Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} module WithoutK7 where data I : Set where i : I data D (x : I) : Set where d : D x data P (x : I) : D x → Set where Foo : ∀ x → P x (d {x = x}) → Set Foo x ()
{ "alphanum_fraction": 0.5153061224, "avg_line_length": 13.0666666667, "ext": "agda", "hexsha": "3a20e1cae8827f4cbbdc429d3a633a9ffaa9d708", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/WithoutK7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/WithoutK7.agda", "max_line_length": 33, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/WithoutK7.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 74, "size": 196 }
module Issue249-2 where postulate A B : Set module A where X = A Y = B -- open A renaming (X to C; Y to C) open A using (X) renaming (Y to X)
{ "alphanum_fraction": 0.614379085, "avg_line_length": 10.9285714286, "ext": "agda", "hexsha": "e0c62ef50f8287370a0eaaacc5d1756d30e40675", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue249-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue249-2.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue249-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 56, "size": 153 }
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Data.Fin using (Fin) open import Data.Nat using (ℕ) open import Data.Product using (_×_; _,_) open import Data.Vec using (Vec; lookup; _[_]≔_) open import Common data Local (n : ℕ) : Set where endL : Local n sendSingle recvSingle : Fin n -> Label -> Local n -> Local n private variable n : ℕ p p′ q : Fin n l l′ : Label lSub lSub′ : Local n endL≢sendSingle : ∀ { lSub } -> endL {n} ≢ sendSingle q l lSub endL≢sendSingle () endL≢recvSingle : ∀ { lSub } -> endL {n} ≢ recvSingle q l lSub endL≢recvSingle () sendSingle-injective : sendSingle {n} p l lSub ≡ sendSingle p′ l′ lSub′ -> p ≡ p′ × l ≡ l′ × lSub ≡ lSub′ sendSingle-injective refl = refl , refl , refl recvSingle-injective : recvSingle {n} p l lSub ≡ recvSingle p′ l′ lSub′ -> p ≡ p′ × l ≡ l′ × lSub ≡ lSub′ recvSingle-injective refl = refl , refl , refl Configuration : ℕ -> Set Configuration n = Vec (Local n) n data _-_→l_ {n : ℕ} : (Fin n × Local n) -> Action n -> (Fin n × Local n) -> Set where →l-send : ∀ { lp lpSub } -> (p : Fin n) -> lp ≡ sendSingle q l lpSub -> (p≢q : p ≢ q) -> (p , lp) - (action p q p≢q l) →l (p , lpSub) →l-recv : ∀ { lp lpSub } -> (p : Fin n) -> lp ≡ recvSingle q l lpSub -> (q≢p : q ≢ p) -> (p , lp) - (action q p q≢p l) →l (p , lpSub) data _-_→c_ {n : ℕ} : Configuration n -> Action n -> Configuration n -> Set where →c-comm : ∀ { lp lp′ lq lq′ c′ p≢q-p p≢q-q } -> (c : Configuration n) -> (p≢q : p ≢ q) -> lp ≡ lookup c p -> lq ≡ lookup c q -> c′ ≡ c [ p ]≔ lp′ [ q ]≔ lq′ -> (p , lp) - (action p q p≢q-p l) →l (p , lp′) -> (q , lq) - (action p q p≢q-q l) →l (q , lq′) -> c - (action p q p≢q l) →c c′
{ "alphanum_fraction": 0.5475264036, "avg_line_length": 28.109375, "ext": "agda", "hexsha": "ef9e873dfb78a911d1adc52aa60bac6ded7ffd17", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fangyi-zhou/mpst-in-agda", "max_forks_repo_path": "Local.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_issues_repo_issues_event_max_datetime": "2021-11-24T11:30:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-08-31T10:15:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fangyi-zhou/mpst-in-agda", "max_issues_repo_path": "Local.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "3d12eed9d340207d242d70f43c6b34e01d3620de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fangyi-zhou/mpst-in-agda", "max_stars_repo_path": "Local.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-14T17:36:53.000Z", "max_stars_repo_stars_event_min_datetime": "2021-08-14T17:36:53.000Z", "num_tokens": 716, "size": 1799 }
module Test where open import Algebra using (CommutativeRing; IsCommutativeRing) open import Assume using (assume) import Data.Nat as ℕ open ℕ using (ℕ; zero; suc) import Data.Fin as F open F using (Fin) open import Relation.Binary using (Rel; Setoid; _Preserves_⟶_) open import Function using (Inverse; _on_; _∘_; _|>_; id; flip) open import Algebra.Module using (Module) module Mod = Module open import Data.Product using (_,_; proj₂; _×_) open import Algebra.Module.Construct.DirectProduct using () renaming (⟨module⟩ to ×-module) open import Level using (_⊔_; Level; 0ℓ; Lift) open import Data.Vec.Recursive open import Algebra.Module.Vec.Recursive module _ {r ℓ} {CR : CommutativeRing r ℓ} where -- D B k is the solution to -- (A → X) → A ^ suc k → B -- i.e. D B k ~ A ^ k → B open Module D : ∀ {m ℓm} (M : Module CR m ℓm) → ℕ → Set _ D {m = m} M k = ∀ {X : Set m} → X ^ suc k → Carrierᴹ M const : ∀ {m ℓm} {{M : Module CR m ℓm}} → ∀ {k} → Carrierᴹ M → D M k const {k = zero} c x = c const {{M}} {k = suc k} c v = 0ᴹ M double : ∀ {m ℓm} {{M : Module CR m ℓm}} → ∀ {k} → D M k → D M k double {{M}} x y = let x' = x y in _+ᴹ_ M x' x' -- D : Level → ∀ {n ℓn} (N : Module CR n ℓn) → ℕ → Set _ -- D m N k = {M : Set m} → M → M ^ k → Carrierᴹ N -- compose -- : ∀ {x} {X : Set x} -- → ∀ {n ℓn} {N : Module CR n ℓn} -- → ∀ {o ℓo} {O : Module CR o ℓo} -- → ∀ {k} → (f : X → D N k) → (g : Carrierᴹ N → D O k) -- → X → D O k -- compose = ? -- _th-derivative_ : ∀ k → (D k → D k) → M.Carrierᴹ → N.Carrierᴹ -- k th-derivative f = {! !} -- TODO -- can we use M → D N k everywhere?! -- data D : ℕ → Set (m ⊔ n) where -- z : N.Carrierᴹ → D zero -- d : ∀ {k} → (fx : N.Carrierᴹ) → (dfx : M.Carrierᴹ → D k) → D (suc k) -- module _ -- {r ℓ} {CR : CommutativeRing r ℓ} -- {m ℓm} {M : Module CR m ℓm} -- {n ℓn} {N : Module CR n ℓn} -- where -- private -- module CR = CommutativeRing CR -- module M = Module M -- module N = Module N -- private -- module dmod where -- Carrierᴹ : ∀ {k : ℕ} → Set (m ⊔ n) -- Carrierᴹ {k} = D M N k -- _≈ᴹ_ : ∀ {k} → Rel (D M N k) (m ⊔ ℓn) -- _≈ᴹ_ (z x) (z y) = Lift (m ⊔ ℓn) (x N.≈ᴹ y) -- _≈ᴹ_ (d fx dfx) (d fy dfy) = (fx N.≈ᴹ fy) × (∀ v → dfx v ≈ᴹ dfy v) -- _+ᴹ_ : ∀ {k} → (x y : D M N k) → D M N k -- _+ᴹ_ (z x) (z y) = z (x N.+ᴹ y) -- _+ᴹ_ (d fx dfx) (d fy dfy) = d (fx N.+ᴹ fy) λ v → dfx v +ᴹ dfy v -- _*ₗ_ : ∀ {k} → (s : CR.Carrier) (x : D M N k) → D M N k -- _*ₗ_ s (z x) = z (s N.*ₗ x) -- _*ₗ_ s (d fx dfx) = d (s N.*ₗ fx) λ v → s *ₗ dfx v -- _*ᵣ_ : ∀ {k} → (x : D M N k) (s : CR.Carrier) → D M N k -- _*ᵣ_ = flip _*ₗ_ -- 0ᴹ : ∀ {k} → D M N k -- 0ᴹ {zero} = z N.0ᴹ -- 0ᴹ {suc k} = d N.0ᴹ λ v → 0ᴹ -- -ᴹ_ : ∀ {k} → D M N k → D M N k -- -ᴹ_ (z x) = z (N.-ᴹ x) -- -ᴹ_ (d fx dfx) = d (N.-ᴹ fx) λ v → -ᴹ dfx v -- instance -- D-module : ∀ {k : ℕ} → Module CR _ _ -- D-module {k} = -- record -- { Carrierᴹ = dmod.Carrierᴹ {k} -- ; isModule = assume -- ; dmod -- } -- private variable k : ℕ -- run : D M N k → N.Carrierᴹ -- run (z x) = x -- run (d x _) = x -- extract : D M N zero → N.Carrierᴹ -- extract = run -- diff : M.Carrierᴹ → D M N (suc k) → D M N k -- diff v (d _ x) = x v -- konst _# : ∀ (c : N.Carrierᴹ) → D M N k -- konst {k = zero} c = z c -- konst {k = suc k} c = d c (λ v → konst N.0ᴹ) -- x # = konst x -- jacobian : (df : D M N 1) (v : M.Carrierᴹ) → N.Carrierᴹ -- jacobian df v = df |> diff v |> extract -- hessian : (df : D M N 2) (v v' : M.Carrierᴹ) → N.Carrierᴹ -- hessian df v v' = df |> diff v |> diff v' |> extract -- hack : ∀ {l} → D M N (suc l) → D M N l -- hack {zero} (d fx dfx) = z fx -- hack {suc l} (d fx dfx) = d fx λ v → hack {l} (dfx v) module _ where import Real as ℝ open ℝ using (ℝ) open import Data.Vec.Recursive ℝ-isCommutativeRing : IsCommutativeRing ℝ._≈_ ℝ._+_ ℝ._*_ ℝ.-_ 0.0 1.0 ℝ-isCommutativeRing = assume instance ℝ-commutativeRing : CommutativeRing 0ℓ 0ℓ ℝ-commutativeRing = record { isCommutativeRing = ℝ-isCommutativeRing } ℝ-cr : CommutativeRing 0ℓ 0ℓ ℝ-cr = ℝ-commutativeRing private ℝ-mod' : Module ℝ-commutativeRing 0ℓ 0ℓ ℝ-mod' = U.⟨module⟩ where import Algebra.Module.Construct.TensorUnit as U ℝ^ : ∀ n → Module ℝ-commutativeRing 0ℓ 0ℓ ℝ^ n = ℝ-mod' ^ᴹ n ℝ-mod : Module ℝ-commutativeRing 0ℓ 0ℓ ℝ-mod = ℝ^ 1 exp : ∀ {k} → D ℝ-mod k → D ℝ-mod k exp {0} f x = ℝ.e^ f x exp {1} f' xdx = let (fx , f'x) = f xdx in {! (ℝ.e^ fx) ℝ.* f'x !} exp {k} f y = {! !} -- -- TODO -- -- is this really the identity? -- var : ∀ {rank k} (c : Mod.Carrierᴹ (ℝ^ rank)) → D (ℝ^ rank) (ℝ^ rank) k -- var {rank} {zero} c = z c -- var {rank} {suc n} c = d c (λ v → konst (replicate rank 1.0)) -- instance -- ℝ^n : ∀ {n} → Module ℝ-cr 0ℓ 0ℓ -- ℝ^n {n} = ℝ^ n -- infixl 6 _+_ _-_ -- infixl 7 _*_ -- -- linear and bilinear forms -- _*_ -- : ∀ {m ℓm} {M : Module ℝ-cr m ℓm} {k rank} -- → (x y : D M (ℝ^ rank) k) -- → D M (ℝ^ rank) k -- open Module {{...}} -- _+_ _-_ -- : ∀ {r ℓ} {CR : CommutativeRing r ℓ} {m ℓm} {{M : Module CR m ℓm}} (x y : Mod.Carrierᴹ M) -- → Mod.Carrierᴹ M -- x + y = x +ᴹ y -- x - y = x +ᴹ (-ᴹ y) -- _*_ {rank = rank} (z x) (z y) = z (zipWith ℝ._*_ rank x y) -- _*_ {rank = rank} dfx@(d fx f'x) dgx@(d gx g'x) = -- d (zipWith ℝ._*_ rank fx gx) (λ v → hack dfx * g'x v + hack dgx * f'x v) -- -- convenience function -- _>-<_ -- : ∀ {k} -- → (f : ℝ → ℝ) (f' : ∀ {l} → D ℝ-mod ℝ-mod l → D ℝ-mod ℝ-mod l) -- → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- (f >-< _) (z x) = z (f x) -- (f >-< f') dfx@(d x dx) = d (f x) λ v → dx v * f' (hack dfx) -- ε : ∀ {rank} → Fin rank → ℝ ^ rank -- ε {zero} n = _ -- ε {suc zero} _ = 1.0 -- ε {2+ rank} F.zero = 1.0 , Mod.0ᴹ (ℝ^ (suc rank)) -- ε {2+ rank} (F.suc n) = Mod.0ᴹ ℝ-mod , ε n -- ∇_ grad : ∀ {rank} → D (ℝ^ rank) (ℝ^ 1) 1 → ℝ ^ rank -- ∇_ {rank = rank} f = map (jacobian f) rank unitvecs -- where -- unitvecs : (ℝ ^ rank) ^ rank -- unitvecs = map ε rank (tabulate rank id) -- grad = ∇_ -- infixl 8 _**_ -- infixr 9 -_ -- infixr 9 e^_ -- -_ -- : ∀ {r ℓ} {CR : CommutativeRing r ℓ} {m ℓm} {{M : Module CR m ℓm}} (x : Mod.Carrierᴹ M) -- → Mod.Carrierᴹ M -- -_ x = -ᴹ x -- ℝ-sgn : ℝ → ℝ -- ℝ-sgn x = if does (0.0 ℝ.≤? x) then 1.0 else ℝ.- 1.0 -- where -- open import Data.Bool using (if_then_else_) -- open import Relation.Nullary using (does) -- ℝ-abs : ℝ → ℝ -- ℝ-abs x = x ℝ.* ℝ-sgn x -- -- the first is the zero-order -- poly : ∀ {rank k} → ℝ ^ suc rank → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- poly {rank = zero} cs x = konst cs -- poly {rank = suc rank} (c , cs) x = konst c + x * poly cs x -- pow : ℕ → ∀ {k} → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- pow 0 x = konst 1.0 -- pow 1 x = x -- pow (suc n) dx = dx * pow n dx -- log e^_ recip abs sgn : ∀ {k} → D ℝ-mod ℝ-mod k → D ℝ-mod ℝ-mod k -- log = ℝ.log >-< recip ∘ abs -- recip (z x) = z (1.0 ℝ.÷ x) -- recip dfx@(d fx f'x) = d (1.0 ℝ.÷ fx) λ x → - (f'x x * tmp * tmp) -- where -- tmp = recip (hack dfx) -- abs = ℝ-abs >-< sgn -- sgn = ℝ-sgn >-< λ _ → 0ᴹ -- e^ z x = z (ℝ.e^ x) -- e^ dfx@(d fx f'x) = d (run tmp) λ v → f'x v * tmp -- where -- tmp = e^ hack dfx -- infixl 7 _÷_ -- _÷_ _**_ : ∀ {k} (x y : D ℝ-mod ℝ-mod k) → D ℝ-mod ℝ-mod k -- x ÷ y = x * recip x -- x ** y = e^ y * log x -- _! : ℕ → ℕ -- 0 ! = 1 -- 1 ! = 1 -- sucn@(suc n) ! = sucn ℕ.* (n !) -- sterling : ∀ {k} → ℕ → D ℝ-mod ℝ-mod k -- sterling {k} m = m' * log m' - m' -- where -- m' : D ℝ-mod ℝ-mod k -- m' = ℝ.fromℕ m # -- -- without the constant denominator term -- logPoisson' : ∀ {n} → ℕ → D ℝ-mod ℝ-mod n → D ℝ-mod ℝ-mod n -- logPoisson' k λ' = k' * log λ' - λ' -- where k' = ℝ.fromℕ k # -- logPoisson : ∀ {n} → ℕ → D ℝ-mod ℝ-mod n → D ℝ-mod ℝ-mod n -- logPoisson k λ' = logPoisson' k λ' - sterling k -- -- descend : ∀ {rank} (f : D (ℝ^ rank) 1 → D ℝ-mod 1) (steps : ℕ) (start : ℝ ^ rank) → ℝ ^ rank -- -- descend f zero start = start -- -- descend f (suc steps) start = {! !} -- module _ where -- open import Relation.Binary.PropositionalEquality using (refl) -- _ : (∇ (var 1.0 * var 1.0)) ℝ.≈ 2.0 -- _ = refl -- -- -- -- _ : run e^_ 2.0 ℝ.≈ (ℝ.e^ 2.0) -- -- -- -- _ = refl -- -- -- -- testpoly : ∀ {n} → D ℝ-mod n → D ℝ-mod n -- -- -- -- testpoly = poly (1.0 , 2.0 , 3.0) -- -- -- -- _ : run testpoly 2.0 ℝ.≈ (1.0 + 4.0 + 12.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ testpoly [ 2.0 ] ℝ.≈ (0.0 + 2.0 + 3.0 ℝ.* 2.0 ℝ.* 2.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ testpoly [ 7.0 ] ℝ.≈ (0.0 + 2.0 + 2.0 ℝ.* 3.0 ℝ.* 7.0) -- -- -- -- _ = refl -- -- -- -- _ : hessian e^_ 1.0 1.0 0.0 ℝ.≈ (ℝ.e^ 1.0) -- -- -- -- _ = refl -- -- -- -- asdf : D ℝ-mod 2 -- -- -- -- asdf = e^ var (2.0 , 1.0 , 0.0) -- -- -- -- _ : hessian (poly (1.0 , 2.0 , 3.0)) 1.0 1.0 0.0 ℝ.≈ (2.0 ℝ.* 3.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ 1.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ -ᴹ 1.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ sgn [ 2.0 ] ℝ.≈ 0.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ abs [ 2.0 ] ℝ.≈ 1.0 -- -- -- -- _ = refl -- -- -- -- _ : run abs (- 2.0) ℝ.≈ 2.0 -- -- -- -- _ = refl -- -- -- -- _ : ∇ abs [ - 1.0 ] ℝ.≈ (- 1.0) -- -- -- -- _ = refl -- -- -- -- _ : ∇ recip [ - 2.0 ] ℝ.≈ (- 0.25) -- -- -- -- _ = refl -- -- -- -- _ : ∇ log [ 2.0 ] ℝ.≈ 0.5 -- -- -- -- _ = refl
{ "alphanum_fraction": 0.4570149557, "avg_line_length": 26.0716180371, "ext": "agda", "hexsha": "1a2a09e996b976d19aa195b12d74b2e4573290f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/diff", "max_forks_repo_path": "src/Test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/diff", "max_issues_repo_path": "src/Test.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/diff", "max_stars_repo_path": "src/Test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4499, "size": 9829 }
{-# OPTIONS --without-K #-} open import HoTT open import cohomology.CofiberSequence open import cohomology.FunctionOver module cohomology.MayerVietoris {i} where {- Mayer-Vietoris Sequence: Given a span X ←f– Z –g→ Y, the cofiber space of the natural map [reglue : X ∨ Y → X ⊔_Z Y] (defined below) is equivalent to the suspension of Z. -} {- Relevant functions -} module MayerVietorisFunctions (ps : ⊙Span {i} {i} {i}) where open ⊙Span ps module Reglue = WedgeRec {X = ⊙Span.X ps} {Y = ⊙Span.Y ps} {C = fst (⊙Pushout ps)} left right (! (ap left (snd f)) ∙ glue (snd Z) ∙' ap right (snd g)) reglue : X ∨ Y → fst (⊙Pushout ps) reglue = Reglue.f ⊙reglue : fst (X ⊙∨ Y ⊙→ ⊙Pushout ps) ⊙reglue = (reglue , idp) module MVDiff = SuspensionRec (fst Z) {C = Suspension (X ∨ Y)} (north _) (north _) (λ z → merid _ (winl (fst f z)) ∙ ! (merid _ (winr (fst g z)))) mv-diff : Suspension (fst Z) → Suspension (X ∨ Y) mv-diff = MVDiff.f ⊙mv-diff : fst (⊙Susp Z ⊙→ ⊙Susp (X ⊙∨ Y)) ⊙mv-diff = (mv-diff , idp) {- We use path induction (via [⊙pushout-J]) to assume that the basepoint preservation paths of the span maps are [idp]. The module [Base] contains the proof of the theorem for this case. -} module MayerVietorisBase {A B : Type i} (Z : Ptd i) (f : fst Z → A) (g : fst Z → B) where X = ⊙[ A , f (snd Z) ] Y = ⊙[ B , g (snd Z) ] ps = ⊙span X Y Z (f , idp) (g , idp) F : fst (Z ⊙→ X) F = (f , idp) G : fst (Z ⊙→ Y) G = (g , idp) open MayerVietorisFunctions ps {- Definition of the maps into : Cofiber reglue → ΣZ out : ΣZ → Cofiber reglue -} private into-glue-square : Square idp idp (ap (ext-glue ∘ reglue) wglue) (merid _ (snd Z)) into-glue-square = connection ⊡v∙ ! (ap-∘ ext-glue reglue wglue ∙ ap (ap ext-glue) Reglue.glue-β ∙ ExtGlue.glue-β (snd Z)) module IntoGlue = WedgeElim {P = λ xy → north _ == ext-glue (reglue xy)} (λ _ → idp) (λ _ → merid _ (snd Z)) (↓-cst=app-from-square into-glue-square) into-glue = IntoGlue.f module Into = CofiberRec reglue (north _) ext-glue into-glue private out-glue-and-square : (z : fst Z) → Σ (cfbase reglue == cfbase reglue) (λ p → Square (cfglue _ (winl (f z))) p (ap (cfcod _) (glue z)) (cfglue _ (winr (g z)))) out-glue-and-square z = fill-square-top _ _ _ out-glue = fst ∘ out-glue-and-square out-square = snd ∘ out-glue-and-square module Out = SuspensionRec (fst Z) {C = Cofiber reglue} (cfbase _) (cfbase _) out-glue into = Into.f out = Out.f {- [out] is a right inverse for [into] -} private into-out-sq : (z : fst Z) → Square idp (ap into (ap out (merid _ z))) (merid _ z) (merid _ (snd Z)) into-out-sq z = (ap (ap into) (Out.glue-β z) ∙v⊡ (! (Into.glue-β (winl (f z)))) ∙h⊡ ap-square into (out-square z) ⊡h∙ (Into.glue-β (winr (g z)))) ⊡v∙ (∘-ap into (cfcod _) (glue z) ∙ ExtGlue.glue-β z) into-out : ∀ σ → into (out σ) == σ into-out = Suspension-elim (fst Z) idp (merid _ (snd Z)) (λ z → ↓-∘=idf-from-square into out (into-out-sq z)) {- [out] is a left inverse for [into] -} {- [out] is left inverse on codomain part of cofiber space, - i.e. [out (into (cfcod _ γ)) == cfcod _ γ] -} private out-into-cod-square : (z : fst Z) → Square (cfglue reglue (winl (f z))) (ap (out ∘ ext-glue {s = ⊙span-out ps}) (glue z)) (ap (cfcod _) (glue z)) (cfglue _ (winr (g z))) out-into-cod-square z = (ap-∘ out ext-glue (glue z) ∙ ap (ap out) (ExtGlue.glue-β z) ∙ Out.glue-β z) ∙v⊡ out-square z module OutIntoCod = PushoutElim {d = ⊙span-out ps} {P = λ γ → out (into (cfcod _ γ)) == cfcod _ γ} (λ x → cfglue _ (winl x)) (λ y → cfglue _ (winr y)) (λ z → ↓-='-from-square (out-into-cod-square z)) out-into-cod = OutIntoCod.f {- Cube move lemma for the left inverse coherence. This is used to build up a right square (in this case starting from a cube filler) -} private square-push-rb : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {b : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == b} (q : b == a₁₁) (sq : Square p₀₋ p₋₀ p₋₁ (p₁₋ ∙ q)) → Square p₀₋ p₋₀ (p₋₁ ∙' ! q) p₁₋ square-push-rb {p₁₋ = idp} idp sq = sq right-from-bot-lemma : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ b₀ b₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == b₀} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == b₁} {q₀₋ : a₀₁₁ == b₀} {q₋₁ : b₀ == b₁} {q₁₋ : a₁₁₁ == b₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ (p₀₋₁ ∙ q₀₋)} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ q₋₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ (p₁₋₁ ∙ q₁₋)} -- front (sq' : Square q₀₋ p₋₁₁ q₋₁ q₁₋) (cu : Cube sq₋₋₀ sq₋₋₁ (square-push-rb q₀₋ sq₀₋₋) sq₋₀₋ (sq₋₁₋ ⊡h' !□h (square-symmetry sq')) (square-push-rb q₁₋ sq₁₋₋)) → Cube sq₋₋₀ (sq₋₋₁ ⊡v sq') sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ right-from-bot-lemma sq₋₋₁ ids cu = right-from-bot-lemma' sq₋₋₁ cu where right-from-bot-lemma' : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ (p₀₋₁ ∙ idp)} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ (p₁₋₁ ∙ idp)} -- front (cu : Cube sq₋₋₀ sq₋₋₁ (square-push-rb idp sq₀₋₋) sq₋₀₋ (sq₋₁₋ ⊡h' !□h (square-symmetry vid-square)) (square-push-rb idp sq₁₋₋)) → Cube sq₋₋₀ (sq₋₋₁ ⊡v vid-square) sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ right-from-bot-lemma' ids cu = cu {- Proving the coherence term for the left inverse. This means proving [(w : X ∨ Y) → Square idp (ap out (ap into (glue w))) (cfglue _ w) (out-into-cod (reglue w))] -} private out-into-sql : (x : fst X) → Square idp (ap out (into-glue (winl x))) (cfglue _ (winl x)) (cfglue _ (winl x)) out-into-sql x = connection out-into-fill : Σ (Square idp (ap out (glue (snd Z))) idp idp) (λ sq → Cube (out-into-sql (snd X)) sq (natural-square (λ _ → idp) wglue) (natural-square (ap out ∘ into-glue) wglue) (natural-square (cfglue _) wglue ⊡h' !□h (square-symmetry connection)) (square-push-rb (cfglue _ (winr (snd Y))) (natural-square (out-into-cod ∘ reglue) wglue))) out-into-fill = fill-cube-right _ _ _ _ _ {- [fst out-into-fill] is chosen so that we can prove [out-into-sql == out-into-sqr [ ⋯ ↓ ⋯ ]]; this is proven by massaging [out-into-fill-cube] into the right shape. The trick is that the type of [out-into-fill-square] is independent of [y], so we can pick it to give the right result at the basepoint. -} out-into-sqr : (y : fst Y) → Square idp (ap out (into-glue (winr y))) (cfglue _ (winr y)) (cfglue _ (winr y)) out-into-sqr y = fst out-into-fill ⊡v connection out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim reglue idp out-into-cod (λ w → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β w) ∙v⊡ Wedge-elim {P = λ w → Square idp (ap out (into-glue w)) (cfglue _ w) (out-into-cod (reglue w))} out-into-sql out-into-sqr (cube-to-↓-square $ right-from-bot-lemma (fst out-into-fill) connection $ (snd out-into-fill)) w) {- equivalence and paths -} eq : Cofiber reglue ≃ Suspension (fst Z) eq = equiv into out into-out out-into path : Cofiber reglue == Suspension (fst Z) path = ua eq ⊙path : ⊙Cof ⊙reglue == ⊙Susp Z ⊙path = ⊙ua eq idp {- Transporting [cfcod reglue] over the equivalence -} cfcod-over : ⊙cfcod ⊙reglue == ⊙ext-glue [ (λ W → fst (⊙Pushout ps ⊙→ W)) ↓ ⊙path ] cfcod-over = codomain-over-⊙equiv (⊙cfcod ⊙reglue) eq idp ▹ lemma where lemma : (into , idp) ⊙∘ ⊙cfcod ⊙reglue == ⊙ext-glue lemma = pair= idp $ ap into (! (cfglue reglue (winl (snd X)))) ∙ idp =⟨ ap-! into (cfglue reglue (winl (snd X))) |in-ctx (λ w → w ∙ idp) ⟩ ! (ap into (cfglue reglue (winl (snd X)))) ∙ idp =⟨ Into.glue-β (winl (snd X)) |in-ctx (λ w → ! w ∙ idp) ⟩ idp ∎ {- Transporting [ext-glue] over the equivalence. Uses the same sort of - cube technique as in the proof of [⊙path]. -} private square-push-rt : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {b : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : b == a₁₁} (q : a₁₀ == b) (sq : Square p₀₋ p₋₀ p₋₁ (q ∙' p₁₋)) → Square p₀₋ (p₋₀ ∙' q) p₋₁ p₁₋ square-push-rt {p₁₋ = idp} idp sq = sq right-from-top-lemma : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ b₀ b₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == b₀ {-a₀₀₁-}} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == b₁ {-a₁₀₁-}} {p₁₁₋ : a₁₁₀ == a₁₁₁} {q₀₋ : b₀ == a₀₀₁} {q₋₀ : b₀ == b₁} {q₁₋ : b₁ == a₁₀₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ (q₀₋ ∙' p₀₋₁)} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ q₋₀} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ (q₁₋ ∙' p₁₋₁)} -- front (sq' : Square q₀₋ q₋₀ p₋₀₁ q₁₋) (cu : Cube sq₋₋₀ sq₋₋₁ (square-push-rt q₀₋ sq₀₋₋) (sq₋₀₋ ⊡h' square-symmetry sq') sq₋₁₋ (square-push-rt q₁₋ sq₁₋₋)) → Cube sq₋₋₀ (sq' ⊡v' sq₋₋₁) sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ right-from-top-lemma sq₋₋₁ ids cu = right-from-top-lemma' sq₋₋₁ cu where right-from-top-lemma' : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ (idp ∙' p₀₋₁)} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ (idp ∙' p₁₋₁)} -- front (cu : Cube sq₋₋₀ sq₋₋₁ (square-push-rt idp sq₀₋₋) (sq₋₀₋ ⊡h' square-symmetry vid-square) sq₋₁₋ (square-push-rt idp sq₁₋₋)) → Cube sq₋₋₀ (vid-square ⊡v' sq₋₋₁) sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ right-from-top-lemma' ids cu = cu ext-over : ⊙ext-glue == ⊙mv-diff [ (λ W → fst (W ⊙→ ⊙Susp (X ⊙∨ Y))) ↓ ⊙path ] ext-over = ⊙λ= fn-lemma idp ◃ domain-over-⊙equiv ⊙mv-diff _ _ where fn-lemma : ∀ κ → ext-glue κ == mv-diff (into κ) fn-lemma = Cofiber-elim reglue idp fn-cod (λ w → ↓-='-from-square $ ExtGlue.glue-β w ∙v⊡ fn-coh w ⊡v∙ ! (ap-∘ mv-diff into (glue w) ∙ ap (ap mv-diff) (Into.glue-β w))) where fn-cod : (γ : fst (⊙Pushout ps)) → ext-glue (cfcod reglue γ) == mv-diff (ext-glue γ) fn-cod = Pushout-elim (λ x → ! (merid _ (winl x))) (λ y → ! (merid _ (winr y))) (λ z → ↓-='-from-square $ ap-cst (south _) (glue z) ∙v⊡ (bl-square (merid _ (winl (f z))) ⊡h connection) ⊡v∙ ! (ap-∘ mv-diff ext-glue (glue z) ∙ ap (ap mv-diff) (ExtGlue.glue-β z) ∙ MVDiff.glue-β z)) fn-fill : Σ (Square idp idp (ap mv-diff (merid _ (snd Z))) idp) (λ sq → Cube (tr-square (merid _ (winl (snd X)))) sq (natural-square (λ _ → idp) wglue) (natural-square (merid _) wglue ⊡h' square-symmetry (tr-square (merid _ (winr (snd Y))))) (natural-square (ap mv-diff ∘ into-glue) wglue) (square-push-rt (! (merid _ (winr (snd Y)))) (natural-square (fn-cod ∘ reglue) wglue))) fn-fill = fill-cube-right _ _ _ _ _ fn-coh : (w : X ∨ Y) → Square idp (merid _ w) (ap mv-diff (into-glue w)) (fn-cod (reglue w)) fn-coh = Wedge-elim (λ x → tr-square (merid _ (winl x))) (λ y → tr-square (merid _ (winr y)) ⊡v' (fst fn-fill)) (cube-to-↓-square $ right-from-top-lemma (fst fn-fill) (tr-square (merid _ (winr (snd Y)))) (snd fn-fill)) {- Main results -} module MayerVietoris (ps : ⊙Span {i} {i} {i}) where private record Results (ps : ⊙Span {i} {i} {i}) : Type (lsucc i) where open ⊙Span ps open MayerVietorisFunctions ps public field eq : Cofiber reglue ≃ Suspension (fst Z) path : Cofiber reglue == Suspension (fst Z) ⊙path : ⊙Cof ⊙reglue == ⊙Susp Z cfcod-over : ⊙cfcod ⊙reglue == ⊙ext-glue [ (λ W → fst (⊙Pushout ps ⊙→ W)) ↓ ⊙path ] ext-over : ⊙ext-glue == ⊙mv-diff [ (λ W → fst (W ⊙→ ⊙Susp (X ⊙∨ Y))) ↓ ⊙path ] results : Results ps results = ⊙pushout-J Results base-results ps where base-results : ∀ {A} {B} Z (f : fst Z → A) (g : fst Z → B) → Results (⊙span _ _ Z (f , idp) (g , idp)) base-results Z f g = record { eq = eq; path = path; ⊙path = ⊙path; cfcod-over = cfcod-over; ext-over = ext-over} where open MayerVietorisBase Z f g open Results results public
{ "alphanum_fraction": 0.5126044756, "avg_line_length": 37.4646464646, "ext": "agda", "hexsha": "c847806fc9e583328e2fb0e4cf429a1929e359db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "cohomology/MayerVietoris.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "cohomology/MayerVietoris.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "cohomology/MayerVietoris.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6626, "size": 14836 }
module Id1 where import Level open import Data.Empty using (⊥) open import Data.Unit using (⊤) open import Data.Bool using (Bool) open import Data.Sum using (_⊎_) open import Data.Nat open import Data.Product open import Data.Vec open import Function using (id) -- Study identity types from first principles -- As we have seen for the previous types, we need to define the type, -- its constructors, and then focus on the recursion and induction -- principles. All computations and all properties of the identity -- type should be derivable from these (recursion and induction) -- principles. ------------------------------------------------------------------------------ data _≡_ {A : Set} : (x y : A) → Set where refl : (x : A) → x ≡ x -- We have to write (refl x) for some x. This is different from the -- Agda library which leaves the 'x' implicit infix 4 _≡_ {-- Convention: multiplicative precedence 7 additive precedence 6 equality and comparison precedence 4 --} -- Simple examples private p₁ : 3 ≡ 3 p₁ = refl 3 p₂ : 3 * 1 ≡ 1 + 2 p₂ = refl (4 ∸ 1) -- Let's try to derive the recursion principle for identity -- types... This type has one constructor just like ⊤ in some sense. -- Recall the recursion principle for ⊤: -- rec⊤ : (C : Set) → C → (v : ⊤) → C -- So at first approximation, the recursion principle for ≡ looks like: -- -- rec≡ : (C : Set) → C → ({A : Set} {x y : A} (p : x ≡ y) → C) -- -- In the case of ⊤, we wanted to map the element of ⊤ to an element -- of C. For ≡, we also want to map the element of (x ≡ y) to an -- element of C. Note that the element of (x ≡ y) is some kind of -- relation between x and y so it makes sense to insist that the -- target C is also a relation between x and y, i.e., we map relations -- to relations. -- So as a second approximation, the recursion principle for ≡ looks like: -- -- rec≡ : {A : Set} {x y : A} → -- (R : A → A → Set) → R x y → (p : x ≡ y) → R x y -- -- In the case of ⊤, the second argument to the recursion operation -- specified an element of C which would serve as the target for -- tt. Now in the case of ≡, we want to specify an element of R x y -- which would be the target of refl. This requires two adjustments: -- first the second argument of type (R x y) makes no sense in general -- as we don't want to insist that the relation R is universal (i.e., -- holds between arbitrary x and y). Second we must insist that the -- relation R is reflexive. rec≡ : {A : Set} → (R : A → A → Set) {reflexiveR : {a : A} → R a a} → ({x y : A} (p : x ≡ y) → R x y) rec≡ R {reflR} (refl y) = reflR {y} -- A special case of reflexive relations on A is the class of -- functions from C a -> C a for some predicate C. Let's specialize -- the above recursion principle to this special case. rec≡S : {A : Set} {C : A → Set} → ({x y : A} (p : x ≡ y) → C x → C y) rec≡S {C = C} p = rec≡ (λ a b → C a → C b) {id} p -- Or we can prove the specialized version directly (rename to subst) subst : {A : Set} {C : A → Set} → ({x y : A} (p : x ≡ y) → C x → C y) subst {x = x} {y = .x} (refl .x) = id -- So the recursion principle for the identity type says -- equals may be substituted for equals OR -- indiscernability of identicals OR -- every type family respects equality -- Examples: private ex₁ : ∀ {n} → (p : n + 0 ≡ n) → (n + 0 > 0) → (n > 0) ex₁ {n} p = subst {C = λ m → m > 0} {n + 0} {n} p ex₂ : ∀ {A n} → (p : n + 0 ≡ n) → (Vec A (n + 0)) → (Vec A n) ex₂ {A} {n} p = subst {C = λ m → Vec A m} {n + 0} {n} p {-- From Data.Nat library: data _≤_ : Rel ℕ Level.zero where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n --} ≤-reflexive : {a : ℕ} → a ≤ a ≤-reflexive {zero} = z≤n ≤-reflexive {suc a} = s≤s (≤-reflexive {a}) ex₃ : ∀ {n} → (p : n + 0 ≡ n) → (n + 0 ≤ n) ex₃ {n} = rec≡ {ℕ} (_≤_) {≤-reflexive} {n + 0} {n} ------------------------------------------------------------------------------ -- Now let's look at the induction principle for identity types -- Our usual idiom is to use the same code for the recursion principle -- and just make the eliminator a dependent function -- Let's look at rec≡ again -- rec≡ : {A : Set} → -- (R : A → A → Set) {reflexiveR : {a : A} → R a a} → -- ({x y : A} (p : x ≡ y) → R x y) -- rec≡ R {reflR} (refl y) = reflR {y} -- The relation R is already dependent on x and y; we just need to -- make it dependent on p too ind≡ : {A : Set} → (R : (x : A) → (y : A) → (p : x ≡ y) → Set) {reflexiveR : {a : A} → R a a (refl a)} → ({x y : A} (p : x ≡ y) → R x y p) ind≡ R {reflR} (refl y) = reflR {y} -- Changing some implicit argument to being explicit and vice-versa, -- and changing names of bound variables we get: J : {A : Set} → (R : {x y : A} → (p : x ≡ y) → Set) (r : (a : A) → R (refl a)) → ({a b : A} (p : a ≡ b) → R p) J R r (refl y) = r y -- Examples sym : {A : Set} {x y : A} → (x ≡ y) → (y ≡ x) sym = J (λ {x} {y} p → y ≡ x) (λ a → refl a) -- Next we want to prove: -- trans : {A : Set} {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) -- if we try to directly use J we discover that the definition of R -- (λ {x} {y} p → y ≡ z → x ≡ z) -- refers to an unbound z trans' : {A : Set} {x y : A} → (x ≡ y) → ((z : A) → (q : y ≡ z) → (x ≡ z)) trans' {A} = J (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ a z → id) -- then trans : {A : Set} {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) trans {A} {x} {y} {z} p q = trans' {A} {x} {y} p z q -- trans' refl q will simplify to q because we did induction on the first argument idR : {A : Set} {x y : A} (q : x ≡ y) → trans (refl x) q ≡ q idR q = refl q -- but trans' p refl will NOT simplify -- idL : {A : Set} {x y : A} (p : x ≡ y) → trans p (refl y) ≡ p -- idL p = refl p -- does not work -- We can do induction on the right and get the reverse situation -- OR we can do induction twice and lose BOTH and ONLY get -- trans refl refl = refl -- Even though this seems "worse", it is symmetric at least and easy to work is. trans2' : {A : Set} {x y : A} → (x ≡ y) → ((z : A) → (q : y ≡ z) → (x ≡ z)) trans2' {A} = J (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ a z → J (λ {x'} {y'} q → x' ≡ y') (λ b → refl b)) trans2 : {A : Set} {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) trans2 {A} {x} {y} {z} p q = trans2' {A} {x} {y} p z q idLR : {A : Set} {a : A} → trans2 (refl a) (refl a) ≡ refl a idLR {A} {a} = refl (refl a) ------------------------------------------------------------------------------ -- If we restrict ourselves to proofs about "points" like numbers, -- booleans, etc. all we are saying is that if we normalize the -- calculation for each point they each reduce to same identical -- result. Things get much more interesting if we start thinking about -- identity in higher universes... So for example, say we want to -- prove that groups are the same, in that case we might have to prove -- that two types are the same etc. Unfortunately J by itself is -- helpless here... This motivates the univalence axiom to be discussed next... ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5464812009, "avg_line_length": 32.7072072072, "ext": "agda", "hexsha": "9ef58ff62d135584dbc2c014adcc7955085ff25e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andmkent/misc-HoTT", "max_forks_repo_path": "Id1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andmkent/misc-HoTT", "max_issues_repo_path": "Id1.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andmkent/misc-HoTT", "max_stars_repo_path": "Id1.agda", "max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z", "num_tokens": 2543, "size": 7261 }
module automaton where open import Data.Nat open import Data.List open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import logic record Automaton ( Q : Set ) ( Σ : Set ) : Set where field δ : Q → Σ → Q aend : Q → Bool open Automaton accept : { Q : Set } { Σ : Set } → Automaton Q Σ → Q → List Σ → Bool accept M q [] = aend M q accept M q ( H ∷ T ) = accept M ( δ M q H ) T moves : { Q : Set } { Σ : Set } → Automaton Q Σ → Q → List Σ → Q moves M q [] = q moves M q ( H ∷ T ) = moves M ( δ M q H) T trace : { Q : Set } { Σ : Set } → Automaton Q Σ → Q → List Σ → List Q trace {Q} { Σ} M q [] = q ∷ [] trace {Q} { Σ} M q ( H ∷ T ) = q ∷ trace M ( (δ M) q H ) T reachable : { Q : Set } { Σ : Set } → (M : Automaton Q Σ ) → (astart q : Q ) → (L : List Σ ) → Set reachable M astart q L = moves M astart L ≡ q
{ "alphanum_fraction": 0.5010893246, "avg_line_length": 22.3902439024, "ext": "agda", "hexsha": "8d0cee92d3dfdb6a69a27cb6f29c04be71b20bff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/automaton.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/automaton.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/automaton.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 359, "size": 918 }
------------------------------------------------------------------------ -- The Agda standard library -- -- All library modules, along with short descriptions ------------------------------------------------------------------------ -- Note that core modules are not included. module Everything where -- Definitions of algebraic structures like monoids and rings -- (packed in records together with sets, operations, etc.) open import Algebra -- Solver for equations in commutative monoids open import Algebra.CommutativeMonoidSolver -- An example of how Algebra.CommutativeMonoidSolver can be used open import Algebra.CommutativeMonoidSolver.Example -- Properties of functions, such as associativity and commutativity open import Algebra.FunctionProperties -- Relations between properties of functions, such as associativity and -- commutativity open import Algebra.FunctionProperties.Consequences -- Solver for equations in commutative monoids open import Algebra.IdempotentCommutativeMonoidSolver -- An example of how Algebra.IdempotentCommutativeMonoidSolver can be -- used open import Algebra.IdempotentCommutativeMonoidSolver.Example -- Solver for monoid equalities open import Algebra.Monoid-solver -- Morphisms between algebraic structures open import Algebra.Morphism -- Some defined operations (multiplication by natural number and -- exponentiation) open import Algebra.Operations -- Some derivable properties open import Algebra.Properties.AbelianGroup -- Some derivable properties open import Algebra.Properties.BooleanAlgebra -- Boolean algebra expressions open import Algebra.Properties.BooleanAlgebra.Expression -- Some derivable properties open import Algebra.Properties.DistributiveLattice -- Some derivable properties open import Algebra.Properties.Group -- Some derivable properties open import Algebra.Properties.Lattice -- Some derivable properties open import Algebra.Properties.Ring -- Solver for commutative ring or semiring equalities open import Algebra.RingSolver -- Commutative semirings with some additional structure ("almost" -- commutative rings), used by the ring solver open import Algebra.RingSolver.AlmostCommutativeRing -- Some boring lemmas used by the ring solver open import Algebra.RingSolver.Lemmas -- Instantiates the ring solver, using the natural numbers as the -- coefficient "ring" open import Algebra.RingSolver.Natural-coefficients -- Instantiates the ring solver with two copies of the same ring with -- decidable equality open import Algebra.RingSolver.Simple -- Some algebraic structures (not packed up with sets, operations, -- etc.) open import Algebra.Structures -- Applicative functors open import Category.Applicative -- Indexed applicative functors open import Category.Applicative.Indexed -- Applicative functors on indexed sets (predicates) open import Category.Applicative.Predicate -- Functors open import Category.Functor -- The identity functor open import Category.Functor.Identity -- Functors on indexed sets (predicates) open import Category.Functor.Predicate -- Monads open import Category.Monad -- A delimited continuation monad open import Category.Monad.Continuation -- The identity monad open import Category.Monad.Identity -- Indexed monads open import Category.Monad.Indexed -- The partiality monad open import Category.Monad.Partiality -- An All predicate for the partiality monad open import Category.Monad.Partiality.All -- Monads on indexed sets (predicates) open import Category.Monad.Predicate -- The state monad open import Category.Monad.State -- Basic types related to coinduction open import Coinduction -- AVL trees open import Data.AVL -- Types and functions which are used to keep track of height -- invariants in AVL Trees open import Data.AVL.Height -- Indexed AVL trees open import Data.AVL.Indexed -- Finite maps with indexed keys and values, based on AVL trees open import Data.AVL.IndexedMap -- Keys for AVL trees -- The key type extended with a new minimum and maximum. open import Data.AVL.Key -- Finite sets, based on AVL trees open import Data.AVL.Sets -- A binary representation of natural numbers open import Data.Bin -- Properties of the binary representation of natural numbers open import Data.Bin.Properties -- Booleans open import Data.Bool -- The type for booleans and some operations open import Data.Bool.Base -- A bunch of properties open import Data.Bool.Properties -- Showing booleans open import Data.Bool.Show -- Bounded vectors open import Data.BoundedVec -- Bounded vectors (inefficient, concrete implementation) open import Data.BoundedVec.Inefficient -- Characters open import Data.Char -- Basic definitions for Characters open import Data.Char.Base -- "Finite" sets indexed on coinductive "natural" numbers open import Data.Cofin -- Coinductive lists open import Data.Colist -- Infinite merge operation for coinductive lists open import Data.Colist.Infinite-merge -- Coinductive "natural" numbers open import Data.Conat -- Containers, based on the work of Abbott and others open import Data.Container -- Properties related to ◇ open import Data.Container.Any -- Container combinators open import Data.Container.Combinator -- The free monad construction on containers open import Data.Container.FreeMonad -- Indexed containers aka interaction structures aka polynomial -- functors. The notation and presentation here is closest to that of -- Hancock and Hyvernat in "Programming interfaces and basic topology" -- (2006/9). open import Data.Container.Indexed -- Indexed container combinators open import Data.Container.Indexed.Combinator -- The free monad construction on indexed containers open import Data.Container.Indexed.FreeMonad -- Coinductive vectors open import Data.Covec -- Lists with fast append open import Data.DifferenceList -- Natural numbers with fast addition (for use together with -- DifferenceVec) open import Data.DifferenceNat -- Vectors with fast append open import Data.DifferenceVec -- Digits and digit expansions open import Data.Digit -- Empty type open import Data.Empty -- An irrelevant version of ⊥-elim open import Data.Empty.Irrelevant -- Finite sets open import Data.Fin -- Decision procedures for finite sets and subsets of finite sets open import Data.Fin.Dec -- Properties related to Fin, and operations making use of these -- properties (or other properties not available in Data.Fin) open import Data.Fin.Properties -- Subsets of finite sets open import Data.Fin.Subset -- Some properties about subsets open import Data.Fin.Subset.Properties -- Substitutions open import Data.Fin.Substitution -- An example of how Data.Fin.Substitution can be used: a definition -- of substitution for the untyped λ-calculus, along with some lemmas open import Data.Fin.Substitution.Example -- Substitution lemmas open import Data.Fin.Substitution.Lemmas -- Application of substitutions to lists, along with various lemmas open import Data.Fin.Substitution.List -- Floats open import Data.Float -- Directed acyclic multigraphs open import Data.Graph.Acyclic -- Integers open import Data.Integer -- Properties related to addition of integers open import Data.Integer.Addition.Properties -- Integers, basic types and operations open import Data.Integer.Base -- Divisibility and coprimality open import Data.Integer.Divisibility -- Properties related to multiplication of integers open import Data.Integer.Multiplication.Properties -- Some properties about integers open import Data.Integer.Properties -- Lists open import Data.List -- Lists where all elements satisfy a given property open import Data.List.All -- Properties related to All open import Data.List.All.Properties -- Lists where at least one element satisfies a given property open import Data.List.Any -- Properties related to bag and set equality open import Data.List.Any.BagAndSetEquality -- List membership and some related definitions open import Data.List.Any.Membership -- Properties related to propositional list membership open import Data.List.Any.Membership.Properties -- Data.List.Any.Membership instantiated with propositional equality, -- along with some additional definitions. open import Data.List.Any.Membership.Propositional -- Properties related to propositional list membership open import Data.List.Any.Membership.Propositional.Properties -- Properties related to Any open import Data.List.Any.Properties -- Lists, basic types and operations open import Data.List.Base -- A categorical view of List open import Data.List.Categorical -- A data structure which keeps track of an upper bound on the number -- of elements /not/ in a given list open import Data.List.Countdown -- Non-empty lists open import Data.List.NonEmpty -- Properties of non-empty lists open import Data.List.NonEmpty.Properties -- List-related properties open import Data.List.Properties -- Lexicographic ordering of lists open import Data.List.Relation.NonStrictLex -- Pointwise lifting of relations to lists open import Data.List.Relation.Pointwise -- Lexicographic ordering of lists open import Data.List.Relation.StrictLex -- Reverse view open import Data.List.Reverse -- M-types (the dual of W-types) open import Data.M -- Indexed M-types (the dual of indexed W-types aka Petersson-Synek -- trees). open import Data.M.Indexed -- The Maybe type open import Data.Maybe -- The Maybe type and some operations open import Data.Maybe.Base -- Natural numbers open import Data.Nat -- Natural numbers, basic types and operations open import Data.Nat.Base -- Coprimality open import Data.Nat.Coprimality -- Integer division open import Data.Nat.DivMod -- Divisibility open import Data.Nat.Divisibility -- Greatest common divisor open import Data.Nat.GCD -- Boring lemmas used in Data.Nat.GCD and Data.Nat.Coprimality open import Data.Nat.GCD.Lemmas -- A generalisation of the arithmetic operations open import Data.Nat.GeneralisedArithmetic -- Definition of and lemmas related to "true infinitely often" open import Data.Nat.InfinitelyOften -- Least common multiple open import Data.Nat.LCM -- Primality open import Data.Nat.Primality -- A bunch of properties about natural number operations open import Data.Nat.Properties -- A bunch of properties about natural number operations open import Data.Nat.Properties.Simple -- Showing natural numbers open import Data.Nat.Show -- Transitive closures open import Data.Plus -- Products open import Data.Product -- N-ary products open import Data.Product.N-ary -- Properties of products open import Data.Product.Properties -- Lexicographic products of binary relations open import Data.Product.Relation.NonStrictLex -- Pointwise products of binary relations open import Data.Product.Relation.Pointwise -- Pointwise lifting of binary relations to sigma types open import Data.Product.Relation.SigmaPointwise -- Lexicographic products of binary relations open import Data.Product.Relation.StrictLex -- Rational numbers open import Data.Rational -- Properties of Rational numbers open import Data.Rational.Properties -- Reflexive closures open import Data.ReflexiveClosure -- Signs open import Data.Sign -- Some properties about signs open import Data.Sign.Properties -- The reflexive transitive closures of McBride, Norell and Jansson open import Data.Star -- Bounded vectors (inefficient implementation) open import Data.Star.BoundedVec -- Decorated star-lists open import Data.Star.Decoration -- Environments (heterogeneous collections) open import Data.Star.Environment -- Finite sets defined in terms of Data.Star open import Data.Star.Fin -- Lists defined in terms of Data.Star open import Data.Star.List -- Natural numbers defined in terms of Data.Star open import Data.Star.Nat -- Pointers into star-lists open import Data.Star.Pointer -- Some properties related to Data.Star open import Data.Star.Properties -- Vectors defined in terms of Data.Star open import Data.Star.Vec -- Streams open import Data.Stream -- Strings open import Data.String -- Strings open import Data.String.Base -- Sums (disjoint unions) open import Data.Sum -- Properties of sums (disjoint unions) open import Data.Sum.Properties -- Sums of binary relations open import Data.Sum.Relation.General -- Fixed-size tables of values, implemented as functions from 'Fin n'. -- Similar to 'Data.Vec', but focusing on ease of retrieval instead of -- ease of adding and removing elements. open import Data.Table -- Tables, basic types and operations open import Data.Table.Base -- Table-related properties open import Data.Table.Properties -- Pointwise table equality open import Data.Table.Relation.Equality -- Some unit types open import Data.Unit -- The unit type and the total relation on unit open import Data.Unit.Base -- Some unit types open import Data.Unit.NonEta -- Vectors open import Data.Vec -- Vectors where all elements satisfy a given property open import Data.Vec.All -- Properties related to All open import Data.Vec.All.Properties -- A categorical view of Vec open import Data.Vec.Categorical -- Code for converting Vec A n → B to and from n-ary functions open import Data.Vec.N-ary -- Some Vec-related properties open import Data.Vec.Properties -- Semi-heterogeneous vector equality open import Data.Vec.Relation.Equality -- Extensional pointwise lifting of relations to vectors open import Data.Vec.Relation.ExtensionalPointwise -- Inductive pointwise lifting of relations to vectors open import Data.Vec.Relation.InductivePointwise -- W-types open import Data.W -- Indexed W-types aka Petersson-Synek trees open import Data.W.Indexed -- Machine words open import Data.Word -- Type(s) used (only) when calling out to Haskell via the FFI open import Foreign.Haskell -- Simple combinators working solely on and with functions open import Function -- Bijections open import Function.Bijection -- Function setoids and related constructions open import Function.Equality -- Equivalence (coinhabitance) open import Function.Equivalence -- Injections open import Function.Injection -- Inverses open import Function.Inverse -- Left inverses open import Function.LeftInverse -- A universe which includes several kinds of "relatedness" for sets, -- such as equivalences, surjections and bijections open import Function.Related -- Basic lemmas showing that various types are related (isomorphic or -- equivalent or…) open import Function.Related.TypeIsomorphisms -- Surjections open import Function.Surjection -- IO open import IO -- Primitive IO: simple bindings to Haskell types and functions open import IO.Primitive -- An abstraction of various forms of recursion/induction open import Induction -- Lexicographic induction open import Induction.Lexicographic -- Various forms of induction for natural numbers open import Induction.Nat -- Well-founded induction open import Induction.WellFounded -- Universe levels open import Level -- Record types with manifest fields and "with", based on Randy -- Pollack's "Dependently Typed Records in Type Theory" open import Record -- Support for reflection open import Reflection -- Properties of homogeneous binary relations open import Relation.Binary -- Some properties imply others open import Relation.Binary.Consequences -- Convenient syntax for equational reasoning open import Relation.Binary.EqReasoning -- Equivalence closures of binary relations open import Relation.Binary.EquivalenceClosure -- Many properties which hold for _∼_ also hold for flip _∼_ open import Relation.Binary.Flip -- Heterogeneous equality open import Relation.Binary.HeterogeneousEquality -- Quotients for Heterogeneous equality open import Relation.Binary.HeterogeneousEquality.Quotients -- Example of a Quotient: ℤ as (ℕ × ℕ / ~) open import Relation.Binary.HeterogeneousEquality.Quotients.Examples -- Indexed binary relations open import Relation.Binary.Indexed -- Induced preorders open import Relation.Binary.InducedPreorders -- Order-theoretic lattices open import Relation.Binary.Lattice -- Lexicographic ordering of lists open import Relation.Binary.List.NonStrictLex -- Pointwise lifting of relations to lists open import Relation.Binary.List.Pointwise -- Lexicographic ordering of lists open import Relation.Binary.List.StrictLex -- Conversion of ≤ to <, along with a number of properties open import Relation.Binary.NonStrictToStrict -- Many properties which hold for _∼_ also hold for _∼_ on f open import Relation.Binary.On -- Order morphisms open import Relation.Binary.OrderMorphism -- Convenient syntax for "equational reasoning" using a partial order open import Relation.Binary.PartialOrderReasoning -- Convenient syntax for "equational reasoning" using a preorder open import Relation.Binary.PreorderReasoning -- Lexicographic products of binary relations open import Relation.Binary.Product.NonStrictLex -- Pointwise products of binary relations open import Relation.Binary.Product.Pointwise -- Lexicographic products of binary relations open import Relation.Binary.Product.StrictLex -- Properties satisfied by bounded join semilattices open import Relation.Binary.Properties.BoundedJoinSemilattice -- Properties satisfied by bounded meet semilattices open import Relation.Binary.Properties.BoundedMeetSemilattice -- Properties satisfied by decidable total orders open import Relation.Binary.Properties.DecTotalOrder -- Properties satisfied by join semilattices open import Relation.Binary.Properties.JoinSemilattice -- Properties satisfied by lattices open import Relation.Binary.Properties.Lattice -- Properties satisfied by meet semilattices open import Relation.Binary.Properties.MeetSemilattice -- Properties satisfied by posets open import Relation.Binary.Properties.Poset -- Properties satisfied by preorders open import Relation.Binary.Properties.Preorder -- Properties satisfied by strict partial orders open import Relation.Binary.Properties.StrictPartialOrder -- Properties satisfied by strict partial orders open import Relation.Binary.Properties.StrictTotalOrder -- Properties satisfied by total orders open import Relation.Binary.Properties.TotalOrder -- Propositional (intensional) equality open import Relation.Binary.PropositionalEquality -- An equality postulate which evaluates open import Relation.Binary.PropositionalEquality.TrustMe -- Helpers intended to ease the development of "tactics" which use -- proof by reflection open import Relation.Binary.Reflection -- Convenient syntax for "equational reasoning" in multiple Setoids open import Relation.Binary.SetoidReasoning -- Pointwise lifting of binary relations to sigma types open import Relation.Binary.Sigma.Pointwise -- Some simple binary relations open import Relation.Binary.Simple -- Convenient syntax for "equational reasoning" using a strict partial -- order open import Relation.Binary.StrictPartialOrderReasoning -- Conversion of < to ≤, along with a number of properties open import Relation.Binary.StrictToNonStrict -- Sums of binary relations open import Relation.Binary.Sum -- Symmetric closures of binary relations open import Relation.Binary.SymmetricClosure -- Pointwise lifting of relations to vectors open import Relation.Binary.Vec.Pointwise -- Operations on nullary relations (like negation and decidability) open import Relation.Nullary -- Operations on and properties of decidable relations open import Relation.Nullary.Decidable -- Implications of nullary relations open import Relation.Nullary.Implication -- Properties related to negation open import Relation.Nullary.Negation -- Products of nullary relations open import Relation.Nullary.Product -- Sums of nullary relations open import Relation.Nullary.Sum -- A universe of proposition functors, along with some properties open import Relation.Nullary.Universe -- Unary relations open import Relation.Unary -- Predicate transformers open import Relation.Unary.PredicateTransformer -- Sizes for Agda's sized types open import Size -- Strictness combinators open import Strict -- Universes open import Universe
