Search is not available for this dataset
text
string | meta
dict |
---|---|
-- There was a bug where constructors of private datatypes were
-- not made private.
module Issue484 where
module A where
private
data Foo : Set where
foo : Foo
foo′ = A.foo
| {
"alphanum_fraction": 0.7081081081,
"avg_line_length": 16.8181818182,
"ext": "agda",
"hexsha": "59c0bbb56927e6daeb82b1e35d535bcbbeec499e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue484.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue484.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue484.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 185
} |
module Issue422 where
data Bool : Set where
true false : Bool
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
foo : Bool → Bool → Bool
foo true b = b
foo n true = true
foo false b = false
good : foo false true ≡ true
good = refl
data Nat : Set where
zero : Nat
suc : Nat → Nat
data T : Set where
t₁ : Nat → T
t₂ : Nat → Nat → T
t₃ : Nat → Nat → Nat → T
bar : Nat → Nat → Nat → T
bar x zero z = t₂ x z
bar x y (suc z) = t₃ x y z
bar x (suc y) zero = t₂ x y
postulate
a b c : Nat
eqn₁ : bar a zero c ≡ t₂ a c
eqn₁ = refl
eqn₂ : bar a (suc b) (suc c) ≡ t₃ a (suc b) c
eqn₂ = refl
eqn₃ : bar a (suc b) zero ≡ t₂ a b
eqn₃ = refl
| {
"alphanum_fraction": 0.5499276411,
"avg_line_length": 16.0697674419,
"ext": "agda",
"hexsha": "56d6dda428e7660be7e2755afff94430811516c4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue422.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue422.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue422.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 296,
"size": 691
} |
module Data.QuadTree.Implementation.Foldable where
open import Haskell.Prelude renaming (zero to Z; suc to S)
open import Data.Logic
open import Data.QuadTree.Implementation.Definition
open import Data.QuadTree.Implementation.ValidTypes
open import Data.QuadTree.Implementation.QuadrantLenses
open import Data.QuadTree.Implementation.SafeFunctions
open import Data.QuadTree.Implementation.PropDepthRelation
{-# FOREIGN AGDA2HS
{-# LANGUAGE Safe #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE Rank2Types #-}
import Data.Nat
import Data.Lens.Lens
import Data.Logic
import Data.QuadTree.Implementation.Definition
import Data.QuadTree.Implementation.ValidTypes
import Data.QuadTree.Implementation.QuadrantLenses
#-}
record FoldableEq (t : (y : Set) -> {{ eqT : Eq y }} -> Set) : Set₁ where
field
foldMapₑ : {a b : Set} -> {{ eqA : Eq a }} {{ eqB : Eq b }}
-> {{ monB : Monoid b }} → (a → b) → t a → b
lengthₑ : {{eqA : Eq a}} -> t a → Nat
lengthₑ = foldMapₑ ⦃ monB = MonoidSum ⦄ (const 1)
open FoldableEq public
{-# COMPILE AGDA2HS FoldableEq class #-}
data Region : Set where
-- point 1: x, point 1: y, point 2: x, point 2: y
RegionC : (p1 : Nat × Nat) (p2 : Nat × Nat) -> Region
{-# COMPILE AGDA2HS Region #-}
data Tile (t : Set) : Set where
TileC : t -> Region -> Tile t
{-# COMPILE AGDA2HS Tile #-}
instance
tileFunctor : Functor Tile
tileFunctor .fmap f (TileC v r) = TileC (f v) r
tilesQd : {t : Set} {{eqT : Eq t}} (dep : Nat) -> VQuadrant t {dep}
-> (reg : Region)
-> List (Tile t)
tilesQd dep (CVQuadrant (Leaf v)) reg = TileC v reg ∷ []
tilesQd {t} (dep @ (S deps)) (CVQuadrant (Node a b c d) {p}) reg@(RegionC (x1 , y1) (x2 , y2)) =
let
mid = pow 2 deps
sA : List (Tile t)
sA = tilesQd deps (CVQuadrant a {aSub a b c d p}) (RegionC
(x1 , y1)
(min x2 (mid + x1) , min y2 (mid + y1)))
sB : List (Tile t)
sB = tilesQd deps (CVQuadrant b {bSub a b c d p}) (RegionC
(min x2 (mid + x1) , y1)
(x2 , min y2 (mid + y1)) )
sC : List (Tile t)
sC = tilesQd deps (CVQuadrant c {cSub a b c d p}) (RegionC
(x1 , min y2 (mid + y1))
(min x2 (mid + x1) , y2) )
sD : List (Tile t)
sD = tilesQd deps (CVQuadrant d {dSub a b c d p}) (RegionC
(min x2 (mid + x1) , min y2 (mid + y1))
(x2 , y2) )
in sA ++ sB ++ sC ++ sD
{-# COMPILE AGDA2HS tilesQd #-}
tilesQt : {t : Set} {{eqT : Eq t}} (dep : Nat) -> VQuadTree t {dep} -> List (Tile t)
tilesQt dep (CVQuadTree (Wrapper wh qd) {p1} {p2}) = tilesQd dep (CVQuadrant qd {p1}) (RegionC (0 , 0) wh)
{-# COMPILE AGDA2HS tilesQt #-}
replicateₙ : {t : Set} -> Nat -> t -> List t
replicateₙ Z v = []
replicateₙ (S n) v = v ∷ replicateₙ n v
{-# COMPILE AGDA2HS replicateₙ #-}
expand : {t : Set} -> Tile t -> List t
expand (TileC v (RegionC (lx , ly) (ux , uy))) =
replicateₙ (dx * dy) v where
dx = diff ux lx
dy = diff uy ly
{-# COMPILE AGDA2HS expand #-}
quadtreeFoldable : (dep : Nat) -> FoldableEq (λ y -> VQuadTree y {dep})
quadtreeFoldable dep .foldMapₑ f t = foldMap f $ concat $ map expand (tilesQt dep t) | {
"alphanum_fraction": 0.5986245702,
"avg_line_length": 35.9438202247,
"ext": "agda",
"hexsha": "2a19ed2b66bee19e5c06f41de307429650bf4db5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "JonathanBrouwer/research-project",
"max_forks_repo_path": "src/Data/QuadTree/Implementation/Foldable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "JonathanBrouwer/research-project",
"max_issues_repo_path": "src/Data/QuadTree/Implementation/Foldable.agda",
"max_line_length": 106,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "JonathanBrouwer/research-project",
"max_stars_repo_path": "src/Data/QuadTree/Implementation/Foldable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z",
"num_tokens": 1114,
"size": 3199
} |
postulate
C : Set
anything : C
record I : Set where
constructor c
field
{f} : C
data Wrap : (i : I) → Set where
wrap : ∀ {i} → Wrap i
works : ∀ {j} → Wrap j → C
works {c {._}} (wrap {c {x}}) = anything
fails : ∀ {j} → Wrap j → C
fails {c {._}} (wrap {c}) = anything
-- Failed to infer the value of dotted pattern
-- when checking that the pattern ._ has type C
fails' : ∀ {j} → Wrap j → C
fails' .{c {_}} (wrap {c}) = anything
works2 : ∀ {j} → Wrap j → C
works2 {c} (wrap {c {._}}) = anything
fails2 : ∀ {j} → Wrap j → C
fails2 {c {._}} (wrap {c}) = anything
| {
"alphanum_fraction": 0.5507745267,
"avg_line_length": 19.3666666667,
"ext": "agda",
"hexsha": "0f85727e24a16327909130c532364d5846c4978b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1608.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1608.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1608.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 217,
"size": 581
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of operations on the Stream type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Stream.Properties where
open import Level using (Level)
open import Size
open import Codata.Thunk as Thunk using (Thunk; force)
open import Codata.Stream
open import Codata.Stream.Bisimilarity
open import Data.Nat.Base
open import Data.Nat.GeneralisedArithmetic using (fold; fold-pull)
open import Data.List.Base as List using ([]; _∷_)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
import Data.List.Relation.Binary.Equality.Propositional as Eq
open import Data.Product as Prod using (_,_)
open import Data.Vec.Base as Vec using (_∷_)
open import Function
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
private
variable
a b c : Level
A : Set a
B : Set b
C : Set c
i : Size
------------------------------------------------------------------------
-- repeat
lookup-repeat-identity : (n : ℕ) (a : A) → lookup n (repeat a) ≡ a
lookup-repeat-identity zero a = P.refl
lookup-repeat-identity (suc n) a = lookup-repeat-identity n a
take-repeat-identity : (n : ℕ) (a : A) → take n (repeat a) ≡ Vec.replicate a
take-repeat-identity zero a = P.refl
take-repeat-identity (suc n) a = P.cong (a Vec.∷_) (take-repeat-identity n a)
splitAt-repeat-identity : (n : ℕ) (a : A) → splitAt n (repeat a) ≡ (Vec.replicate a , repeat a)
splitAt-repeat-identity zero a = P.refl
splitAt-repeat-identity (suc n) a = P.cong (Prod.map₁ (a ∷_)) (splitAt-repeat-identity n a)
replicate-repeat : ∀ {i} (n : ℕ) (a : A) → i ⊢ List.replicate n a ++ repeat a ≈ repeat a
replicate-repeat zero a = refl
replicate-repeat (suc n) a = P.refl ∷ λ where .force → replicate-repeat n a
cycle-replicate : ∀ {i} (n : ℕ) (n≢0 : n ≢ 0) (a : A) → i ⊢ cycle (List⁺.replicate n n≢0 a) ≈ repeat a
cycle-replicate {i} n n≢0 a = let as = List⁺.replicate n n≢0 a in begin
cycle as ≡⟨⟩
as ⁺++ _ ≈⟨ ⁺++⁺ Eq.≋-refl (λ where .force → cycle-replicate n n≢0 a) ⟩
as ⁺++ (λ where .force → repeat a) ≈⟨ P.refl ∷ (λ where .force → replicate-repeat (pred n) a) ⟩
repeat a ∎ where open ≈-Reasoning
module _ {a b} {A : Set a} {B : Set b} where
map-repeat : ∀ (f : A → B) a {i} → i ⊢ map f (repeat a) ≈ repeat (f a)
map-repeat f a = P.refl ∷ λ where .force → map-repeat f a
ap-repeat : ∀ (f : A → B) a {i} → i ⊢ ap (repeat f) (repeat a) ≈ repeat (f a)
ap-repeat f a = P.refl ∷ λ where .force → ap-repeat f a
ap-repeatˡ : ∀ (f : A → B) as {i} → i ⊢ ap (repeat f) as ≈ map f as
ap-repeatˡ f (a ∷ as) = P.refl ∷ λ where .force → ap-repeatˡ f (as .force)
ap-repeatʳ : ∀ (fs : Stream (A → B) ∞) (a : A) {i} → i ⊢ ap fs (repeat a) ≈ map (_$ a) fs
ap-repeatʳ (f ∷ fs) a = P.refl ∷ λ where .force → ap-repeatʳ (fs .force) a
map-++ : ∀ {i} (f : A → B) as xs → i ⊢ map f (as ++ xs) ≈ List.map f as ++ map f xs
map-++ f [] xs = refl
map-++ f (a ∷ as) xs = P.refl ∷ λ where .force → map-++ f as xs
map-⁺++ : ∀ {i} (f : A → B) as xs → i ⊢ map f (as ⁺++ xs) ≈ List⁺.map f as ⁺++ Thunk.map (map f) xs
map-⁺++ f (a ∷ as) xs = P.refl ∷ (λ where .force → map-++ f as (xs .force))
map-cycle : ∀ {i} (f : A → B) as → i ⊢ map f (cycle as) ≈ cycle (List⁺.map f as)
map-cycle f as = begin
map f (cycle as) ≈⟨ map-⁺++ f as _ ⟩
List⁺.map f as ⁺++ _ ≈⟨ ⁺++⁺ Eq.≋-refl (λ where .force → map-cycle f as) ⟩
cycle (List⁺.map f as) ∎ where open ≈-Reasoning
------------------------------------------------------------------------
-- Functor laws
map-identity : ∀ (as : Stream A ∞) → i ⊢ map id as ≈ as
map-identity (a ∷ as) = P.refl ∷ λ where .force → map-identity (as .force)
map-map-fusion : ∀ (f : A → B) (g : B → C) as → i ⊢ map g (map f as) ≈ map (g ∘ f) as
map-map-fusion f g (a ∷ as) = P.refl ∷ λ where .force → map-map-fusion f g (as .force)
------------------------------------------------------------------------
-- splitAt
splitAt-map : ∀ n (f : A → B) xs →
splitAt n (map f xs) ≡ Prod.map (Vec.map f) (map f) (splitAt n xs)
splitAt-map zero f xs = P.refl
splitAt-map (suc n) f (x ∷ xs) =
P.cong (Prod.map₁ (f x Vec.∷_)) (splitAt-map n f (xs .force))
------------------------------------------------------------------------
-- iterate
lookup-iterate-identity : ∀ n f (a : A) → lookup n (iterate f a) ≡ fold a f n
lookup-iterate-identity zero f a = P.refl
lookup-iterate-identity (suc n) f a = begin
lookup (suc n) (iterate f a) ≡⟨⟩
lookup n (iterate f (f a)) ≡⟨ lookup-iterate-identity n f (f a) ⟩
fold (f a) f n ≡⟨ fold-pull (const ∘′ f) (f a) P.refl (λ _ → P.refl) n ⟩
f (fold a f n) ≡⟨⟩
fold a f (suc n) ∎ where open P.≡-Reasoning
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.1
repeat-ap-identity = ap-repeatˡ
{-# WARNING_ON_USAGE repeat-ap-identity
"Warning: repeat-ap-identity was deprecated in v1.1.
Please use ap-repeatˡ instead."
#-}
ap-repeat-identity = ap-repeatʳ
{-# WARNING_ON_USAGE ap-repeat-identity
"Warning: ap-repeat-identity was deprecated in v1.1.
Please use ap-repeatʳ instead."
#-}
ap-repeat-commute = ap-repeat
{-# WARNING_ON_USAGE ap-repeat-commute
"Warning: ap-repeat-commute was deprecated in v1.1.
Please use ap-repeat instead."
#-}
map-repeat-commute = map-repeat
{-# WARNING_ON_USAGE map-repeat-commute
"Warning: map-repeat-commute was deprecated in v1.1.
Please use map-repeat instead."
#-}
| {
"alphanum_fraction": 0.5480293465,
"avg_line_length": 38.5592105263,
"ext": "agda",
"hexsha": "1b94cd54a0bc9f85a20115a32c533b9a5a286c3c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Codata/Stream/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Codata/Stream/Properties.agda",
"max_line_length": 102,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Codata/Stream/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1934,
"size": 5861
} |
-- {-# OPTIONS -v tc.meta:100 #-}
-- Andreas, 2011-09-21 (fix by Ulf)
module Issue458b where
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Pair (A B : Set) : Set where
pair : A -> B -> Pair A B
fst : {A B : Set} -> Pair A B -> A
fst (pair a b) = a
overzeal : let X : Nat -> Nat -> Nat
X = _
Y : Pair Nat Nat -> Nat
Y = _
in {C : Set} ->
(({x y : Nat} -> X x x ≡ Y (pair x y)) ->
({z : Pair Nat Nat} -> Y z ≡ fst z) ->
({x y : Nat} -> X x y ≡ x) -> C) -> C
overzeal k = k refl refl refl
-- This should succeed.
-- However, before Ulf's fix the first constraint would lead to
-- a pruning of y from Y, since X does not depend on y
-- This lost the solution Y = fst.
{- ERROR was:
Cannot instantiate the metavariable _59 to (fst .z) since it
contains the variable .z which is not in scope of the metavariable
when checking that the expression refl has type (_59 ≡ fst .z)
-}
| {
"alphanum_fraction": 0.5238970588,
"avg_line_length": 30.2222222222,
"ext": "agda",
"hexsha": "edc266ed0854c41b8113f2d7aec2224f7b334dfc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue458b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue458b.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue458b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 338,
"size": 1088
} |
open import Data.Bool
module GUIgeneric.GUIModelExample where
open import GUIgeneric.Prelude renaming (inj₁ to secondButton; inj₂ to firstButton; WxColor to Color) hiding (IOInterfaceˢ)
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add; ComponentEls to Frame)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.writingOOsUsingIOVers4ReaderMethods
open import StateSizedIO.Base
open import GUIgeneric.GUIExample using (oneBtnGUI ; propOneBtn ; obj1Btn; twoBtnGUI ; propTwoBtn ; obj2Btn )
open import GUIgeneric.GUIModel
open import Data.Sum
open IOInterfaceˢ public
private postulate btn : FFIButton
private postulate fr : FFIFrame
state1Btn : ModelGuiState
state1Btn = state oneBtnGUI propOneBtn
(obj1Btn {∞}) notStarted
state2Btn : ModelGuiState
state2Btn = state twoBtnGUI propTwoBtn
(obj2Btn {∞}) notStarted
corstate1BtnNext1∀ : (m : ModelGuiState)
→ (state1Btn -gui->¹ m)
→ m ≡ state2Btn
corstate1BtnNext1∀ m (step _) = refl
corstate1BtnNext∃ : state1Btn -gui->¹ state2Btn
corstate1BtnNext∃ = step (btn , fr)
corstate1BtnNext∀ : (m : ModelGuiState)
→ (state2Btn -gui->¹ m)
→ (m ≡ state2Btn ⊎ m ≡ state1Btn )
corstate1BtnNext∀ m (step (inj₁ _)) = inj₁ refl
corstate1BtnNext∀ m (step (inj₂ _)) = inj₂ refl
corstate2BtnNext∃1 : state2Btn -gui->¹ state2Btn
corstate2BtnNext∃1 = step (inj₁ (btn , (btn , fr)) )
corstate2BtnNext∃2 : state2Btn -gui->¹ state1Btn
corstate2BtnNext∃2 = step (inj₂ (btn , (btn , fr)) )
| {
"alphanum_fraction": 0.7007343941,
"avg_line_length": 32.68,
"ext": "agda",
"hexsha": "0a8655b1c378096b614fe15427fa402f88e18ac6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIModelExample.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIModelExample.agda",
"max_line_length": 123,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIModelExample.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 522,
"size": 1634
} |
open import Common.Level
postulate
ℓ : Level
f : (l : Level) (A : Set l) → Set ℓ
f ℓ A = A
-- Expected error:
-- ℓ != ℓ of type Level
-- (because one is a variable and one a defined identifier)
-- when checking that the expression A has type Set ℓ
-- Jesper, 2018-12-10, New error:
-- A != Issue998a.A of type Set
-- when checking that the expression d A has type D Issue998a.A
| {
"alphanum_fraction": 0.6744791667,
"avg_line_length": 22.5882352941,
"ext": "agda",
"hexsha": "a76b77aa52d83fde0fd90a7577180c6ee13d9d19",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Fail/Issue998d.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/Issue998d.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/Issue998d.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 121,
"size": 384
} |
open import Agda.Builtin.Nat
variable {n} : Nat
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : A → Vec A n → Vec A (suc n)
cons : ∀ {m A} → A → Vec A m → Vec A (suc m)
cons = _∷_
module _ (A : Set) where
data Vec' : Nat → Set where
[] : Vec' 0
_∷_ : A → Vec' n → Vec' (suc n)
cons' : ∀ {m A} → A → Vec' A m → Vec' A (suc m)
cons' = _∷_
| {
"alphanum_fraction": 0.5,
"avg_line_length": 19.2631578947,
"ext": "agda",
"hexsha": "196c50a0c92252037d743d7b8c031a7399ad4499",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3108.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3108.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3108.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 162,
"size": 366
} |
-- Andreas, 2014-06-12
-- No inversion on one clause functions with record patterns only!
{-# OPTIONS -v tc.inj:40 #-} -- KEEP!
module _ where
open import Common.Product
-- No inverse should be created for swap by
-- checkInjectivity, since we are dealing with a record constructor.
swap : ∀{A B} → A × B → B × A
swap (a , b) = b , a
-- The internal representation is
--
-- swap p = (snd p, fst p)
--
-- so trying to use injectivity is pointless here.
-- The expected output should mention that injectivity for swap is pointless.
-- ...
-- Injectivity of ConstructorHeadedPointlessForRecordPatterns.swap would be pointless.
-- Crash after typechecking swap. KEEP!
CRASH : Set
CRASH = Set
| {
"alphanum_fraction": 0.7048710602,
"avg_line_length": 24.9285714286,
"ext": "agda",
"hexsha": "816b756f7892f29187a1e5f8dd20e7e71fb9b628",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ConstructorHeadedPointlessForRecordPatterns.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ConstructorHeadedPointlessForRecordPatterns.agda",
"max_line_length": 86,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ConstructorHeadedPointlessForRecordPatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 181,
"size": 698
} |
-- Andreas, 2015-06-29 polarity handling is broken
-- See also issue 1592
-- {-# OPTIONS -v tc.polarity:20 -v tc.proj.like:100 #-}
-- {-# OPTIONS -v tc.conv.elim:25 --show-implicit #-}
open import Common.Size
open import Common.Prelude
data D : Size → Set where
c : ∀ i → D (↑ i)
record Type (a : Bool) : Set1 where
constructor mkType
field type : Set
open Type
Opp : Set → Set
Opp X = X → ⊥
-- projection-like contravariant function which does not unfold
abstract
Contra : ∀ a (T : Type a) → Set
Contra a (mkType A) = Opp A
-- Subtyping is broken for projection(-like) things.
-- This is exploitable as Contra true (mkType X) does not reduce to Opp X here.
cast : ∀{i} → Contra true (mkType (D i)) → Contra true (mkType (D (↑ i)))
cast x = x
-- Here it, does reduce.
abstract
loop : ∀{i} → D i → ⊥
loop (c i) = cast loop (c i)
absurd : ⊥
absurd = loop (c ∞)
| {
"alphanum_fraction": 0.6391402715,
"avg_line_length": 23.2631578947,
"ext": "agda",
"hexsha": "2642b9665f932a7686dd448e2a422ce29c17ca7c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/PolarityProjectionLike.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/PolarityProjectionLike.agda",
"max_line_length": 81,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/PolarityProjectionLike.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 293,
"size": 884
} |
module Issue564 where
open import Agda.Primitive using (Level) renaming (lzero to zero)
postulate
A : Level → Set
module M ℓ where
postulate a : A ℓ
postulate
P : A zero → Set
open M zero
p : P a
p = {!!}
| {
"alphanum_fraction": 0.668202765,
"avg_line_length": 12.0555555556,
"ext": "agda",
"hexsha": "c5eb248ef0ce077c8bb33c1be48058bf71500831",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue564.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue564.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue564.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 71,
"size": 217
} |
module LevelConstraints where
open import Common.Level
postulate
a b : Level
OfLvl : ∀ ℓ → Set ℓ → Set
SameLvl : ∀ {ℓ} → Set ℓ → Set ℓ → Set
-- Here we get two constraints by themselves unsolveable constraints:
-- _18 ⊔ a = _18 (solved by _18 := a ⊔ ℓ, for any ℓ)
-- a ⊔ _18 = a (solved by _18 := a or _18 := 0)
-- By looking at both constraints together we can find the unique solution
-- _18 := a
bar : (A : Set _)(B : Set a) → SameLvl A (A → B) → SameLvl B (A → B) | {
"alphanum_fraction": 0.5893909627,
"avg_line_length": 31.8125,
"ext": "agda",
"hexsha": "7df701c5463ced146a97467b7f390a0092d697eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/LevelConstraints.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/LevelConstraints.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/LevelConstraints.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 187,
"size": 509
} |
open import Data.Boolean
open import Type
module Data.List.Sorting.QuickSort {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
import Lvl
open import Data.List
open import Data.List.Functions as List using (_++_)
import Data.List.Functions.Multi as List
open import Data.Tuple
import Numeral.Finite.Conversions as 𝕟
open import Functional using (_∘_)
{-# TERMINATING #-}
quickSort : List(T) → List(T)
quickSort ∅ = ∅
quickSort (x ⊰ l)
with (less , great) ← List.separateBy(left 𝕟.bool ∘ (x ≤?_)) l
= quickSort(less) ++ (x ⊰ quickSort(great))
module Proofs where
| {
"alphanum_fraction": 0.6797274276,
"avg_line_length": 26.6818181818,
"ext": "agda",
"hexsha": "15abe3ff2641176739ab6f7cd39fd861e5ced506",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Sorting/QuickSort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Sorting/QuickSort.agda",
"max_line_length": 80,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Sorting/QuickSort.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 183,
"size": 587
} |
module Luau.Syntax where
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
infixr 5 _∙_
data Block : Set
data Stat : Set
data Expr : Set
data Block where
_∙_ : Stat → Block → Block
done : Block
data Stat where
function_⟨_⟩_end : Var → Var → Block → Stat
local_←_ : Var → Expr → Stat
return : Expr → Stat
data Expr where
nil : Expr
var : Var → Expr
addr : Addr → Expr
_$_ : Expr → Expr → Expr
function⟨_⟩_end : Var → Block → Expr
block_is_end : Var → Block → Expr
| {
"alphanum_fraction": 0.6561886051,
"avg_line_length": 18.1785714286,
"ext": "agda",
"hexsha": "3fe05bc89e623d96a1d59a16a5258c100c2aacd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FreakingBarbarians/luau",
"max_forks_repo_path": "prototyping/Luau/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FreakingBarbarians/luau",
"max_issues_repo_path": "prototyping/Luau/Syntax.agda",
"max_line_length": 45,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "5187e64f88953f34785ffe58acd0610ee5041f5f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FreakingBarbarians/luau",
"max_stars_repo_path": "prototyping/Luau/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T21:30:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-11T21:30:17.000Z",
"num_tokens": 169,
"size": 509
} |
{-# OPTIONS --safe --no-qualified-instances #-}
open import Data.List hiding (concat)
module JVM.Syntax.Labeling {ℓ} (T : Set ℓ) where
open import Relation.Unary hiding (_∈_; Empty)
open import Relation.Ternary.Core
open import Relation.Ternary.Data.Bigplus
open import Data.Sum
open import Data.Product
open import JVM.Model T
Labeling : T → Pred (List T) _
Labeling = λ τ → Bigplus (One τ)
where open Disjoint
| {
"alphanum_fraction": 0.7363420428,
"avg_line_length": 23.3888888889,
"ext": "agda",
"hexsha": "c36ffaf854daa662f8ec92d3f60d4134681e9e22",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Syntax/Labeling.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Syntax/Labeling.agda",
"max_line_length": 48,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Syntax/Labeling.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 113,
"size": 421
} |
module Issue778M (Param : Set) where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
pred : Nat → Nat
pred = λ { zero → zero; (suc n) → n }
where aux = zero
| {
"alphanum_fraction": 0.5892857143,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "fbe1fa6256d5540430ced8a90c0175fbe559e1a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue778M.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue778M.agda",
"max_line_length": 37,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue778M.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 57,
"size": 168
} |
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Syntax Experiment definitions.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.SyntaxExperiment ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.Bool using (false; true)
open import Data.PropFormula.Syntax n
open import Data.PropFormula.Views n
open import Data.PropFormula.Dec n
open import Data.PropFormula.Properties n
open import Data.List public
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_)
------------------------------------------------------------------------------
data _⊢∧_ : Ctxt → List PropFormula → Set where
empty-intro : ∀ {Γ} → Γ ⊢∧ []
∷-intro : ∀ {Γ} {φ} {L}
→ Γ ⊢ φ
→ Γ ⊢∧ L
→ Γ ⊢∧ (φ ∷ L)
∷-proj₁
: ∀ {Γ} {φ} {L}
→ Γ ⊢∧ (φ ∷ L)
→ Γ ⊢ φ
∷-proj₁ (∷-intro Γ⊢φ _) = Γ⊢φ
∷-proj₂
: ∀ {Γ} {φ} {L}
→ Γ ⊢∧ (φ ∷ L)
→ Γ ⊢∧ L
∷-proj₂ (∷-intro _ Γ⊢∧L) = Γ⊢∧L
intro-thm
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢∧ [ φ ]
intro-thm {Γ} {φ} Γ⊢φ = ∷-intro Γ⊢φ empty-intro
++-intro : ∀ {Γ} {L₁ L₂}
→ Γ ⊢∧ L₁ → Γ ⊢∧ L₂
→ Γ ⊢∧ (L₁ ++ L₂)
++-intro empty-intro th2 = th2
++-intro (∷-intro x th1) th2 = ∷-intro x (++-intro th1 th2)
toList : PropFormula → List PropFormula
toList φ with conj-view φ
toList .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = toList φ₁ ++ toList φ₂
toList φ | other .φ = [ φ ]
⊢-to-⊢∧
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢∧ toList φ
⊢-to-⊢∧ {_} {φ} Γ⊢φ with conj-view φ
... | conj φ₁ φ₂ = ++-intro (⊢-to-⊢∧ (∧-proj₁ Γ⊢φ)) (⊢-to-⊢∧ (∧-proj₂ Γ⊢φ))
... | other .φ = ∷-intro Γ⊢φ empty-intro
toProp : List PropFormula → PropFormula
toProp [] = ⊤
toProp (φ ∷ []) = φ
toProp (φ ∷ L) = φ ∧ toProp L
⊢∧-to-⊢
: ∀ {Γ} {L}
→ Γ ⊢∧ L
→ Γ ⊢ toProp L
⊢∧-to-⊢ {_} {[]} _ = ⊤-intro
⊢∧-to-⊢ {_} {_ ∷ []} Γ⊢∧L = ∷-proj₁ Γ⊢∧L
⊢∧-to-⊢ {_} {x ∷ _ ∷ _} (∷-intro Γ⊢φ Γ⊢∧L) = ∧-intro Γ⊢φ (⊢∧-to-⊢ Γ⊢∧L)
right-assoc-∧ : PropFormula → PropFormula
right-assoc-∧ = toProp ∘ toList
right-assoc-∧-lem
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ right-assoc-∧ φ
right-assoc-∧-lem = ⊢∧-to-⊢ ∘ ⊢-to-⊢∧
find-conjunct : List PropFormula → PropFormula → PropFormula
find-conjunct [] x = ⊤
find-conjunct (x ∷ xs) y with ⌊ eq x y ⌋
... | false = find-conjunct xs y
... | true = x
find-conjunct-thm
: ∀ {Γ} {L}
→ (ψ : PropFormula)
→ Γ ⊢∧ L
→ Γ ⊢ find-conjunct L ψ
find-conjunct-thm {_} {[]} ψ Γ⊢∧L = ⊤-intro
find-conjunct-thm {_} {x ∷ L} ψ Γ⊢∧L with ⌊ eq x ψ ⌋
find-conjunct-thm {_} {x ∷ L} ψ Γ⊢∧L | false with Γ⊢∧L
find-conjunct-thm {_} {x ∷ L} ψ Γ⊢∧L | false | ∷-intro x₁ w = find-conjunct-thm ψ w
find-conjunct-thm {_} {x ∷ L} ψ Γ⊢∧L | true = ∷-proj₁ Γ⊢∧L
conjunct-thm
: ∀ {Γ} {φ}
→ (ψ : PropFormula)
→ Γ ⊢ φ
→ Γ ⊢ find-conjunct (toList φ) ψ
conjunct-thm {_} ψ Γ⊢φ = find-conjunct-thm ψ (⊢-to-⊢∧ Γ⊢φ)
{-
toWeak : (Γ : List PropFormula) (ψ : PropFormula) → List PropFormula
toWeak t f = t , f , f
strip : ∀ {Γ} {φ} → (ψ : PropFormula) → Γ ⊢ φ → (toWeak Γ ψ) ⊢ φ
strip ψ Γ⊢φ = (weaken ψ (weaken ψ Γ⊢φ))
-- Bag Equivalance
-- open import Data.Fin using (Fin; suc; zero; #_)
-- open import Data.List using (length)
-- infixl 3 _↔_
-- record _↔_(A B : Set) : Set where
-- field
-- to : A → B
-- from : B → A
-- from-to : ∀ x → from (to x) ≡ x
-- to-from : ∀ x → to (from x) ≡ x
-- lookup : (xs : List PropFormula) → Fin (length xs) → PropFormula
-- lookup [] ()
-- lookup (x ∷ xs) zero = x
-- lookup (x ∷ xs) (suc n) = lookup xs n
-- record _≈Bag_(xs ys : List PropFormula) : Set where
-- field
-- bijection : Fin (length xs) ↔ Fin (length ys)
-- related : ∀ i → lookup xs i ≡ lookup ys (_↔_.to bijection i)
-- data _+_ (A B : Set) : Set where
-- left : A → A + B
-- right : B → A + B
-- Any : (Prop → Set) → List PropFormula → Set
-- Any P [] = ⊥₂
-- Any P (x ∷ xs) = P x + Any P xs
-- infix 4 _∈₂_
-- _∈₂_ : PropFormula → List PropFormula → Set
-- x ∈₂ xs = Any (λ y → x ≡ y) xs
-- _≈Bag₂_ : List PropFormula → List PropFormula → Set
-- xs ≈Bag₂ ys = ∀ x → x ∈₂ xs ↔ x ∈₂ ys
-}
| {
"alphanum_fraction": 0.4853078358,
"avg_line_length": 25.9878787879,
"ext": "agda",
"hexsha": "2c14ba75daf2d4a2074a0b122430b24a0c387c7e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/ExperimentalSyntax.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/ExperimentalSyntax.agda",
"max_line_length": 85,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/ExperimentalSyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 1852,
"size": 4288
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Examples of printing list and vec-based tables
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module README.Text.Tabular where
open import Function.Base
open import Relation.Binary.PropositionalEquality
open import Data.List.Base
open import Data.String.Base
open import Data.Vec.Base
open import Text.Tabular.Base
import Text.Tabular.List as Tabularˡ
import Text.Tabular.Vec as Tabularᵛ
------------------------------------------------------------------------
-- VEC
--
-- If you have a matrix of strings, you simply need to:
-- * pick a configuration (see below)
-- * pick an alignment for each column
-- * pass the matrix
--
-- The display function will then pad each string on the left, right,
-- or both to respect the alignment constraints.
-- It will return a list of strings corresponding to each line in the
-- table. You may then:
--- * use Data.String.Base's unlines to produce a String
-- * use Text.Pretty's text and vcat to produce a Doc (i.e. indentable!)
------------------------------------------------------------------------
_ : unlines (Tabularᵛ.display unicode
(Right ∷ Left ∷ Center ∷ [])
( ("foo" ∷ "bar" ∷ "baz" ∷ [])
∷ ("1" ∷ "2" ∷ "3" ∷ [])
∷ ("6" ∷ "5" ∷ "4" ∷ [])
∷ []))
≡ "┌───┬───┬───┐
\ \│foo│bar│baz│
\ \├───┼───┼───┤
\ \│ 1│2 │ 3 │
\ \├───┼───┼───┤
\ \│ 6│5 │ 4 │
\ \└───┴───┴───┘"
_ = refl
------------------------------------------------------------------------
-- CONFIG
--
-- Configurations allow you to change the way the table is displayed.
------------------------------------------------------------------------
-- We will use the same example throughout
foobar : Vec (Vec String 2) 3
foobar = ("foo" ∷ "bar" ∷ [])
∷ ("1" ∷ "2" ∷ [])
∷ ("4" ∷ "3" ∷ [])
∷ []
------------------------------------------------------------------------
-- Basic configurations: unicode, ascii, whitespace
-- unicode
_ : unlines (Tabularᵛ.display unicode
(Right ∷ Left ∷ [])
foobar)
≡ "┌───┬───┐
\ \│foo│bar│
\ \├───┼───┤
\ \│ 1│2 │
\ \├───┼───┤
\ \│ 4│3 │
\ \└───┴───┘"
_ = refl
-- ascii
_ : unlines (Tabularᵛ.display ascii
(Right ∷ Left ∷ [])
foobar)
≡ "+-------+
\ \|foo|bar|
\ \|---+---|
\ \| 1|2 |
\ \|---+---|
\ \| 4|3 |
\ \+-------+"
_ = refl
-- whitespace
_ : unlines (Tabularᵛ.display whitespace
(Right ∷ Left ∷ [])
foobar)
≡ "foo bar
\ \ 1 2
\ \ 4 3 "
_ = refl
------------------------------------------------------------------------
-- Modifiers: altering existing configurations
-- In these examples we will be using unicode as the base configuration.
-- However these modifiers apply to all configurations (and can even be
-- combined)
-- compact: drop the horizontal line between each row
_ : unlines (Tabularᵛ.display (compact unicode)
(Right ∷ Left ∷ [])
foobar)
≡ "┌───┬───┐
\ \│foo│bar│
\ \│ 1│2 │
\ \│ 4│3 │
\ \└───┴───┘"
_ = refl
-- noBorder: drop the outside borders
_ : unlines (Tabularᵛ.display (noBorder unicode)
(Right ∷ Left ∷ [])
foobar)
≡ "foo│bar
\ \───┼───
\ \ 1│2
\ \───┼───
\ \ 4│3 "
_ = refl
-- addSpace : add whitespace space inside cells
_ : unlines (Tabularᵛ.display (addSpace unicode)
(Right ∷ Left ∷ [])
foobar)
≡ "┌─────┬─────┐
\ \│ foo │ bar │
\ \├─────┼─────┤
\ \│ 1 │ 2 │
\ \├─────┼─────┤
\ \│ 4 │ 3 │
\ \└─────┴─────┘"
_ = refl
-- compact together with addSpace
_ : unlines (Tabularᵛ.display (compact (addSpace unicode))
(Right ∷ Left ∷ [])
foobar)
≡ "┌─────┬─────┐
\ \│ foo │ bar │
\ \│ 1 │ 2 │
\ \│ 4 │ 3 │
\ \└─────┴─────┘"
_ = refl
------------------------------------------------------------------------
-- LIST
--
-- Same thing as for vectors except that if the list of lists is not
-- rectangular, it is padded with empty strings to make it so. If there
-- are not enough alignment directives, we arbitrarily pick Left.
------------------------------------------------------------------------
_ : unlines (Tabularˡ.display unicode
(Center ∷ Right ∷ [])
( ("foo" ∷ "bar" ∷ [])
∷ ("partial" ∷ "rows" ∷ "are" ∷ "ok" ∷ [])
∷ ("3" ∷ "2" ∷ "1" ∷ "..." ∷ "surprise!" ∷ [])
∷ []))
≡ "┌───────┬────┬───┬───┬─────────┐
\ \│ foo │ bar│ │ │ │
\ \├───────┼────┼───┼───┼─────────┤
\ \│partial│rows│are│ok │ │
\ \├───────┼────┼───┼───┼─────────┤
\ \│ 3 │ 2│1 │...│surprise!│
\ \└───────┴────┴───┴───┴─────────┘"
_ = refl
------------------------------------------------------------------------
-- LIST (UNSAFE)
--
-- If you know *for sure* that your data is already perfectly rectangular
-- i.e. all the rows of the list of lists have the same length
-- in each column, all the strings have the same width
-- then you can use the unsafeDisplay function defined Text.Tabular.Base.
--
-- This is what gets used internally by `Text.Tabular.Vec` and
-- `Text.Tabular.List` once the potentially unsafe data has been
-- processed.
------------------------------------------------------------------------
_ : unlines (unsafeDisplay (compact unicode)
( ("foo" ∷ "bar" ∷ [])
∷ (" 1" ∷ " 2" ∷ [])
∷ (" 4" ∷ " 3" ∷ [])
∷ []))
≡ "┌───┬───┐
\ \│foo│bar│
\ \│ 1│ 2│
\ \│ 4│ 3│
\ \└───┴───┘"
_ = refl
| {
"alphanum_fraction": 0.4158328945,
"avg_line_length": 26.7464788732,
"ext": "agda",
"hexsha": "edb0768f06f2da5d43973894b2ea64e7b22cb87f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Text/Tabular.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Text/Tabular.agda",
"max_line_length": 74,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Text/Tabular.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1845,
"size": 5697
} |
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Iterated where
open import Data.Unit.UniversePolymorphic
open import Level
open import Data.Nat.Base
open import Function
private
variable
n m : ℕ
mutual
Vec : Type a → ℕ → Type a
Vec A zero = Vec⁰
Vec A (suc n) = Vec⁺ A n
record Vec⁰ {a} : Type a where
eta-equality
constructor []
infixr 5 _∷_
record Vec⁺ {a} (A : Type a) (n : ℕ) : Type a where
eta-equality
inductive
constructor _∷_
field
head : A
tail : Vec A n
open Vec⁺ public
foldr : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P n → P (suc n)) →
P zero →
Vec A n → P n
foldr {n = zero} P f b _ = b
foldr {n = suc n} P f b (x ∷ xs) = f x (foldr P f b xs)
foldl : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P n → P (suc n)) →
P zero →
Vec A n → P n
foldl {n = zero } P f b _ = b
foldl {n = suc n} P f b (x ∷ xs) = foldl (P ∘ suc) f (f x b) xs
foldlN : ∀ {p} (P : ℕ → Type p) →
(∀ {n} → A → P (suc n) → P n) →
P n →
Vec A n → P zero
foldlN P f b xs = foldr (λ n → P n → P zero) (λ x k xs → k (f x xs)) id xs b
module _ (f : A → B → B) (e : B) where
foldr′ : Vec A n → B
foldr′ {n = zero } xs = e
foldr′ {n = suc n} (x ∷ xs) = f x (foldr′ xs)
foldl′ : (A → B → B) → B → Vec A n → B
foldl′ {n = zero} f b xs = b
foldl′ {n = suc n} f b (x ∷ xs) = foldl′ f (f x b) xs
-- vecFromList : (xs : List A) → Vec A (length xs)
-- vecFromList List.[] = []
-- vecFromList (x List.∷ xs) = x ∷ vecFromList xs
-- vecToList : Vec A n → List A
-- vecToList = foldr′ List._∷_ List.[]
open import Data.Fin.Indexed
infixl 4 lookup
lookup : Fin n → Vec A n → A
lookup f0 = head
lookup (fs i) xs = lookup i (tail xs)
syntax lookup i xs = xs [ i ]
infixl 4 replace
replace : Fin n → A → Vec A n → Vec A n
replace f0 x xs .head = x
replace f0 x xs .tail = xs .tail
replace (fs i) x xs .head = xs .head
replace (fs i) x xs .tail = replace i x (xs .tail)
syntax replace i x xs = xs [ i ]≔ x
| {
"alphanum_fraction": 0.5228821811,
"avg_line_length": 23.6091954023,
"ext": "agda",
"hexsha": "0d57c9422e7a15f5d563e0211aa00bb06827b162",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Vec/Iterated.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Vec/Iterated.agda",
"max_line_length": 76,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Vec/Iterated.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 815,
"size": 2054
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Dependent product combinators for propositional equality
-- preserving functions
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.Product.Function.Dependent.Propositional.WithK where
open import Data.Product
open import Data.Product.Function.Dependent.Setoid
open import Data.Product.Relation.Binary.Pointwise.Dependent
open import Data.Product.Relation.Binary.Pointwise.Dependent.WithK
open import Function.Equality using (_⟨$⟩_)
open import Function.Injection as Inj using (_↣_; module Injection)
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Relation.Binary.HeterogeneousEquality as H
------------------------------------------------------------------------
-- Combinator for Injection
module _ {a₁ a₂} {A₁ : Set a₁} {A₂ : Set a₂}
{b₁ b₂} {B₁ : A₁ → Set b₁} {B₂ : A₂ → Set b₂}
where
↣ : ∀ (A₁↣A₂ : A₁ ↣ A₂) →
(∀ {x} → B₁ x ↣ B₂ (Injection.to A₁↣A₂ ⟨$⟩ x)) →
Σ A₁ B₁ ↣ Σ A₂ B₂
↣ A₁↣A₂ B₁↣B₂ =
Inverse.injection Pointwise-≡↔≡ ⟨∘⟩
injection (H.indexedSetoid B₂) A₁↣A₂
(Inverse.injection (H.≡↔≅ B₂) ⟨∘⟩
B₁↣B₂ ⟨∘⟩
Inverse.injection (Inv.sym (H.≡↔≅ B₁))) ⟨∘⟩
Inverse.injection (Inv.sym Pointwise-≡↔≡)
where open Inj using () renaming (_∘_ to _⟨∘⟩_)
| {
"alphanum_fraction": 0.5678144765,
"avg_line_length": 36.4871794872,
"ext": "agda",
"hexsha": "0b3838e12fd78adcab5f30797e826f529601ec05",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Function/Dependent/Propositional/WithK.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 430,
"size": 1423
} |
open import Data.List
open import Data.Unit
open import Relation.Unary hiding (_∈_)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Construct.Market
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Morphisms
module Relation.Ternary.Separation.Monad.State.Heap
{ℓ}
-- value types
{T : Set ℓ}
-- stored values
(V : T → Pred (List T) ℓ)
where
open import Level hiding (Lift)
open import Function using (_∘_; case_of_)
import Relation.Binary.HeterogeneousEquality as HEq
open import Relation.Unary.PredicateTransformer hiding (_⊔_; [_])
open import Relation.Binary.PropositionalEquality using (refl; _≡_)
open import Relation.Ternary.Separation.Construct.Product
open import Relation.Ternary.Separation.Construct.List T
open import Relation.Ternary.Separation.Morphisms
open import Relation.Ternary.Separation.Monad
open import Relation.Ternary.Separation.Allstar
open import Data.Product
open import Data.List.Relation.Ternary.Interleaving.Propositional as I
module HeapOps
-- inner monad
(M : Pt (Market (List T)) ℓ)
{{monad : Monads.Monad ⊤ ℓ (λ _ _ → M) }}
where
Cells : Pred (List T × List T) ℓ
Cells (Σ , Φ) = Allstar V Σ Φ
open import Relation.Ternary.Separation.Monad.State
open StateTransformer M public
open Monads using (str)
open Monads.Monad {{...}}
-- Creating a reference to a new cell, filled with a given value.
-- Note that in the market monoid this is pure!
-- Because we get a reference that consumes the freshly created resource.
newref : ∀ {a} → ∀[ V a ⇒ StateT M Cells (Just a) ]
app (newref v) (lift st σ₁) (offerᵣ σ₂) =
let _ , τ₁ , τ₂ = ⊎-assoc (⊎-comm σ₂) σ₁
in return (
inj refl
×⟨ offerᵣ ⊎-∙ ⟩
lift (cons (v ×⟨ τ₂ ⟩ st)) (⊎-∙ₗ τ₁))
-- A linear read on a store: you lose the reference.
-- This is pure, because with the reference being lost, the cell is destroyed: no resources leak.
read : ∀ {a} → ∀[ Just a ⇒ StateT M Cells (V a) ]
app (read refl) (lift st σ₁) (offerᵣ σ₂) with ⊎-assoc σ₂ σ₁
... | _ , σ₃ , σ₄ with repartition σ₃ st
... | cons (v ×⟨ σ₅ ⟩ nil) ×⟨ σ₆ ⟩ st' with ⊎-id⁻ʳ σ₅ | ⊎-assoc (⊎-comm σ₆) (⊎-comm σ₄)
... | refl | _ , τ₁ , τ₂ = return (inj v ×⟨ offerᵣ τ₂ ⟩ lift st' (⊎-comm τ₁))
-- Writing into a cell, returning the current contents
write : ∀ {a b} → ∀[ Just b ✴ (V a) ⇒ StateT M Cells (Just a ✴ V b) ]
app (write (refl ×⟨ σ₁ ⟩ v)) (lift st σ₂) (offerᵣ σ₃) with ⊎-assoc (⊎-comm σ₁) σ₃
-- first we reassociate the arguments in the order that we want to piece it back together
... | _ , τ₁ , τ₂ with ⊎-assoc (⊎-comm τ₁) σ₂
... | _ , τ₃ , τ₄ with ⊎-assoc τ₂ τ₃
... | _ , τ₅ , τ₆
-- then we reorganize the store internally to take out the unit value
with repartition τ₅ st
... | cons (vb ×⟨ σ₅ ⟩ nil) ×⟨ σ₆ ⟩ st' rewrite ⊎-id⁻ʳ σ₅ =
let
_ , κ₁ , κ₂ = ⊎-unassoc τ₄ (⊎-comm σ₆)
_ , κ₃ , κ₄ = ⊎-assoc κ₂ (⊎-comm τ₆)
in return (
inj (refl ×⟨ consˡ ⊎-idˡ ⟩ vb)
×⟨ offerᵣ (consˡ κ₄) ⟩
lift (cons (v ×⟨ κ₁ ⟩ st')) (⊎-∙ₗ (⊎-comm κ₃)))
-- A linear (strong) update on the store
update! : ∀ {a b} → ∀[ Just a ⇒ (V a ─✴ StateT M Cells (V b)) ─✴ StateT M Cells (Just b) ]
app (update! ptr) f σ = do
a ×⟨ σ₁ ⟩ f ← read ptr &⟨ σ ⟩ f
b ← app f a (⊎-comm σ₁)
newref b
| {
"alphanum_fraction": 0.643442623,
"avg_line_length": 37.5384615385,
"ext": "agda",
"hexsha": "227a5b13dd7f25afe79aca4e4402cc7814faef67",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/State/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/State/Heap.agda",
"max_line_length": 99,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/State/Heap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 1263,
"size": 3416
} |
module STLC.Type.Context where
open import STLC.Type as Type using (Type)
open Type.Substitution using () renaming (_⊙_ to _⊙τ_; _/_ to _/τ_; wk to wk-τ)
open import Data.Nat using (ℕ; _+_)
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Vec using (Vec; []; _∷_; map; lookup)
open import Data.Vec.Properties
using (map-∘; map-cong; lookup-map)
open import Relation.Binary.PropositionalEquality as Eq
using (refl; _≡_; sym; cong)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
-- --------------------------------------------------------------------
-- Typing Contexts
-- --------------------------------------------------------------------
-- A typing context Γ is the mapping from free term variables to
-- types. A context Γ m n maps m term variables to tyhpes containing
-- n type variables.
