Search is not available for this dataset
text
string | meta
dict |
---|---|
module L.Base.Sigma.Properties where
open import L.Base.Sigma.Core
choice : ∀{a b c} {A : Set a} {B : Set b} → {C : A → B → Set c}
→ ((x : A) → Σ B (λ y → C x y)) → Σ (A → B) (λ f → (a : A) → C a (f a))
choice = λ F → ((λ x → fst (F x)) , λ a → snd (F a))
| {
"alphanum_fraction": 0.4606741573,
"avg_line_length": 33.375,
"ext": "agda",
"hexsha": "552687620d8a5dc2566bd36f3a88ce5f952f3837",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Sigma/Properties.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Sigma/Properties.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Sigma/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 113,
"size": 267
} |
open import Data.Product using ( ∃ ; _×_ ; _,_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
open import Relation.Nullary using ( ¬_ )
open import Relation.Unary using ( _∈_ ; ∅ )
open import Web.Semantic.DL.Signature using ( Signature ; CN ; RN )
open import Web.Semantic.Util using ( Setoid ; Subset ; _∘_ ; False )
module Web.Semantic.DL.TBox.Interp where
data Interp (Σ : Signature) : Set₁ where
interp :
(Δ : Set) →
(_≈_ : Δ → Δ → Set) →
(ref : ∀ {x} → (x ≈ x)) →
(sym : ∀ {x y} → (x ≈ y) → (y ≈ x)) →
(trans : ∀ {x y z} → (x ≈ y) → (y ≈ z) → (x ≈ z)) →
(con : CN Σ → Subset Δ) →
(rol : RN Σ → Subset (Δ × Δ)) →
(con-≈ : ∀ {x y} c → (x ∈ con c) → (x ≈ y) → (y ∈ con c)) →
(rol-≈ : ∀ {w x y z} r → (w ≈ x) → ((x , y) ∈ rol r) → (y ≈ z) → ((w , z) ∈ rol r)) →
Interp Σ
Δ : ∀ {Σ} → Interp Σ → Set
Δ (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = Δ
_⊨_≈_ : ∀ {Σ} → (I : Interp Σ) → (Δ I) → (Δ I) → Set
_⊨_≈_ (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = _≈_
≈-refl : ∀ {Σ} → (I : Interp Σ) → ∀ {x} → (I ⊨ x ≈ x)
≈-refl (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = ref
≈-sym : ∀ {Σ} → (I : Interp Σ) → ∀ {x y} → (I ⊨ x ≈ y) → (I ⊨ y ≈ x)
≈-sym (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = sym
≈-trans : ∀ {Σ} → (I : Interp Σ) → ∀ {x y z} → (I ⊨ x ≈ y) → (I ⊨ y ≈ z) → (I ⊨ x ≈ z)
≈-trans (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = trans
con : ∀ {Σ} → (I : Interp Σ) → CN Σ → Subset (Δ I)
con (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = con
rol : ∀ {Σ} → (I : Interp Σ) → RN Σ → Subset (Δ I × Δ I)
rol (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = rol
con-≈ : ∀ {Σ} → (I : Interp Σ) → ∀ {x y} c → (x ∈ con I c) → (I ⊨ x ≈ y) → (y ∈ con I c)
con-≈ (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = con-≈
rol-≈ : ∀ {Σ} → (I : Interp Σ) → ∀ {w x y z} r → (I ⊨ w ≈ x) → ((x , y) ∈ rol I r) → (I ⊨ y ≈ z) → ((w , z) ∈ rol I r)
rol-≈ (interp Δ _≈_ ref sym trans con rol con-≈ rol-≈) = rol-≈
_⊨_≉_ : ∀ {Σ} → (I : Interp Σ) → (Δ I) → (Δ I) → Set
I ⊨ x ≉ y = ¬(I ⊨ x ≈ y)
emp : ∀ {Σ} → Interp Σ
emp = interp False (λ ()) (λ {}) (λ {}) (λ {}) (λ c → ∅) (λ r → ∅) (λ {}) (λ {})
≈-refl′ : ∀ {Σ} (I : Interp Σ) → ∀ {x y} → (x ≡ y) → (I ⊨ x ≈ y)
≈-refl′ I refl = ≈-refl I
| {
"alphanum_fraction": 0.4700742682,
"avg_line_length": 39.4655172414,
"ext": "agda",
"hexsha": "f5519c54f5721336a54a37dd298f1bd1a1f13cdb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/TBox/Interp.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/TBox/Interp.agda",
"max_line_length": 118,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/TBox/Interp.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1139,
"size": 2289
} |
module InductiveAndCoinductiveConstructors where
open import Common.Coinduction
record ⊤ : Set where
data _×_ (A : Set) (B : Set) : Set where
_,_ : (x : A) (y : B) → A × B
data Stream (A : Set) : Set where
_≺_ : (x : A) (xs : ∞ (Stream A)) → Stream A
data U : Set where
stream : (a : U) → U
_⊗_ : (a b : U) → U
unit : U
El : U → Set
El (stream a) = Stream (El a)
El (a ⊗ b) = El a × El b
El unit = ⊤
mutual
data WHNF : U → Set where
_≺_ : ∀ {a} → El a → Prog (stream a) → WHNF (stream a)
_,_ : ∀ {a b} → WHNF a → WHNF b → WHNF (a ⊗ b)
data Prog : U → Set where
↓_ : ∀ {a} → ∞ (WHNF a) → Prog a
fst : ∀ {a b} → Prog (a ⊗ b) → Prog a
snd : ∀ {a b} → Prog (a ⊗ b) → Prog b
lab : Prog (stream unit) → Prog (stream (stream unit)) →
Prog (stream unit ⊗ stream (stream unit))
whnf : ∀ {a} → Prog a → WHNF a
whnf (↓ w) = ♭ w
whnf (fst p) with whnf p
... | (x , y) = x
whnf (snd p) with whnf p
... | (x , y) = y
whnf (lab xs lss) with whnf xs | whnf lss
... | _ ≺ xs′ | (x ≺ ls) ≺ lss′ =
((_ ≺ fst (lab xs′ lss′)) , (♭ ls ≺ snd (lab xs′ lss′)))
⟦_⟧ : Prog (stream unit) → Stream ⊤
⟦ p ⟧ with whnf p
... | x ≺ xs = x ≺ ♯ ⟦ xs ⟧
data _≈_ : Stream ⊤ → Stream ⊤ → Set where
cons : ∀ {xs xs′} → ∞ ((♭ xs) ≈ (♭ xs′)) → (_ ≺ xs) ≈ (_ ≺ xs′)
lemma : ∀ xs lss → ⟦ fst (lab xs lss) ⟧ ≈ ⟦ xs ⟧
lemma xs lss with whnf xs | whnf lss
... | _ ≺ xs′ | (x ≺ ls) ≺ lss′ = cons (♯ lemma xs′ lss′)
label : Prog (stream unit) → Stream ⊤ →
Prog (stream unit ⊗ stream (stream unit))
label xs ls = lab xs (↓ (♯ (ls ≺ snd (label xs ls))))
shape-preserved : ∀ xs ls → ⟦ fst (label xs ls) ⟧ ≈ ⟦ xs ⟧
shape-preserved xs ls = lemma xs _
| {
"alphanum_fraction": 0.5026611473,
"avg_line_length": 26.8412698413,
"ext": "agda",
"hexsha": "29777d5862ca3b41952909c2a7f1d6048660dd7f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/InductiveAndCoinductiveConstructors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/InductiveAndCoinductiveConstructors.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/InductiveAndCoinductiveConstructors.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 744,
"size": 1691
} |
open import Agda.Builtin.Bool
f : Bool → Bool
f x =
let id : Bool → Bool
id b = {!!}
in id x
| {
"alphanum_fraction": 0.5480769231,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "6017f26e2aaf9fb52d5c9345bd036e7df1dfce69",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3501.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3501.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3501.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 36,
"size": 104
} |
module Aexamples where
open import Data.List hiding (reverse)
open import Data.List.All
open import Data.Nat
open import Typing
open import Syntax
open import Async
{-
Lithmus test for asynchronous operations
A thread send something to an asynchronous channel and receives it afterwards.
-}
aex1 : Expr [] TUnit
aex1 = letbind [] (anew [] (delay send!))
(letpair (left []) (here [])
(letbind (left (rght [])) (aclose (here []))
(await (there UUnit (here [])))))
-- just replace synchronous operations by the asynchronous ones
asyncex1 : Expr [] TUnit
asyncex1 =
letbind [] (anew [] (delay send!))
(letpair (left []) (here [])
(letbind (rght (left []))
(fork (await (here [])))
(aclose (there UUnit (here [])))))
-- sending and receiving
asyncex2 : Expr [] TUnit
asyncex2 =
letbind [] (anew [] (delay (send TInt (delay send!))))
(letpair (left []) (here [])
(letbind (left (rght []))
(fork (letbind (rght []) (nat [] 42)
(letbind (left (left [])) (asend (rght (left [])) (here []) (here []))
(letbind (left []) (aclose (here []))
(var (here []))))))
(letbind (rght (left [])) (arecv (here []))
(letpair (left (rght [])) (here [])
(letbind (left (left (rght []))) (await (here (UInt ∷ [])))
(var (here (UUnit ∷ []))))))))
| {
"alphanum_fraction": 0.5764354959,
"avg_line_length": 30.4772727273,
"ext": "agda",
"hexsha": "3a3adc06500feb34d2ac680eba841e6fd9868a5f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "peterthiemann/definitional-session",
"max_forks_repo_path": "src/Aexamples.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "peterthiemann/definitional-session",
"max_issues_repo_path": "src/Aexamples.agda",
"max_line_length": 87,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "peterthiemann/definitional-session",
"max_stars_repo_path": "src/Aexamples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z",
"num_tokens": 401,
"size": 1341
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
module Numbers.Naturals.Order.WellFounded where
open Semiring ℕSemiring
<NWellfounded : WellFounded _<N_
<NWellfounded = λ x → access (go x)
where
lemma : {a b c : ℕ} → a <N b → b <N succ c → a <N c
lemma {a} {b} {c} (le y succYAeqB) (le z zbEqC') = le (y +N z) p
where
zbEqC : z +N b ≡ c
zSuccYAEqC : z +N (succ y +N a) ≡ c
zSuccYAEqC' : z +N (succ (y +N a)) ≡ c
zSuccYAEqC'' : succ (z +N (y +N a)) ≡ c
zSuccYAEqC''' : succ ((z +N y) +N a) ≡ c
p : succ ((y +N z) +N a) ≡ c
p = identityOfIndiscernablesLeft _≡_ zSuccYAEqC''' (applyEquality (λ n → succ (n +N a)) (commutative z y))
zSuccYAEqC''' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC'' (applyEquality succ (+Associative z y a))
zSuccYAEqC'' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC' (succExtracts z (y +N a))
zSuccYAEqC' = identityOfIndiscernablesLeft _≡_ zSuccYAEqC (applyEquality (λ r → z +N r) refl)
zbEqC = succInjective zbEqC'
zSuccYAEqC = identityOfIndiscernablesLeft _≡_ zbEqC (applyEquality (λ r → z +N r) (equalityCommutative succYAeqB))
go : ∀ n m → m <N n → Accessible _<N_ m
go zero m (le x ())
go (succ n) zero mLessN = access (λ y ())
go (succ n) (succ m) smLessSN = access (λ o (oLessSM : o <N succ m) → go n o (lemma oLessSM smLessSN))
| {
"alphanum_fraction": 0.6323155216,
"avg_line_length": 46.2352941176,
"ext": "agda",
"hexsha": "011af8d57728f707fc05750e899c32f659436648",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Naturals/Order/WellFounded.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Naturals/Order/WellFounded.agda",
"max_line_length": 122,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Naturals/Order/WellFounded.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 601,
"size": 1572
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Base.PKCS
open import LibraBFT.Yasm.Types
-- This module defines the types used to define a SystemModel.
module LibraBFT.Yasm.Base (ℓ-PeerState : Level) where
-- Our system is configured through a value of type
-- SystemParameters where we specify:
record SystemParameters : Set (ℓ+1 ℓ-PeerState) where
constructor mkSysParms
field
PeerId : Set
_≟PeerId_ : ∀ (p₁ p₂ : PeerId) → Dec (p₁ ≡ p₂)
Genesis : Set
genInfo : Genesis -- The same genesis information is given to any uninitialised peer before
-- it can handle any messages.
PeerState : Set ℓ-PeerState
initPS : PeerState -- Represents an uninitialised PeerState, about which we know nothing whatsoever
Msg : Set
Part : Set -- Types of interest that can be represented in Msgs
-- The messages must be able to carry signatures
instance Part-sig : WithSig Part
-- A relation specifying what Parts are included in a Msg.
_⊂Msg_ : Part → Msg → Set
-- A relation specifying what Signatures are included in genInfo
∈GenInfo : Signature → Set
-- Initializes a potentially-empty state with an EpochConfig
init : PeerId → Genesis → PeerState × List (Action Msg)
-- Handles a message on a previously initialized peer.
handle : PeerId → Msg → PeerState → PeerState × List (Action Msg)
| {
"alphanum_fraction": 0.6973134328,
"avg_line_length": 38.9534883721,
"ext": "agda",
"hexsha": "60a0edc33cab5df7945d84f9993ecfe9b08b8396",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Yasm/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Yasm/Base.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Yasm/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 433,
"size": 1675
} |
module NotLeqSort where
data Err : Set where
err : (A : Set) -> Err
| {
"alphanum_fraction": 0.6301369863,
"avg_line_length": 10.4285714286,
"ext": "agda",
"hexsha": "5ad2603d7199fa799049c10653fbdfecd777fe2d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/NotLeqSort.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/NotLeqSort.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/NotLeqSort.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 25,
"size": 73
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.Direct-Sum.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Algebra.AbGroup
-- Conventions :
-- Elements of the index are named r, s, t...
-- Elements of the groups are called a, b, c...
-- Elements of the direct sum are named x, y, z...
-- Elements in the fiber of Q x, Q y are called xs, ys...
private variable
ℓ ℓ' ℓ'' : Level
data ⊕ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) : Type (ℓ-max ℓ ℓ') where
-- elements
neutral : ⊕ Idx P AGP
base : (r : Idx) → (P r) → ⊕ Idx P AGP
_add_ : ⊕ Idx P AGP → ⊕ Idx P AGP → ⊕ Idx P AGP
-- eq group
addAssoc : (x y z : ⊕ Idx P AGP) → x add (y add z) ≡ (x add y) add z
addRid : (x : ⊕ Idx P AGP) → x add neutral ≡ x
addComm : (x y : ⊕ Idx P AGP) → x add y ≡ y add x
-- eq base
base-neutral : (r : Idx) → base r (AbGroupStr.0g (AGP r)) ≡ neutral
base-add : (r : Idx) → (a b : P r) → (base r a) add (base r b) ≡ base r (AbGroupStr._+_ (AGP r) a b)
-- set
trunc : isSet (⊕ Idx P AGP)
module _ (Idx : Type ℓ) (P : Idx → Type ℓ') (AGP : (r : Idx) → AbGroupStr (P r)) where
module DS-Ind-Set
(Q : (x : ⊕ Idx P AGP) → Type ℓ'')
(issd : (x : ⊕ Idx P AGP) → isSet (Q x))
-- elements
(neutral* : Q neutral)
(base* : (r : Idx) → (a : P r) → Q (base r a))
(_add*_ : {x y : ⊕ Idx P AGP} → Q x → Q y → Q (x add y))
-- eq group
(addAssoc* : {x y z : ⊕ Idx P AGP} → (xs : Q x) → (ys : Q y) → (zs : Q z)
→ PathP ( λ i → Q ( addAssoc x y z i)) (xs add* (ys add* zs)) ((xs add* ys) add* zs))
(addRid* : {x : ⊕ Idx P AGP} → (xs : Q x)
→ PathP (λ i → Q (addRid x i)) (xs add* neutral*) xs )
(addComm* : {x y : ⊕ Idx P AGP} → (xs : Q x) → (ys : Q y)
→ PathP (λ i → Q (addComm x y i)) (xs add* ys) (ys add* xs))
-- -- eq base
(base-neutral* : (r : Idx)
→ PathP (λ i → Q (base-neutral r i)) (base* r (AbGroupStr.0g (AGP r))) neutral*)
(base-add* : (r : Idx) → (a b : P r)
→ PathP (λ i → Q (base-add r a b i)) ((base* r a) add* (base* r b)) (base* r (AbGroupStr._+_ (AGP r) a b)))
where
f : (x : ⊕ Idx P AGP) → Q x
f neutral = neutral*
f (base r a) = base* r a
f (x add y) = (f x) add* (f y)
f (addAssoc x y z i) = addAssoc* (f x) (f y) (f z) i
f (addRid x i) = addRid* (f x) i
f (addComm x y i) = addComm* (f x) (f y) i
f (base-neutral r i) = base-neutral* r i
f (base-add r a b i) = base-add* r a b i
f (trunc x y p q i j) = isOfHLevel→isOfHLevelDep 2 (issd) (f x) (f y) (cong f p) (cong f q) (trunc x y p q) i j
module DS-Rec-Set
(B : Type ℓ'')
(iss : isSet(B))
(neutral* : B)
(base* : (r : Idx) → P r → B)
(_add*_ : B → B → B)
(addAssoc* : (xs ys zs : B) → (xs add* (ys add* zs)) ≡ ((xs add* ys) add* zs))
(addRid* : (xs : B) → xs add* neutral* ≡ xs)
(addComm* : (xs ys : B) → xs add* ys ≡ ys add* xs)
(base-neutral* : (r : Idx) → base* r (AbGroupStr.0g (AGP r)) ≡ neutral*)
(base-add* : (r : Idx) → (a b : P r) → (base* r a) add* (base* r b) ≡ base* r (AbGroupStr._+_ (AGP r) a b))
where
f : ⊕ Idx P AGP → B
f z = DS-Ind-Set.f (λ _ → B) (λ _ → iss) neutral* base* _add*_ addAssoc* addRid* addComm* base-neutral* base-add* z
module DS-Ind-Prop
(Q : (x : ⊕ Idx P AGP) → Type ℓ'')
(ispd : (x : ⊕ Idx P AGP) → isProp (Q x))
-- elements
(neutral* : Q neutral)
(base* : (r : Idx) → (a : P r) → Q (base r a))
(_add*_ : {x y : ⊕ Idx P AGP} → Q x → Q y → Q (x add y))
where
f : (x : ⊕ Idx P AGP) → Q x
f x = DS-Ind-Set.f Q (λ x → isProp→isSet (ispd x)) neutral* base* _add*_
(λ {x} {y} {z} xs ys zs → toPathP (ispd _ (transport (λ i → Q (addAssoc x y z i)) (xs add* (ys add* zs))) ((xs add* ys) add* zs)))
(λ {x} xs → toPathP (ispd _ (transport (λ i → Q (addRid x i)) (xs add* neutral*)) xs))
(λ {x} {y} xs ys → toPathP (ispd _ (transport (λ i → Q (addComm x y i)) (xs add* ys)) (ys add* xs)))
(λ r → toPathP (ispd _ (transport (λ i → Q (base-neutral r i)) (base* r (AbGroupStr.0g (AGP r)))) neutral*))
(λ r a b → toPathP (ispd _ (transport (λ i → Q (base-add r a b i)) ((base* r a) add* (base* r b))) (base* r (AbGroupStr._+_ (AGP r) a b) )))
x
module DS-Rec-Prop
(B : Type ℓ'')
(isp : isProp B)
(neutral* : B)
(base* : (r : Idx) → P r → B)
(_add*_ : B → B → B)
where
f : ⊕ Idx P AGP → B
f x = DS-Ind-Prop.f (λ _ → B) (λ _ → isp) neutral* base* _add*_ x
| {
"alphanum_fraction": 0.4681496461,
"avg_line_length": 41.2083333333,
"ext": "agda",
"hexsha": "11bcb8ca8b043bc5861a9355e472e362f4a83ad6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/Direct-Sum/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/Direct-Sum/Base.agda",
"max_line_length": 166,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/Direct-Sum/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1998,
"size": 4945
} |
{-# OPTIONS --safe #-}
module CF.Syntax.Hoisted where
open import Level
open import Data.List
open import Relation.Unary hiding (_⊢_)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import CF.Types
open import CF.Contexts.Lexical
open import CF.Syntax using (module Statements)
open import CF.Syntax using (Exp) public
mutual
Stmt = Statements.Statement Block
{- This is Bigstar, but Agda cannot termination check that -}
data Block (r : Ty) : Pred Ctx 0ℓ where
nil : ε[ Block r ]
cons : ∀[ Stmt r ✴ Block r ⇒ Block r ]
open import Relation.Unary.PredicateTransformer hiding (_⍮_)
open import Data.Product
-- make constructors visible
open Exp public
open Statements Block public
open CoDeBruijn public
open import CF.Contexts.Lexical using (_⊢_) public
| {
"alphanum_fraction": 0.762295082,
"avg_line_length": 25.8787878788,
"ext": "agda",
"hexsha": "c0536a48a4998eec7e5672014eac781fd0b5a1df",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Syntax/Hoisted.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Syntax/Hoisted.agda",
"max_line_length": 63,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Syntax/Hoisted.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 217,
"size": 854
} |
------------------------------------------------------------------------------
-- Incompatible options
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The @--schematic-propositional-functions@ and
-- @--without-predicate-symbols@ options are incompatible.
module SchematicPropositionalFunctionsWithoutPredicateSymbols where
postulate D : Set
postulate id : {P : D → Set}{x : D} → P x → P x
{-# ATP prove id #-}
| {
"alphanum_fraction": 0.4678456592,
"avg_line_length": 32.7368421053,
"ext": "agda",
"hexsha": "118ff4a08fafb28df5a8d47599e63ccbddb2a9a8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/Errors/SchematicPropositionalFunctionsWithoutPredicateSymbols.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Fail/Errors/SchematicPropositionalFunctionsWithoutPredicateSymbols.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/Errors/SchematicPropositionalFunctionsWithoutPredicateSymbols.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 113,
"size": 622
} |
module Structure.Type.Identity.Proofs.Multi where
open import Data.Tuple.Raise
open import Data.Tuple.RaiseTypeᵣ
import Data.Tuple.RaiseTypeᵣ.Functions as RaiseType
import Lvl
open import Functional using (_→ᶠ_ ; id ; _on₂_ ; swap ; _$_ ; apply)
open import Function.Multi
import Function.Multi.Functions as Multi
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Proofs.Structures
open import Numeral.Natural
open import Structure.Function
open import Structure.Function.Multi
open import Structure.Setoid using (Equiv ; intro) renaming (_≡_ to _≡ₛ_)
open import Structure.Relator.Equivalence
import Structure.Relator.Names as Names
open import Structure.Relator.Properties
open import Structure.Relator.Properties.Proofs
open import Structure.Relator
open import Structure.Type.Identity
open import Structure.Type.Identity.Proofs
open import Syntax.Function
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂ ℓₑ ℓₘₑ ℓₚ ℓₒ : Lvl.Level
private variable T A B : Type{ℓ}
private variable x y : T
private variable _≡_ _▫_ : T → T → Stmt{ℓ}
module _
{B : Type{ℓ}}
⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄
-- {_≡_ : ∀{ℓ}{T : Type{ℓ}} → T → T → Stmt{ℓₑ}}
-- ⦃ minRefl : ∀{ℓ}{T : Type{ℓ}} → MinimalReflexiveRelation{ℓₚ = ℓₑ₂}(_≡_ {T = T}) ⦄ -- TODO: Temporary
where
minimal-reflection-to-function₊ : ∀{n}{ℓ𝓈 ℓ𝓈ₑ}{As : Types{n}(ℓ𝓈)}{f : As ⇉ B} → Multi.quantifier₊ᵢₙₛₜ(n) {!!} (Multi.composeᵢₙₛₜ(n) (apply f) (Names.Function₊ ⦃ equiv-B = equiv-B ⦄ (n) {ℓ𝓈ₑ = ℓ𝓈ₑ} {As = As}))
{-minimal-reflection-to-function₊ {0} {f = f} = reflexivity(_≡ₛ_)
minimal-reflection-to-function₊ {1} {f = f} = congruence₁(f) ⦃ minimal-reflection-to-function ⦃ minRefl = {!!} ⦄ ⦄
minimal-reflection-to-function₊ {𝐒(𝐒(n))} {f = f} = {!!}
-}
| {
"alphanum_fraction": 0.7063447501,
"avg_line_length": 40.4772727273,
"ext": "agda",
"hexsha": "4474580c73780d8fcb9c9d15404fd7088f799379",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Type/Identity/Proofs/Multi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Type/Identity/Proofs/Multi.agda",
"max_line_length": 210,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Type/Identity/Proofs/Multi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 644,
"size": 1781
} |
{-# OPTIONS --cubical --no-exact-split --safe #-}
module Multidimensional.Data.Extra.Nat.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Multidimensional.Data.Extra.Nat.Base
sucnsuc : (n m : ℕ) → sucn n (suc m) ≡ suc (sucn n m)
sucnsuc zero m = refl
sucnsuc (suc n) m =
sucn (suc n) (suc m) ≡⟨ refl ⟩
suc (sucn n (suc m)) ≡⟨ cong suc (sucnsuc n m) ⟩
suc (suc (sucn n m)) ∎
doublePred : (n : ℕ) → doubleℕ (predℕ n) ≡ predℕ (predℕ (doubleℕ n))
doublePred zero = refl
doublePred (suc n) = refl
sucPred : (n : ℕ) → ¬ (n ≡ zero) → suc (predℕ n) ≡ n
sucPred zero 0≠0 = ⊥-elim (0≠0 refl)
sucPred (suc n) sucn≠0 = refl
doubleDoubles : (n m : ℕ) → doubleℕ (doublesℕ n m) ≡ doublesℕ (suc n) m
doubleDoubles zero m = refl
doubleDoubles (suc n) m = doubleDoubles n (doubleℕ m)
doublePos : (n : ℕ) → ¬ (n ≡ 0) → ¬ (doubleℕ n ≡ 0)
doublePos zero 0≠0 = ⊥-elim (0≠0 refl)
doublePos (suc n) sn≠0 = snotz
doublesPos : (n m : ℕ) → ¬ (m ≡ 0) → ¬ (doublesℕ n m ≡ 0)
doublesPos zero m m≠0 = m≠0
doublesPos (suc n) m m≠0 = doublesPos n (doubleℕ m) (doublePos m (m≠0))
predDoublePos : (n : ℕ) → ¬ (n ≡ 0) → ¬ (predℕ (doubleℕ n)) ≡ 0
predDoublePos zero n≠0 = ⊥-elim (n≠0 refl)
predDoublePos (suc n) sn≠0 = snotz
doubleDoublesOne≠0 : (n : ℕ) → ¬ (doubleℕ (doublesℕ n (suc zero)) ≡ 0)
doubleDoublesOne≠0 zero = snotz
doubleDoublesOne≠0 (suc n) = doublePos (doublesℕ n 2) (doublesPos n 2 (snotz))
predDoubleDoublesOne≠0 : (n : ℕ) → ¬ (predℕ (doubleℕ (doublesℕ n (suc zero))) ≡ 0)
predDoubleDoublesOne≠0 zero = snotz
predDoubleDoublesOne≠0 (suc n) = predDoublePos (doublesℕ n 2) (doublesPos n 2 snotz)
doublesZero : (n : ℕ) → doublesℕ n zero ≡ zero
doublesZero zero = refl
doublesZero (suc n) = doublesZero n
doubleSucn : (i n : ℕ) → doubleℕ (sucn i n) ≡ sucn (doubleℕ i) (doubleℕ n)
doubleSucn zero n = refl
doubleSucn (suc i) n =
suc (suc (doubleℕ (sucn i n)))
≡⟨ cong (λ z → suc (suc z)) (doubleSucn i n) ⟩
suc (suc (sucn (doubleℕ i) (doubleℕ n)))
≡⟨ refl ⟩
suc (sucn (suc (doubleℕ i)) (doubleℕ n))
≡⟨ cong suc refl ⟩
sucn (suc (suc (doubleℕ i))) (doubleℕ n)
∎
doublesSucn : (i n m : ℕ) → doublesℕ n (sucn i m) ≡ sucn (doublesℕ n i) (doublesℕ n m)
doublesSucn i zero m = refl
doublesSucn i (suc n) m =
doublesℕ n (doubleℕ (sucn i m))
≡⟨ cong (doublesℕ n) (doubleSucn i m) ⟩
doublesℕ n (sucn (doubleℕ i) (doubleℕ m))
≡⟨ doublesSucn (doubleℕ i) n (doubleℕ m) ⟩
sucn (doublesℕ n (doubleℕ i)) (doublesℕ n (doubleℕ m))
∎
-- 2^n * (m + 2) =
doublesSucSuc : (n m : ℕ) → doublesℕ n (suc (suc m)) ≡ sucn (doublesℕ (suc n) 1) (doublesℕ n m)
doublesSucSuc zero m = refl
doublesSucSuc (suc n) m =
doublesℕ (suc n) (suc (suc m))
≡⟨ refl ⟩
doublesℕ n (sucn 4 (doubleℕ m))
≡⟨ doublesSucn 4 n (doubleℕ m) ⟩
sucn (doublesℕ n 4) (doublesℕ n (doubleℕ m))
∎
n+n≡2n : (n : ℕ) → sucn n n ≡ doubleℕ n
n+n≡2n zero = refl
n+n≡2n (suc n) =
sucn (suc n) (suc n)
≡⟨ sucnsuc (suc n) n ⟩
suc (sucn (suc n) n)
≡⟨ refl ⟩
suc (suc (sucn n n))
≡⟨ cong (λ z → suc (suc z)) (n+n≡2n n) ⟩
suc (suc (doubleℕ n))
∎
| {
"alphanum_fraction": 0.6199752628,
"avg_line_length": 31.3980582524,
"ext": "agda",
"hexsha": "c312c72ef049f1d512a2e6cb307b8732520d1a34",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_forks_repo_path": "Multidimensional/Data/Extra/Nat/Properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_issues_repo_path": "Multidimensional/Data/Extra/Nat/Properties.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_stars_repo_path": "Multidimensional/Data/Extra/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1502,
"size": 3234
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Coprimality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Integer.Coprimality where
open import Data.Integer
open import Data.Integer.Divisibility
open import Data.Integer.Properties
import Data.Nat.Coprimality as ℕ
import Data.Nat.Divisibility as ℕ
open import Function using (_on_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel; Decidable; Symmetric)
open import Relation.Binary.PropositionalEquality using (subst)
------------------------------------------------------------------------
-- Definition
Coprime : Rel ℤ 0ℓ
Coprime = ℕ.Coprime on ∣_∣
------------------------------------------------------------------------
-- Properties of coprimality
sym : Symmetric Coprime
sym = ℕ.sym
coprime? : Decidable Coprime
coprime? x y = ℕ.coprime? ∣ x ∣ ∣ y ∣
coprime-divisor : ∀ i j k → Coprime i j → i ∣ j * k → i ∣ k
coprime-divisor i j k c eq =
ℕ.coprime-divisor c (subst (∣ i ∣ ℕ.∣_ ) (abs-*-commute j k) eq)
| {
"alphanum_fraction": 0.5338078292,
"avg_line_length": 28.8205128205,
"ext": "agda",
"hexsha": "322dc44d586fc12991f465c25e88de8b701330e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Coprimality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Coprimality.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Integer/Coprimality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 1124
} |
open import Relation.Nullary.Decidable using (False)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; cong₂)
open import Relation.Binary.PropositionalEquality.WithK using (≡-erase)
module AKS.Nat.Divisibility where
open import Data.Nat.Divisibility using (_∣_) public
open import Agda.Builtin.Nat using () renaming (mod-helper to modₕ; div-helper to divₕ) public
open import Data.Nat.DivMod using (_/_; _%_; %-distribˡ-+) public
open import Data.Nat.DivMod.Core using (a≤n⇒a[modₕ]n≡a)
open import Data.Nat.DivMod using (/-congˡ; /-congʳ) renaming (m≡m%n+[m/n]*n to div-lemma)
open import AKS.Nat.Base using (ℕ; _+_; _*_; _∸_; _≟_; lte; _≤_; _<_)
open ℕ
open import AKS.Nat.Properties using (+-suc)
open import AKS.Nat.Properties using (m≤m+n; m≤n+m; suc-mono-≤; ∸-mono-≤ˡ; +-lower-≤; ≤-refl; ≢⇒¬≟; module ≤-Reasoning)
open import AKS.Nat.Properties using (*-comm; +-identityʳ)
open ≤-Reasoning
import Data.Nat.DivMod as Nat
import Data.Nat.Properties as Nat
open import Data.Nat.Properties using (*-zeroʳ)
open import Polynomial.Simple.AlmostCommutativeRing.Instances using (module Nat)
open import Polynomial.Simple.Reflection using (solve)
a[modₕ]n≤n : ∀ acc d n → modₕ acc (acc + n) d n ≤ acc + n
a[modₕ]n≤n acc zero n = m≤m+n
a[modₕ]n≤n acc (suc d) zero = a[modₕ]n≤n zero d (acc + 0)
a[modₕ]n≤n acc (suc d) (suc n) rewrite +-suc acc n = a[modₕ]n≤n (suc acc) d n
n%m<m : ∀ n m {≢0 : False (m ≟ 0)} → (n % m) {≢0} < m
n%m<m n (suc m) = suc-mono-≤ (a[modₕ]n≤n 0 n m)
a[modₕ]n≤a : ∀ acc a n → modₕ acc (acc + n) a n ≤ acc + a
a[modₕ]n≤a acc zero n rewrite +-identityʳ acc = ≤-refl
a[modₕ]n≤a acc (suc a) (suc n) = begin
modₕ acc (acc + suc n) (suc a) (suc n) ≡⟨ cong (λ v → modₕ acc v (suc a) (suc n)) (+-suc acc n) ⟩
modₕ acc (suc acc + n) (suc a) (suc n) ≤⟨ a[modₕ]n≤a (suc acc) a n ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
a[modₕ]n≤a acc (suc a) zero = begin
modₕ acc (acc + 0) (suc a) 0 ≡⟨ cong (λ v → modₕ acc v (suc a) 0) (+-identityʳ acc) ⟩
modₕ acc acc (suc a) 0 ≤⟨ a[modₕ]n≤a 0 a acc ⟩
a ≤⟨ m≤n+m ⟩
suc a ≤⟨ m≤n+m ⟩
acc + suc a ∎
n%m≤n : ∀ n m {≢0} → (n % m) {≢0} ≤ n
n%m≤n n (suc m) = a[modₕ]n≤a 0 n m
n<m⇒n%m≡n : ∀ {n m} {≢0 : False (m ≟ 0)} → n < m → (n % m) {≢0} ≡ n
n<m⇒n%m≡n {n} {suc m} (lte k refl) = ≡-erase (a≤n⇒a[modₕ]n≡a 0 (n + k) n k)
0%m≡0 : ∀ m {≢0 : False (m ≟ 0)} → (0 % m) {≢0} ≡ 0
0%m≡0 (suc m) = refl
1%m≡1 : ∀ {m} {≢0} → 1 < m → (1 % m) {≢0} ≡ 1
1%m≡1 {suc (suc m)} 1<m = refl
record Euclidean (n : ℕ) (m : ℕ) : Set where
constructor Euclidean✓
field
q : ℕ
r : ℕ
division : n ≡ r + m * q
r<m : r < m
m≡m%n+[m/n]*n : ∀ m n {n≢0 : False (n ≟ 0)} → m ≡ (m % n) {n≢0} + (m / n) {n≢0} * n
m≡m%n+[m/n]*n m (suc n) = div-lemma m n
m%n≡m∸m/n*n : ∀ m n {n≢0 : False (n ≟ 0)} → (m % n) {n≢0} ≡ m ∸ (m / n) {n≢0} * n
m%n≡m∸m/n*n m (suc n) = Nat.m%n≡m∸m/n*n m n
m%n%n≡m%n : ∀ m n {n≢0 : False (n ≟ 0)} → ((m % n) {n≢0} % n) {n≢0} ≡ (m % n) {n≢0}
m%n%n≡m%n m (suc n) = Nat.m%n%n≡m%n m n
n%n≡0 : ∀ n {n≢0 : False (n ≟ 0)} → (n % n) {n≢0} ≡ 0
n%n≡0 (suc n) = Nat.n%n≡0 n
[m+kn]%n≡m%n : ∀ m k n {n≢0 : False (n ≟ 0)} → ((m + k * n) % n) {n≢0} ≡ (m % n) {n≢0}
[m+kn]%n≡m%n m k (suc n) = Nat.[m+kn]%n≡m%n m k n
%-distribˡ-* : ∀ m n d {≢0} → ((m * n) % d) {≢0} ≡ (((m % d) {≢0} * (n % d) {≢0}) % d) {≢0}
%-distribˡ-* m n (suc d) = begin-equality
(m * n) % suc d ≡⟨ cong (λ x → (x * n) % suc d) (m≡m%n+[m/n]*n m (suc d)) ⟩
((m % suc d + m / suc d * suc d) * n) % suc d ≡⟨ cong (λ x → x % suc d) (Nat.*-distribʳ-+ n (m % suc d) (m / suc d * suc d)) ⟩
((m % suc d) * n + (m / suc d * suc d) * n) % suc d ≡⟨ cong (λ x → ((m % suc d) * n + x) % suc d) (lemma (m / suc d) (suc d) n) ⟩
((m % suc d) * n + (m / suc d * n) * suc d) % suc d ≡⟨ Nat.[m+kn]%n≡m%n ((m % suc d) * n) (m / suc d * n) d ⟩
((m % suc d) * n) % suc d ≡⟨ cong (λ x → ((m % suc d) * x) % suc d) (m≡m%n+[m/n]*n n (suc d)) ⟩
((m % suc d) * (n % suc d + n / suc d * suc d)) % suc d ≡⟨ cong (λ x → x % suc d) (Nat.*-distribˡ-+ (m % suc d) (n % suc d) (n / suc d * suc d)) ⟩
((m % suc d) * (n % suc d) + (m % suc d) * (n / suc d * suc d)) % suc d ≡⟨ cong (λ x → ((m % suc d) * (n % suc d) + x) % suc d) (sym (Nat.*-assoc (m % suc d) (n / suc d) (suc d))) ⟩
((m % suc d) * (n % suc d) + ((m % suc d) * (n / suc d)) * suc d) % suc d ≡⟨ Nat.[m+kn]%n≡m%n ((m % suc d) * (n % suc d)) ((m % suc d) * (n / suc d)) d ⟩
((m % suc d) * (n % suc d)) % suc d ∎
where
lemma : ∀ x y z → (x * y) * z ≡ (x * z) * y
lemma = solve Nat.ring
[m∸n]%n≡m%n : ∀ m n {n≢0 : False (n ≟ 0)} → n ≤ m → ((m ∸ n) % n) {n≢0} ≡ (m % n) {n≢0}
[m∸n]%n≡m%n (suc .(n + k)) (suc n) (lte k refl) = begin-equality
((suc n + k) ∸ suc n) % suc n ≡⟨ cong (λ t → t % suc n) (Nat.m+n∸m≡n (suc n) k) ⟩
k % suc n ≡⟨ sym (Nat.[m+n]%n≡m%n k n) ⟩
(k + suc n) % suc n ≡⟨ cong (λ t → t % suc n) (Nat.+-comm k (suc n)) ⟩
(suc n + k) % suc n ∎
[m∸kn]%n≡m%n : ∀ m k n {n≢0 : False (n ≟ 0)} → k * n ≤ m → ((m ∸ k * n) % n) {n≢0} ≡ (m % n) {n≢0}
[m∸kn]%n≡m%n m zero (suc n) n≤m = refl
[m∸kn]%n≡m%n m (suc k) (suc n) k*n≤m = begin-equality
(m ∸ (suc n + k * suc n)) % suc n ≡⟨ cong (λ t → t % suc n) (sym (Nat.∸-+-assoc m (suc n) (k * suc n))) ⟩
((m ∸ suc n) ∸ k * suc n) % suc n ≡⟨ [m∸kn]%n≡m%n (m ∸ suc n) k (suc n) k*n≤m∸n ⟩
(m ∸ suc n) % suc n ≡⟨ [m∸n]%n≡m%n m (suc n) (+-lower-≤ (k * suc n) k*n≤m) ⟩
m % suc n ∎
where
k*n≤m∸n : k * suc n ≤ m ∸ suc n
k*n≤m∸n = begin
k * suc n ≡⟨ sym (Nat.m+n∸m≡n (suc n) (k * suc n)) ⟩
(suc n + k * suc n) ∸ suc n ≤⟨ ∸-mono-≤ˡ {suc n} m≤m+n k*n≤m ⟩
m ∸ suc n ∎
%-distribˡ-∸ : ∀ m n d {≢0} → n ≤ m → ((m ∸ n) % d) {≢0} ≡ ((m ∸ (n % d) {≢0}) % d) {≢0}
%-distribˡ-∸ m n (suc d) n≤m = begin-equality
(m ∸ n) % suc d ≡⟨ cong (λ t → (m ∸ t) % suc d) (m≡m%n+[m/n]*n n (suc d)) ⟩
(m ∸ (n % suc d + n / suc d * suc d)) % suc d ≡⟨ cong (λ t → t % suc d) (sym (Nat.∸-+-assoc m (n % suc d) (n / suc d * suc d))) ⟩
((m ∸ n % suc d) ∸ n / suc d * suc d) % suc d ≡⟨ [m∸kn]%n≡m%n (m ∸ n % suc d) (n / suc d) (suc d) n/d*d≤m∸n%d ⟩
(m ∸ n % suc d) % suc d ∎
where
n/d*d≤m∸n%d : n / suc d * suc d ≤ m ∸ n % suc d
n/d*d≤m∸n%d = begin
n / suc d * suc d ≡⟨ sym (Nat.m+n∸m≡n (n % suc d) (n / suc d * suc d)) ⟩
(n % suc d + n / suc d * suc d) ∸ n % suc d ≡⟨ cong (λ t → t ∸ n % suc d) (sym (m≡m%n+[m/n]*n n (suc d))) ⟩
n ∸ n % suc d ≤⟨ ∸-mono-≤ˡ {n % suc d} (n%m≤n n (suc d)) n≤m ⟩
m ∸ n % suc d ∎
open import AKS.Unsafe using (trustMe)
/-cancelˡ : ∀ c a b {b≢0} {b*c≢0} → ((c * a) / (c * b)) {b*c≢0} ≡ (a / b) {b≢0}
/-cancelˡ (suc c) a (suc b) {b≢0} {b*c≢0} = trustMe
/-cancelʳ : ∀ c a b {b≢0} {b*c≢0} → ((a * c) / (b * c)) {b*c≢0} ≡ (a / b) {b≢0}
/-cancelʳ c a b {b≢0} {b*c≢0} = begin-equality
(a * c) / (b * c) ≡⟨ /-congˡ {o≢0 = b*c≢0} (*-comm a c) ⟩
(c * a) / (b * c) ≡⟨ /-congʳ (*-comm b c) ⟩
(c * a) / (c * b) ≡⟨ /-cancelˡ c a b {b≢0} {c*b≢0} ⟩
a / b ∎
where
c*b≢0 : False (c * b ≟ 0)
c*b≢0 rewrite *-comm b c = b*c≢0
_div_ : ∀ n m {≢0 : False (m ≟ 0)} → Euclidean n m
n div suc m = Euclidean✓ (n / suc m) (n % suc m) (≡-erase div-proof) (n%m<m n (suc m))
where
div-proof : n ≡ n % suc m + suc m * (n / suc m)
div-proof rewrite *-comm (suc m) (n / suc m) = m≡m%n+[m/n]*n n (suc m)
| {
"alphanum_fraction": 0.4428862825,
"avg_line_length": 50.2820512821,
"ext": "agda",
"hexsha": "81319f8c831679afc5867e6bf9c1eac3229a0681",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Nat/Divisibility.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Nat/Divisibility.agda",
"max_line_length": 185,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Nat/Divisibility.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 3950,
"size": 7844
} |
{-# OPTIONS --without-K --safe #-}
module Tools.Embedding where
open import Agda.Primitive
data ι {ℓ : Level} (A : Set ℓ) : Set (lsuc ℓ) where
ιx : A → ι A
data ι′ {ℓ : Level} (A : Set) : Set ℓ where
ιx : A → ι′ A
data ι″ {ℓ} (A : Set ℓ) : Setω where
ιx : A → ι″ A
| {
"alphanum_fraction": 0.5615942029,
"avg_line_length": 18.4,
"ext": "agda",
"hexsha": "c4de67b09e928eff2ed2837557f089980b11eaf2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "loic-p/logrel-mltt",
"max_forks_repo_path": "Tools/Embedding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "loic-p/logrel-mltt",
"max_issues_repo_path": "Tools/Embedding.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "loic-p/logrel-mltt",
"max_stars_repo_path": "Tools/Embedding.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 123,
"size": 276
} |
{-# OPTIONS --rewriting #-}
module Everything where
import Examples
import Properties
import PrettyPrinter
import Interpreter
| {
"alphanum_fraction": 0.8046875,
"avg_line_length": 14.2222222222,
"ext": "agda",
"hexsha": "d8a1fd5ae93630f3703208ea984a8ad6328df484",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Everything.agda",
"max_line_length": 27,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 23,
"size": 128
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.AssocList.Properties where
open import Cubical.HITs.AssocList.Base as AL
open import Cubical.Foundations.Everything
open import Cubical.Foundations.SIP
open import Cubical.HITs.FiniteMultiset as FMS
hiding (_++_; unitl-++; unitr-++; assoc-++; cons-++; comm-++)
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; +-assoc; isSetℕ)
open import Cubical.Structures.MultiSet
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidableEq
private
variable
ℓ : Level
A : Type ℓ
multiPer : (a b : A) (m n : ℕ) (xs : AssocList A)
→ ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs
multiPer a b zero n xs = del a (⟨ b , n ⟩∷ xs) ∙ cong (λ ys → ⟨ b , n ⟩∷ ys) (sym (del a xs))
multiPer a b (suc m) zero xs = cong (λ ys → ⟨ a , suc m ⟩∷ ys) (del b xs) ∙ sym (del b (⟨ a , suc m ⟩∷ xs))
multiPer a b (suc m) (suc n) xs =
⟨ a , suc m ⟩∷ ⟨ b , suc n ⟩∷ xs ≡⟨ sym (agg a 1 m (⟨ b , suc n ⟩∷ xs)) ⟩
⟨ a , 1 ⟩∷ ⟨ a , m ⟩∷ ⟨ b , suc n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ a , 1 ⟩∷ ys) (multiPer a b m (suc n) xs) ⟩
⟨ a , 1 ⟩∷ ⟨ b , suc n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ cong (λ ys → ⟨ a , 1 ⟩∷ ys) (sym (agg b 1 n (⟨ a , m ⟩∷ xs))) ⟩
⟨ a , 1 ⟩∷ ⟨ b , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ per a b (⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs) ⟩
⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , m ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ys) (multiPer b a n m xs) ⟩
⟨ b , 1 ⟩∷ ⟨ a , 1 ⟩∷ ⟨ a , m ⟩∷ ⟨ b , n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ys) (agg a 1 m (⟨ b , n ⟩∷ xs)) ⟩
⟨ b , 1 ⟩∷ ⟨ a , suc m ⟩∷ ⟨ b , n ⟩∷ xs ≡⟨ cong (λ ys → ⟨ b , 1 ⟩∷ ys) (multiPer a b (suc m) n xs) ⟩
⟨ b , 1 ⟩∷ ⟨ b , n ⟩∷ ⟨ a , suc m ⟩∷ xs ≡⟨ agg b 1 n (⟨ a , suc m ⟩∷ xs) ⟩
⟨ b , suc n ⟩∷ ⟨ a , suc m ⟩∷ xs ∎
-- Show that association lists and finite multisets are equivalent
multi-∷ : A → ℕ → FMSet A → FMSet A
multi-∷ x zero xs = xs
multi-∷ x (suc n) xs = x ∷ multi-∷ x n xs
multi-∷-agg : (x : A) (m n : ℕ) (b : FMSet A) → multi-∷ x m (multi-∷ x n b) ≡ multi-∷ x (m + n) b
multi-∷-agg x zero n b = refl
multi-∷-agg x (suc m) n b i = x ∷ (multi-∷-agg x m n b i)
infixr 30 _++_
_++_ : (xs ys : AssocList A) → AssocList A
⟨⟩ ++ ys = ys
(⟨ a , n ⟩∷ xs) ++ ys = ⟨ a , n ⟩∷ (xs ++ ys)
per a b xs i ++ ys = per a b (xs ++ ys) i
agg a m n xs i ++ ys = agg a m n (xs ++ ys) i
del a xs i ++ ys = del a (xs ++ ys) i
trunc xs ys p q i j ++ zs =
trunc (xs ++ zs) (ys ++ zs) (cong (_++ _) p) (cong (_++ _) q) i j
unitl-++ : (xs : AssocList A) → ⟨⟩ ++ xs ≡ xs
unitl-++ xs = refl
unitr-++ : (xs : AssocList A) → xs ++ ⟨⟩ ≡ xs
unitr-++ = AL.ElimProp.f (trunc _ _) refl λ _ _ → cong (⟨ _ , _ ⟩∷_)
assoc-++ : (xs ys zs : AssocList A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
assoc-++ = AL.ElimProp.f (isPropΠ2 (λ _ _ → trunc _ _))
(λ ys zs → refl)
λ x n p ys zs → cong (⟨ _ , _ ⟩∷_) (p ys zs)
cons-++ : ∀ x n (xs : AssocList A) → ⟨ x , n ⟩∷ xs ≡ xs ++ (⟨ x , n ⟩∷ ⟨⟩)
cons-++ x n = AL.ElimProp.f (trunc _ _) refl
λ y m p → multiPer _ _ _ _ _ ∙ cong (⟨ _ , _ ⟩∷_) p
comm-++ : (xs ys : AssocList A) → xs ++ ys ≡ ys ++ xs
comm-++ = AL.ElimProp.f (isPropΠ (λ _ → trunc _ _))
(sym ∘ unitr-++)
λ x n {xs} p ys → cong (⟨ _ , _ ⟩∷_) (p ys)
∙ cong (_++ _) (cons-++ x n ys)
∙ sym (assoc-++ ys _ xs)
AL→FMS : AssocList A → FMSet A
AL→FMS = AL.Rec.f FMS.trunc [] multi-∷ comm multi-∷-agg λ _ _ → refl
FMS→AL : FMSet A → AssocList A
FMS→AL = FMS.Rec.f AL.trunc ⟨⟩ (λ x xs → ⟨ x , 1 ⟩∷ xs) per
AL→FMS∘FMS→AL≡id : section {A = AssocList A} AL→FMS FMS→AL
AL→FMS∘FMS→AL≡id = FMS.ElimProp.f (FMS.trunc _ _) refl (λ x p → cong (λ ys → x ∷ ys) p)
-- need a little lemma for other direction
multi-∷-id : (x : A) (n : ℕ) (u : FMSet A)
→ FMS→AL (multi-∷ x n u) ≡ ⟨ x , n ⟩∷ FMS→AL u
multi-∷-id x zero u = sym (del x (FMS→AL u))
multi-∷-id x (suc n) u = FMS→AL (multi-∷ x (suc n) u) ≡⟨ cong (λ ys → ⟨ x , 1 ⟩∷ ys) (multi-∷-id x n u) ⟩
⟨ x , 1 ⟩∷ ⟨ x , n ⟩∷ (FMS→AL u) ≡⟨ agg x 1 n (FMS→AL u) ⟩
⟨ x , (suc n) ⟩∷ (FMS→AL u) ∎
FMS→AL∘AL→FMS≡id : retract {A = AssocList A} AL→FMS FMS→AL
FMS→AL∘AL→FMS≡id = AL.ElimProp.f (AL.trunc _ _) refl (λ x n {xs} p → (multi-∷-id x n (AL→FMS xs)) ∙ cong (λ ys → ⟨ x , n ⟩∷ ys) p)
AssocList≃FMSet : AssocList A ≃ FMSet A
AssocList≃FMSet = isoToEquiv (iso AL→FMS FMS→AL AL→FMS∘FMS→AL≡id FMS→AL∘AL→FMS≡id)
FMSet≃AssocList : FMSet A ≃ AssocList A
FMSet≃AssocList = isoToEquiv (iso FMS→AL AL→FMS FMS→AL∘AL→FMS≡id AL→FMS∘FMS→AL≡id)
AssocList≡FMSet : AssocList A ≡ FMSet A
AssocList≡FMSet = ua AssocList≃FMSet
-- We want to define a multiset structure on AssocList A, we use the recursor to define the count-function
module _(discA : Discrete A) where
setA = Discrete→isSet discA
ALcount-⟨,⟩∷* : A → A → ℕ → ℕ → ℕ
ALcount-⟨,⟩∷* a x n xs with discA a x
... | yes a≡x = n + xs
... | no a≢x = xs
ALcount-per* : (a x y : A) (xs : ℕ)
→ ALcount-⟨,⟩∷* a x 1 (ALcount-⟨,⟩∷* a y 1 xs)
≡ ALcount-⟨,⟩∷* a y 1 (ALcount-⟨,⟩∷* a x 1 xs)
ALcount-per* a x y xs with discA a x | discA a y
ALcount-per* a x y xs | yes a≡x | yes a≡y = refl
ALcount-per* a x y xs | yes a≡x | no a≢y = refl
ALcount-per* a x y xs | no a≢x | yes a≡y = refl
ALcount-per* a x y xs | no a≢x | no a≢y = refl
ALcount-agg* : (a x : A) (m n xs : ℕ)
→ ALcount-⟨,⟩∷* a x m (ALcount-⟨,⟩∷* a x n xs)
≡ ALcount-⟨,⟩∷* a x (m + n) xs
ALcount-agg* a x m n xs with discA a x
... | yes _ = +-assoc m n xs
... | no _ = refl
ALcount-del* : (a x : A) (xs : ℕ) → ALcount-⟨,⟩∷* a x 0 xs ≡ xs
ALcount-del* a x xs with discA a x
... | yes _ = refl
... | no _ = refl
ALcount : A → AssocList A → ℕ
ALcount a = AL.Rec.f isSetℕ 0 (ALcount-⟨,⟩∷* a) (ALcount-per* a) (ALcount-agg* a) (ALcount-del* a)
AL-with-str : MultiSet A setA
AL-with-str = (AssocList A , ⟨⟩ , ⟨_, 1 ⟩∷_ , ALcount)
-- We want to show that Al-with-str ≅ FMS-with-str as multiset-structures
FMS→AL-EquivStr : MultiSetEquivStr A setA (FMS-with-str discA) (AL-with-str) FMSet≃AssocList
FMS→AL-EquivStr = refl , (λ a xs → refl) , φ
where
φ : ∀ a xs → FMScount discA a xs ≡ ALcount a (FMS→AL xs)
φ a = FMS.ElimProp.f (isSetℕ _ _) refl ψ
where
ψ : (x : A) {xs : FMSet A}
→ FMScount discA a xs ≡ ALcount a (FMS→AL xs)
→ FMScount discA a (x ∷ xs) ≡ ALcount a (FMS→AL (x ∷ xs))
ψ x {xs} p = subst B α θ
where
B = λ ys → FMScount discA a (x ∷ xs) ≡ ALcount a ys
α : ⟨ x , 1 ⟩∷ FMS→AL xs ≡ FMS→AL (x ∷ xs)
α = sym (multi-∷-id x 1 xs)
θ : FMScount discA a (x ∷ xs) ≡ ALcount a (⟨ x , 1 ⟩∷ (FMS→AL xs))
θ with discA a x
... | yes _ = cong suc p
... | no ¬p = p
FMS-with-str≡AL-with-str : FMS-with-str discA ≡ AL-with-str
FMS-with-str≡AL-with-str = sip (multiSetUnivalentStr A setA)
(FMS-with-str discA) AL-with-str
(FMSet≃AssocList , FMS→AL-EquivStr)
| {
"alphanum_fraction": 0.5103085454,
"avg_line_length": 35.3417085427,
"ext": "agda",
"hexsha": "2de9f199277ea7e0f417eeb7eca3f728a426791a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/HITs/AssocList/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3212,
"size": 7033
} |
{-# OPTIONS --cubical --safe #-}
module DivModAlt where
open import Cubical.Core.Everything using (_≡_; Level; Type; Σ; _,_; fst; snd; _≃_; ~_)
open import Cubical.Foundations.Prelude using (refl; sym; _∙_; cong; transport; subst; funExt; transp; I; i0; i1; hcomp; primPOr; _∨_)
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.Isomorphism using (iso; Iso; isoToPath; section; retract; isoToEquiv)
open import Data.Empty using (⊥)
open import Data.Fin using (Fin; toℕ; fromℕ<; #_; _≟_) renaming (zero to fz; suc to fs)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _≤_ ; _>_; _<_; _≥_; z≤n; s≤s; NonZero)
open import Data.Product using (_×_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Unit using (⊤; tt)
open import Fin
+-assoc : (m n o : ℕ) → (m + n) + o ≡ m + (n + o)
+-assoc zero _ _ = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)
≤-refl : {n : ℕ} → n ≤ n
≤-refl {zero} = z≤n
≤-refl {suc n} = s≤s (≤-refl {n})
≤-trans : {m n o : ℕ} → m ≤ n → n ≤ o → m ≤ o
≤-trans z≤n _ = z≤n
≤-trans (s≤s x) (s≤s y) = s≤s (≤-trans x y)
≤-step : {m n : ℕ} → m ≤ n → m ≤ 1 + n
≤-step z≤n = z≤n
≤-step (s≤s m≤n) = s≤s (≤-step m≤n)
n≤1+n : (n : ℕ) → n ≤ 1 + n
n≤1+n _ = ≤-step ≤-refl
≤-pred : {m n : ℕ} → suc m ≤ suc n → m ≤ n
≤-pred (s≤s m≤n) = m≤n
_-_ : (n m : ℕ) → {m ≤ n} → ℕ
(n - zero) {z≤n} = n
(suc n - suc m) {s≤s p} = _-_ n m {p}
<-∨-≥ : (m n : ℕ) → m < n ⊎ m ≥ n
<-∨-≥ zero zero = inj₂ z≤n
<-∨-≥ zero (suc n) = inj₁ (s≤s z≤n)
<-∨-≥ (suc m) zero = inj₂ z≤n
<-∨-≥ (suc m) (suc n) with <-∨-≥ m n
... | inj₁ m<n = inj₁ (s≤s m<n)
... | inj₂ m≥n = inj₂ (s≤s m≥n)
sucn-1 : (n : ℕ) → (suc n - 1) {s≤s z≤n} ≡ n
sucn-1 n = refl
-decreasing : (n m : ℕ) → (m≤n : suc m ≤ n) → ((n - suc m) {m≤n}) < n
-decreasing (suc n) zero (s≤s z≤n) = ≤-refl
-decreasing (suc n) (suc m) (s≤s m≤n) = ≤-trans (-decreasing n m m≤n) (n≤1+n n)
-decreasing1 : (c n m : ℕ) → (m≤n : suc m ≤ n) → (n ≤ suc c) → ((n - suc m) {m≤n}) ≤ c
-decreasing1 c (suc n) m (s≤s m≤n) (s≤s n≤c) = ≤-trans (≤-pred (-decreasing (suc n) m (s≤s m≤n))) n≤c
lemma1 : (n m : ℕ) → {m≤n : m ≤ n} → m + ((n - m) {m≤n}) ≡ n
lemma1 n zero {z≤n} = refl
lemma1 (suc n) (suc m) {s≤s p} = cong suc (lemma1 n m {p})
lemma2 : (n m a : ℕ) → {m≤n : m ≤ n} → (n - m) {m≤n} ≡ a → n ≡ m + a
lemma2 n m a {m≤n} x = subst (λ y → y ≡ m + a) (lemma1 n m {m≤n} ) (cong (m +_) x)
lemma3 : (n m d r : ℕ) → {m≤n : m ≤ n} → (n - m) {m≤n} ≡ d * m + r → n ≡ (suc d) * m + r
lemma3 n m d r {m≤n} x = lemma2 n m (d * m + r) x ∙ sym (+-assoc m (d * m) r)
--infixl 7 _div_ _mod_ _mod'_
record DivMod (n m : ℕ) : Type where
constructor divMod
field
q : ℕ
r : Fin m
n=q*m+r : n ≡ q * m + toℕ r
record DivMod0 (n m : ℕ) : Type where
constructor divMod0
field
q : ℕ
r : ℕ
r<m : r < m
n=q*m+r : n ≡ q * m + r
record DivMod1 (n m : ℕ) : Type where
constructor divMod1
field
q : ℕ
r : Fin1 m
n=q*m+r : n ≡ q * m + Fin1.r r
divmod1 : (c n m : ℕ) → (n ≤ c) → {m > 0} → DivMod n m
divmod1 zero zero (suc m) z≤n = divMod 0 (# 0) refl
divmod1 (suc c) n (suc m) n≤c with <-∨-≥ n (suc m)
... | inj₁ n<m = divMod 0 (fromℕ< n<m) (sym (toℕ-fromℕ< n<m))
... | inj₂ n≥m =
let (divMod q r n-m≡q*m+r) = divmod1 c ((n - (suc m)) {n≥m}) (suc m) (-decreasing1 c n m n≥m n≤c ) {s≤s z≤n}
in divMod (suc q) r (lemma3 n (suc m) q (toℕ r) n-m≡q*m+r)
divmod : (n m : ℕ) → {m > 0} → DivMod n m
divmod n (suc m) = divmod1 n n (suc m) ≤-refl {s≤s z≤n}
-- NOTE: We can't use {m > 0} here because Agda can't figure out
-- the implicit proof (even for constants), so use {NonZero m} instead.
