Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Common imports and other auxiliary operations used in the library
module SOAS.Common where
open import Categories.Category.Instance.Sets public
open import Axiom.Extensionality.Propositional
using (Extensionality; ExtensionalityImplicit)
open import Relation.Binary.PropositionalEquality public
hiding (Extensionality)
renaming (subst to ≡subst; [_] to ≡[_])
open import Categories.Category public
open import Categories.Category.Helper public
open import Categories.Functor public
renaming (id to idF)
open import Categories.NaturalTransformation public
using (ntHelper)
renaming (NaturalTransformation to NT; id to idN; _∘ᵥ_ to _∘N_)
open import Categories.NaturalTransformation.Equivalence using (_≃_) public
open import Categories.Morphism using (Iso) public
open import Level as L hiding (lift) renaming (suc to lsuc) public
open import Function using (flip; case_of_; _∋_) public renaming (_$_ to _$ᶠ_)
open import Data.Product public using (_×_; proj₁; proj₂; _,_; Σ; module Σ; Σ-syntax; swap)
open import Data.Sum public using (_⊎_ ; inj₁; inj₂)
open import Data.Unit public using (tt)
-- Unit type
data *T : Set where
* : *T
-- Shorthand for first universe level
1ℓ : Level
1ℓ = lsuc 0ℓ
-- Basic function extensionality postulates
postulate
-- Extensionality with one explicit or implicit argument
ext : Extensionality 0ℓ 0ℓ
iext : ExtensionalityImplicit 0ℓ 0ℓ
-- Functions with two explicit arguments
ext² : {A : Set} {B : A → Set}{C : (x : A) → B x → Set}
{f g : (x : A) → (y : B x) → C x y} →
(∀ x y → f x y ≡ g x y) →
(λ x y → f x y) ≡ (λ x y → g x y)
ext² p = ext (λ x → ext (λ y → p x y))
-- Functions with one implicit and one explicit argument
dext : {A : Set} {B : A → Set}{C : (x : A) → B x → Set}
{f g : {x : A} → (y : B x) → C x y} →
(∀ {x} y → f {x} y ≡ g {x} y) →
(λ {x} y → f {x} y) ≡ (λ {x} y → g {x} y)
dext p = iext (ext p)
-- Functions with two pairs of implicit-explicit arguments
dext² : {A : Set}{B : A → Set}{C : A → A → Set}
{D : (x : A) → B x → (y : A) → C x y → Set}
{f g : {x : A} → (b : B x) → {y : A} → (c : C x y) → D x b y c} →
(∀ {x} b {y} c → f {x} b {y} c ≡ g {x} b {y} c) →
(λ {x} b {y} c → f {x} b {y} c) ≡
(λ {x} b {y} c → g {x} b {y} c)
dext² p = dext (λ {x} y → dext (p {x} y))
-- Functions with one implicit and one explicit argument where the
-- pointwise equality proof does not use the explicit argument
dext′ : {A : Set} {B : A → Set}{C : (x : A) → B x → Set}
{f g : {x : A} → (y : B x) → C x y} →
(∀ {x} {y} → f {x} y ≡ g {x} y) →
(λ {x} y → f {x} y) ≡ (λ {x} y → g {x} y)
dext′ p = dext (λ {x} y → p {x}{y})
-- Use the naming convention for categories
𝕊ets : Category 1ℓ 0ℓ 0ℓ
𝕊ets = Sets 0ℓ
module 𝕊et = Category 𝕊ets
-- Make composition and the identity globally accessible
open Category (Sets 0ℓ) public using (_∘_; id)
-- Set isomorphism shorthands
open import Categories.Morphism 𝕊ets public using ()
renaming ( _≅_ to _≅ₛ_ ; module ≅ to ≅ₛ ; ≅-setoid to ≅ₛ-setoid)
-- Congruence with the arguments reversed -- easier to focus on the equalities
-- if the congruence environment is very large
congr : ∀{ℓ}{A B : Set ℓ}{x y : A} → x ≡ y → (f : A → B) → f x ≡ f y
congr refl f = refl
| {
"alphanum_fraction": 0.6189172749,
"avg_line_length": 36.1318681319,
"ext": "agda",
"hexsha": "56b9b779b69b5d5bd01acfbcd97a3472a966ca37",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Common.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Common.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Common.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1176,
"size": 3288
} |
{-
Joseph Eremondi
Utrecht University Capita Selecta
UU# 4229924
July 22, 2015
-}
module SemiLin where
open import Data.Vec
open import Data.Nat
import Data.Fin as Fin
open import Data.List
import Data.List.All
open import Data.Bool
open import Data.Char
open import Data.Maybe
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Relation.Binary.Core
open import Category.Monad
open import Data.Nat.Properties.Simple
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Utils
open import Function
import RETypes
open import Data.Sum
import Data.Nat.Properties.Simple
--The Parikh vector for a word is the count of occurrences of
--each letter of our alphabet in that word.
--We just represent this as a vector of Natural numbers
Parikh : ℕ -> Set
Parikh n = Vec ℕ n
--Scalar multiplication
_·ₛ_ : {n : ℕ} -> ℕ -> Parikh n -> Parikh n
c ·ₛ [] = []
c ·ₛ (x ∷ vt) = (c * x) ∷ (c ·ₛ vt)
--Vector addition
_+v_ : {n : ℕ} -> Parikh n -> Parikh n -> Parikh n
[] +v [] = []
(x ∷ ut) +v (y ∷ vt) = x + y ∷ ut +v vt
--The zero vector
v0 : {n : ℕ} -> Parikh n
v0 {zero} = []
v0 {suc n} = 0 ∷ v0
--0 times anything is v0
scalar0ident : {n : ℕ} -> (v : Parikh n ) -> 0 ·ₛ v ≡ v0
scalar0ident [] = refl
scalar0ident (x ∷ v) = cong (_∷_ zero) (scalar0ident v)
--Prove that 0 is a neutral element on the left
v0identLeft : {n : ℕ} -> {v : Parikh n} -> v0 +v v ≡ v
v0identLeft {v = []} = refl
v0identLeft {v = x ∷ v} =
let
subIdent = v0identLeft {v = v}
in cong (λ t → x ∷ t) subIdent
--Prove that vector addition is commutative
v+-commut : {n : ℕ} -> (u : Parikh n) -> (v : Parikh n) -> (u +v v ≡ v +v u)
v+-commut [] [] = refl
v+-commut (x ∷ u) (y ∷ v) rewrite +-comm x y | v+-commut u v = refl
--Prove the right-identity for vector addition with 0
--Just conbines commutativity and the left identity
v0identRight : {n : ℕ} -> {v : Parikh n} -> v +v v0 ≡ v
v0identRight {v = v} =
begin
v +v v0
≡⟨ v+-commut v v0 ⟩
v0 +v v
≡⟨ v0identLeft ⟩
v ∎
--Prove that vector addition is associative
--I couldn't figure out how to get this one working with rewrite
vAssoc : {n : ℕ} -> {x : Parikh n} {y : Parikh n} {z : Parikh n}
-> (x +v y) +v z ≡ x +v (y +v z)
vAssoc {zero} {[]} {[]} {[]} = refl
vAssoc {suc n} {xh ∷ xt} {yh ∷ yt} {zh ∷ zt} =
let
x = xh ∷ xt
y = yh ∷ yt
z = zh ∷ zt
in --_≡⟨_⟩_
begin
(x +v y) +v z
≡⟨ refl ⟩
(xh + yh + zh) ∷ (xt +v yt) +v zt
≡⟨ cong (λ h → h ∷ (xt +v yt) +v zt) (+-assoc xh yh zh) ⟩
xh + (yh + zh) ∷ (xt +v yt) +v zt
≡⟨ cong (λ t → xh + (yh + zh) ∷ t) vAssoc ⟩
(xh + (yh + zh) ∷ xt +v (yt +v zt))
≡⟨ refl ⟩
x +v (y +v z)
∎
-- Wouter: here's one definition using rewrite...
vAssoc2 : {n : ℕ} -> {x : Parikh n} {y : Parikh n} {z : Parikh n}
-> (x +v y) +v z ≡ x +v (y +v z)
vAssoc2 {x = []} {[]} {[]} = refl
vAssoc2 {x = x ∷ xs} {y ∷ ys} {z ∷ zs} rewrite +-assoc x y z | vAssoc {x = xs} {y = ys} {z = zs}
= refl
--Prove that scalar multiplication distributes over vector addition
scalarAssoc : {n : ℕ} -> (x y : ℕ ) -> (v : Parikh n) -> (x + y) ·ₛ v ≡ (x ·ₛ v) +v (y ·ₛ v)
scalarAssoc x y [] = refl
scalarAssoc x y (vfirst ∷ v) rewrite scalarAssoc x y v | distribʳ-*-+ vfirst x y = refl
--Handy lemma, prove that 0 + anything is 0
ident0 : (x : ℕ) -> x + 0 ≡ x
ident0 zero = refl
ident0 (suc x) = cong suc (ident0 x)
--Show that 1 is an identity for scalar multiplication
scalarIdent : {n : ℕ} -> (v : Parikh n) -> (1 ·ₛ v ≡ v )
scalarIdent [] = refl
scalarIdent (x ∷ v) rewrite scalarIdent v | ident0 x = refl
--A linear set is defined by an offset vector b
--And a set of m vectors v1 ... vm.
--A vector u is in a linear set if there exists constants c1 ... cm
--such that u = b + c1·v1 + ... + cm·vm
-- Wouter -- do you really want to existentially quantify m?
-- You could also define LinSet n m = Parikh n × Vec (Parikh n) m
-- I don' think it makes a whole lot of difference, but later on in applyLinCom
-- you use this anyway.
-- For what it's worth, you may want to note that ∃ n . Vec a n is isomorphic to List a
LinSet : ℕ -> Set
LinSet n = (Parikh n) × (∃ λ (m : ℕ) → Vec (Parikh n) m )
--Given an offset vector, a set of m Parikh vectors, and a set of m constants
--Return b + c1·v1 + ... + cm·vm
-- Wouter: you might want to consider defining this directly by recursion over the
-- cs and vset. The induction you use in this definition will determine how easy/hard
-- it might be to reason about this function later.
-- See the proof of sumPreserved in SemiLinRE, for instance.
applyLinComb : {n : ℕ} -> Parikh n -> (m : ℕ ) -> (Vec (Parikh n) m ) -> Vec ℕ m -> Parikh n
applyLinComb base .0 [] cs = base
applyLinComb base (suc m) (firstVec ∷ vset) (firstConst ∷ cs) = (firstConst ·ₛ firstVec) +v (applyLinComb base m vset cs)
--Show that, if all the coefficients in a linear combination are 0, that the resulting vector is the base (offset) vector
v0apply : {n m : ℕ} -> (base : Parikh n) -> (vecs : Vec (Parikh n) m ) -> applyLinComb base m vecs (v0 {m}) ≡ base
v0apply base [] = refl
v0apply {n} {suc m} base (x ∷ vecs) rewrite scalar0ident x | v0apply base vecs = v0identLeft
--A type acting as a witness that a vector is in a linear set
--Is just a set of coefficients, and a proof that those coefficients
--form v as a linear combination of vectors in our linear set's list
LinComb : {n : ℕ} -> Parikh n -> LinSet n -> Set
LinComb {n} initV (base , m , vset) =
∃ (λ (cs : Vec ℕ m) -> applyLinComb base m vset cs ≡ initV )
--Sum of each vector in a linear set i.e. L1 + L2 = {x + y | x in L1, y in L2 }
--We just add the bases, and concatenate the list of vectors which can be multiplied by constants
_+l_ : {n : ℕ} -> LinSet n -> LinSet n -> LinSet n
(base1 , m1 , vecs1 ) +l (base2 , m2 , vecs2 ) = (base1 +v base2 , m1 + m2 , vecs1 Data.Vec.++ vecs2 )
--A semi-linear is a finite union of linear sets
--We represent this using a list of linear sets
SemiLinSet : ℕ -> Set
SemiLinSet n = List (LinSet n)
--Sum each linear set in the two semi-linear sets
--We basically just do a pairwise +l for each linear set in each of the semi-linear sets
_+s_ : {n : ℕ} -> SemiLinSet n -> SemiLinSet n -> SemiLinSet n
s1 +s s2 = Data.List.concat (Data.List.map (λ l1 -> Data.List.map (λ l2 -> l1 +l l2 ) s2 ) s1 )
--Data type for a witness that an element is in a semiLinear set
--Basically just a proof that there's some element (linear set) of the list containing the vector
data InSemiLin : {n : ℕ} -> (v : Parikh n) -> (sl : SemiLinSet n) -> Set where
InHead : {n : ℕ}
-> (v : Parikh n)
-> (sh : LinSet n)
-> (st : SemiLinSet n)
-> LinComb v sh
-> InSemiLin v (sh ∷ st)
InTail : {n : ℕ}
-> (v : Parikh n)
-> (sh : LinSet n)
-> (st : SemiLinSet n)
-> InSemiLin v st
-> InSemiLin v (sh ∷ st)
--Creates a vector
--Which has 1 in the specified component, and 0 elsewhere
basis : { n : ℕ} -> ( i : Fin.Fin n ) -> Parikh n
basis Fin.zero = Data.Vec.[ suc zero ] Data.Vec.++ v0
basis (Fin.suc f) = 0 ∷ basis f
--A proof that if a vector is in a SemiLinear set, then the vector is also in the
--union of that SemiLinear set with another single linear set
slExtend : {n : ℕ} -> (v : Parikh n) -> (sl : SemiLinSet n) -> InSemiLin v sl -> (ls : LinSet n) -> InSemiLin v (ls ∷ sl )
slExtend v sl inTail ls = InTail v ls sl inTail
--the above proof, but extended to an arbitrary number of linear sets
slConcatLeft : {n : ℕ} -> (v : Parikh n) -> (sl : SemiLinSet n) -> InSemiLin v sl -> (sl2 : SemiLinSet n) -> InSemiLin v (sl2 Data.List.++ sl )
slConcatLeft v sl inTail [] = inTail
slConcatLeft v sl inTail (x ∷ sl2) = InTail v x (sl2 Data.List.++ sl) (slConcatLeft v sl inTail sl2)
--The above proof, but the vectors are concatenated on the right
slConcatRight : {n : ℕ} -> (v : Parikh n) -> (sl : SemiLinSet n) -> InSemiLin v sl -> (sl2 : SemiLinSet n) -> InSemiLin v (sl Data.List.++ sl2 )
slConcatRight v .(sh ∷ st) (InHead .v sh st x) sl2 = (InHead v sh (st Data.List.++ sl2) x)
slConcatRight v .(sh ∷ st) (InTail .v sh st inTail) sl2 = slExtend v (st Data.List.++ sl2) (slConcatRight v st inTail sl2) sh
--Show that, if a vector is in a linear-set, then it is in a semi-linear set containing that linear set
slCons : {n : ℕ} -> (v : Parikh n) -> (sl : SemiLinSet n) -> (ls : LinSet n) -> (InSemiLin v (ls ∷ [] ) ) -> InSemiLin v (ls ∷ sl )
slCons v sl sh (InHead .v .sh .[] x) = InHead v sh sl x
slCons v sl sh (InTail .v .sh .[] ())
--A linear set containing only v0
l0 : {n : ℕ} -> LinSet n
l0 = (v0 , zero , [] )
--A semi-linear set containing only v0
s0 : {n : ℕ} -> SemiLinSet n
s0 = (v0 , zero , [] ) ∷ []
--Show that, if a vector is in s0, then it must be v0
s0match : {n : ℕ} -> (v : Parikh n) -> InSemiLin v s0 -> v ≡ v0
s0match .v0 (InHead .v0 .(v0 , 0 , []) .[] (comb , refl)) = refl
s0match v (InTail .v .(v0 , 0 , []) .[] ())
--Show that if a vector is in a semi-lin set, then it's not the empty list
inSemiNonEmtpy : {n : ℕ} -> (v : Parikh n) -> (s : SemiLinSet n) -> InSemiLin v s -> ∃ λ sh -> ∃ λ st -> s ≡ sh ∷ st
inSemiNonEmtpy v .(sh ∷ st) (InHead .v sh st x) = sh , st , refl
inSemiNonEmtpy v .(sh ∷ st) (InTail .v sh st inSemi) = sh , st , refl
-------------Functions for Star ------------------
-- Star is by far the most complicated case, so a large number of definitions and lemmas
--Are dedicated to it
--Given a linear set L, find another linear set
--such that L = L +l (L*)
--We do this by allowing the base to appear an arbitrary number of times
linStar : {n : ℕ} -> LinSet n -> LinSet n
linStar (base , m , vecs ) = (base , suc m , base ∷ vecs )
--Given a non-empty semi-linear set, find the sum of the star
--of all linear sets it contains
starSum : {n : ℕ} -> LinSet n -> SemiLinSet n -> LinSet n
starSum ls [] = linStar ls
starSum first (sh ∷ s) = (linStar sh) +l starSum first s
--The semi-linear set for the Star of a regular expression
--The semi-linear set always contains 0, since the empty string matches r*
--We then union s0 with the sum of the star of each linear set
--in the Parikh image of r
starSemiLin : {n : ℕ} -> SemiLinSet n -> SemiLinSet n
starSemiLin [] = s0
starSemiLin (first ∷ s) = s0 Data.List.++ ( starSum first s ∷ [])
--Show that v0 is always in a star semi-linear set
zeroInStar : {n : ℕ} -> (s ss : SemiLinSet n) -> ss ≡ (starSemiLin s) -> InSemiLin v0 ss
zeroInStar [] .((v0 , 0 , []) ∷ []) refl = InHead v0 (v0 , zero , []) [] ([] , refl)
zeroInStar (x ∷ s) .((v0 , 0 , []) ∷ starSum x s ∷ []) refl = InHead v0 (v0 , zero , []) (starSum x s ∷ []) ([] , refl)
--Show that if we sum two linear sets, then the number of vectors that can be combined
--is the sum of the number in each input set
linSetLen : {n : ℕ} -> (l1 l2 l3 : LinSet n) -> l1 +l l2 ≡ l3 -> (proj₁ (proj₂ l3)) ≡ (proj₁ (proj₂ l1)) + (proj₁ (proj₂ l2))
linSetLen (proj₁ , m1 , proj₂) (proj₃ , m2 , proj₄) .(proj₁ +v proj₃ , m1 + m2 , proj₂ Data.Vec.++ proj₄) refl = refl
--Useful lemma, suc x = x + 1
plusOneDef : ( x : ℕ) -> (suc x ≡ x + 1)
plusOneDef zero = refl
plusOneDef (suc x) = cong suc (plusOneDef x)
--Show that we can "remove" part of the base vector
--When making a linear combination
baseSplit : {n : ℕ} (ub vb : Parikh n) (vm : ℕ) (vvecs : Vec (Parikh n) vm) (vconsts : Vec ℕ vm) ->
applyLinComb (ub +v vb) vm vvecs vconsts
≡ ub +v applyLinComb vb vm vvecs vconsts
baseSplit ub vb .0 [] [] = refl
baseSplit ub vb (suc m) (x ∷ vvecs) (c ∷ vconsts) =
begin
applyLinComb (ub +v vb) (suc m) (x ∷ vvecs) (c ∷ vconsts)
≡⟨ refl ⟩ --cong {!!} (baseSplit ub vb _ vvecs vconsts)
(c ·ₛ x) +v applyLinComb (ub +v vb) m vvecs vconsts
≡⟨ cong (λ x₁ → (c ·ₛ x) +v x₁) (baseSplit ub vb m vvecs vconsts) ⟩
(c ·ₛ x) +v (ub +v applyLinComb vb m vvecs vconsts)
≡⟨ sym vAssoc ⟩
((c ·ₛ x) +v ub) +v applyLinComb vb m vvecs vconsts
≡⟨ cong (λ x₁ → x₁ +v applyLinComb vb m vvecs vconsts) (v+-commut (c ·ₛ x) ub) ⟩
(ub +v (c ·ₛ x)) +v applyLinComb vb m vvecs vconsts
≡⟨ vAssoc ⟩
(ub +v ((c ·ₛ x) +v applyLinComb vb m vvecs vconsts) ∎)
--If we have two linear combinations of vectors,
--That we can make it into a single combination of vectors
--By adding the bases, and concatenating the vector lists, and
-- concatenating the coefficient lists
combSplit :
{n : ℕ} (ub vb : Parikh n) (um vm : ℕ) (uvecs : Vec (Parikh n) um) (vvecs : Vec (Parikh n) vm) (uconsts : Vec ℕ um) (vconsts : Vec ℕ vm) ->
(applyLinComb (ub +v vb) (um + vm) (uvecs Data.Vec.++ vvecs) (uconsts Data.Vec.++ vconsts)
≡ (applyLinComb ub um uvecs uconsts) +v (applyLinComb vb vm vvecs vconsts) )
combSplit ub vb .0 vm [] vvecs [] vconsts = baseSplit ub vb vm vvecs vconsts
combSplit ub vb (suc um) vm (x ∷ uvecs) vvecs (uc ∷ uconsts) vconsts =
begin
applyLinComb (ub +v vb) (suc (um + vm))
(x ∷ uvecs Data.Vec.++ vvecs) ((uc ∷ uconsts) Data.Vec.++ vconsts)
≡⟨ refl ⟩
(uc ·ₛ x) +v applyLinComb (ub +v vb) (um + vm) (uvecs Data.Vec.++ vvecs)
(uconsts Data.Vec.++ vconsts)
≡⟨ cong (λ x₁ → (uc ·ₛ x) +v x₁) (combSplit ub vb um vm uvecs vvecs uconsts vconsts) ⟩
(uc ·ₛ x) +v
(applyLinComb ub um uvecs uconsts +v
applyLinComb vb vm vvecs vconsts)
≡⟨ sym vAssoc ⟩
((uc ·ₛ x) +v applyLinComb ub um uvecs uconsts) +v
applyLinComb vb vm vvecs vconsts
≡⟨ refl ⟩
(((uc ·ₛ x) +v applyLinComb ub um uvecs uconsts) +v
applyLinComb vb vm vvecs vconsts ∎)
--Extend the idea of distributivity to linear combinations
--Basically, the c1*v +v c2*v = (c1 +v c2 )*v, where * is element-wise product
applyCombSum :
{n m : ℕ} ->
(vecs : Vec (Parikh n) m ) ->
(uconsts vconsts : Parikh m ) ->
applyLinComb v0 m vecs (uconsts +v vconsts) ≡ applyLinComb v0 m vecs uconsts +v applyLinComb v0 m vecs vconsts
applyCombSum [] uconsts vconsts = sym v0identRight
applyCombSum {n} {suc m} (firstVec ∷ vecs) (uc ∷ uconsts) (vc ∷ vconsts) rewrite applyCombSum vecs uconsts vconsts | scalarAssoc uc vc firstVec =
begin
((uc ·ₛ firstVec) +v (vc ·ₛ firstVec)) +v
(applyLinComb v0 m vecs uconsts +v
applyLinComb v0 m vecs vconsts)
≡⟨ vAssoc ⟩
(uc ·ₛ firstVec) +v
((vc ·ₛ firstVec) +v
(applyLinComb v0 m vecs uconsts +v
applyLinComb v0 m vecs vconsts))
≡⟨ cong (λ x → (uc ·ₛ firstVec) +v x) (v+-commut (vc ·ₛ firstVec) (applyLinComb v0 m vecs uconsts +v applyLinComb v0 m vecs vconsts)) ⟩
(uc ·ₛ firstVec) +v
((applyLinComb v0 m vecs uconsts +v applyLinComb v0 m vecs vconsts)
+v (vc ·ₛ firstVec))
≡⟨ sym vAssoc ⟩
((uc ·ₛ firstVec) +v
(applyLinComb v0 m vecs uconsts +v applyLinComb v0 m vecs vconsts))
+v (vc ·ₛ firstVec)
≡⟨ cong (λ x → x +v (vc ·ₛ firstVec)) (sym vAssoc) ⟩
(((uc ·ₛ firstVec) +v applyLinComb v0 m vecs uconsts) +v
applyLinComb v0 m vecs vconsts)
+v (vc ·ₛ firstVec)
≡⟨ vAssoc ⟩
((uc ·ₛ firstVec) +v applyLinComb v0 m vecs uconsts) +v
(applyLinComb v0 m vecs vconsts +v (vc ·ₛ firstVec))
≡⟨ cong (λ x → ((uc ·ₛ firstVec) +v applyLinComb v0 m vecs uconsts) +v x) (v+-commut (applyLinComb v0 m vecs vconsts) (vc ·ₛ firstVec)) ⟩
((uc ·ₛ firstVec) +v applyLinComb v0 m vecs uconsts) +v
((vc ·ₛ firstVec) +v applyLinComb v0 m vecs vconsts) ∎
--If a linear set has base 0, and u and v are both in that set, then u+v is as well
sumEqualVecs : {n : ℕ} -> (ls : LinSet n) -> (proj₁ ls ≡ v0) -> (u v : Parikh n) -> LinComb u ls -> LinComb v ls -> LinComb (u +v v) ls
sumEqualVecs (.v0 , m , vecs) refl .(applyLinComb v0 m vecs uconsts) .(applyLinComb v0 m vecs vconsts) (uconsts , refl) (vconsts , refl) =
(uconsts +v vconsts) , applyCombSum vecs uconsts vconsts --applyCombSum {!!} {!!} vecs uconsts vconsts
--Show that the base vector of a linear set is always in that set, just set coefficients to 0
linContainsBase : {n : ℕ} -> (base : Parikh n) -> (m : ℕ ) -> (vecs : Vec (Parikh n) m ) -> applyLinComb base m vecs v0 ≡ base
linContainsBase base .0 [] = refl
linContainsBase base (suc m) (x ∷ vecs) rewrite linContainsBase base m vecs =
begin
(zero ·ₛ x) +v base
≡⟨ cong (λ y → y +v base) (scalar0ident x) ⟩
v0 +v base
≡⟨ v0identLeft ⟩
(base ∎)
--Show that applying a linear combination with the base is just
--The base, plus the linear combination with v0 base
--Just a useful lemma for other proofs, basically uses associativity
linCombRemoveBase
: {n : ℕ}
-> (m : ℕ )
-> (base : Parikh n )
-> (vecs : Vec (Parikh n) m )
-> (c : Parikh m)
-> applyLinComb base m vecs c ≡ base +v applyLinComb v0 m vecs c
linCombRemoveBase {n} m base vecs c =
begin
applyLinComb base m vecs c
≡⟨ cong (λ x → applyLinComb x m vecs c) (sym v0identRight) ⟩
applyLinComb (base +v v0) m vecs c
≡⟨ baseSplit base v0 m vecs c ⟩
base +v applyLinComb v0 m vecs c ∎
--Show that only v0 is in a set with no vectors and v0 base
emptyCombZero : {n : ℕ} -> (v : Parikh n ) -> LinComb v (v0 , 0 , []) -> v ≡ v0
emptyCombZero .v0 ([] , refl) = refl
--Show that when we add two linear combinations of the same vectors together,
--We get a linear combination of those vectors, with an extra base left-over
linCombDecompBase
: {n : ℕ}
-> (m : ℕ )
-> (base : Parikh n )
-> (vecs : Vec (Parikh n) m )
-> (c1 : Parikh m )
-> (c2 : Parikh m)
-> (applyLinComb base m vecs c1 ) +v (applyLinComb base m vecs c2 ) ≡ base +v applyLinComb base m vecs (c1 +v c2)
linCombDecompBase .0 base [] c1 c2 = refl
linCombDecompBase (suc m) base (vec1 ∷ vecs) (c ∷ c1) (cc ∷ c2) rewrite linCombDecompBase m base vecs c1 c2 | linCombRemoveBase m base vecs c1 | linCombRemoveBase m base vecs c2 =
begin
((c ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c1)) +v
((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → x +v ((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))) (sym vAssoc ) ⟩
(((c ·ₛ vec1) +v base) +v applyLinComb v0 m vecs c1) +v
((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → (x +v applyLinComb v0 m vecs c1) +v ((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))) (v+-commut (c ·ₛ vec1) base) ⟩
((base +v (c ·ₛ vec1)) +v applyLinComb v0 m vecs c1) +v
((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → x +v ((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))) vAssoc ⟩
(base +v ((c ·ₛ vec1) +v applyLinComb v0 m vecs c1)) +v
((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2))
≡⟨ vAssoc ⟩
base +v
(((c ·ₛ vec1) +v applyLinComb v0 m vecs c1) +v
((cc ·ₛ vec1) +v (base +v applyLinComb v0 m vecs c2)))
≡⟨ cong (λ x → base +v (((c ·ₛ vec1) +v applyLinComb v0 m vecs c1) +v x)) (sym vAssoc) ⟩
base +v
(((c ·ₛ vec1) +v applyLinComb v0 m vecs c1) +v
(((cc ·ₛ vec1) +v base) +v applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → base +v (((c ·ₛ vec1) +v applyLinComb v0 m vecs c1) +v (x +v applyLinComb v0 m vecs c2))) (v+-commut (cc ·ₛ vec1) base) ⟩
base +v
(((c ·ₛ vec1) +v applyLinComb v0 m vecs c1) +v
((base +v (cc ·ₛ vec1)) +v applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → base +v x) vAssoc ⟩
base +v
((c ·ₛ vec1) +v
(applyLinComb v0 m vecs c1 +v
((base +v (cc ·ₛ vec1)) +v applyLinComb v0 m vecs c2)))
≡⟨ cong (λ x → base +v ((c ·ₛ vec1) +v x)) (sym vAssoc) ⟩
base +v
((c ·ₛ vec1) +v
((applyLinComb v0 m vecs c1 +v (base +v (cc ·ₛ vec1))) +v
applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → base +v ((c ·ₛ vec1) +v (x +v applyLinComb v0 m vecs c2))) (v+-commut (applyLinComb v0 m vecs c1) (base +v (cc ·ₛ vec1))) ⟩
base +v
((c ·ₛ vec1) +v
(((base +v (cc ·ₛ vec1)) +v applyLinComb v0 m vecs c1) +v
applyLinComb v0 m vecs c2))
≡⟨ cong (λ x → base +v ((c ·ₛ vec1) +v x)) vAssoc ⟩
base +v
((c ·ₛ vec1) +v
((base +v (cc ·ₛ vec1)) +v
(applyLinComb v0 m vecs c1 +v applyLinComb v0 m vecs c2)))
≡⟨ cong (λ x → base +v ((c ·ₛ vec1) +v ((base +v (cc ·ₛ vec1)) +v x))) (sym (applyCombSum vecs c1 c2)) ⟩
base +v
((c ·ₛ vec1) +v
((base +v (cc ·ₛ vec1)) +v applyLinComb v0 m vecs (c1 +v c2)))
≡⟨ cong (λ x → base +v x) (sym vAssoc) ⟩
base +v
(((c ·ₛ vec1) +v (base +v (cc ·ₛ vec1))) +v
applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v (x +v applyLinComb v0 m vecs (c1 +v c2))) (sym vAssoc) ⟩
base +v
((((c ·ₛ vec1) +v base) +v (cc ·ₛ vec1)) +v
applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v ((x +v (cc ·ₛ vec1)) +v applyLinComb v0 m vecs (c1 +v c2))) (v+-commut (c ·ₛ vec1) base) ⟩
base +v
(((base +v (c ·ₛ vec1)) +v (cc ·ₛ vec1)) +v
applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v (x +v applyLinComb v0 m vecs (c1 +v c2))) vAssoc ⟩
base +v
((base +v ((c ·ₛ vec1) +v (cc ·ₛ vec1))) +v
applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v ((base +v x) +v applyLinComb v0 m vecs (c1 +v c2))) (sym (scalarAssoc c cc vec1)) ⟩
base +v
((base +v ((c + cc) ·ₛ vec1)) +v applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v (x +v applyLinComb v0 m vecs (c1 +v c2))) (v+-commut base ((c + cc) ·ₛ vec1)) ⟩
base +v
((((c + cc) ·ₛ vec1) +v base) +v applyLinComb v0 m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v x) vAssoc ⟩
base +v
(((c + cc) ·ₛ vec1) +v (base +v applyLinComb v0 m vecs (c1 +v c2)))
≡⟨ cong (λ x → base +v (((c + cc) ·ₛ vec1) +v x)) (sym (baseSplit base v0 m vecs (c1 +v c2))) ⟩
base +v
(((c + cc) ·ₛ vec1) +v applyLinComb (base +v v0) m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v (((c + cc) ·ₛ vec1) +v applyLinComb x m vecs (c1 +v c2))) v0identRight ⟩
base +v (((c + cc) ·ₛ vec1) +v applyLinComb base m vecs (c1 +v c2))
≡⟨ cong (λ x → base +v x) refl ⟩
(base +v (((c + cc) ·ₛ vec1) +v applyLinComb base m vecs (c1 +v c2)) ∎)
--Show that, if v1 is in L, and v2 is in L*, then v1 +v v2 is in L*
--Can be used to show that the sum of any vectors from L will be in L*
linStarExtend
: {n : ℕ} -> (v1 v2 : Parikh n ) ->
(l1 ls : LinSet n ) -> ls ≡ linStar l1 -> LinComb v1 l1 -> LinComb v2 ls -> LinComb (v1 +v v2) ls
linStarExtend .(applyLinComb base m vecs c1) .((c2h ·ₛ base) +v applyLinComb base m vecs c2) (base , m , vecs) .(base , suc m , base ∷ vecs) refl (c1 , refl) (c2h ∷ c2 , refl) =
((1 ∷ c1) +v (c2h ∷ c2)) ,
(begin
(suc c2h ·ₛ base) +v applyLinComb base m vecs (c1 +v c2)
≡⟨ cong (λ x → (x ·ₛ base) +v applyLinComb base m vecs (c1 +v c2)) refl ⟩
((1 + c2h) ·ₛ base) +v applyLinComb base m vecs (c1 +v c2)
≡⟨ cong (λ x → (x ·ₛ base) +v applyLinComb base m vecs (c1 +v c2)) (+-comm (suc zero) c2h) ⟩
((c2h + 1) ·ₛ base) +v applyLinComb base m vecs (c1 +v c2)
≡⟨ cong (λ x → x +v applyLinComb base m vecs (c1 +v c2)) (scalarAssoc c2h 1 base) ⟩
((c2h ·ₛ base) +v (1 ·ₛ base)) +v
applyLinComb base m vecs (c1 +v c2)
≡⟨ cong (λ x → ((c2h ·ₛ base) +v x) +v applyLinComb base m vecs (c1 +v c2)) (scalarIdent base) ⟩
((c2h ·ₛ base) +v base) +v applyLinComb base m vecs (c1 +v c2)
≡⟨ vAssoc ⟩
(c2h ·ₛ base) +v (base +v applyLinComb base m vecs (c1 +v c2))
≡⟨ cong (λ x → (c2h ·ₛ base) +v x) (sym (linCombDecompBase m base vecs c1 c2)) ⟩
(c2h ·ₛ base) +v
(applyLinComb base m vecs c1 +v applyLinComb base m vecs c2)
≡⟨ cong (λ x → (c2h ·ₛ base) +v x) (v+-commut (applyLinComb base m vecs c1) (applyLinComb base m vecs c2)) ⟩
(c2h ·ₛ base) +v
(applyLinComb base m vecs c2 +v applyLinComb base m vecs c1)
≡⟨ sym vAssoc ⟩
((c2h ·ₛ base) +v applyLinComb base m vecs c2) +v
applyLinComb base m vecs c1
≡⟨ cong (λ x → x +v applyLinComb base m vecs c1 ) refl ⟩
(applyLinComb base (suc m) (base ∷ vecs) (c2h ∷ c2)) +v
applyLinComb base m vecs c1
≡⟨ v+-commut ((c2h ·ₛ base) +v applyLinComb base m vecs c2) (applyLinComb base m vecs c1) ⟩ applyLinComb base m vecs c1 +v
((c2h ·ₛ base) +v applyLinComb base m vecs c2) ∎
)
--Show that every non-empty vector in L* for a linear-set L
--Can be split into a vector from L and another in L*
--Basically proves that L* contains only sums of vectors in L
linStarDecomp
: {n : ℕ}
-> (v : Parikh n)
-> (l ls : LinSet n)
-> v ≢ v0
-> proj₁ (l) ≢ v0
-> ls ≡ linStar l
-> LinComb v ls
-> LinComb v l ⊎ (∃ λ v1 -> ∃ λ v2 -> v1 +v v2 ≡ v × LinComb v1 l × LinComb v2 ls × v1 ≢ v0 )
linStarDecomp .((0 ·ₛ base) +v applyLinComb base m vecs c) (base , m , vecs) .(base , suc m , base ∷ vecs) vnz bnz refl (zero ∷ c , refl) rewrite scalar0ident base = inj₁ (c , (sym v0identLeft))
linStarDecomp .((suc cbase ·ₛ base) +v applyLinComb base m vecs c) (base , m , vecs) .(base , suc m , base ∷ vecs) vnz bnz refl (suc cbase ∷ c , refl) = inj₂ ( base , (applyLinComb base (suc m) (base ∷ vecs) (cbase ∷ c)) ,
(sym (begin -- ? ≡⟨ ? ⟩ ?
(suc cbase ·ₛ base) +v applyLinComb base m vecs c
≡⟨ cong (λ x → x +v applyLinComb base m vecs c) refl ⟩
((1 + cbase) ·ₛ base) +v applyLinComb base m vecs c
≡⟨ cong (λ x → x +v applyLinComb base m vecs c) (scalarAssoc 1 cbase base) ⟩
((suc zero ·ₛ base) +v (cbase ·ₛ base)) +v
applyLinComb base m vecs c
≡⟨ cong (λ x → (x +v (cbase ·ₛ base)) +v applyLinComb base m vecs c) (scalarIdent base) ⟩
(base +v (cbase ·ₛ base)) +v applyLinComb base m vecs c
≡⟨ vAssoc ⟩
base +v ((cbase ·ₛ base) +v applyLinComb base m vecs c)
≡⟨ refl ⟩
(base +v ((cbase ·ₛ base) +v applyLinComb base m vecs c) ∎))) ,
(v0 , linContainsBase base m vecs) , ((cbase ∷ c) , refl) , bnz )
| {
"alphanum_fraction": 0.6082417797,
"avg_line_length": 41.2532258065,
"ext": "agda",
"hexsha": "701579711f0a559c3c97158793d6b41b5b55eb3e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/agda-parikh",
"max_forks_repo_path": "SemiLin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/agda-parikh",
"max_issues_repo_path": "SemiLin.agda",
"max_line_length": 223,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1e28103ff7dd1d4f3351ef21397833aa4490b7ea",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/agda-parikh",
"max_stars_repo_path": "SemiLin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10210,
"size": 25577
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.elims.SuspSmash
open import homotopy.elims.CofPushoutSection
-- Σ(X∧Y) ≃ X * Y
module homotopy.SuspSmash {i j} (X : Ptd i) (Y : Ptd j) where
private
{- path lemmas -}
private
reduce-x : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ p ∙ ! q ∙ q ∙ ! p ∙ p == p
reduce-x idp idp = idp
reduce-y : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z)
→ p ∙ ! p ∙ q ∙ ! q ∙ p == p
reduce-y idp idp = idp
module Into = SuspRec {A = Smash X Y}
{C = de⊙ X * de⊙ Y}
(left (pt X))
(right (pt Y))
(Smash-rec
(λ x y →
jglue (pt X) (pt Y) ∙ ! (jglue x (pt Y))
∙ jglue x y
∙ ! (jglue (pt X) y) ∙ jglue (pt X) (pt Y))
(jglue (pt X) (pt Y))
(jglue (pt X) (pt Y))
(λ x → reduce-x (jglue (pt X) (pt Y)) (jglue x (pt Y)))
(λ y → reduce-y (jglue (pt X) (pt Y)) (jglue (pt X) y)))
into = Into.f
module Out = JoinRec
{C = Susp (Smash X Y)}
(λ _ → north)
(λ _ → south)
(λ x y → merid (smin x y))
out = Out.f
abstract
into-out : (j : de⊙ X * de⊙ Y) → into (out j) == j
into-out = Join-elim
(λ x → glue (pt X , pt Y) ∙ ! (glue (x , pt Y)))
(λ y → ! (glue (pt X , pt Y)) ∙ glue (pt X , y))
(λ x y → ↓-∘=idf-from-square into out $
(ap (ap into) (Out.glue-β x y)
∙ Into.merid-β (smin x y))
∙v⊡ lemma (glue (pt X , pt Y)) (glue (x , pt Y))
(glue (pt X , y)) (glue (x , y)))
where
lemma : ∀ {i} {A : Type i} {x y z w : A}
(p : x == y) (q : z == y) (r : x == w) (s : z == w)
→ Square (p ∙ ! q) (p ∙ ! q ∙ s ∙ ! r ∙ p) s (! p ∙ r)
lemma idp idp idp s =
vert-degen-square (∙-unit-r s)
out-into : (σ : Susp (Smash X Y)) → out (into σ) == σ
out-into = SuspSmash-elim
idp
idp
(λ x y → ↓-∘=idf-in' out into $
ap (ap out) (Into.merid-β (smin x y))
∙ lemma₁ out (Out.glue-β (pt X) (pt Y))
(Out.glue-β x (pt Y))
(Out.glue-β x y)
(Out.glue-β (pt X) y)
(Out.glue-β (pt X) (pt Y))
∙ lemma₂ {p = merid (smin (pt X) (pt Y))}
{q = merid (smin x (pt Y))}
{r = merid (smin x y)}
{s = merid (smin (pt X) y)}
{t = merid (smin (pt X) (pt Y))}
(ap merid (smgluel (pt X) ∙ ! (smgluel x)))
(ap merid (smgluer y ∙ ! (smgluer (pt Y)))))
where
lemma₁ : ∀ {i j} {A : Type i} {B : Type j} (f : A → B)
{x y z u v w : A}
{p : x == y} {q : z == y} {r : z == u} {s : v == u} {t : v == w}
{p' : f x == f y} {q' : f z == f y} {r' : f z == f u}
{s' : f v == f u} {t' : f v == f w}
(α : ap f p == p') (β : ap f q == q') (γ : ap f r == r')
(δ : ap f s == s') (ε : ap f t == t')
→ ap f (p ∙ ! q ∙ r ∙ ! s ∙ t) == p' ∙ ! q' ∙ r' ∙ ! s' ∙ t'
lemma₁ f {p = idp} {q = idp} {r = idp} {s = idp} {t = idp}
idp idp idp idp idp
= idp
lemma₂ : ∀ {i} {A : Type i} {x y z u : A}
{p q : x == y} {r : x == z} {s t : u == z}
(α : p == q) (β : s == t)
→ p ∙ ! q ∙ r ∙ ! s ∙ t == r
lemma₂ {p = idp} {r = idp} {s = idp} idp idp = idp
module SuspSmash where
eq : Susp (Smash X Y) ≃ (de⊙ X * de⊙ Y)
eq = equiv into out into-out out-into
⊙eq : ⊙Susp (⊙Smash X Y) ⊙≃ (X ⊙* Y)
⊙eq = ≃-to-⊙≃ eq idp
| {
"alphanum_fraction": 0.4,
"avg_line_length": 32.5925925926,
"ext": "agda",
"hexsha": "0a50238da090830a3e47c5f144a5040527194426",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SuspSmash.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SuspSmash.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SuspSmash.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1515,
"size": 3520
} |
{-# OPTIONS --without-K --safe #-}
module Algebra.Linear.Structures.Bundles.FiniteDimensional where
open import Algebra
open import Algebra.FunctionProperties
open import Relation.Binary using (Rel)
open import Level using (Level; suc; _⊔_)
open import Algebra.Structures.Bundles.Field
open import Algebra.Linear.Structures.Bundles
open import Algebra.Linear.Structures.VectorSpace
open import Algebra.Linear.Structures.FiniteDimensional
open import Data.Nat using (ℕ)
record FiniteDimensional {k ℓᵏ} (K : Field k ℓᵏ) (c ℓ : Level) (n : ℕ) : Set (suc (c ⊔ k ⊔ ℓ ⊔ ℓᵏ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Carrier -> Carrier -> Carrier
_∙_ : Field.Carrier K -> Carrier -> Carrier
-_ : Carrier -> Carrier
0# : Carrier
isFiniteDimensional : IsFiniteDimensional K _≈_ _+_ _∙_ -_ 0# n
open IsFiniteDimensional isFiniteDimensional public
vectorSpace : VectorSpace K c ℓ
vectorSpace = record { isVectorSpace = isVectorSpace }
| {
"alphanum_fraction": 0.6651162791,
"avg_line_length": 33.59375,
"ext": "agda",
"hexsha": "88ae379b671a05267b4629986ba02fc053247656",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Structures/Bundles/FiniteDimensional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Structures/Bundles/FiniteDimensional.agda",
"max_line_length": 105,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Structures/Bundles/FiniteDimensional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 294,
"size": 1075
} |
module Data.Word64.Exts where
open import Agda.Builtin.Nat
open import Agda.Builtin.Word
open import Data.Nat
open import Data.Word
addWord : Word64 → Word64 → Word64
addWord a b = primWord64FromNat (primWord64ToNat a + primWord64ToNat b)
subWord : Word64 → Word64 → Word64
subWord a b = primWord64FromNat (primWord64ToNat a - primWord64ToNat b)
| {
"alphanum_fraction": 0.787965616,
"avg_line_length": 26.8461538462,
"ext": "agda",
"hexsha": "2b046bf3e98e69ca016f6ed9e2a675c4f709dea0",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/Word64/Exts.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/Word64/Exts.agda",
"max_line_length": 71,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/Word64/Exts.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 110,
"size": 349
} |
open import Level hiding ( suc ; zero )
open import Algebra
module sym5 where
open import Symmetric
open import Data.Unit using (⊤ ; tt )
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function hiding (flip)
open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
open import Data.Nat.Properties
open import Relation.Nullary
open import Data.Empty
open import Data.Product
open import Gutil
open import Putil
open import Solvable using (solvable)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Fin hiding (_<_ ; _≤_ ; lift )
open import Data.Fin.Permutation hiding (_∘ₚ_)
infixr 200 _∘ₚ_
_∘ₚ_ = Data.Fin.Permutation._∘ₚ_
open import Data.List hiding ( [_] )
open import nat
open import fin
open import logic
open _∧_
¬sym5solvable : ¬ ( solvable (Symmetric 5) )
¬sym5solvable sol = counter-example (end5 (abc 0<3 0<4 ) (dervie-any-3rot0 (dervied-length sol) 0<3 0<4 ) ) where
--
-- dba 1320 d → b → a → d
-- (dba)⁻¹ 3021 a → b → d → a
-- aec 21430
-- (aec)⁻¹ 41032
-- [ dba , aec ] = (abd)(cea)(dba)(aec) = abc
-- so commutator always contains abc, dba and aec
open ≡-Reasoning
open solvable
open Solvable ( Symmetric 5)
end5 : (x : Permutation 5 5) → deriving (dervied-length sol) x → x =p= pid
end5 x der = end sol x der
0<4 : 0 < 4
0<4 = s≤s z≤n
0<3 : 0 < 3
0<3 = s≤s z≤n
--- 1 ∷ 2 ∷ 0 ∷ [] abc
3rot : Permutation 3 3
3rot = pid {3} ∘ₚ pins (n≤ 2)
save2 : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5
save2 i<3 j<4 = flip (pins (s≤s i<3)) ∘ₚ flip (pins j<4)
ins2 : {i j : ℕ } → Permutation 3 3 → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5
ins2 abc i<3 j<4 = (save2 i<3 j<4 ∘ₚ (pprep (pprep abc))) ∘ₚ flip (save2 i<3 j<4 )
ins2cong : {i j : ℕ } → {x y : Permutation 3 3 } → {i<3 : i ≤ 3 } → {j<4 : j ≤ 4 } → x =p= y → ins2 x i<3 j<4 =p= ins2 y i<3 j<4
ins2cong {i} {j} {x} {y} {i<3} {j<4} x=y = presp {5} {save2 i<3 j<4 ∘ₚ (pprep (pprep x))} {_} {flip (save2 i<3 j<4 )}
(presp {5} {save2 i<3 j<4} prefl (pprep-cong (pprep-cong x=y)) ) prefl
open _=p=_
abc : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5
abc i<3 j<4 = ins2 3rot i<3 j<4
dba : {i j : ℕ } → (i ≤ 3 ) → ( j ≤ 4 ) → Permutation 5 5
dba i<3 j<4 = ins2 (3rot ∘ₚ 3rot) i<3 j<4
counter-example : ¬ (abc 0<3 0<4 =p= pid )
counter-example eq with ←pleq _ _ eq
... | ()
record Triple {i j : ℕ } (i<3 : i ≤ 3) (j<4 : j ≤ 4) (rot : Permutation 3 3) : Set where
field
dba0<3 : Fin 4
dba1<4 : Fin 5
aec0<3 : Fin 4
aec1<4 : Fin 5
abc= : ins2 rot i<3 j<4 =p= [ ins2 (rot ∘ₚ rot) (fin≤n {3} dba0<3) (fin≤n {4} dba1<4) , ins2 (rot ∘ₚ rot) (fin≤n {3} aec0<3) (fin≤n {4} aec1<4) ]
open Triple
triple : {i j : ℕ } → (i<3 : i ≤ 3) (j<4 : j ≤ 4) → Triple i<3 j<4 3rot
triple z≤n z≤n = record { dba0<3 = # 0 ; dba1<4 = # 4 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple z≤n (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 4 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple z≤n (s≤s (s≤s z≤n)) = record { dba0<3 = # 1 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
triple z≤n (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 0 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple z≤n (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 0 ; dba1<4 = # 0 ; aec0<3 = # 2 ; aec1<4 = # 4 ; abc= = pleq _ _ refl }
triple (s≤s z≤n) z≤n = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 3 ; aec1<4 = # 1 ; abc= = pleq _ _ refl }
triple (s≤s z≤n) (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 3 ; aec1<4 = # 1 ; abc= = pleq _ _ refl }
triple (s≤s z≤n) (s≤s (s≤s z≤n)) = record { dba0<3 = # 1 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
triple (s≤s z≤n) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 0 ; dba1<4 = # 3 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple (s≤s z≤n) (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s z≤n)) z≤n = record { dba0<3 = # 3 ; dba1<4 = # 0 ; aec0<3 = # 1 ; aec1<4 = # 3 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s z≤n)) (s≤s z≤n) = record { dba0<3 = # 3 ; dba1<4 = # 0 ; aec0<3 = # 1 ; aec1<4 = # 3 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s z≤n)) (s≤s (s≤s z≤n)) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 0 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 0 ; dba1<4 = # 3 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 1 ; dba1<4 = # 4 ; aec0<3 = # 2 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s (s≤s z≤n))) z≤n = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s (s≤s z≤n))) (s≤s z≤n) = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s z≤n)) = record { dba0<3 = # 0 ; dba1<4 = # 0 ; aec0<3 = # 2 ; aec1<4 = # 4 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) =
record { dba0<3 = # 1 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 3 ; abc= = pleq _ _ refl }
_⁻¹ : {n : ℕ } ( x : Permutation n n) → Permutation n n
_⁻¹ = pinv
-- tt5 : (i : Fin 4) (j : Fin 5) → (z : Fin 4) → (w : Fin 5) → (x : Fin 5) (y : Fin 4) → (rot : Permutation 3 3 ) → List (List ℕ) → List (List ℕ)
-- tt5 i j z w x y rot t with is-=p= (ins2 rot (fin≤n i) (fin≤n j))
-- [ ins2 (rot ∘ₚ rot) (fin≤n z) (fin≤n x) , ins2 (pinv rot) (fin≤n y) (fin≤n w) ]
-- ... | yes _ = ( toℕ i ∷ toℕ j ∷ 9 ∷ toℕ z ∷ toℕ x ∷ toℕ y ∷ toℕ w ∷ [] ) ∷ t
-- ... | no _ = t
-- open import Relation.Binary.Definitions
-- tt2 : (i : Fin 4) (j : Fin 5) → (rot : Permutation 3 3 ) → List (List ℕ)
-- tt2 i j rot = tt3 (# 4) (# 3) (# 3) (# 4) [] where
-- tt3 : (w : Fin 5) (z : Fin 4) (x : Fin 4) (y : Fin 5) → List (List ℕ) → List (List ℕ)
-- tt3 zero zero zero zero t = ( tt5 i j zero zero zero zero rot [] ) ++ t
-- tt3 (suc w) zero zero zero t = tt3 (fin+1 w) (# 3) (# 3) (# 4) ((tt5 i j zero (suc w) zero zero rot [] ) ++ t)
-- tt3 w z zero (suc y) t = tt3 w z (# 3) (fin+1 y) ((tt5 i j z w (suc y) zero rot [] ) ++ t)
-- tt3 w z (suc x) y t = tt3 w z (fin+1 x) y ((tt5 i j z w y (suc x) rot [] ) ++ t)
-- tt3 w (suc z) zero zero t = tt3 w (fin+1 z) (# 3) (# 4) ((tt5 i j (suc z) w zero zero rot [] ) ++ t)
-- tt4 : List (List (List ℕ))
-- tt4 = tt2 (# 0) (# 0) (pinv 3rot) ∷
-- tt2 (# 1) (# 0) (pinv 3rot) ∷
-- tt2 (# 2) (# 0) (pinv 3rot) ∷
-- tt2 (# 3) (# 0) (pinv 3rot) ∷
-- tt2 (# 0) (# 1) (pinv 3rot) ∷
-- tt2 (# 1) (# 1) (pinv 3rot) ∷
-- tt2 (# 2) (# 1) (pinv 3rot) ∷
-- tt2 (# 3) (# 1) (pinv 3rot) ∷
-- tt2 (# 0) (# 2) (pinv 3rot) ∷
-- tt2 (# 1) (# 2) (pinv 3rot) ∷
-- tt2 (# 2) (# 2) (pinv 3rot) ∷
-- tt2 (# 3) (# 2) (pinv 3rot) ∷
-- tt2 (# 0) (# 3) (pinv 3rot) ∷
-- tt2 (# 1) (# 3) (pinv 3rot) ∷
-- tt2 (# 2) (# 3) (pinv 3rot) ∷
-- tt2 (# 3) (# 3) (pinv 3rot) ∷
-- tt2 (# 0) (# 4) (pinv 3rot) ∷
-- tt2 (# 1) (# 4) (pinv 3rot) ∷
-- tt2 (# 2) (# 4) (pinv 3rot) ∷
-- tt2 (# 3) (# 4) (pinv 3rot) ∷
-- []
open Triple
dba-triple : {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 ) → Triple i<3 j<4 (3rot ∘ₚ 3rot )
dba-triple z≤n z≤n = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple z≤n (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple z≤n (s≤s (s≤s z≤n)) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
dba-triple z≤n (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 4 ; abc= = pleq _ _ refl }
dba-triple z≤n (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 3 ; dba1<4 = # 0 ; aec0<3 = # 0 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
dba-triple (s≤s z≤n) z≤n = record { dba0<3 = # 0 ; dba1<4 = # 0 ; aec0<3 = # 1 ; aec1<4 = # 3 ; abc= = pleq _ _ refl }
dba-triple (s≤s z≤n) (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 0 ; aec0<3 = # 1 ; aec1<4 = # 3 ; abc= = pleq _ _ refl }
dba-triple (s≤s z≤n) (s≤s (s≤s z≤n)) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
dba-triple (s≤s z≤n) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 1 ; dba1<4 = # 4 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s z≤n) (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 3 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s z≤n)) z≤n = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s z≤n)) (s≤s z≤n) = record { dba0<3 = # 2 ; dba1<4 = # 4 ; aec0<3 = # 0 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s z≤n)) (s≤s (s≤s z≤n)) = record { dba0<3 = # 0 ; dba1<4 = # 2 ; aec0<3 = # 2 ; aec1<4 = # 4 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 1 ; dba1<4 = # 4 ; aec0<3 = # 2 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s z≤n)) (s≤s (s≤s (s≤s (s≤s z≤n)))) = record { dba0<3 = # 2 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s (s≤s z≤n))) z≤n = record { dba0<3 = # 0 ; dba1<4 = # 4 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s (s≤s z≤n))) (s≤s z≤n) = record { dba0<3 = # 0 ; dba1<4 = # 4 ; aec0<3 = # 1 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s z≤n)) = record { dba0<3 = # 3 ; dba1<4 = # 0 ; aec0<3 = # 0 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s z≤n))) = record { dba0<3 = # 1 ; dba1<4 = # 3 ; aec0<3 = # 3 ; aec1<4 = # 0 ; abc= = pleq _ _ refl }
dba-triple (s≤s (s≤s (s≤s z≤n))) (s≤s (s≤s (s≤s (s≤s z≤n)))) =
record { dba0<3 = # 2 ; dba1<4 = # 0 ; aec0<3 = # 3 ; aec1<4 = # 2 ; abc= = pleq _ _ refl }
-3=33 : pinv 3rot =p= (3rot ∘ₚ 3rot )
-3=33 = pleq _ _ refl
4=1 : (3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot ) =p= 3rot
4=1 = pleq _ _ refl
dervie-any-3rot0 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 )
→ deriving n (abc i<3 j<4 )
dervie-any-3rot1 : (n : ℕ ) → {i j : ℕ } → (i<3 : i ≤ 3 ) → (j<4 : j ≤ 4 )
→ deriving n (dba i<3 j<4 )
commd : {n : ℕ } → (f g : Permutation 5 5)
→ deriving n f
→ deriving n g
→ Commutator (deriving n) [ f , g ]
commd {n} f g df dg = comm {deriving n} {f} {g} df dg
dervie-any-3rot0 0 i<3 j<4 = lift tt
dervie-any-3rot0 (suc i) i<3 j<4 = ccong {deriving i} (psym ceq) (commd dba0 aec0 df dg )where
tc = triple i<3 j<4
dba0 = dba (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))
aec0 = dba (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc))
ceq : abc i<3 j<4 =p= [ dba0 , aec0 ]
ceq = record { peq = peq (abc= tc) }
df = dervie-any-3rot1 i (fin≤n {3} (dba0<3 tc)) (fin≤n {4} (dba1<4 tc))
dg = dervie-any-3rot1 i (fin≤n {3} (aec0<3 tc)) (fin≤n {4} (aec1<4 tc))
dervie-any-3rot1 0 i<3 j<4 = lift tt
dervie-any-3rot1 (suc n) {i} {j} i<3 j<4 = ccong {deriving n} ( psym ceq ) (commd aec0 abc0 df dg ) where
tdba = dba-triple i<3 j<4
aec0 = ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba))
abc0 = ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba))
ceq : dba i<3 j<4 =p= [ aec0 , abc0 ]
ceq = record { peq = peq (abc= tdba) }
df : deriving n (ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba)))
df = deriving-subst (psym (ins2cong {toℕ (dba0<3 (dba-triple i<3 j<4))} {toℕ (dba1<4 (dba-triple i<3 j<4))} 4=1 ))
(dervie-any-3rot0 n (fin≤n {3} (dba0<3 tdba)) (fin≤n {4} (dba1<4 tdba)))
dg : deriving n (ins2 ((3rot ∘ₚ 3rot) ∘ₚ (3rot ∘ₚ 3rot )) (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba)))
dg = deriving-subst (psym (ins2cong {toℕ (aec0<3 (dba-triple i<3 j<4))} {toℕ (aec1<4 (dba-triple i<3 j<4))} 4=1 ))
(dervie-any-3rot0 n (fin≤n {3} (aec0<3 tdba)) (fin≤n {4} (aec1<4 tdba)))
| {
"alphanum_fraction": 0.4453672276,
"avg_line_length": 62.6561085973,
"ext": "agda",
"hexsha": "c9c155c643265f931c55a858b7f09de4a4a055da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/sym5.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/sym5.agda",
"max_line_length": 156,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/sym5.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 7005,
"size": 13847
} |
module Sandbox.PrimitiveRecursion where
open import Data.Nat
open import Data.Fin using (Fin)
open import Data.Vec
data PR : ℕ → Set where
-- Constant function: The 0-ary constant function 0 is primitive recursive.
K : PR 0
-- Successor function: The 1-ary successor function S, which returns the
-- successor of its argument (see Peano postulates), is primitive recursive.
-- That is, S(k) = k + 1.
S : PR 1
-- Projection function: For every n≥1 and each i with 1≤i≤n, the n-ary
-- projection function Pᵢⁿ, which returns its i-th argument, is primitive
-- recursive.
Proj : ∀ {n} → (i : Fin n) → PR n
-- Composition: Given f, a m-ary primitive recursive function, and m n-ary
-- primitive recursive functions g1,...,gm, the composition of f with
-- g1,...,gk, is primitive recursive
-- f(
-- g₁(x₁, x₂, ..., xₙ)
-- g₂(x₁, x₂, ..., xₙ)
-- ...