{ "alphanum_fraction": 0.7984955664, "avg_line_length": 25.4101265823, "ext": "agda", "hexsha": "579a48bc15183e94fae6de5be020964d2021d6df", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Everything.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Everything.agda", "max_line_length": 72, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 4298, "size": 20074 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Surjection open import Oscar.Class.Smap open import Oscar.Class.Transitivity module Oscar.Class.Surjtranscommutativity where module Surjtranscommutativity {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (let infix 4 _∼̇₂_ ; _∼̇₂_ = _∼̇₂_) {surjection : Surjection.type 𝔒₁ 𝔒₂} (smap : Smap.type _∼₁_ _∼₂_ surjection surjection) (transitivity₁ : Transitivity.type _∼₁_) (let infixr 9 _∙₁_ _∙₁_ : FlipTransitivity.type _∼₁_ _∙₁_ g f = transitivity₁ f g) (transitivity₂ : Transitivity.type _∼₂_) (let infixr 9 _∙₂_ _∙₂_ : FlipTransitivity.type _∼₂_ _∙₂_ g f = transitivity₂ f g) = ℭLASS (_∼₁_ ,, _∼₂_ ,, (λ {x y} → _∼̇₂_ {x} {y}) ,, surjection ,, (λ {x y} → smap {x} {y}) ,, (λ {x y z} → transitivity₁ {x} {y} {z}) ,, (λ {x y z} → transitivity₂ {x} {y} {z})) (∀ {x y z} (f : x ∼₁ y) (g : y ∼₁ z) → smap (g ∙₁ f) ∼̇₂ smap g ∙₂ smap f) module Surjtranscommutativity! {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (let infix 4 _∼̇₂_ ; _∼̇₂_ = _∼̇₂_) ⦃ I1 : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ I2 : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ I3 : Transitivity.class _∼₁_ ⦄ ⦃ I4 : Transitivity.class _∼₂_ ⦄ = Surjtranscommutativity (_∼₁_) (_∼₂_) (λ {x y} → _∼̇₂_ {x} {y}) smap transitivity transitivity module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {ℓ₂} {_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂} {surjection : Surjection.type 𝔒₁ 𝔒₂} {smap : Smap.type _∼₁_ _∼₂_ surjection surjection} {transitivity₁ : Transitivity.type _∼₁_} {transitivity₂ : Transitivity.type _∼₂_} where surjtranscommutativity = Surjtranscommutativity.method _∼₁_ _∼₂_ _∼̇₂_ smap transitivity₁ transitivity₂ ⟪∙⟫-surjtranscommutativity-syntax = surjtranscommutativity syntax ⟪∙⟫-surjtranscommutativity-syntax f g = g ⟪∙⟫ f module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {ℓ₂} {_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂} ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ _ : Transitivity.class _∼₁_ ⦄ ⦃ _ : Transitivity.class _∼₂_ ⦄ where surjtranscommutativity! = Surjtranscommutativity!.method _∼₁_ _∼₂_ _∼̇₂_ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ ! ⦄ ⟪∙⟫!-surjtranscommutativity-syntax = surjtranscommutativity! syntax ⟪∙⟫!-surjtranscommutativity-syntax f g = g ⟪∙⟫! f module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) {surjection : Surjection.type 𝔒₁ 𝔒₂} {smap : Smap.type _∼₁_ _∼₂_ surjection surjection} {transitivity₁ : Transitivity.type _∼₁_} {transitivity₂ : Transitivity.type _∼₂_} where surjtranscommutativity[_] = Surjtranscommutativity.method _∼₁_ _∼₂_ _∼̇₂_ smap transitivity₁ transitivity₂ ⟪∙⟫-surjtranscommutativity[]-syntax = surjtranscommutativity[_] syntax ⟪∙⟫-surjtranscommutativity[]-syntax t f g = g ⟪∙⟫[ t ] f module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔯₁} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔯₂} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {ℓ₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ _ : Transitivity.class _∼₁_ ⦄ ⦃ _ : Transitivity.class _∼₂_ ⦄ where surjtranscommutativity![_] = Surjtranscommutativity!.method _∼₁_ _∼₂_ _∼̇₂_ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ ! ⦄ ⟪∙⟫!-surjtranscommutativity[]-syntax = surjtranscommutativity![_] syntax ⟪∙⟫!-surjtranscommutativity[]-syntax t f g = g ⟪∙⟫![ t ] f
{ "alphanum_fraction": 0.5934981193, "avg_line_length": 37.595959596, "ext": "agda", "hexsha": "a8a9bc4ffe5d8ce25a5f1acc179edf5feb401ad3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Surjtranscommutativity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Surjtranscommutativity.agda", "max_line_length": 256, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Surjtranscommutativity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2111, "size": 3722 }
record Unit : Set where instance constructor tt
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 13.5, "ext": "agda", "hexsha": "550a4b53e1d9233340d05644b965e4d431dfb7f8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4380.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4380.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4380.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 13, "size": 54 }
module TimeSpace where open import Prelude as P hiding ( [_] ; id ; _∘_ ; _***_ ) open import Container.List open import Pi.Util {- A universe of finite types. -} data U : Set where 𝟘 𝟙 : U _⊕_ _⊗_ : U → U → U infixr 6 _⊕_ infixr 7 _⊗_ {- A collection of "primitive" isomorphisms. Selection was based on accepted definitions of categorical structures. Monoidal categories have left and right unitors, and associators; braided monoidal categories have commutators. While the left/right unitor pairs might be considered redundant in light of the commutative morphism, I decided to keep them. By matching the morphisms of relevant categorical structures, we can examine the various categorical coherence laws for time/space tradeoffs. This isn't necessary, but I want to test the effects of the change on the structure of the proofs. -} data _≅_ : U → U → Set where -- Coproduct monoid ⊕λ : ∀ {A} → 𝟘 ⊕ A ≅ A ⊕ρ : ∀ {A} → A ⊕ 𝟘 ≅ A ⊕σ : ∀ {A B} → A ⊕ B ≅ B ⊕ A ⊕α : ∀ {A B C} → (A ⊕ B) ⊕ C ≅ A ⊕ (B ⊕ C) -- Product monoid ⊗λ : ∀ {A} → 𝟙 ⊗ A ≅ A ⊗ρ : ∀ {A} → A ⊗ 𝟙 ≅ A ⊗σ : ∀ {A B} → A ⊗ B ≅ B ⊗ A ⊗α : ∀ {A B C} → (A ⊗ B) ⊗ C ≅ A ⊗ (B ⊗ C) -- Distributivity δ : ∀ {A B C} → A ⊗ (B ⊕ C) ≅ (A ⊗ B) ⊕ (A ⊗ C) infix 1 _≅_ {- Naming conventions: *λ : left unitor : ε ∙ x ≅ x *ρ : right unitor : x ∙ ε ≅ x *α : associator : (x ∙ y) ∙ z ≅ x ∙ (y ∙ z) *σ : braid : x ∙ y ≅ y ∙ x ⊗* : multiplicative variant, (𝟙 , ⊗) ⊕* : additive variant, (𝟘 , ⊕) δ : distributor : x ⊗ (y ⊕ z) ≅ (x ⊗ y) ⊕ (x ⊗ z) -} infixr 5 _∘_ infix 1 _⟷_ data _⟷_ : U → U → Set where [_] : ∀ {A B} → A ≅ B → A ⟷ B id : ∀ {A} → A ⟷ A _⁻¹ : ∀ {A B} → A ⟷ B → B ⟷ A _∘_ : ∀ {A B C} → B ⟷ C → A ⟷ B → A ⟷ C _⊗_ : ∀ {A B C D} → A ⟷ B → C ⟷ D → A ⊗ C ⟷ B ⊗ D _⊕_ : ∀ {A B C D} → A ⟷ B → C ⟷ D → A ⊕ C ⟷ B ⊕ D El : U → Set El 𝟘 = ⊥ El 𝟙 = ⊤ El (A ⊕ B) = Either (El A) (El B) El (A ⊗ B) = El A × El B {- bwd/fwd relate to the unitary morphisms, while ap/ap⁻¹ relate to arbitrary morphisms. -} fwd : ∀ {A B} → A ≅ B → El A → El B bwd : ∀ {A B} → A ≅ B → El B → El A fwd ⊕λ (left ()) fwd ⊕λ (right x) = x fwd ⊕ρ (left x) = x fwd ⊕ρ (right ()) fwd ⊕σ (left x) = right x fwd ⊕σ (right x) = left x fwd ⊕α (left (left x)) = left x fwd ⊕α (left (right x)) = right (left x) fwd ⊕α (right x) = right (right x) fwd ⊗λ (tt , x) = x fwd ⊗ρ (x , tt) = x fwd ⊗σ (x , y) = y , x fwd ⊗α ((x , y) , z) = x , y , z fwd δ (x , left y) = left (x , y) fwd δ (x , right y) = right (x , y) bwd ⊕λ x = right x bwd ⊕ρ x = left x bwd ⊕σ (left x) = right x bwd ⊕σ (right x) = left x bwd ⊕α (left x) = left (left x) bwd ⊕α (right (left x)) = left (right x) bwd ⊕α (right (right x)) = right x bwd ⊗λ x = tt , x bwd ⊗ρ x = x , tt bwd ⊗σ (x , y) = y , x bwd ⊗α (x , y , z) = (x , y) , z bwd δ (left (x , y)) = x , left y bwd δ (right (x , y)) = x , right y fwd-bwd : ∀ {A B} → (f : A ≅ B) → bwd f P.∘ fwd f ≃ P.id fwd-bwd ⊕λ (left ()) fwd-bwd ⊕λ (right x) = P.refl fwd-bwd ⊕ρ (left x) = P.refl fwd-bwd ⊕ρ (right ()) fwd-bwd ⊕σ (left x) = P.refl fwd-bwd ⊕σ (right x) = P.refl fwd-bwd ⊕α (left (left x)) = P.refl fwd-bwd ⊕α (left (right x)) = P.refl fwd-bwd ⊕α (right x) = P.refl fwd-bwd ⊗λ (tt , x) = P.refl fwd-bwd ⊗ρ (x , tt) = P.refl fwd-bwd ⊗σ (x , y) = P.refl fwd-bwd ⊗α ((x , y) , z) = P.refl fwd-bwd δ (x , left y) = P.refl fwd-bwd δ (x , right y) = P.refl bwd-fwd : ∀ {A B} → (f : A ≅ B) → fwd f P.∘ bwd f ≃ P.id bwd-fwd ⊕λ x = P.refl bwd-fwd ⊕ρ x = P.refl bwd-fwd ⊕σ (left x) = P.refl bwd-fwd ⊕σ (right x) = P.refl bwd-fwd ⊕α (left x) = P.refl bwd-fwd ⊕α (right (left x)) = P.refl bwd-fwd ⊕α (right (right x)) = P.refl bwd-fwd ⊗λ x = P.refl bwd-fwd ⊗ρ x = P.refl bwd-fwd ⊗σ (x , y) = P.refl bwd-fwd ⊗α (x , y , z) = P.refl bwd-fwd δ (left (x , y)) = P.refl bwd-fwd δ (right (x , y)) = P.refl infixr 1 ap ap⁻¹ ap : ∀ {A B} → A ⟷ B → El A → El B ap⁻¹ : ∀ {A B} → A ⟷ B → El B → El A ap [ f ] = fwd f ap id = P.id ap (f ⁻¹) = ap⁻¹ f ap (g ∘ f) = ap g P.∘ ap f ap (f ⊗ g) = ap f *** ap g ap (f ⊕ g) = ap f +++ ap g ap⁻¹ [ f ] = bwd f ap⁻¹ id = P.id ap⁻¹ (f ⁻¹) = ap f ap⁻¹ (g ∘ f) = ap⁻¹ f P.∘ ap⁻¹ g ap⁻¹ (f ⊗ g) = ap⁻¹ f *** ap⁻¹ g ap⁻¹ (f ⊕ g) = ap⁻¹ f +++ ap⁻¹ g ap-inv : ∀ {A B} → (f : A ⟷ B) → ap⁻¹ f P.∘ ap f ≃ P.id inv-ap : ∀ {A B} → (f : A ⟷ B) → ap f P.∘ ap⁻¹ f ≃ P.id ap-inv [ f ] x = fwd-bwd f x ap-inv id x = P.refl ap-inv (f ⁻¹) x = inv-ap f x ap-inv (g ∘ f) x = ap⁻¹ f $≡ ap-inv g (ap f x) ⟨≡⟩ ap-inv f x ap-inv (f ⊗ g) (x , y) = cong₂ _,_ (ap-inv f x) (ap-inv g y) ap-inv (f ⊕ g) (left x) = left $≡ ap-inv f x ap-inv (f ⊕ g) (right x) = right $≡ ap-inv g x inv-ap [ f ] x = bwd-fwd f x inv-ap id x = P.refl inv-ap (f ⁻¹) x = ap-inv f x inv-ap (g ∘ f) x = ap g $≡ inv-ap f (ap⁻¹ g x) ⟨≡⟩ inv-ap g x inv-ap (f ⊗ g) (x , y) = cong₂ _,_ (inv-ap f x) (inv-ap g y) inv-ap (f ⊕ g) (left x) = left $≡ inv-ap f x inv-ap (f ⊕ g) (right x) = right $≡ inv-ap g x syntax fwd f x = f ♯ x syntax bwd f x = f ♭ x syntax ap f x = f ▸ x syntax ap⁻¹ f x = f ◂ x {- The size of a type A is a natural number equal to the lub to any element of A. We can also measure the size of an individual element of A, which may differ for elements when there are sums present in A. -} size : U → Nat size 𝟘 = 0 size 𝟙 = 1 size (A ⊕ B) = max (size A) (size B) size (A ⊗ B) = size A + size B sizeEl : ∀ A → El A → Nat sizeEl 𝟘 () sizeEl 𝟙 tt = 1 sizeEl (A ⊕ B) (left x) = sizeEl A x sizeEl (A ⊕ B) (right x) = sizeEl B x sizeEl (A ⊗ B) (x , y) = sizeEl A x + sizeEl B y {- `path-length` calculates the total number of computation steps required, according to a given valuation of the primitive isomorphisms. (see _≅_ type defn) For any (f : A ⟷ B), the number of steps taken to transform an (x : El A) to (ap f x : El B) depends on the value of `x`, due to the difference in steps between the two possible cases of `path-length (f ⊕ g)`. -} module _ (t : ∀ {A B} → A ≅ B → El A → Nat) where path-length : ∀ {A B} → A ⟷ B → El A → Nat --| in the primitive case, we use the supplied valuation. path-length [ f ] = t f --| `id` has unit length. Although it does no work, an abstract machine processing -- the morphism (f ∘ id) might still need to decompose the task into processing `f`, -- and processing `id`. path-length id _ = 1 --| the inverse of a morphism f takes the same number of steps to compute -- as does f. path-length (f ⁻¹) x = path-length f (ap⁻¹ f x) --| composition is sequential, and so time is added. path-length (g ∘ f) x = path-length f x + path-length g (ap f x) --| the product tensor runs two processes in parallel, and so takes -- the max time of the individual processes. path-length (f ⊗ g) (x , y) = max (path-length f x) (path-length g y) --| The coproduct tensor of two processes may take different amounts of -- time to run, depending on from which side of the disjoint union -- a particular input element is drawn. path-length (f ⊕ g) (left x) = path-length f x path-length (f ⊕ g) (right x) = path-length g x {- `circuit-length` is an upper bound of `path-length`, across all possible (x : El A). Consequently, it is independent of any particular element (x : El A). Here, a circuit is a spatial layout of a program in two dimensions, the "width" representing "size", or memory usage, or storage requirements of a program, and the "length" representing the stage of execution of the program. -} module _ (t : ∀ {A B} → A ≅ B → Nat) where circuit-length : ∀ {A B} → A ⟷ B → Nat circuit-length [ f ] = t f circuit-length id = 1 circuit-length (f ⁻¹) = circuit-length f circuit-length (g ∘ f) = circuit-length f + circuit-length g circuit-length (f ⊗ g) = max (circuit-length f) (circuit-length g) circuit-length (f ⊕ g) = max (circuit-length f) (circuit-length g) {- `circuit-width` measures the maximum width of the circuit described. viz. The maximum of the widths of all cross-section types. -} module _ (w : ∀ {A B} → A ≅ B → Nat) where circuit-width : ∀ {A B} → A ⟷ B → Nat circuit-width [ f ] = w f circuit-width {A} id = size A circuit-width (f ⁻¹) = circuit-width f circuit-width (g ∘ f) = max (circuit-width f) (circuit-width g) circuit-width (f ⊗ g) = circuit-width f + circuit-width g circuit-width (f ⊕ g) = max (circuit-width f) (circuit-width g) {- Proposition: For any morphism f : A ⟷ B, (circuit-length f) is the least upper bound of (path-length f x), for any x. -} Max : ∀ A → (El A → Nat) → Nat Max 𝟘 f = 0 Max 𝟙 f = f tt Max (A ⊕ B) f = max (Max A (f P.∘ left)) (Max B (f P.∘ right)) Max (A ⊗ B) f = Max A λ a → Max B λ b → f (a , b) Maximum : ∀ A (f : El A → Nat) (x : El A) → f x ≤ Max A f Maximum 𝟘 f () Maximum 𝟙 f tt = diff! 0 Maximum (A ⊕ B) f (left x) = prf where MA : f (left x) ≤ Max A (f P.∘ left) MA = Maximum A (f P.∘ left) x prf : f (left x) ≤ max (Max A (f P.∘ left)) (Max B (f P.∘ right)) prf = {!!} Maximum (A ⊕ B) f (right x) = prf where MB : f (right x) ≤ Max B (f P.∘ right) MB = Maximum B (f P.∘ right) x prf : f (right x) ≤ max (Max A (f P.∘ left)) (Max B (f P.∘ right)) prf = {!!} Maximum (A ⊗ B) f (x , y) = {!!} {- Lemma: The max of a constant function is the value of the function. -} MaxConst : ∀ n A → El A → Max A (λ _ → n) ≡ n MaxConst n 𝟘 () MaxConst n 𝟙 tt = P.refl MaxConst n (A ⊕ B) (left x) = {!!} MaxConst n (A ⊕ B) (right x) = {!!} MaxConst n (A ⊗ B) (x , y) = {!!} module _ (t : ∀ {A B} → A ≅ B → Nat) where path≤circuit : ∀ {A B} → (f : A ⟷ B) → Max A (path-length (λ f _ → t f) f) ≤ circuit-length t f path≤circuit [ f ] = {!!} path≤circuit id = {!!} path≤circuit (f ⁻¹) = {!!} path≤circuit (g ∘ f) = {!!} path≤circuit (f ⊗ g) = {!!} path≤circuit (f ⊕ g) = {!!} {- Future work: * Continue the literature search. Much of the underpinnings of this work are speculative, such as the definitions of 'width' and 'length'. * Continue the search for time/space invariants, and other properties of equivalence classes of morphisms. * Derive circuit-length circuit-width explicitly as LUBs over element dependent metrics path-length and path-width (currently undefined). * Find examples! The primitive objects and morphisms used here will only produce straight-line programs. * c.f. lit on complexity analysis and tradeoffs re. straight-line programs. -} -- These are the canonical equivalences arising from the categorical structure of a symmetric monoidal category. -- I thought they might be a good place to start looking for nonzero time/space tradeoffs. -- Should we investigate at all toward some form of distribuitive monoidal category? {- ∘idₗ : ∀ {A B} (f : A ⟷ B) → id ∘ f ≅ f ∘idᵣ : ∀ {A B} (f : A ⟷ B) → f ∘ id ≅ f ∘invₗ : ∀ {A B} (f : A ⟷ B) → f ⁻¹ ∘ f ≅ id ∘invᵣ : ∀ {A B} (f : A ⟷ B) → f ∘ f ⁻¹ ≅ id ∘assoc : ∀ {A B C D} → (f : A ⟷ B) (g : B ⟷ C) (h : C ⟷ D) → (h ∘ g) ∘ f ≅ h ∘ (g ∘ f) ⁻¹cong : ∀ {A B} → {f g : A ⟷ B} → f ≅ g → f ⁻¹ ≅ g ⁻¹ ∘cong : ∀ {A B C} → {f g : A ⟷ B} → f ≅ g → {h i : B ⟷ C} → h ≅ i → h ∘ f ≅ i ∘ g ⊗cong : ∀ {A B C D} → {f g : A ⟷ B} → f ≅ g → {h i : C ⟷ D} → h ≅ i → f ⊗ h ≅ g ⊗ i ⊕cong : ∀ {A B C D} → {f g : A ⟷ B} → f ≅ g → {h i : C ⟷ D} → h ≅ i → f ⊕ h ≅ g ⊕ i ∘/⁻¹ : ∀ {A B C} → (f : A ⟷ B) (g : B ⟷ C) → (g ∘ f) ⁻¹ ≅ f ⁻¹ ∘ g ⁻¹ ⊗tri : ∀ {A B} → (id ⊗ [ ⊗λ ]) ∘ [ ⊗α ] ≅ [ ⊗ρ ] ⊗ id ∶ (A ⊗ 𝟙) ⊗ B ⟷ A ⊗ B ⊕tri : ∀ {A B} → (id ⊕ [ ⊕λ ]) ∘ [ ⊕α ] ≅ [ ⊕ρ ] ⊕ id ∶ (A ⊕ 𝟘) ⊕ B ⟷ A ⊕ B ⊕pent : ∀ {A B C D} → [ ⊕α ] ∘ [ ⊕α ] ≅ (id ⊕ [ ⊕α ]) ∘ [ ⊕α ] ∘ ([ ⊕α ] ⊕ id) ∶ ((A ⊕ B) ⊕ C) ⊕ D ⟷ A ⊕ (B ⊕ (C ⊕ D)) ⊗pent : ∀ {A B C D} → [ ⊗α ] ∘ [ ⊗α ] ≅ (id ⊗ [ ⊗α ]) ∘ [ ⊗α ] ∘ ([ ⊗α ] ⊗ id) ∶ ((A ⊗ B) ⊗ C) ⊗ D ⟷ A ⊗ (B ⊗ (C ⊗ D)) ⊗hex : ∀ {A B C} → (id ⊗ [ ⊗σ ]) ∘ [ ⊗α ] ∘ ([ ⊗σ ] ⊗ id) ≅ [ ⊗α ] ∘ [ ⊗σ ] ∘ [ ⊗α ] ∶ (A ⊗ B) ⊗ C ⟷ B ⊗ (C ⊗ A) ⊕hex : ∀ {A B C} → (id ⊕ [ ⊕σ ]) ∘ [ ⊕α ] ∘ ([ ⊕σ ] ⊕ id) ≅ [ ⊕α ] ∘ [ ⊕σ ] ∘ [ ⊕α ] ∶ (A ⊕ B) ⊕ C ⟷ B ⊕ (C ⊕ A) ⊗hex⁻¹ : ∀ {A B C} → ([ ⊗σ ] ⊗ id) ∘ [ ⊗α ] ⁻¹ ∘ (id ⊗ [ ⊗σ ]) ≅ [ ⊗α ] ⁻¹ ∘ [ ⊗σ ] ∘ [ ⊗α ] ⁻¹ ∶ A ⊗ (B ⊗ C) ⟷ (C ⊗ A) ⊗ B ⊕hex⁻¹ : ∀ {A B C} → ([ ⊕σ ] ⊕ id) ∘ [ ⊕α ] ⁻¹ ∘ (id ⊕ [ ⊕σ ]) ≅ [ ⊕α ] ⁻¹ ∘ [ ⊕σ ] ∘ [ ⊕α ] ⁻¹ ∶ A ⊕ (B ⊕ C) ⟷ (C ⊕ A) ⊕ B -}
{ "alphanum_fraction": 0.4835719054, "avg_line_length": 30.5045248869, "ext": "agda", "hexsha": "a6f5ccd9279b991114eb66637c7cfd9735925312", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "TimeSpace.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "TimeSpace.agda", "max_line_length": 128, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "TimeSpace.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 5631, "size": 13483 }
-- Was: test/Fail/Issue493 -- Andreas, 2020-06-08, issue #4737 -- Warn instead of hard error on useless hiding. module _ where module M where postulate A B C : Set data D : Set where open M using (A) hiding (B; module D)
{ "alphanum_fraction": 0.6885964912, "avg_line_length": 19, "ext": "agda", "hexsha": "7d8d681b0ae0bc6df8e6ed575d3771ac46ef4f76", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/UselessHiding.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/UselessHiding.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/UselessHiding.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 73, "size": 228 }
{-# OPTIONS --cubical #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path data Interval : Set where left right : Interval path : left ≡ right swap : Interval → Interval swap left = right swap right = left swap (path i) = {!!}
{ "alphanum_fraction": 0.7015503876, "avg_line_length": 18.4285714286, "ext": "agda", "hexsha": "e39a3796fb7daf45c9223d3327210699f785b843", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/GoalConstraints.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/GoalConstraints.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/GoalConstraints.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 72, "size": 258 }
{-# OPTIONS --rewriting #-} module Issue4048 where data _==_ {i} {A : Set i} : (x y : A) → Set i where refl : {a : A} → a == a {-# BUILTIN REWRITE _==_ #-} postulate Π : (A : Set) (B : A → Set) → Set lam : {A : Set} {B : A → Set} (b : (a : A) → B a) → Π A B app : {A : Set} {B : A → Set} (f : Π A B) (a : A) → B a Π-β : {A : Set} {B : A → Set} (b : (a : A) → B a) (a : A) → app (lam b) a == b a {-# REWRITE Π-β #-} postulate ⊤ : Set tt : ⊤ ⊤-elim : ∀ {i} (A : ⊤ → Set i) (d : A tt) (x : ⊤) → A x ⊤-β : ∀ {i} (A : ⊤ → Set i) (d : A tt) → ⊤-elim A d tt == d {-# REWRITE ⊤-β #-} tt' : ⊤ tt' = tt module _ (C : (p : ⊤) → Set) (z : C tt) where F : (n p x : ⊤) → C p F n p = app (⊤-elim (λ n → (p : ⊤) → Π ⊤ (λ _ → C p)) (⊤-elim _ (lam (⊤-elim _ z))) n p) F-red : F tt tt tt == z F-red = refl -- Bug? F-red' : F tt tt' tt == z F-red' = refl -- Not accepted, even though tt' is tt by definition.
{ "alphanum_fraction": 0.3965517241, "avg_line_length": 24.0487804878, "ext": "agda", "hexsha": "1ead735f83d208f20c09b678446c9024da75943c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4048.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4048.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4048.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 460, "size": 986 }
module _ where open import Common.Prelude hiding (_>>=_; _<$>_) open import Common.Reflection infixl 8 _<$>_ _<$>_ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → TC A → TC B f <$> m = m >>= λ x → returnTC (f x) macro default : Tactic default hole = inferType hole >>= λ { (def (quote Nat) []) → unify hole (lit (nat 42)) ; (def (quote Bool) []) → unify hole (con (quote false) []) ; (meta x _) → catchTC (blockOnMeta x) (typeError (strErr "impossible" ∷ [])) -- check that the block isn't caught ; _ → typeError (strErr "No default" ∷ []) } aNat : Nat aNat = default aBool : Bool aBool = default alsoNat : Nat soonNat : _ soonNat = default alsoNat = soonNat
{ "alphanum_fraction": 0.554200542, "avg_line_length": 21.7058823529, "ext": "agda", "hexsha": "44bf1a5b6d3159fe1db7b17e0a1e4f3602a10815", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/ReflectionBlockOnMeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/ReflectionBlockOnMeta.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/ReflectionBlockOnMeta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 236, "size": 738 }
module MLib.Fin.Parts.Simple where open import MLib.Prelude open import MLib.Fin.Parts.Core open import MLib.Fin.Parts open import MLib.Fin.Parts.Nat import MLib.Fin.Parts.Nat.Simple as PNS open Nat using (_*_; _+_; _<_) open Fin using (toℕ; fromℕ≤) open Table open PNS using (sum-replicate-*; repl) asParts : ∀ {a b} → Fin (a * b) ↔ (Fin a × Fin b) asParts {a} {b} = ≡.subst (λ n → Fin n ↔ (Fin a × Fin b)) (sum-replicate-* a b) (Parts.asParts (constParts a b)) fromParts : ∀ {a b} → Fin a × Fin b → Fin (a * b) fromParts = Inverse.from asParts ⟨$⟩_ toParts : ∀ {a b} → Fin (a * b) → Fin a × Fin b toParts = Inverse.to asParts ⟨$⟩_ fromParts³′ : ∀ {a b c} → Fin a × Fin b × Fin c → Fin (a * (b * c)) fromParts³′ {a} {b} {c} (i , j , k) = fromParts (i , fromParts (j , k)) fromParts³ : ∀ {a b c} → Fin a × Fin b × Fin c → Fin (a * b * c) fromParts³ {a} {b} {c} (i , j , k) = fromParts (fromParts (i , j) , k) private fromParts′ : ∀ {a b} → Fin a × Fin b → Fin (sum (repl a b)) fromParts′ {a} {b} = Parts.fromParts (constParts a b) toParts′ : ∀ {a b} → Fin (sum (repl a b)) → Fin a × Fin b toParts′ {a} {b} = Parts.toParts (constParts a b) asParts-prop : ∀ {a b} → asParts {a} {b} ≅ Parts.asParts (constParts a b) asParts-prop {a} {b} = ≅.≡-subst-removable _ _ _ abstract fromParts′-prop : ∀ {a b} (ij : Fin a × Fin b) → toℕ (fromParts ij) ≡ toℕ (fromParts′ ij) fromParts′-prop {a} {b} ij = ≅.≅-to-≡ (≅.icong (λ n → Fin n ↔ (Fin a × Fin b)) (≡.sym (sum-replicate-* a b)) (λ {n} (ap : Fin n ↔ (Fin a × Fin b)) → toℕ (Inverse.from ap ⟨$⟩ ij)) asParts-prop) toParts′-prop : ∀ {a b} {x : Fin (a * b)} {x′ : Fin (sum (repl a b))} → x ≅ x′ → Σ.map toℕ toℕ (toParts {a} x) ≡ Σ.map toℕ toℕ (toParts′ {a} x′) toParts′-prop {a} {b} {x} {x′} x≅x′ = ≅.≅-to-≡ (≅.icong₂ (λ n → Fin n ↔ (Fin a × Fin b)) (≡.sym (sum-replicate-* a b)) (λ {n} (ap : Fin n ↔ (Fin a × Fin b)) x → Σ.map toℕ toℕ (Inverse.to ap ⟨$⟩ x)) asParts-prop x≅x′) fromParts³′-prop : ∀ {a b c} (i : Fin a) (j : Fin b) (k : Fin c) → toℕ (fromParts³′ (i , j , k)) ≡ PNS.fromParts³′ a b c (toℕ i , toℕ j , toℕ k) fromParts³′-prop {a} {b} {c} i j k = begin toℕ (fromParts (i , fromParts (j , k))) ≡⟨ fromParts′-prop (i , _) ⟩ toℕ (fromParts′ (i , fromParts (j , k))) ≡⟨ Parts.fromParts-fromPartsℕ (constParts a (b * c)) i _ ⟩ Partsℕ.fromParts (constParts a (b * c)) (toℕ i , toℕ (fromParts (j , k))) ≡⟨ ≡.cong₂ (λ x y → Partsℕ.fromParts (constParts a x) (toℕ i , y)) (≡.sym (sum-replicate-* b c)) (fromParts′-prop (j , k)) ⟩ Partsℕ.fromParts (constParts a (sum (repl b c))) (toℕ i , toℕ (fromParts′ (j , k))) ≡⟨ ≡.sym (Parts.fromParts-fromPartsℕ (constParts a _) i _) ⟩ toℕ (Parts.fromParts (constParts a (sum (repl b c))) (i , fromParts′ (j , k))) ≡⟨ Parts.fromParts-fromPartsℕ (constParts a (sum (repl b c))) i _ ⟩ PNS.fromParts a (sum (repl b c)) (toℕ i , toℕ (fromParts′ (j , k))) ≡⟨ ≡.cong₂ (λ x y → PNS.fromParts a x (toℕ i , y)) (sum-replicate-* b c) (Parts.fromParts-fromPartsℕ (constParts b c) j k) ⟩ PNS.fromParts a (b * c) (toℕ i , PNS.fromParts b c (toℕ j , toℕ k)) ∎ where open ≡.Reasoning fromParts³-prop : ∀ {a b c} (i : Fin a) (j : Fin b) (k : Fin c) → toℕ (fromParts³ (i , j , k)) ≡ PNS.fromParts³ a b c (toℕ i , toℕ j , toℕ k) fromParts³-prop {a} {b} {c} i j k = begin toℕ (fromParts (fromParts (i , j) , k)) ≡⟨ fromParts′-prop (fromParts (i , j) , k) ⟩ toℕ (fromParts′ (fromParts (i , j) , k)) ≡⟨ Parts.fromParts-fromPartsℕ (constParts (a * b) c) (fromParts (i , j)) k ⟩ Partsℕ.fromParts (constParts (a * b) c) (toℕ (fromParts (i , j)) , toℕ k) ≡⟨ ≡.cong₂ (λ x y → Partsℕ.fromParts (constParts x c) (y , toℕ k)) (≡.sym (sum-replicate-* a b)) (fromParts′-prop (i , j)) ⟩ Partsℕ.fromParts (constParts (sum (repl a b)) c) (toℕ (fromParts′ (i , j)) , toℕ k) ≡⟨ ≡.sym (Parts.fromParts-fromPartsℕ (constParts _ c) (fromParts′ (i , j)) k) ⟩ toℕ (fromParts′ (fromParts′ (i , j) , k)) ≡⟨ Parts.fromParts-fromPartsℕ (constParts _ c) (fromParts′ (i , j)) k ⟩ PNS.fromParts (sum (repl a b)) c (toℕ (fromParts′ (i , j)) , toℕ k) ≡⟨ ≡.cong₂ (λ x y → PNS.fromParts x c (y , toℕ k)) (sum-replicate-* a b) (Parts.fromParts-fromPartsℕ (constParts a b) i j) ⟩ PNS.fromParts (a * b) c (PNS.fromParts a b (toℕ i , toℕ j) , toℕ k) ∎ where open ≡.Reasoning abstract fromParts-assoc : ∀ {a b c} (ijk : Fin a × Fin b × Fin c) → fromParts³ ijk ≅ fromParts³′ ijk fromParts-assoc {a} {b} {c} (i , j , k) = Fin.toℕ-injective′ (begin toℕ (fromParts³ (i , j , k)) ≡⟨ fromParts³-prop i j k ⟩ PNS.fromParts³ a b c (toℕ i , toℕ j , toℕ k) ≡⟨ ≡.sym (PNS.fromParts-assoc _ _ _ (Fin.bounded i) (Fin.bounded j) (Fin.bounded k)) ⟩ PNS.fromParts³′ a b c (toℕ i , toℕ j , toℕ k) ≡⟨ ≡.sym (fromParts³′-prop i j k) ⟩ toℕ (fromParts³′ (i , j , k)) ∎) (Nat.*-assoc a _ _) where open ≡.Reasoning module _ (a b c : ℕ) where toParts³ : Fin (a * b * c) → Fin a × Fin b × Fin c toParts³ x = let ij , k = toParts x i , j = toParts ij in i , j , k toParts³′ : Fin (a * (b * c)) → Fin a × Fin b × Fin c toParts³′ i = let i₁ , i₂₃ = toParts i i₂ , i₃ = toParts i₂₃ in i₁ , i₂ , i₃ abstract fromParts³-toParts³ : ∀ i → fromParts³ (toParts³ i) ≡ i fromParts³-toParts³ x = let i , j , k = toParts³ x open ≡.Reasoning in begin fromParts³ (toParts³ x) ≡⟨⟩ fromParts (fromParts (i , j) , k) ≡⟨ ≡.cong (fromParts ∘ (_, k)) (asParts {a} {b} .Inverse.left-inverse-of (toParts x .proj₁)) ⟩ fromParts {a * b} (toParts x) ≡⟨ asParts {a * b} .Inverse.left-inverse-of x ⟩ x ∎ toParts³′-fromParts³′ : ∀ ijk → toParts³′ (fromParts³′ ijk) ≡ ijk toParts³′-fromParts³′ (i , j , k) = let i′ , j′ , k′ = toParts³′ (fromParts³′ (i , j , k)) p , q = Σ.≡⇒≡×≡ (asParts .Inverse.right-inverse-of (i , fromParts (j , k))) q′ = ≡.trans (≡.cong toParts q) (asParts .Inverse.right-inverse-of (j , k)) in Σ.≡×≡⇒≡ (p , q′) toParts-assoc : {i : Fin (a * b * c)} {i′ : Fin (a * (b * c))} → i ≅ i′ → toParts³ i ≡ toParts³′ i′ toParts-assoc {i} {i′} eq = begin toParts³ i ≡⟨ ≡.sym (toParts³′-fromParts³′ _) ⟩ toParts³′ (fromParts³′ (toParts³ i)) ≡⟨ ≡.cong toParts³′ lem ⟩ toParts³′ i′ ∎ where lem : fromParts³′ (toParts³ i) ≡ i′ lem = ≅.≅-to-≡ ( let open ≅.Reasoning in begin fromParts³′ (toParts³ i) ≅⟨ ≅.sym (fromParts-assoc (toParts³ i)) ⟩ fromParts³ (toParts³ i) ≡⟨ fromParts³-toParts³ i ⟩ i ≅⟨ eq ⟩ i′ ∎) open ≡.Reasoning toParts³-fromParts³ : ∀ ijk → toParts³ (fromParts³ ijk) ≡ ijk toParts³-fromParts³ ijk = begin toParts³ (fromParts³ ijk) ≡⟨ toParts-assoc (fromParts-assoc ijk) ⟩ toParts³′ (fromParts³′ ijk) ≡⟨ toParts³′-fromParts³′ ijk ⟩ ijk ∎ where open ≡.Reasoning fromParts³′-toParts³′ : ∀ k → fromParts³′ (toParts³′ k) ≡ k fromParts³′-toParts³′ k = let k′ = ≡.subst Fin (≡.sym (Nat.*-assoc a b c)) k k′≅k = ≅.≡-subst-removable Fin _ k in ≅.≅-to-≡ (begin fromParts³′ (toParts³′ k ) ≡⟨ ≡.cong fromParts³′ (≡.sym (toParts-assoc k′≅k)) ⟩ fromParts³′ (toParts³ k′) ≅⟨ ≅.sym (fromParts-assoc (toParts³ k′)) ⟩ fromParts³ (toParts³ k′) ≡⟨ fromParts³-toParts³ k′ ⟩ k′ ≅⟨ k′≅k ⟩ k ∎) where open ≅.Reasoning asParts³ : Fin (a * b * c) ↔ (Fin a × Fin b × Fin c) asParts³ = record { to = ≡.→-to-⟶ toParts³ ; from = ≡.→-to-⟶ fromParts³ ; inverse-of = record { left-inverse-of = fromParts³-toParts³ ; right-inverse-of = toParts³-fromParts³ } } asParts³′ : Fin (a * (b * c)) ↔ (Fin a × Fin b × Fin c) asParts³′ = record { to = ≡.→-to-⟶ toParts³′ ; from = ≡.→-to-⟶ fromParts³′ ; inverse-of = record { left-inverse-of = fromParts³′-toParts³′ ; right-inverse-of = toParts³′-fromParts³′ } } abstract toParts-1ˡ : ∀ {b} (x : Fin (1 * b)) (x′ : Fin b) → x ≅ x′ → toParts {1} x ≡ (zero , x′) toParts-1ˡ {b} x x′ x≅x′ = let i , j = toParts {1} x i′ , j′ = toParts′ {1} x i′′ , j′′ = Partsℕ.toParts (constParts 1 b) (toℕ x) i≅i′ , j≅j′ = Σ.≡⇒≡×≡ (toParts′-prop {1} {x = x} {x′ = x} ≅.refl) i′≅i′′ , j′≅j′′ = Σ.≡⇒≡×≡ (Parts.toParts-toPartsℕ (constParts 1 b) x) p , q = Σ.≡⇒≡×≡ (PNS.toParts-1ˡ {b} _ (Nat.≤-trans (Fin.bounded x) (Nat.≤-reflexive (Nat.*-identityˡ _)))) open ≡.Reasoning in Σ.≡×≡⇒≡ ( Fin.toℕ-injective (begin toℕ i ≡⟨ i≅i′ ⟩ toℕ i′ ≡⟨ i′≅i′′ ⟩ i′′ ≡⟨ p ⟩ 0 ∎) , Fin.toℕ-injective (begin toℕ j ≡⟨ j≅j′ ⟩ toℕ j′ ≡⟨ j′≅j′′ ⟩ j′′ ≡⟨ q ⟩ toℕ x ≡⟨ ≅.≅-to-≡ (≅.icong Fin (Nat.*-identityˡ _) toℕ x≅x′) ⟩ toℕ x′ ∎) ) toParts-1ʳ : ∀ {a} (x : Fin (a * 1)) (x′ : Fin a) → x ≅ x′ → toParts x ≡ (x′ , zero) toParts-1ʳ {a} x x′ x≅x′ = let x′′ : Fin (sum (repl a 1)) x′′ = ≡.subst Fin (≡.sym (sum-replicate-* a 1)) x x≅x′′ = ≅.sym (≅.≡-subst-removable Fin (≡.sym (sum-replicate-* a 1)) x) x′′≅x′ = ≅.trans (≅.sym x≅x′′) x≅x′ sra≡a = ≡.trans (sum-replicate-* a 1) (Nat.*-identityʳ a) i , j = toParts x i′ , j′ = toParts′ {a} {1} x′′ i′′ , j′′ = Partsℕ.toParts (constParts a 1) (toℕ x′′) i≅i′ , j≅j′ = Σ.≡⇒≡×≡ (toParts′-prop {a} {x = x} {x′ = x′′} x≅x′′) i′≅i′′ , j′≅j′′ = Σ.≡⇒≡×≡ (Parts.toParts-toPartsℕ (constParts a 1) x′′) p , q = Σ.≡⇒≡×≡ (PNS.toParts-1ʳ {a} (toℕ x′′) (Nat.≤-trans (Nat.≤-reflexive (≅.≅-to-≡ (≅.icong Fin sra≡a (suc ∘ toℕ) x′′≅x′))) (Fin.bounded x′))) open ≡.Reasoning in Σ.≡×≡⇒≡ ( Fin.toℕ-injective (begin toℕ i ≡⟨ i≅i′ ⟩ toℕ i′ ≡⟨ i′≅i′′ ⟩ i′′ ≡⟨ p ⟩ toℕ x′′ ≡⟨ ≅.≅-to-≡ (≅.icong Fin sra≡a toℕ x′′≅x′) ⟩ toℕ x′ ∎) , Fin.toℕ-injective (begin toℕ j ≡⟨ j≅j′ ⟩ toℕ j′ ≡⟨ j′≅j′′ ⟩ j′′ ≡⟨ q ⟩ 0 ∎) )
{ "alphanum_fraction": 0.4484103434, "avg_line_length": 47.3694779116, "ext": "agda", "hexsha": "1fe6c7712f12baa3a3e1f80aeed555a848ab17a4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Fin/Parts/Simple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Fin/Parts/Simple.agda", "max_line_length": 173, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Fin/Parts/Simple.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4741, "size": 11795 }
open import Agda.Builtin.List open import Agda.Builtin.Char open import Agda.Builtin.Equality postulate A B : Set b : B f : List A → Char → B f _ 'a' = b f [] _ = b f _ _ = b test : ∀ xs → f xs 'a' ≡ b test _ = refl
{ "alphanum_fraction": 0.6061946903, "avg_line_length": 14.125, "ext": "agda", "hexsha": "213d7a17935b9738f5b40f60185da71f6024e0b5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3062.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3062.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3062.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 90, "size": 226 }
{-# OPTIONS --sized-types #-} module Builtin.Size where open import Agda.Builtin.Size public
{ "alphanum_fraction": 0.7446808511, "avg_line_length": 18.8, "ext": "agda", "hexsha": "9d03b82f63737be4cc8da46c85bb728943cdfd8d", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UlfNorell/agda-prelude", "max_forks_repo_path": "src/Builtin/Size.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UlfNorell/agda-prelude", "max_issues_repo_path": "src/Builtin/Size.agda", "max_line_length": 36, "max_stars_count": 111, "max_stars_repo_head_hexsha": "d704381936db6bd393e63aa2740345e7364f9732", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlfNorell/agda-prelude", "max_stars_repo_path": "src/Builtin/Size.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 22, "size": 94 }
{-# OPTIONS --without-K --safe #-} ------------------------------------------------------------------------ -- Re-exports of the Data.List.Kleene module, renamed to duplicate the -- Data.List API. module Data.List.Kleene.AsList where import Data.List.Kleene.Base as Kleene open import Data.List.Kleene.Base using ( [] ) renaming ( _⋆ to List ; foldr⋆ to foldr ; foldl⋆ to foldl ; _⋆++⋆_ to _++_ ; map⋆ to map ; pure⋆ to pure ; _⋆<*>⋆_ to _<*>_ ; _⋆>>=⋆_ to _>>=_ ; mapAccumL⋆ to mapAccumL ; _[_]⋆ to _[_] ; applyUpTo⋆ to applyUpTo ; upTo⋆ to upTo ; intersperse⋆ to intersperse ; _⋆<|>⋆_ to _<|>_ ; ⋆zipWith⋆ to zipWith ; unzipWith⋆ to unzipWith ; partitionSumsWith⋆ to partitionSumsWith ; ⋆transpose⋆ to transpose ; reverse⋆ to reverse ) public infixr 5 _∷_ pattern _∷_ x xs = Kleene.∹ x Kleene.& xs scanr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → List A → List B scanr f b xs = Kleene.∹ Kleene.scanr⋆ f b xs scanl : ∀ {a b} {A : Set a} {B : Set b} → (B → A → B) → B → List A → List B scanl f b xs = Kleene.∹ Kleene.scanl⋆ f b xs tails : ∀ {a} {A : Set a} → List A → List (List A) tails xs = foldr (λ x xs → (Kleene.∹ x) ∷ xs) ([] ∷ []) (Kleene.tails⋆ xs) import Data.List.Kleene.Syntax module Syntax = Data.List.Kleene.Syntax using (_]; _,_) renaming (⋆[_ to [_)
{ "alphanum_fraction": 0.5471014493, "avg_line_length": 26.0377358491, "ext": "agda", "hexsha": "b883440308cc999562bedd417479d86c464d8ebf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-kleene-lists", "max_forks_repo_path": "Data/List/Kleene/AsList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-kleene-lists", "max_issues_repo_path": "Data/List/Kleene/AsList.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "a7e99bc288e12e83440c891dbd3e5077d9b1657e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-kleene-lists", "max_stars_repo_path": "Data/List/Kleene/AsList.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 555, "size": 1380 }
-- some examples for structural order in the termination checker module StructuralOrder where data Nat : Set where zero : Nat succ : Nat -> Nat -- c t > t for any term t -- e.g., succ (succ y) > succ y plus : Nat -> Nat -> Nat plus x (succ (succ y)) = succ (plus x (succ y)) plus x (succ zero) = succ x plus x zero = x -- constructor names do not matter -- c (c' t) > c'' t -- e.g. c0 (c1 x) > c0 x -- c0 (c0 x) > c1 x -- Actually constructor names does matter until the non-mattering is -- implemented properly. {- TEMPORARILY REMOVED by Ulf since there are problems with the constructor-name ignoring data Bin : Set where eps : Bin c0 : Bin -> Bin c1 : Bin -> Bin foo : Bin -> Nat foo eps = zero foo (c0 eps) = zero foo (c0 (c1 x)) = succ (foo (c0 x)) foo (c0 (c0 x)) = succ (foo (c1 x)) foo (c1 x) = succ (foo x) -}
{ "alphanum_fraction": 0.6142191142, "avg_line_length": 23.1891891892, "ext": "agda", "hexsha": "fda1d5b2e71f26f5d21f0b047232625978d488ff", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/Termination/StructuralOrder.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/Termination/StructuralOrder.agda", "max_line_length": 89, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/Termination/StructuralOrder.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 288, "size": 858 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to ◇ ------------------------------------------------------------------------ module Data.Container.Any where open import Algebra open import Data.Container as C open import Data.Container.Combinator using (module Composition) renaming (_∘_ to _⟨∘⟩_) open import Data.Product as Prod hiding (swap) open import Data.Sum open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; module Inverse) open import Function.Related as Related using (Related) open import Function.Related.TypeIsomorphisms import Relation.Binary.HeterogeneousEquality as H open import Relation.Binary.Product.Pointwise open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl) import Relation.Binary.Sigma.Pointwise as Σ open Related.EquationalReasoning private module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ) -- ◇ can be expressed using _∈_. ↔∈ : ∀ {c} (C : Container c) {X : Set c} {P : X → Set c} {xs : ⟦ C ⟧ X} → ◇ P xs ↔ (∃ λ x → x ∈ xs × P x) ↔∈ _ {P = P} {xs} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = to∘from } } where to : ◇ P xs → ∃ λ x → x ∈ xs × P x to (p , Px) = (proj₂ xs p , (p , refl) , Px) from : (∃ λ x → x ∈ xs × P x) → ◇ P xs from (.(proj₂ xs p) , (p , refl) , Px) = (p , Px) to∘from : to ∘ from ≗ id to∘from (.(proj₂ xs p) , (p , refl) , Px) = refl -- ◇ is a congruence for bag and set equality and related preorders. cong : ∀ {k c} {C : Container c} {X : Set c} {P₁ P₂ : X → Set c} {xs₁ xs₂ : ⟦ C ⟧ X} → (∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ → Related k (◇ P₁ xs₁) (◇ P₂ xs₂) cong {C = C} {P₁ = P₁} {P₂} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ = ◇ P₁ xs₁ ↔⟨ ↔∈ C ⟩ (∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩ (∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ sym (↔∈ C) ⟩ ◇ P₂ xs₂ ∎ -- Nested occurrences of ◇ can sometimes be swapped. swap : ∀ {c} {C₁ C₂ : Container c} {X Y : Set c} {P : X → Y → Set c} {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → let ◈ : ∀ {C : Container c} {X} → ⟦ C ⟧ X → (X → Set c) → Set c ◈ = λ {_} {_} → flip ◇ in ◈ xs (◈ ys ∘ P) ↔ ◈ ys (◈ xs ∘ flip P) swap {c} {C₁} {C₂} {P = P} {xs} {ys} = ◇ (λ x → ◇ (P x) ys) xs ↔⟨ ↔∈ C₁ ⟩ (∃ λ x → x ∈ xs × ◇ (P x) ys) ↔⟨ Σ.cong Inv.id (λ {x} → Inv.id ⟨ ×⊎.*-cong {ℓ = c} ⟩ ↔∈ C₂ {P = P x}) ⟩ (∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {x} → ∃∃↔∃∃ {A = x ∈ xs} (λ _ y → y ∈ ys × P x y)) ⟩ (∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ (λ x y → x ∈ xs × y ∈ ys × P x y) ⟩ (∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Σ.cong Inv.id (λ {x} → (x ∈ xs × y ∈ ys × P x y) ↔⟨ sym $ ×⊎.*-assoc _ _ _ ⟩ ((x ∈ xs × y ∈ ys) × P x y) ↔⟨ ×⊎.*-comm _ _ ⟨ ×⊎.*-cong {ℓ = c} ⟩ Inv.id ⟩ ((y ∈ ys × x ∈ xs) × P x y) ↔⟨ ×⊎.*-assoc _ _ _ ⟩ (y ∈ ys × x ∈ xs × P x y) ∎)) ⟩ (∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → ∃∃↔∃∃ {B = y ∈ ys} (λ x _ → x ∈ xs × P x y)) ⟩ (∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Inv.id ⟨ ×⊎.*-cong {ℓ = c} ⟩ sym (↔∈ C₁ {P = flip P y})) ⟩ (∃ λ y → y ∈ ys × ◇ (flip P y) xs) ↔⟨ sym (↔∈ C₂) ⟩ ◇ (λ y → ◇ (flip P y) xs) ys ∎ -- Nested occurrences of ◇ can sometimes be flattened. flatten : ∀ {c} {C₁ C₂ : Container c} {X} P (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → ◇ (◇ P) xss ↔ ◇ P (Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss) flatten {C₁ = C₁} {C₂} {X} P xss = record { to = P.→-to-⟶ t ; from = P.→-to-⟶ f ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ _ → refl } } where open Inverse t : ◇ (◇ P) xss → ◇ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) t (p₁ , p₂ , p) = ((p₁ , p₂) , p) f : ◇ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) → ◇ (◇ P) xss f ((p₁ , p₂) , p) = (p₁ , p₂ , p) -- Sums commute with ◇ (for a fixed instance of a given container). ◇⊎↔⊎◇ : ∀ {c} {C : Container c} {X : Set c} {xs : ⟦ C ⟧ X} {P Q : X → Set c} → ◇ (λ x → P x ⊎ Q x) xs ↔ (◇ P xs ⊎ ◇ Q xs) ◇⊎↔⊎◇ {xs = xs} {P} {Q} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ] } } where to : ◇ (λ x → P x ⊎ Q x) xs → ◇ P xs ⊎ ◇ Q xs to (pos , inj₁ p) = inj₁ (pos , p) to (pos , inj₂ q) = inj₂ (pos , q) from : ◇ P xs ⊎ ◇ Q xs → ◇ (λ x → P x ⊎ Q x) xs from = [ Prod.map id inj₁ , Prod.map id inj₂ ] from∘to : from ∘ to ≗ id from∘to (pos , inj₁ p) = refl from∘to (pos , inj₂ q) = refl -- Products "commute" with ◇. ×◇↔◇◇× : ∀ {c} {C₁ C₂ : Container c} {X Y} {P : X → Set c} {Q : Y → Set c} {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → ◇ (λ x → ◇ (λ y → P x × Q y) ys) xs ↔ (◇ P xs × ◇ Q ys) ×◇↔◇◇× {C₁ = C₁} {C₂} {P = P} {Q} {xs} {ys} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ from ; inverse-of = record { left-inverse-of = λ _ → refl ; right-inverse-of = λ _ → refl } } where to : ◇ (λ x → ◇ (λ y → P x × Q y) ys) xs → ◇ P xs × ◇ Q ys to (p₁ , p₂ , p , q) = ((p₁ , p) , (p₂ , q)) from : ◇ P xs × ◇ Q ys → ◇ (λ x → ◇ (λ y → P x × Q y) ys) xs from ((p₁ , p) , (p₂ , q)) = (p₁ , p₂ , p , q) -- map can be absorbed by the predicate. map↔∘ : ∀ {c} (C : Container c) {X Y : Set c} (P : Y → Set c) {xs : ⟦ C ⟧ X} (f : X → Y) → ◇ P (C.map f xs) ↔ ◇ (P ∘ f) xs map↔∘ _ _ _ = Inv.id -- Membership in a mapped container can be expressed without reference -- to map. ∈map↔∈×≡ : ∀ {c} (C : Container c) {X Y : Set c} {f : X → Y} {xs : ⟦ C ⟧ X} {y} → y ∈ C.map f xs ↔ (∃ λ x → x ∈ xs × y ≡ f x) ∈map↔∈×≡ {c} C {f = f} {xs} {y} = y ∈ C.map f xs ↔⟨ map↔∘ C (_≡_ y) f ⟩ ◇ (λ x → y ≡ f x) xs ↔⟨ ↔∈ C ⟩ (∃ λ x → x ∈ xs × y ≡ f x) ∎ -- map is a congruence for bag and set equality and related preorders. map-cong : ∀ {k c} {C : Container c} {X Y : Set c} {f₁ f₂ : X → Y} {xs₁ xs₂ : ⟦ C ⟧ X} → f₁ ≗ f₂ → xs₁ ∼[ k ] xs₂ → C.map f₁ xs₁ ∼[ k ] C.map f₂ xs₂ map-cong {c = c} {C} {f₁ = f₁} {f₂} {xs₁} {xs₂} f₁≗f₂ xs₁≈xs₂ {x} = x ∈ C.map f₁ xs₁ ↔⟨ map↔∘ C (_≡_ x) f₁ ⟩ ◇ (λ y → x ≡ f₁ y) xs₁ ∼⟨ cong {xs₁ = xs₁} {xs₂ = xs₂} (Related.↔⇒ ∘ helper) xs₁≈xs₂ ⟩ ◇ (λ y → x ≡ f₂ y) xs₂ ↔⟨ sym (map↔∘ C (_≡_ x) f₂) ⟩ x ∈ C.map f₂ xs₂ ∎ where helper : ∀ y → (x ≡ f₁ y) ↔ (x ≡ f₂ y) helper y = record { to = P.→-to-⟶ (λ x≡f₁y → P.trans x≡f₁y ( f₁≗f₂ y)) ; from = P.→-to-⟶ (λ x≡f₂y → P.trans x≡f₂y (P.sym $ f₁≗f₂ y)) ; inverse-of = record { left-inverse-of = λ _ → P.proof-irrelevance _ _ ; right-inverse-of = λ _ → P.proof-irrelevance _ _ } } -- Uses of linear morphisms can be removed. remove-linear : ∀ {c} {C₁ C₂ : Container c} {X} {xs : ⟦ C₁ ⟧ X} (P : X → Set c) (m : C₁ ⊸ C₂) → ◇ P (⟪ m ⟫⊸ xs) ↔ ◇ P xs remove-linear {xs = xs} P m = record { to = P.→-to-⟶ t ; from = P.→-to-⟶ f ; inverse-of = record { left-inverse-of = f∘t ; right-inverse-of = t∘f } } where open Inverse t : ◇ P (⟪ m ⟫⊸ xs) → ◇ P xs t = Prod.map (_⟨$⟩_ (to (position⊸ m))) id f : ◇ P xs → ◇ P (⟪ m ⟫⊸ xs) f = Prod.map (_⟨$⟩_ (from (position⊸ m))) (P.subst (P ∘ proj₂ xs) (P.sym $ right-inverse-of (position⊸ m) _)) f∘t : f ∘ t ≗ id f∘t (p₂ , p) = H.≅-to-≡ $ H.cong₂ _,_ (H.≡-to-≅ $ left-inverse-of (position⊸ m) p₂) (H.≡-subst-removable (P ∘ proj₂ xs) (P.sym (right-inverse-of (position⊸ m) (to (position⊸ m) ⟨$⟩ p₂))) p) t∘f : t ∘ f ≗ id t∘f (p₁ , p) = H.≅-to-≡ $ H.cong₂ _,_ (H.≡-to-≅ $ right-inverse-of (position⊸ m) p₁) (H.≡-subst-removable (P ∘ proj₂ xs) (P.sym (right-inverse-of (position⊸ m) p₁)) p) -- Linear endomorphisms are identity functions if bag equality is -- used. linear-identity : ∀ {c} {C : Container c} {X} {xs : ⟦ C ⟧ X} (m : C ⊸ C) → ⟪ m ⟫⊸ xs ∼[ bag ] xs linear-identity {xs = xs} m {x} = x ∈ ⟪ m ⟫⊸ xs ↔⟨ remove-linear (_≡_ x) m ⟩ x ∈ xs ∎ -- If join can be expressed using a linear morphism (in a certain -- way), then it can be absorbed by the predicate. join↔◇ : ∀ {c} {C₁ C₂ C₃ : Container c} {X} P (join′ : (C₁ ⟨∘⟩ C₂) ⊸ C₃) (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → let join : ∀ {X} → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₃ ⟧ X join = λ {_} → ⟪ join′ ⟫⊸ ∘ _⟨$⟩_ (Inverse.from (Composition.correct C₁ C₂)) in ◇ P (join xss) ↔ ◇ (◇ P) xss join↔◇ {C₁ = C₁} {C₂} P join xss = ◇ P (⟪ join ⟫⊸ xss′) ↔⟨ remove-linear P join ⟩ ◇ P xss′ ↔⟨ sym $ flatten P xss ⟩ ◇ (◇ P) xss ∎ where xss′ = Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss
{ "alphanum_fraction": 0.442303598, "avg_line_length": 35.8549618321, "ext": "agda", "hexsha": "4f52fe244eaced749f773546b6f4ae8b805bbe57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Any.agda", "max_line_length": 129, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Any.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 4182, "size": 9394 }
-- Andreas, 2019-08-20, issue #4012 -- unquoteDef and unquoteDecl should also work in abstract blocks. open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List open import Agda.Builtin.Equality abstract data D : Set where c : D f : D unquoteDef f = do qc ← quoteTC c -- Previously, there was a complaint here about c. defineFun f (clause [] [] qc ∷ []) unquoteDecl g = do ty ← quoteTC D _ ← declareDef (arg (arg-info visible relevant) g) ty qc ← quoteTC c defineFun g (clause [] [] qc ∷ []) test : f ≡ g test = refl -- Expected error: -- f !=< g of type D -- when checking that the expression refl has type f ≡ g
{ "alphanum_fraction": 0.6532374101, "avg_line_length": 22.4193548387, "ext": "agda", "hexsha": "fc010159d4931581f1c59e99987bcf9c0df71d90", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4012.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4012.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4012.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 211, "size": 695 }
-- Andreas, 2019-10-21, issue #4049 -- reported and test case by andy-morris open import Agda.Builtin.Size data A : Size → Set B = A data A where a : ∀ i → B i -- WAS (2.6.0): internal error in Polarity.hs -- Should succeed.