_div_ : (n m : ℕ) → {NonZero m} → ℕ
n div (suc m) = DivMod.q (divmod n (suc m) {s≤s z≤n})
_mod_ : (n m : ℕ) → {NonZero m} → Fin m
n mod (suc m) = DivMod.r (divmod n (suc m) {s≤s z≤n})
_mod'_ : (n m : ℕ) → {NonZero m} → ℕ
n mod' (suc m) = toℕ (n mod (suc m))
---------
dm0→dm1 : {m n : ℕ} → DivMod0 n m → DivMod1 n m
dm0→dm1 {m} {n} (divMod0 q r r<m n=q*m+r) =
divMod1 q (fin1 r r<m) n=q*m+r
dm1→dm0 : {m n : ℕ} → DivMod1 n m → DivMod0 n m
dm1→dm0 (divMod1 q r n=q*m+r) = divMod0 q (Fin1.r r) (Fin1.r<n r) n=q*m+r
dm0→dm1→dm0 : {m n : ℕ} → (dm0 : DivMod0 n m) → (dm1→dm0 ∘ dm0→dm1) dm0 ≡ dm0
dm0→dm1→dm0 _ = refl
dm1→dm0→dm1 : {m n : ℕ} → (dm1 : DivMod1 n m) → (dm0→dm1 ∘ dm1→dm0) dm1 ≡ dm1
dm1→dm0→dm1 _ = refl
dm0≃dm1 : {n m : ℕ} → Iso (DivMod0 n m) (DivMod1 n m)
dm0≃dm1 = iso dm0→dm1 dm1→dm0 dm1→dm0→dm1 dm0→dm1→dm0
dm0≡dm1 : {n m : ℕ} → DivMod0 n m ≡ DivMod1 n m
dm0≡dm1 = isoToPath dm0≃dm1
---------
dm1→dm : {m n : ℕ} → DivMod1 n m → DivMod n m
dm1→dm {m} {n} (divMod1 q r n=q*m+r) =
divMod q (fin1→fin r) (subst (λ x → n ≡ q * m + x) (sym (Fin1r≡toℕ1 r)) n=q*m+r)
dm→dm1 : {m n : ℕ} → DivMod n m → DivMod1 n m
dm→dm1 {m} {n} (divMod q r n=q*m+r) = divMod1 q (fin→fin1 r) (subst (λ x → n ≡ q * m + x) (toℕ≡Fin1r1 r) n=q*m+r)
dm1→dm→dm1 : {m n : ℕ} → (dm1 : DivMod1 n m) → (dm→dm1 ∘ dm1→dm) dm1 ≡ dm1
dm1→dm→dm1 {m} {n} (divMod1 q r n=q*m+r) i = divMod1 q (fin1→fin→fin1 r i) {!!}
dm→dm1→dm : {m n : ℕ} → (dm : DivMod n m) → (dm1→dm ∘ dm→dm1) dm ≡ dm
dm→dm1→dm (divMod q r n=q*m+r) i = divMod q (fin→fin1→fin r i)
(λ j → {!n=q*m+r j!})
dm1≃dm : {n m : ℕ} → Iso (DivMod1 n m) (DivMod n m)
dm1≃dm = iso dm1→dm dm→dm1 dm→dm1→dm dm1→dm→dm1
dm1≡dm : {n m : ℕ} → DivMod1 n m ≡ DivMod n m
dm1≡dm = isoToPath dm1≃dm
---------
dm0≡dm : {n m : ℕ} → DivMod0 n m ≡ DivMod n m
dm0≡dm = dm0≡dm1 ∙ dm1≡dm
---------
n%m<m : (n m : ℕ) {m≠0 : NonZero m} → toℕ ((n mod m) {m≠0}) < m
n%m<m n (suc m) = toℕ<n (DivMod.r (divmod n (suc m) {s≤s z≤n}))
n≡divmod : (n m : ℕ) {m≠0 : NonZero m} → n ≡ ((n div m) {m≠0}) * m + toℕ ((n mod m) {m≠0})
n≡divmod n (suc m) = DivMod.n=q*m+r (divmod n (suc m) {s≤s z≤n})
| {
"alphanum_fraction": 0.512519162,
"avg_line_length": 33.3579545455,
"ext": "agda",
"hexsha": "4b47020ddc6666d6bf5c58c46a764fa60ba86296",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/DivModAlt.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/DivModAlt.agda",
"max_line_length": 138,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/DivModAlt.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 3001,
"size": 5871
} |
module PiQ.Properties where
open import Data.Empty
open import Data.Unit hiding (_≟_)
open import Data.Sum
open import Data.Product
open import Data.Maybe
open import Data.Maybe.Properties
open import Data.Nat hiding (_≟_)
open import Data.Nat.Induction
open import Data.Nat.Properties hiding (_≟_)
open import Function using (_∘_)
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import PiQ.Syntax
open import PiQ.Opsem
open import PiQ.AuxLemmas
open import PiQ.NoRepeat
open import PiQ.Invariants
open import PiQ.Eval
open import PiQ.Interp
-- Change the direction of the given state
flip : (st : State) → st ≢ ⊠ → State
flip ⟨ c ∣ v ∣ κ ⟩▷ _ = ⟨ c ∣ v ∣ κ ⟩◁
flip [ c ∣ v ∣ κ ]▷ _ = [ c ∣ v ∣ κ ]◁
flip ⟨ c ∣ v ∣ κ ⟩◁ _ = ⟨ c ∣ v ∣ κ ⟩▷
flip [ c ∣ v ∣ κ ]◁ _ = [ c ∣ v ∣ κ ]▷
flip ⊠ st≢⊠ = ⊥-elim (st≢⊠ refl)
Rev : ∀ {st st'} → st ↦ st' → (nf : st ≢ ⊠) (nf' : st' ≢ ⊠)
→ flip st' nf' ↦ flip st nf
Rev ↦⃗₁ _ _ = ↦⃖₁
Rev ↦⃗₂ _ _ = ↦⃖₂
Rev ↦⃗₃ _ _ = ↦⃖₃
Rev ↦⃗₄ _ _ = ↦⃖₄
Rev ↦⃗₅ _ _ = ↦⃖₅
Rev ↦⃗₆ _ _ = ↦⃖₆
Rev ↦⃗₇ _ _ = ↦⃖₇
Rev ↦⃗₈ _ _ = ↦⃖₈
Rev ↦⃗₉ _ _ = ↦⃖₉
Rev ↦⃗₁₀ _ _ = ↦⃖₁₀
Rev ↦⃗₁₁ _ _ = ↦⃖₁₁
Rev ↦⃗₁₂ _ _ = ↦⃖₁₂
Rev ↦⃖₁ _ _ = ↦⃗₁
Rev ↦⃖₂ _ _ = ↦⃗₂
Rev ↦⃖₃ _ _ = ↦⃗₃
Rev ↦⃖₄ _ _ = ↦⃗₄
Rev ↦⃖₅ _ _ = ↦⃗₅
Rev ↦⃖₆ _ _ = ↦⃗₆
Rev ↦⃖₇ _ _ = ↦⃗₇
Rev ↦⃖₈ _ _ = ↦⃗₈
Rev ↦⃖₉ _ _ = ↦⃗₉
Rev ↦⃖₁₀ _ _ = ↦⃗₁₀
Rev ↦⃖₁₁ _ _ = ↦⃗₁₁
Rev ↦⃖₁₂ _ _ = ↦⃗₁₂
Rev ↦η₊₁ _ _ = ↦η₊₂
Rev ↦η₊₂ _ _ = ↦η₊₁
Rev ↦ε₊₁ _ _ = ↦ε₊₂
Rev ↦ε₊₂ _ _ = ↦ε₊₁
Rev ↦⃗ηₓ _ _ = ↦⃖ηₓ₁ {eq = refl}
Rev (↦⃖ηₓ₁ {eq = refl}) _ _ = ↦⃗ηₓ
Rev ↦⃖ηₓ₂ _ nf' = ⊥-elim (nf' refl)
Rev (↦⃗εₓ₁ {eq = refl}) _ _ = ↦⃖εₓ
Rev ↦⃗εₓ₂ _ nf' = ⊥-elim (nf' refl)
Rev ↦⃖εₓ _ _ = ↦⃗εₓ₁ {eq = refl}
Rev* : ∀ {st st'} → st ↦* st' → (nf : st ≢ ⊠) → (nf' : st' ≢ ⊠) → flip st' nf' ↦* flip st nf
Rev* {⟨ _ ∣ _ ∣ _ ⟩▷} ◾ _ _ = ◾
Rev* {[ _ ∣ _ ∣ _ ]▷} ◾ _ _ = ◾
Rev* {⟨ _ ∣ _ ∣ _ ⟩◁} ◾ _ _ = ◾
Rev* {[ _ ∣ _ ∣ _ ]◁} ◾ _ _ = ◾
Rev* {⊠} ◾ nf _ = ⊥-elim (nf refl)
Rev* (r ∷ ◾) nf nf' = Rev r nf nf' ∷ ◾
Rev* (r ∷ (r' ∷ rs)) nf nf' = Rev* (r' ∷ rs) nf'' nf' ++↦ (Rev r nf nf'' ∷ ◾)
where
nf'' = λ eq → ⊠-is-stuck eq (_ , r')
-- Helper functions
inspect⊎ : ∀ {ℓ ℓ₁ ℓ₂ ℓ₃} {P : Set ℓ} {Q : Set ℓ₁} {R : Set ℓ₂} {S : Set ℓ₃}
→ (f : P → Q ⊎ R ⊎ S) → (p : P) → (∃[ q ] (inj₁ q ≡ f p)) ⊎ (∃[ r ] (inj₂ (inj₁ r) ≡ f p)) ⊎ (∃[ s ] (inj₂ (inj₂ s) ≡ f p))
inspect⊎ f p with f p
... | inj₁ q = inj₁ (q , refl)
... | inj₂ (inj₁ r) = inj₂ (inj₁ (r , refl))
... | inj₂ (inj₂ r) = inj₂ (inj₂ (r , refl))
Val≢ : ∀ {A B v₁ v₂} → _⃗ {A} {B} v₁ ≢ v₂ ⃖
Val≢ ()
Maybe≢ : ∀ {ℓ} {A : Set ℓ} {a : A} → just a ≢ nothing
Maybe≢ ()
toState : ∀ {A B} → (A ↔ B) → Maybe (Val B A) → State
toState c (just (b ⃗)) = [ c ∣ b ∣ ☐ ]▷
toState c (just (a ⃖)) = ⟨ c ∣ a ∣ ☐ ⟩◁
toState c nothing = ⊠
is-stuck-toState : ∀ {A B} → (c : A ↔ B) → (v : Maybe (Val B A)) → is-stuck (toState c v)
is-stuck-toState c (just (b ⃗)) = λ ()
is-stuck-toState c (just (a ⃖)) = λ ()
is-stuck-toState c nothing = λ ()
toStateEq₁ : ∀ {A B b} → (c : A ↔ B) → (x : Maybe (Val B A)) → [ c ∣ b ∣ ☐ ]▷ ≡ toState c x → just (b ⃗) ≡ x
toStateEq₁ c (just (x ⃗)) refl = refl
toStateEq₂ : ∀ {A B a} → (c : A ↔ B) → (x : Maybe (Val B A)) → ⟨ c ∣ a ∣ ☐ ⟩◁ ≡ toState c x → just (a ⃖) ≡ x
toStateEq₂ c (just (x ⃖)) refl = refl
toStateEq₃ : ∀ {A B} → (c : A ↔ B) → (x : Maybe (Val B A)) → ⊠ ≡ toState c x → nothing ≡ x
toStateEq₃ c nothing refl = refl
toStateEq₃ c (just (x ⃗)) ()
toStateEq₃ c (just (x ⃖)) ()
toState≡₁ : ∀ {A B b x} {c : A ↔ B} → toState c x ≡ [ c ∣ b ∣ ☐ ]▷ → x ≡ just (b ⃗)
toState≡₁ {x = just (x ⃗)} refl = refl
toState≡₂ : ∀ {A B a x} {c : A ↔ B} → toState c x ≡ ⟨ c ∣ a ∣ ☐ ⟩◁ → x ≡ just (a ⃖)
toState≡₂ {x = just (x ⃖)} refl = refl
toState≡₃ : ∀ {A B x} {c : A ↔ B} → toState c x ≡ ⊠ → x ≡ nothing
toState≡₃ {x = nothing} refl = refl
toState≡₃ {x = just (x ⃗)} ()
toState≡₃ {x = just (x ⃖)} ()
eval-toState₁ : ∀ {A B a x} {c : A ↔ B} → ⟨ c ∣ a ∣ ☐ ⟩▷ ↦* (toState c x) → eval c (a ⃗) ≡ x
eval-toState₁ {a = a} {just (b ⃗)} {c} rs with inspect⊎ (run ⟨ c ∣ a ∣ ☐ ⟩▷) (λ ())
eval-toState₁ {a = a} {just (b ⃗)} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {just (b ⃗)} {c} rs | inj₂ (inj₁ ((b' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (b ⃗)) eq refl
eval-toState₁ {a = a} {just (b ⃗)} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {just (a' ⃖)} {c} rs with inspect⊎ (run ⟨ c ∣ a ∣ ☐ ⟩▷) (λ ())
eval-toState₁ {a = a} {just (a' ⃖)} {c} rs | inj₁ ((a'' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (a' ⃖)) eq refl
eval-toState₁ {a = a} {just (a' ⃖)} {c} rs | inj₂ (inj₁ ((b' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {just (a' ⃖)} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {nothing} {c} rs with inspect⊎ (run ⟨ c ∣ a ∣ ☐ ⟩▷) (λ ())
eval-toState₁ {a = a} {nothing} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {nothing} {c} rs | inj₂ (inj₁ ((b' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₁ {a = a} {nothing} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ nothing) eq refl
eval-toState₂ : ∀ {A B b x} {c : A ↔ B} → [ c ∣ b ∣ ☐ ]◁ ↦* (toState c x) → eval c (b ⃖) ≡ x
eval-toState₂ {b = b} {just (b' ⃗)} {c} rs with inspect⊎ (run [ c ∣ b ∣ ☐ ]◁) (λ ())
eval-toState₂ {b = b} {just (b' ⃗)} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {just (b' ⃗)} {c} rs | inj₂ (inj₁ ((b'' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (b' ⃗)) eq refl
eval-toState₂ {b = b} {just (b' ⃗)} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {just (a ⃖)} {c} rs with inspect⊎ (run [ c ∣ b ∣ ☐ ]◁) (λ ())
eval-toState₂ {b = b} {just (a ⃖)} {c} rs | inj₁ ((a'' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (a ⃖)) eq refl
eval-toState₂ {b = b} {just (a ⃖)} {c} rs | inj₂ (inj₁ ((b' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {just (a ⃖)} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {nothing} {c} rs with inspect⊎ (run [ c ∣ b ∣ ☐ ]◁) (λ ())
eval-toState₂ {b = b} {nothing} {c} rs | inj₁ ((a' , rs') , eq) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {nothing} {c} rs | inj₂ (inj₁ ((b' , rs') , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | ()
eval-toState₂ {b = b} {nothing} {c} rs | inj₂ (inj₂ (rs' , eq)) with deterministic* rs rs' (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ nothing) eq refl
getₜᵣ⃗ : ∀ {A B} → (c : A ↔ B) → {v : ⟦ A ⟧} {v' : Maybe (Val B A)} → eval c (v ⃗) ≡ v'
→ ⟨ c ∣ v ∣ ☐ ⟩▷ ↦* toState c v'
getₜᵣ⃗ c {v} {v'} eq with inspect⊎ (run ⟨ c ∣ v ∣ ☐ ⟩▷) (λ ())
getₜᵣ⃗ c {v} {nothing} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃗ c {v} {just (x ⃗)} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃗ c {v} {just (x ⃖)} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃗ c {v} {nothing} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃗ c {v} {just (x ⃗)} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃗ c {v} {just (x ⃖)} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃗ c {v} {nothing} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃗ c {v} {just (x ⃗)} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃗ c {v} {just (x ⃖)} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ : ∀ {A B} → (c : A ↔ B) → {v : ⟦ B ⟧} {v' : Maybe (Val B A)} → eval c (v ⃖) ≡ v'
→ [ c ∣ v ∣ ☐ ]◁ ↦* toState c v'
getₜᵣ⃖ c {v} {v'} eq with inspect⊎ (run [ c ∣ v ∣ ☐ ]◁) (λ ())
getₜᵣ⃖ c {v} {nothing} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ c {v} {just (x ⃗)} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ c {v} {just (x ⃖)} eq | inj₁ ((x₁ , rs₁) , eq₁) with trans (subst (λ x → just (x₁ ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃖ c {v} {nothing} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ c {v} {just (x ⃗)} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃖ c {v} {just (x ⃖)} eq | inj₂ (inj₁ ((x₁ , rs₁) , eq₁)) with trans (subst (λ x → just (x₁ ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ c {v} {nothing} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | refl = rs₁
getₜᵣ⃖ c {v} {just (x ⃗)} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
getₜᵣ⃖ c {v} {just (x ⃖)} eq | inj₂ (inj₂ (rs₁ , eq₁)) with trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq₁ refl) eq
... | ()
-- Forward evaluator is reversible
evalIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : Val A B) (v₂ : Val B A)
→ eval c v₁ ≡ (just v₂) → evalᵣₑᵥ c v₂ ≡ (just v₁)
evalIsRev c (v₁ ⃗) (v₂ ⃗) eq with inspect⊎ (run ⟨ c ∣ v₁ ∣ ☐ ⟩▷) (λ ())
evalIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₁ ((u , rs) , eq') = ⊥-elim (Val≢ (sym (just-injective contr)))
where
contr : just (u ⃖) ≡ just (v₂ ⃗)
contr = trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₂ (inj₁ ((u , rs) , eq')) = subst (λ x → evalᵣₑᵥ c x ≡ just (v₁ ⃗)) u≡v₂ rsinv
where
u≡v₂ : (u ⃗) ≡ (v₂ ⃗)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : evalᵣₑᵥ c (u ⃗) ≡ just (v₁ ⃗)
rsinv with u≡v₂ | inspect⊎ (run [ c ∣ v₂ ∣ ☐ ]◁) (λ ())
rsinv | refl | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃗)) eq'' refl
rsinv | refl | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | refl | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₂ (inj₂ (rs , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃗)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃗) (v₂ ⃖) eq with inspect⊎ (run ⟨ c ∣ v₁ ∣ ☐ ⟩▷) (λ ())
evalIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₁ ((u , rs) , eq') = subst (λ x → evalᵣₑᵥ c x ≡ just (v₁ ⃗)) u≡v₂ rsinv
where
u≡v₂ : (u ⃖) ≡ (v₂ ⃖)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : evalᵣₑᵥ c (u ⃖) ≡ just (v₁ ⃗)
rsinv with u≡v₂ | inspect⊎ (run ⟨ c ∣ u ∣ ☐ ⟩▷) (λ ())
rsinv | refl | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃗)) eq'' refl
rsinv | refl | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | refl | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₂ (inj₁ ((u , rs) , eq')) = ⊥-elim (Val≢ (just-injective contr))
where
contr : just (u ⃗) ≡ just (v₂ ⃖)
contr = trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₂ (inj₂ (rs , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃖)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃖) (v₂ ⃗) eq with inspect⊎ (run [ c ∣ v₁ ∣ ☐ ]◁) (λ ())
evalIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₁ ((u , rs) , eq') = ⊥-elim (Val≢ (just-injective (sym contr)))
where
contr : just (u ⃖) ≡ just (v₂ ⃗)
contr = trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₂ (inj₁ ((u , rs) , eq')) = subst (λ x → evalᵣₑᵥ c x ≡ just (v₁ ⃖)) u≡v₂ rsinv
where
u≡v₂ : (u ⃗) ≡ (v₂ ⃗)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : evalᵣₑᵥ c (u ⃗) ≡ just (v₁ ⃖)
rsinv with u≡v₂ | inspect⊎ (run [ c ∣ u ∣ ☐ ]◁) (λ ())
rsinv | refl | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | refl | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃖)) eq'' refl
rsinv | refl | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₂ (inj₂ (rs , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃗)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃖) (v₂ ⃖) eq with inspect⊎ (run [ c ∣ v₁ ∣ ☐ ]◁) (λ ())
evalIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₁ ((u , rs) , eq') = subst (λ x → evalᵣₑᵥ c x ≡ just (v₁ ⃖)) u≡v₂ rsinv
where
u≡v₂ : (u ⃖) ≡ (v₂ ⃖)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : evalᵣₑᵥ c (u ⃖) ≡ just (v₁ ⃖)
rsinv with u≡v₂ | inspect⊎ (run ⟨ c ∣ u ∣ ☐ ⟩▷) (λ ())
rsinv | refl | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | refl | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃖)) eq'' refl
rsinv | refl | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₂ (inj₁ ((u , rs) , eq')) = ⊥-elim (Val≢ (just-injective contr))
where
contr : just (u ⃗) ≡ just (v₂ ⃖)
contr = trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₂ (inj₂ (rs , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃖)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
-- Backward evaluator is reversible
evalᵣₑᵥIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : Val B A) (v₂ : Val A B)
→ evalᵣₑᵥ c v₁ ≡ (just v₂) → eval c v₂ ≡ (just v₁)
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃗) eq with inspect⊎ (run [ c ∣ v₁ ∣ ☐ ]◁) (λ ())
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₁ ((u , rs) , eq') = subst (λ x → eval c x ≡ just (v₁ ⃗)) u≡v₂ rsinv
where
u≡v₂ : (u ⃗) ≡ (v₂ ⃗)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : eval c (u ⃗) ≡ just (v₁ ⃗)
rsinv with inspect⊎ (run ⟨ c ∣ u ∣ ☐ ⟩▷) (λ ())
rsinv | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃗)) eq'' refl
rsinv | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₂ (inj₁ ((u , rs) , eq')) = ⊥-elim (Val≢ (sym (just-injective contr)))
where
contr : just (u ⃖) ≡ just (v₂ ⃗)
contr = trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃗) eq | inj₂ (inj₂ (rs' , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃗)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃖) eq with inspect⊎ (run [ c ∣ v₁ ∣ ☐ ]◁) (λ ())
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₁ ((u , rs) , eq') = ⊥-elim (Val≢ (just-injective contr))
where
contr : just (u ⃗) ≡ just (v₂ ⃖)
contr = trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₂ (inj₁ ((u , rs) , eq')) = subst (λ x → eval c x ≡ just (v₁ ⃗)) u≡v₂ rsinv
where
u≡v₂ : (u ⃖) ≡ (v₂ ⃖)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : eval c (u ⃖) ≡ just (v₁ ⃗)
rsinv with inspect⊎ (run [ c ∣ u ∣ ☐ ]◁) (λ ())
rsinv | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃗)) eq'' refl
rsinv | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalᵣₑᵥIsRev c (v₁ ⃗) (v₂ ⃖) eq | inj₂ (inj₂ (rs' , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃖)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃗) eq with inspect⊎ (run ⟨ c ∣ v₁ ∣ ☐ ⟩▷) (λ ())
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₁ ((u , rs) , eq') = subst (λ x → eval c x ≡ just (v₁ ⃖)) u≡v₂ rsinv
where
u≡v₂ : (u ⃗) ≡ (v₂ ⃗)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : eval c (u ⃗) ≡ just (v₁ ⃖)
rsinv with inspect⊎ (run ⟨ c ∣ u ∣ ☐ ⟩▷) (λ ())
rsinv | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃖)) eq'' refl
rsinv | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₂ (inj₁ ((u , rs) , eq')) = ⊥-elim (Val≢ (sym (just-injective contr)))
where
contr : just (u ⃖) ≡ just (v₂ ⃗)
contr = trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃗) eq | inj₂ (inj₂ (rs' , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃗)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃖) eq with inspect⊎ (run ⟨ c ∣ v₁ ∣ ☐ ⟩▷) (λ ())
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₁ ((u , rs) , eq') = ⊥-elim (Val≢ (just-injective contr))
where
contr : just (u ⃗) ≡ just (v₂ ⃖)
contr = trans (subst (λ x → just (u ⃗) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₂ (inj₁ ((u , rs) , eq')) = subst (λ x → eval c x ≡ just (v₁ ⃖)) u≡v₂ rsinv
where
u≡v₂ : (u ⃖) ≡ (v₂ ⃖)
u≡v₂ = just-injective (trans (subst (λ x → just (u ⃖) ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq)
rsinv : eval c (u ⃖) ≡ just (v₁ ⃖)
rsinv with inspect⊎ (run [ c ∣ u ∣ ☐ ]◁) (λ ())
rsinv | inj₁ ((w , rs') , eq'') with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | refl = subst (λ x → [ just ∘ _⃖ ∘ proj₁ , [ just ∘ _⃗ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x ≡ just (v₁ ⃖)) eq'' refl
rsinv | inj₂ (inj₁ ((w , rs') , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
rsinv | inj₂ (inj₂ (rs' , eq'')) with deterministic* rs' (Rev* rs (λ ()) (λ ())) (λ ()) (λ ())
... | ()
evalᵣₑᵥIsRev c (v₁ ⃖) (v₂ ⃖) eq | inj₂ (inj₂ (rs' , eq')) = ⊥-elim (Maybe≢ (sym contr))
where
contr : nothing ≡ just (v₂ ⃖)
contr = trans (subst (λ x → nothing ≡ [ just ∘ _⃗ ∘ proj₁ , [ just ∘ _⃖ ∘ proj₁ , (λ _ → nothing) ]′ ]′ x) eq' refl) eq
-- The abstract machine semantics is equivalent to the big-step semantics
mutual
eval≡interp : ∀ {A B} → (c : A ↔ B) → (v : Val A B) → eval c v ≡ interp c v
eval≡interp unite₊l (inj₂ v ⃗) = refl
eval≡interp unite₊l (v ⃖) = refl
eval≡interp uniti₊l (v ⃗) = refl
eval≡interp uniti₊l (inj₂ v ⃖) = refl
eval≡interp swap₊ (inj₁ x ⃗) = refl
eval≡interp swap₊ (inj₂ y ⃗) = refl
eval≡interp swap₊ (inj₁ x ⃖) = refl
eval≡interp swap₊ (inj₂ y ⃖) = refl
eval≡interp assocl₊ (inj₁ x ⃗) = refl
eval≡interp assocl₊ (inj₂ (inj₁ y) ⃗) = refl
eval≡interp assocl₊ (inj₂ (inj₂ z) ⃗) = refl
eval≡interp assocl₊ (inj₁ (inj₁ x) ⃖) = refl
eval≡interp assocl₊ (inj₁ (inj₂ y) ⃖) = refl
eval≡interp assocl₊ (inj₂ z ⃖) = refl
eval≡interp assocr₊ (inj₁ (inj₁ x) ⃗) = refl
eval≡interp assocr₊ (inj₁ (inj₂ y) ⃗) = refl
eval≡interp assocr₊ (inj₂ z ⃗) = refl
eval≡interp assocr₊ (inj₁ x ⃖) = refl
eval≡interp assocr₊ (inj₂ (inj₁ y) ⃖) = refl
eval≡interp assocr₊ (inj₂ (inj₂ z) ⃖) = refl
eval≡interp unite⋆l ((tt , v) ⃗) = refl
eval≡interp unite⋆l (v ⃖) = refl
eval≡interp uniti⋆l (v ⃗) = refl
eval≡interp uniti⋆l ((tt , v) ⃖) = refl
eval≡interp swap⋆ ((x , y) ⃗) = refl
eval≡interp swap⋆ ((y , x) ⃖) = refl
eval≡interp assocl⋆ ((x , (y , z)) ⃗) = refl
eval≡interp assocl⋆ (((x , y) , z) ⃖) = refl
eval≡interp assocr⋆ (((x , y) , z) ⃗) = refl
eval≡interp assocr⋆ ((x , (y , z)) ⃖) = refl
eval≡interp absorbr (() ⃗)
eval≡interp absorbr (() ⃖)
eval≡interp factorzl (() ⃗)
eval≡interp factorzl (() ⃖)
eval≡interp dist ((inj₁ x , z) ⃗) = refl
eval≡interp dist ((inj₂ y , z) ⃗) = refl
eval≡interp dist (inj₁ (x , z) ⃖) = refl
eval≡interp dist (inj₂ (y , z) ⃖) = refl
eval≡interp factor (inj₁ (x , z) ⃗) = refl
eval≡interp factor (inj₂ (y , z) ⃗) = refl
eval≡interp factor ((inj₁ x , z) ⃖) = refl
eval≡interp factor ((inj₂ y , z) ⃖) = refl
eval≡interp id↔ (v ⃗) = refl
eval≡interp id↔ (v ⃖) = refl
eval≡interp η₊ (inj₁ x ⃖) = refl
eval≡interp η₊ (inj₂ (- x) ⃖) = refl
eval≡interp ε₊ (inj₁ x ⃗) = refl
eval≡interp ε₊ (inj₂ (- x) ⃗) = refl
eval≡interp (ηₓ v) (tt ⃗) = refl
eval≡interp (ηₓ v) ((v' , ↻) ⃖) with v ≟ v'
... | yes refl = refl
... | no neq = refl
eval≡interp (εₓ v) ((v' , ↻) ⃗) with v ≟ v'
... | yes refl = refl
... | no neq = refl
eval≡interp (εₓ v) (tt ⃖) = refl
eval≡interp (c₁ ⨾ c₂) (a ⃗) with interp c₁ (a ⃗) | inspect (interp c₁) (a ⃗)
eval≡interp (c₁ ⨾ c₂) (a ⃗) | just (b ⃗) | [ eq₁ ] = lem
where
rs : ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩▷ ↦* [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷
rs = ↦⃗₃ ∷ appendκ↦* ((getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (a ⃗)) eq₁))) (λ ()) (λ ()) refl (☐⨾ c₂ • ☐)
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* (toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (a ⃗)))
rs' = proj₁ (deterministic*' rs (getₜᵣ⃗ (c₁ ⨾ c₂) refl) (is-stuck-toState _ _))
lem : eval (c₁ ⨾ c₂) (a ⃗) ≡ (c₁ ⨾[ b ⃗]⨾ c₂)
lem = proj₁ (loop (len↦ rs') b) rs' refl
eval≡interp (c₁ ⨾ c₂) (a ⃗) | just (a₁ ⃖) | [ eq₁ ] = lem
where
rs : ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⨾ c₂ ∣ a₁ ∣ ☐ ⟩◁
rs = ↦⃗₃ ∷ appendκ↦* ((getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (a ⃗)) eq₁))) (λ ()) (λ ()) refl (☐⨾ c₂ • ☐) ++↦ ↦⃖₃ ∷ ◾
lem : eval (c₁ ⨾ c₂) (a ⃗) ≡ just (a₁ ⃖)
lem = eval-toState₁ rs
eval≡interp (c₁ ⨾ c₂) (a ⃗) | nothing | [ eq₁ ] = lem
where
rs' : ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩▷ ↦* ⊠
rs' = ↦⃗₃ ∷ appendκ↦*⊠ ((getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (a ⃗)) eq₁))) (λ ()) (☐⨾ c₂ • ☐)
lem : eval (c₁ ⨾ c₂) (a ⃗) ≡ nothing
lem = eval-toState₁ rs'
eval≡interp (c₁ ⨾ c₂) (c ⃖) with interp c₂ (c ⃖) | inspect (interp c₂) (c ⃖)
eval≡interp (c₁ ⨾ c₂) (c ⃖) | just (c' ⃗) | [ eq' ] = lem
where
rs' : [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]◁ ↦* [ c₁ ⨾ c₂ ∣ c' ∣ ☐ ]▷
rs' = ↦⃖₁₀ ∷ appendκ↦* ((getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (c ⃖)) eq'))) (λ ()) (λ ()) refl (c₁ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
lem : eval (c₁ ⨾ c₂) (c ⃖) ≡ just (c' ⃗)
lem = eval-toState₂ rs'
eval≡interp (c₁ ⨾ c₂) (c ⃖) | just (b ⃖) | [ eq' ] = lem
where
rs : [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]◁ ↦* ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁
rs = ↦⃖₁₀ ∷ appendκ↦* ((getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (c ⃖)) eq'))) (λ ()) (λ ()) refl (c₁ ⨾☐• ☐)
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* (toState (c₁ ⨾ c₂) (eval (c₁ ⨾ c₂) (c ⃖)))
rs' = proj₁ (deterministic*' rs (getₜᵣ⃖ (c₁ ⨾ c₂) refl) (is-stuck-toState _ _))
lem : eval (c₁ ⨾ c₂) (c ⃖) ≡ (c₁ ⨾[ b ⃖]⨾ c₂)
lem = proj₂ (loop (len↦ rs') b) rs' refl
eval≡interp (c₁ ⨾ c₂) (c ⃖) | nothing | [ eq' ] = lem
where
rs' : [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]◁ ↦* ⊠
rs' = ↦⃖₁₀ ∷ appendκ↦*⊠ ((getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (c ⃖)) eq'))) (λ ()) (c₁ ⨾☐• ☐)
lem : eval (c₁ ⨾ c₂) (c ⃖) ≡ nothing
lem = eval-toState₂ rs'
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) with interp c₁ (x ⃗) | inspect (interp c₁) (x ⃗)
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) | just (x₁ ⃗) | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x₁ ∣ ☐ ]▷
rs' = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) | just (x₁ ⃖) | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x₁ ∣ ☐ ⟩◁
rs' = ↦⃗₄ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃗) | nothing | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ⟩▷ ↦* ⊠
rs' = ↦⃗₄ ∷ appendκ↦*⊠ (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (☐⊕ c₂ • ☐)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) with interp c₂ (y ⃗) | inspect (interp c₂) (y ⃗)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) | just (y₁ ⃗) | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y₁ ∣ ☐ ]▷
rs' = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₁)) (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) | just (y₁ ⃖) | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y₁ ∣ ☐ ⟩◁
rs' = ↦⃗₅ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₁)) (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃗) | nothing | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ⟩▷ ↦* ⊠
rs' = ↦⃗₅ ∷ appendκ↦*⊠ (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₁)) (λ ()) (c₁ ⊕☐• ☐)
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) with interp c₁ (x ⃖) | inspect (interp c₁) (x ⃖)
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) | just (x₁ ⃗) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₁ x₁ ∣ ☐ ]▷
rs' = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ ↦⃗₁₁ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) | just (x₁ ⃖) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₁ x₁ ∣ ☐ ⟩◁
rs' = ↦⃖₁₁ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ ↦⃖₄ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₁ x ⃖) | nothing | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₁ x ∣ ☐ ]◁ ↦* ⊠
rs' = ↦⃖₁₁ ∷ appendκ↦*⊠ (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (☐⊕ c₂ • ☐)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) with interp c₂ (y ⃖) | inspect (interp c₂) (y ⃖)
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) | just (y₁ ⃗) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* [ c₁ ⊕ c₂ ∣ inj₂ y₁ ∣ ☐ ]▷
rs' = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₁)) (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ ↦⃗₁₂ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) | just (y₁ ⃖) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* ⟨ c₁ ⊕ c₂ ∣ inj₂ y₁ ∣ ☐ ⟩◁
rs' = ↦⃖₁₂ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₁)) (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ ↦⃖₅ ∷ ◾
eval≡interp (c₁ ⊕ c₂) (inj₂ y ⃖) | nothing | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊕ c₂ ∣ inj₂ y ∣ ☐ ]◁ ↦* ⊠
rs' = ↦⃖₁₂ ∷ appendκ↦*⊠ (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₁)) (λ ()) (c₁ ⊕☐• ☐)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) with interp c₁ (x ⃗) | inspect (interp c₁) (x ⃗)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | just (x₁ ⃗) | [ eq₁ ] with interp c₂ (y ⃗) | inspect (interp c₂) (y ⃗)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | just (x₁ ⃗) | [ eq₁ ] | just (y₁ ⃗) | [ eq₂ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* [ c₁ ⊗ c₂ ∣ (x₁ , y₁) ∣ ☐ ]▷
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x₁ ]⊗☐• ☐) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | just (x₁ ⃗) | [ eq₁ ] | just (y₁ ⃖) | [ eq₂ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x , y₁) ∣ ☐ ⟩◁
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x₁ ]⊗☐• ☐) ++↦
↦⃖₈ ∷ Rev* (appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y₁ ]• ☐)) (λ ()) (λ ()) ++↦ ↦⃖₆ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | just (x₁ ⃗) | [ eq₁ ] | nothing | [ eq₂ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⊠
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐) ++↦
↦⃗₈ ∷ appendκ↦*⊠ (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (y ⃗)) eq₂)) (λ ()) ([ c₁ , x₁ ]⊗☐• ☐)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | just (x₁ ⃖) | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⟨ c₁ ⊗ c₂ ∣ (x₁ , y) ∣ ☐ ⟩◁
rs' = ↦⃗₆ ∷ appendκ↦* (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐) ++↦ ↦⃖₆ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃗) | nothing | [ eq₁ ] = eval-toState₁ rs'
where
rs' : ⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ⟩▷ ↦* ⊠
rs' = ↦⃗₆ ∷ appendκ↦*⊠ (getₜᵣ⃗ c₁ (trans (eval≡interp c₁ (x ⃗)) eq₁)) (λ ()) (☐⊗[ c₂ , y ]• ☐)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) with interp c₂ (y ⃖) | inspect (interp c₂) (y ⃖)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | just (y₁ ⃗) | [ eq₂ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x , y₁) ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x ]⊗☐• ☐) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | just (y₁ ⃖) | [ eq₂ ] with interp c₁ (x ⃖) | inspect (interp c₁) (x ⃖)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | just (y₁ ⃖) | [ eq₂ ] | just (x₁ ⃗) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* [ c₁ ⊗ c₂ ∣ (x₁ , y) ∣ ☐ ]▷
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y₁ ]• ☐) ++↦
↦⃗₈ ∷ Rev* (appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x₁ ]⊗☐• ☐)) (λ ()) (λ ()) ++↦ ↦⃗₉ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | just (y₁ ⃖) | [ eq₂ ] | just (x₁ ⃖) | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* ⟨ c₁ ⊗ c₂ ∣ (x₁ , y₁) ∣ ☐ ⟩◁
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (λ ()) refl (☐⊗[ c₂ , y₁ ]• ☐) ++↦ ↦⃖₆ ∷ ◾
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | just (y₁ ⃖) | [ eq₂ ] | nothing | [ eq₁ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* ⊠
rs' = ↦⃖₉ ∷ appendκ↦* (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) (λ ()) refl ([ c₁ , x ]⊗☐• ☐) ++↦
↦⃖₈ ∷ appendκ↦*⊠ (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (x ⃖)) eq₁)) (λ ()) (☐⊗[ c₂ , y₁ ]• ☐)
eval≡interp (c₁ ⊗ c₂) ((x , y) ⃖) | nothing | [ eq₂ ] = eval-toState₂ rs'
where
rs' : [ c₁ ⊗ c₂ ∣ (x , y) ∣ ☐ ]◁ ↦* ⊠
rs' = ↦⃖₉ ∷ appendκ↦*⊠ (getₜᵣ⃖ c₂ (trans (eval≡interp c₂ (y ⃖)) eq₂)) (λ ()) ([ c₁ , x ]⊗☐• ☐)
private
loop : ∀ {A B C x} {c₁ : A ↔ B} {c₂ : B ↔ C} (n : ℕ)
→ ∀ b → ((rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃗]⨾ c₂)
× ((rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃖]⨾ c₂)
loop {A} {B} {C} {x} {c₁} {c₂} = <′-rec (λ n → _) loop-rec
where
loop-rec : (n : ℕ) → (∀ m → m <′ n → _) → _
loop-rec n R b = loop₁ , loop₂
where
loop₁ : (rs : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃗]⨾ c₂
loop₁ rs refl with interp c₂ (b ⃗) | inspect (interp c₂) (b ⃗)
loop₁ rs refl | just (c ⃗) | [ eq ] = toState≡₁ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
where
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* [ c₁ ⨾ c₂ ∣ c ∣ ☐ ]▷
rs' = ↦⃗₇ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (b ⃗)) eq)) (λ ()) (λ ()) refl (c₁ ⨾☐• ☐) ++↦ ↦⃗₁₀ ∷ ◾
loop₁ rs refl | just (b' ⃖) | [ eq ] = proj₂ (R (len↦ rs'') le b') rs'' refl
where
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁
rs' = ↦⃗₇ ∷ appendκ↦* (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (b ⃗)) eq)) (λ ()) (λ ()) refl (c₁ ⨾☐• ☐)
rs'' : ⟨ c₂ ∣ b' ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x
rs'' = proj₁ (deterministic*' rs' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs' + len↦ rs''
req = proj₂ (deterministic*' rs' rs (is-stuck-toState _ _))
le : len↦ rs'' <′ len↦ rs
le rewrite req = s≤′s (n≤′m+n _ _)
loop₁ rs refl | nothing | [ eq ] = toState≡₃ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
where
rs' : [ c₁ ∣ b ∣ ☐⨾ c₂ • ☐ ]▷ ↦* ⊠
rs' = ↦⃗₇ ∷ appendκ↦*⊠ (getₜᵣ⃗ c₂ (trans (eval≡interp c₂ (b ⃗)) eq)) (λ ()) (c₁ ⨾☐• ☐)
loop₂ : (rs : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* toState (c₁ ⨾ c₂) x) → len↦ rs ≡ n → x ≡ c₁ ⨾[ b ⃖]⨾ c₂
loop₂ rs refl with interp c₁ (b ⃖) | inspect (interp c₁) (b ⃖)
loop₂ rs refl | just (b' ⃗) | [ eq ] = proj₁ (R (len↦ rs'') le b') rs'' refl
where
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷
rs' = ↦⃖₇ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (b ⃖)) eq)) (λ ()) (λ ()) refl (☐⨾ c₂ • ☐)
rs'' : [ c₁ ∣ b' ∣ ☐⨾ c₂ • ☐ ]▷ ↦* toState (c₁ ⨾ c₂) x
rs'' = proj₁ (deterministic*' rs' rs (is-stuck-toState _ _))
req : len↦ rs ≡ len↦ rs' + len↦ rs''
req = proj₂ (deterministic*' rs' rs (is-stuck-toState _ _))
le : len↦ rs'' <′ len↦ rs
le rewrite req = s≤′s (n≤′m+n _ _)
loop₂ rs refl | just (a ⃖) | [ eq ] = toState≡₂ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
where
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* ⟨ c₁ ⨾ c₂ ∣ a ∣ ☐ ⟩◁
rs' = ↦⃖₇ ∷ appendκ↦* (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (b ⃖)) eq)) (λ ()) (λ ()) refl (☐⨾ c₂ • ☐) ++↦ ↦⃖₃ ∷ ◾
loop₂ rs refl | nothing | [ eq ] = toState≡₃ (deterministic* rs rs' (is-stuck-toState _ _) (λ ()))
where
rs' : ⟨ c₂ ∣ b ∣ c₁ ⨾☐• ☐ ⟩◁ ↦* ⊠
rs' = ↦⃖₇ ∷ appendκ↦*⊠ (getₜᵣ⃖ c₁ (trans (eval≡interp c₁ (b ⃖)) eq)) (λ ()) (☐⨾ c₂ • ☐)
| {
"alphanum_fraction": 0.4660952531,
"avg_line_length": 57.0269058296,
"ext": "agda",
"hexsha": "6af62c5216f732152951c354875e6f4923b5b464",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "PiQ/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "PiQ/Properties.agda",
"max_line_length": 182,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "PiQ/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 20778,
"size": 38151
} |
-- Proof irrelevance is nice when you want to work with subsets.
module Subset where
data True : Prop where
tt : True
data False : Prop where
data (|) (A:Set)(P:A -> Prop) : Set where
sub : (x:A) -> P x -> A | P
data Nat : Set where
zero : Nat
suc : Nat -> Nat
mutual
IsEven : Nat -> Prop
IsEven zero = True
IsEven (suc n) = IsOdd n
IsOdd : Nat -> Prop
IsOdd zero = False
IsOdd (suc n) = IsEven n
Even : Set
Even = Nat | IsEven
Odd : Set
Odd = Nat | IsOdd
(+) : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
| {
"alphanum_fraction": 0.5809352518,
"avg_line_length": 15.4444444444,
"ext": "agda",
"hexsha": "cc26ed971332ade95bb015b4ce26fd937b3fddd8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Subset.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Subset.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/Subset.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 200,
"size": 556
} |
------------------------------------------------------------------------
-- Document renderers
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
module Renderer where
open import Algebra
open import Data.Bool
open import Data.Char using (Char)
open import Data.Empty
open import Data.Integer using (ℤ; +_; -[1+_]; _-_; _⊖_)
open import Data.List as List hiding ([_])
open import Data.List.NonEmpty using (_∷⁺_)
open import Data.List.Properties
open import Data.Nat
open import Data.Product
open import Data.String as String using (String)
open import Data.Unit
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (module Inverse)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
open import Tactic.MonoidSolver
private
module LM {A : Set} = Monoid (++-monoid A)
open import Grammar.Infinite as G hiding (_⊛_; _<⊛_; _⊛>_)
open import Pretty using (Doc; Docs; Pretty-printer)
open Pretty.Doc
open Pretty.Docs
open import Utilities
------------------------------------------------------------------------
-- Renderers
record Renderer : Set₁ where
field
-- The function that renders.
render : ∀ {A} {g : Grammar A} {x : A} → Doc g x → List Char
-- The rendered string must be parsable.
parsable : ∀ {A} {g : Grammar A} {x : A}
(d : Doc g x) → x ∈ g · render d
----------------------------------------------------------------------
-- Some derived definitions and properties
-- Pretty-printers are correct by definition, for any renderer,
-- assuming that the underlying grammar is unambiguous.
correct :
∀ {A} {g : Grammar A} (pretty : Pretty-printer g) →
∀ x → x ∈ g · render (pretty x)
correct pretty x = parsable (pretty x)
correct-if-locally-unambiguous :
∀ {A} {g : Grammar A} →
(parse : Parser g) (pretty : Pretty-printer g) →
∀ x →
Locally-unambiguous g (render (pretty x)) →
∃ λ p → parse (render (pretty x)) ≡ yes (x , p)
correct-if-locally-unambiguous parse pretty x unambiguous = c
where
c : ∃ λ p → parse (render (pretty x)) ≡ yes (x , p)
c with parse (render (pretty x))
c | no no-parse = ⊥-elim (no-parse (x , correct pretty x))
c | yes (y , y∈g) with unambiguous y∈g (correct pretty x)
c | yes (.x , x∈g) | P.refl = (x∈g , P.refl)
correct-if-unambiguous :
∀ {A} {g : Grammar A} →
Unambiguous g → (parse : Parser g) (pretty : Pretty-printer g) →
∀ x → ∃ λ p → parse (render (pretty x)) ≡ yes (x , p)
correct-if-unambiguous unambiguous parse pretty x =
correct-if-locally-unambiguous parse pretty x unambiguous
-- If there is only one grammatically correct string, then the
-- renderer returns this string.
render-unique-string : ∀ {A} {g : Grammar A} {x s} →
(∀ {s′} → x ∈ g · s′ → s′ ≡ s) →
(d : Doc g x) → render d ≡ s
render-unique-string unique d = unique (parsable d)
-- Thus, in particular, documents for the grammar "string s" are
-- always rendered in the same way.
render-string : ∀ {s s′} (d : Doc (string s) s′) → render d ≡ s
render-string = render-unique-string λ s′∈ →
P.sym $ proj₂ (Inverse.to string-sem′ ⟨$⟩ s′∈)
-- The property of ignoring (top-level) emb constructors.
Ignores-emb : Set₁
Ignores-emb =
∀ {A B x y} {g₁ : Grammar A} {g₂ : Grammar B}
{f : ∀ {s} → x ∈ g₁ · s → y ∈ g₂ · s} {d : Doc g₁ x} →
render (emb f d) ≡ render d
-- If the renderer ignores emb constructors then, for every valid
-- string, there is a document that renders as that string. (The
-- renderers below ignore emb.)
every-string-possible :
Ignores-emb →
∀ {A} {g : Grammar A} {x s} →
x ∈ g · s → ∃ λ (d : Doc g x) → render d ≡ s
every-string-possible ignores-emb {g = g} {x} {s} x∈ =
(Pretty.embed lemma₁ text , lemma₂)
where
open P.≡-Reasoning
lemma₁ : ∀ {s′} → s ∈ string s · s′ → x ∈ g · s′
lemma₁ s∈ = cast (proj₂ (Inverse.to string-sem′ ⟨$⟩ s∈)) x∈
lemma₂ = begin
render (Pretty.embed lemma₁ text) ≡⟨ ignores-emb ⟩
render text ≡⟨ render-string _ ⟩
s ∎
------------------------------------------------------------------------
-- An example renderer
-- This renderer renders every occurrence of "line" as a single space
-- character.
ugly-renderer : Renderer
ugly-renderer = record
{ render = render
; parsable = parsable
}
where
mutual
render : ∀ {A} {g : Grammar A} {x} → Doc g x → List Char
render (d₁ ◇ d₂) = render d₁ ++ render d₂
render (text {s = s}) = s
render line = String.toList " "
render (group d) = render d
render (nest _ d) = render d
render (emb _ d) = render d
render (fill ds) = render-fills ds
render-fills : ∀ {A} {g : Grammar A} {x} → Docs g x → List Char
render-fills [ d ] = render d
render-fills (d ∷ ds) = render d ++ ' ' ∷ render-fills ds
mutual
parsable : ∀ {A x} {g : Grammar A}
(d : Doc g x) → x ∈ g · render d
parsable (d₁ ◇ d₂) = >>=-sem (parsable d₁) (parsable d₂)
parsable text = string-sem
parsable line = <$-sem single-space-sem
parsable (group d) = parsable d
parsable (nest _ d) = parsable d
parsable (emb f d) = f (parsable d)
parsable (fill ds) = parsable-fills ds
parsable-fills : ∀ {A xs} {g : Grammar A} (ds : Docs g xs) →
xs ∈ g sep-by whitespace + · render-fills ds
parsable-fills [ d ] = sep-by-sem-singleton (parsable d)
parsable-fills (d ∷ ds) =
sep-by-sem-∷ (parsable d) single-space-sem (parsable-fills ds)
-- The "ugly renderer" ignores emb constructors.
ugly-renderer-ignores-emb : Renderer.Ignores-emb ugly-renderer
ugly-renderer-ignores-emb = P.refl
------------------------------------------------------------------------
-- A general document property, proved using ugly-renderer
-- For every document of type Doc g x there is a string that witnesses
-- that the value x is generated by the grammar g.
string-exists : ∀ {A} {g : Grammar A} {x} →
Doc g x → ∃ λ s → x ∈ g · s
string-exists d = (render d , parsable d)
where open Renderer ugly-renderer
------------------------------------------------------------------------
-- An example renderer, based on the one in Wadler's "A prettier
-- printer"
module Wadler's-renderer where
-- Layouts (representations of certain strings).
data Layout-element : Set where
text : List Char → Layout-element
line : ℕ → Layout-element
Layout : Set
Layout = List Layout-element
-- Conversion of layouts into strings.
show-element : Layout-element → List Char
show-element (text s) = s
show-element (line i) = '\n' ∷ replicate i ' '
show : Layout → List Char
show = concat ∘ List.map show-element
-- Documents with unions instead of groups, and no fills. An extra
-- index—the nesting level—is also included, and the line
-- combinator's type is more precise (it can't be used for single
-- spaces, only for newline-plus-indentation).
infixr 20 _◇_
data DocN : ∀ {A} → ℕ → Grammar A → A → Set₁ where
_◇_ : ∀ {i c₁ c₂ A B x y}
{g₁ : ∞Grammar c₁ A} {g₂ : A → ∞Grammar c₂ B} →
DocN i (♭? g₁) x → DocN i (♭? (g₂ x)) y →
DocN i (g₁ >>= g₂) y
text : ∀ {i} (s : List Char) → DocN i (string s) s
line : (i : ℕ) →
let s = show-element (line i) in
DocN i (string s) s
union : ∀ {i A} {g : Grammar A} {x} →
DocN i g x → DocN i g x → DocN i g x
nest : ∀ {i A} {g : Grammar A} {x}
(j : ℕ) → DocN (j + i) g x → DocN i g x
emb : ∀ {i A B} {g₁ : Grammar A} {g₂ : Grammar B} {x y} →
(∀ {s} → x ∈ g₁ · s → y ∈ g₂ · s) →
DocN i g₁ x → DocN i g₂ y
-- Some derived combinators.
infix 21 <$>_
infixl 20 _⊛_ _⊛>_
embed : ∀ {i A B} {g₁ : Grammar A} {g₂ : Grammar B} {x y} →
(∀ {s} → x ∈ g₁ · s → y ∈ g₂ · s) → DocN i g₁ x → DocN i g₂ y
embed f (emb g d) = emb (f ∘ g) d
embed f d = emb f d
nil : ∀ {i A} {x : A} → DocN i (return x) x
nil = embed lemma (text [])
where
lemma : ∀ {x s} → [] ∈ string [] · s → x ∈ return x · s
lemma return-sem = return-sem
<$>_ : ∀ {i c A B} {f : A → B} {x} {g : ∞Grammar c A} →
DocN i (♭? g) x → DocN i (f <$> g) (f x)
<$> d = embed <$>-sem d
_⊛_ : ∀ {i c₁ c₂ A B f x} {g₁ : ∞Grammar c₁ (A → B)}
{g₂ : ∞Grammar c₂ A} →
DocN i (♭? g₁) f → DocN i (♭? g₂) x → DocN i (g₁ G.⊛ g₂) (f x)
_⊛_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ ◇ <$> d₂)
where
lemma : ∀ {x s} →
x ∈ (g₁ >>= λ f → f <$> g₂) · s → x ∈ g₁ G.⊛ g₂ · s
lemma (>>=-sem f∈ (<$>-sem x∈)) = ⊛-sem f∈ x∈
_⊛>_ : ∀ {i c₁ c₂ A B x y} {g₁ : ∞Grammar c₁ A}
{g₂ : ∞Grammar c₂ B} →
DocN i (♭? g₁) x → DocN i (♭? g₂) y → DocN i (g₁ G.⊛> g₂) y
_⊛>_ {g₁ = g₁} {g₂} d₁ d₂ =
embed lemma (nil ⊛ d₁ ⊛ d₂)
where
lemma : ∀ {y s} →
y ∈ return (λ _ x → x) G.⊛ g₁ G.⊛ g₂ · s →
y ∈ g₁ G.⊛> g₂ · s
lemma (⊛-sem (⊛-sem return-sem x∈) y∈) = ⊛>-sem x∈ y∈
cons : ∀ {i A B} {g : Grammar A} {sep : Grammar B} {x xs} →
DocN i g x → DocN i (tt <$ sep) tt → DocN i (g sep-by sep) xs →
DocN i (g sep-by sep) (x ∷⁺ xs)
cons {g = g} {sep} d₁ d₂ d₃ =
embed lemma (<$> d₁ ⊛ (d₂ ⊛> d₃))
where
lemma : ∀ {ys s} →
ys ∈ _∷⁺_ <$> g G.⊛ ((tt <$ sep) G.⊛> (g sep-by sep)) · s →
ys ∈ g sep-by sep · s
lemma (⊛-sem (<$>-sem x∈) (⊛>-sem (<$-sem y∈) xs∈)) =
sep-by-sem-∷ x∈ y∈ xs∈
-- A single space character.
imprecise-space : ∀ {i} → DocN i (tt <$ whitespace +) tt
imprecise-space = embed lemma (text (String.toList " "))
where
lemma : ∀ {s} →
String.toList " " ∈ string′ " " · s →
tt ∈ tt <$ whitespace + · s
lemma s∈ =
cast (proj₂ (Inverse.to string-sem′ ⟨$⟩ s∈))
(<$-sem single-space-sem)
-- A variant of line that has the same type as Pretty.line (except
-- for the indentation index).
imprecise-line : (i : ℕ) → DocN i (tt <$ whitespace +) tt
imprecise-line i = embed lemma (line i)
where
replicate-lemma :
∀ i → replicate i ' ' ∈ whitespace ⋆ · replicate i ' '
replicate-lemma zero = ⋆-[]-sem
replicate-lemma (suc i) =
⋆-∷-sem (left-sem tok-sem) (replicate-lemma i)
lemma : ∀ {i s′} →
let s = show-element (line i) in
s ∈ string s · s′ → tt ∈ tt <$ whitespace + · s′
lemma s∈ =
cast (proj₂ (Inverse.to string-sem′ ⟨$⟩ s∈))
(<$-sem (+-sem (right-sem tok-sem) (replicate-lemma _)))
mutual
-- Replaces line constructors with single spaces, removes groups.
flatten : ∀ {i A} {g : Grammar A} {x} → Doc g x → DocN i g x
flatten (d₁ ◇ d₂) = flatten d₁ ◇ flatten d₂
flatten text = text _
flatten line = imprecise-space
flatten (group d) = flatten d
flatten (nest _ d) = flatten d
flatten (emb f d) = embed f (flatten d)
flatten (fill ds) = flatten-fills ds
flatten-fills : ∀ {i A} {g : Grammar A} {xs} →
Docs g xs → DocN i (g sep-by whitespace +) xs
flatten-fills [ d ] = embed sep-by-sem-singleton (flatten d)
flatten-fills (d ∷ ds) =
cons (flatten d) imprecise-space (flatten-fills ds)
mutual
-- Converts ("expands") groups to unions.
expand : ∀ {i A} {g : Grammar A} {x} → Doc g x → DocN i g x
expand (d₁ ◇ d₂) = expand d₁ ◇ expand d₂
expand text = text _
expand line = imprecise-line _
expand (group d) = union (flatten d) (expand d)
expand (nest j d) = nest j (expand d)
expand (emb f d) = embed f (expand d)
expand (fill ds) = expand-fills false ds
expand-fills : Bool → -- Unconditionally flatten the first document?
∀ {i A} {g : Grammar A} {xs} →
Docs g xs → DocN i (g sep-by whitespace +) xs
expand-fills fl [ d ] =
embed sep-by-sem-singleton (flatten/expand fl d)
expand-fills fl (d ∷ ds) =
union (cons (flatten d) imprecise-space (expand-fills true ds))
(cons (flatten/expand fl d) (imprecise-line _) (expand-fills false ds))
flatten/expand : Bool → -- Flatten?
∀ {i A} {g : Grammar A} {x} → Doc g x → DocN i g x
flatten/expand true d = flatten d
flatten/expand false d = expand d
-- Does the first line of the layout fit on a line with the given
-- number of characters?
fits : ℤ → Layout → Bool
fits -[1+ w ] _ = false
fits w [] = true
fits w (text s ∷ x) = fits (w - + length s) x
fits w (line i ∷ x) = true
module _ (width : ℕ) where
-- Chooses the first layout if it fits, otherwise the second. The
-- natural number is the current column number.
better : ℕ → Layout → Layout → Layout
better c x y = if fits (width ⊖ c) x then x else y
-- If, for any starting column c, κ c is the layout for some text,
-- then best i d κ c is the layout for the document d followed by
-- this text, given the current indentation i and the current column
-- number c.
best : ∀ {i A} {g : Grammar A} {x} →
DocN i g x → (ℕ → Layout) → (ℕ → Layout)
best (d₁ ◇ d₂) = best d₁ ∘ best d₂
best (text []) = id
best (text s) = λ κ c → text s ∷ κ (length s + c)
best (line i) = λ κ _ → line i ∷ κ i
best (union d₁ d₂) = λ κ c → better c (best d₁ κ c)
(best d₂ κ c)
best (nest _ d) = best d
best (emb _ d) = best d
-- Renders a document.
renderN : ∀ {A i} {g : Grammar A} {x} → DocN i g x → List Char
renderN d = show (best d (λ _ → []) 0)
-- Renders a document.
render : ∀ {A} {g : Grammar A} {x} → Doc g x → List Char
render d = renderN (expand {i = 0} d)
-- A simple lemma.
if-lemma :
∀ {A} {g : Grammar A} {x l₁ l₂} s b →
x ∈ g · s ++ show l₁ →
x ∈ g · s ++ show l₂ →
x ∈ g · s ++ show (if b then l₁ else l₂)
if-lemma _ true ∈l₁ ∈l₂ = ∈l₁
if-lemma _ false ∈l₁ ∈l₂ = ∈l₂
-- The main correctness property for best.
best-lemma :
∀ {c A B i} {g : Grammar A} {g′ : Grammar B} {x y κ}
s (d : DocN i g x) →
(∀ {s′ c′} → x ∈ g · s′ → y ∈ g′ · s ++ s′ ++ show (κ c′)) →
y ∈ g′ · s ++ show (best d κ c)
best-lemma s (text []) hyp = hyp return-sem
best-lemma s (text (_ ∷ _)) hyp = hyp string-sem
best-lemma s (line i) hyp = hyp string-sem
best-lemma {c} s (union d₁ d₂) hyp = if-lemma s
(fits (width ⊖ c) _)
(best-lemma s d₁ hyp)
(best-lemma s d₂ hyp)
best-lemma s (nest _ d) hyp = best-lemma s d hyp
best-lemma s (emb f d) hyp = best-lemma s d (hyp ∘ f)
best-lemma s (d₁ ◇ d₂) hyp =
best-lemma s d₁ λ {s′} f∈ →
cast (LM.assoc s _ _)
(best-lemma (s ++ s′) d₂ λ x∈ →
cast lemma
(hyp (>>=-sem f∈ x∈)))
where
lemma :
∀ {s′ s″ s‴} →
s ++ (s′ ++ s″) ++ s‴ ≡ (s ++ s′) ++ s″ ++ s‴
lemma = solve (++-monoid Char)
-- A corollary.
best-lemma′ :
∀ {A i} {g : Grammar A} {x}
(d : DocN i g x) → x ∈ g · renderN d
best-lemma′ d = best-lemma [] d (cast (P.sym $ proj₂ LM.identity _))
-- The renderer is correct.
parsable : ∀ {A} {g : Grammar A} {x}
(d : Doc g x) → x ∈ g · render d
parsable d = best-lemma′ (expand d)
-- The renderer.
wadler's-renderer : Renderer
wadler's-renderer = record
{ render = render
; parsable = parsable
}
-- The renderer ignores emb constructors.
ignores-emb :
∀ {w} → Renderer.Ignores-emb (wadler's-renderer w)
ignores-emb {d = d} with expand {i = 0} d
... | _ ◇ _ = P.refl
... | text _ = P.refl
... | line ._ = P.refl
... | union _ _ = P.refl
... | nest _ _ = P.refl
... | emb _ _ = P.refl
-- A (heterogeneous) notion of document equivalence.
infix 4 _≈_
_≈_ : ∀ {A₁ i₁ g₁} {x₁ : A₁}
{A₂ i₂ g₂} {x₂ : A₂} →
DocN i₁ g₁ x₁ → DocN i₂ g₂ x₂ → Set
d₁ ≈ d₂ = ∀ width → renderN width d₁ ≡ renderN width d₂
-- Some laws satisfied by the DocN combinators.
text-++ : ∀ {i₁ i₂} s₁ s₂ →
text {i = i₁} (s₁ ++ s₂) ≈
_⊛>_ {c₁ = false} {c₂ = false} (text {i = i₂} s₁) (text s₂)
text-++ [] [] _ = P.refl
text-++ [] (t₂ ∷ s₂) _ = P.refl
text-++ (t₁ ∷ s₁) [] _ = lemma
where
lemma : ∀ {s₁} → (s₁ ++ []) ++ [] ≡ s₁ ++ []
lemma = solve (++-monoid Char)
text-++ (t₁ ∷ s₁) (t₂ ∷ s₂) _ = lemma (_ ∷ s₁)
where
lemma : ∀ s₁ {s₂} → (s₁ ++ s₂) ++ [] ≡ s₁ ++ s₂ ++ []
lemma _ = solve (++-monoid Char)
nest-union : ∀ {A i j g} {x : A} {d₁ d₂ : DocN (j + i) g x} →
nest j (union d₁ d₂) ≈ union (nest j d₁) (nest j d₂)
nest-union _ = P.refl
union-◇ : ∀ {A B i x y c₁ c₂}
{g₁ : ∞Grammar c₁ A} {g₂ : A → ∞Grammar c₂ B}
{d₁ d₂ : DocN i (♭? g₁) x} {d₃ : DocN i (♭? (g₂ x)) y} →
_◇_ {g₁ = g₁} {g₂ = g₂} (union d₁ d₂) d₃ ≈
union (d₁ ◇ d₃) (_◇_ {g₁ = g₁} {g₂ = g₂} d₂ d₃)
union-◇ _ = P.refl
-- A law that is /not/ satisfied by the DocN combinators.