Ctxt : ℕ -> ℕ -> Set
Ctxt m n = Vec (Type n) m
-- --------------------------------------------------------------------
module Substitution where
infixl 8 _/_ _/Var_
-- Type substitutions lifted to typing contexts
_/_ : ∀ { m n p } -> Ctxt m n -> Sub Type n p -> Ctxt m p
Γ / ρ = Γ ⊙τ ρ
-- Weakening of typing contexts
weaken : ∀ { m n } -> Ctxt m n -> Ctxt m (1 + n)
weaken Γ = map Type.Substitution.weaken Γ
-- Term variable substitution
_/Var_ : ∀ { m n p } -> Sub Fin m n -> Ctxt n p -> Ctxt m p
θ /Var Γ = map (lookup Γ) θ
module Lemmas where
open Substitution
private module Lemmas-τ = Type.Lemmas
-- /Var and / commute
/Var-/-comm : ∀ { m n p q } (Γ : Ctxt p n) (θ : Sub Fin m p) (ρ : Sub Type n q)
-> (θ /Var Γ) / ρ ≡ θ /Var (Γ / ρ)
/Var-/-comm Γ θ ρ =
begin
(θ /Var Γ) / ρ
≡⟨ sym (map-∘ _ _ θ) ⟩
map (λ x -> (lookup Γ x) /τ ρ) θ
≡⟨ map-cong (λ x → sym (Lemmas-τ.lookup-⊙ x {ρ₁ = Γ})) θ ⟩
map (λ x -> lookup (Γ / ρ) x) θ
∎
-- /Var and weaken commute
/Var-weaken-comm : ∀ { m n p } (θ : Sub Fin m p) (Γ : Ctxt p n)
-> weaken (θ /Var Γ) ≡ θ /Var (weaken Γ)
/Var-weaken-comm θ Γ =
begin
weaken (θ /Var Γ)
≡⟨ Lemmas-τ.map-weaken ⟩
(θ /Var Γ) / wk-τ
≡⟨ /Var-/-comm Γ θ wk-τ ⟩
θ /Var (Γ / wk-τ)
≡⟨ sym (cong (λ Γ -> θ /Var Γ) (Lemmas-τ.map-weaken {ρ = Γ})) ⟩
θ /Var (weaken Γ)
∎
-- /Var and lookup commute
/Var-lookup-comm : ∀ { m n p } (x : Fin m) (θ : Sub Fin m p) (Γ : Ctxt p n)
-> lookup (θ /Var Γ) x ≡ lookup Γ (lookup θ x)
/Var-lookup-comm x θ Γ =
begin
lookup (θ /Var Γ) x
≡⟨⟩
lookup (map (lookup Γ) θ) x
≡⟨ lookup-map x (lookup Γ) θ ⟩
lookup Γ (lookup θ x)
∎
/Var-∷-comm : ∀ { m n p } (τ : Type n) (θ : Sub Fin m p) (Γ : Ctxt p n)
-> τ ∷ (θ /Var Γ) ≡ (θ VarSubst.↑) /Var (τ ∷ Γ)
/Var-∷-comm τ [] Γ = refl
/Var-∷-comm τ (x ∷ θ) Γ =
begin
τ ∷ ((x ∷ θ) /Var Γ)
≡⟨⟩
τ ∷ (lookup Γ x) ∷ (θ /Var Γ)
≡⟨ cong (λ Γ' -> τ ∷ (lookup Γ x) ∷ Γ') lemma ⟩
τ ∷ (lookup Γ x) ∷ map (lookup (τ ∷ Γ)) (map suc θ)
≡⟨⟩
map (lookup (τ ∷ Γ)) (zero ∷ suc x ∷ map suc θ)
≡⟨⟩
((x ∷ θ) VarSubst.↑) /Var (τ ∷ Γ)
∎
where
lemma =
begin
θ /Var Γ
≡⟨⟩
map (lookup Γ) θ
≡⟨⟩
map (λ x -> lookup (τ ∷ Γ) (suc x)) θ
≡⟨ map-∘ _ _ θ ⟩
map (lookup (τ ∷ Γ)) (map suc θ)
∎
-- invariant on renaming of id
/Var-id-inv : ∀ { m n } (Γ : Ctxt m n) -> Γ ≡ (VarSubst.id /Var Γ)
/Var-id-inv [] = refl
/Var-id-inv (τ ∷ Γ) =
begin
τ ∷ Γ
≡⟨ cong (λ Γ -> τ ∷ Γ) (/Var-id-inv Γ) ⟩
τ ∷ (VarSubst.id /Var Γ)
≡⟨ /Var-∷-comm τ VarSubst.id Γ ⟩
(VarSubst.id VarSubst.↑) /Var (τ ∷ Γ)
≡⟨⟩
VarSubst.id /Var (τ ∷ Γ)
∎
-- invariant on adding additional types, also known as the weakening lemma
/Var-wk-inv : ∀ { m n } (Γ : Ctxt m n) -> (τ : Type n) -> Γ ≡ (VarSubst.wk /Var (τ ∷ Γ))
/Var-wk-inv Γ τ =
begin
Γ
≡⟨ /Var-id-inv Γ ⟩
VarSubst.id /Var Γ
≡⟨ map-∘ _ _ VarSubst.id ⟩
VarSubst.wk /Var (τ ∷ Γ)
∎ | {
"alphanum_fraction": 0.4865598027,
"avg_line_length": 27.9655172414,
"ext": "agda",
"hexsha": "4051d660e9b2cc07a56122db3a2e0bd3959cbccc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-types",
"max_forks_repo_path": "src/STLC/Type/Context.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-types",
"max_issues_repo_path": "src/STLC/Type/Context.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aeb2be63381d891fabe5317e3c27553deb6bca6d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-types",
"max_stars_repo_path": "src/STLC/Type/Context.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1626,
"size": 4055
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X] where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat using (ℕ) renaming (_+_ to _+n_)
open import Cubical.Data.Vec
open import Cubical.Data.Vec.OperationsNat
open import Cubical.Data.Sigma
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
private variable
ℓ ℓ' : Level
module Comp-Poly-nm
(Acr@(A , Astr) : CommRing ℓ)
(n m : ℕ)
where
private
PAm = PolyCommRing Acr m
PAn+m = PolyCommRing Acr (n +n m)
PAmn = PolyCommRing (PolyCommRing Acr m) n
open CommRingStr
-----------------------------------------------------------------------------
-- direct sens
PAmn→PAn+m-base : (v : Vec ℕ n) → Poly Acr m → Poly Acr (n +n m)
PAmn→PAn+m-base v = DS-Rec-Set.f _ _ _ _ trunc
(0r (snd PAn+m))
(λ v' a → base (v ++ v') a)
(_+_ (snd PAn+m))
(+Assoc (snd PAn+m))
(+IdR (snd PAn+m))
(+Comm (snd PAn+m))
(λ v' → base-neutral (v ++ v'))
(λ v' a b → base-add (v ++ v') a b)
PAmn→PAn+m : Poly (PolyCommRing Acr m) n → Poly Acr (n +n m)
PAmn→PAn+m = DS-Rec-Set.f _ _ _ _ trunc
(0r (snd PAn+m))
PAmn→PAn+m-base
(_+_ (snd PAn+m))
(+Assoc (snd PAn+m))
(+IdR (snd PAn+m))
(+Comm (snd PAn+m))
(λ _ → refl)
λ _ _ _ → refl
-----------------------------------------------------------------------------
-- Converse sens
PAn+m→PAmn : Poly Acr (n +n m) → Poly (PolyCommRing Acr m) n
PAn+m→PAmn = DS-Rec-Set.f _ _ _ _ trunc
(0r (snd PAmn))
(λ v a → base (fst (sep-vec n m v)) (base (snd (sep-vec n m v)) a))
(_+_ (snd PAmn))
(+Assoc (snd PAmn))
(+IdR (snd PAmn))
(+Comm (snd PAmn))
(λ v → (cong (base (fst (sep-vec n m v))) (base-neutral _)) ∙ (base-neutral _))
λ v a b → base-add _ _ _ ∙ cong (base (fst (sep-vec n m v))) (base-add _ _ _)
-----------------------------------------------------------------------------
-- Section
e-sect : (P : Poly Acr (n +n m)) → PAmn→PAn+m (PAn+m→PAmn P) ≡ P
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ v a → cong (λ X → base X a) (sep-vec-id n m v))
(λ {U V} ind-U ind-V → cong₂ (_+_ (snd PAn+m)) ind-U ind-V)
-----------------------------------------------------------------------------
-- Retraction
e-retr : (P : Poly (PolyCommRing Acr m) n) → PAn+m→PAmn (PAmn→PAn+m P) ≡ P
e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ v → DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
(sym (base-neutral _))
(λ v' a → cong₂ base (sep-vec-fst n m v v')
(cong (λ X → base X a) (sep-vec-snd n m v v')))
λ {U V} ind-U ind-V → (cong₂ (_+_ (snd PAmn)) ind-U ind-V) ∙ (base-add _ _ _))
(λ {U V} ind-U ind-V → cong₂ (_+_ (snd PAmn)) ind-U ind-V)
-----------------------------------------------------------------------------
-- Morphism of ring
PAmn→PAn+m-pres1 : PAmn→PAn+m (1r (snd PAmn)) ≡ 1r (snd PAn+m)
PAmn→PAn+m-pres1 = cong (λ X → base X (1r Astr)) (rep-concat n m 0 )
PAmn→PAn+m-pres+ : (P Q : Poly (PolyCommRing Acr m) n) →
PAmn→PAn+m (snd PAmn ._+_ P Q) ≡ snd PAn+m ._+_ (PAmn→PAn+m P) (PAmn→PAn+m Q)
PAmn→PAn+m-pres+ = λ _ _ → refl
PAmn→PAn+m-pres· : (P Q : Poly (PolyCommRing Acr m) n) →
PAmn→PAn+m ( snd PAmn ._·_ P Q) ≡ snd PAn+m ._·_ (PAmn→PAn+m P) (PAmn→PAn+m Q)
PAmn→PAn+m-pres· =
DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ (λ _ → trunc _ _))
(λ Q → refl)
(λ v → DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ (λ _ → trunc _ _))
(λ Q → cong (λ X → PAmn→PAn+m (snd PAmn ._·_ X Q)) (base-neutral v))
(λ v' a → DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ w → DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
refl
(λ w' b → cong (λ X → base X (Astr ._·_ a b)) (+n-vec-concat _ _ _ _ _ _))
λ {U V} ind-U ind-V → cong (λ X → PAmn→PAn+m (snd PAmn ._·_ (base v (base v' a)) X))
(sym (base-add _ _ _))
∙ cong₂ (snd PAn+m ._+_) ind-U ind-V
∙ sym (cong (λ X → snd PAn+m ._·_ (PAmn→PAn+m (base v (base v' a)))
(PAmn→PAn+m X)) (base-add _ _ _)))
λ {U V} ind-U ind-V → cong₂ (snd PAn+m ._+_) ind-U ind-V)
λ {U V} ind-U ind-V Q → cong (λ X → PAmn→PAn+m (snd PAmn ._·_ X Q)) (sym (base-add _ _ _))
∙ cong₂ (snd PAn+m ._+_) (ind-U Q) (ind-V Q)
∙ sym (cong (λ X → snd PAn+m ._·_ (PAmn→PAn+m X) (PAmn→PAn+m Q)) (base-add _ _ _)))
λ {U V} ind-U ind-V Q → cong₂ (_+_ (snd PAn+m)) (ind-U Q) (ind-V Q)
-----------------------------------------------------------------------------
-- Ring Equivalence
module _ (A' : CommRing ℓ) (n m : ℕ) where
open Comp-Poly-nm A' n m
CRE-PolyN∘M-PolyN+M : CommRingEquiv (PolyCommRing (PolyCommRing A' m) n) (PolyCommRing A' (n +n m))
fst CRE-PolyN∘M-PolyN+M = isoToEquiv is
where
is : Iso _ _
Iso.fun is = PAmn→PAn+m
Iso.inv is = PAn+m→PAmn
Iso.rightInv is = e-sect
Iso.leftInv is = e-retr
snd CRE-PolyN∘M-PolyN+M = makeIsRingHom PAmn→PAn+m-pres1 PAmn→PAn+m-pres+ PAmn→PAn+m-pres·
| {
"alphanum_fraction": 0.4469463794,
"avg_line_length": 41.9931972789,
"ext": "agda",
"hexsha": "e18e8cff82ba520c725a3d3bce74c9f5355eb99e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2017,
"size": 6173
} |
module Foundation where
infix -65536 ℞_
℞_ : ∀ ℓ → Set _
℞_ ℓ = Set ℓ
id : ∀ {ℓ} {A : ℞ ℓ} → A → A
id x = x
Op₀ : ∀ {ℓ} → ℞ ℓ → ℞ ℓ
Op₀ = id
Op₁ : ∀ {a} → ℞ a → ℞ a
Op₁ A = A → Op₀ A
Op₂ : ∀ {a} (A : ℞ a) → ℞ a
Op₂ A = A → Op₁ A
record ♩Op₀ {a} (A : ℞ a) : ℞ a where field 𝟘 : Op₀ A
record ♩Op₁ {a} (A : ℞ a) : ℞ a where
infixr 65536 ¡_
field ¡_ : Op₁ A
record ♩Op₂ {a} (A : ℞ a) : ℞ a where
infixl 0 _∙_
field _∙_ : Op₂ A
open ♩Op₀ ⦃ … ⦄ public
open ♩Op₁ ⦃ … ⦄ public
open ♩Op₂ ⦃ … ⦄ public
instance Set₀♩Op₀=Level : ♩Op₀ Set₀
Set₀♩Op₀=Level = record { 𝟘 = Level } where open import Agda.Primitive
instance Set₀♩Op₀=Nat : ♩Op₀ _
♩Op₀.𝟘 Set₀♩Op₀=Nat = Nat where open import Agda.Builtin.Nat
instance Nat♩Op₁=successor : ♩Op₁ 𝟘
♩Op₁.¡_ Nat♩Op₁=successor = suc where open import Agda.Builtin.Nat
instance zero♩Op₀Nat : ♩Op₀ 𝟘
♩Op₀.𝟘 zero♩Op₀Nat = zero where open import Agda.Builtin.Nat
instance Level♩Op₀ : ♩Op₀ 𝟘
♩Op₀.𝟘 Level♩Op₀ = lzero where open import Agda.Primitive
instance Level♩Op₁ : ♩Op₁ _
♩Op₁.¡_ Level♩Op₁ = lsuc where open import Agda.Primitive
instance Level♩Op₂ : ♩Op₂ 𝟘
♩Op₂._∙_ Level♩Op₂ = _⊔_ where open import Agda.Primitive
_℞_ : ∀ {a} (A : ℞ a) → ∀ ℓ → ℞ _
_℞_ A ℓ = A → ℞ ℓ
_₂℞_ : ∀ {a} (A : ℞ a) → ∀ ℓ → ℞ _
_₂℞_ A ℓ = A → A ℞ ℓ
record IsReflexive {a} {A : ℞ a} {ℓ} (_∼_ : A ₂℞ ℓ) : ℞ a ∙ ℓ where
field
reflexive : ∀ {x} → x ∼ x
open IsReflexive ⦃ … ⦄
record IsSymmetric {a} {A : ℞ a} {ℓ} (_∼_ : A ₂℞ ℓ) : ℞ a ∙ ℓ where
field
symmetric : ∀ {x} {y} → x ∼ y → y ∼ x
open IsSymmetric ⦃ … ⦄
record IsTransitive {a} {A : ℞ a} {ℓ} (_∼_ : A ₂℞ ℓ) : ℞ a ∙ ℓ where
field
transitive : ∀ {x} {y} {z} → x ∼ y → y ∼ z → x ∼ z
open IsTransitive ⦃ … ⦄
record IsEquivalence {a} {A : ℞ a} {ℓ} (_≈_ : A ₂℞ ℓ) : ℞ a ∙ ℓ where
field
overlap ⦃ reflexive ⦄ : IsReflexive _≈_
overlap ⦃ symmetric ⦄ : IsSymmetric _≈_
overlap ⦃ transitive ⦄ : IsTransitive _≈_
open IsEquivalence ⦃ … ⦄
open import Agda.Primitive
record Equivalence {a} (A : ℞ a) ℓ : ℞ (a ∙ ¡ ℓ) where
infix 4 _≈_
field
_≈_ : A ₂℞ ℓ
isEquivalence : IsEquivalence _≈_
open Equivalence ⦃ … ⦄
record IsAssociative {a} {A : ℞ a} (_∘_ : Op₂ A) {ℓ} (_≈_ : A ₂℞ ℓ) : ℞ a ∙ ¡ ℓ where
field
associative : ∀ x y z → (x ∘ (y ∘ z)) ≈ ((x ∘ y) ∘ z)
open IsAssociative ⦃ … ⦄
import Relation.Binary.Core as R
record ⟦_Preserves₂_⟶_⟶_⟧
{a b c ℓ₁ ℓ₂ ℓ₃} {A : ℞ a} {B : ℞ b} {C : ℞ c}
(_+_ : A → B → C) (P : R.Rel A ℓ₁) (Q : R.Rel B ℓ₂) (R : R.Rel C ℓ₃)
: ℞ a ∙ b ∙ ℓ₁ ∙ ℓ₂ ∙ ℓ₃ where
field
_⟶_ : ∀ {x y u v} → P x y → Q u v → R (x + u) (y + v)
open ⟦_Preserves₂_⟶_⟶_⟧ ⦃ … ⦄
record Cong₂
a b c
(P : ∀ {x} {X : Set x} → X → X → Set (a ∙ x))
: ℞ ¡ a ∙ ¡ b ∙ ¡ c where
field
cong₂ : {A : ℞ a} {B : ℞ b} {C : ℞ c} (_+_ : A → B → C) → ∀ {x y u v} → P x y → P u v → P (x + u) (y + v)
open Cong₂ ⦃ … ⦄
open import Prelude.Function using (_∘_; _∘′_)
open import Level
--instance Cong₂≡ : ∀ {a b c} → Cong₂ a b c (λ x₁ x₂ → Lift (x₁ R.≡ x₂)) -- R._≡_
--Cong₂≡ = {!!}
--Cong₂.cong₂ Cong₂≡ _+_ R.refl R.refl = R.refl
record Semigroup {a} (A : ℞ a) ℓ : ℞ a ∙ ¡ ℓ where
field
_⁀_ : Op₂ A
overlap ⦃ equivalence ⦄ : Equivalence A ℓ
⦃ isAssociative ⦄ : IsAssociative _⁀_ _≈_
⦃ ∙-cong ⦄ : ⟦ _⁀_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ⟧
open Semigroup ⦃ … ⦄
record IdentityElement {a} (A : ℞ a) : ℞ a where
field
ε : A
open IdentityElement ⦃ … ⦄
record IsLeftIdentity {a} {A : ℞ a} ℓ (ε : A) (_∘_ : Op₂ A) : ℞ ¡ ℓ ∙ a where
field
overlap ⦃ equivalence ⦄ : Equivalence A ℓ
left-identity : ∀ x → ε ∘ x ≈ x
open IsLeftIdentity ⦃ … ⦄
record IsRightIdentity {a} {A : ℞ a} ℓ (ε : A) (_∘_ : Op₂ A) : ℞ ¡ ℓ ∙ a where
field
overlap ⦃ equivalence ⦄ : Equivalence A ℓ
right-identity : ∀ x → x ∘ ε ≈ x
open IsRightIdentity ⦃ … ⦄
record IsIdentity {a} {A : ℞ a} ℓ (ε : A) (_∘_ : Op₂ A) : ℞ ¡ ℓ ∙ a where
field
⦃ isLeftIdentity ⦄ : IsLeftIdentity ℓ ε _∘_
⦃ isRightIdentity ⦄ : IsRightIdentity ℓ ε _∘_
open IsIdentity ⦃ … ⦄
record IsMonoid {a} (A : ℞ a) (ε : A) ℓ
: ℞ a ∙ ¡ ℓ where
field
⦃ semigroup ⦄ : Semigroup A ℓ
⦃ isIdentity ⦄ : IsIdentity ℓ ε _⁀_
open IsMonoid ⦃ … ⦄
record Monoid {a} (A : ℞ a) ℓ : ℞ a ∙ ¡ ℓ where
field
⦃ identityElement ⦄ : IdentityElement A
⦃ isMonoid ⦄ : IsMonoid A ε ℓ
open Monoid ⦃ … ⦄
foo : (A : Set) ⦃ _ : Monoid A Level.zero ⦄ → (x : A) → (x ⁀ ε) ≈ x
foo A ⦃ m ⦄ x₁ = right-identity {zero} {{!!}} {{!!}} {{!!}} {{!!}} ⦃ isRightIdentity {{!!}} {{!!}} {{!!}} {{!!}} {{!!}} ⦄ x₁
| {
"alphanum_fraction": 0.5346077785,
"avg_line_length": 25.0054945055,
"ext": "agda",
"hexsha": "2719ba1294e2b5eb6bc31d4a6dc2303c29a8c838",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Foundation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Foundation.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Foundation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2285,
"size": 4551
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Nullary.Unique where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_)
open import Level using (Level)
-- # Definitions
Unique : ∀ {a : Level} (A : Set a) → Set _
Unique A = ∀ (x y : A) → x ≡ y
| {
"alphanum_fraction": 0.6561403509,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "28421984db128b172b9fad95eee3a73a45cee5d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Nullary/Unique.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Nullary/Unique.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Nullary/Unique.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 82,
"size": 285
} |
{-
This second-order term syntax was created from the following second-order syntax description:
$sig_string
-}
module ${syn_name}.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import ${syn_name}.Signature
private
variable
Γ Δ Π : Ctx
$ty_vars : $type
𝔛 : Familyₛ
-- Inductive term declaration
module ${sig}:Terms (𝔛 : Familyₛ) where
data ${sig} : Familyₛ where
var : ℐ ⇾̣ ${sig}
mvar : 𝔛 $fst_ty_var Π → Sub ${sig} Π Γ → ${sig} $fst_ty_var Γ
$syn_constructors
$op_fixity
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
${sig}ᵃ : MetaAlg ${sig}
${sig}ᵃ = record
{ 𝑎𝑙𝑔 = λ where
$alg_patterns
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module ${sig}ᵃ = MetaAlg ${sig}ᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : ${sig} ⇾̣ 𝒜
𝕊 : Sub ${sig} Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
$sem_patterns
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ ${sig}ᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ ${sig} $fst_ty_var Γ) → 𝕤𝕖𝕞 (${sig}ᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
$alg_hom_patterns
𝕊-tab : (mε : Π ~[ ${sig} ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : ${sig} ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ ${sig}ᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : ${sig} $fst_ty_var Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub ${sig} Π Γ)(v : ℐ $fst_ty_var Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
$alg_unique_patterns
-- Syntax instance for the signature
${sig}:Syn : Syntax
${sig}:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = ${sig}:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open ${sig}:Terms 𝔛 in record
{ ⊥ = ${sig} ⋉ ${sig}ᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax ${sig}:Syn public
open ${sig}:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands ${sig}ᵃ public
open import SOAS.Metatheory ${sig}:Syn public
$derived_tm_ops
| {
"alphanum_fraction": 0.5698384201,
"avg_line_length": 25.5504587156,
"ext": "agda",
"hexsha": "3618fefced8346abf8907a433e845ca7ee9d46fa",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "gen/templates/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "gen/templates/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "gen/templates/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1559,
"size": 2785
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Prod {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening as T hiding (wk; wkTerm; wkEqTerm)
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Weakening
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Properties
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Tools.Product
import Tools.PropositionalEquality as PE
prod′ : ∀ {F G t u Γ l l′ l″}
([F] : Γ ⊩⟨ l ⟩ F)
([t] : Γ ⊩⟨ l ⟩ t ∷ F / [F])
([Gt] : Γ ⊩⟨ l″ ⟩ G [ t ])
([u] : Γ ⊩⟨ l″ ⟩ u ∷ G [ t ] / [Gt])
([ΣFG] : Γ ⊩⟨ l′ ⟩B⟨ BΣ ⟩ Σ F ▹ G)
→ Γ ⊩⟨ l′ ⟩ prod t u ∷ Σ F ▹ G / B-intr BΣ [ΣFG]
prod′ {F} {G} {t} {u} {Γ} {l} {l′} {l″} [F] [t] [Gt] [u]
[ΣFG]@(noemb (Bᵣ F₁ G₁ D ⊢F ⊢G A≡A [F]₁ [G]₁ G-ext)) with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
... | PE.refl , PE.refl =
let ⊢t = escapeTerm [F] [t]
⊢u = escapeTerm [Gt] [u]
⊢Γ = wf ⊢F
fst⇒t : Γ ⊢ fst (prod t u) ⇒ t ∷ F
fst⇒t = Σ-β₁ ⊢F ⊢G ⊢t ⊢u
[fstprod] , [fstprod≡t] = redSubstTerm fst⇒t [F] [t]
[fstprod]′ = (irrelevanceTerm′ (PE.sym (wk-id F))
[F] ([F]₁ id ⊢Γ)
[fstprod])
wkLiftIdEq = PE.cong (λ x → x [ fst (prod t u ) ]) (wk-lift-id G)
[Gfst] = [G]₁ id ⊢Γ [fstprod]′
[Gfst]′ = irrelevance′ wkLiftIdEq [Gfst]
[t]′ = irrelevanceTerm′ (PE.sym (wk-id F))
[F] ([F]₁ id ⊢Γ)
[t]
[fstprod≡t]′ = irrelevanceEqTerm′ (PE.sym (wk-id F))
[F] ([F]₁ id ⊢Γ)
[fstprod≡t]
[Gfst≡Gt] = irrelevanceEq″ wkLiftIdEq (PE.cong (λ x → x [ t ]) (wk-lift-id G))
[Gfst] [Gfst]′
(G-ext id ⊢Γ [fstprod]′ [t]′ [fstprod≡t]′)
[u]′ = convTerm₂ [Gfst]′ [Gt] [Gfst≡Gt] [u]
snd⇒u : Γ ⊢ snd (prod t u) ⇒ u ∷ G [ fst (prod t u) ]
snd⇒u = Σ-β₂ ⊢F ⊢G ⊢t ⊢u
[sndprod] , [sndprod≡u] = redSubstTerm snd⇒u [Gfst]′ [u]′
⊢prod = prodⱼ ⊢F ⊢G ⊢t ⊢u
[fstRefl] = transEqTerm [F] [fstprod≡t] (symEqTerm [F] [fstprod≡t])
[sndRefl] = transEqTerm [Gfst]′ [sndprod≡u] (symEqTerm [Gfst]′ [sndprod≡u])
in Σₜ (prod t u)
(idRedTerm:*: ⊢prod)
prodₙ
(≅-Σ-η ⊢F ⊢G ⊢prod ⊢prod prodₙ prodₙ
(escapeTermEq [F] [fstRefl])
(escapeTermEq [Gfst]′ [sndRefl]))
[fstprod]′
(irrelevanceTerm′ (PE.sym wkLiftIdEq)
[Gfst]′ [Gfst]
[sndprod])
prod′ {F} {G} {t} {u} {Γ} {l} {l′} [F] [t] [Gt] [u]
[ΣFG]@(emb 0<1 x) = prod′ [F] [t] [Gt] [u] x
prod″ : ∀ {F G t u Γ l l′}
([F] : Γ ⊩⟨ l ⟩ F)
([t] : Γ ⊩⟨ l ⟩ t ∷ F / [F])
([Gt] : Γ ⊩⟨ l ⟩ G [ t ])
([u] : Γ ⊩⟨ l ⟩ u ∷ G [ t ] / [Gt])
([ΣFG] : Γ ⊩⟨ l′ ⟩ Σ F ▹ G)
→ Γ ⊩⟨ l′ ⟩ prod t u ∷ Σ F ▹ G / [ΣFG]
prod″ [F] [t] [Gt] [u] [ΣFG] =
let [prod] = prod′ [F] [t] [Gt] [u] (B-elim BΣ [ΣFG])
in irrelevanceTerm (B-intr BΣ (B-elim BΣ [ΣFG])) [ΣFG] [prod]
prod-cong′ : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l ⟩ F)
([t] : Γ ⊩⟨ l ⟩ t ∷ F / [F])
([t′] : Γ ⊩⟨ l ⟩ t′ ∷ F / [F])
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ F / [F])
([Gt] : Γ ⊩⟨ l ⟩ G [ t ])
([u] : Γ ⊩⟨ l ⟩ u ∷ G [ t ] / [Gt])
([u′] : Γ ⊩⟨ l ⟩ u′ ∷ G [ t ] / [Gt])
([u≡u′] : Γ ⊩⟨ l ⟩ u ≡ u′ ∷ G [ t ] / [Gt])
([ΣFG] : Γ ⊩⟨ l′ ⟩B⟨ BΣ ⟩ Σ F ▹ G)
→ Γ ⊩⟨ l′ ⟩ prod t u ≡ prod t′ u′ ∷ Σ F ▹ G / B-intr BΣ [ΣFG]
prod-cong′ {F} {G} {t} {t′} {u} {u′} {Γ} {l} {l′}
[F] [t] [t′] [t≡t′] [Gt] [u] [u′] [u≡u′]
[ΣFG]@(noemb (Bᵣ F₁ G₁ D ⊢F ⊢G A≡A [F]₁ [G]₁ G-ext)) with
B-PE-injectivity BΣ (whnfRed* (red D) Σₙ)
... | PE.refl , PE.refl =
let [prod] = prod′ [F] [t] [Gt] [u] [ΣFG]
⊢Γ = wf ⊢F
wk[F] = [F]₁ id ⊢Γ
wk[t] = irrelevanceTerm′ (PE.sym (wk-id F)) [F] wk[F] [t]
wk[t′] = irrelevanceTerm′ (PE.sym (wk-id F)) [F] wk[F] [t′]
wk[t≡t′] = irrelevanceEqTerm′ (PE.sym (wk-id F)) [F] wk[F] [t≡t′]
wk[Gt] = [G]₁ id ⊢Γ wk[t]
wk[Gt′] = [G]₁ id ⊢Γ wk[t′]
wk[Gt≡Gt′] = G-ext id ⊢Γ wk[t] wk[t′] wk[t≡t′]
[Gt′] = irrelevance′ (PE.cong (λ x → x [ t′ ]) (wk-lift-id G)) wk[Gt′]
[Gt≡Gt′] = irrelevanceEq″ (PE.cong (λ x → x [ t ]) (wk-lift-id G))
(PE.cong (λ x → x [ t′ ]) (wk-lift-id G))
wk[Gt] [Gt]
wk[Gt≡Gt′]
[u′]Gt′ = convTerm₁ [Gt] [Gt′] [Gt≡Gt′] [u′]
[prod′] = prod′ [F] [t′] [Gt′] [u′]Gt′ [ΣFG]
⊢t = escapeTerm [F] [t]
⊢t′ = escapeTerm [F] [t′]
⊢u = escapeTerm [Gt] [u]
⊢u′ = escapeTerm [Gt′] [u′]Gt′
fst⇒t = Σ-β₁ ⊢F ⊢G ⊢t ⊢u
[fst] , [fst≡t] = redSubstTerm fst⇒t [F] [t]
fst⇒t′ = Σ-β₁ ⊢F ⊢G ⊢t′ ⊢u′
[fst′] , [fst≡t′] = redSubstTerm fst⇒t′ [F] [t′]
wk[fst≡t] = irrelevanceEqTerm′ (PE.sym (wk-id F))
[F] wk[F]
[fst≡t]
wk[fst≡t′] = irrelevanceEqTerm′ (PE.sym (wk-id F))
[F] wk[F]
[fst≡t′]
wk[fst] = irrelevanceTerm′ (PE.sym (wk-id F))
[F] wk[F]
[fst]
wk[fst′] = irrelevanceTerm′ (PE.sym (wk-id F))
[F] wk[F]
[fst′]
-- fst t ≡ fst t′ ∷ F
[fst≡fst′] = transEqTerm [F] [fst≡t] (transEqTerm [F] [t≡t′] (symEqTerm [F] [fst≡t′]))
wk[fst≡fst′] = irrelevanceEqTerm′ (PE.sym (wk-id F))
[F] wk[F]
[fst≡fst′]
-- snd (prod t u) ≡ u ∷ G [ fst (prod t u) ]
wkLiftIdEq = PE.cong (λ x → x [ fst (prod t u ) ]) (wk-lift-id G)
wk[Gfst] = [G]₁ id ⊢Γ wk[fst]
[Gfst] = irrelevance′ wkLiftIdEq wk[Gfst]
[Gfst≡Gt] = irrelevanceEq″ wkLiftIdEq (PE.cong (λ x → x [ t ])
(wk-lift-id G))
wk[Gfst] [Gfst]
(G-ext id ⊢Γ wk[fst] wk[t] wk[fst≡t])
[u]fst = convTerm₂ [Gfst] [Gt] [Gfst≡Gt] [u]
snd⇒u = Σ-β₂ ⊢F ⊢G ⊢t ⊢u
[snd] , [snd≡u] = redSubstTerm snd⇒u [Gfst] [u]fst
-- u ≡ u′ ∷ G [ fst (prod t u) ]
[u≡u′]Gfst = convEqTerm₂ [Gfst] [Gt] [Gfst≡Gt] [u≡u′]
-- u′ ≡ snd (prod t′ u′) ∷ G [ fst (prod t u) ]
wkLiftIdEq′ = PE.cong (λ x → x [ fst (prod t′ u′) ]) (wk-lift-id G)
wk[Gfst′] = [G]₁ id ⊢Γ wk[fst′]
[Gfst′] = irrelevance′ wkLiftIdEq′ wk[Gfst′]
[Gfst′≡Gt′] = irrelevanceEq″ wkLiftIdEq′ (PE.cong (λ x → x [ t′ ])
(wk-lift-id G))
wk[Gfst′] [Gfst′]
(G-ext id ⊢Γ wk[fst′] wk[t′] wk[fst≡t′])
snd⇒u′ = Σ-β₂ ⊢F ⊢G ⊢t′ ⊢u′
[u′]Gfst′ = convTerm₂ [Gfst′] [Gt′] [Gfst′≡Gt′] [u′]Gt′
[snd≡u′]Gfst′ = proj₂ (redSubstTerm snd⇒u′ [Gfst′] [u′]Gfst′)
[Gfst≡Gfst′] = irrelevanceEq″ wkLiftIdEq wkLiftIdEq′
wk[Gfst] [Gfst]
(G-ext id ⊢Γ wk[fst] wk[fst′] wk[fst≡fst′])
[snd≡u′]Gfst = convEqTerm₂ [Gfst] [Gfst′] [Gfst≡Gfst′] [snd≡u′]Gfst′
[snd≡snd′] = transEqTerm [Gfst] [snd≡u]
(transEqTerm [Gfst] [u≡u′]Gfst
(symEqTerm [Gfst] [snd≡u′]Gfst))
wk[snd≡snd′] = irrelevanceEqTerm′ (PE.cong (λ x → x [ fst (prod t u) ])
(PE.sym (wk-lift-id G)))
[Gfst] wk[Gfst]
[snd≡snd′]
⊢prod = escapeTerm (B-intr BΣ [ΣFG]) [prod]
⊢prod′ = escapeTerm (B-intr BΣ [ΣFG]) [prod′]
in Σₜ₌ (prod t u)
(prod t′ u′)
(idRedTerm:*: ⊢prod)
(idRedTerm:*: ⊢prod′)
prodₙ prodₙ
(≅-Σ-η ⊢F ⊢G ⊢prod ⊢prod′ prodₙ prodₙ
(escapeTermEq [F] [fst≡fst′])
(escapeTermEq [Gfst] [snd≡snd′]))
[prod] [prod′]
wk[fst] wk[fst′]
wk[fst≡fst′]
wk[snd≡snd′]
prod-cong′ [F] [t] [t′] [t≡t′] [Gt] [u] [u′] [u≡u′] (emb 0<1 x) =
prod-cong′ [F] [t] [t′] [t≡t′] [Gt] [u] [u′] [u≡u′] x
prod-cong″ : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l ⟩ F)
([t] : Γ ⊩⟨ l ⟩ t ∷ F / [F])
([t′] : Γ ⊩⟨ l ⟩ t′ ∷ F / [F])
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ F / [F])
([Gt] : Γ ⊩⟨ l ⟩ G [ t ])
([u] : Γ ⊩⟨ l ⟩ u ∷ G [ t ] / [Gt])
([u′] : Γ ⊩⟨ l ⟩ u′ ∷ G [ t ] / [Gt])
([u≡u′] : Γ ⊩⟨ l ⟩ u ≡ u′ ∷ G [ t ] / [Gt])
([ΣFG] : Γ ⊩⟨ l′ ⟩ Σ F ▹ G)
→ Γ ⊩⟨ l′ ⟩ prod t u ≡ prod t′ u′ ∷ Σ F ▹ G / [ΣFG]
prod-cong″ [F] [t] [t′] [t≡t′] [Gt] [u] [u′] [u≡u′] [ΣFG] =
let [prod≡] = prod-cong′ [F] [t] [t′] [t≡t′] [Gt] [u] [u′] [u≡u′] (B-elim BΣ [ΣFG])
in irrelevanceEqTerm (B-intr BΣ (B-elim BΣ [ΣFG])) [ΣFG] [prod≡]
prod-congᵛ : ∀ {F G t t′ u u′ Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F])
([t′] : Γ ⊩ᵛ⟨ l ⟩ t′ ∷ F / [Γ] / [F])
([t≡t′] : Γ ⊩ᵛ⟨ l ⟩ t ≡ t′ ∷ F / [Γ] / [F])
([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ G [ t ] / [Γ] / substS {F} {G} [Γ] [F] [G] [t])
([u′] : Γ ⊩ᵛ⟨ l ⟩ u′ ∷ G [ t′ ] / [Γ] / substS {F} {G} [Γ] [F] [G] [t′])
([u≡u′] : Γ ⊩ᵛ⟨ l ⟩ u ≡ u′ ∷ G [ t ] / [Γ] / substS {F} {G} [Γ] [F] [G] [t])
→ Γ ⊩ᵛ⟨ l ⟩ prod t u ≡ prod t′ u′ ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]
prod-congᵛ {F} {G} {t} {t′} {u} {u′} {Γ} [Γ] [F] [G] [t] [t′] [t≡t′] [u] [u′] [u≡u′] {Δ} {σ} ⊢Δ [σ] =
let ⊩σF = proj₁ ([F] ⊢Δ [σ])
⊩σt = proj₁ ([t] ⊢Δ [σ])
⊩σt′ = proj₁ ([t′] ⊢Δ [σ])
σt≡σt′ = [t≡t′] ⊢Δ [σ]
[Gt] = substS {F} {G} [Γ] [F] [G] [t]
⊩σGt₁ = proj₁ ([Gt] ⊢Δ [σ])
⊩σGt = irrelevance′ (singleSubstLift G t) ⊩σGt₁
⊩σu = irrelevanceTerm′ (singleSubstLift G t)
⊩σGt₁ ⊩σGt
(proj₁ ([u] ⊢Δ [σ]))
[Gt≡Gt′] = substSEq {F = F} {F′ = F} {G = G} {G′ = G} {t = t} {t′ = t′} [Γ]
[F] [F] (reflᵛ {A = F} [Γ] [F])
[G] [G] (reflᵛ {A = G} {Γ = Γ ∙ F} ([Γ] ∙ [F]) [G])
[t] [t′] [t≡t′]
σGt≡σGt′ = [Gt≡Gt′] ⊢Δ [σ]
⊩σGt′ = proj₁ (substS {F} {G} [Γ] [F] [G] [t′] ⊢Δ [σ])
⊩σu′₂ = proj₁ ([u′] ⊢Δ [σ])
⊩σu′₁ = convTerm₂ ⊩σGt₁ ⊩σGt′ σGt≡σGt′ ⊩σu′₂
⊩σu′ = irrelevanceTerm′ (singleSubstLift G t) ⊩σGt₁ ⊩σGt ⊩σu′₁
σu≡σu′ = irrelevanceEqTerm′ (singleSubstLift G t)
⊩σGt₁ ⊩σGt
([u≡u′] ⊢Δ [σ])
⊩σΣFG = proj₁ (Σᵛ {F} {G} [Γ] [F] [G] ⊢Δ [σ])
in prod-cong″ ⊩σF ⊩σt ⊩σt′ σt≡σt′ ⊩σGt ⊩σu ⊩σu′ σu≡σu′ ⊩σΣFG
prodᵛ : ∀ {F G t u Γ l}
([Γ] : ⊩ᵛ Γ)
([F] : Γ ⊩ᵛ⟨ l ⟩ F / [Γ])
([G] : Γ ∙ F ⊩ᵛ⟨ l ⟩ G / [Γ] ∙ [F])
([t] : Γ ⊩ᵛ⟨ l ⟩ t ∷ F / [Γ] / [F])
([u] : Γ ⊩ᵛ⟨ l ⟩ u ∷ G [ t ] / [Γ] / substS {F} {G} [Γ] [F] [G] [t])
→ Γ ⊩ᵛ⟨ l ⟩ prod t u ∷ Σ F ▹ G / [Γ] / Σᵛ {F} {G} [Γ] [F] [G]
prodᵛ {F} {G} {t} {u} {Γ} {l} [Γ] [F] [G] [t] [u] {Δ = Δ} {σ = σ} ⊢Δ [σ] =
let [Gt] = substS {F} {G} [Γ] [F] [G] [t]
[ΣFG] = Σᵛ {F} {G} [Γ] [F] [G]
⊩σF = proj₁ ([F] ⊢Δ [σ])
⊢σF = escape ⊩σF
⊩σt = proj₁ ([t] ⊢Δ [σ])
⊩σGt′ : Δ ⊩⟨ l ⟩ subst σ (G [ t ])
⊩σGt′ = proj₁ ([Gt] ⊢Δ [σ])
⊩σGt : Δ ⊩⟨ l ⟩ subst (liftSubst σ) G [ subst σ t ]
⊩σGt = irrelevance′ (singleSubstLift G t) ⊩σGt′
⊩σu′ = proj₁ ([u] ⊢Δ [σ])
⊩σu : Δ ⊩⟨ l ⟩ subst σ u ∷ subst (liftSubst σ) G [ subst σ t ] / ⊩σGt
⊩σu = irrelevanceTerm′ (singleSubstLift G t) ⊩σGt′ ⊩σGt ⊩σu′
⊩σΣFG = proj₁ ([ΣFG] ⊢Δ [σ])
in prod″ ⊩σF ⊩σt ⊩σGt ⊩σu ⊩σΣFG ,
(λ {σ′} [σ′] [σ≡σ′] →
let ⊩σ′F = proj₁ ([F] ⊢Δ [σ′])
σF≡σ′F = proj₂ ([F] ⊢Δ [σ]) [σ′] [σ≡σ′]
⊩σ′t = proj₁ ([t] ⊢Δ [σ′])
⊩σ′t = convTerm₂ ⊩σF ⊩σ′F σF≡σ′F ⊩σ′t
σt≡σ′t = proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′]
⊩σ′Gt′ = proj₁ ([Gt] ⊢Δ [σ′])
⊩σ′Gt = irrelevance′ (singleSubstLift G t) ⊩σ′Gt′
σGt≡σ′Gt = proj₂ ([Gt] ⊢Δ [σ]) [σ′] [σ≡σ′]
⊩σ′u″ = proj₁ ([u] ⊢Δ [σ′])
⊩σ′u′ = convTerm₂ ⊩σGt′ ⊩σ′Gt′ σGt≡σ′Gt ⊩σ′u″
⊩σ′u = irrelevanceTerm′ (singleSubstLift G t) ⊩σGt′ ⊩σGt ⊩σ′u′
σu≡σ′u : Δ ⊩⟨ l ⟩ subst σ u ≡ subst σ′ u ∷ subst (liftSubst σ) G [ subst σ t ] / ⊩σGt
σu≡σ′u = irrelevanceEqTerm′ (singleSubstLift G t) ⊩σGt′ ⊩σGt (proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′])
in prod-cong″ ⊩σF ⊩σt ⊩σ′t σt≡σ′t ⊩σGt ⊩σu ⊩σ′u σu≡σ′u ⊩σΣFG)
| {
"alphanum_fraction": 0.4019947962,
"avg_line_length": 41.9272727273,
"ext": "agda",
"hexsha": "2d15d7cfd1e6a89c848930a69a12cddfaa126d08",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Prod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Prod.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Prod.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6493,
"size": 13836
} |
{-# OPTIONS --safe --sized-types #-}
module Issue3517.S where
open import Agda.Builtin.Size public
| {
"alphanum_fraction": 0.7227722772,
"avg_line_length": 16.8333333333,
"ext": "agda",
"hexsha": "0797eef8e6de2884e91316598a58ebb37dd34112",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3517/S.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3517/S.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3517/S.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 101
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal.Helpers where
open import Data.Nat using (_+_)
open import Function using (flip)
open import Categories.Category
import Categories.Functor
open import Categories.Bifunctor hiding (identityˡ; identityʳ; assoc) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_)
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘₀_; _∘₁_; _∘ˡ_; _∘ʳ_; NaturalTransformation) renaming (_≡_ to _≡ⁿ_; id to idⁿ)
module MonoidalHelperFunctors {o ℓ e} (C : Category o ℓ e) (—⊗— : Bifunctor C C C) (id : Category.Obj C) where
private module C = Category C
open C hiding (id; identityˡ; identityʳ)
import Categories.Power.NaturalTransformation
private module PowNat = Categories.Power.NaturalTransformation C
open PowNat
private module ⊗ = Functor —⊗— renaming (F₀ to ⊗₀; F₁ to ⊗₁; F-resp-≡ to ⊗-resp-≡)
open ⊗
infix 2 _⊗_
_⊗_ : ∀ {n m} (F : Powerendo n) (G : Powerendo m) → Powerendo (n + m)
_⊗_ = reduce —⊗—
_⊗₂_ : ∀ {m} (F G : Powerendo m) → Powerendo m
_⊗₂_ = overlaps {C} —⊗— -- reduce (flip-bifunctor {C = C} {C} —⊗—)
id↑ : Powerendo 0
id↑ = nullary id
x : Powerendo 1
x = unary (idF {C = C})
id⊗x : Powerendo 1
id⊗x = id↑ ⊗ x
x⊗id : Powerendo 1
x⊗id = x ⊗ id↑
x⊗y : Powerendo 2
x⊗y = binary —⊗—
y⊗x : Powerendo 2
y⊗x = binary (flip-bifunctor {C = C} {C} —⊗—)
[x⊗y]⊗z : Powerendo 3
[x⊗y]⊗z = x⊗y ⊗ x
x⊗[y⊗z] : Powerendo 3
x⊗[y⊗z] = x ⊗ x⊗y
[y⊗z]⊗x : Powerendo 3
[y⊗z]⊗x = (select 1 ⊗₂ select 2) ⊗₂ select 0
[y⊗x]⊗z : Powerendo 3
[y⊗x]⊗z = (select 1 ⊗₂ select 0) ⊗₂ select 2
y⊗[x⊗z] : Powerendo 3
y⊗[x⊗z] = select 1 ⊗₂ (select 0 ⊗₂ select 2)
y⊗[z⊗x] : Powerendo 3
y⊗[z⊗x] = select 1 ⊗₂ (select 2 ⊗₂ select 0)
z⊗[x⊗y] : Powerendo 3
z⊗[x⊗y] = select 2 ⊗₂ (select 0 ⊗₂ select 1)
x⊗[z⊗y] : Powerendo 3
x⊗[z⊗y] = select 0 ⊗₂ (select 2 ⊗₂ select 1)
[x⊗z]⊗y : Powerendo 3
[x⊗z]⊗y = (select 0 ⊗₂ select 2) ⊗₂ select 1
[z⊗x]⊗y : Powerendo 3
[z⊗x]⊗y = (select 2 ⊗₂ select 0) ⊗₂ select 1
[x⊗id]⊗y : Powerendo 2
[x⊗id]⊗y = x⊗id ⊗ x
x⊗[id⊗y] : Powerendo 2
x⊗[id⊗y] = x ⊗ id⊗x
[[x⊗y]⊗z]⊗w : Powerendo 4
[[x⊗y]⊗z]⊗w = [x⊗y]⊗z ⊗ x
[x⊗y]⊗[z⊗w] : Powerendo 4
[x⊗y]⊗[z⊗w] = x⊗y ⊗ x⊗y
x⊗[y⊗[z⊗w]] : Powerendo 4
x⊗[y⊗[z⊗w]] = x ⊗ x⊗[y⊗z]
x⊗[[y⊗z]⊗w] : Powerendo 4
x⊗[[y⊗z]⊗w] = x ⊗ [x⊗y]⊗z
[x⊗[y⊗z]]⊗w : Powerendo 4
[x⊗[y⊗z]]⊗w = x⊗[y⊗z] ⊗ x
infix 2 _⊗ⁿ_
_⊗ⁿ_ : ∀ {n} {F F′ : Powerendo n} (φ : NaturalTransformation F F′) {m} {G G′ : Powerendo m} (γ : NaturalTransformation G G′) → NaturalTransformation (F ⊗ G) (F′ ⊗ G′)
_⊗ⁿ_ = reduceN —⊗—
infix 2 _⊗ⁿ′_
_⊗ⁿ′_ : ∀ {n} {F F′ : Powerendo n} (φ : NaturalTransformation F F′) {G G′ : Powerendo n} (γ : NaturalTransformation G G′) → NaturalTransformation (F ⊗₂ G) (F′ ⊗₂ G′)
_⊗ⁿ′_ = overlapN —⊗—
id₂ : NaturalTransformation x x
id₂ = idⁿ
id3 : {F : Powerendo 3} → NaturalTransformation F F
id3 = idⁿ
module Coherence (identityˡ : NaturalIsomorphism id⊗x x)
(identityʳ : NaturalIsomorphism x⊗id x)
(assoc : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z]) where
open NaturalIsomorphism identityˡ using () renaming (F⇒G to υˡ)
open NaturalIsomorphism identityʳ using () renaming (F⇒G to υʳ)
open NaturalIsomorphism assoc using () renaming (F⇒G to α)
α-over : ∀ {n₁ n₂ n₃} (F₁ : Powerendo n₁) (F₂ : Powerendo n₂) (F₃ : Powerendo n₃) → NaturalTransformation ((F₁ ⊗ F₂) ⊗ F₃) (reduce2ʳ —⊗— F₁ F₂ F₃)
α-over F₁ F₂ F₃ = α ∘ʳ ((hyp F₁ ∥ hyp F₂) ∥ hyp F₃)
TriangleLeftSide : NaturalTransformation [x⊗id]⊗y x⊗y
TriangleLeftSide = υʳ ⊗ⁿ id₂
TriangleTopSide : NaturalTransformation [x⊗id]⊗y x⊗[id⊗y]
TriangleTopSide = α-over x id↑ x
TriangleRightSide : NaturalTransformation x⊗[id⊗y] x⊗y
TriangleRightSide = id₂ ⊗ⁿ υˡ
PentagonNWSide : NaturalTransformation [[x⊗y]⊗z]⊗w [x⊗y]⊗[z⊗w]
PentagonNWSide = α-over x⊗y x x
PentagonNESide : NaturalTransformation [x⊗y]⊗[z⊗w] x⊗[y⊗[z⊗w]]
PentagonNESide = α-over x x x⊗y
PentagonSWSide : NaturalTransformation [[x⊗y]⊗z]⊗w [x⊗[y⊗z]]⊗w
PentagonSWSide = α ⊗ⁿ id₂
PentagonSSide : NaturalTransformation [x⊗[y⊗z]]⊗w x⊗[[y⊗z]⊗w]
PentagonSSide = α-over x x⊗y x
PentagonSESide : NaturalTransformation x⊗[[y⊗z]⊗w] x⊗[y⊗[z⊗w]]
PentagonSESide = id₂ ⊗ⁿ α
| {
"alphanum_fraction": 0.6028207461,
"avg_line_length": 26.3233532934,
"ext": "agda",
"hexsha": "25cd25176b686a8509c5729caa4ac7fee7ae4a05",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Monoidal/Helpers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Monoidal/Helpers.agda",
"max_line_length": 168,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Monoidal/Helpers.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 2272,
"size": 4396
} |
{-# OPTIONS --prop --allow-unsolved-metas #-}
postulate
A : Set
P : A → Prop
a : A
c : P a
Q : Prop
x : Q
x = _ where
b : A
b = a
d : P b
d = c
| {
"alphanum_fraction": 0.4606060606,
"avg_line_length": 9.7058823529,
"ext": "agda",
"hexsha": "21050c3085cd46965965f74b57c7b22f0a118a45",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3618.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3618.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3618.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 73,
"size": 165
} |
module WellScopedTermsModel where
open import Library
open import WellScopedTerms
open import RMonads
open import RMonads.REM
open import Categories.Sets
_<<_ : ∀{n}{X : Set} → (Fin n → X) → X → Fin (suc n) → X
(f << x) zero = x
(f << x) (suc i) = f i
record LambdaModel : Set₁ where
field S : Set
Env = λ n → Fin n → S
field eval : ∀{n} → Env n → Tm n → S
ap : S → S → S
lawvar : ∀{n}{i : Fin n}{γ : Env n} →
eval γ (var i) ≅ γ i
lawapp : ∀{n}{t u : Tm n}{γ : Env n} →
eval γ (app t u) ≅ ap (eval γ t) (eval γ u)
lawlam : ∀{n}{t : Tm (suc n)}{γ : Env n}{s : S} →
ap (eval γ (lam t)) s ≅ eval (γ << s) t
lawext : ∀{f g : S} → ((a : S) → ap f a ≅ ap g a) → f ≅ g
module Model (l : LambdaModel) where
open LambdaModel l
wk<< : ∀{m n}(α : Ren m n)(β : Env n)
(v : S) → (y : Fin (suc m)) →
((β ∘ α) << v) y ≅ (β << v) (wk α y)
wk<< α β v zero = refl
wk<< α β v (suc i) = refl
reneval : ∀{m n}(α : Ren m n)(β : Env n)
(t : Tm m) → eval (β ∘ α) t ≅ (eval β ∘ ren α) t
reneval α β (var i) =
proof
eval (β ∘ α) (var i)
≅⟨ lawvar ⟩
β (α i)
≅⟨ sym lawvar ⟩
eval β (var (α i)) ∎
reneval α β (lam t) = lawext λ a →
proof
ap (eval (β ∘ α) (lam t)) a
≅⟨ lawlam ⟩
eval ((β ∘ α) << a) t
≅⟨ cong (λ (f : Env _) → eval f t) (ext (wk<< α β a)) ⟩
eval ((β << a) ∘ wk α) t
≅⟨ reneval (wk α) (β << a) t ⟩
eval (β << a) (ren (wk α) t)
≅⟨ sym lawlam ⟩
ap (eval β (lam (ren (wk α) t))) a
∎
reneval α β (app t u) =
proof
eval (β ∘ α) (app t u)
≅⟨ lawapp ⟩
ap (eval (β ∘ α) t) (eval (β ∘ α) u)
≅⟨ cong₂ ap (reneval α β t) (reneval α β u) ⟩
ap (eval β (ren α t)) (eval β (ren α u))
≅⟨ sym lawapp ⟩
eval β (app (ren α t) (ren α u))
∎
lift<< : ∀{m n}(γ : Sub m n)(α : Env n)
(a : S)(i : Fin (suc m)) →
((eval α ∘ γ ) << a) i ≅ (eval (α << a) ∘ lift γ) i
lift<< γ α a zero =
proof
a
≅⟨ sym lawvar ⟩
eval (α << a) (var zero)
∎
lift<< γ α a (suc i) =
proof
eval α (γ i)
≡⟨⟩
eval ((α << a) ∘ suc) (γ i)
≅⟨ reneval suc (α << a) (γ i) ⟩
eval (α << a) (ren suc (γ i))
∎
subeval : ∀{m n}(t : Tm m)(γ : Sub m n)(α : Env n) →
eval (eval α ∘ γ) t ≅ (eval α ∘ sub γ) t
subeval (var i) γ α =
proof
eval (eval α ∘ γ) (var i)
≅⟨ lawvar ⟩
eval α (γ i)
∎
subeval (lam t) γ α = lawext λ a →
proof
ap (eval (eval α ∘ γ) (lam t)) a
≅⟨ lawlam ⟩
eval ((eval α ∘ γ) << a) t
≅⟨ cong (λ (f : Env _) → eval f t) (ext (lift<< γ α a)) ⟩
eval (eval (α << a) ∘ lift γ) t
≅⟨ subeval t (lift γ) (α << a) ⟩
eval (α << a) (sub (lift γ) t)
≅⟨ sym lawlam ⟩
ap (eval α (lam (sub (lift γ) t))) a
∎
subeval (app t u) γ α =
proof
eval (eval α ∘ γ) (app t u)
≅⟨ lawapp ⟩
ap (eval (eval α ∘ γ) t) (eval (eval α ∘ γ) u)
≅⟨ cong₂ ap (subeval t γ α) (subeval u γ α) ⟩
ap (eval α (sub γ t)) (eval α (sub γ u))
≅⟨ sym lawapp ⟩
eval α (app (sub γ t) (sub γ u))
∎
TmRAlg : RAlg TmRMonad
TmRAlg = record{
acar = S;
astr = eval;
alaw1 = ext λ _ → sym lawvar;
alaw2 = ext λ t → subeval t _ _}
module VEnv where
open import Delay
open import Size
mutual
Env : ℕ → Set
Env n = Fin n → Val
data Val : Set where
clo : ∀{n} → Env n → Tm (suc n) → Val
-- the RAlg is expecting a env containing 'values' here the values
-- evaluator takes an env of undelayed values and makes a delayed
-- values.
mutual
ev : ∀{i n} → Env n → Tm n → Delay Val i
ev γ (var x) = now (γ x)
ev γ (lam t) = now (clo γ t)
ev γ (app t u) = ev γ t >>= λ f → ev γ u >>= λ v → f $$ v
_∞$$_ : ∀{i} → Val → Val → ∞Delay Val i
force (clo γ t ∞$$ v) = ev (γ << v) t
_$$_ : ∀{i} → Val → Val → Delay Val i
f $$ v = later (f ∞$$ v)
module FusedVals where
open import Size
mutual
data Env (i : Size) : (n : ℕ) → Set where
ε : Env i zero
_,_ : ∀ {n} (ρ : Env i n) (v : Val i) → Env i (suc n)
data Val (i : Size) : Set where
lam : forall {n} (t : Tm (suc n)) (ρ : Env i n) → Val i
later : (v∞ : ∞Val i) → Val i
record ∞Val (i : Size) : Set where
coinductive
constructor ∞val
field
vforce : {j : Size< i} → Val j
open ∞Val
lookup : ∀{i n} -> Env i n -> Fin n -> Val i
lookup (ρ , v) zero = v
lookup (ρ , v) (suc i) = lookup ρ i
tabulate : ∀{i n} -> (Fin n -> Val i) -> Env i n
tabulate {n = zero} f = ε
tabulate {n = suc n} f = (tabulate {n = n} (f ∘ suc)) , f zero
mutual
ev : ∀{i n} -> Env i n -> Tm n -> Val i
ev ρ (var x) = lookup ρ x
ev ρ (lam t) = lam t ρ
ev ρ (app t u) = ev ρ t $$ ev ρ u
_$$_ : ∀{i} → Val i → Val i → Val i
f $$ v = later (f ∞$$ v)
_∞$$_ : ∀{i} → Val i → Val i → ∞Val i
vforce (lam t ρ ∞$$ v) = ev (ρ , v) t
vforce (later p ∞$$ v) = later (vforce p ∞$$ v)
{-
FRAlg : ∀ {i} -> RAlg TmRMonad
FRAlg {i} = ralg
(Val i)
(ev ∘ tabulate)
{!!}
{!!}
-}
| {
"alphanum_fraction": 0.4452873127,
"avg_line_length": 26.4974874372,
"ext": "agda",
"hexsha": "51782875136185c20ba23533438822bef87ef0e7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "WellScopedTermsModel.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "WellScopedTermsModel.agda",
"max_line_length": 68,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "WellScopedTermsModel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 2262,
"size": 5273
} |
open import Signature
-- | In this module, we construct the free monad and the free completely
-- iterative monad over a signature Σ (see Aczel, Adamek, Milius and Velebil).