{ "alphanum_fraction": 0.6551724138, "avg_line_length": 15.4666666667, "ext": "agda", "hexsha": "bdc203cb3cf47f1af57274410aabf5c6475111d0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue4049.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4049.agda", "max_line_length": 45, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4049.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 79, "size": 232 }
module SystemF.BigStep.Types where open import Prelude open import Data.List as List -- types are indexed by the number of open tvars infixl 10 _⇒_ data Type (n : ℕ) : Set where Unit : Type n ν : (i : Fin n) → Type n _⇒_ : Type n → Type n → Type n ∀' : Type (suc n) → Type n open import Data.Fin.Substitution open import Data.Vec hiding (_∈_; map) module App {T} (l : Lift T Type )where open Lift l hiding (var) _/_ : ∀ {m n} → Type m → Sub T m n → Type n Unit / s = Unit ν i / s = lift (lookup i s) (a ⇒ b) / s = (a / s) ⇒ (b / s) ∀' x / s = ∀' (x / (s ↑)) open Application (record { _/_ = _/_ }) using (_/✶_) open import Data.Star Unit-/✶-↑✶ : ∀ k {m n} (ρs : Subs T m n) → Unit /✶ ρs ↑✶ k ≡ Unit Unit-/✶-↑✶ k ε = refl Unit-/✶-↑✶ k (x ◅ ρs) = cong₂ _/_ (Unit-/✶-↑✶ k ρs) refl ∀-/✶-↑✶ : ∀ k {m n t} (ρs : Subs T m n) → ∀' t /✶ ρs ↑✶ k ≡ ∀' (t /✶ ρs ↑✶ suc k) ∀-/✶-↑✶ k ε = refl ∀-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (∀-/✶-↑✶ k ρs) refl ⇒-/✶-↑✶ : ∀ k {m n t₁ t₂} (ρs : Subs T m n) → t₁ ⇒ t₂ /✶ ρs ↑✶ k ≡ (t₁ /✶ ρs ↑✶ k) ⇒ (t₂ /✶ ρs ↑✶ k) ⇒-/✶-↑✶ k ε = refl ⇒-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl tmSubst : TermSubst Type tmSubst = record { var = ν; app = App._/_ } open TermSubst tmSubst hiding (var; subst) public -- typing context Ctx : ℕ → Set Ctx n = List (Type n) _+tm_ : ∀ {n} → Ctx n → Type n → Ctx n Γ +tm a = a ∷ Γ Var : ∀ {n} → Ctx n → Type n → Set Var Γ a = a ∈ Γ where open import Data.List.Any open Membership-≡ infixl 30 _ctx/_ _ctx/_ : ∀ {n m} → Ctx n → Sub Type n m → Ctx m Γ ctx/ ρ = List.map (flip _/_ ρ) Γ _+ty : ∀ {n} → Ctx n → Ctx (suc n) Γ +ty = Γ ctx/ wk module Lemmas where open import Data.Fin.Substitution.Lemmas tyLemmas : TermLemmas Type tyLemmas = record { termSubst = tmSubst ; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) → (∀ k x → ν x /✶₁ ρs₁ ↑✶₁ k ≡ ν x /✶₂ ρs₂ ↑✶₂ k) → ∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k Unit = begin _ ≡⟨ App.Unit-/✶-↑✶ _ k ρs₁ ⟩ Unit ≡⟨ sym $ App.Unit-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (ν i) = hyp k i /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin _ ≡⟨ App.⇒-/✶-↑✶ _ k ρs₁ ⟩ (a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) ((/✶-↑✶ ρs₁ ρs₂ hyp k b)) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym $ App.⇒-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' x) = begin _ ≡⟨ App.∀-/✶-↑✶ _ k ρs₁ ⟩ ∀' (x /✶₁ ρs₁ ↑✶₁ (suc k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) x) ⟩ ∀' (x /✶₂ ρs₂ ↑✶₂ (suc k)) ≡⟨ sym $ App.∀-/✶-↑✶ _ k ρs₂ ⟩ _ ∎ open TermLemmas tyLemmas public hiding (var) module CtxLemmas where open import Data.List.Properties as ListProp using () open import Function as Fun -- weakening followed by sub disappears on contexts ctx/-wk-sub≡id : ∀ {n} (Γ : Ctx n) a → (Γ ctx/ wk) ctx/ (sub a) ≡ Γ ctx/-wk-sub≡id Γ a = begin _ ≡⟨ sym (ListProp.map-compose Γ) ⟩ map (λ x → x / wk / (sub a)) Γ ≡⟨ ListProp.map-cong Lemmas.wk-sub-vanishes Γ ⟩ map Fun.id Γ ≡⟨ ListProp.map-id Γ ⟩ _ ∎ -- weakening commutes with other substitutions on contexts ctx/-wk-comm : ∀ {n m} (Γ : Ctx n) (ρ : Sub Type n m) → (Γ ctx/ ρ) ctx/ wk ≡ Γ ctx/ wk ctx/ (ρ ↑) ctx/-wk-comm Γ ρ = begin _ ≡⟨ sym $ ListProp.map-compose Γ ⟩ map (λ x → x / ρ / wk) Γ ≡⟨ ListProp.map-cong Lemmas.wk-commutes Γ ⟩ map (λ x → x / wk / ρ ↑) Γ ≡⟨ ListProp.map-compose Γ ⟩ _ ∎
{ "alphanum_fraction": 0.4905176832, "avg_line_length": 31.216, "ext": "agda", "hexsha": "0f4cab9943278b2fd2726433b22fcc4514b64ef6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/BigStep/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/BigStep/Types.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/BigStep/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1897, "size": 3902 }
module Tactic.Nat.Auto.Lemmas where open import Prelude open import Tactic.Nat.NF open import Tactic.Nat.Exp open import Container.Bag open import Prelude.Nat.Properties map++ : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map++ f [] ys = refl map++ f (x ∷ xs) ys rewrite map++ f xs ys = refl prod++ : (xs ys : List Nat) → productR (xs ++ ys) ≡ productR xs * productR ys prod++ [] ys = sym (add-zero-r (productR ys)) prod++ (x ∷ xs) ys rewrite prod++ xs ys = mul-assoc x _ _ private shuffle₁ : ∀ a b c d → a + ((b + c) + d) ≡ b + c + (a + d) shuffle₁ a b c d rewrite add-assoc a (b + c) d | add-commute a (b + c) | add-assoc (b + c) a d = refl shuffle₂ : ∀ a b c d → a + b + (c + d) ≡ a + c + (b + d) shuffle₂ a b c d rewrite add-assoc (a + b) c d | sym (add-assoc a b c) | add-commute b c | add-assoc a c b | add-assoc (a + c) b d = refl shuffle₃ : ∀ a b c d → (a * b) * (c * d) ≡ (a * c) * (b * d) shuffle₃ a b c d rewrite mul-assoc (a * b) c d | sym (mul-assoc a b c) | mul-commute b c | mul-assoc a c b | mul-assoc (a * c) b d = refl shuffle₄ : ∀ a b c d → a * (b * c * d) ≡ b * c * (a * d) shuffle₄ a b c d rewrite mul-assoc a (b * c) d | mul-commute a (b * c) | mul-assoc (b * c) a d = refl module _ {Atom : Set} {{_ : Ord Atom}} where ⟨+⟩-sound : ∀ v₁ v₂ (ρ : Env Atom) → ⟦ v₁ +nf v₂ ⟧n ρ ≡ ⟦ v₁ ⟧n ρ + ⟦ v₂ ⟧n ρ ⟨+⟩-sound [] [] ρ = refl ⟨+⟩-sound [] (_ ∷ _) ρ = refl ⟨+⟩-sound (t ∷ v₁) [] ρ = sym (add-zero-r _) ⟨+⟩-sound ((i , t₁) ∷ v₁) ((j , t₂) ∷ v₂) ρ with compare t₁ t₂ ... | less _ rewrite ⟨+⟩-sound v₁ ((j , t₂) ∷ v₂) ρ = add-assoc (i * productR (map ρ t₁)) _ _ ... | equal eq rewrite eq | ⟨+⟩-sound v₁ v₂ ρ | mul-distr-r i j (productR (map ρ t₂)) = shuffle₂ (⟦ i , t₂ ⟧t ρ) (⟦ j , t₂ ⟧t ρ) _ _ ... | greater _ rewrite ⟨+⟩-sound ((i , t₁) ∷ v₁) v₂ ρ = shuffle₁ (⟦ j , t₂ ⟧t ρ) (⟦ i , t₁ ⟧t ρ) _ _ map-merge : ∀ x y (ρ : Env Atom) → productR (map ρ (merge x y)) ≡ productR (map ρ x) * productR (map ρ y) map-merge [] [] ρ = refl map-merge [] (x ∷ xs) ρ = sym (add-zero-r (productR (ρ x ∷ map ρ xs))) map-merge (x ∷ xs) [] ρ = sym (mul-one-r _) map-merge (x ∷ xs) (y ∷ ys) ρ with x <? y ... | true rewrite map-merge xs (y ∷ ys) ρ = mul-assoc (ρ x) _ _ ... | false rewrite map-merge (x ∷ xs) ys ρ = shuffle₄ (ρ y) (ρ x) _ _ mulTm-sound : ∀ t t′ (ρ : Env Atom) → ⟦ mulTm t t′ ⟧t ρ ≡ ⟦ t ⟧t ρ * ⟦ t′ ⟧t ρ mulTm-sound (a , x) (b , y) ρ rewrite map-merge x y ρ = shuffle₃ a b _ _ mulTmDistr : ∀ t v (ρ : Env Atom) → ⟦ map (mulTm t) v ⟧n ρ ≡ ⟦ t ⟧t ρ * ⟦ v ⟧n ρ mulTmDistr t [] ρ = sym (mul-zero-r (⟦ t ⟧t ρ)) mulTmDistr t (t′ ∷ v) ρ = ⟦ mulTm t t′ ⟧t ρ + ⟦ map (mulTm t) v ⟧n ρ ≡⟨ cong₂ _+_ (mulTm-sound t t′ ρ) (mulTmDistr t v ρ) ⟩ ⟦ t ⟧t ρ * ⟦ t′ ⟧t ρ + ⟦ t ⟧t ρ * ⟦ v ⟧n ρ ≡⟨ mul-distr-l (⟦ t ⟧t ρ) _ _ ⟩ʳ ⟦ t ⟧t ρ * ⟦ t′ ∷ v ⟧n ρ ∎ sort-sound : ∀ xs ρ → ⟦ nf-sort xs ⟧n ρ ≡ ⟦ xs ⟧n ρ sort-sound [] ρ = refl sort-sound (x ∷ xs) ρ rewrite ⟨+⟩-sound [ x ] (nf-sort xs) ρ | sort-sound xs ρ | add-zero-r (⟦ x ⟧t ρ) = refl ⟨*⟩-sound : ∀ v₁ v₂ (ρ : Env Atom) → ⟦ v₁ *nf v₂ ⟧n ρ ≡ ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ ⟨*⟩-sound [] v₂ ρ = refl ⟨*⟩-sound (t ∷ v₁) v₂ ρ = ⟦ nf-sort (map (mulTm t) v₂) +nf (v₁ *nf v₂) ⟧n ρ ≡⟨ ⟨+⟩-sound (nf-sort (map (mulTm t) v₂)) (v₁ *nf v₂) ρ ⟩ ⟦ nf-sort (map (mulTm t) v₂) ⟧n ρ + ⟦ v₁ *nf v₂ ⟧n ρ ≡⟨ cong (flip _+_ (⟦ v₁ *nf v₂ ⟧n ρ)) (sort-sound (map (mulTm t) v₂) ρ) ⟩ ⟦ map (mulTm t) v₂ ⟧n ρ + ⟦ v₁ *nf v₂ ⟧n ρ ≡⟨ cong (_+_ (⟦ map (mulTm t) v₂ ⟧n ρ)) (⟨*⟩-sound v₁ v₂ ρ) ⟩ ⟦ map (mulTm t) v₂ ⟧n ρ + ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ ≡⟨ cong (flip _+_ (⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ)) (mulTmDistr t v₂ ρ) ⟩ ⟦ t ⟧t ρ * ⟦ v₂ ⟧n ρ + ⟦ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ ≡⟨ mul-distr-r (⟦ t ⟧t ρ) _ _ ⟩ʳ ⟦ t ∷ v₁ ⟧n ρ * ⟦ v₂ ⟧n ρ ∎ sound : ∀ e (ρ : Env Atom) → ⟦ e ⟧e ρ ≡ ⟦ norm e ⟧n ρ sound (var x) ρ = mul-one-r (ρ x) ʳ⟨≡⟩ add-zero-r _ ʳ⟨≡⟩ʳ add-zero-r _ sound (lit 0) ρ = refl sound (lit (suc n)) ρ rewrite mul-one-r n | add-commute n 1 = sym (add-zero-r _) sound (e ⟨+⟩ e₁) ρ = ⟦ e ⟧e ρ + ⟦ e₁ ⟧e ρ ≡⟨ cong₂ _+_ (sound e ρ) (sound e₁ ρ) ⟩ ⟦ norm e ⟧n ρ + ⟦ norm e₁ ⟧n ρ ≡⟨ ⟨+⟩-sound (norm e) (norm e₁) ρ ⟩ʳ ⟦ norm e +nf norm e₁ ⟧n ρ ∎ sound (e ⟨*⟩ e₁) ρ = ⟦ e ⟧e ρ * ⟦ e₁ ⟧e ρ ≡⟨ cong₂ _*_ (sound e ρ) (sound e₁ ρ) ⟩ ⟦ norm e ⟧n ρ * ⟦ norm e₁ ⟧n ρ ≡⟨ ⟨*⟩-sound (norm e) (norm e₁) ρ ⟩ʳ ⟦ norm e *nf norm e₁ ⟧n ρ ∎ module _ (ρ₁ ρ₂ : Env Atom) (eq : ∀ x → ρ₁ x ≡ ρ₂ x) where private lem-eval-env-a : ∀ a → productR (map ρ₁ a) ≡ productR (map ρ₂ a) lem-eval-env-a [] = refl lem-eval-env-a (x ∷ xs) = _*_ $≡ eq x *≡ lem-eval-env-a xs lem-eval-env-t : ∀ t → ⟦ t ⟧t ρ₁ ≡ ⟦ t ⟧t ρ₂ lem-eval-env-t (k , a) = _*_ k $≡ lem-eval-env-a a lem-eval-env : ∀ n → ⟦ n ⟧n ρ₁ ≡ ⟦ n ⟧n ρ₂ lem-eval-env [] = refl lem-eval-env (x ∷ n) = _+_ $≡ lem-eval-env-t x *≡ lem-eval-env n
{ "alphanum_fraction": 0.4347979531, "avg_line_length": 41.9777777778, "ext": "agda", "hexsha": "1fb82983168f93dca207e67d6059d2096e220df5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Auto/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Auto/Lemmas.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Auto/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2598, "size": 5667 }
postulate A : Set
{ "alphanum_fraction": 0.7222222222, "avg_line_length": 9, "ext": "agda", "hexsha": "069b71991e55c1635416a9fd452e9fee82bd9c43", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3257.tex.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3257.tex.agda", "max_line_length": 17, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3257.tex.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 6, "size": 18 }
module Rec1 where import Rec2 y : ℕ y = x
{ "alphanum_fraction": 0.568627451, "avg_line_length": 6.375, "ext": "agda", "hexsha": "2feb1f981ef075ed5b2c66e1908628076c4871d6", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "andorp/plfa.github.io", "max_forks_repo_path": "extra/extra/Rec1.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "andorp/plfa.github.io", "max_issues_repo_path": "extra/extra/Rec1.agda", "max_line_length": 17, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "5468837f55cbea38d5c5a163e1ea5d48edb92bcc", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "andorp/plfa.github.io", "max_stars_repo_path": "extra/extra/Rec1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 20, "size": 51 }
module plfa-code.Naturals where data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) _+_ : ℕ → ℕ → ℕ zero + n = n suc m + n = suc (m + n) _ : 2 + 3 ≡ 5 _ = refl _*_ : ℕ → ℕ → ℕ zero * n = zero suc m * n = n + (m * n) _^_ : ℕ → ℕ → ℕ n ^ zero = suc zero n ^ (suc m) = n * (n ^ m) _ : 3 ^ 4 ≡ 81 _ = begin 3 ^ 4 ≡⟨⟩ 3 * (3 ^ 3) ≡⟨⟩ 3 * (3 * (3 ^ 2)) ≡⟨⟩ 3 * (3 * (3 * (3 ^ 1))) ≡⟨⟩ 3 * (3 * (3 * (3 * (3 ^ 0)))) ≡⟨⟩ 3 * (3 * (3 * (3 * 1))) ≡⟨⟩ 81 ∎ _∸_ : ℕ → ℕ → ℕ m ∸ zero = m zero ∸ suc n = zero suc m ∸ suc n = m ∸ n _ = begin 3 ∸ 2 ≡⟨⟩ 2 ∸ 1 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∎ _ = begin 2 ∸ 3 ≡⟨⟩ 1 ∸ 2 ≡⟨⟩ 0 ∸ 1 ≡⟨⟩ 0 ∎ infixl 6 _+_ _∸_ infixl 7 _*_ data Bin : Set where nil : Bin x0_ : Bin → Bin x1_ : Bin → Bin inc : Bin → Bin inc nil = x1 nil inc (x0 t) = x1 t inc (x1 t) = x0 (inc t) _ : inc (x1 x1 x0 x1 nil) ≡ x0 x0 x1 x1 nil _ = refl _ : inc (x0 nil) ≡ x1 nil _ = refl _ : inc (x1 nil) ≡ x0 x1 nil _ = refl _ : inc (x0 x1 nil) ≡ x1 x1 nil _ = refl _ : inc (x1 x1 nil) ≡ x0 x0 x1 nil _ = refl to : ℕ → Bin to 0 = x0 nil to (suc n) = inc (to n) from : Bin → ℕ from nil = 0 from (x0 t) = (from t) * 2 from (x1 t) = (from t) * 2 + 1 _ : to 0 ≡ x0 nil _ = refl _ : to 1 ≡ x1 nil _ = refl _ : to 2 ≡ x0 x1 nil _ = refl _ : to 3 ≡ x1 x1 nil _ = refl _ : to 4 ≡ x0 x0 x1 nil _ = refl _ : 0 ≡ from (x0 nil) _ = refl _ : 1 ≡ from (x1 nil) _ = refl _ : 2 ≡ from (x0 x1 nil) _ = refl _ : 3 ≡ from (x1 x1 nil) _ = refl _ : 4 ≡ from (x0 x0 x1 nil) _ = refl
{ "alphanum_fraction": 0.4474885845, "avg_line_length": 12.5142857143, "ext": "agda", "hexsha": "4dba82f3a117ac414a87d2107e2dea0061489b47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Naturals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Naturals.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Naturals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 942, "size": 1752 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Syntactic where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Escape open import Definition.LogicalRelation.Fundamental open import Definition.Typed.Consequences.Injectivity open import Tools.Product -- Syntactic validity of type equality. syntacticEq : ∀ {A B Γ} → Γ ⊢ A ≡ B → Γ ⊢ A × Γ ⊢ B syntacticEq A≡B with fundamentalEq A≡B syntacticEq A≡B | [Γ] , [A] , [B] , [A≡B] = escapeᵛ [Γ] [A] , escapeᵛ [Γ] [B] -- Syntactic validity of terms. syntacticTerm : ∀ {t A Γ} → Γ ⊢ t ∷ A → Γ ⊢ A syntacticTerm t with fundamentalTerm t syntacticTerm t | [Γ] , [A] , [t] = escapeᵛ [Γ] [A] -- Syntactic validity of term equality. syntacticEqTerm : ∀ {t u A Γ} → Γ ⊢ t ≡ u ∷ A → Γ ⊢ A × (Γ ⊢ t ∷ A × Γ ⊢ u ∷ A) syntacticEqTerm t≡u with fundamentalTermEq t≡u syntacticEqTerm t≡u | [Γ] , modelsTermEq [A] [t] [u] [t≡u] = escapeᵛ [Γ] [A] , escapeTermᵛ [Γ] [A] [t] , escapeTermᵛ [Γ] [A] [u] -- Syntactic validity of type reductions. syntacticRed : ∀ {A B Γ} → Γ ⊢ A ⇒* B → Γ ⊢ A × Γ ⊢ B syntacticRed D with fundamentalEq (subset* D) syntacticRed D | [Γ] , [A] , [B] , [A≡B] = escapeᵛ [Γ] [A] , escapeᵛ [Γ] [B] -- Syntactic validity of term reductions. syntacticRedTerm : ∀ {t u A Γ} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ A × (Γ ⊢ t ∷ A × Γ ⊢ u ∷ A) syntacticRedTerm d with fundamentalTermEq (subset*Term d) syntacticRedTerm d | [Γ] , modelsTermEq [A] [t] [u] [t≡u] = escapeᵛ [Γ] [A] , escapeTermᵛ [Γ] [A] [t] , escapeTermᵛ [Γ] [A] [u] -- Syntactic validity of Π-types. syntacticΠ : ∀ {Γ F G} → Γ ⊢ Π F ▹ G → Γ ⊢ F × Γ ∙ F ⊢ G syntacticΠ ΠFG with injectivity (refl ΠFG) syntacticΠ ΠFG | F≡F , G≡G = proj₁ (syntacticEq F≡F) , proj₁ (syntacticEq G≡G)
{ "alphanum_fraction": 0.6628982528, "avg_line_length": 38.1568627451, "ext": "agda", "hexsha": "db32abf9a2811327fb403cfe3245a353a55abdba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Syntactic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Syntactic.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Syntactic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 789, "size": 1946 }
{-# OPTIONS --without-K --safe #-} module Categories.Morphism.Universal where open import Level open import Categories.Category open import Categories.Category.Construction.Comma open import Categories.Functor open import Categories.Object.Initial record UniversalMorphism {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (X : Category.Obj C) (F : Functor D C) : Set (e ⊔ ℓ ⊔ o′ ⊔ ℓ′ ⊔ e′) where X↙F : Category _ _ _ X↙F = X ↙ F private module X↙F = Category X↙F field initial : Initial X↙F module initial = Initial initial open initial public
{ "alphanum_fraction": 0.6563011457, "avg_line_length": 25.4583333333, "ext": "agda", "hexsha": "29874568e00bdf675569ddca04e03eb7ed8a6f47", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/Universal.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/Universal.agda", "max_line_length": 98, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/Universal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 185, "size": 611 }
{-# OPTIONS --without-K --safe #-} module Util.HoTT.HLevel.Core where open import Data.Nat using (_+_) open import Level using (Lift ; lift ; lower) open import Util.Prelude open import Util.Relation.Binary.LogicalEquivalence using (_↔_ ; forth ; back) open import Util.Relation.Binary.PropositionalEquality using ( Σ-≡⁺ ; Σ-≡⁻ ; Σ-≡⁺∘Σ-≡⁻ ; trans-injectiveˡ ) private variable α β γ : Level A B C : Set α IsContr : Set α → Set α IsContr A = Σ[ x ∈ A ] (∀ y → x ≡ y) IsProp : Set α → Set α IsProp A = (x y : A) → x ≡ y IsProp′ : Set α → Set α IsProp′ A = (x y : A) → IsContr (x ≡ y) IsProp→IsProp′ : IsProp A → IsProp′ A IsProp→IsProp′ {A = A} A-prop x y = (A-prop x y) , canon where go : (p : x ≡ y) → trans p (A-prop y y) ≡ A-prop x y go refl = refl canon : (p : x ≡ y) → A-prop x y ≡ p canon refl = trans-injectiveˡ (A-prop y y) (go (A-prop y y)) IsProp′→IsProp : IsProp′ A → IsProp A IsProp′→IsProp A-prop x y = proj₁ (A-prop x y) IsProp↔IsProp′ : IsProp A ↔ IsProp′ A IsProp↔IsProp′ .forth = IsProp→IsProp′ IsProp↔IsProp′ .back = IsProp′→IsProp IsSet : Set α → Set α IsSet A = {x y : A} → IsProp (x ≡ y) IsOfHLevel : ℕ → Set α → Set α IsOfHLevel 0 A = IsContr A IsOfHLevel 1 A = IsProp A IsOfHLevel (suc (suc n)) A = {x y : A} → IsOfHLevel (suc n) (x ≡ y) IsOfHLevel′ : ℕ → Set α → Set α IsOfHLevel′ zero A = IsContr A IsOfHLevel′ (suc n) A = ∀ {x y : A} → IsOfHLevel′ n (x ≡ y) IsOfHLevel′→IsOfHLevel : ∀ n → IsOfHLevel′ n A → IsOfHLevel n A IsOfHLevel′→IsOfHLevel zero A-contr = A-contr IsOfHLevel′→IsOfHLevel (suc zero) A-prop = IsProp′→IsProp λ _ _ → A-prop IsOfHLevel′→IsOfHLevel (suc (suc n)) A-level = IsOfHLevel′→IsOfHLevel (suc n) A-level IsOfHLevel→IsOfHLevel′ : ∀ n → IsOfHLevel n A → IsOfHLevel′ n A IsOfHLevel→IsOfHLevel′ zero A-contr = A-contr IsOfHLevel→IsOfHLevel′ (suc zero) A-prop = IsProp→IsProp′ A-prop _ _ IsOfHLevel→IsOfHLevel′ (suc (suc n)) A-level = IsOfHLevel→IsOfHLevel′ (suc n) A-level IsOfHLevel↔IsOfHLevel′ : ∀ n → IsOfHLevel n A ↔ IsOfHLevel′ n A IsOfHLevel↔IsOfHLevel′ n .forth = IsOfHLevel→IsOfHLevel′ n IsOfHLevel↔IsOfHLevel′ n .back = IsOfHLevel′→IsOfHLevel n IsContr→IsProp : IsContr A → IsProp A IsContr→IsProp (c , c-canon) x y = trans (sym (c-canon x)) (c-canon y) IsOfHLevel-suc : ∀ n → IsOfHLevel n A → IsOfHLevel (suc n) A IsOfHLevel-suc 0 A-contr = IsContr→IsProp A-contr IsOfHLevel-suc 1 A-prop = IsOfHLevel-suc 0 (IsProp→IsProp′ A-prop _ _) IsOfHLevel-suc (suc (suc n)) A-level-n = IsOfHLevel-suc (suc n) A-level-n IsOfHLevel-suc-n : ∀ n m → IsOfHLevel n A → IsOfHLevel (m + n) A IsOfHLevel-suc-n {A = A} n zero A-level = A-level IsOfHLevel-suc-n n (suc m) A-level = IsOfHLevel-suc (m + n) (IsOfHLevel-suc-n n m A-level) IsProp→IsSet : IsProp A → IsSet A IsProp→IsSet = IsOfHLevel-suc 1 IsContr→IsSet : IsContr A → IsSet A IsContr→IsSet = IsOfHLevel-suc-n 0 2 record HLevel α n : Set (lsuc α) where constructor HLevel⁺ field type : Set α level : IsOfHLevel n type open HLevel public HContr : ∀ α → Set (lsuc α) HContr α = HLevel α 0 HProp : ∀ α → Set (lsuc α) HProp α = HLevel α 1 HSet : ∀ α → Set (lsuc α) HSet α = HLevel α 2 HLevel-suc : ∀ {α n} → HLevel α n → HLevel α (suc n) HLevel-suc (HLevel⁺ A A-level) = HLevel⁺ A (IsOfHLevel-suc _ A-level) ⊤-IsContr : IsContr ⊤ ⊤-IsContr = _ , λ _ → refl ⊤-IsProp : IsProp ⊤ ⊤-IsProp = IsOfHLevel-suc 0 ⊤-IsContr ⊥-IsProp : IsProp ⊥ ⊥-IsProp () ×-IsProp : IsProp A → IsProp B → IsProp (A × B) ×-IsProp A-prop B-prop (x , y) (x′ , y′) = cong₂ _,_ (A-prop _ _) (B-prop _ _) Lift-IsProp : IsProp A → IsProp (Lift α A) Lift-IsProp A-prop (lift x) (lift y) = cong lift (A-prop _ _) ⊤-HProp : HProp 0ℓ ⊤-HProp = HLevel⁺ ⊤ ⊤-IsProp ⊥-HProp : HProp 0ℓ ⊥-HProp = HLevel⁺ ⊥ ⊥-IsProp _×-HProp_ : HProp α → HProp β → HProp (α ⊔ℓ β) A ×-HProp B = HLevel⁺ (A .type × B .type) (×-IsProp (A .level) (B .level)) Lift-HProp : ∀ α → HProp β → HProp (α ⊔ℓ β) Lift-HProp α (HLevel⁺ A A-prop) = HLevel⁺ (Lift α A) (Lift-IsProp A-prop) ⊤-IsSet : IsSet ⊤ ⊤-IsSet = IsOfHLevel-suc 1 ⊤-IsProp ⊥-IsSet : IsSet ⊥ ⊥-IsSet = IsOfHLevel-suc 1 ⊥-IsProp Σ-IsSet : {A : Set α} {B : A → Set β} → IsSet A → (∀ a → IsSet (B a)) → IsSet (Σ A B) Σ-IsSet A-set B-set p q = trans (sym (Σ-≡⁺∘Σ-≡⁻ p)) (sym (trans (sym (Σ-≡⁺∘Σ-≡⁻ q)) (cong Σ-≡⁺ (Σ-≡⁺ (A-set _ _ , B-set _ _ _))))) ×-IsSet : IsSet A → IsSet B → IsSet (A × B) ×-IsSet A-set B-set = Σ-IsSet A-set (λ _ → B-set) Lift-IsSet : IsSet A → IsSet (Lift α A) Lift-IsSet A-set p q = trans (sym (Lift-≡⁺∘Lift-≡⁻ p)) (sym (trans (sym (Lift-≡⁺∘Lift-≡⁻ q)) (cong Lift-≡⁺ (A-set _ _)))) where Lift-≡⁻ : {x y : Lift α A} → x ≡ y → lower x ≡ lower y Lift-≡⁻ refl = refl Lift-≡⁺ : {x y : Lift α A} → lower x ≡ lower y → x ≡ y Lift-≡⁺ refl = refl Lift-≡⁻∘Lift-≡⁺ : {x y : Lift α A} (p : lower x ≡ lower y) → Lift-≡⁻ {α = α} (Lift-≡⁺ p) ≡ p Lift-≡⁻∘Lift-≡⁺ refl = refl Lift-≡⁺∘Lift-≡⁻ : {x y : Lift α A} (p : x ≡ y) → Lift-≡⁺ {α = α} (Lift-≡⁻ p) ≡ p Lift-≡⁺∘Lift-≡⁻ refl = refl ⊤-HSet : HSet 0ℓ ⊤-HSet = HLevel⁺ ⊤ ⊤-IsSet ⊥-HSet : HSet 0ℓ ⊥-HSet = HLevel⁺ ⊥ ⊥-IsSet Σ-HSet : (A : HSet α) (B : A .type → HSet β) → HSet (α ⊔ℓ β) Σ-HSet A B = HLevel⁺ (Σ (A .type) λ a → B a .type) (Σ-IsSet (A .level) (λ a → B a .level)) _×-HSet_ : HSet α → HSet β → HSet (α ⊔ℓ β) A ×-HSet B = HLevel⁺ (A .type × B .type) (×-IsSet (A .level) (B .level)) Lift-HSet : ∀ α → HSet β → HSet (α ⊔ℓ β) Lift-HSet α (HLevel⁺ B B-set) = HLevel⁺ (Lift α B) (Lift-IsSet B-set) IsProp∧Pointed→IsContr : IsProp A → (a : A) → IsContr A IsProp∧Pointed→IsContr A-prop a = a , λ b → A-prop a b
{ "alphanum_fraction": 0.5998588567, "avg_line_length": 24.2222222222, "ext": "agda", "hexsha": "1b39ec7af391d0011b0a119a5f4178b926a2459e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/HLevel/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/HLevel/Core.agda", "max_line_length": 81, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/HLevel/Core.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 2643, "size": 5668 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Subtraction where open import Data.Binary.Definition open import Data.Nat double : 𝔹 → 𝔹 double 0ᵇ = 0ᵇ double (1ᵇ xs) = 2ᵇ double xs double (2ᵇ xs) = 2ᵇ 1ᵇ xs dec : 𝔹 → 𝔹 dec 0ᵇ = 0ᵇ dec (2ᵇ xs) = 1ᵇ xs dec (1ᵇ xs) = double xs ones : ℕ → 𝔹 → 𝔹 ones zero xs = xs ones (suc n) xs = ones n (1ᵇ xs) fromZ₁ : ℕ → 𝔹 → 𝔹 fromZ₁ n 0ᵇ = 0ᵇ fromZ₁ n (1ᵇ xs) = 2ᵇ ones n (double xs) fromZ₁ n (2ᵇ xs) = 2ᵇ ones (suc n) xs mutual compl₁′ : ℕ → 𝔹 → 𝔹 → 𝔹 compl₁′ n 0ᵇ _ = 2ᵇ ones n 0ᵇ compl₁′ n (1ᵇ xs) 0ᵇ = fromZ₁ (suc n) xs compl₁′ n (2ᵇ xs) 0ᵇ = 2ᵇ ones n (double xs) compl₁′ n (1ᵇ xs) (1ᵇ ys) = 2ᵇ ones n (compl₁′ 0 xs ys) compl₁′ n (1ᵇ xs) (2ᵇ ys) = compl₁′ (suc n) xs ys compl₁′ n (2ᵇ xs) (1ᵇ ys) = compl₂′ (suc n) xs ys compl₁′ n (2ᵇ xs) (2ᵇ ys) = 2ᵇ ones n (compl₁′ 0 xs ys) compl₂′ : ℕ → 𝔹 → 𝔹 → 𝔹 compl₂′ n xs 0ᵇ = fromZ₁ n xs compl₂′ n 0ᵇ _ = 0ᵇ compl₂′ n (1ᵇ xs) (1ᵇ ys) = compl₂′ (suc n) xs ys compl₂′ n (1ᵇ xs) (2ᵇ ys) = 2ᵇ ones n (compl₁′ 0 xs ys) compl₂′ n (2ᵇ xs) (1ᵇ ys) = 2ᵇ ones n (compl₂′ 0 xs ys) compl₂′ n (2ᵇ xs) (2ᵇ ys) = compl₂′ (suc n) xs ys mutual compl₁ : 𝔹 → 𝔹 → 𝔹 compl₁ xs 0ᵇ = dec xs compl₁ 0ᵇ _ = 1ᵇ 0ᵇ compl₁ (1ᵇ xs) (1ᵇ ys) = 1ᵇ compl₁ xs ys compl₁ (1ᵇ xs) (2ᵇ ys) = compl₁′ zero xs ys compl₁ (2ᵇ xs) (1ᵇ ys) = compl₂′ zero xs ys compl₁ (2ᵇ xs) (2ᵇ ys) = 1ᵇ compl₁ xs ys compl₂ : 𝔹 → 𝔹 → 𝔹 compl₂ 0ᵇ _ = 0ᵇ compl₂ xs 0ᵇ = xs compl₂ (1ᵇ xs) (1ᵇ ys) = compl₂′ zero xs ys compl₂ (1ᵇ xs) (2ᵇ ys) = 1ᵇ compl₁ xs ys compl₂ (2ᵇ xs) (1ᵇ ys) = 1ᵇ compl₂ xs ys compl₂ (2ᵇ xs) (2ᵇ ys) = compl₂′ zero xs ys open import Data.Binary.Order open import Data.Bool infixl 6 _-_ _-_ : 𝔹 → 𝔹 → 𝔹 n - m = if n ≤ᴮ m then 0ᵇ else compl₂ n m open import Data.Binary.Testers open import Path using (refl) _ : test _-_ _∸_ 30 _ = refl
{ "alphanum_fraction": 0.5698924731, "avg_line_length": 26.3918918919, "ext": "agda", "hexsha": "b238068d6164c5b194d828e994d8cec4744aeaf0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Subtraction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Subtraction.agda", "max_line_length": 57, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Subtraction.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1100, "size": 1953 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Groupoid where open import Level open import Categories.Category open import Categories.Category.Groupoid using (Groupoid; IsGroupoid) open import Categories.Functor import Categories.Morphism.Reasoning as MR private variable o ℓ e : Level C D : Category o ℓ e -- functor respects groupoid inverse module _ (GC : IsGroupoid C) (GD : IsGroupoid D) (F : Functor C D) where private module C = IsGroupoid GC module D = IsGroupoid GD open Functor F open D open HomReasoning open MR D F-resp-inv : ∀ {A B} (f : A C.⇒ B) → F₁ (f C.⁻¹) ≈ (F₁ f) ⁻¹ F-resp-inv f = begin F₁ (f C.⁻¹) ≈⟨ introˡ D.iso.isoˡ ⟩ ((F₁ f) ⁻¹ ∘ F₁ f) ∘ F₁ (f C.⁻¹) ≈˘⟨ pushʳ homomorphism ⟩ (F₁ f) ⁻¹ ∘ F₁ (f C.∘ f C.⁻¹) ≈⟨ elimʳ (F-resp-≈ C.iso.isoʳ ○ identity) ⟩ (F₁ f) ⁻¹ ∎ -- Nevertheless, create a |GrFunctor| that is typed over Groupoid instead of Category GrFunctor : (A B : Groupoid o ℓ e) → Set _ GrFunctor A B = Functor (category A) (category B) where open Groupoid
{ "alphanum_fraction": 0.6232014388, "avg_line_length": 29.2631578947, "ext": "agda", "hexsha": "b072256a20560c1e3ff14ec03366ebc73d26072b", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Groupoid.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Groupoid.agda", "max_line_length": 85, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 403, "size": 1112 }
{-# OPTIONS --cubical --safe #-} module Data.Probability where open import Prelude import Data.Nat as ℕ import Data.Nat.Properties as ℕ open import Data.Bits renaming (Bits to ℚ⁺; [] to 1ℚ; 0∷_ to lℚ; 1∷_ to rℚ) open import Data.Bits.Equatable open import Data.Bits.Fold euclidian : ℕ → ℕ → ℕ → ℚ⁺ euclidian n m zero = 1ℚ euclidian n m (suc s) = if n ℕ.≡ᴮ m then 1ℚ else if n ℕ.<ᴮ m then lℚ (euclidian n (m ℕ.∸ (1 ℕ.+ n)) s) else rℚ (euclidian (n ℕ.∸ (1 ℕ.+ m)) m s) normalise-suc : ℕ → ℕ → ℚ⁺ normalise-suc n m = euclidian n m (n ℕ.+ m) data ℙ : Type where ℙ⁰ : ℙ ℙ¹ : ℙ ℙ∙ : ℚ⁺ → ℙ unEu : ℚ⁺ → ℙ unEu 1ℚ = ℙ¹ unEu (lℚ x) = ℙ∙ x unEu (rℚ x) = ℙ¹ -- won't happen _/suc_ : ℕ → ℕ → ℙ zero /suc d = ℙ⁰ suc n /suc d = unEu (normalise-suc n d) _/_ : ℕ → ℕ → ℙ n / zero = ℙ⁰ n / suc d = n /suc d zer : (ℕ × ℕ) → (ℕ × ℕ) zer (p , q) = p , suc p ℕ.+ q one : (ℕ × ℕ) → (ℕ × ℕ) one (p , q) = suc p ℕ.+ q , q norm : (ℕ × ℕ) → ℕ × ℕ norm (x , y) = suc x , suc y prob : ℙ → (ℕ × ℕ) prob ℙ⁰ = 0 , 1 prob ℙ¹ = 1 , 1 prob (ℙ∙ x) = norm (zer (foldr-bits zer one (0 , 0) x)) mul″ : ℙ → ℙ → ℙ mul″ x y = let xn , xd = prob x yn , yd = prob y in (xn ℕ.* yn) / (xd ℕ.* yd) -- e = prob (5 /suc 22) nextFrac : ℚ⁺ → ℚ⁺ nextFrac 1ℚ = lℚ 1ℚ nextFrac (lℚ x) = rℚ x nextFrac (rℚ x) = lℚ (nextFrac x) open import Data.List fracs : ℕ → List ℙ fracs n = ℙ⁰ ∷ ℙ¹ ∷ go n 1ℚ where go : ℕ → ℚ⁺ → List ℙ go zero x = [] go (suc n) x = ℙ∙ x ∷ go n (nextFrac x) open import Data.List.Sugar using (liftA2) -- mul′ : ℚ⁺ → ℚ⁺ → ℚ⁺ -- mul′ 1ℚ 1ℚ = lℚ (lℚ 1ℚ) -- mul′ 1ℚ (lℚ ys) = {!!} -- mul′ 1ℚ (rℚ ys) = {!!} -- mul′ (lℚ xs) 1ℚ = {!!} -- mul′ (lℚ xs) (lℚ ys) = {!!} -- mul′ (lℚ xs) (rℚ ys) = {!!} -- mul′ (rℚ xs) 1ℚ = {!!} -- mul′ (rℚ xs) (lℚ ys) = {!!} -- mul′ (rℚ xs) (rℚ ys) = {!!} -- mul : ℙ → ℙ → ℙ -- mul ℙ⁰ ys = ℙ⁰ -- mul ℙ¹ ys = ys -- mul (ℙ∙ x) ℙ⁰ = ℙ⁰ -- mul xs ℙ¹ = xs -- mul (ℙ∙ x) (ℙ∙ y) = ℙ∙ (mul′ x y) -- testMul : ℕ → Type -- testMul n = liftA2 mul xs xs ≡ liftA2 mul″ xs xs -- where -- xs : List ℙ -- xs = fracs n -- _ : testMul 5 -- _ = refl
{ "alphanum_fraction": 0.5102625298, "avg_line_length": 19.2201834862, "ext": "agda", "hexsha": "6c3e6db6f68de1f857ae05b1f405ad343fe415b7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Probability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Probability.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Probability.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1106, "size": 2095 }
{-# OPTIONS --safe #-} module Relation.Ternary.Separation.Construct.List {a} (A : Set a) where open import Level open import Data.Product open import Data.List open import Data.List.Properties using (++-isMonoid) open import Data.List.Relation.Ternary.Interleaving.Propositional as I public open import Data.List.Relation.Ternary.Interleaving.Properties open import Data.List.Relation.Binary.Equality.Propositional open import Data.List.Relation.Binary.Permutation.Inductive open import Relation.Binary.PropositionalEquality as P hiding ([_]) open import Relation.Unary hiding (_∈_; _⊢_) open import Relation.Ternary.Separation private C = List A instance separation : RawSep C separation = record { _⊎_≣_ = Interleaving } -- TODO add to stdlib interleaving-assoc : ∀ {a b ab c abc : List A} → Interleaving a b ab → Interleaving ab c abc → ∃ λ bc → Interleaving a bc abc × Interleaving b c bc interleaving-assoc l (consʳ r) = let _ , p , q = interleaving-assoc l r in -, consʳ p , consʳ q interleaving-assoc (consˡ l) (consˡ r) = let _ , p , q = interleaving-assoc l r in -, consˡ p , q interleaving-assoc (consʳ l) (consˡ r) = let _ , p , q = interleaving-assoc l r in -, consʳ p , consˡ q interleaving-assoc [] [] = [] , [] , [] instance list-has-sep : IsSep separation list-has-sep = record { ⊎-comm = I.swap ; ⊎-assoc = interleaving-assoc } instance list-is-unital : IsUnitalSep _ _ IsUnitalSep.isSep list-is-unital = list-has-sep IsUnitalSep.⊎-idˡ list-is-unital = right (≡⇒≋ P.refl) IsUnitalSep.⊎-id⁻ˡ list-is-unital [] = refl IsUnitalSep.⊎-id⁻ˡ list-is-unital (refl ∷ʳ px) = cong (_ ∷_) (⊎-id⁻ˡ px) instance list-has-concat : IsConcattative separation IsConcattative._∙_ list-has-concat = _++_ IsConcattative.⊎-∙ₗ list-has-concat {Φₑ = []} ps = ps IsConcattative.⊎-∙ₗ list-has-concat {Φₑ = x ∷ Φₑ} ps = consˡ (⊎-∙ₗ ps) instance list-unitalsep : UnitalSep _ list-unitalsep = record { isUnitalSep = list-is-unital } instance list-resource : MonoidalSep _ list-resource = record { sep = separation ; isSep = list-has-sep ; isUnitalSep = list-is-unital ; isConcat = list-has-concat ; monoid = ++-isMonoid } instance list-positive : IsPositive separation list-positive = record { ⊎-εˡ = λ where [] → refl }
{ "alphanum_fraction": 0.6875805758, "avg_line_length": 36.9365079365, "ext": "agda", "hexsha": "7df6669cd00db583d53e7a773c4cef4361bfbd2c", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Construct/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Construct/List.agda", "max_line_length": 103, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Construct/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 779, "size": 2327 }
{-# OPTIONS --without-K --exact-split #-} module quotient-groups where import subgroups open subgroups public {- The left and right coset relation -} left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → UU (l1 ⊔ l2) left-coset-relation G H x = fib ((mul-Group G x) ∘ (incl-group-Subgroup G H)) right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → UU (l1 ⊔ l2) right-coset-relation G H x = fib ((mul-Group' G x) ∘ (incl-group-Subgroup G H)) {- We show that the left coset relation is an equivalence relation -} is-prop-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → is-prop (left-coset-relation G H x y) is-prop-left-coset-relation G H x = is-prop-map-is-emb ( (mul-Group G x) ∘ (incl-group-Subgroup G H)) ( is-emb-comp' ( mul-Group G x) ( incl-group-Subgroup G H) ( is-emb-is-equiv (mul-Group G x) (is-equiv-mul-Group G x)) ( is-emb-incl-group-Subgroup G H)) is-reflexive-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x : type-Group G) → left-coset-relation G H x x is-reflexive-left-coset-relation G H x = pair ( unit-group-Subgroup G H) ( right-unit-law-Group G x) is-symmetric-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → left-coset-relation G H x y → left-coset-relation G H y x is-symmetric-left-coset-relation G H x y (pair z p) = pair ( inv-group-Subgroup G H z) ( ap ( λ t → mul-Group G t ( incl-group-Subgroup G H ( inv-group-Subgroup G H z))) ( inv p) ∙ ( ( is-associative-mul-Group G _ _ _) ∙ ( ( ap (mul-Group G x) (right-inverse-law-Group G _)) ∙ ( right-unit-law-Group G x)))) is-transitive-left-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y z : type-Group G) → left-coset-relation G H x y → left-coset-relation G H y z → left-coset-relation G H x z is-transitive-left-coset-relation G H x y z (pair h1 p1) (pair h2 p2) = pair ( mul-group-Subgroup G H h1 h2) ( ( inv (is-associative-mul-Group G _ _ _)) ∙ ( ( ap (λ t → mul-Group G t (incl-group-Subgroup G H h2)) p1) ∙ p2)) {- We show that the right coset relation is an equivalence relation -} is-prop-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → is-prop (right-coset-relation G H x y) is-prop-right-coset-relation G H x = is-prop-map-is-emb ( (mul-Group' G x) ∘ (incl-group-Subgroup G H)) ( is-emb-comp' ( mul-Group' G x) ( incl-group-Subgroup G H) ( is-emb-is-equiv (mul-Group' G x) (is-equiv-mul-Group' G x)) ( is-emb-incl-group-Subgroup G H)) is-reflexive-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x : type-Group G) → right-coset-relation G H x x is-reflexive-right-coset-relation G H x = pair ( unit-group-Subgroup G H) ( left-unit-law-Group G x) is-symmetric-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y : type-Group G) → right-coset-relation G H x y → right-coset-relation G H y x is-symmetric-right-coset-relation G H x y (pair z p) = pair ( inv-group-Subgroup G H z) ( ( ap ( mul-Group G (incl-group-Subgroup G H (inv-group-Subgroup G H z))) ( inv p)) ∙ ( ( inv (is-associative-mul-Group G _ _ _)) ∙ ( ( ap (λ t → mul-Group G t x) (left-inverse-law-Group G _)) ∙ ( left-unit-law-Group G x)))) is-transitive-right-coset-relation : {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) → (x y z : type-Group G) → right-coset-relation G H x y → right-coset-relation G H y z → right-coset-relation G H x z is-transitive-right-coset-relation G H x y z (pair h1 p1) (pair h2 p2) = pair ( mul-group-Subgroup G H h2 h1) ( ( is-associative-mul-Group G _ _ _) ∙ ( ( ap (mul-Group G (incl-group-Subgroup G H h2)) p1) ∙ p2))
{ "alphanum_fraction": 0.6001940805, "avg_line_length": 37.4727272727, "ext": "agda", "hexsha": "295cdf7cd7845789e4ba416771b96215abc99bc7", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/quotient-groups.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/quotient-groups.agda", "max_line_length": 78, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/quotient-groups.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 1508, "size": 4122 }
-- Andreas, May - July 2016, implementing postfix projections module Issue1963 where module Prod where record Σ (A : Set) (B : A → Set) : Set where field fst : A snd : B fst open Σ test : ∀{A} → A → Σ A λ _ → A test = λ where x .fst → x x .snd → x module Stream where record Stream (A : Set) : Set where coinductive field head : A tail : Stream A open Stream repeat : ∀{A} (a : A) → Stream A repeat a .head = a repeat a. tail = repeat a zipWith : ∀{A B C} (f : A → B → C) (s : Stream A) (t : Stream B) → Stream C zipWith f s t .head = f (s .head) (t .head) zipWith f s t .tail = zipWith f (s .tail) (t .tail) module Fib (Nat : Set) (zero one : Nat) (plus : Nat → Nat → Nat) where {-# TERMINATING #-} fib : Stream Nat fib .head = zero fib .tail .head = one fib .tail .tail = zipWith plus fib (fib .tail)
{ "alphanum_fraction": 0.5604883463, "avg_line_length": 21.4523809524, "ext": "agda", "hexsha": "ab965b194c45e8570e97c67772e99c70a478c5f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1963.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1963.agda", "max_line_length": 77, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1963.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 315, "size": 901 }
