistent length")) (xs === ys) ? _symmetric_pairwise!(R, dist, xs; preprocess = preprocess) : _asymmetric_pairwise!(R, dist, xs, ys; preprocess = preprocess) end function _symmetric_pairwise!(R::AbstractMatrix, dist::Union{StringSemiMetric, StringMetric}, xs::AbstractVector; preprocess = true) if preprocess xs = _preprocess_list(dist, xs) end for i in 1:length(xs) # handle missing R[i, i] = xs[i] != xs[i] Threads.@threads for j in (i+1):length(xs) R[i, j] = R[j, i] = evaluate(dist, xs[i], xs[j]) end end return R end function _asymmetric_pairwise!(R::AbstractMatrix, dist::Union{StringSemiMetric, StringMetric}, xs::AbstractVector, ys::AbstractVector; preprocess = true) if preprocess objxs = _preprocess_list(dist, xs) objys = xs === ys ? objxs : _preprocess_list(dist, ys) else objxs = xs objys = ys end for i in 1:length(objxs) Threads.@threads for j in 1:length(objys) R[i, j] = evaluate(dist, objxs[i], objys[j]) end end return R end _preprocess_list(dist::Union{StringSemiMetric, StringMetric}, xs) = xs _preprocess_list(dist::AbstractQGramDistance, xs) = fetch.(map(x -> (Threads.@spawn x === missing ? x : QGramSortedVector(x, dist.q)), xs))
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
1900
############################################################################## ## ## Some things about Strings # length: number of characters # ncodeunits: Return the number of code units in a string (aking to index of vector). # Not all such indices are valid – they may not be the start of a character,. # sizeof: Size, in bytes, of the string str. Equal to the number of code units in str # multiplied by the size, in bytes, of one code unit in str. # lastindex: Return the last index of a collection # nextinds(s, i): return the index of the start of the character whose encoding starts after index i # nextind(s, 0, N): return the index of the Nth character of s (or, if there are # less than N characters, return ncodeunits(str) + (N - length(s)) ############################################################################## # This type allows to compute length once and for all struct StringWithLength{T <: AbstractString} <: AbstractString s::T l::Int end string_with_length(s::AbstractString) = StringWithLength(s, length(s)) # Not really needed but avoid multi-encapsulation string_with_length(s::StringWithLength) = s Base.length(s::StringWithLength) = s.l Base.iterate(s::StringWithLength) = iterate(s.s) Base.iterate(s::StringWithLength, i::Integer) = iterate(s.s, i) Base.nextind(s::StringWithLength, i::Int, n::Int = 1) = nextind(s.s, i, n) Base.ncodeunits(s::StringWithLength) = ncodeunits(s.s) Base.isvalid(s::StringWithLength, i::Int) = isvalid(s.s, i) function reorder(s1::AbstractString, s2::AbstractString) s1 = string_with_length(s1) s2 = string_with_length(s2) (length(s1) <= length(s2)) ? (s1, s2) : (s2, s1) end function reorder(s1, s2) (length(s1) <= length(s2)) ? (s1, s2) : (s2, s1) end function common_prefix(s1, s2) l = 0 for (ch1, ch2) in zip(s1, s2) ch1 != ch2 && break l += 1 end return l end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
13655
""" Hamming() Creates the Hamming distance The Hamming distance is defined as the number of characters that do not match """ struct Hamming <: StringMetric end function (dist::Hamming)(s1, s2; max_dist::Union{Integer, Nothing} = nothing) (s1 === missing) | (s2 === missing) && return missing out = abs(length(s2) - length(s1)) for (ch1, ch2) in zip(s1, s2) out += ch1 != ch2 if max_dist !== nothing out > max_dist && return Int(max_dist + 1) end end return out end """ Jaro() Creates the Jaro distance The Jaro distance is defined as ``1 - (m / |s1| + m / |s2| + (m - t) / m) / 3`` where ``m`` is the number of matching characters and ``t`` is half the number of transpositions. """ struct Jaro <: StringSemiMetric end ## http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/JaroWinklerDistance.html function (dist::Jaro)(s1, s2) (s1 === missing) | (s2 === missing) && return missing len1, len2 = length(s1), length(s2) if len1 > len2 s1, s2 = s2, s1 len1, len2 = len2, len1 end # If both iterators empty, formula in Wikipedia gives 1, but it makes more sense to set it to s1 == s2 len2 > 0 || return Float64(s1 == s2) d = max(0, div(len2, 2) - 1) flag = fill(false, len2) ch1_match = Vector{eltype(s1)}() for (i1, ch1) in enumerate(s1) for (i2, ch2) in enumerate(s2) # for each character in s1, greedy search of matching character in s2 within a distance d i2 >= i1 - d || continue i2 <= i1 + d || break if ch1 == ch2 && !flag[i2] flag[i2] = true push!(ch1_match, ch1) break end end end if isempty(ch1_match) return 1.0 else # m counts number matching characters m = length(ch1_match) # t/2 counts number transpositions t = 0 i1 = 0 for (i2, ch2) in enumerate(s2) if flag[i2] i1 += 1 @inbounds t += ch2 != ch1_match[i1] end end return 1 - (m / len1 + m / len2 + (m - 0.5 * t) / m) / 3 end end """ JaroWinkler(;p = 0.1, threshold = 0.3, maxlength = 4) Creates the JaroWinkler distance The JaroWinkler distance is defined as the Jaro distance, which is multiplied by ``(1-min(l, maxlength) * p)`` as long as it is lower than `threshold`, and where `l` denotes the length of the common prefix. """ struct JaroWinkler <: StringSemiMetric p::Float64 # scaling factor. Default to 0.1 threshold::Float64 # boost limit. Default to 0.3 maxlength::Integer # max length of common prefix. Default to 4 end JaroWinkler(; p = 0.1, threshold = 0.3, maxlength = 4) = JaroWinkler(p, threshold, maxlength) ## http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/JaroWinklerDistance.html function (dist::JaroWinkler)(s1, s2) (s1 === missing) | (s2 === missing) && return missing out = Jaro()(s1, s2) if out <= dist.threshold l = common_prefix(s1, s2)[1] out = (1 - min(l, dist.maxlength) * dist.p) * out end return out end """ Levenshtein() Creates the Levenshtein distance The Levenshtein distance is the minimum number of operations (consisting of insertions, deletions, substitutions of a single character) required to change one string into the other. """ struct Levenshtein <: StringMetric end ## Source: http://blog.softwx.net/2014/12/optimizing-levenshtein-algorithm-in-c.html # Return max_dist + 1 if distance higher than max_dist # to differentiate distance equal to max_dist or not, which is important for find fctions. function (dist::Levenshtein)(s1, s2; max_dist::Union{Integer, Nothing} = nothing) (s1 === missing) | (s2 === missing) && return missing len1, len2 = length(s1), length(s2) if len1 > len2 s1, s2 = s2, s1 len1, len2 = len2, len1 end if max_dist !== nothing len2 - len1 > max_dist && return Int(max_dist + 1) end # prefix common to both strings can be ignored k = common_prefix(s1, s2) k == len1 && return len2 - k # first row of matrix set to distance between "" and s2[1:i] v = collect(1:(len2-k)) current = 0 for (i1, ch1) in enumerate(s1) i1 > k || continue left = current = i1 - k - 1 if max_dist !== nothing value_lb = left - 1 end for (i2, ch2) in enumerate(s2) i2 > k || continue above = current # cost on diagonal (substitution) current = left @inbounds left = v[i2 - k] if ch1 != ch2 # minimum between substitution, deletion and insertion current = min(current + 1, above + 1, left + 1) end if max_dist !== nothing value_lb = min(value_lb, left) end @inbounds v[i2 - k] = current end if max_dist !== nothing value_lb > max_dist && return Int(max_dist + 1) end end if max_dist !== nothing current > max_dist && return Int(max_dist + 1 ) end return current end """ OptimalStringAlignment() Creates the OptimalStringAlignment distance (also known as the restricted DamerauLevenshtein distance). It is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one string into the other. The distance differs slightly from the DamerauLevenshtein distance by imposing the restriction that no substring is edited more than once. So for example, "CA" to "ABC" has a distance of 3 by the OptimalStringAlignment distance but a distance of 2 by the DamerauLevenshtein distance. In contrast to the DamerauLevenshtein distance, the OptimalStringAlignment distance does not satisfy the triangle inequality. """ struct OptimalStringAlignment <: StringSemiMetric end ## http://blog.softwx.net/2015/01/optimizing-damerau-levenshtein_15.html # Return max_dist + 1 if distance higher than max_dist function (dist::OptimalStringAlignment)(s1, s2; max_dist::Union{Integer, Nothing} = nothing) (s1 === missing) | (s2 === missing) && return missing len1, len2 = length(s1), length(s2) if len1 > len2 s1, s2 = s2, s1 len1, len2 = len2, len1 end if max_dist !== nothing len2 - len1 > max_dist && return Int(max_dist + 1) end k = common_prefix(s1, s2) k == len1 && return len2 - k v = collect(1:(len2 - k)) w = similar(v) prevch1, prevch2 = first(s1), first(s2) if max_dist !== nothing i2_start = 0 i2_end = max_dist end current = 0 for (i1, ch1) in enumerate(s1) i1 > k || (prevch1 = ch1 ; continue) left = i1 - k - 1 current = i1 - k nextTransCost = 0 if max_dist !== nothing i2_start += i1 - k - 1 + len2 - len1 > max_dist i2_end += i2_end < len2 end for (i2, ch2) in enumerate(s2) i2 > k || (prevch2 = ch2 ; continue) # no need to look beyond window of lower right diagonal - max distance cells # lower right diag is i1 - (len2 - len1)) and the upper left diagonal + max_dist cells (upper left is i1) if max_dist !== nothing (k + i2_start < i2 < 1 + k + i2_end) || (prevch2 = ch2 ; continue) end above = current thisTransCost = nextTransCost @inbounds nextTransCost = w[i2 - k] @inbounds w[i2 - k] = current = left @inbounds left = v[i2 - k] if ch1 != ch2 # minimum between substitution, deletion and insertion current = min(current + 1, above + 1, left + 1) if i1 > k + 1 && i2 > k + 1 && ch1 == prevch2 && prevch1 == ch2 thisTransCost += 1 current = min(current, thisTransCost) end end @inbounds v[i2 - k] = current prevch2 = ch2 end if max_dist !== nothing v[i1 - k + len2 - len1] > max_dist && return Int(max_dist + 1) end prevch1 = ch1 end if max_dist !== nothing current > max_dist && return Int(max_dist + 1) end return Int(current) end Base.@deprecate_binding OptimalStringAlignement OptimalStringAlignment """ DamerauLevenshtein() Creates the DamerauLevenshtein distance The DamerauLevenshtein distance is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one string into the other. """ struct DamerauLevenshtein <: StringMetric end # https://en.wikipedia.org/wiki/Damerau–Levenshtein_distance # https://www.lemoda.net/text-fuzzy/damerau-levenshtein/ # Compared to Levenshtein & Restricted distance, cannot get by with only two vectors since transposition can be global function (dist::DamerauLevenshtein)(s1, s2) (s1 === missing) | (s2 === missing) && return missing len1, len2 = length(s1), length(s2) if len1 > len2 s1, s2 = s2, s1 len1, len2 = len2, len1 end k = common_prefix(s1, s2) k == len1 && return len2 - k # da[ch1] will store last spotted position of ch1 in s1 da = Dict{eltype(s1), UInt32}() sizehint!(da, len1 - k) # distm[i1+1, i2+1] will store the distance between first i1 elements of s1 and first i2 elements of s2 distm = zeros(UInt32, len1 + 1 - k, len2 + 1 - k) distm[:, 1] = 0:(len1-k) distm[1, :] = 0:(len2-k) for (i1, ch1) in enumerate(s1) i1 > k || continue # j2 is last spotted position of ch1 in s2 # j1 will be last spotted position of ch2 in s1 j2 = 0 for (i2, ch2) in enumerate(s2) i2 > k || continue if ch1 == ch2 @inbounds distm[i1 + 1 - k, i2 + 1 - k] = distm[i1 - k, i2 - k] j2 = i2 else # minimum between substitution, deletion and insertion @inbounds pre = min(distm[i1 - k, i2 - k] + one(UInt32), distm[i1 + 1 - k, i2 - k] + one(UInt32), distm[i1 - k, i2 + 1 - k] + one(UInt32)) # minimum wrt transposition --- avoid lookup if we know transposition won't be chosen # either because we're treating first character of s1 or because ch1 has not been spotted in s2 yet j1 = (i1 == k + 1 || j2 == 0) ? 0 : get(da, ch2, 0) if j1 > 0 @inbounds pre = min(pre, distm[j1 - k, j2 - k] + (i1 - j1 - 1) + 1 + (i2 - j2 - 1)) end @inbounds distm[i1 + 1 - k, i2 + 1 - k] = pre end end da[ch1] = i1 end return Int(distm[end, end]) end """ RatcliffObershelp() Creates the RatcliffObershelp distance The distance between two strings is defined as one minus the number of matching characters divided by the total number of characters in the two strings. Matching characters are those in the longest common subsequence plus, recursively, matching characters in the unmatched region on either side of the longest common subsequence. """ struct RatcliffObershelp <: StringSemiMetric end function (dist::RatcliffObershelp)(s1, s2) (s1 === missing) | (s2 === missing) && return missing len1, len2 = length(s1), length(s2) n_matched = length_matching_blocks(s1, s2, 1, 1, len1, len2) len1 + len2 == 0 ? 0.0 : 1 - 2 * n_matched / (len1 + len2) end function length_matching_blocks(s1, s2, start1::Integer, start2::Integer, end1::Integer, end2::Integer) # p is just a storage vector which will be reused p = zeros(Int, max(end1 - start1, end2 - start2) + 1) length_matching_blocks!(p, s1, s2, start1, start2, end1, end2) end function length_matching_blocks!(p::Vector{Int}, s1, s2, start1::Integer, start2::Integer, end1::Integer, end2::Integer) end1 >= start1 || return 0 end2 >= start2 || return 0 j1, j2, len = longest_common_pattern!(p, s1, s2, start1, start2, end1, end2) # exit if there is no common substring len == 0 && return 0 return len + length_matching_blocks!(p, s1, s2, start1, start2, j1 - 1, j2 - 1) + length_matching_blocks!(p, s1, s2, j1 + len, j2 + len, end1, end2) end function longest_common_pattern!(p, s1, s2, start1, start2, end1, end2) if end1 - start1 > end2 - start2 j2, j1, len = longest_common_pattern!(p, s2, s1, start2, start1, end2, end1) else j1, j2, len = 0, 0, 0 fill!(p, 0) # p[i2-start2+1] stores the startingindex of the longest # common pattern up to i2 with prevch1 as last matching character for (i1, ch1) in enumerate(s1) i1 >= start1 || continue i1 <= end1 || break oldj2 = 0 for (i2, ch2) in enumerate(s2) i2 >= start2 || continue i2 <= end2 || break if ch1 != ch2 newj2 = 0 else newj2 = oldj2 > 0 ? oldj2 : i2 newlen = i2 - newj2 + 1 if newlen > len j1, j2, len = i1 - newlen + 1, newj2, newlen end end p[i2 - start2 + 1], oldj2 = newj2, p[i2 - start2 + 1] end end end return j1, j2, len end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
12448
abstract type AbstractQGramDistance <: StringSemiMetric end """ QGram(q::Int) Creates a QGram distance. The distance corresponds to ``||v(s1, q) - v(s2, q)||`` where ``v(s, q)`` denotes the vector on the space of q-grams of length q, that contains the number of times a q-gram appears for the string s """ struct QGram <: AbstractQGramDistance q::Int end eval_start(::QGram) = 0 @inline function eval_op(::QGram, c::Integer, n1::Integer, n2::Integer) c + abs(n1 - n2) end eval_end(::QGram, c::Integer) = c """ Cosine(q::Int) Creates a Cosine distance. The distance corresponds to `` 1 - v(s1, q).v(s2, q) / ||v(s1, q)|| * ||v(s2, q)||`` where ``v(s, q)`` denotes the vector on the space of q-grams of length q, that contains the number of times a q-gram appears for the string s """ struct Cosine <: AbstractQGramDistance q::Int end eval_start(::Cosine) = (0, 0, 0) @inline function eval_op(::Cosine, c::NTuple{3, <:Integer}, n1::Integer, n2::Integer) (c[1] + n1^2, c[2] + n2^2, c[3] + n1 * n2) end eval_end(::Cosine, c::NTuple{3, <:Integer}) = 1 - c[3] / sqrt(c[1] * c[2]) """ Jaccard(q::Int) Creates a Jaccard distance. The distance corresponds to ``1 - |Q(s1, q) ∩ Q(s2, q)| / |Q(s1, q) ∪ Q(s2, q))|`` where ``Q(s, q)`` denotes the set of q-grams of length n for the string s """ struct Jaccard <: AbstractQGramDistance q::Int end eval_start(::Jaccard) = (0, 0, 0) @inline function eval_op(::Jaccard, c::NTuple{3, <:Integer}, n1::Integer, n2::Integer) (c[1] + (n1 > 0), c[2] + (n2 > 0), c[3] + (n1 > 0) * (n2 > 0)) end eval_end(::Jaccard, c::NTuple{3, <:Integer}) = 1 - c[3] / (c[1] + c[2] - c[3]) """ SorensenDice(q::Int) Creates a SorensenDice distance. The distance corresponds to ``1 - 2 * |Q(s1, q) ∩ Q(s2, q)| / (|Q(s1, q)| + |Q(s2, q))|)`` where ``Q(s, q)`` denotes the set of q-grams of length n for the string s """ struct SorensenDice <: AbstractQGramDistance q::Int end eval_start(::SorensenDice) = (0, 0, 0) @inline function eval_op(::SorensenDice, c::NTuple{3, <:Integer}, n1::Integer, n2::Integer) (c[1] + (n1 > 0), c[2] + (n2 > 0), c[3] + (n1 > 0) * (n2 > 0)) end eval_end(::SorensenDice, c::NTuple{3, <:Integer}) = 1 - 2 * c[3] / (c[1] + c[2]) """ Overlap(q::Int) Creates a Overlap distance. The distance corresponds to ``1 - |Q(s1, q) ∩ Q(s2, q)| / min(|Q(s1, q)|, |Q(s2, q)|)`` where ``Q(s, q)`` denotes the set of q-grams of length n for the string s """ struct Overlap <: AbstractQGramDistance q::Int end eval_start(::Overlap) = (0, 0, 0) @inline function eval_op(::Overlap, c::NTuple{3, <:Integer}, n1::Integer, n2::Integer) (c[1] + (n1 > 0), c[2] + (n2 > 0), c[3] + (n1 > 0) * (n2 > 0)) end eval_end(::Overlap, c::NTuple{3, <:Integer}) = 1 - c[3] / min(c[1], c[2]) """ NMD(q::Int) NMD(q::Int) Creates a NMD (Normalized Multiset Distance) as introduced by Besiris and Zigouris 2013. The goal with this distance is to behave similarly to a normalized compression distance without having to do any actual compression (and thus being faster to compute). The distance corresponds to ``(sum(max.(m(s1), m(s2)) - min(M(s1), M(s2))) / max(M(s1), M(s2))`` where ``m(s)`` is the vector of q-gram counts for string ``s`` and ``M(s)`` is the sum of those counts. For details see: https://www.sciencedirect.com/science/article/pii/S1047320313001417 """ struct NMD <: AbstractQGramDistance q::Int end eval_start(::NMD) = (0, 0, 0) @inline function eval_op(::NMD, c::NTuple{3, <:Integer}, n1::Integer, n2::Integer) (c[1] + n1, c[2] + n2, c[3] + max(n1, n2)) end eval_end(::NMD, c::NTuple{3, <:Integer}) = (c[3] - min(c[1], c[2])) / max(c[1], c[2]) """ MorisitaOverlap(q::Int) Creates a MorisitaOverlap distance, a general, statistical measure of dispersion which can also be used on dictionaries such as created from q-grams. See https://en.wikipedia.org/wiki/Morisita%27s_overlap_index This is more fine-grained than many of the other QGramDistances since it is based on the counts per q-gram rather than only which q-grams are in the strings. The distance corresponds to ``(2 * sum(m(s1) .* m(s2)) / (sum(m(s1).^2)*M(s2)/M(s1) + sum(m(s2).^2)*M(s1)/M(s2))`` where ``m(s)`` is the vector of q-gram counts for string ``s`` and ``M(s)`` is the sum of those counts. """ struct MorisitaOverlap <: AbstractQGramDistance q::Int end eval_start(::MorisitaOverlap) = (0, 0, 0, 0, 0) @inline function eval_op(::MorisitaOverlap, c::NTuple{5, <:Integer}, n1::Integer, n2::Integer) (c[1] + n1, c[2] + n2, c[3] + n1^2, c[4] + n2^2, c[5] + n1 * n2) end eval_end(::MorisitaOverlap, c::NTuple{5, <:Integer}) = 1 - 2 * c[5] / (c[3] * c[2] / c[1] + c[4] * c[1] / c[2]) #========================================================================== QGramIterator ==========================================================================# @doc """ Return an iterator corresponding to the the q-gram of an iterator. When the iterator is a String, qgrams are SubStrings. ### Arguments * `s` iterator * `q::Integer`: length of q-gram ## Examples ```julia for x in qgrams("hello", 2) println(x) end ``` """ qgrams struct QGramIterator{S <: Union{AbstractString, AbstractVector}} s::S # Collection q::Int # Length of Qgram function QGramIterator{S}(s, q) where {S <: Union{AbstractString, AbstractVector}} q > 0 || throw(ArgumentError("The qgram length must be higher than zero")) new(s, q) end end function QGramIterator(s::Union{AbstractString, AbstractVector}, q::Integer) QGramIterator{typeof(s)}(s, q) end Base.length(qgram::QGramIterator) = max(length(qgram.s) - qgram.q + 1, 0) # q-grams of AbstractString function Base.iterate(qgram::QGramIterator{<: AbstractString}, state = (1, nextind(qgram.s, 0, qgram.q))) istart, iend = state iend > ncodeunits(qgram.s) && return nothing element = SubString(qgram.s, istart, iend) nextstate = nextind(qgram.s, istart), nextind(qgram.s, iend) element, nextstate end Base.eltype(qgram::QGramIterator{SubString{S}}) where {S} = SubString{S} Base.eltype(qgram::QGramIterator{S}) where {S <: AbstractString} = SubString{S} qgrams(s::AbstractString, q::Integer) = QGramIterator(s, q) # q-grams of General Iterators function Base.iterate(qgram::QGramIterator{<: AbstractVector}, state = firstindex(qgram.s)) state + qgram.q - 1 > lastindex(qgram.s) && return nothing view(qgram.s, state:(state + qgram.q - 1)), state + 1 end Base.eltype(qgram::QGramIterator{<: AbstractVector}) = typeof(first(qgram)) qgrams(s::AbstractVector, q::Integer) = QGramIterator(s, q) qgrams(s, q::Integer) = QGramIterator(collect(s), q) #========================================================================== Compute QGramDistances on general iterators ==========================================================================# # For two iterators s1 and s2, that define a length and eltype method, # this returns an iterator that, # for each element in s1 ∪ s2, returns (numbers of times it appears in s1, numbers of times it appears in s2) function _count(qgrams1, qgrams2) K = promote_type(eltype(qgrams1), eltype(qgrams2)) d = Dict{K, Tuple{Int, Int}}() sizehint!(d, length(qgrams1) + length(qgrams2)) # I use a faster way to change a dictionary key # see setindex! in https://github.com/JuliaLang/julia/blob/master/base/dict.jl#L380 for x1 in qgrams1 index = Base.ht_keyindex2!(d, x1) if index > 0 d.age += 1 @inbounds d.keys[index] = x1 @inbounds d.vals[index] = (d.vals[index][1] + 1, 0) else @inbounds Base._setindex!(d, (1, 0), x1, -index) end end for x2 in qgrams2 index = Base.ht_keyindex2!(d, x2) if index > 0 d.age += 1 @inbounds d.keys[index] = x2 @inbounds d.vals[index] = (d.vals[index][1], d.vals[index][2] + 1) else @inbounds Base._setindex!(d, (0, 1), x2, -index) end end return values(d) end function (dist::AbstractQGramDistance)(s1, s2) (s1 === missing) | (s2 === missing) && return missing c = eval_start(dist) for (n1, n2) in _count(qgrams(s1, dist.q), qgrams(s2, dist.q)) c = eval_op(dist, c, n1, n2) end eval_end(dist, c) end #========================================================================== Compute QGramDistances on QGramDicts, iterators that store a dictionary associating qgrams to the number of their occurences ==========================================================================# """ QGramDict(s, q::Integer = 2) An iterator with a pre-computed dictionary of its qgrams. This enables faster calculation of QGram distances. Note that the qgram length must correspond with the q length used in the distance. ## Examples ```julia str1, str2 = "my string", "another string" qd1 = QGramDict(str1, 2) qd2 = QGramDict(str2, 2) evaluate(Overlap(2), qd1, qd2) ``` """ struct QGramDict{S, K} s::S q::Int counts::Dict{K, Int} end Base.length(s::QGramDict) = length(s.s) Base.iterate(s::QGramDict, args...) = iterate(s.s, args...) function QGramDict(s, q::Integer = 2) (s isa QGramDict) && (s.q == q) && return s qgs = qgrams(s, q) countpairs = countdict(qgs) QGramDict{typeof(s), eltype(qgs)}(s, q, countpairs) end # Turn a sequence of qgrams to a count dict for them, i.e. map each # qgram to the number of times it has been seen. function countdict(qgrams) d = Dict{eltype(qgrams), Int}() for qg in qgrams index = Base.ht_keyindex2!(d, qg) if index > 0 d.age += 1 @inbounds d.keys[index] = qg @inbounds d.vals[index] = d.vals[index][1] + 1 else @inbounds Base._setindex!(d, 1, qg, -index) end end return d end function (dist::AbstractQGramDistance)(qc1::QGramDict, qc2::QGramDict) dist.q == qc1.q == qc2.q || throw(ArgumentError("The distance and the QGramDict must have the same qgram length")) d1, d2 = qc1.counts, qc2.counts c = eval_start(dist) for (s1, n1) in d1 index = Base.ht_keyindex2!(d2, s1) if index <= 0 c = eval_op(dist, c, n1, 0) else c = eval_op(dist, c, n1, d2.vals[index]) end end for (s2, n2) in d2 index = Base.ht_keyindex2!(d1, s2) if index <= 0 c = eval_op(dist, c, 0, n2) end end eval_end(dist, c) end #========================================================================== Compute QGramDistances on QGramSortedVectors, iterators that store a sorted vector associating qgrams to the number of their occurences Note that QGramSortedVectors require qgrams to have a natural order ==========================================================================# """ QGramSortedVector(s, q::Integer = 2) An iterator with a pre-computed sorted vector of its qgrams. This enables faster calculation of QGram distances. Since qgrams are sorted in lexicographic order QGram distances can be calculated even faster than when using a QGramDict. However, the sorting means that updating the counts after creation is less efficient. However, for most use cases QGramSortedVector is preferred over a QgramDict. Note that the qgram length must correspond with the q length used in the distance. ## Examples ```julia str1, str2 = "my string", "another string" qs1 = QGramSortedVector(str1, 2) qs2 = QGramSortedVector(str2, 2) evaluate(Jaccard(2), qs1, qs2) ``` """ struct QGramSortedVector{S, K} s::S q::Int counts::Vector{Pair{K, Int}} end Base.length(s::QGramSortedVector) = length(s.s) Base.iterate(s::QGramSortedVector, args...) = iterate(s.s, args...) function QGramSortedVector(s, q::Integer = 2) (s isa QGramSortedVector) && (s.q == q) && return s qgs = qgrams(s, q) # todo: maybe more efficient to create sorteddict directly countpairs = collect(countdict(qgs)) sort!(countpairs, by = first) QGramSortedVector{typeof(s), eltype(qgs)}(s, q, countpairs) end function (dist::AbstractQGramDistance)(qc1::QGramSortedVector, qc2::QGramSortedVector) dist.q == qc1.q == qc2.q || throw(ArgumentError("The distance and the QGramSortedVectors must have the same qgram length")) d1, d2 = qc1.counts, qc2.counts c = eval_start(dist) i1 = i2 = 1 while true # length can be zero if i2 > length(d2) for i in i1:length(d1) @inbounds c = eval_op(dist, c, d1[i][2], 0) end break elseif i1 > length(d1) for i in i2:length(d2) @inbounds c = eval_op(dist, c, 0, d2[i][2]) end break end @inbounds s1, n1 = d1[i1] @inbounds s2, n2 = d2[i2] cmpval = Base.cmp(s1, s2) if cmpval == -1 # s1 < s2 c = eval_op(dist, c, n1, 0) i1 += 1 elseif cmpval == 1 # s1 > s2 c = eval_op(dist, c, 0, n2) i2 += 1 else # s1 == s2 c = eval_op(dist, c, n1, n2) i1 += 1 i2 += 1 end end eval_end(dist, c) end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
16093
using StringDistances, Unicode, Test, Random @testset "Distances" begin @testset "Hamming" begin @test Hamming()("martha", "marhta") ≈ 2 @test Hamming()("es an ", " vs an") ≈ 6 @test Hamming()([1, 2, 3], [1,2, 4]) ≈ 1 @inferred Hamming()("", "") @test ismissing(Hamming()("", missing)) end @testset "Jaro" begin @test Jaro()("martha", "marhta") ≈ 0.05555555555555547 @test Jaro()("es an ", " vs an") ≈ 0.2777777777777777 @test Jaro()(" vs an", "es an ") ≈ 0.2777777777777777 @test Jaro()([1, 2, 3], [1,2, 4]) ≈ 0.2222222222222222 @test Jaro()(graphemes("alborgów"), graphemes("amoniak")) == Jaro()("alborgów", "amoniak") @test Jaro()(" vs an", "es an ") ≈ 0.2777777777777777 @test result_type(Jaro(), "hello", "world") == typeof(float(1)) @inferred Jaro()("", "") @test ismissing(Jaro()("", missing)) end @testset "Levenshtein" begin @test Levenshtein()("", "") == 0 @test Levenshtein()("abc", "") == 3 @test Levenshtein()("", "abc") == 3 @test Levenshtein()("bc", "abc") == 1 @test Levenshtein()("kitten", "sitting") == 3 @test Levenshtein()("saturday", "sunday") == 3 @test Levenshtein()("hi, my name is", "my name is") == 4 @test Levenshtein()("a cat", "an act") == 3 @test Levenshtein()("alborgów", "amoniak") == 6 prefix = "my_prefix" @test Levenshtein()(prefix * "alborgów", prefix * "amoniak") == Levenshtein()("alborgów", "amoniak") @test Levenshtein()([1, 2, 3], [1, 2, 4]) == 1 @test Levenshtein()(graphemes("alborgów"), graphemes("amoniak")) == Levenshtein()("alborgów", "amoniak") @test Levenshtein()("", "abc") == 3 @test result_type(Levenshtein(), "hello", "world") == Int @inferred Levenshtein()("", "") @test ismissing(Levenshtein()("", missing)) end @testset "OptimalStringAlignment" begin @test OptimalStringAlignment()("", "") == 0 @test OptimalStringAlignment()("abc", "") == 3 @test OptimalStringAlignment()("bc", "abc") == 1 @test OptimalStringAlignment()("fuor", "four") == 1 @test OptimalStringAlignment()("abcd", "acb") == 2 @test OptimalStringAlignment()("cape sand recycling ", "edith ann graham") == 17 @test OptimalStringAlignment()("jellyifhs", "jellyfish") == 2 @test OptimalStringAlignment()("ifhs", "fish") == 2 @test OptimalStringAlignment()("a cat", "an act") == 2 @test OptimalStringAlignment()("a cat", "an abct") == 4 @test OptimalStringAlignment()("a cat", "a tc") == 3 @test OptimalStringAlignment()("abcdef", "abcxyf") == 2 @test OptimalStringAlignment()("abcdef", "abcxyf"; max_dist = 2) == 2 prefix = "my_prefix" @test OptimalStringAlignment()(prefix * "alborgów", prefix * "amoniak") == OptimalStringAlignment()("alborgów", "amoniak") @test OptimalStringAlignment()([1, 2, 3], [1,2, 4]) == 1 @test OptimalStringAlignment()(graphemes("alborgów"), graphemes("amoniak")) == OptimalStringAlignment()("alborgów", "amoniak") @test OptimalStringAlignment()("bc", "abc") == 1 @test result_type(OptimalStringAlignment(), "hello", "world") == Int @inferred OptimalStringAlignment()("", "") @test ismissing(OptimalStringAlignment()("", missing)) end @testset "DamerauLevenshtein" begin @test DamerauLevenshtein()("", "") == 0 @test DamerauLevenshtein()("CA", "ABC") == 2 @test DamerauLevenshtein()("ABCDEF", "ABDCEF") == 1 @test DamerauLevenshtein()("ABCDEF", "BACDFE") == 2 @test DamerauLevenshtein()("ABCDEF", "ABCDE") == 1 @test DamerauLevenshtein()("a cat", "an act") == 2 @test DamerauLevenshtein()("a cat", "an abct") == 3 @test DamerauLevenshtein()("a cat", "a tc") == 2 prefix = "my_prefix" @test DamerauLevenshtein()(prefix * "alborgów", prefix * "amoniak") == DamerauLevenshtein()("alborgów", "amoniak") @test result_type(DamerauLevenshtein(), "hello", "world") == Int @inferred DamerauLevenshtein()("", "") @test ismissing(DamerauLevenshtein()("", missing)) end @testset "RatcliffObershelp" begin @test RatcliffObershelp()("dixon", "dicksonx") ≈ 1 - 0.6153846153846154 @test RatcliffObershelp()("alexandre", "aleksander") ≈ 1 - 0.7368421052631579 @test RatcliffObershelp()("pennsylvania", "pencilvaneya") ≈ 1 - 0.6666666666666 @test RatcliffObershelp()("", "pencilvaneya") ≈ 1.0 @test RatcliffObershelp()("NEW YORK METS", "NEW YORK MEATS") ≈ 1 - 0.962962962963 @test RatcliffObershelp()("Yankees", "New York Yankees") ≈ 0.3913043478260869 @test RatcliffObershelp()("New York Mets", "New York Yankees") ≈ 0.24137931034482762 @test RatcliffObershelp()([1, 2, 3], [1,2, 4]) ≈ 1/3 @test RatcliffObershelp()(graphemes("alborgów"), graphemes("amoniak")) == RatcliffObershelp()("alborgów", "amoniak") @test RatcliffObershelp()("pennsylvania", "pencilvaneya") ≈ 1 - 0.6666666666666 @test result_type(RatcliffObershelp(), "hello", "world") == typeof(float(1)) @inferred RatcliffObershelp()("", "") @test ismissing(RatcliffObershelp()("", missing)) end @testset "QGram" begin @test QGram(1)("abc", "abc") == 0 @test QGram(1)("", "abc") == 3 @test QGram(1)("abc", "cba") == 0 @test QGram(1)("abc", "ccc") == 4 @test QGram(4)("aü☃", "aüaüafs") == 4 @test QGram(2)(SubString("aü☃", 1, 4), SubString("aüaüafs", 1, 4)) == 2 @test QGram(2)(graphemes("alborgów"), graphemes("amoniak")) ≈ QGram(2)("alborgów", "amoniak") @test QGram(1)("abc", "cba") == 0 @test result_type(QGram(1), "hello", "world") == Int @test ismissing(QGram(1)("", missing)) @inferred QGram(1)("", "") end @testset "Cosine" begin @test isnan(Cosine(2)("", "abc")) @test Cosine(2)("abc", "ccc") ≈ 1 atol = 1e-4 @test Cosine(2)("leia", "leela") ≈ 0.7113249 atol = 1e-4 @test Cosine(2)([1, 2, 3], [1, 2, 4]) ≈ 0.5 @test Cosine(2)(graphemes("alborgów"), graphemes("amoniak")) ≈ Cosine(2)("alborgów", "amoniak") @test Cosine(2)("leia", "leela") ≈ 0.7113249 atol = 1e-4 @test result_type(Cosine(2), "hello", "world") == typeof(float(1)) @inferred Cosine(2)("", "") @test ismissing(Cosine(2)("", missing)) end @testset "Jaccard" begin @test Jaccard(1)("", "abc") ≈ 1.0 @test Jaccard(1)("abc", "ccc") ≈ 2/3 atol = 1e-4 @test Jaccard(2)("leia", "leela") ≈ 0.83333 atol = 1e-4 @test Jaccard(2)([1, 2, 3], [1, 2, 4]) ≈ 2/3 atol = 1e-4 @test Jaccard(2)(graphemes("alborgów"), graphemes("amoniak")) ≈ Jaccard(2)("alborgów", "amoniak") @test Jaccard(2)("leia", "leela") ≈ 0.83333 atol = 1e-4 @test result_type(Jaccard(1), "hello", "world") == typeof(float(1)) @inferred Jaccard(1)("", "") @test ismissing(Jaccard(1)("", missing)) end @testset "SorensenDice" begin @test SorensenDice(1)("night", "nacht") ≈ 0.4 atol = 1e-4 @test SorensenDice(2)("night", "nacht") ≈ 0.75 atol = 1e-4 @test SorensenDice(2)(graphemes("alborgów"), graphemes("amoniak")) ≈ SorensenDice(2)("alborgów", "amoniak") @test SorensenDice(2)("night", "nacht") ≈ 0.75 atol = 1e-4 @test result_type(SorensenDice(1), "hello", "world") == typeof(float(1)) @inferred SorensenDice(1)("", "") @test ismissing(SorensenDice(1)("", missing)) end @testset "Overlap" begin @test Overlap(1)("night", "nacht") ≈ 0.4 atol = 1e-4 @test Overlap(1)("context", "contact") ≈ .2 atol = 1e-4 @test Overlap(1)("context", "contact") ≈ .2 atol = 1e-4 @test result_type(Overlap(1), "hello", "world") == typeof(float(1)) @inferred Overlap(1)("", "") @test ismissing(Overlap(1)("", missing)) end @testset "MorisitaOverlap" begin # overlap for 'n', 'h', and 't' and 5 q-grams per string: @test MorisitaOverlap(1)("night", "nacht") == 0.4 # 1.0-((2*3)/(5*5/5 + 5*5/5)) # overlap for 'o', 'n', 2-overlap for 'c' and 't' and 7 unique q-grams in total so multiplicity vectors # ms1 = [1, 1, 1, 2, 1, 1, 0] # ms2 = [2, 1, 1, 2, 0, 0, 1] # sum(ms1 .* ms2) = 8, sum(ms1 .^ 2) = 9, sum(ms2 .^ 2) = 11, sum(ms1) = 7, sum(ms2) = 7 @test MorisitaOverlap(1)("context", "contact") ≈ .2 atol = 1e-4 # 1.0-((2*8)/(9*7/7 + 11*7/7)) = 16/20 @test MorisitaOverlap(1)("context", "contact") ≈ .2 atol = 1e-4 # Multiplicity vectors for 2-grams "co", "on", "nt", "te", "ex", "xt", "ta", "ac", "ct" # ms1 = [1, 1, 1, 1, 1, 1, 0, 0, 0] # ms2 = [1, 1, 1, 0, 0, 0, 1, 1, 1] # sum(ms1 .* ms2) = 3, sum(ms1 .^ 2) = 6, sum(ms2 .