Search is not available for this dataset
text
string | meta
dict |
---|---|
module TakeDropDec where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List using (List; []; _∷_)
open import Data.List.All using (All; []; _∷_)
open import Data.Bool using (Bool; true; false; T)
open import Data.Unit using (⊤; tt)
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable using ()
open import Function using (_∘_)
module TakeDrop {A : Set} {P : A → Set} (P? : ∀ (x : A) → Dec (P x)) where
takeWhile : List A → List A
takeWhile [] = []
takeWhile (x ∷ xs) with P? x
... | yes _ = x ∷ takeWhile xs
... | no _ = []
dropWhile : List A → List A
dropWhile [] = []
dropWhile (x ∷ xs) with P? x
... | yes _ = dropWhile xs
... | no _ = x ∷ xs
Head : (A → Set) → List A → Set
Head P [] = ⊥
Head P (x ∷ xs) = P x
takeWhile-lemma : ∀ (xs : List A) → All P (takeWhile xs)
takeWhile-lemma [] = []
takeWhile-lemma (x ∷ xs) with P? x
... | yes px = px ∷ takeWhile-lemma xs
... | no _ = []
dropWhile-lemma : ∀ (xs : List A) → ¬ Head P (dropWhile xs)
dropWhile-lemma [] = λ()
dropWhile-lemma (x ∷ xs) with P? x
... | yes _ = dropWhile-lemma xs
... | no ¬px = ¬px
open TakeDrop
open import Data.Nat using (ℕ; zero; suc; _≟_)
_ : takeWhile (0 ≟_) (0 ∷ 0 ∷ 1 ∷ []) ≡ (0 ∷ 0 ∷ [])
_ = refl
_ : dropWhile (0 ≟_) (0 ∷ 0 ∷ 1 ∷ []) ≡ (1 ∷ [])
_ = refl
| {
"alphanum_fraction": 0.4850230415,
"avg_line_length": 31.5636363636,
"ext": "agda",
"hexsha": "859e35d47ee1eae931ec295ea4df5de675af807a",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/TakeDropDec.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/TakeDropDec.agda",
"max_line_length": 74,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/TakeDropDec.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 577,
"size": 1736
} |
module PLRTree.Compound {A : Set} where
open import PLRTree {A}
data Compound : PLRTree → Set where
compound : {t : Tag}{x : A}{l r : PLRTree} → Compound (node t x l r)
| {
"alphanum_fraction": 0.6514285714,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "142abe1c55651a113c9f37d52e2bfa1147ebb0a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Compound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Compound.agda",
"max_line_length": 70,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Compound.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 61,
"size": 175
} |
module Class.Monoid where
open import Level
open import Data.List using (List; []; _∷_)
record Monoid {a} (M : Set a) : Set (suc a) where
infixl 6 _+_
field
mzero : M
_+_ : M -> M -> M
open Monoid {{...}} public
concat : ∀ {a} {M : Set a} {{_ : Monoid M}} -> List M -> M
concat [] = mzero
concat (x ∷ l) = x + concat l
| {
"alphanum_fraction": 0.5671641791,
"avg_line_length": 19.7058823529,
"ext": "agda",
"hexsha": "a3ff58d476e605927aa1005d4b356ac221835ab6",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Class/Monoid.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Class/Monoid.agda",
"max_line_length": 58,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Class/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 124,
"size": 335
} |
module Oscar.Data.Nat where
open import Agda.Builtin.Nat public using (Nat; zero; suc)
| {
"alphanum_fraction": 0.7640449438,
"avg_line_length": 17.8,
"ext": "agda",
"hexsha": "30e13c94b33f428d3665b174bb4922c25b436e06",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data/Nat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data/Nat.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 25,
"size": 89
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Category.Slice.Properties {o ℓ e} (C : Category o ℓ e) where
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Functor
open import Categories.Object.Product
open import Categories.Diagram.Pullback
open import Categories.Morphism.Reasoning C
open import Categories.Object.Terminal C
import Categories.Category.Slice as S
private
module C = Category C
module _ {A : C.Obj} where
open S C
open Category (Slice A)
open SliceObj
open Slice⇒
open C.HomReasoning
product⇒pullback : ∀ {X Y : Obj} → Product (Slice A) X Y → Pullback C (arr X) (arr Y)
product⇒pullback p = record
{ p₁ = h π₁
; p₂ = h π₂
; commute = △ π₁ ○ ⟺ (△ π₂)
; universal = λ eq → h ⟨ slicearr eq , slicearr refl ⟩
; unique = λ {_ _ _ _ eq} eq′ eq″ → ⟺ (unique {h = slicearr (pushˡ (⟺ (△ π₁)) ○ C.∘-resp-≈ʳ eq′ ○ eq)} eq′ eq″)
; p₁∘universal≈h₁ = project₁
; p₂∘universal≈h₂ = project₂
}
where open Product (Slice A) p
pullback⇒product : ∀ {X Y : Obj} → Pullback C (arr X) (arr Y) → Product (Slice A) X Y
pullback⇒product {X} {Y} p = record
{ A×B = sliceobj (arr Y C.∘ p₂)
; π₁ = slicearr commute
; π₂ = slicearr refl
; ⟨_,_⟩ = λ f g → slicearr (pullʳ (p₂∘universal≈h₂ {eq = △ f ○ ⟺ (△ g)}) ○ △ g)
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
module _ (t : Terminal) where
open S C
open Terminal t
open Category (Slice ⊤)
open SliceObj
open Slice⇒
open C.HomReasoning
lift : ∀ {A B : C.Obj} (f : A C.⇒ B) → Slice⇒ (sliceobj (! {A})) (sliceobj (! {B}))
lift f = slicearr {h = f} !-unique₂
pullback⇒product′ : ∀ {X Y : Obj} → Pullback C (arr X) (arr Y) → Product (Slice ⊤) X Y
pullback⇒product′ {X} {Y} p = record
{ A×B = sliceobj !
; π₁ = slicearr {h = p₁} !-unique₂
; π₂ = slicearr {h = p₂} !-unique₂
; ⟨_,_⟩ = λ f g → slicearr {h = universal (△ f ○ ⟺ (△ g))} !-unique₂
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
-- slice of slice
module _ {A B} (f : A C.⇒ B) where
private
C/B : Category _ _ _
C/B = S.Slice C B
module C/B = Category C/B
C/A : Category _ _ _
C/A = S.Slice C A
module C/A = Category C/A
open C.HomReasoning
slice-slice⇒slice : Functor (S.Slice C/B (S.sliceobj f)) C/A
slice-slice⇒slice = record
{ F₀ = λ { (S.sliceobj (S.slicearr {h} △)) → S.sliceobj h }
; F₁ = λ { (S.slicearr △) → S.slicearr △ }
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
slice⇒slice-slice : Functor C/A (S.Slice C/B (S.sliceobj f))
slice⇒slice-slice = record
{ F₀ = λ { (S.sliceobj arr) → S.sliceobj (S.slicearr {h = arr} refl) }
; F₁ = λ { (S.slicearr △) → S.slicearr {h = S.slicearr (pullʳ △)} △ }
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
slice-slice≃slice : StrongEquivalence C/A (S.Slice C/B (S.sliceobj f))
slice-slice≃slice = record
{ F = slice⇒slice-slice
; G = slice-slice⇒slice
; weak-inverse = record
{ F∘G≈id = record
{ F⇒G = record
{ η = λ { (S.sliceobj (S.slicearr △)) → S.slicearr {h = S.slicearr (C.identityʳ ○ ⟺ △)} C.identityʳ }
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; F⇐G = record
{ η = λ { (S.sliceobj (S.slicearr △)) → S.slicearr {h = S.slicearr (C.identityʳ ○ △)} C.identityʳ }
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; iso = λ _ → record
{ isoˡ = C.identity²
; isoʳ = C.identity²
}
}
; G∘F≈id = record
{ F⇒G = record
{ η = λ { (S.sliceobj arr) → S.slicearr C.identityʳ }
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; F⇐G = record
{ η = λ { (S.sliceobj arr) → S.slicearr C.identityʳ }
; commute = λ _ → id-comm-sym
; sym-commute = λ _ → id-comm
}
; iso = λ _ → record
{ isoˡ = C.identity²
; isoʳ = C.identity²
}
}
}
}
| {
"alphanum_fraction": 0.5213043478,
"avg_line_length": 32.3943661972,
"ext": "agda",
"hexsha": "7b23db7b408abb075ae6672831623b871ae71dba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Slice/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Slice/Properties.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Slice/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1677,
"size": 4600
} |
module Generic.Lib.Prelude where
open import Generic.Lib.Intro public
open import Generic.Lib.Equality.Propositional public
open import Generic.Lib.Equality.Coerce public
open import Generic.Lib.Equality.Heteroindexed public
open import Generic.Lib.Equality.Congn public
open import Generic.Lib.Decidable public
open import Generic.Lib.Category public
open import Generic.Lib.Data.Nat public
open import Generic.Lib.Data.String public
open import Generic.Lib.Data.Maybe public
open import Generic.Lib.Data.Sum public
open import Generic.Lib.Data.Product public
open import Generic.Lib.Data.List public
open import Generic.Lib.Data.Pow public
open import Generic.Lib.Data.Sets public
open import Generic.Lib.Reflection.Core public
open import Generic.Lib.Reflection.Fold public
| {
"alphanum_fraction": 0.6890756303,
"avg_line_length": 47.6,
"ext": "agda",
"hexsha": "193e987fdb6c7656dcb081e11e5810b343f499c8",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Lib/Prelude.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Lib/Prelude.agda",
"max_line_length": 53,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Lib/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 172,
"size": 952
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the pointwise lifting of a predicate to a binary tree
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Tree.Binary.Relation.Unary.All.Properties where
open import Level
open import Data.Tree.Binary as Tree using (Tree; leaf; node)
open import Data.Tree.Binary.Relation.Unary.All
open import Relation.Unary
private
variable
a b p q : Level
A : Set a
B : Set b
module _ {P : B → Set p} where
map⁺ : (f : A → B) → ∀[ All (f ⊢ P) ⇒ Tree.map f ⊢ All P ]
map⁺ f leaf = leaf
map⁺ f (node l m r) = node (map⁺ f l) m (map⁺ f r)
| {
"alphanum_fraction": 0.5174262735,
"avg_line_length": 27.6296296296,
"ext": "agda",
"hexsha": "631353c91032ccfa4760c2a3132998af9f96e538",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 189,
"size": 746
} |
{-# OPTIONS --guarded #-}
module _ where
primitive
primLockUniv : _
postulate
A B : primLockUniv
c : A → B
foo : (@tick x y : B) → Set
bar : (@tick x y : A) → Set
bar x y = foo (c x) (c y)
| {
"alphanum_fraction": 0.56,
"avg_line_length": 14.2857142857,
"ext": "agda",
"hexsha": "532b05fbd3a5cf816aca504f165c2b62ab682c62",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/TickConstants.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/TickConstants.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/TickConstants.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 75,
"size": 200
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core definition of divisibility
------------------------------------------------------------------------
-- The definition of divisibility is split out from
-- `Data.Nat.Divisibility` to avoid a dependency cycle with
-- `Data.Nat.DivMod`.
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Divisibility.Core where
open import Data.Nat.Base using (ℕ; _*_)
open import Data.Nat.Properties
open import Level using (0ℓ)
open import Relation.Nullary using (¬_)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym)
------------------------------------------------------------------------
-- Definition
--
-- m ∣ n is inhabited iff m divides n. Some sources, like Hardy and
-- Wright's "An Introduction to the Theory of Numbers", require m to
-- be non-zero. However, some things become a bit nicer if m is
-- allowed to be zero. For instance, _∣_ becomes a partial order, and
-- the gcd of 0 and 0 becomes defined.
infix 4 _∣_ _∤_
record _∣_ (m n : ℕ) : Set where
constructor divides
field quotient : ℕ
equality : n ≡ quotient * m
open _∣_ using (quotient) public
_∤_ : Rel ℕ 0ℓ
m ∤ n = ¬ (m ∣ n)
| {
"alphanum_fraction": 0.5870413739,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "72c1f94abb9e994d5305523815d413b81bcce22b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Divisibility/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Divisibility/Core.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Divisibility/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 311,
"size": 1281
} |
{-# OPTIONS --without-K --safe #-}
-- We do not parameterize this module since we do not have access to _+_ or _*_
-- for the fields that we want (real numbers)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open ≡-Reasoning
open import Data.Nat using (ℕ) renaming (_+_ to _+ᴺ_)
open import Data.Nat.Properties
open import Data.Vec using (Vec; []; _∷_; _++_; take; drop; map; replicate)
open import Data.Vec.Properties
open import Function using (id)
open import FLA.Algebra.Structures
open import FLA.Algebra.Properties.Field
open import FLA.Algebra.LinearAlgebra
open import FLA.Algebra.LinearAlgebra.Properties
module FLA.Algebra.LinearMap where
private
variable
ℓ : Level
A : Set ℓ
m n p q : ℕ
-- A linear map from one vector field to another
record _⊸_ {ℓ : Level} {A : Set ℓ} ⦃ F : Field A ⦄ (m n : ℕ) : Set ℓ where
field
f : (Vec A m → Vec A n)
-- Additivity
f[u+v]≡f[u]+f[v] : (u v : Vec A m) → f (u +ⱽ v) ≡ f u +ⱽ f v
-- Homogeneity
f[c*v]≡c*f[v] : (c : A) → (v : Vec A m) → f (c ∘ⱽ v) ≡ c ∘ⱽ (f v)
infixr 1 _⊸_
-- A convenient syntax if a particular set needs to be specified.
_—_⊸_ : {ℓ : Level} (m : ℕ) (A : Set ℓ) (n : ℕ) ⦃ F : Field A ⦄ → Set ℓ
m — A ⊸ n = _⊸_ {A = A} m n
infixr 1 _—_⊸_
module _ ⦃ F : Field A ⦄ where
open Field F
open _⊸_
_·ˡᵐ_ : m ⊸ n → Vec A m → Vec A n
_·ˡᵐ_ LM = f LM
private
+ˡᵐ-linearity : (g h : m ⊸ n) → (u v x y : Vec A m)
→ g ·ˡᵐ (u +ⱽ v) +ⱽ h ·ˡᵐ (x +ⱽ y) ≡
g ·ˡᵐ u +ⱽ h ·ˡᵐ x +ⱽ (g ·ˡᵐ v +ⱽ h ·ˡᵐ y)
+ˡᵐ-linearity g h u v x y rewrite
f[u+v]≡f[u]+f[v] g u v
| f[u+v]≡f[u]+f[v] h x y
| (+ⱽ-assoc (g ·ˡᵐ u) (g ·ˡᵐ v) (h ·ˡᵐ x +ⱽ h ·ˡᵐ y))
| sym (+ⱽ-assoc (g ·ˡᵐ v) (h ·ˡᵐ x) (h ·ˡᵐ y))
| +ⱽ-comm (g ·ˡᵐ v) (h ·ˡᵐ x)
| (+ⱽ-assoc (h ·ˡᵐ x) (g ·ˡᵐ v) (h ·ˡᵐ y))
| sym (+ⱽ-assoc (g ·ˡᵐ u) (h ·ˡᵐ x) (g ·ˡᵐ v +ⱽ h ·ˡᵐ y))
= refl
+-homogeneity : (g h : m ⊸ n) → (c : A) (u v : Vec A m)
→ g ·ˡᵐ (c ∘ⱽ u) +ⱽ h ·ˡᵐ (c ∘ⱽ v) ≡
c ∘ⱽ (g ·ˡᵐ u +ⱽ h ·ˡᵐ v)
+-homogeneity g h c u v rewrite
f[c*v]≡c*f[v] g c u
| f[c*v]≡c*f[v] h c v
| sym (∘ⱽ-distr-+ⱽ c (g ·ˡᵐ u) (h ·ˡᵐ v))
= refl
_+ˡᵐ_ : m ⊸ n → m ⊸ n → m ⊸ n
g +ˡᵐ h = record
{ f = λ v → g ·ˡᵐ v +ⱽ h ·ˡᵐ v
; f[u+v]≡f[u]+f[v] = λ u v → +ˡᵐ-linearity g h u v u v
; f[c*v]≡c*f[v] = λ c v → +-homogeneity g h c v v
}
_-ˡᵐ_ : m ⊸ n → m ⊸ n → m ⊸ n
g -ˡᵐ h = record
{ f = λ v → g ·ˡᵐ v -ⱽ h ·ˡᵐ v
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]' g h
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]' g h
}
where
f[u+v]≡f[u]+f[v]' : (g h : m ⊸ n) → (u v : Vec A m)
→ g ·ˡᵐ (u +ⱽ v) -ⱽ h ·ˡᵐ (u +ⱽ v) ≡
g ·ˡᵐ u -ⱽ h ·ˡᵐ u +ⱽ (g ·ˡᵐ v -ⱽ h ·ˡᵐ v)
f[u+v]≡f[u]+f[v]' g h u v = begin
g ·ˡᵐ (u +ⱽ v) -ⱽ h ·ˡᵐ (u +ⱽ v)
≡⟨ cong (g ·ˡᵐ (u +ⱽ v) +ⱽ_) (-ⱽ≡-1ᶠ∘ⱽ (h ·ˡᵐ (u +ⱽ v))) ⟩
g ·ˡᵐ (u +ⱽ v) +ⱽ (- 1ᶠ) ∘ⱽ (h ·ˡᵐ (u +ⱽ v))
≡⟨ cong (λ x → g ·ˡᵐ (u +ⱽ v) +ⱽ (- 1ᶠ) ∘ⱽ x) (f[u+v]≡f[u]+f[v] h u v) ⟩
g ·ˡᵐ (u +ⱽ v) +ⱽ (- 1ᶠ) ∘ⱽ (h ·ˡᵐ u +ⱽ h ·ˡᵐ v)
≡⟨ cong (g ·ˡᵐ (u +ⱽ v) +ⱽ_) (∘ⱽ-distr-+ⱽ (- 1ᶠ) (h ·ˡᵐ u) (h ·ˡᵐ v)) ⟩
g ·ˡᵐ (u +ⱽ v) +ⱽ ((- 1ᶠ) ∘ⱽ h ·ˡᵐ u +ⱽ (- 1ᶠ) ∘ⱽ h ·ˡᵐ v)
≡⟨ cong₂ (λ x y → g ·ˡᵐ (u +ⱽ v) +ⱽ (x +ⱽ y))
(sym (f[c*v]≡c*f[v] h (- 1ᶠ) u))
(sym (f[c*v]≡c*f[v] h (- 1ᶠ) v)) ⟩
g ·ˡᵐ (u +ⱽ v) +ⱽ (h ·ˡᵐ ((- 1ᶠ) ∘ⱽ u) +ⱽ h ·ˡᵐ ((- 1ᶠ) ∘ⱽ v))
≡⟨ cong (g ·ˡᵐ (u +ⱽ v) +ⱽ_)
(sym (f[u+v]≡f[u]+f[v] h ((- 1ᶠ) ∘ⱽ u) ((- 1ᶠ) ∘ⱽ v))) ⟩
g ·ˡᵐ (u +ⱽ v) +ⱽ (h ·ˡᵐ ((- 1ᶠ) ∘ⱽ u +ⱽ (- 1ᶠ) ∘ⱽ v))
≡⟨ +ˡᵐ-linearity g h u v ((- 1ᶠ) ∘ⱽ u) ((- 1ᶠ) ∘ⱽ v) ⟩
g ·ˡᵐ u +ⱽ h ·ˡᵐ ((- 1ᶠ) ∘ⱽ u) +ⱽ (g ·ˡᵐ v +ⱽ h ·ˡᵐ ((- 1ᶠ) ∘ⱽ v))
≡⟨ cong₂ (λ x y → g ·ˡᵐ u +ⱽ x +ⱽ (g ·ˡᵐ v +ⱽ y))
(trans (f[c*v]≡c*f[v] h ((- 1ᶠ)) u) (sym (-ⱽ≡-1ᶠ∘ⱽ (h ·ˡᵐ u))))
(trans (f[c*v]≡c*f[v] h ((- 1ᶠ)) v) (sym (-ⱽ≡-1ᶠ∘ⱽ (h ·ˡᵐ v)))) ⟩
g ·ˡᵐ u -ⱽ h ·ˡᵐ u +ⱽ (g ·ˡᵐ v -ⱽ h ·ˡᵐ v)
∎
f[c*v]≡c*f[v]' : (g h : m ⊸ n) → (c : A) (v : Vec A m)
→ g ·ˡᵐ (c ∘ⱽ v) -ⱽ h ·ˡᵐ (c ∘ⱽ v) ≡
c ∘ⱽ (g ·ˡᵐ v -ⱽ h ·ˡᵐ v)
f[c*v]≡c*f[v]' g h c v = begin
g ·ˡᵐ (c ∘ⱽ v) -ⱽ h ·ˡᵐ (c ∘ⱽ v)
≡⟨ cong (g ·ˡᵐ (c ∘ⱽ v) +ⱽ_)
(trans (-ⱽ≡-1ᶠ∘ⱽ (h ·ˡᵐ (c ∘ⱽ v)))
(sym (f[c*v]≡c*f[v] h (- 1ᶠ) (c ∘ⱽ v)))) ⟩
g ·ˡᵐ (c ∘ⱽ v) +ⱽ h ·ˡᵐ ((- 1ᶠ) ∘ⱽ (c ∘ⱽ v))
≡⟨ cong (λ x → g ·ˡᵐ (c ∘ⱽ v) +ⱽ h ·ˡᵐ x) (∘ⱽ-comm (- 1ᶠ) c v) ⟩
g ·ˡᵐ (c ∘ⱽ v) +ⱽ h ·ˡᵐ (c ∘ⱽ ((- 1ᶠ) ∘ⱽ v))
≡⟨ +-homogeneity g h c v ((- 1ᶠ) ∘ⱽ v) ⟩
c ∘ⱽ (g ·ˡᵐ v +ⱽ h ·ˡᵐ ((- 1ᶠ) ∘ⱽ v))
≡⟨ cong (λ x → c ∘ⱽ (g ·ˡᵐ v +ⱽ x))
(trans (f[c*v]≡c*f[v] h (- 1ᶠ) v) (sym (-ⱽ≡-1ᶠ∘ⱽ (h ·ˡᵐ v)))) ⟩
c ∘ⱽ (g ·ˡᵐ v -ⱽ h ·ˡᵐ v)
∎
_*ˡᵐ_ : n ⊸ p → m ⊸ n → m ⊸ p
g *ˡᵐ h = record
{ f = λ v → g ·ˡᵐ (h ·ˡᵐ v)
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]' g h
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]' g h
}
where
f[u+v]≡f[u]+f[v]' : (g : n ⊸ p) (h : m ⊸ n)
→ (u v : Vec A m)
→ g ·ˡᵐ (h ·ˡᵐ (u +ⱽ v)) ≡
g ·ˡᵐ (h ·ˡᵐ u) +ⱽ g ·ˡᵐ (h ·ˡᵐ v)
f[u+v]≡f[u]+f[v]' g h u v rewrite
f[u+v]≡f[u]+f[v] h u v
| f[u+v]≡f[u]+f[v] g (f h u) (f h v)
= refl
f[c*v]≡c*f[v]' : (g : n ⊸ p) (h : m ⊸ n)
→ (c : A) (v : Vec A m)
→ g ·ˡᵐ (h ·ˡᵐ (c ∘ⱽ v)) ≡ c ∘ⱽ g ·ˡᵐ (h ·ˡᵐ v)
f[c*v]≡c*f[v]' g h c v rewrite
f[c*v]≡c*f[v] h c v
| f[c*v]≡c*f[v] g c (h ·ˡᵐ v)
= refl
-- vertical stack forward operator
_—ˡᵐ_ : p ⊸ m → p ⊸ n → p ⊸ (m +ᴺ n)
T —ˡᵐ B =
record
{ f = λ v → T ·ˡᵐ v ++ B ·ˡᵐ v
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]' T B
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]' T B
}
where
f[u+v]≡f[u]+f[v]' : (T : p ⊸ m) (B : p ⊸ n)
→ (u v : Vec A p)
→ T ·ˡᵐ (u +ⱽ v) ++ B ·ˡᵐ (u +ⱽ v) ≡
(T ·ˡᵐ u ++ B ·ˡᵐ u) +ⱽ (T ·ˡᵐ v ++ B ·ˡᵐ v)
f[u+v]≡f[u]+f[v]' T B u v rewrite
f[u+v]≡f[u]+f[v] T u v
| f[u+v]≡f[u]+f[v] B u v
| +ⱽ-flip-++ (T ·ˡᵐ u) (T ·ˡᵐ v) (B ·ˡᵐ u) (B ·ˡᵐ v)
= refl
f[c*v]≡c*f[v]' : (T : p ⊸ m) (B : p ⊸ n)
→ (c : A) → (v : Vec A p)
→ T ·ˡᵐ (c ∘ⱽ v) ++ B ·ˡᵐ (c ∘ⱽ v) ≡
c ∘ⱽ (T ·ˡᵐ v ++ B ·ˡᵐ v)
f[c*v]≡c*f[v]' T B c v rewrite
f[c*v]≡c*f[v] T c v
| f[c*v]≡c*f[v] B c v
| ∘ⱽ-distr-++ c (T ·ˡᵐ v) (B ·ˡᵐ v)
= refl
-- horizontal stack forward operator
_|ˡᵐ_ : m ⊸ p → n ⊸ p → (m +ᴺ n) ⊸ p
_|ˡᵐ_ {m} {n} {p} T B =
record
{ f = λ v → T ·ˡᵐ (take m v) +ⱽ B ·ˡᵐ (drop m v)
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]' T B
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]' T B
}
where
f[u+v]≡f[u]+f[v]' : {m n p : ℕ}
→ (T : m ⊸ p) (B : n ⊸ p)
→ (u v : Vec A (m +ᴺ n))
→ T ·ˡᵐ take m (u +ⱽ v) +ⱽ B ·ˡᵐ drop m (u +ⱽ v) ≡
T ·ˡᵐ take m u +ⱽ B ·ˡᵐ drop m u +ⱽ
(T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m v)
f[u+v]≡f[u]+f[v]' {m} T B u v = begin
T ·ˡᵐ (take m (u +ⱽ v)) +ⱽ B ·ˡᵐ (drop m (u +ⱽ v))
≡⟨ cong₂ (λ x y → T ·ˡᵐ x +ⱽ B ·ˡᵐ y)
(take-distr-zipWith _+_ u v) (drop-distr-zipWith _+_ u v)⟩
T ·ˡᵐ (take m u +ⱽ take m v) +ⱽ B ·ˡᵐ (drop m u +ⱽ drop m v)
≡⟨ cong₂ _+ⱽ_ (f[u+v]≡f[u]+f[v] T (take m u) (take m v))
(f[u+v]≡f[u]+f[v] B (drop m u) (drop m v)) ⟩
T ·ˡᵐ take m u +ⱽ T ·ˡᵐ take m v +ⱽ
(B ·ˡᵐ drop m u +ⱽ B ·ˡᵐ drop m v)
≡⟨ sym (+ⱽ-assoc (T ·ˡᵐ take m u +ⱽ T ·ˡᵐ take m v)
(B ·ˡᵐ drop m u) (B ·ˡᵐ drop m v)) ⟩
T ·ˡᵐ take m u +ⱽ T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m u +ⱽ
B ·ˡᵐ drop m v
≡⟨ cong (_+ⱽ B ·ˡᵐ drop m v) (+ⱽ-assoc (T ·ˡᵐ take m u)
(T ·ˡᵐ take m v)
(B ·ˡᵐ drop m u)) ⟩
T ·ˡᵐ take m u +ⱽ (T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m u) +ⱽ
B ·ˡᵐ drop m v
≡⟨ cong (λ x → (T ·ˡᵐ take m u +ⱽ x) +ⱽ B ·ˡᵐ drop m v)
(+ⱽ-comm (T ·ˡᵐ take m v) (B ·ˡᵐ drop m u)) ⟩
(T ·ˡᵐ take m u +ⱽ ((B ·ˡᵐ drop m u +ⱽ T ·ˡᵐ take m v))) +ⱽ
B ·ˡᵐ drop m v
≡⟨ cong (_+ⱽ B ·ˡᵐ drop m v) (sym (+ⱽ-assoc (T ·ˡᵐ take m u)
(B ·ˡᵐ drop m u)
(T ·ˡᵐ take m v))) ⟩
(T ·ˡᵐ take m u +ⱽ B ·ˡᵐ drop m u +ⱽ T ·ˡᵐ take m v) +ⱽ
B ·ˡᵐ drop m v
≡⟨ +ⱽ-assoc (T ·ˡᵐ take m u +ⱽ B ·ˡᵐ drop m u)
(T ·ˡᵐ take m v) (B ·ˡᵐ drop m v) ⟩
T ·ˡᵐ take m u +ⱽ B ·ˡᵐ drop m u +ⱽ
(T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m v)
∎
f[c*v]≡c*f[v]' : {m n p : ℕ}
→ (T : m ⊸ p) → (B : n ⊸ p)
→ (c : A) (v : Vec A (m +ᴺ n))
→ T ·ˡᵐ take m (c ∘ⱽ v) +ⱽ B ·ˡᵐ drop m (c ∘ⱽ v) ≡
c ∘ⱽ (T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m v)
f[c*v]≡c*f[v]' {m} T B c v = begin
T ·ˡᵐ take m (c ∘ⱽ v) +ⱽ B ·ˡᵐ drop m (c ∘ⱽ v)
≡⟨ cong₂ (λ x y → T ·ˡᵐ x +ⱽ B ·ˡᵐ y) (take-distr-map (c *_) m v)
(drop-distr-map (c *_) m v) ⟩
T ·ˡᵐ (c ∘ⱽ take m v) +ⱽ B ·ˡᵐ (c ∘ⱽ drop m v)
≡⟨ cong₂ _+ⱽ_ (f[c*v]≡c*f[v] T c (take m v))
(f[c*v]≡c*f[v] B c (drop m v)) ⟩
c ∘ⱽ (T ·ˡᵐ take m v) +ⱽ c ∘ⱽ (B ·ˡᵐ drop m v)
≡⟨ sym (∘ⱽ-distr-+ⱽ c (T ·ˡᵐ take m v) (B ·ˡᵐ drop m v)) ⟩
c ∘ⱽ (T ·ˡᵐ take m v +ⱽ B ·ˡᵐ drop m v)
∎
-- block diagonal forward and adjoint operator
_/ˡᵐ_ : m ⊸ n → p ⊸ q → (m +ᴺ p) ⊸ (n +ᴺ q)
_/ˡᵐ_ {m} {n} {p} {q} T B =
record
{ f = λ v → T ·ˡᵐ (take m v) ++ B ·ˡᵐ (drop m v)
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]' T B
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]' T B
}
where
f[u+v]≡f[u]+f[v]' : {m n p q : ℕ}
→ (T : m ⊸ n) (B : p ⊸ q)
→ (u v : Vec A (m +ᴺ p))
→ T ·ˡᵐ (take m (u +ⱽ v)) ++ B ·ˡᵐ (drop m (u +ⱽ v)) ≡
(T ·ˡᵐ (take m u) ++ B ·ˡᵐ (drop m u)) +ⱽ
(T ·ˡᵐ (take m v) ++ B ·ˡᵐ (drop m v))
f[u+v]≡f[u]+f[v]' {m} T B u v =
begin
T ·ˡᵐ take m (u +ⱽ v) ++ B ·ˡᵐ drop m (u +ⱽ v)
≡⟨ cong₂ (λ x y → T ·ˡᵐ x ++ B ·ˡᵐ y)
(take-distr-zipWith _+_ u v) (drop-distr-zipWith _+_ u v)⟩
T ·ˡᵐ (take m u +ⱽ take m v) ++ B ·ˡᵐ (drop m u +ⱽ drop m v)
≡⟨ cong₂ _++_ (f[u+v]≡f[u]+f[v] T (take m u) (take m v))
(f[u+v]≡f[u]+f[v] B (drop m u) (drop m v)) ⟩
(T ·ˡᵐ take m u +ⱽ T ·ˡᵐ take m v) ++
(B ·ˡᵐ drop m u +ⱽ B ·ˡᵐ drop m v)
≡⟨ sym (+ⱽ-flip-++ (T ·ˡᵐ take m u) (T ·ˡᵐ take m v)
(B ·ˡᵐ drop m u) (B ·ˡᵐ drop m v)) ⟩
(T ·ˡᵐ take m u ++ B ·ˡᵐ drop m u) +ⱽ
(T ·ˡᵐ take m v ++ B ·ˡᵐ drop m v)
∎
f[c*v]≡c*f[v]' : {m n p q : ℕ}
→ (T : m ⊸ n) (B : p ⊸ q)
→ (c : A) (v : Vec A (m +ᴺ p))
→ T ·ˡᵐ (take m (c ∘ⱽ v)) ++ B ·ˡᵐ (drop m (c ∘ⱽ v)) ≡
c ∘ⱽ (T ·ˡᵐ (take m v) ++ B ·ˡᵐ (drop m v))
f[c*v]≡c*f[v]' {m} T B c v =
begin
T ·ˡᵐ take m (c ∘ⱽ v) ++ B ·ˡᵐ drop m (c ∘ⱽ v)
≡⟨ cong₂ (λ x y → T ·ˡᵐ x ++ B ·ˡᵐ y) (take-distr-map (c *_) m v)
(drop-distr-map (c *_) m v) ⟩
T ·ˡᵐ (c ∘ⱽ take m v) ++ B ·ˡᵐ (c ∘ⱽ (drop m v))
≡⟨ cong₂ _++_ (f[c*v]≡c*f[v] T c (take m v))
(f[c*v]≡c*f[v] B c (drop m v)) ⟩
c ∘ⱽ (T ·ˡᵐ take m v) ++ c ∘ⱽ (B ·ˡᵐ drop m v)
≡⟨ sym (∘ⱽ-distr-++ c (T ·ˡᵐ take m v) (B ·ˡᵐ drop m v)) ⟩
c ∘ⱽ (T ·ˡᵐ take m v ++ B ·ˡᵐ drop m v)
∎
-- Multiply by a constant
_∘ˡᵐ_ : A → n ⊸ m → n ⊸ m
c ∘ˡᵐ m =
record
{ f = λ v → c ∘ⱽ m ·ˡᵐ v
; f[u+v]≡f[u]+f[v] = λ u v → trans (cong (c ∘ⱽ_) (f[u+v]≡f[u]+f[v] m u v))
(∘ⱽ-distr-+ⱽ c (m ·ˡᵐ u) (m ·ˡᵐ v))
; f[c*v]≡c*f[v] = λ c₁ v → trans (cong (c ∘ⱽ_) (f[c*v]≡c*f[v] m c₁ v))
(∘ⱽ-comm c c₁ (f m v))
}
-- Choose 20 since function application is assumed higher than almost anything
infixr 20 _·ˡᵐ_
infixl 2 _—ˡᵐ_
infixl 3 _|ˡᵐ_
infixl 4 _/ˡᵐ_
infixl 6 _+ˡᵐ_
infixl 6 _-ˡᵐ_
infixl 7 _*ˡᵐ_
infixl 10 _∘ˡᵐ_
-- Example LinearMap values ---------------------------------------------------
module _ ⦃ F : Field A ⦄ where
open Field F
idₗₘ : n ⊸ n
idₗₘ = record
{ f = id
; f[u+v]≡f[u]+f[v] = λ u v → refl
; f[c*v]≡c*f[v] = λ c v → refl
}
diagₗₘ : Vec A n → n ⊸ n
diagₗₘ d = record
{ f = d *ⱽ_
; f[u+v]≡f[u]+f[v] = *ⱽ-distr-+ⱽ d
; f[c*v]≡c*f[v] = λ c v → *ⱽ∘ⱽ≡∘ⱽ*ⱽ c d v
}
1ₗₘ : n ⊸ m
1ₗₘ = record
{ f = λ v → replicate (sum v)
; f[u+v]≡f[u]+f[v] = f[u+v]≡f[u]+f[v]
; f[c*v]≡c*f[v] = f[c*v]≡c*f[v]
}
where
f[u+v]≡f[u]+f[v] : (u v : Vec A n)
→ replicate (sum (u +ⱽ v)) ≡
replicate (sum u) +ⱽ replicate (sum v)
f[u+v]≡f[u]+f[v] u v = begin
replicate (sum (u +ⱽ v)) ≡⟨ cong replicate (sum-distr-+ⱽ u v) ⟩
replicate ((sum u) + (sum v)) ≡⟨ replicate-distr-+ (sum u) (sum v) ⟩
replicate (sum u) +ⱽ replicate (sum v) ∎
f[c*v]≡c*f[v] : (c : A) (v : Vec A n)
→ replicate (sum (c ∘ⱽ v)) ≡ c ∘ⱽ replicate (sum v)
f[c*v]≡c*f[v] c v = begin
replicate (sum (c ∘ⱽ v)) ≡⟨ cong replicate (sum[c∘ⱽv]≡c*sum[v] c v) ⟩
replicate (c * sum v) ≡⟨ replicate[a*b]≡a∘ⱽreplicate[b] c (sum v) ⟩
c ∘ⱽ replicate (sum v) ∎
-- This could be defined as 0ᶠ ∘ˡᵐ allonesₗₘ, but then that would make
-- some later proofs more difficult, since they would then have more than
-- just replicate 0ᶠ to replace zerosₗₘ with.
0ₗₘ : n ⊸ m
0ₗₘ = record
{ f = λ v → replicate 0ᶠ
; f[u+v]≡f[u]+f[v] = λ u v → sym (trans (zipWith-replicate _+_ 0ᶠ 0ᶠ)
(cong replicate 0ᶠ+0ᶠ≡0ᶠ))
; f[c*v]≡c*f[v] = λ c v → sym (c∘ⱽ0ᶠⱽ≡0ᶠⱽ c)
}
| {
"alphanum_fraction": 0.3769870303,
"avg_line_length": 39.8806366048,
"ext": "agda",
"hexsha": "872227c44aa2e420b8c6c0a30af4e64f00de9d52",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Algebra/LinearMap.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Algebra/LinearMap.agda",
"max_line_length": 80,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Algebra/LinearMap.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 8174,
"size": 15035
} |
-- Occurs when different mixfix patterns use similar names.
module Issue147b where
data X : Set where
f : X -> X
f_ : X -> X
x : X
bad : X -> X
bad (f x) = x
bad _ = x
| {
"alphanum_fraction": 0.5824175824,
"avg_line_length": 15.1666666667,
"ext": "agda",
"hexsha": "4fa7038b80b00274718d9a81f6bed5c34fe0dcfc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue147b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue147b.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue147b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 182
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Bisimilarity for M-types
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.M.Bisimilarity where
open import Level
open import Size
open import Codata.Thunk
open import Codata.M
open import Data.Container.Core
open import Data.Container.Relation.Binary.Pointwise using (Pointwise; _,_)
open import Data.Product using (_,_)
open import Function
open import Relation.Binary
import Relation.Binary.PropositionalEquality as P
data Bisim {s p} (C : Container s p) (i : Size) : Rel (M C ∞) (s ⊔ p) where
inf : ∀ {t u} → Pointwise C (Thunk^R (Bisim C) i) t u → Bisim C i (inf t) (inf u)
module _ {s p} {C : Container s p} where
-- unfortunately the proofs are a lot nicer if we do not use the combinators
-- C.refl, C.sym and C.trans
refl : ∀ {i} → Reflexive (Bisim C i)
refl {x = inf t} = inf (P.refl , λ where p .force → refl)
sym : ∀ {i} → Symmetric (Bisim C i)
sym (inf (P.refl , f)) = inf (P.refl , λ where p .force → sym (f p .force))
trans : ∀ {i} → Transitive (Bisim C i)
trans (inf (P.refl , f)) (inf (P.refl , g)) =
inf (P.refl , λ where p .force → trans (f p .force) (g p .force))
isEquivalence : ∀ {i} → IsEquivalence (Bisim C i)
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
setoid : {i : Size} → Setoid (s ⊔ p) (s ⊔ p)
setoid {i} = record
{ isEquivalence = isEquivalence {i}
}
| {
"alphanum_fraction": 0.5743458839,
"avg_line_length": 30.7254901961,
"ext": "agda",
"hexsha": "5d82efa08f8cd51a430e95ad2eba41b1482e9ff8",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Bisimilarity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Bisimilarity.agda",
"max_line_length": 83,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/M/Bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 480,
"size": 1567
} |
------------------------------------------------------------------------
-- Least upper bounds
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Delay-monad.Least-upper-bound where
open import Equality.Propositional
open import Prelude hiding (_⊔_)
open import Prelude.Size
open import Nat equality-with-J
open import Delay-monad
open import Delay-monad.Partial-order
module _ {a} {A : Type a} where
-- Least upper bounds (if they exist).
infix 10 _⊔_
_⊔_ : ∀ {i} → Delay A i → Delay A i → Delay A i
now x ⊔ _ = now x
later x ⊔ now y = now y
later x ⊔ later y = later λ { .force → force x ⊔ force y }
-- The computation x ⊔ y is smaller than or equal to every upper
-- bound of x and y.
⊔-least-upper-bound : ∀ {i x y z} →
[ i ] x ⊑ z → [ i ] y ⊑ z → [ i ] x ⊔ y ⊑ z
⊔-least-upper-bound now _ = now
⊔-least-upper-bound (laterʳ p) q = laterʳ (⊔-least-upper-bound p (laterʳ⁻¹ q))
⊔-least-upper-bound {y = now y} (laterˡ _) q = q
⊔-least-upper-bound {y = later y} (laterˡ p) q = laterˡ λ { .force →
⊔-least-upper-bound (force p) (laterˡ⁻¹ q) }
-- If x and y have a lower bound, then this is also a lower bound of
-- x ⊔ y.
⊔-lower-bound : ∀ {i x y z} → [ i ] z ⊑ x → [ i ] z ⊑ y → [ i ] z ⊑ x ⊔ y
⊔-lower-bound now _ = now
⊔-lower-bound (laterˡ p) q = laterˡ λ { .force →
⊔-lower-bound (force p) (laterˡ⁻¹ q) }
⊔-lower-bound {y = now y} (laterʳ _) q = q
⊔-lower-bound {y = later y} (laterʳ p) q = laterʳ (⊔-lower-bound p (laterʳ⁻¹ q))
-- If x and y have an upper bound, then x ⊔ y is an upper bound
-- of y.
⊔-upper-boundʳ : ∀ {i x y z} →
[ i ] x ⊑ z → [ i ] y ⊑ z → [ i ] y ⊑ x ⊔ y
⊔-upper-boundʳ now q = q
⊔-upper-boundʳ (laterʳ p) q = ⊔-upper-boundʳ p (laterʳ⁻¹ q)
⊔-upper-boundʳ {y = now y} (laterˡ _) _ = now
⊔-upper-boundʳ {y = later y} (laterˡ p) q =
later-cong λ { .force → ⊔-upper-boundʳ (force p) (laterˡ⁻¹ q) }
-- If x and y have an upper bound, then x ⊔ y is an upper bound
-- of x.
⊔-upper-boundˡ : ∀ {i x y z} →
[ i ] x ⊑ z → [ i ] y ⊑ z → [ i ] x ⊑ x ⊔ y
⊔-upper-boundˡ now q = now
⊔-upper-boundˡ (laterʳ p) q = ⊔-upper-boundˡ p (laterʳ⁻¹ q)
⊔-upper-boundˡ {y = later y} (laterˡ p) q = later-cong λ { .force →
⊔-upper-boundˡ (force p) (laterˡ⁻¹ q) }
⊔-upper-boundˡ {y = now y} (laterˡ p) q = laterˡ λ { .force →
⊔-upper-boundʳ q (force p) }
-- A variant of the lower/upper bound lemmas.
⊔-lower-upper-bound : ∀ {i x y z} →
x ⊑ y → [ i ] y ⊑ z → [ i ] y ⊑ x ⊔ z
⊔-lower-upper-bound now _ = now
⊔-lower-upper-bound (laterʳ p) q = laterˡ λ { .force →
⊔-lower-upper-bound p (laterˡ⁻¹ q) }
⊔-lower-upper-bound (laterˡ p) (laterʳ q) = laterʳ (⊔-lower-upper-bound (force p) q)
⊔-lower-upper-bound {z = now z} (laterˡ _) q = q
⊔-lower-upper-bound {z = later z} (laterˡ p) (laterˡ q) = later-cong λ { .force →
⊔-lower-upper-bound
(laterʳ⁻¹ (force p))
(laterʳ⁻¹ (force q)) }
-- If x terminates, then x ⊔ y also terminates.
⊔-⇓ˡ : ∀ {i x y} {z : A} →
Terminates i x z → ∃ λ z′ → Terminates i (x ⊔ y) z′
⊔-⇓ˡ now = _ , now
⊔-⇓ˡ {y = now y} (laterʳ p) = _ , now
⊔-⇓ˡ {y = later y} (laterʳ p) = Σ-map id laterʳ (⊔-⇓ˡ p)
-- If y terminates, then x ⊔ y also terminates.
⊔-⇓ʳ : ∀ {i} x {y} {z : A} →
Terminates i y z → ∃ λ z′ → Terminates i (x ⊔ y) z′
⊔-⇓ʳ (now x) _ = _ , now
⊔-⇓ʳ (later x) now = _ , now
⊔-⇓ʳ (later x) (laterʳ p) = Σ-map id laterʳ (⊔-⇓ʳ (force x) p)
-- Increasing sequences.
Increasing-sequence : ∀ {a} → Type a → Type a
Increasing-sequence A =
∃ λ (f : ℕ → Delay A ∞) → ∀ n → f n ⊑ f (suc n)
module _ {a} {A : Type a} where
-- The tail of an increasing sequence.
tailˢ : Increasing-sequence A → Increasing-sequence A
tailˢ = Σ-map (_∘ suc) (_∘ suc)
-- Later sequence elements are larger.
later-larger : (s : Increasing-sequence A) →
∀ {m n} → m ≤ n → proj₁ s m ⊑ proj₁ s n
later-larger s (≤-refl′ refl) = reflexive _
later-larger s (≤-step′ p refl) =
transitive (later-larger s p) (proj₂ s _)
-- Least upper bounds of increasing sequences.
⨆ : ∀ {i} → Increasing-sequence A → Delay A i
⨆ s = proj₁ s 0 ⊔ later λ { .force → ⨆ (tailˢ s) }
-- ⨆ s is smaller than or equal to every upper bound of s.
⨆-least-upper-bound :
∀ {i} (s : Increasing-sequence A) ub →
(∀ n → [ i ] proj₁ s n ⊑ ub) → [ i ] ⨆ s ⊑ ub
⨆-least-upper-bound s ub is-ub =
⊔-least-upper-bound
(is-ub 0)
(laterˡ λ { .force →
⨆-least-upper-bound (tailˢ s) ub (is-ub ∘ suc) })
-- If every element in s terminates with a given value, then ⨆ s
-- terminates with the same value.
⨆-⇓ : ∀ {i x} (s : Increasing-sequence A) →
(∀ n → proj₁ s n ⇓ x) → Terminates i (⨆ s) x
⨆-⇓ s s-⇓ =
⊑now→⇓→⇓ (⨆-least-upper-bound s _ (λ n → symmetric (s-⇓ n)))
(proj₂ (⊔-⇓ˡ (s-⇓ 0)))
-- If s has a lower bound, then this is also a lower bound of ⨆ s.
⨆-lower-bound : ∀ {i} (s : Increasing-sequence A) lb →
(∀ n → lb ⊑ proj₁ s n) → [ i ] lb ⊑ ⨆ s
⨆-lower-bound s (now x) is-lb = ⨆-⇓ s is-lb
⨆-lower-bound s (later lb) is-lb =
⊔-lower-bound
(is-lb 0)
(later-cong λ { .force →
⨆-lower-bound (tailˢ s) (force lb) λ n →
laterˡ⁻¹ (transitive (is-lb n) (proj₂ s n)) })
-- ⨆ s is an upper bound of s.
⨆-upper-bound : ∀ {i} (s : Increasing-sequence A) →
∀ n → [ i ] proj₁ s n ⊑ ⨆ s
⨆-upper-bound s zero = ⨆-lower-bound s (proj₁ s 0)
(λ n → later-larger s (zero≤ n))
⨆-upper-bound s (suc n) = ⊔-lower-upper-bound
(later-larger s (zero≤ (suc n)))
(laterʳ (⨆-upper-bound (tailˢ s) n))
| {
"alphanum_fraction": 0.4659574468,
"avg_line_length": 38.7058823529,
"ext": "agda",
"hexsha": "e9c98f914bf03d636301f545cda71e3777eb32d9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/delay-monad",
"max_forks_repo_path": "src/Delay-monad/Least-upper-bound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/delay-monad",
"max_issues_repo_path": "src/Delay-monad/Least-upper-bound.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/delay-monad",
"max_stars_repo_path": "src/Delay-monad/Least-upper-bound.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2413,
"size": 6580
} |
module Normalize where
open import Data.List
open import Data.Product
open import PiLevel0
-- We are going to use all the coherence as follows; make the right
-- hand side canonical and rewrite the left hand side to the right
-- hand side. Brute force below cannot work!
-- Use the same structure as
-- https://agda.github.io/agda-stdlib/Algebra.Monoid-solver.html ??
{-# NO_TERMINATION_CHECK #-}
normalize : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂)
normalize unite₊ = {!!}
normalize uniti₊ = {!!}
normalize swap₊ = {!!}
normalize assocl₊ = {!!}
normalize assocr₊ = {!!}
normalize unite⋆ = {!!}
normalize uniti⋆ = {!!}
normalize swap⋆ = {!!}
normalize assocl⋆ = {!!}
normalize assocr⋆ = {!!}
normalize absorbr = {!!}
normalize absorbl = {!!}
normalize factorzr = {!!}
normalize factorzl = {!!}
normalize dist = {!!}
normalize factor = {!!}
normalize id⟷ = {!!}
normalize (c ◎ id⟷) = normalize c
normalize (unite₊ ◎ c₁) = {!!}
normalize (uniti₊ ◎ c₁) = {!!}
normalize (swap₊ ◎ c₁) = {!!}
normalize (assocl₊ ◎ c₁) = {!!}
normalize (assocr₊ ◎ c₁) = {!!}
normalize (unite⋆ ◎ c₁) = {!!}
normalize (uniti⋆ ◎ c₁) = {!!}
normalize (swap⋆ ◎ c₁) = {!!}
normalize (assocl⋆ ◎ c₁) = {!!}
normalize (assocr⋆ ◎ c₁) = {!!}
normalize (absorbr ◎ c₁) = {!!}
normalize (absorbl ◎ c₁) = {!!}
normalize (factorzr ◎ c₁) = {!!}
normalize (factorzl ◎ c₁) = {!!}
normalize (dist ◎ c₁) = {!!}
normalize (factor ◎ c₁) = {!!}
normalize (id⟷ ◎ c₁) = normalize c₁
normalize ((c ◎ c₁) ◎ c₂) = normalize (c ◎ (c₁ ◎ c₂))
normalize ((c ⊕ c₁) ◎ c₂) = {!!}
normalize ((c ⊗ c₁) ◎ c₂) = {!!}
normalize (c ⊕ unite₊) = {!!}
normalize (c ⊕ uniti₊) = {!!}
normalize (c ⊕ swap₊) = {!!}
normalize (c ⊕ assocl₊) = {!!}
normalize (c ⊕ assocr₊) = {!!}
normalize (c ⊕ unite⋆) = {!!}
normalize (c ⊕ uniti⋆) = {!!}
normalize (c ⊕ swap⋆) = {!!}
normalize (c ⊕ assocl⋆) = {!!}
normalize (c ⊕ assocr⋆) = {!!}
normalize (c ⊕ absorbr) = {!!}
normalize (c ⊕ absorbl) = {!!}
normalize (c ⊕ factorzr) = {!!}
normalize (c ⊕ factorzl) = {!!}
normalize (c ⊕ dist) = {!!}
normalize (c ⊕ factor) = {!!}
normalize (c ⊕ id⟷) = {!!}
normalize (c ⊕ c₁ ◎ c₂) = {!!}
normalize (c ⊕ (c₁ ⊕ c₂)) = {!!}
normalize (c ⊕ (c₁ ⊗ c₂)) = {!!}
normalize (c ⊗ c₁) = {!!}
| {
"alphanum_fraction": 0.5752737226,
"avg_line_length": 28.4675324675,
"ext": "agda",
"hexsha": "262d1a935a2b2b3649586616c4436523fff0cfb9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Normalize.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Normalize.agda",
"max_line_length": 67,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Normalize.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 817,
"size": 2192
} |
module Prelude.Maybe where
open import Prelude.Unit
open import Prelude.Empty
open import Prelude.Function
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Monad
open import Prelude.Equality
open import Prelude.Decidable
data Maybe {a} (A : Set a) : Set a where
nothing : Maybe A
just : A → Maybe A
{-# FOREIGN GHC type AgdaMaybe l = Maybe #-}
{-# COMPILE GHC Maybe = data MAlonzo.Code.Prelude.Maybe.AgdaMaybe (Nothing | Just) #-}
maybe : ∀ {a b} {A : Set a} {B : Set b} → B → (A → B) → Maybe A → B
maybe z f nothing = z
maybe z f (just x) = f x
{-# INLINE maybe #-}
fromMaybe : ∀ {a} {A : Set a} → A → Maybe A → A
fromMaybe z = maybe z id
{-# INLINE fromMaybe #-}
IsJust : ∀ {a} {A : Set a} → Maybe A → Set
IsJust = maybe ⊥ (const ⊤)
FromJust : ∀ {a} {A : Set a} → Maybe A → Set a
FromJust {A = A} = maybe ⊤′ (const A)
fromJust : ∀ {a} {A : Set a} (m : Maybe A) → FromJust m
fromJust nothing = _
fromJust (just x) = x
maybeYes : ∀ {a} {A : Set a} → Dec A → Maybe A
maybeYes (yes x) = just x
maybeYes (no _) = nothing
--- Equality ---
just-inj : ∀ {a} {A : Set a} {x y : A} → just x ≡ just y → x ≡ y
just-inj refl = refl
instance
EqMaybe : ∀ {a} {A : Set a} {{EqA : Eq A}} → Eq (Maybe A)
_==_ {{EqMaybe}} nothing nothing = yes refl
_==_ {{EqMaybe}} nothing (just x) = no λ ()
_==_ {{EqMaybe}} (just x) nothing = no λ ()
_==_ {{EqMaybe}} (just x) (just y) with x == y
... | yes eq = yes (just $≡ eq)
... | no neq = no (λ eq → neq (just-inj eq))
--- Monad ---
instance
FunctorMaybe : ∀ {a} → Functor (Maybe {a})
fmap {{FunctorMaybe}} f m = maybe nothing (just ∘ f) m
ApplicativeMaybe : ∀ {a} → Applicative (Maybe {a})
pure {{ApplicativeMaybe}} = just
_<*>_ {{ApplicativeMaybe}} mf mx = maybe nothing (λ f → fmap f mx) mf
MonadMaybe : ∀ {a} → Monad {a} Maybe
_>>=_ {{MonadMaybe}} m f = maybe nothing f m
FunctorMaybe′ : ∀ {a b} → Functor′ {a} {b} Maybe
fmap′ {{FunctorMaybe′}} f m = maybe nothing (just ∘ f) m
ApplicativeMaybe′ : ∀ {a b} → Applicative′ {a} {b} Maybe
_<*>′_ {{ApplicativeMaybe′}} (just f) (just x) = just (f x)
_<*>′_ {{ApplicativeMaybe′}} _ _ = nothing
MonadMaybe′ : ∀ {a b} → Monad′ {a} {b} Maybe
_>>=′_ {{MonadMaybe′}} m f = maybe nothing f m
| {
"alphanum_fraction": 0.5896536607,
"avg_line_length": 28.8734177215,
"ext": "agda",
"hexsha": "318c164701914e2387cd07a394605d514538b9a1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Prelude/Maybe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Prelude/Maybe.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Prelude/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 808,
"size": 2281
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Properties where
-- Properties valid of all Functors
open import Level
open import Data.Product using (proj₁; proj₂; _,_)
open import Function.Surjection using (Surjective)
open import Function.Equivalence using (Equivalence)
open import Function.Equality hiding (_∘_)
open import Categories.Category
open import Categories.Functor.Core
open import Categories.Functor
open import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as Reas
open import Categories.Morphism.IsoEquiv as IsoEquiv
open import Categories.Morphism.Isomorphism
open import Relation.Binary using (_Preserves_⟶_)
private
variable
o ℓ e : Level
C D : Category o ℓ e
-- a series of [ Functor ]-respects-Thing combinators (with respects -> resp)
module _ (F : Functor C D) where
private
module C = Category C
module D = Category D
module IsoC = IsoEquiv C
module IsoD = IsoEquiv D
open C hiding (_∘_)
open Functor F
private
variable
A B E : Obj
f g h i : A ⇒ B
[_]-resp-∘ : C [ C [ f ∘ g ] ≈ h ] → D [ D [ F₁ f ∘ F₁ g ] ≈ F₁ h ]
[_]-resp-∘ {f = f} {g = g} {h = h} eq = begin
F₁ f ∘ F₁ g ≈˘⟨ homomorphism ⟩
F₁ (C [ f ∘ g ]) ≈⟨ F-resp-≈ eq ⟩
F₁ h ∎
where open D
open D.HomReasoning
[_]-resp-square : C.CommutativeSquare f g h i →
D.CommutativeSquare (F₁ f) (F₁ g) (F₁ h) (F₁ i)
[_]-resp-square {f = f} {g = g} {h = h} {i = i} sq = begin
F₁ h ∘ F₁ f ≈˘⟨ homomorphism ⟩
F₁ (C [ h ∘ f ]) ≈⟨ F-resp-≈ sq ⟩
F₁ (C [ i ∘ g ]) ≈⟨ homomorphism ⟩
F₁ i ∘ F₁ g ∎
where open D
open D.HomReasoning
[_]-resp-Iso : Iso C f g → Iso D (F₁ f) (F₁ g)
[_]-resp-Iso {f = f} {g = g} iso = record
{ isoˡ = begin
F₁ g ∘ F₁ f ≈⟨ [ isoˡ ]-resp-∘ ⟩
F₁ C.id ≈⟨ identity ⟩
D.id ∎
; isoʳ = begin
F₁ f ∘ F₁ g ≈⟨ [ isoʳ ]-resp-∘ ⟩
F₁ C.id ≈⟨ identity ⟩
D.id ∎
}
where open Iso iso
open D
open D.HomReasoning
[_]-resp-≅ : F₀ Preserves _≅_ C ⟶ _≅_ D
[_]-resp-≅ i≅j = record
{ from = F₁ from
; to = F₁ to
; iso = [ iso ]-resp-Iso
}
where open _≅_ i≅j
[_]-resp-≃ : ∀ {f g : _≅_ C A B} → f IsoC.≃ g → [ f ]-resp-≅ IsoD.≃ [ g ]-resp-≅
[_]-resp-≃ ⌞ eq ⌟ = ⌞ F-resp-≈ eq ⌟
homomorphismᵢ : ∀ {f : _≅_ C B E} {g : _≅_ C A B} → [ _∘ᵢ_ C f g ]-resp-≅ IsoD.≃ (_∘ᵢ_ D [ f ]-resp-≅ [ g ]-resp-≅ )
homomorphismᵢ = ⌞ homomorphism ⌟
-- Uses a strong version of Essential Surjectivity.