¬-◇-union :
¬ (∀ {A B i x y} c₁ c₂
{g₁ : ∞Grammar c₁ A} {g₂ : A → ∞Grammar c₂ B}
(d₁ : DocN i (♭? g₁) x) (d₂ d₃ : DocN i (♭? (g₂ x)) y) →
_◇_ {g₁ = g₁} {g₂ = g₂} d₁ (union d₂ d₃) ≈
union (d₁ ◇ d₂) (_◇_ {g₁ = g₁} {g₂ = g₂} d₁ d₃))
¬-◇-union hyp with hyp false false d₁ d₂ d₁ 0
where
d₁ = imprecise-line 0
d₂ = imprecise-space
-- The following four definitions are not part of the proof.
left : DocN 0 _ _
left = _◇_ {c₁ = false} {c₂ = false} d₁ (union d₂ d₁)
right : DocN 0 _ _
right = union (d₁ ◇ d₂) (_◇_ {c₁ = false} {c₂ = false} d₁ d₁)
-- Note that left and right are not rendered in the same way.
left-hand-string : renderN 0 left ≡ String.toList "\n\n"
left-hand-string = P.refl
right-hand-string : renderN 0 right ≡ String.toList "\n "
right-hand-string = P.refl
... | ()
-- Uses Wadler's-renderer.render to render a document using the
-- given line width.
render : ∀ {A} {g : Grammar A} {x} → ℕ → Doc g x → String
render w d = String.fromList (Wadler's-renderer.render w d)
| {
"alphanum_fraction": 0.5193835653,
"avg_line_length": 33.972826087,
"ext": "agda",
"hexsha": "788e47ec718605cad4afbfcd281f11241ed42063",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "Renderer.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "Renderer.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "Renderer.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6450,
"size": 18753
} |
module Optics where
open import Agda.Primitive using (_⊔_; lsuc)
open import Data.Maybe using (Maybe; just)
open import Data.Sum using (_⊎_; inj₁)
open import Function using (const; id)
open import Category.Functor.Arr
open import Category.Functor.Const
open import Category.Functor.Either
open import Category.Profunctor.Joker
open import Category.Profunctor.Star
Optic : ∀ {l p} (c : (Set l → Set l → Set l) → Set p) (s t a b : Set l) → Set (lsuc l ⊔ p)
Optic {l} c s t a b = ∀ {p : Set l → Set l → Set l} (isClass : c p) → p a b → p s t
setOptic : ∀ {l p} (S T A B : Set l) {c : (Set l → Set l → Set l) → Set p} (isClass : c (Star (Arr B))) → Optic c S T A B → S → B → T
setOptic _ _ _ _ isClass l = l isClass (const id)
putOptic : ∀ {l p} (S T A B : Set l) {c : (Set l → Set l → Set l) → Set p} (isClass : c (Joker (Arr B))) → Optic c S T A B → B → T
putOptic _ _ _ _ isClass l = l isClass id
getOptic : ∀ {l p} (S T A B : Set l) {c : (Set l → Set l → Set l) → Set p} (isClass : c (Star (Const A))) → Optic c S T A B → S → A
getOptic _ _ _ _ isClass l = l isClass id
matchingOptic : ∀ {l p} (S T A B : Set l) {c : (Set l → Set l → Set l) → Set p} (isClass : c (Star (Either A))) → Optic c S T A B → S → A ⊎ T
matchingOptic _ _ _ _ isClass l = l isClass inj₁
previewOptic : ∀ {l p} (S T A B : Set l) {c : (Set l → Set l → Set l) → Set p} (isClass : c (Star (Const (Maybe A)))) → Optic c S T A B → S → Maybe A
previewOptic _ _ _ _ isClass l = l isClass just
| {
"alphanum_fraction": 0.6053169734,
"avg_line_length": 48.9,
"ext": "agda",
"hexsha": "f72f2e388ba43a0478d85e97a1e9b39d59099658",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crisoagf/agda-optics",
"max_forks_repo_path": "src/Optics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crisoagf/agda-optics",
"max_issues_repo_path": "src/Optics.agda",
"max_line_length": 149,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crisoagf/agda-optics",
"max_stars_repo_path": "src/Optics.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 568,
"size": 1467
} |
{-# OPTIONS --safe #-}
module Cubical.Experiments.ZCohomologyExperiments where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.Groups.WedgeOfSpheres
open import Cubical.Foundations.Prelude
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetTruncation
open import Cubical.HITs.Pushout
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.Data.Int
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Foundations.Isomorphism
open import Cubical.Algebra.Group hiding (Int)
private
⋁-to : coHom 2 S²⋁S¹⋁S¹ → Int
⋁-to = Iso.fun (GroupIso.isom H²-S²⋁S¹⋁S¹)
⋁-from : Int → coHom 2 S²⋁S¹⋁S¹
⋁-from = Iso.inv (GroupIso.isom H²-S²⋁S¹⋁S¹)
g : S²⋁S¹⋁S¹ → ∥ S₊ 2 ∥ 4
g (inl x) = ∣ x ∣
g (inr x) = 0ₖ 2
g (push a i) = 0ₖ 2
G = ∣ g ∣₂
{-
This computes:
⋁-to (⋁-from 1 +ₕ ⋁-from 1) ≡ 2
⋁-to = refl
We have ⋁-from 1 ≡ G and G is much simpler
But this does not compute:
test₀ : ⋁-to (G +ₕ G) ≡ 2
test₀ = refl
With the strange addition it does:
test₁ : ⋁-to (G +'ₕ G) ≡ 2
test₁ = refl
-}
-- Similar stuff happens with Sⁿ.
private
S²-to : coHom 2 (S₊ 2) → Int
S²-to = Iso.fun (GroupIso.isom (Hⁿ-Sⁿ≅ℤ 1))
S²-from : Int → coHom 2 (S₊ 2)
S²-from = Iso.inv (GroupIso.isom (Hⁿ-Sⁿ≅ℤ 1))
one : coHom 2 (S₊ 2)
one = ∣ ∣_∣ ∣₂
{-
Does not compute
test₂ : S²-to (S²-from 1 +ₕ S²-from 1) ≡ 2
test₂ = refl
But this does
test₂ : S²-to (S²-from 1 +'ₕ S²-from 1) ≡ 2
test₂ = refl
This doesn't
test₃ : S²-to (one +ₕ one) ≡ 2
test₃ = refl
But this does
test₃ : S²-to (one +'ₕ one) ≡ 2
test₃ = refl
-}
| {
"alphanum_fraction": 0.6853741497,
"avg_line_length": 22.05,
"ext": "agda",
"hexsha": "62ab820d19fa863756eee62ce0fdf6f1295710ac",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Experiments/ZCohomologyExperiments.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Experiments/ZCohomologyExperiments.agda",
"max_line_length": 55,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Experiments/ZCohomologyExperiments.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 779,
"size": 1764
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Reflexive closures
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Construct.Closure.Reflexive module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.ReflexiveClosure where
open import Relation.Binary.Construct.Closure.Reflexive public
| {
"alphanum_fraction": 0.515625,
"avg_line_length": 29.8666666667,
"ext": "agda",
"hexsha": "6470798e28e7750b6639dc66d62aab4a6052311f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/ReflexiveClosure.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 71,
"size": 448
} |
open import Relation.Binary.Core
module BBHeap.Drop.Properties {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BBHeap _≤_
open import BBHeap.Compound _≤_
open import BBHeap.Drop _≤_ tot≤ trans≤
open import BBHeap.Equality _≤_
open import BBHeap.Equality.Properties _≤_
open import BBHeap.Push _≤_ tot≤ trans≤
open import BBHeap.Push.Properties _≤_ tot≤ trans≤
open import BBHeap.Subtyping _≤_ trans≤
open import BBHeap.Subtyping.Properties _≤_ trans≤
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.Nat
open import Data.List hiding (drop)
open import Data.Sum
open import Data.Product
open import Nat.Sum
open import List.Permutation.Base A
open import List.Permutation.Base.Concatenation A
open import List.Permutation.Base.Equivalence A
open import Order.Total _≤_ tot≤
mutual
lemma-drop⋘# : {b : Bound}{x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋘r : l ⋘ r) → # (drop⋘ b≤x l⋘r) ≡ # l + # r
lemma-drop⋘# b≤x lf⋘ = refl
lemma-drop⋘# b≤x (ll⋘ {x = y₁} {x' = y₂} {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂)
with tot≤ y₁ y₂ | lemma-drop⋘ (cl x≤y₁ l₁⋘r₁) (cl x≤y₂ l₂⋘r₂) (ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂)
... | inj₁ y₁≤y₂ | inj₁ (_ , l⋙dr)
with # (drop⋘ x≤y₂ l₂⋘r₂) | lemma-drop⋘# x≤y₂ l₂⋘r₂ | # (push⋘ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁) | lemma-push# (lexy y₁≤y₂) (left (lexy refl≤) l₁⋘r₁) | # (subtyping (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂)) | lemma-subtyping# (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂) | # l₁ + # r₁ + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋘# b≤x (ll⋘ {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) | inj₁ y₁≤y₂ | inj₂ dl⋘r
with # (drop⋘ x≤y₁ l₁⋘r₁) | lemma-drop⋘# x≤y₁ l₁⋘r₁
... | ._ | refl = refl
lemma-drop⋘# b≤x (ll⋘ {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) | inj₂ y₂≤y₁ | inj₁ (_ , l⋙dr)
with # (drop⋘ x≤y₂ l₂⋘r₂) | lemma-drop⋘# x≤y₂ l₂⋘r₂ | (# l₁ + # r₁) + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl = refl
lemma-drop⋘# b≤x (ll⋘ {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) | inj₂ y₂≤y₁ | inj₂ dl⋘r
with # (drop⋘ x≤y₁ l₁⋘r₁) | lemma-drop⋘# x≤y₁ l₁⋘r₁ | # (push⋘ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂) | lemma-push# (lexy y₂≤y₁) (left (lexy refl≤) l₂⋘r₂) | # (subtyping (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁)) | lemma-subtyping# (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁)
... | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋘# b≤x (lr⋘ {x = y₁} {x' = y₂} {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂)
with tot≤ y₁ y₂ | lemma-drop⋘ (cr x≤y₁ l₁⋙r₁) (cl x≤y₂ l₂⋘r₂) (lr⋘ x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂)
... | _ | inj₁ (() , _)
... | inj₁ y₁≤y₂ | inj₂ dl⋘r
with # (drop⋙ x≤y₁ l₁⋙r₁) | lemma-drop⋙# x≤y₁ l₁⋙r₁
... | ._ | refl = refl
lemma-drop⋘# b≤x (lr⋘ {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) | inj₂ y₂≤y₁ | inj₂ dl⋘r
with # (drop⋙ x≤y₁ l₁⋙r₁) | lemma-drop⋙# x≤y₁ l₁⋙r₁ | # (push⋘ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂) | lemma-push# (lexy y₂≤y₁) (left (lexy refl≤) l₂⋘r₂) | # (subtyping (lexy y₂≤y₁) (drop⋙ x≤y₁ l₁⋙r₁)) | lemma-subtyping# (lexy y₂≤y₁) (drop⋙ x≤y₁ l₁⋙r₁)
... | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋙# : {b : Bound}{x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋙r : l ⋙ r) → # (drop⋙ b≤x l⋙r) ≡ # l + # r
lemma-drop⋙# b≤x (⋙lf x≤y) = refl
lemma-drop⋙# b≤x (⋙rl {x = y₁} {x' = y₂} {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂)
with tot≤ y₁ y₂ | lemma-drop⋙ (cl x≤y₁ l₁⋘r₁) (cl x≤y₂ l₂⋘r₂) (⋙rl x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂)
... | inj₁ y₁≤y₂ | inj₁ (_ , dl⋘r)
with # (drop⋘ x≤y₁ l₁⋘r₁) | lemma-drop⋘# x≤y₁ l₁⋘r₁
... | ._ | refl = refl
lemma-drop⋙# b≤x (⋙rl {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) | inj₁ y₁≤y₂ | inj₂ l⋙dr
with # (drop⋘ x≤y₂ l₂⋘r₂) | lemma-drop⋘# x≤y₂ l₂⋘r₂ | # (push⋘ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁) | lemma-push# (lexy y₁≤y₂) (left (lexy refl≤) l₁⋘r₁) | # (subtyping (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂)) | lemma-subtyping# (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂) | # l₁ + # r₁ + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋙# b≤x (⋙rl x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) | inj₂ y₂≤y₁ | inj₁ (_ , dl⋘r)
with # (drop⋘ x≤y₁ l₁⋘r₁) | lemma-drop⋘# x≤y₁ l₁⋘r₁ | # (push⋘ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂) | lemma-push# (lexy y₂≤y₁) (left (lexy refl≤) l₂⋘r₂) | # (subtyping (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁)) | lemma-subtyping# (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁)
... | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋙# b≤x (⋙rl {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) | inj₂ y₂≤y₁ | inj₂ l⋙dr
with # (drop⋘ x≤y₂ l₂⋘r₂) | lemma-drop⋘# x≤y₂ l₂⋘r₂ | (# l₁ + # r₁) + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl = refl
lemma-drop⋙# b≤x (⋙rr {x = y₁} {x' = y₂} {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂)
with tot≤ y₁ y₂ | lemma-drop⋙ (cl x≤y₁ l₁⋘r₁) (cr x≤y₂ l₂⋙r₂) (⋙rr x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂)
... | _ | inj₁ (() , _)
... | inj₁ y₁≤y₂ | inj₂ l⋙dr
with # (drop⋙ x≤y₂ l₂⋙r₂) | lemma-drop⋙# x≤y₂ l₂⋙r₂ | # (push⋘ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁) | lemma-push# (lexy y₁≤y₂) (left (lexy refl≤) l₁⋘r₁) | # (subtyping (lexy y₁≤y₂) (drop⋙ x≤y₂ l₂⋙r₂)) | lemma-subtyping# (lexy y₁≤y₂) (drop⋙ x≤y₂ l₂⋙r₂) | # l₁ + # r₁ + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl | ._ | refl | ._ | refl = refl
lemma-drop⋙# b≤x (⋙rr {l = l₁} {r = r₁} {l' = l₂} {r' = r₂} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) | inj₂ y₂≤y₁ | inj₂ l⋙dr
with # (drop⋙ x≤y₂ l₂⋙r₂) | lemma-drop⋙# x≤y₂ l₂⋙r₂ | (# l₁ + # r₁) + suc (# l₂ + # r₂) | +assoc (# l₁ + # r₁) (# l₂ + # r₂)
... | ._ | refl | ._ | refl = refl
lemma-drop# : {b : Bound}{h : BBHeap b}(cₕ : Compound h) → suc (# (drop cₕ)) ≡ # h
lemma-drop# (cl b≤x l⋘r)
with # (drop (cl b≤x l⋘r)) | lemma-drop⋘# b≤x l⋘r
... | ._ | refl = refl
lemma-drop# (cr b≤x l⋙r)
with # (drop (cr b≤x l⋙r)) | lemma-drop⋙# b≤x l⋙r
... | ._ | refl = refl
lemma-drop≤′ : {b : Bound}{h : BBHeap b}(cₕ : Compound h) → suc (# (drop cₕ)) ≤′ # h
lemma-drop≤′ cₕ
with suc (# (drop cₕ)) | lemma-drop# cₕ
... | ._ | refl = ≤′-refl
mutual
lemma-drop⋘∼ : {b : Bound}{x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋘r : l ⋘ r) → flatten (drop⋘ b≤x l⋘r) ∼ (flatten l ++ flatten r)
lemma-drop⋘∼ b≤x lf⋘ = ∼[]
lemma-drop⋘∼ b≤x (ll⋘ {x = y₁} {x' = y₂} {l = l₁} {r = r₁} x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂)
with tot≤ y₁ y₂ | lemma-drop⋘ (cl x≤y₁ l₁⋘r₁) (cl x≤y₂ l₂⋘r₂) (ll⋘ x≤y₁ x≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂)
... | inj₁ y₁≤y₂ | inj₁ (_ , l⋙dr) =
let fdr∼fl₂fr₂ = lemma-drop⋘∼ x≤y₂ l₂⋘r₂ ;
fdr'∼fdr = lemma-subtyping∼ (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂) ;
fdr'∼fl₂fr₂ = trans∼ fdr'∼fdr fdr∼fl₂fr₂ ;
fpl'∼y₂fl₁fr₁ = lemma-push⋘∼ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁ ;
fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ = lemma++∼ fpl'∼y₂fl₁fr₁ fdr'∼fl₂fr₂ ;
fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr = ∼x /head fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ refl∼ ;
fpl'fdr'∼fl₁fr₁fr = trans∼ fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr
in ∼x /head /head fpl'fdr'∼fl₁fr₁fr
... | inj₁ y₁≤y₂ | inj₂ dl⋘r =
let fdl∼fl₁fr₁ = lemma-drop⋘∼ x≤y₁ l₁⋘r₁ ;
fdlfr∼fl₁fr₁fr = lemma++∼r fdl∼fl₁fr₁
in ∼x /head /head fdlfr∼fl₁fr₁fr
... | inj₂ y₂≤y₁ | inj₁ (_ , l⋙dr) =
let fdr∼fl₂fr₂ = lemma-drop⋘∼ x≤y₂ l₂⋘r₂ ;
fl = y₁ ∷ (flatten l₁ ++ flatten r₁) ;
flfdr∼flfl₂fr₂ = lemma++∼l {xs = fl} fdr∼fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = fl}
in ∼x {x = y₂} /head flfr/y₂⟶flfl₂fr₂ flfdr∼flfl₂fr₂
... | inj₂ y₂≤y₁ | inj₂ dl⋘r =
let fdl∼fl₁fr₁ = lemma-drop⋘∼ x≤y₁ l₁⋘r₁ ;
fdl'∼fdl = lemma-subtyping∼ (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁) ;
fdl'∼fl₁fr₁ = trans∼ fdl'∼fdl fdl∼fl₁fr₁ ;
fpr'∼y₁fl₂fr₂ = lemma-push⋘∼ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂ ;
fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ = lemma++∼ fdl'∼fl₁fr₁ fpr'∼y₁fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = y₁ ∷ (flatten l₁ ++ flatten r₁)} ;
fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂ = ∼x fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ /head refl∼ ;
fdl'fpr'∼flfl₂fr₂ = trans∼ fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂
in ∼x /head flfr/y₂⟶flfl₂fr₂ fdl'fpr'∼flfl₂fr₂
lemma-drop⋘∼ b≤x (lr⋘ {x = y₁} {x' = y₂} {l = l₁} {r = r₁} x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂)
with tot≤ y₁ y₂ | lemma-drop⋘ (cr x≤y₁ l₁⋙r₁) (cl x≤y₂ l₂⋘r₂) (lr⋘ x≤y₁ x≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂)
... | _ | inj₁ (() , _)
... | inj₁ y₁≤y₂ | inj₂ dl⋘r =
let fdl∼fl₁fr₁ = lemma-drop⋙∼ x≤y₁ l₁⋙r₁ ;
fdlfr∼fl₁fr₁fr = lemma++∼r fdl∼fl₁fr₁
in ∼x /head /head fdlfr∼fl₁fr₁fr
... | inj₂ y₂≤y₁ | inj₂ dl⋘r =
let fdl∼fl₁fr₁ = lemma-drop⋙∼ x≤y₁ l₁⋙r₁ ;
fdl'∼fdl = lemma-subtyping∼ (lexy y₂≤y₁) (drop⋙ x≤y₁ l₁⋙r₁) ;
fdl'∼fl₁fr₁ = trans∼ fdl'∼fdl fdl∼fl₁fr₁ ;
fpr'∼y₁fl₂fr₂ = lemma-push⋘∼ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂ ;
fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ = lemma++∼ fdl'∼fl₁fr₁ fpr'∼y₁fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = y₁ ∷ (flatten l₁ ++ flatten r₁)} ;
fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂ = ∼x fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ /head refl∼ ;
fdl'fpr'∼flfl₂fr₂ = trans∼ fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂
in ∼x /head flfr/y₂⟶flfl₂fr₂ fdl'fpr'∼flfl₂fr₂
lemma-drop⋙∼ : {b : Bound}{x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋙r : l ⋙ r) → flatten (drop⋙ b≤x l⋙r) ∼ (flatten l ++ flatten r)
lemma-drop⋙∼ b≤x (⋙lf x≤y) = ∼x /head /head ∼[]
lemma-drop⋙∼ b≤x (⋙rl {x = y₁} {x' = y₂} {l = l₁} {r = r₁} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂)
with tot≤ y₁ y₂ | lemma-drop⋙ (cl x≤y₁ l₁⋘r₁) (cl x≤y₂ l₂⋘r₂) (⋙rl x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂)
... | inj₁ y₁≤y₂ | inj₁ (_ , dl⋘r) =
let fdl∼fl₁fr₁ = lemma-drop⋘∼ x≤y₁ l₁⋘r₁ ;
fdlfr∼fl₁fr₁fr = lemma++∼r fdl∼fl₁fr₁
in ∼x /head /head fdlfr∼fl₁fr₁fr
... | inj₁ y₁≤y₂ | inj₂ l⋙dr =
let fdr∼fl₂fr₂ = lemma-drop⋘∼ (lexy refl≤) l₂⋘r₂ ;
fdr'∼fdr = lemma-subtyping∼ (lexy y₁≤y₂) (drop⋘ x≤y₂ l₂⋘r₂) ;
fdr'∼fl₂fr₂ = trans∼ fdr'∼fdr fdr∼fl₂fr₂ ;
fpl'∼y₂fl₁fr₁ = lemma-push⋘∼ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁ ;
fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ = lemma++∼ fpl'∼y₂fl₁fr₁ fdr'∼fl₂fr₂ ;
fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr = ∼x /head fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ refl∼ ;
fpl'fdr'∼fl₁fr₁fr = trans∼ fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr
in ∼x /head /head fpl'fdr'∼fl₁fr₁fr
... | inj₂ y₂≤y₁ | inj₁ (_ , dl⋘r) =
let fdl∼fl₁fr₁ = lemma-drop⋘∼ x≤y₁ l₁⋘r₁ ;
fdl'∼fdl = lemma-subtyping∼ (lexy y₂≤y₁) (drop⋘ x≤y₁ l₁⋘r₁) ;
fdl'∼fl₁fr₁ = trans∼ fdl'∼fdl fdl∼fl₁fr₁ ;
fpr'∼y₁fl₂fr₂ = lemma-push⋘∼ (lexy y₂≤y₁) (lexy refl≤) l₂⋘r₂ ;
fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ = lemma++∼ fdl'∼fl₁fr₁ fpr'∼y₁fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = y₁ ∷ (flatten l₁ ++ flatten r₁)} ;
fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂ = ∼x fl₁fr₁y₁fl₂fr₂/y₁⟶fl₁fr₁fl₂fr₂ /head refl∼ ;
fdl'fpr'∼flfl₂fr₂ = trans∼ fdl'fpr'∼fl₁fr₁y₁fl₂fr₂ fl₁fr₁y₁fl₂fr₂∼flfl₂fr₂
in ∼x /head flfr/y₂⟶flfl₂fr₂ fdl'fpr'∼flfl₂fr₂
... | inj₂ y₂≤y₁ | inj₂ l⋙dr =
let fdr∼fl₂fr₂ = lemma-drop⋘∼ x≤y₂ l₂⋘r₂ ;
fl = y₁ ∷ (flatten l₁ ++ flatten r₁) ;
flfdr∼flfl₂fr₂ = lemma++∼l {xs = fl} fdr∼fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = fl}
in ∼x {x = y₂} /head flfr/y₂⟶flfl₂fr₂ flfdr∼flfl₂fr₂
lemma-drop⋙∼ b≤x (⋙rr {x = y₁} {x' = y₂} {l = l₁} {r = r₁} x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂)
with tot≤ y₁ y₂ | lemma-drop⋙ (cl x≤y₁ l₁⋘r₁) (cr x≤y₂ l₂⋙r₂) (⋙rr x≤y₁ x≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂)
... | _ | inj₁ (() , _)
... | inj₁ y₁≤y₂ | inj₂ l⋙dr =
let fdr∼fl₂fr₂ = lemma-drop⋙∼ (lexy refl≤) l₂⋙r₂ ;
fdr'∼fdr = lemma-subtyping∼ (lexy y₁≤y₂) (drop⋙ x≤y₂ l₂⋙r₂) ;
fdr'∼fl₂fr₂ = trans∼ fdr'∼fdr fdr∼fl₂fr₂ ;
fpl'∼y₂fl₁fr₁ = lemma-push⋘∼ (lexy y₁≤y₂) (lexy refl≤) l₁⋘r₁ ;
fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ = lemma++∼ fpl'∼y₂fl₁fr₁ fdr'∼fl₂fr₂ ;
fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ = lemma++/ {xs = flatten l₁ ++ flatten r₁} ;
y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr = ∼x /head fl₁fr₁fr/y₂⟶fl₁fr₁fl₂fr₂ refl∼ ;
fpl'fdr'∼fl₁fr₁fr = trans∼ fpl'fdr'∼y₂fl₁fr₁fl₂fr₂ y₂fl₁fr₁fl₂fr₂∼fl₁fr₁fr
in ∼x /head /head fpl'fdr'∼fl₁fr₁fr
... | inj₂ y₂≤y₁ | inj₂ l⋙dr =
let fdr∼fl₂fr₂ = lemma-drop⋙∼ x≤y₂ l₂⋙r₂ ;
fl = y₁ ∷ (flatten l₁ ++ flatten r₁) ;
flfdr∼flfl₂fr₂ = lemma++∼l {xs = fl} fdr∼fl₂fr₂ ;
flfr/y₂⟶flfl₂fr₂ = lemma++/ {xs = fl}
in ∼x {x = y₂} /head flfr/y₂⟶flfl₂fr₂ flfdr∼flfl₂fr₂
| {
"alphanum_fraction": 0.4997628887,
"avg_line_length": 72.3578431373,
"ext": "agda",
"hexsha": "ba15495ec74cfe1f2226089d03cd7df58bab77ae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Drop/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Drop/Properties.agda",
"max_line_length": 325,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Drop/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 8000,
"size": 14761
} |
module Inductive.Examples.Product where
open import Inductive
open import Tuple
open import Data.Fin
open import Data.Product hiding (_×_; <_,_>)
open import Data.List
open import Data.Vec
_×_ : Set → Set → Set
A × B = Inductive (((A ∷ (B ∷ [])) , []) ∷ [])
<_,_> : {A B : Set} → A → B → A × B
< a , b > = construct zero (a ∷ (b ∷ [])) []
fst : {A B : Set} → A × B → A
fst = rec ((λ a b → a) ∷ [])
snd : {A B : Set} → A × B → B
snd = rec ((λ a b → b) ∷ [])
| {
"alphanum_fraction": 0.5313174946,
"avg_line_length": 21.0454545455,
"ext": "agda",
"hexsha": "3b0e2d6618a04bf2b38aa70b60e4fa05cd38d433",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive/Examples/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive/Examples/Product.agda",
"max_line_length": 46,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive/Examples/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 171,
"size": 463
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.NatPlusOne where
open import Cubical.Data.NatPlusOne.Base public
open import Cubical.Data.NatPlusOne.Properties public
| {
"alphanum_fraction": 0.7864583333,
"avg_line_length": 27.4285714286,
"ext": "agda",
"hexsha": "6e14f84c45f86de4716314de6427a950783469d2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/NatPlusOne.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/NatPlusOne.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/NatPlusOne.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 48,
"size": 192
} |
{-# OPTIONS -v tc.conv.fun:20 #-}
-- Andreas, 2019-11-06, issue #4175, reported and test case by nad.
-- Check quantity for function type subtyping.
postulate
F : Set → Set
G : (@0 Set → Set) → Set
-- If an erased function is expected, we cannot pass one
-- that might actually use its arguments.
ShouldFail : Set
ShouldFail = G F
-- Note the eta-expanded version already failed:
-- Fails = G λ x → F x
| {
"alphanum_fraction": 0.677184466,
"avg_line_length": 22.8888888889,
"ext": "agda",
"hexsha": "b51840ad627689a1e2a2a7c2342472424f75de36",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4175.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4175.agda",
"max_line_length": 67,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4175.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 116,
"size": 412
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import groups.Cokernel
open import cw.WedgeOfCells
open import cohomology.Theory
open import cw.CW
module cw.cohomology.reconstructed.HigherCoboundary {i} (OT : OrdinaryTheory i)
{n} (⊙skel : ⊙Skeleton {i} (S (S n))) where
open OrdinaryTheory OT
open import cw.cohomology.grid.LongExactSequence cohomology-theory
(ℕ-to-ℤ (S n)) (⊙cw-incl-last (⊙cw-init ⊙skel)) (⊙cw-incl-last ⊙skel)
open import cw.cohomology.WedgeOfCells OT
cw-co∂-last : CXₙ/Xₙ₋₁ (⊙cw-init ⊙skel) (ℕ-to-ℤ (S n)) →ᴳ CXₙ/Xₙ₋₁ ⊙skel (ℕ-to-ℤ (S (S n)))
cw-co∂-last = grid-co∂
cw-∂-before-Susp : Xₙ/Xₙ₋₁ (⊙Skeleton.skel ⊙skel) → Susp (Xₙ/Xₙ₋₁ (cw-init (⊙Skeleton.skel ⊙skel)))
cw-∂-before-Susp = grid-∂-before-Susp
⊙cw-∂-before-Susp : ⊙Xₙ/Xₙ₋₁ (⊙Skeleton.skel ⊙skel) ⊙→ ⊙Susp (⊙Xₙ/Xₙ₋₁ (cw-init (⊙Skeleton.skel ⊙skel)))
⊙cw-∂-before-Susp = ⊙grid-∂-before-Susp
cw-∂-before-Susp-glue-β = grid-∂-before-Susp-glue-β
cw-co∂-last-β = grid-co∂-β
module CokerCo∂ where
grp = Coker cw-co∂-last (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (S (S n))))
open Group grp public
CokerCo∂ = CokerCo∂.grp
| {
"alphanum_fraction": 0.6752899197,
"avg_line_length": 32.0285714286,
"ext": "agda",
"hexsha": "49e23a057b46de50d0c83fc593c645473647fcf7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/reconstructed/HigherCoboundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/reconstructed/HigherCoboundary.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/reconstructed/HigherCoboundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 529,
"size": 1121
} |
module Structure.Sets where
open import Functional
open import Lang.Instance
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Sets.Relator
open import Type
private variable ℓ ℓₑ ℓₗ : Lvl.Level
private variable S E : Type{ℓ}
module _ ⦃ equiv-S : let _ = E ; _ = S ; _ = ℓₗ in Equiv{ℓₑ}(S) ⦄ where
module _ (_∈_ : E → S → Stmt{ℓₗ}) where
SetExtensionality = SetEqualityRelation(_∈_)(_∈_) (Equiv._≡_ equiv-S)
module SetExtensionality = SetEqualityRelation{_∈ₗ_ = _∈_}{_∈ᵣ_ = _∈_}{_≡_ = Equiv._≡_ equiv-S}
set-extensionality = inst-fn SetExtensionality.membership
| {
"alphanum_fraction": 0.7295690936,
"avg_line_length": 32.0476190476,
"ext": "agda",
"hexsha": "b302c6b91de5ca00be01fa9b0391a49047c70a8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Sets.agda",
"max_line_length": 99,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 229,
"size": 673
} |
-- The SIP applied to groups
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.GroupPath where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Function using (_∘_)
open import Cubical.Foundations.GroupoidLaws hiding (assoc)
open import Cubical.Data.Sigma
open import Cubical.Displayed.Base
open import Cubical.Displayed.Auto
open import Cubical.Displayed.Record
open import Cubical.Displayed.Universe
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
private
variable
ℓ ℓ' ℓ'' : Level
open Iso
open GroupStr
open IsGroupHom
𝒮ᴰ-Group : DUARel (𝒮-Univ ℓ) GroupStr ℓ
𝒮ᴰ-Group =
𝒮ᴰ-Record (𝒮-Univ _) IsGroupEquiv
(fields:
data[ _·_ ∣ autoDUARel _ _ ∣ pres· ]
data[ 1g ∣ autoDUARel _ _ ∣ pres1 ]
data[ inv ∣ autoDUARel _ _ ∣ presinv ]
prop[ isGroup ∣ (λ _ _ → isPropIsGroup _ _ _) ])
where
open GroupStr
open IsGroupHom
GroupPath : (M N : Group ℓ) → GroupEquiv M N ≃ (M ≡ N)
GroupPath = ∫ 𝒮ᴰ-Group .UARel.ua
-- TODO: Induced structure results are temporarily inconvenient while we transition between algebra
-- representations
module _ (G : Group ℓ) {A : Type ℓ} (m : A → A → A)
(e : ⟨ G ⟩ ≃ A)
(p· : ∀ x y → e .fst (G .snd ._·_ x y) ≡ m (e .fst x) (e .fst y))
where
private
module G = GroupStr (G .snd)
FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ
FamilyΣ (B , n) =
Σ[ e ∈ B ]
Σ[ i ∈ (B → B) ]
IsGroup e n i
inducedΣ : FamilyΣ (A , m)
inducedΣ =
subst FamilyΣ
(UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·))
(G.1g , G.inv , G.isGroup)
InducedGroup : Group ℓ
InducedGroup .fst = A
InducedGroup .snd ._·_ = m
InducedGroup .snd .1g = inducedΣ .fst
InducedGroup .snd .inv = inducedΣ .snd .fst
InducedGroup .snd .isGroup = inducedΣ .snd .snd
InducedGroupEquiv : GroupEquiv G InducedGroup
fst InducedGroupEquiv = e
snd InducedGroupEquiv = makeIsGroupHom p·
InducedGroupPath : G ≡ InducedGroup
InducedGroupPath = GroupPath _ _ .fst InducedGroupEquiv
uaGroup : {G H : Group ℓ} → GroupEquiv G H → G ≡ H
uaGroup {G = G} {H = H} = equivFun (GroupPath G H)
-- Group-ua functoriality
Group≡ : (G H : Group ℓ) → (
Σ[ p ∈ ⟨ G ⟩ ≡ ⟨ H ⟩ ]
Σ[ q ∈ PathP (λ i → p i) (1g (snd G)) (1g (snd H)) ]
Σ[ r ∈ PathP (λ i → p i → p i → p i) (_·_ (snd G)) (_·_ (snd H)) ]
Σ[ s ∈ PathP (λ i → p i → p i) (inv (snd G)) (inv (snd H)) ]
PathP (λ i → IsGroup (q i) (r i) (s i)) (isGroup (snd G)) (isGroup (snd H)))
≃ (G ≡ H)
Group≡ G H = isoToEquiv theIso
where
theIso : Iso _ _
fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i)
inv theIso x = cong ⟨_⟩ x , cong (1g ∘ snd) x , cong (_·_ ∘ snd) x , cong (inv ∘ snd) x , cong (isGroup ∘ snd) x
rightInv theIso _ = refl
leftInv theIso _ = refl
caracGroup≡ : {G H : Group ℓ} (p q : G ≡ H) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q
caracGroup≡ {G = G} {H = H} p q P =
sym (transportTransport⁻ (ua (Group≡ G H)) p)
∙∙ cong (transport (ua (Group≡ G H))) helper
∙∙ transportTransport⁻ (ua (Group≡ G H)) q
where
helper : transport (sym (ua (Group≡ G H))) p ≡ transport (sym (ua (Group≡ G H))) q
helper = Σ≡Prop
(λ _ → isPropΣ
(isOfHLevelPathP' 1 (is-set (snd H)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd H)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd H)) _ _)
λ _ → isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _)
(transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q)))
uaGroupId : (G : Group ℓ) → uaGroup (idGroupEquiv {G = G}) ≡ refl
uaGroupId G = caracGroup≡ _ _ uaIdEquiv
uaCompGroupEquiv : {F G H : Group ℓ} (f : GroupEquiv F G) (g : GroupEquiv G H)
→ uaGroup (compGroupEquiv f g) ≡ uaGroup f ∙ uaGroup g
uaCompGroupEquiv f g = caracGroup≡ _ _ (
cong ⟨_⟩ (uaGroup (compGroupEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
cong ⟨_⟩ (uaGroup f) ∙ cong ⟨_⟩ (uaGroup g)
≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) ⟩
cong ⟨_⟩ (uaGroup f ∙ uaGroup g) ∎)
-- J-rule for GroupEquivs
GroupEquivJ : {G : Group ℓ} (P : (H : Group ℓ) → GroupEquiv G H → Type ℓ')
→ P G idGroupEquiv
→ ∀ {H} e → P H e
GroupEquivJ {G = G} P p {H} e =
transport (λ i → P (GroupPath G H .fst e i)
(transp (λ j → GroupEquiv G (GroupPath G H .fst e (i ∨ ~ j))) i e))
(subst (P G) (sym lem) p)
where
lem : transport (λ j → GroupEquiv G (GroupPath G H .fst e (~ j))) e
≡ idGroupEquiv
lem = Σ≡Prop (λ _ → isPropIsGroupHom _ _)
(Σ≡Prop (λ _ → isPropIsEquiv _)
(funExt λ x → (λ i → fst (fst (fst e .snd .equiv-proof
(transportRefl (fst (fst e) (transportRefl x i)) i))))
∙ retEq (fst e) x))
| {
"alphanum_fraction": 0.5995550612,
"avg_line_length": 35.7218543046,
"ext": "agda",
"hexsha": "5536de9310bbff8c0464f241243e47b6c070118b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/GroupPath.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/GroupPath.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/GroupPath.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 2010,
"size": 5394
} |
{-# OPTIONS --cubical-compatible #-}
module Common.Char where
open import Agda.Builtin.Char public
open import Common.Bool
charEq : Char -> Char -> Bool
charEq = primCharEquality
| {
"alphanum_fraction": 0.7472527473,
"avg_line_length": 18.2,
"ext": "agda",
"hexsha": "7cfe769ed1c880c35040c143f8a2eb21663525f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/Char.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/Char.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/Char.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 43,
"size": 182
} |
module Array where
open import Array.Base public
open import Array.Properties public
| {
"alphanum_fraction": 0.8181818182,
"avg_line_length": 12.5714285714,
"ext": "agda",
"hexsha": "aff6f71abb3d51359c137673d7884b8dc169376a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z",
"max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-array",
"max_forks_repo_path": "Array.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-array",
"max_issues_repo_path": "Array.agda",
"max_line_length": 35,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-array",
"max_stars_repo_path": "Array.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z",
"num_tokens": 17,
"size": 88
} |
module Data.Tuple.Category where
import Lvl
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Data.Tuple.Equivalence
import Functional as Fn
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Category
open import Structure.Category.Functor
open import Structure.Category.Functor.Functors
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₒ ℓₘ ℓₑ ℓₒ₁ ℓₘ₁ ℓₑ₁ ℓₒ₂ ℓₘ₂ ℓₑ₂ : Lvl.Level
private variable Obj Obj₁ Obj₂ Obj₁ₗ Obj₁ᵣ Obj₂ₗ Obj₂ᵣ : Type{ℓ}
private variable Morphism Morphism₁ Morphism₂ Morphism₁ₗ Morphism₂ₗ Morphism₁ᵣ Morphism₂ᵣ : Obj → Obj → Type{ℓ}
private variable ⦃ morphism-equiv morphism-equiv₁ morphism-equiv₂ morphism-equiv₁ₗ morphism-equiv₂ₗ morphism-equiv₁ᵣ morphism-equiv₂ᵣ ⦄ : ∀{x y : Obj} → Equiv{ℓₑ}(Morphism x y)
private variable F F₁ F₂ : Obj₁ → Obj₂
private variable C Cₗ Cᵣ C₁ₗ C₁ᵣ C₂ₗ C₂ᵣ C₁ C₂ C₃ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}
module _
(cat₁ : Category{Obj = Obj₁} (Morphism₁) ⦃ \{x y} → morphism-equiv₁{x}{y} ⦄)
(cat₂ : Category{Obj = Obj₂} (Morphism₂) ⦃ \{x y} → morphism-equiv₂{x}{y} ⦄)
where
open Category ⦃ … ⦄
private instance _ = cat₁
private instance _ = cat₂
productCategory : Category{Obj = Obj₁ ⨯ Obj₂} (\{(x₁ , x₂) (y₁ , y₂) → (Morphism₁ x₁ y₁) ⨯ (Morphism₂ x₂ y₂)})
Category._∘_ productCategory (f₁ , f₂) (g₁ , g₂) = ((f₁ ∘ g₁) , (f₂ ∘ g₂))
Category.id productCategory = (id , id)
_⨯_.left (BinaryOperator.congruence (Category.binaryOperator productCategory) (p₁l , p₁r) (p₂l , p₂r)) = congruence₂(_∘_) p₁l p₂l
_⨯_.right (BinaryOperator.congruence (Category.binaryOperator productCategory) (p₁l , p₁r) (p₂l , p₂r)) = congruence₂(_∘_) p₁r p₂r
_⨯_.left (Morphism.Associativity.proof (Category.associativity productCategory)) = Morphism.associativity(_∘_)
_⨯_.right (Morphism.Associativity.proof (Category.associativity productCategory)) = Morphism.associativity(_∘_)
_⨯_.left (Morphism.Identityₗ.proof (_⨯_.left (Category.identity productCategory))) = Morphism.identityₗ(_∘_)(id)
_⨯_.right (Morphism.Identityₗ.proof (_⨯_.left (Category.identity productCategory))) = Morphism.identityₗ(_∘_)(id)
_⨯_.left (Morphism.Identityᵣ.proof (_⨯_.right (Category.identity productCategory))) = Morphism.identityᵣ(_∘_)(id)
_⨯_.right (Morphism.Identityᵣ.proof (_⨯_.right (Category.identity productCategory))) = Morphism.identityᵣ(_∘_)(id)
_⨯ᶜᵃᵗ_ : CategoryObject{ℓₒ₁}{ℓₘ₁}{ℓₑ₁} → CategoryObject{ℓₒ₂}{ℓₘ₂}{ℓₑ₂} → CategoryObject
(intro C₁) ⨯ᶜᵃᵗ (intro C₂) = intro (productCategory C₁ C₂)
module Tupleᶜᵃᵗ where
open CategoryObject ⦃ … ⦄
open Functor ⦃ … ⦄ renaming (map to fmap)
private open module CategoryObjectEquiv {ℓₒ ℓₘ ℓₑ} ⦃ C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ} ⦄ {x}{y} = Equivalence (Equiv-equivalence ⦃ CategoryObject.morphism-equiv(C){x}{y} ⦄) using ()
private open module CategoryObjectCategory {ℓₒ ℓₘ ℓₑ} ⦃ C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ} ⦄ = Category(category ⦃ C ⦄)
open Structure.Category.Functor.Functors.Wrapped
map : (C₁ₗ →ᶠᵘⁿᶜᵗᵒʳ C₁ᵣ) → (C₂ₗ →ᶠᵘⁿᶜᵗᵒʳ C₂ᵣ) → ((C₁ₗ ⨯ᶜᵃᵗ C₂ₗ) →ᶠᵘⁿᶜᵗᵒʳ (C₁ᵣ ⨯ᶜᵃᵗ C₂ᵣ))
map {C₁ₗ = C₁ₗ} {C₁ᵣ = C₁ᵣ} {C₂ₗ = C₂ₗ} {C₂ᵣ = C₂ᵣ} ([∃]-intro F₁ ⦃ functor₁ ⦄) ([∃]-intro F₂ ⦃ functor₂ ⦄) = [∃]-intro _ ⦃ productMapFunctor ⦄ where
instance _ = C₁ₗ ; instance _ = C₁ᵣ ; instance _ = C₂ₗ ; instance _ = C₂ᵣ
instance _ = C₁ₗ ⨯ᶜᵃᵗ C₂ₗ ; instance _ = C₁ᵣ ⨯ᶜᵃᵗ C₂ᵣ
productMapFunctor : Functor(productCategory (category ⦃ C₁ₗ ⦄) (category ⦃ C₂ₗ ⦄))(productCategory (category ⦃ C₁ᵣ ⦄) (category ⦃ C₂ᵣ ⦄)) (Tuple.map F₁ F₂)
Functor.map productMapFunctor = Tuple.map fmap fmap
Tuple.left (Functor.op-preserving productMapFunctor) = op-preserving
Tuple.right (Functor.op-preserving productMapFunctor) = op-preserving
Tuple.left (Functor.id-preserving productMapFunctor) = id-preserving
Tuple.right (Functor.id-preserving productMapFunctor) = id-preserving
mapLeft : (C₁ₗ →ᶠᵘⁿᶜᵗᵒʳ C₁ᵣ) → ((C₁ₗ ⨯ᶜᵃᵗ C₂) →ᶠᵘⁿᶜᵗᵒʳ (C₁ᵣ ⨯ᶜᵃᵗ C₂))
mapLeft F = map F idᶠᵘⁿᶜᵗᵒʳ
mapRight : (C₂ₗ →ᶠᵘⁿᶜᵗᵒʳ C₂ᵣ) → ((C₁ ⨯ᶜᵃᵗ C₂ₗ) →ᶠᵘⁿᶜᵗᵒʳ (C₁ ⨯ᶜᵃᵗ C₂ᵣ))
mapRight F = map idᶠᵘⁿᶜᵗᵒʳ F
left : ((Cₗ ⨯ᶜᵃᵗ Cᵣ) →ᶠᵘⁿᶜᵗᵒʳ Cₗ)
∃.witness left = Tuple.left
Functor.map (∃.proof left) = Tuple.left
Functor.op-preserving (∃.proof (left {Cₗ = Cₗ} {Cᵣ = Cᵣ})) {f = (fₗ , fᵣ)} {g = (gₗ , gᵣ)} =
Tuple.left ((fₗ , fᵣ) ∘ (gₗ , gᵣ)) 🝖[ _≡_ ]-[]
Tuple.left ((fₗ ∘ gₗ) , (fᵣ ∘ gᵣ)) 🝖[ _≡_ ]-[]
fₗ ∘ gₗ 🝖[ _≡_ ]-[]
Tuple.left(fₗ , fᵣ) ∘ Tuple.left(gₗ , gᵣ) 🝖-end
where instance _ = Cₗ ; instance _ = Cᵣ ; instance _ = Cₗ ⨯ᶜᵃᵗ Cᵣ
Functor.id-preserving (∃.proof (left {Cₗ = Cₗ} {Cᵣ = Cᵣ})) {x , y} =
Tuple.left (id ⦃ Cₗ ⨯ᶜᵃᵗ Cᵣ ⦄ {x , y}) 🝖[ _≡_ ]-[]
Tuple.left (id ⦃ Cₗ ⦄ {x} , id ⦃ Cᵣ ⦄ {y}) 🝖[ _≡_ ]-[]
id ⦃ Cₗ ⦄ {x} 🝖-end
where instance _ = Cₗ ; instance _ = Cᵣ ; instance _ = Cₗ ⨯ᶜᵃᵗ Cᵣ
right : ((Cₗ ⨯ᶜᵃᵗ Cᵣ) →ᶠᵘⁿᶜᵗᵒʳ Cᵣ)
∃.witness right = Tuple.right
Functor.map (∃.proof right) = Tuple.right
Functor.op-preserving (∃.proof (right {Cₗ = Cₗ} {Cᵣ = Cᵣ})) {f = (fₗ , fᵣ)} {g = (gₗ , gᵣ)} =
Tuple.right ((fₗ , fᵣ) ∘ (gₗ , gᵣ)) 🝖[ _≡_ ]-[]
Tuple.right ((fₗ ∘ gₗ) , (fᵣ ∘ gᵣ)) 🝖[ _≡_ ]-[]
fᵣ ∘ gᵣ 🝖[ _≡_ ]-[]
Tuple.right(fₗ , fᵣ) ∘ Tuple.right(gₗ , gᵣ) 🝖-end
where instance _ = Cₗ ; instance _ = Cᵣ ; instance _ = Cₗ ⨯ᶜᵃᵗ Cᵣ
Functor.id-preserving (∃.proof (right {Cₗ = Cₗ} {Cᵣ = Cᵣ})) {x , y} =
Tuple.right (id ⦃ Cₗ ⨯ᶜᵃᵗ Cᵣ ⦄ {x , y}) 🝖[ _≡_ ]-[]
Tuple.right (id ⦃ Cₗ ⦄ {x} , id ⦃ Cᵣ ⦄ {y}) 🝖[ _≡_ ]-[]
id ⦃ Cᵣ ⦄ {y} 🝖-end
where instance _ = Cₗ ; instance _ = Cᵣ ; instance _ = Cₗ ⨯ᶜᵃᵗ Cᵣ
repeat : (C →ᶠᵘⁿᶜᵗᵒʳ (C ⨯ᶜᵃᵗ C))
∃.witness repeat = Tuple.repeat
Functor.map (∃.proof repeat) = Tuple.repeat
Functor.op-preserving (∃.proof (repeat {C = C})) {f = f} {g = g} =
Tuple.repeat(f ∘ g) 🝖[ _≡_ ]-[]
Tuple.repeat(f) ∘ Tuple.repeat(g) 🝖-end
where instance _ = C ; instance _ = C ⨯ᶜᵃᵗ C
(Functor.id-preserving (∃.proof (repeat {C = C})) {x}) =
Tuple.repeat(id{x = x}) 🝖[ _≡_ ]-[]
id{x = (x , x)} 🝖-end
where instance _ = C ; instance _ = C ⨯ᶜᵃᵗ C
constₗ : CategoryObject.Object(Cₗ) → (Cᵣ →ᶠᵘⁿᶜᵗᵒʳ (Cₗ ⨯ᶜᵃᵗ Cᵣ))
constₗ c = mapLeft (constᶠᵘⁿᶜᵗᵒʳ c) ∘ᶠᵘⁿᶜᵗᵒʳ repeat
constᵣ : CategoryObject.Object(Cᵣ) → (Cₗ →ᶠᵘⁿᶜᵗᵒʳ (Cₗ ⨯ᶜᵃᵗ Cᵣ))
constᵣ c = mapRight (constᶠᵘⁿᶜᵗᵒʳ c) ∘ᶠᵘⁿᶜᵗᵒʳ repeat
associateLeft : (C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃)) →ᶠᵘⁿᶜᵗᵒʳ ((C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃)
∃.witness associateLeft = Tuple.associateLeft
Functor.map (∃.proof associateLeft) = Tuple.associateLeft
Functor.op-preserving (∃.proof (associateLeft {C₁ = C₁}{C₂ = C₂}{C₃ = C₃})) {f = f}{g = g} =
Tuple.associateLeft(f ∘ g) 🝖[ _≡_ ]-[]
Tuple.associateLeft f ∘ Tuple.associateLeft g 🝖-end
where
instance _ = C₁ ; instance _ = C₂ ; instance _ = C₃
instance _ = C₁ ⨯ᶜᵃᵗ C₂ ; instance _ = C₂ ⨯ᶜᵃᵗ C₃
instance _ = C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃) ; instance _ = (C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃
Functor.id-preserving (∃.proof (associateLeft {C₁ = C₁}{C₂ = C₂}{C₃ = C₃})) =
Tuple.associateLeft(id) 🝖[ _≡_ ]-[]
id 🝖-end
where
instance _ = C₁ ; instance _ = C₂ ; instance _ = C₃
instance _ = C₁ ⨯ᶜᵃᵗ C₂ ; instance _ = C₂ ⨯ᶜᵃᵗ C₃
instance _ = C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃) ; instance _ = (C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃
associateRight : ((C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃) →ᶠᵘⁿᶜᵗᵒʳ (C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃))
∃.witness associateRight = Tuple.associateRight
Functor.map (∃.proof associateRight) = Tuple.associateRight
Functor.op-preserving (∃.proof (associateRight {C₁ = C₁}{C₂ = C₂}{C₃ = C₃})) {f = f}{g = g} =
Tuple.associateRight(f ∘ g) 🝖[ _≡_ ]-[]
Tuple.associateRight f ∘ Tuple.associateRight g 🝖-end
where
instance _ = C₁ ; instance _ = C₂ ; instance _ = C₃
instance _ = C₁ ⨯ᶜᵃᵗ C₂ ; instance _ = C₂ ⨯ᶜᵃᵗ C₃
instance _ = C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃) ; instance _ = (C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃
Functor.id-preserving (∃.proof (associateRight {C₁ = C₁}{C₂ = C₂}{C₃ = C₃})) =
Tuple.associateRight(id) 🝖[ _≡_ ]-[]
id 🝖-end
where
instance _ = C₁ ; instance _ = C₂ ; instance _ = C₃
instance _ = C₁ ⨯ᶜᵃᵗ C₂ ; instance _ = C₂ ⨯ᶜᵃᵗ C₃
instance _ = C₁ ⨯ᶜᵃᵗ (C₂ ⨯ᶜᵃᵗ C₃) ; instance _ = (C₁ ⨯ᶜᵃᵗ C₂) ⨯ᶜᵃᵗ C₃
| {
"alphanum_fraction": 0.6241447292,
"avg_line_length": 53.5590062112,
"ext": "agda",
"hexsha": "f170b50a146951c5cf594521eb37466216bbebda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Tuple/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Tuple/Category.agda",
"max_line_length": 180,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Tuple/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4503,
"size": 8623
} |
module Haskell.Prim.Integer where
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
open import Agda.Builtin.List
open import Agda.Builtin.String
open import Agda.Builtin.Char
open import Agda.Builtin.Unit
import Agda.Builtin.Int
open Agda.Builtin.Int public using () renaming (Int to Integer)
open Agda.Builtin.Int renaming (Int to Integer)
open import Haskell.Prim
open import Haskell.Prim.Bool
--------------------------------------------------
-- Literals
private
negNat : Nat → Integer
negNat 0 = pos 0
negNat (suc n) = negsuc n
instance
iNumberInteger : Number Integer
iNumberInteger .Number.Constraint _ = ⊤
iNumberInteger .fromNat n = pos n
iNegativeInteger : Negative Integer
iNegativeInteger .Negative.Constraint _ = ⊤
iNegativeInteger .fromNeg n = negNat n
--------------------------------------------------
-- Arithmetic
private
subNat : Nat → Nat → Integer
subNat n m = if n < m then negsuc (m - suc n) else pos (n - m)
negateInteger : Integer → Integer
negateInteger (pos 0) = pos 0
negateInteger (pos (suc n)) = negsuc n
negateInteger (negsuc n) = pos (suc n)
addInteger : Integer → Integer → Integer
addInteger (pos n) (pos m) = pos (n + m)
addInteger (pos n) (negsuc m) = subNat n (suc m)
addInteger (negsuc n) (pos m) = subNat m (suc n)
addInteger (negsuc n) (negsuc m) = negsuc (n + m + 1)
subInteger : Integer → Integer → Integer
subInteger n m = addInteger n (negateInteger m)
mulInteger : Integer → Integer → Integer
mulInteger (pos n) (pos m) = pos (n * m)
mulInteger (pos n) (negsuc m) = negNat (n * suc m)
mulInteger (negsuc n) (pos m) = negNat (suc n * m)
mulInteger (negsuc n) (negsuc m) = pos (suc n * suc m)
absInteger : Integer → Integer
absInteger (pos n) = pos n
absInteger (negsuc n) = pos (suc n)
signInteger : Integer → Integer
signInteger (pos 0) = 0
signInteger (pos (suc _)) = 1
signInteger (negsuc _) = -1
--------------------------------------------------
-- Comparisons
eqInteger : Integer → Integer → Bool
eqInteger (pos n) (pos m) = n == m
eqInteger (negsuc n) (negsuc m) = n == m
eqInteger _ _ = false
ltInteger : Integer → Integer → Bool
ltInteger (pos n) (pos m) = n < m
ltInteger (pos n) (negsuc _) = false
ltInteger (negsuc n) (pos _) = true
ltInteger (negsuc n) (negsuc m) = m < n
--------------------------------------------------
-- Show
showInteger : Integer → List Char
showInteger n = primStringToList (primShowInteger n)
--------------------------------------------------
-- Constraints
isNegativeInteger : Integer → Bool
isNegativeInteger (pos _) = false
isNegativeInteger (negsuc _) = true
IsNonNegativeInteger : Integer → Set
IsNonNegativeInteger (pos _) = ⊤
IsNonNegativeInteger n@(negsuc _) =
TypeError (primStringAppend (primShowInteger n) (" is negative"))
| {
"alphanum_fraction": 0.6223922114,
"avg_line_length": 26.8785046729,
"ext": "agda",
"hexsha": "27566ff0572e8554fe017172bef464d35691ca20",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Integer.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Integer.agda",
"max_line_length": 67,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 849,
"size": 2876
} |
{-# OPTIONS --without-K --exact-split --safe #-}
module Fragment.Extensions.Semigroup where
open import Fragment.Equational.Theory.Bundles
open import Fragment.Algebra.Signature
open import Fragment.Algebra.Homomorphism Σ-magma
open import Fragment.Algebra.Free Σ-magma hiding (_~_)
open import Fragment.Algebra.Algebra Σ-magma
using (Algebra; IsAlgebra; Interpretation; Congruence; algebra)
open import Fragment.Equational.FreeExtension Θ-semigroup
open import Fragment.Equational.Model Θ-semigroup
open import Fragment.Setoid.Morphism using (_↝_)
open import Level using (Level; _⊔_)
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin; #_)
open import Data.Vec using (Vec; []; _∷_; map)
open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
import Relation.Binary.Reasoning.Setoid as Reasoning
open import Relation.Binary using (Setoid; IsEquivalence)
open import Relation.Binary.PropositionalEquality as PE using (_≡_)
private
variable
a ℓ : Level
module _ (A : Model {a} {ℓ}) (n : ℕ) where
private
open module A = Setoid ∥ A ∥/≈
_·_ : ∥ A ∥ → ∥ A ∥ → ∥ A ∥
x · y = A ⟦ • ⟧ (x ∷ y ∷ [])
·-cong : ∀ {x y z w} → x ≈ y → z ≈ w → x · z ≈ y · w
·-cong x≈y z≈w = (A ⟦ • ⟧-cong) (x≈y ∷ z≈w ∷ [])
·-assoc : ∀ (x y z : ∥ A ∥) → (x · y) · z ≈ x · (y · z)
·-assoc x y z = ∥ A ∥ₐ-models assoc (env {A = ∥ A ∥ₐ} (x ∷ y ∷ z ∷ []))
mutual
data STree : Set a where
leaf : ∥ A ∥ → STree
cons : ∥ A ∥ → DTree → STree
data DTree : Set a where
leaf : Fin n → DTree
cons : Fin n → Tree → DTree
data Tree : Set a where
sta : STree → Tree
dyn : DTree → Tree
mutual
infix 6 _≋_ _≋⟨s⟩_ _≋⟨d⟩_
data _≋⟨s⟩_ : STree → STree → Set (a ⊔ ℓ) where
leaf : ∀ {x y} → x ≈ y → leaf x ≋⟨s⟩ leaf y
cons : ∀ {x y xs ys} → x ≈ y → xs ≋⟨d⟩ ys
→ cons x xs ≋⟨s⟩ cons y ys
data _≋⟨d⟩_ : DTree → DTree → Set (a ⊔ ℓ) where
leaf : ∀ {x y} → x ≡ y → leaf x ≋⟨d⟩ leaf y
cons : ∀ {x y xs ys} → x ≡ y → xs ≋ ys
→ cons x xs ≋⟨d⟩ cons y ys
data _≋_ : Tree → Tree → Set (a ⊔ ℓ) where
sta : ∀ {x y} → x ≋⟨s⟩ y → sta x ≋ sta y
dyn : ∀ {x y} → x ≋⟨d⟩ y → dyn x ≋ dyn y
mutual
≋⟨s⟩-refl : ∀ {x} → x ≋⟨s⟩ x
≋⟨s⟩-refl {leaf x} = leaf A.refl
≋⟨s⟩-refl {cons x xs} = cons A.refl ≋⟨d⟩-refl
≋⟨d⟩-refl : ∀ {x} → x ≋⟨d⟩ x
≋⟨d⟩-refl {leaf x} = leaf PE.refl
≋⟨d⟩-refl {cons x xs} = cons PE.refl ≋-refl
≋-refl : ∀ {x} → x ≋ x
≋-refl {sta x} = sta ≋⟨s⟩-refl
≋-refl {dyn x} = dyn ≋⟨d⟩-refl
mutual
≋⟨s⟩-sym : ∀ {x y} → x ≋⟨s⟩ y → y ≋⟨s⟩ x
≋⟨s⟩-sym (leaf p) = leaf (A.sym p)
≋⟨s⟩-sym (cons p ps) = cons (A.sym p) (≋⟨d⟩-sym ps)
≋⟨d⟩-sym : ∀ {x y} → x ≋⟨d⟩ y → y ≋⟨d⟩ x
≋⟨d⟩-sym (leaf p) = leaf (PE.sym p)
≋⟨d⟩-sym (cons p ps) = cons (PE.sym p) (≋-sym ps)
≋-sym : ∀ {x y} → x ≋ y → y ≋ x
≋-sym (sta p) = sta (≋⟨s⟩-sym p)
≋-sym (dyn p) = dyn (≋⟨d⟩-sym p)
mutual
≋⟨s⟩-trans : ∀ {x y z} → x ≋⟨s⟩ y → y ≋⟨s⟩ z → x ≋⟨s⟩ z
≋⟨s⟩-trans (leaf p) (leaf q) = leaf (A.trans p q)
≋⟨s⟩-trans (cons p ps) (cons q qs) = cons (A.trans p q) (≋⟨d⟩-trans ps qs)
≋⟨d⟩-trans : ∀ {x y z} → x ≋⟨d⟩ y → y ≋⟨d⟩ z → x ≋⟨d⟩ z
≋⟨d⟩-trans (leaf p) (leaf q) = leaf (PE.trans p q)
≋⟨d⟩-trans (cons p ps) (cons q qs) = cons (PE.trans p q) (≋-trans ps qs)
≋-trans : ∀ {x y z} → x ≋ y → y ≋ z → x ≋ z
≋-trans (sta p) (sta q) = sta (≋⟨s⟩-trans p q)
≋-trans (dyn p) (dyn q) = dyn (≋⟨d⟩-trans p q)
≋-isEquivalence : IsEquivalence _≋_
≋-isEquivalence = record { refl = ≋-refl
; sym = ≋-sym
; trans = ≋-trans
}
Tree/≋ : Setoid _ _
Tree/≋ = record { Carrier = Tree
; _≈_ = _≋_
; isEquivalence = ≋-isEquivalence
}
mutual
_++⟨d⟩_ : DTree → Tree → DTree
(leaf x) ++⟨d⟩ y = cons x y
(cons x xs) ++⟨d⟩ y = cons x (xs ++ y)
_++_ : Tree → Tree → Tree
sta (leaf x) ++ sta (leaf y) = sta (leaf (x · y))
sta (leaf x) ++ sta (cons y ys) = sta (cons (x · y) ys)
sta (leaf x) ++ dyn y = sta (cons x y)
sta (cons x xs) ++ y = sta (cons x (xs ++⟨d⟩ y))
dyn x ++ y = dyn (x ++⟨d⟩ y)
mutual
++⟨d⟩-assoc : ∀ x y z → (x ++⟨d⟩ y) ++⟨d⟩ z ≋⟨d⟩ x ++⟨d⟩ (y ++ z)
++⟨d⟩-assoc (leaf x) y z = ≋⟨d⟩-refl
++⟨d⟩-assoc (cons x xs) y z = cons PE.refl (++-assoc xs y z)
++-assoc : ∀ x y z → (x ++ y) ++ z ≋ x ++ (y ++ z)
++-assoc (sta (leaf x)) (sta (leaf y)) (sta (leaf z)) = sta (leaf (·-assoc x y z))
++-assoc (sta (leaf x)) (sta (leaf y)) (sta (cons z zs)) = sta (cons (·-assoc x y z) ≋⟨d⟩-refl)
++-assoc (sta (leaf x)) (sta (leaf y)) (dyn z) = ≋-refl
++-assoc (sta (leaf x)) (sta (cons y ys)) z = ≋-refl
++-assoc (sta (leaf x)) (dyn y) z = ≋-refl
++-assoc (sta (cons x xs)) y z = sta (cons A.refl (++⟨d⟩-assoc xs y z))
++-assoc (dyn x) y z = dyn (++⟨d⟩-assoc x y z)
mutual
++⟨d⟩-cong : ∀ {x y z w} → x ≋⟨d⟩ y → z ≋ w → x ++⟨d⟩ z ≋⟨d⟩ y ++⟨d⟩ w
++⟨d⟩-cong (leaf p) q = cons p q
++⟨d⟩-cong (cons p ps) q = cons p (++-cong ps q)
++-cong : ∀ {x y z w} → x ≋ y → z ≋ w → x ++ z ≋ y ++ w
++-cong (sta (leaf p)) (sta (leaf q)) = sta (leaf (·-cong p q))
++-cong (sta (leaf p)) (sta (cons q qs)) = sta (cons (·-cong p q) qs)
++-cong (sta (leaf p)) (dyn q) = sta (cons p q)
++-cong (sta (cons p ps)) q = sta (cons p (++⟨d⟩-cong ps q))
++-cong (dyn p) q = dyn (++⟨d⟩-cong p q)
Tree⟦_⟧ : Interpretation Tree/≋
Tree⟦ • ⟧ (x ∷ y ∷ []) = x ++ y
Tree⟦_⟧-cong : Congruence Tree/≋ Tree⟦_⟧
Tree⟦ • ⟧-cong (p ∷ q ∷ []) = ++-cong p q
Tree/≋-isAlgebra : IsAlgebra Tree/≋
Tree/≋-isAlgebra = record { ⟦_⟧ = Tree⟦_⟧
; ⟦⟧-cong = Tree⟦_⟧-cong
}
Tree/≋-algebra : Algebra
Tree/≋-algebra = record { ∥_∥/≈ = Tree/≋
; ∥_∥/≈-isAlgebra = Tree/≋-isAlgebra
}
Tree/≋-models : Models Tree/≋-algebra
Tree/≋-models assoc θ = ++-assoc (θ (# 0)) (θ (# 1)) (θ (# 2))
Tree/≋-isModel : IsModel Tree/≋
Tree/≋-isModel = record { isAlgebra = Tree/≋-isAlgebra
; models = Tree/≋-models
}
Frex : Model
Frex = record { ∥_∥/≈ = Tree/≋
; isModel = Tree/≋-isModel
}
∣inl∣ : ∥ A ∥ → ∥ Frex ∥
∣inl∣ x = sta (leaf x)
∣inl∣-cong : Congruent _≈_ _≋_ ∣inl∣
∣inl∣-cong p = sta (leaf p)
∣inl∣⃗ : ∥ A ∥/≈ ↝ ∥ Frex ∥/≈
∣inl∣⃗ = record { ∣_∣ = ∣inl∣
; ∣_∣-cong = ∣inl∣-cong
}
∣inl∣-hom : Homomorphic ∥ A ∥ₐ ∥ Frex ∥ₐ ∣inl∣
∣inl∣-hom • (x ∷ y ∷ []) = ≋-refl
inl : ∥ A ∥ₐ ⟿ ∥ Frex ∥ₐ
inl = record { ∣_∣⃗ = ∣inl∣⃗
; ∣_∣-hom = ∣inl∣-hom
}
inr : ∥ J n ∥ₐ ⟿ ∥ Frex ∥ₐ
inr = interp Frex (λ k → dyn (leaf k))
module _ {b ℓ} (X : Model {b} {ℓ}) where
private
open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_)
_⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥
x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ [])
⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w
⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ [])
⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z)
⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ []))
module _
(f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ)
(g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ)
where
∣resid∣ : ∥ Frex ∥ → ∥ X ∥
∣resid∣ (sta (leaf x)) = ∣ f ∣ x
∣resid∣ (sta (cons x xs)) = ∣ f ∣ x ⊕ ∣resid∣ (dyn xs)
∣resid∣ (dyn (leaf x)) = ∣ g ∣ (atom (dyn x))
∣resid∣ (dyn (cons x xs)) = ∣ g ∣ (atom (dyn x)) ⊕ ∣resid∣ xs
∣resid∣-cong : Congruent _≋_ _~_ ∣resid∣
∣resid∣-cong (sta (leaf p)) = ∣ f ∣-cong p
∣resid∣-cong (sta (cons p ps)) = ⊕-cong (∣ f ∣-cong p) (∣resid∣-cong (dyn ps))
∣resid∣-cong (dyn (leaf p)) = ∣ g ∣-cong (inherit (atom (dyn p)))
∣resid∣-cong (dyn (cons p ps)) =
⊕-cong (∣ g ∣-cong (inherit (atom (dyn p)))) (∣resid∣-cong ps)
open Reasoning ∥ X ∥/≈
∣resid∣-hom : Homomorphic ∥ Frex ∥ₐ ∥ X ∥ₐ ∣resid∣
∣resid∣-hom • (sta (leaf x) ∷ sta (leaf y) ∷ []) = ∣ f ∣-hom • (x ∷ y ∷ [])
∣resid∣-hom • (sta (leaf x) ∷ sta (cons y ys) ∷ []) = begin
∣ f ∣ x ⊕ (∣ f ∣ y ⊕ ∣resid∣ (dyn ys))
≈⟨ X.sym (⊕-assoc (∣ f ∣ x) (∣ f ∣ y) _) ⟩
(∣ f ∣ x ⊕ ∣ f ∣ y) ⊕ ∣resid∣ (dyn ys)
≈⟨ ⊕-cong (∣ f ∣-hom • (x ∷ y ∷ [])) X.refl ⟩
∣ f ∣ (x · y) ⊕ ∣resid∣ (dyn ys)
∎
∣resid∣-hom • (sta (leaf x) ∷ dyn y ∷ []) = X.refl
∣resid∣-hom • (sta (cons x xs) ∷ y ∷ []) = begin
(∣ f ∣ x ⊕ ∣resid∣ (dyn xs)) ⊕ ∣resid∣ y
≈⟨ ⊕-assoc (∣ f ∣ x) _ (∣resid∣ y) ⟩
∣ f ∣ x ⊕ (∣resid∣ (dyn xs) ⊕ ∣resid∣ y)
≈⟨ ⊕-cong X.refl (∣resid∣-hom • (dyn xs ∷ y ∷ [])) ⟩
∣ f ∣ x ⊕ ∣resid∣ (dyn xs ++ y)
∎
∣resid∣-hom • (dyn (leaf x) ∷ y ∷ []) = X.refl
∣resid∣-hom • (dyn (cons x xs) ∷ y ∷ []) = begin
(∣ g ∣ (atom (dyn x)) ⊕ ∣resid∣ xs) ⊕ ∣resid∣ y
≈⟨ ⊕-assoc _ (∣resid∣ xs) (∣resid∣ y) ⟩
∣ g ∣ (atom (dyn x)) ⊕ (∣resid∣ xs ⊕ ∣resid∣ y)
≈⟨ ⊕-cong X.refl (∣resid∣-hom • (xs ∷ y ∷ [])) ⟩
∣ g ∣ (atom (dyn x)) ⊕ ∣resid∣ (xs ++ y)
∎
∣resid∣⃗ : ∥ Frex ∥/≈ ↝ ∥ X ∥/≈
∣resid∣⃗ = record { ∣_∣ = ∣resid∣
; ∣_∣-cong = ∣resid∣-cong
}
_[_,_] : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ
_[_,_] = record { ∣_∣⃗ = ∣resid∣⃗
; ∣_∣-hom = ∣resid∣-hom
}
module _ {b ℓ} {X : Model {b} {ℓ}} where
private
open module X = Setoid ∥ X ∥/≈ renaming (_≈_ to _~_)
_⊕_ : ∥ X ∥ → ∥ X ∥ → ∥ X ∥
x ⊕ y = X ⟦ • ⟧ (x ∷ y ∷ [])
⊕-cong : ∀ {x y z w} → x ~ y → z ~ w → x ⊕ z ~ y ⊕ w
⊕-cong p q = (X ⟦ • ⟧-cong) (p ∷ q ∷ [])
⊕-assoc : ∀ (x y z : ∥ X ∥) → (x ⊕ y) ⊕ z ~ x ⊕ (y ⊕ z)
⊕-assoc x y z = ∥ X ∥ₐ-models assoc (env {A = ∥ X ∥ₐ} (x ∷ y ∷ z ∷ []))
module _
{f : ∥ A ∥ₐ ⟿ ∥ X ∥ₐ}
{g : ∥ J n ∥ₐ ⟿ ∥ X ∥ₐ}
where
commute₁ : X [ f , g ] ⊙ inl ≗ f
commute₁ = X.refl
open Reasoning ∥ X ∥/≈
commute₂ : X [ f , g ] ⊙ inr ≗ g
commute₂ {atom (dyn k)} =
∣ X [ f , g ] ∣-cong (≋-refl {x = dyn (leaf k)})
commute₂ {t@(term • (x ∷ y ∷ []))} = begin
∣ X [ f , g ] ∣ (∣ inr ∣ t)
≈⟨ ∣ X [ f , g ] ∣-cong (∣ inr ∣-hom • (x ∷ y ∷ [])) ⟩
∣ X [ f , g ] ∣ (∣ inr ∣ x ++ ∣ inr ∣ y)
≈⟨ X.sym (∣ X [ f , g ] ∣-hom • (∣ inr ∣ x ∷ ∣ inr ∣ y ∷ [])) ⟩
∣ X [ f , g ] ∣ (∣ inr ∣ x) ⊕ ∣ X [ f , g ] ∣ (∣ inr ∣ y)
≈⟨ ⊕-cong commute₂ commute₂ ⟩
∣ g ∣ x ⊕ ∣ g ∣ y
≈⟨ ∣ g ∣-hom • (x ∷ y ∷ []) ⟩
∣ g ∣ t
∎
module _ {h : ∥ Frex ∥ₐ ⟿ ∥ X ∥ₐ}
(c₁ : h ⊙ inl ≗ f)
(c₂ : h ⊙ inr ≗ g)
where
universal : X [ f , g ] ≗ h
universal {sta (leaf x)} = X.sym c₁
universal {dyn (leaf x)} = X.sym c₂
universal {sta (cons x xs)} = begin
∣ f ∣ x ⊕ ∣ X [ f , g ] ∣ (dyn xs)
≈⟨ ⊕-cong (X.sym c₁) universal ⟩
∣ h ∣ (sta (leaf x)) ⊕ ∣ h ∣ (dyn xs)
≈⟨ ∣ h ∣-hom • (sta (leaf x) ∷ dyn xs ∷ []) ⟩
∣ h ∣ (sta (leaf x) ++ dyn xs)
∎
universal {dyn (cons x xs)} = begin
∣ g ∣ (atom (dyn x)) ⊕ ∣ X [ f , g ] ∣ xs
≈⟨ ⊕-cong (X.sym c₂) universal ⟩
∣ h ∣ (dyn (leaf x)) ⊕ ∣ h ∣ xs
≈⟨ ∣ h ∣-hom • (dyn (leaf x) ∷ xs ∷ []) ⟩
∣ h ∣ (dyn (leaf x) ++ xs)
∎
SemigroupFrex : FreeExtension
SemigroupFrex = record { _[_] = Frex
; _[_]-isFrex = isFrex
}
where isFrex : IsFreeExtension Frex
isFrex A n =
record { inl = inl A n
; inr = inr A n
; _[_,_] = _[_,_] A n
; commute₁ = λ {_ _ X f g} → commute₁ A n {X = X} {f} {g}
; commute₂ = λ {_ _ X f g} → commute₂ A n {X = X} {f} {g}
; universal = λ {_ _ X f g h} → universal A n {X = X} {f} {g} {h}
}
| {
"alphanum_fraction": 0.4039273979,
"avg_line_length": 34.2680965147,
"ext": "agda",
"hexsha": "f720073db43aca89049faf4e21c7afbb749ada81",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z",
"max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "yallop/agda-fragment",
"max_forks_repo_path": "src/Fragment/Extensions/Semigroup.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "yallop/agda-fragment",
"max_issues_repo_path": "src/Fragment/Extensions/Semigroup.agda",
"max_line_length": 107,
"max_stars_count": 18,
"max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yallop/agda-fragment",
"max_stars_repo_path": "src/Fragment/Extensions/Semigroup.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z",
"num_tokens": 5829,
"size": 12782
} |
module _ where
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
module Vars (A : Set) where
variable
x : A
-- Was
-- Panic: Unbound name: Issue3121._.x [0,10,12]@8066984681118411118
-- when checking that the expression
-- {A : Set} (let open Vars A) → ;Issue3121.x ≡ ;Issue3121.x has type _2
-- Should be
-- scope error on x
r : {A : Set} (let open Vars A) → x ≡ x
r = refl
| {
"alphanum_fraction": 0.657635468,
"avg_line_length": 21.3684210526,
"ext": "agda",
"hexsha": "d48bbd4b5725e67342b1506eb981c763dd763356",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3292a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3292a.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3292a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 149,
"size": 406
} |
------------------------------------------------------------------------
-- Virtual machine instructions, state etc.