^ 2) = 6, sum(ms1) = 6, sum(ms2) = 6 @test MorisitaOverlap(2)("context", "contact") == 0.5 # 1.0-((2*3)/(6*6/6 + 6*6/6)) @test result_type(MorisitaOverlap(1), "hello", "world") == typeof(float(1)) @inferred MorisitaOverlap(1)("", "") @test ismissing(MorisitaOverlap(1)("", missing)) end @testset "NMD" begin # m(s1) = [1, 1, 1, 1, 1, 0, 0], m(s2) = [1, 0, 0, 1, 1, 1, 1] @test NMD(1)("night", "nacht") == 0.4 # (7-5)/5 # ms1 = [1, 1, 1, 2, 1, 1, 0] # ms2 = [2, 1, 1, 2, 0, 0, 1] @test NMD(1)("context", "contact") ≈ 0.2857 atol = 1e-4 # ((2+1+1+2+1+1+1)-7)/(7) @test NMD(1)("context", "contact") ≈ 0.2857 atol = 1e-4 # ms1 = [1, 1, 1, 1, 1, 1, 0, 0, 0] # ms2 = [1, 1, 1, 0, 0, 0, 1, 1, 1] @test NMD(2)("context", "contact") == 0.5 # ((1+1+1+1+1+1+1+1+1)-6)/6 @test result_type(NMD(1), "hello", "world") == typeof(float(1)) @inferred NMD(1)("", "") @test ismissing(NMD(1)("", missing)) end @testset "QGramDict and QGramSortedVector counts qgrams" begin # To get something we can more easily compare to: stringify(p::Pair{<:AbstractString, <:Integer}) = (string(first(p)), last(p)) stringify(p::Pair{V, <:Integer}) where {S<:AbstractString,V<:AbstractVector{S}} = (map(string, first(p)), last(p)) sortedcounts(qc) = sort(collect(qc.counts), by = first) totuples(qc) = map(stringify, sortedcounts(qc)) s1, s2 = "arnearne", "arnebeda" qd1, qd2 = QGramDict(s1, 2), QGramDict(s2, 2) @test totuples(qd1) == [("ar", 2), ("ea", 1), ("ne", 2), ("rn", 2)] @test totuples(qd2) == [("ar", 1), ("be", 1), ("da", 1), ("eb", 1), ("ed", 1), ("ne", 1), ("rn", 1)] qc1, qc2 = QGramSortedVector(s1, 2), QGramSortedVector(s2, 2) @test totuples(qc1) == [("ar", 2), ("ea", 1), ("ne", 2), ("rn", 2)] @test totuples(qc2) == [("ar", 1), ("be", 1), ("da", 1), ("eb", 1), ("ed", 1), ("ne", 1), ("rn", 1)] s3 = "rgówów" qd3a = QGramDict(s3, 2) @test totuples(qd3a) == [("gó", 1), ("rg", 1), ("wó", 1), ("ów", 2)] qd3b = QGramDict(graphemes(s3), 2) @test totuples(qd3b) == [(["g", "ó"], 1), (["r", "g"], 1), (["w", "ó"], 1), (["ó", "w"], 2)] qc3a = QGramSortedVector(s3, 2) @test totuples(qc3a) == [("gó", 1), ("rg", 1), ("wó", 1), ("ów", 2)] qd3b = QGramDict(graphemes(s3), 2) @test totuples(qd3b) == [(["g", "ó"], 1), (["r", "g"], 1), (["w", "ó"], 1), (["ó", "w"], 2)] end function partlyoverlappingstrings(sizerange, chars = nothing) l = rand(sizerange) str1 = isnothing(chars) ? randstring(l) : randstring(chars, l) ci1 = thisind(str1, rand(1:l)) ci2 = thisind(str1, rand(ci1:l)) copied = join(str1[ci1:ci2]) prefix = isnothing(chars) ? randstring(ci1-1) : randstring(chars, ci1-1) slen = l - length(copied) - length(prefix) suffix = isnothing(chars) ? randstring(slen) : randstring(chars, slen) return str1, (prefix * copied * suffix) end @testset "Precalculation on unicode strings" begin Chars = vcat(map(collect, ["δσμΣèìòâôîêûÊÂÛ", 'a':'z', '0':'9'])...) for _ in 1:100 qlen = rand(2:5) str1, str2 = partlyoverlappingstrings(6:100, Chars) dist = Jaccard(qlen) qd1 = QGramDict(str1, qlen) qd2 = QGramDict(str2, qlen) @test dist(str1, str2) == dist(qd1, qd2) qd1b = QGramDict(graphemes(str1), qlen) qd2b = QGramDict(graphemes(str2), qlen) @test dist(str1, str2) == dist(qd1b, qd2b) qc1 = QGramSortedVector(str1, qlen) qc2 = QGramSortedVector(str2, qlen) @test dist(str1, str2) == dist(qc1, qc2) qc1b = QGramSortedVector(graphemes(str1), qlen) qc2b = QGramSortedVector(graphemes(str2), qlen) @test dist(str1, str2) == dist(qc1b, qc2b) end end @testset "QGram distance on short strings" begin @test isnan(Overlap(2)( "1", "2")) @test isnan(Jaccard(3)("s1", "s2")) @test isnan(Cosine(5)( "s1", "s2")) @test !isnan(Overlap(2)( "s1", "s2")) @test !isnan(Jaccard(3)("st1", "st2")) @test !isnan(Cosine(5)( "stri1", "stri2")) @test !isnan(Jaccard(3)("st1", "str2")) @test !isnan(Jaccard(3)("str1", "st2")) end @testset "Differential testing of String, QGramDict, and QGramSortedVector" begin for D in [QGram, Cosine, Jaccard, SorensenDice, Overlap, MorisitaOverlap, NMD] for _ in 1:100 qlen = rand(2:9) dist = D(qlen) str1, str2 = partlyoverlappingstrings(10:10000) # QGramDict gets same result as for standard string qd1 = QGramDict(str1, qlen) qd2 = QGramDict(str2, qlen) expected = dist(str1, str2) @test expected == dist(qd1, qd2) # QGramSortedVector gets same result as for standard string qc1 = QGramSortedVector(str1, qlen) qc2 = QGramSortedVector(str2, qlen) @test expected == dist(qc1, qc2) end end end strings = [ ("martha", "marhta"), ("dwayne", "duane") , ("dixon", "dicksonx"), ("william", "williams"), ("", "foo"), ("a", "a"), ("abc", "xyz"), ("abc", "ccc"), ("kitten", "sitting"), ("saturday", "sunday"), ("hi, my name is", "my name is"), ("alborgów", "amoniak"), ("cape sand recycling ", "edith ann graham"), ( "jellyifhs", "jellyfish"), ("ifhs", "fish"), ("leia", "leela"), ] solutions = ((Levenshtein(), [2 2 4 1 3 0 3 2 3 3 4 6 17 3 3 2]), (OptimalStringAlignment(), [1 2 4 1 3 0 3 2 3 3 4 6 17 2 2 2]), (Jaro(), [0.05555556 0.17777778 0.23333333 0.04166667 1.00000000 0.00000000 1.00000000 0.44444444 0.25396825 0.2805556 0.2285714 0.48809524 0.3916667 0.07407407 0.16666667 0.21666667]), (QGram(1), [0 3 3 1 3 0 6 4 5 4 4 11 14 0 0 3]), (QGram(2), [ 6 7 7 1 2 0 4 4 7 8 4 13 32 8 6 5]), (Jaccard(1), [0.0 0.4285714 0.3750000 0.1666667 1.0 0.0 1.0000000 0.6666667 0.5714286 0.3750000 0.2000000 0.8333333 0.5000000 0.0 0.0 0.2500000]), (Jaccard(2), [ 0.7500000 0.8750000 0.7777778 0.1428571 1.0 NaN 1.0000000 1.0000000 0.7777778 0.8000000 0.3076923 1.0000000 0.9696970 0.6666667 1.0000000 0.8333333]), (Cosine(2), [0.6000000 0.7763932 0.6220355 0.0741799 NaN NaN 1.0000000 1.0000000 0.6348516 0.6619383 0.1679497 1.0000000 0.9407651 0.5000000 1.0000000 0.7113249])) # Test with R package StringDist for x in solutions dist, solution = x for i in eachindex(solution) if isnan(dist(strings[i]...)) @test isnan(solution[i]) else @test dist(strings[i]...) ≈ solution[i] atol = 1e-4 end end end # test RatcliffObershelp solution = [83, 73, 62, 93, 0, 100, 0, 33, 62, 71, 83, 27, 33, 78, 50, 67] for i in eachindex(strings) @test round(Int, (1 - RatcliffObershelp()(strings[i]...)) * 100) ≈ solution[i] atol = 1e-4 end # test max_dist for i in eachindex(strings) d = Levenshtein()(strings[i]...) @test Levenshtein()(strings[i]...; max_dist = d) == d d = OptimalStringAlignment()(strings[i]...) @test OptimalStringAlignment()(strings[i]...; max_dist = d) == d end end #= R test library(stringdist) strings = matrix(data = c( "martha", "marhta", "dwayne", "duane", "dixon", "dicksonx", "william", "williams", "", "foo", "a", "a", "abc", "xyz", "abc", "ccc", "kitten", "sitting", "saturday", "sunday", "hi, my name is", "my name is", "alborgów", "amoniak", "cape sand recycling ", "edith ann graham", "jellyifhs", "jellyfish", "ifhs", "fish", "leia", "leela"), nrow = 2 ) stringdist(strings[1,], strings[2,], method = "jw", p = 0) stringdist(strings[1,], strings[2,], method = "jw", p = 0.1) stringdist(strings[1,], strings[2,], method = "qgram", q = 1) =# #= Fuzzywuzzy usesRatcliffObershelp if python-Levenshtein not installed, fuzzywuzzy uses RatcliffObershelp) from fuzzywuzzy import fuzz strings = [ ("martha", "marhta"), ("dwayne", "duane") , ("dixon", "dicksonx"), ("william", "williams"), ("", "foo"), ("a", "a"), ("abc", "xyz"), ("abc", "ccc"), ("kitten", "sitting"), ("saturday", "sunday"), ("hi, my name is", "my name is"), ("alborgów", "amoniak"), ("cape sand recycling ", "edith ann graham"), ( "jellyifhs", "jellyfish"), ("ifhs", "fish"), ("leia", "leela"), ] for x in strings: print(fuzz.ratio(x[0], x[1])) =#
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
9167
using StringDistances, Unicode, Random, Test @testset "Modifiers" begin # Partial @test Partial(QGram(2))("martha", "marhta") == 6 @test Partial(QGram(2))("martha", missing) === missing @test Partial(Levenshtein())("martha", "marhta") == 2 @test Partial(RatcliffObershelp())("martha", "marhta") ≈ 0.16666666 atol = 1e-5 @test Partial(RatcliffObershelp())("martha", "marhtaXXX") ≈ 0.16666666 atol = 1e-5 @test Partial(RatcliffObershelp())("martha", missing) === missing # TokenSort @test TokenSort(QGram(2))("martha", "marhta") == 6 @test TokenSort(QGram(2))("martha", missing) === missing @test TokenSort(Levenshtein())("martha", "marhta") == 2 @test TokenSort(RatcliffObershelp())("martha", "marhta") ≈ 0.16666666 atol = 1e-5 # TokenSet @test TokenSet(QGram(2))("martha", "marhta") == 6 @test TokenSet(QGram(2))("martha", missing) === missing @test TokenSet(Levenshtein())("martha", "marhta") == 2 @test TokenSet(RatcliffObershelp())("martha", "marhta") ≈ 0.16666666 atol = 1e-5 # TokenMax @test TokenMax(QGram(2))("martha", "marhta") ≈ 0.6 @test TokenMax(QGram(2))("martha", missing) === missing @test TokenMax(Levenshtein())("martha", "marhta") ≈ 1/3 @test TokenMax(RatcliffObershelp())("martha", "marhta") ≈ 0.16666666 atol = 1e-5 end @testset "Compare" begin # Qgram @test compare("", "abc", QGram(1)) ≈ 0.0 atol = 1e-4 @test compare("abc", "cba", QGram(1)) ≈ 1.0 atol = 1e-4 @test compare("abc", "ccc", QGram(1)) ≈ 1/3 atol = 1e-4 compare("aüa", "aua", TokenMax(QGram(2))) @test compare("", "abc", Jaccard(2)) ≈ 0.0 atol = 1e-4 @test compare("martha", "martha", Jaccard(2)) ≈ 1.0 atol = 1e-4 @test compare("martha", "martha", Jaccard(2)) ≈ 1.0 atol = 1e-4 @test compare("aa", "aa ", Partial(Jaccard(2))) ≈ 1.0 @test compare("martha", "martha", Cosine(2)) ≈ 1.0 atol = 1e-4 @test compare("martha", "martha", Overlap(2)) ≈ 1.0 atol = 1e-4 @test compare("martha", "martha", SorensenDice(2)) ≈ 1.0 atol = 1e-4 # Jaro @test compare("aüa", "aua", Hamming()) ≈ 2/3 @test compare("aüa", "aua", Jaro()) ≈ 0.77777777 atol = 1e-4 @test compare("New York Yankees", "", Partial(Jaro())) ≈ 0.0 # JaroWinkler @test compare("martha", "marhta", JaroWinkler()) ≈ 0.9611 atol = 1e-4 @test compare("dwayne", "duane", JaroWinkler()) ≈ 0.84 atol = 1e-4 @test compare("dixon", "dicksonx", JaroWinkler()) ≈ 0.81333 atol = 1e-4 @test compare("william", "williams", JaroWinkler()) ≈ 0.975 atol = 1e-4 @test compare("", "foo", JaroWinkler()) ≈ 0.0 atol = 1e-4 @test compare("a", "a", JaroWinkler()) ≈ 1.0 atol = 1e-4 @test compare("abc", "xyz", JaroWinkler()) ≈ 0.0 atol = 1e-4 #Levenshtein compare("aüa", "aua", Levenshtein()) @test compare("ok", missing, Levenshtein()) === missing compare("aüa", "aua", OptimalStringAlignment()) @test StringDistances.Normalized(Partial(OptimalStringAlignment()))("ab", "cde") == 1.0 @test compare("ab", "de", Partial(OptimalStringAlignment())) == 0 # RatcliffObershelp @test compare("New York Mets vs Atlanta Braves", "", RatcliffObershelp()) ≈ 0.0 @test round(Int, 100 * compare("为人子女者要堂堂正正做人,千万不可作奸犯科,致使父母蒙羞", "此前稍早些时候中国商务部发布消息称,中美经贸高级别磋商双方牵头人通话,中方就美拟9月1日加征关税进行了严正交涉。", RatcliffObershelp())) == 5 compare("aüa", "aua", TokenMax(RatcliffObershelp())) @test compare("New York Yankees", "Yankees", Partial(RatcliffObershelp())) ≈ 1.0 @test compare("New York Yankees", "", Partial(RatcliffObershelp())) ≈ 0.0 #@test compare("mariners vs angels", "los angeles angels at seattle mariners", Partial(RatcliffObershelp())) ≈ 0.444444444444 @test compare("HSINCHUANG", "SINJHUAN", Partial(RatcliffObershelp())) ≈ 0.875 @test compare("HSINCHUANG", "LSINJHUANG DISTRIC", Partial(RatcliffObershelp())) ≈ 0.8 @test compare("HSINCHUANG", "SINJHUANG DISTRICT", Partial(RatcliffObershelp())) ≈ 0.8 @test compare("HSINCHUANG", "SINJHUANG", Partial(RatcliffObershelp())) ≈ 0.8888888888888 @test compare("New York Mets vs Atlanta Braves", "Atlanta Braves vs New York Mets", TokenSort(RatcliffObershelp())) ≈ 1.0 @test compare(graphemes("New York Mets vs Atlanta Braves"), graphemes("Atlanta Braves vs New York Mets"), Partial(RatcliffObershelp())) ≈ compare("New York Mets vs Atlanta Braves", "Atlanta Braves vs New York Mets", Partial(RatcliffObershelp())) @test compare("mariners vs angels", "los angeles angels of anaheim at seattle mariners", TokenSet(RatcliffObershelp())) ≈ 1.0 - 0.09090909090909094 @test compare("New York Mets vs Atlanta Braves", "", TokenSort(RatcliffObershelp())) ≈ 0.0 @test compare("mariners vs angels", "", TokenSet(RatcliffObershelp())) ≈ 0.0 @test compare("mariners vs angels", "los angeles angels at seattle mariners", TokenSet(Partial(RatcliffObershelp()))) ≈ 1.0 @test compare("mariners", "mariner", TokenMax(RatcliffObershelp())) ≈ 0.933333333333333 @test compare("为人子女者要堂堂正正做人,千万不可作奸犯科,致使父母蒙羞", "此前稍早些时候中国商务部发布消息称,中美经贸高级别磋商双方牵头人通话,中方就美拟9月1日加征关税进行了严正交涉。", RatcliffObershelp()) ≈ 5 / 100 atol = 1e-2 @test compare("为人子女者要堂堂正正做人,千万不可作奸犯科,致使父母蒙羞", "此前稍早些时候中国商务部发布消息称,中美经贸高级别磋商双方牵头人通话,中方就美拟9月1日加征关税进行了严正交涉。", Partial(RatcliffObershelp())) ≈ 7 / 100 atol = 1e-2 @test compare("mariners", "mariner are playing tomorrow", TokenMax(RatcliffObershelp())) ≈ 79 / 100 atol = 1e-2 @test compare("mariners", "mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow", Partial(RatcliffObershelp())) ≈ 88 / 100 atol = 1e-2 @test compare("mariners", "mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow", TokenSort(RatcliffObershelp())) ≈ 11 / 100 atol = 1e-2 @test compare("mariners", "are mariner playing tomorrow", RatcliffObershelp()) ≈ 39 / 100 atol = 1e-2 @test compare("mariners", "are mariner playing tomorrow", Partial(RatcliffObershelp())) ≈ 88 / 100 atol = 1e-2 @test compare("mariners", "mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow", TokenSet(RatcliffObershelp())) ≈ 39 / 100 atol = 1e-2 @test compare("mariners", "mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow", TokenSet(Partial(RatcliffObershelp()))) ≈ 88 / 100 atol = 1e-2 # not exactly the same because tokenmax has uses the max of rounded tokenset etc @test compare("mariners", "mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow mariner are playing tomorrow", TokenMax(RatcliffObershelp())) ≈ 78.75 / 100 atol = 1e-2 # check min strings = [ ("martha", "marhta"), ("dwayne", "duane") , ("dixon", "dicksonx"), ("william", "williams"), ("", "foo"), ("a", "a"), ("abc", "xyz"), ("abc", "ccc"), ("kitten", "sitting"), ("saturday", "sunday"), ("hi, my name is", "my name is"), ("alborgów", "amoniak"), ("cape sand recycling ", "edith ann graham"), ( "jellyifhs", "jellyfish"), ("ifhs", "fish"), ("leia", "leela"), ] for dist in (Levenshtein, OptimalStringAlignment) for i in eachindex(strings) if compare(strings[i]..., dist()) < 1 / 3 @test compare(strings[i]..., dist() ; min_score = 1/ 3) ≈ 0.0 else @test compare(strings[i]..., dist() ; min_score = 1/ 3) ≈ compare(strings[i]..., dist()) end end end end @testset "Find*" begin # findnearest @test findnearest("New York", ["NewYork", "Newark", "San Francisco"], Levenshtein()) == ("NewYork", 1) @test findnearest("New York", ["San Francisco", "NewYork", "Newark"], Levenshtein()) == ("NewYork", 2) @test findnearest("New York", ["Newark", "San Francisco", "NewYork"], Levenshtein()) == ("NewYork", 3) @test findnearest("New York", ["NewYork", "Newark", "San Francisco"], Jaro()) == ("NewYork", 1) @test findnearest("New York", ["NewYork", "Newark", "San Francisco"], QGram(2)) == ("NewYork", 1) @test findnearest("New York", ["Newark", "San Francisco", "NewYork"], QGram(2)) == ("NewYork", 3) # findall @test findall("New York", ["NewYork", "Newark", "San Francisco"], Levenshtein()) == [1] @test findall("New York", ["NewYork", "Newark", "San Francisco"], Jaro()) == [1, 2] @test findall("New York", ["NewYork", "Newark", "San Francisco"], Jaro(); min_score = 0.99) == Int[] @test findall("New York", ["NewYork", "Newark", "San Francisco"], QGram(2); min_score = 0.99) == Int[] if VERSION >= v"1.2.0" @test findnearest("New York", skipmissing(["NewYork", "Newark", missing]), Levenshtein()) == ("NewYork", 1) @test findnearest("New York", skipmissing(Union{AbstractString, Missing}[missing, missing]), Levenshtein()) == (nothing, nothing) @test findall("New York", skipmissing(["NewYork", "Newark", missing]), Levenshtein()) == [1] @test findall("New York", skipmissing(Union{AbstractString, Missing}[missing, missing]), Levenshtein()) == [] end Random.seed!(2) y = map(Random.randstring, rand(5:25,1_000)) x = Random.randstring(10) for dist in (Levenshtein(), OptimalStringAlignment(), QGram(2), Partial(OptimalStringAlignment()), TokenMax(OptimalStringAlignment())) result = [compare(x, y, dist) for y in y] @test findnearest(x, y, dist)[2] == findmax(result)[2] @test findall(x, y, dist; min_score = 0.4) == findall(result .>= 0.4) end end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
2560
using StringDistances, Unicode, Test, Random @testset "Pairwise" begin TestStrings1 = ["", "abc", "bc", "kitten"] TestStrings2 = ["mew", "ab"] TestStrings1missing = ["", "abc", "bc", missing] TestStrings2missing = ["mew", missing] for d in [Jaro(), Levenshtein(), OptimalStringAlignment(), RatcliffObershelp(), QGram(2), Cosine(2), Jaccard(2), SorensenDice(2), Overlap(2)] R = pairwise(d, TestStrings1) @test size(R) == (4, 4) # No distance on the diagonal, since comparing strings to themselves @test R[1, 1] == 0.0 @test R[2, 2] == 0.0 @test R[3, 3] == 0.0 @test R[4, 4] == 0.0 # Since the distance might be NaN: equalorNaN(x, y) = (x == y) || (isnan(x) && isnan(y)) # First row is comparing "" to the other strings, so: @test equalorNaN(R[1, 2], evaluate(d, "", "abc")) @test equalorNaN(R[1, 3], evaluate(d, "", "bc")) @test equalorNaN(R[1, 4], evaluate(d, "", "kitten")) # Second row is comparing "abc" to the other strings, so: @test equalorNaN(R[2, 3], evaluate(d, "abc", "bc")) @test equalorNaN(R[2, 4], evaluate(d, "abc", "kitten")) # Third row row is comparing "bc" to the other strings, so: @test equalorNaN(R[3, 4], evaluate(d, "bc", "kitten")) # Matrix is symmetric for i in 1:4 for j in (i+1):4 @test equalorNaN(R[i, j], R[j, i]) end end # Test also the assymetric version R2 = pairwise(d, TestStrings1, TestStrings2) @test size(R2) == (4, 2) @test equalorNaN(R2[1, 1], evaluate(d, "", "mew")) @test equalorNaN(R2[1, 2], evaluate(d, "", "ab")) @test equalorNaN(R2[2, 1], evaluate(d, "abc", "mew")) @test equalorNaN(R2[2, 2], evaluate(d, "abc", "ab")) @test equalorNaN(R2[3, 1], evaluate(d, "bc", "mew")) @test equalorNaN(R2[3, 2], evaluate(d, "bc", "ab")) @test equalorNaN(R2[4, 1], evaluate(d, "kitten", "mew")) @test equalorNaN(R2[4, 2], evaluate(d, "kitten", "ab")) R3 = pairwise(d, TestStrings2, TestStrings1) @test size(R3) == (2, 4) for i in 1:length(TestStrings1) for j in 1:length(TestStrings2) @test equalorNaN(R2[i, j], R3[j, i]) end end # Ensure same result if preprocessing for QGramDistances if d isa AbstractQGramDistance R4 = pairwise(d, TestStrings1; preprocess = true) @test typeof(R4) == typeof(R) @test size(R4) == size(R) for i in 1:size(R4, 1) for j in 1:size(R4, 2) @test equalorNaN(R4[i, j], R[i, j]) end end end # ensures missing R5 = pairwise(d, TestStrings1missing; preprocess = true) @test eltype(R5) == Union{result_type(d, String, String), Missing} end end
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
code
105
using StringDistances using Test include("distances.jl") include("pairwise.jl") include("modifiers.jl")
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.11.3
5b2ca70b099f91e54d98064d5caf5cc9b541ad06
docs
5874
[![Build status](https://github.com/matthieugomez/StringDistances.jl/workflows/CI/badge.svg)](https://github.com/matthieugomez/StringDistances.jl/actions) ## Installation The package is registered in the [`General`](https://github.com/JuliaRegistries/General) registry and so can be installed at the REPL with `] add StringDistances`. ## Supported Distances String distances act over any pair of iterators that define `length` (e.g. `AbstractStrings`, `GraphemeIterators`, or `AbstractVectors`) The available distances are: - Edit Distances - Hamming Distance `Hamming() <: SemiMetric` - [Jaro and Jaro-Winkler Distance](https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance) `Jaro()` `JaroWinkler() <: SemiMetric` - [Levenshtein Distance](https://en.wikipedia.org/wiki/Levenshtein_distance) `Levenshtein() <: Metric` - [Optimal String Alignment Distance](https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Optimal_string_alignment_distance) (a.k.a. restricted Damerau-Levenshtein) `OptimalStringAlignment() <: SemiMetric` - [Damerau-Levenshtein Distance](https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Distance_with_adjacent_transpositions) `DamerauLevenshtein() <: Metric` - [RatcliffObershelp Distance](https://xlinux.nist.gov/dads/HTML/ratcliffObershelp.html) `RatcliffObershelp() <: SemiMetric` - Q-gram distances (which compare the set of all substrings of length `q` in each string) - QGram Distance `QGram(q::Int) <: SemiMetric` - [Cosine Distance](https://en.wikipedia.org/wiki/Cosine_similarity) `Cosine(q::Int) <: SemiMetric` - [Jaccard Distance](https://en.wikipedia.org/wiki/Jaccard_index) `Jaccard(q::Int) <: SemiMetric` - [Overlap Distance](https://en.wikipedia.org/wiki/Overlap_coefficient) `Overlap(q::Int) <: SemiMetric` - [Sorensen-Dice Distance](https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient) `SorensenDice(q::Int) <: SemiMetric` - [MorisitaOverlap Distance](https://en.wikipedia.org/wiki/Morisita%27s_overlap_index) `MorisitaOverlap(q::Int) <: SemiMetric` - [Normalized Multiset Distance](https://www.sciencedirect.com/science/article/pii/S1047320313001417) `NMD(q::Int) <: SemiMetric` ## Syntax Following the `Distances.jl` package, string distances can inherit from two abstract types: `StringSemiMetric <: SemiMetric` or `StringMetric <: Metric`. ## Computing the distance between two strings (or iterators) You can always compute a certain distance between two strings using the following syntax ```julia r = evaluate(dist, x, y) r = dist(x, y) ``` Here, `dist` is an instance of a distance type: for example, the type for the Levenshtein distance is `Levenshtein`. You can compute the Levenshtein distance between `x` and `y` as ```julia r = evaluate(Levenshtein(), x, y) r = Levenshtein()(x, y) ``` The function `compare` returns the similarity score, defined as 1 minus the normalized distance between two strings. It always returns an element of type `Float64`. A value of 0.0 means completely different and a value of 1.0 means completely similar. ```julia Levenshtein()("martha", "martha") #> 0 compare("martha", "martha", Levenshtein()) #> 1.0 ``` ## Computing the distance between two AbstractVectors of strings (or iterators) Consider `X` and `Y` two `AbstractVectors` of iterators. You can compute the matrix of distances across elements, `dist(X[i], Y[j])`, as follows: ```julia pairwise(dist, X, Y) ``` For instance, ```julia pairwise(Jaccard(3), ["martha", "kitten"], ["marhta", "sitting"]) ``` `pairwise` is optimized in various ways (e.g., for the case of QGram-distances, dictionary of qgrams are pre-computed) ## Find closest string The package also adds convenience functions to find elements in a iterator of strings closest to a given string - `findnearest` returns the value and index of the element in `itr` with the highest similarity score with `s`. Its syntax is: ```julia findnearest(s, itr, dist) ``` - `findall` returns the indices of all elements in `itr` with a similarity score with `s` higher than a minimum score. Its syntax is: ```julia findall(s, itr, dist; min_score = 0.8) ``` The functions `findnearest` and `findall` are particularly optimized for the `Levenshtein` and `OptimalStringAlignment` distances, as these algorithm can stop early if the distance becomes higher than a certain threshold. ### fuzzywuzzy The package also defines Distance "modifiers" that are inspired by the Python package - [fuzzywuzzy](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/). These modifiers are particularly helpful to match strings composed of multiple words (e.g. addresses, company names). - [Partial](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) returns the minimum of the distance between the shorter string and substrings of the longer string. - [TokenSort](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) adjusts for differences in word orders by returning the distance of the two strings, after re-ordering words alphabetically. - [TokenSet](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) adjusts for differences in word orders and word numbers by returning the distance between the intersection of two strings with each string. - [TokenMax](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) normalizes the distance, and combine the `Partial`, `TokenSort` and `TokenSet` modifiers, with penalty terms depending on string. `TokenMax(Levenshtein())` corresponds to the distance defined in [fuzzywuzzy](http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/) ```julia Levenshtein()("this string", "this string is longer") = 10 Partial(Levenshtein())("this string", "this string is longer") = 0 ``` ## Notes - All string distances are case sensitive.
StringDistances
https://github.com/matthieugomez/StringDistances.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
code
946
module MCMCDebugging using UnPack, ProgressMeter, RecipesBase, Statistics, LabelledArrays, Distributions, HypothesisTests, DynamicPPL abstract type AbstractMCMCTest end abstract type AbstractMCMCResult end include("mmd.jl") export mmd_of include("geweke.jl") export GewekeTest include("clt.jl") export CLTTest ### DynamicPPL integration function perform(cfg::GewekeTest, modelgen::Function, rand_θ_given::Function; kwargs...) model = modelgen() rand_marginal() = model() function rand_x_given(θ) _, x = modelgen(θ)() return x end return perform(cfg, rand_marginal, rand_x_given, rand_θ_given; kwargs...) end @recipe function f(res::GewekeTestResult, model::Model) vi = VarInfo(model) spl = SampleFromPrior() function _logjoint(θ, x) vi[spl] = cat(θ, x; dims=1) return logjoint(model, vi) end res, _logjoint end export perform, compute_statistic! end # module
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
code
122
struct CLTTest <: AbstractMCMCTest n_chains::Int end struct CLTTestResult{T} <: AbstractMCMCResult chains::T end
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
code
5472
struct GewekeTest <: AbstractMCMCTest n_samples::Int end mutable struct GewekeTestResult{T} <: AbstractMCMCResult samples_fwd::T samples_bwd::T statistic pval qerror end function Base.show(io::IO, res::GewekeTestResult) println(io, "Geweke (Joint Distribution) Test") println(io, "--------------------------------") println(io, "Results:") println(io, " Number of samples: $(size(res.samples_fwd, 2))") println(io, " Parameter dimension: $(size(res.samples_fwd.θ, 1))") println(io, " Data dimension: $(size(res.samples_fwd.x, 1))") println(io, " Statistic: $(res.statistic)") println(io, " P-value: $(res.pval)") if ismissing(res.statistic) println(io, "") println( io, """ Test statistic is missing. Please use `compute_statistic!(res, g)` if you want compute statistic without rerun the simulation. """ ) end if !ismissing(res.qerror) println(io, " Quantile error: $(res.qerror)") end end """ perform(cfg::GewekeTest, rand_θ::Function, rand_x_given::Function, rand_θ_given::Function, g=nothing) Run Geweke (joint distribution) test and compute the test statistic using `g` as the test function as in Equation (6) of (Geweke, 2014). """ function perform(cfg::GewekeTest, rand_marginal::Function, rand_x_given::Function, rand_θ_given::Function; g=nothing, progress=true) @unpack n_samples = cfg # Generate samples local dim_θ, dim_x, samples_fwd, samples_bwd, θ_bwd pm = Progress(n_samples) for i in 1:n_samples # Marginal-cnditional simulator θ_fwd, x_fwd = rand_marginal() if i == 1 dim_θ = length(θ_fwd) dim_x = length(x_fwd) dim = dim_θ + dim_x T = eltype(θ_fwd) samples_fwd = Matrix{T}(undef, dim, n_samples) samples_bwd = Matrix{T}(undef, dim, n_samples) end samples_fwd[:,i] = cat(θ_fwd, x_fwd; dims=1) # Successive-conditional simulator if i == 1 θ_bwd, x_bwd = rand_marginal() else x_bwd = rand_x_given(θ_bwd) θ_bwd = rand_θ_given(x_bwd) end samples_bwd[:,i] = cat(θ_bwd, x_bwd; dims=1) # Progress meter progress && next!(pm) end samples_fwd = @LArray samples_fwd (θ=(1:dim_θ,:), x=(dim_θ+1:dim_θ+dim_x,:)) samples_bwd = @LArray samples_bwd (θ=(1:dim_θ,:), x=(dim_θ+1:dim_θ+dim_x,:)) # Compute statistics if g isa Nothing @warn "Test function `g` is not provided. Statistic is not computed." statistic, pval = missing, missing else statistic, pval = _compute_statistic(samples_fwd, samples_bwd, g) end return GewekeTestResult(samples_fwd, samples_bwd, statistic, pval, missing) end function _compute_statistic(samples_fwd, samples_bwd, g) g_fwd = map(i -> g(samples_fwd.θ[:,i], samples_fwd.x[:,i]), 1:size(samples_fwd, 2)) g_bwd = map(i -> g(samples_bwd.θ[:,i], samples_bwd.x[:,i]), 1:size(samples_bwd, 2)) m_fwd = mean(g_fwd) v_fwd = mean(x -> x.^2, g_fwd) - m_fwd.^2 m_bwd = mean(g_bwd) v_bwd = mean(x -> x.^2, g_bwd) - m_bwd.^2 M₁, M₂ = length(g_fwd), length(g_bwd) statistic = (m_fwd - m_bwd) ./ sqrt.(v_fwd / M₁ + v_bwd / M₂) pval = pvalue.(Ref(Normal(0, 1)), statistic) return statistic, pval end function compute_statistic!(res::GewekeTestResult, g) @unpack samples_fwd, samples_bwd = res res.statistic, res.pval = _compute_statistic(samples_fwd, samples_bwd, g) return res end function mmd_of(res::MCMCDebugging.GewekeTestResult; force=false, kwargs...) n_samples = size(res.samples_bwd, 2) if force || n_samples <= 5_000 return mmd_of(res.samples_fwd, res.samples_bwd; kwargs...) else @warn "The number of samples ($n_samples) is large and MMD computation would be slow. Please use `mmd_of(res; force=true)` if you still want to compute MMD." end end @recipe function f(res::GewekeTestResult, logjoint::Function; n_grids=100, verbose=true) @unpack samples_fwd, samples_bwd = res logjoint_fwd = map(i -> logjoint(samples_fwd.θ[:,i], samples_fwd.x[:,i]), 1:size(samples_fwd, 2)) logjoint_bwd = map(i -> logjoint(samples_bwd.θ[:,i], samples_bwd.x[:,i]), 1:size(samples_bwd, 2)) joint_fwd, joint_bwd = exp.(logjoint_fwd), exp.(logjoint_bwd) # Compute CDFs mins, maxs = extrema.([joint_fwd, joint_bwd]) percent_fwd = Vector{Float64}(undef, n_grids) percent_bwd = Vector{Float64}(undef, n_grids) for (i, v) in enumerate(range(minimum(mins), maximum(maxs); length=n_grids)) percent_fwd[i] = sum(joint_fwd .< v) / length(joint_fwd) percent_bwd[i] = sum(joint_bwd .< v) / length(joint_bwd) end # Compute the absolute error res.qerror = mean(abs.(percent_fwd .- percent_bwd)) verbose && println("Quantile error: $(res.qerror)") # Recipe legend --> :topleft @series begin linecolor := 2 label := "Sampler" percent_fwd, percent_bwd end @series begin linecolor := nothing label := "Error" fillrange := percent_fwd fillalpha := 0.5 fillcolor := :lightgray percent_fwd, percent_bwd end @series begin linecolor := :gray linestyle := :dash label := "Perfect" [0, 1], [0, 1] end end
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
code
1113
function euclidsq(X::T, Y::T) where {T<:AbstractMatrix} XiXj = transpose(X) * Y x² = sum(X .^ 2; dims=1) y² = sum(Y .^ 2; dims=1) transpose(x²) .+ y² - 2XiXj end function euclidsq(X::T) where {T<:AbstractMatrix} XiXj = transpose(X) * X x² = sum(X .^ 2; dims=1) transpose(x²) .+ x² - 2XiXj end gaussian_gramian(esq, σ::AbstractFloat) = exp.(-esq ./ 2σ^2) """ mmd_of(x_nu, x_de; σ=nothing) Compute the maximum mean discrepency give two set of samples `x_nu` and `x_de`. If `σ` is not provided, it will be taken as "median / log(n)" where `median` is the median of pair-wise Ecludean distances and `n` is the number of samples in `x_de`. """ function mmd_of(x_nu, x_de; σ=nothing) d²_dede, d²_denu, d²_nunu = euclidsq(x_de), euclidsq(x_de, x_nu), euclidsq(x_nu) # Heuristic: take `σ²` as "median / log(n)" if σ isa Nothing h = median(vcat(vec.([d²_dede, d²_denu, d²_nunu]))) / log(size(d²_dede, 1)) σ = sqrt(h) end Kdede, Kdenu, Knunu = gaussian_gramian.((d²_dede, d²_denu, d²_nunu), σ) return mean(Kdede) - 2mean(Kdenu) + mean(Knunu) end
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
code
956
using Distributions, DynamicPPL # The marginal-conditional simulator defined by DynamicPPL # See README.md for the expected form of the model definition. @model function BetaBinomial(θ=missing, x=missing) θ ~ Beta(2, 3) x ~ Binomial(3, θ) return θ, x end # The successive-conditional simulator # 1. Bug-free posterior sampler # Beta(α + x, β + n - x) is the true posterior. rand_θ_given(x) = rand(Beta(2 + x, 3 + 3 - x)) # 2. Buggy posterior sampler rand_θ_given_buggy(x) = rand_θ_given(min(3, x + 1)) # Test function g(θ, x) = cat(θ, x; dims=1) using MCMCDebugging res = perform(GewekeTest(5_000), BetaBinomial, rand_θ_given; g=g) using Plots plot(res, BetaBinomial(); size=(300, 300), title="Bug-free sampler") res_buggy = perform(GewekeTest(5_000), BetaBinomial, rand_θ_given_buggy) compute_statistic!(res_buggy, g) plot(res_buggy, BetaBinomial(); size=(300, 300), title="Buggy sampler") @info "MMD" mmd_of(res) mmd_of(res_buggy)
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
0.2.1
05326e2bbca7e6957e8bc15fc1ab5b8942abe1de
docs
3013
# MCMCDebugging.jl: debugging utilities for MCMC samplers This package implements a few utilities for debugging MCMC samplers, which includes - [x] Geweke test - See the references [1,2] or [this blog](https://lips.cs.princeton.edu/testing-mcmc-code-part-2-integration-tests/) for details - [ ] Central limit theorem test See the [notebook](https://nbviewer.jupyter.org/github/xukai92/MCMCDebugging.jl/blob/master/docs/example.ipynb) for an example. ## Usage The example [notebook](https://nbviewer.jupyter.org/github/xukai92/MCMCDebugging.jl/blob/master/docs/example.ipynb) covers most of the usages. Some details on the model definition via DynamicPPL is explained below. ### Defining test models via DynamicPPL.jl MCMCDebugging.jl allows using DynamicPPL.jl to define test models. In the example [notebook](https://nbviewer.jupyter.org/github/xukai92/MCMCDebugging.jl/blob/master/docs/example.ipynb), the test model is defined as ```julia @model function BetaBinomial(θ=missing, x=missing) θ ~ Beta(2, 3) x ~ Binomial(3, θ) return θ, x end ``` There are a few requirements from MCMCDebugging.jl to use the defined model. 1. The model should take `θ` and `x` as inputs (in order) and optionally being `missing`. - So that the model can be used to generate the marginal sampler as e.g. `BetaBinomial()` and conditional sampler as e.g. `BetaBinomial(θ)` 2. The model should return the parameter `θ` and the data `x` as a tuple. With these two points, MCMCDebugging.jl can generate several functions used by lower-level APIs. 1. `rand_marginal()`: drawing `θ` and `x` as a tuple 2. `rand_x_given(θ)`: drawing `x` conditioned on `θ` 3. `logjoint(θ, x)`: computing the log-joint probability of `θ` and `x` 1 and 2 are used to perform the Geweke test and 3 is used to make the Q-Q plot. ## Lower-level APIs ### Geweke test Defining the Geweke test ```julia cfg = GewekeTest(n_samples::Int) ``` where `n_samples` is the number of samples used for testing. Performing the Geweke test ```julia res = perform(cfg::GewekeTest, rand_marginal, rand_x_given, rand_θ_given; g=nothing, progress=true) ``` where - `rand_marginal()` draws `θ` and `x` as a tuple - `rand_x_given(θ)` draws `x` conditioned on `θ` - `rand_θ_given(x)` draws `θ` conditioned on `x` - `g(θ, x)` is the test function Making the Q-Q plot ```julia plot(res::GewekeTestResult, logjoint) ``` where - `logjoint(θ, x)` computes the log-joint probability of `θ` and `x` In case models are defined by DynamicPPL.jl, you can use ```julia plot(res::GewekeTestResult, model) ``` For example, `plot(res, BetaBinomial())`. Note we have to pass an instantiated model (i.e. BetaBinomial()) here, for now, to make Julia correctly dispatch the plot recipe. ## References [1] Geweke J. Getting it right: Joint distribution tests of posterior simulators. Journal of the American Statistical Association. 2004 Sep 1;99(467):799-804. [2] Grosse RB, Duvenaud DK. Testing mcmc code. arXiv preprint arXiv:1412.5218. 2014 Dec 16.