EssSurj×Full×Faithful⇒Invertible : EssentiallySurjective F → Full F → Faithful F → Functor D C
EssSurj×Full×Faithful⇒Invertible surj full faith = record
{ F₀ = λ d → proj₁ (surj d)
; F₁ = λ {A} {B} f →
let (a , sa) = surj A in
let (b , sb) = surj B in
let module S = Surjective (full {a} {b}) in
S.from ⟨$⟩ (_≅_.to sb) ∘ f ∘ (_≅_.from sa)
; identity = λ {A} →
let (a , sa) = surj A in begin
from full ⟨$⟩ _≅_.to sa ∘ D.id ∘ _≅_.from sa ≈⟨ cong (from full) (D.∘-resp-≈ʳ D.identityˡ D.HomReasoning.○ _≅_.isoˡ sa) ⟩
from full ⟨$⟩ D.id ≈˘⟨ cong (from full) identity ⟩
from full ⟨$⟩ F₁ C.id ≈⟨ faith _ _ (right-inverse-of full (F₁ C.id)) ⟩
C.id ∎
; homomorphism = λ {X} {Y} {Z} {f} {g} →
let (x , sx) = surj X in
let (y , sy) = surj Y in
let (z , sz) = surj Z in
let open Morphism._≅_ in faith _ _ (E.begin
F₁ (from full ⟨$⟩ to sz ∘ (g ∘ f) ∘ from sx) E.≈⟨ right-inverse-of full _ ⟩
(to sz ∘ (g ∘ f) ∘ from sx) E.≈⟨ D.∘-resp-≈ʳ (D.∘-resp-≈ˡ (D.∘-resp-≈ʳ (introˡ (isoʳ sy)))) ⟩
(to sz ∘ (g ∘ (from sy ∘ to sy) ∘ f) ∘ from sx) E.≈˘⟨ D.assoc ⟩
(to sz ∘ g ∘ ((from sy ∘ to sy) ∘ f)) ∘ from sx E.≈⟨ D.∘-resp-≈ˡ (D.∘-resp-≈ʳ (D.∘-resp-≈ʳ D.assoc)) ⟩
(to sz ∘ g ∘ (from sy ∘ (to sy ∘ f))) ∘ from sx E.≈˘⟨ D.∘-resp-≈ˡ D.assoc ⟩
((to sz ∘ g) ∘ (from sy ∘ (to sy ∘ f))) ∘ from sx E.≈˘⟨ D.∘-resp-≈ˡ D.assoc ⟩
(((to sz ∘ g) ∘ from sy) ∘ (to sy ∘ f)) ∘ from sx E.≈⟨ D.assoc ⟩
((to sz ∘ g) ∘ from sy) ∘ ((to sy ∘ f) ∘ from sx) E.≈⟨ D.∘-resp-≈ D.assoc D.assoc ⟩
(to sz ∘ g ∘ from sy) ∘ (to sy ∘ f ∘ from sx) E.≈˘⟨ D.∘-resp-≈ (right-inverse-of full _) (right-inverse-of full _) ⟩
F₁ (from full ⟨$⟩ to sz ∘ g ∘ from sy) ∘ F₁ (from full ⟨$⟩ to sy ∘ f ∘ from sx) E.≈˘⟨ homomorphism ⟩
F₁ ((from full ⟨$⟩ to sz ∘ g ∘ from sy) C.∘ (from full ⟨$⟩ to sy ∘ f ∘ from sx)) E.∎)
; F-resp-≈ = λ f≈g → cong (from full) (D.∘-resp-≈ʳ (D.∘-resp-≈ˡ f≈g))
}
where
open Morphism D
open Reas D
open Category D
open Surjective
open C.HomReasoning
module E = D.HomReasoning
-- Functor Composition is Associative and the unit laws are found in
-- NaturalTransformation.NaturalIsomorphism, reified as associator, unitorˡ and unitorʳ.
| {
"alphanum_fraction": 0.5042589438,
"avg_line_length": 40.0227272727,
"ext": "agda",
"hexsha": "590b444ab136537b99e796ba9ba7a8d09dc68266",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Functor/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Functor/Properties.agda",
"max_line_length": 155,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Functor/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2131,
"size": 5283
} |
module Experiment.Expr.Expr where
open import Data.Fin
open import Data.Empty
open import Level
open import Data.Bool
open import Data.Nat hiding (_⊔_)
open import Data.Product
open import Data.List as List hiding (or; and)
data Expr {v} (V : Set v) : Set v where
var : V -> Expr V
or and : Expr V -> Expr V -> Expr V
neg : Expr V -> Expr V
foldExpr : ∀ {a v} {V : Set v} {A : Set a} →
(V → A) → (A → A → A) → (A → A → A) → (A → A) →
Expr V → A
foldExpr v o a n (var v′) = v v′
foldExpr v o a n (or e₁ e₂) = o (foldExpr v o a n e₁) (foldExpr v o a n e₂)
foldExpr v o a n (and e₁ e₂) = a (foldExpr v o a n e₁) (foldExpr v o a n e₂)
foldExpr v o a n (neg e) = n (foldExpr v o a n e)
evalExpr : ∀ {v} {V : Set v} → (V → Bool) → Expr V → Bool
evalExpr v = foldExpr v _∨_ _∧_ not
data Sign : Set where
pos : Sign
neg : Sign
Literal : ∀ {a} → Set a → Set a
Literal V = Sign × V
data NNF {v} (V : Set v) : Set v where
lit : Literal V → NNF V
and or : NNF V → NNF V → NNF V
data GExpr {v t₁ t₂ tₙ} (T₁ : Set t₁) (T₂ : Set t₂) (Tₙ : Set tₙ) (V : Set v)
: Set (v ⊔ t₁ ⊔ t₂ ⊔ tₙ) where
var : (v : V) → GExpr T₁ T₂ Tₙ V
op₁ : T₁ → (e : GExpr T₁ T₂ Tₙ V) → GExpr T₁ T₂ Tₙ V
op₂ : T₂ → (e₁ e₂ : GExpr T₁ T₂ Tₙ V) → GExpr T₁ T₂ Tₙ V
opₙ : Tₙ → (es : List (GExpr T₁ T₂ Tₙ V)) → GExpr T₁ T₂ Tₙ V
data AndOr : Set where
and : AndOr
or : AndOr
data Neg : Set where
neg : Neg
ExprAndOrNeg : ℕ → Set
ExprAndOrNeg n = GExpr AndOr Neg ⊥ (Fin n)
evalAndOr : AndOr → Bool → Bool → Bool
evalAndOr and = _∧_
evalAndOr or = _∨_
module _ {v t₁ t₂ tₙ a} {V : Set v} {T₁ : Set t₁}
{T₂ : Set t₂} {Tₙ : Set tₙ} {A : Set a}
(var* : V → A) (op₁* : T₁ → A → A) (op₂* : T₂ → A → A → A)
(opₙ* : Tₙ → List A → A) where
foldGExpr : GExpr T₁ T₂ Tₙ V → A
foldGExpr (var v) = var* v
foldGExpr (op₁ t₁ e) = op₁* t₁ (foldGExpr e)
foldGExpr (op₂ t₂ e₁ e₂) = op₂* t₂ (foldGExpr e₁) (foldGExpr e₂)
foldGExpr (opₙ tₙ es) = opₙ* tₙ (List.map foldGExpr es)
| {
"alphanum_fraction": 0.568598316,
"avg_line_length": 29.2608695652,
"ext": "agda",
"hexsha": "0f2d77f959590615d58b08897b83a3d0d85d8ed1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/Expr/Expr.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/Expr/Expr.agda",
"max_line_length": 77,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/Expr/Expr.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 892,
"size": 2019
} |
module UniDB.Subst.Sum where
open import UniDB.Subst.Core
open import UniDB.Morph.Sum
--------------------------------------------------------------------------------
module _
(T : STX) {{vrT : Vr T}} {{wkT : Wk T}}
(X : STX) {{wkX : Wk X}} {{apTX : Ap T X}} {{apRelTX : ApRel T X}}
(Ξ : MOR) {{lkTΞ : Lk T Ξ}} {{upΞ : Up Ξ}}
(Ζ : MOR) {{lkTΖ : Lk T Ζ}} {{upΖ : Up Ζ}}
where
ap-inl : {γ₁ γ₂ : Dom} (ξ : Ξ γ₁ γ₂) (x : X γ₁) →
ap {T} {X} {Sum Ξ Ζ} (inl ξ) x ≡ ap {T} ξ x
ap-inl ξ = ap-rel≅ {T} (≃-to-≅` lem)
where
lem : (δ : Dom) → [ T ] inl {Ξ} {Ζ} ξ ↑ δ ≃ ξ ↑ δ
lk≃ (lem δ) i rewrite inl-↑ Ξ Ζ ξ δ = refl
ap-inr : {γ₁ γ₂ : Dom} (ζ : Ζ γ₁ γ₂) (x : X γ₁) →
ap {T} {X} {Sum Ξ Ζ} (inr ζ) x ≡ ap {T} ζ x
ap-inr ζ = ap-rel≅ {T} (≃-to-≅` lem)
where
lem : (δ : Dom) → [ T ] inr {Ξ} {Ζ} ζ ↑ δ ≃ ζ ↑ δ
lk≃ (lem δ) i rewrite inr-↑ Ξ Ζ ζ δ = refl
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3846938776,
"avg_line_length": 32.6666666667,
"ext": "agda",
"hexsha": "13eb113a07bff8e1dc765a22c90db749c543f640",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "skeuchel/unidb-agda",
"max_forks_repo_path": "UniDB/Subst/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "skeuchel/unidb-agda",
"max_issues_repo_path": "UniDB/Subst/Sum.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "skeuchel/unidb-agda",
"max_stars_repo_path": "UniDB/Subst/Sum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 445,
"size": 980
} |
open import Prelude
open import Reflection renaming (Term to AgTerm; Type to AgType)
open import Data.String using (String)
open import RW.Language.RTerm
open import RW.Language.RTermUtils
open import RW.Language.FinTerm
open import RW.Language.GoalGuesser 1
open import RW.Strategy
module RW.RW (db : TStratDB) where
open import RW.Utils.Monads
open import RW.Utils.Error
open Monad {{...}}
open IsError {{...}}
------------------
-- Housekeeping --
------------------
-- We need to bring our instances into scope explicitely,
-- to make Agda happy.
private
instance
ErrErr = IsError-StratErr
ErrMonad = MonadError
unarg : {A : Set} → Arg A → A
unarg (arg _ x) = x
-- We need to translate types to FinTerms, so we know how many variables
-- we're expecting to guess from instantiation.
Ag2RTypeFin : AgType → ∃ FinTerm
Ag2RTypeFin = R2FinType ∘ lift-ivar ∘ η ∘ Ag2RType
-- TODO: fix the duality: "number of ivar's lifted to ovar's vs. parameters we need to guess"
make-RWData : Name → AgTerm → List (Arg AgType) → Err StratErr RWData
make-RWData act goal ctx with η (Ag2RTerm goal) | Ag2RTypeFin (type act) | map (Ag2RType ∘ unarg) ctx
...| g' | tyℕ , ty | ctx' with forceBinary g' | forceBinary (typeResult ty)
...| just g | just a = return (rw-data g tyℕ a ctx')
...| just _ | nothing = throwError (Custom "Something strange happened with the action")
...| nothing | just _ = throwError (Custom "Something strange happened with the goal")
...| nothing | nothing = throwError (Custom "My brain just exploded.")
-- Given a goal and a list of actions to apply to such goal, return
-- a list l₁ ⋯ lₙ such that ∀ 0 < i ≤ n . tyᵢ : p1 lᵢ → p1 lᵢ₊₁
Ag2RTypeFin* : RTerm ⊥ → List AgType → Maybe (List (RBinApp ⊥ × ∃ (RBinApp ∘ Fin)))
Ag2RTypeFin* (rapp n (g₁ ∷ g₂ ∷ [])) tys
= mapM (return ∘ Ag2RTypeFin) tys
>>= mapM (λ v → forceBinary (typeResult (p2 v)) >>= (return ∘ (_,_ $ p1 v)))
>>= λ tys' → (divideGoal (n , g₁ , g₂) tys' >>= assemble)
>>= λ gs → return (zip gs tys')
where
assemble : {A : Set} → List (RTerm A) → Maybe (List (RBinApp A))
assemble (x1 ∷ x2 ∷ []) = just ((n , x1 , x2) ∷ [])
assemble (x1 ∷ x2 ∷ l) = assemble (x2 ∷ l) >>= return ∘ (_∷_ (n , x1 , x2))
assemble _ = nothing
Ag2RTypeFin* _ _ = nothing
-- Produces a list of RWData, one for each 'guessed' step.
make-RWData* : List Name → AgTerm → List (Arg AgType) → Err StratErr (List RWData)
make-RWData* acts goal ctx with Ag2RTerm goal | map type acts | map (Ag2RType ∘ unarg) ctx
...| g' | tys | ctx' with Ag2RTypeFin* g' tys
...| nothing = throwError (Custom "Are you sure you can apply those steps?")
...| just r = i2 (map (λ x → rw-data (p1 x) (p1 (p2 x)) (p2 (p2 x)) ctx') r)
postulate
RW-error : ∀{a}{A : Set a} → String → A
RWerr : Name → RWData → Err StratErr (RWData × UData × RTerm ⊥)
RWerr act d
= runUStrats d
>>= λ u → runTStrats db d act u
>>= λ v → return (d , u , v)
-- A variant with less information, more suitable to be map'ed.
RWerr-less : Name → RWData → Err StratErr (RTerm ⊥)
RWerr-less act d = RWerr act d >>= return ∘ p2 ∘ p2
----------------
-- By Tactics --
----------------
-- Standard debugging version.
by' : Name → List (Arg AgType) → AgTerm → (RWData × UData × RTerm ⊥)
by' act ctx goal with runErr (make-RWData act goal ctx >>= RWerr act)
...| i1 err = RW-error err
...| i2 term = term
-- This function is only beeing used to pass the context
-- given by the 'tactic' keyword around.
by : Name → List (Arg AgType) → AgTerm → AgTerm
by act ctx goal = R2AgTerm ∘ p2 ∘ p2 $ (by' act ctx goal)
-- Handling multiple actions, naive way.
-- by+ is pretty much foldM (<|>) error (by ⋯),
-- where (<|>) is the usual alternative from Error Monad.
by+ : List Name → List (Arg AgType) → AgTerm → AgTerm
by+ [] _ _ = RW-error "No suitable action"
by+ (a ∷ as) ctx goal with runErr (make-RWData a goal ctx >>= RWerr a)
...| i1 _ = by+ as ctx goal
...| i2 t = R2AgTerm ∘ p2 ∘ p2 $ t
join-tr : Name → List (RTerm ⊥) → RTerm ⊥
join-tr _ [] = ivar 0
join-tr tr (x ∷ l) = foldr (λ h r → rapp (rdef tr) (r ∷ h ∷ [])) x l
-- Handling multiple goals.
by*-err : Name → List Name → List (Arg AgType) → AgTerm → Err StratErr AgTerm
by*-err tr acts ctx goal
= make-RWData* acts goal ctx
>>= λ l → mapM (uncurry RWerr-less) (zip acts l)
>>= return ∘ R2AgTerm ∘ join-tr tr
where
unzip : {A B : Set} → List (A × B) → List A × List B
unzip [] = [] , []
unzip ((a , b) ∷ l) with unzip l
...| la , lb = a ∷ la , b ∷ lb
by*-tactic : Set
by*-tactic = List Name → List (Arg AgType) → AgTerm → AgTerm
by* : Name → by*-tactic
by* tr acts ctx goal with runErr (by*-err tr acts ctx goal)
...| i1 err = RW-error err
...| i2 res = res
------------------------------
-- Adding Tries to the cake --
------------------------------
-- The proper way to handle multiple actions.
open import RW.Data.RTrie
module Auto
(bt : RTrie) -- which trie to use,
(newHd : RTermName → RTermName) -- given the goal head, how to build the head for the action.
where
open import RW.Language.RTermTrie
our-strategy : RTermName → Name → UData → Err StratErr (RTerm ⊥)
our-strategy goal
= maybe
TStrat.how
(const $ const $ i1 no-strat)
$ filter-db db
where
no-strat : StratErr
no-strat = NoTStrat goal (newHd goal)
filter-db : TStratDB → Maybe TStrat
filter-db [] = nothing
filter-db (s ∷ ss) with TStrat.when s goal (newHd goal)
...| false = filter-db ss
...| true = just s
auto-internal : List (Arg AgType) → AgTerm → Err StratErr AgTerm
auto-internal _ goal with forceBinary $ Ag2RTerm goal
...| nothing = i1 $ Custom "non-binary goal"
...| just (hd , g₁ , g₂)
= let
options = search-action (newHd hd) (hd , g₁ , g₂) bt
strat = uncurry $ our-strategy hd
err = Custom "No option was succesful"
in try-all strat err options >>= return ∘ R2AgTerm
auto : List (Arg AgType) → AgTerm → AgTerm
auto ctx goal with runErr (auto-internal ctx goal)
...| i1 err = RW-error err
...| i2 r = r
| {
"alphanum_fraction": 0.5878220141,
"avg_line_length": 36.3920454545,
"ext": "agda",
"hexsha": "50e8b091cc4666b4fb34c02034c931a032d8a1d5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/RW.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/RW.agda",
"max_line_length": 103,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/RW.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 2103,
"size": 6405
} |
{-# OPTIONS --cubical --safe #-}
module Cardinality.Finite.SplitEnumerable.Inductive where
open import Data.List public
open import Data.List.Membership
open import Prelude
ℰ! : Type a → Type a
ℰ! A = Σ[ xs ⦂ List A ] ((x : A) → x ∈ xs)
| {
"alphanum_fraction": 0.6875,
"avg_line_length": 21.8181818182,
"ext": "agda",
"hexsha": "77d18e9612791059b5215accfeb71844bb174a9f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Inductive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Inductive.agda",
"max_line_length": 57,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Cardinality/Finite/SplitEnumerable/Inductive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 72,
"size": 240
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary.Raw
module Cubical.Relation.Binary.Reasoning.Equivalence {c ℓ} {A : Type c} (E : Equivalence A ℓ) where
open Equivalence E
------------------------------------------------------------------------
-- Reasoning combinators
open import Cubical.Relation.Binary.Reasoning.PartialEquivalence partialEquivalence public
hiding (_∎⟨_⟩)
open import Cubical.Relation.Binary.Reasoning.Base.Single _≈_ isPreorder public
using (_∎)
| {
"alphanum_fraction": 0.6727272727,
"avg_line_length": 32.3529411765,
"ext": "agda",
"hexsha": "02460bd74a5aaa82cec19e7134e1199a9cb19cf0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/Equivalence.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 135,
"size": 550
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.OneSkeleton
module homotopy.ConstantToSetFactorization
{i j} {A : Type i} {B : Type j} (B-is-set : is-set B)
(f : A → B) (f-is-const : ∀ a₁ a₂ → f a₁ == f a₂) where
private
Skel : Type i
Skel = Trunc ⟨0⟩ (OneSkeleton f)
abstract
Skel-has-all-paths : has-all-paths Skel
Skel-has-all-paths =
Trunc-elim (λ _ → Π-is-set λ _ → =-preserves-set Trunc-level)
(OneSkeleton-elim {P = λ s₁ → ∀ [s₂] → [ s₁ ] == [s₂]}
(λ a₁ → Trunc-elim (λ _ → =-preserves-set Trunc-level)
(OneSkeleton-elim {P = λ s₂ → [ point a₁ ] == [ s₂ ]}
(λ a₂ → ap [_] $ link a₁ a₂ $ f-is-const a₁ a₂)
(λ _ _ _ → prop-has-all-paths-↓ (Trunc-level {n = ⟨0⟩} _ _))))
(λ a₁ a₂ p → ↓-cst→app-in λ s₂ →
prop-has-all-paths-↓ (Trunc-level {n = ⟨0⟩} _ _)))
Skel-is-prop : is-prop Skel
Skel-is-prop = all-paths-is-prop Skel-has-all-paths
cst-extend : Trunc ⟨-1⟩ A → B
cst-extend = Trunc-rec B-is-set OneSkeleton-lift
∘ Trunc-rec Skel-is-prop ([_] ∘ point)
-- The beta rule.
-- This is definitionally true, so you don't need it.
cst-extend-β : cst-extend ∘ [_] == f
cst-extend-β = idp
| {
"alphanum_fraction": 0.5474509804,
"avg_line_length": 34.4594594595,
"ext": "agda",
"hexsha": "82f0edb7353d162802e5e7753abd93521a02f6ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "homotopy/ConstantToSetFactorization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "homotopy/ConstantToSetFactorization.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "homotopy/ConstantToSetFactorization.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 454,
"size": 1275
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.Introductions.Id {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
import Definition.Typed.Weakening as Twk
open import Definition.Typed.EqualityRelation
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Application
open import Definition.LogicalRelation.Substitution
import Definition.LogicalRelation.Weakening as Lwk
open import Definition.LogicalRelation.Substitution.Properties
import Definition.LogicalRelation.Substitution.Irrelevance as S
open import Definition.LogicalRelation.Substitution.Reflexivity
open import Definition.LogicalRelation.Substitution.Weakening
-- open import Definition.LogicalRelation.Substitution.Introductions.Nat
open import Definition.LogicalRelation.Substitution.Introductions.Empty
open import Definition.LogicalRelation.Substitution.Introductions.Pi
open import Definition.LogicalRelation.Substitution.Introductions.Idlemmas
open import Definition.LogicalRelation.Substitution.Introductions.IdUniv
open import Definition.LogicalRelation.Substitution.Introductions.IdNat
open import Definition.LogicalRelation.Substitution.MaybeEmbed
-- open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst
open import Definition.LogicalRelation.Substitution.Introductions.Universe
open import Tools.Product
open import Tools.Empty
import Tools.Unit as TU
import Tools.PropositionalEquality as PE
import Data.Nat as Nat
[Id] : ∀ {A t u Γ l lA}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ι lA ])
([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι lA ] / [A])
([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι lA ] / [A])
→ Γ ⊩⟨ l ⟩ Id A t u ^ [ % , ι lA ]
[IdExt] : ∀ {A B t v u w Γ l l' lA}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ι lA ])
([B] : Γ ⊩⟨ l' ⟩ B ^ [ ! , ι lA ])
([A≡B] : Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ι lA ] / [A])
([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι lA ] / [A])
([v] : Γ ⊩⟨ l' ⟩ v ∷ B ^ [ ! , ι lA ] / [B])
([t≡v] : Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ [ ! , ι lA ] / [A])
([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι lA ] / [A])
([w] : Γ ⊩⟨ l' ⟩ w ∷ B ^ [ ! , ι lA ] / [B])
([u≡w] : Γ ⊩⟨ l ⟩ u ≡ w ∷ A ^ [ ! , ι lA ] / [A])
→ Γ ⊩⟨ l ⟩ Id A t u ≡ Id B v w ^ [ % , ι lA ] / [Id] ⊢Γ [A] [t] [u]
[IdExtShape] : ∀ {A B t v u w Γ l l' lA}
(⊢Γ : ⊢ Γ)
([A] : Γ ⊩⟨ l ⟩ A ^ [ ! , ι lA ])
([B] : Γ ⊩⟨ l' ⟩ B ^ [ ! , ι lA ])
(ShapeA : ShapeView Γ l l' A B [ ! , ι lA ] [ ! , ι lA ] [A] [B])
([A≡B] : Γ ⊩⟨ l ⟩ A ≡ B ^ [ ! , ι lA ] / [A])
([t] : Γ ⊩⟨ l ⟩ t ∷ A ^ [ ! , ι lA ] / [A])
([v] : Γ ⊩⟨ l' ⟩ v ∷ B ^ [ ! , ι lA ] / [B])
([t≡v] : Γ ⊩⟨ l ⟩ t ≡ v ∷ A ^ [ ! , ι lA ] / [A])
([u] : Γ ⊩⟨ l ⟩ u ∷ A ^ [ ! , ι lA ] / [A])
([w] : Γ ⊩⟨ l' ⟩ w ∷ B ^ [ ! , ι lA ] / [B])
([u≡w] : Γ ⊩⟨ l ⟩ u ≡ w ∷ A ^ [ ! , ι lA ] / [A])
→ Γ ⊩⟨ l ⟩ Id A t u ≡ Id B v w ^ [ % , ι lA ] / [Id] ⊢Γ [A] [t] [u]
[Id] ⊢Γ (ℕᵣ [[ ⊢A , ⊢B , D ]]) [t] [u] = [Id]ℕGen ⊢Γ [[ ⊢A , ⊢B , D ]] [t] [u]
[Id] ⊢Γ (Uᵣ (Uᵣ r ¹ l< () d)) [t] [u]
[Id] {A} {t} {u} {Γ} {ι .¹} {.¹} ⊢Γ (Uᵣ (Uᵣ rU ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]])) [t] [u] = [Id]UGen {A} {t} {u} {Γ} ⊢Γ (Uᵣ rU ⁰ emb< PE.refl [[ ⊢A , ⊢B , D ]]) [t] [u]
[Id] {A} {t} {u} {Γ} {l} {lA} ⊢Γ (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) [t] [u] =
let
[A] = ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K
⊢tA = escapeTerm {l = l} [A] [t]
⊢uA = escapeTerm {l = l} [A] [u]
[K] = neu {l = l} neK ⊢B K≡K
[A]′ , [A≡K] = redSubst* D [K]
[t:K] = convTerm₁ [A]′ [K] [A≡K] (irrelevanceTerm [A] [A]′ [t])
[u:K] = convTerm₁ [A]′ [K] [A≡K] (irrelevanceTerm [A] [A]′ [u])
t≡t = escapeTermEq [K] (reflEqTerm [K] [t:K])
u≡u = escapeTermEq [K] (reflEqTerm [K] [u:K])
in ne′ (Id K t u) (redSProp (IdRed*Term ⊢tA ⊢uA [[ ⊢A , ⊢B , D ]])) (Idₙ neK) (~-Id K≡K t≡t u≡u)
[Id] {A} {t} {u} {Γ} {l} {lA} ⊢Γ (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext)
(f , [[ ⊢t , ⊢f , Df ]] , funf , f≡f , [fext] , [f]) (g , [[ ⊢u , ⊢g , Dg ]] , fung , g≡g , [gext] , [g]) =
let
⊢tA = conv ⊢t (sym (subset* D))
⊢uA = conv ⊢u (sym (subset* D))
[F0] : Γ ⊩⟨ l ⟩ F ^ [ rF , ι lF ]
[F0] = PE.subst (λ X → Γ ⊩⟨ l ⟩ X ^ [ rF , ι lF ]) (wk-id F) ([F] Twk.id ⊢Γ)
⊢idG : Γ ∙ F ^ [ rF , ι lF ] ⊢ Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA) ^ [ % , ι lG ]
⊢idG = let
⊢t∘0 = PE.subst (λ X → _ ⊢ wk1 t ∘ var 0 ^ _ ∷ X ^ [ ! , ι lG ]) (wkSingleSubstId G)
(Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢F) ⊢t ∘ⱼ var (⊢Γ ∙ ⊢F) here)
⊢u∘0 = PE.subst (λ X → _ ⊢ wk1 u ∘ var 0 ^ _ ∷ X ^ [ ! , ι lG ]) (wkSingleSubstId G)
(Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢F) ⊢u ∘ⱼ var (⊢Γ ∙ ⊢F) here)
in univ (Idⱼ (un-univ ⊢G) ⊢t∘0 ⊢u∘0)
⊢funext : Γ ⊢ Π F ^ rF ° lF ▹ (Id G ((wk1 t) ∘ (var 0) ^ lA) ((wk1 u) ∘ (var 0) ^ lA)) ° lG ° lA ^ [ % , ι lA ]
⊢funext = univ (Πⱼ lF≤ ▹ lG≤ ▹ un-univ ⊢F ▹ un-univ ⊢idG)
Did : Γ ⊢ Id A t u ⇒* Π F ^ rF ° lF ▹ (Id G ((wk1 t) ∘ (var 0) ^ lA) ((wk1 u) ∘ (var 0) ^ lA)) ° lG ° lA ^ [ % , ι lA ]
Did = IdRed* ⊢tA ⊢uA D ⇨* (univ (Id-Π lF≤ lG≤ (un-univ ⊢F) (un-univ ⊢G) ⊢t ⊢u) ⇨ id ⊢funext)
[idG] : ∀ {ρ Δ a}
→ ([ρ] : Twk._∷_⊆_ ρ Δ Γ) → (⊢Δ : ⊢ Δ)
→ (Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩⟨ l ⟩ wk (lift ρ) (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) [ a ] ^ [ % , ι lG ]
[idG] {ρ} {Δ} {a} [ρ] ⊢Δ [a] =
let
[t∘a] : Δ ⊩⟨ l ⟩ wk ρ t ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a]
[t∘a] = proj₁ (redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
([G] [ρ] ⊢Δ [a]) ([f] [ρ] ⊢Δ [a]))
[u∘a] : Δ ⊩⟨ l ⟩ wk ρ u ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [G] [ρ] ⊢Δ [a]
[u∘a] = proj₁ (redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Dg))
([G] [ρ] ⊢Δ [a]) ([g] [ρ] ⊢Δ [a]))
[Id] : Δ ⊩⟨ l ⟩ (Id (wk (lift ρ) G [ a ]) (wk ρ t ∘ a ^ lA) (wk ρ u ∘ a ^ lA)) ^ [ % , ι lG ]
[Id] = [Id] ⊢Δ ([G] [ρ] ⊢Δ [a]) [t∘a] [u∘a]
in PE.subst₂ (λ X Y → Δ ⊩⟨ l ⟩ (Id _ (X ∘ a ^ lA) (Y ∘ a ^ lA)) ^ [ % , ι lG ]) (PE.sym (irrelevant-subst′ ρ t a)) (PE.sym (irrelevant-subst′ ρ u a)) [Id]
[idG0] : Γ ∙ F ^ [ rF , ι lF ] ⊩⟨ l ⟩ (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) ^ [ % , ι lG ]
[idG0] = PE.subst₃ (λ X Y Z → _ ⊩⟨ l ⟩ (Id X (Y ∘ var 0 ^ lA) (Z ∘ var 0 ^ lA)) ^ _)
(wkSingleSubstId G) (wkSingleSubstId (wk1 t)) (wkSingleSubstId (wk1 u))
([idG] {step id} {Γ ∙ F ^ [ rF , ι lF ]} {var 0} (Twk.step Twk.id)
(⊢Γ ∙ ⊢F) (neuTerm ([F] (Twk.step Twk.id) (⊢Γ ∙ ⊢F)) (var 0)
(var (⊢Γ ∙ ⊢F) here) (~-var (var (⊢Γ ∙ ⊢F) here))))
[idGext] : ∀ {ρ Δ a b}
→ ([ρ] : Twk._∷_⊆_ ρ Δ Γ)
→ (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩⟨ l ⟩ b ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ ([a≡b] : Δ ⊩⟨ l ⟩ a ≡ b ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩⟨ l ⟩ wk (lift ρ) (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) [ a ] ≡ wk (lift ρ) (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) [ b ] ^ [ % , ι lG ] / [idG] [ρ] ⊢Δ [a]
[idGext] {ρ} {Δ} {a} {b} [ρ] ⊢Δ [a] [b] [a≡b] =
let
[Ga] = [G] [ρ] ⊢Δ [a]
[Gb] = [G] [ρ] ⊢Δ [b]
[t∘a] , [ta≡fa] = redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
[Ga] ([f] [ρ] ⊢Δ [a])
[u∘a] , [ua≡ga] = redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Dg))
[Ga] ([g] [ρ] ⊢Δ [a])
[Ga≡Gb] : Δ ⊩⟨ l ⟩ wk (lift ρ) G [ a ] ≡ wk (lift ρ) G [ b ] ^ [ ! , ι lG ] / [Ga]
[Ga≡Gb] = G-ext [ρ] ⊢Δ [a] [b] [a≡b]
[t∘b:Gb] , [tb≡fb:Gb] = redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [b]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
[Gb] ([f] [ρ] ⊢Δ [b])
[t∘b] : Δ ⊩⟨ l ⟩ wk ρ t ∘ b ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[t∘b] = convTerm₂ [Ga] [Gb] [Ga≡Gb] [t∘b:Gb]
[u∘b:Gb] , [ub≡gb:Gb] = redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [b]) (Twk.wkRed*Term [ρ] ⊢Δ Dg))
[Gb] ([g] [ρ] ⊢Δ [b])
[u∘b] : Δ ⊩⟨ l ⟩ wk ρ u ∘ b ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[u∘b] = convTerm₂ [Ga] [Gb] [Ga≡Gb] [u∘b:Gb]
[ta≡tb] : Δ ⊩⟨ l ⟩ wk ρ t ∘ a ^ lA ≡ wk ρ t ∘ b ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[ta≡tb] = transEqTerm [Ga] (transEqTerm [Ga] [ta≡fa] ([fext] [ρ] ⊢Δ [a] [b] [a≡b])) (symEqTerm [Ga] (convEqTerm₂ [Ga] [Gb] [Ga≡Gb] [tb≡fb:Gb]))
[ua≡ub] : Δ ⊩⟨ l ⟩ wk ρ u ∘ a ^ lA ≡ wk ρ u ∘ b ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[ua≡ub] = transEqTerm [Ga] (transEqTerm [Ga] [ua≡ga] ([gext] [ρ] ⊢Δ [a] [b] [a≡b])) (symEqTerm [Ga] (convEqTerm₂ [Ga] [Gb] [Ga≡Gb] [ub≡gb:Gb]))
[IdExtG] : Δ ⊩⟨ l ⟩ (Id (wk (lift ρ) G [ a ]) (wk ρ t ∘ a ^ lA) (wk ρ u ∘ a ^ lA)) ≡ (Id (wk (lift ρ) G [ b ]) (wk ρ t ∘ b ^ lA) (wk ρ u ∘ b ^ lA)) ^ [ % , ι lG ] / [Id] ⊢Δ [Ga] [t∘a] [u∘a]
[IdExtG] = [IdExt] ⊢Δ [Ga] [Gb] [Ga≡Gb] [t∘a] [t∘b:Gb] [ta≡tb] [u∘a] [u∘b:Gb] [ua≡ub]
in irrelevanceEq″
(PE.cong₂ (λ X Y → Id _ (X ∘ a ^ lA) (Y ∘ a ^ lA)) (PE.sym (irrelevant-subst′ ρ t a)) (PE.sym (irrelevant-subst′ ρ u a)))
(PE.cong₂ (λ X Y → Id _ (X ∘ b ^ lA) (Y ∘ b ^ lA)) (PE.sym (irrelevant-subst′ ρ t b)) (PE.sym (irrelevant-subst′ ρ u b)))
PE.refl PE.refl
([Id] ⊢Δ [Ga] [t∘a] [u∘a]) ([idG] [ρ] ⊢Δ [a]) [IdExtG]
in Πᵣ (Πᵣ rF lF lG lF≤ lG≤ F (Id G ((wk1 t) ∘ (var 0) ^ lA) ((wk1 u) ∘ (var 0) ^ lA))
[[ univ (Idⱼ (un-univ ⊢A) ⊢tA ⊢uA) , ⊢funext , Did ]]
⊢F ⊢idG
(≅-univ (≅ₜ-Π-cong lF≤ lG≤ ⊢F (≅-un-univ (escapeEqRefl [F0]))
(≅-un-univ (escapeEqRefl [idG0]))))
[F] [idG] [idGext])
[Id] ⊢Γ (emb {l′ = ι ⁰} emb< [A]) [t] [u] = emb emb< ([Id] ⊢Γ [A] [t] [u])
[Id] ⊢Γ (emb {l′ = ι ¹} ∞< [A]) [t] [u] = emb ∞< ([Id] ⊢Γ [A] [t] [u])
[IdExtShape] {A} {B} {t} {v} {u} {w} {Γ} {.(ι ¹)} {.(ι ¹)} {lA} ⊢Γ (Uᵣ (Uᵣ rU ⁰ emb< PE.refl d)) (Uᵣ (Uᵣ r₁ ⁰ emb< PE.refl d₁)) (Uᵥ ._ ._) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExt]UGen {A} {B} {t} {v} {u} {w} {Γ} ⊢Γ (Uᵣ rU ⁰ emb< PE.refl d) (Uᵣ r₁ ⁰ emb< PE.refl d₁) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExtShape] {A} {B} {t} {v} {u} {w} {Γ} {l} {l'} {lA} ⊢Γ (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) (ne neB) (ne ._ .neB) (ne₌ M [[ ⊢A′ , ⊢B′ , D′ ]] neM K≡M) [t] [t′] [t≡t′] [u] [u′] [u≡u′] =
let
[A] = (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K)
⊢t′A′ = escapeTerm {l = l'} (ne neB) [t′]
⊢u′A′ = escapeTerm {l = l'} (ne neB) [u′]
A≡K = subset* D
t≡t′ : Γ ⊢ t ≅ v ∷ K ^ [ ! , ι lA ]
t≡t′ = ≅-conv (escapeTermEq {l = l} [A] [t≡t′]) A≡K
u≡u′ = ≅-conv (escapeTermEq {l = l} [A] [u≡u′]) A≡K
in ne₌ (Id M v w) (univ:⇒*: (IdRed*Term ⊢t′A′ ⊢u′A′ [[ ⊢A′ , ⊢B′ , D′ ]]))
(Idₙ neM) (~-Id K≡M t≡t′ u≡u′)
[IdExtShape] {A} {B} {t} {v} {u} {w} {Γ} {l} {l'} ⊢Γ (ℕᵣ [[ ⊢A , ⊢B , D ]]) (ℕᵣ [[ ⊢A₁ , ⊢B₁ , D₁ ]]) (ℕᵥ ._ ._) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExt]ℕGen {A} {B} {t} {v} {u} {w} {Γ} {l} {l'} ⊢Γ [[ ⊢A , ⊢B , D ]] [[ ⊢A₁ , ⊢B₁ , D₁ ]] [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExtShape] {A} {A′} {t} {t′} {u} {u′} {Γ} {l} {l'} {lA} ⊢Γ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ′ rF′ lF′ lG′ lF≤′ lG≤′ F′ G′ [[ ⊢A′ , ⊢B′ , D′ ]] ⊢F′ ⊢G′ A′≡A′ [F′] [G′] G′-ext)
(Πᵥ .(Πᵣ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) .(Πᵣ rF′ lF′ lG′ lF≤′ lG≤′ F′ G′ [[ ⊢A′ , ⊢B′ , D′ ]] ⊢F′ ⊢G′ A′≡A′ [F′] [G′] G′-ext))
(Π₌ F′₀ G′₀ D′₀ A≡B [F≡F′₀] [G≡G′₀])
[t] [t′] (f₀ , f′₀ , [[ ⊢t , ⊢f₀ , Df₀ ]] , [[ ⊢t′ , ⊢f′₀ , Df′₀ ]] , funf₀ , funf′₀ , f₀≡f′₀ , [t]′ , [t′]′ , [f₀≡f′₀])
[u] [u′] (g₀ , g′₀ , [[ ⊢u , ⊢g₀ , Dg₀ ]] , [[ ⊢u′ , ⊢g′₀ , Dg′₀ ]] , fung₀ , fung′₀ , g₀≡g′₀ , [u]′ , [u′]′ , [g₀≡g′₀]) =
let
F′≡F′₀ , rF′≡rF , lF′≡lF , G′≡G′₀ , lG′≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (D′₀ , Whnf.Πₙ))
[F≡F′] = PE.subst (λ X → ∀ {ρ} {Δ} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) → (⊢Δ : ⊢ Δ) → Δ ⊩⟨ l ⟩ wk ρ F ≡ wk ρ X ^ [ rF , _ ] / [F] [ρ] ⊢Δ) (PE.sym F′≡F′₀) [F≡F′₀]
[G≡G′] = PE.subst (λ X → ∀ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) → (⊢Δ : ⊢ Δ) → ([a] : _) → Δ ⊩⟨ l ⟩ wk (lift ρ) G [ a ] ≡ wk (lift ρ) X [ a ] ^ [ _ , _ ] / [G] [ρ] ⊢Δ [a]) (PE.sym G′≡G′₀) [G≡G′₀]
f , [[ ⊢t , _ , Df ]] , funf , _ , _ , [f] = [t]
f₀≡f = whrDet*Term (Df₀ , functionWhnf funf₀) (Df , functionWhnf funf)
f′ , [[ ⊢t′ , _ , Df′ ]] , funf′ , _ , _ , [f′] = [t′]
f′₀≡f′ = whrDet*Term (Df′₀ , functionWhnf funf′₀) (Df′ , functionWhnf funf′)
g , [[ ⊢u , _ , Dg ]] , fung , _ , _ , [g] = [u]
g₀≡g = whrDet*Term (Dg₀ , functionWhnf fung₀) (Dg , functionWhnf fung)
g′ , [[ ⊢u′ , _ , Dg′ ]] , fung′ , _ , _ , [g′] = [u′]
g′₀≡g′ = whrDet*Term (Dg′₀ , functionWhnf fung′₀) (Dg′ , functionWhnf fung′)
[text] = λ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Df))
([G] [ρ] ⊢Δ [a]) ([f] [ρ] ⊢Δ [a])
[t′ext] = λ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ l' ⟩ a ∷ wk ρ F′ ^ [ rF′ , ι lF′ ] / [F′] [ρ] ⊢Δ) → redSubst*Term
(appRed* (escapeTerm ([F′] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Df′))
([G′] [ρ] ⊢Δ [a]) ([f′] [ρ] ⊢Δ [a])
[uext] = λ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) → redSubst*Term
(appRed* (escapeTerm ([F] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Dg))
([G] [ρ] ⊢Δ [a]) ([g] [ρ] ⊢Δ [a])
[u′ext] = λ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩⟨ l' ⟩ a ∷ wk ρ F′ ^ [ rF′ , ι lF′ ] / [F′] [ρ] ⊢Δ) → redSubst*Term
(appRed* (escapeTerm ([F′] [ρ] ⊢Δ) [a]) (Twk.wkRed*Term [ρ] ⊢Δ Dg′))
([G′] [ρ] ⊢Δ [a]) ([g′] [ρ] ⊢Δ [a])
[idG] = λ {ρ} {Δ} {a} ([ρ] : ρ Twk.∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ) ([a] : Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ) →
PE.subst₂ (λ X Y → Δ ⊩⟨ l ⟩ Id (subst (sgSubst a) (wk (lift ρ) G)) (X ∘ a ^ lA) (Y ∘ a ^ lA) ^ [ % , ι lG ])
(PE.sym (irrelevant-subst′ ρ t a)) (PE.sym (irrelevant-subst′ ρ u a))
([Id] ⊢Δ ([G] [ρ] ⊢Δ [a]) (proj₁ ([text] [ρ] ⊢Δ [a])) (proj₁ ([uext] [ρ] ⊢Δ [a])))
[idG≡idG′] : ∀ {ρ Δ a}
→ ([ρ] : Twk._∷_⊆_ ρ Δ Γ)
→ (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩⟨ l ⟩ a ∷ wk ρ F ^ [ rF , ι lF ] / [F] [ρ] ⊢Δ)
→ Δ ⊩⟨ l ⟩ wk (lift ρ) (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) [ a ] ≡ wk (lift ρ) (Id G′ (wk1 t′ ∘ var 0 ^ lA) (wk1 u′ ∘ var 0 ^ lA)) [ a ] ^ [ % , ι lG ] / [idG] [ρ] ⊢Δ [a]
[idG≡idG′] {ρ} {Δ} {a} [ρ] ⊢Δ [a] =
let
[aF′] = convTerm₁′ (PE.sym rF′≡rF) (PE.cong ι (PE.sym lF′≡lF)) ([F] [ρ] ⊢Δ) ([F′] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]
[Ga] = [G] [ρ] ⊢Δ [a]
[G′a] = [G′] [ρ] ⊢Δ [aF′]
[Ga≡G′a] : Δ ⊩⟨ l ⟩ wk (lift ρ) G [ a ] ≡ wk (lift ρ) G′ [ a ] ^ [ ! , ι lG ] / [Ga]
[Ga≡G′a] = [G≡G′] [ρ] ⊢Δ [a]
[t∘a] , [ta≡fa] = [text] [ρ] ⊢Δ [a]
[t′∘a] , [t′a≡f′a] = [t′ext] [ρ] ⊢Δ [aF′]
[fa≡f′a] = PE.subst₂ (λ X Y → Δ ⊩⟨ l ⟩ wk ρ X ∘ a ^ lA ≡ wk ρ Y ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]) f₀≡f f′₀≡f′ ([f₀≡f′₀] [ρ] ⊢Δ [a])
[ta≡t′a] : Δ ⊩⟨ l ⟩ wk ρ t ∘ a ^ lA ≡ wk ρ t′ ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[ta≡t′a] = transEqTerm [Ga] (transEqTerm [Ga] [ta≡fa] [fa≡f′a]) (symEqTerm [Ga] (convEqTerm₂′ PE.refl (PE.cong ι (PE.sym lG′≡lG)) [Ga] [G′a] [Ga≡G′a] [t′a≡f′a]))
[u∘a] , [ua≡ga] = [uext] [ρ] ⊢Δ [a]
[u′∘a] , [u′a≡g′a] = [u′ext] [ρ] ⊢Δ [aF′]
[ga≡g′a] = PE.subst₂ (λ X Y → Δ ⊩⟨ l ⟩ wk ρ X ∘ a ^ lA ≡ wk ρ Y ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]) g₀≡g g′₀≡g′ ([g₀≡g′₀] [ρ] ⊢Δ [a])
[ua≡u′a] : Δ ⊩⟨ l ⟩ wk ρ u ∘ a ^ lA ≡ wk ρ u′ ∘ a ^ lA ∷ wk (lift ρ) G [ a ] ^ [ ! , ι lG ] / [Ga]
[ua≡u′a] = transEqTerm [Ga] (transEqTerm [Ga] [ua≡ga] [ga≡g′a]) (symEqTerm [Ga] (convEqTerm₂′ PE.refl (PE.cong ι (PE.sym lG′≡lG)) [Ga] [G′a] [Ga≡G′a] [u′a≡g′a]))
[G′a]′ = irrelevance′′ PE.refl PE.refl (PE.cong ι lG′≡lG) [G′a]
[t′∘a]′ = irrelevanceTerm′ PE.refl PE.refl (PE.cong ι lG′≡lG) [G′a] [G′a]′ [t′∘a]
[u′∘a]′ = irrelevanceTerm′ PE.refl PE.refl (PE.cong ι lG′≡lG) [G′a] [G′a]′ [u′∘a]
[idG≡idG′]′ : Δ ⊩⟨ l ⟩ Id (wk (lift ρ) G [ a ]) (wk ρ t ∘ a ^ lA) (wk ρ u ∘ a ^ lA) ≡ Id (wk (lift ρ) G′ [ a ]) (wk ρ t′ ∘ a ^ lA) (wk ρ u′ ∘ a ^ lA) ^ [ % , ι lG ] / [Id] ⊢Δ [Ga] [t∘a] [u∘a]
[idG≡idG′]′ = [IdExt] ⊢Δ [Ga] [G′a]′ [Ga≡G′a] [t∘a] [t′∘a]′ [ta≡t′a] [u∘a] [u′∘a]′ [ua≡u′a]
in irrelevanceEq″ (PE.cong₂ (λ X Y → Id (wk (lift ρ) G [ a ]) (X ∘ a ^ lA) (Y ∘ a ^ lA)) (PE.sym (irrelevant-subst′ ρ t a)) (PE.sym (irrelevant-subst′ ρ u a)))
(PE.cong₂ (λ X Y → Id (wk (lift ρ) G′ [ a ]) (X ∘ a ^ lA) (Y ∘ a ^ lA)) (PE.sym (irrelevant-subst′ ρ t′ a)) (PE.sym (irrelevant-subst′ ρ u′ a)))
PE.refl PE.refl
([Id] ⊢Δ [Ga] [t∘a] [u∘a]) ([idG] [ρ] ⊢Δ [a]) [idG≡idG′]′
[var0] = neuTerm ([F] (Twk.step Twk.id) (⊢Γ ∙ ⊢F)) (var 0) (var (⊢Γ ∙ ⊢F) here) (~-var (var (⊢Γ ∙ ⊢F) here))
⊢idG≡idG′₀ : Γ ∙ F ^ [ rF , ι lF ] ⊢ (Id G (wk1 t ∘ var 0 ^ lA) (wk1 u ∘ var 0 ^ lA)) ≅ (Id G′ (wk1 t′ ∘ var 0 ^ lA) (wk1 u′ ∘ var 0 ^ lA)) ^ [ % , ι lG ]
⊢idG≡idG′₀ = PE.subst₃ (λ X Y Z → _ ⊢ (Id X (Y ∘ var 0 ^ lA) (Z ∘ var 0 ^ lA)) ≅ _ ^ _)
(wkSingleSubstId G) (wkSingleSubstId (wk1 t)) (wkSingleSubstId (wk1 u))
(PE.subst₃ (λ X Y Z → _ ⊢ _ ≅ (Id X (Y ∘ var 0 ^ lA) (Z ∘ var 0 ^ lA)) ^ _)
(wkSingleSubstId G′) (wkSingleSubstId (wk1 t′)) (wkSingleSubstId (wk1 u′))
(escapeEq ([idG] (Twk.step Twk.id) (⊢Γ ∙ ⊢F) [var0]) ([idG≡idG′] {step id} {Γ ∙ F ^ [ rF , ι lF ]} {var 0} (Twk.step Twk.id) (⊢Γ ∙ ⊢F) [var0])))
⊢F≡F′ = PE.subst₂ (λ X Y → _ ⊢ X ≅ Y ^ _) (wk-id F) (PE.trans (wk-id F′₀) (PE.sym F′≡F′₀))
(escapeEq ([F] Twk.id ⊢Γ) ([F≡F′₀] Twk.id ⊢Γ))
[A′] = (Πᵣ′ rF′ lF′ lG′ lF≤′ lG≤′ F′ G′ [[ ⊢A′ , ⊢B′ , D′ ]] ⊢F′ ⊢G′ A′≡A′ [F′] [G′] G′-ext)
⊢t′A′ = escapeTerm {l = l'} [A′] [t′]
⊢u′A′ = escapeTerm {l = l'} [A′] [u′]
⊢t′∘a = PE.subst (λ X → _ ⊢ wk1 t′ ∘ var 0 ^ lA ∷ X ^ [ ! , ι lG′ ]) (wkSingleSubstId G′)
(Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢F′) ⊢t′ ∘ⱼ var (⊢Γ ∙ ⊢F′) here)
⊢u′∘a = PE.subst (λ X → _ ⊢ wk1 u′ ∘ var 0 ^ lA ∷ X ^ [ ! , ι lG′ ]) (wkSingleSubstId G′)
(Twk.wkTerm (Twk.step Twk.id) (⊢Γ ∙ ⊢F′) ⊢u′ ∘ⱼ var (⊢Γ ∙ ⊢F′) here)
⊢funext′ : Γ ⊢ Π F′ ^ rF′ ° lF′ ▹ Id G′ (wk1 t′ ∘ var 0 ^ lA) (wk1 u′ ∘ var 0 ^ lA) ° lG′ ° lA ^ [ % , ι lA ]
⊢funext′ = univ (Πⱼ lF≤′ ▹ lG≤′ ▹ un-univ ⊢F′ ▹ Idⱼ (un-univ ⊢G′) ⊢t′∘a ⊢u′∘a)
Did : Γ ⊢ Id A′ t′ u′ ⇒* Π F′ ^ rF′ ° lF′ ▹ (Id G′ ((wk1 t′) ∘ (var 0) ^ lA) ((wk1 u′) ∘ (var 0) ^ lA)) ° lG′ ° lA ^ [ % , ι lA ]
Did = IdRed* ⊢t′A′ ⊢u′A′ D′ ⇨* ((univ (Id-Π lF≤′ lG≤′ (un-univ ⊢F′) (un-univ ⊢G′) ⊢t′ ⊢u′)) ⇨ id ⊢funext′)
in Π₌ F′ (Id G′ ((wk1 t′) ∘ (var 0) ^ lA) ((wk1 u′) ∘ (var 0) ^ lA))
(PE.subst (λ X → Γ ⊢ Id A′ t′ u′ ⇒* Π F′ ^ rF ° lF ▹ _ ° X ° lA ^ [ % , ι lA ]) lG′≡lG
(PE.subst (λ X → Γ ⊢ Id A′ t′ u′ ⇒* Π F′ ^ rF ° X ▹ _ ° lG′ ° lA ^ [ % , ι lA ]) lF′≡lF
(PE.subst (λ X → Γ ⊢ Id A′ t′ u′ ⇒* Π F′ ^ X ° lF′ ▹ _ ° lG′ ° lA ^ [ % , ι lA ]) rF′≡rF Did)))
(≅-univ (≅ₜ-Π-cong lF≤ lG≤ ⊢F (≅-un-univ ⊢F≡F′) (≅-un-univ ⊢idG≡idG′₀))) [F≡F′] [idG≡idG′]
[IdExtShape] {A} {B} {t} {t′} {u} {u′} {Γ} ⊢Γ (emb emb< [A]) [B] (emb⁰¹ {p = .[A]} ShapeA) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExtShape] ⊢Γ [A] [B] ShapeA [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExtShape] {A} {B} {t} {t′} {u} {u′} {Γ} ⊢Γ [A] (emb emb< [B]) (emb¹⁰ {q = .[B]} ShapeA) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExtShape] ⊢Γ [A] [B] ShapeA [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExtShape] {A} {B} {t} {t′} {u} {u′} {Γ} ⊢Γ (emb ∞< [A]) [B] (emb¹∞ {p = .[A]} ShapeA) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExtShape] ⊢Γ [A] [B] ShapeA [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExtShape] {A} {B} {t} {t′} {u} {u′} {Γ} ⊢Γ [A] (emb ∞< [B]) (emb∞¹ {q = .[B]} ShapeA) [A≡B] [t] [v] [t≡v] [u] [w] [u≡w] =
[IdExtShape] ⊢Γ [A] [B] ShapeA [A≡B] [t] [v] [t≡v] [u] [w] [u≡w]
[IdExt] {A} {A′} {t} {t′} {u} {u′} {Γ} ⊢Γ [A] [A′] [A≡A′] [t] [t′] [t≡t′] [u] [u′] [u≡u′] =
[IdExtShape] {A} {A′} {t} {t′} {u} {u′} {Γ} ⊢Γ [A] [A′] (goodCases [A] [A′] [A≡A′]) [A≡A′] [t] [t′] [t≡t′] [u] [u′] [u≡u′]
Idᵛ-min : ∀ {A t u Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ι l ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ι l ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ ι l ⟩ Id A t u ^ [ % , ι l ] / [Γ]
Idᵛ-min [Γ] [A] [t] [u] ⊢Δ [σ] =
([Id] ⊢Δ (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ]))) ,
(λ [σ′] [σ≡σ′] → [IdExt] ⊢Δ (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ′])) (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([u] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ′])) (proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′]))
Idᵛ : ∀ {A t u Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ ∞ ⟩ Id A t u ^ [ % , ι l ] / [Γ]
Idᵛ [Γ] [A] [t] [u] ⊢Δ [σ] =
([Id] ⊢Δ (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ]))) ,
(λ [σ′] [σ≡σ′] → [IdExt] ⊢Δ (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A] ⊢Δ [σ′])) (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t] ⊢Δ [σ′])) (proj₂ ([t] ⊢Δ [σ]) [σ′] [σ≡σ′])
(proj₁ ([u] ⊢Δ [σ])) (proj₁ ([u] ⊢Δ [σ′])) (proj₂ ([u] ⊢Δ [σ]) [σ′] [σ≡σ′]))
Idᵗᵛ-min : ∀ {A t u Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ι l ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ι l ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ next l ⟩ Id A t u ∷ SProp l ^ [ ! , next l ] / [Γ] / Uᵛgen (≡is≤ PE.refl) <next [Γ]
Idᵗᵛ-min {A} {t} {u} {_} {l} [Γ] [A] [t] [u] =
let [U] = Uᵛgen (≡is≤ PE.refl) <next [Γ]
in un-univᵛ {A = Id A t u} [Γ] [U] (Idᵛ-min {A} {t} {u} [Γ] [A] [t] [u])
Idᵗᵛ : ∀ {A t u Γ l}
([Γ] : ⊩ᵛ Γ) →
let [UA] = maybeEmbᵛ {A = U _} [Γ] (Uᵛ <next [Γ])
[U] = maybeEmbᵛ {A = SProp _} [Γ] (Uᵛ <next [Γ])
in ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([A]t : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ ! l ^ [ ! , next l ] / [Γ] / [UA])
→ Γ ⊩ᵛ⟨ ∞ ⟩ Id A t u ∷ SProp l ^ [ ! , next l ] / [Γ] / [U]
Idᵗᵛ {A} {t} {u} {_} {l} [Γ] [A] [t] [u] [A]t =