-- The first assigns to a set V of variables the set TV of finite terms over Σ
-- (that is, finite trees labelled with symbols in f ∈ ∥Σ∥ and ar(f) branching).
-- The second extends this to also allow for infinite trees, the set of those
-- is then denoted by T∞(V).
-- Categorically, T(V) is the initial (Σ + V)-algebra, whereas T∞(V) is the
-- final (Σ + V)-coalgebra.
module Terms (Σ : Sig) where
open import Function
open import Data.Empty
open import Data.Unit hiding (_≤_)
open import Data.Product as Prod renaming (Σ to ⨿)
open import Data.Nat as Nat
open import Data.Sum as Sum
open import Relation.Binary.PropositionalEquality hiding ([_])
open ≡-Reasoning
open import Relation.Binary hiding (_⇒_)
open import Relation.Unary hiding (_⇒_)
import Streams as Str
open import Streams hiding (corec)
-- | Natural transformations
Nat : (Set → Set) → (Set → Set) → Set₁
Nat F G = ∀{X} → F X → G X
Id : Set → Set
Id = id
least : {X : Set} (_⊑_ : Rel X _) (P : X → Set) → X → Set
least _⊑_ P x = (P x) × (∀ {y} → P y → x ⊑ y)
least-unique : {X : Set} {_⊑_ : Rel X _} → (IsTotalOrder _≡_ _⊑_) →
{P : X → Set} → (x y : X) → least _⊑_ P x → least _⊑_ P y → x ≡ y
least-unique isTO x y (p , l₁) (q , l₂) with IsTotalOrder.total isTO x y
least-unique isTO x y (p , l₁) (q , l₂) | inj₁ x⊑y =
IsTotalOrder.antisym isTO x⊑y (l₂ p)
least-unique isTO x y (p , l₁) (q , l₂) | inj₂ y⊑x =
IsTotalOrder.antisym isTO (l₁ q) y⊑x
infixr 1 _⇒_
_⇒_ = Nat
data T (V : Set) : Set where
sup : ⟪ Σ ⟫ (T V) ⊎ V → T V
rec : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) → T V → X
rec f (sup (inj₁ (s , α))) = f (inj₁ (s , λ i → rec f (α i)))
rec f (sup (inj₂ y)) = f (inj₂ y)
rec-hom : ∀{V X} → (f : ⟪ Σ ⟫ X ⊎ V → X) (u : ⟪ Σ ⟫ (T V) ⊎ V) →
rec f (sup u) ≡ f (Sum.map (⟪ Σ ⟫₁ (rec f)) id u)
rec-hom f (inj₁ (s , α)) = cong (λ u → f (inj₁ (s , u))) refl
rec-hom f (inj₂ v) = refl
-- | Functor T, on morphisms
T₁ : ∀ {V W} → (V → W) → T V → T W
T₁ f = rec (sup ∘ Sum.map id f)
η : Id ⇒ T
η = sup ∘ inj₂
μ : T ∘ T ⇒ T
μ {V} = rec f
where
f : ⟪ Σ ⟫ (T V) ⊎ T V → T V
f = [ sup ∘ inj₁ , id ]
-- | First monad law
postulate unitᵣ : ∀{V} {t : T V} → μ (T₁ η t) ≡ t
{-
unitᵣ {V} {t} =
begin
μ (T₁ η t)
≡⟨ {!!} ⟩
t
∎
-}
-- | T is free over Σ with inclusion
ι : ⟪ Σ ⟫ ⇒ T
ι = sup ∘ inj₁ ∘ ⟪ Σ ⟫₁ η
postulate T₁-top-sym : ∀{V W} (f : V → W) (s : ∥ Σ ∥) (α : ar Σ s → T V) →
T₁ f (μ (ι (s , α))) ≡ μ (ι (s , T₁ f ∘ α))
-- T₁-top-sym = {!!}
-- | Kleisli morphsims for T∞ V
Subst : Set → Set → Set
Subst V W = V → T W
infixr 9 _•_
-- | Kleisli composition
_•_ : ∀ {U V W} → Subst V W → Subst U V → Subst U W
τ • σ = μ ∘ T₁ τ ∘ σ
-- | Application of substitutions to infinite terms
app : ∀ {V W} → Subst V W → T V → T W
app σ = μ ∘ T₁ σ
infixl 1 _≡ₛ_
_≡ₛ_ : ∀{V W} → Rel (Subst V W) _
σ ≡ₛ τ = ∀ {v} → σ v ≡ τ v
-- | Order on subsitutions
_⊑_ : ∀{V W} → Rel (Subst V W) _
σ₁ ⊑ σ₂ = ∃ λ σ → σ • σ₁ ≡ₛ σ₂
matches : ∀{V W} → T V → T W → Subst V W → Set
matches t s σ = app σ t ≡ s
-- | Most general matcher
mgm : ∀{V W} → T V → T W → Subst V W → Set
mgm t s = least _⊑_ (matches t s)
η-mgm : ∀{V} (t : T V) → mgm t t η
η-mgm {V} t = m , min t
where
m : matches t t η
m =
begin
app η t
≡⟨ refl ⟩
μ (T₁ η t)
≡⟨ unitᵣ ⟩
t
∎
min : {σ : Subst V V} (t : T V) → matches t t σ → η ⊑ σ
min {σ} t m with app σ t
min {σ} (sup (inj₁ y)) refl | sup (inj₁ .y) = σ , refl
min (sup (inj₁ x)) () | sup (inj₂ w)
min (sup (inj₂ v)) () | sup (inj₁ y)
min {σ} (sup (inj₂ v)) refl | sup (inj₂ .v) = σ , refl
unifies : ∀{V W} → T V → T V → Subst V W → Set
unifies t s σ = app σ t ≡ app σ s
-- | Most general unifier
mgu : ∀{V W} → T V → T V → Subst V W → Set
mgu t s = least _⊑_ (unifies t s)
-- | Free variables
fv : ∀{V} → T V → Pred V _
fv (sup (inj₁ (s , α))) v = ⨿ (Sig.ar Σ s) λ i → (fv (α i) v)
fv (sup (inj₂ v₁)) v = v₁ ≡ v
isCons : ∀{V} → Pred (T V) _
isCons (sup (inj₁ x)) = ⊤
isCons (sup (inj₂ y)) = ⊥
isVar : ∀{V} → Pred (T V) _
isVar (sup (inj₁ x)) = ⊥
isVar (sup (inj₂ y)) = ⊤
record T∞ (V : Set) : Set where
coinductive
field out : ⟪ Σ ⟫ (T∞ V) ⊎ V
open T∞ public
sum-lift : {A B : Set} (R₁ : A → A → Set) (R₂ : B → B → Set) (x y : A ⊎ B) → Set
sum-lift R₁ R₂ (inj₁ x) (inj₁ y) = R₁ x y
sum-lift R₁ R₂ (inj₁ x) (inj₂ y) = ⊥
sum-lift R₁ R₂ (inj₂ x) (inj₁ y) = ⊥
sum-lift R₁ R₂ (inj₂ x) (inj₂ y) = R₂ x y
~-data : ∀{V} (R : T∞ V → T∞ V → Set) (u w : ⟪ Σ ⟫ (T∞ V) ⊎ V) → Set
~-data R = sum-lift (sig-lift R) _≡_
record _~_ {V : Set} (t s : T∞ V) : Set where
coinductive
field out~ : ~-data _~_ (out t) (out s)
open _~_ public
corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V) → X → T∞ V
out (corec f x) with f x
... | inj₁ (s , α) = inj₁ (s , (λ i → corec f (α i)))
... | inj₂ v = inj₂ v
prim-corec : ∀{V X} → (f : X → ⟪ Σ ⟫ X ⊎ V ⊎ T∞ V) → X → T∞ V
out (prim-corec {V} {X} f x) with f x
... | inj₁ (s , α) = inj₁ (s , (λ i → prim-corec f (α i)))
... | inj₂ (inj₁ v) = inj₂ v
... | inj₂ (inj₂ t) = out t
sup∞ : ∀{V} → ⟪ Σ ⟫ (T∞ V) ⊎ V → T∞ V
out (sup∞ (inj₁ u)) = inj₁ u
out (sup∞ (inj₂ v)) = inj₂ v
-- | Functor T∞, on morphisms
T∞₁ : ∀ {V W} → (V → W) → T∞ V → T∞ W
T∞₁ f = corec (Sum.map id f ∘ out)
η∞ : Id ⇒ T∞
η∞ = sup∞ ∘ inj₂
μ∞ : T∞ ∘ T∞ ⇒ T∞
μ∞ {V} = corec f
where
g : T∞ V → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V
g = Sum.map (⟪ Σ ⟫₁ η∞) id ∘ out
f : T∞ (T∞ V) → ⟪ Σ ⟫ (T∞ (T∞ V)) ⊎ V
f = [ inj₁ , g ] ∘ out
ι∞ : ⟪ Σ ⟫ ⇒ T∞
ι∞ {V} = g ∘ inj₁
where
g : ⟪ Σ ⟫ V ⊎ T∞ V → T∞ V
g = prim-corec [ inj₁ ∘ ⟪ Σ ⟫₁ (inj₂ ∘ η∞) , inj₂ ∘ inj₂ ]
-- | T is a submonad of T∞
χ : T ⇒ T∞
χ = rec sup∞
-- | Kleisli morphsims for T∞ V
Subst∞ : Set → Set → Set
Subst∞ V W = V → T∞ W
infixl 1 _≡ₛ∞_
_≡ₛ∞_ : ∀{V W} → Rel (Subst∞ V W) _
σ ≡ₛ∞ τ = ∀ {v} → σ v ~ τ v
infixr 9 _•∞_
-- | Kleisli composition
_•∞_ : ∀ {U V W} → Subst∞ V W → Subst∞ U V → Subst∞ U W
τ •∞ σ = μ∞ ∘ T∞₁ τ ∘ σ
-- | Application of substitutions to infinite terms
app∞ : ∀ {V W} → Subst∞ V W → T∞ V → T∞ W
app∞ σ = μ∞ ∘ T∞₁ σ
isVar∞ : ∀{V} → Pred (T∞ V) _
isVar∞ t with out t
isVar∞ t | inj₁ x = ⊥
isVar∞ t | inj₂ v = ⊤
varNowOrLater : ∀{V} → (T∞ V → Pred V _) → T∞ V → Pred V _
varNowOrLater R t v with out t
... | inj₁ (f , α) = ∃ (λ i → R (α i) v)
... | inj₂ v₁ = v ≡ v₁
record fv∞ {V : Set} (t : T∞ V) (v : V) : Set where
coinductive
field isFv∞ : varNowOrLater fv∞ t v
root-matches : ∀{V} → T V → ∥ Σ ∥ → Set
root-matches (sup (inj₁ (g , _))) f = g ≡ f
root-matches (sup (inj₂ y)) f = ⊥
record RootsMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Set where
coinductive
field
hd-match : root-matches (hd s) f
tl-match : RootsMatch (tl s) f
open RootsMatch
-- | Nasty hack: assume that RootsMatch is propositional
postulate
RootsMatch-unique : ∀{V} {s : Stream (T V)} {f : ∥ Σ ∥}
(p q : RootsMatch s f) → p ≡ q
split : {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) → RootsMatch s f →
ar Σ f → Stream (T V)
hd (split s f p i) with hd s | hd-match p
hd (split s f p i) | sup (inj₁ (.f , α)) | refl = α i
hd (split s f p i) | sup (inj₂ y) | ()
tl (split s f p i) = split (tl s) f (tl-match p) i
root-matches∞ : ∀{V} → T∞ V → ∥ Σ ∥ → Set
root-matches∞ t f with out t
root-matches∞ t f | inj₁ (g , _) = f ≡ g
root-matches∞ t f | inj₂ v = ⊥
split∞ : {V : Set} → (t : T∞ V) (f : ∥ Σ ∥) → root-matches∞ t f →
ar Σ f → T∞ V
split∞ t f p i with out t
split∞ t f refl i | inj₁ (.f , α) = α i
split∞ t f () i | inj₂ y
data AnyRootMatch {V : Set} (s : Stream (T V)) (f : ∥ Σ ∥) : Stream (T V) → Set where
match-hd : root-matches (hd s) f → AnyRootMatch s f s
match-tl : AnyRootMatch (tl s) f (tl s) → AnyRootMatch s f (tl s)
first-root-match : ∀{V} → Stream (T V) → ∥ Σ ∥ → ℕ → Set
first-root-match s f = least _≤_ (λ k → root-matches (s at k) f)
conv-branch : {V : Set} (R : Stream (T V) → T∞ V → Set) →
Stream (T V) → T∞ V → T V → ⟪ Σ ⟫ (T∞ V) ⊎ V → Set
conv-branch R s t (sup (inj₁ (f , α))) (inj₁ (g , β)) =
⨿ (f ≡ g) λ p →
⨿ (RootsMatch (tl s) f) λ q →
∀ i → R (split (tl s) f q i) (β (subst (ar Σ) p i))
conv-branch R s t (sup (inj₁ (f , α))) (inj₂ v) = ⊥
conv-branch R s t (sup (inj₂ v)) (inj₁ (f , α)) =
∃ λ s' → AnyRootMatch s f s' × R s' t
conv-branch R s t (sup (inj₂ v)) (inj₂ w) = v ≡ w × R (tl s) t
-- | A sequence s of finite terms converges to a possibly infinite term,
-- if for all i, sᵢ₊₁ = sᵢ[σ] for some substitution σ : V → T V and t = sᵢ[τ]
-- for some τ : V → T∞ V.
-- Note that this coincides with convergence in the prefix metric.
record _→∞_ {V : Set} (s : Stream (T V)) (t : T∞ V) : Set where
coinductive
field
conv-out : conv-branch _→∞_ s t (hd s) (out t)
open _→∞_ public
{-
unique-conv : ∀{V} (s : Stream (T V)) (t₁ t₂ : T∞ V) →
s →∞ t₁ → s →∞ t₂ → t₁ ~ t₂
-}
ProperlyRefining : ∀{V} → T V → Pred (Subst V V) _
ProperlyRefining t σ = ∀ v → v ∈ fv t → isCons (σ v)
record ProperlyRefiningSeq {V : Set} (t : T V) : Set where
coinductive
field
hd-ref : Subst V V
hd-is-ref : hd-ref ∈ ProperlyRefining t
tl-ref : ProperlyRefiningSeq (app hd-ref t)
open ProperlyRefiningSeq public
{-
refining-on-subterms : ∀{V f α} (t : T V) → t ≡ sup (inj₁ (f , α)) →
ProperlyRefiningSeq t →
(i : ar Σ f) → ProperlyRefiningSeq (α i)
hd-ref (refining-on-subterms ._ refl p i) = hd-ref p
hd-is-ref (refining-on-subterms ._ refl p i) = {!!}
tl-ref (refining-on-subterms ._ refl p i) = {!!} -- refining-on-subterms {!!} {!!} {!!} {!!}
-- | A non-trivial substitution is a substitution σ, such that, for all v ∈ V
-- we have that either σ(v) is a non-trivial term or if it is a variable w, then
-- w = v.
-- This allows us to stop substituting the first time we hit a variable.
NonTrivSubst : Set → Set
NonTrivSubst V = ⨿ (Subst V V) λ σ → (∀ v → isVar (σ v) → σ v ≡ η v)
term-seq-from-subst-seq : ∀{V} (t : T V) → ProperlyRefiningSeq t → Stream (T V)
hd (term-seq-from-subst-seq t Δ) = t
tl (term-seq-from-subst-seq t Δ) =
term-seq-from-subst-seq (app (hd-ref Δ) t) (tl-ref Δ)
var-app-lem : ∀{V} → (σ : Subst V V) → ∀ v → app σ (η v) ≡ σ v
var-app-lem = {!!}
∞term-from-subst-seq : ∀{V} (t : T V) → ProperlyRefiningSeq t → T∞ V
out (∞term-from-subst-seq {V} (sup (inj₁ (f , α))) Δ) = inj₁ (f , β)
where
β : ar Σ f → T∞ V
β i = ∞term-from-subst-seq
(α i)
(refining-on-subterms (sup (inj₁ (f , α))) refl Δ i)
out (∞term-from-subst-seq {V} (sup (inj₂ v)) Δ) = {!!}
-- with fv (sup (inj₂ v)) v | hd-ref Δ v | hd-is-ref Δ v refl
where
g : ∀{σ} → σ ∈ ProperlyRefining (sup (inj₂ v)) → ⟪ Σ ⟫ (T∞ V)
g {σ} p with σ v | p v refl
g p | sup (inj₁ (f , α)) | tt = f , β
where
β : ar Σ f → T∞ V
β i = ∞term-from-subst-seq
(α i)
(refining-on-subterms (sup (inj₁ (f , α)))
refl
{!!}
i)
g p | sup (inj₂ w) | ()
-}
{-
out (∞term-from-subst-seq {V} (sup (inj₂ v)) Δ) | p | sup (inj₁ (f , α)) | tt =
inj₁ (f , β {!refl!})
where
foo : hd-ref Δ v ≡ sup (inj₁ (f , α)) → app (hd-ref Δ) (sup (inj₂ v)) ≡ sup (inj₁ (f , α))
foo p =
begin
app (hd-ref Δ) (sup (inj₂ v))
≡⟨ {!!} ⟩
hd-ref Δ v
≡⟨ {!refl!} ⟩
sup (inj₁ (f , α))
∎
β : hd-ref Δ v ≡ sup (inj₁ (f , α)) → ar Σ f → T∞ V
β p i = ∞term-from-subst-seq
(α i)
(refining-on-subterms (sup (inj₁ (f , α)))
refl
(subst ProperlyRefiningSeq {!!} (tl-ref Δ))
i)
-- (app (hd-ref Δ) (η v)) (var-app-lem {!!} v)
out (∞term-from-subst-seq (sup (inj₂ v)) Δ) | p | sup (inj₂ y) | ()
-}
{-
∞term-from-subst-seq : ∀{V} → Stream (NonTrivSubst V) → T V → T∞ V
out (∞term-from-subst-seq Δ (sup (inj₁ (s , α)))) =
inj₁ (s , (λ i → ∞term-from-subst-seq Δ (α i)))
out (∞term-from-subst-seq Δ (sup (inj₂ v))) with proj₁ (hd Δ) v | proj₂ (hd Δ) v
... | sup (inj₁ (s , α)) | f =
inj₁ (s , (λ i → ∞term-from-subst-seq (tl Δ) (α i)))
... | sup (inj₂ v₁) | f with f tt
out (∞term-from-subst-seq Δ (sup (inj₂ v))) | sup (inj₂ .v) | f | refl =
inj₂ v
-}
{-
∞term-from-subst-seq-converges :
∀{V} → (Δ : Stream (NonTrivSubst V)) → (t : T V) →
term-seq-from-subst-seq Δ t →∞ ∞term-from-subst-seq Δ t
-}
| {
"alphanum_fraction": 0.5102525532,
"avg_line_length": 29.7900943396,
"ext": "agda",
"hexsha": "4d0a72b9091f9b5703fc6f7922d01707015af67f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP/Terms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP/Terms.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP/Terms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5647,
"size": 12631
} |
open import Prelude
open import Data.Maybe using (Maybe; just; nothing)
open import Data.String renaming (_++_ to _++s_)
open import RW.Language.RTerm
open import RW.Language.RTermUtils
open import RW.Language.FinTerm
open import RW.Language.Instantiation
-- Strategy Module.
--
-- Here we'll provide a modular approach to implementing both
-- unification and abstraction-guessing strategies based
-- on the head of both terms.
module RW.Strategy where
-- The complexity annotations might require
-- a slight notational introduction.
--
-- If a variable name overlaps one in the corresponding type signature,
-- this is intentional.
--
-- Sₜ is defined by (S t).
-- #Fvₜ is defined by length (Fv t).
-- Both measures are defined at RW.Language.RTermUtils.
--
open import RW.Utils.Monads using (module Monad)
open import RW.Utils.Error
open Monad {{...}}
open IsError {{...}}
-------------------------
-- Error Layer
-------------------------
-- Strategy related errors
data StratErr : Set where
Nothing : StratErr
NoUnification : StratErr
NoUStrat : StratErr
NoTStrat : RTermName → RTermName → StratErr
Custom : String → StratErr
instance
IsError-StratErr : IsError StratErr
IsError-StratErr = record { showError = showErr }
where
showErr : StratErr → String
showErr Nothing = "Nothing; Internal msg passing flag."
showErr NoUnification = "No unification could be performed."
showErr NoUStrat = "No suitable unification strategy found."
showErr (NoTStrat g a) = "No suitable term stragety found.\n"
++s showRTermName g ++s ", " ++s showRTermName a
showErr (Custom msg) = "[!] " Data.String.++ msg
-------------------------
-- Strategy Pipeline
--
-- Whenever we want to perform a rewrite, we'll have a goal and an action to perform on a "subgoal"
-- This subgoal has to figured out by us, which we denote by g□.
-- Afterwards, we need to somehow apply our action.
-- Let's encapsulate everything we need in a record
record RWData : Set where
constructor rw-data
field
goal : RBinApp ⊥
actℕ : ℕ
act : RBinApp (Fin actℕ)
ctx : List (RTerm ⊥)
goal-name : RTermName
goal-name = p1 goal
goal-1 : RTerm ⊥
goal-1 = p1 (p2 goal)
goal-2 : RTerm ⊥
goal-2 = p2 (p2 goal)
act-name : RTermName
act-name = p1 act
open RWData
-- We might need a few transformations here and there.
data Trs : Set where
Symmetry : Trs
-- Unification data
record UData : Set where
constructor u-data
field
-- We should have an abstraction available,
□ : RTerm Unit
-- A substitution
σ : RSubst
-- Our action and a few transformations that might need to be applied.
trs : List Trs
-------------------------
-- Unification Strategy Layer
-------------------------
private
μ : ∀{a}{A : Set a} → Maybe (Maybe A) → Maybe A
μ (just x) = x
μ nothing = nothing
-- Alternatives
infixr 4 _<|>_
_<|>_ : ∀{a b}{A : Set a}{B E : Set b} ⦃ isErr : IsError E ⦄
→ (A → Err E B) → (A → Err E B)
→ A → Err E B
(f <|> g) a with f a
...| i1 _ = g a
...| i2b = i2b
try-all : ∀{a b}{A : Set a}{B E : Set b} ⦃ isErr : IsError E ⦄
→ (A → Err E B) → E → List A → Err E B
try-all f e [] = i1 e
try-all f e (a ∷ as) with f a
...| i1 _ = try-all f e as
...| i2 r = return r
-- Basic unification strategy
--
-- g□ ← g₁ ∩↑ g₂ ∈ O(min(Sg₁, Sg₂))
-- t1 ← g□ -↓ g₁ ∈ O(# Fv g□)
-- u1 ← inst ty1 t1 ∈ O(ty1n² + (Sty1 + 1) × ty1n + Sty1)
-- t2 ← g□ -↓ g₂ ∈ O(# Fv g□)
-- u2 ← inst ty2 t2 ∈ O(ty2n² + (Sty2 + 1) × ty2n + Sty2)
--
-- Summing everything up and symplifying a bit, we get:
-- (Note that S ty = S t₁ + S t₂ + 1)
--
-- min(Sg₁, Sg₂) + 2 #(Fv g□) + t₁² + t₂² + Sty₁ ty₁ + Sty2 ty₂
-- + t₁ + t₂ + ST - 1
--
-- Yet, g□, ideally is our context, with one hole, since
-- we are doing one rewrite at a time. Therefore #Fv g□ = 1.
-- Prunning out this constant we get:
--
-- min(Sg₁, Sg₂) + t₁² + t₂² + Sty₁ ty₁ + Sty2 ty₂ + t₁ + t₂ + ST
--
-- wlog, let us assume that t₁ ≥ t₂ and Sty1 ≥ Sty2.
-- So,
-- 2t₁² + 2S₁t₁ + 2t₁ + 2S₁
-- ≥ t₁² + t₂² + Sty₁ ty₁ + Sty2 ty₂ + t₁ + t₂ + ST
--
-- Also ignoring min(Sg₁, Sg₂), since it can be seen as a constant,
-- Our basic unification strategy is somewhere around:
--
-- basic ∈ O(2t(t + S + 1) + 2S), for t = max(t₁ , t₂)
-- and S = max(St₁ , St₂)
--
-- Which was expected! Our RTermUtils functions are linear in some of
-- the parameters that appeared here, and instantiation was the
-- only quadratic one, on the number of free variables to instantiate.
--
basic : RWData → Err StratErr UData
basic (rw-data (hdₓ , g1 , g2) zero (hdₐ , ty1 , ty2) _ )
= let g□ = g1 ∩↑ g2
in i2 (u-data (⊥2UnitCast g□) [] [])
basic (rw-data (hdₓ , g1 , g2) tn (hdₐ , ty1 , ty2) _ )
= let g□ = g1 ∩↑ g2
u1 = (g□ -↓ g1) >>= (inst ty1)
u2 = (g□ -↓ g2) >>= (inst ty2)
σ = μ ((_++ₓ_ <$> u1) <*> u2)
in maybe (λ s → i2 (u-data (⊥2UnitCast g□) s [])) (i1 NoUnification) (σ >>= X2RSubst)
-- Unification over the symmetric action type.
basic-sym : RWData → Err StratErr UData
basic-sym (rw-data (hdₓ , g1 , g2) tn (hdₐ , ty1 , ty2) _ )
= let g□ = g1 ∩↑ g2
u1 = (g□ -↓ g1) >>= (inst ty2)
u2 = (g□ -↓ g2) >>= (inst ty1)
σ = μ ((_++ₓ_ <$> u1) <*> u2)
in maybe (λ s → i2 (u-data (⊥2UnitCast g□) s (Symmetry ∷ []))) (i1 NoUnification) (σ >>= X2RSubst)
-- Runs the unification strategies we know about
-- in the given target terms.
runUStrats : RWData → Err StratErr UData
runUStrats = basic <|> basic-sym
-------------------------
-- Term Strategy Layer
-------------------------
-- The Term Guessing Strategy should be plugged right after
-- a unification has been succesfuly performed.
--
-- Given the head of both our goal and action we
-- should be able to guess a term that 'bridges' them.
--
record TStrat : Set where
field
when : RTermName → RTermName → Bool
how : Name → UData → Err StratErr (RTerm ⊥)
-- For now, we'll use a naive list to implement a TStrat
-- database.
TStratDB : Set
TStratDB = List TStrat
-- Utility to run a list of TStrat's.
-- Not only returns the resulting term, but also the selected TStrat.
runTStrats : TStratDB → RWData → Name → UData → Err StratErr (RTerm ⊥)
runTStrats [] rw = λ _ _ → i1 (NoTStrat (goal-name rw) (act-name rw))
runTStrats (s ∷ ss) rw with TStrat.when s (goal-name rw) (act-name rw)
...| false = runTStrats ss rw
...| true = TStrat.how s
-- From a name and a substitution create an application.
makeApp : Name → RSubst → RTerm ⊥
makeApp act σ = rapp (rdef act) (map p2 σ)
| {
"alphanum_fraction": 0.5639518612,
"avg_line_length": 32.334841629,
"ext": "agda",
"hexsha": "0f00ca9c0b9ca8706f5717df1a1d8f92686dc70f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Strategy.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Strategy.agda",
"max_line_length": 102,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Strategy.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 2405,
"size": 7146
} |
------------------------------------------------------------------------------
-- Foo module
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Foo where
postulate foo : Set
| {
"alphanum_fraction": 0.3072916667,
"avg_line_length": 29.5384615385,
"ext": "agda",
"hexsha": "dfb94dd87badab311fd37147053d85fde37ab24c",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/NonConjectures/Foo.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/NonConjectures/Foo.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/NonConjectures/Foo.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 50,
"size": 384
} |
------------------------------------------------------------------------
-- Sizes for Agda's sized types
------------------------------------------------------------------------
module Size where
postulate
Size : Set
↑_ : Size → Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZESUC ↑_ #-}
{-# BUILTIN SIZEINF ∞ #-}
| {
"alphanum_fraction": 0.3226744186,
"avg_line_length": 22.9333333333,
"ext": "agda",
"hexsha": "4cb481b6d0e10ab868f2a464d754b70fc78e8826",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Size.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Size.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Size.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 67,
"size": 344
} |
open import IO
main = run (putStr "Hello, World!")
| {
"alphanum_fraction": 0.6730769231,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "dfb384c7c5c00683e724b58d5f4114727818be4d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-05-10T13:28:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-10T13:28:32.000Z",
"max_forks_repo_head_hexsha": "5434416e6b0468a4c06ff7575540f186c38fc58d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Andaraz/hello-world",
"max_forks_repo_path": "agda.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "5434416e6b0468a4c06ff7575540f186c38fc58d",
"max_issues_repo_issues_event_max_datetime": "2021-03-28T09:19:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-03-28T09:19:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Andaraz/hello-world",
"max_issues_repo_path": "agda.agda",
"max_line_length": 35,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "5434416e6b0468a4c06ff7575540f186c38fc58d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Andaraz/hello-world",
"max_stars_repo_path": "agda.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-24T03:20:51.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-23T13:03:38.000Z",
"num_tokens": 15,
"size": 52
} |
{-# OPTIONS --safe #-}
module Mod where
open import Data.Fin
open import Data.Nat as ℕ
using (ℕ; zero; suc; z≤n; s≤s)
open import Relation.Binary.PropositionalEquality
open import Function
private variable k : ℕ
last : Fin (suc k)
last {k = zero} = zero
last {k = suc _} = suc last
negate : Fin k -> Fin k
negate zero = zero
negate (suc zero) = last
negate (suc (suc n)) = inject₁ (negate (suc n))
subt : Fin k -> Fin k -> Fin k
subt n zero = n
subt zero (suc m) = negate (suc m)
subt (suc n) (suc m) with (compare n m)
...| less _ _ = suc (subt n m)
...| _ = inject₁ (subt n m)
add : Fin k -> Fin k -> Fin k
add n m = subt n (negate m)
multAux : ∀{n} → ℕ → (Fin n → Fin n) → Fin n → Fin n
multAux zero _ x = x
multAux (suc n) f x = multAux n f (f x)
mult : Fin k -> Fin k -> Fin k
mult zero m = zero
mult (suc n) m = multAux (toℕ n) (add m) zero
zer : Fin 5
zer = zero
one : Fin 5
one = suc zero
two : Fin 5
two = suc (suc zero)
three : Fin 5
three = suc (suc (suc zero))
four : Fin 5
four = suc (suc (suc (suc zero)))
| {
"alphanum_fraction": 0.6149369544,
"avg_line_length": 21.0408163265,
"ext": "agda",
"hexsha": "6ec124d5df04db871970d00ac8c8f2f46aeb620f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Mod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Mod.agda",
"max_line_length": 52,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Mod.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 396,
"size": 1031
} |
module BasicIS4.Metatheory.Hilbert-BasicKripkeOno where
open import BasicIS4.Syntax.Hilbert public
open import BasicIS4.Semantics.BasicKripkeOno public
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval ci γ = K I
eval (ck {A} {B}) γ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C}) γ = K (⟪S⟫′ {A} {B} {C})
eval (box t) γ = λ ζ → eval t ∙
eval (cdist {A} {B}) γ = K (_⟪D⟫′_ {A} {B})
eval (cup {A}) γ = K (⟪↑⟫ {A})
eval (cdown {A}) γ = K (⟪↓⟫ {A})
eval (cpair {A} {B}) γ = K (_⟪,⟫′_ {A} {B})
eval cfst γ = K π₁
eval csnd γ = K π₂
eval unit γ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
| {
"alphanum_fraction": 0.5107655502,
"avg_line_length": 32.1538461538,
"ext": "agda",
"hexsha": "7590fb526611292f1be2f16160ffa8912c0d6a3e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/Hilbert-BasicKripkeOno.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/Hilbert-BasicKripkeOno.agda",
"max_line_length": 62,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/Hilbert-BasicKripkeOno.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 343,
"size": 836
} |
-- Andreas, 2017-10-09, issue #2576
-- Duplicate definition should be reported as such,
-- not as "Missing type signature."
data ⊥ : Set where
data ⊥ where
-- Error was: Missing type signature for ⊥
-- Expected error: Duplicate definition
| {
"alphanum_fraction": 0.7190082645,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "547b77ce8de1475cf2f810158b27f97a176d3fa0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/Issue2576.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/Issue2576.agda",
"max_line_length": 51,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/Issue2576.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 63,
"size": 242
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Prettyprint where
open import Cubical.Data.Sigma.Base
open import Number.Postulates
open import Number.Base
[ℕ] = Number (isNat , anyPositivityᵒʳ)
[ℕ⁺⁻] = Number (isNat , isNonzeroᵒʳ )
[ℕ₀⁺] = Number (isNat , isNonnegativeᵒʳ)
[ℕ⁺] = Number (isNat , isPositiveᵒʳ )
[ℕ₀⁻] = Number (isNat , isNonpositiveᵒʳ)
[ℤ] = Number (isInt , anyPositivityᵒʳ)
[ℤ⁺⁻] = Number (isInt , isNonzeroᵒʳ )
[ℤ₀⁺] = Number (isInt , isNonnegativeᵒʳ)
[ℤ⁺] = Number (isInt , isPositiveᵒʳ )
[ℤ⁻] = Number (isInt , isNegativeᵒʳ )
[ℤ₀⁻] = Number (isInt , isNonpositiveᵒʳ)
[ℚ] = Number (isRat , anyPositivityᵒʳ)
[ℚ⁺⁻] = Number (isRat , isNonzeroᵒʳ )
[ℚ₀⁺] = Number (isRat , isNonnegativeᵒʳ)
[ℚ⁺] = Number (isRat , isPositiveᵒʳ )
[ℚ⁻] = Number (isRat , isNegativeᵒʳ )
[ℚ₀⁻] = Number (isRat , isNonpositiveᵒʳ)
[ℝ] = Number (isReal , anyPositivityᵒʳ)
[ℝ⁺⁻] = Number (isReal , isNonzeroᵒʳ )
[ℝ₀⁺] = Number (isReal , isNonnegativeᵒʳ)
[ℝ⁺] = Number (isReal , isPositiveᵒʳ )
[ℝ⁻] = Number (isReal , isNegativeᵒʳ )
[ℝ₀⁻] = Number (isReal , isNonpositiveᵒʳ)
[ℂ] = Number (isComplex , anyPositivityᶠ )
[ℂ⁺⁻] = Number (isComplex , isNonzeroᶠ )
{-# DISPLAY Number (isNat , anyPositivityᵒʳ) = [ℕ] #-}
{-# DISPLAY Number (isNat , isNonzeroᵒʳ ) = [ℕ⁺⁻] #-}
{-# DISPLAY Number (isNat , isNonnegativeᵒʳ) = [ℕ₀⁺] #-}
{-# DISPLAY Number (isNat , isPositiveᵒʳ ) = [ℕ⁺] #-}
{-# DISPLAY Number (isNat , isNonpositiveᵒʳ) = [ℕ₀⁻] #-}
{-# DISPLAY Number (isInt , anyPositivityᵒʳ) = [ℤ] #-}
{-# DISPLAY Number (isInt , isNonzeroᵒʳ ) = [ℤ⁺⁻] #-}
{-# DISPLAY Number (isInt , isNonnegativeᵒʳ) = [ℤ₀⁺] #-}
{-# DISPLAY Number (isInt , isPositiveᵒʳ ) = [ℤ⁺] #-}
{-# DISPLAY Number (isInt , isNegativeᵒʳ ) = [ℤ⁻] #-}
{-# DISPLAY Number (isInt , isNonpositiveᵒʳ) = [ℤ₀⁻] #-}
{-# DISPLAY Number (isRat , anyPositivityᵒʳ) = [ℚ] #-}
{-# DISPLAY Number (isRat , isNonzeroᵒʳ ) = [ℚ⁺⁻] #-}
{-# DISPLAY Number (isRat , isNonnegativeᵒʳ) = [ℚ₀⁺] #-}
{-# DISPLAY Number (isRat , isPositiveᵒʳ ) = [ℚ⁺] #-}
{-# DISPLAY Number (isRat , isNegativeᵒʳ ) = [ℚ⁻] #-}
{-# DISPLAY Number (isRat , isNonpositiveᵒʳ) = [ℚ₀⁻] #-}
{-# DISPLAY Number (isReal , anyPositivityᵒʳ) = [ℝ] #-}
{-# DISPLAY Number (isReal , isNonzeroᵒʳ ) = [ℝ⁺⁻] #-}
{-# DISPLAY Number (isReal , isNonnegativeᵒʳ) = [ℝ₀⁺] #-}
{-# DISPLAY Number (isReal , isPositiveᵒʳ ) = [ℝ⁺] #-}
{-# DISPLAY Number (isReal , isNegativeᵒʳ ) = [ℝ⁻] #-}
{-# DISPLAY Number (isReal , isNonpositiveᵒʳ) = [ℝ₀⁻] #-}
{-# DISPLAY Number (isComplex , anyPositivityᶠ ) = [ℂ] #-}
{-# DISPLAY Number (isComplex , isNonzeroᶠ ) = [ℂ⁺⁻] #-}
| {
"alphanum_fraction": 0.5723404255,
"avg_line_length": 47,
"ext": "agda",
"hexsha": "b479f76692af1992081c49271a55f616c3585551",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Prettyprint.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Prettyprint.agda",
"max_line_length": 60,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Prettyprint.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 1264,
"size": 2820
} |
module Categories.Functor.Coalgebra where
| {
"alphanum_fraction": 0.880952381,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "b5c373f7769ed19bc9472b867946ec9dafbe4c64",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Coalgebra.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Coalgebra.agda",
"max_line_length": 41,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Coalgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 10,
"size": 42
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
module Sets.Cardinality.Finite.Lemmas where
finsetInjectIntoℕ : {n : ℕ} → Injection (toNat {n})
finsetInjectIntoℕ {zero} {()}
finsetInjectIntoℕ {succ n} = ans
where
ans : {n : ℕ} → {x y : FinSet (succ n)} → (toNat x ≡ toNat y) → x ≡ y
ans {zero} {fzero} {fzero} _ = refl
ans {zero} {fzero} {fsucc ()}
ans {zero} {fsucc ()} {y}
ans {succ n} {fzero} {fzero} pr = refl
ans {succ n} {fzero} {fsucc y} ()
ans {succ n} {fsucc x} {fzero} ()
ans {succ n} {fsucc x} {fsucc y} pr with succInjective pr
... | pr' = applyEquality fsucc (ans {n} {x} {y} pr')
| {
"alphanum_fraction": 0.6385093168,
"avg_line_length": 33.5416666667,
"ext": "agda",
"hexsha": "e734dc7070a272880b05f77c9a19771f5f72fdc1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/Cardinality/Finite/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/Cardinality/Finite/Lemmas.agda",
"max_line_length": 73,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/Cardinality/Finite/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 286,
"size": 805
} |
open import Prelude
open import Data.List.Properties
open import Data.List.Any hiding (map)
open import Data.List.All as All hiding (map; lookup)
open import Data.Vec
open import Extensions.Vec
module Implicits.Resolution.Deterministic.Semantics where
open import Implicits.Syntax
open import Implicits.Resolution.Deterministic.Resolution
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Implicits.Semantics
open import Implicits.Semantics.Lemmas
open import Extensions.ListFirst
open import SystemF.Everything as F using ()
module DerivationSemantics where
⟦_,_⟧r : ∀ {ν n} {K : Ktx ν n} {a} → (proj₂ K) ⊢ᵣ a → K# K →
∃ λ t → ⟦ proj₁ K ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→
⟦_,_⟧r {K = K} (r-simp {ρ = r} r∈Δ r↓τ) m with ∈⟶index (All.lookup m (proj₁ $ first⟶∈ r∈Δ))
⟦_,_⟧r {K = K} (r-simp {ρ = r} r∈Δ r↓τ) m | i , lookup-i≡r =
⟦ subst (λ u → _ F.⊢ F.var i ∈ u) eq (F.var i) , r↓τ , m ⟧r↓
where
eq = begin
lookup i ⟦ proj₁ K ⟧ctx→
≡⟨ sym $ lookup-⟦⟧ctx→ (proj₁ K) i ⟩
⟦ lookup i (proj₁ K) ⟧tp→
≡⟨ cong ⟦_⟧tp→ lookup-i≡r ⟩
⟦ r ⟧tp→ ∎
⟦_,_,_⟧r↓ : ∀ {ν n} {K : Ktx ν n} {a ta τ} →
⟦ proj₁ K ⟧ctx→ F.⊢ ta ∈ ⟦ a ⟧tp→ → (proj₂ K) ⊢ a ↓ τ → K# K →
∃ λ tτ → ⟦ proj₁ K ⟧ctx→ F.⊢ tτ ∈ ⟦ simpl τ ⟧tp→
⟦ ⊢ta , i-simp τ , m ⟧r↓ = , ⊢ta
⟦ ⊢ta , i-iabs {ρ₁ = a} ⊢ᵣa b↓τ , m ⟧r↓ =
, (proj₂ ⟦ ⊢ta F.· (proj₂ ⟦ ⊢ᵣa , m ⟧r) , b↓τ , m ⟧r↓)
⟦ ⊢ta , i-tabs {ρ = a} b p , m ⟧r↓ =
⟦ subst (λ u → _ F.⊢ _ ∈ u) (sym $ ⟦a/sub⟧tp→ a b) (⊢ta F.[ ⟦ b ⟧tp→ ]) , p , m ⟧r↓
⟦ r-iabs a {ρ₂ = b} ⊢b , m ⟧r = , F.λ' ⟦ a ⟧tp→ (proj₂ ⟦ ⊢b , #ivar a m ⟧r)
⟦_,_⟧r {K = K} (r-tabs {ρ = r} p) m with ⟦ p , #tvar m ⟧r
⟦_,_⟧r {K = K} (r-tabs {ρ = r} p) m | _ , x =
, F.Λ (subst (λ u → u F.⊢ _ ∈ ⟦ r ⟧tp→) (⟦weaken⟧ctx→ (proj₁ K)) x)
open Semantics _⊢ᵣ_ DerivationSemantics.⟦_,_⟧r public
| {
"alphanum_fraction": 0.5325077399,
"avg_line_length": 38,
"ext": "agda",
"hexsha": "86917ab1dea4f2703a6ba2b4f84bb229f454e8e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Deterministic/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Deterministic/Semantics.agda",
"max_line_length": 93,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Deterministic/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 907,
"size": 1938
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Reflexivity {{eqrel : EqRelSet}} where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.Typed.Properties
open import Definition.LogicalRelation
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Reflexivity of reducible types.
reflEq : ∀ {l Γ A} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ A ≡ A / [A]
reflEq (Uᵣ′ l′ l< ⊢Γ) = PE.refl
reflEq (ℕᵣ D) = red D
reflEq (Emptyᵣ D) = red D
reflEq (Unitᵣ D) = red D
reflEq (ne′ K [ ⊢A , ⊢B , D ] neK K≡K) =
ne₌ _ [ ⊢A , ⊢B , D ] neK K≡K
reflEq (Bᵣ′ W F G [ ⊢A , ⊢B , D ] ⊢F ⊢G A≡A [F] [G] G-ext) =
B₌ _ _ D A≡A
(λ ρ ⊢Δ → reflEq ([F] ρ ⊢Δ))
(λ ρ ⊢Δ [a] → reflEq ([G] ρ ⊢Δ [a]))
reflEq (emb 0<1 [A]) = reflEq [A]
reflNatural-prop : ∀ {Γ n}
→ Natural-prop Γ n
→ [Natural]-prop Γ n n
reflNatural-prop (sucᵣ (ℕₜ n d t≡t prop)) =
sucᵣ (ℕₜ₌ n n d d t≡t
(reflNatural-prop prop))
reflNatural-prop zeroᵣ = zeroᵣ
reflNatural-prop (ne (neNfₜ neK ⊢k k≡k)) = ne (neNfₜ₌ neK neK k≡k)
reflEmpty-prop : ∀ {Γ n}
→ Empty-prop Γ n
→ [Empty]-prop Γ n n
reflEmpty-prop (ne (neNfₜ neK ⊢k k≡k)) = ne (neNfₜ₌ neK neK k≡k)
-- Reflexivity of reducible terms.