-- gₘ(x₁, x₂, ..., xₙ)
-- )
Comp : ∀ {m n} → (f : PR m) → Vec (PR n) m → PR n
-- Primitive recursion: Given f, a m-ary primitive recursive function,
-- and g, a (m+2)-ary primitive recursive function, the (m+1)-ary function
-- h is defined as the primitive recursion of f and g, i.e. the function h
-- is primitive recursive when
-- h(0 , x₁, x₂, .. xₘ) = f(x₁, x₂, .. xₘ)
-- h(S(n), x₁, x₂, .. xₘ) = g(n, h(n, x₁, x₂, .. xₘ), x₁, x₂, .. xₘ)
Rec : ∀ {n} → (f : PR {! !}) (g : PR (suc (suc n))) → PR (suc n)
mutual
⟦_⟧_ : ∀ {a} → PR a → Vec ℕ a → ℕ
⟦ K ⟧ args = zero
⟦ S ⟧ args = suc zero
⟦ Proj i ⟧ args = lookup i args
⟦ Comp f gs ⟧ args = ⟦ f ⟧ (⟦ gs ⟧* args)
⟦ Rec f g ⟧ (zero ∷ args) = ⟦ f ⟧ args
⟦ Rec f g ⟧ (suc x ∷ args) = ⟦ g ⟧ (x ∷ (⟦ f ⟧ args) ∷ args)
⟦_⟧* : {m n : ℕ} (gs : Vec (PR n) m) → Vec ℕ n → Vec ℕ m
⟦ [] ⟧* args = []
⟦ g ∷ gs ⟧* args = (⟦ g ⟧ args) ∷ ⟦ gs ⟧* args
| {
"alphanum_fraction": 0.517433047,
"avg_line_length": 38.0576923077,
"ext": "agda",
"hexsha": "a3419422170d358a7b2c5e640e5ccbb0cde24942",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "Sandbox/PrimitiveRecursion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "Sandbox/PrimitiveRecursion.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "Sandbox/PrimitiveRecursion.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 742,
"size": 1979
} |
open import Agda.Builtin.Nat
data List (A : Set) : Set where
lnil : List A
lcons : A → List A → List A
data Vec (A : Set) : Nat → Set where
vnil : Vec A 0
vcons : ∀ {n} → A → Vec A n → Vec A (suc n)
pattern [] = lnil
pattern [] = vnil
pattern _∷_ x xs = lcons x xs
pattern _∷_ y ys = vcons y ys
lmap : ∀ {A B} → (A → B) → List A → List B
lmap f [] = []
lmap f (x ∷ xs) = f x ∷ lmap f xs
vmap : ∀ {A B n} → (A → B) → Vec A n → Vec B n
vmap f [] = []
vmap f (x ∷ xs) = f x ∷ vmap f xs
| {
"alphanum_fraction": 0.5270541082,
"avg_line_length": 19.96,
"ext": "agda",
"hexsha": "51aa357a4467aecf6ff4619162c03dee90111e90",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2787.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2787.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2787.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 218,
"size": 499
} |
{-# OPTIONS --rewriting --prop #-}
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
postulate
P : Prop
p : P
f : P -> P
g : {A : Set} -> P -> A -> A
eq : ∀{A} {x : A} -> g p x ≡ x
{-# REWRITE eq #-}
module _ {A : Set} {x : A} {y : P} where
foo : g p x ≡ x
foo = refl
bar : g (f y) x ≡ x
bar = refl
| {
"alphanum_fraction": 0.5114285714,
"avg_line_length": 15.2173913043,
"ext": "agda",
"hexsha": "ec72231eddd18aaad373b4bcc6d67124b4f4e156",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4410.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4410.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4410.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 141,
"size": 350
} |
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Common
module Action {ℙ : Set} (message : Message ℙ)
where
open Message message
data Action : Set where
I O : ℙ -> Action
input-injective : ∀{x y} -> I x ≡ I y -> x ≡ y
input-injective refl = refl
output-injective : ∀{x y} -> O x ≡ O y -> x ≡ y
output-injective refl = refl
co-action : Action -> Action
co-action (I x) = O x
co-action (O x) = I x
co-action-injective : ∀{x y} -> co-action x ≡ co-action y -> x ≡ y
co-action-injective {I x} {I .x} refl = refl
co-action-injective {O x} {O .x} refl = refl
co-action-involution : (α : Action) -> co-action (co-action α) ≡ α
co-action-involution (I _) = refl
co-action-involution (O _) = refl
action-equality-dec : (α β : Action) -> Dec (α ≡ β)
action-equality-dec (I x) (I y) with x ?= y
... | yes eq rewrite eq = yes refl
... | no neq = no λ eq -> neq (input-injective eq)
action-equality-dec (I x) (O y) = no λ ()
action-equality-dec (O x) (I y) = no λ ()
action-equality-dec (O x) (O y) with x ?= y
... | yes eq rewrite eq = yes refl
... | no neq = no λ eq -> neq (output-injective eq)
| {
"alphanum_fraction": 0.6974425661,
"avg_line_length": 34.9545454545,
"ext": "agda",
"hexsha": "97a0d32f732b315f1fa891104209b00b1b5c021c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Action.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Action.agda",
"max_line_length": 68,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Action.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 639,
"size": 2307
} |
module Numeral.Natural.Relation.Divisibility.Proofs.Modulo where
import Lvl
open import Data
open import Functional
open import Logic.Predicate
open import Logic.Propositional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.DivMod.Proofs
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Modulo.Proofs
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Function.Domain
open import Structure.Operator.Properties
open import Structure.Operator.Proofs.Util
open import Syntax.Transitivity
open import Type
divides-mod : ∀{a b d} → (d ∣ 𝐒(b)) → (d ∣ a) ↔ (d ∣ a mod 𝐒(b))
divides-mod {a}{b}{d} db = [↔]-intro (l db) (r db) where
l : ∀{a b d} → (d ∣ 𝐒(b)) → (d ∣ a) ← (d ∣ (a mod₀ 𝐒(b)))
l {a}{b}{𝟎} db dmod with () ← [0]-only-divides-[0] db
l {a}{b}{𝐒(d)} db dmod
with [∃]-intro (𝐒(n)) ⦃ dnb ⦄ ← [↔]-to-[←] divides-[⋅]-existence db
with [∃]-intro m ⦃ dmmod ⦄ ← [↔]-to-[←] divides-[⋅]-existence dmod
= [↔]-to-[→] divides-[⋅]-existence ([∃]-intro (((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ 𝐒(n)) + m) ⦃ p ⦄) where
p : (𝐒(d) ⋅ (((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ 𝐒(n)) + m) ≡ a)
p =
𝐒(d) ⋅ (((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ 𝐒(n)) + m) 🝖[ _≡_ ]-[ distributivityₗ(_⋅_)(_+_) {𝐒(d)}{(a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ 𝐒(n)}{m} ]
(𝐒(d) ⋅ ((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ 𝐒(n))) + (𝐒(d) ⋅ m) 🝖[ _≡_ ]-[ [≡]-with(_+ (𝐒(d) ⋅ m)) (One.commuteₗ-assocᵣ {a = 𝐒(d)}{a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))}{𝐒(n)}) ]
((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ (𝐒(d) ⋅ 𝐒(n))) + (𝐒(d) ⋅ m) 🝖[ _≡_ ]-[ [≡]-with(((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ (𝐒(d) ⋅ 𝐒(n))) +_) dmmod ]
((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ (𝐒(d) ⋅ 𝐒(n))) + (a mod 𝐒(b)) 🝖[ _≡_ ]-[ [≡]-with(expr ↦ ((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ (𝐒(d) ⋅ 𝐒(n))) + (a mod 𝐒(expr))) (injective(𝐒) dnb) ]-sym
((a ⌊/⌋ (𝐒(d) ⋅ 𝐒(n))) ⋅ (𝐒(d) ⋅ 𝐒(n))) + (a mod (𝐒(d) ⋅ 𝐒(n))) 🝖[ _≡_ ]-[ [⌊/⌋][mod]-is-division-with-remainder {a}{d + 𝐒(d) ⋅ n} ]
a 🝖-end
r : ∀{a b d} → (d ∣ 𝐒(b)) → (d ∣ a) → (d ∣ (a mod₀ 𝐒(b)))
r {a}{b}{𝟎} db da with [≡]-intro ← [0]-only-divides-[0] da = Div𝟎
r {a}{b}{𝐒 d} db da
with [∃]-intro n ⦃ dna ⦄ ← [↔]-to-[←] divides-[⋅]-existence da
with [∃]-intro m ⦃ dmb ⦄ ← [↔]-to-[←] divides-[⋅]-existence db
= [↔]-to-[→] divides-[⋅]-existence ([∃]-intro (n mod₀ m) ⦃ p ⦄) where
p : (𝐒(d) ⋅ (n mod₀ m) ≡ a mod₀ 𝐒(b))
p =
𝐒(d) ⋅ (n mod₀ m) 🝖[ _≡_ ]-[ [⋅][mod]-distributivityₗ {n}{m}{𝐒(d)} ]
(𝐒(d) ⋅ n) mod₀ (𝐒(d) ⋅ m) 🝖[ _≡_ ]-[ [≡]-with(\expr → ((𝐒(d) ⋅ n) mod₀ expr)) dmb ]
(𝐒(d) ⋅ n) mod₀ 𝐒(b) 🝖[ _≡_ ]-[ [≡]-with(_mod₀ 𝐒(b)) dna ]
a mod₀ 𝐒(b) 🝖[ _≡_ ]-end
| {
"alphanum_fraction": 0.4916808149,
"avg_line_length": 54.537037037,
"ext": "agda",
"hexsha": "0acf943a6c171c639eaaa274d510134d38d65c24",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Modulo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Modulo.agda",
"max_line_length": 180,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Relation/Divisibility/Proofs/Modulo.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1538,
"size": 2945
} |
module Inductive where
open import Level using (_⊔_)
open import Data.Nat hiding (_⊔_)
open import Data.Fin
open import Data.List hiding (map)
import Data.List as List
open import Data.Vec hiding (_++_)
open import Data.Product hiding (map)
open import Tuple using (Tuple; []; _∷_; unfoldToFunc; apply; proof₁; proof₂)
Const : Set₁
Const = List Set × List (List Set)
data TupleRec (A : Set) : List (List Set) → Set where
[] : TupleRec A []
_∷_ : ∀ {x xs} → ((Tuple x) → A) → TupleRec A xs → TupleRec A (x ∷ xs)
data Inductive {n} (A : Vec Const n) : Set where
construct : (m : Fin n)
(x : Tuple (proj₁ (lookup m A)))
(r : TupleRec (Inductive A) (proj₂ (lookup m A)))
→ Inductive A
unfoldToConFunc : List (List Set) → Set → Set
unfoldToConFunc [] B = B
unfoldToConFunc (As ∷ As₁) B = (unfoldToFunc As B) → unfoldToConFunc As₁ B
unfoldToRecFunc : List (List Set) → Set → Set → Set
unfoldToRecFunc [] B C = C
unfoldToRecFunc (As ∷ As₁) B C = (unfoldToFunc As B) → (unfoldToFunc As C) →
unfoldToRecFunc As₁ B C
proofCon : (As : List (List Set)) {B : Set}
→ (TupleRec B As → B) → unfoldToConFunc As B
proofCon [] B₁ = B₁ []
proofCon (As ∷ As₁) B₁ x = proofCon As₁ (λ x₁ → B₁ (proof₂ As x ∷ x₁))
-- The constrution function of an inductive instance
ConFunc : Set → Const → Set
ConFunc A (proj₁ , proj₂) = unfoldToFunc proj₁ (unfoldToConFunc proj₂ A)
-- The recursion function of an inductive instance
RecFunc : Set → Set → Const → Set
RecFunc A B (proj₁ , proj₂) = unfoldToFunc proj₁ (unfoldToRecFunc proj₂ A B)
recapply : ∀ {n} {A : Vec Const n} {B : Set}
{L : List Set} {R : List (List Set)}
→ RecFunc (Inductive A) B (L , R)
→ Tuple L → TupleRec (Inductive A) R → TupleRec B R → B
recapply {L = []} {[]} f [] [] [] = f
recapply {L = []} {R ∷ Rs} f [] (x ∷ x₁) (x₂ ∷ x₃) =
recapply {L = []} {R = Rs} (f (proof₁ R x) (proof₁ R x₂)) [] x₁ x₃
recapply {L = _ ∷ _} f (x₁ ∷ x₂) r c = recapply (f x₁) x₂ r c
rec : ∀ {n} {A : Vec Const n} {B : Set}
→ Tuple (toList (map (RecFunc (Inductive A) B) A))
→ Inductive A → B
rec {n} {A} {B} fs (construct m x r) = rec' A fs m x r
where mapRec : ∀ {m} → TupleRec (Inductive A) m → TupleRec B m
mapRec {m = []} [] = []
mapRec {m = _ ∷ _} (x₁ ∷ r₁) = (λ x₂ → rec fs (x₁ x₂)) ∷ mapRec r₁
rec' : ∀ {m}
→ (A' : Vec Const m)
→ Tuple (toList (map (RecFunc (Inductive A) B) A'))
→ (m' : Fin m)
→ Tuple (proj₁ (lookup m' A'))
→ TupleRec (Inductive A) (proj₂ (lookup m' A'))
→ B
rec' [] fs () x r
rec' (_ ∷ A') (f ∷ fs) zero x r = recapply f x r (mapRec r)
rec' (_ ∷ A') (f ∷ fs) (suc m) x r = rec' A' fs m x r
| {
"alphanum_fraction": 0.5625672284,
"avg_line_length": 38.2054794521,
"ext": "agda",
"hexsha": "26f83281fce19456bc28c3d74cb6015e6d8463f2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 996,
"size": 2789
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Results concerning function extensionality for propositional equality
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Axiom.Extensionality.Heterogeneous where
import Axiom.Extensionality.Propositional as P
open import Function
open import Level
open import Relation.Binary.HeterogeneousEquality.Core
open import Relation.Binary.PropositionalEquality.Core
------------------------------------------------------------------------
-- Function extensionality states that if two functions are
-- propositionally equal for every input, then the functions themselves
-- must be propositionally equal.
Extensionality : (a b : Level) → Set _
Extensionality a b =
{A : Set a} {B₁ B₂ : A → Set b}
{f₁ : (x : A) → B₁ x} {f₂ : (x : A) → B₂ x} →
(∀ x → B₁ x ≡ B₂ x) → (∀ x → f₁ x ≅ f₂ x) → f₁ ≅ f₂
------------------------------------------------------------------------
-- Properties
-- This form of extensionality follows from extensionality for _≡_.
≡-ext⇒≅-ext : ∀ {ℓ₁ ℓ₂} →
P.Extensionality ℓ₁ (suc ℓ₂) →
Extensionality ℓ₁ ℓ₂
≡-ext⇒≅-ext {ℓ₁} {ℓ₂} ext B₁≡B₂ f₁≅f₂ with ext B₁≡B₂
... | refl = ≡-to-≅ $ ext′ (≅-to-≡ ∘ f₁≅f₂)
where
ext′ : P.Extensionality ℓ₁ ℓ₂
ext′ = P.lower-extensionality ℓ₁ (suc ℓ₂) ext
| {
"alphanum_fraction": 0.5353107345,
"avg_line_length": 34.5365853659,
"ext": "agda",
"hexsha": "0b10affb613c36472ba055500b910fd1b473634e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Axiom/Extensionality/Heterogeneous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 398,
"size": 1416
} |
module Tactic.Nat.Less.Lemmas where
open import Prelude
open import Tactic.Nat.Exp
open import Tactic.Nat.NF
open import Tactic.Nat.Subtract.Exp
open import Tactic.Nat.Auto.Lemmas
open import Tactic.Nat.Simpl.Lemmas
open import Tactic.Nat.Subtract.Lemmas
liftNFSubLess : ∀ e₁ e₂ ρ → ⟦ normSub e₁ ⟧sn ρ < ⟦ normSub e₂ ⟧sn ρ → ⟦ e₁ ⟧se ρ < ⟦ e₂ ⟧se ρ
liftNFSubLess e₁ e₂ ρ (diff k eq) = diff k (eraseEquality $
sound-sub e₂ ρ ⟨≡⟩ eq ⟨≡⟩ʳ (suc k +_) $≡ sound-sub e₁ ρ)
SubExpLess : SubExp → SubExp → Env Var → Set
SubExpLess e₁ e₂ ρ = ⟦ e₁ ⟧se ρ < ⟦ e₂ ⟧se ρ
NFLessS : SubNF × SubNF → Env SubAtom → Set
NFLessS (nf₁ , nf₂) ρ = ⟦ nf₁ ⟧ns ρ < ⟦ nf₂ ⟧ns ρ
CancelSubLess : SubExp → SubExp → Env Var → Set
CancelSubLess e₁ e₂ ρ = NFLessS (cancel (normSub e₁) (normSub e₂)) (atomEnvS ρ)
c⟦_⟧eqn : Eqn → Env Var → Set
c⟦ a :≡ b ⟧eqn = CancelSubEq a b
c⟦ a :< b ⟧eqn = CancelSubLess a b
simplifySubLess : ∀ e₁ e₂ (ρ : Env Var) → CancelSubLess e₁ e₂ ρ → SubExpLess e₁ e₂ ρ
simplifySubLess e₁ e₂ ρ H with cancel (normSub e₁) (normSub e₂)
| λ a b → cancel-sound′ a b (normSub e₁) (normSub e₂) (atomEnvS ρ)
simplifySubLess e₁ e₂ ρ (diff k H) | v₁ , v₂ | sound =
liftNFSubLess e₁ e₂ ρ $ diff k $
lem-eval-sn-nS (normSub e₂) ρ ⟨≡⟩
sound (suc k) 0
((suc k +_) $≡ ns-sound v₁ (atomEnvS ρ) ʳ⟨≡⟩
H ʳ⟨≡⟩ ns-sound v₂ (atomEnvS ρ)) ʳ⟨≡⟩ʳ
(suc k +_) $≡ lem-eval-sn-nS (normSub e₁) ρ
complicateSubLess : ∀ e₁ e₂ ρ → SubExpLess e₁ e₂ ρ → CancelSubLess e₁ e₂ ρ
complicateSubLess e₁ e₂ ρ H with cancel (normSub e₁) (normSub e₂)
| λ a b → cancel-complete′ a b (normSub e₁) (normSub e₂) (atomEnvS ρ)
complicateSubLess e₁ e₂ ρ (diff k H) | v₁ , v₂ | complete = diff k (eraseEquality $
ns-sound v₂ (atomEnvS ρ) ⟨≡⟩
complete (suc k) 0
((suc k +_) $≡ lem-eval-sn-nS (normSub e₁) ρ ʳ⟨≡⟩
(suc k +_) $≡ sound-sub e₁ ρ ʳ⟨≡⟩
H ʳ⟨≡⟩ sound-sub e₂ ρ ⟨≡⟩
lem-eval-sn-nS (normSub e₂) ρ) ʳ⟨≡⟩ʳ
(suc k +_) $≡ ns-sound v₁ (atomEnvS ρ))
| {
"alphanum_fraction": 0.6220238095,
"avg_line_length": 38.7692307692,
"ext": "agda",
"hexsha": "fdfb6a349b51b2748c3c201ce125d813673775f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Tactic/Nat/Less/Lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Tactic/Nat/Less/Lemmas.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Tactic/Nat/Less/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 914,
"size": 2016
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Base.PKCS
-- This module defines the types used to define a SystemModel.
module LibraBFT.Yasm.Base
(ℓ-EC : Level)
(EpochConfig : Set ℓ-EC)
(epochId : EpochConfig → ℕ)
(authorsN : EpochConfig → ℕ)
where
EpochId : Set
EpochId = ℕ
Member : EpochConfig → Set
Member = Fin ∘ authorsN
record EpochConfigFor (eid : EpochId) : Set ℓ-EC where
field
epochConfig : EpochConfig
forEpochId : epochId epochConfig ≡ eid
-- Our system is configured through a value of type
-- SystemParameters where we specify:
record SystemParameters : Set (ℓ+1 0ℓ ℓ⊔ ℓ-EC) where
constructor mkSysParms
field
PeerId : Set
_≟PeerId_ : ∀ (p₁ p₂ : PeerId) → Dec (p₁ ≡ p₂)
PeerState : Set
initPS : PeerState -- Represents an uninitialised PeerState, about which we know nothing whatsoever
Msg : Set
Part : Set -- Types of interest that can be represented in Msgs
-- The messages must be able to carry signatures
instance Part-sig : WithSig Part
-- A relation specifying what Parts are included in a Msg.
_⊂Msg_ : Part → Msg → Set
-- Finally, messages must carry an epoch id and might have an author
part-epoch : Part → EpochId
-- Initializes a potentially-empty state with an EpochConfig
init : PeerId → EpochConfig → PeerState → PeerState × List Msg
-- Handles a message on a previously initialized peer.
handle : PeerId → Msg → PeerState → PeerState × List Msg
-- TODO-3?: So far, handlers only produce messages to be sent.
-- It would be reasonable to generalize this to something like
--
-- data Action = Send Msg | Crash CrashMsg | Log LogMsg | ...
--
-- on the system level, and have the handlers return List Action,
-- rather than just ListMsg. For example, if an assertion fires, this
-- could "kill the process" and make it not send any messages in the future.
-- We could also then prove that the handlers do not crash, certain
-- messages are logged under certain circumstances, etc.
--
-- Alternatively, we could keep this outside the system model by
-- defining an application-specific peerState type, for example:
--
-- > libraHandle : Msg → Status × Log × LState → Status × LState × List Action
-- > libraHandle _ (Crashed , l , s) = Crashed , s , [] -- i.e., crashed peers never send messages
-- >
-- > handle = filter isSend ∘ libraHandle
| {
"alphanum_fraction": 0.6785844582,
"avg_line_length": 37.0405405405,
"ext": "agda",
"hexsha": "60d71ddb4e493d721ad8ec2f26e0d5d33b09d77c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Yasm/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Yasm/Base.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Yasm/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 731,
"size": 2741
} |
open import FRP.JS.Level using ()
module FRP.JS.Primitive where
-- We define the primitive types here, to avoid cyclic module dependencies
data Bool : Set where
true : Bool
false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
{-# COMPILED_JS Bool function(x,v) { if (x) { return v["true"](); } else { return v["false"](); } } #-}
{-# COMPILED_JS true true #-}
{-# COMPILED_JS false false #-}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
{-# COMPILED_JS ℕ function (x,v) {
if (x < 1) { return v.zero(); } else { return v.suc(x-1); }
} #-}
{-# COMPILED_JS zero 0 #-}
{-# COMPILED_JS suc function (x) { return x+1; } #-}
postulate
Char String ℝ ℤ : Set
{-# BUILTIN CHAR Char #-}
{-# BUILTIN STRING String #-}
{-# BUILTIN FLOAT ℝ #-}
{-# BUILTIN INTEGER ℤ #-}
| {
"alphanum_fraction": 0.5888157895,
"avg_line_length": 22.8,
"ext": "agda",
"hexsha": "e0838bf40d777cdddb702d3ad4caa03cc9520909",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Primitive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Primitive.agda",
"max_line_length": 103,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Primitive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 270,
"size": 912
} |
module Data.List.Relation.Pairwise.Proofs where
open import Data.List
import Data.List.Functions as List
open import Data.List.Relation.Pairwise
open import Logic
import Lvl
open import Type
private variable ℓ ℓₗ : Lvl.Level
private variable T A B : Type{ℓ}
private variable x : T
private variable f : A → B
private variable _▫_ : T → T → Type{ℓₗ}
private variable _▫₁_ : A → A → Type{ℓₗ}
private variable _▫₂_ : B → B → Type{ℓₗ}
AdjacentlyPairwise-map : (∀{x y} → (x ▫₁ y) → (f(x) ▫₂ f(y))) → ∀{l} → AdjacentlyPairwise(_▫₁_)(l) → AdjacentlyPairwise(_▫₂_)(List.map f(l))
AdjacentlyPairwise-map p {∅} s = AdjacentlyPairwise.empty
AdjacentlyPairwise-map p {x ⊰ ∅} s = AdjacentlyPairwise.single
AdjacentlyPairwise-map p {x ⊰ y ⊰ l} (AdjacentlyPairwise.step ⦃ s₁ ⦄ ⦃ s₂ ⦄) = AdjacentlyPairwise.step ⦃ p s₁ ⦄ ⦃ AdjacentlyPairwise-map p {y ⊰ l} s₂ ⦄
AdjacentlyPairwise-prepend : (∀{y} → (x ▫ y)) → ∀{l} → AdjacentlyPairwise(_▫_)(l) → AdjacentlyPairwise(_▫_)(x ⊰ l)
AdjacentlyPairwise-prepend xy {∅} p = AdjacentlyPairwise.single
AdjacentlyPairwise-prepend xy {_ ⊰ _} p = AdjacentlyPairwise.step ⦃ xy ⦄ ⦃ p ⦄
| {
"alphanum_fraction": 0.6964285714,
"avg_line_length": 43.0769230769,
"ext": "agda",
"hexsha": "e99f306229e3017b0a5fa5338ee4fb831fbdf1d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation/Pairwise/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation/Pairwise/Proofs.agda",
"max_line_length": 151,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation/Pairwise/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 441,
"size": 1120
} |
{-# OPTIONS --rewriting #-}
module JVM.Transform.Assemble where
open import Agda.Builtin.Equality.Rewrite
open import Data.Nat using (ℕ)
open import Data.List as List
open import Data.List.Properties
open import Data.List.Relation.Unary.All as All
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties
open import Data.List.Relation.Unary.Any
open import Data.Product hiding (swap)
open import Relation.Unary hiding (_∈_)
open import Relation.Binary.PropositionalEquality
open import Relation.Ternary.Core
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Data.Bigstar
open import Relation.Ternary.Data.ReflexiveTransitive as Star
open import Relation.Ternary.Data.IndexedMonoid
open import Relation.Ternary.Construct.Bag.Properties
open import JVM.Types
open import JVM.Syntax.Values
open import JVM.Model StackTy
open import JVM.Model.Properties
open import JVM.Syntax.Labeling StackTy
open import JVM.Syntax.Instructions hiding (⟨_↝_⟩; Instr)
{-# REWRITE ++-assoc #-}
Typing = List StackTy
variable
J₁ J₂ J : Typing
module _ Γ where
data Instr (J : Typing) : StackTy → StackTy → Set where
goto : ψ₁ ∈ J → Instr J ψ₁ ψ₂
if : ∀ {as} → Comparator as → ψ₁ ∈ J → Instr J (as ++ ψ₁) ψ₂
nop : Instr J ψ₁ ψ₁
push : Const a → Instr J ψ₁ (a ∷ ψ₁)
pop : Instr J (a ∷ ψ₁) ψ₁
dup : Instr J (a ∷ ψ₁) (a ∷ a ∷ ψ₁)
swap : Instr J (a ∷ b ∷ ψ₁) (b ∷ a ∷ ψ₁)
bop : NativeBinOp a b c → Instr J (b ∷ a ∷ ψ₁) (c ∷ ψ₁)
load : a ∈ Γ → Instr J ψ₁ (a ∷ ψ₁)
store : a ∈ Γ → Instr J (a ∷ ψ₁) ψ₁
ret : Instr J (a ∷ ψ₁) ψ₂
data Bytecode' (J : Typing) : Typing → StackTy → StackTy → Set where
nil : Bytecode' J [] ψ₁ ψ₁
cons : ∀ {I} → Instr J ψ₁ ψ₂ → Bytecode' J I ψ₂ ψ₃ → Bytecode' J (ψ₁ ∷ I) ψ₁ ψ₃
Bytecode : Typing → StackTy → StackTy → Set
Bytecode J = Bytecode' J J
module _ where
Addressing : Labels → Typing → Set
Addressing lbs J = All (λ ψ → ψ ∈ J) lbs
instr-tf : ∀ {Γ ℓs} → Addressing ℓs J → ⟨ Γ ∣ ψ₁ ↝ ψ₂ ⟩ ℓs → Instr Γ J ψ₁ ψ₂
instr-tf ρ noop = nop
instr-tf ρ pop = pop
instr-tf ρ (push x) = push x
instr-tf ρ dup = dup
instr-tf ρ swap = swap
instr-tf ρ (bop x) = bop x
instr-tf ρ (load x) = load x
instr-tf ρ (store x) = store x
instr-tf (ℓ ∷ _) (goto refl) = goto ℓ
instr-tf (ℓ ∷ _) (if x refl) = if x ℓ
Extractor : ∀ Γ → StackTy → StackTy → Intf → Set
Extractor Γ ψ₁ ψ₂ Φ = {J₁ : Typing} → Addressing (down Φ) J₁
→ ∃ λ J₂ → Bytecode' Γ (J₁ ++ J₂) J₂ ψ₁ ψ₂ × Addressing (up Φ) (J₁ ++ J₂)
exec-extractor : ∀ {Γ} → Extractor Γ ψ₁ ψ₂ ε → ∃ λ J → Bytecode Γ J ψ₁ ψ₂
exec-extractor c = let _ , code , _ = c {[]} [] in -, code
label-addresses : ∀ {x} → Labeling ψ₁ x → All (λ z → z ∈ J₁ ++ ψ₁ ∷ []) x
label-addresses (refl ∙⟨ σ ⟩ qx) = joinAll (λ ()) σ (∈-++⁺ʳ _ (here refl) ∷ []) (addr' qx)
where
addr' : ∀ {x} → Bigstar (Own List.[ ψ₁ ]) x → All (λ z → z ∈ J₁ ++ ψ₁ ∷ []) x
addr' emp = []
addr' (cons (refl ∙⟨ σ ⟩ qx)) = joinAll (λ ()) σ (∈-++⁺ʳ _ (here refl) ∷ []) (addr' qx)
-- We can extract bytecode that does absolute addressing from the fancy
-- intrinsically-typed representation.
-- We do this in a single recursive pass over the bytecode, collecting a global map of instruction typings,
-- and also collecting indices into that map for every defined label on the forward pass, and
-- eliminating labels on the backwards pass.
--
-- The interface compositions guide the way. The key lemma is `sinkᵣ`
-- which says that in order to know what l imports in l ✴ r,
-- it is sufficient to know what l ✴ r imports, *and* what r exports.
--
-- In this setting 'l' is the head of some suffix of bytecode.
-- The imports of 'l ✴ r' have been collected from the labels defined in the prefix.
-- We get the exports of the tail 'r' of the suffix from the recursive call.
extract : ∀ {Γ} → ∀[ ⟪ Γ ∣ ψ₁ ↝ ψ₂ ⟫ ⇒ Extractor Γ ψ₁ ψ₂ ]
extract {ψ₁ = ψ₁} nil ρ = [] , nil , []
extract {ψ₁ = ψ₁} (cons (labeled (↑ ls ∙⟨ σ₁ ⟩ ↓ i) ∙⟨ σ₂ ⟩ is)) ρ = let
-- addressing from ↑ ls
ρ₀ = label-addresses ls
-- Addresses for the labels
ρ₁ = source σ₁ ρ₀ []
-- Compute addresses for the tail,
-- by combining the addresses from the state with the addresses for the labels.
-- We don't need everything, only what is imported in the head instruction.
ρ₂ = sinkᵣ σ₂ ρ₁ (All.map (∈-++⁺ˡ {ys = List.[ ψ₁ ]}) ρ)
-- Recursively extract first to get addressing for forward jumps.
-- These addresses are exported by the tail.
k , code , ρ′ = extract is ρ₂
-- Compute the addresses imported by i
ρ₃ = sinkᵣ (∙-comm σ₂) ρ′ (All.map ∈-++⁺ˡ ρ)
ρ₄ = sinkᵣ σ₁ (All.map ∈-++⁺ˡ ρ₀) ρ₃
-- Compute the exported addresses
ρ₅ = source σ₂ (All.map ∈-++⁺ˡ ρ₁) ρ′
in ψ₁ ∷ k , cons (instr-tf ρ₄ i) code , ρ₅
-- Same as above, but simpler
extract {ψ₁ = ψ₁} (cons (instr (↓ i) ∙⟨ σ ⟩ b)) ρ = let
ρ₂ = sinkᵣ σ [] (All.map (∈-++⁺ˡ {ys = List.[ ψ₁ ]}) ρ)
k , code , ρ′ = extract b ρ₂
ρ₃ = sinkᵣ (∙-comm σ) ρ′ (All.map ∈-++⁺ˡ ρ)
ρ₄ = source σ [] ρ′
in ψ₁ ∷ k , cons (instr-tf ρ₃ i) code , ρ₄
module Show where
open import Data.String as S hiding (show)
open import Data.Integer as I
open import Data.Fin as Fin
open import Data.Nat.Show as NS
open import Data.Bool.Show as BS
showInt : ℤ → String
showInt (+ n) = NS.show n
showInt (-[1+ n ]) = "-" S.++ NS.show (ℕ.suc n)
showFin : ∀ {n} → Fin n → String
showFin f = NS.show (Fin.toℕ f)
showComp : Comparator as → String
showComp eq = "eq"
showComp ne = "ne"
showComp lt = "lt"
showComp ge = "ge"
showComp gt = "gt"
showComp le = "le"
showComp icmpge = "icmpge"
showComp icmpgt = "icmpgt"
showComp icmpeq = "icmpeq"
showComp icmpne = "icmpne"
showComp icmplt = "icmplt"
showComp icmple = "icmple"
showOp : NativeBinOp a b c → String
showOp add = "add"
showOp sub = "sub"
showOp mul = "mul"
showOp div = "div"
showOp xor = "xor"
showConst : Const a → String
showConst Const.null = "null"
showConst (num x) = showInt x
showConst (bool x) = BS.show x
showReg : ∀ {Γ} → a ∈ Γ → String
showReg e = showFin (index e)
showLabel : ψ ∈ J → String
showLabel = λ ℓ → showFin (index ℓ)
showInstr : ∀ {Γ} → Instr Γ J ψ₁ ψ₂ → String
showInstr (goto ℓ) = "goto " S.++ showLabel ℓ
showInstr (if c ℓ) = "if " S.++ (showComp c S.++ " " S.++ showLabel ℓ)
showInstr nop = "noop"
showInstr (push c) = "push " S.++ (showConst c)
showInstr pop = "pop"
showInstr dup = "dup"
showInstr swap = "swap"
showInstr (bop o) = "bop " S.++ (showOp o)
showInstr (load r) = "load " S.++ (showReg r)
showInstr (store r)= "store " S.++ (showReg r)
showInstr ret = "ret"
showTy : Ty → String
showTy boolean = "bool"
showTy byte = "byte"
showTy short = "short"
showTy int = "int"
showTy long = "long"
showTy char = "char"
showTy (ref x) = "ref"
showTy (array t) = "array"
showStackTy : StackTy → String
showStackTy [] = "[]"
showStackTy (x ∷ ψ) = showTy x S.++ " : " S.++ showStackTy ψ
showBytecode : ∀ {Γ J} → Bytecode Γ J ψ₁ ψ₂ → String
showBytecode b = showBytecode' b 0
where
open import Data.Nat
showBytecode' : ∀ {Γ J J'} → Bytecode' Γ J J' ψ₁ ψ₂ → ℕ → String
showBytecode' nil n = ""
showBytecode' (cons {ψ₁ = ψ₁} {ψ₂} i b) n =
NS.show n S.++ ": "
S.++ showInstr i
S.++ "\t⟨ " S.++ showStackTy ψ₁ S.++ " ↝ " S.++ showStackTy ψ₂ S.++ " ⟩"
S.++ "\n" S.++ showBytecode' b (ℕ.suc n)
| {
"alphanum_fraction": 0.5939887927,
"avg_line_length": 34.59030837,
"ext": "agda",
"hexsha": "3c9f031d91b894b2030e36abe15938d39bf54a38",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Transform/Assemble.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Transform/Assemble.agda",
"max_line_length": 109,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Transform/Assemble.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 2900,
"size": 7852
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Subsets of finite sets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Subset where
open import Algebra
open import Algebra.FunctionProperties using (Op₁; Op₂)
import Algebra.Properties.BooleanAlgebra as BoolAlgProp
import Algebra.Properties.BooleanAlgebra.Expression as BAExpr
open import Data.Bool using (not; _∧_; _∨_; _≟_)
open import Data.Fin using (Fin; zero; suc)
open import Data.List.Base using (List; foldr; foldl)
open import Data.Nat using (ℕ)
open import Data.Product using (∃)
open import Data.Vec hiding (foldr; foldl)
import Data.Vec.Relation.Binary.Pointwise.Extensional as Pointwise
open import Relation.Nullary
------------------------------------------------------------------------
-- Definitions
-- Sides.
open import Data.Bool.Base public
using () renaming (Bool to Side; true to inside; false to outside)
-- Partitions a finite set into two parts, the inside and the outside.
Subset : ℕ → Set
Subset = Vec Side
------------------------------------------------------------------------
-- Special subsets
-- The empty subset
⊥ : ∀ {n} → Subset n
⊥ = replicate outside
-- The full subset
⊤ : ∀ {n} → Subset n
⊤ = replicate inside
-- A singleton subset, containing just the given element.
⁅_⁆ : ∀ {n} → Fin n → Subset n
⁅ zero ⁆ = inside ∷ ⊥
⁅ suc i ⁆ = outside ∷ ⁅ i ⁆
------------------------------------------------------------------------
-- Membership and subset predicates
infix 4 _∈_ _∉_ _⊆_ _⊈_
_∈_ : ∀ {n} → Fin n → Subset n → Set
x ∈ p = p [ x ]= inside
_∉_ : ∀ {n} → Fin n → Subset n → Set
x ∉ p = ¬ (x ∈ p)
_⊆_ : ∀ {n} → Subset n → Subset n → Set
p ⊆ q = ∀ {x} → x ∈ p → x ∈ q
_⊈_ : ∀ {n} → Subset n → Subset n → Set
p ⊈ q = ¬ (p ⊆ q)
------------------------------------------------------------------------
-- Set operations
infixr 7 _∩_
infixr 6 _∪_
-- Complement
∁ : ∀ {n} → Op₁ (Subset n)
∁ p = map not p
-- Intersection
_∩_ : ∀ {n} → Op₂ (Subset n)
p ∩ q = zipWith _∧_ p q
-- Union
_∪_ : ∀ {n} → Op₂ (Subset n)
p ∪ q = zipWith _∨_ p q
-- N-ary union
⋃ : ∀ {n} → List (Subset n) → Subset n
⋃ = foldr _∪_ ⊥
-- N-ary intersection
⋂ : ∀ {n} → List (Subset n) → Subset n
⋂ = foldr _∩_ ⊤
-- Size
∣_∣ : ∀ {n} → Subset n → ℕ
∣ p ∣ = count (_≟ inside) p
------------------------------------------------------------------------
-- Properties
Nonempty : ∀ {n} (p : Subset n) → Set
Nonempty p = ∃ λ f → f ∈ p
Empty : ∀ {n} (p : Subset n) → Set
Empty p = ¬ Nonempty p
Lift : ∀ {n ℓ} → (Fin n → Set ℓ) → (Subset n → Set ℓ)
Lift P p = ∀ {x} → x ∈ p → P x
| {
"alphanum_fraction": 0.4998144712,
"avg_line_length": 24.2792792793,
"ext": "agda",
"hexsha": "8d14b9fd09136a9bcf6372ca05a5eef8ea1106cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 826,
"size": 2695
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Operations on nullary relations (like negation and decidability)
------------------------------------------------------------------------
-- Some operations on/properties of nullary relations, i.e. sets.
module Relation.Nullary where
import Relation.Nullary.Core as Core
------------------------------------------------------------------------
-- Negation
open Core public using (¬_)
------------------------------------------------------------------------
-- Decidable relations
open Core public using (Dec; yes; no)
| {
"alphanum_fraction": 0.4060031596,
"avg_line_length": 28.7727272727,
"ext": "agda",
"hexsha": "088c99c14b03fe1130f5af605a1b1c7320462a55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Nullary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Nullary.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Nullary.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 88,
"size": 633
} |
module Issue2858-Fresh {A : Set} (_#_ : A → A → Set) where
interleaved mutual
data Fresh : Set
data IsFresh (a : A) : Fresh → Set
-- nil is a fresh list
constructor
[] : Fresh
#[] : IsFresh a []
-- cons is fresh as long as the new value is fresh
constructor
cons : (x : A) (xs : Fresh) → IsFresh x xs → Fresh
#cons : ∀ {x xs p} → a # x → IsFresh a xs → IsFresh a (cons x xs p)
| {
"alphanum_fraction": 0.5473441109,
"avg_line_length": 25.4705882353,
"ext": "agda",
"hexsha": "71efd0ee489ba200c9d7262d41ae8ed84eb80dda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue2858-Fresh.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2858-Fresh.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2858-Fresh.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 141,
"size": 433
} |
-- Andreas, 2017-11-01, issue #2824
-- Don't allow built-ins defined in parametrized modules
module _ (A : Set) where
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-} -- Should fail
test = 5
| {
"alphanum_fraction": 0.6244725738,
"avg_line_length": 18.2307692308,
"ext": "agda",
"hexsha": "9394f082ede7ab431662b52dcedb0688fdaeaf87",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2824BuiltinDefinedInParametrizedModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2824BuiltinDefinedInParametrizedModule.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2824BuiltinDefinedInParametrizedModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 78,
"size": 237
} |
module Issue231 where
postulate
A : Set
data List : Set where
_∷_ : A → List → List
data Any : List → Set where
there : ∀ {x xs} → Any xs → Any (x ∷ xs)
postulate
id : (A : Set) → A → A
lemma : (xs : List) → Set → (p : Any xs) → Set
lemma (x ∷ xs) A (there p) with id (Any xs) p
lemma (x ∷ xs) A (there p) | p′ = {!p′!}
-- Before case-split:
-- lemma (x ∷ xs) A (there p) | p′ = {!p′!}
-- After case-split:
-- lemma (A ∷ _) _ (there p) | there y = ?
| {
"alphanum_fraction": 0.5323275862,
"avg_line_length": 20.1739130435,
"ext": "agda",
"hexsha": "3585f90dcb924c86988d03e1e556a90256e2f891",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue231.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue231.agda",
"max_line_length": 46,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue231.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 183,
"size": 464
} |
-- Andreas, 2016-11-02, issue #2289
-- Meta should be acceptable as sort of record type.
postulate
F : Set → Set
mutual
data ⊥ : _ where -- works
FBot = F ⊥
mutual
record ⊤ : _ where -- should work
FTop = F ⊤
| {
"alphanum_fraction": 0.6150442478,
"avg_line_length": 14.125,
"ext": "agda",
"hexsha": "a9dd463f75e63ea030f2e20732817ade173b7692",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2289.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2289.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2289.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 82,
"size": 226
} |
{-# OPTIONS --without-K #-}
module Search.Searchable.Fun where
open import Type hiding (★)
open import Data.Product
open import Data.Sum
open import Data.One
open import Data.Bits
open import Function.NP
open import Search.Type
open import Search.Searchable
open import Search.Searchable.Product
open import Search.Searchable.Sum
import Function.Inverse.NP as FI
open FI using (_↔_; inverses; module Inverse) renaming (_$₁_ to to; _$₂_ to from)
open import Function.Related.TypeIsomorphisms.NP
import Relation.Binary.PropositionalEquality.NP as ≡
open ≡ using (_≡_; _≗_)
private -- unused
SΠΣ⁻ : ∀ {m A} {B : A → ★ _} {C : Σ A B → ★ _}
→ Search m ((x : A) (y : B x) → C (x , y))
→ Search m (Π (Σ A B) C)
SΠΣ⁻ s _∙_ f = s _∙_ (f ∘ uncurry)
SΠΣ⁻-ind : ∀ {m p A} {B : A → ★ _} {C : Σ A B → ★ _}
→ {s : Search m ((x : A) (y : B x) → C (x , y))}
→ SearchInd p s
→ SearchInd p (SΠΣ⁻ s)
SΠΣ⁻-ind ind P P∙ Pf = ind (P ∘ SΠΣ⁻) P∙ (Pf ∘ uncurry)
S×⁻ : ∀ {m A B C} → Search m (A → B → C) → Search m (A × B → C)
S×⁻ = SΠΣ⁻
S×⁻-ind : ∀ {m p A B C}
→ {s : Search m (A → B → C)}
→ SearchInd p s
→ SearchInd p (S×⁻ s)
S×⁻-ind = SΠΣ⁻-ind
SΠ⊎⁻ : ∀ {m A B} {C : A ⊎ B → ★ _}
→ Search m (Π A (C ∘ inj₁) × Π B (C ∘ inj₂))
→ Search m (Π (A ⊎ B) C)
SΠ⊎⁻ s _∙_ f = s _∙_ (f ∘ uncurry [_,_])
SΠ⊎⁻-ind : ∀ {m p A B} {C : A ⊎ B → ★ _}
{s : Search m (Π A (C ∘ inj₁) × Π B (C ∘ inj₂))}
(i : SearchInd p s)
→ SearchInd p (SΠ⊎⁻ {C = C} s) -- A sB)
SΠ⊎⁻-ind i P P∙ Pf = i (P ∘ SΠ⊎⁻) P∙ (Pf ∘ uncurry [_,_])
{- For each A→C function
and each B→C function
an A⊎B→C function is yield
-}
S⊎⁻ : ∀ {m A B C} → Search m (A → C) → Search m (B → C)
→ Search m (A ⊎ B → C)
S⊎⁻ sA sB = SΠ⊎⁻ (sA ×-search sB)
μΠΣ⁻ : ∀ {A B}{C : Σ A B → ★₀} → Searchable ((x : A)(y : B x) → C (x , y)) → Searchable (Π (Σ A B) C)
μΠΣ⁻ = μ-iso (FI.sym curried)
Σ-Fun : ∀ {A B} → Funable A → Funable B → Funable (A × B)
Σ-Fun (μA , μA→) FB = μΣ μA (searchable FB) , (λ x → μΠΣ⁻ (μA→ (negative FB x)))
where open Funable
{-
μΠ⊎⁻ : ∀ {A B : ★₀}{C : A ⊎ B → ★ _} → Searchable (Π A (C ∘ inj₁) × Π B (C ∘ inj₂))
→ Searchable (Π (A ⊎ B) C)
μΠ⊎⁻ = μ-iso ?
_⊎-Fun_ : ∀ {A B : ★₀} → Funable A → Funable B → Funable (A ⊎ B)
_⊎-Fun_ (μA , μA→) (μB , μB→) = (μA ⊎-μ μB) , (λ X → μΠ⊎⁻ (μA→ X ×-μ μB→ X))
-}
S𝟙 : ∀ {m A} → Search m A → Search m (𝟙 → A)
S𝟙 sA _∙_ f = sA _∙_ (f ∘ const)
SΠBit : ∀ {m A} → Search m (A 0b) → Search m (A 1b)
→ Search m (Π Bit A)
SΠBit sA₀ sA₁ _∙_ f = sA₀ _∙_ λ x → sA₁ _∙_ λ y → f λ {true → y; false → x}
×-Dist : ∀ {A B} FA FB → DistFunable {A} FA → DistFunable {B} FB → DistFunable (Σ-Fun FA FB)
×-Dist FA FB FA-dist FB-dist μX c _⊙_ distrib _⊙-cong_ f
= Πᴬ (λ x → Πᴮ (λ y → Σ' (f (x , y))))
≈⟨ ⟦search⟧ (searchable FA){_≡_} ≡.refl _≈_ (λ x y → x ⊙-cong y)
(λ { {x} {.x} ≡.refl → FB-dist μX c _⊙_ distrib _⊙-cong_ (curry f x)}) ⟩
Πᴬ (λ x → Σᴮ (λ fb → Πᴮ (λ y → f (x , y) (fb y))))
≈⟨ FA-dist (negative FB μX) c _⊙_ distrib _⊙-cong_
(λ x fb → search (searchable FB) _⊙_ (λ y → f (x , y) (fb y))) ⟩
Σᴬᴮ (λ fab → Πᴬ (λ x → Πᴮ (λ y → f (x , y) (fab x y))))
∎
where
open CMon c
open Funable
Σ' = search μX _∙_
Πᴬ = search (searchable FA) _⊙_
Πᴮ = search (searchable FB) _⊙_
Σᴬᴮ = search (negative FA (negative FB μX)) _∙_
Σᴮ = search (negative FB μX) _∙_
{-
⊎-Dist : ∀ {A B : ★₀} FA FB → DistFunable {A} FA → DistFunable {B} FB → DistFunable (FA ⊎-Fun FB)
⊎-Dist FA FB FA-dist FB-dist μX c _◎_ distrib _◎-cong_ f
= Πᴬ (Σ' ∘ f ∘ inj₁) ◎ Πᴮ (Σ' ∘ f ∘ inj₂)
≈⟨ {!FA-dist μX c _◎_ distrib _◎-cong_ (f ∘ inj₁) ◎-cong FB-dist μX c _◎_ distrib _◎-cong_ (f ∘ inj₂)!} ⟩
{-
Σᴬ (λ fa → Πᴬ (λ i → f (inj₁ i) (fa i))) ◎ Σᴮ (λ fb → Πᴮ (λ i → f (inj₂ i) (fb i)))
≈⟨ sym (search-linʳ (negative FA μX) monoid _◎_ _ _ (proj₂ distrib)) ⟩
Σᴬ (λ fa → Πᴬ (λ i → f (inj₁ i) (fa i)) ◎ Σᴮ (λ fb → Πᴮ (λ i → f (inj₂ i) (fb i))))
≈⟨ search-sg-ext (negative FA μX) semigroup (λ fa → sym (search-linˡ (negative FB μX) monoid _◎_ _ _ (proj₁ distrib))) ⟩
-}
(Σᴬ λ fa → Σᴮ λ fb → Πᴬ ((f ∘ inj₁) ˢ fa) ◎ Πᴮ ((f ∘ inj₂) ˢ fb))
∎
where
open CMon c
open Funable
Σ' = search μX _∙_
Πᴬ = search (searchable FA) _◎_
Πᴮ = search (searchable FB) _◎_
Σᴬ = search (negative FA μX) _∙_
Σᴮ = search (negative FB μX) _∙_
-}
-- -}
-- -}
-- -}
| {
"alphanum_fraction": 0.4990181104,
"avg_line_length": 34.2014925373,
"ext": "agda",
"hexsha": "cb228262913b20df1fa6e0daffe811c0e419724e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crypto-agda/explore",
"max_forks_repo_path": "lib/Explore/Explorable/Fun.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crypto-agda/explore",
"max_issues_repo_path": "lib/Explore/Explorable/Fun.agda",
"max_line_length": 121,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crypto-agda/explore",
"max_stars_repo_path": "lib/Explore/Explorable/Fun.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z",
"num_tokens": 2277,
"size": 4583
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.DecSetoid directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Data.Vec.Relation.Equality.DecSetoid
{a ℓ} (DS : DecSetoid a ℓ) where
open import Data.Vec.Relation.Binary.Equality.DecSetoid public
| {
"alphanum_fraction": 0.5237113402,
"avg_line_length": 30.3125,
"ext": "agda",
"hexsha": "6dfa1adf3aa825a166f6913e00573bdf22f21089",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecSetoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecSetoid.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecSetoid.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 94,
"size": 485
} |
module Human.JS where
open import Human.Unit
open import Human.String
open import Human.IO
infixl 1 _>>=_
postulate
return : ∀ {a} {A : Set a} → A → IO A
_>>=_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
_>>_ : ∀ {a b} {A : Set a} {B : Set b} → IO A → IO B → IO B
print : String → IO Unit
{-# COMPILE JS return = a => b => c => c #-}
{-# COMPILE JS _>>=_ = a => b => c => d => f => x => f(x) #-}
{-# COMPILE JS _>>_ = a => b => c => d => f => x => x #-}
{-# COMPILE JS print = s => console.log(s) #-}
| {
"alphanum_fraction": 0.4739776952,
"avg_line_length": 28.3157894737,
"ext": "agda",
"hexsha": "0fd3618d7b9e3db6905841012c41ce6beb1c26ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/Human/JS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/Human/JS.agda",
"max_line_length": 69,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/Human/JS.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 207,
"size": 538
} |
----------------------------------------------------------------------------------
-- Types for parse trees
----------------------------------------------------------------------------------
module cedille-types where
open import lib
-- open import parse-tree
open import general-util
{-# FOREIGN GHC import qualified CedilleTypes #-}
mutual
posinfo = string
var = string
num = string
erased? = 𝔹
minus? = 𝔹
imports = 𝕃 imprt
ex-imports = 𝕃 ex-imprt
params = 𝕃 param
ex-params = 𝕃 ex-param
ex-cmds = 𝕃 ex-cmd
ex-ctrs = 𝕃 ex-ctr
ctrs = 𝕃 ctr
args = 𝕃 arg
ex-args = 𝕃 ex-arg
opacity = 𝔹
cases = 𝕃 case
ex-cases = 𝕃 ex-case
left-right = maybe 𝔹
rho-hnf = 𝔹
opt-public = 𝔹
is-mu = maybe term ⊎ var
iota-num = 𝔹
case-args = 𝕃 case-arg
tmtp = term ⊎ type
tpkd = type ⊎ kind
arg = term ⊎ tmtp
pattern Tkt T = inj₁ T
pattern Tkk k = inj₂ k
pattern Ttm t = inj₁ t
pattern Ttp T = inj₂ T
pattern Arg t = inj₁ t
pattern ArgE tT = inj₂ tT
pattern ArgTp T = ArgE (Ttp T)
pattern ArgEr t = ArgE (Ttm t)
pattern ι1 = ff
pattern ι2 = tt
pattern NotErased = ff
pattern Erased = tt
pattern opacity-open = tt
pattern opacity-closed = ff
pattern EpsHanf = tt
pattern EpsHnf = ff
pattern EpsLeft = just ff
pattern EpsRight = just tt
pattern EpsBoth = nothing
pattern Public = tt
pattern Private = ff
ctr = var × type
pattern Ctr x T = x , T
data param : Set where
Param : erased? → var → tpkd → param
pattern ParamTp x k = Param _ x (Tkk k)
pattern ParamTm x T = Param ff x (Tkt T)
pattern ParamEr x T = Param tt x (Tkt T)
data term : Set where
App : term → term → term
AppE : term → tmtp → term
Beta : term → term → term
Delta : (do-bohm? : maybe (term × term)) → (Tᵣ : type) → (contra : term) → term
Hole : posinfo → term
IotaPair : term → term → var → type → term
IotaProj : term → iota-num → term
Lam : erased? → var → maybe tpkd → term → term
LetTm : erased? → var → maybe type → term → term → term
LetTp : var → kind → type → term → term
Phi : term → term → term → term
Rho : term → var → type → term → term
Sigma : term → term
Mu : is-mu → term → maybe type → datatype-info → cases → term
Var : var → term
pattern AppTp t T = AppE t (Ttp T)
pattern AppEr t t' = AppE t (Ttm t')
data case : Set where
Case : var → case-args → term → 𝕃 tmtp → case
data type : Set where
TpAbs : erased? → var → tpkd → type → type
TpIota : var → type → type → type
TpApp : type → tmtp → type
TpEq : term → term → type
TpHole : posinfo → type
TpLam : var → tpkd → type → type
TpVar : var → type
pattern TpAppTp T T' = TpApp T (Ttp T')
pattern TpAppTm T t = TpApp T (Ttm t)
data kind : Set where
KdStar : kind
KdHole : posinfo → kind
KdAbs : var → tpkd → kind → kind
data case-arg : Set where
CaseArg : erased? → var → maybe tpkd → case-arg
data ex-file : Set where
ExModule : ex-imports → posinfo → posinfo → var → ex-params → ex-cmds → posinfo → ex-file
cmds = 𝕃 cmd
data file : Set where
Module : var → params → cmds → file
indx : Set
indx = var × tpkd
pattern Index x tk = x , tk
indices = 𝕃 indx
record encoding-defs : Set where
constructor mk-enc-defs
inductive
field
ecs : cmds -- encoding
gcs : cmds -- generated
Cast : type
cast-in : term
cast-out : term
cast-is : term
Functor : type
functor-in : term
functor-out : term
Fix : type
fix-in : term
fix-out : term
lambek1 : term
lambek2 : term
fix-ind : term
record encoded-defs : Set where
constructor mk-encd-defs
field
Is/D : var
is/D : var
to/D : var
TypeF/D : var
IndF/D : var
fmap/D : var
record datatype-info : Set where
constructor mk-data-info
inductive
field
name : var
original : var
asₚ : args
asᵢ : 𝕃 tmtp
ps : params
kᵢ : kind
k : kind
cs : ctrs
csₚₛ : ctrs
eds : encoding-defs
gds : encoded-defs
data cmd : Set where
CmdDefTerm : var → term → cmd
CmdDefType : var → kind → type → cmd
CmdDefKind : var → params → kind → cmd
CmdDefData : encoding-defs → var → params → kind → ctrs → cmd
CmdImport : imprt → cmd
data imprt : Set where
Import : opt-public → filepath → var → maybe var → args → imprt
data ex-cmd : Set where
ExCmdKind : posinfo → var → ex-params → ex-kd → posinfo → ex-cmd
ExCmdDef : opacity → ex-def → posinfo → ex-cmd
ExCmdData : def-datatype → posinfo → ex-cmd
ExCmdImport : ex-imprt → ex-cmd
data def-datatype : Set where
DefDatatype : posinfo → posinfo → var → ex-params → ex-kd → ex-ctrs → def-datatype
data import-as : Set where
ImportAs : posinfo → var → import-as
data ex-imprt : Set where
ExImport : posinfo → opt-public → posinfo → filepath → maybe import-as → ex-args → posinfo → ex-imprt
data ex-param : Set where
ExParam : posinfo → erased? → posinfo → var → ex-tk → posinfo → ex-param
data ex-ctr : Set where
ExCtr : posinfo → var → ex-tp → ex-ctr
data ex-arg : Set where
ExTmArg : erased? → ex-tm → ex-arg
ExTpArg : ex-tp → ex-arg
data lterm : Set where
Lterm : erased? → ex-tm → lterm
data theta : Set where
Abstract : theta
AbstractEq : theta
AbstractVars : 𝕃 var → theta
data ex-def : Set where
ExDefTerm : posinfo → var → maybe ex-tp → ex-tm → ex-def
ExDefType : posinfo → var → ex-kd → ex-tp → ex-def
data ex-guide : Set where
ExGuide : posinfo → var → ex-tp → ex-guide
data ex-case : Set where
ExCase : posinfo → var → ex-case-args → ex-tm → ex-case
ex-case-args = 𝕃 ex-case-arg
data ex-case-arg-sym : Set where
ExCaseArgTm : ex-case-arg-sym
ExCaseArgEr : ex-case-arg-sym
ExCaseArgTp : ex-case-arg-sym
data ex-case-arg : Set where
ExCaseArg : ex-case-arg-sym → posinfo → var → ex-case-arg
data ex-tk : Set where
ExTkt : ex-tp → ex-tk
ExTkk : ex-kd → ex-tk
data ex-tp : Set where
ExTpAbs : posinfo → erased? → posinfo → var → ex-tk → ex-tp → ex-tp
ExTpIota : posinfo → posinfo → var → ex-tp → ex-tp → ex-tp
ExTpNoSpans : ex-tp → posinfo → ex-tp
ExTpLet : posinfo → ex-def → ex-tp → ex-tp
ExTpApp : ex-tp → ex-tp → ex-tp
ExTpAppt : ex-tp → ex-tm → ex-tp
ExTpArrow : ex-tp → erased? → ex-tp → ex-tp
ExTpEq : posinfo → ex-tm → ex-tm → posinfo → ex-tp
ExTpHole : posinfo → ex-tp
ExTpLam : posinfo → posinfo → var → ex-tk → ex-tp → ex-tp
ExTpParens : posinfo → ex-tp → posinfo → ex-tp
ExTpVar : posinfo → var → ex-tp
data pos-tm : Set where
PosTm : ex-tm → posinfo → pos-tm
data ex-is-mu : Set where
ExIsMu : posinfo → var → ex-is-mu
ExIsMu' : maybe ex-tm → ex-is-mu
data ex-tm : Set where
ExApp : ex-tm → erased? → ex-tm → ex-tm
ExAppTp : ex-tm → ex-tp → ex-tm
ExBeta : posinfo → maybe pos-tm → maybe pos-tm → ex-tm
ExChi : posinfo → maybe ex-tp → ex-tm → ex-tm
ExDelta : posinfo → maybe ex-tp → ex-tm → ex-tm
ExEpsilon : posinfo → left-right → minus? → ex-tm → ex-tm
ExHole : posinfo → ex-tm
ExIotaPair : posinfo → ex-tm → ex-tm → maybe ex-guide → posinfo → ex-tm
ExIotaProj : ex-tm → num → posinfo → ex-tm
ExLam : posinfo → erased? → posinfo → var → maybe ex-tk → ex-tm → ex-tm
ExLet : posinfo → erased? → ex-def → ex-tm → ex-tm
ExOpen : posinfo → opacity → posinfo → var → ex-tm → ex-tm
ExParens : posinfo → ex-tm → posinfo → ex-tm
ExPhi : posinfo → ex-tm → ex-tm → ex-tm → posinfo → ex-tm
ExRho : posinfo → rho-hnf → maybe (𝕃 num) → ex-tm → maybe ex-guide → ex-tm → ex-tm
ExSigma : posinfo → ex-tm → ex-tm
ExTheta : posinfo → theta → ex-tm → 𝕃 lterm → ex-tm
ExMu : posinfo → ex-is-mu → ex-tm → maybe ex-tp → posinfo → ex-cases → posinfo → ex-tm
ExVar : posinfo → var → ex-tm
data ex-kd : Set where
ExKdAbs : posinfo → posinfo → var → ex-tk → ex-kd → ex-kd
ExKdArrow : ex-tk → ex-kd → ex-kd
ExKdHole : posinfo → ex-kd
ExKdParens : posinfo → ex-kd → posinfo → ex-kd
ExKdStar : posinfo → ex-kd
ExKdVar : posinfo → var → ex-args → ex-kd
{-# COMPILE GHC ex-param = data CedilleTypes.Param (CedilleTypes.Param) #-}
{-# COMPILE GHC ex-file = data CedilleTypes.File (CedilleTypes.Module) #-}
{-# COMPILE GHC ex-cmd = data CedilleTypes.Cmd (CedilleTypes.CmdKind | CedilleTypes.CmdDef | CedilleTypes.CmdData | CedilleTypes.CmdImport) #-}
{-# COMPILE GHC ex-ctr = data CedilleTypes.Ctr (CedilleTypes.Ctr) #-}
{-# COMPILE GHC ex-arg = data CedilleTypes.Arg (CedilleTypes.TermArg | CedilleTypes.TypeArg) #-}
{-# COMPILE GHC def-datatype = data CedilleTypes.DefDatatype (CedilleTypes.DefDatatype) #-}
{-# COMPILE GHC import-as = data CedilleTypes.ImportAs (CedilleTypes.ImportAs) #-}
{-# COMPILE GHC ex-imprt = data CedilleTypes.Imprt (CedilleTypes.Import) #-}
{-# COMPILE GHC ex-case-arg-sym = data CedilleTypes.CaseArgSym (CedilleTypes.CaseArgTm | CedilleTypes.CaseArgEr | CedilleTypes.CaseArgTp) #-}
--{-# COMPILE GHC case-arg = data CedilleTypes.CaseArg (CedilleTypes.CaseArg) #-}
{-# COMPILE GHC lterm = data CedilleTypes.Lterm (CedilleTypes.Lterm) #-}
{-# COMPILE GHC theta = data CedilleTypes.Theta (CedilleTypes.Abstract | CedilleTypes.AbstractEq | CedilleTypes.AbstractVars) #-}
{-# COMPILE GHC ex-def = data CedilleTypes.Def (CedilleTypes.DefTerm | CedilleTypes.DefType) #-}
{-# COMPILE GHC ex-guide = data CedilleTypes.Guide (CedilleTypes.Guide) #-}
{-# COMPILE GHC ex-case = data CedilleTypes.Case (CedilleTypes.Case) #-}
{-# COMPILE GHC ex-case-arg = data CedilleTypes.CaseArg (CedilleTypes.CaseArg) #-}
{-# COMPILE GHC ex-tk = data CedilleTypes.TpKd (CedilleTypes.Tkt | CedilleTypes.Tkk) #-}
{-# COMPILE GHC ex-tp = data CedilleTypes.Type (CedilleTypes.TpAbs | CedilleTypes.TpIota | CedilleTypes.TpNoSpans | CedilleTypes.TpLet | CedilleTypes.TpApp | CedilleTypes.TpAppt | CedilleTypes.TpArrow | CedilleTypes.TpEq | CedilleTypes.TpHole | CedilleTypes.TpLam | CedilleTypes.TpParens | CedilleTypes.TpVar) #-}
{-# COMPILE GHC pos-tm = data CedilleTypes.PosTerm (CedilleTypes.PosTerm) #-}
{-# COMPILE GHC ex-is-mu = data CedilleTypes.IsMu (CedilleTypes.IsMu | CedilleTypes.IsMu') #-}
{-# COMPILE GHC ex-tm = data CedilleTypes.Term (CedilleTypes.App | CedilleTypes.AppTp | CedilleTypes.Beta | CedilleTypes.Chi | CedilleTypes.Delta | CedilleTypes.Epsilon | CedilleTypes.Hole | CedilleTypes.IotaPair | CedilleTypes.IotaProj | CedilleTypes.Lam | CedilleTypes.Let | CedilleTypes.Open | CedilleTypes.Parens | CedilleTypes.Phi | CedilleTypes.Rho | CedilleTypes.Sigma | CedilleTypes.Theta | CedilleTypes.Mu | CedilleTypes.Var) #-}
{-# COMPILE GHC ex-kd = data CedilleTypes.Kind (CedilleTypes.KdAbs | CedilleTypes.KdArrow | CedilleTypes.KdHole | CedilleTypes.KdParens | CedilleTypes.KdStar | CedilleTypes.KdVar) #-}
| {
"alphanum_fraction": 0.6267990527,
"avg_line_length": 35.0734824281,
"ext": "agda",
"hexsha": "667fac2bf2f0578f60e17f037b970ce5f67eb8bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/cedille-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/cedille-types.agda",
"max_line_length": 438,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/cedille-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3674,
"size": 10978
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of relations over Vector
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.Functional.Relation.Binary.Pointwise where
open import Data.Fin.Base
open import Data.Nat.Base
open import Data.Vec.Functional as VF hiding (map)
open import Level using (Level)
open import Relation.Binary
private
variable
a b r s ℓ : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
Pointwise : REL A B ℓ → ∀ {n} → Vector A n → Vector B n → Set ℓ
Pointwise R xs ys = ∀ i → R (xs i) (ys i)
------------------------------------------------------------------------
-- Operations
module _ {R : REL A B r} {S : REL A B s} where
map : R ⇒ S → ∀ {n} → Pointwise R ⇒ Pointwise S {n = n}
map f rs i = f (rs i)
| {
"alphanum_fraction": 0.4524793388,
"avg_line_length": 26.8888888889,
"ext": "agda",
"hexsha": "360dc46540b3957409615ddee1b6ca2bd269230a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/Functional/Relation/Binary/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 217,
"size": 968
} |
module Zipper where
import Derivative
import Functor
import Sets
open Functor
open Derivative
open Semantics
open Recursive
open Sets
Zipper : U -> Set
Zipper F = List (⟦ ∂ F ⟧ (μ F))
-- Plugging a zipper
unzip : {F : U} -> Zipper F -> μ F -> μ F
unzip [] t = t
unzip {F} (c :: γ) t = inn (plug-∂ F c (unzip γ t))
| {
"alphanum_fraction": 0.5714285714,
"avg_line_length": 16.2272727273,
"ext": "agda",
"hexsha": "4e855045830c762dc85d199e0d3c13bc56483ce1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Zipper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Zipper.agda",
"max_line_length": 53,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Zipper.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 128,
"size": 357
} |
open import Data.Product using ( _×_ ; _,_ )
open import Relation.Unary using ( _∈_ )
open import Web.Semantic.DL.ABox.Interp using ( ⌊_⌋ ; ind )
open import Web.Semantic.DL.ABox.Skolemization using ( askolem ; askolem-sound )
open import Web.Semantic.DL.FOL using ( Formula ; _∧_ )
open import Web.Semantic.DL.FOL.Model using ( _⊨f_ )
open import Web.Semantic.DL.KB using ( KB ; tbox ; abox )
open import Web.Semantic.DL.KB.Model using ( _⊨_ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox.Skolemization using ( TSkolems ; tskolem ; tskolem-sound )
module Web.Semantic.DL.KB.Skolemization {Σ : Signature} {X : Set} where
Skolems : Set → KB Σ X → Set
Skolems Δ K = TSkolems Δ (tbox K)
skolem : ∀ {Δ} → (X → Δ) → ∀ K → (Skolems Δ K) → Formula Σ Δ
skolem i K Φ = tskolem (tbox K) Φ ∧ askolem i (abox K)
skolem-sound : ∀ I K Φ → (⌊ I ⌋ ⊨f skolem (ind I) K Φ) → (I ⊨ K)
skolem-sound I K Φ (I⊨T , I⊨A) = (tskolem-sound ⌊ I ⌋ (tbox K) Φ I⊨T , askolem-sound I (abox K) I⊨A) | {
"alphanum_fraction": 0.6735496559,
"avg_line_length": 48.4285714286,
"ext": "agda",
"hexsha": "bdfcfe08e109693f731799aa27be88f49d399740",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/KB/Skolemization.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/KB/Skolemization.agda",
"max_line_length": 100,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/KB/Skolemization.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 411,
"size": 1017
} |
module Issue643 where
module M₁ (A : Set) where
record R : Set₁ where
field
P : A → Set
module M₂ (A : Set) where
open M₁ A
postulate
r : R
T : R → Set
open R r
p : ∀ x → P x
p x = {!!} -- The goal was printed as "P" rather than "P x".