-- Omniscience principles -- https://ncatlab.org/nlab/show/principle+of+omniscience -- http://math.fau.edu/lubarsky/Separating%20LLPO.pdf -- https://arxiv.org/pdf/1804.05495.pdf -- https://www.cs.bham.ac.uk/~mhe/papers/omniscient-journal-revised.pdf -- https://www.jaist.ac.jp/~t-nemoto/WMP.pdf -- http://math.fau.edu/lubarsky/Separating%20LLPO.pdf -- TODO -- WKL: weak Koning's lemma -- BE: Every real number in [0,1] has binary expansion -- IVT: intermediate value theorem -- BD-N -- LLPOₙ -- WKL <=> LLPO {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Axiom where -- agda-stdlib open import Level renaming (suc to lsuc; zero to lzero) open import Data.Bool using (Bool; true; false) open import Data.Empty using (⊥) open import Data.Sum as Sum open import Data.Product as Prod open import Data.List using (List; []; _∷_; length) open import Data.List.Relation.Binary.Prefix.Heterogeneous using (Prefix) open import Data.Nat using (ℕ; _≤_; _<_; _+_; _*_) open import Relation.Binary.PropositionalEquality open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Function -- agda-misc open import Constructive.Common open import TypeTheory.HoTT.Base using (isProp) --------------------------------------------------------------------------- -- Axioms -- -i indicates instance -- Law of Excluded middle -- LEM EM : ∀ a → Set (lsuc a) EM a = ∀ {A : Set a} → Dec⊎ A -- Double negation elimination DNE : ∀ a → Set (lsuc a) DNE a = ∀ {A : Set a} → Stable A -- Peirce's law Peirce-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) Peirce-i A B = ((A → B) → A) → A Peirce : ∀ a b → Set (lsuc (a ⊔ b)) Peirce a b = {A : Set a} {B : Set b} → Peirce-i A B -- Material implication MI-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) MI-i A B = (A → B) → ¬ A ⊎ B MI : ∀ a b → Set (lsuc (a ⊔ b)) MI a b = {A : Set a} {B : Set b} → MI-i A B -- De Morgan's laws -- DML DEM₁-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) DEM₁-i A B = ¬ (¬ A × ¬ B) → A ⊎ B DEM₂-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) DEM₂-i A B = ¬ (¬ A ⊎ ¬ B) → A × B DEM₃-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) DEM₃-i A B = ¬ (A × B) → ¬ A ⊎ ¬ B DEM₁ : ∀ a b → Set (lsuc (a ⊔ b)) DEM₁ a b = {A : Set a} {B : Set b} → DEM₁-i A B DEM₂ : ∀ a b → Set (lsuc (a ⊔ b)) DEM₂ a b = {A : Set a} {B : Set b} → DEM₂-i A B DEM₃ : ∀ a b → Set (lsuc (a ⊔ b)) DEM₃ a b = {A : Set a} {B : Set b} → DEM₃-i A B -- call/cc Call/CC-i : ∀ {a} → Set a → Set a Call/CC-i A = Peirce-i A ⊥ Call/CC : ∀ a → Set (lsuc a) Call/CC a = ∀ {A : Set a} → Call/CC-i A -- Gödel-Dummett logic -- Dirk Gently's Principle (DGP) DGP-i : ∀ {a b} → Set a → Set b → Set (a ⊔ b) DGP-i A B = (A → B) ⊎ (B → A) DGP : ∀ a b → Set (lsuc (a ⊔ b)) DGP a b = {A : Set a} {B : Set b} → DGP-i A B -- Weak excluded middle -- https://ncatlab.org/nlab/show/weak+excluded+middle -- WLEM WPEM WEM-i : ∀ {a} → Set a → Set a WEM-i A = Dec⊎ (¬ A) WEM : ∀ a → Set (lsuc a) WEM a = {A : Set a} → WEM-i A -- Double-negation shift -- if domain of P is finite this can be proved. -- https://ncatlab.org/nlab/show/double-negation+shift DNS-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) DNS-i P = (∀ x → ¬ ¬ P x) → ¬ ¬ (∀ x → P x) DNS : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) DNS A p = {P : A → Set p} → DNS-i P -- Independence-of-premise IP : ∀ p q r → Set (lsuc (p ⊔ q ⊔ r)) IP p q r = ∀ {P : Set p} {Q : Set q} {R : Q → Set r} → Q → (P → Σ Q R) → (Σ Q λ x → (P → R x)) private toPred : ∀ {a} {A : Set a} → (A → Bool) → (A → Set) toPred P x = P x ≡ true -- Searchable set Searchable-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) Searchable-i P = DecU P → (∃ λ x₀ → P x₀ → ∀ x → P x) Searchable : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Searchable A p = {P : A → Set p} → Searchable-i P Searchable-Bool : ∀ {a} → Set a → Set a Searchable-Bool A = Σ ((A → Bool) → A) λ ε → (P : A → Bool) → P (ε P) ≡ true → (x : A) → P x ≡ true -- The limited principle of omniscience -- https://ncatlab.org/nlab/show/principle+of+omniscience -- Omniscient type LPO-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) LPO-i P = DecU P → ∃ P ⊎ ¬ ∃ P LPO : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) LPO A p = {P : A → Set p} → LPO-i P LPO-Bool-i : ∀ {a} {A : Set a} → (A → Bool) → Set a LPO-Bool-i P = ∃ (toPred P) ⊎ ¬ ∃ (toPred P) LPO-Bool : ∀ {a} → Set a → Set a LPO-Bool A = (P : A → Bool) → LPO-Bool-i P -- http://www.cs.bham.ac.uk/~mhe/papers/omniscient-2011-07-06.pdf LPO-Bool-Alt-i : ∀ {a} {A : Set a} → (A → Bool) → Set a LPO-Bool-Alt-i P = (∃ λ x → P x ≡ false) ⊎ (∀ x → P x ≡ true) LPO-Bool-Alt : ∀ {a} → Set a → Set a LPO-Bool-Alt A = (P : A → Bool) → LPO-Bool-Alt-i P -- Weak limited principle of omniscience -- https://www.cs.bham.ac.uk/~mhe/papers/omniscient-journal-revised.pdf -- http://math.fau.edu/lubarsky/Separating%20LLPO.pdf -- ∀-PEM WLPO-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) WLPO-i P = DecU P → (∀ x → P x) ⊎ ¬ (∀ x → P x) WLPO : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) WLPO A p = {P : A → Set p} → WLPO-i P -- Alternative form of WLPO WLPO-Alt-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) WLPO-Alt-i P = DecU P → ¬ ∃ P ⊎ ¬ ¬ ∃ P WLPO-Alt : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) WLPO-Alt A p = {P : A → Set p} → WLPO-Alt-i P -- The lesser limited principle of omniscience -- Σ⁰₁-DML LLPO-i : ∀ {a p} {A : Set a} → (P Q : A → Set p) → Set (a ⊔ p) LLPO-i P Q = DecU P → DecU Q → ¬ (∃ P × ∃ Q) → ¬ ∃ P ⊎ ¬ ∃ Q LLPO : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) LLPO A p = {P Q : A → Set p} → LLPO-i P Q LLPO-Alt-i : ∀ {a p} {A : Set a} → (P Q : A → Set p) → Set (a ⊔ p) LLPO-Alt-i P Q = DecU P → DecU Q → ¬ ¬ ((∀ x → P x) ⊎ (∀ x → Q x)) → (∀ x → P x) ⊎ (∀ x → Q x) LLPO-Alt : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) LLPO-Alt A p = {P Q : A → Set p} → LLPO-Alt-i P Q LLPO-Bool-i : ∀ {a} {A : Set a} → (P Q : A → Bool) → Set a LLPO-Bool-i P Q = ¬ (∃ (toPred P) × ∃ (toPred Q)) → ¬ ∃ (toPred P) ⊎ ¬ ∃ (toPred Q) LLPO-Bool : ∀ {a} → Set a → Set a LLPO-Bool A = (P Q : A → Bool) → LLPO-Bool-i P Q LLPO-ℕ : ∀ p → Set (lsuc p) LLPO-ℕ p = {P : ℕ → Set p} → DecU P → (∀ m n → m ≢ n → P m ⊎ P n) → (∀ n → P (2 * n)) ⊎ (∀ n → P (1 + 2 * n)) -- Markov's principle -- LPE -- https://ncatlab.org/nlab/show/Markov%27s+principle MP-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) MP-i P = DecU P → ¬ (∀ x → P x) → ∃ λ x → ¬ P x MP : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) MP A p = {P : A → Set p} → MP-i P -- Markov's rule MR-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ p) MR-i P = DecU P → ¬ ¬ ∃ P → ∃ P MR : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) MR A p = {P : A → Set p} → MR-i P -- Weak Markov's principle -- https://ncatlab.org/nlab/show/Markov%27s+principle WMP-i : ∀ {a p} {A : Set a} → (A → Set p) → Set (a ⊔ lsuc p) WMP-i {p = p} {A = A} P = DecU P → ({Q : A → Set p} → DecU Q → ¬ ¬ ∃ Q ⊎ (¬ ¬ ∃ λ x → P x × ¬ Q x)) → ∃ P WMP : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) WMP A p = {P : A → Set p} → WMP-i P WMP-Bool-i : ∀ {a} {A : Set a} → (A → Bool) → Set a WMP-Bool-i {A = A} P = ((Q : A → Bool) → ¬ ¬ ∃ (λ x → Q x ≡ true) ⊎ (¬ ¬ ∃ λ x → P x ≡ true × Q x ≢ true)) → ∃ λ x → P x ≡ true WMP-Bool : ∀ {a} (A : Set a) → Set a WMP-Bool A = (P : A → Bool) → WMP-Bool-i P -- Disjunctive Markov’s principle MP⊎-i : ∀ {a p} {A : Set a} → (P Q : A → Set p) → Set (a ⊔ p) MP⊎-i P Q = DecU P → DecU Q → ¬ (¬ ∃ P × ¬ ∃ Q) → ¬ ¬ ∃ P ⊎ ¬ ¬ ∃ Q MP⊎ : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) MP⊎ A p = {P Q : A → Set p} → MP⊎-i P Q MP⊎-Bool-i : ∀ {a} {A : Set a} → (P Q : A → Bool) → Set a MP⊎-Bool-i P Q = ¬ (¬ ∃ (toPred P) × ¬ ∃ (toPred Q)) → ¬ ¬ ∃ (toPred P) ⊎ ¬ ¬ ∃ (toPred Q) MP⊎-Bool : ∀ {a} → Set a → Set a MP⊎-Bool A = (P Q : A → Bool) → MP⊎-Bool-i P Q MP⊎-Alt-i : ∀ {a p} {A : Set a} → (P Q : A → Set p) → Set (a ⊔ p) MP⊎-Alt-i P Q = DecU P → DecU Q → ¬ ((∀ x → P x) × (∀ x → Q x)) → ¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x) MP⊎-Alt : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) MP⊎-Alt A p = {P Q : A → Set p} → MP⊎-Alt-i P Q MP∨-i : ∀ {a p} {A : Set a} → (P Q : A → Set p) → Set (a ⊔ p) MP∨-i P Q = DecU P → DecU Q → ¬ ¬ (∃ λ x → P x ⊎ Q x) → ¬ ¬ ∃ P ⊎ ¬ ¬ ∃ Q MP∨ : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) MP∨ A p = {P Q : A → Set p} → MP∨-i P Q -- Σ-DGP -- Equivalent to LLPO Σ-DGP-i : ∀ {a p} {A : Set a} (P Q : A → Set p) → Set (a ⊔ p) Σ-DGP-i P Q = DecU P → DecU Q → DGP-i (∃ P) (∃ Q) Σ-DGP : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Σ-DGP A p = {P Q : A → Set p} → Σ-DGP-i P Q -- Π-DGP Π-DGP-i : ∀ {a p} {A : Set a} (P Q : A → Set p) → Set (a ⊔ p) Π-DGP-i P Q = DecU P → DecU Q → DGP-i (∀ x → P x) (∀ x → Q x) Π-DGP : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Π-DGP A p = {P Q : A → Set p} → Π-DGP-i P Q -- Σ-Π-DGP Σ-Π-DGP-i : ∀ {a p} {A : Set a} (P Q : A → Set p) → Set (a ⊔ p) Σ-Π-DGP-i P Q = DecU P → DecU Q → DGP-i (∃ P) (∀ x → Q x) Σ-Π-DGP : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Σ-Π-DGP A p = {P Q : A → Set p} → Σ-Π-DGP-i P Q -- Σ-Call/CC Σ-Call/CC-i : ∀ {a p} {A : Set a} (P : A → Set p) → Set (a ⊔ p) Σ-Call/CC-i P = DecU P → Call/CC-i (∃ P) Σ-Call/CC : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Σ-Call/CC A p = {P : A → Set p} → Σ-Call/CC-i P -- Σ-Σ-Peirce Σ-Σ-Peirce-i : ∀ {a p} {A : Set a} (P Q : A → Set p) → Set (a ⊔ p) Σ-Σ-Peirce-i P Q = DecU P → DecU Q → Peirce-i (∃ P) (∃ Q) Σ-Σ-Peirce : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Σ-Σ-Peirce A p = {P Q : A → Set p} → Σ-Σ-Peirce-i P Q -- Σ-Π-Peirce Σ-Π-Peirce-i : ∀ {a p} {A : Set a} (P Q : A → Set p) → Set (a ⊔ p) Σ-Π-Peirce-i P Q = DecU P → DecU Q → Peirce-i (∃ P) (∀ x → Q x) Σ-Π-Peirce : ∀ {a} (A : Set a) p → Set (a ⊔ lsuc p) Σ-Π-Peirce A p = {P Q : A → Set p} → Σ-Π-Peirce-i P Q -- Kripke's Schema KS : ∀ {a} (A : Set a) p q → Set (a ⊔ lsuc p ⊔ lsuc q) KS A p q = ∀ (P : Set p) → Σ (A → Set q) λ Q → DecU Q × (P <=> ∃ Q) -- Principle of Finite Possiblity -- Principle of inverse Decision (PID) PFP : ∀ {a} (A : Set a) p q → Set (a ⊔ lsuc p ⊔ lsuc q) PFP A p q = {P : A → Set p} → DecU P → Σ (A → Set q) λ Q → DecU Q × ((∀ x → P x) <=> ∃ Q) PFP-Bool-ℕ : Set PFP-Bool-ℕ = (α : ℕ → Bool) → Σ (ℕ → Bool) (λ β → (∀ n → α n ≡ false) <=> ∃ λ n → β n ≡ true) -- Weak Principle of Finite Possiblity WPFP : ∀ {a} (A : Set a) p q → Set (a ⊔ lsuc p ⊔ lsuc q) WPFP A p q = {P : A → Set p} → DecU P → Σ (A → Set q) λ Q → DecU Q × ((∀ x → P x) <=> (¬ (∀ x → Q x))) WPFP-Bool-ℕ : Set WPFP-Bool-ℕ = (α : ℕ → Bool) → Σ (ℕ → Bool) λ β → (∀ n → α n ≡ false) <=> (¬ (∀ n → β n ≡ false)) -- https://plato.stanford.edu/entries/axiom-choice/choice-and-type-theory.html ACLT : ∀ {a b} → Set a → Set b → ∀ p → Set (a ⊔ b ⊔ lsuc p) ACLT A B p = {P : A → B → Set p} → ((x : A) → ∃ λ y → P x y) → Σ (A → B) λ f → (x : A) → P x (f x) -- HoTT EM⁻¹ : ∀ a → Set (lsuc a) EM⁻¹ a = {A : Set a} → isProp A → Dec⊎ A DNE⁻¹ : ∀ a → Set (lsuc a) DNE⁻¹ a = {A : Set a} → isProp A → Stable A -- WKL takeT : ℕ → (ℕ → Bool) → List Bool takeT ℕ.zero α = [] takeT (ℕ.suc n) α = α 0 ∷ takeT n (λ m → α (ℕ.suc m)) -- "THE WEAK KONIG LEMMA, BROUWER’S FAN THEOREM, DE MORGAN’S LAW, AND DEPENDENT CHOICE" 2^Bool* : Set₁ 2^Bool* = List Bool → Set IsDetachable : 2^Bool* → Set IsDetachable T = DecU T -- closed under restrictions IsClosed : 2^Bool* → Set IsClosed T = ∀ u v → Prefix _≡_ v u → T u → T v IsInfinite : 2^Bool* → Set IsInfinite T = ∀ n → ∃ λ u → T u × n ≡ length u IsFinite : 2^Bool* → Set IsFinite T = ∃ λ n → ∀ u → ¬ T u × n ≡ length u IsWellFounded : 2^Bool* → Set IsWellFounded T = Σ (ℕ → Bool) λ α → ∃ λ n → ¬ T (takeT n α) HasInfinitePath : 2^Bool* → Set HasInfinitePath T = Σ (ℕ → Bool) λ α → ∀ n → T (takeT n α) IsTree : 2^Bool* → Set IsTree T = IsDetachable T × IsClosed T -- Weak Kőnig Lemma WKL : Set₁ WKL = ∀ T → IsTree T → IsInfinite T → HasInfinitePath T -- Brouwer’s Fan Theorem FAN : Set₁ FAN = ∀ T → IsTree T → IsWellFounded T → IsFinite T -- BD-N Peseudobounded : (ℕ → Set) → Set Peseudobounded S = (s : ℕ → ℕ) → (∀ n → S (s n)) → ∃ λ N → s N < N
{ "alphanum_fraction": 0.4992097163, "avg_line_length": 30.7442455243, "ext": "agda", "hexsha": "752adfaa036a08266a039e2f5e8d63931a944995", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Axiom.agda", "max_line_length": 87, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Axiom.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 5571, "size": 12021 }
{-# OPTIONS --without-K --safe #-} module Cats.Category.Fun.Facts.Terminal where open import Cats.Category.Base open import Cats.Category.Constructions.Terminal using (HasTerminal) open import Cats.Category.Fun using (_↝_ ; ≈-intro) open import Cats.Functor using (Functor) open import Cats.Functor.Const using (Const) open Functor instance hasTerminal : ∀ {lo la l≈ lo′ la′ l≈′} → {C : Category lo la l≈} {D : Category lo′ la′ l≈′} → {{_ : HasTerminal D}} → HasTerminal (C ↝ D) hasTerminal {C = C} {D = D} {{D⊤}} = record { ⊤ = Const C ⊤ ; isTerminal = λ X → record { arr = record { component = λ c → ! (fobj X c) ; natural = λ {c} {d} {f} → ⇒⊤-unique _ _ } ; unique = λ _ → ≈-intro (⇒⊤-unique _ _) } } where open HasTerminal D⊤
{ "alphanum_fraction": 0.5847665848, "avg_line_length": 27.1333333333, "ext": "agda", "hexsha": "7efc9e3a0ca49a51d077fd6d3c35b5da424abd80", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-18T15:35:07.000Z", "max_forks_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/cats", "max_forks_repo_path": "Cats/Category/Fun/Facts/Terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/cats", "max_issues_repo_path": "Cats/Category/Fun/Facts/Terminal.agda", "max_line_length": 68, "max_stars_count": 24, "max_stars_repo_head_hexsha": "1ad7b243acb622d46731e9ae7029408db6e561f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/cats", "max_stars_repo_path": "Cats/Category/Fun/Facts/Terminal.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-06T05:00:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-03T15:18:57.000Z", "num_tokens": 273, "size": 814 }
open import Common.Bool open import Common.Nat data cheesy : Bool → Set where chocolate : cheesy false cheese : cheesy true bread : ∀ x → cheesy x foo : ∀ {x : Bool} → cheesy x → cheesy x → Bool foo x chocolate = {!!} foo x cheese = {!!} foo x (bread false) = {!x!} foo x (bread true) = {!!}
{ "alphanum_fraction": 0.6091205212, "avg_line_length": 21.9285714286, "ext": "agda", "hexsha": "8b9d6a4e3d3d45dc261f82fbd4a52af80aa7a867", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2609.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2609.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2609.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 91, "size": 307 }
module Sessions.Syntax where open import Sessions.Syntax.Types public open import Sessions.Syntax.Expr public open import Sessions.Syntax.Values public
{ "alphanum_fraction": 0.8496732026, "avg_line_length": 25.5, "ext": "agda", "hexsha": "a9472370210382590533070beb8e3af40de2a892", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Syntax.agda", "max_line_length": 41, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 26, "size": 153 }
module Data.Num.Bij.Convert where open import Data.Num.Bij open import Data.Num.Bij.Properties open import Data.List hiding ([_]) open import Relation.Binary open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.Product open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Etc open import Relation.Nullary.Negation using (contradiction; contraposition) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym; cong; trans) open PropEq.≡-Reasoning import Level {- -- to ℕ, instance of Conversion instance convNat : Conversion ℕ convNat = conversion [_]' !_!' where [_]' : ℕ → Bij [ zero ]' = [] [ suc n ]' = incrB [ n ]' !_!' : Bij → ℕ ! [] !' = 0 ! one ∷ xs !' = 1 + 2 * ! xs !' ! two ∷ xs !' = 2 + 2 * ! xs !' -} -- Digit ⇒ ℕ D[_]ℕ : DigitB → ℕ D[ one ]ℕ = 1 D[ two ]ℕ = 2 -- ℕ ⇔ Bij [_]B : ℕ → Bij [ zero ]B = [] [ suc n ]B = incrB [ n ]B [_]ℕ : Bij → ℕ [ [] ]ℕ = 0 [ one ∷ xs ]ℕ = 1 + 2 * [ xs ]ℕ [ two ∷ xs ]ℕ = 2 + 2 * [ xs ]ℕ -- properties []ℕ-∷-hom : ∀ x xs → [ x ∷ xs ]ℕ ≡ D[ x ]ℕ + 2 * [ xs ]ℕ []ℕ-∷-hom one _ = refl []ℕ-∷-hom two _ = refl []ℕ-incrB-hom : ∀ xs → [ incrB xs ]ℕ ≡ suc [ xs ]ℕ []ℕ-incrB-hom [] = refl []ℕ-incrB-hom (one ∷ xs) = refl []ℕ-incrB-hom (two ∷ xs) = begin suc (2 * [ incrB xs ]ℕ) ≡⟨ cong (λ x → suc (2 * x)) ([]ℕ-incrB-hom xs) ⟩ suc (suc ([ xs ]ℕ + suc ([ xs ]ℕ + 0))) ≡⟨ cong (λ x → suc (suc x)) (+-suc [ xs ]ℕ ([ xs ]ℕ + 0)) ⟩ suc (suc (suc (2 * [ xs ]ℕ))) ∎ []ℕ-+B-hom : ∀ xs ys → [ xs +B ys ]ℕ ≡ [ xs ]ℕ + [ ys ]ℕ []ℕ-+B-hom [] ys = refl []ℕ-+B-hom (x ∷ xs) [] = sym (+-right-identity [ x ∷ xs ]ℕ) []ℕ-+B-hom (one ∷ xs) (one ∷ ys) = begin 2 + 2 * [ xs +B ys ]ℕ ≡⟨ cong (λ x → 2 + 2 * x) ([]ℕ-+B-hom xs ys) ⟩ 2 + 2 * ([ xs ]ℕ + [ ys ]ℕ) ≡⟨ cong (λ x → 2 + x) (distrib-left-*-+ 2 [ xs ]ℕ [ ys ]ℕ) ⟩ 2 + (2 * [ xs ]ℕ + 2 * [ ys ]ℕ) ≡⟨ cong suc (sym (+-suc (2 * [ xs ]ℕ) (2 * [ ys ]ℕ))) ⟩ suc (2 * [ xs ]ℕ + suc (2 * [ ys ]ℕ)) ∎ []ℕ-+B-hom (one ∷ xs) (two ∷ ys) = begin 1 + 2 * [ incrB (xs +B ys) ]ℕ ≡⟨ cong (λ x → 1 + 2 * x) ([]ℕ-incrB-hom (xs +B ys)) ⟩ 1 + 2 * (1 + [ xs +B ys ]ℕ) ≡⟨ cong (λ x → 1 + 2 * (1 + x)) ([]ℕ-+B-hom xs ys) ⟩ 1 + 2 * suc ([ xs ]ℕ + [ ys ]ℕ) ≡⟨ cong suc (+-*-suc 2 ([ xs ]ℕ + [ ys ]ℕ)) ⟩ 1 + (2 + 2 * ([ xs ]ℕ + [ ys ]ℕ)) ≡⟨ cong (λ x → 1 + (2 + x)) (distrib-left-*-+ 2 [ xs ]ℕ [ ys ]ℕ) ⟩ 1 + (2 + 2 * [ xs ]ℕ + 2 * [ ys ]ℕ) ≡⟨ cong (λ x → 1 + (x + 2 * [ ys ]ℕ)) (+-comm 2 (2 * [ xs ]ℕ)) ⟩ 1 + (2 * [ xs ]ℕ + 2 + 2 * [ ys ]ℕ) ≡⟨ cong suc (+-assoc (2 * [ xs ]ℕ) 2 (2 * [ ys ]ℕ)) ⟩ 1 + (2 * [ xs ]ℕ + (2 + (2 * [ ys ]ℕ))) ∎ []ℕ-+B-hom (two ∷ xs) (one ∷ ys) = begin suc (2 * [ incrB (xs +B ys) ]ℕ) ≡⟨ cong (λ x → suc (2 * x)) ([]ℕ-incrB-hom (xs +B ys)) ⟩ suc (2 * suc [ xs +B ys ]ℕ) ≡⟨ cong (λ x → suc (2 * suc x)) ([]ℕ-+B-hom xs ys) ⟩ suc (2 * suc ([ xs ]ℕ + [ ys ]ℕ)) ≡⟨ cong suc (+-*-suc 2 ([ xs ]ℕ + [ ys ]ℕ)) ⟩ suc (2 + 2 * ([ xs ]ℕ + [ ys ]ℕ)) ≡⟨ cong (λ x → suc (2 + x)) (distrib-left-*-+ 2 [ xs ]ℕ [ ys ]ℕ) ⟩ suc (2 + 2 * [ xs ]ℕ + 2 * [ ys ]ℕ) ≡⟨ cong (λ x → suc (suc x)) (sym (+-suc (2 * [ xs ]ℕ) (2 * [ ys ]ℕ))) ⟩ suc (suc (2 * [ xs ]ℕ + suc (2 * [ ys ]ℕ))) ∎ []ℕ-+B-hom (two ∷ xs) (two ∷ ys) = begin 2 + (2 * [ incrB (xs +B ys) ]ℕ) ≡⟨ cong (λ x → 2 + (2 * x)) ([]ℕ-incrB-hom (xs +B ys)) ⟩ 2 + (2 * suc [ xs +B ys ]ℕ) ≡⟨ cong (λ x → 2 + 2 * suc x) ([]ℕ-+B-hom xs ys) ⟩ 2 + (2 * suc ([ xs ]ℕ + [ ys ]ℕ)) ≡⟨ cong (λ x → 2 + x) (+-*-suc 2 ([ xs ]ℕ + [ ys ]ℕ)) ⟩ 2 + (2 + 2 * ([ xs ]ℕ + [ ys ]ℕ)) ≡⟨ cong (λ x → 2 + (2 + x)) (distrib-left-*-+ 2 [ xs ]ℕ [ ys ]ℕ) ⟩ 2 + (2 + 2 * [ xs ]ℕ + 2 * [ ys ]ℕ) ≡⟨ cong (λ x → 2 + (x + 2 * [ ys ]ℕ)) (+-comm 2 (2 * [ xs ]ℕ)) ⟩ 2 + (2 * [ xs ]ℕ + 2 + 2 * [ ys ]ℕ) ≡⟨ cong (λ x → 2 + x) (+-assoc (2 * [ xs ]ℕ) 2 (2 * [ ys ]ℕ)) ⟩ 2 + (2 * [ xs ]ℕ + (2 + 2 * [ ys ]ℕ)) ∎ []ℕ-*2-hom : ∀ xs → [ *2 xs ]ℕ ≡ 2 * [ xs ]ℕ []ℕ-*2-hom [] = refl []ℕ-*2-hom (one ∷ xs) = begin 2 + 2 * [ *2 xs ]ℕ ≡⟨ cong (λ x → 2 + 2 * x) ([]ℕ-*2-hom xs) ⟩ 2 + 2 * (2 * [ xs ]ℕ) ≡⟨ cong suc (sym (+-suc (2 * [ xs ]ℕ) (2 * [ xs ]ℕ + zero))) ⟩ suc (2 * [ xs ]ℕ + suc (2 * [ xs ]ℕ + zero)) ∎ []ℕ-*2-hom (two ∷ xs) = begin 2 + 2 * [ incrB (*2 xs) ]ℕ ≡⟨ cong (λ x → 2 + 2 * x) ([]ℕ-incrB-hom (*2 xs)) ⟩ 2 + 2 * suc [ *2 xs ]ℕ ≡⟨ cong (λ x → 2 + 2 * suc x) ([]ℕ-*2-hom xs) ⟩ 2 + 2 * suc (2 * [ xs ]ℕ) ≡⟨ cong (λ x → 2 + x) (sym (+-suc (2 * [ xs ]ℕ) (suc (2 * [ xs ]ℕ + zero)))) ⟩ 2 + (2 * [ xs ]ℕ + suc (suc (2 * [ xs ]ℕ + zero))) ∎ [[]B]ℕ-id : ∀ n → [ [ n ]B ]ℕ ≡ n [[]B]ℕ-id zero = refl [[]B]ℕ-id (suc n) = begin [ incrB [ n ]B ]ℕ ≡⟨ []ℕ-incrB-hom [ n ]B ⟩ suc [ [ n ]B ]ℕ ≡⟨ cong suc ([[]B]ℕ-id n) ⟩ suc n ∎ []ℕ-kernal : ∀ xs → [ xs ]ℕ ≡ 0 → xs ≡ [] []ℕ-kernal [] pf = refl []ℕ-kernal (one ∷ xs) pf = contradiction pf (λ ()) []ℕ-kernal (two ∷ xs) pf = contradiction pf (λ ()) []ℕ-surjective : ∀ (x : ℕ) → ∃ (λ y → [ y ]ℕ ≡ x) []ℕ-surjective n = [ n ]B , [[]B]ℕ-id n {- []ℕ-injective : ∀ x y → [ x ]ℕ ≡ [ y ]ℕ → x ≡ y []ℕ-injective [] [] pf = refl []ℕ-injective [] (y ∷ ys) pf = sym ([]ℕ-kernal (y ∷ ys) (sym pf)) []ℕ-injective (x ∷ xs) [] pf = []ℕ-kernal (x ∷ xs) pf []ℕ-injective (one ∷ xs) (one ∷ ys) pf = begin one ∷ xs ≡⟨ cong (λ x → one ∷ x) ([]ℕ-injective xs ys {! !}) ⟩ one ∷ ys ∎ --let pf0 = trans pf (cong (λ x → 1 + 2 * x) {! !}) --in {! !} []ℕ-injective (one ∷ xs) (two ∷ ys) pf = {! !} []ℕ-injective (two ∷ xs) (y ∷ ys) pf = {! !} -} {- begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -}
{ "alphanum_fraction": 0.3863969989, "avg_line_length": 30.655, "ext": "agda", "hexsha": "e7012445e76e33f8f82cf00490b8e9cb4ef42118", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/Data/Num/Bij/Convert.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/Data/Num/Bij/Convert.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/Data/Num/Bij/Convert.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 3032, "size": 6131 }
open import Relation.Binary.Core module PLRTree.Heap.Properties {A : Set} (_≤_ : A → A → Set) (trans≤ : Transitive _≤_) where open import PLRTree {A} open import PLRTree.Heap _≤_ lemma-≤-≤* : {x y : A}{t : PLRTree} → x ≤ y → y ≤* t → x ≤* t lemma-≤-≤* {x = x} _ (lf≤* _) = lf≤* x lemma-≤-≤* x≤y (nd≤* y≤z y≤*l y≤*r) = nd≤* (trans≤ x≤y y≤z) (lemma-≤-≤* x≤y y≤*l) (lemma-≤-≤* x≤y y≤*r)
{ "alphanum_fraction": 0.4826789838, "avg_line_length": 33.3076923077, "ext": "agda", "hexsha": "bf564f393a82f478db6e54121bcf173400cb2da8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Heap/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Heap/Properties.agda", "max_line_length": 103, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Heap/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 216, "size": 433 }
module Functional where import Lvl open import Type infixl 10000 _∘_ infixl 10000 _⩺_ infixl 10000 _⩹_ infixl 30 _→ᶠ_ _←_ _←ᶠ_ infixr 0 _$_ private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T X X₁ X₂ X₃ X₄ Y Y₁ Y₂ Y₃ Y₄ Z : Type{ℓ} -- Converse of a function type _←_ : Type{ℓ₁} → Type{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} Y ← X = X → Y -- Function type as a function _→ᶠ_ : Type{ℓ₁} → Type{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} X →ᶠ Y = X → Y -- Converse function type as a function _←ᶠ_ : Type{ℓ₁} → Type{ℓ₂} → Type{ℓ₁ Lvl.⊔ ℓ₂} Y ←ᶠ X = Y ← X -- The identity function. -- Returns the applied argument. id : T → T id(x) = x {-# INLINE id #-} -- The constant function. -- Returns the first argument independent of the second. const : let _ = X in Y → (X → Y) const(x)(_) = x -- Function application as a function. -- Applies the first argument on the function on the second argument. apply : X → (X → Y) → Y apply(x)(f) = f(x) {-# INLINE apply #-} -- Function application as an operator _$_ : (X → Y) → X → Y _$_ = id {-# INLINE _$_ #-} _$ᵢₘₚₗ_ : ({ _ : X } → Y) → (X → Y) f $ᵢₘₚₗ x = f{x} {-# INLINE _$ᵢₘₚₗ_ #-} _$ᵢₙₛₜ_ : (⦃ _ : X ⦄ → Y) → (X → Y) f $ᵢₙₛₜ x = f ⦃ x ⦄ {-# INLINE _$ᵢₙₛₜ_ #-} -- Function application as an operator. Function to the left, value to the right. _⩹_ : (X → Y) → X → Y f ⩹ x = f(x) {-# INLINE _⩹_ #-} -- Function application as an operator. Value to the left, function to the right. _⩺_ : X → (X → Y) → Y x ⩺ f = f(x) {-# INLINE _⩺_ #-} -- Swapping the arguments of a binary operation swap : (X → Y → Z) → (Y → X → Z) swap f(y)(x) = f(x)(y) {-# INLINE swap #-} -- Function composition _∘_ : let _ = X in (Y → Z) → (X → Y) → (X → Z) (f ∘ g)(x) = f(g(x)) -- Function composition on implicit argument _∘ᵢₘₚₗ_ : let _ = X in ({Y} → Z) → ({X} → Y) → ({X} → Z) (f ∘ᵢₘₚₗ g){x} = f{g{x}} -- Function composition on instance argument _∘ᵢₙₛₜ_ : let _ = X in (⦃ Y ⦄ → Z) → (⦃ X ⦄ → Y) → (⦃ X ⦄ → Z) (f ∘ᵢₙₛₜ g) ⦃ x ⦄ = f ⦃ g ⦃ x ⦄ ⦄ -- The S-combinator from combinatory logic. -- It is sometimes described as a generalized version of the application operator or the composition operator. -- Note: TODO: Applicative instance _∘ₛ_ : (X → Y → Z) → (X → Y) → (X → Z) (f ∘ₛ g)(x) = (f x) (g x) _on₀_ : let _ = X in Z → (X → Y) → Z ((▫) on₀ f) = ▫ -- const _on₁_ : let _ = X in (Y → Z) → (X → Y) → (X → Z) ((_▫) on₁ f)(y₁) = (f(y₁) ▫) on₀ f -- f(y₁) ▫ -- Function composition on a binary operator -- A function is composed on every argument of the binary operator. _on₂_ : let _ = X in (Y → Y → Z) → (X → Y) → (X → X → Z) ((_▫_) on₂ f)(y₁) = (f(y₁) ▫_) on₁ f -- f(y₁) ▫ f(y₂) _on₃_ : let _ = X in (Y → Y → Y → Z) → (X → Y) → (X → X → X → Z) ((_▫_▫_) on₃ f)(y₁) = (f(y₁) ▫_▫_) on₂ f -- f(y₁) ▫ f(y₂) ▫ f(y₃) -- TODO: Move these to Function.Multi _∘₀_ : (Y → Z) → Y → Z _∘₀_ = id _∘₁_ : let _ = X₁ in (Y → Z) → (X₁ → Y) → (X₁ → Z) _∘₁_ f = (f ∘₀_) ∘_ -- (f ∘₂ g)(x)(y) = f(g(x)(y)) _∘₂_ : let _ = X₁ ; _ = X₂ in (Y → Z) → (X₁ → X₂ → Y) → (X₁ → X₂ → Z) _∘₂_ f = (f ∘₁_) ∘_ -- (f ∘₃ g)(x)(y)(z) = f(g(x)(y)(z)) _∘₃_ : let _ = X₁ ; _ = X₂ ; _ = X₃ in (Y → Z) → (X₁ → X₂ → X₃ → Y) → (X₁ → X₂ → X₃ → Z) _∘₃_ f = (f ∘₂_) ∘_ -- (f ∘₄ g)(x)(y)(z)(w) = f(g(x)(y)(z)(w)) _∘₄_ : let _ = X₁ ; _ = X₂ ; _ = X₃ ; _ = X₄ in (Y → Z) → (X₁ → X₂ → X₃ → X₄ → Y) → (X₁ → X₂ → X₃ → X₄ → Z) _∘₄_ f = (f ∘₃_) ∘_ -- map₂Arg₁ : let _ = X in (Y₁ → Y₂ → Z) → (X → Y₁) → (X → Y₂) → (X → Z) -- map₂Arg₁ f g₁ g₂ x = f(g₁ x)(g₂ x) -- map₂Arg₂ : let _ = X₁ ; _ = X₂ in (Y₁ → Y₂ → Z) → (X₁ → Y₁) → (X₂ → Y₂) → (X₁ → X₂ → Z) -- map₂Arg₂ f g₁ g₂ x₁ x₂ = f(g₁ x₁)(g₂ x₂) -- Function lifting //TODO: Consider removing because it is the same as _∘_ liftₗ : (X → Y) → ((Z → X) → (Z → Y)) liftₗ = _∘_ -- liftₗ(f) = f ∘_ liftᵣ : (X → Y) → ((Y → Z) → (X → Z)) liftᵣ = swap(_∘_) -- liftᵣ(f) = _∘ f -- Applies an argument to two arguments of a binary function. _$₂_ : (X → X → Y) → (X → Y) f $₂ x = f x x apply₂ : X → (X → X → Y) → Y apply₂ x f = f x x proj₂ₗ : X → Y → X proj₂ₗ = const proj₂ᵣ : X → Y → Y proj₂ᵣ = const id open import Syntax.Function public
{ "alphanum_fraction": 0.5270704574, "avg_line_length": 26.6118421053, "ext": "agda", "hexsha": "0b7ad9d0e08db6644c93d9717ede5e5ea9efab85", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Functional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Functional.agda", "max_line_length": 110, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Functional.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1953, "size": 4045 }
------------------------------------------------------------------------ -- Properties related to negation ------------------------------------------------------------------------ module Relation.Nullary.Negation where open import Relation.Nullary open import Relation.Unary open import Data.Empty open import Data.Function open import Data.Product as Prod open import Data.Fin open import Data.Fin.Dec open import Category.Monad contradiction : ∀ {P whatever} → P → ¬ P → whatever contradiction p ¬p = ⊥-elim (¬p p) contraposition : ∀ {P Q} → (P → Q) → ¬ Q → ¬ P contraposition f ¬q p = contradiction (f p) ¬q -- Note also the following use of flip: private note : ∀ {P Q} → (P → ¬ Q) → Q → ¬ P note = flip ------------------------------------------------------------------------ -- Quantifier juggling ∃⟶¬∀¬ : ∀ {A} {P : Pred A} → ∃ P → ¬ (∀ x → ¬ P x) ∃⟶¬∀¬ = flip uncurry ∀⟶¬∃¬ : ∀ {A} {P : Pred A} → (∀ x → P x) → ¬ ∃ λ x → ¬ P x ∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x) ¬∃⟶∀¬ : ∀ {A} {P : Pred A} → ¬ ∃ (λ x → P x) → ∀ x → ¬ P x ¬∃⟶∀¬ = curry ∀¬⟶¬∃ : ∀ {A} {P : Pred A} → (∀ x → ¬ P x) → ¬ ∃ (λ x → P x) ∀¬⟶¬∃ = uncurry ∃¬⟶¬∀ : ∀ {A} {P : Pred A} → ∃ (λ x → ¬ P x) → ¬ (∀ x → P x) ∃¬⟶¬∀ = flip ∀⟶¬∃¬ -- When P is a decidable predicate over a finite set the following -- lemma can be proved. ¬∀⟶∃¬ : ∀ n (P : Pred (Fin n)) → (∀ i → Dec (P i)) → ¬ (∀ i → P i) → ∃ λ i → ¬ P i ¬∀⟶∃¬ n P dec ¬P = Prod.map id proj₁ $ ¬∀⟶∃¬-smallest n P dec ¬P ------------------------------------------------------------------------ -- Double-negation ¬¬-map : ∀ {P Q} → (P → Q) → ¬ ¬ P → ¬ ¬ Q ¬¬-map f = contraposition (contraposition f) ¬¬-drop : {P : Set} → ¬ ¬ ¬ P → ¬ P ¬¬-drop ¬¬¬P P = ¬¬¬P (λ ¬P → ¬P P) ¬¬-drop-Dec : {P : Set} → Dec P → ¬ ¬ P → P ¬¬-drop-Dec (yes p) ¬¬p = p ¬¬-drop-Dec (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p) ¬-drop-Dec : {P : Set} → Dec (¬ ¬ P) → Dec (¬ P) ¬-drop-Dec (yes ¬¬p) = no ¬¬p ¬-drop-Dec (no ¬¬¬p) = yes (¬¬-drop ¬¬¬p) -- Double-negation is a monad (if we assume that all elements of ¬ ¬ P -- are equal). ¬¬-Monad : RawMonad (λ P → ¬ ¬ P) ¬¬-Monad = record { return = contradiction ; _>>=_ = λ x f → ¬¬-drop (¬¬-map f x) } ¬¬-push : {P : Set} {Q : P → Set} → ¬ ¬ ((x : P) → Q x) → (x : P) → ¬ ¬ Q x ¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q (λ P⟶Q → ¬Q (P⟶Q P)) -- A double-negation-translated variant of excluded middle (or: every -- nullary relation is decidable in the double-negation monad). excluded-middle : {P : Set} → ¬ ¬ Dec P excluded-middle ¬h = ¬h (no (λ p → ¬h (yes p))) -- If whatever is instantiated with ¬ ¬ something, then this function -- is call with current continuation in the double-negation monad, or, -- if you will, a double-negation translation of Peirce's law. -- -- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However, it -- is sometimes nice to avoid leaving the double-negation monad; in -- that case this function can be used (with whatever instantiated to -- ⊥). call/cc : ∀ {whatever P : Set} → ((P → whatever) → ¬ ¬ P) → ¬ ¬ P call/cc hyp ¬p = hyp (λ p → ⊥-elim (¬p p)) ¬p
{ "alphanum_fraction": 0.485164656, "avg_line_length": 30.67, "ext": "agda", "hexsha": "2d2971e75210d3612cdcf63ad7c582fab8181300", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Nullary/Negation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Nullary/Negation.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Nullary/Negation.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 1159, "size": 3067 }
open import Common.Prelude open import Common.Reflection open import Common.Equality ` : Term → Term ` (def f []) = con (quote def) (vArg (lit (qname f)) ∷ vArg (con (quote []) []) ∷ []) ` _ = lit (string "other") macro primQNameType : QName → Tactic primQNameType f hole = bindTC (getType f) λ a → bindTC (normalise a) λ a → give (` a) hole A : Set a : A A = _ B : Set b : B B = _ aName=bName : primQNameType a ≡ primQNameType b aName=bName = refl a = 0 b = 1.0 empty : ⊥ empty with aName=bName ... | ()
{ "alphanum_fraction": 0.6117424242, "avg_line_length": 16, "ext": "agda", "hexsha": "85ca09ad4c1673487e9b33fe1055631a905a3310", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1371.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1371.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1371.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 191, "size": 528 }
-- Andreas, 2017-11-01, issue #2824 -- allow built-in pragmas in parametrized modules {-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality module _ (A : Set) where -- This is the top-level module header. {-# BUILTIN REWRITE _≡_ #-} postulate P : A → Set a b : A a→b : a ≡ b {-# REWRITE a→b #-} test : P a → P b test x = x -- Should succeed.
{ "alphanum_fraction": 0.6219178082, "avg_line_length": 15.8695652174, "ext": "agda", "hexsha": "279b824d04637a5bcd853570970d287db8414b4d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2824BuiltinRewriteInParametrizedModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2824BuiltinRewriteInParametrizedModule.agda", "max_line_length": 65, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2824BuiltinRewriteInParametrizedModule.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 121, "size": 365 }
-- Andreas, 2019-11-06 issue #4168, version with shape-irrelevance. -- Eta-contraction of records with all-irrelevant fields is unsound. -- In this case, it lead to a compilation error. {-# OPTIONS --irrelevant-projections #-} -- {-# OPTIONS -v tc.cc:20 #-} open import Agda.Builtin.Unit open import Common.IO using (IO; return) main : IO ⊤ main = return _ record Box (A : Set) : Set where constructor box field ..unbox : A open Box record R (M : Set → Set) : Set₁ where field bind : (A B : Set) → M A → (A → M B) → M B open R works : R Box works .bind A B x g .unbox = unbox (g (unbox x)) test : R Box test .bind A B x g = box (unbox (g (unbox x))) -- WAS eta-contracted to: test .bind A B x g = g (unbox x) -- crashing compilation. -- Compilation should succeed.
{ "alphanum_fraction": 0.6481012658, "avg_line_length": 21.3513513514, "ext": "agda", "hexsha": "99c87e3f3b90aa0e51092a74d7f928aadb03ff5a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue4168-shirr.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue4168-shirr.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue4168-shirr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 250, "size": 790 }
open import Agda.Builtin.Bool open import Agda.Builtin.Equality open import Agda.Builtin.List open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Unit postulate @0 A : Set @0 _ : @0 Set → (Set → Set) → Set _ = λ @0 where A G → G A @0 _ : @0 Set → (Set → Set) → Set _ = λ @0 { A G → G A } data ⊥ : Set where @0 _ : @0 ⊥ → Set _ = λ @0 { () } @0 _ : @0 ⊥ → Set _ = λ @0 where () @0 _ : @0 ⊥ → Set _ = λ @0 @ω @erased @plenty @(tactic (λ _ → Set)) @irr @irrelevant @shirr @shape-irrelevant @relevant @♭ @flat @notlock @lock @tick where () F : ⊤ → ⊤ F = λ { tt → tt } macro `F : Term → TC ⊤ `F goal = do F ← withNormalisation true (quoteTC F) F ← quoteTC F unify goal F _ : `F ≡ pat-lam (clause [] (arg (arg-info visible relevant) (con (quote tt) []) ∷ []) (con (quote tt) []) ∷ []) [] _ = refl
{ "alphanum_fraction": 0.5131440589, "avg_line_length": 14.6307692308, "ext": "agda", "hexsha": "dc86594aeac1fdac1efa42787635d8e42ed693ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "googleson78/agda", "max_forks_repo_path": "test/Succeed/Issue4525.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "googleson78/agda", "max_issues_repo_path": "test/Succeed/Issue4525.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "aea2c53340f509c2c67157caeac360400ea6afbc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "googleson78/agda", "max_stars_repo_path": "test/Succeed/Issue4525.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 371, "size": 951 }
-- Category of □-coalgebras module SOAS.Abstract.Coalgebra {T : Set} where open import SOAS.Common open import SOAS.Construction.Structure as Structure open import SOAS.Context open import SOAS.ContextMaps.Combinators open import SOAS.ContextMaps.CategoryOfRenamings {T} open import SOAS.Sorting open import SOAS.Families.Core {T} open import SOAS.Variable open import SOAS.Families.BCCC open import Data.Unit using (tt) open import SOAS.Abstract.Hom {T} import SOAS.Abstract.Box {T} as □ private variable α : T Γ Δ Θ : Ctx -- Unsorted □-coalgebras module Unsorted where open □.Unsorted record Coalg (X : Family) : Set where field r : X ⇾ □ X counit : {t : X Γ} → r t id ≡ t comult : {ρ : Γ ↝ Δ}{ϱ : Δ ↝ Θ}{t : X Γ} → r t (ϱ ∘ ρ) ≡ r (r t ρ) ϱ -- Weakening of terms wkr : (Θ : Ctx) → X Γ → X (Θ ∔ Γ) wkr Θ t = r t (inr Θ) wkl : (Γ : Ctx) → X Γ → X (Γ ∔ Θ) wkl Γ t = r t (inl Γ) wk : X Γ → X (α ∙ Γ) wk t = r t old -- Unsorted coalgebra homomorphism record Coalg⇒ {X Y}(Xᵇ : Coalg X)(Yᵇ : Coalg Y) (f : X ⇾ Y) : Set where private module X = Coalg Xᵇ private module Y = Coalg Yᵇ field ⟨r⟩ : {ρ : Γ ↝ Δ}{t : X Γ} → f (X.r t ρ) ≡ Y.r (f t) (ρ) private module CoalgebraStructure = Structure 𝔽amilies Coalg -- Eilenberg-Moore category of a comonad ℂoalgebras : Category 1ℓ 0ℓ 0ℓ ℂoalgebras = CoalgebraStructure.StructCat (record { IsHomomorphism = Coalg⇒ ; id-hom = record { ⟨r⟩ = refl } ; comp-hom = λ{ g f record { ⟨r⟩ = g⟨r⟩ } record { ⟨r⟩ = f⟨r⟩ } → record { ⟨r⟩ = trans (cong g f⟨r⟩) g⟨r⟩ } } }) module ℂoalg = Category ℂoalgebras Coalgebra : Set₁ Coalgebra = ℂoalg.Obj Coalgebra⇒ : Coalgebra → Coalgebra → Set Coalgebra⇒ = ℂoalg._⇒_ module AsCoalgebra (Xᵇ : Coalgebra) where open Object Xᵇ public renaming (𝐶 to X ; ˢ to ᵇ) open Coalg ᵇ public -- Terminal object is a coalgebra ⊤ᵇ : Coalg ⊤ₘ ⊤ᵇ = record { r = λ _ _ → tt ; counit = refl ; comult = refl } -- □ X is the free coalgebra on X □ᵇ : (X : Family) → Coalg (□ X) □ᵇ X = record { r = λ b ρ ϱ → b (ϱ ∘ ρ) ; counit = refl ; comult = refl } -- | Sorted □-coalgebras module Sorted where open □.Sorted record Coalg (𝒳 : Familyₛ) : Set where field r : 𝒳 ⇾̣ □ 𝒳 counit : {t : 𝒳 α Γ} → r t id ≡ t comult : {ρ : Γ ↝ Δ}{ϱ : Δ ↝ Θ}{t : 𝒳 α Γ} → r t (ϱ ∘ ρ) ≡ r (r t ρ) ϱ -- Congruence in both arguments r≈₁ : {ρ : Γ ↝ Δ}{t₁ t₂ : 𝒳 α Γ} → t₁ ≡ t₂ → r t₁ ρ ≡ r t₂ ρ r≈₁ {ρ = ρ} p = cong (λ - → r - ρ) p r≈₂ : {ρ₁ ρ₂ : Γ ↝ Δ}{t : 𝒳 α Γ} → ({τ : T}{x : ℐ τ Γ} → ρ₁ x ≡ ρ₂ x) → r t ρ₁ ≡ r t ρ₂ r≈₂ {t = t} p = cong (r t) (dext′ p) wkr : (Θ : Ctx) → 𝒳 α Γ → 𝒳 α (Θ ∔ Γ) wkr Θ t = r t (inr Θ) wkl : (Γ : Ctx) → 𝒳 α Γ → 𝒳 α (Γ ∔ Θ) wkl Γ t = r t (inl Γ) wk : {τ : T} → 𝒳 α Γ → 𝒳 α (τ ∙ Γ) wk t = r t old -- Coalgebra homomorphism record Coalg⇒ {𝒳 𝒴}(Xᵇ : Coalg 𝒳)(𝒴ᵇ : Coalg 𝒴) (f : 𝒳 ⇾̣ 𝒴) : Set where private module 𝒳 = Coalg Xᵇ private module 𝒴 = Coalg 𝒴ᵇ field ⟨r⟩ : {ρ : Γ ↝ Δ}{t : 𝒳 α Γ} → f (𝒳.r t ρ) ≡ 𝒴.r (f t) (ρ) private module CoalgebraStructure = Structure 𝔽amiliesₛ Coalg -- Eilenberg-Moore category of a comonad ℂoalgebras : Category 1ℓ 0ℓ 0ℓ ℂoalgebras = CoalgebraStructure.StructCat (record { IsHomomorphism = Coalg⇒ ; id-hom = record { ⟨r⟩ = refl } ; comp-hom = λ{ g f record { ⟨r⟩ = g⟨r⟩ } record { ⟨r⟩ = f⟨r⟩ } → record { ⟨r⟩ = trans (cong g f⟨r⟩) g⟨r⟩ } } }) module ℂoalg = Category ℂoalgebras Coalgebra : Set₁ Coalgebra = ℂoalg.Obj Coalgebra⇒ : Coalgebra → Coalgebra → Set Coalgebra⇒ = ℂoalg._⇒_ module AsCoalgebra (𝒳ᵇ : Coalgebra) where open Object 𝒳ᵇ public renaming (𝐶 to 𝒳 ; ˢ to ᵈ) -- 〖 𝒳 , 𝒴 〗 is a coalgebra for any 𝒳 and 𝒴 〖_,_〗ᵇ : (𝒳 𝒴 : Familyₛ) → Coalg (〖 𝒳 , 𝒴 〗) 〖 𝒳 , 𝒴 〗ᵇ = record { r = λ h ρ ϱ → h (ϱ ∘ ρ) ; counit = refl ; comult = refl } -- □ 𝒳 is the free coalgebra on 𝒳 □ᵇ : (𝒳 : Familyₛ) → Coalg (□ 𝒳) □ᵇ 𝒳 = 〖 ℐ , 𝒳 〗ᵇ -- Pointed coalgebra record Coalgₚ (𝒳 : Familyₛ) : Set where field ᵇ : Coalg 𝒳 η : ℐ ⇾̣ 𝒳 open Coalg ᵇ public field r∘η : {α : T}{Γ Δ : Ctx}{v : ℐ α Γ}{ρ : Γ ↝ Δ} → r (η v) ρ ≡ η (ρ v) -- Pointed coalgebra homomorphism record Coalgₚ⇒ {𝒳 𝒴 : Familyₛ}(𝒳ᴮ : Coalgₚ 𝒳)(𝒴ᴮ : Coalgₚ 𝒴) (f : 𝒳 ⇾̣ 𝒴) : Set where private module 𝒳 = Coalgₚ 𝒳ᴮ private module 𝒴 = Coalgₚ 𝒴ᴮ field ᵇ⇒ : Coalg⇒ 𝒳.ᵇ 𝒴.ᵇ f ⟨η⟩ : {α : T}{Γ : Ctx}{v : ℐ α Γ} → f (𝒳.η v) ≡ 𝒴.η v open Coalg⇒ ᵇ⇒ public -- Pointed coalgebra of variables ℐᵇ : Coalg ℐ ℐᵇ = record { r = λ v ρ → ρ v ; counit = refl ; comult = refl } ℐᴮ : Coalgₚ ℐ ℐᴮ = record { ᵇ = ℐᵇ ; η = id ; r∘η = refl } -- □ 𝒳 is free pointed coalgebra on pointed families □ᴮ : (𝒳 : Familyₛ) → ℐ ⇾̣ 𝒳 → Coalgₚ (□ 𝒳) □ᴮ 𝒳 η = record { ᵇ = □ᵇ 𝒳 ; η = λ v ρ → η (ρ v) ; r∘η = refl } -- Identity and point are homomorphisms idᴮ⇒ : {𝒳 : Familyₛ}{𝒳ᴮ : Coalgₚ 𝒳} → Coalgₚ⇒ 𝒳ᴮ 𝒳ᴮ id idᴮ⇒ = record { ᵇ⇒ = record { ⟨r⟩ = refl } ; ⟨η⟩ = refl } ηᴮ⇒ : {𝒳 : Familyₛ}(𝒳ᴮ : Coalgₚ 𝒳) → Coalgₚ⇒ ℐᴮ 𝒳ᴮ (Coalgₚ.η 𝒳ᴮ) ηᴮ⇒ 𝒳ᴮ = record { ᵇ⇒ = record { ⟨r⟩ = sym (Coalgₚ.r∘η 𝒳ᴮ) } ; ⟨η⟩ = refl }
{ "alphanum_fraction": 0.542481203, "avg_line_length": 27.4226804124, "ext": "agda", "hexsha": "3b658d44e9bb381a931113045cb9aa730286b137", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "SOAS/Abstract/Coalgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "SOAS/Abstract/Coalgebra.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "SOAS/Abstract/Coalgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2650, "size": 5320 }
{-# OPTIONS --without-K --safe #-} -- The identity pseudofunctor module Categories.Pseudofunctor.Identity where open import Data.Product using (_,_) open import Categories.Bicategory using (Bicategory) import Categories.Bicategory.Extras as BicategoryExt open import Categories.Category using (Category) open import Categories.Category.Instance.One using (shift) open import Categories.Category.Product using (_⁂_) open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) import Categories.Morphism.Reasoning as MorphismReasoning open import Categories.NaturalTransformation using (NaturalTransformation) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_; niHelper) open import Categories.Pseudofunctor using (Pseudofunctor) open Category using (module HomReasoning) open NaturalIsomorphism using (F⇒G; F⇐G) -- The identity pseudofunctor idP : ∀ {o ℓ e t} {C : Bicategory o ℓ e t} → Pseudofunctor C C idP {o} {ℓ} {e} {t} {C = C} = record { P₀ = λ x → x ; P₁ = idF ; P-identity = P-identity ; P-homomorphism = P-homomorphism ; unitaryˡ = unitaryˡ ; unitaryʳ = unitaryʳ ; assoc = assoc } where open BicategoryExt C P-identity : ∀ {x} → id {x} ∘F shift o ℓ e ≃ idF ∘F id P-identity {x} = niHelper (record { η = λ _ → id₂ ; η⁻¹ = λ _ → id₂ ; commute = λ _ → MorphismReasoning.id-comm-sym (hom x x) ; iso = λ _ → record { isoˡ = hom.identity² ; isoʳ = hom.identity² } }) P-homomorphism : ∀ {x y z} → ⊚ ∘F (idF ⁂ idF) ≃ idF ∘F ⊚ {x} {y} {z} P-homomorphism {x} {_} {z} = niHelper (record { η = λ _ → id₂ ; η⁻¹ = λ _ → id₂ ; commute = λ _ → MorphismReasoning.id-comm-sym (hom x z) ; iso = λ _ → record { isoˡ = hom.identity² ; isoʳ = hom.identity² } }) Pid = λ {A} → NaturalTransformation.η (F⇒G (P-identity {A})) _ Phom = λ {x} {y} {z} f,g → NaturalTransformation.η (F⇒G (P-homomorphism {x} {y} {z})) f,g λ⇒ = unitorˡ.from ρ⇒ = unitorʳ.from α⇒ = associator.from unitaryˡ : ∀ {x y} {f : x ⇒₁ y} → let open ComHom in [ id₁ ⊚₀ f ⇒ f ]⟨ Pid ⊚₁ id₂ ⇒⟨ id₁ ⊚₀ f ⟩ Phom (id₁ , f) ⇒⟨ id₁ ⊚₀ f ⟩ λ⇒ ≈ λ⇒ ⟩ unitaryˡ {x} {y} {f} = begin λ⇒ ∘ᵥ Phom (id₁ , f) ∘ᵥ (Pid ⊚₁ id₂) ≈⟨ refl⟩∘⟨ elimʳ ⊚.identity ⟩ λ⇒ ∘ᵥ Phom (id₁ , f) ≈⟨ hom.identityʳ ⟩ λ⇒ ∎ where open HomReasoning (hom x y) open MorphismReasoning (hom x y) unitaryʳ : ∀ {x y} {f : x ⇒₁ y} → let open ComHom in [ f ⊚₀ id₁ ⇒ f ]⟨ id₂ ⊚₁ Pid ⇒⟨ f ⊚₀ id₁ ⟩ Phom (f , id₁) ⇒⟨ f ⊚₀ id₁ ⟩ ρ⇒ ≈ ρ⇒ ⟩ unitaryʳ {x} {y} {f} = begin ρ⇒ ∘ᵥ Phom (f , id₁) ∘ᵥ (id₂ ⊚₁ Pid) ≈⟨ refl⟩∘⟨ elimʳ ⊚.identity ⟩ ρ⇒ ∘ᵥ Phom (f , id₁) ≈⟨ hom.identityʳ ⟩ ρ⇒ ∎ where open HomReasoning (hom x y) open MorphismReasoning (hom x y) assoc : ∀ {x y z w} {f : x ⇒₁ y} {g : y ⇒₁ z} {h : z ⇒₁ w} → let open ComHom in [ (h ⊚₀ g) ⊚₀ f ⇒ h ⊚₀ (g ⊚₀ f) ]⟨ Phom (h , g) ⊚₁ id₂ ⇒⟨ (h ⊚₀ g) ⊚₀ f ⟩ Phom (_ , f) ⇒⟨ (h ⊚₀ g) ⊚₀ f ⟩ α⇒ ≈ α⇒ ⇒⟨ h ⊚₀ (g ⊚₀ f) ⟩ id₂ ⊚₁ Phom (g , f) ⇒⟨ h ⊚₀ (g ⊚₀ f) ⟩ Phom (h , _) ⟩ assoc {x} {_} {_} {w} {f} {g} {h} = begin α⇒ ∘ᵥ Phom (_ , f) ∘ᵥ Phom (h , g) ⊚₁ id₂ ≈⟨ refl⟩∘⟨ elimʳ ⊚.identity ⟩ α⇒ ∘ᵥ Phom (_ , f) ≈⟨ hom.identityʳ ⟩ α⇒ ≈˘⟨ elimˡ ⊚.identity ⟩ id₂ ⊚₁ Phom (g , f) ∘ᵥ α⇒ ≈˘⟨ hom.identityˡ ⟩ Phom (h , _) ∘ᵥ id₂ ⊚₁ Phom (g , f) ∘ᵥ α⇒ ∎ where open HomReasoning (hom x w) open MorphismReasoning (hom x w)
{ "alphanum_fraction": 0.4834054834, "avg_line_length": 36.796460177, "ext": "agda", "hexsha": "4427c486c7c19ec4b81e29f241d2f6b3b9f2bbd4", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Pseudofunctor/Identity.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Pseudofunctor/Identity.agda", "max_line_length": 78, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Pseudofunctor/Identity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1634, "size": 4158 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Equatable where open import Prelude open import Data.Binary.Definition open import Data.Bits.Equatable public
{ "alphanum_fraction": 0.7804878049, "avg_line_length": 20.5, "ext": "agda", "hexsha": "d84022c9ae4f4c6926249b3789c47e5bf52db8ee", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Equatable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Equatable.agda", "max_line_length": 38, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Equatable.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 38, "size": 164 }
-- Andreas, 2012-02-14, issue reported by Wolfram Kahl -- {-# OPTIONS -v scope.top:10 #-} module Issue562 where data Bool : Set where true false : Bool f : Bool → Bool f b with b f true | _ = b -- WAS: panic unbound variable b -- should be: Not in scope: b
{ "alphanum_fraction": 0.667953668, "avg_line_length": 23.5454545455, "ext": "agda", "hexsha": "75919ec98ae61cadee5deef2abf5cefc60733285", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue562.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue562.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue562.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 82, "size": 259 }
-- 2010-11-21 -- testing correct implementation of eta for records with higher-order fields module Issue366 where data Bool : Set where true false : Bool record R (A : Set) : Set where constructor r field unR : A open R foo : Bool foo = unR (r (unR (r (λ (_ : Bool) → false)) true)) -- before 2010-11-21, an incorrect implementation of eta-contraction -- reduced foo to (unR true) -- Error message was (due to clause compilation): -- Incomplete pattern matching data _==_ {A : Set}(a : A) : A -> Set where refl : a == a test : foo == false test = refl
{ "alphanum_fraction": 0.6501706485, "avg_line_length": 19.5333333333, "ext": "agda", "hexsha": "c57f5df53e1046f5683fe9744361ac39c74c318b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue366.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue366.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue366.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 586 }
module TerminationMixingTupledCurried where data Nat : Set where zero : Nat succ : Nat -> Nat data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B good : Nat × Nat -> Nat -> Nat good (succ x , y) z = good (x , succ y) (succ z) good (x , succ y) z = good (x , y) x good xy (succ z) = good xy z good _ _ = zero
{ "alphanum_fraction": 0.5688073394, "avg_line_length": 20.4375, "ext": "agda", "hexsha": "2f224718319f3af18b3f7256165a1ece5e693df2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/features/matrixShapedTerminationOrder/TerminationMixingTupledCurried.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 120, "size": 327 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group where open import Cubical.Algebra.Group.Base public open import Cubical.Algebra.Group.Properties public
{ "alphanum_fraction": 0.7961783439, "avg_line_length": 26.1666666667, "ext": "agda", "hexsha": "dfaeabcbd30d6e166efeb0ec9e09f9374315b9b2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group.agda", "max_line_length": 51, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 33, "size": 157 }
data Nat : Set where zero : Nat suc : Nat → Nat test : ∀{N M : Nat} → Nat → Nat → Nat test N M = {!.N N .M!} -- Andreas, 2016-07-10, issue 2088 -- Changed behavior: -- The hidden variables .N and .M are made visible -- only the visible N is split.