reflEqTerm : ∀ {l Γ A t} ([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Γ ⊩⟨ l ⟩ t ≡ t ∷ A / [A]
reflEqTerm (Uᵣ′ ⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [A]) =
Uₜ₌ A A d d typeA typeA A≡A [A] [A] (reflEq [A])
reflEqTerm (ℕᵣ D) (ℕₜ n [ ⊢t , ⊢u , d ] t≡t prop) =
ℕₜ₌ n n [ ⊢t , ⊢u , d ] [ ⊢t , ⊢u , d ] t≡t
(reflNatural-prop prop)
reflEqTerm (Emptyᵣ D) (Emptyₜ n [ ⊢t , ⊢u , d ] t≡t prop) =
Emptyₜ₌ n n [ ⊢t , ⊢u , d ] [ ⊢t , ⊢u , d ] t≡t
(reflEmpty-prop prop)
reflEqTerm (Unitᵣ D) (Unitₜ n [ ⊢t , ⊢u , d ] prop) =
Unitₜ₌ ⊢t ⊢t
reflEqTerm (ne′ K D neK K≡K) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) =
neₜ₌ k k d d (neNfₜ₌ neK₁ neK₁ k≡k)
reflEqTerm (Bᵣ′ BΠ F G D ⊢F ⊢G A≡A [F] [G] G-ext) [t]@(Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ₌ f f d d funcF funcF f≡f [t] [t]
(λ ρ ⊢Δ [a] → [f] ρ ⊢Δ [a] [a] (reflEqTerm ([F] ρ ⊢Δ) [a]))
reflEqTerm (Bᵣ′ BΣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) [t]@(Σₜ p d pProd p≅p [fst] [snd]) =
Σₜ₌ p p d d pProd pProd p≅p [t] [t] [fst] [fst]
(reflEqTerm ([F] id (wf ⊢F)) [fst])
(reflEqTerm ([G] id (wf ⊢F) [fst]) [snd])
reflEqTerm (emb 0<1 [A]) t = reflEqTerm [A] t
| {
"alphanum_fraction": 0.5453451043,
"avg_line_length": 36.115942029,
"ext": "agda",
"hexsha": "7be4112b7a131f0a87ce1dea7e8cf88dded35ded",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Reflexivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1268,
"size": 2492
} |
open import Agda.Primitive using (_⊔_)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
import SingleSorted.Interpretation as Interpretation
open import SingleSorted.AlgebraicTheory
open import SingleSorted.Substitution
import SingleSorted.Power as Power
module SingleSorted.Model {o ℓ e ℓt}
{Σ : Signature}
(T : Theory ℓt Σ)
{𝒞 : Category.Category o ℓ e}
(cartesian-𝒞 : Cartesian.Cartesian 𝒞) where
-- Model of a theory
record Model (I : Interpretation.Interpretation Σ cartesian-𝒞) : Set (ℓt ⊔ o ⊔ ℓ ⊔ e) where
open Theory T
open Category.Category 𝒞
open Interpretation.Interpretation I
open HomReasoning
field
model-eq : ∀ (ε : ax) → interp-term (ax-lhs ε) ≈ interp-term (ax-rhs ε)
-- Soundness of semantics
module _ where
open Power.Powered interp-pow
-- first we show that substitution preserves validity
model-resp-[]s : ∀ {Γ Δ} {u v : Term Γ} {σ : Δ ⇒s Γ} →
interp-term u ≈ interp-term v → interp-term (u [ σ ]s) ≈ interp-term (v [ σ ]s)
model-resp-[]s {u = u} {v = v} {σ = σ} ξ =
begin
interp-term (u [ σ ]s) ≈⟨ interp-[]s {t = u} ⟩
(interp-term u ∘ interp-subst σ) ≈⟨ ξ ⟩∘⟨refl ⟩
(interp-term v ∘ interp-subst σ) ≈˘⟨ interp-[]s {t = v} ⟩
interp-term (v [ σ ]s) ∎
-- the soundness statement
model-⊢-≈ : ∀ {Γ} {s t : Term Γ} → Γ ⊢ s ≈ t → interp-term s ≈ interp-term t
model-⊢-≈ eq-refl = Equiv.refl
model-⊢-≈ (eq-symm ξ) = ⟺ (model-⊢-≈ ξ)
model-⊢-≈ (eq-tran ξ θ) = (model-⊢-≈ ξ) ○ (model-⊢-≈ θ)
model-⊢-≈ (eq-congr ξ) = ∘-resp-≈ʳ (unique (λ i → project ○ model-⊢-≈ (eq-symm (ξ i))))
model-⊢-≈ (eq-axiom ε σ) = model-resp-[]s {u = ax-lhs ε} {v = ax-rhs ε} (model-eq ε)
-- Every theory has the trivial model, whose carrier is the terminal object
Trivial : Model (Interpretation.Trivial Σ cartesian-𝒞)
Trivial =
let open Cartesian.Cartesian cartesian-𝒞 in
record { model-eq = λ ε → !-unique₂ }
| {
"alphanum_fraction": 0.5946205572,
"avg_line_length": 37.1785714286,
"ext": "agda",
"hexsha": "b1195dfc604b72518474d8fa2d95c9931eef2f34",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SingleSorted/Model.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SingleSorted/Model.agda",
"max_line_length": 102,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SingleSorted/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 755,
"size": 2082
} |
module exampleEquivalenceLambdaNotations2 where
postulate A : Set
g : A -> A
g = \x -> x
g' : A -> A
g' a = a
postulate P : (A -> A) -> Set
f : P g -> P g'
f x = x
| {
"alphanum_fraction": 0.5470588235,
"avg_line_length": 10.625,
"ext": "agda",
"hexsha": "60b76d455aa239c9826467bceff6b495deace199",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/exampleEquivalenceLambdaNotations2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/exampleEquivalenceLambdaNotations2.agda",
"max_line_length": 47,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/exampleEquivalenceLambdaNotations2.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 67,
"size": 170
} |
{-# OPTIONS --safe #-}
module Cubical.Data.Graph where
open import Cubical.Data.Graph.Base public
open import Cubical.Data.Graph.Examples public
open import Cubical.Data.Graph.Path public
| {
"alphanum_fraction": 0.7936507937,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "6a54d76f29cddc20a5409b785f6d1db327669958",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/Graph.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/Graph.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/Graph.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 40,
"size": 189
} |
module Human.Int where
open import Human.Nat
open import Human.String
infix 8 pos
data Int : Set where
pos : (n : Nat) → Int
negsuc : (n : Nat) → Int
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}
primitive primShowInteger : Int → String
| {
"alphanum_fraction": 0.6401273885,
"avg_line_length": 18.4705882353,
"ext": "agda",
"hexsha": "bdfd9420072b12ca083b7b3235b6974bb26a26d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/Int.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/Int.agda",
"max_line_length": 40,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/Int.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 90,
"size": 314
} |
module Data.Product.Instance where
open import Class.Equality
open import Class.Monoid
open import Class.Show
open import Data.Product
open import Data.Product.Properties
open import Data.String.Instance
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
instance
Product-Eq : ∀ {A B} {{_ : Eq A}} {{_ : Eq B}} -> Eq (A × B)
Product-Eq {A} {B} = record { _≟_ = ≡-dec _≟_ _≟_ }
Product-Monoid : ∀ {a} {A B : Set a} -> {{_ : Monoid A}} -> {{_ : Monoid B}} -> Monoid (A × B)
Product-Monoid = record
{ mzero = mzero , mzero
; _+_ = λ { (x1 , x2) (y1 , y2) -> (x1 + y1) , (x2 + y2) } }
Product-Show : ∀ {a} {A B : Set a} {{_ : Show A}} {{_ : Show B}} -> Show (A × B)
Product-Show = record { show = λ { (a , b) -> "(" + show a + ", " + show b + ")" } }
| {
"alphanum_fraction": 0.5844806008,
"avg_line_length": 34.7391304348,
"ext": "agda",
"hexsha": "85c4ed16eea1beb0d1d3ff23402778f44c9b9cab",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/Product/Instance.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/Product/Instance.agda",
"max_line_length": 96,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/Product/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 282,
"size": 799
} |
{-# OPTIONS --without-K --exact-split #-}
module polynomial-rings where
import rings
open rings public
{- We state the universal property of the polynomial ring R[x]. -}
precomp-universal-property-polynomial-Ring :
{l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3)
(f : hom-Ring R S) (s : type-Ring S) →
hom-Ring S T → (hom-Ring R T) × (type-Ring T)
precomp-universal-property-polynomial-Ring R S T f s g =
pair (comp-hom-Ring R S T g f) (map-hom-Ring S T g s)
universal-property-polynomial-Ring :
(l : Level) {l1 l2 : Level} (R : Ring l1) (S : Ring l2)
(f : hom-Ring R S) (s : type-Ring S) → UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-polynomial-Ring l R S f s =
(T : Ring l) →
is-equiv (precomp-universal-property-polynomial-Ring R S T f s)
| {
"alphanum_fraction": 0.6507115136,
"avg_line_length": 33.6086956522,
"ext": "agda",
"hexsha": "91287b104a667e38346c626e5cf65b51adb654cd",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/polynomial-rings.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/polynomial-rings.agda",
"max_line_length": 66,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/polynomial-rings.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 270,
"size": 773
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Ring.Kernel where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Algebra.Ring.Base
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.Ideal
private
variable
ℓ : Level
module _ {{R S : Ring {ℓ}}} (f′ : RingHom R S) where
open RingHom f′
open HomTheory f′
open RingStr ⦃...⦄
open isIdeal
open Theory
private
instance
_ = R
_ = S
_ = snd R
_ = snd S
kernel : ⟨ R ⟩ → hProp ℓ
kernel x = (f x ≡ 0r) , isSetRing S _ _
kernelIsIdeal : isIdeal R kernel
+-closed kernelIsIdeal =
λ fx≡0 fy≡0 → f (_ + _) ≡⟨ isHom+ _ _ ⟩
f _ + f _ ≡⟨ cong (λ u → u + f _) fx≡0 ⟩
0r + f _ ≡⟨ cong (λ u → 0r + u) fy≡0 ⟩
0r + 0r ≡⟨ 0-idempotent S ⟩
0r ∎
-closed kernelIsIdeal =
λ fx≡0 → f (- _) ≡⟨ -commutesWithHom _ ⟩
- f _ ≡⟨ cong -_ fx≡0 ⟩
- 0r ≡⟨ 0-selfinverse S ⟩
0r ∎
0r-closed kernelIsIdeal = f 0r ≡⟨ homPres0 ⟩ 0r ∎
·-closedLeft kernelIsIdeal = λ r fx≡0 →
f (r · _) ≡⟨ isHom· _ _ ⟩
f r · f (_) ≡⟨ cong (λ u → f r · u) fx≡0 ⟩
f r · 0r ≡⟨ 0-rightNullifies S _ ⟩
0r ∎
·-closedRight kernelIsIdeal = λ r fx≡0 →
f (_ · r) ≡⟨ isHom· _ _ ⟩
f _ · f r ≡⟨ cong (λ u → u · f r) fx≡0 ⟩
0r · f r ≡⟨ 0-leftNullifies S _ ⟩
0r ∎
| {
"alphanum_fraction": 0.5465187924,
"avg_line_length": 28.4736842105,
"ext": "agda",
"hexsha": "a146f89ccc858025434b05890c50382f0b9766e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring/Kernel.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring/Kernel.agda",
"max_line_length": 59,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring/Kernel.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 658,
"size": 1623
} |
module BBHeap {A : Set}(_≤_ : A → A → Set) where
open import BHeap _≤_ hiding (forget ; # ; flatten)
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import BTree {A} hiding (flatten)
open import Data.Nat
open import Data.List
mutual
data BBHeap : Bound → Set where
leaf : {b : Bound} → BBHeap b
left : {b : Bound}{x : A}{l r : BBHeap (val x)}
→ LeB b (val x)
→ l ⋘ r
→ BBHeap b
right : {b : Bound}{x : A}{l r : BBHeap (val x)}
→ LeB b (val x)
→ l ⋙ r
→ BBHeap b
data _≃_ : {b b' : Bound} → BBHeap b → BBHeap b' → Set where
≃lf : {b b' : Bound} → leaf {b} ≃ leaf {b'}
≃nd : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋘r : l ⋘ r)
→ (l'⋘r' : l' ⋘ r')
→ l ≃ r
→ l' ≃ r'
→ l ≃ l'
→ (left b≤x l⋘r) ≃ (left b'≤x' l'⋘r')
data _⋘_ : {b b' : Bound} → BBHeap b → BBHeap b' → Set where
lf⋘ : {b b' : Bound}
→ leaf {b} ⋘ leaf {b'}
ll⋘ : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋘r : l ⋘ r)
→ (l'⋘r' : l' ⋘ r')
→ (l'≃r' : l' ≃ r')
→ r ≃ l'
→ (left b≤x l⋘r) ⋘ (left b'≤x' l'⋘r')
lr⋘ : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋙r : l ⋙ r)
→ (l'⋘r' : l' ⋘ r')
→ (l'≃r' : l' ≃ r')
→ l ⋗ l'
→ (right b≤x l⋙r) ⋘ (left b'≤x' l'⋘r')
data _⋙_ : {b b' : Bound} → BBHeap b → BBHeap b' → Set where
⋙lf : {b b' : Bound}{x : A}
→ (b≤x : LeB b (val x))
→ (left b≤x lf⋘) ⋙ leaf {b'}
⋙rl : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋘r : l ⋘ r)
→ (l≃r : l ≃ r)
→ (l'⋘r' : l' ⋘ r')
→ l ⋗ r'
→ (left b≤x l⋘r) ⋙ (left b'≤x' l'⋘r')
⋙rr : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋘r : l ⋘ r)
→ (l≃r : l ≃ r)
→ (l'⋙r' : l' ⋙ r')
→ l ≃ l'
→ (left b≤x l⋘r) ⋙ (right b'≤x' l'⋙r')
data _⋗_ : {b b' : Bound} → BBHeap b → BBHeap b' → Set where
⋗lf : {b b' : Bound}{x : A}
→ (b≤x : LeB b (val x))
→ (left b≤x lf⋘) ⋗ (leaf {b'})
⋗nd : {b b' : Bound}{x x' : A}{l r : BBHeap (val x)}{l' r' : BBHeap (val x')}
→ (b≤x : LeB b (val x))
→ (b'≤x' : LeB b' (val x'))
→ (l⋘r : l ⋘ r)
→ (l'⋘r' : l' ⋘ r')
→ l ≃ r
→ l' ≃ r'
→ l ⋗ l'
→ (left b≤x l⋘r) ⋗ (left b'≤x' l'⋘r')
# : {b : Bound} → BBHeap b → ℕ
# leaf = zero
# (left {l = l} {r = r} _ _) = suc (# l + # r)
# (right {l = l} {r = r} _ _) = suc (# l + # r)
relax : {b : Bound}(h : BBHeap b) → BHeap b
relax leaf = lf
relax (left {l = l} {r = r} b≤x _) = nd b≤x (relax l) (relax r)
relax (right {l = l} {r = r} b≤x _) = nd b≤x (relax l) (relax r)
forget : {b : Bound}(h : BBHeap b) → BTree
forget leaf = leaf
forget (left {x = x} {l = l} {r = r} _ _) = node x (forget l) (forget r)
forget (right {x = x} {l = l} {r = r} _ _) = node x (forget l) (forget r)
flatten : {b : Bound} → BBHeap b → List A
flatten leaf = []
flatten (left {x = x} {l = l} {r = r} _ _) = x ∷ flatten l ++ flatten r
flatten (right {x = x} {l = l} {r = r} _ _) = x ∷ flatten l ++ flatten r
| {
"alphanum_fraction": 0.344203761,
"avg_line_length": 38.1909090909,
"ext": "agda",
"hexsha": "65a3372e09b90d5a4e875297bec5dc541c49656d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap.agda",
"max_line_length": 81,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 1758,
"size": 4201
} |
-- broken since the clocks are not supposed to be freely instantiable
open import guarded-recursion.prelude
renaming (O to zero; S to suc)
open Coe
module guarded-recursion.clocks
(Clk : Type)
(▹ : ∀ {a} → Clk → Set a → Set a)
(▹′ : ∀ {a} κ → ▹ κ (Set a) → Set a)
--▹′ κ A = ▹ κ A
(next : ∀ {κ a} {A : Set a} → A → ▹ κ A)
(▹′-rule : ∀ {κ a} {A : Set a} → ▹′ κ (next A) ≡ ▹ κ A)
-- (▹′-rule : ∀ {a} {A : Set a} → ▹′ ∘ next ≡ ▹_ {A})
(fix : ∀ {κ a} {A : Set a} → (▹ κ A → A) → A)
(fix-rule : ∀ {κ a} {A : Set a} {f : ▹ κ A → A} → fix f ≡ f (next (fix f)))
(_⊛_ : ∀ {κ a b} {A : Set a} {B : Set b} → ▹ κ (A → B) → ▹ κ A → ▹ κ B)
(fix-uniq : ∀ {κ a} {A : Set a} (u : A) (f : ▹ κ A → A) → u ≡ f (next u) → u ≡ fix f)
(next⊛next : ∀ {κ a b} {A : Set a} {B : Set b} (f : A → B) (x : A)
→ next f ⊛ next x ≡ next {κ} (f x))
where
roll▹′ : ∀ {κ a} {A : Set a} → ▹ κ A → ▹′ κ (next A)
roll▹′ = coe! ▹′-rule
un▹′ : ∀ {κ a} {A : Set a} → ▹′ κ (next A) → ▹ κ A
un▹′ = coe ▹′-rule
▹Fix : ∀ {a} → Clk → Set a → Set a
▹Fix κ X = (▹ κ X → X) → X
▹Endo : ∀ {a} → Clk → Set a → Set a
▹Endo κ X = ▹ κ X → X
μ : ∀ {a} → Fix (Set a)
μ F = ∀ {κ} → fix (F ∘ ▹′ κ)
un : ∀ {κ a f} → fix {κ} {A = Set a} f → f (next (fix f))
un = coe fix-rule
{-
unμ : ∀ {κ a} f → μ {a} f → f (▹ κ (μ f))
unμ {κ} {a} f x rewrite sym (▹′-rule {κ} {A = μ f}) = {!un {κ} x!}
-}
roll : ∀ {κ a f} → f (next (fix f)) → fix {κ} {A = Set a} f
roll = coe! fix-rule
{-
μ-rule : ∀ {κ a} f → μ {a} f ≡ f (▹ κ (μ f))
μ-rule f = {!trans fix-rule (cong f (▹′-rule {A = μ f}))!}
-}
{-
rollμ : ∀ {a} f → (∀ {κ} → f (▹ κ (μ f))) → μ {a} f
rollμ f x {κ} = {!roll (x {κ})!}
-- rollμ f = subst id (sym (μ-rule f))
-}
un₁ : ∀ {κ a b} {A : Set a} {f x} → fix {κ} {A = A → Set b} f x → f (next (fix f)) x
un₁ = coe₁ fix-rule
roll₁ : ∀ {κ a b} {A : Set a} {f x} → f (next (fix f)) x → fix {κ} {A = A → Set b} f x
roll₁ = coe₁! fix-rule
un₂ : ∀ {κ a b} {A : Set a} {B : Set b} {c f x y} → fix {κ} {A = A → B → Set c} f x y → f (next (fix f)) x y
un₂ = coe₂ fix-rule
roll₂ : ∀ {κ a b} {A : Set a} {B : Set b} {c f x y} → f (next (fix f)) x y → fix {κ} {A = A → B → Set c} f x y
roll₂ = coe₂! fix-rule
map▹ : ∀ {κ a b} {A : Set a} {B : Set b} → (A → B) → ▹ κ A → ▹ κ B
map▹ f ▹x = next f ⊛ ▹x
_⊛′_ : ∀ {κ a b} {A : Set a} {B : A → Set b} → ▹ κ ((x : A) → B x) → (x : A) → ▹ κ (B x)
▹f ⊛′ x = map▹ (λ f → f x) ▹f
module SimpleStream where
F : Type → Type → Type
F A X = A × X
S : Type → Type
S A = μ (F A)
{-
data IsStream (s : S A) : Type where
-- cons : ∀ x xs → IsStream xs → IsStream (cons x xs)
cons : ∀ x xs → (▹ IsStream) ⊛ next xs → IsStream (cons x xs)
cons : ∀ x xs → ▹ (IsStream xs) → IsStream (cons x xs)
-}
μ₁F' : ∀ {κ a} {A : Set a} → ((A → ▹ κ Type) → A → Type) → (▹ κ (A → Type) → A → Type)
μ₁F' F self = F (λ x → (self ⊛ next x))
μ₁F : ∀ {κ a} {A : Set a} → ((A → Type) → A → Type) → (▹ κ (A → Type) → A → Type)
μ₁F F self = F (λ x → ▹′ _ (self ⊛ next x))
-- μ₁ : Fix (Endo Type)
μ₁ : ∀ {a} {A : Set a} → ((A → Type) → A → Type) → A → Type
μ₁ F x = ∀ {κ} → fix (μ₁F {κ} F) x
module μId where
μid : Type
μid = μ id
{-
μid-rule : μid ≡ (∀ {κ} → ▹ κ μid)
μid-rule = {!trans fix-rule (▹′-rule {A = μ id})!}
-}
{-
ω : μid
ω = fix (rollμ id)
-}
| {
"alphanum_fraction": 0.3926499033,
"avg_line_length": 29.6639344262,
"ext": "agda",
"hexsha": "97ce1938ce3008ea1ba22494756d4db627e39d5c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T16:21:54.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-08-19T12:37:53.000Z",
"max_forks_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "np/guarded-recursion",
"max_forks_repo_path": "guarded-recursion/clocks.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "np/guarded-recursion",
"max_issues_repo_path": "guarded-recursion/clocks.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9fba7d89d8b27e9bb08c27df802608b5fff769e0",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "np/guarded-recursion",
"max_stars_repo_path": "guarded-recursion/clocks.agda",
"max_stars_repo_stars_event_max_datetime": "2016-12-06T23:04:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-06T23:04:56.000Z",
"num_tokens": 1682,
"size": 3619
} |
{-# OPTIONS --safe --cubical #-}
module Relation.Binary where
open import Level
open import Relation.Nullary
open import Path as ≡ hiding (sym; refl)
open import Data.Sum
open import Function
open import Data.Bool as Bool using (Bool; true; false; T; bool)
open import Relation.Nullary.Decidable
open import Relation.Nullary.Discrete
module _ (_~_ : A → A → Type b) where
Reflexive : Type _
Reflexive = ∀ {x} → x ~ x
Transitive : Type _
Transitive = ∀ {x y z} → x ~ y → y ~ z → x ~ z
Symmetric : Type _
Symmetric = ∀ {x y} → x ~ y → y ~ x
Decidable : Type _
Decidable = ∀ x y → Dec (x ~ y)
Antisymmetric : Type _
Antisymmetric = ∀ {x y} → x ~ y → y ~ x → x ≡ y
Total : Type _
Total = ∀ x y → (x ~ y) ⊎ (y ~ x)
data Tri {a r₁ r₂ r₃} {A : Type a} (R₁ : A → A → Type r₁) (R₂ : A → A → Type r₂) (R₃ : A → A → Type r₃) (x y : A) : Type (a ℓ⊔ r₁ ℓ⊔ r₂ ℓ⊔ r₃) where
lt : (x<y : R₁ x y) → Tri R₁ R₂ R₃ x y
eq : (x≡y : R₂ x y) → Tri R₁ R₂ R₃ x y
gt : (x>y : R₃ x y) → Tri R₁ R₂ R₃ x y
record PartialOrder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
infix 4 _≤_
field
_≤_ : 𝑆 → 𝑆 → Type ℓ₂
refl : Reflexive _≤_
antisym : Antisymmetric _≤_
trans : Transitive _≤_
record TotalOrder {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
field
partialOrder : PartialOrder 𝑆 ℓ₂
open PartialOrder partialOrder public
infix 4 _≤ᵇ_ _≤?_
field
_≤?_ : Total _≤_
_≤ᵇ_ : 𝑆 → 𝑆 → Bool
x ≤ᵇ y = is-l (x ≤? y)
open import Data.Unit
open import Data.Empty
open import Data.Sigma
total⇒discrete : Discrete 𝑆
total⇒discrete x y with x ≤? y | inspect (x ≤?_) y | y ≤? x | inspect (y ≤?_) x
total⇒discrete x y | inl x₁ | 〖 xy 〗 | inl x₂ | 〖 yx 〗 = yes (antisym x₁ x₂)
total⇒discrete x y | inr x₁ | 〖 xy 〗 | inr x₂ | 〖 yx 〗 = yes (antisym x₂ x₁)
total⇒discrete x y | inl x₁ | 〖 xy 〗 | inr x₂ | 〖 yx 〗 = no (λ p → subst (bool ⊥ ⊤) (cong is-l (≡.sym xy) ; cong₂ _≤ᵇ_ p (≡.sym p) ; cong is-l yx) tt)
total⇒discrete x y | inr x₁ | 〖 xy 〗 | inl x₂ | 〖 yx 〗 = no (λ p → subst (bool ⊤ ⊥) (cong is-l (≡.sym xy) ; cong₂ _≤ᵇ_ p (≡.sym p) ; cong is-l yx) tt)
infix 4 _<_
_<_ : 𝑆 → 𝑆 → Type (ℓ₁ ℓ⊔ ℓ₂)
x < y = (x ≢ y) × (x ≤ y)
Ordering : 𝑆 → 𝑆 → Type (ℓ₁ ℓ⊔ ℓ₂)
Ordering = Tri _<_ _≡_ (flip _<_)
compare : ∀ x y → Ordering x y
compare x y with x ≤? y | inspect (x ≤?_) y | y ≤? x | inspect (y ≤?_) x
compare x y | inl x₁ | 〖 xy 〗 | inl x₂ | 〖 yx 〗 = eq (antisym x₁ x₂)
compare x y | inr x₁ | 〖 xy 〗 | inr x₂ | 〖 yx 〗 = eq (antisym x₂ x₁)
compare x y | inl x₁ | 〖 xy 〗 | inr x₂ | 〖 yx 〗 = lt ((λ p → subst (bool ⊥ ⊤) (cong is-l (≡.sym xy) ; cong₂ _≤ᵇ_ p (≡.sym p) ; cong is-l yx) tt) , x₁)
compare x y | inr x₁ | 〖 xy 〗 | inl x₂ | 〖 yx 〗 = gt ((λ p → subst (bool ⊤ ⊥) (cong is-l (≡.sym xy) ; cong₂ _≤ᵇ_ (≡.sym p) p ; cong is-l yx) tt) , x₁)
record Equivalence {ℓ₁} (𝑆 : Type ℓ₁) ℓ₂ : Type (ℓ₁ ℓ⊔ ℓsuc ℓ₂) where
infix 4 _≋_
field
_≋_ : 𝑆 → 𝑆 → Type ℓ₂
sym : ∀ {x y} → x ≋ y → y ≋ x
refl : ∀ {x} → x ≋ x
trans : ∀ {x y z} → x ≋ y → y ≋ z → x ≋ z
≡-equivalence : ∀ {a} {A : Set a} → Equivalence A a
≡-equivalence = record
{ _≋_ = _≡_
; sym = ≡.sym
; refl = ≡.refl
; trans = _;_
}
| {
"alphanum_fraction": 0.5446595878,
"avg_line_length": 32.3434343434,
"ext": "agda",
"hexsha": "e3513a868da4ecebcb37b1b8b2b14971bb9fc987",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Relation/Binary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Relation/Binary.agda",
"max_line_length": 152,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Relation/Binary.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 1586,
"size": 3202
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.HornerForms where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.FinData
open import Cubical.Data.Vec
open import Cubical.Data.Bool using (Bool; true; false; if_then_else_)
open import Cubical.Algebra.RingSolver.RawRing
open import Cubical.Algebra.RingSolver.AlmostRing renaming (⟨_⟩ to ⟨_⟩ᵣ)
private
variable
ℓ : Level
{-
This defines the type of multivariate Polynomials over the RawRing R.
The construction is based on the algebraic fact
R[X₀][X₁]⋯[Xₙ] ≅ R[X₀,⋯,Xₙ]
BUT: Contrary to algebraic convetions, we will give 'Xₙ' the lowest index
in the definition of 'Variable' below. So if 'Variable n R k' is identified
with 'Xₖ', then the RawRing we construct should rather be denoted with
R[Xₙ][Xₙ₋₁]⋯[X₀]
or, to be precise about the evaluation order:
(⋯((R[Xₙ])[Xₙ₋₁])⋯)[X₀]
-}
data IteratedHornerForms (R : RawRing {ℓ}) : ℕ → Type ℓ where
const : ⟨ R ⟩ → IteratedHornerForms R ℕ.zero
0H : {n : ℕ} → IteratedHornerForms R (ℕ.suc n)
_·X+_ : {n : ℕ} → IteratedHornerForms R (ℕ.suc n) → IteratedHornerForms R n
→ IteratedHornerForms R (ℕ.suc n)
eval : {R : RawRing {ℓ}} (n : ℕ) (P : IteratedHornerForms R n)
→ Vec ⟨ R ⟩ n → ⟨ R ⟩
eval ℕ.zero (const r) [] = r
eval {R = R} .(ℕ.suc _) 0H (_ ∷ _) = RawRing.0r R
eval {R = R} (ℕ.suc n) (P ·X+ Q) (x ∷ xs) =
let open RawRing R
in (eval (ℕ.suc n) P (x ∷ xs)) · x + eval n Q xs
module IteratedHornerOperations (R : RawRing {ℓ}) where
open RawRing R
private
1H' : (n : ℕ) → IteratedHornerForms R n
1H' ℕ.zero = const 1r
1H' (ℕ.suc n) = 0H ·X+ 1H' n
0H' : (n : ℕ) → IteratedHornerForms R n
0H' ℕ.zero = const 0r
0H' (ℕ.suc n) = 0H
1ₕ : {n : ℕ} → IteratedHornerForms R n
1ₕ {n = n} = 1H' n
0ₕ : {n : ℕ} → IteratedHornerForms R n
0ₕ {n = n} = 0H' n
X : (n : ℕ) (k : Fin n) → IteratedHornerForms R n
X (ℕ.suc m) zero = 1ₕ ·X+ 0ₕ
X (ℕ.suc m) (suc k) = 0ₕ ·X+ X m k
_+ₕ_ : {n : ℕ} → IteratedHornerForms R n → IteratedHornerForms R n
→ IteratedHornerForms R n
(const r) +ₕ (const s) = const (r + s)
0H +ₕ Q = Q
(P ·X+ r) +ₕ 0H = P ·X+ r
(P ·X+ r) +ₕ (Q ·X+ s) = (P +ₕ Q) ·X+ (r +ₕ s)
-ₕ : {n : ℕ} → IteratedHornerForms R n → IteratedHornerForms R n
-ₕ (const x) = const (- x)
-ₕ 0H = 0H
-ₕ (P ·X+ Q) = (-ₕ P) ·X+ (-ₕ Q)
isZero : {n : ℕ} → IteratedHornerForms R (ℕ.suc n)
→ Bool
isZero 0H = true
isZero (P ·X+ P₁) = false
_⋆_ : {n : ℕ} → IteratedHornerForms R n → IteratedHornerForms R (ℕ.suc n)
→ IteratedHornerForms R (ℕ.suc n)
_·ₕ_ : {n : ℕ} → IteratedHornerForms R n → IteratedHornerForms R n
→ IteratedHornerForms R n
r ⋆ 0H = 0H
r ⋆ (P ·X+ Q) = (r ⋆ P) ·X+ (r ·ₕ Q)
const x ·ₕ const y = const (x · y)
0H ·ₕ Q = 0H
(P ·X+ Q) ·ₕ S =
let
z = (P ·ₕ S)
in if (isZero z)
then (Q ⋆ S)
else (z ·X+ 0ₕ) +ₕ (Q ⋆ S)
asRawRing : (n : ℕ) → RawRing {ℓ}
RawRing.Carrier (asRawRing n) = IteratedHornerForms R n
RawRing.0r (asRawRing n) = 0ₕ
RawRing.1r (asRawRing n) = 1ₕ
RawRing._+_ (asRawRing n) = _+ₕ_
RawRing._·_ (asRawRing n) = _·ₕ_
RawRing.- (asRawRing n) = -ₕ
Variable : (n : ℕ) (R : RawRing {ℓ}) (k : Fin n) → IteratedHornerForms R n
Variable n R k = IteratedHornerOperations.X R n k
Constant : (n : ℕ) (R : RawRing {ℓ}) (r : ⟨ R ⟩) → IteratedHornerForms R n
Constant ℕ.zero R r = const r
Constant (ℕ.suc n) R r = IteratedHornerOperations.0ₕ R ·X+ Constant n R r
| {
"alphanum_fraction": 0.5934399118,
"avg_line_length": 30.487394958,
"ext": "agda",
"hexsha": "5b8d89ff04e0cae1954e95e7f18042b00ea8f32e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/HornerForms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/HornerForms.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/HornerForms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1568,
"size": 3628
} |
open import Agda.Builtin.Nat
postulate Pos : Set
data FVec : (n : Nat) → Set₁ where
FNil : FVec 0
FCons : ∀ {n} → (Pos → Set) → FVec (suc n)
pre : ∀ {m n} → FVec m → FVec (suc n) → Pos → Set
pre FNil (FCons x) = x
pre (FCons x) _ = x
data proofAG : ∀ {n} → FVec n → Set where
[]AG : proofAG FNil
postulate
preAG : ∀ m n (v : FVec m) (v' : FVec (suc n)) →
proofAG v → proofAG v' → ∀ p → pre v v' p
m n : Nat
v : FVec m
v' : FVec (suc n)
p : Pos
preAG₁ : pre v v' p
preAG₁ = preAG 0 n FNil _ []AG {!!} p
-- Refine gives internal error instead of 'Cannot refine' or
-- 'No introduction forms found'.
postulate Constrain : (A B : Set) → (A → B) → Set
syntax Constrain A B (λ x → y) = x ∈ A => y ∈ B
preAG₂ : (let X : FVec (suc n)
X = _) →
x ∈ pre FNil X p => x ∈ pre v v' p →
proofAG X → Set
preAG₂ _ p = {!p!}
-- Splitting on p causes the same internal error.
| {
"alphanum_fraction": 0.5332629356,
"avg_line_length": 24.9210526316,
"ext": "agda",
"hexsha": "972a8645a15a350843a629e019f4cf4d9f417d22",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2560.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2560.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2560.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 372,
"size": 947
} |
{-# OPTIONS --without-K #-}
open import Type hiding (★)
open import Function
open import Relation.Binary.PropositionalEquality
open import Explore.Core
open import Explore.Properties
-- Explore ℓ is not an endo functor because of universe levels
module Explore.Monad {a} ℓ where
M = Explore {a} ℓ
module _ {A : ★ a} where
return : A → M A
return = point-explore
mzero : M A
mzero = empty-explore
mplus : M A → M A → M A
mplus = merge-explore
module _ {p} where
return-ind : ∀ x → ExploreInd p (return x)
return-ind = point-explore-ind
mzero-ind : ExploreInd p mzero
mzero-ind = empty-explore-ind
mplus-ind : ∀ {e₀ e₁ : M A}
→ ExploreInd p e₀ → ExploreInd p e₁
→ ExploreInd p (merge-explore e₀ e₁)
mplus-ind Pe₀ Pe₁ P Pε _P∙_ Pf = (Pe₀ P Pε _P∙_ Pf) P∙ (Pe₁ P Pε _P∙_ Pf)
module _ {A B : ★ a} where
infixl 1 _>>=_ _>>=-ind_
_>>=_ : M A → (A → M B) → M B
(expᴬ >>= expᴮ) ε _∙_ f = expᴬ ε _∙_ λ x → expᴮ x ε _∙_ f
_>>=-ind_ : ∀ {p}
{expᴬ : M A} → ExploreInd p expᴬ →
{expᴮ : A → M B} → (∀ x → ExploreInd p (expᴮ x))
→ ExploreInd p (expᴬ >>= expᴮ)
_>>=-ind_ {expᴬ} Pᴬ {expᴮ} Pᴮ P Pz _P∙_ Pf
= Pᴬ (λ e → P (e >>= expᴮ)) Pz _P∙_ λ x → Pᴮ x P Pz _P∙_ Pf
map : (A → B) → M A → M B
map f e = e >>= return ∘ f
map-ind : ∀ {p} (f : A → B) {expᴬ : M A} → ExploreInd p expᴬ → ExploreInd p (map f expᴬ)
map-ind f Pᴬ = Pᴬ >>=-ind return-ind ∘ f
private
{- This law is for free: map f e = e >>= return ∘ f -}
map' : (A → B) → M A → M B
map' f exp ε _∙_ g = exp ε _∙_ (g ∘ f)
map'≡map : map' ≡ map
map'≡map = refl
-- universe issues...
-- join : M (M A) → M A
module _ {A B C : ★ a} (m : M A) (f : A → M B) (g : B → M C) where
infix 0 _≡e_
_≡e_ = λ {A} → _≡_ {A = M A}
left-identity : f ≡ (λ x → return x >>= f)
left-identity = refl
right-identity : m ≡e m >>= return
right-identity = refl
associativity : m >>= (λ x → f x >>= g) ≡e (m >>= f) >>= g
associativity = refl
| {
"alphanum_fraction": 0.5127373784,
"avg_line_length": 27.6794871795,
"ext": "agda",
"hexsha": "406433361d0b03ff1a1e733fbbb8da3f403a4e22",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Monad.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Monad.agda",
"max_line_length": 92,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 847,
"size": 2159
} |
-- Occurs when different mixfix operators use similar names.
module Issue147a where
postulate
X : Set
f : X -> X
f_ : X -> X
bad : X -> X
bad x = f x
| {
"alphanum_fraction": 0.6211180124,
"avg_line_length": 13.4166666667,
"ext": "agda",
"hexsha": "b1f29a8695d4284cbc49ab5bea473a1199815a44",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue147a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue147a.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue147a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 55,
"size": 161
} |
module ExtendedLambdaCase where
data Bool : Set where
true false : Bool
data Void : Set where
foo : Bool -> Bool -> Bool -> Bool
foo = λ { x → λ { y z → {!!} } }
module parameterised {A : Set}(B : A -> Set) where
data Bar : (Bool -> Bool) -> Set where
baz : (t : Void) -> Bar λ { x → {!!} }
-- with hidden argument
data Bar' : (Bool -> Bool) -> Set where
baz' : {t : Void} -> Bar' λ { x' → {!!} }
baz : Bool -> {w : Bool} -> Bool
baz = λ { z {w} → {!!} }
| {
"alphanum_fraction": 0.5135699374,
"avg_line_length": 20.8260869565,
"ext": "agda",
"hexsha": "6c599dbe16962e7a3da52ed89a44aeabccff570d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_line_length": 50,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/interaction/ExtendedLambdaCase.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 159,
"size": 479
} |
module Oscar.Data.Term.Substitution.Core {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term.Core FunctionName
open import Oscar.Data.Term.Substitution.Core.bootstrap FunctionName public hiding (_◃Term_; _◃VecTerm_)
open import Oscar.Data.Nat.Core
open import Oscar.Data.Fin.Core
open import Oscar.Data.Vec.Core
open import Oscar.Data.Equality.Core
open import Oscar.Data.Product.Core
open import Oscar.Function
open import Oscar.Level
⊸-Property : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-Property {ℓ} m = ∀ {n} → m ⊸ n → Set ℓ
_≐_ : {m n : ℕ} → m ⊸ n → m ⊸ n → Set 𝔣
f ≐ g = ∀ x → f x ≡ g x
⊸-Extensional : {ℓ : Level} {m : ℕ} → ⊸-Property {ℓ} m → Set (ℓ ⊔ 𝔣)
⊸-Extensional P = ∀ {m f g} → f ≐ g → P {m} f → P g
⊸-ExtentionalProperty : {ℓ : Level} → ℕ → Set (lsuc ℓ ⊔ 𝔣)
⊸-ExtentionalProperty {ℓ} m = Σ (⊸-Property {ℓ} m) ⊸-Extensional
| {
"alphanum_fraction": 0.6595995289,
"avg_line_length": 33.96,
"ext": "agda",
"hexsha": "2f0be843553a02d4f246095c24489a5a0f433539",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/Core.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 332,
"size": 849
} |
module Impure.LFRef.Readme where
open import Impure.LFRef.Syntax
open import Impure.LFRef.Welltyped
open import Impure.LFRef.Eval
open import Impure.LFRef.Properties.Soundness
open import Impure.LFRef.Properties.Confluence
| {
"alphanum_fraction": 0.8526785714,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "53537de25e8180b2277fd4bca93d5d71952cb4f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/LFRef/Readme.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/LFRef/Readme.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/LFRef/Readme.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 62,
"size": 224
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Union of two binary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Union where
open import Data.Product
open import Data.Sum.Base as Sum
open import Function using (_∘_)
open import Level using (Level; _⊔_)
open import Relation.Binary
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Sum using (_⊎-dec_)
private
variable
a b ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
_∪_ : ∀ {A : Set a} {B : Set b} →
REL A B ℓ₁ → REL A B ℓ₂ → REL A B (ℓ₁ ⊔ ℓ₂)
L ∪ R = λ i j → L i j ⊎ R i j
------------------------------------------------------------------------
-- Properties
module _ (L : Rel A ℓ) (R : Rel A ℓ) where
reflexive : Reflexive L ⊎ Reflexive R → Reflexive (L ∪ R)
reflexive (inj₁ L-refl) = inj₁ L-refl
reflexive (inj₂ R-refl) = inj₂ R-refl
total : Total L ⊎ Total R → Total (L ∪ R)
total (inj₁ L-total) x y = [ inj₁ ∘ inj₁ , inj₂ ∘ inj₁ ] (L-total x y)
total (inj₂ R-total) x y = [ inj₁ ∘ inj₂ , inj₂ ∘ inj₂ ] (R-total x y)
min : ∀ {⊤} → Minimum L ⊤ ⊎ Minimum R ⊤ → Minimum (L ∪ R) ⊤
min = [ inj₁ ∘_ , inj₂ ∘_ ]
max : ∀ {⊥} → Maximum L ⊥ ⊎ Maximum R ⊥ → Maximum (L ∪ R) ⊥
max = [ inj₁ ∘_ , inj₂ ∘_ ]
module _ {L : Rel A ℓ} {R : Rel A ℓ} where
symmetric : Symmetric L → Symmetric R → Symmetric (L ∪ R)
symmetric L-sym R-sym = [ inj₁ ∘ L-sym , inj₂ ∘ R-sym ]
respects : ∀ {p} {P : A → Set p} →
P Respects L → P Respects R → P Respects (L ∪ R)
respects resp-L resp-R = [ resp-L , resp-R ]
module _ {≈ : Rel A ℓ₁} (L : REL A B ℓ₂) (R : REL A B ℓ₃) where
respˡ : L Respectsˡ ≈ → R Respectsˡ ≈ → (L ∪ R) Respectsˡ ≈
respˡ Lˡ Rˡ x≈y = Sum.map (Lˡ x≈y) (Rˡ x≈y)
module _ {≈ : Rel B ℓ₁} (L : REL A B ℓ₂) (R : REL A B ℓ₃) where
respʳ : L Respectsʳ ≈ → R Respectsʳ ≈ → (L ∪ R) Respectsʳ ≈
respʳ Lʳ Rʳ x≈y = Sum.map (Lʳ x≈y) (Rʳ x≈y)
module _ {≈ : Rel A ℓ₁} {L : Rel A ℓ₂} {R : Rel A ℓ₃} where
resp₂ : L Respects₂ ≈ → R Respects₂ ≈ → (L ∪ R) Respects₂ ≈
resp₂ (Lʳ , Lˡ) (Rʳ , Rˡ) = respʳ L R Lʳ Rʳ , respˡ L R Lˡ Rˡ
module _ (≈ : REL A B ℓ₁) (L : REL A B ℓ₂) (R : REL A B ℓ₃) where
implies : (≈ ⇒ L) ⊎ (≈ ⇒ R) → ≈ ⇒ (L ∪ R)
implies = [ inj₁ ∘_ , inj₂ ∘_ ]
irreflexive : Irreflexive ≈ L → Irreflexive ≈ R → Irreflexive ≈ (L ∪ R)
irreflexive L-irrefl R-irrefl x≈y = [ L-irrefl x≈y , R-irrefl x≈y ]
module _ {L : REL A B ℓ₁} {R : REL A B ℓ₂} where
decidable : Decidable L → Decidable R → Decidable (L ∪ R)
decidable L? R? x y = L? x y ⊎-dec R? x y
| {
"alphanum_fraction": 0.51447178,
"avg_line_length": 31.7701149425,
"ext": "agda",
"hexsha": "69de2da6340a945e1506ffea653f20c844ee3a7f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Union.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Union.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Construct/Union.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1119,
"size": 2764
} |
-- We define the localisation of a commutative ring
-- at a multiplicatively closed subset and show that it
-- has a commutative ring structure.