MCMCDebugging
https://github.com/TuringLang/MCMCDebugging.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
943
using Documenter, DiffEqSensitivity # Make sure that plots don't throw a bunch of warnings / errors! ENV["GKSwstype"] = "100" using Plots include("pages.jl") makedocs( sitename = "DiffEqSensitivity.jl", authors="Chris Rackauckas et al.", clean = true, doctest = false, modules = [DiffEqSensitivity], strict = [ :doctest, :linkcheck, :parse_error, :example_block, # Other available options are # :autodocs_block, :cross_references, :docs_block, :eval_block, :example_block, :footnote, :meta_block, :missing_docs, :setup_block ], format = Documenter.HTML(#analytics = "", assets = ["assets/favicon.ico"], canonical="https://sensitivity.sciml.ai/stable/"), pages=pages ) deploydocs( repo = "github.com/SciML/DiffEqSensitivity.jl.git"; push_preview = true )
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
3128
pages = [ "DiffEqSensitivity.jl: Automatic Differentiation and Adjoints for (Differential) Equation Solvers" => "index.md", "Tutorials" => Any[ "Differentiating Ordinary Differential Equations (ODE) Tutorials" => Any[ "ad_examples/differentiating_ode.md", "ad_examples/direct_sensitivity.md", "ad_examples/adjoint_continuous_functional.md", "ad_examples/chaotic_ode.md", ], "Fitting Ordinary Differential Equation (ODE) Tutorials" => Any[ "ode_fitting/optimization_ode.md", "ode_fitting/stiff_ode_fit.md", "ode_fitting/exogenous_input.md", "ode_fitting/data_parallel.md", "ode_fitting/prediction_error_method.md", "ode_fitting/second_order_adjoints.md", "ode_fitting/second_order_neural.md", ], "Training Techniques and Tips" => Any[ "training_tips/local_minima.md", "training_tips/divergence.md", "training_tips/multiple_nn.md", ], "Neural Ordinary Differential Equation (Neural ODE) Tutorials" => Any[ "neural_ode/neural_ode_flux.md", "neural_ode/mnist_neural_ode.md", "neural_ode/mnist_conv_neural_ode.md", "neural_ode/GPUs.md", "neural_ode/neural_gde.md", "neural_ode/minibatch.md", ], "Stochastic Differential Equation (SDE) Tutorials" => Any[ "sde_fitting/optimization_sde.md", "sde_fitting/neural_sde.md", ], "Delay Differential Equation (DDE) Tutorials" => Any[ "dde_fitting/delay_diffeq.md", ], "Differential-Algebraic Equation (DAE) Tutorials" => Any[ "dae_fitting/physical_constraints.md", ], "Partial Differential Equation (PDE) Tutorials" => Any[ "pde_fitting/pde_constrained.md", ], "Hybrid and Jump Equation Tutorials" => Any[ "hybrid_jump_fitting/hybrid_diffeq.md", "hybrid_jump_fitting/bouncing_ball.md", ], "Bayesian Estimation Tutorials" => Any[ "bayesian/turing_bayesian.md", "bayesian/BayesianNODE_NUTS.md", "bayesian/BayesianNODE_SGLD.md", ], "Optimal and Model Predictive Control Tutorials" => Any[ "optimal_control/optimal_control.md", "optimal_control/feedback_control.md", "optimal_control/SDE_control.md", ], ], "Manual and APIs" => Any[ "manual/differential_equation_sensitivities.md", "manual/nonlinear_solve_sensitivities.md", "manual/direct_forward_sensitivity.md", "manual/direct_adjoint_sensitivities.md", ], "Benchmarks" => "Benchmark.md", "Sensitivity Math Details" => "sensitivity_math.md", ]
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
2234
module DiffEqSensitivity using DiffEqBase, ForwardDiff, Tracker, FiniteDiff, Statistics using DiffEqCallbacks, QuadGK, RecursiveArrayTools, LinearAlgebra using DiffEqOperators using Adapt using LinearSolve using Parameters: @unpack using StochasticDiffEq import DiffEqNoiseProcess import RandomNumbers: Xorshifts using Random import ZygoteRules, Zygote, ReverseDiff import ArrayInterfaceCore, ArrayInterfaceTracker import Enzyme import GPUArrays using Cassette, DiffRules using Core: CodeInfo, SlotNumber, SSAValue, ReturnNode, GotoIfNot using EllipsisNotation using Markdown using Reexport import ChainRulesCore: unthunk, @thunk, NoTangent, @not_implemented abstract type SensitivityFunction end abstract type TransformedFunction end include("hasbranching.jl") include("sensitivity_algorithms.jl") include("derivative_wrappers.jl") include("sensitivity_interface.jl") include("forward_sensitivity.jl") include("adjoint_common.jl") include("lss.jl") include("nilss.jl") include("nilsas.jl") include("backsolve_adjoint.jl") include("interpolating_adjoint.jl") include("quadrature_adjoint.jl") include("callback_tracking.jl") include("concrete_solve.jl") include("second_order.jl") include("steadystate_adjoint.jl") include("sde_tools.jl") # AD Extensions include("reversediff.jl") include("tracker.jl") include("zygote.jl") export extract_local_sensitivities export ODEForwardSensitivityFunction, ODEForwardSensitivityProblem, SensitivityFunction, ODEAdjointSensitivityProblem, ODEAdjointProblem, AdjointSensitivityIntegrand, SDEAdjointProblem, RODEAdjointProblem, SensitivityAlg, adjoint_sensitivities, adjoint_sensitivities_u0, ForwardLSSProblem, AdjointLSSProblem, NILSSProblem, NILSASProblem, shadow_forward, shadow_adjoint export BacksolveAdjoint, QuadratureAdjoint, InterpolatingAdjoint, TrackerAdjoint, ZygoteAdjoint, ReverseDiffAdjoint, ForwardSensitivity, ForwardDiffSensitivity, ForwardDiffOverAdjoint, SteadyStateAdjoint, ForwardLSS, AdjointLSS, NILSS, NILSAS export second_order_sensitivities, second_order_sensitivity_product export TrackerVJP, ZygoteVJP, EnzymeVJP, ReverseDiffVJP export StochasticTransformedFunction end # module
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
15343
struct AdjointDiffCache{UF,PF,G,TJ,PJT,uType,JC,GC,PJC,JNC,PJNC,rateType,DG,DI,AI,FM} uf::UF pf::PF g::G J::TJ pJ::PJT dg_val::uType jac_config::JC g_grad_config::GC paramjac_config::PJC jac_noise_config::JNC paramjac_noise_config::PJNC f_cache::rateType dg::DG diffvar_idxs::DI algevar_idxs::AI factorized_mass_matrix::FM issemiexplicitdae::Bool end """ adjointdiffcache(g,sensealg,discrete,sol,dg;quad=false) return (AdjointDiffCache, y) """ function adjointdiffcache(g::G,sensealg,discrete,sol,dg::DG,f;quad=false,noiseterm=false,needs_jac=false) where {G,DG} prob = sol.prob if prob isa DiffEqBase.SteadyStateProblem @unpack u0, p = prob tspan = (nothing, nothing) #elseif prob isa SDEProblem # @unpack tspan, u0, p = prob else @unpack u0, p, tspan = prob end numparams = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(p) numindvar = length(u0) isautojacvec = get_jacvec(sensealg) issemiexplicitdae = false mass_matrix = sol.prob.f.mass_matrix if mass_matrix isa UniformScaling factorized_mass_matrix = mass_matrix' elseif mass_matrix isa Tuple{UniformScaling,UniformScaling} factorized_mass_matrix = (I',I') else mass_matrix = mass_matrix' diffvar_idxs = findall(x->any(!iszero, @view(mass_matrix[:, x])), axes(mass_matrix, 2)) algevar_idxs = setdiff(eachindex(u0), diffvar_idxs) # TODO: operator M̃ = @view mass_matrix[diffvar_idxs, diffvar_idxs] factorized_mass_matrix = lu(M̃, check=false) issuccess(factorized_mass_matrix) || error("The submatrix corresponding to the differential variables of the mass matrix must be nonsingular!") isempty(algevar_idxs) || (issemiexplicitdae = true) end if !issemiexplicitdae diffvar_idxs = eachindex(u0) algevar_idxs = 1:0 end if !needs_jac J = (issemiexplicitdae || !isautojacvec) ? similar(u0, numindvar, numindvar) : nothing else # Force construction of the Jacobian J = similar(u0, numindvar, numindvar) end if !discrete if dg !== nothing pg = nothing pg_config = nothing if dg isa Tuple && length(dg) == 2 dg_val = (similar(u0, numindvar),similar(u0, numparams)) dg_val[1] .= false dg_val[2] .= false else dg_val = similar(u0, numindvar) # number of funcs size dg_val .= false end else if !(prob isa RODEProblem) pg = UGradientWrapper(g,tspan[2],p) else pg = RODEUGradientWrapper(g,tspan[2],p,last(sol.W)) end pg_config = build_grad_config(sensealg,pg,u0,p) dg_val = similar(u0, numindvar) # number of funcs size dg_val .= false end else dg_val = nothing pg = nothing pg_config = nothing end if DiffEqBase.has_jac(f) || (J === nothing) jac_config = nothing uf = nothing else if DiffEqBase.isinplace(prob) if !(prob isa RODEProblem) uf = DiffEqBase.UJacobianWrapper(f,tspan[2],p) else uf = RODEUJacobianWrapper(f,tspan[2],p,last(sol.W)) end jac_config = build_jac_config(sensealg,uf,u0) else if !(prob isa RODEProblem) uf = DiffEqBase.UDerivativeWrapper(f,tspan[2],p) else uf = RODEUDerivativeWrapper(f,tspan[2],p,last(sol.W)) end jac_config = nothing end end if prob isa DiffEqBase.SteadyStateProblem y = copy(sol.u) else y = copy(sol.u[end]) end if typeof(prob.p) <: DiffEqBase.NullParameters _p = similar(y,(0,)) else _p = prob.p end @assert sensealg.autojacvec !== nothing if sensealg.autojacvec isa ReverseDiffVJP if prob isa DiffEqBase.SteadyStateProblem if DiffEqBase.isinplace(prob) tape = ReverseDiff.GradientTape((y, _p)) do u,p du1 = p !== nothing && p !== DiffEqBase.NullParameters() ? similar(p, size(u)) : similar(u) f(du1,u,p,nothing) return vec(du1) end else tape = ReverseDiff.GradientTape((y, _p)) do u,p vec(f(u,p,nothing)) end end elseif noiseterm && (!StochasticDiffEq.is_diagonal_noise(prob) || isnoisemixing(sensealg)) tape = nothing else if DiffEqBase.isinplace(prob) if !(prob isa RODEProblem) tape = ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t du1 = (p !== nothing && p !== DiffEqBase.NullParameters()) ? similar(p, size(u)) : similar(u) f(du1,u,p,first(t)) return vec(du1) end else tape = ReverseDiff.GradientTape((y, _p, [tspan[2]],last(sol.W))) do u,p,t,W du1 = p !== nothing && p !== DiffEqBase.NullParameters() ? similar(p, size(u)) : similar(u) f(du1,u,p,first(t),W) return vec(du1) end end else if !(prob isa RODEProblem) tape = ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t vec(f(u,p,first(t))) end else tape = ReverseDiff.GradientTape((y, _p, [tspan[2]],last(sol.W))) do u,p,t,W return f(u,p,first(t),W) end end end end if compile_tape(sensealg.autojacvec) paramjac_config = ReverseDiff.compile(tape) else paramjac_config = tape end pf = nothing elseif sensealg.autojacvec isa EnzymeVJP if typeof(prob.p) <: DiffEqBase.NullParameters paramjac_config = zero(y),prob.p,zero(y),zero(y) else paramjac_config = zero(y),zero(_p),zero(y),zero(y) end pf = let f = f.f if DiffEqBase.isinplace(prob) && prob isa RODEProblem function (out,u,_p,t,W) f(out, u, _p, t, W) nothing end elseif DiffEqBase.isinplace(prob) function (out,u,_p,t) f(out, u, _p, t) nothing end elseif !DiffEqBase.isinplace(prob) && prob isa RODEProblem function (out,u,_p,t,W) out .= f(u, _p, t, W) nothing end else !DiffEqBase.isinplace(prob) function (out,u,_p,t) out .= f(u, _p, t) nothing end end end elseif DiffEqBase.has_paramjac(f) || isautojacvec || quad || sensealg.autojacvec isa EnzymeVJP paramjac_config = nothing pf = nothing else if DiffEqBase.isinplace(prob) if !(prob isa RODEProblem) pf = DiffEqBase.ParamJacobianWrapper(f,tspan[1],y) else pf = RODEParamJacobianWrapper(f,tspan[1],y,last(sol.W)) end paramjac_config = build_param_jac_config(sensealg,pf,y,p) else if !(prob isa RODEProblem) pf = ParamGradientWrapper(f,tspan[2],y) else pf = RODEParamGradientWrapper(f,tspan[2],y,last(sol.W)) end paramjac_config = nothing end end pJ = (quad || isautojacvec) ? nothing : similar(u0, numindvar, numparams) f_cache = DiffEqBase.isinplace(prob) ? deepcopy(u0) : nothing if noiseterm if sensealg.autojacvec isa ReverseDiffVJP jac_noise_config = nothing paramjac_noise_config = [] if DiffEqBase.isinplace(prob) for i in 1:numindvar function noisetape(indx) if StochasticDiffEq.is_diagonal_noise(prob) ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t du1 = p !== nothing && p !== DiffEqBase.NullParameters() ? similar(p, size(u)) : similar(u) f(du1,u,p,first(t)) return du1[indx] end else ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t du1 = similar(p, size(prob.noise_rate_prototype)) du1 .= false f(du1,u,p,first(t)) return du1[:,indx] end end end tapei = noisetape(i) if compile_tape(sensealg.autojacvec) push!(paramjac_noise_config, ReverseDiff.compile(tapei)) else push!(paramjac_noise_config, tapei) end end else for i in 1:numindvar function noisetapeoop(indx) if StochasticDiffEq.is_diagonal_noise(prob) ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t f(u,p,first(t))[indx] end else ReverseDiff.GradientTape((y, _p, [tspan[2]])) do u,p,t f(u,p,first(t))[:,indx] end end end tapei = noisetapeoop(i) if compile_tape(sensealg.autojacvec) push!(paramjac_noise_config, ReverseDiff.compile(tapei)) else push!(paramjac_noise_config, tapei) end end end elseif sensealg.autojacvec isa Bool if DiffEqBase.isinplace(prob) if StochasticDiffEq.is_diagonal_noise(prob) pf = DiffEqBase.ParamJacobianWrapper(f,tspan[1],y) if isnoisemixing(sensealg) uf = DiffEqBase.UJacobianWrapper(f,tspan[2],p) jac_noise_config = build_jac_config(sensealg,uf,u0) else jac_noise_config = nothing end else pf = ParamNonDiagNoiseJacobianWrapper(f,tspan[1],y,prob.noise_rate_prototype) uf = UNonDiagNoiseJacobianWrapper(f,tspan[2],p,prob.noise_rate_prototype) jac_noise_config = build_jac_config(sensealg,uf,u0) end paramjac_noise_config = build_param_jac_config(sensealg,pf,y,p) else if StochasticDiffEq.is_diagonal_noise(prob) pf = ParamGradientWrapper(f,tspan[2],y) if isnoisemixing(sensealg) uf = DiffEqBase.UDerivativeWrapper(f,tspan[2],p) end else pf = ParamNonDiagNoiseGradientWrapper(f,tspan[1],y) uf = UNonDiagNoiseGradientWrapper(f,tspan[2],p) end paramjac_noise_config = nothing jac_noise_config = nothing end if StochasticDiffEq.is_diagonal_noise(prob) pJ = similar(u0, numindvar, numparams) if isnoisemixing(sensealg) J = similar(u0, numindvar, numindvar) end else pJ = similar(u0, numindvar*numindvar, numparams) J = similar(u0, numindvar*numindvar, numindvar) end else paramjac_noise_config = nothing jac_noise_config = nothing end else paramjac_noise_config = nothing jac_noise_config = nothing end adjoint_cache = AdjointDiffCache(uf,pf,pg,J,pJ,dg_val, jac_config,pg_config,paramjac_config, jac_noise_config,paramjac_noise_config, f_cache,dg,diffvar_idxs,algevar_idxs, factorized_mass_matrix,issemiexplicitdae) return adjoint_cache, y end getprob(S::SensitivityFunction) = (S isa ODEBacksolveSensitivityFunction) ? S.prob : S.sol.prob inplace_sensitivity(S::SensitivityFunction) = isinplace(getprob(S)) struct ReverseLossCallback{λType,timeType,yType,RefType,FMType,AlgType,gType,cacheType} isq::Bool λ::λType t::timeType y::yType cur_time::RefType idx::Int F::FMType sensealg::AlgType g::gType diffcache::cacheType end function ReverseLossCallback(sensefun, λ, t, g, cur_time) @unpack sensealg, y = sensefun isq = (sensealg isa QuadratureAdjoint) @unpack factorized_mass_matrix = sensefun.diffcache prob = getprob(sensefun) idx = length(prob.u0) return ReverseLossCallback(isq, λ, t, y, cur_time, idx, factorized_mass_matrix, sensealg, g, sensefun.diffcache) end function (f::ReverseLossCallback)(integrator) @unpack isq, λ, t, y, cur_time, idx, F, sensealg, g = f @unpack diffvar_idxs, algevar_idxs, issemiexplicitdae, J, uf, f_cache, jac_config = f.diffcache p, u = integrator.p, integrator.u if sensealg isa BacksolveAdjoint copyto!(y,integrator.u[end-idx+1:end]) end # Warning: alias here! Be careful with λ gᵤ = isq ? λ : @view(λ[1:idx]) g(gᵤ,y,p,t[cur_time[]],cur_time[]) if issemiexplicitdae jacobian!(J, uf, y, f_cache, sensealg, jac_config) dhdd = J[algevar_idxs, diffvar_idxs] dhda = J[algevar_idxs, algevar_idxs] # TODO: maybe need a `conj` Δλa = -dhda'\gᵤ[algevar_idxs] Δλd = dhdd'Δλa + gᵤ[diffvar_idxs] else Δλd = gᵤ end if F !== nothing F !== I && F !== (I,I) && ldiv!(F, Δλd) end u[diffvar_idxs] .+= Δλd u_modified!(integrator,true) cur_time[] -= 1 return nothing end function generate_callbacks(sensefun, g, λ, t, t0, callback, init_cb,terminated=false) if sensefun isa NILSASSensitivityFunction @unpack sensealg = sensefun.S else @unpack sensealg = sensefun end if !sensefun.discrete cur_time = Ref(1) else cur_time = Ref(length(t)) end reverse_cbs = setup_reverse_callbacks(callback,sensealg,g,cur_time,terminated) sensefun.discrete || return reverse_cbs, nothing # callbacks can lead to non-unique time points _t, duplicate_iterator_times = separate_nonunique(t) rlcb = ReverseLossCallback(sensefun, λ, t, g, cur_time) if eltype(_t) !== typeof(t0) _t = convert.(typeof(t0),_t) end cb = PresetTimeCallback(_t,rlcb) # handle duplicates (currently only for double occurances) if duplicate_iterator_times!==nothing # use same ref for cur_time to cope with concrete_solve cbrev_dupl_affect = ReverseLossCallback(sensefun, λ, t, g, cur_time) cb_dupl = PresetTimeCallback(duplicate_iterator_times[1],cbrev_dupl_affect) return CallbackSet(cb,reverse_cbs,cb_dupl), duplicate_iterator_times else return CallbackSet(cb,reverse_cbs), duplicate_iterator_times end end function separate_nonunique(t) # t is already sorted _t = unique(t) ts_with_occurances = [(i, count(==(i), t)) for i in _t] # duplicates (only those values which occur > 1 times) dupl = filter(x->last(x)>1, ts_with_occurances) ts = first.(dupl) occurances = last.(dupl) if isempty(occurances) itrs = nothing else maxoc = maximum(occurances) maxoc > 2 && error("More than two occurances of the same time point. Please report this.") # handle also more than two occurances itrs = [ts[occurances .>= i] for i=2:maxoc] end return _t, itrs end function out_and_ts(_ts, duplicate_iterator_times, sol) if duplicate_iterator_times === nothing ts = _ts out = sol(ts) else # if callbacks are tracked, there is potentially an event_time that must be considered # in the loss function but doesn't occur in saveat/t. So we need to add it. # Note that if it doens't occur in saveat/t we even need to add it twice # However if the callbacks are not saving in the forward, we don't want to compute a loss # value for them. This information is given by sol.t/checkpoints. # Additionally we need to store the left and the right limit, respectively. duplicate_times = duplicate_iterator_times[1] # just treat two occurances at the moment (see separate_nonunique above) _ts = Array(_ts) for d in duplicate_times (d ∉ _ts) && push!(_ts, d) end u1 = sol(_ts).u u2 = sol(duplicate_times,continuity=:right).u saveat = vcat(_ts, duplicate_times...) perm = sortperm(saveat) ts = saveat[perm] u = vcat(u1, u2)[perm] out = DiffEqArray(u,ts) end return out, ts end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
13220
struct ODEBacksolveSensitivityFunction{C<:AdjointDiffCache,Alg<:BacksolveAdjoint,uType,pType,fType<:DiffEqBase.AbstractDiffEqFunction} <: SensitivityFunction diffcache::C sensealg::Alg discrete::Bool y::uType prob::pType f::fType noiseterm::Bool end function ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,f;noiseterm=false) diffcache, y = adjointdiffcache(g,sensealg,discrete,sol,dg,f;quad=false,noiseterm=noiseterm) return ODEBacksolveSensitivityFunction(diffcache,sensealg,discrete, y,sol.prob,f,noiseterm) end function (S::ODEBacksolveSensitivityFunction)(du,u,p,t) @unpack y, prob, discrete = S λ,grad,_y,dλ,dgrad,dy = split_states(du,u,t,S) if eltype(_y) <: ForwardDiff.Dual # handle implicit solvers copyto!(vec(y), ForwardDiff.value.(_y)) else copyto!(vec(y), _y) end if S.noiseterm if length(u) == length(du) vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad, dy=dy) elseif length(u) != length(du) && StochasticDiffEq.is_diagonal_noise(prob) && !isnoisemixing(S.sensealg) vecjacobian!(dλ, y, λ, p, t, S, dy=dy) jacNoise!(λ, y, p, t, S, dgrad=dgrad) else jacNoise!(λ, y, p, t, S, dgrad=dgrad, dλ=dλ, dy=dy) end else vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad, dy=dy) end dλ .*= -1 discrete || accumulate_cost!(dλ, y, p, t, S, dgrad) return nothing end # u = λ' # for the RODE case function (S::ODEBacksolveSensitivityFunction)(du,u,p,t,W) @unpack y, prob, discrete = S λ,grad,_y,dλ,dgrad,dy = split_states(du,u,t,S) copyto!(vec(y), _y) vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad, dy=dy,W=W) dλ .*= -one(eltype(λ)) discrete || accumulate_cost!(dλ, y, p, t, S, dgrad) return nothing end function split_states(du,u,t,S::ODEBacksolveSensitivityFunction;update=true) @unpack y, prob = S idx = length(y) λ = @view u[1:idx] grad = @view u[idx+1:end-idx] _y = @view u[end-idx+1:end] if length(u) == length(du) # ODE/Drift term and scalar noise dλ = @view du[1:idx] dgrad = @view du[idx+1:end-idx] dy = @view du[end-idx+1:end] elseif length(u) != length(du) && StochasticDiffEq.is_diagonal_noise(prob) && !isnoisemixing(S.sensealg) # Diffusion term, diagonal noise, length(du) = u*m idx1 = [length(u)*(i-1)+i for i in 1:idx] # for diagonal indices of [1:idx,1:idx] idx2 = [(length(u)+1)*i-idx for i in 1:idx] # for diagonal indices of [end-idx+1:end,1:idx] dλ = @view du[idx1] dgrad = @view du[idx+1:end-idx,1:idx] dy = @view du[idx2] elseif length(u) != length(du) && StochasticDiffEq.is_diagonal_noise(prob) && isnoisemixing(S.sensealg) # Diffusion term, diagonal noise, (as above but can handle mixing noise terms) idx2 = [(length(u)+1)*i-idx for i in 1:idx] # for diagonal indices of [end-idx+1:end,1:idx] dλ = @view du[1:idx,1:idx] dgrad = @view du[idx+1:end-idx,1:idx] dy = @view du[idx2] elseif typeof(du) <: AbstractMatrix # non-diagonal noise dλ = @view du[1:idx, 1:idx] dgrad = @view du[idx+1:end-idx,1:idx] dy = @view du[end-idx+1:end, 1:idx] end λ,grad,_y,dλ,dgrad,dy end # g is either g(t,u,p) or discrete g(t,u,i) @noinline function ODEAdjointProblem(sol,sensealg::BacksolveAdjoint, g,t=nothing,dg=nothing; checkpoints=sol.t, callback=CallbackSet(), z0=nothing, M=nothing, nilss=nothing, tspan=sol.prob.tspan, kwargs...) # add homogenous adjoint for NILSAS by explicitly passing a z0 and nilss::NILSSSensitivityFunction @unpack f, p, u0 = sol.prob # check if solution was terminated, then use reduced time span terminated = false if hasfield(typeof(sol),:retcode) if sol.retcode == :Terminated tspan = (tspan[1], sol.t[end]) terminated = true end end tspan = reverse(tspan) discrete = t !== nothing numstates = length(u0) numparams = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(p) len = length(u0)+numparams if z0===nothing λ = p === nothing || p === DiffEqBase.NullParameters() ? similar(u0) : one(eltype(u0)) .* similar(p, len) λ .= false else λ = nothing end sense = ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,f) if z0!==nothing sense = NILSASSensitivityFunction{isinplace(f),typeof(nilss),typeof(sense),typeof(M)}(nilss,sense,M,discrete) end init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense, g, λ, t, tspan[2], callback, init_cb,terminated) checkpoints = ischeckpointing(sensealg, sol) ? checkpoints : nothing if checkpoints !== nothing cb = backsolve_checkpoint_callbacks(sense, sol, checkpoints, cb, duplicate_iterator_times) end if z0===nothing z0 = [vec(zero(λ)); vec(sense.y)] end original_mm = sol.prob.f.mass_matrix zzz(A, m, n) = fill!(similar(A, m, n), zero(eltype(original_mm))) if original_mm === I || original_mm === (I,I) mm = I else sense.diffcache.issemiexplicitdae && @warn "`BacksolveAdjoint` is likely to fail on semi-explicit DAEs, if memory is a concern, please consider using InterpolatingAdjoint(checkpoint=true) instead." II = Diagonal(I, numparams) Z1 = zzz(original_mm, numstates, numstates+numparams) Z2 = zzz(original_mm, numparams, numstates) mm = [copy(original_mm') Z1 Z2 II Z2 Z1 original_mm] end jac_prototype = sol.prob.f.jac_prototype if !sense.discrete || jac_prototype === nothing adjoint_jac_prototype = nothing else J = jac_prototype Ja = copy(J') II = Diagonal(I, numparams) Z1 = zzz(J, numstates, numstates+numparams) Z2 = zzz(J, numparams, numstates) adjoint_jac_prototype = [Ja Z1 Z2 II Z2 Z1 J] end odefun = ODEFunction(sense, mass_matrix=mm, jac_prototype=adjoint_jac_prototype) return ODEProblem(odefun,z0,tspan,p,callback=cb) end @noinline function SDEAdjointProblem(sol,sensealg::BacksolveAdjoint, g,t=nothing,dg=nothing; checkpoints=sol.t, callback=CallbackSet(), corfunc_analytical=nothing,diffusion_jac=nothing, diffusion_paramjac=nothing, kwargs...) @unpack f, p, u0, tspan = sol.prob # check if solution was terminated, then use reduced time span terminated = false if hasfield(typeof(sol),:retcode) if sol.retcode == :Terminated tspan = (tspan[1], sol.t[end]) terminated = true end end tspan = reverse(tspan) discrete = t !== nothing p === DiffEqBase.NullParameters() && error("Your model does not have parameters, and thus it is impossible to calculate the derivative of the solution with respect to the parameters. Your model must have parameters to use parameter sensitivity calculations!") numstates = length(u0) numparams = length(p) len = length(u0)+numparams λ = one(eltype(u0)) .* similar(p, len) if StochasticDiffEq.alg_interpretation(sol.alg) == :Stratonovich sense_drift = ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,sol.prob.f) else transformed_function = StochasticTransformedFunction(sol,sol.prob.f,sol.prob.g,corfunc_analytical) drift_function = ODEFunction(transformed_function) sense_drift = ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,drift_function) end diffusion_function = ODEFunction(sol.prob.g, jac=diffusion_jac, paramjac=diffusion_paramjac) sense_diffusion = ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,diffusion_function;noiseterm=true) init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense_drift, g, λ, t, tspan[2], callback, init_cb,terminated) checkpoints = ischeckpointing(sensealg, sol) ? checkpoints : nothing if checkpoints !== nothing cb = backsolve_checkpoint_callbacks(sense_drift, sol, checkpoints, cb, duplicate_iterator_times) end z0 = [vec(zero(λ)); vec(sense_drift.y)] original_mm = sol.prob.f.mass_matrix if original_mm === I mm = I else sense_drift.diffcache.issemiexplicitdae && @warn "`BacksolveAdjoint` is likely to fail on semi-explicit DAEs, if memory is a concern, please consider using InterpolatingAdjoint(checkpoint=true) instead." len2 = length(z0) mm = zeros(len2, len2) idx = 1:numstates copyto!(@view(mm[idx, idx]), sol.prob.f.mass_matrix') idx = numstates+1:numstates+1+numparams copyto!(@view(mm[idx, idx]), I) idx = len+1:len2 copyto!(@view(mm[idx, idx]), sol.prob.f.mass_matrix) end sdefun = SDEFunction(sense_drift,sense_diffusion,mass_matrix=mm) # replicated noise _sol = deepcopy(sol) backwardnoise = reverse(_sol.W) if StochasticDiffEq.is_diagonal_noise(sol.prob) && typeof(sol.W[end])<:Number # scalar noise case noise_matrix = nothing else noise_matrix = similar(z0,length(z0),numstates) noise_matrix .= false end return SDEProblem(sdefun,sense_diffusion,z0,tspan,p, callback=cb, noise=backwardnoise, noise_rate_prototype = noise_matrix ) end @noinline function RODEAdjointProblem(sol,sensealg::BacksolveAdjoint, g,t=nothing,dg=nothing; checkpoints=sol.t, callback=CallbackSet(), kwargs...) @unpack f, p, u0, tspan = sol.prob # check if solution was terminated, then use reduced time span terminated = false if hasfield(typeof(sol),:retcode) if sol.retcode == :Terminated tspan = (tspan[1], sol.t[end]) terminated = true end end tspan = reverse(tspan) discrete = t !== nothing p === DiffEqBase.NullParameters() && error("Your model does not have parameters, and thus it is impossible to calculate the derivative of the solution with respect to the parameters. Your model must have parameters to use parameter sensitivity calculations!") numstates = length(u0) numparams = length(p) len = length(u0)+numparams λ = one(eltype(u0)) .* similar(p, len) sense = ODEBacksolveSensitivityFunction(g,sensealg,discrete,sol,dg,f;noiseterm=false) init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense, g, λ, t, tspan[2], callback, init_cb,terminated) checkpoints = ischeckpointing(sensealg, sol) ? checkpoints : nothing if checkpoints !== nothing cb = backsolve_checkpoint_callbacks(sense, sol, checkpoints, cb, duplicate_iterator_times) end z0 = [vec(zero(λ)); vec(sense.y)] original_mm = sol.prob.f.mass_matrix if original_mm === I mm = I else sense.diffcache.issemiexplicitdae && @warn "`BacksolveAdjoint` is likely to fail on semi-explicit DAEs, if memory is a concern, please consider using InterpolatingAdjoint(checkpoint=true) instead." len2 = length(z0) mm = zeros(len2, len2) idx = 1:numstates copyto!(@view(mm[idx, idx]), sol.prob.f.mass_matrix') idx = numstates+1:numstates+1+numparams copyto!(@view(mm[idx, idx]), I) idx = len+1:len2 copyto!(@view(mm[idx, idx]), sol.prob.f.mass_matrix) end rodefun = RODEFunction(sense,mass_matrix=mm) # replicated noise _sol = deepcopy(sol) backwardnoise = reverse(_sol.W) return RODEProblem(rodefun,z0,tspan,p, callback=cb, noise=backwardnoise ) end function backsolve_checkpoint_callbacks(sensefun, sol, checkpoints, callback, duplicate_iterator_times=nothing) prob = sol.prob if duplicate_iterator_times !== nothing _checkpoints = filter(x->x ∉ duplicate_iterator_times[1], checkpoints) else _checkpoints = checkpoints end cur_time = Ref(length(_checkpoints)) affect! = let sol=sol, cur_time=cur_time, idx=length(prob.u0) function (integrator) _y = reshape(@view(integrator.u[end-idx+1:end]), axes(prob.u0)) sol(_y, integrator.t) u_modified!(integrator,true) cur_time[] -= 1 return nothing end end cb = PresetTimeCallback(_checkpoints,affect!) return CallbackSet(cb,callback) end function backsolve_checkpoint_callbacks(sensefun::NILSASSensitivityFunction, sol, checkpoints, callback, duplicate_iterator_times=nothing) prob = sol.prob if duplicate_iterator_times !== nothing _checkpoints = filter(x->x ∉ duplicate_iterator_times[1], checkpoints) else _checkpoints = checkpoints end cur_time = Ref(length(_checkpoints)) affect! = let sol=sol, cur_time=cur_time function (integrator) _y = integrator.u.x[3] sol(_y, integrator.t) u_modified!(integrator,true) cur_time[] -= 1 return nothing end end cb = PresetTimeCallback(_checkpoints,affect!) return CallbackSet(cb,callback) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
18805
""" Appends a tracking process to determine the time of the callback to be used in the reverse pass. The rationale is explain in: https://github.com/SciML/DiffEqSensitivity.jl/issues/4 """ track_callbacks(cb,t,u,p,sensealg) = track_callbacks(CallbackSet(cb),t,u,p,sensealg) track_callbacks(cb::CallbackSet,t,u,p,sensealg) = CallbackSet( map(cb->_track_callback(cb,t,u,p,sensealg), cb.continuous_callbacks), map(cb->_track_callback(cb,t,u,p,sensealg), cb.discrete_callbacks)) mutable struct ImplicitCorrection{T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,RefType} gt_val::T1 gu_val::T2 gt::T3 gu::T4 gt_conf::T5 gu_conf::T6 condition::T7 Lu_left::T8 Lu_right::T9 dy_left::T10 dy_right::T11 cur_time::RefType # initialized as "dummy" Ref that gets overwritten by Ref of loss terminated::Bool end ImplicitCorrection(cb::DiscreteCallback,t,u,p,sensealg) = nothing function ImplicitCorrection(cb,t,u,p,sensealg) condition = cb.condition gt_val = similar(u,1) gu_val = similar(u) fakeinteg = FakeIntegrator(u,p,t,t) gt, gu = build_condition_wrappers(cb,condition,u,t,fakeinteg) gt_conf = build_deriv_config(sensealg,gt,gt_val,t) gu_conf = build_grad_config(sensealg,gu,u,p) dy_left = similar(u) dy_right = similar(u) Lu_left = similar(u) Lu_right = similar(u) cur_time = Ref(1) # initialize the Ref, set to Ref of loss below terminated = false ImplicitCorrection(gt_val,gu_val,gt,gu,gt_conf,gu_conf,condition,Lu_left,Lu_right,dy_left,dy_right,cur_time,terminated) end struct TrackedAffect{T,T2,T3,T4,T5,T6} event_times::Vector{T} tprev::Vector{T} uleft::Vector{T2} pleft::Vector{T3} affect!::T4 correction::T5 event_idx::Vector{T6} end TrackedAffect(t::Number,u,p,affect!::Nothing,correction) = nothing TrackedAffect(t::Number,u,p,affect!,correction) = TrackedAffect(Vector{typeof(t)}(undef,0),Vector{typeof(t)}(undef,0), Vector{typeof(u)}(undef,0),Vector{typeof(p)}(undef,0),affect!,correction, Vector{Int}(undef,0)) function (f::TrackedAffect)(integrator,event_idx=nothing) uleft = deepcopy(integrator.u) pleft = deepcopy(integrator.p) if event_idx===nothing f.affect!(integrator) else f.affect!(integrator,event_idx) end if integrator.u_modified if isempty(f.event_times) push!(f.event_times,integrator.t) push!(f.tprev,integrator.tprev) push!(f.uleft,uleft) push!(f.pleft,pleft) if event_idx !== nothing push!(f.event_idx,event_idx) end else if !maximum(.≈(integrator.t, f.event_times, rtol=0.0, atol=1e-14)) push!(f.event_times,integrator.t) push!(f.tprev,integrator.tprev) push!(f.uleft,uleft) push!(f.pleft,pleft) if event_idx !== nothing push!(f.event_idx, event_idx) end end end end end function _track_callback(cb::DiscreteCallback,t,u,p,sensealg) correction = ImplicitCorrection(cb,t,u,p,sensealg) DiscreteCallback(cb.condition, TrackedAffect(t,u,p,cb.affect!,correction), cb.initialize, cb.finalize, cb.save_positions) end function _track_callback(cb::ContinuousCallback,t,u,p,sensealg) correction = ImplicitCorrection(cb,t,u,p,sensealg) ContinuousCallback( cb.condition, TrackedAffect(t,u,p,cb.affect!,correction), TrackedAffect(t,u,p,cb.affect_neg!,correction), cb.initialize, cb.finalize, cb.idxs, cb.rootfind,cb.interp_points, cb.save_positions, cb.dtrelax,cb.abstol,cb.reltol,cb.repeat_nudge) end function _track_callback(cb::VectorContinuousCallback,t,u,p,sensealg) correction = ImplicitCorrection(cb,t,u,p,sensealg) VectorContinuousCallback( cb.condition, TrackedAffect(t,u,p,cb.affect!,correction), TrackedAffect(t,u,p,cb.affect_neg!,correction), cb.len,cb.initialize,cb.finalize,cb.idxs, cb.rootfind,cb.interp_points, collect(cb.save_positions), cb.dtrelax,cb.abstol,cb.reltol,cb.repeat_nudge) end struct FakeIntegrator{uType,P,tType,tprevType} u::uType p::P t::tType tprev::tprevType end struct CallbackSensitivityFunction{fType,Alg<:DiffEqBase.AbstractSensitivityAlgorithm,C<:AdjointDiffCache,pType} <: SensitivityFunction f::fType sensealg::Alg diffcache::C prob::pType end getprob(S::CallbackSensitivityFunction) = S.prob inplace_sensitivity(S::CallbackSensitivityFunction) = true """ Sets up callbacks for the adjoint pass. This is a version that has an effect at each event of the forward pass and defines the reverse pass values via the vjps as described in https://arxiv.org/pdf/1905.10403.pdf Equation 13. For more information, see https://github.com/SciML/DiffEqSensitivity.jl/issues/4 """ setup_reverse_callbacks(cb,sensealg,g,cur_time,terminated) = setup_reverse_callbacks(CallbackSet(cb),sensealg,g,cur_time,terminated) function setup_reverse_callbacks(cb::CallbackSet,sensealg,g,cur_time,terminated) cb = CallbackSet(_setup_reverse_callbacks.(cb.continuous_callbacks,(sensealg,),(g,),(cur_time,),(terminated,))..., reverse(_setup_reverse_callbacks.(cb.discrete_callbacks,(sensealg,),(g,),(cur_time,),(terminated,)))...) return cb end function _setup_reverse_callbacks(cb::Union{ContinuousCallback,DiscreteCallback,VectorContinuousCallback},sensealg,g,loss_ref,terminated) if cb isa Union{ContinuousCallback,VectorContinuousCallback} && cb.affect! !== nothing cb.affect!.correction.cur_time = loss_ref # set cur_time cb.affect!.correction.terminated = terminated # flag if time evolution was terminated by callback end # ReverseLossCallback adds gradients before and after the callback if save_positions is (true, true). # This, however, means that we must check the save_positions setting within the callback. # if save_positions = [1,1] is true the loss gradient is accumulated correctly before and after callback. # if save_positions = [0,0] no extra gradient is added. # if save_positions = [0,1] the gradient contribution is added before the callback but no additional gradient is added afterwards. # if save_positions = [1,0] the gradient contribution is added before, and in principle we would need to correct the adjoint state again. Thefore, cb.save_positions == [1,0] && error("save_positions=[1,0] is currently not supported.") function affect!(integrator) indx, pos_neg = get_indx(cb,integrator.t) tprev = get_tprev(cb,indx,pos_neg) event_idx = cb isa VectorContinuousCallback ? get_event_idx(cb,indx,pos_neg) : nothing w = let tprev=tprev, pos_neg=pos_neg, event_idx=event_idx function (du,u,p,t) _affect! = get_affect!(cb,pos_neg) fakeinteg = FakeIntegrator([x for x in u],[x for x in p],t,tprev) if cb isa VectorContinuousCallback _affect!(fakeinteg,event_idx) else _affect!(fakeinteg) end du .= fakeinteg.u end end S = integrator.f.f # get the sensitivity function # Create a fake sensitivity function to do the vjps fakeS = CallbackSensitivityFunction(w,sensealg,S.diffcache,integrator.sol.prob) du = first(get_tmp_cache(integrator)) λ,grad,y,dλ,dgrad,dy = split_states(du,integrator.u,integrator.t,S) # if save_positions[2] = false, then the right limit is not saved. Thus, for # the QuadratureAdjoint we would need to lift y from the left to the right limit. # However, one also needs to update dgrad later on. if (sensealg isa QuadratureAdjoint && !cb.save_positions[2]) # || (sensealg isa InterpolatingAdjoint && ischeckpointing(sensealg)) # lifting for InterpolatingAdjoint is not needed anymore. Callback is already applied. w(y,y,integrator.p,integrator.t) end if cb isa Union{ContinuousCallback,VectorContinuousCallback} # correction of the loss function sensitivity for continuous callbacks # wrt dependence of event time t on parameters and initial state. # Must be handled here because otherwise it is unclear if continuous or # discrete callback was triggered. @unpack correction = cb.affect! @unpack dy_right, Lu_right = correction # compute #f(xτ_right,p_right,τ(x₀,p)) compute_f!(dy_right,S,y,integrator) # if callback did not terminate the time evolution, we have to compute one more correction term. if cb.save_positions[2] && !correction.terminated loss_indx = correction.cur_time[] + 1 loss_correction!(Lu_right,y,integrator,g,loss_indx) else Lu_right .*= false end end update_p = copy_to_integrator!(cb,y,integrator.p,integrator.t,indx,pos_neg) # reshape u and du (y and dy) to match forward pass (e.g., for matrices as initial conditions). Only needed for BacksolveAdjoint if sensealg isa BacksolveAdjoint _size = pos_neg ? size(cb.affect!.uleft[indx]) : size(cb.affect_neg!.uleft[indx]) y = reshape(y, _size) dy = reshape(dy, _size) end if cb isa Union{ContinuousCallback,VectorContinuousCallback} # compute the correction of the right limit (with left state limit inserted into dgdt) @unpack dy_left, cur_time = correction compute_f!(dy_left,S,y,integrator) dgdt(dy_left,correction,sensealg,y,integrator,tprev,event_idx) if !correction.terminated implicit_correction!(Lu_right,dλ,λ,dy_right,correction) correction.terminated = false # additional callbacks might have happened which didn't terminate the time evolution end end if update_p # changes in parameters if !(sensealg isa QuadratureAdjoint) wp = let tprev=tprev, pos_neg=pos_neg, event_idx=event_idx function (dp,p,u,t) _affect! = get_affect!(cb,pos_neg) fakeinteg = FakeIntegrator([x for x in u],[x for x in p],t,tprev) if cb isa VectorContinuousCallback _affect!(fakeinteg, event_idx) else _affect!(fakeinteg) end dp .= fakeinteg.p end end fakeSp = CallbackSensitivityFunction(wp,sensealg,S.diffcache,integrator.sol.prob) #vjp with Jacobin given by dw/dp before event and vector given by grad vecjacobian!(dgrad, integrator.p, grad, y, integrator.t, fakeSp; dgrad=nothing, dy=nothing) grad .= dgrad end end vecjacobian!(dλ, y, λ, integrator.p, integrator.t, fakeS; dgrad=dgrad, dy=dy) if cb isa Union{ContinuousCallback,VectorContinuousCallback} # second correction to correct for left limit @unpack Lu_left = correction implicit_correction!(Lu_left,dλ,dy_left,correction) dλ .+= Lu_left - Lu_right if cb.save_positions[1] == true # if the callback saved the first position, we need to implicitly correct this value as well loss_indx = correction.cur_time[] implicit_correction!(Lu_left,dy_left,correction,y,integrator,g,loss_indx) dλ .+= Lu_left end end λ .= dλ if !(sensealg isa QuadratureAdjoint) grad .-= dgrad end end times = if typeof(cb) <: DiscreteCallback cb.affect!.event_times else [cb.affect!.event_times;cb.affect_neg!.event_times] end PresetTimeCallback(times, affect!, save_positions = (false,false)) end get_indx(cb::DiscreteCallback,t) = (searchsortedfirst(cb.affect!.event_times,t), true) function get_indx(cb::Union{ContinuousCallback,VectorContinuousCallback}, t) if !isempty(cb.affect!.event_times) || !isempty(cb.affect_neg!.event_times) indx = searchsortedfirst(cb.affect!.event_times,t) indx_neg = searchsortedfirst(cb.affect_neg!.event_times,t) if !isempty(cb.affect!.event_times) && cb.affect!.event_times[min(indx,length(cb.affect!.event_times))]==t return indx, true elseif !isempty(cb.affect_neg!.event_times) && cb.affect_neg!.event_times[min(indx_neg,length(cb.affect_neg!.event_times))]==t return indx_neg, false else error("Event was triggered but no corresponding event in ContinuousCallback was found. Please report this error.") end else error("No event was recorded. Please report this error.") end end get_tprev(cb::DiscreteCallback,indx,bool) = cb.affect!.tprev[indx] function get_tprev(cb::Union{ContinuousCallback,VectorContinuousCallback}, indx, bool) if bool return cb.affect!.tprev[indx] else return cb.affect_neg!.tprev[indx] end end function get_event_idx(cb::VectorContinuousCallback, indx, bool) if bool return cb.affect!.event_idx[indx] else return cb.affect_neg!.event_idx[indx] end end function copy_to_integrator!(cb::DiscreteCallback, y, p, t, indx, bool) copyto!(y, cb.affect!.uleft[indx]) update_p = (p != cb.affect!.pleft[indx]) update_p && copyto!(p, cb.affect!.pleft[indx]) update_p end function copy_to_integrator!(cb::Union{ContinuousCallback,VectorContinuousCallback}, y, p, t, indx, bool) if bool copyto!(y, cb.affect!.uleft[indx]) update_p = (p != cb.affect!.pleft[indx]) update_p && copyto!(p, cb.affect!.pleft[indx]) else copyto!(y, cb.affect_neg!.uleft[indx]) update_p = (p != cb.affect_neg!.pleft[indx]) update_p && copyto!(p, cb.affect_neg!.pleft[indx]) end update_p end function compute_f!(dy,S,y,integrator) p, t = integrator.p, integrator.t if inplace_sensitivity(S) S.f(dy,y,p,t) else dy[:] .= S.f(y,p,t) end return nothing end function dgdt(dy,correction,sensealg,y,integrator,tprev,event_idx) # dy refers to f evaluated on left limit @unpack gt_val, gu_val, gt, gu, gt_conf, gu_conf, condition = correction p, t = integrator.p, integrator.t fakeinteg = FakeIntegrator([x for x in y],p,t,tprev) # derivative and gradient of condition with respect to time and state, respectively gt.u = y gt.integrator = fakeinteg gu.t = t gu.integrator = fakeinteg # for VectorContinuousCallback we also need to set the event_idx. if gt isa VectorConditionTimeWrapper gt.event_idx = event_idx gu.event_idx = event_idx # safety check: evaluate condition to check if several conditions were true. # This is currently not supported condition(gt.out_cache,y,t,integrator) gt.out_cache .= abs.(gt.out_cache) .< 1000*eps(eltype(gt.out_cache)) (sum(gt.out_cache)!=1 || gt.out_cache[event_idx]!=1) && error("Either several events were triggered or `event_idx` was falsely identified. Output of conditions $(gt.out_cache)") end derivative!(gt_val, gt, t, sensealg, gt_conf) gradient!(gu_val, gu, y, sensealg, gu_conf) gt_val .+= dot(gu_val,dy) @. gt_val = inv(gt_val) # allocates? @. gu_val *= -gt_val return nothing end function loss_correction!(Lu,y,integrator,g,indx) # ∂L∂t correction should be added if L depends explicitly on time. p, t = integrator.p, integrator.t g(Lu,y,p,t,indx) return nothing end function implicit_correction!(Lu,dλ,λ,dy,correction) @unpack gu_val = correction # remove gradients from adjoint state to compute correction factor @. dλ = λ - Lu Lu .= dot(dλ,dy)*gu_val return nothing end function implicit_correction!(Lu,λ,dy,correction) @unpack gu_val = correction Lu .= dot(λ,dy)*gu_val return nothing end function implicit_correction!(Lu,dy,correction,y,integrator,g,indx) @unpack gu_val = correction p, t = integrator.p, integrator.t # loss function gradient (not condition!) # ∂L∂t correction should be added, also ∂L∂p is missing. # correct adjoint g(Lu,y,p,t,indx) Lu .= dot(Lu,dy)*gu_val # note that we don't add the gradient Lu here again to the correction because it will be added by the ReverseLossCallback. return nothing end # ConditionTimeWrapper: Wrapper for implicit correction for ContinuousCallback # VectorConditionTimeWrapper: Wrapper for implicit correction for VectorContinuousCallback function build_condition_wrappers(cb::ContinuousCallback,condition,u,t,fakeinteg) gt = ConditionTimeWrapper(condition,u,fakeinteg) gu = ConditionUWrapper(condition,t,fakeinteg) return gt, gu end function build_condition_wrappers(cb::VectorContinuousCallback,condition,u,t,fakeinteg) out = similar(u, cb.len) # create a cache for condition function (out,u,t,integrator) gt = VectorConditionTimeWrapper(condition,u,fakeinteg,1,out) gu = VectorConditionUWrapper(condition,t,fakeinteg,1,out) return gt, gu end mutable struct ConditionTimeWrapper{F,uType,Integrator} <: Function f::F u::uType integrator::Integrator end (ff::ConditionTimeWrapper)(t) = [ff.f(ff.u,t,ff.integrator)] mutable struct ConditionUWrapper{F,tType,Integrator} <: Function f::F t::tType integrator::Integrator end (ff::ConditionUWrapper)(u) = ff.f(u,ff.t,ff.integrator) mutable struct VectorConditionTimeWrapper{F,uType,Integrator,outType} <: Function f::F u::uType integrator::Integrator event_idx::Int out_cache::outType end (ff::VectorConditionTimeWrapper)(t) = (ff.f(ff.out_cache,ff.u,t,ff.integrator); [ff.out_cache[ff.event_idx]]) mutable struct VectorConditionUWrapper{F,tType,Integrator,outType} <: Function f::F t::tType integrator::Integrator event_idx::Int out_cache::outType end (ff::VectorConditionUWrapper)(u) = (out = similar(u,length(ff.out_cache)); ff.f(out,u,ff.t,ff.integrator); out[ff.event_idx]) DiffEqBase.terminate!(i::FakeIntegrator) = nothing # get the affect function of the callback. For example, allows us to get the `f` in PeriodicCallback without the integrator.tstops handling. get_affect!(cb::DiscreteCallback,bool) = get_affect!(cb.affect!) get_affect!(cb::Union{ContinuousCallback,VectorContinuousCallback},bool) = bool ? get_affect!(cb.affect!) : get_affect!(cb.affect_neg!) get_affect!(affect!::TrackedAffect) = get_affect!(affect!.affect!) get_affect!(affect!) = affect! get_affect!(affect!::DiffEqCallbacks.PeriodicCallbackAffect) = affect!.affect!