let [UA] = maybeEmbᵛ {A = U _} [Γ] (Uᵛ <next [Γ])
[A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]t
[t]' = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ] [A] [A]' [t]
[u]' = S.irrelevanceTerm {A = A} {t = u} [Γ] [Γ] [A] [A]' [u]
[Id] = Idᵗᵛ-min {A} {t} {u} [Γ] [A]' [t]' [u]'
in maybeEmbTermᵛ {l = next l} {A = SProp _} {t = Id A t u} [Γ] (Uᵛgen (≡is≤ PE.refl) <next [Γ]) [Id]
Id-congᵛ-min : ∀ {A A' t t' u u' Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ι l ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ι l ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([A'] : Γ ⊩ᵛ⟨ ι l ⟩ A' ^ [ ! , ι l ] / [Γ])
([t'] : Γ ⊩ᵛ⟨ ι l ⟩ t' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([u'] : Γ ⊩ᵛ⟨ ι l ⟩ u' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([A≡A'] : Γ ⊩ᵛ⟨ ι l ⟩ A ≡ A' ^ [ ! , ι l ] / [Γ] / [A])
([t≡t'] : Γ ⊩ᵛ⟨ ι l ⟩ t ≡ t' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u≡u'] : Γ ⊩ᵛ⟨ ι l ⟩ u ≡ u' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ ι l ⟩ Id A t u ≡ Id A' t' u' ^ [ % , ι l ] / [Γ] / Idᵛ-min {A} {t} {u} [Γ] [A] [t] [u]
Id-congᵛ-min [Γ] [A] [t] [u] [A'] [t'] [u'] [A≡A'] [t≡t'] [u≡u'] ⊢Δ [σ] =
[IdExt] ⊢Δ (proj₁ ([A] ⊢Δ [σ])) (proj₁ ([A'] ⊢Δ [σ])) ([A≡A'] ⊢Δ [σ])
(proj₁ ([t] ⊢Δ [σ])) (proj₁ ([t'] ⊢Δ [σ])) ([t≡t'] ⊢Δ [σ])
(proj₁ ([u] ⊢Δ [σ])) (proj₁ ([u'] ⊢Δ [σ])) ([u≡u'] ⊢Δ [σ])
Id-cong-minᵗᵛ : ∀ {A A' t t' u u' Γ l}
([Γ] : ⊩ᵛ Γ)
([A] : Γ ⊩ᵛ⟨ ι l ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ι l ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ι l ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([A'] : Γ ⊩ᵛ⟨ ι l ⟩ A' ^ [ ! , ι l ] / [Γ])
([t'] : Γ ⊩ᵛ⟨ ι l ⟩ t' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([u'] : Γ ⊩ᵛ⟨ ι l ⟩ u' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([A≡A'] : Γ ⊩ᵛ⟨ ι l ⟩ A ≡ A' ^ [ ! , ι l ] / [Γ] / [A])
([t≡t'] : Γ ⊩ᵛ⟨ ι l ⟩ t ≡ t' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u≡u'] : Γ ⊩ᵛ⟨ ι l ⟩ u ≡ u' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ next l ⟩ Id A t u ≡ Id A' t' u' ∷ SProp l ^ [ ! , next l ] / [Γ] / Uᵛgen (≡is≤ PE.refl) <next [Γ]
Id-cong-minᵗᵛ {A} {A'} {t} {t'} {u} {u'} [Γ] [A] [t] [u] [A'] [t'] [u'] [A≡A'] [t≡t'] [u≡u'] =
let [U] = Uᵛgen (≡is≤ PE.refl) <next [Γ]
in un-univEqᵛ {A = Id A t u} {B = Id A' t' u'} [Γ] [U]
(Idᵛ-min {A} {t} {u} [Γ] [A] [t] [u])
(Idᵛ-min {A'} {t'} {u'} [Γ] [A'] [t'] [u'])
(Id-congᵛ-min {A} {A'} {t} {t'} {u} {u'} [Γ] [A] [t] [u] [A'] [t'] [u'] [A≡A'] [t≡t'] [u≡u'])
Id-congᵗᵛ : ∀ {A A' t t' u u' Γ l}
([Γ] : ⊩ᵛ Γ) →
let [UA] = maybeEmbᵛ {A = U _} [Γ] (Uᵛ <next [Γ])
[U] = maybeEmbᵛ {A = SProp _} [Γ] (Uᵛ <next [Γ])
in ([A] : Γ ⊩ᵛ⟨ ∞ ⟩ A ^ [ ! , ι l ] / [Γ])
([t] : Γ ⊩ᵛ⟨ ∞ ⟩ t ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u] : Γ ⊩ᵛ⟨ ∞ ⟩ u ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([A]t : Γ ⊩ᵛ⟨ ∞ ⟩ A ∷ Univ ! l ^ [ ! , next l ] / [Γ] / [UA])
([A'] : Γ ⊩ᵛ⟨ ∞ ⟩ A' ^ [ ! , ι l ] / [Γ])
([t'] : Γ ⊩ᵛ⟨ ∞ ⟩ t' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([u'] : Γ ⊩ᵛ⟨ ∞ ⟩ u' ∷ A' ^ [ ! , ι l ] / [Γ] / [A'])
([A']t : Γ ⊩ᵛ⟨ ∞ ⟩ A' ∷ Univ ! l ^ [ ! , next l ] / [Γ] / [UA])
([A≡A']t : Γ ⊩ᵛ⟨ ∞ ⟩ A ≡ A' ∷ Univ ! l ^ [ ! , next l ] / [Γ] / [UA])
([t≡t'] : Γ ⊩ᵛ⟨ ∞ ⟩ t ≡ t' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
([u≡u'] : Γ ⊩ᵛ⟨ ∞ ⟩ u ≡ u' ∷ A ^ [ ! , ι l ] / [Γ] / [A])
→ Γ ⊩ᵛ⟨ ∞ ⟩ Id A t u ≡ Id A' t' u' ∷ SProp l ^ [ ! , next l ] / [Γ] / [U]
Id-congᵗᵛ {A} {A'} {t} {t'} {u} {u'} {_} {l} [Γ] [A] [t] [u] [A]t [A'] [t'] [u'] [A']t [A≡A']t [t≡t'] [u≡u'] =
let [UA] = maybeEmbᵛ {A = U _} [Γ] (Uᵛ <next [Γ])
[A]' = univᵛ {A = A} [Γ] (≡is≤ PE.refl) [UA] [A]t
[t]' = S.irrelevanceTerm {A = A} {t = t} [Γ] [Γ] [A] [A]' [t]
[u]' = S.irrelevanceTerm {A = A} {t = u} [Γ] [Γ] [A] [A]' [u]
[A']' = univᵛ {A = A'} [Γ] (≡is≤ PE.refl) [UA] [A']t
[t']' = S.irrelevanceTerm {A = A'} {t = t'} [Γ] [Γ] [A'] [A']' [t']
[u']' = S.irrelevanceTerm {A = A'} {t = u'} [Γ] [Γ] [A'] [A']' [u']
[A≡A']' = univEqᵛ {A = A} {B = A'} [Γ] [UA] [A]' [A≡A']t
[t≡t']' = S.irrelevanceEqTerm {A = A} {t = t} {u = t'} [Γ] [Γ] [A] [A]' [t≡t']
[u≡u']' = S.irrelevanceEqTerm {A = A} {t = u} {u = u'} [Γ] [Γ] [A] [A]' [u≡u']
[Id] = Id-cong-minᵗᵛ {A} {A'} {t} {t'} {u} {u'} [Γ] [A]' [t]' [u]' [A']' [t']' [u']' [A≡A']' [t≡t']' [u≡u']'
in maybeEmbEqTermᵛ {l = next l} {A = SProp _} {t = Id A t u} {u = Id A' t' u'} [Γ] (Uᵛgen (≡is≤ PE.refl) <next [Γ]) [Id]
| {
"alphanum_fraction": 0.3870142965,
"avg_line_length": 62.2623318386,
"ext": "agda",
"hexsha": "fa855ccbf44b99bae097d41cd1d8e5a8a3fe3113",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Id.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Id.agda",
"max_line_length": 199,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Id.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 16313,
"size": 27769
} |
{-# OPTIONS --cubical --safe #-}
open import Algebra
module Control.Monad.Weighted {ℓ} (rng : Semiring ℓ) where
open import Control.Monad.Weighted.Definition rng public
open import Control.Monad.Weighted.Union rng using (_∪_) public
open import Control.Monad.Weighted.Cond rng using (_⋊_) public
open import Control.Monad.Weighted.Monad rng using (_>>=_; pure; _>>_; _<*>_) public
import Control.Monad.Weighted.Expect using (∫)
module Expect = Control.Monad.Weighted.Expect rng
| {
"alphanum_fraction": 0.7334669339,
"avg_line_length": 33.2666666667,
"ext": "agda",
"hexsha": "8148512d1a4d118ccae1433bdde1a7a539d75dfe",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/Weighted.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/Weighted.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/Weighted.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 122,
"size": 499
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.TruncationLoopLadder where
⊙Ω-Trunc : ∀ {i} {n : ℕ₋₂} (X : Ptd i)
→ ⊙Ω (⊙Trunc (S n) X) ⊙≃ ⊙Trunc n (⊙Ω X)
⊙Ω-Trunc X = ≃-to-⊙≃ (Trunc=-equiv [ pt X ] [ pt X ]) idp
step : ∀ {i j} n {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ ⊙CommSquareEquiv
(⊙Ω-fmap (⊙Trunc-fmap {n = S n} f))
(⊙Trunc-fmap {n = n} (⊙Ω-fmap f))
(⊙–> (⊙Ω-Trunc X))
(⊙–> (⊙Ω-Trunc Y))
step n (f , idp) =
⊙comm-sqr (Trunc=-equiv-nat _ _ _ , idp) , snd (⊙Ω-Trunc _) , snd (⊙Ω-Trunc _)
rail : ∀ m {i} (X : Ptd i)
→ ⊙Ω^' m (⊙Trunc ⟨ m ⟩ X) ⊙→ ⊙Trunc 0 (⊙Ω^' m X)
rail O X = ⊙idf _
rail (S m) X = rail m (⊙Ω X) ⊙∘ ⊙Ω^'-fmap m (⊙–> (⊙Ω-Trunc X))
ladder : ∀ {i j} m {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y)
→ ⊙CommSquareEquiv
(⊙Ω^'-fmap m (⊙Trunc-fmap {n = ⟨ m ⟩} f))
(⊙Trunc-fmap {n = 0} (⊙Ω^'-fmap m f))
(rail m X)
(rail m Y)
ladder O f = ⊙comm-sqr (⊙∘-unit-l _) , idf-is-equiv _ , idf-is-equiv _
ladder (S m) f =
⊙CommSquareEquiv-∘v (ladder m (⊙Ω-fmap f)) (⊙Ω^'-csemap m (step ⟨ m ⟩ f))
| {
"alphanum_fraction": 0.463176575,
"avg_line_length": 33.1470588235,
"ext": "agda",
"hexsha": "7dbbcd3deb641808892e0950655facb4c970fe68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/TruncationLoopLadder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/TruncationLoopLadder.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/TruncationLoopLadder.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 608,
"size": 1127
} |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; cong₂)
open import Data.Nat using (ℕ; zero; suc; _≤_; z≤n; s≤s)
open import Data.Nat.Properties using (≤-total)
open import Data.Fin using (Fin; zero; suc)
open import Data.Product using (∃; ∃-syntax; _×_; _,_)
open import Data.Sum using ([_,_])
open import DeBruijn
open import Substitution using (rename-subst-commute; subst-commute; extensionality)
open import Beta
open import BetaSubstitutivity using (sub-betas)
open import Takahashi
infix 8 _*⁽_⁾
_*⁽_⁾ : ∀ {n} → Term n → ℕ → Term n
M *⁽ zero ⁾ = M
M *⁽ suc k ⁾ = (M *) *⁽ k ⁾
data _—↠⁽_⁾_ : ∀ {n} → Term n → ℕ → Term n → Set where
_∎ : ∀ {n} (M : Term n)
--------------
→ M —↠⁽ zero ⁾ M
_—→⁽⁾⟨_⟩_ : ∀ {n} {N L : Term n} {k : ℕ} (M : Term n)
→ M —→ L
→ L —↠⁽ k ⁾ N
---------------
→ M —↠⁽ suc k ⁾ N
lemma3-2 : ∀ {n} {M : Term n}
→ M —↠ M *
lemma3-2 {M = # x} = # x ∎
lemma3-2 {M = ƛ _} = —↠-cong-ƛ lemma3-2
lemma3-2 {M = # _ · _} = —↠-congᵣ lemma3-2
lemma3-2 {M = _ · _ · _} = —↠-cong lemma3-2 lemma3-2
lemma3-2 {M = (ƛ M) · N} = (ƛ M) · N —→⟨ —→-β ⟩ sub-betas {M = M} lemma3-2 lemma3-2
lemma3-3 : ∀ {n} {M N : Term n}
→ M —→ N
--------
→ N —↠ M *
lemma3-3 {M = # _} ()
lemma3-3 {M = ƛ M} (—→-ƛ M—→M′) = —↠-cong-ƛ (lemma3-3 M—→M′)
lemma3-3 {M = # _ · N} (—→-ξᵣ N—→N′) = —↠-congᵣ (lemma3-3 N—→N′)
lemma3-3 {M = _ · _ · N} (—→-ξᵣ N—→N′) = —↠-cong lemma3-2 (lemma3-3 N—→N′)
lemma3-3 {M = M₁ · M₂ · _} (—→-ξₗ M—↠M′) = —↠-cong (lemma3-3 M—↠M′) lemma3-2
lemma3-3 {M = (ƛ M) · N} —→-β = sub-betas {M = M} lemma3-2 lemma3-2
lemma3-3 {M = (ƛ M) · N} (—→-ξᵣ {N′ = N′} N—→N′) = (ƛ M ) · N′ —→⟨ —→-β ⟩ sub-betas {M = M} lemma3-2 (lemma3-3 N—→N′)
lemma3-3 {M = (ƛ M) · N} (—→-ξₗ (—→-ƛ {M′ = M′} M—→M′)) = (ƛ M′) · N —→⟨ —→-β ⟩ sub-betas {N = N} (lemma3-3 M—→M′) lemma3-2
_*ˢ : ∀ {n m} → Subst n m → Subst n m
σ *ˢ = λ x → (σ x) *
rename-* : ∀ {n m} (ρ : Rename n m) (M : Term n)
→ rename ρ (M *) ≡ (rename ρ M) *
rename-* ρ (# _) = refl
rename-* ρ (ƛ M) = cong ƛ_ (rename-* (ext ρ) M)
rename-* ρ (# _ · N) = cong₂ _·_ refl (rename-* ρ N)
rename-* ρ (M₁ · M₂ · N) = cong₂ _·_ (rename-* ρ (M₁ · M₂)) (rename-* ρ N)
rename-* ρ ((ƛ M) · N) rewrite sym (rename-subst-commute {N = M *}{M = N *}{ρ = ρ})
| rename-* (ext ρ) M
| rename-* ρ N
= refl
exts-ts-commute : ∀ {n m} (σ : Subst n m)
→ exts (σ *ˢ) ≡ (exts σ) *ˢ
exts-ts-commute {n} σ = extensionality exts-ts-commute′
where
exts-ts-commute′ : (x : Fin (suc n))
→ (exts (σ *ˢ)) x ≡ ((exts σ) *ˢ) x
exts-ts-commute′ zero = refl
exts-ts-commute′ (suc x) = rename-* suc (σ x)
app-*-join : ∀ {n} (M N : Term n)
→ M * · N * —↠ (M · N) *
app-*-join (# x) N = # x · N * ∎
app-*-join (ƛ M) N = (ƛ M *) · N * —→⟨ —→-β ⟩ subst (subst-zero (N *)) (M *) ∎
app-*-join (M₁ · M₂) N = (M₁ · M₂) * · N * ∎
subst-ts : ∀ {n m} (σ : Subst n m) (M : Term n)
→ subst (σ *ˢ) (M *) —↠ (subst σ M) *
subst-ts σ (# x) = σ x * ∎
subst-ts σ (ƛ M) rewrite exts-ts-commute σ = —↠-cong-ƛ (subst-ts (exts σ) M)
subst-ts σ (# x · N) = —↠-trans (—↠-congᵣ (subst-ts σ N))
(app-*-join (σ x) (subst σ N))
subst-ts σ (M₁ · M₂ · N) = —↠-cong (subst-ts σ (M₁ · M₂)) (subst-ts σ N)
subst-ts σ ((ƛ M) · N) rewrite sym (subst-commute {N = M *}{M = N *}{σ = σ *ˢ})
| exts-ts-commute σ
= sub-betas (subst-ts (exts σ) M) (subst-ts σ N)
subst-zero-ts : ∀ {n} {N : Term n}
→ subst-zero (N *) ≡ (subst-zero N) *ˢ
subst-zero-ts = extensionality (λ { zero → refl ; (suc x) → refl })
lemma3-4 : ∀ {n} (M : Term (suc n)) (N : Term n)
→ M * [ N * ] —↠ (M [ N ]) *
lemma3-4 M N rewrite subst-zero-ts {N = N} = subst-ts (subst-zero N) M
lemma3-5 : ∀ {n} {M N : Term n}
→ M —→ N
----------
→ M * —↠ N *
lemma3-5 {M = # x} ()
lemma3-5 {M = ƛ M} (—→-ƛ M—→M′) = —↠-cong-ƛ (lemma3-5 M—→M′)
lemma3-5 {M = # _ · N} (—→-ξᵣ M₂—→M′) = —↠-congᵣ (lemma3-5 M₂—→M′)
lemma3-5 {M = (ƛ M) · N} —→-β = lemma3-4 M N
lemma3-5 {M = (ƛ M) · N} (—→-ξₗ (—→-ƛ M—→M′)) = sub-betas (lemma3-5 M—→M′) (N * ∎)
lemma3-5 {M = (ƛ M) · N} (—→-ξᵣ N—→N′) = sub-betas (M * ∎) (lemma3-5 N—→N′)
lemma3-5 {M = M₁ · M₂ · _} (—→-ξᵣ N—→N′) = —↠-congᵣ (lemma3-5 N—→N′)
lemma3-5 {M = M₁ · M₂ · _} (—→-ξₗ {M′ = # x} M₁M₂—→#x) = —↠-congₗ (lemma3-5 M₁M₂—→#x)
lemma3-5 {M = M₁ · M₂ · _} (—→-ξₗ {M′ = M′₁ · M′₂} M₁M₂—→M′₁M′₂) = —↠-congₗ (lemma3-5 M₁M₂—→M′₁M′₂)
lemma3-5 {M = M₁ · M₂ · N} (—→-ξₗ {M′ = ƛ M′} M₁M₂—→ƛM′) =
—↠-trans (—↠-congₗ (lemma3-5 M₁M₂—→ƛM′))
((ƛ M′ *) · N * —→⟨ —→-β ⟩ subst (subst-zero (N *)) (M′ *) ∎)
corollary3-6 : ∀ {n} {M N : Term n}
→ M —↠ N
----------
→ M * —↠ N *
corollary3-6 (M ∎) = M * ∎
corollary3-6 (M —→⟨ M—→L ⟩ L—↠N) = —↠-trans (lemma3-5 M—→L) (corollary3-6 L—↠N)
corollary3-7 : ∀ {n} {M N : Term n} (m : ℕ)
→ M —↠ N
--------------------
→ M *⁽ m ⁾ —↠ N *⁽ m ⁾
corollary3-7 zero M—↠N = M—↠N
corollary3-7 (suc m) M—↠N = corollary3-7 m (corollary3-6 M—↠N)
theorem3-8 : ∀ {n} {M N : Term n} {m : ℕ}
→ M —↠⁽ m ⁾ N
-------------
→ N —↠ M *⁽ m ⁾
theorem3-8 {m = zero} (M ∎) = M ∎
theorem3-8 {m = suc m} (M —→⁽⁾⟨ M—→L ⟩ L—↠ᵐN) =
—↠-trans (theorem3-8 L—↠ᵐN) (corollary3-7 m (lemma3-3 M—→L))
unnamed-named : ∀ {n} {M N : Term n}
→ M —↠ N
--------------------
→ ∃[ m ] (M —↠⁽ m ⁾ N)
unnamed-named (M ∎) = zero , (M ∎)
unnamed-named (M —→⟨ M—→L ⟩ L—↠N) with unnamed-named L—↠N
... | m′ , L—↠ᵐ′N = suc m′ , (M —→⁽⁾⟨ M—→L ⟩ L—↠ᵐ′N)
lift-* : ∀ {n} (M : Term n) (m : ℕ)
→ M —↠ M *⁽ m ⁾
lift-* M zero = M ∎
lift-* M (suc m) = —↠-trans lemma3-2 (lift-* (M *) m)
complete-* : ∀ {k} (M : Term k) {n m : ℕ}
→ n ≤ m
--------------------
→ M *⁽ n ⁾ —↠ M *⁽ m ⁾
complete-* M {m = m} z≤n = lift-* M m
complete-* M (s≤s k) = complete-* (M *) k
theorem3-9 : ∀ {n} {M A B : Term n}
→ M —↠ A → M —↠ B
------------------------
→ ∃[ N ] (A —↠ N × B —↠ N)
theorem3-9 {M = M} M—↠A M—↠B =
let n , M—↠ⁿA = unnamed-named M—↠A
m , M—↠ᵐB = unnamed-named M—↠B
A—↠M*ⁿ = theorem3-8 M—↠ⁿA
B—↠M*ᵐ = theorem3-8 M—↠ᵐB
in [ (λ n≤m →
let M*ⁿ—↠M*ᵐ : M *⁽ n ⁾ —↠ M *⁽ m ⁾
M*ⁿ—↠M*ᵐ = complete-* M n≤m
in M *⁽ m ⁾ , —↠-trans A—↠M*ⁿ M*ⁿ—↠M*ᵐ , B—↠M*ᵐ)
, (λ m≤n →
let M*ᵐ—↠M*ⁿ : M *⁽ m ⁾ —↠ M *⁽ n ⁾
M*ᵐ—↠M*ⁿ = complete-* M m≤n
in M *⁽ n ⁾ , A—↠M*ⁿ , —↠-trans B—↠M*ᵐ M*ᵐ—↠M*ⁿ)
] (≤-total n m)
| {
"alphanum_fraction": 0.4220884124,
"avg_line_length": 34.5634517766,
"ext": "agda",
"hexsha": "20d7acbde7557038e8bb6ea8dc641ce98c193eae",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "ConfluenceTakahashi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "ConfluenceTakahashi.agda",
"max_line_length": 126,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "ConfluenceTakahashi.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 3462,
"size": 6809
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module groups.Image where
module _ {i j k} {G : Group i} {H : Group j}
{K : Group k} (φ : H →ᴳ K) (ψ : G →ᴳ H) where
abstract
im-sub-im-∘ : is-surjᴳ ψ → im-propᴳ φ ⊆ᴳ im-propᴳ (φ ∘ᴳ ψ)
im-sub-im-∘ ψ-is-surj k = Trunc-rec Trunc-level
(λ{(h , φh=k) → Trunc-rec Trunc-level
(λ{(g , ψg=h) → [ g , ap (GroupHom.f φ) ψg=h ∙ φh=k ]})
(ψ-is-surj h)})
im-∘-sub-im : im-propᴳ (φ ∘ᴳ ψ) ⊆ᴳ im-propᴳ φ
im-∘-sub-im k = Trunc-rec Trunc-level
(λ{(g , φψg=k) → [ GroupHom.f ψ g , φψg=k ]})
im-iso-im-pre∘ : is-surjᴳ ψ → Im φ ≃ᴳ Im (φ ∘ᴳ ψ)
im-iso-im-pre∘ ψ-is-surj = Subgroup-emap-r
(im-propᴳ φ) (im-propᴳ (φ ∘ᴳ ψ))
(im-sub-im-∘ ψ-is-surj) im-∘-sub-im
| {
"alphanum_fraction": 0.5316622691,
"avg_line_length": 30.32,
"ext": "agda",
"hexsha": "702b0d307be35589dc1dd33b48e3f9a0a82b4813",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/groups/Image.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/groups/Image.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/groups/Image.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 380,
"size": 758
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Everything
module Test.ProblemWithLevelZero where
module _ (𝔓 : Ø₀) where
open Substitunction 𝔓
open Term 𝔓
fails : ∀ {m n} (f : Substitunction m n) → Substitunction m n
fails f = transitivity f ε -- FIXME
refl-works : ∀ {m} → Substitunction m m
refl-works = ε
solution-1o solution-1a solution-2o solution-2a :
∀ {m n} (f : Substitunction m n) → Substitunction m n
solution-1o f = transitivity {𝔒 = ¶} f ε
solution-1a f = transitivity[ Substitunction ] f ε
solution-2o f = transitivity {𝔒 = Ø₀} f ε
solution-2a f = transitivity[ Function ] f ε
transitivity-hole : ∀ {m n} (f : Substitunction m n) → Substitunction m n
transitivity-hole f =
transitivity
⦃ {!!!} -- FIXME does not resolve instance
⦄
f
{!!}
| {
"alphanum_fraction": 0.6460606061,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "eee2062f07f14c1f6e72c316a221b5d9634a7b49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithLevelZero.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithLevelZero.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithLevelZero.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 281,
"size": 825
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.Bouquet where
open import Cubical.HITs.Bouquet.Base public
open import Cubical.HITs.Bouquet.FundamentalGroupProof public
| {
"alphanum_fraction": 0.8012048193,
"avg_line_length": 23.7142857143,
"ext": "agda",
"hexsha": "c1427eb4c5aed0e1dabe0de2c4feae968cd36681",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/Bouquet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/Bouquet.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/Bouquet.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 46,
"size": 166
} |
module Issue224 where
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A → Maybe A
data D (A : Set) : Maybe A → Set where
d₁ : (x : A) → D A (just x)
d₂ : ∀ {x} → D A x → D A x
data S : ∀ {A x} → D A x → Set₁ where
s : ∀ {A x} {d : D A x} → S d → S (d₂ d)
foo : {A : Set} → S (d₂ (d₁ (nothing {A}))) → Set₁
foo (s _) = Set
-- Bug.agda:19,6-9
-- Panic: Pattern match failure in do expression at
-- src/full/Agda/TypeChecking/Rules/LHS/Unify.hs:331:2-5
-- when checking that the pattern s _ has type S (d₂ (d₁ nothing))
| {
"alphanum_fraction": 0.5714285714,
"avg_line_length": 24.8181818182,
"ext": "agda",
"hexsha": "761a3d31e239bab6d41b92c028d462e29e28e2f6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue224.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue224.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue224.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 218,
"size": 546
} |
module Issue133 where
data Nat : Set where
zz : Nat
ss : Nat → Nat
data _==_ {X : Set}(x : X) : X → Set where
refl : x == x
data Zero : Set where
data Eq? (x : Nat) : Nat → Set where
same : Eq? x x
diff : {y : Nat} → (x == y → Zero) → Eq? x y
-- This failed before due to absurd lambda checking not getting
-- postponed.
ioo : {y : Nat} → Eq? zz (ss y)
ioo {y} = diff λ ()
foo : {y : Nat} → zz == ss y → Zero
foo ()
goo : {y : Nat} → zz == ss y → Zero
goo = λ ()
hoo : {y : Nat}{X : Set} → ((zz == ss y → Zero) → X) → X
hoo boo = boo λ ()
| {
"alphanum_fraction": 0.5205724508,
"avg_line_length": 18.0322580645,
"ext": "agda",
"hexsha": "1c2f030b97274f8c50775b169eba2f6f1df89364",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue133.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue133.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue133.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 210,
"size": 559
} |
-- Andreas, 2017-01-18, issue #2408
-- DLubs were not serialized, thus, there was a problem with
-- level dependent on irrelevant values.
{-# OPTIONS --show-irrelevant #-}
-- {-# OPTIONS -v tc:70 #-}
open import Agda.Primitive
postulate
A : Set
l : .(a : A) → Level
F : .(a : A) → Set (l a)
-- checked type signature
-- F : .(a : A) → Set (l a)
-- of sort dLub Set (λ a → Set (lsuc (l a)))
| {
"alphanum_fraction": 0.5872235872,
"avg_line_length": 20.35,
"ext": "agda",
"hexsha": "8fa7466973f3df97d172f9d4a7959ebfa35d926f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2408.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2408.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2408.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 140,
"size": 407
} |
{-# OPTIONS --without-K #-}
module hott.functions where
open import hott.core.universe
open import hott.core.equality
-- Composition of functions.
_∘_ : ∀ {ℓ₀ ℓ₁ ℓ₂ : Level} → {A : Type ℓ₀} {B : Type ℓ₁} {C : Type ℓ₂}
→ (B → C) → (A → B) → A → C
f ∘ g = λ x → f (g x)
-- The identity function.
id : ∀{ℓ} {A : Type ℓ} → A → A
id x = x
-- Change the order of arguments in a bivariate function.
flip : {a b c : Level}{A : Type a}{B : Type b}{C : Type c}
→ (A → B → C) → (B → A → C)
flip f b a = f a b
-- We want compostion to have very high precedence.
infixr 100 _∘_
-- The constant function.
constant : ∀ {ℓ₀ ℓ₁}{A : Type ℓ₀}{B : Type ℓ₁} → A → B → A
constant a b = a
-- Alternate syntax for dependent function type.
Π : ∀{ℓ₀ ℓ₁}{A : Type ℓ₀}(B : A → Type ℓ₁) → Type (ℓ₀ ⊔ ℓ₁)
Π {_}{_}{A} B = (a : A) → B(a)
-- One should use f ~ g to mean that f and g are homotopic.
_~_ : ∀{ℓ₀ ℓ₁}{A : Type ℓ₀}{B : Type ℓ₁} (f g : A → B) → Type (ℓ₁ ⊔ ℓ₀)
f ~ g = Π λ x → f x ≡ g x
infixr 1 _~_
| {
"alphanum_fraction": 0.5608782435,
"avg_line_length": 26.3684210526,
"ext": "agda",
"hexsha": "48b72ee03e36c26b43bc08ffae3a1899d0a0385b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/functions.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/functions.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 418,
"size": 1002
} |
-- Non-indexed (plain) monads in form of Kleisli triple, presented in point-free style.
module Control.Monad.KleisliTriple where
open import Function using (id) renaming (_∘′_ to _∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Axiom.FunctionExtensionality
open import Control.Functor
record IsKleisliTriple (M : Set → Set) : Set₁ where
-- Methods.
field
return : ∀ {A } → A → M A
bind′ : ∀ {A B} → (A → M B) → M A → M B
-- Laws.
field
bind′-β : ∀ {A B} {k : A → M B} →
bind′ k ∘ return ≡ k
bind′-η : ∀ {A} →
bind′ {A = A} return ≡ id
bind′-∘ : ∀ {A B C} {k : A → M B} {l : B → M C} →
bind′ (bind′ l ∘ k) ≡ bind′ l ∘ bind′ k
-- Notations for bind′.
-- Postfix category-theoretical notation.
_✶ = bind′
-- Infix Haskell notation.
infixl 6 _=<<_
_=<<_ = bind′
-- Kleisli composition.
infixl 6 _<=<_
_<=<_ : ∀ {A B C : Set} (l : B → M C) (k : A → M B) → (A → M C)
l <=< k = bind′ l ∘ k
-- Functoriality.
isFunctor : IsFunctor M
isFunctor = record
{ ops = record { map = map }
; laws = record { map-id = bind′-η ; map-∘ = sym (map-∘-sym _ _) }
}
where
map : ∀ {A B} → (A → B) → M A → M B
map f = bind′ (return ∘ f)
map-∘-sym : ∀ {A B C} (f : A → B) (g : B → C) → map g ∘ map f ≡ map (g ∘ f)
map-∘-sym f g = begin
map g ∘ map f ≡⟨⟩
bind′ (return ∘ g) ∘ bind′ (return ∘ f) ≡⟨ sym bind′-∘ ⟩
bind′ (bind′ (return ∘ g) ∘ return ∘ f) ≡⟨ cong (λ z → bind′ (z ∘ f)) bind′-β ⟩
bind′ (return ∘ g ∘ f) ≡⟨⟩
map (g ∘ f) ∎
open IsFunctor isFunctor public
-- Monads in Kleisli Triple presentation.
record KleisliTriple : Set₁ where
field
M : Set → Set
M! : IsKleisliTriple M
open IsKleisliTriple M! public
| {
"alphanum_fraction": 0.5110759494,
"avg_line_length": 23.4074074074,
"ext": "agda",
"hexsha": "0dcafef2870545554ebb21e5efb1a4bc36e37798",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Monad/KleisliTriple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Monad/KleisliTriple.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Monad/KleisliTriple.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 722,
"size": 1896
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- An either-or-both data type
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.These where
open import Level
open import Data.Sum.Base using (_⊎_; [_,_]′)
open import Function
data These {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
this : A → These A B
that : B → These A B
these : A → B → These A B
module _ {a b} {A : Set a} {B : Set b} where
fromSum : A ⊎ B → These A B
fromSum = [ this , that ]′
-- map
map : ∀ {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {B₁ : Set b₁} {B₂ : Set b₂}
(f : A₁ → A₂) (g : B₁ → B₂) → These A₁ B₁ → These A₂ B₂
map f g (this a) = this (f a)
map f g (that b) = that (g b)
map f g (these a b) = these (f a) (g b)
map₁ : ∀ {a₁ a₂ b} {A₁ : Set a₁} {A₂ : Set a₂} {B : Set b}
(f : A₁ → A₂) → These A₁ B → These A₂ B
map₁ f = map f id
map₂ : ∀ {a b₁ b₂} {A : Set a} {B₁ : Set b₁} {B₂ : Set b₂}
(g : B₁ → B₂) → These A B₁ → These A B₂
map₂ = map id
module _ {a b} {A : Set a} {B : Set b} where
-- fold
fold : ∀ {c} {C : Set c} → (A → C) → (B → C) → (A → B → C) → These A B → C
fold l r lr (this a) = l a
fold l r lr (that b) = r b
fold l r lr (these a b) = lr a b
-- swap
swap : These A B → These B A
swap = fold that this (flip these)
-- align
module _ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} where
alignWith : ∀ {e f} {E : Set e} {F : Set f} →
(These A C → E) → (These B D → F) → These A B → These C D → These E F
alignWith f g (this a) (this c) = this (f (these a c))
alignWith f g (this a) (that d) = these (f (this a)) (g (that d))
alignWith f g (this a) (these c d) = these (f (these a c)) (g (that d))
alignWith f g (that b) (this c) = these (f (that c)) (g (this b))
alignWith f g (that b) (that d) = that (g (these b d))
alignWith f g (that b) (these c d) = these (f (that c)) (g (these b d))
alignWith f g (these a b) (this c) = these (f (these a c)) (g (this b))
alignWith f g (these a b) (that d) = these (f (this a)) (g (these b d))
alignWith f g (these a b) (these c d) = these (f (these a c)) (g (these b d))
align : These A B → These C D → These (These A C) (These B D)
align = alignWith id id
module _ {a} {A : Set a} where
-- Projections.
leftMost : These A A → A
leftMost = fold id id const
rightMost : These A A → A
rightMost = fold id id (flip const)
mergeThese : (A → A → A) → These A A → A
mergeThese = fold id id
| {
"alphanum_fraction": 0.5026676829,
"avg_line_length": 30.1609195402,
"ext": "agda",
"hexsha": "3aaff8adf35e09ed95d04c68bf35a45ec5f3f5da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/These.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/These.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/These.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1001,
"size": 2624
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Nullification.Properties where
open import Cubical.Foundations.Everything
open isPathSplitEquiv
open import Cubical.Modalities.Everything
open Modality
open import Cubical.HITs.Localization renaming (rec to Localize-rec)
open import Cubical.Data.Unit
open import Cubical.HITs.Nullification.Base
rec : ∀ {ℓ ℓ' ℓ''} {S : Type ℓ} {A : Type ℓ'} {B : Type ℓ''}
→ (nB : isNull S B) → (A → B) → Null S A → B
rec nB g ∣ x ∣ = g x
rec nB g (hub f) = fst (sec nB) (λ s → rec nB g (f s))
rec nB g (spoke f s i) = snd (sec nB) (λ s → rec nB g (f s)) i s
rec nB g (≡hub {x} {y} p i) = fst (secCong nB (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i
rec nB g (≡spoke {x} {y} p s i j) = snd (secCong nB (rec nB g x) (rec nB g y)) (λ i s → rec nB g (p s i)) i j s
toPathP⁻ : ∀ {ℓ} (A : I → Type ℓ) {x : A i0} {y : A i1} → x ≡ transport⁻ (λ i → A i) y → PathP A x y
toPathP⁻ A p i = toPathP {A = λ i → A (~ i)} (sym p) (~ i)
toPathP⁻-sq : ∀ {ℓ} {A : Type ℓ} (x : A) → Square (toPathP⁻ (λ _ → A) (λ _ → transport refl x)) refl
(transportRefl x) refl
toPathP⁻-sq x j i = hcomp (λ l → λ { (i = i0) → transportRefl x j
; (i = i1) → x ; (j = i1) → x })
(transportRefl x (i ∨ j))
module _ {ℓ ℓ' ℓ''} {S : Type ℓ} {A : Type ℓ'} {B : Null S A → Type ℓ''} where
private
secCongDep' : ∀ (nB : (x : Null S A) → isNull S (B x)) {x y : Null S A} (p : x ≡ y)
→ (∀ (bx : B x) (by : B y) → hasSection (cong₂ (λ x (b : B x) (_ : S) → b) p))
secCongDep' nB p = secCongDep (λ _ → const) p (λ a → secCong (nB a))
elim : (nB : (x : Null S A) → isNull S (B x)) → ((a : A) → B ∣ a ∣) → (x : Null S A) → B x
elim nB g ∣ x ∣ = g x
elim nB g (hub f)
= fst (sec (nB (hub f)))
(λ s → transport (λ i → B (spoke f s (~ i))) (elim nB g (f s)))
elim nB g (spoke f s i)
= toPathP⁻ (λ i → B (spoke f s i))
(funExt⁻ ( snd (sec (nB (hub f)))
(λ s → transport (λ i → B (spoke f s (~ i))) (elim nB g (f s))) ) s) i
elim nB g (≡hub {x} {y} p i)
= hcomp (λ k → λ { (i = i0) → transportRefl (elim nB g x) k
; (i = i1) → transportRefl (elim nB g y) k })
(fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y)))
(λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))) i)
elim nB g (≡spoke {x} {y} p s j i)
= hcomp (λ k → λ { (i = i0) → toPathP⁻-sq (elim nB g x) k j
; (i = i1) → toPathP⁻-sq (elim nB g y) k j
; (j = i1) → elim nB g (p s i) })
(q₂ j i)
where q₁ : Path (PathP (λ i → B (≡hub p i)) (transport refl (elim nB g x)) (transport refl (elim nB g y)))
(fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y)))
(λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))))
(λ i → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i)))
q₁ j i = snd (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y)))
(λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))) j i s
q₂ : PathP (λ j → PathP (λ i → B (≡spoke p s j i)) (toPathP⁻ (λ _ → B x) (λ _ → transport refl (elim nB g x)) j)
(toPathP⁻ (λ _ → B y) (λ _ → transport refl (elim nB g y)) j))
(fst (secCongDep' nB (≡hub p) (transport refl (elim nB g x)) (transport refl (elim nB g y)))
(λ i s → transport (λ j → B (≡spoke p s (~ j) i)) (elim nB g (p s i))))
(λ i → elim nB g (p s i))
q₂ j i = toPathP⁻ (λ j → B (≡spoke p s j i)) (λ j → q₁ j i) j
-- nullification is a modality
NullModality : ∀ {ℓ} (S : Type ℓ) → Modality ℓ
isModal (NullModality S) = isNull S
isModalIsProp (NullModality S) = isPropIsPathSplitEquiv _
◯ (NullModality S) = Null S
◯-isModal (NullModality S) = isNull-Null
η (NullModality S) = ∣_∣
◯-elim (NullModality S) = elim
◯-elim-β (NullModality S) = λ _ _ _ → refl
◯-=-isModal (NullModality S) x y = fromIsEquiv _ e
where e : isEquiv (λ (p : x ≡ y) → const {B = S} p)
e = transport (λ i → isEquiv {B = funExtPath {A = S} {f = const x} {g = const y} (~ i)}
(λ p → ua-gluePath funExtEquiv {x = const p} {y = cong const p} refl (~ i)))
(isEquivCong (_ , toIsEquiv _ isNull-Null))
idemNull : ∀ {ℓ} (S A : Type ℓ) → isNull S A → A ≃ Null S A
idemNull S A nA = ∣_∣ , isModalToIsEquiv (NullModality S) nA
-- nullification is localization at a map (S → 1)
module Null-iso-Localize {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') where
to : Null S A → Localize {A = Unit} (λ _ → const {B = S} tt) A
to ∣ x ∣ = ∣ x ∣
to (hub f) = ext tt (to ∘ f) tt
to (spoke f s i) = isExt tt (to ∘ f) s i
to (≡hub {x} {y} p i) = ≡ext tt (const (to x)) (const (to y)) (cong to ∘ p) tt i
to (≡spoke {x} {y} p s i j) = ≡isExt tt (const (to x)) (const (to y)) (cong to ∘ p) s i j
from : Localize {A = Unit} (λ _ → const {B = S} tt) A → Null S A
from ∣ x ∣ = ∣ x ∣
from (ext tt f tt) = hub (from ∘ f)
from (isExt tt f s i) = spoke (from ∘ f) s i
from (≡ext tt g h p tt i) = ≡hub {x = from (g tt)} {from (h tt)} (cong from ∘ p) i
from (≡isExt tt g h p s i j) = ≡spoke {x = from (g tt)} {from (h tt)} (cong from ∘ p) s i j
to-from : ∀ (x : Localize {A = Unit} (λ _ → const {B = S} tt) A) → to (from x) ≡ x
to-from ∣ x ∣ k = ∣ x ∣
to-from (ext tt f tt) k = ext tt (λ s → to-from (f s) k) tt
to-from (isExt tt f s i) k = isExt tt (λ s → to-from (f s) k) s i
to-from (≡ext tt g h p tt i) k = ≡ext tt (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) tt i
to-from (≡isExt tt g h p s i j) k = ≡isExt tt (λ _ → to-from (g tt) k) (λ _ → to-from (h tt) k) (λ s j → to-from (p s j) k) s i j
from-to : ∀ (x : Null S A) → from (to x) ≡ x
from-to ∣ x ∣ k = ∣ x ∣
from-to (hub f) k = hub (λ s → from-to (f s) k)
from-to (spoke f s i) k = spoke (λ s → from-to (f s) k) s i
from-to (≡hub {x} {y} p i) k = ≡hub {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) i
from-to (≡spoke {x} {y} p s i j) k = ≡spoke {x = from-to x k} {from-to y k} (λ s j → from-to (p s j) k) s i j
isom : Iso (Null S A) (Localize {A = Unit} (λ _ → const {B = S} tt) A)
isom = iso to from to-from from-to
Null≃Localize : ∀ {ℓ ℓ'} (S : Type ℓ) (A : Type ℓ') → Null S A ≃ Localize (λ _ → const tt) A
Null≃Localize S A = isoToEquiv (Null-iso-Localize.isom S A)
| {
"alphanum_fraction": 0.4934645322,
"avg_line_length": 52.3769230769,
"ext": "agda",
"hexsha": "38b58e4573b6d367ca153ecb867e8ba0d59dbc9c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/Nullification/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/Nullification/Properties.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/Nullification/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2826,
"size": 6809
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.DunceCap.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.HITs.S1 using (S¹; base; decodeEncode)
import Cubical.HITs.S1 as S¹
open import Cubical.HITs.MappingCones
open import Cubical.HITs.DunceCap.Base
-- DunceCone is contractible (easy)
Disk : Type₀
Disk = Cone (idfun S¹)
isContr-Disk : isContr Disk
fst isContr-Disk = hub
snd isContr-Disk (inj x) i = spoke x i
snd isContr-Disk hub i = hub
snd isContr-Disk (spoke x j) i = spoke x (i ∧ j)
dunceMap≡id : dunceMap ≡ idfun S¹
dunceMap≡id i base = base
dunceMap≡id i (S¹.loop j) = p i j
where p : S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop ≡ S¹.loop
p = sym (decodeEncode base (S¹.loop ⁻¹ ∙∙ S¹.loop ∙∙ S¹.loop)) ∙ sym (lUnit S¹.loop)
isContr-DunceCone : isContr DunceCone
isContr-DunceCone = subst isContr (cong Cone (sym dunceMap≡id)) isContr-Disk
-- Dunce is contractible (harder)
contrDunce : (d : Dunce) → d ≡ base
contrDunce base k = loop k
contrDunce (loop i) k = surf k i
contrDunce (surf i j) k
= hcomp (λ l → λ { (i = i0) → surf k j
; (i = i1) → cube l
; (j = i0) → cube l
; (j = i1) → cube l
; (k = i0) → surf i j
; (k = i1) → base })
(surf (k ∨ i) j)
where cube : I → Dunce
cube l = hfill (λ i → λ { (k = i0) → loop i
; (k = i1) → base
; (l = i0) → loop (k ∨ i)
; (l = i1) → surf k i })
(inS (loop k)) i
isContr-Dunce : isContr Dunce
fst isContr-Dunce = base
snd isContr-Dunce = sym ∘ contrDunce
Dunce≡DunceCone : Dunce ≡ DunceCone
Dunce≡DunceCone = ua (isContr→Equiv isContr-Dunce isContr-DunceCone)
| {
"alphanum_fraction": 0.6039312039,
"avg_line_length": 31.3076923077,
"ext": "agda",
"hexsha": "0d4abc3e9cc1ada272c0ec5541d3e4335dd5d280",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/DunceCap/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/DunceCap/Properties.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/DunceCap/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 697,
"size": 2035
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.Syntactic where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Substitution.Escape
open import Definition.LogicalRelation.Fundamental
open import Definition.Typed.Consequences.Injectivity
open import Tools.Product
-- the `with` syntax does not work
-- Syntactic validity of type equality.
syntacticEq : ∀ {A B rA Γ} → Γ ⊢ A ≡ B ^ rA → Γ ⊢ A ^ rA × Γ ⊢ B ^ rA
syntacticEq {A} {B} {rA} {Γ} A≡B =
let X = fundamentalEq A≡B
[Γ] = proj₁ X
[A] = proj₁ (proj₂ X)
[B] = proj₁ (proj₂ (proj₂ X))
in escapeᵛ [Γ] [A] , escapeᵛ [Γ] [B]
-- Syntactic validity of terms.
syntacticTerm : ∀ {t A rA Γ} → Γ ⊢ t ∷ A ^ rA → Γ ⊢ A ^ rA
syntacticTerm t =
let X = fundamentalTerm t
[Γ] = proj₁ X
[A] = proj₁ (proj₂ X)
[t] = proj₂ (proj₂ X)
in escapeᵛ [Γ] [A]
-- Syntactic validity of term equality.
syntacticEqTerm : ∀ {t u A rA Γ} → Γ ⊢ t ≡ u ∷ A ^ rA → Γ ⊢ A ^ rA × (Γ ⊢ t ∷ A ^ rA × Γ ⊢ u ∷ A ^ rA)
syntacticEqTerm t≡u with fundamentalTermEq t≡u
syntacticEqTerm t≡u | [Γ] , modelsTermEq [A] [t] [u] [t≡u] =
escapeᵛ [Γ] [A] , escapeTermᵛ [Γ] [A] [t] , escapeTermᵛ [Γ] [A] [u]
-- Syntactic validity of type reductions.
syntacticRed : ∀ {A B rA Γ} → Γ ⊢ A ⇒* B ^ rA → Γ ⊢ A ^ rA × Γ ⊢ B ^ rA
syntacticRed D =
let X = fundamentalEq (subset* D)
[Γ] = proj₁ X
[A] = proj₁ (proj₂ X)
[B] = proj₁ (proj₂ (proj₂ X))
in escapeᵛ [Γ] [A] , escapeᵛ [Γ] [B]
-- Syntactic validity of term reductions.
syntacticRedTerm : ∀ {t u A Γ l} → Γ ⊢ t ⇒* u ∷ A ^ l → Γ ⊢ A ^ [ ! , l ] × (Γ ⊢ t ∷ A ^ [ ! , l ] × Γ ⊢ u ∷ A ^ [ ! , l ])
syntacticRedTerm d with fundamentalTermEq (subset*Term d)
syntacticRedTerm d | [Γ] , modelsTermEq [A] [t] [u] [t≡u] =
escapeᵛ [Γ] [A] , escapeTermᵛ [Γ] [A] [t] , escapeTermᵛ [Γ] [A] [u]
-- Syntactic validity of Π-types.
syntacticΠ : ∀ {Γ F G rF lF lG rΠ lΠ} → Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ^ [ rΠ , ι lΠ ] → Γ ⊢ F ^ [ rF , ι lF ] × Γ ∙ F ^ [ rF , ι lF ] ⊢ G ^ [ rΠ , ι lG ]
syntacticΠ ΠFG with injectivity (refl ΠFG)
syntacticΠ ΠFG | F≡F , rF≡rF , lF≡lF , lG≡lG , G≡G = proj₁ (syntacticEq F≡F) , proj₁ (syntacticEq G≡G)
| {
"alphanum_fraction": 0.6098993289,
"avg_line_length": 35.5820895522,
"ext": "agda",
"hexsha": "909b573f1cb496f2a8200405df1992777867c977",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Syntactic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Syntactic.agda",
"max_line_length": 155,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Syntactic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 1013,
"size": 2384
} |
-- Andreas, 2012-03-15, example by Ulf
-- {-# OPTIONS -v tc.meta:20 #-}
module Issue479 where
import Common.Level
open import Common.Equality
data ⊥ : Set where
data Bool : Set where true false : Bool
X : Bool
X=true : X ≡ true
X≠false : X ≡ false → ⊥
X = _
X≠false ()
X=true = refl
-- The emptyness check for X ≡ false should be postponed until
-- X has been solved to true.
| {
"alphanum_fraction": 0.661498708,
"avg_line_length": 19.35,
"ext": "agda",
"hexsha": "31d016568af6bb255bf3b84be4f7b96609a49fca",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue479.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue479.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue479.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 122,
"size": 387
} |
-- Andreas, 2017-10-02, issue #2785, reported by ...