q : T r
q = {!!} -- This goal was printed as T P at an intermediate stage of fixing
| {
"alphanum_fraction": 0.5388739946,
"avg_line_length": 14.92,
"ext": "agda",
"hexsha": "135c08b178be29393f866007bd95d66780ef701a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue643.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue643.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue643.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 373
} |
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.Char renaming (primCharEquality to _==ᶜ_)
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.String renaming (primStringAppend to _++_)
open import Agda.Builtin.IO
open import Agda.Builtin.Unit
variable
A B C : Set
map : (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
<?> = '\xFFFD'
fromCount : Nat → Nat → List Nat
fromCount 0 _ = []
fromCount (suc n) a = a ∷ fromCount n (suc a)
fromTo : Nat → Nat → List Nat
fromTo a b = fromCount (suc b - a) a
isReplaced : Nat → Bool
isReplaced n = primNatToChar n ==ᶜ <?>
and : List Bool → Bool
and [] = true
and (false ∷ _) = false
and (true ∷ xs) = and xs
all : (A → Bool) → List A → Bool
all p xs = and (map p xs)
not : Bool → Bool
not false = true
not true = false
_∘_ : (B → C) → (A → B) → A → C
f ∘ g = λ x → f (g x)
postulate
putStrLn : String → IO ⊤
_>>_ : IO A → IO B → IO B
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# COMPILE GHC putStrLn = Text.putStrLn #-}
{-# COMPILE GHC _>>_ = \ _ _ -> (>>) #-}
assert : String → Bool → IO ⊤
assert s true = putStrLn (s ++ " PASSED")
assert s false = putStrLn (s ++ " FAILED")
main : IO ⊤
main = do
assert "before surrogates" (all (not ∘ isReplaced) (fromTo 0xD780 0xD7FF))
assert "surrogate range " (all isReplaced (fromTo 0xD800 0xDFFF))
assert "after surrogates " (all (not ∘ isReplaced) (fromTo 0xE000 0xE07F))
| {
"alphanum_fraction": 0.6323432343,
"avg_line_length": 24.435483871,
"ext": "agda",
"hexsha": "b9a1e31b73bf172231b45e08d695ae8d391c5595",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue4999.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue4999.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue4999.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 527,
"size": 1515
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Sigma
open import Preliminaries
open import Truncation_Level_Criteria
open import Anonymous_Existence_CollSplit
open wtrunc
open with-weak-trunc
module Anonymous_Existence_Populatedness where
-- Definition 4.2.1
⟪_⟫ : ∀ {i} → Type i → Type i
⟪ X ⟫ = (f : X → X) → const f → fix f
-- Proposition 4.2.2
Trunc→Pop : ∀ {i} {X : Type i} → ∣∣ X ∣∣ → ⟪ X ⟫
Trunc→Pop z f c = tr-rec {P = fix f} (fixed-point f c) (to-fix f c) z
-- Corollary 4.2.3: We show pairwise logical equivalence as it is easy
-- (of course, some directions are redundant)
coll-characterizations : ∀ {i} {X : Type i}
→ (coll X ↔ splitSup X)
× ((coll X ↔ (⟪ X ⟫ → X))
× ((⟪ X ⟫ → X) ↔ splitSup X))
coll-characterizations {X = X} = coll↔splitSup ,
(coll→pop→X , reverse₁) ,
(pop→X→splitSup , reverse₂) where
coll→pop→X : coll X → ⟪ X ⟫ → X
coll→pop→X (f , c) pop = fst (pop f c)
pop→X→splitSup : (⟪ X ⟫ → X) → splitSup X
pop→X→splitSup g = g ∘ Trunc→Pop
reverse₁ = snd coll↔splitSup ∘ pop→X→splitSup
reverse₂ = coll→pop→X ∘ snd coll↔splitSup
-- Addendum of Corollary 4.2.3
prop-pop : ∀ {i} {P : Type i} → is-prop P → ⟪ P ⟫ → P
prop-pop {P = P} pp = snd (snd (snd coll-characterizations)) (tr-rec pp (idf _))
-- Lemma 4.2.4
module _ {i : ULevel} {X : Type i} where
pop→splitSup→X : ⟪ X ⟫ → splitSup X → X
pop→splitSup→X pop = λ hst → snd (snd (snd (coll-characterizations {X = X}))) hst pop
use-funct : (splitSup X → X) → ∣∣ splitSup X ∣∣ → ∣∣ X ∣∣
use-funct f = trunc-functorial f
tr-hst-X→pop : (∣∣ splitSup X ∣∣ → ∣∣ X ∣∣) → ⟪ X ⟫
tr-hst-X→pop g f c = tr-rec (fixed-point f c) (to-fix f c) (g ∣ coll→splitSup (f , c) ∣)
-- we formulate the two logical equivalence that we will need explicitly:
pop-alt : ⟪ X ⟫ ↔ (∣∣ splitSup X ∣∣ → ∣∣ X ∣∣)
pop-alt = use-funct ∘ pop→splitSup→X , tr-hst-X→pop
pop-alt' : ⟪ X ⟫ ↔ (splitSup X → X)
pop-alt' = pop→splitSup→X , tr-hst-X→pop ∘ use-funct
-- Proposition 4.2.5
pop-alt₂ : ∀ {i} {X : Type i} → ⟪ X ⟫ ↔ ((P : Type i) → (is-prop P) → (X ↔ P) → P)
pop-alt₂ {i} {X} = one , two where
one : ⟪ X ⟫ → (P : Type i) → is-prop P → (X ↔ P) → P
one pop P pp (xp , px) = xp (fst (pop f c)) where
f : X → X
f = px ∘ xp
c : const f
c x₁ x₂ = ap px (prop-has-all-paths pp _ _)
two : ((P : Type i) → is-prop P → (X ↔ P) → P) → ⟪ X ⟫
two rest f c = rest (fix f) (fixed-point f c) (to-fix f c , from-fix f)
-- Proposition 4.2.6, part 1
pop-property₁ : ∀ {i} {X : Type i} → X → ⟪ X ⟫
pop-property₁ = Trunc→Pop ∘ ∣_∣
-- Proposition 4.2.6, part 2: this needs function extensionality.
-- We import the library file with the consequence of funext that we need.
open import lib.types.Pi
pop-property₂ : ∀ {i} {X : Type i} → is-prop ⟪ X ⟫
pop-property₂ = Π-is-prop (λ f → Π-is-prop (λ c → fixed-point f c))
| {
"alphanum_fraction": 0.5743081654,
"avg_line_length": 32.1648351648,
"ext": "agda",
"hexsha": "c683595617d80b24cb6dc9983305e7a12e6131e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/thesis/Anonymous_Existence_Populatedness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/thesis/Anonymous_Existence_Populatedness.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/thesis/Anonymous_Existence_Populatedness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1166,
"size": 2927
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Cowriter type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
-- Disabled to prevent warnings from BoundedVec
{-# OPTIONS --warn=noUserWarning #-}
module Codata.Cowriter where
open import Size
open import Level as L using (Level)
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat
open import Codata.Delay using (Delay; later; now)
open import Codata.Stream as Stream using (Stream; _∷_)
open import Data.Unit
open import Data.List.Base using (List; []; _∷_)
open import Data.List.NonEmpty using (List⁺; _∷_)
open import Data.Nat.Base as Nat using (ℕ; zero; suc)
open import Data.Product as Prod using (_×_; _,_)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec.Base using (Vec; []; _∷_)
open import Data.Vec.Bounded as Vec≤ using (Vec≤; _,_)
open import Function
private
variable
a b w x : Level
A : Set a
B : Set b
W : Set w
X : Set x
------------------------------------------------------------------------
-- Definition
data Cowriter (W : Set w) (A : Set a) (i : Size) : Set (a L.⊔ w) where
[_] : A → Cowriter W A i
_∷_ : W → Thunk (Cowriter W A) i → Cowriter W A i
------------------------------------------------------------------------
-- Relationship to Delay.
fromDelay : ∀ {i} → Delay A i → Cowriter ⊤ A i
fromDelay (now a) = [ a ]
fromDelay (later da) = _ ∷ λ where .force → fromDelay (da .force)
toDelay : ∀ {i} → Cowriter W A i → Delay A i
toDelay [ a ] = now a
toDelay (_ ∷ ca) = later λ where .force → toDelay (ca .force)
------------------------------------------------------------------------
-- Basic functions.
fromStream : ∀ {i} → Stream W i → Cowriter W A i
fromStream (w ∷ ws) = w ∷ λ where .force → fromStream (ws .force)
repeat : W → Cowriter W A ∞
repeat = fromStream ∘′ Stream.repeat
length : ∀ {i} → Cowriter W A i → Conat i
length [ _ ] = zero
length (w ∷ cw) = suc λ where .force → length (cw .force)
splitAt : ∀ (n : ℕ) → Cowriter W A ∞ → (Vec W n × Cowriter W A ∞) ⊎ (Vec≤ W n × A)
splitAt zero cw = inj₁ ([] , cw)
splitAt (suc n) [ a ] = inj₂ (Vec≤.[] , a)
splitAt (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w Vec≤.∷_))
$ splitAt n (cw .force)
take : ∀ (n : ℕ) → Cowriter W A ∞ → Vec W n ⊎ (Vec≤ W n × A)
take n = Sum.map₁ Prod.proj₁ ∘′ splitAt n
infixr 5 _++_ _⁺++_
_++_ : ∀ {i} → List W → Cowriter W A i → Cowriter W A i
[] ++ ca = ca
(w ∷ ws) ++ ca = w ∷ λ where .force → ws ++ ca
_⁺++_ : ∀ {i} → List⁺ W → Thunk (Cowriter W A) i → Cowriter W A i
(w ∷ ws) ⁺++ ca = w ∷ λ where .force → ws ++ ca .force
concat : ∀ {i} → Cowriter (List⁺ W) A i → Cowriter W A i
concat [ a ] = [ a ]
concat (w ∷ ca) = w ⁺++ λ where .force → concat (ca .force)
------------------------------------------------------------------------
-- Functor, Applicative and Monad
map : ∀ {i} → (W → X) → (A → B) → Cowriter W A i → Cowriter X B i
map f g [ a ] = [ g a ]
map f g (w ∷ cw) = f w ∷ λ where .force → map f g (cw .force)
map₁ : ∀ {i} → (W → X) → Cowriter W A i → Cowriter X A i
map₁ f = map f id
map₂ : ∀ {i} → (A → X) → Cowriter W A i → Cowriter W X i
map₂ = map id
ap : ∀ {i} → Cowriter W (A → X) i → Cowriter W A i → Cowriter W X i
ap [ f ] ca = map₂ f ca
ap (w ∷ cf) ca = w ∷ λ where .force → ap (cf .force) ca
_>>=_ : ∀ {i} → Cowriter W A i → (A → Cowriter W X i) → Cowriter W X i
[ a ] >>= f = f a
(w ∷ ca) >>= f = w ∷ λ where .force → ca .force >>= f
------------------------------------------------------------------------
-- Construction.
unfold : ∀ {i} → (X → (W × X) ⊎ A) → X → Cowriter W A i
unfold next seed with next seed
... | inj₁ (w , seed') = w ∷ λ where .force → unfold next seed'
... | inj₂ a = [ a ]
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.3
open import Data.BoundedVec as BVec using (BoundedVec)
splitAt′ : ∀ (n : ℕ) → Cowriter W A ∞ → (Vec W n × Cowriter W A ∞) ⊎ (BoundedVec W n × A)
splitAt′ zero cw = inj₁ ([] , cw)
splitAt′ (suc n) [ a ] = inj₂ (BVec.[] , a)
splitAt′ (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w BVec.∷_))
$ splitAt′ n (cw .force)
{-# WARNING_ON_USAGE splitAt′
"Warning: splitAt′ (and Data.BoundedVec) was deprecated in v1.3.
Please use splitAt (and Data.Vec.Bounded) instead."
#-}
take′ : ∀ (n : ℕ) → Cowriter W A ∞ → Vec W n ⊎ (BoundedVec W n × A)
take′ n = Sum.map₁ Prod.proj₁ ∘′ splitAt′ n
{-# WARNING_ON_USAGE take′
"Warning: take′ (and Data.BoundedVec) was deprecated in v1.3.
Please use take (and Data.Vec.Bounded) instead."
#-}
| {
"alphanum_fraction": 0.510347599,
"avg_line_length": 34.0890410959,
"ext": "agda",
"hexsha": "6da3be61e6a6e7b875290cb2c1459c4a2a182ad5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Codata/Cowriter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Codata/Cowriter.agda",
"max_line_length": 89,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Codata/Cowriter.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1585,
"size": 4977
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Change evaluation (Def 3.6 and Fig. 4h).
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Syntax.Term as Term
import Parametric.Denotation.Value as Value
import Parametric.Denotation.Evaluation as Evaluation
import Parametric.Change.Validity as Validity
module Parametric.Change.Specification
{Base : Type.Structure}
(Const : Term.Structure Base)
(⟦_⟧Base : Value.Structure Base)
(⟦_⟧Const : Evaluation.Structure Const ⟦_⟧Base)
{{validity-structure : Validity.Structure ⟦_⟧Base}}
where
open Type.Structure Base
open Term.Structure Base Const
open Value.Structure Base ⟦_⟧Base
open Evaluation.Structure Const ⟦_⟧Base ⟦_⟧Const
open Validity.Structure ⟦_⟧Base {{validity-structure}}
open import Base.Denotation.Notation
open import Relation.Binary.PropositionalEquality
open import Theorem.CongApp
open import Postulate.Extensionality
module Structure where
---------------
-- Interface --
---------------
-- We provide: Derivatives of terms.
⟦_⟧Δ : ∀ {τ Γ} → (t : Term Γ τ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) → Δ₍ τ ₎ (⟦ t ⟧ ρ)
-- And we provide correctness proofs about the derivatives.
correctness : ∀ {τ Γ} (t : Term Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ t ⟧ ⟦ t ⟧Δ
--------------------
-- Implementation --
--------------------
open import Base.Change.Equivalence
open import Base.Change.Equivalence.Realizers
module _ {σ τ : Type} {Γ : Context} (t : Term (σ • Γ) τ) where
instance
cΓ : ChangeAlgebra ⟦ Γ ⟧Context
cΓ = change-algebra₍ Γ ₎
cσ : ChangeAlgebra ⟦ σ ⟧Type
cσ = change-algebra σ
cτ : ChangeAlgebra ⟦ τ ⟧Type
cτ = change-algebra τ
private
⟦⟧Δλ = nil {{changeAlgebraFun {{cΓ}} {{change-algebra₍ σ ⇒ τ ₎}}}} ⟦ abs t ⟧
⟦⟧Δλ-realizer : ∀
(ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ)
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v) →
Δ₍ τ ₎ (⟦ t ⟧ (v • ρ))
⟦⟧Δλ-realizer ρ dρ v dv = ⟦ t ⟧Δ (v • ρ) (dv • dρ)
⟦⟧Δλ-realizer-correct :
equiv-hp-binary {{cΓ}} {{cσ}} {{cτ}} (⟦ abs t ⟧) ⟦⟧Δλ ⟦⟧Δλ-realizer
⟦⟧Δλ-realizer-correct ρ dρ v dv =
begin
⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ ⊞₍ Γ ₎ dρ) ⊟₍ τ ₎ ⟦ t ⟧ (v • ρ)
≙⟨ equiv-cancel-2 {{change-algebra τ}}
(⟦ t ⟧ (v ⊞₍ σ ₎ dv • ρ ⊞₍ Γ ₎ dρ))
(⟦ t ⟧Δ (v • ρ) (dv • dρ))
(sym (correctness t (v • ρ) (dv • dρ)))
⟩
⟦ t ⟧Δ (v • ρ) (dv • dρ)
∎ where open ≙-Reasoning
⟦_⟧Δλ′-faster = proj₁ (equiv-raw-change-to-change-binary {{cΓ}} {{cσ}} {{cτ}} ⟦ abs t ⟧ ⟦⟧Δλ ⟦⟧Δλ-realizer ⟦⟧Δλ-realizer-correct)
where
open import Data.Product
⟦_⟧ΔVar : ∀ {τ Γ} → (x : Var Γ τ) → (ρ : ⟦ Γ ⟧) → Δ₍ Γ ₎ ρ → Δ₍ τ ₎ (⟦ x ⟧Var ρ)
⟦ this ⟧ΔVar (v • ρ) (dv • dρ) = dv
⟦ that x ⟧ΔVar (v • ρ) (dv • dρ) = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (const {τ} c) ρ dρ = nil₍ τ ₎ (⟦ c ⟧Const)
⟦_⟧Δ (var x) ρ dρ = ⟦ x ⟧ΔVar ρ dρ
⟦_⟧Δ (app {σ} {τ} s t) ρ dρ =
call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
⟦_⟧Δ (abs {σ} {τ} t) ρ dρ = apply ⟦ t ⟧Δλ′-faster ρ dρ
correctVar : ∀ {τ Γ} (x : Var Γ τ) →
IsDerivative₍ Γ , τ ₎ ⟦ x ⟧ ⟦ x ⟧ΔVar
correctVar (this) (v • ρ) (dv • dρ) = refl
correctVar (that y) (v • ρ) (dv • dρ) = correctVar y ρ dρ
correctness (const {τ} c) ρ dρ = update-nil₍ τ ₎ ⟦ c ⟧Const
correctness {τ} (var x) ρ dρ = correctVar {τ} x ρ dρ
correctness (app {σ} {τ} s t) ρ dρ =
let
f₁ = ⟦ s ⟧ ρ
f₂ = ⟦ s ⟧ (after-env dρ)
Δf = ⟦ s ⟧Δ ρ dρ
u₁ = ⟦ t ⟧ ρ
u₂ = ⟦ t ⟧ (after-env dρ)
Δu = ⟦ t ⟧Δ ρ dρ
in
begin
f₁ u₁ ⊞₍ τ ₎ call-change {σ} {τ} Δf u₁ Δu
≡⟨ sym (is-valid {σ} {τ} Δf u₁ Δu) ⟩
(f₁ ⊞₍ σ ⇒ τ ₎ Δf) (u₁ ⊞₍ σ ₎ Δu)
≡⟨ correctness {σ ⇒ τ} s ρ dρ ⟨$⟩ correctness {σ} t ρ dρ ⟩
f₂ u₂
∎ where open ≡-Reasoning
correctness {σ ⇒ τ} {Γ} (abs t) ρ dρ = equiv-raw-deriv-to-deriv-binary {{change-algebra₍ Γ ₎}} {{change-algebra σ}} ⟦ abs t ⟧Term (⟦⟧Δλ-realizer t) (⟦⟧Δλ-realizer-correct t) ρ dρ
-- Corollary: (f ⊞ df) (v ⊞ dv) = f v ⊞ df v dv
corollary : ∀ {σ τ Γ}
(s : Term Γ (σ ⇒ τ)) (t : Term Γ σ) (ρ : ⟦ Γ ⟧) (dρ : Δ₍ Γ ₎ ρ) →
(⟦ s ⟧ ρ ⊞₍ σ ⇒ τ ₎ ⟦ s ⟧Δ ρ dρ)
(⟦ t ⟧ ρ ⊞₍ σ ₎ ⟦ t ⟧Δ ρ dρ)
≡ (⟦ s ⟧ ρ) (⟦ t ⟧ ρ)
⊞₍ τ ₎
(call-change {σ} {τ} (⟦ s ⟧Δ ρ dρ)) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary {σ} {τ} s t ρ dρ =
is-valid {σ} {τ} (⟦ s ⟧Δ ρ dρ) (⟦ t ⟧ ρ) (⟦ t ⟧Δ ρ dρ)
corollary-closed : ∀ {σ τ} (t : Term ∅ (σ ⇒ τ))
(v : ⟦ σ ⟧) (dv : Δ₍ σ ₎ v)
→ ⟦ t ⟧ ∅ (after₍ σ ₎ dv)
≡ ⟦ t ⟧ ∅ v ⊞₍ τ ₎ call-change {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv
corollary-closed {σ} {τ} t v dv =
let
f = ⟦ t ⟧ ∅
Δf = ⟦ t ⟧Δ ∅ ∅
in
begin
f (after₍ σ ₎ dv)
≡⟨ cong (λ hole → hole (after₍ σ ₎ dv))
(sym (correctness {σ ⇒ τ} t ∅ ∅)) ⟩
(f ⊞₍ σ ⇒ τ ₎ Δf) (after₍ σ ₎ dv)
≡⟨ is-valid {σ} {τ} (⟦ t ⟧Δ ∅ ∅) v dv ⟩
f (before₍ σ ₎ dv) ⊞₍ τ ₎ call-change {σ} {τ} Δf v dv
∎ where open ≡-Reasoning
| {
"alphanum_fraction": 0.4879482657,
"avg_line_length": 33.7947019868,
"ext": "agda",
"hexsha": "707fdddb385608c92491a532ee0e83b92a516cc7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Specification.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Specification.agda",
"max_line_length": 180,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Specification.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 2384,
"size": 5103
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- W-types
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.W where
open import Level
open import Function
open import Data.Product hiding (map)
open import Data.Container.Core hiding (map)
open import Data.Container.Relation.Unary.All using (□; all)
open import Relation.Nullary
open import Agda.Builtin.Equality
-- The family of W-types.
data W {s p} (C : Container s p) : Set (s ⊔ p) where
sup : ⟦ C ⟧ (W C) → W C
module _ {s p} {C : Container s p} {s : Shape C} {f : Position C s → W C} where
sup-injective₁ : ∀ {t g} → sup (s , f) ≡ sup (t , g) → s ≡ t
sup-injective₁ refl = refl
-- See also Data.W.WithK.sup-injective₂.
-- Projections.
module _ {s p} {C : Container s p} where
head : W C → Shape C
head (sup (x , f)) = x
tail : (x : W C) → Position C (head x) → W C
tail (sup (x , f)) = f
-- map
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
(m : C₁ ⇒ C₂) where
map : W C₁ → W C₂
map (sup (x , f)) = sup (⟪ m ⟫ (x , λ p → map (f p)))
-- induction
module _ {s p ℓ} {C : Container s p} (P : W C → Set ℓ)
(alg : ∀ {t} → □ C P t → P (sup t)) where
induction : (w : W C) → P w
induction (sup (s , f)) = alg $ all (induction ∘ f)
module _ {s p ℓ} {C : Container s p} (open Container C)
{P : Set ℓ} (alg : ⟦ C ⟧ P → P) where
foldr : W C → P
foldr = induction (const P) (alg ∘ -,_ ∘ □.proof)
-- If Position is always inhabited, then W_C is empty.
module _ {s p} {C : Container s p} where
inhabited⇒empty : (∀ s → Position C s) → ¬ W C
inhabited⇒empty b = foldr ((_$ b _) ∘ proj₂)
| {
"alphanum_fraction": 0.5308219178,
"avg_line_length": 25.3913043478,
"ext": "agda",
"hexsha": "f7e9e29409a8a3f58d056f45dfda484f8fe1ba0f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/W.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/W.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/W.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 590,
"size": 1752
} |
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.meta:20 #-}
module UnifyWithIrrelevantArgument where
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
data Bool : Set where true false : Bool
-- irrelevant arguments are ignored in unification
-- e.g. non linearity
test : let X : Bool -> .Bool -> Bool
X = _
in (x : Bool) -> X x x ≡ x
test x = refl
-- e.g. non-pattern
tst1 : let X : Bool -> .Bool -> Bool
X = _
in (x : Bool) -> X x true ≡ x
tst1 x = refl
| {
"alphanum_fraction": 0.5557729941,
"avg_line_length": 22.2173913043,
"ext": "agda",
"hexsha": "fc1e042d4f5191b40b58d5cf631fa97dbed3c177",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/UnifyWithIrrelevantArgument.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/UnifyWithIrrelevantArgument.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/UnifyWithIrrelevantArgument.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 167,
"size": 511
} |
module ArrowIsCCC where
open import Categories.Category.CartesianClosed.Canonical
open import Categories.Category.Cartesian.Bundle
open import Categories.Category.Core
open import Categories.Category.Construction.Arrow
open import Data.Product
open import Function using (const)
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.PropositionalEquality
open Relation.Binary.PropositionalEquality.≡-Reasoning
𝕦 : {A : Set} → A → A
𝕦 x = x
SetC : Category (suc zero) zero zero
SetC =
record
{ Obj = Set
; _⇒_ = λ x y → x → y
; _≈_ = _≡_
; id = λ x → x
; _∘_ = λ f g a → f (g a)
; assoc = refl
; sym-assoc = refl
; identityˡ = refl
; identityʳ = refl
; identity² = refl
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = λ {refl refl → refl}
}
data t : Set where
⊤ : t
!-unique-lemma : ∀ (x : t) → ⊤ ≡ x
!-unique-lemma ⊤ = refl
Set² : Category (suc zero) zero zero
Set² = Arrow SetC
arrow-cart : CartesianCategory (suc zero) zero zero
arrow-cart =
record { U = Set²
; cartesian =
record { terminal = record { ⊤ = record { arr = 𝕦 } ; ⊤-is-terminal = record { ! = mor⇒ {! !} ; !-unique = {! !} } }
; products =
record { product = λ {A} {B} →
record
{ A×B = record { arr = λ x → {! !} }
; π₁ = mor⇒ {! !}
; π₂ = mor⇒ {! !}
; ⟨_,_⟩ = λ x x₁ → {! !}
; project₁ = {! !} , {! !}
; project₂ = {! !} , {! !}
; unique = λ x x₁ → {! !}
} } } }
{-
_⋆_ : {A B C : Set} → (B → C) → (A → B) → (A → C)
g ⋆ f = λ t → g (f t)
postulate
extensionality : ∀ {A B : Set} {f g : A → B} →
(∀ (x : A) → f x ≡ g x) →
f ≡ g
data t : Set where
⊤ : t
!-unique-lemma : ∀ (x : t) → ⊤ ≡ x
!-unique-lemma ⊤ = refl
arrow : Category (suc zero) zero zero
arrow = record
{ Obj = Σ (Set × Set) (λ x → proj₁ x → proj₂ x)
; _⇒_ = arr
; _≈_ = _≡_
; id = ((λ x → x) , (λ z → z)) , refl
; _∘_ = λ {A} {B} {C} f g → comp {A} {B} {C} f g
; assoc = {! !}
; sym-assoc = {! !}
; identityˡ = λ {A} {B} {f} → idl {A} {B} {f}
; identityʳ = λ {A} {B} {f} → idr {A} {B} {f}
; identity² = refl
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = λ {refl refl → refl}
}
where
comm-sq : {a b c d : Set} → (a → c) × (b → d) → (f : a → b) → (g : c → d) → Set
comm-sq {a} {b} {c} {d} (up , down) left right = ∀ {t : a} → down (left t) ≡ right (up t)
arr : Rel (Σ (Set × Set) (λ x → proj₁ x → proj₂ x)) zero
arr ((a , b) , x1) ((c , d) , y1) = Σ ((a → c) × (b → d)) λ x → comm-sq x x1 y1
trans-comm-sq :
{A B C X Y Z : Set} {up : A → B} {down : X → Y} {up' : B → C} {down' : Y → Z} {left : A → X} {right : B → Y} {right' : C → Z} →
(p : comm-sq (up , down) left right) → (q : comm-sq (up' , down') right right') →
comm-sq (up' ⋆ up , down' ⋆ down) left right'
trans-comm-sq
{A} {B} {C} {X} {Y} {Z} {up} {down} {up'} {down'} {left} {right} {right'}
p q {t} =
begin
down' (down (left t)) ≡⟨ cong down' p ⟩
down' (right (up t)) ≡⟨ q ⟩
right' (up' (up t))
∎
{-
up up'
A -> B -> C
↓ ↓ ↓
X -> Y -> Z
down down'
-}
𝕦 : {A : Set} → A → A
𝕦 x = x
comp : {A B C : Σ (Set × Set) (λ x → proj₁ x → proj₂ x)} → arr B C → arr A B → arr A C
comp {(A0 , A1) , u} {(B0 , B1) , v} {(C0 , C1) , w} ((f0 , f1) , p) ((g0 , g1) , q) =
((λ x → f0 (g0 x)) , (λ z → f1 (g1 z))) , trans-comm-sq {A0} {B0} {C0} {A1} {B1} {C1} {g0} {g1} {f0} {f1} {u} {v} {w} q p
idl : {A B : Σ (Set × Set) (λ x → proj₁ x → proj₂ x)} {f : arr A B} → comp {A} {B} {B} (((λ x → x) , (λ z → z)) , refl) f ≡ f
idl {(A0 , A1) , u} {(B0 , B1) , v} {(f0 , f1) , p} = {! !}
idr : {A B : Σ (Set × Set) (λ x → proj₁ x → proj₂ x)} {f : arr A B} → comp {A} {A} {B} f (((λ x → x) , (λ z → z)) , refl) ≡ f
idr {(A0 , A1) , u} {(B0 , B1) , v} {(f0 , f1) , p} = {! !} -- trans-comm-sq {! !} {! !}
open Category arrow
-- just to see what happens:
arrow-cart : CartesianCategory (suc zero) zero zero
arrow-cart =
record { U = arrow
; cartesian = record {
terminal = record
{ ⊤ = (t , t) , (λ _ → ⊤)
; ⊤-is-terminal = record { ! = (λ _ → ⊤) , (λ _ → ⊤) ; !-unique = λ {A} → bang-uniq {A} }
}
; products = record
{ product = λ {A} {B} → record
{ A×B = ((proj₁ (proj₁ A) × proj₁ (proj₁ B)) , (proj₂ (proj₁ A) × proj₂ (proj₁ B))) , λ x → (proj₂ A (proj₁ x)) , (proj₂ B) (proj₂ x)
; π₁ = proj₁ , proj₁
; π₂ = proj₂ , proj₂
; ⟨_,_⟩ = λ {C = C} f g → pair {C} {A} {B} f g
; project₁ = refl
; project₂ = refl
; unique = λ {refl refl → refl}
} } } }
where
prod : Obj → Obj → Obj
prod ((X , Y) , u) ((A , B) , v) = ((X × A) , (Y × B)) , λ x → (u (proj₁ x)) , (v (proj₂ x))
bang-uniq : {A : Obj} (f : (arrow Category.⇒ A) ((t , t) , (λ _ → ⊤))) → ((λ _ → ⊤) , (λ _ → ⊤)) ≡ f
bang-uniq (f0 , f1) =
cong₂ _,_ (extensionality λ x → !-unique-lemma (f0 x)) (extensionality (λ x → !-unique-lemma (f1 x)))
pair : {C A B : Obj} → (arrow Category.⇒ C) A → (arrow Category.⇒ C) B → (arrow Category.⇒ C) (prod A B)
pair {(X , Y) , u} {(A , B) , v} {(E , F) , w} (f0 , f1) (g0 , g1) = (λ x → (f0 x) , (g0 x)) , (λ x → (f1 x) , (g1 x))
arrow-ccc : CartesianClosed arrow
arrow-ccc = record
{ ⊤ = (t , t) , (λ _ → ⊤)
; _×_ = prod
; ! = (λ _ → ⊤) , (λ _ → ⊤)
; π₁ = proj₁ , proj₁
; π₂ = proj₂ , proj₂
; ⟨_,_⟩ = λ {A} {B} {C} f g → pair {A} {B} {C} f g
; !-unique = λ {A} → bang-uniq {A}
; π₁-comp = refl
; π₂-comp = refl
; ⟨,⟩-unique = λ {refl refl → refl}
; _^_ = to-the
; eval = λ {B} {A} → ev {B} {A}
; curry = λ {C} {A} {B} g → cur {C} {A} {B} g
; eval-comp = refl
; curry-resp-≈ = λ {refl → refl}
; curry-unique = {! !}
}
where
prod : Obj → Obj → Obj
prod ((X , Y) , u) ((A , B) , v) = ((X × A) , (Y × B)) , λ x → (u (proj₁ x)) , (v (proj₂ x))
pair : {C A B : Obj} → (arrow Category.⇒ C) A → (arrow Category.⇒ C) B → (arrow Category.⇒ C) (prod A B)
pair {(X , Y) , u} {(A , B) , v} {(E , F) , w} (f0 , f1) (g0 , g1) = (λ x → (f0 x) , (g0 x)) , (λ x → (f1 x) , (g1 x))
bang-uniq : {A : Obj} (f : (arrow Category.⇒ A) ((t , t) , (λ _ → ⊤))) → ((λ _ → ⊤) , (λ _ → ⊤)) ≡ f
bang-uniq (f0 , f1) = cong₂ _,_ (extensionality λ x → !-unique-lemma (f0 x)) (extensionality (λ x → !-unique-lemma (f1 x)))
to-the : Obj → Obj → Obj
to-the ((B0 , B1) , u) ((A0 , A1) , v) = (p , (A1 → B1)) , λ x a1 → proj₂ (proj₁ x) a1
where
p : Set
p = Σ ((A0 → B0) × (A1 → B1)) λ r → (λ x → u ((proj₁ r) x)) ≡ (λ x → (proj₂ r) (v x))
-- va implementato il pullback-hom di u e v : [v,u] fitta in
{-
[v,u] → (A0 → B0)
↓ <- lei ↓
(A1 → B1) → (A0 → B1)
-}
ev : {B A : Obj} → (prod (to-the B A) A) ⇒ B
ev {(B0 , B1) , u} {(A0 , A1) , v} = dis , (λ z → proj₁ z (proj₂ z))
where
dis : proj₁ (proj₁ (prod (to-the ((B0 , B1) , u) ((A0 , A1) , v)) ((A0 , A1) , v))) → B0
dis (((s , t) , p) , a0) = s a0
cur : {C A B : Obj} → prod C A ⇒ B → C ⇒ to-the B A
cur {(C0 , C1) , c} {(A0 , A1) , a} {(B0 , B1) , b} (fst , snd) =
(λ x → ((λ y → fst (x , y)) , λ y → snd (c x , y)) , extensionality (λ y → {! !})) , (λ z z₁ → snd (z , z₁))
-} | {
"alphanum_fraction": 0.4385964912,
"avg_line_length": 36.1730769231,
"ext": "agda",
"hexsha": "bef089a3970cff4282652f2c856481118c9c9df6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tetrapharmakon/agda-categories",
"max_forks_repo_path": "src/ArrowIsCCC.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tetrapharmakon/agda-categories",
"max_issues_repo_path": "src/ArrowIsCCC.agda",
"max_line_length": 148,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cfa6aefd3069d4db995191b458c886edcfba8294",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tetrapharmakon/agda-categories",
"max_stars_repo_path": "src/ArrowIsCCC.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3226,
"size": 7524
} |
{-# OPTIONS --sized-types #-} -- --no-coverage-check #-}
module DeBruijnExSubstSized where
open import Data.Function -- using (_∘_) -- composition, identity
open import Data.Nat
open import Data.Maybe
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Size
open import DeBruijn
-- untyped de Bruijn terms
data LamE (A : Set) : Size -> Set where
varE : {ι : _} -> A -> LamE A (↑ ι)
appE : {ι : _} -> LamE A ι -> LamE A ι -> LamE A (↑ ι)
absE : {ι : _} -> LamE (Maybe A) ι -> LamE A (↑ ι)
flatE : {ι : _} -> LamE (LamE A ι) ι -> LamE A (↑ ι)
-- functoriality of LamE
lamE : {A B : Set} -> (A -> B) -> {ι : _} -> LamE A ι -> LamE B ι
lamE f (varE a) = varE (f a)
lamE f (appE t1 t2) = appE (lamE f t1) (lamE f t2)
lamE f (absE r) = absE (lamE (fmap f) r)
lamE f (flatE r) = flatE (lamE (lamE f) r)
eval : {ι : _} -> {A : Set} -> LamE A ι -> Lam A
eval (varE a) = var a
eval (appE t1 t2) = app (eval t1) (eval t2)
eval (absE r) = abs (eval r)
eval (flatE r) = subst (eval) (eval r)
-- Theorem (naturality of eval): eval ∘ lamE f ≡ lam f ∘ eval
evalNAT : {A B : Set}(f : A -> B) -> {ι : _} -> (t : LamE A ι) ->
eval (lamE f t) ≡ lam f (eval t)
evalNAT f (varE a) = ≡-refl
evalNAT f (appE t1 t2) = begin
eval (lamE f (appE t1 t2))
≡⟨ ≡-refl ⟩
eval (appE (lamE f t1) (lamE f t2))
≡⟨ ≡-refl ⟩
app (eval (lamE f t1)) (eval (lamE f t2))
≡⟨ ≡-cong (\ x -> app x (eval (lamE f t2))) (evalNAT f t1) ⟩
app (lam f (eval t1)) (eval (lamE f t2))
≡⟨ ≡-cong (\ x -> app (lam f (eval t1)) x) (evalNAT f t2) ⟩
app (lam f (eval t1)) (lam f (eval t2))
≡⟨ ≡-refl ⟩
lam f (app (eval t1) (eval t2))
≡⟨ ≡-refl ⟩
lam f (eval (appE t1 t2))
∎
evalNAT f (absE r) = begin
eval (lamE f (absE r))
≡⟨ ≡-refl ⟩
eval (absE (lamE (fmap f) r))
≡⟨ ≡-refl ⟩
abs (eval (lamE (fmap f) r))
≡⟨ ≡-cong abs (evalNAT (fmap f) r) ⟩
abs (lam (fmap f) (eval r))
≡⟨ ≡-refl ⟩
lam f (abs (eval r))
≡⟨ ≡-refl ⟩
lam f (eval (absE r))
∎
-- in the following case, one manual size annotation is needed on the RHS
-- it is for the first application of the I.H.
evalNAT f (flatE {ι} r) = begin
eval (lamE f (flatE r))
≡⟨ ≡-refl ⟩
eval (flatE (lamE (lamE f) r))
≡⟨ ≡-refl ⟩
subst eval (eval (lamE (lamE f) r))
≡⟨ ≡-cong (subst (eval {ι})) (evalNAT (lamE f) r) ⟩
subst eval (lam (lamE f) (eval r))
≡⟨ substLaw1 (lamE f) eval (eval r) ⟩
subst (eval ∘ lamE f) (eval r)
≡⟨ substExt (evalNAT f) (eval r) ⟩
subst (lam f ∘ eval) (eval r)
≡⟨ substLaw2 f eval (eval r) ⟩
lam f (subst eval (eval r))
≡⟨ ≡-refl ⟩
lam f (eval (flatE r))
∎
evalNATcor : {A : Set}{ι : _}(ee : LamE (LamE A ι) ι) ->
subst id (eval (lamE eval ee)) ≡ eval (flatE ee)
evalNATcor ee = begin
subst id (eval (lamE eval ee))
≡⟨ ≡-cong (subst id) (evalNAT eval ee) ⟩
subst id (lam eval (eval ee))
≡⟨ substLaw1 eval id (eval ee) ⟩
subst eval (eval ee)
≡⟨ ≡-refl ⟩
eval (flatE ee)
∎
| {
"alphanum_fraction": 0.5396461337,
"avg_line_length": 30.8282828283,
"ext": "agda",
"hexsha": "10973240effaef2d9b3ff3970769274337854b54",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/Termination/Sized/DeBruijnExSubstSized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/Termination/Sized/DeBruijnExSubstSized.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/Termination/Sized/DeBruijnExSubstSized.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1375,
"size": 3052
} |
------------------------------------------------------------------------------
-- The mirror function: A function with higher-order recursion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Mirror where
open import FOTC.Base
open import FOTC.Data.List
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
-- The mirror function.
postulate
mirror : D
mirror-eq : ∀ d ts → mirror · node d ts ≡ node d (reverse (map mirror ts))
{-# ATP axiom mirror-eq #-}
| {
"alphanum_fraction": 0.4372523118,
"avg_line_length": 34.4090909091,
"ext": "agda",
"hexsha": "1ce6e83b8061d8b8ac47432bece93aae5534b573",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Mirror.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Mirror.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Mirror.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 132,
"size": 757
} |
module Cats.Util.Conv where
open import Level
open import Cats.Category.Base
module _ {x} (X : Set x) where
record HasObj lo la l≈ : Set (x ⊔ suc (lo ⊔ la ⊔ l≈))
where
infix 90 _ᴼ
field
Cat : Category lo la l≈
open Category Cat
field
_ᴼ : X → Obj
open HasObj {{...}} public using (_ᴼ)
record HasArrow lo la l≈ : Set (x ⊔ suc (lo ⊔ la ⊔ l≈))
where
infixr 90 _⃗
field
Cat : Category lo la l≈
open Category Cat using (Obj ; _⇒_)
field
{A B} : X → Obj
_⃗ : (x : X) → A x ⇒ B x
open HasArrow {{...}} public using (_⃗)
| {
"alphanum_fraction": 0.5430463576,
"avg_line_length": 16.3243243243,
"ext": "agda",
"hexsha": "2879381b5c46bae1ecdab46f792a0990908be1df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/Conv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/Conv.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/Conv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 225,
"size": 604
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Crypto.Crypto.Hash as Hash
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.KVMap as Map
open import Util.PKCS
open import Util.Prelude
module LibraBFT.Impl.Consensus.ConsensusTypes.BlockData where
------------------------------------------------------------------------------
newGenesis : {-Instant →-} QuorumCert → BlockData
------------------------------------------------------------------------------
newGenesisFromLedgerInfo : LedgerInfo → Either ErrLog BlockData
newGenesisFromLedgerInfo li =
if not (li ^∙ liEndsEpoch)
then Left fakeErr -- ["BlockData", "newGenesisFromLedgerInfo", "liNextEpochState == Nothing"]
else
let ancestor = BlockInfo∙new
(li ^∙ liEpoch)
{-Round-} 0
Hash.valueZero
(li ^∙ liTransactionAccumulatorHash)
(li ^∙ liVersion)
--(li ^∙ liTimestamp)
nothing
genesisQuorumCert = QuorumCert∙new
(VoteData∙new ancestor ancestor)
(LedgerInfoWithSignatures∙new
(LedgerInfo∙new ancestor Hash.valueZero) Map.empty)
in pure $ newGenesis {-(li ^∙ liTimestamp)-} genesisQuorumCert
newGenesis {-timestamp-} qc = BlockData∙new
(qc ^∙ qcCertifiedBlock ∙ biEpoch + 1)
{-Round-} 0
--timestamp
qc
Genesis
newNil : Round → QuorumCert → BlockData
newNil r qc = BlockData∙new
(qc ^∙ qcCertifiedBlock ∙ biEpoch)
r
--(qc ^∙ qcCertifiedBlock ∙ biTimestamp)
qc
NilBlock
newProposal : TX → Author → Round → {-Instant →-} QuorumCert → BlockData
newProposal payload author round {-timestamp-} quorumCert = BlockData∙new
(quorumCert ^∙ qcCertifiedBlock ∙ biEpoch) round {-timestamp-} quorumCert (Proposal payload author)
isGenesisBlock : BlockData → Bool
isGenesisBlock bd = bd ^∙ bdBlockType == Genesis
isNilBlock : BlockData → Bool
isNilBlock bd = bd ^∙ bdBlockType == NilBlock
| {
"alphanum_fraction": 0.595010395,
"avg_line_length": 36.4393939394,
"ext": "agda",
"hexsha": "0f5c03b96bf7846ce1328a686297e3297f8926b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockData.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockData.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/BlockData.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 602,
"size": 2405
} |
module Dave.Logic.Theorems where
K : {A B : Set} → A → B → A
K a b = a
S : {A B C : Set} → (A → B → C) → (A → B) → A → C
S = λ f → λ g → λ a → f a (g a)
| {
"alphanum_fraction": 0.3771428571,
"avg_line_length": 21.875,
"ext": "agda",
"hexsha": "053a0c17a98d926c22fa2e4a11d0808c1a8c5f19",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DavidStahl97/formal-proofs",
"max_forks_repo_path": "Dave/Logic/Theorems.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DavidStahl97/formal-proofs",
"max_issues_repo_path": "Dave/Logic/Theorems.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "05213fb6ab1f51f770f9858b61526ba950e06232",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DavidStahl97/formal-proofs",
"max_stars_repo_path": "Dave/Logic/Theorems.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 79,
"size": 175
} |
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality
open import Relation.Binary using (Setoid)
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
module SecondOrder.Term
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.Metavariable Σ
-- The term judgement
data Term (Θ : MContext) : ∀ (Γ : VContext) (A : sort) → Set ℓ
Arg : ∀ (Θ : MContext) (Γ : VContext) (A : sort) (Δ : VContext) → Set ℓ
Arg Θ Γ A Δ = Term Θ (Γ ,, Δ) A
data Term Θ where
tm-var : ∀ {Γ} {A} (x : A ∈ Γ) → Term Θ Γ A
tm-meta : ∀ {Γᴹ A} {Γ} (M : [ Γᴹ , A ]∈ Θ)
(ts : ∀ {B} (i : B ∈ Γᴹ) → Term Θ Γ B)
→ Term Θ Γ A
tm-oper : ∀ {Γ} (f : oper) (es : ∀ (i : oper-arg f) → Arg Θ Γ (arg-sort f i) (arg-bind f i))
→ Term Θ Γ (oper-sort f)
-- Syntactic equality of terms
infix 4 _≈_
data _≈_ {Θ : MContext} : ∀ {Γ : VContext} {A : sort} → Term Θ Γ A → Term Θ Γ A → Set ℓ where
≈-≡ : ∀ {Γ A} {t u : Term Θ Γ A} (ξ : t ≡ u) → t ≈ u
≈-meta : ∀ {Γ} {α A} {M : [ α , A ]∈ Θ} {ts us : ∀ {B} (i : B ∈ α) → Term Θ Γ B}
(ξ : ∀ {B} i → ts {B} i ≈ us {B} i) → tm-meta M ts ≈ tm-meta M us
≈-oper : ∀ {Γ} {f : oper} {ds es : ∀ (i : oper-arg f) → Arg Θ Γ (arg-sort f i) (arg-bind f i)}
(ξ : ∀ i → ds i ≈ es i) → tm-oper f ds ≈ tm-oper f es
-- Syntactic equality of terms is an equivalence relation
≈-refl : ∀ {Θ Γ A} {t : Term Θ Γ A} → t ≈ t
≈-refl = ≈-≡ refl
≈-sym : ∀ {Θ Γ A} {t u : Term Θ Γ A} → t ≈ u → u ≈ t
≈-sym (≈-≡ refl) = ≈-≡ refl
≈-sym (≈-meta ξ) = ≈-meta λ i → ≈-sym (ξ i)
≈-sym (≈-oper ξ) = ≈-oper (λ i → ≈-sym (ξ i))
≈-trans : ∀ {Θ Γ A} {t u v : Term Θ Γ A} → t ≈ u → u ≈ v → t ≈ v
≈-trans (≈-≡ refl) ξ = ξ
≈-trans (≈-meta ζ) (≈-≡ refl) = ≈-meta ζ
≈-trans (≈-meta ζ) (≈-meta ξ) = ≈-meta (λ i → ≈-trans (ζ i) (ξ i))
≈-trans (≈-oper ζ) (≈-≡ refl) = ≈-oper ζ
≈-trans (≈-oper ζ) (≈-oper ξ) = ≈-oper (λ i → ≈-trans (ζ i) (ξ i))
Term-setoid : ∀ (Θ : MContext) (Γ : VContext) (A : sort) → Setoid ℓ ℓ
Term-setoid Θ Γ A =
record
{ Carrier = Term Θ Γ A
; _≈_ = _≈_
; isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } }
| {
"alphanum_fraction": 0.5048666949,
"avg_line_length": 35.2686567164,
"ext": "agda",
"hexsha": "f32730cbd687d551eadb3a233781ee21ca4b52f6",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Term.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Term.agda",
"max_line_length": 99,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/Term.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 1099,
"size": 2363
} |
module Ix where
_-:>_ : {I : Set} -> (I -> Set) -> (I -> Set) -> (I -> Set)
(S -:> T) i = S i -> T i
infixr 4 _-:>_
[_] : {I : Set} -> (I -> Set) -> Set
[ P ] = forall i -> P i
Algebra : {I : Set}(F : (I -> Set) -> (I -> Set)) -> (I -> Set) -> Set
Algebra F X = [ F X -:> X ]
| {
"alphanum_fraction": 0.3870967742,
"avg_line_length": 23.25,
"ext": "agda",
"hexsha": "04839eccccbadac82f5477831cead1374e2dd85e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pigworker/InteriorDesign",
"max_forks_repo_path": "Ix.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pigworker/InteriorDesign",
"max_issues_repo_path": "Ix.agda",
"max_line_length": 70,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pigworker/InteriorDesign",
"max_stars_repo_path": "Ix.agda",
"max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z",
"num_tokens": 123,
"size": 279
} |
module AnonymousImport where
open import Common.IO as _
open import Common.Unit as _
main : IO Unit
main = putStrLn ""
| {
"alphanum_fraction": 0.7603305785,
"avg_line_length": 15.125,
"ext": "agda",
"hexsha": "b4760c0ada313272f6710b9cb7c3c6a181bcac95",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/AnonymousImport.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/AnonymousImport.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/AnonymousImport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 121
} |
{-# OPTIONS --safe --without-K #-}
module Data.Fin.Relation.Binary.Closure where
open import Data.Fin
open import Data.Fin.Subset
open import Data.Fin.Subset.Dec
open import Data.Fin.Subset.Properties
open import Data.Fin.Subset.Properties.Dec
open import Data.Nat as ℕ using (ℕ)
open import Relation.Binary.Construct.Closure.Transitive
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality as Eq
open import Relation.Binary renaming (Decidable to Dec₂)
open import Function using (flip; _∘_; case_of_; _∋_)
open import Data.List as List using (List; _∷_; [])
open import Data.Sum
import Data.List.Membership.Propositional as Mem
open import Data.List.Membership.Propositional.Properties as MemP
open import Data.Product
open import Induction.Nat
open import Data.Vec using (Vec; []; _∷_; here)
open import Data.Vec.Properties
open import Data.Bool.Properties as B
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Data.Nat.Properties as ℕP
open import Function.Equivalence using (Equivalence)
open import Function.Equality using (_⟨$⟩_)
private
iter : ∀ {a}{A : Set a} → (A → A) → A → ℕ → A
iter f z ℕ.zero = z
iter f z (ℕ.suc n) = f (iter f z n)
_≟s_ : ∀ {n} → Dec₂ (_≡_{A = Subset n})
_≟s_ = ≡-dec B._≟_
p⊂q⇒∣p∣<∣q∣ : ∀ {n} {p q : Subset n} → p ⊆ q → p ≢ q → ∣ p ∣ ℕ.< ∣ q ∣
p⊂q⇒∣p∣<∣q∣ {p = []} {[]} p⊆q p≢q = contradiction refl p≢q
p⊂q⇒∣p∣<∣q∣ {p = outside ∷ p} {outside ∷ q} p⊆q p≢q = p⊂q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q) (p≢q ∘ cong (outside ∷_))
p⊂q⇒∣p∣<∣q∣ {p = outside ∷ p} {inside ∷ q} p⊆q p≢q = ℕ.s≤s (p⊆q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q))
p⊂q⇒∣p∣<∣q∣ {p = inside ∷ p} {outside ∷ q} p⊆q p≢q = contradiction (p⊆q here) λ ()
p⊂q⇒∣p∣<∣q∣ {p = inside ∷ p} {inside ∷ q} p⊆q p≢q = ℕ.s≤s (p⊂q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q) (p≢q ∘ cong (inside ∷_)))
m<n⇒0<n : ∀ {m n} → m ℕ.< n → 0 ℕ.< n
m<n⇒0<n (ℕ.s≤s m<n) = ℕ.s≤s ℕ.z≤n
saturate : ∀ {n} → (f : Subset n → Subset n) → (∀ {s} → s ⊆ f s) → (z : Subset n) → iter f z n ≡ iter f z (ℕ.suc n)
saturate {n} f p z = case rec P g n of
λ { (inj₁ eq) → eq ;
(inj₂ n<f) → contradiction n<f (≤⇒≯ (∣p∣≤n (f (iter f z n)))) }
where
open ℕP.≤-Reasoning
P : ℕ → Set
P n = iter f z n ≡ iter f z (ℕ.suc n) ⊎ n ℕ.< ∣ iter f z (ℕ.suc n) ∣
g : ∀ n → Rec _ P n → P n
g ℕ.zero _ with z ≟s f z
... | yes eq = inj₁ eq
... | no z≢fz = inj₂ (m<n⇒0<n (p⊂q⇒∣p∣<∣q∣ p z≢fz))
g (ℕ.suc n) (inj₁ eq) = inj₁ (cong f eq)
g (ℕ.suc n) (inj₂ n<f) with f (iter f z n) ≟s f (iter f z (ℕ.suc n))
... | yes eq = inj₁ eq
... | no neq = inj₂ (begin-strict ℕ.suc n <⟨ ℕ.s≤s n<f ⟩ _ ≤⟨ p⊂q⇒∣p∣<∣q∣ p neq ⟩ _ ∎)
∈-saturate : ∀ {n}(f : Subset n → Subset n)(p : ∀ {s} → s ⊆ f s) z {i} → (∃ λ m → i ∈ iter f z m) → i ∈ iter f z n
∈-saturate {n} f p z (m , i∈fm) with n ℕP.≤? m
... | yes n≤m rewrite sym (ℕP.m∸n+n≡m n≤m) = subst (_ ∈_) (sym (lemma (m ℕ.∸ n))) i∈fm
where
lemma : ∀ k → iter f z n ≡ iter f z (k ℕ.+ n)
lemma 0 = refl
lemma (ℕ.suc k) = trans (saturate f p z) (cong f (lemma k))
... | no n≰m rewrite sym (ℕP.m∸n+n≡m (ℕP.≰⇒> n≰m)) = lemma (n ℕ.∸ ℕ.suc m) (p i∈fm)
where
lemma : ∀ k {m j} → j ∈ iter f z m → j ∈ iter f z (k ℕ.+ m)
lemma 0 j∈fm = j∈fm
lemma (ℕ.suc k) j∈fm = p (lemma k j∈fm)
module _ {n} where
open import Data.List.Relation.Unary.Any
∈-⋃⁺ : ∀{s}{ss : List (Subset n)} → s Mem.∈ ss → ∀ {i} → i ∈ s → i ∈ ⋃ ss
∈-⋃⁺ {ss = []} () i∈s
∈-⋃⁺ {ss = s ∷ ss} (here refl) i∈s = x∈p∪q⁺ (inj₁ i∈s)
∈-⋃⁺ {ss = _ ∷ ss} (there s∈ss) i∈s = x∈p∪q⁺ (inj₂ (∈-⋃⁺ s∈ss i∈s))
∈-⋃⁻ : ∀{ss : List (Subset n)}{i} → i ∈ ⋃ ss → ∃ λ s → i ∈ s × s Mem.∈ ss
∈-⋃⁻ {[]} i∈ss = contradiction i∈ss ∉⊥
∈-⋃⁻ {s ∷ ss} i∈ss with x∈p∪q⁻ _ _ i∈ss
∈-⋃⁻ {s ∷ ss} i∈ss | inj₁ i∈s = s , i∈s , here refl
∈-⋃⁻ {_ ∷ ss} i∈ss | inj₂ i∈rest with ∈-⋃⁻ {ss} i∈rest
... | s , i∈s , s∈ss = s , i∈s , there s∈ss
module _ {p n}{P : Rel (Fin n) p} where
right-image : Dec₂ P → Fin n → Subset n
right-image P? i = subset (P? i)
left-image : Dec₂ P → Fin n → Subset n
left-image P? i = subset (flip P? i)
_◃_ : Subset n → Dec₂ P → Subset n
s ◃ P? = ⋃ (List.map (right-image P?) (List.filter (_∈? s) (List.allFin _)))
_▹_ : Dec₂ P → Subset n → Subset n
P? ▹ s = ⋃ (List.map (left-image P?) (List.filter (_∈? s) (List.allFin _)))
_∪▹_ : Dec₂ P → Subset n → Subset n
P? ∪▹ s = s ∪ (P? ▹ s)
∪▹-monotone : (P? : Dec₂ P) → ∀ {s} → s ⊆ P? ∪▹ s
∪▹-monotone P? {s} = p⊆p∪q (P? ▹ s)
∈-▹⁺ : ∀ {i s j}(P? : Dec₂ P) → j ∈ s → P i j → i ∈ P? ▹ s
∈-▹⁺ {i}{s}{j} P? i∈s pij = ∈-⋃⁺ (∈-map⁺ (left-image P?) (∈-filter⁺ (_∈? s) (∈-allFin _) i∈s)) (∈subset⁺ (flip P? j) pij)
∈-▹⁻ : ∀ {i s}(P? : Dec₂ P) → i ∈ P? ▹ s → ∃ λ j → j ∈ s × P i j
∈-▹⁻ {i}{s} P? i∈s with ∈-⋃⁻ {ss = List.map (left-image P?) (List.filter (_∈? s) (List.allFin _))} i∈s
... | P▹s , i∈P▹s , P▹s∈ss with ∈-map⁻ _ P▹s∈ss
... | j , j∈l , eq rewrite eq with ∈-filter⁻ (_∈? s) {xs = List.allFin _} j∈l
... | _ , j∈s = j , j∈s , ∈subset⁻ (flip P? j) i∈P▹s
iter-∪▹ : Subset n → (P? : Dec₂ P) → ℕ → Subset n
iter-∪▹ z P? = iter (P? ∪▹_) z
▹-star : (P? : Dec₂ P) → Fin n → ℕ → Subset n
▹-star P? i = iter-∪▹ ⁅ i ⁆ P?
▹-plus : (P? : Dec₂ P) → Fin n → ℕ → Subset n
▹-plus P? j = iter-∪▹ (left-image P? j) P?