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommRing.Localisation.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Transport
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.RingSolver.ReflectionSolving
open import Cubical.HITs.SetQuotients as SQ
open import Cubical.HITs.PropositionalTruncation as PT
open Iso
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- A multiplicatively closed subset is assumed to contain 1
record isMultClosedSubset (R' : CommRing ℓ) (S' : ℙ (fst R')) : Type ℓ where
constructor
multclosedsubset
field
containsOne : (R' .snd .CommRingStr.1r) ∈ S'
multClosed : ∀ {s t} → s ∈ S' → t ∈ S' → ((snd R') .CommRingStr._·_ s t) ∈ S'
module Loc (R' : CommRing ℓ) (S' : ℙ (fst R')) (SMultClosedSubset : isMultClosedSubset R' S') where
open isMultClosedSubset
private R = fst R'
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
open CommRingTheory R'
S = Σ[ s ∈ R ] (s ∈ S')
-- We define the localisation of R by S by quotienting by the following relation:
_≈_ : R × S → R × S → Type ℓ
(r₁ , s₁) ≈ (r₂ , s₂) = Σ[ s ∈ S ] (fst s · r₁ · fst s₂ ≡ fst s · r₂ · fst s₁)
S⁻¹R = (R × S) / _≈_
-- now define addition for S⁻¹R
open BinaryRelation
locRefl : isRefl _≈_
locRefl _ = (1r , SMultClosedSubset .containsOne) , refl
locSym : isSym _≈_
locSym (r , s , s∈S') (r' , s' , s'∈S') (u , p) = u , sym p
locTrans : isTrans _≈_
locTrans (r , s , s∈S') (r' , s' , s'∈S') (r'' , s'' , s''∈S') ((u , u∈S') , p) ((v , v∈S') , q) =
((u · v · s') , SMultClosedSubset .multClosed (SMultClosedSubset .multClosed u∈S' v∈S') s'∈S')
, path
where
eq1 : (r s r' s' r'' s'' u v : R) → u · v · s' · r · s'' ≡ u · r · s' · v · s''
eq1 = solve R'
eq2 : (r s r' s' r'' s'' u v : R) → u · r' · s · v · s'' ≡ u · s · (v · r' · s'')
eq2 = solve R'
eq3 : (r s r' s' r'' s'' u v : R) → u · s · (v · r'' · s') ≡ u · v · s' · r'' · s
eq3 = solve R'
path : u · v · s' · r · s'' ≡ u · v · s' · r'' · s
path = u · v · s' · r · s'' ≡⟨ eq1 r s r' s' r'' s'' u v ⟩ -- not just ≡⟨ solve R' ⟩
u · r · s' · v · s'' ≡⟨ cong (λ x → x · v · s'') p ⟩
u · r' · s · v · s'' ≡⟨ eq2 r s r' s' r'' s'' u v ⟩
u · s · (v · r' · s'') ≡⟨ cong (u · s ·_) q ⟩
u · s · (v · r'' · s') ≡⟨ eq3 r s r' s' r'' s'' u v ⟩
u · v · s' · r'' · s ∎
locIsEquivRel : isEquivRel _≈_
isEquivRel.reflexive locIsEquivRel = locRefl
isEquivRel.symmetric locIsEquivRel = locSym
isEquivRel.transitive locIsEquivRel = locTrans
_+ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R
_+ₗ_ = setQuotSymmBinOp locRefl locTrans _+ₚ_
(λ a b → subst (λ x → (a +ₚ b) ≈ x) (+ₚ-symm a b) (locRefl (a +ₚ b))) θ
where
_+ₚ_ : R × S → R × S → R × S
(r₁ , s₁ , s₁∈S) +ₚ (r₂ , s₂ , s₂∈S) =
(r₁ · s₂ + r₂ · s₁) , (s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S
+ₚ-symm : (a b : R × S) → (a +ₚ b) ≡ (b +ₚ a)
+ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) =
ΣPathP (+Comm _ _ , Σ≡Prop (λ x → S' x .snd) (·-comm _ _))
θ : (a a' b : R × S) → a ≈ a' → (a +ₚ b) ≈ (a' +ₚ b)
θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path
where
eq1 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R)
→ s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂
eq1 = solve R'
eq2 : (r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s : R)
→ s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂ ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂)
eq2 = solve R'
path : s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂) ≡ s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂)
path = s · (r₁ · s₂ + r₂ · s₁) · (s'₁ · s₂)
≡⟨ eq1 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩
s · r₁ · s'₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂
≡⟨ cong (λ x → x · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂) p ⟩
s · r'₁ · s₁ · s₂ · s₂ + s · r₂ · s₁ · s'₁ · s₂
≡⟨ eq2 r₁ s₁ r'₁ s'₁ s'₁ r₂ s₂ s ⟩
s · (r'₁ · s₂ + r₂ · s'₁) · (s₁ · s₂) ∎
-- check group-laws for addition
+ₗ-assoc : (x y z : S⁻¹R) → x +ₗ (y +ₗ z) ≡ (x +ₗ y) +ₗ z
+ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) +ₗ-assoc[]
where
+ₗ-assoc[] : (a b c : R × S) → [ a ] +ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] +ₗ [ b ]) +ₗ [ c ]
+ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) =
cong [_] (ΣPathP ((path r s r' s' r'' s'') , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _)))
where
path : (r s r' s' r'' s'' : R)
→ r · (s' · s'') + (r' · s'' + r'' · s') · s ≡ (r · s' + r' · s) · s'' + r'' · (s · s')
path = solve R'
0ₗ : S⁻¹R
0ₗ = [ 0r , 1r , SMultClosedSubset .containsOne ]
+ₗ-rid : (x : S⁻¹R) → x +ₗ 0ₗ ≡ x
+ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rid[]
where
+ₗ-rid[] : (a : R × S) → [ a ] +ₗ 0ₗ ≡ [ a ]
+ₗ-rid[] (r , s , s∈S) = path
where
eq1 : (r s : R) → r · 1r + 0r · s ≡ r
eq1 = solve R'
path : [ r · 1r + 0r · s , s · 1r , SMultClosedSubset .multClosed s∈S
(SMultClosedSubset .containsOne) ]
≡ [ r , s , s∈S ]
path = cong [_] (ΣPathP (eq1 r s , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _)))
-ₗ_ : S⁻¹R → S⁻¹R
-ₗ_ = SQ.rec squash/ -ₗ[] -ₗWellDef
where
-ₗ[] : R × S → S⁻¹R
-ₗ[] (r , s) = [ - r , s ]
-ₗWellDef : (a b : R × S) → a ≈ b → -ₗ[] a ≡ -ₗ[] b
-ₗWellDef (r , s , _) (r' , s' , _) ((u , u∈S) , p) = eq/ _ _ ((u , u∈S) , path)
where
eq1 : (u r s' : R) → u · - r · s' ≡ - (u · r · s')
eq1 = solve R'
eq2 : (u r' s : R) → - (u · r' · s) ≡ u · - r' · s
eq2 = solve R'
path : u · - r · s' ≡ u · - r' · s
path = eq1 u r s' ∙∙ cong -_ p ∙∙ eq2 u r' s
+ₗ-rinv : (x : S⁻¹R) → x +ₗ (-ₗ x) ≡ 0ₗ
+ₗ-rinv = SQ.elimProp (λ _ → squash/ _ _) +ₗ-rinv[]
where
+ₗ-rinv[] : (a : R × S) → ([ a ] +ₗ (-ₗ [ a ])) ≡ 0ₗ
+ₗ-rinv[] (r , s , s∈S) = eq/ _ _ ((1r , SMultClosedSubset .containsOne) , path r s)
where
path : (r s : R) → 1r · (r · s + - r · s) · 1r ≡ 1r · 0r · (s · s)
path = solve R'
+ₗ-comm : (x y : S⁻¹R) → x +ₗ y ≡ y +ₗ x
+ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) +ₗ-comm[]
where
+ₗ-comm[] : (a b : R × S) → ([ a ] +ₗ [ b ]) ≡ ([ b ] +ₗ [ a ])
+ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) =
cong [_] (ΣPathP ((+Comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·-comm _ _)))
-- Now for multiplication
_·ₗ_ : S⁻¹R → S⁻¹R → S⁻¹R
_·ₗ_ = setQuotSymmBinOp locRefl locTrans _·ₚ_
(λ a b → subst (λ x → (a ·ₚ b) ≈ x) (·ₚ-symm a b) (locRefl (a ·ₚ b))) θ
where
_·ₚ_ : R × S → R × S → R × S
(r₁ , s₁ , s₁∈S) ·ₚ (r₂ , s₂ , s₂∈S) =
(r₁ · r₂) , ((s₁ · s₂) , SMultClosedSubset .multClosed s₁∈S s₂∈S)
·ₚ-symm : (a b : R × S) → (a ·ₚ b) ≡ (b ·ₚ a)
·ₚ-symm (r₁ , s₁ , s₁∈S) (r₂ , s₂ , s₂∈S) =
ΣPathP (·-comm _ _ , Σ≡Prop (λ x → S' x .snd) (·-comm _ _))
θ : (a a' b : R × S) → a ≈ a' → (a ·ₚ b) ≈ (a' ·ₚ b)
θ (r₁ , s₁ , s₁∈S) (r'₁ , s'₁ , s'₁∈S) (r₂ , s₂ , s₂∈S) ((s , s∈S) , p) = (s , s∈S) , path
where
eq1 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R)
→ s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · r₁ · s'₁ · r₂ · s₂
eq1 = solve R'
eq2 : (r₁ s₁ r'₁ s'₁ r₂ s₂ s : R)
→ s · r'₁ · s₁ · r₂ · s₂ ≡ s · (r'₁ · r₂) · (s₁ · s₂)
eq2 = solve R'
path : s · (r₁ · r₂) · (s'₁ · s₂) ≡ s · (r'₁ · r₂) · (s₁ · s₂)
path = eq1 r₁ s₁ r'₁ s'₁ r₂ s₂ s ∙∙ cong (λ x → x · r₂ · s₂) p ∙∙ eq2 r₁ s₁ r'₁ s'₁ r₂ s₂ s
-- checking laws for multiplication
1ₗ : S⁻¹R
1ₗ = [ 1r , 1r , SMultClosedSubset .containsOne ]
·ₗ-assoc : (x y z : S⁻¹R) → x ·ₗ (y ·ₗ z) ≡ (x ·ₗ y) ·ₗ z
·ₗ-assoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-assoc[]
where
·ₗ-assoc[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] ·ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) ·ₗ [ c ]
·ₗ-assoc[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) =
cong [_] (ΣPathP ((·Assoc _ _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Assoc _ _ _)))
·ₗ-rid : (x : S⁻¹R) → x ·ₗ 1ₗ ≡ x
·ₗ-rid = SQ.elimProp (λ _ → squash/ _ _) ·ₗ-rid[]
where
·ₗ-rid[] : (a : R × S) → ([ a ] ·ₗ 1ₗ) ≡ [ a ]
·ₗ-rid[] (r , s , s∈S) = cong [_] (ΣPathP ((·Rid _) , Σ≡Prop (λ x → ∈-isProp S' x) (·Rid _)))
·ₗ-rdist-+ₗ : (x y z : S⁻¹R) → x ·ₗ (y +ₗ z) ≡ (x ·ₗ y) +ₗ (x ·ₗ z)
·ₗ-rdist-+ₗ = SQ.elimProp3 (λ _ _ _ → squash/ _ _) ·ₗ-rdist-+ₗ[]
where
·ₗ-rdist-+ₗ[] : (a b c : R × S) → [ a ] ·ₗ ([ b ] +ₗ [ c ]) ≡ ([ a ] ·ₗ [ b ]) +ₗ ([ a ] ·ₗ [ c ])
·ₗ-rdist-+ₗ[] (r , s , s∈S) (r' , s' , s'∈S) (r'' , s'' , s''∈S) =
eq/ _ _ ((1r , (SMultClosedSubset .containsOne)) , path r s r' s' r'' s'')
where
-- could be shortened even further
path : (r s r' s' r'' s'' : R)
→ 1r · (r · (r' · s'' + r'' · s')) · (s · s' · (s · s''))
≡ 1r · (r · r' · (s · s'') + r · r'' · (s · s')) · (s · (s' · s''))
path = solve R'
·ₗ-comm : (x y : S⁻¹R) → x ·ₗ y ≡ y ·ₗ x
·ₗ-comm = SQ.elimProp2 (λ _ _ → squash/ _ _) ·ₗ-comm[]
where
·ₗ-comm[] : (a b : R × S) → [ a ] ·ₗ [ b ] ≡ [ b ] ·ₗ [ a ]
·ₗ-comm[] (r , s , s∈S) (r' , s' , s'∈S) =
cong [_] (ΣPathP ((·-comm _ _) , Σ≡Prop (λ x → ∈-isProp S' x) (·-comm _ _)))
-- Commutative ring structure on S⁻¹R
S⁻¹RAsCommRing : CommRing ℓ
S⁻¹RAsCommRing = S⁻¹R , S⁻¹RCommRingStr
where
open CommRingStr
S⁻¹RCommRingStr : CommRingStr S⁻¹R
0r S⁻¹RCommRingStr = 0ₗ
1r S⁻¹RCommRingStr = 1ₗ
_+_ S⁻¹RCommRingStr = _+ₗ_
_·_ S⁻¹RCommRingStr = _·ₗ_
- S⁻¹RCommRingStr = -ₗ_
isCommRing S⁻¹RCommRingStr = makeIsCommRing squash/ +ₗ-assoc +ₗ-rid +ₗ-rinv +ₗ-comm
·ₗ-assoc ·ₗ-rid ·ₗ-rdist-+ₗ ·ₗ-comm
| {
"alphanum_fraction": 0.476584022,
"avg_line_length": 36.4256055363,
"ext": "agda",
"hexsha": "1166b75a0e5544ba4fc9fb7a52f1574a44743059",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Localisation/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Localisation/Base.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Localisation/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5094,
"size": 10527
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Polynomials.UnivariateHIT.Base where
open import Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyHIT public
{-
The Univariate Functional Polynomials over a CommRing A is a CommRing.
The base type is define using an HIT.
This definition enables to defined a direct sum indexed by ℕ.
Thus base type and the AbGroup part of the CommRing is define an instance
of the more general Direct Sum one which can be found here :
-}
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
{-
On this definition of the Direct Sum, it is possible to raise a Graded Ring structure.
Then complete it to be a CommRing. Those version of the polynomials are hence
a instance of this graded ring structure.
see : for the details of the constructions
-}
open import Cubical.Algebra.GradedRing.DirectSumHIT
| {
"alphanum_fraction": 0.7969483568,
"avg_line_length": 30.4285714286,
"ext": "agda",
"hexsha": "68072a0a8eb67619d028d218643451b52ab30824",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Base.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/UnivariateHIT/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 198,
"size": 852
} |
-- Andreas, 2019-11-07, issue #4169 report and testcase by nad.
-- Extra coercions needed when erased versions of functions are used.
open import Agda.Builtin.Unit
open import Common.IO
data D : Set where
c : D
F : D → Set → Set
F c A = A → A
f : (d : D) (A : Set) → F d A → A → A -- 14
f c A g = g
f′ : (d : D) (A : Set) (P : Set → Set) -- 30
(g : (A : Set) → F d (P A))
→ P A → P A
f′ d A P g = f d (P A) (g A)
module _ (id : (A : Set) → (A → A) → A → A) (G : Set → Set) where
postulate
g : (A : Set) → G A → G A
g′ : (A : Set) → G A → G A
g′ A s = g A s
g″ : (A : Set) → G A → G A
g″ A = id (G A) (f′ c A G g′)
main : IO ⊤
main = return _
| {
"alphanum_fraction": 0.4860499266,
"avg_line_length": 20.0294117647,
"ext": "agda",
"hexsha": "077982464e4c4dddd5c06507a633defdec0be90e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue4169.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue4169.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue4169.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 292,
"size": 681
} |
------------------------------------------------------------------------
-- H-levels
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Partly based on Voevodsky's work on so-called univalent
-- foundations.
open import Equality
module H-level
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Logical-equivalence hiding (id; _∘_)
open import Nat eq
open import Prelude
open import Surjection eq hiding (id; _∘_)
private
variable
a ℓ : Level
m n : ℕ
A B : Type a
------------------------------------------------------------------------
-- H-levels
-- H-levels ("homotopy levels").
H-level : ℕ → Type ℓ → Type ℓ
H-level zero A = Contractible A
H-level (suc zero) A = Is-proposition A
H-level (suc (suc n)) A = {x y : A} → H-level (suc n) (x ≡ y)
private
-- Note that H-level 2 is a synonym for Is-set.
H-level-2≡Is-set : H-level 2 A ≡ Is-set A
H-level-2≡Is-set = refl _
-- For-iterated-equality n P A means that P holds for (equalities
-- over)^n A.
For-iterated-equality : ℕ → (Type ℓ → Type ℓ) → (Type ℓ → Type ℓ)
For-iterated-equality zero P A = P A
For-iterated-equality (suc n) P A =
(x y : A) → For-iterated-equality n P (x ≡ y)
-- An alternative definition of h-levels.
--
-- In some cases this definition, with only two cases, is easier to
-- use. In other cases the definition above, which is less complicated
-- for positive h-levels, is easier to use.
H-level′ : ℕ → Type ℓ → Type ℓ
H-level′ = flip For-iterated-equality Contractible
-- Propositions are propositional types.
Proposition : (ℓ : Level) → Type (lsuc ℓ)
Proposition _ = ∃ Is-proposition
-- Types that are sets.
Set : (ℓ : Level) → Type (lsuc ℓ)
Set _ = ∃ Is-set
-- The underlying type.
⌞_⌟ : Set ℓ → Type ℓ
⌞ A ⌟ = proj₁ A
------------------------------------------------------------------------
-- General properties
-- H-level′ is upwards closed in its first argument.
mono₁′ : ∀ n → H-level′ n A → H-level′ (1 + n) A
mono₁′ (suc n) h x y = mono₁′ n (h x y)
mono₁′ {A = A} zero h x y = trivial x y , irr
where
trivial : (x y : A) → x ≡ y
trivial x y =
x ≡⟨ sym $ proj₂ h x ⟩
proj₁ h ≡⟨ proj₂ h y ⟩∎
y ∎
irr : (x≡y : x ≡ y) → trivial x y ≡ x≡y
irr = elim (λ {x y} x≡y → trivial x y ≡ x≡y)
(λ x → trans-symˡ (proj₂ h x))
-- H-level and H-level′ are pointwise logically equivalent.
H-level⇔H-level′ : H-level n A ⇔ H-level′ n A
H-level⇔H-level′ = record { to = to _; from = from _ }
where
to : ∀ n → H-level n A → H-level′ n A
to zero h = h
to (suc zero) h = λ x → mono₁′ 0 (x , h x) x
to (suc (suc n)) h = λ x y → to (suc n) h
from : ∀ n → H-level′ n A → H-level n A
from zero h = h
from (suc zero) h x y = proj₁ (h x y)
from (suc (suc n)) h {x = x} {y = y} = from (suc n) (h x y)
-- If A has h-level 1 + n, then the types of equality proofs between
-- elements of type A have h-level n.
+⇒≡ : {x y : A} → H-level (suc n) A → H-level n (x ≡ y)
+⇒≡ h = _⇔_.from H-level⇔H-level′ $ _⇔_.to H-level⇔H-level′ h _ _
-- H-level is upwards closed in its first argument.
mono₁ : ∀ n → H-level n A → H-level (1 + n) A
mono₁ n =
_⇔_.from H-level⇔H-level′ ∘
mono₁′ n ∘
_⇔_.to H-level⇔H-level′
abstract
mono : m ≤ n → H-level m A → H-level n A
mono (≤-refl′ eq) = subst (λ n → H-level n _) eq
mono (≤-step′ m≤n eq) =
subst (λ n → H-level n _) eq ∘
mono₁ _ ∘
mono m≤n
-- If A has h-level n, then the types of equality proofs between
-- elements of type A also have h-level n.
⇒≡ : {x y : A} → ∀ n → H-level n A → H-level n (x ≡ y)
⇒≡ _ = +⇒≡ ∘ mono₁ _
-- If something is contractible given the assumption that it is
-- inhabited, then it is propositional.
[inhabited⇒contractible]⇒propositional :
(A → Contractible A) → Is-proposition A
[inhabited⇒contractible]⇒propositional h x = mono₁ 0 (h x) x
-- If something has h-level (1 + n) given the assumption that it is
-- inhabited, then it has h-level (1 + n).
[inhabited⇒+]⇒+ : ∀ n → (A → H-level (1 + n) A) → H-level (1 + n) A
[inhabited⇒+]⇒+ n h =
_⇔_.from H-level⇔H-level′ λ x → _⇔_.to H-level⇔H-level′ (h x) x
-- An alternative characterisation of sets and higher h-levels.
--
-- This is Theorem 7.2.7 from the HoTT book.
2+⇔∀1+≡ :
∀ n → H-level (2 + n) A ⇔ ((x : A) → H-level (1 + n) (x ≡ x))
2+⇔∀1+≡ n = record
{ to = λ h _ → h
; from = λ h → [inhabited⇒+]⇒+ _
(elim (λ {x y} _ → H-level (1 + n) (x ≡ y)) h)
}
-- If a propositional type is inhabited, then it is contractible.
propositional⇒inhabited⇒contractible :
Is-proposition A → A → Contractible A
propositional⇒inhabited⇒contractible p x = (x , p x)
-- H-level′ n respects (split) surjections.
respects-surjection′ :
A ↠ B → ∀ n → H-level′ n A → H-level′ n B
respects-surjection′ A↠B zero (x , irr) = (to x , irr′)
where
open _↠_ A↠B
irr′ : ∀ y → to x ≡ y
irr′ = λ y →
to x ≡⟨ cong to (irr (from y)) ⟩
to (from y) ≡⟨ right-inverse-of y ⟩∎
y ∎
respects-surjection′ A↠B (suc n) h = λ x y →
respects-surjection′ (↠-≡ A↠B) n (h (from x) (from y))
where open _↠_ A↠B
-- H-level n respects (split) surjections.
respects-surjection :
A ↠ B → ∀ n → H-level n A → H-level n B
respects-surjection A↠B n =
_⇔_.from H-level⇔H-level′ ∘
respects-surjection′ A↠B n ∘
_⇔_.to H-level⇔H-level′
| {
"alphanum_fraction": 0.5556559451,
"avg_line_length": 28.0913705584,
"ext": "agda",
"hexsha": "0c6188078c53910b5cc02b16b5a4247d19619f2c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/H-level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/H-level.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/H-level.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2050,
"size": 5534
} |
-- define ⋁ and ⋀ as the bigOps of a Ring when interpreted
-- as an additive/multiplicative monoid
{-# OPTIONS --safe #-}
module Cubical.Algebra.DistLattice.BigOps where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Data.Sigma
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.FinData
open import Cubical.Data.Bool
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Macro
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Monoid.BigOp
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Relation.Binary.Poset
private
variable
ℓ : Level
module KroneckerDelta (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
δ : {n : ℕ} (i j : Fin n) → L
δ i j = if i == j then 1l else 0l
module Join (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
open MonoidBigOp (Semilattice→Monoid (Lattice→JoinSemilattice (DistLattice→Lattice L')))
-- extra DistLattice→JoinMonoid?
open LatticeTheory (DistLattice→Lattice L')
open KroneckerDelta L'
⋁ = bigOp
⋁Ext = bigOpExt
⋁0l = bigOpε
⋁Last = bigOpLast
⋁Split : ∀ {n} → (V W : FinVec L n) → ⋁ (λ i → V i ∨l W i) ≡ ⋁ V ∨l ⋁ W
⋁Split = bigOpSplit ∨lComm
⋁Meetrdist : ∀ {n} → (x : L) → (V : FinVec L n)
→ x ∧l ⋁ V ≡ ⋁ λ i → x ∧l V i
⋁Meetrdist {n = zero} x _ = 0lRightAnnihilates∧l x
⋁Meetrdist {n = suc n} x V =
x ∧l (V zero ∨l ⋁ (V ∘ suc)) ≡⟨ ∧lLdist∨l _ _ _ ⟩ --Ldist and Rdist wrong way around?
(x ∧l V zero) ∨l (x ∧l ⋁ (V ∘ suc)) ≡⟨ (λ i → (x ∧l V zero) ∨l ⋁Meetrdist x (V ∘ suc) i) ⟩
(x ∧l V zero) ∨l ⋁ (λ i → x ∧l V (suc i)) ∎
⋁Meetldist : ∀ {n} → (x : L) → (V : FinVec L n)
→ (⋁ V) ∧l x ≡ ⋁ λ i → V i ∧l x
⋁Meetldist {n = zero} x _ = 0lLeftAnnihilates∧l x
⋁Meetldist {n = suc n} x V =
(V zero ∨l ⋁ (V ∘ suc)) ∧l x ≡⟨ ∧lRdist∨l _ _ _ ⟩
(V zero ∧l x) ∨l ((⋁ (V ∘ suc)) ∧l x) ≡⟨ (λ i → (V zero ∧l x) ∨l ⋁Meetldist x (V ∘ suc) i) ⟩
(V zero ∧l x) ∨l ⋁ (λ i → V (suc i) ∧l x) ∎
⋁Meetr0 : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → V i ∧l 0l) ≡ 0l
⋁Meetr0 V = sym (⋁Meetldist 0l V) ∙ 0lRightAnnihilates∧l _
⋁Meet0r : ∀ {n} → (V : FinVec L n) → ⋁ (λ i → 0l ∧l V i) ≡ 0l
⋁Meet0r V = sym (⋁Meetrdist 0l V) ∙ 0lLeftAnnihilates∧l _
⋁Meetr1 : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → V i ∧l δ i j) ≡ V j
⋁Meetr1 (suc n) V zero = (λ k → ∧lRid (V zero) k ∨l ⋁Meetr0 (V ∘ suc) k) ∙ ∨lRid (V zero)
⋁Meetr1 (suc n) V (suc j) =
(λ i → 0lRightAnnihilates∧l (V zero) i ∨l ⋁ (λ x → V (suc x) ∧l δ x j))
∙∙ ∨lLid _ ∙∙ ⋁Meetr1 n (V ∘ suc) j
⋁Meet1r : (n : ℕ) (V : FinVec L n) → (j : Fin n) → ⋁ (λ i → (δ j i) ∧l V i) ≡ V j
⋁Meet1r (suc n) V zero = (λ k → ∧lLid (V zero) k ∨l ⋁Meet0r (V ∘ suc) k) ∙ ∨lRid (V zero)
⋁Meet1r (suc n) V (suc j) =
(λ i → 0lLeftAnnihilates∧l (V zero) i ∨l ⋁ (λ i → (δ j i) ∧l V (suc i)))
∙∙ ∨lLid _ ∙∙ ⋁Meet1r n (V ∘ suc) j
-- inequalities of big joins
open JoinSemilattice (Lattice→JoinSemilattice (DistLattice→Lattice L'))
open PosetReasoning IndPoset
open PosetStr (IndPoset .snd) hiding (_≤_)
⋁IsMax : {n : ℕ} (U : FinVec L n) (x : L) → (∀ i → U i ≤ x) → ⋁ U ≤ x
⋁IsMax {n = zero} _ _ _ = ∨lLid _
⋁IsMax {n = suc n} U x U≤x =
⋁ U ≤⟨ is-refl _ ⟩
U zero ∨l ⋁ (U ∘ suc) ≤⟨ ≤-∨LPres _ _ _ (⋁IsMax _ _ (U≤x ∘ suc)) ⟩
U zero ∨l x ≤⟨ ∨lIsMax _ _ _ (U≤x zero) (is-refl x) ⟩
x ◾
≤-⋁Ext : {n : ℕ} (U W : FinVec L n) → (∀ i → U i ≤ W i) → ⋁ U ≤ ⋁ W
≤-⋁Ext {n = zero} U W U≤W = is-refl 0l
≤-⋁Ext {n = suc n} U W U≤W =
⋁ U ≤⟨ is-refl _ ⟩
U zero ∨l ⋁ (U ∘ suc) ≤⟨ ≤-∨Pres _ _ _ _ (U≤W zero) (≤-⋁Ext _ _ (U≤W ∘ suc)) ⟩
W zero ∨l ⋁ (W ∘ suc) ≤⟨ is-refl _ ⟩
⋁ W ◾
module Meet (L' : DistLattice ℓ) where
private
L = fst L'
open DistLatticeStr (snd L')
open MonoidBigOp (Semilattice→Monoid (Lattice→MeetSemilattice (DistLattice→Lattice L')))
-- extra DistLattice→MeetMonoid?
open LatticeTheory (DistLattice→Lattice L')
open KroneckerDelta L'
⋀ = bigOp
⋀Ext = bigOpExt
⋀1l = bigOpε
⋀Last = bigOpLast
⋀Split : ∀ {n} → (V W : FinVec L n) → ⋀ (λ i → V i ∧l W i) ≡ ⋀ V ∧l ⋀ W
⋀Split = bigOpSplit ∧lComm
⋀Joinrdist : ∀ {n} → (x : L) → (V : FinVec L n)
→ x ∨l ⋀ V ≡ ⋀ λ i → x ∨l V i
⋀Joinrdist {n = zero} x _ = 1lRightAnnihilates∨l x
⋀Joinrdist {n = suc n} x V =
x ∨l (V zero ∧l ⋀ (V ∘ suc)) ≡⟨ ∨lLdist∧l _ _ _ ⟩ --Ldist and Rdist wrong way around?
(x ∨l V zero) ∧l (x ∨l ⋀ (V ∘ suc)) ≡⟨ (λ i → (x ∨l V zero) ∧l ⋀Joinrdist x (V ∘ suc) i) ⟩
(x ∨l V zero) ∧l ⋀ (λ i → x ∨l V (suc i)) ∎
⋀Joinldist : ∀ {n} → (x : L) → (V : FinVec L n)
→ (⋀ V) ∨l x ≡ ⋀ λ i → V i ∨l x
⋀Joinldist {n = zero} x _ = 1lLeftAnnihilates∨l x
⋀Joinldist {n = suc n} x V =
(V zero ∧l ⋀ (V ∘ suc)) ∨l x ≡⟨ ∨lRdist∧l _ _ _ ⟩
(V zero ∨l x) ∧l ((⋀ (V ∘ suc)) ∨l x) ≡⟨ (λ i → (V zero ∨l x) ∧l ⋀Joinldist x (V ∘ suc) i) ⟩
(V zero ∨l x) ∧l ⋀ (λ i → V (suc i) ∨l x) ∎
⋀Joinr1 : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → V i ∨l 1l) ≡ 1l
⋀Joinr1 V = sym (⋀Joinldist 1l V) ∙ 1lRightAnnihilates∨l _
⋀Join1r : ∀ {n} → (V : FinVec L n) → ⋀ (λ i → 1l ∨l V i) ≡ 1l
⋀Join1r V = sym (⋀Joinrdist 1l V) ∙ 1lLeftAnnihilates∨l _
| {
"alphanum_fraction": 0.5671950379,
"avg_line_length": 36.5031446541,
"ext": "agda",
"hexsha": "53a49c5e870302d2d79ad89682f577fa3510b069",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/DistLattice/BigOps.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/DistLattice/BigOps.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/DistLattice/BigOps.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2774,
"size": 5804
} |
module examplesPaperJFP.IOExampleConsole where
open import examplesPaperJFP.BasicIO hiding (main)
open import examplesPaperJFP.Console hiding (main)
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.CatTerm
main : NativeIO Unit
main = translateIOConsole cat
| {
"alphanum_fraction": 0.8576512456,
"avg_line_length": 28.1,
"ext": "agda",
"hexsha": "17b356f4f611447772465a3e1f15f1d90a35cbe6",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/IOExampleConsole.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/IOExampleConsole.agda",
"max_line_length": 50,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/IOExampleConsole.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 66,
"size": 281
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Additive where
open import Cubical.Categories.Additive.Base public
open import Cubical.Categories.Additive.Properties public
open import Cubical.Categories.Additive.Quotient public
| {
"alphanum_fraction": 0.8275862069,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "01f66ab77d82b17ad65380dc6cae2fc216f1d595",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/Additive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/Additive.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/Additive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 45,
"size": 232
} |
{-
This second-order term syntax was created from the following second-order syntax description:
syntax CTLC | ΛC
type
N : 0-ary
_↣_ : 2-ary | r30
¬_ : 1-ary | r30
term
app : α ↣ β α -> β | _$_ l20
lam : α.β -> α ↣ β | ƛ_ r10
throw : α ¬ α -> β
callcc : ¬ α.α -> α
theory
(ƛβ) b : α.β a : α |> app (lam(x.b[x]), a) = b[a]
(ƛη) f : α ↣ β |> lam (x. app(f, x)) = f
-}
module CTLC.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import CTLC.Signature
private
variable
Γ Δ Π : Ctx
α β : ΛCT
𝔛 : Familyₛ
-- Inductive term declaration
module ΛC:Terms (𝔛 : Familyₛ) where
data ΛC : Familyₛ where
var : ℐ ⇾̣ ΛC
mvar : 𝔛 α Π → Sub ΛC Π Γ → ΛC α Γ
_$_ : ΛC (α ↣ β) Γ → ΛC α Γ → ΛC β Γ
ƛ_ : ΛC β (α ∙ Γ) → ΛC (α ↣ β) Γ
throw : ΛC α Γ → ΛC (¬ α) Γ → ΛC β Γ
callcc : ΛC α ((¬ α) ∙ Γ) → ΛC α Γ
infixl 20 _$_
infixr 10 ƛ_
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
ΛCᵃ : MetaAlg ΛC
ΛCᵃ = record
{ 𝑎𝑙𝑔 = λ where
(appₒ ⋮ a , b) → _$_ a b
(lamₒ ⋮ a) → ƛ_ a
(throwₒ ⋮ a , b) → throw a b
(callccₒ ⋮ a) → callcc a
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module ΛCᵃ = MetaAlg ΛCᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : ΛC ⇾̣ 𝒜
𝕊 : Sub ΛC Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 (_$_ a b) = 𝑎𝑙𝑔 (appₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞 (ƛ_ a) = 𝑎𝑙𝑔 (lamₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞 (throw a b) = 𝑎𝑙𝑔 (throwₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞 (callcc a) = 𝑎𝑙𝑔 (callccₒ ⋮ 𝕤𝕖𝕞 a)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ ΛCᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ ΛC α Γ) → 𝕤𝕖𝕞 (ΛCᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (appₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (lamₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (throwₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (callccₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ ΛC ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : ΛC ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ ΛCᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : ΛC α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub ΛC Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! (_$_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (ƛ_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (throw a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (callcc a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
ΛC:Syn : Syntax
ΛC:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = ΛC:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open ΛC:Terms 𝔛 in record
{ ⊥ = ΛC ⋉ ΛCᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax ΛC:Syn public
open ΛC:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands ΛCᵃ public
open import SOAS.Metatheory ΛC:Syn public
| {
"alphanum_fraction": 0.5204951857,
"avg_line_length": 26.3405797101,
"ext": "agda",
"hexsha": "a346871f12bdf7799d45e6fbf226f1603d12a567",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/CTLC/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/CTLC/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/CTLC/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 2374,
"size": 3635
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.Examples where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.RingSolver.NatAsAlmostRing
open import Cubical.Algebra.RingSolver.RingExpression
open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ)
open import Cubical.Algebra.RingSolver.HornerForms
open import Cubical.Algebra.RingSolver.Solver
private
variable
ℓ : Level
module MultivariateSolving where
open AlmostRing ℕAsAlmostRing
ℕAsRawRing = AlmostRing→RawRing ℕAsAlmostRing
open EqualityToNormalform ℕAsAlmostRing
ℕ[X₀,X₁] = IteratedHornerOperations.asRawRing ℕAsRawRing 2
X₀ : ⟨ ℕ[X₀,X₁] ⟩ᵣ
X₀ = Variable 2 ℕAsRawRing (Fin.zero)
X₁ : ⟨ ℕ[X₀,X₁] ⟩ᵣ
X₁ = Variable 2 ℕAsRawRing (suc Fin.zero)
Two : ⟨ ℕ[X₀,X₁] ⟩ᵣ
Two = Constant 2 ℕAsRawRing 2
_ : eval 2 X₀ (1 ∷ 0 ∷ []) ≡ 1
_ = refl
_ : eval 2 X₁ (0 ∷ 1 ∷ []) ≡ 1
_ = refl
X : Expr ℕ 3
X = ∣ Fin.zero
Y : Expr ℕ 3
Y = ∣ (suc Fin.zero)
Z : Expr ℕ 3
Z = ∣ (suc (suc Fin.zero))
{-
'normalize' maps an expression to its Horner Normalform.
Two expressions evaluating to the same ring element
have the same Horner Normal form.
This means equality of the represented ring elements
can be checked by agda's unification (so refl is a proof)
-}
_ : normalize 3 ((K 2) ⊗ X) ≡
normalize 3 (X ⊕ X)
_ = refl
_ : normalize 3 ((K 2) ⊗ X) ≡ normalize 3 (X ⊕ X)
_ = refl
_ : normalize 3 (((K 2) ⊗ X) ⊗ Y) ≡ normalize 3 (Y ⊗ (X ⊕ X))
_ = refl
_ : normalize 3 (Z ⊗ (((K 2) ⊗ X) ⊗ Y)) ≡ normalize 3 (Z ⊗ (Y ⊗ (X ⊕ X)))
_ = refl
{-
The solver needs to produce an equality between
actual ring elements. So we need a proof that
those actual ring elements are equal to a normal form:
-}
_ : (x y z : ℕ) →
eval 3 (normalize 3 ((K 2) ⊗ X ⊗ Y)) (x ∷ y ∷ z ∷ [])
≡ 2 · x · y
_ = λ x y z → isEqualToNormalform 3 ((K 2) ⊗ X ⊗ Y) (x ∷ y ∷ z ∷ [])
{-
Now two of these proofs can be plugged together
to solve an equation:
-}
open Eval ℕAsRawRing
_ : (x y z : ℕ) → 3 + x + y · y ≡ y · y + x + 1 + 2
_ = let
lhs = (K 3) ⊕ X ⊕ (Y ⊗ Y)
rhs = Y ⊗ Y ⊕ X ⊕ (K 1) ⊕ (K 2)
in (λ x y z →
⟦ lhs ⟧ (x ∷ y ∷ z ∷ [])
≡⟨ sym (isEqualToNormalform 3 lhs (x ∷ y ∷ z ∷ [])) ⟩
eval 3 (normalize 3 lhs) (x ∷ y ∷ z ∷ [])
≡⟨ refl ⟩
eval 3 (normalize 3 rhs) (x ∷ y ∷ z ∷ [])
≡⟨ isEqualToNormalform 3 rhs (x ∷ y ∷ z ∷ []) ⟩
⟦ rhs ⟧ (x ∷ y ∷ z ∷ []) ∎)
{-
Parts of that can be automated easily:
-}
_ : (x y z : ℕ) → (x + y) · (x + y) ≡ x · x + 2 · x · y + y · y
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = X ⊗ X ⊕ (K 2) ⊗ X ⊗ Y ⊕ Y ⊗ Y
in solve lhs rhs (x ∷ y ∷ z ∷ []) refl
{-
A bigger example
-}
_ : (x y z : ℕ) → (x + y) · (x + y) · (x + y) · (x + y)
≡ x · x · x · x + 4 · x · x · x · y + 6 · x · x · y · y
+ 4 · x · y · y · y + y · y · y · y
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y) ⊗ (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = X ⊗ X ⊗ X ⊗ X
⊕ (K 4) ⊗ X ⊗ X ⊗ X ⊗ Y
⊕ (K 6) ⊗ X ⊗ X ⊗ Y ⊗ Y
⊕ (K 4) ⊗ X ⊗ Y ⊗ Y ⊗ Y
⊕ Y ⊗ Y ⊗ Y ⊗ Y
in solve lhs rhs (x ∷ y ∷ z ∷ []) refl
{-
this one cannot work so far:
_ : (x y z : ℕ) → (x + y) · (x - y) ≡ (x · x - (y · y))
_ = λ x y z → let
lhs = (X ⊕ Y) ⊗ (X ⊕ (⊝ Y))
rhs = (X ⊗ X) ⊕ (⊝ (Y ⊗ Y))
in solve lhs rhs (x ∷ y ∷ z ∷ []) {!!}
-}
module ExamplesForArbitraryRings (R : AlmostRing {ℓ}) where
open AlmostRing R
open EqualityToNormalform R
X : Expr ⟨ R ⟩ 4
X = ∣ Fin.zero
Y : Expr ⟨ R ⟩ 4
Y = ∣ (suc Fin.zero)
A : Expr ⟨ R ⟩ 4
A = ∣ (suc (suc Fin.zero))
B : Expr ⟨ R ⟩ 4
B = ∣ (suc (suc (suc Fin.zero)))
_ : (x y a b : ⟨ R ⟩) → (x + y) + (a + b) ≡ (y + b) + (x + a)
_ = λ x y a b → let
lhs = (X ⊕ Y) ⊕ (A ⊕ B)
rhs = (Y ⊕ B) ⊕ (X ⊕ A)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
_ : (x y a b : ⟨ R ⟩) → (x + y) · (x + y) ≡ x · x + x · y + x · y + y · y
_ = λ x y a b →
let
lhs = (X ⊕ Y) ⊗ (X ⊕ Y)
rhs = (X ⊗ X) ⊕ (X ⊗ Y) ⊕ (X ⊗ Y) ⊕ (Y ⊗ Y)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
_ : (x y a b : ⟨ R ⟩) → x · a ≡ a · x
_ = λ x y a b →
let
lhs = X ⊗ A
rhs = A ⊗ X
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
{-
this one should work, but doesn't:
_ : (x y a b : ⟨ R ⟩) → x · (a + b) ≡ a · x + b · x
_ = λ x y a b →
let
lhs = X ⊗ (A ⊕ B)
rhs = (A ⊗ X) ⊕ (B ⊗ X)
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) refl
the reason ist, that lhs and rhs evaluate to definitionally different things:
(0r · x +
(0r · y +
((0r · a + (0r · b + 1r · 1r)) · a +
((0r · b + 1r · 1r) · b + 1r · 0r))))
· x
+ 0r
(0r · x +
(0r · y +
((0r · a + (0r · b + 1r · 1r)) · a +
((0r · b + 1r · 1r) · b + (0r + 0r · 1r)))))
· x
+ 0r
-}
{-
'-' is problematic...
_ : (x y a b : ⟨ R ⟩) → (x + y) · (x - y) ≡ (x · x - (y · y))
_ = λ x y a b → let
lhs = (X ⊕ Y) ⊗ (X ⊕ (⊝ Y))
rhs = (X ⊗ X) ⊕ (⊝ (Y ⊗ Y))
in solve lhs rhs (x ∷ y ∷ a ∷ b ∷ []) {!!}
-}
| {
"alphanum_fraction": 0.4477982955,
"avg_line_length": 27.3398058252,
"ext": "agda",
"hexsha": "454b40ddcfc3f30ae4555400f2d591a2e4618493",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "apabepa10/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "apabepa10/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "apabepa10/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/Examples.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2369,
"size": 5632
} |
{-
This file contains:
- Eliminators of direct limit, especially an index-shifting version;
- Connectivity of inclusion maps.
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.SequentialColimit.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Function
open import Cubical.Data.Nat hiding (elim)
open import Cubical.HITs.SequentialColimit.Base
open import Cubical.Homotopy.Connected
private
variable
ℓ ℓ' : Level
module _
(X : Sequence ℓ) where
open Sequence
private
inl∞ : (n : ℕ) → X .space n → Lim→ X
inl∞ n = inl {n = n}
record ElimData (P : Lim→ X → Type ℓ') : Type (ℓ-max ℓ ℓ') where
field
finl : {k : ℕ}(x : X .space k) → P (inl x)
fpush : {k : ℕ}(x : X .space k) → PathP (λ i → P (push x i)) (finl x) (finl (X .map x))
record ElimShiftData (n : ℕ)(P : Lim→ X → Type ℓ') : Type (ℓ-max ℓ ℓ') where
field
finl : {k : ℕ}(x : X .space (k + n)) → P (inl x)
fpush : {k : ℕ}(x : X .space (k + n)) → PathP (λ i → P (push x i)) (finl x) (finl (X .map x))
open ElimData
open ElimShiftData
ElimData→ElimShiftData : (n : ℕ)(P : Lim→ X → Type ℓ')
→ ElimData P → ElimShiftData n P
ElimData→ElimShiftData n P datum .finl = datum .finl
ElimData→ElimShiftData n P datum .fpush = datum .fpush
-- Preliminary lemmas
-- The difficulty is mainly due to natural numbers having no strict +-commutativity
private
alg-path : (a b : ℕ) → a + (1 + b) ≡ 1 + (a + b)
alg-path a b = +-assoc a 1 b ∙ (λ i → +-comm a 1 i + b)
module _
(P : Lim→ X → Type ℓ')
(datum : ElimShiftData 0 P) where
+-zero-0 : refl ≡ +-zero 0
+-zero-0 i j = isSet→SquareP (λ i j → isSetℕ) refl refl refl (+-zero 0) j i
finl'-filler : (k : ℕ) → (i : I) → (x : X .space (+-zero k i)) → P (inl x)
finl'-filler k i = transport-filler (λ i → (x : X .space (+-zero k i)) → P (inl x)) (datum .finl) i
finl' : (k : ℕ) → (x : X .space k) → P (inl x)
finl' k = finl'-filler k i1
finl'-0-eq : datum .finl ≡ finl' 0
finl'-0-eq = sym (transportRefl _)
∙ (λ j → transport (λ i → (x : X .space (+-zero-0 j i)) → P (inl x)) (datum .finl {k = 0}))
fpush' : (k : ℕ)
→ (x : X .space k)
→ PathP (λ i → P (push x i)) (finl' k x) (finl' (1 + k) (X .map x))
fpush' k = transport
(λ i → (x : X .space (+-zero k i)) →
PathP (λ i → P (push x i)) (finl'-filler k i x) (finl'-filler (1 + k) i (X .map x))) (datum .fpush)
ElimShiftData0→ElimData : ElimData P
ElimShiftData0→ElimData .finl = finl' _
ElimShiftData0→ElimData .fpush = fpush' _
module _
(n : ℕ)(P : Lim→ X → Type ℓ')
(datum : ElimShiftData (1 + n) P) where
alg-path-0 : (b : ℕ) → refl ≡ alg-path 0 b
alg-path-0 b i j = isSet→SquareP (λ i j → isSetℕ) refl refl refl (alg-path 0 b) j i
finl-n-filler : (k : ℕ) → (i : I) → ((x : X .space (alg-path k n i)) → P (inl x))
finl-n-filler k i = transport-filler (λ i → (x : X .space (alg-path k n i)) → P (inl x)) (datum .finl) i
finl-n : (k : ℕ) → (x : X .space ((1 + k) + n)) → P (inl x)
finl-n k = finl-n-filler k i1
fpush-n : (k : ℕ)
→ (x : X .space ((1 + k) + n))
→ PathP (λ i → P (push x i)) (finl-n k x) (finl-n (1 + k) (X .map x))
fpush-n k =
transport
(λ i → (x : X .space (alg-path k n i)) →
PathP (λ i → P (push x i)) (finl-n-filler k i x) (finl-n-filler (1 + k) i (X .map x))) (datum .fpush)
finl-0-filler : (x : X .space n) → (i : I) → P (push x i)
finl-0-filler x i = transport-filler (λ i → P (push x (~ i))) (datum .finl {k = 0} (X .map x)) (~ i)
finl-0 : (x : X .space n) → P (inl x)
finl-0 x = finl-0-filler x i0
finl-0-eq : datum .finl {k = 0} ≡ finl-n 0
finl-0-eq = sym (transportRefl _)
∙ (λ j → transport (λ i → (x : X .space (alg-path-0 n j i)) → P (inl x)) (datum .finl {k = 0}))
fpush-0 :
(x : X .space n)
→ PathP (λ i → P (push x i)) (finl-0 x) (finl-n 0 (X .map x))
fpush-0 x i =
hcomp (λ j → λ
{ (i = i0) → finl-0 x
; (i = i1) → finl-0-eq j (X .map x) })
(finl-0-filler x i)
elimShiftDataSuc : ElimShiftData n P
elimShiftDataSuc .finl {k = 0} = finl-0
elimShiftDataSuc .finl {k = suc k} = finl-n k
elimShiftDataSuc .fpush {k = 0} = fpush-0
elimShiftDataSuc .fpush {k = suc k} = fpush-n k
-- The eliminators
elim :
(P : Lim→ X → Type ℓ')
→ ElimData P
→ (x : Lim→ X) → P x
elim P datum (inl x) = datum .finl x
elim P datum (push x i) = datum .fpush x i
elimShift : (n : ℕ)
→ (P : Lim→ X → Type ℓ')
→ ElimShiftData n P
→ (x : Lim→ X) → P x
elimShift 0 _ datum = elim _ (ElimShiftData0→ElimData _ datum)
elimShift (suc n) _ datum = elimShift n _ (elimShiftDataSuc _ _ datum)
elimShiftβ : (n : ℕ)(k : ℕ)
→ (P : Lim→ X → Type ℓ')
→ (datum : ElimShiftData n P)
→ elimShift _ _ datum ∘ inl∞ (k + n) ≡ datum .finl
elimShiftβ 0 0 _ datum = sym (finl'-0-eq _ datum)
elimShiftβ 0 (suc k) P datum =
transport (λ i → elimShift _ _ datum ∘ inl∞ (+-zero (suc k) (~ i))
≡ finl'-filler P datum (suc k) (~ i)) refl
elimShiftβ (suc n) 0 _ datum =
elimShiftβ n _ _ (elimShiftDataSuc _ _ datum)
∙ sym (finl-0-eq _ _ datum)
elimShiftβ (suc n) (suc k) P datum =
transport (λ i → elimShift _ _ datum ∘ inl∞ (alg-path (suc k) n (~ i))
≡ finl-n-filler n P datum (suc k) (~ i))
(elimShiftβ n (suc (suc k)) P (elimShiftDataSuc _ _ datum))
-- Lemma to lift sections
open Iso
private
transpSec :
(n : ℕ)(Y : Lim→ X → Type ℓ')
(sec : (x : X .space n) → Y (inl x))
→ (x : X .space n) → Y (inl (X .map x))
transpSec n Y sec x = transport (λ i → Y (push x i)) (sec x)
module _
(d : ℕ)(n : ℕ)
(conn : isConnectedFun d (X .map {n = n}))
(Y : Lim→ X → TypeOfHLevel ℓ' d) where
module _
(sec : (x : X .space n) → Y (inl (X .map x)) .fst) where
lift-iso = elim.isIsoPrecompose _ d (Y ∘ inl) conn
liftSec' : (x : X .space (1 + n)) → Y (inl x) .fst
liftSec' = lift-iso .inv sec
liftSecPath' : (x : X .space n) → sec x ≡ liftSec' (X .map x)
liftSecPath' x i = lift-iso .rightInv sec (~ i) x
module _
(sec : (x : X .space n) → Y (inl x) .fst) where
liftSec : (x : X .space (1 + n)) → Y (inl x) .fst
liftSec = liftSec' (transpSec n (λ x → Y x .fst) sec)
liftSecPath :
(x : X .space n)
→ PathP (λ i → Y (push x i) .fst) (sec x) (liftSec (X .map x))
liftSecPath x i =
hcomp (λ j → λ
{ (i = i0) → sec x
; (i = i1) → liftSecPath'
(transpSec n (λ x → Y x .fst) sec) x j })
(transport-filler (λ i → Y (push x i) .fst) (sec x) i)
module _
(d : ℕ)(n : ℕ)
(conn : (k : ℕ) → isConnectedFun d (X .map {n = k + n})) where
private
module _
(Y : Lim→ X → TypeOfHLevel ℓ' d) where
lifting : (k : ℕ)(sec : (x : X .space n) → Y (inl x) .fst)
→ (x : X .space (k + n)) → Y (inl x) .fst
lifting 0 sec = sec
lifting (suc k) sec = liftSec d _ (conn _) Y (lifting k sec)
liftingPath : (k : ℕ)(sec : (x : X .space n) → Y (inl x) .fst)
→ (x : X .space (k + n))
→ PathP (λ i → Y (push x i) .fst) (lifting k sec x) (lifting (1 + k) sec (X .map x))
liftingPath k sec = liftSecPath d _ (conn _) Y (lifting k sec)
liftingData : ((x : X .space n) → Y (inl x) .fst) → ElimShiftData n (λ x → Y x .fst)
liftingData sec .finl = lifting _ sec
liftingData sec .fpush = liftingPath _ sec
hasSectionInl∘ : hasSection (λ (sec : (x : Lim→ X) → Y x .fst) → sec ∘ inl {n = n})
hasSectionInl∘ .fst sec = elimShift _ _ (liftingData sec)
hasSectionInl∘ .snd sec = elimShiftβ _ _ _ (liftingData sec)
-- Connectivity of inclusion map
isConnectedInl∞ : isConnectedFun d (inl∞ n)
isConnectedInl∞ = elim.isConnectedPrecompose _ _ hasSectionInl∘
| {
"alphanum_fraction": 0.5372314453,
"avg_line_length": 34.4201680672,
"ext": "agda",
"hexsha": "3108d2f26c546343047a2a713bd86a2c3abc76f5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/SequentialColimit/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/SequentialColimit/Properties.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/SequentialColimit/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 3161,
"size": 8192
} |
------------------------------------------------------------------------
-- Small coinductive higher lenses
------------------------------------------------------------------------
{-# OPTIONS --cubical --guardedness #-}
import Equality.Path as P
module Lens.Non-dependent.Higher.Coinductive.Small
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id)
open import Bijection equality-with-J as B using (_↔_)
import Coherently-constant eq as CC
open import Equality.Decidable-UIP equality-with-J using (Constant)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq using (∥_∥)
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹; ∣_∣)
open import Preimage equality-with-J as Preimage using (_⁻¹_)
open import Tactic.Sigma-cong equality-with-J
open import Univalence-axiom equality-with-J
open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher eq as Higher
import Lens.Non-dependent.Higher.Combinators eq as HC
import Lens.Non-dependent.Higher.Capriotti eq as Capriotti
import Lens.Non-dependent.Higher.Coinductive eq as Coinductive
open import Lens.Non-dependent.Higher.Coherently.Coinductive eq
import Lens.Non-dependent.Higher.Coherently.Not-coinductive eq as NC
private
variable
a b c d p q : Level
A B C : Type a
P : A → Type p
z : A
n : ℕ
------------------------------------------------------------------------
-- Constant-≃
-- A variant of Constant for type-valued functions.
Constant-≃ :
{A : Type a} →
(A → Type p) → Type (a ⊔ p)
Constant-≃ P = ∀ x y → P x ≃ P y
-- Constant and Constant-≃ are pointwise equivalent (assuming
-- univalence).
Constant≃Constant-≃ :
{P : A → Type p} →
Univalence p → Constant P ≃ Constant-≃ P
Constant≃Constant-≃ univ =
∀-cong ext λ _ →
∀-cong ext λ _ →
≡≃≃ univ
-- The right-to-left direction of Constant-≃-get-⁻¹-≃ (which is
-- defined below).
Constant-≃-get-⁻¹-≃⁻¹ :
{get : A → B} →
(∃ λ (set : A → B → A) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f) →
Constant-≃ (get ⁻¹_)
Constant-≃-get-⁻¹-≃⁻¹ (_ , _ , eq) b₁ b₂ = Eq.⟨ _ , eq b₁ b₂ ⟩
-- Constant-≃ (get ⁻¹_) can be expressed in terms of a "setter" and a
-- "get-set" law that form a family of equivalences in a certain way.
--
-- This lemma was suggested by Andrea Vezzosi when we discussed
-- coinductive lenses with erased "proofs".
--
-- The left-to-right direction of the lemma is not blocked, but the
-- rest is.