-- {-# OPTIONS -v scope.extendedLambda:100 #-}
{-# OPTIONS --allow-unsolved-metas #-}
foo : _
foo = {!foo λ {x y → foo}!} -- C-c C-r
-- Upon refine (C-c C-r), error was:
--
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/Syntax/Translation/ConcreteToAbstract.hs:721
-- Now: unsolved metas and constraints.
| {
"alphanum_fraction": 0.6603325416,
"avg_line_length": 26.3125,
"ext": "agda",
"hexsha": "c25856d26cccff5679b9c6562fa7604a9511d639",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue2785.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue2785.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue2785.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 125,
"size": 421
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to All
------------------------------------------------------------------------
module Data.List.All.Properties where
open import Data.Bool
open import Data.Bool.Properties
open import Data.Empty
open import Data.List as List
import Data.List.Any as Any; open Any.Membership-≡
open import Data.List.All as All using (All; []; _∷_)
open import Data.List.Any using (Any; here; there)
open import Data.Product as Prod
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Function.Inverse using (_↔_)
open import Function.Surjection using (_↠_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary
open import Relation.Unary using (Decidable) renaming (_⊆_ to _⋐_)
-- Functions can be shifted between the predicate and the list.
All-map : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
All (P ∘ f) xs → All P (List.map f xs)
All-map [] = []
All-map (p ∷ ps) = p ∷ All-map ps
map-All : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p}
{f : A → B} {xs} →
All P (List.map f xs) → All (P ∘ f) xs
map-All {xs = []} [] = []
map-All {xs = _ ∷ _} (p ∷ ps) = p ∷ map-All ps
-- A variant of All.map.
gmap : ∀ {a b p q}
{A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q}
{f : A → B} →
P ⋐ Q ∘ f → All P ⋐ All Q ∘ List.map f
gmap g = All-map ∘ All.map g
-- All and all are related via T.
All-all : ∀ {a} {A : Set a} (p : A → Bool) {xs} →
All (T ∘ p) xs → T (all p xs)
All-all p [] = _
All-all p (px ∷ pxs) = Equivalence.from T-∧ ⟨$⟩ (px , All-all p pxs)
all-All : ∀ {a} {A : Set a} (p : A → Bool) xs →
T (all p xs) → All (T ∘ p) xs
all-All p [] _ = []
all-All p (x ∷ xs) px∷xs with Equivalence.to (T-∧ {p x}) ⟨$⟩ px∷xs
all-All p (x ∷ xs) px∷xs | (px , pxs) = px ∷ all-All p xs pxs
-- All is anti-monotone.
anti-mono : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
xs ⊆ ys → All P ys → All P xs
anti-mono xs⊆ys pys = All.tabulate (All.lookup pys ∘ xs⊆ys)
-- all is anti-monotone.
all-anti-mono : ∀ {a} {A : Set a} (p : A → Bool) {xs ys} →
xs ⊆ ys → T (all p ys) → T (all p xs)
all-anti-mono p xs⊆ys = All-all p ∘ anti-mono xs⊆ys ∘ all-All p _
-- All P (xs ++ ys) is isomorphic to All P xs and All P ys.
private
++⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys : List A} →
All P xs → All P ys → All P (xs ++ ys)
++⁺ [] pys = pys
++⁺ (px ∷ pxs) pys = px ∷ ++⁺ pxs pys
++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} (xs : List A) {ys} →
All P (xs ++ ys) → All P xs × All P ys
++⁻ [] p = [] , p
++⁻ (x ∷ xs) (px ∷ pxs) = Prod.map (_∷_ px) id $ ++⁻ _ pxs
++⁺∘++⁻ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys}
(p : All P (xs ++ ys)) → uncurry′ ++⁺ (++⁻ xs p) ≡ p
++⁺∘++⁻ [] p = P.refl
++⁺∘++⁻ (x ∷ xs) (px ∷ pxs) = P.cong (_∷_ px) $ ++⁺∘++⁻ xs pxs
++⁻∘++⁺ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys}
(p : All P xs × All P ys) → ++⁻ xs (uncurry ++⁺ p) ≡ p
++⁻∘++⁺ ([] , pys) = P.refl
++⁻∘++⁺ (px ∷ pxs , pys) rewrite ++⁻∘++⁺ (pxs , pys) = P.refl
++↔ : ∀ {a p} {A : Set a} {P : A → Set p} {xs ys} →
(All P xs × All P ys) ↔ All P (xs ++ ys)
++↔ {P = P} {xs = xs} = record
{ to = P.→-to-⟶ $ uncurry ++⁺
; from = P.→-to-⟶ $ ++⁻ xs
; inverse-of = record
{ left-inverse-of = ++⁻∘++⁺
; right-inverse-of = ++⁺∘++⁻ xs
}
}
-- Three lemmas relating Any, All and negation.
¬Any↠All¬ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
¬ Any P xs ↠ All (¬_ ∘ P) xs
¬Any↠All¬ {P = P} = record
{ to = P.→-to-⟶ (to _)
; surjective = record
{ from = P.→-to-⟶ from
; right-inverse-of = to∘from
}
}
where
to : ∀ xs → ¬ Any P xs → All (¬_ ∘ P) xs
to [] ¬p = []
to (x ∷ xs) ¬p = ¬p ∘ here ∷ to xs (¬p ∘ there)
from : ∀ {xs} → All (¬_ ∘ P) xs → ¬ Any P xs
from [] ()
from (¬p ∷ _) (here p) = ¬p p
from (_ ∷ ¬p) (there p) = from ¬p p
to∘from : ∀ {xs} (¬p : All (¬_ ∘ P) xs) → to xs (from ¬p) ≡ ¬p
to∘from [] = P.refl
to∘from (¬p ∷ ¬ps) = P.cong₂ _∷_ P.refl (to∘from ¬ps)
-- If equality of functions were extensional, then the surjection
-- could be strengthened to a bijection.
from∘to : P.Extensionality _ _ →
∀ xs → (¬p : ¬ Any P xs) → from (to xs ¬p) ≡ ¬p
from∘to ext [] ¬p = ext λ ()
from∘to ext (x ∷ xs) ¬p = ext λ
{ (here p) → P.refl
; (there p) → P.cong (λ f → f p) $ from∘to ext xs (¬p ∘ there)
}
Any¬→¬All : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
Any (¬_ ∘ P) xs → ¬ All P xs
Any¬→¬All (here ¬p) = ¬p ∘ All.head
Any¬→¬All (there ¬p) = Any¬→¬All ¬p ∘ All.tail
Any¬⇔¬All : ∀ {a p} {A : Set a} {P : A → Set p} {xs} →
Decidable P → Any (¬_ ∘ P) xs ⇔ ¬ All P xs
Any¬⇔¬All {P = P} dec = record
{ to = P.→-to-⟶ Any¬→¬All
; from = P.→-to-⟶ (from _)
}
where
from : ∀ xs → ¬ All P xs → Any (¬_ ∘ P) xs
from [] ¬∀ = ⊥-elim (¬∀ [])
from (x ∷ xs) ¬∀ with dec x
... | yes p = there (from xs (¬∀ ∘ _∷_ p))
... | no ¬p = here ¬p
-- If equality of functions were extensional, then the logical
-- equivalence could be strengthened to a surjection.
to∘from : P.Extensionality _ _ →
∀ {xs} (¬∀ : ¬ All P xs) → Any¬→¬All (from xs ¬∀) ≡ ¬∀
to∘from ext ¬∀ = ext (⊥-elim ∘ ¬∀)
| {
"alphanum_fraction": 0.4688164422,
"avg_line_length": 33.5952380952,
"ext": "agda",
"hexsha": "9752b202bc77dc89e2757211d0fefec1417a846a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/List/All/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/List/All/Properties.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/List/All/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2308,
"size": 5644
} |
open import slots.imports
open import slots.defs
module slots.bruteforce {cfg : config}(g : game cfg) where
open config cfg
open game g
total : ℕ
total = V.foldl _ (λ i r → i * L.length r) 1 reels
lineWin : Line → Win/Bet
lineWin [] = 0
lineWin (f₀ ∷ fs) = lineWin′ w ws fs where
winLine = V.lookup f₀ winTable
w = V.head winLine
ws = V.tail winLine
lineWin′ : ∀ {n} →
Win/Bet → Vec Win/Bet n → Vec Fruit n → Win/Bet
lineWin′ w [] [] = w
lineWin′ w (w′ ∷ ws) (f ∷ fs) with f₀ F.≟ f
... | yes p = lineWin′ w′ ws fs
... | no ¬p = w
allLines : List Line
allLines = V.foldr (List ∘ Vec Fruit)
(λ r → L.concatMap λ l → L.map (_∷ l) r)
([] ∷ []) reels
win : ℕ
win = L.sum ∘ L.map lineWin $ allLines
rtp : ℕ × ℕ
rtp = win , total
| {
"alphanum_fraction": 0.5960264901,
"avg_line_length": 20.9722222222,
"ext": "agda",
"hexsha": "ec85fc20b43364ae076176b33966b7b9d940a60b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "semenov-vladyslav/slots-agda",
"max_forks_repo_path": "src/slots/bruteforce.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "semenov-vladyslav/slots-agda",
"max_issues_repo_path": "src/slots/bruteforce.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "86d777ade14f63032c46bd168b76ac60d6bdf9b9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "semenov-vladyslav/slots-agda",
"max_stars_repo_path": "src/slots/bruteforce.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 292,
"size": 755
} |
{-# OPTIONS --without-K #-}
module ConcretePermutationProperties where
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; module ≡-Reasoning; proof-irrelevance)
--
-- open import FinVecProperties using (∘̂-assoc; ∘̂-lid; ∘̂-rid)
open import ConcretePermutation
------------------------------------------------------------------------------
-- Properties of vectors where are only used to prove some properties
-- of concrete permutations -> do not export them.
private
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin)
open import Data.Vec using (Vec)
open import Data.Vec.Properties using (lookup-allFin)
open import Proofs using (finext; lookupassoc; _!!_)
∘̂-assoc : {m₁ m₂ m₃ m₄ : ℕ} →
(a : Vec (Fin m₂) m₁) (b : Vec (Fin m₃) m₂) (c : Vec (Fin m₄) m₃) →
a ∘̂ (b ∘̂ c) ≡ (a ∘̂ b) ∘̂ c
∘̂-assoc a b c = finext (lookupassoc a b c)
∘̂-rid : {m n : ℕ} → (π : Vec (Fin m) n) → π ∘̂ 1C ≡ π
∘̂-rid π = trans (finext (λ i → lookup-allFin (π !! i))) (cauchyext π)
∘̂-lid : {m n : ℕ} → (π : Vec (Fin m) n) → 1C ∘̂ π ≡ π
∘̂-lid π = trans (finext (λ i → cong (_!!_ π) (lookup-allFin i))) (cauchyext π)
------------------------------------------------------------------------------
-- Properties of concrete permutations that are needed to show that
-- this is also a symmetric rig groupoid
-- If the forward components are equal, then so are the backward ones
πᵒ≡ : ∀ {m n} → (π₁ π₂ : CPerm m n) → (CPerm.π π₁ ≡ CPerm.π π₂) →
(CPerm.πᵒ π₁ ≡ CPerm.πᵒ π₂)
πᵒ≡ {n} (cp π πᵒ αp βp) (cp .π πᵒ₁ αp₁ βp₁) refl =
begin (
πᵒ ≡⟨ sym (∘̂-rid πᵒ) ⟩
πᵒ ∘̂ 1C ≡⟨ cong (_∘̂_ πᵒ) (sym αp₁) ⟩
πᵒ ∘̂ (π ∘̂ πᵒ₁) ≡⟨ ∘̂-assoc πᵒ π πᵒ₁ ⟩
(πᵒ ∘̂ π) ∘̂ πᵒ₁ ≡⟨ cong (λ x → x ∘̂ πᵒ₁) βp ⟩
1C ∘̂ πᵒ₁ ≡⟨ ∘̂-lid πᵒ₁ ⟩
πᵒ₁ ∎)
where open ≡-Reasoning
-- If the forward components are equal, then so are the entire
-- concrete permutations
p≡ : ∀ {m n} → {π₁ π₂ : CPerm m n} → (CPerm.π π₁ ≡ CPerm.π π₂) → π₁ ≡ π₂
p≡ {m} {n} {cp π πᵒ αp βp} {cp .π πᵒ₁ αp₁ βp₁} refl with
πᵒ≡ (cp π πᵒ αp βp) (cp π πᵒ₁ αp₁ βp₁) refl
p≡ {m} {n} {cp π πᵒ αp βp} {cp .π .πᵒ αp₁ βp₁} refl | refl
with proof-irrelevance αp αp₁ | proof-irrelevance βp βp₁
p≡ {m} {n} {cp π πᵒ αp βp} {cp .π .πᵒ .αp .βp} refl | refl | refl | refl = refl
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5251328157,
"avg_line_length": 39.4677419355,
"ext": "agda",
"hexsha": "16caec11276f30601bf73e1b061b62cbc46b3fc2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/ConcretePermutationProperties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/ConcretePermutationProperties.agda",
"max_line_length": 81,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/ConcretePermutationProperties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 1043,
"size": 2447
} |
------------------------------------------------------------------------
-- An implementation of the Thue-Morse sequence
------------------------------------------------------------------------
-- This module is a variant of ThueMorse. The difference is that, in
-- this module, the cast operation takes an inequality instead of an
-- equality, and that this module does not contain any correctness
-- proofs.
module ThueMorseLeq where
open import Codata.Musical.Notation
open import Codata.Musical.Stream using (Stream; _≈_)
open Codata.Musical.Stream.Stream
open import Data.Bool using (Bool; not); open Data.Bool.Bool
open import Data.Nat using (ℕ); open Data.Nat.ℕ
open import Data.Vec using (Vec; _∷ʳ_); open Data.Vec.Vec
------------------------------------------------------------------------
-- Chunks
-- A value of type Chunks describes how a stream is generated. Note
-- that an infinite sequence of empty chunks is not allowed.
data Chunks : Set where
-- Start the next chunk.
next : (m : Chunks) → Chunks
-- Cons an element to the current chunk.
cons : (m : ∞ Chunks) → Chunks
-- Inequality of chunks.
infix 4 _≥C_
data _≥C_ : Chunks → Chunks → Set where
next : ∀ {m m′} (m≥m′ : m ≥C m′ ) → next m ≥C next m′
cons : ∀ {m m′} (m≥m′ : ∞ (♭ m ≥C ♭ m′)) → cons m ≥C cons m′
consˡ : ∀ {m m′} (m≥m′ : ♭ m ≥C m′ ) → cons m ≥C m′
------------------------------------------------------------------------
-- Chunk transformers
tailC : Chunks → Chunks
tailC (next m) = next (tailC m)
tailC (cons m) = ♭ m
mutual
evensC : Chunks → Chunks
evensC (next m) = next (evensC m)
evensC (cons m) = cons (♯ oddsC (♭ m))
oddsC : Chunks → Chunks
oddsC (next m) = next (oddsC m)
oddsC (cons m) = evensC (♭ m)
infixr 5 _⋎C_
-- Note that care is taken to create as few and large chunks as
-- possible (see also _⋎W_).
_⋎C_ : Chunks → Chunks → Chunks
next m ⋎C next m′ = next (m ⋎C m′) -- Two chunks in, one out.
next m ⋎C cons m′ = next (m ⋎C cons m′)
cons m ⋎C m′ = cons (♯ (m′ ⋎C ♭ m))
------------------------------------------------------------------------
-- Stream programs
-- StreamP m A encodes programs which generate streams with chunk
-- sizes given by m.
infixr 5 _∷_ _⋎_
data StreamP : Chunks → Set → Set₁ where
[_] : ∀ {m A} (xs : ∞ (StreamP m A)) → StreamP (next m) A
_∷_ : ∀ {m A} (x : A) (xs : StreamP (♭ m) A) → StreamP (cons m) A
tail : ∀ {m A} (xs : StreamP m A) → StreamP (tailC m) A
evens : ∀ {m A} (xs : StreamP m A) → StreamP (evensC m) A
odds : ∀ {m A} (xs : StreamP m A) → StreamP (oddsC m) A
_⋎_ : ∀ {m m′ A} (xs : StreamP m A) (ys : StreamP m′ A) →
StreamP (m ⋎C m′) A
map : ∀ {m A B} (f : A → B) (xs : StreamP m A) → StreamP m B
cast : ∀ {m m′ A} (ok : m ≥C m′) (xs : StreamP m A) → StreamP m′ A
data StreamW : Chunks → Set → Set₁ where
[_] : ∀ {m A} (xs : StreamP m A) → StreamW (next m) A
_∷_ : ∀ {m A} (x : A) (xs : StreamW (♭ m) A) → StreamW (cons m) A
program : ∀ {m A} → StreamW m A → StreamP m A
program [ xs ] = [ ♯ xs ]
program (x ∷ xs) = x ∷ program xs
tailW : ∀ {m A} → StreamW m A → StreamW (tailC m) A
tailW [ xs ] = [ tail xs ]
tailW (x ∷ xs) = xs
mutual
evensW : ∀ {m A} → StreamW m A → StreamW (evensC m) A
evensW [ xs ] = [ evens xs ]
evensW (x ∷ xs) = x ∷ oddsW xs
oddsW : ∀ {m A} → StreamW m A → StreamW (oddsC m) A
oddsW [ xs ] = [ odds xs ]
oddsW (x ∷ xs) = evensW xs
infixr 5 _⋎W_
-- Note: Uses swapping of arguments.
_⋎W_ : ∀ {m m′ A} → StreamW m A → StreamW m′ A → StreamW (m ⋎C m′) A
[ xs ] ⋎W [ ys ] = [ xs ⋎ ys ]
[ xs ] ⋎W (y ∷ ys) = [ xs ⋎ program (y ∷ ys) ]
(x ∷ xs) ⋎W ys = x ∷ ys ⋎W xs
mapW : ∀ {m A B} → (A → B) → StreamW m A → StreamW m B
mapW f [ xs ] = [ map f xs ]
mapW f (x ∷ xs) = f x ∷ mapW f xs
module Cast where
infixr 6 _+_
infixr 5 _++_
_+_ : ℕ → Chunks → Chunks
zero + m = m
suc n + m = cons (♯ (n + m))
_++_ : ∀ {A n m} → Vec A n → StreamP m A → StreamP (n + m) A
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)
+ˡ : ∀ {m m′} n → m ≥C m′ → n + m ≥C m′
+ˡ zero m≥m′ = m≥m′
+ˡ (suc n) m≥m′ = consˡ (+ˡ n m≥m′)
castW : ∀ {n m m′ A} → m ≥C m′ → Vec A n → StreamW m A → StreamW m′ A
castW {n} (next m≥m′) xs [ ys ] = [ cast (+ˡ n m≥m′) (xs ++ ys) ]
castW (cons m≥m′) [] (y ∷ ys) = y ∷ castW (♭ m≥m′) [] ys
castW (cons m≥m′) (x ∷ xs) (y ∷ ys) = x ∷ castW (♭ m≥m′) (xs ∷ʳ y) ys
castW (consˡ m≥m′) xs (y ∷ ys) = castW m≥m′ (xs ∷ʳ y) ys
whnf : ∀ {m A} → StreamP m A → StreamW m A
whnf [ xs ] = [ ♭ xs ]
whnf (x ∷ xs) = x ∷ whnf xs
whnf (tail xs) = tailW (whnf xs)
whnf (evens xs) = evensW (whnf xs)
whnf (odds xs) = oddsW (whnf xs)
whnf (xs ⋎ ys) = whnf xs ⋎W whnf ys
whnf (map f xs) = mapW f (whnf xs)
whnf (cast m≥m′ xs) = Cast.castW m≥m′ [] (whnf xs)
mutual
⟦_⟧W : ∀ {m A} → StreamW m A → Stream A
⟦ [ xs ] ⟧W = ⟦ xs ⟧P
⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧W
⟦_⟧P : ∀ {m A} → StreamP m A → Stream A
⟦ xs ⟧P = ⟦ whnf xs ⟧W
------------------------------------------------------------------------
-- The Thue-Morse sequence
[ccn]ω : Chunks
[ccn]ω = cons (♯ cons (♯ next [ccn]ω))
[cn]²[ccn]ω : Chunks
[cn]²[ccn]ω = cons (♯ next (cons (♯ next [ccn]ω)))
[cn]³[ccn]ω : Chunks
[cn]³[ccn]ω = cons (♯ next [cn]²[ccn]ω)
lemma₁ : oddsC [ccn]ω ⋎C [ccn]ω ≥C [ccn]ω
lemma₁ = cons (♯ cons (♯ next (cons (♯ cons (♯ next lemma₁)))))
lemma : evensC [cn]³[ccn]ω ⋎C tailC [cn]³[ccn]ω ≥C [cn]²[ccn]ω
lemma = cons (♯ next (cons (♯ next (cons (♯ cons (♯ next lemma₁))))))
thueMorse : StreamP [cn]³[ccn]ω Bool
thueMorse =
false ∷ [ ♯ cast lemma (map not (evens thueMorse) ⋎ tail thueMorse) ]
| {
"alphanum_fraction": 0.5019157088,
"avg_line_length": 31.2065217391,
"ext": "agda",
"hexsha": "986e860917f273202933829c90bf0efc88eccd5d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "ThueMorseLeq.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "ThueMorseLeq.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "ThueMorseLeq.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 2381,
"size": 5742
} |
{-# OPTIONS --warning=error #-}
module UnknownNameInFixityDecl where
infix 40 _+_
infixr 60 _*_
| {
"alphanum_fraction": 0.7422680412,
"avg_line_length": 16.1666666667,
"ext": "agda",
"hexsha": "0d3b45ecd693f1052e5d3d1e39f9d7ba764b6966",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnknownNameInFixityDecl.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnknownNameInFixityDecl.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnknownNameInFixityDecl.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 31,
"size": 97
} |
module Structure.Relator.Function.Multi where
open import Data.Tuple.RaiseTypeᵣ
import Data.Tuple.RaiseTypeᵣ.Functions as RaiseType
open import Function.Multi
import Function.Multi.Functions as Multi
import Lvl
import Lvl.MultiFunctions as Lvl
open import Logic
open import Logic.Predicate
open import Logic.Predicate.Multi
open import Functional
open import Numeral.Natural
import Structure.Function.Multi as Multi
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ : Lvl.Level
module _ (n : ℕ) {ℓ𝓈}{ℓ₁ ℓ₂} {Xs : Types{n}(ℓ𝓈)}{Y : Type{ℓ₁}} where
module Names where
-- A relator is total when every LHS have at least one RHS in which the relation holds.
Total : (Xs ⇉ (Y → Stmt{ℓ₂})) → Stmt
Total(φ) = ∀₊(n)(Multi.compose(n) ∃ φ)
module _ ⦃ equiv-Y : Equiv{ℓₑ}(Y) ⦄ where
-- A relator is a function when every LHS have at least one RHS in which the relation holds.
Function : ∀{ℓ𝓈ₑ} → (RaiseType.mapWithLvls(\X ℓₑ → Equiv{ℓₑ}(X)) Xs ℓ𝓈ₑ) ⇉ᵢₙₛₜ ((Xs ⇉ (Y → Type{ℓ₂})) → Stmt)
Function = Multi.expl-to-inst(n) (Multi.compose(n) (_$₂_) (Multi.inst-to-expl(n) (Multi.Names.RelationReplacement(f ↦ g ↦ ∀{y₁ y₂} → f(y₁) → g(y₂) → (y₁ ≡ y₂))(n))))
record Total(φ : Xs ⇉ (Y → Stmt{ℓ₂})) : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ (Lvl.⨆ ℓ𝓈)} where
constructor intro
field proof : Names.Total(φ)
| {
"alphanum_fraction": 0.6786500367,
"avg_line_length": 40.0882352941,
"ext": "agda",
"hexsha": "9eb2096aa6b201dee66ec139b6b4fadc65f89d01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Relator/Function/Multi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Relator/Function/Multi.agda",
"max_line_length": 171,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Relator/Function/Multi.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 491,
"size": 1363
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Rels where
open import Data.Product
open import Function
open import Level
open import Relation.Binary
open import Relation.Binary.Construct.Composition
open import Relation.Binary.PropositionalEquality
open import Categories.Category.Core
-- the category whose objects are sets and whose morphisms are binary relations.
Rels : ∀ o ℓ → Category (suc o) (suc (o ⊔ ℓ)) (o ⊔ ℓ)
Rels o ℓ = record
{ Obj = Set o
; _⇒_ = λ A B → REL A B (o ⊔ ℓ)
; _≈_ = λ _L_ _R_ → ∀ x y → (x L y → x R y) × (x R y → x L y)
; id = λ x y → Lift ℓ (x ≡ y)
; _∘_ = λ L R → R ; L
; assoc = λ x y →
(λ { (b , fxb , c , gbc , hcy) → c , (b , fxb , gbc) , hcy }) ,
(λ { (c , (b , fxb , gbc) , hcy) → b , fxb , c , gbc , hcy })
; sym-assoc = λ x y →
(λ { (c , (b , fxb , gbc) , hcy) → b , fxb , c , gbc , hcy }) ,
(λ { (b , fxb , c , gbc , hcy) → c , (b , fxb , gbc) , hcy })
; identityˡ = λ x y → (λ { (.y , fxy , lift refl) → fxy }) , λ fxy → y , fxy , lift refl
; identityʳ = λ x y → (λ { (.x , lift refl , fxy) → fxy }) , λ fxy → x , lift refl , fxy
; identity² = λ x y →
(λ { (_ , lift refl , lift refl) → lift refl }) ,
(λ { (lift refl) → _ , lift refl , lift refl })
; equiv = record
{ refl = λ _ _ → id , id
; sym = λ p x y → swap (p x y)
; trans = λ p q x y → zip (flip _∘′_) _∘′_ (p x y) (q x y)
}
; ∘-resp-≈ = λ p q x y →
(λ { (b , gxb , fby) → b , proj₁ (q x b) gxb , proj₁ (p b y) fby }) ,
(λ { (b , ixb , hby) → b , proj₂ (q x b) ixb , proj₂ (p b y) hby })
}
| {
"alphanum_fraction": 0.5150943396,
"avg_line_length": 38.7804878049,
"ext": "agda",
"hexsha": "bf095bca062df4acb5e45cdafa48b39267692626",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bolt12/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bolt12/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bolt12/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Rels.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 645,
"size": 1590
} |
module Imports.Issue5198 (Y : Set₁) where
record R : Set₂ where
constructor mkR
field
A : Set₁
| {
"alphanum_fraction": 0.6857142857,
"avg_line_length": 13.125,
"ext": "agda",
"hexsha": "1f9efb478283ad0805396f122a411f234517371a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Imports/Issue5198.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Imports/Issue5198.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Imports/Issue5198.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 36,
"size": 105
} |
module Formalization.SKICombinatorCalculus where
import Lvl
import Function
open import Functional using (_∘_)
open import Type
open import Structure.Relator.Properties
open import Syntax.Transitivity
data Term : Type{Lvl.𝟎} where
S : Term -- Fusion
K : Term -- Constant
_·_ : Term → Term → Term
infixl 30 _·_
pattern B = S · (K · S) · K -- Composition
pattern C = S · (S · (K · B) · S) · (K · K) -- Swapped application
pattern I = S · K · K -- Identity of operation
pattern SA = (S · I) · I -- Self application
pattern W = S · S · (S · K) --
pattern Ω = SA · SA --
pattern SW = S · (K · (S · I)) · K -- Swapped operation
T = C
Z = B
-- Z = C · (C · (B · N · (S · I · I)) · Ω) · I
{- TODO: Is this possible?
term-fn-type : ∀{ℓ} → Term → Type{Lvl.𝐒(ℓ)}
term-fn-type {ℓ} S = ∀{X Y Z : Type{ℓ}} → (X → (Y → Z)) → (X → Y) → (X → Z)
term-fn-type {ℓ} K = ∀{X Y : Type{ℓ}} → Y → X → Y
term-fn-type {ℓ} (x · y) = {!term-fn-type {ℓ} x!}
-}
module Derivation where
-- TODO: But there are no base cases?
data deriv : Term → Type{Lvl.𝟎} where
constant : ∀{α β γ ι} → deriv(α · ((K · β) · γ) · ι) → deriv(α · β · ι)
fuse : ∀{α β γ δ ι} → deriv(α · (((S · β) · γ) · δ) · ι) → deriv(α · ((β · δ) · (γ · δ)) · ι)
_⇒_ : Term → Term → Type
a ⇒ b = ∀{α ι} → deriv(α · a · ι) → deriv(α · b · ι)
identity : ∀{β} → ((I · β) ⇒ β)
identity = constant ∘ fuse
-- composition : ∀{α ι a b c} → deriv(α · (B · a · b · c) · ι) → deriv(α · ((a · (b · c))) · ι)
-- composition = {!!}
-- TODO: Is this really correct? Should be similar to deriv
data _⟶_ : Term → Term → Type{Lvl.𝟎} where -- TODO: Use reflexive-transitive closure instead
constant : ∀{c t} → (((K · c) · t) ⟶ c)
fuse : ∀{a b c} → ((((S · a) · b) · c) ⟶ ((a · c) · (b · c)))
comp : ∀{a₁ a₂ b₁ b₂} → (a₁ ⟶ a₂) → (b₁ ⟶ b₂) → ((a₁ · b₁) ⟶ (a₂ · b₂))
refl : ∀{a} → (a ⟶ a)
trans : ∀{a b c} → (a ⟶ b) → (b ⟶ c) → (a ⟶ c)
infixl 29 _⟶_
instance
[⟶]-reflexivity : Reflexivity(_⟶_)
[⟶]-reflexivity = intro refl
instance
[⟶]-transitivity : Transitivity(_⟶_)
[⟶]-transitivity = intro trans
-- identity : ∀{t} → ((I · t) ⟶ t)
pattern identity = trans fuse constant
-- compₗ : ∀{a₁ a₂ b} → (a₁ ⟶ a₂) → ((a₁ · b) ⟶ (a₂ · b))
pattern compₗ p = comp p refl
-- compᵣ : ∀{a b₁ b₂} → (b₁ ⟶ b₂) → ((a · b₁) ⟶ (a · b₂))
pattern compᵣ p = comp refl p
composition : ∀{a b c} → ((B · a · b · c) ⟶ (a · (b · c)))
composition {a}{b}{c} =
B · a · b · c 🝖-[ refl ]
((S · (K · S) · K · a) · b) · c 🝖-[ compₗ (compₗ fuse) ]
(((K · S · a) · (K · a)) · b) · c 🝖-[ compₗ (compₗ (compₗ constant)) ]
((S · (K · a)) · b) · c 🝖-[ fuse ]
(K · a · c) · (b · c) 🝖-[ compₗ constant ]
a · (b · c) 🝖-end
swapped-application : ∀{a b c} → ((C · a · b · c) ⟶ ((a · c) · b))
swapped-application {a}{b}{c} =
C · a · b · c 🝖-[ refl ]
S · (S · (K · B) · S) · (K · K) · a · b · c 🝖-[ compₗ (compₗ fuse) ]
(S · (K · B) · S · a) · (K · K · a) · b · c 🝖-[ compₗ (compₗ (comp fuse constant)) ]
(K · B · a · (S · a)) · K · b · c 🝖-[ compₗ (compₗ (compₗ (compₗ constant))) ]
(B · (S · a)) · K · b · c 🝖-[ compₗ composition ]
(S · a) · (K · b) · c 🝖-[ fuse ]
(a · c) · (K · b · c) 🝖-[ compᵣ constant ]
(a · c) · b 🝖-end
apply-self : ∀{t} → ((SA · t) ⟶ (t · t))
apply-self = trans fuse (comp identity identity)
swapping : ∀{a b} → ((SW · a · b) ⟶ (b · a))
swapping {a}{b} =
S · (K · (S · I)) · K · a · b 🝖-[ compₗ fuse ]
(K · (S · I) · a) · (K · a) · b 🝖-[ compₗ (compₗ constant) ]
(S · I) · (K · a) · b 🝖-[ fuse ]
I · b · (K · a · b) 🝖-[ comp identity constant ]
b · a 🝖-end
module Boolean where
TRUE = K -- True
FALSE = S · K -- False
NOT = FALSE · TRUE -- Not (Negation)
OR = TRUE -- Or (Disjunction)
AND = FALSE -- And (Conjunction)
IsTrue : Term → Type{Lvl.𝟎}
IsTrue(a) = ∀{t f} → ((a · t · f) ⟶ t)
IsFalse : Term → Type{Lvl.𝟎}
IsFalse(a) = ∀{t f} → ((a · t · f) ⟶ f)
reduce-true-is-true : ∀{t} → (t ⟶ TRUE) → IsTrue(t)
reduce-true-is-true tT = (compₗ (compₗ tT)) 🝖 constant
reduce-false-is-false : ∀{t} → (t ⟶ FALSE) → IsFalse(t)
reduce-false-is-false tT = (compₗ (compₗ tT)) 🝖 identity
true : IsTrue(TRUE)
true = constant
false : IsFalse(FALSE)
false = identity
not-true-is-false : ∀{t} → IsTrue(t) → IsFalse(t · NOT)
not-true-is-false t-true = (compₗ t-true) 🝖 fuse 🝖 constant
{-not-false-is-true : ∀{t} → IsFalse(t) → IsTrue(t · NOT)
not-false-is-true {term} t-false {t}{f} =
term · NOT · t · f 🝖-[ refl ]
term · (S · K · K) · t · f 🝖-[ {!!} ]
f · (S · K · K) · t · f 🝖-[ {!!} ]
t 🝖-end
-}
not-true : IsFalse(TRUE · NOT)
not-true {t}{f} = not-true-is-false constant
{-TRUE · NOT · t · f 🝖-[ refl ]
TRUE · (FALSE · TRUE) · t · f 🝖-[ refl ]
K · (S · K · K) · t · f 🝖-[ compₗ constant ]
S · K · K · f 🝖-[ fuse ]
K · f · (K · f) 🝖-[ constant ]
f 🝖-end-}
{-
not-false : IsTrue(FALSE · NOT)
not-false {t}{f} =
FALSE · NOT · t · f 🝖-[ refl ]
FALSE · (FALSE · TRUE) · t · f 🝖-[ refl ]
S · K · (S · K · K) · t · f 🝖-[ compₗ fuse ]
K · t · (S · K · K · t) · f 🝖-[ compₗ constant ]
t · f 🝖-[ {!!} ] -- TODO: ???
t 🝖-end
-- not-false-is-true identity
-}
or-true-true : IsTrue(TRUE · OR · TRUE)
or-true-true = reduce-true-is-true constant
or-true-false : IsTrue(TRUE · OR · FALSE)
or-true-false = reduce-true-is-true constant
or-false-true : IsTrue(FALSE · OR · TRUE)
or-false-true = reduce-true-is-true(fuse 🝖 constant)
or-false-true2 : IsTrue(FALSE · OR · TRUE)
or-false-true2 = reduce-true-is-true(fuse 🝖 constant)
or-false-false : IsFalse(FALSE · OR · FALSE)
or-false-false = reduce-false-is-false(fuse 🝖 constant)
and-true-true : IsTrue(TRUE · TRUE · AND)
and-true-true = reduce-true-is-true(constant)
and-true-false : IsFalse(TRUE · FALSE · AND)
and-true-false = reduce-false-is-false(constant)
and-false-true : IsFalse(FALSE · TRUE · AND)
and-false-true = reduce-false-is-false(identity)
and-false-false : IsFalse(FALSE · FALSE · AND)
and-false-false = reduce-false-is-false(fuse 🝖 constant)
| {
"alphanum_fraction": 0.4647172908,
"avg_line_length": 34.9114583333,
"ext": "agda",
"hexsha": "7c91eabfdf8b0232a16763061110567ce6f60211",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/SKICombinatorCalculus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/SKICombinatorCalculus.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/SKICombinatorCalculus.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2632,
"size": 6703
} |
{-# OPTIONS --cubical #-}
module Cubical.Foundations.Equiv.Fiberwise where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
module _ {a p q} {A : Type a} (P : A → Type p) (Q : A → Type q)
(f : ∀ x → P x → Q x)
where
private
total : (Σ A P) → (Σ A Q)
total = (\ p → p .fst , f (p .fst) (p .snd))
-- Thm 4.7.6
fibers-total : ∀ {xv} → Iso (fiber total (xv)) (fiber (f (xv .fst)) (xv .snd))
fibers-total {xv} = iso h g h-g g-h
where
h : ∀ {xv} → fiber total xv → fiber (f (xv .fst)) (xv .snd)
h {xv} (p , eq) = J (\ xv eq → fiber (f (xv .fst)) (xv .snd)) ((p .snd) , refl) eq
g : ∀ {xv} → fiber (f (xv .fst)) (xv .snd) → fiber total xv
g {xv} (p , eq) = (xv .fst , p) , (\ i → _ , eq i)
h-g : ∀ {xv} y → h {xv} (g {xv} y) ≡ y
h-g {x , v} (p , eq) = J (λ _ eq₁ → h (g (p , eq₁)) ≡ (p , eq₁)) (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) ((p , refl))) (eq)
g-h : ∀ {xv} y → g {xv} (h {xv} y) ≡ y
g-h {xv} ((a , p) , eq) = J (λ _ eq₁ → g (h ((a , p) , eq₁)) ≡ ((a , p) , eq₁))
(cong g (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) (p , refl)))
eq
-- half of Thm 4.7.7 (fiberwise equivalences)
fiberEquiv : ([tf] : isEquiv total)
→ ∀ x → isEquiv (f x)
fiberEquiv [tf] x .equiv-proof y = retractIsContr (fibers-total .Iso.inv) (fibers-total .Iso.fun) (fibers-total .Iso.rightInv)
([tf] .equiv-proof (x , y))
module _ {ℓ : Level} {U : Type ℓ} {ℓr} (_~_ : U → U → Type ℓr)
(idTo~ : ∀ {A B} → A ≡ B → A ~ B)
(c : ∀ A → isContr (Σ U \ X → A ~ X))
where
isContrToUniv : ∀ {A B} → isEquiv (idTo~ {A} {B})
isContrToUniv {A} {B}
= fiberEquiv (λ z → A ≡ z) (λ z → A ~ z) (\ B → idTo~ {A} {B})
(λ { .equiv-proof y
→ isContrSigma ((_ , refl) , (\ z → contrSingl (z .snd)))
\ a → isContrPath (c A) _ _
})
B
| {
"alphanum_fraction": 0.4386385427,
"avg_line_length": 42.5714285714,
"ext": "agda",
"hexsha": "24c09bb2fa559d128c93657781934e4d334afaaa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv/Fiberwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv/Fiberwise.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv/Fiberwise.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 828,
"size": 2086
} |
{-# OPTIONS --without-K #-}
open import HoTT
{- Useful lemmas for computing the effect of transporting a function
- across an equivalence in the domain or codomain -}
module cohomology.FunctionOver where
{- transporting a function along an equivalcence or path in the domain -}
module _ {i} {j} {B : Type i} {C : Type j} (g : B → C) where
domain-over-path : {A : Type i} (p : A == B)
→ g ∘ coe p == g [ (λ D → (D → C)) ↓ p ]
domain-over-path idp = idp
domain-over-equiv : {A : Type i} (e : A ≃ B)
→ g ∘ –> e == g [ (λ D → (D → C)) ↓ ua e ]
domain-over-equiv e = ↓-app→cst-in $ λ q → ap g (↓-idf-ua-out e q)
module _ {i} {j} {A : Type i} {C : Type j} (f : A → C) where
domain!-over-path : {B : Type i} (p : A == B)
→ f == f ∘ coe! p [ (λ D → (D → C)) ↓ p ]
domain!-over-path idp = idp
domain!-over-equiv : {B : Type i} (e : A ≃ B)
→ f == f ∘ <– e [ (λ D → (D → C)) ↓ ua e ]
domain!-over-equiv e = ↓-app→cst-in $
λ q → ap f (! (<–-inv-l e _) ∙ ap (<– e) (↓-idf-ua-out e q))
{- transporting a ptd function along a equivalence or path in the domain -}
module _ {i} {j} {Y : Ptd i} {Z : Ptd j} (g : fst (Y ⊙→ Z)) where
domain-over-⊙path : {X : Ptd i} (p : fst X == fst Y)
(q : coe p (snd X) == snd Y)
→ g ⊙∘ (coe p , q) == g [ (λ W → fst (W ⊙→ Z)) ↓ pair= p (↓-idf-in p q) ]
domain-over-⊙path idp idp = idp
domain-over-⊙equiv : {X : Ptd i} (e : fst X ≃ fst Y)
(q : –> e (snd X) == snd Y)
→ g ⊙∘ ⊙–> e q == g [ (λ W → fst (W ⊙→ Z)) ↓ ⊙ua e q ]
domain-over-⊙equiv {X = X} e q =
ap (λ w → g ⊙∘ w) lemma ◃ domain-over-⊙path (ua e) (coe-β e (snd X) ∙ q)
where
lemma : Path {A = fst (X ⊙→ Y)}
(⊙–> e q) (coe (ua e) , coe-β e (snd X) ∙ q)
lemma = ! $ ⊙λ= (coe-β e) idp
module _ {i} {j} {X : Ptd i} {Z : Ptd j} (f : fst (X ⊙→ Z)) where
domain!-over-⊙path : {Y : Ptd i} (p : fst X == fst Y)
(q : coe p (snd X) == snd Y)
→ f == f ⊙∘ (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (snd X))
[ (λ W → fst (W ⊙→ Z)) ↓ pair= p (↓-idf-in p q) ]
domain!-over-⊙path idp idp = idp
domain!-over-⊙equiv : {Y : Ptd i} (e : fst X ≃ fst Y)
(q : –> e (snd X) == snd Y)
→ f == f ⊙∘ (⊙<– e q) [ (λ W → fst (W ⊙→ Z)) ↓ ⊙ua e q ]
domain!-over-⊙equiv {Y = Y} e q =
(ap (λ w → f ⊙∘ w) (lemma e q) ∙ ! (⊙∘-assoc f _ (–> e , q))) ◃
domain-over-⊙equiv
(f ⊙∘ (<– e , ap (<– e) (! q) ∙ <–-inv-l e (snd X))) e q
where
lemma : {X Y : Ptd i}
(e : fst X ≃ fst Y) (q : –> e (snd X) == snd Y)
→ ⊙idf X == ((<– e , ap (<– e) (! q) ∙ <–-inv-l e (snd X)) ⊙∘ (–> e , q))
lemma {X = X} e idp = ! $ ⊙λ= (<–-inv-l e) (! (∙-unit-r _))
{- transporting a function along an equivalence or path in the codomain -}
module _ {i} {j} {A : Type i} {B : Type j} (f : A → B) where
codomain-over-path : {C : Type j} (p : B == C)
→ f == coe p ∘ f [ (λ D → (A → D)) ↓ p ]
codomain-over-path idp = idp
codomain-over-equiv : {C : Type j} (e : B ≃ C)
→ f == –> e ∘ f [ (λ D → (A → D)) ↓ ua e ]
codomain-over-equiv e = ↓-cst→app-in $ λ _ → ↓-idf-ua-in e idp
module _ {i} {j} {A : Type i} {C : Type j} (g : A → C) where
codomain!-over-path : {B : Type j} (p : B == C)
→ coe! p ∘ g == g [ (λ D → (A → D)) ↓ p ]
codomain!-over-path idp = idp
codomain!-over-equiv : {B : Type j} (e : B ≃ C)
→ <– e ∘ g == g [ (λ D → (A → D)) ↓ ua e ]
codomain!-over-equiv e = ↓-cst→app-in $ λ _ → ↓-idf-ua-in e (<–-inv-r e _)
{- transporting a ptd function along a equivalence or path in the codomain -}
module _ {i} {j} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y)) where
codomain-over-⊙path : {Z : Ptd j} (p : fst Y == fst Z)
(q : coe p (snd Y) == snd Z)
→ f == (coe p , q) ⊙∘ f [ (λ W → fst (X ⊙→ W)) ↓ pair= p (↓-idf-in p q) ]
codomain-over-⊙path idp idp = pair= idp (! (∙-unit-r _ ∙ ap-idf (snd f)))
codomain-over-⊙equiv : {Z : Ptd j} (e : fst Y ≃ fst Z)
(q : –> e (snd Y) == snd Z)
→ f == (–> e , q) ⊙∘ f [ (λ W → fst (X ⊙→ W)) ↓ ⊙ua e q ]
codomain-over-⊙equiv {Z = Z} e q =
codomain-over-⊙path (ua e) (coe-β e (snd Y) ∙ q) ▹ ap (λ w → w ⊙∘ f) lemma
where
lemma : Path {A = fst (Y ⊙→ Z)}
(coe (ua e) , coe-β e (snd Y) ∙ q) (–> e , q)
lemma = ⊙λ= (coe-β e) idp
module _ {i} {j} {X : Ptd i} {Z : Ptd j} (g : fst (X ⊙→ Z)) where
codomain!-over-⊙path : {Y : Ptd j} (p : fst Y == fst Z)
(q : coe p (snd Y) == snd Z)
→ (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (snd Y)) ⊙∘ g == g
[ (λ W → fst (X ⊙→ W)) ↓ pair= p (↓-idf-in p q) ]
codomain!-over-⊙path idp idp = pair= idp (∙-unit-r _ ∙ ap-idf (snd g))
codomain!-over-⊙equiv : {Y : Ptd j} (e : fst Y ≃ fst Z)
(q : –> e (snd Y) == snd Z)
→ (⊙<– e q) ⊙∘ g == g [ (λ W → fst (X ⊙→ W)) ↓ ⊙ua e q ]
codomain!-over-⊙equiv {Y = Y} e q =
codomain-over-⊙equiv
((<– e , ap (<– e) (! q) ∙ <–-inv-l e (snd Y)) ⊙∘ g) e q
▹ (! (⊙∘-assoc (–> e , q) _ g) ∙ ap (λ w → w ⊙∘ g) (lemma e q)
∙ ⊙∘-unit-l g)
where
lemma : {Y Z : Ptd j}
(e : fst Y ≃ fst Z) (q : –> e (snd Y) == snd Z)
→ ((–> e , q) ⊙∘ (<– e , ap (<– e) (! q) ∙ <–-inv-l e (snd Y))) == ⊙idf Z
lemma {Y = Y} e idp =
⊙λ= (<–-inv-r e) (ap (λ w → w ∙ idp) (<–-inv-adj e (snd Y)))
{- transporting a group homomorphism along an isomorphism -}
domain-over-iso : ∀ {i j} {G H : Group i} {K : Group j}
(φ : G →ᴳ H) (ie : is-equiv (GroupHom.f φ)) (ψ : G →ᴳ K) (χ : H →ᴳ K)
→ GroupHom.f ψ == GroupHom.f χ
[ (λ A → A → Group.El K) ↓ ua (GroupHom.f φ , ie) ]
→ ψ == χ [ (λ J → J →ᴳ K) ↓ group-ua (φ , ie) ]
domain-over-iso {K = K} φ ie ψ χ p = hom=-↓ _ _ $ ↓-ap-out _ Group.El _ $
transport
(λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → A → Group.El K) ↓ q ])
(! (group-ua-el (φ , ie)))
p
codomain-over-iso : ∀ {i j} {G : Group i} {H K : Group j}
(φ : H →ᴳ K) (ie : is-equiv (GroupHom.f φ)) (ψ : G →ᴳ H) (χ : G →ᴳ K)
→ GroupHom.f ψ == GroupHom.f χ
[ (λ A → Group.El G → A) ↓ ua (GroupHom.f φ , ie) ]
→ ψ == χ [ (λ J → G →ᴳ J) ↓ group-ua (φ , ie) ]
codomain-over-iso {G = G} φ ie ψ χ p = hom=-↓ _ _ $ ↓-ap-out _ Group.El _ $
transport
(λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → Group.El G → A) ↓ q ])
(! (group-ua-el (φ , ie)))
p
| {
"alphanum_fraction": 0.4611164892,
"avg_line_length": 39.7307692308,
"ext": "agda",
"hexsha": "1e691f3c08acf9c561e14ae222ef7c765d961f76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/FunctionOver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/FunctionOver.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/FunctionOver.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2840,
"size": 6198
} |
module Issue396b where
import Common.Irrelevance
data A : Set where
-- just an irrelevant field
record PrfA : Set where
field
.f : A
Foo : Set -> Set1
Foo R = (P : R → Set) → ((x : R) → P x → P x) →
(x y : R) → P x → P y
foo : Foo PrfA
foo P hyp x y = hyp x
-- Error was:
-- x != y of type ⊤
-- when checking that the expression hyp x has type P x → P y
record Top : Set where
-- only singleton components
record R : Set where
field
p1 : PrfA
.p2 : A
p3 : Top
bla : Foo R
bla P hyp x y = hyp x
| {
"alphanum_fraction": 0.5685557587,
"avg_line_length": 17.09375,
"ext": "agda",
"hexsha": "0053e15fad3a1fecda2e8b4ea4704120293a48ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue396b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue396b.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue396b.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 188,
"size": 547
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Maybe-related properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Maybe.Properties where
open import Algebra
import Algebra.Structures as Structures
import Algebra.FunctionProperties as FunctionProperties
open import Data.Maybe.Base
open import Data.Maybe.Relation.Unary.All using (All; just; nothing)
open import Data.Product using (_,_)
open import Function
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
------------------------------------------------------------------------
-- Equality
module _ {a} {A : Set a} where
just-injective : ∀ {x y} → (Maybe A ∋ just x) ≡ just y → x ≡ y
just-injective refl = refl
≡-dec : Decidable _≡_ → Decidable {A = Maybe A} _≡_
≡-dec _≟_ nothing nothing = yes refl
≡-dec _≟_ (just x) nothing = no λ()
≡-dec _≟_ nothing (just y) = no λ()
≡-dec _≟_ (just x) (just y) with x ≟ y
... | yes refl = yes refl
... | no x≢y = no (x≢y ∘ just-injective)
------------------------------------------------------------------------
-- map
map-id : map id ≗ id {A = Maybe A}
map-id (just x) = refl
map-id nothing = refl
map-id₂ : ∀ {f : A → A} {mx} → All (λ x → f x ≡ x) mx → map f mx ≡ mx
map-id₂ (just eq) = cong just eq
map-id₂ nothing = refl
module _ {a b} {A : Set a} {B : Set b} where
map-<∣>-commute : ∀ (f : A → B) mx my →
map f (mx <∣> my) ≡ map f mx <∣> map f my
map-<∣>-commute f (just x) my = refl
map-<∣>-commute f nothing my = refl
map-cong : {f g : A → B} → f ≗ g → map f ≗ map g
map-cong f≗g (just x) = cong just (f≗g x)
map-cong f≗g nothing = refl
map-cong₂ : ∀ {f g : A → B} {mx} →
All (λ x → f x ≡ g x) mx → map f mx ≡ map g mx
map-cong₂ (just eq) = cong just eq
map-cong₂ nothing = refl
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f
map-compose (just x) = refl
map-compose nothing = refl
------------------------------------------------------------------------
-- maybe
module _ {a b} {A : Set a} {B : Set b} where
maybe-map : ∀ {c} {C : Maybe B → Set c}
(j : (x : B) → C (just x)) (n : C nothing) (f : A → B) ma →
maybe {B = C} j n (map f ma) ≡ maybe {B = C ∘ map f} (j ∘ f) n ma
maybe-map j n f (just x) = refl
maybe-map j n f nothing = refl
maybe′-map : ∀ {c} {C : Set c} j (n : C) (f : A → B) ma →
maybe′ j n (map f ma) ≡ maybe′ (j ∘′ f) n ma
maybe′-map = maybe-map
------------------------------------------------------------------------
-- _<∣>_
module _ {a} {A : Set a} where
open FunctionProperties {A = Maybe A} _≡_
<∣>-assoc : Associative _<∣>_
<∣>-assoc (just x) y z = refl
<∣>-assoc nothing y z = refl
<∣>-identityˡ : LeftIdentity nothing _<∣>_
<∣>-identityˡ (just x) = refl
<∣>-identityˡ nothing = refl
<∣>-identityʳ : RightIdentity nothing _<∣>_
<∣>-identityʳ (just x) = refl
<∣>-identityʳ nothing = refl
<∣>-identity : Identity nothing _<∣>_
<∣>-identity = <∣>-identityˡ , <∣>-identityʳ
module _ {a} (A : Set a) where
open Structures {A = Maybe A} _≡_
<∣>-isMagma : IsMagma _<∣>_
<∣>-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _<∣>_
}
<∣>-isSemigroup : IsSemigroup _<∣>_
<∣>-isSemigroup = record
{ isMagma = <∣>-isMagma
; assoc = <∣>-assoc
}
<∣>-isMonoid : IsMonoid _<∣>_ nothing
<∣>-isMonoid = record
{ isSemigroup = <∣>-isSemigroup
; identity = <∣>-identity
}
<∣>-semigroup : Semigroup a a
<∣>-semigroup = record
{ isSemigroup = <∣>-isSemigroup
}
<∣>-monoid : Monoid a a
<∣>-monoid = record
{ isMonoid = <∣>-isMonoid
}
| {
"alphanum_fraction": 0.5048247842,
"avg_line_length": 28.3309352518,
"ext": "agda",
"hexsha": "695f684cef5a1f5012ed3808c3fccf5166157cbc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Properties.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Maybe/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1391,
"size": 3938
} |
-- 2014-05-26 Andrea & Andreas, AIM XIX
-- Too eager pruning
module succeed.Issue1147 where
open import Common.Equality
open import Common.Product
open import Common.Prelude
postulate
A : Set
if_then_else1_ : ∀ {A : Set1} → Bool → A → A → A
if true then t else1 f = t
if false then t else1 f = f
test1 : let H : Set; H = _; M : Bool -> Set → Set; M = _ in {z : Set} → H ≡ (M true z) × M ≡ (\ b z → if b then A else1 z)
test1 = refl , refl
test2 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → H ≡ (M (\ _ -> true) z) × M ≡ (\ b z → if b true then A else1 z)
test2 = refl , refl
test3 : let H : Set; H = _; M : (Bool × Bool) -> Set → Set; M = _ in {z : Set} {b : Bool} → H ≡ (M (true , b) z) × M ≡ (\ b z → if proj₁ b then A else1 z)
test3 = refl , refl
-- Also for defined functions
fun : Bool → Bool
fun true = true
fun false = false
works4 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → M ≡ (\ b z → if b true then A else1 z) × H ≡ (M fun z)
works4 = refl , refl
test4 : let H : Set; H = _; M : (Bool -> Bool) -> Set → Set; M = _ in {z : Set} → H ≡ (M fun z) × M ≡ (\ b z → if b true then A else1 z)
test4 = refl , refl
| {
"alphanum_fraction": 0.5548117155,
"avg_line_length": 31.4473684211,
"ext": "agda",
"hexsha": "0d9688bb9573c684b5d6f5911aa9ece2ac7c88b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue1147.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue1147.agda",
"max_line_length": 154,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue1147.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 459,
"size": 1195
} |
------------------------------------------------------------------------------
-- Well-founded relation on lists
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.List.WellFoundedRelationsSL {A : Set} where
open import Data.Product
open import Data.List hiding ( length )
open import Data.Nat
open import Induction.Nat
open import Induction.WellFounded
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------------
-- We use our own version of the function length because we have
-- better reductions.
length : List A → ℕ
length [] = 0
length (x ∷ xs) = 1 + length xs
open module II = Induction.WellFounded.Inverse-image {_<_ = _<′_} length
-- Well-founded relation on lists based on their length.