∈-▹-star⁺ : (P? : Dec₂ P) → ∀ {i j} → Star P i j → i ∈ ▹-star P? j n
∈-▹-star⁺ P? {i}{j} pij = ∈-saturate _ (∪▹-monotone P?) ⁅ j ⁆ (rec Q g (length pij) pij refl)
where
length : ∀ {i j} → Star P i j → ℕ
length ε = 0
length (_ ◅ r) = 1 ℕ.+ length r
Q : ℕ → Set _
Q m = ∀ {i j} → (r : Star P i j) → length r ≡ m → ∃ λ k → i ∈ ▹-star P? j k
g : ∀ m → Rec _ Q m → Q m
g .0 ih ε refl = 0 , x∈⁅x⁆ _
g .(ℕ.suc (length rkj)) ih (pik ◅ rkj) refl with ih rkj refl
... | k , i∈fk = 1 ℕ.+ k , x∈p∪q⁺ (inj₂ (∈-▹⁺ P? i∈fk pik))
∈-▹-star⁻ : (P? : Dec₂ P) → ∀ {i j} m → i ∈ ▹-star P? j m → Star P i j
∈-▹-star⁻ P? {i} {j} ℕ.zero h rewrite x∈⁅y⁆⇒x≡y _ h = ε
∈-▹-star⁻ P? {i} {j} (ℕ.suc m) h with x∈p∪q⁻ _ _ h
... | inj₁ h₁ = ∈-▹-star⁻ P? m h₁
... | inj₂ h₁ with ∈-▹⁻ P? h₁
... | k , k∈s , pik = pik ◅ ∈-▹-star⁻ P? m k∈s
∈-▹-plus⁺ : (P? : Dec₂ P) → ∀ {i j} → Plus′ P i j → i ∈ ▹-plus P? j n
∈-▹-plus⁺ P? {i}{j} pij = ∈-saturate _ (∪▹-monotone P?) (left-image P? j) (rec Q g (length pij) pij refl)
where
length : ∀ {i j} → Plus′ P i j → ℕ
length [ x∼y ] = 0
length (x∼y ∷ r) = 1 ℕ.+ length r
Q : ℕ → Set _
Q m = ∀ {i j} → (r : Plus′ P i j) → length r ≡ m → ∃ λ k → i ∈ ▹-plus P? j k
g : ∀ m → Rec _ Q m → Q m
g ℕ.zero ih {i}{j} [ pij ] refl = 0 , ∈subset⁺ (flip P? j) pij
g (ℕ.suc .(length r)) ih {i}{j} (pik ∷ r) refl with ih r refl
... | k , i∈fk = 1 ℕ.+ k , x∈p∪q⁺ (inj₂ (∈-▹⁺ P? i∈fk pik))
∈-▹-plus⁻ : (P? : Dec₂ P) → ∀ {i j} m → i ∈ ▹-plus P? j m → Plus′ P i j
∈-▹-plus⁻ P? {i} {j} ℕ.zero h = [ ∈subset⁻ (flip P? j) h ]
∈-▹-plus⁻ P? {i} {j} (ℕ.suc m) h with x∈p∪q⁻ _ _ h
∈-▹-plus⁻ P? {i} {j} (ℕ.suc m) h | inj₁ h₁ = ∈-▹-plus⁻ P? m h₁
∈-▹-plus⁻ P? {i} {j} (ℕ.suc m) h | inj₂ h₁ with ∈-▹⁻ P? h₁
... | k , k∈s , pik = pik ∷ ∈-▹-plus⁻ P? m k∈s
-- Derived decidability of closures
dec-Star : (P? : Dec₂ P) → Dec₂ (Star P)
dec-Star P? i j with i ∈? ▹-star P? j n
... | yes i∈star = yes (∈-▹-star⁻ P? n i∈star)
... | no i∉star = no λ h → contradiction (∈-▹-star⁺ P? h) i∉star
dec-Plus′ : (P? : Dec₂ P) → Dec₂ (Plus′ P)
dec-Plus′ P? i j with i ∈? ▹-plus P? j n
... | yes i∈plus = yes (∈-▹-plus⁻ P? n i∈plus)
... | no i∉plus = no λ h → contradiction (∈-▹-plus⁺ P? h) i∉plus
dec-Plus : (P? : Dec₂ P) → Dec₂ (Plus P)
dec-Plus P? i j with dec-Plus′ P? i j
... | yes pij′ = yes (Equivalence.from equivalent ⟨$⟩ pij′)
... | no ¬pij′ = no λ pij → ¬pij′ (Equivalence.to equivalent ⟨$⟩ pij)
| {
"alphanum_fraction": 0.4892821535,
"avg_line_length": 40.5252525253,
"ext": "agda",
"hexsha": "93c3f20651f2596e4cf4cba3a3587ee44f66ef28",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-finitary",
"max_forks_repo_path": "src/Data/Fin/Relation/Binary/Closure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-finitary",
"max_issues_repo_path": "src/Data/Fin/Relation/Binary/Closure.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "abacd166f63582b7395d9cc10b6323c0f69649e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-finitary",
"max_stars_repo_path": "src/Data/Fin/Relation/Binary/Closure.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4052,
"size": 8024
} |
{-# OPTIONS --cubical --safe #-}
module Data.Binary.Order where
open import Prelude
open import Data.Binary.Definition
open import Data.Bits.Order.Reverse public
-- weaken : ∀ xs ys → T (xs ≲ᴮ ys & false) → T (xs ≲ᴮ ys & true)
-- weaken 0ᵇ ys xs≲ys = tt
-- weaken (1ᵇ x) 0ᵇ xs≲ys = xs≲ys
-- weaken (1ᵇ x) (1ᵇ x₁) xs≲ys = weaken x x₁ xs≲ys
-- weaken (1ᵇ x) (2ᵇ x₁) xs≲ys = xs≲ys
-- weaken (2ᵇ x) 0ᵇ xs≲ys = xs≲ys
-- weaken (2ᵇ x) (1ᵇ x₁) xs≲ys = xs≲ys
-- weaken (2ᵇ x) (2ᵇ x₁) xs≲ys = weaken x x₁ xs≲ys
-- ≲-trans : ∀ sₒ xs ys zs s₁ s₂ → T (xs ≲ᴮ ys & s₁) → T (ys ≲ᴮ zs & s₂) → T (xs ≲ᴮ zs & (sₒ or s₁ and s₂))
-- ≲-trans true 0ᵇ ys zs s₁ s₂ xs≲ys ys≲zs = tt
-- ≲-trans true (1ᵇ xs) (1ᵇ ys) (1ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs s₁ s₂ xs≲ys ys≲zs
-- ≲-trans true (1ᵇ xs) (1ᵇ ys) (2ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs s₁ true xs≲ys ys≲zs
-- ≲-trans true (1ᵇ xs) (2ᵇ ys) (1ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs true false xs≲ys ys≲zs
-- ≲-trans true (1ᵇ xs) (2ᵇ ys) (2ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs true s₂ xs≲ys ys≲zs
-- ≲-trans true (2ᵇ xs) (1ᵇ ys) (1ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false s₂ xs≲ys ys≲zs
-- ≲-trans true (2ᵇ xs) (1ᵇ ys) (2ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs false true xs≲ys ys≲zs
-- ≲-trans true (2ᵇ xs) (2ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false false xs≲ys ys≲zs
-- ≲-trans true (2ᵇ xs) (2ᵇ ys) (1ᵇ zs) true s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs true false xs≲ys ys≲zs
-- ≲-trans true (2ᵇ xs) (2ᵇ ys) (2ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs s₁ s₂ xs≲ys ys≲zs
-- ≲-trans false 0ᵇ (1ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (1ᵇ ys) (2ᵇ zs) false s₂ xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (2ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (2ᵇ ys) (2ᵇ zs) false s₂ xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ 0ᵇ zs true false xs≲ys ys≲zs = ys≲zs
-- ≲-trans false 0ᵇ (1ᵇ ys) (1ᵇ zs) true false xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (1ᵇ ys) (2ᵇ zs) true false xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (2ᵇ ys) (1ᵇ zs) true false xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ (2ᵇ ys) (2ᵇ zs) true false xs≲ys ys≲zs = tt
-- ≲-trans false 0ᵇ ys zs true true xs≲ys ys≲zs = tt
-- ≲-trans false (1ᵇ xs) (1ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false s₂ xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (1ᵇ ys) (2ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs false true xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (2ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs true false xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (2ᵇ ys) (2ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs true s₂ xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (1ᵇ ys) (1ᵇ zs) true s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs true s₂ xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (1ᵇ ys) (2ᵇ zs) true s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs true true xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (2ᵇ ys) (1ᵇ zs) true false xs≲ys ys≲zs = ≲-trans false xs ys zs true false xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (2ᵇ ys) (1ᵇ zs) true true xs≲ys ys≲zs = ≲-trans true xs ys zs true false xs≲ys ys≲zs
-- ≲-trans false (1ᵇ xs) (2ᵇ ys) (2ᵇ zs) true s₂ xs≲ys ys≲zs = ≲-trans true xs ys zs true s₂ xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (1ᵇ ys) (1ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false s₂ xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (1ᵇ ys) (2ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false true xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (1ᵇ ys) (2ᵇ zs) true false xs≲ys ys≲zs = ≲-trans false xs ys zs false true xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (1ᵇ ys) (2ᵇ zs) true true xs≲ys ys≲zs = ≲-trans true xs ys zs false true xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (2ᵇ ys) (1ᵇ zs) false s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs false false xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (2ᵇ ys) (1ᵇ zs) true s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs true false xs≲ys ys≲zs
-- ≲-trans false (2ᵇ xs) (2ᵇ ys) (2ᵇ zs) s₁ s₂ xs≲ys ys≲zs = ≲-trans false xs ys zs s₁ s₂ xs≲ys ys≲zs
| {
"alphanum_fraction": 0.6083916084,
"avg_line_length": 72.8,
"ext": "agda",
"hexsha": "edb2efed4ac23222740e0309075dfad3a5bb19aa",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/Order.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 2204,
"size": 4004
} |
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Theorems of ¬ connective.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Theorems.Negation ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Properties n using ( ¬-injective ; subst )
open import Data.PropFormula.Syntax n
open import Data.PropFormula.Theorems.Classical n
open import Data.PropFormula.Theorems.Implication n using ( subst⊢⊃₁ )
open import Function using ( _$_ ; _∘_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym )
------------------------------------------------------------------------------
-- Theorem.
¬-equiv₁
: ∀ {Γ} {φ}
→ Γ ⊢ ¬ φ
→ Γ ⊢ φ ⊃ ⊥
¬-to-⊃⊥ = ¬-equiv₁
-- Proof.
¬-equiv₁ {φ = φ} Γ⊢¬φ =
⊃-intro
(¬-elim
(weaken φ Γ⊢¬φ)
(assume φ))
-------------------------------------------------------------------------- ∎
-- Theorem.
¬-equiv₂
: ∀ {Γ} {φ}
→ Γ ⊢ φ ⊃ ⊥
→ Γ ⊢ ¬ φ
⊃⊥-to-¬ = ¬-equiv₂
-- Proof.
¬-equiv₂ {φ = φ} Γ⊢φ⊃⊥ =
¬-intro
(⊃-elim
(weaken φ Γ⊢φ⊃⊥)
(assume φ))
-------------------------------------------------------------------------- ∎
-- Theorem.
¬¬-equiv₁
: ∀ {Γ} {φ}
→ Γ ⊢ ¬ (¬ φ)
→ Γ ⊢ φ
-- Proof.
¬¬-equiv₁ {Γ}{φ} Γ⊢¬¬φ =
(⊃-elim
(⊃-intro $ RAA
(¬-elim
(weaken (¬ φ) $
assume $ ¬ (¬ φ))
(assume {Γ = Γ , ¬ (¬ φ)} $ ¬ φ)))
Γ⊢¬¬φ)
-------------------------------------------------------------------------- ∎
-- Theorem.
¬¬-equiv₂
: ∀ {Γ} {φ}
→ Γ ⊢ φ
→ Γ ⊢ ¬ (¬ φ)
-- Proof.
¬¬-equiv₂ {Γ}{φ} Γ⊢φ =
⊃⊥-to-¬
(⊃-intro
(¬-elim
(assume (¬ φ))
(weaken (¬ φ) Γ⊢φ)))
-------------------------------------------------------------------------- ∎
-- Theorem.
¬∨-to-⊃
: ∀ {Γ} {φ ψ}
→ Γ ⊢ ¬ φ ∨ ψ
→ Γ ⊢ φ ⊃ ψ
-- Proof.
¬∨-to-⊃ {Γ}{φ}{ψ} =
⊃-elim $
⊃-intro $
∨-elim
(⊃-intro $
⊥-elim {Γ = Γ , ¬ φ , φ} ψ
(¬-elim
(weaken φ $
assume (¬ φ))
(assume {Γ = Γ , ¬ φ} φ)))
(⊃-intro $
weaken φ $
assume ψ)
-------------------------------------------------------------------------- ∎
-- Theorem.
¬⊤-to-⊥
: ∀ {Γ}
→ Γ ⊢ ¬ ⊤
→ Γ ⊢ ⊥
-- Proof.
¬⊤-to-⊥ Γ⊢¬⊤ = ¬-elim Γ⊢¬⊤ ⊤-intro
-------------------------------------------------------------------------- ∎
-- Theorem.
⊤-to-¬⊥
: ∀ {Γ}
→ Γ ⊢ ⊤
→ Γ ⊢ ¬ ⊥
-- Proof.
⊤-to-¬⊥ = λ _ → ¬-intro (assume ⊥)
-------------------------------------------------------------------------- ∎
-- Theorem.
¬⊥-to-⊤
: ∀ {Γ}
→ Γ ⊢ ¬ ⊥
→ Γ ⊢ ⊤
-- Proof.
¬⊥-to-⊤ Γ⊢¬⊥ = ⊤-intro
-------------------------------------------------------------------------- ∎
-- Theorem.
⊥-to-¬⊤
: ∀ {Γ}
→ Γ ⊢ ⊥
→ Γ ⊢ ¬ ⊤
-- Proof.
⊥-to-¬⊤ = ¬-intro ∘ weaken ⊤
-------------------------------------------------------------------------- ∎
-- Theorem.
¬-inside
: ∀ {Γ} {φ ψ}
→ φ ≡ ψ
→ Γ ⊢ ¬ φ
→ Γ ⊢ ¬ ψ
≡-¬-to-¬ = ¬-inside
-- Proof.
¬-inside {φ = φ}{ψ} φ≡ψ Γ⊢¬φ =
¬-equiv₂
(⊃-intro
(⊃-elim
(¬-equiv₁
(weaken ψ Γ⊢¬φ))
(subst
(sym φ≡ψ)
(assume ψ))))
-------------------------------------------------------------------------- ∎
-- Theorem.
subst⊢¬
: ∀ {Γ} {φ γ}
→ Γ ⊢ γ ⊃ φ
→ Γ ⊢ ¬ φ
→ Γ ⊢ ¬ γ
-- Proof.
subst⊢¬ Γ⊢γ⊃φ Γ⊢¬φ = ⊃⊥-to-¬ (subst⊢⊃₁ Γ⊢γ⊃φ (¬-to-⊃⊥ Γ⊢¬φ))
-------------------------------------------------------------------------- ∎
-- Theorem.
¬⇔-to-⊃¬∧⊃¬
: ∀ {Γ} {φ₁ φ₂}
→ Γ ⊢ ¬ (φ₁ ⇔ φ₂)
→ Γ ⊢ (φ₁ ⊃ ¬ φ₂) ∧ (φ₂ ⊃ ¬ φ₁)
-- Proof.
¬⇔-to-⊃¬∧⊃¬ {Γ}{φ₁}{φ₂} thm =
∧-intro
(⊃-intro
(¬-intro
(¬-elim
(weaken φ₂ $ weaken φ₁ thm)
(⇔-intro
(weaken φ₁ $ assume {Γ = Γ , φ₁} φ₂)
(weaken φ₂ $ weaken φ₂ $ assume φ₁)))))
(⊃-intro
(¬-intro
(¬-elim (weaken φ₁ $ weaken φ₂ thm)
(⇔-intro
(weaken φ₁ $ weaken φ₁ $ assume φ₂)
(weaken φ₂ $ assume {Γ = Γ , φ₂} φ₁)))))
-------------------------------------------------------------------------- ∎
| {
"alphanum_fraction": 0.2887839433,
"avg_line_length": 21.175,
"ext": "agda",
"hexsha": "9acd121d179915930130e69f78d9425ea82a9e24",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/Theorems/Negation.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/Theorems/Negation.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/Theorems/Negation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 1604,
"size": 4235
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Lifting Properties
module Categories.Morphism.Lifts {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open Category 𝒞
open Definitions 𝒞
-- A pair of morphisms has the lifting property if every commutative
-- square admits a diagonal filler. We say that 'i' has the left lifting
-- property with respect to 'p', and that 'p' has the right lifting property
-- with respect to 'i'.
--
-- Graphically, the situation is as follows:
--
-- f
-- A ────> X
-- │ ^ │
-- │ ∃ ╱ │
-- i │ ╱ │ p
-- │ ╱ │
-- V ╱ V
-- B ────> Y
-- g
--
-- Note that the filler is /not/ required to be unique.
--
-- For ease of use, we define lifts in two steps:
-- * 'Filler' describes the data required to fill a /particular/ commutative square.
-- * 'Lifts' then quantifies over all commutative squares.
record Filler {A B X Y} {i : A ⇒ B} {f : A ⇒ X} {g : B ⇒ Y} {p : X ⇒ Y}
(comm : CommutativeSquare i f g p) : Set (ℓ ⊔ e) where
field
filler : B ⇒ X
fill-commˡ : filler ∘ i ≈ f
fill-commʳ : p ∘ filler ≈ g
Lifts : ∀ {A B X Y} → (i : A ⇒ B) → (p : X ⇒ Y) → Set (ℓ ⊔ e)
Lifts i p = ∀ {f g} → (comm : CommutativeSquare i f g p) → Filler comm
--------------------------------------------------------------------------------
-- Lifings of Morphism Classes
-- Shorthand for denoting a class of morphisms.
MorphismClass : (p : Level) → Set (o ⊔ ℓ ⊔ suc p)
MorphismClass p = ∀ {X Y} → X ⇒ Y → Set p
-- A morphism 'i' is called "projective" with respect to some morphism class 'J'
-- if it has the left-lifting property against every element of 'J'.
Projective : ∀ {j} {A B} → MorphismClass j → (i : A ⇒ B) → Set (o ⊔ ℓ ⊔ e ⊔ j)
Projective J i = ∀ {X Y} → (f : X ⇒ Y) → J f → Lifts i f
-- Dually, a morphism 'i' is called "injective" with repsect to a morphism class 'J'
-- if it has the right-lifting property against every element of 'J'.
Injective : ∀ {j} {A B} → MorphismClass j → (i : A ⇒ B) → Set (o ⊔ ℓ ⊔ e ⊔ j)
Injective J i = ∀ {X Y} → (f : X ⇒ Y) → J f → Lifts f i
-- The class of J-Projective morphisms.
Proj : ∀ {j} (J : MorphismClass j) → MorphismClass (o ⊔ ℓ ⊔ e ⊔ j)
Proj J = Projective J
-- The class of J-Injective morphisms.
Inj : ∀ {j} (J : MorphismClass j) → MorphismClass (o ⊔ ℓ ⊔ e ⊔ j)
Inj J = Injective J
| {
"alphanum_fraction": 0.5784313725,
"avg_line_length": 33.5142857143,
"ext": "agda",
"hexsha": "e7f6560cfc371474b008edab44d398b215bfa80c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Lifts.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Lifts.agda",
"max_line_length": 84,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Lifts.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 813,
"size": 2346
} |
open import Data.Nat using (ℕ; _+_; _≤?_)
open import Data.Bool using (Bool; true; false; not; _∧_)
open import Data.String using (String; _≟_)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Function.Equivalence using (_⇔_; equivalence)
open import IMP
data ⦅_,_⦆⇒_ : com → state → state → Set where
Skip : ∀{s} → ⦅ SKIP , s ⦆⇒ s
Loc : ∀{x a s}
→ ⦅ x ::= a , s ⦆⇒ (s [ x ::= aval a s ])
Comp : ∀{c₁ c₂ s₁ s₂ s₃}
→ ⦅ c₁ , s₁ ⦆⇒ s₂
→ ⦅ c₂ , s₂ ⦆⇒ s₃
→ ⦅ c₁ :: c₂ , s₁ ⦆⇒ s₃
IfTrue : ∀{c₁ c₂ b s t}
→ bval b s ≡ true
→ ⦅ c₁ , s ⦆⇒ t
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t
IfFalse : ∀{c₁ c₂ b s t}
→ bval b s ≡ false
→ ⦅ c₂ , s ⦆⇒ t
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t
WhileFalse : ∀{c b s}
→ bval b s ≡ false
→ ⦅ WHILE b DO c , s ⦆⇒ s
WhileTrue : ∀{c b s₁ s₂ s₃}
→ bval b s₁ ≡ true
→ ⦅ c , s₁ ⦆⇒ s₂
→ ⦅ WHILE b DO c , s₂ ⦆⇒ s₃
→ ⦅ WHILE b DO c , s₁ ⦆⇒ s₃
true≢false : ¬ (true ≡ false)
true≢false = λ ()
deterministic : ∀{c s t t′}
→ ⦅ c , s ⦆⇒ t
→ ⦅ c , s ⦆⇒ t′
→ t ≡ t′
deterministic Skip Skip = refl
deterministic Loc Loc = refl
deterministic (Comp r₁ r₂) (Comp r₁′ r₂′) rewrite deterministic r₁ r₁′ = deterministic r₂ r₂′
deterministic (IfTrue v r) (IfTrue v′ r′) = deterministic r r′
deterministic (IfTrue v r) (IfFalse v′ r′) rewrite v = contradiction v′ true≢false
deterministic (IfFalse v r) (IfTrue v′ r′) rewrite v′ = contradiction v true≢false
deterministic (IfFalse v r) (IfFalse v′ r′) = deterministic r r′
deterministic (WhileFalse v) (WhileFalse x₁) = refl
deterministic (WhileFalse v) (WhileTrue x₁ r₁ r₂) rewrite x₁ = contradiction v true≢false
deterministic (WhileTrue v r₁ r₂) (WhileFalse v′) rewrite v = contradiction v′ true≢false
deterministic (WhileTrue v r₁ r₂) (WhileTrue v′ r₁′ r₂′) rewrite deterministic r₁ r₁′ = deterministic r₂ r₂′
lemma2-3-5 : ∀{s t}
→ ¬ ( ⦅ WHILE (Bc true) DO SKIP , s ⦆⇒ t )
lemma2-3-5 (WhileTrue x Skip (WhileTrue v r₁ r₂)) = lemma2-3-5 r₂
infixl 19 _∼_
_∼_ : com → com → Set
c ∼ c′ = ∀{s t} → ⦅ c , s ⦆⇒ t ⇔ ⦅ c′ , s ⦆⇒ t
lemma2-4-3 : ∀{b c} → (WHILE b DO c) ∼ (IF b THEN (c :: (WHILE b DO c)) ELSE SKIP)
lemma2-4-3 = equivalence (λ { (WhileFalse x) → IfFalse x Skip ; (WhileTrue x r r₁) → IfTrue x (Comp r r₁) })
(λ { (IfTrue x (Comp r r₁)) → WhileTrue x r r₁ ; (IfFalse x Skip) → WhileFalse x })
data ⦅_,_⦆→⦅_,_⦆ : com → state → com → state → Set where
Loc : ∀{x a s}
→ ⦅ x ::= a , s ⦆→⦅ SKIP , s [ x ::= aval a s ] ⦆
Comp₁ : ∀{c s}
→ ⦅ SKIP :: c , s ⦆→⦅ c , s ⦆
Comp₂ : ∀{c₁ c₁′ c₂ s s′}
→ ⦅ c₁ , s ⦆→⦅ c₁′ , s′ ⦆
→ ⦅ c₁ :: c₂ , s ⦆→⦅ c₁′ :: c₂ , s′ ⦆
IfTrue : ∀{b s c₁ c₂}
→ bval b s ≡ true
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⦅ c₁ , s ⦆
IfFalse : ∀{b s c₁ c₂}
→ bval b s ≡ false
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⦅ c₂ , s ⦆
While : ∀{b s c}
→ ⦅ WHILE b DO c , s ⦆→⦅ IF b THEN (c :: (WHILE b DO c)) ELSE SKIP , s ⦆
infix 3 ⦅_,_⦆∎
infixr 2 ⦅_,_⦆→⟨_⟩_ ⦅_,_⦆→*⟨_⟩_
data ⦅_,_⦆→*⦅_,_⦆ : com → state → com → state → Set where
⦅_,_⦆∎ : ∀ c s → ⦅ c , s ⦆→*⦅ c , s ⦆
⦅_,_⦆→⟨_⟩_ : ∀ c s {c′ c″ s′ s″}
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆
→ ⦅ c′ , s′ ⦆→*⦅ c″ , s″ ⦆
→ ⦅ c , s ⦆→*⦅ c″ , s″ ⦆
⦅_,_⦆→*⟨_⟩_ : ∀ c s {c′ c″ s′ s″}
→ ⦅ c , s ⦆→*⦅ c′ , s′ ⦆
→ ⦅ c′ , s′ ⦆→*⦅ c″ , s″ ⦆
→ ⦅ c , s ⦆→*⦅ c″ , s″ ⦆
⦅ c , s ⦆→*⟨ ⦅ _ , _ ⦆∎ ⟩ b = b
⦅ c , s ⦆→*⟨ ⦅ _ , _ ⦆→⟨ x ⟩ r ⟩ b = ⦅ _ , _ ⦆→⟨ x ⟩ ⦅ _ , _ ⦆→*⟨ r ⟩ b
lemma2-5-6 : ∀{c₁ c₁′ c₂ s s′}
→ ⦅ c₁ , s ⦆→*⦅ c₁′ , s′ ⦆
→ ⦅ c₁ :: c₂ , s ⦆→*⦅ c₁′ :: c₂ , s′ ⦆
lemma2-5-6 ⦅ _ , _ ⦆∎ = ⦅ _ , _ ⦆∎
lemma2-5-6 (⦅ _ , _ ⦆→⟨ x ⟩ r) = ⦅ _ , _ ⦆→⟨ Comp₂ x ⟩ lemma2-5-6 r
big-small : ∀{c s t}
→ ⦅ c , s ⦆⇒ t
→ ⦅ c , s ⦆→*⦅ SKIP , t ⦆
big-small (Skip {s}) =
⦅ SKIP , s ⦆∎
big-small (Loc {x}{s}{a}) =
⦅ x ::= s , a ⦆→⟨ Loc ⟩
⦅ SKIP , a [ x ::= aval s a ] ⦆∎
big-small (Comp {c₁}{c₂}{s}{s′}{t} r₁ r₂) =
⦅ c₁ :: c₂ , s ⦆→*⟨ lemma2-5-6 (big-small r₁) ⟩
⦅ SKIP :: c₂ , s′ ⦆→⟨ Comp₁ ⟩
⦅ c₂ , s′ ⦆→*⟨ big-small r₂ ⟩
⦅ SKIP , t ⦆∎
big-small (IfTrue {c₁}{c₂}{b}{s}{t} v r₁) =
⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⟨ IfTrue v ⟩
⦅ c₁ , s ⦆→*⟨ big-small r₁ ⟩
⦅ SKIP , t ⦆∎
big-small (IfFalse {c₁}{c₂}{b}{s}{t} v r₂) =
⦅ IF b THEN c₁ ELSE c₂ , s ⦆→⟨ IfFalse v ⟩
⦅ c₂ , s ⦆→*⟨ big-small r₂ ⟩
⦅ SKIP , t ⦆∎
big-small (WhileFalse {c}{b}{s} v) =
⦅ WHILE b DO c , s ⦆→⟨ While ⟩
⦅ IF b THEN c :: (WHILE b DO c) ELSE SKIP , s ⦆→⟨ IfFalse v ⟩
⦅ SKIP , s ⦆∎
big-small (WhileTrue {c}{b}{s}{s′}{t} v r₁ r₂) =
⦅ WHILE b DO c , s ⦆→⟨ While ⟩
⦅ IF b THEN c :: (WHILE b DO c) ELSE SKIP , s ⦆→⟨ IfTrue v ⟩
⦅ c :: (WHILE b DO c) , s ⦆→*⟨ lemma2-5-6 (big-small r₁) ⟩
⦅ SKIP :: (WHILE b DO c) , s′ ⦆→⟨ Comp₁ ⟩
⦅ WHILE b DO c , s′ ⦆→*⟨ big-small r₂ ⟩
⦅ SKIP , t ⦆∎
lemma2-5-8 : ∀{c s c′ s′ t}
→ ⦅ c , s ⦆→⦅ c′ , s′ ⦆ → ⦅ c′ , s′ ⦆⇒ t
→ ⦅ c , s ⦆⇒ t
lemma2-5-8 Loc Skip = Loc
lemma2-5-8 Comp₁ r₁ = Comp Skip r₁
lemma2-5-8 (Comp₂ x) (Comp r₁ r₂) = Comp (lemma2-5-8 x r₁) r₂
lemma2-5-8 (IfTrue x) r₁ = IfTrue x r₁
lemma2-5-8 (IfFalse x) r₁ = IfFalse x r₁
lemma2-5-8 While (IfTrue x (Comp r₁ r₂)) = WhileTrue x r₁ r₂
lemma2-5-8 While (IfFalse x Skip) = WhileFalse x
small-big : ∀{c s t}
→ ⦅ c , s ⦆→*⦅ SKIP , t ⦆
→ ⦅ c , s ⦆⇒ t
small-big ⦅ SKIP , s ⦆∎ = Skip
small-big (⦅ c , s ⦆→⟨ x ⟩ r) = lemma2-5-8 x (small-big r)
| {
"alphanum_fraction": 0.4462242563,
"avg_line_length": 39.2179487179,
"ext": "agda",
"hexsha": "eeaef8d57642d56e7330256f2423dab35a7e148f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/imp-semantics",
"max_forks_repo_path": "OperationalSemantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/imp-semantics",
"max_issues_repo_path": "OperationalSemantics.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/imp-semantics",
"max_stars_repo_path": "OperationalSemantics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z",
"num_tokens": 3059,
"size": 6118
} |
module Oscar.Data.Term.AlphaConversion {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Term FunctionName
open import Oscar.Class.AlphaConversion
open import Oscar.Data.Equality
open import Oscar.Data.Fin
open import Oscar.Data.Vec
open import Oscar.Function
open import Oscar.Relation
import Oscar.Data.Term.AlphaConversion.internal FunctionName as ⋆
instance AlphaConversionFinTerm : AlphaConversion Fin Term
AlphaConversion._◂_ AlphaConversionFinTerm = ⋆._◂_
AlphaConversion.◂-identity AlphaConversionFinTerm = ⋆.◂-identity
AlphaConversion.◂-associativity AlphaConversionFinTerm = ⋆.◂-associativity
AlphaConversion.◂-extensionality AlphaConversionFinTerm = ⋆.◂-extensionality
instance AlphaConversionFinTerms : ∀ {N} → AlphaConversion Fin (Terms N)
AlphaConversion._◂_ AlphaConversionFinTerms _ = ⋆._◂s_ _
AlphaConversion.◂-identity AlphaConversionFinTerms = ⋆.◂s-identity
AlphaConversion.◂-associativity AlphaConversionFinTerms _ _ = ⋆.◂s-associativity _ _
AlphaConversion.◂-extensionality AlphaConversionFinTerms f≡̇g = ⋆.◂s-extensionality f≡̇g
| {
"alphanum_fraction": 0.8174976482,
"avg_line_length": 40.8846153846,
"ext": "agda",
"hexsha": "5de82e1272690bbae9dc7de2cca6ba92d03f6ac7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Term/AlphaConversion.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Term/AlphaConversion.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Term/AlphaConversion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 303,
"size": 1063
} |
postulate A : Set
variable a : A
postulate B : A → Set
variable b : B a
postulate C : B a → Set
variable c : C b
postulate
_==_ : {b b' : B a} → C b → C b' → Set
_=='_ : {b : B a} → C b → C b → Set
postulate
f : (b : B a) (b' : B {!a!}) → Set
g : (c : C b) (c' : C {!b!}) → c == c' → Set
module _ (X : Set) where
postulate
h : (b' : B a) (c : C b) (c' : C b') → {!c'!} ==' c' → Set
| {
"alphanum_fraction": 0.4408866995,
"avg_line_length": 18.4545454545,
"ext": "agda",
"hexsha": "c21b0ee2e5031d4fcfacb51b08d7a63eca777887",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue3341.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue3341.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue3341.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 189,
"size": 406
} |
{- Copyright © 2015 Benjamin Barenblat
Licensed under the Apache License, Version 2.0 (the ‘License’); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an ‘AS IS’ BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -}
module B.Prelude.Bool where
open import B.Prelude.BooleanAlgebra using (BooleanAlgebra)
import Data.Bool
import Data.Bool.Properties
open Data.Bool
using (Bool; if_then_else_; T)
public
instance
BooleanAlgebra-Bool : BooleanAlgebra _ _
BooleanAlgebra-Bool = Data.Bool.Properties.booleanAlgebra
module Bool where
open Data.Bool
using (_xor_)
public
| {
"alphanum_fraction": 0.7808510638,
"avg_line_length": 29.375,
"ext": "agda",
"hexsha": "85f3c80a7c1231b818f40fb748980e7a85f0d34f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "bbarenblat/B",
"max_forks_repo_path": "Prelude/Bool.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "bbarenblat/B",
"max_issues_repo_path": "Prelude/Bool.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c1fd2daa41aa1b915f74b4c09c6e62c79320e8ec",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "bbarenblat/B",
"max_stars_repo_path": "Prelude/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2017-06-30T15:59:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-30T15:59:38.000Z",
"num_tokens": 222,
"size": 940
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Bouquet
open import homotopy.SphereEndomorphism
open import groups.SphereEndomorphism
open import groups.CoefficientExtensionality
open import cw.CW
open import cw.FinCW
open import cw.WedgeOfCells
open import cw.DegreeByProjection {lzero}
module cw.FinBoundary where
fdegree-last : ∀ {n} (fin-skel : FinSkeleton (S n))
→ cells-last (FinSkeleton-realize fin-skel)
→ cells-last (cw-init (FinSkeleton-realize fin-skel)) → ℤ
fdegree-last fin-skel = degree-last (FinSkeleton-realize fin-skel) (FinSkeleton-has-cells-with-dec-eq fin-skel)
fdegree-nth : ∀ {m n} (Sm≤n : S m ≤ n) (fin-skel : FinSkeleton n)
→ cells-nth Sm≤n (FinSkeleton-realize fin-skel)
→ cells-last (cw-init (cw-take Sm≤n (FinSkeleton-realize fin-skel))) → ℤ
fdegree-nth Sm≤n fin-skel = degree-nth Sm≤n (FinSkeleton-realize fin-skel) (FinSkeleton-has-cells-with-dec-eq fin-skel)
FinSkeleton-has-degrees-with-finite-support : ∀ {n} (fin-skel : FinSkeleton n)
→ has-degrees-with-finite-support
(FinSkeleton-realize fin-skel)
(FinSkeleton-has-cells-with-dec-eq fin-skel)
FinSkeleton-has-degrees-with-finite-support {n = O} _ = _
FinSkeleton-has-degrees-with-finite-support {n = S O} _ = _ , (λ _ → Fin→-has-finite-support _)
FinSkeleton-has-degrees-with-finite-support {n = S (S n)} (attached-fin-skeleton skel _ _) =
FinSkeleton-has-degrees-with-finite-support {n = S n} skel , (λ _ → Fin→-has-finite-support _)
fboundary'-last : ∀ {n} (fin-skel : FinSkeleton (S n))
→ cells-last (FinSkeleton-realize fin-skel)
→ FreeAbGroup.El (cells-last (cw-init (FinSkeleton-realize fin-skel)))
fboundary'-last fin-skel upper = boundary'-last
(FinSkeleton-realize fin-skel)
(FinSkeleton-has-cells-with-dec-eq fin-skel)
(FinSkeleton-has-degrees-with-finite-support fin-skel)
upper
fboundary-last : ∀ {n} (fin-skel : FinSkeleton (S n))
→ FreeAbGroup.grp (cells-last (FinSkeleton-realize fin-skel))
→ᴳ FreeAbGroup.grp (cells-last (cw-init (FinSkeleton-realize fin-skel)))
fboundary-last fin-skel = FreeAbGroup-extend
(FreeAbGroup (cells-last (cw-init (FinSkeleton-realize fin-skel))))
(fboundary'-last fin-skel)
| {
"alphanum_fraction": 0.7110418522,
"avg_line_length": 45.8367346939,
"ext": "agda",
"hexsha": "db142b2848fef7863fd185be282eb9239c1b0364",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/FinBoundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/FinBoundary.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/FinBoundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 697,
"size": 2246
} |
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-}
module 17-groups where
import 16-sets
open 16-sets public
-- Section 12.3 Groups in univalent mathematics
{- We first introduce semi-groups, and then groups. We do this because the
category of groups is a full subcategory of the category of semi-groups.
In particular, it is a proposition for a semi-group to be a group. Therefore
this approach gives us in a straightforward way that equality of groups is
equality of semi-groups. This will be useful in showing that group
isomorphisms are equivalent to identifications of groups. -}
has-associative-mul :
{l : Level} (X : UU-Set l) → UU l
has-associative-mul X =
Σ ( ( type-Set X) →
( ( type-Set X) → (type-Set X))) (λ μ →
( x y z : type-Set X) → Id (μ (μ x y) z) (μ x (μ y z)))
Semi-Group :
(l : Level) → UU (lsuc l)
Semi-Group l = Σ (UU-Set l) has-associative-mul
{- Bureaucracy of semi-groups. -}
set-Semi-Group :
{l : Level} → Semi-Group l → UU-Set l
set-Semi-Group G = pr1 G
type-Semi-Group :
{l : Level} → Semi-Group l → UU l
type-Semi-Group G = pr1 (set-Semi-Group G)
is-set-type-Semi-Group :
{l : Level} (G : Semi-Group l) → is-set (type-Semi-Group G)
is-set-type-Semi-Group G = pr2 (set-Semi-Group G)
associative-mul-Semi-Group :
{l : Level} (G : Semi-Group l) →
has-associative-mul (set-Semi-Group G)
associative-mul-Semi-Group G = pr2 G
mul-Semi-Group :
{l : Level} (G : Semi-Group l) →
type-Semi-Group G →
type-Semi-Group G → type-Semi-Group G
mul-Semi-Group G = pr1 (associative-mul-Semi-Group G)
is-associative-mul-Semi-Group :
{l : Level} (G : Semi-Group l) (x y z : type-Semi-Group G) →
Id ( mul-Semi-Group G (mul-Semi-Group G x y) z)
( mul-Semi-Group G x (mul-Semi-Group G y z))
is-associative-mul-Semi-Group G = pr2 (associative-mul-Semi-Group G)
{- The property that a semi-group is a monoid is just that the semi-group
possesses a unit that satisfies the left and right unit laws. -}
is-unital :
{l : Level} → Semi-Group l → UU l
is-unital G =
Σ ( type-Semi-Group G)
( λ e →
( (y : type-Semi-Group G) → Id (mul-Semi-Group G e y) y) ×
( (x : type-Semi-Group G) → Id (mul-Semi-Group G x e) x))
{- We show that is-unital is a proposition. -}
abstract
is-prop-is-unital' :
{l : Level} (G : Semi-Group l) → is-prop' (is-unital G)
is-prop-is-unital' (pair (pair X is-set-X) (pair μ assoc-μ))
(pair e (pair left-unit-e right-unit-e))
(pair e' (pair left-unit-e' right-unit-e')) =
eq-subtype
( λ e → is-prop-prod
( is-prop-Π (λ y → is-set-X (μ e y) y))
( is-prop-Π (λ x → is-set-X (μ x e) x)))
( (inv (left-unit-e' e)) ∙ (right-unit-e e'))
abstract
is-prop-is-unital :
{l : Level} (G : Semi-Group l) → is-prop (is-unital G)
is-prop-is-unital G = is-prop-is-prop' (is-prop-is-unital' G)
{- The property that a monoid is a group is just the property that the monoid
that every element is invertible, i.e., it comes equipped with an inverse
operation that satisfies the left and right inverse laws. -}
is-group' :
{l : Level} (G : Semi-Group l) → is-unital G → UU l
is-group' G is-unital-G =
Σ ( type-Semi-Group G → type-Semi-Group G)
( λ i →
( (x : type-Semi-Group G) →
Id (mul-Semi-Group G (i x) x) (pr1 is-unital-G)) ×
( (x : type-Semi-Group G) →
Id (mul-Semi-Group G x (i x)) (pr1 is-unital-G)))
is-group :
{l : Level} (G : Semi-Group l) → UU l
is-group G =
Σ (is-unital G) (is-group' G)
Group :
(l : Level) → UU (lsuc l)
Group l = Σ (Semi-Group l) is-group
{- Some bureaucracy of Groups. -}
semi-group-Group :
{l : Level} → Group l → Semi-Group l
semi-group-Group G = pr1 G
set-Group :
{l : Level} → Group l → UU-Set l
set-Group G = pr1 (semi-group-Group G)
type-Group :
{l : Level} → Group l → UU l
type-Group G = pr1 (set-Group G)
is-set-type-Group :
{l : Level} (G : Group l) → is-set (type-Group G)
is-set-type-Group G = pr2 (set-Group G)
associative-mul-Group :
{l : Level} (G : Group l) → has-associative-mul (set-Group G)
associative-mul-Group G = pr2 (semi-group-Group G)
mul-Group :
{l : Level} (G : Group l) →
type-Group G → type-Group G → type-Group G
mul-Group G = pr1 (associative-mul-Group G)
is-associative-mul-Group :
{l : Level} (G : Group l) (x y z : type-Group G) →
Id (mul-Group G (mul-Group G x y) z) (mul-Group G x (mul-Group G y z))
is-associative-mul-Group G = pr2 (associative-mul-Group G)
is-group-Group :
{l : Level} (G : Group l) → is-group (semi-group-Group G)
is-group-Group G = pr2 G
is-unital-Group :
{l : Level} (G : Group l) → is-unital (semi-group-Group G)
is-unital-Group G = pr1 (is-group-Group G)
unit-Group :
{l : Level} (G : Group l) → type-Group G
unit-Group G = pr1 (is-unital-Group G)
left-unit-law-Group :
{l : Level} (G : Group l) (x : type-Group G) →
Id (mul-Group G (unit-Group G) x) x
left-unit-law-Group G = pr1 (pr2 (is-unital-Group G))
right-unit-law-Group :
{l : Level} (G : Group l) (x : type-Group G) →
Id (mul-Group G x (unit-Group G)) x
right-unit-law-Group G = pr2 (pr2 (is-unital-Group G))
has-inverses-Group :
{l : Level} (G : Group l) →
is-group' (semi-group-Group G) (is-unital-Group G)
has-inverses-Group G = pr2 (is-group-Group G)
inv-Group :
{l : Level} (G : Group l) →
type-Group G → type-Group G
inv-Group G = pr1 (has-inverses-Group G)
left-inverse-law-Group :
{l : Level} (G : Group l) (x : type-Group G) →
Id (mul-Group G (inv-Group G x) x) (unit-Group G)
left-inverse-law-Group G = pr1 (pr2 (has-inverses-Group G))
right-inverse-law-Group :
{l : Level} (G : Group l) (x : type-Group G) →
Id (mul-Group G x (inv-Group G x)) (unit-Group G)
right-inverse-law-Group G = pr2 (pr2 (has-inverses-Group G))
{- We show that being a group is a proposition. -}
abstract
is-prop-is-group' :
{l : Level} (G : Semi-Group l) (e : is-unital G) → is-prop' (is-group' G e)
is-prop-is-group'
( pair (pair G is-set-G) (pair μ assoc-G))
( pair e (pair left-unit-G right-unit-G))
( pair i (pair left-inv-i right-inv-i))
( pair i' (pair left-inv-i' right-inv-i')) =
eq-subtype
( λ i →
is-prop-prod
( is-prop-Π (λ x → is-set-G (μ (i x) x) e))
( is-prop-Π (λ x → is-set-G (μ x (i x)) e)))
( eq-htpy
( λ x → -- ix
( inv (left-unit-G (i x))) ∙ -- = 1·(ix)
( ( ap (λ y → μ y (i x)) (inv (left-inv-i' x))) ∙ -- = (i'x·x)·(ix)
( ( assoc-G (i' x) x (i x)) ∙ -- = (i'x)·(x·i'x)
( ( ap (μ (i' x)) (right-inv-i x)) ∙ -- = (i'x)·1
( right-unit-G (i' x))))))) -- = i'x
abstract
is-prop-is-group :
{l : Level} (G : Semi-Group l) → is-prop (is-group G)
is-prop-is-group G =
is-prop-Σ
( is-prop-is-unital G)
( λ e → is-prop-is-prop' (is-prop-is-group' G e))
{- We give two examples of groups. The first is the group ℤ of integers. The
second is the loop space of a pointed 1-type. -}
{- The group of integers. -}
semi-group-ℤ : Semi-Group lzero
semi-group-ℤ = pair set-ℤ (pair add-ℤ associative-add-ℤ)
group-ℤ : Group lzero
group-ℤ =
pair
( semi-group-ℤ)
( pair
( pair zero-ℤ (pair left-unit-law-add-ℤ right-unit-law-add-ℤ))
( pair neg-ℤ (pair left-inverse-law-add-ℤ right-inverse-law-add-ℤ)))
{- The loop space of a 1-type as a group. -}
loop-space :
{l : Level} {A : UU l} → A → UU l
loop-space a = Id a a
set-loop-space :
{l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → UU-Set l
set-loop-space A a is-set-Ω = pair (Id a a) is-set-Ω
semi-group-loop-space :
{l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Semi-Group l
semi-group-loop-space A a is-set-Ω =
pair
( set-loop-space A a is-set-Ω)
( pair (λ p q → p ∙ q) assoc)
group-loop-space :
{l : Level} (A : UU l) (a : A) (is-set-Ω : is-set (Id a a)) → Group l
group-loop-space A a is-set-Ω =
pair
( semi-group-loop-space A a is-set-Ω)
( pair
( pair refl (pair (λ q → left-unit) (λ p → right-unit)))
( pair inv (pair left-inv right-inv)))
set-loop-space-1-type :
{l : Level} (A : 1-type l) (a : pr1 A) → UU-Set l
set-loop-space-1-type (pair A is-1-type-A) a =
set-loop-space A a (is-1-type-A a a)
semi-group-loop-space-1-type :
{l : Level} (A : 1-type l) (a : pr1 A) → Semi-Group l
semi-group-loop-space-1-type (pair A is-1-type-A) a =
semi-group-loop-space A a (is-1-type-A a a)
group-loop-space-1-type :
{l : Level} (A : 1-type l) (a : pr1 A) → Group l
group-loop-space-1-type (pair A is-1-type-A) a =
group-loop-space A a (is-1-type-A a a)
{- We introduce the automorphism group on a set X. -}
aut-Set :
{l : Level} (X : UU-Set l) → UU-Set l
aut-Set X = set-equiv X X
associative-comp-equiv :
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} →
(e : A ≃ B) (f : B ≃ C) (g : C ≃ D) →
Id ((g ∘e f) ∘e e) (g ∘e (f ∘e e))
associative-comp-equiv e f g = eq-htpy-equiv refl-htpy
has-associative-mul-aut-Set :
{l : Level} (X : UU-Set l) → has-associative-mul (aut-Set X)
has-associative-mul-aut-Set X =
pair
( λ e f → f ∘e e)
( λ e f g → inv (associative-comp-equiv e f g))
aut-Semi-Group :
{l : Level} (X : UU-Set l) → Semi-Group l
aut-Semi-Group X =
pair
( aut-Set X)
( has-associative-mul-aut-Set X)
left-unit-law-equiv :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) →
Id ((equiv-id Y) ∘e e) e
left-unit-law-equiv e = eq-htpy-equiv refl-htpy
right-unit-law-equiv :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) →
Id (e ∘e (equiv-id X)) e
right-unit-law-equiv e = eq-htpy-equiv refl-htpy
is-unital-aut-Semi-Group :
{l : Level} (X : UU-Set l) → is-unital (aut-Semi-Group X)
is-unital-aut-Semi-Group X =
pair
( equiv-id (type-Set X))
( pair
( right-unit-law-equiv)
( left-unit-law-equiv))
left-inverse-law-equiv :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) →
Id ((inv-equiv e) ∘e e) (equiv-id X)
left-inverse-law-equiv e =
eq-htpy-equiv (isretr-inv-is-equiv (is-equiv-map-equiv e))
right-inverse-law-equiv :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) →
Id (e ∘e (inv-equiv e)) (equiv-id Y)
right-inverse-law-equiv e =
eq-htpy-equiv (issec-inv-is-equiv (is-equiv-map-equiv e))
is-group-aut-Semi-Group' :
{l : Level} (X : UU-Set l) →
is-group' (aut-Semi-Group X) (is-unital-aut-Semi-Group X)
is-group-aut-Semi-Group' X =
pair
( inv-equiv)
( pair right-inverse-law-equiv left-inverse-law-equiv)
aut-Group :
{l : Level} → UU-Set l → Group l
aut-Group X =
pair
( aut-Semi-Group X)
( pair (is-unital-aut-Semi-Group X) (is-group-aut-Semi-Group' X))
{- Now we introduce homomorphisms of semi-groups. Group homomorphisms are just
homomorphisms between their underlying semi-groups. -}
preserves-mul :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
(type-Semi-Group G → type-Semi-Group H) → UU (l1 ⊔ l2)
preserves-mul G H f =
(x y : type-Semi-Group G) →
Id (f (mul-Semi-Group G x y)) (mul-Semi-Group H (f x) (f y))
abstract
is-prop-preserves-mul :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : type-Semi-Group G → type-Semi-Group H) →
is-prop (preserves-mul G H f)
is-prop-preserves-mul G (pair (pair H is-set-H) (pair μ-H assoc-H)) f =
is-prop-Π (λ x →
is-prop-Π (λ y →
is-set-H (f (mul-Semi-Group G x y)) (μ-H (f x) (f y))))
hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2)
hom-Semi-Group G H =
Σ ( type-Semi-Group G → type-Semi-Group H)
( preserves-mul G H)
{- Bureaucracy of homomorphisms of semi-groups. -}
map-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( hom-Semi-Group G H) →
( type-Semi-Group G) → (type-Semi-Group H)
map-hom-Semi-Group G H f = pr1 f
preserves-mul-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) →
preserves-mul G H (map-hom-Semi-Group G H f)
preserves-mul-hom-Semi-Group G H f = pr2 f
{- We characterize the identity type of the semi-group homomorphisms. -}
htpy-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2)
(f g : hom-Semi-Group G H) → UU (l1 ⊔ l2)
htpy-hom-Semi-Group G H f g =
(map-hom-Semi-Group G H f) ~ (map-hom-Semi-Group G H g)
reflexive-htpy-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) → htpy-hom-Semi-Group G H f f
reflexive-htpy-hom-Semi-Group G H f = refl-htpy
htpy-hom-Semi-Group-eq :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f g : hom-Semi-Group G H) → Id f g → htpy-hom-Semi-Group G H f g
htpy-hom-Semi-Group-eq G H f .f refl = reflexive-htpy-hom-Semi-Group G H f
abstract
is-contr-total-htpy-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) →
is-contr (Σ (hom-Semi-Group G H) (htpy-hom-Semi-Group G H f))
is-contr-total-htpy-hom-Semi-Group G H f =
is-contr-total-Eq-substructure
( is-contr-total-htpy (map-hom-Semi-Group G H f))
( is-prop-preserves-mul G H)
( map-hom-Semi-Group G H f)
( refl-htpy)
( preserves-mul-hom-Semi-Group G H f)
abstract
is-equiv-htpy-hom-Semi-Group-eq :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f g : hom-Semi-Group G H) → is-equiv (htpy-hom-Semi-Group-eq G H f g)
is-equiv-htpy-hom-Semi-Group-eq G H f =
fundamental-theorem-id f
( reflexive-htpy-hom-Semi-Group G H f)
( is-contr-total-htpy-hom-Semi-Group G H f)
( htpy-hom-Semi-Group-eq G H f)
eq-htpy-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
{ f g : hom-Semi-Group G H} → htpy-hom-Semi-Group G H f g → Id f g
eq-htpy-hom-Semi-Group G H {f} {g} =
inv-is-equiv (is-equiv-htpy-hom-Semi-Group-eq G H f g)
{- We show that the type of semi-group homomorphisms between two semi-groups is
a set. -}
is-set-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
is-set (hom-Semi-Group G H)
is-set-hom-Semi-Group G H (pair f μ-f) (pair g μ-g) =
is-prop-is-equiv
( htpy-hom-Semi-Group G H (pair f μ-f) (pair g μ-g))
( htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g))
( is-equiv-htpy-hom-Semi-Group-eq G H (pair f μ-f) (pair g μ-g))
( is-prop-Π (λ x → is-set-type-Semi-Group H (f x) (g x)))
{- We introduce group homomorphisms. -}
hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2)
hom-Group G H =
hom-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
{- Bureaucracy of group homomorphisms. -}
map-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( hom-Group G H) →
( type-Group G) → (type-Group H)
map-hom-Group G H f = pr1 f
preserves-mul-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) →
preserves-mul
( semi-group-Group G)
( semi-group-Group H)
( map-hom-Group G H f)
preserves-mul-hom-Group G H f = pr2 f
{- We characterize the identity type of the group homomorphisms. -}
htpy-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2)
(f g : hom-Group G H) → UU (l1 ⊔ l2)
htpy-hom-Group G H =
htpy-hom-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
reflexive-htpy-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) → htpy-hom-Group G H f f
reflexive-htpy-hom-Group G H =
reflexive-htpy-hom-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
htpy-hom-Group-eq :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f g : hom-Group G H) → Id f g → htpy-hom-Group G H f g
htpy-hom-Group-eq G H =
htpy-hom-Semi-Group-eq
( semi-group-Group G)
( semi-group-Group H)
abstract
is-contr-total-htpy-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) →
is-contr (Σ (hom-Group G H) (htpy-hom-Group G H f))
is-contr-total-htpy-hom-Group G H =
is-contr-total-htpy-hom-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
abstract
is-equiv-htpy-hom-Group-eq :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f g : hom-Group G H) → is-equiv (htpy-hom-Group-eq G H f g)
is-equiv-htpy-hom-Group-eq G H =
is-equiv-htpy-hom-Semi-Group-eq
( semi-group-Group G)
( semi-group-Group H)
eq-htpy-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
{ f g : hom-Group G H} → htpy-hom-Group G H f g → Id f g
eq-htpy-hom-Group G H =
eq-htpy-hom-Semi-Group (semi-group-Group G) (semi-group-Group H)
{- Next, we construct the identity group homomorphism, and we show that
compositions of group homomorphisms are again group homomorphisms. -}
preserves-mul-id :
{l : Level} (G : Semi-Group l) → preserves-mul G G id
preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) x y = refl
id-Semi-Group :
{l : Level} (G : Semi-Group l) → hom-Semi-Group G G
id-Semi-Group G =
pair id (preserves-mul-id G)
id-Group :
{l : Level} (G : Group l) → hom-Group G G
id-Group G = id-Semi-Group (semi-group-Group G)
composition-Semi-Group :
{l1 l2 l3 : Level} →
(G : Semi-Group l1) (H : Semi-Group l2) (K : Semi-Group l3) →
(hom-Semi-Group H K) → (hom-Semi-Group G H) → (hom-Semi-Group G K)
composition-Semi-Group G H K (pair g μ-g) (pair f μ-f) =
pair
( g ∘ f)
( λ x y → (ap g (μ-f x y)) ∙ (μ-g (f x) (f y)))
composition-Group :
{l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (K : Group l3) →
(hom-Group H K) → (hom-Group G H) → (hom-Group G K)
composition-Group G H K =
composition-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
( semi-group-Group K)
{- Next, we prove the that the laws for a category hold for group homomorphisms,
i.e., we show that composition is associative and satisfies the left and
right unit laws. Before we show that these laws hold, we will characterize
the identity type of the types of semi-group homomorphisms and group
homomorphisms. -}
associative-Semi-Group :
{ l1 l2 l3 l4 : Level} (G : Semi-Group l1) (H : Semi-Group l2)
( K : Semi-Group l3) (L : Semi-Group l4) (h : hom-Semi-Group K L) →
( g : hom-Semi-Group H K) (f : hom-Semi-Group G H) →
Id ( composition-Semi-Group G H L
( composition-Semi-Group H K L h g) f)
( composition-Semi-Group G K L h
( composition-Semi-Group G H K g f))
associative-Semi-Group G H K L (pair h μ-h) (pair g μ-g) (pair f μ-f) =
eq-htpy-hom-Semi-Group G L refl-htpy
left-unit-law-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2)
( f : hom-Semi-Group G H) →
Id ( composition-Semi-Group G H H (id-Semi-Group H) f) f
left-unit-law-Semi-Group G
(pair (pair H is-set-H) (pair μ-H assoc-H)) (pair f μ-f) =
eq-htpy-hom-Semi-Group G
( pair (pair H is-set-H) (pair μ-H assoc-H))
( refl-htpy)
right-unit-law-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2)
( f : hom-Semi-Group G H) →
Id ( composition-Semi-Group G G H f (id-Semi-Group G)) f
right-unit-law-Semi-Group
(pair (pair G is-set-G) (pair μ-G assoc-G)) H (pair f μ-f) =
eq-htpy-hom-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G)) H refl-htpy
{- Now we introduce the notion of group isomorphism. Finally, we will show that
isomorphic groups are equal. -}
is-iso-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) → UU (l1 ⊔ l2)
is-iso-Semi-Group G H f =
Σ ( hom-Semi-Group H G) (λ g →
( Id (composition-Semi-Group H G H f g) (id-Semi-Group H)) ×
( Id (composition-Semi-Group G H G g f) (id-Semi-Group G)))
iso-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2)
iso-Semi-Group G H =
Σ (hom-Semi-Group G H) (is-iso-Semi-Group G H)
abstract
is-prop-is-iso-Semi-Group' :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) → is-prop' (is-iso-Semi-Group G H f)
is-prop-is-iso-Semi-Group' G H f
(pair g (pair issec isretr)) (pair g' (pair issec' isretr')) =
eq-subtype
( λ h →
is-prop-prod
( is-set-hom-Semi-Group H H
( composition-Semi-Group H G H f h)
( id-Semi-Group H))
( is-set-hom-Semi-Group G G
( composition-Semi-Group G H G h f)
( id-Semi-Group G)))
( ( inv (left-unit-law-Semi-Group H G g)) ∙
( ( inv (ap (λ h → composition-Semi-Group H G G h g) isretr')) ∙
( ( associative-Semi-Group H G H G g' f g) ∙
( ( ap (composition-Semi-Group H H G g') issec) ∙
( right-unit-law-Semi-Group H G g')))))
abstract
is-prop-is-iso-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) → is-prop (is-iso-Semi-Group G H f)
is-prop-is-iso-Semi-Group G H f =
is-prop-is-prop' (is-prop-is-iso-Semi-Group' G H f)
abstract
preserves-mul-inv-is-equiv-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H)
( is-equiv-f : is-equiv (map-hom-Semi-Group G H f)) →
preserves-mul H G (inv-is-equiv is-equiv-f)
preserves-mul-inv-is-equiv-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair f μ-f) is-equiv-f x y =
inv-is-equiv
( is-emb-is-equiv f is-equiv-f
( inv-is-equiv is-equiv-f (μ-H x y))
( μ-G (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y)))
( ( ( issec-inv-is-equiv is-equiv-f (μ-H x y)) ∙
( ( ap (λ t → μ-H t y) (inv (issec-inv-is-equiv is-equiv-f x))) ∙
( ap
( μ-H (f (inv-is-equiv is-equiv-f x)))
( inv (issec-inv-is-equiv is-equiv-f y))))) ∙
( inv (μ-f (inv-is-equiv is-equiv-f x) (inv-is-equiv is-equiv-f y))))
abstract
is-iso-is-equiv-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) (is-equiv-f : is-equiv (pr1 f)) →
is-iso-Semi-Group G H f
is-iso-is-equiv-hom-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair f μ-f) is-equiv-f =
pair
( pair
( inv-is-equiv is-equiv-f)
( preserves-mul-inv-is-equiv-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair f μ-f) is-equiv-f))
( pair
( eq-htpy-hom-Semi-Group
( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair (pair H is-set-H) (pair μ-H assoc-H))
( issec-inv-is-equiv is-equiv-f))
( eq-htpy-hom-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair G is-set-G) (pair μ-G assoc-G))
( isretr-inv-is-equiv is-equiv-f)))
abstract
is-equiv-hom-is-iso-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
( f : hom-Semi-Group G H) (is-iso-f : is-iso-Semi-Group G H f) →
( is-equiv (pr1 f))
is-equiv-hom-is-iso-Semi-Group
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair f μ-f)
( pair (pair g μ-g) (pair issec isretr)) =
is-equiv-has-inverse g
( htpy-eq (ap pr1 issec))
( htpy-eq (ap pr1 isretr))
equiv-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2)
equiv-Semi-Group G H =
Σ ( type-Semi-Group G ≃ type-Semi-Group H)
( λ e → preserves-mul G H (map-equiv e))
total-is-equiv-hom-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2)
total-is-equiv-hom-Semi-Group G H =
Σ (hom-Semi-Group G H) (λ f → is-equiv (map-hom-Semi-Group G H f))
preserves-mul' :
{ l1 l2 : Level} (G : Semi-Group l1) (H : UU-Set l2)
( μ-H : has-associative-mul H) →
( e : (type-Semi-Group G) ≃ (type-Set H)) →
UU (l1 ⊔ l2)
preserves-mul' G H μ-H e = preserves-mul G (pair H μ-H) (map-equiv e)
equiv-Semi-Group' :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) → UU (l1 ⊔ l2)
equiv-Semi-Group' G H = equiv-Semi-Group G (pair (pr1 H) (pr2 H))
abstract
equiv-iso-Semi-Group-equiv-Semi-Group :
{ l1 l2 : Level} (G : Semi-Group l1) (H : Semi-Group l2) →
equiv-Semi-Group' G H ≃ iso-Semi-Group G H
equiv-iso-Semi-Group-equiv-Semi-Group G H =
( ( ( equiv-total-subtype
( λ f → is-subtype-is-equiv (map-hom-Semi-Group G H f))
( is-prop-is-iso-Semi-Group G H)
( is-iso-is-equiv-hom-Semi-Group G H)
( is-equiv-hom-is-iso-Semi-Group G H)) ∘e
( ( inv-equiv
( equiv-Σ-assoc
( type-Semi-Group G → type-Semi-Group H)
( preserves-mul G H)
( λ f → is-equiv (map-hom-Semi-Group G H f)))) ∘e
( equiv-tot
( λ f → equiv-swap-prod (is-equiv f) (preserves-mul G H f))))) ∘e
( equiv-Σ-assoc
( type-Semi-Group G → type-Semi-Group H)
( is-equiv)
( λ e → preserves-mul G H (map-equiv e)))) ∘e
( equiv-tr (equiv-Semi-Group G) (η-pair H))
center-total-preserves-mul-id :
{ l1 : Level} (G : Semi-Group l1) →
Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id)
center-total-preserves-mul-id (pair (pair G is-set-G) (pair μ-G assoc-G)) =
pair (pair μ-G assoc-G) (λ x y → refl)
contraction-total-preserves-mul-id :
{ l1 : Level} (G : Semi-Group l1) →
( t : Σ ( has-associative-mul (pr1 G))
( λ μ → preserves-mul G (pair (pr1 G) μ) id)) →
Id (center-total-preserves-mul-id G) t
contraction-total-preserves-mul-id
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair μ-G' assoc-G') μ-id) =
eq-subtype
( λ μ →
is-prop-preserves-mul
( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair (pair G is-set-G) μ) id)
( eq-subtype
( λ μ →
is-prop-Π (λ x →
is-prop-Π (λ y →
is-prop-Π (λ z →
is-set-G (μ (μ x y) z) (μ x (μ y z))))))
( eq-htpy (λ x → eq-htpy (λ y → μ-id x y))))
is-contr-total-preserves-mul-id :
{ l1 : Level} (G : Semi-Group l1) →
is-contr (Σ (has-associative-mul (pr1 G)) (λ μ → preserves-mul G (pair (pr1 G) μ) id))
is-contr-total-preserves-mul-id G =
pair
( center-total-preserves-mul-id G)
( contraction-total-preserves-mul-id G)
is-contr-total-equiv-Semi-Group :
{ l1 : Level} (G : Semi-Group l1) →
is-contr (Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H))
is-contr-total-equiv-Semi-Group {l1} G =
is-contr-total-Eq-structure
( preserves-mul' G)
( is-contr-total-Eq-substructure
( is-contr-total-equiv (type-Semi-Group G))
( is-prop-is-set)
( type-Semi-Group G)
( equiv-id (type-Semi-Group G))
( is-set-type-Semi-Group G))
( pair (pr1 G) (equiv-id (type-Semi-Group G)))
( is-contr-total-preserves-mul-id G)
is-contr-total-iso-Semi-Group :
{ l1 : Level} (G : Semi-Group l1) →
is-contr (Σ (Semi-Group l1) (iso-Semi-Group G))
is-contr-total-iso-Semi-Group {l1} G =
is-contr-equiv'
( Σ (Semi-Group l1) (λ H → equiv-Semi-Group' G H))
( equiv-tot (λ H → equiv-iso-Semi-Group-equiv-Semi-Group G H))
( is-contr-total-equiv-Semi-Group G)
iso-id-Semi-Group :
{ l1 : Level} (G : Semi-Group l1) → iso-Semi-Group G G
iso-id-Semi-Group G =
pair
( id-Semi-Group G)
( pair
( id-Semi-Group G)
( pair
( left-unit-law-Semi-Group G G (id-Semi-Group G))
( right-unit-law-Semi-Group G G (id-Semi-Group G))))
iso-eq-Semi-Group :
{ l1 : Level} (G H : Semi-Group l1) → Id G H → iso-Semi-Group G H
iso-eq-Semi-Group G .G refl = iso-id-Semi-Group G
is-equiv-iso-eq-Semi-Group :
{ l1 : Level} (G H : Semi-Group l1) → is-equiv (iso-eq-Semi-Group G H)
is-equiv-iso-eq-Semi-Group G =
fundamental-theorem-id G
( iso-id-Semi-Group G)
( is-contr-total-iso-Semi-Group G)
( iso-eq-Semi-Group G)
equiv-iso-eq-Semi-Group :
{ l1 : Level} (G H : Semi-Group l1) → Id G H ≃ iso-Semi-Group G H
equiv-iso-eq-Semi-Group G H =
pair (iso-eq-Semi-Group G H) (is-equiv-iso-eq-Semi-Group G H)
eq-iso-Semi-Group :
{ l1 : Level} (G H : Semi-Group l1) → iso-Semi-Group G H → Id G H
eq-iso-Semi-Group G H = inv-is-equiv (is-equiv-iso-eq-Semi-Group G H)
{- Finally we show that isomorphic groups are equal. -}
iso-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2)
iso-Group G H =
iso-Semi-Group
( semi-group-Group G)
( semi-group-Group H)
iso-id-Group :
{ l1 : Level} (G : Group l1) → iso-Group G G
iso-id-Group G = iso-id-Semi-Group (semi-group-Group G)
iso-eq-Group :
{ l1 : Level} (G H : Group l1) → Id G H → iso-Group G H
iso-eq-Group G .G refl = iso-id-Group G
abstract
equiv-iso-eq-Group' :
{ l1 : Level} (G H : Group l1) → Id G H ≃ iso-Group G H
equiv-iso-eq-Group' G H =
( equiv-iso-eq-Semi-Group
( semi-group-Group G)
( semi-group-Group H)) ∘e
( equiv-ap-pr1-is-subtype is-prop-is-group {s = G} {t = H})
abstract
is-contr-total-iso-Group :
{ l1 : Level} (G : Group l1) → is-contr (Σ (Group l1) (iso-Group G))
is-contr-total-iso-Group {l1} G =
is-contr-equiv'
( Σ (Group l1) (Id G))
( equiv-tot (λ H → equiv-iso-eq-Group' G H))
( is-contr-total-path G)
is-equiv-iso-eq-Group :
{ l1 : Level} (G H : Group l1) → is-equiv (iso-eq-Group G H)
is-equiv-iso-eq-Group G =
fundamental-theorem-id G
( iso-id-Group G)
( is-contr-total-iso-Group G)
( iso-eq-Group G)
eq-iso-Group :
{ l1 : Level} (G H : Group l1) → iso-Group G H → Id G H
eq-iso-Group G H = inv-is-equiv (is-equiv-iso-eq-Group G H)
-- Categories
underlying-type-Set :
{l : Level} → UU-Set l → UU l
underlying-type-Set A = pr1 A
is-set-underlying-type-Set :
{l : Level} (A : UU-Set l) → is-set (underlying-type-Set A)
is-set-underlying-type-Set A = pr2 A
associative-composition-structure :
{l1 l2 : Level} (A : UU l1) (hom : A → A → UU-Set l2) → UU (l1 ⊔ l2)
associative-composition-structure A hom =
Σ ( (x y z : A)
→ underlying-type-Set (hom x y)
→ underlying-type-Set (hom y z)
→ underlying-type-Set (hom x z))
( λ μ → (x y z w : A) (f : underlying-type-Set (hom x y)) (g : underlying-type-Set (hom y z)) (h : underlying-type-Set (hom z w)) →
Id (μ x z w (μ x y z f g) h) (μ x y w f (μ y z w g h)))
is-unital-composition-structure :
{l1 l2 : Level} (A : UU l1) (hom : A → A → UU-Set l2) →
associative-composition-structure A hom → UU _
is-unital-composition-structure A hom (pair μ assoc-μ) =
Σ ( (x : A) → underlying-type-Set (hom x x))
( λ e →
( (x y : A) (f : underlying-type-Set (hom x y)) → Id (μ x x y (e x) f) f)
× ( (x y : A) (f : underlying-type-Set (hom x y)) → Id (μ x y y f (e y)) f))
is-prop-is-unital-composition-structure' :
{l1 l2 : Level} (A : UU l1) (hom : A → A → UU-Set l2) →
( μ : associative-composition-structure A hom) →
is-prop' (is-unital-composition-structure A hom μ)
is-prop-is-unital-composition-structure' A hom
( pair μ assoc-μ)
( pair e (pair left-unit-law-e right-unit-law-e))
( pair e' (pair left-unit-law-e' right-unit-law-e')) =
eq-subtype
( λ x →
is-prop-prod
( is-prop-Π
( λ a → is-prop-Π
( λ b → is-prop-Π
( λ f' →
is-set-underlying-type-Set (hom a b) (μ a a b (x a) f') f'))))
( is-prop-Π
( λ a → is-prop-Π
( λ b → is-prop-Π
( λ f' →
is-set-underlying-type-Set (hom a b) (μ a b b f' (x b)) f')))))
( eq-htpy
( λ x → (inv (left-unit-law-e' x x (e x))) ∙ right-unit-law-e x x (e' x)))
Precategory :
(l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Precategory l1 l2 =
Σ ( UU l1) (λ A →
Σ (A → A → UU-Set l2) (λ hom →
Σ ( associative-composition-structure A hom)
( is-unital-composition-structure A hom)))
obj-Precat :
{l1 l2 : Level} → Precategory l1 l2 → UU l1
obj-Precat C = pr1 C
hom-Set-Precat :
{l1 l2 : Level} (C : Precategory l1 l2) (x y : obj-Precat C) → UU-Set l2
hom-Set-Precat C = pr1 (pr2 C)
hom-Precat :
{l1 l2 : Level} (C : Precategory l1 l2) (x y : obj-Precat C) → UU l2
hom-Precat C x y = pr1 (hom-Set-Precat C x y)
is-set-hom-Precat :
{l1 l2 : Level} (C : Precategory l1 l2) (x y : obj-Precat C) →
is-set (hom-Precat C x y)
is-set-hom-Precat C x y = pr2 (hom-Set-Precat C x y)
associative-composition-Precat :
{l1 l2 : Level} (C : Precategory l1 l2) →
associative-composition-structure (obj-Precat C) (hom-Set-Precat C)
associative-composition-Precat C = pr1 (pr2 (pr2 C))
composition-Precat :
{l1 l2 : Level} (C : Precategory l1 l2) {x y z : obj-Precat C} →
hom-Precat C x y → hom-Precat C y z → hom-Precat C x z
composition-Precat C {x} {y} {z} =
pr1 (associative-composition-Precat C) x y z
is-associative-composition-Precat :
{ l1 l2 : Level} (C : Precategory l1 l2) {x y z w : obj-Precat C} →
( f : hom-Precat C x y) (g : hom-Precat C y z) (h : hom-Precat C z w) →
Id (composition-Precat C (composition-Precat C f g) h)
(composition-Precat C f (composition-Precat C g h))
is-associative-composition-Precat C {x} {y} {z} {w} =
pr2 (associative-composition-Precat C) x y z w
is-unital-Precat :
{ l1 l2 : Level} (C : Precategory l1 l2) →
is-unital-composition-structure
( obj-Precat C)
( hom-Set-Precat C)
( associative-composition-Precat C)
is-unital-Precat C = pr2 (pr2 (pr2 C))
id-Precat :
{ l1 l2 : Level} (C : Precategory l1 l2) {x : obj-Precat C} →
hom-Precat C x x
id-Precat (pair A (pair hom (pair (pair μ assoc-μ) t))) {x} =
pr1 (is-unital-Precat {!!}) x
-- Exercises
-- Exercise
{- We show that group homomorphisms preserve the unit. -}
preserves-unit :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Semi-Group
( semi-group-Group G)
( semi-group-Group H)) →
UU l2
preserves-unit G H f =
Id (map-hom-Group G H f (unit-Group G)) (unit-Group H)
abstract
preserves-unit-group-hom :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) → preserves-unit G H f
preserves-unit-group-hom
( pair ( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair ( pair e-G (pair left-unit-G right-unit-G))
( pair i-G (pair left-inv-G right-inv-G))))
( pair ( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair ( pair e-H (pair left-unit-H right-unit-H))
( pair i-H (pair left-inv-H right-inv-H))))
( pair f μ-f) =
( inv (left-unit-H (f e-G))) ∙
( ( ap (λ x → μ-H x (f e-G)) (inv (left-inv-H (f e-G)))) ∙
( ( assoc-H (i-H (f e-G)) (f e-G) (f e-G)) ∙
( ( ap (μ-H (i-H (f e-G))) (inv (μ-f e-G e-G))) ∙
( ( ap (λ x → μ-H (i-H (f e-G)) (f x)) (left-unit-G e-G)) ∙
( left-inv-H (f e-G))))))
{- We show that group homomorphisms preserve inverses. -}
preserves-inverses :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) → UU (l1 ⊔ l2)
preserves-inverses G H f =
( x : type-Group G) →
Id ( map-hom-Group G H f (inv-Group G x))
( inv-Group H (map-hom-Group G H f x))
abstract
preserves-inverses-group-hom' :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) →
preserves-unit G H f → preserves-inverses G H f
preserves-inverses-group-hom'
( pair ( pair (pair G is-set-G) (pair μ-G assoc-G))
( pair ( pair e-G (pair left-unit-G right-unit-G))
( pair i-G (pair left-inv-G right-inv-G))))
( pair ( pair (pair H is-set-H) (pair μ-H assoc-H))
( pair ( pair e-H (pair left-unit-H right-unit-H))
( pair i-H (pair left-inv-H right-inv-H))))
( pair f μ-f) preserves-unit-f x =
( inv ( right-unit-H (f (i-G x)))) ∙
( ( ap (μ-H (f (i-G x))) (inv (right-inv-H (f x)))) ∙
( ( inv (assoc-H (f (i-G x)) (f x) (i-H (f x)))) ∙
( ( inv (ap (λ y → μ-H y (i-H (f x))) (μ-f (i-G x) x))) ∙
( ( ap (λ y → μ-H (f y) (i-H (f x))) (left-inv-G x)) ∙
( ( ap
( λ y → μ-H y (i-H (f x)))
( preserves-unit-f)) ∙
( left-unit-H (i-H (f x))))))))
abstract
preserves-inverses-group-hom :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
( f : hom-Group G H) → preserves-inverses G H f
preserves-inverses-group-hom G H f =
preserves-inverses-group-hom' G H f (preserves-unit-group-hom G H f)
hom-Group' :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) → UU (l1 ⊔ l2)
hom-Group' G H =
Σ ( hom-Group G H) (λ f →
( preserves-unit G H f) × (preserves-inverses G H f))
preserves-all-hom-Group :
{ l1 l2 : Level} (G : Group l1) (H : Group l2) →
hom-Group G H → hom-Group' G H
preserves-all-hom-Group G H f =
pair f
( pair
( preserves-unit-group-hom G H f)
( preserves-inverses-group-hom G H f))
-- Exercise
{-
hom-mul-Group :
{l : Level} (G : Group l) →
hom-Group G Aut
-}
| {
"alphanum_fraction": 0.5840388245,
"avg_line_length": 34.0900735294,
"ext": "agda",
"hexsha": "6c777f13afd2acf3bdd9b102b782fe8db0a46e6d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/17-groups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/17-groups.agda",
"max_line_length": 135,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/17-groups.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 14012,
"size": 37090
} |
-- Andreas Abel, 2022-06-06, issue #5944 reported by Mike Shulman
-- Support rewriting with 2ltt (match SSet).