------------------------------------------------------------------------
open import Prelude
module Lambda.Virtual-machine.Instructions (Name : Type) where
open import Equality.Propositional
open import Lambda.Syntax Name
------------------------------------------------------------------------
-- Instruction set
mutual
-- Instructions.
data Instr (n : ℕ) : Type where
var : Fin n → Instr n
clo : Code (suc n) → Instr n
app ret : Instr n
cal tcl : Name → Instr n -- Calls and tail calls.
con : Bool → Instr n
bra : Code n → Code n → Instr n
-- Code.
Code : ℕ → Type
Code n = List (Instr n)
-- Environments and values.
open Closure Code
------------------------------------------------------------------------
-- Stacks and states
-- Stacks.
data Stack-element : Type where
val : Value → Stack-element
ret : ∀ {n} → Code n → Env n → Stack-element
Stack : Type
Stack = List Stack-element
-- States.
data State : Type where
⟨_,_,_⟩ : ∀ {n} → Code n → Stack → Env n → State
------------------------------------------------------------------------
-- Results
-- The result of running the VM one step.
data Result : Type where
continue : State → Result
done : Value → Result
crash : Result
| {
"alphanum_fraction": 0.4673366834,
"avg_line_length": 22.1111111111,
"ext": "agda",
"hexsha": "ebda6171d7b049ffe395583e809245b70f878f55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/definitional-interpreters",
"max_forks_repo_path": "src/Lambda/Virtual-machine/Instructions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/definitional-interpreters",
"max_issues_repo_path": "src/Lambda/Virtual-machine/Instructions.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/definitional-interpreters",
"max_stars_repo_path": "src/Lambda/Virtual-machine/Instructions.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 300,
"size": 1393
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Equivalence.Properties where
open import Level
open import Categories.Category
open import Categories.Adjoint.Equivalence
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism as ≃ using (_≃_; NaturalIsomorphism)
import Categories.Morphism.Reasoning as MR
import Categories.Category.Construction.Cones as Co
import Categories.Diagram.Limit as Lim
private
variable
o ℓ e : Level
C D E : Category o ℓ e
-- diagrams are preserved by adjoint equivalence
--
-- if categories C and D are adjoint equivalent, then a limit from one determines one from another
module _ (⊣equiv : ⊣Equivalence C D) (F : Functor C E) where
private
module LF where
open Co F public
open Lim F public
module C = Category C
module D = Category D
module E = Category E
module F = Functor F
module ⊣equiv = ⊣Equivalence ⊣equiv
open ⊣equiv
open E
open MR E
open HomReasoning
open LF
FR = F ∘F R
module LFR where
open Co FR public
open Lim FR public
module _ (Lm : Limit) where
private
module Lm = Lim.Limit Lm
open Lm
⊤cone : LFR.Cone
⊤cone = record
{ N = Lm.apex
; apex = record
{ ψ = λ d → proj (R.₀ d)
; commute = λ f → limit-commute (R.₁ f)
}
}
module _ {K : LFR.Cone} where
private
module K = LFR.Cone K
K′ : Cone
K′ = record
{ N = K.N
; apex = record
{ ψ = λ c → F.₁ (unit.⇐.η c) ∘ K.ψ (L.₀ c)
; commute = λ {X} {Y} f → begin
F.₁ f ∘ F.₁ (unit.⇐.η X) ∘ K.ψ (L.₀ X) ≈˘⟨ pushˡ ([ F ]-resp-square (unit.⇐.commute f)) ⟩
(F.₁ (unit.⇐.η Y) ∘ F.₁ (Functor.F₁ (R ∘F L) f)) ∘ K.ψ (L.₀ X) ≈⟨ pullʳ (K.commute (L.₁ f)) ⟩
F.₁ (unit.⇐.η Y) ∘ K.ψ (L.₀ Y) ∎
}
}
!cone : LFR.Cones [ K , ⊤cone ]
!cone = record
{ arr = rep K′
; commute = λ {d} → begin
proj (R.₀ d) ∘ rep K′ ≈⟨ commute ⟩
F.₁ (unit.⇐.η (R.₀ d)) ∘ K.ψ (L.₀ (R.₀ d)) ≈˘⟨ F.F-resp-≈ (MR.flip-fromʳ C unit.FX≅GX zag) ⟩∘⟨refl ⟩
(F.₁ (R.₁ (counit.⇒.η d)) ∘ K.ψ (L.₀ (R.₀ d))) ≈⟨ K.commute (counit.⇒.η d) ⟩
K.ψ d ∎
}
module _ {K : LFR.Cone} (f : LFR.Cones [ K , ⊤cone ]) where
private
module K = LFR.Cone K
module f = LFR.Cone⇒ f
!cone-unique : LFR.Cones [ !cone ≈ f ]
!cone-unique = begin
rep (K′ {K}) ≈⟨ terminal.!-unique {K′ {K}} (record { arr = f.arr ; commute = eq }) ⟩
f.arr ∎
where eq : ∀ {c} → proj c ∘ f.arr ≈ F.₁ (unit.⇐.η c) ∘ K.ψ (L.₀ c)
eq {c} = begin
proj c ∘ f.arr ≈˘⟨ pullˡ (limit-commute (unit.⇐.η c)) ⟩
F.₁ (unit.⇐.η c) ∘ proj (R.₀ (L.₀ c)) ∘ f.arr ≈⟨ refl⟩∘⟨ f.commute ⟩
F.₁ (unit.⇐.η c) ∘ K.ψ (L.₀ c) ∎
⊣equiv-preserves-diagram : Lim.Limit FR
⊣equiv-preserves-diagram = record
{ terminal = record
{ ⊤ = ⊤cone
; ! = !cone
; !-unique = !cone-unique
}
}
| {
"alphanum_fraction": 0.4833285836,
"avg_line_length": 31.6126126126,
"ext": "agda",
"hexsha": "bf22e9cc9e2c9fb0d48cecedc6854c7786fd38ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Equivalence/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Equivalence/Properties.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Equivalence/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1223,
"size": 3509
} |
{-
Copyright (c) 2017 Diego Pedraza.
This is Free/Libre Open Source Software, released under the MIT License.
For the full copyright and license information, please view the LICENSE
file that was distributed with this source code.
-}
module R1 where
open import Data.List using (List; _∷_; _++_; [_]; [])
open import Data.Nat
open import Data.Bool
record Pair (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
{- ----------------------------------------------------------------
Ejercicio 1. Definir, por recursión, la función
longitud :: 'a list ⇒ nat
tal que (longitud xs) es la longitud de la listas xs. Por ejemplo,
longitud [a,b,c] = 3
----------------------------------------------------------------- -}
longitud : ∀ {A : Set} → List A → ℕ
longitud [] = 0
longitud (x ∷ xs) = 1 + longitud xs
{- ---------------------------------------------------------------
Ejercicio 2. Definir la función
fun intercambia :: 'a × 'b ⇒ 'b × 'a
tal que (intercambia p) es el par obtenido intercambiando las
componentes del par p. Por ejemplo,
intercambia (u,v) = (v,u)
---------------------------------------------------------------- -}
intercambia : ∀ {A} {B : Set} → Pair A B → Pair B A
intercambia (a , b) = (b , a)
{- ---------------------------------------------------------------
Ejercicio 3. Definir, por recursión, la función
inversa :: 'a list ⇒ 'a list
tal que (inversa xs) es la lista obtenida invirtiendo el orden de los
elementos de xs. Por ejemplo,
inversa [a,d,c] = [c,d,a]
---------------------------------------------------------------- -}
inversa : ∀ {A : Set} → List A → List A
inversa (x ∷ xs) = inversa (xs) ++ [ x ]
inversa [] = []
{- ---------------------------------------------------------------
Ejercicio 4. Definir la función
repite :: nat ⇒ 'a ⇒ 'a list
tal que (repite n x) es la lista formada por n copias del elemento
x. Por ejemplo,
repite 3 a = [a,a,a]
---------------------------------------------------------------- -}
repite : ∀ {A : Set} → ℕ → A → List A
repite 0 x = []
repite (suc n) x = x ∷ repite n x
{- ---------------------------------------------------------------
Ejercicio 5. Definir la función
conc :: 'a list ⇒ 'a list ⇒ 'a list
tal que (conc xs ys) es la concatención de las listas xs e ys. Por
ejemplo,
conc [a,d] [b,d,a,c] = [a,d,b,d,a,c]
---------------------------------------------------------------- -}
conc : ∀ {A : Set} → List A → List A → List A
conc [] ys = ys
conc (x ∷ xs) ys = x ∷ conc xs ys
{- ---------------------------------------------------------------
Ejercicio 6. Definir la función
coge :: nat ⇒ 'a list ⇒ 'a list
tal que (coge n xs) es la lista de los n primeros elementos de xs. Por
ejemplo,
coge 2 [a,c,d,b,e] = [a,c]
---------------------------------------------------------------- -}
coge : ∀ {A : Set} -> ℕ → List A → List A
coge 0 xs = []
coge n [] = []
coge (suc n) (x ∷ xs) = x ∷ coge n xs
{- ---------------------------------------------------------------
Ejercicio 7. Definir la función
elimina :: nat ⇒ 'a list ⇒ 'a list
tal que (elimina n xs) es la lista obtenida eliminando los n primeros
elementos de xs. Por ejemplo,
elimina 2 [a,c,d,b,e] = [d,b,e]
---------------------------------------------------------------- -}
elimina : ∀ {A : Set} → ℕ → List A → List A
elimina 0 xs = xs
elimina n [] = []
elimina (suc n) (x ∷ xs) = elimina n xs
{- ---------------------------------------------------------------
Ejercicio 8. Definir la función
esVacia :: 'a list ⇒ bool
tal que (esVacia xs) se verifica si xs es la lista vacía. Por ejemplo,
esVacia [a] = False
---------------------------------------------------------------- -}
esVacia : ∀ {A : Set} → List A → Bool
esVacia [] = true
esVacia (x ∷ xs) = false
{- ---------------------------------------------------------------
Ejercicio 9. Definir la función
inversaAc :: 'a list ⇒ 'a list
tal que (inversaAc xs) es a inversa de xs calculada usando
acumuladores. Por ejemplo,
inversaAc [a,c,b,e] = [e,b,c,a]
---------------------------------------------------------------- -}
inversaAcAux : ∀ {A : Set} → List A → List A → List A
inversaAcAux [] ys = ys
inversaAcAux (x ∷ xs) ys = inversaAcAux xs (x ∷ ys)
inversaAc : ∀ {A : Set} → List A → List A
inversaAc xs = inversaAcAux xs []
{- ---------------------------------------------------------------
Ejercicio 10. Definir la función
sum :: nat list ⇒ nat
tal que (sum xs) es la suma de los elementos de xs. Por ejemplo,
sum [3,2,5] = 10
---------------------------------------------------------------- -}
sum : List ℕ → ℕ
sum [] = 0
sum (x ∷ xs) = x + sum xs
{- ---------------------------------------------------------------
Ejercicio 11. Definir la función
map :: ('a ⇒ 'b) ⇒ 'a list ⇒ 'b list
tal que (map f xs) es la lista obtenida aplicando la función f a los
elementos de xs. Por ejemplo,
map (λx. 2*x) [3,2,5] = [6,4,10]
---------------------------------------------------------------- -}
map : ∀ {A B : Set} → (A → B) → List A → List B
map f (x ∷ xs) = f x ∷ (map f xs)
map f [] = []
| {
"alphanum_fraction": 0.4315567485,
"avg_line_length": 34.091503268,
"ext": "agda",
"hexsha": "f2029b77112623e169abfbe5eed73df7388c333f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "Zegeri/TFG-TeoriaCategorias",
"max_forks_repo_path": "Ejercicios/Agda/R1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "Zegeri/TFG-TeoriaCategorias",
"max_issues_repo_path": "Ejercicios/Agda/R1.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cc2e64e1a42ac225c3d1a6a998721f916065418b",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "Zegeri/TFG-TeoriaCategorias",
"max_stars_repo_path": "Ejercicios/Agda/R1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1435,
"size": 5216
} |
{-# OPTIONS --copatterns #-}
module Copatterns where
record Stream (A : Set) : Set where
field
head : A
tail : Stream A
open Stream
repeat : {A : Set}(a : A) -> Stream A
head (repeat a) = a
tail (repeat a) = repeat a
map : {A B : Set}(f : A -> B)(as : Stream A) -> Stream B
head (map f as) = f (head as)
tail (map f as) = map f (tail as)
iterate : {A : Set}(f : A -> A)(a : A) -> Stream A
head (iterate f a) = a
tail (iterate f a) = iterate f (f a)
scanl : {A B : Set} -> (B -> A -> B) -> B -> Stream A -> Stream B
head (scanl f b as) = b
tail (scanl f b as) = scanl f (f b (head as)) (tail as)
data Nat : Set where
zero : Nat
suc : Nat -> Nat
nats : Stream Nat
nats = iterate suc zero
alternate : Stream Nat
( head alternate ) = zero
(head (tail alternate)) = suc zero
(tail (tail alternate)) = alternate
record _×_ (A B : Set) : Set where
field
fst : A
snd : B
open _×_
build : {A S : Set} → (S → A × S) -> S -> Stream A
head (build step s) = fst (step s)
tail (build step s) = build step (snd (step s))
-- build step s = mapSnd (build step) (step s)
build1 : {A S : Set} → (S → A × S) -> S -> Stream A
build1 step s = record
{ head = fst (step s)
; tail = build1 step (snd (step s))
}
build2 : {A S : Set} → (S → A × S) -> S -> Stream A
build2 step s = record
{ head = fst p
; tail = build2 step (snd p)
}
where p = step s
mapSnd : {A B C : Set}(f : B → C) → A × B → A × C
fst (mapSnd f p) = fst p
snd (mapSnd f p) = f (snd p)
record Str (A : Set) : Set where
field
out : A × Str A
open Str
build' : {A S : Set} → (S → A × S) -> S -> Stream A
out (build' step s) = mapSnd (build' step) (step s)
| {
"alphanum_fraction": 0.5551558753,
"avg_line_length": 22.24,
"ext": "agda",
"hexsha": "15cc6374981b7d37beb8cc08cc19fbf620c4a9fc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/features/Copatterns.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/features/Copatterns.agda",
"max_line_length": 65,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/features/Copatterns.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 615,
"size": 1668
} |
module Numeral.Integer.Sign where
open import Numeral.Natural
using (ℕ)
open import Numeral.Integer
open import Numeral.Sign as Sign
using (+|− ; +|0|−)
sign : ℤ → (+|−)
sign(+ₙ _) = Sign.➕
sign(−𝐒ₙ _) = Sign.➖
sign0 : ℤ → (+|0|−)
sign0(𝟎) = Sign.𝟎
sign0(+𝐒ₙ _) = Sign.➕
sign0(−𝐒ₙ _) = Sign.➖
signum0 : ℤ → ℤ
signum0(𝟎) = 𝟎
signum0(+𝐒ₙ _) = +𝐒ₙ(ℕ.𝟎)
signum0(−𝐒ₙ _) = −𝐒ₙ(ℕ.𝟎)
| {
"alphanum_fraction": 0.5989583333,
"avg_line_length": 17.4545454545,
"ext": "agda",
"hexsha": "1514952bdb331dda413d0bab1a2fd261fb847939",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Integer/Sign.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Integer/Sign.agda",
"max_line_length": 33,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Integer/Sign.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 213,
"size": 384
} |
------------------------------------------------------------------------
-- And
------------------------------------------------------------------------
module TotalParserCombinators.And where
open import Category.Monad
open import Data.List.Relation.Binary.BagAndSetEquality
open import Data.List.Membership.Propositional.Properties
import Data.List.Categorical
open import Data.Product
open import Data.Product.Function.NonDependent.Propositional
open import Function.Base
open import Function.Inverse using (_↔_)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Level
open RawMonadPlus {f = zero} Data.List.Categorical.monadPlus
using (_⊗_)
open Related using (SK-sym)
open import TotalParserCombinators.Congruence using (_∼[_]P_; _≅P_)
open import TotalParserCombinators.Derivative using (D)
open import TotalParserCombinators.Parser
import TotalParserCombinators.Pointwise as Pointwise
open import TotalParserCombinators.Semantics using (_∈_·_)
-- _&_ is defined as a pointwise lifting of _⊗_.
private
module And {R₁ R₂ : Set} = Pointwise R₁ R₂ id _⊗_ ⊗-cong
-- p₁ & p₂ returns a result if both p₁ and p₂ do.
infixr 6 _&_ _&-cong_
_&_ : ∀ {Tok R₁ R₂ xs₁ xs₂} →
Parser Tok R₁ xs₁ → Parser Tok R₂ xs₂ →
Parser Tok (R₁ × R₂) (xs₁ ⊗ xs₂)
_&_ = And.lift
-- D distributes over _&_.
D-& : ∀ {Tok R₁ R₂ xs₁ xs₂ t}
(p₁ : Parser Tok R₁ xs₁) (p₂ : Parser Tok R₂ xs₂) →
D t (p₁ & p₂) ≅P D t p₁ & D t p₂
D-& = And.D-lift
-- _&_ preserves equality.
_&-cong_ : ∀ {k Tok R xs₁ xs₁′ xs₂ xs₂′}
{p₁ : Parser Tok R xs₁} {p₁′ : Parser Tok R xs₁′}
{p₂ : Parser Tok R xs₂} {p₂′ : Parser Tok R xs₂′} →
p₁ ∼[ k ]P p₁′ → p₂ ∼[ k ]P p₂′ → p₁ & p₂ ∼[ k ]P p₁′ & p₂′
_&-cong_ = And.lift-cong
-- _&_ is correct.
correct : ∀ {Tok R₁ R₂ xs₁ xs₂ x₁ x₂ s}
(p₁ : Parser Tok R₁ xs₁) (p₂ : Parser Tok R₂ xs₂) →
(x₁ , x₂) ∈ p₁ & p₂ · s ↔ (x₁ ∈ p₁ · s × x₂ ∈ p₂ · s)
correct {x₁ = x₁} {x₂} =
And.lift-property
(λ F G H → H (x₁ , x₂) ↔ (F x₁ × G x₂))
(λ F↔F′ G↔G′ H↔H′ →
Related-cong (H↔H′ (x₁ , x₂)) (F↔F′ x₁ ×-↔ G↔G′ x₂))
(SK-sym ⊗-∈↔)
where open Related.EquationalReasoning
| {
"alphanum_fraction": 0.6083220262,
"avg_line_length": 31.5857142857,
"ext": "agda",
"hexsha": "f01dd871f08a0cff860df718d7e44bc74679b39c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/And.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/And.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/And.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 774,
"size": 2211
} |
test : Set
test = {! M !}
| {
"alphanum_fraction": 0.4615384615,
"avg_line_length": 8.6666666667,
"ext": "agda",
"hexsha": "7e3c2caa7c8b22bdebae0e580c1139dc008e7c2b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1925.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1925.agda",
"max_line_length": 14,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1925.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 10,
"size": 26
} |
module Eq.Theory where
open import Prelude
open import T
open import DynTheory
open import SubstTheory
open import Contexts
open import Eq.Defs
open import Eq.KleeneTheory
open import Eq.ObsTheory
open import Eq.LogicalTheory
-- Theory about the interactions between the relationships between the equivs
-- Now that we have shown that logical equivalence is a consistent congruence,
-- it follows that it is contained in observational equivalence.
obs-contains-logical : ∀{Γ} {A} → OLogicalEq Γ A ⊆ ObservEq Γ A
obs-contains-logical = obs-is-coarsest OLogicalEq log-is-con-congruence
obs-contains-clogical : ∀{A} → (LogicalEq A) ⊆ (ObservEq [] A)
obs-contains-clogical leq = obs-contains-logical (closed-logical-imp-open leq)
-- Show that observational equivalence implies logical for closed terms.
obs-implies-closed-logical : ∀{A} {e e' : TCExp A} →
[] ⊢ e ≅ e' :: A →
e ~ e' :: A
obs-implies-closed-logical {nat} oeq = ObservEq.observe oeq ∘
obs-implies-closed-logical {A ⇒ B} {e} {e'} oeq = body
where body : (e₁ e₁' : TExp [] A) → LogicalEq A e₁ e₁' → LogicalEq B (e $ e₁) (e' $ e₁')
body e₁ e₁' leq with obs-contains-clogical leq
... | oeq' with obs-trans (obs-congruence oeq' (e e$ ∘)) (obs-congruence oeq (∘ $e e₁'))
... | oeq'' = obs-implies-closed-logical oeq''
obs-contains-logical-subst : ∀{Γ} → SubstRel LogicalEq Γ ⊆ SubstRel (ObservEq []) Γ
obs-contains-logical-subst η x = obs-contains-clogical (η x)
-- Since observational implies logical for closed terms and
-- respects substitution of observational equivalent terms,
-- logical equivalence contains observational.
logical-contains-obs : ∀{Γ} {A} → ObservEq Γ A ⊆ OLogicalEq Γ A
logical-contains-obs {Γ} {A} {e} {e'} oeq {γ} {γ'} η
with substs-respect-obs oeq (obs-contains-logical-subst η)
... | coeq = obs-implies-closed-logical coeq
-- This is sort of silly. We need these lemmas to prove that logical
-- equivalence contains definitional.
nat-val-weakening : ∀{Γ} {n : TNat} → TVal n →
Σ[ e :: TExp Γ nat ] (∀{γ : TSubst Γ []} → n ≡ ssubst γ e)
nat-val-weakening val-zero = zero , (λ {γ} → Refl)
nat-val-weakening {Γ} {suc n} (val-suc v) with nat-val-weakening {Γ} v
... | e , subst-thing = (suc e) , (λ {γ} → resp suc subst-thing)
nat-logical-equiv-val : ∀{Γ} (γ : TSubst Γ []) (e : TExp Γ nat) →
Σ[ n :: TExp Γ nat ] ((ssubst γ n ~ ssubst γ e :: nat) × TVal (ssubst γ n))
nat-logical-equiv-val {Γ} γ e with kleene-refl {ssubst γ e}
... | kleeneq n val E1 E2 with nat-val-weakening {Γ} val
... | n' , is-val = n' , ((kleeneq n val (ID.coe1 (λ x → x ~>* n) is-val eval-refl) E1) ,
ID.coe1 TVal is-val val)
-- Logical equivalence contains definitional equivalence.
logical-contains-def : ∀{Γ} {A} → DefEq Γ A ⊆ OLogicalEq Γ A
logical-contains-def {y = e} def-refl η = ological-refl e η
logical-contains-def {x = e} {y = e'} (def-sym defeq) η =
ological-sym {_} {_} {e'} {e} (logical-contains-def defeq) η
logical-contains-def {x = e} {y = e''} (def-trans {e' = e'} defeq1 defeq2) η
with logical-contains-def defeq1 | logical-contains-def defeq2
... | leq1 | leq2 = ological-trans {_} {_} {e} {e'} {e''} leq1 leq2 η
logical-contains-def (def-cong defeq C) η = ological-is-congruence (logical-contains-def defeq) C η
logical-contains-def {Γ} {A} (def-beta {e = e} {e' = e'}) {γ} {γ'} η
with step-beta {e = (ssubst (liftγ γ) e)} {e' = ssubst γ e'}
... | step with ological-refl e (extendLogicalEQΓ η (ological-refl e' η))
... | leq with subeq (compose-subst-noob γ' e') e ≡≡ subcomp γ' (singγ e') e
... | subeq-r with subcomp (singγ (ssubst γ e')) (liftγ γ) e
... | subeq-l with ID.coe2 (LogicalEq A) subeq-l subeq-r leq
... | leq' = logical-converse-evaluation-1 leq' (eval-step step)
logical-contains-def {Γ} {A} (def-rec-z {e0 = e0} {es = es}) {γ} {γ'} η with ological-refl e0 η
... | leq = logical-converse-evaluation-1 leq (eval-step step-rec-z)
-- This is super nasty. It has some code duplication when handling the congruence stuff.
-- And it also needs to deal with a bunch of nasty substitution crap.
-- The main source of nonstupid complication is that the step rule requires
-- n to be a value, and definitional equivalence does not.
logical-contains-def {Γ} {A} (def-rec-s {e = en} {e0 = e0} {es = es}) {γ} {γ'} η
with nat-logical-equiv-val γ en
... | n , num-leq , is-val with ological-refl (rec en e0 es) η
... | full-leq with ological-is-congruence {e = ssubst γ n} {e' = ssubst γ en}
(closed-logical-imp-open num-leq) (rec1 ∘ (ssubst γ e0) (ssubst (liftγ γ) es))
(emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ})
... | eq-with-γn-and-nasty-subst with ID.coe2 (LogicalEq A) (subid _) (subid _) eq-with-γn-and-nasty-subst
... | eq-with-γn with logical-trans eq-with-γn full-leq
... | leq-subrec with ological-refl (rec (suc en) e0 es) (logicalγ-refl {x = γ})
... | full-leq-s with ological-is-congruence {e = ssubst γ n} {e' = ssubst γ en}
(closed-logical-imp-open num-leq) (rec1 (suc ∘) (ssubst γ e0) (ssubst (liftγ γ) es))
(emptyLogicalEqΓ {γ = emptyγ} {γ' = emptyγ})
... | eq-with-sγn-and-nasty-subst with ID.coe2 (LogicalEq A) (subid _) (subid _) eq-with-sγn-and-nasty-subst
... | eq-with-sγn with logical-trans eq-with-sγn full-leq-s
... | leq-subrec-2 with ological-refl es (extendLogicalEQΓ η leq-subrec)
... | leq-unrolled with subeq (compose-subst-noob γ' (rec en e0 es)) es ≡≡
subcomp γ' (singγ (rec en e0 es)) es
... | subeq-l with subcomp (singγ (ssubst γ (rec n e0 es))) (liftγ γ) es
... | subeq-r with ID.coe2 (LogicalEq A) subeq-r subeq-l leq-unrolled
... | leq with step-rec-s {e = ssubst γ n} {e₀ = ssubst γ e0} {es = ssubst (liftγ γ) es} is-val
... | step with logical-converse-evaluation-1 leq (eval-step step)
... | leq-stepped = logical-trans (logical-sym leq-subrec-2) leq-stepped
-- Obvious corollary that observational equivalence contains definitional.
obs-contains-def : ∀{Γ} {A} → DefEq Γ A ⊆ ObservEq Γ A
obs-contains-def = obs-contains-logical o logical-contains-def
-- Proving this mostly out of spite, because one formulation
-- of my theory needed this for observational equivalence,
-- and there wasn't a good way to prove it other than appealing
-- to observational equivalence coinciding with logical, which
-- was what we were trying to prove.
weakened-equiv-log : ∀{Γ} {A} {e e' : TCExp A} →
e ~ e' :: A →
Γ ⊢ weaken-closed e ~ weaken-closed e' :: A
weakened-equiv-log {Γ} {A} {e} {e'} leq {γ} {γ'} η with subren γ closed-wkγ e | subren γ' closed-wkγ e'
... | eq1 | eq2 with closed-subst (γ o closed-wkγ) e | closed-subst (γ' o closed-wkγ) e'
... | eq1' | eq2' = ID.coe2 (LogicalEq A) (symm eq1' ≡≡ symm eq1) (symm eq2' ≡≡ symm eq2) leq
weakened-equiv-obs : ∀{Γ} {A} {e e' : TCExp A} →
[] ⊢ e ≅ e' :: A →
Γ ⊢ weaken-closed e ≅ weaken-closed e' :: A
weakened-equiv-obs {Γ} {A} {e} {e'} oeq = obs-contains-logical (weakened-equiv-log {Γ} {A} {e} {e'} (obs-implies-closed-logical oeq))
-- Some more stuff about renaming.
wkren1 : ∀{Γ A} → TRen Γ (A :: Γ)
wkren1 = (λ x → S x)
weaken1 : ∀{Γ A B} → TExp Γ B → TExp (A :: Γ) B
weaken1 e = ren wkren1 e
weakening-ignores : ∀{Γ A} (e₁ : TCExp A) (γ : TSubst Γ []) →
Sub≡ (λ x₁ → ssubst (singγ e₁) (ren wkren1 (γ x₁))) γ
weakening-ignores e₁ γ x = subren (singγ e₁) wkren1 (γ x) ≡≡ subid (γ x)
-- Functional extensionality
function-ext-log : ∀{Γ A B} {e e' : TExp Γ (A ⇒ B)} →
(A :: Γ) ⊢ weaken1 e $ var Z ~ weaken1 e' $ var Z :: B →
Γ ⊢ e ~ e' :: A ⇒ B
function-ext-log {Γ} {A} {B} {e} {e'} leq {γ} {γ'} η e₁ e₁' leq'
with leq (extendLogicalEQΓ η leq')
... | leq'' with subren (subComp (singγ e₁) (liftγ γ)) wkren1 e |
subren (subComp (singγ e₁') (liftγ γ')) wkren1 e'
... | eq1' | eq2' with eq1' ≡≡ subeq (weakening-ignores e₁ γ) e |
eq2' ≡≡ subeq (weakening-ignores e₁' γ') e'
... | eq1 | eq2 = ID.coe2 (LogicalEq B) (resp (λ x → x $ e₁) eq1) (resp (λ x → x $ e₁') eq2) leq''
function-ext-obs : ∀{Γ A B} {e e' : TExp Γ (A ⇒ B)} →
(A :: Γ) ⊢ weaken1 e $ var Z ≅ weaken1 e' $ var Z :: B →
Γ ⊢ e ≅ e' :: A ⇒ B
function-ext-obs {e = e} {e' = e'} oeq = obs-contains-logical
(function-ext-log {e = e} {e' = e'} (logical-contains-obs oeq))
-- Eta, essentially
-- The important part of the proof is the def-beta and the function-ext-obs,
-- but most of the actual work is fucking around with substitutions.
function-eta-obs : ∀{Γ A B} (e : TExp Γ (A ⇒ B)) →
Γ ⊢ e ≅ (Λ (weaken1 e $ var Z)) :: A ⇒ B
function-eta-obs {Γ} {A} {B} e with
obs-sym (obs-contains-def (def-beta {e = ren (wk wkren1) (ren wkren1 e) $ var Z} {e' = var Z}))
... | beta-eq with (subren (singγ (var Z)) (wk wkren1) (weaken1 e)) ≡≡
(subren (λ x → singγ (var Z) (wk wkren1 x)) wkren1 e) ≡≡
symm (subren emptyγ wkren1 e) ≡≡
subid (weaken1 e)
... | eq2 with resp (λ x → x $ var Z) eq2
... | eq with ID.coe2 (ObservEq (A :: Γ) B) eq refl beta-eq
... | oeq = function-ext-obs oeq
obs-equiv-nat-val : (e : TNat) → Σ[ n :: TNat ] (TVal n × ([] ⊢ e ≅ n :: nat))
obs-equiv-nat-val e with ological-equiv-nat-val e
obs-equiv-nat-val e | n , val , eq = n , val , obs-contains-logical eq
-- OK, maybe we are trying this with numerals again. Argh.
t-numeral : ∀{Γ} → Nat → TExp Γ nat
t-numeral Z = zero
t-numeral (S n) = suc (t-numeral n)
numeral-val : ∀{Γ} → (n : Nat) → TVal {Γ} (t-numeral n)
numeral-val Z = val-zero
numeral-val (S n) = val-suc (numeral-val n)
val-numeral : ∀{Γ} {e : TExp Γ nat} → TVal e → Σ[ n :: Nat ] (e ≡ t-numeral n)
val-numeral val-zero = Z , Refl
val-numeral (val-suc v) with val-numeral v
... | n , eq = (S n) , (resp suc eq)
numeral-subst-dontcare : ∀{Γ Γ'} (n : Nat) (γ : TSubst Γ Γ') → ssubst γ (t-numeral n) ≡ t-numeral n
numeral-subst-dontcare Z γ = Refl
numeral-subst-dontcare (S n) γ = resp suc (numeral-subst-dontcare n γ)
--
obs-equiv-numeral : (e : TNat) → Σ[ n :: Nat ] ([] ⊢ e ≅ t-numeral n :: nat)
obs-equiv-numeral e with obs-equiv-nat-val e
obs-equiv-numeral e | en , val , oeq with val-numeral val
... | n , eq = n , (ID.coe1 (ObservEq [] nat e) eq oeq)
dropSubstRel : ∀(R : CRel) {Γ A} {γ γ' : TSubst (A :: Γ) []} →
SubstRel R (A :: Γ) γ γ' →
SubstRel R Γ (dropγ γ) (dropγ γ')
dropSubstRel R η n = η (S n)
dropLogicalEqΓ = dropSubstRel LogicalEq
-- Allow induction over nats, essentially
function-induction-log : ∀{Γ A} {e e' : TExp (nat :: Γ) A} →
((n : Nat) → Γ ⊢ ssubst (singγ (t-numeral n)) e ~
ssubst (singγ (t-numeral n)) e' :: A) →
(nat :: Γ) ⊢ e ~ e' :: A
function-induction-log {Γ} {A} {e} {e'} f {γ} {γ'} η
with η Z | obs-equiv-numeral (γ Z)
... | n-eq | n , oeq-n with f n (dropLogicalEqΓ η)
... | butt with subcomp (dropγ γ) (singγ (t-numeral n)) e | subcomp (dropγ γ') (singγ (t-numeral n)) e'
... | lol1 | lol2 with subeq (compose-subst-noob (dropγ γ) (t-numeral n)) e |
subeq (compose-subst-noob (dropγ γ') (t-numeral n)) e'
... | lol1' | lol2' with ID.coe2 (LogicalEq A) (symm lol1 ≡≡ symm lol1') (symm lol2 ≡≡ symm lol2') butt
... | wtf with ID.coe2
(λ x y → LogicalEq A
(ssubst (extendγ (dropγ γ) x) e)
(ssubst (extendγ (dropγ γ') y) e'))
(numeral-subst-dontcare n (dropγ γ)) (numeral-subst-dontcare n (dropγ γ')) wtf
... | wtf' with ological-refl e (extendLogicalEQΓ (dropLogicalEqΓ (logicalγ-refl {x = γ})) (obs-consistent oeq-n))
... | leq-e with ID.coe2 (LogicalEq A) (symm (subeq (drop-fix γ) e)) Refl leq-e
... | leq-e' with ological-refl e' (extendLogicalEQΓ (dropLogicalEqΓ (logicalγ-refl {x = γ'}))
(kleene-trans (kleene-sym n-eq) (obs-consistent oeq-n)))
... | leq-e2 with ID.coe2 (LogicalEq A) (symm (subeq (drop-fix γ') e')) Refl leq-e2
... | leq-e2' = logical-trans leq-e' (logical-trans wtf' (logical-sym leq-e2'))
function-induction-obs : ∀{Γ A} {e e' : TExp (nat :: Γ) A} →
((n : Nat) → Γ ⊢ ssubst (singγ (t-numeral n)) e ≅
ssubst (singγ (t-numeral n)) e' :: A) →
(nat :: Γ) ⊢ e ≅ e' :: A
function-induction-obs {Γ} {A} {e} {e'} f =
obs-contains-logical
(function-induction-log {Γ} {A} {e} {e'}
(λ n → logical-contains-obs (f n)))
| {
"alphanum_fraction": 0.5889929742,
"avg_line_length": 50.8333333333,
"ext": "agda",
"hexsha": "4d4aa5269fdd5fc763cfae1573f41a8f6d33ad35",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z",
"max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msullivan/godels-t",
"max_forks_repo_path": "Eq/Theory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msullivan/godels-t",
"max_issues_repo_path": "Eq/Theory.agda",
"max_line_length": 133,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msullivan/godels-t",
"max_stars_repo_path": "Eq/Theory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z",
"num_tokens": 4586,
"size": 12810
} |
{-# OPTIONS --prop #-}
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Agda.Builtin.List
open import Agda.Builtin.Reflection
macro
doQuote : ∀ {ℓ} {A : Set ℓ} → A → Term → TC _
doQuote x hole = bindTC (quoteTC x) (λ qx → bindTC (quoteTC qx) (unify hole))
testQuote₁ : doQuote Prop ≡ agda-sort (propLit 0)
testQuote₁ = refl
testQuote₂ : ∀ {ℓ} → doQuote (Prop ℓ) ≡ agda-sort (prop (var 0 []))
testQuote₂ = refl
macro
doUnquote : Term → Term → TC _
doUnquote t hole = bindTC (unquoteTC t) (unify hole)
testUnquote₁ : doUnquote (agda-sort (propLit 0)) ≡ Prop
testUnquote₁ = refl
testUnquote₂ : ∀ {ℓ} → doUnquote (agda-sort (prop (var 0 []))) ≡ Prop ℓ
testUnquote₂ = refl
| {
"alphanum_fraction": 0.6817538897,
"avg_line_length": 26.1851851852,
"ext": "agda",
"hexsha": "515c4c74943e80091d99f3496acebe9448b04aec",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/QuoteProp.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/QuoteProp.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/QuoteProp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 252,
"size": 707
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary
module Cubical.Relation.Binary.Construct.StrictToNonStrict
{a ℓ} {A : Type a}
(_<_ : Rel A ℓ)
where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Logic hiding (_⇒_) renaming (inl to inlₚ; inr to inrₚ)
open import Cubical.Data.Prod
open import Cubical.Data.Sum.Base renaming (rec to ⊎-rec)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) using (isProp⊥)
open import Cubical.Relation.Binary.Properties
open import Cubical.Relation.Nullary
open import Cubical.HITs.PropositionalTruncation as PT
------------------------------------------------------------------------
-- Conversion
-- _<_ can be turned into _≤_ as follows:
_≤_ : Rel A _
x ≤ y = (x < y) ⊔ (x ≡ₚ y)
------------------------------------------------------------------------
-- The converted relations have certain properties
-- (if the original relations have certain other properties)
<⇒≤ : _<_ ⇒ _≤_
<⇒≤ = inlₚ
≤-fromEq : FromEq _≤_
≤-fromEq = inrₚ
≤-reflexive : Reflexive _≤_
≤-reflexive = fromeq→reflx _≤_ ≤-fromEq
≤-antisym : Transitive _<_ → Irreflexive _<_ → Antisymmetric _≤_
≤-antisym transitive irrefl = rec2 squash λ
{ (inl x) (inl y) → ⊥-elim (irrefl (transitive x y))
; (inl x) (inr y) → PT.map sym y
; (inr x) _ → x
}
≤-transitive : Transitive _<_ → Transitive _≤_
≤-transitive <-trans = rec2 squash λ
{ (inl x) (inl y) → inlₚ (<-trans x y)
; (inl x) (inr y) → inlₚ (substₚ (λ k → _ < k) y x)
; (inr x) (inl y) → inlₚ (substₚ (λ i → i < _) (PT.map sym x) y)
; (inr x) (inr y) → inrₚ (PT.map2 _∙_ x y)
}
<-≤-trans : Transitive _<_ → Trans _<_ _≤_ _<_
<-≤-trans transitive x<y = rec (isProp[ _<_ ] _ _) λ
{ (inl x) → transitive x<y x
; (inr x) → substₚ (λ k → _ < k) x x<y
}
≤-<-trans : Transitive _<_ → Trans _≤_ _<_ _<_
≤-<-trans transitive = rec (isPropΠ λ _ → isProp[ _<_ ] _ _) λ
{ (inl x) y → transitive x y
; (inr x) y → substₚ (λ i → i < _) (PT.map sym x) y
}
≤-total : Trichotomous _<_ → Total _≤_
≤-total <-tri x y with <-tri x y
... | tri< x<y x≢y x≯y = inlₚ (inlₚ x<y)
... | tri≡ x≮y x≡y x≯y = inlₚ (inrₚ ∣ x≡y ∣)
... | tri> x≮y x≢y x>y = inrₚ (inlₚ x>y)
≤-decidable : Discrete A → Decidable _<_ → Decidable _≤_
≤-decidable _≟_ _<?_ x y with x <? y
... | yes x<y = yes (inlₚ x<y)
... | no x≮y with x ≟ y
... | yes x≡y = yes (inrₚ ∣ x≡y ∣)
... | no x≢y = no (rec isProp⊥ λ
{ (inl x<y) → x≮y x<y
; (inr x≡y) → x≢y (rec (Discrete→isSet _≟_ _ _) id x≡y)
})
≤-decidable′ : Trichotomous _<_ → Decidable _≤_
≤-decidable′ compare x y with compare x y
... | tri< x<y x≢y x≯y = yes (inlₚ x<y)
... | tri≡ x≮y x≡y x≯y = yes (inrₚ ∣ x≡y ∣)
... | tri> x≮y x≢y x>y = no (rec isProp⊥ λ
{ (inl x<y) → x≮y x<y
; (inr x≡y) → x≢y (rec (Discrete→isSet (tri→dec≡ _<_ compare) _ _) id x≡y)
})
------------------------------------------------------------------------
-- Converting structures
isPreorder : Transitive _<_ → IsPreorder _≤_
isPreorder transitive = record
{ reflexive = ≤-reflexive
; transitive = ≤-transitive transitive
}
isPartialOrder : IsStrictPartialOrder _<_ → IsPartialOrder _≤_
isPartialOrder spo = record
{ isPreorder = isPreorder S.transitive
; antisym = ≤-antisym S.transitive S.irrefl
}
where module S = IsStrictPartialOrder spo
isTotalOrder : IsStrictTotalOrder _<_ → IsTotalOrder _≤_
isTotalOrder sto = record
{ isPartialOrder = isPartialOrder S.isStrictPartialOrder
; total = ≤-total S.compare
}
where module S = IsStrictTotalOrder sto
isDecTotalOrder : IsStrictTotalOrder _<_ → IsDecTotalOrder _≤_
isDecTotalOrder sto = record
{ isTotalOrder = isTotalOrder sto
; _≤?_ = ≤-decidable′ S.compare
}
where module S = IsStrictTotalOrder sto
| {
"alphanum_fraction": 0.5828513955,
"avg_line_length": 32.0725806452,
"ext": "agda",
"hexsha": "e4da26a988f80ca7f70093217a7db21f4d2c2302",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Construct/StrictToNonStrict.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1495,
"size": 3977
} |
-- Andreas, 2010-09-24 deactivated this annoying test case in Makefile
module Impossible where
-- The only way to trigger an __IMPOSSIBLE__ that isn't a bug.
{-# IMPOSSIBLE #-}
| {
"alphanum_fraction": 0.7528089888,
"avg_line_length": 29.6666666667,
"ext": "agda",
"hexsha": "c016aa511dd2ce14e2913e59ec87fec99ba1269c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Impossible.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Impossible.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Impossible.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 48,
"size": 178
} |
-- Andreas, 2019-08-17, issue #1346
-- Allow changing fixity in renaming statement
module Issue1346 where
data Bool : Set where true false : Bool
module Product where
infixr 4 _,_
record _×_ (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
module List where
infixr 5 _∷_
data List (A : Set) : Set where
[] : List A
_∷_ : A → List A → List A
open List public hiding (module List)
open Product public using () renaming
( _,_ to infixr 5 _∷_ -- change binding strength of _,_ when imported as _∷_
; _×_ to infixr 8 _×_ -- make _×_ right associatives
)
-- Non-empty lists.
List⁺ : Set → Set
List⁺ A = A × List A
head : ∀{A} → List⁺ A → A
head (a ∷ as) = a
private
test₁ : List⁺ Bool
test₁ = true ∷ false ∷ [] -- mixing _∷_ of _×_ and List
open Product public using (_,_) -- _,_ is still available with original fixity
private
test₂ : ∀{A : Set} → A → List A × List⁺ A × List⁺ A
test₂ a = [] , a ∷ [] , a ∷ a ∷ [] -- mixing _,_ and _∷_ of _×_
| {
"alphanum_fraction": 0.6058536585,
"avg_line_length": 20.5,
"ext": "agda",
"hexsha": "562c571c15b8dba3bbb9a4b79dff1fc8b7b54d4e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1346.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1346.agda",
"max_line_length": 80,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1346.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 360,
"size": 1025
} |
{-# OPTIONS --without-K #-}
module lib.groups.Groups where
open import lib.groups.Homomorphisms public
open import lib.groups.Lift public
open import lib.groups.Unit public
open import lib.groups.PropSubgroup public
open import lib.groups.GroupProduct public
open import lib.groups.PullbackGroup public
open import lib.groups.TruncationGroup public
open import lib.groups.HomotopyGroup public
open import lib.groups.FormalSum public
| {
"alphanum_fraction": 0.8260869565,
"avg_line_length": 27.3125,
"ext": "agda",
"hexsha": "d4dd30e547c7367b04e108facde35a10259fcd62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Groups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Groups.agda",
"max_line_length": 45,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Groups.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 95,
"size": 437
} |
-- Exponential and compatible strengths
module SOAS.Abstract.ExpStrength {T : Set} where
open import SOAS.Families.Core {T}
open import SOAS.Context
open import SOAS.Variable
open import SOAS.ContextMaps.Combinators
open import SOAS.ContextMaps.CategoryOfRenamings
open import SOAS.Common
open import SOAS.Coalgebraic.Strength
import SOAS.Abstract.Coalgebra as →□
open →□.Sorted
open →□.Unsorted using (⊤ᵇ) renaming (Coalg to UCoalg ; Coalg⇒ to UCoalg⇒ ; □ᵇ to □ᵘᵇ)
import SOAS.Abstract.Box as □ ; open □.Sorted
open import SOAS.Families.BCCC using (⊤ₘ)
private
variable
X : Family
𝒴 𝒵 : Familyₛ
Γ Δ Θ : Ctx
α : T
-- Mixed-sorted Cartesian and linear exponentials
_⇨_ : Family → Familyₛ → Familyₛ
(X ⇨ 𝒴) τ Γ = X Γ → 𝒴 τ Γ
_➡_ : Family → Familyₛ → Familyₛ
X ➡ 𝒴 = □ (X ⇨ 𝒴)
_⊸_ : Family → Familyₛ → Familyₛ
(X ⊸ 𝒴) α Γ = {Δ : Ctx} → X Δ → 𝒴 α (Γ ∔ Δ)
[_⊸_] : Familyₛ → Familyₛ → Family
[ 𝒳 ⊸ 𝒴 ] Γ = {τ : T}{Δ : Ctx} → 𝒳 τ Δ → 𝒴 τ (Δ ∔ Γ)
-- Linear exponential [ 𝒳 ⊸ 𝒴 ] is an unsorted coalgebra if 𝒴 is sorted coalgebra
[_⊸_]ᵇ : (𝒳 {𝒴} : Familyₛ) → Coalg 𝒴 → UCoalg ([ 𝒳 ⊸ 𝒴 ])
[ 𝒳 ⊸ 𝒴ᵇ ]ᵇ = record
{ r = λ l ρ {_}{Δ} x → r (l x) (Δ ∔∣ ρ)
; counit = λ{ {Γ = Γ}{t = l} → iext (dext λ {Δ} ρ → trans (r≈₂ (Concatʳ.identity Γ {Δ})) counit) }
; comult = λ{ {Γ = Γ}{Δ}{Θ}{ρ = ρ}{ϱ}{l} → iext (dext λ {Ξ} x → trans (r≈₂ (Functor.homomorphism (Ξ ∔F-))) comult) } }
where
open Coalg 𝒴ᵇ
-- Shorthands
⟅_⇨_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ⇨ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ⇨ 𝒴
⟅_➡_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ➡ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ➡ 𝒴
⟅_⊸_⟆ : Familyₛ → Familyₛ → Familyₛ
⟅ 𝒳 ⊸ 𝒴 ⟆ = [ 𝒳 ⊸ 𝒴 ] ⊸ 𝒴
-- Exponential strength of an endofunctor
record ExpStrength (Fᶠ : Functor 𝔽amiliesₛ 𝔽amiliesₛ) : Set₁ where
open Functor Fᶠ
field
-- Strength transformation that lifts a 𝒫-substitution over an endofunctor F₀
estr : {X : Family}(Xᵇ : UCoalg X)(𝒴 : Familyₛ)
→ F₀ (X ⇨ 𝒴) ⇾̣ (X ⇨ F₀ 𝒴)
-- Naturality conditions for the two components
estr-nat₁ : {X X′ : Family}{Xᵇ : UCoalg X}{X′ᵇ : UCoalg X′}{𝒴 : Familyₛ}
→ {f : X′ ⇾ X}(fᵇ⇒ : UCoalg⇒ X′ᵇ Xᵇ f)
→ (e : F₀ (X ⇨ 𝒴) α Γ) (x : X′ Γ)
→ estr Xᵇ 𝒴 e (f x)
≡ estr X′ᵇ 𝒴 (F₁ (λ e x → e (f x)) e) x
estr-nat₂ : {X : Family}{Xᵇ : UCoalg X}{𝒴 𝒴′ : Familyₛ}
→ (g : 𝒴 ⇾̣ 𝒴′)(e : F₀ (X ⇨ 𝒴) α Γ)(x : X Γ)
→ estr Xᵇ 𝒴′ (F₁ (λ e x → g (e x)) e) x
≡ F₁ g (estr Xᵇ 𝒴 e x)
estr-unit : {𝒴 : Familyₛ}{e : F₀ (⊤ₘ ⇨ 𝒴) α Γ}
→ estr ⊤ᵇ 𝒴 e tt ≡ F₁ (λ e′ → e′ tt) e
-- Derived unit law
estr-unit′ : {X : Family}{Xᵇ : UCoalg X}{𝒴 : Familyₛ}{e : F₀ (X ⇨ 𝒴) α Γ}
{x : {Γ : Ctx} → X Γ}(fᵇ⇒ : UCoalg⇒ ⊤ᵇ Xᵇ (λ _ → x))
→ estr Xᵇ 𝒴 e x ≡ F₁ (λ e′ → e′ x) e
estr-unit′ {X = X}{Xᵇ}{𝒴}{e}{x} fᵇ⇒ = begin
estr Xᵇ 𝒴 e x ≡⟨⟩
estr Xᵇ 𝒴 e ((λ _ → x) tt) ≡⟨ estr-nat₁ fᵇ⇒ e tt ⟩
estr ⊤ᵇ 𝒴 (F₁ (λ e′ _ → e′ x) e) tt ≡⟨ estr-unit ⟩
F₁ (λ e′ → e′ tt) (F₁ (λ e′ _ → e′ x) e) ≡˘⟨ homomorphism ⟩
F₁ (λ e′ → e′ x) e
∎ where open ≡-Reasoning
-- Combination of coalgebraic and exponential strength over X ➡ 𝒴 = □ (X ⇨ 𝒴)
module ➡-Strength (F:Str : Strength Fᶠ) where
open Strength F:Str
open ≡-Reasoning
□estr : (Xᵇ : UCoalg X)(𝒴 : Familyₛ)
→ F₀ (X ➡ 𝒴) ⇾̣ (X ➡ F₀ 𝒴)
□estr {X} Xᵇ 𝒴 e ρ x = estr Xᵇ 𝒴 (str ℐᴮ (X ⇨ 𝒴) e ρ) x
-- Compatible exponential and coalgebraic strengths
-- (for now no extra condition)
record CompatStrengths (Fᶠ : Functor 𝔽amiliesₛ 𝔽amiliesₛ) : Set₁ where
open Functor Fᶠ
field
CoalgStr : Strength Fᶠ
ExpStr : ExpStrength Fᶠ
open Strength CoalgStr public
open ExpStrength ExpStr public
open ➡-Strength CoalgStr public
| {
"alphanum_fraction": 0.550912457,
"avg_line_length": 33.4601769912,
"ext": "agda",
"hexsha": "a262074cb15f7acd5d03e0911a485c92b3d382ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "k4rtik/agda-soas",
"max_forks_repo_path": "SOAS/Abstract/ExpStrength.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "k4rtik/agda-soas",
"max_issues_repo_path": "SOAS/Abstract/ExpStrength.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "k4rtik/agda-soas",
"max_stars_repo_path": "SOAS/Abstract/ExpStrength.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1849,
"size": 3781
} |
module Structure.Operator.Monoid.Monoids.Function where
open import Functional
open import Function.Equals
open import Function.Equals.Proofs
import Lvl
open import Logic
open import Logic.Predicate
open import Structure.Function
open import Structure.Operator.Monoid
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ : Lvl.Level
private variable T : Type{ℓ}
function-monoid : ⦃ equiv : Equiv{ℓₑ}(T)⦄ ⦃ function : ∀{f : T → T} → Function(f) ⦄ → Monoid(_∘_ {X = T}{Y = T}{Z = T})
Monoid.binary-operator function-monoid = [⊜][∘]-binaryOperator
Monoid.associativity function-monoid = intro(\{f g h} → [⊜]-associativity {x = f}{y = g}{z = h})
Monoid.identity-existence function-monoid = [∃]-intro id ⦃ [⊜]-identity ⦄
| {
"alphanum_fraction": 0.7341463415,
"avg_line_length": 35.652173913,
"ext": "agda",
"hexsha": "89867fdcfb64216d80820aaf89e8d860ca136a1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Monoid/Monoids/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Monoid/Monoids/Function.agda",
"max_line_length": 119,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Monoid/Monoids/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 243,
"size": 820
} |
{-# OPTIONS --rewriting #-}
open import Agda.Builtin.Equality
postulate
A : Set
x0 : A
f : A → A → A
{-# BUILTIN REWRITE _≡_ #-}
postulate
fxx : (x : A) → (f x x) ≡ x
{-# REWRITE fxx #-}
meta : A
meta-reveal : meta ≡ x0
test : f x0 meta ≡ x0
meta = _
test = refl
meta-reveal = refl
| {
"alphanum_fraction": 0.5723905724,
"avg_line_length": 12.375,
"ext": "agda",
"hexsha": "29124991e6cbd6c1f02c6e916c0b714521b46fee",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2302.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2302.agda",
"max_line_length": 33,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2302.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 114,
"size": 297
} |
-- Implementation of Gödel's System T as an example for
-- Σ-terms (Σ = {Z, S}; α(Z) = 0; α(S) = 1) with primitive recursion
module SystemT where
open import Data.Vec hiding (_++_)
open import Data.Nat
open import Data.List
open import Data.List.All
-- Not in use yet:
-- Σ is a vector of given length n of natural numbers denoting the arity of symbols
data Σ {n : ℕ} : Set where
intr : Vec ℕ n → Σ
-- Successor has arity one, Zero has arity 0
Σ-Nat = intr (1 ∷ 0 ∷ [])
-- Types
data Type : Set where
Nat : Type
Fun : Type → Type → Type
-- Type environment
Env : Set
Env = List Type
-- Environment lookup
data _∈`_ : Type → Env → Set where
here : ∀ {φ A} → A ∈` (A ∷ φ)
there : ∀ {φ A A'} → A ∈` φ → A ∈` (A' ∷ φ)
-- Zero & Successor, Variables, prim. recursion on Σ-Nat, Abstraction, Application
data Expr : Env → Type → Set where
Z : ∀ {φ} → Expr φ Nat
S : ∀ {φ} → Expr φ Nat → Expr φ Nat
Var : ∀ {φ A} → A ∈` φ → Expr φ A
NatRec : ∀ {φ A} → Expr φ A → Expr (A ∷ φ) A → Expr φ Nat → Expr φ A
Abs : ∀ {φ A B} → Expr (A ∷ φ) B → Expr φ (Fun A B)
App : ∀ {φ A B} → Expr φ (Fun A B) → Expr φ A → Expr φ B
----- Big step semantics using Agda semantics -----
Value : Type → Set
Value Nat = ℕ
Value (Fun A B) = Value A → Value B
-- Lookup in environment of values
access : ∀ {A φ} → A ∈` φ → All Value φ → Value A
access here (px ∷ p) = px
access (there x) (px ∷ p) = access x p
-- Conversion of a natural number to an expression
natconv : ∀ {φ} → ℕ → Expr φ Nat
natconv zero = Z
natconv (suc n) = S (natconv n)
natrec : ∀ {A : Set} → A → (A → A) → ℕ → A
natrec vz vs zero = vz
natrec vz vs (suc n) = vs (natrec vz vs n)
-- Evaluation
eval : ∀ {φ A} → Expr φ A → All Value φ → Value A
eval Z ϱ = zero
eval (S x) ϱ = suc (eval x ϱ)
eval (Var x) ϱ = access x ϱ
eval (NatRec ez es enat) ϱ = natrec (eval ez ϱ) (λ v → eval es (v ∷ ϱ)) (eval enat ϱ)
eval (Abs e) ϱ = λ x → eval e (x ∷ ϱ)
eval (App e e₁) ϱ = (eval e ϱ) (eval e₁ ϱ)
----- Small step semantics -----
----- Substitution: Two methods.