LTL : List A → List A → Set
LTL xs ys = length xs <′ length ys
-- The relation LTL is well-founded (using the image inverse
-- combinator).
wfLTL : Well-founded LTL
wfLTL = II.well-founded <′-well-founded
-- Well-founded relation on lists based on their structure.
LTC : List A → List A → Set
LTC xs ys = Σ A (λ a → ys ≡ a ∷ xs)
LTC→LTL : ∀ {xs ys} → LTC xs ys → LTL xs ys
LTC→LTL (x , refl) = ≤′-refl
open module S = Induction.WellFounded.Subrelation {_<₁_ = LTC} LTC→LTL
-- The relation LTC is well-founded (using the subrelation combinator).
wfLTC : Well-founded LTC
wfLTC = S.well-founded wfLTL
| {
"alphanum_fraction": 0.5838006231,
"avg_line_length": 31.4705882353,
"ext": "agda",
"hexsha": "3670fc640cd2937c820ee43f81ad0a8cd56c1199",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/List/WellFoundedRelationsSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 389,
"size": 1605
} |
module Issue486 where
record ⊤ : Set where
constructor tt
record Pub (A : Set) : Set where
field
fi : A
abstract
abs : ⊤
abs = fi
where open Pub record {fi = tt}
| {
"alphanum_fraction": 0.6174863388,
"avg_line_length": 12.2,
"ext": "agda",
"hexsha": "808c3aa8902c4159bc1f5e3410128eed75c46303",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue486.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue486.agda",
"max_line_length": 35,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue486.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 59,
"size": 183
} |
------------------------------------------------------------------------
-- A definability result: A "closed value" is the semantics of a
-- closed term if and only if it satisfies all "Kripke predicates"
------------------------------------------------------------------------
-- This module is based on parts of Frederik Ramcke's (at the time of
-- writing forthcoming) MSc thesis, "On Definability and Normalization
-- by Evaluation in the Logical Framework". I have not followed
-- Ramcke's development to the letter, but I have taken inspiration
-- from it. Ramcke seems to in turn have taken inspiration from Jung
-- and Tiuryn's "A New Characterization of Lambda Definability".
import Axiom.Extensionality.Propositional as E
open import Level using (Level)
open import Data.Universe
-- The code makes use of the assumption that propositional equality is
-- extensional for functions.
module README.DependentlyTyped.Definability
(Uni₀ : Universe Level.zero Level.zero)
(ext : E.Extensionality Level.zero Level.zero)
where
open import Data.Product as Prod renaming (curry to c)
open import Function.Base hiding (_∋_) renaming (const to k)
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; module Equivalence; equivalence)
open import README.DependentlyTyped.NBE Uni₀ ext
open import README.DependentlyTyped.NormalForm Uni₀
open import README.DependentlyTyped.Term Uni₀
open import Relation.Binary.PropositionalEquality as P using (_≡_)
-- Predicates.
Predicate : Set₁
Predicate = ∀ {Γ σ} → Value Γ σ → Set
private
variable
Γ Δ : Ctxt
Γ₊ : Ctxt₊ Γ
σ τ : Type Γ
P : Predicate
-- Kripke predicates.
record Kripke (P : Predicate) : Set where
field
-- Single-step weakening.
weaken₁ :
{v : Value Γ σ} →
P v → P (v /̂Val ŵk[ τ ])
-- For π-types Kripke predicates have to be defined in a certain
-- way (up to logical equivalence).
definition-for-π :
∀ {σ τ} {f : Value Γ (Type-π σ τ)} →
P f
⇔
(∀ (Γ₊ : Ctxt₊ Γ) {v : Value (Γ ++₊ Γ₊) (σ /̂ ŵk₊ Γ₊)} →
P v → P ((f /̂Val ŵk₊ Γ₊) ˢ v))
-- Weakening.
weaken :
{v : Value Γ σ} (Γ₊ : Ctxt₊ Γ) →
P v → P (v /̂Val ŵk₊ Γ₊)
weaken ε = id
weaken (σ ◅ Γ₊) = weaken Γ₊ ∘ weaken₁
-- A "fundamental theorem" for Kripke predicates.
fundamental :
{ρ̂ : Γ ⇨̂ Δ} →
(∀ {σ} (x : Γ ∋ σ) → P (x /̂∋ ρ̂)) →
(t : Γ ⊢ σ) →
P (⟦ t ⟧ /̂Val ρ̂)
fundamental hyp (var x) = hyp x
fundamental hyp (t₁ · t₂) =
(Equivalence.to definition-for-π ⟨$⟩ fundamental hyp t₁)
ε (fundamental hyp t₂)
fundamental hyp (ƛ t) =
Equivalence.from definition-for-π ⟨$⟩ λ Δ₊ p →
fundamental
(λ { zero → p
; (suc x) → weaken Δ₊ (hyp x)
})
t
-- A special case for closed terms.
fundamental-closed : {σ : Type ε} → (t : ε ⊢ σ) → P ⟦ t ⟧
fundamental-closed = fundamental (λ ())
open Kripke
-- A predicate based on V̌alue.
∃-V̌alue : Predicate
∃-V̌alue {Γ = Γ} {σ = σ} v =
∃ λ (v̌ : V̌alue Γ σ) → v ≅-Value ⟦̌ v̌ ⟧
-- ∃-V̌alue is a Kripke predicate.
∃-V̌alue-Kripke : Kripke ∃-V̌alue
weaken₁ ∃-V̌alue-Kripke =
Prod.map ([_⟶_].function w̌eaken _)
(λ { P.refl → [_⟶_].corresponds w̌eaken _ _ })
definition-for-π ∃-V̌alue-Kripke {Γ = Γ} {σ = σ} {τ = τ} {f = f} =
equivalence
(λ { (f , P.refl) Γ₊ (v , P.refl) →
proj₁ f Γ₊ v , proj₂ f Γ₊ v
})
(λ hyp →
let
g : V̌alue-π Γ _ _ (IType-π σ τ)
g = λ Γ₊ v → proj₁ (hyp Γ₊ (v , P.refl))
lemma : f ≅-Value ⟦̌ _ ∣ g ⟧-π
lemma =
[ f ] ≡⟨⟩
[ c ((f /̂Val ŵk₊ (_ ◅ ε)) ˢ ⟦ var zero ⟧n) ] ≡⟨ curry-cong (ˢ-cong (P.refl {x = [ f /̂Val _ ]})
(P.sym $ ňeutral-to-normal-identity _ _)) ⟩
[ c ((f /̂Val ŵk₊ (_ ◅ ε)) ˢ
⟦ ňeutral-to-normal _ (var zero) ⟧n) ] ≡⟨⟩
[ c ((f /̂Val ŵk₊ (_ ◅ ε)) ˢ ⟦̌ řeflect _ (var zero) ⟧) ] ≡⟨ curry-cong (proj₂ (hyp _ _)) ⟩
[ c ⟦̌ g (_ ◅ ε) (řeflect _ (var zero)) ⟧ ] ≡⟨ P.sym (unfold-⟦̌∣⟧-π _ g) ⟩
[ ⟦̌ _ ∣ g ⟧-π ] ∎
in
( g
, (λ Γ₊ v → [ (⟦̌ _ ∣ g ⟧-π /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ ˢ-cong (/̂Val-cong (P.sym lemma) P.refl) P.refl ⟩
[ (f /̂Val ŵk₊ Γ₊) ˢ ⟦̌ v ⟧ ] ≡⟨ proj₂ (hyp _ _) ⟩
[ ⟦̌ g Γ₊ v ⟧ ] ∎)
)
, lemma
)
where
open P.≡-Reasoning
-- The definability result.
definability :
{σ : Type ε} {v : Value ε σ} →
(∃ λ (t : ε ⊢ σ) → v ≡ ⟦ t ⟧)
⇔
({P : Predicate} → Kripke P → P v)
definability = equivalence
(λ { (t , P.refl) kripke → fundamental-closed kripke t })
(λ hyp → Prod.map ([_⟶_].function V̌al-subst.trans _)
≅-Value-⇒-≡
(hyp ∃-V̌alue-Kripke))
| {
"alphanum_fraction": 0.5078988942,
"avg_line_length": 32.4615384615,
"ext": "agda",
"hexsha": "eeb7da04ca16a278f8a1bfef0edfc9fb2197953d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "README/DependentlyTyped/Definability.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "README/DependentlyTyped/Definability.agda",
"max_line_length": 134,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "README/DependentlyTyped/Definability.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 1820,
"size": 5064
} |
module UntypedLambda where
open import Basics
open import Pr
open import Nom
import Syntacticosmos
data Tag : Set where
lamT : Tag
appT : Tag
open module ULam = Syntacticosmos TT TT (\_ -> Tag)
LAM : Kind
LAM = Ty _
SigLAM : Kind
SigLAM = Pi _ conk where
conk : Tag -> Kind
conk lamT = (LAM |> LAM) |> LAM
conk appT = LAM |> LAM |> LAM
Lam : Cxt -> Set
Lam G = G [! SigLAM !]- LAM
lam : {G : Cxt}(x : Nom){Gx : [| G Hasn't x |]} ->
Lam ((G [ x - LAM ]) {Gx}) -> Lam G
lam x {Gx} b = G[ lamT G^ G\\ (bind x {Gx} b) G& Gnil ]
app : {G : Cxt} -> Lam G -> Lam G -> Lam G
app f s = G[ appT G^ f G& s G& Gnil ]
moo : Lam EC
moo = lam Ze (lam (Su Ze) (var Ze))
noo : Lam EC
noo = lam (Su Ze) (lam Ze (var (Su Ze)))
coo : Id moo noo
coo = refl
| {
"alphanum_fraction": 0.5665796345,
"avg_line_length": 17.4090909091,
"ext": "agda",
"hexsha": "87282ad3c340d2903e5382c1104e0b1a6c28982d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/UntypedLambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/UntypedLambda.agda",
"max_line_length": 55,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/Syntacticosmos/UntypedLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 315,
"size": 766
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring -- for length
open import Numbers.Naturals.Order
open import Semirings.Definition
open import Maybe
module Lists.Lists where
open import Lists.Definition public
open import Lists.Length public
open import Lists.Concat public
open import Lists.Map.Map public
open import Lists.Reversal.Reversal public
open import Lists.Monad public
open import Lists.Filter.AllTrue public
open import Lists.Fold.Fold public
replicate : {a : _} {A : Set a} (n : ℕ) (x : A) → List A
replicate zero x = []
replicate (succ n) x = x :: replicate n x
head : {a : _} {A : Set a} (l : List A) (pr : 0 <N length l) → A
head [] (le x ())
head (x :: l) pr = x
lengthRev : {a : _} {A : Set a} (l : List A) → length (rev l) ≡ length l
lengthRev [] = refl
lengthRev (x :: l) rewrite lengthConcat (rev l) (x :: []) | lengthRev l | Semiring.commutative ℕSemiring (length l) 1 = refl
listLast : {a : _} {A : Set a} (l : List A) → Maybe A
listLast [] = no
listLast (x :: []) = yes x
listLast (x :: y :: l) = listLast (y :: l)
listZip : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) → (f1 : A → C) → (f2 : B → C) →(l1 : List A) (l2 : List B) → List C
listZip f f1 f2 [] l2 = map f2 l2
listZip f f1 f2 (x :: l1) [] = map f1 (x :: l1)
listZip f f1 f2 (x :: l1) (y :: l2) = (f x y) :: listZip f f1 f2 l1 l2
contains : {a : _} {A : Set a} (l : List A) (needle : A) → Set a
contains [] needle = False'
contains (x :: l) needle = (x ≡ needle) || contains l needle
containsMap : {a b : _} {A : Set a} {B : Set b} (f : A → B) (l : List A) (needle : A) → (contains l needle) → contains (map f l) (f needle)
containsMap f (x :: l) needle (inl cont) = inl (applyEquality f cont)
containsMap f (x :: l) needle (inr cont) = inr (containsMap f l needle cont)
containsAppend : {a : _} {A : Set a} (l1 l2 : List A) (needle : A) → (contains (l1 ++ l2) needle) → (contains l1 needle) || (contains l2 needle)
containsAppend [] l2 needle cont = inr cont
containsAppend (x :: l1) l2 needle (inl pr) = inl (inl pr)
containsAppend (x :: l1) l2 needle (inr pr) with containsAppend l1 l2 needle pr
containsAppend (x :: l1) l2 needle (inr pr) | inl ans = inl (inr ans)
containsAppend (x :: l1) l2 needle (inr pr) | inr ans = inr ans
containsAppend' : {a : _} {A : Set a} (l1 l2 : List A) (needle : A) → (contains l1 needle) || (contains l2 needle) → contains (l1 ++ l2) needle
containsAppend' (x :: l1) l2 needle (inl (inl pr)) = inl pr
containsAppend' (x :: l1) l2 needle (inl (inr pr)) = inr (containsAppend' l1 l2 needle (inl pr))
containsAppend' [] l2 needle (inr pr) = pr
containsAppend' (x :: l1) l2 needle (inr pr) = inr (containsAppend' l1 l2 needle (inr pr))
containsCons : {a : _} {A : Set a} (x : A) (l : List A) (needle : A) → (contains (x :: l) needle) → (x ≡ needle) || (contains l needle)
containsCons x l needle pr = pr
containsCons' : {a : _} {A : Set a} (x : A) (l : List A) (needle : A) → (x ≡ needle) || (contains l needle) → (contains (x :: l) needle)
containsCons' x l needle pr = pr
containsDecidable : {a : _} {A : Set a} (decidableEquality : (x y : A) → (x ≡ y) || ((x ≡ y) → False)) → (l : List A) → (needle : A) → (contains l needle) || ((contains l needle) → False)
containsDecidable decide [] needle = inr λ ()
containsDecidable decide (x :: l) needle with decide x needle
containsDecidable decide (x :: l) .x | inl refl = inl (inl refl)
containsDecidable decide (x :: l) needle | inr x!=n with containsDecidable decide l needle
containsDecidable decide (x :: l) needle | inr x!=n | inl isIn = inl (inr isIn)
containsDecidable decide (x :: l) needle | inr x!=n | inr notIn = inr t
where
t : ((x ≡ needle) || contains l needle) → False
t (inl x) = x!=n x
t (inr x) = notIn x
filter' : {a b : _} {A : Set a} {pred : A → Set b} → (dec : (a : A) → pred a || (pred a → False)) → List A → List A
filter' dec [] = []
filter' dec (x :: l) with dec x
... | inl _ = x :: filter' dec l
... | inr _ = filter' dec l
| {
"alphanum_fraction": 0.6168525403,
"avg_line_length": 46.9186046512,
"ext": "agda",
"hexsha": "6d4440d00e1b0200194921f345c6576cf147d211",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Lists/Lists.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Lists/Lists.agda",
"max_line_length": 187,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Lists/Lists.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1451,
"size": 4035
} |
module CTL.Proof.EG where
open import CTL.Modalities.EG
open import FStream.Bisimulation
open import FStream.Core
open import FStream.FVec
open import Library
infixr 5 _▻EG_
infix 6 ⟨_▻EG
infix 7 _⟩EG
infixr 5 _▻EGᵢ_
infix 7 _⟩EGᵢ
data proofEG {ℓ₁ ℓ₂} {C : Container ℓ₁} : {n : ℕ} →
(props : FVec C (Set ℓ₂) n) → Set (ℓ₁ ⊔ ℓ₂) where
[]EG : proofEG FNil
ConsEG : ∀ {n} {props : ⟦ C ⟧ (Set ℓ₂ × FVec C (Set ℓ₂) n)} →
E (fmap (λ x → (proj₁ x) × (proofEG (proj₂ x))) props) →
proofEG (FCons props)
_pre⟨_▻EG : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {m n}
{props : FVec C (Set ℓ₂) m} {props' : FVec C (Set ℓ₂) (suc n)}
→ proofEG props
→ proofEG props'
→ EG {i} (props pre⟨ props' ▻⋯)
proj₁ ([]EG pre⟨ ConsEG (pos , _) ▻EG) = pos
nowE (proj₂ ([]EG pre⟨ ConsEG (_ , proof , _) ▻EG)) = proof
laterE (proj₂ ([]EG pre⟨ ConsEG (pos , proof , proofs) ▻EG)) =
proofs pre⟨ ConsEG (pos , proof , proofs) ▻EG
proj₁ (ConsEG (pos , _) pre⟨ _ ▻EG) = pos
nowE (proj₂ (ConsEG (pos , proof , proofs) pre⟨ _ ▻EG)) = proof
laterE (proj₂ (ConsEG (_ , _ , proofs) pre⟨ v ▻EG)) = proofs pre⟨ v ▻EG
-- TODO It's worth a thought whether we want to roll our own Sigma types
-- in order to have more meaningful projector names than projᵢ
⟨_▻EG : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {n} {props : FVec C (Set ℓ₂) (suc n)}
→ proofEG props → EG {i} (FNil pre⟨ props ▻⋯)
⟨_▻EG = []EG pre⟨_▻EG
_⟩EG : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {prop : ⟦ C ⟧ (Set ℓ₂)}
→ E prop
→ proofEG (FCons (fmap (_, FNil) prop))
(pos , proof) ⟩EG = ConsEG (pos , (proof , []EG))
_⟩EGᵢ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {prop : ⟦ C ⟧ (Set ℓ₂)}
{pos : Position C (proj₁ prop)}
→ proj₂ prop pos
→ proofEG (FCons (fmap (_, FNil) prop))
_⟩EGᵢ {pos = pos} proof = ConsEG (pos , (proof , []EG))
_▻EG_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁}
{prop : ⟦ C ⟧ (Set ℓ₂)} {n} {props : FVec C (Set ℓ₂) n}
→ E prop
→ proofEG props
→ proofEG (FCons (fmap (_, props) prop))
(pos , proof) ▻EG proofs = ConsEG (pos , (proof , proofs))
_▻EGᵢ_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {prop : ⟦ C ⟧ (Set ℓ₂)} {n}
{props : FVec C (Set ℓ₂) n} {pos : Position C (proj₁ prop)}
→ proj₂ prop pos
→ proofEG props
→ proofEG (FCons (fmap (_, props) prop))
_▻EGᵢ_ {pos = pos} proof proofs = ConsEG (pos , (proof , proofs))
mapEGlemma : ∀ {i} {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂}
{f : A → Set ℓ₃} {m n}
→ (v : FVec C A m)
→ (v' : FVec C A (suc n))
→ EG {i} (vmap f v pre⟨ vmap f v' ▻⋯)
→ EG {i} (map f (v pre⟨ v' ▻⋯))
proj₁ (mapEGlemma FNil (FCons x) (pos , proof)) = pos
nowE (proj₂ (mapEGlemma FNil (FCons x) (pos , proofs))) = nowE proofs
laterE (proj₂ (mapEGlemma {f = f} FNil (FCons (shape , vals)) (pos , proof)))
with vals pos
... | a , v = mapEGlemma v (FCons (shape , vals)) (laterE proof)
proj₁ (mapEGlemma (FCons (proj₃ , proj₄)) v' (pos , proofs)) = pos
nowE (proj₂ (mapEGlemma (FCons x) v' (pos , proofs))) = nowE proofs
laterE (proj₂ (mapEGlemma (FCons (shape , vals)) v' (pos , proofs)))
with vals pos
... | a , v = mapEGlemma v v' (laterE proofs)
mapEG : ∀ {i} {ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {f : A → Set ℓ₃}
{m n} {v : FVec C A m} {v' : FVec C A (suc n)}
→ EG {i} ((vmap f v pre⟨ vmap f v' ▻⋯))
→ EG {i} (map f (v pre⟨ v' ▻⋯))
mapEG {v = v} {v' = v'} proofs = mapEGlemma v v' proofs
mutual
-- TODO Rename to ∼EG?
bisimEG : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {s₁ s₂ : FStream C (Set ℓ₂)}
→ s₁ ~ s₂ → EG {i} s₁ → EG {i} s₂
proj₁ (bisimEG {C = C} bs (pos , proofs)) =
subst (Position C) (sameInitShapes bs) pos
proj₂ (bisimEG bs (pos , proofs)) = bisimEG' (bisim bs pos) proofs
bisimEG' : ∀ {i} {ℓ₁ ℓ₂} {C : Container ℓ₁} {s₁ s₂ : FStream' C (Set ℓ₂)}
→ s₁ ~' s₂ → EG' {i} s₁ → EG' {i} s₂
-- TODO This subst trick must already exist in stdlib somewhere
nowE (bisimEG' bs proof) = subst (λ x → x) (hd∼ bs) (nowE proof)
laterE (bisimEG' {C = C} bs proof) = bisimEG (tl∼ bs) (laterE proof)
| {
"alphanum_fraction": 0.5540408958,
"avg_line_length": 36.6785714286,
"ext": "agda",
"hexsha": "4e030fe1d3c47f6c877f70c151970a11cd2dd751",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z",
"max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "zimbatm/condatis",
"max_forks_repo_path": "CTL/Proof/EG.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "zimbatm/condatis",
"max_issues_repo_path": "CTL/Proof/EG.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Aerate/condatis",
"max_stars_repo_path": "CTL/Proof/EG.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z",
"num_tokens": 1751,
"size": 4108
} |
module Point where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
record Point : Set where
field
x : Nat
y : Nat
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
open Point renaming (x to getX; y to getY)
<_,_> : Nat -> Nat -> Point
< x , y > = record { x = x; y = y }
η : (p : Point) -> p == record { x = getX p; y = getY p }
η p = refl
swap : Point -> Point
swap p = < getY p , getX p >
swap-idem : (p : Point) -> swap (swap p) == p
swap-idem p = refl
| {
"alphanum_fraction": 0.5284552846,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "86cb465e23c7cdd401840557723da329b04daaa1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Point.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Point.agda",
"max_line_length": 57,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Point.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 175,
"size": 492
} |
open import Nat
open import Prelude
open import aasubsume-min
open import contexts
open import judgemental-erase
open import lemmas-matching
open import statics-core
open import synth-unicity
module determinism where
-- since we do not specify the name of newly inserted hole names,
-- we only have determinism up to renaming of holes. we don't
-- need to consider alpha equivalence for binders, since the
--
-- the same action applied to the same type makes the same type
actdet-type : {t t' t'' : ztyp} {α : action} →
(t + α +> t') →
(t + α +> t'') →
(t' == t'')
actdet-type TMArrChild1 TMArrChild1 = refl
actdet-type TMArrChild2 TMArrChild2 = refl
actdet-type TMArrParent1 TMArrParent1 = refl
actdet-type TMArrParent1 (TMArrZip1 ())
actdet-type TMArrParent2 TMArrParent2 = refl
actdet-type TMArrParent2 (TMArrZip2 ())
actdet-type TMDel TMDel = refl
actdet-type TMConArrow TMConArrow = refl
actdet-type TMConNum TMConNum = refl
actdet-type (TMArrZip1 ()) TMArrParent1
actdet-type (TMArrZip1 p1) (TMArrZip1 p2) with actdet-type p1 p2
... | refl = refl
actdet-type (TMArrZip2 ()) TMArrParent2
actdet-type (TMArrZip2 p1) (TMArrZip2 p2) with actdet-type p1 p2
... | refl = refl
actdet-type TMPlusChild1 TMPlusChild1 = refl
actdet-type TMPlusChild2 TMPlusChild2 = refl
actdet-type TMPlusParent1 TMPlusParent1 = refl
actdet-type (TMPlusZip1 ()) TMPlusParent1
actdet-type TMPlusParent2 TMPlusParent2 = refl
actdet-type (TMPlusZip2 ()) TMPlusParent2
actdet-type TMConPlus TMConPlus = refl
actdet-type TMPlusParent1 (TMPlusZip1 ())
actdet-type (TMPlusZip1 x) (TMPlusZip1 y) with actdet-type x y
... | refl = refl
actdet-type TMPlusParent2 (TMPlusZip2 ())
actdet-type (TMPlusZip2 x) (TMPlusZip2 y) with actdet-type x y
... | refl = refl
actdet-type TMProdChild1 TMProdChild1 = refl
actdet-type TMProdChild2 TMProdChild2 = refl
actdet-type TMProdParent1 TMProdParent1 = refl
actdet-type TMProdParent1 (TMProdZip1 ())
actdet-type TMProdParent2 TMProdParent2 = refl
actdet-type TMProdParent2 (TMProdZip2 ())
actdet-type TMConProd TMConProd = refl
actdet-type (TMProdZip1 ()) TMProdParent1
actdet-type (TMProdZip1 x) (TMProdZip1 y) with actdet-type x y
... | refl = refl
actdet-type (TMProdZip2 ()) TMProdParent2
actdet-type (TMProdZip2 x) (TMProdZip2 y) with actdet-type x y
... | refl = refl
-- all expressions only move to one other expression
movedet : {e e' e'' : zexp} {δ : direction} →
(e + move δ +>e e') →
(e + move δ +>e e'') →
e' == e''
movedet EMAscChild1 EMAscChild1 = refl
movedet EMAscChild2 EMAscChild2 = refl
movedet EMAscParent1 EMAscParent1 = refl
movedet EMAscParent2 EMAscParent2 = refl
movedet EMLamChild1 EMLamChild1 = refl
movedet EMLamParent EMLamParent = refl
movedet EMHalfLamChild1 EMHalfLamChild1 = refl
movedet EMHalfLamChild2 EMHalfLamChild2 = refl
movedet EMHalfLamParent1 EMHalfLamParent1 = refl
movedet EMHalfLamParent2 EMHalfLamParent2 = refl
movedet EMPlusChild1 EMPlusChild1 = refl
movedet EMPlusChild2 EMPlusChild2 = refl
movedet EMPlusParent1 EMPlusParent1 = refl
movedet EMPlusParent2 EMPlusParent2 = refl
movedet EMApChild1 EMApChild1 = refl
movedet EMApChild2 EMApChild2 = refl
movedet EMApParent1 EMApParent1 = refl
movedet EMApParent2 EMApParent2 = refl
movedet EMNEHoleChild1 EMNEHoleChild1 = refl
movedet EMNEHoleParent EMNEHoleParent = refl
movedet EMInlChild1 EMInlChild1 = refl
movedet EMInlParent EMInlParent = refl
movedet EMInrChild1 EMInrChild1 = refl
movedet EMInrParent EMInrParent = refl
movedet EMCaseParent1 EMCaseParent1 = refl
movedet EMCaseParent2 EMCaseParent2 = refl
movedet EMCaseParent3 EMCaseParent3 = refl
movedet EMCaseChild1 EMCaseChild1 = refl
movedet EMCaseChild2 EMCaseChild2 = refl
movedet EMCaseChild3 EMCaseChild3 = refl
movedet EMPairChild1 EMPairChild1 = refl
movedet EMPairChild2 EMPairChild2 = refl
movedet EMPairParent1 EMPairParent1 = refl
movedet EMPairParent2 EMPairParent2 = refl
movedet EMFstChild1 EMFstChild1 = refl
movedet EMFstParent EMFstParent = refl
movedet EMSndChild1 EMSndChild1 = refl
movedet EMSndParent EMSndParent = refl
-- non-movement lemmas; theses show up pervasively throughout and save a
-- lot of pattern matching.
lem-nomove-part : ∀ {t t'} → ▹ t ◃ + move parent +> t' → ⊥
lem-nomove-part ()
lem-nomove-pars : ∀{Γ e t e' t'} → Γ ⊢ ▹ e ◃ => t ~ move parent ~> e' => t' → ⊥
lem-nomove-pars (SAMove ())
lem-nomove-para : ∀{Γ e t e'} → Γ ⊢ ▹ e ◃ ~ move parent ~> e' ⇐ t → ⊥
lem-nomove-para (AASubsume e x x₁ x₂) = lem-nomove-pars x₁
lem-nomove-para (AAMove ())
-- if a move action on a synthetic action makes a new form, it's unique
synthmovedet : {Γ : tctx} {e e' e'' : zexp} {t' t'' : htyp} {δ : direction} →
Γ ⊢ e => t' ~ move δ ~> e'' => t'' →
e + move δ +>e e' →
e'' == e'
synthmovedet (SAMove m1) m2 = movedet m1 m2
-- all these cases lead to absurdities based on movement
synthmovedet (SAZipAsc1 x) EMAscParent1 = abort (lem-nomove-para x)
synthmovedet (SAZipAsc2 x _ _ _) EMAscParent2 = abort (lem-nomove-part x)
synthmovedet (SAZipApArr _ _ _ x _) EMApParent1 = abort (lem-nomove-pars x)
synthmovedet (SAZipApAna _ _ x) EMApParent2 = abort (lem-nomove-para x)
synthmovedet (SAZipPlus1 x) EMPlusParent1 = abort (lem-nomove-para x)
synthmovedet (SAZipPlus2 x) EMPlusParent2 = abort (lem-nomove-para x)
synthmovedet (SAZipNEHole _ _ x) EMNEHoleParent = abort (lem-nomove-pars x)
synthmovedet (SAZipPair1 _ _ x _) EMPairParent1 = abort (lem-nomove-pars x)
synthmovedet (SAZipPair2 _ _ _ x) EMPairParent2 = abort (lem-nomove-pars x)
synthmovedet (SAZipFst _ _ _ _ x) EMFstParent = abort (lem-nomove-pars x)
synthmovedet (SAZipSnd _ _ _ _ x) EMSndParent = abort (lem-nomove-pars x)
synthmovedet (SAZipLam1 _ _ _ x _ _) EMHalfLamParent1 = abort (lem-nomove-part x)
synthmovedet (SAZipLam2 _ _ _ x) EMHalfLamParent2 = abort (lem-nomove-pars x)
anamovedet : {Γ : tctx} {e e' e'' : zexp} {t : htyp} {δ : direction} →
Γ ⊢ e ~ move δ ~> e'' ⇐ t →
e + move δ +>e e' →
e'' == e'
anamovedet (AASubsume x₂ x x₃ x₁) m = synthmovedet x₃ m
anamovedet (AAMove x) m = movedet x m
anamovedet (AAZipLam x₁ x₂ d) EMLamParent = abort (lem-nomove-para d)
anamovedet (AAZipInl x d) EMInlParent = abort (lem-nomove-para d)
anamovedet (AAZipInr x d) EMInrParent = abort (lem-nomove-para d)
anamovedet (AAZipCase1 x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈) EMCaseParent1 =
abort (lem-nomove-pars x₅)
anamovedet (AAZipCase2 x₁ x₂ x₃ x₄ d) EMCaseParent2 = abort (lem-nomove-para d)
anamovedet (AAZipCase3 x₁ x₂ x₃ x₄ d) EMCaseParent3 = abort (lem-nomove-para d)
lem-plusholematch : ∀ {t t1 t2} → t ~̸ (⦇-⦈ ⊕ ⦇-⦈) → t ~ ⦇-⦈ → t ▸sum (t1 ⊕ t2) → ⊥
lem-plusholematch a TCRefl MSHole = a TCHole2
lem-plusholematch a TCHole1 MSHole = a TCHole2
lem-plusholematch a TCHole1 MSSum = a (TCSum TCHole1 TCHole1)
lem-plusholematch a TCHole2 MSHole = a TCHole2
lem-prodholematch : ∀ {t t1 t2} → t ~̸ (⦇-⦈ ⊠ ⦇-⦈) → t ~ ⦇-⦈ → t ▸prod (t1 ⊠ t2) → ⊥
lem-prodholematch a TCRefl MPHole = a TCHole2
lem-prodholematch a TCHole1 MPHole = a TCHole2
lem-prodholematch a TCHole1 MPProd = a (TCProd TCHole1 TCHole1)
lem-prodholematch a TCHole2 MPHole = a TCHole2
mutual
-- an action on an expression in a synthetic position produces one
-- resultant expression and type.
actdet-synth : {Γ : tctx} {e e' e'' : zexp} {e◆ : hexp} {t t' t'' : htyp} {α : action} →
(E : erase-e e e◆) →
(Γ ⊢ e◆ => t) →
(d1 : Γ ⊢ e => t ~ α ~> e' => t') →
(d2 : Γ ⊢ e => t ~ α ~> e'' => t'') →
{p1 : aasubmin-synth d1} →
{p2 : aasubmin-synth d2} →
(e' == e'' × t' == t'')
actdet-synth er wt (SAMove x₁) (SAMove x₂) = movedet x₁ x₂ , refl
actdet-synth er wt SADel SADel = refl , refl
actdet-synth er wt SAConAsc SAConAsc = refl , refl
actdet-synth er wt (SAConPlus1 x₁) (SAConPlus1 x₂) = refl , refl
actdet-synth er wt (SAConPlus1 x₁) (SAConPlus2 x₂) = abort (x₂ x₁)
actdet-synth er wt (SAConPlus2 x₁) (SAConPlus1 x₂) = abort (x₁ x₂)
actdet-synth er wt (SAConPlus2 x₁) (SAConPlus2 x₂) = refl , refl
actdet-synth er wt (SAConApArr x₁) (SAConApArr x₂)
with ▸arr-unicity x₁ x₂
... | refl = refl , refl
actdet-synth er wt (SAConApArr x₁) (SAConApOtw x₂) = abort (x₂ (▸arr-consist-hole x₁))
actdet-synth er wt (SAConApOtw x₁) (SAConApArr x₂) = abort (x₁ (▸arr-consist-hole x₂))
actdet-synth er wt (SAConApOtw x₁) (SAConApOtw x₂) = refl , refl
actdet-synth er wt SAConNEHole SAConNEHole = refl , refl
actdet-synth (EEAscL E) (SAsc x) (SAMove EMAscParent1) (SAZipAsc1 x₂) =
abort (lem-nomove-para x₂)
actdet-synth (EEAscL E) (SAsc x) (SAZipAsc1 x₁) (SAMove EMAscParent1) =
abort (lem-nomove-para x₁)
actdet-synth (EEAscL E) (SAsc x) (SAZipAsc1 x₁) (SAZipAsc1 x₂) {p1} {p2}
with actdet-ana E x x₁ x₂ {p1} {p2}
... | refl = refl , refl
actdet-synth (EEAscR x) (SAsc x₁) (SAMove EMAscParent2) (SAZipAsc2 a _ _ _) =
abort (lem-nomove-part a)
actdet-synth (EEAscR x) (SAsc x₁) (SAZipAsc2 a _ _ _) (SAMove EMAscParent2) =
abort (lem-nomove-part a)
actdet-synth (EEAscR x) (SAsc x₂) (SAZipAsc2 a e1 _ _) (SAZipAsc2 b e2 _ _)
with actdet-type a b
... | refl = refl , eraset-det e1 e2
actdet-synth (EEHalfLamL x) (SLam x₁ wt) (SAMove EMHalfLamParent1)
(SAZipLam1 x₃ x₄ x₅ x₆ x₇ x₈) = abort (lem-nomove-part x₆)
actdet-synth (EEHalfLamL x) (SLam x₁ wt) (SAZipLam1 x₂ x₃ x₄ x₅ x₆ x₇)
(SAMove EMHalfLamParent1) = abort (lem-nomove-part x₅)
actdet-synth (EEHalfLamL x) (SLam x₁ wt) (SAZipLam1 x₂ x₃ x₄ x₅ x₆ x₇)
(SAZipLam1 x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃) with actdet-type x₅ x₁₁
... | refl with eraset-det x₄ x₁₀
... | refl with synthunicity x₇ x₁₃
... | refl = refl , refl
actdet-synth (EEHalfLamR er) (SLam x wt) (SAMove EMHalfLamParent2)
(SAZipLam2 x₂ x₃ x₄ y) = abort (lem-nomove-pars y)
actdet-synth (EEHalfLamR er) (SLam x wt) (SAZipLam2 x₁ x₂ x₃ x₄)
(SAMove EMHalfLamParent2) = abort (lem-nomove-pars x₄)
actdet-synth (EEHalfLamR er) (SLam x wt) (SAZipLam2 x₁ x₂ x₃ d1)
(SAZipLam2 x₅ x₆ x₇ d2) {p1} {p2} with erasee-det x₂ x₆
... | refl with actdet-synth x₂ x₃ d1 d2 {p1} {p2}
... | refl , refl = refl , refl
actdet-synth (EEApL E) (SAp m wt x) (SAMove EMApParent1) (SAZipApArr _ x₂ x₃ d2 x₄) =
abort (lem-nomove-pars d2)
actdet-synth (EEApL E) (SAp m wt x) (SAZipApArr _ x₁ x₂ d1 x₃) (SAMove EMApParent1) =
abort (lem-nomove-pars d1)
actdet-synth (EEApL E) (SAp m wt x) (SAZipApArr a x₁ x₂ d1 x₃)
(SAZipApArr b x₄ x₅ d2 x₆) {p1} {p2}
with erasee-det x₁ x₄
... | refl with synthunicity x₂ x₅
... | refl with erasee-det E x₁
... | refl with actdet-synth E x₅ d1 d2 {p1} {p2}
... | refl , refl with ▸arr-unicity a b
... | refl = refl , refl
actdet-synth (EEApR E) (SAp m wt x) (SAMove EMApParent2) (SAZipApAna x₂ x₃ x₄) =
abort (lem-nomove-para x₄)
actdet-synth (EEApR E) (SAp m wt x) (SAZipApAna x₁ x₂ x₃) (SAMove EMApParent2) =
abort (lem-nomove-para x₃)
actdet-synth (EEApR E) (SAp m wt x) (SAZipApAna x₁ x₂ d1) (SAZipApAna x₄ x₅ d2) {p1} {p2}
with synthunicity m x₂
... | refl with ▸arr-unicity x₁ wt
... | refl with synthunicity m x₅
... | refl with ▸arr-unicity x₄ wt
... | refl with actdet-ana E x d1 d2 {p1} {p2}
... | refl = refl , refl
actdet-synth (EEPlusL E) (SPlus x x₁) (SAMove EMPlusParent1) (SAZipPlus1 d2) =
abort (lem-nomove-para d2)
actdet-synth (EEPlusL E) (SPlus x x₁) (SAZipPlus1 x₂) (SAMove EMPlusParent1) =
abort (lem-nomove-para x₂)
actdet-synth (EEPlusL E) (SPlus x x₁) (SAZipPlus1 x₂) (SAZipPlus1 x₃) {p1} {p2}
= ap1 (λ x₄ → x₄ ·+₁ _) (actdet-ana E x x₂ x₃ {p1} {p2}) , refl
actdet-synth (EEPlusR E) (SPlus x x₁) (SAMove EMPlusParent2) (SAZipPlus2 x₃) =
abort (lem-nomove-para x₃)
actdet-synth (EEPlusR E) (SPlus x x₁) (SAZipPlus2 x₂) (SAMove EMPlusParent2) =
abort (lem-nomove-para x₂)
actdet-synth (EEPlusR E) (SPlus x x₁) (SAZipPlus2 x₂) (SAZipPlus2 x₃) {p1} {p2}
= ap1 (_·+₂_ _) (actdet-ana E x₁ x₂ x₃ {p1} {p2}) , refl
actdet-synth EETop SEHole (SAConVar {Γ = G} p) (SAConVar p₁) =
refl , (ctxunicity {Γ = G} p p₁)
actdet-synth EETop SEHole (SAConLam x₁) (SAConLam x₂) = refl , refl
actdet-synth EETop SEHole SAConNumlit SAConNumlit = refl , refl
actdet-synth EETop (SNEHole wt) (SAFinish x) (SAFinish x₁) = refl , synthunicity x x₁
actdet-synth (EENEHole E) (SNEHole wt) (SAMove EMNEHoleParent) (SAZipNEHole _ x₁ d2) =
abort (lem-nomove-pars d2)
actdet-synth (EENEHole E) (SNEHole wt) (SAZipNEHole _ x d1) (SAMove EMNEHoleParent) =
abort (lem-nomove-pars d1)
actdet-synth (EENEHole E) (SNEHole wt) (SAZipNEHole a x d1) (SAZipNEHole b x₁ d2) {p1} {p2}
with erasee-det a b
... | refl with synthunicity x x₁
... | refl with actdet-synth a x d1 d2 {p1} {p2}
... | refl , refl = refl , refl
-- new cases for sums
actdet-synth EETop SEHole SAConInl SAConInl = refl , refl
actdet-synth EETop SEHole SAConInr SAConInr = refl , refl
actdet-synth er wt (SAConCase1 x₁ x₂ x₃) (SAConCase1 x₄ x₅ x₆) = refl , refl
actdet-synth er wt (SAConCase1 x₁ x₂ MSHole) (SAConCase2 x₄ x₅ x₆) = abort (x₆ TCHole2)
actdet-synth EETop wt (SAConCase1 x₁ x₂ MSSum) (SAConCase2 x₄ x₅ x₆) =
abort (x₆ (TCSum TCHole1 TCHole1))
actdet-synth EETop wt (SAConCase2 x₁ x₂ x₃) (SAConCase1 x₄ x₅ MSHole) = abort (x₃ TCHole2)
actdet-synth EETop wt (SAConCase2 x₁ x₂ x₃) (SAConCase1 x₄ x₅ MSSum) =
abort (x₃ (TCSum TCHole1 TCHole1))
actdet-synth er wt (SAConCase2 x₁ x₂ x₃) (SAConCase2 x₄ x₅ x₆) = refl , refl
-- new cases for products
actdet-synth EETop wt (SAConFst1 x) (SAConFst1 x₁) with ▸prod-unicity x x₁
... | refl = refl , refl
actdet-synth EETop wt (SAConFst1 x) (SAConFst2 x₁) = abort (x₁ (▸prod-consist-hole x))
actdet-synth EETop wt (SAConFst2 x) (SAConFst1 x₁) = abort (x (▸prod-consist-hole x₁))
actdet-synth EETop wt (SAConFst2 x) (SAConFst2 x₁) = refl , refl
actdet-synth EETop wt (SAConSnd1 x) (SAConSnd1 x₁) with ▸prod-unicity x x₁
... | refl = refl , refl
actdet-synth EETop wt (SAConSnd1 x) (SAConSnd2 x₁) = abort (x₁ (▸prod-consist-hole x))
actdet-synth EETop wt (SAConSnd2 x) (SAConSnd1 x₁) = abort (x (▸prod-consist-hole x₁))
actdet-synth EETop wt (SAConSnd2 x) (SAConSnd2 x₁) = refl , refl
actdet-synth EETop SEHole SAConPair SAConPair = refl , refl
actdet-synth (EEPairL er) (SPair wt wt₁) (SAMove EMPairParent1)
(SAZipPair1 er₁ wt₂ d wt₃) = abort (lem-nomove-pars d)
actdet-synth (EEPairL er) (SPair wt wt₁) (SAZipPair1 er₁ wt₂ d wt₃)
(SAMove EMPairParent1) = abort (lem-nomove-pars d)
actdet-synth (EEPairL er) (SPair wt wt₁) (SAZipPair1 er₁ wt₂ d₁ wt₃)
(SAZipPair1 er₂ wt₄ d₂ wt₅) {p1} {p2}
with actdet-synth er₁ wt₂ d₁ d₂ {p1} {p2}
... | refl , refl = refl , refl
actdet-synth (EEPairR er) (SPair wt wt₁) (SAMove EMPairParent2)
(SAZipPair2 wt₂ er₁ wt₃ d) = abort (lem-nomove-pars d)
actdet-synth (EEPairR er) (SPair wt wt₁) (SAZipPair2 wt₂ er₁ wt₃ d)
(SAMove EMPairParent2) = abort (lem-nomove-pars d)
actdet-synth (EEPairR er) (SPair wt wt₁) (SAZipPair2 wt₂ er₁ wt₃ d₁)
(SAZipPair2 wt₄ er₂ wt₅ d₂) {p1} {p2}
with actdet-synth er₁ wt₃ d₁ d₂ {p1} {p2}
... | refl , refl = refl , refl
actdet-synth (EEFst er) (SFst wt x₁) (SAMove EMFstParent)
(SAZipFst pr pr₁ er₁ wt₁ d) = abort (lem-nomove-pars d)
actdet-synth (EEFst er) (SFst wt x₁) (SAZipFst pr pr₁ er₁ wt₁ d)
(SAMove EMFstParent) = abort (lem-nomove-pars d)
actdet-synth (EEFst er) (SFst wt x₁) (SAZipFst pr pr₁ er₁ wt₁ d₁)
(SAZipFst pr₂ pr₃ er₂ wt₂ d₂) {p1} {p2}
with erasee-det er₁ er₂
... | refl with synthunicity wt₁ wt₂
... | refl with actdet-synth er₁ wt₁ d₁ d₂ {p1} {p2}
... | refl , refl with ▸prod-unicity pr₁ pr₃
... | refl = refl , refl
actdet-synth (EESnd er) (SSnd wt x₁) (SAMove EMSndParent) (SAZipSnd pr pr₁ er₁ wt₁ d) =
abort (lem-nomove-pars d)
actdet-synth (EESnd er) (SSnd wt x₁) (SAZipSnd pr pr₁ er₁ wt₁ d) (SAMove EMSndParent) =
abort (lem-nomove-pars d)
actdet-synth (EESnd er) (SSnd wt x₁) (SAZipSnd pr pr₁ er₁ wt₁ d₁)
(SAZipSnd pr₂ pr₃ er₂ wt₂ d₂) {p1} {p2}
with erasee-det er₁ er₂
... | refl with synthunicity wt₁ wt₂
... | refl with actdet-synth er₁ wt₁ d₁ d₂ {p1} {p2}
... | refl , refl with ▸prod-unicity pr₁ pr₃
... | refl = refl , refl
-- an action on an expression in an analytic position produces one
-- resultant expression and type.
actdet-ana : {Γ : tctx} {e e' e'' : zexp} {e◆ : hexp} {t : htyp} {α : action} →
erase-e e e◆ →
Γ ⊢ e◆ <= t →
(d1 : Γ ⊢ e ~ α ~> e' ⇐ t) →
(d2 : Γ ⊢ e ~ α ~> e'' ⇐ t) →
{p1 : aasubmin-ana d1} →
{p2 : aasubmin-ana d2} →
e' == e''
-- lambda cases first
-- an erased lambda can't be typechecked with subsume
actdet-ana (EELam _) (ASubsume () _) _ _
-- for things paired with movements, punt to the move determinism case
actdet-ana _ _ D (AAMove y) = anamovedet D y
actdet-ana _ _ (AAMove y) D = ! (anamovedet D y)
-- lambdas never match with subsumption actions, because it won't be well typed.
actdet-ana EETop (ALam x₁ x₂ wt) (AASubsume EETop () x₅ x₆) _
actdet-ana (EELam _) (ALam x₁ x₂ wt) (AASubsume (EELam x₃) () x₅ x₆) _
actdet-ana EETop (ALam x₁ x₂ wt) _ (AASubsume EETop () x₅ x₆)
actdet-ana (EELam _) (ALam x₁ x₂ wt) _ (AASubsume (EELam x₃) () x₅ x₆)
-- with the cursor at the top, there are only two possible actions
actdet-ana EETop (ALam x₁ x₂ wt) AADel AADel = refl
actdet-ana EETop (ALam x₁ x₂ wt) AAConAsc AAConAsc = refl
-- and for the remaining case, recurr on the smaller derivations
actdet-ana (EELam er) (ALam x₁ x₂ wt) (AAZipLam x₃ x₄ d1) (AAZipLam x₅ x₆ d2) {p1} {p2}
with ▸arr-unicity x₄ x₆
... | refl with ▸arr-unicity x₄ x₂
... | refl with actdet-ana er wt d1 d2 {p1} {p2}
... | refl = refl
-- now the subsumption cases
-- subsume / subsume, so pin things down then recurr
actdet-ana er (ASubsume a b) (AASubsume x x₁ x₂ x₃) (AASubsume x₄ x₅ x₆ x₇) {p1} {p2}
with erasee-det x₄ x
... | refl with erasee-det er x₄
... | refl with synthunicity x₅ x₁
... | refl = π1 (actdet-synth x x₅ x₂ x₆ {min-ana-lem x₂ p1} {min-ana-lem x₆ p2})
-- (these are all repeated below, irritatingly.)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x SADel x₁) AADel = refl
actdet-ana EETop (ASubsume a b) (AASubsume EETop x SAConAsc x₁) AAConAsc {p1} = abort p1
actdet-ana EETop (ASubsume SEHole b) (AASubsume EETop SEHole (SAConVar {Γ = Γ} p) x₂)
(AAConVar x₅ p₁)
with ctxunicity {Γ = Γ} p p₁
... | refl = abort (x₅ x₂)
actdet-ana EETop (ASubsume SEHole b) (AASubsume EETop SEHole (SAConLam x₄) x₂)
(AAConLam1 x₅ m) {p1} = abort p1
actdet-ana EETop (ASubsume a b) (AASubsume EETop x₁ (SAConLam x₃) x₂) (AAConLam2 x₅ x₆) =
abort (x₆ x₂)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x₁ SAConNumlit x₂) (AAConNumlit x₄) =
abort (x₄ x₂)
actdet-ana EETop (ASubsume a b) (AASubsume EETop x (SAFinish x₂) x₁) (AAFinish x₄) = refl
-- subsume / del
actdet-ana er (ASubsume a b) AADel (AASubsume x x₁ SADel x₃) = refl
actdet-ana er (ASubsume a b) AADel AADel = refl
-- subsume / conasc
actdet-ana EETop (ASubsume a b) AAConAsc (AASubsume EETop x₁ SAConAsc x₃) {p2 = p2} =
abort p2
actdet-ana er (ASubsume a b) AAConAsc AAConAsc = refl
-- subsume / convar
actdet-ana EETop (ASubsume SEHole b) (AAConVar x₁ p)
(AASubsume EETop SEHole (SAConVar {Γ = Γ} p₁) x₅)
with ctxunicity {Γ = Γ} p p₁
... | refl = abort (x₁ x₅)
actdet-ana er (ASubsume a b) (AAConVar x₁ p) (AAConVar x₂ p₁) = refl
-- subsume / conlam1
actdet-ana EETop (ASubsume SEHole b) (AAConLam1 x₁ x₂)
(AASubsume EETop SEHole (SAConLam x₃) x₆) {p2 = p2} = abort p2
actdet-ana er (ASubsume a b) (AAConLam1 x₁ MAHole) (AAConLam2 x₃ x₄) =
abort (x₄ TCHole2)
actdet-ana er (ASubsume a b) (AAConLam1 x₁ MAArr) (AAConLam2 x₃ x₄) =
abort (x₄ (TCArr TCHole1 TCHole1))
actdet-ana er (ASubsume a b) (AAConLam1 x₁ x₂) (AAConLam1 x₃ x₄) = refl
-- subsume / conlam2
actdet-ana EETop (ASubsume SEHole TCRefl) (AAConLam2 x₁ x₂)
(AASubsume EETop SEHole x₅ x₆) = abort (x₂ TCHole2)
actdet-ana EETop (ASubsume SEHole TCHole1) (AAConLam2 x₁ x₂)
(AASubsume EETop SEHole (SAConLam x₃) x₆) = abort (x₂ x₆)
actdet-ana EETop (ASubsume SEHole TCHole2) (AAConLam2 x₁ x₂)
(AASubsume EETop SEHole x₅ x₆) = abort (x₂ TCHole2)
actdet-ana EETop (ASubsume a b) (AAConLam2 x₂ x₁) (AAConLam1 x₃ MAHole) = abort (x₁ TCHole2)
actdet-ana EETop (ASubsume a b) (AAConLam2 x₂ x₁) (AAConLam1 x₃ MAArr) =
abort (x₁ (TCArr TCHole1 TCHole1))
actdet-ana er (ASubsume a b) (AAConLam2 x₂ x) (AAConLam2 x₃ x₄) = refl
-- subsume / numlit
actdet-ana er (ASubsume a b) (AAConNumlit x) (AASubsume x₁ x₂ SAConNumlit x₄) = abort (x x₄)
actdet-ana er (ASubsume a b) (AAConNumlit x) (AAConNumlit x₁) = refl
-- subsume / finish
actdet-ana er (ASubsume a b) (AAFinish x) (AASubsume x₁ x₂ (SAFinish x₃) x₄) = refl
actdet-ana er (ASubsume a b) (AAFinish x) (AAFinish x₁) = refl
-- new cases for sums
-- injections and cases, like lambdas, only check. so they can't be
-- part of a subsume or a subsume action. so a lot of these cases
-- just fall out immediately.