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
38310
## High level # Here is where we can add a default algorithm for computing sensitivities # Based on problem information! function inplace_vjp(prob,u0,p,verbose) du = copy(u0) ez = try Enzyme.autodiff(Enzyme.Duplicated(du, du), copy(u0),copy(p),prob.tspan[1]) do out,u,_p,t prob.f(out, u, _p, t) nothing end true catch false end if ez return EnzymeVJP() end # Determine if we can compile ReverseDiff compile = try if DiffEqBase.isinplace(prob) !hasbranching(prob.f,copy(u0),u0,p,prob.tspan[1]) else !hasbranching(prob.f,u0,p,prob.tspan[1]) end catch false end vjp = try ReverseDiff.GradientTape((copy(u0), p, [prob.tspan[1]])) do u,p,t du1 = similar(u, size(u)) prob.f(du1,u,p,first(t)) return vec(du1) end ReverseDiffVJP(compile) catch false end return vjp end function automatic_sensealg_choice(prob::Union{ODEProblem,SDEProblem},u0,p,verbose) default_sensealg = if p !== DiffEqBase.NullParameters() && !(eltype(u0) <: ForwardDiff.Dual) && !(eltype(p) <: ForwardDiff.Dual) && !(eltype(u0) <: Complex) && !(eltype(p) <: Complex) && length(u0) + length(p) <= 100 ForwardDiffSensitivity() elseif u0 isa GPUArrays.AbstractGPUArray || !DiffEqBase.isinplace(prob) # only Zygote is GPU compatible and fast # so if out-of-place, try Zygote if p === nothing || p === DiffEqBase.NullParameters() # QuadratureAdjoint skips all p calculations until the end # So it's the fastest when there are no parameters QuadratureAdjoint(autojacvec=ZygoteVJP()) else InterpolatingAdjoint(autojacvec=ZygoteVJP()) end else vjp = inplace_vjp(prob,u0,p,verbose) if p === nothing || p === DiffEqBase.NullParameters() QuadratureAdjoint(autojacvec=vjp) else InterpolatingAdjoint(autojacvec=vjp) end end return default_sensealg end function automatic_sensealg_choice(prob::Union{NonlinearProblem,SteadyStateProblem}, u0, p, verbose) default_sensealg = if u0 isa GPUArrays.AbstractGPUArray || !DiffEqBase.isinplace(prob) # autodiff = false because forwarddiff fails on many GPU kernels # this only effects the Jacobian calculation and is same computation order SteadyStateAdjoint(autodiff=false, autojacvec=ZygoteVJP()) else vjp = inplace_vjp(prob,u0,p,verbose) SteadyStateAdjoint(autojacvec=vjp) end return default_sensealg end function DiffEqBase._concrete_solve_adjoint(prob::Union{ODEProblem,SDEProblem}, alg,sensealg::Nothing,u0,p,originator::SciMLBase.ADOriginator,args...; verbose=true,kwargs...) if haskey(kwargs,:callback) has_cb = kwargs[:callback]!==nothing else has_cb = false end default_sensealg = automatic_sensealg_choice(prob,u0,p,verbose) if has_cb default_sensealg = setvjp(default_sensealg, ReverseDiffVJP()) end DiffEqBase._concrete_solve_adjoint(prob,alg,default_sensealg,u0,p,originator::SciMLBase.ADOriginator,args...;verbose,kwargs...) end function DiffEqBase._concrete_solve_adjoint(prob::Union{NonlinearProblem,SteadyStateProblem},alg, sensealg::Nothing,u0,p,originator::SciMLBase.ADOriginator,args...; verbose=true,kwargs...) default_sensealg = automatic_sensealg_choice(prob, u0, p, verbose) DiffEqBase._concrete_solve_adjoint(prob,alg,default_sensealg,u0,p,originator::SciMLBase.ADOriginator,args...;verbose,kwargs...) end function DiffEqBase._concrete_solve_adjoint(prob::Union{DiscreteProblem,DDEProblem, SDDEProblem,DAEProblem}, alg,sensealg::Nothing, u0,p,originator::SciMLBase.ADOriginator,args...;kwargs...) if length(u0) + length(p) > 100 default_sensealg = ReverseDiffAdjoint() else default_sensealg = ForwardDiffSensitivity() end DiffEqBase._concrete_solve_adjoint(prob,alg,default_sensealg,u0,p,originator::SciMLBase.ADOriginator,args...;kwargs...) end function DiffEqBase._concrete_solve_adjoint(prob,alg, sensealg::AbstractAdjointSensitivityAlgorithm, u0,p,originator::SciMLBase.ADOriginator,args...;save_start=true,save_end=true, saveat = eltype(prob.tspan)[], save_idxs = nothing, kwargs...) if !(typeof(p) <: Union{Nothing,SciMLBase.NullParameters,AbstractArray}) || (p isa AbstractArray && !Base.isconcretetype(eltype(p))) throw(AdjointSensitivityParameterCompatibilityError()) end # Remove saveat, etc. from kwargs since it's handled separately # and letting it jump back in there can break the adjoint kwargs_prob = NamedTuple(filter(x->x[1] != :saveat && x[1] != :save_start && x[1] != :save_end && x[1] != :save_idxs,prob.kwargs)) if haskey(kwargs, :callback) cb = track_callbacks(CallbackSet(kwargs[:callback]),prob.tspan[1],prob.u0,prob.p,sensealg) _prob = remake(prob;u0=u0,p=p,kwargs = merge(kwargs_prob,(;callback=cb))) else cb = nothing _prob = remake(prob;u0=u0,p=p,kwargs = kwargs_prob) end # Remove callbacks, saveat, etc. from kwargs since it's handled separately kwargs_fwd = NamedTuple{Base.diff_names(Base._nt_names( values(kwargs)), (:callback,))}(values(kwargs)) # Capture the callback_adj for the reverse pass and remove both callbacks kwargs_adj = NamedTuple{Base.diff_names(Base._nt_names(values(kwargs)), (:callback_adj,:callback))}(values(kwargs)) isq = sensealg isa QuadratureAdjoint if typeof(sensealg) <: BacksolveAdjoint sol = solve(_prob,alg,args...;save_noise=true, save_start=save_start,save_end=save_end, saveat=saveat,kwargs_fwd...) elseif ischeckpointing(sensealg) sol = solve(_prob,alg,args...;save_noise=true, save_start=true,save_end=true, saveat=saveat,kwargs_fwd...) else sol = solve(_prob,alg,args...;save_noise=true,save_start=true, save_end=true,kwargs_fwd...) end # Force `save_start` and `save_end` in the forward pass This forces the # solver to do the backsolve all the way back to `u0` Since the start aliases # `_prob.u0`, this doesn't actually use more memory But it cleans up the # implementation and makes `save_start` and `save_end` arg safe. if typeof(sensealg) <: BacksolveAdjoint # Saving behavior unchanged ts = sol.t only_end = length(ts) == 1 && ts[1] == _prob.tspan[2] out = DiffEqBase.sensitivity_solution(sol,sol.u,ts) elseif saveat isa Number if _prob.tspan[2] > _prob.tspan[1] ts = _prob.tspan[1]:convert(typeof(_prob.tspan[2]),abs(saveat)):_prob.tspan[2] else ts = _prob.tspan[2]:convert(typeof(_prob.tspan[2]),abs(saveat)):_prob.tspan[1] end # if _prob.tspan[2]-_prob.tspan[1] is not a multiple of saveat, one looses the last ts value sol.t[end] !== ts[end] && (ts = fix_endpoints(sensealg,sol,ts)) if cb === nothing _out = sol(ts) else _, duplicate_iterator_times = separate_nonunique(sol.t) _out, ts = out_and_ts(ts, duplicate_iterator_times, sol) end out = if save_idxs === nothing out = DiffEqBase.sensitivity_solution(sol,_out.u,ts) else out = DiffEqBase.sensitivity_solution(sol,[_out[i][save_idxs] for i in 1:length(_out)],ts) end only_end = length(ts) == 1 && ts[1] == _prob.tspan[2] elseif isempty(saveat) no_start = !save_start no_end = !save_end sol_idxs = 1:length(sol) no_start && (sol_idxs = sol_idxs[2:end]) no_end && (sol_idxs = sol_idxs[1:end-1]) only_end = length(sol_idxs) <= 1 _u = sol.u[sol_idxs] u = save_idxs === nothing ? _u : [x[save_idxs] for x in _u] ts = sol.t[sol_idxs] out = DiffEqBase.sensitivity_solution(sol,u,ts) else _saveat = saveat isa Array ? sort(saveat) : saveat # for minibatching if cb === nothing _saveat = eltype(_saveat) <: typeof(prob.tspan[2]) ? convert.(typeof(_prob.tspan[2]),_saveat) : _saveat ts = _saveat _out = sol(ts) else _ts, duplicate_iterator_times = separate_nonunique(sol.t) _out, ts = out_and_ts(_saveat, duplicate_iterator_times, sol) end out = if save_idxs === nothing out = DiffEqBase.sensitivity_solution(sol,_out.u,ts) else out = DiffEqBase.sensitivity_solution(sol,[_out[i][save_idxs] for i in 1:length(_out)],ts) end only_end = length(ts) == 1 && ts[1] == _prob.tspan[2] end _save_idxs = save_idxs === nothing ? Colon() : save_idxs function adjoint_sensitivity_backpass(Δ) function df(_out, u, p, t, i) outtype = typeof(_out) <: SubArray ? DiffEqBase.parameterless_type(_out.parent) : DiffEqBase.parameterless_type(_out) if only_end eltype(Δ) <: NoTangent && return if typeof(Δ) <: AbstractArray{<:AbstractArray} && length(Δ) == 1 && i == 1 # user did sol[end] on only_end if typeof(_save_idxs) <: Number x = vec(Δ[1]) _out[_save_idxs] .= .-adapt(outtype,@view(x[_save_idxs])) elseif _save_idxs isa Colon vec(_out) .= .-adapt(outtype,vec(Δ[1])) else vec(@view(_out[_save_idxs])) .= .-adapt(outtype,vec(Δ[1])[_save_idxs]) end else Δ isa NoTangent && return if typeof(_save_idxs) <: Number x = vec(Δ) _out[_save_idxs] .= .-adapt(outtype,@view(x[_save_idxs])) elseif _save_idxs isa Colon vec(_out) .= .-adapt(outtype,vec(Δ)) else x = vec(Δ) vec(@view(_out[_save_idxs])) .= .-adapt(outtype,@view(x[_save_idxs])) end end else !Base.isconcretetype(eltype(Δ)) && (Δ[i] isa NoTangent || eltype(Δ) <: NoTangent) && return if typeof(Δ) <: AbstractArray{<:AbstractArray} || typeof(Δ) <: DESolution x = Δ[i] if typeof(_save_idxs) <: Number _out[_save_idxs] = .-@view(x[_save_idxs]) elseif _save_idxs isa Colon vec(_out) .= .-vec(x) else vec(@view(_out[_save_idxs])) .= .-vec(@view(x[_save_idxs])) end else if typeof(_save_idxs) <: Number _out[_save_idxs] = .-adapt(outtype,reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[_save_idxs, i]) elseif _save_idxs isa Colon vec(_out) .= .-vec(adapt(outtype,reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[:, i])) else vec(@view(_out[_save_idxs])) .= .-vec(adapt(outtype,reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[:, i])) end end end end if haskey(kwargs_adj, :callback_adj) cb2 = CallbackSet(cb,kwargs[:callback_adj]) else cb2 = cb end du0, dp = adjoint_sensitivities(sol,alg,args...,df,ts; sensealg=sensealg, callback = cb2, kwargs_adj...) du0 = reshape(du0,size(u0)) dp = p === nothing || p === DiffEqBase.NullParameters() ? nothing : reshape(dp',size(p)) if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),du0,dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),du0,dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) end end out, adjoint_sensitivity_backpass end # Prefer this route since it works better with callback AD function DiffEqBase._concrete_solve_adjoint(prob, alg, sensealg::AbstractForwardSensitivityAlgorithm, u0, p, originator::SciMLBase.ADOriginator, args...; save_idxs=nothing, kwargs...) if !(typeof(p) <: Union{Nothing,SciMLBase.NullParameters,AbstractArray}) || (p isa AbstractArray && !Base.isconcretetype(eltype(p))) throw(ForwardSensitivityParameterCompatibilityError()) end if p isa AbstractArray && eltype(p) <: ForwardDiff.Dual && !(eltype(u0) <: ForwardDiff.Dual) # Handle double differentiation case u0 = eltype(p).(u0) end _prob = ODEForwardSensitivityProblem(prob.f, u0, prob.tspan, p, sensealg) sol = solve(_prob, alg, args...; kwargs...) _, du = extract_local_sensitivities(sol, sensealg, Val(true)) u = if save_idxs === nothing [reshape(sol[i][1:length(u0)], size(u0)) for i in 1:length(sol)] else [sol[i][_save_idxs] for i in 1:length(sol)] end out = DiffEqBase.sensitivity_solution(sol, u, sol.t) function forward_sensitivity_backpass(Δ) adj = sum(eachindex(du)) do i J = du[i] if Δ isa AbstractVector || Δ isa DESolution || Δ isa AbstractVectorOfArray v = Δ[i] elseif Δ isa AbstractMatrix v = @view Δ[:, i] else v = @view Δ[.., i] end J'vec(v) end du0 = @not_implemented( "ForwardSensitivity does not differentiate with respect to u0. Change your sensealg." ) if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(), NoTangent(), du0, adj, NoTangent(), ntuple(_ -> NoTangent(), length(args))...) else (NoTangent(), NoTangent(), NoTangent(), du0, adj, NoTangent(), ntuple(_ -> NoTangent(), length(args))...) end end out, forward_sensitivity_backpass end function DiffEqBase._concrete_solve_forward(prob,alg, sensealg::AbstractForwardSensitivityAlgorithm, u0,p,originator::SciMLBase.ADOriginator,args...;save_idxs = nothing, kwargs...) _prob = ODEForwardSensitivityProblem(prob.f,u0,prob.tspan,p,sensealg) sol = solve(_prob,args...;kwargs...) u,du = extract_local_sensitivities(sol,Val(true)) _save_idxs = save_idxs === nothing ? (1:length(u0)) : save_idxs out = DiffEqBase.sensitivity_solution(sol,[ForwardDiff.value.(sol[i][_save_idxs]) for i in 1:length(sol)],sol.t) function _concrete_solve_pushforward(Δself, ::Nothing, ::Nothing, x3, Δp, args...) x3 !== nothing && error("Pushforward currently requires no u0 derivatives") du * Δp end out,_concrete_solve_pushforward end const FORWARDDIFF_SENSITIVITY_PARAMETER_COMPATABILITY_MESSAGE = """ ForwardDiffSensitivity assumes the `AbstractArray` interface for `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with ForwardDiffSensitivity requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during ForwardDiffSensitivity construction. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl. """ struct ForwardDiffSensitivityParameterCompatibilityError <: Exception end function Base.showerror(io::IO, e::ForwardDiffSensitivityParameterCompatibilityError) print(io, FORWARDDIFF_SENSITIVITY_PARAMETER_COMPATABILITY_MESSAGE) end # Generic Fallback for ForwardDiff function DiffEqBase._concrete_solve_adjoint(prob,alg, sensealg::ForwardDiffSensitivity{CS,CTS}, u0,p,originator::SciMLBase.ADOriginator,args...;saveat=eltype(prob.tspan)[], kwargs...) where {CS,CTS} if !(typeof(p) <: Union{Nothing,SciMLBase.NullParameters,AbstractArray}) || (p isa AbstractArray && !Base.isconcretetype(eltype(p))) throw(ForwardDiffSensitivityParameterCompatibilityError()) end if saveat isa Number _saveat = prob.tspan[1]:saveat:prob.tspan[2] else _saveat = saveat end sol = solve(remake(prob,p=p,u0=u0),alg,args...;saveat=_saveat, kwargs...) # saveat values # seems overcomplicated, but see the PR if length(sol.t) == 1 ts = sol.t else ts = eltype(sol.t)[] if sol.t[2] != sol.t[1] push!(ts,sol.t[1]) end for i in 2:length(sol.t)-1 if sol.t[i] != sol.t[i+1] && sol.t[i] != sol.t[i-1] push!(ts,sol.t[i]) end end if sol.t[end] != sol.t[end-1] push!(ts,sol.t[end]) end end function forward_sensitivity_backpass(Δ) dp = @thunk begin chunk_size = if CS === 0 && length(p) < 12 length(p) elseif CS !== 0 CS else 12 end num_chunks = length(p) ÷ chunk_size num_chunks * chunk_size != length(p) && (num_chunks += 1) pparts = typeof(p[1:1])[] for j in 0:(num_chunks-1) local chunk if ((j+1)*chunk_size) <= length(p) chunk = ((j*chunk_size+1) : ((j+1)*chunk_size)) pchunk = vec(p)[chunk] pdualpart = seed_duals(pchunk,prob.f,ForwardDiff.Chunk{chunk_size}()) else chunk = ((j*chunk_size+1) : length(p)) pchunk = vec(p)[chunk] pdualpart = seed_duals(pchunk,prob.f,ForwardDiff.Chunk{length(chunk)}()) end pdualvec = if j == 0 vcat(pdualpart,p[(j+1)*chunk_size+1 : end]) elseif j == num_chunks-1 vcat(p[1:j*chunk_size],pdualpart) else vcat(p[1:j*chunk_size],pdualpart,p[((j+1)*chunk_size)+1 : end]) end pdual = ArrayInterfaceCore.restructure(p,pdualvec) u0dual = convert.(eltype(pdualvec),u0) if (convert_tspan(sensealg) === nothing && ( (haskey(kwargs,:callback) && has_continuous_callback(kwargs[:callback])))) || (convert_tspan(sensealg) !== nothing && convert_tspan(sensealg)) tspandual = convert.(eltype(pdual),prob.tspan) else tspandual = prob.tspan end if typeof(prob.f) <: ODEFunction && prob.f.jac_prototype !== nothing _f = ODEFunction{SciMLBase.isinplace(prob.f),true}(prob.f,jac_prototype = convert.(eltype(u0dual),prob.f.jac_prototype)) elseif typeof(prob.f) <: SDEFunction && prob.f.jac_prototype !== nothing _f = SDEFunction{SciMLBase.isinplace(prob.f),true}(prob.f,jac_prototype = convert.(eltype(u0dual),prob.f.jac_prototype)) else _f = prob.f end _prob = remake(prob,f=_f,u0=u0dual,p=pdual,tspan=tspandual) if _prob isa SDEProblem _prob.noise_rate_prototype!==nothing && (_prob = remake(_prob, noise_rate_prototype = convert.(eltype(pdual), _prob.noise_rate_prototype))) end if saveat isa Number _saveat = prob.tspan[1]:saveat:prob.tspan[2] else _saveat = saveat end _sol = solve(_prob,alg,args...;saveat=ts, kwargs...) _,du = extract_local_sensitivities(_sol, sensealg, Val(true)) _dp = sum(eachindex(du)) do i J = du[i] if Δ isa AbstractVector || Δ isa DESolution || Δ isa AbstractVectorOfArray v = Δ[i] elseif Δ isa AbstractMatrix v = @view Δ[:, i] else v = @view Δ[.., i] end if !(Δ isa NoTangent) ForwardDiff.value.(J'vec(v)) else zero(p) end end push!(pparts,vec(_dp)) end ArrayInterfaceCore.restructure(p,reduce(vcat,pparts)) end du0 = @thunk begin chunk_size = if CS === 0 && length(u0) < 12 length(u0) elseif CS !== 0 CS else 12 end num_chunks = length(u0) ÷ chunk_size num_chunks * chunk_size != length(u0) && (num_chunks += 1) du0parts = typeof(u0[1:1])[] for j in 0:(num_chunks-1) local chunk if ((j+1)*chunk_size) <= length(u0) chunk = ((j*chunk_size+1) : ((j+1)*chunk_size)) u0chunk = vec(u0)[chunk] u0dualpart = seed_duals(u0chunk,prob.f,ForwardDiff.Chunk{chunk_size}()) else chunk = ((j*chunk_size+1) : length(u0)) u0chunk = vec(u0)[chunk] u0dualpart = seed_duals(u0chunk,prob.f,ForwardDiff.Chunk{length(chunk)}()) end u0dualvec = if j == 0 vcat(u0dualpart,u0[(j+1)*chunk_size+1 : end]) elseif j == num_chunks-1 vcat(u0[1:j*chunk_size],u0dualpart) else vcat(u0[1:j*chunk_size],u0dualpart,u0[((j+1)*chunk_size)+1 : end]) end u0dual = ArrayInterfaceCore.restructure(u0,u0dualvec) pdual = convert.(eltype(u0dual),p) if (convert_tspan(sensealg) === nothing && ( (haskey(kwargs,:callback) && has_continuous_callback(kwargs[:callback])))) || (convert_tspan(sensealg) !== nothing && convert_tspan(sensealg)) tspandual = convert.(eltype(pdual),prob.tspan) else tspandual = prob.tspan end if typeof(prob.f) <: ODEFunction && prob.f.jac_prototype !== nothing _f = ODEFunction{SciMLBase.isinplace(prob.f),true}(prob.f,jac_prototype = convert.(eltype(pdual),prob.f.jac_prototype)) elseif typeof(prob.f) <: SDEFunction && prob.f.jac_prototype !== nothing _f = SDEFunction{SciMLBase.isinplace(prob.f),true}(prob.f,jac_prototype = convert.(eltype(pdual),prob.f.jac_prototype)) else _f = prob.f end _prob = remake(prob,f=_f,u0=u0dual,p=pdual,tspan=tspandual) if _prob isa SDEProblem _prob.noise_rate_prototype!==nothing && (_prob = remake(_prob, noise_rate_prototype = convert.(eltype(pdual), _prob.noise_rate_prototype))) end if saveat isa Number _saveat = prob.tspan[1]:saveat:prob.tspan[2] else _saveat = saveat end _sol = solve(_prob,alg,args...;saveat=ts, kwargs...) _,du = extract_local_sensitivities(_sol, sensealg, Val(true)) _du0 = sum(eachindex(du)) do i J = du[i] if Δ isa AbstractVector || Δ isa DESolution || Δ isa AbstractVectorOfArray v = Δ[i] elseif Δ isa AbstractMatrix v = @view Δ[:, i] else v = @view Δ[.., i] end if !(Δ isa NoTangent) ForwardDiff.value.(J'vec(v)) else zero(u0) end end push!(du0parts,vec(_du0)) end ArrayInterfaceCore.restructure(u0,reduce(vcat,du0parts)) end if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),unthunk(du0),unthunk(dp),NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),du0,dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) end end sol,forward_sensitivity_backpass end function DiffEqBase._concrete_solve_adjoint(prob,alg,sensealg::ZygoteAdjoint, u0,p,originator::SciMLBase.ADOriginator,args...;kwargs...) Zygote.pullback((u0,p)->solve(prob,alg,args...;u0=u0,p=p, sensealg = SensitivityADPassThrough(),kwargs...),u0,p) end function DiffEqBase._concrete_solve_adjoint(prob,alg,sensealg::TrackerAdjoint, u0,p,originator::SciMLBase.ADOriginator,args...; kwargs...) local sol function tracker_adjoint_forwardpass(_u0,_p) if (convert_tspan(sensealg) === nothing && ( (haskey(kwargs,:callback) && has_continuous_callback(kwargs[:callback])))) || (convert_tspan(sensealg) !== nothing && convert_tspan(sensealg)) _tspan = convert.(eltype(_p),prob.tspan) else _tspan = prob.tspan end if DiffEqBase.isinplace(prob) # use Array{TrackedReal} for mutation to work # Recurse to all Array{TrackedArray} _prob = remake(prob,u0=map(identity,_u0),p=_p,tspan=_tspan) else # use TrackedArray for efficiency of the tape if typeof(prob) <: Union{SciMLBase.AbstractDDEProblem,SciMLBase.AbstractDAEProblem,SciMLBase.AbstractSDDEProblem} _f = function (u,p,h,t) # For DDE, but also works for (du,u,p,t) DAE out = prob.f(u,p,h,t) if out isa TrackedArray return out else Tracker.collect(out) end end # Only define `g` for the stochastic ones if typeof(prob) <: SciMLBase.AbstractSDEProblem _g = function (u,p,h,t) out = prob.g(u,p,h,t) if out isa TrackedArray return out else Tracker.collect(out) end end _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){false,true}(_f,_g),u0=_u0,p=_p,tspan=_tspan) else _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){false,true}(_f),u0=_u0,p=_p,tspan=_tspan) end elseif typeof(prob) <: Union{SciMLBase.AbstractODEProblem,SciMLBase.AbstractSDEProblem} _f = function (u,p,t) out = prob.f(u,p,t) if out isa TrackedArray return out else Tracker.collect(out) end end if typeof(prob) <: SciMLBase.AbstractSDEProblem _g = function (u,p,t) out = prob.g(u,p,t) if out isa TrackedArray return out else Tracker.collect(out) end end _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){false,true}(_f,_g),u0=_u0,p=_p,tspan=_tspan) else _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){false,true}(_f),u0=_u0,p=_p,tspan=_tspan) end else error("TrackerAdjont does not currently support the specified problem type. Please open an issue.") end end sol = solve(_prob,alg,args...;sensealg=DiffEqBase.SensitivityADPassThrough(),kwargs...) if typeof(sol.u[1]) <: Array return Array(sol) else tmp = vec(sol.u[1]) for i in 2:length(sol.u) tmp = hcat(tmp,vec(sol.u[i])) end return reshape(tmp,size(sol.u[1])...,length(sol.u)) end #adapt(typeof(u0),arr) sol end out,pullback = Tracker.forward(tracker_adjoint_forwardpass,u0,p) function tracker_adjoint_backpass(ybar) tmp = if eltype(ybar) <: Number && typeof(u0) <: Array Array(ybar) elseif eltype(ybar) <: Number # CuArray{Floats} ybar elseif typeof(ybar[1]) <: Array return Array(ybar) else tmp = vec(ybar.u[1]) for i in 2:length(ybar.u) tmp = hcat(tmp,vec(ybar.u[i])) end return reshape(tmp,size(ybar.u[1])...,length(ybar.u)) end u0bar, pbar = pullback(tmp) _u0bar = u0bar isa Tracker.TrackedArray ? Tracker.data(u0bar) : Tracker.data.(u0bar) if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),_u0bar,Tracker.data(pbar),NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),_u0bar,Tracker.data(pbar),NoTangent(),ntuple(_->NoTangent(), length(args))...) end end u = u0 isa Tracker.TrackedArray ? Tracker.data.(sol.u) : Tracker.data.(Tracker.data.(sol.u)) DiffEqBase.sensitivity_solution(sol,u,Tracker.data.(sol.t)),tracker_adjoint_backpass end const REVERSEDIFF_ADJOINT_GPU_COMPATABILITY_MESSAGE = """ ReverseDiffAdjoint is not compatible GPU-based array types. Use a different sensitivity analysis method, like InterpolatingAdjoint or TrackerAdjoint, in order to combine with GPUs. """ struct ReverseDiffGPUStateCompatibilityError <: Exception end function Base.showerror(io::IO, e::ReverseDiffGPUStateCompatibilityError) print(io, FORWARDDIFF_SENSITIVITY_PARAMETER_COMPATABILITY_MESSAGE) end function DiffEqBase._concrete_solve_adjoint(prob,alg,sensealg::ReverseDiffAdjoint, u0,p,originator::SciMLBase.ADOriginator,args...;kwargs...) if typeof(u0) isa GPUArrays.AbstractGPUArray throw(ReverseDiffGPUStateCompatibilityError()) end t = eltype(prob.tspan)[] u = typeof(u0)[] local sol function reversediff_adjoint_forwardpass(_u0,_p) if (convert_tspan(sensealg) === nothing && ( (haskey(kwargs,:callback) && has_continuous_callback(kwargs[:callback])))) || (convert_tspan(sensealg) !== nothing && convert_tspan(sensealg)) _tspan = convert.(eltype(_p),prob.tspan) else _tspan = prob.tspan end if DiffEqBase.isinplace(prob) # use Array{TrackedReal} for mutation to work # Recurse to all Array{TrackedArray} _prob = remake(prob,u0=reshape([x for x in _u0],size(_u0)),p=_p,tspan=_tspan) else # use TrackedArray for efficiency of the tape _f(args...) = reduce(vcat,prob.f(args...)) if prob isa SDEProblem _g(args...) = reduce(vcat,prob.g(args...)) _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){SciMLBase.isinplace(prob),true}(_f,_g),u0=_u0,p=_p,tspan=_tspan) else _prob = remake(prob,f=DiffEqBase.parameterless_type(prob.f){SciMLBase.isinplace(prob),true}(_f),u0=_u0,p=_p,tspan=_tspan) end end sol = solve(_prob,alg,args...;sensealg=DiffEqBase.SensitivityADPassThrough(),kwargs...) t = sol.t if DiffEqBase.isinplace(prob) u = map.(ReverseDiff.value,sol.u) else u = map(ReverseDiff.value,sol.u) end Array(sol) end tape = ReverseDiff.GradientTape(reversediff_adjoint_forwardpass,(u0, p)) tu, tp = ReverseDiff.input_hook(tape) output = ReverseDiff.output_hook(tape) ReverseDiff.value!(tu, u0) typeof(p) <: DiffEqBase.NullParameters || ReverseDiff.value!(tp, p) ReverseDiff.forward_pass!(tape) function reversediff_adjoint_backpass(ybar) _ybar = if ybar isa VectorOfArray Array(ybar) elseif eltype(ybar) <: AbstractArray Array(VectorOfArray(ybar)) else ybar end ReverseDiff.increment_deriv!(output, _ybar) ReverseDiff.reverse_pass!(tape) if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),ReverseDiff.deriv(tu),ReverseDiff.deriv(tp),NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),ReverseDiff.deriv(tu),ReverseDiff.deriv(tp),NoTangent(),ntuple(_->NoTangent(), length(args))...) end end Array(VectorOfArray(u)),reversediff_adjoint_backpass end function DiffEqBase._concrete_solve_adjoint(prob,alg, sensealg::AbstractShadowingSensitivityAlgorithm, u0,p,originator::SciMLBase.ADOriginator,args...;save_start=true,save_end=true, saveat = eltype(prob.tspan)[], save_idxs = nothing, kwargs...) if haskey(kwargs, :callback) error("Sensitivity analysis based on Least Squares Shadowing is not compatible with callbacks. Please select another `sensealg`.") else _prob = remake(prob,u0=u0,p=p) end sol = solve(_prob,alg,args...;save_start=save_start,save_end=save_end,saveat=saveat,kwargs...) if saveat isa Number if _prob.tspan[2] > _prob.tspan[1] ts = _prob.tspan[1]:convert(typeof(_prob.tspan[2]),abs(saveat)):_prob.tspan[2] else ts = _prob.tspan[2]:convert(typeof(_prob.tspan[2]),abs(saveat)):_prob.tspan[1] end _out = sol(ts) out = if save_idxs === nothing out = DiffEqBase.sensitivity_solution(sol,_out.u,sol.t) else out = DiffEqBase.sensitivity_solution(sol,[_out[i][save_idxs] for i in 1:length(_out)],ts) end # only_end (length(ts) == 1 && ts[1] == _prob.tspan[2]) && error("Sensitivity analysis based on Least Squares Shadowing requires a long-time averaged quantity.") elseif isempty(saveat) no_start = !save_start no_end = !save_end sol_idxs = 1:length(sol) no_start && (sol_idxs = sol_idxs[2:end]) no_end && (sol_idxs = sol_idxs[1:end-1]) only_end = length(sol_idxs) <= 1 _u = sol.u[sol_idxs] u = save_idxs === nothing ? _u : [x[save_idxs] for x in _u] ts = sol.t[sol_idxs] out = DiffEqBase.sensitivity_solution(sol,u,ts) else _saveat = saveat isa Array ? sort(saveat) : saveat # for minibatching ts = _saveat _out = sol(ts) out = if save_idxs === nothing out = DiffEqBase.sensitivity_solution(sol,_out.u,ts) else out = DiffEqBase.sensitivity_solution(sol,[_out[i][save_idxs] for i in 1:length(_out)],ts) end # only_end (length(ts) == 1 && ts[1] == _prob.tspan[2]) && error("Sensitivity analysis based on Least Squares Shadowing requires a long-time averaged quantity.") end _save_idxs = save_idxs === nothing ? Colon() : save_idxs function adjoint_sensitivity_backpass(Δ) function df(_out, u, p, t, i) if typeof(Δ) <: AbstractArray{<:AbstractArray} || typeof(Δ) <: DESolution if typeof(_save_idxs) <: Number _out[_save_idxs] = -Δ[i][_save_idxs] elseif _save_idxs isa Colon vec(_out) .= -vec(Δ[i]) else vec(@view(_out[_save_idxs])) .= -vec(Δ[i][_save_idxs]) end else if typeof(_save_idxs) <: Number _out[_save_idxs] = -adapt(DiffEqBase.parameterless_type(u0),reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[_save_idxs, i]) elseif _save_idxs isa Colon vec(_out) .= -vec(adapt(DiffEqBase.parameterless_type(u0),reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[:, i])) else vec(@view(_out[_save_idxs])) .= -vec(adapt(DiffEqBase.parameterless_type(u0),reshape(Δ, prod(size(Δ)[1:end-1]), size(Δ)[end])[:, i])) end end end if sensealg isa ForwardLSS lss_problem = ForwardLSSProblem(sol, sensealg, ts, df) dp = shadow_forward(lss_problem) elseif sensealg isa AdjointLSS adjointlss_problem = AdjointLSSProblem(sol, sensealg, ts, df) dp = shadow_adjoint(adjointlss_problem) elseif sensealg isa NILSS nilss_prob = NILSSProblem(_prob, sensealg, ts, df) dp = shadow_forward(nilss_prob,alg) elseif sensealg isa NILSAS nilsas_prob = NILSASProblem(_prob, sensealg, ts, df) dp = shadow_adjoint(nilsas_prob,alg) else error("No concrete_solve implementation found for sensealg `$sensealg`. Did you spell the sensitivity algorithm correctly? Please report this error.") end if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),NoTangent(),dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),NoTangent(),dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) end end out, adjoint_sensitivity_backpass end function DiffEqBase._concrete_solve_adjoint(prob::Union{NonlinearProblem,SteadyStateProblem}, alg,sensealg::SteadyStateAdjoint, u0,p,originator::SciMLBase.ADOriginator,args...;save_idxs = nothing, kwargs...) _prob = remake(prob,u0=u0,p=p) sol = solve(_prob,alg,args...;kwargs...) _save_idxs = save_idxs === nothing ? Colon() : save_idxs if save_idxs === nothing out = sol else out = DiffEqBase.sensitivity_solution(sol,sol[_save_idxs]) end function steadystatebackpass(Δ) # Δ = dg/dx or diffcache.dg_val # del g/del p = 0 dp = adjoint_sensitivities(sol,alg;sensealg=sensealg,g=nothing,dg=Δ,save_idxs=save_idxs) if originator isa SciMLBase.TrackerOriginator || originator isa SciMLBase.ReverseDiffOriginator (NoTangent(),NoTangent(),NoTangent(),dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) else (NoTangent(),NoTangent(),NoTangent(),NoTangent(),dp,NoTangent(),ntuple(_->NoTangent(), length(args))...) end end out, steadystatebackpass end function fix_endpoints(sensealg,sol,ts) @warn "Endpoints do not match. Return code: $(sol.retcode). Likely your time range is not a multiple of `saveat`. sol.t[end]: $(sol.t[end]), ts[end]: $(ts[end])" ts = collect(ts) push!(ts, sol.t[end]) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
22061
# Not in FiniteDiff because `u` -> scalar isn't used anywhere else, # but could be upstreamed. mutable struct UGradientWrapper{fType,tType,P} <: Function f::fType t::tType p::P end (ff::UGradientWrapper)(uprev) = ff.f(uprev,ff.p,ff.t) mutable struct ParamGradientWrapper{fType,tType,uType} <: Function f::fType t::tType u::uType end (ff::ParamGradientWrapper)(p) = ff.f(ff.u,p,ff.t) # the next four definitions are only needed in case of non-diagonal SDEs mutable struct ParamNonDiagNoiseGradientWrapper{fType,tType,uType} <: Function f::fType t::tType u::uType end (ff::ParamNonDiagNoiseGradientWrapper)(p) = vec(ff.f(ff.u,p,ff.t)) mutable struct ParamNonDiagNoiseJacobianWrapper{fType,tType,uType,duType} <: Function f::fType t::tType u::uType du::duType end function (ff::ParamNonDiagNoiseJacobianWrapper)(p) du1 = similar(p, size(ff.du)) ff.f(du1,ff.u,p,ff.t) return vec(du1) end function (ff::ParamNonDiagNoiseJacobianWrapper)(du1,p) ff.f(du1,ff.u,p,ff.t) return vec(du1) end mutable struct UNonDiagNoiseGradientWrapper{fType,tType,P} <: Function f::fType t::tType p::P end (ff::UNonDiagNoiseGradientWrapper)(uprev) = vec(ff.f(uprev,ff.p,ff.t)) mutable struct UNonDiagNoiseJacobianWrapper{fType,tType,P,duType} <: Function f::fType t::tType p::P du::duType end (ff::UNonDiagNoiseJacobianWrapper)(uprev) = (du1 = similar(ff.du); ff.f(du1,uprev,ff.p,ff.t); vec(du1)) function (ff::UNonDiagNoiseJacobianWrapper)(du1,uprev) ff.f(du1,uprev,ff.p,ff.t) return vec(du1) end # RODE wrappers mutable struct RODEUJacobianWrapper{fType,tType,P,WType} <: Function f::fType t::tType p::P W::WType end (ff::RODEUJacobianWrapper)(du1,uprev) = ff.f(du1,uprev,ff.p,ff.t,ff.W) (ff::RODEUJacobianWrapper)(uprev) = (du1 = similar(uprev); ff.f(du1,uprev,ff.p,ff.t,ff.W); du1) mutable struct RODEUDerivativeWrapper{F,tType,P,WType} <: Function f::F t::tType p::P W::WType end (ff::RODEUDerivativeWrapper)(u) = ff.f(u,ff.p,ff.t,ff.W) mutable struct RODEUGradientWrapper{fType,tType,P,WType} <: Function f::fType t::tType p::P W::WType end (ff::RODEUGradientWrapper)(uprev) = ff.f(uprev,ff.p,ff.t,ff.W) mutable struct RODEParamGradientWrapper{fType,tType,uType,WType} <: Function f::fType t::tType u::uType W::WType end (ff::RODEParamGradientWrapper)(p) = ff.f(ff.u,p,ff.t,ff.W) mutable struct RODEParamJacobianWrapper{fType,tType,uType,WType} <: Function f::fType t::tType u::uType W::WType end (ff::RODEParamJacobianWrapper)(du1,p) = ff.f(du1,ff.u,p,ff.t,ff.W) function (ff::RODEParamJacobianWrapper)(p) du1 = similar(p, size(ff.u)) ff.f(du1,ff.u,p,ff.t,ff.W) return du1 end Base.@pure function determine_chunksize(u,alg::DiffEqBase.AbstractSensitivityAlgorithm) determine_chunksize(u,get_chunksize(alg)) end Base.@pure function determine_chunksize(u,CS) if CS != 0 return CS else return ForwardDiff.pickchunksize(length(u)) end end function jacobian(f, x::AbstractArray{<:Number}, alg::DiffEqBase.AbstractSensitivityAlgorithm) if alg_autodiff(alg) J = ForwardDiff.jacobian(f, x) else J = FiniteDiff.finite_difference_jacobian(f, x) end return J end function jacobian!(J::AbstractMatrix{<:Number}, f, x::AbstractArray{<:Number}, fx::Union{Nothing,AbstractArray{<:Number}}, alg::DiffEqBase.AbstractSensitivityAlgorithm, jac_config) if alg_autodiff(alg) if fx === nothing ForwardDiff.jacobian!(J, f, x) else ForwardDiff.jacobian!(J, f, fx, x, jac_config) end else FiniteDiff.finite_difference_jacobian!(J, f, x, jac_config) end nothing end function derivative!(df::AbstractArray{<:Number}, f, x::Number, alg::DiffEqBase.AbstractSensitivityAlgorithm, der_config) if alg_autodiff(alg) ForwardDiff.derivative!(df, f, x, ) # der_config doesn't work else FiniteDiff.finite_difference_derivative!(df, f, x, der_config) end nothing end function gradient!(df::AbstractArray{<:Number}, f, x::Union{Number,AbstractArray{<:Number}}, alg::DiffEqBase.AbstractSensitivityAlgorithm, grad_config) if alg_autodiff(alg) ForwardDiff.gradient!(df, f, x, grad_config) else FiniteDiff.finite_difference_gradient!(df, f, x, grad_config) end nothing end """ jacobianvec!(Jv, f, x, v, alg, (buffer, seed)) -> nothing ``Jv <- J(f(x))v`` """ function jacobianvec!(Jv::AbstractArray{<:Number}, f, x::AbstractArray{<:Number}, v, alg::DiffEqBase.AbstractSensitivityAlgorithm, config) if alg_autodiff(alg) buffer, seed = config TD = typeof(first(seed)) T = typeof(first(seed).partials) DiffEqBase.@.. seed = TD(x, T(tuple(v))) f(buffer, seed) Jv .= ForwardDiff.partials.(buffer, 1) else buffer1, buffer2 = config f(buffer1,x) T = eltype(x) # Should it be min? max? mean? ϵ = sqrt(eps(real(T))) * max(one(real(T)), abs(norm(x))) @. x += ϵ*v f(buffer2,x) @. x -= ϵ*v @. Jv = (buffer2 - buffer1)/ϵ end nothing end function jacobianmat!(JM::AbstractMatrix{<:Number}, f, x::AbstractArray{<:Number}, M, alg::DiffEqBase.AbstractSensitivityAlgorithm, config) buffer, seed = config T = eltype(seed) numparams = length(ForwardDiff.partials(seed[1])) for i in eachindex(seed) seed[i] = T(x[i],ForwardDiff.Partials(ntuple(j -> M[i,j], numparams))) end f(buffer,seed) for (j,dual) in enumerate(buffer) for (i,partial) in enumerate(ForwardDiff.partials(dual)) JM[j,i] = partial end end return nothing end function vecjacobian!(dλ, y, λ, p, t, S::TS; dgrad=nothing, dy=nothing, W=nothing) where TS<:SensitivityFunction _vecjacobian!(dλ, y, λ, p, t, S, S.sensealg.autojacvec, dgrad, dy, W) return end function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::Bool, dgrad, dy, W) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) @unpack J, uf, f_cache, jac_config = S.diffcache if !(prob isa DiffEqBase.SteadyStateProblem) if W===nothing if DiffEqBase.has_jac(f) f.jac(J,y,p,t) # Calculate the Jacobian into J else uf.t = t uf.p = p jacobian!(J, uf, y, f_cache, sensealg, jac_config) end else if DiffEqBase.has_jac(f) f.jac(J,y,p,t,W) # Calculate the Jacobian into J else uf.t = t uf.p = p uf.W = W jacobian!(J, uf, y, f_cache, sensealg, jac_config) end end mul!(dλ',λ',J) end if dgrad !== nothing @unpack pJ, pf, paramjac_config = S.diffcache if W===nothing if DiffEqBase.has_paramjac(f) # Calculate the parameter Jacobian into pJ f.paramjac(pJ,y,p,t) else pf.t = t pf.u = y if inplace_sensitivity(S) jacobian!(pJ, pf, p, f_cache, sensealg, paramjac_config) else temp = jacobian(pf, p, sensealg) pJ .= temp end end else if DiffEqBase.has_paramjac(f) # Calculate the parameter Jacobian into pJ f.paramjac(pJ,y,p,t,W) else pf.t = t pf.u = y pf.W = W if inplace_sensitivity(S) jacobian!(pJ, pf, p, f_cache, sensealg, paramjac_config) else temp = jacobian(pf, p, sensealg) pJ .= temp end end end mul!(dgrad',λ',pJ) end if dy !== nothing if W===nothing if inplace_sensitivity(S) f(dy, y, p, t) else dy[:] .= vec(f(y, p, t)) end else if inplace_sensitivity(S) f(dy, y, p, t, W) else dy[:] .= vec(f(y, p, t, W)) end end end return end function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::TrackerVJP, dgrad, dy, W) where TS<:SensitivityFunction @unpack sensealg, f = S isautojacvec = get_jacvec(sensealg) if inplace_sensitivity(S) if W===nothing _dy, back = Tracker.forward(y, p) do u, p out_ = map(zero, u) f(out_, u, p, t) Tracker.collect(out_) end else _dy, back = Tracker.forward(y, p) do u, p out_ = map(zero, u) f(out_, u, p, t, W) Tracker.collect(out_) end end tmp1, tmp2 = Tracker.data.(back(λ)) dλ[:] .= vec(tmp1) dgrad !== nothing && (dgrad[:] .= vec(tmp2)) dy !== nothing && (dy[:] .= vec(Tracker.data(_dy))) else if W===nothing _dy, back = Tracker.forward(y, p) do u, p Tracker.collect(f(u, p, t)) end else _dy, back = Tracker.forward(y, p) do u, p Tracker.collect(f(u, p, t, W)) end end tmp1, tmp2 = Tracker.data.(back(λ)) dλ[:] .= vec(tmp1) dgrad !== nothing && (dgrad[:] .= vec(tmp2)) dy !== nothing && (dy[:] .