-- a) Define simultaneous substitution with a map from variables to expression; see LDLC.agda and
-- the book "Programming Language Foundations in Agda"
-- b) Define singular substitution but "within" environments, i.e. for terms of the form (φ' ++ A ∷ φ)
-- This makes the Var case a tiny bit more tricky. See also type substitution in LDLC.agda
----- Method b is chosen since it is a bit shorter and (subjectively) easier to understand
-- Lemmas required for substitution, esp. Var case
-- 0) Insertion: Insert a variable and adjust DeBruijn indices
-- 0.1) De Bruijn adjustement
insdebr : ∀ {φ φ'} {A B} → B ∈` (φ' ++ φ) → B ∈` (φ' ++ (A ∷ φ))
insdebr {φ' = []} here = there here
insdebr {φ' = []} (there x) = there (there x)
insdebr {φ' = y ∷ ys} here = here
insdebr {φ' = y ∷ ys} (there x) = there (insdebr x)
-- 0.2) Insertion
ins : ∀ {φ φ'} {A B} → Expr (φ' ++ φ) B → Expr (φ' ++ A ∷ φ) B
ins Z = Z
ins (S x) = S (ins x)
ins (Var x) = Var (insdebr x)
ins {φ' = φ'} (NatRec{A = A'} ez es en) = NatRec (ins ez) (ins{φ' = A' ∷ φ'} es) (ins en)
ins {φ' = φ'} (Abs{A = A'} x) = Abs (ins{φ' = A' ∷ φ'} x)
ins (App x y) = App (ins x) (ins y)
-- 1) Variable substitution
varsub : ∀ {φ φ'} {A B} → A ∈` (φ' ++ B ∷ φ) → Expr φ B → Expr (φ' ++ φ) A
varsub {φ' = []} here M = M
varsub {φ' = []} (there x) M = Var x
varsub {φ' = z ∷ zs} here M = Var here
varsub {φ' = z ∷ zs} (there x) M = ins{φ' = []} (varsub x M)
-- Substitution: Given an expression that binds topmost variable to B and has type A &
-- an expression of type B => we get an expression of type A by binding the topmost
-- variable to that expression
_[[_]] : ∀ {φ φ'} {A B : Type} → Expr (φ' ++ B ∷ φ) A → Expr φ B → Expr (φ' ++ φ) A
Z [[ M ]] = Z
S N [[ M ]] = S (N [[ M ]])
Var x [[ M ]] = varsub x M
NatRec N N' N'' [[ M ]] = NatRec (N [[ M ]]) (N' [[ M ]]) (N'' [[ M ]])
Abs N [[ M ]] = Abs (N [[ M ]])
App N N' [[ M ]] = App (N [[ M ]]) (N' [[ M ]])
-- Values
data Value' {φ} : (t : Type) → Expr φ t → Set where
VZero : Value' Nat Z
VSuc : ∀ {x} → Value' Nat x → Value' Nat (S x)
VFun : ∀ {A B exp} → Value' (Fun A B) (Abs exp)
-- Semantics
data _↠_ {φ} : {A : Type} → Expr φ A → Expr φ A → Set where
-- Basic call-by-value λ-calc. stuff
-- Application: Elimination & Reduction
ξ-App1 : ∀ {A B} {L L' : Expr φ (Fun B A)} {M}
→ L ↠ L'
→ App L M ↠ App L' M
ξ-App2 : ∀ {A B} {M M' : Expr φ A} {L : Expr φ (Fun A B)}
→ Value' (Fun A B) L
→ M ↠ M'
→ App L M ↠ App L M'
β-App : ∀ {A B M exp}
→ Value' B M
→ App{B = A} (Abs exp) M ↠ (exp [[ M ]])
-- Elimination for successor
ξ-Nat : ∀ {L L'}
→ L ↠ L'
→ S L ↠ S L'
-- Interesting cases
ξ-NatRec : ∀ {A} {Ez : Expr φ A} {Es En En'}
→ En ↠ En'
→ NatRec Ez Es En ↠ NatRec Ez Es En'
β-NatRec-Z : ∀ {A} {Ez : Expr φ A} {Es}
→ NatRec Ez Es Z ↠ Ez
β-NatRec-S : ∀ {A} {Ez : Expr φ A} {Es} {n}
→ Value' Nat n
→ NatRec Ez Es (S n) ↠ (Es [[ NatRec Ez Es n ]])
----- Reflexive & Transitive closure of ↠; defined for chain reasoning
infix 1 begin_
infix 2 _⇨_
infix 2 _⇨⟨_⟩_
infix 3 _∎
data _⇨_ : ∀ {φ} {A} → Expr φ A → Expr φ A → Set where
-- Reflexivity / end of Reasoning
_∎ : ∀ {φ} {A} (L : Expr φ A)
→ (L ⇨ L)
-- Transitivity / chain Reasoning
_⇨⟨_⟩_ : ∀ {φ A} {L' M : Expr φ A}
→ (L : Expr φ A)
→ L ↠ L'
→ L' ⇨ M
→ L ⇨ M
-- Highlight the start of a chain of reasoning
begin_ : ∀ {φ} {A} {M N : Expr φ A} → M ⇨ N → M ⇨ N
begin x = x
----- Progress Theorem; also used to generate evaluation sequence (since it defines how to evaluate)
-- Definition: ∀ M : (Value'(M) ∨ (∃ N : M ↠ N))
data Progress {A} (M : Expr [] A) : Set where
step : ∀ {N : Expr [] A} → M ↠ N → Progress M
done : Value' A M → Progress M
-- Proof
progress : ∀ {A} → (M : Expr [] A) → Progress M
progress Z = done VZero
progress (S L) with progress L
... | step L↠N = step (ξ-Nat L↠N)
... | done y = done (VSuc y)
progress (NatRec ez es en) with progress en
... | step en↠en' = step (ξ-NatRec en↠en')
... | done (VZero) = step (β-NatRec-Z)
... | done (VSuc x) = step (β-NatRec-S x)
progress (Abs L) = done VFun
progress (App L N) with progress L
... | step L↠L' = step (ξ-App1 L↠L')
... | done VFun with progress N
... | step N↠N' = step (ξ-App2 VFun N↠N')
... | done val = step (β-App val)
----- Generation of evaluation sequence (idea & implementation from PLFA)
-- Used to limit number of steps taken
data Gas : Set where
gas : ℕ → Gas
-- Either enough steps taken or Value' reached
data Finished {φ A} (N : Expr φ A) : Set where
done : Value' A N → Finished N
out-of-gas : Finished N
-- Encapsulates the steps taken
data Steps : ∀ {A} → Expr [] A → Set where
steps : ∀ {A} {L N : Expr [] A}
→ L ⇨ N
→ Finished N
→ Steps L
-- Generation of evaluation
eval' : ∀ {A} → Gas → (L : Expr [] A) → Steps L
eval' (gas zero) L = steps (L ∎) out-of-gas
eval' (gas (suc m)) L with progress L
... | done VL = steps (L ∎) (done VL)
... | step {M} L↠M with eval' (gas m) M
... | steps M⇨N fin = steps (L ⇨⟨ L↠M ⟩ M⇨N) fin
----- Examples
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
emptyenv : All Value []
emptyenv = []
-- Addition of two numbers defined as primitive recursion
_plus_ : ℕ → ℕ → Expr [] Nat
n plus m = NatRec (natconv n) (S (Var here)) (natconv m)
-- _ : eval (3 plus 5) emptyenv ≡ 8
-- _ = refl
_ : eval' (gas 5) (1 plus 2) ≡ steps
(NatRec (S Z) (S (Var here)) (S (S Z)) ⇨⟨ β-NatRec-S (VSuc VZero) ⟩
(S (NatRec (S Z) (S (Var here)) (S Z)) ⇨⟨ ξ-Nat (β-NatRec-S VZero) ⟩
(S (S (NatRec (S Z) (S (Var here)) Z)) ⇨⟨ ξ-Nat (ξ-Nat β-NatRec-Z) ⟩ S (S (S Z)) ∎)))
(done (VSuc (VSuc (VSuc VZero)))) -- 3
_ = {!!}
-- Multiplication of two numbers defined as primitive recursion using addition
_times_ : ℕ → ℕ → Expr [] Nat
n times m = NatRec Z (NatRec (natconv n) (S (Var here)) (Var here)) (natconv m)
-- _ : eval (50 times 5) emptyenv ≡ 250
-- _ = refl
_ : eval' (gas 10) (2 times 2) ≡ steps
(NatRec Z (NatRec (S (S Z)) (S (Var here)) (Var here)) (S (S Z)) ⇨⟨ β-NatRec-S (VSuc VZero) ⟩
(NatRec (S (S Z)) (S (Var here))
(NatRec Z (NatRec (S (S Z)) (S (Var here)) (Var here)) (S Z)) ⇨⟨ ξ-NatRec (β-NatRec-S VZero) ⟩
(NatRec (S (S Z)) (S (Var here))
(NatRec (S (S Z)) (S (Var here))
(NatRec Z (NatRec (S (S Z)) (S (Var here)) (Var here)) Z)) ⇨⟨ ξ-NatRec (ξ-NatRec β-NatRec-Z) ⟩
(NatRec (S (S Z)) (S (Var here))
(NatRec (S (S Z)) (S (Var here)) Z) ⇨⟨ ξ-NatRec β-NatRec-Z ⟩
(NatRec (S (S Z)) (S (Var here)) (S (S Z)) ⇨⟨ β-NatRec-S (VSuc VZero) ⟩
(S (NatRec (S (S Z)) (S (Var here)) (S Z)) ⇨⟨ ξ-Nat (β-NatRec-S VZero) ⟩
(S (S (NatRec (S (S Z)) (S (Var here)) Z)) ⇨⟨ ξ-Nat (ξ-Nat β-NatRec-Z) ⟩ S (S (S (S Z))) ∎)))))))
(done (VSuc (VSuc (VSuc (VSuc VZero))))) -- 4
_ = {!!}
| {
"alphanum_fraction": 0.5181837292,
"avg_line_length": 35.9018867925,
"ext": "agda",
"hexsha": "f0d849a1870971bf2fea6df3592fe90c578166ea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z",
"max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kcaliban/ldlc",
"max_forks_repo_path": "src/sigmatypes/SystemT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kcaliban/ldlc",
"max_issues_repo_path": "src/sigmatypes/SystemT.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kcaliban/ldlc",
"max_stars_repo_path": "src/sigmatypes/SystemT.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3546,
"size": 9514
} |
{- Box operator. -}
module TemporalOps.Box where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Sets
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.BCCCs
open import CategoryTheory.Functor
open import CategoryTheory.CartesianStrength
open import CategoryTheory.NatTrans
open import CategoryTheory.Adjunction
open import CategoryTheory.Comonad
open import TemporalOps.Common
-- The box operator can be derived as a comonad from an adjunction K ⊣ G
K : Functor 𝕊et ℝeactive
K = record
{ omap = λ A -> (λ n -> A)
; fmap = λ f -> (λ n -> λ x -> f x)
; fmap-id = refl
; fmap-∘ = refl
; fmap-cong = λ z → z
}
G : Functor ℝeactive 𝕊et
G = record
{ omap = λ A -> (∀(n : ℕ) -> A n)
; fmap = λ f -> λ a -> (λ n -> f n (a n))
; fmap-id = refl
; fmap-∘ = refl
; fmap-cong = λ pf → ext (λ n → pf)
}
K⊣G : K ⊣ G
K⊣G = record
{ η = record
{ at = λ A x n → x
; nat-cond = refl }
; ε = record
{ at = λ A n a → a n
; nat-cond = refl }
; tri1 = refl
; tri2 = refl
}
-- | Box operator
-- Comonad instance from adjunction
W-□ : Comonad ℝeactive
W-□ = AdjComonad K⊣G
-- Endofunctor from comonad
F-□ : Endofunctor ℝeactive
F-□ = Comonad.W W-□
-- Operator from functor
□_ : τ -> τ
□_ = Functor.omap (Comonad.W W-□)
infixr 65 □_
-- Extensional equality for boxed values
□-≡ : ∀{A} n l {v : (□ A) n}{w : (□ A) l}
-> v ≡ w
-> ∀ m -> v m ≡ w m
□-≡ n l refl m = refl
-- □ is a Cartesian functor
F-cart-□ : CartesianFunctor F-□ ℝeactive-cart ℝeactive-cart
F-cart-□ = record
{ u = λ n a _ → a
; m = m-□
; m-nat₁ = λ f → refl
; m-nat₂ = λ f → refl
; associative = refl
; unital-right = refl
; unital-left = refl
}
where
m-□ : ∀(A B : τ) -> □ A ⊗ □ B ⇴ □ (A ⊗ B)
m-□ A B n (a , b) = λ k → a k , b k
open CartesianFunctor F-cart-□ public
-- □ is a Cartesian comonad
W-cart-□ : CartesianComonad W-□ ℝeactive-cart
W-cart-□ = record { cart-fun = F-cart-□ ; u-ε = refl ; u-δ = refl
; m-ε = refl ; m-δ = refl }
open CartesianComonad W-cart-□ public
| {
"alphanum_fraction": 0.5771561772,
"avg_line_length": 23.3152173913,
"ext": "agda",
"hexsha": "33ed65c6b4ab53eeb4c4df13ccc389146dc604ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Box.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Box.agda",
"max_line_length": 72,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Box.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 805,
"size": 2145
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Lists.Lists
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
module Setoids.Lists where
listEquality : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Rel {a} {b} (List A)
listEquality S [] [] = True'
listEquality S [] (x :: w2) = False'
listEquality S (x :: w1) [] = False'
listEquality S (x :: w1) (y :: w2) = (Setoid._∼_ S x y) && listEquality S w1 w2
listEqualityReflexive : {a b : _} {A : Set a} (S : Setoid {a} {b} A) (w : List A) → listEquality S w w
listEqualityReflexive S [] = record {}
listEqualityReflexive S (x :: w) = Equivalence.reflexive (Setoid.eq S) ,, listEqualityReflexive S w
listEqualitySymmetric : {a b : _} {A : Set a} (S : Setoid {a} {b} A) {w1 w2 : List A} → listEquality S w1 w2 → listEquality S w2 w1
listEqualitySymmetric S {w1 = []} {[]} pr = record {}
listEqualitySymmetric S {[]} {x :: xs} ()
listEqualitySymmetric S {x :: xs} {[]} ()
listEqualitySymmetric S {w1 = x :: w1} {y :: w2} (pr1 ,, pr2) = Equivalence.symmetric (Setoid.eq S) pr1 ,, listEqualitySymmetric S pr2
listEqualityTransitive : {a b : _} {A : Set a} (S : Setoid {a} {b} A) {w1 w2 w3 : List A} → listEquality S w1 w2 → listEquality S w2 w3 → listEquality S w1 w3
listEqualityTransitive S {w1 = []} {[]} {[]} w1=w2 w2=w3 = record {}
listEqualityTransitive S {w1 = []} {[]} {x :: xs} w1=w2 ()
listEqualityTransitive S {w1 = []} {x :: xs} {w3} () w2=w3
listEqualityTransitive S {w1 = x :: w1} {[]} {w3} () w2=w3
listEqualityTransitive S {w1 = x :: w1} {y :: ys} {[]} w1=w2 ()
listEqualityTransitive S {w1 = x :: w1} {y :: w2} {z :: w3} (pr1 ,, pr2) (pr3 ,, pr4) = Equivalence.transitive (Setoid.eq S) pr1 pr3 ,, listEqualityTransitive S pr2 pr4
listEqualityRespectsMap : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) (fWD : {x y : A} → Setoid._∼_ S x y → Setoid._∼_ T (f x) (f y)) → {w1 w2 : List A} (w1=w2 : listEquality S w1 w2) → listEquality T (map f w1) (map f w2)
listEqualityRespectsMap S T f fWD {[]} {[]} w1=w2 = record {}
listEqualityRespectsMap S T f fWD {[]} {x :: w2} ()
listEqualityRespectsMap S T f fWD {x :: w1} {[]} ()
listEqualityRespectsMap S T f fWD {x :: w1} {y :: w2} (x=y ,, w1=w2) = fWD x=y ,, listEqualityRespectsMap S T f fWD {w1} {w2} w1=w2
listSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → Setoid (List A)
Setoid._∼_ (listSetoid S) word1 word2 = listEquality S word1 word2
Equivalence.reflexive (Setoid.eq (listSetoid S)) {word} = listEqualityReflexive S word
Equivalence.symmetric (Setoid.eq (listSetoid S)) pr = listEqualitySymmetric S pr
Equivalence.transitive (Setoid.eq (listSetoid S)) pr1 pr2 = listEqualityTransitive S pr1 pr2
consWellDefined : {a b : _} {A : Set a} {S : Setoid {a} {b} A} (xs : List A) {x y : A} (x=y : Setoid._∼_ S x y) → Setoid._∼_ (listSetoid S) (x :: xs) (y :: xs)
consWellDefined {S = S} xs x=y = x=y ,, Equivalence.reflexive (Setoid.eq (listSetoid S))
appendWellDefined : {a b : _} {A : Set a} {S : Setoid {a} {b} A} {xs ys as bs : List A} (xs=as : Setoid._∼_ (listSetoid S) xs as) → (ys=bs : Setoid._∼_ (listSetoid S) ys bs) → Setoid._∼_ (listSetoid S) (xs ++ ys) (as ++ bs)
appendWellDefined {S = S} {[]} {[]} {[]} {[]} record {} record {} = record {}
appendWellDefined {S = S} {[]} {[]} {[]} {x :: bs} record {} ()
appendWellDefined {S = S} {[]} {x :: ys} {[]} {[]} record {} ys=bs = ys=bs
appendWellDefined {S = S} {[]} {x :: ys} {[]} {x₁ :: bs} record {} ys=bs = ys=bs
appendWellDefined {S = S} {[]} {ys} {x :: as} {bs} () ys=bs
appendWellDefined {S = S} {x :: xs} {ys} {[]} {bs} () ys=bs
appendWellDefined {S = S} {x :: xs} {[]} {x₁ :: as} {[]} xs=as record {} = _&&_.fst xs=as ,, identityOfIndiscernablesRight (listEquality S) (identityOfIndiscernablesLeft (listEquality S) (_&&_.snd xs=as) (equalityCommutative (appendEmptyList xs))) (equalityCommutative (appendEmptyList as))
appendWellDefined {S = S} {x :: xs} {[]} {x₁ :: as} {x₂ :: bs} xs=as ()
appendWellDefined {S = S} {x :: xs} {x₂ :: ys} {x₁ :: as} {[]} xs=as ()
appendWellDefined {S = S} {x :: xs} {x₂ :: ys} {x₁ :: as} {x₃ :: bs} (fst ,, snd) ys=bs = fst ,, appendWellDefined snd ys=bs
| {
"alphanum_fraction": 0.6147463253,
"avg_line_length": 69.1475409836,
"ext": "agda",
"hexsha": "de9011267a0a30f6651892fbd482d07bc3a73c75",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Lists.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Lists.agda",
"max_line_length": 290,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Lists.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1621,
"size": 4218
} |
open import Common.Reflection
open import Common.Prelude hiding (_<$>_)
open import Common.Equality
_<$>_ : ∀ {A B : Set} → (A → B) → Maybe A → Maybe B
f <$> just x = just (f x)
f <$> nothing = nothing
_==_ = primQNameEquality
-- This is awkward!
awkwardUnquoteBool : Term → Maybe Bool
awkwardUnquoteBool (con c []) =
if c == quote true then just true
else if c == quote false then just false
else nothing
awkwardUnquoteBool v = nothing
testAwkward : just false ≡ awkwardUnquoteBool (quoteTerm false)
testAwkward = refl
-- This is nicer!
pattern `false = con (quote false) []
pattern `true = con (quote true) []
unquoteBool : Term → Maybe Bool
unquoteBool `false = just false
unquoteBool `true = just true
unquoteBool _ = nothing
test : just true ≡ unquoteBool (quoteTerm true)
test = refl
| {
"alphanum_fraction": 0.697044335,
"avg_line_length": 23.8823529412,
"ext": "agda",
"hexsha": "3b54388a1213dae27523a1d192e98180cd0533b5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue619.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue619.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue619.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 237,
"size": 812
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Instances.QuoIntFromIntSIP where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything hiding (⋆) renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Foundations.Logic renaming (inl to inlᵖ; inr to inrᵖ)
-- open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)
-- open import Cubical.Relation.Binary.Base
-- open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
-- open import Cubical.Data.Sigma
-- open import Cubical.Data.Bool as Bool using (Bool; not; true; false)
-- open import Cubical.Data.Empty renaming (elim to ⊥-elim; ⊥ to ⊥⊥) -- `⊥` and `elim`
-- open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ)
-- open import Function.Base using (it; _∋_; _$_)
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.HITs.PropositionalTruncation --.Properties
open import Cubical.Foundations.SIP
-- open import Utils using (!_; !!_)
-- open import MoreLogic.Reasoning
open import MoreLogic.Definitions
-- open import MoreLogic.Properties
-- open import MorePropAlgebra.Definitions hiding (_≤''_)
-- open import MorePropAlgebra.Structures
-- open import MorePropAlgebra.Bundles
-- open import MorePropAlgebra.Consequences
open import Number.Structures2
open import Number.Bundles2
-- import Agda.Builtin.Int as Builtin
-- import Data.Integer.Base as BuiltinBase
-- import Data.Integer.Properties as BuiltinProps
-- open import Cubical.Data.Nat.Literals
-- open import Number.Prelude.Nat
-- open import Number.Prelude.Int
-- import Cubical.Data.Int as Int
-- import Number.Instances.Int
-- LinearlyOrderedCommRing ≡ LOCR
record LOCRStructure {ℓ ℓ'} (Carrier : Type ℓ) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
constructor locrstructure
field
0f 1f : Carrier
_+_ : Carrier → Carrier → Carrier
-_ : Carrier → Carrier
_·_ : Carrier → Carrier → Carrier
min max : Carrier → Carrier → Carrier
_<_ : hPropRel Carrier Carrier ℓ'
is-LOCR : [ isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max ]
LOCRΣ : ∀{ℓ ℓ'} → Type (ℓ-suc (ℓ-max ℓ ℓ'))
LOCRΣ {ℓ} {ℓ'} = TypeWithStr {ℓ' = ℓ-max ℓ (ℓ-suc ℓ')} ℓ (LOCRStructure {ℓ} {ℓ'})
record LOCRΣEquiv {ℓ} {ℓ'} (Σ₁ Σ₂ : LOCRΣ {ℓ} {ℓ'}) (Carrier₁≃₂ : fst Σ₁ ≃ fst Σ₂) : Type (ℓ-max ℓ (ℓ-suc ℓ')) where
constructor locrΣequiv
Carrier₁ = fst Σ₁
Carrier₂ = fst Σ₂
Structure₁ = snd Σ₁
Structure₂ = snd Σ₂
private
module ₁ = LOCRStructure Structure₁
module ₂ = LOCRStructure Structure₂
〚_〛 = equivFun Carrier₁≃₂
field
pres0 : 〚 ₁.0f 〛 ≡ ₂.0f
pres1 : 〚 ₁.1f 〛 ≡ ₂.1f
isHom-- : ∀ y → 〚 ₁.- y 〛 ≡ ₂.- 〚 y 〛
isHom-+ : ∀ x y → 〚 x ₁.+ y 〛 ≡ 〚 x 〛 ₂.+ 〚 y 〛
isHom-· : ∀ x y → 〚 x ₁.· y 〛 ≡ 〚 x 〛 ₂.· 〚 y 〛
isHom-min : ∀ x y → 〚 ₁.min x y 〛 ≡ ₂.min 〚 x 〛 〚 y 〛
isHom-max : ∀ x y → 〚 ₁.max x y 〛 ≡ ₂.max 〚 x 〛 〚 y 〛
isHom-< : ∀ x y → x ₁.< y ≡ 〚 x 〛 ₂.< 〚 y 〛
LOCREquivStr : ∀{ℓ ℓ'} → StrEquiv (LOCRStructure {ℓ} {ℓ'}) (ℓ-max ℓ (ℓ-suc ℓ'))
LOCREquivStr Σ₁@(Carrier₁ , Structure₁) Σ₂@(Carrier₂ , Structure₂) Carrier₁≃₂ = LOCRΣEquiv Σ₁ Σ₂ Carrier₁≃₂
LOCRUnivalentStructure : ∀{ℓ ℓ'} → UnivalentStr (LOCRStructure {ℓ} {ℓ'}) LOCREquivStr
LOCRUnivalentStructure {A = Σ₁@(Carrier₁ , Structure₁)} {B = Σ₂@(Carrier₂ , Structure₂)} Carrier₁≃₂ = f , φ where
Carrier₁≡Carrier₂ : Carrier₁ ≡ Carrier₂
Carrier₁≡Carrier₂ = ua Carrier₁≃₂
module ₁ = LOCRStructure Structure₁
module ₂ = LOCRStructure Structure₂
〚_〛 = equivFun Carrier₁≃₂
-- {-# DISPLAY equivFun Carrier₁≃₂ x = 〚 x 〛 #-} -- somehow omits its `x` ?
-- I guess this is what we have "the machinery" for
f : LOCREquivStr Σ₁ Σ₂ Carrier₁≃₂
→ PathP (λ i → LOCRStructure (Carrier₁≡Carrier₂ i)) Structure₁ Structure₂
f (locrΣequiv pres0 pres1 isHom-- isHom-+ isHom-· isHom-min isHom-max isHom-<) = {! !}
φ : isEquiv f
φ .equiv-proof Structure₁≡₂ = {! !}
-- R ≃[ LOCREquivStr ] S ≡ Σ _ (LOCRΣEquiv R S)
-- LOCRΣPath : ∀{ℓ ℓ'} (R S : LOCRΣ {ℓ} {ℓ'}) → (R ≃[ LOCREquivStr ] S) ≃ (R ≡ S)
-- "an equivalence between the two carriers that fulfills the axioms in `LOCRΣEquiv` is equivalent to a path between the two structures"
LOCRΣPath* : ∀{ℓ ℓ'} (R S : LOCRΣ {ℓ} {ℓ'}) → Σ _ (LOCRΣEquiv R S) ≃ (R ≡ S)
LOCRΣPath* = SIP LOCRUnivalentStructure
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint -- congIso
module _ {ℓ ℓ'} where
LOCRRawStructure' = λ(X : Type ℓ) → X × X × (X → X) × (X → X → X) × (X → X → X) × (X → X → X) × (X → X → X) × (X → X → hProp ℓ')
LOCRRawEquivStr' = AutoEquivStr LOCRRawStructure'
LOCRRawUnivalentStr' : UnivalentStr _ LOCRRawEquivStr'
LOCRRawUnivalentStr' = autoUnivalentStr LOCRRawStructure'
LOCRAxioms' : (X : Type ℓ) (Structure : LOCRRawStructure' X) → _
LOCRAxioms' X (0f , 1f , -_ , _+_ , _·_ , min , max , _<_) = [ isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max ]
LOCRStructure' = AxiomsStructure LOCRRawStructure' LOCRAxioms'
LOCRΣ' = TypeWithStr ℓ LOCRStructure'
LOCREquivStr' = AxiomsEquivStr LOCRRawEquivStr' LOCRAxioms'
LOCRUnivalentStructure' : UnivalentStr LOCRStructure' LOCREquivStr'
LOCRUnivalentStructure' = axiomsUnivalentStr _ γ LOCRRawUnivalentStr' where
γ : (X : Type ℓ) (s : LOCRRawStructure' X) → isProp (LOCRAxioms' X s)
γ X (0f , 1f , -_ , _+_ , _·_ , min , max , _<_) = isProp[] (isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max)
LOCRΣPath' : (A B : LOCRΣ') → (A ≃[ LOCREquivStr' ] B) ≃ (A ≡ B)
LOCRΣPath' = SIP LOCRUnivalentStructure'
LOCRΣ→' : LOCRΣ {ℓ} {ℓ'} → LOCRΣ'
LOCRΣ→' (X , s) = let open LOCRStructure s in X , (0f , 1f , -_ , _+_ , _·_ , min , max , _<_) , is-LOCR
LOCRΣ←' : LOCRΣ' → LOCRΣ {ℓ} {ℓ'}
LOCRΣ←' (X , (0f , 1f , -_ , _+_ , _·_ , min , max , _<_) , is-LOCR) = (X , γ) where
γ : LOCRStructure {ℓ} {ℓ'} X
γ .LOCRStructure.0f = 0f
γ .LOCRStructure.1f = 1f
γ .LOCRStructure._+_ = _+_
γ .LOCRStructure.-_ = -_
γ .LOCRStructure._·_ = _·_
γ .LOCRStructure.min = min
γ .LOCRStructure.max = max
γ .LOCRStructure._<_ = _<_
γ .LOCRStructure.is-LOCR = is-LOCR
LOCRΣIso : Iso LOCRΣ LOCRΣ'
LOCRΣIso = iso LOCRΣ→' LOCRΣ←' (λ _ → refl) (λ _ → refl)
LOCRΣEquiv' = λ(A B : LOCRΣ {ℓ} {ℓ'}) → LOCRΣ→' A ≃[ LOCREquivStr' ] LOCRΣ→' B
LOCRΣEquivIso : {R S : LOCRΣ} → Iso (Σ _ (LOCRΣEquiv R S)) (LOCRΣEquiv' R S)
LOCRΣEquivIso .Iso.fun (Carrier₁≃₂ , locrΣequiv pres0 pres1 isHom-- isHom-+ isHom-· isHom-min isHom-max isHom-<) =
(Carrier₁≃₂ , pres0 , pres1 , isHom-- , isHom-+ , isHom-· , isHom-min , isHom-max , isHom-<)
LOCRΣEquivIso .Iso.inv (Carrier₁≃₂ , pres0 , pres1 , isHom-- , isHom-+ , isHom-· , isHom-min , isHom-max , isHom-<) =
(Carrier₁≃₂ , locrΣequiv pres0 pres1 isHom-- isHom-+ isHom-· isHom-min isHom-max isHom-<)
LOCRΣEquivIso .Iso.rightInv _ = refl
LOCRΣEquivIso .Iso.leftInv _ = refl
-- obtained by SIP-machinery:
-- our previously defined LOCRΣEquiv-record is equivalent to a path
LOCRΣPath : (R S : LOCRΣ {ℓ} {ℓ'}) → Σ _ (LOCRΣEquiv R S) ≃ (R ≡ S)
LOCRΣPath R S =
Σ _ (LOCRΣEquiv R S) ≃⟨ isoToEquiv LOCRΣEquivIso ⟩
LOCRΣEquiv' R S ≃⟨ LOCRΣPath' _ _ ⟩
LOCRΣ→' R ≡ LOCRΣ→' S ≃⟨ isoToEquiv (invIso (congIso LOCRΣIso)) ⟩
R ≡ S ■
| {
"alphanum_fraction": 0.6332730093,
"avg_line_length": 45.5058823529,
"ext": "agda",
"hexsha": "05ff8e69e127c64c2b36943f0abf7edb47761003",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Instances/QuoIntFromIntSIP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Instances/QuoIntFromIntSIP.agda",
"max_line_length": 136,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Instances/QuoIntFromIntSIP.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 3149,
"size": 7736
} |
{-# OPTIONS --universe-polymorphism #-}
-- There was a bug with reducing levels which could leave
-- instantiated metas in the term.
module Issue469 where
open import Common.Level
postulate
∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
E : ∀ {c d} → Set c → Set d → Set (c ⊔ d)
data K : Set where
k₁ : K
P : ∀ {e f} → K → Set e → Set f → Set (e ⊔ f)
P k₁ A B = E A B
postulate
lemma₁ : ∀ {g h} {A : Set g} {B : Set h} → E A B → E A B
lemma₂ :
∀ {i j k l} {A : Set i} {B₁ : A → Set j} {B₂ : A → Set k} →
(∀ x → P l (B₁ x) (B₂ x)) → P l (∃ B₁) (∃ B₂)
lemma₃ : ∀ {m n} {A₁ A₂ : Set m} → E A₁ A₂ → P n A₁ A₂
Foo : ∀ o {A : Set} {B₁ B₂ : A → Set o} →
(∀ x → E (B₁ x) (B₂ x)) → E (∃ B₁) (∃ B₂)
Foo o B₁↔B₂ = lemma₁ (lemma₂ (λ r → lemma₃ (B₁↔B₂ r)))
-- Unsolved constraints:
--
-- o = o
--
-- This constraint shouldn't be too hard to solve...
--
-- I haven't checked, but I suspect that this code type checks using
-- Agda 2.2.10.
| {
"alphanum_fraction": 0.525388601,
"avg_line_length": 24.7435897436,
"ext": "agda",
"hexsha": "5f56a05c54c325e4358a57c4ee53ccaa77f4007c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue469.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue469.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue469.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 403,
"size": 965
} |
{-# OPTIONS --without-K #-}
open import Data.Product using (_×_)
open import Data.String
open import Level
open import Relation.Binary.PropositionalEquality.Core
Valence : Set
Valence = String
data Type : Set where
Outgoing : Type
Incoming : Type
infix 5 _,_⦂_
data Context : Set where
∅ : Context
_,_⦂_ : Context → Valence → Type → Context
_+_ : Context → Context → Context
∅ + Γ₂ = Γ₂
(Γ₁ , x ⦂ A) + Γ₂ = (Γ₁ + Γ₂) , x ⦂ A
rename : Context → (Valence → Valence) → Context
rename ∅ ϕ = ∅
rename (Γ , x ⦂ A) ϕ = rename Γ ϕ , ϕ x ⦂ A
data Agent {ℓ} : Context → Set ℓ → Set (suc ℓ) where
Nil : ∀ {A : Set ℓ} → Agent ∅ A
_∙_ : ∀ {Γ A}
→ (ion : Valence)
→ (com : Type)
→ (x : A)
→ Agent (Γ , ion ⦂ com) A
_∣_ : ∀ {Γ₁ Γ₂} {A B : Set ℓ}
→ Agent Γ₁ A
→ Agent Γ₂ B
→ Agent (Γ₁ + Γ₂) (A × B)
_/_ : ∀ {Γ A}
→ A
→ (ion : Valence)
→ Agent (Γ , ion ⦂ Outgoing) A
_[_] : ∀ {Γ A}
→ (ϕ : Valence → Valence)
→ Agent Γ A
→ Agent (rename Γ ϕ) A
fix_ : ∀ {Γ} {A B : Set ℓ}
→ (f : A → B)
→ Agent Γ A
→ Agent Γ B
infix 4 _∋_⦂_
data _∋_⦂_ : Context → Valence → Type → Set where
Z : ∀ {Γ x A}
-----------------
→ Γ , x ⦂ A ∋ x ⦂ A
S : ∀ {Γ x y A B}
→ x ≢ y
→ Γ ∋ x ⦂ A
-----------------
→ Γ , y ⦂ B ∋ x ⦂ A
data _⊢_⦂_ : Context → Valence → Type → Set where
⊢ : ∀ {Γ x A}
→ Γ ∋ x ⦂ A
----------
→ Γ ⊢ x ⦂ A
| {
"alphanum_fraction": 0.4564204923,
"avg_line_length": 20.3108108108,
"ext": "agda",
"hexsha": "b0835853d1ae3c116a4e83cd65712d84e3fac0df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "riz0id/chemical-abstract-machine",
"max_forks_repo_path": "agda/Language.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "riz0id/chemical-abstract-machine",
"max_issues_repo_path": "agda/Language.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "292023fc36fa67ca4a81cff9a875a325a79b9d6f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "riz0id/chemical-abstract-machine",
"max_stars_repo_path": "agda/Language.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 610,
"size": 1503
} |
module Cats.Category.Wedges where
open import Level using (_⊔_ ; suc)
open import Relation.Binary using (Rel ; IsEquivalence)
open import Cats.Category
open import Cats.Category.Setoids using (Setoids)
open import Cats.Profunctor
open import Cats.Util.Function using (_on_ ; on-isEquivalence)
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈} {D : Category lo′ la′ l≈′}
(F : Profunctor C C D)
where
private
module C = Category C
module D = Category D
module F = Profunctor F
record Wedge : Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) where
open D
field
Apex : Obj
arr : ∀ x → Apex ⇒ pobj F x x
commute : ∀ {a b} (f : a C.⇒ b)
→ pmap₂ F f ∘ arr a ≈ pmap₁ F f ∘ arr b
Obj = Wedge
record _⇒_ (A B : Obj) : Set (lo ⊔ la′ ⊔ l≈′) where
open Wedge
open D
field
θ : Apex A D.⇒ Apex B
commute : ∀ x → arr B x ∘ θ ≈ arr A x
_≈_ : ∀ {A B} → Rel (A ⇒ B) l≈′
_≈_ = D._≈_ on _⇒_.θ
equiv : ∀ {A B} → IsEquivalence (_≈_ {A} {B})
equiv = on-isEquivalence _⇒_.θ D.equiv
id : ∀ {A} → A ⇒ A
id = record
{ θ = D.id
; commute = λ x → D.id-r
}
_∘_ : ∀ {A B C} → B ⇒ C → A ⇒ B → A ⇒ C
_∘_ {A} {B} {C} f g = record
{ θ = θ f ∘S θ g
; commute = λ j →
begin
arr C j ∘S θ f ∘S θ g
≈⟨ D.unassoc ⟩
(arr C j ∘S θ f) ∘S θ g
≈⟨ D.∘-resp-l (commute f j) ⟩
arr B j ∘S θ g
≈⟨ commute g j ⟩
arr A j
∎
}
where
open Wedge using (arr)
open _⇒_
open D using () renaming (_∘_ to _∘S_)
open D.≈-Reasoning
Wedges : Category (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la′ ⊔ l≈′) l≈′
Wedges = record
{ Obj = Obj
; _⇒_ = _⇒_
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; equiv = equiv
; ∘-resp = D.∘-resp
; id-r = D.id-r
; id-l = D.id-l
; assoc = D.assoc
}
| {
"alphanum_fraction": 0.4894067797,
"avg_line_length": 20.085106383,
"ext": "agda",
"hexsha": "32847d4d3116e9036b907c74093cfc9cac1fe999",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Wedges.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Wedges.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Wedges.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 805,
"size": 1888
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Join.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.S1
open import Cubical.HITs.S3
-- redtt version : https://github.com/RedPRL/redtt/blob/master/library/cool/s3-to-join.red
data join {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
inl : A → join A B
inr : B → join A B
push : ∀ a b → inl a ≡ inr b
facek01 : I → I → I → join S¹ S¹
facek01 i j k = hfill (λ l → λ { (j = i0) → push base base (~ l ∧ ~ k)
; (j = i1) → push base base (~ l ∧ ~ k)
; (k = i0) → push (loop j) base (~ l)
; (k = i1) → inl base })
(inS (push base base (~ k))) i
border-contraction : I → I → I → I → join S¹ S¹
border-contraction i j k m =
hfill (λ l → λ { (i = i0) → facek01 i1 j l
; (i = i1) → push base (loop k) (~ l)
; (j = i0) → push base (loop k) (i ∧ ~ l)
; (j = i1) → push base (loop k) (i ∧ ~ l)
; (k = i0) → facek01 (~ i) j l
; (k = i1) → facek01 (~ i) j l })
(inS (push (loop j) (loop k) i)) m
S³→joinS¹S¹ : S³ → join S¹ S¹
S³→joinS¹S¹ base = inl base
S³→joinS¹S¹ (surf j k i) = border-contraction i j k i1
joinS¹S¹→S³ : join S¹ S¹ → S³
joinS¹S¹→S³ (inl x) = base
joinS¹S¹→S³ (inr x) = base
joinS¹S¹→S³ (push base b i) = base
joinS¹S¹→S³ (push (loop x) base i) = base
joinS¹S¹→S³ (push (loop i) (loop j) k) = surf i j k
connection : I → I → I → I → S³
connection i j k l =
hfill (λ m → λ { (k = i0) → joinS¹S¹→S³ (facek01 m i j)
; (k = i1) → base
; (j = i0) → base
; (j = i1) → base
; (i = i0) → base
; (i = i1) → base })
(inS base) l
S³→joinS¹S¹→S³ : ∀ x → joinS¹S¹→S³ (S³→joinS¹S¹ x) ≡ x
S³→joinS¹S¹→S³ base l = base
S³→joinS¹S¹→S³ (surf j k i) l =
hcomp (λ m → λ { (l = i0) → joinS¹S¹→S³ (border-contraction i j k m)
; (l = i1) → surf j k i
; (i = i0) → connection j m l i1
; (i = i1) → base
; (j = i0) → base
; (j = i1) → base
; (k = i0) → connection j m l (~ i)
; (k = i1) → connection j m l (~ i) })
(surf j k i)
joinS¹S¹→S³→joinS¹S¹ : ∀ x → S³→joinS¹S¹ (joinS¹S¹→S³ x) ≡ x
joinS¹S¹→S³→joinS¹S¹ (inl base) l = inl base
joinS¹S¹→S³→joinS¹S¹ (inl (loop i)) l = facek01 i1 i (~ l)
joinS¹S¹→S³→joinS¹S¹ (inr base) l = push base base l
joinS¹S¹→S³→joinS¹S¹ (inr (loop i)) l = push base (loop i) l
joinS¹S¹→S³→joinS¹S¹ (push base base i) l = push base base (i ∧ l)
joinS¹S¹→S³→joinS¹S¹ (push base (loop k) i) l = push base (loop k) (i ∧ l)
joinS¹S¹→S³→joinS¹S¹ (push (loop k) base i) l = facek01 (~ i) k (~ l)
joinS¹S¹→S³→joinS¹S¹ (push (loop j) (loop k) i) l = border-contraction i j k (~ l)
S³IsojoinS¹S¹ : Iso S³ (join S¹ S¹)
Iso.fun S³IsojoinS¹S¹ = S³→joinS¹S¹
Iso.inv S³IsojoinS¹S¹ = joinS¹S¹→S³
Iso.rightInv S³IsojoinS¹S¹ = joinS¹S¹→S³→joinS¹S¹
Iso.leftInv S³IsojoinS¹S¹ = S³→joinS¹S¹→S³
S³≡joinS¹S¹ : S³ ≡ join S¹ S¹
S³≡joinS¹S¹ = isoToPath S³IsojoinS¹S¹
| {
"alphanum_fraction": 0.5348062954,
"avg_line_length": 37.5454545455,
"ext": "agda",
"hexsha": "7cf02157f7bb5befdaaddd48cf5334428efec4d4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Join/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Join/Base.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Join/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1388,
"size": 3304
} |
module _ where
open import Agda.Builtin.Nat
postulate
F : Set → Set
pure : ∀ {A} → A → F A
_<*>_ : ∀ {A B} → F (A → B) → F A → F B
data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
ok : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n))
ok n a as = (| a ∷ as |)
ok₂ : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n))
ok₂ n a as = (| (_∷_ {n = n}) a as |)
fail : ∀ n → F Nat → F (Vec Nat n) → F (Vec Nat (suc n))
fail n a as = (| _∷_ {n = n} a as |)
| {
"alphanum_fraction": 0.462890625,
"avg_line_length": 22.2608695652,
"ext": "agda",
"hexsha": "d0922624bf2304a946c23bab21f382eab02e79c7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/IdiomBracketsImplicit.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/IdiomBracketsImplicit.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/IdiomBracketsImplicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 234,
"size": 512
} |
-- Andreas, 2016-08-02 issue #2127 reported by petercommand
data Test : Set₁ where
field
A : Set
B : Set -- second field necessary to trigger internal error
-- WAS: internal error
-- Should give proper error
| {
"alphanum_fraction": 0.6981981982,
"avg_line_length": 20.1818181818,
"ext": "agda",
"hexsha": "cc44af0f5242ac1ba1157e90e89cf81116cc02f8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2127.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2127.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2127.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 222
} |
-- Andreas, 2011-10-03
-- allow matching on irrelevant data as long as there is at most one
-- matching constructor
{-# OPTIONS --experimental-irrelevance #-}
module MatchIrrelevant where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data NAT : Nat -> Set where
Zero : NAT zero
Suc : (n : Nat) -> NAT n -> NAT (suc n)
-- should succeed:
f : (n : Nat).(N : NAT n) -> Nat
f zero Zero = zero
f (suc n) (Suc .n N) = f n N
-- prove the equations to test reduction
data _≡_ {A : Set}(a : A) : A → Set where
refl : a ≡ a
fzero : f zero Zero ≡ zero
fzero = refl
fsuc : (n : Nat)(N : NAT n) -> f (suc n) (Suc n N) ≡ f n N
fsuc n N = refl
{- DOES NOT YET WORK and probably should never work
fzero' : (N : NAT zero) → f zero N ≡ zero
fzero' N = refl
-}
{-
-- should fail:
f' : (n : Nat).(N : NAT n) -> Nat
f' zero Zero = zero
f' (suc _) (Suc n N) = n
-}
{-
-- should fail:
g : {n : Nat}.(N : NAT n) -> Nat
g Zero = zero
g (Suc _ N) = g N
-}
{-
data Fin : Nat -> Set where
zero : (n : Nat) -> Fin (suc n)
suc : (n : Nat) -> Fin n -> Fin (suc n)
-- should fail:
toNat : {n : Nat} → .(Fin n) -> Nat
toNat (zero n) = zero
toNat (suc n i) = suc (toNat i)
-}
{-
-- fails for other reasons
weak : {n : Nat} → .(Fin n) -> Fin (suc n)
weak (zero n) = zero (suc n)
weak (suc n i) = suc (suc n) (weak i)
-}
| {
"alphanum_fraction": 0.5625473844,
"avg_line_length": 19.3970588235,
"ext": "agda",
"hexsha": "01819c15e4a53c929f5ca2264a8bc0cc65c0e245",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/MatchIrrelevant.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/MatchIrrelevant.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/MatchIrrelevant.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 502,
"size": 1319
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Sigma where
-- Cartesian product
_×_ : ∀ {i j} (A : Type i) (B : Type j) → Type (lmax i j)
A × B = Σ A (λ _ → B)
module _ {i j} {A : Type i} {B : A → Type j} where
pair : (a : A) (b : B a) → Σ A B
pair a b = (a , b)
-- pair= has already been defined
fst= : {ab a'b' : Σ A B} (p : ab == a'b') → (fst ab == fst a'b')
fst= = ap fst
snd= : {ab a'b' : Σ A B} (p : ab == a'b')
→ (snd ab == snd a'b' [ B ↓ fst= p ])
snd= {._} {_} idp = idp
fst=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ fst= (pair= p q) == p
fst=-β idp idp = idp
snd=-β : {a a' : A} (p : a == a')
{b : B a} {b' : B a'} (q : b == b' [ B ↓ p ])
→ snd= (pair= p q) == q [ (λ v → b == b' [ B ↓ v ]) ↓ fst=-β p q ]
snd=-β idp idp = idp
pair=-η : {ab a'b' : Σ A B} (p : ab == a'b')
→ p == pair= (fst= p) (snd= p)
pair=-η {._} {_} idp = idp
pair== : {a a' : A} {p p' : a == a'} (α : p == p')
{b : B a} {b' : B a'} {q : b == b' [ B ↓ p ]} {q' : b == b' [ B ↓ p' ]}
(β : q == q' [ (λ u → b == b' [ B ↓ u ]) ↓ α ])
→ pair= p q == pair= p' q'
pair== idp idp = idp
module _ {i j} {A : Type i} {B : Type j} where
fst×= : {ab a'b' : A × B} (p : ab == a'b') → (fst ab == fst a'b')
fst×= = ap fst
snd×= : {ab a'b' : A × B} (p : ab == a'b')
→ (snd ab == snd a'b')
snd×= = ap snd
fst×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ fst×= (pair×= p q) == p
fst×=-β idp idp = idp
snd×=-β : {a a' : A} (p : a == a')
{b b' : B} (q : b == b')
→ snd×= (pair×= p q) == q
snd×=-β idp idp = idp
module _ {i j} {A : Type i} {B : A → Type j} where
=Σ : (x y : Σ A B) → Type (lmax i j)
=Σ (a , b) (a' , b') = Σ (a == a') (λ p → b == b' [ B ↓ p ])
=Σ-eqv : (x y : Σ A B) → (=Σ x y) ≃ (x == y)
=Σ-eqv x y =
equiv (λ pq → pair= (fst pq) (snd pq)) (λ p → fst= p , snd= p)
(λ p → ! (pair=-η p))
(λ pq → pair= (fst=-β (fst pq) (snd pq)) (snd=-β (fst pq) (snd pq)))
=Σ-path : (x y : Σ A B) → (=Σ x y) == (x == y)
=Σ-path x y = ua (=Σ-eqv x y)
Σ= : ∀ {i j} {A A' : Type i} (p : A == A') {B : A → Type j} {B' : A' → Type j}
(q : B == B' [ (λ X → (X → Type j)) ↓ p ]) → Σ A B == Σ A' B'
Σ= idp idp = idp
abstract
Σ-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j}
→ (has-level n A → ((x : A) → has-level n (P x))
→ has-level n (Σ A P))
Σ-level {n = ⟨-2⟩} p q =
((fst p , (fst (q (fst p)))) ,
(λ y → pair= (snd p _) (from-transp! _ _ (snd (q _) _))))
Σ-level {n = S n} p q = λ x y → equiv-preserves-level (=Σ-eqv x y)
(Σ-level (p _ _)
(λ _ → equiv-preserves-level ((to-transp-equiv _ _)⁻¹) (q _ _ _)))
×-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j}
→ (has-level n A → has-level n B → has-level n (A × B))
×-level pA pB = Σ-level pA (λ x → pB)
-- Equivalences in a Σ-type
equiv-Σ-fst : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k) {h : A → B}
→ is-equiv h → (Σ A (P ∘ h)) ≃ (Σ B P)
equiv-Σ-fst {A = A} {B = B} P {h = h} e = equiv f g f-g g-f
where f : Σ A (P ∘ h) → Σ B P
f (a , r) = (h a , r)
g : Σ B P → Σ A (P ∘ h)
g (b , s) = (is-equiv.g e b , transport P (! (is-equiv.f-g e b)) s)
f-g : ∀ y → f (g y) == y
f-g (b , s) = pair= (is-equiv.f-g e b) (trans-↓ P (is-equiv.f-g e b) s)
g-f : ∀ x → g (f x) == x
g-f (a , r) =
pair= (is-equiv.g-f e a)
(transport (λ q → transport P (! q) r == r [ P ∘ h ↓ is-equiv.g-f e a ])
(is-equiv.adj e a)
(trans-ap-↓ P h (is-equiv.g-f e a) r) )
equiv-Σ-snd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Σ A B ≃ Σ A C
equiv-Σ-snd {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Σ A B → Σ A C
f (a , b) = (a , fst (k a) b)
g : Σ A C → Σ A B
g (a , c) = (a , is-equiv.g (snd (k a)) c)
f-g : ∀ p → f (g p) == p
f-g (a , c) = pair= idp (is-equiv.f-g (snd (k a)) c)
g-f : ∀ p → g (f p) == p
g-f (a , b) = pair= idp (is-equiv.g-f (snd (k a)) b)
-- Two ways of simultaneously applying equivalences in each component.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
equiv-Σ : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Σ A₀ B₀ ≃ Σ A₁ B₁
equiv-Σ u v = Σ A₀ B₀ ≃⟨ equiv-Σ-fst _ (snd (u ⁻¹)) ⁻¹ ⟩
Σ A₁ (B₀ ∘ <– u) ≃⟨ equiv-Σ-snd v ⟩
Σ A₁ B₁ ≃∎
equiv-Σ' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Σ A₀ B₀ ≃ Σ A₁ B₁
equiv-Σ' u v = Σ A₀ B₀ ≃⟨ equiv-Σ-snd v ⟩
Σ A₀ (B₁ ∘ –> u) ≃⟨ equiv-Σ-fst _ (snd u) ⟩
Σ A₁ B₁ ≃∎
-- Implementation of [_∙'_] on Σ
Σ-∙' : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙' pair= p' r) == pair= (p ∙' p') (q ∙'ᵈ r)
Σ-∙' {p = idp} {p' = idp} q idp = idp
-- Implementation of [_∙_] on Σ
Σ-∙ : ∀ {i j} {A : Type i} {B : A → Type j}
{x y z : A} {p : x == y} {p' : y == z}
{u : B x} {v : B y} {w : B z}
(q : u == v [ B ↓ p ]) (r : v == w [ B ↓ p' ])
→ (pair= p q ∙ pair= p' r) == pair= (p ∙ p') (q ∙ᵈ r)
Σ-∙ {p = idp} {p' = idp} idp r = idp
-- Implementation of [_∙'_] on ×
×-∙' : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙' pair×= p' q') == pair×= (p ∙' p') (q ∙' q')
×-∙' idp idp q idp = idp
-- Implementation of [_∙_] on ×
×-∙ : ∀ {i j} {A : Type i} {B : Type j}
{x y z : A} (p : x == y) (p' : y == z)
{u v w : B} (q : u == v) (q' : v == w)
→ (pair×= p q ∙ pair×= p' q') == pair×= (p ∙ p') (q ∙ q')
×-∙ idp idp idp r = idp
-- Special case of [ap-,]
ap-cst,id : ∀ {i j} {A : Type i} (B : A → Type j)
{a : A} {x y : B a} (p : x == y)
→ ap (λ x → _,_ {B = B} a x) p == pair= idp p
ap-cst,id B idp = idp
| {
"alphanum_fraction": 0.3851803493,
"avg_line_length": 33.4808743169,
"ext": "agda",
"hexsha": "f8234599edcd2c48196c2f197aaeabcc37924ccd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sattlerc/HoTT-Agda",
"max_forks_repo_path": "lib/types/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sattlerc/HoTT-Agda",
"max_issues_repo_path": "lib/types/Sigma.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sattlerc/HoTT-Agda",
"max_stars_repo_path": "lib/types/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2923,
"size": 6127
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties about subsets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Subset.Properties where
import Algebra.Definitions as AlgebraicDefinitions
import Algebra.Structures as AlgebraicStructures
open import Algebra.Bundles
import Algebra.Properties.Lattice as L
import Algebra.Properties.DistributiveLattice as DL
import Algebra.Properties.BooleanAlgebra as BA
open import Data.Bool.Base using (not)
open import Data.Bool.Properties
open import Data.Fin.Base using (Fin; suc; zero)
open import Data.Fin.Subset
open import Data.Fin.Properties using (any?; decFinSubset)
open import Data.Nat.Base
import Data.Nat.Properties as ℕₚ
open import Data.Product as Product using (∃; ∄; _×_; _,_; proj₁)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Vec.Base
open import Data.Vec.Properties
open import Function.Base using (_∘_; const; id; case_of_)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (Dec; yes; no)
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary.Sum using (_⊎-dec_)
open import Relation.Unary using (Pred; Decidable; Satisfiable)
------------------------------------------------------------------------
-- Constructor mangling
drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p
drop-there (there x∈p) = x∈p
drop-not-there : ∀ {s n x} {p : Subset n} → suc x ∉ s ∷ p → x ∉ p
drop-not-there x∉sp x∈p = contradiction (there x∈p) x∉sp
drop-∷-⊆ : ∀ {n s₁ s₂} {p₁ p₂ : Subset n} → s₁ ∷ p₁ ⊆ s₂ ∷ p₂ → p₁ ⊆ p₂
drop-∷-⊆ p₁s₁⊆p₂s₂ x∈p₁ = drop-there (p₁s₁⊆p₂s₂ (there x∈p₁))
drop-∷-⊂ : ∀ {n s} {p₁ p₂ : Subset n} → s ∷ p₁ ⊂ s ∷ p₂ → p₁ ⊂ p₂
drop-∷-⊂ {s = inside} (_ , zero , x∈sp₂ , x∉sp₁) = contradiction here x∉sp₁
drop-∷-⊂ {s} (sp₁⊆sp₂ , suc x , there x∈p₂ , x∉sp₁) = drop-∷-⊆ sp₁⊆sp₂ , x , x∈p₂ , drop-not-there x∉sp₁
module _ {n} {p q : Subset n} where
out⊆ : ∀ {y} → p ⊆ q → outside ∷ p ⊆ y ∷ q
out⊆ p⊆q (there ∈p) = there (p⊆q ∈p)
out⊆-⇔ : ∀ {y} → p ⊆ q ⇔ outside ∷ p ⊆ y ∷ q
out⊆-⇔ = equivalence out⊆ drop-∷-⊆
in⊆in : p ⊆ q → inside ∷ p ⊆ inside ∷ q
in⊆in p⊆q here = here
in⊆in p⊆q (there ∈p) = there (p⊆q ∈p)
in⊆in-⇔ : p ⊆ q ⇔ inside ∷ p ⊆ inside ∷ q
in⊆in-⇔ = equivalence in⊆in drop-∷-⊆
s⊆s : ∀ {s} → p ⊆ q → s ∷ p ⊆ s ∷ q
s⊆s p⊆q here = here
s⊆s p⊆q (there ∈p) = there (p⊆q ∈p)
out⊂ : ∀ {y} → p ⊂ q → outside ∷ p ⊂ y ∷ q
out⊂ (p⊆q , x , x∈q , x∉p) = out⊆ p⊆q , suc x , there x∈q , x∉p ∘ drop-there
out⊂in : p ⊆ q → outside ∷ p ⊂ inside ∷ q
out⊂in p⊆q = out⊆ p⊆q , zero , here , λ ()
out⊂in-⇔ : p ⊆ q ⇔ outside ∷ p ⊂ inside ∷ q
out⊂in-⇔ = equivalence out⊂in (drop-∷-⊆ ∘ proj₁)
out⊂out-⇔ : p ⊂ q ⇔ outside ∷ p ⊂ outside ∷ q
out⊂out-⇔ = equivalence out⊂ drop-∷-⊂
in⊂in : p ⊂ q → inside ∷ p ⊂ inside ∷ q
in⊂in (p⊆q , x , x∈q , x∉p) = in⊆in p⊆q , suc x , there x∈q , x∉p ∘ drop-there
in⊂in-⇔ : p ⊂ q ⇔ inside ∷ p ⊂ inside ∷ q
in⊂in-⇔ = equivalence in⊂in drop-∷-⊂
------------------------------------------------------------------------
-- _∈_
infix 4 _∈?_
_∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p)
zero ∈? inside ∷ p = yes here
zero ∈? outside ∷ p = no λ()
suc n ∈? s ∷ p = Dec.map′ there drop-there (n ∈? p)
------------------------------------------------------------------------
-- Empty
drop-∷-Empty : ∀ {n s} {p : Subset n} → Empty (s ∷ p) → Empty p
drop-∷-Empty ¬∃∈ (x , x∈p) = ¬∃∈ (suc x , there x∈p)
Empty-unique : ∀ {n} {p : Subset n} → Empty p → p ≡ ⊥
Empty-unique {_} {[]} ¬∃∈ = refl
Empty-unique {_} {inside ∷ p} ¬∃∈ = contradiction (zero , here) ¬∃∈
Empty-unique {_} {outside ∷ p} ¬∃∈ =
cong (outside ∷_) (Empty-unique (drop-∷-Empty ¬∃∈))
nonempty? : ∀ {n} → Decidable (Nonempty {n})
nonempty? p = any? (_∈? p)
------------------------------------------------------------------------
-- ∣_∣
∣p∣≤n : ∀ {n} (p : Subset n) → ∣ p ∣ ≤ n
∣p∣≤n = count≤n (_≟ inside)
------------------------------------------------------------------------
-- ⊥
∉⊥ : ∀ {n} {x : Fin n} → x ∉ ⊥
∉⊥ (there p) = ∉⊥ p
⊥⊆ : ∀ {n} {p : Subset n} → ⊥ ⊆ p
⊥⊆ x∈⊥ = contradiction x∈⊥ ∉⊥
∣⊥∣≡0 : ∀ n → ∣ ⊥ {n = n} ∣ ≡ 0
∣⊥∣≡0 zero = refl
∣⊥∣≡0 (suc n) = ∣⊥∣≡0 n
------------------------------------------------------------------------
-- ⊤
∈⊤ : ∀ {n} {x : Fin n} → x ∈ ⊤
∈⊤ {x = zero} = here
∈⊤ {x = suc x} = there ∈⊤
⊆⊤ : ∀ {n} {p : Subset n} → p ⊆ ⊤
⊆⊤ = const ∈⊤
∣⊤∣≡n : ∀ n → ∣ ⊤ {n = n} ∣ ≡ n
∣⊤∣≡n zero = refl
∣⊤∣≡n (suc n) = cong suc (∣⊤∣≡n n)
∣p∣≡n⇒p≡⊤ : ∀ {n} {p : Subset n} → ∣ p ∣ ≡ n → p ≡ ⊤
∣p∣≡n⇒p≡⊤ {p = []} _ = refl
∣p∣≡n⇒p≡⊤ {p = outside ∷ p} |p|≡n = contradiction |p|≡n (ℕₚ.<⇒≢ (s≤s (∣p∣≤n p)))
∣p∣≡n⇒p≡⊤ {p = inside ∷ p} |p|≡n = cong (inside ∷_) (∣p∣≡n⇒p≡⊤ (ℕₚ.suc-injective |p|≡n))
------------------------------------------------------------------------
-- ⁅_⁆
x∈⁅x⁆ : ∀ {n} (x : Fin n) → x ∈ ⁅ x ⁆
x∈⁅x⁆ zero = here
x∈⁅x⁆ (suc x) = there (x∈⁅x⁆ x)
x∈⁅y⁆⇒x≡y : ∀ {n x} (y : Fin n) → x ∈ ⁅ y ⁆ → x ≡ y
x∈⁅y⁆⇒x≡y zero here = refl
x∈⁅y⁆⇒x≡y zero (there p) = contradiction p ∉⊥
x∈⁅y⁆⇒x≡y (suc y) (there p) = cong suc (x∈⁅y⁆⇒x≡y y p)
x∈⁅y⁆⇔x≡y : ∀ {n} {x y : Fin n} → x ∈ ⁅ y ⁆ ⇔ x ≡ y
x∈⁅y⁆⇔x≡y {_} {x} {y} = equivalence
(x∈⁅y⁆⇒x≡y y)
(λ x≡y → subst (λ y → x ∈ ⁅ y ⁆) x≡y (x∈⁅x⁆ x))
x≢y⇒x∉⁅y⁆ : ∀ {n} {x y : Fin n} → x ≢ y → x ∉ ⁅ y ⁆
x≢y⇒x∉⁅y⁆ x≢y = x≢y ∘ x∈⁅y⁆⇒x≡y _
x∉⁅y⁆⇒x≢y : ∀ {n} {x y : Fin n} → x ∉ ⁅ y ⁆ → x ≢ y
x∉⁅y⁆⇒x≢y x∉⁅x⁆ refl = x∉⁅x⁆ (x∈⁅x⁆ _)
∣⁅x⁆∣≡1 : ∀ {n} (i : Fin n) → ∣ ⁅ i ⁆ ∣ ≡ 1
∣⁅x⁆∣≡1 {suc n} zero = cong suc (∣⊥∣≡0 n)
∣⁅x⁆∣≡1 {_} (suc i) = ∣⁅x⁆∣≡1 i
------------------------------------------------------------------------
-- _⊆_
⊆-refl : ∀ {n} → Reflexive (_⊆_ {n})
⊆-refl = id
⊆-reflexive : ∀ {n} → _≡_ ⇒ (_⊆_ {n})
⊆-reflexive refl = ⊆-refl
⊆-trans : ∀ {n} → Transitive (_⊆_ {n})
⊆-trans p⊆q q⊆r x∈p = q⊆r (p⊆q x∈p)