actdet-ana (EEInl _) (ASubsume () _) _ _
actdet-ana (EEInr _) (ASubsume () _) _ _
actdet-ana (EECase1 _) (ASubsume () _) _ _
actdet-ana (EECase2 _) (ASubsume () _) _ _
actdet-ana (EECase3 _) (ASubsume () _) _ _
actdet-ana EETop (AInl x wt) (AASubsume EETop () _ x₄) _
actdet-ana EETop (AInl x wt) _ (AASubsume EETop () _ x₄)
actdet-ana EETop (AInr x wt) (AASubsume EETop () _ x₄) _
actdet-ana EETop (AInr x wt) _ (AASubsume EETop () _ x₄)
actdet-ana EETop (ACase _ _ _ _ _ _) _ (AASubsume EETop () _ x₄)
actdet-ana EETop (ACase _ _ _ _ _ _) (AASubsume EETop () _ x₄) _
actdet-ana (EEInr er) (AInr x wt) (AASubsume (EEInr x₁) () x₃ x₄) _
actdet-ana (EEInr er) (AInr x wt) _ (AASubsume (EEInr x₁) () x₃ x₄)
actdet-ana (EEInl er) (AInl x wt) (AASubsume (EEInl x₁) () x₃ x₄) _
actdet-ana (EEInl er) (AInl x wt) _ (AASubsume (EEInl x₁) () x₃ x₄)
actdet-ana (EECase1 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) _ (AASubsume (EECase1 x₉) () x₁₁ x₁₂)
actdet-ana (EECase2 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) _ (AASubsume (EECase2 x₉) () x₁₁ x₁₂)
actdet-ana (EECase3 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) _ (AASubsume (EECase3 x₉) () x₁₁ x₁₂)
actdet-ana (EECase1 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) (AASubsume (EECase1 x₉) () x₁₁ x₁₂) _
actdet-ana (EECase2 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) (AASubsume (EECase2 x₉) () x₁₁ x₁₂) _
actdet-ana (EECase3 er) (ACase x₁ x₂ x₃ x₄ wt wt₁) (AASubsume (EECase3 x₉) () x₁₁ x₁₂) _
actdet-ana EETop (ASubsume SEHole x₂) (AAConCase x₃ x₄)
(AASubsume EETop SEHole (SAConCase1 x₁ x₅ MSHole) x₈) {p2 = p2} = abort p2
actdet-ana EETop (ASubsume SEHole x₂) (AAConCase x₃ x₄)
(AASubsume EETop SEHole (SAConCase2 x₁ x₅ x₆) x₈) = abort (x₆ TCHole2)
actdet-ana EETop (ASubsume SEHole x₂) (AASubsume EETop SEHole (SAConCase1 x₁ x₃ MSHole) x₆)
(AAConCase x₇ x₈) {p1} = abort p1
actdet-ana EETop (ASubsume SEHole x₂) (AASubsume EETop SEHole (SAConCase2 x₁ x₃ x₄) x₆)
(AAConCase x₇ x₈) = abort (x₄ TCHole2)
-- the cases where the derivations match just go through
actdet-ana er (ASubsume x x₁) (AAConInl1 x₂) (AAConInl1 x₃) = refl
actdet-ana EETop (ASubsume SEHole x₁) (AAConInl2 x₂) (AAConInl2 x₃) = refl
actdet-ana er (ASubsume x x₁) (AAConInr1 x₂) (AAConInr1 x₃) = refl
actdet-ana er (ASubsume x x₁) (AAConInr2 x₂) (AAConInr2 x₃) = refl
actdet-ana EETop (ASubsume SEHole x₂) (AAConCase x₃ x₄) (AAConCase x₅ x₆) = refl
actdet-ana er (AInl x wt) AADel AADel = refl
actdet-ana er (AInl x wt) AAConAsc AAConAsc = refl
actdet-ana er (AInr x wt) AADel AADel = refl
actdet-ana er (AInr x wt) AAConAsc AAConAsc = refl
actdet-ana er (ACase x₁ x₂ x₃ x₄ wt wt₁) AADel AADel = refl
actdet-ana er (ACase x₁ x₂ x₃ x₄ wt wt₁) AAConAsc AAConAsc = refl
-- everything else we need to argue a little bit more carefully
-- matching zipper cases; these cause us to recurr
actdet-ana (EEInl er) (AInl x wt) (AAZipInl x₁ d1) (AAZipInl x₂ d2) {p1} {p2}
with ▸sum-unicity x₂ x₁
... | refl with ▸sum-unicity x x₁
... | refl = ap1 inl (actdet-ana er wt d1 d2 {p1} {p2})
actdet-ana (EEInr er) (AInr x wt) (AAZipInr x₁ d1) (AAZipInr x₂ d2) {p1} {p2}
with ▸sum-unicity x₂ x₁
... | refl with ▸sum-unicity x x₁
... | refl = ap1 inr (actdet-ana er wt d1 d2 {p1} {p2})
actdet-ana (EECase1 er) (ACase x₂ x₃ x₄ x₅ wt wt₁) (AAZipCase1 x₆ x₇ x₈ x₉ x₁₀ x₁₁ x₁₂ x₁₃)
(AAZipCase1 x₁₄ x₁₅ x₁₆ x₁₇ x₁₈ x₁₉ x₂₀ x₂₁) {p1} {p2}
with erasee-det x₈ x₁₆
... | refl with synthunicity x₁₇ x₉
... | refl with actdet-synth x₈ x₉ x₁₈ x₁₀ {p2} {p1}
... | refl , refl = refl
actdet-ana (EECase2 er) (ACase x₂ x₃ x₄ x₅ wt wt₁) (AAZipCase2 x₆ x₇ x₈ x₉ d1)
(AAZipCase2 x₁₁ x₁₂ x₁₃ x₁₄ d2) {p1} {p2}
with synthunicity x₅ x₈
... | refl with synthunicity x₅ x₁₃
... | refl with ▸sum-unicity x₁₄ x₉
... | refl with ▸sum-unicity x₉ x₄
... | refl with actdet-ana er wt d1 d2 {p1} {p2}
... | refl = refl
actdet-ana (EECase3 er) (ACase x₂ x₃ x₄ x₅ wt wt₁) (AAZipCase3 x₆ x₇ x₈ x₉ d1)
(AAZipCase3 x₁₁ x₁₂ x₁₃ x₁₄ d2) {p1} {p2}
with synthunicity x₈ x₁₃
... | refl with synthunicity x₈ x₅
... | refl with ▸sum-unicity x₄ x₉
... | refl with ▸sum-unicity x₄ x₁₄
... | refl with actdet-ana er wt₁ d1 d2 {p1} {p2}
... | refl = refl
actdet-ana EETop (ASubsume SEHole x₁) (AASubsume EETop SEHole SAConInl x₅)
(AAConInl1 x₆) {p1} = abort p1
actdet-ana EETop (ASubsume SEHole x₁) (AASubsume EETop SEHole SAConInl x₅)
(AAConInl2 x₆) = abort (x₆ x₅)
actdet-ana EETop (ASubsume SEHole x₁) (AASubsume EETop SEHole SAConInr x₅)
(AAConInr1 x₆) {p1} = abort p1
actdet-ana EETop (ASubsume SEHole x₁) (AASubsume EETop SEHole SAConInr x₅)
(AAConInr2 x₆) = abort (x₆ x₅)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInl1 x₂)
(AASubsume EETop SEHole SAConInl x₆) {p2 = p2} = abort p2
actdet-ana EETop (ASubsume SEHole x₁) (AAConInr1 x₂)
(AASubsume EETop SEHole SAConInr c) {p2 = p2} = abort p2
actdet-ana EETop (ASubsume SEHole x₁) (AAConInl1 q) (AAConInl2 x₃) =
abort (lem-plusholematch x₃ x₁ q)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInl2 x₂) (AASubsume EETop SEHole SAConInl x₆) =
abort (x₂ x₆)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInl2 x₂) (AAConInl1 q) =
abort (lem-plusholematch x₂ x₁ q)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInr1 x₂) (AAConInr2 x₃) =
abort (lem-plusholematch x₃ x₁ x₂)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInr2 x₂) (AASubsume EETop x₄ SAConInr x₆) =
abort (x₂ x₆)
actdet-ana EETop (ASubsume SEHole x₁) (AAConInr2 x₂) (AAConInr1 x₃) =
abort (lem-plusholematch x₂ x₁ x₃)
| {
"alphanum_fraction": 0.642433444,
"avg_line_length": 49.8626760563,
"ext": "agda",
"hexsha": "993019d440da1aaa6f84cfba6b2e13cfad919442",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "determinism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "determinism.agda",
"max_line_length": 96,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "determinism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11890,
"size": 28322
} |
open import Agda.Builtin.Bool
module Issue4166.Import {b : Bool} where
instance
i : Bool
i = b
| {
"alphanum_fraction": 0.6893203883,
"avg_line_length": 10.3,
"ext": "agda",
"hexsha": "ac13dbf5353aac7f306ca4fc036e17735a6916de",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue4166/Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue4166/Import.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue4166/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 33,
"size": 103
} |
{-# OPTIONS --without-K #-}
module SEquivSCPermEquiv where
-- Data types from standard library
open import Level using (zero)
open import Data.Nat using (ℕ; _+_)
open import Data.Fin using (Fin; inject+; raise)
open import Data.Sum using (inj₁; inj₂)
open import Data.Product using (_,_; proj₁; proj₂)
open import Data.Vec using (tabulate) renaming (_++_ to _++V_)
open import Function using (_∘_; id)
-- Properties from standard library
open import Data.Vec.Properties using (lookup∘tabulate)
open import Relation.Binary using (Setoid)
open import Function.Equality using (_⇨_; _⟨$⟩_; _⟶_)
renaming (_∘_ to _⊚_; id to id⊚)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂; setoid; →-to-⟶;
module ≡-Reasoning)
-- Next are imports from our libraries of Proofs (FiniteFunctions and
-- VectorLemmas)
open import Proofs using (finext; _!!_; tabulate-split)
-- Next we import our notions of equivalences
open import Equiv using (_∼_; module qinv; mkqinv; _≃_)
-- Next we import sets equipped with equivalence relations and
-- specialize to our notions of equivalence
open import SetoidEquiv
using (
≃S-Setoid; -- statement of thm2
_≃S_; -- statement of thm2
module _≃S_; -- proof of thm2
module _≋_; -- proof of thm2
equiv; -- proof of thm2
equivS; -- proof of thm2
_≋_ -- proof of thm2
-- id≃S
-- 0≃S;
-- _≃S≡_;
-- _⊎≃S_
)
-- Finally we import our definition of permutations. We start with Vec
-- (Fin m) n for arbitrary m and n which---if well-formed---would
-- define a permutation in the Cauchy representation. These vectors
-- assume a canonical enumeration of the finite sets which we make
-- explicit in the module Enumeration. To ensure these vectors are
-- well-formed, we define a concrete permutation as a pair of two such
-- vectors with two proofs that they compose to the identity
-- permutation.
open import FinVec using (_∘̂_; 1C)
open import FinVecProperties using (~⇒≡; !!⇒∘̂; 1C!!i≡i; cauchyext)
open import EnumEquiv using (Enum; 0E; _⊕e_; eval-left; eval-right)
open import FiniteType using (FiniteType; ∣_∣)
open import ConcretePermutation -- using (CPerm; cp; p≡; 0p; idp; _⊎p_) -- ; SCPerm)
open import ConcretePermutationProperties -- using (CPerm; cp; p≡; 0p; idp; _⊎p_) -- ; SCPerm)
------------------------------------------------------------------------------
-- The big (semantic) theorem!
thm2 : ∀ {A B : Set} → (a : FiniteType A) → (b : FiniteType B) →
(≃S-Setoid A B) ≃S (SCPerm ∣ b ∣ ∣ a ∣)
thm2 {A} {B} (n , (enumA , mkqinv labelA αA βA))
(m , (enumB , mkqinv labelB αB βB)) =
equiv fwd' bwd' α β
where
open ≡-Reasoning
AS = setoid A
BS = setoid B
A≃Fn : A ≃ Fin n
A≃Fn = (enumA , mkqinv labelA αA βA)
B≃Fn : B ≃ Fin m
B≃Fn = (enumB , mkqinv labelB αB βB)
CP⇨ = SCPerm m n ⇨ SCPerm m n
fwd : (AS ≃S BS) → CPerm m n
fwd A≃B = cp (tabulate f) (tabulate g) (~⇒≡ β) (~⇒≡ α)
where
module A≃SB = _≃S_ A≃B
f : Fin n → Fin m
f j = enumB (A≃SB.f ⟨$⟩ labelA j)
g : Fin m → Fin n
g j = enumA (A≃SB.g ⟨$⟩ labelB j)
α : f ∘ g ∼ id
α i =
begin
(enumB (A≃SB.f ⟨$⟩ (labelA (enumA (A≃SB.g ⟨$⟩ labelB i))))
≡⟨ cong (λ x → enumB (A≃SB.f ⟨$⟩ x)) (βA ((A≃SB.g ⟨$⟩ labelB i))) ⟩
enumB (A≃SB.f ⟨$⟩ (A≃SB.g ⟨$⟩ labelB i))
≡⟨ cong enumB (A≃SB.α refl) ⟩
enumB (labelB i)
≡⟨ αB i ⟩
i ∎)
β : g ∘ f ∼ id
β i =
begin (
enumA (A≃SB.g ⟨$⟩ labelB (enumB (A≃SB.f ⟨$⟩ labelA i)))
≡⟨ cong (λ x → enumA (A≃SB.g ⟨$⟩ x)) (βB _) ⟩
enumA (A≃SB.g ⟨$⟩ (A≃SB.f ⟨$⟩ labelA i))
≡⟨ cong enumA (A≃SB.β refl) ⟩
enumA (labelA i)
≡⟨ αA i ⟩
i ∎)
fwd' : ≃S-Setoid A B ⟶ setoid (CPerm m n)
fwd' = record
{ _⟨$⟩_ = fwd
; cong = λ {i} {j} i≋j → p≡ (finext (λ k → cong enumB (f≡ i≋j (labelA k)) ))
}
where open _≋_
bwd : CPerm m n → (AS ≃S BS)
bwd (cp p₁ p₂ αp βp) = equiv f g α β
where
f : AS ⟶ BS
f = →-to-⟶ (λ a → labelB (p₁ !! enumA a))
g : BS ⟶ AS
g = →-to-⟶ (λ b → labelA (p₂ !! (enumB b)))
α : Setoid._≈_ (BS ⇨ BS) (f ⊚ g) id⊚
α {b} {.b} refl =
begin (
labelB (p₁ !! (enumA (labelA (p₂ !! (enumB b)))))
≡⟨ cong (λ x → labelB (p₁ !! x)) (αA _) ⟩
labelB (p₁ !! (p₂ !! enumB b))
≡⟨ cong labelB (!!⇒∘̂ _ _ (enumB b)) ⟩
labelB ((p₂ ∘̂ p₁) !! enumB b)
≡⟨ cong (λ x → (labelB (x !! enumB b))) βp ⟩
labelB (1C !! enumB b)
≡⟨ cong labelB 1C!!i≡i ⟩
labelB (enumB b)
≡⟨ βB b ⟩
b ∎)
β : Setoid._≈_ (AS ⇨ AS) (g ⊚ f) id⊚
β {a} {.a} refl =
begin (
labelA (p₂ !! (enumB (labelB (p₁ !! enumA a))))
≡⟨ cong (λ x → labelA (p₂ !! x)) (αB _) ⟩
labelA (p₂ !! (p₁ !! enumA a))
≡⟨ cong labelA (!!⇒∘̂ _ _ (enumA a)) ⟩
labelA ((p₁ ∘̂ p₂) !! enumA a)
≡⟨ cong (λ x → labelA (x !! enumA a)) αp ⟩
labelA (1C !! enumA a)
≡⟨ cong labelA 1C!!i≡i ⟩
labelA (enumA a)
≡⟨ βA a ⟩
a ∎)
bwd' : setoid (CPerm m n) ⟶ ≃S-Setoid A B
bwd' = record
{ _⟨$⟩_ = bwd
; cong = λ { {π} {.π} refl → equivS (λ _ → refl) (λ _ → refl) }
}
α : Setoid._≈_ CP⇨ (fwd' ⊚ bwd') id⊚
α {cp π πᵒ αp βp} refl = p≡ (trans (finext pf₁) (cauchyext π))
where
pf₁ : (j : Fin n) → enumB (labelB (π !! enumA (labelA j))) ≡ π !! j
pf₁ j =
begin (
enumB (labelB (π !! enumA (labelA j)))
≡⟨ αB _ ⟩
π !! enumA (labelA j)
≡⟨ cong (_!!_ π) (αA _) ⟩
π !! j ∎)
β : {x y : AS ≃S BS} → x ≋ y → ((bwd' ⊚ fwd') ⟨$⟩ x) ≋ y
β {equiv f g α β} {equiv f₁ g₁ α₁ β₁} (equivS f≡ g≡) =
equivS (λ a → trans (pf₁ a) (f≡ a)) (λ b → trans (pf₂ b) (g≡ b))
where
pf₁ : ∀ a → labelB (tabulate (λ j → enumB (f ⟨$⟩ labelA j)) !! (enumA a)) ≡ f ⟨$⟩ a
pf₁ a =
begin (
labelB (tabulate (λ j → enumB (f ⟨$⟩ labelA j)) !! enumA a)
≡⟨ cong labelB (lookup∘tabulate _ (enumA a)) ⟩
labelB (enumB (f ⟨$⟩ labelA (enumA a)))
≡⟨ βB _ ⟩
f ⟨$⟩ labelA (enumA a)
≡⟨ cong (_⟨$⟩_ f) (βA _) ⟩
f ⟨$⟩ a ∎)
pf₂ : ∀ b → labelA (tabulate (λ j → enumA (g ⟨$⟩ labelB j)) !! (enumB b)) ≡ g ⟨$⟩ b
pf₂ b =
begin (
labelA (tabulate (λ j → enumA (g ⟨$⟩ labelB j)) !! enumB b)
≡⟨ cong labelA (lookup∘tabulate _ (enumB b)) ⟩
labelA (enumA (g ⟨$⟩ labelB (enumB b)))
≡⟨ βA _ ⟩
g ⟨$⟩ labelB (enumB b)
≡⟨ cong (_⟨$⟩_ g) (βB _) ⟩
g ⟨$⟩ b ∎ )
-- Start proving some of the transport lemmas.
-- Need to do:
-- 1. prove that we have a bijective morphism of carriers: done, this is thm2 (fwd is the morphism)
-- 2. prove that it preserves:
-- a. id (done)
-- b. 0 (done)
-- c. + (done)
-- d. *
{--
Is this still important or has it been subsumed by the categorical work ???
Still important, I believe. It will be used in proving the categorical
components of CPermCat.
open _≃S_
lemma_1a : ∀ {n} {A : Set} → (EA : Enum A n) → f (thm2 EA EA) ⟨$⟩ id≃S ≡ idp
lemma_1a (f' , mkqinv g α _) = p≡ (trans (finext α) F.reveal1C)
-- this is redundant, as it follows from lemma_1a.
lemma_1b : ∀ {n} {A : Set} → (EA : Enum A n) → (g (thm2 EA EA) ⟨$⟩ idp) ≋ id≃S
lemma_1b (enumA , mkqinv g _ β) =
equivS (λ x → trans (cong g 1C!!i≡i) (β x)) (λ x → trans (cong g 1C!!i≡i) (β x))
lemma2 : f (thm2 0E 0E) ⟨$⟩ 0≃S ≡ 0p
lemma2 = p≡ F.reveal0C -- p≡ refl
lemma3 : ∀ {n₁ n₂} {A B C D : Set} {EA : Enum A n₁} {EB : Enum B n₁}
{EC : Enum C n₂} {ED : Enum D n₂} → (x : A ≃S≡ B) → (y : C ≃S≡ D) →
f (thm2 (EA ⊕e EC) (EB ⊕e ED)) ⟨$⟩ (x ⊎≃S y) ≡
(f (thm2 EA EB) ⟨$⟩ x) ⊎p (f (thm2 EC ED) ⟨$⟩ y)
lemma3 {n₁} {n₂} {EA = EA} {EB} {EC} {ED} (equiv f₄ g₄ α₄ β₄) (equiv f₅ g₅ α₅ β₅) =
p≡ (
begin (
CPerm.π (f (thm2 (EA ⊕e EC) (EB ⊕e ED)) ⟨$⟩ (x ⊎≃S y))
≡⟨ refl ⟩ -- inline f, fwd and π
tabulate {n₁ + n₂} (λ j → enumBD (x⊎y.f ⟨$⟩ qAC.g j))
≡⟨ tabulate-split {n₁} {n₂} {f = λ j → enumBD (x⊎y.f ⟨$⟩ qAC.g j)} ⟩
tabulate {n₁} (λ j → enumBD (x⊎y.f ⟨$⟩ qAC.g (inject+ n₂ j))) ++V
tabulate {n₂} (λ j → enumBD (x⊎y.f ⟨$⟩ qAC.g (raise n₁ j)))
≡⟨ cong₂ _++V_ (finext {n₁} pf₁) (finext pf₂) ⟩
tabulate {n₁} (λ j → inject+ n₂ (tabulate (λ i → enumB (f₄ ⟨$⟩ qA.g i)) !! j)) ++V
tabulate {n₂} (λ j → raise n₁ (tabulate (λ i → enumD (f₅ ⟨$⟩ qC.g i)) !! j))
≡⟨ sym F.reveal⊎c ⟩ -- going up, inline f, fwd, ⊎p and π
CPerm.π ((f (thm2 EA EB) ⟨$⟩ x) ⊎p (f (thm2 EC ED) ⟨$⟩ y)) ∎))
where
open ≡-Reasoning
x = equiv f₄ g₄ α₄ β₄
y = equiv f₅ g₅ α₅ β₅
enumB = proj₁ EB
enumD = proj₁ ED
enumAC = proj₁ (EA ⊕e EC)
module qAC = qinv (proj₂ (EA ⊕e EC))
module qA = qinv (proj₂ EA)
module qC = qinv (proj₂ EC)
enumBD = proj₁ (EB ⊕e ED)
module x⊎y = _≃S_ (x ⊎≃S y)
pf₁ : (i : Fin n₁) →
enumBD (x⊎y.f ⟨$⟩ qAC.g (inject+ n₂ i)) ≡
inject+ n₂ (tabulate (λ i₁ → enumB (f₄ ⟨$⟩ qA.g i₁)) !! i)
pf₁ i =
begin (
enumBD (x⊎y.f ⟨$⟩ qAC.g (inject+ n₂ i))
≡⟨ cong (λ j → enumBD (x⊎y.f ⟨$⟩ j)) (eval-left {eA = EA} {EC} i) ⟩
enumBD (x⊎y.f ⟨$⟩ inj₁ (qA.g i))
≡⟨ refl ⟩ -- once the inj₁ is exposed, the rest happens by β-reduction
inject+ n₂ (enumB (f₄ ⟨$⟩ qA.g i))
≡⟨ cong (inject+ n₂) (sym (lookup∘tabulate _ i)) ⟩
inject+ n₂ (tabulate (λ j → enumB (f₄ ⟨$⟩ qA.g j)) !! i) ∎)
pf₂ : (i : Fin n₂) →
enumBD (x⊎y.f ⟨$⟩ qAC.g (raise n₁ i)) ≡
raise n₁ (tabulate (λ i₁ → enumD (f₅ ⟨$⟩ qC.g i₁)) !! i)
pf₂ i =
begin (
enumBD (x⊎y.f ⟨$⟩ qAC.g (raise n₁ i))
≡⟨ cong (λ j → enumBD (x⊎y.f ⟨$⟩ j)) (eval-right {eA = EA} {EC} i) ⟩
enumBD (x⊎y.f ⟨$⟩ inj₂ (qC.g i))
≡⟨ refl ⟩
raise n₁ (enumD (f₅ ⟨$⟩ qC.g i))
≡⟨ cong (raise n₁) (sym (lookup∘tabulate _ i)) ⟩
raise n₁ (tabulate (λ i₁ → enumD (f₅ ⟨$⟩ qC.g i₁)) !! i) ∎)
-}
| {
"alphanum_fraction": 0.4729630983,
"avg_line_length": 37.1118644068,
"ext": "agda",
"hexsha": "c324779bed6ad94716ea92a40a2fdf20c3ba851d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/SEquivSCPermEquiv2.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/SEquivSCPermEquiv2.agda",
"max_line_length": 100,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/SEquivSCPermEquiv2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4368,
"size": 10948
} |
module OlderBasicILP.Direct.Hilbert.Nested where
open import Common.Context public
-- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +.
mutual
infixr 10 _⦂_
infixl 9 _∧_
infixr 7 _▻_
data Ty : Set where
α_ : Atom → Ty
_▻_ : Ty → Ty → Ty
_⦂_ : Box → Ty → Ty
_∧_ : Ty → Ty → Ty
⊤ : Ty
record Box : Set where
inductive
constructor [_]
field
{/A} : Ty
t : ∅ ⊢ /A
-- Derivations, as Hilbert-style combinator trees.
infix 3 _⊢_
data _⊢_ (Γ : Cx Ty) : Ty → Set where
var : ∀ {A} → A ∈ Γ → Γ ⊢ A
app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B
ci : ∀ {A} → Γ ⊢ A ▻ A
ck : ∀ {A B} → Γ ⊢ A ▻ B ▻ A
cs : ∀ {A B C} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
box : ∀ {A} → (t : ∅ ⊢ A) → Γ ⊢ [ t ] ⦂ A
cdist : ∀ {A B} {t : ∅ ⊢ A ▻ B} {u : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ (A ▻ B) ▻ [ u ] ⦂ A ▻ [ app t u ] ⦂ B
cup : ∀ {A} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ [ box t ] ⦂ [ t ] ⦂ A
cdown : ∀ {A} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ A
cpair : ∀ {A B} → Γ ⊢ A ▻ B ▻ A ∧ B
cfst : ∀ {A B} → Γ ⊢ A ∧ B ▻ A
csnd : ∀ {A B} → Γ ⊢ A ∧ B ▻ B
unit : Γ ⊢ ⊤
infix 3 _⊢⋆_
_⊢⋆_ : Cx Ty → Cx Ty → Set
Γ ⊢⋆ ∅ = 𝟙
Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A
infix 7 _▻◅_
_▻◅_ : Ty → Ty → Ty
A ▻◅ B = (A ▻ B) ∧ (B ▻ A)
-- Additional useful propositions.
_⦂⋆_ : ∀ {n} → VCx Box n → VCx Ty n → Cx Ty
∅ ⦂⋆ ∅ = ∅
(ts , t) ⦂⋆ (Ξ , A) = (ts ⦂⋆ Ξ) , (t ⦂ A)
-- Monotonicity with respect to context inclusion.
mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A
mono⊢ η (var i) = var (mono∈ η i)
mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u)
mono⊢ η ci = ci
mono⊢ η ck = ck
mono⊢ η cs = cs
mono⊢ η (box t) = box t
mono⊢ η cdist = cdist
mono⊢ η cup = cup
mono⊢ η cdown = cdown
mono⊢ η cpair = cpair
mono⊢ η cfst = cfst
mono⊢ η csnd = csnd
mono⊢ η unit = unit
mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ
mono⊢⋆ {∅} η ∙ = ∙
mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t
-- Shorthand for variables.
v₀ : ∀ {A Γ} → Γ , A ⊢ A
v₀ = var i₀
v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A
v₁ = var i₁
v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A
v₂ = var i₂
-- Reflexivity.
refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ
refl⊢⋆ {∅} = ∙
refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀
-- Deduction theorem.
lam : ∀ {A B Γ} → Γ , A ⊢ B → Γ ⊢ A ▻ B
lam (var top) = ci
lam (var (pop i)) = app ck (var i)
lam (app t u) = app (app cs (lam t)) (lam u)
lam ci = app ck ci
lam ck = app ck ck
lam cs = app ck cs
lam (box t) = app ck (box t)
lam cdist = app ck cdist
lam cup = app ck cup
lam cdown = app ck cdown
lam cpair = app ck cpair
lam cfst = app ck cfst
lam csnd = app ck csnd
lam unit = app ck unit
-- Detachment theorem.
det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B
det t = app (mono⊢ weak⊆ t) v₀
-- Cut and multicut.
cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B
cut t u = app (lam u) t
multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A
multicut {∅} ∙ u = mono⊢ bot⊆ u
multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t
-- Transitivity.
trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″
trans⊢⋆ {∅} ts ∙ = ∙
trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u
-- Contraction.
ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B
ccont = lam (lam (app (app v₁ v₀) v₀))
cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B
cont t = det (app ccont (lam (lam t)))
-- Exchange, or Schönfinkel’s C combinator.
cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C
cexch = lam (lam (lam (app (app v₂ v₀) v₁)))
exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C
exch t = det (det (app cexch (lam (lam t))))
-- Composition, or Schönfinkel’s B combinator.
ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
ccomp = lam (lam (lam (app v₂ (app v₁ v₀))))
comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C
comp t u = det (app (app ccomp (lam t)) (lam u))
-- Useful theorems in functional form.
dist : ∀ {A B Γ} {t : ∅ ⊢ A ▻ B} {u : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ (A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app t u ] ⦂ B
dist t u = app (app cdist t) u
up : ∀ {A Γ} {t : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ A
→ Γ ⊢ [ box t ] ⦂ [ t ] ⦂ A
up t = app cup t
down : ∀ {A Γ} {t : ∅ ⊢ A}
→ Γ ⊢ [ t ] ⦂ A
→ Γ ⊢ A
down t = app cdown t
distup : ∀ {A B Γ} {u : ∅ ⊢ A} {t : ∅ ⊢ [ u ] ⦂ A ▻ B}
→ Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app t (box u) ] ⦂ B
distup t u = dist t (up u)
unbox : ∀ {A C Γ} {t : ∅ ⊢ A} {u : ∅ ⊢ C}
→ Γ ⊢ [ t ] ⦂ A → Γ , [ t ] ⦂ A ⊢ [ u ] ⦂ C
→ Γ ⊢ [ u ] ⦂ C
unbox t u = app (lam u) t
-- FIXME ↓ FIXME ↓ FIXME -----------------------------------------------------
--
-- ???
distup′ : ∀ {A B Γ} {u : ∅ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ B}
→ Γ ⊢ [ lam t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A
→ Γ ⊢ [ app (lam t) (box u) ] ⦂ B
distup′ t u = dist t (up u)
-- multibox : ∀ {n A Γ} {[ss] : VCx Box n} {Ξ : VCx Ty n}
-- → Γ ⊢⋆ [ss] ⦂⋆ Ξ → (u : [ss] ⦂⋆ Ξ ⊢ A)
-- → Γ ⊢ {!!} ⦂ A
-- multibox {[ss] = ∅} {∅} ∙ u = box u
-- multibox {[ss] = [ss] , [ s ]} {Ξ , B} (ts , t) u = {!!}
-- FIXME ↑ FIXME ↑ FIXME -----------------------------------------------------
pair : ∀ {A B Γ} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
pair t u = app (app cpair t) u
fst : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ A
fst t = app cfst t
snd : ∀ {A B Γ} → Γ ⊢ A ∧ B → Γ ⊢ B
snd t = app csnd t
-- Closure under context concatenation.
concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B
concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u)
| {
"alphanum_fraction": 0.3935384087,
"avg_line_length": 24.974248927,
"ext": "agda",
"hexsha": "54de04e800f2006e586415d48828a723ee06e3b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "OlderBasicILP/Direct/Hilbert/Nested.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "OlderBasicILP/Direct/Hilbert/Nested.agda",
"max_line_length": 82,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "OlderBasicILP/Direct/Hilbert/Nested.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 2848,
"size": 5819
} |
open import Agda.Builtin.Equality
record Box (B : Set) : Set₁ where
constructor box
field
unbox : B
-- here: .unbox is a valid forced pattern
=box : {B : Set} {Γ₀ Γ₁ : Box B} → Box.unbox Γ₀ ≡ Box.unbox Γ₁ → Γ₀ ≡ Γ₁
=box {Γ₀ = box unbox} {box r} p = ?
open Box public
-- here: .unbox is now the name of a projection and should therefore
-- not be generated
=box' : {B : Set} {Γ₀ Γ₁ : Box B} → unbox Γ₀ ≡ unbox Γ₁ → Γ₀ ≡ Γ₁
=box' {Γ₀ = box unbox} {box r} p = ?
| {
"alphanum_fraction": 0.6168421053,
"avg_line_length": 23.75,
"ext": "agda",
"hexsha": "1cbfd89472a49c8e0de042bf09ea0dca1341a81a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3491.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3491.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3491.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 187,
"size": 475
} |
module UnSized.SimpleCell where
open import Data.Product
open import Data.String.Base
open import UnSizedIO.Object
open import UnSizedIO.IOObject
open import UnSizedIO.ConsoleObject
open import UnSizedIO.Base hiding (main)
open import UnSizedIO.Console hiding (main)
open import NativeIO
data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A
CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit
-- cellI is the interface of the object of a simple cell
cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m
-- cellC is the type of consoleObjects with interface (cellI String)
CellC : Set
CellC = ConsoleObject (cellI String)
-- cellO is a program for a simple cell which
-- when get is called writes "getting s" for the string s of the object
-- and when putting s writes "putting s" for the string
-- cellP is constructor for the consoleObject for interface (cellI String)
cellP : (s : String) → CellC
force (method (cellP s) get) =
exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ →
delay (return' (s , cellP s))
force (method (cellP s) (put x)) =
exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ →
delay (return' (_ , (cellP x)))
-- Program is another program
program : String → IOConsole Unit
program arg =
let c₀ = cellP "Start" in
method c₀ get >>= λ{ (s , c₁) →
exec1 (putStrLn s) >>
method c₁ (put arg) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (s' , c₃) →
exec1 (putStrLn s') }}}
main : NativeIO Unit
main = translateIOConsole (program "hello")
| {
"alphanum_fraction": 0.6681087763,
"avg_line_length": 27.4237288136,
"ext": "agda",
"hexsha": "ea6793f3b0fdd4972fd0c1174d6976133cd50ad8",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/UnSized/SimpleCell.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/UnSized/SimpleCell.agda",
"max_line_length": 74,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/UnSized/SimpleCell.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 491,
"size": 1618
} |
{-# OPTIONS --without-K #-}
module PiLevel1Alternative where
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Vec
open import FinVec
open F
open import ConcretePermutation
------------------------------------------------------------------------------
-- Equivalences between permutations
-- Objects are level 0 permutations ⟷
-- Morphisms are equivalences between these permutations
factorial : ℕ → ℕ
factorial 0 = 1
factorial (suc n) = n * factorial n
record EquivBetweenPerm {values : ℕ} {size : ℕ} (p₁ p₂ : CPerm values size) : Set where
constructor ebp
module p₁ = CPerm p₁
module p₂ = CPerm p₂
field
-- first we have a permutation on the underlying finite sets
π : FinVec values size
πᵒ : FinVec size values
αp : π ∘̂ πᵒ ≡ F.1C
βp : πᵒ ∘̂ π ≡ F.1C
-- then we have a permutation on these maps are consistent with p₁.π, p₂.π, etc.
ππ : Vec (FinVec values size) (factorial size) -- ??? NO
-- and so on
-- and apply
{--
Ex: the two underlying permutations p₁ and p₂ are:
values = {A,B,C}
size = 3
p₁.π = { A <=> C, B <=> A, C <=> B } represented as {C,A,B}
p₂.π = { A <=> C, B <=> A, C <=> B } represented as {C,A,B}
one equivalence between these permutations is 'id'; another has:
π = { A <=> B, B <=> C, C <=> A }
ππ = { (A <=> C) <=> (B <=> A),
(B <=> A) <=> (C <=> B),
(C <=> B) <=> (A <=> C) }
represented as p₁.πᵒ ???
--}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.537428023,
"avg_line_length": 28.4181818182,
"ext": "agda",
"hexsha": "c5945ede4389948ed9282c37f21a1d5c65c68528",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Obsolete/PiLevel1Alternative.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Obsolete/PiLevel1Alternative.agda",
"max_line_length": 88,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Obsolete/PiLevel1Alternative.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 461,
"size": 1563
} |
module Naturals where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_ ; refl ; cong )
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎ )
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
infixl 6 _+_
_+_ : ℕ → ℕ → ℕ
zero + x = x
(suc a) + x = suc (a + x)
-- Exercise: Write the reasoning chain of 3 + 4
_ : 3 + 4 ≡ 7
_ =
begin
3 + 4
≡⟨⟩
suc (2 + 4)
≡⟨⟩
suc (suc (1 + 4))
≡⟨⟩
suc (suc (suc (0 + 4)))
≡⟨⟩
suc (suc (suc 4))
≡⟨⟩
7
∎
infixl 7 _*_
_*_ : ℕ → ℕ → ℕ
zero * y = zero
suc x * y = y + (x * y)
_ : 3 * 4 ≡ 12
_ =
begin
3 * 4
≡⟨⟩
4 + (2 * 4)
≡⟨⟩
4 + (4 + (1 * 4))
≡⟨⟩
4 + (4 + (4 + (0 * 4)))
≡⟨⟩
4 + (4 + (4 + (0 * 4)))
≡⟨⟩
4 + (4 + (4 + 0))
≡⟨⟩
12
∎
_^_ : ℕ → ℕ → ℕ
x ^ zero = 1
x ^ suc y = x * (x ^ y)
-- Kinda like minus, but not exactly
infixl 6 _monus_
_monus_ : ℕ → ℕ → ℕ
zero monus y = zero
suc x monus zero = suc x
suc x monus suc y = x monus y
_ : 5 monus 3 ≡ 2
_ =
begin
5 monus 3
≡⟨⟩
4 monus 2
≡⟨⟩
3 monus 1
≡⟨⟩
2 monus 0
≡⟨⟩
2
∎
_ : 3 monus 5 ≡ 0
_ =
begin
2 monus 4
≡⟨⟩
1 monus 3
≡⟨⟩
0 monus 2
≡⟨⟩
0
∎
{-# BUILTIN NATPLUS _+_ #-}
{-# BUILTIN NATTIMES _*_ #-}
{-# BUILTIN NATMINUS _monus_ #-}
data Bin : Set where
-- Empty bitstring
⟨⟩ : Bin
-- Append a zero
_O : Bin → Bin
-- Append a one
_I : Bin → Bin
inc : Bin → Bin
inc ⟨⟩ = ⟨⟩ I
inc (b O) = b I
inc (b I) = (inc b) O
to : ℕ → Bin
to zero = ⟨⟩ O
to (suc n) = inc (to n)
from : Bin → ℕ
from ⟨⟩ = zero
from (b O) = from b * 2
from (b I) = from b * 2 + 1
-- I tried to prove these things doing some basic stuff but sadly got nowhere
-- I probably should just read the next chapter! (lol)
--multCommutes : (a : ℕ) → (b : ℕ) → a * b ≡ b * a
--multCommutes zero zero = refl
--multCommutes zero (suc b) = multCommutes zero b
--multCommutes (suc a) zero = multCommutes a zero
--multCommutes (suc a) (suc b) = {! cong (multCommutes a b) !}
--multIsAssociative : (a : ℕ) → (b : ℕ) → (c : ℕ) → (a * b) * c ≡ a * (b * c)
--multIsAssociative zero b c = refl
--multIsAssociative (suc a) zero c = refl
--multIsAssociative (suc a) (suc b) zero = refl
--multIsAssociative (suc a) (suc b) (suc c) = {! multIsAssociative a b c !}
| {
"alphanum_fraction": 0.5128540305,
"avg_line_length": 17.2556390977,
"ext": "agda",
"hexsha": "3a38d0b8aee32e452ebdce7ddc3a38b821096d38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "GustavoMF31/upgraded-happiness",
"max_forks_repo_path": "Naturals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "GustavoMF31/upgraded-happiness",
"max_issues_repo_path": "Naturals.agda",
"max_line_length": 77,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9f81052c4c872f0e19677bf6e9710350d3acf0e5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "GustavoMF31/upgraded-happiness",
"max_stars_repo_path": "Naturals.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1073,
"size": 2295
} |
module OpAppP where
data Bool
: Set
where
false
: Bool
true
: Bool
_&&_
: Bool
→ Bool
→ Bool
false && _
= false
true && b
= b
| {
"alphanum_fraction": 0.5159235669,
"avg_line_length": 7.1363636364,
"ext": "agda",
"hexsha": "6ec4a0f18ef4ceb9ae47116db71168ea2365ff02",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/pattern/OpAppP.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/pattern/OpAppP.agda",
"max_line_length": 19,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/pattern/OpAppP.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 60,
"size": 157
} |
module SizedIO.coIOIOObject where
open import Data.Unit.Base
open import Data.Product
open import Data.String.Base
open import Size
open import SizedIO.Object
open import SizedIO.Base
open import SizedIO.Console
open import SizedIO.coIOIO
-- open import SizedIO.IOObject
record IOObject' (i : Size) (iface : Interface)(C : Set)(R : C → Set) : Set
where
coinductive
field
method : ∀{j : Size< i} (m : Method iface) →
IO j C R (Response iface m × IOObject' j iface C R)
open IOObject' public
-- An IO object is like a simple object,
-- but the method returns IO applied to the result type of a simple object
-- which means the method returns an IO program which when terminating
-- returns the result of the simple object
record coIO²Object (i : Size) (iface : Interface)
(Cin : Set)(Rin : Cin → Set)
(Cext : Set)(Rext : Cext → Set) : Set
where
coinductive
field
method' : ∀{j : Size< i} (m : Method iface) →
coIO²∞ ∞ Cin Rin Cext Rext
(Response iface m × coIO²Object j iface Cin Rin Cext Rext)
open coIO²Object public
selfrefIOObject : (i : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set) → Set
selfrefIOObject i iface Cext Rext = coIO²Object i iface (Method iface)
(Response iface) Cext Rext
mutual
compileSelfRef : (i : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set)
(obj : selfrefIOObject i iface Cext Rext) →
IOObject' i iface Cext Rext
IO.force (method (compileSelfRef i iface Cext Rext obj) {i'} m) {j} =
compileSelfRefaux i' j iface Cext Rext (Response iface m) (coIO²∞.force (method' obj {i'} m) j)
compileSelfRefaux :
(i : Size) (j : Size< i)
(iface : Interface) (let M = Method iface) (let R = Response iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO² ∞ j M R Cext Rext (A × coIO²Object i iface M R Cext Rext))
→ IO' j Cext Rext (A × IOObject' i iface Cext Rext)
compileSelfRefaux i j iface Cext Rext A (coIO².return (r , obj)) = return' (r , compileSelfRef i iface Cext Rext obj)
compileSelfRefaux i j iface Cext Rext A (dof i' m f) = {! >>=!}
compileSelfRefaux i j iface Cext Rext A (do∞ c f) =
do' c (λ r → compileSelfRefaux'' i j iface Cext Rext A (f r))
compileSelfRefaux'' : (i : Size) (j : Size< i)
(iface : Interface) (let M = Method iface) (let R = Response iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO²∞ j M R Cext Rext (A × coIO²Object i iface M R Cext Rext))
→ IO j Cext Rext (A × IOObject' i iface Cext Rext)
IO.force (compileSelfRefaux'' i j iface Cext Rext A coObj) {j''} = compileSelfRefaux i j'' iface Cext Rext A (coIO²∞.force coObj j'')
-- compileSelfRefaux'' i' j iface Cext Rext A coObj
-- = compileSelfRefaux' i' j iface Cext Rext A (coIO²∞.force coObj {!!})
{-
compileSelfRefaux' :
(i' : Size) (j : Size< i')
(iface : Interface) (let M = Methods iface) (let R = Responses iface)
(Cext : Set) (Rext : Cext → Set)
(A : Set)
(coObj : coIO² ∞ j M R Cext Rext (A × coIO²Object i' iface M R Cext Rext))
→ IO j Cext Rext (A × IOObject' i' iface Cext Rext)
IO.force (compileSelfRefaux' i' j iface Cext Rext A coObj) = compileSelfRefaux i' j iface Cext Rext A coObj
-}
{-
123;456hallo789
123;456hallo789
123;789hallo456
123;789hallo456
123;789456
123;789456
123;456789
123;456789
123;456789
123;456789
C-x r k -- kill rectangle
C-x r y -- yank rectangle
C-x r t -- text rectangle
-}
{-
M-x abbrev-mode
C-x ail
crosss
→
\
-}
-- method' obj {j'} m
{-
compileSelfRefaux : (j' : Size) (iface : Interface)
(Cext : Set) (Rext : Cext → Set)
(m : Methods iface)
( p : coIO²∞ ∞ (Methods iface)
(Responses iface) Cext Rext
(Responses iface m ×
coIO²Object j' iface (Methods iface)
(Responses iface) Cext Rext))
→ IO' j' Cext Rext
(Responses iface m ×
IOObject' j iface Cext Rext)IO' j' Cext Rext
(Responses iface m × IOObject' j iface Cext Rext)
-}
| {
"alphanum_fraction": 0.5826362198,
"avg_line_length": 32.0507246377,
"ext": "agda",
"hexsha": "390a0078c4784b5644517431d823e544f181632e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/SizedIO/coIOIOObject.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/SizedIO/coIOIOObject.agda",
"max_line_length": 135,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/SizedIO/coIOIOObject.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1397,
"size": 4423
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.Empty where
open import Light.Level using (Level ; Setω)
open import Light.Variable.Sets
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field
ℓ : Level
Empty : Set ℓ
eliminate : Empty → 𝕒
open Library ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.6674757282,
"avg_line_length": 25.75,
"ext": "agda",
"hexsha": "56b55a0903abd93889606f11277f640020dd2fe9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Data/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Data/Empty.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Data/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 98,
"size": 412
} |
open import Everything
module Test.Test6 where
module TestReflexivity where
postulate
X : Set
F : X → X → Set
instance ReflexivityF : Reflexivity.class F
test : ∀ {y} → F y y
test {y = y} = reflexivity
{-
Goal: F y y
Have: {𝔬 : Ł} {𝔒 : Set 𝔬} {𝔯 : Ł} {_∼_ : 𝔒 → 𝔒 → Set 𝔯}
{{r : 𝓡eflexivity {𝔬} {𝔒} {𝔯} _∼_}} {x : 𝔒} →
x ∼ x
————————————————————————————————————————————————————————————
y : X
_𝔬1 : Ł
_𝔒1 : Set _𝔬1
_𝔯1 : Ł
__∼1_ : _𝔒1 → _𝔒1 → Set _𝔯1
_r1 : 𝓡eflexivity {_𝔬1} {_𝔒1} {_𝔯1} __∼1_
_x1 : _𝔒1
__∼1_ _x1 _x1 = F y y
__∼1_ := λ s t → F s t
_x1 := y
__∼1_ := λ s t → F t s
_x1 := y
__∼1_ := λ s t → F y y
λ {𝔬} {𝔒} {𝔯} {_∼_} → 𝓡eflexivity.reflexivity
-}
module _Indexed where
record I (M : Set) (N : M → Set) : Set where
field f : ∀ {m} → N m
open I ⦃ … ⦄
postulate
A : Set
B : A → Set
instance iB : I A B
test : ∀ {a} → B a
test {a = a} = f
module IndexedTotal1Var where
record Indexed (M : Set) (N : M → Set) : Set where
field fooI : ∀ {m} → N m
open Indexed ⦃ … ⦄
record Total (N : Set) : Set where
field fooT : N
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
B' : A → Set
instance iIndexed : Indexed A B
instance iTotal : ∀ {x} → Total (B x)
instance iIndexed' : Indexed A B'
instance iTotal' : ∀ {x} → Total (B' x)
testIndexed : ∀ {a} → B a
testIndexed {a = a} = fooI
testTotal : ∀ {a} → B a
testTotal {a = a} = fooT
{-
Goal: B a
Have: {M : Set} {N : M → Set} {{r : R M N}} {m : M} → N m
————————————————————————————————————————————————————————————
a : A
_M : Set
_N : _M → Set
_r : R _M _N
_m : _M
_N _m = B a
no unconstrained metavariables in type of _r because _M occurs in the type of _N and _N _m = B a
candidate#1
_r := iR : R A B
_M = A
_M := A
_N = B
_N := B
now we can solve for _m:
_N := B
_N _m = B a
B _m = B a
_m = a
_m := a
-}
module Indexed≡Total2Prop where
open import Oscar.Data.Proposequality
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) {F : ∀ {m} (n : N m) → Set} ⦃ _ : (λ {m} (n : N m) → S n (s n)) ≡ F ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S n (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → N → Set) : Set where
field fooT : ∀ n → S n (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f : ∀ {x} → B x → B x
F : ∀ {x} → B x → B x → Set
instance iIndexed : Indexed B f F ⦃ ∅ ⦄
instance iTotal : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F b (f b)
testIndexed = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F b (f b)
testTotal = fooT {S = F}
module Indexed≡Total1Prop where
open import Oscar.Data.Proposequality
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → Set) {F : ∀ {m} (n : N m) → Set} ⦃ _ : (λ {m} (n : N m) → S (s n)) ≡ F ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → Set) : Set where
field fooT : ∀ n → S (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f : ∀ {x} → B x → B x
F : ∀ {x} → B x → Set
instance iIndexed : Indexed B f F ⦃ ∅ ⦄
instance iTotal : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F (f b)
testIndexed = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F (f b)
testTotal = fooT {S = F}
module Indexed≡Total1Prop<Constraint where
open import Oscar.Data.Proposequality
data Luft {a} {A : Set a} (x : A) : Set where
instance ∅ : Luft x
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → Set) ⦃ _ : Luft (λ {m} → s {m}) ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → Set) : Set where
field fooT : ∀ n → S (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f : ∀ {x} → B x → B x
F : ∀ {x} → B x → Set
instance iIndexed : Indexed B f F
instance iTotal : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F (f b)
testIndexed = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F (f b)
testTotal = fooT {S = F}
module Indexed≡Total2Prop<Constraint-Multi where
open import Oscar.Data.Proposequality
data Luft {a} {A : Set a} (x : A) : Set where
instance ∅ : Luft x
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) ⦃ _ : Luft (λ {m} → s {m}) ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S n (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → N → Set) : Set where
field fooT : ∀ n → S n (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f f' : ∀ {x} → B x → B x
F F' : ∀ {x} → B x → B x → Set
instance _ : Indexed B f F
instance _ : Indexed B f' F
instance _ : Indexed B f F'
instance _ : Indexed B f' F'
instance _ : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F b (f b)
testIndexed = fooI ⦃ ∅ ⦄
testIndexed2 : ∀ {a} {b : B a} → F (f b) (f (f b))
testIndexed2 = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F b (f b)
testTotal = fooT {S = F}
module Indexed≡Total2Prop<Constraint-Multi-2Fun where
open import Oscar.Data.Proposequality
data Luft {a} {A : Set a} (x : A) : Set where
instance ∅ : Luft x
record Indexed {M : Set} (N : M → Set) (s t : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) ⦃ _ : Luft (λ {m} → s {m}) ⦄ ⦃ _ : Luft (λ {m} → t {m}) ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S (t n) (s n)
fooI : {M : Set} {N : M → Set} {s t : ∀ {m} → N m → N m} {S : ∀ {m} → N m → N m → Set} ⦃ _ : Indexed N s t S ⦄ → ∀ {m} {n : N m} → S (t n) (s n)
fooI ⦃ I ⦄ = Indexed.fooI I -- equivalently, fooI = Indexed.fooI ⦃ ∅ ⦄ ⦃ ∅ ⦄ !
record Total {N : Set} (s t : N → N) (S : N → N → Set) ⦃ _ : Luft s ⦄ ⦃ _ : Luft t ⦄ : Set where
field fooT : ∀ {n} → S (t n) (s n)
fooT : {N : Set} {s t : N → N} {S : N → N → Set} ⦃ _ : Total s t S ⦄ → ∀ {n : N} → S (t n) (s n)
fooT ⦃ I ⦄ = Total.fooT I
IndexedTotal : {M : Set} (N : M → Set) (s t : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) → Set
IndexedTotal _ s t S = ∀ {x} → Total (s {x}) (t {x}) (S {x})
postulate
A : Set
B : A → Set
f f' : ∀ {x} → B x → B x
g g' : ∀ {x} → B x → B x
F F' : ∀ {x} → B x → B x → Set
instance _ : Indexed B f f F
instance _ : Indexed B f' g F
instance _ : Indexed B f g F'
instance _ : Indexed B f' g F'
instance _ : IndexedTotal B f f F
instance _ : IndexedTotal B f' g F
instance _ : IndexedTotal B f g F'
instance _ : IndexedTotal B f' g F'
instance _ : Indexed B f g F
-- instance _ : Indexed B (λ b → f (g' b)) (λ b → g (g' b)) F -- this would overlap with the above
instance _ : ∀ {x} → Total (f {x}) (g {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F (g b) (f b)
testIndexed = fooI
testIndexed2 : ∀ {a} {b : B a} → F (g (g' b)) (f (g' b))
testIndexed2 = fooI
testIndexed3 : ∀ {a} {b : B a} → F (f (g' b)) (f (g' b))
testIndexed3 = fooI
testTotal : ∀ {a} {b : B a} → F (g b) (f b)
testTotal = fooT
module Indexed≡Total2Prop<Constraint-Multi-2Fun-NoIndexedRecord where
open import Oscar.Data.Proposequality
data Luft {a} {A : Set a} (x : A) : Set where
instance ∅ : Luft x
record Total {N : Set} (s t : N → N) (S : N → N → Set) ⦃ _ : Luft s ⦄ ⦃ _ : Luft t ⦄ : Set where
field fooT : ∀ {n} → S (t n) (s n)
fooT : {N : Set} {s t : N → N} {S : N → N → Set} ⦃ _ : Total s t S ⦄ → ∀ {n : N} → S (t n) (s n)
fooT ⦃ I ⦄ = Total.fooT I
Indexed : {M : Set} (N : M → Set) (s t : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) (x : M) → Set
Indexed _ s t S x = Total (s {x}) (t {x}) (S {x})
IndexedTotal : {M : Set} (N : M → Set) (s t : ∀ {m} → N m → N m) (S : ∀ {m} → N m → N m → Set) → Set
IndexedTotal _ s t S = ∀ {x} → Total (s {x}) (t {x}) (S {x})
fooI : {M : Set} {N : M → Set} {s t : ∀ {m} → N m → N m} {S : ∀ {m} → N m → N m → Set} ⦃ _ : IndexedTotal N s t S ⦄ → ∀ {m} {n : N m} → S (t n) (s n)
fooI = fooT
fooI' : {M : Set} {N : M → Set} → ∀ {m} {s t : N m → N m} {S : N m → N m → Set} ⦃ _ : Total s t S ⦄ → {n : N m} → S (t n) (s n)
fooI' = fooT
postulate
A : Set
B : A → Set
f f' : ∀ {x} → B x → B x
g g' : ∀ {x} → B x → B x
F F' : ∀ {x} → B x → B x → Set
instance _ : IndexedTotal B f f F
instance _ : IndexedTotal B f' g F
instance _ : IndexedTotal B f g F'
instance _ : IndexedTotal B f' g F'
instance _ : IndexedTotal B f g F
-- instance _ : Indexed B (λ b → f (g' b)) (λ b → g (g' b)) F -- this would overlap with the above
-- instance _ : ∀ {x} → Total (f {x}) (g {x}) (F {x})
module _ {a a' : A} (b : B a) (b' : B a') where
postulate instance _ : Total (g {a'}) f' F
postulate instance i2 : Indexed B g f' F a
testTotal' : F (g _) (f _)
testTotal' = fooT {n = b}
testTotal'2 : F (f' _) (g _)
testTotal'2 = fooT {n = b'}
testTotal'2I : F (f' b') (g _)
testTotal'2I = fooI {m = a'} -- use fooI when instance given by Total
testTotal'2I' : F (f' b') (g b')
testTotal'2I' = fooI' {N = B}
testTotal'3 : F (f' b) (g b)
testTotal'3 = fooI {m = a} -- or by Indexed
testTotal'3' : F (f' b) (g b)
testTotal'3' = fooI' {N = B}
testTotalLhs : ∀ {a} {b : B a} → _
testTotalLhs {a} {b} = fooT {s = f'} {S = F'} {n = b}
testIndexed : ∀ {a} {b : B a} → F (g b) (f b)
testIndexed {a} {b} = fooI {S = λ {x} → F {x}} -- use fooI when instance given by IndexedTotal
{-
Have: {M : Set} {N : M → Set} {s t : {m : M} → N m → N m}
{S : {m : M} → N m → N m → Set}
{{_ : Indexed {M} N s t S {{∅}} {{∅}}}} {m : M} {n : N m} →
S {m} (t {m} n) (s {m} n)
Have: {N : Set} {s t : N → N} {S : N → N → Set}
{{_ : Total {N} s t S {{∅}} {{∅}}}} {n : N} →
S (t n) (s n)
-}
testIndexed2 : ∀ {a} {b : B a} → F (g (g' b)) (f (g' b))
testIndexed2 = fooT
testIndexed3 : ∀ {a} {b : B a} → F (f (g' b)) (f (g' b))
testIndexed3 = fooT
testTotal : ∀ {a} {b : B a} → F (g b) (f b)
testTotal = fooT
module Indexed≡Total1Prop+Data where
open import Oscar.Data.Proposequality
data [_/_/_]≡_ {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → Set) (F : ∀ {m} (n : N m) → Set) : Set where
instance ∅ : [ N / s / S ]≡ F
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → Set) ⦃ _ : [ N / s / S ]≡ λ {m} (n : N m) → S (s n) ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → Set) : Set where
field fooT : ∀ n → S (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f : ∀ {x} → B x → B x
F : ∀ {x} → B x → Set
instance iIndexed : Indexed B f F ⦃ ∅ ⦄
instance iTotal : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F (f b)
testIndexed = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F (f b)
testTotal = fooT {S = F}
module Indexed≡Total1Prop+Data2 where
open import Oscar.Data.Proposequality
data [_/_] {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) : Set where
instance ∅ : [ N / s ]
record Indexed {M : Set} (N : M → Set) (s : ∀ {m} → N m → N m) (S : ∀ {m} → N m → Set) ⦃ _ : [ N / s ] ⦄ : Set where
field fooI : ∀ {m} {n : N m} → S (s n)
open Indexed ⦃ … ⦄
record Total {N : Set} (s : N → N) (S : N → Set) : Set where
field fooT : ∀ n → S (s n)
open Total ⦃ … ⦄
postulate
A : Set
B : A → Set
f : ∀ {x} → B x → B x
F : ∀ {x} → B x → Set
instance iIndexed : Indexed B f F ⦃ ∅ ⦄
instance iTotal : ∀ {x} → Total (f {x}) (F {x})
testIndexed : ∀ {a} {b : B a} → F (f b)
testIndexed = fooI ⦃ ∅ ⦄
testTotal : ∀ {a} (b : B a) → F (f b)
testTotal = fooT {S = F}
| {
"alphanum_fraction": 0.4672576733,
"avg_line_length": 26.6302895323,
"ext": "agda",
"hexsha": "0a43900422bd57df70b523eb0870104ed497560d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Test6.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Test6.agda",
"max_line_length": 176,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Test6.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5340,
"size": 11957
} |
{-# OPTIONS --cubical-compatible --rewriting -v rewriting:50 #-}
open import Agda.Primitive using (Level; _⊔_; Setω; lzero; lsuc)
module Issue4020 where
data _≡_ {ℓ : Level} {A : Set ℓ} (a : A) : A → Set ℓ where
refl : a ≡ a
{-# BUILTIN REWRITE _≡_ #-}
ap : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {a₁ a₂} → a₁ ≡ a₂ → f a₁ ≡ f a₂
ap f refl = refl
ap-const-Set : ∀ {a b} {A : Set a} {a₁ a₂ : A} (p : a₁ ≡ a₂) → ap (\ _ → Set b) p ≡ refl
ap-const-Set refl = refl
{-# REWRITE ap-const-Set #-}
{- /home/jason/bug.agda:18,1-29
ap-const-Set is not a legal rewrite rule, since the following variables are not bound by the left hand side: b
when checking the pragma REWRITE ap-const-Set -}
| {
"alphanum_fraction": 0.6111908178,
"avg_line_length": 31.6818181818,
"ext": "agda",
"hexsha": "e5ca363e57fb6c9c77dcb38cfd9008b5a32e5804",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue4020.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue4020.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue4020.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 274,
"size": 697
} |
{-# OPTIONS --without-K #-}
module PComp where
open import Data.Empty
open import Data.Sum
open import Data.Nat as Nat
open import Data.Nat.Properties.Simple
open import Data.Nat.Properties
open import Data.Product
open import Data.Bool renaming (Bool to 𝔹)
open import Data.Bool.Properties
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Relation.Binary
open DecTotalOrder ≤-decTotalOrder using ()
renaming (refl to ≤-refl; trans to ≤-trans)
-- open import Size
-- record D {i : Size} (A : Set) : Set where
-- coinductive
-- field step : {j : Size< i} → A ⊎ D {j} A
-- open D public
-- μ' : ∀{i} → (ℕ → 𝔹) → ℕ → D {i} ℕ
-- μ' p n .step = if p n then inj₁ n else inj₂ (μ' p (suc n))
primRec : {X Y : Set} → (X → Y) → (ℕ → Y → X → Y) → ℕ → X → Y
primRec f g zero x = f x
primRec f g (suc n) x = g n (primRec f g n x) x
record D (A : Set) : Set where
coinductive
field step : A ⊎ D A
open D public
μ' : (ℕ → 𝔹) → ℕ → D ℕ
c : (ℕ → 𝔹) → ℕ → 𝔹 → ℕ ⊎ (D ℕ)
μ' p n .step = c p n (p n)
c p n false = inj₂ (μ' p (1 + n))
c p n true = inj₁ n
μ : (ℕ → 𝔹) → D ℕ
μ p = μ' p 0
isEven : ℕ → 𝔹
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc n)) = isEven n
data _↓_ {A : Set} (d : D A) (a : A) : Set where
now : d .step ≡ inj₁ a → d ↓ a
later : {d' : D A} → d .step ≡ inj₂ d' → d' ↓ a → d ↓ a
foo : μ' isEven 3 ↓ 4
foo = later (cong inj₂ refl) (now refl)
μ-finds-tt : ∀{p : ℕ → 𝔹} {m n : ℕ} → μ' p m ↓ n → p n ≡ true
μ-finds-tt {p} {m} (now q) with p m | inspect p m
μ-finds-tt {p} {m} (now ()) | false | _
μ-finds-tt {p} {m} (now refl) | true | [ eq ] = eq
μ-finds-tt {p} {m} (later q t) with p m
μ-finds-tt {p} {m} (later refl t) | false = μ-finds-tt t
μ-finds-tt {p} {m} (later () t) | true
-- | Compute the number of steps taken to obtain p n = tt.