= vec(Tracker.data(_dy))) end return end function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::ReverseDiffVJP, dgrad, dy, W) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) isautojacvec = get_jacvec(sensealg) if typeof(p) <: DiffEqBase.NullParameters _p = similar(y,(0,)) else _p = p end if typeof(prob) <: SteadyStateProblem || (eltype(λ) <: eltype(prob.u0) && typeof(t) <: eltype(prob.u0) && compile_tape(sensealg.autojacvec)) tape = S.diffcache.paramjac_config ## These other cases happen due to autodiff in stiff ODE solvers elseif inplace_sensitivity(S) _y = eltype(y) === eltype(λ) ? y : convert.(promote_type(eltype(y),eltype(λ)),y) if W===nothing tape = ReverseDiff.GradientTape((_y, _p, [t])) do u,p,t du1 = similar(u, size(u)) f(du1,u,p,first(t)) return vec(du1) end else _W = eltype(W) === eltype(λ) ? W : convert.(promote_type(eltype(W),eltype(λ)),W) tape = ReverseDiff.GradientTape((_y, _p, [t], _W)) do u,p,t,Wloc du1 = p !== nothing && p !== DiffEqBase.NullParameters() ? similar(p, size(u)) : similar(u) f(du1,u,p,first(t),Wloc) return vec(du1) end end else _y = eltype(y) === eltype(λ) ? y : convert.(promote_type(eltype(y),eltype(λ)),y) if W===nothing tape = ReverseDiff.GradientTape((_y, _p, [t])) do u,p,t vec(f(u,p,first(t))) end else _W = eltype(W) === eltype(λ) ? W : convert.(promote_type(eltype(W),eltype(λ)),W) tape = ReverseDiff.GradientTape((_y, _p, [t], _W)) do u,p,t,Wloc vec(f(u,p,first(t),Wloc)) end end end if prob isa DiffEqBase.SteadyStateProblem tu, tp = ReverseDiff.input_hook(tape) else if W===nothing tu, tp, tt = ReverseDiff.input_hook(tape) else tu, tp, tt, tW = ReverseDiff.input_hook(tape) end end output = ReverseDiff.output_hook(tape) ReverseDiff.unseed!(tu) # clear any "leftover" derivatives from previous calls ReverseDiff.unseed!(tp) if !(prob isa DiffEqBase.SteadyStateProblem) ReverseDiff.unseed!(tt) end W !== nothing && ReverseDiff.unseed!(tW) ReverseDiff.value!(tu, y) typeof(p) <: DiffEqBase.NullParameters || ReverseDiff.value!(tp, p) if !(prob isa DiffEqBase.SteadyStateProblem) ReverseDiff.value!(tt, [t]) end W !== nothing && ReverseDiff.value!(tW, W) ReverseDiff.forward_pass!(tape) ReverseDiff.increment_deriv!(output, λ) ReverseDiff.reverse_pass!(tape) copyto!(vec(dλ), ReverseDiff.deriv(tu)) dgrad !== nothing && copyto!(vec(dgrad), ReverseDiff.deriv(tp)) ReverseDiff.pull_value!(output) dy !== nothing && copyto!(vec(dy), ReverseDiff.value(output)) return end function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::ZygoteVJP, dgrad, dy, W) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) isautojacvec = get_jacvec(sensealg) if inplace_sensitivity(S) if W===nothing _dy, back = Zygote.pullback(y, p) do u, p out_ = Zygote.Buffer(similar(u)) f(out_, u, p, t) vec(copy(out_)) end else _dy, back = Zygote.pullback(y, p) do u, p out_ = Zygote.Buffer(similar(u)) f(out_, u, p, t, W) vec(copy(out_)) end end tmp1,tmp2 = back(λ) dλ[:] .= vec(tmp1) dgrad !== nothing && tmp2 !== nothing && (dgrad[:] .= vec(tmp2)) dy !== nothing && (dy[:] .= vec(_dy)) else if W===nothing _dy, back = Zygote.pullback(y, p) do u, p vec(f(u, p, t)) end else _dy, back = Zygote.pullback(y, p) do u, p vec(f(u, p, t, W)) end end tmp1, tmp2 = back(λ) tmp1 !== nothing && (dλ[:] .= vec(tmp1)) dy !== nothing && (dy[:] .= vec(_dy)) dgrad !== nothing && tmp2 !== nothing && (dgrad[:] .= vec(tmp2)) end return end function _vecjacobian!(dλ, y, λ, p, t, S::TS, isautojacvec::EnzymeVJP, dgrad, dy, W) where TS<:SensitivityFunction @unpack sensealg = S f = S.f.f prob = getprob(S) tmp1,tmp2,tmp3,tmp4 = S.diffcache.paramjac_config tmp1 .= 0 # should be removed for dλ #if dgrad !== nothing # tmp2 = dgrad #else dup = if !(typeof(tmp2) <: DiffEqBase.NullParameters) tmp2 .= 0 Enzyme.Duplicated(p, tmp2) else p end #end #if dy !== nothing # tmp3 = dy #else tmp3 .= 0 #end vec(tmp4) .= vec(λ) isautojacvec = get_jacvec(sensealg) if inplace_sensitivity(S) if W===nothing Enzyme.autodiff(S.diffcache.pf,Enzyme.Duplicated(tmp3, tmp4), Enzyme.Duplicated(y, tmp1), dup, t) else Enzyme.autodiff(S.diffcache.pf,Enzyme.Duplicated(tmp3, tmp4), Enzyme.Duplicated(y, tmp1), dup, t,W) end dλ .= tmp1 dgrad !== nothing && (dgrad[:] .= vec(tmp2)) dy !== nothing && (dy .= tmp3) else if W===nothing Enzyme.autodiff(S.diffcache.pf,Enzyme.Duplicated(tmp3, tmp4), Enzyme.Duplicated(y, tmp1), dup,t) else Enzyme.autodiff(S.diffcache.pf,Enzyme.Duplicated(tmp3, tmp4), Enzyme.Duplicated(y, tmp1), dup,t,W) end if dy !== nothing out_ = if W===nothing f(y, p, t) else f(y, p, t, W) end dy[:] .= vec(out_) end dλ .= tmp1 dgrad !== nothing && !(typeof(tmp2) <: DiffEqBase.NullParameters) && (dgrad[:] .= vec(tmp2)) dy !== nothing && (dy .= tmp3) end return end function jacNoise!(λ, y, p, t, S::SensitivityFunction; dgrad=nothing, dλ=nothing, dy=nothing) _jacNoise!(λ, y, p, t, S, S.sensealg.autojacvec, dgrad, dλ, dy) return end function _jacNoise!(λ, y, p, t, S::TS, isnoise::Bool, dgrad, dλ, dy) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) if dgrad !== nothing @unpack pJ, pf, f_cache, paramjac_noise_config = S.diffcache if DiffEqBase.has_paramjac(f) # Calculate the parameter Jacobian into pJ f.paramjac(pJ,y,p,t) else pf.t = t pf.u = y if inplace_sensitivity(S) jacobian!(pJ, pf, p, nothing, sensealg, nothing) #jacobian!(pJ, pf, p, f_cache, sensealg, paramjac_noise_config) else temp = jacobian(pf, p, sensealg) pJ .= temp end end if StochasticDiffEq.is_diagonal_noise(prob) pJt = transpose(λ).*transpose(pJ) dgrad[:] .= vec(pJt) else m = size(prob.noise_rate_prototype)[2] for i in 1:m tmp = λ'*pJ[(i-1)*m+1:i*m,:] dgrad[:,i] .= vec(tmp) end end end if dλ !== nothing && (isnoisemixing(sensealg) || !StochasticDiffEq.is_diagonal_noise(prob)) @unpack J, uf, f_cache, jac_noise_config = S.diffcache if dy!== nothing if inplace_sensitivity(S) f(dy, y, p, t) else dy .= f(y, p, t) end end if DiffEqBase.has_jac(f) f.jac(J,y,p,t) # Calculate the Jacobian into J else if inplace_sensitivity(S) if dy !== nothing ForwardDiff.jacobian!(J,uf,dy,y) else if StochasticDiffEq.is_diagonal_noise(prob) dy = similar(y) else dy = similar(prob.noise_rate_prototype) f(dy, y, p, t) ForwardDiff.jacobian!(J,uf,dy,y) end f(dy, y, p, t) ForwardDiff.jacobian!(J,uf,dy,y) end else tmp = ForwardDiff.jacobian(uf,y) J .= tmp end # uf.t = t # uf.p = p # jacobian!(J, uf, y, nothing, sensealg, nothing) end if StochasticDiffEq.is_diagonal_noise(prob) Jt = transpose(λ).*transpose(J) dλ[:] .= vec(Jt) else for i in 1:m tmp = λ'*J[(i-1)*m+1:i*m,:] dλ[:,i] .= vec(tmp) end end end return end function _jacNoise!(λ, y, p, t, S::TS, isnoise::ReverseDiffVJP, dgrad, dλ, dy) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) for (i, λi) in enumerate(λ) tapei = S.diffcache.paramjac_noise_config[i] tu, tp, tt = ReverseDiff.input_hook(tapei) output = ReverseDiff.output_hook(tapei) ReverseDiff.unseed!(tu) # clear any "leftover" derivatives from previous calls ReverseDiff.unseed!(tp) ReverseDiff.unseed!(tt) ReverseDiff.value!(tu, y) ReverseDiff.value!(tp, p) ReverseDiff.value!(tt, [t]) ReverseDiff.forward_pass!(tapei) if StochasticDiffEq.is_diagonal_noise(prob) ReverseDiff.increment_deriv!(output, λi) else ReverseDiff.increment_deriv!(output, λ) end ReverseDiff.reverse_pass!(tapei) deriv = ReverseDiff.deriv(tp) dgrad[:,i] .= vec(deriv) ReverseDiff.pull_value!(output) if StochasticDiffEq.is_diagonal_noise(prob) dλ !== nothing && (dλ[:,i] .= vec(ReverseDiff.deriv(tu))) dy !== nothing && (dy[i] = ReverseDiff.value(output)) else dλ !== nothing && (dλ[:,i] .= vec(ReverseDiff.deriv(tu))) dy !== nothing && (dy[:,i] .= vec(ReverseDiff.value(output))) end end return end function _jacNoise!(λ, y, p, t, S::TS, isnoise::ZygoteVJP, dgrad, dλ, dy) where TS<:SensitivityFunction @unpack sensealg, f = S prob = getprob(S) if StochasticDiffEq.is_diagonal_noise(prob) if inplace_sensitivity(S) for (i, λi) in enumerate(λ) _dy, back = Zygote.pullback(y, p) do u, p out_ = Zygote.Buffer(similar(u)) f(out_, u, p, t) copy(out_[i]) end tmp1,tmp2 = back(λi) #issue: tmp2 = zeros(p) dgrad[:,i] .= vec(tmp2) dλ !== nothing && (dλ[:,i] .= vec(tmp1)) dy !== nothing && (dy[i] = _dy) end else for (i, λi) in enumerate(λ) _dy, back = Zygote.pullback(y, p) do u, p f(u, p, t)[i] end tmp1,tmp2 = back(λi) dgrad[:,i] .= vec(tmp2) dλ !== nothing && (dλ[:,i] .= vec(tmp1)) dy !== nothing && (dy[i] = _dy) end end else if inplace_sensitivity(S) for (i, λi) in enumerate(λ) _dy, back = Zygote.pullback(y, p) do u, p out_ = Zygote.Buffer(similar(prob.noise_rate_prototype)) f(out_, u, p, t) copy(out_[:,i]) end tmp1,tmp2 = back(λ)#issue with Zygote.Buffer dgrad[:,i] .= vec(tmp2) dλ !== nothing && (dλ[:,i] .= vec(tmp1)) dy !== nothing && (dy[:,i] .= vec(_dy)) end else for (i, λi) in enumerate(λ) _dy, back = Zygote.pullback(y, p) do u, p f(u, p, t)[:,i] end tmp1,tmp2 = back(λ) dgrad[:,i] .= vec(tmp2) if tmp1 === nothing # if a column of the noise matrix is zero, Zygote returns nothing. dλ !== nothing && (dλ[:,i] .= false) else dλ !== nothing && (dλ[:,i] .= vec(tmp1)) end dy !== nothing && (dy[:,i] .= vec(_dy)) end end end return end function accumulate_cost!(dλ, y, p, t, S::TS, dgrad=nothing) where TS<:SensitivityFunction @unpack dg, dg_val, g, g_grad_config = S.diffcache if dg !== nothing if !(dg isa Tuple) dg(dg_val,y,p,t) dλ .+= vec(dg_val) else dg[1](dg_val[1],y,p,t) dλ .+= vec(dg_val[1]) if dgrad !== nothing dg[2](dg_val[2],y,p,t) dgrad .-= vec(dg_val[2]) end end else g.t = t gradient!(dg_val, g, y, S.sensealg, g_grad_config) dλ .+= vec(dg_val) end return nothing end function build_jac_config(alg,uf,u) if alg_autodiff(alg) jac_config = ForwardDiff.JacobianConfig(uf,u,u, ForwardDiff.Chunk{determine_chunksize(u,alg)}()) else if diff_type(alg) != Val{:complex} jac_config = FiniteDiff.JacobianCache(similar(u),similar(u), similar(u),diff_type(alg)) else tmp = Complex{eltype(u)}.(u) du1 = Complex{eltype(u)}.(du1) jac_config = FiniteDiff.JacobianCache(tmp,du1,nothing,diff_type(alg)) end end jac_config end function build_param_jac_config(alg,pf,u,p) if alg_autodiff(alg) jac_config = ForwardDiff.JacobianConfig(pf,u,p, ForwardDiff.Chunk{determine_chunksize(p,alg)}()) else if diff_type(alg) != Val{:complex} jac_config = FiniteDiff.JacobianCache(similar(p),similar(u), similar(u),diff_type(alg)) else tmp = Complex{eltype(p)}.(p) du1 = Complex{eltype(u)}.(u) jac_config = FiniteDiff.JacobianCache(tmp,du1,nothing,diff_type(alg)) end end jac_config end function build_grad_config(alg,tf,du1,t) if alg_autodiff(alg) grad_config = ForwardDiff.GradientConfig(tf,du1, ForwardDiff.Chunk{determine_chunksize(du1,alg)}()) else grad_config = FiniteDiff.GradientCache(du1,t,diff_type(alg)) end grad_config end function build_deriv_config(alg,tf,du1,t) if alg_autodiff(alg) grad_config = ForwardDiff.DerivativeConfig(tf,du1,t) else grad_config = FiniteDiff.DerivativeCache(du1,t,diff_type(alg)) end grad_config end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
23187
""" ODEForwardSensitivityFunction{iip,F,A,Tt,OJ,J,JP,S,PJ,TW,TWt,UF,PF,JC,PJC,Alg,fc,JM,pJM,MM,CV} <: DiffEqBase.AbstractODEFunction{iip} ODEForwardSensitivityFunction is an internal to the ODEForwardSensitivityProblem which extends the AbstractODEFunction to be used in an ODEProblem, but defines the tools requires for calculating the extra differential equations associated with the derivative terms. ODEForwardSensitivityFunction is not intended to be part of the public API. """ struct ODEForwardSensitivityFunction{iip,F,A,Tt,OJ,J,JP,S,PJ,TW,TWt,UF,PF,JC,PJC,Alg,fc,JM,pJM,MM,CV} <: DiffEqBase.AbstractODEFunction{iip} f::F analytic::A tgrad::Tt original_jac::OJ jac::J jac_prototype::JP sparsity::S paramjac::PJ Wfact::TW Wfact_t::TWt uf::UF pf::PF J::JM pJ::pJM jac_config::JC paramjac_config::PJC alg::Alg numparams::Int numindvar::Int f_cache::fc mass_matrix::MM isautojacvec::Bool isautojacmat::Bool colorvec::CV end has_original_jac(S) = isdefined(S, :original_jac) && S.jac !== nothing struct NILSSForwardSensitivityFunction{iip,sensefunType,senseType,MM} <: DiffEqBase.AbstractODEFunction{iip} S::sensefunType sensealg::senseType nus::Int mass_matrix::MM end function ODEForwardSensitivityFunction(f,analytic,tgrad,original_jac,jac,jac_prototype,sparsity,paramjac,Wfact,Wfact_t,uf,pf,u0, jac_config,paramjac_config,alg,p,f_cache,mm, isautojacvec,isautojacmat,colorvec,nus) numparams = length(p) numindvar = length(u0) J = isautojacvec ? nothing : Matrix{eltype(u0)}(undef,numindvar,numindvar) pJ = Matrix{eltype(u0)}(undef,numindvar,numparams) # number of funcs size sensefun = ODEForwardSensitivityFunction{isinplace(f),typeof(f),typeof(analytic), typeof(tgrad),typeof(original_jac), typeof(jac),typeof(jac_prototype),typeof(sparsity), typeof(paramjac), typeof(Wfact),typeof(Wfact_t),typeof(uf), typeof(pf),typeof(jac_config), typeof(paramjac_config),typeof(alg), typeof(f_cache), typeof(J),typeof(pJ),typeof(mm),typeof(f.colorvec)}( f,analytic,tgrad,original_jac,jac,jac_prototype, sparsity,paramjac,Wfact,Wfact_t,uf,pf,J,pJ, jac_config,paramjac_config,alg, numparams,numindvar,f_cache,mm,isautojacvec,isautojacmat,colorvec, ) if nus!==nothing sensefun = NILSSForwardSensitivityFunction{isinplace(f), typeof(sensefun), typeof(alg),typeof(mm)}(sensefun,alg,nus,mm) end return sensefun end function (S::ODEForwardSensitivityFunction)(du,u,p,t) y = @view u[1:S.numindvar] # These are the independent variables dy = @view du[1:S.numindvar] S.f(dy,y,p,t) # Make the first part be the ODE # Now do sensitivities # Compute the Jacobian if !S.isautojacvec && !S.isautojacmat if has_original_jac(S) S.original_jac(S.J,y,p,t) # Calculate the Jacobian into J else S.uf.t = t jacobian!(S.J, S.uf, y, S.f_cache, S.alg, S.jac_config) end end if DiffEqBase.has_paramjac(S.f) S.paramjac(S.pJ,y,p,t) # Calculate the parameter Jacobian into pJ else S.pf.t = t copyto!(S.pf.u,y) jacobian!(S.pJ, S.pf, p, S.f_cache, S.alg, S.paramjac_config) end # Compute the parameter derivatives if !S.isautojacvec && !S.isautojacmat dp = @view du[reshape(S.numindvar+1:(length(p)+1)*S.numindvar,S.numindvar,length(p))] Sj = @view u[reshape(S.numindvar+1:(length(p)+1)*S.numindvar,S.numindvar,length(p))] mul!(dp,S.J,Sj) DiffEqBase.@.. dp += S.pJ elseif S.isautojacmat S.uf.t = t Sj = @view u[reshape(S.numindvar+1:end,S.numindvar,S.numparams)] dp = @view du[reshape(S.numindvar+1:end,S.numindvar,S.numparams)] jacobianmat!(dp, S.uf, y, Sj, S.alg, S.jac_config) DiffEqBase.@.. dp += S.pJ else S.uf.t = t for i in eachindex(p) Sj = @view u[i*S.numindvar+1:(i+1)*S.numindvar] dp = @view du[i*S.numindvar+1:(i+1)*S.numindvar] jacobianvec!(dp, S.uf, y, Sj, S.alg, S.jac_config) dp .+= @view S.pJ[:,i] end end return nothing end @deprecate ODELocalSensitivityProblem(args...;kwargs...) ODEForwardSensitivityProblem(args...;kwargs...) struct ODEForwardSensitivityProblem{iip,A} sensealg::A end function ODEForwardSensitivityProblem(f::F,args...;kwargs...) where F ODEForwardSensitivityProblem(ODEFunction(f),args...;kwargs...) end function ODEForwardSensitivityProblem(prob::ODEProblem,alg;kwargs...) ODEForwardSensitivityProblem(prob.f,prob.u0,prob.tspan,prob.p,alg;kwargs...) end const FORWARD_SENSITIVITY_PARAMETER_COMPATABILITY_MESSAGE = """ ODEForwardSensitivityProblem requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with ODEForwardSensitivityProblem requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during ODEForwardSensitivityProblem construction. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl. """ struct ForwardSensitivityParameterCompatibilityError <: Exception end function Base.showerror(io::IO, e::ForwardSensitivityParameterCompatibilityError) print(io, FORWARD_SENSITIVITY_PARAMETER_COMPATABILITY_MESSAGE) end const FORWARD_SENSITIVITY_OUT_OF_PLACE_MESSAGE = """ ODEForwardSensitivityProblem is not compatible with out of place ODE definitions, i.e. `du=f(u,p,t)` definitions. It requires an in-place mutating function `f(du,u,p,t)`. For more information on in-place vs out-of-place ODE definitions, see the ODEProblem or ODEFunction documentation. """ struct ForwardSensitivityOutOfPlaceError <: Exception end function Base.showerror(io::IO, e::ForwardSensitivityOutOfPlaceError) print(io, FORWARD_SENSITIVITY_OUT_OF_PLACE_MESSAGE) end @doc doc""" function ODEForwardSensitivityProblem(f::Union{Function,DiffEqBase.AbstractODEFunction}, u0,tspan,p=nothing, alg::AbstractForwardSensitivityAlgorithm = ForwardSensitivity(); kwargs...) Local forward sensitivity analysis gives a solution along with a timeseries of the sensitivities. Thus if one wishes to have a derivative at every possible time point, directly using the `ODEForwardSensitivityProblem` can be the most efficient method. !!! warning ODEForwardSensitivityProblem requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with ODEForwardSensitivityProblem requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during ODEForwardSensitivityProblem construction. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl. ### ODEForwardSensitivityProblem Syntax `ODEForwardSensitivityProblem` is similar to an `ODEProblem`, but takes an `AbstractForwardSensitivityAlgorithm` that describes how to append the forward sensitivity equation calculation to the time evolution to simultaneously compute the derivative of the solution with respect to parameters. ```julia ODEForwardSensitivityProblem(f::SciMLBase.AbstractODEFunction,u0, tspan,p=nothing, sensealg::AbstractForwardSensitivityAlgorithm = ForwardSensitivity(); kwargs...) ``` Once constructed, this problem can be used in `solve` just like any other ODEProblem. The solution can be deconstructed into the ODE solution and sensitivities parts using the `extract_local_sensitivities` function, with the following dispatches: ```julia extract_local_sensitivities(sol, asmatrix::Val=Val(false)) # Decompose the entire time series extract_local_sensitivities(sol, i::Integer, asmatrix::Val=Val(false)) # Decompose sol[i] extract_local_sensitivities(sol, t::Union{Number,AbstractVector}, asmatrix::Val=Val(false)) # Decompose sol(t) ``` For information on the mathematics behind these calculations, consult [the sensitivity math page](@ref sensitivity_math) ### Example using an ODEForwardSensitivityProblem To define a sensitivity problem, simply use the `ODEForwardSensitivityProblem` type instead of an ODE type. For example, we generate an ODE with the sensitivity equations attached for the Lotka-Volterra equations by: ```julia function f(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + u[1]*u[2] end p = [1.5,1.0,3.0] prob = ODEForwardSensitivityProblem(f,[1.0;1.0],(0.0,10.0),p) ``` This generates a problem which the ODE solvers can solve: ```julia sol = solve(prob,DP8()) ``` Note that the solution is the standard ODE system and the sensitivity system combined. We can use the following helper functions to extract the sensitivity information: ```julia x,dp = extract_local_sensitivities(sol) x,dp = extract_local_sensitivities(sol,i) x,dp = extract_local_sensitivities(sol,t) ``` In each case, `x` is the ODE values and `dp` is the matrix of sensitivities The first gives the full timeseries of values and `dp[i]` contains the time series of the sensitivities of all components of the ODE with respect to `i`th parameter. The second returns the `i`th time step, while the third interpolates to calculate the sensitivities at time `t`. For example, if we do: ```julia x,dp = extract_local_sensitivities(sol) da = dp[1] ``` then `da` is the timeseries for ``\frac{\partial u(t)}{\partial p}``. We can plot this ```julia plot(sol.t,da',lw=3) ``` transposing so that the rows (the timeseries) is plotted. ![Local Sensitivity Solution](https://user-images.githubusercontent.com/1814174/170916167-11d1b5c6-3c3c-439a-92af-d3899e24d2ad.png) Here we see that there is a periodicity to the sensitivity which matches the periodicity of the Lotka-Volterra solutions. However, as time goes on the sensitivity increases. This matches the analysis of Wilkins in Sensitivity Analysis for Oscillating Dynamical Systems. We can also quickly see that these values are equivalent to those given by automatic differentiation and numerical differentiation through the ODE solver: ```julia using ForwardDiff, Calculus function test_f(p) prob = ODEProblem(f,eltype(p).([1.0,1.0]),eltype(p).((0.0,10.0)),p) solve(prob,Vern9(),abstol=1e-14,reltol=1e-14,save_everystep=false)[end] end p = [1.5,1.0,3.0] fd_res = ForwardDiff.jacobian(test_f,p) calc_res = Calculus.finite_difference_jacobian(test_f,p) ``` Here we just checked the derivative at the end point. ### Internal representation of the Solution For completeness, we detail the internal representation. When using ForwardDiffSensitivity, the representation is with `Dual` numbers under the standard interpretation. The values for the ODE's solution at time `i` are the `ForwardDiff.value.(sol[i])` portions, and the derivative with respect to parameter `j` is given by `ForwardDiff.partials.(sol[i])[j]`. When using ForwardSensitivity, the solution to the ODE are the first `n` components of the solution. This means we can grab the matrix of solution values like: ```julia x = sol[1:sol.prob.indvars,:] ``` Since each sensitivity is a vector of derivatives for each function, the sensitivities are each of size `sol.prob.indvars`. We can pull out the parameter sensitivities from the solution as follows: ```julia da = sol[sol.prob.indvars+1:sol.prob.indvars*2,:] db = sol[sol.prob.indvars*2+1:sol.prob.indvars*3,:] dc = sol[sol.prob.indvars*3+1:sol.prob.indvars*4,:] ``` This means that `da[1,i]` is the derivative of the `x(t)` by the parameter `a` at time `sol.t[i]`. Note that all of the functionality available to ODE solutions is available in this case, including interpolations and plot recipes (the recipes will plot the expanded system). """ function ODEForwardSensitivityProblem(f::F,u0, tspan,p=nothing, alg::ForwardSensitivity = ForwardSensitivity(); nus=nothing, # determine if Nilss is used w0=nothing, v0=nothing, kwargs...) where F<:DiffEqBase.AbstractODEFunction isinplace = SciMLBase.isinplace(f) # if there is an analytical Jacobian provided, we are not going to do automatic `jac*vec` isautojacmat = get_jacmat(alg) isautojacvec = get_jacvec(alg) p === nothing && error("You must have parameters to use parameter sensitivity calculations!") if !(typeof(p) <: Union{Nothing,SciMLBase.NullParameters,AbstractArray}) || (p isa AbstractArray && !Base.isconcretetype(eltype(p))) throw(ForwardSensitivityParameterCompatibilityError()) end uf = DiffEqBase.UJacobianWrapper(f,tspan[1],p) pf = DiffEqBase.ParamJacobianWrapper(f,tspan[1],copy(u0)) if isautojacmat if alg_autodiff(alg) jac_config_seed = ForwardDiff.Dual{typeof(uf)}.(u0,[ntuple(x -> zero(eltype(u0)), length(p)) for i in eachindex(u0)]) jac_config_buffer = similar(jac_config_seed) jac_config = jac_config_seed, jac_config_buffer else error("Jacobian matrix products only work with automatic differentiation.") end elseif isautojacvec if alg_autodiff(alg) # if we are using automatic `jac*vec`, then we need to use a `jac_config` # that is a tuple in the form of `(seed, buffer)` jac_config_seed = ForwardDiff.Dual{typeof(jacobianvec!)}.(u0,u0) jac_config_buffer = similar(jac_config_seed) jac_config = jac_config_seed, jac_config_buffer else jac_config = (similar(u0),similar(u0)) end elseif DiffEqBase.has_jac(f) jac_config = nothing else jac_config = build_jac_config(alg,uf,u0) end if DiffEqBase.has_paramjac(f) paramjac_config = nothing else paramjac_config = build_param_jac_config(alg,pf,u0,p) end # TODO: make it better if f.mass_matrix isa UniformScaling mm = f.mass_matrix else nn = size(f.mass_matrix, 1) mm = zeros(eltype(f.mass_matrix), (length(p)+1)*nn, (length(p)+1)*nn) mm[1:nn, 1:nn] = f.mass_matrix for i = 1:length(p) mm[i*nn+1:(i+1)nn, i*nn+1:(i+1)nn] = f.mass_matrix end end # TODO: Use user tgrad. iW can be safely ignored here. sense = ODEForwardSensitivityFunction(f,f.analytic,nothing,f.jac,nothing, nothing,nothing,f.paramjac, nothing,nothing, uf,pf,u0,jac_config, paramjac_config,alg, p,similar(u0),mm, isautojacvec,isautojacmat,f.colorvec,nus) if !SciMLBase.isinplace(sense) throw(ForwardSensitivityOutOfPlaceError()) end if nus===nothing sense_u0 = [u0;zeros(eltype(u0),sense.numindvar*sense.numparams)] else if w0===nothing && v0===nothing sense_u0 = [u0;zeros(eltype(u0),(nus+1)*sense.S.numindvar*sense.S.numparams)] else sense_u0 = [u0;w0;v0] end end ODEProblem(sense,sense_u0,tspan,p, ODEForwardSensitivityProblem{DiffEqBase.isinplace(f), typeof(alg)}(alg); kwargs...) end function seed_duals(x::AbstractArray{V},f, ::ForwardDiff.Chunk{N} = ForwardDiff.Chunk(x,typemax(Int64)), ) where {V,T,N} seeds = ForwardDiff.construct_seeds(ForwardDiff.Partials{N,V}) duals = ForwardDiff.Dual{typeof(ForwardDiff.Tag(f,eltype(vec(x))))}.(vec(x),seeds) end has_continuous_callback(cb::DiscreteCallback) = false has_continuous_callback(cb::ContinuousCallback) = true has_continuous_callback(cb::CallbackSet) = !isempty(cb.continuous_callbacks) function ODEForwardSensitivityProblem(f::DiffEqBase.AbstractODEFunction,u0, tspan,p,alg::ForwardDiffSensitivity; du0=zeros(eltype(u0),length(u0),length(p)), # perturbations of initial condition dp=I(length(p)), # perturbations of parameters kwargs...) num_sen_par = size(du0,2) if num_sen_par != size(dp,2) error("Same number of perturbations of initial conditions and parameters required") end if size(du0,1) != length(u0) error("Perturbations for all initial conditions required") end if size(dp,1) != length(p) error("Perturbations for all parameters required") end pdual = ForwardDiff.Dual{typeof(ForwardDiff.Tag(f,eltype(vec(p))))}.(p, [ntuple(j -> dp[i,j], num_sen_par) for i in eachindex(p)]) u0dual = ForwardDiff.Dual{typeof(ForwardDiff.Tag(f,eltype(vec(u0))))}.(u0, [ntuple(j -> du0[i,j], num_sen_par) for i in eachindex(u0)]) if (convert_tspan(alg) === nothing && haskey(kwargs,:callback) && has_continuous_callback(kwargs.callback) ) || (convert_tspan(alg) !== nothing && convert_tspan(alg)) tspandual = convert.(eltype(pdual),tspan) else tspandual = tspan end prob_dual = ODEProblem(f,u0dual,tspan,pdual, ODEForwardSensitivityProblem{DiffEqBase.isinplace(f), typeof(alg)}(alg); kwargs...) end """ extract_local_sensitivities Extracts the time series for the local sensitivities from the ODE solution. This requires that the ODE was defined via `ODEForwardSensitivityProblem`. ```julia extract_local_sensitivities(sol, asmatrix::Val=Val(false)) # Decompose the entire time series extract_local_sensitivities(sol, i::Integer, asmatrix::Val=Val(false)) # Decompose sol[i] extract_local_sensitivities(sol, t::Union{Number,AbstractVector}, asmatrix::Val=Val(false)) # Decompose sol(t) ``` """ extract_local_sensitivities(sol, asmatrix::Val=Val(false)) = extract_local_sensitivities(sol,sol.prob.problem_type.sensealg, asmatrix) extract_local_sensitivities(sol, asmatrix::Bool) = extract_local_sensitivities(sol, Val{asmatrix}()) extract_local_sensitivities(sol, i::Integer, asmatrix::Val=Val(false)) = _extract(sol, sol.prob.problem_type.sensealg, sol[i], asmatrix) extract_local_sensitivities(sol, i::Integer, asmatrix::Bool) = extract_local_sensitivities(sol, i, Val{asmatrix}()) extract_local_sensitivities(sol, t::Union{Number,AbstractVector}, asmatrix::Val=Val(false)) = _extract(sol, sol.prob.problem_type.sensealg, sol(t), asmatrix) extract_local_sensitivities(sol, t, asmatrix::Bool) = extract_local_sensitivities(sol, t, Val{asmatrix}()) extract_local_sensitivities(tmp, sol, t::Union{Number,AbstractVector}, asmatrix::Val=Val(false)) = _extract(sol, sol.prob.problem_type.sensealg, sol(tmp, t), asmatrix) extract_local_sensitivities(tmp, sol, t, asmatrix::Bool) = extract_local_sensitivities(tmp, sol, t, Val{asmatrix}()) # Get ODE u vector and sensitivity values from all time points function extract_local_sensitivities(sol,::ForwardSensitivity, ::Val{false}) ni = sol.prob.f.numindvar u = sol[1:ni, :] du = [sol[ni*j+1:ni*(j+1),:] for j in 1:sol.prob.f.numparams] return u, du end function extract_local_sensitivities(sol,::ForwardDiffSensitivity, ::Val{false}) u = ForwardDiff.value.(sol) du_full = ForwardDiff.partials.(sol) firststate = first(du_full) firstparam = first(firststate) Js = map(1:length(firstparam)) do j map(CartesianIndices(du_full)) do II du_full[II][j] end end return u, Js end function extract_local_sensitivities(sol,::ForwardSensitivity, ::Val{true}) prob = sol.prob ni = prob.f.numindvar pn = prob.f.numparams jsize = (ni, pn) sol[1:ni, :], map(sol.u) do u collect(reshape((@view u[ni+1:end]), jsize)) end end function extract_local_sensitivities(sol,::ForwardDiffSensitivity, ::Val{true}) retu = ForwardDiff.value.(sol) jsize = length(sol.u[1]), ForwardDiff.npartials(sol.u[1][1]) du = map(sol.u) do u du_i = similar(retu, jsize) for i in eachindex(u) du_i[i, :] = ForwardDiff.partials(u[i]) end du_i end retu, du end # Get ODE u vector and sensitivity values from sensitivity problem u vector function _extract(sol, sensealg::ForwardSensitivity, su::AbstractVector, asmatrix::Val = Val(false)) u = view(su, 1:sol.prob.f.numindvar) du = _extract_du(sol, sensealg, su, asmatrix) return u, du end function _extract(sol, sensealg::ForwardDiffSensitivity, su::AbstractVector, asmatrix::Val = Val(false)) u = ForwardDiff.value.(su) du = _extract_du(sol, sensealg, su, asmatrix) return u, du end # Get sensitivity values from sensitivity problem u vector (nested form) function _extract_du(sol, ::ForwardSensitivity, su::Vector, ::Val{false}) ni = sol.prob.f.numindvar return [view(su, ni*j+1:ni*(j+1)) for j in 1:sol.prob.f.numparams] end function _extract_du(sol, ::ForwardDiffSensitivity, su::Vector, ::Val{false}) du_full = ForwardDiff.partials.(su) return [[du_full[i][j] for i in 1:size(du_full,1)] for j in 1:length(du_full[1])] end # Get sensitivity values from sensitivity problem u vector (matrix form) function _extract_du(sol, ::ForwardSensitivity, su::Vector, ::Val{true}) ni = sol.prob.f.numindvar np = sol.prob.f.numparams return view(reshape(su, ni, np+1), :, 2:np+1) end function _extract_du(sol, ::ForwardDiffSensitivity, su::Vector, ::Val{true}) du_full = ForwardDiff.partials.(su) return [du_full[i][j] for i in 1:size(du_full,1), j in 1:length(du_full[1])] end ### Bonus Pieces function SciMLBase.remake(prob::ODEProblem{uType,tType,isinplace,P,F,K,<:ODEForwardSensitivityProblem}; f=nothing,tspan=nothing,u0=nothing,p=nothing,kwargs...) where {uType,tType,isinplace,P,F,K} _p = p === nothing ? prob.p : p _f = f === nothing ? prob.f.f : f _u0 = u0 === nothing ? prob.u0[1:prob.f.numindvar] : u0[1:prob.f.numindvar] _tspan = tspan === nothing ? prob.tspan : tspan ODEForwardSensitivityProblem(_f,_u0, _tspan,_p,prob.problem_type.sensealg; prob.kwargs...,kwargs...) end SciMLBase.ODEFunction(f::ODEForwardSensitivityFunction; kwargs...) = f
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
2625
const printbranch = false Cassette.@context HasBranchingCtx function Cassette.overdub(ctx::HasBranchingCtx, f, args...) if Cassette.canrecurse(ctx, f, args...) return Cassette.recurse(ctx, f, args...) else return Cassette.fallback(ctx, f, args...) end end for (mod, f, n) in DiffRules.diffrules() isdefined(@__MODULE__, mod) || continue @eval Cassette.overdub(::HasBranchingCtx, f::Core.Typeof($mod.$f), x::Vararg{Any, $n}) = f(x...) end function _pass(::Type{<:HasBranchingCtx}, reflection::Cassette.Reflection) ir = reflection.code_info if any(x -> isa(x, GotoIfNot), ir.code) printbranch && println("GotoIfNot detected in $(reflection.method)\nir = $ir\n") Cassette.insert_statements!( ir.code, ir.codelocs, (stmt, i) -> i == 1 ? 3 : nothing, (stmt, i) -> Any[ Expr(:call, Expr(:nooverdub, GlobalRef(Base, :getfield)), Expr(:contextslot), QuoteNode(:metadata)), Expr(:call, Expr(:nooverdub, GlobalRef(Base, :setindex!)), SSAValue(1), true, QuoteNode(:has_branching)), stmt, ], ) Cassette.insert_statements!( ir.code, ir.codelocs, (stmt, i) -> i > 2 && isa(stmt, Expr) ? 1 : nothing, (stmt, i) -> begin callstmt = Meta.isexpr(stmt, :(=)) ? stmt.args[2] : stmt Meta.isexpr(stmt, :call) || Meta.isexpr(stmt, :invoke) || return Any[stmt] callstmt = Expr(callstmt.head, Expr(:nooverdub, callstmt.args[1]), callstmt.args[2:end]...) return Any[ Meta.isexpr(stmt, :(=)) ? Expr(:(=), stmt.args[1], callstmt) : callstmt, ] end, ) end return ir end const pass = Cassette.@pass _pass function hasbranching(f, x...) metadata = Dict(:has_branching => false) Cassette.overdub(Cassette.disablehooks(HasBranchingCtx(; pass, metadata)), f, x...) return metadata[:has_branching] end Cassette.overdub(::HasBranchingCtx, ::typeof(+), x...) = +(x...) Cassette.overdub(::HasBranchingCtx, ::typeof(*), x...) = *(x...) Cassette.overdub(::HasBranchingCtx, ::typeof(Base.materialize), x...) = Base.materialize(x...) Cassette.overdub(::HasBranchingCtx, ::typeof(Base.literal_pow), x...) = Base.literal_pow(x...) Cassette.overdub(::HasBranchingCtx, ::typeof(Base.getindex), x...) = Base.getindex(x...) Cassette.overdub(::HasBranchingCtx, ::typeof(Core.Typeof), x...) = Core.Typeof(x...) Cassette.overdub(::HasBranchingCtx, ::Type{Base.OneTo{T}}, stop) where {T <: Integer} = Base.OneTo{T}(stop)
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
19732