Constant-≃-get-⁻¹-≃ :
Block "Constant-≃-get-⁻¹-≃" →
{A : Type a} {B : Type b} {get : A → B} →
Constant-≃ (get ⁻¹_) ≃
(∃ λ (set : A → B → A) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f)
Constant-≃-get-⁻¹-≃ bl {A = A} {B = B} {get = get} =
inverse (equiv₃ bl)
where
equiv₁ =
Constant-≃ (get ⁻¹_) ↔⟨⟩
(∀ b₁ b₂ → get ⁻¹ b₁ ≃ get ⁻¹ b₂) ↔⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
Eq.≃-as-Σ) ⟩
(∀ b₁ b₂ →
∃ λ (f : get ⁻¹ b₁ → get ⁻¹ b₂) →
Is-equivalence f) ↔⟨ Π-comm ⟩
(∀ b₂ b₁ →
∃ λ (f : get ⁻¹ b₁ → get ⁻¹ b₂) →
Is-equivalence f) ↝⟨ (∀-cong ext λ _ → ∀-cong ext λ _ →
Σ-cong-id currying) ⟩
(∀ b₂ b₁ →
∃ λ (f : ∀ a → get a ≡ b₁ → get ⁻¹ b₂) →
Is-equivalence (uncurry f)) ↔⟨ (∀-cong ext λ _ →
ΠΣ-comm) ⟩
(∀ b₂ →
∃ λ (f : ∀ b₁ a → get a ≡ b₁ → get ⁻¹ b₂) →
∀ b₁ → Is-equivalence (uncurry (f b₁))) ↝⟨ (∀-cong ext λ _ →
Σ-cong-id Π-comm) ⟩
(∀ b₂ →
∃ λ (f : ∀ a b₁ → get a ≡ b₁ → get ⁻¹ b₂) →
∀ b₁ → Is-equivalence (uncurry (flip f b₁))) ↝⟨ (∀-cong ext λ _ →
Σ-cong (∀-cong ext λ _ → inverse $ ∀-intro {k = equivalence} ext _) λ f →
∀-cong ext λ b₁ →
Is-equivalence-cong {k = equivalence} ext λ (a , eq) →
uncurry (f a) (b₁ , eq) ≡⟨ cong (uncurry (f a)) $ sym $
proj₂ (other-singleton-contractible _) _ ⟩∎
uncurry (f a) (get a , refl _) ∎) ⟩
(∀ b₂ →
∃ λ (f : A → get ⁻¹ b₂) →
∀ b₁ → Is-equivalence (f ∘ proj₁)) ↔⟨ ΠΣ-comm ⟩
(∃ λ (f : (b : B) → A → get ⁻¹ b) →
∀ b₂ b₁ → Is-equivalence (f b₂ ∘ proj₁)) ↝⟨ Σ-cong-refl Π-comm (λ _ → Π-comm) ⟩
(∃ λ (f : A → (b : B) → get ⁻¹ b) →
∀ b₁ b₂ → Is-equivalence ((_$ b₂) ∘ f ∘ proj₁)) ↝⟨ Σ-cong-refl (∀-cong ext λ _ → ΠΣ-comm) (λ _ → Eq.id) ⟩
(∃ λ (f : A → ∃ λ (set : B → A) → (b : B) → get (set b) ≡ b) →
∀ b₁ b₂ → Is-equivalence (Σ-map (_$ b₂) (_$ b₂) ∘ f ∘ proj₁)) ↝⟨ Σ-cong-id ΠΣ-comm ⟩
(∃ λ ((set , get-set) :
∃ λ (set : A → B → A) →
(a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ → Is-equivalence λ (a , _) → set a b₂ , get-set a b₂) ↔⟨ inverse Σ-assoc ⟩□
(∃ λ (set : A → B → A) →
∃ λ (get-set : (a : A) (b : B) → get (set a b) ≡ b) →
∀ b₁ b₂ → Is-equivalence λ (a , _) → set a b₂ , get-set a b₂) □
equiv₂ =
Eq.with-other-function
(inverse equiv₁)
Constant-≃-get-⁻¹-≃⁻¹
(λ (set , get-set , _) → ⟨ext⟩ λ b₁ → ⟨ext⟩ λ b₂ →
Eq.lift-equality ext $ ⟨ext⟩ λ (a , _) →
subst (λ _ → get ⁻¹ b₂) _ (set a b₂ , get-set a b₂) ≡⟨ subst-const _ ⟩∎
(set a b₂ , get-set a b₂) ∎)
equiv₃ : Unit → _ ≃ _
equiv₃ _ ._≃_.to = _≃_.to equiv₂
equiv₃ ⊠ ._≃_.is-equivalence = _≃_.is-equivalence equiv₂
-- Constant-≃-get-⁻¹-≃ computes in a certain way.
_ :
∀ {bl : Block "Constant-≃-get-⁻¹-≃"}
{get : A → B} {set : A → B → A}
{get-set : (a : A) (b : B) → get (set a b) ≡ b}
{eq :
∀ b₁ b₂ →
let f : get ⁻¹ b₁ → get ⁻¹ b₂
f = λ (a , _) → set a b₂ , get-set a b₂
in
Is-equivalence f}
{b₁ b₂} →
_≃_.to (_≃_.from (Constant-≃-get-⁻¹-≃ bl) (set , get-set , eq) b₁ b₂) ≡
(λ (a , _) → set a b₂ , get-set a b₂)
_ = refl _
------------------------------------------------------------------------
-- Coherently-constant
-- Coherently constant type-valued functions.
Coherently-constant :
Univalence p →
{A : Type a} → (A → Type p) → Type (a ⊔ p)
Coherently-constant univ =
Coherently
Constant-≃
(λ P c → O.rec′ P (λ x y → ≃⇒≡ univ (c x y)))
-- Two variants of Coherently-constant are pointwise equivalent
-- (when applicable, assuming univalence).
Coinductive-coherently-constant≃Coherently-constant :
{A : Type a} {P : A → Type p} →
Univalence (a ⊔ lsuc p) →
(univ : Univalence p) →
Coinductive.Coherently-constant P ≃ Coherently-constant univ P
Coinductive-coherently-constant≃Coherently-constant univ′ univ =
Coherently-cong
univ′
(λ _ → Constant≃Constant-≃ univ)
(λ _ _ → refl _)
-- Two variants of Coherently-constant are pointwise equivalent
-- (when applicable, assuming univalence).
Coherently-constant≃Coherently-constant :
{A : Type a} {P : A → Type p} →
Univalence (a ⊔ lsuc p) →
(univ : Univalence p) →
CC.Coherently-constant P ≃ Coherently-constant univ P
Coherently-constant≃Coherently-constant {P = P} univ′ univ =
CC.Coherently-constant P ↝⟨ Coinductive.Coherently-constant≃Coherently-constant univ′ ⟩
Coinductive.Coherently-constant P ↝⟨ Coinductive-coherently-constant≃Coherently-constant univ′ univ ⟩□
Coherently-constant univ P □
-- A map lemma for Coherently-constant.
Coherently-constant-map :
{P : A → Type p} {Q : B → Type q}
(univ₁ : Univalence p) →
(univ₂ : Univalence q) →
(f : B → A) →
(∀ x → P (f x) ≃ Q x) →
Coherently-constant univ₁ P → Coherently-constant univ₂ Q
Coherently-constant-map {P = P} {Q = Q} _ _ f P≃Q c .property x y =
Q x ↝⟨ inverse $ P≃Q x ⟩
P (f x) ↝⟨ c .property (f x) (f y) ⟩
P (f y) ↝⟨ P≃Q y ⟩□
Q y □
Coherently-constant-map {P = P} {Q = Q} univ₁ univ₂ f P≃Q c .coherent =
Coherently-constant-map univ₁ univ₂ (O.∥∥¹-map f)
(O.elim λ where
.O.Elim.∣∣ʳ → P≃Q
.O.Elim.∣∣-constantʳ x y → Eq.lift-equality ext
(_≃_.to (subst (λ z → O.rec′ P g (O.∥∥¹-map f z) ≃
O.rec′ Q h z)
(O.∣∣-constant x y) (P≃Q x)) ≡⟨ Eq.to-subst ⟩
subst (λ z → O.rec′ P g (O.∥∥¹-map f z) → O.rec′ Q h z)
(O.∣∣-constant x y) (_≃_.to (P≃Q x)) ≡⟨ (⟨ext⟩ λ _ → subst-→) ⟩
subst (O.rec′ Q h) (O.∣∣-constant x y) ∘
_≃_.to (P≃Q x) ∘
subst (O.rec′ P g ∘ O.∥∥¹-map f) (sym (O.∣∣-constant x y)) ≡⟨ cong₂ (λ f g → f ∘ _≃_.to (P≃Q x) ∘ g)
(⟨ext⟩ λ q → subst-∘ P.id (O.rec′ Q h) (O.∣∣-constant x y) {p = q})
(⟨ext⟩ λ p →
trans (subst-∘ P.id (O.rec′ P g ∘ O.∥∥¹-map f)
(sym (O.∣∣-constant x y)) {p = p}) $
cong (λ eq → subst P.id eq p) $
trans (cong-sym _ _) $
cong sym $ sym $ cong-∘ _ _ _) ⟩
subst P.id (cong (O.rec′ Q h) (O.∣∣-constant x y)) ∘
_≃_.to (P≃Q x) ∘
subst P.id (sym (cong (O.rec′ P g)
(cong (O.∥∥¹-map f) (O.∣∣-constant x y)))) ≡⟨ cong₂ (λ p q → subst P.id p ∘ _≃_.to (P≃Q x) ∘ subst P.id (sym q))
O.rec-∣∣-constant
(trans (cong (cong (O.rec′ P g)) O.rec-∣∣-constant) $
O.rec-∣∣-constant) ⟩
subst P.id (h x y) ∘
_≃_.to (P≃Q x) ∘
subst P.id (sym (g (f x) (f y))) ≡⟨ cong₂ (λ p q → p ∘ _≃_.to (P≃Q x) ∘ q)
(trans (⟨ext⟩ λ _ → subst-id-in-terms-of-≡⇒↝ equivalence) $
cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ₂) _)
(trans (⟨ext⟩ λ _ → subst-id-in-terms-of-inverse∘≡⇒↝ equivalence) $
cong _≃_.from $ _≃_.right-inverse-of (≡≃≃ univ₁) _) ⟩
_≃_.to (P≃Q y) ∘
_≃_.to (c .property (f x) (f y)) ∘
_≃_.from (P≃Q x) ∘
_≃_.to (P≃Q x) ∘
_≃_.from (c .property (f x) (f y)) ≡⟨ (⟨ext⟩ λ _ → cong (_≃_.to (P≃Q y) ∘ _≃_.to (c .property (f x) (f y))) $
_≃_.left-inverse-of (P≃Q x) _) ⟩
_≃_.to (P≃Q y) ∘
_≃_.to (c .property (f x) (f y)) ∘
_≃_.from (c .property (f x) (f y)) ≡⟨ (⟨ext⟩ λ _ → cong (_≃_.to (P≃Q y)) $
_≃_.right-inverse-of (c .property (f x) (f y)) _) ⟩∎
_≃_.to (P≃Q y) ∎))
(c .coherent)
where
g = λ x y → ≃⇒≡ univ₁ (c .property x y)
h = λ x y → ≃⇒≡ univ₂ ((P≃Q y F.∘ c .property (f x) (f y)) F.∘
inverse (P≃Q x))
private
-- A lemma used below.
elim-Σ-≡,≡→≡-∣∣-constant :
∀ (e : O.Elim (λ x → P x → A)) {x y p} →
let p′ = subst P (O.∣∣-constant x y) p in
cong (uncurry $ O.elim e) (Σ-≡,≡→≡ (O.∣∣-constant x y) (refl p′)) ≡
trans
(O.∣∣ʳ e x p ≡⟨ cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _ ⟩
O.∣∣ʳ e x
(subst P (sym (O.∣∣-constant x y))
(subst P (O.∣∣-constant x y) p)) ≡⟨ sym $ subst-→-domain _ _ ⟩∎
subst (λ x → P x → A) (O.∣∣-constant x y) (O.∣∣ʳ e x)
(subst P (O.∣∣-constant x y) p) ∎)
(cong (_$ p′) (e .O.∣∣-constantʳ x y))
elim-Σ-≡,≡→≡-∣∣-constant {P = P} {A = A} e {x = x} {y = y} {p = p} =
cong (uncurry $ O.elim e)
(Σ-≡,≡→≡ (O.∣∣-constant x y) (refl _)) ≡⟨ elim¹
(λ eq →
cong (uncurry $ O.elim e) (Σ-≡,≡→≡ eq (refl _)) ≡
trans
(trans (cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _)
(sym $ subst-→-domain _ _))
(cong (_$ subst P eq p) (dcong (O.elim e) eq)))
(
cong (uncurry $ O.elim e)
(Σ-≡,≡→≡ (refl ∣ x ∣) (refl _)) ≡⟨ cong (cong (uncurry $ O.elim e)) Σ-≡,≡→≡-refl-refl ⟩
cong (uncurry $ O.elim e)
(cong (∣ x ∣ ,_) (sym (subst-refl _ _))) ≡⟨ cong-∘ _ _ _ ⟩
cong (O.elim e ∣ x ∣) (sym (subst-refl _ _)) ≡⟨⟩
cong (O.∣∣ʳ e x) (sym (subst-refl _ _)) ≡⟨ sym $
trans (cong (flip trans _) $
trans (sym $ trans-assoc _ _ _) $
trans (cong (flip trans _) $
trans-[trans]-sym _ _) $
trans (sym $ trans-assoc _ _ _) $
cong (flip trans _) $
trans-[trans]-sym _ _) $
trans-[trans-sym]- _ _ ⟩
trans
(trans (trans (trans (cong (O.∣∣ʳ e x)
(sym (subst-refl _ _)))
(cong (O.∣∣ʳ e x)
(sym (subst-refl _ _))))
(cong (O.∣∣ʳ e x) $
sym (cong (flip (subst P) _) sym-refl)))
(trans
(sym $
cong (O.∣∣ʳ e x) $
sym (cong (flip (subst P) _) sym-refl))
(trans
(sym $
cong (O.∣∣ʳ e x) (sym (subst-refl _ _)))
(sym $
cong (_$ subst P (refl _) p)
(subst-refl _ _)))))
(cong (_$ subst P (refl _) p) (subst-refl _ _)) ≡⟨ sym $
cong (flip trans _) $
cong₂ trans
(trans (cong (cong (O.∣∣ʳ e x)) $ sym-trans _ _) $
trans (cong-trans _ _ _) $
cong (flip trans _) $
trans (cong (cong (O.∣∣ʳ e x)) $ sym-trans _ _) $
cong-trans _ _ _)
(trans (sym-trans _ _) $
trans (cong (flip trans _) $
trans (sym-trans _ _) $
cong (flip trans _) $ cong sym $
trans (sym $ cong-∘ _ _ _) $
cong (cong (O.∣∣ʳ e x)) $ cong-sym _ _) $
trans-assoc _ _ _) ⟩
trans
(trans (cong (O.∣∣ʳ e x) $ sym $
trans (cong (flip (subst P) _) sym-refl)
(trans (subst-refl _ _)
(subst-refl _ _)))
(sym $
trans (cong (_$ subst P (refl _) p)
(subst-refl _ _))
(trans (cong (O.∣∣ʳ e x)
(sym (subst-refl _ _)))
(cong (O.∣∣ʳ e x ∘ flip (subst P) _)
(sym sym-refl)))))
(cong (_$ subst P (refl _) p) (subst-refl _ _)) ≡⟨ sym $
cong₂ (λ eq₁ eq₂ → trans
(trans (cong (O.∣∣ʳ e x) $ sym eq₁) (sym eq₂))
(cong (_$ subst P (refl _) p) (subst-refl _ _)))
(subst-sym-subst-refl _)
subst-→-domain-refl ⟩
trans
(trans (cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _)
(sym $ subst-→-domain _ _))
(cong (_$ subst P (refl _) p) (subst-refl _ _)) ≡⟨ cong (trans _) $ cong (cong _) $ sym $
dcong-refl _ ⟩∎
trans
(trans (cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _)
(sym $ subst-→-domain _ _))
(cong (_$ subst P (refl _) p)
(dcong (O.elim e) (refl _))) ∎)
_ ⟩
trans
(trans (cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _)
(sym $ subst-→-domain _ _))
(cong (_$ subst P (O.∣∣-constant x y) p)
(dcong (O.elim e) (O.∣∣-constant x y))) ≡⟨ cong (trans _) $ cong (cong _)
O.elim-∣∣-constant ⟩∎
trans
(trans (cong (O.∣∣ʳ e x) $ sym $ subst-sym-subst _)
(sym $ subst-→-domain _ _))
(cong (_$ subst P (O.∣∣-constant x y) p)
(e .O.∣∣-constantʳ x y)) ∎
-- Coherently-constant is, in a certain sense, closed under Σ.
--
-- This lemma is based on a lemma due to Paolo Capriotti (see
-- Capriotti.Coherently-constant-Σ).
--
-- TODO: Can the ".coherent" clause be simplified?
Coherently-constant-Σ :
{P : A → Type p} {Q : ∃ P → Type q}
(univ₁ : Univalence p)
(univ₂ : Univalence q)
(univ₃ : Univalence (p ⊔ q)) →
Coherently-constant univ₁ P →
Coherently-constant univ₂ Q →
Coherently-constant univ₃ (λ x → ∃ λ (y : P x) → Q (x , y))
Coherently-constant-Σ {p = p} {q = q} univ₁ univ₂ univ₃ =
Coherently-constant-Σ′ (λ _ → F.id)
where
Coherently-constant-Σ′ :
{P : A → Type p} {Q : ∃ P → Type q} {R : A → Type (p ⊔ q)} →
(∀ x → R x ≃ ∃ λ (p : P x) → Q (x , p)) →
Coherently-constant univ₁ P →
Coherently-constant univ₂ Q →
Coherently-constant univ₃ R
Coherently-constant-Σ′
{P = P} {Q = Q} {R = R} R≃ c₁ c₂ .property x y =
R x ↝⟨ R≃ _ ⟩
(∃ λ (p : P x) → Q (x , p)) ↝⟨ (Σ-cong (c₁ .property _ _) λ _ → c₂ .property _ _) ⟩
(∃ λ (p : P y) → Q (y , p)) ↝⟨ inverse $ R≃ _ ⟩□
R y □
Coherently-constant-Σ′ {P = P} {Q = Q} {R = R} R≃ c₁ c₂ .coherent =
Coherently-constant-Σ′
{P = P′}
{Q = Q′}
(O.elim λ where
.O.Elim.∣∣ʳ → R≃
.O.Elim.∣∣-constantʳ x y → Eq.lift-equality ext $ ⟨ext⟩ λ r →
let
p′ , q′ = _≃_.from (Σ-cong (c₁ .property _ _) λ p →
c₂ .property (_ , p) _)
(_≃_.to (R≃ y) r)
lemma₁ =
subst P′ (O.∣∣-constant x y) p′ ≡⟨ subst-∘ _ _ _ ⟩
subst P.id (cong P′ (O.∣∣-constant x y)) p′ ≡⟨ cong (λ eq → subst P.id eq _) O.rec-∣∣-constant ⟩
subst P.id (≃⇒≡ univ₁ (c₁ .property x y)) p′ ≡⟨ subst-id-in-terms-of-≡⇒↝ equivalence ⟩
≡⇒→ (≃⇒≡ univ₁ (c₁ .property x y)) p′ ≡⟨ cong (λ eq → _≃_.to eq p′) $ _≃_.right-inverse-of (≡≃≃ univ₁) _ ⟩∎
_≃_.to (c₁ .property x y) p′ ∎
lemma₂ =
subst (λ p → Q (y , p)) lemma₁
(subst Q′ (Σ-≡,≡→≡ (O.∣∣-constant x y) (refl _)) q′) ≡⟨ cong (subst (λ p → Q (y , p)) lemma₁) $
subst-∘ _ _ _ ⟩
subst (λ p → Q (y , p)) lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
(cong f (Σ-≡,≡→≡ (O.∣∣-constant x y) (refl _))) q′) ≡⟨ cong (λ eq →
subst (λ p → Q (y , p)) lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
eq q′)) $
elim-Σ-≡,≡→≡-∣∣-constant e ⟩
subst (λ p → Q (y , p)) lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
(trans
(trans (cong (λ p → ∣ x , p ∣)
(sym (subst-sym-subst _)))
(sym (subst-→-domain _ _)))
(cong (_$ subst P′ (O.∣∣-constant x y) p′)
(⟨ext⟩ λ p →
trans (subst-→-domain _ _)
(O.∣∣-constant _ (_ , p)))))
q′) ≡⟨ cong (λ eq →
subst (λ p → Q (y , p))
lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
(trans
(trans (cong (λ p → ∣ x , p ∣)
(sym (subst-sym-subst _)))
(sym $ subst-→-domain _ _))
eq)
q′)) $
cong-ext
(λ p → trans (subst-→-domain P′ {f = λ p → ∣ x , p ∣}
(O.∣∣-constant x y))
(O.∣∣-constant _ (_ , p))) ⟩
subst (λ p → Q (y , p)) lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
(trans
(trans (cong (λ p → ∣ x , p ∣)
(sym (subst-sym-subst _)))
(sym (subst-→-domain _ _)))
(trans (subst-→-domain _ _)
(O.∣∣-constant _ _)))
q′) ≡⟨ cong (λ eq → subst (λ p → Q (y , p))
lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
eq q′)) $
trans (trans-assoc _ _ _) $
cong (trans (cong (λ p → ∣ x , p ∣) $ sym $ subst-sym-subst _)) $
trans-sym-[trans] _ (O.∣∣-constant _ _) ⟩
subst (λ p → Q (y , p)) lemma₁
(subst (O.rec′ Q λ x y → ≃⇒≡ univ₂ (c₂ .property x y))
(trans (cong (λ p → ∣ x , p ∣)
(sym (subst-sym-subst _)))
(O.∣∣-constant _ _))
q′) ≡⟨ cong (λ q → subst (λ p → Q (y , p)) lemma₁ q) $
trans (subst-∘ _ _ _) $
cong (λ eq → subst P.id eq q′) $
trans (cong-trans _ _ _) $
cong₂ trans
(cong-∘ _ _ _)
O.rec-∣∣-constant ⟩
subst (λ p → Q (y , p)) lemma₁
(subst P.id
(trans
(cong (λ p → Q (x , p))
(sym (subst-sym-subst _)))
(≃⇒≡ univ₂ (c₂ .property _ _)))
q′) ≡⟨ cong (subst (λ p → Q (y , p)) lemma₁) $
trans (subst-id-in-terms-of-≡⇒↝ equivalence) $
trans (cong (_$ q′) $ ≡⇒↝-trans equivalence) $
trans (cong (λ eq → _≃_.to eq (≡⇒→ (cong (λ p → Q (x , p))
(sym (subst-sym-subst _)))
q′)) $
_≃_.right-inverse-of (≡≃≃ univ₂) _) $
cong (_≃_.to (c₂ .property _ _)) $ sym $
subst-in-terms-of-≡⇒↝ equivalence _ _ _ ⟩
subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property _ _) $
subst (λ p → Q (x , p)) (sym (subst-sym-subst _)) q′) ≡⟨⟩
subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property
(x , subst P′ (sym (O.∣∣-constant x y))
(subst P′ (O.∣∣-constant x y) p′))
(y , subst P′ (O.∣∣-constant x y) p′)) $
subst (λ p → Q (x , p)) (sym (subst-sym-subst _)) q′) ≡⟨ elim¹
(λ {p″} eq →
subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property (x , p″)
(y , subst P′ (O.∣∣-constant x y) p′)) $
subst (λ p → Q (x , p)) eq q′) ≡
subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property (x , p′)
(y , subst P′ (O.∣∣-constant x y) p′)) q′))
(cong (λ q → subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property _ _) q)) $
subst-refl _ _)
_ ⟩
subst (λ p → Q (y , p)) lemma₁
(_≃_.to (c₂ .property
(x , p′)
(y , subst P′ (O.∣∣-constant x y) p′)) q′) ≡⟨ elim₁
(λ {p″} eq →
subst (λ p → Q (y , p)) eq
(_≃_.to (c₂ .property (x , p′) (y , p″)) q′) ≡
_≃_.to (c₂ .property _ _) q′)
(subst-refl _ _)
_ ⟩∎
_≃_.to (c₂ .property
(x , p′)
(y , _≃_.to (c₁ .property x y) p′)) q′ ∎
in
_≃_.to (subst (λ x →
O.rec′ R (λ x y → ≃⇒≡ univ₃ (pr x y)) x ≃
∃ λ (p : P′ x) → Q′ (x , p))
(O.∣∣-constant x y) (R≃ x))
r ≡⟨ cong (_$ r) Eq.to-subst ⟩
subst (λ x → O.rec′ R (λ x y → ≃⇒≡ univ₃ (pr x y)) x →
∃ λ (p : P′ x) → Q′ (x , p))
(O.∣∣-constant x y) (_≃_.to (R≃ x)) r ≡⟨ subst-→ ⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(_≃_.to (R≃ x)
(subst (O.rec′ R (λ x y → ≃⇒≡ univ₃ (pr x y)))
(sym (O.∣∣-constant x y)) r)) ≡⟨ cong (subst (λ x → ∃ λ p → Q′ (x , p)) (O.∣∣-constant x y)) $
cong (_≃_.to (R≃ x)) $
trans (subst-∘ _ _ _) $
cong (flip (subst P.id) r) $
trans (cong-sym _ _) $
cong sym O.rec-∣∣-constant ⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(_≃_.to (R≃ x) (subst P.id (sym (≃⇒≡ univ₃ (pr x y))) r)) ≡⟨ cong (subst (λ x → ∃ λ p → Q′ (x , p)) (O.∣∣-constant x y)) $
cong (_≃_.to (R≃ x)) $
trans (subst-id-in-terms-of-inverse∘≡⇒↝ equivalence) $
cong (λ eq → _≃_.from eq r) $ _≃_.right-inverse-of (≡≃≃ univ₃) _ ⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(_≃_.to (R≃ x) (_≃_.from (pr x y) r)) ≡⟨⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(_≃_.to (R≃ x) $ _≃_.from (R≃ x) $
_≃_.from (Σ-cong (c₁ .property _ _) λ _ →
c₂ .property _ _) $
_≃_.to (R≃ y) r) ≡⟨⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(_≃_.to (R≃ x) (_≃_.from (R≃ x) (p′ , q′))) ≡⟨ cong (subst (λ x → ∃ λ p → Q′ (x , p)) (O.∣∣-constant x y)) $
_≃_.right-inverse-of (R≃ x) _ ⟩
subst (λ x → ∃ λ (p : P′ x) → Q′ (x , p)) (O.∣∣-constant x y)
(p′ , q′) ≡⟨ push-subst-pair _ _ ⟩
subst P′ (O.∣∣-constant x y) p′ ,
subst Q′ (Σ-≡,≡→≡ (O.∣∣-constant x y) (refl _)) q′ ≡⟨ Σ-≡,≡→≡ lemma₁ lemma₂ ⟩
_≃_.to (c₁ .property _ _) p′ ,
_≃_.to (c₂ .property _ _) q′ ≡⟨⟩
_≃_.to (Σ-cong (c₁ .property _ _) λ p →
c₂ .property (x , p) _)
(_≃_.from (Σ-cong (c₁ .property _ _) λ _ →
c₂ .property _ _)
(_≃_.to (R≃ y) r)) ≡⟨ _≃_.right-inverse-of
(Σ-cong (c₁ .property _ _) λ p →
c₂ .property (_ , p) _)
_ ⟩∎
_≃_.to (R≃ y) r ∎)
(c₁ .coherent)
(Coherently-constant-map
univ₂ univ₂ f (λ _ → F.id)
(c₂ .coherent))
where
mutual
P′ = O.rec′ P (λ x y → ≃⇒≡ univ₁ (c₁ .property x y))
Q′ = O.rec′ Q (λ x y → ≃⇒≡ univ₂ (c₂ .property x y)) ∘ f
e = λ where
.O.Elim.∣∣ʳ x p → ∣ x , p ∣
.O.Elim.∣∣-constantʳ x y → ⟨ext⟩ λ p →
subst (λ x → P′ x → ∥ ∃ P ∥¹) (O.∣∣-constant x y)
(λ p → ∣ x , p ∣) p ≡⟨ subst-→-domain _ _ ⟩
∣ x , subst P′ (sym (O.∣∣-constant x y)) p ∣ ≡⟨ O.∣∣-constant _ _ ⟩∎
∣ y , p ∣ ∎
f = uncurry $ O.elim e
pr : ∀ _ _ → _
pr x y =
(inverse (R≃ y) F.∘
(Σ-cong (c₁ .property _ _) λ _ → c₂ .property _ _)) F.∘
R≃ x
private
-- A unit test that ensures that Coherently-constant-Σ satisfies a
-- certain definitional equality.
_ :
∀ {P : A → Type p} {Q : ∃ P → Type q}
{univ₁ : Univalence p}
{univ₂ : Univalence q}
{univ₃ : Univalence (p ⊔ q)}
{c₁ : Coherently-constant univ₁ P}
{c₂ : Coherently-constant univ₂ Q}
{x y} →
_≃_.to (Coherently-constant-Σ
univ₁ univ₂ univ₃ c₁ c₂ .property x y) ≡
Σ-map (_≃_.to (c₁ .property _ _)) (_≃_.to (c₂ .property _ _))
_ = refl _
-- A different proof of Coherently-constant-Σ, with three extra
-- univalence assumptions.
--
-- This proof does not, at the time of writing, satisfy the
-- definitional equality above (rephrased in an obvious way).
Coherently-constant-Σ′ :
{A : Type a} {P : A → Type p} {Q : ∃ P → Type q}
(univ₁ : Univalence p)
(univ₂ : Univalence q)
(univ₃ : Univalence (p ⊔ q)) →
Univalence (a ⊔ lsuc p) →
Univalence (a ⊔ p ⊔ lsuc q) →
Univalence (a ⊔ lsuc (p ⊔ q)) →
Coherently-constant univ₁ P →
Coherently-constant univ₂ Q →
Coherently-constant univ₃ (λ x → ∃ λ (y : P x) → Q (x , y))
Coherently-constant-Σ′ {P = P} {Q = Q}
univ₁ univ₂ univ₃ univ₄ univ₅ univ₆ =
curry
(Coherently-constant univ₁ P × Coherently-constant univ₂ Q ↔⟨ inverse
(Coherently-constant≃Coherently-constant univ₄ univ₁ ×-cong
Coherently-constant≃Coherently-constant univ₅ univ₂) ⟩
CC.Coherently-constant P × CC.Coherently-constant Q ↝⟨ uncurry Capriotti.Coherently-constant-Σ ⟩
CC.Coherently-constant (λ x → ∃ λ (y : P x) → Q (x , y)) ↔⟨ Coherently-constant≃Coherently-constant univ₆ univ₃ ⟩□
Coherently-constant univ₃ (λ x → ∃ λ (y : P x) → Q (x , y)) □)
------------------------------------------------------------------------
-- The lens type family
-- Small coinductive lenses, based on an idea due to Paolo Capriotti.
--
-- The lenses are defined as a record type to make it easier for Agda
-- to infer the argument univ from a value of type Lens univ A B.
record Lens (univ : Univalence (a ⊔ b)) (A : Type a) (B : Type b) :
Type (a ⊔ b) where
field
-- A getter.
get : A → B
-- The family of fibres of the getter is coherently constant.
get⁻¹-coherently-constant : Coherently-constant univ (get ⁻¹_)
-- All the getter's fibres are equivalent.
get⁻¹-constant : (b₁ b₂ : B) → get ⁻¹ b₁ ≃ get ⁻¹ b₂
get⁻¹-constant = get⁻¹-coherently-constant .property
-- A setter.
set : A → B → A
set a b = $⟨ _≃_.to (get⁻¹-constant (get a) b) ⟩
(get ⁻¹ get a → get ⁻¹ b) ↝⟨ _$ (a , refl _) ⟩
get ⁻¹ b ↝⟨ proj₁ ⟩□
A □
-- The setter could have been defined using Constant-≃-get-⁻¹-≃.
set≡ :
∀ bl →
set ≡ proj₁ (_≃_.to (Constant-≃-get-⁻¹-≃ bl) get⁻¹-constant)
set≡ ⊠ = refl _
instance
-- The lenses defined above have getters and setters.
has-getter-and-setter :
{univ : Univalence (a ⊔ b)} →
Has-getter-and-setter (Lens {a = a} {b = b} univ)
has-getter-and-setter = record
{ get = Lens.get
; set = Lens.set
}
-- Lens can be expressed as a Σ-type.
Lens-as-Σ :
{A : Type a} {B : Type b} {univ : Univalence (a ⊔ b)} →
Lens univ A B ≃
(∃ λ (get : A → B) → Coherently-constant univ (get ⁻¹_))
Lens-as-Σ = Eq.↔→≃
(λ l → Lens.get l , Lens.get⁻¹-coherently-constant l)
(λ (g , c) → record { get = g; get⁻¹-coherently-constant = c })
refl
refl
-- Lens is pointwise equivalent to Coinductive.Lens (assuming
-- univalence).
Coinductive-lens≃Lens :
Block "Coinductive-lens≃Lens" →
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
Coinductive.Lens A B ≃ Lens univ A B
Coinductive-lens≃Lens ⊠ {A = A} {B = B} univ₁ univ₂ =
Coinductive.Lens A B ↔⟨⟩
(∃ λ (get : A → B) → Coinductive.Coherently-constant (get ⁻¹_)) ↝⟨ (∃-cong λ _ →
Coinductive-coherently-constant≃Coherently-constant univ₁ univ₂) ⟩
(∃ λ (get : A → B) → Coherently-constant univ₂ (get ⁻¹_)) ↝⟨ inverse Lens-as-Σ ⟩□
Lens univ₂ A B □
-- The equivalence preserves getters and setters.
Coinductive-lens≃Lens-preserves-getters-and-setters :
(bl : Block "Coinductive-lens≃Lens")
{A : Type a} {B : Type b}
(univ₁ : Univalence (lsuc (a ⊔ b)))
(univ₂ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence (Coinductive-lens≃Lens bl univ₁ univ₂))
Coinductive-lens≃Lens-preserves-getters-and-setters ⊠ univ₁ univ₂ =
Preserves-getters-and-setters-→-↠-⇔
(_≃_.surjection (Coinductive-lens≃Lens ⊠ univ₁ univ₂))
(λ _ → refl _ , refl _)
private
-- A lemma used to implement Higher-lens≃Lens and
-- Higher-lens≃Lens-preserves-getters-and-setters.
Higher-lens≃Lens′ :
Block "Higher-lens≃Lens" →
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
∃ λ (eq : Higher.Lens A B ≃ Lens univ A B) →
Preserves-getters-and-setters-⇔ A B (_≃_.logical-equivalence eq)
Higher-lens≃Lens′ ⊠ {A = A} {B = B} univ₁ univ₂ =
block λ b →
(Higher.Lens A B ↝⟨ inverse $ Capriotti.Lens≃Higher-lens b univ₂ ⟩
Capriotti.Lens A B ↝⟨ Coinductive.Higher-lens≃Lens b univ₁ ⟩
Coinductive.Lens A B ↝⟨ Coinductive-lens≃Lens b univ₁ univ₂ ⟩□
Lens univ₂ A B □)
, Preserves-getters-and-setters-⇔-∘
{f = _≃_.logical-equivalence
(Coinductive-lens≃Lens b univ₁ univ₂) F.∘
_≃_.logical-equivalence
(Coinductive.Higher-lens≃Lens b univ₁)}
{g = inverse $ _≃_.logical-equivalence $
Capriotti.Lens≃Higher-lens b univ₂}
(Preserves-getters-and-setters-⇔-∘
{f = _≃_.logical-equivalence
(Coinductive-lens≃Lens b univ₁ univ₂)}
{g = _≃_.logical-equivalence
(Coinductive.Higher-lens≃Lens b univ₁)}
(Coinductive-lens≃Lens-preserves-getters-and-setters
b univ₁ univ₂)
(Coinductive.Higher-lens≃Lens-preserves-getters-and-setters
b univ₁))
(Preserves-getters-and-setters-⇔-inverse
{f = _≃_.logical-equivalence
(Capriotti.Lens≃Higher-lens b univ₂)} $
Capriotti.Lens≃Higher-lens-preserves-getters-and-setters
b univ₂)
-- Lens is pointwise equivalent to Higher.Lens (assuming univalence).
Higher-lens≃Lens :
Block "Higher-lens≃Lens" →
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
Higher.Lens A B ≃ Lens univ A B
Higher-lens≃Lens b univ₁ univ₂ =
proj₁ $ Higher-lens≃Lens′ b univ₁ univ₂
-- The equivalence preserves getters and setters.
Higher-lens≃Lens-preserves-getters-and-setters :
(bl : Block "Higher-lens≃Lens")
{A : Type a} {B : Type b}
(univ₁ : Univalence (lsuc (a ⊔ b)))
(univ₂ : Univalence (a ⊔ b)) →
Preserves-getters-and-setters-⇔ A B
(_≃_.logical-equivalence (Higher-lens≃Lens bl univ₁ univ₂))
Higher-lens≃Lens-preserves-getters-and-setters b univ₁ univ₂ =
proj₂ $ Higher-lens≃Lens′ b univ₁ univ₂
-- Lenses with stable view types are equal if their setters are equal
-- (assuming univalence).
lenses-equal-if-setters-equal :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
(l₁ l₂ : Lens univ A B) →
(∥ B ∥ → B) →
Lens.set l₁ ≡ Lens.set l₂ →
l₁ ≡ l₂
lenses-equal-if-setters-equal univ′ univ l₁ l₂ stable =
block λ bl →
let equiv = Higher-lens≃Lens bl univ′ univ in
Lens.set l₁ ≡ Lens.set l₂ ↔⟨ ≡⇒≃ $ sym $ cong₂ _≡_
(proj₂ $ proj₂ (Higher-lens≃Lens-preserves-getters-and-setters bl univ′ univ) l₁)
(proj₂ $ proj₂ (Higher-lens≃Lens-preserves-getters-and-setters bl univ′ univ) l₂) ⟩
Higher.Lens.set (_≃_.from equiv l₁) ≡
Higher.Lens.set (_≃_.from equiv l₂) ↝⟨ Higher.lenses-equal-if-setters-equal univ _ _ (λ _ → stable) ⟩
_≃_.from equiv l₁ ≡ _≃_.from equiv l₂ ↔⟨ Eq.≃-≡ (inverse equiv) ⟩□
l₁ ≡ l₂ □
------------------------------------------------------------------------
-- Identity
-- An identity lens.
id :
{A : Type a}
(univ : Univalence a) →
Lens univ A A
id univ .Lens.get = P.id
id univ .Lens.get⁻¹-coherently-constant =
coherently-constant λ x →
$⟨ Preimage.id⁻¹-contractible x ⟩
Contractible (P.id ⁻¹ x) ↝⟨ Eq.↔⇒≃ ∘ _⇔_.to contractible⇔↔⊤ ⟩□
P.id ⁻¹ x ≃ ⊤ □
where
coherently-constant :
(∀ x → P x ≃ ⊤) →
Coherently-constant univ P
coherently-constant {P = P} P≃⊤ .property x y =
P x ↝⟨ P≃⊤ x ⟩
⊤ ↝⟨ inverse $ P≃⊤ y ⟩□
P y □
coherently-constant P≃⊤ .coherent =
coherently-constant
(O.elim λ where
.O.Elim.∣∣ʳ → P≃⊤
.O.Elim.∣∣-constantʳ _ _ →
Eq.lift-equality ext $ refl (λ _ → tt))
------------------------------------------------------------------------
-- Composition
-- Composition.
--
-- Paolo Capriotti came up with the idea to use Coherently-constant-Σ.
-- At first we had a problem related to universe levels. Andrea
-- Vezzosi came up with a first workaround (involving lifting), and
-- later I found a more direct solution.
infix 9 ⟨_,_⟩_∘_
⟨_,_⟩_∘_ :
{A : Type a} {B : Type b} {C : Type c}
{univ₁ : Univalence (b ⊔ c)}
{univ₂ : Univalence (a ⊔ b)}
(univ₃ : Univalence (a ⊔ c)) →
Univalence (a ⊔ b ⊔ c) →
Lens univ₁ B C → Lens univ₂ A B → Lens univ₃ A C
(⟨ _ , _ ⟩ l₁ ∘ l₂) .Lens.get = get l₁ ∘ get l₂
where
open Lens
⟨_,_⟩_∘_ {b = ℓb} {univ₁ = univ₁} {univ₂ = univ₂} univ₃ univ₄ l₁ l₂
.Lens.get⁻¹-coherently-constant =
$⟨ Coherently-constant-Σ
{P = get l₁ ⁻¹_}
{Q = λ (_ , b , _) → get l₂ ⁻¹ b}
univ₁ univ₂ univ₄
(get⁻¹-coherently-constant l₁)
(Coherently-constant-map univ₂ univ₂
(proj₁ ∘ proj₂) (λ _ → F.id)
(get⁻¹-coherently-constant l₂)) ⟩
Coherently-constant univ₄
(λ c → ∃ λ ((b , _) : get l₁ ⁻¹ c) → get l₂ ⁻¹ b) ↝⟨ Coherently-constant-map univ₄ univ₃ P.id
(λ _ → inverse $ ∘⁻¹≃ (get l₁) (get l₂)) ⟩□
Coherently-constant univ₃ ((get l₁ ∘ get l₂) ⁻¹_) □
where
open Lens
-- The setter of a lens formed using composition is defined in the
-- "right" way.
set-∘ :
∀ {A : Type a} {B : Type b} {C : Type c}
{univ₁ : Univalence (b ⊔ c)}
{univ₂ : Univalence (a ⊔ b)}
(univ₃ : Univalence (a ⊔ c))
(univ₄ : Univalence (a ⊔ b ⊔ c))
(l₁ : Lens univ₁ B C) (l₂ : Lens univ₂ A B) {a c} →
Lens.set (⟨ univ₃ , univ₄ ⟩ l₁ ∘ l₂) a c ≡
Lens.set l₂ a (Lens.set l₁ (Lens.get l₂ a) c)
set-∘ _ _ _ _ = refl _
-- Composition is associative if the view type of the resulting lens
-- is stable (assuming univalence).
associativity :
{A : Type a} {B : Type b} {C : Type c} {D : Type d} →
(∥ D ∥ → D) →
(univ₁ : Univalence (c ⊔ d))
(univ₂ : Univalence (b ⊔ c))
(univ₃ : Univalence (a ⊔ b))
(univ₄ : Univalence (a ⊔ d))
(univ₅ : Univalence (a ⊔ c ⊔ d))
(univ₆ : Univalence (a ⊔ c))
(univ₇ : Univalence (a ⊔ b ⊔ c))
(univ₈ : Univalence (a ⊔ b ⊔ d))
(univ₉ : Univalence (b ⊔ d))
(univ₁₀ : Univalence (b ⊔ c ⊔ d)) →
Univalence (lsuc (a ⊔ d)) →
(l₁ : Lens univ₁ C D) (l₂ : Lens univ₂ B C) (l₃ : Lens univ₃ A B) →
⟨ univ₄ , univ₅ ⟩ l₁ ∘ (⟨ univ₆ , univ₇ ⟩ l₂ ∘ l₃) ≡
⟨ univ₄ , univ₈ ⟩ (⟨ univ₉ , univ₁₀ ⟩ l₁ ∘ l₂) ∘ l₃
associativity stable _ _ _ univ₄ _ _ _ _ _ _ univ₁₁ l₁ l₂ l₃ =
lenses-equal-if-setters-equal
univ₁₁
univ₄
_
_
stable
(refl _)
-- The identity lens is a left identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).
left-identity :
{A : Type a} {B : Type b} →
(∥ B ∥ → B) →
(univ₁ : Univalence (a ⊔ b))
(univ₂ : Univalence (a ⊔ b))
(univ₃ : Univalence b) →
Univalence (lsuc (a ⊔ b)) →
(l : Lens univ₁ A B) →
⟨ univ₁ , univ₂ ⟩ id univ₃ ∘ l ≡ l
left-identity stable univ₁ univ₂ univ₃ univ₄ l =
lenses-equal-if-setters-equal
univ₄
univ₁
_
_
stable
(refl _)
-- The identity lens is a right identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).
right-identity :
{A : Type a} {B : Type b} →
(∥ B ∥ → B) →
(univ₁ : Univalence (a ⊔ b))
(univ₂ : Univalence (a ⊔ b))
(univ₃ : Univalence a) →
Univalence (lsuc (a ⊔ b)) →
(l : Lens univ₁ A B) →
⟨ univ₁ , univ₂ ⟩ l ∘ id univ₃ ≡ l
right-identity stable univ₁ univ₂ univ₃ univ₄ l =
lenses-equal-if-setters-equal
univ₄
univ₁
_
_
stable
(refl _)
-- The definitions in the following module use seven instances of
-- univalence.
module _
{A : Type a} {B : Type b} {C : Type c}
(univ₁ : Univalence (b ⊔ c))
(univ₂ : Univalence (lsuc (b ⊔ c)))
(univ₃ : Univalence (a ⊔ b))
(univ₄ : Univalence (lsuc (a ⊔ b)))
(univ₅ : Univalence (a ⊔ c))
(univ₆ : Univalence (lsuc (a ⊔ c)))
(univ₇ : Univalence (a ⊔ b ⊔ c))
where
-- An unrestricted composition operator for Higher.Lens (defined using
-- univalence).
infix 9 ⟨_,_,_,_,_,_,_,_⟩_⊚_
⟨_,_,_,_,_,_,_,_⟩_⊚_ :
Block "Higher-lens≃Lens" →
Higher.Lens B C → Higher.Lens A B → Higher.Lens A C
⟨_,_,_,_,_,_,_,_⟩_⊚_ b l₁ l₂ =
_≃_.from (Higher-lens≃Lens b univ₆ univ₅)
(⟨ univ₅ , univ₇ ⟩
_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁ ∘
_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂)
-- The setter of a lens formed using composition is defined in the
-- "right" way.
set-⊚ :
(b : Block "Higher-lens≃Lens") →
∀ (l₁ : Higher.Lens B C) (l₂ : Higher.Lens A B) a c →
Higher.Lens.set (⟨_,_,_,_,_,_,_,_⟩_⊚_ b l₁ l₂) a c ≡
Higher.Lens.set l₂ a (Higher.Lens.set l₁ (Higher.Lens.get l₂ a) c)
set-⊚ b l₁ l₂ a c =
Higher.Lens.set
(_≃_.from (Higher-lens≃Lens b univ₆ univ₅)
(⟨ univ₅ , univ₇ ⟩
_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁ ∘
_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂))
a c ≡⟨ cong (λ f → f a c) $
proj₂ $
proj₂ (Higher-lens≃Lens-preserves-getters-and-setters b univ₆ univ₅)
(⟨ univ₅ , univ₇ ⟩
_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁ ∘
_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂) ⟩
Lens.set
(⟨ univ₅ , univ₇ ⟩
_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁ ∘
_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂)
a c ≡⟨⟩
Lens.set (_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂)
a
(Lens.set (_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁)
(Lens.get (_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂) a) c) ≡⟨ cong (λ f →
f a (Lens.set (_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁)
(Lens.get (_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂) a)
c)) $
proj₂ $
proj₁ (Higher-lens≃Lens-preserves-getters-and-setters b univ₄ univ₃) l₂ ⟩
Higher.Lens.set l₂
a
(Lens.set (_≃_.to (Higher-lens≃Lens b univ₂ univ₁) l₁)
(Lens.get (_≃_.to (Higher-lens≃Lens b univ₄ univ₃) l₂) a) c) ≡⟨ cong (Higher.Lens.set l₂ a) $
cong₂ (λ f g → f (g a) c)
(proj₂ $
proj₁ (Higher-lens≃Lens-preserves-getters-and-setters b univ₂ univ₁)
l₁)
(proj₁ $
proj₁ (Higher-lens≃Lens-preserves-getters-and-setters b univ₄ univ₃)
l₂) ⟩∎
Higher.Lens.set l₂ a (Higher.Lens.set l₁ (Higher.Lens.get l₂ a) c) ∎
-- If the view type of the resulting lens is stable, then the
-- definition of composition above matches the one in higher (when
-- applicable).
⊚≡∘ :
(bl : Block "Higher-lens≃Lens") →
∀ a b {A : Type (a ⊔ b ⊔ c)} {B : Type (b ⊔ c)} {C : Type c}
(univ₁ : Univalence (b ⊔ c))
(univ₂ : Univalence (lsuc (b ⊔ c)))
(univ₃ : Univalence (a ⊔ b ⊔ c))
(univ₄ : Univalence (lsuc (a ⊔ b ⊔ c)))
(univ₅ : Univalence (a ⊔ b ⊔ c))
(univ₆ : Univalence (lsuc (a ⊔ b ⊔ c)))
(univ₇ : Univalence (a ⊔ b ⊔ c))
(l₁ : Higher.Lens B C) (l₂ : Higher.Lens A B) →
(∥ C ∥ → C) →
⟨ univ₁ , univ₂ , univ₃ , univ₄ , univ₅ , univ₆ , univ₇ , bl ⟩
l₁ ⊚ l₂ ≡
HC.⟨ a , b ⟩ l₁ ∘ l₂
⊚≡∘ bl a b univ₁ univ₂ univ₃ univ₄ univ₅ univ₆ univ₇ l₁ l₂ stable =
cong (λ f → f l₁ l₂) $
HC.composition≡∘ a b univ₇ stable
⟨ univ₁ , univ₂ , univ₃ , univ₄ , univ₅ , univ₆ , univ₇ , bl ⟩_⊚_
(set-⊚ univ₁ univ₂ univ₃ univ₄ univ₅ univ₆ univ₇ bl)
------------------------------------------------------------------------
-- An alternative definition that does not make use of coinduction
-- A variant of Lens.
--
-- This definition does not make use of coinduction, but it is not
-- small.
Not-coinductive-lens :
Univalence (a ⊔ b) → Type a → Type b → Type (lsuc (a ⊔ b))
Not-coinductive-lens univ A B =
∃ λ (get : A → B) →
NC.Coherently
Constant-≃
(λ P c → O.rec′ P (λ x y → ≃⇒≡ univ (c x y)))
(get ⁻¹_)
-- Not-coinductive-lens is pointwise equivalent to Lens (assuming
-- univalence).
Not-coinductive-lens≃Lens :
{univ : Univalence (a ⊔ b)} {A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
Not-coinductive-lens univ A B ≃ Lens univ A B
Not-coinductive-lens≃Lens {univ = univ} {A = A} {B = B} univ′ =
Not-coinductive-lens univ A B ↝⟨ (∃-cong λ _ → inverse $ Coherently≃Not-coinductive-coherently univ′ univ′) ⟩
(∃ λ (get : A → B) → Coherently-constant univ (get ⁻¹_)) ↝⟨ inverse Lens-as-Σ ⟩□
Lens univ A B □
------------------------------------------------------------------------
-- H-levels
-- If P has h-level n (pointwise), then Coherently-constant univ P has
-- h-level n (assuming univalence).
--
-- I think that Paolo Capriotti suggested that something like this
-- could be proved by using the result (due to Ahrens, Capriotti and
-- Spadotti, see "Non-wellfounded trees in Homotopy Type Theory") that
-- M-types for indexed containers have h-level n if all shapes have
-- h-level n.
H-level-Coherently-constant :
{A : Type a} {P : A → Type p} →
Univalence (lsuc (a ⊔ p)) →
(univ : Univalence p) →
((a : A) → H-level n (P a)) →
H-level n (Coherently-constant univ P)
H-level-Coherently-constant {a = a} {p = p} {n = n} univ _ h =
H-level-Coherently-→Type univ univ h lemma P.id
where
lemma :
{A : Type a} {P : A → Type p} →
((a : A) → H-level n (P a)) →
H-level n (Constant-≃ P)
lemma h =
Π-closure ext n λ _ →
Π-closure ext n λ _ →
Eq.h-level-closure ext n (h _) (h _)
-- If P has h-level n (pointwise), then
-- Coinductive.Coherently-constant P has h-level n (assuming
-- univalence).
H-level-Coinductive-Coherently-constant :
{A : Type a} {P : A → Type p} →
Univalence (lsuc (a ⊔ p)) →
Univalence (a ⊔ lsuc p) →
Univalence p →
((a : A) → H-level n (P a)) →
H-level n (Coinductive.Coherently-constant P)
H-level-Coinductive-Coherently-constant {n = n} {P = P} univ₁ univ₂ univ₃ =
(∀ a → H-level n (P a)) ↝⟨ H-level-Coherently-constant univ₁ univ₃ ⟩
H-level n (Coherently-constant univ₃ P) ↝⟨ H-level-cong _ n (inverse $ Coinductive-coherently-constant≃Coherently-constant univ₂ univ₃) ⟩□
H-level n (Coinductive.Coherently-constant P) □
-- If A and B have h-level n given the assumption that the other type
-- is inhabited, then Lens univ A B has h-level n (assuming
-- univalence).