{-# OPTIONS --type-in-type --rewriting --two-level #-}
open import Agda.Primitive public
postulate
Tel : SSet
ε : Tel
_≡_ : {A : SSet} (a : A) → A → SSet
cong : (A B : SSet) (f : A → B) {x y : A} (p : x ≡ y) → f x ≡ f y
coe← : (A B : SSet) → (A ≡ B) → B → A
el : Tel → SSet
[] : el ε
ID : (Δ : Tel) → Tel
ID′ : (Δ : Tel) (Θ : el Δ → Tel) → Tel
ID′ε : (Δ : Tel) → ID′ Δ (λ _ → ε) ≡ ε
{-# BUILTIN REWRITE _≡_ #-}
{-# REWRITE ID′ε #-}
postulate
ID′-CONST : (Θ : Tel) (Δ : Tel)
→ ID′ Θ (λ _ → Δ) ≡ ID Δ
ID′-CONST-ε : (Θ : Tel) (δ₂ : el (ID ε))
→ coe← (el (ID′ Θ (λ _ → ε))) (el (ID ε)) (cong Tel (SSet lzero) el (ID′-CONST Θ ε)) δ₂ ≡ []
{-# REWRITE ID′-CONST-ε #-}
-- WAS: internal error when trying to make a pattern from SSet
-- Should succeed now
| {
"alphanum_fraction": 0.4957627119,
"avg_line_length": 25.5135135135,
"ext": "agda",
"hexsha": "1ead1ccb4ed7fc5aba7a9560766e09c559b6c246",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue5944.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue5944.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5944.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 398,
"size": 944
} |
module ASN1.Util where
open import Data.Word8 using (Word8) renaming (primWord8fromNat to to𝕎; primWord8toNat to from𝕎)
open import Data.Nat using (ℕ; _+_; _*_; _≤?_)
open import Data.Nat.DivMod using (_divMod_; result)
open import Data.Fin using (toℕ)
open import Data.List using (List; []; _∷_)
open import Relation.Nullary using (Dec; yes; no)
-- TODO: use WF induction
{-# TERMINATING #-}
base256 : ℕ → List Word8
base256 n with n ≤? 255
... | yes _ = to𝕎 n ∷ []
... | no _ with n divMod 256
... | result quotient remainder _ = to𝕎 (toℕ remainder) ∷ base256 quotient
fromBase256 : List Word8 → ℕ
fromBase256 [] = 0 -- this should not be the case, as 0 is encoded as (0 ∷ [])
fromBase256 (x ∷ ns) = from𝕎 x + 256 * fromBase256 ns
{-
base256-prop : ∀ n → n ≡ fromBase256 (base256 n)
base256-prop n with n ≤? 255
base256-prop n | yes p = {!!}
base256-prop n | no ¬p = {!!}
-}
{-# TERMINATING #-}
base128 : ℕ → List Word8
base128 n with n ≤? 127
... | yes _ = to𝕎 n ∷ []
... | no _ with n divMod 128
... | result quotient remainder _ = to𝕎 (128 + toℕ remainder) ∷ base128 quotient
| {
"alphanum_fraction": 0.6596136155,
"avg_line_length": 30.1944444444,
"ext": "agda",
"hexsha": "94d851a32d0800f01cab55e3c2cedbba581e5803",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/asn1-agda",
"max_forks_repo_path": "src/ASN1/Util.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/asn1-agda",
"max_issues_repo_path": "src/ASN1/Util.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bbbeb679fa2c55a12f0cb345ad920c999c3f8fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/asn1-agda",
"max_stars_repo_path": "src/ASN1/Util.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 375,
"size": 1087
} |
-- Andreas, 2014-11-08
-- This used to be a failed test case, but works now.
open import Common.Prelude
postulate
some : Nat
data D : Nat → Set where
d₀ : D some
d₁ : D (suc some)
f : (n : Nat) → D n → Nat
f .some d₀ = zero
f .(suc some) d₁ = f some d₀
-- Since x < suc x for all x in the structural order,
-- some < suc some is a valid descent.
| {
"alphanum_fraction": 0.6174863388,
"avg_line_length": 19.2631578947,
"ext": "agda",
"hexsha": "f97540a5718232a756f27ab86177cb2afc202c3e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/DotSubTermination.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/DotSubTermination.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/DotSubTermination.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 128,
"size": 366
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Types
open import LibraBFT.Hash
open import LibraBFT.Impl.Base.Types
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Util.Util
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
-- This is a minimal/fake example handler that obeys the VotesOnce rule, enabling us to start
-- exploring how we express the algorithm and prove properties about it. It simply sends a vote for
-- 1 + its LatestVotedRound, and increments its LatestVotedRound. It is called EventProcessor for
-- historical reasons, because this what a previous version of LibraBFT called its main handler;
-- this will be updated when we move towards modeling a more recent implementation.
module LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor
(hash : BitString → Hash)
(hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y)
where
open RWST-do
processCommitM : LedgerInfoWithSignatures → LBFT (List ExecutedBlock)
processCommitM finalityProof = pure []
fakeAuthor : Author
fakeAuthor = 0
fakeBlockInfo : EpochId → Round → ProposalMsg → BlockInfo
fakeBlockInfo eid rnd pm = mkBlockInfo eid rnd (pm ^∙ pmProposal ∙ bId)
fakeLedgerInfo : BlockInfo → ProposalMsg → LedgerInfo
fakeLedgerInfo bi pm = mkLedgerInfo bi (pm ^∙ pmProposal ∙ bId)
postulate
fakeSK : SK
fakeSig : Signature
processProposalMsg : Instant → ProposalMsg → LBFT Unit
processProposalMsg inst pm = do
st ← get
let 𝓔 = α-EC ((₋epEC st) , (₋epEC-correct st))
ix = EpochConfig.epochId 𝓔
ep = ₋epEC st
epw = ₋epWithEC st
epc = ₋epEC-correct st
bt = epw ^∙ (lBlockTree 𝓔)
nr = suc ((₋epEC st) ^∙ epLastVotedRound)
uv = mkVote (mkVoteData (fakeBlockInfo ix nr pm) (fakeBlockInfo ix 0 pm))
fakeAuthor
(fakeLedgerInfo (fakeBlockInfo ix nr pm) pm)
fakeSig
(₋bSignature (₋pmProposal pm))
sv = record uv { ₋vSignature = sign ⦃ sig-Vote ⦄ uv fakeSK}
si = mkSyncInfo (₋btHighestQuorumCert bt) (₋btHighestCommitCert bt)
ep' = ep [ epLastVotedRound := nr ]
epc2 = EventProcessorEC-correct-≡ (₋epEC st) ep' refl epc
st' = record st { ₋epEC = ep'
; ₋epEC-correct = epc2
; ₋epWithEC = subst EventProcessorWithEC (α-EC-≡ ep ep' refl refl epc) epw
}
put st'
tell1 (SendVote (mkVoteMsg sv si) (fakeAuthor ∷ []))
pure unit
processVote : Instant → VoteMsg → LBFT Unit
processVote now msg = pure unit
| {
"alphanum_fraction": 0.6739562624,
"avg_line_length": 39.1948051948,
"ext": "agda",
"hexsha": "09bbabd6f221b1fa4eddbc703886ad6faf6b41d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "haroldcarr/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "haroldcarr/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "haroldcarr/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 896,
"size": 3018
} |
------------------------------------------------------------------------------
-- The Booleans properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Bool.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Bool
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- Basic properties
&&-Bool : ∀ {a b} → Bool a → Bool b → Bool (a && b)
&&-Bool {b = b} btrue Bb = prf
where postulate prf : Bool (true && b)
{-# ATP prove prf #-}
&&-Bool {b = b} bfalse Bb = prf
where postulate prf : Bool (false && b)
{-# ATP prove prf #-}
not-Bool : ∀ {b} → Bool b → Bool (not b)
not-Bool btrue = prf
where postulate prf : Bool (not true)
{-# ATP prove prf #-}
not-Bool bfalse = prf
where postulate prf : Bool (not false)
{-# ATP prove prf #-}
&&-list₂-t : ∀ {a b} → Bool a → Bool b → a && b ≡ true → a ≡ true ∧ b ≡ true
&&-list₂-t btrue btrue h = prf
where postulate prf : true ≡ true ∧ true ≡ true
{-# ATP prove prf #-}
&&-list₂-t btrue bfalse h = prf
where postulate prf : true ≡ true ∧ false ≡ true
{-# ATP prove prf #-}
&&-list₂-t bfalse btrue h = prf
where postulate prf : false ≡ true ∧ true ≡ true
{-# ATP prove prf #-}
&&-list₂-t bfalse bfalse h = prf
where postulate prf : false ≡ true ∧ false ≡ true
{-# ATP prove prf #-}
&&-list₂-t₁ : ∀ {a b} → Bool a → Bool b → a && b ≡ true → a ≡ true
&&-list₂-t₁ {a} Ba Bb h = prf
where postulate prf : a ≡ true
{-# ATP prove prf &&-list₂-t #-}
&&-list₂-t₂ : ∀ {a b} → Bool a → Bool b → a && b ≡ true → b ≡ true
&&-list₂-t₂ {b = b} Ba Bb h = prf
where postulate prf : b ≡ true
{-# ATP prove prf &&-list₂-t #-}
&&-list₄-t : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d →
a && b && c && d ≡ true →
a ≡ true ∧ b ≡ true ∧ c ≡ true ∧ d ≡ true
&&-list₄-t btrue btrue btrue btrue h = prf
where postulate prf : true ≡ true ∧ true ≡ true ∧ true ≡ true ∧ true ≡ true
{-# ATP prove prf #-}
&&-list₄-t btrue btrue btrue bfalse h = prf
where postulate prf : true ≡ true ∧ true ≡ true ∧ true ≡ true ∧ false ≡ true
{-# ATP prove prf #-}
&&-list₄-t {d = d} btrue btrue bfalse Bd h = prf
where postulate prf : true ≡ true ∧ true ≡ true ∧ false ≡ true ∧ d ≡ true
{-# ATP prove prf #-}
&&-list₄-t {c = c} {d} btrue bfalse Bc Bd h = prf
where postulate prf : true ≡ true ∧ false ≡ true ∧ c ≡ true ∧ d ≡ true
{-# ATP prove prf #-}
&&-list₄-t {b = b} {c} {d} bfalse Bb Bc Bd h = prf
where postulate prf : false ≡ true ∧ b ≡ true ∧ c ≡ true ∧ d ≡ true
{-# ATP prove prf #-}
&&-list₄-t₁ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d →
a && b && c && d ≡ true → a ≡ true
&&-list₄-t₁ {a} Ba Bb Bc Bd h = prf
where postulate prf : a ≡ true
{-# ATP prove prf &&-list₄-t #-}
&&-list₄-t₂ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d →
a && b && c && d ≡ true → b ≡ true
&&-list₄-t₂ {b = b} Ba Bb Bc Bd h = prf
where postulate prf : b ≡ true
{-# ATP prove prf &&-list₄-t #-}
&&-list₄-t₃ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d →
a && b && c && d ≡ true → c ≡ true
&&-list₄-t₃ {c = c} Ba Bb Bc Bd h = prf
where postulate prf : c ≡ true
{-# ATP prove prf &&-list₄-t #-}
&&-list₄-t₄ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d →
a && b && c && d ≡ true → d ≡ true
&&-list₄-t₄ {d = d} Ba Bb Bc Bd h = prf
where postulate prf : d ≡ true
{-# ATP prove prf &&-list₄-t #-}
x≢not-x : ∀ {b} → Bool b → b ≢ not b
x≢not-x btrue h = prf
where postulate prf : ⊥
{-# ATP prove prf #-}
x≢not-x bfalse h = prf
where postulate prf : ⊥
{-# ATP prove prf #-}
not-x≢x : ∀ {b} → Bool b → not b ≢ b
not-x≢x Bb h = prf
where postulate prf : ⊥
{-# ATP prove prf x≢not-x #-}
not-involutive : ∀ {b} → Bool b → not (not b) ≡ b
not-involutive btrue = prf
where postulate prf : not (not true) ≡ true
{-# ATP prove prf #-}
not-involutive bfalse = prf
where postulate prf : not (not false) ≡ false
{-# ATP prove prf #-}
------------------------------------------------------------------------------
-- Properties with inequalities
lt-Bool : ∀ {m n} → N m → N n → Bool (lt m n)
lt-Bool nzero nzero = prf
where postulate prf : Bool (lt zero zero)
{-# ATP prove prf #-}
lt-Bool nzero (nsucc {n} Nn) = prf
where postulate prf : Bool (lt zero (succ₁ n))
{-# ATP prove prf #-}
lt-Bool (nsucc {m} Nm) nzero = prf
where postulate prf : Bool (lt (succ₁ m) zero)
{-# ATP prove prf #-}
lt-Bool (nsucc {m} Nm) (nsucc {n} Nn) = prf (lt-Bool Nm Nn)
where postulate prf : Bool (lt m n) → Bool (lt (succ₁ m) (succ₁ n))
{-# ATP prove prf #-}
le-Bool : ∀ {m n} → N m → N n → Bool (le m n)
le-Bool {n = n} nzero Nn = prf
where postulate prf : Bool (le zero n)
{-# ATP prove prf #-}
le-Bool (nsucc {m} Nm) nzero = prf
where postulate prf : Bool (le (succ₁ m) zero)
{-# ATP prove prf Sx≰0 #-}
le-Bool (nsucc {m} Nm) (nsucc {n} Nn) = prf (le-Bool Nm Nn)
where postulate prf : Bool (le m n) → Bool (le (succ₁ m) (succ₁ n))
{-# ATP prove prf #-}
| {
"alphanum_fraction": 0.5092424792,
"avg_line_length": 36.3026315789,
"ext": "agda",
"hexsha": "2a565e744dd0e176a736a26fa8c090279785567b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Bool/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Bool/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Bool/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1971,
"size": 5518
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommSemiring.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.SIP using (TypeWithStr)
open import Cubical.Algebra.CommMonoid
open import Cubical.Algebra.Monoid
private
variable
ℓ ℓ' : Level
record IsCommSemiring {R : Type ℓ}
(0r 1r : R) (_+_ _·_ : R → R → R) : Type ℓ where
field
+IsCommMonoid : IsCommMonoid 0r _+_
·IsCommMonoid : IsCommMonoid 1r _·_
·LDist+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)
AnnihilL : (x : R) → 0r · x ≡ 0r
open IsCommMonoid +IsCommMonoid public
renaming
( isSemigroup to +IsSemigroup
; isMonoid to +IsMonoid)
open IsCommMonoid ·IsCommMonoid public
renaming
( isSemigroup to ·IsSemigroup
; isMonoid to ·IsMonoid)
hiding
( is-set ) -- We only want to export one proof of this
record CommSemiringStr (A : Type ℓ) : Type (ℓ-suc ℓ) where
field
0r : A
1r : A
_+_ : A → A → A
_·_ : A → A → A
isCommSemiring : IsCommSemiring 0r 1r _+_ _·_
infixl 7 _·_
infixl 6 _+_
open IsCommSemiring isCommSemiring public
CommSemiring : ∀ ℓ → Type (ℓ-suc ℓ)
CommSemiring ℓ = TypeWithStr ℓ CommSemiringStr
| {
"alphanum_fraction": 0.6221343874,
"avg_line_length": 24.8039215686,
"ext": "agda",
"hexsha": "2a762b0ec1524572b63d54974d08771b5e83c7fa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommSemiring/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommSemiring/Base.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommSemiring/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 457,
"size": 1265
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pushout
module Homotopy.VanKampen {i} (d : pushout-diag i) where
open pushout-diag d
open import Homotopy.Truncation
open import Homotopy.PathTruncation
open import Homotopy.VanKampen.Guide
module _ (l : legend i C) where
open legend l
open import Homotopy.VanKampen.Code d l
open import Homotopy.VanKampen.CodeToPath d l
private
refl⇒code : ∀ p → code p p
refl⇒code = pushout-rec
(λ p → code p p)
(λ _ → ⟧a refl₀)
(λ _ → ⟧b refl₀)
(loc-fiber-rec l
(λ c → transport (λ p → code p p) (glue c) (⟧a refl₀)
≡ ⟧b refl₀)
⦃ λ _ → b-code-b-is-set _ _ _ _ ⦄
(λ n →
transport (λ p → code p p) (glue $ loc n) (⟧a refl₀)
≡⟨ trans-diag code (glue $ loc n) $ ⟧a refl₀ ⟩
transport (λ p → code p (right $ g $ loc n)) (glue $ loc n)
(transport (a-code (f $ loc n)) (glue $ loc n) (⟧a refl₀))
≡⟨ ap (transport (λ p → code p (right $ g $ loc n)) (glue $ loc n))
$ trans-a-code-glue-loc n $ ⟧a refl₀ ⟩
transport (λ p → code p (right $ g $ loc n)) (glue $ loc n) (aa⇒ab n (⟧a refl₀))
≡⟨ trans-glue-code-loc n {right $ g $ loc n} $ aa⇒ab n (⟧a refl₀) ⟩
ab⇒bb n (aa⇒ab n (⟧a refl₀))
≡⟨ refl ⟩
⟧b refl₀ bb⟦ n ⟧a refl₀ ba⟦ n ⟧b refl₀
≡⟨ b-code-b-refl-refl _ _ ⟩∎
⟧b refl₀
∎))
path⇒code : ∀ {p₁} {p₂} (q : p₁ ≡₀ p₂) → code p₁ p₂
path⇒code {p₁} {p₂} = π₀-extend-nondep
⦃ code-is-set p₁ p₂ ⦄
(λ q → transport (code p₁) q (refl⇒code p₁))
private
refl⇒code⇒path : ∀ p → code⇒path (refl⇒code p) ≡ refl₀ {a = p}
refl⇒code⇒path = pushout-rec
(λ p → code⇒path (refl⇒code p) ≡ refl₀)
(λ _ → refl)
(λ _ → refl)
(λ _ → prop-has-all-paths (π₀-is-set _ _ _) _ _)
path′⇒code⇒path : ∀ {p₁ p₂} (q : p₁ ≡ p₂) → code⇒path (path⇒code $ proj q) ≡ proj q
path′⇒code⇒path refl = refl⇒code⇒path _
path⇒code⇒path : ∀ {p₁ p₂} (q : p₁ ≡₀ p₂) → code⇒path (path⇒code q) ≡ q
path⇒code⇒path {p₁} {p₂} = π₀-extend
⦃ λ _ → ≡-is-set $ π₀-is-set (p₁ ≡ p₂) ⦄
(path′⇒code⇒path {p₁} {p₂})
private
pgl : ∀ n → _≡₀_ {A = P} (left (f $ loc n)) (right (g $ loc n))
pgl n = proj (glue $ loc n)
p!gl : ∀ n → _≡₀_ {A = P} (right (g $ loc n)) (left (f $ loc n))
p!gl n = proj (! (glue $ loc n))
ap₀l : ∀ {a₁ a₂} → a₁ ≡₀ a₂ → _≡₀_ {A = P} (left a₁) (left a₂)
ap₀l p = ap₀ left p
ap₀r : ∀ {b₁ b₂} → b₁ ≡₀ b₂ → _≡₀_ {A = P} (right b₁) (right b₂)
ap₀r p = ap₀ right p
private
path⇒code-concat₀ : ∀ {p₁ p₂ p₃} (q : p₁ ≡₀ p₂) (r : p₂ ≡ p₃)
→ path⇒code (q ∘₀ proj r) ≡ transport (code p₁) r (path⇒code q)
path⇒code-concat₀ q refl = ap path⇒code $ refl₀-right-unit q
module _ {a₁} where
ap⇒path⇒ap-split :
(∀ {a₂} (co : a-code-a a₁ a₂) → path⇒code (aa⇒path co) ≡ co)
× (∀ {b₂} (co : a-code-b a₁ b₂) → path⇒code (ab⇒path co) ≡ co)
ap⇒path⇒ap-split = a-code-rec a₁
(λ {a₂} (co : a-code-a a₁ a₂) → path⇒code (aa⇒path co) ≡ co)
⦃ λ {a₂} _ → ≡-is-set $ a-code-a-is-set a₁ a₂ ⦄
(λ {b₂} (co : a-code-b a₁ b₂) → path⇒code (ab⇒path co) ≡ co)
⦃ λ {b₂} _ → ≡-is-set $ a-code-b-is-set a₁ b₂ ⦄
(λ {a₂} p → π₀-extend
{P = λ p → path⇒code (aa⇒path $ ⟧a p) ≡ ⟧a p}
⦃ λ _ → ≡-is-set $ a-code-a-is-set a₁ a₂ ⦄
(λ p → let p′ = proj p in
path⇒code (ap₀l p′)
≡⟨ refl ⟩
transport (a-code a₁) (ap left p) (path⇒code $ refl₀ {a = left a₁})
≡⟨ trans-ap (a-code a₁) left p $ ⟧a refl₀ ⟩
transport (a-code-a a₁) p (⟧a refl₀)
≡⟨ trans-a-code-a p refl₀ ⟩∎
⟧a proj p
∎) p)
(λ {a₂} n {co} eq p → π₀-extend
{P = λ p → path⇒code (aa⇒path $ co ab⟦ n ⟧a p) ≡ co ab⟦ n ⟧a p}
⦃ λ _ → ≡-is-set $ a-code-a-is-set a₁ a₂ ⦄
(λ p → let p′ = proj p in
path⇒code ((ab⇒path co ∘₀ p!gl n) ∘₀ ap₀l p′)
≡⟨ path⇒code-concat₀ (ab⇒path co ∘₀ p!gl n) (ap left p) ⟩
transport (a-code a₁) (ap left p) (path⇒code (ab⇒path co ∘₀ p!gl n))
≡⟨ trans-ap (a-code a₁) left p $ path⇒code $ ab⇒path co ∘₀ p!gl n ⟩
transport (a-code-a a₁) p (path⇒code (ab⇒path co ∘₀ p!gl n))
≡⟨ ap (transport (a-code-a a₁) p)
$ path⇒code-concat₀ (ab⇒path co) (! (glue $ loc n)) ⟩
transport (a-code-a a₁) p (transport (a-code a₁) (! (glue $ loc n))
$ path⇒code $ ab⇒path co)
≡⟨ ap (transport (a-code-a a₁) p ◯ transport (a-code a₁) (! (glue $ loc n))) eq ⟩
transport (a-code-a a₁) p (transport (a-code a₁) (! (glue $ loc n)) co)
≡⟨ ap (transport (a-code-a a₁) p) $ trans-a-code-!glue-loc n co ⟩
transport (a-code-a a₁) p (co ab⟦ n ⟧a refl₀)
≡⟨ trans-a-code-ba p n co refl₀ ⟩∎
co ab⟦ n ⟧a p′
∎) p)
(λ {b₂} n {co} eq p → π₀-extend
{P = λ p → path⇒code (ab⇒path $ co aa⟦ n ⟧b p) ≡ co aa⟦ n ⟧b p}
⦃ λ _ → ≡-is-set $ a-code-b-is-set a₁ b₂ ⦄
(λ p → let p′ = proj p in
path⇒code ((aa⇒path co ∘₀ pgl n) ∘₀ ap₀r p′)
≡⟨ path⇒code-concat₀ (aa⇒path co ∘₀ pgl n) (ap right p) ⟩
transport (a-code a₁) (ap right p) (path⇒code (aa⇒path co ∘₀ pgl n))
≡⟨ trans-ap (a-code a₁) right p $ path⇒code $ aa⇒path co ∘₀ pgl n ⟩
transport (a-code-b a₁) p (path⇒code (aa⇒path co ∘₀ pgl n))
≡⟨ ap (transport (a-code-b a₁) p)
$ path⇒code-concat₀ (aa⇒path co) (glue $ loc n) ⟩
transport (a-code-b a₁) p (transport (a-code a₁) (glue $ loc n)
$ path⇒code $ aa⇒path co)
≡⟨ ap (transport (a-code-b a₁) p ◯ transport (a-code a₁) (glue $ loc n)) eq ⟩
transport (a-code-b a₁) p (transport (a-code a₁) (glue $ loc n) co)
≡⟨ ap (transport (a-code-b a₁) p) $ trans-a-code-glue-loc n co ⟩
transport (a-code-b a₁) p (co aa⟦ n ⟧b refl₀)
≡⟨ trans-a-code-ab p n co refl₀ ⟩∎
co aa⟦ n ⟧b p′
∎) p)
(λ _ _ → prop-has-all-paths (a-code-a-is-set a₁ _ _ _) _ _)
(λ _ _ → prop-has-all-paths (a-code-b-is-set a₁ _ _ _) _ _)
(λ _ _ _ _ → prop-has-all-paths (a-code-a-is-set a₁ _ _ _) _ _)
ap⇒path⇒ap : ∀ {p₂} (co : a-code a₁ p₂) → path⇒code {left a₁} {p₂} (ap⇒path co) ≡ co
ap⇒path⇒ap {p₂} = pushout-rec
(λ x → ∀ (co : a-code a₁ x) → path⇒code {left a₁} {x} (ap⇒path co) ≡ co)
(λ _ → π₁ ap⇒path⇒ap-split)
(λ _ → π₂ ap⇒path⇒ap-split)
(λ _ → funext λ _ → prop-has-all-paths (a-code-b-is-set a₁ _ _ _) _ _)
p₂
-- FIXME Duplicate code!
-- Unless there's a way to handle type-conversion nicely
-- (with definitional equality), I'd rather copy and paste.
module _ {b₁} where
bp⇒path⇒bp-split :
(∀ {b₂} (co : b-code-b b₁ b₂) → path⇒code (bb⇒path co) ≡ co)
× (∀ {a₂} (co : b-code-a b₁ a₂) → path⇒code (ba⇒path co) ≡ co)
bp⇒path⇒bp-split = b-code-rec b₁
(λ {b₂} (co : b-code-b b₁ b₂) → path⇒code (bb⇒path co) ≡ co)
⦃ λ {b₂} _ → ≡-is-set $ b-code-b-is-set b₁ b₂ ⦄
(λ {a₂} (co : b-code-a b₁ a₂) → path⇒code (ba⇒path co) ≡ co)
⦃ λ {a₂} _ → ≡-is-set $ b-code-a-is-set b₁ a₂ ⦄
(λ {b₂} p → π₀-extend
{P = λ p → path⇒code (bb⇒path $ ⟧b p) ≡ ⟧b p}
⦃ λ _ → ≡-is-set $ b-code-b-is-set b₁ b₂ ⦄
(λ p → let p′ = proj p in
path⇒code (ap₀r p′)
≡⟨ refl ⟩
transport (b-code b₁) (ap right p) (path⇒code $ refl₀ {a = right b₁})
≡⟨ trans-ap (b-code b₁) right p $ ⟧b refl₀ ⟩
transport (b-code-b b₁) p (⟧b refl₀)
≡⟨ trans-b-code-b p refl₀ ⟩∎
⟧b proj p
∎) p)
(λ {b₂} n {co} eq p → π₀-extend
{P = λ p → path⇒code (bb⇒path $ co ba⟦ n ⟧b p) ≡ co ba⟦ n ⟧b p}
⦃ λ _ → ≡-is-set $ b-code-b-is-set b₁ b₂ ⦄
(λ p → let p′ = proj p in
path⇒code ((ba⇒path co ∘₀ pgl n) ∘₀ ap₀r p′)
≡⟨ path⇒code-concat₀ (ba⇒path co ∘₀ pgl n) (ap right p) ⟩
transport (b-code b₁) (ap right p) (path⇒code (ba⇒path co ∘₀ pgl n))
≡⟨ trans-ap (b-code b₁) right p $ path⇒code $ ba⇒path co ∘₀ pgl n ⟩
transport (b-code-b b₁) p (path⇒code (ba⇒path co ∘₀ pgl n))
≡⟨ ap (transport (b-code-b b₁) p)
$ path⇒code-concat₀ (ba⇒path co) (glue $ loc n) ⟩
transport (b-code-b b₁) p (transport (b-code b₁) (glue $ loc n)
$ path⇒code $ ba⇒path co)
≡⟨ ap (transport (b-code-b b₁) p ◯ transport (b-code b₁) (glue $ loc n)) eq ⟩
transport (b-code-b b₁) p (transport (b-code b₁) (glue $ loc n) co)
≡⟨ ap (transport (b-code-b b₁) p) $ trans-b-code-glue-loc n co ⟩
transport (b-code-b b₁) p (co ba⟦ n ⟧b refl₀)
≡⟨ trans-b-code-ab p n co refl₀ ⟩∎
co ba⟦ n ⟧b p′
∎) p)
(λ {a₂} n {co} eq p → π₀-extend
{P = λ p → path⇒code (ba⇒path $ co bb⟦ n ⟧a p) ≡ co bb⟦ n ⟧a p}
⦃ λ _ → ≡-is-set $ b-code-a-is-set b₁ a₂ ⦄
(λ p → let p′ = proj p in
path⇒code ((bb⇒path co ∘₀ p!gl n) ∘₀ ap₀l p′)
≡⟨ path⇒code-concat₀ (bb⇒path co ∘₀ p!gl n) (ap left p) ⟩
transport (b-code b₁) (ap left p) (path⇒code (bb⇒path co ∘₀ p!gl n))
≡⟨ trans-ap (b-code b₁) left p $ path⇒code $ bb⇒path co ∘₀ p!gl n ⟩
transport (b-code-a b₁) p (path⇒code (bb⇒path co ∘₀ p!gl n))
≡⟨ ap (transport (b-code-a b₁) p)
$ path⇒code-concat₀ (bb⇒path co) (! (glue $ loc n)) ⟩
transport (b-code-a b₁) p (transport (b-code b₁) (! (glue $ loc n))
$ path⇒code $ bb⇒path co)
≡⟨ ap (transport (b-code-a b₁) p ◯ transport (b-code b₁) (! (glue $ loc n))) eq ⟩
transport (b-code-a b₁) p (transport (b-code b₁) (! (glue $ loc n)) co)
≡⟨ ap (transport (b-code-a b₁) p) $ trans-b-code-!glue-loc n co ⟩
transport (b-code-a b₁) p (co bb⟦ n ⟧a refl₀)
≡⟨ trans-b-code-ba p n co refl₀ ⟩∎
co bb⟦ n ⟧a p′
∎) p)
(λ _ _ → prop-has-all-paths (b-code-b-is-set b₁ _ _ _) _ _)
(λ _ _ → prop-has-all-paths (b-code-a-is-set b₁ _ _ _) _ _)
(λ _ _ _ _ → prop-has-all-paths (b-code-b-is-set b₁ _ _ _) _ _)
bp⇒path⇒bp : ∀ {p₂} (co : b-code b₁ p₂) → path⇒code {right b₁} {p₂} (bp⇒path co) ≡ co
bp⇒path⇒bp {p₂} = pushout-rec
(λ x → ∀ (co : b-code b₁ x) → path⇒code {right b₁} {x} (bp⇒path co) ≡ co)
(λ _ → π₂ bp⇒path⇒bp-split)
(λ _ → π₁ bp⇒path⇒bp-split)
(λ _ → funext λ _ → prop-has-all-paths (b-code-b-is-set b₁ _ _ _) _ _)
p₂
code⇒path⇒code : ∀ {p₁ p₂} (co : code p₁ p₂) → path⇒code {p₁} {p₂} (code⇒path co) ≡ co
code⇒path⇒code {p₁} {p₂} = pushout-rec
(λ p₁ → ∀ (co : code p₁ p₂) → path⇒code {p₁} {p₂} (code⇒path co) ≡ co)
(λ a₁ → ap⇒path⇒ap {a₁} {p₂})
(λ b₁ → bp⇒path⇒bp {b₁} {p₂})
(λ c → funext λ co → prop-has-all-paths (b-code-is-set (g c) p₂ _ co) _ _)
p₁
van-kampen : ∀ {p₁ p₂} → (p₁ ≡₀ p₂) ≡ code p₁ p₂
van-kampen {p₁} {p₂} =
eq-to-path $ path⇒code {p₁} {p₂} ,
iso-is-eq (path⇒code {p₁} {p₂}) (code⇒path {p₁} {p₂})
(code⇒path⇒code {p₁} {p₂}) (path⇒code⇒path {p₁} {p₂})
module _ where
open import Homotopy.VanKampen.Code d (id-legend C)
naive-van-kampen : ∀ {p₁ p₂} → (p₁ ≡₀ p₂) ≡ code p₁ p₂
naive-van-kampen = van-kampen (id-legend C)
| {
"alphanum_fraction": 0.4845203857,
"avg_line_length": 46.7272727273,
"ext": "agda",
"hexsha": "44f69e41d9855f697c69110499fbfb441df70fef",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/VanKampen.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/VanKampen.agda",
"max_line_length": 97,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/VanKampen.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 5150,
"size": 11822
} |
{-
This second-order equational theory was created from the following second-order syntax description:
syntax Inception | IA
type
L : 0-ary
P : 0-ary
A : 0-ary
term
rec : L P -> A
inc : L.A P.A -> A
theory
(S) p : P a : P.A |> inc (l. rec (l, p[]), x. a[x]) = a[p[]]
(E) a : L.A |> k : L |- inc (l. a[l], x. rec(k, x)) = a[k]
(W) m : A a : P.A |> inc (l. m[], x. a[x]) = m[]
(A) p : (L,L).A a : (L,P).A b : P.A |> inc (l. inc (k. p[l, k], x. a[l,x]), y. b[y]) = inc (k. inc(l. p[l,k], y.b[y]), x. inc(l. a[l,x], y.b[y]))
-}
module Inception.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import Inception.Signature
open import Inception.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution IA:Syn
open import SOAS.Metatheory.SecondOrder.Equality IA:Syn
private
variable
α β γ τ : IAT
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ IA) α Γ → (𝔐 ▷ IA) α Γ → Set where
S : ⁅ P ⁆ ⁅ P ⊩ A ⁆̣ ▹ ∅ ⊢ inc (rec x₀ 𝔞) (𝔟⟨ x₀ ⟩) ≋ₐ 𝔟⟨ 𝔞 ⟩
E : ⁅ L ⊩ A ⁆̣ ▹ ⌊ L ⌋ ⊢ inc (𝔞⟨ x₀ ⟩) (rec x₁ x₀) ≋ₐ 𝔞⟨ x₀ ⟩
W : ⁅ A ⁆ ⁅ P ⊩ A ⁆̣ ▹ ∅ ⊢ inc 𝔞 (𝔟⟨ x₀ ⟩) ≋ₐ 𝔞
A : ⁅ L · L ⊩ A ⁆ ⁅ L · P ⊩ A ⁆ ⁅ P ⊩ A ⁆̣ ▹ ∅
⊢ inc (inc (𝔞⟨ x₁ ◂ x₀ ⟩) (𝔟⟨ x₁ ◂ x₀ ⟩)) (𝔠⟨ x₀ ⟩)
≋ₐ inc (inc (𝔞⟨ x₀ ◂ x₁ ⟩) (𝔠⟨ x₀ ⟩)) (inc (𝔟⟨ x₀ ◂ x₁ ⟩) (𝔠⟨ x₀ ⟩))
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
| {
"alphanum_fraction": 0.5232258065,
"avg_line_length": 28.1818181818,
"ext": "agda",
"hexsha": "b76c9357d77b44597aa1b1a297bc8cb86ddda14d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/Inception/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/Inception/Equality.agda",
"max_line_length": 163,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/Inception/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 788,
"size": 1550
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module MoreLogic.Properties where -- hProp logic
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Function.Base using (_∋_)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)
open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) renaming (⊥ to ⊥⊥) -- `⊥` and `elim`
open import Cubical.HITs.PropositionalTruncation.Base -- ∣_∣
import Cubical.Data.Empty as Empty
open import Cubical.Data.Unit.Base
open import Utils
-- lifted versions of ⊥ and ⊤
open import MoreLogic.Reasoning
open import MoreLogic.Definitions
isProp⊤ : isProp [ ⊤ ]
isProp⊤ tt tt = refl
symₚ : ∀{ℓ} → {A : Type ℓ} {x y : A} → [ x ≡ₚ y ] → [ y ≡ₚ x ]
symₚ {x = x} x≡y = substₚ (λ p → p ≡ₚ x) x≡y ∣ refl ∣
⊔-identityˡ-↑ : (P : hProp ℓ) → ⊥↑ {ℓ} ⊔ P ≡ P
⊔-identityˡ-↑ P =
⇒∶ (⊔-elim ⊥↑ P (λ _ → P) (λ ()) (λ x → x))
⇐∶ inrᵖ
⊔-identityʳ-↑ : (P : hProp ℓ) → P ⊔ ⊥↑ {ℓ} ≡ P
⊔-identityʳ-↑ P = ⇔toPath (⊔-elim P ⊥↑ (λ _ → P) (λ x → x) λ ()) inlᵖ
⊓-identityˡ-↑ : (P : hProp ℓ) → ⊤↑ {ℓ} ⊓ P ≡ P
⊓-identityˡ-↑ _ = ⇔toPath snd λ x → lift tt , x
⊓-identityʳ-↑ : (P : hProp ℓ) → P ⊓ ⊤↑ {ℓ} ≡ P
⊓-identityʳ-↑ _ = ⇔toPath fst λ x → x , lift tt
¬↑≡¬ : ∀{ℓ} → {P : hProp ℓ} → (¬↑ P) ≡ (¬ P)
¬↑≡¬ =
⇒∶ (λ ¬↑P P → lower (¬↑P P))
⇐∶ (λ ¬P P → lift ( ¬P P))
¬¬-introᵗ : (P : Type ℓ) → P → ¬ᵗ ¬ᵗ P
¬¬-introᵗ _ p ¬p = ¬p p
¬¬-elimᵗ : (P : Type ℓ) → ¬ᵗ ¬ᵗ ¬ᵗ P → ¬ᵗ P
¬¬-elimᵗ _ ¬¬¬p p = ¬¬¬p (λ ¬p → ¬p p)
¬¬-intro : (P : hProp ℓ) → [ P ] → [ ¬ ¬ P ]
¬¬-intro _ p ¬p = ¬p p
¬¬-elim : (P : hProp ℓ) → [ ¬ ¬ ¬ P ] → [ ¬ P ]
¬¬-elim _ ¬¬¬p p = ¬¬¬p (λ ¬p → ¬p p)
¬¬-involutive : (P : hProp ℓ) → [ ¬ ¬ ¬ P ⇔ ¬ P ]
¬¬-involutive P .fst = ¬¬-elim P
¬¬-involutive P .snd = ¬¬-intro (¬ P)
⇔toPath' : ∀{ℓ} {P Q : hProp ℓ} → [ P ⇔ Q ] → P ≡ Q
⇔toPath' = uncurry ⇔toPath
pathTo⇔ : ∀{ℓ} {P Q : hProp ℓ} → P ≡ Q → [ P ⇔ Q ]
pathTo⇔ p≡q = (pathTo⇒ p≡q , pathTo⇐ p≡q)
⊓⇔⊓ : ∀{ℓ ℓ' ℓ'' ℓ'''} {P : hProp ℓ} {Q : hProp ℓ'} {R : hProp ℓ''} {S : hProp ℓ'''}
→ [ (P ⇔ R) ⊓ (Q ⇔ S) ] → [ (P ⊓ Q) ⇔ (R ⊓ S) ]
⊓⇔⊓ (p⇔r , q⇔s) .fst (p , q) = p⇔r .fst p , q⇔s .fst q
⊓⇔⊓ (p⇔r , q⇔s) .snd (r , s) = p⇔r .snd r , q⇔s .snd s
⊓≡⊓ : ∀{ℓ} {P Q R S : hProp ℓ} → P ≡ R → Q ≡ S → (P ⊓ Q) ≡ (R ⊓ S)
⊓≡⊓ p≡r q≡s i = p≡r i ⊓ q≡s i
[path]To⇒ : (P Q : hProp ℓ) → [ P ] ≡ [ Q ] → [ P ⇒ Q ]
[path]To⇒ P Q [P]≡[Q] p = transport [P]≡[Q] p
[path]To⇐ : (P Q : hProp ℓ) → [ P ] ≡ [ Q ] → [ Q ⇒ P ]
[path]To⇐ P Q [P]≡[Q] q = transport (sym [P]≡[Q]) q
¬¬-involutiveᵗ : (A : Type ℓ) → (¬ᵗ ¬ᵗ ¬ᵗ A) ≡ (¬ᵗ A)
abstract
¬¬-involutiveᵗ A = isoToPath λ where
.Iso.fun ¬¬¬a a → ¬¬¬a (λ ¬a → ¬a a)
.Iso.inv ¬a ¬¬a → ¬¬a ¬a
.Iso.rightInv ¬a → refl
-- the following proof is `... ≡ ¬¬¬a` and uses funext to reduce this to a proof `∀ x → ... x ≡ ¬¬¬a x`
-- but this does not matter, since we have `¬¬¬a x` which is `⊥` and then we can use ⊥-elim to obtain whatever is necessary
-- `⊥-elim` needed a detailed hint what to produce and this might not be the most elegant way to proof this
.Iso.leftInv ¬¬¬a →
funExt {A = (¬ᵗ ¬ᵗ A)} {B = λ _ i → ⊥⊥} {f = (λ ¬¬a → ¬¬a (λ a → ¬¬¬a (λ ¬a → ¬a a)))} {g = ¬¬¬a}
(λ x → ⊥-elim {A = λ _ → (x (λ a → ¬¬¬a (λ ¬a → ¬a a)) ≡ ¬¬¬a x)} (¬¬¬a x))
-- taken from https://ncatlab.org/nlab/show/excluded+middle#DoubleNegatedPEM
-- Double-negated PEM
weak-LEM : ∀(P : hProp ℓ) → [ ¬ ¬ (P ⊔ ¬ P) ]
weak-LEM _ ¬[p⊔¬p] = ¬[p⊔¬p] (inrᵖ (λ p → ¬[p⊔¬p] (inlᵖ p)))
weak-LEMᵗ : ∀(P : Type ℓ) → ¬ᵗ ¬ᵗ (P ⊎ (¬ᵗ P))
weak-LEMᵗ _ ¬[p⊔¬p] = ¬[p⊔¬p] (inr (λ p → ¬[p⊔¬p] (inl p)))
⊤-introᵖ : {P : hProp ℓ} → [ P ] → P ≡ ⊤↑
⊤-introᵖ {ℓ = ℓ} {P = P} p = let
P⇔⊤↑ : [ P ⇔ ⊤↑ {ℓ} ]
P⇔⊤↑ = (λ _ → lift tt) , (λ _ → p)
in ⇔toPath (fst P⇔⊤↑) (snd P⇔⊤↑)
⊤-elimᵖ : {P : hProp ℓ} → P ≡ ⊤↑ → [ P ]
⊤-elimᵖ {ℓ = ℓ} {P = P} p≡⊤ = (
[ ⊤↑ {ℓ} ] ⇒⟨ transport ( λ i → [ p≡⊤ (~ i) ]) ⟩
[ P ] ◼) (lift tt)
contraposition : (P : hProp ℓ) (Q : hProp ℓ') → [ P ⇒ Q ] → [ ¬ Q ⇒ ¬ P ]
contraposition P Q f ¬q p = ⊥-elim (¬q (f p))
instance≡ : ∀{ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → ({{x : A}} → B x) ≡ ((x : A) → B x)
instance≡ = isoToPath (iso (λ f a → f {{a}}) (λ f {{a}} → f a) (λ f i → f) (λ f i → f))
implicit≡ : ∀{ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} → ({x : A} → B x) ≡ ((x : A) → B x)
implicit≡ = isoToPath (iso (λ f a → f {a}) (λ f {a} → f a) (λ f i → f) (λ f i → f))
instanceFunExt : {A : Type ℓ} {B : A → I → Type ℓ'}
{f : {{x : A}} → B x i0} {g : {{x : A}} → B x i1}
→ ({{x : A}} → PathP (B x) (f {{x}}) (g {{x}}))
→ PathP (λ i → {{x : A}} → B x i) f g
instanceFunExt p i {{x}} = p {{x}} i
funExt-⊥ : {A : Type ℓ} (f g : A → Empty.⊥) → f ≡ g
funExt-⊥ f g = funExt (λ x → ⊥-elim {A = λ _ → f x ≡ g x} (f x)) -- ⊥-elim needed a hint here
-- uncurry-preserves-≡
-- : {A : Type ℓ} {B : A → Type ℓ'} {C : (a : A) → B a → Type ℓ''}
-- → (f : (a : A) → (b : B a) → C a b)
-- -------------------------------------------------------------
-- → ∀ a b → f a b ≡ (uncurry f) (a , b)
-- uncurry-preserves-≡ f a b = refl
Σ-preserves-≡ :
{A : Type ℓ}
{B : A → Type ℓ'}
{C : (a : A) → (b : B a) → Type ℓ''}
{f g : ((a , b) : Σ A B) → C a b}
→ ((a : A) (b : B a) → (f (a , b)) ≡ (g (a , b)))
→ ((ab : Σ A B) → (f ab ) ≡ (g (ab) ))
Σ-preserves-≡ p (a , b) = p a b
Σ-reflects-≡ :
{A : Type ℓ}
{B : A → Type ℓ'}
{a b : Σ A B}
→ a ≡ b
→ Σ[ p ∈ (fst a ≡ fst b) ] transport (λ i → B (p i)) (snd a) ≡ snd b
-- Σ[ q ∈ (fst a ≡ fst b) ] (PathP (λ i → B (q i)) (snd a) (snd b))
Σ-reflects-≡ a≡b with PathΣ→ΣPathTransport _ _ a≡b
... | fst≡fst , snd≡snd = fst≡fst , snd≡snd
uncurry-reflects-≡
: {A : Type ℓ} {B : A → Type ℓ'} {C : (a : A) → B a → Type ℓ''}
→ (f g : (a : A) → (b : B a) → C a b)
-------------------------------------------------------------
→ (uncurry f ≡ uncurry g) → f ≡ g
uncurry-reflects-≡ f g p = funExt (λ x →
f x ≡⟨ refl ⟩
(λ y → (uncurry f) (x , y)) ≡⟨ ( λ i → λ y → (p i) (x , y)) ⟩
(λ y → (uncurry g) (x , y)) ≡⟨ refl ⟩
g x ∎)
-- "constant" version of funExt
funExt₂ᶜ :
{A : Type ℓ}
{B : A → Type ℓ'}
{C : (a : A) → (b : B a) → Type ℓ''}
{f g : (a : A) → (b : B a) → C a b}
→ ((a : A) → (b : B a) → (f a b) ≡ (g a b)) → f ≡ g
funExt₂ᶜ {A = A} {B = B} {C = C} {f = f} {g = g} = (
((a : A) (b : B a) → ( f a b) ≡ ( g a b) ) ⇒⟨ (λ z → z) ⟩ -- holds definitionally
((a : A) (b : B a) → ((uncurry f) (a , b)) ≡ ((uncurry g) (a , b))) ⇒⟨ Σ-preserves-≡ ⟩
((ab : Σ A B) → ((uncurry f) ab ) ≡ ((uncurry g) ( ab ))) ⇒⟨ funExt ⟩
(uncurry f) ≡ (uncurry g) ⇒⟨ uncurry-reflects-≡ f g ⟩
f ≡ g ◼)
funExt-⊥₂ : {A B : Type ℓ} (f g : A → B → Empty.⊥) → f ≡ g
funExt-⊥₂ f g = funExt₂ᶜ λ a b → ⊥-elim {A = λ _ → f a b ≡ g a b} (g a b)
-- weak deMorgan laws: only these three hold without further assumptions
deMorgan₂ : (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ (P ⊔ Q) ] → [ ¬ P ⊓ ¬ Q ]
abstract deMorgan₂ P Q ¬[p⊔q] = (λ p → ⊥-elim (¬[p⊔q] (inlᵖ p))) , λ q → ⊥-elim (¬[p⊔q] (inrᵖ q))
deMorgan₂-back : (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ P ⊓ ¬ Q ] → [ ¬ (P ⊔ Q) ]
abstract deMorgan₂-back P Q (¬p , ¬q) p⊔q = ⊔-elim P Q (λ p⊔q → ⊥) ¬p ¬q p⊔q
deMorgan₁-back : (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ P ⊔ ¬ Q ] → [ ¬ (P ⊓ Q) ]
abstract deMorgan₁-back {ℓ = ℓ} P Q [¬p⊔¬q] (p , q) = ⊔-elim (¬ P) (¬ Q) (λ [¬p⊔¬q] → ⊥) (λ ¬p → ¬p p) (λ ¬q → ¬q q) [¬p⊔¬q]
¬-⊓-distrib : (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ (P ⊓ Q) ] → [ (P ⇒ ¬ Q) ⊓ (Q ⇒ ¬ P) ]
¬-⊓-distrib P Q ¬p⊓q = (λ p q → ¬p⊓q (p , q)) , (λ q p → ¬p⊓q (p , q))
implication : (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ (P ⊓ Q) ] → [ P ⇒ ¬ Q ]
implication {ℓ = ℓ} P Q ¬[p⊓q] p q = ⊥-elim (¬[p⊓q] (p , q))
uncurryₚ : ∀{ℓ ℓ' ℓ''} (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'') → (f : [ P ] → [ Q ] → [ R ]) → [ P ⊓ Q ] → [ R ]
uncurryₚ P Q R f = uncurry f
⊓¬¬⇒¬¬⊓ : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ ¬ ¬ P ] → [ ¬ ¬ Q ] → [ ¬ ¬ (P ⊓ Q) ]
⊓¬¬⇒¬¬⊓ P Q ¬¬p ¬¬q = contraposition (¬ (P ⊓ Q)) (P ⇒ ¬ Q) (implication P Q) λ p⇒¬q → ¬¬p (contraposition P (¬ Q) p⇒¬q ¬¬q)
-- Q and P are disjoint if P ⇒ ¬ Q or equivalently Q ⇒ ¬ P
abstract
-- we have that (P ⇒ ¬ Q) ≡ (Q ⇒ ¬ P)
-- normalizes to (P ⇒ Q ⇒ ⊥) ≡ (Q ⇒ P ⇒ ⊥)
-- which is just flipping of the arguments
[P⇒¬Q]≡[Q⇒¬P] : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → (P ⇒ ¬ Q) ≡ (Q ⇒ ¬ P)
[P⇒¬Q]≡[Q⇒¬P] P Q = ⇒∶ flip ⇐∶ flip
-- ⇒∶ (λ p⇒¬q q p → p⇒¬q p q)
-- ⇐∶ (λ q⇒¬p p q → q⇒¬p q p)
[P⇒¬Q]⇒[Q⇒¬P] : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ (P ⇒ ¬ Q) ] → [ (Q ⇒ ¬ P) ]
[P⇒¬Q]⇒[Q⇒¬P] P Q = flip -- pathTo⇒ ([P⇒¬Q]≡[Q⇒¬P] P Q)
[P⇒¬Q]≡¬[P⊓Q] : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → (P ⇒ ¬ Q) ≡ ¬ (P ⊓ Q)
[P⇒¬Q]≡¬[P⊓Q] P Q = ⇒∶ uncurry ⇐∶ curry
-- ⇒∶ (λ{ p⇒¬q (p , q) → p⇒¬q p q })
-- ⇐∶ (λ ¬[p⊓q] p q → ¬[p⊓q] (p , q) )
-- [¬P⇒Q]⇒[¬Q⇒¬¬P]
-- [¬P⇒¬¬Q]≡[¬Q⇒¬¬P]
-- ≡¬[¬P⊓¬Q]
-- ≡¬¬[P⊔Q]
-- [¬P≡Q]⇒¬[P⊓Q]≡¬[P⊓¬P]
¬[P⊓¬P] : ∀{ℓ} (P : hProp ℓ) → [ ¬ (P ⊓ ¬ P) ]
¬[P⊓¬P] P (p , ¬p) = ¬p p
-- NOTE: I think that we do not have ¬ P ≡ ¬ Q → P ≡ Q
-- since this might be equivalent to some LEM ?