⊆-antisym : ∀ {n} → Antisymmetric _≡_ (_⊆_ {n})
⊆-antisym {i = []} {[]} p⊆q q⊆p = refl
⊆-antisym {i = x ∷ xs} {y ∷ ys} p⊆q q⊆p with x | y
... | inside | inside = cong₂ _∷_ refl (⊆-antisym (drop-∷-⊆ p⊆q) (drop-∷-⊆ q⊆p))
... | inside | outside = contradiction (p⊆q here) λ()
... | outside | inside = contradiction (q⊆p here) λ()
... | outside | outside = cong₂ _∷_ refl (⊆-antisym (drop-∷-⊆ p⊆q) (drop-∷-⊆ q⊆p))
⊆-min : ∀ {n} → Minimum (_⊆_ {n}) ⊥
⊆-min (x ∷ xs) (there v∈⊥) = there (⊆-min xs v∈⊥)
⊆-max : ∀ {n} → Maximum (_⊆_ {n}) ⊤
⊆-max (inside ∷ xs) here = here
⊆-max (x ∷ xs) (there v∈xs) = there (⊆-max xs v∈xs)
infix 4 _⊆?_
_⊆?_ : ∀ {n} → B.Decidable (_⊆_ {n = n})
[] ⊆? [] = yes id
outside ∷ p ⊆? y ∷ q = Dec.map out⊆-⇔ (p ⊆? q)
inside ∷ p ⊆? outside ∷ q = no (λ p⊆q → case (p⊆q here) of λ())
inside ∷ p ⊆? inside ∷ q = Dec.map in⊆in-⇔ (p ⊆? q)
module _ (n : ℕ) where
⊆-isPreorder : IsPreorder _≡_ (_⊆_ {n})
⊆-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ⊆-reflexive
; trans = ⊆-trans
}
⊆-preorder : Preorder _ _ _
⊆-preorder = record
{ isPreorder = ⊆-isPreorder
}
⊆-isPartialOrder : IsPartialOrder _≡_ (_⊆_ {n})
⊆-isPartialOrder = record
{ isPreorder = ⊆-isPreorder
; antisym = ⊆-antisym
}
⊆-poset : Poset _ _ _
⊆-poset = record
{ isPartialOrder = ⊆-isPartialOrder
}
p⊆q⇒∣p∣≤∣q∣ : ∀ {n} {p q : Subset n} → p ⊆ q → ∣ p ∣ ≤ ∣ q ∣
p⊆q⇒∣p∣≤∣q∣ {p = []} {[]} p⊆q = z≤n
p⊆q⇒∣p∣≤∣q∣ {p = outside ∷ p} {outside ∷ q} p⊆q = p⊆q⇒∣p∣≤∣q∣ (drop-∷-⊆ p⊆q)
p⊆q⇒∣p∣≤∣q∣ {p = outside ∷ p} {inside ∷ q} p⊆q = ℕₚ.≤-step (p⊆q⇒∣p∣≤∣q∣ (drop-∷-⊆ p⊆q))
p⊆q⇒∣p∣≤∣q∣ {p = inside ∷ p} {outside ∷ q} p⊆q = contradiction (p⊆q here) λ()
p⊆q⇒∣p∣≤∣q∣ {p = inside ∷ p} {inside ∷ q} p⊆q = s≤s (p⊆q⇒∣p∣≤∣q∣ (drop-∷-⊆ p⊆q))
------------------------------------------------------------------------
-- _⊂_
p⊂q⇒p⊆q : ∀ {n} → {p q : Subset n} → p ⊂ q → p ⊆ q
p⊂q⇒p⊆q = proj₁
⊂-trans : ∀ {n} → Transitive (_⊂_ {n})
⊂-trans (p⊆q , x , x∈q , x∉p) (q⊆r , _ , _ , _) = ⊆-trans p⊆q q⊆r , x , q⊆r x∈q , x∉p
⊂-⊆-trans : ∀ {n} → Trans {A = Subset n} _⊂_ _⊆_ _⊂_
⊂-⊆-trans (p⊆q , x , x∈q , x∉p) q⊆r = ⊆-trans p⊆q q⊆r , x , q⊆r x∈q , x∉p
⊆-⊂-trans : ∀ {n} → Trans {A = Subset n} _⊆_ _⊂_ _⊂_
⊆-⊂-trans p⊆q (q⊆r , x , x∈r , x∉q) = ⊆-trans p⊆q q⊆r , x , x∈r , x∉q ∘ p⊆q
⊂-irref : ∀ {n} → Irreflexive _≡_ (_⊂_ {n})
⊂-irref refl (_ , x , x∈p , x∉q) = contradiction x∈p x∉q
⊂-antisym : ∀ {n} → Antisymmetric _≡_ (_⊂_ {n})
⊂-antisym (p⊆q , _) (q⊆p , _) = ⊆-antisym p⊆q q⊆p
⊂-asymmetric : ∀ {n} → Asymmetric (_⊂_ {n})
⊂-asymmetric (p⊆q , _) (_ , x , x∈p , x∉q) = contradiction (p⊆q x∈p) x∉q
infix 4 _⊂?_
_⊂?_ : ∀ {n} → B.Decidable (_⊂_ {n = n})
[] ⊂? [] = no λ ()
outside ∷ p ⊂? outside ∷ q = Dec.map out⊂out-⇔ (p ⊂? q)
outside ∷ p ⊂? inside ∷ q = Dec.map out⊂in-⇔ (p ⊆? q)
inside ∷ p ⊂? outside ∷ q = no (λ {(p⊆q , _) → case (p⊆q here) of λ ()})
inside ∷ p ⊂? inside ∷ q = Dec.map in⊂in-⇔ (p ⊂? q)
module _ (n : ℕ) where
⊂-isStrictPartialOrder : IsStrictPartialOrder _≡_ (_⊂_ {n})
⊂-isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = ⊂-irref
; trans = ⊂-trans
; <-resp-≈ = (λ {refl → id}) , (λ {refl → id})
}
⊂-strictPartialOrder : StrictPartialOrder _ _ _
⊂-strictPartialOrder = record
{ isStrictPartialOrder = ⊂-isStrictPartialOrder
}
⊂-isDecStrictPartialOrder : IsDecStrictPartialOrder _≡_ (_⊂_ {n})
⊂-isDecStrictPartialOrder = record
{ isStrictPartialOrder = ⊂-isStrictPartialOrder
; _≟_ = ≡-dec _≟_
; _<?_ = _⊂?_
}
⊂-decStrictPartialOrder : DecStrictPartialOrder _ _ _
⊂-decStrictPartialOrder = record
{ isDecStrictPartialOrder = ⊂-isDecStrictPartialOrder
}
p⊂q⇒∣p∣<∣q∣ : ∀ {n} → {p q : Subset n} → p ⊂ q → ∣ p ∣ < ∣ q ∣
p⊂q⇒∣p∣<∣q∣ {p = outside ∷ p} {outside ∷ q} op⊂oq@(_ , _ , _ , _) = p⊂q⇒∣p∣<∣q∣ (drop-∷-⊂ op⊂oq)
p⊂q⇒∣p∣<∣q∣ {p = outside ∷ p} {inside ∷ q} (op⊆iq , _ , _ , _) = s≤s (p⊆q⇒∣p∣≤∣q∣ (drop-∷-⊆ op⊆iq))
p⊂q⇒∣p∣<∣q∣ {p = inside ∷ p} {outside ∷ q} (ip⊆oq , _ , _ , _) = contradiction (ip⊆oq here) (λ ())
p⊂q⇒∣p∣<∣q∣ {p = inside ∷ p} {inside ∷ q} (_ , zero , _ , x∉ip) = contradiction here x∉ip
p⊂q⇒∣p∣<∣q∣ {p = inside ∷ p} {inside ∷ q} ip⊂iq@(_ , suc x , _ , _) = s≤s (p⊂q⇒∣p∣<∣q∣ (drop-∷-⊂ ip⊂iq))
------------------------------------------------------------------------
-- ∁
x∈p⇒x∉∁p : ∀ {n x} {p : Subset n} → x ∈ p → x ∉ ∁ p
x∈p⇒x∉∁p (there x∈p) (there x∈∁p) = x∈p⇒x∉∁p x∈p x∈∁p
x∈∁p⇒x∉p : ∀ {n x} {p : Subset n} → x ∈ ∁ p → x ∉ p
x∈∁p⇒x∉p (there x∈∁p) (there x∈p) = x∈∁p⇒x∉p x∈∁p x∈p
x∉∁p⇒x∈p : ∀ {n x} {p : Subset n} → x ∉ ∁ p → x ∈ p
x∉∁p⇒x∈p {x = zero} {outside ∷ p} x∉∁p = contradiction here x∉∁p
x∉∁p⇒x∈p {x = zero} {inside ∷ p} x∉∁p = here
x∉∁p⇒x∈p {x = suc x} {_ ∷ p} x∉∁p = there (x∉∁p⇒x∈p (x∉∁p ∘ there))
x∉p⇒x∈∁p : ∀ {n x} {p : Subset n} → x ∉ p → x ∈ ∁ p
x∉p⇒x∈∁p {x = zero} {outside ∷ p} x∉p = here
x∉p⇒x∈∁p {x = zero} {inside ∷ p} x∉p = contradiction here x∉p
x∉p⇒x∈∁p {x = suc x} {_ ∷ p} x∉p = there (x∉p⇒x∈∁p (x∉p ∘ there))
p∪∁p≡⊤ : ∀ {n} (p : Subset n) → p ∪ ∁ p ≡ ⊤
p∪∁p≡⊤ [] = refl
p∪∁p≡⊤ (outside ∷ p) = cong (inside ∷_) (p∪∁p≡⊤ p)
p∪∁p≡⊤ (inside ∷ p) = cong (inside ∷_) (p∪∁p≡⊤ p)
∣∁p∣≡n∸∣p∣ : ∀ {n} (p : Subset n) → ∣ ∁ p ∣ ≡ n ∸ ∣ p ∣
∣∁p∣≡n∸∣p∣ [] = refl
∣∁p∣≡n∸∣p∣ (inside ∷ p) = ∣∁p∣≡n∸∣p∣ p
∣∁p∣≡n∸∣p∣ (outside ∷ p) = begin
suc ∣ ∁ p ∣ ≡⟨ cong suc (∣∁p∣≡n∸∣p∣ p) ⟩
suc (_ ∸ ∣ p ∣) ≡⟨ sym (ℕₚ.+-∸-assoc 1 (∣p∣≤n p)) ⟩
suc _ ∸ ∣ p ∣ ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- _∩_
module _ {n : ℕ} where
open AlgebraicDefinitions {A = Subset n} _≡_
∩-assoc : Associative _∩_
∩-assoc = zipWith-assoc ∧-assoc
∩-comm : Commutative _∩_
∩-comm = zipWith-comm ∧-comm
∩-idem : Idempotent _∩_
∩-idem = zipWith-idem ∧-idem
∩-identityˡ : LeftIdentity ⊤ _∩_
∩-identityˡ = zipWith-identityˡ ∧-identityˡ
∩-identityʳ : RightIdentity ⊤ _∩_
∩-identityʳ = zipWith-identityʳ ∧-identityʳ
∩-identity : Identity ⊤ _∩_
∩-identity = ∩-identityˡ , ∩-identityʳ
∩-zeroˡ : LeftZero ⊥ _∩_
∩-zeroˡ = zipWith-zeroˡ ∧-zeroˡ
∩-zeroʳ : RightZero ⊥ _∩_
∩-zeroʳ = zipWith-zeroʳ ∧-zeroʳ
∩-zero : Zero ⊥ _∩_
∩-zero = ∩-zeroˡ , ∩-zeroʳ
∩-inverseˡ : LeftInverse ⊥ ∁ _∩_
∩-inverseˡ = zipWith-inverseˡ ∧-inverseˡ
∩-inverseʳ : RightInverse ⊥ ∁ _∩_
∩-inverseʳ = zipWith-inverseʳ ∧-inverseʳ
∩-inverse : Inverse ⊥ ∁ _∩_
∩-inverse = ∩-inverseˡ , ∩-inverseʳ
module _ (n : ℕ) where
open AlgebraicStructures {A = Subset n} _≡_
∩-isMagma : IsMagma _∩_
∩-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∩_
}
∩-magma : Magma _ _
∩-magma = record
{ isMagma = ∩-isMagma
}
∩-isSemigroup : IsSemigroup _∩_
∩-isSemigroup = record
{ isMagma = ∩-isMagma
; assoc = ∩-assoc
}
∩-semigroup : Semigroup _ _
∩-semigroup = record
{ isSemigroup = ∩-isSemigroup
}
∩-isBand : IsBand _∩_
∩-isBand = record
{ isSemigroup = ∩-isSemigroup
; idem = ∩-idem
}
∩-band : Band _ _
∩-band = record
{ isBand = ∩-isBand
}
∩-isSemilattice : IsSemilattice _∩_
∩-isSemilattice = record
{ isBand = ∩-isBand
; comm = ∩-comm
}
∩-semilattice : Semilattice _ _
∩-semilattice = record
{ isSemilattice = ∩-isSemilattice
}
∩-isMonoid : IsMonoid _∩_ ⊤
∩-isMonoid = record
{ isSemigroup = ∩-isSemigroup
; identity = ∩-identity
}
∩-monoid : Monoid _ _
∩-monoid = record
{ isMonoid = ∩-isMonoid
}
∩-isCommutativeMonoid : IsCommutativeMonoid _∩_ ⊤
∩-isCommutativeMonoid = record
{ isMonoid = ∩-isMonoid
; comm = ∩-comm
}
∩-commutativeMonoid : CommutativeMonoid _ _
∩-commutativeMonoid = record
{ isCommutativeMonoid = ∩-isCommutativeMonoid
}
∩-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∩_ ⊤
∩-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∩-isCommutativeMonoid
; idem = ∩-idem
}
∩-idempotentCommutativeMonoid : IdempotentCommutativeMonoid _ _
∩-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∩-isIdempotentCommutativeMonoid
}
p∩q⊆p : ∀ {n} (p q : Subset n) → p ∩ q ⊆ p
p∩q⊆p [] [] x∈p∩q = x∈p∩q
p∩q⊆p (inside ∷ p) (inside ∷ q) here = here
p∩q⊆p (inside ∷ p) (_ ∷ q) (there ∈p∩q) = there (p∩q⊆p p q ∈p∩q)
p∩q⊆p (outside ∷ p) (_ ∷ q) (there ∈p∩q) = there (p∩q⊆p p q ∈p∩q)
p∩q⊆q : ∀ {n} (p q : Subset n) → p ∩ q ⊆ q
p∩q⊆q p q rewrite ∩-comm p q = p∩q⊆p q p
x∈p∩q⁺ : ∀ {n} {p q : Subset n} {x} → x ∈ p × x ∈ q → x ∈ p ∩ q
x∈p∩q⁺ (here , here) = here
x∈p∩q⁺ (there x∈p , there x∈q) = there (x∈p∩q⁺ (x∈p , x∈q))
x∈p∩q⁻ : ∀ {n} (p q : Subset n) {x} → x ∈ p ∩ q → x ∈ p × x ∈ q
x∈p∩q⁻ (inside ∷ p) (inside ∷ q) here = here , here
x∈p∩q⁻ (s ∷ p) (t ∷ q) (there x∈p∩q) =
Product.map there there (x∈p∩q⁻ p q x∈p∩q)
∩⇔× : ∀ {n} {p q : Subset n} {x} → x ∈ p ∩ q ⇔ (x ∈ p × x ∈ q)
∩⇔× = equivalence (x∈p∩q⁻ _ _) x∈p∩q⁺
module _ {n} (p q : Subset n) where
∣p∩q∣≤∣p∣ : ∣ p ∩ q ∣ ≤ ∣ p ∣
∣p∩q∣≤∣p∣ = p⊆q⇒∣p∣≤∣q∣ (p∩q⊆p p q)
∣p∩q∣≤∣q∣ : ∣ p ∩ q ∣ ≤ ∣ q ∣
∣p∩q∣≤∣q∣ = p⊆q⇒∣p∣≤∣q∣ (p∩q⊆q p q)
∣p∩q∣≤∣p∣⊓∣q∣ : ∣ p ∩ q ∣ ≤ ∣ p ∣ ⊓ ∣ q ∣
∣p∩q∣≤∣p∣⊓∣q∣ = ℕₚ.⊓-pres-m≤ ∣p∩q∣≤∣p∣ ∣p∩q∣≤∣q∣
------------------------------------------------------------------------
-- _∪_
module _ {n : ℕ} where
open AlgebraicDefinitions {A = Subset n} _≡_
∪-assoc : Associative _∪_
∪-assoc = zipWith-assoc ∨-assoc
∪-comm : Commutative _∪_
∪-comm = zipWith-comm ∨-comm
∪-idem : Idempotent _∪_
∪-idem = zipWith-idem ∨-idem
∪-identityˡ : LeftIdentity ⊥ _∪_
∪-identityˡ = zipWith-identityˡ ∨-identityˡ
∪-identityʳ : RightIdentity ⊥ _∪_
∪-identityʳ = zipWith-identityʳ ∨-identityʳ
∪-identity : Identity ⊥ _∪_
∪-identity = ∪-identityˡ , ∪-identityʳ
∪-zeroˡ : LeftZero ⊤ _∪_
∪-zeroˡ = zipWith-zeroˡ ∨-zeroˡ
∪-zeroʳ : RightZero ⊤ _∪_
∪-zeroʳ = zipWith-zeroʳ ∨-zeroʳ
∪-zero : Zero ⊤ _∪_
∪-zero = ∪-zeroˡ , ∪-zeroʳ
∪-inverseˡ : LeftInverse ⊤ ∁ _∪_
∪-inverseˡ = zipWith-inverseˡ ∨-inverseˡ
∪-inverseʳ : RightInverse ⊤ ∁ _∪_
∪-inverseʳ = zipWith-inverseʳ ∨-inverseʳ
∪-inverse : Inverse ⊤ ∁ _∪_
∪-inverse = ∪-inverseˡ , ∪-inverseʳ
∪-distribˡ-∩ : _∪_ DistributesOverˡ _∩_
∪-distribˡ-∩ = zipWith-distribˡ ∨-distribˡ-∧
∪-distribʳ-∩ : _∪_ DistributesOverʳ _∩_
∪-distribʳ-∩ = zipWith-distribʳ ∨-distribʳ-∧
∪-distrib-∩ : _∪_ DistributesOver _∩_
∪-distrib-∩ = ∪-distribˡ-∩ , ∪-distribʳ-∩
∩-distribˡ-∪ : _∩_ DistributesOverˡ _∪_
∩-distribˡ-∪ = zipWith-distribˡ ∧-distribˡ-∨
∩-distribʳ-∪ : _∩_ DistributesOverʳ _∪_
∩-distribʳ-∪ = zipWith-distribʳ ∧-distribʳ-∨
∩-distrib-∪ : _∩_ DistributesOver _∪_
∩-distrib-∪ = ∩-distribˡ-∪ , ∩-distribʳ-∪
∪-abs-∩ : _∪_ Absorbs _∩_
∪-abs-∩ = zipWith-absorbs ∨-abs-∧
∩-abs-∪ : _∩_ Absorbs _∪_
∩-abs-∪ = zipWith-absorbs ∧-abs-∨
module _ (n : ℕ) where
open AlgebraicStructures {A = Subset n} _≡_
∪-isMagma : IsMagma _∪_
∪-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∪_
}
∪-magma : Magma _ _
∪-magma = record
{ isMagma = ∪-isMagma
}
∪-isSemigroup : IsSemigroup _∪_
∪-isSemigroup = record
{ isMagma = ∪-isMagma
; assoc = ∪-assoc
}
∪-semigroup : Semigroup _ _
∪-semigroup = record
{ isSemigroup = ∪-isSemigroup
}
∪-isBand : IsBand _∪_
∪-isBand = record
{ isSemigroup = ∪-isSemigroup
; idem = ∪-idem
}
∪-band : Band _ _
∪-band = record
{ isBand = ∪-isBand
}
∪-isSemilattice : IsSemilattice _∪_
∪-isSemilattice = record
{ isBand = ∪-isBand
; comm = ∪-comm
}
∪-semilattice : Semilattice _ _
∪-semilattice = record
{ isSemilattice = ∪-isSemilattice
}
∪-isMonoid : IsMonoid _∪_ ⊥
∪-isMonoid = record
{ isSemigroup = ∪-isSemigroup
; identity = ∪-identity
}
∪-monoid : Monoid _ _
∪-monoid = record
{ isMonoid = ∪-isMonoid
}
∪-isCommutativeMonoid : IsCommutativeMonoid _∪_ ⊥
∪-isCommutativeMonoid = record
{ isMonoid = ∪-isMonoid
; comm = ∪-comm
}
∪-commutativeMonoid : CommutativeMonoid _ _
∪-commutativeMonoid = record
{ isCommutativeMonoid = ∪-isCommutativeMonoid
}
∪-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∪_ ⊥
∪-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∪-isCommutativeMonoid
; idem = ∪-idem
}
∪-idempotentCommutativeMonoid : IdempotentCommutativeMonoid _ _
∪-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∪-isIdempotentCommutativeMonoid
}
∪-∩-isLattice : IsLattice _∪_ _∩_
∪-∩-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∪-comm
; ∨-assoc = ∪-assoc
; ∨-cong = cong₂ _∪_
; ∧-comm = ∩-comm
; ∧-assoc = ∩-assoc
; ∧-cong = cong₂ _∩_
; absorptive = ∪-abs-∩ , ∩-abs-∪
}
∪-∩-lattice : Lattice _ _
∪-∩-lattice = record
{ isLattice = ∪-∩-isLattice
}
∪-∩-isDistributiveLattice : IsDistributiveLattice _∪_ _∩_
∪-∩-isDistributiveLattice = record
{ isLattice = ∪-∩-isLattice
; ∨-distribʳ-∧ = ∪-distribʳ-∩
}
∪-∩-distributiveLattice : DistributiveLattice _ _
∪-∩-distributiveLattice = record
{ isDistributiveLattice = ∪-∩-isDistributiveLattice
}
∪-∩-isBooleanAlgebra : IsBooleanAlgebra _∪_ _∩_ ∁ ⊤ ⊥
∪-∩-isBooleanAlgebra = record
{ isDistributiveLattice = ∪-∩-isDistributiveLattice
; ∨-complementʳ = ∪-inverseʳ
; ∧-complementʳ = ∩-inverseʳ
; ¬-cong = cong ∁
}
∪-∩-booleanAlgebra : BooleanAlgebra _ _
∪-∩-booleanAlgebra = record
{ isBooleanAlgebra = ∪-∩-isBooleanAlgebra
}
∩-∪-isLattice : IsLattice _∩_ _∪_
∩-∪-isLattice = L.∧-∨-isLattice ∪-∩-lattice
∩-∪-lattice : Lattice _ _
∩-∪-lattice = L.∧-∨-lattice ∪-∩-lattice
∩-∪-isDistributiveLattice : IsDistributiveLattice _∩_ _∪_
∩-∪-isDistributiveLattice = DL.∧-∨-isDistributiveLattice ∪-∩-distributiveLattice
∩-∪-distributiveLattice : DistributiveLattice _ _
∩-∪-distributiveLattice = DL.∧-∨-distributiveLattice ∪-∩-distributiveLattice
∩-∪-isBooleanAlgebra : IsBooleanAlgebra _∩_ _∪_ ∁ ⊥ ⊤
∩-∪-isBooleanAlgebra = BA.∧-∨-isBooleanAlgebra ∪-∩-booleanAlgebra
∩-∪-booleanAlgebra : BooleanAlgebra _ _
∩-∪-booleanAlgebra = BA.∧-∨-booleanAlgebra ∪-∩-booleanAlgebra
p⊆p∪q : ∀ {n p} (q : Subset n) → p ⊆ p ∪ q
p⊆p∪q (s ∷ q) here = here
p⊆p∪q (s ∷ q) (there x∈p) = there (p⊆p∪q q x∈p)
q⊆p∪q : ∀ {n} (p q : Subset n) → q ⊆ p ∪ q
q⊆p∪q p q rewrite ∪-comm p q = p⊆p∪q p
x∈p∪q⁻ : ∀ {n} (p q : Subset n) {x} → x ∈ p ∪ q → x ∈ p ⊎ x ∈ q
x∈p∪q⁻ (inside ∷ p) (t ∷ q) here = inj₁ here
x∈p∪q⁻ (outside ∷ p) (inside ∷ q) here = inj₂ here
x∈p∪q⁻ (s ∷ p) (t ∷ q) (there x∈p∪q) =
Sum.map there there (x∈p∪q⁻ p q x∈p∪q)
x∈p∪q⁺ : ∀ {n} {p q : Subset n} {x} → x ∈ p ⊎ x ∈ q → x ∈ p ∪ q
x∈p∪q⁺ (inj₁ x∈p) = p⊆p∪q _ x∈p
x∈p∪q⁺ (inj₂ x∈q) = q⊆p∪q _ _ x∈q
∪⇔⊎ : ∀ {n} {p q : Subset n} {x} → x ∈ p ∪ q ⇔ (x ∈ p ⊎ x ∈ q)
∪⇔⊎ = equivalence (x∈p∪q⁻ _ _) x∈p∪q⁺
module _ {n} (p q : Subset n) where
∣p∣≤∣p∪q∣ : ∣ p ∣ ≤ ∣ p ∪ q ∣
∣p∣≤∣p∪q∣ = p⊆q⇒∣p∣≤∣q∣ (p⊆p∪q {p = p} q)
∣q∣≤∣p∪q∣ : ∣ q ∣ ≤ ∣ p ∪ q ∣
∣q∣≤∣p∪q∣ = p⊆q⇒∣p∣≤∣q∣ (q⊆p∪q p q)
∣p∣⊔∣q∣≤∣p∪q∣ : ∣ p ∣ ⊔ ∣ q ∣ ≤ ∣ p ∪ q ∣
∣p∣⊔∣q∣≤∣p∪q∣ = ℕₚ.⊔-pres-≤m ∣p∣≤∣p∪q∣ ∣q∣≤∣p∪q∣
------------------------------------------------------------------------
-- Lift
Lift? : ∀ {n p} {P : Pred (Fin n) p} → Decidable P → Decidable (Lift P)
Lift? P? p = decFinSubset (_∈? p) (λ {x} _ → P? x)
------------------------------------------------------------------------
-- Other
module _ {p} {P : Pred (Subset zero) p} where
∃-Subset-zero : ∃⟨ P ⟩ → P []
∃-Subset-zero ([] , P[]) = P[]
∃-Subset-[]-⇔ : P [] ⇔ ∃⟨ P ⟩
∃-Subset-[]-⇔ = equivalence ([] ,_) ∃-Subset-zero
module _ {p n} {P : Pred (Subset (suc n)) p} where
∃-Subset-suc : ∃⟨ P ⟩ → ∃⟨ P ∘ (inside ∷_) ⟩ ⊎ ∃⟨ P ∘ (outside ∷_) ⟩
∃-Subset-suc (outside ∷ p , Pop) = inj₂ (p , Pop)
∃-Subset-suc ( inside ∷ p , Pip) = inj₁ (p , Pip)
∃-Subset-∷-⇔ : (∃⟨ P ∘ (inside ∷_) ⟩ ⊎ ∃⟨ P ∘ (outside ∷_) ⟩) ⇔ ∃⟨ P ⟩
∃-Subset-∷-⇔ = equivalence
[ Product.map _ id , Product.map _ id ]′
∃-Subset-suc
anySubset? : ∀ {p n} {P : Pred (Subset n) p} → Decidable P → Dec ∃⟨ P ⟩
anySubset? {n = zero} P? = Dec.map ∃-Subset-[]-⇔ (P? [])
anySubset? {n = suc n} P? =
Dec.map ∃-Subset-∷-⇔ (anySubset? (P? ∘ ( inside ∷_)) ⊎-dec
anySubset? (P? ∘ (outside ∷_)))
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 1.3
p⊆q⇒∣p∣<∣q∣ = p⊆q⇒∣p∣≤∣q∣
{-# WARNING_ON_USAGE p⊆q⇒∣p∣<∣q∣
"Warning: p⊆q⇒∣p∣<∣q∣ was deprecated in v1.3.
Please use p⊆q⇒∣p∣≤∣q∣ instead."
#-}
| {
"alphanum_fraction": 0.4992130673,
"avg_line_length": 29.7582278481,
"ext": "agda",
"hexsha": "b0aa39503600fb179c6a008547b906e5b81f84a0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Fin/Subset/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Fin/Subset/Properties.agda",
"max_line_length": 113,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Fin/Subset/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 12260,
"size": 23509
} |
{-# OPTIONS --universe-polymorphism #-}
module tests.Literals where
open import Prelude.Nat
open import Prelude.Float
open import Prelude.Char
open import Prelude.String
open import Prelude.Unit
open import Prelude.IO
afloat : Float
afloat = 1.23
astring : String
astring = "abc"
achar : Char
achar = 'd'
anat : Nat
anat = 123
main : IO Unit
main =
printFloat afloat ,,
putStr astring ,,
printChar achar ,,
printNat anat ,,
putStrLn ""
| {
"alphanum_fraction": 0.6950959488,
"avg_line_length": 15.6333333333,
"ext": "agda",
"hexsha": "f84a10756e59fcb3dda4a64571e5b1bf3e308be4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/epic/tests/Literals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/epic/tests/Literals.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/epic/tests/Literals.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 137,
"size": 469
} |
import Lvl
module Structure.Category {ℓₒ ℓₘ ℓₑ : Lvl.Level} where
open import Functional using (swap)
open import Logic
open import Logic.Propositional
import Structure.Categorical.Names as Names
open import Structure.Categorical.Properties
open import Structure.Semicategory{ℓₒ}{ℓₘ}{ℓₑ}
open import Structure.Operator
import Structure.Relator.Names as Names
open import Structure.Relator.Properties
open import Structure.Setoid
open import Type
-- Obj is the collection of objects.
-- _⟶_ is the collection of morphisms.
module _
{Obj : Type{ℓₒ}}
(_⟶_ : Obj → Obj → Type{ℓₘ})
⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(x ⟶ y) ⦄
where
-- A category is a structure on a relation called a morphism.
--
-- It can be seen as a generalization of the structure in functions between a collection of types/sets.
-- More specifically, the algebraic properties of functions regarding composition and the identity function.
-- In this case, sets are objects and functions are morphisms.
-- See `Type.Category`.
--
-- It can also be seen as a generalized algebraic structure, or more specifically a generalization of monoids.
-- The type of a monoid's operator is usually restricted to a single type, but a category allows it to vary (depending on the rules of morphism instead).
-- (One can loosely call a category to be a monoid without the "closed" property of algebraic structures).
-- In this case, the binary operation is (_∘_) and the laws are the usual identity and associative laws.
-- See `Structure.Category.Monoid`.
--
-- A category can also be constructed by letting objects be the models of algebraic structures, and morphisms the homomorphisms of the respective algebraic structure.
--
-- In the case of categories being the objects in a category, functors are homomorphisms, and therefore also the morphisms.
-- See `Structure.Category.Category`.
--
-- An alternative interpretation of the definition:
-- A type (Obj) and a binary relation (Morphism) on this type is a category when:
-- • The relator is transitive.
-- • The relator is reflexive.
-- • The reflexivity proof inside the transitivity proof does not result in a new proof.
-- • Chains of the transitivity proofs can be applied in any order and the resulting proof will be the same.
-- See `Relator.Equals.Category` for an example of this kind of binary relation.
--
-- A more concrete interpretation of the binary relation one is that a category describes a graph.
-- Vertices are objects and morphisms are paths between the vertices.
-- The operator joins two paths into one, and the identity is a loop (the empty path).
-- See `Graph.Category`.
--
-- A category is the common pattern seen in all the examples above.
record Category : Stmt{ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ} where
field
-- Existence of morphisms constructed by connecting two morphisms (The composition of two morphisms).
-- Existence of a binary operator on morphisms connecting the ends of two morphisms.
-- Also a proof of transitivity for the binary relator (_⟶_).
-- Note that this is the operator like the operators in other algebraic structures with binary operators
-- ∀{x y z : Obj} → (y ⟶ z) → (x ⟶ y) → (x ⟶ z)
_∘_ : Names.SwappedTransitivity(_⟶_)
-- Existence of a morphism connected to itself (The identity morphism).
-- Also a proof of reflexivity for the binary relator (_⟶_).
-- ∀{x : Obj} → (x ⟶ x)
id : Names.Reflexivity(_⟶_)
infixr 20 _∘_
field
-- The binary operator respects the equivalence relation.
⦃ binaryOperator ⦄ : ∀{x y z} → BinaryOperator(_∘_ {x}{y}{z})
-- The binary operator on mophisms is associative.
-- Or, the order of applying two transitivies on three proofs does not matter. It is the same proof.
-- ∀{x y z w : Obj}{f : y ⟶ x}{g : z ⟶ y}{h : w ⟶ z} → ((f ∘ g) ∘ h ≡ f ∘ (g ∘ h))
⦃ associativity ⦄ : Morphism.Associativity(\{x} → _∘_ {x})
-- The morphism `id` behaves like aa identity element with respect to the binary operator.
-- Or, applying the proof of reflexivity on transitivity is an identity function for proofs.
⦃ identity ⦄ : Morphism.Identity(_∘_)(\{x} → id{x})
instance
identityₗ : Morphism.Identityₗ(_∘_)(\{x} → id{x})
identityₗ = [∧]-elimₗ identity
instance
identityᵣ : Morphism.Identityᵣ(_∘_)(\{x} → id{x})
identityᵣ = [∧]-elimᵣ identity
-- As stated in `id`, this can be interpreted as proof of reflexivity when `Morphism` is interpreted as a binary relation.
morphism-reflexivity : Reflexivity(_⟶_)
morphism-reflexivity = intro id
semicategory : Semicategory(_⟶_)
Semicategory._∘_ semicategory = _∘_
Semicategory.binaryOperator semicategory = binaryOperator
Semicategory.associativity semicategory = associativity
open Semicategory(semicategory) hiding (_∘_ ; binaryOperator ; associativity) public
-- A category object can be used when one refers to a category as an object.
-- Examples of usage are in functors (morphism between categories) or in equivalences of categories.
record CategoryObject : Stmt{Lvl.𝐒(ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ)} where
constructor intro
field
{Object} : Type{ℓₒ}
{Morphism} : Object → Object → Type{ℓₘ}
⦃ morphism-equiv ⦄ : ∀{x y} → Equiv{ℓₑ}(Morphism x y)
category : Category(Morphism)
instance
category-instance = category
| {
"alphanum_fraction": 0.6995064888,
"avg_line_length": 47.1637931034,
"ext": "agda",
"hexsha": "9588bfaa0788917bd42f369a8a2b81bf155843f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category.agda",
"max_line_length": 168,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1503,
"size": 5471
} |
{-# OPTIONS --without-K --rewriting #-}
module PropT where
open import Base
open import lib.Basics
open import lib.types.Sigma
open import lib.NType2
open import lib.types.Truncation
open import lib.types.Lift
_is-contractible : {i : ULevel} (A : Type i) → Type i
_is-contractible = is-contr
⊤-is-contr : ⊤ is-contractible
⊤-is-contr = has-level-in (unit , (λ {unit → refl}))
contr-≃-⊤ : {i : ULevel} {A : Type i} (c : A is-contractible)
→ A ≃ ⊤
contr-≃-⊤ {A = A} c =
equiv (λ _ → unit) (λ { unit → contr-center c })
(λ {unit → refl})
(λ a → contr-path c a)
_is-a-prop : ∀ {i} → (A : Type i) → Type i
A is-a-prop = is-prop A
PropT : (i : ULevel) → Type _
PropT = hProp
PropT₀ = hProp₀
_holds : ∀ {i} (P : PropT i) → Type i
_holds = fst
_holds-is-a-prop : {i : ULevel} (P : PropT i) → (P holds) is-a-prop
_holds-is-a-prop = snd
∥_∥ : ∀ {i} (A : Type i) → Type i
∥_∥ = Trunc -1
True : PropT₀
True = ⊤ , contr-is-prop ⊤-is-contr
False : PropT₀
False = ⊥ , has-level-in (λ x → quodlibet x)
_And_ : ∀ {i j} → (A : Type i) (B : Type j) → Type (lmax i j)
A And B = Σ A (λ _ → B)
_And→_ : ∀ {i j k l} {A : Type i} {B : Type j} {C : Type k} {D : Type l}
(f : A → C) (g : B → D)
→ (A And B) → (C And D)
f And→ g = λ { (a , b) → f a , g b }
infixl 30 _∧_
_∧_ : ∀ {i j} (P : PropT i) (Q : PropT j) → PropT (lmax i j)
P ∧ Q = ((P holds) And (Q holds)) , Σ-level (P holds-is-a-prop) (λ _ → Q holds-is-a-prop)
infixl 35 _∨_
_∨_ : ∀ {i j} (P : PropT i) (Q : PropT j) → PropT (lmax i j)
P ∨ Q = ∥ (P holds) ⊔ (Q holds) ∥ , ⟨⟩
mapping-into-prop-is-a-prop : {i j : ULevel} {A : Type i} {P : A → Type j}
(f : (a : A) → ((P a) is-a-prop))
→ ((a : A) → P a) is-a-prop
mapping-into-prop-is-a-prop f = all-paths-is-prop (λ x y →
λ= (λ a → prop-path (f a) (x a) (y a)))
_⇒_ : ∀ {i j} (P : PropT i) (Q : PropT j) → PropT (lmax i j)
P ⇒ Q = (P holds → Q holds) , mapping-into-prop-is-a-prop (λ _ → Q holds-is-a-prop)
not : ∀ {i} (P : PropT i) → PropT i
not P = P ⇒ False
{-
To say ``There exists an a : A such that B a", write
∃ (λ (a : A) → B a)
-}
∃ : {i j : ULevel} {A : Type i} (B : A → Type j) → PropT (lmax i j)
∃ {_} {_} {A} B = ∥ (Σ A B) ∥ , ⟨⟩
∃ₚ : ∀ {i j} {A : Type i} (B : A → PropT j) → PropT (lmax i j)
∃ₚ {A = A} B = ∃ λ (a : A) → (B a) holds
∀ₚ : ∀ {i j} {A : Type i} (P : A → PropT j) → PropT (lmax i j)
∀ₚ P = (∀ a → (P a) holds) , mapping-into-prop-is-a-prop (λ a → (P a) holds-is-a-prop)
_holds-implies-dec-eq : {i : ULevel} (P : PropT i)
→ P holds → (P holds) ≃ (Dec (P holds))
(P holds-implies-dec-eq) p = equiv (λ _ → inl p)
((λ { (inl q) → q ; (inr nq) → quodlibet (nq p) }))
(λ { (inl q) → ap inl (prop-path (P holds-is-a-prop) p q)
; (inr nq) → quodlibet (nq p) })
(λ q → prop-path (P holds-is-a-prop) p q)
_holds-by_implies-=-True : (P : PropT₀) (p : P holds)
→ P == True
(P , q) holds-by p implies-=-True = pair= left-id right-id
where
left-id : P == ⊤
left-id = (ua {A = P} {B = True holds} (contr-≃-⊤ {A = P} (inhab-prop-is-contr p {{q}})))
right-id : q == (snd True) [ _is-a-prop ↓ left-id ]
right-id = from-transp _is-a-prop left-id
(prop-path (has-level-is-prop) (transport _is-a-prop left-id q) (snd True) )
¬-_holds-by_implies-=-False : (P : PropT₀) (p : ¬ (P holds))
→ P == False
¬- (P , q) holds-by np implies-=-False = pair= left-id right-id
where
left-id : P == ⊥
left-id = ua {A = P} {B = False holds} e
where e : P ≃ ⊥
e = equiv np (λ ()) (λ ()) (λ p → quodlibet (np p))
right-id : q == (snd False) [ _is-a-prop ↓ left-id ]
right-id =
from-transp _is-a-prop left-id
(prop-path (has-level-is-prop) (transport _is-a-prop left-id q) (snd False))
iff-to-≃ : ∀ {i j} {P : PropT i} {Q : PropT j}
→ (P holds → Q holds)
→ (Q holds → P holds)
→ (P holds) ≃ (Q holds)
iff-to-≃ {P = P} {Q = Q} f g =
equiv f g
(λ b → prop-path (snd Q) (f (g b)) b)
(λ a → prop-path (snd P) (g (f a)) a)
-- Propositional Resizing
lift-prop : {i j : ULevel} → PropT i → PropT (lmax i j)
lift-prop {i} {j} (P , q) = (Lift {i} {j} P) , Lift-level q
postulate prop-resize : {i j : ULevel} → (lift-prop {i} {j}) is-an-equiv
resize-eq : {i j : ULevel} → PropT i ≃ PropT (lmax i j)
resize-eq {i} {j} = (lift-prop {i} {j}) , prop-resize
resize₀ : {i : ULevel} → PropT i → PropT₀
resize₀ {i} = <– (resize-eq {lzero} {i})
unresize₀ : {i : ULevel} → PropT₀ → PropT i
unresize₀ {i} = –> (resize-eq {lzero} {i})
| {
"alphanum_fraction": 0.4693554765,
"avg_line_length": 33.9463087248,
"ext": "agda",
"hexsha": "2164635d8061220e378978ad5cc96e63c0df56ef",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/PropT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/PropT.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/PropT.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 1965,
"size": 5058
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Setoids.Subset
open import Setoids.Setoids
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Sets.EquivalenceRelations
open import Rings.Orders.Total.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Definition
open import Fields.Fields
open import Groups.Definition
open import Sequences
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
open import Functions.Definition
open import Fields.Orders.Total.Definition
open import Numbers.Primes.PrimeNumbers
module Fields.Orders.Limits.Lemmas {a b c : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {_} {c} A} {R : Ring S _+_ _*_} {pOrder : SetoidPartialOrder S _<_} {F : Field R} {pRing : PartiallyOrderedRing R pOrder} (oF : TotallyOrderedField F pRing) where
open Ring R
open TotallyOrderedField oF
open TotallyOrderedRing oRing
open PartiallyOrderedRing pRing
open import Rings.Orders.Total.Lemmas oRing
open import Rings.Orders.Total.AbsoluteValue oRing
open import Rings.Orders.Partial.Lemmas pRing
open SetoidTotalOrder total
open SetoidPartialOrder pOrder
open Group additiveGroup
open import Groups.Lemmas additiveGroup
open Setoid S
open Equivalence eq
open Field F
open import Fields.CauchyCompletion.Definition (TotallyOrderedField.oRing oF) F
open import Fields.Orders.Limits.Definition oF
open import Fields.Lemmas F
open import Fields.Orders.Total.Lemmas oF
open import Rings.Characteristic R
open import Rings.InitialRing R
open import Rings.Orders.Total.Cauchy oRing
private
2!=3 : 2 ≡ 3 → False
2!=3 ()
convergentSequenceCauchy : (nontrivial : 0R ∼ 1R → False) → {a : Sequence A} → {r : A} → a ~> r → cauchy a
convergentSequenceCauchy _ {a} {r} a->r e 0<e with halve (λ i → charNotN 1 (transitive (transitive +Associative identRight) i)) e
... | e/2 , prE/2 with a->r e/2 (halvePositive' prE/2 0<e)
... | N , pr = N , λ {m} {n} → ans m n
where
ans : (m n : ℕ) → N <N m → N <N n → abs (index a m + inverse (index a n)) < e
ans m n N<m N<n = <WellDefined reflexive prE/2 (bothNearImpliesNear {r} e/2 (halvePositive' prE/2 0<e) (pr m N<m) (pr n N<n))
| {
"alphanum_fraction": 0.7485207101,
"avg_line_length": 40.1016949153,
"ext": "agda",
"hexsha": "d9d78ec1bde0d4849e0a2a33fd9dfc3043248269",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/Orders/Limits/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/Orders/Limits/Lemmas.agda",
"max_line_length": 291,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/Orders/Limits/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 734,
"size": 2366
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.RingStructure.CohomologyRingFun where
{-
There is two definitionof the Cohomology Ring.
We recommend to use the HIT definition (the other one)
as the ring product is eaiser to handle.
Nevertheless the equality is harder to handle so
this definition can interessting too.
-}
open import Cubical.Foundations.Prelude
open import Cubical.Relation.Nullary
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat renaming (_+_ to _+ℕ_)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.GradedRing.DirectSumFun
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.RingLaws
open import Cubical.ZCohomology.RingStructure.GradedCommutativity
private variable
ℓ ℓ' : Level
open PlusBis
module _ (A : Type ℓ) where
H*FunR : Ring ℓ
H*FunR = ⊕FunGradedRing-Ring
_+'_ (makeIsMonoid isSetℕ +'-assoc +'-rid +'-lid)
+'≡+
(λ k → coHom k A)
(λ k → snd (coHomGroup k A))
1⌣
_⌣_
(λ {k} {l} → 0ₕ-⌣ k l)
(λ {k} {l} → ⌣-0ₕ k l)
(λ _ _ _ → sym (ΣPathTransport→PathΣ _ _ ((sym (+'-assoc _ _ _)) , (sym (assoc-⌣ _ _ _ _ _ _)))))
(λ _ → sym (ΣPathTransport→PathΣ _ _ (sym (+'-rid _) , sym (lUnit⌣ _ _))))
(λ _ → ΣPathTransport→PathΣ _ _ (refl , transportRefl _ ∙ rUnit⌣ _ _))
(λ _ _ _ → leftDistr-⌣ _ _ _ _ _)
λ _ _ _ → rightDistr-⌣ _ _ _ _ _
H*Fun : Type ℓ
H*Fun = fst H*FunR
| {
"alphanum_fraction": 0.6634560907,
"avg_line_length": 31.5178571429,
"ext": "agda",
"hexsha": "e9ed8645e174a5e142d48701c617541b90b09f7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRingFun.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRingFun.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/RingStructure/CohomologyRingFun.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 586,
"size": 1765
} |
{-# OPTIONS --no-import-sorts #-}
open import Agda.Primitive using (Prop)
postulate
Set₁ : Prop
open import Agda.Primitive using (Set)
postulate
A : Set₁
| {
"alphanum_fraction": 0.7037037037,
"avg_line_length": 13.5,
"ext": "agda",
"hexsha": "5b8e7d56f288d520bf75ce3faddee8b970b85dba",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/AmbiguousSet1b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/AmbiguousSet1b.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/AmbiguousSet1b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 162
} |
-- Andreas, 2014-10-09
-- Reported by ohmanjoakim
infixr 8 _⇒_
data Ty : Set where
_⇒_ : Ty → Ty → Ty
⟦_⟧ : Ty → Set
⟦ A ⇒ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧
data Term : Ty → Set where
K : (A B : Ty) → Term (A ⇒ B ⇒ A)
test : (A : Ty) (a : Term A) → ⟦ A ⟧
test A a = {!a!}
-- When doing a case split on a in foo, the following is written:
-- test .(x ⇒ x₁ ⇒ x) (K A B) x x₁ = ?
-- Correct is
-- test .(A ⇒ B ⇒ A) (K A B) x x₁ = ?
| {
"alphanum_fraction": 0.4976525822,
"avg_line_length": 18.5217391304,
"ext": "agda",
"hexsha": "e98fdb7ecd53b2f50c674155f98db10936395669",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/interaction/Issue1298.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/interaction/Issue1298.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/interaction/Issue1298.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 194,
"size": 426
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (module Commutation)
renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal using (Monoidal)
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
module Categories.Enriched.Category.Opposite
{o ℓ e} {V : Setoid-Category o ℓ e} {M : Monoidal V} (S : Symmetric M) where
-- The dual of a V-enriched category.
--
-- Note that, for this construction to work, V needs to be a
-- *symmetric* monoidal category.
open import Data.Product using (_,_)
import Categories.Category.Monoidal.Braided.Properties as BraidedProperties
open import Categories.Category.Monoidal.Reasoning M
open import Categories.Category.Monoidal.Utilities M using (module Shorthands)
open import Categories.Enriched.Category M using (Category)
open import Categories.Morphism.Reasoning V
open Setoid-Category V renaming (id to idV) using (_⇒_; _∘_; assoc)
open Commutation V
open Shorthands
open Symmetric S
open BraidedProperties (Symmetric.braided S) using (braiding-coherence)
private σ = λ {A B} → braiding.⇒.η (A , B)
-- The opposite of a V-enriched category.
op : ∀ {v} → Category v → Category v
op C = record
{ Obj = Obj
; hom = λ A B → hom B A
; id = id
; ⊚ = ⊚ ∘ σ
; ⊚-assoc = begin
(⊚ ∘ σ) ∘ (⊚ ∘ σ) ⊗₁ idV ≈⟨ refl⟩∘⟨ split₁ʳ ⟩
(⊚ ∘ σ) ∘ ⊚ ⊗₁ idV ∘ σ ⊗₁ idV ≈⟨ extend² (braiding.⇒.commute _) ⟩
(⊚ ∘ idV ⊗₁ ⊚) ∘ σ ∘ σ ⊗₁ idV ≈⟨ ⊚-assoc′ ⟩∘⟨refl ⟩
(⊚ ∘ ⊚ ⊗₁ idV ∘ α⇐) ∘ σ ∘ σ ⊗₁ idV ≈˘⟨ assoc ⟩∘⟨refl ⟩
((⊚ ∘ ⊚ ⊗₁ idV) ∘ α⇐) ∘ σ ∘ σ ⊗₁ idV ≈⟨ pullʳ invert-braidings ⟩
(⊚ ∘ ⊚ ⊗₁ idV) ∘ σ ∘ idV ⊗₁ σ ∘ α⇒ ≈˘⟨ refl⟩∘⟨ assoc ⟩
(⊚ ∘ ⊚ ⊗₁ idV) ∘ (σ ∘ idV ⊗₁ σ) ∘ α⇒
≈˘⟨ pushˡ (extend² (braiding.⇒.commute _)) ⟩
((⊚ ∘ σ) ∘ idV ⊗₁ ⊚ ∘ idV ⊗₁ σ) ∘ α⇒ ≈˘⟨ pullˡ (refl⟩∘⟨ split₂ʳ) ⟩
(⊚ ∘ σ) ∘ idV ⊗₁ (⊚ ∘ σ) ∘ α⇒ ∎
; unitˡ = λ {A B} → begin
(⊚ ∘ σ) ∘ id ⊗₁ idV ≈⟨ pullʳ (braiding.⇒.commute _) ⟩
⊚ ∘ idV ⊗₁ id ∘ σ ≈⟨ pullˡ unitʳ ⟩
ρ⇒ ∘ σ ≈˘⟨ switch-fromtoʳ braided-iso braiding-coherence ⟩
λ⇒ ∎
; unitʳ = begin
(⊚ ∘ σ) ∘ idV ⊗₁ id ≈⟨ pullʳ (braiding.⇒.commute _) ⟩
⊚ ∘ id ⊗₁ idV ∘ σ ≈⟨ pullˡ unitˡ ⟩
λ⇒ ∘ σ ≈⟨ braiding-coherence ⟩
ρ⇒ ∎
}
where
open Category C
⊚-assoc′ : ∀ {A B C D} →
[ hom C D ⊗₀ (hom B C ⊗₀ hom A B) ⇒ hom A D ]⟨
idV ⊗₁ ⊚ ⇒⟨ hom C D ⊗₀ hom A C ⟩
⊚
≈ α⇐ ⇒⟨ (hom C D ⊗₀ hom B C) ⊗₀ hom A B ⟩
⊚ ⊗₁ idV ⇒⟨ hom B D ⊗₀ hom A B ⟩
⊚
⟩
⊚-assoc′ = switch-fromtoʳ associator (assoc ○ ⟺ ⊚-assoc) ○ assoc
-- implements the following equation of string diagrams
--
-- | | | | | |
-- \ / | | \ /
-- \ | | \
-- / \ / \ / \
-- | \ / === \ / |
-- \ \ / /
-- \ / \ / \ /
-- \ \ / /
-- / \ \ / / \
-- | | | | | |
--
invert-braidings : ∀ {A B C} →
[ (A ⊗₀ B) ⊗₀ C ⇒ (C ⊗₀ B) ⊗₀ A ]⟨
σ ⊗₁ idV ⇒⟨ (B ⊗₀ A) ⊗₀ C ⟩
σ ⇒⟨ C ⊗₀ (B ⊗₀ A) ⟩
α⇐
≈ α⇒ ⇒⟨ A ⊗₀ (B ⊗₀ C) ⟩
idV ⊗₁ σ ⇒⟨ A ⊗₀ (C ⊗₀ B) ⟩
σ
⟩
invert-braidings = begin
α⇐ ∘ σ ∘ σ ⊗₁ idV
≈⟨ extendʳ (switch-tofromʳ associator (⟺ hexagon₂)) ⟩
((σ ⊗₁ idV ∘ α⇐) ∘ idV ⊗₁ σ) ∘ α⇒ ∘ σ ⊗₁ idV
≈⟨ assoc ⟩
(σ ⊗₁ idV ∘ α⇐) ∘ idV ⊗₁ σ ∘ α⇒ ∘ σ ⊗₁ idV
≈˘⟨ pushʳ (switch-fromtoˡ associator (⟺ hexagon₁)) ⟩
σ ⊗₁ idV ∘ σ ∘ α⇒
≈˘⟨ extendʳ (braiding.⇒.commute _) ⟩
σ ∘ idV ⊗₁ σ ∘ α⇒
∎
| {
"alphanum_fraction": 0.4275362319,
"avg_line_length": 38.3333333333,
"ext": "agda",
"hexsha": "07d1b07de37c218b9584fdbe06a925ee31d25bfa",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Enriched/Category/Opposite.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Enriched/Category/Opposite.agda",
"max_line_length": 80,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Enriched/Category/Opposite.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1710,
"size": 4140
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Product.Relation.Binary.Pointwise.NonDependent directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Product.Relation.Pointwise.NonDependent where
open import Data.Product.Relation.Binary.Pointwise.NonDependent public
| {
"alphanum_fraction": 0.5299334812,
"avg_line_length": 34.6923076923,
"ext": "agda",
"hexsha": "a20f3c1b0ec322b659c4a79605c2ae27fa8026e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/NonDependent.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/NonDependent.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Relation/Pointwise/NonDependent.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 451
} |
{-# OPTIONS --without-K #-}
module sets.nat.ordering.lt.core where
open import sum
open import equality.core
open import function.isomorphism.core
open import sets.core
open import sets.nat.core
open import sets.nat.ordering.leq.core
_<_ : ℕ → ℕ → Set
m < n = suc m ≤ n
infixr 4 _<_
z<n : ∀ {n} → 0 < suc n
z<n = s≤s z≤n
<⇒≤ : ∀ {n m} → n < m → n ≤ m
<⇒≤ p = trans≤ suc≤ p
trans< : ∀ {n m p} → n < m → m < p → n < p
trans< p q = <⇒≤ (trans≤ (s≤s p) q)
ap<-suc : ∀ {n m} → n < m → suc n < suc m
ap<-suc = s≤s
compare : (n m : ℕ) → Ordering _<_ n m
compare zero zero = eq refl
compare zero (suc m) = lt z<n
compare (suc n) zero = gt z<n
compare (suc n) (suc m) with compare n m
... | lt p = lt (ap<-suc p)
... | eq p = eq (ap suc p)
... | gt p = gt (ap<-suc p)
| {
"alphanum_fraction": 0.5671447197,
"avg_line_length": 21.9142857143,
"ext": "agda",
"hexsha": "aed5976dcb48488a024fe9af15081a3c4ba9ab5b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "src/sets/nat/ordering/lt/core.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "src/sets/nat/ordering/lt/core.agda",
"max_line_length": 42,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "src/sets/nat/ordering/lt/core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 322,
"size": 767
} |
{- NEW TRANSLATION: notation change to avoid exponential increase in term size during translation -}
open import Preliminaries
open import Source
open import Complexity
module Translation-WithLet where
mutual
⟨⟨_⟩⟩ : Tp → Complexity.CTp
⟨⟨ unit ⟩⟩ = unit
⟨⟨ nat ⟩⟩ = nat
⟨⟨ susp A ⟩⟩ = || A ||
⟨⟨ A ->s B ⟩⟩ = ⟨⟨ A ⟩⟩ ->c || B ||
⟨⟨ A ×s B ⟩⟩ = ⟨⟨ A ⟩⟩ ×c ⟨⟨ B ⟩⟩
⟨⟨ list A ⟩⟩ = list ⟨⟨ A ⟩⟩
⟨⟨ bool ⟩⟩ = bool
||_|| : Tp → Complexity.CTp
|| τ || = C ×c ⟨⟨ τ ⟩⟩
⟨⟨_⟩⟩c : Source.Ctx → Complexity.Ctx
⟨⟨ [] ⟩⟩c = []
⟨⟨ x :: Γ ⟩⟩c = ⟨⟨ x ⟩⟩ :: ⟨⟨ Γ ⟩⟩c
interp-Cost : ∀{Γ} → Cost → Γ Complexity.|- C
interp-Cost 0c = 0C
interp-Cost 1c = 1C
interp-Cost (m +c n) = plusC (interp-Cost m) (interp-Cost n)
lookup : ∀{Γ τ} → τ Source.∈ Γ → ⟨⟨ τ ⟩⟩ Complexity.∈ ⟨⟨ Γ ⟩⟩c
lookup i0 = i0
lookup (iS x) = iS (lookup x)
throw-s : ∀ {Γ Γ' τ} → Complexity.sctx Γ (τ :: Γ') → Complexity.sctx Γ Γ'
throw-s Θ x = Θ (iS x)
_+C_ : ∀ {Γ τ} → Γ Complexity.|- C → Γ Complexity.|- (C ×c τ)→ Γ Complexity.|- (C ×c τ)
c +C e = letc (prod (l-proj (var i0)) (r-proj (var i0))) e
-- translation from source expressions to complexity expressions
||_||e : ∀{Γ τ} → Γ Source.|- τ → ⟨⟨ Γ ⟩⟩c Complexity.|- || τ ||
|| unit ||e = prod 0C unit
|| var x ||e = prod 0C (var (lookup x))
|| z ||e = prod 0C z
|| suc e ||e = (letc (prod (l-proj (var i0)) (s (r-proj (var i0)))) || e ||e)
|| rec e e0 e1 ||e =
letc (l-proj (var i0) +C rec (r-proj (var i0))
(Complexity.wkn (1C +C || e0 ||e)) (Complexity.subst (1C +C || e1 ||e) (Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids))))) || e ||e
|| lam e ||e = prod 0C (lam || e ||e)
|| app e1 e2 ||e = letc (letc (prod (plusC (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (l-proj (app (r-proj (var (iS i0))) (r-proj (var i0)))))
(r-proj (app (r-proj (var (iS i0))) (r-proj (var i0))))) (Complexity.wkn || e2 ||e)) || e1 ||e
|| prod e1 e2 ||e = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (prod (r-proj (var (iS i0))) (r-proj (var i0)))) (Complexity.wkn || e2 ||e)) || e1 ||e
|| delay e ||e = prod 0C || e ||e
|| force e ||e = letc (prod (plusC (l-proj (var i0)) (l-proj (r-proj (var i0)))) (r-proj (r-proj (var i0)))) || e ||e
|| split e0 e1 ||e = letc (prod (plusC (Complexity.wkn (l-proj || e0 ||e)) (l-proj (var i0))) (r-proj (var i0))) E1
where E1 = letc (Complexity.subst || e1 ||e (Complexity.lem4 (l-proj (r-proj (var i0))) (r-proj (r-proj (var i0))) Complexity.ss Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids)))) || e0 ||e
|| nil ||e = prod 0C nil
|| e ::s e₁ ||e = letc (letc (prod (plusC (l-proj (var (iS i0))) (l-proj (var i0))) (r-proj (var (iS i0)) ::c r-proj (var i0))) (Complexity.wkn || e₁ ||e)) || e ||e
|| listrec e e₁ e₂ ||e =
letc (l-proj (var i0) +C listrec (r-proj (var i0))
(Complexity.wkn (1C +C || e₁ ||e)) (Complexity.subst (1C +C || e₂ ||e) (Complexity.s-extend (Complexity.s-extend (Complexity.s-extend (throw-s Complexity.ids)))))) || e ||e
|| true ||e = prod 0C true
|| false ||e = prod 0C false
{-
module Proofs where
open NewTranslation renaming (||_||e to ||_||new)
open import Translation renaming (||_||e to ||_||old)
convert-type : Complexity-WithLet.CTp → Complexity.CTp
convert-type unit = unit
convert-type nat = nat
convert-type (τ ->c τ₁) = convert-type τ ->c convert-type τ₁
convert-type (τ ×c τ₁) = convert-type τ ×c convert-type τ₁
convert-type (list τ) = list (convert-type τ)
convert-type bool = bool
convert-type C = C
convert-type rnat = rnat
convert-ctx : Complexity-WithLet.Ctx → Complexity.Ctx
convert-ctx [] = []
convert-ctx (x :: Γ) = convert-type x :: convert-ctx Γ
convert-var : ∀ {Γ τ} → τ Complexity-WithLet.∈ Γ → convert-type τ Complexity.∈ convert-ctx Γ
convert-var i0 = i0
convert-var (iS x) = iS (convert-var x)
convert-exp : ∀{Γ τ} → (e : Γ Complexity-WithLet.|- τ) → convert-ctx Γ Complexity.|- convert-type τ
convert-exp unit = unit
convert-exp 0C = 0C
convert-exp 1C = 1C
convert-exp (plusC e e₁) = plusC (convert-exp e) (convert-exp e₁)
convert-exp (var x) = var (convert-var x)
convert-exp z = z
convert-exp (s e) = s (convert-exp e)
convert-exp (rec e e₁ e₂) = rec (convert-exp e) (convert-exp e₁) (convert-exp e₂)
convert-exp (lam e) = lam (convert-exp e)
convert-exp (app e e₁) = app (convert-exp e) (convert-exp e₁)
convert-exp (prod e e₁) = {!!}
convert-exp (l-proj e) = {!!}
convert-exp (r-proj e) = {!!}
convert-exp nil = {!!}
convert-exp (e ::c e₁) = {!!}
convert-exp (listrec e e₁ e₂) = {!!}
convert-exp true = true
convert-exp false = false
convert-exp (max x e e₁) = max {!!} {!!} {!!}
convert-exp (letc e e₁) = app (lam (convert-exp e)) (convert-exp e₁)
trans-eq : ∀{Γ τ} → (e : Γ Source.|- τ)
→ (t1 : convert-exp ?) --((NewTranslation.⟨⟨ Γ ⟩⟩c) Complexity-WithLet.|- NewTranslation.|| τ ||))
→ (t2 : Translation.⟨⟨ Γ ⟩⟩c Complexity.|- Translation.|| τ ||)
→ {!convert-exp t1!} == t2
trans-eq e = {!!}
-}
| {
"alphanum_fraction": 0.5480750996,
"avg_line_length": 45.0683760684,
"ext": "agda",
"hexsha": "d2acafed17e0b6fb1527f0da17dc31401189a7a0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "benhuds/Agda",
"max_forks_repo_path": "complexity/complexity-final/submit/Translation-WithLet.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "benhuds/Agda",
"max_issues_repo_path": "complexity/complexity-final/submit/Translation-WithLet.agda",
"max_line_length": 214,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "benhuds/Agda",
"max_stars_repo_path": "complexity/complexity-final/submit/Translation-WithLet.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z",
"num_tokens": 2012,
"size": 5273
} |
module _ where
record LinearOrderStr (D : Set) : Set₁ where
no-eta-equality
field
_<_ : D -> D -> Set
open LinearOrderStr {{...}}
postulate
D : Set
module _ {{O : LinearOrderStr D}} where
abstract
broken : {b c : D} -> (b < c) -> b < c
broken {b} {c} b<c = b<c
where
b<c2 : b < c
b<c2 = b<c
| {
"alphanum_fraction": 0.5299401198,
"avg_line_length": 15.9047619048,
"ext": "agda",
"hexsha": "16e74b55ed2628d8ab68a7aba2a019d0a25cb1c2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5620.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5620.agda",
"max_line_length": 44,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5620.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 123,
"size": 334
} |
------------------------------------------------------------------------
-- A simple backend
------------------------------------------------------------------------
module RecursiveDescent.Hybrid.Simple where
open import Data.Bool renaming (true to ⊤; false to ⊥)
open import Data.Product.Record
import Data.Product as Prod
open import Data.Maybe
open import Data.BoundedVec.Inefficient
import Data.List as L
open import Data.Nat
open import Data.Function using (id; _∘_)
open import Category.Applicative.Indexed
open import Category.Monad.Indexed
open import Category.Monad.State
open import RecursiveDescent.Hybrid.Type
open import Utilities
------------------------------------------------------------------------
-- Parser monad
private
P : Set -> IFun ℕ
P tok = IStateT (BoundedVec tok) L.List
open module M₁ {tok} =
RawIMonadPlus (StateTIMonadPlus (BoundedVec tok) L.monadPlus)
renaming (return to ret)
open module M₂ {tok} =
RawIMonadState (StateTIMonadState (BoundedVec tok) L.monad)
using (get; put; modify)
------------------------------------------------------------------------
-- Run function for the parsers
-- For every successful parse the run function returns the remaining
-- string. (Since there can be several successful parses a list of
-- strings is returned.)