--
-- I do not remember who came up with the idea to prove this for the
-- coinductive lenses (rather than the ones in
-- Lens.Non-dependent.Higher). It may have been Paolo Capriotti or
-- Andrea Vezzosi.
lens-preserves-h-level :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
∀ n → (B → H-level n A) → (A → H-level n B) →
H-level n (Lens univ A B)
lens-preserves-h-level univ′ univ n hA hB =
H-level-cong _ n (inverse Lens-as-Σ) $
Σ-closure n
(Π-closure ext n λ a →
hB a) λ _ →
H-level-Coherently-constant univ′ univ λ b →
Σ-closure n (hA b) λ a →
H-level.⇒≡ n (hB a)
-- If the domain of a lens is inhabited and has h-level n, then the
-- codomain also has h-level n (assuming univalence).
h-level-respects-lens-from-inhabited :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
∀ n → Lens univ A B → A → H-level n A → H-level n B
h-level-respects-lens-from-inhabited univ′ univ n =
Higher.h-level-respects-lens-from-inhabited n ∘
_≃_.from (Higher-lens≃Lens ⊠ univ′ univ)
-- If A has positive h-level n, then Lens univ A B also has h-level n
-- (assuming univalence).
lens-preserves-h-level-of-domain :
{A : Type a} {B : Type b} →
Univalence (lsuc (a ⊔ b)) →
(univ : Univalence (a ⊔ b)) →
∀ n → H-level (1 + n) A → H-level (1 + n) (Lens univ A B)
lens-preserves-h-level-of-domain univ′ univ n hA =
H-level.[inhabited⇒+]⇒+ n λ l →
lens-preserves-h-level univ′ univ (1 + n) (λ _ → hA) λ a →
h-level-respects-lens-from-inhabited univ′ univ _ l a hA
| {
"alphanum_fraction": 0.3996392813,
"avg_line_length": 46.5667189953,
"ext": "agda",
"hexsha": "3f196005d3c38b934c21ba4c68b2e19f5d0b0316",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z",
"max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependent-lenses",
"max_forks_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependent-lenses",
"max_issues_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small.agda",
"max_line_length": 148,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependent-lenses",
"max_stars_repo_path": "src/Lens/Non-dependent/Higher/Coinductive/Small.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z",
"num_tokens": 18688,
"size": 59326
} |
module test where
data Bool : Set where
True : Bool
False : Bool
!_ : Bool → Bool
! True = False
! False = True
if_then_else_ : {A : Set} → Bool → A → A → A
if True then x else y = x
if False then x else y = y
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + a = a
suc a + b = suc (a + b)
low = suc zero
high = low + (low + low)
data List (A : Set) : Set where
Nil : List A
Cons : A → List A → List A
length : {A : Set} → List A → ℕ
length Nil = zero
length (Cons x x₁) = suc (length x₁)
map : {A B : Set} → (A → B) → List A → List B
map f Nil = Nil
map f (Cons x l) = Cons (f x) (map f l)
concat : {A : Set} → List A → List A → List A
concat Nil m = m
concat (Cons x l) m = Cons x (concat l m)
| {
"alphanum_fraction": 0.5488621151,
"avg_line_length": 18.2195121951,
"ext": "agda",
"hexsha": "b1932deb831155f26baf2ec422ef04a347d63e23",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2867aee2c18b4e1d4e8f4dc8e8453006fde4d349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "foxx3r/agda_tasks",
"max_forks_repo_path": "test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2867aee2c18b4e1d4e8f4dc8e8453006fde4d349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "foxx3r/agda_tasks",
"max_issues_repo_path": "test.agda",
"max_line_length": 45,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2867aee2c18b4e1d4e8f4dc8e8453006fde4d349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "foxx3r/agda_tasks",
"max_stars_repo_path": "test.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-24T02:30:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-24T02:30:55.000Z",
"num_tokens": 280,
"size": 747
} |
{-# OPTIONS --without-K --safe #-}
module Data.Binary.Conversion.Fast.Strict where
open import Data.Binary.Definition
open import Data.Nat.DivMod
open import Data.Nat.Base using (ℕ; suc; zero)
open import Strict
open import Data.Bool
⟦_⇑⟧⟨_⟩ : ℕ → ℕ → 𝔹
⟦ suc n ⇑⟧⟨ suc w ⟩ =
let! m =! even n in!
let! ms =! ⟦ n ÷ 2 ⇑⟧⟨ w ⟩ in!
if m then 1ᵇ ms else 2ᵇ ms
⟦ zero ⇑⟧⟨ _ ⟩ = 0ᵇ
⟦ suc _ ⇑⟧⟨ zero ⟩ = 0ᵇ -- will not happen
⟦_⇑⟧ : ℕ → 𝔹
⟦ n ⇑⟧ = ⟦ n ⇑⟧⟨ n ⟩
{-# INLINE ⟦_⇑⟧ #-}
-- Without the added argument to the recursor, the function does not
-- pass the termination checker:
-- {-# TERMINATING #-}
-- ⟦_⇑⟧″ : ℕ → 𝔹
-- ⟦ zero ⇑⟧″ = 0ᵇ
-- ⟦ suc n ⇑⟧″ =
-- if rem n 2 ℕ.≡ᴮ 0
-- then 1ᵇ ⟦ n ÷ 2 ⇑⟧″
-- else 2ᵇ ⟦ n ÷ 2 ⇑⟧″
-- The "principled" version (which uses well-founded recursion) is
-- incredibly slow. (and the following doesn't even compute, because of
-- cubical)
-- open import Data.Nat.WellFounded
-- ⟦_⇑⟧‴ : ℕ → 𝔹
-- ⟦ n ⇑⟧‴ = go n (≤-wellFounded n)
-- where
-- go : ∀ n → Acc _<_ n → 𝔹
-- go zero wf = 0ᵇ
-- go (suc n) (acc wf) =
-- if rem n 2 ℕ.≡ᴮ 0
-- then 1ᵇ go (n ÷ 2) (wf (n ÷ 2) (s≤s (div2≤ n)))
-- else 2ᵇ go (n ÷ 2) (wf (n ÷ 2) (s≤s (div2≤ n)))
| {
"alphanum_fraction": 0.540942928,
"avg_line_length": 25.1875,
"ext": "agda",
"hexsha": "90cee05b878f7b179551774cbd453adac2d09a45",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/Conversion/Fast/Strict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/Conversion/Fast/Strict.agda",
"max_line_length": 71,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/Conversion/Fast/Strict.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 591,
"size": 1209
} |
-- Andreas, 2017-10-04, issue #2753, reported by nad
-- Here, late solving of size constraints, prevented assignment
-- of instance metas to their solutions, since the metaOccurs
-- check then had more information through meta instantiation
-- and saw the loop.
-- To solve this issue, we switch off the meta-occurs check
-- for instance metas. Instance search termination responsiblity
-- rests already in the hand of the user.
-- {-# OPTIONS -v tc.instance:30 #-}
-- {-# OPTIONS -v tc.constr.solve:30 #-}
-- {-# OPTIONS -v tc.size.solve:30 #-}
-- {-# OPTIONS -v tc.meta.assign:10 #-}
open import Agda.Builtin.Size
-- Worked without sized types since instance search succeeds
-- then quicker (not having to wait on the size constraint solver).
-- postulate
-- Size : Set
-- Size<_ : Size → Set
-- Size< i = Size
mutual
data D (i : Size) : Set where
c : D′ i → D i
data D′ (i : Size) : Set where
box : (j : Size< i) → D j → D′ i
record Fun (A B : Set) : Set where
field
applyTo : A → B
open Fun ⦃ … ⦄ public
mutual
instance
r : ∀ {i} → Fun (D i) (D i)
Fun.applyTo r (c y) = c (applyTo y)
r′ : ∀ {i} → Fun (D′ i) (D′ i)
Fun.applyTo r′ (box j e) = box j (applyTo e)
-- Andreas' analysis as put on the bug tracker:
--
-- @UlfNorell is correct: the metaOccurs check prevents the
-- solution. However, why does it work without the sized types then? The
-- meta-occurs check does not go into solutions of metas. Thus, in the
-- case without sized types, where instance search succeeds immediately
-- (solving the hidden argument i by the conversion check), we are lucky
-- enough to slip through the meta-occurs check. However, in the case
-- with sized types, instance search does not succeed immediately because
-- the constraint on size i does not give a solution for i
-- directly. After size solving, instance search is retried, but then
-- (when we solve the second instance variable), instantiateFull already
-- has put in the solution for the first instance variable. Thus, the
-- loop becomes apparent, and metaOccurs protests.
| {
"alphanum_fraction": 0.6880689986,
"avg_line_length": 31.6212121212,
"ext": "agda",
"hexsha": "ec6a03e6ba416e1cbdb84c9039d72c8e0ee5124c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2753.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2753.agda",
"max_line_length": 73,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2753.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 573,
"size": 2087
} |
{-
Matrix with coefficients in a commutative ring
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Matrix.CommRingCoefficient where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset
open import Cubical.Data.Nat hiding (_+_ ; _·_)
open import Cubical.Data.FinData
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as Empty
open import Cubical.Relation.Nullary
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.RingSolver.Reflection
open import Cubical.Algebra.Matrix
private
variable
ℓ : Level
m n k l : ℕ
module Coefficient (𝓡 : CommRing ℓ) where
private
R = 𝓡 .fst
𝑹 = CommRing→Ring 𝓡
AbR = Ring→AbGroup 𝑹
open CommRingStr (𝓡 .snd) renaming ( is-set to isSetR )
open Sum 𝑹
open FinMatrixAbGroup
-- Convenient renaming
Mat : (m n : ℕ) → Type ℓ
Mat m n = FinMatrix R m n
isSetMat : isSet (Mat m n)
isSetMat = isSetΠ2 (λ _ _ → isSetR)
isContrEmpty : {n : ℕ} → isContr (Mat 0 n)
isContrEmpty =
isOfHLevelRespectEquiv _ (equiv→ (uninhabEquiv (λ ()) ¬Fin0) (idEquiv _)) isContr⊥→A
isContrEmptyᵗ : {m : ℕ} → isContr (Mat m 0)
isContrEmptyᵗ =
isContrΠ (λ _ → isOfHLevelRespectEquiv _ (equiv→ (uninhabEquiv (λ ()) ¬Fin0) (idEquiv _)) isContr⊥→A)
𝟙 : Mat n n
𝟙 = oneFinMatrix 𝑹
𝟘 : Mat m n
𝟘 = zeroFinMatrix AbR
_⋆_ : Mat m n → Mat n k → Mat m k
M ⋆ N = mulFinMatrix 𝑹 M N
infixl 8 _⋆_
⋆lUnit : (M : Mat m n) → 𝟙 ⋆ M ≡ M
⋆lUnit = mulFinMatrix1r 𝑹
⋆rUnit : (M : Mat m n) → M ⋆ 𝟙 ≡ M
⋆rUnit = mulFinMatrixr1 𝑹
⋆Assoc : (M : Mat m n)(N : Mat n k)(K : Mat k l) → M ⋆ (N ⋆ K) ≡ (M ⋆ N) ⋆ K
⋆Assoc = mulFinMatrixAssoc 𝑹
-- Transposition
_ᵗ : Mat m n → Mat n m
(M ᵗ) i j = M j i
idemᵗ : (M : Mat m n) → (M ᵗ)ᵗ ≡ M
idemᵗ M t i j = M i j
compᵗ : (M : Mat m n)(N : Mat n k) → (M ⋆ N)ᵗ ≡ N ᵗ ⋆ M ᵗ
compᵗ M N t i j = ∑ (λ l → ·Comm (M j l) (N l i) t)
𝟙ᵗ : 𝟙 ᵗ ≡ 𝟙 {n = n}
𝟙ᵗ t zero zero = 1r
𝟙ᵗ t (suc i) zero = 0r
𝟙ᵗ t zero (suc j) = 0r
𝟙ᵗ t (suc i) (suc j) = 𝟙ᵗ t i j
-- Invertible matrices
isInv' : Mat n n → Mat n n → Type ℓ
isInv' {n = n} M N = (M ⋆ N ≡ 𝟙) × (N ⋆ M ≡ 𝟙)
isPropIsInv' : (M N : Mat n n) → isProp (isInv' M N)
isPropIsInv' M N = isProp× (isSetMat _ _) (isSetMat _ _)
invUniq : (M N N' : Mat n n) → isInv' M N → isInv' M N' → N ≡ N'
invUniq M N N' p q =
sym (⋆lUnit N)
∙ (λ i → q .snd (~ i) ⋆ N)
∙ sym (⋆Assoc N' M N)
∙ (λ i → N' ⋆ p .fst i)
∙ ⋆rUnit N'
isInv : Mat n n → Type ℓ
isInv {n = n} M = Σ[ N ∈ Mat n n ] isInv' M N
isPropIsInv : (M : Mat n n) → isProp (isInv M)
isPropIsInv M p q = Σ≡Prop (λ _ → isPropIsInv' M _) (invUniq M _ _ (p .snd) (q .snd))
isInv⋆ : {M M' : Mat n n} → isInv M → isInv M' → isInv (M ⋆ M')
isInv⋆ (N , p) (N' , q) .fst = N' ⋆ N
isInv⋆ {M = M} {M' = M'} (N , p) (N' , q) .snd .fst =
sym (⋆Assoc M M' (N' ⋆ N))
∙ (λ i → M ⋆ ⋆Assoc M' N' N i)
∙ (λ i → M ⋆ (q .fst i ⋆ N))
∙ (λ i → M ⋆ ⋆lUnit N i)
∙ p .fst
isInv⋆ {M = M} {M' = M'} (N , p) (N' , q) .snd .snd =
sym (⋆Assoc N' N (M ⋆ M'))
∙ (λ i → N' ⋆ ⋆Assoc N M M' i)
∙ (λ i → N' ⋆ (p .snd i ⋆ M'))
∙ (λ i → N' ⋆ ⋆lUnit M' i)
∙ q .snd
InvMat : (n : ℕ) → Type ℓ
InvMat n = Σ[ M ∈ Mat n n ] isInv M
isInv𝟙 : isInv {n = n} 𝟙
isInv𝟙 .fst = 𝟙
isInv𝟙 .snd .fst = ⋆lUnit _
isInv𝟙 .snd .snd = ⋆lUnit _
isInvᵗ : {M : Mat n n} → isInv M → isInv (M ᵗ)
isInvᵗ {M = M} isInvM .fst = (isInvM .fst)ᵗ
isInvᵗ {M = M} isInvM .snd .fst = (sym (compᵗ _ M)) ∙ (λ t → (isInvM .snd .snd t)ᵗ) ∙ 𝟙ᵗ
isInvᵗ {M = M} isInvM .snd .snd = (sym (compᵗ M _)) ∙ (λ t → (isInvM .snd .fst t)ᵗ) ∙ 𝟙ᵗ
-- Inversion formula for 2 × 2 matrices
dot2 : (V W : FinVec R 2) → (∑ λ i → V i · W i) ≡ V zero · W zero + V one · W one
dot2 V W i = V zero · W zero + (+Rid (V one · W one) i)
mul2 :
(M : Mat m 2)(N : Mat 2 n)
→ (i : Fin m)(j : Fin n)
→ (M ⋆ N) i j ≡ M i zero · N zero j + M i one · N one j
mul2 M N i j = dot2 (M i) (λ k → N k j)
open Units 𝓡
det2×2 : Mat 2 2 → R
det2×2 M = M zero zero · M one one - M zero one · M one zero
module _
(M : Mat 2 2)(p : det2×2 M ∈ Rˣ) where
private
Δ = det2×2 M
Δ⁻¹ = (_⁻¹) Δ ⦃ p ⦄
·rInv : Δ · Δ⁻¹ ≡ 1r
·rInv = ·-rinv _ ⦃ p ⦄
M⁻¹ : Mat 2 2
M⁻¹ zero zero = M one one · Δ⁻¹
M⁻¹ zero one = - M zero one · Δ⁻¹
M⁻¹ one zero = - M one zero · Δ⁻¹
M⁻¹ one one = M zero zero · Δ⁻¹
isInvMat2x2 : isInv M
isInvMat2x2 .fst = M⁻¹
isInvMat2x2 .snd .fst i zero zero =
(mul2 M M⁻¹ zero zero ∙ helper _ _ _ _ _ ∙ ·rInv) i
where helper : (x y z w d : R) → x · (w · d) + y · (- z · d) ≡ (x · w - y · z) · d
helper = solve 𝓡
isInvMat2x2 .snd .fst i zero one =
(mul2 M M⁻¹ zero one ∙ helper _ _ _) i
where helper : (x y d : R) → x · (- y · d) + y · (x · d) ≡ 0r
helper = solve 𝓡
isInvMat2x2 .snd .fst i one zero =
(mul2 M M⁻¹ one zero ∙ helper _ _ _) i
where helper : (z w d : R) → z · (w · d) + w · (- z · d) ≡ 0r
helper = solve 𝓡
isInvMat2x2 .snd .fst i one one =
(mul2 M M⁻¹ one one ∙ helper _ _ _ _ _ ∙ ·rInv) i
where helper : (x y z w d : R) → z · (- y · d) + w · (x · d) ≡ (x · w - y · z) · d
helper = solve 𝓡
isInvMat2x2 .snd .snd i zero zero =
(mul2 M⁻¹ M zero zero ∙ helper _ _ _ _ _ ∙ ·rInv) i
where helper : (x y z w d : R) → (w · d) · x + (- y · d) · z ≡ (x · w - y · z) · d
helper = solve 𝓡
isInvMat2x2 .snd .snd i zero one =
(mul2 M⁻¹ M zero one ∙ helper _ _ _) i
where helper : (y w d : R) → (w · d) · y + (- y · d) · w ≡ 0r
helper = solve 𝓡
isInvMat2x2 .snd .snd i one zero =
(mul2 M⁻¹ M one zero ∙ helper _ _ _) i
where helper : (x z d : R) → (- z · d) · x + (x · d) · z ≡ 0r
helper = solve 𝓡
isInvMat2x2 .snd .snd i one one =
(mul2 M⁻¹ M one one ∙ helper _ _ _ _ _ ∙ ·rInv) i
where helper : (x y z w d : R) → (- z · d) · y + (x · d) · w ≡ (x · w - y · z) · d
helper = solve 𝓡
-- Similarity of matrices
record SimRel (M N : Mat m n) : Type ℓ where
field
transMatL : Mat m m
transMatR : Mat n n
transEq : N ≡ transMatL ⋆ M ⋆ transMatR
isInvTransL : isInv transMatL
isInvTransR : isInv transMatR
open SimRel
record Sim (M : Mat m n) : Type ℓ where
field
result : Mat m n
simrel : SimRel M result
open Sim
idSimRel : (M : Mat m n) → SimRel M M
idSimRel _ .transMatL = 𝟙
idSimRel _ .transMatR = 𝟙
idSimRel M .transEq = sym ((λ t → ⋆lUnit M t ⋆ 𝟙) ∙ ⋆rUnit _)
idSimRel _ .isInvTransL = isInv𝟙
idSimRel _ .isInvTransR = isInv𝟙
idSim : (M : Mat m n) → Sim M
idSim M .result = M
idSim M .simrel = idSimRel M
≡SimRel : {M N : Mat m n} → M ≡ N → SimRel M N
≡SimRel p .transMatL = 𝟙
≡SimRel p .transMatR = 𝟙
≡SimRel {M = M} p .transEq = sym p ∙ sym ((λ t → ⋆lUnit M t ⋆ 𝟙) ∙ ⋆rUnit _)
≡SimRel p .isInvTransL = isInv𝟙
≡SimRel p .isInvTransR = isInv𝟙
≡Sim : {M N : Mat m n} → M ≡ N → Sim M
≡Sim _ .result = _
≡Sim p .simrel = ≡SimRel p
compSimRel : {M N K : Mat m n} → SimRel M N → SimRel N K → SimRel M K
compSimRel p q .transMatL = q .transMatL ⋆ p .transMatL
compSimRel p q .transMatR = p .transMatR ⋆ q .transMatR
compSimRel {M = M} p q .transEq =
let L = p .transMatL
R = p .transMatR
L' = q .transMatL
R' = q .transMatR in
q .transEq
∙ (λ t → L' ⋆ p .transEq t ⋆ R')
∙ (λ t → L' ⋆ ⋆Assoc L M R (~ t) ⋆ R')
∙ (λ t → ⋆Assoc L' (L ⋆ (M ⋆ R)) R' (~ t))
∙ (λ t → L' ⋆ ⋆Assoc L (M ⋆ R) R' (~ t))
∙ (λ t → L' ⋆ (L ⋆ ⋆Assoc M R R' (~ t)))
∙ (λ t → L' ⋆ ⋆Assoc L M (R ⋆ R') t)
∙ (λ t → ⋆Assoc L' (L ⋆ M) (R ⋆ R') t)
∙ (λ t → ⋆Assoc L' L M t ⋆ (R ⋆ R'))
compSimRel p q .isInvTransL = isInv⋆ (q .isInvTransL) (p .isInvTransL)
compSimRel p q .isInvTransR = isInv⋆ (p .isInvTransR) (q .isInvTransR)
compSim : {M : Mat m n}(p : Sim M)(q : Sim (p .result)) → Sim M
compSim p q .result = q .result
compSim p q .simrel = compSimRel (p .simrel) (q .simrel)
-- Add a new element at upper-left corner
_⊕_ : R → Mat m n → Mat (suc m) (suc n)
(a ⊕ M) zero zero = a
(a ⊕ M) (suc i) zero = 0r
(a ⊕ M) zero (suc j) = 0r
(a ⊕ M) (suc i) (suc j) = M i j
infixr 5 _⊕_
sucMat : (M : Mat (suc m) (suc n)) → Mat m n
sucMat M i j = M (suc i) (suc j)
𝟙suc : (i j : Fin m) → 𝟙 i j ≡ sucMat 𝟙 i j
𝟙suc zero zero = refl
𝟙suc (suc i) zero = refl
𝟙suc zero (suc j) = refl
𝟙suc (suc i) (suc j) = refl
1⊕𝟙 : 1r ⊕ 𝟙 {n = n} ≡ 𝟙
1⊕𝟙 t zero zero = 1r
1⊕𝟙 t (suc i) zero = 0r
1⊕𝟙 t zero (suc j) = 0r
1⊕𝟙 t (suc i) (suc j) = 𝟙suc i j t
⊕-⋆ : (a b : R)(M : Mat m n)(N : Mat n k) → (a ⊕ M) ⋆ (b ⊕ N) ≡ (a · b) ⊕ (M ⋆ N)
⊕-⋆ {n = n} a b M N t zero zero =
((λ t → a · b + ∑Mul0r {n = n} (λ i → 0r) t) ∙ helper _ _) t
where helper : (a b : R) → a · b + 0r ≡ a · b
helper = solve 𝓡
⊕-⋆ a b M N t zero (suc j) = (helper a _ ∙ ∑Mul0r (λ i → N i j)) t
where helper : (a c : R) → a · 0r + c ≡ c
helper = solve 𝓡
⊕-⋆ a b M N t (suc i) zero = (helper b _ ∙ ∑Mulr0 (λ j → M i j)) t
where helper : (b c : R) → 0r · b + c ≡ c
helper = solve 𝓡
⊕-⋆ _ _ M N t (suc i) (suc j) = helper ((M ⋆ N) i j) t
where helper : (c : R) → 0r · 0r + c ≡ c
helper = solve 𝓡
isInv⊕ : (M : Mat m m) → isInv M → (isInv (1r ⊕ M))
isInv⊕ M isInvM .fst = 1r ⊕ isInvM .fst
isInv⊕ M isInvM .snd .fst = ⊕-⋆ _ _ _ _ ∙ (λ t → ·Lid 1r t ⊕ isInvM .snd .fst t) ∙ 1⊕𝟙
isInv⊕ M isInvM .snd .snd = ⊕-⋆ _ _ _ _ ∙ (λ t → ·Rid 1r t ⊕ isInvM .snd .snd t) ∙ 1⊕𝟙
⊕SimRel : (a : R){M N : Mat m n} → (sim : SimRel M N) → SimRel (a ⊕ M) (a ⊕ N)
⊕SimRel _ sim .transMatL = 1r ⊕ sim .transMatL
⊕SimRel _ sim .transMatR = 1r ⊕ sim .transMatR
⊕SimRel a {M = M} sim .transEq =
let P = sim .transMatL
Q = sim .transMatR in
(λ t → helper a t ⊕ sim .transEq t)
∙ sym (⊕-⋆ _ _ _ Q)
∙ (λ t → ⊕-⋆ 1r a P M (~ t) ⋆ (1r ⊕ Q))
where helper : (a : R) → a ≡ (1r · a) · 1r
helper = solve 𝓡
⊕SimRel _ sim .isInvTransL = isInv⊕ _ (sim .isInvTransL)
⊕SimRel _ sim .isInvTransR = isInv⊕ _ (sim .isInvTransR)
⊕Sim : (a : R){M : Mat m n} → (sim : Sim M) → Sim (a ⊕ M)
⊕Sim a sim .result = a ⊕ sim .result
⊕Sim _ sim .simrel = ⊕SimRel _ (sim .simrel)
| {
"alphanum_fraction": 0.5136678525,
"avg_line_length": 31.0523255814,
"ext": "agda",
"hexsha": "ec10c810055a13573a6de073866bbc9b6d15d6b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Matrix/CommRingCoefficient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Matrix/CommRingCoefficient.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Matrix/CommRingCoefficient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5229,
"size": 10682
} |
{-# OPTIONS --without-K #-}
module M-types.Coalg where
open import M-types.Coalg.Core public
open import M-types.Coalg.Bisim public
open import M-types.Coalg.M public
| {
"alphanum_fraction": 0.7071823204,
"avg_line_length": 22.625,
"ext": "agda",
"hexsha": "f6716596c654d8c92c44a3842d84c7a1f7e76d9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DDOtten/M-types",
"max_forks_repo_path": "Coalg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DDOtten/M-types",
"max_issues_repo_path": "Coalg.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DDOtten/M-types",
"max_stars_repo_path": "Coalg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 46,
"size": 181
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PolynomialFunctors where
-- From: Ulf Norell. Dependently typed programming in Agda. In Koopman
-- et al., editors. Advanced Functional Programming (AFP 2008), volume
-- 5832 of LNCS. Springer-Verlag, 2009. pages 230–266.
infixr 50 _|+|_ _⊕_
infixr 60 _|x|_ _×_
record True : Set where
data _⊕_ (A B : Set) : Set where
inl : A → A ⊕ B
inr : B → A ⊕ B
data _×_ (A B : Set) : Set where
_,_ : A → B → A × B
data Functor : Set₁ where
|Id| : Functor
|K| : Set → Functor
_|+|_ : Functor → Functor → Functor
_|x|_ : Functor → Functor → Functor
[_] : Functor → Set → Set
[ |Id| ] X = X
[ |K| A ] X = A
[ F |+| G ] X = [ F ] X ⊕ [ G ] X
[ F |x| G ] X = [ F ] X × [ G ] X
data μ_ (F : Functor) : Set where
<_> : [ F ] (μ F) → μ F
NatF : Functor
NatF = |K| True |+| |Id|
NAT : Set
NAT = μ NatF
Z : NAT
Z = < inl _ >
S : NAT → NAT
S n = < inr n >
_+_ : NAT → NAT → NAT
m + < inl _ > = m
m + < inr n > = S (m + n)
ListF : (A : Set) → Functor
ListF = λ A → |K| True |+| |K| A |x| |Id|
LIST : (A : Set) → Set
LIST = λ A → μ (ListF A)
nil : {A : Set} → LIST A
nil = < inl _ >
cons : {A : Set} → A → LIST A → LIST A
cons x xs = < inr (x , xs) >
| {
"alphanum_fraction": 0.5174203113,
"avg_line_length": 20.4393939394,
"ext": "agda",
"hexsha": "76f7f62ec45662b687177415adccbc1bc9092990",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/fixed-points/PolynomialFunctors.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/fixed-points/PolynomialFunctors.agda",
"max_line_length": 70,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/fixed-points/PolynomialFunctors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 531,
"size": 1349
} |
{-# OPTIONS --safe --no-qualified-instances #-}
module JVM.Syntax.Instructions where
open import Level
open import Data.Unit
open import Data.Product hiding (swap)
open import Data.String using (String)
open import Data.List
open import Data.List.Membership.Propositional using () renaming (_∈_ to Reg)
open import JVM.Types
open import JVM.Syntax.Values
open import JVM.Model StackTy
open import Relation.Unary hiding (_∈_)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad.Weakening
data NativeBinOp : Ty → Ty → Ty → Set where
add sub mul div xor : NativeBinOp int int int
data Comparator : List Ty → Set where
eq ne lt ge gt le : {{IsIntegral a}} → Comparator [ a ]
icmpge icmpgt icmpeq icmpne icmplt icmple : Comparator (int ∷ [ int ])
{- Instructions -}
module _ (𝑭 : FrameTy) where
open import Data.List.Membership.Propositional
𝑹[_] : Ty → Set
𝑹[ a ] = a ∈ 𝑭
-- True to bytecode, the collection of registers is fixed.
-- The stack typing varies.
data ⟨_↝_⟩ : StackTy → StackTy → Pred Labels 0ℓ where
noop : ε[ ⟨ ψ ↝ ψ ⟩ ]
-- stack manipulation
pop : ε[ ⟨ a ∷ ψ ↝ ψ ⟩ ]
push : Const a → ε[ ⟨ ψ ↝ a ∷ ψ ⟩ ]
dup : ε[ ⟨ a ∷ ψ ↝ a ∷ a ∷ ψ ⟩ ]
swap : ε[ ⟨ a ∷ b ∷ ψ ↝ b ∷ a ∷ ψ ⟩ ]
-- binary operations on primitive types
bop : NativeBinOp a b c → ε[ ⟨ b ∷ a ∷ ψ ↝ c ∷ ψ ⟩ ]
-- register manipulation
load : 𝑹[ a ] → ε[ ⟨ ψ ↝ a ∷ ψ ⟩ ]
store : 𝑹[ a ] → ε[ ⟨ a ∷ ψ ↝ ψ ⟩ ]
-- jumps
goto : ∀[ One ψ₁ ⇒ ⟨ ψ₁ ↝ ψ₂ ⟩ ]
if : ∀ {as} → Comparator as → ∀[ One ψ ⇒ ⟨ as ++ ψ ↝ ψ ⟩ ]
⟨_∣_↝_⟩ = ⟨_↝_⟩
Instr = ⟨_↝_⟩
open import JVM.Syntax.Bytecode StackTy ⟨_↝_⟩ as BC
open BC using (Code) public
⟪_∣_↜_⟫ = ⟪_↜_⟫
⟪_∣_↝_⟫ = ⟪_↝_⟫
⟪_∣_↝_⟫+ = ⟪_↝_⟫+
module _ {𝑭} where
open import JVM.Syntax.Bytecode StackTy ⟨ 𝑭 ∣_↝_⟩
hiding (⟪_↜_⟫; ⟪_↝_⟫; ⟪_↝_⟫+; Code) public
| {
"alphanum_fraction": 0.5984134854,
"avg_line_length": 28.0138888889,
"ext": "agda",
"hexsha": "bfb857acffade40e199926c15fee7ceda65b4436",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Syntax/Instructions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Syntax/Instructions.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Syntax/Instructions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 776,
"size": 2017
} |
open import Nat
open import Prelude
open import dynamics-core
open import contexts
open import preservation
module complete-preservation where
-- if you substitute a complete term into a complete term, the result is
-- still complete.
cp-subst : ∀ {x d1 d2} →
d1 dcomplete →
d2 dcomplete →
([ d2 / x ] d1) dcomplete
cp-subst {x = y} (DCVar {x = x}) dc2 with natEQ x y
cp-subst DCVar dc2 | Inl refl = dc2
cp-subst DCVar dc2 | Inr x₂ = DCVar
cp-subst DCNum dc2 = DCNum
cp-subst (DCPlus dc1 dc2) dc3 = DCPlus (cp-subst dc1 dc3) (cp-subst dc2 dc3)
cp-subst {x = x} (DCLam {x = y} dc1 x₂) dc2 with natEQ y x
cp-subst (DCLam dc1 x₃) dc2 | Inl refl = DCLam dc1 x₃
cp-subst (DCLam dc1 x₃) dc2 | Inr x₂ = DCLam (cp-subst dc1 dc2) x₃
cp-subst (DCAp dc1 dc2) dc3 = DCAp (cp-subst dc1 dc3) (cp-subst dc2 dc3)
cp-subst (DCCast dc1 x₁ x₂) dc2 = DCCast (cp-subst dc1 dc2) x₁ x₂
cp-subst (DCInl x dc1) dc2 = DCInl x (cp-subst dc1 dc2)
cp-subst (DCInr x dc1) dc2 = DCInr x (cp-subst dc1 dc2)
cp-subst {x = x} (DCCase {x = y} {y = z} dc dc1 dc3) dc2
with natEQ y x | natEQ z x
... | Inl refl | Inl refl = DCCase (cp-subst dc dc2) dc1 dc3
... | Inl refl | Inr z≠x = DCCase (cp-subst dc dc2 ) dc1 (cp-subst dc3 dc2)
... | Inr y≠x | Inl refl = DCCase (cp-subst dc dc2) (cp-subst dc1 dc2) dc3
... | Inr y≠x | Inr z≠x = DCCase (cp-subst dc dc2) (cp-subst dc1 dc2) (cp-subst dc3 dc2)
cp-subst (DCPair dc1 dc3) dc2 = DCPair (cp-subst dc1 dc2) (cp-subst dc3 dc2)
cp-subst (DCFst dc1) dc2 = DCFst (cp-subst dc1 dc2)
cp-subst (DCSnd dc1) dc2 = DCSnd (cp-subst dc1 dc2)
-- this just lets me pull the particular x out of a derivation; it's not
-- bound in any of the constructors explicitly since it's only in the
-- lambda case; so below i have no idea how else to get a name for it,
-- instead of leaving it dotted in the context
lem-proj : {x : Nat} {d : ihexp} { τ : htyp} →
(·λ x ·[ τ ] d) dcomplete →
Σ[ y ∈ Nat ] (y == x)
lem-proj {x} (DCLam dc x₁) = x , refl
-- a complete well typed term steps to a complete term.
cp-rhs : ∀{d τ d' Δ} →
d dcomplete →
Δ , ∅ ⊢ d :: τ →
d ↦ d' →
d' dcomplete
cp-rhs dc TANum (Step FHOuter () FHOuter)
cp-rhs (DCPlus dc dc₁) (TAPlus wt wt₁) (Step FHOuter (ITPlus refl) FHOuter) = DCNum
cp-rhs (DCPlus dc dc₁) (TAPlus wt wt₁) (Step (FHPlus1 x) x₁ (FHPlus1 x₂))
with cp-rhs dc wt (Step x x₁ x₂)
... | q = DCPlus q dc₁
cp-rhs (DCPlus dc dc₁) (TAPlus wt wt₁) (Step (FHPlus2 x) x₁ (FHPlus2 x₂))
with cp-rhs dc₁ wt₁ (Step x x₁ x₂)
... | q = DCPlus dc q
cp-rhs dc (TAVar x₁) stp = abort (somenotnone (! x₁))
cp-rhs dc (TALam _ wt) (Step FHOuter () FHOuter)
-- this case is a little more complicated than it feels like it ought to
-- be, just from horsing around with agda implicit variables.
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step FHOuter ITLam FHOuter) with lem-proj dc
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step FHOuter ITLam FHOuter) | x , refl with cp-subst {x = x} dc dc₁
... | qq with natEQ x x
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step FHOuter ITLam FHOuter) | x , refl | DCLam qq x₁ | Inl refl = cp-subst qq dc₁
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step FHOuter ITLam FHOuter) | x , refl | qq | Inr x₁ = abort (x₁ refl)
cp-rhs (DCAp (DCCast dc (TCArr x x₁) (TCArr x₂ x₃)) dc₁) (TAAp (TACast wt x₄) wt₁) (Step FHOuter ITApCast FHOuter) = DCCast (DCAp dc (DCCast dc₁ x₂ x)) x₁ x₃
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step (FHAp1 x) x₁ (FHAp1 x₂)) = DCAp (cp-rhs dc wt (Step x x₁ x₂)) dc₁
cp-rhs (DCAp dc dc₁) (TAAp wt wt₁) (Step (FHAp2 x) x₁ (FHAp2 x₂)) = DCAp dc (cp-rhs dc₁ wt₁ (Step x x₁ x₂))
cp-rhs () (TAEHole x x₁) stp
cp-rhs () (TANEHole x wt x₁) stp
cp-rhs (DCCast dc x x₁) (TACast wt x₂) (Step FHOuter ITCastID FHOuter) = dc
cp-rhs (DCCast dc () x₁) (TACast wt x₂) (Step FHOuter (ITCastSucceed x₃) FHOuter)
cp-rhs (DCCast dc () x₁) (TACast wt x₂) (Step FHOuter (ITCastFail x₃ x₄ x₅) FHOuter)
cp-rhs (DCCast dc x ()) (TACast wt x₂) (Step FHOuter (ITGround x₃) FHOuter)
cp-rhs (DCCast dc () x₁) (TACast wt x₂) (Step FHOuter (ITExpand x₃) FHOuter)
cp-rhs (DCCast dc x x₁) (TACast wt x₂) (Step (FHCast x₃) x₄ (FHCast x₅)) = DCCast (cp-rhs dc wt (Step x₃ x₄ x₅)) x x₁
cp-rhs () (TAFailedCast wt x x₁ x₂) stp
cp-rhs (DCInl x dc) (TAInl wt) (Step (FHInl x₁) x₂ (FHInl x₃)) = DCInl x (cp-rhs dc wt (Step x₁ x₂ x₃))
cp-rhs (DCInr x dc) (TAInr wt) (Step (FHInr x₁) x₂ (FHInr x₃)) = DCInr x (cp-rhs dc wt (Step x₁ x₂ x₃))
cp-rhs (DCCase (DCInl x₂ dc) dc₁ dc₂) (TACase wt x wt₁ x₁ wt₂) (Step FHOuter ITCaseInl FHOuter) = cp-subst dc₁ dc
cp-rhs (DCCase (DCInr x₂ dc) dc₁ dc₂) (TACase wt x wt₁ x₁ wt₂) (Step FHOuter ITCaseInr FHOuter) = cp-subst dc₂ dc
cp-rhs (DCCase (DCCast dc (TCSum x₂ x₄) (TCSum x₃ x₅)) dc₁ dc₂) (TACase wt x wt₁ x₁ wt₂) (Step FHOuter ITCaseCast FHOuter) = DCCase dc (cp-subst dc₁ (DCCast DCVar x₂ x₃)) (cp-subst dc₂ (DCCast DCVar x₄ x₅))
cp-rhs (DCCase dc dc₁ dc₂) (TACase wt x wt₁ x₁ wt₂) (Step (FHCase x₂) x₃ (FHCase x₄)) = DCCase (cp-rhs dc wt (Step x₂ x₃ x₄)) dc₁ dc₂
cp-rhs (DCInl x dc) (TAInl dc₁) (Step FHOuter () FHOuter)
cp-rhs (DCInr x dc) (TAInr dc₁) (Step FHOuter () FHOuter)
cp-rhs (DCPair dc dc₁) (TAPair dc₂ dc₃) (Step (FHPair1 x₁) x₂ (FHPair1 x₃)) = DCPair (cp-rhs dc dc₂ (Step x₁ x₂ x₃)) dc₁
cp-rhs (DCPair dc dc₁) (TAPair dc₂ dc₃) (Step (FHPair2 x₁) x₂ (FHPair2 x₃)) = DCPair dc (cp-rhs dc₁ dc₃ (Step x₁ x₂ x₃))
cp-rhs (DCFst (DCPair dc dc₃)) (TAFst dc₁) (Step FHOuter ITFstPair FHOuter) = dc
cp-rhs (DCFst (DCCast dc (TCProd x x₁) (TCProd x₃ x₄))) (TAFst dc₁) (Step FHOuter ITFstCast FHOuter) = DCCast (DCFst dc) x x₃
cp-rhs (DCFst dc) (TAFst dc₁) (Step (FHFst x₁) x₂ (FHFst x₃)) = DCFst (cp-rhs dc dc₁ (Step x₁ x₂ x₃))
cp-rhs (DCSnd (DCPair dc dc₂)) (TASnd dc₁) (Step FHOuter ITSndPair FHOuter) = dc₂
cp-rhs (DCSnd (DCCast dc (TCProd x x₁) (TCProd x₂ x₃))) (TASnd dc₁) (Step FHOuter ITSndCast FHOuter) = DCCast (DCSnd dc) x₁ x₃
cp-rhs (DCSnd dc) (TASnd dc₁) (Step (FHSnd x₁) x₂ (FHSnd x₃)) = DCSnd (cp-rhs dc dc₁ (Step x₁ x₂ x₃))
-- this is the main result of this file.
complete-preservation : ∀{d τ d' Δ} →
binders-unique d →
d dcomplete →
Δ , ∅ ⊢ d :: τ →
d ↦ d' →
(Δ , ∅ ⊢ d' :: τ) × (d' dcomplete)
complete-preservation bd dc wt stp = preservation bd wt stp , cp-rhs dc wt stp
| {
"alphanum_fraction": 0.6270253745,
"avg_line_length": 62.3047619048,
"ext": "agda",
"hexsha": "679a1406c9909423985cc84e3873a486bc823dce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "complete-preservation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "complete-preservation.agda",
"max_line_length": 209,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "complete-preservation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2844,
"size": 6542
} |
module Logic.Congruence where
import Prelude
import Logic.Relations
import Logic.Equivalence
open Prelude
open Logic.Relations
open Logic.Equivalence using (Equivalence)
renaming (module Equivalence to Proj)
data Congruence (A : Set) : Set1 where
congruence :
(Eq : Equivalence A) ->
Congruent (Proj._==_ Eq) ->
Congruence A
module Projections where
eq : {A : Set} -> Congruence A -> Rel A
eq (congruence Eq _) = Proj._==_ Eq
refl : {A : Set}(Cong : Congruence A) -> Reflexive (eq Cong)
refl (congruence Eq _) = Proj.refl Eq
sym : {A : Set}(Cong : Congruence A) -> Symmetric (eq Cong)
sym (congruence Eq _) = Proj.sym Eq
trans : {A : Set}(Cong : Congruence A) -> Transitive (eq Cong)
trans (congruence Eq _) = Proj.trans Eq
cong : {A : Set}(Cong : Congruence A) -> Congruent (eq Cong)
cong (congruence _ c) = c
module Congruence {A : Set}(Cong : Congruence A) where
_==_ = Projections.eq Cong
refl = Projections.refl Cong
sym = Projections.sym Cong
trans = Projections.trans Cong
cong = Projections.cong Cong
cong2 : (f : A -> A -> A)(a b c d : A) -> a == c -> b == d -> f a b == f c d
cong2 f a b c d ac bd = trans _ _ _ rem1 rem2
where
rem1 : f a b == f a d
rem1 = cong (f a) _ _ bd
rem2 : f a d == f c d
rem2 = cong (flip f d) _ _ ac
| {
"alphanum_fraction": 0.6112737921,
"avg_line_length": 25.7735849057,
"ext": "agda",
"hexsha": "570c0211ec6243fd8c9454f771ced967b5d757fa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/lib/Logic/Congruence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/lib/Logic/Congruence.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/lib/Logic/Congruence.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 461,
"size": 1366
} |
{-
This second-order term syntax was created from the following second-order syntax description:
syntax CommMonoid | CM
type
* : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
-}
module CommMonoid.Syntax where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Construction.Structure
open import SOAS.ContextMaps.Inductive
open import SOAS.Metatheory.Syntax
open import CommMonoid.Signature
private
variable
Γ Δ Π : Ctx
α : *T
𝔛 : Familyₛ
-- Inductive term declaration
module CM:Terms (𝔛 : Familyₛ) where
data CM : Familyₛ where
var : ℐ ⇾̣ CM
mvar : 𝔛 α Π → Sub CM Π Γ → CM α Γ
ε : CM * Γ
_⊕_ : CM * Γ → CM * Γ → CM * Γ
infixl 20 _⊕_
open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛
CMᵃ : MetaAlg CM
CMᵃ = record
{ 𝑎𝑙𝑔 = λ where
(unitₒ ⋮ _) → ε
(addₒ ⋮ a , b) → _⊕_ a b
; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) }
module CMᵃ = MetaAlg CMᵃ
module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where
open MetaAlg 𝒜ᵃ
𝕤𝕖𝕞 : CM ⇾̣ 𝒜
𝕊 : Sub CM Π Γ → Π ~[ 𝒜 ]↝ Γ
𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t
𝕊 (t ◂ σ) (old v) = 𝕊 σ v
𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε)
𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v
𝕤𝕖𝕞 ε = 𝑎𝑙𝑔 (unitₒ ⋮ tt)
𝕤𝕖𝕞 (_⊕_ a b) = 𝑎𝑙𝑔 (addₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b)
𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ CMᵃ 𝒜ᵃ 𝕤𝕖𝕞
𝕤𝕖𝕞ᵃ⇒ = record
{ ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t }
; ⟨𝑣𝑎𝑟⟩ = refl
; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } }
where
open ≡-Reasoning
⟨𝑎𝑙𝑔⟩ : (t : ⅀ CM α Γ) → 𝕤𝕖𝕞 (CMᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t)
⟨𝑎𝑙𝑔⟩ (unitₒ ⋮ _) = refl
⟨𝑎𝑙𝑔⟩ (addₒ ⋮ _) = refl
𝕊-tab : (mε : Π ~[ CM ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v)
𝕊-tab mε new = refl
𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v
module _ (g : CM ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ CMᵃ 𝒜ᵃ g) where
open MetaAlg⇒ gᵃ⇒
𝕤𝕖𝕞! : (t : CM α Γ) → 𝕤𝕖𝕞 t ≡ g t
𝕊-ix : (mε : Sub CM Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v)
𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x
𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v
𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε))
= trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε))
𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩
𝕤𝕖𝕞! ε = sym ⟨𝑎𝑙𝑔⟩
𝕤𝕖𝕞! (_⊕_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩
-- Syntax instance for the signature
CM:Syn : Syntax
CM:Syn = record
{ ⅀F = ⅀F
; ⅀:CS = ⅀:CompatStr
; mvarᵢ = CM:Terms.mvar
; 𝕋:Init = λ 𝔛 → let open CM:Terms 𝔛 in record
{ ⊥ = CM ⋉ CMᵃ
; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ }
; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } }
-- Instantiation of the syntax and metatheory
open Syntax CM:Syn public
open CM:Terms public
open import SOAS.Families.Build public
open import SOAS.Syntax.Shorthands CMᵃ public
open import SOAS.Metatheory CM:Syn public
| {
"alphanum_fraction": 0.5388634879,
"avg_line_length": 24.496,
"ext": "agda",
"hexsha": "ab46823aeb77fefc51f78fddb0554047deb5e999",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/CommMonoid/Syntax.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/CommMonoid/Syntax.agda",
"max_line_length": 93,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/CommMonoid/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1884,
"size": 3062
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Structures.FiniteDimensional
{k ℓᵏ} (K : Field k ℓᵏ)
where
open import Algebra.Linear.Core
open import Algebra.FunctionProperties
open import Relation.Binary using (Rel)
open import Algebra.Linear.Morphism.Bundles K
open import Algebra.Linear.Structures.VectorSpace K
open import Function.Equality
open import Level using (_⊔_; suc)
open import Data.Nat using (ℕ)
import Algebra.Linear.Construct.Vector K as Vec
private
K' : Set k
K' = Field.Carrier K
record IsFiniteDimensional
{v ℓ} {V : Set v}
(_≈_ : Rel V ℓ)
(_+_ : Op₂ V) (_∙_ : K' → V → V) (-_ : Op₁ V) (0# : V)
(n : ℕ) : Set (suc (v ⊔ k ⊔ ℓ ⊔ ℓᵏ))
where
field
isVectorSpace : IsVectorSpace _≈_ _+_ _∙_ -_ 0#
embed : LinearIsomorphism (record { isVectorSpace = isVectorSpace })
(record { isVectorSpace = Vec.isVectorSpace {n} })
open IsVectorSpace isVectorSpace public
module Vector {n} where
open Vec
isFiniteDimensional : IsFiniteDimensional (Vec._≈_) (Vec._+_) (Vec._∙_) (Vec.-_) (Vec.0#) n
isFiniteDimensional = record
{ isVectorSpace = Vec.isVectorSpace
; embed = Vec.embed
}
| {
"alphanum_fraction": 0.6533333333,
"avg_line_length": 26.5625,
"ext": "agda",
"hexsha": "240817300a344126e5810b1bc0f2a669573b3557",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Structures/FiniteDimensional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Structures/FiniteDimensional.agda",
"max_line_length": 93,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Structures/FiniteDimensional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 390,
"size": 1275
} |
{-# OPTIONS --without-K #-}
infixr 1 _‘→’_
data Type : Set where
_‘→’_ : Type → Type → Type
‘□’ : Type → Type
data □ : Type → Set where
Lӧb : ∀ {X} → □ (‘□’ X ‘→’ X) → □ X
⌞_⌟ : Type → Set
⌞ A ‘→’ B ⌟ = ⌞ A ⌟ → ⌞ B ⌟
⌞ ‘□’ T ⌟ = □ T
⌞_⌟t : ∀ {T : Type} → □ T → ⌞ T ⌟
⌞ (Lӧb □‘X’→X) ⌟t = ⌞ □‘X’→X ⌟t (Lӧb □‘X’→X)
lӧb : ∀ {‘X’} → □ (‘□’ ‘X’ ‘→’ ‘X’) → ⌞ ‘X’ ⌟
lӧb f = ⌞ Lӧb f ⌟t
| {
"alphanum_fraction": 0.3538461538,
"avg_line_length": 19.5,
"ext": "agda",
"hexsha": "485fce9043d14cd5f0783aacbc08fd503072d6ff",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/mini-mini-mini-lob.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/mini-mini-mini-lob.agda",
"max_line_length": 45,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/mini-mini-mini-lob.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 274,
"size": 390
} |
------------------------------------------------------------------------
-- Queue instances for the queues in Queue.Simple
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Queue.Simple.Instances
{c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺)
where
open Derived-definitions-and-properties eq
open import Prelude
open import Queue eq
open import Queue.Simple eq as Q using (Queue)
private
variable
ℓ ℓ₁ ℓ₂ : Level
instance
-- Instances.
Queue-is-queue : Is-queue (λ A → Queue A) (λ _ → ↑ _ ⊤) ℓ
Queue-is-queue .Is-queue.to-List = λ _ → Q.to-List
Queue-is-queue .Is-queue.from-List = Q.from-List
Queue-is-queue .Is-queue.to-List-from-List = Q.to-List-from-List
Queue-is-queue .Is-queue.enqueue = Q.enqueue
Queue-is-queue .Is-queue.to-List-enqueue {q = q} = Q.to-List-enqueue q
Queue-is-queue .Is-queue.dequeue = λ _ → Q.dequeue
Queue-is-queue .Is-queue.to-List-dequeue {q = q} = Q.to-List-dequeue q
Queue-is-queue .Is-queue.dequeue⁻¹ = Q.dequeue⁻¹
Queue-is-queue .Is-queue.to-List-dequeue⁻¹ {x = x} = Q.to-List-dequeue⁻¹ x
Queue-is-queue-with-map : Is-queue-with-map (λ A → Queue A) ℓ₁ ℓ₂
Queue-is-queue-with-map .Is-queue-with-map.map = Q.map
Queue-is-queue-with-map .Is-queue-with-map.to-List-map {q = q} =
Q.to-List-map q
| {
"alphanum_fraction": 0.5569877883,
"avg_line_length": 34.2790697674,
"ext": "agda",
"hexsha": "71513d21cc8759bd2e3cd83ea31fab645fd7a7c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Queue/Simple/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Queue/Simple/Instances.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Queue/Simple/Instances.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 427,
"size": 1474
} |
-- Andreas, 2015-11-28
-- Aliases in parentheses should also parse.