-- ¬-reflects-≡ : ∀{ℓ} (P Q : hProp ℓ) → ¬ P ≡ ¬ Q → P ≡ Q
-- ¬-reflects-≡ P Q ¬p≡¬q with Σ-reflects-≡ ¬p≡¬q
-- ... | fst≡fst , snd≡snd = ΣPathP ({! !} , {! !})
--
-- -- (∀ x → P x ≡ P y) → x ≡ y
--
-- postulate dne : ∀{ℓ} (P : hProp ℓ) → ¬ ¬ P ≡ P
--
-- ¬-isEquiv : ∀ ℓ → isEquiv (¬_ {ℓ = ℓ})
-- ¬-isEquiv ℓ = λ where
-- .equiv-proof P → ((¬ P) , dne P) , λ{ (Q , ¬Q≡P) →
-- let γ = {! isPropIsProp (isProp[] Q) (isProp[] Q) !}
-- in {! !} }
-- fst (fst (equiv-proof (¬-isEquiv ℓ) P)) = ¬ P
-- snd (fst (equiv-proof (¬-isEquiv ℓ) P)) = dne P
-- snd (equiv-proof (¬-isEquiv ℓ) P) (Q , ¬Q≡P) = {! !}
-- ¬[P⊓¬P]≡¬[P⊓Q]⇒[¬P≡Q] : ∀{ℓ } (P Q : hProp ℓ) → [ ¬ (P ⊓ ¬ P) ] ≡ [ ¬ (P ⊓ Q) ] → [ P ] ≡ [ ¬ Q ]
-- ¬[P⊓¬P]≡¬[P⊓Q]⇒[¬P≡Q] P Q p = {! [P⇒¬Q]≡¬[P⊓Q] P Q !}
--
-- ¬[P⊓¬P]≡¬[P⊓Q]≡[P⇒¬Q]≡[P⇒¬¬P]
-- foo : ∀{ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ') → [ (P ⇒ ¬ Q) ] → [ (¬ Q ⇒ P) ] → P ≡ ¬ Q
-- bar : ∀{ℓ} (P Q : hProp ℓ) → [ ¬ (P ⊓ Q) ] → P ≡ ¬ Q
-- -- ¬-⊓-distrib P Q ¬p⊓q
-- bar P Q ¬p⊓q = let r1 : [ (P ⇒ ¬ Q) ⊓ (Q ⇒ ¬ P) ]
-- r1 =
-- r2 : [ (Q ⇒ ¬ P) ⊓ (P ⇒ ¬ Q) ]
-- r2 =
-- in {! ¬-⊓-distrib Q P (transport (λ i → [ ¬ ⊓-comm P Q i ]) ¬p⊓q) !}
-- more logic
⊓-⊔-distribʳ : (P : hProp ℓ) (Q : hProp ℓ')(R : hProp ℓ'')
→ (Q ⊔ R) ⊓ P ≡ (Q ⊓ P) ⊔ (R ⊓ P)
⊓-⊔-distribʳ P Q R = (
(Q ⊔ R) ⊓ P ≡⟨ ⊓-comm _ _ ⟩
P ⊓ (Q ⊔ R) ≡⟨ ⊓-⊔-distribˡ P Q R ⟩
(P ⊓ Q) ⊔ (P ⊓ R) ≡⟨ ( λ i → ⊓-comm P Q i ⊔ ⊓-comm P R i) ⟩
(Q ⊓ P) ⊔ (R ⊓ P) ∎)
-- NOTE: this is in the standard library
-- ⊓-∀-distrib : (P : A → hProp ℓ) (Q : A → hProp ℓ')
-- → (∀[ a ∶ A ] P a) ⊓ (∀[ a ∶ A ] Q a) ≡ (∀[ a ∶ A ] (P a ⊓ Q a))
-- ⊓-∀-distrib P Q =
-- ⇒∶ (λ {(p , q) a → p a , q a})
-- ⇐∶ λ pq → (fst ∘ pq ) , (snd ∘ pq)
-- well, we do not have `∀-⊔-distrib`
-- ∀-⊔-distrib : ∀{ℓ ℓ' ℓ''} {A : Type ℓ} → (P : A → hProp ℓ') → (Q : A → hProp ℓ'')
-- → ((∀[ x ∶ A ] P x) ⊔ (∀[ x ∶ A ] Q x)) ≡ (∀[ x ∶ A ] (P x ⊔ Q x))
-- ∀-⊔-distrib {A = A} P Q =
-- ⇒∶ (λ [∀xPx]⊔[∀xQx] x → ⊔-elim (∀[ x ] P x) (∀[ x ] Q x) (λ _ → P x ⊔ Q x) (λ ∀xPx → inlᵖ (∀xPx x)) (λ ∀xQx → inrᵖ (∀xQx x)) [∀xPx]⊔[∀xQx])
-- ⇐∶ λ ∀x[Px⊔Qx] → {! !}
-- ∀-⊔-distribʳ : ∀{ℓ ℓ' ℓ''} {A : Type ℓ} → (P : hProp ℓ') → (Q : A → hProp ℓ'')
-- → (P ⊔ (∀[ x ∶ A ] Q x)) ≡ (∀[ x ∶ A ] (P ⊔ Q x))
-- ∀-⊔-distribʳ {A = A} P Q =
-- ⇒∶ (λ [P]⊔[∀xQx] x → ⊔-elim P (∀[ x ] Q x) (λ _ → P ⊔ Q x) (λ p → inlᵖ p) (λ ∀xQx → inrᵖ (∀xQx x)) [P]⊔[∀xQx])
-- ⇐∶ λ ∀x[P⊔Qx] → {! !}
-- ∀-⊎-distribʳ : ∀{ℓ ℓ' ℓ''} (a : Type ℓ) {B : Type ℓ'} (f : B → Type ℓ'')
-- → (a → ∀ b → ¬ᵗ f b) -- a implies that fb is wrong
-- → (∀ b → f b → ¬ᵗ a) -- b implies that a is wrong
-- → (∀ b → a ⊎ f b) -- for all b, either a holds or fb holds
-- → a ⊎ (∀ b → f b) -- either a holds or fb holds forall b
-- ∀-⊎-distribʳ a f a→¬fb fb→¬a g = {! !}
-- hProp-union and Σ-Type-union are equivalent when the two disjuncts are disjoint such that one disproves the other and vice versa
⊎-Level : ∀{A : Type ℓ}{B : Type ℓ'} → A ⊎ B → Level
⊎-Level {ℓ = ℓ } (inl x) = ℓ
⊎-Level {ℓ' = ℓ'} (inr x) = ℓ'
⊎-Type : ∀{A : Type ℓ}{B : Type ℓ'}(x : A ⊎ B) → Type (⊎-Level x)
⊎-Type {A = A} (inl x) = A
⊎-Type {B = B} (inr x) = B
⊎-pred : ∀{A : Type ℓ}{B : Type ℓ'}(x : A ⊎ B) → ⊎-Type x
⊎-pred (inl x) = x
⊎-pred (inr x) = x
⊎-predˡ : ∀{A : Type ℓ}{B : Type ℓ'}(z : A ⊎ B) → {y : A} → z ≡ inl y → A
⊎-predˡ (inl x) {y} p = x
⊎-predˡ (inr x) {y} p = y
inl-reflects-≡ : ∀{A : Type ℓ}{B : Type ℓ'} {x y : A} → ((A ⊎ B) ∋ inl x) ≡ inl y → x ≡ y
inl-reflects-≡ {A = A} {B = B} {x = x} {y = y} p = cong γ p where
γ : (z : A ⊎ B) → A
γ (inl y) = y
γ (inr y) = x
inr-reflects-≡ : ∀{A : Type ℓ}{B : Type ℓ'} {x y : B} → ((A ⊎ B) ∋ inr x) ≡ inr y → x ≡ y
inr-reflects-≡ {A = A} {B = B} {x = x} {y = y} p = cong γ p where
γ : (z : A ⊎ B) → B
γ (inl y) = x
γ (inr y) = y
isProp⊎ : ∀{ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isProp A → isProp B → (A → ¬ᵗ B) ⊎ (B → ¬ᵗ A) → isProp (A ⊎ B)
isProp⊎ pA pB X⇒¬Y (inl x) (inl y) = cong inl (pA x y)
isProp⊎ pA pB X⇒¬Y (inr x) (inr y) = cong inr (pB x y)
isProp⊎ pA pB (inl A⇒¬B) (inl x) (inr y) = ⊥-elim (A⇒¬B x y)
isProp⊎ pA pB (inr B⇒¬A) (inl x) (inr y) = ⊥-elim (B⇒¬A y x)
isProp⊎ pA pB (inl A⇒¬B) (inr x) (inl y) = ⊥-elim (A⇒¬B y x)
isProp⊎ pA pB (inr B⇒¬A) (inr x) (inl y) = ⊥-elim (B⇒¬A x y)
module _ {ℓ ℓ'} (P : hProp ℓ) (Q : hProp ℓ')
(X⇒¬Y : [ P ⇒ ¬ Q ] ⊎ [ Q ⇒ ¬ P ]) where
⊎-isProp : isProp ([ P ] ⊎ [ Q ])
⊎-isProp = isProp⊎ (isProp[] P) (isProp[] Q) X⇒¬Y
P⊎Qᵖ : hProp (ℓ-max ℓ ℓ')
P⊎Qᵖ = ([ P ] ⊎ [ Q ]) , ⊎-isProp
-- ⊎⇒⊔' : [ P⊎Qᵖ ] → [ P ⊔ Q ]
-- ⊎⇒⊔' x = ∣ x ∣
⊔⇒⊎ : [ P ⊔ Q ] → [ P⊎Qᵖ ]
abstract ⊔⇒⊎ x = ⊔-elim P Q (λ x → ([ P ] ⊎ [ Q ]) , ⊎-isProp) (λ p → inl p) (λ q → inr q) x
⊔⊎-equiv : [ P⊎Qᵖ ⇔ P ⊔ Q ]
⊔⊎-equiv = ⊎⇒⊔ P Q , ⊔⇒⊎
⊔⊎-≡ : P⊎Qᵖ ≡ P ⊔ Q
abstract
⊔⊎-≡ with ⊔⊎-equiv
... | p , q = ⇔toPath p q
| {
"alphanum_fraction": 0.4101058382,
"avg_line_length": 38.6411609499,
"ext": "agda",
"hexsha": "42b4930b0ddc06b8007ee9f41c2ee85a24614eed",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MoreLogic/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MoreLogic/Properties.agda",
"max_line_length": 144,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MoreLogic/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 8090,
"size": 14645
} |
-----------------------------------------------------------------------------------
-- This file contains facts about equational reasoning pertaining to categories. --
-----------------------------------------------------------------------------------
module Category.CatEq where
open import Level
open import Category.Category
open import Setoid.Total
-- The following models the communative square:
--
-- A ---f₁---> C
-- | |
-- f₃ f₂
-- | |
-- V V
-- D ---f₄---> D
--
-- However, as an equation.
comm-square : {l : Level}{ℂ : Cat {l}}{A B D C : Obj ℂ}
→ el (Hom ℂ A B)
→ el (Hom ℂ B C)
→ el (Hom ℂ A D)
→ el (Hom ℂ D C)
→ Set l
comm-square {ℂ = ℂ}{A}{C = C} f₁ f₂ f₃ f₄ = ⟨ Hom ℂ A C ⟩[ f₁ ○[ comp ℂ ] f₂ ≡ f₃ ○[ comp ℂ ] f₄ ]
| {
"alphanum_fraction": 0.3976331361,
"avg_line_length": 30.1785714286,
"ext": "agda",
"hexsha": "2ddce15ab9feaedd670bd7e3ed0d5ffb26c7e879",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/CatEq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/CatEq.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/CatEq.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 243,
"size": 845
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Subrings.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ _*A_ : A → A → A} (R : Ring S _+A_ _*A_) where
open import Setoids.Subset S
open Ring R
open Group additiveGroup
open import Groups.Subgroups.Definition additiveGroup
open Setoid S
open Equivalence eq
record Subring {c : _} (pred : A → Set c) : Set (a ⊔ b ⊔ c) where
field
isSubgroup : Subgroup pred
containsOne : pred 1R
closedUnderProduct : {x y : A} → pred x → pred y → pred (x *A y)
isSubset = Subgroup.isSubset isSubgroup
subringMult : {c : _} {pred : A → Set c} → (s : Subring pred) → Sg A pred → Sg A pred → Sg A pred
subringMult s (a , prA) (b , prB) = (a *A b) , Subring.closedUnderProduct s prA prB
subringIsRing : {c : _} {pred : A → Set c} → (subring : Subring pred) → Ring (subsetSetoid (Subring.isSubset subring)) (subgroupOp (Subring.isSubgroup subring)) (subringMult subring)
Ring.additiveGroup (subringIsRing sub) = subgroupIsGroup (Subring.isSubgroup sub)
Ring.*WellDefined (subringIsRing sub) {r , prR} {s , prS} {t , prT} {u , prU} r=t s=u = *WellDefined r=t s=u
Ring.1R (subringIsRing sub) = (1R , Subring.containsOne sub)
Ring.groupIsAbelian (subringIsRing sub) {a , prA} {b , prB} = groupIsAbelian
Ring.*Associative (subringIsRing sub) {a , prA} {b , prB} {c , prC} = *Associative
Ring.*Commutative (subringIsRing sub) {a , prA} {b , prB} = *Commutative
Ring.*DistributesOver+ (subringIsRing sub) {a , prA} {b , prB} {c , prC} = *DistributesOver+
Ring.identIsIdent (subringIsRing sub) {a , prA} = identIsIdent
| {
"alphanum_fraction": 0.6960621187,
"avg_line_length": 46.2307692308,
"ext": "agda",
"hexsha": "c6b7d4815d8dbd1bf21d29752da118437aa8431a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Subrings/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Subrings/Definition.agda",
"max_line_length": 182,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Subrings/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 638,
"size": 1803
} |
module JuiceMaker where
open import Human.Nat hiding (_==_)
open import Human.List hiding (remove-last)
open import Human.Equality
open import Human.Maybe
open import Human.Empty
Not : (P : Set) -> Set
Not P = P -> Empty
-- Different from Bool, shows an evidence of why the value is "yes" or "nop"
data Dec (P : Set) : Set where
yes : P -> Dec P
nop : Not P -> Dec P
-- Define constructors of what are the types of ingredients available
data Ingredient : Set where
orange : Ingredient
pineapple : Ingredient
carrot : Ingredient
apple : Ingredient
beet : Ingredient
cabbage : Ingredient
{- Pair is a polimorfic type (as is List). Depends on two types to create a type (Pair of something).
Ex: Pair Nat Nat, Pair Nat Ingredient, Pair Bool Bool -}
data Pair (A B : Set) : Set where
pair : A -> B -> Pair A B
--Create a subset (or sigma).Receives a Set and a proof/filter to restricts what items can be part of a subset
data Subset (A : Set) (IsOk : A → Set) : Set where
subset : (a : A) (b : IsOk a) → Subset A IsOk
----------------------------------------------------------------
------ Items -------
{- Restricts of which can be the pair of ingredients.
Acts like a filter to create a subset of valid Pair Nat Ingredient -}
data IsItem : Pair Nat Ingredient → Set where
100-orange : IsItem (pair 100 orange)
50-beet : IsItem (pair 50 beet)
-- An Item is a subset of Pair Nat Ingredient that restricts its elements using IsItem filter
Item : Set
Item = Subset (Pair Nat Ingredient) IsItem
{- n: quantity of ml in an item
i: a type of ingredient
p: a proof that a Pair formed by n and i passed the "filter" of IsItem
item-has-ml: returns a proof that an item has n ml -}
data ItemHasMl : (n : Nat) → (i : Item) → Set where
item-has-ml : (n : Nat) (i : Ingredient) (p : IsItem (pair n i)) → ItemHasMl n (subset (pair n i) p)
--- Items ---
100ml-orange : Item
100ml-orange = subset (pair 100 orange) 100-orange
50ml-beet : Item
50ml-beet = subset (pair 50 beet) 50-beet
default-items : List Item
default-items = 100ml-orange , 100ml-orange , 100ml-orange , end
--- Auxiliar ---
-- Quantity of ml in an item and a proof that an item has n ml
get-ml-item : (i : Item) -> Subset Nat (λ n -> ItemHasMl n i)
get-ml-item (subset .(pair 100 orange) 100-orange) = subset 100 (item-has-ml 100 orange 100-orange)
get-ml-item (subset .(pair 50 beet) 50-beet) = subset 50 (item-has-ml 50 beet 50-beet)
get-ml-item-aux : (i : Item) -> Subset Nat (λ n -> ItemHasMl n i) → Nat
get-ml-item-aux i (subset a b) = a
-- Get the ingredient in an Item
get-ingredient-item : (i : Item) → Ingredient
get-ingredient-item (subset (pair ml ing) _) = ing
----------------------------------------------------------------
------ Juice -------
{- This function helps to proof something about the ml in a list.
n: quantity of ml in a list
list: list of items
empty-list-has-0ml: a proof that 0ml represents an empty list
append-item-adds-ml: a proof that adding an item to a list, adds its ml to the result of list's ml
-}
data ListHasMl : (n : Nat) (list : List Item) → Set where
empty-list-has-0ml : ListHasMl 0 end
-- receives ml in item, an item, ml is a list, a list. Also, a proof of ItemHasMl and ListHasMl
append-item-adds-ml : ∀ it-ml it li-ml li → ItemHasMl it-ml it → ListHasMl li-ml li → ListHasMl (it-ml + li-ml) (it , li)
{- Get the quantity of ml in a list by returning the proof that n is the quantity of ml in a list.
Obs: the second argument in Subset is something applied to n.
λ is used to represents that something (ListhasMl) is applied to n. -}
get-ml-list : (list : List Item) -> Subset Nat (λ n → ListHasMl n list)
get-ml-list end = subset zero empty-list-has-0ml
get-ml-list (it , rest) with get-ml-item it | get-ml-list rest -- "with" acts similar to case, but opening values inside this case
get-ml-list (it , rest)
| subset it-ml it-ml-pf
| subset rest-ml rest-ml-pf
= let sum-ml = it-ml + rest-ml
append-list-has-sum-ml = append-item-adds-ml it-ml it rest-ml rest it-ml-pf rest-ml-pf
in subset sum-ml append-list-has-sum-ml
{- IsJuice is a filter indexed in List Item (receives a list of Item),
restricts what can become a juice (a proof that it have 300ml),
and returns an element of IsJuice, that is, a proof that it was approved to become a juice -}
data IsJuice : List Item → Set where
juice : ∀ (l : List Item) → (ListHasMl 300 l) -> IsJuice l
-- A Juice is a subset of List Item that restricts its elements using IsJuice filter
Juice : Set
Juice = Subset (List Item) IsJuice
-- default-juice : Juice
-- default-juice = subset default-items (juice default-items refl)
----------------------------------------------------------------
----- Events -----
data Event : Set where
pick : Item -> Event
undo : Event
copy : Event -- add again the last element
done : Event
remove-last : List Item → List Item
remove-last end = end
remove-last (x , l) = l
copy-last : List Item → List Item
copy-last end = end
copy-last (x , l) = x , x , l
-- Look into a list of events and return a list of items
event-to-item : List Event -> List Item
event-to-item end = end
event-to-item (pick x , e) = x , (event-to-item e) -- add element in the list and continues to look into List of Event
event-to-item (undo , e) = remove-last (event-to-item e)
event-to-item (copy , e) = copy-last (event-to-item e)
event-to-item (done , e) = event-to-item e
-- Given a list and a proof that the list has a quantity of ml, returns the ml
get-ml-list-aux : (l : List Item) → Subset Nat (λ n → ListHasMl n l) → Nat
get-ml-list-aux l (subset a b) = a
-- goal: Maybe (Subset (List (Subset (Pair Nat Ingredient) IsItem)) IsJuice)
make : List Item -> Maybe Juice
make end = nothing
make (x , l) with make l
... | just m =
let it-ml = (get-ml-item-aux x (get-ml-item x)) -- quantity of ml in x
li-ml = (get-ml-list-aux l (get-ml-list l)) --
-- is-juice = subset l (juice l (append-item-aadds-ml it-ml x li-ml l (item-has-ml it-ml x) ? ))
-- usar o get-ml-list pra provar que o suco tem 300 ml
-- is-juice = subset l (juice l (get-ml-list l))
in {! !} -- just (subset l) (juice l is-juice))
... | nothing = nothing
-- pra satisfazer o chefe
-- make-always : List Item -> Juice
-- make-always items with make items
-- ... | yes items-is-juice = subset items (juice items-is-juice)
-- ... | no items = default-juice
---------------
---- Test -----
test-list : Nat
test-list = (sum (1 , 2 , 3 , 4 , 5 , end))
event-list : List Event
event-list = pick 100ml-orange , pick 50ml-beet , pick 50ml-beet , pick 100ml-orange , end
-- qtd-juice : Nat
-- qtd-juice = sum (map get-ml-item (make event-list))
-- made-juice-has-300-ml-ex : (sum (map get-ml-item (make event-list))) == 300
-- made-juice-has-300-ml-ex = refl
-- For all sum of ml in the items, the result must be 300
-- a Nat (value) is different than a proof that this number will always be something
-- made-juice-has-300-ml : ∀ (events : List Event) → (sum (map get-ml-item (make events))) == 300
-- made-juice-has-300-ml events = {! !}
--
--
-- made-juice-has-5-items : ∀ (events : List Event) → length (map get-ingredient-item (make events)) == 5
-- made-juice-has-5-items = {! !}
| {
"alphanum_fraction": 0.6392687881,
"avg_line_length": 37.4873096447,
"ext": "agda",
"hexsha": "82604e94a42a33b5d7b493967b3fd50d7d8fd5cc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MaisaMilena/JuiceMaker",
"max_forks_repo_path": "src/JuiceMaker.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MaisaMilena/JuiceMaker",
"max_issues_repo_path": "src/JuiceMaker.agda",
"max_line_length": 130,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MaisaMilena/JuiceMaker",
"max_stars_repo_path": "src/JuiceMaker.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z",
"num_tokens": 2211,
"size": 7385
} |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.SuspensionJoin {i} (A : Type i) where
{- To -}
false, : A → Bool × A
false, a = false , a
true, : A → Bool × A
true, a = true , a
module To = SuspensionRec {i} (left false :> Bool * A) (left true) (λ a → glue (false, a) ∙ ! (glue (true, a)))
to : Suspension A → (Bool * A)
to = To.f
{- From -}
from : Bool * A → Suspension A
from = From.f module _ where
from-bool : Bool → Suspension A
from-bool false = north
from-bool true = south
from-glue : (c : Bool × A) → from-bool (fst c) == south
from-glue (false , a) = merid a
from-glue (true , a) = idp
module From = PushoutRec {d = *-span Bool A} from-bool (λ _ → south) from-glue
{- ToFrom -}
to-from : (c : Bool * A) → to (from c) == c
to-from = Pushout-elim to-from-left (λ a → glue (true , a)) to-from-glue where
to-from-left : (b : Bool) → to (from (left b)) == left b
to-from-left false = idp
to-from-left true = idp
to-from-glue' : (b : Bool) (a : A)
→ ap to (ap from (glue (b , a))) ∙' glue (true , a) == to-from-left b ∙ glue (b , a)
to-from-glue' true a =
ap to (ap from (glue (true , a))) ∙' glue (true , a) =⟨ From.glue-β (true , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩
idp ∙' glue (true , a) =⟨ ∙'-unit-l _ ⟩
glue (true , a) ∎
to-from-glue' false a =
ap to (ap from (glue (false , a))) ∙' glue (true , a) =⟨ From.glue-β (false , a) |in-ctx (λ u → ap to u ∙' glue (true , a)) ⟩
ap to (merid a) ∙' glue (true , a) =⟨ To.merid-β a |in-ctx (λ u → u ∙' glue (true , a)) ⟩
(glue (false , a) ∙ ! (glue (true , a))) ∙' glue (true , a) =⟨ coh (glue (false , a)) (glue (true , a)) ⟩
glue (false , a) ∎ where
coh : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : c == b) → (p ∙ ! q) ∙' q == p
coh idp idp = idp
to-from-glue : (c : Bool × A)
→ to-from-left (fst c) == glue (true , snd c) [ (λ z → to (from z) == z) ↓ glue c ]
to-from-glue c = ↓-∘=idf-in to from (uncurry to-from-glue' c)
{- FromTo -}
from-to : (c : Suspension A) → from (to c) == c
from-to = Suspension-elim idp idp from-to-merid where
from-to-merid' : (a : A) → ap from (ap to (merid a)) == merid a
from-to-merid' a =
ap from (ap to (merid a)) =⟨ To.merid-β a |in-ctx ap from ⟩
ap from (glue (false , a) ∙ ! (glue (true , a))) =⟨ ap-∙ from (glue (false , a)) (! (glue (true , a))) ⟩
ap from (glue (false , a)) ∙ ap from (! (glue (true , a))) =⟨ ap-! from (glue (true , a)) |in-ctx (λ u → ap from (glue (false , a)) ∙ u) ⟩
ap from (glue (false , a)) ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (false , a) |in-ctx (λ u → u ∙ ! (ap from (glue (true , a)))) ⟩
merid a ∙ ! (ap from (glue (true , a))) =⟨ From.glue-β (true , a) |in-ctx (λ u → merid a ∙ ! u) ⟩
merid a ∙ idp =⟨ ∙-unit-r _ ⟩
merid a ∎
from-to-merid : (a : A) → idp == idp [ (λ z → from (to z) == z) ↓ merid a ]
from-to-merid a = ↓-∘=idf-in from to (from-to-merid' a)
{- Conclusion -}
e : Suspension A ≃ (Bool * A)
e = equiv to from to-from from-to
| {
"alphanum_fraction": 0.5166828636,
"avg_line_length": 35.8953488372,
"ext": "agda",
"hexsha": "8b6ad690a6aa438f7597e49abf9dbc4f46191eac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/SuspensionJoin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/SuspensionJoin.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/SuspensionJoin.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1273,
"size": 3087
} |
postulate
A : Set₁
barb : Set₁
barb = {!(x y : A) → ?!}
| {
"alphanum_fraction": 0.4915254237,
"avg_line_length": 9.8333333333,
"ext": "agda",
"hexsha": "a6c9d5055afb44c995add0709167b1a42129e8c6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue4268.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue4268.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue4268.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 59
} |
open import Functors
open import Categories
open import RMonads
module RMonads.REM.Functors {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
(J : Fun C D)(M : RMonad J) where
open import Library
open import RMonads.REM M
open Cat
open Fun
open RAlg
open RAlgMorph
open RMonad M
REML : Fun C EM
REML = record {
OMap = λ X → record {
acar = T X;
astr = bind;
alaw1 = sym law2;
alaw2 = law3};
HMap = λ f → record {
amor = bind (comp D η (HMap J f));
ahom = sym law3};
fid = RAlgMorphEq (
proof
bind (comp D η (HMap J (iden C)))
≅⟨ cong (bind ∘ comp D η) (fid J) ⟩
bind (comp D η (iden D))
≅⟨ cong bind (idr D) ⟩
bind η
≅⟨ law1 ⟩
iden D ∎);
fcomp = λ{_ _ _ f g} → RAlgMorphEq (
proof
bind (comp D η (HMap J (comp C f g)))
≅⟨ cong (bind ∘ comp D η) (fcomp J) ⟩
bind (comp D η (comp D (HMap J f) (HMap J g)))
≅⟨ cong bind (sym (ass D)) ⟩
bind (comp D (comp D η (HMap J f)) (HMap J g))
≅⟨ cong (λ f₁ → bind (comp D f₁ (HMap J g))) (sym law2) ⟩
bind (comp D (comp D (bind (comp D η (HMap J f))) η) (HMap J g))
≅⟨ cong bind (ass D) ⟩
bind (comp D (bind (comp D η (HMap J f))) (comp D η (HMap J g)))
≅⟨ law3 ⟩
comp D (bind (comp D η (HMap J f))) (bind (comp D η (HMap J g)))
∎)}
REMR : Fun EM D
REMR = record {
OMap = acar;
HMap = amor;
fid = refl;
fcomp = refl}
| {
"alphanum_fraction": 0.5287517532,
"avg_line_length": 25.0175438596,
"ext": "agda",
"hexsha": "29ae8f05ca9b3ba37c038091a58c8ed01a64b7fc",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "RMonads/REM/Functors.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "RMonads/REM/Functors.agda",
"max_line_length": 69,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "RMonads/REM/Functors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 596,
"size": 1426
} |
module Sessions.Syntax.Types where
open import Level
open import Function
open import Data.Bool
open import Data.List
open import Data.List.All
open import Data.List.Membership.Propositional
open import Data.List.Relation.Binary.Permutation.Inductive
open import Data.List.Relation.Ternary.Interleaving.Propositional as I
open import Data.List.Relation.Ternary.Interleaving.Properties
open import Data.List.Relation.Binary.Equality.Propositional
open import Data.Product
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Codata.Thunk as Thunk
open import Algebra
open import Algebra.FunctionProperties
open import Relation.Unary hiding (_∈_; _⊢_)
open import Relation.Nullary
open import Relation.Nullary.Decidable as DecM
open import Relation.Nullary.Product
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open import Relation.Ternary.Separation
open import Relation.Ternary.Separation.Construct.Product
open import Relation.Ternary.Separation.Construct.List
{- Unrestricted-, Session- and Expression types-}
module _ where
mutual
-- crefnel types
infixr 10 _¿_
data SType : Set where
_!_ _¿_ : Type → SType → SType
end : SType
data Type : Set where
unit : Type
cref : SType → Type
prod : Type → Type → Type
_⊸_ : Type → Type → Type
LCtx = List Type -- linear contexts
variable
Γ Γ' Γ₁ Γ₂ Γ₃ Γ₄ : LCtx
{- Some conventions -}
variable
a b c : Type
α β γ : SType
{- Duality -}
module _ where
infixl 1000 _⁻¹
_⁻¹ : SType → SType
(a ! β) ⁻¹ = a ¿ β ⁻¹
(a ¿ β) ⁻¹ = a ! β ⁻¹
end ⁻¹ = end
dual-end : ∀ {α} → α ⁻¹ ≡ end → α ≡ end
dual-end {x ! α} ()
dual-end {x ¿ α} ()
dual-end {end} refl = refl
dual-involutive : ∀ {α} → α ⁻¹ ⁻¹ ≡ α
dual-involutive {x ! α} = cong (_!_ _) dual-involutive
dual-involutive {x ¿ α} = cong (_¿_ _) dual-involutive
dual-involutive {end} = refl
| {
"alphanum_fraction": 0.7003089598,
"avg_line_length": 26.602739726,
"ext": "agda",
"hexsha": "991539f8a8030abc4b80f3d67540b0086c7b5c94",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Sessions/Syntax/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Sessions/Syntax/Types.agda",
"max_line_length": 70,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Sessions/Syntax/Types.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 592,
"size": 1942
} |
----------------------------------------------------------------------------------
-- Types for parse trees
----------------------------------------------------------------------------------
module cedille-types where
open import lib
-- open import parse-tree
posinfo = string
alpha = string
alpha-bar-3 = string
alpha-range-1 = string
alpha-range-2 = string
bvar = string
bvar-bar-13 = string
fpth = string
fpth-bar-15 = string
fpth-bar-16 = string
fpth-bar-17 = string
fpth-plus-14 = string
fpth-star-18 = string
kvar = string
kvar-bar-19 = string
kvar-star-20 = string
num = string
num-plus-5 = string
numone = string
numone-range-4 = string
numpunct = string
numpunct-bar-10 = string
numpunct-bar-6 = string
numpunct-bar-7 = string
numpunct-bar-8 = string
numpunct-bar-9 = string
qkvar = string
qvar = string
var = string
var-bar-11 = string
var-star-12 = string
{-# FOREIGN GHC import qualified CedilleTypes #-}
data arg : Set
args : Set
opacity : Set
data cmd : Set
cmds : Set
data decl : Set
data defDatatype : Set
data ctr : Set
ctrs : Set
data defTermOrType : Set
imports : Set
data imprt : Set
data kind : Set
data leftRight : Set
data liftingType : Set
data lterm : Set
lterms : Set
data optType : Set
maybeErased : Set
forceErased : Set
maybeMinus : Set
data nums : Set
data optAs : Set
data optClass : Set
data optGuide : Set
rhoHnf : Set
data optNums : Set
optPublic : Set
data optTerm : Set
params : Set
data start : Set
data term : Set
data theta : Set
data tk : Set
data type : Set
data vars : Set
cases : Set
data case : Set
caseArgs : Set
data caseArg : Set
{-# COMPILE GHC arg = type CedilleTypes.Arg #-}
{-# COMPILE GHC args = type CedilleTypes.Args #-}
{-# COMPILE GHC opacity = type CedilleTypes.Opacity #-}
{-# COMPILE GHC cmd = type CedilleTypes.Cmd #-}
{-# COMPILE GHC cmds = type CedilleTypes.Cmds #-}
{-# COMPILE GHC decl = type CedilleTypes.Decl #-}
{-# COMPILE GHC defDatatype = type CedilleTypes.DefDatatype #-}
{-# COMPILE GHC ctr = type CedilleTypes.DataCtr #-}
{-# COMPILE GHC ctrs = type CedilleTypes.Ctrs #-}
{-# COMPILE GHC defTermOrType = type CedilleTypes.DefTermOrType #-}
{-# COMPILE GHC imports = type CedilleTypes.Imports #-}
{-# COMPILE GHC imprt = type CedilleTypes.Imprt #-}
{-# COMPILE GHC kind = type CedilleTypes.Kind #-}
{-# COMPILE GHC leftRight = type CedilleTypes.LeftRight #-}
{-# COMPILE GHC liftingType = type CedilleTypes.LiftingType #-}
{-# COMPILE GHC lterm = type CedilleTypes.Lterm #-}
{-# COMPILE GHC lterms = type CedilleTypes.Lterms #-}
{-# COMPILE GHC optType = type CedilleTypes.OptType #-}
{-# COMPILE GHC maybeErased = type CedilleTypes.MaybeErased #-}
{-# COMPILE GHC forceErased = type CedilleTypes.MaybeErased #-}
{-# COMPILE GHC maybeMinus = type CedilleTypes.MaybeMinus #-}
{-# COMPILE GHC nums = type CedilleTypes.Nums #-}
{-# COMPILE GHC optAs = type CedilleTypes.OptAs #-}
{-# COMPILE GHC optClass = type CedilleTypes.OptClass #-}
{-# COMPILE GHC optGuide = type CedilleTypes.OptGuide #-}
{-# COMPILE GHC rhoHnf = type CedilleTypes.RhoHnf #-}
{-# COMPILE GHC optNums = type CedilleTypes.OptNums #-}
{-# COMPILE GHC optPublic = type CedilleTypes.OptPublic #-}
{-# COMPILE GHC optTerm = type CedilleTypes.OptTerm #-}
{-# COMPILE GHC params = type CedilleTypes.Params #-}
{-# COMPILE GHC start = type CedilleTypes.Start #-}
{-# COMPILE GHC term = type CedilleTypes.Term #-}
{-# COMPILE GHC theta = type CedilleTypes.Theta #-}
{-# COMPILE GHC tk = type CedilleTypes.Tk #-}
{-# COMPILE GHC type = type CedilleTypes.Type #-}
{-# COMPILE GHC vars = type CedilleTypes.Vars #-}
{-# COMPILE GHC cases = type CedilleTypes.Cases #-}
{-# COMPILE GHC case = type CedilleTypes.Case #-}
{-# COMPILE GHC caseArgs = type CedilleTypes.CaseArgs #-}
{-# COMPILE GHC caseArg = type CedilleTypes.CaseArg #-}
data arg where
TermArg : maybeErased → term → arg
TypeArg : type → arg
{-# COMPILE GHC arg = data CedilleTypes.Arg (CedilleTypes.TermArg | CedilleTypes.TypeArg) #-}
args = 𝕃 arg
opacity = 𝔹
data cmd where
DefKind : posinfo → kvar → params → kind → posinfo → cmd
DefTermOrType : opacity → defTermOrType → posinfo → cmd
DefDatatype : defDatatype → posinfo → cmd
ImportCmd : imprt → cmd
{-# COMPILE GHC cmd = data CedilleTypes.Cmd (CedilleTypes.DefKind | CedilleTypes.DefTermOrType | CedilleTypes.DefDatatype |CedilleTypes.ImportCmd) #-}
cmds = 𝕃 cmd
data decl where
Decl : posinfo → posinfo → maybeErased → bvar → tk → posinfo → decl
{-# COMPILE GHC decl = data CedilleTypes.Decl (CedilleTypes.Decl) #-}
data defDatatype where
Datatype : posinfo → posinfo → var → params → kind → ctrs → defDatatype
{-# COMPILE GHC defDatatype = data CedilleTypes.DefDatatype (CedilleTypes.Datatype) #-}
data ctr where
Ctr : posinfo → var → type → ctr
{-# COMPILE GHC ctr = data CedilleTypes.DataCtr (CedilleTypes.Ctr) #-}
ctrs = 𝕃 ctr
data defTermOrType where
DefTerm : posinfo → var → optType → term → defTermOrType
DefType : posinfo → var → kind → type → defTermOrType
{-# COMPILE GHC defTermOrType = data CedilleTypes.DefTermOrType (CedilleTypes.DefTerm | CedilleTypes.DefType) #-}
imports = 𝕃 imprt
data imprt where
Import : posinfo → optPublic → posinfo → fpth → optAs → args → posinfo → imprt
{-# COMPILE GHC imprt = data CedilleTypes.Imprt (CedilleTypes.Import) #-}
data kind where
KndArrow : kind → kind → kind
KndParens : posinfo → kind → posinfo → kind
KndPi : posinfo → posinfo → bvar → tk → kind → kind
KndTpArrow : type → kind → kind
KndVar : posinfo → qkvar → args → kind
Star : posinfo → kind
{-# COMPILE GHC kind = data CedilleTypes.Kind (CedilleTypes.KndArrow | CedilleTypes.KndParens | CedilleTypes.KndPi | CedilleTypes.KndTpArrow | CedilleTypes.KndVar | CedilleTypes.Star) #-}
data leftRight where
Both : leftRight
Left : leftRight
Right : leftRight
{-# COMPILE GHC leftRight = data CedilleTypes.LeftRight (CedilleTypes.Both | CedilleTypes.Left | CedilleTypes.Right) #-}
data liftingType where
LiftArrow : liftingType → liftingType → liftingType
LiftParens : posinfo → liftingType → posinfo → liftingType
LiftPi : posinfo → bvar → type → liftingType → liftingType
LiftStar : posinfo → liftingType
LiftTpArrow : type → liftingType → liftingType
{-# COMPILE GHC liftingType = data CedilleTypes.LiftingType (CedilleTypes.LiftArrow | CedilleTypes.LiftParens | CedilleTypes.LiftPi | CedilleTypes.LiftStar | CedilleTypes.LiftTpArrow) #-}
data lterm where
Lterm : maybeErased → term → lterm
{-# COMPILE GHC lterm = data CedilleTypes.Lterm (CedilleTypes.MkLterm) #-}
lterms = 𝕃 lterm
data optType where
SomeType : type → optType
NoType : optType
{-# COMPILE GHC optType = data CedilleTypes.OptType (CedilleTypes.SomeType | CedilleTypes.NoType) #-}
maybeErased = 𝔹
forceErased = 𝔹
maybeMinus = 𝔹
data nums where
NumsStart : num → nums
NumsNext : num → nums → nums
{-# COMPILE GHC nums = data CedilleTypes.Nums (CedilleTypes.NumsStart | CedilleTypes.NumsNext) #-}
data optAs where
NoOptAs : optAs
SomeOptAs : posinfo → var → optAs
{-# COMPILE GHC optAs = data CedilleTypes.OptAs (CedilleTypes.NoOptAs | CedilleTypes.SomeOptAs) #-}
optPublic = 𝔹
data optClass where
NoClass : optClass
SomeClass : tk → optClass
{-# COMPILE GHC optClass = data CedilleTypes.OptClass (CedilleTypes.NoClass | CedilleTypes.SomeClass) #-}
data optGuide where
NoGuide : optGuide
Guide : posinfo → var → type → optGuide
{-# COMPILE GHC optGuide = data CedilleTypes.OptGuide (CedilleTypes.NoGuide | CedilleTypes.Guide) #-}
rhoHnf = 𝔹
data optNums where
NoNums : optNums
SomeNums : nums → optNums
{-# COMPILE GHC optNums = data CedilleTypes.OptNums (CedilleTypes.NoNums | CedilleTypes.SomeNums) #-}
data optTerm where
NoTerm : optTerm
SomeTerm : term → posinfo → optTerm
{-# COMPILE GHC optTerm = data CedilleTypes.OptTerm (CedilleTypes.NoTerm | CedilleTypes.SomeTerm) #-}
params = 𝕃 decl
data start where
File : imports → posinfo → posinfo → qvar → params → cmds → posinfo → start
{-# COMPILE GHC start = data CedilleTypes.Start (CedilleTypes.File) #-}
data term where
App : term → maybeErased → term → term
AppTp : term → type → term
Beta : posinfo → optTerm → optTerm → term
Chi : posinfo → optType → term → term
Delta : posinfo → optType → term → term
Epsilon : posinfo → leftRight → maybeMinus → term → term
Hole : posinfo → term
IotaPair : posinfo → term → term → optGuide → posinfo → term
IotaProj : term → num → posinfo → term
Lam : posinfo → maybeErased → posinfo → bvar → optClass → term → term
Let : posinfo → forceErased → defTermOrType → term → term
Open : posinfo → opacity → posinfo → var → term → term
Parens : posinfo → term → posinfo → term
Phi : posinfo → term → term → term → posinfo → term
Rho : posinfo → rhoHnf → optNums → term → optGuide → term → term
Sigma : posinfo → term → term
Theta : posinfo → theta → term → lterms → term
Mu : posinfo → posinfo → bvar → term → optType → posinfo → cases → posinfo → term
Mu' : posinfo → optTerm → term → optType → posinfo → cases → posinfo → term
Var : posinfo → qvar → term
{-# COMPILE GHC term = data CedilleTypes.Term (CedilleTypes.App | CedilleTypes.AppTp | CedilleTypes.Beta | CedilleTypes.Chi | CedilleTypes.Delta | CedilleTypes.Epsilon | CedilleTypes.Hole | CedilleTypes.IotaPair | CedilleTypes.IotaProj | CedilleTypes.Lam | CedilleTypes.Let | CedilleTypes.Open | CedilleTypes.Parens | CedilleTypes.Phi | CedilleTypes.Rho | CedilleTypes.Sigma | CedilleTypes.Theta | CedilleTypes.Mu | CedilleTypes.Mu' | CedilleTypes.Var) #-}
data case where
Case : posinfo → var → caseArgs → term → case
{-# COMPILE GHC case = data CedilleTypes.Case (CedilleTypes.MkCase) #-}
cases = 𝕃 case
data caseArg where
CaseTermArg : posinfo → maybeErased → var → caseArg
CaseTypeArg : posinfo → var → caseArg
{-# COMPILE GHC caseArg = data CedilleTypes.CaseArg (CedilleTypes.CaseTermArg | CedilleTypes.CaseTypeArg) #-}
caseArgs = 𝕃 caseArg
data theta where
Abstract : theta
AbstractEq : theta
AbstractVars : vars → theta
{-# COMPILE GHC theta = data CedilleTypes.Theta (CedilleTypes.Abstract | CedilleTypes.AbstractEq | CedilleTypes.AbstractVars) #-}
data tk where
Tkk : kind → tk
Tkt : type → tk
{-# COMPILE GHC tk = data CedilleTypes.Tk (CedilleTypes.Tkk | CedilleTypes.Tkt) #-}
data type where
Abs : posinfo → maybeErased → posinfo → bvar → tk → type → type
Iota : posinfo → posinfo → bvar → type → type → type
Lft : posinfo → posinfo → var → term → liftingType → type
NoSpans : type → posinfo → type
TpLet : posinfo → defTermOrType → type → type
TpApp : type → type → type
TpAppt : type → term → type
TpArrow : type → maybeErased → type → type
TpEq : posinfo → term → term → posinfo → type
TpHole : posinfo → type
TpLambda : posinfo → posinfo → bvar → tk → type → type
TpParens : posinfo → type → posinfo → type
TpVar : posinfo → qvar → type
{-# COMPILE GHC type = data CedilleTypes.Type (CedilleTypes.Abs | CedilleTypes.Iota | CedilleTypes.Lft | CedilleTypes.NoSpans | CedilleTypes.TpLet | CedilleTypes.TpApp | CedilleTypes.TpAppt | CedilleTypes.TpArrow | CedilleTypes.TpEq | CedilleTypes.TpHole | CedilleTypes.TpLambda | CedilleTypes.TpParens | CedilleTypes.TpVar) #-}
data vars where
VarsNext : var → vars → vars
VarsStart : var → vars
{-# COMPILE GHC vars = data CedilleTypes.Vars (CedilleTypes.VarsNext | CedilleTypes.VarsStart) #-}
pattern Erased = tt
pattern NotErased = ff
pattern Pi = NotErased
pattern All = Erased
pattern OpacTrans = tt
pattern OpacOpaque = ff
pattern IsPublic = tt
pattern NotPublic = ff
pattern EpsHnf = ff
pattern EpsHanf = tt
pattern RhoPlain = ff
pattern RhoPlus = tt
-- embedded types:
-- aterm = term
-- atype = type
-- lliftingType = liftingType
-- lterm = term
-- ltype = type
-- pterm = term
| {
"alphanum_fraction": 0.7025558292,
"avg_line_length": 34.9465875371,
"ext": "agda",
"hexsha": "c4e586b36386604a3310fd793a2e54227a233caf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CarlOlson/cedille",
"max_forks_repo_path": "src/cedille-types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CarlOlson/cedille",
"max_issues_repo_path": "src/cedille-types.agda",
"max_line_length": 456,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f5ce42258b7d9bc66f75cd679c785d6133b82b58",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CarlOlson/cedille",
"max_stars_repo_path": "src/cedille-types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3530,
"size": 11777
} |
------------------------------------------------------------------------
-- A solver for certain natural number equalities
------------------------------------------------------------------------
-- The standard library's solver is used.
{-# OPTIONS --without-K --safe #-}
open import Equality
module Nat.Solver
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
import Equality.Propositional as EP
open import Equality.Instances-related
open import Prelude
open import Bijection eq using (_↔_)
open import Function-universe eq
open import Data.Nat.Solver
open import Data.Vec as Vec
open import Data.Vec.N-ary
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (Equivalence)
import Relation.Binary.Reflection
import Relation.Binary.PropositionalEquality as P
open +-*-Solver public using (_:=_; _:+_; _:*_; _:^_)
open +-*-Solver.Polynomial public using (con)
open +-*-Solver hiding (solve)
open Relation.Binary.Reflection (P.setoid _) var ⟦_⟧ ⟦_⟧↓ correct
using (close)
private
-- Some simple lemmas.
≡↔≡ : ∀ {a} {A : Type a} {x y : A} → x ≡ y ↔ x P.≡ y
≡↔≡ = proj₁ (all-equality-types-isomorphic eq EP.equality-with-J)
≡→≡ : ∀ {a} {A : Type a} {x y : A} → x ≡ y → x P.≡ y
≡→≡ = _↔_.to ≡↔≡
≡←≡ : ∀ {a} {A : Type a} {x y : A} → x P.≡ y → x ≡ y
≡←≡ = _↔_.from ≡↔≡
-- A variant of +-*-Solver.solve.
solve :
∀ n (f : N-ary n (Polynomial n)
(Polynomial n × Polynomial n)) →
Eqʰ n _≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧↓)
(curryⁿ ⟦ proj₂ (close n f) ⟧↓) →
Eq n _≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧)
(curryⁿ ⟦ proj₂ (close n f) ⟧)
solve n f =
Eqʰ n _≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧↓)
(curryⁿ ⟦ proj₂ (close n f) ⟧↓) ↝⟨ Eqʰ-to-Eq n _≡_ ⟩
Eq n _≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧↓)
(curryⁿ ⟦ proj₂ (close n f) ⟧↓) ↔⟨⟩
∀ⁿ n (curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) ↝⟨ Equivalence.to (uncurry-∀ⁿ n) ⟨$⟩_ ⟩
(∀ (xs : Vec _ n) →
(curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) $ⁿ xs) ↝⟨ (∀-cong _ λ xs → ≡⇒↝ _ $ ≡←≡ $ left-inverse _ xs) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) ↝⟨ (∀-cong _ λ _ → ≡→≡) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) ↝⟨ (∀-cong _ λ xs → ≡⇒↝ _ $ sym $ ≡←≡ $ left-inverse _ xs) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) $ⁿ xs) ↝⟨ Equivalence.from (uncurry-∀ⁿ n) ⟨$⟩_ ⟩
∀ⁿ n (curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧↓ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧↓ $ⁿ xs)) ↔⟨⟩
Eq n P._≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧↓)
(curryⁿ ⟦ proj₂ (close n f) ⟧↓) ↝⟨ Eq-to-Eqʰ n P._≡_ ⟩
Eqʰ n P._≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧↓)
(curryⁿ ⟦ proj₂ (close n f) ⟧↓) ↝⟨ +-*-Solver.solve n f ⟩
Eq n P._≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧)
(curryⁿ ⟦ proj₂ (close n f) ⟧) ↔⟨⟩
∀ⁿ n (curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) ↝⟨ Equivalence.to (uncurry-∀ⁿ n) ⟨$⟩_ ⟩
(∀ (xs : Vec _ n) →
(curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) $ⁿ xs) ↝⟨ (∀-cong _ λ xs → ≡⇒↝ _ $ ≡←≡ $ left-inverse _ xs) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) P.≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) ↝⟨ (∀-cong _ λ _ → ≡←≡) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) ↝⟨ (∀-cong _ λ xs → ≡⇒↝ _ $ sym $ ≡←≡ $ left-inverse _ xs) ⟩
(∀ (xs : Vec _ n) →
(curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) $ⁿ xs) ↝⟨ Equivalence.from (uncurry-∀ⁿ n) ⟨$⟩_ ⟩
∀ⁿ n (curryⁿ λ xs → (curryⁿ ⟦ proj₁ (close n f) ⟧ $ⁿ xs) ≡
(curryⁿ ⟦ proj₂ (close n f) ⟧ $ⁿ xs)) ↔⟨⟩
Eq n _≡_ (curryⁿ ⟦ proj₁ (close n f) ⟧)
(curryⁿ ⟦ proj₂ (close n f) ⟧) □
| {
"alphanum_fraction": 0.4661276224,
"avg_line_length": 37.5081967213,
"ext": "agda",
"hexsha": "9d2d8b875ea4edfaa0f47455061b1dfe2ab9ce18",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Nat/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Nat/Solver.agda",
"max_line_length": 127,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Nat/Solver.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 1979,
"size": 4576
} |
{-
This second-order equational theory was created from the following second-order syntax description:
syntax CommMonoid | CM
type
* : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
-}
module CommMonoid.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import CommMonoid.Signature
open import CommMonoid.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution CM:Syn
open import SOAS.Metatheory.SecondOrder.Equality CM:Syn
private
variable
α β γ τ : *T
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ CM) α Γ → (𝔐 ▷ CM) α Γ → Set where
εU⊕ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ε ⊕ 𝔞 ≋ₐ 𝔞
⊕A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ⊕ 𝔟) ⊕ 𝔠 ≋ₐ 𝔞 ⊕ (𝔟 ⊕ 𝔠)
⊕C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ 𝔟 ≋ₐ 𝔟 ⊕ 𝔞
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
-- Derived equations
εU⊕ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ⊕ ε ≋ 𝔞
εU⊕ᴿ = tr (ax ⊕C with《 𝔞 ◃ ε 》) (ax εU⊕ᴸ with《 𝔞 》)
| {
"alphanum_fraction": 0.5769854133,
"avg_line_length": 22.8518518519,
"ext": "agda",
"hexsha": "d5b2be5c2a02c629959668b32b6c79591365a63f",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/CommMonoid/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/CommMonoid/Equality.agda",
"max_line_length": 99,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/CommMonoid/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 614,
"size": 1234
} |
module fizzbuzz where
import Data.Nat as N
import Data.Nat.DivMod as N
import Data.Nat.Show as N
import Data.Bool as B
import Data.Fin as F
import Data.Unit as U
import Data.String as S
open import Data.Product using (_,_ ; _×_)
open import IO
open import Agda.Builtin.Coinduction
open import Relation.Nullary
open import Function
congruent : N.ℕ → N.ℕ → B.Bool
congruent n N.zero = B.false
congruent n (N.suc m) with N._≟_ 0 $ F.toℕ (N._mod_ n (N.suc m) {U.tt})
... | yes _ = B.true
... | no _ = B.false
_and_ : {A B : Set} → A → B → A × B
_and_ = _,_
fizzbuzz : N.ℕ → S.String
fizzbuzz N.zero = "fizzbuzz"
fizzbuzz n with congruent n 3 and congruent n 5
... | B.true , B.true = "fizzbuzz"
... | B.true , B.false = "fizz"
... | B.false , B.true = "buzz"
... | B.false , B.false = N.show n
worker : N.ℕ → IO U.⊤
worker N.zero = putStrLn $ fizzbuzz N.zero
worker (N.suc n) = ♯ worker n >> ♯ putStrLn (fizzbuzz $ N.suc n)
main = run $ worker 100
| {
"alphanum_fraction": 0.623,
"avg_line_length": 26.3157894737,
"ext": "agda",
"hexsha": "d9a2ef9b0ec1a4ac525875d3af47aef3d038b69e",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/examples-that-run/fizzbuzz/src-agda/fizzbuzz.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/examples-that-run/fizzbuzz/src-agda/fizzbuzz.agda",
"max_line_length": 71,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/examples-that-run/fizzbuzz/src-agda/fizzbuzz.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 357,
"size": 1000
} |
module Ag12 where
import Relation.Binary.PropositionalEquality as Eq
open Eq
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Relation.Nullary using (¬_)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function
open import Ag09 hiding (_∘_)
-- open import Data.Product using (Σ; _,_; ∃; Σ-syntax; ∃-syntax)
open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc)
open ≡-Reasoning
open ≃-Reasoning
postulate
funExt : ∀ {m n : Level} {A : Set m} {B : Set n} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
→ f ≡ g
lemma₀ : ∀ {A B : Set} → (a : A × B) → ⟨ proj₁ a , proj₂ a ⟩ ≡ a
lemma₀ ⟨ fst , snd ⟩ = refl
lemma₁ : ∀ {A : Set} {B C : A → Set}
→ (f : (x : A) → B x × C x)
→ (λ a → ⟨ proj₁ (f a) , proj₂ (f a) ⟩) ≡ f
lemma₁ f = refl
∀-distrib-× : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x × C x) ≃ (∀ (x : A) → B x) × (∀ (x : A) → C x)
∀-distrib-× {A} {B} {C} =
record
{ to = λ bc → ⟨ proj₁ ∘ bc , proj₂ ∘ bc ⟩
; from = λ bc a → ⟨ proj₁ bc a , proj₂ bc a ⟩
; from∘to = λ f → refl
; to∘from = λ f → refl
}
⊎∀-implies-∀⊎ : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x) ⊎ (∀ (x : A) → C x) → ∀ (x : A) → B x ⊎ C x
⊎∀-implies-∀⊎ (_⊎_.inj₁ x₁) x = _⊎_.inj₁ (x₁ x)
⊎∀-implies-∀⊎ (_⊎_.inj₂ y) x = _⊎_.inj₂ (y x)
data Σ (A : Set) (B : A → Set) : Set where
⟨_,_⟩ : (x : A) → B x → Σ A B
Σ-syntax = Σ
infix 2 Σ-syntax
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
∃ : ∀ {A : Set} (B : A → Set) → Set
∃ {A} B = Σ A B
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
∃-distrib-⊎ : ∀ {A : Set} {B C : A → Set} →
∃[ x ] (B x ⊎ C x) ≃ (∃[ x ] B x) ⊎ (∃[ x ] C x)
∃-distrib-⊎ =
record
{ to = λ x → {!!}
; from = λ{ (inj₁ x) → ⟨ {!!} , {!!} ⟩ ; (inj₂ x) → {!!} }
; from∘to = {!!}
; to∘from = {!!}
}
| {
"alphanum_fraction": 0.4735169492,
"avg_line_length": 29.0461538462,
"ext": "agda",
"hexsha": "1be3c1a9a3465def6ae50338d4424d3781087b23",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag12.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag12.agda",
"max_line_length": 74,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag12.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 903,
"size": 1888
} |
open import IO
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
seven = suc (suc (suc (suc (suc (suc (suc zero))))))
main = run (putStrLn "Hello, world!")
| {
"alphanum_fraction": 0.5844155844,
"avg_line_length": 15.4,
"ext": "agda",
"hexsha": "f3837eb3584cb61762eac780c0a5b56b0c51a568",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "115a03f08d30d8ba49f02c9692c289cbfb242358",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "raventid/coursera_learning",
"max_forks_repo_path": "agda/plt/chapter1/test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "115a03f08d30d8ba49f02c9692c289cbfb242358",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "raventid/coursera_learning",
"max_issues_repo_path": "agda/plt/chapter1/test.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "115a03f08d30d8ba49f02c9692c289cbfb242358",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "raventid/coursera_learning",
"max_stars_repo_path": "agda/plt/chapter1/test.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-28T09:26:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-28T09:26:00.000Z",
"num_tokens": 58,
"size": 154
} |
-- Andreas, 2016-09-19, issue #2168, reported by Nisse
-- {-# OPTIONS -v tc.cover:10 #-}
-- {-# OPTIONS -v tc.cover.splittree:30 -v tc.cc:40 -v tc.cover.split.con:30 #-}
open import Common.Equality
data Three : Set where
one two three : Three
data Bool : Set where
true false : Bool
P : Bool → Bool → Three
P z false = one
P false = λ _ → two -- This caused internal error during clause compilation.