μ-dist : ∀{p : ℕ → 𝔹} {m n : ℕ} → μ' p m ↓ n → ∃ λ k → n ≡ m + k
μ-dist {p} {m} (now q) with p m
μ-dist {p} {m} (now ()) | false
μ-dist {p} {m} (now refl) | true = (0 , sym (+-identityʳ m))
μ-dist {p} {m} (later q t) with p m
μ-dist {p} {m} (later refl t) | false =
let (k , e) = μ-dist t
in (1 + k , trans e (sym (+-suc m k)))
μ-dist {p} {m} (later () t) | true
empty-interval : ∀ {m k} → m ≤ k → k < m → ⊥
empty-interval z≤n ()
empty-interval (s≤s p) (s≤s q) = empty-interval p q
suc≤⇒≤ : ∀ m n → suc m ≤ n → m ≤ n
suc≤⇒≤ m zero ()
suc≤⇒≤ .0 (suc n) (s≤s z≤n) = z≤n
suc≤⇒≤ .(suc _) (suc .(suc _)) (s≤s (s≤s p)) = s≤s (suc≤⇒≤ _ _ (s≤s p))
-- | The proof proceeds by induction on the termination proof t : μ' p m ↓ n.
-- In the process, we first distinguishing whether m = k or m < k.
-- Next, we check whether the computation has termination, that is, whether
-- t = now ... or t = later.
-- Finally, we distinguish on the values of p m, which allows us to make
-- a computation step with μ'. The other cases follow then from there.
μ-min : ∀{p : ℕ → 𝔹} {m n : ℕ} → μ' p m ↓ n → ∀ k → m ≤′ k → k < n → p k ≡ false
-- m = k
---- t = now
μ-min {p} {.m} (now q) m ≤′-refl u with p m
μ-min {p} {.m} (now q) m ≤′-refl u | false = refl
μ-min {p} {.m} (now refl) m ≤′-refl u | true = ⊥-elim (1+n≰n u)
-- m = k
---- t = later
μ-min {p} {.m} (later q t) m ≤′-refl u with p m
μ-min {p} {.m} (later q t) m ≤′-refl u | false = refl
μ-min {p} {.m} (later () t) m ≤′-refl u | true
-- m < k
---- t = now
μ-min {p} {m} (now q) .(suc _) (≤′-step l) u with p m
μ-min {p} {m} (now ()) .(suc _) (≤′-step l) u | false
μ-min {p} {.(suc _)} (now refl) .(suc _) (≤′-step l) (s≤s u) | true =
⊥-elim (empty-interval (suc≤⇒≤ _ _ (≤′⇒≤ l)) u)
-- m < k
---- t = later
μ-min {p} {m} (later q t) .(suc _) (≤′-step {k'} l) u with p m
μ-min {p} {m} (later refl t) .(suc _) (≤′-step {k'} l) u | false =
μ-min t (suc k') (s≤′s l) u
μ-min {p} {m} (later () t) .(suc n) (≤′-step {n} l) u | true
Min : (ℕ → Set) → ℕ → Set
Min P n = P n × ∀ k → k < n → ¬ (P k)
-- | Definition of partial correctness for the μ-operator.
-- This states that if μ p terminates with n as result, then n is the
-- minimal number, for which p n ≡ true.
PartialCorrectness : Set
PartialCorrectness = ∀{p : ℕ → 𝔹} {n : ℕ} →
μ p ↓ n → Min (λ k → p k ≡ true) n
μ-pcorrect : PartialCorrectness
μ-pcorrect t = (μ-finds-tt t , (λ k u → not-¬ (μ-min t k (z≤′n) u)))
-- Correctness : Set
-- Correctness = ∀{p : ℕ → 𝔹} →
-- ¬(∃ λ n → μ p ↓ n) → ∀ n → ¬(p n ≡ true)
-- find-min' : ∀{p : ℕ → 𝔹} → ∀ n → p n ≡ true → (m : ℕ) → m ≤ n →
-- (∃ λ k → k ≤ n × p k ≡ true)
-- find-min' {p} last pt zero l with p 0 | inspect p 0
-- find-min' {p} last pt zero l | false | e = (last , ≤-refl , pt)
-- find-min' {p} last pt zero l | true | [ e ] = (zero , l , e)
-- find-min' {p} last pt (suc m) l with p m | inspect p m
-- find-min' {p} last pt (suc m) l | false | e =
-- find-min' last pt m (suc≤⇒≤ m last l)
-- find-min' {p} last pt (suc m) l | true | [ e ] =
-- let (k , k≤last , q) = find-min' {p} m e m ≤-refl
-- in (k , ≤-trans k≤last (suc≤⇒≤ m last l) , q)
-- find-min : ∀{p : ℕ → 𝔹} → ∀ n → p n ≡ true → (∃ λ k → k ≤ n × p k ≡ true)
-- find-min {p} n pt = find-min' {p} n pt n ≤-refl
-- min-terminate : ∀{p : ℕ → 𝔹} → ∀ n (e : p n ≡ true) (m : ℕ) → m ≤ n → ∃ λ k → μ p ↓ k
-- min-terminate {p} last pt zero m≤n with p 0 | inspect p 0
-- min-terminate {p} last pt zero m≤n | false | e = {!!} , {!!}
-- min-terminate {p} last pt zero m≤n | true | e = {!!}
-- min-terminate {p} last pt (suc m) m≤n = {!!}
-- lem : ∀{p : ℕ → 𝔹} → ∀ n → p n ≡ true → ∃ λ k → μ p ↓ k
-- lem {p} zero q with p 0 | inspect p 0
-- lem {p} zero () | false | _
-- lem {p} zero q | true | [ e ] = (0 , now (cong (c p 0) e))
-- lem {p} (suc n) q with p (suc n) | inspect p (suc n)
-- lem {p} (suc n) () | false | e
-- lem {p} (suc n) q | true | e =
-- let (k , t) = lem n {!!}
-- in (suc n , now {!!})
-- μ-correct : Correctness
-- μ-correct q n pt = q (lem n pt)
| {
"alphanum_fraction": 0.505536275,
"avg_line_length": 34.3806818182,
"ext": "agda",
"hexsha": "b224d39af4524d84974218bae4a8974af27c6b0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Partial/PComp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Partial/PComp.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Partial/PComp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2604,
"size": 6051
} |
{-# BUILTIN NATURAL ℕ #-}
------------------------------------------------------------------------
-- The Integers
--
-- or an extension of the Naturals (see the-naturals.agda)
------------------------------------------------------------------------
module the-integer where
open import Data.Nat as ℕ
using (ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_)
import Data.Nat.Show as ℕ
import Relation.Nullary.Decidable as Dec
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open PropEq.≡-Reasoning
| {
"alphanum_fraction": 0.5500878735,
"avg_line_length": 29.9473684211,
"ext": "agda",
"hexsha": "9280cbe30d9b8ab3f59c7fd32cb67a9ccbd9f141",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "seanwestfall/agda_explorations",
"max_forks_repo_path": "src/the-integers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "seanwestfall/agda_explorations",
"max_issues_repo_path": "src/the-integers.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9fd9fbf9f265bf526a2ec83e9442dedc7106b80c",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "seanwestfall/agda_explorations",
"max_stars_repo_path": "src/the-integers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 130,
"size": 569
} |
-- {-# OPTIONS -v tc.lhs.unify.flexflex:100 -v tc.lhs.unify.assign:100 -v tc.lhs:100 #-}
module Multisplit where
postulate
Level : Set
lzero : Level
lsuc : Level → Level
_⊔_ : Level → Level → Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
data Bool : Set where
true false : Bool
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data Fin : ℕ → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} → Fin n → Fin (suc n)
data Vec {a} (A : Set a) : ℕ → Set a where
[] : Vec A zero
_∷_ : ∀ {n} (x : A) → Vec A n → Vec A (suc n)
data Fin∘suc : ℕ → Set where
zero : ∀ {n} → Fin∘suc n
suc : ∀ {n} → Fin∘suc n → Fin∘suc (suc n)
_==_ : Bool → Bool → Bool
b₁ == b₂ = {!b₁ b₂!}
lookup : ∀ {a n} {A : Set a} → Vec A n → Fin n → A
lookup xs i = {!xs i!}
32-cases : Bool → Bool → Bool → Bool → Bool → Bool
32-cases a b c d e = {!a b c d e!}
No-splits-after-absurd-pattern-encountered :
(n : ℕ) → Fin n → Fin n → Set
No-splits-after-absurd-pattern-encountered n i j = {!n i j!}
Dotted-patterns-are-not-split : ∀ n → Fin∘suc n → Set
Dotted-patterns-are-not-split n i = {!i n!}
| {
"alphanum_fraction": 0.567315834,
"avg_line_length": 24.1020408163,
"ext": "agda",
"hexsha": "0f0ddf3903313eac0bcbf9482e1dfe0346111910",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/interaction/Multisplit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/interaction/Multisplit.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/interaction/Multisplit.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 465,
"size": 1181
} |
{-# OPTIONS -v tc.meta:20 #-}
-- Andreas, 2011-04-15
-- source: Conor's post "foldl Miller magic" on the Agda list (2008)
module Issue325b where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data Vec (X : Set) : Nat -> Set where
[] : Vec X zero
cons : (n : Nat) -> X -> Vec X n -> Vec X (suc n)
foldl : (S : Set)(T : Nat -> Set) ->
((n : Nat) -> T n -> S -> T (suc n)) ->
T zero ->
(n : Nat) -> Vec S n -> T n
foldl S T0 f t ._ [] = t
foldl S Tsn f t ._ (cons m s ss) =
foldl S _ -- (\ n -> Tsn (suc n))
-- (\ n -> f _) (f _ t s) _ ss
_ (f zero t s) _ ss
-- (\ n -> f (suc n)) (f zero t s) _ ss
{- PROTOCOL:
term _43 S Tsn f t m s ss zero := suc zero
term _43 S Tsn f t m s ss (suc n) := suc (_43 S Tsn f t m s ss n)
term _43 S Tsn f t m s ss m := suc m
Pruning could give us:
_43 m zero := suc zero
_43 m (suc n) := suc (_43 m n)
_43 m m := suc m
We could then try
a) _43 x y := suc x failing
b) _43 x y := suc y succeeding
but this only complete in the absence of recursion.
-}
| {
"alphanum_fraction": 0.5171455051,
"avg_line_length": 23.4565217391,
"ext": "agda",
"hexsha": "1b5b584eb1ec3d928b8cf117897a949b0d0ec21b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/bugs/Issue325b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/bugs/Issue325b.agda",
"max_line_length": 68,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/bugs/Issue325b.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 401,
"size": 1079
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Inversion where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Consequences.Syntactic
open import Definition.Typed.Consequences.Substitution
open import Definition.Typed.Consequences.Inequality
open import Tools.Product
open import Tools.Empty using (⊥; ⊥-elim)
-- Inversion of U (it has no type).
inversion-U : ∀ {Γ C} → Γ ⊢ U ∷ C → ⊥
inversion-U (conv x x₁) = inversion-U x
-- Inversion of natural number type.
inversion-ℕ : ∀ {Γ C} → Γ ⊢ ℕ ∷ C → Γ ⊢ C ≡ U
inversion-ℕ (ℕⱼ x) = refl (Uⱼ x)
inversion-ℕ (conv x x₁) = trans (sym x₁) (inversion-ℕ x)
-- Inversion of Empty.
inversion-Empty : ∀ {Γ C} → Γ ⊢ Empty ∷ C → Γ ⊢ C ≡ U
inversion-Empty (Emptyⱼ x) = refl (Uⱼ x)
inversion-Empty (conv x x₁) = trans (sym x₁) (inversion-Empty x)
-- Inversion of Unit.
inversion-Unit : ∀ {Γ C} → Γ ⊢ Unit ∷ C → Γ ⊢ C ≡ U
inversion-Unit (Unitⱼ x) = refl (Uⱼ x)
inversion-Unit (conv x x₁) = trans (sym x₁) (inversion-Unit x)
-- Inversion of Π-types.
inversion-Π : ∀ {F G Γ C}
→ Γ ⊢ Π F ▹ G ∷ C → Γ ⊢ F ∷ U × Γ ∙ F ⊢ G ∷ U × Γ ⊢ C ≡ U
inversion-Π (Πⱼ x ▹ x₁) = x , x₁ , refl (Uⱼ (wfTerm x))
inversion-Π (conv x x₁) = let a , b , c = inversion-Π x
in a , b , trans (sym x₁) c
inversion-Σ : ∀ {F G Γ C}
→ Γ ⊢ Σ F ▹ G ∷ C → Γ ⊢ F ∷ U × Γ ∙ F ⊢ G ∷ U × Γ ⊢ C ≡ U
inversion-Σ (Σⱼ x ▹ x₁) = x , x₁ , refl (Uⱼ (wfTerm x))
inversion-Σ (conv x x₁) = let a , b , c = inversion-Σ x
in a , b , trans (sym x₁) c
-- Inversion of zero.
inversion-zero : ∀ {Γ C} → Γ ⊢ zero ∷ C → Γ ⊢ C ≡ ℕ
inversion-zero (zeroⱼ x) = refl (ℕⱼ x)
inversion-zero (conv x x₁) = trans (sym x₁) (inversion-zero x)
-- Inversion of successor.
inversion-suc : ∀ {Γ t C} → Γ ⊢ suc t ∷ C → Γ ⊢ t ∷ ℕ × Γ ⊢ C ≡ ℕ
inversion-suc (sucⱼ x) = x , refl (ℕⱼ (wfTerm x))
inversion-suc (conv x x₁) =
let a , b = inversion-suc x
in a , trans (sym x₁) b
-- Inversion of natural recursion.
inversion-natrec : ∀ {Γ c g n A C} → Γ ⊢ natrec C c g n ∷ A
→ (Γ ∙ ℕ ⊢ C)
× Γ ⊢ c ∷ C [ zero ]
× Γ ⊢ g ∷ Π ℕ ▹ (C ▹▹ C [ suc (var 0) ]↑)
× Γ ⊢ n ∷ ℕ
× Γ ⊢ A ≡ C [ n ]
inversion-natrec (natrecⱼ x d d₁ n) = x , d , d₁ , n , refl (substType x n)
inversion-natrec (conv d x) = let a , b , c , d , e = inversion-natrec d
in a , b , c , d , trans (sym x) e
-- Inversion of application.
inversion-app : ∀ {Γ f a A} → Γ ⊢ (f ∘ a) ∷ A →
∃₂ λ F G → Γ ⊢ f ∷ Π F ▹ G × Γ ⊢ a ∷ F × Γ ⊢ A ≡ G [ a ]
inversion-app (d ∘ⱼ d₁) = _ , _ , d , d₁ , refl (substTypeΠ (syntacticTerm d) d₁)
inversion-app (conv d x) = let a , b , c , d , e = inversion-app d
in a , b , c , d , trans (sym x) e
-- Inversion of lambda.
inversion-lam : ∀ {t A Γ} → Γ ⊢ lam t ∷ A →
∃₂ λ F G → Γ ⊢ F × (Γ ∙ F ⊢ t ∷ G × Γ ⊢ A ≡ Π F ▹ G)
inversion-lam (lamⱼ x x₁) = _ , _ , x , x₁ , refl (Πⱼ x ▹ (syntacticTerm x₁))
inversion-lam (conv x x₁) = let a , b , c , d , e = inversion-lam x
in a , b , c , d , trans (sym x₁) e
-- Inversion of products.
inversion-prod : ∀ {t u A Γ} → Γ ⊢ prod t u ∷ A →
∃₂ λ F G → Γ ⊢ F × (Γ ∙ F ⊢ G × (Γ ⊢ t ∷ F × Γ ⊢ u ∷ G [ t ] × Γ ⊢ A ≡ Σ F ▹ G))
inversion-prod (prodⱼ ⊢F ⊢G ⊢t ⊢u) =
-- NOTE fundamental theorem not required since prodⱼ has inversion built-in.
_ , _ , ⊢F , ⊢G , ⊢t , ⊢u , refl (Σⱼ ⊢F ▹ ⊢G )
inversion-prod (conv x x₁) =
let F , G , a , b , c , d , e = inversion-prod x
in F , G , a , b , c , d , trans (sym x₁) e
-- Inversion of star.
inversion-star : ∀ {Γ C} → Γ ⊢ star ∷ C → Γ ⊢ C ≡ Unit
inversion-star (starⱼ x) = refl (Unitⱼ x)
inversion-star (conv x x₁) = trans (sym x₁) (inversion-star x)
-- Inversion of products in WHNF.
whnfProduct : ∀ {Γ p F G} → Γ ⊢ p ∷ Σ F ▹ G → Whnf p → Product p
whnfProduct x prodₙ = prodₙ
whnfProduct x (ne pNe) = ne pNe
whnfProduct x Uₙ = ⊥-elim (inversion-U x)
whnfProduct x Πₙ =
let _ , _ , Σ≡U = inversion-Π x
in ⊥-elim (U≢Σ (sym Σ≡U))
whnfProduct x Σₙ =
let _ , _ , Σ≡U = inversion-Σ x
in ⊥-elim (U≢Σ (sym Σ≡U))
whnfProduct x ℕₙ = ⊥-elim (U≢Σ (sym (inversion-ℕ x)))
whnfProduct x Unitₙ = ⊥-elim (U≢Σ (sym (inversion-Unit x)))
whnfProduct x Emptyₙ = ⊥-elim (U≢Σ (sym (inversion-Empty x)))
whnfProduct x lamₙ =
let _ , _ , _ , _ , Σ≡Π = inversion-lam x
in ⊥-elim (Π≢Σ (sym Σ≡Π))
whnfProduct x zeroₙ = ⊥-elim (ℕ≢Σ (sym (inversion-zero x)))
whnfProduct x sucₙ =
let _ , A≡ℕ = inversion-suc x
in ⊥-elim (ℕ≢Σ (sym A≡ℕ))
whnfProduct x starₙ = ⊥-elim (Unit≢Σⱼ (sym (inversion-star x)))
| {
"alphanum_fraction": 0.5612554113,
"avg_line_length": 37.2580645161,
"ext": "agda",
"hexsha": "b89bb48ec96ee96911485d84a130c4a8d5905763",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Inversion.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2030,
"size": 4620
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Interleavings of lists using propositional equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Data.List.Relation.Ternary.Interleaving.Propositional {a} {A : Set a} where
open import Level using (_⊔_)
open import Data.List.Base as List using (List; []; _∷_; _++_)
open import Data.List.Relation.Binary.Pointwise as Pw using ()
open import Data.List.Relation.Ternary.Interleaving.Properties
open import Data.List.Relation.Binary.Permutation.Inductive as Perm using (_↭_)
open import Data.List.Relation.Binary.Permutation.Inductive.Properties using (shift)
import Data.List.Relation.Ternary.Interleaving.Setoid as General
open import Relation.Binary.PropositionalEquality using (setoid; refl)
open Perm.PermutationReasoning
------------------------------------------------------------------------
-- Re-export the basic combinators
open General hiding (Interleaving) public
------------------------------------------------------------------------
-- Definition
Interleaving : List A → List A → List A → Set a
Interleaving = General.Interleaving (setoid A)
pattern consˡ xs = refl ∷ˡ xs
pattern consʳ xs = refl ∷ʳ xs
------------------------------------------------------------------------
-- New combinators
toPermutation : ∀ {l r as} → Interleaving l r as → as ↭ l ++ r
toPermutation [] = Perm.refl
toPermutation (consˡ sp) = Perm.prep _ (toPermutation sp)
toPermutation {l} {r ∷ rs} {a ∷ as} (consʳ sp) = begin
a ∷ as ↭⟨ Perm.prep a (toPermutation sp) ⟩
a ∷ l ++ rs ↭⟨ Perm.↭-sym (shift a l rs) ⟩
l ++ a ∷ rs ∎
| {
"alphanum_fraction": 0.5761177136,
"avg_line_length": 37.5957446809,
"ext": "agda",
"hexsha": "6e640def66d77fa852dcc8680ec14691e898aa1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 428,
"size": 1767
} |
open import Agda.Builtin.Nat
data Tree : Set where
` : Nat → Tree
_`+_ : Tree → Tree → Tree
⟦_⟧ : Tree → Nat
⟦ ` n ⟧ = n
⟦ t `+ u ⟧ = ⟦ t ⟧ + ⟦ u ⟧
data Target : Tree → Set where
0+_ : ∀ e → Target (` 0 `+ e)
_+0 : ∀ e → Target (e `+ ` 0)
[_] : ∀ e → Target e
target : ∀ e → Target e
target (` 0 `+ e) = 0+ e
target (e `+ ` 0) = e +0
target e = [ e ]
optimise : Tree → Tree
structural : Tree → Tree
optimise t with {structural t} | target (structural t)
... | 0+ e = e
... | e +0 = e
... | [ e ] = e
structural (` n) = ` n
structural (e `+ f) = optimise e `+ optimise f
open import Agda.Builtin.Equality
suc-cong : ∀ {m n} → m ≡ n → suc m ≡ suc n
suc-cong refl = refl
+-cong : ∀ {m n p q} → m ≡ n → p ≡ q → m + p ≡ n + q
+-cong refl refl = refl
trans : {m n p : Nat} → m ≡ n → n ≡ p → m ≡ p
trans refl eq = eq
m≡m+0 : ∀ m → m ≡ m + 0
m≡m+0 0 = refl
m≡m+0 (suc m) = suc-cong (m≡m+0 m)
optimise-sound : ∀ t → ⟦ optimise t ⟧ ≡ ⟦ t ⟧
structural-sound : ∀ t → ⟦ structural t ⟧ ≡ ⟦ t ⟧
optimise-sound t with {structural t} | target (structural t) | structural-sound t
... | 0+ e | eq = eq
... | e +0 | eq = trans (m≡m+0 ⟦ e ⟧) eq
... | [ e ] | eq = eq
structural-sound (` n) = refl
structural-sound (e `+ f) = +-cong (optimise-sound e) (optimise-sound f)
| {
"alphanum_fraction": 0.5057295646,
"avg_line_length": 22.9649122807,
"ext": "agda",
"hexsha": "3c42c769c2fc5fd0d85ad202726b090b37069acf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/implicit-with.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/implicit-with.agda",
"max_line_length": 81,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/implicit-with.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 565,
"size": 1309
} |
{-
Groupoid quotients:
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.GroupoidQuotients.Properties where
open import Cubical.HITs.GroupoidQuotients.Base
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Functions.Surjection
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary.Base
open import Cubical.HITs.PropositionalTruncation as PropTrunc using (∥_∥₁; ∣_∣₁; squash₁)
open import Cubical.HITs.SetTruncation as SetTrunc using (∥_∥₂; ∣_∣₂; squash₂)
-- Type quotients
private
variable
ℓA ℓR ℓ : Level
A : Type ℓA
R : A → A → Type ℓR
elimSet : (Rt : BinaryRelation.isTrans R)
→ {B : A // Rt → Type ℓ}
→ ((x : A // Rt) → isSet (B x))
→ (f : (a : A) → B [ a ])
→ ({a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b))
→ (x : A // Rt)
→ B x
elimSet Rt Bset f feq [ a ] = f a
elimSet Rt Bset f feq (eq// r i) = feq r i
elimSet Rt Bset f feq (comp// {a} {b} {c} r s i j) =
isSet→SquareP (λ i j → Bset (comp// r s i j))
(λ j → feq r j) (λ j → feq (Rt a b c r s) j)
(λ i → f a) (λ i → feq s i) i j
elimSet Rt Bset f feq (squash// x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 (λ x → isSet→isGroupoid (Bset x))
_ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k
where
g = elimSet Rt Bset f feq
elimProp : (Rt : BinaryRelation.isTrans R)
→ {B : A // Rt → Type ℓ}
→ ((x : A // Rt) → isProp (B x))
→ ((a : A) → B [ a ])
→ (x : A // Rt)
→ B x
elimProp Rt Brop f x =
elimSet Rt (λ x → isProp→isSet (Brop x)) f (λ r → isProp→PathP (λ i → Brop (eq// r i)) (f _) (f _)) x
elimProp2 : (Rt : BinaryRelation.isTrans R)
→ {C : A // Rt → A // Rt → Type ℓ}
→ ((x y : A // Rt) → isProp (C x y))
→ ((a b : A) → C [ a ] [ b ])
→ (x y : A // Rt)
→ C x y
elimProp2 Rt Cprop f = elimProp Rt (λ x → isPropΠ (λ y → Cprop x y))
(λ x → elimProp Rt (λ y → Cprop [ x ] y) (f x))
isSurjective[] : (Rt : BinaryRelation.isTrans R)
→ isSurjection (λ a → [ a ])
isSurjective[] Rt = elimProp Rt (λ x → squash₁) (λ a → ∣ a , refl ∣₁)
elim : (Rt : BinaryRelation.isTrans R)
→ {B : A // Rt → Type ℓ}
→ ((x : A // Rt) → isGroupoid (B x))
→ (f : (a : A) → B [ a ])
→ (feq : {a b : A} (r : R a b) → PathP (λ i → B (eq// r i)) (f a) (f b))
→ ({a b c : A} (r : R a b) (s : R b c)
→ SquareP (λ i j → B (comp// r s i j))
(feq r) (feq (Rt a b c r s)) (λ j → f a) (feq s))
→ (x : A // Rt)
→ B x
elim Rt Bgpd f feq fcomp [ a ] = f a
elim Rt Bgpd f feq fcomp (eq// r i) = feq r i
elim Rt Bgpd f feq fcomp (comp// r s i j) = fcomp r s i j
elim Rt Bgpd f feq fcomp (squash// x y p q r s i j k) =
isOfHLevel→isOfHLevelDep 3 Bgpd
_ _ _ _ (λ j k → g (r j k)) (λ j k → g (s j k)) (squash// x y p q r s) i j k
where
g = elim Rt Bgpd f feq fcomp
rec : (Rt : BinaryRelation.isTrans R)
→ {B : Type ℓ}
→ isGroupoid B
→ (f : A → B)
→ (feq : {a b : A} (r : R a b) → f a ≡ f b)
→ ({a b c : A} (r : R a b) (s : R b c)
→ Square (feq r) (feq (Rt a b c r s)) refl (feq s))
→ (x : A // Rt)
→ B
rec Rt Bgpd = elim Rt (λ _ → Bgpd)
| {
"alphanum_fraction": 0.5247553253,
"avg_line_length": 32.4672897196,
"ext": "agda",
"hexsha": "6ca1bf5db7c7eee67f2a3849f410fe6e6dc714bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda",
"max_line_length": 103,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/GroupoidQuotients/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1396,
"size": 3474
} |
-- {-# OPTIONS -v tc.lhs.problem:10 #-}
-- Do not normalize goals!
module Issue734 where
id : Set → Set
id A = A
g : (A : Set) → id A
g A = {!!}
-- goal should be displayed as "id A", not as "A"
| {
"alphanum_fraction": 0.578680203,
"avg_line_length": 17.9090909091,
"ext": "agda",
"hexsha": "b86bd0b7f51d340be3c06bbf83173d023798e9c9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue734.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue734.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue734.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 197
} |
-- Solutions to ExerciseSession3
{-# OPTIONS --cubical #-}
module SolutionsSession3 where
open import Part1
open import Part2
open import Part3
open import Part4 hiding (ℤ)
open import ExerciseSession1 hiding (B)
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Int hiding (neg)
-- Exercise 1
assoc-++ : (xs ys zs : FMSet A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs
assoc-++ [] ys zs = refl
assoc-++ (x ∷ xs) ys zs j = x ∷ assoc-++ xs ys zs j
assoc-++ (comm x y xs i) ys zs j = comm x y (assoc-++ xs ys zs j) i
assoc-++ (trunc xs xs' p q i k) ys zs j =
trunc (assoc-++ xs ys zs j) (assoc-++ xs' ys zs j)
(λ l → assoc-++ (p l) ys zs j)
(λ l → assoc-++ (q l) ys zs j) i k
-- Exercise 2
data ℤ : Type₀ where
pos : (n : ℕ) → ℤ
neg : (n : ℕ) → ℤ
posneg : pos 0 ≡ neg 0
-- Exercise 3
Int→ℤ : Int → ℤ
Int→ℤ (pos n) = pos n
Int→ℤ (negsuc n) = neg (suc n)
ℤ→Int : ℤ → Int
ℤ→Int (pos n) = pos n
ℤ→Int (neg zero) = pos 0
ℤ→Int (neg (suc n)) = negsuc n
ℤ→Int (posneg _) = pos 0
ℤ→Int→ℤ : ∀ (n : ℤ) → Int→ℤ (ℤ→Int n) ≡ n
ℤ→Int→ℤ (pos n) _ = pos n
ℤ→Int→ℤ (neg zero) i = posneg i
ℤ→Int→ℤ (neg (suc n)) _ = neg (suc n)
ℤ→Int→ℤ (posneg j) i = posneg (j ∧ i)
Int→ℤ→Int : ∀ (n : Int) → ℤ→Int (Int→ℤ n) ≡ n
Int→ℤ→Int (pos n) _ = pos n
Int→ℤ→Int (negsuc n) _ = negsuc n
Int≡ℤ : Int ≡ ℤ
Int≡ℤ = isoToPath (iso Int→ℤ ℤ→Int ℤ→Int→ℤ Int→ℤ→Int)
isSetℤ : isSet ℤ
isSetℤ = subst isSet Int≡ℤ isSetInt
-- Exercise 4
isSurjection : (A → B) → Type _
isSurjection {A = A} {B = B} f = (b : B) → ∃ A (λ a → f a ≡ b)
isPropIsSurjection : (f : A → B) → isProp (isSurjection f)
isPropIsSurjection f = isPropΠ (λ _ → squash)
isSurjectionInc : isSurjection {A = A} ∣_∣
isSurjectionInc x = rec squash (λ y → ∣ (y , squash ∣ y ∣ x) ∣) x
-- Exercise 5
intLoop : Int → ΩS¹
intLoop (pos zero) = refl
intLoop (pos (suc n)) = intLoop (pos n) ∙ loop
intLoop (negsuc zero) = sym loop
intLoop (negsuc (suc n)) = intLoop (negsuc n) ∙ sym loop
windingIntLoop : (n : Int) → winding (intLoop n) ≡ n
windingIntLoop (pos zero) = refl
windingIntLoop (pos (suc n)) = cong sucInt (windingIntLoop (pos n))
windingIntLoop (negsuc zero) = refl
windingIntLoop (negsuc (suc n)) = cong predInt (windingIntLoop (negsuc n))
-- Exercise 6
data Susp (A : Type ℓ) : Type ℓ where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south
SuspBool→S¹ : Susp Bool → S¹
SuspBool→S¹ north = base
SuspBool→S¹ south = base
SuspBool→S¹ (merid false i) = loop i
SuspBool→S¹ (merid true i) = base
S¹→SuspBool : S¹ → Susp Bool
S¹→SuspBool base = north
S¹→SuspBool (loop i) = (merid false ∙ sym (merid true)) i
SuspBool→S¹→SuspBool : (x : Susp Bool) → Path _ (S¹→SuspBool (SuspBool→S¹ x)) x
SuspBool→S¹→SuspBool north = refl
SuspBool→S¹→SuspBool south = merid true
SuspBool→S¹→SuspBool (merid false i) j = hcomp (λ k → (λ { (j = i1) → merid false i
; (i = i0) → north
; (i = i1) → merid true (j ∨ ~ k)}))
(merid false i)
SuspBool→S¹→SuspBool (merid true i) j = merid true (i ∧ j)
S¹→SuspBool→S¹ : (x : S¹) → SuspBool→S¹ (S¹→SuspBool x) ≡ x
S¹→SuspBool→S¹ base = refl
S¹→SuspBool→S¹ (loop i) j = hfill (λ k → λ { (i = i0) → base
; (i = i1) → base })
(inS (loop i)) (~ j)
S¹≡SuspBool : S¹ ≡ Susp Bool
S¹≡SuspBool = isoToPath (iso S¹→SuspBool SuspBool→S¹ SuspBool→S¹→SuspBool S¹→SuspBool→S¹)
| {
"alphanum_fraction": 0.5737250554,
"avg_line_length": 31.1034482759,
"ext": "agda",
"hexsha": "b2333271a6188a802f31cbfec66b991d03cd39b5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-08-02T16:16:34.000Z",
"max_forks_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "williamdemeo/EPIT-2020",
"max_forks_repo_path": "04-cubical-type-theory/material/SolutionsSession3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "williamdemeo/EPIT-2020",
"max_issues_repo_path": "04-cubical-type-theory/material/SolutionsSession3.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "19d72759e18e05d2c509f62d23a998573270140c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "williamdemeo/EPIT-2020",
"max_stars_repo_path": "04-cubical-type-theory/material/SolutionsSession3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1447,
"size": 3608
} |
module subst where
open import constants
open import cedille-types
open import ctxt-types
open import free-vars
open import rename
open import general-util
open import syntax-util
open import type-util
substh-ret-t : Set → Set
substh-ret-t T = ctxt → renamectxt → trie (Σi exprd ⟦_⟧) → T → T
{-# TERMINATING #-}
substh : ∀ {ed} → substh-ret-t ⟦ ed ⟧
substh-arg : substh-ret-t arg
substh-args : substh-ret-t args
substh-params' : ctxt → renamectxt → trie (Σi exprd ⟦_⟧) → params → params × ctxt × renamectxt × trie (Σi exprd ⟦_⟧)
substh-indices : substh-ret-t indices
substh-params : substh-ret-t params
substh-case : substh-ret-t case
substh-cases : substh-ret-t cases
substh-case-args : ctxt → renamectxt → trie (Σi exprd ⟦_⟧) → case-args → case-args × renamectxt × ctxt × trie (Σi exprd ⟦_⟧)
substh-datatype-info : substh-ret-t datatype-info
subst-rename-var-if : ∀ {ed} → ctxt → renamectxt → var → trie (Σi exprd ⟦_⟧) → ⟦ ed ⟧ → var
subst-rename-var-if Γ ρ ignored-var σ t = if is-free-in ignored-var t then fresh-h (λ s → ctxt-binds-var Γ s || trie-contains σ s || renamectxt-in-field ρ s) "x" else ignored-var
subst-rename-var-if Γ ρ x σ _ =
{- rename bound variable x iff it is one of the vars being substituted for,
or if x occurs free in one of the terms we are substituting for vars,
or if it is the renamed version of any variable -}
if trie-contains σ x {-|| trie-any (λ {(,_ {ed} t) → is-free-in x t}) σ-} || renamectxt-in-range ρ x || ctxt-binds-var Γ x then
fresh-h (λ s → ctxt-binds-var Γ s || trie-contains σ s || renamectxt-in-field ρ s) x
else
x
substh {TERM} Γ ρ σ (App t t') = App (substh Γ ρ σ t) (substh Γ ρ σ t')
substh {TERM} Γ ρ σ (AppE t tT) = AppE (substh Γ ρ σ t) (substh Γ ρ σ -tT tT)
substh {TERM} Γ ρ σ (Lam me x oc t) =
let x' = subst-rename-var-if Γ ρ x σ t in
Lam me x' (substh Γ ρ σ -tk_ <$> oc)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh {TERM} Γ ρ σ (LetTm me x T t t') =
let x' = subst-rename-var-if Γ ρ x σ t' in
LetTm me x' (substh Γ ρ σ <$> T) (substh Γ ρ σ t)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t')
substh {TERM} Γ ρ σ (LetTp x k T t) =
let x' = subst-rename-var-if Γ ρ x σ t in
LetTp x' (substh Γ ρ σ k) (substh Γ ρ σ T)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh {TERM} Γ ρ σ (Var x) =
let x' = renamectxt-rep ρ x in
case trie-lookup σ x' of λ where
(just (,_ {TERM} t)) → t
_ → Var x'
substh {TERM} Γ ρ σ (Hole pi) = Hole pi -- Retain position, so jumping to hole works
substh {TERM} Γ ρ σ (Beta t t') = Beta (substh Γ ρ σ t) (substh Γ ρ σ t')
substh {TERM} Γ ρ σ (IotaPair t₁ t₂ x T) =
let x' = subst-rename-var-if Γ ρ x σ T in
IotaPair (substh Γ ρ σ t₁) (substh Γ ρ σ t₂) x' (substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ T)
substh {TERM} Γ ρ σ (IotaProj t n) = IotaProj (substh Γ ρ σ t) n
substh {TERM} Γ ρ σ (Sigma t) = Sigma (substh Γ ρ σ t)
substh {TERM} Γ ρ σ (Phi t t₁ t₂) = Phi (substh Γ ρ σ t) (substh Γ ρ σ t₁) (substh Γ ρ σ t₂)
substh {TERM} Γ ρ σ (Rho tₑ x T t) =
let x' = subst-rename-var-if Γ ρ x σ T in
Rho (substh Γ ρ σ tₑ) x' (substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ T) (substh Γ ρ σ t)
substh {TERM} Γ ρ σ (Delta b? T t) =
Delta (b? >>=c λ t₁ t₂ → just (substh Γ ρ σ t₁ , substh Γ ρ σ t₂))
(substh Γ ρ σ T) (substh Γ ρ σ t)
substh {TERM} Γ ρ σ (Mu (inj₂ x) t T t~ ms) =
let fv = λ x → trie-contains σ x || ctxt-binds-var Γ x || renamectxt-in-field ρ x
x' = fresh-h (λ x → fv x || fv (mu-Type/ x) || fv (mu-isType/ x))
(if x =string ignored-var then "x" else x)
ρ' = renamectxt-insert ρ x x'
ρ' = renamectxt-insert ρ' (mu-Type/ x) (mu-Type/ x')
ρ' = renamectxt-insert ρ' (mu-isType/ x) (mu-isType/ x')
Γ' = ctxt-var-decl x' Γ
Γ' = ctxt-var-decl (mu-Type/ x') Γ'
Γ' = ctxt-var-decl (mu-isType/ x') Γ' in
Mu (inj₂ x') (substh Γ ρ σ t) (substh (ctxt-var-decl (mu-Type/ x') Γ) (renamectxt-insert ρ (mu-Type/ x) (mu-Type/ x')) σ <$> T) (substh-datatype-info Γ ρ σ t~) (substh-cases Γ' ρ' σ ms)
substh {TERM} Γ ρ σ (Mu (inj₁ tᵢ) t' T t~ ms) =
Mu (inj₁ (substh Γ ρ σ <$> tᵢ)) (substh Γ ρ σ t') (substh Γ ρ σ <$> T) (substh-datatype-info Γ ρ σ t~) (substh-cases Γ ρ σ ms)
substh {TYPE} Γ ρ σ (TpAbs me x tk t) =
let x' = subst-rename-var-if Γ ρ x σ t in
TpAbs me x' (substh Γ ρ σ -tk tk)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh {TYPE} Γ ρ σ (TpLam x tk t) =
let x' = subst-rename-var-if Γ ρ x σ t in
TpLam x' (substh Γ ρ σ -tk tk)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ t)
substh {TYPE} Γ ρ σ (TpIota x T₁ T₂) =
let x' = subst-rename-var-if Γ ρ x σ T₂ in
TpIota x' (substh Γ ρ σ T₁)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ T₂)
substh {TYPE} Γ ρ σ (TpApp tp tT) = TpApp (substh Γ ρ σ tp) (substh Γ ρ σ -tT tT)
substh {TYPE} Γ ρ σ (TpEq t₁ t₂) = TpEq (substh Γ ρ σ t₁) (substh Γ ρ σ t₂)
substh {TYPE} Γ ρ σ (TpVar x) =
let x' = renamectxt-rep ρ x in
case trie-lookup σ x' of λ where
(just (,_ {TYPE} T)) → T
_ → TpVar x'
substh {TYPE} Γ ρ σ (TpHole pi) = TpHole pi -- Retain position, so jumping to hole works
substh {KIND} Γ ρ σ (KdAbs x tk k) =
let x' = subst-rename-var-if Γ ρ x σ k in
KdAbs x' (substh Γ ρ σ -tk tk)
(substh (ctxt-var-decl x' Γ) (renamectxt-insert ρ x x') σ k)
substh {KIND} Γ ρ σ (KdHole pi) = KdHole pi -- Retain position, so jumping to hole works
substh {KIND} Γ ρ σ KdStar = KdStar
substh-datatype-info Γ ρ σ (mk-data-info X Xₒ asₚ asᵢ ps kᵢ k cs csₚₛ gds eds) =
let Γ' = foldr (λ { (Param me x tk) Γ → ctxt-var-decl x Γ }) Γ ps
ρ' = foldr (λ { (Param me x tk) ρ → renamectxt-insert ρ x x }) ρ ps
σ' = foldr (λ { (Param me x tk) σ → trie-remove σ x }) σ ps in
mk-data-info
(renamectxt-rep ρ X)
(renamectxt-rep ρ Xₒ)
(substh Γ ρ σ -arg_ <$> asₚ)
(substh Γ ρ σ -tT_ <$> asᵢ)
ps
(substh Γ' ρ' σ' kᵢ)
(substh Γ' ρ' σ' k)
(map-snd (substh Γ' ρ' σ') <$> cs)
(map-snd (substh Γ ρ σ) <$> csₚₛ)
gds
eds
substh-arg Γ ρ σ = substh Γ ρ σ -arg_
substh-args Γ ρ σ = substh-arg Γ ρ σ <$>_
substh-params' Γ ρ σ ((Param me x tk) :: ps) =
map-fst (Param me x (substh Γ ρ σ -tk tk) ::_)
(substh-params' Γ (renamectxt-insert ρ x x) (trie-remove σ x) ps)
substh-params' Γ ρ σ [] = [] , Γ , ρ , σ
substh-params Γ ρ σ ps = fst (substh-params' Γ ρ σ ps)
substh-indices Γ ρ σ = params-to-indices ∘' substh-params Γ ρ σ ∘' indices-to-params
substh-case Γ ρ σ (Case x as t asₜₚ) =
case (substh-case-args Γ ρ σ as) of λ where
(as' , ρ' , Γ' , σ') →
Case x as' (substh Γ' ρ' σ' t) (substh Γ' ρ' σ' -tT_ <$> asₜₚ)
substh-cases Γ ρ σ = map (substh-case Γ ρ σ)
substh-case-args Γ ρ σ as = foldr (λ where
(CaseArg e x tk) f ρ Γ σ →
let x' = subst-rename-var-if Γ ρ x σ (Var x) in
map-fst (CaseArg e x' (substh Γ ρ σ -tk_ <$> tk) ::_)
(f (renamectxt-insert ρ x x') (ctxt-var-decl x' Γ) (trie-remove σ x)))
(λ ρ Γ σ → [] , ρ , Γ , σ) as ρ Γ σ
subst-ret-t : Set → Set
subst-ret-t T = {ed : exprd} → ctxt → ⟦ ed ⟧ → var → T → T
subst : ∀ {ed} → subst-ret-t ⟦ ed ⟧
subst Γ t x = substh Γ empty-renamectxt (trie-single x (, t))
subst-cases : subst-ret-t cases
subst-cases Γ t x = substh-cases Γ empty-renamectxt (trie-single x (, t))
subst-params : subst-ret-t params
subst-params Γ t x = substh-params Γ empty-renamectxt (trie-single x (, t))
subst-renamectxt : ∀ {ed : exprd} → ctxt → renamectxt → ⟦ ed ⟧ → ⟦ ed ⟧
subst-renamectxt Γ ρ = substh Γ ρ empty-trie
rename-var : ∀ {ed} → ctxt → var → var → ⟦ ed ⟧ → ⟦ ed ⟧
rename-var Γ x x' = subst-renamectxt Γ (renamectxt-single x x')
substs-ret-t : Set → Set
substs-ret-t T = ctxt → trie (Σi exprd ⟦_⟧) → T → T
substs : ∀ {ed} → substs-ret-t ⟦ ed ⟧
substs = flip substh empty-renamectxt
substs-args : substs-ret-t args
substs-args = flip substh-args empty-renamectxt
substs-params : substs-ret-t params
substs-params = flip substh-params empty-renamectxt
substs-cases : substs-ret-t cases
substs-cases = flip substh-cases empty-renamectxt
subst-params-args : params → args → trie (Σi exprd ⟦_⟧) × params × args
subst-params-args ps as = subst-params-args' ps as empty-trie where
subst-params-args' : params → args → trie (Σi exprd ⟦_⟧) → trie (Σi exprd ⟦_⟧) × params × args
subst-params-args' (Param me x tk :: ps) (Arg t :: as) σ =
subst-params-args' ps as (trie-insert σ x (, t))
subst-params-args' (Param me x tk :: ps) (ArgE (inj₁ t) :: as) σ =
subst-params-args' ps as (trie-insert σ x (, t))
subst-params-args' (Param me x tk :: ps) (ArgE (inj₂ T) :: as) σ =
subst-params-args' ps as (trie-insert σ x (, T))
subst-params-args' ps as σ = σ , ps , as
subst-params-args' : ctxt → params → args → ∀ {ed} → ⟦ ed ⟧ → ⟦ ed ⟧ × params × args
subst-params-args' Γ ps as t = map-fst (λ σ → substs Γ σ t) (subst-params-args ps as)
infixr 3 [_-_/_]_
[_-_/_]_ : ∀ {ed ed'} → ctxt → ⟦ ed ⟧ → var → ⟦ ed' ⟧ → ⟦ ed' ⟧
[ Γ - t / x ] t' = subst Γ t x t'
subst-unqual : ∀ {ed} → ctxt → 𝕃 (posinfo × var) → ⟦ ed ⟧ → ⟦ ed ⟧
subst-unqual Γ xs t =
subst-renamectxt
Γ
(foldr (uncurry λ pi x xs → renamectxt-insert xs (pi % x) x) empty-renamectxt xs)
t
-- Given the parameters (32@x : ...) (41@y : ...32@x...),
-- returns (x : ...) (y : ...x...) × (32@x → x, 41@y → y)
unqual-params : ctxt → params → params × renamectxt
unqual-params = h empty-renamectxt where
h : renamectxt → ctxt → params → params × renamectxt
h ρ Γ [] = [] , ρ
h ρ Γ (Param me qx atk :: ps) =
let x = unqual-local qx in
map-fst (Param me x (subst-renamectxt Γ ρ -tk atk) ::_)
(h (renamectxt-insert ρ qx x) (ctxt-var-decl x Γ) ps)
| {
"alphanum_fraction": 0.6048321048,
"avg_line_length": 43.0308370044,
"ext": "agda",
"hexsha": "b7752cf8d9b447fc3aad07863c20d9de947dba10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/subst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/subst.agda",
"max_line_length": 189,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/subst.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3914,
"size": 9768
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Groups.Definition
open import Setoids.Setoids
open import LogicalFormulae
open import Sets.EquivalenceRelations
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
open import Groups.Isomorphisms.Definition
open import Groups.Subgroups.Definition
open import Groups.Lemmas
module Groups.FirstIsomorphismTheorem {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {_+G_ : A → A → A} {_+H_ : B → B → B} {G : Group S _+G_} {H : Group T _+H_} {f : A → B} (fHom : GroupHom G H f) where
open import Groups.Homomorphisms.Image fHom
open import Groups.Homomorphisms.Kernel fHom
open import Groups.Cosets G groupKernelIsSubgroup
open import Groups.QuotientGroup.Definition G fHom
open Setoid T
open Equivalence eq
open import Setoids.Subset T
groupFirstIsomorphismTheoremWellDefined : {x y : A} → groupKernelPred (Group.inverse G y +G x) → Setoid._∼_ (subsetSetoid imageGroupSubset) (f x , (x , reflexive)) (f y , (y , reflexive))
groupFirstIsomorphismTheoremWellDefined {x} {y} pr = transitive (symmetric (invTwice H _)) (transitive (symmetric u) (invTwice H _))
where
t : Setoid._∼_ T (Group.inverse H (f y) +H (f x)) (Group.0G H)
t = transitive (transitive (Group.+WellDefined H (symmetric (homRespectsInverse fHom)) reflexive) (symmetric (GroupHom.groupHom fHom))) pr
u : Setoid._∼_ T (Group.inverse H (Group.inverse H (f y))) (Group.inverse H (Group.inverse H (f x)))
u = inverseWellDefined H (transferToRight' H t)
groupFirstIsomorphismTheorem : GroupsIsomorphic (cosetGroup groupKernelIsNormalSubgroup) (subgroupIsGroup H imageGroupSubgroup)
GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem x = f x , (x , reflexive)
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem)) {x} {y} = GroupHom.groupHom fHom
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem)) {x} {y} = groupFirstIsomorphismTheoremWellDefined {x} {y}
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) = groupFirstIsomorphismTheoremWellDefined
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive fx=fy) (transitive (symmetric (GroupHom.groupHom fHom)) (transitive (GroupHom.wellDefined fHom (Group.invLeft G)) (imageOfIdentityIsIdentity fHom))))
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) = groupFirstIsomorphismTheoremWellDefined
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem))) {b , (a , fa=b)} = a , fa=b
groupFirstIsomorphismTheoremWellDefined' : {x y : A} → f (x +G (Group.inverse G y)) ∼ Group.0G H → Setoid._∼_ (subsetSetoid imageGroupSubset) (f x , (x , reflexive)) (f y , (y , reflexive))
groupFirstIsomorphismTheoremWellDefined' {x} {y} pr = transferToRight H (transitive (symmetric (transitive (GroupHom.groupHom fHom) (Group.+WellDefined H reflexive (homRespectsInverse fHom)))) pr)
groupFirstIsomorphismTheorem' : GroupsIsomorphic (quotientGroupByHom) (subgroupIsGroup H imageGroupSubgroup)
GroupsIsomorphic.isomorphism groupFirstIsomorphismTheorem' a = f a , (a , reflexive)
GroupHom.groupHom (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')) {x} {y} = GroupHom.groupHom fHom
GroupHom.wellDefined (GroupIso.groupHom (GroupsIsomorphic.proof groupFirstIsomorphismTheorem')) {x} {y} = groupFirstIsomorphismTheoremWellDefined'
SetoidInjection.wellDefined (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} = groupFirstIsomorphismTheoremWellDefined' {x} {y}
SetoidInjection.injective (SetoidBijection.inj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} fx=fy = transitive (GroupHom.groupHom fHom) (transitive (Group.+WellDefined H reflexive (homRespectsInverse fHom)) (transferToRight'' H fx=fy))
SetoidSurjection.wellDefined (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {x} {y} = groupFirstIsomorphismTheoremWellDefined'
SetoidSurjection.surjective (SetoidBijection.surj (GroupIso.bij (GroupsIsomorphic.proof groupFirstIsomorphismTheorem'))) {b , (a , fa=b)} = a , fa=b
| {
"alphanum_fraction": 0.7865542489,
"avg_line_length": 86.6730769231,
"ext": "agda",
"hexsha": "d01d8f32909e72df3ea23d1c33933750c88f0926",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FirstIsomorphismTheorem.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FirstIsomorphismTheorem.agda",
"max_line_length": 354,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FirstIsomorphismTheorem.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 1383,
"size": 4507
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Presheaves where
-- The Category of Presheaves over a Category C, i.e.