{ "alphanum_fraction": 0.6166007905, "avg_line_length": 23, "ext": "agda", "hexsha": "d3e2bfbcdecafd4848abafff2f23d9f6e4068900", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/SplitOnHidden.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/SplitOnHidden.agda", "max_line_length": 50, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/SplitOnHidden.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 87, "size": 253 }
postulate A : Set f : A → A mutual F : A → Set F x = D (f x) data D : A → Set where c : (x : A) → F x G : (x : A) → D x → Set₁ G _ (c _) = Set
{ "alphanum_fraction": 0.4135802469, "avg_line_length": 10.125, "ext": "agda", "hexsha": "94fadce8747b7994e9b505657d25dd9b11194777", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2919.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2919.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2919.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 78, "size": 162 }
{-# OPTIONS --copatterns #-} module Issue950b where postulate A : Set record R : Set where field x : A record S : Set where field y : A open R f : ? x f = ? -- Good error: -- Cannot eliminate type ?0 with projection pattern x -- when checking that the clause x f = ? has type ?0
{ "alphanum_fraction": 0.6245847176, "avg_line_length": 12.04, "ext": "agda", "hexsha": "ab274e68f9791caffca27a8bf9a14d49fb1dd0da", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue950b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue950b.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue950b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 89, "size": 301 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.KernelSndImageInl {i j k} (G : Group i) {H : Group j} {K : Group k} -- the argument [φ-snd], which is intended to be [φ ∘ᴳ ×-snd], -- gives the possibility of making the second part -- (the proof of being a group homomorphism) abstract. (φ : H →ᴳ K) (φ-snd : G ×ᴳ H →ᴳ K) (φ-snd-β : ∀ x → GroupHom.f φ-snd x == GroupHom.f φ (snd x)) (G×H-is-abelian : is-abelian (G ×ᴳ H)) where open import groups.KernelImage φ-snd (×ᴳ-inl {G = G} {H = H}) G×H-is-abelian private module G = Group G module H = Group H Ker-φ-snd-quot-Im-inl : Ker φ ≃ᴳ Ker/Im Ker-φ-snd-quot-Im-inl = to-hom , is-eq to from to-from from-to where to : Ker.El φ → Ker/Im.El to (h , h-in-ker) = q[ (G.ident , h) , lemma ] where abstract lemma = φ-snd-β (G.ident , h) ∙ h-in-ker abstract to-pres-comp : ∀ k₁ k₂ → to (Ker.comp φ k₁ k₂) == Ker/Im.comp (to k₁) (to k₂) to-pres-comp _ _ = ap q[_] $ Ker.El=-out φ-snd $ pair×= (! (G.unit-l G.ident)) idp to-hom : Ker φ →ᴳ Ker/Im to-hom = group-hom to to-pres-comp abstract from' : Ker.El φ-snd → Ker.El φ from' ((g , h) , h-in-ker) = h , ! (φ-snd-β (g , h)) ∙ h-in-ker from-rel : ∀ {gh₁ gh₂} → ker/im-rel gh₁ gh₂ → from' gh₁ == from' gh₂ from-rel {gh₁} {gh₂} = Trunc-rec (Ker.El-is-set φ _ _) (λ{(g , inl-g=h₁h₂⁻¹) → Ker.El=-out φ (H.zero-diff-same (snd (fst gh₁)) (snd (fst gh₂)) (! (snd×= inl-g=h₁h₂⁻¹)))}) from : Ker/Im.El → Ker.El φ from = SetQuot-rec (Ker.El-is-set φ) from' from-rel abstract to-from : ∀ g → to (from g) == g to-from = SetQuot-elim {P = λ g → to (from g) == g} (λ _ → =-preserves-set Ker/Im.El-is-set) (λ{((g , h) , h-in-ker) → quot-rel [ G.inv g , ap2 _,_ (! (G.unit-l (G.inv g))) (! (H.inv-r h)) ]}) (λ _ → prop-has-all-paths-↓ (Ker/Im.El-is-set _ _)) from-to : ∀ g → from (to g) == g from-to _ = Ker.El=-out φ idp
{ "alphanum_fraction": 0.5336940482, "avg_line_length": 34.4576271186, "ext": "agda", "hexsha": "34ebc3cea8ee93b271bc4a971c10e4cda200e882", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/groups/KernelSndImageInl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/groups/KernelSndImageInl.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/groups/KernelSndImageInl.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 806, "size": 2033 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Unit.Base where -- Obtain Unit open import Agda.Builtin.Unit public renaming ( ⊤ to Unit )
{ "alphanum_fraction": 0.703030303, "avg_line_length": 23.5714285714, "ext": "agda", "hexsha": "7704ffbc29a9bd506a9246f0a3081e5ce340c946", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/Data/Unit/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/Data/Unit/Base.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/Data/Unit/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 43, "size": 165 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Bisimilarity for Cowriter ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Cowriter.Bisimilarity where open import Level using (Level; _⊔_) open import Size open import Codata.Thunk open import Codata.Cowriter open import Relation.Binary open import Relation.Binary.PropositionalEquality as Eq using (_≡_) private variable a b c p q pq r s rs v w x : Level A : Set a B : Set b C : Set c V : Set v W : Set w X : Set x i : Size data Bisim {V : Set v} {W : Set w} {A : Set a} {B : Set b} (R : REL V W r) (S : REL A B s) (i : Size) : REL (Cowriter V A ∞) (Cowriter W B ∞) (r ⊔ s ⊔ v ⊔ w ⊔ a ⊔ b) where [_] : ∀ {a b} → S a b → Bisim R S i [ a ] [ b ] _∷_ : ∀ {x y xs ys} → R x y → Thunk^R (Bisim R S) i xs ys → Bisim R S i (x ∷ xs) (y ∷ ys) module _ {R : Rel W r} {S : Rel A s} (refl^R : Reflexive R) (refl^S : Reflexive S) where reflexive : Reflexive (Bisim R S i) reflexive {x = [ a ]} = [ refl^S ] reflexive {x = w ∷ ws} = refl^R ∷ λ where .force → reflexive module _ {R : REL V W r} {S : REL W V s} {P : REL A B p} {Q : REL B A q} (sym^RS : Sym R S) (sym^PQ : Sym P Q) where symmetric : Sym (Bisim R P i) (Bisim S Q i) symmetric [ a ] = [ sym^PQ a ] symmetric (p ∷ ps) = sym^RS p ∷ λ where .force → symmetric (ps .force) module _ {R : REL V W r} {S : REL W X s} {RS : REL V X rs} {P : REL A B p} {Q : REL B C q} {PQ : REL A C pq} (trans^RS : Trans R S RS) (trans^PQ : Trans P Q PQ) where transitive : Trans (Bisim R P i) (Bisim S Q i) (Bisim RS PQ i) transitive [ p ] [ q ] = [ trans^PQ p q ] transitive (p ∷ ps) (q ∷ qs) = trans^RS p q ∷ λ where .force → transitive (ps .force) (qs .force) -- Pointwise Equality as a Bisimilarity ------------------------------------------------------------------------ module _ {W : Set w} {A : Set a} where infix 1 _⊢_≈_ _⊢_≈_ : ∀ i → Cowriter W A ∞ → Cowriter W A ∞ → Set (a ⊔ w) _⊢_≈_ = Bisim _≡_ _≡_ refl : Reflexive (i ⊢_≈_) refl = reflexive Eq.refl Eq.refl fromEq : ∀ {as bs} → as ≡ bs → i ⊢ as ≈ bs fromEq Eq.refl = refl sym : Symmetric (i ⊢_≈_) sym = symmetric Eq.sym Eq.sym trans : Transitive (i ⊢_≈_) trans = transitive Eq.trans Eq.trans module _ {R : Rel W r} {S : Rel A s} (equiv^R : IsEquivalence R) (equiv^S : IsEquivalence S) where private module equiv^R = IsEquivalence equiv^R module equiv^S = IsEquivalence equiv^S isEquivalence : IsEquivalence (Bisim R S i) isEquivalence = record { refl = reflexive equiv^R.refl equiv^S.refl ; sym = symmetric equiv^R.sym equiv^S.sym ; trans = transitive equiv^R.trans equiv^S.trans } setoid : Setoid w r → Setoid a s → Size → Setoid (w ⊔ a) (w ⊔ a ⊔ r ⊔ s) setoid R S i = record { isEquivalence = isEquivalence (Setoid.isEquivalence R) (Setoid.isEquivalence S) {i = i} } module ≈-Reasoning {W : Set w} {A : Set a} {i} where open import Relation.Binary.Reasoning.Setoid (setoid (Eq.setoid W) (Eq.setoid A) i) public
{ "alphanum_fraction": 0.5368839914, "avg_line_length": 31.1142857143, "ext": "agda", "hexsha": "78fc8cebf820b248feab06b70148f5b3d67f6610", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Codata/Cowriter/Bisimilarity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Codata/Cowriter/Bisimilarity.agda", "max_line_length": 78, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Codata/Cowriter/Bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1158, "size": 3267 }
{-# OPTIONS --without-K #-} module Ch2-3 where open import Level hiding (lift) open import Ch2-1 open import Ch2-2 -- p -- x ~~~~~~~~~ y -- -- -- P x --------> P y -- -- Lemma 2.3.1 (transport) transport : ∀ {a b} {A : Set a} {x y : A} → (P : A → Set b) → (p : x ≡ y) → P x → P y transport {a} {b} {A} {x} {y} P p = J A D d x y p P -- J A D d x y p P where -- the predicate D : (x y : A) (p : x ≡ y) → Set (a ⊔ suc b) D x y p = (P : A → Set b) → P x → P y -- base case d : (x : A) → D x x refl d x P y = y open import Data.Product -- proof -- +-----+ p +-----+ -- | x ~~~~~~~~~~~~~~~~ y | -- | | | | -- | P x |~~~~~~~~~~~~| P y | -- +-----+ * +-----+ -- -- Lemma 2.3.2 (path lifting property) lift : ∀ {a b} {A : Set a} → (P : A → Set b) → (proof : Σ[ x ∈ A ] P x) → (y : A) → (p : proj₁ proof ≡ y) → proof ≡ (y , transport P p (proj₂ proof)) lift {a} {b} {A} P proof y p = J A D d (proj₁ proof) y p (proj₂ proof) where -- the predicate D : (x y : A) (p : x ≡ y) → Set (a ⊔ b) D x y p = (u : P x) → (x , u) ≡ (y , transport P p u) -- base case d : (x : A) → D x x refl d x u = refl -- A -- +----------------------------------------------+ -- | p | -- | x ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ y | -- | + + | -- +----------------------------------------------+ -- | | -- P x | P y | -- +-------+ +----------------------------------+ -- | v | | * v | -- | f x +-------> transport P p (f x) ~~~~~ f y | -- | | | | -- +-------+ +----------------------------------+ -- -- Lemma 2.3.4 (dependent map) apd : ∀ {a b} {A : Set a} {x y : A} → {P : A → Set b} → (f : (z : A) → P z) → (p : x ≡ y) → transport P p (f x) ≡ f y apd {a} {b} {A} {x} {y} {P} f p = J A D d x y p P f where -- the predicate D : (x y : A) (p : x ≡ y) → _ D x y p = (P : A → Set b) (f : (z : A) → P z) → transport P p (f x) ≡ f y -- base case d : (x : A) → D x x refl d x P f = refl open import Function using (const; _∘_) -- Lemma 2.3.5 transportconst : ∀ {a ℓ} {A : Set a} {x y : A} → {B : Set ℓ} → (p : x ≡ y) → (b : B) → transport (const B) p b ≡ b transportconst {a} {ℓ} {A} {x} {y} {B} p b = J A D d x y p B b where -- the predicate D : (x y : A) (p : x ≡ y) → _ D x y p = (B : Set ℓ) (b : B) → transport (const B) p b ≡ b -- base case d : (x : A) → D x x refl d x B b = refl open import Ch2-2 -- Lemma 2.3.8 lemma-2-3-8 : ∀ {a ℓ} {A : Set a} {B : Set ℓ} {x y : A} → (f : A → B) → (p : x ≡ y) → apd f p ≡ transportconst p (f x) ∙ ap f p lemma-2-3-8 {a} {ℓ} {A} {B} {x} {y} f p = J {a} {a ⊔ ℓ} A D d x y p f where -- the predicate D : (x y : A) (p : x ≡ y) → _ D x y p = (f : A → B) → apd f p ≡ transportconst p (f x) ∙ ap f p -- base case d : (x : A) → D x x refl d x f = refl -- Lemma 2.3.9 lemma-2-3-9 : ∀ {a b} {A : Set a} {x y z : A} → (P : A → Set b) → (p : x ≡ y) → (q : y ≡ z) → (u : P x) → transport P q (transport P p u) ≡ transport P (p ∙ q) u lemma-2-3-9 {a} {b} {A} {x} {y} {z} P p q u = J A D d x y p P z q u where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (P : A → Set b) (z : A) (q : y ≡ z) (u : P x) → transport P q (transport P p u) ≡ transport P (p ∙ q) u -- base case d : (x : A) → D x x refl d x P z q u = J A E e x z q P u where -- the predicate E : (x z : A) (q : x ≡ z) → Set _ E x z q = (P : A → Set b) (u : P x) → transport P q (transport P refl u) ≡ transport P (refl ∙ q) u -- base case e : (x : A) → E x x refl e x P u = refl -- Lemma 2.3.10 lemma-2-3-10 : ∀ {a b c} {A : Set a} {B : Set b} {x y : A} → (P : B → Set c) → (f : A → B) → (p : x ≡ y) → (u : P (f x)) → transport (P ∘ f) p u ≡ transport P (ap f p) u lemma-2-3-10 {a} {b} {c} {A} {B} {x} {y} P f p u = J A D d x y p P f u where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (P : B → Set c) (f : A → B) (u : P (f x)) → transport (P ∘ f) p u ≡ transport P (ap f p) u -- base case d : (x : A) → D x x refl d x P f u = refl -- Lemma 2.3.11 lemma-2-3-11 : {a b c : Level} {A : Set a} {x y : A} → (P : A → Set b) (Q : A → Set c) → (f : (z : A) → P z → Q z) → (p : x ≡ y) → (u : P x) → transport Q p (f x u) ≡ f y (transport P p u) lemma-2-3-11 {a} {b} {c} {A} {x} {y} P Q f p u = J A D d x y p P Q f u -- J A D d x y p {! !} {! !} {! !} {! !} where -- the predicate D : (x y : A) (p : x ≡ y) → Set _ D x y p = (P : A → Set b) (Q : A → Set c) (f : (z : A) → P z → Q z) (u : P x) → transport Q p (f x u) ≡ f y (transport P p u) -- base case d : (x : A) → D x x refl d x P Q f u = refl
{ "alphanum_fraction": 0.3598432909, "avg_line_length": 27.2994652406, "ext": "agda", "hexsha": "dcfaac7d15921f3446b3004f77a25b2e9d518847", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/hott", "max_forks_repo_path": "src/Ch2-3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/hott", "max_issues_repo_path": "src/Ch2-3.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "75eea99a879e100304bd48c538c9d2db0b4a4ff3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/hott", "max_stars_repo_path": "src/Ch2-3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2166, "size": 5105 }
module Rationals.Multiply.Comm where open import Equality open import Rationals open import Nats.Multiply.Comm ------------------------------------------------------------------------ -- internal stuffs private a*b=b*a : ∀ x y → x * y ≡ y * x a*b=b*a (a ÷ c) (b ÷ d) rewrite nat-multiply-comm a b | nat-multiply-comm c d = refl ------------------------------------------------------------------------ -- public aliases rational-multiply-comm : ∀ x y → x * y ≡ y * x rational-multiply-comm = a*b=b*a
{ "alphanum_fraction": 0.4523364486, "avg_line_length": 23.2608695652, "ext": "agda", "hexsha": "e1e8ca4d2ed3b555d51509d9a342204627455cf5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Rationals/Multiply/Comm.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Rationals/Multiply/Comm.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Rationals/Multiply/Comm.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 130, "size": 535 }
open import MLib.Algebra.PropertyCode open import MLib.Algebra.PropertyCode.Structures module MLib.Matrix {c ℓ} (struct : Struct bimonoidCode c ℓ) where open import MLib.Prelude open Struct struct open import MLib.Algebra.Operations struct open Table using (head; tail; rearrange; fromList; toList; _≗_) open import MLib.Matrix.Core public open import MLib.Matrix.Equality struct public open import MLib.Matrix.Plus struct public open import MLib.Matrix.Mul struct public open import MLib.Matrix.Tensor struct public open import MLib.Matrix.SemiTensor struct public open FunctionProperties
{ "alphanum_fraction": 0.8232323232, "avg_line_length": 31.2631578947, "ext": "agda", "hexsha": "47a4357270cd32453b4c30bb5f243f78d1d6a2dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Matrix.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Matrix.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Matrix.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 148, "size": 594 }
-- This file serves to aggregate all the top-level dependencies in the Silica project. open import preservation open import progress
{ "alphanum_fraction": 0.8134328358, "avg_line_length": 26.8, "ext": "agda", "hexsha": "ad292d398135db1f26eb02da70e96e8f63241544", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/all.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/all.agda", "max_line_length": 86, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/all.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 25, "size": 134 }
{-# OPTIONS --without-K --exact-split #-} module 07-equivalences where import 06-universes open 06-universes public -- Section 7.1 Homotopies -- Definition 7.1.1 _~_ : {i j : Level} {A : UU i} {B : A → UU j} (f g : (x : A) → B x) → UU (i ⊔ j) f ~ g = (x : _) → Id (f x) (g x) -- Definition 7.1.2 refl-htpy : {i j : Level} {A : UU i} {B : A → UU j} {f : (x : A) → B x} → f ~ f refl-htpy x = refl {- Most of the time we get by with refl-htpy. However, sometimes Agda wants us to specify the implicit argument. The it is easier to call refl-htpy' than to use Agda's {f = ?} notation. -} refl-htpy' : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) → f ~ f refl-htpy' f = refl-htpy htpy-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (g ~ f) htpy-inv H x = inv (H x) _∙h_ : {i j : Level} {A : UU i} {B : A → UU j} {f g h : (x : A) → B x} → (f ~ g) → (g ~ h) → (f ~ h) _∙h_ H K x = (H x) ∙ (K x) htpy-concat : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (h : (x : A) → B x) → (g ~ h) → (f ~ h) htpy-concat H h K x = concat (H x) (h x) (K x) htpy-concat' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) {g h : (x : A) → B x} → (g ~ h) → (f ~ g) → (f ~ h) htpy-concat' f K H = H ∙h K htpy-assoc : {i j : Level} {A : UU i} {B : A → UU j} {f g h k : (x : A) → B x} → (H : f ~ g) → (K : g ~ h) → (L : h ~ k) → ((H ∙h K) ∙h L) ~ (H ∙h (K ∙h L)) htpy-assoc H K L x = assoc (H x) (K x) (L x) htpy-left-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} {H : f ~ g} → (refl-htpy ∙h H) ~ H htpy-left-unit x = left-unit htpy-right-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} {H : f ~ g} → (H ∙h refl-htpy) ~ H htpy-right-unit x = right-unit htpy-left-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → ((htpy-inv H) ∙h H) ~ refl-htpy htpy-left-inv H x = left-inv (H x) htpy-right-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (H ∙h (htpy-inv H)) ~ refl-htpy htpy-right-inv H x = right-inv (H x) -- Definition 7.1.3 htpy-left-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (h : B → C) {f g : A → B} → (f ~ g) → ((h ∘ f) ~ (h ∘ g)) htpy-left-whisk h H x = ap h (H x) _·l_ = htpy-left-whisk htpy-right-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} {g h : B → C} (H : g ~ h) (f : A → B) → ((g ∘ f) ~ (h ∘ f)) htpy-right-whisk H f x = H (f x) _·r_ = htpy-right-whisk -- Section 7.2 Bi-invertible maps -- Definition 7.2.1 sec : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) sec {i} {j} {A} {B} f = Σ (B → A) (λ g → (f ∘ g) ~ id) retr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) retr {i} {j} {A} {B} f = Σ (B → A) (λ g → (g ∘ f) ~ id) _retract-of_ : {i j : Level} → UU i → UU j → UU (i ⊔ j) A retract-of B = Σ (A → B) retr section-retract-of : {i j : Level} {A : UU i} {B : UU j} → A retract-of B → A → B section-retract-of = pr1 retr-section-retract-of : {i j : Level} {A : UU i} {B : UU j} (R : A retract-of B) → retr (section-retract-of R) retr-section-retract-of = pr2 retraction-retract-of : {i j : Level} {A : UU i} {B : UU j} → (A retract-of B) → B → A retraction-retract-of R = pr1 (retr-section-retract-of R) is-retr-retraction-retract-of : {i j : Level} {A : UU i} {B : UU j} (R : A retract-of B) → ((retraction-retract-of R) ∘ (section-retract-of R)) ~ id is-retr-retraction-retract-of R = pr2 (retr-section-retract-of R) is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) is-equiv f = sec f × retr f _≃_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j) A ≃ B = Σ (A → B) (λ f → is-equiv f) map-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (A → B) map-equiv e = pr1 e is-equiv-map-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) → is-equiv (map-equiv e) is-equiv-map-equiv e = pr2 e -- Remark 7.2.2 has-inverse : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j) has-inverse {i} {j} {A} {B} f = Σ (B → A) (λ g → ((f ∘ g) ~ id) × ((g ∘ f) ~ id)) is-equiv-has-inverse' : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → has-inverse f → is-equiv f is-equiv-has-inverse' (pair g (pair H K)) = pair (pair g H) (pair g K) is-equiv-has-inverse : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (g : B → A) (H : (f ∘ g) ~ id) (K : (g ∘ f) ~ id) → is-equiv f is-equiv-has-inverse g H K = is-equiv-has-inverse' (pair g (pair H K)) -- Lemma 7.2.3 {- We now show that if f is an equivalence, then it has an inverse. -} htpy-section-retraction : { i j : Level} {A : UU i} {B : UU j} {f : A → B} ( is-equiv-f : is-equiv f) → ( (pr1 (pr1 is-equiv-f))) ~ (pr1 (pr2 is-equiv-f)) htpy-section-retraction {i} {j} {A} {B} {f} (pair (pair g G) (pair h H)) = (htpy-inv (H ·r g)) ∙h (h ·l G) has-inverse-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → has-inverse f has-inverse-is-equiv {i} {j} {A} {B} {f} (pair (pair g G) (pair h H)) = let is-equiv-f = pair (pair g G) (pair h H) in pair g (pair G (((htpy-section-retraction is-equiv-f) ·r f) ∙h H)) -- Corollary 7.2.4 inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A inv-is-equiv is-equiv-f = pr1 (has-inverse-is-equiv is-equiv-f) issec-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → (f ∘ (inv-is-equiv is-equiv-f)) ~ id issec-inv-is-equiv is-equiv-f = pr1 (pr2 (has-inverse-is-equiv is-equiv-f)) isretr-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → ((inv-is-equiv is-equiv-f) ∘ f) ~ id isretr-inv-is-equiv is-equiv-f = pr2 (pr2 (has-inverse-is-equiv is-equiv-f)) is-equiv-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (is-equiv-f : is-equiv f) → is-equiv (inv-is-equiv is-equiv-f) is-equiv-inv-is-equiv {i} {j} {A} {B} {f} is-equiv-f = is-equiv-has-inverse f ( isretr-inv-is-equiv is-equiv-f) ( issec-inv-is-equiv is-equiv-f) inv-map-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (B → A) inv-map-equiv e = inv-is-equiv (is-equiv-map-equiv e) is-equiv-inv-map-equiv : {i j : Level} {A : UU i} {B : UU j} (e : A ≃ B) → is-equiv (inv-map-equiv e) is-equiv-inv-map-equiv e = is-equiv-inv-is-equiv (is-equiv-map-equiv e) inv-equiv : {i j : Level} {A : UU i} {B : UU j} → (A ≃ B) → (B ≃ A) inv-equiv e = pair (inv-map-equiv e) (is-equiv-inv-map-equiv e) -- Remark 7.2.5 is-equiv-id : {i : Level} (A : UU i) → is-equiv (id {i} {A}) is-equiv-id A = pair (pair id refl-htpy) (pair id refl-htpy) equiv-id : {i : Level} (A : UU i) → A ≃ A equiv-id A = pair id (is-equiv-id A) -- Example 7.2.6 inv-Π-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → ((y : B) (x : A) → C x y) → ((x : A) (y : B) → C x y) inv-Π-swap C g x y = g y x abstract is-equiv-Π-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → is-equiv (Π-swap {i} {j} {k} {A} {B} {C}) is-equiv-Π-swap C = is-equiv-has-inverse ( inv-Π-swap C) ( refl-htpy) ( refl-htpy) -- Section 7.3 The identity type of a Σ-type -- Definition 7.3.1 Eq-Σ : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → UU (i ⊔ j) Eq-Σ {B = B} s t = Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t)) -- Lemma 7.3.2 reflexive-Eq-Σ : {i j : Level} {A : UU i} {B : A → UU j} (s : Σ A B) → Eq-Σ s s reflexive-Eq-Σ (pair a b) = pair refl refl -- Definition 7.3.3 pair-eq : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Id s t) → Eq-Σ s t pair-eq {s = s} refl = reflexive-Eq-Σ s -- Theorem 7.3.4 eq-pair : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (α : Id (pr1 s) (pr1 t)) → Id (tr B α (pr2 s)) (pr2 t) → Id s t eq-pair {B = B} {pair x y} {pair .x .y} refl refl = refl eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → Eq-Σ s t → Id s t eq-pair' (pair α β) = eq-pair α β isretr-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → ((pair-eq {s = s} {t}) ∘ (eq-pair' {s = s} {t})) ~ id {A = Eq-Σ s t} isretr-pair-eq (pair x y) (pair .x .y) (pair refl refl) = refl issec-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → ((eq-pair' {s = s} {t}) ∘ (pair-eq {s = s} {t})) ~ id issec-pair-eq (pair x y) .(pair x y) refl = refl abstract is-equiv-eq-pair : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair' {s = s} {t}) is-equiv-eq-pair s t = is-equiv-has-inverse ( pair-eq) ( issec-pair-eq s t) ( isretr-pair-eq s t) abstract is-equiv-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (pair-eq {s = s} {t}) is-equiv-pair-eq s t = is-equiv-has-inverse ( eq-pair') ( isretr-pair-eq s t) ( issec-pair-eq s t) η-pair : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (t : Σ A B) → Id (pair (pr1 t) (pr2 t)) t η-pair t = eq-pair refl refl {- For our convenience, we repeat the above argument for cartesian products. -} Eq-prod : {i j : Level} {A : UU i} {B : UU j} (s t : A × B) → UU (i ⊔ j) Eq-prod s t = (Id (pr1 s) (pr1 t)) × (Id (pr2 s) (pr2 t)) {- We also define a function eq-pair-triv, which is like eq-pair but simplified for the case where B is just a type. -} eq-pair-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → Eq-prod s t → Id s t eq-pair-triv' (pair x y) (pair .x .y) (pair refl refl) = refl eq-pair-triv : {i j : Level} {A : UU i} {B : UU j} {s t : prod A B} → Eq-prod s t → Id s t eq-pair-triv {s = s} {t} = eq-pair-triv' s t {- Ideally, we would use the 3-for-2 property of equivalences to show that eq-pair-triv is an equivalence, using that eq-pair is an equivalence. Indeed, there is an equivalence (Id x x') × (Id y y') → Σ (Id x x') (λ p → Id (tr (λ x → B) p y) y'). However, to show that this map is an equivalence we either give a direct proof (in which case we might as well have given a direct proof that eq-pair-triv is an equivalence), or we use the fact that it is the induced map on total spaces of a fiberwise equivalence (the topic of Lecture 8). Thus it seems that a direct proof showing that eq-pair-triv is an equivalence is quickest for now. -} pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → Id s t → Eq-prod s t pair-eq-triv' s t α = pair (ap pr1 α) (ap pr2 α) isretr-pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → ((pair-eq-triv' s t) ∘ (eq-pair-triv' s t)) ~ id isretr-pair-eq-triv' (pair x y) (pair .x .y) (pair refl refl) = refl issec-pair-eq-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → ((eq-pair-triv' s t) ∘ (pair-eq-triv' s t)) ~ id issec-pair-eq-triv' (pair x y) (pair .x .y) refl = refl abstract is-equiv-eq-pair-triv' : {i j : Level} {A : UU i} {B : UU j} (s t : prod A B) → is-equiv (eq-pair-triv' s t) is-equiv-eq-pair-triv' s t = is-equiv-has-inverse ( pair-eq-triv' s t) ( issec-pair-eq-triv' s t) ( isretr-pair-eq-triv' s t) -- Exercises -- Exercise 7.1 {- We show that inv is an equivalence. -} inv-inv : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (inv (inv p)) p inv-inv refl = refl abstract is-equiv-inv : {i : Level} {A : UU i} (x y : A) → is-equiv (λ (p : Id x y) → inv p) is-equiv-inv x y = is-equiv-has-inverse inv inv-inv inv-inv equiv-inv : {i : Level} {A : UU i} (x y : A) → (Id x y) ≃ (Id y x) equiv-inv x y = pair inv (is-equiv-inv x y) {- We show that concat p is an equivalence, for any path p. -} inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → (Id x z) → (Id y z) inv-concat p = concat (inv p) isretr-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → ((inv-concat p z) ∘ (concat p z)) ~ id isretr-inv-concat refl z q = refl issec-inv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → ((concat p z) ∘ (inv-concat p z)) ~ id issec-inv-concat refl z refl = refl abstract is-equiv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → is-equiv (concat p z) is-equiv-concat p z = is-equiv-has-inverse ( inv-concat p z) ( issec-inv-concat p z) ( isretr-inv-concat p z) equiv-concat : {i : Level} {A : UU i} {x y : A} (p : Id x y) (z : A) → Id y z ≃ Id x z equiv-concat p z = pair (concat p z) (is-equiv-concat p z) {- We show that concat' q is an equivalence, for any path q. -} concat' : {i : Level} {A : UU i} (x : A) {y z : A} → Id y z → Id x y → Id x z concat' x q p = p ∙ q inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} → Id y z → Id x z → Id x y inv-concat' x q = concat' x (inv q) isretr-inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → ((inv-concat' x q) ∘ (concat' x q)) ~ id isretr-inv-concat' x refl refl = refl issec-inv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → ((concat' x q) ∘ (inv-concat' x q)) ~ id issec-inv-concat' x refl refl = refl abstract is-equiv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → is-equiv (concat' x q) is-equiv-concat' x q = is-equiv-has-inverse ( inv-concat' x q) ( issec-inv-concat' x q) ( isretr-inv-concat' x q) equiv-concat' : {i : Level} {A : UU i} (x : A) {y z : A} (q : Id y z) → Id x y ≃ Id x z equiv-concat' x q = pair (concat' x q) (is-equiv-concat' x q) {- We show that tr B p is an equivalence, for an path p and any type family B. -} inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} → Id x y → B y → B x inv-tr B p = tr B (inv p) isretr-inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → ((inv-tr B p ) ∘ (tr B p)) ~ id isretr-inv-tr B refl b = refl issec-inv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → ((tr B p) ∘ (inv-tr B p)) ~ id issec-inv-tr B refl b = refl abstract is-equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → is-equiv (tr B p) is-equiv-tr B p = is-equiv-has-inverse ( inv-tr B p) ( issec-inv-tr B p) ( isretr-inv-tr B p) equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → (B x) ≃ (B y) equiv-tr B p = pair (tr B p) (is-equiv-tr B p) -- Exercise 7.2 {- We prove the left unit law for coproducts. -} inv-inr-coprod-empty : {l : Level} (X : UU l) → coprod empty X → X inv-inr-coprod-empty X (inr x) = x issec-inv-inr-coprod-empty : {l : Level} (X : UU l) → (inr ∘ (inv-inr-coprod-empty X)) ~ id issec-inv-inr-coprod-empty X (inr x) = refl isretr-inv-inr-coprod-empty : {l : Level} (X : UU l) → ((inv-inr-coprod-empty X) ∘ inr) ~ id isretr-inv-inr-coprod-empty X x = refl is-equiv-inr-coprod-empty : {l : Level} (X : UU l) → is-equiv (inr {A = empty} {B = X}) is-equiv-inr-coprod-empty X = is-equiv-has-inverse ( inv-inr-coprod-empty X) ( issec-inv-inr-coprod-empty X) ( isretr-inv-inr-coprod-empty X) left-unit-law-coprod : {l : Level} (X : UU l) → X ≃ (coprod empty X) left-unit-law-coprod X = pair inr (is-equiv-inr-coprod-empty X) {- We prove the right unit law for coproducts. -} inv-inl-coprod-empty : {l : Level} (X : UU l) → (coprod X empty) → X inv-inl-coprod-empty X (inl x) = x issec-inv-inl-coprod-empty : {l : Level} (X : UU l) → (inl ∘ (inv-inl-coprod-empty X)) ~ id issec-inv-inl-coprod-empty X (inl x) = refl isretr-inv-inl-coprod-empty : {l : Level} (X : UU l) → ((inv-inl-coprod-empty X) ∘ inl) ~ id isretr-inv-inl-coprod-empty X x = refl is-equiv-inl-coprod-empty : {l : Level} (X : UU l) → is-equiv (inl {A = X} {B = empty}) is-equiv-inl-coprod-empty X = is-equiv-has-inverse ( inv-inl-coprod-empty X) ( issec-inv-inl-coprod-empty X) ( isretr-inv-inl-coprod-empty X) right-unit-law-coprod : {l : Level} (X : UU l) → X ≃ (coprod X empty) right-unit-law-coprod X = pair inl (is-equiv-inl-coprod-empty X) {- We prove a left zero law for cartesian products. -} inv-pr1-prod-empty : {l : Level} (X : UU l) → empty → empty × X inv-pr1-prod-empty X () issec-inv-pr1-prod-empty : {l : Level} (X : UU l) → (pr1 ∘ (inv-pr1-prod-empty X)) ~ id issec-inv-pr1-prod-empty X () isretr-inv-pr1-prod-empty : {l : Level} (X : UU l) → ((inv-pr1-prod-empty X) ∘ pr1) ~ id isretr-inv-pr1-prod-empty X (pair () x) is-equiv-pr1-prod-empty : {l : Level} (X : UU l) → is-equiv (pr1 {A = empty} {B = λ t → X}) is-equiv-pr1-prod-empty X = is-equiv-has-inverse ( inv-pr1-prod-empty X) ( issec-inv-pr1-prod-empty X) ( isretr-inv-pr1-prod-empty X) left-zero-law-prod : {l : Level} (X : UU l) → (empty × X) ≃ empty left-zero-law-prod X = pair pr1 (is-equiv-pr1-prod-empty X) {- We prove the right zero law for cartesian products. -} inv-pr2-prod-empty : {l : Level} (X : UU l) → empty → (X × empty) inv-pr2-prod-empty X () issec-inv-pr2-prod-empty : {l : Level} (X : UU l) → (pr2 ∘ (inv-pr2-prod-empty X)) ~ id issec-inv-pr2-prod-empty X () isretr-inv-pr2-prod-empty : {l : Level} (X : UU l) → ((inv-pr2-prod-empty X) ∘ pr2) ~ id isretr-inv-pr2-prod-empty X (pair x ()) is-equiv-pr2-prod-empty : {l : Level} (X : UU l) → is-equiv (pr2 {A = X} {B = λ x → empty}) is-equiv-pr2-prod-empty X = is-equiv-has-inverse ( inv-pr2-prod-empty X) ( issec-inv-pr2-prod-empty X) ( isretr-inv-pr2-prod-empty X) right-zero-law-prod : {l : Level} (X : UU l) → (X × empty) ≃ empty right-zero-law-prod X = pair pr2 (is-equiv-pr2-prod-empty X) -- Exercise 7.3 -- Exercise 7.3(a) abstract is-equiv-htpy : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (g : A → B) → f ~ g → is-equiv g → is-equiv f is-equiv-htpy g H (pair (pair gs issec) (pair gr isretr)) = pair ( pair gs ((H ·r gs) ∙h issec)) ( pair gr ((gr ·l H) ∙h isretr)) abstract is-equiv-htpy' : {i j : Level} {A : UU i} {B : UU j} (f : A → B) {g : A → B} → f ~ g → is-equiv f → is-equiv g is-equiv-htpy' f H = is-equiv-htpy f (htpy-inv H) -- Exercise 7.3(b) htpy-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f f' : A → B} (H : f ~ f') → (is-equiv-f : is-equiv f) (is-equiv-f' : is-equiv f') → (inv-is-equiv is-equiv-f) ~ (inv-is-equiv is-equiv-f') htpy-inv-is-equiv H is-equiv-f is-equiv-f' b = ( inv (isretr-inv-is-equiv is-equiv-f' (inv-is-equiv is-equiv-f b))) ∙ ( ap (inv-is-equiv is-equiv-f') ( ( inv (H (inv-is-equiv is-equiv-f b))) ∙ ( issec-inv-is-equiv is-equiv-f b))) -- Exercise 7.4 -- Exercise 7.4(a) {- Exercise 7.4 (a) asks to show that, given a commuting triangle f ~ g ∘ h and a section s of h, we get a new commuting triangle g ~ f ∘ s. Moreover, under the same assumptions it follows that f has a section if and only if g has a section. -} triangle-section : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (S : sec h) → g ~ (f ∘ (pr1 S)) triangle-section f g h H (pair s issec) = htpy-inv (( H ·r s) ∙h (g ·l issec)) section-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → sec h → sec f → sec g section-comp f g h H sec-h sec-f = pair (h ∘ (pr1 sec-f)) ((htpy-inv (H ·r (pr1 sec-f))) ∙h (pr2 sec-f)) section-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → sec h → sec g → sec f section-comp' f g h H sec-h sec-g = pair ( (pr1 sec-h) ∘ (pr1 sec-g)) ( ( H ·r ((pr1 sec-h) ∘ (pr1 sec-g))) ∙h ( ( g ·l ((pr2 sec-h) ·r (pr1 sec-g))) ∙h ((pr2 sec-g)))) -- Exercise 7.4(b) {- Exercise 7.4 (b) is dual to exercise 5.5 (a). It asks to show that, given a commuting triangle f ~ g ∘ h and a retraction r of g, we get a new commuting triangle h ~ r ∘ f. Moreover, under these assumptions it also follows that f has a retraction if and only if h has a retraction. -} triangle-retraction : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) (R : retr g) → h ~ ((pr1 R) ∘ f) triangle-retraction f g h H (pair r isretr) = htpy-inv (( r ·l H) ∙h (isretr ·r h)) retraction-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → retr g → retr f → retr h retraction-comp f g h H retr-g retr-f = pair ( (pr1 retr-f) ∘ g) ( (htpy-inv ((pr1 retr-f) ·l H)) ∙h (pr2 retr-f)) retraction-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → retr g → retr h → retr f retraction-comp' f g h H retr-g retr-h = pair ( (pr1 retr-h) ∘ (pr1 retr-g)) ( ( ((pr1 retr-h) ∘ (pr1 retr-g)) ·l H) ∙h ( ((pr1 retr-h) ·l ((pr2 retr-g) ·r h)) ∙h (pr2 retr-h))) -- Exercise 7.4(c) {- In Exercise 7.4 (c) we use the constructions of parts (a) and (b) to derive the 3-for-2 property of equivalences. -} abstract is-equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv h → is-equiv g → is-equiv f is-equiv-comp f g h H (pair sec-h retr-h) (pair sec-g retr-g) = pair ( section-comp' f g h H sec-h sec-g) ( retraction-comp' f g h H retr-g retr-h) abstract is-equiv-comp' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv h → is-equiv g → is-equiv (g ∘ h) is-equiv-comp' g h = is-equiv-comp (g ∘ h) g h refl-htpy equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} → (B ≃ X) → (A ≃ B) → (A ≃ X) equiv-comp g h = pair ((pr1 g) ∘ (pr1 h)) (is-equiv-comp' (pr1 g) (pr1 h) (pr2 h) (pr2 g)) _∘e_ : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} → (B ≃ X) → (A ≃ B) → (A ≃ X) _∘e_ = equiv-comp abstract is-equiv-left-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv f → is-equiv h → is-equiv g is-equiv-left-factor f g h H ( pair sec-f retr-f) ( pair (pair sh sh-issec) retr-h) = pair ( section-comp f g h H (pair sh sh-issec) sec-f) ( retraction-comp' g f sh ( triangle-section f g h H (pair sh sh-issec)) ( retr-f) ( pair h sh-issec)) abstract is-equiv-left-factor' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv (g ∘ h) → is-equiv h → is-equiv g is-equiv-left-factor' g h = is-equiv-left-factor (g ∘ h) g h refl-htpy abstract is-equiv-right-factor : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h)) → is-equiv g → is-equiv f → is-equiv h is-equiv-right-factor f g h H ( pair sec-g (pair rg rg-isretr)) ( pair sec-f retr-f) = pair ( section-comp' h rg f ( triangle-retraction f g h H (pair rg rg-isretr)) ( sec-f) ( pair g rg-isretr)) ( retraction-comp f g h H (pair rg rg-isretr) retr-f) abstract is-equiv-right-factor' : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} (g : B → X) (h : A → B) → is-equiv g → is-equiv (g ∘ h) → is-equiv h is-equiv-right-factor' g h = is-equiv-right-factor (g ∘ h) g h refl-htpy -- Exercise 7.5 -- Exercise 7.5(a) {- In this exercise we show that the negation function on the booleans is an equivalence. Moreover, we show that any constant function on the booleans is not an equivalence. -} neg-neg-𝟚 : (neg-𝟚 ∘ neg-𝟚) ~ id neg-neg-𝟚 true = refl neg-neg-𝟚 false = refl abstract is-equiv-neg-𝟚 : is-equiv neg-𝟚 is-equiv-neg-𝟚 = is-equiv-has-inverse neg-𝟚 neg-neg-𝟚 neg-neg-𝟚 equiv-neg-𝟚 : bool ≃ bool equiv-neg-𝟚 = pair neg-𝟚 is-equiv-neg-𝟚 -- Exercise 7.5(b) abstract not-true-is-false : ¬ (Id true false) not-true-is-false p = tr (Eq-𝟚 true) p (reflexive-Eq-𝟚 true) -- Exercise 7.5(c) abstract not-equiv-const : (b : bool) → ¬ (is-equiv (const bool bool b)) not-equiv-const true (pair (pair s issec) (pair r isretr)) = not-true-is-false (issec false) not-equiv-const false (pair (pair s issec) (pair r isretr)) = not-true-is-false (inv (issec true)) -- Exercise 7.6 is-equiv-succ-ℤ : is-equiv succ-ℤ is-equiv-succ-ℤ = is-equiv-has-inverse pred-ℤ right-inverse-pred-ℤ left-inverse-pred-ℤ equiv-succ-ℤ : ℤ ≃ ℤ equiv-succ-ℤ = pair succ-ℤ is-equiv-succ-ℤ -- Exercise 7.7 {- In this exercise we construct an equivalence from A + B to B + A, showing that the coproduct is commutative. -} swap-coprod : {i j : Level} (A : UU i) (B : UU j) → coprod A B → coprod B A swap-coprod A B (inl x) = inr x swap-coprod A B (inr x) = inl x swap-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → ((swap-coprod B A) ∘ (swap-coprod A B)) ~ id swap-swap-coprod A B (inl x) = refl swap-swap-coprod A B (inr x) = refl abstract is-equiv-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → is-equiv (swap-coprod A B) is-equiv-swap-coprod A B = is-equiv-has-inverse ( swap-coprod B A) ( swap-swap-coprod B A) ( swap-swap-coprod A B) equiv-swap-coprod : {i j : Level} (A : UU i) (B : UU j) → coprod A B ≃ coprod B A equiv-swap-coprod A B = pair (swap-coprod A B) (is-equiv-swap-coprod A B) swap-prod : {i j : Level} (A : UU i) (B : UU j) → prod A B → prod B A swap-prod A B t = pair (pr2 t) (pr1 t) swap-swap-prod : {i j : Level} (A : UU i) (B : UU j) → ((swap-prod B A) ∘ (swap-prod A B)) ~ id swap-swap-prod A B (pair x y) = refl abstract is-equiv-swap-prod : {i j : Level} (A : UU i) (B : UU j) → is-equiv (swap-prod A B) is-equiv-swap-prod A B = is-equiv-has-inverse ( swap-prod B A) ( swap-swap-prod B A) ( swap-swap-prod A B) equiv-swap-prod : {i j : Level} (A : UU i) (B : UU j) → (A × B) ≃ (B × A) equiv-swap-prod A B = pair (swap-prod A B) (is-equiv-swap-prod A B) -- Exercise 7.8 {- In this exercise we show that if A is a retract of B, then so are its identity types. -} ap-retraction : {i j : Level} {A : UU i} {B : UU j} (i : A → B) (r : B → A) (H : (r ∘ i) ~ id) (x y : A) → Id (i x) (i y) → Id x y ap-retraction i r H x y p = ( inv (H x)) ∙ ((ap r p) ∙ (H y)) isretr-ap-retraction : {i j : Level} {A : UU i} {B : UU j} (i : A → B) (r : B → A) (H : (r ∘ i) ~ id) (x y : A) → ((ap-retraction i r H x y) ∘ (ap i {x} {y})) ~ id isretr-ap-retraction i r H x .x refl = left-inv (H x) retr-ap : {i j : Level} {A : UU i} {B : UU j} (i : A → B) → retr i → (x y : A) → retr (ap i {x} {y}) retr-ap i (pair r H) x y = pair (ap-retraction i r H x y) (isretr-ap-retraction i r H x y) Id-retract-of-Id : {i j : Level} {A : UU i} {B : UU j} (R : A retract-of B) → (x y : A) → (Id x y) retract-of (Id (pr1 R x) (pr1 R y)) Id-retract-of-Id (pair i (pair r H)) x y = pair ( ap i {x} {y}) ( retr-ap i (pair r H) x y) -- Exercise 7.9 Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ (Σ A B) C → Σ A (λ x → Σ (B x) (λ y → C (pair x y))) Σ-assoc A B C (pair (pair x y) z) = pair x (pair y z) Σ-assoc' : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ A (λ x → Σ (B x) (λ y → C (pair x y))) → Σ (Σ A B) C Σ-assoc' A B C t = pair (pair (pr1 t) (pr1 (pr2 t))) (pr2 (pr2 t)) Σ-assoc-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → ((Σ-assoc' A B C) ∘ (Σ-assoc A B C)) ~ id Σ-assoc-assoc A B C (pair (pair x y) z) = refl Σ-assoc-assoc' : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → ((Σ-assoc A B C) ∘ (Σ-assoc' A B C)) ~ id Σ-assoc-assoc' A B C (pair x (pair y z)) = refl abstract is-equiv-Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → is-equiv (Σ-assoc A B C) is-equiv-Σ-assoc A B C = is-equiv-has-inverse ( Σ-assoc' A B C) ( Σ-assoc-assoc' A B C) ( Σ-assoc-assoc A B C) equiv-Σ-assoc : {i j k : Level} (A : UU i) (B : A → UU j) (C : (Σ A B) → UU k) → Σ (Σ A B) C ≃ Σ A (λ x → Σ (B x) (λ y → C (pair x y))) equiv-Σ-assoc A B C = pair (Σ-assoc A B C) (is-equiv-Σ-assoc A B C) -- Exercise 7.10 Σ-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → Σ A (λ x → Σ B (C x)) → Σ B (λ y → Σ A (λ x → C x y)) Σ-swap A B C t = pair (pr1 (pr2 t)) (pair (pr1 t) (pr2 (pr2 t))) Σ-swap' : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → Σ B (λ y → Σ A (λ x → C x y)) → Σ A (λ x → Σ B (C x)) Σ-swap' A B C = Σ-swap B A (λ y x → C x y) Σ-swap-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → ((Σ-swap' A B C) ∘ (Σ-swap A B C)) ~ id Σ-swap-swap A B C (pair x (pair y z)) = refl abstract is-equiv-Σ-swap : {i j k : Level} (A : UU i) (B : UU j) (C : A → B → UU k) → is-equiv (Σ-swap A B C) is-equiv-Σ-swap A B C = is-equiv-has-inverse ( Σ-swap' A B C) ( Σ-swap-swap B A (λ y x → C x y)) ( Σ-swap-swap A B C) -- Exercise 7.11 abstract is-equiv-add-ℤ-right : (x : ℤ) → is-equiv (add-ℤ x) is-equiv-add-ℤ-right x = is-equiv-has-inverse ( add-ℤ (neg-ℤ x)) ( λ y → ( inv (associative-add-ℤ x (neg-ℤ x) y)) ∙ ( ap (λ t → add-ℤ t y) (right-inverse-law-add-ℤ x))) ( λ y → ( inv (associative-add-ℤ (neg-ℤ x) x y)) ∙ ( ap (λ t → add-ℤ t y) (left-inverse-law-add-ℤ x))) abstract is-equiv-add-ℤ-left : (y : ℤ) → is-equiv (λ x → add-ℤ x y) is-equiv-add-ℤ-left y = is-equiv-htpy (add-ℤ y) ( λ x → commutative-add-ℤ x y) ( is-equiv-add-ℤ-right y) -- Exercise 7.12 -- Exercise 7.13 {- We construct the functoriality of coproducts. -} functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} → (A → A') → (B → B') → coprod A B → coprod A' B' functor-coprod f g (inl x) = inl (f x) functor-coprod f g (inr y) = inr (g y) htpy-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {f f' : A → A'} (H : f ~ f') {g g' : B → B'} (K : g ~ g') → (functor-coprod f g) ~ (functor-coprod f' g') htpy-functor-coprod H K (inl x) = ap inl (H x) htpy-functor-coprod H K (inr y) = ap inr (K y) id-functor-coprod : {l1 l2 : Level} (A : UU l1) (B : UU l2) → (functor-coprod (id {A = A}) (id {A = B})) ~ id id-functor-coprod A B (inl x) = refl id-functor-coprod A B (inr x) = refl compose-functor-coprod : {l1 l2 l1' l2' l1'' l2'' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {A'' : UU l1''} {B'' : UU l2''} (f : A → A') (f' : A' → A'') (g : B → B') (g' : B' → B'') → (functor-coprod (f' ∘ f) (g' ∘ g)) ~ ((functor-coprod f' g') ∘ (functor-coprod f g)) compose-functor-coprod f f' g g' (inl x) = refl compose-functor-coprod f f' g g' (inr y) = refl abstract is-equiv-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} {f : A → A'} {g : B → B'} → is-equiv f → is-equiv g → is-equiv (functor-coprod f g) is-equiv-functor-coprod {A = A} {B = B} {A' = A'} {B' = B'} {f = f} {g = g} (pair (pair sf issec-sf) (pair rf isretr-rf)) (pair (pair sg issec-sg) (pair rg isretr-rg)) = pair ( pair ( functor-coprod sf sg) ( ( ( htpy-inv (compose-functor-coprod sf f sg g)) ∙h ( htpy-functor-coprod issec-sf issec-sg)) ∙h ( id-functor-coprod A' B'))) ( pair ( functor-coprod rf rg) ( ( ( htpy-inv (compose-functor-coprod f rf g rg)) ∙h ( htpy-functor-coprod isretr-rf isretr-rg)) ∙h ( id-functor-coprod A B))) equiv-functor-coprod : {l1 l2 l1' l2' : Level} {A : UU l1} {B : UU l2} {A' : UU l1'} {B' : UU l2'} → (A ≃ A') → (B ≃ B') → ((coprod A B) ≃ (coprod A' B')) equiv-functor-coprod (pair e is-equiv-e) (pair f is-equiv-f) = pair ( functor-coprod e f) ( is-equiv-functor-coprod is-equiv-e is-equiv-f) -- Extra material abstract is-equiv-inv-con : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → is-equiv (inv-con p q r) is-equiv-inv-con refl q r = is-equiv-id (Id q r) equiv-inv-con : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → Id (p ∙ q) r ≃ Id q ((inv p) ∙ r) equiv-inv-con p q r = pair (inv-con p q r) (is-equiv-inv-con p q r) abstract is-equiv-con-inv : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → is-equiv (con-inv p q r) is-equiv-con-inv p refl r = is-equiv-comp' ( concat' p (inv right-unit)) ( concat (inv right-unit) r) ( is-equiv-concat (inv right-unit) r) ( is-equiv-concat' p (inv right-unit)) equiv-con-inv : {i : Level} {A : UU i} {x y z : A} (p : Id x y) (q : Id y z) (r : Id x z) → Id (p ∙ q) r ≃ Id p (r ∙ (inv q)) equiv-con-inv p q r = pair (con-inv p q r) (is-equiv-con-inv p q r) -- Extra constructions with homotopies htpy-inv-con : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) (L : f ~ h) → (H ∙h K) ~ L → K ~ ((htpy-inv H) ∙h L) htpy-inv-con H K L M x = inv-con (H x) (K x) (L x) (M x) htpy-con-inv : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) (L : f ~ h) → (H ∙h K) ~ L → H ~ (L ∙h (htpy-inv K)) htpy-con-inv H K L M x = con-inv (H x) (K x) (L x) (M x) htpy-ap-concat : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K K' : g ~ h) → K ~ K' → (H ∙h K) ~ (H ∙h K') htpy-ap-concat {g = g} {h} H K K' L x = ap (concat (H x) (h x)) (L x) htpy-ap-concat' : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H H' : f ~ g) (K : g ~ h) → H ~ H' → (H ∙h K) ~ (H' ∙h K) htpy-ap-concat' H H' K L x = ap (concat' _ (K x)) (L x) htpy-distributive-inv-concat : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g h : (x : A) → B x} → (H : f ~ g) (K : g ~ h) → (htpy-inv (H ∙h K)) ~ ((htpy-inv K) ∙h (htpy-inv H)) htpy-distributive-inv-concat H K x = distributive-inv-concat (H x) (K x) htpy-ap-inv : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} → {H H' : f ~ g} → H ~ H' → (htpy-inv H) ~ (htpy-inv H') htpy-ap-inv K x = ap inv (K x) htpy-left-whisk-htpy-inv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {f f' : A → B} (g : B → C) (H : f ~ f') → (g ·l (htpy-inv H)) ~ htpy-inv (g ·l H) htpy-left-whisk-htpy-inv g H x = ap-inv g (H x) htpy-right-whisk-htpy-inv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {g g' : B → C} (H : g ~ g') (f : A → B) → ((htpy-inv H) ·r f) ~ (htpy-inv (H ·r f)) htpy-right-whisk-htpy-inv H f = refl-htpy -- Old stuff element : {i : Level} {A : UU i} → A → unit → A element a star = a htpy-element-constant : {i : Level} {A : UU i} (a : A) → (element a) ~ (const unit A a) htpy-element-constant a star = refl ap-const : {i j : Level} {A : UU i} {B : UU j} (b : B) (x y : A) → (ap (const A B b) {x} {y}) ~ const (Id x y) (Id b b) refl ap-const b x .x refl = refl