-- Parenthesized aliases are accepted in lets.
-- With type annotation, parenthesized aliases are accepted in wheres.
id0 : {A : Set} → A → A
id0 {A} x = let z = y in z
where
y : A
y = x
id1 : {A : Set} → A → A
id1 {A} x = let (z) = y in z
where
y : A
(y) = x
id2 : {A : Set} → A → A
id2 {A} x = let ((z)) = y in z
where
y : A
((y)) = x
works0 : {A : Set} → A → A
works0 x = let z = y in z
where
y = x
-- Without type annotation, parenthesized aliases should also be accepted in wheres.
-- Should work:
test1 : {A : Set} → A → A
test1 x = let (z) = y in z
where
(y) = x
-- Should work:
test2 : {A : Set} → A → A
test2 x = let ((z)) = y in z
where
((y)) = x
| {
"alphanum_fraction": 0.5421994885,
"avg_line_length": 17.7727272727,
"ext": "agda",
"hexsha": "528511a0d14a983178803e4f449d4e35becada3c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ParenthesizedAlias.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ParenthesizedAlias.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ParenthesizedAlias.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 299,
"size": 782
} |
module Structure.Operator.Vector.LinearMap where
open import Functional
open import Logic
open import Logic.Predicate
open import Logic.Propositional
import Lvl
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Multi
open import Structure.Operator
open import Structure.Operator.Field.VectorSpace
open import Structure.Operator.Properties using (Distributivityₗ ; Distributivityᵣ)
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
open import Syntax.Function
open import Syntax.Transitivity
private variable ℓ ℓᵥ ℓᵥₗ ℓᵥᵣ ℓₛ ℓᵥₑ ℓᵥₑₗ ℓᵥₑᵣ ℓᵥₑ₁ ℓᵥₑ₂ ℓᵥₑ₃ ℓₛₑ : Lvl.Level
private variable V Vₗ Vᵣ V₁ V₂ V₃ S : Type{ℓ}
private variable _+ᵥ_ _+ᵥₗ_ _+ᵥᵣ_ _+ᵥ₁_ _+ᵥ₂_ _+ᵥ₃_ : V → V → V
private variable _⋅ₛᵥ_ _⋅ₛᵥₗ_ _⋅ₛᵥᵣ_ _⋅ₛᵥ₁_ _⋅ₛᵥ₂_ _⋅ₛᵥ₃_ : S → V → V
private variable _+ₛ_ _⋅ₛ_ : S → S → S
module _
⦃ equiv-Vₗ : Equiv{ℓᵥₑₗ}(Vₗ) ⦄
⦃ equiv-Vᵣ : Equiv{ℓᵥₑᵣ}(Vᵣ) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpaceₗ : VectorSpace{V = Vₗ}{S = S}(_+ᵥₗ_)(_⋅ₛᵥₗ_)(_+ₛ_)(_⋅ₛ_))
(vectorSpaceᵣ : VectorSpace{V = Vᵣ}{S = S}(_+ᵥᵣ_)(_⋅ₛᵥᵣ_)(_+ₛ_)(_⋅ₛ_))
(f : Vₗ → Vᵣ)
where
record LinearMap : Type{Lvl.of(Vₗ) Lvl.⊔ ℓᵥₑₗ Lvl.⊔ ℓᵥₑᵣ Lvl.⊔ Lvl.of(S)} where
constructor intro
field
⦃ function ⦄ : Function(f)
⦃ preserves-[+ᵥ] ⦄ : Preserving₂(f)(_+ᵥₗ_)(_+ᵥᵣ_)
⦃ preserves-[⋅ₛᵥ] ⦄ : ∀{s} → Preserving₁(f)(s ⋅ₛᵥₗ_)(s ⋅ₛᵥᵣ_)
_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_ : ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ → VectorSpaceVObject{ℓᵥ = ℓᵥₗ}{ℓᵥₑ = ℓᵥₑₗ}{S = S}(_+ₛ_)(_⋅ₛ_) → VectorSpaceVObject{ℓᵥ = ℓᵥᵣ}{ℓᵥₑ = ℓᵥₑᵣ}{S = S}(_+ₛ_)(_⋅ₛ_) → Stmt
V₁ →ˡⁱⁿᵉᵃʳᵐᵃᵖ V₂ = ∃(LinearMap(VectorSpaceVObject.vectorSpace(V₁)) (VectorSpaceVObject.vectorSpace(V₂)))
_↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ : ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ → VectorSpaceVObject{ℓᵥ = ℓᵥₗ}{ℓᵥₑ = ℓᵥₑₗ}{S = S}(_+ₛ_)(_⋅ₛ_) → VectorSpaceVObject{ℓᵥ = ℓᵥᵣ}{ℓᵥₑ = ℓᵥₑᵣ}{S = S}(_+ₛ_)(_⋅ₛ_) → Stmt
V₁ ↔ˡⁱⁿᵉᵃʳᵐᵃᵖ V₂ = ∃(f ↦ Invertible(f) ∧ LinearMap(VectorSpaceVObject.vectorSpace(V₁)) (VectorSpaceVObject.vectorSpace(V₂))(f))
module _
⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_))
(f : V → V)
where
LinearOperator = LinearMap(vectorSpace)(vectorSpace) (f)
module _
⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_))
(f : V → S)
where
LinearFunctional = LinearMap(vectorSpace)(fieldVectorSpace(VectorSpace.scalarField(vectorSpace))) (f)
module _
⦃ equiv-V₁ : Equiv{ℓᵥₑ₁}(V₁) ⦄
⦃ equiv-V₂ : Equiv{ℓᵥₑ₂}(V₂) ⦄
⦃ equiv-V₃ : Equiv{ℓᵥₑ₃}(V₃) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpace₁ : VectorSpace{V = V₁}{S = S}(_+ᵥ₁_)(_⋅ₛᵥ₁_)(_+ₛ_)(_⋅ₛ_))
(vectorSpace₂ : VectorSpace{V = V₂}{S = S}(_+ᵥ₂_)(_⋅ₛᵥ₂_)(_+ₛ_)(_⋅ₛ_))
(vectorSpace₃ : VectorSpace{V = V₃}{S = S}(_+ᵥ₃_)(_⋅ₛᵥ₃_)(_+ₛ_)(_⋅ₛ_))
(f : V₁ → V₂ → V₃)
where
record BilinearMap : Type{Lvl.of(V₁) Lvl.⊔ Lvl.of(V₂) Lvl.⊔ ℓᵥₑ₁ Lvl.⊔ ℓᵥₑ₂ Lvl.⊔ ℓᵥₑ₃ Lvl.⊔ Lvl.of(S)} where
constructor intro
field
⦃ linearMap₁ ⦄ : ∀{y} → LinearMap vectorSpace₁ vectorSpace₃ (x ↦ f(x)(y))
⦃ linearMap₂ ⦄ : ∀{x} → LinearMap vectorSpace₂ vectorSpace₃ (y ↦ f(x)(y))
open module LinearMapₗ{y} = LinearMap(linearMap₁{y}) renaming (function to functionₗ ; preserves-[+ᵥ] to preserves-[+ᵥ]ₗ ; preserves-[⋅ₛᵥ] to preserves-[⋅ₛᵥ]ₗ) public
open module LinearMapᵣ{x} = LinearMap(linearMap₂{x}) renaming (function to functionᵣ ; preserves-[+ᵥ] to preserves-[+ᵥ]ᵣ ; preserves-[⋅ₛᵥ] to preserves-[⋅ₛᵥ]ᵣ) public
binaryOperator : BinaryOperator(f)
binaryOperator = functions-to-binaryOperator(f) ⦃ functionₗ ⦄ ⦃ functionᵣ ⦄
module _
⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
(vectorSpace : VectorSpace{V = V}{S = S}(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_))
(_▫_ : V → V → V)
where
BilinearOperator = BilinearMap(vectorSpace)(vectorSpace)(vectorSpace) (_▫_)
module BilinearOperator(bilinearOper : BilinearOperator) where
-- TODO: Move the proof for distributivity from preserving
[+ᵥ]-distributivityₗ : Distributivityₗ(_▫_)(_+ᵥ_)
Distributivityₗ.proof [+ᵥ]-distributivityₗ {x}{y}{z} =
x ▫ (y +ᵥ z) 🝖[ _≡_ ]-[ preserving₂(x ▫_)(_+ᵥ_)(_+ᵥ_) ⦃ LinearMap.preserves-[+ᵥ] (BilinearMap.linearMap₂ bilinearOper) ⦄ ]
(x ▫ y) +ᵥ (x ▫ z) 🝖-end
[+ᵥ]-distributivityᵣ : Distributivityᵣ(_▫_)(_+ᵥ_)
Distributivityᵣ.proof [+ᵥ]-distributivityᵣ {x}{y}{z} =
(x +ᵥ y) ▫ z 🝖[ _≡_ ]-[ preserving₂(_▫ z)(_+ᵥ_)(_+ᵥ_) ⦃ LinearMap.preserves-[+ᵥ] (BilinearMap.linearMap₁ bilinearOper) ⦄ ]
(x ▫ z) +ᵥ (y ▫ z) 🝖-end
| {
"alphanum_fraction": 0.6567815089,
"avg_line_length": 42.462962963,
"ext": "agda",
"hexsha": "4da1da58ca51e7c042d6b37505626648115ae5b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/LinearMap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/LinearMap.agda",
"max_line_length": 173,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/LinearMap.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2528,
"size": 4586
} |
module STLC2.Kovacs.Completeness where
open import STLC2.Kovacs.Normalisation public
open import STLC2.Kovacs.Convertibility public
-- TODO: Remove this
postulate
█ : ∀ {ℓ} → {X : Set ℓ} → X
--------------------------------------------------------------------------------
-- (_≈_)
mutual
infix 3 _≫_
_≫_ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A → Set
_≫_ {⎵} {Γ} M N = M ∼ embⁿᶠ N
_≫_ {A ⇒ B} {Γ} M f = ∀ {Γ′} → (η : Γ′ ⊇ Γ)
→ {N : Γ′ ⊢ A} {∂a : Γ′ ∂⊩ A}
→ N ∂≫ ∂a
→ ren η M ∙ N ∂≫ f η ∂a
_≫_ {A ⩕ B} {Γ} M s = π₁ M ∂≫ proj₁ s × π₂ M ∂≫ proj₂ s
_≫_ {⫪} {Γ} M s = ⊤
_≫_ {⫫} {Γ} M s = ⊥
_≫_ {A ⩖ B} {Γ} M s = elim⊎ s (λ ∂a → Σ (Γ ⊢ A) (λ M₁ → M₁ ∂≫ ∂a))
(λ ∂b → Σ (Γ ⊢ B) (λ M₂ → M₂ ∂≫ ∂b))
infix 3 _∂≫_
_∂≫_ : ∀ {Γ A} → Γ ⊢ A → Γ ∂⊩ A → Set
_∂≫_ {Γ} {A} M ∂a
= ∀ {Γ′ C} → (η : Γ′ ⊇ Γ)
→ {N : Γ′ ⊢ C}
→ {Nⁿᶠ : Γ′ ⊢ⁿᶠ C}
→ (f : ∀ {Γ″} → (η′ : Γ″ ⊇ Γ′)
→ {a : Γ″ ⊩ A}
→ ren (η ○ η′) M ≫ a
→ ren η′ N ∼ embⁿᶠ (renⁿᶠ η′ Nⁿᶠ))
→ N ∼ embⁿᶠ Nⁿᶠ
-- (_≈ᶜ_)
infix 3 _∂≫⋆_
data _∂≫⋆_ : ∀ {Γ Ξ} → Γ ⊢⋆ Ξ → Γ ∂⊩⋆ Ξ → Set
where
∅ : ∀ {Γ} → ∅ {Γ} ∂≫⋆ ∅
_,_ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ∂⊩⋆ Ξ}
→ (χ : σ ∂≫⋆ ρ)
→ {M : Γ ⊢ A} {∂a : Γ ∂⊩ A}
→ (∂q : M ∂≫ ∂a)
→ σ , M ∂≫⋆ ρ , ∂a
--------------------------------------------------------------------------------
-- (_∼◾≈_)
mutual
coe≫ : ∀ {A Γ} → {M₁ M₂ : Γ ⊢ A}
→ M₁ ∼ M₂ → {a : Γ ⊩ A} → M₁ ≫ a
→ M₂ ≫ a
coe≫ {⎵} p {N} q = p ⁻¹ ⦙ q
coe≫ {A ⇒ B} p {f} g = λ η {N} {∂a} ∂q →
∂coe≫ {∂a = λ η′ f′ → f η ∂a η′ f′}
(ren∼ η p ∙∼ (refl∼ {M = N}))
(g η {N} {∂a} ∂q)
coe≫ {A ⩕ B} p {s} q = ∂coe≫ {∂a = proj₁ s} (π₁∼ p) (proj₁ q) ,
∂coe≫ {∂a = proj₂ s} (π₂∼ p) (proj₂ q)
coe≫ {⫪} p {s} q = tt
coe≫ {⫫} p {s} q = elim⊥ s
coe≫ {A ⩖ B} p {inj₁ a} q = q
coe≫ {A ⩖ B} p {inj₂ b} q = q
∂coe≫ : ∀ {A Γ} → {M₁ M₂ : Γ ⊢ A} {∂a : Γ ∂⊩ A}
→ M₁ ∼ M₂ → M₁ ∂≫ ∂a
→ M₂ ∂≫ ∂a
∂coe≫ p ∂q
= λ η {N} {Nⁿᶠ} f →
∂q η {N} {Nⁿᶠ} (λ η′ {a} q →
f η′ (coe≫ (ren∼ (η ○ η′) p)
q))
--------------------------------------------------------------------------------
-- (≈ₑ)
mutual
acc≫ : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ)
→ {M : Γ ⊢ A} {a : Γ ⊩ A}
→ M ≫ a
→ ren η M ≫ acc η a
acc≫ {⎵} η {M} {N} p = coe ((λ N′ → ren η M ∼ N′)
& natembⁿᶠ η N ⁻¹)
(ren∼ η p)
acc≫ {A ⇒ B} η {M} {f} g η′ {N} {∂a}
rewrite ren○ η′ η M ⁻¹
= g (η ○ η′) {N} {∂a}
acc≫ {A ⩕ B} η {M} {s} q = ∂acc≫ η {π₁ M} {proj₁ s} (proj₁ q)
, ∂acc≫ η {π₂ M} {proj₂ s} (proj₂ q)
acc≫ {⫪} η {M} {s} q = tt
acc≫ {⫫} η {M} {s} q = elim⊥ s
acc≫ {A ⩖ B} η {M} {inj₁ a} (M₁ , ∂a) = ren η M₁ , ∂acc≫ η {M₁} {a} ∂a
acc≫ {A ⩖ B} η {M} {inj₂ b} (M₂ , ∂b) = ren η M₂ , ∂acc≫ η {M₂} {b} ∂b
∂acc≫ : ∀ {A Γ Γ′} → (η : Γ′ ⊇ Γ)
→ {M : Γ ⊢ A} {∂a : Γ ∂⊩ A}
→ M ∂≫ ∂a
→ ren η M ∂≫ ∂acc η ∂a
∂acc≫ η {M} ∂q
= λ η′ {N} {Nⁿᶠ} f →
∂q (η ○ η′) {N} {Nⁿᶠ} (λ η″ q →
f η″ (coe≫ (coe (_∼_ & ((λ η‴ → ren η‴ M) & assoc○ η″ η′ η ⁻¹)
⊗ ren○ (η′ ○ η″) η M)
refl∼)
q))
-- (≈ᶜₑ)
-- NOTE: _⬖≫_ = ∂acc≫⋆
_⬖≫_ : ∀ {Γ Γ′ Ξ} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ∂⊩⋆ Ξ}
→ (χ : σ ∂≫⋆ ρ) (η : Γ′ ⊇ Γ)
→ σ ◐ η ∂≫⋆ ρ ⬖ η
∅ ⬖≫ η = ∅
_,_ χ {M} {∂a} ∂q ⬖≫ η = χ ⬖≫ η , ∂acc≫ η {M} {∂a} ∂q
--------------------------------------------------------------------------------
return≫ : ∀ {A Γ} → {M : Γ ⊢ A} {a : Γ ⊩ A}
→ M ≫ a → M ∂≫ return a
return≫ {M = M} {a} q
= λ η {N} {Nⁿᶠ} f →
coe (_∼_ & idren N
⊗ embⁿᶠ & idrenⁿᶠ Nⁿᶠ)
(f idₑ {acc η a}
(coe≫ (coe ((λ η′ → ren η M ∼ ren η′ M)
& (rid○ η ⁻¹))
refl∼)
(acc≫ η {M} {a} q)))
bind≫ : ∀ {A C Γ} → {M : Γ ⊢ A} {∂a : Γ ∂⊩ A}
{N : Γ ⊢ C} {∂c : Γ ∂⊩ C}
→ M ∂≫ ∂a → (∀ {Γ′} → (η : Γ′ ⊇ Γ)
→ {a : Γ′ ⊩ A}
→ ren η M ≫ a
→ ren η N ∂≫ ∂acc η ∂c)
→ N ∂≫ ∂c
bind≫ {M = M} {∂a} {N} {∂c} ∂q f
= λ η {N′} {Nⁿᶠ′} f′ →
∂q η {N′} {Nⁿᶠ′} (λ η′ {a} q →
f (η ○ η′) {a} q idₑ {ren η′ N′} {renⁿᶠ η′ Nⁿᶠ′} (λ η″ {c} q′ →
coe (_∼_ & ren○ η″ η′ N′
⊗ embⁿᶠ & renⁿᶠ○ η″ η′ Nⁿᶠ′)
(f′ (η′ ○ η″) (coe≫ (coe (_∼_ & ren○ (idₑ ○ η″) (η ○ η′) N
⊗ (λ η‴ → ren η‴ N)
& ( (λ η‴ → (η ○ η′) ○ η‴)
& lid○ η″
⦙ assoc○ η″ η′ η
))
refl∼)
q′))))
--------------------------------------------------------------------------------
-- (∈≈)
get≫ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ∂⊩⋆ Ξ}
→ σ ∂≫⋆ ρ → (i : Ξ ∋ A)
→ getₛ σ i ∂≫ getᵥ ρ i
get≫ (χ , p) zero = p
get≫ (χ , p) (suc i) = get≫ χ i
-- (Tm≈)
eval≫ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ∂⊩⋆ Ξ}
→ σ ∂≫⋆ ρ → (M : Ξ ⊢ A)
→ sub σ M ∂≫ eval ρ M
eval≫ {σ = σ} {ρ} χ (𝓋 i)
= get≫ χ i
eval≫ {σ = σ} {ρ} χ (ƛ M)
= return≫ {M = ƛ (sub (liftₛ σ) M)}
{a = λ {Γ′} η ∂a → eval (ρ ⬖ η , ∂a) M}
(λ {Γ′} η {N} {∂a} ∂q →
∂coe≫ {∂a = eval (ρ ⬖ η , ∂a) M}
(coe (((ƛ (ren (liftₑ η) (sub (liftₛ σ) M)) ∙ N) ∼_)
& ( sub◑ (idₛ , N) (liftₑ η) (sub (liftₛ σ) M) ⁻¹
⦙ sub● (liftₑ η ◑ (idₛ , N)) (liftₛ σ) M ⁻¹
⦙ (λ σ′ → sub (σ′ , N) M)
& ( comp●◑ (η ◑ idₛ , N) (wkₑ idₑ) σ
⦙ (σ ●_) & lid◑ (η ◑ idₛ)
⦙ comp●◑ idₛ η σ ⁻¹
⦙ rid● (σ ◐ η)
)
))
(red⇒ (ren (liftₑ η) (sub (liftₛ σ) M)) N) ⁻¹)
(eval≫ (_,_ (χ ⬖≫ η) {∂a = ∂a} (∂q)) M))
eval≫ {σ = σ} {ρ} χ (M ∙ N)
= bind≫ {M = sub σ M}
{∂a = eval ρ M}
{N = sub σ M ∙ sub σ N}
{∂c = eval ρ M ∂!∙ eval ρ N}
(eval≫ χ M)
(λ η {f} g →
∂coe≫ {∂a = eval (ρ ⬖ η) M ∂!∙ eval (ρ ⬖ η) N}
(coe (_∼_ & ((λ M′ → M′ ∙ ren η (sub σ N))
& ( (λ η′ → ren η′ (sub σ M))
& (rid○ η ⁻¹)
⦙ ren○ idₑ η (sub σ M)
))
⊗ refl)
refl∼)
(g idₑ {∂a = ∂acc η (eval ρ N)}
(∂coe≫ {∂a = eval (ρ ⬖ η) N}
(≡→∼ (sub◐ η σ N))
(eval≫ (χ ⬖≫ η) N))))
eval≫ {σ = σ} {ρ} χ (M , N)
= return≫ {M = sub σ M , sub σ N}
{a = eval ρ M , eval ρ N}
( ∂coe≫ {∂a = eval ρ M}
(red⩕₁ (sub σ M) (sub σ N) ⁻¹)
(eval≫ χ M)
, ∂coe≫ {∂a = eval ρ N}
(red⩕₂ (sub σ M) (sub σ N) ⁻¹)
(eval≫ χ N)
)
eval≫ {σ = σ} {ρ} χ (π₁ M)
= bind≫ {M = sub σ M}
{∂a = eval ρ M}
{N = π₁ (sub σ M)}
{∂c = ∂!π₁ (eval ρ M)}
(eval≫ χ M)
(λ η q → proj₁ q)
eval≫ {σ = σ} {ρ} χ (π₂ M)
= bind≫ {M = sub σ M}
{∂a = eval ρ M}
{N = π₂ (sub σ M)}
{∂c = ∂!π₂ (eval ρ M)}
(eval≫ χ M)
(λ η q → proj₂ q)
eval≫ {σ = σ} {ρ} χ τ
= return≫ {M = τ} tt
eval≫ {σ = σ} {ρ} χ (φ M)
= bind≫ {M = sub σ M}
{∂a = eval ρ M}
{N = φ (sub σ M)}
{∂c = ∂!φ (eval ρ M)}
(eval≫ χ M)
(λ η q → elim⊥ q)
eval≫ {σ = σ} {ρ} χ (ι₁ M)
= return≫ {M = ι₁ (sub σ M)}
{a = inj₁ (eval ρ M)}
(sub σ M , eval≫ χ M)
eval≫ {σ = σ} {ρ} χ (ι₂ M)
= return≫ {M = ι₂ (sub σ M)}
{a = inj₂ (eval ρ M)}
(sub σ M , eval≫ χ M)
eval≫ {σ = σ} {ρ} χ (M ⁇ N₁ ∥ N₂)
= bind≫ {M = sub σ M}
{∂a = eval ρ M}
{N = sub σ M ⁇ sub (liftₛ σ) N₁
∥ sub (liftₛ σ) N₂}
{∂c = eval ρ M ∂!⁇ (λ η ∂a → eval (ρ ⬖ η , ∂a) N₁)
∂!∥ (λ η ∂b → eval (ρ ⬖ η , ∂b) N₂)}
(eval≫ χ M)
(λ { η {inj₁ ∂a} (M₁ , ∂q) →
λ η′ {N} {Nⁿᶠ} f →
∂q η′ {N} {Nⁿᶠ} (λ η″ {a} q →
█)
; η {inj₂ ∂b} (M₂ , ∂q) →
λ η′ {N} {Nⁿᶠ} f →
∂q η′ {N} {Nⁿᶠ} (λ η″ {a} q →
█)
})
--------------------------------------------------------------------------------
mutual
-- (q≈)
reify≫ : ∀ {A Γ} → {M : Γ ⊢ A} {a : Γ ∂⊩ A}
→ (∂q : M ∂≫ a)
→ M ∼ embⁿᶠ (reify a)
reify≫ {⎵} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {N} p →
█)
reify≫ {A ⇒ B} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {f} g →
█)
reify≫ {A ⩕ B} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {s} q →
█)
reify≫ {⫪} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {s} q →
coe ((λ M′ → ren η M ∼ M′)
& natembⁿᶠ η (∂a idₑ (λ η′ s′ → τ)) ⁻¹)
(ren∼ {M₁ = M}
{M₂ = embⁿᶠ (∂a idₑ (λ η′ s′ → τ))}
η
█))
reify≫ {⫫} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {s} q →
█)
reify≫ {A ⩖ B} {M = M} {∂a} ∂q
= ∂q idₑ {M} {reify ∂a} (λ η {s} q →
█)
-- (u≈)
reflect≫ : ∀ {A Γ} → (M : Γ ⊢ⁿᵉ A)
→ embⁿᵉ M ∂≫ reflect M
reflect≫ {⎵} M
= return≫ {M = embⁿᵉ M}
{a = ne M}
refl∼
reflect≫ {A ⇒ B} M
= return≫ {M = embⁿᵉ M}
{a = λ η ∂a → reflect (renⁿᵉ η M ∙ reify ∂a)}
(λ η {N} {∂a} ∂q →
∂coe≫ {∂a = ∂acc η (reflect M) ∂!∙ ∂a}
(≡→∼ (natembⁿᵉ η M ⁻¹) ∙∼ reify≫ ∂q ⁻¹)
(reflect≫ (renⁿᵉ η M ∙ reify ∂a)))
reflect≫ {A ⩕ B} M
= return≫ {M = embⁿᵉ M}
{a = reflect (π₁ M) , reflect (π₂ M)}
(reflect≫ (π₁ M) , reflect≫ (π₂ M))
reflect≫ {⫪} M
= return≫ {M = embⁿᵉ M}
{a = tt}
tt
reflect≫ {⫫} M
= λ η {N} {Nⁿᶠ} f →
coe (_∼_ & idren N
⊗ embⁿᶠ & idrenⁿᶠ Nⁿᶠ)
(f idₑ {█} █)
reflect≫ {A ⩖ B} M
= λ η {N} {Nⁿᶠ} f →
coe (_∼_ & idren N
⊗ embⁿᶠ & idrenⁿᶠ Nⁿᶠ)
(f idₑ {█} █)
--------------------------------------------------------------------------------
-- (uᶜ≈)
id≫⋆ : ∀ {Γ} → idₛ {Γ} ∂≫⋆ idᵥ
id≫⋆ {∅} = ∅
id≫⋆ {Γ , A} = id≫⋆ ⬖≫ wkₑ idₑ , reflect≫ 0
complete : ∀ {Γ A} → (M : Γ ⊢ A)
→ M ∼ embⁿᶠ (nf M)
complete M = coe ((_∼ embⁿᶠ (reify (eval idᵥ M))) & idsub M)
(reify≫ (eval≫ id≫⋆ M))
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.2457585644,
"avg_line_length": 30.4975124378,
"ext": "agda",
"hexsha": "f15801140f7a3c690a4df891c5e41c436d911379",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC2/Kovacs/Completeness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC2/Kovacs/Completeness.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC2/Kovacs/Completeness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5747,
"size": 12260
} |
-- Andreas, 2010-09-24
module ParseForallAbsurd where
parseFails : forall () -> Set1
parseFails x = Set
-- this does no longer give the error message
-- "absurd lambda cannot have a body"
| {
"alphanum_fraction": 0.7315789474,
"avg_line_length": 21.1111111111,
"ext": "agda",
"hexsha": "294ff4ff76ea1f9f01c2339399de59d3177bd729",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ParseForallAbsurd.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ParseForallAbsurd.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ParseForallAbsurd.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 56,
"size": 190
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Unit
open import Data.Integer as ℤ using (ℤ)
open import Data.List
open import Data.List.Relation.Unary.All as List
module quantifierIn-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
emptyList : List ℤ
emptyList = []
abstract
empty : List.All (λ (x : ℤ) → ⊤) emptyList
empty = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
} | {
"alphanum_fraction": 0.7121661721,
"avg_line_length": 23.2413793103,
"ext": "agda",
"hexsha": "18151dfc1725840d94ba9c955f3b948bc9c719f9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda",
"max_line_length": 60,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "examples/simple/quantifierIn/quantifierIn-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 188,
"size": 674
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.Relation
module lib.NType where
module _ {i} where
{- Definition of contractible types and truncation levels -}
-- We define `has-level' as a record, so that it does not unfold when
-- applied to (S n), in order for instance arguments to work correctly
-- (idea by Dan Licata)
record has-level (n : ℕ₋₂) (A : Type i) : Type i
has-level-aux : ℕ₋₂ → (Type i → Type i)
has-level-aux ⟨-2⟩ A = Σ A (λ x → ((y : A) → x == y))
has-level-aux (S n) A = (x y : A) → has-level n (x == y)
record has-level n A where
-- Agda notices that the record is recursive, so we need to specify that we want eta-equality
inductive
eta-equality
constructor has-level-in
field
has-level-apply : has-level-aux n A
open has-level public
instance
has-level-apply-instance : {A : Type i} {n : ℕ₋₂} {x y : A} {{p : has-level (S n) A}} → has-level n (x == y)
has-level-apply-instance {x = x} {y} {{p}} = has-level-apply p x y
is-contr = has-level -2
is-prop = has-level -1
is-set = has-level 0
contr-center : {A : Type i} (p : is-contr A) → A
contr-center p = fst (has-level-apply p)
contr-path : {A : Type i} (p : is-contr A) (y : A) → contr-center p == y
contr-path p y = snd (has-level-apply p) y
prop-path : {A : Type i} (p : is-prop A) (x y : A) → x == y
prop-path p x y = contr-center (has-level-apply p x y)
{- To be a mere proposition, it is sufficient that all points are equal -}
has-all-paths : Type i → Type i
has-all-paths A = (x y : A) → x == y
abstract
all-paths-is-prop : {A : Type i} → (has-all-paths A → is-prop A)
all-paths-is-prop {A} c = has-level-in (λ x y → has-level-in (c x y , canon-path)) where
canon-path : {x y : A} (p : x == y) → c x y == p
canon-path {.y} {y} idp =
c y y =⟨ lemma (! (c y y)) ⟩
(! (c y y)) ∙ c y y =⟨ !-inv-l (c y y) ⟩
idp =∎ where
lemma : {x y : A} (p : x == y) → c x y == p ∙ c y y
lemma idp = idp
{- Truncation levels are cumulative -}
raise-level : {A : Type i} (n : ℕ₋₂)
→ (has-level n A → has-level (S n) A)
raise-level ⟨-2⟩ q =
all-paths-is-prop (λ x y → ! (contr-path q x) ∙ contr-path q y)
raise-level (S n) q =
has-level-in (λ x y → raise-level n (has-level-apply q x y))
{- Having decidable equality is stronger that being a set -}
has-dec-onesided-eq : {A : Type i} → A → Type i
has-dec-onesided-eq x = ∀ y → Dec (x == y)
has-dec-eq : Type i → Type i
has-dec-eq A = (x : A) → has-dec-onesided-eq x
abstract
-- XXX naming
dec-onesided-eq-is-prop : {A : Type i} (x : A)
→ has-dec-onesided-eq x → (∀ y → is-prop (x == y))
dec-onesided-eq-is-prop {A} x d y = all-paths-is-prop UIP where
T : {y : A} → x == y → Type i
T {y} p with d x | d y
T {y} p | inr _ | _ = Lift ⊥
T {y} p | inl _ | inr _ = Lift ⊥
T {y} p | inl dx | inl dy = ! dx ∙ dy == p
lemma : {y : A} → (p : x == y) → T p
lemma idp with d x
lemma idp | inl r = !-inv-l r
lemma idp | inr r⊥ = lift (r⊥ idp)
UIP : {y : A} (p q : x == y) → p == q
UIP idp q with d x | lemma q
UIP idp q | inl r | s = ! (!-inv-l r) ∙' s
UIP idp q | inr r⊥ | _ = Empty-elim (r⊥ idp)
dec-eq-is-set : {A : Type i} → has-dec-eq A → is-set A
dec-eq-is-set d = has-level-in (λ x y → dec-onesided-eq-is-prop x (d x) y)
{- Relationships between levels -}
module _ {A : Type i} where
abstract
contr-has-all-paths : {{_ : is-contr A}} → has-all-paths A
contr-has-all-paths {{c}} x y = ! (contr-path c x) ∙ contr-path c y
prop-has-all-paths : {{_ : is-prop A}} → has-all-paths A
prop-has-all-paths {{c}} x y = prop-path c x y
inhab-prop-is-contr : A → {{_ : is-prop A}} → is-contr A
inhab-prop-is-contr x₀ {{p}} = has-level-in (x₀ , λ y → prop-path p x₀ y)
inhab-to-contr-is-prop : (A → is-contr A) → is-prop A
inhab-to-contr-is-prop c = all-paths-is-prop $
λ x y → ! (contr-path (c x) x) ∙ contr-path (c x) y
inhab-to-prop-is-prop : (A → is-prop A) → is-prop A
inhab-to-prop-is-prop c = has-level-in (λ x y → has-level-apply (c x) x y)
contr-has-level : {n : ℕ₋₂} → (is-contr A → has-level n A)
contr-has-level {n = ⟨-2⟩} p = p
contr-has-level {n = S n} p = raise-level n (contr-has-level p)
prop-has-level-S : {n : ℕ₋₂} → (is-prop A → has-level (S n) A)
prop-has-level-S {n = ⟨-2⟩} p = p
prop-has-level-S {n = S n} p = raise-level (S n) (prop-has-level-S p)
set-has-level-SS : {n : ℕ₋₂} → (is-set A → has-level (S (S n)) A)
set-has-level-SS {n = ⟨-2⟩} p = p
set-has-level-SS {n = S n} p = raise-level (S (S n)) (set-has-level-SS p)
contr-is-prop : is-contr A → is-prop A
contr-is-prop = contr-has-level
contr-is-set : is-contr A → is-set A
contr-is-set = contr-has-level
prop-is-set : is-prop A → is-set A
prop-is-set = prop-has-level-S
=-preserves-contr : {x y : A} → is-contr A → is-contr (x == y)
=-preserves-contr p = has-level-in (contr-has-all-paths {{p}} _ _ , unique-path) where
unique-path : {u v : A} (q : u == v)
→ contr-has-all-paths {{p}} u v == q
unique-path idp = !-inv-l (contr-path p _)
{- If [A] has level [n], then so does [x == y] for [x y : A] -}
instance
=-preserves-level : {n : ℕ₋₂} {x y : A}
→ has-level n A → has-level n (x == y)
=-preserves-level {⟨-2⟩} = =-preserves-contr
=-preserves-level {S n} {x} {y} p = raise-level n (has-level-apply p x y)
{- The type of paths from a fixed point is contractible -}
instance
pathfrom-is-contr : (x : A) → is-contr (Σ A (λ t → x == t))
pathfrom-is-contr x = has-level-in ((x , idp) , pathfrom-unique-path) where
pathfrom-unique-path : {u : A} (pp : Σ A (λ t → u == t)) → (u , idp) == pp
pathfrom-unique-path (u , idp) = idp
{- The type of paths to a fixed point is contractible -}
instance
pathto-is-contr : (x : A) → is-contr (Σ A (λ t → t == x))
pathto-is-contr x = has-level-in ((x , idp) , pathto-unique-path) where
pathto-unique-path : {u : A} (pp : Σ A (λ t → t == u)) → (u , idp) == pp
pathto-unique-path (u , idp) = idp
{-
If [B] is a fibration over a contractible type [A], then any point in any
fiber of [B] gives a section
-}
contr-has-section : ∀ {j} {A : Type i} {B : A → Type j}
→ (is-contr A → (x : A) → (u : B x) → Π A B)
contr-has-section {B = B} p x₀ y₀ t = transport B (! (contr-path p x₀) ∙ contr-path p t) y₀
{- Subtypes -}
-- TODO: replace them by records, with the second field an instance field
module _ {i} (A : Type i) where
SubtypeProp : ∀ j → Type (lmax i (lsucc j))
SubtypeProp j = Σ (A → Type j) (λ P → ∀ a → is-prop (P a))
module SubtypeProp {i j} {A : Type i} (P : SubtypeProp A j) where
prop = fst P
level = snd P
module _ {i j} {A : Type i} (P : SubtypeProp A j) where
private
module P = SubtypeProp P
Subtype : Type (lmax i j)
Subtype = Σ A P.prop
| {
"alphanum_fraction": 0.5442722745,
"avg_line_length": 35.960199005,
"ext": "agda",
"hexsha": "73cfc30dbed576691f336f376e325d8df14829ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/NType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/NType.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/NType.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2619,
"size": 7228
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cw.CW
open import cw.FinCW
open import cw.FinBoundary
open import cohomology.Theory
module cw.cohomology.cochainequiv.DualizedHigherBoundary (OT : OrdinaryTheory lzero)
{n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where
open OrdinaryTheory OT
private
fin-skel = ⊙FinSkeleton.skel ⊙fin-skel
I = AttachedFinSkeleton.numCells fin-skel
fin-skel₋₁ = AttachedFinSkeleton.skel fin-skel
I₋₁ = AttachedFinSkeleton.numCells fin-skel₋₁
module FAG = FreeAbelianGroup (Fin I)
module FAG₋₁ = FreeAbelianGroup (Fin I₋₁)
open FAG renaming (FreeAbGroup to G) using ()
open FAG₋₁ renaming (FreeAbGroup to G₋₁) using ()
abstract
rephrase-dualized-higher-boundary-in-degree : ∀ (g : Fin I₋₁ → Group.El (C2 0)) <I
→ GroupIso.g (FAG.Freeness.extend-iso (C2-abgroup 0))
(GroupIso.f (FAG₋₁.Freeness.extend-iso (C2-abgroup 0)) g ∘ᴳ fboundary-last fin-skel) <I
== Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))
rephrase-dualized-higher-boundary-in-degree g <I =
γ.f (GroupHom.f (fboundary-last fin-skel) (FAG.insert <I))
=⟨ ap γ.f $ app= (is-equiv.g-f (snd (FAG.Freeness.extend-equiv G₋₁)) (fboundary'-last fin-skel)) <I ⟩
γ.f (G₋₁.sum (λ <I₋₁ → G₋₁.exp (FAG₋₁.insert <I₋₁) (deg <I₋₁)))
=⟨ γ.pres-sum (λ <I₋₁ → G₋₁.exp (FAG₋₁.insert <I₋₁) (deg <I₋₁)) ⟩
C⁰2.sum (λ <I₋₁ → γ.f (G₋₁.exp (FAG₋₁.insert <I₋₁) (deg <I₋₁)))
=⟨ ap C⁰2.sum (λ= $ λ <I₋₁ → γ.pres-exp (FAG₋₁.insert <I₋₁) (deg <I₋₁)) ⟩
C⁰2.sum (λ <I₋₁ → C⁰2.exp (γ.f (FAG₋₁.insert <I₋₁)) (deg <I₋₁))
=⟨ ap C⁰2.sum
(λ= λ <I₋₁ → ap (λ g → C⁰2.exp g (deg <I₋₁)) $
app= (is-equiv.g-f (snd (FAG₋₁.Freeness.extend-equiv C⁰2)) g) <I₋₁) ⟩
C⁰2.sum (λ <I₋₁ → C⁰2.exp (g <I₋₁) (deg <I₋₁))
=∎
where
deg : Fin I₋₁ → ℤ
deg <I₋₁ = fdegree-last fin-skel <I <I₋₁
C⁰2 : AbGroup lzero
C⁰2 = C2-abgroup 0
module C⁰2 = AbGroup C⁰2
γ : G₋₁.grp →ᴳ C⁰2.grp
γ = FAG₋₁.Freeness.extend C⁰2 g
module γ = GroupHom γ
| {
"alphanum_fraction": 0.608778626,
"avg_line_length": 38.8148148148,
"ext": "agda",
"hexsha": "d73918b5a3e922055cb96c89b27f92b1bd817880",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_line_length": 107,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedHigherBoundary.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 913,
"size": 2096
} |
open import Common.Prelude
pattern [_] x = x ∷ []
pattern tail {x} xs = x ∷ xs
length : ∀ {A} → List A → Nat
length [] = 0
length [ _ ] = 1
length (tail [ _ ]) = 2
length (tail (tail xs)) = 2 + length xs
data Vec (A : Set) : Nat → Set where
nil : Vec A 0
cons : ∀ n → A → Vec A n → Vec A (suc n)
pattern _∷v_ {n} x xs = cons n x xs
map : ∀ {A B n} → (A → B) → Vec A n → Vec B n
map f nil = nil
map f (x ∷v xs) = f x ∷v map f xs
data SomeVec (A : Set) : Set where
someVec : ∀ n → Vec A n → SomeVec A
pattern some {n} xs = someVec n xs
null : ∀ {A} → SomeVec A → Bool
null (some nil) = true
null (some (_ ∷v _)) = false -- check that the hidden arg can be instantiated to a dot pattern
| {
"alphanum_fraction": 0.5673758865,
"avg_line_length": 22.7419354839,
"ext": "agda",
"hexsha": "0ba2690dcc8d6b793a16dc58b7c7f3b00d68a194",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue860.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue860.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue860.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 270,
"size": 705
} |
{-# OPTIONS --without-K #-}
module hott.core.univalence where
open import hott.core.universe
open import hott.functions
open import hott.core.equality
open import hott.core.sigma
-- The core idea of univalence is to "identify" isomorphic types as
-- equal. Of course the normal definition of isomorphism is that there
-- should be a map from A to B that is witnesses the equivalence of the
-- two type. This is captured by the following record.
record _≃_ {a b : Level}(A : Type a)(B : Type b) : Type (a ⊔ b) where
constructor IdentifyTypesVia
field
equiv : (A → B) -- The equivalence
left-inv : (B → A) -- its left inverse
right-inv : (B → A) -- and its right inverse
-- The proofs of the fact that the left and right inverses are actually
-- left and right inverses.
left-inv∘equiv~idA : left-inv ∘ equiv ~ id
iso∘right-equiv~idB : equiv ∘ right-inv ~ id
-- Of course a type should be equivalent to itself via identity.
A≃A : {ℓ : Level}{A : Type ℓ} → A ≃ A
A≃A {ℓ} {A} = IdentifyTypesVia id id id (λ _ → refl) (λ _ → refl)
-- Equal types are equivalent.
≡→≃ : {ℓ : Level}{A B : Type ℓ} → A ≡ B → A ≃ B
≡→≃ refl = A≃A
-- For the converse we need the univalence. However Univalence says
-- something. Not only can we infer A ≡ B from A ≃ B via the postulate
-- ua, this map together with ≡→≃ gives an equivalence of types.
module Univalence {ℓ : Level}{A B : Type ℓ} where
-- The main axiom is to identify A ≃ B with A ≡ B
postulate ua : A ≃ B → A ≡ B
-- Now we are ready for the univalence axiom.
UnivalenceAxiom : (A ≃ B) ≃ (A ≡ B)
UnivalenceAxiom = IdentifyTypesVia ua ≡→≃ ≡→≃ linv-prf rinv-prf
where postulate rinv-prf : ua ∘ ≡→≃ ~ id
postulate linv-prf : ≡→≃ ∘ ua ~ id
-- The next function helps in clean use of the univalence
-- axioms in equational reasoning.
--
--
-- begin ...
-- ≡ B by univalence
-- ...
--
-- provided an appropriate instance of A ≃ B is available in the
-- vicinity.
--
univalence : ⦃ a≃b : A ≃ B ⦄ → A ≡ B
univalence ⦃ a≃b ⦄ = ua a≃b
open Univalence public
| {
"alphanum_fraction": 0.6368794326,
"avg_line_length": 32.0454545455,
"ext": "agda",
"hexsha": "5ec7c02e47dc7dc040ab8ab4430fb9e4f77c4924",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/univalence.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/univalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 696,
"size": 2115
} |
-- The category Ab of abelian groups
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.AbGroups where
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Categories.Category.Base
open import Cubical.Foundations.Prelude
module _ {ℓ : Level} where
open Category
AbGroupCategory : Category (ℓ-suc ℓ) ℓ
AbGroupCategory .ob = AbGroup ℓ
AbGroupCategory .Hom[_,_] = AbGroupHom
AbGroupCategory .id = idGroupHom
AbGroupCategory ._⋆_ = compGroupHom
AbGroupCategory .⋆IdL f = GroupHom≡ refl
AbGroupCategory .⋆IdR f = GroupHom≡ refl
AbGroupCategory .⋆Assoc f g h = GroupHom≡ refl
AbGroupCategory .isSetHom = isSetGroupHom
| {
"alphanum_fraction": 0.769121813,
"avg_line_length": 29.4166666667,
"ext": "agda",
"hexsha": "59205e29633e7e812a73cfbe1fe4544e55b50e43",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/AbGroups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/AbGroups.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/AbGroups.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 214,
"size": 706
} |
------------------------------------------------------------------------
-- A total parser combinator library
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
module TotalParserCombinators where
-- Check out TotalRecognisers for an introduction to the ideas used
-- below in the simplified setting of recognisers (as opposed to
-- parsers).
import TotalRecognisers
-- The parser type, and its semantics.
import TotalParserCombinators.Parser
import TotalParserCombinators.Semantics
-- Forcing of parsers (can be used for inspection/debugging purposes).
import TotalParserCombinators.Force
-- Some lemmas about initial bags.
import TotalParserCombinators.InitialBag
-- A small library of derived parser combinators.
import TotalParserCombinators.Lib
-- A Brzozowski derivative operator for parsers.
import TotalParserCombinators.Derivative
-- A breadth-first backend, based on the derivative operator.
import TotalParserCombinators.BreadthFirst
-- An alternative, coinductive definition of equality (and related
-- orderings) between parsers.
import TotalParserCombinators.CoinductiveEquality
-- Language equivalence and parser equivalence are both congruences.
-- The various orderings are compatible preorders.
import TotalParserCombinators.Congruence
import TotalParserCombinators.Congruence.Sound
-- However, it is possible to construct combinators which do not
-- preserve equality.
import TotalParserCombinators.NotACongruence
-- Proofs of various laws, for instance the monad laws.
import TotalParserCombinators.Laws
-- A proof showing that all functions of type List Bool → List R can
-- be realised using parser combinators (for any R, assuming that bag
-- equality is used for the lists of results).
import TotalParserCombinators.ExpressiveStrength
-- Definitions of asymmetric choice, and and not. Note that no
-- extension of the library is required to define these combinators,
-- which make use of a general operator which lifts initial bag
-- operations to parsers. This operator is defined using the
-- breadth-first backend's derivative operator.
import TotalParserCombinators.Pointwise
import TotalParserCombinators.AsymmetricChoice
import TotalParserCombinators.And
import TotalParserCombinators.Not
-- A lookahead operator cannot be defined.
import TotalParserCombinators.NoLookahead
-- An alternative semantics.
import TotalParserCombinators.Semantics.Continuation
-- Simplification of parsers.
import TotalParserCombinators.Simplification
-- Definition of unambiguity.
import TotalParserCombinators.Unambiguity
-- An example: a left recursive expression grammar.
import TotalParserCombinators.Examples.Expression
-- Recognisers defined on top of the parsers, and a variant of the
-- left recursive expression grammar mentioned above.
import TotalParserCombinators.Recogniser
import TotalParserCombinators.Recogniser.Expression
-- Another example: parsing PBM image files.
import TotalParserCombinators.Examples.PBM
-- An extended example: mixfix operator parsing.
import Mixfix
-- For code related to the paper "Structurally Recursive Descent
-- Parsing", developed together with Ulf Norell, see the following
-- module:
import StructurallyRecursiveDescentParsing
| {
"alphanum_fraction": 0.7821450335,
"avg_line_length": 28.2931034483,
"ext": "agda",
"hexsha": "be0c02fae828ffc7bbd8a256a05e843f7e092dd8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 687,
"size": 3282
} |
{- Reported by Nils Anders Danielsson, 2011-07-06
From the release notes for Agda 2.2.10:
"Projections now preserve sizes, both in patterns and expressions."
However, the following code is rejected:
-}
module SubTermAndProjections where
record _×_ (A B : Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B
open _×_
postulate
i : {A : Set} → A → A
data I : Set where
c1 : I → I
c2 : I → I → I
data D : I → Set where
d : (j : I × I) → D (c1 (proj₁ j)) → D (proj₂ j) → D (c2 (c1 (proj₁ j)) (proj₂ j))
f : ∀ i → D i → Set
f .(c2 (c1 (proj₁ j)) (proj₂ j)) (d j l r) = f (c1 (proj₁ j)) (i l)
{- Is this intentional? I guess the issue here is the subterm relation
rather than the sizes. Should we modify the subterm relation?
-}
-- Andreas, 2011-07-07 this should termination check.
| {
"alphanum_fraction": 0.635250918,
"avg_line_length": 22.0810810811,
"ext": "agda",
"hexsha": "31d4b43abe2091d43e68a30dd6d870497432b79a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/SubTermAndProjections.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/SubTermAndProjections.agda",
"max_line_length": 85,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/SubTermAndProjections.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 287,
"size": 817
} |
open import Agda.Primitive using (_⊔_)
open import Categories.Category
open import Categories.Functor
open import Categories.Monad.Relative
module SecondOrder.RelativeKleisli
{o l e o' l' e'}
{𝒞 : Category o l e}
{𝒟 : Category o' l' e'}
{J : Functor 𝒞 𝒟}
(M : Monad J)
where
Kleisli : Category o l' e'
Kleisli =
let open Category in
let open Functor in
record
{ Obj = Obj 𝒞
; _⇒_ = λ A B → 𝒟 [ F₀ J A , Monad.F₀ M B ]
; _≈_ = _≈_ 𝒟
; id = Monad.unit M
; _∘_ = λ f g → _∘_ 𝒟 (Monad.extend M f) g
; assoc = λ {A} {B} {C} {D} {f} {g} {h}
→ Equiv.trans 𝒟 (∘-resp-≈ˡ 𝒟 (Monad.assoc M)) (assoc 𝒟)
; sym-assoc = λ {A} {B} {C} {D} {f} {g} {h}
→ Equiv.sym 𝒟 (Equiv.trans 𝒟 (∘-resp-≈ˡ 𝒟 (Monad.assoc M)) (assoc 𝒟))
; identityˡ = λ {A} {B} {f}
→ Equiv.trans 𝒟 (∘-resp-≈ˡ 𝒟 (Monad.identityˡ M)) (identityˡ 𝒟)
; identityʳ = λ {A} {B} {f}
→ Monad.identityʳ M
; identity² = λ {A} → Equiv.trans 𝒟 ((∘-resp-≈ˡ 𝒟 (Monad.identityˡ M))) (identityˡ 𝒟)
; equiv = equiv 𝒟
; ∘-resp-≈ = λ p₁ p₂ → ∘-resp-≈ 𝒟 (Monad.extend-≈ M p₁) p₂
}
| {
"alphanum_fraction": 0.4971659919,
"avg_line_length": 34.3055555556,
"ext": "agda",
"hexsha": "810e0272e60b95a141b624b9c583e9ffca62825e",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/RelativeKleisli.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/RelativeKleisli.agda",
"max_line_length": 91,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/RelativeKleisli.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 510,
"size": 1235
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.