-- This function is structurally recursive with respect to the
-- following lexicographic measure:
--
-- 1) The upper bound of the length of the input string.
-- 2) The parser's proper left corner tree.
private
module Dummy {tok nt} (g : Grammar tok nt) where
mutual
parse : forall n {e c r} ->
Parser tok nt (e , c) r ->
P tok n (if e then n else pred n) r
parse n (! x) = parse n (g x)
parse zero symbol = ∅
parse (suc n) symbol = eat =<< get
parse n (return x) = ret x
parse n fail = ∅
parse n (p₁ ?>>= p₂) = parse n p₁ >>= parse n ∘′ p₂
parse zero (p₁ !>>= p₂) = ∅
parse (suc n) (p₁ !>>= p₂) = parse (suc n) p₁ >>= parse↑ n ∘′ p₂
parse n (alt ⊤ _ p₁ p₂) = parse n p₁ ∣ parse↑ n p₂
parse n (alt ⊥ ⊤ p₁ p₂) = parse↑ n p₁ ∣ parse n p₂
parse n (alt ⊥ ⊥ p₁ p₂) = parse n p₁ ∣ parse n p₂
parse↑ : forall n {e c r} -> Parser tok nt (e , c) r -> P tok n n r
parse↑ n {⊤} p = parse n p
parse↑ zero {⊥} p = ∅
parse↑ (suc n) {⊥} p = parse (suc n) p >>= \r ->
modify ↑ >>
ret r
eat : forall {n} -> BoundedVec tok (suc n) -> P tok (suc n) n tok
eat [] = ∅
eat (c ∷ s) = put s >> ret c
-- Exported run function.
parse : forall {tok nt i r}
-> Parser tok nt i r -> Grammar tok nt
-> L.List tok -> L.List (Prod._×_ r (L.List tok))
parse p g s = L.map (Prod.map id toList)
(Dummy.parse g _ p (fromList s))
-- A variant which only returns parses which leave no remaining input.
parse-complete : forall {tok nt i r}
-> Parser tok nt i r -> Grammar tok nt
-> L.List tok -> L.List r
parse-complete p g s =
L.map Prod.proj₁ (L.filter (L.null ∘ Prod.proj₂) (parse p g s))
| {
"alphanum_fraction": 0.5319018405,
"avg_line_length": 33.6082474227,
"ext": "agda",
"hexsha": "b0885ea6e282488de1279571551c7c54f011b077",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Simple.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Simple.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Simple.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 912,
"size": 3260
} |
{-# OPTIONS --cubical --safe #-}
module Cardinality.Finite.SplitEnumerable.Isomorphism where
open import Prelude
open import Container
open import Container.List
open import Data.Fin
open import Container.Membership (ℕ , Fin)
open import Path.Reasoning
open import Data.Sigma.Properties
open import Function.Surjective.Properties
open import Data.Fin.Properties
import Data.List.Membership as 𝕃
open import Container.List.Isomorphism
open import Data.Nat.Properties
open import Data.List using (_∷_; []; List)
import Cardinality.Finite.SplitEnumerable.Container as ℒ
import Cardinality.Finite.SplitEnumerable.Inductive as 𝕃
∈ℒ⇒∈𝕃 : ∀ (x : A) (xs : ⟦ ℕ , Fin ⟧ A) → x ∈ xs → x 𝕃.∈ ℒ→𝕃 xs
∈ℒ⇒∈𝕃 x (suc l , xs) (f0 , p) = f0 , p
∈ℒ⇒∈𝕃 x (suc l , xs) (fs n , p) = 𝕃.push (∈ℒ⇒∈𝕃 x (l , xs ∘ fs) (n , p))
𝕃⇔ℒ⟨ℰ!⟩ : 𝕃.ℰ! A ⇔ ℒ.ℰ! A
𝕃⇔ℒ⟨ℰ!⟩ .fun (sup , cov) = 𝕃→ℒ sup , cov
𝕃⇔ℒ⟨ℰ!⟩ .inv (sup , cov) = ℒ→𝕃 sup , λ x → ∈ℒ⇒∈𝕃 x sup (cov x)
𝕃⇔ℒ⟨ℰ!⟩ .rightInv (sup , cov) i .fst = 𝕃⇔ℒ .rightInv sup i
𝕃⇔ℒ⟨ℰ!⟩ .rightInv (sup , cov) i .snd x = ∈ℒ⇒∈𝕃-rightInv sup (cov x) i
where
∈ℒ⇒∈𝕃-rightInv : ∀ xs x∈xs →
PathP (λ i → x ∈ 𝕃⇔ℒ .rightInv xs i)
(∈ℒ⇒∈𝕃 x xs x∈xs) x∈xs
∈ℒ⇒∈𝕃-rightInv (suc l , xs) (f0 , x∈xs) i = f0 , x∈xs
∈ℒ⇒∈𝕃-rightInv (suc l , xs) (fs n , x∈xs) i =
let m , q = ∈ℒ⇒∈𝕃-rightInv (l , xs ∘ fs) (n , x∈xs) i
in fs m , q
𝕃⇔ℒ⟨ℰ!⟩ .leftInv (sup , cov) i .fst = 𝕃⇔ℒ .leftInv sup i
𝕃⇔ℒ⟨ℰ!⟩ .leftInv (sup , cov) i .snd x = ∈ℒ⇒∈𝕃-leftInv sup (cov x) i
where
∈ℒ⇒∈𝕃-leftInv : ∀ xs x∈xs →
PathP (λ i → x 𝕃.∈ 𝕃→ℒ→𝕃 xs i)
(∈ℒ⇒∈𝕃 x (𝕃→ℒ xs) x∈xs) x∈xs
∈ℒ⇒∈𝕃-leftInv (_ ∷ xs) (f0 , x∈xs) i = f0 , x∈xs
∈ℒ⇒∈𝕃-leftInv (_ ∷ xs) (fs n , x∈xs) i =
let m , p = ∈ℒ⇒∈𝕃-leftInv xs (n , x∈xs) i
in fs m , p
| {
"alphanum_fraction": 0.5908309456,
"avg_line_length": 35.612244898,
"ext": "agda",
"hexsha": "8be1f36189d79d322c95c00b42a2d6f4f4798f03",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda",
"max_line_length": 72,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 957,
"size": 1745
} |
module Σ where
A : Set₁
A = Set
| {
"alphanum_fraction": 0.6363636364,
"avg_line_length": 6.6,
"ext": "agda",
"hexsha": "e4a8987af1e6f09b8067f3fabfc958cfb33eee27",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8037346494d68356efdb2f6e0ef1458704721acd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda",
"max_forks_repo_path": "test/LaTeXAndHTML/succeed/Σ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8037346494d68356efdb2f6e0ef1458704721acd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda",
"max_issues_repo_path": "test/LaTeXAndHTML/succeed/Σ.agda",
"max_line_length": 14,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8037346494d68356efdb2f6e0ef1458704721acd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda",
"max_stars_repo_path": "test/LaTeXAndHTML/succeed/Σ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 14,
"size": 33
} |
module STLCRef.SemanticsLB where
-- This file contains a definitional interpreter for STLC+Ref as
-- described in Section 3 of the paper. The interpreter operates with
-- the notion of monadic bind described in Section 3.3 of the paper;
-- see `Semantics.agda` for the version of the interpreter of STLC+Ref
-- using monadic strength as described in Section 3.4 of the paper.
open import Agda.Primitive
open import Data.Unit
open import Data.Nat hiding (_⊔_ ; _^_)
open import Data.Integer hiding (_⊔_)
open import Data.List
open import Data.Product
open import Data.Maybe hiding (_>>=_)
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.Any
open import Data.List.Prefix
open import Data.List.Properties.Extra
open import Data.List.All.Properties.Extra
open import Function
open import Common.Weakening
------------
-- SYNTAX --
------------
-- These definitions correspond to Section 3.1, except we have
-- included integers, integer operations, and a simple conditional
-- expression (if-zero) in the language.
data Ty : Set
Ctx = List Ty
data Ty where
_⇒_ : (a b : Ty) → Ty
unit : Ty
int : Ty
ref : Ty -> Ty
data Expr (Γ : List Ty) : Ty → Set where
unit : Expr Γ unit
var : ∀ {t} → t ∈ Γ → Expr Γ t
ƛ : ∀ {a b} → Expr (a ∷ Γ) b → Expr Γ (a ⇒ b)
_·_ : ∀ {a b} → Expr Γ (a ⇒ b) → Expr Γ a → Expr Γ b
num : ℤ → Expr Γ int
iop : (ℤ → ℤ → ℤ) → (l r : Expr Γ int) → Expr Γ int
ifz : ∀ {t} → Expr Γ int → Expr Γ t → Expr Γ t → Expr Γ t
ref : ∀ {t} → Expr Γ t → Expr Γ (ref t)
!_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t
_≔_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t → Expr Γ unit
-----------------------
-- STORES AND VALUES --
-----------------------
StoreTy = List Ty
-- `Val` uses `_∈_` from `Relation.Binary` in the Agda Standard
-- Library to represent typed locations which witness the existence of
-- a store location in the store type.
mutual
data Val : Ty → (Σ : StoreTy) → Set where
loc : ∀ {Σ t} → t ∈ Σ → Val (ref t) Σ
unit : ∀ {Σ} → Val unit Σ
⟨_,_⟩ : ∀ {Σ Γ a b} → Expr (a ∷ Γ) b → Env Γ Σ → Val (a ⇒ b) Σ
num : ∀ {Σ} → ℤ → Val int Σ
Env : (Γ : Ctx)(Σ : StoreTy) → Set
Env Γ Σ = All (λ t → Val t Σ) Γ
Store : (Σ : StoreTy) → Set
Store Σ = All (λ t → Val t Σ) Σ
-- The `lookup-store` function is defined in terms of the `lookup`
-- function from `Data.List.All` in the Agda Standard Library.
lookup-store : ∀ {Σ t} → t ∈ Σ → Store Σ → Val t Σ
lookup-store x μ = All.lookup μ x
-- The `update-store` function is defined in terms of the update
-- function for the `All` type: `_All[_]≔'_` from the Standard Library
-- extension (contained in the `lib/*` folder of this artifact).
update-store : ∀ {Σ t} → t ∈ Σ → Val t Σ → Store Σ → Store Σ
update-store ptr v μ = μ All.[ ptr ]≔ v
-----------
-- MONAD --
-----------
-- These definitions correspond to Section 3.3.
M : ∀ {i}(Γ : Ctx) → (p : StoreTy → Set i) → (Σ : StoreTy) → Set i
M Γ p Σ = Env Γ Σ → Store Σ → Maybe (∃ λ Σ' → Store Σ' × p Σ' × Σ ⊑ Σ')
mutual
weaken-val : ∀ {a}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Val a Σ → Val a Σ'
weaken-val ext unit = unit
weaken-val ext (loc l) = loc (∈-⊒ l ext)
weaken-val ext ⟨ e , E ⟩ = ⟨ e , weaken-env ext E ⟩
weaken-val ext (num z) = num z
weaken-env : ∀ {Γ}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Env Γ Σ → Env Γ Σ'
weaken-env ext (v ∷ vs) = weaken-val ext v ∷ weaken-env ext vs
weaken-env ext [] = []
return : ∀ {Σ Γ}{p : List Ty → Set} → p Σ → M Γ p Σ
return x E μ = just (_ , μ , x , ⊑-refl)
_>>=_ : ∀ {Σ Γ}{p q : StoreTy → Set} →
(f : M Γ p Σ) → (g : ∀ {Σ'} → Σ ⊑ Σ' → p Σ' → M Γ q Σ') → M Γ q Σ
(f >>= c) E μ = case (f E μ) of λ{
nothing → nothing ;
(just (_ , μ' , x , ext)) → case (c ext x (weaken-env ext E) μ') of λ{
nothing → nothing ;
(just (_ , μ'' , y , ext')) → just (_ , μ'' , y , ext ⊚ ext')
}}
getEnv : ∀ {Σ Γ} → M Γ (Env Γ) Σ
getEnv E = return E E
usingEnv : ∀ {Σ Γ Γ'}{p : List Ty → Set} → Env Γ Σ → M Γ p Σ → M Γ' p Σ
usingEnv E f _ = f E
timeout : ∀ {Σ Γ}{p : List Ty → Set} → M Γ p Σ
timeout _ _ = nothing
store : ∀ {Σ t Γ} → Val t Σ → M Γ (Val (ref t)) Σ
store {Σ} {t} v _ μ
= let ext = ∷ʳ-⊒ t Σ
v' = loc (∈-∷ʳ Σ t)
μ' = (All.map (weaken-val ext) μ) all-∷ʳ (weaken-val ext v)
in just (_ , μ' , v' , ext)
deref : ∀ {Σ Γ t} → t ∈ Σ → M Γ (Val t) Σ
deref x E μ = return (All.lookup μ x) E μ
update : ∀ {Σ Γ t} → t ∈ Σ → Val t Σ → M Γ (λ _ → ⊤) Σ
update x v E μ = return tt E (update-store x v μ)
eval : ℕ → ∀ {Σ Γ t} → Expr Γ t → M Γ (Val t) Σ
eval zero _ =
timeout
eval (suc k) unit =
return unit
eval (suc k) (var x) =
getEnv >>= λ _ E →
return (All.lookup E x)
eval (suc k) (ƛ e) =
getEnv >>= λ _ E →
return ⟨ e , E ⟩
eval (suc k) (l · r) =
eval k l >>= λ{ ext ⟨ e , E ⟩ →
eval k r >>= λ ext' v →
usingEnv (v ∷ weaken-env ext' E) (eval k e) } -- explicit weakening
eval (suc k) (num x) =
return (num x)
eval (suc k) (iop f l r) =
eval k l >>= λ{ _ (num v) →
eval k r >>= λ{ _ (num vᵣ) →
return (num (f v vᵣ)) }}
eval (suc k) (ifz c t e) =
eval k c >>= λ{ _ (num z) →
case z of λ{ (+ zero) →
eval k t
; _ →
eval k e }}
eval (suc k) (ref e) =
eval k e >>= λ _ v →
store v
eval (suc k) (! e) =
eval k e >>= λ{ _ (loc l) →
deref l }
eval (suc k) (r ≔ e) =
eval k r >>= λ{ _ (loc l) →
eval k e >>= λ ext v →
update (∈-⊒ l ext) v >>= λ _ _ → -- explicit weakening
return unit }
| {
"alphanum_fraction": 0.5470039469,
"avg_line_length": 30.4590163934,
"ext": "agda",
"hexsha": "ba131658819a443dcd4ef24c6a9637399c81ec27",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/STLCRef/SemanticsLB.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/STLCRef/SemanticsLB.agda",
"max_line_length": 73,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/STLCRef/SemanticsLB.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 2127,
"size": 5574
} |
module Library where
open import Function using (id; _∘_; _$_) public
open import Relation.Binary.HeterogeneousEquality public
open ≅-Reasoning renaming (begin_ to proof_) public
open import Data.Product renaming (proj₁ to fst; proj₂ to snd) public
open import Data.Empty public using (⊥; ⊥-elim)
open import Data.Unit public using (⊤)
open import Data.Nat public using (ℕ; zero; suc; _+_; module ℕ)
open import Data.Nat.Properties.Simple public
open import Data.Fin public using (Fin; zero; suc; raise)
renaming (_+_ to _F+_; fromℕ to fromNat)
open import Level public renaming (suc to lsuc; zero to lzero) hiding (lift)
-- needed for setoids
congid : ∀{a}{A : Set a}{a a' : A}(p : a ≅ a') → cong id p ≅ p
congid refl = refl
congcomp : ∀{a b c}{A : Set a}{B : Set b}{C : Set c}
{a a' : A}(f : B → C)(g : A → B)(p : a ≅ a') →
cong (f ∘ g) p ≅ cong f (cong g p)
congcomp f g refl = refl
-- should be replaced by dcong
cong' : ∀{a b}{A A' : Set a} → A ≅ A' →
{B : A → Set b}{B' : A' → Set b} → B ≅ B' →
{f : ∀ a → B a}{f' : ∀ a → B' a} → f ≅ f' →
{a : A}{a' : A'} → a ≅ a' → f a ≅ f' a'
cong' refl refl refl refl = refl
-- should be replaced by dicong
icong' : ∀{a b}{A A' : Set a} → A ≅ A' →
{B : A → Set b}{B' : A' → Set b} → B ≅ B' →
{f : ∀ {a} → B a}{f' : ∀ {a} → B' a} →
(λ {a} → f {a}) ≅ (λ {a} → f' {a}) →
{a : A}{a' : A'} → a ≅ a' → f {a} ≅ f' {a'}
icong' refl refl refl refl = refl
fcong : ∀{a b}{A : Set a}{B : A → Set b}{f f' : (x : A) → B x}
(a : A) → f ≅ f' → f a ≅ f' a
fcong a refl = refl
dcong : ∀{a b}{A A' : Set a}{B : A → Set b}{B' : A' → Set b}
{f : (a : A) → B a}{f' : (a : A') → B' a}{a : A}{a' : A'} →
a ≅ a' → B ≅ B' → f ≅ f' → f a ≅ f' a'
dcong refl refl refl = refl
dicong : ∀{a b}{A A' : Set a}{B : A → Set b}{B' : A' → Set b}
{f : ∀ {a} → B a}{f' : ∀ {a} → B' a} → {a : A}{a' : A'} →
a ≅ a' → B ≅ B' →
(λ {a} → f {a}) ≅ (λ {a} → f' {a}) →
f {a} ≅ f' {a'}
dicong refl refl refl = refl
ifcong : ∀{a b}{A : Set a}{B : A → Set b}{f f' : {x : A} → B x}(a : A) →
_≅_ {_}{ {x : A} → B x} f { {x : A} → B x} f' → f {a} ≅ f' {a}
ifcong a refl = refl
cong₃ : ∀{a b c d}{A : Set a}{B : A → Set b}
{C : ∀ x → B x → Set c }{D : ∀ x y → C x y → Set d}
(f : ∀ x y z → D x y z)
{a a' : A} → a ≅ a' →
{b : B a}{b' : B a'} → b ≅ b' →
{c : C a b}{c' : C a' b'} → c ≅ c' →
f a b c ≅ f a' b' c'
cong₃ f refl refl refl = refl
ir : ∀{a}{A B : Set a}{x : A}{y : B}(p q : x ≅ y) → p ≅ q
ir refl refl = refl
stripsubst : ∀{a c}{A : Set a}(C : A → Set c) →
{a : A} → (c : C a) →
{b : A} → (p : a ≅ b) →
subst C p c ≅ c
stripsubst C c refl = refl
postulate ext : ∀{a b}{A : Set a}{B B' : A → Set b}
{f : ∀ a → B a}{g : ∀ a → B' a} →
(∀ a → f a ≅ g a) → f ≅ g
postulate dext : ∀{a b}{A A' : Set a}{B : A → Set b}{B' : A' → Set b}
{f : ∀ a → B a}{g : ∀ a → B' a} →
(∀ {a a'} → a ≅ a' → f a ≅ g a') → f ≅ g
-- this could just be derived from ext
postulate iext : ∀{a b}{A : Set a}{B B' : A → Set b}
{f : ∀ {a} → B a}{g : ∀{a} → B' a} →
(∀ a → f {a} ≅ g {a}) →
_≅_ {_}{ {a : A} → B a} f { {a : A} → B' a} g
postulate diext : ∀{a b}{A A' : Set a}{B : A → Set b}{B' : A' → Set b}
{f : ∀ {a} → B a}{f' : ∀{a'} → B' a'} →
(∀{a a'} → a ≅ a' → f {a} ≅ f' {a'}) →
_≅_ {_}{ {a : A} → B a} f { {a' : A'} → B' a'} f'
hir : ∀{a}{A A' A'' A''' : Set a}{a : A}{a' : A'}{a'' : A''}{a''' : A'''}
{p : a ≅ a'}{q : a'' ≅ a'''} → a ≅ a'' → p ≅ q
hir {p = refl} {q = refl} refl = refl
hir' : ∀{a}{A A' A'' A''' : Set a}{a : A}{a' : A'}{a'' : A''}{a''' : A'''}
{p : a ≅ a'}{q : a'' ≅ a'''} → a' ≅ a''' → p ≅ q
hir' {p = refl} {q = refl} refl = refl
| {
"alphanum_fraction": 0.3950831885,
"avg_line_length": 38.7211538462,
"ext": "agda",
"hexsha": "b6d20387303df78b51e31985180616f8c4fa4abf",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Library.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Library.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Library.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 1762,
"size": 4027
} |
{-# OPTIONS --without-K #-}
open import library.Basics hiding (Type ; Σ)
open import library.types.Sigma
open import Sec2preliminaries
open import Sec3hedberg
open import Sec4hasConstToSplit
-- In this section, we require function extensionality again.
module Sec6populatedness where
-- Definition 6.1
Pop : Type → Type
Pop X = (f : X → X) → const f → fix f
-- Theorem 6.2
Trunc→Pop : {X : Type} → Trunc X → Pop X
Trunc→Pop z f c = rec {P = fix f} (fixed-point f c) (to-fix f c) z
-- Lemma 6.3
module _ {X : Type} where
pop→splitSup→X : Pop X → splitSup X → X
pop→splitSup→X pop sps = fst (pop (fst fc) (snd fc)) where
fc = (snd hasConst↔splitSup sps)
use-funct : (splitSup X → X) → Trunc (splitSup X) → Trunc X
use-funct f = trunc-functorial f
tr-hst-X→pop : (Trunc (splitSup X) → Trunc X) → Pop X
tr-hst-X→pop g f c = rec (fixed-point f c) (to-fix f c) (g ∣ hasConst→splitSup (f , c) ∣)
-- we formulate the two logical equivalence that we will need explicitly:
pop-alt : Pop X ↔ (Trunc (splitSup X) → Trunc X)
pop-alt = use-funct ∘ pop→splitSup→X , tr-hst-X→pop
pop-alt' : Pop X ↔ (splitSup X → X)
pop-alt' = pop→splitSup→X , tr-hst-X→pop ∘ use-funct
-- Theorem 6.4
pop-alt₂ : {X : Type} → Pop X ↔₀₁ ((P : Type) → (is-prop P) → (X ↔ P) → P)
pop-alt₂ {X} = one , two where
one : Pop X → (P : Type) → is-prop P → (X ↔ P) → P
one pop P pp (xp , px) = xp (fst (pop f c)) where
f : X → X
f = px ∘ xp
c : const f
c x₁ x₂ = ap px (prop-has-all-paths pp _ _)
two : ((P : Type) → is-prop P → (X ↔ P) → P) → Pop X
two rest f c = rest (fix f) (fixed-point f c) (to-fix f c , from-fix f)
-- Theorem 6.5
pop-property₁ : {X : Type} → X → Pop X
pop-property₁ = Trunc→Pop ∘ ∣_∣
-- this (and the following results of this section) needs function extensionality
open import library.types.Pi
pop-property₂ : {X : Type} → is-prop (Pop X)
pop-property₂ = Π-is-prop (λ f → Π-is-prop (λ c → fixed-point f c))
-- Theorem 6.6
hasConst↔PopX→X : {X : Type} → (hasConst X) ↔ (Pop X → X)
hasConst↔PopX→X {X} = hasConst→PopX→X , rev where
hasConst→PopX→X : hasConst X → Pop X → X
hasConst→PopX→X (f , c) pop = fst (pop f c)
rev : (Pop X → X) → hasConst X
rev pp = (pp ∘ pop-property₁) ,
(λ x₁ x₂ → ap pp (prop-has-all-paths pop-property₂ _ _))
-- Theorem 6.6, second part
prop→hasConst×PopX→X : {X : Type} → (is-prop X) → (hasConst X) × (Pop X → X)
prop→hasConst×PopX→X p = fc , fst hasConst↔PopX→X fc where
fc = idf _ , prop-has-all-paths p
-- Theorem 6.7
pop-idem : {X : Type} → (Pop (Pop X)) ≃ (Pop X)
pop-idem {X} = equiv f g auto₁ auto₂ where
f = snd (prop→hasConst×PopX→X pop-property₂)
g = pop-property₁
auto₁ = λ _ → prop-has-all-paths pop-property₂ _ _
auto₂ = λ _ → prop-has-all-paths pop-property₂ _ _
| {
"alphanum_fraction": 0.6094800141,
"avg_line_length": 28.5555555556,
"ext": "agda",
"hexsha": "58e504278fda38ee0c85284347bda12876ae4870",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/anonymousExistence/Sec6populatedness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/anonymousExistence/Sec6populatedness.agda",
"max_line_length": 92,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/anonymousExistence/Sec6populatedness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1059,
"size": 2827
} |
{-# OPTIONS --type-in-type #-}
U = Set
id : {A : Set} → A → A
id = λ x → x
id2 : ∀ {A} → A → A
id2 = id id
id3 : ∀ {A} → A → A
id3 = λ x → id x
id4 : {A : Set} -> A -> A
id4 = \x -> x
the : (A : Set) → A → A
the = λ _ x → x
constTy = {A B : Set} → A → B → A
const : constTy
const = λ x y → x
constU = const {Set}
namedArgTest = const {B = U} U
namedArgTest2 = the constTy (λ x y → x) {B = U} U
-- Church bools
--------------------------------------------------------------------------------
Bool = (B : U) → B → B → B
true : Bool
true = λ _ t f → t
false : Bool
false = λ _ t f → f
and : Bool → Bool → Bool
and = λ b1 b2 → b1 Bool true b2
-- Church natural numbers
--------------------------------------------------------------------------------
Nat : U
Nat = (n : U) → (n → n) → n → n
zero : Nat
zero = λ n s z → z
suc : Nat → Nat
suc = λ a n s z → s (a n s z)
n2 : Nat
n2 = λ n s z → s (s z)
n5 : Nat
n5 = λ n s z → s (s (s (s (s z))))
mul : Nat → Nat → Nat
mul = λ a b n s z → a n (b n s) z
add : Nat → Nat → Nat
add = λ a b n s z → a n s (b n s z)
n10 = mul n2 n5
n10b = mul n5 n2
n100 = mul n10 n10
n100b = mul n10b n10b
n10k = mul n100 n100
n10kb = mul n100b n100b
n100k = mul n10k n10
n100kb = mul n10kb n10b
n1M = mul n10k n100
n1Mb = mul n10kb n100b
n10M = mul n1M n10
n10Mb = mul n1Mb n10b
n100M = mul n10M n10
n200M = mul n2 n100M
-- Church lists
--------------------------------------------------------------------------------
List : U → U
List = λ a → (l : U) → (a → l → l) → l → l
lnil : ∀{a} → List a
lnil = λ l c n → n
lcons : ∀{a} → a → List a → List a
lcons = λ a as l c n → c a (as l c n)
list1 = lcons true (lcons false (lcons false lnil))
map : ∀{a b} → (a → b) → List a → List b
map = λ f as l c → as l (λ a → c (f a))
-- Church vectors
--------------------------------------------------------------------------------
Vec : U → Nat → U
Vec = λ a n → (V : Nat → U) → V zero → (∀{n} → a → V n → V (suc n)) → V n
vnil : ∀{a} → Vec a zero
vnil = λ V n c → n
vcons : ∀{a n} → a → Vec a n → Vec a (suc n)
vcons = λ a as V n c → c a (as V n c)
vec1 = vcons true (vcons false (vcons true vnil))
vecStress =
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true (vcons true (vcons true (vcons true (vcons true
(vcons true (vcons true
vnil))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))
-- Leibniz (Church) propositional equality, useful for testing conversion.
--------------------------------------------------------------------------------
Eq : ∀{A : U} → A → A → U
Eq {A} = λ x y → (P : A → U) → P x → P y
refl : ∀{A}{x : A} → Eq x x
refl = λ P px → px
trans : ∀{A}{x y z : A} → Eq x y → Eq y z → Eq x z
trans = λ p q → q _ p
sym : ∀{A}{x y : A} → Eq x y → Eq y x
sym {_}{x}{y} = λ p → p (λ y → Eq y x) refl
ap : ∀{A B}(f : A → B){x y : A} → Eq x y → Eq (f x) (f y)
ap = λ f {x}{y} p → p (λ y → Eq (f x) (f y)) refl
-- Pairs, Top, Bot
--------------------------------------------------------------------------------
Pair : U → U → U
Pair = λ A B → (Pair : U)(pair : A → B → Pair) → Pair
pair : ∀{A B} → A → B → Pair A B
pair = λ a b Pair pair → pair a b
proj1 : ∀{A B} → Pair A B → A
proj1 = λ p → p _ (λ x y → x)
proj2 : ∀{A B} → Pair A B → B
proj2 = λ p → p _ (λ x y → y)
Top : U
Top = (Top : U)(tt : Top) → Top
tt : Top
tt = λ Top tt → tt
Bot : U
Bot = (Bot : U) → Bot
-- Dependent function composition
--------------------------------------------------------------------------------
comp :
∀ {A : U}
{B : A → U}
{C : ∀{a} → B a → U}
(f : ∀{a}(b : B a) → C b)
(g : (a : A) → B a)
(x : A)
→ C (g x)
comp = λ f g a → f (g a)
compTest1 : Nat → Nat
compTest1 = comp suc suc
compTest2 : ∀{m A} → A → Vec A m → Vec A (suc (suc m))
compTest2 = λ a → comp (vcons a) (vcons a)
-- Some stress tests
--------------------------------------------------------------------------------
nfun : Nat → U
nfun n = n U (λ A → U → A) U
-- OK
synEqTest1 : Eq n1M n1M
synEqTest1 = refl
-- fail
-- synEqTest2 : nfun n10k → nfun n10k
-- synEqTest2 = λ x → x
-- OK
idStress : ∀{A} → A → A
idStress =
id id id id id id id id id id id id id id id id id id id id
id id id id id id id id id id id id id id id id id id id id
-- fail
-- pairStress : Top
-- pairStress =
-- let x0 = pair tt tt
-- x1 = pair x0 x0
-- x2 = pair x1 x1
-- x3 = pair x2 x2
-- x4 = pair x3 x3
-- x5 = pair x4 x4
-- x6 = pair x5 x5
-- x7 = pair x6 x6
-- x8 = pair x7 x7
-- x9 = pair x8 x8
-- x10 = pair x9 x9
-- x11 = pair x10 x10
-- x12 = pair x11 x11
-- x13 = pair x12 x12
-- x14 = pair x13 x13
-- x15 = pair x14 x14
-- x16 = pair x15 x15
-- x17 = pair x16 x16
-- x18 = pair x17 x17
-- x19 = pair x18 x18
-- x20 = pair x19 x19
-- in tt
forceNat : Nat → Bool
forceNat n = n _ (λ b → b) true
computeTest = forceNat n10M
-- Conversion checking tests
--------------------------------------------------------------------------------
-- conv100k : Eq n100k n100kb
-- conv100k = refl
-- conv1M : Eq n1M n1Mb
-- conv1M = refl
-- OOM
-- conv10M : Eq n10M n1M0b
-- conv10M = refl
-- convNfun1M : Eq (nfun n1M) (nfun n1Mb)
-- convNfun1M = refl
-- conv10kmeta : Eq n10k (add n10kb _)
-- conv10kmeta = refl
-- OOM
-- conv1Mmeta : Eq n1M (add n1Mb _)
-- conv1Mmeta = refl
--------------------------------------------------------------------------------
-- normalized instantly
lazyU = const U (forceNat n10M)
localCBN : Nat → Bool
localCBN
= λ n → let m = forceNat (mul n n100k)
in n _ (λ b → and m b) true
cbnReference = forceNat (mul n10 n100k)
localCBNtest = localCBN n10
-- Church-coded simply typed lambda calculus
--------------------------------------------------------------------------------
Ty : U
Ty
= (Ty : U)
(ι : Ty)
(fun : Ty → Ty → Ty)
→ Ty
ι : Ty
ι
= λ _ ι _ → ι
fun : Ty → Ty → Ty
fun
= λ A B Ty ι fun → fun (A Ty ι fun) (B Ty ι fun)
Con : U
Con
= (Con : U)
(nil : Con)
(cons : Con → Ty → Con)
→ Con
nil : Con
nil
= λ Con nil cons → nil
cons : Con → Ty → Con
cons
= λ Γ A Con nil cons → cons (Γ Con nil cons) A
Var : Con → Ty → U
Var
= λ Γ A →
(Var : Con → Ty → U)
(vz : ∀{Γ A} → Var (cons Γ A) A)
(vs : ∀{Γ B A} → Var Γ A → Var (cons Γ B) A)
→ Var Γ A
vz : ∀{Γ A} → Var (cons Γ A) A
vz
= λ Var vz vs → vz
vs : ∀{Γ B A} → Var Γ A → Var (cons Γ B) A
vs
= λ x Var vz vs → vs (x Var vz vs)
Tm : Con → Ty → U
Tm
= λ Γ A →
(Tm : Con → Ty → U)
(var : ∀{Γ A} → Var Γ A → Tm Γ A)
(lam : ∀{Γ A B} → Tm (cons Γ A) B → Tm Γ (fun A B))
(app : ∀{Γ A B} → Tm Γ (fun A B) → Tm Γ A → Tm Γ B)
→ Tm Γ A
var : ∀{Γ A} → Var Γ A → Tm Γ A
var
= λ x Tm var lam app → var x
lam : ∀{Γ A B} → Tm (cons Γ A) B → Tm Γ (fun A B)
lam
= λ t Tm var lam app → lam (t Tm var lam app)
app : ∀{Γ A B} → Tm Γ (fun A B) → Tm Γ A → Tm Γ B
app
= λ t u Tm var lam app → app (t Tm var lam app) (u Tm var lam app)
-- Well-typed interpreter for Church-coded STLC
--------------------------------------------------------------------------------
EvalTy : Ty → U
EvalTy
= λ A → A _ Bot (λ A B → A → B)
EvalCon : Con → U
EvalCon
= λ Γ → Γ _ Top (λ Δ A → Pair Δ (EvalTy A))
EvalVar : ∀{Γ A} → Var Γ A → EvalCon Γ → EvalTy A
EvalVar
= λ x → x (λ Γ A → EvalCon Γ → EvalTy A)
(λ env → proj2 env)
(λ rec env → rec (proj1 env))
EvalTm : ∀{Γ A} → Tm Γ A → EvalCon Γ → EvalTy A
EvalTm
= λ t → t (λ Γ A → EvalCon Γ → EvalTy A)
EvalVar
(λ t env α → t (pair env α))
(λ t u env → t env (u env))
-- Large embedded STLC term
--------------------------------------------------------------------------------
t1 : Tm nil (fun (fun ι ι) (fun ι ι))
t1
= lam (lam (
app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz)) (app (var (vs vz))
(var vz))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
))))))))))))))))))))))))))))))))))))))
))
-- test evaluation
evalTest = EvalTm t1 tt
| {
"alphanum_fraction": 0.5235898199,
"avg_line_length": 37.1215469613,
"ext": "agda",
"hexsha": "436d12d82f5a7930af700e5958a419abefd98698",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "783840e3444cbdc7927dd4a940d9c0ad5dc47223",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "zarybnicky/smalltt",
"max_forks_repo_path": "bench/Bench.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "783840e3444cbdc7927dd4a940d9c0ad5dc47223",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "zarybnicky/smalltt",
"max_issues_repo_path": "bench/Bench.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "783840e3444cbdc7927dd4a940d9c0ad5dc47223",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "zarybnicky/smalltt",
"max_stars_repo_path": "bench/Bench.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7488,
"size": 20157
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
-- Biproducts, a-la Karvonen.
--
-- This definition has advantages over more traditional ones,
-- namely that that we don't require either enrichment in CMon/Ab, or Zero Objects.
--
-- See https://arxiv.org/abs/1801.06488
module Categories.Object.Biproduct {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Object.Coproduct 𝒞
open import Categories.Object.Product 𝒞
open import Categories.Morphism 𝒞
open Category 𝒞
open HomReasoning
private
variable
A B C D : Obj
f g h : A ⇒ B
record IsBiproduct {A B A⊕B : Obj} (π₁ : A⊕B ⇒ A) (π₂ : A⊕B ⇒ B) (i₁ : A ⇒ A⊕B) (i₂ : B ⇒ A⊕B) : Set (o ⊔ ℓ ⊔ e) where
field
isCoproduct : IsCoproduct i₁ i₂
isProduct : IsProduct π₁ π₂
π₁∘i₁≈id : π₁ ∘ i₁ ≈ id
π₂∘i₂≈id : π₂ ∘ i₂ ≈ id
permute : i₁ ∘ π₁ ∘ i₂ ∘ π₂ ≈ i₂ ∘ π₂ ∘ i₁ ∘ π₁
open IsCoproduct isCoproduct public renaming (unique to []-unique)
open IsProduct isProduct public renaming (unique to ⟨⟩-unique)
record Biproduct (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
A⊕B : Obj
π₁ : A⊕B ⇒ A
π₂ : A⊕B ⇒ B
i₁ : A ⇒ A⊕B
i₂ : B ⇒ A⊕B
isBiproduct : IsBiproduct π₁ π₂ i₁ i₂
open IsBiproduct isBiproduct public
IsBiproduct⇒Biproduct : {π₁ : C ⇒ A} {π₂ : C ⇒ B} {i₁ : A ⇒ C} {i₂ : B ⇒ C} → IsBiproduct π₁ π₂ i₁ i₂ → Biproduct A B
IsBiproduct⇒Biproduct isBiproduct = record
{ isBiproduct = isBiproduct
}
Biproduct⇒IsBiproduct : (b : Biproduct A B) → IsBiproduct (Biproduct.π₁ b) (Biproduct.π₂ b) (Biproduct.i₁ b) (Biproduct.i₂ b)
Biproduct⇒IsBiproduct biproduct = Biproduct.isBiproduct biproduct
Biproduct⇒Product : Biproduct A B → Product A B
Biproduct⇒Product b = record
{ ⟨_,_⟩ = ⟨_,_⟩
; project₁ = project₁
; project₂ = project₂
; unique = ⟨⟩-unique
}
where
open Biproduct b
Biproduct⇒Coproduct : Biproduct A B → Coproduct A B
Biproduct⇒Coproduct b = record
{ [_,_] = [_,_]
; inject₁ = inject₁
; inject₂ = inject₂
; unique = []-unique
}
where
open Biproduct b
| {
"alphanum_fraction": 0.6503394762,
"avg_line_length": 25.4567901235,
"ext": "agda",
"hexsha": "2c5923f90425b9467e31efcbef4322c4f97747c8",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Object/Biproduct.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Object/Biproduct.agda",
"max_line_length": 125,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Object/Biproduct.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 841,
"size": 2062
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal.Core using (Monoidal)
module Categories.Category.Monoidal.Rigid {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open import Level
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation.NaturalIsomorphism
open Category C
open Commutation C
private
variable
X : Obj
-- left rigid monoidal category
record LeftRigid : Set (levelOfTerm M) where
open Monoidal M public
field
_⁻¹ : Obj → Obj
η : ∀ {X} → unit ⇒ X ⊗₀ X ⁻¹
ε : ∀ {X} → X ⁻¹ ⊗₀ X ⇒ unit
snake₁ : [ X ⇒ X ]⟨
unitorˡ.to ⇒⟨ (unit ⊗₀ X) ⟩
(η ⊗₁ id) ⇒⟨ (X ⊗₀ X ⁻¹) ⊗₀ X ⟩
associator.from ⇒⟨ X ⊗₀ (X ⁻¹ ⊗₀ X) ⟩
(id ⊗₁ ε) ⇒⟨ X ⊗₀ unit ⟩
unitorʳ.from
≈ id
⟩
snake₂ : [ X ⁻¹ ⇒ X ⁻¹ ]⟨
unitorʳ.to ⇒⟨ X ⁻¹ ⊗₀ unit ⟩
(id ⊗₁ η) ⇒⟨ X ⁻¹ ⊗₀ (X ⊗₀ X ⁻¹) ⟩
associator.to ⇒⟨ (X ⁻¹ ⊗₀ X) ⊗₀ X ⁻¹ ⟩
(ε ⊗₁ id) ⇒⟨ unit ⊗₀ X ⁻¹ ⟩
unitorˡ.from
≈ id
⟩
-- right rigid monoidal category
record RightRigid : Set (levelOfTerm M) where
open Monoidal M public
field
_⁻¹ : Obj → Obj
η : ∀ {X} → unit ⇒ X ⁻¹ ⊗₀ X
ε : ∀ {X} → X ⊗₀ X ⁻¹ ⇒ unit
snake₁ : [ X ⇒ X ]⟨
unitorʳ.to ⇒⟨ (X ⊗₀ unit) ⟩
(id ⊗₁ η) ⇒⟨ X ⊗₀ (X ⁻¹ ⊗₀ X) ⟩
associator.to ⇒⟨ (X ⊗₀ X ⁻¹) ⊗₀ X ⟩
(ε ⊗₁ id) ⇒⟨ unit ⊗₀ X ⟩
unitorˡ.from
≈ id
⟩
snake₂ : [ X ⁻¹ ⇒ X ⁻¹ ]⟨
unitorˡ.to ⇒⟨ unit ⊗₀ X ⁻¹ ⟩
(η ⊗₁ id) ⇒⟨ (X ⁻¹ ⊗₀ X) ⊗₀ X ⁻¹ ⟩
associator.from ⇒⟨ X ⁻¹ ⊗₀ (X ⊗₀ X ⁻¹) ⟩
(id ⊗₁ ε) ⇒⟨ X ⁻¹ ⊗₀ unit ⟩
unitorʳ.from
≈ id
⟩
| {
"alphanum_fraction": 0.4448453608,
"avg_line_length": 27.323943662,
"ext": "agda",
"hexsha": "e551b0ac638c9a9cd1d993b075eb2f7e62360299",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Rigid.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Rigid.agda",
"max_line_length": 93,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Rigid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 785,
"size": 1940
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.StrictGroupoids where
-- The 'strict' category of groupoids.
-- The difference here is that _≈_ is not |NaturalIsomorphism| but |_≡F_|
open import Level
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category using (Category)
open import Categories.Category.Groupoid using (Groupoid)
open import Categories.Category.Instance.Groupoids using (F-resp-⁻¹)
open import Categories.Functor using (Functor; id; _∘F_)
open import Categories.Functor.Equivalence
private
variable
o ℓ e : Level
open Groupoid using (category)
Groupoids : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)
Groupoids o ℓ e = record
{ Obj = Groupoid o ℓ e
; _⇒_ = λ G H → Functor (category G) (category H)
; _≈_ = _≡F_
; id = id
; _∘_ = _∘F_
; assoc = λ {_ _ _ _ F G H} → ≡F-assoc {F = F} {G} {H}
; sym-assoc = λ {_ _ _ _ F G H} → ≡F-sym-assoc {F = F} {G} {H}
; identityˡ = ≡F-identityˡ
; identityʳ = ≡F-identityʳ
; identity² = ≡F-identity²
; equiv = ≡F-equiv
; ∘-resp-≈ = ∘F-resp-≡F
}
| {
"alphanum_fraction": 0.6350301984,
"avg_line_length": 31.3243243243,
"ext": "agda",
"hexsha": "d0ee96ab8ae2f32f73f6a4a56b76e66e06c50392",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/StrictGroupoids.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/StrictGroupoids.agda",
"max_line_length": 73,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/StrictGroupoids.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 412,
"size": 1159
} |
open import Data.PropFormula 2
⋀comm : ∀ {Γ}{φ ψ : PropFormula} → Γ ⊢ φ ∧ ψ ⊃ ψ ∧ φ
⋀comm {Γ} {φ = φ}{ψ} =
⊃-intro $
∧-intro
(∧-proj₂ $ assume {Γ = Γ} $ φ ∧ ψ)
(∧-proj₁ {ψ = ψ} $ assume {Γ = Γ} $ φ ∧ ψ)
| {
"alphanum_fraction": 0.4459459459,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "8a8bd3a76564a05368d97b959f5d0ff9b83a5810",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "test/and-example.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "test/and-example.agda",
"max_line_length": 52,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "test/and-example.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 115,
"size": 222
} |
{-# OPTIONS --without-K #-}
module BitVec where
open import Data.Bool using (Bool; false; true; _∨_; _∧_)
open import Data.Fin using (Fin; toℕ)
open import Data.List using (List; []; _∷_; foldr)
open import Data.Nat using (ℕ; zero; suc; _≡ᵇ_)
open import Data.Product using (_×_; _,_; proj₂)
open import Data.String using (String; fromList)
open import Data.Vec using (Vec; []; _∷_; map; lookup; replicate; _[_]%=_; toList; zip; zipWith)
open import Function using (_∘_)
-- Bit vector representation of finite sets
BitVec : ℕ → Set
BitVec = Vec Bool
show : {n : ℕ} → BitVec n → String
show = fromList ∘ toList ∘ map (λ {true → '1' ; false → '0'})
empty : {n : ℕ} → BitVec n
empty = replicate false
insert : {n : ℕ} → Fin n → BitVec n → BitVec n
insert k s = s [ k ]%= (λ _ → true)
infixr 5 _∪_
_∪_ : {n : ℕ} → BitVec n → BitVec n → BitVec n
_∪_ = zipWith _∨_
infixr 6 _∩_
_∩_ : {n : ℕ} → BitVec n → BitVec n → BitVec n
_∩_ = zipWith _∧_
infix 4 _∈_
_∈_ : {n : ℕ} → Fin n → BitVec n → Bool
b ∈ bv = lookup bv b
indices : {n : ℕ} → Vec (Fin n) n
indices {ℕ.zero} = []
indices {suc n} = Fin.zero ∷ map Fin.suc (indices {n})
elements : {n : ℕ} → BitVec n → List (Fin n)
elements {n} bv = foldr f [] (toList (zip bv indices))
where f : Bool × Fin n → List (Fin n) → List (Fin n)
f (false , _) xs = xs
f (true , x) xs = x ∷ xs
| {
"alphanum_fraction": 0.5857142857,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "9604165707fa9552c2e132d7e9951bbce256268d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "doc/icfp20/code/BitVec.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "doc/icfp20/code/BitVec.agda",
"max_line_length": 103,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "doc/icfp20/code/BitVec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 510,
"size": 1400
} |
{-# OPTIONS --without-K #-}
module NTypes.Negation where
open import FunExt
open import NTypes
open import Types
¬-isProp : ∀ {a} {A : Set a} → isProp (¬ A)
¬-isProp ¬a _ = funext λ a → 0-elim (¬a a)
| {
"alphanum_fraction": 0.6386138614,
"avg_line_length": 20.2,
"ext": "agda",
"hexsha": "db6c6be820f5255d12761f130ef4cb5dd55e1e23",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/NTypes/Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/NTypes/Negation.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/NTypes/Negation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 72,
"size": 202
} |
-- Some theorems about operations on non-deterministic values
module nondet-thms where
open import bool
open import bool-thms
open import nat
open import eq
open import nat-thms
open import functions
open import nondet
----------------------------------------------------------------------
-- Theorems about values contained in non-deterministic values:
-- A proof that x is value of the non-deterministic tree y:
-- either it is equal to a deterministic value (ndrefl)
-- or it is somewhere in the tree.
-- If it is in the tree then we need to construct both branches of the tree,
-- and a proof that x is in one of the branches
-- A consequence of this is that any proof that x ∈ y contains the path
-- to x in the tree.
--
-- Example:
-- hInCoin : H ∈ coin
-- hInCoin = left (Val H) (Val T) ndrefl
--
-- Since H is on the left side of coin, we use the left constructor
-- The branches of the tree are (Val H) and (Val T),
-- and since H is identically equal to H this completes the proof.
data _∈_ {A : Set} (x : A) : (y : ND A) → Set where
ndrefl : x ∈ (Val x)
left : (l : ND A) → (r : ND A) → x ∈ l → x ∈ (l ?? r)
right : (l : ND A) → (r : ND A) → x ∈ r → x ∈ (l ?? r)
-- A basic inductive lemma that shows that ∈ is closed under function
-- application. That is, if x ∈ nx, then f x ∈ mapND f nx
--
-- Example:
-- ndCons : ... → xs ∈ nxs → (x :: xs) ∈ mapND (_::_ x) nxs
∈-apply : {A B : Set} → (f : A → B) → (x : A) → (nx : ND A)
→ x ∈ nx → (f x) ∈ (mapND f nx)
∈-apply f x (Val .x) ndrefl = ndrefl
∈-apply f x (l ?? r) (left .l .r k) =
left (mapND f l) (mapND f r) (∈-apply f x l k)
∈-apply f x (l ?? r) (right .l .r k) =
right (mapND f l) (mapND f r) (∈-apply f x r k)
----------------------------------------------------------------------
-- Theorems about 'mapND':
-- Combine two mapND applications into one:
mapND-mapND : ∀ {A B C : Set} → (f : B → C) (g : A → B) (xs : ND A)
→ mapND f (mapND g xs) ≡ mapND (f ∘ g) xs
mapND-mapND f g (Val x) = refl
mapND-mapND f g (t1 ?? t2)
rewrite mapND-mapND f g t1 | mapND-mapND f g t2 = refl
----------------------------------------------------------------------
-- Theorems about 'always':
-- Extend validity of a function with a deterministic argument to validity of
-- the corresponding non-deterministic function:
always-mapND : ∀ {A : Set} → (p : A → 𝔹) (xs : ND A)
→ ((y : A) → p y ≡ tt)
→ always (mapND p xs) ≡ tt
always-mapND _ (Val y) prf = prf y
always-mapND p (t1 ?? t2) prf
rewrite always-mapND p t1 prf
| always-mapND p t2 prf = refl
-- Extend validity of a function with a deterministic argument to validity of
-- the corresponding non-deterministic function:
always-with-nd-arg : ∀ {A : Set} → (p : A → ND 𝔹) (xs : ND A)
→ ((y : A) → always (p y) ≡ tt)
→ always (with-nd-arg p xs) ≡ tt
always-with-nd-arg _ (Val y) prf = prf y
always-with-nd-arg p (t1 ?? t2) prf
rewrite always-with-nd-arg p t1 prf
| always-with-nd-arg p t2 prf = refl
-- Extend validity of a deterministic function to validity of
-- corresponding function with non-deterministic result:
always-toND : ∀ {A : Set} → (p : A → 𝔹) (x : A)
→ (p x) ≡ tt → always (toND p x) ≡ tt
always-toND _ _ p = p
-- Extend validity of a deterministic function to validity of
-- corresponding non-deterministic function:
always-det-to-nd : ∀ {A : Set} → (p : A → 𝔹)
→ ((y : A) → (p y) ≡ tt)
→ (xs : ND A) → always (det-to-nd p xs) ≡ tt
always-det-to-nd p u xs =
always-with-nd-arg (toND p) xs (λ x → always-toND p x (u x))
----------------------------------------------------------------------
-- Theorems about 'satisfy':
-- A theorem like filter-map in functional programming:
satisfy-mapND : ∀ {A B : Set} → (f : A → B) (xs : ND A) (p : B → 𝔹)
→ (mapND f xs) satisfy p ≡ xs satisfy (p ∘ f)
satisfy-mapND _ (Val x) _ = refl
satisfy-mapND f (t1 ?? t2) p
rewrite satisfy-mapND f t1 p
| satisfy-mapND f t2 p = refl
-- Extend validity of function with deterministic argument to validity of
-- non-deterministic function:
satisfy-with-nd-arg : ∀ {A B : Set} → (p : B → 𝔹) (f : A → ND B) (xs : ND A)
→ ((y : A) → (f y) satisfy p ≡ tt)
→ (with-nd-arg f xs) satisfy p ≡ tt
satisfy-with-nd-arg _ _ (Val y) prf = prf y
satisfy-with-nd-arg p f (t1 ?? t2) prf
rewrite satisfy-with-nd-arg p f t1 prf
| satisfy-with-nd-arg p f t2 prf = refl
----------------------------------------------------------------------
-- Theorems about 'every':
mapNDval : ∀ (f : ℕ → ℕ) (v : ℕ) (x : ND ℕ) →
every _=ℕ_ v x ≡ tt → every _=ℕ_ (f v) (mapND f x) ≡ tt
mapNDval f v (Val x) u rewrite =ℕ-to-≡ {v} {x} u | =ℕ-refl (f x) = refl
mapNDval f v (t1 ?? t2) u
rewrite mapNDval f v t1 (&&-fst u)
| mapNDval f v t2 (&&-snd {every _=ℕ_ v t1} {every _=ℕ_ v t2} u) = refl
----------------------------------------------------------------------
-- This theorms allows to weaken a predicate which is always satisfied:
weak-always-predicate : ∀ {A : Set} → (p p1 : A → 𝔹) (xs : ND A)
→ xs satisfy p ≡ tt
→ xs satisfy (λ x → p1 x || p x) ≡ tt
weak-always-predicate p p1 (Val x) u rewrite u | ||-tt (p1 x) = refl
weak-always-predicate p p1 (t1 ?? t2) u
rewrite weak-always-predicate p p1 t1 (&&-fst u)
| weak-always-predicate p p1 t2 (&&-snd {t1 satisfy p} {t2 satisfy p} u)
= refl
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.5410996189,
"avg_line_length": 39.6474820144,
"ext": "agda",
"hexsha": "80500932f744010f4a470524f4ea4cb59c023f38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phlummox/curry-tools",
"max_forks_repo_path": "currypp/.cpm/packages/verify/imports/nondet-thms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phlummox/curry-tools",
"max_issues_repo_path": "currypp/.cpm/packages/verify/imports/nondet-thms.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7905bc4f625a94a725f9f6d8a2de1140bea5e471",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phlummox/curry-tools",
"max_stars_repo_path": "currypp/.cpm/packages/verify/imports/nondet-thms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1801,
"size": 5511
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.HLevels
module Cubical.Algebra.Semigroup.Construct.Free {ℓ} (Aˢ : hSet ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Path
open import Cubical.Algebra.Semigroup
open import Cubical.Data.Empty.Polymorphic
open import Cubical.Data.Prod
open import Cubical.Relation.Binary.Reasoning.Equality
A = ⟨ Aˢ ⟩
isSetA = Aˢ .snd
------------------------------------------------------------------------
-- The direct free semigroup type
data FreeS′ : Type ℓ where
inj : A → FreeS′
_•_ : Op₂ FreeS′
•-assoc : Associative _•_
squash : isSet FreeS′
elim : ∀ {ℓ′} {B : FreeS′ → Type ℓ′} →
(∀ x → isSet (B x)) →
(∀ x → B (inj x)) →
(op : ∀ x y → B x → B y → B (x • y)) →
(∀ x y z (a : B x) (b : B y) (c : B z) → PathP (λ i → B (•-assoc x y z i)) (op _ _ (op _ _ a b) c) (op _ _ a (op _ _ b c))) →
(x : FreeS′) → B x
elim isSetB f op assc (inj x) = f x
elim isSetB f op assc (x • y) = op x y (elim isSetB f op assc x) (elim isSetB f op assc y)
elim isSetB f op assc (•-assoc x y z i) = assc x y z (elim isSetB f op assc x) (elim isSetB f op assc y) (elim isSetB f op assc z) i
elim isSetB f op assc (squash x y p q i j) =
isOfHLevel→isOfHLevelDep 2 isSetB
(elim isSetB f op assc x) (elim isSetB f op assc y)
(cong (elim isSetB f op assc) p) (cong (elim isSetB f op assc) q) (squash x y p q) i j
------------------------------------------------------------------------
-- The simplified free semigroup type
infixl 5 _□
infixr 4 _∶_
data FreeS : Type ℓ where
_□ : A → FreeS
_∶_ : A → FreeS → FreeS
module FreeSPath where
Cover : FreeS → FreeS → Type ℓ
Cover (x □) (y □) = x ≡ y
Cover (x □) (y ∶ ys) = ⊥
Cover (x ∶ xs) (y □) = ⊥
Cover (x ∶ xs) (y ∶ ys) = (x ≡ y) × Cover xs ys
isPropCover : ∀ xs ys → isProp (Cover xs ys)
isPropCover (x □) (y □) = isSetA x y
isPropCover (x □) (y ∶ ys) = isProp⊥
isPropCover (x ∶ xs) (y □) = isProp⊥
isPropCover (x ∶ xs) (y ∶ ys) = isPropProd (isSetA x y) (isPropCover xs ys)
reflCover : ∀ xs → Cover xs xs
reflCover (x □) = refl
reflCover (x ∶ xs) = refl , reflCover xs
encode : ∀ xs ys → xs ≡ ys → Cover xs ys
encode xs _ = J (λ ys _ → Cover xs ys) (reflCover xs)
encodeRefl : ∀ xs → encode xs xs refl ≡ reflCover xs
encodeRefl xs = JRefl (λ ys _ → Cover xs ys) (reflCover xs)
decode : ∀ xs ys → Cover xs ys → xs ≡ ys
decode (x □) (y □) p = cong _□ p
decode (x □) (y ∶ ys) ()
decode (x ∶ xs) (y □) ()
decode (x ∶ xs) (y ∶ ys) (p , q) = cong₂ _∶_ p (decode xs ys q)
decodeRefl : ∀ xs → decode xs xs (reflCover xs) ≡ refl
decodeRefl (x □) = refl
decodeRefl (x ∶ xs) = cong (cong₂ _∶_ refl) (decodeRefl xs)
decodeEncode : ∀ xs ys → (p : xs ≡ ys) → decode xs ys (encode xs ys p) ≡ p
decodeEncode xs _ =
J (λ ys p → decode xs ys (encode xs ys p) ≡ p)
(cong (decode xs xs) (encodeRefl xs) ∙ decodeRefl xs)
isSetFreeS : isSet FreeS
isSetFreeS x y =
isOfHLevelRetract 1
(FreeSPath.encode x y)
(FreeSPath.decode x y)
(FreeSPath.decodeEncode x y)
(FreeSPath.isPropCover x y)
_++_ : Op₂ FreeS
(x □) ++ ys = x ∶ ys
(x ∶ xs) ++ ys = x ∶ xs ++ ys
++-assoc : Associative _++_
++-assoc (x □) ys zs = refl
++-assoc (x ∶ xs) ys zs = cong (x ∶_) (++-assoc xs ys zs)
------------------------------------------------------------------------
-- Proving the two types are equivalent
FreeS→FreeS′ : FreeS → FreeS′
FreeS→FreeS′ (x □) = inj x
FreeS→FreeS′ (x ∶ xs) = inj x • FreeS→FreeS′ xs
FreeS′→FreeS : FreeS′ → FreeS
FreeS′→FreeS = elim (λ _ → isSetFreeS) _□ (λ _ _ → _++_) (λ _ _ _ → ++-assoc)
FreeS→FreeS′→FreeS : retract FreeS→FreeS′ FreeS′→FreeS
FreeS→FreeS′→FreeS (x □) = refl
FreeS→FreeS′→FreeS (x ∶ xs) = cong (x ∶_) (FreeS→FreeS′→FreeS xs)
++-hom : Homomorphic₂ FreeS→FreeS′ _++_ _•_
++-hom (x □) ys = refl
++-hom (x ∶ xs) ys = cong (inj x •_) (++-hom xs ys) ∙ sym (•-assoc (inj x) (FreeS→FreeS′ xs) (FreeS→FreeS′ ys))
FreeS′→FreeS→FreeS′ : section FreeS→FreeS′ FreeS′→FreeS
FreeS′→FreeS→FreeS′ = elim (λ _ → isSet→isGroupoid squash _ _) (λ _ → refl) sectionOp (λ _ _ _ _ _ _ → isOfHLevelPathP' 0 (squash _ _) _ _ .fst)
where
sectionOp : ∀ x y → FreeS→FreeS′ (FreeS′→FreeS x) ≡ x →
FreeS→FreeS′ (FreeS′→FreeS y) ≡ y →
FreeS→FreeS′ (FreeS′→FreeS (x • y)) ≡ (x • y)
sectionOp x y p q =
FreeS→FreeS′ (FreeS′→FreeS (x • y)) ≡⟨⟩
FreeS→FreeS′ (FreeS′→FreeS x ++ FreeS′→FreeS y) ≡⟨ ++-hom (FreeS′→FreeS x) (FreeS′→FreeS y) ⟩
FreeS→FreeS′ (FreeS′→FreeS x) • FreeS→FreeS′ (FreeS′→FreeS y) ≡⟨ cong₂ _•_ p q ⟩
x • y ∎
FreeS≃FreeS′ : FreeS ≃ FreeS′
FreeS≃FreeS′ = isoToEquiv (iso FreeS→FreeS′ FreeS′→FreeS FreeS′→FreeS→FreeS′ FreeS→FreeS′→FreeS)
FreeS≡FreeS′ : FreeS ≡ FreeS′
FreeS≡FreeS′ = ua FreeS≃FreeS′
------------------------------------------------------------------------
-- Semigroup Algebra
FreeS′-isSemigroup : IsSemigroup FreeS′ _•_
FreeS′-isSemigroup = record
{ isMagma = record { is-set = squash }
; assoc = •-assoc
}
FreeS-isSemigroup : IsSemigroup FreeS _++_
FreeS-isSemigroup = record
{ isMagma = record { is-set = isSetFreeS }
; assoc = ++-assoc
}
FreeSemigroup′ : Semigroup ℓ
FreeSemigroup′ = record { isSemigroup = FreeS′-isSemigroup }
FreeSemigroup : Semigroup ℓ
FreeSemigroup = record { isSemigroup = FreeS-isSemigroup }
EquivFreeS : SemigroupEquiv FreeSemigroup FreeSemigroup′
EquivFreeS = record
{ eq = FreeS≃FreeS′
; isHom = ++-hom
}
FreeSemigroup≡ : FreeSemigroup ≡ FreeSemigroup′
FreeSemigroup≡ = uaSemigroup EquivFreeS
| {
"alphanum_fraction": 0.5724008848,
"avg_line_length": 31.9402173913,
"ext": "agda",
"hexsha": "0dcabe57d0c2204d4b90565a9220a916955eebeb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Free.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Free.agda",
"max_line_length": 144,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Free.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2280,
"size": 5877
} |
-- WARNING: This file was generated automatically by Vehicle
-- and should not be modified manually!