P z true = three
test-one : ∀ x → P x false ≡ one
test-one true = refl
test-one false = refl
test-two : P false true ≡ two
test-two = refl
test-three : P true true ≡ three
test-three = refl
| {
"alphanum_fraction": 0.6639072848,
"avg_line_length": 21.5714285714,
"ext": "agda",
"hexsha": "4be7cb29ed3cefe94f434c45a13a9405f63c0d76",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2168b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2168b.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2168b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 185,
"size": 604
} |
{-# OPTIONS --without-K --safe #-}
module Quasigroup.Bundles where
open import Algebra.Core
open import Quasigroup.Structures
open import Relation.Binary
open import Level
open import Algebra.Bundles
open import Algebra.Structures
record Pique c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infixl 7 _\\_
infixl 7 _//_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
_\\_ : Op₂ Carrier
_//_ : Op₂ Carrier
ε : Carrier
isPique : IsPique _≈_ _∙_ _\\_ _//_ ε
open IsPique isPique public
| {
"alphanum_fraction": 0.6473684211,
"avg_line_length": 19.6551724138,
"ext": "agda",
"hexsha": "1923dd637390c9ea86a47261e3d01595686d9dcd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "src/Quasigroup/Bundles.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "src/Quasigroup/Bundles.agda",
"max_line_length": 42,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "src/Quasigroup/Bundles.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 197,
"size": 570
} |
module Issue413 where
data Bool : Set where
data ℕ : Set where
zero : ℕ
data Type : (A : Set) → Set where
isBool : Type Bool
isℕ : Type ℕ
g : (A : Set) → Type A → Type A → ℕ
g .Bool isBool isBool = zero
| {
"alphanum_fraction": 0.602739726,
"avg_line_length": 14.6,
"ext": "agda",
"hexsha": "431eed9ec9b64db0c05af31bbdd43dba40dfe7b5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue413.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue413.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue413.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 77,
"size": 219
} |
module Text.Greek.SBLGNT.2Tim where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Β : List (Word)
ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Β =
word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.1.1"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.1"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.1.1"
∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.1.1"
∷ word (κ ∷ α ∷ τ ∷ []) "2Tim.1.1"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.1"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "2Tim.1.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.1.1"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.1"
∷ word (Τ ∷ ι ∷ μ ∷ ο ∷ θ ∷ έ ∷ ῳ ∷ []) "2Tim.1.2"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ῷ ∷ []) "2Tim.1.2"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ῳ ∷ []) "2Tim.1.2"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Tim.1.2"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "2Tim.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "2Tim.1.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.1.2"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.2"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.1.2"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.1.2"
∷ word (Χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Tim.1.3"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "2Tim.1.3"
∷ word (τ ∷ ῷ ∷ []) "2Tim.1.3"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Tim.1.3"
∷ word (ᾧ ∷ []) "2Tim.1.3"
∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ []) "2Tim.1.3"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.1.3"
∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.1.3"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.3"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾷ ∷ []) "2Tim.1.3"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.1.3"
∷ word (ὡ ∷ ς ∷ []) "2Tim.1.3"
∷ word (ἀ ∷ δ ∷ ι ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.1.3"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "2Tim.1.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.3"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Tim.1.3"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.3"
∷ word (μ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.3"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.3"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Tim.1.3"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "2Tim.1.3"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.1.3"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Tim.1.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.3"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "2Tim.1.3"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ο ∷ θ ∷ ῶ ∷ ν ∷ []) "2Tim.1.4"
∷ word (σ ∷ ε ∷ []) "2Tim.1.4"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.1.4"
∷ word (μ ∷ ε ∷ μ ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.1.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "2Tim.1.4"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.1.4"
∷ word (δ ∷ α ∷ κ ∷ ρ ∷ ύ ∷ ω ∷ ν ∷ []) "2Tim.1.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2Tim.1.4"
∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Tim.1.4"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ []) "2Tim.1.4"
∷ word (ὑ ∷ π ∷ ό ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.1.5"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "2Tim.1.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.1.5"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.5"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "2Tim.1.5"
∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "2Tim.1.5"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Tim.1.5"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "2Tim.1.5"
∷ word (ἐ ∷ ν ∷ ῴ ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Tim.1.5"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.1.5"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.5"
∷ word (τ ∷ ῇ ∷ []) "2Tim.1.5"
∷ word (μ ∷ ά ∷ μ ∷ μ ∷ ῃ ∷ []) "2Tim.1.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "2Tim.1.5"
∷ word (Λ ∷ ω ∷ ΐ ∷ δ ∷ ι ∷ []) "2Tim.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.5"
∷ word (τ ∷ ῇ ∷ []) "2Tim.1.5"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "2Tim.1.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "2Tim.1.5"
∷ word (Ε ∷ ὐ ∷ ν ∷ ί ∷ κ ∷ ῃ ∷ []) "2Tim.1.5"
∷ word (π ∷ έ ∷ π ∷ ε ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "2Tim.1.5"
∷ word (δ ∷ ὲ ∷ []) "2Tim.1.5"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.5"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.5"
∷ word (σ ∷ ο ∷ ί ∷ []) "2Tim.1.5"
∷ word (δ ∷ ι ∷ []) "2Tim.1.6"
∷ word (ἣ ∷ ν ∷ []) "2Tim.1.6"
∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.6"
∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ []) "2Tim.1.6"
∷ word (σ ∷ ε ∷ []) "2Tim.1.6"
∷ word (ἀ ∷ ν ∷ α ∷ ζ ∷ ω ∷ π ∷ υ ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.1.6"
∷ word (τ ∷ ὸ ∷ []) "2Tim.1.6"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "2Tim.1.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.6"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.1.6"
∷ word (ὅ ∷ []) "2Tim.1.6"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.1.6"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.6"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "2Tim.1.6"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.1.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.1.6"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "2Tim.1.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.1.6"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Tim.1.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.1.6"
∷ word (ο ∷ ὐ ∷ []) "2Tim.1.7"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.1.7"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "2Tim.1.7"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Tim.1.7"
∷ word (ὁ ∷ []) "2Tim.1.7"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Tim.1.7"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "2Tim.1.7"
∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.1.7"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.1.7"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "2Tim.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.7"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "2Tim.1.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.7"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.1.7"
∷ word (Μ ∷ ὴ ∷ []) "2Tim.1.8"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Tim.1.8"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ ς ∷ []) "2Tim.1.8"
∷ word (τ ∷ ὸ ∷ []) "2Tim.1.8"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.1.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.8"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.1.8"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.1.8"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "2Tim.1.8"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "2Tim.1.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.1.8"
∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.1.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.1.8"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ κ ∷ ο ∷ π ∷ ά ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.1.8"
∷ word (τ ∷ ῷ ∷ []) "2Tim.1.8"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "2Tim.1.8"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.1.8"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Tim.1.8"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.1.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.9"
∷ word (σ ∷ ώ ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.9"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.9"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.9"
∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.1.9"
∷ word (ἁ ∷ γ ∷ ί ∷ ᾳ ∷ []) "2Tim.1.9"
∷ word (ο ∷ ὐ ∷ []) "2Tim.1.9"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.1.9"
∷ word (τ ∷ ὰ ∷ []) "2Tim.1.9"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "2Tim.1.9"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.1.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.1.9"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.1.9"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.9"
∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.9"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "2Tim.1.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.9"
∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ν ∷ []) "2Tim.1.9"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Tim.1.9"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.9"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.9"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "2Tim.1.9"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.1.9"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "2Tim.1.9"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ ν ∷ []) "2Tim.1.10"
∷ word (δ ∷ ὲ ∷ []) "2Tim.1.10"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Tim.1.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.1.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.1.10"
∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.1.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.10"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "2Tim.1.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.1.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.10"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.10"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Tim.1.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.1.10"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.1.10"
∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.10"
∷ word (δ ∷ ὲ ∷ []) "2Tim.1.10"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "2Tim.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.10"
∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.1.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.10"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.1.11"
∷ word (ὃ ∷ []) "2Tim.1.11"
∷ word (ἐ ∷ τ ∷ έ ∷ θ ∷ η ∷ ν ∷ []) "2Tim.1.11"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "2Tim.1.11"
∷ word (κ ∷ ῆ ∷ ρ ∷ υ ∷ ξ ∷ []) "2Tim.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.11"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.1.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.11"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.1.11"
∷ word (δ ∷ ι ∷ []) "2Tim.1.12"
∷ word (ἣ ∷ ν ∷ []) "2Tim.1.12"
∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.12"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Tim.1.12"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ ω ∷ []) "2Tim.1.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Tim.1.12"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Tim.1.12"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Tim.1.12"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "2Tim.1.12"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.1.12"
∷ word (ᾧ ∷ []) "2Tim.1.12"
∷ word (π ∷ ε ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ κ ∷ α ∷ []) "2Tim.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.12"
∷ word (π ∷ έ ∷ π ∷ ε ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "2Tim.1.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.1.12"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "2Tim.1.12"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "2Tim.1.12"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.1.12"
∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "2Tim.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.1.12"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "2Tim.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "2Tim.1.12"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ύ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.1.13"
∷ word (ἔ ∷ χ ∷ ε ∷ []) "2Tim.1.13"
∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Tim.1.13"
∷ word (∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "2Tim.1.13"
∷ word (ὧ ∷ ν ∷ []) "2Tim.1.13"
∷ word (π ∷ α ∷ ρ ∷ []) "2Tim.1.13"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.1.13"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "2Tim.1.13"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.13"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Tim.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.13"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "2Tim.1.13"
∷ word (τ ∷ ῇ ∷ []) "2Tim.1.13"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.1.13"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.1.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.14"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "2Tim.1.14"
∷ word (π ∷ α ∷ ρ ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "2Tim.1.14"
∷ word (φ ∷ ύ ∷ ∙λ ∷ α ∷ ξ ∷ ο ∷ ν ∷ []) "2Tim.1.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.1.14"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.14"
∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.1.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.1.14"
∷ word (ἐ ∷ ν ∷ ο ∷ ι ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.1.14"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.14"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "2Tim.1.14"
∷ word (Ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "2Tim.1.15"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Tim.1.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.1.15"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ά ∷ φ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "2Tim.1.15"
∷ word (μ ∷ ε ∷ []) "2Tim.1.15"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.1.15"
∷ word (ο ∷ ἱ ∷ []) "2Tim.1.15"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.15"
∷ word (τ ∷ ῇ ∷ []) "2Tim.1.15"
∷ word (Ἀ ∷ σ ∷ ί ∷ ᾳ ∷ []) "2Tim.1.15"
∷ word (ὧ ∷ ν ∷ []) "2Tim.1.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.1.15"
∷ word (Φ ∷ ύ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.15"
∷ word (Ἑ ∷ ρ ∷ μ ∷ ο ∷ γ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "2Tim.1.15"
∷ word (δ ∷ ῴ ∷ η ∷ []) "2Tim.1.16"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "2Tim.1.16"
∷ word (ὁ ∷ []) "2Tim.1.16"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.1.16"
∷ word (τ ∷ ῷ ∷ []) "2Tim.1.16"
∷ word (Ὀ ∷ ν ∷ η ∷ σ ∷ ι ∷ φ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ []) "2Tim.1.16"
∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "2Tim.1.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.1.16"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "2Tim.1.16"
∷ word (μ ∷ ε ∷ []) "2Tim.1.16"
∷ word (ἀ ∷ ν ∷ έ ∷ ψ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "2Tim.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.1.16"
∷ word (ἅ ∷ ∙λ ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "2Tim.1.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.1.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Tim.1.16"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ θ ∷ η ∷ []) "2Tim.1.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.1.17"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.1.17"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.17"
∷ word (Ῥ ∷ ώ ∷ μ ∷ ῃ ∷ []) "2Tim.1.17"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "2Tim.1.17"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "2Tim.1.17"
∷ word (μ ∷ ε ∷ []) "2Tim.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.17"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "2Tim.1.17"
∷ word (δ ∷ ῴ ∷ η ∷ []) "2Tim.1.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Tim.1.18"
∷ word (ὁ ∷ []) "2Tim.1.18"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.1.18"
∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.1.18"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "2Tim.1.18"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Tim.1.18"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.1.18"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.18"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "2Tim.1.18"
∷ word (τ ∷ ῇ ∷ []) "2Tim.1.18"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Tim.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.1.18"
∷ word (ὅ ∷ σ ∷ α ∷ []) "2Tim.1.18"
∷ word (ἐ ∷ ν ∷ []) "2Tim.1.18"
∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "2Tim.1.18"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "2Tim.1.18"
∷ word (β ∷ έ ∷ ∙λ ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.1.18"
∷ word (σ ∷ ὺ ∷ []) "2Tim.1.18"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "2Tim.1.18"
∷ word (Σ ∷ ὺ ∷ []) "2Tim.2.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Tim.2.1"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.2.1"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.2.1"
∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.2.1"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.1"
∷ word (τ ∷ ῇ ∷ []) "2Tim.2.1"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "2Tim.2.1"
∷ word (τ ∷ ῇ ∷ []) "2Tim.2.1"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.2.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.2"
∷ word (ἃ ∷ []) "2Tim.2.2"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "2Tim.2.2"
∷ word (π ∷ α ∷ ρ ∷ []) "2Tim.2.2"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.2.2"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.2.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "2Tim.2.2"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "2Tim.2.2"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Tim.2.2"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "2Tim.2.2"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.2.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "2Tim.2.2"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Tim.2.2"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ὶ ∷ []) "2Tim.2.2"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.2"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.2.2"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "2Tim.2.2"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ κ ∷ ο ∷ π ∷ ά ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.2.3"
∷ word (ὡ ∷ ς ∷ []) "2Tim.2.3"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "2Tim.2.3"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "2Tim.2.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.2.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "2Tim.2.4"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.2.4"
∷ word (ἐ ∷ μ ∷ π ∷ ∙λ ∷ έ ∷ κ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.4"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "2Tim.2.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.4"
∷ word (β ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.2.4"
∷ word (π ∷ ρ ∷ α ∷ γ ∷ μ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Tim.2.4"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2Tim.2.4"
∷ word (τ ∷ ῷ ∷ []) "2Tim.2.4"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "2Tim.2.4"
∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "2Tim.2.4"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Tim.2.5"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.5"
∷ word (ἀ ∷ θ ∷ ∙λ ∷ ῇ ∷ []) "2Tim.2.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "2Tim.2.5"
∷ word (ο ∷ ὐ ∷ []) "2Tim.2.5"
∷ word (σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.5"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Tim.2.5"
∷ word (μ ∷ ὴ ∷ []) "2Tim.2.5"
∷ word (ν ∷ ο ∷ μ ∷ ί ∷ μ ∷ ω ∷ ς ∷ []) "2Tim.2.5"
∷ word (ἀ ∷ θ ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "2Tim.2.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.6"
∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "2Tim.2.6"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ὸ ∷ ν ∷ []) "2Tim.2.6"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Tim.2.6"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.2.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.2.6"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ῶ ∷ ν ∷ []) "2Tim.2.6"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "2Tim.2.6"
∷ word (ν ∷ ό ∷ ε ∷ ι ∷ []) "2Tim.2.7"
∷ word (ὃ ∷ []) "2Tim.2.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "2Tim.2.7"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.2.7"
∷ word (γ ∷ ά ∷ ρ ∷ []) "2Tim.2.7"
∷ word (σ ∷ ο ∷ ι ∷ []) "2Tim.2.7"
∷ word (ὁ ∷ []) "2Tim.2.7"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.2.7"
∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.7"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.7"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.7"
∷ word (Μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ ε ∷ []) "2Tim.2.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "2Tim.2.8"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.8"
∷ word (ἐ ∷ γ ∷ η ∷ γ ∷ ε ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.2.8"
∷ word (ἐ ∷ κ ∷ []) "2Tim.2.8"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "2Tim.2.8"
∷ word (ἐ ∷ κ ∷ []) "2Tim.2.8"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.2.8"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "2Tim.2.8"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.2.8"
∷ word (τ ∷ ὸ ∷ []) "2Tim.2.8"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ό ∷ ν ∷ []) "2Tim.2.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.2.8"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.9"
∷ word (ᾧ ∷ []) "2Tim.2.9"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ α ∷ θ ∷ ῶ ∷ []) "2Tim.2.9"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "2Tim.2.9"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.2.9"
∷ word (ὡ ∷ ς ∷ []) "2Tim.2.9"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ ρ ∷ γ ∷ ο ∷ ς ∷ []) "2Tim.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.2.9"
∷ word (ὁ ∷ []) "2Tim.2.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Tim.2.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.2.9"
∷ word (ο ∷ ὐ ∷ []) "2Tim.2.9"
∷ word (δ ∷ έ ∷ δ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.2.10"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Tim.2.10"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Tim.2.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ []) "2Tim.2.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.2.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.2.10"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "2Tim.2.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2Tim.2.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "2Tim.2.10"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.10"
∷ word (τ ∷ ύ ∷ χ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.2.10"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.10"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.2.10"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.2.10"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Tim.2.10"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "2Tim.2.10"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.2.10"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Tim.2.11"
∷ word (ὁ ∷ []) "2Tim.2.11"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Tim.2.11"
∷ word (ε ∷ ἰ ∷ []) "2Tim.2.11"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.2.11"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ε ∷ θ ∷ ά ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Tim.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.11"
∷ word (σ ∷ υ ∷ ζ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Tim.2.11"
∷ word (ε ∷ ἰ ∷ []) "2Tim.2.12"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Tim.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.12"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "2Tim.2.12"
∷ word (ε ∷ ἰ ∷ []) "2Tim.2.12"
∷ word (ἀ ∷ ρ ∷ ν ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "2Tim.2.12"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.2.12"
∷ word (ἀ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.12"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Tim.2.12"
∷ word (ε ∷ ἰ ∷ []) "2Tim.2.13"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "2Tim.2.13"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.2.13"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "2Tim.2.13"
∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "2Tim.2.13"
∷ word (ἀ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Tim.2.13"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.13"
∷ word (ο ∷ ὐ ∷ []) "2Tim.2.13"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.13"
∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "2Tim.2.14"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ σ ∷ κ ∷ ε ∷ []) "2Tim.2.14"
∷ word (δ ∷ ι ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.2.14"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.2.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.2.14"
∷ word (μ ∷ ὴ ∷ []) "2Tim.2.14"
∷ word (∙λ ∷ ο ∷ γ ∷ ο ∷ μ ∷ α ∷ χ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.2.14"
∷ word (ἐ ∷ π ∷ []) "2Tim.2.14"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "2Tim.2.14"
∷ word (χ ∷ ρ ∷ ή ∷ σ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "2Tim.2.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Tim.2.14"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῇ ∷ []) "2Tim.2.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.2.14"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Tim.2.14"
∷ word (σ ∷ π ∷ ο ∷ ύ ∷ δ ∷ α ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.2.15"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.15"
∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "2Tim.2.15"
∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "2Tim.2.15"
∷ word (τ ∷ ῷ ∷ []) "2Tim.2.15"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "2Tim.2.15"
∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "2Tim.2.15"
∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ α ∷ ί ∷ σ ∷ χ ∷ υ ∷ ν ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.2.15"
∷ word (ὀ ∷ ρ ∷ θ ∷ ο ∷ τ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "2Tim.2.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Tim.2.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.2.15"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.2.16"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.16"
∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.2.16"
∷ word (κ ∷ ε ∷ ν ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.16"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ΐ ∷ σ ∷ τ ∷ α ∷ σ ∷ ο ∷ []) "2Tim.2.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Tim.2.16"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "2Tim.2.16"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.2.16"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ό ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.16"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.17"
∷ word (ὁ ∷ []) "2Tim.2.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "2Tim.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Tim.2.17"
∷ word (ὡ ∷ ς ∷ []) "2Tim.2.17"
∷ word (γ ∷ ά ∷ γ ∷ γ ∷ ρ ∷ α ∷ ι ∷ ν ∷ α ∷ []) "2Tim.2.17"
∷ word (ν ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "2Tim.2.17"
∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ []) "2Tim.2.17"
∷ word (ὧ ∷ ν ∷ []) "2Tim.2.17"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.2.17"
∷ word (Ὑ ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.2.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.17"
∷ word (Φ ∷ ί ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.2.17"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "2Tim.2.18"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Tim.2.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.2.18"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Tim.2.18"
∷ word (ἠ ∷ σ ∷ τ ∷ ό ∷ χ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "2Tim.2.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.2.18"
∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.18"
∷ word (ἤ ∷ δ ∷ η ∷ []) "2Tim.2.18"
∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "2Tim.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.18"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ρ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.18"
∷ word (τ ∷ ή ∷ ν ∷ []) "2Tim.2.18"
∷ word (τ ∷ ι ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.2.18"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.2.18"
∷ word (ὁ ∷ []) "2Tim.2.19"
∷ word (μ ∷ έ ∷ ν ∷ τ ∷ ο ∷ ι ∷ []) "2Tim.2.19"
∷ word (σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Tim.2.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.2.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.2.19"
∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Tim.2.19"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "2Tim.2.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.2.19"
∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ῖ ∷ δ ∷ α ∷ []) "2Tim.2.19"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "2Tim.2.19"
∷ word (Ἔ ∷ γ ∷ ν ∷ ω ∷ []) "2Tim.2.19"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.2.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.2.19"
∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Tim.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.19"
∷ word (κ ∷ α ∷ ί ∷ []) "2Tim.2.19"
∷ word (Ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ή ∷ τ ∷ ω ∷ []) "2Tim.2.19"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.2.19"
∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.19"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "2Tim.2.19"
∷ word (ὁ ∷ []) "2Tim.2.19"
∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "2Tim.2.19"
∷ word (τ ∷ ὸ ∷ []) "2Tim.2.19"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "2Tim.2.19"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.2.19"
∷ word (Ἐ ∷ ν ∷ []) "2Tim.2.20"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "2Tim.2.20"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.20"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "2Tim.2.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Tim.2.20"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.2.20"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.2.20"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "2Tim.2.20"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ᾶ ∷ []) "2Tim.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.20"
∷ word (ἀ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ᾶ ∷ []) "2Tim.2.20"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.20"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ []) "2Tim.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.20"
∷ word (ὀ ∷ σ ∷ τ ∷ ρ ∷ ά ∷ κ ∷ ι ∷ ν ∷ α ∷ []) "2Tim.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.20"
∷ word (ἃ ∷ []) "2Tim.2.20"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Tim.2.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.20"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "2Tim.2.20"
∷ word (ἃ ∷ []) "2Tim.2.20"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.20"
∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.2.20"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "2Tim.2.21"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "2Tim.2.21"
∷ word (τ ∷ ι ∷ ς ∷ []) "2Tim.2.21"
∷ word (ἐ ∷ κ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ ῃ ∷ []) "2Tim.2.21"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.2.21"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Tim.2.21"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "2Tim.2.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.21"
∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἡ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.2.21"
∷ word (ε ∷ ὔ ∷ χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "2Tim.2.21"
∷ word (τ ∷ ῷ ∷ []) "2Tim.2.21"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ ῃ ∷ []) "2Tim.2.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.21"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "2Tim.2.21"
∷ word (ἡ ∷ τ ∷ ο ∷ ι ∷ μ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.2.21"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.2.22"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.22"
∷ word (ν ∷ ε ∷ ω ∷ τ ∷ ε ∷ ρ ∷ ι ∷ κ ∷ ὰ ∷ ς ∷ []) "2Tim.2.22"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.22"
∷ word (φ ∷ ε ∷ ῦ ∷ γ ∷ ε ∷ []) "2Tim.2.22"
∷ word (δ ∷ ί ∷ ω ∷ κ ∷ ε ∷ []) "2Tim.2.22"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.22"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "2Tim.2.22"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.2.22"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "2Tim.2.22"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "2Tim.2.22"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Tim.2.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.2.22"
∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.2.22"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.2.22"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.2.22"
∷ word (ἐ ∷ κ ∷ []) "2Tim.2.22"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "2Tim.2.22"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.22"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.2.23"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.23"
∷ word (μ ∷ ω ∷ ρ ∷ ὰ ∷ ς ∷ []) "2Tim.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.23"
∷ word (ἀ ∷ π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.2.23"
∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "2Tim.2.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.23"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "2Tim.2.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.2.23"
∷ word (γ ∷ ε ∷ ν ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ []) "2Tim.2.23"
∷ word (μ ∷ ά ∷ χ ∷ α ∷ ς ∷ []) "2Tim.2.23"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Tim.2.24"
∷ word (δ ∷ ὲ ∷ []) "2Tim.2.24"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "2Tim.2.24"
∷ word (ο ∷ ὐ ∷ []) "2Tim.2.24"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "2Tim.2.24"
∷ word (μ ∷ ά ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "2Tim.2.24"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.2.24"
∷ word (ἤ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.2.24"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "2Tim.2.24"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.2.24"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Tim.2.24"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "2Tim.2.24"
∷ word (ἀ ∷ ν ∷ ε ∷ ξ ∷ ί ∷ κ ∷ α ∷ κ ∷ ο ∷ ν ∷ []) "2Tim.2.24"
∷ word (ἐ ∷ ν ∷ []) "2Tim.2.25"
∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "2Tim.2.25"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "2Tim.2.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.2.25"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ δ ∷ ι ∷ α ∷ τ ∷ ι ∷ θ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.2.25"
∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "2Tim.2.25"
∷ word (δ ∷ ώ ∷ ῃ ∷ []) "2Tim.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.2.25"
∷ word (ὁ ∷ []) "2Tim.2.25"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "2Tim.2.25"
∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "2Tim.2.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.25"
∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.25"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.2.26"
∷ word (ἀ ∷ ν ∷ α ∷ ν ∷ ή ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.2.26"
∷ word (ἐ ∷ κ ∷ []) "2Tim.2.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.2.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.26"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "2Tim.2.26"
∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "2Tim.2.26"
∷ word (ἐ ∷ ζ ∷ ω ∷ γ ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.2.26"
∷ word (ὑ ∷ π ∷ []) "2Tim.2.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.2.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.2.26"
∷ word (τ ∷ ὸ ∷ []) "2Tim.2.26"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "2Tim.2.26"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "2Tim.2.26"
∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "2Tim.3.1"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.1"
∷ word (γ ∷ ί ∷ ν ∷ ω ∷ σ ∷ κ ∷ ε ∷ []) "2Tim.3.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.3.1"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.1"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "2Tim.3.1"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "2Tim.3.1"
∷ word (ἐ ∷ ν ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.1"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ὶ ∷ []) "2Tim.3.1"
∷ word (χ ∷ α ∷ ∙λ ∷ ε ∷ π ∷ ο ∷ ί ∷ []) "2Tim.3.1"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.2"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.3.2"
∷ word (ο ∷ ἱ ∷ []) "2Tim.3.2"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (φ ∷ ί ∷ ∙λ ∷ α ∷ υ ∷ τ ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (φ ∷ ι ∷ ∙λ ∷ ά ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (ἀ ∷ ∙λ ∷ α ∷ ζ ∷ ό ∷ ν ∷ ε ∷ ς ∷ []) "2Tim.3.2"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ή ∷ φ ∷ α ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (β ∷ ∙λ ∷ ά ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.2"
∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Tim.3.2"
∷ word (ἀ ∷ χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (ἀ ∷ ν ∷ ό ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "2Tim.3.2"
∷ word (ἄ ∷ σ ∷ τ ∷ ο ∷ ρ ∷ γ ∷ ο ∷ ι ∷ []) "2Tim.3.3"
∷ word (ἄ ∷ σ ∷ π ∷ ο ∷ ν ∷ δ ∷ ο ∷ ι ∷ []) "2Tim.3.3"
∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "2Tim.3.3"
∷ word (ἀ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Tim.3.3"
∷ word (ἀ ∷ ν ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "2Tim.3.3"
∷ word (ἀ ∷ φ ∷ ι ∷ ∙λ ∷ ά ∷ γ ∷ α ∷ θ ∷ ο ∷ ι ∷ []) "2Tim.3.3"
∷ word (π ∷ ρ ∷ ο ∷ δ ∷ ό ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.4"
∷ word (π ∷ ρ ∷ ο ∷ π ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "2Tim.3.4"
∷ word (τ ∷ ε ∷ τ ∷ υ ∷ φ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.4"
∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ δ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.4"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "2Tim.3.4"
∷ word (ἢ ∷ []) "2Tim.3.4"
∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ι ∷ []) "2Tim.3.4"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.5"
∷ word (μ ∷ ό ∷ ρ ∷ φ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.5"
∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.3.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.3.5"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.5"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "2Tim.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "2Tim.3.5"
∷ word (ἠ ∷ ρ ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.5"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.3.5"
∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ρ ∷ έ ∷ π ∷ ο ∷ υ ∷ []) "2Tim.3.5"
∷ word (ἐ ∷ κ ∷ []) "2Tim.3.6"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "2Tim.3.6"
∷ word (γ ∷ ά ∷ ρ ∷ []) "2Tim.3.6"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.6"
∷ word (ο ∷ ἱ ∷ []) "2Tim.3.6"
∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.3.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.3.6"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.3.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.6"
∷ word (α ∷ ἰ ∷ χ ∷ μ ∷ α ∷ ∙λ ∷ ω ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.6"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ά ∷ ρ ∷ ι ∷ α ∷ []) "2Tim.3.6"
∷ word (σ ∷ ε ∷ σ ∷ ω ∷ ρ ∷ ε ∷ υ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "2Tim.3.6"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Tim.3.6"
∷ word (ἀ ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Tim.3.6"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "2Tim.3.6"
∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "2Tim.3.6"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "2Tim.3.7"
∷ word (μ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "2Tim.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.7"
∷ word (μ ∷ η ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "2Tim.3.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.3.7"
∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.3.7"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.3.7"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "2Tim.3.7"
∷ word (ὃ ∷ ν ∷ []) "2Tim.3.8"
∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "2Tim.3.8"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.8"
∷ word (Ἰ ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "2Tim.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.8"
∷ word (Ἰ ∷ α ∷ μ ∷ β ∷ ρ ∷ ῆ ∷ ς ∷ []) "2Tim.3.8"
∷ word (ἀ ∷ ν ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "2Tim.3.8"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "2Tim.3.8"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "2Tim.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.8"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "2Tim.3.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.8"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.8"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Tim.3.8"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "2Tim.3.8"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ φ ∷ θ ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.3.8"
∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "2Tim.3.8"
∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "2Tim.3.8"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "2Tim.3.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.3.8"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.3.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "2Tim.3.9"
∷ word (ο ∷ ὐ ∷ []) "2Tim.3.9"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ό ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Tim.3.9"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "2Tim.3.9"
∷ word (ἡ ∷ []) "2Tim.3.9"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.3.9"
∷ word (ἄ ∷ ν ∷ ο ∷ ι ∷ α ∷ []) "2Tim.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "2Tim.3.9"
∷ word (ἔ ∷ κ ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.3.9"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.9"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.9"
∷ word (ὡ ∷ ς ∷ []) "2Tim.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.9"
∷ word (ἡ ∷ []) "2Tim.3.9"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.3.9"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "2Tim.3.9"
∷ word (Σ ∷ ὺ ∷ []) "2Tim.3.10"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.10"
∷ word (π ∷ α ∷ ρ ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ά ∷ ς ∷ []) "2Tim.3.10"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (ἀ ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (π ∷ ρ ∷ ο ∷ θ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "2Tim.3.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.3.11"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.3.11"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.3.11"
∷ word (π ∷ α ∷ θ ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.11"
∷ word (ο ∷ ἷ ∷ ά ∷ []) "2Tim.3.11"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.11"
∷ word (Ἀ ∷ ν ∷ τ ∷ ι ∷ ο ∷ χ ∷ ε ∷ ί ∷ ᾳ ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.11"
∷ word (Ἰ ∷ κ ∷ ο ∷ ν ∷ ί ∷ ῳ ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.11"
∷ word (Λ ∷ ύ ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "2Tim.3.11"
∷ word (ο ∷ ἵ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.3.11"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.3.11"
∷ word (ὑ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ []) "2Tim.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ κ ∷ []) "2Tim.3.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "2Tim.3.11"
∷ word (μ ∷ ε ∷ []) "2Tim.3.11"
∷ word (ἐ ∷ ρ ∷ ρ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "2Tim.3.11"
∷ word (ὁ ∷ []) "2Tim.3.11"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.12"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.12"
∷ word (ο ∷ ἱ ∷ []) "2Tim.3.12"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.12"
∷ word (ζ ∷ ῆ ∷ ν ∷ []) "2Tim.3.12"
∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ῶ ∷ ς ∷ []) "2Tim.3.12"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.12"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.3.12"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.3.12"
∷ word (δ ∷ ι ∷ ω ∷ χ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.3.12"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ὶ ∷ []) "2Tim.3.13"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.13"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "2Tim.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.13"
∷ word (γ ∷ ό ∷ η ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.13"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ό ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Tim.3.13"
∷ word (τ ∷ ὸ ∷ []) "2Tim.3.13"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "2Tim.3.13"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.13"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.3.13"
∷ word (σ ∷ ὺ ∷ []) "2Tim.3.14"
∷ word (δ ∷ ὲ ∷ []) "2Tim.3.14"
∷ word (μ ∷ έ ∷ ν ∷ ε ∷ []) "2Tim.3.14"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.14"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "2Tim.3.14"
∷ word (ἔ ∷ μ ∷ α ∷ θ ∷ ε ∷ ς ∷ []) "2Tim.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.14"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ώ ∷ θ ∷ η ∷ ς ∷ []) "2Tim.3.14"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "2Tim.3.14"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Tim.3.14"
∷ word (τ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.3.14"
∷ word (ἔ ∷ μ ∷ α ∷ θ ∷ ε ∷ ς ∷ []) "2Tim.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "2Tim.3.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.3.15"
∷ word (β ∷ ρ ∷ έ ∷ φ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.3.15"
∷ word (ἱ ∷ ε ∷ ρ ∷ ὰ ∷ []) "2Tim.3.15"
∷ word (γ ∷ ρ ∷ ά ∷ μ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "2Tim.3.15"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "2Tim.3.15"
∷ word (τ ∷ ὰ ∷ []) "2Tim.3.15"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ά ∷ []) "2Tim.3.15"
∷ word (σ ∷ ε ∷ []) "2Tim.3.15"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "2Tim.3.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.3.15"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.3.15"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "2Tim.3.15"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "2Tim.3.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.3.15"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.15"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "2Tim.3.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.3.15"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "2Tim.3.16"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "2Tim.3.16"
∷ word (θ ∷ ε ∷ ό ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.3.16"
∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "2Tim.3.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.3.16"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.3.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.3.16"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ γ ∷ μ ∷ ό ∷ ν ∷ []) "2Tim.3.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.3.16"
∷ word (ἐ ∷ π ∷ α ∷ ν ∷ ό ∷ ρ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.3.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.3.16"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Tim.3.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "2Tim.3.16"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "2Tim.3.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2Tim.3.17"
∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.3.17"
∷ word (ᾖ ∷ []) "2Tim.3.17"
∷ word (ὁ ∷ []) "2Tim.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.3.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.3.17"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "2Tim.3.17"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.3.17"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "2Tim.3.17"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Tim.3.17"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "2Tim.3.17"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.3.17"
∷ word (Δ ∷ ι ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Tim.4.1"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.4.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.1"
∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "2Tim.4.1"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "2Tim.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.1"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "2Tim.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.1"
∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ ά ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Tim.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.1"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.1"
∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ ο ∷ ν ∷ []) "2Tim.4.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.2"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "2Tim.4.2"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ θ ∷ ι ∷ []) "2Tim.4.2"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "2Tim.4.2"
∷ word (ἀ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "2Tim.4.2"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ξ ∷ ο ∷ ν ∷ []) "2Tim.4.2"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.2"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.2"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "2Tim.4.2"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ ᾳ ∷ []) "2Tim.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.2"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "2Tim.4.2"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "2Tim.4.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.4.3"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.4.3"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "2Tim.4.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.4.3"
∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "2Tim.4.3"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.4.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "2Tim.4.3"
∷ word (ἀ ∷ ν ∷ έ ∷ ξ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.4.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.4.3"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.4.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.4.3"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.4.3"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "2Tim.4.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.4.3"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ ω ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.4.3"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.4.3"
∷ word (κ ∷ ν ∷ η ∷ θ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "2Tim.4.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.3"
∷ word (ἀ ∷ κ ∷ ο ∷ ή ∷ ν ∷ []) "2Tim.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.4"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.4.4"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "2Tim.4.4"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.4.4"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "2Tim.4.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.4"
∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ ν ∷ []) "2Tim.4.4"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.4.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "2Tim.4.4"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.4"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.4.4"
∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "2Tim.4.4"
∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ α ∷ π ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "2Tim.4.4"
∷ word (σ ∷ ὺ ∷ []) "2Tim.4.5"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.5"
∷ word (ν ∷ ῆ ∷ φ ∷ ε ∷ []) "2Tim.4.5"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.5"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.4.5"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ά ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.5"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "2Tim.4.5"
∷ word (π ∷ ο ∷ ί ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.5"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.5"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "2Tim.4.5"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ό ∷ ρ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.5"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "2Tim.4.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.4.6"
∷ word (ἤ ∷ δ ∷ η ∷ []) "2Tim.4.6"
∷ word (σ ∷ π ∷ έ ∷ ν ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "2Tim.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.6"
∷ word (ὁ ∷ []) "2Tim.4.6"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "2Tim.4.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.4.6"
∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ώ ∷ ς ∷ []) "2Tim.4.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.4.6"
∷ word (ἐ ∷ φ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "2Tim.4.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.7"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "2Tim.4.7"
∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ α ∷ []) "2Tim.4.7"
∷ word (ἠ ∷ γ ∷ ώ ∷ ν ∷ ι ∷ σ ∷ μ ∷ α ∷ ι ∷ []) "2Tim.4.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.7"
∷ word (δ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "2Tim.4.7"
∷ word (τ ∷ ε ∷ τ ∷ έ ∷ ∙λ ∷ ε ∷ κ ∷ α ∷ []) "2Tim.4.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.7"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.4.7"
∷ word (τ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "2Tim.4.7"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "2Tim.4.8"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ί ∷ []) "2Tim.4.8"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.8"
∷ word (ὁ ∷ []) "2Tim.4.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "2Tim.4.8"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "2Tim.4.8"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.4.8"
∷ word (ὃ ∷ ν ∷ []) "2Tim.4.8"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.4.8"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.8"
∷ word (ὁ ∷ []) "2Tim.4.8"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.4.8"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.8"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "2Tim.4.8"
∷ word (τ ∷ ῇ ∷ []) "2Tim.4.8"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "2Tim.4.8"
∷ word (ὁ ∷ []) "2Tim.4.8"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.4.8"
∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ ή ∷ ς ∷ []) "2Tim.4.8"
∷ word (ο ∷ ὐ ∷ []) "2Tim.4.8"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "2Tim.4.8"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.8"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "2Tim.4.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.8"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.4.8"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.4.8"
∷ word (ἠ ∷ γ ∷ α ∷ π ∷ η ∷ κ ∷ ό ∷ σ ∷ ι ∷ []) "2Tim.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.8"
∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ ά ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "2Tim.4.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.8"
∷ word (Σ ∷ π ∷ ο ∷ ύ ∷ δ ∷ α ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.9"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.4.9"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "2Tim.4.9"
∷ word (μ ∷ ε ∷ []) "2Tim.4.9"
∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "2Tim.4.9"
∷ word (Δ ∷ η ∷ μ ∷ ᾶ ∷ ς ∷ []) "2Tim.4.10"
∷ word (γ ∷ ά ∷ ρ ∷ []) "2Tim.4.10"
∷ word (μ ∷ ε ∷ []) "2Tim.4.10"
∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ε ∷ ν ∷ []) "2Tim.4.10"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "2Tim.4.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.10"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "2Tim.4.10"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "2Tim.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.10"
∷ word (ἐ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "2Tim.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.10"
∷ word (Θ ∷ ε ∷ σ ∷ σ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ ί ∷ κ ∷ η ∷ ν ∷ []) "2Tim.4.10"
∷ word (Κ ∷ ρ ∷ ή ∷ σ ∷ κ ∷ η ∷ ς ∷ []) "2Tim.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.10"
∷ word (Γ ∷ α ∷ ∙λ ∷ α ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.10"
∷ word (Τ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.10"
∷ word (Δ ∷ α ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.10"
∷ word (Λ ∷ ο ∷ υ ∷ κ ∷ ᾶ ∷ ς ∷ []) "2Tim.4.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.4.11"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.4.11"
∷ word (μ ∷ ε ∷ τ ∷ []) "2Tim.4.11"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.4.11"
∷ word (Μ ∷ ᾶ ∷ ρ ∷ κ ∷ ο ∷ ν ∷ []) "2Tim.4.11"
∷ word (ἀ ∷ ν ∷ α ∷ ∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "2Tim.4.11"
∷ word (ἄ ∷ γ ∷ ε ∷ []) "2Tim.4.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Tim.4.11"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.11"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "2Tim.4.11"
∷ word (γ ∷ ά ∷ ρ ∷ []) "2Tim.4.11"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.11"
∷ word (ε ∷ ὔ ∷ χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.11"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.11"
∷ word (Τ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "2Tim.4.12"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.12"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ []) "2Tim.4.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.12"
∷ word (Ἔ ∷ φ ∷ ε ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.13"
∷ word (φ ∷ α ∷ ι ∷ ∙λ ∷ ό ∷ ν ∷ η ∷ ν ∷ []) "2Tim.4.13"
∷ word (ὃ ∷ ν ∷ []) "2Tim.4.13"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ο ∷ ν ∷ []) "2Tim.4.13"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.13"
∷ word (Τ ∷ ρ ∷ ῳ ∷ ά ∷ δ ∷ ι ∷ []) "2Tim.4.13"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "2Tim.4.13"
∷ word (Κ ∷ ά ∷ ρ ∷ π ∷ ῳ ∷ []) "2Tim.4.13"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.4.13"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ []) "2Tim.4.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.13"
∷ word (τ ∷ ὰ ∷ []) "2Tim.4.13"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ α ∷ []) "2Tim.4.13"
∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "2Tim.4.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "2Tim.4.13"
∷ word (μ ∷ ε ∷ μ ∷ β ∷ ρ ∷ ά ∷ ν ∷ α ∷ ς ∷ []) "2Tim.4.13"
∷ word (Ἀ ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ς ∷ []) "2Tim.4.14"
∷ word (ὁ ∷ []) "2Tim.4.14"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ε ∷ ὺ ∷ ς ∷ []) "2Tim.4.14"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "2Tim.4.14"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.14"
∷ word (κ ∷ α ∷ κ ∷ ὰ ∷ []) "2Tim.4.14"
∷ word (ἐ ∷ ν ∷ ε ∷ δ ∷ ε ∷ ί ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "2Tim.4.14"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.4.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "2Tim.4.14"
∷ word (ὁ ∷ []) "2Tim.4.14"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.4.14"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "2Tim.4.14"
∷ word (τ ∷ ὰ ∷ []) "2Tim.4.14"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "2Tim.4.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.14"
∷ word (ὃ ∷ ν ∷ []) "2Tim.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.15"
∷ word (σ ∷ ὺ ∷ []) "2Tim.4.15"
∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ο ∷ υ ∷ []) "2Tim.4.15"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.15"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "2Tim.4.15"
∷ word (ἀ ∷ ν ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "2Tim.4.15"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.4.15"
∷ word (ἡ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "2Tim.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "2Tim.4.15"
∷ word (Ἐ ∷ ν ∷ []) "2Tim.4.16"
∷ word (τ ∷ ῇ ∷ []) "2Tim.4.16"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "2Tim.4.16"
∷ word (μ ∷ ο ∷ υ ∷ []) "2Tim.4.16"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ᾳ ∷ []) "2Tim.4.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "2Tim.4.16"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.16"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "2Tim.4.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "2Tim.4.16"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.4.16"
∷ word (μ ∷ ε ∷ []) "2Tim.4.16"
∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ο ∷ ν ∷ []) "2Tim.4.16"
∷ word (μ ∷ ὴ ∷ []) "2Tim.4.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "2Tim.4.16"
∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ί ∷ η ∷ []) "2Tim.4.16"
∷ word (ὁ ∷ []) "2Tim.4.17"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.17"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "2Tim.4.17"
∷ word (μ ∷ ο ∷ ι ∷ []) "2Tim.4.17"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "2Tim.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.17"
∷ word (ἐ ∷ ν ∷ ε ∷ δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ω ∷ σ ∷ έ ∷ ν ∷ []) "2Tim.4.17"
∷ word (μ ∷ ε ∷ []) "2Tim.4.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "2Tim.4.17"
∷ word (δ ∷ ι ∷ []) "2Tim.4.17"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "2Tim.4.17"
∷ word (τ ∷ ὸ ∷ []) "2Tim.4.17"
∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "2Tim.4.17"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ η ∷ θ ∷ ῇ ∷ []) "2Tim.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.17"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "2Tim.4.17"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "2Tim.4.17"
∷ word (τ ∷ ὰ ∷ []) "2Tim.4.17"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "2Tim.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.17"
∷ word (ἐ ∷ ρ ∷ ρ ∷ ύ ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "2Tim.4.17"
∷ word (ἐ ∷ κ ∷ []) "2Tim.4.17"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.17"
∷ word (∙λ ∷ έ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.17"
∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "2Tim.4.18"
∷ word (μ ∷ ε ∷ []) "2Tim.4.18"
∷ word (ὁ ∷ []) "2Tim.4.18"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.4.18"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "2Tim.4.18"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "2Tim.4.18"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "2Tim.4.18"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ο ∷ ῦ ∷ []) "2Tim.4.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.18"
∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "2Tim.4.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "2Tim.4.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "2Tim.4.18"
∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "2Tim.4.18"
∷ word (ᾧ ∷ []) "2Tim.4.18"
∷ word (ἡ ∷ []) "2Tim.4.18"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "2Tim.4.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "2Tim.4.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "2Tim.4.18"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "2Tim.4.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "2Tim.4.18"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "2Tim.4.18"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "2Tim.4.18"
∷ word (Ἄ ∷ σ ∷ π ∷ α ∷ σ ∷ α ∷ ι ∷ []) "2Tim.4.19"
∷ word (Π ∷ ρ ∷ ί ∷ σ ∷ κ ∷ α ∷ ν ∷ []) "2Tim.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.19"
∷ word (Ἀ ∷ κ ∷ ύ ∷ ∙λ ∷ α ∷ ν ∷ []) "2Tim.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "2Tim.4.19"
∷ word (Ὀ ∷ ν ∷ η ∷ σ ∷ ι ∷ φ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ []) "2Tim.4.19"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "2Tim.4.19"
∷ word (Ἔ ∷ ρ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "2Tim.4.20"
∷ word (ἔ ∷ μ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "2Tim.4.20"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.20"
∷ word (Κ ∷ ο ∷ ρ ∷ ί ∷ ν ∷ θ ∷ ῳ ∷ []) "2Tim.4.20"
∷ word (Τ ∷ ρ ∷ ό ∷ φ ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "2Tim.4.20"
∷ word (δ ∷ ὲ ∷ []) "2Tim.4.20"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ο ∷ ν ∷ []) "2Tim.4.20"
∷ word (ἐ ∷ ν ∷ []) "2Tim.4.20"
∷ word (Μ ∷ ι ∷ ∙λ ∷ ή ∷ τ ∷ ῳ ∷ []) "2Tim.4.20"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "2Tim.4.20"
∷ word (Σ ∷ π ∷ ο ∷ ύ ∷ δ ∷ α ∷ σ ∷ ο ∷ ν ∷ []) "2Tim.4.21"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "2Tim.4.21"
∷ word (χ ∷ ε ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.4.21"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "2Tim.4.21"
∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "2Tim.4.21"
∷ word (σ ∷ ε ∷ []) "2Tim.4.21"
∷ word (Ε ∷ ὔ ∷ β ∷ ο ∷ υ ∷ ∙λ ∷ ο ∷ ς ∷ []) "2Tim.4.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.21"
∷ word (Π ∷ ο ∷ ύ ∷ δ ∷ η ∷ ς ∷ []) "2Tim.4.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.21"
∷ word (Λ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "2Tim.4.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.21"
∷ word (Κ ∷ ∙λ ∷ α ∷ υ ∷ δ ∷ ί ∷ α ∷ []) "2Tim.4.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "2Tim.4.21"
∷ word (ο ∷ ἱ ∷ []) "2Tim.4.21"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "2Tim.4.21"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "2Tim.4.21"
∷ word (Ὁ ∷ []) "2Tim.4.22"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "2Tim.4.22"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "2Tim.4.22"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "2Tim.4.22"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "2Tim.4.22"
∷ word (σ ∷ ο ∷ υ ∷ []) "2Tim.4.22"
∷ word (ἡ ∷ []) "2Tim.4.22"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "2Tim.4.22"
∷ word (μ ∷ ε ∷ θ ∷ []) "2Tim.4.22"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "2Tim.4.22"
∷ []
| {
"alphanum_fraction": 0.3402209316,
"avg_line_length": 46.5706260032,
"ext": "agda",
"hexsha": "5757092dd683ca58f6a3306039168b5fd1e0e5ea",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/2Tim.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/2Tim.agda",
"max_line_length": 93,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/2Tim.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 41596,
"size": 58027
} |
-- There was a bug with module application in a let in a
-- parameterised module.
module Issue155 (A : Set) where
module M (Y : Set) where
postulate F : Set → Set
Foo : Set₁
Foo = let module M′ = M A in (B : Set) → M′.F B
record R : Set₁ where
open M A
field
B : Set
C : F A
| {
"alphanum_fraction": 0.6198630137,
"avg_line_length": 18.25,
"ext": "agda",
"hexsha": "1d80e50517c60a72585d58151bfe9f3b345ee36c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue155.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue155.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue155.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 100,
"size": 292
} |
------------------------------------------------------------------------
-- Validity of declarative typing and kinding of Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Typing.Validity where
open import Data.Fin using (Fin; suc; zero)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Product as Prod using (∃; _,_; _×_; proj₁; proj₂)
open import Data.Vec as Vec using ([]; _∷_)
import Data.Vec.Relation.Binary.Pointwise.Inductive as Pointwise
open import Function using (_∘_)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Binary.TransReasoning
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Negation using (contradiction)
open import FOmegaInt.Syntax
open import FOmegaInt.Typing
open import FOmegaInt.Kinding.Declarative.Equivalence
open import FOmegaInt.Reduction.Full
import FOmegaInt.Kinding.Declarative
import FOmegaInt.Kinding.Declarative.Validity
-- Extended kinding
module E where
open FOmegaInt.Kinding.Declarative public
open FOmegaInt.Kinding.Declarative.Validity public
open KindedSubstitution public
------------------------------------------------------------------------
-- Validity of declarative kinding, typing, subkinding and subtyping
open Syntax
open Substitution hiding (subst)
open TermCtx
open Typing
open TypedSubstitution
open WfCtxOps using (lookup-tp)
-- Validity of kinding: the kinds of well-kinded types are well-formed.
Tp∈-valid : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ k kd
Tp∈-valid = sound-kd ∘ E.Tp∈-valid ∘ complete-Tp∈
-- Validity of subkinding: subkinds are well-formed.
<∷-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ⊢ j kd × Γ ⊢ k kd
<∷-valid = Prod.map sound-kd sound-kd ∘ E.<∷-valid ∘ complete-<∷
-- Validity of subtyping: subtypes that are related in some kind `k'
-- inhabit `k'.
<:-valid : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a <: b ∈ k → Γ ⊢Tp a ∈ k × Γ ⊢Tp b ∈ k
<:-valid = Prod.map sound-Tp∈ sound-Tp∈ ∘ E.<:-valid ∘ complete-<:
-- A corollary.
<:-valid-kd : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ ⊢ k kd
<:-valid-kd a<:b∈k = Tp∈-valid (proj₁ (<:-valid a<:b∈k))
-- Validity of type equality: types that are equal in some kind `k'
-- inhabit `k'.
≃-valid : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢ a ≃ b ∈ k → Γ ⊢Tp a ∈ k × Γ ⊢Tp b ∈ k
≃-valid = Prod.map sound-Tp∈ sound-Tp∈ ∘ E.≃-valid ∘ complete-≃
-- Validity of kind equality: equal kinds are well-formed.
≅-valid : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j kd × Γ ⊢ k kd
≅-valid (<∷-antisym j<∷k k<∷j) = <∷-valid j<∷k
-- Validity of combined kind and type equality: equal ascriptions are
-- well-formed.
≃wf-valid : ∀ {n} {Γ : Ctx n} {a b} →
Γ ⊢ a ≃ b wf → Γ ⊢ a wf × Γ ⊢ b wf
≃wf-valid (≃wf-≅ j≅k) = Prod.map wf-kd wf-kd (≅-valid j≅k)
≃wf-valid (≃wf-≃ a≃b∈k) = Prod.map wf-tp wf-tp (≃-valid a≃b∈k)
-- Validity of typing: the types of well-typed terms are well-kinded.
Tm∈-valid : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tm a ∈ b → Γ ⊢Tp b ∈ *
Tm∈-valid (∈-var x Γ-ctx Γ[x]≡tp-a) = lookup-tp x Γ-ctx Γ[x]≡tp-a
Tm∈-valid (∈-∀-i k-kd a∈b) = ∈-∀-f k-kd (Tm∈-valid a∈b)
Tm∈-valid (∈-→-i a∈* b∈c c∈*) = ∈-→-f a∈* c∈*
Tm∈-valid (∈-∀-e a∈∀kc b∈k) =
let k-kd , c∈* = Tp∈-∀-inv (Tm∈-valid a∈∀kc)
in Tp∈-[] c∈* (∈-tp b∈k)
Tm∈-valid (∈-→-e a∈c⇒d b∈c) =
let c∈* , d∈* = Tp∈-→-inv (Tm∈-valid a∈c⇒d)
in d∈*
Tm∈-valid (∈-⇑ a∈b b<:c) = proj₂ (<:-valid b<:c)
-- Subtypes inhabiting interval kinds are proper types.
<:-⋯-* : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a <: b ∈ c ⋯ d → Γ ⊢ a <: b ∈ *
<:-⋯-* a<:b∈c⋯d =
let a∈c⋯d , b∈c⋯d = <:-valid a<:b∈c⋯d
in <:-⇑ (<:-⋯-i a<:b∈c⋯d) (<∷-⋯ (<:-⊥ a∈c⋯d) (<:-⊤ b∈c⋯d))
-- An admissible rule for kinding η-expanded type operators.
Tp∈-η : ∀ {n} {Γ : Ctx n} {a j k} →
Γ ⊢Tp a ∈ Π j k → Γ ⊢Tp Λ j (weaken a · var zero) ∈ Π j k
Tp∈-η a∈Πjk with complete-Tp∈ a∈Πjk
Tp∈-η a∈Πjk | a∈Πjk′ with E.Tp∈-valid a∈Πjk′
... | E.Kinding.kd-Π j-kd k-kd = sound-Tp∈ (E.Tp∈-η a∈Πjk′ j-kd k-kd)
-- Operations on well-formed context equality that require weakening
-- and validity of ascription equality.
module CtxEqOps where
open Pointwise using (Pointwise; []; _∷_; map⁺)
-- Convert a context equation to its All₂ representation.
≃ctx-toAll : ∀ {m} {Γ Δ : Ctx m} → Γ ≃ Δ ctx →
Pointwise (Γ ⊢_≃_wf) (toVec Γ) (toVec Δ)
≃ctx-toAll ≃-[] = []
≃ctx-toAll (≃-∷ a≃b Γ≃Δ) =
let a-wf , _ = ≃wf-valid a≃b
in ≃wf-weaken a-wf a≃b ∷ map⁺ (≃wf-weaken a-wf) (≃ctx-toAll Γ≃Δ)
-- Ascriptions looked up in equal contexts are equal.
lookup-≃ : ∀ {m} {Γ Δ : Ctx m} x → Γ ≃ Δ ctx →
Γ ⊢ lookup Γ x ≃ lookup Δ x wf
lookup-≃ x Γ≃Δ = Pointwise.lookup (≃ctx-toAll Γ≃Δ) x
lookup-≃-kd : ∀ {m} {Γ Δ : Ctx m} {j k} x → Γ ≃ Δ ctx →
lookup Γ x ≡ kd j → lookup Δ x ≡ kd k → Γ ⊢ j ≅ k
lookup-≃-kd x Γ≃Δ Γ[x]≡kd-j Δ[x]≡kd-k =
≃wf-kd-inv (subst₂ (_ ⊢_≃_wf) Γ[x]≡kd-j Δ[x]≡kd-k (lookup-≃ x Γ≃Δ))
----------------------------------------------------------------------
-- Context narrowing (strong version)
--
-- NOTE. We could have proven a *weak* variant of context narrowing
-- for the (original) declarative judgments directly in the Typing
-- module (before establishing validity). But since we did not need
-- (weak or strong) context narrowing of the original judgments until
-- now, it is easier to instead prove the strengthened version here
-- via context narrowing and equivalence of the extended rules.
module TypedNarrowing where
-- Narrowing the kind of the first type variable preserves
-- well-formedness of kinds.
⇓-kd : ∀ {n} {Γ : Ctx n} {j₁ j₂ k} →
Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k kd → kd j₁ ∷ Γ ⊢ k kd
⇓-kd j₁<∷j₂ k-kd =
let j₁<∷j₂′ = complete-<∷ j₁<∷j₂
j₁-kd , _ = E.<∷-valid j₁<∷j₂′
in sound-kd (E.⇓-kd j₁-kd j₁<∷j₂′ (complete-kd k-kd))
-- Narrowing the kind of the first type variable preserves
-- well-kindedness.
⇓-Tp∈ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a k} →
Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢Tp a ∈ k → kd j₁ ∷ Γ ⊢Tp a ∈ k
⇓-Tp∈ j₁<∷j₂ a∈k =
let j₁<∷j₂′ = complete-<∷ j₁<∷j₂
j₁-kd , _ = E.<∷-valid j₁<∷j₂′
in sound-Tp∈ (E.⇓-Tp∈ j₁-kd j₁<∷j₂′ (complete-Tp∈ a∈k))
-- Narrowing the kind of the first type variable preserves
-- subkinding and subtyping.
⇓-<∷ : ∀ {n} {Γ : Ctx n} {j₁ j₂ k₁ k₂} →
Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → kd j₁ ∷ Γ ⊢ k₁ <∷ k₂
⇓-<∷ j₁<∷j₂ k₁<∷k₂ =
let j₁<∷j₂′ = complete-<∷ j₁<∷j₂
j₁-kd , _ = E.<∷-valid j₁<∷j₂′
in sound-<∷ (E.⇓-<∷ j₁-kd j₁<∷j₂′ (complete-<∷ k₁<∷k₂))
⇓-<: : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂ k} →
Γ ⊢ j₁ <∷ j₂ → kd j₂ ∷ Γ ⊢ a₁ <: a₂ ∈ k → kd j₁ ∷ Γ ⊢ a₁ <: a₂ ∈ k
⇓-<: j₁<∷j₂ a₁<:a₂∈k =
let j₁<∷j₂′ = complete-<∷ j₁<∷j₂
j₁-kd , _ = E.<∷-valid j₁<∷j₂′
in sound-<: (E.⇓-<: j₁-kd j₁<∷j₂′ (complete-<: a₁<:a₂∈k))
open TypedNarrowing
-- Transitivity of subkinding and kind equality.
--
-- NOTE. We could have proven admissibility of these rules directly in
-- the Typing module (before establishing validity) but this would
-- have required a proof of (weak) context narrowing for the
-- (original) declarative rules. As we do not need these transitivity
-- properties until we prove subject reduction (below), we go with an
-- indirect proof instead.
<∷-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j <∷ k → Γ ⊢ k <∷ l → Γ ⊢ j <∷ l
<∷-trans k₁<∷k₂ k₂<∷k₃ =
sound-<∷ (E.<∷-trans (complete-<∷ k₁<∷k₂) (complete-<∷ k₂<∷k₃))
≅-trans : ∀ {n} {Γ : Ctx n} {j k l} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ l → Γ ⊢ j ≅ l
≅-trans k₁≅k₂ k₂≅k₃ =
sound-≅ (E.≅-trans (complete-≅ k₁≅k₂) (complete-≅ k₂≅k₃))
-- Relational reasoning for kind and type equality.
--
-- NOTE. Even though the equalities are technically preorders, we have
-- to use the weaker reasoning designed for transitive relations here.
-- This is because reflexivity proofs in typed relations are typically
-- also typed, i.e. given some context `Γ' and some raw kind or term
-- `x` we cannot, in general, conclude that `Γ ⊢ x ∼ x` without an
-- additional well-formedness proof `Γ ⊢ x' of some sort.
module ≅-Reasoning where
≅-reasoning : TransCtxTermRelReasoning _⊢_≅_
≅-reasoning = record { ∼-trans = ≅-trans }
open TransCtxTermRelReasoning ≅-reasoning public renaming (_∼⟨_⟩_ to _≅⟨_⟩_)
module ≃-Reasoning where
≃-reasoning : TypedTransRelReasoning _⊢_≃_∈_
≃-reasoning = record { ∼-trans = ≃-trans }
open TypedTransRelReasoning ≃-reasoning public renaming (_∼⟨_⟩_ to _≃⟨_⟩_)
----------------------------------------------------------------------
-- Generation lemmas for abstractions
-- A generation lemma for kinding of type operator abstractions.
Tp∈-Λ-inv : ∀ {n} {Γ : Ctx n} {l a j k} → Γ ⊢Tp Λ l a ∈ Π j k →
Γ ⊢ l kd × kd j ∷ Γ ⊢Tp a ∈ k
Tp∈-Λ-inv (∈-Π-i l-kd a∈k) = l-kd , a∈k
Tp∈-Λ-inv (∈-⇑ Λl∈Πj₁k₁ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd)) =
let l-kd , a∈k₁ = Tp∈-Λ-inv Λl∈Πj₁k₁
in l-kd , ∈-⇑ (⇓-Tp∈ j₂<∷j₁ a∈k₁) k₁<∷k₂
-- Term abstractions are not types.
Tp∈-¬λ : ∀ {n} {Γ : Ctx n} {a b k} → ¬ Γ ⊢Tp ƛ a b ∈ k
Tp∈-¬λ (∈-s-i λab∈c⋯d) = Tp∈-¬λ λab∈c⋯d
Tp∈-¬λ (∈-⇑ λab∈j j<∷k) = Tp∈-¬λ λab∈j
----------------------------------------------------------------------
-- Admissible kind and type equality rules.
-- Functionality of kind formation (strong version).
kd-[≃] : ∀ {n} {Γ : Ctx n} {a b j k} →
kd j ∷ Γ ⊢ k kd → Γ ⊢ a ≃ b ∈ j → Γ ⊢ k Kind[ a ] ≅ k Kind[ b ]
kd-[≃] k-kd a≃b∈j = sound-≅ (E.kd-[≃] (complete-kd k-kd) (complete-≃ a≃b∈j))
-- Functionality of kinding (strong version).
Tp∈-[≃] : ∀ {n} {Γ : Ctx n} {a b c j k} →
kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢ b ≃ c ∈ j →
Γ ⊢ a [ b ] ≃ a [ c ] ∈ k Kind[ b ]
Tp∈-[≃] a∈k b≃c∈j = sound-≃ (E.Tp∈-[≃] (complete-Tp∈ a∈k) (complete-≃ b≃c∈j))
-- An admissible congruence rule for kind equality w.r.t. dependent
-- arrow formation.
≅-Π : ∀ {n} {Γ : Ctx n} {j₁ j₂ k₁ k₂} →
Γ ⊢ j₁ ≅ j₂ → kd j₁ ∷ Γ ⊢ k₁ ≅ k₂ → Γ ⊢ Π j₁ k₁ ≅ Π j₂ k₂
≅-Π (<∷-antisym j₁<∷j₂ j₂<∷j₁) (<∷-antisym k₁<∷k₂ k₂<∷k₁) =
let j₁-kd , j₂-kd = <∷-valid j₁<∷j₂
k₁-kd , k₂-kd = <∷-valid k₁<∷k₂
in <∷-antisym (<∷-Π j₂<∷j₁ (⇓-<∷ j₂<∷j₁ k₁<∷k₂) (kd-Π j₁-kd k₁-kd))
(<∷-Π j₁<∷j₂ k₂<∷k₁ (kd-Π j₂-kd (⇓-kd j₂<∷j₁ k₂-kd)))
-- Equal types inhabiting interval kinds are proper types.