struct ODEInterpolatingAdjointSensitivityFunction{C<:AdjointDiffCache,Alg<:InterpolatingAdjoint, uType,SType,CPS,pType,fType<:DiffEqBase.AbstractDiffEqFunction} <: SensitivityFunction diffcache::C sensealg::Alg discrete::Bool y::uType sol::SType checkpoint_sol::CPS prob::pType f::fType noiseterm::Bool end mutable struct CheckpointSolution{S,I,T,T2} cpsol::S # solution in a checkpoint interval intervals::I # checkpoint intervals cursor::Int # sol.prob.tspan = intervals[cursor] tols::T tstops::T2 # for callbacks end function ODEInterpolatingAdjointSensitivityFunction(g,sensealg,discrete,sol,dg,f,checkpoints,tols,tstops=nothing;noiseterm=false) tspan = reverse(sol.prob.tspan) checkpointing = ischeckpointing(sensealg, sol) (checkpointing && checkpoints === nothing) && error("checkpoints must be passed when checkpointing is enabled.") checkpoint_sol = if checkpointing intervals = map(tuple, @view(checkpoints[1:end-1]), @view(checkpoints[2:end])) interval_end = intervals[end][end] tspan[1] > interval_end && push!(intervals, (interval_end, tspan[1])) cursor = lastindex(intervals) interval = intervals[cursor] if typeof(sol.prob) <: Union{SDEProblem,RODEProblem} # replicated noise _sol = deepcopy(sol) idx1 = searchsortedfirst(_sol.W.t, interval[1]-1000eps(interval[1])) if typeof(sol.W) <: DiffEqNoiseProcess.NoiseProcess sol.W.save_everystep = false _sol.W.save_everystep = false forwardnoise = DiffEqNoiseProcess.NoiseWrapper(_sol.W, indx=idx1) elseif typeof(sol.W) <: DiffEqNoiseProcess.NoiseGrid #idx2 = searchsortedfirst(_sol.W.t, interval[2]+1000eps(interval[1])) forwardnoise = DiffEqNoiseProcess.NoiseGrid(_sol.W.t[idx1:end], _sol.W.W[idx1:end]) else error("NoiseProcess type not implemented.") end dt = choose_dt((_sol.W.t[idx1]-_sol.W.t[idx1+1]), _sol.W.t, interval) cpsol = solve(remake(sol.prob, tspan=interval, u0=sol(interval[1]), noise=forwardnoise), sol.alg, save_noise=false; dt=dt, tstops=_sol.t[idx1:end] ,tols...) else if tstops === nothing cpsol = solve(remake(sol.prob, tspan=interval, u0=sol(interval[1])),sol.alg; tols...) else if maximum(interval[1] .< tstops .< interval[2]) # callback might have changed p _p = reset_p(sol.prob.kwargs[:callback], interval) cpsol = solve(remake(sol.prob, tspan=interval, u0=sol(interval[1])),tstops=tstops, p=_p, sol.alg; tols...) else cpsol = solve(remake(sol.prob, tspan=interval, u0=sol(interval[1])),tstops=tstops, sol.alg; tols...) end end end CheckpointSolution(cpsol, intervals, cursor, tols, tstops) else nothing end diffcache, y = adjointdiffcache(g,sensealg,discrete,sol,dg,f;quad=false,noiseterm=noiseterm) return ODEInterpolatingAdjointSensitivityFunction(diffcache,sensealg, discrete,y,sol, checkpoint_sol,sol.prob,f,noiseterm) end function findcursor(intervals, t) # equivalent with `findfirst(x->x[1] <= t <= x[2], intervals)` lt(x, t) = <(x[2], t) return searchsortedfirst(intervals, t, lt=lt) end function choose_dt(dt, ts, interval) if dt < 1000eps(interval[2]) if length(ts) > 2 dt = ts[end-1]-ts[end-2] if dt < 1000eps(interval[2]) dt = interval[2] - interval[1] end else dt = interval[2] - interval[1] end end return dt end # u = λ' # add tstop on all the checkpoints function (S::ODEInterpolatingAdjointSensitivityFunction)(du,u,p,t) @unpack sol,checkpoint_sol, discrete, prob, f = S λ,grad,y,dλ,dgrad,dy = split_states(du,u,t,S) if S.noiseterm if length(u) == length(du) vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad) elseif length(u) != length(du) && StochasticDiffEq.is_diagonal_noise(prob) && !isnoisemixing(S.sensealg) vecjacobian!(dλ, y, λ, p, t, S) jacNoise!(λ, y, p, t, S, dgrad=dgrad) else jacNoise!(λ, y, p, t, S, dgrad=dgrad, dλ=dλ) end else vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad) end dλ .*= -one(eltype(λ)) discrete || accumulate_cost!(dλ, y, p, t, S, dgrad) return nothing end function (S::ODEInterpolatingAdjointSensitivityFunction)(du,u,p,t,W) @unpack sol,checkpoint_sol, discrete, prob, f = S λ,grad,y,dλ,dgrad,dy = split_states(du,u,t,S) vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad, W=W) dλ .*= -one(eltype(λ)) discrete || accumulate_cost!(dλ, y, p, t, S, dgrad) return nothing end function split_states(du,u,t,S::TS;update=true) where TS<:ODEInterpolatingAdjointSensitivityFunction @unpack sol, y, checkpoint_sol, discrete, prob, f = S idx = length(y) if update if checkpoint_sol === nothing if typeof(t) <: ForwardDiff.Dual && eltype(S.y) <: AbstractFloat y = sol(t, continuity=:right) else sol(y,t, continuity=:right) end else intervals = checkpoint_sol.intervals interval = intervals[checkpoint_sol.cursor] if !(interval[1] <= t <= interval[2]) cursor′ = findcursor(intervals, t) interval = intervals[cursor′] cpsol_t = checkpoint_sol.cpsol.t if typeof(t) <: ForwardDiff.Dual && eltype(S.y) <: AbstractFloat y = sol(interval[1]) else sol(y, interval[1]) end if typeof(sol.prob) <: Union{SDEProblem,RODEProblem} #idx1 = searchsortedfirst(sol.t, interval[1]) _sol = deepcopy(sol) idx1 = searchsortedfirst(_sol.t, interval[1]-100eps(interval[1])) idx2 = searchsortedfirst(_sol.t, interval[2]+100eps(interval[2])) idx_noise = searchsortedfirst(_sol.W.t, interval[1]-100eps(interval[1])) if typeof(sol.W) <: DiffEqNoiseProcess.NoiseProcess _sol.W.save_everystep = false forwardnoise = DiffEqNoiseProcess.NoiseWrapper(_sol.W, indx=idx_noise) elseif typeof(sol.W) <: DiffEqNoiseProcess.NoiseGrid forwardnoise = DiffEqNoiseProcess.NoiseGrid(_sol.W.t[idx_noise:end], _sol.W.W[idx_noise:end]) else error("NoiseProcess type not implemented.") end prob′ = remake(prob, tspan=intervals[cursor′], u0=y, noise=forwardnoise) dt = choose_dt(abs(cpsol_t[1]-cpsol_t[2]), cpsol_t, interval) cpsol′ = solve(prob′, sol.alg, save_noise=false; dt=dt, tstops=_sol.t[idx1:idx2], checkpoint_sol.tols...) else if checkpoint_sol.tstops===nothing prob′ = remake(prob, tspan=intervals[cursor′], u0=y) cpsol′ = solve(prob′, sol.alg; dt=abs(cpsol_t[end] - cpsol_t[end-1]), checkpoint_sol.tols...) else if maximum(interval[1] .< checkpoint_sol.tstops .< interval[2]) # callback might have changed p _p = reset_p(prob.kwargs[:callback], interval) prob′ = remake(prob, tspan=intervals[cursor′], u0=y, p=_p) cpsol′ = solve(prob′, sol.alg; dt=abs(cpsol_t[end] - cpsol_t[end-1]), tstops=checkpoint_sol.tstops, checkpoint_sol.tols...) else prob′ = remake(prob, tspan=intervals[cursor′], u0=y) cpsol′ = solve(prob′, sol.alg; dt=abs(cpsol_t[end] - cpsol_t[end-1]), tstops=checkpoint_sol.tstops, checkpoint_sol.tols...) end end end checkpoint_sol.cpsol = cpsol′ checkpoint_sol.cursor = cursor′ end checkpoint_sol.cpsol(y, t, continuity=:right) end end λ = @view u[1:idx] grad = @view u[idx+1:end] if length(u) == length(du) dλ = @view du[1:idx] dgrad = @view du[idx+1:end] elseif length(u) != length(du) && StochasticDiffEq.is_diagonal_noise(prob) && !isnoisemixing(S.sensealg) idx1 = [length(u)*(i-1)+i for i in 1:idx] # for diagonal indices of [1:idx,1:idx] dλ = @view du[idx1] dgrad = @view du[idx+1:end,1:idx] elseif typeof(du) <: AbstractMatrix # non-diagonal noise and noise mixing case dλ = @view du[1:idx,1:idx] dgrad = @view du[idx+1:end,1:idx] end λ,grad,y,dλ,dgrad,nothing end # g is either g(t,u,p) or discrete g(t,u,i) @noinline function ODEAdjointProblem(sol,sensealg::InterpolatingAdjoint, g::G,t=nothing,dg::DG=nothing; checkpoints=sol.t, callback=CallbackSet(), reltol=nothing, abstol=nothing, kwargs...) where {G,DG} @unpack f, p, u0, tspan = sol.prob tspan = reverse(tspan) discrete = t !== nothing # remove duplicates from checkpoints if ischeckpointing(sensealg, sol) && (length(unique(checkpoints)) != length(checkpoints)) _checkpoints, duplicate_iterator_times = separate_nonunique(checkpoints) tstops = duplicate_iterator_times[1] checkpoints = filter(x -> x ∉ tstops, _checkpoints) # check if start is in checkpoints. Otherwise first interval is missed. if checkpoints[1] != tspan[2] pushfirst!(checkpoints, tspan[2]) end if haskey(kwargs, :tstops) (tstops !== kwargs[:tstops]) && unique!(push!(tstops, kwargs[:tstops]...)) end else tstops = nothing end numstates = length(u0) numparams = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(p) len = numstates+numparams λ = p === nothing || p === DiffEqBase.NullParameters() ? similar(u0) : one(eltype(u0)) .* similar(p, len) λ .= false sense = ODEInterpolatingAdjointSensitivityFunction(g,sensealg,discrete,sol,dg,f, checkpoints, (reltol=reltol,abstol=abstol), tstops) init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense, g, λ, t, tspan[2], callback, init_cb) z0 = vec(zero(λ)) original_mm = sol.prob.f.mass_matrix if original_mm === I || original_mm === (I,I) mm = I else adjmm = copy(sol.prob.f.mass_matrix') zzz = similar(adjmm, numstates, numparams) fill!(zzz, zero(eltype(zzz))) # using concrate I is slightly more efficient II = Diagonal(I, numparams) mm = [adjmm zzz copy(zzz') II] end jac_prototype = sol.prob.f.jac_prototype if !sense.discrete || jac_prototype === nothing adjoint_jac_prototype = nothing else _adjoint_jac_prototype = copy(jac_prototype') zzz = similar(_adjoint_jac_prototype, numstates, numparams) fill!(zzz, zero(eltype(zzz))) II = Diagonal(I, numparams) adjoint_jac_prototype = [_adjoint_jac_prototype zzz copy(zzz') II] end odefun = ODEFunction(sense, mass_matrix=mm, jac_prototype=adjoint_jac_prototype) return ODEProblem(odefun,z0,tspan,p,callback=cb) end @noinline function SDEAdjointProblem(sol,sensealg::InterpolatingAdjoint, g,t=nothing,dg=nothing; checkpoints=sol.t, callback=CallbackSet(), reltol=nothing, abstol=nothing, diffusion_jac=nothing, diffusion_paramjac=nothing, kwargs...) @unpack f, p, u0, tspan = sol.prob tspan = reverse(tspan) discrete = t !== nothing # remove duplicates from checkpoints if ischeckpointing(sensealg,sol) && (length(unique(checkpoints)) != length(checkpoints)) _checkpoints, duplicate_iterator_times = separate_nonunique(checkpoints) tstops = duplicate_iterator_times[1] checkpoints = filter(x->x ∉ tstops, _checkpoints) # check if start is in checkpoints. Otherwise first interval is missed. if checkpoints[1] != tspan[2] pushfirst!(checkpoints,tspan[2]) end else tstops = nothing end numstates = length(u0) numparams = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(p) len = numstates+numparams λ = one(eltype(u0)) .* similar(p, len) λ .= false sense_drift = ODEInterpolatingAdjointSensitivityFunction(g,sensealg,discrete,sol,dg,sol.prob.f, checkpoints,(reltol=reltol,abstol=abstol)) diffusion_function = ODEFunction(sol.prob.g, jac=diffusion_jac, paramjac=diffusion_paramjac) sense_diffusion = ODEInterpolatingAdjointSensitivityFunction(g,sensealg,discrete,sol,dg,diffusion_function, checkpoints,(reltol=reltol,abstol=abstol);noiseterm=true) init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense_drift, g, λ, t, tspan[2], callback, init_cb) z0 = vec(zero(λ)) original_mm = sol.prob.f.mass_matrix if original_mm === I || original_mm === (I,I) mm = I else adjmm = copy(sol.prob.f.mass_matrix') zzz = similar(adjmm, numstates, numparams) fill!(zzz, zero(eltype(zzz))) # using concrate I is slightly more efficient II = Diagonal(I, numparams) mm = [adjmm zzz copy(zzz') II] end jac_prototype = sol.prob.f.jac_prototype if !sense_drift.discrete || jac_prototype === nothing adjoint_jac_prototype = nothing else _adjoint_jac_prototype = copy(jac_prototype') zzz = similar(_adjoint_jac_prototype, numstates, numparams) fill!(zzz, zero(eltype(zzz))) II = Diagonal(I, numparams) adjoint_jac_prototype = [_adjoint_jac_prototype zzz copy(zzz') II] end sdefun = SDEFunction(sense_drift,sense_diffusion,mass_matrix=mm,jac_prototype=adjoint_jac_prototype) # replicated noise _sol = deepcopy(sol) backwardnoise = reverse(_sol.W) if StochasticDiffEq.is_diagonal_noise(sol.prob) && typeof(sol.W[end])<:Number # scalar noise case noise_matrix = nothing else noise_matrix = similar(z0,length(z0),numstates) noise_matrix .= false end return SDEProblem(sdefun,sense_diffusion,z0,tspan,p, callback=cb, noise=backwardnoise, noise_rate_prototype = noise_matrix ) end @noinline function RODEAdjointProblem(sol,sensealg::InterpolatingAdjoint, g,t=nothing,dg=nothing; checkpoints=sol.t, callback=CallbackSet(), reltol=nothing, abstol=nothing, kwargs...) @unpack f, p, u0, tspan = sol.prob tspan = reverse(tspan) discrete = t !== nothing # remove duplicates from checkpoints if ischeckpointing(sensealg,sol) && (length(unique(checkpoints)) != length(checkpoints)) _checkpoints, duplicate_iterator_times = separate_nonunique(checkpoints) tstops = duplicate_iterator_times[1] checkpoints = filter(x->x ∉ tstops, _checkpoints) # check if start is in checkpoints. Otherwise first interval is missed. if checkpoints[1] != tspan[2] pushfirst!(checkpoints,tspan[2]) end else tstops = nothing end numstates = length(u0) numparams = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(p) len = numstates+numparams λ = p === nothing || p === DiffEqBase.NullParameters() ? similar(u0) : one(eltype(u0)) .* similar(p, len) λ .= false sense = ODEInterpolatingAdjointSensitivityFunction(g,sensealg,discrete,sol,dg,f, checkpoints, (reltol=reltol,abstol=abstol), tstops) init_cb = t !== nothing && tspan[1] == t[end] cb, duplicate_iterator_times = generate_callbacks(sense, g, λ, t, tspan[2], callback, init_cb) z0 = vec(zero(λ)) original_mm = sol.prob.f.mass_matrix if original_mm === I || original_mm === (I,I) mm = I else adjmm = copy(sol.prob.f.mass_matrix') zzz = similar(adjmm, numstates, numparams) fill!(zzz, zero(eltype(zzz))) # using concrate I is slightly more efficient II = Diagonal(I, numparams) mm = [adjmm zzz copy(zzz') II] end jac_prototype = sol.prob.f.jac_prototype if !sense.discrete || jac_prototype === nothing adjoint_jac_prototype = nothing else _adjoint_jac_prototype = copy(jac_prototype') zzz = similar(_adjoint_jac_prototype, numstates, numparams) fill!(zzz, zero(eltype(zzz))) II = Diagonal(I, numparams) adjoint_jac_prototype = [_adjoint_jac_prototype zzz copy(zzz') II] end rodefun = RODEFunction(sense, mass_matrix=mm, jac_prototype=adjoint_jac_prototype) # replicated noise _sol = deepcopy(sol) backwardnoise = reverse(_sol.W) # make sure noise grid starts at correct time values, e.g., if sol.W.t is longer than sol.t tspan[1]!=backwardnoise.t[1] && reinit!(backwardnoise,backwardnoise.t[2]-backwardnoise.t[1],t0=tspan[1]) return RODEProblem(rodefun,z0,tspan,p,callback=cb, noise=backwardnoise) end function reset_p(CBS, interval) # check which events are close to tspan[1] if !isempty(CBS.discrete_callbacks) ts = map(CBS.discrete_callbacks) do cb indx = searchsortedfirst(cb.affect!.event_times, interval[1]) (indx, cb.affect!.event_times[indx]) end perm = minimum(sortperm([t for t in getindex.(ts,2)])) end if !isempty(CBS.continuous_callbacks) ts2 = map(CBS.continuous_callbacks) do cb if !isempty(cb.affect!.event_times) && isempty(cb.affect_neg!.event_times) indx = searchsortedfirst(cb.affect!.event_times, interval[1]) return (indx, cb.affect!.event_times[indx],0) # zero for affect! elseif isempty(cb.affect!.event_times) && !isempty(cb.affect_neg!.event_times) indx = searchsortedfirst(cb.affect_neg!.event_times, interval[1]) return (indx, cb.affect_neg!.event_times[indx],1) # one for affect_neg! elseif !isempty(cb.affect!.event_times) && !isempty(cb.affect_neg!.event_times) indx1 = searchsortedfirst(cb.affect!.event_times, interval[1]) indx2 = searchsortedfirst(cb.affect_neg!.event_times, interval[1]) if cb.affect!.event_times[indx1] < cb.affect_neg!.event_times[indx2] return (indx1, cb.affect!.event_times[indx1],0) else return (indx2, cb.affect_neg!.event_times[indx2],1) end else error("Expected event but reset_p couldn't find event time. Please report this error.") end end perm2 = minimum(sortperm([t for t in getindex.(ts2,2)])) # check if continuous or discrete callback was applied first if both occur in interval if isempty(CBS.discrete_callbacks) if ts2[perm2][3] == 0 p = deepcopy(CBS.continuous_callbacks[perm2].affect!.pleft[getindex.(ts2,1)[perm2]]) else p = deepcopy(CBS.continuous_callbacks[perm2].affect_neg!.pleft[getindex.(ts2,1)[perm2]]) end else if ts[perm][2] < ts2[perm2][2] p = deepcopy(CBS.discrete_callbacks[perm].affect!.pleft[getindex.(ts,1)[perm]]) else if ts2[perm2][3] == 0 p = deepcopy(CBS.continuous_callbacks[perm2].affect!.pleft[getindex.(ts2,1)[perm2]]) else p = deepcopy(CBS.continuous_callbacks[perm2].affect_neg!.pleft[getindex.(ts2,1)[perm2]]) end end end else p = deepcopy(CBS.discrete_callbacks[perm].affect!.pleft[getindex.(ts,1)[perm]]) end return p end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
17937
struct LSSSchur{wBType,wEType,BType,EType} wBinv::wBType wEinv::wEType B::BType E::EType end struct LSSSensitivityFunction{iip,F,A,J,JP,S,PJ,UF,PF,JC,PJC,Alg,fc,JM,pJM,MM,CV, PGPU,PGPP,CONFU,CONGP,DG} <: DiffEqBase.AbstractODEFunction{iip} f::F analytic::A jac::J jac_prototype::JP sparsity::S paramjac::PJ uf::UF pf::PF J::JM pJ::pJM jac_config::JC paramjac_config::PJC alg::Alg numparams::Int numindvar::Int f_cache::fc mass_matrix::MM colorvec::CV pgpu::PGPU pgpp::PGPP pgpu_config::CONFU pgpp_config::CONGP dg_val::DG end function LSSSensitivityFunction(sensealg,f,analytic,jac,jac_prototype,sparsity,paramjac,u0, alg,p,f_cache,mm, colorvec,tspan,g,dg) uf = DiffEqBase.UJacobianWrapper(f,tspan[1],p) pf = DiffEqBase.ParamJacobianWrapper(f,tspan[1],copy(u0)) if DiffEqBase.has_jac(f) jac_config = nothing else jac_config = build_jac_config(sensealg,uf,u0) end if DiffEqBase.has_paramjac(f) paramjac_config = nothing else paramjac_config = build_param_jac_config(sensealg,pf,u0,p) end numparams = length(p) numindvar = length(u0) J = Matrix{eltype(u0)}(undef,numindvar,numindvar) pJ = Matrix{eltype(u0)}(undef,numindvar,numparams) # number of funcs size # compute gradients of objective if dg !== nothing pgpu = nothing pgpp = nothing pgpu_config = nothing pgpp_config = nothing if dg isa Tuple && length(dg) == 2 dg_val = (similar(u0, numindvar),similar(u0, numparams)) dg_val[1] .= false dg_val[2] .= false else dg_val = similar(u0, numindvar) # number of funcs size dg_val .= false end else pgpu = UGradientWrapper(g,tspan[1],p) # ∂g∂u pgpp = ParamGradientWrapper(g,tspan[1],u0) #∂g∂p pgpu_config = build_grad_config(sensealg,pgpu,u0,tspan[1]) pgpp_config = build_grad_config(sensealg,pgpp,p,tspan[1]) dg_val = (similar(u0, numindvar),similar(u0, numparams)) dg_val[1] .= false dg_val[2] .= false end LSSSensitivityFunction{isinplace(f),typeof(f),typeof(analytic), typeof(jac),typeof(jac_prototype),typeof(sparsity), typeof(paramjac), typeof(uf), typeof(pf),typeof(jac_config), typeof(paramjac_config),typeof(alg), typeof(f_cache), typeof(J),typeof(pJ),typeof(mm),typeof(f.colorvec), typeof(pgpu),typeof(pgpp),typeof(pgpu_config),typeof(pgpp_config),typeof(dg_val)}( f,analytic,jac,jac_prototype,sparsity,paramjac,uf,pf,J,pJ, jac_config,paramjac_config,alg, numparams,numindvar,f_cache,mm,colorvec, pgpu,pgpp,pgpu_config,pgpp_config,dg_val) end struct ForwardLSSProblem{A,C,solType,dtType,umidType,dudtType,SType,Ftype,bType,ηType,wType,vType,windowType, ΔtType,G0,G,DG,resType} sensealg::A diffcache::C sol::solType dt::dtType umid::umidType dudt::dudtType S::SType F::Ftype b::bType η::ηType w::wType v::vType window::windowType Δt::ΔtType Nt::Int g0::G0 g::G dg::DG res::resType end function ForwardLSSProblem(sol, sensealg::ForwardLSS, t=nothing, dg = nothing; kwargs...) @unpack f, p, u0, tspan = sol.prob @unpack g = sensealg isinplace = DiffEqBase.isinplace(f) # some shadowing sensealgs require knowledge of g check_for_g(sensealg,g) p === nothing && error("You must have parameters to use parameter sensitivity calculations!") !(sol.u isa AbstractVector) && error("`u` has to be an AbstractVector.") sense = LSSSensitivityFunction(sensealg,f,f.analytic,f.jac, f.jac_prototype,f.sparsity,f.paramjac, u0,sensealg, p,similar(u0),f.mass_matrix, f.colorvec, tspan,g,dg) @unpack numparams, numindvar = sense Nt = length(sol.t) Ndt = Nt-one(Nt) # pre-allocate variables dt = similar(sol.t, Ndt) umid = Matrix{eltype(u0)}(undef,numindvar,Ndt) dudt = Matrix{eltype(u0)}(undef,numindvar,Ndt) # compute their values discretize_ref_trajectory!(dt, umid, dudt, sol, Ndt) # assert that all ts are hit if concrete solve interface/discrete costs are used if t !== nothing @assert sol.t == t end S = LSSSchur(dt,u0,numindvar,Nt,Ndt,sensealg.LSSregularizer) if sensealg.LSSregularizer isa TimeDilation η = similar(dt,Ndt) window = nothing g0 = g(u0,p,tspan[1]) else η = nothing window = similar(dt,Nt) g0 = nothing end b = Matrix{eltype(u0)}(undef,numindvar*Ndt,numparams) w = similar(dt,numindvar*Ndt) v = similar(dt,numindvar*Nt) Δt = tspan[2] - tspan[1] wB!(S,Δt,Nt,numindvar,dt) wE!(S,Δt,dt,sensealg.LSSregularizer) B!(S,dt,umid,sense,sensealg) E!(S,dudt,sensealg.LSSregularizer) F = SchurLU(S) res = similar(u0, numparams) ForwardLSSProblem{typeof(sensealg),typeof(sense),typeof(sol),typeof(dt), typeof(umid),typeof(dudt), typeof(S),typeof(F),typeof(b),typeof(η),typeof(w),typeof(v),typeof(window),typeof(Δt), typeof(g0),typeof(g),typeof(dg),typeof(res)}(sensealg,sense,sol,dt,umid,dudt,S,F,b,η,w,v, window,Δt,Nt,g0,g,dg,res) end function LSSSchur(dt,u0,numindvar,Nt,Ndt,LSSregularizer::TimeDilation) wBinv = similar(dt,numindvar*Nt) wEinv = similar(dt,Ndt) E = Matrix{eltype(u0)}(undef,numindvar*Ndt,Ndt) B = Matrix{eltype(u0)}(undef,numindvar*Ndt,numindvar*Nt) LSSSchur(wBinv,wEinv,B,E) end function LSSSchur(dt,u0,numindvar,Nt,Ndt,LSSregularizer::AbstractCosWindowing) wBinv = similar(dt,numindvar*Nt) wEinv = nothing E = nothing B = Matrix{eltype(u0)}(undef,numindvar*Ndt,numindvar*Nt) LSSSchur(wBinv,wEinv,B,E) end # compute discretized reference trajectory function discretize_ref_trajectory!(dt, umid, dudt, sol, Ndt) for i=1:Ndt tr = sol.t[i+1] tl = sol.t[i] ur = sol.u[i+1] ul = sol.u[i] dt[i] = tr-tl copyto!((@view umid[:,i]), (ur + ul)/2) copyto!((@view dudt[:,i]), (ur - ul)/dt[i]) end return nothing end function wB!(S::LSSSchur,Δt,Nt,numindvar,dt) @unpack wBinv = S fill!(wBinv, one(Δt)) dim = numindvar * Nt tmp = @view wBinv[1:numindvar] tmp ./= dt[1] tmp = @view wBinv[dim-2:end] tmp ./= dt[end] for indx = 2:Nt-1 tmp = @view wBinv[(indx-1)*numindvar+1:indx*numindvar] tmp ./= (dt[indx]+dt[indx-1]) end wBinv .*= 2*Δt return nothing end wE!(S::LSSSchur,Δt,dt,LSSregularizer::AbstractCosWindowing) = nothing function wE!(S::LSSSchur,Δt,dt,LSSregularizer::TimeDilation) @unpack wEinv = S @unpack alpha = LSSregularizer @. wEinv = Δt/(alpha^2*dt) return nothing end function B!(S::LSSSchur,dt,umid,sense,sensealg) @unpack B = S @unpack f,J,uf,numindvar,f_cache,jac_config = sense fill!(B, zero(eltype(J))) for (i,u) in enumerate(eachcol(umid)) if DiffEqBase.has_jac(f) f.jac(J,u,uf.p,uf.t) # Calculate the Jacobian into J else jacobian!(J, uf, u, f_cache, sensealg, jac_config) end B0 = @view B[(i-1)*numindvar+1:i*numindvar,i*numindvar+1:(i+1)*numindvar] B1 = @view B[(i-1)*numindvar+1:i*numindvar,(i-1)*numindvar+1:i*numindvar] B0 .+= I/dt[i] - J/2 B1 .+= -I/dt[i] -J/2 end return nothing end E!(S::LSSSchur,dudt,LSSregularizer::AbstractCosWindowing) = nothing function E!(S::LSSSchur,dudt,LSSregularizer::TimeDilation) @unpack E = S numindvar, Ndt = size(dudt) for i=1:Ndt tmp = @view E[(i-1)*numindvar+1:i*numindvar,i] copyto!(tmp, (@view dudt[:,i])) end return nothing end # compute Schur function SchurLU(S::LSSSchur) @unpack B, E, wBinv, wEinv = S Smat = B*Diagonal(wBinv)*B' (wEinv !== nothing) && (Smat .+= E*Diagonal(wEinv)*E') F = lu!(Smat) return F end function b!(b, prob::ForwardLSSProblem) @unpack diffcache, umid, sensealg = prob @unpack f, f_cache, pJ, pf, paramjac_config, uf, numindvar = diffcache for (i,u) in enumerate(eachcol(umid)) if DiffEqBase.has_paramjac(f) f.paramjac(pJ, u, uf.p, pf.t) else pf.u = u jacobian!(pJ, pf, uf.p, f_cache, sensealg, paramjac_config) end tmp = @view b[(i-1)*numindvar+1:i*numindvar,:] copyto!(tmp, pJ) end return nothing end function shadow_forward(prob::ForwardLSSProblem; sensealg=prob.sensealg) shadow_forward(prob,sensealg,sensealg.LSSregularizer) end function shadow_forward(prob::ForwardLSSProblem,sensealg::ForwardLSS,LSSregularizer::TimeDilation) @unpack sol, S, F, window, Δt, diffcache, b, w, v, η, res, g, g0, dg, umid = prob @unpack wBinv, wEinv, B, E = S @unpack dg_val, numparams, numindvar, uf = diffcache @unpack t0skip, t1skip = LSSregularizer n0 = searchsortedfirst(sol.t, sol.t[1]+t0skip) n1 = searchsortedfirst(sol.t, sol.t[end]-t1skip) b!(b,prob) ures = @view sol.u[n0:n1] umidres = @view umid[:,n0:n1-1] # reset res .*=false for i=1:numparams #running average g0 *= false bpar = @view b[:,i] w .= F\bpar v .= Diagonal(wBinv)*(B'*w) η .= Diagonal(wEinv)*(E'*w) ηres = @view η[n0:n1-1] for (j, u) in enumerate(ures) vtmp = @view v[(n0+j-2)*numindvar+1:(n0+j-1)*numindvar] # final gradient result for ith parameter accumulate_cost!(dg, u, uf.p, uf.t, sensealg, diffcache, n0+j-1) if dg_val isa Tuple res[i] += dot(dg_val[1], vtmp) res[i] += dg_val[2][i] else res[i] += dot(dg_val, vtmp) end end # mean value res[i] = res[i]/(n1-n0+1) for (j,u) in enumerate(eachcol(umidres)) # compute objective gtmp = g(u,uf.p,nothing) g0 += gtmp res[i] -= ηres[j]*gtmp/(n1-n0) end res[i] = res[i] + sum(ηres)*g0/(n1-n0)^2 end return res end function shadow_forward(prob::ForwardLSSProblem,sensealg::ForwardLSS,LSSregularizer::CosWindowing) @unpack sol, S, F, window, Δt, diffcache, b, w, v, dg, res = prob @unpack wBinv, B = S @unpack dg_val, numparams, numindvar, uf = diffcache b!(b,prob) # windowing (cos) @. window = (sol.t-sol.t[1])*convert(eltype(Δt),2*pi/Δt) @. window = one(eltype(window)) - cos(window) window ./= sum(window) res .*= false for i=1:numparams bpar = @view b[:,i] w .= F\bpar v .= Diagonal(wBinv)*(B'*w) for (j,u) in enumerate(sol.u) vtmp = @view v[(j-1)*numindvar+1:j*numindvar] # final gradient result for ith parameter accumulate_cost!(dg, u, uf.p, uf.t, sensealg, diffcache, j) if dg_val isa Tuple res[i] += dot(dg_val[1], vtmp) * window[j] res[i] += dg_val[2][i] * window[j] else res[i] += dot(dg_val, vtmp) * window[j] end end end return res end function shadow_forward(prob::ForwardLSSProblem,sensealg::ForwardLSS,LSSregularizer::Cos2Windowing) @unpack sol, S, F, window, Δt, diffcache, b, w, v, dg, res = prob @unpack wBinv, B = S @unpack dg_val, numparams, numindvar, uf = diffcache b!(b,prob) res .*= false # windowing cos2 @. window = (sol.t-sol.t[1])*convert(eltype(Δt),2*pi/Δt) @. window = (one(eltype(window)) - cos(window))^2 window ./= sum(window) for i=1:numparams bpar = @view b[:,i] w .= F\bpar v .= Diagonal(wBinv)*(B'*w) for (j, u) in enumerate(sol.u) vtmp = @view v[(j-1)*numindvar+1:j*numindvar] # final gradient result for ith parameter accumulate_cost!(dg, u, uf.p, uf.t, sensealg, diffcache, j) if dg_val isa Tuple res[i] += dot(dg_val[1], vtmp) * window[j] res[i] += dg_val[2][i] * window[j] else res[i] += dot(dg_val, vtmp) * window[j] end end end return res end function accumulate_cost!(dg, u, p, t, sensealg::ForwardLSS, diffcache, indx) @unpack dg_val, pgpu, pgpu_config, pgpp, pgpp_config, uf = diffcache if dg === nothing if dg_val isa Tuple DiffEqSensitivity.gradient!(dg_val[1], pgpu, u, sensealg, pgpu_config) DiffEqSensitivity.gradient!(dg_val[2], pgpp, p, sensealg, pgpp_config) else DiffEqSensitivity.gradient!(dg_val, pgpu, u, sensealg, pgpu_config) end else if dg_val isa Tuple dg[1](dg_val[1], u, p, nothing, indx) # indx = n0 + j - 1 for LSSregularizer and j for windowing dg[2](dg_val[2], u, p, nothing, indx) dg_val[1] .*= -1 # flipped concrete_solve sign dg_val[2] .*= -1 else dg(dg_val, u, p, nothing, indx) dg_val .*= -1 end end return nothing end struct AdjointLSSProblem{A,C,solType,dtType,umidType,dudtType,SType,FType,hType,bType,wType, ΔtType,G0,G,DG,resType} sensealg::A diffcache::C sol::solType dt::dtType umid::umidType dudt::dudtType S::SType F::FType h::hType b::bType wa::wType Δt::ΔtType Nt::Int g0::G0 g::G dg::DG res::resType end function AdjointLSSProblem(sol, sensealg::AdjointLSS, t=nothing, dg = nothing; kwargs...) @unpack f, p, u0, tspan = sol.prob @unpack g = sensealg isinplace = DiffEqBase.isinplace(f) # some shadowing sensealgs require knowledge of g check_for_g(sensealg,g) p === nothing && error("You must have parameters to use parameter sensitivity calculations!") !(sol.u isa AbstractVector) && error("`u` has to be an AbstractVector.") # assert that all ts are hit if concrete solve interface/discrete costs are used if t !== nothing @assert sol.t == t end sense = LSSSensitivityFunction(sensealg,f,f.analytic,f.jac, f.jac_prototype,f.sparsity,f.paramjac, u0,sensealg, p,similar(u0),f.mass_matrix, f.colorvec, tspan,g,dg) @unpack numparams, numindvar = sense Nt = length(sol.t) Ndt = Nt-one(Nt) # pre-allocate variables dt = similar(sol.t, Ndt) umid = Matrix{eltype(u0)}(undef,numindvar,Ndt) dudt = Matrix{eltype(u0)}(undef,numindvar,Ndt) # compute their values discretize_ref_trajectory!(dt, umid, dudt, sol, Ndt) S = LSSSchur(dt,u0,numindvar,Nt,Ndt,sensealg.LSSregularizer) if sensealg.LSSregularizer isa TimeDilation g0 = g(u0,p,tspan[1]) else g0 = nothing end b = Vector{eltype(u0)}(undef,numindvar*Ndt) h = Vector{eltype(u0)}(undef,Ndt) wa = similar(dt,numindvar*Ndt) Δt = tspan[2] - tspan[1] wB!(S,Δt,Nt,numindvar,dt) wE!(S,Δt,dt,sensealg.LSSregularizer) B!(S,dt,umid,sense,sensealg) E!(S,dudt,sensealg.LSSregularizer) F = SchurLU(S) wBcorrect!(S,sol,g,Nt,sense,sensealg,dg) h!(h,g0,g,umid,p,S.wEinv) res = similar(u0, numparams) AdjointLSSProblem{typeof(sensealg),typeof(sense),typeof(sol),typeof(dt), typeof(umid),typeof(dudt), typeof(S),typeof(F),typeof(h),typeof(b),typeof(wa),typeof(Δt), typeof(g0),typeof(g),typeof(dg),typeof(res)}(sensealg,sense,sol,dt,umid,dudt,S,F,h,b,wa, Δt,Nt,g0,g,dg,res) end function h!(h,g0,g,u,p,wEinv) for (j,uj) in enumerate(eachcol(u)) # compute objective h[j] = g(uj,p,nothing) end h .= -(h .- mean(h)) / (size(u)[2]) @. h = wEinv*h return nothing end function wBcorrect!(S,sol,g,Nt,sense,sensealg,dg) @unpack dg_val, pgpu, pgpu_config, numparams, numindvar, uf = sense @unpack wBinv = S for (i,u) in enumerate(sol.u) _wBinv = @view wBinv[(i-1)*numindvar+1:i*numindvar] if dg === nothing if dg_val isa Tuple DiffEqSensitivity.gradient!(dg_val[1], pgpu, u, sensealg, pgpu_config) @. _wBinv = _wBinv*dg_val[1]/Nt else DiffEqSensitivity.gradient!(dg_val, pgpu, u, sensealg, pgpu_config) @. _wBinv = _wBinv*dg_val/Nt end else if dg_val isa Tuple dg[1](dg_val[1],u,uf.p,nothing,i) @. _wBinv = -_wBinv*dg_val[1]/Nt else dg(dg_val,u,uf.p,nothing,i) @. _wBinv = -_wBinv*dg_val/Nt end end end return nothing end function shadow_adjoint(prob::AdjointLSSProblem; sensealg=prob.sensealg) shadow_adjoint(prob,sensealg,sensealg.LSSregularizer) end function shadow_adjoint(prob::AdjointLSSProblem,sensealg::AdjointLSS,LSSregularizer::TimeDilation) @unpack sol, S, F, Δt, diffcache, h, b, wa, res, g, g0, dg, umid = prob @unpack wBinv, B, E = S @unpack dg_val, pgpp, pgpp_config, numparams, numindvar, uf, f, f_cache, pJ, pf, paramjac_config = diffcache @unpack t0skip, t1skip = LSSregularizer b .= E*h + B*wBinv wa .= F\b n0 = searchsortedfirst(sol.t, sol.t[1]+t0skip) n1 = searchsortedfirst(sol.t, sol.t[end]-t1skip) umidres = @view umid[:,n0:n1-1] wares = @view wa[(n0-1)*numindvar+1:(n1-1)*numindvar] # reset res .*= false if dg_val isa Tuple for (j,u) in enumerate(eachcol(umidres)) if dg === nothing DiffEqSensitivity.gradient!(dg_val[2], pgpp, uf.p, sensealg, pgpp_config) @. res += dg_val[2] else dg[2](dg_val[2],u,uf.p,nothing,n0+j-1) @. res -= dg_val[2] end end res ./= (size(umidres)[2]) end for (j,u) in enumerate(eachcol(umidres)) _wares = @view wares[(j-1)*numindvar+1:j*numindvar] if DiffEqBase.has_paramjac(f) f.paramjac(pJ, u, uf.p, pf.t) else pf.u = u jacobian!(pJ, pf, uf.p, f_cache, sensealg, paramjac_config) end res .+= pJ'*_wares end return res end check_for_g(sensealg::Union{ForwardLSS,AdjointLSS},g)=((sensealg.LSSregularizer isa TimeDilation && g===nothing) && error("Time dilation needs explicit knowledge of g. Either pass `g` as a kwarg to `ForwardLSS(g=g)` or `AdjointLSS(g=g)` or use ForwardLSS/AdjointLSS with windowing."))
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
11339
struct NILSASSensitivityFunction{iip,NILSS,ASF,Mtype} <: DiffEqBase.AbstractODEFunction{iip} nilss::NILSS S::ASF # Adjoint sensitivity function M::Mtype discrete::Bool end struct QuadratureCache{A1,A2,A3,A4,A5} dwv::A1 dwf::A1 dwfs::A2 dvf::A3 dvfs::A4 dJs::A4 C::A5 R::A5 b::A1 end function QuadratureCache(u0, M, nseg, numparams) dwv = Array{eltype(u0)}(undef, M, nseg) dwf = Array{eltype(u0)}(undef, M, nseg) dwfs = Array{eltype(u0)}(undef, numparams*M, nseg) dvf = Array{eltype(u0)}(undef, 1, nseg) dvfs = Array{eltype(u0)}(undef, numparams, nseg) dJs = Array{eltype(u0)}(undef, numparams, nseg) C = Array{eltype(u0)}(undef, M, M, nseg) R = Array{eltype(u0)}(undef, M, M, nseg) b = Array{eltype(u0)}(undef, M, nseg) QuadratureCache{typeof(dwv),typeof(dwfs),typeof(dvf),typeof(dvfs),typeof(C)}(dwv,dwf,dwfs,dvf,dvfs,dJs,C,R,b) end struct NILSASProblem{A,NILSS,Aprob,Qcache,solType,z0Type,G,DG,T} sensealg::A nilss::NILSS # diffcache adjoint_prob::Aprob quadcache::Qcache sol::solType z0::z0Type g::G dg::DG T_seg::T dtsave::T end function NILSASProblem(sol, sensealg::NILSAS, t=nothing, dg = nothing; kwargs...) @unpack f, p, u0, tspan = sol.prob @unpack nseg, nstep, rng, adjoint_sensealg, M, g = sensealg #number of segments on time interval, number of steps saved on each segment numindvar = length(u0) numparams = length(p) # some shadowing sensealgs require knowledge of g check_for_g(sensealg,g) # sensealg choice adjoint_sensealg === nothing && (adjoint_sensealg = automatic_sensealg_choice(sol.prob,u0,p,false)) p === nothing && error("You must have parameters to use parameter sensitivity calculations!") !(u0 isa AbstractVector) && error("`u` has to be an AbstractVector.") nstep <= 1 && error("At least the start and the end point of each segment must be stored. Please use `nstep >=2`.") !(u0 isa AbstractVector) && error("`u` has to be an AbstractVector.") # segmentation: determine length of segmentation and spacing between saved points T_seg = (tspan[2]-tspan[1])/nseg # length of each segment dtsave = T_seg/(nstep-1) # homogenous + inhomogenous adjoint sensitivity problem # assign initial values to y, vstar, w y = copy(sol.u[end]) z0 = terminate_conditions(adjoint_sensealg,rng,f,y,p,tspan[2],numindvar,numparams,M) nilss = NILSSSensitivityFunction(sensealg,f,u0,p,tspan,g,dg) tspan = (tspan[2] - T_seg, tspan[2]) checkpoints = tspan[1]:dtsave:tspan[2] adjoint_prob = ODEAdjointProblem(sol,adjoint_sensealg,g,t,dg; checkpoints=checkpoints, z0=z0, M=M, nilss=nilss, tspan=tspan, kwargs...) # pre-allocate variables for integration Eq.(23) in NILSAS paper. quadcache = QuadratureCache(u0, M, nseg, numparams) NILSASProblem{typeof(sensealg),typeof(nilss),typeof(adjoint_prob),typeof(quadcache), typeof(sol),typeof(z0),typeof(g),typeof(dg),typeof(T_seg)}(sensealg,nilss, adjoint_prob,quadcache,sol,deepcopy(z0),g,dg,T_seg,dtsave) end function terminate_conditions(alg::BacksolveAdjoint,rng,f,y,p,t,numindvar,numparams,M) if isinplace(f) f_unit = zero(y) f(f_unit,y,p,t) normalize!(f_unit) else f_unit = f(y,p,t) normalize!(f_unit) end if M>1 W = rand(rng,numindvar,M-1) W .-= (f_unit'*W) .* f_unit w, _ = qr(W) _w = @view w[:,1:M-1] W = hcat(_w, f_unit) else W = f_unit end vst = zeros(numindvar) # quadratures C = zeros(M,M) dwv = zeros(M) dwf = zeros(M) dvf = zeros(1) dJs = zeros(numparams) return ArrayPartition([vst;vec(W)],zeros(numparams*(M+1)),y,C,dwv,dwf,dvf,dJs) end function split_states(du,u,t,NS::NILSASSensitivityFunction,j;update=true) @unpack nilss, S = NS @unpack numindvar,numparams = nilss indx1 = (j-1)*(numindvar) + 1 indx2 = indx1 + (numindvar-1) indx3 = (j-1)*(numparams) + 1 indx4 = indx3 + (numparams-1) λ = @view u.x[1][indx1:indx2] grad = @view u.x[2][indx3:indx4] _y = u.x[3] # like ODE/Drift term and scalar noise dλ = @view du.x[1][indx1:indx2] dgrad = @view du.x[2][indx3:indx4] dy = du.x[3] λ,grad,_y,dλ,dgrad,dy end function split_quadratures(du,u,t,NS::NILSASSensitivityFunction;update=true) @unpack nilss, S = NS @unpack numindvar,numparams = nilss C = u.x[4] dwv = u.x[5] dwf = u.x[6] dvf = u.x[7] dJs = u.x[8] dC = du.x[4] ddwv = du.x[5] ddwf = du.x[6] ddvf = du.x[7] ddJs = du.x[8] dC,ddwv,ddwf,ddvf,ddJs, C,dwv,dwf,dvf,dJs end function (NS::NILSASSensitivityFunction)(du,u,p,t) @unpack nilss, S, M = NS @unpack f, dg, dg_val, pgpu, pgpu_config, pgpp, pgpp_config, numparams, numindvar, alg = nilss @unpack y, discrete = S λ,_,_y,dλ,dgrad,dy = split_states(du,u,t,NS,1) copyto!(vec(y), _y) # compute gradient of objective wrt. state if !discrete accumulate_cost!(dg, y, p, t, nilss) end # loop over all adjoint states for j=1:M+1 λ,_,_,dλ,dgrad,dy = split_states(du,u,t,NS,j) vecjacobian!(dλ, y, λ, p, t, S, dgrad=dgrad, dy=dy) dλ .*= -1 if j==1 # j = 1 is the inhomogenous adjoint solution if !discrete if dg_val isa Tuple dλ .-= vec(dg_val[1]) else dλ .-= vec(dg_val) end end end end # quadratures dC,ddwv,ddwf,ddvf,ddJs, _,_,_,_,_ = split_quadratures(du,u,t,NS) # j = 1 is the inhomogenous adjoint solution λv,_,_,_,_,dy = split_states(du,u,t,NS,1) ddvf .= -dot(λv,dy) for j=1:M λ,_,_,_,_,_ = split_states(du,u,t,NS,j+1) ddwf[j] = -dot(λ,dy) ddwv[j] = -dot(λ,λv) for i=j+1:M λ2,_,_,_,_,_ = split_states(du,u,t,NS,i+1) dC[j,i] = -dot(λ,λ2) dC[i,j] = dC[j,i] end dC[j,j] = -dot(λ,λ) end if dg_val isa Tuple && !discrete ddJs = -vec(dg_val[2]) end return nothing end function accumulate_cost!(dg, y, p, t, nilss::NILSSSensitivityFunction) @unpack dg_val, pgpu, pgpu_config, pgpp, pgpp_config, alg = nilss if dg===nothing if dg_val isa Tuple DiffEqSensitivity.gradient!(dg_val[1],pgpu,y,alg,pgpu_config) DiffEqSensitivity.gradient!(dg_val[2],pgpp,y,alg,pgpp_config) dg_val[1] .*= -1 dg_val[2] .*= -1 else DiffEqSensitivity.gradient!(dg_val,pgpu,y,alg,pgpu_config) dg_val .*= -1 end else if dg_val isa Tuple dg[1](dg_val[1],y,p,t) dg[2](dg_val[2],y,p,t) else dg(dg_val,y,p,t) end end return nothing end function adjoint_sense(prob::NILSASProblem,nilsas::NILSAS,alg; kwargs...) @unpack M, nseg, nstep, adjoint_sensealg = nilsas @unpack sol, nilss, z0, g, dg, T_seg, dtsave, adjoint_prob = prob @unpack u0, tspan = adjoint_prob copyto!(z0,u0) @assert haskey(adjoint_prob.kwargs, :callback) # get loss callback cb = adjoint_prob.kwargs[:callback] # adjoint sensitivities on segments for iseg=nseg:-1:1 t1 = tspan[1]-(nseg-iseg+1)*T_seg t2 = tspan[1]-(nseg-iseg)*T_seg checkpoints=t1:dtsave:t2 _prob = ODEAdjointProblem(sol,adjoint_sensealg,g,nothing,dg; checkpoints=checkpoints,z0=z0,M=M,nilss=nilss,tspan=(t1,t2),kwargs...) _sol = solve(_prob,alg; save_everystep=false,save_start=false,saveat=eltype(sol[1])[], dt = dtsave, tstops=checkpoints, callback = cb, kwargs...) # renormalize at interfaces and store quadratures # update sense problem renormalize!(prob, _sol, z0, iseg) end return nothing end function renormalize!(prob::NILSASProblem, sol, z0, iseg) @unpack quadcache, nilss, sensealg = prob @unpack M = sensealg @unpack numparams, numindvar = nilss @unpack R,b = quadcache x = sol.u[end].x # vstar_right (inhomogenous adjoint on the rhs of the interface) vstar = @view x[1][1:numindvar] # homogenous adjoint on the rhs of the interface W = @view x[1][numindvar+1:end] W = reshape(W, numindvar, M) Q_, R_ = qr(W) Q = @view Q_[:,1:M] b_ = (Q'*vstar) # store R and b to solve NILSAS problem copyto!( (@view R[:,:,iseg]), R_) copyto!( (@view b[:,iseg]), b_) # store quadrature values store_quad(quadcache, x, numparams, iseg) # reset z0 reset!(z0, numindvar, vstar, b_, Q) return nothing end function store_quad(quadcache, x, numparams, iseg) @unpack dwv,dwf,dwfs,dvf,dvfs,dJs,C = quadcache grad_vfs = @view x[2][1:numparams] copyto!( (@view dvfs[:,iseg]), grad_vfs) grad_wfs = @view x[2][numparams+1:end] copyto!( (@view dwfs[:,iseg]), grad_wfs) # C_i = x[4] copyto!( (@view C[:,:,iseg]), x[4]) # dwv_i = x[5] copyto!( (@view dwv[:,iseg]), x[5]) # dwf_i = x[6] copyto!( (@view dwf[:,iseg]), x[6]) # dvf_i = x[7] copyto!( (@view dvf[:,iseg]), x[7]) # dJs_i = x[8] copyto!( (@view dJs[:,iseg]), x[8]) return nothing end function reset!(z0, numindvar, vstar, b, Q) # modify z0 x0 = z0.x # vstar_left v = @view x0[1][1:numindvar] v .= vstar - vec(b'*Q') # W_left (homogenous adjoint on lhs of the interface) w = @view x0[1][numindvar+1:end] w .= vec(Q) # reset all other values t0 zero x0[2] .*= false x0[4] .*= false x0[5] .*= false x0[6] .*= false x0[7] .*= false x0[8] .*= false return nothing end function nilsas_min(cache::QuadratureCache) @unpack dwv,dwf,dvf,C,R,b = cache # Construct Schur complement of the Lagrange multiplier method of the NILSAS problem. # see description in Appendix A of Nilsas paper. # M= # unstable CLVs, K = # segments M, K = size(dwv) # construct Cinv # Cinv is a block diagonal matrix Cinv = zeros(eltype(C), M*K, M*K) for i=1:K Ci = @view C[:, :, i] _Cinv = @view Cinv[(i-1)*M+1:i*M, (i-1)*M+1:i*M] Ciinv = inv(Ci) copyto!(_Cinv,Ciinv) end # construct B, also very sparse if K >> M B = zeros(eltype(C), M*K-M+1, M*K) for i=1:K if i<K # off diagonal Rs _B = @view B[(i-1)*M+1:i*M, i*M+1:(i+1)*M] _R = @view R[:,:,i+1] copyto!(_B, _R) _B .*= -1 # diagonal ones for j=1:M B[(i-1)*M+j, (i-1)*M+j] = one(eltype(R)) end end # last row dwfi = dwf[:,i] _B = @view B[end, (i-1)*M+1:i*M] copyto!(_B, dwfi) end # construct d d = vec(dwv) # construct b _b = [b[M+1:end]; -sum(dvf)] # compute Lagrange multiplier λ = (-B*Cinv*B') \ (B*Cinv*d + _b) # return a return reshape(-Cinv*(B'*λ + d), M, K) end function shadow_adjoint(prob::NILSASProblem,alg; sensealg=prob.sensealg, kwargs...) shadow_adjoint(prob,sensealg,alg; kwargs...) end function shadow_adjoint(prob::NILSASProblem,sensealg::NILSAS,alg; kwargs...) # compute adjoint sensitivities adjoint_sense(prob,sensealg,alg; kwargs...) # compute NILSAS problem on multiple segments a = nilsas_min(prob.quadcache) # compute gradient, Eq. (28) -- second part to avoid explicit construction of vbar @unpack M, nseg = sensealg @unpack dvfs, dJs, dwfs = prob.quadcache res = vec(sum(dvfs,dims=2)) + vec(sum(dJs,dims=2)) NP = length(res) # number of parameters # loop over segments for (i,ai) in enumerate(eachcol(a)) dwfsi = @view dwfs[:,i] dwfsi = reshape(dwfsi,NP,M) res .+= dwfsi*ai end return res/(nseg*prob.T_seg) end check_for_g(sensealg::NILSAS,g) = (g===nothing && error("To use NILSAS, g must be passed as a kwarg to `NILSAS(g=g)`."))