{ "alphanum_fraction": 0.5226114922, "avg_line_length": 30.5805047868, "ext": "agda", "hexsha": "92f0dac542b99e67b68d046b1157e180ca428ceb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "hemangandhi/HoTT-Intro", "max_forks_repo_path": "Agda/07-equivalences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "hemangandhi/HoTT-Intro", "max_issues_repo_path": "Agda/07-equivalences.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "hemangandhi/HoTT-Intro", "max_stars_repo_path": "Agda/07-equivalences.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 15443, "size": 35137 }
module Tactic.Nat.Coprime.Reflect where import Agda.Builtin.Nat as Builtin open import Prelude open import Control.Monad.State open import Control.Monad.Zero open import Control.Monad.Transformer open import Container.Traversable open import Numeric.Nat.GCD open import Tactic.Reflection open import Tactic.Reflection.Parse open import Tactic.Reflection.Quote open import Tactic.Deriving.Quotable open import Tactic.Nat.Coprime.Problem -- Reflection -- instance unquoteDecl QuoteExp = deriveQuotable QuoteExp (quote Exp) unquoteDecl QuoteFormula = deriveQuotable QuoteFormula (quote Formula) unquoteDecl QuoteProblem = deriveQuotable QuoteProblem (quote Problem) data ExpF (A : Set) : Set where atom : (x : Atom) → ExpF A _⊗_ : (a b : A) → ExpF A instance FunExpF : Functor ExpF fmap ⦃ FunExpF ⦄ f (atom x) = atom x fmap ⦃ FunExpF ⦄ f (a ⊗ b) = f a ⊗ f b TravExpF : Traversable ExpF traverse ⦃ TravExpF ⦄ f (atom x) = pure (atom x) traverse ⦃ TravExpF ⦄ f (a ⊗ b) = ⦇ f a ⊗ f b ⦈ foldExp : ExpF Exp → Exp foldExp (atom x) = atom x foldExp (a ⊗ b) = a ⊗ b -- Requires normalisation! matchExp : Term → Maybe (ExpF Term) matchExp (def₂ (quote Builtin._*_) a b) = just (a ⊗ b) matchExp _ = nothing parseExp : Term → ParseTerm TC Exp parseExp = parseTerm atom matchExp foldExp parseEq : Term → ParseTerm TC (Term × Term) parseEq (def (quote _≡_) (_ ∷ _ ∷ vArg x ∷ vArg y ∷ [])) = pure (x , y) parseEq (meta x _) = lift (blockOnMeta! x) parseEq _ = empty parseGCD : Term → ParseTerm TC (Term × Term) parseGCD (def (quote get-gcd) (_ ∷ _ ∷ vArg (def₂ (quote gcd) a b) ∷ [])) = pure (a , b) parseGCD (meta x _) = lift (blockOnMeta x) parseGCD t = empty parseFormula : Term → ParseTerm TC Formula parseFormula t = do lhs , lit (nat 1) ← parseEq t where _ → empty a , b ← parseGCD lhs ⦇ parseExp a ⋈ parseExp b ⦈ underBinder : ParseTerm TC ⊤ underBinder = _ <$ modify (second $ map $ first $ weaken 1) -- Parse a Problem from the context and goal type. parseProblem : List Term → Term → ParseTerm TC (Nat × List Term × Problem) parseProblem [] t = do φ ← parseFormula t pure (0 , [] , ([] ⊨ φ)) parseProblem (h ∷ Δ) t = caseM just <$> parseFormula h <|> pure nothing of λ where (just ψ) → do underBinder fv , Hs , (Γ ⊨ φ) ← parseProblem Δ t pure (suc fv , var fv [] ∷ Hs , (ψ ∷ Γ ⊨ φ)) nothing → do underBinder fv , Hs , Q ← parseProblem Δ t pure (suc fv , Hs , Q) buildEnv : List Nat → Env buildEnv [] i = 0 buildEnv (x ∷ xs) zero = x buildEnv (x ∷ xs) (suc i) = buildEnv xs i quotedEnv : List Term → Term quotedEnv ts = def₁ (quote buildEnv) (quoteList ts)
{ "alphanum_fraction": 0.6642910728, "avg_line_length": 28.6666666667, "ext": "agda", "hexsha": "16296cb525ec8938949cdd5b838471a177da0dbe", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Coprime/Reflect.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Coprime/Reflect.agda", "max_line_length": 88, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Coprime/Reflect.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 906, "size": 2666 }
-- Andreas, 2012-06-05 let for record patterns -- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.term.let.pattern:100 #-} -- {-# OPTIONS -v tc.lhs.top:100 #-} module LetPair where import Common.Level open import Common.Equality infixl 6 _×_ infixl 0 _,_ record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ swap : {A B : Set} → A × B → B × A swap p = let (a , b) = p in (b , a) prop_swap : {A B : Set}{p : A × B} → (fst (swap p) ≡ snd p) × (snd (swap p) ≡ fst p) prop_swap = refl , refl rot3 : {A B C : Set} → A × B × C → B × C × A rot3 = λ t → let a , b , c = t in b , c , a postulate A B C : Set rot3' = λ t → let x : A × B × C x = t a , b , c = x in b , c , a record ⊤ : Set where constructor tt test = let tt , _ = tt , tt in A
{ "alphanum_fraction": 0.5185628743, "avg_line_length": 16.3725490196, "ext": "agda", "hexsha": "55c2b7dc5ad9b7d4178541826587a2f2158a62e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/LetPair.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/LetPair.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/LetPair.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 328, "size": 835 }
{-# OPTIONS --cubical #-} module ExerciseSession1 where open import Part1 hiding (B) -- We redefine B to be a family of types in this file variable B : A → Type ℓ -- Exercise 1: state and prove funExt for dependent functions f g : (x : A) → B x -- Exercise 2: generalize the type of cong to dependent function f : (x : A) → B x -- (hint: the result should be a PathP) -- Exercise 3 (easy) state and prove that inhabited propositions are contractible -- We could have stated isProp as follows: isProp' : Type ℓ → Type ℓ isProp' A = (x y : A) → isContr (x ≡ y) -- Exercise 4 (easy): prove that isProp' A implies isProp A -- For the converse we need path composition, see ExerciseSession2 -- Exercise 5: prove isPropΠ isPropΠ : (h : (x : A) → isProp (B x)) → isProp ((x : A) → B x) isPropΠ h = {!!} -- Exercise 6: prove the inverse of funExt (sometimes called happly) funExt⁻ : {f g : (x : A) → B x} → f ≡ g → ((x : A) → f x ≡ g x) funExt⁻ p = {!!} -- Exercise 7: use funExt⁻ to prove isSetΠ isSetΠ : (h : (x : A) → isSet (B x)) → isSet ((x : A) → B x) isSetΠ h = {!!} -- We could have defined the type of singletons as follows singl' : {A : Type ℓ} (a : A) → Type ℓ singl' {A = A} a = Σ[ x ∈ A ] x ≡ a -- Exercise 8 (harder): prove the corresponding version of contractibility of singetons for singl' -- (hint: use a suitable combinations of connections and _~) isContrSingl' : (x : A) → isContr (singl' x) isContrSingl' x = {!!}
{ "alphanum_fraction": 0.6386206897, "avg_line_length": 27.8846153846, "ext": "agda", "hexsha": "8862d2666ef1e603fca50c2d4c840b041d4b1869", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tomdjong/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/ExerciseSession1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tomdjong/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/ExerciseSession1.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tomdjong/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/ExerciseSession1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 490, "size": 1450 }
module Tabs where -- Tabs are not treated as white space. tab: : Set₁ tab: = Set
{ "alphanum_fraction": 0.6705882353, "avg_line_length": 12.1428571429, "ext": "agda", "hexsha": "b2d78c7cb472b5c0be3dfaa989bc682730b3a37a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Tabs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Tabs.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Tabs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 85 }
module Logic.Propositional.Theorems where open import Data open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional open import Logic open import Logic.Propositional import Lvl open import Syntax.Type open import Type ------------------------------------------ -- Reflexivity module _ {ℓ} {P : Stmt{ℓ}} where [↔]-reflexivity : (P ↔ P) [↔]-reflexivity = [↔]-intro id id [→]-reflexivity : (P → P) [→]-reflexivity = id ------------------------------------------ -- Transitivity module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} where [→]-transitivity : (P → Q) → (Q → R) → (P → R) [→]-transitivity = liftᵣ [↔]-transitivity : (P ↔ Q) → (Q ↔ R) → (P ↔ R) [↔]-transitivity ([↔]-intro qp pq) ([↔]-intro rq qr) = [↔]-intro (qp ∘ rq) (qr ∘ pq) [∧]-transitivity : (P ∧ Q) → (Q ∧ R) → (P ∧ R) [∧]-transitivity ([∧]-intro p _) ([∧]-intro _ r) = [∧]-intro p r ------------------------------------------ -- Symmetry module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [∧]-symmetry : (P ∧ Q) → (Q ∧ P) [∧]-symmetry = Tuple.swap [∨]-symmetry : (P ∨ Q) → (Q ∨ P) [∨]-symmetry = Either.swap module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [↔]-symmetry : (P ↔ Q) → (Q ↔ P) [↔]-symmetry = [∧]-symmetry ------------------------------------------ -- Operators that implies other ones module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [∧]-to-[↔] : (P ∧ Q) → (P ↔ Q) [∧]-to-[↔] ([∧]-intro p q) = [↔]-intro (const p) (const q) [∧]-to-[→] : (P ∧ Q) → (P → Q) [∧]-to-[→] ([∧]-intro p q) = const q [∧]-to-[←] : (P ∧ Q) → (P ← Q) [∧]-to-[←] ([∧]-intro p q) = const p [∧]-to-[∨] : (P ∧ Q) → (P ∨ Q) [∧]-to-[∨] ([∧]-intro p q) = [∨]-introₗ p [∨]-to-[←][→] : (P ∨ Q) → (P ← Q)∨(P → Q) [∨]-to-[←][→] ([∨]-introₗ p) = [∨]-introₗ (const p) [∨]-to-[←][→] ([∨]-introᵣ q) = [∨]-introᵣ (const q) ------------------------------------------ -- Associativity (with respect to ↔) module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} where [∧]-associativity : ((P ∧ Q) ∧ R) ↔ (P ∧ (Q ∧ R)) [∧]-associativity = [↔]-intro l r where l : ((P ∧ Q) ∧ R) ← (P ∧ (Q ∧ R)) l ([∧]-intro p ([∧]-intro q r)) = [∧]-intro ([∧]-intro p q) r r : ((P ∧ Q) ∧ R) → (P ∧ (Q ∧ R)) r ([∧]-intro ([∧]-intro p q) r) = [∧]-intro p ([∧]-intro q r) [∨]-associativity : ((P ∨ Q) ∨ R) ↔ (P ∨ (Q ∨ R)) [∨]-associativity = [↔]-intro l r where l : ((P ∨ Q) ∨ R) ← (P ∨ (Q ∨ R)) l ([∨]-introₗ p) = [∨]-introₗ([∨]-introₗ p) l ([∨]-introᵣ([∨]-introₗ q)) = [∨]-introₗ([∨]-introᵣ q) l ([∨]-introᵣ([∨]-introᵣ r)) = [∨]-introᵣ r r : ((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)) r ([∨]-introₗ([∨]-introₗ p)) = [∨]-introₗ p r ([∨]-introₗ([∨]-introᵣ q)) = [∨]-introᵣ([∨]-introₗ q) r ([∨]-introᵣ r) = [∨]-introᵣ([∨]-introᵣ r) -- TODO: According to https://math.stackexchange.com/questions/440261/associativity-of-iff , this is unprovable {-[↔]-associativity : ∀{P Q R : Stmt} → ((P ↔ Q) ↔ R) ↔ (P ↔ (Q ↔ R)) [↔]-associativity {P}{Q}{R} = [↔]-intro [↔]-associativityₗ [↔]-associativityᵣ where [↔]-associativityₗ : ((P ↔ Q) ↔ R) ← (P ↔ (Q ↔ R)) [↔]-associativityₗ ([↔]-intro yz2x x2yz) = [↔]-intro z2xy xy2z where z2xy : (P ↔ Q) ← R z2xy r = [↔]-intro y2x x2y where y2x : Q → P y2x q = yz2x([∧]-to-[↔]([∧]-intro q r)) x2y : P → Q x2y p = [↔]-elimₗ (x2yz(p)) (r) xy2z : (P ↔ Q) → R -- TODO: How? xy2z ([↔]-intro y2x x2y) = ? [↔]-associativityᵣ : ((P ↔ Q) ↔ R) → (P ↔ (Q ↔ R)) [↔]-associativityᵣ ([↔]-intro z2xy xy2z) = [↔]-intro yz2x x2yz where yz2x : P ← (Q ↔ R) yz2x ([↔]-intro z2y y2z) = ? x2yz : P → (Q ↔ R) x2yz p = [↔]-intro z2y y2z where z2y : R → Q z2y r = [↔]-elimᵣ (z2xy(r)) (p) y2z : Q → R y2z q = xy2z([∧]-to-[↔]([∧]-intro p q)) -} ------------------------------------------ -- Distributivity module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} where [∧][∨]-distributivityₗ : (P ∧ (Q ∨ R)) ↔ (P ∧ Q)∨(P ∧ R) [∧][∨]-distributivityₗ = [↔]-intro l r where l : (P ∧ (Q ∨ R)) ← (P ∧ Q)∨(P ∧ R) l([∨]-introₗ ([∧]-intro p q)) = [∧]-intro p ([∨]-introₗ q) l([∨]-introᵣ ([∧]-intro p r)) = [∧]-intro p ([∨]-introᵣ r) r : (P ∧ (Q ∨ R)) → (P ∧ Q)∨(P ∧ R) r([∧]-intro p ([∨]-introₗ q)) = [∨]-introₗ([∧]-intro p q) r([∧]-intro p ([∨]-introᵣ r)) = [∨]-introᵣ([∧]-intro p r) [∧][∨]-distributivityᵣ : ((P ∨ Q) ∧ R) ↔ (P ∧ R)∨(Q ∧ R) [∧][∨]-distributivityᵣ = [↔]-intro l r where l : ((P ∨ Q) ∧ R) ← (P ∧ R)∨(Q ∧ R) l([∨]-introₗ ([∧]-intro p r)) = [∧]-intro ([∨]-introₗ p) r l([∨]-introᵣ ([∧]-intro q r)) = [∧]-intro ([∨]-introᵣ q) r r : ((P ∨ Q) ∧ R) → (P ∧ R)∨(Q ∧ R) r([∧]-intro ([∨]-introₗ p) r) = [∨]-introₗ([∧]-intro p r) r([∧]-intro ([∨]-introᵣ q) r) = [∨]-introᵣ([∧]-intro q r) [∨][∧]-distributivityₗ : (P ∨ (Q ∧ R)) ↔ (P ∨ Q)∧(P ∨ R) [∨][∧]-distributivityₗ = [↔]-intro l r where l : (P ∨ (Q ∧ R)) ← (P ∨ Q)∧(P ∨ R) l([∧]-intro ([∨]-introₗ p) ([∨]-introₗ _)) = [∨]-introₗ(p) l([∧]-intro ([∨]-introₗ p) ([∨]-introᵣ r)) = [∨]-introₗ(p) l([∧]-intro ([∨]-introᵣ q) ([∨]-introₗ p)) = [∨]-introₗ(p) l([∧]-intro ([∨]-introᵣ q) ([∨]-introᵣ r)) = [∨]-introᵣ([∧]-intro q r) r : (P ∨ (Q ∧ R)) → (P ∨ Q)∧(P ∨ R) r([∨]-introₗ p) = [∧]-intro ([∨]-introₗ p) ([∨]-introₗ p) r([∨]-introᵣ ([∧]-intro q r)) = [∧]-intro ([∨]-introᵣ q) ([∨]-introᵣ r) [∨][∧]-distributivityᵣ : ((P ∧ Q) ∨ R) ↔ (P ∨ R)∧(Q ∨ R) [∨][∧]-distributivityᵣ = [↔]-intro l r where l : ((P ∧ Q) ∨ R) ← (P ∨ R)∧(Q ∨ R) l([∧]-intro ([∨]-introₗ p) ([∨]-introₗ q)) = [∨]-introₗ([∧]-intro p q) l([∧]-intro ([∨]-introₗ p) ([∨]-introᵣ r)) = [∨]-introᵣ(r) l([∧]-intro ([∨]-introᵣ r) ([∨]-introₗ q)) = [∨]-introᵣ(r) l([∧]-intro ([∨]-introᵣ r) ([∨]-introᵣ _)) = [∨]-introᵣ(r) r : ((P ∧ Q) ∨ R) → (P ∨ R)∧(Q ∨ R) r([∨]-introₗ ([∧]-intro p q)) = [∧]-intro ([∨]-introₗ p) ([∨]-introₗ q) r([∨]-introᵣ r) = [∧]-intro ([∨]-introᵣ r) ([∨]-introᵣ r) ------------------------------------------ -- Identity (with respect to →) module _ {ℓ} {P : Stmt{ℓ}} where [∧]-identityₗ : (⊤ ∧ P) → P [∧]-identityₗ ([∧]-intro _ p) = p [∧]-identityᵣ : (P ∧ ⊤) → P [∧]-identityᵣ ([∧]-intro p _) = p [∨]-identityₗ : (⊥ ∨ P) → P [∨]-identityₗ ([∨]-introₗ ()) [∨]-identityₗ ([∨]-introᵣ p) = p [∨]-identityᵣ : (P ∨ ⊥) → P [∨]-identityᵣ ([∨]-introₗ p) = p [∨]-identityᵣ ([∨]-introᵣ ()) [→]-identityₗ : (⊤ → P) → P [→]-identityₗ f = f([⊤]-intro) [∧]-nullifierₗ : (⊥ ∧ P) → ⊥ [∧]-nullifierₗ ([∧]-intro () _) [∧]-nullifierᵣ : (P ∧ ⊥) → ⊥ [∧]-nullifierᵣ ([∧]-intro _ ()) module _ {ℓ₂}{ℓ₃} {_▫_ : Stmt{Lvl.𝟎} → Stmt{ℓ₂} → Stmt{ℓ₃}} where [⊤]-as-nullifierₗ : ∀{P : Stmt} → (⊤ ▫ P) → ⊤ [⊤]-as-nullifierₗ _ = [⊤]-intro module _ {ℓ₁}{ℓ₃} {_▫_ : Stmt{ℓ₁} → Stmt{Lvl.𝟎} → Stmt{ℓ₃}} where [⊤]-as-nullifierᵣ : ∀{P : Stmt} → (P ▫ ⊤) → ⊤ [⊤]-as-nullifierᵣ _ = [⊤]-intro ------------------------------------------ -- Other module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [∨]-not-left : (P ∨ Q) → (¬ P) → Q [∨]-not-left ([∨]-introₗ p) np = [⊥]-elim(np p) [∨]-not-left ([∨]-introᵣ q) = const q [∨]-not-right : (P ∨ Q) → (¬ Q) → P [∨]-not-right ([∨]-introₗ p) = const p [∨]-not-right ([∨]-introᵣ q) nq = [⊥]-elim(nq q) module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{T : Stmt{ℓ₃}} where [→]-lift : (P → Q) → ((T → P) → (T → Q)) [→]-lift = liftₗ module _ {ℓ₁ ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where contrapositiveᵣ : (P → Q) → ((¬ P) ← (¬ Q)) contrapositiveᵣ = [→]-transitivity contrapositive-variant : (P → (¬ Q)) ↔ ((¬ P) ← Q) contrapositive-variant = [↔]-intro swap swap modus-tollens : (P → Q) → (¬ Q) → (¬ P) modus-tollens = contrapositiveᵣ module _ {ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄} {A : Stmt{ℓ₁}}{B : Stmt{ℓ₂}}{C : Stmt{ℓ₃}}{D : Stmt{ℓ₄}} where constructive-dilemma : (A → B) → (C → D) → (A ∨ C) → (B ∨ D) constructive-dilemma = [∨]-elim2 destructive-dilemma : (A → B) → (C → D) → ((¬ B) ∨ (¬ D)) → ((¬ A) ∨ (¬ C)) destructive-dilemma l r = [∨]-elim2 (contrapositiveᵣ l) (contrapositiveᵣ r) module _ {ℓ} {P : Stmt{ℓ}} where [¬¬]-intro : P → (¬¬ P) [¬¬]-intro = apply -- P → (P → ⊥) → ⊥ [¬¬¬]-elim : (¬ (¬ (¬ P))) → (¬ P) [¬¬¬]-elim = contrapositiveᵣ [¬¬]-intro module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} where [↔]-move-out-[∧]ᵣ : ((P ∧ R) ↔ (Q ∧ R)) → (R → (P ↔ Q)) [↔]-move-out-[∧]ᵣ ([↔]-intro qrpr prqr) r = ([↔]-intro (q ↦ [∧]-elimₗ(qrpr([∧]-intro q r))) (p ↦ [∧]-elimₗ(prqr([∧]-intro p r))) ) [∧]-unaryOperatorₗ : (P ↔ Q) → ((P ∧ R) ↔ (Q ∧ R)) [∧]-unaryOperatorₗ ([↔]-intro qp pq) = ([↔]-intro (qr ↦ [∧]-intro (qp([∧]-elimₗ qr)) ([∧]-elimᵣ qr)) (pr ↦ [∧]-intro (pq([∧]-elimₗ pr)) ([∧]-elimᵣ pr)) ) currying : (P → (Q → R)) ↔ ((P ∧ Q) → R) currying = [↔]-intro Tuple.curry Tuple.uncurry module _ {ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄} {A : Stmt{ℓ₁}}{B : Stmt{ℓ₂}}{C : Stmt{ℓ₃}}{D : Stmt{ℓ₄}} where [∧]-binaryOperator : (A ↔ C) → (B ↔ D) → ((A ∧ B) ↔ (C ∧ D)) [∧]-binaryOperator ([↔]-intro ca ac) ([↔]-intro db bd) = [↔]-intro (Tuple.map ca db) (Tuple.map ac bd) [∨]-binaryOperator : (A ↔ C) → (B ↔ D) → ((A ∨ B) ↔ (C ∨ D)) [∨]-binaryOperator ([↔]-intro ca ac) ([↔]-intro db bd) = [↔]-intro (Either.map ca db) (Either.map ac bd) module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [↔]-not-left : (P ↔ Q) → (¬ P) → (¬ Q) [↔]-not-left pq np q = np([↔]-elimₗ(q)(pq)) [↔]-not-right : (P ↔ Q) → (¬ Q) → (¬ P) [↔]-not-right pq nq p = nq([↔]-elimᵣ(p)(pq)) [¬]-unaryOperator : (P ↔ Q) → ((¬ P) ↔ (¬ Q)) [¬]-unaryOperator pq = [↔]-intro ([↔]-not-right (pq)) ([↔]-not-left (pq)) module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [↔]-elim-[∨] : (P ↔ Q) → (P ∨ Q) → (P ∧ Q) [↔]-elim-[∨] (p↔q) ([∨]-introₗ p) = [∧]-intro p ([↔]-elimᵣ(p) p↔q) [↔]-elim-[∨] (p↔q) ([∨]-introᵣ q) = [∧]-intro ([↔]-elimₗ(q) p↔q) q module _ {ℓ} {P : Stmt{ℓ}} where provable-top-equivalence : P → (P ↔ ⊤) provable-top-equivalence p = [↔]-intro (const p) (const [⊤]-intro) unprovable-bottom-equivalence : (¬ P) → (P ↔ ⊥) unprovable-bottom-equivalence np = [↔]-intro [⊥]-elim np ------------------------------------------ -- Negation is almost preserved over the conjunction-dijunction dual (De-morgan's laws). module _ {ℓ₁ ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [¬]-preserves-[∧][∨]ₗ : (¬ (P ∧ Q)) ← ((¬ P) ∨ (¬ Q)) [¬]-preserves-[∧][∨]ₗ ([∨]-introₗ np) = np ∘ [∧]-elimₗ [¬]-preserves-[∧][∨]ₗ ([∨]-introᵣ nq) = nq ∘ [∧]-elimᵣ [¬]-preserves-[∨][∧] : (¬ (P ∨ Q)) ↔ ((¬ P) ∧ (¬ Q)) [¬]-preserves-[∨][∧] = [↔]-intro l r where l : ¬(P ∨ Q) ← ((¬ P) ∧ (¬ Q)) l ([∧]-intro np nq) = [∨]-elim np nq r : (¬ (P ∨ Q)) → ((¬ P) ∧ (¬ Q)) r f = [∧]-intro (f ∘ [∨]-introₗ) (f ∘ [∨]-introᵣ) ------------------------------------------ -- Conjunction and implication (Tuples and functions) module _ {ℓ₁}{ℓ₂}{ℓ₃} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} where [→][∧]-assumption : ((P ∧ Q) → R) ↔ (P → Q → R) [→][∧]-assumption = [↔]-intro Tuple.uncurry Tuple.curry [→][∧]-distributivityₗ : (P → (Q ∧ R)) ↔ ((P → Q) ∧ (P → R)) [→][∧]-distributivityₗ = [↔]-intro l r where l : ((P → Q) ∧ (P → R)) → (P → (Q ∧ R)) l ([∧]-intro pq pr) p = [∧]-intro (pq(p)) (pr(p)) r : ((P → Q) ∧ (P → R)) ← (P → (Q ∧ R)) r both = [∧]-intro ([∧]-elimₗ ∘ both) ([∧]-elimᵣ ∘ both) [→][∨]-distributivityₗₗ : (P → (Q ∨ R)) ← ((P → Q) ∨ (P → R)) [→][∨]-distributivityₗₗ = l where l : ((P → Q) ∨ (P → R)) → (P → (Q ∨ R)) l ([∨]-introₗ pq) p = [∨]-introₗ (pq(p)) l ([∨]-introᵣ pr) p = [∨]-introᵣ (pr(p)) [→ₗ][∨][∧]-preserving : ((P ∨ Q) → R) ↔ ((P → R) ∧ (Q → R)) [→ₗ][∨][∧]-preserving = [↔]-intro l r where l : ((P ∨ Q) → R) ← ((P → R) ∧ (Q → R)) l ([∧]-intro pr qr) ([∨]-introₗ p) = pr p l ([∧]-intro pr qr) ([∨]-introᵣ q) = qr q r : ((P ∨ Q) → R) → ((P → R) ∧ (Q → R)) r pqr = [∧]-intro (pqr ∘ [∨]-introₗ) (pqr ∘ [∨]-introᵣ) module _ {ℓ} {P : Stmt{ℓ}} where non-contradiction : ¬(P ∧ (¬ P)) non-contradiction(p , np) = np p ------------------------------------------ -- Redundant formulas in operations module _ {ℓ₁}{ℓ₂} {A : Stmt{ℓ₁}}{B : Stmt{ℓ₂}} where [→]-redundancy : (A → A → B) → (A → B) [→]-redundancy = _$₂_ module _ {ℓ} {A : Stmt{ℓ}} where [∧]-redundancy : (A ∧ A) ↔ A [∧]-redundancy = [↔]-intro ([∧]-intro $₂_) [∧]-elimₗ [∨]-redundancy : (A ∨ A) ↔ A [∨]-redundancy = [↔]-intro [∨]-introₗ ([∨]-elim id id) ------------------------------------------ -- Disjunctive forms module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where -- Also called: Material implication [→]-disjunctive-formₗ : (P → Q) ← ((¬ P) ∨ Q) [→]-disjunctive-formₗ = [∨]-elim ([→]-lift [⊥]-elim) const [↔]-disjunctive-formₗ : (P ↔ Q) ← ((P ∧ Q) ∨ ((¬ P) ∧ (¬ Q))) [↔]-disjunctive-formₗ ([∨]-introₗ pq) = [∧]-to-[↔] pq [↔]-disjunctive-formₗ ([∨]-introᵣ npnq) = Tuple.map ([⊥]-elim ∘_) ([⊥]-elim ∘_) (Tuple.swap npnq) -- TODO: Probably unprovable -- [↔]-disjunctive-formᵣ : ∀{P Q : Stmt} → (P ↔ Q) → ((P ∧ Q) ∨ ((¬ P) ∧ (¬ Q))) -- [↔]-disjunctive-formᵣ ([↔]-intro qp pq) = [¬→]-disjunctive-formₗ : ((¬ P) → Q) ← (P ∨ Q) [¬→]-disjunctive-formₗ = [∨]-not-left ------------------------------------------ -- Conjuctive forms -- TODO: None of them are provable? -- [↔]-conjunctive-form : ∀{P Q : Stmt} → (P ↔ Q) ↔ ((P ∨ Q) ∧ ((¬ P) ∨ (¬ Q))) -- [↔]-conjunctive-form ([↔]-intro qp pq) = [∨]-elim ([→]-lift [⊥]-elim) (const) module _ {ℓ₁ ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [→][∧]ᵣ : (P → Q) → ¬(P ∧ (¬ Q)) [→][∧]ᵣ f = Tuple.uncurry([¬¬]-intro ∘ f) [¬→][∧]ₗ : ¬(P → Q) ← (P ∧ (¬ Q)) [¬→][∧]ₗ = swap [→][∧]ᵣ [→¬]-¬[∧] : (P → (¬ Q)) ↔ ¬(P ∧ Q) [→¬]-¬[∧] = currying ------------------------------------------ -- Equivalences (TODO: I remember these being defined somewhere else, but I am not sure. At least some special cases have been used somewhere else) module _ where private variable ℓ : Lvl.Level private variable A A₁ A₂ B B₁ B₂ : Type{ℓ} [∧]-map-[↔] : (A₁ ↔ A₂) → (B₁ ↔ B₂) → ((A₁ ∧ B₁) ↔ (A₂ ∧ B₂)) [∧]-map-[↔] a b = [↔]-intro (Tuple.map ([↔]-to-[←] a) ([↔]-to-[←] b)) (Tuple.map ([↔]-to-[→] a) ([↔]-to-[→] b)) [∧]-mapₗ-[↔] : (A₁ ↔ A₂) → ((A₁ ∧ B) ↔ (A₂ ∧ B)) [∧]-mapₗ-[↔] a = [∧]-map-[↔] a [↔]-reflexivity [∧]-mapᵣ-[↔] : (B₁ ↔ B₂) → ((A ∧ B₁) ↔ (A ∧ B₂)) [∧]-mapᵣ-[↔] b = [∧]-map-[↔] [↔]-reflexivity b [∨]-map-[↔] : (A₁ ↔ A₂) → (B₁ ↔ B₂) → ((A₁ ∨ B₁) ↔ (A₂ ∨ B₂)) [∨]-map-[↔] a b = [↔]-intro (Either.map ([↔]-to-[←] a) ([↔]-to-[←] b)) (Either.map ([↔]-to-[→] a) ([↔]-to-[→] b)) [∨]-mapₗ-[↔] : (A₁ ↔ A₂) → ((A₁ ∨ B) ↔ (A₂ ∨ B)) [∨]-mapₗ-[↔] a = [∨]-map-[↔] a [↔]-reflexivity [∨]-mapᵣ-[↔] : (B₁ ↔ B₂) → ((A ∨ B₁) ↔ (A ∨ B₂)) [∨]-mapᵣ-[↔] b = [∨]-map-[↔] [↔]-reflexivity b [↔]-map-[↔] : (A₁ ↔ A₂) → (B₁ ↔ B₂) → ((A₁ ↔ B₁) ↔ (A₂ ↔ B₂)) [↔]-map-[↔] a b = [↔]-intro (Tuple.map (b₂a₂ ↦ [↔]-to-[←] a ∘ b₂a₂ ∘ [↔]-to-[→] b) (a₂b₂ ↦ [↔]-to-[←] b ∘ a₂b₂ ∘ [↔]-to-[→] a) ) (Tuple.map (b₁a₁ ↦ [↔]-to-[→] a ∘ b₁a₁ ∘ [↔]-to-[←] b) (a₁b₁ ↦ [↔]-to-[→] b ∘ a₁b₁ ∘ [↔]-to-[←] a) ) [↔]-mapₗ-[↔] : (A₁ ↔ A₂) → ((A₁ ↔ B) ↔ (A₂ ↔ B)) [↔]-mapₗ-[↔] a = [↔]-map-[↔] a [↔]-reflexivity [↔]-mapᵣ-[↔] : (B₁ ↔ B₂) → ((A ↔ B₁) ↔ (A ↔ B₂)) [↔]-mapᵣ-[↔] b = [↔]-map-[↔] [↔]-reflexivity b [→]-map-[↔] : (A₁ ↔ A₂) → (B₁ ↔ B₂) → ((A₁ → B₁) ↔ (A₂ → B₂)) [→]-map-[↔] a b = [↔]-intro (ab ↦ [↔]-to-[←] b ∘ ab ∘ [↔]-to-[→] a) (ab ↦ [↔]-to-[→] b ∘ ab ∘ [↔]-to-[←] a) ------------------------------------------ -- Stuff related to classical logic module _ {ℓ} {P : Stmt{ℓ}} where [¬¬]-excluded-middle : ¬¬(P ∨ (¬ P)) [¬¬]-excluded-middle = ([¬]-intro(naorna ↦ ((non-contradiction([∧]-intro (([∨]-introᵣ (([¬]-intro(a ↦ ((non-contradiction([∧]-intro (([∨]-introₗ a) :of: (P ∨ (¬ P))) (naorna :of: ¬(P ∨ (¬ P))) )) :of: ⊥) )) :of: (¬ P)) ) :of: (P ∨ (¬ P))) (naorna :of: ¬(P ∨ (¬ P))) )) :of: ⊥) )) :of: ¬¬(P ∨ (¬ P)) -- Note: -- ∀{P} → (P ∨ (¬ P)) ← ((¬¬ P) → P) -- is not provable because the statement (P ∨ (¬ P)) requires a [¬¬]-elim. -- TODO: ...I think? I do not think (∀{P} → ¬¬(P ∨ (¬ P)) → ((¬¬ P) ∨ (¬ P))) is provable. [¬¬]-elim-from-excluded-middle : (P ∨ (¬ P)) → ((¬¬ P) → P) [¬¬]-elim-from-excluded-middle ([∨]-introₗ p) (nnp) = p [¬¬]-elim-from-excluded-middle ([∨]-introᵣ np) (nnp) = [⊥]-elim(nnp(np)) [¬¬]-elim-from-callcc : (∀{Q : Stmt{Lvl.𝟎}} → (((P → Q) → P) → P)) → ((¬¬ P) → P) [¬¬]-elim-from-callcc (callcc) (nnp) = callcc{⊥} ([⊥]-elim ∘ nnp) module _ {ℓ} where [[¬¬]-elim]-[excluded-middle]-eqₗ : (∀{P : Stmt{ℓ}} → (¬¬ P) → P) ←ᶠ (∀{P : Stmt{ℓ}} → (P ∨ (¬ P))) [[¬¬]-elim]-[excluded-middle]-eqₗ or {P} (nnp) with or ... | ([∨]-introₗ p ) = p ... | ([∨]-introᵣ np) = [⊥]-elim(nnp(np)) [[¬¬]-elim]-[excluded-middle]-eqᵣ : (∀{P : Stmt{ℓ}} → (¬¬ P) → P) → (∀{P : Stmt{ℓ}} → (P ∨ (¬ P))) [[¬¬]-elim]-[excluded-middle]-eqᵣ (nnpp) = nnpp([¬¬]-excluded-middle) -- TODO: https://math.stackexchange.com/questions/910240/equivalence-between-middle-excluded-law-and-double-negation-elimination-in-heyti [callcc]-[[¬¬]-elim]-eqₗ : (∀{P : Stmt{ℓ}}{Q : Stmt{Lvl.𝟎}} → (((P → Q) → P) → P)) → (∀{P} → (¬¬ P) → P) [callcc]-[[¬¬]-elim]-eqₗ (callcc) {P} (nnp) = callcc{P}{⊥} (np ↦ [⊥]-elim(nnp(np))) [callcc]-[[¬¬]-elim]-eqᵣ : (∀{P : Stmt{ℓ}} → (¬¬ P) → P) → (∀{P Q : Stmt{ℓ}} → (((P → Q) → P) → P)) [callcc]-[[¬¬]-elim]-eqᵣ (nnpp) {P}{Q} (pqp) = nnpp([¬]-intro(np ↦ np(pqp(p ↦ [⊥]-elim(np p))))) [callcc]-[excluded-middle]-eqₗ : (∀{P : Stmt{ℓ}} → (P ∨ (¬ P))) → (∀{P Q : Stmt{ℓ}} → (((P → Q) → P) → P)) [callcc]-[excluded-middle]-eqₗ or {P}{Q} (pqp) with or ... | ([∨]-introₗ p ) = p ... | ([∨]-introᵣ np) = pqp([⊥]-elim ∘ np) [callcc]-[excluded-middle]-eqᵣ : (∀{P : Stmt{ℓ}}{Q : Stmt{Lvl.𝟎}} → (((P → Q) → P) → P)) → (∀{P : Stmt{ℓ}} → (P ∨ (¬ P))) [callcc]-[excluded-middle]-eqᵣ (callcc) {P} = callcc{P ∨ (¬ P)}{⊥} (nor ↦ [⊥]-elim ([¬¬]-excluded-middle (nor))) -- TODO: Does not have to be over all propositions P in assumption. Only wem P and wem Q are used. weak-excluded-middle-[¬][∧]ₗ : (∀{P : Stmt{ℓ}} → (¬ P) ∨ (¬¬ P)) ↔ (∀{P : Stmt{ℓ}}{Q : Stmt{ℓ}} → ((¬ P) ∨ (¬ Q)) ← (¬ (P ∧ Q))) weak-excluded-middle-[¬][∧]ₗ = [↔]-intro l r where l : (∀{P : Stmt{ℓ}} → (¬ P) ∨ (¬¬ P)) ← (∀{P : Stmt{ℓ}}{Q : Stmt{ℓ}} → ((¬ P) ∨ (¬ Q)) ← (¬ (P ∧ Q))) l [¬][∧]ₗ = [¬][∧]ₗ non-contradiction r : (∀{P : Stmt{ℓ}} → (¬ P) ∨ (¬¬ P)) → (∀{P : Stmt{ℓ}}{Q : Stmt{ℓ}} → ((¬ P) ∨ (¬ Q)) ← (¬ (P ∧ Q))) r wem {P = P} {Q = Q} npq with wem {P = P} | wem {P = Q} r wem {P = P} {Q = Q} npq | [∨]-introₗ np | [∨]-introₗ nq = [∨]-introₗ np r wem {P = P} {Q = Q} npq | [∨]-introₗ np | [∨]-introᵣ nnq = [∨]-introₗ np r wem {P = P} {Q = Q} npq | [∨]-introᵣ nnp | [∨]-introₗ nq = [∨]-introᵣ nq r wem {P = P} {Q = Q} npq | [∨]-introᵣ nnp | [∨]-introᵣ nnq = [∨]-introᵣ (q ↦ nnp (p ↦ npq ([∧]-intro p q))) ------------------------------------------ -- XOR module _ {ℓ₁}{ℓ₂} {P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} where [⊕][↔]-contradiction : (P ⊕ Q) → (P ↔ Q) → ⊥ [⊕][↔]-contradiction ([⊕]-introₗ p nq) pq = nq([↔]-elimᵣ p pq) [⊕][↔]-contradiction ([⊕]-introᵣ q np) pq = np([↔]-elimₗ q pq) [⊕][∧]-contradiction : (P ⊕ Q) → (P ∧ Q) → ⊥ [⊕][∧]-contradiction xor = [⊕][↔]-contradiction xor ∘ [∧]-to-[↔] [⊕]-not-both : (P ⊕ Q) → P → Q → ⊥ [⊕]-not-both = Tuple.curry ∘ [⊕][∧]-contradiction [⊕]-not-left : (P ⊕ Q) → P → (¬ Q) [⊕]-not-left = [⊕]-not-both [⊕]-not-right : (P ⊕ Q) → Q → (¬ P) [⊕]-not-right = swap ∘ [⊕]-not-both [⊕]-to-[∨] : (P ⊕ Q) → (P ∨ Q) [⊕]-to-[∨] ([⊕]-introₗ p _) = [∨]-introₗ p [⊕]-to-[∨] ([⊕]-introᵣ q _) = [∨]-introᵣ q [⊕]-to-[¬∨] : (P ⊕ Q) → ((¬ P) ∨ (¬ Q)) [⊕]-to-[¬∨] ([⊕]-introₗ _ nq) = [∨]-introᵣ nq [⊕]-to-[¬∨] ([⊕]-introᵣ _ np) = [∨]-introₗ np [⊕]-excluded-middleₗ : (P ⊕ Q) → (P ∨ (¬ P)) [⊕]-excluded-middleₗ ([⊕]-introₗ p nq) = [∨]-introₗ p [⊕]-excluded-middleₗ ([⊕]-introᵣ q np) = [∨]-introᵣ np [⊕]-excluded-middleᵣ : (P ⊕ Q) → (Q ∨ (¬ Q)) [⊕]-excluded-middleᵣ ([⊕]-introₗ p nq) = [∨]-introᵣ nq [⊕]-excluded-middleᵣ ([⊕]-introᵣ q np) = [∨]-introₗ q [⊕]-or-not-both : (P ∨ Q) → ¬(P ∧ Q) → (P ⊕ Q) [⊕]-or-not-both or nand with or ... | [∨]-introₗ p = [⊕]-introₗ p (q ↦ nand([↔]-intro p q)) ... | [∨]-introᵣ q = [⊕]-introᵣ q (p ↦ nand([↔]-intro p q))
{ "alphanum_fraction": 0.4258623192, "avg_line_length": 37.5836363636, "ext": "agda", "hexsha": "87cf0c57ccbdac11f56c14856a05204d29334c9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Propositional/Theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Propositional/Theorems.agda", "max_line_length": 147, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Propositional/Theorems.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 10574, "size": 20671 }
module Two where open import Relation.Binary.PropositionalEquality open ≡-Reasoning import Data.Nat as ℕ import Data.Nat.Properties as ℕₚ open ℕ using (ℕ; zero; suc; _+_) -- Our language consists of constants and addition data Expr : Set where const : ℕ → Expr plus : Expr → Expr → Expr -- Straightforward semantics eval-expr : Expr → ℕ eval-expr (const n) = n eval-expr (plus e1 e2) = eval-expr e1 + eval-expr e2 -- Tail recursive semantics eval-expr-tail' : Expr → ℕ → ℕ eval-expr-tail' (const n) acc = n + acc eval-expr-tail' (plus e1 e2) acc = eval-expr-tail' e2 (eval-expr-tail' e1 acc) eval-expr-tail : Expr → ℕ eval-expr-tail e = eval-expr-tail' e 0 -- -- Task: prove that eval-expr-tail is equivalent to eval-expr. -- -- The tail recursive evaluation does not depend on its accumulator eval-expr-tail-correct-lemma : ∀ e acc → eval-expr-tail' e acc ≡ eval-expr-tail' e 0 + acc eval-expr-tail-correct-lemma e acc = ? -- The tail recursive evaluation agrees with the straightforward evaluation eval-expr-tail-correct : ∀ e → eval-expr-tail e ≡ eval-expr e eval-expr-tail-correct e = ?
{ "alphanum_fraction": 0.7113122172, "avg_line_length": 27.625, "ext": "agda", "hexsha": "b51a2c434d74358d16362b57835a2b9d2f2e0774", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UoG-Agda/Agda101", "max_forks_repo_path": "Exercises/Two.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UoG-Agda/Agda101", "max_issues_repo_path": "Exercises/Two.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "d9359c5bfd0eaf69efe1113945d7f3145f6b2dff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UoG-Agda/Agda101", "max_stars_repo_path": "Exercises/Two.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 348, "size": 1105 }
-- Opening this module allows lists to be written using "list notation". -- Examples: -- [] = ∅ -- [ a ] = a ⊰ ∅ -- [ a , b ] = a ⊰ b ⊰ ∅ -- [ a , b , c ] = a ⊰ b ⊰ c ⊰ ∅ module Syntax.List where open import Data.List {- infixl 1 [_ infixr 1000 _,_ infixl 100000 _] pattern [] = ∅ pattern [_ l = l pattern _,_ x l = x ⊰ l pattern _] x = x ⊰ ∅ -} pattern [] = ∅ pattern [_] x₁ = x₁ ⊰ ∅ pattern [_,_] x₁ x₂ = x₁ ⊰ x₂ ⊰ ∅ pattern [_,_,_] x₁ x₂ x₃ = x₁ ⊰ x₂ ⊰ x₃ ⊰ ∅ pattern [_,_,_,_] x₁ x₂ x₃ x₄ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ ∅ pattern [_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ ∅ pattern [_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ ∅ pattern [_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ ∅ pattern [_,_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ x₈ ⊰ ∅ pattern [_,_,_,_,_,_,_,_,_] x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ x₉ = x₁ ⊰ x₂ ⊰ x₃ ⊰ x₄ ⊰ x₅ ⊰ x₆ ⊰ x₇ ⊰ x₈ ⊰ x₉ ⊰ ∅
{ "alphanum_fraction": 0.3978583196, "avg_line_length": 37.9375, "ext": "agda", "hexsha": "1c3088415d4db04bb71cccceabd8041240a41015", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/List.agda", "max_line_length": 103, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 602, "size": 1214 }
{-# OPTIONS --without-K #-} module sets.int.definition where open import sum open import equality open import function open import sets.nat.core open import hott.level private data Z : Set where mk-int : ℕ → ℕ → Z ℤ : Set ℤ = Z _[-]_ : ℕ → ℕ → ℤ _[-]_ = mk-int postulate eq-ℤ : (n m d : ℕ) → n [-] m ≡ (d + n) [-] (d + m) hℤ : h 2 ℤ IsAlg-ℤ : ∀ {i} → Set i → Set _ IsAlg-ℤ X = Σ (ℕ → ℕ → X) λ f → (∀ n m d → f n m ≡ f (d + n) (d + m)) aℤ : IsAlg-ℤ ℤ aℤ = _[-]_ , eq-ℤ map-Alg-ℤ : ∀ {i j}{X : Set i}{Y : Set j} → (X → Y) → IsAlg-ℤ X → IsAlg-ℤ Y map-Alg-ℤ {X = X}{Y} h (f , u) = (g , v) where g : ℕ → ℕ → Y g n m = h (f n m) v : ∀ n m d → g n m ≡ g (d + n) (d + m) v n m d = ap h (u n m d) map-Alg-ℤ-id : ∀ {i}{X : Set i}(aX : IsAlg-ℤ X) → map-Alg-ℤ (λ x → x) aX ≡ aX map-Alg-ℤ-id aX = unapΣ (refl , funext λ n → funext λ m → funext λ d → ap-id _) map-Alg-ℤ-hom : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → (f : Y → Z)(g : X → Y)(aX : IsAlg-ℤ X) → map-Alg-ℤ (f ∘' g) aX ≡ map-Alg-ℤ f (map-Alg-ℤ g aX) map-Alg-ℤ-hom f g aX = unapΣ (refl , funext λ n → funext λ m → funext λ d → sym (ap-hom g f _)) Hom-ℤ : ∀ {i j}{X : Set i}{Y : Set j} → IsAlg-ℤ X → IsAlg-ℤ Y → Set _ Hom-ℤ {X = X}{Y} aX aY = Σ (X → Y) λ h → map-Alg-ℤ h aX ≡ aY id-ℤ : ∀ {i}{X : Set i}(aX : IsAlg-ℤ X) → Hom-ℤ aX aX id-ℤ aX = (λ x → x) , map-Alg-ℤ-id aX _⋆ℤ_ : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → {aX : IsAlg-ℤ X}{aY : IsAlg-ℤ Y}{aZ : IsAlg-ℤ Z} → Hom-ℤ aY aZ → Hom-ℤ aX aY → Hom-ℤ aX aZ _⋆ℤ_ {aX = aX} (f , u) (g , v) = f ∘' g , map-Alg-ℤ-hom f g aX · ap (map-Alg-ℤ f) v · u module _ {i}{X : Set i}(hX : h 2 X)(aX : IsAlg-ℤ X) where elim-ℤ : ℤ → X elim-ℤ (mk-int n n') = proj₁ aX n n' postulate elim-β-ℤ : ∀ n m d → ap elim-ℤ (eq-ℤ n m d) ≡ proj₂ aX n m d elim-Alg-β-ℤ : map-Alg-ℤ elim-ℤ aℤ ≡ aX elim-Alg-β-ℤ = unapΣ (refl , funext λ n → funext λ m → funext λ d → elim-β-ℤ n m d) elim-Alg-ℤ : Hom-ℤ aℤ aX elim-Alg-ℤ = elim-ℤ , elim-Alg-β-ℤ postulate univ-ℤ : (h : Hom-ℤ aℤ aX) → elim-Alg-ℤ ≡ h Hom-ℤ-contr : contr (Hom-ℤ aℤ aX) Hom-ℤ-contr = elim-Alg-ℤ , univ-ℤ elim-prop-ℤ : ∀ {i}{X : ℤ → Set i} → (∀ n → h 1 (X n)) → (f : ∀ n m → X (n [-] m)) → ∀ n → X n elim-prop-ℤ {X = X} hX f n = subst X (i-β₀ n) (proj₂ (s₀ n)) where Y : Set _ Y = Σ ℤ X hY : h 2 Y hY = Σ-level hℤ λ n → h↑ (hX n) aY : IsAlg-ℤ Y aY = (λ n m → (n [-] m , f n m)) , (λ n m d → unapΣ (eq-ℤ n m d , h1⇒prop (hX ((d + n) [-] (d + m))) _ _)) pY : Hom-ℤ aY aℤ pY = proj₁ , unapΣ (refl , h1⇒prop (Π-level λ n → Π-level λ m → Π-level λ p → hℤ _ _) _ _) s : Hom-ℤ aℤ aY s = elim-Alg-ℤ hY aY s₀ : ℤ → Y s₀ = proj₁ s i-β₀ : ∀ n → proj₁ (s₀ n) ≡ n i-β₀ n = ap (λ f → proj₁ f n) (contr⇒prop (Hom-ℤ-contr hℤ aℤ) (pY ⋆ℤ s) (id-ℤ aℤ))
{ "alphanum_fraction": 0.4723652592, "avg_line_length": 26.0089285714, "ext": "agda", "hexsha": "061b75c72676979b98dd5d943097984987a1546f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/int/definition.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/int/definition.agda", "max_line_length": 87, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/int/definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 1535, "size": 2913 }
module Files where open import Prelude open import System.File open import System.FilePath open import Prelude.Equality fileIsEqual : ∀ {k} → Path k → Path k → IO Unit fileIsEqual a b = _≟_ <$> readBinaryFile a <*> readBinaryFile b >>= λ x → if x then return unit else exitWith (Failure 1) where -- Move this to Prelude.Equality? _≟_ : ∀ {a} {A : Set a} → {{eq : Eq A}} → A → A → Bool x ≟ y = isYes (x == y) main : IO ⊤ main = readTextFile fIn >>= writeTextFile fTxtOut >> readBinaryFile fIn >>= writeBinaryFile fBinOut >> fileIsEqual fIn fTxtOut >> fileIsEqual fIn fBinOut where fIn = relative "Files.agda" fTxtOut = relative "test_files_txt.out" fBinOut = relative "test_files_bin.out"
{ "alphanum_fraction": 0.662585034, "avg_line_length": 24.5, "ext": "agda", "hexsha": "928518fbcbc3bfc1b661136b6a221d29ea701a84", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "test/Files.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "test/Files.agda", "max_line_length": 73, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "test/Files.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 237, "size": 735 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Properties where open import Cubical.ZCohomology.Base open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; setTruncIsSet to §) open import Cubical.HITs.Nullification open import Cubical.Data.Int renaming (_+_ to _ℤ+_) open import Cubical.Data.Nat open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Freudenthal open import Cubical.HITs.SmashProduct.Base open import Cubical.Algebra.Group open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.HITs.Pushout open import Cubical.Data.Sum.Base open import Cubical.Data.HomotopyGroup open import Cubical.ZCohomology.KcompPrelims private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' A' : Pointed ℓ {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc n) A i = ∥ coHomRed+1.helpLemma A i {C = ((coHomK (suc n)) , ∣ north ∣)} i ∥₂ ----------- Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso3-Kn-ΩKn+1 n) ΩKn+1→Kn : {n : ℕ} → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn {n = n} = Iso.inv (Iso3-Kn-ΩKn+1 n) Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) ---------- Algebra/Group stuff -------- 0ₖ : {n : ℕ} → coHomK n 0ₖ {n = zero} = pt (coHomK-ptd 0) 0ₖ {n = suc n} = pt (coHomK-ptd (suc n)) infixr 35 _+ₖ_ _+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+ₖ_ {n = n} x y = ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) -ₖ_ : {n : ℕ} → coHomK n → coHomK n -ₖ_ {n = n} x = ΩKn+1→Kn (sym (Kn→ΩKn+1 n x)) Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n 0ₖ ≡ refl Kn→ΩKn+10ₖ zero = refl Kn→ΩKn+10ₖ (suc n) = (λ i → cong ∣_∣ (rCancel (merid north) i)) -- could also use refl for n = 1, but for computational reasons I don't want to expand the definition if not necessary. -0ₖ : {n : ℕ} → -ₖ 0ₖ {n = n} ≡ 0ₖ -0ₖ {n = n} = (λ i → ΩKn+1→Kn (sym (Kn→ΩKn+10ₖ n i))) ∙∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ n (~ i))) ∙∙ Iso.leftInv (Iso3-Kn-ΩKn+1 n) 0ₖ +ₖ→∙ : (n : ℕ) (a b : coHomK n) → Kn→ΩKn+1 n (a +ₖ b) ≡ Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b +ₖ→∙ n a b = Iso.rightInv (Iso3-Kn-ΩKn+1 n) (Kn→ΩKn+1 n a ∙ Kn→ΩKn+1 n b) lUnitₖ : {n : ℕ} (x : coHomK n) → 0ₖ +ₖ x ≡ x lUnitₖ {n = zero} x = cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 zero x))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 zero) x lUnitₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) i ∙ Kn→ΩKn+1 (suc n) x)) ∙ (cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 (suc n) x)))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) x rUnitₖ : {n : ℕ} (x : coHomK n) → x +ₖ 0ₖ ≡ x rUnitₖ {n = zero} x = cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 zero x))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 zero) x rUnitₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) x ∙ Kn→ΩKn+10ₖ (suc n) i)) ∙ (cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 (suc n) x)))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) x -- rCancelₖ : {n : ℕ} (x : coHomK n) → x +ₖ (-ₖ x) ≡ 0ₖ rCancelₖ {n = zero} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 zero x ∙ Iso.rightInv (Iso3-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i)) ∙ cong ΩKn+1→Kn (rCancel (Kn→ΩKn+1 zero x)) rCancelₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (1 + n) x ∙ Iso.rightInv (Iso3-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i)) ∙ cong ΩKn+1→Kn (rCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) 0ₖ lCancelₖ : {n : ℕ} (x : coHomK n) → (-ₖ x) +ₖ x ≡ 0ₖ lCancelₖ {n = zero} x = (λ i → ΩKn+1→Kn (Iso.rightInv (Iso3-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i ∙ Kn→ΩKn+1 zero x)) ∙ cong ΩKn+1→Kn (lCancel (Kn→ΩKn+1 zero x)) lCancelₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Iso.rightInv (Iso3-Kn-ΩKn+1 (1 + n)) (sym (Kn→ΩKn+1 (1 + n) x)) i ∙ Kn→ΩKn+1 (1 + n) x)) ∙ cong ΩKn+1→Kn (lCancel (Kn→ΩKn+1 (1 + n) x)) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) 0ₖ assocₖ : {n : ℕ} (x y z : coHomK n) → ((x +ₖ y) +ₖ z) ≡ (x +ₖ (y +ₖ z)) assocₖ {n = n} x y z = ((λ i → ΩKn+1→Kn (Kn→ΩKn+1 n (ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)) ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn (Iso.rightInv (Iso3-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i ∙ Kn→ΩKn+1 n z)) ∙∙ (λ i → ΩKn+1→Kn (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) (Kn→ΩKn+1 n z) (~ i)))) ∙ (λ i → ΩKn+1→Kn ((Kn→ΩKn+1 n x) ∙ Iso.rightInv (Iso3-Kn-ΩKn+1 n) ((Kn→ΩKn+1 n y ∙ Kn→ΩKn+1 n z)) (~ i))) commₖ : {n : ℕ} (x y : coHomK n) → (x +ₖ y) ≡ (y +ₖ x) commₖ {n = n} x y i = ΩKn+1→Kn (EH-instance (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i) where EH-instance : (p q : typ (Ω ((∥ S₊ (suc n) ∥ (2 + (suc n))) , ∣ north ∣))) → p ∙ q ≡ q ∙ p EH-instance = transport (λ i → (p q : K-Id n (~ i)) → p ∙ q ≡ q ∙ p) λ p q → Eckmann-Hilton 0 p q where K-Id : (n : HLevel) → typ (Ω (hLevelTrunc (3 + n) (S₊ (1 + n)) , ∣ north ∣)) ≡ typ ((Ω^ 2) (hLevelTrunc (4 + n) (S₊ (2 + n)) , ∣ north ∣ )) K-Id n = (λ i → typ (Ω (isoToPath (Iso2-Kn-ΩKn+1 (suc n)) i , hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → transportRefl (λ j → ∣ rCancel (merid north) k j ∣) k}) (transp (λ j → isoToPath (Iso2-Kn-ΩKn+1 (suc n)) (i ∧ j)) (~ i) ∣ north ∣)))) rUnitₖ' : {n : ℕ} (x : coHomK n) → x +ₖ 0ₖ ≡ x rUnitₖ' {n = n} x = commₖ x 0ₖ ∙ lUnitₖ x -distrₖ : {n : ℕ} → (x y : coHomK n) → -ₖ (x +ₖ y) ≡ (-ₖ x) +ₖ (-ₖ y) -distrₖ {n = n} x y = ((λ i → ΩKn+1→Kn (sym (Kn→ΩKn+1 n (ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y))))) ∙∙ (λ i → ΩKn+1→Kn (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn (symDistr (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i))) ∙∙ (λ i → ΩKn+1→Kn (Iso.rightInv (Iso3-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n y)) (~ i) ∙ (Iso.rightInv (Iso3-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x)) (~ i)))) ∙∙ commₖ (-ₖ y) (-ₖ x) ---- Group structure of cohomology groups --- _+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+ₕ_ = sElim2 (λ _ _ → §) λ a b → ∣ (λ x → a x +ₖ b x) ∣₂ -ₕ : {n : ℕ} → coHom n A → coHom n A -ₕ = sRec § λ a → ∣ (λ x → -ₖ a x) ∣₂ 0ₕ : {n : ℕ} → coHom n A 0ₕ = ∣ (λ _ → 0ₖ) ∣₂ rUnitₕ : {n : ℕ} (x : coHom n A) → x +ₕ 0ₕ ≡ x rUnitₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitₖ (a x)) i ∣₂ lUnitₕ : {n : ℕ} (x : coHom n A) → 0ₕ +ₕ x ≡ x lUnitₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitₖ (a x)) i ∣₂ rCancelₕ : {n : ℕ} (x : coHom n A) → x +ₕ (-ₕ x) ≡ 0ₕ rCancelₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelₖ (a x)) i ∣₂ lCancelₕ : {n : ℕ} (x : coHom n A) → (-ₕ x) +ₕ x ≡ 0ₕ lCancelₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelₖ (a x)) i ∣₂ assocₕ : {n : ℕ} (x y z : coHom n A) → ((x +ₕ y) +ₕ z) ≡ (x +ₕ (y +ₕ z)) assocₕ = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocₖ (a x) (b x) (c x)) i ∣₂ commₕ : {n : ℕ} (x y : coHom n A) → (x +ₕ y) ≡ (y +ₕ x) commₕ {n = n} = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commₖ (a x) (b x)) i ∣₂ -- Proof that rUnitₖ and lUnitₖ agree on 0ₖ. Needed for Mayer-Vietoris. rUnitlUnit0 : {n : ℕ} → rUnitₖ {n = n} 0ₖ ≡ lUnitₖ 0ₖ rUnitlUnit0 {n = zero} = refl rUnitlUnit0 {n = suc n} = (assoc (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) 0ₖ ∙ Kn→ΩKn+10ₖ (suc n) i)) (cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) (Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) 0ₖ)) ∙∙ (λ j → helper j ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) 0ₖ) ∙∙ sym (assoc (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) i ∙ Kn→ΩKn+1 (suc n) 0ₖ)) (cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) (Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) 0ₖ)) where helper : (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) 0ₖ ∙ Kn→ΩKn+10ₖ (suc n) i)) ∙ (cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) ≡ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) i ∙ Kn→ΩKn+1 (suc n) 0ₖ)) ∙ (cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) helper = ((λ j → lUnit (rUnit ((λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) 0ₖ ∙ Kn→ΩKn+10ₖ (suc n) i))) j) j ∙ rUnit (cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) j) ∙∙ (λ j → ((λ z → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) ∣ north ∣ ∙ (λ i → ∣ rCancel (merid north) (z ∧ j) i ∣))) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) 0ₖ ∙ Kn→ΩKn+10ₖ (suc n) (i ∨ j))) ∙ λ z → ΩKn+1→Kn (((λ i → ∣ rCancel (merid north) (z ∧ j) i ∣)) ∙ refl)) ∙ cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+10ₖ (suc n) j))) ∙ λ z → ΩKn+1→Kn (λ i → ∣ rCancel (merid north) ((~ z) ∧ j) i ∣)) ∙∙ (λ j → (((λ z → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) ∣ north ∣ ∙ (λ i → ∣ rCancel (merid north) z i ∣)))) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) 0ₖ ∙ refl)) ∙ λ z → ΩKn+1→Kn ((λ i → ∣ rCancel (merid north) z i ∣) ∙ λ i → ∣ rCancel (merid north) ((~ z) ∨ (~ j)) i ∣)) ∙ cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+10ₖ (suc n) (~ j)))) ∙ λ z → ΩKn+1→Kn (λ i → ∣ rCancel (merid north) (~ z ∧ (~ j)) i ∣))) ∙∙ (λ j → ((λ z → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) ∣ north ∣ ∙ λ i → ∣ rCancel (merid north) (z ∧ (~ j)) i ∣)) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) (i ∧ j) ∙ Kn→ΩKn+10ₖ (suc n) (~ j))) ∙ λ z → ΩKn+1→Kn ((λ i → ∣ rCancel (merid north) (z ∨ j) i ∣) ∙ λ i → ∣ rCancel (merid north) (~ z ∧ ~ j) i ∣)) ∙ rUnit (cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) (~ j)) ∙∙ (λ j → lUnit (rUnit (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) i ∙ Kn→ΩKn+1 (suc n) 0ₖ)) (~ j)) (~ j) ∙ cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 (suc n) 0ₖ)))) ---- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) --- +ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A +ₕ∙ zero = sElim2 (λ _ _ → §) λ { (a , pa) (b , pb) → ∣ (λ x → a x +ₖ b x) , (λ i → (pa i +ₖ pb i)) ∣₂ } +ₕ∙ (suc n) = sElim2 (λ _ _ → §) λ { (a , pa) (b , pb) → ∣ (λ x → a x +ₖ b x) , (λ i → pa i +ₖ pb i) ∙ lUnitₖ 0ₖ ∣₂ } -ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A -ₕ∙ zero = sRec § λ {(a , pt) → ∣ (λ x → -ₖ a x ) , (λ i → -ₖ (pt i)) ∣₂} -ₕ∙ (suc n) = sRec § λ {(a , pt) → ∣ (λ x → -ₖ a x ) , (λ i → -ₖ (pt i)) ∙ (λ i → ΩKn+1→Kn (sym (Kn→ΩKn+10ₖ (suc n) i))) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) (~ i))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 (suc n)) ∣ north ∣ ∣₂} 0ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A 0ₕ∙ zero = ∣ (λ _ → 0ₖ) , refl ∣₂ 0ₕ∙ (suc n) = ∣ (λ _ → 0ₖ) , refl ∣₂ open IsSemigroup open IsMonoid open Group coHomGr : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → Group Carrier (coHomGr n A) = coHom n A 0g (coHomGr n A) = 0ₕ Group._+_ (coHomGr n A) = _+ₕ_ Group.- coHomGr n A = -ₕ is-set (isSemigroup (IsGroup.isMonoid (Group.isGroup (coHomGr n A)))) = § IsSemigroup.assoc (isSemigroup (IsGroup.isMonoid (Group.isGroup (coHomGr n A)))) x y z = sym (assocₕ x y z) identity (IsGroup.isMonoid (Group.isGroup (coHomGr n A))) x = (rUnitₕ x) , (lUnitₕ x) IsGroup.inverse (Group.isGroup (coHomGr n A)) x = (rCancelₕ x) , (lCancelₕ x) ×coHomGr : (n : ℕ) (A : Type ℓ) (B : Type ℓ') → Group ×coHomGr n A B = dirProd (coHomGr n A) (coHomGr n B) coHomFun : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n : ℕ) (f : A → B) → coHom n B → coHom n A coHomFun n f = sRec § λ β → ∣ β ∘ f ∣₂ --- ΩKₙ is commutative isCommΩK : (n : ℕ) → (p q : typ (Ω (coHomK n , coHom-pt n))) → p ∙ q ≡ q ∙ p isCommΩK zero p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK (suc n) p q = cong₂ _∙_ (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) p)) (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) q)) ∙∙ (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) (Kn→ΩKn+1 n (ΩKn+1→Kn p) ∙ Kn→ΩKn+1 n (ΩKn+1→Kn q))) ∙∙ cong (Kn→ΩKn+1 n) (commₖ (ΩKn+1→Kn p) (ΩKn+1→Kn q)) ∙∙ Iso.rightInv (Iso3-Kn-ΩKn+1 n) (Kn→ΩKn+1 n (ΩKn+1→Kn q) ∙ Kn→ΩKn+1 n (ΩKn+1→Kn p))) ∙∙ sym (cong₂ _∙_ (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) q)) (sym (Iso.rightInv (Iso3-Kn-ΩKn+1 n) p))) --- the loopspace of Kₙ is commutative regardless of base isCommΩK-based : (n : ℕ) (x : coHomK n) (p q : x ≡ x) → p ∙ q ≡ q ∙ p isCommΩK-based zero x p q = isSetInt _ _ (p ∙ q) (q ∙ p) isCommΩK-based (suc n) x p q = sym (transport⁻Transport (typId x) (p ∙ q)) ∙∙ (cong (transport (λ i → typId x (~ i))) (transpTypId p q) ∙∙ (λ i → transport (λ i → typId x (~ i)) (isCommΩK (suc n) (transport (λ i → typId x i) p) (transport (λ i → typId x i) q) i)) ∙∙ cong (transport (λ i → typId x (~ i))) (sym (transpTypId q p))) ∙∙ transport⁻Transport (typId x) (q ∙ p) where congIsoHelper : (x : coHomK (suc n)) → Iso (coHomK (suc n)) (coHomK (suc n)) Iso.fun (congIsoHelper x) = _+ₖ x Iso.inv (congIsoHelper x) = _+ₖ (-ₖ x) Iso.rightInv (congIsoHelper x) a = assocₖ a (-ₖ x) x ∙∙ cong (a +ₖ_) (lCancelₖ x) ∙∙ rUnitₖ a Iso.leftInv (congIsoHelper x) a = assocₖ a x (-ₖ x) ∙∙ cong (a +ₖ_) (rCancelₖ x) ∙∙ rUnitₖ a typId : (x : coHomK (suc n)) → (x ≡ x) ≡ Path (coHomK (suc n)) 0ₖ 0ₖ typId x = isoToPath (congIso (invIso (congIsoHelper x))) ∙ λ i → rCancelₖ x i ≡ rCancelₖ x i transpTypId : (p q : (x ≡ x)) → transport (λ i → typId x i) (p ∙ q) ≡ transport (λ i → typId x i) p ∙ transport (λ i → typId x i) q transpTypId p q = ((substComposite (λ x → x) (isoToPath ((congIso (invIso (congIsoHelper x))))) (λ i → rCancelₖ x i ≡ rCancelₖ x i) (p ∙ q)) ∙∙ (λ i → transport (λ i → rCancelₖ x i ≡ rCancelₖ x i) (transportRefl (congFunct (_+ₖ (-ₖ x)) p q i) i)) ∙∙ overPathFunct (cong (_+ₖ (-ₖ x)) p) (cong (_+ₖ (-ₖ x)) q) (rCancelₖ x)) ∙∙ cong₂ (λ y z → transport (λ i → rCancelₖ x i ≡ rCancelₖ x i) y ∙ transport (λ i → rCancelₖ x i ≡ rCancelₖ x i) z) (sym (transportRefl (cong (_+ₖ (-ₖ x)) p))) (sym (transportRefl (cong (_+ₖ (-ₖ x)) q))) ∙∙ cong₂ (_∙_) (sym (substComposite (λ x → x) (isoToPath ((congIso (invIso (congIsoHelper x))))) (λ i → rCancelₖ x i ≡ rCancelₖ x i) p)) (sym (substComposite (λ x → x) (isoToPath ((congIso (invIso (congIsoHelper x))))) (λ i → rCancelₖ x i ≡ rCancelₖ x i) q)) addLemma : (a b : Int) → a +ₖ b ≡ (a ℤ+ b) addLemma a b = (cong ΩKn+1→Kn (sym (congFunct ∣_∣ (looper a) (looper b))) ∙∙ cong₂ (λ x y → ΩKn+1→Kn (cong ∣_∣ (x ∙ y))) (looper≡looper2 a) (looper≡looper2 b) ∙∙ (λ i → ΩKn+1→Kn (cong ∣_∣ (cong SuspBool→S1 (cong S¹→SuspBool (intLoop a)) ∙ cong SuspBool→S1 (cong S¹→SuspBool (intLoop b)))))) ∙∙ (cong (λ x → ΩKn+1→Kn (cong ∣_∣ x)) (sym (congFunct SuspBool→S1 (cong S¹→SuspBool (intLoop a)) (cong S¹→SuspBool (intLoop b)))) ∙∙ cong (λ x → ΩKn+1→Kn (cong ∣_∣ (cong SuspBool→S1 x))) (sym (congFunct S¹→SuspBool (intLoop a) (intLoop b))) ∙∙ cong (λ x → ΩKn+1→Kn (cong ∣_∣ (cong SuspBool→S1 (cong S¹→SuspBool x)))) (intLoop-hom a b)) ∙∙ (cong (λ x → ΩKn+1→Kn (cong ∣_∣ x)) (sym (looper≡looper2 (a ℤ+ b))) ∙ Iso.leftInv (Iso3-Kn-ΩKn+1 zero) (a ℤ+ b))