≃-⋯-* : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a ≃ b ∈ c ⋯ d → Γ ⊢ a ≃ b ∈ *
≃-⋯-* (<:-antisym a<:b∈c⋯d b<:a∈c⋯d) =
let a<:b∈* = <:-⋯-* a<:b∈c⋯d
b<:a∈* = <:-⋯-* b<:a∈c⋯d
in <:-antisym a<:b∈* b<:a∈*
-- An admissible congruence rule for type equality w.r.t. formation of
-- universal types.
≃-∀ : ∀ {n} {Γ : Ctx n} {k₁ k₂ a₁ a₂} →
Γ ⊢ k₁ ≅ k₂ → kd k₁ ∷ Γ ⊢ a₁ ≃ a₂ ∈ * → Γ ⊢ Π k₁ a₁ ≃ Π k₂ a₂ ∈ *
≃-∀ (<∷-antisym k₁<∷k₂ k₂<∷k₁) (<:-antisym a₁<:a₂∈* a₂<:a₁∈*) =
let k₁-kd , k₂-kd = <∷-valid k₁<∷k₂
a₁∈* , a₂∈* = <:-valid a₁<:a₂∈*
in <:-antisym (<:-∀ k₂<∷k₁ (⇓-<: k₂<∷k₁ a₁<:a₂∈*) (∈-∀-f k₁-kd a₁∈*))
(<:-∀ k₁<∷k₂ a₂<:a₁∈* (∈-∀-f k₂-kd (⇓-Tp∈ k₂<∷k₁ a₂∈*)))
-- Another, weaker congruence lemma for type equality w.r.t. type
-- operator abstraction.
≃-λ′ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂ k} →
Γ ⊢ j₁ ≅ j₂ → kd j₁ ∷ Γ ⊢ a₁ ≃ a₂ ∈ k → Γ ⊢ Λ j₁ a₁ ≃ Λ j₂ a₂ ∈ Π j₁ k
≃-λ′ (<∷-antisym j₁<∷j₂ j₂<∷j₁) (<:-antisym a₁<:a₂∈k a₂<:a₁∈k) =
let j₁-kd , j₂-kd = <∷-valid j₁<∷j₂
a₁∈k , a₂∈k = <:-valid a₁<:a₂∈k
k-kd = Tp∈-valid a₁∈k
k-kd′ = ⇓-kd j₂<∷j₁ k-kd
Πj₂k<∷j₁k = <∷-Π j₁<∷j₂ (<∷-refl k-kd) (kd-Π j₂-kd k-kd′)
Λj₁a₁∈Πj₁k = ∈-Π-i j₁-kd a₁∈k
Λj₂a₂∈Πj₁k = ∈-⇑ (∈-Π-i j₂-kd (⇓-Tp∈ j₂<∷j₁ a₂∈k)) Πj₂k<∷j₁k
in <:-antisym (<:-λ a₁<:a₂∈k Λj₁a₁∈Πj₁k Λj₂a₂∈Πj₁k)
(<:-λ a₂<:a₁∈k Λj₂a₂∈Πj₁k Λj₁a₁∈Πj₁k)
-- An admissible congruence rule for type equality w.r.t. type
-- application.
≃-· : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂ j k} →
Γ ⊢ a₁ ≃ a₂ ∈ Π j k → Γ ⊢ b₁ ≃ b₂ ∈ j →
Γ ⊢ a₁ · b₁ ≃ a₂ · b₂ ∈ k Kind[ b₁ ]
≃-· (<:-antisym a₁<:a₂∈Πjk a₂<:a₁∈Πjk) b₁≃b₂∈j with <:-valid-kd a₁<:a₂∈Πjk
... | (kd-Π j-kd k-kd) =
<:-antisym (<:-· a₁<:a₂∈Πjk b₁≃b₂∈j)
(<:-⇑ (<:-· a₂<:a₁∈Πjk (≃-sym b₁≃b₂∈j))
(≅⇒<∷ (kd-[≃] k-kd (≃-sym b₁≃b₂∈j))))
-- An admissible, more flexible β-rule for type equality.
≃-β′ : ∀ {n} {Γ : Ctx n} {a b j k l} →
kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ j → Γ ⊢Tp Λ l a ∈ Π j k →
Γ ⊢ (Λ l a) · b ≃ a [ b ] ∈ k Kind[ b ]
≃-β′ a∈k b∈j Λla∈Πjk =
let j-kd = Tp∈-valid b∈j
in ≃-trans (≃-· (≃-λ (≃-refl a∈k) Λla∈Πjk (∈-Π-i j-kd a∈k)) (≃-refl b∈j))
(≃-β a∈k b∈j)
-- An admissible singleton-introduction rule for type equality.
≃-s-i : ∀ {n} {Γ : Ctx n} {a b c d} → Γ ⊢ a ≃ b ∈ c ⋯ d → Γ ⊢ a ≃ b ∈ a ⋯ a
≃-s-i (<:-antisym a<:b∈c⋯d b<:a∈c⋯d) =
let a<:b∈* = <:-⋯-* a<:b∈c⋯d
b<:a∈* = <:-⋯-* b<:a∈c⋯d
a∈* , _ = <:-valid a<:b∈*
a<:a∈* = <:-refl a∈*
in <:-antisym (<:-⇑ (<:-⋯-i a<:b∈c⋯d) (<∷-⋯ a<:a∈* b<:a∈*))
(<:-⇑ (<:-⋯-i b<:a∈c⋯d) (<∷-⋯ a<:b∈* a<:a∈*))
------------------------------------------------------------------------
-- Subject reduction for kinding.
-- A variant of subject reduction for kinding: untyped β-reduction of
-- kinds and types is included in kind resp. type equality.
mutual
kd-→β-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → j Kd→β k → Γ ⊢ j ≅ k
kd-→β-≅ (kd-⋯ a∈* b∈*) (a→a′ ⋯₁ b) = ≅-⋯ (Tp∈-→β-≃ a∈* a→a′) (≃-refl b∈*)
kd-→β-≅ (kd-⋯ a∈* b∈*) (a ⋯₂ b→b′) = ≅-⋯ (≃-refl a∈*) (Tp∈-→β-≃ b∈* b→b′)
kd-→β-≅ (kd-Π j-kd k-kd) (Π₁ j→j′ k) =
≅-Π (kd-→β-≅ j-kd j→j′) (≅-refl k-kd)
kd-→β-≅ (kd-Π j-kd k-kd) (Π₂ j k→k′) =
≅-Π (≅-refl j-kd) (kd-→β-≅ k-kd k→k′)
Tp∈-→β-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢Tp a ∈ k → a →β b → Γ ⊢ a ≃ b ∈ k
Tp∈-→β-≃ (∈-var x Γ-ctx Γ[x]≡kd-k) ⌈ () ⌉
Tp∈-→β-≃ (∈-⊥-f Γ-ctx) ⌈ () ⌉
Tp∈-→β-≃ (∈-⊤-f Γ-ctx) ⌈ () ⌉
Tp∈-→β-≃ (∈-∀-f k-kd a∈*) ⌈ () ⌉
Tp∈-→β-≃ (∈-∀-f k-kd a∈*) (Π₁ k→k′ a) =
≃-∀ (kd-→β-≅ k-kd k→k′) (≃-refl a∈*)
Tp∈-→β-≃ (∈-∀-f k-kd a∈*) (Π₂ k a→a′) =
≃-∀ (≅-refl k-kd) (Tp∈-→β-≃ a∈* a→a′)
Tp∈-→β-≃ (∈-→-f a∈* b∈*) ⌈ () ⌉
Tp∈-→β-≃ (∈-→-f a∈* b∈*) (a→a′ ⇒₁ b) =
≃-→ (Tp∈-→β-≃ a∈* a→a′) (≃-refl b∈*)
Tp∈-→β-≃ (∈-→-f a∈* b∈*) (a ⇒₂ b→b′) =
≃-→ (≃-refl a∈*) (Tp∈-→β-≃ b∈* b→b′)
Tp∈-→β-≃ (∈-Π-i j-kd a∈k) ⌈ () ⌉
Tp∈-→β-≃ (∈-Π-i j-kd a∈k) (Λ₁ j→j′ a) =
≃-λ′ (kd-→β-≅ j-kd j→j′) (≃-refl a∈k)
Tp∈-→β-≃ (∈-Π-i j-kd a∈k) (Λ₂ j a→a′) =
≃-λ′ (≅-refl j-kd) (Tp∈-→β-≃ a∈k a→a′)
Tp∈-→β-≃ (∈-Π-e a∈Πjk b∈j) ⌈ cont-Tp· l a b ⌉ =
let l-kd , a∈k = Tp∈-Λ-inv a∈Πjk
in ≃-β′ a∈k b∈j a∈Πjk
Tp∈-→β-≃ (∈-Π-e a∈Πjk b∈j) ⌈ cont-Tm· a b c ⌉ =
contradiction a∈Πjk Tp∈-¬λ
Tp∈-→β-≃ (∈-Π-e a∈Πjk b∈j) (a→a′ ·₁ b) =
≃-· (Tp∈-→β-≃ a∈Πjk a→a′) (≃-refl b∈j)
Tp∈-→β-≃ (∈-Π-e a∈Πjk b∈j) (a ·₂ b→b′) =
≃-· (≃-refl a∈Πjk) (Tp∈-→β-≃ b∈j b→b′)
Tp∈-→β-≃ (∈-s-i a∈k) a→b = ≃-s-i (Tp∈-→β-≃ a∈k a→b)
Tp∈-→β-≃ (∈-⇑ a∈j j<∷k) a→b = ≃-⇑ (Tp∈-→β-≃ a∈j a→b) j<∷k
kd-→β*-≅ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j kd → j Kd→β* k → Γ ⊢ j ≅ k
kd-→β*-≅ j-kd ε = ≅-refl j-kd
kd-→β*-≅ j-kd (j→k ◅ k→*l) =
let j≅k = kd-→β-≅ j-kd j→k
k-kd = proj₂ (≅-valid j≅k)
in ≅-trans j≅k (kd-→β*-≅ k-kd k→*l)
Tp∈-→β*-≃ : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢Tp a ∈ k → a →β* b → Γ ⊢ a ≃ b ∈ k
Tp∈-→β*-≃ a∈k ε = ≃-refl a∈k
Tp∈-→β*-≃ a∈k (a→b ◅ b→*c) =
let a≃b∈k = Tp∈-→β-≃ a∈k a→b
b∈k = proj₂ (≃-valid a≃b∈k)
in ≃-trans a≃b∈k (Tp∈-→β*-≃ b∈k b→*c)
-- A corollary: subject reduction for kinding, aka preservation of
-- kinding under (full) β-reduction.
pres-Tp∈-→β* : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢Tp a ∈ k → a →β* b → Γ ⊢Tp b ∈ k
pres-Tp∈-→β* a∈k a→b = proj₂ (≃-valid (Tp∈-→β*-≃ a∈k a→b))
| {
"alphanum_fraction": 0.5093779602,
"avg_line_length": 40.4987212276,
"ext": "agda",
"hexsha": "da9cdedd3e5c2f9e16e5dba909c7d5d5f3a43409",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Typing/Validity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Typing/Validity.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Typing/Validity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8207,
"size": 15835
} |
module Foundation.Semigroup where
open import Foundation.Primitive
open import Foundation.Equivalence
open import Agda.Primitive
record IsAssociative {a} {A : Set a} {ℓ} ⦃ _ : Equivalence A ℓ ⦄ (_∙_ : A → A → A) : ℞ a ⊔ ℓ where
field
associativity : ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))
open IsAssociative ⦃ … ⦄
record Semigroup {c} (A : Set c) ℓ : Set (c ⊔ ⟰ ℓ) where
field
⦃ equivalence ⦄ : Equivalence A ℓ
_∙_ : A → A → A
isAssociative : IsAssociative _∙_
open Semigroup ⦃ … ⦄
record Monoid {a} (A : Set a) ℓ : Set (a ⊔ ⟰ ℓ) where
field
⦃ semigroup ⦄ : Semigroup A ℓ
ε : A
left-identity : ∀ x → ε ∙ x ≈ x
right-identity : ∀ x → x ∙ ε ≈ x
open Monoid ⦃ … ⦄
open import Relation.Binary.Core
open import Algebra.FunctionProperties.Core
PowerRightIdentity : ∀ {a ℓ} {A : Set a} → Rel A ℓ → ∀ {b} {B : Set b} → B → (B → A → A) → Set _
PowerRightIdentity _≈_ e _◃_ = ∀ x → (e ◃ x) ≈ x
PowerAssociative : ∀ {a b ℓ} {A : Set a} {B : Set b} → (A → A → Set ℓ) → (B → A → A) → (B → B → B) → Set _
PowerAssociative _≈_ _◃_ _∙_ = ∀ x a b → ((b ∙ a) ◃ x) ≈ (b ◃ (a ◃ x))
_over_ : ∀ {f} {F : Set f} {g} → (F → F → Set g) → ∀ {i} {I : Set i} {a} {A : Set a} → (A → I → F) → A → A → Set (i ⊔ g)
_*_ over f = λ x y → ∀ i → f x i * f y i
record IsMonoidTransformer {s ℓˢ} {S : Set s} (≈ˢ : Rel S ℓˢ) {m ℓᵐ} {M : Set m} (≈ᵐ : Rel M ℓᵐ) (∙ : Op₂ M) (ε : M) (◃ : M → S → S) : Set (s ⊔ ℓˢ ⊔ m ⊔ ℓᵐ) where
field
◃-identity : PowerRightIdentity ≈ˢ ε ◃
≈ˢ-over-◃-⟶-≈ᵐ : ≈ˢ over ◃ ⇒ ≈ᵐ
≈ᵐ-to-≈ˢ-over-◃ : ≈ᵐ ⇒ ≈ˢ over ◃
◃-extracts-∙ : PowerAssociative ≈ˢ ◃ ∙
open IsMonoidTransformer ⦃ … ⦄
record MonoidTransformer {s} (S : Set s) ℓˢ {m} (M : Set m) ℓᵐ : Set (s ⊔ m ⊔ lsuc (ℓˢ ⊔ ℓᵐ)) where
field
⦃ base ⦄ : Equivalence S ℓˢ
⦃ exponent ⦄ : Monoid M ℓᵐ
infixl 6 _◃_
field
_◃_ : M → S → S
instance isMonoidTransformer : IsMonoidTransformer _≈_ _≈_ _∙_ ε _◃_
| {
"alphanum_fraction": 0.5412558381,
"avg_line_length": 31.5901639344,
"ext": "agda",
"hexsha": "17c8cc87ac8007ce29afdb572ae3ad184d7cd4b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Foundation/Semigroup.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Foundation/Semigroup.agda",
"max_line_length": 162,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Foundation/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 934,
"size": 1927
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.List.Base where
open import Agda.Builtin.List public
open import Cubical.Core.Everything
open import Cubical.Data.Maybe.Base
open import Cubical.Data.Nat.Base
module _ {ℓ} {A : Type ℓ} where
infixr 5 _++_
infixl 5 _∷ʳ_
[_] : A → List A
[ a ] = a ∷ []
_++_ : List A → List A → List A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
rev : List A → List A
rev [] = []
rev (x ∷ xs) = rev xs ++ [ x ]
_∷ʳ_ : List A → A → List A
xs ∷ʳ x = xs ++ x ∷ []
length : List A → ℕ
length [] = 0
length (x ∷ l) = 1 + length l
map : ∀ {ℓ'} {B : Type ℓ'} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
map2 : ∀ {ℓ' ℓ''} {B : Type ℓ'} {C : Type ℓ''}
→ (A → B → C) → List A → List B → List C
map2 f [] _ = []
map2 f _ [] = []
map2 f (x ∷ xs) (y ∷ ys) = f x y ∷ map2 f xs ys
foldr : ∀ {ℓ'} {B : Type ℓ'} → (A → B → B) → B → List A → B
foldr f b [] = b
foldr f b (x ∷ xs) = f x (foldr f b xs)
foldl : ∀ {ℓ'} {B : Type ℓ'} → (B → A → B) → B → List A → B
foldl f b [] = b
foldl f b (x ∷ xs) = foldl f (f b x) xs
| {
"alphanum_fraction": 0.4797588286,
"avg_line_length": 23.693877551,
"ext": "agda",
"hexsha": "277cb4f44d38874cc5f4692b791a477e615144da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Data/List/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Data/List/Base.agda",
"max_line_length": 61,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Data/List/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 505,
"size": 1161
} |
module Instances where
open import Level using () renaming (zero to ℓ₀)
open import Category.Functor using (RawFunctor)
open import Data.Maybe as M using (Maybe)
open import Data.Nat using (ℕ)
open import Data.Product using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Vec using (Vec)
import Data.Vec.Equality
open Data.Vec.Equality.PropositionalEquality using () renaming (to-≡ to VecEq-to-≡)
open import Function using (_∘_ ; id)
open import Relation.Binary using (Setoid ; module Setoid)
open import Relation.Binary.Indexed using (_at_) renaming (Setoid to ISetoid)
open import Relation.Binary.PropositionalEquality as P using (_≡_ ; _≗_ ; module ≡-Reasoning)
open Setoid using () renaming (_≈_ to _∋_≈_)
open import Generic using (VecISetoid)
open import Structures using (Functor ; Shaped ; module Shaped)
MaybeFunctor : Functor Maybe
MaybeFunctor = record
{ rawfunctor = M.functor
; isFunctor = record
{ cong = cong
; identity = identity
; composition = composition
} }
where _<$>_ : {α β : Set} → (α → β) → Maybe α → Maybe β
_<$>_ = RawFunctor._<$>_ M.functor
cong : {α β : Set} {g h : α → β} → g ≗ h → _<$>_ g ≗ _<$>_ h
cong g≗h (M.just x) = P.cong M.just (g≗h x)
cong g≗h M.nothing = P.refl
identity : {α : Set} → _<$>_ {α} id ≗ id
identity (M.just x) = P.refl
identity M.nothing = P.refl
composition : {α β γ : Set} → (g : β → γ) → (h : α → β) → _<$>_ (g ∘ h) ≗ _<$>_ g ∘ _<$>_ h
composition g h (M.just x) = P.refl
composition g h M.nothing = P.refl
VecShaped : Shaped ℕ Vec
VecShaped = record
{ arity = id
; content = id
; fill = λ _ → id
; isShaped = record
{ content-fill = λ _ → P.refl
; fill-content = λ _ _ → P.refl
} }
ShapedISetoid : (S : Setoid ℓ₀ ℓ₀) {C : Set → (Setoid.Carrier S) → Set} → Shaped (Setoid.Carrier S) C → Setoid ℓ₀ ℓ₀ → ISetoid (Setoid.Carrier S) ℓ₀ ℓ₀
ShapedISetoid S {C} ShapeT α = record
{ Carrier = C (Setoid.Carrier α)
; _≈_ = λ {s₁} {s₂} c₁ c₂ → S ∋ s₁ ≈ s₂ × ISetoid._≈_ (VecISetoid α) (content c₁) (content c₂)
; isEquivalence = record
{ refl = Setoid.refl S , ISetoid.refl (VecISetoid α)
; sym = λ p → Setoid.sym S (proj₁ p) , ISetoid.sym (VecISetoid α) (proj₂ p)
; trans = λ p q → Setoid.trans S (proj₁ p) (proj₁ q) , ISetoid.trans (VecISetoid α) (proj₂ p) (proj₂ q)
} } where open Shaped ShapeT
Shaped≈-to-≡ : {S : Set} {C : Set → S → Set} → (ShapeT : Shaped S C) → (α : Set) → {s : S} {x y : C α s} → ShapedISetoid (P.setoid S) ShapeT (P.setoid α) at s ∋ x ≈ y → x ≡ y
Shaped≈-to-≡ ShapeT α {s} {x} {y} (shape≈ , content≈) = begin
x
≡⟨ P.sym (content-fill x) ⟩
fill s (content x)
≡⟨ P.cong (fill s) (VecEq-to-≡ content≈) ⟩
fill s (content y)
≡⟨ content-fill y ⟩
y ∎
where open ≡-Reasoning
open Shaped ShapeT
| {
"alphanum_fraction": 0.6120295463,
"avg_line_length": 37.9066666667,
"ext": "agda",
"hexsha": "3f69627c7278af221a8f472b65f27dd185fe2bc5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jvoigtlaender/bidiragda",
"max_forks_repo_path": "Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jvoigtlaender/bidiragda",
"max_issues_repo_path": "Instances.agda",
"max_line_length": 174,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jvoigtlaender/bidiragda",
"max_stars_repo_path": "Instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1061,
"size": 2843
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Rationals.HITQ where
open import Cubical.HITs.Rationals.HITQ.Base public
-- open import Cubical.HITs.Rationals.HITQ.Properties public
| {
"alphanum_fraction": 0.7729468599,
"avg_line_length": 29.5714285714,
"ext": "agda",
"hexsha": "0d9bc13cb139754ba743eb6f29bf112982319402",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Rationals/HITQ.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Rationals/HITQ.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Rationals/HITQ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 61,
"size": 207
} |
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Base where
open import Data.Maybe.Base
open import Data.Nat.Base using (ℕ; suc; zero)
open import Level
open import Data.Empty
Fin : ℕ → Type
Fin zero = ⊥
Fin (suc n) = Maybe (Fin n)
pattern f0 = nothing
pattern fs n = just n
| {
"alphanum_fraction": 0.6830985915,
"avg_line_length": 17.75,
"ext": "agda",
"hexsha": "5dd576fec30632005ac1ef608626d80f2b450049",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Base.agda",
"max_line_length": 46,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 83,
"size": 284
} |
------------------------------------------------------------------------
-- This file contains the definition of a preorder as a category with --
-- additional properties. --
------------------------------------------------------------------------
module Category.Preorder where
open import Level renaming (suc to lsuc)
open import Data.Empty
open import Setoid.Total
open import Category.Category
open import Equality.Eq
record PO {l : Level} : Set (lsuc l) where
field
-- The underlying category.
ℙ : Cat {l}
-- The preorder axiom.
POax : ∀{A B}{f g : el (Hom ℙ A B)} → ⟨ Hom ℙ A B ⟩[ f ≡ g ]
open PO public renaming (ℙ to po-cat)
-- A PO with 4 objects.
module 4PO where
-- The objects.
data 4Obj {l : Level} : Set l where
i₁ : 4Obj
i₂ : 4Obj
i₃ : 4Obj
i₄ : 4Obj
-- The PreHom.
data 4PHom {l : Level} : 4Obj {l} → 4Obj {l} → Set l where
id₁ : 4PHom i₁ i₁
f₁ : 4PHom i₁ i₂
f₂ : 4PHom i₁ i₃
id₂ : 4PHom i₂ i₂
f₃ : 4PHom i₂ i₄
id₃ : 4PHom i₃ i₃
f₄ : 4PHom i₃ i₄
f₅ : 4PHom i₁ i₄
id₄ : 4PHom i₄ i₄
-- The Hom.
4Hom : {l : Level} → 4Obj {l} → 4Obj {l} → Setoid {l}
4Hom i₁ i₁ = record { el = 4PHom i₁ i₁; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₂ = record { el = 4PHom i₁ i₂; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₃ = record { el = 4PHom i₁ i₃; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₁ i₄ = record { el = 4PHom i₁ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₂ i₂ = record { el = 4PHom i₂ i₂; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₂ i₄ = record { el = 4PHom i₂ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₃ i₃ = record { el = 4PHom i₃ i₃; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₃ i₄ = record { el = 4PHom i₃ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom i₄ i₄ = record { el = 4PHom i₄ i₄; eq = λ a b → a ≅ b; eqRpf = isEqRel }
4Hom _ _ = EmptySetoid
4Comp : {l : Level}{a b c : 4Obj {l}} → BinSetoidFun (4Hom a b) (4Hom b c) (4Hom a c)
4Comp {_} {i₁} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₁} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₁} {i₄} = record { appT = λ x → record { appT = λ x₁ → ⊥-poly-elim x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → id₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → id₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₄} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₄} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → id₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₃} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₃} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₄; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₃; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → id₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₂} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₂} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → x; extT = λ x₂ → refl }; extT = λ x₁ x₂ → x₁ }
4Comp {_} {i₁} {i₄} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₁} = record { appT = λ x → record { appT = λ x₁ → id₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₂} {i₂} = record { appT = λ x → record { appT = λ x₁ → f₁; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₃} {i₃} = record { appT = λ x → record { appT = λ x₁ → f₂; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {_} {i₁} {i₄} {i₄} = record { appT = λ x → record { appT = λ x₁ → f₅; extT = λ x₂ → refl }; extT = λ x₁ x₂ → refl }
4Comp {l} {i₁} {i₁} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₁ c)) {x₂} }
4Comp {l} {i₂} {i₂} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₂ c)) {x₂} }
4Comp {l} {i₃} {i₃} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₃ c)) {x₂} }
4Comp {l} {i₄} {i₄} {c} = record { appT = λ x → record { appT = λ x₁ → x₁; extT = λ x₂ → x₂ }; extT = λ x₁ x₂ → refPf (eqRpf (4Hom i₄ c)) {x₂} }
4Id : {l : Level}{A : 4Obj {l}} → el (4Hom A A)
4Id {_}{i₁} = id₁
4Id {_}{i₂} = id₂
4Id {_}{i₃} = id₃
4Id {_}{i₄} = id₄
4PO-ax : ∀{l}{A B : 4Obj {l}}{f g : el (4Hom A B)} → eq (4Hom A B) f g
4PO-ax {A = i₁} {i₁} {id₁} {id₁} = refl
4PO-ax {A = i₁} {i₂} {f₁} {f₁} = refl
4PO-ax {A = i₁} {i₃} {f₂} {f₂} = refl
4PO-ax {A = i₁} {i₄} {f₅} {f₅} = refl
4PO-ax {A = i₂} {i₂} {id₂} {id₂} = refl
4PO-ax {A = i₂} {i₄} {f₃} {f₃} = refl
4PO-ax {A = i₃} {i₃} {id₃} {id₃} = refl
4PO-ax {A = i₃} {i₄} {f₄} {f₄} = refl
4PO-ax {A = i₄} {i₄} {id₄} {id₄} = refl
4PO-ax {A = i₂} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₃} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₁} {f} = ⊥-poly-elim f
4PO-ax {A = i₃} {i₂} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₂} {f} = ⊥-poly-elim f
4PO-ax {A = i₂} {i₃} {f} = ⊥-poly-elim f
4PO-ax {A = i₄} {i₃} {f} = ⊥-poly-elim f
4AssocPf : ∀{l}{A B C D : 4Obj {l}} {f : el (4Hom A B)} {g : el (4Hom B C)}{h : el (4Hom C D)}
→ ⟨ 4Hom A D ⟩[ f ○[ 4Comp {l} {A}{B}{D} ] (g ○[ 4Comp {l}{B}{C}{D} ] h) ≡ (f ○[ 4Comp {l} {A}{B}{C} ] g) ○[ 4Comp {l}{A}{C}{D} ] h ]
4AssocPf {l}{A}{B}{C}{D} {f}{g} = 4PO-ax {l} {A} {D}
4IdPF : {l : Level}{A B : 4Obj {l}} {f : el (4Hom A B)}
→ ⟨ 4Hom A B ⟩[ (4Id {l}{A}) ○[ 4Comp {l}{A}{A}{B} ] f ≡ f ○[ 4Comp {l}{A}{B}{B} ] (4Id {l}{B}) ]
4IdPF {l}{A}{B}{f} = 4PO-ax {l} {A} {B}
-- We have a category.
4cat : {l : Level} → Cat {l}
4cat {l} = record { Obj = 4Obj {l};
Hom = 4Hom;
comp = λ {A} {B} {C} → 4Comp {l} {A}{B}{C};
id = λ {A} → 4Id {l}{A};
assocPf = λ {A} {B} {C} {D} {f} {g} {h} → 4AssocPf {l}{A}{B}{C}{D}{f}{g}{h};
idPfCom = λ {A} {B} {f} → 4IdPF {l}{A}{B}{f};
idPf = λ {A} {B} {f} → 4PO-ax {l} {A} {B}}
-- We have a preorder.
4po : {l : Level} → PO {l}
4po {l} = record { ℙ = 4cat;
POax = λ {A} {B} {f} {g} → 4PO-ax {l} {A} {B} {f} {g} }
| {
"alphanum_fraction": 0.4745495308,
"avg_line_length": 72.1137724551,
"ext": "agda",
"hexsha": "d133120730a5fd5d64dc7f5641da412c6b88a673",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/Preorder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/Preorder.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/Preorder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5852,
"size": 12043
} |
module BasicIS4.Metatheory.Hilbert-TarskiGluedHilbert where
open import BasicIS4.Syntax.Hilbert public
open import BasicIS4.Semantics.TarskiGluedHilbert public
-- Internalisation of syntax as syntax representation in a particular model.
module _ {{_ : Model}} where
[_] : ∀ {A Γ} → Γ ⊢ A → Γ [⊢] A
[ var i ] = [var] i
[ app t u ] = [app] [ t ] [ u ]
[ ci ] = [ci]
[ ck ] = [ck]
[ cs ] = [cs]
[ box t ] = [box] [ t ]
[ cdist ] = [cdist]
[ cup ] = [cup]
[ cdown ] = [cdown]
[ cpair ] = [cpair]
[ cfst ] = [cfst]
[ csnd ] = [csnd]
[ unit ] = [unit]
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app {A} {B} t u) γ = _⟪$⟫_ {A} {B} (eval t γ) (eval u γ)
eval ci γ = K I
eval (ck {A} {B}) γ = K (⟪K⟫ {A} {B})
eval (cs {A} {B} {C}) γ = K (⟪S⟫′ {A} {B} {C})
eval (box t) γ = K ([ box t ] ⅋ eval t ∙)
eval cdist γ = K _⟪D⟫′_
eval cup γ = K ⟪↑⟫
eval cdown γ = K ⟪↓⟫
eval (cpair {A} {B}) γ = K (_⟪,⟫′_ {A} {B})
eval cfst γ = K π₁
eval csnd γ = K π₂
eval unit γ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
-- The canonical model.
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ Γ P → Γ ⊢ α P
; mono⊩ᵅ = mono⊢
; _[⊢]_ = _⊢_
; mono[⊢] = mono⊢
; [var] = var
; [app] = app
; [ci] = ci
; [ck] = ck
; [cs] = cs
; [box] = box
; [cdist] = cdist
; [cup] = cup
; [cdown] = cdown
; [cpair] = cpair
; [cfst] = cfst
; [csnd] = csnd
; [unit] = unit
}
-- Soundness and completeness with respect to the canonical model.
mutual
reflectᶜ : ∀ {A Γ} → Γ ⊢ A → Γ ⊩ A
reflectᶜ {α P} t = t
reflectᶜ {A ▻ B} t = λ η → let t′ = mono⊢ η t
in λ a → reflectᶜ (app t′ (reifyᶜ a))
reflectᶜ {□ A} t = λ η → let t′ = mono⊢ η t
in t′ ⅋ reflectᶜ (down t′)
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reifyᶜ : ∀ {A Γ} → Γ ⊩ A → Γ ⊢ A
reifyᶜ {α P} s = s
reifyᶜ {A ▻ B} s = lam (reifyᶜ (s weak⊆ (reflectᶜ {A} v₀)))
reifyᶜ {□ A} s = syn (s refl⊆)
reifyᶜ {A ∧ B} s = pair (reifyᶜ (π₁ s)) (reifyᶜ (π₂ s))
reifyᶜ {⊤} s = unit
reflectᶜ⋆ : ∀ {Ξ Γ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
reifyᶜ⋆ : ∀ {Ξ Γ} → Γ ⊩⋆ Ξ → Γ ⊢⋆ Ξ
reifyᶜ⋆ {∅} ∙ = ∙
reifyᶜ⋆ {Ξ , A} (ts , t) = reifyᶜ⋆ ts , reifyᶜ t
-- Reflexivity and transitivity.
refl⊩⋆ : ∀ {Γ} → Γ ⊩⋆ Γ
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {Γ Γ′ Γ″} → Γ ⊩⋆ Γ′ → Γ′ ⊩⋆ Γ″ → Γ ⊩⋆ Γ″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reifyᶜ⋆ ts) (reifyᶜ⋆ us))
-- Completeness with respect to all models, or quotation.
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reifyᶜ (s refl⊩⋆)
-- Normalisation by evaluation.
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| {
"alphanum_fraction": 0.4668759812,
"avg_line_length": 25.8943089431,
"ext": "agda",
"hexsha": "795203b7768098da8c8985c53d609dd0e6963026",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiGluedHilbert.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiGluedHilbert.agda",
"max_line_length": 76,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/Hilbert-TarskiGluedHilbert.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1485,
"size": 3185
} |
module HelloWorldPrim where
open import IO.Primitive.Infinite
open import Codata.Musical.Costring
main = putStrLn (toCostring "Hello World!")
| {
"alphanum_fraction": 0.8125,
"avg_line_length": 20.5714285714,
"ext": "agda",
"hexsha": "034dadd8482cc54f38605fc8eaec3b45545d8fc3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "154d1c1e3d7a3ed2a965a800c620958ecda8fb1e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ashinkarov/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "154d1c1e3d7a3ed2a965a800c620958ecda8fb1e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ashinkarov/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "154d1c1e3d7a3ed2a965a800c620958ecda8fb1e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ashinkarov/agda",
"max_stars_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 34,
"size": 144
} |
postulate
A B : Set
C : .{{_ : B}} → Set
instance
f : {{_ : A}} → B
test : {{x : A}} → C
| {
"alphanum_fraction": 0.3823529412,
"avg_line_length": 12.75,
"ext": "agda",
"hexsha": "4125cdf9cc7e223ba287d6624518bca0d4a2ae3f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1425.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1425.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1425.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 102
} |
------------------------------------------------------------------------
-- Properties relating Any to various list functions
------------------------------------------------------------------------
module Data.List.Any.Properties where
open import Category.Monad
open import Data.Bool
open import Data.Bool.Properties
open import Data.Function
open import Data.List as List
open RawMonad List.monad
open import Data.List.Any as Any using (Any; here; there)
import Data.List.Equality as ListEq
open import Data.Product as Prod hiding (map)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Relation.Unary using (Pred; _⟨×⟩_; _⟨→⟩_)
open import Relation.Binary
import Relation.Binary.EqReasoning as EqReasoning
open import Relation.Binary.FunctionSetoid
open import Relation.Binary.Product.Pointwise
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; inspect; _with-≡_)
------------------------------------------------------------------------
-- Lemmas related to Any
-- Introduction (⁺) and elimination (⁻) rules for map.
map⁺ : ∀ {A B} {P : Pred B} {f : A → B} {xs} →
Any (P ∘₀ f) xs → Any P (map f xs)
map⁺ (here p) = here p
map⁺ (there p) = there $ map⁺ p
map⁻ : ∀ {A B} {P : Pred B} {f : A → B} {xs} →
Any P (map f xs) → Any (P ∘₀ f) xs
map⁻ {xs = []} ()
map⁻ {xs = x ∷ xs} (here p) = here p
map⁻ {xs = x ∷ xs} (there p) = there $ map⁻ p
-- Introduction and elimination rules for _++_.
++⁺ˡ : ∀ {A} {P : Pred A} {xs ys} →
Any P xs → Any P (xs ++ ys)
++⁺ˡ (here p) = here p
++⁺ˡ (there p) = there (++⁺ˡ p)
++⁺ʳ : ∀ {A} {P : Pred A} xs {ys} →
Any P ys → Any P (xs ++ ys)
++⁺ʳ [] p = p
++⁺ʳ (x ∷ xs) p = there (++⁺ʳ xs p)
++⁻ : ∀ {A} {P : Pred A} xs {ys} →
Any P (xs ++ ys) → Any P xs ⊎ Any P ys
++⁻ [] p = inj₂ p
++⁻ (x ∷ xs) (here p) = inj₁ (here p)
++⁻ (x ∷ xs) (there p) = Sum.map there id (++⁻ xs p)
-- Introduction and elimination rules for return.
return⁺ : ∀ {A} {P : Pred A} {x} →
P x → Any P (return x)
return⁺ = here
return⁻ : ∀ {A} {P : Pred A} {x} →
Any P (return x) → P x
return⁻ (here p) = p
return⁻ (there ())
-- Introduction and elimination rules for concat.
concat⁺ : ∀ {A} {P : Pred A} {xss} →
Any (Any P) xss → Any P (concat xss)
concat⁺ (here p) = ++⁺ˡ p
concat⁺ (there {x = xs} p) = ++⁺ʳ xs (concat⁺ p)
concat⁻ : ∀ {A} {P : Pred A} xss →
Any P (concat xss) → Any (Any P) xss
concat⁻ [] ()
concat⁻ ([] ∷ xss) p = there $ concat⁻ xss p
concat⁻ ((x ∷ xs) ∷ xss) (here p) = here (here p)
concat⁻ ((x ∷ xs) ∷ xss) (there p)
with concat⁻ (xs ∷ xss) p
... | here p′ = here (there p′)
... | there p′ = there p′
-- Introduction and elimination rules for _>>=_.
>>=⁺ : ∀ {A B P xs} {f : A → List B} →
Any (Any P ∘₀ f) xs → Any P (xs >>= f)
>>=⁺ = concat⁺ ∘ map⁺
>>=⁻ : ∀ {A B P} xs {f : A → List B} →
Any P (xs >>= f) → Any (Any P ∘₀ f) xs
>>=⁻ _ = map⁻ ∘ concat⁻ _
-- Introduction and elimination rules for _⊛_.
⊛⁺ : ∀ {A B P} {fs : List (A → B)} {xs} →
Any (λ f → Any (P ∘₀ f) xs) fs → Any P (fs ⊛ xs)
⊛⁺ = >>=⁺ ∘ Any.map (>>=⁺ ∘ Any.map return⁺)
⊛⁺′ : ∀ {A B P Q} {fs : List (A → B)} {xs} →
Any (P ⟨→⟩ Q) fs → Any P xs → Any Q (fs ⊛ xs)
⊛⁺′ pq p = ⊛⁺ (Any.map (λ pq → Any.map (λ {x} → pq {x}) p) pq)
⊛⁻ : ∀ {A B P} (fs : List (A → B)) xs →
Any P (fs ⊛ xs) → Any (λ f → Any (P ∘₀ f) xs) fs
⊛⁻ fs xs = Any.map (Any.map return⁻ ∘ >>=⁻ xs) ∘ >>=⁻ fs
-- Introduction and elimination rules for _⊗_.
⊗⁺ : ∀ {A B P} {xs : List A} {ys : List B} →
Any (λ x → Any (λ y → P (x , y)) ys) xs → Any P (xs ⊗ ys)
⊗⁺ = ⊛⁺ ∘′ ⊛⁺ ∘′ return⁺
⊗⁺′ : ∀ {A B} {P : Pred A} {Q : Pred B} {xs ys} →
Any P xs → Any Q ys → Any (P ⟨×⟩ Q) (xs ⊗ ys)
⊗⁺′ p q = ⊗⁺ (Any.map (λ p → Any.map (λ q → (p , q)) q) p)
⊗⁻ : ∀ {A B P} (xs : List A) (ys : List B) →
Any P (xs ⊗ ys) → Any (λ x → Any (λ y → P (x , y)) ys) xs
⊗⁻ _ _ = return⁻ ∘ ⊛⁻ _ _ ∘ ⊛⁻ _ _
⊗⁻′ : ∀ {A B} {P : Pred A} {Q : Pred B} xs ys →
Any (P ⟨×⟩ Q) (xs ⊗ ys) → Any P xs × Any Q ys
⊗⁻′ _ _ pq =
(Any.map (proj₁ ∘ proj₂ ∘ Any.satisfied) lem ,
(Any.map proj₂ $ proj₂ (Any.satisfied lem)))
where lem = ⊗⁻ _ _ pq
-- Any and any are related via T.
any⁺ : ∀ {A} (p : A → Bool) {xs} →
Any (T ∘₀ p) xs → T (any p xs)
any⁺ p (here px) = proj₂ T-∨ (inj₁ px)
any⁺ p (there {x = x} pxs) with p x
... | true = _
... | false = any⁺ p pxs
any⁻ : ∀ {A} (p : A → Bool) xs →
T (any p xs) → Any (T ∘₀ p) xs
any⁻ p [] ()
any⁻ p (x ∷ xs) px∷xs with inspect (p x)
any⁻ p (x ∷ xs) px∷xs | true with-≡ eq = here (proj₂ T-≡ $
PropEq.sym eq)
any⁻ p (x ∷ xs) px∷xs | false with-≡ eq with p x
any⁻ p (x ∷ xs) pxs | false with-≡ refl | .false =
there (any⁻ p xs pxs)
------------------------------------------------------------------------
-- Lemmas related to _∈_, parameterised on underlying equalities
module Membership₁ (S : Setoid) where
open Any.Membership S
private
open module S = Setoid S using (_≈_)
open module [M] = Any.Membership (ListEq.Equality.setoid S)
using () renaming (_∈_ to _[∈]_; _⊆_ to _[⊆]_)
open module M≡ = Any.Membership-≡
using () renaming (_∈_ to _∈≡_; _⊆_ to _⊆≡_)
-- Any is monotone.
mono : ∀ {P xs ys} →
P Respects _≈_ → xs ⊆ ys → Any P xs → Any P ys
mono resp xs⊆ys pxs with find pxs
... | (x , x∈xs , px) = lose resp (xs⊆ys x∈xs) px
-- _++_ is monotone.
_++-mono_ : ∀ {xs₁ xs₂ ys₁ ys₂} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → xs₁ ++ xs₂ ⊆ ys₁ ++ ys₂
_++-mono_ {ys₁ = ys₁} xs₁⊆ys₁ xs₂⊆ys₂ =
[ ++⁺ˡ ∘ xs₁⊆ys₁ , ++⁺ʳ ys₁ ∘ xs₂⊆ys₂ ]′ ∘ ++⁻ _
-- _++_ is idempotent.
++-idempotent : ∀ {xs} → xs ++ xs ⊆ xs
++-idempotent = [ id , id ]′ ∘ ++⁻ _
-- Introduction and elimination rules for concat.
concat-∈⁺ : ∀ {x xs xss} →
x ∈ xs → xs [∈] xss → x ∈ concat xss
concat-∈⁺ x∈xs xs∈xss =
concat⁺ (Any.map (λ xs≈ys → P.reflexive xs≈ys x∈xs) xs∈xss)
where module P = Preorder ⊆-preorder
concat-∈⁻ : ∀ {x} xss → x ∈ concat xss →
∃ λ xs → x ∈ xs × xs [∈] xss
concat-∈⁻ xss x∈ = Prod.map id swap $ [M].find (concat⁻ xss x∈)
-- concat is monotone.
concat-mono : ∀ {xss yss} →
xss [⊆] yss → concat xss ⊆ concat yss
concat-mono {xss = xss} xss⊆yss x∈ with concat-∈⁻ xss x∈
... | (xs , x∈xs , xs∈xss) = concat-∈⁺ x∈xs (xss⊆yss xs∈xss)
-- any is monotone.
any-mono : ∀ p → (T ∘₀ p) Respects _≈_ →
∀ {xs ys} → xs ⊆ ys → T (any p xs) → T (any p ys)
any-mono p resp xs⊆ys = any⁺ p ∘ mono resp xs⊆ys ∘ any⁻ p _
-- Introduction and elimination rules for map-with-∈.
map-with-∈-∈⁺ : ∀ {A} {xs : List A}
(f : ∀ {x} → x ∈≡ xs → S.carrier) {x} →
(x∈xs : x ∈≡ xs) → f x∈xs ∈ M≡.map-with-∈ xs f
map-with-∈-∈⁺ f (here refl) = here S.refl
map-with-∈-∈⁺ f (there x∈xs) = there $ map-with-∈-∈⁺ (f ∘ there) x∈xs
map-with-∈-∈⁻ : ∀ {A} {xs : List A}
(f : ∀ {x} → x ∈≡ xs → S.carrier) {fx∈xs} →
fx∈xs ∈ M≡.map-with-∈ xs f →
∃ λ x → Σ (x ∈≡ xs) λ x∈xs → fx∈xs ≈ f x∈xs
map-with-∈-∈⁻ {xs = []} f ()
map-with-∈-∈⁻ {xs = y ∷ xs} f (here fx≈) = (y , here refl , fx≈)
map-with-∈-∈⁻ {xs = y ∷ xs} f (there x∈xs) =
Prod.map id (Prod.map there id) $ map-with-∈-∈⁻ (f ∘ there) x∈xs
-- map-with-∈ is monotone.
map-with-∈-mono :
∀ {A} {xs : List A} {f : ∀ {x} → x ∈≡ xs → S.carrier}
{ys : List A} {g : ∀ {x} → x ∈≡ ys → S.carrier} →
(xs⊆ys : xs ⊆≡ ys) →
(∀ {x} (x∈xs : x ∈≡ xs) → f x∈xs ≈ g (xs⊆ys x∈xs)) →
M≡.map-with-∈ xs f ⊆ M≡.map-with-∈ ys g
map-with-∈-mono {f = f} {g = g} xs⊆ys f≈g {fx∈xs} fx∈xs∈
with map-with-∈-∈⁻ f fx∈xs∈
... | (x , x∈xs , fx∈xs≈) =
Any.map (λ {y} g[xs⊆ys-x∈xs]≈y → begin
fx∈xs ≈⟨ fx∈xs≈ ⟩
f x∈xs ≈⟨ f≈g x∈xs ⟩
g (xs⊆ys x∈xs) ≈⟨ g[xs⊆ys-x∈xs]≈y ⟩
y ∎) $
map-with-∈-∈⁺ g (xs⊆ys x∈xs)
where open EqReasoning S
module Membership₂ (S₁ S₂ : Setoid) where
private
open module S₁ = Setoid S₁ using () renaming (_≈_ to _≈₁_)
open module S₂ = Setoid S₂ using () renaming (_≈_ to _≈₂_)
module L₂ = ListEq.Equality S₂
open module M₁ = Any.Membership S₁
using () renaming (_∈_ to _∈₁_; _⊆_ to _⊆₁_)
open module M₂ = Any.Membership S₂
using () renaming (_∈_ to _∈₂_; _⊆_ to _⊆₂_)
open module M₁₂ = Any.Membership (S₁ ⇨ S₂)
using () renaming (_∈_ to _∈₁₂_; _⊆_ to _⊆₁₂_)
open Any.Membership (S₁ ×-setoid S₂)
using () renaming (_⊆_ to _⊆₁,₂_)
-- Introduction and elimination rules for map.
map-∈⁺ : ∀ (f : S₁ ⟶ S₂) {x xs} →
x ∈₁ xs → f ⟨$⟩ x ∈₂ map (_⟨$⟩_ f) xs
map-∈⁺ f = map⁺ ∘ Any.map (pres f)
map-∈⁻ : ∀ {f fx} xs →
fx ∈₂ map f xs → ∃ λ x → x ∈₁ xs × fx ≈₂ f x
map-∈⁻ _ fx∈ = M₁.find (map⁻ fx∈)
-- map is monotone.
map-mono : ∀ (f : S₁ ⟶ S₂) {xs ys} →
xs ⊆₁ ys → map (_⟨$⟩_ f) xs ⊆₂ map (_⟨$⟩_ f) ys
map-mono f xs⊆ys fx∈ with map-∈⁻ _ fx∈
... | (x , x∈ , eq) = Any.map (S₂.trans eq) (map-∈⁺ f (xs⊆ys x∈))
-- Introduction and elimination rules for _>>=_.
>>=-∈⁺ : ∀ (f : S₁ ⟶ L₂.setoid) {x y xs} →
x ∈₁ xs → y ∈₂ f ⟨$⟩ x → y ∈₂ (xs >>= _⟨$⟩_ f)
>>=-∈⁺ f x∈xs y∈fx =
>>=⁺ (Any.map (flip M₂.∈-resp-list-≈ y∈fx ∘ pres f) x∈xs)
>>=-∈⁻ : ∀ (f : S₁ ⟶ L₂.setoid) {y} xs →
y ∈₂ (xs >>= _⟨$⟩_ f) → ∃ λ x → x ∈₁ xs × y ∈₂ f ⟨$⟩ x
>>=-∈⁻ f xs y∈ = M₁.find (>>=⁻ xs y∈)
-- _>>=_ is monotone.
>>=-mono : ∀ (f g : S₁ ⟶ L₂.setoid) {xs ys} →
xs ⊆₁ ys → (∀ {x} → f ⟨$⟩ x ⊆₂ g ⟨$⟩ x) →
(xs >>= _⟨$⟩_ f) ⊆₂ (ys >>= _⟨$⟩_ g)
>>=-mono f g {xs} xs⊆ys f⊆g z∈ with >>=-∈⁻ f xs z∈
... | (x , x∈xs , z∈fx) = >>=-∈⁺ g (xs⊆ys x∈xs) (f⊆g z∈fx)
-- Introduction and elimination rules for _⊛_.
private
infixl 4 _⟨⊛⟩_
_⟨⊛⟩_ : List (S₁ ⟶ S₂) → List S₁.carrier → List S₂.carrier
fs ⟨⊛⟩ xs = map _⟨$⟩_ fs ⊛ xs
⊛-∈⁺ : ∀ f {fs x xs} →
f ∈₁₂ fs → x ∈₁ xs → f ⟨$⟩ x ∈₂ fs ⟨⊛⟩ xs
⊛-∈⁺ _ f∈fs x∈xs =
⊛⁺′ (map⁺ (Any.map (λ f≈g x≈y → f≈g x≈y) f∈fs)) x∈xs
⊛-∈⁻ : ∀ fs xs {fx} → fx ∈₂ fs ⟨⊛⟩ xs →
∃₂ λ f x → f ∈₁₂ fs × x ∈₁ xs × fx ≈₂ f ⟨$⟩ x
⊛-∈⁻ fs xs fx∈ with M₁₂.find $ map⁻ (⊛⁻ (map _⟨$⟩_ fs) xs fx∈)
... | (f , f∈fs , x∈) with M₁.find x∈
... | (x , x∈xs , fx≈fx) = (f , x , f∈fs , x∈xs , fx≈fx)
-- _⊛_ is monotone.
_⊛-mono_ : ∀ {fs gs xs ys} →
fs ⊆₁₂ gs → xs ⊆₁ ys → fs ⟨⊛⟩ xs ⊆₂ gs ⟨⊛⟩ ys
_⊛-mono_ {fs = fs} {xs = xs} fs⊆gs xs⊆ys fx∈ with ⊛-∈⁻ fs xs fx∈
... | (f , x , f∈fs , x∈xs , fx≈fx) =
Any.map (S₂.trans fx≈fx) $ ⊛-∈⁺ f (fs⊆gs {f} f∈fs) (xs⊆ys x∈xs)
-- _⊗_ is monotone.
_⊗-mono_ : ∀ {xs₁ xs₂ ys₁ ys₂} →
xs₁ ⊆₁ ys₁ → xs₂ ⊆₂ ys₂ → (xs₁ ⊗ xs₂) ⊆₁,₂ (ys₁ ⊗ ys₂)
_⊗-mono_ {xs₁ = xs₁} {xs₂} xs₁⊆ys₁ xs₂⊆ys₂ {x , y} x,y∈
with ⊗⁻′ {P = _≈₁_ x} {Q = _≈₂_ y} xs₁ xs₂ x,y∈
... | (x∈ , y∈) = ⊗⁺′ (xs₁⊆ys₁ x∈) (xs₂⊆ys₂ y∈)
------------------------------------------------------------------------
-- Lemmas related to the variant of _∈_ which is defined using
-- propositional equality
module Membership-≡ where
open Any.Membership-≡
private
module P {A} = ListEq.PropositionalEquality {A}
open module M₁ {A} = Membership₁ (PropEq.setoid A) public
using (_++-mono_; ++-idempotent;
map-with-∈-∈⁺; map-with-∈-∈⁻; map-with-∈-mono)
open module M₂ {A} {B} =
Membership₂ (PropEq.setoid A) (PropEq.setoid B) public
using (map-∈⁻)
-- Any is monotone.
mono : ∀ {A xs ys} {P : Pred A} → xs ⊆ ys → Any P xs → Any P ys
mono {P = P} = M₁.mono (PropEq.subst P)
-- Introduction and elimination rules for concat.
concat-∈⁺ : ∀ {A} {x : A} {xs xss} →
x ∈ xs → xs ∈ xss → x ∈ concat xss
concat-∈⁺ x∈xs = M₁.concat-∈⁺ x∈xs ∘ Any.map P.reflexive
concat-∈⁻ : ∀ {A} {x : A} xss →
x ∈ concat xss → ∃ λ xs → x ∈ xs × xs ∈ xss
concat-∈⁻ xss x∈ =
Prod.map id (Prod.map id (Any.map P.≈⇒≡)) $ M₁.concat-∈⁻ xss x∈
-- concat is monotone.
concat-mono : ∀ {A} {xss yss : List (List A)} →
xss ⊆ yss → concat xss ⊆ concat yss
concat-mono xss⊆yss =
M₁.concat-mono (Any.map P.reflexive ∘ xss⊆yss ∘ Any.map P.≈⇒≡)
-- any is monotone.
any-mono : ∀ {A} (p : A → Bool) {xs ys} →
xs ⊆ ys → T (any p xs) → T (any p ys)
any-mono p = M₁.any-mono p (PropEq.subst (T ∘₀ p))
-- Introduction rule for map.
map-∈⁺ : ∀ {A B} {f : A → B} {x xs} →
x ∈ xs → f x ∈ map f xs
map-∈⁺ {f = f} = M₂.map-∈⁺ (PropEq.→-to-⟶ f)
-- map is monotone.
map-mono : ∀ {A B} {f : A → B} {xs ys} →
xs ⊆ ys → map f xs ⊆ map f ys
map-mono {f = f} = M₂.map-mono (PropEq.→-to-⟶ f)
-- Introduction and elimination rules for _>>=_.
private
[→-to-⟶] : ∀ {A B} → (A → List B) →
PropEq.setoid A ⟶
ListEq.Equality.setoid (PropEq.setoid B)
[→-to-⟶] f =
record { _⟨$⟩_ = f; pres = P.reflexive ∘ PropEq.cong f }
>>=-∈⁺ : ∀ {A B} (f : A → List B) {x y xs} →
x ∈ xs → y ∈ f x → y ∈ (xs >>= f)
>>=-∈⁺ f = M₂.>>=-∈⁺ ([→-to-⟶] f)
>>=-∈⁻ : ∀ {A B} (f : A → List B) {y} xs →
y ∈ (xs >>= f) → ∃ λ x → x ∈ xs × y ∈ f x
>>=-∈⁻ f = M₂.>>=-∈⁻ ([→-to-⟶] f)
-- _>>=_ is monotone.
_>>=-mono_ : ∀ {A B} {f g : A → List B} {xs ys} →
xs ⊆ ys → (∀ {x} → f x ⊆ g x) →
(xs >>= f) ⊆ (ys >>= g)
_>>=-mono_ {f = f} {g} = M₂.>>=-mono ([→-to-⟶] f) ([→-to-⟶] g)
-- Introduction and elimination rules for _⊛_.
⊛-∈⁺ : ∀ {A B} {fs : List (A → B)} {xs f x} →
f ∈ fs → x ∈ xs → f x ∈ fs ⊛ xs
⊛-∈⁺ f∈fs x∈xs =
⊛⁺′ (Any.map (λ f≡g x≡y → PropEq.cong₂ _$_ f≡g x≡y) f∈fs) x∈xs
⊛-∈⁻ : ∀ {A B} (fs : List (A → B)) xs {fx} →
fx ∈ fs ⊛ xs → ∃₂ λ f x → f ∈ fs × x ∈ xs × fx ≡ f x
⊛-∈⁻ fs xs fx∈ with find $ ⊛⁻ fs xs fx∈
... | (f , f∈fs , x∈) with find x∈
... | (x , x∈xs , fx≡fx) = (f , x , f∈fs , x∈xs , fx≡fx)
-- _⊛_ is monotone.
_⊛-mono_ : ∀ {A B} {fs gs : List (A → B)} {xs ys} →
fs ⊆ gs → xs ⊆ ys → fs ⊛ xs ⊆ gs ⊛ ys
_⊛-mono_ {fs = fs} {xs = xs} fs⊆gs xs⊆ys fx∈ with ⊛-∈⁻ fs xs fx∈
... | (f , x , f∈fs , x∈xs , refl) =
⊛-∈⁺ (fs⊆gs f∈fs) (xs⊆ys x∈xs)
-- Introduction and elimination rules for _⊗_.
private
lemma₁ : ∀ {A B} {p q : A × B} →
(p ⟨ _≡_ on₁ proj₁ ⟩₁ q) × (p ⟨ _≡_ on₁ proj₂ ⟩₁ q) → p ≡ q
lemma₁ {p = (x , y)} {q = (.x , .y)} (refl , refl) = refl
lemma₂ : ∀ {A B} {p q : A × B} →
p ≡ q → (p ⟨ _≡_ on₁ proj₁ ⟩₁ q) × (p ⟨ _≡_ on₁ proj₂ ⟩₁ q)
lemma₂ = < PropEq.cong proj₁ , PropEq.cong proj₂ >
⊗-∈⁺ : ∀ {A B} {xs : List A} {ys : List B} {x y} →
x ∈ xs → y ∈ ys → (x , y) ∈ (xs ⊗ ys)
⊗-∈⁺ x∈xs y∈ys = Any.map lemma₁ (⊗⁺′ x∈xs y∈ys)
⊗-∈⁻ : ∀ {A B} (xs : List A) (ys : List B) {p} →
p ∈ (xs ⊗ ys) → proj₁ p ∈ xs × proj₂ p ∈ ys
⊗-∈⁻ xs ys = ⊗⁻′ xs ys ∘ Any.map lemma₂
-- _⊗_ is monotone.
_⊗-mono_ : ∀ {A B} {xs₁ ys₁ : List A} {xs₂ ys₂ : List B} →
xs₁ ⊆ ys₁ → xs₂ ⊆ ys₂ → (xs₁ ⊗ xs₂) ⊆ (ys₁ ⊗ ys₂)
_⊗-mono_ xs₁⊆ys₁ xs₂⊆ys₂ {p} =
Any.map lemma₁ ∘ M₂._⊗-mono_ xs₁⊆ys₁ xs₂⊆ys₂ {p} ∘ Any.map lemma₂
| {
"alphanum_fraction": 0.4616337441,
"avg_line_length": 33.3456521739,
"ext": "agda",
"hexsha": "011a7ca6f078e790b3da94eba381a48fcaa4e669",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/List/Any/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/List/Any/Properties.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/List/Any/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 7079,
"size": 15339
} |
-- Andreas, 2021-08-18, issue #5506 reported by alexarice
-- A crash in the forcing methodology introduced in 2.6.1
-- that surfaced with the removal of auto-inlining in 2.6.2.
-- {-# OPTIONS --no-forcing #-} -- fixes
-- {-# OPTIONS --auto-inline #-} -- fixes
{-# OPTIONS -v tc.lhs.unify.force:100 #-}
open import Agda.Builtin.Nat
data Unit : Set where
unit : Unit
data Ctx : Nat → Set where -- index needed
cons : (m : Nat) (A : Unit) → Ctx (suc m)
mutual
data P : (n : Nat) (Γ : Ctx n) → Set
-- Needs to be mutual
{-# NOINLINE getFocus #-}
getFocus : (n : Nat) (A : Unit) → Unit
getFocus n A = A -- needs to be A, not unit
data P where
c : (n : Nat) -- n is forced
(A : Unit)
→ P (suc n) (cons n (getFocus n A))
test : (n : Nat) (Γ : Ctx n) → P n Γ → Nat
test n Γ (c m A) = n + m
-- ^ n := suc m fixes the issue
-- WAS:
-- Panic: Pattern match failure in do expression at
-- src/full/Agda/TypeChecking/Rules/LHS/Unify.hs:1313:7-14
-- when checking that the pattern c _ _ _ _ has type P n Γ
-- Expect: type-checks without errors.
| {
"alphanum_fraction": 0.6040515654,
"avg_line_length": 25.2558139535,
"ext": "agda",
"hexsha": "47a7b53a3a2fe713369825d1d359a64e60e05eb0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5506.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5506.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5506.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 374,
"size": 1086
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.Either where
open import Light.Level using (Level ; Setω ; _⊔_)
open import Light.Variable.Sets
open import Light.Variable.Levels
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field
ℓf : Level → Level → Level
Either : Set aℓ → Set bℓ → Set (ℓf aℓ bℓ)
left : 𝕒 → Either 𝕒 𝕓
right : 𝕓 → Either 𝕒 𝕓
open Library ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.6491557223,
"avg_line_length": 29.6111111111,
"ext": "agda",
"hexsha": "4db1b677cbd367d54438f223a5c32d8e9dd875b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Data/Either.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Data/Either.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Data/Either.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 155,
"size": 533
} |
f : Set → Set
module _ (A : Set) where
mutual
g : Set
g = h
h : Set
h = A
f = g
| {
"alphanum_fraction": 0.4174757282,
"avg_line_length": 7.3571428571,
"ext": "agda",
"hexsha": "9fdd2824fca9f23014c8bdcc7671bacd8a90cd33",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/lonesig.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/lonesig.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/lonesig.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 42,
"size": 103
} |
{-# OPTIONS --without-K --safe #-}
-- The One Category is also a -2-Category
module Categories.Minus2-Category.Instance.One where
open import Categories.Minus2-Category
open import Categories.Category.Instance.One
-- Proof is trivial
⊤-is-2-Category : ∀ {o ℓ e} → -2-Category {o} {ℓ} {e}
⊤-is-2-Category = record { cat = One }
| {
"alphanum_fraction": 0.6978851964,
"avg_line_length": 27.5833333333,
"ext": "agda",
"hexsha": "497b0d3519fa48e3b555390cca5211645bfe5fbb",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Minus2-Category/Instance/One.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Minus2-Category/Instance/One.agda",
"max_line_length": 53,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Minus2-Category/Instance/One.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 101,
"size": 331
} |
module Oscar.Data.Term {𝔣} (FunctionName : Set 𝔣) where
open import Oscar.Data.Equality
open import Oscar.Data.Fin
open import Oscar.Data.Nat
open import Oscar.Data.Vec
open import Oscar.Function
open import Oscar.Relation
mutual
Terms : Nat → Nat → Set 𝔣
Terms N m = Vec (Term m) N
data Term (m : Nat) : Set 𝔣 where
i : (x : Fin m) → Term m
leaf : Term m
_fork_ : (s t : Term m) → Term m
function : FunctionName → ∀ {N} → Terms N m → Term m
| {
"alphanum_fraction": 0.6588486141,
"avg_line_length": 22.3333333333,
"ext": "agda",
"hexsha": "59490d9eb60fb8f95b7269a67441f028f0878529",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Term.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Term.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Term.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 155,
"size": 469
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.