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
16389
struct NILSSSensitivityFunction{iip,F,Alg, PGPU,PGPP,CONFU,CONGP,DGVAL,DG,jType,RefType} <: DiffEqBase.AbstractODEFunction{iip} f::F alg::Alg numparams::Int numindvar::Int pgpu::PGPU pgpp::PGPP pgpu_config::CONFU pgpp_config::CONGP dg_val::DGVAL dg::DG jevery::jType # if concrete_solve interface for discrete cost functions is used cur_time::RefType end function NILSSSensitivityFunction(sensealg,f,u0,p,tspan,g,dg,jevery=nothing,cur_time=nothing) numparams = length(p) numindvar = length(u0) # compute gradients of objective if dg !== nothing pgpu = nothing pgpp = nothing pgpu_config = nothing pgpp_config = nothing if dg isa Tuple && length(dg) == 2 dg_val = (similar(u0, numindvar),similar(u0, numparams)) dg_val[1] .= false dg_val[2] .= false else dg_val = similar(u0, numindvar) # number of funcs size dg_val .= false end else pgpu = UGradientWrapper(g,tspan[1],p) # ∂g∂u pgpp = ParamGradientWrapper(g,tspan[1],u0) #∂g∂p pgpu_config = build_grad_config(sensealg,pgpu,u0,tspan[1]) pgpp_config = build_grad_config(sensealg,pgpp,u0,tspan[1]) dg_val = (similar(u0, numindvar),similar(u0, numparams)) dg_val[1] .= false dg_val[2] .= false end NILSSSensitivityFunction{isinplace(f),typeof(f),typeof(sensealg), typeof(pgpu),typeof(pgpp),typeof(pgpu_config),typeof(pgpp_config),typeof(dg_val),typeof(dg),typeof(jevery),typeof(cur_time)}( f,sensealg,numparams,numindvar,pgpu,pgpp,pgpu_config,pgpp_config,dg_val,dg,jevery,cur_time) end struct NILSSProblem{A,CacheType,FSprob,probType,u0Type,vstar0Type,w0Type, TType,dtType,gType,yType,vstarType, wType,RType,bType,weightType,CType,dType,BType,aType,vType,xiType, G,DG,resType} sensealg::A diffcache::CacheType forward_prob::FSprob prob::probType u0::u0Type vstar0::vstar0Type w0::w0Type nus::Int T_seg::TType dtsave::dtType gsave::gType y::yType dudt::yType dgdu::yType vstar::vstarType vstar_perp::vstarType w::wType w_perp::wType R::RType b::bType weight::weightType Cinv::CType d::dType B::BType a::aType v::vType v_perp::vType ξ::xiType g::G dg::DG res::resType end function NILSSProblem(prob, sensealg::NILSS, t=nothing, dg = nothing; kwargs...) @unpack f, p, u0, tspan = prob @unpack nseg, nstep, nus, rng, g = sensealg #number of segments on time interval, number of steps saved on each segment numindvar = length(u0) numparams = length(p) # some shadowing sensealgs require knowledge of g check_for_g(sensealg,g) # integer dimension of the unstable subspace if nus === nothing nus = numindvar - one(numindvar) end (nus >= numindvar) && error("`nus` must be smaller than `numindvar`.") isinplace = DiffEqBase.isinplace(f) p === nothing && error("You must have parameters to use parameter sensitivity calculations!") !(u0 isa AbstractVector) && error("`u` has to be an AbstractVector.") # segmentation: determine length of segmentation and spacing between saved points T_seg = (tspan[2]-tspan[1])/nseg # length of each segment dtsave = T_seg/(nstep-1) # assert that dtsave is chosen such that all ts are hit if concrete solve interface/discrete costs are used if t!==nothing @assert t isa StepRangeLen dt_ts = step(t) @assert dt_ts >= dtsave @assert T_seg >= dt_ts jevery = Int(dt_ts/dtsave) # will throw an inexact error if dt_ts is not a multiple of dtsave. (could be more sophisticated) cur_time = Ref(1) else jevery = nothing cur_time = nothing end # inhomogenous forward sensitivity problem chunk_size = determine_chunksize(numparams,sensealg) autodiff = alg_autodiff(sensealg) difftype = diff_type(sensealg) autojacvec = sensealg.autojacvec # homogenous + inhomogenous forward sensitivity problems forward_prob = ODEForwardSensitivityProblem(f,u0,tspan,p,ForwardSensitivity(chunk_size=chunk_size,autodiff=autodiff, diff_type=difftype,autojacvec=autojacvec);nus=nus, kwargs...) sense = NILSSSensitivityFunction(sensealg,f,u0,p,tspan,g,dg,jevery,cur_time) # pre-allocate variables gsave = Matrix{eltype(u0)}(undef, nstep, nseg) y = Array{eltype(u0)}(undef, numindvar, nstep, nseg) dudt = similar(y) dgdu = similar(y) vstar = Array{eltype(u0)}(undef, numparams, numindvar, nstep, nseg) # generalization for several parameters numindvar*numparams vstar_perp = similar(vstar) w = Array{eltype(u0)}(undef, numindvar, nstep, nseg, nus) w_perp = similar(w) # assign initial values to y, v*, w y[:,1,1] .= u0 for i=1:numparams _vstar = @view vstar[i,:,1,1] copyto!(_vstar, zero(u0)) end for ius=1:nus _w = @view w[:,1,1,ius] rand!(rng,_w) normalize!(_w) end vstar0 = zeros(eltype(u0), numindvar*numparams) w0 = vec(w[:,1,1,:]) R = Array{eltype(u0)}(undef, numparams, nseg-1, nus, nus) b = Array{eltype(u0)}(undef, numparams, (nseg-1)*nus) # a weight matrix for integration, 0.5 at interfaces weight = ones(1,nstep) weight[1] /= 2 weight[end] /= 2 # Construct Schur complement of the Lagrange multiplier method of the NILSS problem. # See the paper on FD-NILSS # find C^-1 Cinv = Matrix{eltype(u0)}(undef, nseg*nus, nseg*nus) Cinv .*= false d = Vector{eltype(u0)}(undef, nseg*nus) B = Matrix{eltype(u0)}(undef, (nseg-1)*nus, nseg*nus) B .*= false a = Vector{eltype(u0)}(undef, nseg*nus) v = Array{eltype(u0)}(undef, numindvar, nstep, nseg) v_perp = similar(v) # only need to use last step in each segment ξ = Matrix{eltype(u0)}(undef, nseg, 2) res = similar(u0, numparams) NILSSProblem{typeof(sensealg),typeof(sense),typeof(forward_prob),typeof(prob), typeof(u0), typeof(vstar0), typeof(w0), typeof(T_seg),typeof(dtsave),typeof(gsave),typeof(y),typeof(vstar),typeof(w),typeof(R), typeof(b),typeof(weight),typeof(Cinv),typeof(d),typeof(B),typeof(a),typeof(v),typeof(ξ), typeof(g),typeof(dg),typeof(res)}(sensealg,sense,forward_prob,prob,u0,vstar0,w0, nus,T_seg,dtsave,gsave,y,dudt,dgdu,vstar,vstar_perp,w,w_perp,R,b,weight,Cinv,d, B,a,v,v_perp,ξ,g,dg,res) end function (NS::NILSSForwardSensitivityFunction)(du,u,p,t) @unpack S, nus = NS y = @view u[1:S.numindvar] # These are the independent variables dy = @view du[1:S.numindvar] S.f(dy,y,p,t) # Make the first part be the ODE # Now do sensitivities # Compute the Jacobian if !S.isautojacvec if has_original_jac(S.f) S.original_jac(S.J,y,p,t) # Calculate the Jacobian into J else S.uf.t = t jacobian!(S.J, S.uf, y, S.f_cache, S.alg, S.jac_config) end end if DiffEqBase.has_paramjac(S.f) S.paramjac(S.pJ,y,p,t) # Calculate the parameter Jacobian into pJ else S.pf.t = t S.pf.u .= y jacobian!(S.pJ, S.pf, p, S.f_cache, S.alg, S.paramjac_config) end # Compute the parameter derivatives for j=1:nus+1 for i in eachindex(p) indx1 = (j-1)*S.numindvar*1 + i*S.numindvar+1 indx2 = (j-1)*S.numindvar*1 + (i+1)*S.numindvar Sj = @view u[indx1:indx2] dp = @view du[indx1:indx2] if !S.isautojacvec mul!(dp,S.J,Sj) else jacobianvec!(dp, S.uf, y, Sj, S.alg, S.jac_config) end if j == nus+1 # inhomogenous (otherwise homogenous tangent solution) dp .+= @view S.pJ[:,i] end end end return nothing end function forward_sense(prob::NILSSProblem,nilss::NILSS,alg) #TODO determine a good dtsave (ΔT in paper, see Sec.4.2) @unpack nus, T_seg, dtsave, vstar, vstar_perp, w, w_perp, R, b, y, dudt, gsave, dgdu, forward_prob, u0, vstar0, w0 = prob @unpack p, f = forward_prob @unpack S, sensealg = f @unpack nseg, nstep = nilss @unpack numindvar, numparams = S # push forward t1 = forward_prob.tspan[1] t2 = forward_prob.tspan[1]+T_seg _prob = ODEForwardSensitivityProblem(S.f,u0,(t1,t2),p,sensealg;nus=nus,w0=w0,v0=vstar0) for iseg=1:nseg # compute y, w, vstar # _sol is a numindvar*(1+nus+1) x nstep matrix dt = (t2 - t1) / (nstep-1) _sol = Array(solve(_prob, alg, saveat=t1:dt:t2)) store_y_w_vstar!(y, w, vstar, _sol, nus, numindvar, numparams, iseg) # store dudt, objective g (gsave), and its derivative wrt. to u (dgdu) dudt_g_dgdu!(dudt, gsave, dgdu, prob, y, forward_prob.p, iseg) # calculate w_perp, vstar_perp perp!(w_perp, vstar_perp, w, vstar, dudt, iseg, numparams, nstep, nus) # update sense problem if iseg < nseg # renormalize at interfaces renormalize!(R,b,w_perp,vstar_perp,y,vstar,w,iseg,numparams,nus) t1 = forward_prob.tspan[1]+iseg*T_seg t2 = forward_prob.tspan[1]+(iseg+1)*T_seg _prob = ODEForwardSensitivityProblem(S.f,y[:,1,iseg+1],(t1,t2),p,sensealg; nus=nus, w0=vec(w[:,1,iseg+1,:]),v0=vec(vstar[:,:,1,iseg+1])) end end end function store_y_w_vstar!(y, w, vstar, sol, nus, numindvar, numparams, iseg) # fill y _y = @view y[:,:,iseg] copyto!(_y, (@view sol[1:numindvar,:])) # fill w # only calculate w one time, w can be reused for each parameter for j=1:nus indx1 = (j-1)*numindvar*1 + numindvar+1 indx2 = (j-1)*numindvar*1 + 2*numindvar _w = @view w[:,:,iseg, j] copyto!(_w, (@view sol[indx1:indx2,:])) end # fill vstar for i=1:numparams indx1 = nus*numindvar*1 + i*numindvar+1 indx2 = nus*numindvar*1 + (i+1)*numindvar _vstar = @view vstar[i,:,:,iseg] copyto!(_vstar, (@view sol[indx1:indx2,:])) end return nothing end function dudt_g_dgdu!(dudt, gsave, dgdu, nilssprob::NILSSProblem, y, p, iseg) @unpack sensealg, diffcache, dg, g, prob = nilssprob @unpack prob = nilssprob @unpack jevery, cur_time = diffcache # akin to ``discrete" _y = @view y[:,:,iseg] for (j,u) in enumerate(eachcol(_y)) _dgdu = @view dgdu[:,j,iseg] _dudt = @view dudt[:,j,iseg] # compute dudt if isinplace(prob) prob.f(_dudt,u,p,nothing) else copyto!(_dudt,prob.f(u,p,nothing)) end # compute objective gsave[j,iseg] = g(u,p,nothing) # compute gradient of objective wrt. state if jevery!==nothing # only bump on every jevery entry # corresponds to (iseg-1)* value of dg if (j-1) % jevery == 0 accumulate_cost!(_dgdu, dg, u, p, nothing, sensealg, diffcache, cur_time[]) cur_time[] += one(jevery) end else # continuous cost function accumulate_cost!(_dgdu, dg, u, p, nothing, sensealg, diffcache, j) end end jevery !== nothing && (cur_time[] -= one(jevery)) # interface between segments gets two bumps return nothing end function perp!(w_perp, vstar_perp, w, vstar, dudt, iseg, numparams, nsteps, nus) for indx_steps=1:nsteps _dudt = @view dudt[:,indx_steps,iseg] for indx_nus=1:nus _w_perp = @view w_perp[:,indx_steps,iseg,indx_nus] _w = @view w[:,indx_steps,iseg,indx_nus] perp!(_w_perp, _w, _dudt) end for indx_params=1:numparams _vstar_perp = @view vstar_perp[indx_params,:,indx_steps,iseg] _vstar = @view vstar[indx_params,:,indx_steps,iseg] perp!(_vstar_perp, _vstar, _dudt) end end return nothing end function perp!(v1, v2, v3) v1 .= v2 - dot(v2, v3)/dot(v3, v3) * v3 end function renormalize!(R,b,w_perp,vstar_perp,y,vstar,w,iseg,numparams,nus) for i=1:numparams _b = @view b[i,(iseg-1)*nus+1:iseg*nus] _R = @view R[i,iseg,:,:] _w_perp = @view w_perp[:,end,iseg,:] _vstar_perp = @view vstar_perp[i,:,end,iseg] _w = @view w[:,1,iseg+1,:] _vstar = @view vstar[i,:,1,iseg+1] Q_temp, R_temp = qr(_w_perp) b_tmp = @view (Q_temp'*_vstar_perp)[1:nus] copyto!(_b, b_tmp) copyto!(_R, R_temp) # set new initial values copyto!(_w, (@view Q_temp[:,1:nus])) copyto!(_vstar, _vstar_perp - Q_temp*b_tmp) end _yend = @view y[:,end,iseg] _ystart = @view y[:,1,iseg+1] copyto!(_ystart, _yend) return nothing end function compute_Cinv!(Cinv,w_perp,weight,nseg,nus,indxp) # construct Schur complement of Lagrange multiplier _weight = @view weight[1,:] for iseg=1:nseg _C = @view Cinv[(iseg-1)*nus+1:iseg*nus, (iseg-1)*nus+1:iseg*nus] for i=1:nus wi = @view w_perp[:,:,iseg,i] for j =1:nus wj = @view w_perp[:,:,iseg,j] _C[i,j] = sum(wi .* wj * _weight) end end invC = inv(_C) copyto!(_C, invC) end return nothing end function compute_d!(d,w_perp,vstar_perp,weight,nseg,nus,indxp) # construct d _weight = @view weight[1,:] for iseg=1:nseg _d = @view d[(iseg-1)*nus+1:iseg*nus] vi = @view vstar_perp[indxp,:,:,iseg] for i=1:nus wi = @view w_perp[:,:,iseg,i] _d[i] = sum(wi .* vi * _weight) end end return nothing end function compute_B!(B,R,nseg,nus,indxp) for iseg=1:nseg-1 _B = @view B[(iseg-1)*nus+1:iseg*nus, (iseg-1)*nus+1:iseg*nus] _R = @view R[indxp,iseg,:,:] copyto!(_B, -_R) # off diagonal one for i=1:nus B[(iseg-1)*nus+i, iseg*nus+i] = one(eltype(R)) end end return nothing end function compute_a!(a,B,Cinv,b,d,indxp) _b = @view b[indxp,:] lbd = (-B*Cinv*B') \ (B*Cinv*d + _b) a .= -Cinv*(B'*lbd + d) return nothing end function compute_v!(v,v_perp,vstar,vstar_perp,w,w_perp,a,nseg,nus,indxp) _vstar = @view vstar[indxp,:,:,:] _vstar_perp = @view vstar_perp[indxp,:,:,:] copyto!(v, _vstar) copyto!(v_perp, _vstar_perp) for iseg=1:nseg vi = @view v[:,:,iseg] vpi = @view v_perp[:,:,iseg] for i=1:nus wi = @view w[:,:,iseg,i] wpi = @view w_perp[:,:,iseg,i] vi .+= a[(iseg-1)*nus+i]*wi vpi .+= a[(iseg-1)*nus+i]*wpi end end return nothing end function compute_xi(ξ,v,dudt,nseg) for iseg=1:nseg _v = @view v[:,1,iseg] _dudt = @view dudt[:,1,iseg] ξ[iseg,1] = dot(_v,_dudt)/dot(_dudt,_dudt) _v = @view v[:,end,iseg] _dudt = @view dudt[:,end,iseg] ξ[iseg,2] = dot(_v,_dudt)/dot(_dudt,_dudt) end # check if segmentation is chosen correctly _ξ = ξ[:,1] all(_ξ.<1e-4) || @warn "Detected a large value of ξ at the beginning of a segment." return nothing end function accumulate_cost!(_dgdu, dg, u, p, t, sensealg::NILSS, diffcache::NILSSSensitivityFunction, j) @unpack dg_val, pgpu, pgpu_config, pgpp, pgpp_config = diffcache if dg===nothing if dg_val isa Tuple DiffEqSensitivity.gradient!(dg_val[1], pgpu, u, sensealg, pgpu_config) copyto!(_dgdu, dg_val[1]) else DiffEqSensitivity.gradient!(dg_val, pgpu, u, sensealg, pgpu_config) copyto!(_dgdu, dg_val) end else if dg_val isa Tuple dg[1](dg_val[1],u,p,nothing,j) @. _dgdu = -dg_val[1] else dg(dg_val,u,p,nothing,j) @. _dgdu = -dg_val end end return nothing end function shadow_forward(prob::NILSSProblem,alg; sensealg=prob.sensealg) shadow_forward(prob,sensealg,alg) end function shadow_forward(prob::NILSSProblem,sensealg::NILSS,alg) @unpack nseg, nstep = sensealg @unpack res, nus, dtsave, vstar, vstar_perp, w, w_perp, R, b, dudt, gsave, dgdu, forward_prob, weight, Cinv, d, B, a, v, v_perp, ξ = prob @unpack numindvar, numparams = forward_prob.f.S # reset dg pointer @unpack jevery, cur_time = prob.diffcache jevery !== nothing && (cur_time[] = one(jevery)) # compute vstar, w forward_sense(prob,sensealg,alg) # compute avg objective gavg = sum(prob.weight*gsave)/((nstep-1)*nseg) # reset gradient res .*= false # loop over parameters for i=1:numparams compute_Cinv!(Cinv,w_perp,weight,nseg,nus,i) compute_d!(d,w_perp,vstar_perp,weight,nseg,nus,i) compute_B!(B,R,nseg,nus,i) compute_a!(a,B,Cinv,b,d,i) compute_v!(v,v_perp,vstar,vstar_perp,w,w_perp,a,nseg,nus,i) compute_xi(ξ,v,dudt,nseg) _weight = @view weight[1,:] for iseg=1:nseg _dgdu = @view dgdu[:,:,iseg] _v = @view v[:,:,iseg] res[i] += sum((_v.*_dgdu)*_weight)/((nstep-1)*nseg) res[i] += ξ[iseg,end]*(gavg-gsave[end,iseg])/(dtsave*(nstep-1)*nseg) end end return res end check_for_g(sensealg::NILSS,g) = (g===nothing && error("To use NILSS, g must be passed as a kwarg to `NILSS(g=g)`."))
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
10542
struct ODEQuadratureAdjointSensitivityFunction{C<:AdjointDiffCache,Alg<:QuadratureAdjoint, uType,SType,fType<:DiffEqBase.AbstractDiffEqFunction} <: SensitivityFunction diffcache::C sensealg::Alg discrete::Bool y::uType sol::SType f::fType end function ODEQuadratureAdjointSensitivityFunction(g,sensealg,discrete,sol,dg) diffcache, y = adjointdiffcache(g,sensealg,discrete,sol,dg,sol.prob.f;quad=true) return ODEQuadratureAdjointSensitivityFunction(diffcache,sensealg,discrete, y,sol,sol.prob.f) end # u = λ' function (S::ODEQuadratureAdjointSensitivityFunction)(du,u,p,t) @unpack sol, discrete = S f = sol.prob.f λ,grad,y,dλ,dgrad,dy = split_states(du,u,t,S) vecjacobian!(dλ, y, λ, p, t, S) dλ .*= -one(eltype(λ)) discrete || accumulate_cost!(dλ, y, p, t, S) return nothing end function split_states(du,u,t,S::ODEQuadratureAdjointSensitivityFunction;update=true) @unpack y, sol = S if update if typeof(t) <: ForwardDiff.Dual && eltype(y) <: AbstractFloat y = sol(t, continuity=:right) else sol(y,t, continuity=:right) end end λ = u dλ = du λ,nothing,y,dλ,nothing,nothing end # g is either g(t,u,p) or discrete g(t,u,i) @noinline function ODEAdjointProblem(sol,sensealg::QuadratureAdjoint,g, t=nothing,dg=nothing, callback=CallbackSet()) @unpack f, p, u0, tspan = sol.prob terminated = false if hasfield(typeof(sol),:retcode) if sol.retcode == :Terminated tspan = (tspan[1], sol.t[end]) terminated = true end end tspan = reverse(tspan) discrete = t !== nothing len = length(u0) λ = similar(u0, len) λ .= false sense = ODEQuadratureAdjointSensitivityFunction(g,sensealg,discrete,sol,dg) init_cb = t !== nothing && tspan[1] == t[end] z0 = vec(zero(λ)) cb, duplicate_iterator_times = generate_callbacks(sense, g, λ, t, tspan[2], callback, init_cb, terminated) jac_prototype = sol.prob.f.jac_prototype adjoint_jac_prototype = !sense.discrete || jac_prototype === nothing ? nothing : copy(jac_prototype') original_mm = sol.prob.f.mass_matrix if original_mm === I || original_mm === (I,I) odefun = ODEFunction(sense, jac_prototype=adjoint_jac_prototype) else odefun = ODEFunction(sense, mass_matrix=sol.prob.f.mass_matrix', jac_prototype=adjoint_jac_prototype) end return ODEProblem(odefun,z0,tspan,p,callback=cb) end struct AdjointSensitivityIntegrand{pType,uType,lType,rateType,S,AS,PF,PJC,PJT,DGP,G} sol::S adj_sol::AS p::pType y::uType λ::lType pf::PF f_cache::rateType pJ::PJT paramjac_config::PJC sensealg::QuadratureAdjoint dgdp_cache::DGP dgdp::G end function AdjointSensitivityIntegrand(sol,adj_sol,sensealg,dgdp=nothing) prob = sol.prob @unpack f, p, tspan, u0 = prob numparams = length(p) y = zero(sol.prob.u0) λ = zero(adj_sol.prob.u0) # we need to alias `y` f_cache = zero(y) f_cache .= false isautojacvec = get_jacvec(sensealg) dgdp_cache = dgdp === nothing ? nothing : zero(p) if sensealg.autojacvec isa ReverseDiffVJP tape = if DiffEqBase.isinplace(prob) ReverseDiff.GradientTape((y, prob.p, [tspan[2]])) do u,p,t du1 = similar(p, size(u)) du1 .= false f(du1,u,p,first(t)) return vec(du1) end else ReverseDiff.GradientTape((y, prob.p, [tspan[2]])) do u,p,t vec(f(u,p,first(t))) end end if compile_tape(sensealg.autojacvec) paramjac_config = ReverseDiff.compile(tape) else paramjac_config = tape end pf = nothing pJ = nothing elseif sensealg.autojacvec isa EnzymeVJP paramjac_config = zero(y),zero(y) pf = let f = f.f if DiffEqBase.isinplace(prob) && prob isa RODEProblem function (out,u,_p,t,W) f(out, u, _p, t, W) nothing end elseif DiffEqBase.isinplace(prob) function (out,u,_p,t) f(out, u, _p, t) nothing end elseif !DiffEqBase.isinplace(prob) && prob isa RODEProblem function (out,u,_p,t,W) out .= f(u, _p, t, W) nothing end else !DiffEqBase.isinplace(prob) function (out,u,_p,t) out .= f(u, _p, t) nothing end end end pJ = nothing elseif isautojacvec # Zygote paramjac_config = nothing pf = nothing pJ = nothing else pf = DiffEqBase.ParamJacobianWrapper(f,tspan[1],y) pJ = similar(u0,length(u0),numparams) paramjac_config = build_param_jac_config(sensealg,pf,y,p) end AdjointSensitivityIntegrand(sol,adj_sol,p,y,λ,pf,f_cache,pJ,paramjac_config,sensealg,dgdp_cache,dgdp) end function (S::AdjointSensitivityIntegrand)(out,t) @unpack y, λ, pJ, pf, p, f_cache, dgdp_cache, paramjac_config, sensealg, sol, adj_sol = S f = sol.prob.f sol(y,t) adj_sol(λ,t) λ .*= -one(eltype(λ)) isautojacvec = get_jacvec(sensealg) # y is aliased if !isautojacvec if DiffEqBase.has_paramjac(f) f.paramjac(pJ,y,p,t) # Calculate the parameter Jacobian into pJ else pf.t = t jacobian!(pJ, pf, p, f_cache, sensealg, paramjac_config) end mul!(out',λ',pJ) elseif sensealg.autojacvec isa ReverseDiffVJP tape = paramjac_config tu, tp, tt = ReverseDiff.input_hook(tape) output = ReverseDiff.output_hook(tape) ReverseDiff.unseed!(tu) # clear any "leftover" derivatives from previous calls ReverseDiff.unseed!(tp) ReverseDiff.unseed!(tt) ReverseDiff.value!(tu, y) ReverseDiff.value!(tp, p) ReverseDiff.value!(tt, [t]) ReverseDiff.forward_pass!(tape) ReverseDiff.increment_deriv!(output, λ) ReverseDiff.reverse_pass!(tape) copyto!(vec(out), ReverseDiff.deriv(tp)) elseif sensealg.autojacvec isa ZygoteVJP _dy, back = Zygote.pullback(p) do p vec(f(y, p, t)) end tmp = back(λ) out[:] .= vec(tmp[1]) elseif sensealg.autojacvec isa EnzymeVJP tmp3,tmp4 = paramjac_config tmp4 .= λ out .= 0 Enzyme.autodiff(pf,Enzyme.Duplicated(tmp3,tmp4), y,Enzyme.Duplicated(p, out),t) end # TODO: Add tracker? if S.dgdp !== nothing S.dgdp(dgdp_cache, y, p, t) out .+= dgdp_cache end out' end function (S::AdjointSensitivityIntegrand)(t) out = similar(S.p) S(out,t) end function _adjoint_sensitivities(sol,sensealg::QuadratureAdjoint,alg,g, t=nothing,dg=nothing; abstol=sensealg.abstol,reltol=sensealg.reltol, callback = nothing, kwargs...) dgdu, dgdp = dg isa Tuple ? dg : (dg, nothing) adj_prob = ODEAdjointProblem(sol,sensealg,g,t,dgdu,callback) adj_sol = solve(adj_prob,alg;abstol=abstol,reltol=reltol, save_everystep=true,save_start=true,kwargs...) p = sol.prob.p if p === nothing || p === DiffEqBase.NullParameters() return -adj_sol[end],nothing else integrand = AdjointSensitivityIntegrand(sol,adj_sol,sensealg,dgdp) if t === nothing res,err = quadgk(integrand,sol.prob.tspan[1],sol.prob.tspan[2], atol=abstol,rtol=reltol) else res = zero(integrand.p)' if callback!==nothing cur_time = length(t) dλ = similar(integrand.λ) dλ .*= false dgrad = similar(res) dgrad .*= false end for i in length(t)-1:-1:1 res .+= quadgk(integrand,t[i],t[i+1], atol=abstol,rtol=reltol)[1] if t[i]==t[i+1] for cb in callback.discrete_callbacks if t[i] ∈ cb.affect!.event_times integrand = update_integrand_and_dgrad(res,sensealg,cb,integrand,adj_prob,sol,dgdu,g,dλ,dgrad,t[i],cur_time) end end for cb in callback.continuous_callbacks if t[i] ∈ cb.affect!.event_times || t[i] ∈ cb.affect_neg!.event_times integrand = update_integrand_and_dgrad(res,sensealg,cb,integrand,adj_prob,sol,dgdu,g,dλ,dgrad,t[i],cur_time) end end end callback!==nothing && (cur_time -= one(cur_time)) end if t[1] != sol.prob.tspan[1] res .+= quadgk(integrand,sol.prob.tspan[1],t[1], atol=abstol,rtol=reltol)[1] end end return -adj_sol[end], res end end function update_p_integrand(integrand::AdjointSensitivityIntegrand,p) @unpack sol, adj_sol, y, λ, pf, f_cache, pJ, paramjac_config, sensealg, dgdp_cache, dgdp = integrand AdjointSensitivityIntegrand(sol,adj_sol,p,y,λ,pf,f_cache,pJ,paramjac_config,sensealg,dgdp_cache,dgdp) end function update_integrand_and_dgrad(res,sensealg::QuadratureAdjoint,cb,integrand,adj_prob,sol,dgdu,g,dλ,dgrad,t,cur_time) indx, pos_neg = get_indx(cb, t) tprev = get_tprev(cb,indx,pos_neg) wp = let tprev=tprev, pos_neg=pos_neg function (dp,p,u,t) _affect! = get_affect!(cb,pos_neg) fakeinteg = FakeIntegrator([x for x in u],[x for x in p],t,tprev) _affect!(fakeinteg) dp .= fakeinteg.p end end _p = similar(integrand.p, size(integrand.p)) wp(_p,integrand.p,integrand.y,t) if _p != integrand.p fakeSp = CallbackSensitivityFunction(wp,sensealg,adj_prob.f.f.diffcache,sol.prob) #vjp with Jacobin given by dw/dp before event and vector given by grad vecjacobian!(res, integrand.p, res, integrand.y, t, fakeSp; dgrad=nothing, dy=nothing) integrand = update_p_integrand(integrand,_p) end w = let tprev=tprev, pos_neg=pos_neg function (du,u,p,t) _affect! = get_affect!(cb,pos_neg) fakeinteg = FakeIntegrator([x for x in u],[x for x in p],t,tprev) _affect!(fakeinteg) du .= vec(fakeinteg.u) end end # Create a fake sensitivity function to do the vjps needs to be done # to account for parameter dependence of affect function fakeS = CallbackSensitivityFunction(w,sensealg,adj_prob.f.f.diffcache,sol.prob) if dgdu === nothing g(dλ,integrand.y,integrand.p,t,cur_time) else dgdu(dλ,integrand.y,integrand.p,t,cur_time) end # account for implicit events dλ .= dλ-integrand.λ vecjacobian!(dλ, integrand.y, dλ, integrand.p, t, fakeS; dgrad=dgrad) res .-= dgrad return integrand end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
4180
# Piracy that used to be requires, allowing ReverseDiff.jl to be specialized for SciML DiffEqBase.value(x::ReverseDiff.TrackedReal) = x.value DiffEqBase.value(x::ReverseDiff.TrackedArray) = x.value DiffEqBase.promote_u0(u0::ReverseDiff.TrackedArray, p::ReverseDiff.TrackedArray, t0) = u0 DiffEqBase.promote_u0(u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::ReverseDiff.TrackedArray, t0) = u0 DiffEqBase.promote_u0(u0::ReverseDiff.TrackedArray, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) = u0 DiffEqBase.promote_u0(u0::AbstractArray{<:ReverseDiff.TrackedReal}, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) = u0 DiffEqBase.promote_u0(u0, p::ReverseDiff.TrackedArray, t0) = ReverseDiff.track(u0) DiffEqBase.promote_u0(u0, p::AbstractArray{<:ReverseDiff.TrackedReal}, t0) = eltype(p).(u0) # Support adaptive with non-tracked time @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedArray, t) where {N} sqrt(sum(abs2, DiffEqBase.value(u)) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:ReverseDiff.TrackedReal,N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:ReverseDiff.TrackedReal,N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedReal, t) = abs(DiffEqBase.value(u)) # Support TrackedReal time, don't drop tracking on the adaptivity there @inline function DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedArray, t::ReverseDiff.TrackedReal) where {N} sqrt(sum(abs2, u) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:ReverseDiff.TrackedReal,N}, t::ReverseDiff.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:ReverseDiff.TrackedReal,N}, t::ReverseDiff.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::ReverseDiff.TrackedReal, t::ReverseDiff.TrackedReal) = abs(u) function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0::ReverseDiff.TrackedArray, p::ReverseDiff.TrackedArray, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0, p::ReverseDiff.TrackedArray, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0::ReverseDiff.TrackedArray, p, args...; kwargs...) ReverseDiff.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end @inline function DiffEqNoiseProcess.wiener_randn(rng::Random.AbstractRNG, proto::ReverseDiff.TrackedArray) ReverseDiff.track(convert.(eltype(proto.value), randn(rng, size(proto)))) end @inline function DiffEqNoiseProcess.wiener_randn!(rng::AbstractRNG, rand_vec::Array{<:ReverseDiff.TrackedReal}) rand_vec .= ReverseDiff.track.(randn.((rng,), typeof.(DiffEqBase.value.(rand_vec)))) end @inline function DiffEqNoiseProcess.wiener_randn!(rng::AbstractRNG, rand_vec::AbstractArray{<:ReverseDiff.TrackedReal}) rand_vec .= ReverseDiff.track.(randn.((rng,), typeof.(DiffEqBase.value.(rand_vec)))) end # Required becase ReverseDiff.@grad function DiffEqBase.solve_up is not supported! import DiffEqBase: solve_up ReverseDiff.@grad function solve_up(prob,sensealg,u0,p,args...;kwargs...) out = DiffEqBase._solve_adjoint(prob,sensealg,ReverseDiff.value(u0),ReverseDiff.value(p), SciMLBase.ReverseDiffOriginator(),args...;kwargs...) Array(out[1]),out[2] end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
2048
# for Ito / Stratonovich conversion struct StochasticTransformedFunction{pType,fType<:DiffEqBase.AbstractDiffEqFunction,gType,noiseType,cfType} <: TransformedFunction prob::pType f::fType g::gType gtmp::noiseType inplace::Bool corfunc_analytical::cfType end function StochasticTransformedFunction(sol,f,g, corfunc_analytical=nothing) @unpack prob = sol if StochasticDiffEq.is_diagonal_noise(prob) gtmp = copy(sol.u[end]) else gtmp = similar(prob.p, size(prob.noise_rate_prototype)) end return StochasticTransformedFunction(prob,f,g,gtmp,DiffEqBase.isinplace(prob),corfunc_analytical) end function (Tfunc::StochasticTransformedFunction)(du,u,p,t) @unpack gtmp, f, g, corfunc_analytical = Tfunc ducor = similar(u, size(u)) if corfunc_analytical !== nothing corfunc_analytical(ducor,u,p,t) else tape = ReverseDiff.GradientTape((u, p, [t])) do uloc,ploc,tloc du1 = similar(uloc, size(gtmp)) g(du1,uloc,ploc,first(tloc)) return vec(du1) end tu, tp, tt = ReverseDiff.input_hook(tape) output = ReverseDiff.output_hook(tape) ReverseDiff.unseed!(tu) # clear any "leftover" derivatives from previous calls ReverseDiff.unseed!(tp) ReverseDiff.unseed!(tt) ReverseDiff.value!(tu, u) ReverseDiff.value!(tp, p) ReverseDiff.value!(tt, [t]) ReverseDiff.forward_pass!(tape) ReverseDiff.increment_deriv!(output, vec(ReverseDiff.value(output))) ReverseDiff.reverse_pass!(tape) ReverseDiff.deriv(tu) ReverseDiff.pull_value!(output) copyto!(vec(ducor), ReverseDiff.deriv(tu)) end f(du,u,p,t) @. du = du - ducor return nothing end function (Tfunc::StochasticTransformedFunction)(u,p,t) @unpack f, g, corfunc_analytical = Tfunc #ducor = vecjacobian(u, p, t, Tfunc) if corfunc_analytical !== nothing ducor = corfunc_analytical(u,p,t) else _dy, back = Zygote.pullback(u, p) do uloc, ploc vec(g(uloc, ploc, t)) end ducor, _ = back(_dy) end du = f(u,p,t) du = @. du - ducor return du end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
688
function _second_order_sensitivities(loss,prob,alg,sensealg::ForwardDiffOverAdjoint, args...;kwargs...) ForwardDiff.jacobian(prob.p) do p x = Zygote.gradient(p) do _p loss(solve(prob,alg,args...;p=_p,sensealg=sensealg.adjalg,kwargs...)) end first(x) end end function _second_order_sensitivity_product(loss,v,prob,alg,sensealg::ForwardDiffOverAdjoint, args...;kwargs...) θ = ForwardDiff.Dual.(prob.p,v) _loss = p -> loss(solve(prob,alg,args...;p=p,sensealg=sensealg.adjalg,kwargs...)) getindex.(ForwardDiff.partials.(Zygote.gradient(_loss,θ)[1]),1) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
47433
SensitivityAlg(args...;kwargs...) = @error("The SensitivtyAlg choice mechanism was completely overhauled. Please consult the local sensitivity documentation for more information") abstract type AbstractForwardSensitivityAlgorithm{CS,AD,FDT} <: DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT} end abstract type AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} <: DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT} end abstract type AbstractSecondOrderSensitivityAlgorithm{CS,AD,FDT} <: DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT} end abstract type AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} <: DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT} end """ ForwardSensitivity{CS,AD,FDT} <: AbstractForwardSensitivityAlgorithm{CS,AD,FDT} An implementation of continuous forward sensitivity analysis for propagating derivatives by solving the extended ODE. When used within adjoint differentiation (i.e. via Zygote), this will cause forward differentiation of the `solve` call within the reverse-mode automatic differentiation environment. ## Constructor ```julia function ForwardSensitivity(; chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=autodiff, autojacmat=false) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation in the internal sensitivity algorithm computations. Default is `true`. * `chunk_size`: Chunk size for forward mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `autojacvec`: Calculate the Jacobian-vector product via automatic differentiation with special seeding. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. Further details: - If `autodiff=true` and `autojacvec=true`, then the one chunk `J*v` forward-mode directional derivative calculation trick is used to compute the product without constructing the Jacobian (via ForwardDiff.jl). - If `autodiff=false` and `autojacvec=true`, then the numerical direction derivative trick `(f(x+epsilon*v)-f(x))/epsilon` is used to compute `J*v` without constructing the Jacobian. - If `autodiff=true` and `autojacvec=false`, then the Jacobian is constructed via chunked forward-mode automatic differentiation (via ForwardDiff.jl). - If `autodiff=false` and `autojacvec=false`, then the Jacobian is constructed via finite differences via FiniteDiff.jl. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s without callbacks (events). """ struct ForwardSensitivity{CS,AD,FDT} <: AbstractForwardSensitivityAlgorithm{CS,AD,FDT} autojacvec::Bool autojacmat::Bool end Base.@pure function ForwardSensitivity(; chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=autodiff, autojacmat=false) autojacvec && autojacmat && error("Choose either Jacobian matrix products or Jacobian vector products, autojacmat and autojacvec cannot both be true") ForwardSensitivity{chunk_size,autodiff,diff_type}(autojacvec,autojacmat) end """ ForwardDiffSensitivity{CS,CTS} <: AbstractForwardSensitivityAlgorithm{CS,Nothing,Nothing} An implementation of discrete forward sensitivity analysis through ForwardDiff.jl. When used within adjoint differentiation (i.e. via Zygote), this will cause forward differentiation of the `solve` call within the reverse-mode automatic differentiation environment. ## Constructor ```julia ForwardDiffSensitivity(;chunk_size=0,convert_tspan=nothing) ``` ## Keyword Arguments * `chunk_size`: the chunk size used by ForwardDiff for computing the Jacobian, i.e. the number of simultaneous columns computed. * `convert_tspan`: whether to convert time to also be `Dual` valued. By default this is `nothing` which will only convert if callbacks are found. Conversion is required in order to accurately differentiate callbacks (hybrid equations). ## SciMLProblem Support This `sensealg` supports any `SciMLProblem`s, provided that the solver algorithms is `SciMLBase.isautodifferentiable`. Note that `ForwardDiffSensitivity` can accurately differentiate code with callbacks only when `convert_tspan=true`. """ struct ForwardDiffSensitivity{CS,CTS} <: AbstractForwardSensitivityAlgorithm{CS,Nothing,Nothing} end Base.@pure function ForwardDiffSensitivity(;chunk_size=0,convert_tspan=nothing) ForwardDiffSensitivity{chunk_size,convert_tspan}() end """ BacksolveAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} An implementation of adjoint sensitivity analysis using a backwards solution of the ODE. By default this algorithm will use the values from the forward pass to perturb the backwards solution to the correct spot, allowing reduced memory (O(1) memory). Checkpointing stabilization is included for additional numerical stability over the naive implementation. ## Constructor ```julia BacksolveAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing, checkpointing=true, noisemixing=false) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `autojacvec`: Calculate the vector-Jacobian product (`J'*v`) via automatic differentiation with special seeding. The default is `true`. The total set of choices are: - `false`: the Jacobian is constructed via FiniteDiff.jl - `true`: the Jacobian is constructed via ForwardDiff.jl - `TrackerVJP`: Uses Tracker.jl for the vjp. - `ZygoteVJP`: Uses Zygote.jl for the vjp. - `EnzymeVJP`: Uses Enzyme.jl for the vjp. - `ReverseDiffVJP(compile=false)`: Uses ReverseDiff.jl for the vjp. `compile` is a boolean for whether to precompile the tape, which should only be done if there are no branches (`if` or `while` statements) in the `f` function. * `checkpointing`: whether checkpointing is enabled for the reverse pass. Defaults to `true`. * `noisemixing`: Handle noise processes that are not of the form `du[i] = f(u[i])`. For example, to compute the sensitivities of an SDE with diagonal diffusion ```julia function g_mixing!(du,u,p,t) du[1] = p[3]*u[1] + p[4]*u[2] du[2] = p[3]*u[1] + p[4]*u[2] nothing end ``` correctly, `noisemixing=true` must be enabled. The default is `false`. For more details on the vjp choices, please consult the sensitivity algorithms documentation page or the docstrings of the vjp types. ## Applicability of Backsolve and Caution When `BacksolveAdjoint` is applicable, it is a fast method and requires the least memory. However, one must be cautious because not all ODEs are stable under backwards integration by the majority of ODE solvers. An example of such an equation is the Lorenz equation. Notice that if one solves the Lorenz equation forward and then in reverse with any adaptive time step and non-reversible integrator, then the backwards solution diverges from the forward solution. As a quick demonstration: ```julia using Sundials function lorenz(du,u,p,t) du[1] = 10.0*(u[2]-u[1]) du[2] = u[1]*(28.0-u[3]) - u[2] du[3] = u[1]*u[2] - (8/3)*u[3] end u0 = [1.0;0.0;0.0] tspan = (0.0,100.0) prob = ODEProblem(lorenz,u0,tspan) sol = solve(prob,Tsit5(),reltol=1e-12,abstol=1e-12) prob2 = ODEProblem(lorenz,sol[end],(100.0,0.0)) sol = solve(prob,Tsit5(),reltol=1e-12,abstol=1e-12) @show sol[end]-u0 #[-3.22091, -1.49394, 21.3435] ``` Thus one should check the stability of the backsolve on their type of problem before enabling this method. Additionally, using checkpointing with backsolve can be a low memory way to stabilize it. For more details on this topic, see [Stiff Neural Ordinary Differential Equations](https://aip.scitation.org/doi/10.1063/5.0060697). ## Checkpointing To improve the numerical stability of the reverse pass, `BacksolveAdjoint` includes a checkpointing feature. If `sol.u` is a time series, then whenever a time `sol.t` is hit while reversing, a callback will replace the reversing ODE portion with `sol.u[i]`. This nudges the solution back onto the appropriate trajectory and reduces the numerical caused by drift. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s, `SDEProblem`s, and `RODEProblem`s. This `sensealg` supports callback functions (events). ## References ODE: Rackauckas, C. and Ma, Y. and Martensen, J. and Warner, C. and Zubov, K. and Supekar, R. and Skinner, D. and Ramadhana, A. and Edelman, A., Universal Differential Equations for Scientific Machine Learning, arXiv:2001.04385 Hindmarsh, A. C. and Brown, P. N. and Grant, K. E. and Lee, S. L. and Serban, R. and Shumaker, D. E. and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31, pp:363–396 (2005) Chen, R.T.Q. and Rubanova, Y. and Bettencourt, J. and Duvenaud, D. K., Neural ordinary differential equations. In Advances in neural information processing systems, pp. 6571–6583 (2018) Pontryagin, L. S. and Mishchenko, E.F. and Boltyanskii, V.G. and Gamkrelidze, R.V. The mathematical theory of optimal processes. Routledge, (1962) Rackauckas, C. and Ma, Y. and Dixit, V. and Guo, X. and Innes, M. and Revels, J. and Nyberg, J. and Ivaturi, V., A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions, arXiv:1812.01892 DAE: Cao, Y. and Li, S. and Petzold, L. and Serban, R., Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution, SIAM journal on scientific computing 24 pp: 1076-1089 (2003) SDE: Gobet, E. and Munos, R., Sensitivity Analysis Using Ito-Malliavin Calculus and Martingales, and Application to Stochastic Optimal Control, SIAM Journal on control and optimization, 43, pp. 1676-1713 (2005) Li, X. and Wong, T.-K. L.and Chen, R. T. Q. and Duvenaud, D., Scalable Gradients for Stochastic Differential Equations, PMLR 108, pp. 3870-3882 (2020), http://proceedings.mlr.press/v108/li20i.html """ struct BacksolveAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} autojacvec::VJP checkpointing::Bool noisemixing::Bool end Base.@pure function BacksolveAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing, checkpointing=true, noisemixing=false) BacksolveAdjoint{chunk_size,autodiff,diff_type,typeof(autojacvec)}(autojacvec,checkpointing,noisemixing) end setvjp(sensealg::BacksolveAdjoint{CS,AD,FDT,Nothing}, vjp) where {CS,AD,FDT} = BacksolveAdjoint{CS,AD,FDT,typeof(vjp)}(vjp,sensealg.checkpointing, sensealg.noisemixing) """ InterpolatingAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} An implementation of adjoint sensitivity analysis which uses the interpolation of the forward solution for the reverse solve vector-Jacobian products. By default it requires a dense solution of the forward pass and will internally ignore saving arguments during the gradient calculation. When checkpointing is enabled it will only require the memory to interpolate between checkpoints. ## Constructor ```julia function InterpolatingAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing, checkpointing=false, noisemixing=false) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `autojacvec`: Calculate the vector-Jacobian product (`J'*v`) via automatic differentiation with special seeding. The default is `true`. The total set of choices are: - `false`: the Jacobian is constructed via FiniteDiff.jl - `true`: the Jacobian is constructed via ForwardDiff.jl - `TrackerVJP`: Uses Tracker.jl for the vjp. - `ZygoteVJP`: Uses Zygote.jl for the vjp. - `EnzymeVJP`: Uses Enzyme.jl for the vjp. - `ReverseDiffVJP(compile=false)`: Uses ReverseDiff.jl for the vjp. `compile` is a boolean for whether to precompile the tape, which should only be done if there are no branches (`if` or `while` statements) in the `f` function. * `checkpointing`: whether checkpointing is enabled for the reverse pass. Defaults to `true`. * `noisemixing`: Handle noise processes that are not of the form `du[i] = f(u[i])`. For example, to compute the sensitivities of an SDE with diagonal diffusion ```julia function g_mixing!(du,u,p,t) du[1] = p[3]*u[1] + p[4]*u[2] du[2] = p[3]*u[1] + p[4]*u[2] nothing end ``` correctly, `noisemixing=true` must be enabled. The default is `false`. For more details on the vjp choices, please consult the sensitivity algorithms documentation page or the docstrings of the vjp types. ## Checkpointing To reduce the memory usage of the reverse pass, `InterpolatingAdjoint` includes a checkpointing feature. If `sol` is `dense`, checkpointing is ignored and the continuous solution is used for calculating `u(t)` at arbitrary time points. If `checkpointing=true` and `sol` is not `dense`, then dense intervals between `sol.t[i]` and `sol.t[i+1]` are reconstructed on-demand for calculating `u(t)` at arbitrary time points. This reduces the total memory requirement to only the cost of holding the dense solution over the largest time interval (in terms of number of required steps). The total compute cost is no more than double the original forward compute cost. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s, `SDEProblem`s, and `RODEProblem`s. This `sensealg` supports callbacks (events). ## References Rackauckas, C. and Ma, Y. and Martensen, J. and Warner, C. and Zubov, K. and Supekar, R. and Skinner, D. and Ramadhana, A. and Edelman, A., Universal Differential Equations for Scientific Machine Learning, arXiv:2001.04385 Hindmarsh, A. C. and Brown, P. N. and Grant, K. E. and Lee, S. L. and Serban, R. and Shumaker, D. E. and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31, pp:363–396 (2005) Rackauckas, C. and Ma, Y. and Dixit, V. and Guo, X. and Innes, M. and Revels, J. and Nyberg, J. and Ivaturi, V., A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions, arXiv:1812.01892 """ struct InterpolatingAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} autojacvec::VJP checkpointing::Bool noisemixing::Bool end Base.@pure function InterpolatingAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing, checkpointing=false,noisemixing=false) InterpolatingAdjoint{chunk_size,autodiff,diff_type,typeof(autojacvec)}(autojacvec,checkpointing,noisemixing) end setvjp(sensealg::InterpolatingAdjoint{CS,AD,FDT,Nothing},vjp) where {CS,AD,FDT} = InterpolatingAdjoint{CS,AD,FDT,typeof(vjp)}(vjp,sensealg.checkpointing, sensealg.noisemixing) """ QuadratureAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} An implementation of adjoint sensitivity analysis which develops a full continuous solution of the reverse solve in order to perform a post-ODE quadrature. This method requires the the dense solution and will ignore saving arguments during the gradient calculation. The tolerances in the constructor control the inner quadrature. The inner quadrature uses a ReverseDiff vjp if autojacvec, and `compile=false` by default but can compile the tape under the same circumstances as `ReverseDiffVJP`. This method is O(n^3 + p) for stiff / implicit equations (as opposed to the O((n+p)^3) scaling of BacksolveAdjoint and InterpolatingAdjoint), and thus is much more compute efficient. However, it requires holding a dense reverse pass and is thus memory intensive. ## Constructor ```julia function QuadratureAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing,abstol=1e-6, reltol=1e-3,compile=false) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `autojacvec`: Calculate the vector-Jacobian product (`J'*v`) via automatic differentiation with special seeding. The default is `true`. The total set of choices are: - `false`: the Jacobian is constructed via FiniteDiff.jl - `true`: the Jacobian is constructed via ForwardDiff.jl - `TrackerVJP`: Uses Tracker.jl for the vjp. - `ZygoteVJP`: Uses Zygote.jl for the vjp. - `EnzymeVJP`: Uses Enzyme.jl for the vjp. - `ReverseDiffVJP(compile=false)`: Uses ReverseDiff.jl for the vjp. `compile` is a boolean for whether to precompile the tape, which should only be done if there are no branches (`if` or `while` statements) in the `f` function. * `abstol`: absolute tolerance for the quadrature calculation * `reltol`: relative tolerance for the quadrature calculation * `compile`: whether to compile the vjp calculation for the integrand calculation. See `ReverseDiffVJP` for more details. For more details on the vjp choices, please consult the sensitivity algorithms documentation page or the docstrings of the vjp types. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s. This `sensealg` supports events (callbacks). ## References Rackauckas, C. and Ma, Y. and Martensen, J. and Warner, C. and Zubov, K. and Supekar, R. and Skinner, D. and Ramadhana, A. and Edelman, A., Universal Differential Equations for Scientific Machine Learning, arXiv:2001.04385 Hindmarsh, A. C. and Brown, P. N. and Grant, K. E. and Lee, S. L. and Serban, R. and Shumaker, D. E. and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31, pp:363–396 (2005) Rackauckas, C. and Ma, Y. and Dixit, V. and Guo, X. and Innes, M. and Revels, J. and Nyberg, J. and Ivaturi, V., A comparison of automatic differentiation and continuous sensitivity analysis for derivatives of differential equation solutions, arXiv:1812.01892 Kim, S., Ji, W., Deng, S., Ma, Y., & Rackauckas, C. (2021). Stiff neural ordinary differential equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(9), 093122. """ struct QuadratureAdjoint{CS,AD,FDT,VJP} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} autojacvec::VJP abstol::Float64 reltol::Float64 end Base.