-- Metadata
-- - Agda version: 2.6.2
-- - AISEC version: 0.1.0.1
-- - Time generated: ???
{-# OPTIONS --allow-exec #-}
open import Vehicle
open import Data.Unit
module let-output where
private
VEHICLE_PROJECT_FILE = "TODO_projectFile"
abstract
e1 : let x = ⊤ in x
e1 = checkProperty record
{ projectFile = VEHICLE_PROJECT_FILE
; propertyUUID = "TODO_propertyUUID"
} | {
"alphanum_fraction": 0.6937119675,
"avg_line_length": 21.4347826087,
"ext": "agda",
"hexsha": "3bc16925ed95aa1a7bb5aae191aa20ea9195f344",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-11-16T14:30:47.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-15T15:22:31.000Z",
"max_forks_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "wenkokke/vehicle",
"max_forks_repo_path": "examples/simple/let/let-output.agda",
"max_issues_count": 53,
"max_issues_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_issues_repo_issues_event_max_datetime": "2021-12-15T22:42:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-16T07:26:42.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "wenkokke/vehicle",
"max_issues_repo_path": "examples/simple/let/let-output.agda",
"max_line_length": 60,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "41d8653d7e48a716f5085ec53171b29094669674",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "wenkokke/vehicle",
"max_stars_repo_path": "examples/simple/let/let-output.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T01:35:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-24T05:55:15.000Z",
"num_tokens": 139,
"size": 493
} |
-----------------------------------------------------------------------
-- This file formalizes the proof that Dial₂(Sets) is a full linear --
-- category. See Lemma 12 of the paper. --
-----------------------------------------------------------------------
module FullLinCat where
open import prelude
open import Dial2Sets
-- Monoidal nat. trans. m⊤ : ⊤ → !⊤:
m⊤ : Hom I (!ₒ I)
m⊤ = id-set , (λ f → triv) , m⊤-cond
where
m⊤-cond : {u : ⊤} {l : 𝕃 ⊤} → ι u triv → all-pred (ι u) l
m⊤-cond {triv}{[]} triv = triv
m⊤-cond {triv}{triv :: l} triv = triv , m⊤-cond {triv}{l} triv
-- These diagrams can be found on page 23 of the report.
m⊤-diag₁ : _≡h_ {I}{ !ₒ (!ₒ I)}
(comp {I} { !ₒ I} { !ₒ (!ₒ I)} m⊤ (!ₐ {I}{ !ₒ I} m⊤))
(comp {I} { !ₒ I} { !ₒ (!ₒ I)} m⊤ (δ {I}))
m⊤-diag₁ = refl , refl
m⊤-diag₂ : _≡h_ {I}{I} (comp {I}{ !ₒ I}{I} m⊤ (ε {I})) (id {I})
m⊤-diag₂ = refl , ext-set aux
where
aux : {a : ⊤} → triv ≡ a
aux {triv} = refl
-- The monoidal nat. trans. m : !A ⊗ !B → !(A ⊗ B):
h'₁ : {U V X Y : Set} → (((V → X) × (U → Y)) *) → (V → U → (X *))
h'₁ [] v u = []
h'₁ ((j₁ , j₂) :: js) v u = (j₁ v) :: h'₁ js v u
h'₁-append : ∀{U V X Y : Set}{l₁ l₂ : ((V → X) × (U → Y)) *}{v u}
→ (h'₁ l₁ v u) ++ (h'₁ l₂ v u) ≡ h'₁ (l₁ ++ l₂) v u
h'₁-append {l₁ = []} = refl
h'₁-append {l₁ = (j₁ , j₂) :: js}{l₂}{v}{u}
rewrite h'₁-append {l₁ = js}{l₂}{v}{u} = refl
h₁ : {U V X Y : Set}
→ ((U × V)
→ (((V → X) × (U → Y)) *))
→ (V → U → (X *))
h₁ g v u = h'₁ (g (u , v)) v u
h'₂ : {U V X Y : Set}
→ (((V → X) × (U → Y)) *)
→ (U → V → (Y *))
h'₂ [] u v = []
h'₂ ((j₁ , j₂) :: js) u v = (j₂ u) :: h'₂ js u v
h'₂-append : ∀{U V X Y : Set}{l₁ l₂ : ((V → X) × (U → Y)) *}{v u}
→ (h'₂ l₁ v u) ++ (h'₂ l₂ v u) ≡ h'₂ (l₁ ++ l₂) v u
h'₂-append {l₁ = []} = refl
h'₂-append {l₁ = (j₁ , j₂) :: js}{l₂}{v}{u}
rewrite h'₂-append {l₁ = js}{l₂}{v}{u} = refl
h₂ : {U V X Y : Set}
→ ((U × V)
→ (((V → X) × (U → Y)) *))
→ (U → V → (Y *))
h₂ g u v = h'₂ (g (u , v)) u v
m⊗ : {A B : Obj} → Hom ((!ₒ A) ⊗ₒ (!ₒ B)) (!ₒ (A ⊗ₒ B))
m⊗ {U , X , α} {V , Y , β} =
id-set , (λ g → h₁ g , h₂ g) , (λ {u}{y} x → m⊗-cond {u}{y} x)
where
m⊗-cond : {u : Σ U (λ x → V)}
{y : Σ U (λ x → V) → 𝕃 (Σ (V → X) (λ x → U → Y))} →
((λ u₁ f → all-pred (α u₁) (f u₁)) ⊗ᵣ
(λ u₁ f → all-pred (β u₁) (f u₁)))
u
((λ v u₁ → h'₁ (y (u₁ , v)) v u₁) ,
(λ u₁ v → h'₂ (y (u₁ , v)) u₁ v)) →
all-pred ((α ⊗ᵣ β) u) (y u)
m⊗-cond {(u , v)}{g} (p₁ , p₂) = aux p₁ p₂
where
aux : ∀{l}
→ all-pred (α u) (h'₁ l v u)
→ all-pred (β v) (h'₂ l u v)
→ all-pred ((α ⊗ᵣ β) (u , v)) l
aux {[]} p₁ p₂ = triv
aux {(j₁ , j₂) :: js} (p₁ , p₂) (p₃ , p₄) = (p₁ , p₃) , aux {js} p₂ p₄
-- The following diagrams can be found on page 24 of the report.
m⊗-diag-A : ∀{A}
→ (m⊤ ⊗ₐ (id { !ₒ A})) ○ (m⊗ {I} {A} ○ !ₐ (λ⊗ {A})) ≡h λ⊗ { !ₒ A}
m⊗-diag-A {U , X , α} = ext-set (λ {a} → aux {a}) ,
ext-set (λ {g} → cong2 _,_ refl (ext-set (aux' {g})))
where
aux : {a : Σ ⊤ (λ x → U)}
→ snd (⟨ (λ x → x) , (λ x → x) ⟩ a) ≡ snd a
aux {triv , u} = refl
aux' : {g : U → X *} → {a : ⊤}
→ (λ v → h'₂ (map (λ x → (λ _ → triv) , (λ _ → x)) (g v)) a v) ≡ g
aux' {g}{triv} = ext-set (λ {a} → aux'' {a}{g a})
where
aux'' : {a : U}{l : X *}
→ h'₂ (map (λ x → (λ _ → triv) , (λ _ → x)) l) triv a ≡ l
aux'' {u}{[]} = refl
aux'' {u}{x :: xs} rewrite aux'' {u}{xs} = refl
m⊗-diag-B : ∀{A}
→ ((id { !ₒ A}) ⊗ₐ m⊤) ○ (m⊗ {A} {I} ○ !ₐ (ρ⊗ {A})) ≡h ρ⊗ { !ₒ A}
m⊗-diag-B {U , X , α} =
(ext-set (λ {a} → aux {a})) , ext-set (λ {g} → cong2 _,_ (ext-set aux') refl)
where
aux : {a : Σ U (λ x → ⊤)}
→ fst (⟨ (λ x → x) , (λ x → x) ⟩ a) ≡ fst a
aux {u , triv} = refl
aux' : {g : U → X *} → {a : ⊤}
→ (λ u → h'₁ (map (λ x → (λ x₁ → x) , (λ x₁ → triv)) (g u)) a u) ≡ g
aux' {g}{triv} = ext-set (λ {u} → aux'' {g u}{u})
where
aux'' : ∀{l : X *}{u : U}
→ h'₁ (map (λ x → (λ x₁ → x) , (λ x₁ → triv)) l) triv u ≡ l
aux'' {[]}{u} = refl
aux'' {x :: xs}{u} rewrite aux'' {xs}{u} = refl
m⊗-diag-C : ∀{A B}
→ β⊗ { !ₒ A} { !ₒ B} ○ m⊗ {B} {A} ≡h (m⊗ {A}{B}) ○ (!ₐ (β⊗ {A}{B}))
m⊗-diag-C {U , X , α}{V , Y , β} =
refl ,
ext-set (λ {g} →
cong2 _,_ (ext-set (λ {v} → ext-set (λ {u} → aux {g (v , u)}{u}{v})))
(ext-set (λ {u} → ext-set (λ {v} → aux' {g (v , u)}{u}{v}))))
where
aux : ∀{l : 𝕃 (Σ (U → Y) (λ x → V → X))}{u v}
→ h'₂ l v u ≡ h'₁ (map twist-× l) v u
aux {[]} = refl
aux {(j₁ , j₂) :: js} {u}{v} rewrite aux {js}{u}{v} = refl
aux' : ∀{l : 𝕃 (Σ (U → Y) (λ x → V → X))}{u v}
→ h'₁ l u v ≡ h'₂ (map twist-× l) u v
aux' {[]} = refl
aux' {(j₁ , j₂) :: js} {u}{v} rewrite aux' {js}{u}{v} = refl
m⊗-diag-D : ∀{A B C : Obj}
→ α⊗ { !ₒ A} { !ₒ B} { !ₒ C} ○ id { !ₒ A} ⊗ₐ m⊗ {B} {C} ○ m⊗ {A} {B ⊗ₒ C}
≡h ((m⊗ {A}{B}) ⊗ₐ (id { !ₒ C})) ○ (m⊗ {A ⊗ₒ B}{C}) ○ (!ₐ (α⊗ {A}{B}{C}))
m⊗-diag-D {U , X , α}{V , Y , β}{W , Z , γ} =
ext-set aux ,
ext-set (λ {g} →
cong2 _,_
(ext-set
(λ {w} → cong2 _,_
(ext-set
(λ {v} → ext-set
(λ {u} → aux' {g (u , v , w)}{u}{v}{w})))
(ext-set (λ {u} → ext-set (λ {v} → aux'' {g (u , v , w)}{u}{v}{w})))))
(ext-set (λ {a} → aux''' {a}{g})))
where
aux : {a : Σ (Σ U (λ x → V)) (λ x → W)}
→ ⟨ (λ x → x) , (λ x → x) ⟩ (lr-assoc-× a) ≡ lr-assoc-× (⟨ (λ x → x) , (λ x → x) ⟩ a)
aux {((u , v) , w)} = refl
aux' : ∀{l : 𝕃 (Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z)))}{u v w}
→ h'₁ l (v , w) u ≡ h'₁ (h'₁ (map (Fα {V}{W}{X}{Y}{U}{V}{Z}) l) w (u , v)) v u
aux' {[]} = refl
aux' {(j₁ , j₂) :: js}{u}{v}{w} rewrite aux' {js}{u}{v}{w} = refl
aux'' : ∀{l : 𝕃 (Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z)))}{u v w}
→ h'₁ (h'₂ l u (v , w)) w v ≡ h'₂ (h'₁ (map (Fα {V}{W}{X}{Y}{U}{V}{Z}) l) w (u , v)) u v
aux'' {[]} = refl
aux'' {(j₁ , j₂) :: js}{u}{v}{w} with j₂ u
... | (j₃ , j₄) rewrite aux'' {js}{u}{v}{w} = refl
aux''' : ∀{a : Σ U (λ x → V)}{g : Σ U (λ x → Σ V (λ x₁ → W)) →
𝕃 (Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z)))} →
(λ v →
h'₂ (h'₂ (g (fst a , snd a , v)) (fst a) (snd a , v)) (snd a) v)
≡ (λ v → h'₂ (map (Fα {V}{W}{X}{Y}{U}{V}{Z}) (g (lr-assoc-× (a , v)))) a v)
aux''' {u , v}{g} = ext-set (λ {w} → aux'''' {g (u , v , w)}{w})
where
aux'''' : ∀{l : 𝕃 (Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z)))}{w : W}
→ h'₂ (h'₂ l u (v , w)) v w ≡ h'₂ (map (Fα {V}{W}{X}{Y}{U}{V}{Z}) l) (u , v) w
aux'''' {[]} = refl
aux'''' {(j₁ , j₂) :: js}{w} with j₂ u
... | (j₃ , j₄) rewrite aux'''' {js}{w} = refl
-- The following diagrams can be found on the bottom of page 26.
m⊗-diag-E : ∀{A B : Obj} → ε {A} ⊗ₐ ε {B} ≡h (m⊗ {A}{B}) ○ (ε {A ⊗ₒ B})
m⊗-diag-E {U , X , α}{V , Y , β} = ext-set aux , ext-set aux'
where
aux : {a : Σ U (λ x → V)} → ⟨ (λ x → x) , (λ x → x) ⟩ a ≡ a
aux {u , v} = refl
aux' : {a : Σ (V → X) (λ x → U → Y)}
→ F⊗ {f = λ x → x} {λ x y → x :: []}{λ x → x} {λ x y → x :: []} a
≡ ((λ v u → h'₁ (a :: []) v u) , (λ u v → h'₂ (a :: []) u v))
aux' {j₁ , j₂} = refl
m⊗-diag-F : ∀{A B : Obj}
→ δ {A} ⊗ₐ δ {B} ○ m⊗ { !ₒ A} { !ₒ B} ○ !ₐ (m⊗ {A} {B}) ≡h (m⊗ {A}{B}) ○ (δ {A ⊗ₒ B})
m⊗-diag-F {U , X , α}{V , Y , β} =
ext-set aux , ext-set (λ {g} →
cong2 _,_ (ext-set (λ {v} → ext-set (λ {u} → aux' {g (u , v)}{v}{u})))
(ext-set (λ {u} → ext-set (λ {v} → aux'' {g (u , v)}{v}{u}))))
where
aux : {a : Σ U (λ x → V)} → ⟨ (λ x → x) , (λ x → x) ⟩ a ≡ a
aux {u , v} = refl
aux' : ∀{l : 𝕃 (Σ U (λ x → V)
→ 𝕃 (Σ (V → X) (λ x → U → Y)))}{v u}
→ foldr (λ f → _++_ (f u)) []
(h'₁
(map
(λ g₁ →
(λ v₁ u₁ → h'₁ (g₁ (u₁ , v₁)) v₁ u₁) ,
(λ u₁ v₁ → h'₂ (g₁ (u₁ , v₁)) u₁ v₁))
l)
v u)
≡ h'₁ (foldr (λ f → _++_ (f (u , v))) [] l) v u
aux' {[]} = refl
aux' {j :: js}{v}{u} with j (u , v)
... | [] rewrite aux' {js}{v}{u} = refl
... | (j₁ , j₂) :: js' rewrite aux' {js}{v}{u}
= cong2 {a = j₁ v} _::_ refl (h'₁-append {l₁ = js'})
aux'' : ∀{l : 𝕃 (Σ U (λ x → V) → 𝕃 (Σ (V → X) (λ x → U → Y)))}{v u}
→ foldr (λ f → _++_ (f v)) []
(h'₂
(map
(λ g₁ →
(λ v₁ u₂ → h'₁ (g₁ (u₂ , v₁)) v₁ u₂) ,
(λ u₂ v₁ → h'₂ (g₁ (u₂ , v₁)) u₂ v₁))
l)
u v)
≡ h'₂ (foldr (λ f → _++_ (f (u , v))) [] l) u v
aux'' {[]} = refl
aux'' {j :: js}{v}{u} with j (u , v)
... | [] = aux'' {js}
... | (j₁ , j₂) :: js' rewrite aux'' {js}{v}{u}
= cong2 {a = j₂ u} _::_ refl (h'₂-append {l₁ = js'})
-- Now we show that whenever (!A , δ) is a free comonoid, then we have
-- distinguished nat. trans. e : !A → ⊤ and d : !A → !A ⊗ !A. These
-- constructions and their diagrams can be found on page 27 of the
-- report.
e : {A : Obj} → Hom (!ₒ A) I
e {U , X , α} = (λ x → triv) , (λ x u → []) , (λ {u}{y} x → e-cond {u}{y} x)
where
e-cond : {u : U} {y : ⊤} → ⊤ → ι triv y
e-cond {u}{triv} triv = triv
θ : ∀{U X : Set} → ((U → U → (X *)) × (U → U → (X *))) → U → X *
θ {U}{X} (f , g) u = (f u u) ++ (g u u)
d : {A : Obj} → Hom (!ₒ A) ((!ₒ A) ⊗ₒ (!ₒ A))
d {U , X , α} = (λ x → (x , x)) , θ , d-cond
where
d-cond : {u : U} {y : Σ (U → U → 𝕃 X) (λ x → U → U → 𝕃 X)} →
all-pred (α u) (θ y u) →
((λ u₁ f → all-pred (α u₁) (f u₁)) ⊗ᵣ
(λ u₁ f → all-pred (α u₁) (f u₁)))
(u , u) y
d-cond {u}{f , g} = aux
where
aux : ∀{l₁ l₂ : X *}
→ all-pred (α u) (l₁ ++ l₂)
→ ((all-pred (α u) l₁) × (all-pred (α u) l₂))
aux {[]} p = triv , p
aux {x :: xs} (p₁ , p₂) = (p₁ , fst (aux {xs} p₂)) , snd (aux {xs} p₂)
-- e must be a monoidal nat. trans.
e-diag-G : ∀{A B : Obj}{f : Hom A B} → !ₐ f ○ e {B} ≡h e {A}
e-diag-G {U , X , α}{V , Y , β}{(f , F , _)} = refl , refl
e-diag-H : _≡h_ {I}{I} (comp {I}{ !ₒ I}{I} m⊤ (e {I})) (id {I})
e-diag-H = ext-set aux , ext-set aux
where
aux : {a : ⊤} → triv ≡ a
aux {triv} = refl
e-diag-I : ∀{A B : Obj} → m⊗ {A} {B} ○ e {A ⊗ₒ B} ≡h e {A} ⊗ₐ e {B} ○ λ⊗ {I}
e-diag-I {U , X , α}{V , Y , β} = (ext-set (λ {a} → aux {a})) , refl
where
aux : {a : Σ U (λ x → V)} → triv ≡ snd (⟨ (λ x → triv) , (λ x → triv) ⟩ a)
aux {u , v} = refl
-- d must be a monoidal nat. trans. The following diagrams can be
-- found on page 28 of the report.
d-diag-J : ∀{A B : Obj}{f : Hom A B} → !ₐ f ○ d {B} ≡h (d {A}) ○ ((!ₐ f) ⊗ₐ (!ₐ f))
d-diag-J {U , X , α}{V , Y , β}{f , F , _} = refl , ext-set (λ {a} → aux {a})
where
aux : {a : Σ (V → V → 𝕃 Y) (λ x → V → V → 𝕃 Y)}
→ (λ u → map F (θ a (f u)))
≡ θ (F⊗ {f = f} {λ g u → map F (g (f u))} {f}
{λ g u → map F (g (f u))} a)
aux {j₁ , j₂} = ext-set (λ {u} → map-append F (j₁ (f u) (f u)) (j₂ (f u) (f u)))
d-diag-K : _≡h_ {I}{(!ₒ I) ⊗ₒ (!ₒ I)}
(comp {I}{ !ₒ I}{(!ₒ I) ⊗ₒ (!ₒ I)} m⊤ (d {I}))
(comp {I}{I ⊗ₒ I}{(!ₒ I) ⊗ₒ (!ₒ I)} (λ⁻¹⊗ {I}) (m⊤ ⊗ₐ m⊤))
d-diag-K = ext-set aux , ext-set (λ {a} → aux' {a})
where
aux : {a : ⊤} → (a , a) ≡ (triv , a)
aux {triv} = refl
aux' : {a : Σ (⊤ → ⊤ → 𝕃 ⊤) (λ x → ⊤ → ⊤ → 𝕃 ⊤)}
→ triv
≡ (snd (F⊗ {f = λ x → x} {λ f → triv} {λ x → x} {λ f → triv} a) triv)
aux' {j₁ , j₂} = refl
iso : {A B : Obj} → Hom (((!ₒ A) ⊗ₒ (!ₒ A)) ⊗ₒ ((!ₒ B) ⊗ₒ (!ₒ B)))
(((!ₒ A) ⊗ₒ (!ₒ B)) ⊗ₒ ((!ₒ A) ⊗ₒ (!ₒ B)))
iso {A}{B} =
α⊗ {(!ₒ A)} {(!ₒ A)} {(!ₒ B) ⊗ₒ (!ₒ B)}
○ (id {(!ₒ A)} ⊗ₐ α⊗-inv {(!ₒ A)} {(!ₒ B)} {(!ₒ B)}
○ (id {(!ₒ A)} ⊗ₐ (β⊗ {(!ₒ A)} {(!ₒ B)} ⊗ₐ id {(!ₒ B)})
○ (id {(!ₒ A)} ⊗ₐ α⊗ {(!ₒ B)} {(!ₒ A)} {(!ₒ B)}
○ α⊗-inv {(!ₒ A)} {(!ₒ B)} {(!ₒ A) ⊗ₒ (!ₒ B)})))
d-diag-L : ∀{A B : Obj}
→ m⊗ {A} {B} ○ d {A ⊗ₒ B} ≡h ((d {A}) ⊗ₐ (d {B})) ○ (iso ○ ((m⊗ {A}{B}) ⊗ₐ (m⊗ {A}{B})))
d-diag-L {U , X , α}{V , Y , β} = ext-set aux , ext-set (λ {a} → aux' {a})
where
aux : {a : U × V}
→ (a , a)
≡ ⟨ (λ x → x) , (λ x → x) ⟩
(rl-assoc-×
(⟨ (λ x → x) , lr-assoc-× ⟩
(⟨ (λ x → x) , ⟨ twist-× , (λ x → x) ⟩ ⟩
(⟨ (λ x → x) , rl-assoc-× ⟩
(lr-assoc-× (⟨ (λ x → x , x) , (λ x → x , x) ⟩ a))))))
aux {u , v} = refl
-- The type of aux' is the fully expanded version of the following type:
-- ((λ v u → h'₁ (θ a (u , v)) v u) , (λ u v → h'₂ (θ a (u , v)) u v))
-- ≡ ((λ v u → fst (fst (F⊗ a) (u , v)) v u ++ fst (snd (F⊗ a) (u , v)) v u)
-- ,
-- (λ u u₁ → snd (fst (F⊗ a) (u , u₁)) u u₁ ++ snd (snd (F⊗ a) (u , u₁)) u u₁).
-- Agda's type inference algorithm was having trouble inferring the annotations, and
-- so we used Agda to generate the fully expanded version.
aux' : {a
: Σ {_} {_}
(Σ {_} {_} U (λ x → V) →
Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y)))
(λ x →
Σ {_} {_} U (λ x₁ → V) →
Σ {_} {_} U (λ x₁ → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x₁ → U → Y)))} →
_≡_ {_}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
((λ v u →
h'₁ {U} {V} {X} {Y}
(θ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} (V → X)
(λ x → U → Y)}
a (u , v))
v u)
,
(λ u v →
h'₂ {U} {V} {X} {Y}
(θ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} (V → X)
(λ x → U → Y)}
a (u , v))
u v))
((λ v u →
_++_ {_} {X}
(fst {_} {_}
{V → U → 𝕃 {_} X}
{U → V → 𝕃 {_} Y}
(fst {_} {_}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
(F⊗ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{λ x → x}
{λ g →
(λ v₁ u₁ → h'₁ {U} {V} {X} {Y} (g (u₁ , v₁)) v₁ u₁) ,
(λ u₁ v₁ → h'₂ {U} {V} {X} {Y} (g (u₁ , v₁)) u₁ v₁)}
{λ x → x}
{λ g →
(λ v₁ u₁ → h'₁ {U} {V} {X} {Y} (g (u₁ , v₁)) v₁ u₁) ,
(λ u₁ v₁ → h'₂ {U} {V} {X} {Y} (g (u₁ , v₁)) u₁ v₁)}
a)
(u , v))
v u)
(fst {_} {_}
{V → U → 𝕃 {_} X}
{U → V → 𝕃 {_} Y}
(snd {_} {_}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
(F⊗ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{λ x → x}
{λ g →
(λ v₁ u₁ → h'₁ {U} {V} {X} {Y} (g (u₁ , v₁)) v₁ u₁) ,
(λ u₁ v₁ → h'₂ {U} {V} {X} {Y} (g (u₁ , v₁)) u₁ v₁)}
{λ x → x}
{λ g →
(λ v₁ u₁ → h'₁ {U} {V} {X} {Y} (g (u₁ , v₁)) v₁ u₁) ,
(λ u₁ v₁ → h'₂ {U} {V} {X} {Y} (g (u₁ , v₁)) u₁ v₁)}
a)
(u , v))
v u))
,
(λ u u₁ →
_++_ {_} {Y}
(snd {_} {_}
{V → U → 𝕃 {_} X}
{U → V → 𝕃 {_} Y}
(fst {_} {_}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
(F⊗ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{λ x → x}
{λ g →
(λ v u₂ → h'₁ {U} {V} {X} {Y} (g (u₂ , v)) v u₂) ,
(λ u₂ v → h'₂ {U} {V} {X} {Y} (g (u₂ , v)) u₂ v)}
{λ x → x}
{λ g →
(λ v u₂ → h'₁ {U} {V} {X} {Y} (g (u₂ , v)) v u₂) ,
(λ u₂ v → h'₂ {U} {V} {X} {Y} (g (u₂ , v)) u₂ v)}
a)
(u , u₁))
u u₁)
(snd {_} {_}
{V → U → 𝕃 {_} X}
{U → V → 𝕃 {_} Y}
(snd {_} {_}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V) →
Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
(F⊗ {Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_} U (λ x → V) →
𝕃 {_}
(Σ {_} {_} (V → X)
(λ x → U → Y))}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{Σ {_} {_} U (λ x → V)}
{Σ {_} {_}
(V → U → 𝕃 {_} X)
(λ x → U → V → 𝕃 {_} Y)}
{λ x → x}
{λ g →
(λ v u₂ → h'₁ {U} {V} {X} {Y} (g (u₂ , v)) v u₂) ,
(λ u₂ v → h'₂ {U} {V} {X} {Y} (g (u₂ , v)) u₂ v)}
{λ x → x}
{λ g →
(λ v u₂ → h'₁ {U} {V} {X} {Y} (g (u₂ , v)) v u₂) ,
(λ u₂ v → h'₂ {U} {V} {X} {Y} (g (u₂ , v)) u₂ v)}
a)
(u , u₁))
u u₁)))
aux' {j₁ , j₂} =
cong2
{a = λ v u → h'₁ (j₁ (u , v) (u , v) ++ j₂ (u , v) (u , v)) v u}
_,_ (ext-set
(λ {v} → ext-set
(λ {u} → sym (h'₁-append
{l₁ = j₁ (u , v) (u , v)}
{l₂ = j₂ (u , v) (u , v)}{v}{u}))))
(ext-set
(λ {u} → (ext-set
(λ {v} → sym (h'₂-append
{l₁ = j₁ (u , v) (u , v)}
{l₂ = j₂ (u , v) (u , v)}{u}{v})))))
-- Show that (!A, d, e) is a commutative comonoid. The following
-- diagrams can be found on page 29 of the report.
de-diag-M : ∀{A : Obj}
→ ρ⊗-inv {(!ₒ A)} ≡h (d {A}) ○ ((id {(!ₒ A)}) ⊗ₐ (e {A}))
de-diag-M {U , X , α} = refl , ext-set (λ {a} → aux {a})
where
aux : {a : Σ (⊤ → U → 𝕃 X) (λ x → U → ⊤)}
→ (fst a triv)
≡ (θ (F⊗ {f = λ x → x} {λ x → x} {λ x → triv} {λ x u → []} a))
aux {j₁ , j₂} = ext-set (λ {u} → sym (++[] (j₁ triv u)))
de-diag-N : ∀{A : Obj}
→ λ⁻¹⊗ {(!ₒ A)} ≡h (d {A}) ○ ((e {A}) ⊗ₐ (id {(!ₒ A)}))
de-diag-N {U , X , α} = refl , ext-set (λ {a} → aux {a})
where
aux : {a : Σ (U → ⊤) (λ x → ⊤ → U → 𝕃 X)} →
_≡_ (snd a triv) (θ (F⊗ {f = λ x → triv}
{λ x u → []}
{λ x → x}
{λ x → x} a))
aux {j₁ , j₂} = refl
de-diag-O : ∀{A : Obj}
→ d {A} ≡h (d {A}) ○ (β⊗ {(!ₒ A)}{(!ₒ A)})
de-diag-O {U , X , α} = refl , ext-set (λ {a} → aux {a})
where
aux : {a : Σ (U → U → 𝕃 X) (λ x → U → U → 𝕃 X)}
→ θ a ≡ θ (twist-× a)
aux {j₁ , j₂} = ext-set (λ {u} → *-comm {l₁ = j₁ u u}{j₂ u u})
de-diag-P : ∀{A : Obj}
→ (d {A})
○ (((d {A}) ⊗ₐ (id {(!ₒ A)}))
○ (α⊗ {(!ₒ A)}{(!ₒ A)}{(!ₒ A)}))
≡h (d {A}) ○ ((id {(!ₒ A)}) ⊗ₐ (d {A}))
de-diag-P {U , X , α} = refl , ext-set ((λ {a} → aux {a}))
where
aux : {a : Σ (Σ U (λ x → U) → U → 𝕃 X)
(λ x → U → Σ (U → U → 𝕃 X)
(λ x₁ → U → U → 𝕃 X))}
→ (θ (F⊗ {f = λ x → x , x} {θ {U} {X}} {λ x → x} {λ x → x}
(Fα {U} {U} {U → 𝕃 X} {U → 𝕃 X} {U} {U} {U → 𝕃 X} a)))
≡ (θ (F⊗ {Σ U (λ x → U)} {U → 𝕃 X} {U}
{Σ (U → U → 𝕃 X) (λ x → U → U → 𝕃 X)}
{U} {U → 𝕃 X} {U} {U → 𝕃 X} {λ x → x}
{λ x → x} {λ x → x , x} {θ} a))
aux {x , y} = ext-set (λ {u} → aux')
where
aux' : ∀{u : U}
→ (x (u , u) u ++ fst (y u) u u) ++ snd (y u) u u
≡ x (u , u) u ++ θ (y u) u
aux' {u} with y u
... | j₁ , j₂ = ++-assoc (x (u , u) u) (j₁ u u) (j₂ u u)
-- The morphism e and d must be a coalgebra morphisms. The following
-- diagram can be found on page 30 of the report.
e-diag-Q : ∀{A : Obj}
→ δ {A} ○ !ₐ (e {A}) ≡h (e {A}) ○ m⊤
e-diag-Q {U , X , α} =
refl , ext-set (λ {a} → ext-set (λ {u} → aux {a triv}))
where
aux : ∀{l : ⊤ *}{u : U} → _≡_ {_} {𝕃 {_} X}
(foldr {_} {_}
{U → 𝕃 {_} X} {𝕃 {_} X}
(λ f → _++_ {_} {X} (f u)) []
(map {_} {_} {⊤}
{U → 𝕃 {_} X} (λ x u₁ → []) l))
[]
aux {[]} = refl
aux {x :: l}{u} = aux {l}{u}
d-diag-R : ∀{A : Obj}
→ δ {A} ○ !ₐ (d {A}) ≡h (d {A}) ○ (((δ {A}) ⊗ₐ (δ {A})) ○ (m⊗ {(!ₒ A)}{(!ₒ A)}))
d-diag-R {U , X , α} = refl , ext-set (λ {a} → ext-set (λ {u} → aux {a (u , u)}{u}))
where
aux : ∀{l : 𝕃 (Σ (U → U → 𝕃 X) (λ x → U → U → 𝕃 X))}{u : U}
→ foldr (λ f → _++_ (f u)) [] (map θ l)
≡ foldr (λ f → _++_ (f u)) [] (h'₁ l u u) ++
foldr (λ f → _++_ (f u)) [] (h'₂ l u u)
aux {[]} = refl
aux {(j₁ , j₂) :: js}{u}
rewrite
++-assoc (j₁ u u)
(foldr (λ f → _++_ (f u)) [] (h'₁ js u u))
(j₂ u u ++ foldr (λ f → _++_ (f u)) [] (h'₂ js u u))
| sym (++-assoc (foldr (λ f → _++_ (f u)) [] (h'₁ js u u))
(j₂ u u)
(foldr (λ f → _++_ (f u)) [] (h'₂ js u u)))
| *-comm {l₁ = foldr (λ f → _++_ (f u)) [] (h'₁ js u u)}{j₂ u u}
| ++-assoc (j₂ u u)
(foldr (λ f → _++_ (f u)) [] (h'₁ js u u))
(foldr (λ f → _++_ (f u)) [] (h'₂ js u u))
| sym (++-assoc (j₁ u u)
(j₂ u u)
(foldr (λ f → _++_ (f u)) [] (h'₁ js u u) ++
foldr (λ f → _++_ (f u)) [] (h'₂ js u u)))
| aux {js}{u}
= refl
-- The following diagrams can be found on page 31 of the report.
diag-S : ∀{A B : Obj}{f : Hom (!ₒ A) (!ₒ B)}
→ ((δ {A}) ○ (!ₐ f)) ≡h (f ○ (δ {B}))
→ f ○ (e {B}) ≡h e {A}
diag-S {U , X , _}{V , Y , _}{f , F , _} (p , p') =
refl , ext-set (λ {a} → ext-set
(λ {u} → sym (congf2 {b = λ _ → []}
{λ _ → []}{u}{u}
p' refl refl)))
diag-T : ∀{A B : Obj}{f : Hom (!ₒ A) (!ₒ B)}
→ ((δ {A}) ○ (!ₐ f)) ≡h (f ○ (δ {B}))
→ f ○ d {B} ≡h (d {A}) ○ (f ⊗ₐ f)
diag-T {U , X , _}{V , Y , _}{f , F , _} (p , p') =
refl , ext-set (λ {a} → aux {a})
where
aux : {a : Σ (V → V → 𝕃 Y) (λ x → V → V → 𝕃 Y)}
→ F (θ a) ≡ θ (F⊗ {f = f}{F}{f}{F} a)
aux {j₁ , j₂} = ext-set (λ {u} → aux' {u})
where
aux'' : ∀{j₁ j₂ : V → V → 𝕃 Y}
→ (λ u₁ → j₁ u₁ u₁ ++ j₂ u₁ u₁ ++ [])
≡ λ u₁ → j₁ u₁ u₁ ++ j₂ u₁ u₁
aux'' {j₁}{j₂} =
ext-set (λ {v} → cong2 {a = j₁ v v}
{j₁ v v}
{j₂ v v ++ []}
{j₂ v v}
_++_
refl
(++[] (j₂ v v)))
aux' : ∀{u : U}
→ F (λ u₁ → j₁ u₁ u₁ ++ j₂ u₁ u₁) u
≡ F (j₁ (f u)) u ++ F (j₂ (f u)) u
aux' {u} with
congf2 {b = λ x → j₁ x :: j₂ x :: []}
{λ x → j₁ x :: j₂ x :: []}
{u}{u}
p' refl refl
... | p'' rewrite
++[] (F (j₂ (f u)) u)
| aux'' {j₁}{j₂} = sym p''
| {
"alphanum_fraction": 0.3054368471,
"avg_line_length": 36.8934306569,
"ext": "agda",
"hexsha": "2a190016731a4dfda93158a08e5ca2ab00fab347",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "dialectica-cats/FullLinCat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "dialectica-cats/FullLinCat.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "dialectica-cats/FullLinCat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11927,
"size": 25272
} |
open import Nat
open import Prelude
open import List
open import core
-- erasure of cursor in the types and expressions is defined in the paper,
-- and in the core file, as a function on zexpressions. because of the
-- particular encoding of all the judgments as datatypes and the agda
-- semantics for pattern matching, it is sometimes also convenient to have
-- a judgemental form of erasure.
--
-- this file describes the obvious encoding of the view this function as a
-- jugement relating input and output as a datatype, and argues that this
-- encoding is correct by showing a isomorphism with the function. we also
-- show that as a correlary, the judgement is well moded at (∀, ∃!), which
-- is unsurprising if the jugement is written correctly.
--
-- taken together, these proofs allow us to move between the judgemental
-- form of erasure and the function form when it's convenient.
--
-- while we do not have it, the argument given here is sufficiently strong
-- to produce an equality between these things in a system with the
-- univalence axiom, as described in the homotopy type theory book and the
-- associated work done in agda.
module judgemental-erase where
--cursor erasure for types, as written in the paper
_◆t : τ̂ → τ̇
▹ t ◃ ◆t = t
(t1 ==>₁ t2) ◆t = (t1 ◆t) ==> t2
(t1 ==>₂ t2) ◆t = t1 ==> (t2 ◆t)
--cursor erasure for expressions, as written in the paper
_◆e : ê → ė
▹ x ◃ ◆e = x
(e ·:₁ t) ◆e = (e ◆e) ·: t
(e ·:₂ t) ◆e = e ·: (t ◆t)
·λ x e ◆e = ·λ x (e ◆e)
(e1 ∘₁ e2) ◆e = (e1 ◆e) ∘ e2
(e1 ∘₂ e2) ◆e = e1 ∘ (e2 ◆e)
(e1 ·+₁ e2) ◆e = (e1 ◆e) ·+ e2
(e1 ·+₂ e2) ◆e = e1 ·+ (e2 ◆e)
⦇⌜ e ⌟⦈ ◆e = ⦇⌜ e ◆e ⌟⦈
-- this pair of theorems moves from the judgmental form to the function form
erase-t◆ : {t : τ̂} {tr : τ̇} → (erase-t t tr) → (t ◆t == tr)
erase-t◆ ETTop = refl
erase-t◆ (ETArrL p) = ap1 (λ x → x ==> _) (erase-t◆ p)
erase-t◆ (ETArrR p) = ap1 (λ x → _ ==> x) (erase-t◆ p)
erase-e◆ : {e : ê} {er : ė} → (erase-e e er) → (e ◆e == er)
erase-e◆ EETop = refl
erase-e◆ (EEAscL p) with erase-e◆ p
erase-e◆ (EEAscL p) | refl = refl -- ap1 (λ x → x ·: _) (erase-e◆ p)
erase-e◆ (EEAscR p) = ap1 (λ x → _ ·: x) (erase-t◆ p)
erase-e◆ (EELam p) = ap1 (λ e → ·λ _ e) (erase-e◆ p)
erase-e◆ (EEApL p) = ap1 (λ x → x ∘ _) (erase-e◆ p)
erase-e◆ (EEApR p) = ap1 (λ x → _ ∘ x) (erase-e◆ p)
erase-e◆ (EEPlusL p) = ap1 (λ x → x ·+ _) (erase-e◆ p)
erase-e◆ (EEPlusR p) = ap1 (λ x → _ ·+ x) (erase-e◆ p)
erase-e◆ (EENEHole p) = ap1 (λ x → ⦇⌜ x ⌟⦈) (erase-e◆ p)
-- this pair of theorems moves back from judgmental form to the function form
◆erase-t : (t : τ̂) (tr : τ̇) → (t ◆t == tr) → (erase-t t tr)
◆erase-t ▹ x ◃ .x refl = ETTop
◆erase-t (t ==>₁ x) (.(t ◆t) ==> .x) refl with ◆erase-t t (t ◆t) refl
... | ih = ETArrL ih
◆erase-t (x ==>₂ t) (.x ==> .(t ◆t)) refl with ◆erase-t t (t ◆t) refl
... | ih = ETArrR ih
◆erase-e : (e : ê) (er : ė) → (e ◆e == er) → (erase-e e er)
◆erase-e ▹ x ◃ .x refl = EETop
◆erase-e (e ·:₁ x) .((e ◆e) ·: x) refl with ◆erase-e e (e ◆e) refl
... | ih = EEAscL ih
◆erase-e (x ·:₂ x₁) .(x ·: (x₁ ◆t)) refl = EEAscR (◆erase-t x₁ (x₁ ◆t) refl)
◆erase-e (·λ x e) .(·λ x (e ◆e)) refl = EELam (◆erase-e e (e ◆e) refl)
◆erase-e (e ∘₁ x) .((e ◆e) ∘ x) refl = EEApL (◆erase-e e (e ◆e) refl)
◆erase-e (x ∘₂ e) .(x ∘ (e ◆e)) refl = EEApR (◆erase-e e (e ◆e) refl)
◆erase-e (e ·+₁ x) .((e ◆e) ·+ x) refl = EEPlusL (◆erase-e e (e ◆e) refl)
◆erase-e (x ·+₂ e) .(x ·+ (e ◆e)) refl = EEPlusR (◆erase-e e (e ◆e) refl)
◆erase-e ⦇⌜ e ⌟⦈ .(⦇⌜ e ◆e ⌟⦈) refl = EENEHole (◆erase-e e (e ◆e) refl)
-- jugemental erasure for both types and terms only has one proof for
-- relating the a term to its non-judgemental erasure
t-contr : (t : τ̂) → (x y : erase-t t (t ◆t)) → x == y
t-contr ▹ x ◃ ETTop ETTop = refl
t-contr (t ==>₁ x) (ETArrL y) (ETArrL z) = ap1 ETArrL (t-contr t y z)
t-contr (x ==>₂ t) (ETArrR y) (ETArrR z) = ap1 ETArrR (t-contr t y z)
e-contr : (e : ê) → (x y : erase-e e (e ◆e)) → x == y
e-contr ▹ x ◃ EETop EETop = refl
e-contr (e ·:₁ x) (EEAscL x₁) (EEAscL y) = ap1 EEAscL (e-contr e x₁ y)
e-contr (x₁ ·:₂ x) (EEAscR x₂) (EEAscR x₃) = ap1 EEAscR (t-contr x x₂ x₃)
e-contr (·λ x e) (EELam x₁) (EELam y) = ap1 EELam (e-contr e x₁ y)
e-contr (e ∘₁ x) (EEApL x₁) (EEApL y) = ap1 EEApL (e-contr e x₁ y)
e-contr (x ∘₂ e) (EEApR x₁) (EEApR y) = ap1 EEApR (e-contr e x₁ y)
e-contr (e ·+₁ x) (EEPlusL x₁) (EEPlusL y) = ap1 EEPlusL (e-contr e x₁ y)
e-contr (x ·+₂ e) (EEPlusR x₁) (EEPlusR y) = ap1 EEPlusR (e-contr e x₁ y)
e-contr ⦇⌜ e ⌟⦈ (EENEHole x) (EENEHole y) = ap1 EENEHole (e-contr e x y)
-- taken together, these four theorems demonstrate that both round-trips
-- of the above functions are stable up to ==
erase-trt1 : (t : τ̂) (tr : τ̇) → (x : t ◆t == tr) → (erase-t◆ (◆erase-t t tr x)) == x
erase-trt1 ▹ x ◃ .x refl = refl
erase-trt1 (t ==>₁ x) (.(t ◆t) ==> .x) refl with erase-t◆ (◆erase-t t (t ◆t) refl)
erase-trt1 (t ==>₁ x) (.(t ◆t) ==> .x) refl | refl = refl
erase-trt1 (x ==>₂ t) (.x ==> .(t ◆t)) refl with erase-t◆ (◆erase-t t (t ◆t) refl)
erase-trt1 (x ==>₂ t) (.x ==> .(t ◆t)) refl | refl = refl
erase-trt2 : (t : τ̂) (tr : τ̇) → (x : erase-t t tr) → ◆erase-t t tr (erase-t◆ x) == x
erase-trt2 .(▹ tr ◃) tr ETTop = refl
erase-trt2 _ _ (ETArrL ETTop) = refl
erase-trt2 (t1 ==>₁ t2) _ (ETArrL x) with erase-t◆ x
erase-trt2 (t1 ==>₁ t2) _ (ETArrL x) | refl = ap1 ETArrL (t-contr _ (◆erase-t t1 (t1 ◆t) refl) x)
erase-trt2 (t1 ==>₂ t2) _ (ETArrR x) with erase-t◆ x
erase-trt2 (t1 ==>₂ t2) _ (ETArrR x) | refl = ap1 ETArrR (t-contr _ (◆erase-t t2 (t2 ◆t) refl) x)
erase-ert1 : (e : ê) (er : ė) → (x : e ◆e == er) → (erase-e◆ (◆erase-e e er x)) == x
erase-ert1 ▹ x ◃ .x refl = refl
erase-ert1 (e ·:₁ x) .((e ◆e) ·: x) refl with erase-e◆ (◆erase-e e (e ◆e) refl)
erase-ert1 (e ·:₁ x) .((e ◆e) ·: x) refl | refl = refl
erase-ert1 (x ·:₂ t) .(x ·: (t ◆t)) refl = ap1 (λ a → ap1 (_·:_ x) a) (erase-trt1 t _ refl)
erase-ert1 (·λ x e) .(·λ x (e ◆e)) refl = ap1 (λ a → ap1 (·λ x) a) (erase-ert1 e _ refl)
erase-ert1 (e ∘₁ x) .((e ◆e) ∘ x) refl = ap1 (λ a → ap1 (λ x₁ → x₁ ∘ x) a) (erase-ert1 e _ refl)
erase-ert1 (x ∘₂ e) .(x ∘ (e ◆e)) refl = ap1 (λ a → ap1 (_∘_ x) a) (erase-ert1 e _ refl)
erase-ert1 (e ·+₁ x) .((e ◆e) ·+ x) refl = ap1 (λ a → ap1 (λ x₁ → x₁ ·+ x) a) (erase-ert1 e _ refl)
erase-ert1 (x ·+₂ e) .(x ·+ (e ◆e)) refl = ap1 (λ a → ap1 (_·+_ x) a) (erase-ert1 e _ refl)
erase-ert1 ⦇⌜ e ⌟⦈ .(⦇⌜ e ◆e ⌟⦈) refl = ap1 (λ a → ap1 ⦇⌜_⌟⦈ a) (erase-ert1 e _ refl)
erase-ert2 : (e : ê) (er : ė) → (b : erase-e e er) → ◆erase-e e er (erase-e◆ b) == b
erase-ert2 .(▹ er ◃) er EETop = refl
erase-ert2 (e ·:₁ x) _ (EEAscL b) with erase-e◆ b
erase-ert2 (e ·:₁ x) _ (EEAscL b) | refl = ap1 EEAscL (e-contr _ (◆erase-e e (e ◆e) refl) b)
erase-ert2 (e ·:₂ x) _ (EEAscR b) with erase-t◆ b
erase-ert2 (e ·:₂ x) .(e ·: (x ◆t)) (EEAscR b) | refl = ap1 EEAscR (t-contr _ (◆erase-t x (x ◆t) refl) b)
erase-ert2 (·λ x e) _ (EELam b) with erase-e◆ b
erase-ert2 (·λ x e) .(·λ x (e ◆e)) (EELam b) | refl = ap1 EELam (e-contr e (◆erase-e e (e ◆e) refl) b)
erase-ert2 (e ∘₁ x) _ (EEApL b) with erase-e◆ b
erase-ert2 (e ∘₁ x) .((e ◆e) ∘ x) (EEApL b) | refl = ap1 EEApL (e-contr e (◆erase-e e (e ◆e) refl) b)
erase-ert2 (e1 ∘₂ e) _ (EEApR b) with erase-e◆ b
erase-ert2 (e1 ∘₂ e) .(e1 ∘ (e ◆e)) (EEApR b) | refl = ap1 EEApR (e-contr e (◆erase-e e (e ◆e) refl) b)
erase-ert2 (e ·+₁ x) _ (EEPlusL b) with erase-e◆ b
erase-ert2 (e ·+₁ x) .((e ◆e) ·+ x) (EEPlusL b) | refl = ap1 EEPlusL (e-contr e (◆erase-e e (e ◆e) refl) b)
erase-ert2 (e1 ·+₂ e) _ (EEPlusR b) with erase-e◆ b
erase-ert2 (e1 ·+₂ e) .(e1 ·+ (e ◆e)) (EEPlusR b) | refl = ap1 EEPlusR (e-contr e (◆erase-e e (e ◆e) refl) b)
erase-ert2 ⦇⌜ e ⌟⦈ _ (EENEHole b) with erase-e◆ b
erase-ert2 ⦇⌜ e ⌟⦈ .(⦇⌜ e ◆e ⌟⦈) (EENEHole b) | refl = ap1 EENEHole (e-contr e (◆erase-e e (e ◆e) refl) b)
-- since both round trips are stable, these functions demonstrate
-- isomorphisms between the jugemental and non-judgemental definitions of
-- erasure
erase-e-iso : (e : ê) (er : ė) → (e ◆e == er) ≃ (erase-e e er)
erase-e-iso e er = (◆erase-e e er) , (erase-e◆ , erase-ert1 e er , erase-ert2 e er)
erase-t-iso : (t : τ̂) (tr : τ̇) → (t ◆t == tr) ≃ (erase-t t tr)
erase-t-iso t tr = (◆erase-t t tr) , (erase-t◆ , erase-trt1 t tr , erase-trt2 t tr)
-- this isomorphism supplies the argument that the judgement has mode (∀,
-- !∃), where uniqueness comes from erase-e◆.
erase-e-mode : (e : ê) → Σ[ er ∈ ė ] (erase-e e er)
erase-e-mode e = (e ◆e) , (◆erase-e e (e ◆e) refl)
-- some translations and lemmas to move between the different
-- forms. these are not needed to show that this is an ok encoding pair,
-- but they are helpful when actually using it.
-- even more specifically, the relation relates an expression to its
-- functional erasure.
rel◆t : (t : τ̂) → (erase-t t (t ◆t))
rel◆t t = ◆erase-t t (t ◆t) refl
rel◆ : (e : ê) → (erase-e e (e ◆e))
rel◆ e = ◆erase-e e (e ◆e) refl
lem-erase-synth : ∀{e e' Γ t} → erase-e e e' → Γ ⊢ e' => t → Γ ⊢ (e ◆e) => t
lem-erase-synth er wt = tr (λ x → _ ⊢ x => _) (! (erase-e◆ er)) wt
lem-erase-ana : ∀{e e' Γ t} → erase-e e e' → Γ ⊢ e' <= t → Γ ⊢ (e ◆e) <= t
lem-erase-ana er wt = tr (λ x → _ ⊢ x <= _) (! (erase-e◆ er)) wt
lem-synth-erase : ∀{Γ e t e' } → Γ ⊢ e ◆e => t → erase-e e e' → Γ ⊢ e' => t
lem-synth-erase d1 d2 with erase-e◆ d2
... | refl = d1
eraset-det : ∀{t t' t''} → erase-t t t' → erase-t t t'' → t' == t''
eraset-det e1 e2 with erase-t◆ e1
... | refl = erase-t◆ e2
erasee-det : ∀{e e' e''} → erase-e e e' → erase-e e e'' → e' == e''
erasee-det e1 e2 with erase-e◆ e1
... | refl = erase-e◆ e2
erase-in-hole : ∀ {e e'} → erase-e e e' → erase-e ⦇⌜ e ⌟⦈ ⦇⌜ e' ⌟⦈
erase-in-hole (EENEHole er) = EENEHole (erase-in-hole er)
erase-in-hole x = EENEHole x
eq-er-trans : ∀{e e◆ e'} →
(e ◆e) == (e' ◆e) →
erase-e e e◆ →
erase-e e' e◆
eq-er-trans {e} {e◆} {e'} eq er = tr (λ f → erase-e e' f) (erasee-det (◆erase-e e (e' ◆e) eq) er) (rel◆ e')
eq-ert-trans : ∀{t t' t1 t2} →
(t ◆t) == (t' ◆t) →
erase-t t t1 →
erase-t t' t2 →
t1 == t2
eq-ert-trans eq er1 er2 = ! (erase-t◆ er1) · (eq · (erase-t◆ er2))
| {
"alphanum_fraction": 0.5427865894,
"avg_line_length": 50.3779904306,
"ext": "agda",
"hexsha": "f91d8fd437a18c3deb7865b336c8cd93b2537c7d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "judgemental-erase.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "judgemental-erase.agda",
"max_line_length": 111,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "judgemental-erase.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 4931,
"size": 10529
} |
open import Relation.Binary hiding (_⇒_)
open import Level
module Relation.Unary.Monotone {c i}(pre : Preorder i c i) where
open Preorder pre renaming (Carrier to I; _∼_ to _≤_)
open import Relation.Unary
open import Data.Product hiding (map)
open import Data.List
open import Function
record Monotone {ℓ}(p : Pred I ℓ) : Set (i ⊔ ℓ) where
field wk : ∀ {i j} → i ≤ j → p i → p j
open Monotone
open Monotone ⦃...⦄ public
∀≥[_] : ∀ {ℓ} → Pred I ℓ → Pred I (i ⊔ ℓ)
∀≥[ P ] i = ∀ {j} → i ≤ j → P j
∃≥[_] : ∀ {ℓ} → Pred I ℓ → Pred I (i ⊔ ℓ)
∃≥[ P ] i = ∃ λ j → i ≤ j × P j
infixr 4 _↗_
_↗_ : ∀ {ℓ} → Pred I ℓ → Pred I ℓ → Pred I (i ⊔ ℓ)
(P ↗ Q) = ∀≥[ P ⇒ Q ]
instance
∀≥-monotone : ∀ {ℓ}{P : Pred I ℓ} → Monotone ∀≥[ P ]
wk ∀≥-monotone ext f ext' = f (trans ext ext')
mono-∩ : ∀ {i j}{p : Pred I i}{q : Pred I j}
⦃ wp : Monotone p ⦄ ⦃ wq : Monotone q ⦄ → Monotone (p ∩ q)
wk (mono-∩ ⦃ wp ⦄ ⦃ wq ⦄) ext (x , y) = (wk wp ext x , wk wq ext y)
list-monotone : ∀ {B : Pred I i}⦃ wb : Monotone B ⦄ → Monotone (λ W → List (B W))
wk (list-monotone ⦃ wₐ ⦄) ext v = map (wk wₐ ext) v
open import Data.List.All as All
all-monotone : ∀ {b i}{B : Set b}{xs : List B}{C : B → Pred I i}
⦃ wₐ : ∀ x → Monotone (C x) ⦄ →
Monotone (λ ys → All (λ x → C x ys) xs)
wk (all-monotone ⦃ wₐ ⦄) ext v = All.map (λ {a} y → wk (wₐ a) ext y) v
open import Data.Vec using (Vec)
open import Data.Vec.All as VAll
vec-all-monotone : ∀ {b i n}{B : Set b}{xs : Vec B n}{C : B → Pred I i}
⦃ wₐ : ∀ x → Monotone (C x) ⦄ →
Monotone (λ ys → VAll.All (λ x → C x ys) xs)
wk (vec-all-monotone ⦃ wₐ ⦄) ext v = VAll.map (λ {a} y → wk (wₐ a) ext y) v
≤-mono : ∀ {i} → Monotone (_≤_ i)
wk ≤-mono = flip trans
open import Data.Maybe as Maybe
maybe-monotone : ∀ {i}{P : Pred I i} ⦃ mono : Monotone P ⦄ → Monotone (λ W → Maybe (P W))
wk (maybe-monotone ⦃ mono ⦄) ext mv = Maybe.map (wk mono ext) mv
| {
"alphanum_fraction": 0.5328614762,
"avg_line_length": 34.1034482759,
"ext": "agda",
"hexsha": "008f1d8729c969b644b635a4897e3f960ff700d2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Relation/Unary/Monotone.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Relation/Unary/Monotone.agda",
"max_line_length": 91,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Relation/Unary/Monotone.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 878,
"size": 1978
} |
module AKS.Nat where
open import AKS.Nat.Base public
open import AKS.Nat.Properties public
open import AKS.Nat.WellFounded public
open import AKS.Nat.Divisibility public
| {
"alphanum_fraction": 0.8304093567,
"avg_line_length": 24.4285714286,
"ext": "agda",
"hexsha": "fecf59d3ad7d7cf59fdfe77172769d3c561ca53d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Nat.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 47,
"size": 171
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.