-- the Functor Category [ C.op , Setoids ]
-- Again, the levels are made explicit to show the generality and constraints.
open import Level
open import Categories.Category
open import Categories.Category.Construction.Functors
open import Categories.Category.Instance.Setoids using (Setoids)
Presheaves : ∀ {o ℓ e o′ ℓ′ : Level} → Category o ℓ e →
Category (o ⊔ ℓ ⊔ e ⊔ suc (o′ ⊔ ℓ′)) (o ⊔ ℓ ⊔ o′ ⊔ ℓ′) (o ⊔ o′ ⊔ ℓ′)
Presheaves {o} {ℓ} {e} {o′} {ℓ′} C = Functors (Category.op C) (Setoids o′ ℓ′)
| {
"alphanum_fraction": 0.6868217054,
"avg_line_length": 40.3125,
"ext": "agda",
"hexsha": "5131bbfb2ffe74a32b5345429b462add10aa6a20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Construction/Presheaves.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Construction/Presheaves.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Construction/Presheaves.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 209,
"size": 645
} |
{-# OPTIONS --without-K #-}
module FinEquivEquivPlusTimes where
open import Data.Product using (_×_; proj₁; proj₂)
open import Equiv using (refl∼; sym∼; sym≃; _⊎≃_; id≃; _≃_; _●_; _×≃_; qinv)
open import FinEquivPlusTimes using (F0≃⊥; module Plus; module Times)
open Plus using (⊎≃+; +≃⊎)
open Times using (×≃*; *≃×)
open import FinEquivTypeEquiv
using (_fin≃_; module PlusE; module TimesE; module PlusTimesE)
open PlusE using (_+F_; unite+; uniti+; unite+r; uniti+r; assocr+; assocl+;
swap+; sswap+)
open TimesE using (_*F_; unite*; uniti*; unite*r; uniti*r; assocr*; assocl*;
swap*; sswap*)
open PlusTimesE using (distz; factorz; distzr; factorzr;
dist; factor; distl; factorl)
open import EquivEquiv
open import TypeEquiv
using (unite₊equiv; unite₊′equiv; assocl₊equiv)
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Data.Nat using (ℕ; _+_; _*_)
open import Data.Fin using (Fin)
open import Data.Sum using (_⊎_)
open import Data.Product using (_,_)
import Relation.Binary.PropositionalEquality as P using (refl)
import TypeEquivEquiv as T
using (
-- much lower down
0×0≃0)
------------------------------------------------------------------------------
-- Equivalences for distributivity
distl-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
distl {m'} {n'} {o'} ● (f *F (g +F h)) ≋
((f *F g) +F (f *F h)) ● distl {m} {n} {o}
distl-nat = {!!}
factorl-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
factorl {m'} {n'} {o'} ● ((f *F g) +F (f *F h)) ≋
(f *F (g +F h)) ● factorl {m} {n} {o}
factorl-nat = {!!}
dist-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
dist {m'} {n'} {o'} ● ((f +F g) *F h) ≋
((f *F h) +F (g *F h)) ● dist {m} {n} {o}
dist-nat = {!!}
factor-nat : {m n o m' n' o' : ℕ}
{f : m fin≃ m'} {g : n fin≃ n'} {h : o fin≃ o'} →
factor {m'} {n'} {o'} ● ((f *F h) +F (g *F h)) ≋
((f +F g) *F h) ● factor {m} {n} {o}
factor-nat = {!!}
distzr-nat : {m n : ℕ} {f : m fin≃ n} {g : 0 fin≃ 0} →
distzr {n} ● (f *F g) ≋ g ● distzr {m}
distzr-nat = {!!}
factorzr-nat : {m n : ℕ} {f : m fin≃ n} {g : 0 fin≃ 0} →
factorzr {n} ● g ≋ (f *F g) ● factorzr {m}
factorzr-nat = {!!}
distz-nat : {m n : ℕ} → {f : m fin≃ n} → {g : 0 fin≃ 0} →
distz {n} ● (g *F f) ≋ g ● distz {m}
distz-nat = {!!}
factorz-nat : {m n : ℕ} → {f : m fin≃ n} → {g : 0 fin≃ 0} →
factorz {n} ● g ≋ (g *F f) ● factorz {m}
factorz-nat = {!!}
A×[B⊎C]≃[A×C]⊎[A×B] : {m n o : ℕ} →
distl {m} {o} {n} ● (id≃ {A = Fin m} *F swap+ {n} {o}) ≋
swap+ {m * n} {m * o} ● distl {m} {n} {o}
A×[B⊎C]≃[A×C]⊎[A×B] = {!!}
[A⊎B]×C≃[C×A]⊎[C×B] : {m n o : ℕ} →
(swap* {m} {o} +F swap* {n} {o}) ● dist {m} {n} {o} ≋
distl {o} {m} {n} ● swap* {m + n} {o}
[A⊎B]×C≃[C×A]⊎[C×B] = {!!}
[A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D : {m n o p : ℕ} →
(dist {m} {n} {p} +F id≃ {A = Fin (o * p)}) ●
dist {m + n} {o} {p} ● (assocl+ {m} {n} {o} *F id≃ {A = Fin p}) ≋
assocl+ {m * p} {n * p} {o * p} ●
(id≃ {A = Fin (m * p)} +F dist {n} {o} {p}) ● dist {m} {n + o} {p}
[A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D = {!!}
A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D : {m n o p : ℕ} →
distl {m * n} {o} {p} ● assocl* {m} {n} {o + p} ≋
(assocl* {m} {n} {o} +F assocl* {m} {n} {p}) ●
distl {m} {n * o} {n * p} ● (id≃ {A = Fin m} *F distl {n} {o} {p})
A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D = {!!}
[A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D : {m n o p : ℕ} →
assocl+ {(m * o) + (n * o)} {m * p} {n * p} ●
(dist {m} {n} {o} +F dist {m} {n} {p}) ●
distl {m + n} {o} {p} ≋
(assocl+ {m * o} {n * o} {m * p} +F id≃ {A = Fin (n * p)}) ●
((id≃ {A = Fin (m * o)} +F swap+ {m * p} {n * o}) +F id≃ {A = Fin (n * p)}) ●
(assocr+ {m * o} {m * p} {n * o} +F id≃ {A = Fin (n * p)}) ●
assocl+ {(m * o) + (m * p)} {n * o} {n * p} ●
(distl {m} {o} {p} +F distl {n} {o} {p}) ● dist {m} {n} {o + p}
[A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D = {!!}
-- can't be done via equational reasoning!?!?
-- cannot even dig into T.0×0≃0 as f≋ is abstract
0×0≃0 : distz {0} ≋ distzr {0}
0×0≃0 = eq (λ {()}) (λ {()}) -- wow, talk about low-level reasoning!
0×[A⊎B]≃0 : {m n : ℕ} →
distz {m + n} ≋ unite+ ● (distz {m} +F distz {n}) ● distl {0} {m} {n}
0×[A⊎B]≃0 = {!!}
0×1≃0 : unite*r ≋ distz {1}
0×1≃0 = {!!}
A×0≃0 : {m : ℕ} → distzr {m} ≋ distz {m} ● swap* {m} {0}
A×0≃0 = {!!}
0×A×B≃0 : {m n : ℕ} →
distz {m * n} ≋
distz {n} ● (distz {m} *F id≃ {A = Fin n}) ● assocl* {0} {m} {n}
0×A×B≃0 = {!!}
A×0×B≃0 : {m n : ℕ} →
distzr {m} ● (id≃ {A = Fin m} *F distz {n}) ≋
distz {n} ● (distzr {m} *F id≃ {A = Fin n}) ● assocl* {m} {0} {n}
A×0×B≃0 = {!!}
A×[0+B]≃A×B : {m n : ℕ} →
(id≃ {A = Fin m} *F unite+ {n}) ≋
unite+ ● (distzr {m} +F id≃) ● distl {m} {0} {n}
A×[0+B]≃A×B = {!!}
1×[A⊎B]≃A⊎B : {m n : ℕ} →
unite* ≋ (unite* {m} +F unite* {n}) ● distl {1} {m} {n}
1×[A⊎B]≃A⊎B = {!!}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4317914543,
"avg_line_length": 34.0133333333,
"ext": "agda",
"hexsha": "a0029b462db9ecac743633ac015f71b72ee97954",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/FinEquivEquivPlusTimes.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/FinEquivEquivPlusTimes.agda",
"max_line_length": 83,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/FinEquivEquivPlusTimes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 2638,
"size": 5102
} |
open import MJ.Types as Types
import MJ.Classtable.Core as Core
module MJ.Semantics.Values {c}(Ct : Core.Classtable c) where
open import Prelude
open import Level renaming (suc to lsuc; zero to lzero)
open import Data.List hiding (null)
open import Data.List.Membership.Propositional
open import Data.List.Prefix
open Core c
open Classtable Ct
open import MJ.Classtable.Membership Ct
open import MJ.LexicalScope c
open import Common.Weakening
{-
MJ inherits the values of STLC+Ref. In contrast to STCL+Ref, MJ also has
null-pointers; which we add as a constructor to our value type Val. The value
constructed by null is typed with an arbitrary reference type as it can be used
in place of any proper reference.
-}
data Val (W : World c) : Ty c → Set where
num : ℕ → Val W int
unit : Val W void
null : ∀ {C} → Val W (ref C)
ref : ∀ {C P} → (obj C) ∈ W → Σ ⊢ C <: P → Val W (ref P)
{-
We can construct default values out of thin air for every type
-}
default : ∀ {W} → (a : Ty c) → Val W a
default void = unit
default int = num 0
default (ref x) = null
{-
Value weakening
-}
weaken-val : ∀ {a}{W W' : World c} → W ⊒ W' → Val W' a → Val W a
weaken-val ext (num n) = num n
weaken-val ext unit = unit
weaken-val ext null = null
weaken-val ext (ref x sub) = ref (∈-⊒ x ext) sub
instance
val-weakenable : ∀ {a} → Weakenable (λ W → Val W a)
val-weakenable = record { wk = weaken-val }
| {
"alphanum_fraction": 0.6892857143,
"avg_line_length": 26.9230769231,
"ext": "agda",
"hexsha": "4f5a51ec1713df87a1129e5bf78e421bb4befeac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Semantics/Values.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Semantics/Values.agda",
"max_line_length": 79,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Semantics/Values.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 441,
"size": 1400
} |
module _ where
data D .(A : Set) : Set
-- The dot should not be repeated here
data D .A where
mkD : D A
| {
"alphanum_fraction": 0.6330275229,
"avg_line_length": 12.1111111111,
"ext": "agda",
"hexsha": "8c8b2bf96e15c19674b6aa73f136ea47bc4a5569",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1886-relevance.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1886-relevance.agda",
"max_line_length": 38,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1886-relevance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 38,
"size": 109
} |
{-# OPTIONS --warning=error #-}
module UselessPrivateImport where
private
open import Common.Prelude
| {
"alphanum_fraction": 0.7619047619,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "c339fe2ef329de7fa13568b946e3623b5fe35e8e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/UselessPrivateImport.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/UselessPrivateImport.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/UselessPrivateImport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 23,
"size": 105
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.ImplShared.Consensus.Types
open import Util.Encode
open import Util.PKCS as PKCS hiding (sign; verify)
open import Util.Prelude
module LibraBFT.Impl.OBM.Crypto where
------------------------------------------------------------------------------
-- keys
postulate -- TODO-1 : makePK
makePK : SK → PK
------------------------------------------------------------------------------
postulate -- TODO-1: implement obmHashVersion
obmHashVersion : Version → HashValue
------------------------------------------------------------------------------
-- sign and verify
record CryptoHash (A : Set) : Set where
field
sign : SK → A → Signature
verify : {-Text-} PK → Signature → A → Either ErrLog Unit
⦃ encodeA ⦄ : Encoder A
open CryptoHash ⦃ ... ⦄ public
instance
CryptoHashBlockData : CryptoHash BlockData
CryptoHashBlockData = record
{ sign = λ sk bd → PKCS.sign-raw (encode bd) sk
; verify = λ pk sig bd → if PKCS.verify (encode bd) sig pk
then Right unit
else Left fakeErr }
instance
CryptoHashLedgerInfo : CryptoHash LedgerInfo
CryptoHashLedgerInfo = record
{ sign = λ sk li → PKCS.sign-raw (encode li) sk
; verify = λ pk sig li → if PKCS.verify (encode li) sig pk
then Right unit
else Left fakeErr }
instance
CryptoHashTimeout : CryptoHash Timeout
CryptoHashTimeout = record
{ sign = λ sk to → PKCS.sign-raw (encode to) sk
; verify = λ pk sig to → if PKCS.verify (encode to) sig pk
then Right unit
else Left fakeErr }
| {
"alphanum_fraction": 0.5420231505,
"avg_line_length": 33.6779661017,
"ext": "agda",
"hexsha": "dab389ea0a86cc84bacfae31370027304e96b855",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/Crypto.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/Crypto.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/Crypto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 464,
"size": 1987
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.AbGroup.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.AbGroup.Base
private variable
ℓ : Level
module AbGroupTheory (A'@(A , Ar) : AbGroup ℓ) where
open AbGroupStr Ar
comm-4 : (a b c d : A) → ((a + b) + (c + d) ≡ (a + c) + (b + d))
comm-4 a b c d = ((a + b) + (c + d) ≡⟨ +Assoc (a + b) c d ⟩
(((a + b) + c) + d) ≡⟨ cong (λ X → X + d) (sym (+Assoc a b c)) ⟩
((a + (b + c)) + d) ≡⟨ cong (λ X → (a + X) + d) (+Comm b c) ⟩
((a + (c + b)) + d) ≡⟨ cong (λ X → X + d) (+Assoc a c b) ⟩
(((a + c) + b) + d) ≡⟨ sym (+Assoc (a + c) b d) ⟩
((a + c) + (b + d)) ∎)
| {
"alphanum_fraction": 0.4262734584,
"avg_line_length": 32.4347826087,
"ext": "agda",
"hexsha": "8c0c455789adf8fe62511b8eed1069ed304b41c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/AbGroup/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/AbGroup/Properties.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/AbGroup/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 298,
"size": 746
} |
module BBHeap.Complete.Base {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import BBHeap.Complete.Alternative _≤_ renaming (lemma-bbheap-complete to lemma-bbheap-complete')
open import BTree.Complete.Alternative.Correctness {A}
open import BTree.Complete.Base {A}
open import Bound.Lower A
open import Function using (_∘_)
lemma-bbheap-complete : {b : Bound}(h : BBHeap b) → Complete (forget h)
lemma-bbheap-complete = lemma-complete'-complete ∘ lemma-bbheap-complete'
| {
"alphanum_fraction": 0.7551020408,
"avg_line_length": 40.8333333333,
"ext": "agda",
"hexsha": "99ed5a0d5426009aab6be8a7a4ca261737dd0c79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Complete/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Complete/Base.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Complete/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 140,
"size": 490
} |
------------------------------------------------------------------------------
-- Bisimulation on unbounded lists
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- In FOTC, we won't use the bisimulation functional on unbounded
-- lists. This module is only for illustrative purposes.
module FOTC.Relation.Binary.Bisimilarity.Bisimulation where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Relation.Binary.Bisimilarity.Type
open import FOTC.Relation.Binary.Bisimilarity.PropertiesI
----------------------------------------------------------------------------
-- The bisimilarity relation _≈_ on unbounded lists is the greatest
-- post-fixed point of Bisimulation (by post-fp and gpfp).
-- The bisimulation functional on unbounded lists (adapted from Dybjer
-- and Sander 1989, p. 310 and Jacobs and Rutten 1997, p. 30).
BisimulationF : (D → D → Set) → D → D → Set
BisimulationF B xs ys =
∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys'
-- The bisimilarity relation _≈_ on unbounded lists is a post-fixed
-- point of Bisimulation, i.e.
--
-- _≈_ ≤ Bisimulation _≈_.
post-fp : ∀ {xs ys} → xs ≈ ys → BisimulationF _≈_ xs ys
post-fp = ≈-out
-- The bisimilarity relation _≈_ on unbounded lists is the greatest
-- post-fixed point of Bisimulation, i.e.
--
-- ∀ B. B ≤ Bisimulation B ⇒ B ≤ _≈_.
greatest-post-fp :
(B : D → D → Set) →
-- B is a post-fixed point of Bisimulation.
(∀ {xs} {ys} → B xs ys → BisimulationF B xs ys) →
-- _≈_ is greater than B.
∀ {xs} {ys} → B xs ys → xs ≈ ys
greatest-post-fp = ≈-coind
-- Because a greatest post-fixed point is a fixed-point, the
-- bisimilarity relation _≈_ on unbounded lists is also a pre-fixed
-- point of Bisimulation, i.e.
--
-- Bisimulation _≈_ ≤ _≈_.
pre-fp : ∀ {xs} {ys} → BisimulationF _≈_ xs ys → xs ≈ ys
pre-fp = ≈-in
----------------------------------------------------------------------------
-- References
--
-- Dybjer, Peter and Sander, Herbert P. (1989). A Functional
-- Programming Approach to the Specification and Verification of
-- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
--
-- Jacobs, Bart and Rutten, Jan (1997). A Tutorial on (Co)Algebras and
-- (Co)Induction. EATCS Bulletin 62, pp. 222–259.
| {
"alphanum_fraction": 0.5832310838,
"avg_line_length": 37.0454545455,
"ext": "agda",
"hexsha": "e771fb14e53bcf466ad048a607bd955186095201",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Bisimulation.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Bisimulation.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Relation/Binary/Bisimilarity/Bisimulation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 694,
"size": 2445
} |
open import Issue3188.Issue3188a
B : Set
B = Set
| {
"alphanum_fraction": 0.74,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "13f811fd6743112d4ea908ef91398ebd2e201f86",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue3188.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue3188.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue3188.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 19,
"size": 50
} |
module Oscar.Class.Functor where
open import Oscar.Class.Monoid
open import Oscar.Data.Equality
open import Oscar.Data.Product
open import Oscar.Level
open import Oscar.Relation
open import Oscar.Function
record Functor {a} {A : Set a} {b} (_↠_ : A → A → Set b) ⦃ _ : Monoid _↠_ ⦄ {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where
field
_◃_ : ∀ {m n} → m ↠ n → m ⟨ C ⟩→ n
◃-identity : ∀ {m} → (x : C m) → ε ◃ x ≡ x
◃-associativity : ∀ {l m n} (f : l ↠ m) (g : m ↠ n) → (g ◇ f) ◃_ ≡̇ g ◃_ ∘ f ◃_
◃-extensionality : ∀ {m n} {f g : m ↠ n} → f ≡ g → f ◃_ ≡ g ◃_
open Functor ⦃ … ⦄ public
open import Data.List
open import Oscar.Function
instance MonoidFunction : ∀ {a} → Monoid {A = Set a} (λ m n → m → n)
Monoid.ε MonoidFunction = λ x → x
Monoid._◇_ MonoidFunction g f = g ∘ f
Monoid.◇-left-identity MonoidFunction _ = refl
Monoid.◇-right-identity MonoidFunction _ = refl
Monoid.◇-associativity MonoidFunction _ _ _ = refl
instance FunctorList : ∀ {a} → Functor _ ⦃ MonoidFunction {a} ⦄ List
Functor._◃_ FunctorList {m} {n} f [] = []
Functor._◃_ FunctorList {m} {n} f (x ∷ xs) = f x ∷ f ◃ xs
Functor.◃-identity FunctorList = {!!}
Functor.◃-associativity FunctorList = {!!}
Functor.◃-extensionality FunctorList = {!!}
| {
"alphanum_fraction": 0.6196269262,
"avg_line_length": 34.25,
"ext": "agda",
"hexsha": "154291f85f43b2b0bd636424af885217d8bdab9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Class/Functor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Class/Functor.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Class/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 492,
"size": 1233
} |
-- There was a bug when scope checking with clauses.
module WithScopeError where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
f : Nat -> Nat
f n with y
where y = suc n
f n | x = y x
| {
"alphanum_fraction": 0.637755102,
"avg_line_length": 15.0769230769,
"ext": "agda",
"hexsha": "446f53107fd6307077700019165e76a188a289dd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/WithScopeError.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/WithScopeError.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/WithScopeError.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 196
} |
{-# OPTIONS --without-K #-}
module Deltaplus where
{- Chapter 9.2: Semi-Simplicial Types
This file contains the definition of the index category
for semi-simplicial with judgmental categorical laws: Δ₊
In other words, we check Proposition 9.2.1.
We want to keep it independent of the other files,
so we do not import anything. -}
{- For simplicity, we only use the lowest universe
(totally sufficient) -}
Type = Set
-- the empty type
data Empty : Type where
-- the unit type
data ⊤ : Type where
* : ⊤
-- the natural numbers
data ℕ : Type where
O : ℕ
S : (n : ℕ) → ℕ
{- Finite types: these are the
=== OBJECTS of Δ₊ ===
-}
data Fin : ℕ → Type where
fz : {n : ℕ} → Fin (S n)
fs : {n : ℕ} → Fin n → Fin (S n)
-- >-relation on finite types
_>fin_ : {n : ℕ} → (i j : Fin n) → Set
fz >fin i = Empty
fs j >fin fz = ⊤
fs j >fin fs i = j >fin i
{- the proposition [we do not need to prove propositionality here, but
we could prove it easily] that a function is increasing;
this is the tricky part: it needs to be done in a way which ensures
that composition will behave nicely (strictly associative etc) later -}
is-increasing : {m n : ℕ} → (Fin m → Fin n) → Type
is-increasing {m} {n} f = {j i : Fin m} → (j >fin i) → ((f j) >fin (f i))
infixr 1 _,_
record Σ (A : Type) (B : A → Type) : Type where
constructor _,_
field
fst : A
snd : B fst
{- Strictly increasing maps: these are the
=== MORPHISMS of Δ₊ ===
-}
_⇒+_ : ℕ → ℕ → Set
m ⇒+ n = Σ (Fin m → Fin n) is-increasing
_∘+_ : {l m n : ℕ} → (m ⇒+ n) → (l ⇒+ m) → (l ⇒+ n)
(g , p₂) ∘+ (f , p₁) = (λ i → g(f(i))) , (λ p → p₂ (p₁ p))
-- === IDENTITY MORPHISMS of Δ₊ ===
idΔ₊ : ∀ {n} → n ⇒+ n
idΔ₊ = (λ x → x) , (λ p → p)
{- Now, let us check that the categorical laws hold judgmentally.
To do this, we use the usual notion of equality. -}
infix 3 _==_
data _==_ {A : Type} (a : A) : A → Type where
idp : a == a
-- === IDENTITY LAWS ===
id-comp : ∀ {m n} → (f : m ⇒+ n) → (idΔ₊ ∘+ f) == f
id-comp f = idp
comp-id : ∀ {m n} → (f : m ⇒+ n) → (f ∘+ idΔ₊) == f
comp-id f = idp
-- === ASSOCIATIVITY LAW ===
comp-assoc : ∀ {i j m n} → (f : i ⇒+ j) → (g : j ⇒+ m) → (h : m ⇒+ n)
→ h ∘+ (g ∘+ f) == (h ∘+ g) ∘+ f
comp-assoc f g h = idp
| {
"alphanum_fraction": 0.557261957,
"avg_line_length": 22.3431372549,
"ext": "agda",
"hexsha": "a43fce35decf6a9336397cddec40c98af84095b3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/thesis/Deltaplus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/thesis/Deltaplus.agda",
"max_line_length": 74,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/thesis/Deltaplus.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 856,
"size": 2279
} |
-----------------------------------------------------------------------
-- This file defines Dial₂(Sets) and its SMC structure. --
-----------------------------------------------------------------------
module Dial2Sets where
open import prelude
-- The objects:
Obj : Set₁
Obj = Σ[ U ∈ Set ] (Σ[ X ∈ Set ] (U → X → Set))
-- The morphisms:
Hom : Obj → Obj → Set
Hom (U , X , α) (V , Y , β) =
Σ[ f ∈ (U → V) ]
(Σ[ F ∈ (Y → X) ] (∀{u : U}{y : Y} → α u (F y) → β (f u) y))
-- Composition:
comp : {A B C : Obj} → Hom A B → Hom B C → Hom A C
comp {(U , X , α)} {(V , Y , β)} {(W , Z , γ)} (f , F , p₁) (g , G , p₂) =
(g ∘ f , F ∘ G , (λ {u z} p-α → p₂ (p₁ p-α)))
infixl 5 _○_
_○_ = comp
-- The contravariant hom-functor:
Homₐ : {A' A B B' : Obj} → Hom A' A → Hom B B' → Hom A B → Hom A' B'
Homₐ f h g = comp f (comp g h)
-- The identity function:
id : {A : Obj} → Hom A A
id {(U , V , α)} = (id-set , id-set , id-set)
-- In this formalization we will only worry about proving that the
-- data of morphisms are equivalent, and not worry about the morphism
-- conditions. This will make proofs shorter and faster.
--
-- If we have parallel morphisms (f,F) and (g,G) in which we know that
-- f = g and F = G, then the condition for (f,F) will imply the
-- condition of (g,G) and vice versa. Thus, we can safly ignore it.
infix 4 _≡h_
_≡h_ : {A B : Obj} → (f g : Hom A B) → Set
_≡h_ {(U , X , α)}{(V , Y , β)} (f , F , p₁) (g , G , p₂) = f ≡ g × F ≡ G
≡h-refl : {A B : Obj}{f : Hom A B} → f ≡h f
≡h-refl {U , X , α}{V , Y , β}{f , F , _} = refl , refl
≡h-trans : ∀{A B}{f g h : Hom A B} → f ≡h g → g ≡h h → f ≡h h
≡h-trans {U , X , α}{V , Y , β}{f , F , _}{g , G , _}{h , H , _} (p₁ , p₂) (p₃ , p₄) rewrite p₁ | p₂ | p₃ | p₄ = refl , refl
≡h-sym : ∀{A B}{f g : Hom A B} → f ≡h g → g ≡h f
≡h-sym {U , X , α}{V , Y , β}{f , F , _}{g , G , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl
≡h-subst-○ : ∀{A B C}{f₁ f₂ : Hom A B}{g₁ g₂ : Hom B C}{j : Hom A C}
→ f₁ ≡h f₂
→ g₁ ≡h g₂
→ f₂ ○ g₂ ≡h j
→ f₁ ○ g₁ ≡h j
≡h-subst-○ {U , X , α}
{V , Y , β}
{W , Z , γ}
{f₁ , F₁ , _}
{f₂ , F₂ , _}
{g₁ , G₁ , _}
{g₂ , G₂ , _}
{j , J , _}
(p₅ , p₆) (p₇ , p₈) (p₉ , p₁₀) rewrite p₅ | p₆ | p₇ | p₈ | p₉ | p₁₀ = refl , refl
○-assoc : ∀{A B C D}{f : Hom A B}{g : Hom B C}{h : Hom C D}
→ f ○ (g ○ h) ≡h (f ○ g) ○ h
○-assoc {U , X , α}{V , Y , β}{W , Z , γ}{S , T , ι}
{f , F , _}{g , G , _}{h , H , _} = refl , refl
○-idl : ∀{A B}{f : Hom A B} → id ○ f ≡h f
○-idl {U , X , _}{V , Y , _}{f , F , _} = refl , refl
○-idr : ∀{A B}{f : Hom A B} → f ○ id ≡h f
○-idr {U , X , _}{V , Y , _}{f , F , _} = refl , refl
-----------------------------------------------------------------------
-- Dial₂(Sets) is a SMC --
-----------------------------------------------------------------------
-- The tensor functor: ⊗
_⊗ᵣ_ : ∀{U X V Y : Set} → (U → X → Set) → (V → Y → Set) → ((U × V) → ((V → X) × (U → Y)) → Set)
_⊗ᵣ_ α β (u , v) (f , g) = (α u (f v)) × (β v (g u))
_⊗ₒ_ : (A B : Obj) → Obj
(U , X , α) ⊗ₒ (V , Y , β) = ((U × V) , ((V → X) × (U → Y)) , α ⊗ᵣ β)
F⊗ : ∀{S Z W T V X U Y : Set}{f : U → W}{F : Z → X}{g : V → S}{G : T → Y} → (S → Z) × (W → T) → (V → X) × (U → Y)
F⊗ {f = f}{F}{g}{G} (h₁ , h₂) = (λ v → F(h₁ (g v))) , (λ u → G(h₂ (f u)))
_⊗ₐ_ : {A B C D : Obj} → Hom A C → Hom B D → Hom (A ⊗ₒ B) (C ⊗ₒ D)
_⊗ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) = ⟨ f , g ⟩ , F⊗ {f = f}{F}{g}{G} , p
where
p : {u : U × V} {y : (S → Z) × (W → T)} → (α ⊗ᵣ β) u ((F⊗ {f = f}{F}{g}{G}) y) → (γ ⊗ᵣ δ) (⟨ f , g ⟩ u) y
p {(u , v)} {(h₁ , h₂)} (p-α , p-β) = p₁ p-α , p₂ p-β
-- The unit for tensor:
ι : ⊤ {lzero} → ⊤ {lzero} → Set
ι triv triv = ⊤
I : Obj
I = (⊤ , ⊤ , ι)
J : Obj
J = (⊤ , ⊤ , (λ x y → ⊥))
-- The left-unitor:
λ⊗-p : ∀{U X α}{u : ⊤ × U} {x : X} → (ι ⊗ᵣ α) u ((λ _ → triv) , (λ _ → x)) → α (snd u) x
λ⊗-p {U}{X}{α}{(triv , u)}{x} (triv , p-α) = p-α
λ⊗ : ∀{A : Obj} → Hom (I ⊗ₒ A) A
λ⊗ {(U , X , α)} = snd , (λ x → (λ _ → triv) , (λ _ → x)) , λ⊗-p
λ⁻¹⊗ : ∀{A : Obj} → Hom A (I ⊗ₒ A)
λ⁻¹⊗ {(U , X , α)} = (λ u → triv , u) , ((λ x → snd x triv) , λ⁻¹⊗-p)
where
λ⁻¹⊗-p : ∀{U X α} → {u : U} {y : (U → ⊤) × (⊤ → X)} → α u (snd y triv) → (ι ⊗ᵣ α) (triv , u) y
λ⁻¹⊗-p {U}{X}{α}{u}{(h₁ , h₂)} p-α with h₁ u
... | triv = triv , p-α
-- The right-unitor:
ρ⊗ : ∀{A : Obj} → Hom (A ⊗ₒ I) A
ρ⊗ {(U , X , α)} = fst , (λ x → (λ x₁ → x) , (λ x₁ → triv)) , ρ⊗-p
where
ρ⊗-p : ∀{U X α}{u : U × ⊤}{x : X} → (α ⊗ᵣ ι) u ((λ _ → x) , (λ _ → triv)) → α (fst u) x
ρ⊗-p {U}{X}{α}{(u , triv)}{x} (p-α , triv) = p-α
ρ⊗-inv : ∀{A : Obj} → Hom A (A ⊗ₒ I)
ρ⊗-inv {(U , X , α)} = (λ x → x , triv) , (λ x → fst x triv) , ρ⊗-p-inv
where
ρ⊗-p-inv : ∀{U X α}{u : U} {y : Σ (⊤ → X) (λ x → U → ⊤)} → α u (fst y triv) → (α ⊗ᵣ ι) (u , triv) y
ρ⊗-p-inv {U}{X}{α}{u}{(f , g)} p-α rewrite single-range {g = g}{u} = p-α , triv
-- Symmetry:
β⊗ : ∀{A B : Obj} → Hom (A ⊗ₒ B) (B ⊗ₒ A)
β⊗ {(U , X , α)}{(V , Y , β)} = twist-× , twist-× , β⊗-p
where
β⊗-p : ∀{U V Y X α β} → {u : U × V} {y : (U → Y) × (V → X)} →
(α ⊗ᵣ β) u (twist-× y) → (β ⊗ᵣ α) (twist-× u) y
β⊗-p {U}{V}{Y}{X}{α}{β}{(u , v)}{(h₁ , h₂)} p-α = twist-× p-α
-- The associator:
α⊗-inv : ∀{A B C : Obj} → Hom (A ⊗ₒ (B ⊗ₒ C)) ((A ⊗ₒ B) ⊗ₒ C)
α⊗-inv {(U , X , α)}{(V , Y , β)}{(W , Z , γ)} = rl-assoc-× , Fα-inv , α-inv-cond
where
Fα-inv : (W → (V → X) × (U → Y)) × (U × V → Z) → (V × W → X) × (U → (W → Y) × (V → Z))
Fα-inv = (λ p → (λ p' → fst ((fst p) (snd p')) (fst p')) , (λ u → (λ w → snd (fst p w) u) , (λ v → (snd p) (u , v))))
α-inv-cond : ∀{u : U × V × W} {y : (W → (V → X) × (U → Y)) × (U × V → Z)} → (α ⊗ᵣ (β ⊗ᵣ γ)) u (Fα-inv y) → ((α ⊗ᵣ β) ⊗ᵣ γ) (rl-assoc-× u) y
α-inv-cond {(u , v , w)} {(h₁ , h₂)} (p₁ , p₂ , p₃) with h₁ w
... | (a , b) = (p₁ , p₂) , p₃
Fα : ∀{V W X Y U V Z : Set} → Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z))
→ Σ (W → Σ (V → X) (λ x → U → Y)) (λ x → Σ U (λ x₁ → V) → Z)
Fα (f , g) = (λ x → (λ x₁ → f ((x₁ , x))) , (λ x₁ → fst (g x₁) x)) , (λ x → snd (g (fst x)) (snd x))
α⊗ : ∀{A B C : Obj} → Hom ((A ⊗ₒ B) ⊗ₒ C) (A ⊗ₒ (B ⊗ₒ C))
α⊗ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)} = (lr-assoc-× , Fα {V} , α-cond)
where
α-cond : {u : Σ (Σ U (λ x → V)) (λ x → W)}{y : Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z))} →
((α ⊗ᵣ β) ⊗ᵣ γ) u (Fα {V} y) → (α ⊗ᵣ (β ⊗ᵣ γ)) (lr-assoc-× u) y
α-cond {(u , v) , w}{(f , g)} ((p₁ , p₂) , p₃) with g u
... | (h₁ , h₂) = p₁ , p₂ , p₃
α⊗-id₁ : ∀{A B C} → (α⊗ {A}{B}{C}) ○ α⊗-inv ≡h id
α⊗-id₁ {U , X , α}{V , Y , β}{W , Z , γ} = ext-set aux , ext-set aux'
where
aux : {a : Σ (Σ U (λ x → V)) (λ x → W)} → rl-assoc-× (lr-assoc-× a) ≡ a
aux {(u , v) , w} = refl
aux' : {a : Σ (W → Σ (V → X) (λ x → U → Y)) (λ x → Σ U (λ x₁ → V) → Z)}
→ ((λ x → (λ x₁ → fst (fst a x) x₁) , (λ x₁ → snd (fst a x) x₁)) , (λ x → snd a (fst x , snd x))) ≡ a
aux' {j₁ , j₂} = eq-× (ext-set aux'') (ext-set aux''')
where
aux'' : {a : W} → (fst (j₁ a) , snd (j₁ a)) ≡ j₁ a
aux'' {w} with j₁ w
... | h₁ , h₂ = refl
aux''' : {a : Σ U (λ x₁ → V)} → j₂ (fst a , snd a) ≡ j₂ a
aux''' {u , v} = refl
α⊗-id₂ : ∀{A B C} → (α⊗-inv {A}{B}{C}) ○ α⊗ ≡h id
α⊗-id₂ {U , X , α}{V , Y , β}{W , Z , γ} = ext-set aux , ext-set aux'
where
aux : {a : Σ U (λ x → Σ V (λ x₁ → W))} → lr-assoc-× (rl-assoc-× a) ≡ a
aux {u , (v , w)} = refl
aux' : {a
: Σ (Σ V (λ x → W) → X) (λ x → U → Σ (W → Y) (λ x₁ → V → Z))} →
((λ p' → fst (fst (Fα {V} {W} {X} {Y} {U} {V} {Z} a) (snd p')) (fst p')) ,
(λ u → (λ w → snd (fst (Fα {V} {W} {X} {Y} {U} {V} {Z} a) w) u) , (λ v → snd (Fα {V} {W} {X} {Y} {U} {V} {Z} a) (u , v))))
≡ a
aux' {j₁ , j₂} = eq-× (ext-set aux'') (ext-set aux''')
where
aux'' : {a : Σ V (λ x → W)} → j₁ (fst a , snd a) ≡ j₁ a
aux'' {v , w} = refl
aux''' : {a : U} → ((λ w → fst (j₂ a) w) , (λ v → snd (j₂ a) v)) ≡ j₂ a
aux''' {u} with j₂ u
... | h₁ , h₂ = refl
-- Internal hom:
⊸-cond : ∀{U V X Y : Set} → (U → X → Set) → (V → Y → Set) → (U → V) × (Y → X) → U × Y → Set
⊸-cond α β (f , g) (u , y) = α u (g y) → β (f u) y
_⊸ₒ_ : Obj → Obj → Obj
(U , X , α) ⊸ₒ (V , Y , β) = ((U → V) × (Y → X)) , (U × Y) , ⊸-cond α β
_⊸ₐ_ : {A B C D : Obj} → Hom C A → Hom B D → Hom (A ⊸ₒ B) (C ⊸ₒ D)
_⊸ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) =
h , H , p₃
where
h : Σ (U → V) (λ x → Y → X) → Σ (W → S) (λ x → T → Z)
h (h₁ , h₂) = (λ w → g (h₁ (f w))) , (λ t → F (h₂ (G t)))
H : Σ W (λ x → T) → Σ U (λ x → Y)
H (w , t) = f w , G t
p₃ : {u : Σ (U → V) (λ x → Y → X)} {y : Σ W (λ x → T)} → ⊸-cond α β u (H y) → ⊸-cond γ δ (h u) y
p₃ {h₁ , h₂}{w , t} c c' = p₂ (c (p₁ c'))
cur : {A B C : Obj}
→ Hom (A ⊗ₒ B) C
→ Hom A (B ⊸ₒ C)
cur {U , X , α}{V , Y , β}{W , Z , γ} (f , F , p₁)
= (λ u → (λ v → f (u , v)) , (λ z → snd (F z) u)) , (λ p → fst (F (snd p)) (fst p)) , cur-cond
where
cur-cond : ∀{u : U}{y : Σ V (λ x → Z)}
→ α u (fst (F (snd y)) (fst y))
→ ⊸-cond β γ ((λ v → f (u , v)) , (λ z → snd (F z) u)) y
cur-cond {u}{v , z} p₂ p₃ with p₁ {u , v}{z}
... | p₁' with F z
... | (j₁ , j₂) = p₁' (p₂ , p₃)
cur-≡h : ∀{A B C}{f₁ f₂ : Hom (A ⊗ₒ B) C}
→ f₁ ≡h f₂
→ cur f₁ ≡h cur f₂
cur-≡h {U , X , α}{V , Y , β}{W , Z , γ}
{f₁ , F₁ , p₁}{f₂ , F₂ , p₂} (p₃ , p₄)
rewrite p₃ | p₄ = refl , refl
cur-cong : ∀{A B C}{f₁ f₂ : Hom (A ⊗ₒ B) C} → f₁ ≡h f₂ → cur f₁ ≡h cur f₂
cur-cong {(U , X , α)} {(V , Y , β)} {(W , Z , γ)}{f₁ , F₁ , _}{f₂ , F₂ , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl
uncur : {A B C : Obj}
→ Hom A (B ⊸ₒ C)
→ Hom (A ⊗ₒ B) C
uncur {U , X , α}{V , Y , β}{W , Z , γ} (f , F , p₁)
= (λ p → fst (f (fst p)) (snd p)) , (λ z → (λ v → F (v , z)) , (λ u → snd (f u) z)) , uncur-cond
where
uncur-cond : ∀{u : Σ U (λ x → V)} {y : Z}
→ (α ⊗ᵣ β) u ((λ v → F (v , y)) , (λ u₁ → snd (f u₁) y))
→ γ (fst (f (fst u)) (snd u)) y
uncur-cond {u , v}{z} (p₂ , p₃) with p₁ {u}{v , z} p₂
... | p₁' with f u
... | (j₁ , j₂) = p₁' p₃
cur-uncur-bij₁ : ∀{A B C}{f : Hom (A ⊗ₒ B) C}
→ uncur (cur f) ≡h f
cur-uncur-bij₁ {U , X , α}{V , Y , β}{W , Z , γ}{f , F , p₁} = ext-set aux₁ , ext-set aux₂
where
aux₁ : {a : Σ U (λ x → V)} → f (fst a , snd a) ≡ f a
aux₁ {u , v} = refl
aux₂ : {a : Z} → ((λ v → fst (F a) v) , (λ u → snd (F a) u)) ≡ F a
aux₂ {z} with F z
... | j₁ , j₂ = refl
cur-uncur-bij₂ : ∀{A B C}{g : Hom A (B ⊸ₒ C)}
→ cur (uncur g) ≡h g
cur-uncur-bij₂ {U , X , α}{V , Y , β}{W , Z , γ}{g , G , p₁} = ext-set aux₁ , ext-set aux₂
where
aux₁ : {a : U} → ((λ v → fst (g a) v) , (λ z → snd (g a) z)) ≡ g a
aux₁ {u} with g u
... | (j₁ , j₂) = refl
aux₂ : {a : Σ V (λ x → Z)} → G (fst a , snd a) ≡ G a
aux₂ {v , z} = refl
-- The of-course exponential:
!ₒ-cond : ∀{U X : Set}
→ (U → X → Set)
→ U
→ (U → X *)
→ Set
!ₒ-cond α u f = all-pred (α u) (f u)
!ₒ : Obj → Obj
!ₒ (U , X , α) = U , (U → X *) , !ₒ-cond α
!-cta : {V Y U X : Set}
→ (Y → X)
→ (U → V)
→ (V → Y *)
→ (U → X *)
!-cta F f g = λ u → list-funct F (g (f u))
!ₐ-cond : ∀{U V Y X : Set}{F : Y → X}{f : U → V}
→ (α : U → X → Set)
→ (β : V → Y → Set)
→ (p : {u : U} {y : Y} → α u (F y) → β (f u) y)
{u : U}{l : Y *}
→ all-pred (α u) (list-funct F l)
→ all-pred (β (f u)) l
!ₐ-cond _ _ _ {l = []} _ = triv
!ₐ-cond α β p {u}{x :: xs} (p' , p'') = p p' , !ₐ-cond α β p p''
!ₐ : {A B : Obj} → Hom A B → Hom (!ₒ A) (!ₒ B)
!ₐ {U , X , α}{V , Y , β} (f , F , p) = f , !-cta F f , !ₐ-cond α β p
-- Of-course is a comonad:
ε : ∀{A} → Hom (!ₒ A) A
ε {U , X , α} = id-set , (λ x y → [ x ]) , fst
δ-cta : {U X : Set} → (U → 𝕃 (U → 𝕃 X)) → U → 𝕃 X
δ-cta g u = foldr (λ f rest → (f u) ++ rest) [] (g u)
δ : ∀{A} → Hom (!ₒ A) (!ₒ (!ₒ A))
δ {U , X , α} = id-set , δ-cta , δ-cond
where
δ-cond : {u : U} {l : 𝕃 (U → 𝕃 X)}
→ all-pred (α u) (foldr (λ f → _++_ (f u)) [] l)
→ all-pred (λ f
→ all-pred (α u) (f u)) l
δ-cond {l = []} _ = triv
δ-cond {u}{l = x :: l'} p with
all-pred-append {X}{α u}
{x u}
{foldr (λ f → _++_ (f u)) [] l'}
∧-unit ∧-assoc
... | p' rewrite p' = fst p , δ-cond {u} {l'} (snd p)
-- These diagrams can be found on page 22 of the report.
{-
comonand-diag₁ : ∀{A}
→ (δ {A}) ○ (!ₐ (δ {A})) ≡h (δ {A}) ○ (δ { !ₒ A})
comonand-diag₁ {U , X , α} =
refl , ext-set (λ {a} → ext-set (λ {a₁} → aux {a₁}{a a₁}))
where
aux : ∀{a₁ : U}{l : 𝕃 (U → 𝕃 (U → 𝕃 X))} →
foldr (λ f → _++_ (f a₁)) []
(map (λ g u → foldr (λ f → _++_ (f u)) [] (g u)) l)
≡
foldr (λ f → _++_ (f a₁)) [] (foldr (λ f → _++_ (f a₁)) [] l)
aux {a}{[]} = refl
aux {a}{x :: l} rewrite
sym (foldr-append {l₁ = x a}{foldr (λ f → _++_ (f a)) [] l}{a})
= cong2 {a = foldr (λ f → _++_ (f a)) [] (x a)}
_++_
refl
(aux {a}{l})
comonand-diag₂ : ∀{A}
→ (δ {A}) ○ (ε { !ₒ A}) ≡h (δ {A}) ○ (!ₐ (ε {A}))
comonand-diag₂ {U , X , α} =
refl , ext-set (λ {f} → ext-set (λ {a} → aux {a}{f a}))
where
aux : ∀{a : U}{l : X *}
→ l ++ [] ≡ foldr (λ f₁ → _++_ (f₁ a)) [] (map (λ x y → x :: []) l)
aux {a}{[]} = refl
aux {a}{x :: l} with aux {a}{l}
... | IH rewrite ++[] l =
cong2 {a = x} {x} {l}
{foldr (λ f₁ → _++_ (f₁ a)) [] (map (λ x₁ y → x₁ :: []) l)} _::_ refl
IH
-}
module Cartesian where
π₁ : {U X V Y : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ Hom ((!ₒ (U , X , α)) ⊗ₒ (!ₒ (V , Y , β))) (!ₒ (U , X , α))
π₁ {U}{X}{V}{Y}{α}{β} = fst , (λ f → (λ v u → f u) , (λ u v → [])) , π₁-cond
where
π₁-cond : ∀{u : Σ U (λ x → V)} {y : U → 𝕃 X} →
((λ u₁ f → all-pred (α u₁) (f u₁)) ⊗ᵣ
(λ u₁ f → all-pred (β u₁) (f u₁)))
u ((λ v u₁ → y u₁) , (λ u₁ v → [])) →
all-pred (α (fst u)) (y (fst u))
π₁-cond {u , v}{f} (p₁ , p₂) = p₁
π₂ : {U X V Y : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ Hom ((!ₒ (U , X , α)) ⊗ₒ (!ₒ (V , Y , β))) (!ₒ (V , Y , β))
π₂ {U}{X}{V}{Y}{α}{β} = snd , (λ f → (λ v u → []) , (λ u v → f v)) , π₂-cond
where
π₂-cond : ∀{u : Σ U (λ x → V)} {y : V → 𝕃 Y} →
((λ u₁ f → all-pred (α u₁) (f u₁)) ⊗ᵣ
(λ u₁ f → all-pred (β u₁) (f u₁)))
u ((λ v u₁ → []) , (λ u₁ v → y v)) →
all-pred (β (snd u)) (y (snd u))
π₂-cond {u , v}{f} (p₁ , p₂) = p₂
cart-ar-crt : {U X V Y W Z : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ {γ : W → Z → Set}
→ Hom (!ₒ (W , Z , γ)) (!ₒ (U , X , α))
→ Hom (!ₒ (W , Z , γ)) (!ₒ (V , Y , β))
→ Σ (V → U → 𝕃 X) (λ x → U → V → 𝕃 Y) → W → 𝕃 Z
cart-ar-crt (f , F , p₁) (g , G , p₂) (j₁ , j₂) w = F (j₁ (g w)) w ++ G (j₂ (f w)) w
cart-ar : {U X V Y W Z : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ {γ : W → Z → Set}
→ Hom (!ₒ (W , Z , γ)) (!ₒ (U , X , α))
→ Hom (!ₒ (W , Z , γ)) (!ₒ (V , Y , β))
→ Hom (!ₒ (W , Z , γ)) ((!ₒ (U , X , α)) ⊗ₒ (!ₒ (V , Y , β)))
cart-ar {U}{X}{V}{Y}{W}{Z}{α}{β}{γ} (f , F , p₁) (g , G , p₂)
= (λ w → f w , g w) , cart-ar-crt {α = α}{β} (f , F , p₁) (g , G , p₂) , cart-ar-cond
where
cart-ar-cond : ∀{u : W} {y : Σ (V → U → 𝕃 X) (λ x → U → V → 𝕃 Y)} →
all-pred (γ u) (cart-ar-crt {α = α}{β} (f , F , p₁) (g , G , p₂) y u) →
((λ u₁ f₁ → all-pred (α u₁) (f₁ u₁)) ⊗ᵣ
(λ u₁ f₁ → all-pred (β u₁) (f₁ u₁)))
(f u , g u) y
cart-ar-cond {w}{j₁ , j₂} p
rewrite
all-pred-append {f = γ w}{F (j₁ (g w)) w}{G (j₂ (f w)) w} ∧-unit ∧-assoc with p
... | (a , b) = p₁ a , p₂ b
cart-diag₁ : {U X V Y W Z : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ {γ : W → Z → Set}
→ {f : Hom (W , Z , γ) (U , X , α)}
→ {g : Hom (W , Z , γ) (V , Y , β)}
→ _≡h_ { !ₒ (W , Z , γ)}{ !ₒ (U , X , α)}
(!ₐ {W , Z , γ}{U , X , α} f)
(comp { !ₒ (W , Z , γ)}
{((!ₒ (U , X , α)) ⊗ₒ (!ₒ (V , Y , β)))}
{ !ₒ (U , X , α)}
(cart-ar {α = α}{β}{γ} (!ₐ {W , Z , γ}{U , X , α} f) (!ₐ {W , Z , γ}{V , Y , β} g))
π₁)
cart-diag₁ {f = f , F , p₁}{g , G , p₂}
= refl , ext-set (λ {j} → ext-set (λ {w} → sym (++[] (map F (j (f w))))))
cart-diag₂ : {U X V Y W Z : Set}
→ {α : U → X → Set}
→ {β : V → Y → Set}
→ {γ : W → Z → Set}
→ {f : Hom (W , Z , γ) (U , X , α)}
→ {g : Hom (W , Z , γ) (V , Y , β)}
→ _≡h_ { !ₒ (W , Z , γ)}{ !ₒ (V , Y , β)}
(!ₐ {W , Z , γ}{V , Y , β} g)
(comp { !ₒ (W , Z , γ)}
{((!ₒ (U , X , α)) ⊗ₒ (!ₒ (V , Y , β)))}
{ !ₒ (V , Y , β)}
(cart-ar {α = α}{β}{γ} (!ₐ {W , Z , γ}{U , X , α} f) (!ₐ {W , Z , γ}{V , Y , β} g))
π₂)
cart-diag₂ {f = f , F , p₁}{g , G , p₂}
= refl , ext-set (λ {j} → ext-set (λ {w} → refl))
| {
"alphanum_fraction": 0.3625483985,
"avg_line_length": 37.5462555066,
"ext": "agda",
"hexsha": "ffea21277b076f74835e77b8ce6e57939c60cfd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "dialectica-cats/Dial2Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "dialectica-cats/Dial2Sets.agda",
"max_line_length": 142,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "dialectica-cats/Dial2Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8747,
"size": 17046
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.