@pure function QuadratureAdjoint(;chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=nothing,abstol=1e-6, reltol=1e-3) QuadratureAdjoint{chunk_size,autodiff,diff_type,typeof(autojacvec)}(autojacvec,abstol,reltol) end setvjp(sensealg::QuadratureAdjoint{CS,AD,FDT,Nothing},vjp) where {CS,AD,FDT} = QuadratureAdjoint{CS,AD,FDT,typeof(vjp)}(vjp,sensealg.abstol, sensealg.reltol) """ TrackerAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} An implementation of discrete adjoint sensitivity analysis using the Tracker.jl tracing-based AD. Supports in-place functions through an Array of Structs formulation, and supports out of place through struct of arrays. ## Constructor ```julia TrackerAdjoint() ``` ## SciMLProblem Support This `sensealg` supports any `DEProblem` if the algorithm is `SciMLBase.isautodifferentiable` Compatible with a limited subset of `AbstractArray` types for `u0`, including `CuArrays`. !!! warn TrackerAdjoint is incompatible with Stiff ODE solvers using forward-mode automatic differentiation for the Jacobians. Thus for example, `TRBDF2()` will error. Instead, use `autodiff=false`, i.e. `TRBDF2(autodiff=false)`. This will only remove the forward-mode automatic differentiation of the Jacobian construction, not the reverse-mode AD usage, and thus performance will still be nearly the same, though Jacobian accuracy may suffer which could cause more steps to be required. """ struct TrackerAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} end """ ReverseDiffAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} An implementation of discrete adjoint sensitivity analysis using the ReverseDiff.jl tracing-based AD. Supports in-place functions through an Array of Structs formulation, and supports out of place through struct of arrays. ## Constructor ```julia ReverseDiffAdjoint() ``` ## SciMLProblem Support This `sensealg` supports any `DEProblem` if the algorithm is `SciMLBase.isautodifferentiable`. Requires that the state variables are CPU-based `Array` types. """ struct ReverseDiffAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} end """ ZygoteAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} An implementation of discrete adjoint sensitivity analysis using the Zygote.jl source-to-source AD directly on the differential equation solver. ## Constructor ```julia ZygoteAdjoint() ``` ## SciMLProblem Support Currently fails on almost every solver. """ struct ZygoteAdjoint <: AbstractAdjointSensitivityAlgorithm{nothing,true,nothing} end """ ForwardLSS{CS,AD,FDT,RType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} An implementation of the discrete, forward-mode [least squares shadowing](https://arxiv.org/abs/1204.0159) (LSS) method. LSS replaces the ill-conditioned initial value probem (`ODEProblem`) for chaotic systems by a well-conditioned least-squares problem. This allows for computing sensitivities of long-time averaged quantities with respect to the parameters of the `ODEProblem`. The computational cost of LSS scales as (number of states x number of time steps). Converges to the correct sensitivity at a rate of `T^(-1/2)`, where `T` is the time of the trajectory. See `NILSS()` and `NILSAS()` for a more efficient non-intrusive formulation. ## Constructor ```julia ForwardLSS(; chunk_size=0,autodiff=true, diff_type=Val{:central}, LSSregularizer=TimeDilation(10.0,0.0,0.0), g=nothing) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `LSSregularizer`: Using `LSSregularizer`, one can choose between three different regularization routines. The default choice is `TimeDilation(10.0,0.0,0.0)`. - `CosWindowing()`: cos windowing of the time grid, i.e. the time grid (saved time steps) is transformed using a cosine. - `Cos2Windowing()`: cos^2 windowing of the time grid. - `TimeDilation(alpha::Number,t0skip::Number,t1skip::Number)`: Corresponds to a time dilation. `alpha` controls the weight. `t0skip` and `t1skip` indicate the times truncated at the beginnning and end of the trajectory, respectively. * `g`: instantaneous objective function of the long-time averaged objective. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s. This `sensealg` does not support events (callbacks). This `sensealg` assumes that the objective is a long-time averaged quantity and ergodic, i.e. the time evolution of the system behaves qualitatively the same over infinite time independent of the specified initial conditions, such that only the sensitivity with respect to the parameters is of interest. ## References Wang, Q., Hu, R., and Blonigan, P. Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. Journal of Computational Physics, 267, 210-224 (2014). Wang, Q., Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages, SIAM Journal on Numerical Analysis, 52, 156–170 (2014). Blonigan, P., Gomez, S., Wang, Q., Least Squares Shadowing for sensitivity analysis of turbulent fluid flows, in: 52nd Aerospace Sciences Meeting, 1–24 (2014). """ struct ForwardLSS{CS,AD,FDT,RType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} LSSregularizer::RType g::gType end Base.@pure function ForwardLSS(; chunk_size=0, autodiff=true, diff_type=Val{:central}, LSSregularizer=TimeDilation(10.0,0.0,0.0), g=nothing) ForwardLSS{chunk_size,autodiff,diff_type,typeof(LSSregularizer),typeof(g)}(LSSregularizer, g) end """ AdjointLSS{CS,AD,FDT,RType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} An implementation of the discrete, adjoint-mode [least square shadowing](https://arxiv.org/abs/1204.0159) method. LSS replaces the ill-conditioned initial value probem (`ODEProblem`) for chaotic systems by a well-conditioned least-squares problem. This allows for computing sensitivities of long-time averaged quantities with respect to the parameters of the `ODEProblem`. The computational cost of LSS scales as (number of states x number of time steps). Converges to the correct sensitivity at a rate of `T^(-1/2)`, where `T` is the time of the trajectory. See `NILSS()` and `NILSAS()` for a more efficient non-intrusive formulation. ## Constructor ```julia AdjointLSS(; chunk_size=0,autodiff=true, diff_type=Val{:central}, LSSRegularizer=CosWindowing(), g=nothing) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `LSSregularizer`: Using `LSSregularizer`, one can choose between different regularization routines. The default choice is `TimeDilation(10.0,0.0,0.0)`. - `TimeDilation(alpha::Number,t0skip::Number,t1skip::Number)`: Corresponds to a time dilation. `alpha` controls the weight. `t0skip` and `t1skip` indicate the times truncated at the beginnning and end of the trajectory, respectively. The default value for `t0skip` and `t1skip` is `zero(alpha)`. * `g`: instantaneous objective function of the long-time averaged objective. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s. This `sensealg` does not support events (callbacks). This `sensealg` assumes that the objective is a long-time averaged quantity and ergodic, i.e. the time evolution of the system behaves qualitatively the same over infinite time independent of the specified initial conditions, such that only the sensitivity with respect to the parameters is of interest. ## References Wang, Q., Hu, R., and Blonigan, P. Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. Journal of Computational Physics, 267, 210-224 (2014). """ struct AdjointLSS{CS,AD,FDT,RType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} LSSregularizer::RType g::gType end Base.@pure function AdjointLSS(; chunk_size=0, autodiff=true, diff_type=Val{:central}, LSSregularizer=TimeDilation(10.0, 0.0, 0.0), g=nothing) AdjointLSS{chunk_size,autodiff,diff_type,typeof(LSSregularizer),typeof(g)}(LSSregularizer, g) end abstract type AbstractLSSregularizer end abstract type AbstractCosWindowing <: AbstractLSSregularizer end struct CosWindowing <: AbstractCosWindowing end struct Cos2Windowing <: AbstractCosWindowing end """ TimeDilation{T1<:Number} <: AbstractLSSregularizer A regularization method for `LSS`. See `?LSS` for additional information and other methods. ## Constructor ```julia TimeDilation(alpha; t0skip=zero(alpha), t1skip=zero(alpha)) ``` """ struct TimeDilation{T1<:Number} <: AbstractLSSregularizer alpha::T1 # alpha: weight of the time dilation term in LSS. t0skip::T1 t1skip::T1 end function TimeDilation(alpha,t0skip=zero(alpha),t1skip=zero(alpha)) TimeDilation{typeof(alpha)}(alpha,t0skip,t1skip) end """ struct NILSS{CS,AD,FDT,RNG,nType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} An implementation of the forward-mode, continuous [non-intrusive least squares shadowing](https://arxiv.org/abs/1611.00880) method. `NILSS` allows for computing sensitivities of long-time averaged quantities with respect to the parameters of an `ODEProblem` by constraining the computation to the unstable subspace. `NILSS` employs the continuous-time `ForwardSensitivity` method as tangent solver. To avoid an exponential blow-up of the (homogenous and inhomogenous) tangent solutions, the trajectory should be divided into sufficiently small segments, where the tangent solutions are rescaled on the interfaces. The computational and memory cost of NILSS scale with the number of unstable (positive) Lyapunov exponents (instead of the number of states as in the LSS method). `NILSS` avoids the explicit construction of the Jacobian at each time step and thus should generally be preferred (for large system sizes) over `ForwardLSS`. ## Constructor ```julia NILSS(nseg, nstep; nus = nothing, rng = Xorshifts.Xoroshiro128Plus(rand(UInt64)), chunk_size=0,autodiff=true, diff_type=Val{:central}, autojacvec=autodiff, g=nothing) ``` ## Arguments * `nseg`: Number of segments on full time interval on the attractor. * `nstep`: number of steps on each segment. ## Keyword Arguments * `nus`: Dimension of the unstable subspace. Default is `nothing`. `nus` must be smaller or equal to the state dimension (`length(u0)`). With the default choice, `nus = length(u0) - 1` will be set at compile time. * `rng`: (Pseudo) random number generator. Used for initializing the homogenous tangent states (`w`). Default is `Xorshifts.Xoroshiro128Plus(rand(UInt64))`. * `autodiff`: Use automatic differentiation in the internal sensitivity algorithm computations. Default is `true`. * `chunk_size`: Chunk size for forward mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `autojacvec`: Calculate the Jacobian-vector product via automatic differentiation with special seeding. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `g`: instantaneous objective function of the long-time averaged objective. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s. This `sensealg` does not support events (callbacks). This `sensealg` assumes that the objective is a long-time averaged quantity and ergodic, i.e. the time evolution of the system behaves qualitatively the same over infinite time independent of the specified initial conditions, such that only the sensitivity with respect to the parameters is of interest. ## References Ni, A., Blonigan, P. J., Chater, M., Wang, Q., Zhang, Z., Sensitivity analy- sis on chaotic dynamical system by Non-Intrusive Least Square Shadowing (NI-LSS), in: 46th AIAA Fluid Dynamics Conference, AIAA AVIATION Forum (AIAA 2016-4399), American Institute of Aeronautics and Astronautics, 1–16 (2016). Ni, A., and Wang, Q. Sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Shadowing (NILSS). Journal of Computational Physics 347, 56-77 (2017). """ struct NILSS{CS,AD,FDT,RNG,nType,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} rng::RNG nseg::Int nstep::Int nus::nType autojacvec::Bool g::gType end Base.@pure function NILSS(nseg, nstep; nus=nothing, rng=Xorshifts.Xoroshiro128Plus(rand(UInt64)), chunk_size=0, autodiff=true, diff_type=Val{:central}, autojacvec=autodiff, g=nothing ) NILSS{chunk_size,autodiff,diff_type,typeof(rng),typeof(nus),typeof(g)}(rng,nseg,nstep,nus,autojacvec,g) end """ NILSAS{CS,AD,FDT,RNG,SENSE,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} An implementation of the adjoint-mode, continuous [non-intrusive adjoint least squares shadowing](https://arxiv.org/abs/1801.08674) method. `NILSAS` allows for computing sensitivities of long-time averaged quantities with respect to the parameters of an `ODEProblem` by constraining the computation to the unstable subspace. `NILSAS` employs SciMLSensitivity.jl's continuous adjoint sensitivity methods on each segment to compute (homogenous and inhomogenous) adjoint solutions. To avoid an exponential blow-up of the adjoint solutions, the trajectory should be divided into sufficiently small segments, where the adjoint solutions are rescaled on the interfaces. The computational and memory cost of NILSAS scale with the number of unstable, adjoint Lyapunov exponents (instead of the number of states as in the LSS method). `NILSAS` avoids the explicit construction of the Jacobian at each time step and thus should generally be preferred (for large system sizes) over `AdjointLSS`. `NILSAS` is favourable over `NILSS` for many parameters because NILSAS computes the gradient with respect to multiple parameters with negligible additional cost. ## Constructor ```julia NILSAS(nseg, nstep, M=nothing; rng = Xorshifts.Xoroshiro128Plus(rand(UInt64)), adjoint_sensealg = BacksolveAdjoint(autojacvec=ReverseDiffVJP()), chunk_size=0,autodiff=true, diff_type=Val{:central}, g=nothing ) ``` ## Arguments * `nseg`: Number of segments on full time interval on the attractor. * `nstep`: number of steps on each segment. * `M`: number of homogenous adjoint solutions. This number must be bigger or equal than the number of (positive, adjoint) Lyapunov exponents. Default is `nothing`. ## Keyword Arguments * `rng`: (Pseudo) random number generator. Used for initializing the terminate conditions of the homogenous adjoint states (`w`). Default is `Xorshifts.Xoroshiro128Plus(rand(UInt64))`. * `adjoint_sensealg`: Continuous adjoint sensitivity method to compute homogenous and inhomogenous adjoint solutions on each segment. Default is `BacksolveAdjoint(autojacvec=ReverseDiffVJP())`. * `autojacvec`: Calculate the vector-Jacobian product (`J'*v`) via automatic differentiation with special seeding. The default is `true`. The total set of choices are: - `false`: the Jacobian is constructed via FiniteDiff.jl - `true`: the Jacobian is constructed via ForwardDiff.jl - `TrackerVJP`: Uses Tracker.jl for the vjp. - `ZygoteVJP`: Uses Zygote.jl for the vjp. - `EnzymeVJP`: Uses Enzyme.jl for the vjp. - `ReverseDiffVJP(compile=false)`: Uses ReverseDiff.jl for the vjp. `compile` is a boolean for whether to precompile the tape, which should only be done if there are no branches (`if` or `while` statements) in the `f` function. * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `g`: instantaneous objective function of the long-time averaged objective. ## SciMLProblem Support This `sensealg` only supports `ODEProblem`s. This `sensealg` does not support events (callbacks). This `sensealg` assumes that the objective is a long-time averaged quantity and ergodic, i.e. the time evolution of the system behaves qualitatively the same over infinite time independent of the specified initial conditions, such that only the sensitivity with respect to the parameters is of interest. ## References Ni, A., and Talnikar, C., Adjoint sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Adjoint Shadowing (NILSAS). Journal of Computational Physics 395, 690-709 (2019). """ struct NILSAS{CS,AD,FDT,RNG,SENSE,gType} <: AbstractShadowingSensitivityAlgorithm{CS,AD,FDT} rng::RNG adjoint_sensealg::SENSE M::Int nseg::Int nstep::Int g::gType end Base.@pure function NILSAS(nseg, nstep, M=nothing; rng=Xorshifts.Xoroshiro128Plus(rand(UInt64)), adjoint_sensealg=BacksolveAdjoint(autojacvec=ReverseDiffVJP()), chunk_size=0, autodiff=true, diff_type=Val{:central}, g=nothing ) # integer dimension of the unstable subspace M === nothing && error("Please provide an `M` with `M >= nus + 1`, where nus is the number of unstable covariant Lyapunov vectors.") NILSAS{chunk_size,autodiff,diff_type,typeof(rng),typeof(adjoint_sensealg),typeof(g)}(rng, adjoint_sensealg, M, nseg, nstep, g) end """ SteadyStateAdjoint{CS,AD,FDT,VJP,LS} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} An implementation of the adjoint differentiation of a nonlinear solve. Uses the implicit function theorem to directly compute the derivative of the solution to ``f(u,p) = 0`` with respect to `p`. ## Constructor ```julia SteadyStateAdjoint(;chunk_size = 0, autodiff = true, diff_type = Val{:central}, autojacvec = autodiff, linsolve = nothing) ``` ## Keyword Arguments * `autodiff`: Use automatic differentiation for constructing the Jacobian if the Jacobian needs to be constructed. Defaults to `true`. * `chunk_size`: Chunk size for forward-mode differentiation if full Jacobians are built (`autojacvec=false` and `autodiff=true`). Default is `0` for automatic choice of chunk size. * `diff_type`: The method used by FiniteDiff.jl for constructing the Jacobian if the full Jacobian is required with `autodiff=false`. * `autojacvec`: Calculate the vector-Jacobian product (`J'*v`) via automatic differentiation with special seeding. The default is `nothing`. The total set of choices are: - `false`: the Jacobian is constructed via FiniteDiff.jl - `true`: the Jacobian is constructed via ForwardDiff.jl - `TrackerVJP`: Uses Tracker.jl for the vjp. - `ZygoteVJP`: Uses Zygote.jl for the vjp. - `EnzymeVJP`: Uses Enzyme.jl for the vjp. - `ReverseDiffVJP(compile=false)`: Uses ReverseDiff.jl for the vjp. `compile` is a boolean for whether to precompile the tape, which should only be done if there are no branches (`if` or `while` statements) in the `f` function. * `linsolve`: the linear solver used in the adjoint solve. Defaults to `nothing`, which uses a polyalgorithm to attempt to automatically choose an efficient algorithm. For more details on the vjp choices, please consult the sensitivity algorithms documentation page or the docstrings of the vjp types. ## References Johnson, S. G., Notes on Adjoint Methods for 18.336, Online at http://math.mit.edu/stevenj/18.336/adjoint.pdf (2007) """ struct SteadyStateAdjoint{CS,AD,FDT,VJP,LS} <: AbstractAdjointSensitivityAlgorithm{CS,AD,FDT} autojacvec::VJP linsolve::LS end Base.@pure function SteadyStateAdjoint(;chunk_size = 0, autodiff = true, diff_type = Val{:central}, autojacvec = nothing, linsolve = nothing) SteadyStateAdjoint{chunk_size,autodiff,diff_type,typeof(autojacvec),typeof(linsolve)}(autojacvec,linsolve) end setvjp(sensealg::SteadyStateAdjoint{CS,AD,FDT,LS},vjp) where {CS,AD,FDT,LS} = SteadyStateAdjoint{CS,AD,FDT,typeof(vjp),LS}(vjp,sensealg.linsolve) abstract type VJPChoice end """ ZygoteVJP <: VJPChoice Uses Zygote.jl to compute vector-Jacobian products. Tends to be the fastest VJP method if the ODE/DAE/SDE/DDE is written with mostly vectorized functions (like neural networks and other layers from Flux.jl) and the `f` functions is given out-of-place. If the `f` function is in-place, then `Zygote.Buffer` arrays are used internally which can greatly reduce the performance of the VJP method. ## Constructor ```julia ZygoteVJP(compile=false) ``` """ struct ZygoteVJP <: VJPChoice end """ EnzymeVJP <: VJPChoice Uses Enzyme.jl to compute vector-Jacobian products. Is the fastest VJP whenever applicable, though Enzyme.jl currently has low coverage over the Julia programming language, for example restricting the user's defined `f` function to not do things like require garbage collection or calls to BLAS/LAPACK. However, mutation is supported, meaning that in-place `f` with fully mutating non-allocating code will work with Enzyme (provided no high level calls to C like BLAS/LAPACK are used) and this will be the most efficient adjoint implementation. ## Constructor ```julia EnzymeVJP(compile=false) ``` """ struct EnzymeVJP <: VJPChoice end """ TrackerVJP <: VJPChoice Uses Tracker.jl to compute the vector-Jacobian products. If `f` is in-place, then it uses a array of structs formulation to do scalarized reverse mode, while if `f` is out-of-place then it uses an array-based reverse mode. Not as efficient as `ReverseDiffVJP`, but supports GPUs when doing array-based reverse mode. ## Constructor ```julia TrackerVJP(compile=false) ``` """ struct TrackerVJP <: VJPChoice end """ ReverseDiffVJP{compile} <: VJPChoice Uses ReverseDiff.jl to compute the vector-Jacobian products. If `f` is in-place, then it uses a array of structs formulation to do scalarized reverse mode, while if `f` is out-of-place then it uses an array-based reverse mode. Usually the fastest when scalarized operations exist in the f function (like in scientific machine learning applications like Universal Differential Equations) and the boolean compilation is enabled (i.e. ReverseDiffVJP(true)), if EnzymeVJP fails on a given choice of `f`. Does not support GPUs (CuArrays). ## Constructor ```julia ReverseDiffVJP(compile=false) ``` ## Keyword Arguments * `compile`: Whether to cache the compilation of the reverse tape. This heavily increases the performance of the method but requires that the `f` function of the ODE/DAE/SDE/DDE has no branching. """ struct ReverseDiffVJP{compile} <: VJPChoice ReverseDiffVJP(compile=false) = new{compile}() end @inline convert_tspan(::ForwardDiffSensitivity{CS,CTS}) where {CS,CTS} = CTS @inline convert_tspan(::Any) = nothing @inline alg_autodiff(alg::DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT}) where {CS,AD,FDT} = AD @inline get_chunksize(alg::DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT}) where {CS,AD,FDT} = CS @inline diff_type(alg::DiffEqBase.AbstractSensitivityAlgorithm{CS,AD,FDT}) where {CS,AD,FDT} = FDT @inline function get_jacvec(alg::DiffEqBase.AbstractSensitivityAlgorithm) alg.autojacvec isa Bool ? alg.autojacvec : true end @inline function get_jacmat(alg::DiffEqBase.AbstractSensitivityAlgorithm) alg.autojacmat isa Bool ? alg.autojacmat : true end @inline ischeckpointing(alg::DiffEqBase.AbstractSensitivityAlgorithm, sol=nothing) = false @inline ischeckpointing(alg::InterpolatingAdjoint) = alg.checkpointing @inline ischeckpointing(alg::InterpolatingAdjoint, sol) = alg.checkpointing || !sol.dense @inline ischeckpointing(alg::BacksolveAdjoint, sol=nothing) = alg.checkpointing @inline isnoisemixing(alg::DiffEqBase.AbstractSensitivityAlgorithm) = false @inline isnoisemixing(alg::InterpolatingAdjoint) = alg.noisemixing @inline isnoisemixing(alg::BacksolveAdjoint) = alg.noisemixing @inline compile_tape(vjp::ReverseDiffVJP{compile}) where compile = compile @inline compile_tape(autojacvec::Bool) = false """ ForwardDiffOverAdjoint{A} <: AbstractSecondOrderSensitivityAlgorithm{nothing,true,nothing} ForwardDiff.jl over a choice of `sensealg` method for the adjoint. ## Constructor ```julia ForwardDiffOverAdjoint(sensealg) ``` ## SciMLProblem Support This supports any SciMLProblem that the `sensealg` choice supports, provided the solver algorithm is `SciMLBase.isautodifferentiable`. ## References Hindmarsh, A. C. and Brown, P. N. and Grant, K. E. and Lee, S. L. and Serban, R. and Shumaker, D. E. and Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), 31, pp:363–396 (2005) """ struct ForwardDiffOverAdjoint{A} <: AbstractSecondOrderSensitivityAlgorithm{nothing,true,nothing} adjalg::A end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
18058
## Direct calls const ADJOINT_PARAMETER_COMPATABILITY_MESSAGE = """ Adjoint sensitivity analysis functionality requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with adjoint sensitivity analysis requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during adjoint differentiation. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl so that `p` is an `AbstractArray` with a concrete element type. """ struct AdjointSensitivityParameterCompatibilityError <: Exception end function Base.showerror(io::IO, e::AdjointSensitivityParameterCompatibilityError) print(io, ADJOINT_PARAMETER_COMPATABILITY_MESSAGE) end @doc doc""" adjoint_sensitivities(sol,alg,g,t=nothing,dg=nothing; abstol=1e-6,reltol=1e-3, checkpoints=sol.t, corfunc_analytical=nothing, callback = nothing, sensealg=InterpolatingAdjoint(), kwargs...) Adjoint sensitivity analysis is used to find the gradient of the solution with respect to some functional of the solution. In many cases this is used in an optimization problem to return the gradient with respect to some cost function. It is equivalent to "backpropagation" or reverse-mode automatic differentiation of a differential equation. Using `adjoint_sensitivities` directly let's you do three things. One it can allow you to be more efficient, since the sensitivity calculation can be done directly on a cost function, avoiding the overhead of building the derivative of the full concretized solution. It can also allow you to be more efficient by directly controlling the forward solve that is then reversed over. Lastly, it allows one to define a continuous cost function on the continuous solution, instead of just at discrete data points. !!! warning Adjoint sensitivity analysis functionality requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with adjoint sensitivity analysis requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during adjoint differentiation. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl so that `p` is an `AbstractArray` with a concrete element type. !!! warning Non-checkpointed InterpolatingAdjoint and QuadratureAdjoint sensealgs require that the forward solution `sol(t)` has an accurate dense solution unless checkpointing is used. This means that you should not use `solve(prob,alg,saveat=ts)` unless checkpointing. If specific saving is required, one should solve dense `solve(prob,alg)`, use the solution in the adjoint, and then `sol(ts)` interpolate. ### Syntax There are two forms. For discrete adjoints, the form is: ```julia du0,dp = adjoint_sensitivities(sol,alg,dg,ts;sensealg=InterpolatingAdjoint(), checkpoints=sol.t,kwargs...) ``` where `alg` is the ODE algorithm to solve the adjoint problem, `dg` is the jump function, `sensealg` is the sensitivity algorithm, and `ts` is the time points for data. `dg` is given by: ```julia dg(out,u,p,t,i) ``` which is the in-place gradient of the cost functional `g` at time point `ts[i]` with `u=u(t)`. For continuous functionals, the form is: ```julia du0,dp = adjoint_sensitivities(sol,alg,g,nothing,(dgdu,dgdp);sensealg=InterpolatingAdjoint(), checkpoints=sol.t,,kwargs...) ``` for the cost functional ```julia g(u,p,t) ``` with in-place gradient ```julia dgdu(out,u,p,t) dgdp(out,u,p,t) ``` If the gradient is omitted, i.e. ```julia du0,dp = adjoint_sensitivities(sol,alg,g,nothing;kwargs...) ``` then we assume `dgdp` is zero and `dgdu` will be computed automatically using ForwardDiff or finite differencing, depending on the `autodiff` setting in the `AbstractSensitivityAlgorithm`. Note that the keyword arguments are passed to the internal ODE solver for solving the adjoint problem. ### Example discrete adjoints on a cost function In this example we will show solving for the adjoint sensitivities of a discrete cost functional. First let's solve the ODE and get a high quality continuous solution: ```julia function f(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + u[1]*u[2] end p = [1.5,1.0,3.0] prob = ODEProblem(f,[1.0;1.0],(0.0,10.0),p) sol = solve(prob,Vern9(),abstol=1e-10,reltol=1e-10) ``` Now let's calculate the sensitivity of the ``\ell_2`` error against 1 at evenly spaced points in time, that is: ```math L(u,p,t)=\sum_{i=1}^{n}\frac{\Vert1-u(t_{i},p)\Vert^{2}}{2} ``` for ``t_i = 0.5i``. This is the assumption that the data is `data[i]=1.0`. For this function, notice we have that: ```math \begin{aligned} dg_{1}&=1-u_{1} \\ dg_{2}&=1-u_{2} \\ & \quad \vdots \end{aligned} ``` and thus: ```julia dg(out,u,p,t,i) = (out.=1.0.-u) ``` Also, we can omit `dgdp`, because the cost function doesn't dependent on `p`. If we had data, we'd just replace `1.0` with `data[i]`. To get the adjoint sensitivities, call: ```julia ts = 0:0.5:10 res = adjoint_sensitivities(sol,Vern9(),dg,ts,abstol=1e-14, reltol=1e-14) ``` This is super high accuracy. As always, there's a tradeoff between accuracy and computation time. We can check this almost exactly matches the autodifferentiation and numerical differentiation results: ```julia using ForwardDiff,Calculus,Tracker function G(p) tmp_prob = remake(prob,u0=convert.(eltype(p),prob.u0),p=p) sol = solve(tmp_prob,Vern9(),abstol=1e-14,reltol=1e-14,saveat=ts, sensealg=SensitivityADPassThrough()) A = convert(Array,sol) sum(((1 .- A).^2)./2) end G([1.5,1.0,3.0]) res2 = ForwardDiff.gradient(G,[1.5,1.0,3.0]) res3 = Calculus.gradient(G,[1.5,1.0,3.0]) res4 = Tracker.gradient(G,[1.5,1.0,3.0]) res5 = ReverseDiff.gradient(G,[1.5,1.0,3.0]) ``` and see this gives the same values. ### Example controlling adjoint method choices and checkpointing In the previous examples, all calculations were done using the interpolating method. This maximizes speed but at a cost of requiring a dense `sol`. If it is not possible to hold a dense forward solution in memory, then one can use checkpointing. For example: ```julia ts = [0.0,0.2,0.5,0.7] sol = solve(prob,Vern9(),saveat=ts) ``` Creates a non-dense solution with checkpoints at `[0.0,0.2,0.5,0.7]`. Now we can do: ```julia res = adjoint_sensitivities(sol,Vern9(),dg,ts, sensealg=InterpolatingAdjoint(checkpointing=true)) ``` When grabbing a Jacobian value during the backwards solution, it will no longer interpolate to get the value. Instead, it will start a forward solution at the nearest checkpoint to build local interpolants in a way that conserves memory. By default the checkpoints are at `sol.t`, but we can override this: ```julia res = adjoint_sensitivities(sol,Vern9(),dg,ts, sensealg=InterpolatingAdjoint(checkpointing=true), checkpoints = [0.0,0.5]) ``` ### Example continuous adjoints on an energy functional In this case we'd like to calculate the adjoint sensitivity of the scalar energy functional: ```math G(u,p)=\int_{0}^{T}\frac{\sum_{i=1}^{n}u_{i}^{2}(t)}{2}dt ``` which is: ```julia g(u,p,t) = (sum(u).^2) ./ 2 ``` Notice that the gradient of this function with respect to the state `u` is: ```julia function dg(out,u,p,t) out[1]= u[1] + u[2] out[2]= u[1] + u[2] end ``` To get the adjoint sensitivities, we call: ```julia res = adjoint_sensitivities(sol,Vern9(),g,nothing,dg,abstol=1e-8, reltol=1e-8,iabstol=1e-8,ireltol=1e-8) ``` Notice that we can check this against autodifferentiation and numerical differentiation as follows: ```julia using QuadGK function G(p) tmp_prob = remake(prob,p=p) sol = solve(tmp_prob,Vern9(),abstol=1e-14,reltol=1e-14) res,err = quadgk((t)-> (sum(sol(t)).^2)./2,0.0,10.0,atol=1e-14,rtol=1e-10) res end res2 = ForwardDiff.gradient(G,[1.5,1.0,3.0]) res3 = Calculus.gradient(G,[1.5,1.0,3.0]) ``` """ function adjoint_sensitivities(sol,args...; sensealg=InterpolatingAdjoint(), verbose=true,kwargs...) if hasfield(typeof(sensealg),:autojacvec) && sensealg.autojacvec === nothing if haskey(kwargs, :callback) has_cb = kwargs[:callback] !== nothing else has_cb = false end if !has_cb _sensealg = if isinplace(sol.prob) setvjp(sensealg,inplace_vjp(sol.prob,sol.prob.u0,sol.prob.p,verbose)) else setvjp(sensealg,ZygoteVJP()) end else _sensealg = setvjp(sensealg, ReverseDiffVJP()) end return try _adjoint_sensitivities(sol,_sensealg,args...;verbose,kwargs...) catch e verbose && @warn "Automatic AD choice of autojacvec failed in ODE adjoint, failing back to ODE adjoint + numerical vjp" _adjoint_sensitivities(sol,setvjp(sensealg,false),args...;verbose,kwargs...) end else return _adjoint_sensitivities(sol,sensealg,args...;verbose,kwargs...) end end function _adjoint_sensitivities(sol,sensealg,alg,g,t=nothing,dg=nothing; abstol=1e-6,reltol=1e-3, checkpoints=sol.t, corfunc_analytical=nothing, callback = nothing, kwargs...) if !(typeof(sol.prob.p) <: Union{Nothing,SciMLBase.NullParameters,AbstractArray}) || (sol.prob.p isa AbstractArray && !Base.isconcretetype(eltype(sol.prob.p))) throw(AdjointSensitivityParameterCompatibilityError()) end if sol.prob isa ODEProblem adj_prob = ODEAdjointProblem(sol,sensealg,g,t,dg; checkpoints=checkpoints, callback = callback, abstol=abstol,reltol=reltol, kwargs...) elseif sol.prob isa SDEProblem adj_prob = SDEAdjointProblem(sol,sensealg,g,t,dg,checkpoints=checkpoints, callback = callback, abstol=abstol,reltol=reltol, corfunc_analytical=corfunc_analytical) elseif sol.prob isa RODEProblem adj_prob = RODEAdjointProblem(sol,sensealg,g,t,dg,checkpoints=checkpoints, callback = callback, abstol=abstol,reltol=reltol, corfunc_analytical=corfunc_analytical) else error("Continuous adjoint sensitivities are only supported for ODE/SDE/RODE problems.") end tstops = ischeckpointing(sensealg, sol) ? checkpoints : similar(sol.t, 0) adj_sol = solve(adj_prob,alg; save_everystep=false,save_start=false,saveat=eltype(sol[1])[], tstops=tstops,abstol=abstol,reltol=reltol,kwargs...) p = sol.prob.p l = p === nothing || p === DiffEqBase.NullParameters() ? 0 : length(sol.prob.p) du0 = -adj_sol[end][1:length(sol.prob.u0)] if eltype(sol.prob.p) <: real(eltype(adj_sol[end])) dp = real.(adj_sol[end][(1:l) .+ length(sol.prob.u0)])' elseif p === nothing || p === DiffEqBase.NullParameters() dp = nothing else dp = adj_sol[end][(1:l) .+ length(sol.prob.u0)]' end du0,dp end function _adjoint_sensitivities(sol,sensealg::SteadyStateAdjoint,alg,g,dg=nothing; abstol=1e-6,reltol=1e-3, kwargs...) SteadyStateAdjointProblem(sol,sensealg,g,dg;kwargs...) end function _adjoint_sensitivities(sol,sensealg::SteadyStateAdjoint,alg; g=nothing,dg=nothing, abstol=1e-6,reltol=1e-3, kwargs...) SteadyStateAdjointProblem(sol,sensealg,g,dg;kwargs...) end @doc doc""" H = second_order_sensitivities(loss,prob,alg,args...; sensealg=ForwardDiffOverAdjoint(InterpolatingAdjoint(autojacvec=ReverseDiffVJP())), kwargs...) Second order sensitivity analysis is used for the fast calculation of Hessian matrices. !!! warning Adjoint sensitivity analysis functionality requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with adjoint sensitivity analysis requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during adjoint differentiation. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl so that `p` is an `AbstractArray` with a concrete element type. ### Example second order sensitivity analysis calculation ```julia using DiffEqSensitivity, OrdinaryDiffEq, ForwardDiff using Test function lotka!(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + p[4]*u[1]*u[2] end p = [1.5,1.0,3.0,1.0]; u0 = [1.0;1.0] prob = ODEProblem(lotka!,u0,(0.0,10.0),p) loss(sol) = sum(sol) v = ones(4) H = second_order_sensitivities(loss,prob,Vern9(),saveat=0.1,abstol=1e-12,reltol=1e-12) ``` ## Arguments The arguments for this function match `adjoint_sensitivities`. The only notable difference is `sensealg` which requires a second order sensitivity algorithm, of which currently the only choice is `ForwardDiffOverAdjoint` which uses forward-over-reverse to mix a forward-mode sensitivity analysis with an adjoint sensitivity analysis for a faster computation than either double forward or double reverse. `ForwardDiffOverAdjoint`'s positional argument just accepts a first order sensitivity algorithm. """ function second_order_sensitivities(loss,prob,alg,args...; sensealg=ForwardDiffOverAdjoint(InterpolatingAdjoint(autojacvec=ReverseDiffVJP())), kwargs...) _second_order_sensitivities(loss,prob,alg,sensealg,args...;kwargs...) end @doc doc""" Hv = second_order_sensitivity_product(loss,v,prob,alg,args...; sensealg=ForwardDiffOverAdjoint(InterpolatingAdjoint(autojacvec=ReverseDiffVJP())), kwargs...) Second order sensitivity analysis product is used for the fast calculation of Hessian-vector products ``Hv`` without requiring the construction of the Hessian matrix. !!! warning Adjoint sensitivity analysis functionality requires being able to solve a differential equation defined by the parameter struct `p`. Thus while DifferentialEquations.jl can support any parameter struct type, usage with adjoint sensitivity analysis requires that `p` could be a valid type for being the initial condition `u0` of an array. This means that many simple types, such as `Tuple`s and `NamedTuple`s, will work as parameters in normal contexts but will fail during adjoint differentiation. To work around this issue for complicated cases like nested structs, look into defining `p` using `AbstractArray` libraries such as RecursiveArrayTools.jl or ComponentArrays.jl so that `p` is an `AbstractArray` with a concrete element type. ### Example second order sensitivity analysis calculation ```julia using DiffEqSensitivity, OrdinaryDiffEq, ForwardDiff using Test function lotka!(du,u,p,t) du[1] = dx = p[1]*u[1] - p[2]*u[1]*u[2] du[2] = dy = -p[3]*u[2] + p[4]*u[1]*u[2] end p = [1.5,1.0,3.0,1.0]; u0 = [1.0;1.0] prob = ODEProblem(lotka!,u0,(0.0,10.0),p) loss(sol) = sum(sol) v = ones(4) Hv = second_order_sensitivity_product(loss,v,prob,Vern9(),saveat=0.1,abstol=1e-12,reltol=1e-12) ``` ## Arguments The arguments for this function match `adjoint_sensitivities`. The only notable difference is `sensealg` which requires a second order sensitivity algorithm, of which currently the only choice is `ForwardDiffOverAdjoint` which uses forward-over-reverse to mix a forward-mode sensitivity analysis with an adjoint sensitivity analysis for a faster computation than either double forward or double reverse. `ForwardDiffOverAdjoint`'s positional argument just accepts a first order sensitivity algorithm. """ function second_order_sensitivity_product(loss,v,prob,alg,args...; sensealg=ForwardDiffOverAdjoint(InterpolatingAdjoint(autojacvec=ReverseDiffVJP())), kwargs...) _second_order_sensitivity_product(loss,v,prob,alg,sensealg,args...;kwargs...) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
4736
struct SteadyStateAdjointSensitivityFunction{ C<:AdjointDiffCache, Alg<:SteadyStateAdjoint, uType, SType, fType<:ODEFunction, CV, λType, VJPType, LS, } <: SensitivityFunction diffcache::C sensealg::Alg discrete::Bool y::uType sol::SType f::fType colorvec::CV λ::λType vjp::VJPType linsolve::LS end function SteadyStateAdjointSensitivityFunction( g, sensealg, discrete, sol, dg, colorvec, needs_jac, ) @unpack f, p, u0 = sol.prob diffcache, y = adjointdiffcache( g, sensealg, discrete, sol, dg, f; quad = false, needs_jac = needs_jac, ) λ = zero(y) linsolve = needs_jac ? nothing : sensealg.linsolve vjp = similar(λ, length(p)) SteadyStateAdjointSensitivityFunction( diffcache, sensealg, discrete, y, sol, f, colorvec, λ, vjp, linsolve, ) end @noinline function SteadyStateAdjointProblem( sol, sensealg::SteadyStateAdjoint, g, dg; save_idxs = nothing, kwargs... ) @unpack f, p, u0 = sol.prob discrete = false # TODO: What is the correct heuristic? Can we afford to compute Jacobian for # cases where the length(u0) > 50 and if yes till what threshold needs_jac = (sensealg.linsolve === nothing && length(u0) <= 50) || LinearSolve.needs_concrete_A(sensealg.linsolve) p === DiffEqBase.NullParameters() && error( "Your model does not have parameters, and thus it is impossible to calculate the derivative of the solution with respect to the parameters. Your model must have parameters to use parameter sensitivity calculations!", ) sense = SteadyStateAdjointSensitivityFunction( g, sensealg, discrete, sol, dg, f.colorvec, needs_jac, ) @unpack diffcache, y, sol, λ, vjp, linsolve = sense if needs_jac if DiffEqBase.has_jac(f) f.jac(diffcache.J, y, p, nothing) else if DiffEqBase.isinplace(sol.prob) jacobian!( diffcache.J, diffcache.uf, y, diffcache.f_cache, sensealg, diffcache.jac_config, ) else temp = jacobian(diffcache.uf, y, sensealg) @. diffcache.J = temp end end end _save_idxs = save_idxs === nothing ? Colon() : save_idxs if dg !== nothing if g !== nothing dg(vec(diffcache.dg_val), y, p, nothing, nothing) else if typeof(_save_idxs) <: Number diffcache.dg_val[_save_idxs] = dg[_save_idxs] elseif typeof(dg) <: Number @. diffcache.dg_val[_save_idxs] = dg else @. diffcache.dg_val[_save_idxs] = dg[_save_idxs] end end else if g !== nothing gradient!( vec(diffcache.dg_val), diffcache.g, y, sensealg, diffcache.g_grad_config, ) end end if !needs_jac # NOTE: Zygote doesn't support inplace linear_problem = LinearProblem(VecJacOperator(f, y, p; autodiff = !DiffEqBase.isinplace(sol.prob)), vec(diffcache.dg_val), u0 = vec(λ)) else linear_problem = LinearProblem(diffcache.J',vec(diffcache.dg_val'),u0 = vec(λ)) end solve(linear_problem, linsolve) # u is vec(λ) try vecjacobian!( vec(diffcache.dg_val), y, λ, p, nothing, sense, dgrad = vjp, dy = nothing ) catch e if sense.sensealg.autojacvec === nothing @warn "Automatic AD choice of autojacvec failed in nonlinear solve adjoint, failing back to ODE adjoint + numerical vjp" vecjacobian!(vec(diffcache.dg_val),y,λ,p,nothing,false,dgrad = vjp,dy = nothing) else @warn "AD choice of autojacvec failed in nonlinear solve adjoint" throw(e) end end if g !== nothing # compute del g/del p dg_dp_val = zero(p) dg_dp = ParamGradientWrapper(g, nothing, y) dg_dp_config = build_grad_config(sensealg, dg_dp, p, p) gradient!(dg_dp_val, dg_dp, p, sensealg, dg_dp_config) @. dg_dp_val = dg_dp_val - vjp return dg_dp_val else return -vjp end end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
3894
# Piracy that used to be requires, allowing Tracker.jl to be specialized for SciML function RecursiveArrayTools.recursivecopy!(b::AbstractArray{T,N}, a::AbstractArray{T2,N}) where {T<:Tracker.TrackedArray,T2<:Tracker.TrackedArray,N} @inbounds for i in eachindex(a) b[i] = copy(a[i]) end end DiffEqBase.value(x::Type{Tracker.TrackedReal{T}}) where {T} = T DiffEqBase.value(x::Type{Tracker.TrackedArray{T,N,A}}) where {T,N,A} = Array{T,N} DiffEqBase.value(x::Tracker.TrackedReal) = x.data DiffEqBase.value(x::Tracker.TrackedArray) = x.data DiffEqBase.promote_u0(u0::Tracker.TrackedArray, p::Tracker.TrackedArray, t0) = u0 DiffEqBase.promote_u0(u0::AbstractArray{<:Tracker.TrackedReal}, p::Tracker.TrackedArray, t0) = u0 DiffEqBase.promote_u0(u0::Tracker.TrackedArray, p::AbstractArray{<:Tracker.TrackedReal}, t0) = u0 DiffEqBase.promote_u0(u0::AbstractArray{<:Tracker.TrackedReal}, p::AbstractArray{<:Tracker.TrackedReal}, t0) = u0 DiffEqBase.promote_u0(u0, p::Tracker.TrackedArray, t0) = Tracker.track(u0) DiffEqBase.promote_u0(u0, p::AbstractArray{<:Tracker.TrackedReal}, t0) = eltype(p).(u0) @inline DiffEqBase.fastpow(x::Tracker.TrackedReal, y::Tracker.TrackedReal) = x^y @inline Base.any(f::Function, x::Tracker.TrackedArray) = any(f, Tracker.data(x)) # Support adaptive with non-tracked time @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedArray, t) where {N} sqrt(sum(abs2, DiffEqBase.value(u)) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:Tracker.TrackedReal,N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Tracker.TrackedReal,N}, t) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip((DiffEqBase.value(x) for x in u), Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedReal, t) = abs(DiffEqBase.value(u)) # Support TrackedReal time, don't drop tracking on the adaptivity there @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedArray, t::Tracker.TrackedReal) where {N} sqrt(sum(abs2, u) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::AbstractArray{<:Tracker.TrackedReal,N}, t::Tracker.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline function DiffEqBase.ODE_DEFAULT_NORM(u::Array{<:Tracker.TrackedReal,N}, t::Tracker.TrackedReal) where {N} sqrt(sum(x -> DiffEqBase.ODE_DEFAULT_NORM(x[1], x[2]), zip(u, Iterators.repeated(t))) / length(u)) end @inline DiffEqBase.ODE_DEFAULT_NORM(u::Tracker.TrackedReal, t::Tracker.TrackedReal) = abs(u) function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0::Tracker.TrackedArray, p::Tracker.TrackedArray, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0::Tracker.TrackedArray, p, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end function DiffEqBase.solve_up(prob::DiffEqBase.DEProblem, sensealg::Union{DiffEqBase.AbstractSensitivityAlgorithm,Nothing}, u0, p::Tracker.TrackedArray, args...; kwargs...) Tracker.track(DiffEqBase.solve_up, prob, sensealg, u0, p, args...; kwargs...) end Tracker.@grad function DiffEqBase.solve_up(prob, sensealg::Union{Nothing,DiffEqBase.AbstractSensitivityAlgorithm}, u0, p, args...; kwargs...) DiffEqBase._solve_adjoint(prob, sensealg, Tracker.data(u0), Tracker.data(p), SciMLBase.TrackerOriginator(), args...; kwargs...) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git
[ "MIT" ]
6.79.0
87fd2c08bd8749906cdf253a240b21a5c92b7214
code
1711
# Piracy that used to be requires, allowing Zyogote.jl to be specialized for SciML function ∇tmap(cx, f, args...) ys_and_backs = SciMLBase.tmap((args...) -> Zygote._pullback(cx, f, args...), args...) if isempty(ys_and_backs) ys_and_backs, _ -> (NoTangent(), NoTangent()) else ys, backs = Zygote.unzip(ys_and_backs) function ∇tmap_internal(Δ) Δf_and_args_zipped = SciMLBase.tmap((f, δ) -> f(δ), backs, Δ) Δf_and_args = Zygote.unzip(Δf_and_args_zipped) Δf = reduce(Zygote.accum, Δf_and_args[1]) (Δf, Δf_and_args[2:end]...) end ys, ∇tmap_internal end end function ∇responsible_map(cx, f, args...) ys_and_backs = SciMLBase.responsible_map((args...) -> Zygote._pullback(cx, f, args...), args...) if isempty(ys_and_backs) ys_and_backs, _ -> (NoTangent(), NoTangent()) else ys, backs = Zygote.unzip(ys_and_backs) ys, function ∇responsible_map_internal(Δ) # Apply pullbacks in reverse order. Needed for correctness if `f` is stateful. Δf_and_args_zipped = SciMLBase.responsible_map((f, δ) -> f(δ), Zygote._tryreverse(SciMLBase.responsible_map, backs, Δ)...) Δf_and_args = Zygote.unzip(Zygote._tryreverse(SciMLBase.responsible_map, Δf_and_args_zipped)) Δf = reduce(Zygote.accum, Δf_and_args[1]) (Δf, Δf_and_args[2:end]...) end end end ZygoteRules.@adjoint function SciMLBase.tmap(f, args::Union{AbstractArray,Tuple}...) ∇tmap(__context__, f, args...) end ZygoteRules.@adjoint function SciMLBase.responsible_map(f, args::Union{AbstractArray,Tuple}...) ∇responsible_map(__context__, f, args...) end
DiffEqSensitivity
https://github.com/SciML/DiffEqSensitivity.jl.git