{ "alphanum_fraction": 0.5080413069, "avg_line_length": 51.2167630058, "ext": "agda", "hexsha": "36cccdbda218f72e3974757c2c8ab33dcb71c52e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "knrafto/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "knrafto/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Properties.agda", "max_line_length": 183, "max_stars_count": null, "max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "knrafto/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8425, "size": 17721 }
{-# OPTIONS --warning=error #-} -- Useless private module Issue476a where A : Set₁ private A = Set
{ "alphanum_fraction": 0.6634615385, "avg_line_length": 10.4, "ext": "agda", "hexsha": "9ee9cf422b36624d4935eb1aa07a041e8658f085", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue476a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue476a.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue476a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 104 }
open import Relation.Binary.Core module BBHeap.Push {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Equality _≤_ open import BBHeap.Equality.Properties _≤_ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Bound.Lower.Order.Properties _≤_ trans≤ open import Data.Sum renaming (_⊎_ to _∨_) open import Order.Total _≤_ tot≤ mutual push⋘ : {b : Bound}{x y : A}{l r : BBHeap (val y)} → LeB b (val x) → LeB b (val y) → l ⋘ r → BBHeap b push⋘ b≤x _ lf⋘ = left b≤x lf⋘ push⋘ {x = x} b≤x b≤y (ll⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = left b≤x (ll⋘ (lexy x≤y₁) (lexy (trans≤ x≤y₁ y₁≤y₂)) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋘r' = ll⋘ (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; pl'⋘r' = lemma≈⋘ pl'≈l' l'⋘r' in left (transLeB b≤y y≤y₁) pl'⋘r' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = left b≤x (ll⋘ (lexy (trans≤ x≤y₂ y₂≤y₁)) (lexy x≤y₂) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋘r' = ll⋘ (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; l'⋘pr' = lemma⋘≈ l'⋘r' r'≈pr' in left (transLeB b≤y y≤y₂) l'⋘pr' push⋘ {x = x} b≤x b≤y (lr⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = left b≤x (lr⋘ (lexy x≤y₁) (lexy (trans≤ x≤y₁ y₁≤y₂)) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'≈l' = lemma-push⋙ (lexy y₁≤x) (lexy refl≤) l₁⋙r₁ ; l'⋘r' = lr⋘ (lexy refl≤) (lexy y₁≤y₂) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; pl'⋘r' = lemma≈⋘ pl'≈l' l'⋘r' in left (transLeB b≤y y≤y₁) pl'⋘r' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = left b≤x (lr⋘ (lexy (trans≤ x≤y₂ y₂≤y₁)) (lexy x≤y₂) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋘r' = lr⋘ (lexy y₂≤y₁) (lexy refl≤) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; l'⋘pr' = lemma⋘≈ l'⋘r' r'≈pr' in left (transLeB b≤y y≤y₂) l'⋘pr' push⋙ : {b : Bound}{x y : A}{l r : BBHeap (val y)} → LeB b (val x) → LeB b (val y) → l ⋙ r → BBHeap b push⋙ {x = x} b≤x b≤y (⋙lf {x = z} y≤z) with tot≤ x z ... | inj₁ x≤z = right b≤x (⋙lf (lexy x≤z)) ... | inj₂ z≤x = right (transLeB b≤y y≤z) (⋙lf (lexy z≤x)) push⋙ {x = x} b≤x b≤y (⋙rl {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = right b≤x (⋙rl (lexy x≤y₁) (lexy (trans≤ x≤y₁ y₁≤y₂)) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋙r' = ⋙rl (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; pl'⋙r' = lemma≈⋙ pl'≈l' l'⋙r' in right (transLeB b≤y y≤y₁) pl'⋙r' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = right b≤x (⋙rl (lexy (trans≤ x≤y₂ y₂≤y₁)) (lexy x≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋙r' = ⋙rl (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; l'⋙pr' = lemma⋙≈ l'⋙r' r'≈pr' in right (transLeB b≤y y≤y₂) l'⋙pr' push⋙ {x = x} b≤x b≤y (⋙rr {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = right b≤x (⋙rr (lexy x≤y₁) (lexy (trans≤ x≤y₁ y₁≤y₂)) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋙r' = ⋙rr (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; pl'⋙r' = lemma≈⋙ pl'≈l' l'⋙r' in right (transLeB b≤y y≤y₁) pl'⋙r' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = right b≤x (⋙rr (lexy (trans≤ x≤y₂ y₂≤y₁)) (lexy x≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'≈r' = lemma-push⋙ (lexy y₂≤x) (lexy refl≤) l₂⋙r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋙r' = ⋙rr (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; l'⋙pr' = lemma⋙≈ l'⋙r' r'≈pr' in right (transLeB b≤y y≤y₂) l'⋙pr' lemma-push⋘ : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋘r : l ⋘ r) → push⋘ b≤x b≤y l⋘r ≈ left b≤y l⋘r lemma-push⋘ b≤x b≤y lf⋘ = ≈left b≤x b≤y lf⋘ lf⋘ ≈leaf ≈leaf lemma-push⋘ {x = x} b≤x b≤y (ll⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = let l⋘r = ll⋘ y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; x≤y₂ = lexy (trans≤ x≤y₁ y₁≤y₂) ; l'⋘r' = ll⋘ (lexy x≤y₁) x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; l'≈l = ≈left (lexy x≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈left x≤y₂ y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈left b≤x b≤y l'⋘r' l⋘r l'≈l r'≈r ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let l⋘r = ll⋘ y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋘r' = ll⋘ (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; pl'⋘r' = lemma≈⋘ pl'≈l' l'⋘r' ; l'≈l = ≈left (lexy refl≤) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; pl'≈l = trans≈ pl'≈l' l'≈l ; r'≈r = ≈left (lexy y₁≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈left (transLeB b≤y y≤y₁) b≤y pl'⋘r' l⋘r pl'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = let l⋘r = ll⋘ y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; x≤y₁ = lexy (trans≤ x≤y₂ y₂≤y₁) ; l'⋘r' = ll⋘ x≤y₁ (lexy x≤y₂) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; r'≈r = ≈left (lexy x≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ ; l'≈l = ≈left x≤y₁ y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ in ≈left b≤x b≤y l'⋘r' l⋘r l'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let l⋘r = ll⋘ y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋘r' = ll⋘ (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂ ; l'⋘pr' = lemma⋘≈ l'⋘r' r'≈pr' ; r'≈r = ≈left (lexy refl≤) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ ; pr'≈r = trans≈ pr'≈r' r'≈r ; l'≈l = ≈left (lexy y₂≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ in ≈left (transLeB b≤y y≤y₂) b≤y l'⋘pr' l⋘r l'≈l pr'≈r lemma-push⋘ {x = x} b≤x b≤y (lr⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = let l⋘r = lr⋘ y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; x≤y₂ = lexy (trans≤ x≤y₁ y₁≤y₂) ; l'⋘r' = lr⋘ (lexy x≤y₁) x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; l'≈l = ≈right (lexy x≤y₁) y≤y₁ l₁⋙r₁ l₁⋙r₁ refl≈ refl≈ ; r'≈r = ≈left x≤y₂ y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈left b≤x b≤y l'⋘r' l⋘r l'≈l r'≈r ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let l⋘r = lr⋘ y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; pl'≈l' = lemma-push⋙ (lexy y₁≤x) (lexy refl≤) l₁⋙r₁ ; l'⋘r' = lr⋘ (lexy refl≤) (lexy y₁≤y₂) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; pl'⋘r' = lemma≈⋘ pl'≈l' l'⋘r' ; l'≈l = ≈right (lexy refl≤) y≤y₁ l₁⋙r₁ l₁⋙r₁ refl≈ refl≈ ; pl'≈l = trans≈ pl'≈l' l'≈l ; r'≈r = ≈left (lexy y₁≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈left (transLeB b≤y y≤y₁) b≤y pl'⋘r' l⋘r pl'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = let l⋘r = lr⋘ y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; x≤y₁ = lexy (trans≤ x≤y₂ y₂≤y₁) ; l'⋘r' = lr⋘ x≤y₁ (lexy x≤y₂) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; l'≈l = ≈right x≤y₁ y≤y₁ l₁⋙r₁ l₁⋙r₁ refl≈ refl≈ ; r'≈r = ≈left (lexy x≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈left b≤x b≤y l'⋘r' l⋘r l'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let l⋘r = lr⋘ y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋘r' = lr⋘ (lexy y₂≤y₁) (lexy refl≤) l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂ ; l'⋘pr' = lemma⋘≈ l'⋘r' r'≈pr' ; l'≈l = ≈right (lexy y₂≤y₁) y≤y₁ l₁⋙r₁ l₁⋙r₁ refl≈ refl≈ ; r'≈r = ≈left (lexy refl≤) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ ; pr'≈r = trans≈ pr'≈r' r'≈r in ≈left (transLeB b≤y y≤y₂) b≤y l'⋘pr' l⋘r l'≈l pr'≈r lemma-push⋙ : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋙r : l ⋙ r) → push⋙ b≤x b≤y l⋙r ≈ right b≤y l⋙r lemma-push⋙ {x = x} b≤x b≤y (⋙lf {x = z} y≤z) with tot≤ x z ... | inj₁ x≤z = ≈right b≤x b≤y (⋙lf (lexy x≤z)) (⋙lf y≤z) (≈left (lexy x≤z) y≤z lf⋘ lf⋘ ≈leaf ≈leaf) ≈leaf ... | inj₂ z≤x = ≈right (transLeB b≤y y≤z) b≤y (⋙lf (lexy z≤x)) (⋙lf y≤z) (≈left (lexy z≤x) y≤z lf⋘ lf⋘ ≈leaf ≈leaf) ≈leaf lemma-push⋙ {x = x} b≤x b≤y (⋙rl {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = let l⋙r = ⋙rl y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; x≤y₂ = lexy (trans≤ x≤y₁ y₁≤y₂) ; l'⋙r' = ⋙rl (lexy x≤y₁) x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; l'≈l = ≈left (lexy x≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈left x≤y₂ y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈right b≤x b≤y l'⋙r' l⋙r l'≈l r'≈r ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let l⋙r = ⋙rl y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋙r' = ⋙rl (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; pl'⋙r' = lemma≈⋙ pl'≈l' l'⋙r' ; l'≈l = ≈left (lexy refl≤) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; pl'≈l = trans≈ pl'≈l' l'≈l ; r'≈r = ≈left (lexy y₁≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈right (transLeB b≤y y≤y₁) b≤y pl'⋙r' l⋙r pl'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = let l⋙r = ⋙rl y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; x≤y₁ = lexy (trans≤ x≤y₂ y₂≤y₁) ; l'⋙r' = ⋙rl x≤y₁ (lexy x≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; l'≈l = ≈left x≤y₁ y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈left (lexy x≤y₂) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ in ≈right b≤x b≤y l'⋙r' l⋙r l'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let l⋙r = ⋙rl y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; pr'≈r' = lemma-push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋙r' = ⋙rl (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂ ; l'⋙pr' = lemma⋙≈ l'⋙r' r'≈pr' ; l'≈l = ≈left (lexy y₂≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈left (lexy refl≤) y≤y₂ l₂⋘r₂ l₂⋘r₂ refl≈ refl≈ ; pr'≈r = trans≈ pr'≈r' r'≈r in ≈right (transLeB b≤y y≤y₂) b≤y l'⋙pr' l⋙r l'≈l pr'≈r lemma-push⋙ {x = x} b≤x b≤y (⋙rr {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = let l⋙r = ⋙rr y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; x≤y₂ = lexy (trans≤ x≤y₁ y₁≤y₂) ; l'⋙r' = ⋙rr (lexy x≤y₁) x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; l'≈l = ≈left (lexy x≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈right x≤y₂ y≤y₂ l₂⋙r₂ l₂⋙r₂ refl≈ refl≈ in ≈right b≤x b≤y l'⋙r' l⋙r l'≈l r'≈r ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let l⋙r = ⋙rr y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; pl'≈l' = lemma-push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; l'⋙r' = ⋙rr (lexy refl≤) (lexy y₁≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; pl'⋙r' = lemma≈⋙ pl'≈l' l'⋙r' ; l'≈l = ≈left (lexy refl≤) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; pl'≈l = trans≈ pl'≈l' l'≈l ; r'≈r = ≈right (lexy y₁≤y₂) y≤y₂ l₂⋙r₂ l₂⋙r₂ refl≈ refl≈ in ≈right (transLeB b≤y y≤y₁) b≤y pl'⋙r' l⋙r pl'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = let l⋙r = ⋙rr y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; x≤y₁ = lexy (trans≤ x≤y₂ y₂≤y₁) ; l'⋙r' = ⋙rr x≤y₁ (lexy x≤y₂) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; l'≈l = ≈left x≤y₁ y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈right (lexy x≤y₂) y≤y₂ l₂⋙r₂ l₂⋙r₂ refl≈ refl≈ in ≈right b≤x b≤y l'⋙r' l⋙r l'≈l r'≈r ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let l⋙r = ⋙rr y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; pr'≈r' = lemma-push⋙ (lexy y₂≤x) (lexy refl≤) l₂⋙r₂ ; r'≈pr' = sym≈ pr'≈r' ; l'⋙r' = ⋙rr (lexy y₂≤y₁) (lexy refl≤) l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂ ; l'⋙pr' = lemma⋙≈ l'⋙r' r'≈pr' ; l'≈l = ≈left (lexy y₂≤y₁) y≤y₁ l₁⋘r₁ l₁⋘r₁ refl≈ refl≈ ; r'≈r = ≈right (lexy refl≤) y≤y₂ l₂⋙r₂ l₂⋙r₂ refl≈ refl≈ ; pr'≈r = trans≈ pr'≈r' r'≈r in ≈right (transLeB b≤y y≤y₂) b≤y l'⋙pr' l⋙r l'≈l pr'≈r push : {b : Bound}{x : A} → LeB b (val x) → BBHeap b → BBHeap b push _ leaf = leaf push b≤x (left b≤y l⋘r) = push⋘ b≤x b≤y l⋘r push b≤x (right b≤y l⋙r) = push⋙ b≤x b≤y l⋙r
{ "alphanum_fraction": 0.415586991, "avg_line_length": 63.0333333333, "ext": "agda", "hexsha": "54e36cfef89235c2980b367681e943dbddef9c94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Push.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Push.agda", "max_line_length": 149, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Push.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 8925, "size": 15128 }
{-# OPTIONS --allow-unsolved-metas #-} module Problem where open import OscarPrelude open import Sequent infix 13 _¶_ record Problem : Set where constructor _¶_ field inferences : List Sequent interest : Sequent open Problem public instance EqProblem : Eq Problem EqProblem = {!!} open import 𝓐ssertion instance 𝓐ssertionProblem : 𝓐ssertion Problem 𝓐ssertionProblem = record {} open import HasSatisfaction instance HasSatisfactionProblem : HasSatisfaction Problem HasSatisfaction._⊨_ HasSatisfactionProblem I (Φ⁺s ¶ Φ⁻) = I ⊨ Φ⁺s → I ⊨ Φ⁻ open import HasDecidableValidation instance HasDecidableValidationProblem : HasDecidableValidation Problem HasDecidableValidationProblem = {!!} open import HasSubstantiveDischarge instance HasSubstantiveDischargeProblemProblem : HasSubstantiveDischarge Problem Problem HasSubstantiveDischarge._≽_ HasSubstantiveDischargeProblemProblem (+s ¶ +) (-s ¶ -) = {!!} -- + ≽ - × +s ≽ -s open import HasDecidableSubstantiveDischarge instance HasDecidableSubstantiveDischargeProblemProblem : HasDecidableSubstantiveDischarge Problem Problem HasDecidableSubstantiveDischarge._≽?_ HasDecidableSubstantiveDischargeProblemProblem = {!!}
{ "alphanum_fraction": 0.8023549201, "avg_line_length": 27.0227272727, "ext": "agda", "hexsha": "b9045b986309fc9793c2a2aa06d89e38186ea9b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Problem.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Problem.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Problem.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 333, "size": 1189 }
-- Andreas, 2015-06-29 constructors should be covariant. -- They are already treated as strictly positive in the positivity checker. -- {-# OPTIONS -v tc.polarity:20 -v tc.proj.like:10 #-} -- {-# OPTIONS -v tc.conv.elim:25 -v tc.conv.atom:30 -v tc.conv.term:30 --show-implicit #-} open import Common.Size open import Common.Product -- U (i : contravariant) record U (i : Size) : Set where coinductive field out : (j : Size< i) → U j record Tup (P : Set × Set) : Set where constructor tup field fst : proj₁ P snd : proj₂ P Dup : Set → Set Dup X = Tup (X , X) -- This is accepted, as constructors are taken as monotone. data D : Set where c : Dup D → D fine : ∀{i} → Dup (U ∞) → Dup (U i) fine (tup x y) = tup x y -- This should also be accepted. -- (Additionally, it is the η-short form of fine.) cast : ∀{i} → Dup (U ∞) → Dup (U i) cast x = x
{ "alphanum_fraction": 0.6352128884, "avg_line_length": 24.8285714286, "ext": "agda", "hexsha": "5d505962f94fec13956783dbdb2ffaa96ba5df8c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/CovariantConstructors.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/CovariantConstructors.agda", "max_line_length": 91, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/CovariantConstructors.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 281, "size": 869 }
{-# OPTIONS --copatterns #-} module Copatterns where open import Common.Equality record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ pair : {A B : Set} → A → B → A × B fst (pair a b) = a snd (pair a b) = b swap : {A B : Set} → A × B → B × A fst (swap p) = snd p snd (swap p) = fst p swap3 : {A B C : Set} → A × (B × C) → C × (B × A) fst (swap3 t) = snd (snd t) fst (snd (swap3 t)) = fst (snd t) snd (snd (swap3 t)) = fst t -- should also work if we shuffle the clauses swap4 : {A B C D : Set} → A × (B × (C × D)) → D × (C × (B × A)) fst (snd (swap4 t)) = fst (snd (snd t)) snd (snd (snd (swap4 t))) = fst t fst (swap4 t) = snd (snd (snd t)) fst (snd (snd (swap4 t))) = fst (snd t) -- State monad example record State (S A : Set) : Set where constructor state field runState : S → A × S open State record Monad (M : Set → Set) : Set1 where constructor monad field return : {A : Set} → A → M A _>>=_ : {A B : Set} → M A → (A → M B) → M B open Monad {{...}} stateMonad : {S : Set} → Monad (State S) runState (return {{stateMonad}} a ) s = a , s runState (_>>=_ {{stateMonad}} m k) s₀ = let a , s₁ = runState m s₀ in runState (k a) s₁ leftId : {A B S : Set}(a : A)(k : A → State S B) → (return a >>= k) ≡ k a leftId a k = refl rightId : {A B S : Set}(m : State S A) → (m >>= return) ≡ m rightId m = refl assoc : {A B C S : Set}(m : State S A)(k : A → State S B)(l : B → State S C) → ((m >>= k) >>= l) ≡ (m >>= λ a → k a >>= l) assoc m k l = refl -- multiple clauses with abstractions fswap3 : {A B C X : Set} → (X → A) × ((X → B) × C) → (X → C) × (X → (B × A)) fst (fswap3 t) x = snd (snd t) fst (snd (fswap3 t) y) = fst (snd t) y snd (snd (fswap3 t) z) = fst t z
{ "alphanum_fraction": 0.5173961841, "avg_line_length": 25.0985915493, "ext": "agda", "hexsha": "e135b64a1e96f81583b7e8db60939ce646ce19e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/succeed/Copatterns.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/succeed/Copatterns.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/succeed/Copatterns.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 708, "size": 1782 }
{-# OPTIONS --universe-polymorphism #-} module TrustMe where open import Common.Equality postulate A : Set x y : A eq : x ≡ y eq = primTrustMe does-not-evaluate-to-refl : sym (sym eq) ≡ eq does-not-evaluate-to-refl = refl
{ "alphanum_fraction": 0.678111588, "avg_line_length": 14.5625, "ext": "agda", "hexsha": "73388631b38ef84626e47aa947d6ba6d8dde9ff5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/TrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/TrustMe.agda", "max_line_length": 45, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/TrustMe.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 75, "size": 233 }
{-# OPTIONS --allow-unsolved-metas #-} module TermCode where open import OscarPrelude open import VariableName open import FunctionName open import Arity open import Term open import Vector data TermCode : Set where variable : VariableName → TermCode function : FunctionName → Arity → TermCode termCode-function-inj₁ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → 𝑓₁ ≡ 𝑓₂ termCode-function-inj₁ refl = refl termCode-function-inj₂ : ∀ {𝑓₁ 𝑓₂ arity₁ arity₂} → TermCode.function 𝑓₁ arity₁ ≡ function 𝑓₂ arity₂ → arity₁ ≡ arity₂ termCode-function-inj₂ refl = refl instance EqTermCode : Eq TermCode Eq._==_ EqTermCode (variable 𝑥₁) (variable 𝑥₂) with 𝑥₁ ≟ 𝑥₂ … | yes 𝑥₁≡𝑥₂ rewrite 𝑥₁≡𝑥₂ = yes refl … | no 𝑥₁≢𝑥₂ = no (λ { refl → 𝑥₁≢𝑥₂ refl}) Eq._==_ EqTermCode (variable x) (function x₁ x₂) = no (λ ()) Eq._==_ EqTermCode (function x x₁) (variable x₂) = no (λ ()) Eq._==_ EqTermCode (function 𝑓₁ 𝑎₁) (function 𝑓₂ 𝑎₂) = decEq₂ termCode-function-inj₁ termCode-function-inj₂ (𝑓₁ ≟ 𝑓₂) (𝑎₁ ≟ 𝑎₂) mutual encodeTerm : Term → List TermCode encodeTerm (variable 𝑥) = variable 𝑥 ∷ [] encodeTerm (function 𝑓 (⟨_⟩ {arity} τs)) = function 𝑓 arity ∷ encodeTerms τs encodeTerms : {arity : Arity} → Vector Term arity → List TermCode encodeTerms ⟨ [] ⟩ = [] encodeTerms ⟨ τ ∷ τs ⟩ = encodeTerm τ ++ encodeTerms ⟨ τs ⟩ mutual decodeTerm : Nat → StateT (List TermCode) Maybe Term decodeTerm zero = lift nothing decodeTerm (suc n) = do caseM get of λ { [] → lift nothing ; (variable 𝑥 ∷ _) → modify (drop 1) ~| return (variable 𝑥) ; (function 𝑓 arity ∷ _) → modify (drop 1) ~| decodeFunction n 𝑓 arity } decodeFunction : Nat → FunctionName → Arity → StateT (List TermCode) Maybe Term decodeFunction n 𝑓 arity = do τs ← decodeTerms n arity -| return (function 𝑓 ⟨ τs ⟩) decodeTerms : Nat → (arity : Arity) → StateT (List TermCode) Maybe (Vector Term arity) decodeTerms n ⟨ zero ⟩ = return ⟨ [] ⟩ decodeTerms n ⟨ suc arity ⟩ = do τ ← decodeTerm n -| τs ← decodeTerms n ⟨ arity ⟩ -| return ⟨ τ ∷ vector τs ⟩ .decode-is-inverse-of-encode : ∀ τ → runStateT (decodeTerm ∘ length $ encodeTerm τ) (encodeTerm τ) ≡ (just $ τ , []) decode-is-inverse-of-encode (variable 𝑥) = refl decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ [] ⟩ ⟩) = {!!} decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ variable 𝑥 ∷ τs ⟩ ⟩) = {!!} decode-is-inverse-of-encode (function 𝑓 ⟨ ⟨ function 𝑓' τs' ∷ τs ⟩ ⟩) = {!!} module ExampleEncodeDecode where example-Term : Term example-Term = (function ⟨ 2 ⟩ ⟨ ⟨ ( variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] ) ⟩ ⟩ ) -- function ⟨ 2 ⟩ ⟨ 3 ⟩ ∷ variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ 1 ⟩ ∷ variable ⟨ 2 ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] example-TermCodes : List TermCode example-TermCodes = encodeTerm example-Term example-TermDecode : Maybe (Term × List TermCode) example-TermDecode = runStateT (decodeTerm (length example-TermCodes)) example-TermCodes example-verified : example-TermDecode ≡ (just $ example-Term , []) example-verified = refl example-bad : runStateT (decodeTerm 2) (function ⟨ 2 ⟩ ⟨ 2 ⟩ ∷ variable ⟨ 0 ⟩ ∷ []) ≡ nothing example-bad = refl
{ "alphanum_fraction": 0.6382592928, "avg_line_length": 35.2021276596, "ext": "agda", "hexsha": "2948e814c478e47b4d98b27593f53631fe215043", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/TermCode.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/TermCode.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/TermCode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1195, "size": 3309 }
{-# OPTIONS --without-K --safe #-} module Definition.Conversion.Stability where open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Weakening open import Definition.Conversion open import Definition.Conversion.Soundness open import Definition.Typed.Consequences.Syntactic open import Definition.Typed.Consequences.Substitution open import Tools.Product import Tools.PropositionalEquality as PE -- Equality of contexts. data ⊢_≡_ : (Γ Δ : Con Term) → Set where ε : ⊢ ε ≡ ε _∙_ : ∀ {Γ Δ A B} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → ⊢ Γ ∙ A ≡ Δ ∙ B mutual -- Syntactic validity and conversion substitution of a context equality. contextConvSubst : ∀ {Γ Δ} → ⊢ Γ ≡ Δ → ⊢ Γ × ⊢ Δ × Δ ⊢ˢ idSubst ∷ Γ contextConvSubst ε = ε , ε , id contextConvSubst (_∙_ {Γ} {Δ} {A} {B} Γ≡Δ A≡B) = let ⊢Γ , ⊢Δ , [σ] = contextConvSubst Γ≡Δ ⊢A , ⊢B = syntacticEq A≡B Δ⊢B = stability Γ≡Δ ⊢B in ⊢Γ ∙ ⊢A , ⊢Δ ∙ Δ⊢B , (wk1Subst′ ⊢Γ ⊢Δ Δ⊢B [σ] , conv (var (⊢Δ ∙ Δ⊢B) here) (PE.subst (λ x → _ ⊢ _ ≡ x) (wk1-tailId A) (wkEq (step id) (⊢Δ ∙ Δ⊢B) (stabilityEq Γ≡Δ (sym A≡B))))) -- Stability of types under equal contexts. stability : ∀ {A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A → Δ ⊢ A stability Γ≡Δ A = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitution A σ ⊢Δ in PE.subst (λ x → _ ⊢ x) (subst-id _) q -- Stability of type equality. stabilityEq : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ≡ B → Δ ⊢ A ≡ B stabilityEq Γ≡Δ A≡B = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitutionEq A≡B (substRefl σ) ⊢Δ in PE.subst₂ (λ x y → _ ⊢ x ≡ y) (subst-id _) (subst-id _) q -- Reflexivity of context equality. reflConEq : ∀ {Γ} → ⊢ Γ → ⊢ Γ ≡ Γ reflConEq ε = ε reflConEq (⊢Γ ∙ ⊢A) = reflConEq ⊢Γ ∙ refl ⊢A -- Symmetry of context equality. symConEq : ∀ {Γ Δ} → ⊢ Γ ≡ Δ → ⊢ Δ ≡ Γ symConEq ε = ε symConEq (Γ≡Δ ∙ A≡B) = symConEq Γ≡Δ ∙ stabilityEq Γ≡Δ (sym A≡B) -- Stability of terms. stabilityTerm : ∀ {t A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ∷ A → Δ ⊢ t ∷ A stabilityTerm Γ≡Δ t = let ⊢Γ , ⊢Δ , σ = contextConvSubst Γ≡Δ q = substitutionTerm t σ ⊢Δ in PE.subst₂ (λ x y → _ ⊢ x ∷ y) (subst-id _) (subst-id _) q -- Stability of term reduction. stabilityRedTerm : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ⇒ u ∷ A → Δ ⊢ t ⇒ u ∷ A stabilityRedTerm Γ≡Δ (conv d x) = conv (stabilityRedTerm Γ≡Δ d) (stabilityEq Γ≡Δ x) stabilityRedTerm Γ≡Δ (app-subst d x) = app-subst (stabilityRedTerm Γ≡Δ d) (stabilityTerm Γ≡Δ x) stabilityRedTerm Γ≡Δ (fst-subst ⊢F ⊢G t⇒) = fst-subst (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityRedTerm Γ≡Δ t⇒) stabilityRedTerm Γ≡Δ (snd-subst ⊢F ⊢G t⇒) = snd-subst (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityRedTerm Γ≡Δ t⇒) stabilityRedTerm Γ≡Δ (Σ-β₁ ⊢F ⊢G ⊢t ⊢u) = Σ-β₁ (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityTerm Γ≡Δ ⊢t) (stabilityTerm Γ≡Δ ⊢u) stabilityRedTerm Γ≡Δ (Σ-β₂ ⊢F ⊢G ⊢t ⊢u) = Σ-β₂ (stability Γ≡Δ ⊢F) (stability (Γ≡Δ ∙ refl ⊢F) ⊢G) (stabilityTerm Γ≡Δ ⊢t) (stabilityTerm Γ≡Δ ⊢u) stabilityRedTerm Γ≡Δ (β-red x x₁ x₂) = β-red (stability Γ≡Δ x) (stabilityTerm (Γ≡Δ ∙ refl x) x₁) (stabilityTerm Γ≡Δ x₂) stabilityRedTerm Γ≡Δ (natrec-subst x x₁ x₂ d) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-subst (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x) (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x₂) (stabilityRedTerm Γ≡Δ d) stabilityRedTerm Γ≡Δ (natrec-zero x x₁ x₂) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-zero (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x) (stabilityTerm Γ≡Δ x₁) (stabilityTerm Γ≡Δ x₂) stabilityRedTerm Γ≡Δ (natrec-suc x x₁ x₂ x₃) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-suc (stabilityTerm Γ≡Δ x) (stability (Γ≡Δ ∙ refl (ℕⱼ ⊢Γ)) x₁) (stabilityTerm Γ≡Δ x₂) (stabilityTerm Γ≡Δ x₃) stabilityRedTerm Γ≡Δ (Emptyrec-subst x d) = Emptyrec-subst (stability Γ≡Δ x) (stabilityRedTerm Γ≡Δ d) -- Stability of type reductions. stabilityRed : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ⇒ B → Δ ⊢ A ⇒ B stabilityRed Γ≡Δ (univ x) = univ (stabilityRedTerm Γ≡Δ x) -- Stability of type reduction closures. stabilityRed* : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A ⇒* B → Δ ⊢ A ⇒* B stabilityRed* Γ≡Δ (id x) = id (stability Γ≡Δ x) stabilityRed* Γ≡Δ (x ⇨ D) = stabilityRed Γ≡Δ x ⇨ stabilityRed* Γ≡Δ D -- Stability of term reduction closures. stabilityRed*Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t ⇒* u ∷ A → Δ ⊢ t ⇒* u ∷ A stabilityRed*Term Γ≡Δ (id x) = id (stabilityTerm Γ≡Δ x) stabilityRed*Term Γ≡Δ (x ⇨ d) = stabilityRedTerm Γ≡Δ x ⇨ stabilityRed*Term Γ≡Δ d mutual -- Stability of algorithmic equality of neutrals. stability~↑ : ∀ {k l A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ k ~ l ↑ A → Δ ⊢ k ~ l ↑ A stability~↑ Γ≡Δ (var-refl x x≡y) = var-refl (stabilityTerm Γ≡Δ x) x≡y stability~↑ Γ≡Δ (app-cong k~l x) = app-cong (stability~↓ Γ≡Δ k~l) (stabilityConv↑Term Γ≡Δ x) stability~↑ Γ≡Δ (fst-cong p~r) = fst-cong (stability~↓ Γ≡Δ p~r) stability~↑ Γ≡Δ (snd-cong p~r) = snd-cong (stability~↓ Γ≡Δ p~r) stability~↑ Γ≡Δ (natrec-cong x₁ x₂ x₃ k~l) = let ⊢Γ , _ , _ = contextConvSubst Γ≡Δ in natrec-cong (stabilityConv↑ (Γ≡Δ ∙ (refl (ℕⱼ ⊢Γ))) x₁) (stabilityConv↑Term Γ≡Δ x₂) (stabilityConv↑Term Γ≡Δ x₃) (stability~↓ Γ≡Δ k~l) stability~↑ Γ≡Δ (Emptyrec-cong x₁ k~l) = Emptyrec-cong (stabilityConv↑ Γ≡Δ x₁) (stability~↓ Γ≡Δ k~l) -- Stability of algorithmic equality of neutrals of types in WHNF. stability~↓ : ∀ {k l A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ k ~ l ↓ A → Δ ⊢ k ~ l ↓ A stability~↓ Γ≡Δ ([~] A D whnfA k~l) = [~] A (stabilityRed* Γ≡Δ D) whnfA (stability~↑ Γ≡Δ k~l) -- Stability of algorithmic equality of types. stabilityConv↑ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↑] B → Δ ⊢ A [conv↑] B stabilityConv↑ Γ≡Δ ([↑] A′ B′ D D′ whnfA′ whnfB′ A′<>B′) = [↑] A′ B′ (stabilityRed* Γ≡Δ D) (stabilityRed* Γ≡Δ D′) whnfA′ whnfB′ (stabilityConv↓ Γ≡Δ A′<>B′) -- Stability of algorithmic equality of types in WHNF. stabilityConv↓ : ∀ {A B Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ A [conv↓] B → Δ ⊢ A [conv↓] B stabilityConv↓ Γ≡Δ (U-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in U-refl ⊢Δ stabilityConv↓ Γ≡Δ (ℕ-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in ℕ-refl ⊢Δ stabilityConv↓ Γ≡Δ (Empty-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Empty-refl ⊢Δ stabilityConv↓ Γ≡Δ (Unit-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in Unit-refl ⊢Δ stabilityConv↓ Γ≡Δ (ne x) = ne (stability~↓ Γ≡Δ x) stabilityConv↓ Γ≡Δ (Π-cong F A<>B A<>B₁) = Π-cong (stability Γ≡Δ F) (stabilityConv↑ Γ≡Δ A<>B) (stabilityConv↑ (Γ≡Δ ∙ refl F) A<>B₁) stabilityConv↓ Γ≡Δ (Σ-cong F A<>B A<>B₁) = Σ-cong (stability Γ≡Δ F) (stabilityConv↑ Γ≡Δ A<>B) (stabilityConv↑ (Γ≡Δ ∙ refl F) A<>B₁) -- Stability of algorithmic equality of terms. stabilityConv↑Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↑] u ∷ A → Δ ⊢ t [conv↑] u ∷ A stabilityConv↑Term Γ≡Δ ([↑]ₜ B t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u) = [↑]ₜ B t′ u′ (stabilityRed* Γ≡Δ D) (stabilityRed*Term Γ≡Δ d) (stabilityRed*Term Γ≡Δ d′) whnfB whnft′ whnfu′ (stabilityConv↓Term Γ≡Δ t<>u) -- Stability of algorithmic equality of terms in WHNF. stabilityConv↓Term : ∀ {t u A Γ Δ} → ⊢ Γ ≡ Δ → Γ ⊢ t [conv↓] u ∷ A → Δ ⊢ t [conv↓] u ∷ A stabilityConv↓Term Γ≡Δ (ℕ-ins x) = ℕ-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (Empty-ins x) = Empty-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (Unit-ins x) = Unit-ins (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (ne-ins t u neN x) = ne-ins (stabilityTerm Γ≡Δ t) (stabilityTerm Γ≡Δ u) neN (stability~↓ Γ≡Δ x) stabilityConv↓Term Γ≡Δ (univ x x₁ x₂) = univ (stabilityTerm Γ≡Δ x) (stabilityTerm Γ≡Δ x₁) (stabilityConv↓ Γ≡Δ x₂) stabilityConv↓Term Γ≡Δ (zero-refl x) = let _ , ⊢Δ , _ = contextConvSubst Γ≡Δ in zero-refl ⊢Δ stabilityConv↓Term Γ≡Δ (suc-cong t<>u) = suc-cong (stabilityConv↑Term Γ≡Δ t<>u) stabilityConv↓Term Γ≡Δ (η-eq x x₁ y y₁ t<>u) = let ⊢F , ⊢G = syntacticΠ (syntacticTerm x) in η-eq (stabilityTerm Γ≡Δ x) (stabilityTerm Γ≡Δ x₁) y y₁ (stabilityConv↑Term (Γ≡Δ ∙ refl ⊢F) t<>u) stabilityConv↓Term Γ≡Δ (Σ-η ⊢p ⊢r pProd rProd fstConv sndConv) = Σ-η (stabilityTerm Γ≡Δ ⊢p) (stabilityTerm Γ≡Δ ⊢r) pProd rProd (stabilityConv↑Term Γ≡Δ fstConv) (stabilityConv↑Term Γ≡Δ sndConv) stabilityConv↓Term Γ≡Δ (η-unit [t] [u] tUnit uUnit) = let [t] = stabilityTerm Γ≡Δ [t] [u] = stabilityTerm Γ≡Δ [u] in η-unit [t] [u] tUnit uUnit
{ "alphanum_fraction": 0.5644771529, "avg_line_length": 39.0729613734, "ext": "agda", "hexsha": "1d8080ab44a38bbbfa32aab73e9e2ef4d74d52b0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Vtec234/logrel-mltt", "max_forks_repo_path": "Definition/Conversion/Stability.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Vtec234/logrel-mltt", "max_issues_repo_path": "Definition/Conversion/Stability.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Vtec234/logrel-mltt", "max_stars_repo_path": "Definition/Conversion/Stability.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4090, "size": 9104 }
------------------------------------------------------------------------ -- Some lemmas used by the other modules in this directory ------------------------------------------------------------------------ module Hinze.Lemmas where open import Stream.Programs open import Stream.Equality open import Codata.Musical.Notation hiding (∞) open import Relation.Binary.PropositionalEquality open import Function using (_∘_; flip) ------------------------------------------------------------------------ -- Some lemmas from Section 2.3 of Hinze's paper -- See also Stream.Equality.≊-η. ⋎-∞ : ∀ {A} (x : A) → x ∞ ⋎ x ∞ ≊ x ∞ ⋎-∞ x = refl ≺ ♯ ⋎-∞ x ⋎-map : ∀ {A B} (⊟ : A → B) s t → ⊟ · s ⋎ ⊟ · t ≊ ⊟ · (s ⋎ t) ⋎-map ⊟ s t with whnf s ⋎-map ⊟ s t | x ≺ s′ = refl ≺ ♯ ⋎-map ⊟ t s′ abide-law : ∀ {A B C} (⊞ : A → B → C) s₁ s₂ t₁ t₂ → s₁ ⟨ ⊞ ⟩ s₂ ⋎ t₁ ⟨ ⊞ ⟩ t₂ ≊ (s₁ ⋎ t₁) ⟨ ⊞ ⟩ (s₂ ⋎ t₂) abide-law ⊞ s₁ s₂ t₁ t₂ with whnf s₁ | whnf s₂ abide-law ⊞ s₁ s₂ t₁ t₂ | x₁ ≺ s₁′ | x₂ ≺ s₂′ = refl ≺ ♯ abide-law ⊞ t₁ t₂ s₁′ s₂′ ------------------------------------------------------------------------ -- Other lemmas tailP-cong : ∀ {A} (xs ys : Prog A) → xs ≊ ys → tailP xs ≊ tailP ys tailP-cong xs ys xs≈ys with whnf xs | whnf ys | ≅⇒≃ xs≈ys tailP-cong xs ys xs≈ys | x ≺ xs′ | y ≺ ys′ | x≡y ≺ xs≈ys′ = xs≈ys′ map-fusion : ∀ {A B C} (f : B → C) (g : A → B) xs → f · g · xs ≊ (f ∘ g) · xs map-fusion f g xs with whnf xs map-fusion f g xs | x ≺ xs′ = refl ≺ ♯ map-fusion f g xs′ zip-const-is-map : ∀ {A B C} (_∙_ : A → B → C) xs y → xs ⟨ _∙_ ⟩ y ∞ ≊ (λ x → x ∙ y) · xs zip-const-is-map _∙_ xs y with whnf xs zip-const-is-map _∙_ xs y | x ≺ xs′ = refl ≺ ♯ zip-const-is-map _∙_ xs′ y zip-flip : ∀ {A B C} (∙ : A → B → C) s t → s ⟨ ∙ ⟩ t ≊ t ⟨ flip ∙ ⟩ s zip-flip ∙ s t with whnf s | whnf t zip-flip ∙ s t | x ≺ s′ | y ≺ t′ = refl ≺ ♯ zip-flip ∙ s′ t′ zip-⋎-const : ∀ {A B C} (∙ : A → B → C) s t x → (s ⋎ t) ⟨ ∙ ⟩ x ∞ ≊ s ⟨ ∙ ⟩ x ∞ ⋎ t ⟨ ∙ ⟩ x ∞ zip-⋎-const _∙_ s t x = (s ⋎ t) ⟨ _∙_ ⟩ x ∞ ≊⟨ zip-const-is-map _ (s ⋎ t) _ ⟩ (λ y → y ∙ x) · (s ⋎ t) ≊⟨ ≅-sym (⋎-map (λ y → y ∙ x) s t) ⟩ (λ y → y ∙ x) · s ⋎ (λ y → y ∙ x) · t ≊⟨ ≅-sym (⋎-cong (s ⟨ _∙_ ⟩ x ∞) ((λ y → y ∙ x) · s) (zip-const-is-map _∙_ s x) _ _ (zip-const-is-map _∙_ t x)) ⟩ s ⟨ _∙_ ⟩ x ∞ ⋎ t ⟨ _∙_ ⟩ x ∞ ∎ zip-const-⋎ : ∀ {A B C} (∙ : A → B → C) x s t → x ∞ ⟨ ∙ ⟩ (s ⋎ t) ≊ x ∞ ⟨ ∙ ⟩ s ⋎ x ∞ ⟨ ∙ ⟩ t zip-const-⋎ ∙ x s t = x ∞ ⟨ ∙ ⟩ (s ⋎ t) ≊⟨ zip-flip ∙ (x ∞) (s ⋎ t) ⟩ (s ⋎ t) ⟨ flip ∙ ⟩ x ∞ ≊⟨ zip-⋎-const (flip ∙) s t x ⟩ s ⟨ flip ∙ ⟩ x ∞ ⋎ t ⟨ flip ∙ ⟩ x ∞ ≊⟨ ≅-sym (⋎-cong (x ∞ ⟨ ∙ ⟩ s) (s ⟨ flip ∙ ⟩ x ∞) (zip-flip ∙ (x ∞) s) _ _ (zip-flip ∙ (x ∞) t)) ⟩ x ∞ ⟨ ∙ ⟩ s ⋎ x ∞ ⟨ ∙ ⟩ t ∎
{ "alphanum_fraction": 0.3336360884, "avg_line_length": 39.3214285714, "ext": "agda", "hexsha": "b1391c9e94e6367277eeb8e6907dc3d12902e5e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "Hinze/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "Hinze/Lemmas.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "Hinze/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1383, "size": 3303 }
module MultipleIdentifiersOneSignature where data Bool : Set where false true : Bool not : Bool → Bool not true = false not false = true data Suit : Set where ♥ ♢ ♠ ♣ : Suit record R : Set₁ where field A B C : Set postulate A : Set B C : Set {-# BUILTIN CHAR Char #-} {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} primitive primIsDigit primIsSpace : Char → Bool .b : Bool b = true f g h : Bool f = true g = false h = true .i j .k : Bool i = not b j = true k = not (not b)
{ "alphanum_fraction": 0.6099815157, "avg_line_length": 13.1951219512, "ext": "agda", "hexsha": "b1f98edb3faf34e526c65dedda9c484bc340fe5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/MultipleIdentifiersOneSignature.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/MultipleIdentifiersOneSignature.agda", "max_line_length": 44, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/MultipleIdentifiersOneSignature.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 178, "size": 541 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples of pretty printing of rose trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module README.Text.Tree where open import Data.List.Base open import Data.String.Base open import Data.Tree.Rose open import Function.Base open import Agda.Builtin.Equality ------------------------------------------------------------------------ -- We import the module defining the pretty printer for rose trees open import Text.Tree.Linear ------------------------------------------------------------------------ -- Example _ : unlines (display $ node [ "one" ] (node [ "two" ] [] ∷ node ("three" ∷ "and" ∷ "four" ∷ []) (node [ "five" ] [] ∷ node [ "six" ] (node [ "seven" ] [] ∷ []) ∷ node [ "eight" ] [] ∷ []) ∷ node [ "nine" ] (node [ "ten" ] [] ∷ node [ "eleven" ] [] ∷ []) ∷ [])) ≡ "one \ \ ├ two \ \ ├ three \ \ │ and \ \ │ four \ \ │ ├ five \ \ │ ├ six \ \ │ │ └ seven \ \ │ └ eight \ \ └ nine \ \ ├ ten \ \ └ eleven" _ = refl
{ "alphanum_fraction": 0.383360522, "avg_line_length": 24.52, "ext": "agda", "hexsha": "708a455f737350405f81863abcc205daba92d584", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Text/Tree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Text/Tree.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Text/Tree.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 314, "size": 1226 }
-- The ATP pragma with the role <definition> can be used with functions. module ATPDefinition where postulate D : Set zero : D succ : D → D one : D one = succ zero {-# ATP definition one #-}
{ "alphanum_fraction": 0.6600985222, "avg_line_length": 15.6153846154, "ext": "agda", "hexsha": "f84e194917d3fe88bb2a94489fb0c313309655fc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "examples/ATPDefinition.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "examples/ATPDefinition.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "examples/ATPDefinition.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 56, "size": 203 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types open import LibraBFT.Concrete.System.Parameters open import LibraBFT.Impl.Consensus.BlockStorage.SyncManager open import LibraBFT.Impl.Consensus.ConsensusTypes.Vote as Vote open import LibraBFT.Impl.OBM.Logging.Logging open import LibraBFT.Impl.Properties.Util open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Crypto open import LibraBFT.ImplShared.Util.Dijkstra.All open import LibraBFT.Impl.Consensus.BlockStorage.BlockStore open import LibraBFT.Impl.Properties.Util open import Optics.All open import Util.ByteString open import Util.Hash open import Util.PKCS open import Util.Prelude open import Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms open Invariants open RoundManagerTransProps open OutputProps module LibraBFT.Impl.Consensus.BlockStorage.Properties.SyncManager where module insertQuorumCertMSpec (qc : QuorumCert) (retriever : BlockRetriever) where open insertQuorumCertM qc retriever open import LibraBFT.Impl.Consensus.BlockStorage.Properties.BlockStore module _ (pre : RoundManager) where record Contract (r : Either ErrLog Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General invariants / properties rmInv : Preserves RoundManagerInv pre post noEpochChange : NoEpochChange pre post noVoteOuts : NoVotes outs -- Voting noVote : VoteNotGenerated pre post true -- Signatures outQcs∈RM : QCProps.OutputQc∈RoundManager outs post qcPost : QCProps.∈Post⇒∈PreOr (_≡ qc) pre post private -- NOTE: need to re-generalize over `pre` because the prestate might differ module step₁Spec (bs : BlockStore) (pool : SentMessages) (pre : RoundManager) where postulate -- TODO-2: Prove contract' : LBFT-weakestPre (step₁ bs) (Contract pre) pre contract : ∀ Q → RWS-Post-⇒ (Contract pre) Q → LBFT-weakestPre (step₁ bs) Q pre contract Q pf = LBFT-⇒ (step₁ bs) pre contract' pf module _ (pool : SentMessages) (pre : RoundManager) where contract' : LBFT-weakestPre (insertQuorumCertM qc retriever) (Contract pre) pre proj₁ (contract' bs@._ refl) _ nfIsLeft ._ refl = step₁Spec.contract' bs pool pre proj₂ (contract' bs@._ refl) NeedFetch nf≡ = obm-dangerous-magic' "TODO: waiting on contract for `fetchQuorumCertM`" proj₂ (contract' bs@._ refl) QCBlockExist nf≡ = insertSingleQuorumCertMSpec.contract qc pre Post₁ contract₁ where Post₁ : LBFT-Post (Either ErrLog Unit) Post₁ = (RWS-weakestPre-∙^∙Post unit (withErrCtx $ "" ∷ []) (RWS-weakestPre-ebindPost unit (λ _ → use lBlockStore >>= (λ _ → logInfo fakeInfo) >> ok unit) (RWS-weakestPre-bindPost unit (λ _ → step₁ bs) (Contract pre)))) module _ (r₁ : Either ErrLog Unit) (st₁ : RoundManager) (outs₁ : List Output) (con₁ : insertSingleQuorumCertMSpec.Contract qc pre r₁ st₁ outs₁) where module ISQC = insertSingleQuorumCertMSpec.Contract con₁ contract₁' : ∀ outs' → NoMsgs outs' → RWS-Post-⇒ (Contract st₁) (RWS-Post++ (Contract pre) outs') contract₁' outs' noMsgs r₂ st₂ outs₂ con₂ = mkContract (transPreservesRoundManagerInv ISQC.rmInv Step₁.rmInv) (transNoEpochChange{i = pre}{st₁}{st₂} ISQC.noEpochChange Step₁.noEpochChange) (++-NoVotes outs' outs₂ (NoMsgs⇒NoVotes outs' noMsgs) Step₁.noVoteOuts) (transVoteNotGenerated ISQC.noVote Step₁.noVote) (QCProps.++-OutputQc∈RoundManager{st₂}{outs'}{outs₂} (QCProps.NoMsgs⇒OutputQc∈RoundManager outs' st₂ noMsgs) Step₁.outQcs∈RM) qcPost where module Step₁ = Contract con₂ qcPost : QCProps.∈Post⇒∈PreOr (_≡ qc) pre st₂ qcPost qc qc∈st₂ with Step₁.qcPost qc qc∈st₂ ...| Right qc≡ = Right qc≡ ...| Left qc∈st₁ with ISQC.qcPost qc qc∈st₁ ...| Right qc≡ = Right qc≡ ...| Left qc∈pre = Left qc∈pre contract₁ : RWS-Post-⇒ (insertSingleQuorumCertMSpec.Contract qc pre) Post₁ contract₁ (Left _) st₁ outs₁ con₁ ._ refl ._ refl = step₁Spec.contract bs pool st₁ (RWS-Post++ (Contract pre) (outs₁ ++ [])) (contract₁' _ _ _ con₁ (outs₁ ++ []) (++-NoMsgs outs₁ [] (insertSingleQuorumCertMSpec.Contract.noMsgOuts con₁) refl)) contract₁ (Right y) st₁ outs₁ con₁ ._ refl ._ refl ._ refl ._ refl ._ refl = step₁Spec.contract bs pool st₁ (RWS-Post++ (Contract pre) ((outs₁ ++ []) ++ LogInfo fakeInfo ∷ [])) (contract₁' _ _ _ con₁ ((outs₁ ++ []) ++ LogInfo fakeInfo ∷ []) (++-NoMsgs (outs₁ ++ []) (LogInfo fakeInfo ∷ []) (++-NoMsgs outs₁ [] (insertSingleQuorumCertMSpec.Contract.noMsgOuts con₁) refl) refl)) proj₂ (contract' bs@._ refl) QCRoundBeforeRoot _ ._ refl = step₁Spec.contract' bs pool pre proj₂ (contract' bs@._ refl) QCAlreadyExist _ ._ refl = step₁Spec.contract' bs pool pre module addCertsMSpec (syncInfo : SyncInfo) (retriever : BlockRetriever) where module _ (pre : RoundManager) where record Contract (r : Either ErrLog Unit) (post : RoundManager) (outs : List Output) : Set where constructor mkContract field -- General invariants / properties rmInv : Preserves RoundManagerInv pre post dnmBtIdToBlk : post ≡L pre at (lBlockTree ∙ btIdToBlock) noEpochChange : NoEpochChange pre post noVoteOuts : OutputProps.NoVotes outs -- Voting noVote : VoteNotGenerated pre post true -- Signatures noOutQc : QCProps.¬OutputQc outs qcPost : QCProps.∈Post⇒∈PreOr (_QC∈SyncInfo syncInfo) pre post postulate -- TODO-2: prove contract' : LBFT-weakestPre (addCertsM syncInfo retriever) Contract pre contract : ∀ Q → RWS-Post-⇒ Contract Q → LBFT-weakestPre (addCertsM syncInfo retriever) Q pre contract Q pf = LBFT-⇒ (addCertsM syncInfo retriever) pre contract' pf
{ "alphanum_fraction": 0.6820809249, "avg_line_length": 45.7214285714, "ext": "agda", "hexsha": "b73c1e30e8e22fbd18885cc8c813244ee2793bdc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/SyncManager.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/SyncManager.agda", "max_line_length": 155, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/BlockStorage/Properties/SyncManager.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1900, "size": 6401 }
module Hello where data Bool : Set where true : Bool false : Bool data Unit : Set where one : Unit unit : Unit unit = ? test : Bool → Bool test x = ? unicodeTest₁ : Bool → Bool unicodeTest₁ x = ? slap : Bool → Bool slap = λ { x → ? } module _ where testIndent : Bool → Bool testIndent true = ? testIndent false = ?
{ "alphanum_fraction": 0.6298507463, "avg_line_length": 12.4074074074, "ext": "agda", "hexsha": "205c9790bc0e58c7e2ea906563a8348ad177b443", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e7f6eaea4be31748929b49a925a3a9365682e9ec", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "googleson78/cornelis", "max_forks_repo_path": "test/Hello.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7f6eaea4be31748929b49a925a3a9365682e9ec", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "googleson78/cornelis", "max_issues_repo_path": "test/Hello.agda", "max_line_length": 26, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7f6eaea4be31748929b49a925a3a9365682e9ec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "googleson78/cornelis", "max_stars_repo_path": "test/Hello.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 102, "size": 335 }
-- Andreas, 2012-01-13 module Issue555b where data Empty : Set where record Unit : Set where constructor tt -- Do we want to allow this? data Exp (A : Set) : Set1 data Exp where -- ? needs to report that too few parameters are given var : Exp Empty app : {A B : Set} → Exp (A → B) → Exp A → Exp B -- Basically, A is first declared as a parameter, but later, -- in the definition, it is turned into an index. bla : {A : Set} → Exp A → Unit bla var = tt bla (app f a) = bla f
{ "alphanum_fraction": 0.6543209877, "avg_line_length": 23.1428571429, "ext": "agda", "hexsha": "7c825ccbf628fcf7ba7b51eefcb7e506d511ee25", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue555b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue555b.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue555b.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 150, "size": 486 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Bits where open import Data.Bool as Bool using (not; _∨_; _∧_; _xor_; T) renaming (Bool to Bit; true to I; false to O) public _xnor_ : Bit → Bit → Bit O xnor y = not y I xnor y = y sumᵇ : Bit → Bit → Bit → Bit sumᵇ O = _xor_ sumᵇ I = _xnor_ carryᵇ : Bit → Bit → Bit → Bit carryᵇ O = _∧_ carryᵇ I = _∨_
{ "alphanum_fraction": 0.620596206, "avg_line_length": 16.7727272727, "ext": "agda", "hexsha": "6eb39ddda7c8489117dd39e54a5ebb2060a04c1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Bits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Bits.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Bits.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 150, "size": 369 }
module Span where open import Prelude open import Star open import Modal data SpanView {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool) : EdgePred (Star R) where oneFalse : {a b c d : A}(xs : Star R a b)(pxs : All (\x -> IsTrue (p x)) xs) (x : R b c)(¬px : IsFalse (p x))(ys : Star R c d) -> SpanView p (xs ++ x • ys) allTrue : {a b : A}{xs : Star R a b}(ts : All (\x -> IsTrue (p x)) xs) -> SpanView p xs span : {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool){a b : A} (xs : Star R a b) -> SpanView p xs span p ε = allTrue ε span p (x • xs) with inspect (p x) span p (x • xs) | itsFalse ¬px = oneFalse ε ε x ¬px xs span p (x • xs) | itsTrue px with span p xs span p (x • .(xs ++ y • ys)) | itsTrue px | oneFalse xs pxs y ¬py ys = oneFalse (x • xs) (check px • pxs) y ¬py ys span p (x • xs) | itsTrue px | allTrue pxs = allTrue (check px • pxs) _│_ : {A : Set}(R : Rel A)(P : EdgePred R) -> Rel A (R │ P) a b = Σ (R a b) P forget : {A : Set}{R : Rel A}{P : EdgePred R} -> Star (R │ P) =[ id ]=> Star R forget = map id fst data SpanView' {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool) : EdgePred (Star R) where oneFalse' : {a b c d : A}(xs : Star (R │ \{a b} x -> IsTrue (p x)) a b) (x : R b c)(¬px : IsFalse (p x))(ys : Star R c d) -> SpanView' p (forget xs ++ x • ys) allTrue' : {a b : A}(xs : Star (R │ \{a b} x -> IsTrue (p x)) a b) -> SpanView' p (forget xs) span' : {A : Set}{R : Rel A}(p : {a b : A} -> R a b -> Bool){a b : A} (xs : Star R a b) -> SpanView' p xs span' p ε = allTrue' ε span' p (x • xs) with inspect (p x) span' p (x • xs) | itsFalse ¬px = oneFalse' ε x ¬px xs span' p (x • xs) | itsTrue px with span' p xs span' p (x • .(forget xs ++ y • ys)) | itsTrue px | oneFalse' xs y ¬py ys = oneFalse' ((x ,, px) • xs) y ¬py ys span' p (x • .(forget xs)) | itsTrue px | allTrue' xs = allTrue' ((x ,, px) • xs) -- Can't seem to define it as 'map Some.a (\x -> (_ ,, uncheck x))' all│ : {A : Set}{R : Rel A}{P : EdgePred R}{a b : A}{xs : Star R a b} -> All P xs -> Star (R │ P) a b all│ (check p • pxs) = (_ ,, p) • all│ pxs all│ ε = ε
{ "alphanum_fraction": 0.4867374005, "avg_line_length": 39, "ext": "agda", "hexsha": "dc05e6fd4b05274954c479ced93162f8b2818054", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/AIM6/Path/Span.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/AIM6/Path/Span.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/AIM6/Path/Span.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 871, "size": 2262 }
module Issue396 where record ⊤ : Set where constructor tt foo : (P : ⊤ → Set) → ((x : ⊤) → P x → P x) → (x y : ⊤) → P x → P y foo P hyp x y = hyp x -- Error was: -- x != y of type ⊤ -- when checking that the expression hyp x has type P x → P y
{ "alphanum_fraction": 0.5249042146, "avg_line_length": 18.6428571429, "ext": "agda", "hexsha": "258c63b499b90f537a601a66826fa567fcc318ce", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue396.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue396.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue396.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 97, "size": 261 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Bifunctor.NaturalTransformation where open import Level open import Categories.Category open import Categories.Bifunctor open import Categories.Product open import Categories.NaturalTransformation public -- just for completeness ... BiNaturalTransformation : ∀ {o ℓ e} {o′ ℓ′ e′} {o′′ ℓ′′ e′′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {E : Category o′′ ℓ′′ e′′} → Bifunctor C D E → Bifunctor C D E → Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ o′′ ⊔ ℓ′′ ⊔ e′′) BiNaturalTransformation F G = NaturalTransformation F G reduceN-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″₁ ℓ″₁ e″₁} {E₁ : Category o″₁ ℓ″₁ e″₁} {F F′ : Functor E₁ D₁} (φ : NaturalTransformation F F′) {o″₂ ℓ″₂ e″₂} {E₂ : Category o″₂ ℓ″₂ e″₂} {G G′ : Functor E₂ D₂} (γ : NaturalTransformation G G′) → NaturalTransformation (reduce-× {D₁ = D₁} {D₂ = D₂} H F G) (reduce-× {D₁ = D₁} {D₂ = D₂} H F′ G′) reduceN-× H φ γ = H ∘ˡ (φ ⁂ⁿ γ) overlapN-× : ∀ {o ℓ e} {o′₁ ℓ′₁ e′₁} {o′₂ ℓ′₂ e′₂} {C : Category o ℓ e} {D₁ : Category o′₁ ℓ′₁ e′₁} {D₂ : Category o′₂ ℓ′₂ e′₂} (H : Bifunctor D₁ D₂ C) {o″ ℓ″ e″} {E : Category o″ ℓ″ e″} {F F′ : Functor E D₁} (φ : NaturalTransformation F F′) {G G′ : Functor E D₂} (γ : NaturalTransformation G G′) → NaturalTransformation (overlap-× {D₁ = D₁} {D₂ = D₂} H F G) (overlap-× {D₁ = D₁} {D₂ = D₂} H F′ G′) overlapN-× H φ γ = H ∘ˡ (φ ※ⁿ γ)
{ "alphanum_fraction": 0.6109238031, "avg_line_length": 74.15, "ext": "agda", "hexsha": "cbab83617dcf951148c2f949263cc1860ba3cecc", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Bifunctor/NaturalTransformation.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Bifunctor/NaturalTransformation.agda", "max_line_length": 446, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Bifunctor/NaturalTransformation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 665, "size": 1483 }
module plfa-code.Connectives where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) open import plfa-code.Isomorphism using (_≃_; _≲_; extensionality) open plfa-code.Isomorphism.≃-Reasoning data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B ----- → A × B proj₁ : ∀ {A B : Set} → A × B ----- → A proj₁ ⟨ x , y ⟩ = x proj₂ : ∀ {A B : Set} → A × B ----- → B proj₂ ⟨ x , y ⟩ = y record _×′_ (A B : Set) : Set where field proj₁′ : A proj₂′ : B open _×′_ η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w η-× ⟨ x , y ⟩ = refl infixr 2 _×_ data Bool : Set where true : Bool false : Bool data Tri : Set where aa : Tri bb : Tri cc : Tri ×-count : Bool × Tri → ℕ ×-count ⟨ true , aa ⟩ = 1 ×-count ⟨ true , bb ⟩ = 2 ×-count ⟨ true , cc ⟩ = 3 ×-count ⟨ false , aa ⟩ = 4 ×-count ⟨ false , bb ⟩ = 5 ×-count ⟨ false , cc ⟩ = 6 ×-comm : ∀ {A B : Set} → A × B ≃ B × A ×-comm = record { to = λ{ ⟨ x , y ⟩ → ⟨ y , x ⟩ } ; from = λ{ ⟨ y , x ⟩ → ⟨ x , y ⟩ } ; from∘to = λ{ ⟨ x , y ⟩ → refl } ; to∘from = λ{ ⟨ y , x ⟩ → refl } } ×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C) ×-assoc = record { to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → ⟨ x , ⟨ y , z ⟩ ⟩ } ; from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → ⟨ ⟨ x , y ⟩ , z ⟩ } ; from∘to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → refl } ; to∘from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → refl } } ---------- practice ---------- open plfa-code.Isomorphism using (_⇔_) open _⇔_ ⇔-≃-→×→ : ∀ {A B : Set} → A ⇔ B ≃ (A → B) × (B → A) ⇔-≃-→×→ = record { to = λ x → ⟨ to x , from x ⟩ ; from = λ{ ⟨ A→B , B→A ⟩ → record { to = A→B ; from = B→A } } ; from∘to = λ x → refl ; to∘from = λ{ ⟨ A→B , B→A ⟩ → refl } } ------------------------------ data ⊤ : Set where tt : -- ⊤ η-⊤ : ∀ (w : ⊤) → tt ≡ w η-⊤ tt = refl ⊤-count : ⊤ → ℕ ⊤-count tt = 1 ⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A ⊤-identityˡ = record { to = λ{ ⟨ tt , x ⟩ → x } ; from = λ x → ⟨ tt , x ⟩ ; from∘to = λ{ ⟨ tt , x ⟩ → refl } ; to∘from = λ x → refl } ⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A ⊤-identityʳ {A} = ≃-begin (A × ⊤) ≃⟨ ×-comm ⟩ (⊤ × A) ≃⟨ ⊤-identityˡ ⟩ A ≃-∎ data _⊎_ (A B : Set) : Set where inj₁ : A ----- → A ⊎ B inj₂ : B ----- → A ⊎ B case-⊎ : ∀ {A B C : Set} → (A → C) → (B → C) → A ⊎ B ----------- → C case-⊎ f g (inj₁ x) = f x case-⊎ f g (inj₂ y) = g y η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w η-⊎ (inj₁ x) = refl η-⊎ (inj₂ y) = refl uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) → case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w uniq-⊎ h (inj₁ x) = refl uniq-⊎ h (inj₂ y) = refl infix 1 _⊎_ ⊎-count : Bool ⊎ Tri → ℕ ⊎-count (inj₁ true) = 1 ⊎-count (inj₁ false) = 2 ⊎-count (inj₂ aa) = 3 ⊎-count (inj₂ bb) = 4 ⊎-count (inj₂ cc) = 5 ---------- practice ---------- ⊎-comm : ∀ {A B : Set} → A ⊎ B ≃ B ⊎ A ⊎-comm = record { to = λ{(inj₁ a) → inj₂ a ; (inj₂ b) → inj₁ b } ; from = λ{(inj₁ b) → inj₂ b ; (inj₂ a) → inj₁ a } ; from∘to = λ{(inj₁ a) → refl ; (inj₂ b) → refl } ; to∘from = λ{(inj₁ b) → refl ; (inj₂ a) → refl } } ⊎-assoc : ∀ {A B C : Set} → (A ⊎ B) ⊎ C ≃ A ⊎ (B ⊎ C) ⊎-assoc = record { to = to′ ; from = from′ ; from∘to = from∘to′ ; to∘from = to∘from′ } where to′ : ∀ {A B C : Set} → (A ⊎ B) ⊎ C → A ⊎ (B ⊎ C) to′ (inj₁ (inj₁ a)) = inj₁ a to′ (inj₁ (inj₂ b)) = inj₂ (inj₁ b) to′ (inj₂ c) = inj₂ (inj₂ c) from′ : ∀ {A B C : Set} → A ⊎ (B ⊎ C) → (A ⊎ B) ⊎ C from′ (inj₁ a) = inj₁ (inj₁ a) from′ (inj₂ (inj₁ b)) = inj₁ (inj₂ b) from′ (inj₂ (inj₂ c)) = inj₂ c from∘to′ : ∀ (x) → from′ (to′ x) ≡ x from∘to′ (inj₁ (inj₁ a)) = refl from∘to′ (inj₁ (inj₂ b)) = refl from∘to′ (inj₂ c) = refl to∘from′ : ∀ (x) → to′ (from′ x) ≡ x to∘from′ (inj₁ a) = refl to∘from′ (inj₂ (inj₁ b)) = refl to∘from′ (inj₂ (inj₂ c)) = refl ------------------------------ data ⊥ : Set where -- no clauses! ⊥-elim : ∀ {A : Set} → ⊥ -- → A ⊥-elim () uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w uniq-⊥ h () ⊥-count : ⊥ → ℕ ⊥-count () ---------- practice ---------- ⊥-identityˡ : ∀ {A : Set} → ⊥ ⊎ A ≃ A ⊥-identityˡ = record { to = λ{ (inj₂ a) → a } ; from = inj₂ ; from∘to = λ{ (inj₂ a) → refl } ; to∘from = λ a → refl } ⊥-identityʳ : ∀ {A : Set} → A ⊎ ⊥ ≃ A ⊥-identityʳ {A} = ≃-begin (A ⊎ ⊥) ≃⟨ ⊎-comm ⟩ (⊥ ⊎ A) ≃⟨ ⊥-identityˡ ⟩ A ≃-∎ ------------------------------ →-elim : ∀ {A B : Set} → (A → B) → A ------- → B →-elim L M = L M η-→ : ∀ {A B : Set} (f : A → B) → (λ (x : A) → f x) ≡ f η-→ f = refl →-count : (Bool → Tri) → ℕ →-count f with f true | f false ... | aa | aa = 1 ... | aa | bb = 2 ... | aa | cc = 3 ... | bb | aa = 4 ... | bb | bb = 5 ... | bb | cc = 6 ... | cc | aa = 7 ... | cc | bb = 8 ... | cc | cc = 9 currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C) currying = record { to = λ f → λ{ ⟨ x , y ⟩ → f x y } ; from = λ g x y → g ⟨ x , y ⟩ ; from∘to = λ x → refl ; to∘from = λ{ g → extensionality λ{ ⟨ x , y ⟩ → refl } } } →-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B → C) ≃ ((A → C) × (B → C)) →-distrib-⊎ = record { to = λ{ f → ⟨ f ∘ inj₁ , f ∘ inj₂ ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ{ (inj₁ x) → g x ; (inj₂ y) → h y } } ; from∘to = λ{ f → extensionality λ{ (inj₁ x) → refl ; (inj₂ y) → refl } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } →-distrib-× : ∀ {A B C : Set} → (A → B × C) ≃ (A → B) × (A → C) →-distrib-× = record { to = λ{ f → ⟨ proj₁ ∘ f , proj₂ ∘ f ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ x → ⟨ g x , h x ⟩ } ; from∘to = λ{ f → extensionality λ{ x → η-× (f x) } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } ×-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B) × C ≃ (A × C) ⊎ (B × C) ×-distrib-⊎ = record { to = λ{ ⟨ inj₁ x , z ⟩ → (inj₁ ⟨ x , z ⟩) ; ⟨ inj₂ y , z ⟩ → (inj₂ ⟨ y , z ⟩) } ; from = λ{ (inj₁ ⟨ x , z ⟩) → ⟨ inj₁ x , z ⟩ ; (inj₂ ⟨ y , z ⟩) → ⟨ inj₂ y , z ⟩ } ; from∘to = λ{ ⟨ inj₁ x , z ⟩ → refl ; ⟨ inj₂ y , z ⟩ → refl } ; to∘from = λ{ (inj₁ ⟨ x , z ⟩) → refl ; (inj₂ ⟨ y , z ⟩) → refl } } ⊎-distrib-× : ∀ {A B C : Set} → (A × B) ⊎ C ≲ (A ⊎ C) × (B ⊎ C) ⊎-distrib-× = record { to = λ{ (inj₁ ⟨ x , y ⟩) → ⟨ inj₁ x , inj₁ y ⟩ ; (inj₂ z) → ⟨ inj₂ z , inj₂ z ⟩ } ; from = λ{ ⟨ inj₁ x , inj₁ y ⟩ → (inj₁ ⟨ x , y ⟩) ; ⟨ inj₁ x , inj₂ z ⟩ → (inj₂ z) ; ⟨ inj₂ z , _ ⟩ → (inj₂ z) } ; from∘to = λ{ (inj₁ ⟨ x , y ⟩) → refl ; (inj₂ z) → refl } } ---------- practice ---------- ⊎-weak-× : ∀ {A B C : Set} → (A ⊎ B) × C → A ⊎ (B × C) ⊎-weak-× ⟨ inj₁ a , c ⟩ = inj₁ a ⊎-weak-× ⟨ inj₂ b , c ⟩ = inj₂ ⟨ b , c ⟩ -- the corresponding distributive law is ×-distrib-⊎, ×-distrib-⊎ is more strong ⊎×-implies-×⊎ : ∀ {A B C D : Set} → (A × B) ⊎ (C × D) → (A ⊎ C) × (B ⊎ D) ⊎×-implies-×⊎ (inj₁ ⟨ a , b ⟩) = ⟨ inj₁ a , inj₁ b ⟩ ⊎×-implies-×⊎ (inj₂ ⟨ c , d ⟩) = ⟨ inj₂ c , inj₂ d ⟩ -- the converse doesn't hold. ⟨ inj₁ a , inj₂ d ⟩ could not build a -- (A × B) ⊎ (C × D) value ------------------------------
{ "alphanum_fraction": 0.3695287282, "avg_line_length": 23.3987915408, "ext": "agda", "hexsha": "fe30eab68a7e53db44de10dba2fa69085c2762cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Connectives.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Connectives.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Connectives.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3698, "size": 7745 }
-- This file tests that record constructors are used in error -- messages, if possible. -- Andreas, 2016-07-20 Repaired this long disfunctional test case. module RecordConstructorsInErrorMessages where record R : Set₁ where constructor con field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r : R data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r ≡ record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } foo = refl -- EXPECTED ERROR: -- .R.A r != A of type Set -- when checking that the expression refl has type -- r ≡ con (λ x → x) A (λ x _ → x)
{ "alphanum_fraction": 0.5471976401, "avg_line_length": 18.3243243243, "ext": "agda", "hexsha": "18844cf563d0d89b213cb7833c285e63826dc5ae", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/RecordConstructorsInErrorMessages.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/RecordConstructorsInErrorMessages.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/RecordConstructorsInErrorMessages.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 242, "size": 678 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational.Properties where open import Algebra.Consequences.Propositional open import Algebra.Morphism open import Algebra.Bundles import Algebra.Morphism.MonoidMonomorphism as MonoidMonomorphisms import Algebra.Morphism.GroupMonomorphism as GroupMonomorphisms import Algebra.Morphism.RingMonomorphism as RingMonomorphisms import Algebra.Properties.CommutativeSemigroup as CommSemigroupProperties open import Data.Integer.Base as ℤ using (ℤ; ∣_∣; +_; -[1+_]; 0ℤ; _◃_) open import Data.Integer.Coprimality using (coprime-divisor) import Data.Integer.Properties as ℤ open import Data.Integer.GCD using (gcd; gcd[i,j]≡0⇒i≡0; gcd[i,j]≡0⇒j≡0) open import Data.Nat.Base as ℕ using (ℕ; zero; suc) import Data.Nat.Properties as ℕ open import Data.Nat.Coprimality as C using (Coprime; coprime?) open import Data.Nat.Divisibility hiding (/-cong) import Data.Nat.GCD as ℕ import Data.Nat.DivMod as ℕ open import Data.Product using (_×_; _,_) open import Data.Rational.Base open import Data.Rational.Unnormalised as ℚᵘ using (ℚᵘ; *≡*; *≤*) renaming (↥_ to ↥ᵘ_; ↧_ to ↧ᵘ_; _≃_ to _≃ᵘ_; _≤_ to _≤ᵘ_) import Data.Rational.Unnormalised.Properties as ℚᵘ open import Data.Sum.Base open import Data.Unit using (tt) import Data.Sign as S open import Function using (_∘_ ; _$_; Injective) open import Level using (0ℓ) open import Relation.Binary open import Relation.Binary.PropositionalEquality open import Relation.Binary.Morphism.Structures import Relation.Binary.Morphism.OrderMonomorphism as OrderMonomorphisms open import Relation.Nullary using (yes; no; recompute) open import Relation.Nullary.Decidable as Dec using (True; False; fromWitness; fromWitnessFalse) open import Relation.Nullary.Negation using (contradiction) open import Relation.Nullary.Decidable as Dec using (True; fromWitness; map′) open import Relation.Nullary.Product using (_×-dec_) open import Algebra.Definitions {A = ℚ} _≡_ open import Algebra.Structures {A = ℚ} _≡_ private infix 4 _≢0 _≢0 : ℕ → Set n ≢0 = False (n ℕ.≟ 0) recomputeCP : ∀ {n d} → .(Coprime n d) → Coprime n d recomputeCP {n} {d} c = recompute (coprime? n d) c ------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------ mkℚ-injective : ∀ {n₁ n₂ d₁ d₂} .{c₁ : Coprime ∣ n₁ ∣ (suc d₁)} .{c₂ : Coprime ∣ n₂ ∣ (suc d₂)} → mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ → n₁ ≡ n₂ × d₁ ≡ d₂ mkℚ-injective refl = refl , refl infix 4 _≟_ _≟_ : Decidable {A = ℚ} _≡_ mkℚ n₁ d₁ _ ≟ mkℚ n₂ d₂ _ = map′ (λ { (refl , refl) → refl }) mkℚ-injective (n₁ ℤ.≟ n₂ ×-dec d₁ ℕ.≟ d₂) ≡-setoid : Setoid 0ℓ 0ℓ ≡-setoid = setoid ℚ ≡-decSetoid : DecSetoid 0ℓ 0ℓ ≡-decSetoid = decSetoid _≟_ ------------------------------------------------------------------------ -- mkℚ ------------------------------------------------------------------------ mkℚ-cong : ∀ {n₁ n₂ d₁ d₂} .{c₁ : Coprime ∣ n₁ ∣ (suc d₁)} .{c₂ : Coprime ∣ n₂ ∣ (suc d₂)} → n₁ ≡ n₂ → d₁ ≡ d₂ → mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ mkℚ-cong refl refl = refl ------------------------------------------------------------------------ -- mkℚ′ ------------------------------------------------------------------------ mkℚ+-cong : ∀ {n₁ n₂ d₁ d₂} d₁≢0 d₂≢0 .{c₁ : Coprime n₁ d₁} .{c₂ : Coprime n₂ d₂} → n₁ ≡ n₂ → d₁ ≡ d₂ → mkℚ+ n₁ d₁ {d₁≢0} c₁ ≡ mkℚ+ n₂ d₂ {d₂≢0} c₂ mkℚ+-cong _ _ refl refl = refl ↥-mkℚ+ : ∀ n d {d≢0} .{c : Coprime n d} → ↥ (mkℚ+ n d {d≢0} c) ≡ + n ↥-mkℚ+ n (suc d) = refl ↧-mkℚ+ : ∀ n d {d≢0} .{c : Coprime n d} → ↧ (mkℚ+ n d {d≢0} c) ≡ + d ↧-mkℚ+ n (suc d) = refl ------------------------------------------------------------------------ -- Numerator and denominator equality ------------------------------------------------------------------------ ≡⇒≃ : _≡_ ⇒ _≃_ ≡⇒≃ refl = refl ≃⇒≡ : _≃_ ⇒ _≡_ ≃⇒≡ {x = mkℚ n₁ d₁ c₁} {y = mkℚ n₂ d₂ c₂} eq = helper where open ≡-Reasoning 1+d₁∣1+d₂ : suc d₁ ∣ suc d₂ 1+d₁∣1+d₂ = coprime-divisor (+ suc d₁) n₁ (+ suc d₂) (C.sym (recomputeCP c₁)) $ divides ∣ n₂ ∣ $ begin ∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ ℤ.abs-*-commute n₂ (+ suc d₁) ⟩ ∣ n₂ ∣ ℕ.* suc d₁ ∎ 1+d₂∣1+d₁ : suc d₂ ∣ suc d₁ 1+d₂∣1+d₁ = coprime-divisor (+ suc d₂) n₂ (+ suc d₁) (C.sym (recomputeCP c₂)) $ divides ∣ n₁ ∣ (begin ∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ cong ∣_∣ (sym eq) ⟩ ∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ ℤ.abs-*-commute n₁ (+ suc d₂) ⟩ ∣ n₁ ∣ ℕ.* suc d₂ ∎) helper : mkℚ n₁ d₁ c₁ ≡ mkℚ n₂ d₂ c₂ helper with ∣-antisym 1+d₁∣1+d₂ 1+d₂∣1+d₁ ... | refl with ℤ.*-cancelʳ-≡ n₁ n₂ (+ suc d₁) (λ ()) eq ... | refl = refl ------------------------------------------------------------------------ -- Properties of -_ ------------------------------------------------------------------------ ↥-neg : ∀ p → ↥ (- p) ≡ ℤ.- (↥ p) ↥-neg (mkℚ -[1+ _ ] _ _) = refl ↥-neg (mkℚ +0 _ _) = refl ↥-neg (mkℚ +[1+ _ ] _ _) = refl ↧-neg : ∀ p → ↧ (- p) ≡ ↧ p ↧-neg (mkℚ -[1+ _ ] _ _) = refl ↧-neg (mkℚ +0 _ _) = refl ↧-neg (mkℚ +[1+ _ ] _ _) = refl ------------------------------------------------------------------------ -- Properties of normalize ------------------------------------------------------------------------ normalize-coprime : ∀ {n d-1} .(c : Coprime n (suc d-1)) → normalize n (suc d-1) ≡ mkℚ (+ n) d-1 c normalize-coprime {n} {d-1} c = begin normalize n d ≡⟨⟩ mkℚ+ (n ℕ./ g) (d ℕ./ g) _ ≡⟨ mkℚ+-cong n/g≢0 d/1≢0 {c₂ = c₂} (ℕ./-congʳ {n≢0 = g≢0} g≡1) (ℕ./-congʳ {n≢0 = g≢0} g≡1) ⟩ mkℚ+ (n ℕ./ 1) (d ℕ./ 1) _ ≡⟨ mkℚ+-cong d/1≢0 _ {c₂ = c} (ℕ.n/1≡n n) (ℕ.n/1≡n d) ⟩ mkℚ+ n d _ ≡⟨⟩ mkℚ (+ n) d-1 _ ∎ where open ≡-Reasoning; d = suc d-1; g = ℕ.gcd n d c′ = recomputeCP c c₂ : Coprime (n ℕ./ 1) (d ℕ./ 1) c₂ = subst₂ Coprime (sym (ℕ.n/1≡n n)) (sym (ℕ.n/1≡n d)) c′ g≡1 = C.coprime⇒gcd≡1 c′ g≢0 = fromWitnessFalse (ℕ.gcd[m,n]≢0 n d (inj₂ λ())) n/g≢0 = fromWitnessFalse (ℕ.n/gcd[m,n]≢0 n d {_} {g≢0}) d/1≢0 = fromWitnessFalse (subst (_≢ 0) (sym (ℕ.n/1≡n d)) λ()) ↥-normalize : ∀ i n {n≢0} → ↥ (normalize i n {n≢0}) ℤ.* gcd (+ i) (+ n) ≡ + i ↥-normalize i n@(suc n-1) = begin ↥ (normalize i n) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↥-mkℚ+ _ (n ℕ./ g) {n/g≢0}) ⟩ + (i ℕ./ g) ℤ.* + g ≡⟨⟩ S.+ ◃ i ℕ./ g ℕ.* g ≡⟨ cong (S.+ ◃_) (ℕ.m/n*n≡m (ℕ.gcd[m,n]∣m i n)) ⟩ S.+ ◃ i ≡⟨ ℤ.+◃n≡+n i ⟩ + i ∎ where open ≡-Reasoning; g = ℕ.gcd i n g≢0 = fromWitnessFalse (ℕ.gcd[m,n]≢0 i n (inj₂ λ())) n/g≢0 = fromWitnessFalse (ℕ.n/gcd[m,n]≢0 i n {_} {g≢0}) ↧-normalize : ∀ i n {n≢0} → ↧ (normalize i n {n≢0}) ℤ.* gcd (+ i) (+ n) ≡ + n ↧-normalize i n@(suc n-1) = begin ↧ (normalize i n) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↧-mkℚ+ _ (n ℕ./ g) {n/g≢0}) ⟩ + (n ℕ./ g) ℤ.* + g ≡⟨⟩ S.+ ◃ n ℕ./ g ℕ.* g ≡⟨ cong (S.+ ◃_) (ℕ.m/n*n≡m (ℕ.gcd[m,n]∣n i n)) ⟩ S.+ ◃ n ≡⟨ ℤ.+◃n≡+n n ⟩ + n ∎ where open ≡-Reasoning; g = ℕ.gcd i n g≢0 = fromWitnessFalse (ℕ.gcd[m,n]≢0 i n (inj₂ λ())) n/g≢0 = fromWitnessFalse (ℕ.n/gcd[m,n]≢0 i n {_} {g≢0}) ------------------------------------------------------------------------ -- Properties of toℚ/fromℚ ------------------------------------------------------------------------ toℚᵘ-cong : toℚᵘ Preserves _≡_ ⟶ _≃ᵘ_ toℚᵘ-cong refl = *≡* refl toℚᵘ-injective : Injective _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-injective (*≡* eq) = ≃⇒≡ eq toℚᵘ-isRelHomomorphism : IsRelHomomorphism _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-isRelHomomorphism = record { cong = toℚᵘ-cong } toℚᵘ-isRelMonomorphism : IsRelMonomorphism _≡_ _≃ᵘ_ toℚᵘ toℚᵘ-isRelMonomorphism = record { isHomomorphism = toℚᵘ-isRelHomomorphism ; injective = toℚᵘ-injective } fromℚᵘ-toℚᵘ : ∀ p → fromℚᵘ (toℚᵘ p) ≡ p fromℚᵘ-toℚᵘ (mkℚ (+ n) d-1 c) = normalize-coprime c fromℚᵘ-toℚᵘ (mkℚ (-[1+ n ]) d-1 c) = cong (-_) (normalize-coprime c) ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ drop-*≤* : ∀ {p q} → p ≤ q → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) drop-*≤* (*≤* pq≤qp) = pq≤qp ------------------------------------------------------------------------ -- toℚᵘ is a isomorphism toℚᵘ-mono-≤ : ∀ {p q} → p ≤ q → toℚᵘ p ≤ᵘ toℚᵘ q toℚᵘ-mono-≤ (*≤* p≤q) = *≤* p≤q toℚᵘ-cancel-≤ : ∀ {p q} → toℚᵘ p ≤ᵘ toℚᵘ q → p ≤ q toℚᵘ-cancel-≤ (*≤* p≤q) = *≤* p≤q toℚᵘ-isOrderHomomorphism-≤ : IsOrderHomomorphism _≡_ _≃ᵘ_ _≤_ _≤ᵘ_ toℚᵘ toℚᵘ-isOrderHomomorphism-≤ = record { cong = toℚᵘ-cong ; mono = toℚᵘ-mono-≤ } toℚᵘ-isOrderMonomorphism-≤ : IsOrderMonomorphism _≡_ _≃ᵘ_ _≤_ _≤ᵘ_ toℚᵘ toℚᵘ-isOrderMonomorphism-≤ = record { isOrderHomomorphism = toℚᵘ-isOrderHomomorphism-≤ ; injective = toℚᵘ-injective ; cancel = toℚᵘ-cancel-≤ } ------------------------------------------------------------------------ -- Relational properties private module ≤-Monomorphism = OrderMonomorphisms toℚᵘ-isOrderMonomorphism-≤ ≤-reflexive : _≡_ ⇒ _≤_ ≤-reflexive refl = *≤* ℤ.≤-refl ≤-refl : Reflexive _≤_ ≤-refl = ≤-reflexive refl ≤-trans : Transitive _≤_ ≤-trans = ≤-Monomorphism.trans ℚᵘ.≤-trans ≤-antisym : Antisymmetric _≡_ _≤_ ≤-antisym (*≤* le₁) (*≤* le₂) = ≃⇒≡ (ℤ.≤-antisym le₁ le₂) ≤-total : Total _≤_ ≤-total p q = [ inj₁ ∘ *≤* , inj₂ ∘ *≤* ]′ (ℤ.≤-total (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p)) infix 4 _≤?_ _≤?_ : Decidable _≤_ p ≤? q = Dec.map′ *≤* drop-*≤* (↥ p ℤ.* ↧ q ℤ.≤? ↥ q ℤ.* ↧ p) ≤-irrelevant : Irrelevant _≤_ ≤-irrelevant (*≤* p≤q₁) (*≤* p≤q₂) = cong *≤* (ℤ.≤-irrelevant p≤q₁ p≤q₂) ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder _≡_ _≤_ ≤-isPreorder = record { isEquivalence = isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-decTotalOrder : DecTotalOrder _ _ _ ≤-decTotalOrder = record { Carrier = ℚ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = ≤-isDecTotalOrder } ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ drop-*<* : ∀ {p q} → p < q → (↥ p ℤ.* ↧ q) ℤ.< (↥ q ℤ.* ↧ p) drop-*<* (*<* pq<qp) = pq<qp ------------------------------------------------------------------------ -- Relational properties <⇒≤ : _<_ ⇒ _≤_ <⇒≤ (*<* p<q) = *≤* (ℤ.<⇒≤ p<q) <-irrefl : Irreflexive _≡_ _<_ <-irrefl refl (*<* p<p) = ℤ.<-irrefl refl p<p <-asym : Asymmetric _<_ <-asym (*<* p<q) (*<* q<p) = ℤ.<-asym p<q q<p <-≤-trans : Trans _<_ _≤_ _<_ <-≤-trans {p} {q} {r} (*<* p<q) (*≤* q≤r) = *<* (ℤ.*-cancelʳ-<-non-neg _ (begin-strict let n₁ = ↥ p; n₂ = ↥ q; n₃ = ↥ r; sd₁ = ↧ p; sd₂ = ↧ q; sd₃ = ↧ r in (n₁ ℤ.* sd₃) ℤ.* sd₂ ≡⟨ ℤ.*-assoc n₁ sd₃ sd₂ ⟩ n₁ ℤ.* (sd₃ ℤ.* sd₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm sd₃ sd₂) ⟩ n₁ ℤ.* (sd₂ ℤ.* sd₃) ≡⟨ sym (ℤ.*-assoc n₁ sd₂ sd₃) ⟩ (n₁ ℤ.* sd₂) ℤ.* sd₃ <⟨ ℤ.*-monoʳ-<-pos (ℕ.pred (↧ₙ r)) p<q ⟩ (n₂ ℤ.* sd₁) ℤ.* sd₃ ≡⟨ cong (ℤ._* sd₃) (ℤ.*-comm n₂ sd₁) ⟩ (sd₁ ℤ.* n₂) ℤ.* sd₃ ≡⟨ ℤ.*-assoc sd₁ n₂ sd₃ ⟩ sd₁ ℤ.* (n₂ ℤ.* sd₃) ≤⟨ ℤ.*-monoˡ-≤-pos (ℕ.pred (↧ₙ p)) q≤r ⟩ sd₁ ℤ.* (n₃ ℤ.* sd₂) ≡⟨ sym (ℤ.*-assoc sd₁ n₃ sd₂) ⟩ (sd₁ ℤ.* n₃) ℤ.* sd₂ ≡⟨ cong (ℤ._* sd₂) (ℤ.*-comm sd₁ n₃) ⟩ (n₃ ℤ.* sd₁) ℤ.* sd₂ ∎)) where open ℤ.≤-Reasoning ≤-<-trans : Trans _≤_ _<_ _<_ ≤-<-trans {p} {q} {r} (*≤* p≤q) (*<* q<r) = *<* (ℤ.*-cancelʳ-<-non-neg _ (begin-strict let n₁ = ↥ p; n₂ = ↥ q; n₃ = ↥ r; sd₁ = ↧ p; sd₂ = ↧ q; sd₃ = ↧ r in (n₁ ℤ.* sd₃) ℤ.* sd₂ ≡⟨ ℤ.*-assoc n₁ sd₃ sd₂ ⟩ n₁ ℤ.* (sd₃ ℤ.* sd₂) ≡⟨ cong (n₁ ℤ.*_) (ℤ.*-comm sd₃ sd₂) ⟩ n₁ ℤ.* (sd₂ ℤ.* sd₃) ≡⟨ sym (ℤ.*-assoc n₁ sd₂ sd₃) ⟩ (n₁ ℤ.* sd₂) ℤ.* sd₃ ≤⟨ ℤ.*-monoʳ-≤-pos (ℕ.pred (↧ₙ r)) p≤q ⟩ (n₂ ℤ.* sd₁) ℤ.* sd₃ ≡⟨ cong (ℤ._* sd₃) (ℤ.*-comm n₂ sd₁) ⟩ (sd₁ ℤ.* n₂) ℤ.* sd₃ ≡⟨ ℤ.*-assoc sd₁ n₂ sd₃ ⟩ sd₁ ℤ.* (n₂ ℤ.* sd₃) <⟨ ℤ.*-monoˡ-<-pos (ℕ.pred (↧ₙ p)) q<r ⟩ sd₁ ℤ.* (n₃ ℤ.* sd₂) ≡⟨ sym (ℤ.*-assoc sd₁ n₃ sd₂) ⟩ (sd₁ ℤ.* n₃) ℤ.* sd₂ ≡⟨ cong (ℤ._* sd₂) (ℤ.*-comm sd₁ n₃) ⟩ (n₃ ℤ.* sd₁) ℤ.* sd₂ ∎)) where open ℤ.≤-Reasoning <-trans : Transitive _<_ <-trans p<q = ≤-<-trans (<⇒≤ p<q) infix 4 _<?_ _<?_ : Decidable _<_ p <? q = Dec.map′ *<* drop-*<* ((↥ p ℤ.* ↧ q) ℤ.<? (↥ q ℤ.* ↧ p)) <-cmp : Trichotomous _≡_ _<_ <-cmp p q with ℤ.<-cmp (↥ p ℤ.* ↧ q) (↥ q ℤ.* ↧ p) ... | tri< < ≢ ≯ = tri< (*<* <) (≢ ∘ ≡⇒≃) (≯ ∘ drop-*<*) ... | tri≈ ≮ ≡ ≯ = tri≈ (≮ ∘ drop-*<*) (≃⇒≡ ≡) (≯ ∘ drop-*<*) ... | tri> ≮ ≢ > = tri> (≮ ∘ drop-*<*) (≢ ∘ ≡⇒≃) (*<* >) <-irrelevant : Irrelevant _<_ <-irrelevant (*<* p<q₁) (*<* p<q₂) = cong *<* (ℤ.<-irrelevant p<q₁ p<q₂) <-respʳ-≡ : _<_ Respectsʳ _≡_ <-respʳ-≡ = subst (_ <_) <-respˡ-≡ : _<_ Respectsˡ _≡_ <-respˡ-≡ = subst (_< _) <-resp-≡ : _<_ Respects₂ _≡_ <-resp-≡ = <-respʳ-≡ , <-respˡ-≡ ------------------------------------------------------------------------ -- Structures <-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp-≡ } <-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_ <-isStrictTotalOrder = record { isEquivalence = isEquivalence ; trans = <-trans ; compare = <-cmp } ------------------------------------------------------------------------ -- Bundles <-strictPartialOrder : StrictPartialOrder 0ℓ 0ℓ 0ℓ <-strictPartialOrder = record { isStrictPartialOrder = <-isStrictPartialOrder } <-strictTotalOrder : StrictTotalOrder 0ℓ 0ℓ 0ℓ <-strictTotalOrder = record { isStrictTotalOrder = <-isStrictTotalOrder } ------------------------------------------------------------------------ -- A specialised module for reasoning about the _≤_ and _<_ relations ------------------------------------------------------------------------ module ≤-Reasoning where open import Relation.Binary.Reasoning.Base.Triple ≤-isPreorder <-trans (resp₂ _<_) <⇒≤ <-≤-trans ≤-<-trans public hiding (step-≈; step-≈˘) ------------------------------------------------------------------------ -- Properties of _/_ ------------------------------------------------------------------------ ↥-/ : ∀ i n {n≢0} → ↥ (i / n) {n≢0} ℤ.* gcd i (+ n) ≡ i ↥-/ (+ m) (suc n) = ↥-normalize m (suc n) ↥-/ -[1+ m ] (suc n) = begin-equality ↥ (- norm) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↥-neg norm) ⟩ ℤ.- (↥ norm) ℤ.* + g ≡⟨ sym (ℤ.neg-distribˡ-* (↥ norm) (+ g)) ⟩ ℤ.- (↥ norm ℤ.* + g) ≡⟨ cong (ℤ.-_) (↥-normalize (suc m) (suc n)) ⟩ S.- ◃ suc m ≡⟨⟩ -[1+ m ] ∎ where open ℤ.≤-Reasoning g = ℕ.gcd (suc m) (suc n) norm = normalize (suc m) (suc n) ↧-/ : ∀ i n {n≢0} → ↧ (i / n) {n≢0} ℤ.* gcd i (+ n) ≡ + n ↧-/ (+ m) (suc n) = ↧-normalize m (suc n) ↧-/ -[1+ m ] (suc n) = begin-equality ↧ (- norm) ℤ.* + g ≡⟨ cong (ℤ._* + g) (↧-neg norm) ⟩ ↧ norm ℤ.* + g ≡⟨ ↧-normalize (suc m) (suc n) ⟩ + (suc n) ∎ where open ℤ.≤-Reasoning g = ℕ.gcd (suc m) (suc n) norm = normalize (suc m) (suc n) ↥p/↧p≡p : ∀ p → ↥ p / ↧ₙ p ≡ p ↥p/↧p≡p (mkℚ (+ n) d-1 prf) = normalize-coprime prf ↥p/↧p≡p (mkℚ -[1+ n ] d-1 prf) = cong (-_) (normalize-coprime prf) 0/n≡0 : ∀ n {n≢0} → (0ℤ / n) {n≢0} ≡ 0ℚ 0/n≡0 n@(suc n-1) {n≢0} = mkℚ+-cong n/n≢0 _ {c₂ = 0-cop-1} (ℕ.0/n≡0 (ℕ.gcd 0 n)) (ℕ.n/n≡1 n) where n/n≢0 = subst _≢0 (sym (ℕ.n/n≡1 n)) _ 0-cop-1 = C.sym (C.1-coprimeTo 0) ------------------------------------------------------------------------ -- Properties of _+_ ------------------------------------------------------------------------ private ↥+ᵘ : ℚ → ℚ → ℤ ↥+ᵘ p q = ↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p ↧+ᵘ : ℚ → ℚ → ℤ ↧+ᵘ p q = ↧ p ℤ.* ↧ q +-nf : ℚ → ℚ → ℤ +-nf p q = gcd (↥+ᵘ p q) (↧+ᵘ p q) ↥-+ : ∀ p q → ↥ (p + q) ℤ.* +-nf p q ≡ ↥+ᵘ p q ↥-+ p q = ↥-/ (↥+ᵘ p q) (↧ₙ p ℕ.* ↧ₙ q) ↧-+ : ∀ p q → ↧ (p + q) ℤ.* +-nf p q ≡ ↧+ᵘ p q ↧-+ p q = ↧-/ (↥+ᵘ p q) (↧ₙ p ℕ.* ↧ₙ q) ------------------------------------------------------------------------ -- Raw bundles +-rawMagma : RawMagma 0ℓ 0ℓ +-rawMagma = record { _≈_ = _≡_ ; _∙_ = _+_ } +-rawMonoid : RawMonoid 0ℓ 0ℓ +-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _+_ ; ε = 0ℚ } +-0-rawGroup : RawGroup 0ℓ 0ℓ +-0-rawGroup = record { _≈_ = _≡_ ; _∙_ = _+_ ; ε = 0ℚ ; _⁻¹ = -_ } +-*-rawRing : RawRing 0ℓ 0ℓ +-*-rawRing = record { _≈_ = _≡_ ; _+_ = _+_ ; _*_ = _*_ ; -_ = -_ ; 0# = 0ℚ ; 1# = 1ℚ } ------------------------------------------------------------------------ -- Monomorphic to unnormalised _+_ open Definitions ℚ ℚᵘ ℚᵘ._≃_ toℚᵘ-homo-+ : Homomorphic₂ toℚᵘ _+_ ℚᵘ._+_ toℚᵘ-homo-+ p q with +-nf p q ℤ.≟ 0ℤ ... | yes nf[p,q]≡0 = *≡* (begin ↥ (p + q) ℤ.* ↧+ᵘ p q ≡⟨ cong (ℤ._* ↧+ᵘ p q) eq ⟩ 0ℤ ℤ.* ↧+ᵘ p q ≡⟨⟩ 0ℤ ℤ.* ↧ (p + q) ≡⟨ cong (ℤ._* ↧ (p + q)) (sym eq2) ⟩ ↥+ᵘ p q ℤ.* ↧ (p + q) ∎) where open ≡-Reasoning eq2 : ↥+ᵘ p q ≡ 0ℤ eq2 = gcd[i,j]≡0⇒i≡0 (↥+ᵘ p q) (↧+ᵘ p q) nf[p,q]≡0 eq : ↥ (p + q) ≡ 0ℤ eq rewrite eq2 = cong ↥_ (0/n≡0 (↧ₙ p ℕ.* ↧ₙ q)) ... | no nf[p,q]≢0 = *≡* (ℤ.*-cancelʳ-≡ _ _ (+-nf p q) nf[p,q]≢0 (begin ↥ (p + q) ℤ.* ↧+ᵘ p q ℤ.* +-nf p q ≡⟨ xy∙z≈xz∙y (↥ (p + q)) _ _ ⟩ ↥ (p + q) ℤ.* +-nf p q ℤ.* ↧+ᵘ p q ≡⟨ cong (ℤ._* ↧+ᵘ p q) (↥-+ p q) ⟩ ↥+ᵘ p q ℤ.* ↧+ᵘ p q ≡⟨ cong (↥+ᵘ p q ℤ.*_) (sym (↧-+ p q)) ⟩ ↥+ᵘ p q ℤ.* (↧ (p + q) ℤ.* +-nf p q) ≡⟨ x∙yz≈xy∙z (↥+ᵘ p q) _ _ ⟩ ↥+ᵘ p q ℤ.* ↧ (p + q) ℤ.* +-nf p q ∎)) where open ≡-Reasoning; open CommSemigroupProperties ℤ.*-commutativeSemigroup toℚᵘ-isMagmaHomomorphism-+ : IsMagmaHomomorphism +-rawMagma ℚᵘ.+-rawMagma toℚᵘ toℚᵘ-isMagmaHomomorphism-+ = record { isRelHomomorphism = toℚᵘ-isRelHomomorphism ; homo = toℚᵘ-homo-+ } toℚᵘ-isMonoidHomomorphism-+ : IsMonoidHomomorphism +-rawMonoid ℚᵘ.+-rawMonoid toℚᵘ toℚᵘ-isMonoidHomomorphism-+ = record { isMagmaHomomorphism = toℚᵘ-isMagmaHomomorphism-+ ; ε-homo = ℚᵘ.≃-refl } toℚᵘ-isMonoidMonomorphism-+ : IsMonoidMonomorphism +-rawMonoid ℚᵘ.+-rawMonoid toℚᵘ toℚᵘ-isMonoidMonomorphism-+ = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-+ ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Monomorphic to unnormalised -_ toℚᵘ-homo‿- : Homomorphic₁ toℚᵘ (-_) (ℚᵘ.-_) toℚᵘ-homo‿- (mkℚ +0 _ _) = *≡* refl toℚᵘ-homo‿- (mkℚ +[1+ _ ] _ _) = *≡* refl toℚᵘ-homo‿- (mkℚ -[1+ _ ] _ _) = *≡* refl toℚᵘ-isGroupHomomorphism-+ : IsGroupHomomorphism +-0-rawGroup ℚᵘ.+-0-rawGroup toℚᵘ toℚᵘ-isGroupHomomorphism-+ = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-+ ; ⁻¹-homo = toℚᵘ-homo‿- } toℚᵘ-isGroupMonomorphism-+ : IsGroupMonomorphism +-0-rawGroup ℚᵘ.+-0-rawGroup toℚᵘ toℚᵘ-isGroupMonomorphism-+ = record { isGroupHomomorphism = toℚᵘ-isGroupHomomorphism-+ ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Algebraic properties private module +-Monomorphism = GroupMonomorphisms toℚᵘ-isGroupMonomorphism-+ +-assoc : Associative _+_ +-assoc = +-Monomorphism.assoc ℚᵘ.+-isMagma ℚᵘ.+-assoc +-comm : Commutative _+_ +-comm = +-Monomorphism.comm ℚᵘ.+-isMagma ℚᵘ.+-comm +-identityˡ : LeftIdentity 0ℚ _+_ +-identityˡ = +-Monomorphism.identityˡ ℚᵘ.+-isMagma ℚᵘ.+-identityˡ +-identityʳ : RightIdentity 0ℚ _+_ +-identityʳ = +-Monomorphism.identityʳ ℚᵘ.+-isMagma ℚᵘ.+-identityʳ +-identity : Identity 0ℚ _+_ +-identity = +-identityˡ , +-identityʳ +-inverseˡ : LeftInverse 0ℚ -_ _+_ +-inverseˡ = +-Monomorphism.inverseˡ ℚᵘ.+-isMagma ℚᵘ.+-inverseˡ +-inverseʳ : RightInverse 0ℚ -_ _+_ +-inverseʳ = +-Monomorphism.inverseʳ ℚᵘ.+-isMagma ℚᵘ.+-inverseʳ +-inverse : Inverse 0ℚ -_ _+_ +-inverse = +-Monomorphism.inverse ℚᵘ.+-isMagma ℚᵘ.+-inverse -‿cong : Congruent₁ (-_) -‿cong = +-Monomorphism.⁻¹-cong ℚᵘ.+-isMagma ℚᵘ.-‿cong ------------------------------------------------------------------------ -- Structures +-isMagma : IsMagma _+_ +-isMagma = +-Monomorphism.isMagma ℚᵘ.+-isMagma +-isSemigroup : IsSemigroup _+_ +-isSemigroup = +-Monomorphism.isSemigroup ℚᵘ.+-isSemigroup +-0-isMonoid : IsMonoid _+_ 0ℚ +-0-isMonoid = +-Monomorphism.isMonoid ℚᵘ.+-0-isMonoid +-0-isCommutativeMonoid : IsCommutativeMonoid _+_ 0ℚ +-0-isCommutativeMonoid = +-Monomorphism.isCommutativeMonoid ℚᵘ.+-0-isCommutativeMonoid +-0-isGroup : IsGroup _+_ 0ℚ (-_) +-0-isGroup = +-Monomorphism.isGroup ℚᵘ.+-0-isGroup +-0-isAbelianGroup : IsAbelianGroup _+_ 0ℚ (-_) +-0-isAbelianGroup = +-Monomorphism.isAbelianGroup ℚᵘ.+-0-isAbelianGroup ------------------------------------------------------------------------ -- Packages +-magma : Magma 0ℓ 0ℓ +-magma = record { isMagma = +-isMagma } +-semigroup : Semigroup 0ℓ 0ℓ +-semigroup = record { isSemigroup = +-isSemigroup } +-0-monoid : Monoid 0ℓ 0ℓ +-0-monoid = record { isMonoid = +-0-isMonoid } +-0-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ +-0-commutativeMonoid = record { isCommutativeMonoid = +-0-isCommutativeMonoid } +-0-group : Group 0ℓ 0ℓ +-0-group = record { isGroup = +-0-isGroup } +-0-abelianGroup : AbelianGroup 0ℓ 0ℓ +-0-abelianGroup = record { isAbelianGroup = +-0-isAbelianGroup } ------------------------------------------------------------------------ -- Properties of _*_ ------------------------------------------------------------------------ private *-nf : ℚ → ℚ → ℤ *-nf p q = gcd (↥ p ℤ.* ↥ q) (↧ p ℤ.* ↧ q) ↥-* : ∀ p q → ↥ (p * q) ℤ.* *-nf p q ≡ ↥ p ℤ.* ↥ q ↥-* p q = ↥-/ (↥ p ℤ.* ↥ q) (↧ₙ p ℕ.* ↧ₙ q) ↧-* : ∀ p q → ↧ (p * q) ℤ.* *-nf p q ≡ ↧ p ℤ.* ↧ q ↧-* p q = ↧-/ (↥ p ℤ.* ↥ q) (↧ₙ p ℕ.* ↧ₙ q) ------------------------------------------------------------------------ -- Raw bundles *-rawMagma : RawMagma 0ℓ 0ℓ *-rawMagma = record { _≈_ = _≡_ ; _∙_ = _*_ } *-rawMonoid : RawMonoid 0ℓ 0ℓ *-rawMonoid = record { _≈_ = _≡_ ; _∙_ = _*_ ; ε = 1ℚ } ------------------------------------------------------------------------ -- Monomorphic to unnormalised _*_ toℚᵘ-homo-* : Homomorphic₂ toℚᵘ _*_ ℚᵘ._*_ toℚᵘ-homo-* p q with *-nf p q ℤ.≟ 0ℤ ... | yes nf[p,q]≡0 = *≡* (begin ↥ (p * q) ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong (ℤ._* (↧ p ℤ.* ↧ q)) eq ⟩ 0ℤ ℤ.* (↧ p ℤ.* ↧ q) ≡⟨⟩ 0ℤ ℤ.* ↧ (p * q) ≡⟨ cong (ℤ._* ↧ (p * q)) (sym eq2) ⟩ (↥ p ℤ.* ↥ q) ℤ.* ↧ (p * q) ∎) where open ≡-Reasoning eq2 : ↥ p ℤ.* ↥ q ≡ 0ℤ eq2 = gcd[i,j]≡0⇒i≡0 (↥ p ℤ.* ↥ q) (↧ p ℤ.* ↧ q) nf[p,q]≡0 eq : ↥ (p * q) ≡ 0ℤ eq rewrite eq2 = cong ↥_ (0/n≡0 (↧ₙ p ℕ.* ↧ₙ q)) ... | no nf[p,q]≢0 = *≡* (ℤ.*-cancelʳ-≡ _ _ (*-nf p q) nf[p,q]≢0 (begin ↥ (p * q) ℤ.* (↧ p ℤ.* ↧ q) ℤ.* *-nf p q ≡⟨ xy∙z≈xz∙y (↥ (p * q)) _ _ ⟩ ↥ (p * q) ℤ.* *-nf p q ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong (ℤ._* (↧ p ℤ.* ↧ q)) (↥-* p q) ⟩ (↥ p ℤ.* ↥ q) ℤ.* (↧ p ℤ.* ↧ q) ≡⟨ cong ((↥ p ℤ.* ↥ q) ℤ.*_) (sym (↧-* p q)) ⟩ (↥ p ℤ.* ↥ q) ℤ.* (↧ (p * q) ℤ.* *-nf p q) ≡⟨ x∙yz≈xy∙z (↥ p ℤ.* ↥ q) _ _ ⟩ (↥ p ℤ.* ↥ q) ℤ.* ↧ (p * q) ℤ.* *-nf p q ∎)) where open ≡-Reasoning; open CommSemigroupProperties ℤ.*-commutativeSemigroup toℚᵘ-isMagmaHomomorphism-* : IsMagmaHomomorphism *-rawMagma ℚᵘ.*-rawMagma toℚᵘ toℚᵘ-isMagmaHomomorphism-* = record { isRelHomomorphism = toℚᵘ-isRelHomomorphism ; homo = toℚᵘ-homo-* } toℚᵘ-isMonoidHomomorphism-* : IsMonoidHomomorphism *-rawMonoid ℚᵘ.*-rawMonoid toℚᵘ toℚᵘ-isMonoidHomomorphism-* = record { isMagmaHomomorphism = toℚᵘ-isMagmaHomomorphism-* ; ε-homo = ℚᵘ.≃-refl } toℚᵘ-isMonoidMonomorphism-* : IsMonoidMonomorphism *-rawMonoid ℚᵘ.*-rawMonoid toℚᵘ toℚᵘ-isMonoidMonomorphism-* = record { isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-* ; injective = toℚᵘ-injective } toℚᵘ-isRingHomomorphism-+-* : IsRingHomomorphism +-*-rawRing ℚᵘ.+-*-rawRing toℚᵘ toℚᵘ-isRingHomomorphism-+-* = record { +-isGroupHomomorphism = toℚᵘ-isGroupHomomorphism-+ ; *-isMonoidHomomorphism = toℚᵘ-isMonoidHomomorphism-* } toℚᵘ-isRingMonomorphism-+-* : IsRingMonomorphism +-*-rawRing ℚᵘ.+-*-rawRing toℚᵘ toℚᵘ-isRingMonomorphism-+-* = record { isRingHomomorphism = toℚᵘ-isRingHomomorphism-+-* ; injective = toℚᵘ-injective } ------------------------------------------------------------------------ -- Algebraic properties private module *-Monomorphism = RingMonomorphisms toℚᵘ-isRingMonomorphism-+-* *-assoc : Associative _*_ *-assoc = *-Monomorphism.*-assoc ℚᵘ.*-isMagma ℚᵘ.*-assoc *-comm : Commutative _*_ *-comm = *-Monomorphism.*-comm ℚᵘ.*-isMagma ℚᵘ.*-comm *-identityˡ : LeftIdentity 1ℚ _*_ *-identityˡ = *-Monomorphism.*-identityˡ ℚᵘ.*-isMagma ℚᵘ.*-identityˡ *-identityʳ : RightIdentity 1ℚ _*_ *-identityʳ = *-Monomorphism.*-identityʳ ℚᵘ.*-isMagma ℚᵘ.*-identityʳ *-identity : Identity 1ℚ _*_ *-identity = *-identityˡ , *-identityʳ *-distribˡ-+ : _*_ DistributesOverˡ _+_ *-distribˡ-+ = *-Monomorphism.distribˡ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-distribˡ-+ *-distribʳ-+ : _*_ DistributesOverʳ _+_ *-distribʳ-+ = *-Monomorphism.distribʳ ℚᵘ.+-0-isGroup ℚᵘ.*-isMagma ℚᵘ.*-distribʳ-+ *-distrib-+ : _*_ DistributesOver _+_ *-distrib-+ = *-distribˡ-+ , *-distribʳ-+ ------------------------------------------------------------------------ -- Structures *-isMagma : IsMagma _*_ *-isMagma = *-Monomorphism.*-isMagma ℚᵘ.*-isMagma *-isSemigroup : IsSemigroup _*_ *-isSemigroup = *-Monomorphism.*-isSemigroup ℚᵘ.*-isSemigroup *-1-isMonoid : IsMonoid _*_ 1ℚ *-1-isMonoid = *-Monomorphism.*-isMonoid ℚᵘ.*-1-isMonoid *-1-isCommutativeMonoid : IsCommutativeMonoid _*_ 1ℚ *-1-isCommutativeMonoid = *-Monomorphism.*-isCommutativeMonoid ℚᵘ.*-1-isCommutativeMonoid +-*-isRing : IsRing _+_ _*_ -_ 0ℚ 1ℚ +-*-isRing = *-Monomorphism.isRing ℚᵘ.+-*-isRing ------------------------------------------------------------------------ -- Packages *-magma : Magma 0ℓ 0ℓ *-magma = record { isMagma = *-isMagma } *-semigroup : Semigroup 0ℓ 0ℓ *-semigroup = record { isSemigroup = *-isSemigroup } *-1-monoid : Monoid 0ℓ 0ℓ *-1-monoid = record { isMonoid = *-1-isMonoid } *-1-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ *-1-commutativeMonoid = record { isCommutativeMonoid = *-1-isCommutativeMonoid } +-*-ring : Ring 0ℓ 0ℓ +-*-ring = record { isRing = +-*-isRing } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 ≤-irrelevance = ≤-irrelevant {-# WARNING_ON_USAGE ≤-irrelevance "Warning: ≤-irrelevance was deprecated in v1.0. Please use ≤-irrelevant instead." #-}
{ "alphanum_fraction": 0.4918068445, "avg_line_length": 31.889017341, "ext": "agda", "hexsha": "6e2946baa525047f75cb30296a989005961d791f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Rational/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Rational/Properties.agda", "max_line_length": 121, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Rational/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 12471, "size": 27584 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Dec where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic private variable p : Level ◇? : ∀ {P : A → Type p} → (∀ x → Dec (P x)) → (xs : 𝒦 A) → Dec (◇ P xs) ◇? {A = A} {P = P} P? = 𝒦-elim-prop (λ {xs} → isPropDec (isProp-◇ {P = P} {xs = xs})) (λ x xs → fn x xs (P? x)) (no (Poly⊥⇔Mono⊥ .fun)) where fn : ∀ x xs → Dec (P x) → Dec (◇ P xs) → Dec (◇ P (x ∷ xs)) fn x xs (yes Px) Pxs = yes ∣ inl Px ∣ fn x xs (no ¬Px) (yes Pxs) = yes ∣ inr Pxs ∣ fn x xs (no ¬Px) (no ¬Pxs) = no (refute-trunc (either′ ¬Px ¬Pxs))
{ "alphanum_fraction": 0.7054963084, "avg_line_length": 40.6333333333, "ext": "agda", "hexsha": "651a10a5fab9d039afa36f682f8f3ea2d685826c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Dec.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Dec.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 417, "size": 1219 }